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“Quando ti metterai in viaggio per Itaca

devi augurarti che la strada sia lunga,

fertile in avventure e in esperienze.

I Lestrigoni e i Ciclopi

o la furia di Nettuno non temere,

non sarà questo il genere di incontri

se il pensiero resta alto e un sentimento

fermo guida il tuo spirito e il tuo corpo.

In Ciclopi e Lestrigoni, no certo,

nè nell’irato Nettuno incapperai

se non li porti dentro

se l’anima non te li mette contro.

Devi augurarti che la strada sia lunga.

Che i mattini d’estate siano tanti

quando nei porti - finalmente e con che gioia -

toccherai terra tu per la prima volta:

negli empori fenici indugia e acquista

madreperle coralli ebano e ambre

tutta merce fina, anche profumi

penetranti d’ogni sorta; più profumi inebrianti che puoi,

va in molte città egizie

impara una quantità di cose dai dotti.

Sempre devi avere in mente Itaca -

raggiungerla sia il pensiero costante.

Soprattutto, non affrettare il viaggio;

fa che duri a lungo, per anni, e che da vecchio

metta piede sull’isola, tu, ricco

dei tesori accumulati per strada

senza aspettarti ricchezze da Itaca.

Itaca ti ha dato il bel viaggio,

senza di lei mai ti saresti messo

sulla strada: che cos’altro ti aspetti?

E se la trovi povera, non per questo Itaca ti avrà deluso.

Fatto ormai savio, con tutta la tua esperienza addosso

già tu avrai capito ciò che Itaca vuole significare.”

(Itaca, K. Kavafis)





Sommario

Il lavoro di tesi è focalizzato sull’analisi di processi fortemente energetici che agiscono

e caratterizzano le superfici dei corpi del Sistema Solare (pianeti, satelliti e corpi mi-

nori), influenzandone anche l’ambiente circostante. Gli argomenti principali sviluppati

in questo lavoro sono i seguenti: (i) simulazione e analisi della fisica dell’impatto su su-

perfici planetarie, (ii) lo studio dei processi di frammentazione responsabili dell’origine

dei molteplici massi presenti sulla superficie della cometa Churyumov-Gerasimenko 67P,

e (iii) la caratterizzazione di fenomeni transienti che si manifestano sul satellite gioviano

Europa, in particolare l’analisi di possibili “plumes” generati da fenomeni criovulcanici

e lo studio accurato dell’ambiente esosferico.

Il primo tema affrontato è l’analisi del processo di craterizzazione da impatto tramite

simulazioni numeriche, in quanto gli shock code rappresentano il miglior mezzo per

esplorare condizioni non raggiungibili in laboratorio e capire quali siano le variabili mag-

giormente responsabili agenti della formazione del cratere. In questa tesi l’hydrocode

iSALE è stato utilizzato per simulare due strutture di impatto presenti su due pianeti

del Sistema Solare, Mercurio e Marte. Nel primo caso, la simulazione e analisi del cratere

ha permesso di ottenere maggiori informazioni riguardo l’origine di una struttura conica

circondata da materiale piroclastico, identificata dalle immagini acquisite dalla sonda

MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging).

Nel caso Marziano, invece, la simulazione numerica del cratere Firsoff, localizzato in

Arabia Terra, ha permesso di capire quali siano i processi post-impatto che hanno deter-

minato l’attuale morfologia del cratere e quale sia la struttura reologica caratterizzante

quella regione. Dai risultati provenienti da entrambe le applicazioni emerge che la sim-

ulazione numerica dei crateri di impatto sia un importante e potente strumento per

migliorare la conoscenza del Sistema Solare.

Il secondo argomento è stato sviluppato dopo l’inserimento in orbita di Rosetta at-

torno alla cometa 67P. Diversi processi energetici, come la sublimazione, frammentazione,

outburts e crolli gravitazionali, sono stati considerati al fine di spiegare la genesi dei

massi cometari, che si trovano ovunque sulla superficie. Per uno studio dettagliato

dell’argomento sono state utilizzate le immagini acquisite dagli strumenti OSIRIS (Op-

tical, Spectroscopic, and Infrared Remote Imaging System) e CIVA (Comet Infrared



and Visible Analyser), che sono le camere a bordo della sonda e del lander rispetti-

vamente. I massi presenti sulle immagini sono stati analizzati quantitativamente, in

termini di distribuzione in dimensioni, per comprendere quali siano i processi energetici

che li generano e, in particolare, per determinare se tali processi avvengano ugualmente

sulla cometa indipendentemente dalla scala spaziale considerata (m, cm, mm). A tale

scopo, sono state ottenute le varie distribuzioni per i seguenti massi: (i) massi con un

diametro maggiore di 7 m, (ii) massi con un diametro maggiore di 1 m (dall’analisi del

sito Abydos, che è il luogo dove si suppone sia Philae) e (iii) grani (strutture su scala

del mm-cm) presenti sulle immagini di CIVA.

Nell’ambito della missione futura ESA/JUICE e del nostro forte coinvolgimento nella

camera JANUS (Jovis, Amorum ac Natorum Undique Scrutator), l’ultimo tema af-

frontato è incentrato sul satellite ghiacciato Europa. La presenza di un oceano subsu-

perficiale all’interno di Europa è un argomento di primaria importanza e, in aggiunta, la

recente osservazione del plume al polo sud tramite le osservazioni di HST, ha alimentato

le domande riguardanti l’interazione tra la subsuperficie, la superficie e l’ambiente cir-

costante. In questo contesto, il primo obiettivo è stato quello di generare una simulazione

che rappresentasse un possibile deposito di un plume generato da fenomeni criovulcanici,

in modo da definire in quali condizioni l’evento sarebbe osservabile da JANUS durante i

flybys di Europa. Inoltre, dato che lo studio dei “plume” necessita di un’accurata carat-

terizzazione dell’esosfera, è stato realizzato un dettagliato calcolo dei tassi di perdita

dell’esosfera di Europa in relazione ai processi di ionizzazione e dissociazione per im-

patto di elettroni, di scambio di carica e di fotoionizzazione.



Abstract

This PhD thesis focuses on the analysis of different high energetic processes that affect

the surface of planets, satellites and minor bodies as well as modify their surrounding

environment. Specifically, this work concerns three main topics: (i) the simulation and

analysis of one of the most geological energetic process, i.e. impact cratering; (ii) the

investigation of the fragmentation processes that could have generated boulders on comet

Churyumov-Gerasimenko 67P; (iii) the analysis of a possible transient plume originating

from cryovolcanic events on Europa, the Jovian icy satellite, combined with an accurate

characterisation of its exospheric background.

The first topic addresses the investigation of the impact formation process through nu-

merical modelling. Shocks code represent the most feasible method for studying impact

craters, as they can simulate a large span of conditions beyond the reach of experi-

ments (e.g., velocity, size). The iSALE hydrocode was used to simulate two different

impact structures located on Mercury and Mars. On Mercury, the simulation allows to

determine the genesis of a particular landform, i.e. a steep-sided cone with associated

pyroclastic deposits, which was revealed by images acquired by MErcury Surface, Space

ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. On Mars, the

simulation of the Firsoff crater in Arabia Terra permits a better understanding the sub-

sequent geologic processes that led to crater post modification, defining which rheological

structure is more likely in that region. In both cases, we conclude that the numerical

modelling of impact process is a powerful tool to improve the comprehension of the Solar

System.

The second topic of the thesis has been developed after the Rosetta mission got in-

serted around the comet Churyumov-Gerasimenko 67P. We investigated the surface of

comet Churyumov-Gerasimenko 67P focusing on the possible energetic events that lead

to the formation of boulders; i.e. blocks that are ubiquitous on the surface of the comet.

Different energetic formation processes were invoked to explain the presence of boulders,

such as sublimation, fragmentation, outbursts and gravitational falls. Using images ac-

quired by OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) and

CIVA (Comet Infrared and Visible Analyser) cameras on board the spacecraft and the

lander respectively, a quantitative analysis of different-size boulders has been performed



in order to understand if the same energetic formation processes occur equally on differ-

ent scales on the comet (m, cm and mm). Specifically, by means of different resolution

images, we obtained several size-frequency distribution for: (i) boulders larger than 7 m,

(ii) boulders larger than 1 m from higher resolution images used to analyse the Abydos

site, the location where Philae is supposed to be, and (iii) pebbles (mm-scale structures)

visible on CIVA images.

The third topic is the icy satellite Europa in view of the future ESA/JUICE mission

and because of our involvement in JANUS (Jovis, Amorum ac Natorum Undique Scruta-

tor) visible camera. The presence of a subsurface ocean is a primary topic on Europa, in

addition the recent discovery of a transient plume at the south pole by HST observations

has raised many questions regarding the interaction between the subsurface/surface and

the outer environment of Europa in terms of active processes affecting the icy surface.

In this context, a possible plume deposit originating from cryovolcanic events was simu-

lated to understand its detectability by JANUS camera during the Europa flyby phase

of the JUICE mission. In addition, since the study of transient plumes has as a manda-

tory prerequisite an accurate characterisation of the exospheric background, a detailed

study of the loss rates of Europa’s tenuous atmosphere was performed. In particular,

loss rates for electron impact dissociation and ionization processes, for charge-exchange

(considering plasma torus, pick up and ionosphere ions) and for photo processes (for

both cases of quite and active Sun) were calculated.
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Introduction

The subject of this PhD thesis is to analyse different structures and phenomena caused by

high energetic processes that are present on Solar System bodies. Such processes affect

the surface of planets, their satellites and of minor bodies modifying their surrounding

environment too. In this work, we will focus on specific processes and planetary features

visible by means of spacecraft images. Energetic processes act on the surface of all bodies,

but the resulting features may be different. The first process here considered is impact

cratering, i.e. one of the most energetic geological process. A hypervelocity impact crater

is a structure resulting from the collision of a projectile with another body. It begins with

the first contact of the two bodies and ends up with the final motions of debris around

the crater (Melosh, 1989; Melosh & Ivanov, 1999; French, 1998). Impact cratering is a

complex process that depends on several factors, such as the size, the velocity and the

composition of the impacting body, as well as the gravity and the physical properties of

the target, such as porosity and strength. It follows, that the study of impact craters

offers a tool to investigate the subsurface structure and composition of the considered

bodies. The current understanding of impact craters combines both observational data

and computer simulations. The use of hydrocodes has allowed the investigation of the

impact process on planetary scales because it can simulate conditions beyond the reach

of experiments (e.g., velocity, size) and it allows an investigation of the complexity of

crater collapse on a planetary scale. Within this frame, we made use of the iSALE

hydrocode, which is a code used for modelling highly dynamic events, and in particular

the propagation of the shock wave as well as the behaviour of geologic materials over

a broad range of stress and deformation states. We simulated different impact craters

on rocky bodies (Mercury and Mars) using both satellite images and the derived Digital

Terrain Model. Indeed, by means of DTMs, we can provide the morphology of a crater,

deriving its profile, that we consequently use for comparison with our output model. The

impact crater simulations performed in the first chapter of the thesis are summarized as

follows:

• Mercury case study: we analyse a particular landform on the Hermean surface.

Images acquired by the MErcury Surface, Space ENvironment, GEochemistry, and

Ranging (MESSENGER) spacecraft have shown a conical structure, surrounded
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by a trough, lying at the centre of a large 23.000 km2 diffuse-margined spectral

anomaly that is brighter and red-sloped when compared to the Hermean average;

• Mars case study: the aim of simulating an impact process on a complex environ-

ment such as the Martian surface provides information about how different impact

conditions (e.g., different impact velocities and compositional scenarios, thickness

of the megaregolith) affect the crater formation but also gives an estimate of the

post-impact modification processes entity. We present a numerical model for the

formation of the Firsoff crater (90 km of diameter) which is a strongly degraded

crater located in the equatorial southern highlands of Arabia Terra, thought to be

an area of intense water interactions and subsequent modifications;

Assuming that all the Solar System bodies have been interested by impacts, we then

focus our attention on Solar System minor bodies, in particular on comet Churyumov-

Gerasimenko 67P. Since the arrival of the Rosetta mission on comet 67P, we decided to

analyse its changeable surface through the images acquired by OSIRIS (Optical, Spec-

troscopic, and Infrared Remote Imaging System) instrument, the camera on board the

Rosetta mission in which our team is involved. Material properties and images coming

from OSIRIS reveal that no well-defined impact craters are present on its surface, but

there are other features that are ubiquitous on the surface of this comet. These fea-

tures, called boulders, are positive relief detectable in different images with the constant

presence of an elongated shadow and seem to be detached from the ground where they

stand. Previous studies of boulders, found on asteroids and planets, are usually related

to impacts because they represent the largest fragments excavated by the collision which

do not reach the escape velocity. For the specific case of 67P, the impact formation

process is not sufficient to explain the presence of boulders since current collision rates

for comets are very low and would imply that most blocks were created very early in the

history of the comet. Nonetheless, this is very unlikely because of the activity of comet

surface and because of comet lifetimes. Hence, it is reasonable to discard the impact

origin for the boulders, and invoke other processes. Therefore, in the second chapter we

focus our attention on the possible energetic formation processes that generate detached

blocks. Firstly, we obtained the first size-frequency distribution of boulders on a comet

analysing their spatial distribution and performing global and localized studies. After

that, we described in detail the Abydos site, the location where the lander Philae is sup-

posed to have come to rest, performing the boulder analysis by means of OSIRIS and

CIVA images (the panoramic cameras on board the lander Philae). The latter, revealed a

rough terrain dominated by fractures and agglomerates of consolidated materials, called

pebbles, whose origin is still debated and very intriguing. A quantitative analysis of

these structures was performed in order to compare the different distribution in order to

correlate them and understand if the same energetic formation processes occur equally

on different scales on the comet (m, cm and mm).
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In the third chapter we focus on the outer part of the Solar System in view of the

future JUICE/ESA mission and of our involvement in JANUS (Jovis, Amorum ac Na-

torum Undique Scrutator) camera. Specifically, we studied Europa, the icy satellite of

Jupiter, that will be observed by two flybys during the mission. One of the objectives

of JUICE is to explore for the first time the subsurface of Europa in the most recent

active regions to understand the exchange processes from the subsurface to the surface

and also to constrain the minimal thickness of the ice shell in the most active regions

(ESA, 2014). JUICE will search and study present and/or recently active processes too

considering that their manifestation can be found both on the moon’s surface and in

its atmosphere (plumes) and the ionosphere. The presence of a subsurface ocean is a

primary topic on Europa, in addition the recent discovery of a transient plume at the

south pole by HST observations (Roth et al., 2014b) has raised many questions regard-

ing the interaction between the subsurface/surface and the outer environment of Europa

in terms of active processes affecting the icy satellite. Therefore, in the third chapter

we focused on different topics related to the presence of a subsurface ocean in order to

achieve further information about the satellite and to support the observation planning

of JUICE/JANUS. Firstly, we study the possible plume deposit that could be formed

by cryovolcanic events. Indeed, spacecraft have observed plumes erupting from the ge-

ologically young surfaces of Io and Enceladus and, since Europa possesses a relatively

young surface too, it has been proposed that many of its surface features are the result

of material emplaced via ballistic cryovolcanism (i.e. plumes). These plumes have been

long hypothesized but they were never directly observed until recent discoveries. In fact,

a transient endogenic H2O exosphere source, consistent with two 200-km-high plumes of

water vapour, was recently discovered through the analysis of HI Lyman-α 1215.67 Å,

OI 1304 Å and OI 1356 Å data obtained with HST/STIS (Roth et al., 2014b). On the

other hand, in previous works, as in Fagents et al. (2000), ballistic cryovolcanism has

been considered and modelled as a possible mechanism for the formation of low-albedo

features, surrounding lenticulae and along triple band margins and lineae, on Europa’s

surface. In this context, we model a possible plume deposit originating from cryovol-

canic events on Europa to understand if this feature could be observable by the JANUS

camera during the flybys phases.

Furthermore, the study of the transient plumes, with their potential implications on

the nature of the moon’s inner ocean, will have as mandatory prerequisite an accurate

characterisation of the exospheric background. For this reason, we performed a detailed

study of the Europa’s tenuous atmosphere loss rates on the basis of updated plasma

condition in the vicinity of Europa (Bagenal et al., 2015). We studied the loss rates of

the main components of Europa’s tenuous atmosphere (O2, H2O, H2), on the basis of

energy-dependent reaction cross sections found in literature, and we then performed cal-

culations for electron impact dissociation and ionization processes, for charge-exchange
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(considering plasma torus, pick up and ionosphere ions) and for photo processes. This

work is inserted into an ISSI international project, with the following title: “Towards a

global unified model of Europa’s exosphere in view of the JUICE mission”, in which I

am involved as a young scientist.

Finally, the summary of the results obtained will be presented in the Conclusion

section, reporting possible future works that will be performed in next future.



Chapter 1

Impact craters

Impact cratering process is one of the most energetic geological process affecting plan-

etary surfaces. Every body in the solar system has been subjected to the impact of

objects such as comets, asteroids, or accretionary debris. This complex process depends

on several factors (such as the size, the velocity and the composition of the impacting

body, as well as the gravity and the physical properties of the target) and its study

offers a tool to investigate the subsurface structure and composition of the planetary

surfaces under investigation. In this context, observational data are usually coupled

with computer simulations to better understand the impact cratering process.

In this chapter, after an overview of the impact cratering process and of the morphol-

ogy of impact structures, we describe how numerical modelling works and, in particular,

we focus our attention on the iSALE hydrocode. Then, we report two different numer-

ical modelling application on rocky bodies (Mercury and Mars) using satellite images.

Indeed, by using Digital Terrain Models (DTMs) generated through Mercury and Mars

imagery, we can analyse in deep detail the geological context of what we are studying

and obtain the crater profile that we use for comparison with our output model. On

Mercury we analyse a particular landform revealed by images acquired by the MErcury

Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft,

while on Mars we present a numerical model for the formation of the Firsoff crater (90

km of diameter), which is a strongly degraded crater located in the equatorial southern

highlands of Arabia Terra.

1.1 Impact crater morphology

The size of an impact crater depends not only on the amount of energy released by the

impact, but also on the gravity field of the planet or satellite, and certain properties

of the projectile and surface rocks. A crater is many times larger than the projectile

that originated it, but, given the impact crater size, a larger crater will be created on a
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Figure 1.1: Schematic profiles of a typical A) simple crater and B) central peak crater. The
breccia lenses are composed of a mix of impact melt and fragments of target rock.

planet with a weaker gravity field because it is easier to excavate the material. Impact

structures follow a morphological progression as crater size increases (Figure 1.1) and

they can be divided into three distinct groups: simple craters, complex craters and

multi-ring basins.

1.1.1 Simple Craters

Simple craters are the most basic crater form (Figure 1.2). They are characterised by

a smooth, bowl shape and a depth-to-diameter ratio of 1:3 - 1:5 (Melosh, 1989; Melosh

& Ivanov, 1999). The slope of the crater wall is steepest close to the rim, decreasing in

slope angle smoothly towards the crater centre forming an almost parabolic profile to the

crater (Dence, 1973). As collapse of small cavities is governed by the internal friction of

the target rocks, simple craters display an average rim slope roughly equal to the angle

of repose of the target material (∼ 25◦−30◦) independent of gravity (Melosh, 1989). The

crater rim is elevated above the original surface topography by 4% of the crater diameter

(Melosh, 1989) because of stratigraphic uplift and ejecta deposition. Fractured and

melted target rock, which has fallen off the crater walls, creates a breccia lens inside the

crater which overlays fractured country rock. There is no theoretical lower limit to the

simple craters size, providing that the target has no significant cohesive strength and the

impactor is travelling at a velocity greater than a few kilometres per second at the time of

impact (Melosh, 1989). In reality, however, the minimum simple crater size is a function

of the ability of the atmosphere to absorb small meteors. The upper limit to the size
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Figure 1.2: The Moon’s Linné Crater is an example of a young and beautifully preserved simple
crater. Image credit: NASA/GFSC/ASU.

of a simple crater occurs when the crater’s morphology changes, becoming “complex”.

This modification, termed the simple-to-complex transition, occurs at different crater

diameters on different planetary bodies. Simple craters begin the transition at a size

which appears proportional to 1/g, where g is gravity (Figure 1.3): an higher transition

diameter corresponds to a lower planetary surface gravity. The transition diameter is

between 2-4 km on Earth, 5-10 km on Mars and 15-20 km on the Moon (Pike, 1988).

The range in the transition diameters suggests that relative changes in target strength

over the body could have some influence on crater formation. For example, on the Earth,

the simple-to-complex transition diameter is ∼ 2 km in sedimentary targets and ∼ 4 km

in crystalline targets (Grieve, 1987), while on the Moon central peak craters began at

smaller diameters in mare units than in highland ones (Cintala et al., 1977).

1.1.2 Complex craters

Central-peak craters, which form above the simple to complex transition diameter, are

typified by a dome sticking out from the centre of the crater, the central peak. The

diameter of the central peak (Dcp) increases with crater diameter (D) (Pike, 1985) ac-

cording to the following relationship: D/Dcp = 0.22. There is an area of relatively flat

topography surrounding the central peak (located between the central peak and crater

rim) that consists of a depression filled in by breccia. Terraces, which are defined as

marginal collapse zones, are evident on the crater wall, where unstable material from

the crater rim has collapsed towards the crater’s interior. The lack of breccia in the

central peak itself indicates that the uplift of the central region occurs rapidly, before

debris has had time to slump in from the crater walls (Melosh, 1989). The depth of

complex craters increases modestly with increasing diameter: Pike (1977) found that

lunar complex craters has a depth-diameter ratio equal to 0.3, result that is in agree-
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Figure 1.3: The simple to complex crater transition diameter for the Earth, Moon, Mercury,
and Mars (data from Pike (1988), after Melosh (1989)).

ment with the depths of complex craters on Mercury and Venus. The morphology of

the central peaks depends as well on crater dimension (Figure 1.4). At lower impact

crater size, only one peak forms. At larger size, the central peaks complex begins to

break up and an inner concentric ring of irregular mountain peaks develops, which is

roughly half the rim-to-rim diameter (e.g. Melosh & Ivanov, 1999). During this transi-

tion, craters can have central peaks, peak-rings or both. Hartmann & Wood (1971) class

craters that show both a peak and inner ring as “central peak basins”. Craters with this

“transitional” morphology are observed on the Moon, Mars and Mercury (McKinnon &

Alexopoulos, 1994).

1.1.3 Multiring basins

The largest form of impact structures are called multi-ring basin (sometimes referred to

as basins), which possess at least two asymmetric, inward-facing scarped rings, one of

which may be the original crater rim (Hartmann & Wood, 1971; Spudis et al., 1984).

Within the main crater rim, basin structure can resemble a peak-ring crater, though

basins appear to lack the terrace structures of complex craters because covered by ejecta

(Urrutia Fucugauchi & Pérez Cruz, 2009). This impact morphology does not seem to be

originated by the same collapsing process of peak ring craters, since it does not follow the

1/g dependence (Melosh, 1989) suggesting that the rheological conditions of the target

are important for their formation. In fact, multi-ring basins are likely to be affected by

differences in crustal structure and composition (Melosh & McKinnon, 1978). Hartmann

& Kuiper (1962) discovered that the spacing of adjacent rings occurs frequently in the
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Figure 1.4: Progression of increasing crater sizes on the Moon: (a) Bessel, a 16 km impact
crater belonged to the transition range from simple-to-complex morphologies (Courtesy of NASA,
Apollo database (AS15-9328)), (b) Euler, a 28 km diameter central peak complex crater (AS17-
2923), (c) Schrodinger, a 320 km diameter peak ring crater (mosaic of Clementine images pro-
cessed by Ben Bussey, LPI), (d) Orientale, a 930 km diameter multi-ring basin (mosaic made
from Wide Angle Camera images from NASA’s Lunar Reconnaissance Orbiter Camera).



10 Impact craters

ratio of about ∼ 2:1, even if the validity of this geometric spacing remains unclear. The

exact morphology of multi-ring structures varies spatially and on different bodies when

compared to the typical basin morphology recorded for the Orientale basin on the Moon

(Wieczorek & Phillips, 1999).

1.2 Impact cratering process

A hypervelocity impact crater is a structure resulting from the collision of a projectile

with another planetary bodies, beginning with the first contact of the two bodies and

ending with the final motions of debris around the crater (e.g. Melosh, 1989; French,

1998; Melosh & Ivanov, 1999). The impact formation process works through the propa-

gation at supersonic velocity of a shock wave, i.e. a step-like discontinuity in pressure,

density, particle velocity and internal energy (Melosh, 1989). Shock compression is a

non–isentropic process (thermodynamically reversible) and results in the production of

post-shock heat and in the melting or vaporization of the shocked material (Duvall &

Fowles, 1963; Boslough & Asay, 1993). The energy transferred from the projectile to the

target results in the motion of the material that begins to flow away from the impact

site, against strength or friction forces and gravity. Although the impact process is con-

tinuous, it can be separated into three stages: contact of the projectile and compression

of the rocks near the impact site, excavation of the crater and, finally, the modification

of the impact crater driven by gravity, rock mechanics and erosion. (Figure 1.5).

1.2.1 Contact and Compression

The first stage of formation of a crater begins when the approaching projectile contacts

the target surface at hypervelocity, i.e. at a velocity greater than the sound speed of

the material (typically several kilometres per second or more). This process could be

described as a kind of explosion due to the enormous kinetic energy supplied by the

impactor. Upon impact, the impactor compresses the target material and accelerates

it to a large fraction of the impactor velocity. Simultaneously, the projectile is rapidly

decelerated. These velocity changes result in the formation of shock waves at the contact

between the highly compressed and uncompressed material propagating away from the

impact point, into both the projectile and target (Figure 1.6). Shock pressures developed

during these early stages generally raise to more than 1 GPa (often reaching hundreds

of GPa) (Okeefe & Ahrens, 1977). Once the shock wave reaches the back edge of the

projectile, a release wave is produced which travels back through the projectile and into

the target. During release, the projectile, which was heated during shock loading, may be

melted and possibly even vaporised. The duration of the contact and compression stage

is dependent on the size of the impactor, the velocity of the shock and its subsequent

release wave in the impactor. After the rarefaction wave has reached the front end of
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Figure 1.5: Cross-section diagrams showing the different stages of formation of an impact
structure for both simple (left) and complex craters (right). The process begin with the so-called
contact/compression stage, followed by an excavation stage that leads to the formation of the
transient crater. The final stage of the cratering process is the modification stage that depends
on the crater size. Image credit: French/Kring/LPI/UA.
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the projectile and unloaded it completely, the projectile will play no further role in the

formation of the impact crater, and the actual excavation of the crater is carried out by

the expanding shock waves through the target rocks.

Figure 1.6: Schematic representation of the contact stage of an impact event. As the projectile
(shaded grey) strikes the target surface, shock waves propagate into both the target and the
projectile. Contours show the pressure levels in GPa, for a 15 km/s impact. Adapted from
Melosh (1989).

1.2.2 Excavation phase

The excavation stage is characterised by two main processes: the shock wave and re-

lease wave expand through the target material, decaying in strength because of the

larger area over which they are spread and because of irreversible losses involved in

compressing material. This phase, which is dominated by complex interactions between

the outward-directed shock waves and the downward-directed rarefaction waves with

the target, leads to the formation of the so-called transient crater. Calculations and

laboratory experiments suggest that on cessation of the excavation flow, the transient

crater is approximately a parabaloid of revolution (Dence, 1973) with a depth-diameter

ratio of between 0:3 − 0:4 (Melosh, 1989; Collins et al., 2002). During the excava-

tion stage, the excavated material is deposited beyond the transient cavity rim, forming

impact ejecta. Because the excavated zone contains material which has experienced a

wide range of peak shock pressures, the ejected material may be a mixture of vapor-

ised, melted, heated and fractured rock. The opening of the transient cavity stops when

shock and rarefaction waves are not energetic enough to eject material beyond the cav-

ity rim. The transient crater, typically 20-30 times larger than the projectile diameter

(e.g. French, 1998), shows an uplifted rim. The entire excavation stage takes seconds

to minutes to be completed, depending upon the crater size. About 6 seconds are nec-
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essary to excavate a 1-km-diameter crater, while a 200-km-diameter crater is excavated

in about one minute and thirty seconds (Melosh, 1989; French, 1998). After this, the

forces retarding the excavation flow begin to collapse and modify the transient crater.

Formation of the transient crater marks the end of the excavation stage; if the growth of

the crater is driven purely by gravity, the timescale of excavation can be approximated

by
√
Hf/g, where Hf is the depth of the transient cavity and g is gravity.

Figure 1.7: Illustration of the impact site during the excavation stage. Adapted from Melosh
(1989).

1.2.3 Modification stage

The final stage of the cratering process is the modification stage. The collapse of the

transient crater is dominated by gravity or target strength depending on the crater size.

For smaller craters, the collapse is controlled primarily by the internal friction of the

target rocks (Schmidt & Housen, 1987; Ivanov & Kostuchenko, 1998) and the main

modification is the collapse of the upper crater walls. The simple bowl-shaped crater

diameter may grow up to about 20% and it will be subjected to infilling from fallback

ejecta and material slumping in from the walls and rim. The redeposited material form

part of a breccia lens inside the crater. In larger impacts the collapse of the transient

cavity is driven by the gravity of the target body rather than its material strength
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resulting in complex morphology. The modification involves the formation of a central

peak or rings and failure of the rim into wide zones of stepped terraces. The material

motion during this stage results in a complex intermixture of breccia and impact melt

inside the crater (Melosh, 1989). The timescale of the collapse may range from few tens

of seconds to tens of minutes (for example the duration is few tents of seconds for 10

km diameter on Earth and nearly 10 minutes for 300 km diameter on the Moon), that is

much shorter than most geological processes. After the collapse of the transient crater

is complete, a last gravitational modification continue to shallower over geologically

longer time periods leading to the leveling of the crater. This last process depends on

crustal strength and crater size, for example the most prevalent process in post-impact

modification on Earth is erosion of the exposed topography and infill of craters by fluvial

or alluvial sediments (de Pater & Lissauer, 2001).

1.3 Numerical modelling: the iSALE hydrocode

The current understanding of impact cratering process combines both observational data

and computer simulations. The use of hydrocodes has allowed the investigation of the

impact process on planetary scales because it can simulate conditions beyond the reach

of experiments (e.g., velocity, size) (e.g., Pierazzo & Collins, 2004) and it allows an

investigation of the complexity of crater collapse on planetary scale (e.g., Collins et al.,

2002). A hydrocode is a computer code used for modelling highly dynamic events, and

in particular modelling the propagation of the shock wave as well as the behaviour of

geologic materials over a broad range of stress states and deformation states (Anderson,

1987; Pierazzo & Collins, 2004). Over the last few decades, improvement of computer

capabilities has allowed impact cratering to be modeled with high complexity and realism

(Pierazzo & Collins, 2004).

This work uses the iSALE (impact Simplified Arbitrary Lagrangian Eulerian) hy-

drocode, a multirheology, multimaterial extension of the SALE hydrocode (Amsden

et al., 1980), which was developed to model shock progression through geologic media

(e.g., Melosh et al., 1992; Ivanov et al., 1997; Collins et al., 2004, 2011; Wünnemann

et al., 2006). The original SALE code was capable of simulating only single-material,

Newtonian-fluid flow; Melosh et al. (1992) implemented an elasto-plastic constitutive

model in tandem with the viscous model, and incorporated the Grady-Kipp fragmen-

tation algorithm and equation of state for impacts, including the Tillotson equation of

state (Tillotson, 1962). Ivanov et al. (1997) advanced SALE’s underlying solution al-

gorithm by incorporating free surface and material-interface tracking in Eulerian mode,

greatly improved the constitutive model by incorporating damage accumulation and

strain-weakening, and implemented into the code the semy-analytical equation of state

ANEOS (Thompson & Lauson, 1972). The result of these implementations was the first
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extended release, now known as SALEB, capable simulating impact events from first

contact of the impactor with the target, to cessation of the final gravity driven collapse

of the crater (Ivanov, 2005; Ivanov & Artemieva, 2002). A second release, known as

SALES-2, was improved to include a wider range of possible rheologic models and used

to simulate impact crater collapse (Collins et al., 2002). Important improvements were

incorporated in the iSALE release, such as the introduction of a third target material

(Wünnemann & Ivanov, 2003), refinements to the constitutive model (Collins et al.,

2004) and the inclusion of the ε − α porous-compaction model (Collins et al., 2011;

Wünnemann et al., 2006).

1.3.1 Hydrocode equations

Hydrocodes solve a set of equations to correctly describe the dynamics of continuous

media and predict the material behaviour during the impact process. The first three

differential equation are established through the application of the Newtonian law of

physics, i.e. the conservation of mass, momentum and energy. In a reference frame that

follows the material, these are (from Anderson (1987)):

Conservation of Momentum
Dvi
Dt

= fi +
1

ρ

δσji
δxj

(1.1)

Conservation of Mass
Dρ

Dt
+ ρ

δvi
δxi

= 0 (1.2)

Conservation of Energy
DE

Dt
= −p

ρ

δvi
δxi

+
1

ρ
Σij ˙εij

′ (1.3)

where vi is the velocity, ρ is the material density, E is the specific internal energy and

x is the position, fi represents the external forces per unit mass, εij is the deviatoric

strain rate and σji is the stress tensor, which is composed of a hydrostatic component,

the pressure, P, and the deviatoric stress, Σij . Subscriptes i and j refer to coordinate

directions. To completely describe the response of material to deformation, two addi-

tional equations are needed. The first is an equation of state, that takes into account

thermodynamic changes (e.g. heating via a shock event) and compressibility changes

(e.g. increases in density under compression). The equation of state relates pressure to

the density and internal energy and takes the following form:

P = P (ρ,E) (1.4)

The second is a constitutive model that describes the effect of deformation (σji)(change

in shape or strength properties) as a function of strain (εij), strain rate ( ˙εij
′), internal
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energy (E) or temperature (T) and damage (D).

σji = g(εij , ˙εij
′, E,D) (1.5)

1.3.2 Grid setup

Although Equations 1.1, 1.2 and 1.3 describe a material as a continuum flow, a com-

puter is limited by a finite memory allocation. Therefore it is necessary to represent a

continuous media as a mesh of elementary pieces, called cells. This process is known as

discretization. In iSALE, the continuous media is approximated by a mesh of computa-

tional cells, that are defined by vertices connected by straight lines. For each cell, scalar

quantities (e.g. pressure, density and mass) are assigned, while for each vertex vector,

quantities are defined (for example velocity).

Figure 1.8: The computational mesh used in iSALE. Outside the high resolution zone (portion
of the mesh within which the crater is likely to form), there is the extension zone useful to
decrease computational time.

The two-dimensional coordinate system defined in iSALE is cartesian or cylindrical,

even if a 3D dimensional version of iSALE has been developed and is currently being

tested and validated (Elbeshausen et al., 2007). The iSALE computational mesh, which

is schematically represented in Figure 1.8, consists of a central high-resolution zone,

where the cell height and width are constant, that include the projectile and the portion

of the mesh that is, normally, the zone in which the crater will form. Then, the mesh is
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also characterised by an optional low resolution extension zones surrounding the high-

resolution zone. In this part of the computational grid the cell height increases in a

geometric progression away from the high-resolution. This low resolution part is needed

to displace the mesh boundaries far away the cratering region and avoid the reflection

effects from the boundaries (Collins et al., 2010).

Eulerian and Lagrangian method

The equation for motion for continuous media can be described by two different approach:

Lagrangian or Eulerian, depending on the reference frame of the event (Figure 1.9).

iSALE can utilize both representation as well a mixture of the two (Arbitrary Lagrangian

Eulerian).

Figure 1.9: Comparison between the Eulerian (left) and Lagrangian (right) approach for a
cylinder (dark grey) impacting a target (light grey). In the Eulerian method the computational
mesh remains fixed and material moves between cells, while in Lagrangian method the material
is fixed in the grid and the transport of material is calculated by the deformation of the cells.
Image from Collins et al. (2010).

In the Eulerian description, the computational mesh is fixed in the space and the

material flows between cells. This mass advection method makes it difficult to identify

material interfaces at all times because leads to cell that contain a mixture of material

or become partially filled. Determine with accuracy the material interfaces depends

on the resolution of the mesh, therefore higher resolution of the mesh implies that the

boundary is represented with more accuracy, but at the price of more computational

zones (Pierazzo & Collins, 2004). This issue is not a problem for the Lagrangian method

because the material is fixed in a computational cell and the transport of material is

calculated by the movement and deformation of the whole grid in space. Free surfaces
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and contact surfaces between different materials are easily determined, and remain dis-

tinct throughout the calculation (Pierazzo & Collins, 2004). The Lagrangian method

provides a history of the material, whereas the Eulerian method can only record history

at a fixed point. The major limitation for the Lagrangian method is the cell deforma-

tion, in fact cells can become highly elongated and, at extreme, can invert determining

a physically impossible negative volume. A way to overcome the problem, again at the

expense of accuracy in the determination of material interfaces, is to carefully rezone

the computational grid, but it is a very time consuming process (Pierazzo & Collins,

2004). Hence, even if the Lagrangian method has advantages, all models shown in this

work were carried out in the Eulerian mode of iSALE to avoid the inevitable extreme

cell deformation.

1.3.3 Equation of state: Tillotson and ANEOS

Hydrocodes require the inclusion of an appropriate equation of state that describes the

thermodynamic state of the material relating pressure to the temperature and density.

The simple known equation of state is that of a perfect gas: P = ρRT , where P is the

pressure, ρ the density, T the temperature and R is the gas constant per unit mass. The

equation of state for impact modelling is slightly different from the conventional EoS be-

cause of the strong interaction between the atoms (or molecules) of the medium. iSALE

hydrocode support two different types of equation: parameters defining the Tillotson

analytical EoS and data tables produced by ANEOS (e.g. Melosh, 1989).

The Tillotson EoS (Tillotson, 1962) is one of the most commonly used equations of

state for impact modelling and was developed specifically for use in high-velocity impact

simulations; it can be used over a wide range of pressures, densities and materials. The

Tillotson EoS has two different formulations depending on the compression (ρ/ρ0 ≥ 1) or

expansion (ρ/ρ0 ≤ 1) that the material experienced (taking also in account the vapour

phase). When the material is compressed to a higher density with respect to its zero

pressure form (ρ/ρ0 ≥ 1), the equation of state has the following formulation:

P = a+

[
b

(E/Eoη2) + 1

]
ρE +Aµ+Bµ2 (1.6)

where η = ρ/ρ0, µ = η − 1, and a, b, A, B and E0 are the Tillotson parameters,

empirically derived constants which vary for each material (Melosh, 1989). This form is

also valid for a cold expanded state where the internal energy (E ) is less than the energy

of incipient vaporization (Eiv).

In the expanded states (ρ/ρ0 ≤ 1), when E exceeds the energy for complete vapor-
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ization (Ecv), the Tillotson EoS is defined as:

P = aρE +

[
bρE

E/E0η2 + 1
+Aµ exp[−β(ρ0/ρ− 1)]

]
exp[−α(ρ0/ρ− 1)2] (1.7)

where α, β are constants that control the rate of convergence of the equation. The

transition between these two regimes required an additional pressure equation, which

combines the compressed and expanded form, since it involved the partial vaporisation

of material for internal energies Eiv < E < Ecv.

P =
(E − Eiv)PE + (Ecv − E)PC

(Ecv − Eiv)
(1.8)

where PC and PE are the pressure determined by the compressed and expanded state

respectively.

The Tillotson EoS is limited in its applicability because provides no information about

how to compute the temperature or the entropy of a material and is unable to model

melting and vaporization (Pierazzo et al., 2008). Nevertheless, this type of equation of

state is widely used in hydrocode simulations because of its simple form and because the

vapour phase is not important for modelling impact crater formation (Bray, 2009).

iSALE hydrocode supports another type of equation of state, the ANalytical Equa-

tion Of State (ANEOS) (Thompson & Lauson, 1972), that is generated with a complex

computer code and it relies on different physical approximations in different domains of

validity. ANEOS is thermodynamically constant since pressure, entropy and internal en-

ergy are derived from the Helmholtz free energy. Typically, ANEOS is used to construct

equation of state tables which are then used in a hydrocode (Melosh (2000) summarises

the approach of ANEOS). ANEOS can predict (limited) phase changes including treat-

ment of melt and vapour, as an advantage respect to other analytical equation of state,

but it cannot treat solid-solid and solid-liquid phase changes simultaneously. One of the

limitations of ANEOS is the treatment of gases as monoatomic species which causes it to

overestimate the liquid-vapor phase and the critical point of most geologic complex ma-

terials (Pierazzo & Collins, 2004). A treatment of biatomic species has been introduced

in ANEOS by Melosh (2000), but a lot of work is still needed. In addition, the Simon

equation (Poirier, 1994) was implemented in iSALE to simplify the problems related to

the liquid/solid phase transition in order to define the melt temperature as a function

of pressure:

Tm = T0

(
P

a
+ 1

) 1
c

(1.9)

where T0 is the melt temperature at normal pressure, while a and c are material con-

stants. In the recent years ANEOS equations of state for several materials of geologic

interest have been developed and included in hydrocodes, but some limit are still un-
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solved (an example is the treatment of biatomic species in vapour phase, like water).

The iSALE simulations presented in this thesis used ANEOS equation of state tables

for basalt and Tillotson EoS to represent gabbroic anorthosite (Ahrens & O’Keefe, 1982),

as it will be shown in next Sections.

1.3.4 Constitutive model

The constitutive model describes the response of a material to stress or deformation and

is important to model the late phase of impact cratering modelling since the material

strength defines the final morphology of the crater. A various number of strength model

have been formulated and implemented into iSALE to determine different relationship

between yield strength Yi and pressure, strain rate, temperature. In iSALE the strength

of intact and damaged rock is considered separately, in fact it is obvious that fractured

rock is weaker than intact rock as component blocks are free to move within the fractured

material. The yield strength for intact rock may be considered to have two components, a

cohesive strength that is independent of overburden pressure, and a frictional component

that is a function of overburden pressure and, hence, depth (Lundborg, 1968):

Yi = Yi0 +
Pµi

1 + Pµi
Ym−Y0

(1.10)

where Y0 and Ym are the shear strength at zero pressure (cohesion) and the limiting

strength at high pressure (von Mises plastic limit) respectively, P is the pressure and µ

is the friction coefficient. For damaged material the strength is defined as:

Yd = min(Yd0 + µdP, Ydm) (1.11)

where Yd0 is the cohesion, Ydm the limiting strength at high pressure and µd the coefficient

of internal friction. The amount of target damage caused by impact is highest close to the

impact site and decreases with radial distance from the crater centre (e.g. Kenkmann

& Scherler, 2002). The strength of the target material therefore also varies radially,

increasing from the fully damaged strength at the crater centre, to the intact strength

at larger distances (Bray, 2009).

There are many algorithm developed to describe dynamic fragmentation during the

impact, in particular iSALE uses a damage parameter D to define the amount of rock

fracturing (Collins et al., 2004). The damage parameter D depend on the plastic strain

ranging between 0 (for completely intact, undamaged rock) and 1 (completely fractured,

damaged rock). The amount of damage is then used to modify the cohesive strength of

the material; for partially damaged rock (0 < D ≤ 1) yield strength is defined as:

Y = (1−D)Yi +DYd (1.12)
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1.3.5 Acoustic fluidization: the Block Model

The formation of large craters, hence the presence of central peaks and/or rings, must

be explained with some additional weakening mechanisms since rock standard strength

models are not able to take into account simultaneously the uplift of material from

beneath the crater floor as well as the slumping of the transient crater walls (e.g. Dent,

1973; Melosh, 1977; Melosh & McKinnon, 1978; O’Keefe & Ahrens, 1993; Melosh &

Ivanov, 1999; Collins et al., 2002; Ivanov & Artemieva, 2002). In order to reproduce the

complex crater morphology, collapse requires significant weakening of the target material

beneath the crater floor, but at the same time without loosing its plastic properties

(Melosh, 1982). This weakening process must be transient acting over a timescale similar

to that of crater collapse (Melosh & Ivanov, 1999). The formation of central peaks and

peak-rings indicates that material is better described by a fluid-like movement, similar to

cratering in water (Worthington, 1963). Hence, the target material can be described as a

Bingham fluid, i.e. a material that responds elastically to stress until a critical strength

(the yield strength or cohesion) is reached, while, once this limit is exceeded, it flows as

a viscous fluid (Bingham, 1916). The nature of this fluidization is poorly understood at

present and several weakening mechanisms have been suggested, as outlined by Melosh

(1989) (thermal softening (O’Keefe & Ahrens, 1993, 1999), interstitial fluid and melt

fluidization (Spray & Thompson, 1995) and Acoustic Fluidization (Melosh, 1979)).

Melosh (1979) proposed, following existing models of earthquake-induced landsliding

(Seed & Goodman, 1964), that the presence of an acoustic field could cause impact rock

debris to behave in a fluid-like manner only from a macroscopic point of view. In fact,

impact crater events, creating seismic waves, induces a strong shaking that may have an

important role in affecting debris around the crater (Melosh & Gaffney, 1983). Under

normal conditions, material is under too high a overburden pressure to fail and, hence, it

will not be able to flow. Therefore, acoustic fluidization suggests that the material may

flow if vibrations of a random seismic wave field, generated by the impact shock and

propagating through impact-fractured rocks, temporarily reduce overburden pressure

(Potter, 2012). Hence, macroscopically, the debris mass appears to flow, the rapidity

of which is a function of the frequency and amplitude of the failure events (Collins &

Melosh, 2003). The material becomes frozen in place when vibrations dissipate, as the

overburden pressure exceeds the local pressure.

The central equation of the acoustic fluidized model of Melosh (1979) describes the

dependence of the strain rate ε̇ on the applied shear stress η in the acoustically fluidized

material:

ε̇ =
τ

ρλβ

[
2

erfc(χ)− 1

]−1

(1.13)

where ρ is the bulk density, λ the wavelength of the acoustic field, β the bulk sound

speed of the granular debris, erfc the complementary error function, and χ = 1−Ω
Σ ,
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where Ω = τ/τstatic (with τstatic is the stress required to initiate failure in the absence

of vibrations) is the dimensionless driving stress measure, which ranges from 0 to 1.

The amplitude of the vibrations is represented by Σ = σ/p (σ is the variance of the

pressure fluctuations) and it is assumed to be distributed according to a Gaussian law

(Crandall & Mark, 1973). The acoustic fluidization is valid if the vibration wavelength

λ is much larger than the grain size d, i.e. λ � d (Melosh & Ivanov, 1999). However,

this model does not predict the wavelength of the vibrations dominating the flow, hence,

a quantitative prediction of the rheology cannot be made (Melosh & Ivanov, 1999).

The acoustic fluidization has the 1/g dependence, which facilitates the explanation of

the simple-to-complex crater transition and the existence of some temporary weakening

mechanism (Melosh & Ivanov, 1999).

iSALE, adopts a simple mathematical approximation of Acoustic Fluidization (AF)

(Melosh, 1979), known as the Block Oscillation Model (Block Model) (Ivanov & Kos-

tuchenko, 1998; Melosh & Ivanov, 1999), whose complete description is reported in

Melosh & Ivanov (1999). The block model supposes that the target consists of a system

of discrete blocks (rather than a continuum), with a characteristic size h, that oscil-

late periodically. A schematic description is reported in Figure 1.10. The amount and

longevity of transient material weakening is controlled by two model parameters: the

kinematic viscosity η of the fluidized region and the decay time of the block vibrations

τv. The viscosity η is assumed to be proportional to density ρ, sound speed c and a

length parameter comparable to the block size h (Wünnemann & Ivanov, 2003). The

block length parameter for the determination of η could be scaled by some linear scale,

based on the estimation of dominating fragment size changes at different-sized craters

(Kocharyan et al., 1996). Nevertheless, there are still some uncertaintes, for example

if the block system under a growing crater is activated during the crater growth pro-

cess, the block characteristic size seems to be proportional to the transient cavity depth

(Ivanov & Artemieva, 2002) or diameter (Collins, 2001). However, the transient cav-

ity depth itself depends on the value of η. For a given impact velocity, the projectile

dimension r may serve as a first approximation of the blocks fragment size. A linear

proportionality is assumed and the viscosty η becomes:

η = γη(crρ) (1.14)

Thus, the length parameter (block size or wavelength) is scaled by the projectile radius

r and a dimensionless scaling parameter γη. Following the same approach, the damping

of vibration is correlated linearly with the projectile size and the damping factor γT
through the following relationship:

Tdec = γT
r

c
(1.15)
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From the equation reported above it is intuitive that larger impactors lead to higher

viscosities and also to longer lasting than smaller projectiles. The parameters γη and γT
represent the iSALE input parameters governing the fluidization mechanism (Wünne-

mann & Ivanov, 2003); these must be varied in simulations in order to achieve the best

fit between data and modelling, such as the case of Sudbury crater (Ivanov & Deutsch,

1999), Chicxulub (Collins et al., 2002) and Chesapeake Bay (Collins & Wünnemann,

2005).

Figure 1.10: (a) The block slides along the underlying surface and it is subjected to different
forces, as the overburden pressure p, the friction stress µp and the traction stress τ . The varying
acoustic pressure is indicated with a double-ended arrow. Acoustic energy sets the block oscillat-
ing in a vertical manner with a period, T, and amplitude, Sv, resulting in a sinusoidal variation
in the normal stress. (b) Plot of the net pressure, relative to the overburden pressure, against
time for one period of oscillation. The “block slides” region represents times at which the block
is free to slide along the underlying surface. The block will remain stationary if p+Sv sin( 2πt

T ) >
traction (µp). From (Melosh & Ivanov, 1999).

1.3.6 Porosity model

The compaction model, used in iSALE, is the so-called ε−α compaction model (Wünne-

mann et al., 2006), which describes the compression of pristine porous materials compris-
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ing four regimes: elastic compaction, exponential compaction, power-law compaction,

and compression. The porosity model formula represents the relative volume of pore

space using the distension α parameter instead of porosity φ:

α =
1

1− φ
=
Vs + Vv
Vs

=
ρs
ρ

(1.16)

where Vs and Vv are the volume of the solid matrix and void respectively, and ρs and ρ

are the densities of the solid matrix and the material bulk respectively. A non-porous

body (φ = 0) will therefore have a distension, α, of 1. As well as the initial compaction,

release from the applied stress must also be considered. In the crushing of pore space,

the amount of reversible (elastic) stress is relatively small and can be neglected; the

majority of the applied stress is irreversible (compaction) and therefore upon release

from the applied stress pore space is not re-introduced into the material (Potter, 2012).
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1.4 Numerical modelling application: Mercury

The surface of Mercury has numerous interesting features, including a variety of craters,

ridges, and terrains ranging from heavily cratered to nearly crater free. Craters on

Mercury range in diameter from small bowl-shaped cavities to multi-ringed impact basins

and different crater types can be seen, including young craters, new craters on top of

old craters, craters with peaks in the center, and craters with lines or “rays” of bright

material pointing out from the central crater. These features are affected by different

type of degradation, from relatively fresh crater to highly degraded crater remnants. It

is also interesting to note that one side of the planet is more cratered than the other one,

which is characterised by the presence of smooth plains, near the Caloris basin. This

latter structure is the largest impact crater (with a diameter of 1550 km) presented on

the planet and its formation was so energetic to cause lava eruptions and left a concentric

ring surrounding the crater.

In this work, despite the different craters presented on the planet, we analyse a

particular impact landform. In fact, images acquired by the MErcury Surface, Space

ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have shown a

conical structure, surrounded by a trough, that lies at the centre of a large (23.000

km2) diffuse-margined spectral anomaly that is bright and red-sloped compared to the

Hermean average (Figure 1.11). This type of relatively bright and red anomaly have

been interpreted elsewhere on the planet as a pyroclastic deposit (Kerber et al., 2009,

2011; Goudge et al., 2014). Hence, this morphology could suggest a genesis that in-

volves explosive volcanism; this hypothesis is also supported by the fact that on other

planets, like Earth and Mars, volcanism constructs steep-sided edifices by deposition of

ballistically-ejected particles (e.g. Hasenaka & Carmichael, 1985; Brož & Hauber, 2012)

or by flow of viscous lava. On the other hand, on Mercury, the ballistic range of par-

ticles ejected at a particular velocity is larger than on Mars and Earth, due to a lack

of air-resistance and weaker gravity, therefore, structures formed in this way would be

expected to have relatively low relief (McGetchin et al., 1974; Brož et al., 2014). In ad-

dition, compositional data do not at present support the presence of evolved lavas able

to form these type of structure through effusion (Denevi et al., 2013; Nittler et al., 2011;

Weider et al., 2012). Finally, it would be the only example of a volcanically-constructed

cone on Mercury. For this reason, we made and tested the alternative hypothesis that

the cone is the intrinsic central peak of an impact crater, in fact the cone lies within

an encircling trough, which is in turn encircled by a ridge that could be interpreted as

the rim crest of a 43-km diameter. In this scenario the cone occupies the location where

a central uplift structure would be expected (Pike, 1988) and the spectrally red-sloped

deposit, formed through explosive eruption from the trough, is interpreted as a volcanic

vent encircling the crater’s central uplift (Thomas et al., 2015). This would be consistent

with the observation that pits associated with pyroclastic deposits on Mercury are co-
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located with regions of structural weakness in impact craters (Gillis-Davis et al., 2009),

and would support the hypothesis that such structures play a controlling role in explosive

volcanic eruptions on Mercury (Thomas et al., 2014). In order to evaluate the feasibility

of this hypothesis, we have studied the most likely original morphology of an impact

crater of this size on Mercury through two different method: i) measuring topographic

cross-sections across relatively fresh craters with similar diameters, and ii) performing

an impact crater numerical modelling using iSALE hydrocode. Both procedures allow

us to asses our hypothesis and to make quantitative conclusions.

1.4.1 Landform description and proposed mode of formation

The steep-sided cone-like structure lies at the centre of a circular pit. This is in turn

surrounded by a topographic rise, which we interpret as the rim crest of a 43-km diameter

impact crater (Figure 1.11b). We proposed that such a landform assemblage, which lies

at the centre of a 92-km radius spectral anomaly, could have formed in the following way.

The first stage of formation of this landform assemblage was the creation of a 43-km

diameter crater with a central uplift through an impact event (Figure 1.12a), in fact

craters with a diameter larger than 12 km (defined as complex) are expected to have

a central peak where the cone occurs (Pike, 1988). After an unknown period, magma

rose beneath the crater along a sill or dyke, either as a result of or independently of

the impact crater formation (Figure 1.12b). This magma may have stalled in the low-

density fractured zone beneath the crater, in a manner similar to that hypothesised to

result in floor-fractured craters on the Moon (Schultz, 1976). During a period of sub-

surface magma storage, crystallization of volatile-poor minerals may have enhanced the

volatile content of the remaining melt. The Dyke propagation to the surface occurs

along planes of crustal weakness, possibly aided by an increase in overpressure due to

volatile exsolution, this occurred subvertically due to the presence of zones of weakness

in the overlying crust (Parfitt et al., 1993), particularly those bounding the central

uplift. Volatiles within the magma expand at the surface and eject juvenile and vent-

wall material. This falls along ballistic pathways to form deposits with a relatively

bright and red-sloped spectral character. To assess this hypothesis, we analyse the

morphology, dimensions and topography of the cone, pit, host crater and deposit, and

we also compare the present-day topography to two independent estimates of the original

host crater topography: the first derived from similar-diameter craters (fresh craters)

with no evidence of explosive volcanism and the second from a hydrocode model of the

original impact. We will refer to this crater as AP1 through this work (‘Annular Pit 1’).
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Figure 1.11: A steep-sided cone associated with putative explosive volcanic products (-136.7◦

E, -3.5◦ N). (a) The cone lies at the centre of a widespread relatively bright and red-sloped
spectral anomaly characteristic of explosive volcanism. White rectangle: extent of (b) (Image:
colour composite of images EW0262430050I, EW0262430054F and EW0262430070G). (b) Close-
up showing that the cone lies within a pit, which is encircled by a ridge (dashed white line),
interpreted as the rim-crest of an impact crater. Yellow dot: central point used for determin-
ing the median elevation profile in Figure 1.13 (Image EN0212284006M). (c) Global location
of the cone (yellow dot, yellow arrow) relative to endogenic pits with (red dots) and without
(orange dots) a surrounding relatively bright and red-sloped spectral anomaly (identified by
Thomas et al. (2014)). White areas indicate smooth volcanic plains (from Denevi et al. (2013)).
(Base image: MESSSENGER global colour mosaic v5). Images in (a) and (b) were obtained by
MESSENGER’s Wide-Angle (10.5◦ field-of-view) and Narrow-Angle Camera (1.5◦ field-of-view)
respectively. Figure from Thomas et al. (2015).
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Figure 1.12: Proposed model of formation of a crater-centered cone surrounded by pyroclastic
deposits by vent formation around the central uplift of the impact crater. (a) Schematic of a
complex impact crater with (i) a central uplift with (ii) internal steeply-dipping faults (Senft &
Stewart, 2009; Scholz et al., 2002), (iii) slump structures forming terraces, (iv) an underlying
fracture zone, (v) ejecta and (vi) impact melt deposits forming a flat floor. (b) Proposed mor-
phology of the crater during explosive volcanic activity, with (left) or without (right) shallow
magma storage. (i) Volatile-bearing magma rises from depth along a sill or dyke, possibly form-
ing a (ii) shallow magma chamber or sill beneath the low density fractured zone (right; dashed
outline indicates the margins may be gradational). (iii) Dyke propagation to the surface occurs
along planes of crustal weakness, possibly aided by an increase in overpressure due to volatile
exsolution. (iv) Volatiles within the magma expand at the surface and eject juvenile and vent-
wall material. This falls along ballistic pathways to form (v) deposits with a relatively bright
and red-sloped spectral character (dashed line indicates the original crater profile). Figure from
Thomas et al. (2015).
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1.4.2 Methods

(a) Planform morphology

We analysed all images of the landform location up to September 17, 2013 in order

to study the morphology of the cone and its associated deposit. These images were

taken by the MDIS camera onboard MESSENGER, which consists of a 1.5◦ field-of-

view monochrome Narrow Angle Camera (NAC), and a 10.5◦ field-of-view multispectral

Wide Angle Camera (WAC). After radiometric and photometric corrections using the

ISIS3 (Integrated System for Imagers and Spectrometers) software produced by the U.S.

Geological Survey, we were able to combine images taken with different filters (at 966

nm, 749 nm and 433 nm in the red, green and blue bands respectively) to derive colour

images. This procedure allow us to make a distinction between pyroclastic deposits

(Kerber et al., 2009; Goudge et al., 2014) and general difference in albedo and colour

between regions of Mercury’s surface (Denevi et al., 2009). We used Graphics and Shapes

tools (Jenness) within ArcGIS software to make geodetic planform measurements of the

dimensions of the cone, associated landforms and deposit.

(b) Present-day topography

Due to MESSENGER’s highly elliptical orbit around the planet, the Mercury Laser

Altimeter (MLA) has not been able to obtain elevation data at the location of interest

to this study. We therefore determined the present-day topography by creating a digital

terrain model (DTM) using NAC stereo images EN0257648861M and EN0227259475M

(Figure 1.13). The DTM generation has been performed following a photogrammetric

workflow that consider many steps and several tools. The files have been fed into ISIS3

(Eliason, 1997), radiometrically calibrated and finally the images are ortho-rectified with

cam2map program (i.e. projected onto the reference surface of the Mercury spheroid).

The correlation phase have been performed with the Area Based image matching software

named “Dense Matcher” (Re et al., 2012). As far as the triangulation stage is concerned,

the Ames Stereo Pipeline (ASP)(Moratto et al., 2010) routine have been used by suitably

modifying the Dense Matcher disparity map to produce an input data in the format

accepted by ASP. Any Bundle Block Adjustment have been performed and the obtained

GeoTiff raster DTM (with a 215 m/pixel resolution) has been imported in a GIS software

package in order to extract the profiles.

(c) Original crater topography

It is necessary to define the pristine morphology of the surface to assess the cone forma-

tion hypothesis. Hence, we determine the original morphology of the host crater, taking

into account that the cone lies at the centre of an impact crater. We investigated this in
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Figure 1.13: Extent of the stereo-derived DTM of the cone and surrounding pit and crater
(based on images EN0257648861M and EN0227259475M). (a) An orthorectified image showing
the extent of the DTM. Black lines indicate the position of the pit and crater rims. White
rectangle: extent of (b). (b) Colorized shaded relief produced from the DTM (blue, green, red
indicate increasing elevation) showing irregularities in the depth of the pit floor, probably mass
wasted material. Image from Thomas et al. (2015).

Figure 1.14: ∼ 43 km diameter morphologically fresh impact craters used as a control on the
original crater shape and on the simulation. Outlined dots indicate MLA data points from X to
X′. CC1: 177.1◦ E, 50.9◦ N, MLA track MLASCIRDR1109231307 (orbit 380); CC2: -107.5◦ E,
49.2◦ N, MLA track MLASCIRDR1208272313 (orbit 1198); CC3: -122.1◦ E, 63.8◦ N, MLA track
MLASCIRDR1203061631 (orbit 715). Only channel 1, high threshold, MLA pulse returns were
used to avoid incorporating noise. All the panels have the same horizontal scale as that indicated
for CC1 (Base image: MDIS global monochrome mosaic v9). Image from Thomas et al. (2015).



1.4 Numerical modelling application: Mercury 31

two ways: (i) by obtaining topographic cross-sections across relatively fresh craters of a

similar size but with no evidence for explosive volcanic activity and (ii) by performing a

hydrocode impact simulation to reproduce the morphology of a crater of this size.

(i) Topography of undegraded craters of a comparable size

We identified 3 impact craters ranging in diameter between 43 and 47 km on the basis

of MLA tracks available, that cross their central peak structures (Figure 1.14). These

were used as a control on crater morphology and to assess the plausibility of the results

of our simulations. We specifically chose undegraded impact craters (Mansurian age)

(Spudis & Guest, 1988), which are characterised with intact ejecta blankets and little

sign of terrace modification, and therefore approximate the morphology of the impact

crater being studied not long after its formation. We underline that the pyroclastic

deposits obscure the original topography of the crater containing the cone (AP1), so

we are not able to assess how degraded it was prior to the pyroclastic activity. Our

comparison assumes that the crater was relatively fresh at the time of this activity.

(ii) Impact crater numerical model

We simulated the formation of the impact crater using the iSALE (Impact Simplified

and Arbitrary Lagrangian Eulerian) hydrocode. The structure and composition of the

projectile was simplified to spherical and homogeneous basalt impacting at an angle of

90◦. iSALE has a 2D capability that limits the study impact events on normal incidence

angles and obviously can only model vertical impact orientation. The only way to

include the effect of different impact angles is assuming that the projectile indeed has

an average impact speed, but impact at 45◦ impact angle. Therefore, the impact speed

use in the simulation is vaverage ∗ sin(45◦) to have a more reliable initial condition. This

is commonly accepted practice in the impact cratering studies. We employed an impact

velocity of 30 km/s (Marchi et al., 2005), and estimated a porosity of 10% derived from

the average of the meteorite types proposed by Britt et al. (2002). We estimated an

impactor size of 2.4 km diameter by comparing profiles obtained in a series of runs at

low resolution to the topographic profile of the present topography and cross-sections of

the similar-sized control craters. We took an Eulerian approach, defining the number

of computational cells per projectile radius (CPPR) as the resolution of our impact

model. We used the Eulerian setup because of the inevitable extreme cell deformation

that occurs with the alternative Lagrangian approach (Pierazzo & Collins, 2004). The

crater was modelled on a computational mesh of 400 x 600 cells, with a cell size of

150 m and a projectile size of 8 CPPR. We used a spatially constant gravitational

acceleration of 3.7 m/s2. The Hermean surface was approximated as a homogeneous

layered half-space made up by a brecciated 5 km basalt layer overlying an intact basalt

layer. This depth was chosen on the basis of the thickness estimation of the fractured

layer derived by Schultz (1993) and on the crater size frequency distributions predicted

by the MPF (Model Production Function) for analogue smooth plains (Marchi et al.,
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2011; Giacomini et al.). The thermodynamic response for both the projectile and target

in our simulations was approximated with an equation of state table for basalt derived

using ANEOS (Thompson & Lauson, 1972). The material properties of these layers are

summarized in Table 1.1, while the output simulations are shown in Figure 1.15 and

Figure 1.16.

Projectile Target
1◦layer 2◦layer

Material type Basalt Fractured Intact
Basalt Basalt

Variable Description

D Impactor diameter (km) 2.4
Ri Impactor radius (CPPR) 8
vi Impact velocity (km/s) 30
φi Material porosity 10% 5% 0

ρi Material density (kg/m3) 2850 2850
Y0 Cohesion for intact material (MPa) 10 10
Yd Cohesion for damaged material (MPa) 0 1
Ym von Mises plastic limit (GPa) 3.5 3.5
µi Coefficient of internal friction 1.2 1.2
µd Coefficient of friction (damaged material) 0.6 0.6
Tm Melt temperature (◦K) 1500 1500
η Kinematic viscosity (m2s−1) 120000 120000
τ Decay time (s) 48 48

Table 1.1: Numerical model parameters used in the simulation.

Figure 1.15: DTM profile (black line) and iSALE (blue line) simulated profile of the pit crater.
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Figure 1.16: Snapshots of the crater formation: right side shows the amount of damage on
gray scale (white = maximum level of damage); left side shows plastic strain contours in a color
scale (red = maximum deformation, blue = no deformation).

1.4.3 Results

Present-day morphology and deposit extent

The crater’s average diameter is 43.2 km with a cone of ∼ 12.5 km basal diameter. It

stands up to 2.2 km above the floor of the pit surrounding it and its summit is 1.8 km

below the rim crest of the host crater (Figure 1.17).

Figure 1.17: Present-day topography of the crater. (a) Average present-day topography from
the centre of the cone. Light grey circles mark the elevation of each pixel of the DTM against its
distance from the cone centre. Black dots mark the median elevation within 215 m radial bins.
Grey arrow: average location of the pit margin, black arrow: average location of the rim crest.
Image from Thomas et al. (2015).

It lacks a summit crater and has steeply-dipping flanks, averaging 26◦. The pit

margins are similarly steep, averaging 30◦. More gently-sloping deposits are visible at

the base of the pit’s wall scarp in some places, consistent with landslided material (Figure

1.13b). This suggests that the original slope of the pit walls may have been greater prior
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to mass wasting. The area between the rim-crest and the outer pit margin measures on

average 8.5 km wide on the orthorectified image. This may be a terrace formed by wall-

slumping, draped by volcanic deposits. The spectral anomaly with the relative bright,

red sloped character is the second most areally-extensive such anomaly on the planet

(Thomas et al., 2015) and its extension from the centreline of the pit is ∼ 92 km.

Topography of the control craters

In this study we use three different control craters (named as craters CC1, CC2 and

CC3) with a diameter equal to 41.8 km, 46.7 km and 43.2 km, respectively. Their

cross-sections were normalised to give a crater diameter of 43.2 km in order to compare

the control craters profiles with the present-day topography of AP1. Because a smaller

impact crater would be expected to have a smaller ratio of rim-crest to floor depth, this

necessitated a relatively minor adjustment to elevation values across CC1 and CC2. To

achieve this goal we calculated the expected rim crest to floor depth of the crater on

the basis of the Pike (1988) relationship, which was obtained for complex craters on

Mercury:

d = 0.353D0.496 (1.17)

where d is the depth and D the diameter. We calculated the ratio between the depth

indicated by this method for the control crater and for a 43.2-km diameter crater and

multiplied the MLA elevation values by this value. To compare the morphology of the

craters, we have plotted them so that distance along the cross-section is equal at the

rim crest and elevation is equal at the base of the outer slope of the raised rim (known

as the rim flank). The latter feature was chosen as the best point of reference because

the topography beyond the craters (Figure 1.18) is very uneven due to the presence of

other impact craters, so it is impractical to identify a “regional datum” at any greater

distance. The control craters have similar profiles, excepting that the floors of CC1 and

CC2 are shallower (2.3 km and 2.1 km) and the peak height above the floor is lower (0.4

km and 0.7 km) than those of CC3 (with a depth of 2.7 km and a peak height of 1.2 km)

(Figure 1.18). This suggests that the interiors of CC1 and CC2 have experienced more

infilling than CC3, either by retention of a higher volume of impact melt during the

modification stage of their formation, or by post-formation volcanic flooding (Thomas

et al., 2015).

Numerical simulation

A projectile with a diameter of 2.4 km, penetrating the target at 30 km/s (in accordance

with Marchi et al. (2005)), generates a crater diameter in agreement with the DTM

profile considering that the final output of iSALE (Figure 1.15) has a 4% radius un-

certainty, a value found from code validation against laboratory experiments (Pierazzo
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Figure 1.18: Comparison between the average DTM elevations across the present-day landform,
MLA cross-sections through the control craters, and the results of the hydrocode simulation,
showing general agreement between complex crater morphology and the morphology of the cone
in AP1. (a) Values on the distance axis are equal at the leftmost rim crest, and elevations are
equal at the base of the leftmost rim flank. (b) Horizontal location and elevations are matched
as in (a), except that the DTM profile is placed so that the rim-crest elevation equals the average
elevation of the leftmost rim crests of the control craters. Image from Thomas et al. (2015).

et al., 2008). We observe a good match in terms of dimension while the morphology

appears slightly different with the observed crater. This is due to the pyroclastic event

that affects this crater generating an asymmetric collapse of several hundred meters by

explosive volcanism. The simulation shows a best fit with the crater diameter and the

interior morphology of the control craters with a decay time of 48 s and a kinematic

viscosity of 120,000 m/s2.

As with the control craters, both horizontal and vertical values along the simulated

cross-section were adjusted for comparison to a 43.2-km diameter crater (Figure 1.18).

Results from the simulation are in accordance with depth-diameter ratios observed in

impact craters in large morphometric datasets for Mercury. Pike (1988) found a best-

fit to the depth-diameter values of 58 craters between 30 and 175 km diameter with

the relationship given in Equation 1.17. Using this relationship, a 43.2 km wide crater

would be expected to be 2.3 km deep; the simulated crater has a depth of 2.3 km (2.1

km after adjustment of its depth to take into account its larger diameter). More recent
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study based on MESSENGER data (Baker & Head, 2013) found a mean depth-diameter

ratio of 0.034 ± 0.010 for complex craters greater than 50 km in diameter. Applying

this relationship to our case study, we expect a depth of 1 - 1.9 km, which is shallower

than the simulated crater, but this could be due to data extrapolation for crater with

a diameter smaller than 50 km. Following this similar method of extrapolation for the

peak height data, the expected height of the central peak would be in the range of 0.3

- 0.9 km. The height of our simulated central peak above the crater floor is 600 m,

or 570 m after adjustment for the greater crater diameter, and so is in agreement with

this estimation. This indicates that though the simulated central peak is lower than

those of the control craters, it lies within the range of possible values on Mercury. The

simulated central peak width (8.7 km, or 7.8 km after adjustment for crater diameter)

is somewhat narrower than the relationship Dcp = 0.44D0.82 observed by Pike (1988)

between crater diameter D and central peak width Dcp in 138 craters that predicts a

width of 9.7 km. When vertically matched with the control craters at the base of the rim

flank, the elevation of the floor of the simulated crater almost exactly matches that of

CC3, which we have previously identified as the least likely to have undergone significant

infilling. However, the height of the rim crest relative to the base of the rim flank is

much lower (140 m) in the simulation than in the control craters (averaging 780 m).

Additionally, the wall slope is shallower than in the control craters. In the simulated

profile the wall slope is steeper, but this strong difference should be explained by the

relative “freshness” of the simulated crater versus modification of the control craters

over a period of up to 3.5 Ga.

Comparison of estimated original and present morphologies

We compare the present topography with the control craters and the simulated original

topography using two possible vertical tie-points. The first plots all cross-sections so

that the elevation at the base of the rim flank is equal (Figure 1.18a). This requires

the assumption that there is not an appreciable thickness of pyroclastic material in this

area, as this would increase the elevation of the original ground surface. The second

comparison plots the topographic profile derived from the DTM such that its rim crest

is at the average elevation of the rim crests of the control craters (Figure 1.18b). This

would be a valid match if the original crater AP1 has undergone a similar amount of

degradation as the control craters and if pyroclastic deposition has not increased the

ground elevation at the rim crest. We judge that the first comparison leads to a better

match between the interior and exterior morphology of AP1 and the morphology of

the simulated and control craters, so we prefer to use this in the proceeding analysis

(Thomas et al., 2015).

The height of the cone (820 m above the expected floor height indicated by CC3 and

the simulation, and 1.4 km below the rim crest) is in agreement with that expected from
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simulation and control craters (Figure 1.18a), in addition it is similar with the value

found using the relationship of Baker & Head (2013) (predicting a height of 0.3 - 0.9

km above the crater floor). The width of the cone at the elevation of the floors of the

simulated crater and CC3 is 4.3 km, which is narrower than expected for the central

peak of a crater of this size (9.7 km) (Pike, 1988). The slope of the walls is similar to

that of the simulation, but shallower than seen in the control craters. This could indicate

that AP1 is younger than the control craters, since the simulation profile represents the

crater shape just after its formation and the control craters belong to Mansurian age (3-5

- 1 Gyr). However, the rim crest of AP1 is also lower than those of the control craters,

which indicates that it is more degraded and thus older. For this reason, the shallower

wall slopes could be the result of wall slumping in AP1. There is some evidence for

pyroclastic deposition in the region between the rim crest and the pit margin: it has

the same smooth texture here and outside the rim, with no boundary between the two

surfaces (Figure 1.11b). Similar deposits may contribute to the broad, high-elevation

region inwards of the rim crest and the relative narrowness of the crater walls. However,

it is not possible to distinguish relief resulting from pyroclastic deposition from that

resulting from crater degradation processes.

The pit represents a large loss of material: the average pit floor is 1.4 km below

the expected crater floor depth (Figure 1.18a) and the volume difference (calculated

using ArcGIS) is 350 km3. This is an approximate value for the volume of material

lost because shadows in the images used to construct the DTM do not allow us to

calculate the volume loss in the eastern part of the pit, and because the vertical match

is uncertain. If the volume loss from the pit equals the volume of a pyroclastic deposit

over the area indicated by the bright, red-sloped spectral signature, that deposit would

average ∼ 20 m thick when scaled to take into account the different densities of basalt

rock and pyroclastic fall (2760 kg m−3 vs. 2000 kg m−3 (Wilson et al., 2014). Elsewhere

on Mercury, putative pyroclastic deposits ranging from 29 to 567 m thick have been

identified in close (∼ 6 km) proximity to vent margins (Thomas et al., 2014). Because of

the uncertain vertical match between the original and present-day topography, we cannot

define the thickness of the AP1 deposit near the vent, even if the wide high-elevation

area inwards of the rim crest and the narrowness of the crater walls are in some part the

result of pyroclastic deposition.
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1.4.4 Discussion

Mode of formation of the landform assemblage

There is no evidence that the cone was constructed by volcanism: it lacks a summit

caldera or vents, has no flow features on its flanks and has a similar slope to that of

the outer scarps of the pit surrounding it. Conversely, its position, elevation, slope and

morphology is consistent with a residual central peak of an impact crater, surrounded

by an annular pit. This type of feature, a pit associated with pyroclastic deposits at

the centre of an impact crater, is not the only example to this location. Indeed, we

identified 150 sites were endogenic pits are surrounded by a bright, red-sloped spectral

anomaly interpreted as pyroclastic deposits (Thomas et al., 2014). In this global survey,

118 of these structures occur within impact craters, and 52 (excluding AP1) are at the

crater centre. In other cases the pit is in place of an expected central peak or peak ring,

but in 31 cases it is concentric to the peak or central region (Figure 1.19). There are

small pits existing around the crater centre (Figure 1.19c) in addition to conjoined pits

form arcs around the centre (Figure 1.19b). In rare cases (e.g. Figure 1.19a), a pit or

conjoined pits entirely surround the crater centre, though not forming so distinctive a

“cone” as seen at AP1. Terrestrial seismic surveys and numerical models indicate that

such impact crater central uplifts are bounded by deeply-penetrating high-angle faults

(Scholz et al., 2002; Senft & Stewart, 2009). Mercury’s crust has been in a global state of

compression for much of its history (Strom et al., 1975), inhibiting the ascent of magma

to the surface, so it is to be expected that any magma ascent that did occur would

be localised in pre-existing zones of weakness such as these. It is interesting to note

that, though it has previously been stated that endogenic pit formation appears to be

structurally-controlled by host crater structures (Gillis-Davis et al., 2009), our findings

suggest that pits most commonly occur at the crater centre or along a peak ring, and less

commonly at other fault-bounded structures such as the terraces or rim area (Thomas

et al., 2015).

Mode of pit formation

A structural control on pit formation has been taken as evidence that Mercury’s endo-

genic pits form by collapse along planes of weakness during magma withdrawal from a

shallow magma chamber (Gillis-Davis et al., 2009). It is possible that our case study was

subjected to subsidence, in fact the cone’s peak is at the lower of the range of probable

original central peak heights, even if this low peak elevation cannot be conclusively at-

tributed to post-formation modification. The pit was clearly the locus of intense explosive

volcanism, so it is probable that a significant amount of wall-rock erosion contributed to

pit-formation (and possibly reduction in peak height). The maximum dispersal of pyro-

clasts ejected on ballistic trajectories in the airless conditions of Mercury, as discussed by
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Figure 1.19: Endogenic pits with surrounding pyroclastic deposits circumferential to the im-
pact crater centre. (a) A pit entirely encircles the central uplift (72.4◦ E,-21.1◦ N). (b) Pits
circumferential to the centre of an impact crater where the central peak is not visible, probably
due to volcanic infill prior to pit formation (140.5◦ E, -11.1◦ N). (c) Multiple small pits occurring
circumferential to the crater centre (6.5◦ E, -48.4◦ N). Image from Thomas et al. (2015).

Kerber et al. (2009), is X = v2 sin(2θ/g). Taking X as 92 km, the maximum horizontal

radius of the deposit from the pit centreline, g (gravity) as 3.7 m/s2 and θ as the angle

at which dispersal is greatest (45◦), the minimum velocity at the vent is 580 m/s. On

Earth, such velocities are typical of high-energy Plinian eruptions, in which significant

vent-widening occurs (Wilson et al., 1980). However, we do not measure the volume of

material ejected and subsequently the kinetic energy involved in this activity, so it is

not possible to determine the relative importance of magma chamber drainage versus

wall-rock excavation for pit formation. These information could be only constrained by

future higher-resolution compositional data, that could potentially be acquired by the

forthcoming BepiColombo mission (Fraser et al., 2010; Rothery et al., 2010).

Evidence for magma storage prior to eruption

Previous work (Thomas et al., 2014) has suggested that the horizontal scale of the largest

pyroclastic deposits on Mercury (of which the 92 km radius AP1 deposit is the second-

largest example) is consistent with their emplacement by either strombolian eruption or

by high flux steady eruption where the majority of the magma is disrupted into large

particles, 10 mm to 1 m diameter (Wilson & Head, 1981). In either case, thick deposits

would be expected near the vent and thinner deposits at greater distance. The extreme

dispersal of the deposits indicates a high volatile content in the magma, and this is

also consistent with slow magma rise or stalling at shallow depths prior eruption. On

the basis that the kinetic energy during eruption is approximately proportional to the

released magma gas fraction by mass (Wilson et al., 2014) (as discussed by Thomas

et al. (2014)) we find that that ejection of pyroclasts to 92 km on Mercury requires 5.4

wt% CO2 or 4.2 wt% H2O if each of these were the sole volatile. These are very high
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values: in non-subduction settings on Earth, melt inclusions indicate 0 - 0.25 ppm CO2

and 0.2 - 0.8 wt% H2O in basaltic melts (Metrich & Wallace). Chemical equilibrium

models suggest a combination of more reduced species such as N2, CO, S2, CS2, S2Cl,

Cl, Cl2, and COS would be present in Mercury’s magmas (Zolotov, 2011). Due to their

high molecular weights, a concentration greater than, or equal to, 7.6 wt% would be

necessary to form the deposit if any of them were the sole volatile. As there is no reason

to believe Mercury to be more volatile-rich than Earth, it is probable that such high

volatile concentrations were reached by some process causing volatile enrichment in the

erupted magma (Thomas et al., 2014). If magma ascend very slowly and/or is stored

at shallow depths, it may become oversaturated due to crystallisation and volatiles will

exsolve in the low pressure near-surface environment.

1.4.5 Summary

Our results shows that it is improbable that a steep-sided cone with associated pyro-

clastic deposits is a volcanic construct, but confirm the hypothesis that this feature on

Mercury was formed by explosive volcanic eruption from a vent encircling a residual

central peak of an impact crater. We find that the landform at this location likely

represents the extreme end-member of a large class of volcanic vents circumferential to

impact-crater central peak structures, indicating that crater-related faults control explo-

sive volcanism at such locations. The scale of the pyroclastic deposit indicates that the

magma had a high volatile content relative to basaltic eruptions on Earth, supporting

the idea that it was stored for some time in the low-density fractured zone beneath the

impact crater prior to eruption. The numerical modelling result was fundamental to

assess the beginning hypothesis and impact craters simulations could be useful also in

the future to determine the origin of similar structures.
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1.5 Numerical modelling application: Mars

Crater modelling on Mars is very difficult due to the degradation processes which oc-

cur all over the planet. In particular, a variety of processes have been involved in

crater degradation, including superimposed impacts, weathering, mass wasting, fluvial

erosion and deposition, ice-related processes, lacustrine processes, lava and ash infill-

ing, aeolian saltation, airfall deposition from dust storms (Arvidson et al., 2006; Evans

et al., 2010; Rodriguez et al., 2010), regionally distributed ejecta from large impacts and

impact-induced hydrothermal activity (Abramov & Kring, 2005; Schwenzer & Kring,

2009; Schwenzer et al., 2012). Impact craters strongly modify planet landscape and con-

trol fracture systems and surface/subsurface hydrology (e.g., Rodŕıguez et al., 2005). In

fact, impact processes produce a pervasive network of fractures related to the propaga-

tion of the rarefaction waves (Melosh et al., 1992; Collins et al., 2004, 2011; Wünnemann

et al., 2006) and thus favouring fluids circulation within the crust. The aim of simulat-

ing an impact process on a complex environment such as the Martian surface provides

information about how different impact conditions (e.g., different impact velocities and

compositional scenarios, thickness of the megaregolith) affect the crater formation but

also give an estimate of the post-impact modification processes entity.

In this work we present a numerical model for the formation of the Firsoff crater (90

km of diameter) which is a strongly degraded crater located in the equatorial southern

highlands of Arabia Terra at 2.6◦ N - 350.8◦ E (Mars), thought to be a locus of in-

tense water interactions and subsequent modifications (Andrews-Hanna & Lewis, 2011;

Franchi et al., 2014; Pondrelli et al., 2011, 2015; Michalski et al., 2013; Pozzobon et al.,

submitted). Firsoff crater is characterised by a large central layered bulge (35-40 km

diameter, 1600 m elevation) and numerous mound-like landforms within it, often in-

terpreted as mud volcanoes or spring deposits sources (Pondrelli et al., 2011; Franchi

et al., 2014; Pozzobon et al., submitted) (Figure 1.20). Central inner crater bulges often

display a widespread inner stratification that fills the whole interior such as Firsoff and

Crommelin cases (Franchi et al., 2014; Pondrelli et al., 2011, 2015).

Among craters with bulges, Firsoff was chosen for the wide dataset available of high-

resolution images as well as different resolution DTMs (MOLA, HRSC, and HiRISE

respectively onboard Mars Global Surveyor, Mars Express and Mars Reconnaissance

Orbiter missions) (Zuber et al., 1992; Jaumann et al., 2007; McEwen et al., 2007).

Moreover, with its 90 km diameter is a representative sample of most of the Arabia

Terra craters displaying the peculiar bulge that characterises some similar craters.

Through impact modelling we could better understand the subsequent geologic pro-

cesses that led to crater post-impact modification, define which rheological structure of

the Martian upper crust is more likely in Arabia Terra and if there are local conditions

that favour the formation of central bulges.

Taking into account that Firsoff crater has been strongly affected by degradation, we
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used morphometric relationships to reproduce the original morphology of the crater at

time of its formation in order to have a comparison with the results of the simulations.

Using iSALE hydrocode, we run a series of simulation with different set up to understand

how specific parameters could affect the morphology of the Firsoff crater. Specifically,

for a target composed by a double basalt layer we consider different impact velocity of

the projectile (from the most probable value of 7 km/s to 12 km/s) and various thickness

of the first megaregolith layer of the target (beginning from 8 km to larger thickness).

Furthermore, we consider as a minor case the introduction of an anorthosite layer in the

target to verify if this type of composition is likely in Arabia Terra because of recent

anorthosite detection on Martian highlands (Carter & Poulet, 2013).

Figure 1.20: On the left Shaded relief MEGDR MOLA 128px/deg DTM, while on the right
the distribution of mounds in Firsoff crater.

1.5.1 Geological context

As mentioned above, Firsoff impact crater is located in Arabia Terra at 2.6◦ N - 350.8◦

E. This region is located at the Martian topographic dichotomy with a difference in

height of 4 km over a distance of 2500 km (average slope = 0.0016◦). Most of the impact

craters within the region display a central bulge, bearing a well-preserved stratification

and a wide range of smaller morphologies like pitted cones, mounds and knobs (Pondrelli

et al., 2011).

Firsoff is characterised by a big central bulge of 35-40 km of diameter located where

the central peak should be. The bulge is ∼ 1 km above the crater floor and displays a

light albedo layered sequence (Pondrelli et al., 2011; Pozzobon et al., submitted). Its

shape is slightly elliptic with the major and minor axes measuring respectively 30 and 40

km, with an average areal extent of ∼ 1000 km2. According to the global geologic map
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from Tanaka et al. (2014) and to the more detailed map from Pondrelli et al. (2011),

Firsoff Crater is located within a plateau sequence named Cratered Unit in this particular

area, consisting of an etherogeoneous mixture of pyroclastites, lava flows and brecciated

material (Franchi et al., 2014). The layered unit within Firsoff Crater is a sequence of thin

layers present also outside the crater and overlaying in unconformity the Cratered Unit.

Locally this light albedo thin stratified formation is named equatorial layered deposits

(ELD). In addition many small mounds that are widespread in Firsoff crater’s interior,

are interpreted to have worked as pathways for subsurface fluids (Pondrelli et al., 2011;

Franchi et al., 2014) and their origin and timing of formation is still under investigation

(Pozzobon et al., 2013). These landforms appear as sub-circular conical features going

from tens to hundreds of meters in diameter, often presenting a central orifice (Pondrelli

et al., 2011). Their spatial distribution is peculiar and roughly surrounds Firsoff’s central

inner bulge. Most of them are clustered in the south-eastern part, while the remaining

are located in the NE and SW sectors bordering the bulge. The mounds are almost

absent in the NW side. According to Pondrelli et al. (2011, 2015) some of them are

aligned along fault traces and fractures and seem to be genetically linked to the ELDs.

These observations constrain the presence of a structural control on their formation

linked to a percolating fracture network evolution and to a deep fluid source (Pozzobon

et al., 2013).

The case study area involves a well-defined compositional scenario. The upper crust

can be composed of a fractured basaltic megaregolith overlying an intact basalt layer,

given the common basaltic composition and the widespread Noachian/Hesperian volcanic

resurfacing of the Martian surface in Arabia Terra (e.g., McSween et al., 2003, 2009;

Taylor et al., 2010), The thickness of this fractured basaltic megaregolith overlying an

intact basalt layer is an important parameter that is under investigation since there is

only a lower limit of this depth threshold, equal to 8 km, according to Pozzobon et al.

(2013), defined as where the depth of a likely fluid source is linked to the surface by a

hydraulically-connected fracture network. Another minor compositional scenario, that

is considered in this study, consists of jointed basaltic flows on anorthosite rich crust,

as it happens for the Moon highlands (Wieczorek et al., 2013). This scenario is indeed

plausible given the recent discovery of anorthosite in the nearby Noachis Terra (Carter

& Poulet, 2013). In particular, we do not exclude its important presence in the Martian

highlands in patches corresponding to local ascent of anorthositic plutonic bodies (Carter

& Poulet, 2013; Wray et al., 2013).

1.5.2 Morphological analysis

As testified by the numerous yardangs and dunes in the topographically lower parts of the

crater and by the layered deposits in the central bulge (Pondrelli et al., 2011; Franchi

et al., 2014), it appears that Firsoff crater has been strongly affected by eolian and
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water-related degradation and infilling processes. Moreover slumping and gravitational

collapses of the crater walls along listric sliding planes faults are likely (Pondrelli et al.,

2011; Franchi et al., 2014). The central layered bulge formation has been interpreted

as due shallow fluid interaction processes, and thus not linked to the normal crater

degradation occurring on Mars by exogenous processes (Pondrelli et al., 2011; Franchi

et al., 2014). The central bulge is eroded on its sides and its summit’s height is roughly

the same as the crater rims, while the ELD formation present in the topographically

lower parts of Firsoff is still present and well preserved. This seems to support the

hypothesis that some other modification processes other than normal wind degradation

occurred after the impact crater formation.

MOLA (Mars Orbiter Laser Altimeter, Mars Global Surveyor mission) MEGDRs

(Mission Experiment Gridded Data Records ) topographic data (128 px/deg) (Zuber

et al., 1992) were used for our analysis, in particular the reference topographic section

was obtained with MOLA averaging the two profiles taken along the NW-SE and NE-SW

direction, as shown in Figure 1.21.

Figure 1.21: a) MOLA (Mars Orbiter Laser Altimeter) global map and detail of Arabia Terra.
b) THEMIS daytime infrared image draped on MOLA 128px/deg DTM. c) Topographic section
obtained averaging the two profiles taken along the NW-SE and NE-SW directions (A and B in
Fig. 1.21b).
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Since Firsoff crater has been also strongly affected by degradation, we expect that its

pristine shape is quite different in respect to the current morphology. In fact, Firsoff ap-

pears to be heavily degraded, both by wind (widespread presence of yardangs and dunes

in the southern part) and layered formations (ELDs) (Pondrelli et al., 2011, 2015). More

in detail, the strong presence of ELDs suggest a pervasive interaction of the crater with

acqueous environment (Pondrelli et al., 2011, 2015; Rossi et al., 2008). According to

Forsberg-Taylor et al. (2004), that provides estimates of craters degradation that under-

goes pervasive fluid-related modification (and also take into account airfall deposition,

eolian degradation, fluvial erosion and sedimentation), we assume that the pristine di-

ameter of this crater must have been 10% less than the current diameter that is equal

to 90 km, and should have been filled up to more than half its depth. Degradation pro-

cesses affect the crater morphology in different ways and all of them are responsible for

the modification of the crater that results in an increase of the diameter, an important

infilling and rim dismantling that lowered its height.

Therefore, adopting a pristine diameter equal to 80 km, we applied to the Firsoff

case the morphometric relationships of Garvin et al. (2003), shown in Table 1.2. These

equations, that link the crater diameter with the impact crater parameters such as rim

height, central peak height and diameter, were defined by Garvin et al. (2003) on the

basis of MOLA topographic profiles of 6000 martian impact craters. By comparing

three-dimensional geometric properties, several equations were generated describing the

relations between the different features of impact craters, thus allowing the original

geometry of the impact craters to be reconstructed.

Parameters Complex crater relationships Firsoff crater case

Depth d = 0.36D0.49 3 km
Rim Height H = 0.02D0.84 0.8 km
Central Peak Diameter Dcp = 0.25D1.05 2.5 km
Central Peak height hcp = 0.04D0.51 0.3 km

Table 1.2: Morphometric relationship derived from Garvin et al. (2003) and applied to the
Firsoff case.

The same method of Garvin et al. (2003), has been utilized by Robbins & Hynek

(2012) to find the complex depth/diameter relationship over different terrains, for ex-

ample the relationship characterising impact craters located in the region from −40◦ to

40◦ latitude is d = 0.28D0.579, that implies a crater depth value in agreement with that

found by Garvin et al. (2003) for the Firsoff impact crater. In Figure 1.22 it is shown the

pristine crater profile, that has been reconstructed according to the parameters obtained

applying the morphometric relationships of Garvin et al. (2003), and the degraded crater
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profile, that has been reconstructed reducing the diameter, lowering the rim height and

filling the crater, in agreement with Forsberg-Taylor et al. (2004).

Figure 1.22: Pristine crater profile, reconstructed according to the parameters shown in Table
1.2, is shown in black, while the respective degraded crater profile is shown in green and it
has been reconstructed reducing the diameter, lowering the rim height and filling the crater, in
agreement with Forsberg-Taylor et al. (2004). The degraded crater profile is in agreement with
MOLA topographic profile (blue).

1.5.3 Numerical modelling: model setup

The Firsoff impact involves the collision of an asteroidal origin projectile and due to

the axisymmetric nature of the 2-D iSALE hydrocode, we adopt a head-on geometry,

where the projectile hits perpendicularly the target surface. We have used an Eulerian

approach, i.e., the mesh is fixed in space and the material flows through it (Pierazzo

et al., 2008), and the resolution in our impact model was defined by the number of

computational cells per projectile radius (CPPR). A spatially constant gravitational

acceleration of 3.7 m/s2 was used in the simulation. We run a series of simulation with

different set up to understand how specific parameters could affect the morphology of

the Firsoff crater. Specifically, we consider different impact velocity of the projectile and

various thickness of the first layer of the basalt target. Furthermore, we consider as a

minor case, the introduction of anorthosite media to verify if this type of composition is

likely in Arabia Terra.

The basic scenario consists of a projectile which was simplified to spherical and ho-

mogeneous basalt impacting at an angle of 90◦. Departure of the impact angle from the

more statistically likely value of 45◦ is necessary due to the axissymetric nature of the

iSALE hydrocode. From the Mars probability distribution for impact speeds calculated
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by Le Feuvre & Wieczorek (2011) the mean impact velocity is equal to 10 km/s, but we

have to include the effect of different impact angles. To take it into account the projectile

speed would be vaverage(sin 45◦) which results in an impact velocity equal to 7 km/s. We

approximate our impactor to a spherical basalt projectile, with a porosity of 10 % which

is derived from the average of the meteorite types proposed by Britt et al. (2002). The

impactor size has been estimated from the comparison between the profiles obtained by

a series of runs at low resolution and by the topographic profile obtained with MOLA.

Given the common basaltic composition and the widespread Noachian/Hesperian vol-

canic resurfacing of the Martian surface in Arabia Terra (e.g., McSween et al., 2003,

2009; Taylor et al., 2010), the upper crust can be composed of a fractured basaltic

megaregolith overlying an intact basalt layer.

Projectile Target
1◦layer 2◦layer

Material type Basalt Fractured Intact
Basalt Basalt

Variable Description

Ri Impactor radius (CPPR) 15
vi Impact velocity (km/s) 7
φi Material porosity 10% 5% 0

ρi Material density (kg/m3) 2850 2850
Y0 Cohesion for intact material (MPa) 10 15
Ym von Mises plastic limit (GPa) 3.5 3.5
µi Coefficient of internal friction 1.2 1.2
µd Coefficient of friction (damaged material) 0.6 0.6
Tm Melt temperature (◦K) 1400 1400
ε Thermal softening 1.2 1.2
η Kinematic viscosity (m2s−1) 100000 100000
τ Decay time (s) 120 120

Table 1.3: Numerical model parameters used in the simulation.

Hence, the target structure was modeled as a double basalt layer with the depth of

the first layer fixed at 8 km depth. This depth threshold has been chosen according to

Pozzobon et al. (2013), where the depth of a likely fluid source is linked to the surface

by a hydraulically-connected fracture network. This layering in Arabia Terra is justified

by Andrews-Hanna et al. (2010), in fact this work inferred the presence of deep basalt-

weathering fluids, testified also by the presence of Fe/Mg smectites on the surface. The

presence of a thick basaltic level with a percolating fracture network (Michalski et al.,



48 Impact craters

2013) is also likely and provides a pathway for fluids that over deeper intact basalts. In

the simulation the thermodynamic behaviour and compressibility of each material in the

model is described by an equation of state (EoS). Tables generating using an Analytical

EoS (ANEOS) (Thompson & Lauson, 1972) for basalt are used to represent the layering

of the Martian subsurface and also the impactor. We fix a porosity equal to 5% for

the top layer (8 km thickness) since a fractured basalt has a lower density (and higher

porosity) than an intact basalt just by nature of cracks and larger amounts of pore

space (Melosh, 2011). According to Pierazzo et al. (2008), we use T ∼ 1400 K as typical

incipient melting temperature for basalt from estimates for its main components, namely

plagioclases and pyroxenes (Ahrens & O’Keefe, 1972). We use acoustic fluidization to

reproduce complex crater collapse and in the absence of better information, we assume

that all materials have the same acoustic fluidization parameters. We chose parameters

that give a reasonable agreement to measured crater geometries beginning from the

values used by Collins et al. (2002)) and Wünnemann & Ivanov (2003) for the Moon.

After investigation of kinematic viscosities we determined for the basic scenario set up a

best-fit viscosity of 105 m2s−1 with a corresponding decay time of 120 s. In Table 1.3 we

summarize all the model parameters and the material properties used for our numerical

simulations, where the parameters used for basalt are in agreement with those assumed

in Pierazzo et al. (2005). From this basic scenario we change the impact velocity and

the thickness of this top layer in order to understand how these parameters affect the

impact crater formation.

Comparing different impact velocity

It is well established that changing the impact velocity will result in differences in the

energy and momentum coupling to the target (Housen & Holsapple, 1990; Melosh &

Ryan, 1997). The Mars impact velocity distribution is derived from Le Feuvre & Wiec-

zorek (2011) and we can consider a possible 90◦ impact since the ejecta distribution

surrounded the Firsoff crater is roughly symmetric (Pondrelli et al., 2011, 2015). We

consider different impact velocities equal to 7 km/s, 10 km/s and 12 km/s. The first

value (7 km/s) corresponds to the mean impact velocity including the effect of different

impact angles, but also to the first peak of the impact velocity distribution of Le Feuvre

& Wieczorek (2011). The value of 10 km/s corresponds to the mean impact velocity,

while 12 km/s velocity is related to the second peak of the impact velocity distribution

of Le Feuvre & Wieczorek (2011).

The resolution in our impact models was defined by the number of computational

cells per projectile radius (CPPR) (Wuennemann et al., 2008) equal to 15 CPPR for

each velocity case. Larger impact velocities need smaller projectile to obtain the same

crater diameter, for this reason we consider different cell size dimensions as shown in

Table 1.4. The results obtained from this set of simulation are shown in Figure 1.23.
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Additionaly, we report the outcome of the hydrocode simulation that consider a 7.5 km

projectile diameter impacting the target with impact velocity equal to 7 km/s in Figure

1.24.

Parameters Value

Impact velocity (km/s) 7 10 12
Cell size (m) 300 270 250
Impactor diameter (km) 9 8.1 7.5
Mesh size (CPPR) 340x430 370x480 400x520

Table 1.4: Simulation cell size dimension for a 15 CPPR projectile for different velocities.

Figure 1.23: Results of the basalt case simulation compared with the pristine profile recon-
structed from Garvin et al. (2003). The latter is shown in black, while the profiles involving
velocity value equal to 7 km/s, 10 km/s and 12 km/s are shown in blue, red and green respec-
tively.

Comparing different basalt thickness layer

Since the hydrocode simulation output at different velocities shows that the crater depth

is not well fitted, we changed the thickness of the fractured basalt layer in order to

understand how this parameter affects our result. This is also supported by the fact

that the Figure 1.24 shows a damaged layer with significant plastic deformations reaching

tens of kilometers beneath the crater floor. Therefore, we change the thickness of the

fractured layer considering several values from 8 km to 50 km (Figure 1.25).
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Figure 1.24: Hydrocode snapshots of the Firsoff crater formation. On the left side of each plot,
contours of the amount of damage are shown on a gray scale where white corresponds to the
maximum level of damage. On the right side of the plot, plastic strain contours are illustrated
for the same cross section in a color scale where red corresponding to the maximum deformation
while blue means node formation.

Figure 1.25: Results of the simulation compared with the pristine profile reconstructed from
Garvin et al. (2003). The latter is shown in black, while the profiles involving different fractured
basalt thickness are shown in different colors.

Anorthosite substratum

Another compositional scenario considered in this study consists of jointed basaltic flows

on anorthosite rich crust. In fact, significant amounts of anorthositic bodies could have

been produced either globally during magma ocean differentiation or primordial serial

magmatism as proposed for the Moon, or locally by fractional crystallization, assimila-

tion, or partial melting of an already evolved source (Carter & Poulet, 2013). The few
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anorthosite detections on Mars would argue against a primordial crust composed of pure

ferroan anorthosite as inferred for the Moon (Wieczorek et al., 2013), as well as petrolog-

ical analyses on Martian meteorites. However, some volcanic activities (often associated

with large crustal intrusions as in Noachis Terra (Carter & Poulet, 2013)) around the

highlands were recently spotted in Arabia Terra by Michalski et al. (2013); Wray et al.

(2013). They have catalogued felsic outcrops in Noachis Terra among a global popula-

tion of crater floor bedrocks and attributed this lithology to impact generated volcanism

from relatively high-silica reservoirs at depth. Indeed, recent CRISM observations of

feldspar-rich materials in widely scattered ancient exhumed outcrops may be consistent

with such reservoirs. Alternatively, feldspar-rich crater floors could have been emplaced

through partial melting of basaltic crust followed by slow cooling and crystal density

separation (Carter & Poulet, 2013; Wray et al., 2013). Because the literature involv-

ing anorthosites on Mars, we do not exclude their presence in patches in the Martian

highlands. This not necessarily imply a Moon-like crustal formation (Wieczorek et al.,

2013). We model the target as a double layer made up by a fractured basalt layer on top

of rather intact anorthosite. This second layer of the target is described by a Tillotson

EoS for gabbroic anorthosite (Ahrens & O’Keefe, 1982). From the model setup reported

in Table 1.3 we change the intact basalt layer in an anorthosite intact layer with mate-

rial properties reported in Table 1.5, in agreement with those reported in Potter et al.

(2012).

Variable Description Intact anorthosite

φi Material porosity 0
ρi Material density (kg/m3) 2940
Y0 Cohesion for intact material (MPa) 50
Ym von Mises plastic limit (GPa) 2.5
µi Coefficient of internal friction 1.5
µd Coefficient of friction (damaged material) 0.6
Tm Melt temperature (◦K) 1500
ε Thermal softening 1.2

Table 1.5: Numerical model material parameters for anorthosite intact layer.

We run a set of simulation considering different impact velocities, as in the basalt

case, equal to 7 km/s, 10 km/s and 12 km/s. The results obtained from this set of

simulation are shown in Figure 1.26.
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Figure 1.26: Results of the anorthosite case simulation compared with the pristine profile
reconstructed from Garvin et al. (2003). The latter is shown in black, while the profiles involving
velocity value equal to 7 km/s, 10 km/s and 12 km/s are shown in blue, red and green respectively.

1.5.4 Modelling results and discussion

In figure 1.23 are shown the hydrocode results coming from the set of simulations re-

garding the variation of impact velocities for a double layer of basalt (megaregolith with

a thickness of 8 km overlying an intact basalt layer). It appears that the resulting sim-

ulation outputs are slightly similar taking into account the values from code validation

against laboratory experiments (Pierazzo et al., 2008). In fact, the depth and central

peak height are comparable considering that the final output of iSALE has a 3 - 4%

radius uncertainty and a 12% depth uncertainty. It is noteworthy that all simulated

profiles give a depth that is 1 km lower than what is expected from Garvin et al. (2003),

while the central peak height is ∼ 0.5 km, slightly higher than what calculated from

Garvin et al. (2003) (Figure 1.23).

Since a shallower crater for each velocity case was obtained, we fixed the velocity

equal to 7 km/s, that is the most probable impact speed on Mars, and changed the

megaregolith thickness from 8 km (minimum expected according to Pozzobon et al.

(2013)) to 50 km in order to understand how this parameter affects the crater formation.

This choice is supported by the fact that Arabia Terra is heavily cratered and the damage

below the impact extends for ten of kilometers, as shown in Figure 1.24. Figure 1.25

underlines that the increase of the megaregolith thickness directly affects the depth of

the resulting crater and the presence of the central peak. In addition, it is shown how

overcoming the threshold of 20 km the crater depth predicted by Garvin et al. (2003)

is reached, although we do not obtain any central peak. In accordance with the widely

acceped hypothesis of the whole basaltic crust on Mars (McSween et al., 2003, 2009;
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Taylor et al., 2010), considering each variaton set up of the impact model, the predicted

pristine profile was never obtain. However, since we do not meet the expected pristine

features calculated from Garvin et al. (2003) and because his statistic involves the whole

planet, we can hypothezise a different local compositional scenario for Firsoff and most

likely for bulged craters in general. For this reason a compact anorthosite layer below

the basalt megaregolith was introduced, on the basis of anorthosite detection on Martian

highlands (Carter & Poulet, 2013; Wray et al., 2013). A set of simulations for different

impact velocities were performed as previously done on the double basalt layer. As it

is shown in figure 1.26, the simulation profiles obtained for the impact velocity cases

of 7 km/s and 10 km/s display similar pristine crater morphology, while the simulation

corresponding to the 12 km/s impact velocity case fits correctly the calculated pristine

crater depth.

From these results it is noticeable that changing the impact velocity for a double

basalt layer with a megaregolith thickness of 8 km determines a crater shallower than

what it is expected according to Garvin et al. (2003), while the pristine profile is well-

fitted increasing the thickness of the megaregolith, especially with a depth greater than

20 km. We could advance the hypothesis that the megaregolith basalt stratum in Arabia

Terra is at least 20 km and the absence of the central peak can be plausible since there

are other craters in Arabia Terra with a diameter similar to Firsoff crater without a

central peak or bulge.

Alternatively, the configuration involving the anorthosite media (with a thickness

of 8 km) and an impact velocity equal to 12 km/s well fits the pristine profile. This

can be explained by the fact that the global database of thousands of topographically

characterised craters cannot consider different target properties and composition, so

other different compositional scenarios should be taken into account.

For all simulation set up the simulated morphology of the central peak is not well

reproduced with respect to the reconstructed pristine one, but this is an open problem

also because we could only hypothesize its actual shape from Garvin et al. (2003) based

reconstructions. In addition, since the present morphology of Firsoff crater is affected

by later sedimentary infilling, the central bulge is not reproducible with simulations.

Therefore, from the geological analysis alone is not possible to understand which part

of the crater floor and central bulge should be attributed to the central peak. On the

basis of the relevant difference in elevation (∼ 700 m) between the central bulge and

the pristine central peak, our results are consistent with the hypothesis that a latter

processes occurred after Firsoff impact crater formation and subsequent degradation,

such as spring related constructional processes (Pondrelli et al., 2011).



54 Impact craters

1.5.5 Summary

We have numerically modeled the formation of the Firsoff crater to define which rheo-

logical structure of the Martian upper crust is more likely in Arabia Terra and if there

are local conditions that favour the formation of central bulges. According to hydrocode

modelling outputs resulted two possible realistic scenarios that fit correctly the pristine

crater morphology (Garvin et al., 2003). The first compositional scenario involves a

basaltic crust with a fractured megaregolith whose thickness must be at least 20 km,

in agreement with the fact that Arabia Terra is heavily cratered and the damage below

the impact extends for ten of kilometers; in this case the crater depth is well reproduced

while the central peak is absent. The second scenario involves the presence of an intact

anorthosite layer below the fractured megaregolith (with a thickness of 8 km) that well

reproduces the pristine crater profile, in particular the crater depth while the central

peak is slightly higher. As previusly explained, the anorthosite hypothesis is consistent

with the recent discover of anorthosite patches in Martian highlands, nearby Arabia

Terra (Carter & Poulet, 2013). Moreover, Garvin’s statistic is target independent since

the morphometric relationships were defined on the basis of MOLA topographic profile

and different compositional scenarios should be considered.

Therefore, Firsoff numerical modelling can give an overall idea of the behaviour of

other similar craters formation that are concentrated in Arabia Terra, such as Crommelin

crater. In addition, being a representative sample of the majority of Arabia Terra major

craters displaying the peculiar bulge, it can provide useful data to build up hypotheses

on the entity of geological processes that led to this feature’s formation.



Chapter 2

Blocks formation through

energetic events on a changeable

surface: the case of comet 67P

In this chapter we investigate the surface of the comet Churyumov-Gerasimenko 67P to

analyse its mutable nature through the images acquired by the OSIRIS instrument, the

camera on board the ROSETTA spacecraft. In particular, we focus our attention on

the possible energetic events that lead to the formation of boulders, i.e. blocks that are

ubiquitous on the comet surface: we underline that the “boulder” terminology is not to

imply any structural similarity to the meant boulders normally seen on Earth. Previous

works performed on asteroids and planets link the boulders origin with impacts, but for

the comet’s case this process is not sufficient to explain their presence. Hence, we invoke

other possible energetic formation processes that could generate these features, such

as sublimation, fragmentation, outbursts and gravitational falls. Firstly, we present the

size-frequency distribution of boulders on 67P, which was obtained analysing their spatial

distribution and performing global and localized studies (Pajola et al., 2015). Then, in

order to understand if these energetic processes occur equally on different spatial scale

(m, cm and mm), we analyse higher resolution images from OSIRIS and CIVA (the

panoramic cameras on board the lander Philae) instruments for a specific target region.

Then, we study the Abydos site, i.e. the location where Philae is supposed to have come

to rest, describing the blocks present on different spatial scale images (m-boulders on

OSIRIS images and cm-pebbles on CIVA ones) to understand if they are formed by the

same energetic process and if there is a possible correlation between blocks of different

dimension.
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2.1 Rosetta

Rosetta is a planetary cornerstone mission in ESA’s Horizon 2020 long-term program

which was successfully launched on 2 March 2004. This mission is currently studying its

main target, the Jupiter-family comet 67P/Churyumov-Gerasimenko (hereafter 67P),

with a combination of remote sensing and in situ measurements. During the cruise

phase, Rosetta has observed asteroid 2867 Steins, in September 2008, and asteroid 21

Lutetia, in July 2010, secondary objective of the mission. From these two asteroids

flybys, Rosetta obtained a wealth of high-quality scientific data, that lead to the high-

resolution analysis of the surfaces, craters, densities and mineralogical composition (e.g.

Keller et al., 2010; Sierks et al., 2011). The Rosetta spacecraft is constituted by two

parts: the orbiter that has 12 scientific instruments, and the lander PHILAE which has

9 scientific experiments. All instruments are summarized in Table 2.1 and Table 2.2,

respectively.

Rosetta arrived at the comet on 6 August 2014 following a 10-year journey through

the Solar System. Between August and November 2014, the spacecraft orbited the comet

and gathered data to characterise the nucleus and its environment. On 12 November

2014, Rosetta’s lander Philae was deployed to the surface. The Rosetta orbiter tracked

the comet through perihelion (August 2015), examining its behaviour before, during

and after this event. Rosetta is carrying out a global characterisation of the comet, a

detailed study of the physical evolution of cometary activity and of dynamic properties,

surface morphology and chemical composition of this primitive body, providing the most

detailed study of a comet ever attempted. The nominal end of the mission was scheduled

for December 2015, but Rosetta mission has been extended until September 2016. Figure

2.1 displays an illustration of the Rosetta spacecraft and its scientific equipments, while

Figure 2.2 is a representation of the instruments onboard the lander Philae.

2.1.1 OSIRIS

OSIRIS, the Optical, Spectroscopic, and Infrared Remote Imaging System (Keller et al.,

2007) is the scientific camera system onboard Rosetta.

OSIRIS was built by an international collaboration of scientific institutions from six

different European countries, all designing, building, integrating or supporting different

parts of the camera system. The instrument comprises a Narrow Angle Camera (NAC)

and a Wide Angle Camera (WAC) with a field of view (FOV) of 2.20◦ × 2.22◦ and

11.35◦ × 12.11◦, respectively. The NAC has a high angular resolution of 18.6 µrad/px

resulting in a spatial resolution of 1.86 cm/px at 1 km distance, while the WAC has a

lower angular resolution than the NAC, 101 µrad/px resulting in a spatial resolution

of 10.1 cm/px at 1 km distance. Both cameras use a 2048 × 2048 pixels backside

illuminated CCD detector with a UV optimised anti-reflection coating. The NAC is
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Figure 2.1: Payload instruments onboard Rosetta spacecraft.

Figure 2.2: Payload instruments onboard Philae lander.
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Instrument Scientific Goal

ALICE UV imaging spectrograph, analysing gases in the coma and tail of the comet,
detecting water, carbon monoxide, and carbon dioxide.

CONSERT COmet Nucleus Sounding Experiment by Radiowave Transmission, examining
the nucleus interior by analysing reflected radio wave transmitted between the
spacecraft and the lander.

COSIMA Secondary Ion Mass Analyser, investigating the chemical compositions of the
cometary dust.

GIADA Grain Impact Analyser and Dust Accumulator, measuring the number, mass,
momentum and velocity distribution of dust grains.

MIDAS Micro Imaging Dust Analysis System, examining the dust surrounding the comet
and delivering details of particle population, size, shape and volume.

MIRO Microwave Instrument of the Rosetta Orbiter, verifying the abundance of
molecules in the cometary nucleus and essential isotope ratios, determining the
nucleus surface and subsurface temperatures and measuring the surface outgassing
rate.

OSIRIS Optical, Spectroscopic and Infrared Remote Imaging System, Multi-Color camera
system with a Narrow and a Wide Angle Camera to take high resolution and
wide-angle images of the nucleus.

ROSINA Rosetta Orbiter Spectrometer for Ion and Neutral species Analysis, specifying
the composition, temperature and the bulk velocity of the gas in the comet’s
atmosphere and ionosphere.

RPC Rosetta Plasma Consortium, monitoring entirely the plasma environment around
the comet.

RSI Radio Science Investigation, using the frequency shifts of the spacecraft’s radio
signals to calculate the mass and gravity.

VIRTIS Visible and Infrared Thermal Imaging Spectrometer, recording in details the tem-
perature of the nucleus’ surface, monitoring the comet gases, constraining the
physical characteristics of the coma.

Table 2.1: Scientific instruments on board the Rosetta orbiter.
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Instrument Scientific Goal

APXS Alpha Particle, X-ray spectrometer, measuring the elemental composition of the
surface material.

CIVA Comet nucleus Infrared and Visible Analyser panoramic and microscopic imaging
system to characterise the samples and record the IR spectra of samples.

CONSERT The lander PHILAE equipped with the CONSERT instrument which has the same
task as the one on the Rosetta orbiter.

COSAC COmetary SAmpling and Composition experiment, a gas analyser to detect or-
ganic molecules in the comet materials.

MUPUS MUlti PUrpose Sensor for surface and subsurface science, measuring the thermal
and mechanical properties of the surface layers.

ROLIS ROsetta Lander Imaging System, a downward looking camera for exploring and
photographing the landing site before and after Philae has landed.

ROMAP ROsetta lander MAgnetometer and Plasma monitor, exploring the magnetic field
and plasma of the landing site, evaluating the interaction between the landing site
environment and the solar wind.

SESAME Electrical, acoustic and dust impact monitoring at the surface.
SD-2 Drill, Sampler and Distribution (SD2) subsystem, extracting the soil of comet

nucleus at discrete depths.
PTOLEMY Gas chromatograph and isotope ratio mass spectrometer, studying the comet

surface and subsurface from mass spectroscopy point of view.

Table 2.2: Scientific instruments on board the lander Philae
.

Figure 2.3: Comet 67P/Churyumov-Gerasimenko by Rosetta’s OSIRIS narrow-angle camera
on 3 August 2014 from a distance of 285 km. The image resolution is 5.3 metres. Image Credit:
ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
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equipped with 11 filters covering a wavelength range of 250 - 1000 nm, while the WAC

has 14 filters covering a range of 240 - 720 nm. The camera system has been designated

to focus on the detailed exploration of nucleus surface as well as the dust ejection and

gas emission processes near the nucleus. The main task of the NAC is to perform high

resolution imaging of the comet’s nucleus to investigate the structure and mineralogy

of the surface and the dust ejection process. The main task of the WAC is to image

the three-dimensional flow field of dust and gas in the comet’s coma. In Figure 2.3 it is

shown an image of the comet 67P acquired by OSIRIS NAC instrument.

2.1.2 Philae - CIVA

CIVA, Comet Infrared and Visible Analyser, is an integrated set of imaging instruments,

designed to characterise the 360◦ panorama (CIVA-P) as seen from the Rosetta Lander

Philae, and to study surface and subsurface samples (CIVA-M) (Bibring et al., 2007).

CIVA-P is a panoramic stereo camera, while CIVA-M is an optical microscope coupled to

a near infrared microscopic hyperspectral imager. Here, we focus on the set of CIVA-P

images acquired in situ to characterise the surface materials surrounding the lander on

comet 67P, reporting a brief description of the instrument from Bibring et al. (2007).

CIVA-P is a set of seven identical miniaturized microcameras, implemented as five single

cameras and one stereoscopic pair of two coaligned cameras with their optical axes

separated by 10 cm; CIVA-P acquires a ∼ 360◦ panoramic field of view (FOV) by six

adjacent FOVs of 60◦ each. The angular sampling of CIVA-P is ∼ 1.02 mrad, which

corresponds to 1 mm size feature at the distance of the landing legs, 1 m, and up to a

few cm at the local horizon. The spectral response of each broadband camera extends

from 400 to 1100 nm. After the descent of Philae, images were collected twice: just after

touchdown, and after Philae finally came to rest, where it acquired a full panorama.

2.2 Boulders formation on comet 67P

The nucleus, its activity and the surface morphology of 67P, as observed by OSIRIS

cameras, are described in Sierks et al. (2015) and in Thomas et al. (2015). Between

the different morphological features characterising the surface of the comet, we focus

our attention on boulders, i.e. large blocks that are ubiquitous on the surface of the

comet (head, neck and body). This is the first time that boulders are observed on a

cometary nucleus thanks to the high resolution images acquired by OSIRIS with respect

to previous observations.

We consider multiple energetic processes to explain the boulders formation, such as

thermal stress fragmentation coupled with activity and jets, pit formation, gravitational

phenomena, and possibly impacts. Moreover, if the gas drag force acting on the surface

is similar to the gravity, the boulders seen at a given point of the surface might have
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been lifted from a different area and been redeposited on the surface, possibly undergoing

fragmentation after landing.

We analyse the spatial distribution of boulders located on the surface of 67P, ob-

taining the first ever size-frequency distribution of a comet, which is derived using the

Rosetta/OSIRIS cameras images of the nucleus. Therefore, we derive the global size

distribution of boulders measured on the illuminated regions of the nucleus, which cor-

responds to the Northern hemisphere and covers ∼ 70% of the total surface. In addition,

we investigate the different distributions on localized areas of the comet discussing the

possible boulders formation processes, that are summarized below (from Pajola et al.

(2015)).

• Fragmentation and sublimation. Cracks and fractures on the cometary surface

and also on single boulders (Figure 2.4) might be due to rapidly mutable insolation

conditions and associated thermal stresses, in addition to outgassing of volatiles

and dust from active areas (Sierks et al., 2015; Thomas et al., 2015). Moreover,

some few meter-sized boulders, showing highly reflective patches with a distinctly

bluer spectrum on their surfaces, could be made of H2O ice (Pommerol et al.,

2015) and so being affected by sublimation (and hence fracturing while 67P ap-

proaches the Sun). Therefore, we expect that fragmentation by thermal stress and

sublimation can justify the presence of meter-sized boulders all over the surface

of 67P, also considering that they are composed by dust components mixed with

different super-volatile material. Fragmentation by thermal stress and sublimation

activity can be two of the main causes that mutually increase the population of

smaller boulders with respect to larger boulders and eliminate the smaller blocks

by reducing them into dust or grains. The first effect results in a steepening of the

size-frequency slope, while the second tends to make the slope fainter.

• Outburst and gravitational falls. The presence of niches and terraces on

different areas of the comet (see, e.g., the Seth region studied in Massironi et al.

(2015), Figure 2.5) with localized debris accumulation at their bases suggest that

gravitational phenomena induced by differential erosion could generate fields of

boulders. In particular, a differential erosion by sublimation might affect strata

with different content of material prone to volatilization (more erodible strata are

the ones richer in volatiles).

• Impacts. Previous studies of boulders, which are found on asteroids and plan-

ets, are usually related to impacts because they represent the largest fragments

excavated by the collision which do not reach the escape velocity after the im-

pact. Blocks on asteroids have been described in detail by Lee et al. (1986) for

Phobos and Deimos, by Geissler et al. (1996) and Lee et al. (1996) for (243) Ida,

by Thomas et al. (2001) for (433) Eros, by Küppers et al. (2012) for (21) Lutetia,
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Figure 2.4: A) OSIRIS NAC image taken on 29 November 2014 at a distance of 16.94 km from
the surface of 67P. The scale of the image is 0.32 m/px. This area is located in the Imhotep
region (Thomas et al., 2015); I is a 30 m boulder crossed by multiple fractures, i.e., a good
candidate for future fragmentation. II and III show examples of split materials located around a
18 m boulder (II) and a 34 m boulder (III). B) OSIRIS NAC image taken on 22 October 2014 at
a distance of 8.1 km from the surface of 67P. The resolution of the image is 0.15 m/px. IV and
V are 10 m boulders with multiple fractures surrounded by split material. Image from Pajola
et al. (2015).

Figure 2.5: A) subframe of a NAC image taken on 6 August 2014. Pits in the Seth region are
indicated with white arrows together with the corresponding gravitational falls. B) subframe of
a NAC image taken on 6 August 2014 showing a subsection of the Hatmehit depression. At its
center, the boulders representative of the remnant part of the past surface area are indicated with
the white circle. At the margin of this depression (white arrows) there are deposits related to
gravitational phenomena and differential regressive erosion by sublimation. Image from Pajola
et al. (2015).
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and by Michikami et al. (2008) for (25143) Itokawa. In 67P comet case, the im-

pact formation process is not sufficient to explain the presence of boulders since

current collision rates for comets are very low (see Belton et al. (2013); Vincent

et al. (2014)) and would imply that most blocks were created very early in the his-

tory of the comet, but it is very unlikely because of the activity of comet surface

and because of comet lifetimes (Kresak, 1981; Levison & Duncan, 1994). Hence,

it is reasonable to discard the impact origin for the boulders, and invoke other

processes.

• Lifting boulders. Another possibility to explain the presence of isolated boulders

in some areas of Ma’at, Seth, Ash and Imhotep is that, once formed they can be

fragmented and lifted up by cometary activity (Pommerol et al., 2015; Thomas

et al., 2015). Their flight would possibly terminate because of a change in the gas

density or velocity and they might land in a different location with respect to the

cradle where they formed.

2.2.1 Dataset and Methodology

We used images acquired by the OSIRIS Narrow Angle Camera (NAC) on 5 and 6

August 2014, shown in Table 2.3, when Rosetta spacecraft completed its rendez-vous

with the comet 67P and entered the comet orbit. The dataset, presented in Table 2.3,

imaged the comet in full frame and covers the comet nucleus during an entire rotation,

allowing a global study of the surface of the comet and obtaining a global, as well as

localized, boulders size frequency distributions (Pajola et al., 2015). In order to obtain

an homogeneous dataset and considering the scale of these images (2.44 - 2.03 m/px),

we decided to consider boulders ≥ 7 m, which is a value above the three pixel sampling

which minimizes the likelihood of misidentifications (Nyquist, 1928). The value of 7 m

derives from the lowest resolution of the image obtained on 5 August at 19:43 UT, even

if we were able to identify also smaller features (two pixels in diameter, ∼ 4 - 5 m) from

their elongated shadow since the images were taken with an average phase angle of 50◦.

We define as “boulder” a positive relief detectable in different images with the constant

presence of an elongated shadow (if the phase angle is greater than 0◦) whose extension

depends on the illumination geometry, in addition, a boulder seems to be “detached”

from the ground where it stands. These features were identified and manually extracted

from the datasets with the software ArcGIS, hence, we measured their position on the

surface of the comet, and assuming their shapes to be circumcircles, we derived their

maximum length, that is the diameter, and the corresponding area (Figure 2.6). We

got the cumulative size-frequency distribution per km2 using the corresponding area

calculated from the 3D shape model of 67P (Preusker et al., 2015).
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Day UT Distance from 67P center (km) Scale (m/px)

05-08-2014 19:43 131.5 2.4
05-08-2014 21:43 126.9 2.4
05-08-2014 23:20 123.5 2.3
06-08-2014 01:20 119.3 2.2
06-08-2014 02:20 117.2 2.2
06-08-2014 04:20 113.4 2.1
06-08-2014 06:20 109.8 2.0

Table 2.3: The OSIRIS NAC images used in the analysis (from Pajola et al. (2015)).

Figure 2.6: Example of the methodology used to identify the boulders on the surface of comet
67P. A) Subframe of a NAC image taken on 6 August 2014 at a distance of 119.3 km from the
surface of 67P. The scale of the image is 2.2 m/px. B) the same image with the detected boulders
indicated in yellow circles are presented. Image from Pajola et al. (2015)

2.2.2 Global distribution and interpretation

Boulders are ubiquitous on the head, neck, and the body of 67P. The global statistics we

performed on the surface of the comet consists of 4976 boulders, whose number reduces

to 3546 when we take into consideration only the boulders with diameters larger than 7

m. In Figure 2.7, the 67P global distribution of the boulders and the resulting statistic

are presented. We got the cumulative size-frequency distribution of boulders over the

entire illuminated side of the comet nucleus considering the 3D surface of 67P which

is 36.4 km2 (Sierks et al., 2015), finding a power-index value equal to -3.6 +0.2/-0.3.

We then performed the same analysis by considering the body, the head and the neck

of the comet as separate regions (Figure 2.8), in order to understand if there are any

size-frequency differences between them (Pajola et al., 2015). The main results are

summarized and reported in Table 2.4.

Despite the fact that the two lobes of 67P seem to be constituted by the same material,

the small lobe shows a more pendent global size-frequency distribution with respect to

the main one, possibly due to a more pervasive fracturing. Therefore, the power slope
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Figure 2.7: On the left the spatial distribution of the ≥ 7 m boulders on the illuminated side
of 67P (75% of the total surface, equivalent to 36.4 km2), derived from NAC images presented
in Table 2.3. On the right the cumulative size-frequency distribution of boulders ≥ 7 m per km2

over the illuminated surface of 67P. The bin size is 1 m and vertical error bars indicate the root
of the cumulative number of counting boulders (as from Michikami et al. (2008)). The fitting
regression line gives a power-law index of -3.6 +0.2/-0.3. Image from Pajola et al. (2015).



66 Block formation processes on 67P

Figure 2.8: Cumulative size-frequency distribution of ≥ 7 m boulders per km2 on the body,
head, and neck. The fitting regression lines gives a power law index of -3.5 +0.2/-0.3, -4.0
+0.3/-0.2 and -2.2 +0.2/-0.2 for body, head and neck respectively. Image from Pajola et al.
(2015)

Name Area3D

(km2)
Tot # boulders ≥ 7
m

# 7 m boulders per
km2

Power-
index

+ -

All 36.4 3546 97 -3.6 0.2 0.3
Body 22.5 2218 99 -3.5 0.2 0.3
Head 10.8 1115 103 -4.0 0.3 0.2
Neck 3.1 213 69 -2.2 0.2 0.2

Table 2.4: Names of the different regions, their area from the 3D shape model, the total number
and surface density of boulders ≥ 7 m, power-law index, and associated error.

of boulders distribution is a measure of the degree of fracturing: higher values being

related to more pervasive fracturing (i.e. more small-size boulders with respect to the

larger ones). From this analysis, we can say that similar processes occurring on the

surface should produce a more pendent global size-frequency distribution on the head,

with respect to the body on the basis of the pre-existing structural framework and

fracture density (Pajola et al., 2015).

On the other hand the neck shows a power-slope distribution, i.e. -2.2 +0.2/-0.2,

that is different from those of body and head, suggesting that the boulder field located

on the neck area is the result of blocks falling from the contiguous Hathor cliff.

2.2.3 Size-frequency distribution of localised areas and interpretation

We then derived the size-frequency distribution per km2 of localized areas on 67P as-

suming the naming convention used to identify the regions on 67P of Thomas et al.
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(2015) (Figure 2.9). In particular for the main body we have chosen three areas rep-

resentative of the layered/niches region of Seth and Ash (region 1) (Massironi et al.,

2015), one depression on Ash, a smooth region within Imhothep (Auger et al., 2015) and

a layered region in Khepry (region 2). On the head, besides the blocks distinguishable

at the Hathor layered cliff, we focused on the talus of the Nut and Hatmehit depressions

(El-Maarry, M. R. et al., 2015; La Forgia et al., 2015). We derived the cumulative size-

frequency distribution per km2 using the corresponding area computed by the 3D shape

model of 67P for each different morphological area. The purpose of this analysis is to

understand how the size-frequency distribution slopes differ when considering specific

geomorphological contexts and possible different origins of boulders deposits.

Figure 2.9: Regional definitions and nomenclature based on large-scale unit boundaries. Image
from Thomas et al. (2015)

In Table 2.5 we reported all power-index values obtained on the specific locations of

the comet 67P, dividing them in the following way (from Pajola et al. (2015)):

• Body 1 A consists of a rough layered region with niches and cliffs and a layered

terrain mainly dominated by terraces covered by smooth deposits. The power-

law index, equal to -4.2, is lower respect to the specific pit (B and C) locations;

this could be justified by the contribution of boulders produced by gravitational

processes not necessarily accompanied by jet activity and sublimation processes;

• Pit regions (i.e., body 1 B, body 1 C and body 2 C) show an higher power-law
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index (from -5.8 to -6.5) and they are representative of a pervasive fragmentation,

probably caused by related jet activity and active sublimation. The origin of these

pits can be explained by roof collapses induced by sublimation of sub-surface layers,

possibly accompanied by short-lived mini-outbursts (Vincent et al., 2015). After

formation, such pits can expand in diameter via sublimation and retreat of their

enclosing walls. Sublimation and gravitational falls likely control the walls retreat

which can eventually collapse. The final result is that the enlarged to collapsed

pit floors are covered by dust and debris falling from the enclosing walls. The

highest fragmentation we see on these areas can be then related to the fact that

such boulders formed during the collapse, but afterwards local activity and jets,

that likely accompanied the boulders’ genesis too, kept working locally, further

fragmenting the remains and hence, steepening the power-law indices. The pit

region located on the body 2 presents similar behaviour of the two pits present

on Seth, therefore it is possible that this area has been affected by the same

mechanism;

• Two depressions covered by boulder deposits, i.e. Body 2 A and Head B, where

possibly an extended collapse occurred in the past, leaving the big boulders as

“remnants” of the event. Both regions present a size-frequency distribution di-

chotomy that can be explained by two different deposits with boulders, i.e. talus

deposit at the depression margins and smooth terrain with boulders. Smaller mate-

rial at the foot of the scarps surrounding such depressions can be interpreted as the

down-fallen remains of the outgassing, sublimation activities occurring at the walls,

whereas deposits with boulders located at the center of the depression are likely

related to the former genesis of the depression through roof-collapse phase, hence

they are older and not renovated. In both cases two power indeces are present, a

first trend ranging between -3.6 and -3.4 and a second trend with a slope of -1.0.

The fact that older deposits show lower slopes than the fresher, repeatedly renewed

ones, is an important hint that fragmentation of bigger boulders is dominant in

an early stage of the deposit generation and development, whereas disappearance

through sublimation of smaller boulders become much more relevant in later stages

and longer periods;

• two regions, i.e. Body 2 B and Head A, where gravitational taluses are present,

showing a similar power-indeces ranging between -3.8 and -3.9. The first area is

located at the boundary between Kephry and Ash, while the second is located on

Nut. It is worth noting that this distribution is very similar to the steeper trends

of the talus located at the two depressed region.

By comparing the cumulative size-frequency distributions of akin geomorphological set-

tings, we derive similar power-index values. This suggest that, despite the selected loca-
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Name Geographical
unit

Area3D

(km2)
# 7 m boul-
ders per km2

Power in-
dex

+ -

Body1 A Seth/Ash 4.96 100 -4.2 0.7 1.1
Body1 B Seth 0.10 950 -6.5 0.3 0.4
Body1 C Seth 0.08 688 -5.8 0.3 0.5
Body2 A trend 1 Imhotep 0.19 485 -3.6 0.1 0.2
Body2 A trend 2 Imhotep -1.0 0.1 0.1
Body2 B Khepry/Ash 0.29 385 -3.8 0.1 0.2
Body2 C Ash 0.16 769 -6.4 0.3 0.4
Head A Nut 0.17 424 -3.9 0.3 0.2
Head B trend 1 Hatmehit 0.49 350 -3.4 0.2 0.1
Head B trend 2 Hatmehit -1.0 0.1 0.2

Table 2.5: Power indices of the slope of the cumulative boulder size-distribution per km2 of
localized areas on comet 67P.

tions are on different and often opposite sides of the comet, similar sublimation/activity

processes, pit formation or collapses, as well as thermal stresses/fracturing events widely

occurred on several areas of the comet, shaping its surface into the appearance we see

today.

Therefore, we classified the boulder formation and evolution as below (from Pajola

et al. (2015)):

1. collapses/pit formation and creation of depressions with subsequent escape of high-

pressure volatiles and consequent high fracturing are characterised by power-law

indeces of about -5 to -6.5;

2. gravitational events triggered by sublimation and/or thermal fracturing causing

regressive erosion present power-law indeces of about -3.5 to -4;

3. evolution of the original material formed during both the collapsing or the gravi-

tational event, not particularly renewed, or present in areas where continuous and

high sublimation occurred or is still occurring show power-law indeces of about -1

to -2.
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2.3 Abydos site

By using OSIRIS NAC and CIVA images, we analyse the distribution of boulders and

pebbles located on the Abydos region, where Philae is expected to be. The distribution

comparison is relevant in order to correlate and understand if the same energetic for-

mation processes occur equally on different scales on the comet (m, cm and mm). In

fact, by means of different resolution images, we obtained several size-frequency distri-

bution for: (i) boulders larger than 7 m from the study reported in Pajola et al. (2015),

(ii) boulders up to 1 m from higher resolution images used to analyse the Abydos site

(Lucchetti et al., 2016), (iii) pebbles (mm-scale structures) visible on CIVA images.

Before presenting the boulders analysis, we summarize below the Philae descent and

the identification of its plausible location, describing its geological context (from Luc-

chetti et al. (2016)). Philae lander was delivered on the nucleus on 12 November 2014,

when the comet was at 3.0 AU from the Sun and first touched down at 15:34 UT at the

selected Agilkia “J” landing site on the head of the nucleus of 67P failing to anchor to

the surface. Then, it bounced three times for an additional two-hour flight (Biele et al.,

2015) before finally landing at a site later named Abydos, about 1 km away from the first

touchdown. During the lander descent the comparison between high resolution images

acquired by ROLIS (ROsetta Lander Imaging System) on board Philae (Mottola et al.,

2007; Mottola et al., 2015) with those obtained by OSIRIS (Optical, Spectroscopic, and

Infrared Remote Imaging System, Keller et al., 2007) allowed the identification of the

first touchdown point. In addition, Philae’s ROMAP (Rosetta Lander Magnetometer

and Plasma Monitor, Auster et al., 2007) provided precise timing of the various con-

tact points through magnetic field measurements and subsequently identifying the final

settling of the lander in Abydos site at 17:32 UT (Heinisch et al., 2015). During the

nearly 57 hours of prime Philae mission the CIVA camera (Comet Infrared and Visible

Analyser, Bibring et al., 2007) took images providing a panorama of the final landing site

revealing a rough terrain dominated by agglomerates of consolidated materials similar

to cm-sized pebbles (Bibring et al., 2015; Poulet et al., 2015). After Philae exhausted its

remaining power on 15 November 2014, a huge multi-instrument attempt was performed

in order to find the lander exact location. Thanks to CONSERT experiment (Comet

Nucleus Sounding Experiment by Radio wave Transmission, Kofman et al., 2007), it

was possible to indirectly identify the location of the lander within an ellipse of 16 x 160

meters in size by using radio signals sent between Philae and Rosetta. This ellipse is

located just outside the rim of the Hatmehit depression, but it could be refined because

it strongly depends on the assumed shape model of the comet. Afterwards, the compar-

ison between OSIRIS Narrow Angle Camera (NAC) images taken before and after the

landing allowed the possible identification of Philae on images acquired in mid-December

2014 at a distance of approximately 20 km (ESA Rosetta blog, 2015; Lamy et al., 2015).

The putative Philae’s position was reported as a few bright pixels on OSIRIS NAC
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images acquired in mid-December 2014, at very close proximity to the ellipse derived

from CONSERT instrument (ESA Rosetta blog, 2015). This identification was found

after a comparison with an image taken before the landing with similar geometric con-

ditions. Despite the different spatial resolution, all topographic details match in both

images except for one bright spot located on the post-landing image (Lamy et al., 2015).

Some bright pixels at the same location were also seen on another OSIRIS NAC image

taken on 6 December 2014 at 10:52:53 UT (Figure 2.10A, top panel). The image was

acquired using the Orange filter (649.2 nm) with a phase angle of about 90◦ and at a

distance of approximately 20 km above the nucleus surface, resulting in a spatial scale

of 38.7 cm/pixel. Even if Philae is expected to be in the shadowed part, we chose this

image because its better viewing geometry allows a more accurate analysis of the area

surrounding the lander.

Figure 2.10: [A] OSIRIS NAC image acquired on 6 December 2014 at 10:52:53 UT at an
average phase angle of 90◦ (top panel) with a close up of the Abydos site (bottom). The region
surrounding the putative landing site of Philae is identified here by a yellow circle, while the
Hatmehit depression is outlined in yellow on the top panel. [B] The geomorphological map iden-
tifying the main geological units, produced on the image shown on the top panel of Figure 2.10A,
is displayed at the top panel with the close up of the Abydos site showing both geomorphological
units and linear features (bottom panel). [C] Gravitational slope map of the image obtained
using the 3D shape model, derived with the the Stereo-Photoclinometry (SPC) technique, and
the gravitational potential model derived assuming an homogeneous nucleus and accounting for
the centrifugal force due to the nucleus rotation. Image from Lucchetti et al. (2016).

Geomorphological analysis

In Figure 2.10 the geomorphological map of the Abydos site and its close surroundings

is presented. The site where Philae came to rest is located on the small lobe of 67P,
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next to the Hatmehit depression (Thomas et al., 2015). We made use of the image’s

high spatial resolution to identify distinct geomorphological units:

1. on the Hatmehit depression, we confirmed the results of La Forgia et al. (2015)

regarding the distinction between the gravitational accumulation deposits (green

unit, Figure 2.10B) and the fine material covering the layered consolidated terrain

(pink unit, Figure 2.10B);

2. the surrounding structure of Hatmehit is characterised by the presence of out-

cropping material that is often layered as well as fractured (mapped as blue unit,

Figure 2.10B). The fractures are typically 30 - 50 m-long, roughy parallel to each

other, and show a preferred propagation orientation roughly perpendicular to the

rim of Hatmehit. This fracturing pattern is similar to patterns observed in the

neighboring Bastet region (Thomas et al., 2015; El-Maarry et al., 2015) but on a

smaller scale. Fractures are ubiquitous on the surface of the comet, particularly in

consolidated regions (El-Maarry et al., 2015). Therefore, their presence around the

Abydos site is an indication of a high degree of consolidation in the region whereas

their propagation pattern suggests that they could be linked to the formation of

the Hatmehit depression;

3. the Abydos landing region is a 0.02 km2 unconsolidated talus deposit distinct from

the surrounding blue unit also by the presence of numerous boulders within what

appears unconsolidated material. The suggested Philae landing site location is on

this bouldered deposit, but limited by two outcrops that limit its horizon (Bibring

et al., 2015).

In addition, we analysed the gravitational slopes of the Abydos site in order to de-

scribe the gravitational framework of the region using the 3D shape model of the comet,

which was created on the basis of the entire NAC dataset that has provided multiple

stereo coverage of the cometary surface. For our calculation we have used the shape

model derived with the Stereo-Photoclinometry (SPC) technique (Jorda et al., 2012,

submitted). The gravitational slope is defined as the angle between the local surface

normal pointing inside the nucleus and the gravity vector. The region surrounding the

putative Philae’s position is found in correspondance with high gravitational slope rang-

ing from 20◦ to 50◦, usually associated to collapse due to erosion by sublimation (Figure

2.10C).

2.3.1 Boulders distribution

A large quantity of boulders is present in the Abydos region, specifically on the talus

deposit. The identification of boulders has been performed with the same method ex-

plained previously. We manually identified these features as polygonal shapes deriving
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their maximum length, i.e., the diameter, and the corresponding area. Since the higher

resolution of the image, we decided to identify the boulders as polygons and not as

circumcircles (as in Pajola et al. (2015)). By using the 3D SPC shape model, we geo-

localized each boulder on the surface of the comet in terms of coordinates and distance

(of about ∼ 18 km for each boulder), hence we calculated the exact diameter. In this

Figure 2.11: Left panel shows the spatial distribution of boulders on the Abydos site, where
Philae is identified by a yellow circle. Boulders smaller than 1.7 m, where the boulder size
corresponds to the length calculated from the corresponding area, are in yellow and are not taken
into account in the statistic. The right panel shows the cumulative size-frequency distribution
of boulders larger than 1.7 m identified on the Abydos site. The bin size is 34 cm and vertical
error bars indicate the root of the cumulative number of counting boulders (as from Michikami
et al. (2008)). The fitting regression line gives a power-law index of −4.0 + 0.3/ − 0.4. Image
from Lucchetti et al. (2016).

analysis, we considered boulders larger than 1.7 m, which is a value above the three pixel

sampling which minimizes the likelihood of misidentifications (Nyquist, 1928), even if

we are able to identify also smaller features from their elongated shadow since the image

was taken with a phase angle of 90◦. We did not include boulders smaller than 1.7 m

in the statistical analysis because the slope of the size-frequency distribution naturally

drops off approaching the three pixel detection limit (Mazrouei et al., 2014). The total

numbers of boulders identified in this analysis is 447, 323 of which have diameters larger

than 1.7 m. Figure 2.11 shows the spatial distribution of boulders in the Abydos region.

We obtained the cumulative size-frequency distribution per km2 using the correspond-

ing area (0.02 km2) calculated from the 3D shape model of 67P (Preusker et al., 2015)

through the triangulation of boulder point cloud. We then derived the cumulative size-

frequency distribution of boulders using a constant-size bin of 34 cm (approximately one
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pixel resolution of the OSIRIS NAC image in the Abydos region at a distance of 18 km).

A power law index of -4.0 +0.3/-0.4 is found (Figure 2.11, right). The fitting regression

line used to obtain the power-law index does not consider those points that are equally

cumulatively repeated above 6 m because they represent a poor statistic that has not to

be considered by the fit. This effect has been already observed for bigger boulder sizes

as presented in Pajola et al. (2015) and Michikami et al. (2008).

Interpretation

The resulting power law index of the boulders cumulative size frequency distribution

is correlated with the morphological unit where the boulders are located. This unit is

identified as the talus deposit, shown in Figure 2.10, that has a gravitational source

and it could be interpreted as rockfall material deposit that is originated from erosion,

as supported by high slopes ranging from 20◦ to 50◦. We compared the power law

index obtained in this work (-4.0 +0.3/-0.4) to the results of global and local boulders

distribution of Pajola et al. (2015), reported in subsection 2.2.3. The talus bouldered

deposit under study shows a similar size-frequency distribution of other talus deposits

located on different areas of the comet, as the one located at the boundary between

Khepry and Ash and the one on Nut. Boulders on this type of area are classified

as those correlated with gravitational events triggered by sublimation and/or thermal

fracturing causing regressive erosion. Hence, we can give the same explanation for the

Abydos talus deposit too, since the derived power coefficient (-4.0 +0.3/-0.4) is similar

to the power law index of second type of boulders (power law from -3.5 to -4).

2.3.2 Pebbles distribution

The CIVA cameras onboard Philae provided the first ever in situ images of the surface of

a comet (Bibring et al., 2015). The panorama acquired by CIVA at the landing site on

the 67P comet, the Abydos region, reveals a rough terrain dominated by fractures and

agglomerates of consolidated materials. A quantitative analysis of the microscopic struc-

tures is presented here, in particular we obtained the pebble size-frequency distribution,

which will be compared to the size distribution of boulders surrounding the landing site

(Lucchetti et al., 2016) and of ≥ 7 m sized boulders globally distributed on the comet

(Pajola et al., 2015). Between the images collected by CIVA, we used those acquired

by the camera 3 and camera 4 (hereafter referred to image 3 and image 4), which have

been mosaicked in Figure 2.12 to show the sunlit part of the nucleus surrounding Philae

(at the time the images were acquired).

In image 3, it is identified one Philae foot most likely in contact with the neuclus,

while in image 4, the CONSERT antenna is visible in contact with surface (Figure 2.13).

The dimensions of the Philae foot and CONSERT antenna (5 mm in diameter, 693 mm
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long), apparently in contact with the nucleus, enable us to estimate the distance of this

cometary material, and the scale of the structures we identified (Bibring et al., 2015).

Figure 2.12: Mosaic of CIVA images acquired by cameras 3 and 4 (Bibring et al., 2015).

We have counted 283 and 412 pebbles on images acquired by camera 3 and 4 respec-

tively, as shown in Figure 2.14. We manually identified them with the same method

explained before, i.e deriving their diameter and the corresponding area. The resolution

of the CIVA images and the orientation of the surface are unknown, hence, we can im-

port errors in obtaining the pebbles size-frequency distribution. To solve this problem,

we decided to take into account only pebbles that are in specific parts of the images. In

image 3, there is one Philae foot and from its known dimension we can approximate the

resolution of the image that is valid only for pebbles located on the right bottom part.

On image 4 there is the CONSERT antenna that seems to be in contact with the comet

surface, hence, we can achieve the pixel scale that is valid only for pebbles that are on the

left part of the image. Therefore, we decided to use this set of pebbles, which are 449, to

obtain the pebbles size-frequency distribution using a pixel scale equal to 0.91 mm/px

for image 3 and 0.625 mm/px for image 4. The pebbles considered in this analysis are
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Figure 2.13: On the left the image acquired by camera 3, exhibiting the foot likely in contact
with the nucleus (red circle). On the right the image acquired by camera 4, exhibiting one
CONSERT antenna, in contact with the nucleus (red circle). Images from Bibring et al. (2015).

Figure 2.14: On the left the spatial distribution of the pebbles on the image acquired by camera
3, while on the right the spatial distribution of pebbles present on the image acquired by camera
4.
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shown in Figure 2.15. We consider a bin of 0.625 mm, which is approximately one pixel

resolution of the CIVA image 4, and pebbles larger than 3.2 mm, value above the three

pixel sampling which minimizes the likelihood of misidentifications (Nyquist, 1928). We

did not include pebbles smaller than 3.2 mm because no pebbles were identified with

this dimension.

Respect to previous boulders analysis, we could not find a fitting regression line

capable to fit all data, but we obtain two different behaviour for 2 different size ranges.

For pebbles between 3 and 5 mm, whose number is 92, we obtained a power-index value

of -0.36 +0.01/-0.01, while for 321 pebbles between 5 and 11 mm we obtained a value

of -2.94 +01/-0.2. Regarding pebbles larger than 11 mm, we did not find a power slope

since the statistic is poor (only 32 pebbles with dimension larger than 11 mm). Hence, we

got the cumulative size-frequency distribution for pebbles, which is presented in Figure

2.16.

Figure 2.15: The set of 449 pebbles used is shown in these two images. The choice is determined
by the resolution of the images, that can be approximated by the dimension of the Philae foot
and CONSERT antenna in image 3 and 4 respectively. The pixel scale is equal to 0.91 mm/px
for image 3, while it is 0.625 mm/px for image 4.

Interpretation

The nature of pebbles might be discussed in relation to both endogenic and exogenic

processes that could explain their formation.

The analysis of the Abydos region is helpful for the interpretation of CIVA data anal-

ysis. As stated before, the putative Philae’s position is on a 0.02 km2 bouldered deposit,
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Figure 2.16: The panel shows the cumulative size-frequency distribution of pebbles larger than
3.2 mm identified on the CIVA images. The bin size is 0.625 mm and vertical error bars indicate
the root of the cumulative number of counting boulders (as from Michikami et al. (2008)). The
fitting regression line is not unique, but we can see two different distribution with power indeces
equal to -0.36 +0.01/-0.01 and -2.9+0.1/-0.2, respectively.

limited by two outcrops that are fractured and layered. We recognized fractures in the

Abydos region that suggest a brittle nature of outcropping material and often cut across

strata heads. The evidence of these parallel linear features on the region is in agreement

with the presence of stratification as a dominant structural aspect of 67P throughout

its entire bilobed-shape (Massironi et al., 2015). As explained in Massironi et al. (2015)

the comet stratification shows that the two lobes are the expression of two independent

objects, perhaps formed as pebble-pile planetesimals, that are evidently characterised

by onion-like stratification several hundred meters thick. Hence, the consolidated mate-

rial strata belonging to outcrops can be representative of primordial stratification. This

interpretation can support the hypothesis that Philae could be on primordial terrain.

In this respect, the rough terrain dominated by agglomerates of consolidated materials,

cm-sized pebbles (Poulet et al., 2015), revealed by CIVA image acquired by cameras 3

and 4 (Bibring et al., 2015), could be indicative of the formation process from which the

initial nucleus formed. This view is also supported by numerical simulations in which

small icy bodies in the outer Solar System formed from collapsing clouds of small pebbles

(e.g., see Wahlberg Jansson & Johansen (2014) for a review).

On the other hand, comparing the pebbles size frequency distribution with the boul-

ders analysis on 67P is useful to understand if boulders and pebbles are produced by the

same fragmentation process and, hence, the same mechanisms occur equally at different

scale (m, cm or mm scale). In fact, as recent structures, they could be the result of

current erosive processes that affect the comet (fracturing microscopic process, sublima-
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tion processes, non-escape and redeposition of particles previously emitted from other

regions of the comet). Unfortunately, the power-law index found for both pebbles be-

haviour is not similar to the ones found by previous boulders analysis. In addition, we

have only few images of CIVA and at the moment we do not know if future images will

be downlinked because of the Rosetta orbit. From this consideration we can conclude

that the pebbles could be formed primordially or, on other hand, we still do not know

how fragmentation processes act in detail on the comet surface, and on the formation of

smaller features as pebbles. In this context, a more powerful and detailed study about

fragmentation process must be performed to better understand the pebbles origin and

give the right explanation to the size-frequency distribution we see from the images.

2.4 Summary

In this chapter it is presented the first ever size-frequency boulders distribution per km2

of a comet, 67P/Churyumov-Gerasimenko, using the ESA Rosetta/OSIRIS images of the

nucleus (Pajola et al., 2015). We obtained the size-frequency distribution of boulders

larger than 7 m on the entire illuminated side of the nucles (which corresponds to 70% of

the comet surface at the beginning of August, 2014), as well as the boulders distribution

on the body, head and neck. In addition to this, we derived the size-frequency distribu-

tion per km2 of localized areas on 67P that are located on different and often opposite

sides of the comet. Nevertheless, we obtained similar cumulative size-frequency distribu-

tions when akin geomorphological settings are present, suggesting that similar activity

processes, pit formation or gravitational collapses, as well as thermal fracturing events

likely occurred in different areas of the comet. To understand if these energetic processes

occur equally on different spatial scale of 67P, we performed a detailed analysis of the

Abydos site using higher resolution images. Firstly, through OSIRIS images, we found

that the boulders deposit, around the Philae plausible location is strictly related to the

geomorphological unit where it stands. This is in agreement with what found previously

on low resolution scale, in particular with the results coming from the different localised

areas. Indeed, the derived power coefficient of the Abydos talus deposit (-4.0 +0.3/-0.4)

is similar to the power law index of second type of boulders (power law from -3.5 to -4)

and, hence, can be correlated with gravitational events triggered by sublimation and/or

thermal fracturing causing regressive erosion. In addition, we analyse images coming

from the panorama acquired by CIVA at the landing site to assess the hypothesis that

boulders formation processes explained before occur also on smaller spatial scale. A

quantitative analysis of one ubiquitous microscopic structure (grains that look like peb-

bles) has been presented and the pebble size distribution are reasonably well fitted by

power-laws having different cumulative indeces. As recent structures, they could be the

result of current erosive processes that affect the comet (fracturing microscopic process,
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sublimation processes, non-escape and re-deposition of particles previously emitted from

other regions of the comet), but a more powerful and detailed study about fragmenta-

tion process must be performed. In fact, the power law indeces found for pebbles are

not consistent with those found for boulders and, hence, it is more difficult to classify

the pebbles distribution in the same way of the previous case studies (Abydos site and

localised areas of boulders larger than 7 m). On the other hand, given the consolidated

nature of the pebble agglomerates, a formation in an inhomogeneous granular media

could be however preferred. Indeed, an intriguing possibility is that these particles may

be left over relics of the formation process, as there are several lines of evidence (espe-

cially lack of thermal and aqueous alteration processing as expected if it would be the

collisional relics of larger bodies) that the nucleus could be primordial (Davidsson et al.,

submitted), and not a collisional rubble piles of a large body (Morbidelli & Rickman,

2015).



Chapter 3

Europa

The Jovian satellite Europa was discovered in 1610 by Galileo Galilei and it is the

smallest of the four Galilean moons named in his honor. The space exploration of

Jupiter’s satellite system began with the Pioneer mission. The first close-up view of

Europa was provided by the two Voyager flybys in March and July 1979. A bright

smoothed surface was discovered, crossed by long cracks that implied a crust subject

to tectonic stress. In addition, the lack of impact craters suggested a relatively young

surface (Smith et al., 1979b,a).

Figure 3.1: This image, taken by Solid State Imaging (ISS) on board Galileo Orbiter, shows
two views of the trailing hemisphere of Jupiter’s ice-covered satellite, Europa. The left image
shows the approximate natural color appearance of Europa. The image on the right is a false-
color composite version combining violet, green and infrared images to enhance color differences
in the predominantly water-ice crust of Europa. Image credit: NASA/JPL/DLR.
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New insights about Europa were provided by the Galileo mission, which orbited the

Jupiter system since December 1995 to September 2003. During the Europa flybys,

multiple instruments on board the satellite collected a wealth of data providing a huge

step forward in the knowledge of the satellite. High resolution images data, obtained

with the Solid State Imaging (SSI) system (Belton et al., 1992), confirmed a smooth

surface of the satellite with very few impact craters, whose size frequency distribution

returned an estimation of the surface age equal to 40 - 90 Myr (Bierhaus et al., 2009).

High resolution observations revealed different features on Europa surface such as chaos

regions, large ringed features, lineae, maculae and lenticulae (e.g. Doggett et al., 2009),

as shown in Figure 3.2.

Figure 3.2: Variety of surface features on Europa. Shown here are (a) the impact crater Pwyll,
the youngest large crater on Europa; (b) pull-apart bands; (c) lenticulae; (d) ridge complexes
at high resolution; (e) Conamara Chaos; (f) dark plains material in a topographic low; (g)
very high-resolution image of a cliff, showing evidence of mass wasting; (h) Murias Chaos, a
cryovolcanic feature which appears to have flowed a short distance across the surface; (i) the
Castalia Macula region, in which the northernmost dome contains chaos and is ∼900 m high; (j)
regional view of two very large ridge complexes in the Conamara region; (k) Tyre impact feature,
showing multiple rings; and (l) one of Europa’s ubiquitous ridges, at high resolution. Image from
Pappalardo et al. (2013)

Moreover, the data returned from the Galileo spacecraft suggested the presence of

a subsurface ocean; indeed (i) geological observations provided indirect evidence for a

liquid ocean (e.g. Carr et al., 1998; Pappalardo et al., 1999) and (ii) the observed tectonic
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patterns can be explained by non-synchronous rotation of the interior, which requires a

decoupled crust, i.e. a thin ice shell above a liquid water ocean (Geissler et al., 1998;

Greenberg et al., 2000). In addition, thermal models of the interior suggest that a

portion of the outer icy shell could be liquid today (e.g. Schubert et al., 1986; Spohn &

Schubert, 2003). The tidal heating, caused by the three-body Laplace resonance with

Io and Ganymede, is considered the energy source required to maintain a liquid water

ocean; this possibly compensates the loss due to heat conduction or convection through

the crust (e.g. Cassen et al., 1979). In addition, the detection of an induced magnetic

field is consistent with the presence of a shallow conductive subsurface ocean (Khurana

et al., 1998; Kivelson et al., 2000; Zimmer et al., 2000; Schilling et al., 2007).

Analyses of the radio Doppler data suggest that Europa is differentiated, consisting of

a metallic core, a rocky mantle and a ice-liquid water outer shell (Anderson et al., 1997,

1998). The radius of the metallic core is unknown because of its uncertain composition,

while the thickness of the outer ice-liquid water shell ranges from 80 to 170 km (Sohl

et al., 2002). Gravity data cannot distinguish between the solid ice and liquid water

layers because of their similar densities, but there are estimates of the icy shell thickness

that range between ≤ 1 km (e.g. Carr et al., 1998; Billings & Kattenhorn, 2005) to 20

km (Schenk, 2002). On the other hand, thermal models suggest that the liquid ocean

below the crust should be located at a depth of 30 to 60 km (Hussmann et al., 2002;

Spohn & Schubert, 2003). A detailed review of Europa’s interior and surface properties

is reported in Part II and Part III of Pappalardo et al. (2009).

Europa possesses a tenuous atmosphere too (called exosphere as it is not permanent

and it is not dominated by collisions) which comprises mainly the following populations:

H2O, released mainly through ion sputtering caused by the energetic ions of Jupiter’s

magnetosphere that impact the moon’s surface (Brown et al., 1982; Plainaki et al., 2010,

2012; Cassidy et al., 2013) and secondarily through sublimation (Shematovich et al.,

2005); O2 and H2, both species produced through chemical reactions among different

products of H2O radiolytic decomposition (Johnson, 1990; Shematovich et al., 2005;

Cassidy et al., 2010; Plainaki et al., 2010, 2012, 2013); and some minor species like Na

and K (Brown & Hill, 1996; Brown, 2001; Leblanc et al., 2002, 2005) and H, O, HO2,

and H2O2 (Baragiola, 2003).

A direct measurement of the main atmospheric species has not been performed yet,

since the limited available observations are just proxies of the bulk constituents (e.g.

the OI UV emission can be a proxy for O2). The discovery of an O2 atmosphere was

made by Hall et al. (1995, 1998) using the Hubble Space Telescope (HST) observations

of ultraviolet line emission of atomic oxygen. The ratio of the two observed emission

lines at 1304 Å and 1356 Å was used to identify dissociative excitation of O2 as the

origin of the emissions. Later, the observations of the Ultraviolet Imaging Spectrograph

(UVIS) onboard Cassini confirmed the existence of a tenuous O2 atmosphere during
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Figure 3.3: Schematic of the formation of Europa’s neutral gas environment. Ions (green) and
electrons (red) alter and erode the surface, producing a tenuous atmosphere composed mostly
of O2. H2 and Na (and other trace species) form an extended cloud, whereas H2O freezes upon
contact with the surface. Image from Johnson et al. (2004).

Cassini’s flyby of Jupiter (Hansen et al., 2005). Recent observations with HST have

revealed surpluses of hydrogen Lyman alpha and atomic oxygen emissions above the

moon’s southern hemisphere, that have been interpreted as evidence of transient vapor

water plumes (Roth et al., 2014b). It is worth noting, however, that the plumes have

not been detected afterwards and never confirmed, hence the status is at the current

moment unclear (Roth et al., 2014a).

Nowadays, there are still many uncertainties regarding the issues presented above;

therefore new observations of the icy satellite are required. For this reason, two different

mission are planned for the Europa exploration: (i) the JUICE/ESA mission that will

perform two flybys at Europa and (ii) the Europa/NASA mission that will perform

multiple flybys around the satellite.

In this chapter we focus our attention on the JUICE/ESA mission and, in particular,

on the JANUS visible camera in which we are involved. In the first section we briefly

describe the mission, the instrument and the Europa flyby phase. Then, we present a

simulation of a possible transient plume originating from cryovolcanic events on Europa

whose surface deposit could be detectable by JANUS camera. One of the objectives of

JUICE is to explore for the first time the subsurface in the most recent active regions in

order to understand the exchange processes from the subsurface to the surface and also

to constrain the minimal thickness of the ice shell in the most active regions (ESA, 2014).

In addition, JUICE will search and study present and/or recently active processes by
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considering that their manifestation can be found both on the moon’s surface and in its

atmosphere (plumes) and related ionosphere, as supported by the HST observation. The

study of the transient plumes and their implications on the nature of the moon’s inner

ocean, have as mandatory prerequisite an accurate characterisation of the exospheric

background. For this reason, we performed a detailed study of the Europa’s tenuous

atmosphere loss rates on the basis of update plasma condition in the vicinity of Europa

(Bagenal et al., 2015). This study is inserted into an ISSI international project, with

the following title: “Towards a global unified model of Europa’s exosphere in view of the

JUICE mission” whose one of the main objective is the definition of suitable observation

strategies for the two mentioned future missions in order to discriminate between the

existing exosphere models. Finally, we report a work in progress regarding the estimation

of the icy shell thickness through the application of a fractal method on Europa’s surface

features.

3.1 JUICE mission

The JUICE (JUpiter ICy moons Explorer) spacecraft of the European Space Agency

(ESA) is dedicated to the detailed study of Jupiter and its moons. It was selected by

ESA in May 2012 to be the first L-class mission within the Cosmic Vision Program

2015-2025 and it will provide the most comprehensive exploration to date of the Jovian

system in all its complexity.

The focus of JUICE is to characterise the conditions that may have led to the emer-

gence of habitable environments among the Jovian icy satellites, with special emphasis

on the three ocean-bearing worlds, Ganymede, Europa, and Callisto. Ganymede is iden-

tified for detailed investigation since it provides a natural laboratory for analysis of the

nature, evolution and potential habitability of icy worlds in general, but also because

of the role it plays within the system of Galilean satellites, and its unique magnetic

and plasma interactions with the surrounding Jovian environment. Hence, throughout

the mission JUICE will map the Galilean satellites, observe Jupiter’s atmosphere and

magnetosphere, small moons and the interaction of all four Galilean satellites with the

gas giant planet. The main science objective of JUICE are listed in Table 3.1.

JUICE is planned for launch in September 2022 with an Ariane 5 and will arrive at

Jupiter in July 2030 after an Earth-Venus-Earth-Earth gravity assist strategy and an

interplanetary cruise of 7.6 years. The spacecraft will perform a dozen flybys of Callisto,

the most heavily cratered object in the Solar System, and will fly past Europa twice in

order to make the first measurements of the thickness of its icy crust. JUICE will end

up in orbit around Ganymede, where it will study the moon’s icy surface and internal

structure. JUICE will be set in a polar orbit around Ganymede, becoming the first

spacecraft in history to enter orbit around an icy satellite in the outer solar system. The
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Explore the habitable zone: Ganymede, Europa, and Callisto

Ganymede as a
planetary object and
possible habitat

Characterise the extent of the ocean and its relation to the deeper
interior;
Characterise the ice shell;
Determine global composition, distribution and evolution of surface
materials;
Understand the formation of surface features and search for past
and present activity;
Characterise the local environment and its interaction with the Jo-
vian magnetosphere.

Europa’s recently active
zones

Determine the composition of the non-ice material, especially as
related to habitability;
Search for liquid water under the most active sites;
Study the recently active processes.

Callisto as a remnant of
the early Jovian system

Characterise the outer shells, including the ocean;
Determine the composition of the non-ice material;
Study the past activity.

Explore the Jupiter system as an archetype for gas giants

The Jovian atmosphere
Characterise the atmospheric dynamics and circulation;
Characterise the atmospheric composition and chemistry;
Characterise the atmospheric vertical structure,

The Jovian
magnetosphere

Characterise the magnetosphere as a fast magnetic rotator;
Characterise the magnetosphere as a giant accelerator;
Understand the moons as sources and sinks of magnetospheric
plasma.

The Jovian satellite and
ring systems

Study Io’s activity and surface composition;
Study the main characteristics of rings and small satellites.

Table 3.1: Scientific objectives of JUICE (ESA, 2014).
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Figure 3.4: Artist’s impression of the JUICE spacecraft in the Jovian system. Credit: Artist
M. Carroll.

current nominal end of mission scenario is after 3,5 years from the Jupiter orbit insertion

and involves spacecraft disposition on Ganymede. The JUICE spacecraft will carry a

highly capable suite of ten scientific instruments, including remote sensing and in situ

packages, that are summarized in Table 3.2.

3.1.1 JANUS instrument

JANUS (Jovis, Amorum ac Natorum Undique Scrutator) is the instrument designed

to meet the scientific requirements foreseen for imaging at visible wavelengths aboard

the JUICE mission. JANUS will conduct an in-depth comparative study of Ganymede,

Callisto and Europa, and explore most of the Jovian system and Jupiter itself. The

science objectives of the camera instrument reflect the imaging tasks stated by the

JUICE Science Requirements:

• Characterise Ganymede, Callisto, and Europa as planetary bodies, including their

potential habitability, with special focus on Ganymede; this implies an in-depth

geological study including tectonics, mass wasting, cryovolcanism, impact struc-

tures, crater relaxation history and surface ages, orbit, rotation status and interior,

color characteristics, potential water plumes source;
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Instrument Scientific Goal

Radio Science Experi-
ment (3GM)

Interior state of Ganymede, presence of a deep ocean and other
gravity anomalies. Ganymede and Callisto surface properties. At-
mospheric science at Jupiter, Ganymede, Europa and Callisto, and
Jupiter rings.

Laser Altimeter
(GALA)

Topography and tidal deformation of Ganymede.

Imaging System
(JANUS)

Local-scale geologic processes on Ganymede, Europa, and Callisto;
Io Torus imaging, Jupiter cloud dynamics and structure. Global
morphology of the Ganymede surface. Global to regional scale mor-
phology of the Callisto and Europa surface. Physical and dynamical
properties of minor moons and rings.

Magnetometer (J-
MAG)

Ganymede’s intrinsic magnetic field and its interaction with the
Jovian field. Induced magnetic field as evidence for subsurface ocean
on Ganymede, Europa and Callisto.

Visible-Infrared Hyper-
spectral Imaging Spec-
trometer (MAJIS)

Composition of non-water-ice components on Ganymede, Europa
and Callisto; State and crystallinity of water ice. On Jupiter: track-
ing of tropospheric cloud features, characterisation of minor species,
aerosol properties, hot spots and aurorae.

Particle Package (PEP) Complete plasma composition and distribution in the Jovian
magnetosphere. Interaction between Jovian magnetosphere and
Ganymede, Europa and Callisto. Energetic Neutral Atom imaging
of neutral and plasma tori of Europa and Io, and magnetospheric en-
ergetic particle injections. Composition and structure of exospheres
and ionospheres of the moons, and response to plasma precipitation.

Ice Penetrating Radar
(RIME)

Structure of the Ganymede, Europa and Callisto subsurface; iden-
tify warm ice water “pocket” and structure within the ice shell;
search for ice/water interface.

Radio and Plasma Wave
Instrument (RPWI)

Ganymede: Exosphere and magnetosphere; Callisto and Europa:
Induced magnetic field and plasma environment; Jovian magneto-
sphere and satellite interactions.

Submillimetre Wave In-
strument (SWI)

Dynamics of Jupiter’s stratosphere; Vertical profiles of wind speed
and temperature; Composition and structure of exospheres of
Ganymede, Europa and Callisto.

Ultraviolet Imaging
Spectrograph (UVS)

Composition, structure and dynamics of the atmospheres of
Ganymede, Europa, Callisto and Jupiter and their interactions with
the Jovian magnetosphere and plasma tori; search for water vapour
plumes/geysers.

Table 3.2: JUICE mission payload.
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• Characterise and study the physical properties of other satellites of the Jupiter

system, including Io, the irregular and inner satellites;

• Study Jupiter’s troposphere, imaging of the active dynamical processes, cloud sys-

tems, waves, vortices, and other instabilities, determining the vertical cloud struc-

ture within discrete features, and detecting lightning;

• Observe Jupiter’s stratospheric aerosol variability due to vigorous water meteorol-

ogy and disturbances from large vortices, such as the Great Red Spot;

• Investigate Jupiter’s upper atmosphere by imaging auroral activity and particle

precipitation in the form of polar hazes.

• Contribute to the study of the interaction between the Jovian magnetosphere and

the bodies embedded within it;

• Perform a physical characterisation of the ring system.

The long trade-off between different design solutions, performed by the JANUS team in

order to satisfy all JUICE mission’s scientific requirements and to take into account the

new selected nominal detector, has led to the following architectural choices:

• a catoptric telescope with excellent optical quality is coupled with a CMOS detec-

tor, avoiding any scanning mechanism; no mechanisms are needed or implemented

for yaw steering compensation;

• a fine tuning of instrument parameters allows us to have an instrument designed

to perform low, medium and high-resolution imaging on different targets in the

Jupiter system taking advantage of the complex mission design;

• instrument operations are flexible enough to optimize the acquisition parameters

with respect to the many different observation requirements and conditions that

JANUS will face. The instrument design will allow us to adjust the resolution

through binning, the field of view through windowing, the signal levels and SNR

through integration time, the instrument calibration parameters through in-flight

calibration and data pre-processing;

• cold redundancy is implemented for all critical electronic parts;

• use of broad-band and narrow-band filters is allowed by the implementation of a

filter wheel with high heritage and high redundancy.

In Table 3.3 are reported the main characteristics of the instrument, in Figure 3.5 a

sketch of the JANUS optical head and, finally, in Table 3.4 are listed the main spectral

characteristics of the JANUS instrument.
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Figure 3.5: The schematic characteristics of the JANUS telecope with schematic showing
the main modules: the mirror (M2), the Filter Wheel (FW), the Focal Plane Module (FPM),
including the detector, the cover (C) and the baffles (B).

Specification Value

Effective focal length 467 mm
F/# 4.67
Field of View 1.72 × 1.29 degrees2

Detector format 2000 × 1504 pixels2

Pixel size 7 µm
Pixel scale 15 µrad/pixel
Spectral range 350 - 1050 nm

Table 3.3: First order optical properties of the camera and the detector.
.
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Filter Central Wavelength
/Bandpass (nm)

Note

FPAN 650/500 Panchromatic – monochromatic imaging
FBLUE 450/60 Blue – satellite colours
FGREEN 530/60 Green, background for Na – satellite colours
FRED 656/60 Red, background for Ha – satellite colours
CMT medium 750/20 Continuum for strong Methane band on Jupiter,

geology
Na 590/10 Sodium D-lines in exospheres
MT strong 889/20 Strong Methane band on Jupiter
CMT strong 940/20 Continuum for medium Methane band on Jupiter,

Fe2+ on satellites
MT medium 727/10 Medium Methane band on Jupiter
Violet 410/80 UV slope of satellites surfaces
NIR 1 910/80 Fe2+, Io lava spots
NIR 2 1000/150 Fe2+, Io lava spots
Ha 656/10 Hα-line for aurorae and lightning

Table 3.4: JANUS filters list
.

Based on these considerations and the chosen instrument architecture, JANUS will

perform all kind of observations foreseen for visible imager onboard the JUICE mission.

In particular, the driver requirements for the design of JANUS, as for the most of JUICE

instruments, are the observation of Ganymede and Europa flybys.

3.1.2 Europa Flyby

Due to the initial phase of the mission, the information hereafter reported and used

through this work are probably not the final solution that will be defined for JUICE.

However, in this work we focus on a particular phase of the JUICE mission: the Europa

flybys, planned on 13 and 29 February 2030 (we consider these dates representative of

the two flybys, even if they could be changed in next future because of the initial phase

of the mission), reporting below the main phase characteristics from ESA (2014).

Europa flybys are fundamental to answer to the main open questions regarding the

icy satellite. They will focus on the surface regions with traces and recent activities to:

• Characterise the composition of the non-ice material, especially as related to hab-

itability;

• Search for liquid water under the most active sites;

• Study the active processes.
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During this phase, JUICE should provide imaging and spectroscopy of Europa’s surface

geology, composition and thermophysical properties across the broad wavelength range,

radar sounding of the Europan sub-surface and laser altimetry for topography at closest

approach. In addition, JUICE should provide limb observations to study aurorae, airglow

and the tenuous Europan exosphere, satellite ephemerides and gravity measurements,

detailed characterisation of the magnetospheric and plasma environment surrounding

the satellite and a search for Europan plumes (ESA, 2014).

These objectives drives specific requirements to the mission to enable, at least, one

Europa flyby with closest approach with distance ≤ 500 km above the regions of inter-

est. The spacecraft shall be capable of performing high spatial resolution imaging and

spectral imaging in the broad wavelength range of selected sites on Europa, as well op-

erating all instruments simultaneously within the distance of 150000 km from the moon

during approach and departure. The two flybys will take place at middle latitudes over

Figure 3.6: Ground track of the spacecraft during Europa flybys. The image shows an Europa
surface map with the areas of specific interest indicated by red rectangles. The ground tracks
of the two flybys are indicated in coloured lines, with the colour indicating the altitudes in 1000
km (see the colour legend in the upper right) (ESA, 2014).

the Northern and Southern hemispheres of Europa with a closest approach altitudes of

∼ 400 km and within 15◦ of the 180◦ longitude (centre of the far side). The relative

velocity for both Europa flybys ranges from 3.6 to 3.9 km/s. The ground tracks and

illumination conditions are given in Figure 3.6 and 3.7. Each flyby will last for several

days, during which the data will be collected and stored in the spacecraft mass memory.
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Figure 3.7: 3D representation of the first (left) and second (right) Europa flyby (ESA, 2014).

The data will be downloaded after the flyby, and will require a significant number of

ground station passes (∼ 8 hours each). This scenario requires a significant amount of

mass memory on the spacecraft itself, and presents the sizing case for the spacecraft

ability to cope with the highest data flow and on board mass memory.

Manoeuvering slews of the spacecraft will provide the scan mosaics required by the

imaging experiments: 5 slews (3 for JANUS and 2 for MAJIS) are envisaged during each

of the approach and departure phases within 12 hours of closest approach (CA) with

yaw steering enabled to maximise spacecraft power. The slews extend beyond the disc

to enable both surface imaging and remote sensing of the limb and exospheres. During

the 120 minutes surrounding closest approach (CA±60 mins), the spacecraft suspends

yaw steering. Spacecraft slews are executed for MAJIS, JANUS, UVS and SWI surface

coverage until CA-30 mins, when nadir pointing is acquired and all instruments switch

to push-frame mode (JANUS operating in single-filter panchromatic imaging for CA±17

mins; MAJIS using its scanning mechanism for motion compensation for CA±13 mins).

GALA and RIME observations will operate within CA±7 mins when the distance to

the surface is at a minimum. Finally, yaw steering is recovered at CA±60 mins and the

approach sequence is repeated in reverse. Depending on the data volume constraints,

distant observations of Europa (e.g., plume searche, satellite mutual events) will be

executed during the pre- and post-flyby phases two days either side of closest approach

(ESA, 2014).

3.2 Europa’s water plume

Surface venting is quite common on some outer solar system satellite, as Io and Ence-

ladus, and spacecrafts have observed plumes erupting from their geologically young sur-

face, that reflect the possible material exchange between the subsurface and the surface

of the satellite. Voyager 1 observed an enormous plume reaching several hundred kilome-

ters above Io’s surface providing the first spectacular evidence of active volcanism beyond
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Earth (Morabito et al., 1979). Cassini-Huygens mission (2004-current) discovered active

jets of water vapour and icy particles above Enceladus’ south pole, i.e., plumes, provid-

ing a unique opportunity to probe the composition of its subsurface (Porco et al., 2006;

Spencer et al., 2006; Hansen et al., 2006; Waite et al., 2006). On Enceladus, episodic

plumes are thought to emanate from a set of fractures, known as the “tiger stripes”

(Nimmo et al., 2014) which exhibit temperatures higher than that of the surrounding

terrain (Porco et al., 2014). The five fractures are thought to be sites of active strike-slip

or transtension/transpression tectonics resulting from cyclic tidal deformation (Smith-

Konter & Pappalardo, 2008). During extensional or transtensional deformation phases,

volatiles may be exposed allowing eruptions to occur (Hurford et al., 2007). Similar

tectonic deformation is observed on Europa, which also presumably formed in response

to temporally varying tidal stresses (e.g. Greenberg et al., 1998; Hoppa et al., 1999).

Plumes on Europa have been long hypothesized but they were never directly observed

until recent observations, made with the Space Telescope Imaging Spectrograph (STIS)

of the Hubble Space Telescope (HST). November and December 2012 observations re-

ported significant surpluses of hydrogen Lyman alpha and oxygen OI 130.4 nm emissions

above the southern hemisphere (Roth et al., 2014b), as shown in Figure 3.8.

Figure 3.8: On the left: HST observation from Roth et al. (2014b). On the right: artist
impression of the Europa south polar plume. Credit: NASA, ESA, and L. Roth (Southwest
Research Institute and University of Cologne, Germany)

These emissions were persistently found in the same area over 7 hours, suggesting

atmospheric inhomogeneity, and were best explained by two 200 km high plumes of

water vapour. Non detections in November 2013 and in previous HST images from 1999

suggests varying plume’s activity that might depend on changing surface stresses based

on Europa’s orbital phases, since plumes were identified in observations taken when

Europa was near apocenter. Similarly, Enceladus plumes are linked with eccentric tides
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and show an intensity change depending on the orbital position. However, tidal origin

of plumes on Europa is still uncertain because no plumes were detected in following

HST/STIS observations taken when Europa was again near apocenter.

On the other hand, in previous works (Fagents et al., 2000) it has been proposed

that many surface features of Europa are the results of material emplaced via ballistic

cryovolcanism (i.e. plumes). In fact, Europa possesses a relatively young surface, whose

average age is estimated to be 40 - 90 Myr (Bierhaus et al., 2009), suggesting that

it has undergone heavy resurfacing in current geological time, like Io and Enceladus.

In Fagents et al. (2000), ballistic cryovolcanism has been considered and modeled as a

possible mechanism for the formation of low-albedo features, surrounding lenticulae and

along triple band margins and lineae. These features are considered as the expression

of ongoing or recent cryomagmatic processes and, in some cases, may be the result of

effusive cryovolcanism (Wilson et al., 1997; Head et al., 1998; Pappalardo et al., 1999;

Fagents et al., 2000; Figueredo et al., 2002; Fagents, 2003; Prockter & Schenk, 2005).

The work of Fagents et al. (2000) predicts smaller plume dimension with respect to what

Roth et al. (2014b) have found, but this could be explained by hypothesising that plume,

as that observed by HST, may be a rare event, or it occur frequently but on smaller

spatial scales not observable by HST.

Our aim is to understand if possible water plumes could be detectable by the JANUS

camera, in particular we are interested in the detection of plume deposits. We made

a simple simulation of the plume deposit that may be formed after cryovolcanic events

basing our assumption on Fagents et al. (2000) work. Firstly, we focus on the Europa

flybys, and in particular on the specific phase of the first flyby, hereafter referred as E9

phase as defined in JUICE mission scenario, providing JANUS operation and possible

observing strategies adopted. Then, we present our plume deposit model, from which

we obtained an albedo distribution that is used to understand the detectability of the

phenomenon by the JANUS camera. We therefore will search evidence of these phenom-

ena in targeted regions that display activity, in addition to limb observation at the south

pole, i.e where Roth et al. (2014b) identified the debate plume. We know that there is

only one plume direct evidence from HST observations, but Europa’s surface features

and behaviour are suggesting the presence of these phenomena.

3.2.1 JANUS operation during flyby

One of the 2 foreseen flybys of Europa has been deeply studied to simulate a possible

observing strategy applicable in order to address the specific JANUS science require-

ments. The flyby E9 is assumed to last 24 hours around the Closest Approach (CA,

13/2/31 13:49), and it is divided in 2 (time-)symmetric phases around the CA. Each

phase is further divided in 2 phases, the Approach Phase (AP) and the Close Approach

Phase (CAP). In each of them a different operation profile is foreseen: in Table 3.5 it is
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reported the detailed profile of the Approach phase (AP).

JANUS would acquire full frame images in four filters (adding exosphere filters where

necessary) on, at least, seven occasions during approach/departure phases when within

± 150000 km and under yaw steering. As the distance to Europa decreases, JANUS will

switch from full-frame imaging (8 colours) to mosaics of 4 - 8 images in 4+ filters using

the spacecraft slews (5 slews either side of the CA, 3 devoted to JANUS). Then surface

scans in push-frame mode from CA-60 mins to CA-30 mins will be performed, before

finally switching to nadir-pointing push-frame mode for single filter panchromatic images

during closest approach. This sequence enables context imaging of half of the moon’s

surface (day side) and limb with resolution from 2 km/px to 0.1 km/px in all JANUS

filters and panchromatic imaging of the most active regions along the flyby trajectory

with resolution up to 6 m/px.
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Radiometric model

To estimate the JANUS performance during scientific operations in the Jupiter-satellites

system, a Radiometric Model (RadMod) has been developed in order to retrieve the

expected instrument SNR. The RadMod is a software tool organised in three modules,

which can be adapted to different observation and/or operative constraints. The input

modules are:

1. the S/C trajectory and/or orbit in the different mission operative phases, which

defines the observation geometry and gives constraints on operations (e.g., integra-

tion time, binning, filters to be used), following the preliminary Flight Operations

Concept (FOC);

2. the environmental conditions during the different phases (e.g., planet or satellite

albedo, the full-disk albedo spectra described in Karkoschka (1994) have been

used);

3. the instrument design, especially in terms of optics (e.g., IFOV, optics transmis-

sion), detector and electronics (e.g., quantum efficiency, noise sources, saturation),

filters (central wavelength, bandwidth).

For our purpose the JANUS SNR has been performed for E9 flyby, and the S/C

trajectory and the JANUS operation planes and strategies, as described in ESA (2014),

have been adopted. These operative plans are only indicative, designed to provide input

for a preliminary analysis. Typical sequence of operations used should be considered as

sample timelines. Figure 3.9 shows the full-disk albedo spectra described in Karkoschka

(1994) used for the SNR simulations in each mission phase.

Between the different phases of the Europa flyby, we analyse the E9 Ap-d sub-phase

to derive the SNR expected during observations and understand if plumes could be

detectable. We adopt this sub-phase because both surface and limb images will be

acquired.

E9 AP-d phase

In this sub-phase, the S/C approaches the moon, with sub-S/C point always very close

to the equator and very close to the terminator. Europa does not fill the JANUS FOV

(see Figure 3.10). Slews from +3◦ to -3.05◦ then from -3.2◦ to +3.3◦ along Y (roughly

along the terminator) are foreseen, with a pointing offset by 0.8◦ and 2.4◦ to the sunlit

side, respectively, in order to complete the JANUS mosaic map of the Sun-illuminated

Europa half-disk (see also Table 3.5). Figure 3.11 gives a schematic example of how the

4 (sets of) images of the first slew from N to S are distributed along Y (roughly, along

the latitude arc) to perform the mosaic (in 4 colors). The β angle for this slew is ∼ 60◦.
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Figure 3.9: Full disk albedo of Europa (VIMS data) (ESA, 2014).

Figure 3.10: Europa in the JANUS FOV at the end of AP-d (13/2/31 11:33). (Left) 3D vision
of JANUS FOV projected on the moon’s surface (without pointing offset). (Right) 2D vision of
JANUS FOV projected on the moon’s surface (without pointing offset), together with projection
of the whole FB trajectory.
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The second slew will be performed from S to N, with a further pointing towards the

sunlit side, with a β angle ∼ 30◦. The 4 sets of images in the first slew will be performed

at average latitude of ∼60◦N, ∼20◦N, ∼20◦S, ∼60◦S (on the reverse order in the second

slew). The pixel scale for this sub-phase ranges from 556 to 427 m. Table 3.6 summarises

Figure 3.11: A schematic example of how the 4 sets of images of the first slew are distributed
along Y (i. e., roughly, along the latitude arc) to perform the mosaic map (in 4 colors) of
the Sun-illuminated Europa half disk. The thin blue line is the projection of the whole FB
trajectory, together with the JANUS FOV (its orientation is still somehow arbitrary). The thick
blue rectangles are schematic representations of 4 images obtained during the first slew (from N
to S). The second slew goes from S to N, with pointing tilted towards the sunlit side to cover
the half illuminated Europa disk.

an example of the expected JANUS SNR for this operative case, when integration times

perfectly compatible with the dwell time in this phase are adopted. In addition, we

have done a further simulation with RadMod for observing at a latitude of 88◦ S (where

the plume was observed by Roth et al. (2014b)) with different illumination conditions,

discrete and optimal, obtaining a SNR in FPAN equal to 98 and 134 respectively with

the increase of the integration time to 0.02 s, in agreement with the dwell time of Ap-d

sub-phase. Therefore, we generate a simple model to understand the detectability of the

plume deposits under these conditions.

3.2.2 Methodology - model assumptions

We consider as a plume deposit the material falling after a cryovolcanic event on the

Europa’s surface basing our model on Fagents et al. (2000) work (a similar approach has
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First slew (β=60◦)

Latitude α=60◦ Latitude α=20◦

texp(s) SNR texp(s) SNR

Filter FPAN 10−2 211 5× 10−3 204

Second slew (β=30◦)

Latitude α=60◦ Latitude α=20◦

texp(s) SNR texp(s) SNR

Filter FPAN 5× 10−3 196 2× 10−3 170

Table 3.6: An example of the expected JANUS SNR in FPAN filter achievable during the 2
slews foreseen during the Europa E9 AP-d sub-phase, with pixel scale from 556 to 427 m.

been already adopted by Quick et al. (2013)). As stated before, Fagents et al. (2000)

suggested that many surface features of Europa are the results of material emplaced via

ballistic cryovolcanism, such as dark deposits surrounding lenticulae and along triple

band margins and linae, an example is shown in Figure 3.12. They derived the particles

velocity, the deposit composition and the extension from surface features analysis. As-

suming that particles follow ballistic trajectories, they concluded that the deposits could

have been emplaced by plumes that consisted of 0.1-20 wt% volatile content (CO2, SO2,

CO, etc.), whose particles had initial eruption velocities between approximately 30 and

250 m/s, and that extended 0.4 to 25 km above Europa’s surface.

Our model considers solid particles that follow ballistic trajectories after eruption

and formed plume deposits that could be detectable. We consider the detection of these

deposits with JANUS camera, that operates between 300 -1050 nm, centred at 600 nm

and assuming particles size and water production rate from Enceladus case because of

their similarity. In Fagents et al. (2000) model, cryoplumes deposits contain also volatile

components, but in this work we consider only icy particles that would be ejected and

fall back on the Europa’s surface forming snow deposit (albedo of snow is approximately

0.8-0.9). In this context, we expect to observe high albedo regions in contrast with the

background albedo of Europa surface, whose average value is 0.6. Therefore, we obtain

an albedo distribution of particles in order to understand the real detectability of the

deposit. For simplicity, we assume that the number of particles that will be ejected

during the plume event is equal to the number of particles that land on the Europa’s

surface.

At a first case, by considering that particles follow ballistic trajectories, we made

several simple assumptions: (i) we neglect loss processes of particles; (ii) we fix a single

ejection velocity for all particles; (iii) we choose a launch angle cone from 45◦ to 90◦ and

inside this range, the particles are assumed to be ejected uniformly; and (iv) an azimuth



102 Europa

Figure 3.12: Deposits along Rhadamanthys Linea as indicated by white arrows. The horizontal
range, R, of dark deposits is measured from the center of the feature (i.e. linea, ridge, lenticula),
in this case, Rhadamanthys Linea, to the edge of the deposit on either side. R for these deposits
ranges from 2 to 6.8 km (Table 1 in Fagents et al. (2000)). Image from Galileo Orbit E15 at ∼
230 m/pixel. Adapted from Quick et al. (2013).

angle that changes from 0◦ to 360◦. Assuming ballistic trajectories and a well-defined

velocity, the maximum height for the cryoplume is Hmax = v2

2g , while the maximum

extension of the plume deposit on the surface is defined by Rmax = v2/g, where g is the

gravity acceleration on Europa equal to g = 1.314 m/s2. Fixing the ejection velocity

equal to 0.2 km/s, particles reach a maximum height of 15 km and a maximun range of

30 km, that is roughly in agreement with the estimates reported in Fagents et al. (2000).

The left panel of the Figure 3.13 shows the landing site particle distribution for the case

above, while the right panel reports the particle distribution converted to a pixel image

choosing an average value of 500 m bin (in agreement with the AP-d sub-phase in which

the pixel scale is 556-427 m).

As we expected, the deposit is brighter at the outer ring than in the centre (Figure

3.13 on the right). This exact high contrast of brightness between the outer part of the

deposit and the inner part is due to the same ejection velocity of the particles and to

the small size of pixels.

A more realistic assumption is a Gaussian velocity distribution f(v) = 1
σ
√

2π
exp −(x−µ)2

2σ2

of particles peaked at 0.2 km/s and with a variable σ (10, 20, 30 and 40) in order to

have a more realistic situation.

As a result, we report in Figure 3.14 the particles landing site in pixel scale for a

Gaussian velocity distribution peaked at 0.2 km/s and with a width of 20 (pixel scale

of 500 m/px). The distribution is more uniform with respect to single ejection velocity

case: indeed, more particles land in the outer part of the deposit while less particles are
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Figure 3.13: On the left the real particles distribution on the surface of the satellite considering
a fix velocity equal to 0.2 km/s, while on the right it is shown the same particles distribution
converted in a pixel distribution using the pixel scale of Ap-d sub-phase, equal to an average
value of 500 m/px.

Figure 3.14: On the left the particle landing site pixel distribution for a Gaussian velocity
distribution peaked at 0.2 km/s, while on the right it is shown the behaviour of the distribution
along different directions representing how particles are distributed inside the plume deposit.
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present in the inner part. Contrary to the previous analysis, the contrast between these

two different landing sites is lower. In addition, we report also the cross section of this

landing site distribution along different horizontal directions to show how particles are

distributed inside the plume deposit.

Figure 3.15: Images of particle landing site distributions in pixels changing the sigma of the
Gaussian velocity distribution: increasing the width of the Gaussian velocity distribution implies
that more particles land in a wider area. The deposit becomes less distinct.

Albedo particles distribution

In the following, we obtain the surface albedo distribution in order to understand the

detectability of the plume deposit with JANUS. To calculate the real number of particles

landed on the surface we correlate the number of particles ejected from the plume with

the simulated particles. We assume a water production rate equal to 200 kg/s (mean

value from Enceladus case (Hansen et al., 2006)) finding the real number of particles

included in each pixel. Subsequently, we define the optical thickness of our plume de-

posit calculating the column density for each pixel in order to obtain the surface albedo

distribution.

When doing so, we assume an icy particles radius equal to 0.5 µm and an ice density
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equal to 918 kg/m3, in agreement with the size ranges of plume particles observed on

Enceladus (Porco et al., 2006; Kempf et al., 2008; Postberg et al., 2008; Kieffer et al.,

2009; Ingersoll & Ewald, 2011). Considering observation in FPAN filter (Table 3.6),

peaked at 0.6 µm, and assuming a dielectric constant for ice of 3 at 273 K (Cumming,

1952) (as in Quick et al. (2013)), the scattering cross section of particles is equal to

σscat =
8π3r3p

5λ , which is valid in Mie scattering condition (i.e. rp = λ) by non-absorbing

particles (so that σscat = σex (van de Hulst, 1957; Bohren & Huffman, 1998)). Hence,

we calculated the optical thickness as τ = N × σscat, where N is the column density in

1/m2 and σscat the scattering cross section. Then, since the plume deposit is optically

thick, we apply the Lamber-Beer law I/F = exp (−τ) in order to achieve the intensity

of radiation that we could see from this deposit. As stated before, considering the plume

deposit as snow deposit, we calculate the albedo distribution in order to understand if

the contrast with the surface of Europa permits the detection of the deposit. Therefore,

we scaled our data to a range of values between 0 and 0.2 adding a fix value of 0.6,

that is the albedo background of Europa in the FPAN filter. In this way, we obtained

a range of data between 0.6 and 0.8, where 0.8 is assumed to be the snow albedo (we

consider 0.8 instead of 0.9 (albedo of pure snow) because we expect that the deposit will

be composed by dirty snow). The albedo particles distribution for a plume lifetime of

3.5 day orbital period is shown in Figure 3.16.

Figure 3.16: This image represent the distribution of surface albedo. When assuming a plume
lifetime of 3.5 day orbital period, we obtain a deposit that is much more bright and, hence,
detectable in its inner part. On the other hand, the outer part of the deposit has an albedo
comparable with the Europa surface albedo.

In this model we consider different plume lifetimes in order to understand how the
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deposit evolves with time. We consider as lower lifetime limit the diurnal tides time equal

to 1 day, in agreement with the fact that cracks could open and close over a Europa’s

orbital period (Greenberg et al., 1998). On the other hand, since the lenticulae and

dark deposits surrounding them are genetically linked with chaos regions as suggested

by previous works (Spaun et al., 1999; Riley et al., 2000), we assume as an upper lifetime

limit the chaos region’s age equal to 1 Myr (Pappalardo et al., 1999).

In Figure 3.17, it is shown the evolution of the plume deposit, ranging from 3.5 orbital

day to 1 Myr. We can say that the plume deposit becomes more uniform in brightness

with increasing time (the optical thickness increases) and in the last case, corresponding

to 1 Myr, the brightness becomes equal on the entire deposit.

To understand if the plume deposit is detectable in Ap-d sub-phase, we apply a

Gaussian noise on the simulation result, that is shown in Figure 3.18. We consider

different SNR in order to understand the limit of the detectability of the plume deposit.

Considering the SNR listed in Table 3.6, we can say that the plume deposit (if exists) is

detectable in Ap-d sub-phase (the minimum simulated SNR for Europa observation is ∼
100) and it could be detectable also with lower SNR, as it is shown in Figure 3.18. The

deposit could be visible by the JANUS camera as a small bright area on the detector.

In addition to the SNR listed in Table 3.6, we consider the SNR values obtained for the

simulation at ∼ 88◦. This is made in order to understand if the plume deposit is still

visible at the south pole too, i.e. the region where the unique plume observation was

made (Roth et al., 2014b). For this case too, the plume deposit could be detectable since

the deposit is still visible even with lower SNR (the minimum simulated SNR for south

pole observation is ∼ 100).

3.2.3 Discussion

JUICE will arrive at Europa observing the trailing hemisphere. During approach, JUICE

will cover the regions above the trailing terminator. This configuration favours the direct

search for the occurance of possible plumes also in the northern hemisphere as well as

the detection of plume-material (possibly scattered from condensates) originating from

the southern hemisphere. In this section, we built up a plume deposit model using a

Gaussian velocity distribution peaked at 0.2 km/s, that implies a 30 km extension of

the deposit, in order to understand if this plume deposit could be detectable by JANUS

visible camera. In doing so, we examined the E9 flyby AP-d sub-phase when JUICE s/c

will be at ∼ 30000 km from Europa with a phase angle of ∼ 87 ◦. Using the radiometric

model, we simulate possible observational scenario obtaining the SNR expected during

this phase, as reported in Table 3.6. We conclude that the plume deposit could be visible

as a small bright spot on the detector covering at least 60 pixel. In addition, we applied

the radiometric model to possible observation at the south pole (88◦), achieving a SNR

which allows the detection of the plume deposit in this case too. Limb observations will
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Figure 3.17: The evolution of the surface albedo distribution with the plume lifetime: the
deposit becomes more uniform in brightness with the increasing of time.

Figure 3.18: Surface albedo distribution combined with Gaussian noise applied to obtain
different SNR. We emphasize that the deposit can be visible and detectable even at lower SNR
than those listed in Table 3.6 (The lower simulated SNR for Europa observation is ∼ 100).
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be done during the Ap-d phase too, but the observational scenario is not yet defined. We

report in Figure 3.19 the hypothetical particles distribution at limb, which is obtained

under the same assumption adopted for modelling the plume deposit.

Figure 3.19: Logarithmic plot of the plume limb view assuming a Gaussian velocity distribution
(µ= 0.2 kmm/s, σ = 20) and a pixel scale equal to 500 m.

The conclusions reported above came from different assumptions, but we know that

changing some parameters could affect the reliability of our results. For example, if

we consider lower velocities (as the lower value of 30 m/s reported in Fagents et al.

(2000)), the plume deposit will be a very small spot on JANUS detector and, hence, not

possible to observe in Ap-d sub-phase. On the other hand, considering the observation

made by Roth et al. (2014b), the maximum extension of the plume deposit would be

roughly 400 km (considering an erupting velocity of 720 m/s resulting from the plume

height observed equal to 200 km) and, hence, it will cover a large area on the detector,

which would correspond roughly to its half size. However, we do not consider this latter

case as the most probable one because plumes have not been detected after the HST

observation. In addition, null plumes detection were reported by imagers on Voyager 2,

Galileo and New Horizons, but it could be due to the possibility that erupting venting

was not at the limb when those images were acquired.

In our model we consider observations in FPAN filter, even if color images will be

acquired too. From the expected performances of JANUS during AP-d sub-phase, it

is computed that the SNR color filter is similar to the FPAN one. For this reason,

the plume deposit could be observable also with other different filters since the feature
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remains recognizable.

In this work, we took the Ap-d phase as a representative observational case since

surface imaging and limb observation will be acquired. Obviously, this method could be

applied to other AP flybys phase too (Table 3.5), even if in AP phases prior to AP-d

the detection will be more challenging due to the smaller pixel scale.

Concerning the CAP, the closest approach phase that begins 1 hour prior the CA,

the S/C will move faster and faster towards the CA (13/2/31 13:49), occurring at 403

km from the surface, CAlat = - 47◦, CAlong = 174◦. At CA, the conditions will be

quite demanding in terms of integration time, and will be the worst expected during

the flyby. JANUS will scan the surface in 4 colours up to 2870 km from the surface

(end of sub-phase CAP-d), then will operate in push-frame mode, initially in 4 colours

and then in the only panchromatic filter. This trajectory will be the most powerful

timeframe in term of achievable pixel scale on the Europa’s surface (from ∼ 40 to 6 m),

and will allow unprecedented investigations on surface geological details on many surface

portions and/or specific surface targets. Therefore, the search of plume deposits (with

the dimension assumed before) is more difficult and not the primary objective of this

phase. On the other hand, if the plume deposit is smaller than our assumption, there

could be the possibility to observe this feature in CAP phase too.

3.3 Loss rates of Europa’s tenuous atmosphere

The study of the transient plumes (Roth et al., 2014b), with their potential implications

on the nature of the moon’s inner ocean, will have as mandatory prerequisite an accurate

characterisation of the exospheric background. For this reason, we performed a detailed

study of the Europa’s tenuous atmosphere loss rates that are dominated by plasma-

neutral interactions (Lucchetti et al., in press).

The source processes responsible for the generation of the tenuous atmosphere of

Europa as well as the chemistry between exospheric neutrals and Jupiter’s magneto-

spheric plasma have been discussed many times in the past (see in Plainaki et al. (2012,

2013); Cassidy et al. (2010, 2013); Krupp et al. (2010); Dalton et al. (2010); Coustenis

et al. (2010); Bagenal et al. (2004); Pappalardo et al. (2009)). In particular, the plasma-

neutrals interactions have been mainly studied either on the basis of Voyager and Galileo

flyby data (Kabin et al., 1999; Bagenal et al., 2004; Schilling et al., 2008; Lipatov et al.,

2010) or through analytical (Saur et al., 1998) and Monte Carlo models (Shematovich

et al., 2005; Smyth & Marconi, 2006; Plainaki et al., 2012). However, the lack of a

sufficient series of in situ measurements able to: a) further constrain the estimations

obtained through the above mentioned studies and b) determine the variability of the

magnetospheric plasma properties around Europa, has significantly limited our knowl-

edge on the plasma-neutrals interactions and the temporal and spatial variability of the
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exosphere loss rates. On the other hand, our understanding of the tenuous atmosphere

sources has been significantly expanded by the results of a series of related laboratory ice

experiments (Brown et al., 1978; Baragiola, 2003; Teolis et al., 2015; Galli et al., 2015).

Nevertheless, a thorough and detailed determination of the balance between atmosphere

sources and losses is expected to come once new in situ data will be obtained (i.e. during

the ESA/JUICE and NASA/Europa missions).

In view of preparation for future missions to Europa, an accurate estimation of the

loss rates for the main constituents of the exosphere of Europa, based on state to the

art models providing the plasma-properties nearby the satellite as well as on laboratory

derived cross sections for different plasma-neutral interactions, is of significant help. We

provide detailed estimations of the loss rates of Europa’s exosphere, based on the updated

plasma conditions at the moon’s vicinity, calculated recently by Bagenal et al. (2015)

based on the analysis of Galileo data. We provide a broad and long list of reactions,

not discussed thoroughly in previous Monte Carlo modeling papers, and we estimate for

the first time their impact to the Europa’s neutral environment for three sample plasma

environment cases (hot and low density, cold and high density and an intermediate case

that in this work is referred to as “medium”). All previous studies including estimations

of the loss rates were based: a) on Voyager-1 data (e.g. Sittler & Strobel, 1987) or b)

Cassini data (Delamere et al., 2005) or c) on plasma properties information provided

by the earlier Bagenal (1994) model (e.g. Saur et al., 1998; Smyth & Marconi, 2006;

Shematovich et al., 2005; Plainaki et al., 2012, 2013). We also include, for the first time,

temporal variability of the loss rates due to the large variability in plasma properties.

The tilt of Jupiter’s magnetic field is another source of temporal variability as it brings

Europa in and out of the dense plasma near Europa’s centrifugal equator. With this

work we provide an add-on to current knowledge, which can be used as a resource for

the improvement of future plasma and atmosphere/exosphere models. Additionally, we

investigate the role of different charge-exchange interactions between ionosphere/pickup

ions and atmospheric neutrals, for all three dominant atmosphere species, namely water,

oxygen and hydrogen. In previous studies (Shematovich et al. (2005); Smyth & Mar-

coni (2006)) charge exchange processes were found to be of negligible importance. For

completeness, we provide information also on photoreactions for both cases of quiet and

active Sun.

3.3.1 Loss processes: rates and variability

Interactions of the tenuous atmosphere of Europa with Jupiter’s magnetospheric plasma

and, to a lesser extent, solar UV photons, lead to the ionization and/or dissociation of

its constituents. Whereas such mechanisms result in the actual atmosphere loss, they

provide also a supply of fresh ions and new atoms to the near-Europa space environment.

Fresh ions can contribute to the further ionization of the neutral environment (Dols
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et al., 2016). Moreover the freshly dissociated molecules modify the composition of

the tenuous atmosphere, creating inhomogeneities in the nominal neutral distribution

around the moon. Interactions in the near-Europa space environment, therefore, result

in both dynamical changes of the plasma composition and temperature and effective

atmosphere loss.

Plasma-neutral interactions

Cross sections for plasma-neutral interactions are energy dependent and hence the re-

spective reaction rates depend on the speed distribution of the plasma, as well as the

densities of each reactant (Burger et al., 2010). Therefore, in order to address the role of

the different loss mechanisms, the external plasma environment has to be considered first.

The plasma properties in the space environment in which Europa is embedded have been

identified in detail in the past through the plasma model by Bagenal (1994), which was

based on Voyager-1 Ultraviolet Spectrometer (UVS) data (Shemansky, 1987; Bagenal

et al., 1992) and Plasma Spectrometer (PLS) measurements in Jupiter’s inner magne-

tosphere. According to this model, the plasma electron population at Europa’s orbit

includes a core cold and a hot component that can be approximated by two Maxwellian

distributions (at 20 and 250 eV, respectively). Moreover, the plasma properties were

shown to have a variability depending on the location of Europa with respect to the

JPS. In particular, due to the tilted (with respect to JPS) orbit of Europa, the plasma

density falls off north/south of above/below the centrifugal equator with a scale height

of ∼ 1RJ for 50-100 eV plasma (Kivelson et al., 2004). As Europa moves in its orbit,

it effectively moves up and down the JPS and the density and temperature of the lo-

cal plasma change remarkably. The Bagenal (1994) model predicted for the electron

density at the orbit of Europa values of ∼ 35 − 40 cm−3 off the equator and values of

80 − 100 cm−3 near it, depending on the strength of the equatorial current. Observed

electron densities over Galileo flybys of Europa ranged from 18 cm−3 to 250 cm−3 (Gur-

nett et al., 1998; Kurth et al., 2001). Ion-mixing ratios in the vicinity of Europa were

estimated by Delamere et al. (2005) on the basis of the Cassini Ultraviolet Imaging

Spectrograph (UVIS) data (Steffl et al., 2004). We note that the earlier models based

on analyses of Voyager UVS data had lower abundances of S+
2 and higher abundances

of O+ than the ones estimated by Steffl et al. (2004). Such differences between model

outputs may be due to differences in the analysis techniques, different coverage of the UV

spectrum, or actual changes in the torus conditions at the time of the measurements.

Recently, Bagenal et al. (2015) analysed the available Galileo PLS and Plasma Wave

Instrument (PWS) data to derive electron density, azimuthal speed and ion tempera-

ture of the plasma in the vicinity of Europa’s orbit (away from Europa itself, though).

They found that the flow speed has a narrow distribution around a median value that

is equal to 83% of the corotation speed. Based on the observed temporal variability of
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the plasma, Bagenal et al. (2015) provided three cases of plasma conditions: (a) Low

density, high temperature; (b) Medium conditions of density and temperature; and (c)

high density, low temperature. We use these updated plasma electron and ion conditions

in the near-Europa space environment, as given in Bagenal et al. (2015), to estimate the

loss rates of the tenuous atmosphere. These are provided in Table 3.7.
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Whereas the available in situ measurements guide the construction of plasma torus

models in the near Europa space environment, the plasma properties in the near surface

regions are currently known with less certainty and they are mainly provided by mod-

els. 3D hybrid models (Lipatov et al., 2010, 2013, e.g) or 3D MHD models (Schilling

et al., 2007; Rubin et al., 2015) of plasma interaction provide some insights into the near

the surface plasma environment. Although a) strong evidence for the existence of an

ionosphere has been provided through the Galileo Radio Science observations (Kliore

et al., 1997) and b) so far substantial progress in modeling has been made, there are

still substantial uncertainties considering the specific characteristics (e.g. height and

thickness) of an ionosphere layer between the impinging magnetospheric ions and the

moon’s surface. Indeed, Sittler et al. (2013) discussed the complexity of inferring Eu-

ropa’s ionospheric scale height from Galileo Radio Science observations and concluded

that the inferred electron density should be interpreted combining also the knowledge

obtained through a global interaction model (e.g. Lipatov et al., 2010). Moreover, these

authors noted that several plasma modeling efforts of the past could not resolve the

problem of determining the characteristics of the ionopause due to either the modeling

technique itself (for example the MHD models by Schilling et al. (2007, 2008) guiding-

center approximation for the ions) or due to low model-resolution (for example, equal

to ∼ 150 km in the model by Lipatov et al. (2010)).

Understanding the characteristics of Europa’s ionosphere is of significant importance

in order to determine the exosphere loss rates. In general, in a planetary (or lunar) atmo-

sphere, below the ionopause, i.e. the transitional region between ions of magnetospheric

origin and ionospheric ions, the external plasma does not penetrate, the convective elec-

tric field of the external flow is near zero and the gyroradius of the local ions is essentially

zero. At altitudes above the ionopause the pick-up ions dominate, the plasma flow is

non-zero and the convective electric field will be relatively large. If the thickness of the

ionopause is large with respect to its height then the ionopause does not occur and the

external plasma flow can penetrate down to the moon’s surface. Recent simulations by

Sittler et al. (2013) showed that at Europa the plasma flow can extend down near the

surface when the O2 column density is low enough. In particular, they showed that for

a column density equal to ∼ 5 × 1014cm−2 the plasma flow stopped essentially at the

altitude of 40 km defined as the height of the occurrence of the ionopause. Moreover,

the model by Sittler et al. (2013) provides the density profile of pick up ions of different

species for altitudes up to 200 km from the surface (see in Sittler et al. (2013), Fig.9).

The ionosphere and pick up ion properties provided by Sittler et al. (2013) are used in

this work in order to estimate the exosphere loss rates.

Based on the above description, the interactions, between the plasma and Europa’s

exosphere leading to the actual loss of the neutral population, refer either to electron-

neutral or to ion-neutral collisions. In the latter case, the interactions refer (potentially)
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to three ion populations, namely the ions in the plasma torus (with origin from Io),

dominating at altitudes ≥ 200 km; the ionosphere ions, originating from the ionization

of the sputtered neutral exosphere, dominating at altitudes ≤ 40 km; the pick-up ions,

being the ionized neutrals that once generated they are immediately accelerated and

picked-up by the corotating magnetic field. The term potential refers to the uncertainty

for the existence of an ionosphere layer at Europa. In this work, we estimate the loss

rates corresponding to electron and ion interactions with the neutral exosphere for the

three plasma torus conditions given in Table 3.7 and the main ionosphere and pick

up ion populations provided in Sittler et al. (2013). Here, we consider only the main

constituents of Europa’s exosphere, namely H2O, O2 and H2. Although the expected ice

irradiation processes at Europa do not exclude the existence of some other less abundant

exosphere species, such as OH and H (Watanabe et al., 2000) or H2O2 and HO2 (Kimmel

et al., 1994; Orlando & Kimmel, 1997) and other minor components of the surface,

laboratory measurements of ice irradiation experiments have shown that water molecules

dominate the total release yield at lower temperatures (< 120 K) and molecular oxygen

and hydrogen at higher (> 120 K) temperatures (Johnson & Kanik, 2001).

Electron-neutral interactions

Plasma electrons impacting the exosphere of Europa can dissociate and/or ionize its var-

ious constituents. The dissociation (or ionization) rate due to electron impact processes

is computed by

νe = κ(Ve)Ne (3.1)

where Ne is the electron density and κ is the rate coefficient of the reaction (in cm3s−1),

determined from the cross section of the reaction and the velocity distribution function

f(Ve), where (Ve) is the velocity of the electrons measured relative to the neutrals. For

electron impact processes, the plasma flow speeds (also called bulk velocities) can be

ignored since the electron thermal speeds are much larger. For example, cold 20 eV

electrons (Medium case in Table 3.7) have velocities of ∼ 2.7 × 103 km/s which are

much larger than the measured flow speed in the near-Europa space, equal to 98 km/s

(Bagenal et al., 2015). Therefore, for a thermalized (Maxwellian) electron population,

the rate coefficient is a function of the electron temperature:

κ(Te) =

∫
f(Ve)σ(Ve)dVe (3.2)

where f(Ve) is the velocity distribution function of the electron population and σ is

the experimentally determined cross section of the reaction. In order to estimate κ, we

approximately consider the mean electron velocity < VE >= 2√
π

√
2kbTe
me

of a Maxwellian

distribution function. Our results for different plasma electron populations are resented
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in Table 3.8.

Table 3.8: Electron impact reactions rates for different plasma conditions. From
Lucchetti et al. (in press).

Reaction (1) Low/Hot (2) Medium High/Cold Note

ν(10−6s−1)

Cold Hota Cold Hot Cold Hot

H2O + e→ OH +H + e 3.0 3.31 1.28 0.92 0.96 [1,2]

H2O + e→ H2O
+ + 2e 1.88 0.58 0.18b 0.61 [2]

H2O + e→ OH+ +H + 2e 0.37 0.19 1.94 0.84 0.2 [2]
H2O + e→ OH +H+ + 2e 0.99 0.15 0.069 0.28 0.19 [2]
H2O + e→ H2 +O+ + 2e 0.0085 0.026 0.013 0.26 0.039 [2,3]

O2 + e→ O +O + e 1.43 0.0014 0.05 1.57b 0.16c [4]

O2 + e→ O+
2 + 2e 1.5 0.79 2.58 0.082b 0.76c [4]

O2 + e→ O+ +O + 2e 0.28 0.42 1.18 1.1 0.47c [5]

H2 + e→ H +H + e 1.24 0.091 1.66 3.55 [6]
H2 + e→ H+

2 + e 1.48 0.27 3.55 1.32 0.45 [7]
H2 + e→ H+ +H + 2e 0.019 0.016 1.32 0.45 0.024 0.036 [7]

a The cross section for the hot electron population are reported for an energy equal to 1000 eV
(instead of 1200 eV) because cross sections for higher electron temperature are not reported in
[2,3].

b The cross section are reported for an energy equal to 13.5 eV.
c The cross section are reported for an energy equal to 198 eV.
Reaction 1 Cross sections measured over an energy range from threshold to 300 eV [1].
Reaction 2,3,4,5 Reaction cross section measured from threshold to 1000 eV [2, 3].
Reaction 6 Cross sections measured over an energy range from 13.5 eV to 198.5 eV [4].
Reaction 8 Cross section corresponding to an electron temperature of 10 eV is below the
threshold [5].
Reaction 9 Cross sections measured over an energy range from 9 eV to 80 eV [6].
Reaction 10,11 Cross sections measured over an energy range from threshold to 1000 eV [7].
Table References: [1] Harb et al. (2001); [2] Itikawa & Mason (2005); [3] Shirai et al. (2001);
[4] Cosby (1993); [5]Itikawa (2009); [6] Yoon et al. (2008); [7] Straub et al. (1996).

Ion-neutral Interactions

Ion-neutral reactions refer to collisions between plasma ions and neutral species. The

charge-exchange (also called “charge transfer”) is a collisional process that takes place

during the interaction between a relatively fast (energetic) ion and a cold neutral. During

this process the fast ion and the cold neutral exchange their charge hence an energetic

neutral atom (ENA) and a cold ion are being formed. If the projectile and the target
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particles are of the same species, charge exchange is a symmetric (resonant) process

(Hasted & Hussain, 1964) and the newly created ENA retains approximately both the

energy of the colliding energetic ion and its direction (e.g. Milillo et al., 2005). In case of

different species, either a non-resonant process (e.g. proton projectile and He target) or

an “accidental resonance” in ionization energies (e.g. O+ projectile and H target) can

occur (Fite & Brackmann, 1963). The “accidental resonance”, by which it is meant that

the energy defect is almost zero but the two ions are not chemically identical, permits

charge exchange to proceed rapidly in thermal energies (Banks & Kockarts, 1973). If the

mean free path of the newly created ENAs is long enough, such an ENA can transport

information out of the generation region, thus allowing remote sensing of the interaction

process (e.g. Roelof et al., 1985; Roelof, 1987; Daglis & Livi, 1995; Orsini & Milillo, 1999;

Barabash et al., 2001; Milillo et al., 2001; Orsini et al., 2001).

Charge-exchange rates are also determined by Equation 3.1 and 3.2 substituting the

electron density and velocity, with the ion density Ni and velocity relative to the neutrals

(Vi), respectively. Because ions are more massive than electrons, the relative bulk motion

between the ions and neutrals is significant hence it needs to be taken into account when

calculating the respective reaction cross section. The charge-exchange rate coefficient is

given by:

κ(Vi) =

∫
f(Vi)σ(Vi)dVi (3.3)

where Vi = V −Vorb, with Vorb being the orbital velocity of Europa, equal to 14 km/s, and

V being the flow velocity of the plasma as derived from the Galileo PLS measurements

(Bagenal et al., 2015). We note that if the thermal temperature is large then both the

thermal (random) motions of the ions and the bulk motion of the plasma relative to

the neutral gas must be considered. Such is the case of plasma being slowed as flowing

through satellite exospheres or the Enceladus plume (Burger et al., 2010). Johnson et al.

(2006) showed that the presence of H3O
+ in the Saturnian plasma implied reactions

between neutral and ionized water molecules at low relative velocities because the cross

section for H3O
+ production is large for speeds below ∼ 10 km/s (Lishawa et al., 1990).

For the Europa case, the random thermal ion velocities estimated by Bagenal et al.

(2015) are in general lower than the flow velocity hence in the current study we do

not take their effect to the relative velocity into account. Future in situ measurements

of course will provide more detailed information on the plasma properties in the near-

surface environment of Europa allowing hence a more accurate evaluation of the rates

of the plasma-neutral interactions.

In our loss rate estimates corresponding to the interactions between the plasma torus

ions and the neutrals (see Table 3.9), we take into account only the S++ and O+ ions,

since they are the dominant species of the sub-corotating plasma, with densities equal

to 15% and 20% of the electron density, as inferred from UV observation in Steffl et al.

(2004), in consistency also with the model by Delamere et al. (2005). We underline that
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the low energy plasma composition was not measured directly by Galileo but it was

inferred through the spectra and Mach numbers of the measured flows (Sittler et al.,

2013). Indeed these measurements could not distinguish O+ from S++ hence the rela-

tive abundances for these species are currently known only through remote observations

plasma Io torus that do not include Europa’s orbit. The complete composition of the

plasma in the near-Europa space environment is presented in Table 3.7. We note that

in the model of Delamere et al. (2005) the proton density (∼ 12% of the electron den-

sity) is derived as additional ion charge to match electron density and to satisfy charge

neutrality. Since the H+ composition is not a direct measurement, in the current study

we do not estimate rates corresponding to plasma neutral reactions involving H+.

Table 3.9: Plasma flow charge exchange reactions rates given for reactions between S++ and
O+ ions and O2, H2 and H2O neutrals. The ion velocity is equal to V − Vorb, where Vorb is the
orbital velocity of Europa (equal to 14 km/s) and V is the flow velocity of the plasma as derived
from the Galileo PLS measurements (Bagenal et al., 2015). The S++ and O+ ion densities used
to calculate the reaction rates are based on the physical chemistry model by Delamere et al.
(2005), see Table 3.7. From Lucchetti et al. (in press)

(1) Low/Hot (2) Medium High/Cold Note

Vions (km/s) 109 84 62 [1]
N(S++) cm−3 9 22 41 [2]
N(O+) cm−3 19 47 87 [2]

Reaction ν(10−6s−1) ν(10−6s−1) ν(10−6s−1)

S++ +O2 → S+ +O+
2 0.15 0.28 0.38 [3]

O+ +O2 → O +O+
2 0.27 0.51 0.7 [3]

S++ +H2 → S+ +H+
2 0.09 0.32 0.42 Copy of the below

O+ +H2 → O +H+
2 0.09 0.32 0.42 [4]

S+ + +H2O → S+ +H2O
+

O+ +H2O → O +H2O
+ 0.7 0.11 [5]

Reaction 3 The cross section is not available and we used the value of the cross section of the reaction
below (as Dols et al. (2016)).
Reaction 5 Cross section value not found in literature.
Reaction 6 Cross section studied in the energy range 1 to 400 eV.
Table References: [1] Bagenal et al. (2015); [2] Delamere et al. (2005); [3] McGrath & Johnson (1989); [4]
Tawara et al. (1985); [5]Turner & Rutherford (1968).

Regarding the loss rate estimates corresponding to the interactions between the iono-
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sphere ions and the neutrals, we attempt to provide an upper limit of the respective

charge-exchange reactions considering the O+
2 , H2O

+, and H+
2 ionosphere densities at

the height of the ionopause (where they become maximum). Considering the interactions

between pick-up ions and exosphere, in this work we provide estimations for altitudes >

200 km, since the region between the height of 200 km and the ionopause is a transition

region where the density of the pick-up ions is highly variable (see Sittler et al. (2013),

Fig. 9). For the pick-up ions at the altitude of 200 km we assume a relative speed equal

to the one of the plasma torus (see Table 3.7). We underline that our estimated loss

rates due to pick-up ion interactions are in consistency with the overall plasma neutral-

ity. Note that Delamere et al. (2005) estimated that whereas the addition of pickup

O+ ions and O+
2 ions to the torus increases the net temperature from 130 eV and 100

eV to 300 eV and 200 eV respectively, the modification they bring to the plasma torus

composition is minor. For the ionospheric ions, originating from the ionization of the

sputtered neutral exosphere and dominating at altitudes < 40 km, we assume a velocity

equal to ∼ 10 km/s as given by Sittler et al. (2013). Our results are presented in Table

3.10. Although we did not perform any detailed calculations corresponding to the tran-

sition region between the ionopause and the altitude at which the plasma torus becomes

dominating (assumed to be equal to ∼ 200 km, as in Sittler et al. (2013)), we expect

that the respective loss rates will vary between the values provided in Table 3.9 and

Table 3.10.
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Photoreactions

Photoreaction rates are given at 1 UA by Huebner et al. (1992). These rates are inversely

proportional to the distance of Europa from the Sun squared. The values listed in Table

3.11 are for quiet and active Sun at Europa’s orbit (5.2 UA) for H2O, O2 and H2

Photo-Reactions.

For completeness, we mention the contribution coming from fresh photoelectrons

that have enough energy to dissociate and ionize the neutrals. We estimate that the

rate resulting from this secondary process is about 10% - 30% of the photoreaction rate.

This is a standard approximation used in the aeronomic studies, that was checked and

validated in the accurate calculations of the photo and photoelectron rates for different

planetary atmospheres (see, for example, Hubert et al. (2012) and Ionov et al. (2014)).

Table 3.11: Photoreaction rates for H2O, O2 and H2 from Huebner et al. (1992). From
Lucchetti et al. (in press).

Photo-Reaction ν(10−6s−1)

H2O + hν → H +OH 0.38− 0.65
H2O + hν → H2 +O(1D) 0.022− 0.055
H2O + hν → H +H +O 0.028− 0.71
H2O + hν → H2O

+ + e 0.012− 0.031
H2O + hν → OH+ +H + e 0.0021− 0.0056
H2O + hν → OH +H+ + e 0.00048− 0.0015
H2O + hν → H2 +O+ + e 0.00022− 0.00082

O2 + hν → O(3P ) +O(3P ) 0.0052− 0.0082
O2 + hν → O(3P ) +O(1D) 0.15− 0.24
O2 + hν → O(1S) +O(1S) 0.0015− 0.0035
O2 + hν → O+

2 + e 0.017− 0.044
O2 + hν → O +O+ + e 0.004− 0.013

H2 + hν → H(1S) +H(1S) 0.0018− 0.004
H2 + hν → H(1S) +H(2s, 2p) 0.0013− 0.003
H2 + hν → H+

2 + e 0.002− 0.004
H2 + hν → H +H+ + e 0.00035− 0.0011

3.3.2 Discussion

Overall results on the H2O, H2, and O2 loss rates

For the H2O constituent of the atmosphere we find that the dominant loss is due to

electron impact dissociation. As shown in Table 3.8, such process is expected to have an

efficiency that varies with the assumed plasma conditions (i.e. density and temperature).
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We note that such plasma conditions (taken from the Bagenal et al. (2015) model) depend

on both the location of Europa with respect to the JPS and on the epoch of the Galileo

observations on which the plasma model was based. Maximum loss is expected for the

orbital phases of median plasma conditions (Case (2) in Table 3.8) and it is estimated to

be equal to 3.31 × 10−6s−1. Production of minor species H and OH is favoured during

these phases. We note that the cold plasma electron population is the main responsible

for the H2O exosphere loss.

For the H2 we find that the dominant loss process is electron impact ionization

(leading to the production of H+
2 ) when Europa is under median plasma conditions,

and electron impact dissociation when Europa is found under conditions of high plasma

density and low plasma temperature (Case (3) in Table 3.8). Both processes have a

rate equal to 3.55× 10−6s−1. The dissociation process populates the exosphere with H

atoms that, given their low mass, can easily escape the moon’s gravity and make part

of Europa’s neutral cloud (gravitationally bounded to Jupiter).

For the O2 exosphere, we find that charge-exchange reactions between the ionospheric

O+
2 and exospheric O2 molecules have the highest rates with respect to all other loss

process. In particular, we find that the O+
2 −O2 reaction rate, equal to ∼ 15× 10−6s−1

is by a factor of ∼ 6 and ∼ 10 higher than the ones corresponding to electron impact

ionization (medium case in Table 3.8) and electron impact dissociation (High/cold case

in Table 3.8) processes, respectively. Of course this result is also due to the actual

assumption on the reactant’s density, which in this study was considered as in Sittler et

al. (2013). Nevertheless, the domination of the O+
2 −O2 charge exchange over all other

loss processes is in agreement with Dols et al. (2016), who used different assumptions to

estimate the importance of this process as well as a multi-species chemistry model. As in

case of H2O and H2 exospheres, also here the efficiency of the electron impact processes

depends strongly on the position of Europa with respect to the JPS determining the

actual plasma conditions. In particular, the electron impact ionization loss rate varies

by a factor up to ∼ 3.4 and the dissociation rate by a factor up to ∼ 31 among the

three considered cases of plasma conditions. Although these processes are not the ones

determining the actual loss of exosphere molecules, their rates can be used in order to

roughly estimate the production of ionosphere O+
2 and atomic oxygen. Information on

such intermediate products of the plasma-neutral interactions, however minor, can be

useful during the interpretation of remote sensing measurements of Europa’s exosphere

(as for example: the ultraviolet line emission of atomic oxygen).

Volume-integrated O2 loss rates using the EGEON model

In order to calculate the volume integrated neutral loss rates we use the O2 tenuous

atmosphere described by the EGEON model (Plainaki et al., 2012, 2013), including

the release yields revised described in Plainaki et al. (2015). We consider two different
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configurations between Jupiter, Europa and the Sun: Conf. 1 subsolar point coincides

with the leading hemisphere apex and Conf. 3 subsolar point coincides with the trailing

hemisphere apex 1. For case Conf. 1 the spatially averaged O2 column density given by

the revised EGEON model is equal to 2.7× 1018m−2 whereas for Conf. 3 it is equal to

1.1×1019m−2. As shown in Table 3.10 the charge exchange reaction rates due to the pick

up and ionosphere processes differ by almost three orders of magnitude. Moreover, the

O2 atmospheric density falls off by more than 2 orders of magnitude after the first 100s of

kms (the low-altitude scale height of the EGEON model is equal to ∼ 20 km (see Milillo

et al. (in press)). This means that the dominant charge-exchange loss takes place at low

altitudes and is due to the slow, i.e. 10 km/s, O+
2 (ionospheric) population. Therefore

in our calculation we use the respected reaction rate. The O2 volume integrated loss

rates due to the dominant loss mechanisms (these are charge-exchange, electron impact

ionization and electron impact dissociation, in order of efficiency) are presented in Table

3.12. For comparison, in Table 3.12, we also present the results obtained through other

studies. The respective volume integrated loss rates calculated through different models

are also presented. We note that in our estimates, the volume-integrated loss rates are

proportional to the neutral column density and they depend on some more or less free

parameters (e.g. the energy of the ionospheric particles). Given the uncertainty in the

determination of such parameters, the derived estimations can be used to validate the

whole approach of the loss calculations to first order, but cannot be considered as an

independent estimation of the absolute loss of the atmosphere.

Table 3.12 shows that the ionosphere plasma-neutral interaction is the most impor-

tant agent for the exospheric O2 depletion. However, we note that the estimated rates

corresponding to charge-exchange presented in Table 3.12 do not represent a net atmo-

sphere loss as a single charge-exchange reaction results both in the loss of a relatively cold

O2 atmospheric molecule (via charging) and the production of an energetic O2 molecule;

the latter will leave the Europan gravity field only if its velocity is larger than the es-

cape velocity and if its trajectory does not intersect the surface. We can assume that

the first condition is satisfied almost always since the O+
2 velocity (in the current study

assumed to be equal to ∼ 10 km/s, following Sittler et al. (2013)) is generally larger

than the gravitational escape velocity (equal to ∼ 2.02 km/s) and since this collisional

process can be considered elastic, though the incoming ion will lose some momentum

during the collision. The second condition, however, is not necessarily satisfied for every

reaction. Therefore, the net exosphere loss rate due to charge exchange for the exosphere

will result from the balance between the gain due to the freshly generated energetic O2

molecules (i.e those that do not escape Europa’s gravity field) and the loss due to the

freshly ionized O2. Due to this fact, the estimates presented in Table 3.12 are upper lim-

1Note that in this work the same nomenclature as in Plainaki et al. (2013) has been considered for
the different configurations, between Jupiter, Europa and the Sun.
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Table 3.12: Volume integrated O2 loss rates calculated through different models. From Luc-
chetti et al. (in press).

Model Smyth &
Marconi
(2006)
(1026s−1)

(Shematovich
et al., 2005)
(1026s−1)

(Saur
et al., 1998)
(1026s−1)

(Dols et al.,
2016)
(1026s−1)

This work
(1026s−1)

O2 loss pro-
cesses

Ionization 4.61,2; 5.33,2 1.2 4.8 2.2 - 8.84,5

Dissociation 0.039 3 1.3 - 5.34,6

Charge-
exchange

2.7 0.881 ; 0.0143 7.3 29.31 13 - 514,7,8

1 This value corresponds to Model D in Shematovich et al. (2005).
2 This value includes ionization, charge-exchange and sweeping effects.
3 This value corresponds to Model B in Shematovich et al. (2005).
4 The lower and upper limits in the rates estimated in this work correspond to cases (a) and (b), respectively,

for the considered O2 exosphere (see text).
5 Plasma conditions corresponding to Case (2) were considered (see Table 3.7).
6 Plasma conditions corresponding to Case (3) were considered (see Table 3.7).
7 The charge-exchange volume integrated rates in this work were estimated for the reaction O+

2 +O2 → O2+O+
2

which is the most effective one according to Table 3.10. The ionosphere O+
2 density given by Sittler et al.

(2013) was considered in the calculation.
8 Assuming that at least half of the fresh energetic O2 molecules produced through charge-exchange have

velocities directions favoring escape, the net loss due to this process is expected to have values equal to 1/2
of the ones presented here (see also text).

its for the loss of the O2 atmosphere due to charge exchange. Recently, Dols et al. (2016)

modeled symmetrical charge-exchange cascades between ionospheric O+
2 and exospheric

O2 and showed that the total production rate of ejected neutrals could be even an order

of magnitude larger than the production of ions. In the current calculation, we make

the rough assumption that at least half of the fresh energetic O2 molecules produced

through charge-exchange have velocities directions favouring escape. In this case, we

deduce that the expected loss of the exospheric O2 due to charge-exchange has values

equal to 1/2 of the ones presented in Table 3.12 hence ranging between 6.5 × 1026s−1

and 26 × 1026s−1. We note that the charge-exchange process in any case will lead to

a modification of the energy distribution of the exospheric population since it favours,

simultaneously the loss of cold populations and the gain of energetic ones. An accurate

estimate of the spatial and temporal dependence of the exosphere loss as well as the

determination of the O2 energy distribution function resulting from the consideration of

all loss processes, requires a detailed analytical or Direct Simulation Monte Carlo model

(DSMC) and goes beyond the scope of this work.
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As shown in Table 3.12, the O2 volume integrated loss rates estimated in this study are

by more than one order of magnitude larger than those calculated by Smyth & Marconi

(2006) and by Shematovich et al. (2005). On the other hand, our results are consistent

with those by Dols et al. (2016). This is because this study, as well as the study by Dols

et al. (2016), includes the charge exchange loss process between a high density ionospheric

O+
2 population and the atmospheric O2. Small differences between our estimated rates

and those by Dols et al. (2016) are due to the atmospheric model used as a basis for the

calculation. Dols et al. (2016) used the atmosphere column densities of Smyth & Marconi

(2006) whereas we used the ones of EGEON, in Plainaki et al. (2013), revised due to yield

corrections (see Milillo et al. (in press); Plainaki et al. (2015)). On the other hand, Saur

et al. (1998) estimated the neutral losses due to both ionization and charge exchange.

In order to make a comparison of the results presented in this work and those in Saur

et al. (1998), some clarifications of the vocabulary and the method used by these authors

are necessary. Regarding ionization, what was actually calculated by Saur et al. (1998)

was the flux of the ionized neutrals hitting the surface of Europa or being convected out

of Europa’s atmosphere. Such a process is referred to as “pick up loss” in that paper.

Regarding charge exchange, Saur et al. (1998) computed a flux of ions out of the exobase

generated after a collision of an ion with a neutral. We note that in that calculation

the authors considered only the charge exchange cross section, whereas the respective

loss process was referred to as “atmospheric sputtering”2. On the basis of the above, it

is reasonable to compare quantitatively our ionization and charge exchange results with

the pick up loss and atmospheric sputtering results, respectively, presented in Table

3.8 in the Saur et al. (1998) paper. We find that the volume integrated ionization loss

rate calculated by Saur et al. (1998) is consistent with our results. In addition, our net

charge-exchange volume integrated loss rate (ranging from 6.5×1026s−1 to 26×1026s−1)

is similar to the one of Saur et al. (1998), when considering the exosphere configuration

Conf. 1 (i.e. leading hemisphere is the illuminated one) and it is ∼ 3 times larger in the

exosphere configuration Conf. 3 (i.e. trailing hemisphere is the illuminated one). Since

the loss rate is proportional to the exosphere density, the difference between our results

and those in Saur et al. (1998) can be explained by differences in the assumed neutral

density and cross sections. For the Conf. 1 atmosphere configuration the EGEON

model gives a column density equal to 2.7 × 1018m−2, similar to the one assumed by

Saur et al. (1998) (equal to 5 × 1018m−2) hence the averaged volume integrated loss

rates are very similar. For the Conf. 3 atmosphere configuration the EGEON model

gives a column density equal to 11 × 1018m−2 which is 2.2 times higher than the one

assumed by Saur et al. (1998). We note that such a dense exosphere is the result of

the effectiveness of the radiolysis process leading to a major surface release (and hence

2Note that according to Johnson (1994) the term “atmospheric sputtering” should refer to the com-
bination of many processes rather than a single one
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exosphere generation) when the trailing hemisphere of the moon is illuminated, as shown

in Plainaki et al. (2013). Nevertheless, the obtained rates (see Table 3.12) are not strictly

proportional since energy dependent cross section were considered in this study. Saur

et al. (1998) assumed an effective charge exchange cross section value corresponding

to an ion velocity of 60 km/s, equal to 2.6 × 10−19m2. Moreover, on the basis of the

method used in our work, our estimates (Table 3.12, 6th column) depend on the column

density of the considered neutral model (rather than its atmospheric scale height) as

well as on the actual rate corresponding to the loss process. Other estimates (see Table

3.12) were based on different methods (e.g. numerical methods as in Dols et al. (2016).

It is, however, very difficult to test principle dependencies of those estimations and

to understand the extent to which the (volume integrated) results in the past works

depended either on the neutral (plasma) models themselves (e.g. scale height variation)

or on the considered efficiencies of the loss processes. To achieve such a distinction (that

would permit a more in depth comparison between different studies) detailed knowledge

on each past model is necessary. Such an investigation, however challenging, goes beyond

the scope of the current study.

Add-on to current knowledge

The main conclusion of the current study is that one of the dominant loss processes of

Europa’s exosphere is coming from the charge-exchange between the tenuous O2 atmo-

sphere and its own atmosphere ions. However, this rather unexpected result should be

treated with caution due to uncertainties in the determination of the energy distribution

function and density of the pickups ions due to limited in situ measurements. It is known

that electron densities up to 104 cm−3 were measured very close to the moon’s surface,

however, the determination of the dominant ion species is still open. O+
2 could be the

main ion, but in the very near-surface layer the situation is rather complicated due to

the following two reasons: 1) O+
2 can be lost via its dissociative recombination with the

ionospheric (thermal) electrons; and 2) ionization chemistry in the O2 + H2 + H2O mix-

tures results in the domination of the O+
2 , O2H

+ and H3O
+ ions (Larsson et al., 2012).

Although H2 and H2O are minor species, nevertheless they should change the ion com-

position near surface. Such reactions could reduce our above estimated charge-exchange

rates up to one order of magnitude.

The physics of plasma-moon interactions in the Jupiter system is one of the major

interests of the international scientific community, especially in view of the upcoming

JUICE mission (Grasset et al., 2013). The understanding of the spatial and temporal

variability of Europa’s neutral environment as well as of the implications of its interac-

tions with the moon’s internal ocean, require detailed knowledge of the neutral-plasma

interactions. The related existing observations, obtained with HST (Hall et al., 1998;

McGrath et al., 2004; Saur et al., 2011) and to a lesser extent in situ (Kliore et al., 1997;
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Kurth et al., 2001; Hansen et al., 2005), have provided important constraints for deter-

mining the atmospheric source and loss rates. However, due to a) the lack of a direct

measurement of the main atmospheric species; b) the existence of several atmospheric

models based on very different approaches (e.g. assuming either the collisional (e.g. She-

matovich et al., 2005; Smyth & Marconi, 2006) or the collisionless (e.g. Cassidy et al.,

2007; Plainaki et al., 2012) approximation); c) the existence of several plasma interaction

models (e.g. Saur et al., 1998; Sittler et al., 2013; Dols et al., 2016); d) recent debates

on the nature of Europa’s neutral and plasma environments (see paper by Shemansky

et al. (2014)), our current understanding of Europa’s plasma-neutral interactions is still

fragmentary.

In view of the future JUICE mission observations, the need for an overall revision of

the source and loss mechanisms for the exosphere of Europa is urgent. In this context,

we provided in the current study a rough estimation of the efficiency of the dominant

interactions at Europa that can be used as a starting point in future modeling studies

of the moon’s environment. Such models could be used as basic tools for planning the

future JUICE observations and, later, for interpreting the actual exosphere and plasma

measurements.

3.4 Summary

The presence of a subsurface ocean is a primary topic on Europa, in addition the recent

discovery of a transient plume at the south pole by HST observations (Roth et al., 2014b)

has raised many questions regarding the interaction between the subsurface/surface and

the outer environment of Europa in terms of active processes affecting the icy satellite.

In view of the future JUICE/ESA mission and of our involvement in JANUS camera,

in this chapter we focused on different topics related to the presence of a subsurface

ocean in order to achieve further information about the satellite and be of help to the

observation planning of JUICE/JANUS.

Firstly, we simulated the possible detection of a plume deposit on the surface of Eu-

ropa by the JANUS instrument, the camera on board the JUICE mission. We study

the detection of the plume deposit basing our assumption on the work of Fagents et al.

(2000), that suggested that some surface features on Europa can be the result of cryovol-

canic eruptions, i.e. plumes. Hence, we simulated a possible plume deposit of particles in

terms of an albedo distribution because we expect a snow plume deposit with an albedo

higher than the surrounding surface of Europa. We found that the simulated plume

deposit could be detectable as bright spot by JANUS during the Europa flybys phase.

In particular, we focus our attention on a sub-phase of E9 flyby, the AP-d sub-phase,

making observation simulation in order to achieve the SNR of images that will be taken

in FPAN filter. We demonstrate that plume deposit, which is composed mainly by snow,
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will be visible in respect to the Europa surface during the flyby Ap-d sub-phase even

with lower SNR than those expected.

Nevertheless, further studies about this issues will be performed in accordance with

additional development of the JUICE mission and possible changes in JANUS observa-

tion strategies. In particular, in the next future we will focus our attention on other

flybys phases in order to understand if we could observe this phenomenon not only in

Ap-d phase. If it will be the case, we will monitor the variability of the phenomenon

with time. In addition, limb observations will be studied in more detail once the JANUS

observation scenario will be defined.

Then, in the second part of the Chapter, we obtained all loss rates characterising

the main species of Europa’s exosphere that could be relevant to the investigation of

Europa’s interaction with Jupiter’s magnetospheric plasma and can be of use during

the observations planning preparation for JUICE mission to Europa (Lucchetti et al., in

press). In fact an accurate characterisation of the exospheric background is a mandatory

prerequisite to study the transient plumes (Roth et al., 2014b), with their potential

implications on the nature of the moon’s inner ocean. We have studied the loss rates

of the main components of Europa’s tenuous atmosphere (O2, H2O, H2) on the basis

of energy-dependent reaction cross sections found in literature and, for the first time,

updated plasma conditions obtained from the recent state to the art model by Bagenal

et al. (2015). We performed calculations for electron impact dissociation and ionization

processes, for charge-exchange (considering plasma torus, pick up and ionosphere ions)

and for photo processes (for both cases of quite and active Sun). For the dominant (in

the near-surface regions) O2 species, the volume integrated loss rates were estimated,

using the revised (for the surface release yields) O2 exosphere described by the EGEON

model, for two different configuration between Europa, Jupiter and the Sun (i.e. subsolar

point coincides with the leading hemisphere apex and subsolar point coincides with the

trailing hemisphere apex) (Plainaki et al., 2013). The main results can be summarized

as follows:

1. For both H2O and H2 tenuous atmospheres, the loss rates depend on the highly

variable plasma conditions. The cold plasma electron population is primarily re-

sponsible for H2O and H2 loss, in particular maximum loss is expected under

median plasma conditions and median or high plasma conditions for H2O and H2,

respectively.

2. For the O2 exosphere, we find the O2 − O+
2 charge-exchange process may have

a dominant role in the exosphere loss, in agreement with Dols et al. (2016) but

contrary to what has been suggested by previous atmospheric models.. Using

the revised O2 column density based on the estimation from the EGEON model

(Plainaki et al., 2013), we estimate that the O2 − O+
2 charge exchange rate is in
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the range (13 − 51) × 1026s−1, depending on the configuration between Europa,

Jupiter and the Sun.

In view of future missions to the Galilean satellites, namely JUICE mission to Europa,

the current estimates could be useful for the planning of observation strategies and, later,

for the interpretation of the observations.

Work in progress

In the following, we briefly introduce a work in progress we are performing regarding the

estimation of the icy shell thickness, which is one of the main open questions regarding

Europa. We support the hypothesis of the presence of an ocean layer using the fractal

percolation theory. This method allows to study the spatial distribution of vents and

fractures in terms of their self-similar clustering, in other words vents and fractures show

spatial distribution characterised by scale invariance.

Figure 3.20: Left: Galileo SSI (solid state imager) resolution map of Europa. To investigate
the possible depth of subsurface ocean, we chose the region at highest resolution from Galileo
flyby with an average resolution ranging between 200 and 250 m/px. Right: Detailed of the
mapped surface features (domes and extrusions).

The distribution of these vents reflects the presence of a liquid reservoir hydraulically

connected to the surface via a fracture network. On Earth, a direct genetic and spatial

link between subsurface fractures and vent occurrence has previously been observed (e.g.

Tibaldi, 1995; Connor et al., 2000; Mazzarini, 2004; Mazzarini & Isola, 2010). Thus, the

scale invariance in vent distribution is thought to reflect the fractal properties of the

connected part of a fracture network that allows liquid to pass from deep reservoirs

through the crust to the surface. This method was tested on Earth and already applied

on Mars, in particular on Ascreus Moon (Pozzobon et al., 2014), and on Enceladus.
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Our idea is to apply the same method on Europa, analysing the domes and extrusions

that we see on the surface in order to determine the depth of the subsurface liquid ocean,

Figure 3.20. Hence, the spatial distribution of vents should be analysed in terms of their

self-similar clustering and a two-point correlation method must be used to measure the

fractal dimension of the vents population (Mazzarini, 2004; Mazzarini & Isola, 2010).

The correlation coefficient characterising the vents distribution will be defined by a lower

and upper cut-off, that should represent a mechanical discontinuity and the thickness

of the icy crust, thus connected to the liquid reservoir. Preliminary results suggest an

icy shell thickness equal to 120 km, which is larger than what previously published. For

this reason, we have to check and refine our fractal method and, in addition, we have

to analyse also lineaments distribution with this fractal method (because also fractures

distribution can be studied in term of self-similar clustering) in order to find if results

coming from different surface features will be in agreement.



Conclusion

This PhD thesis focuses on the analysis of different structures and phenomena related to

high energetic processes, which characterise the Solar System bodies. Specifically, this

work concerns three main topics: (i) the numerical model of one of the most geological

energetic process, i.e. impact cratering; (ii) the investigation of the fragmentation pro-

cesses that could have formed boulders on comet Churyumov-Gerasimenko 67P; (iii) the

analysis of a possible transient plume originating from cryovolcanic events on Europa,

the Jovian icy satellite, combined with an accurate characterisation of its exospheric

background.

Numerical modelling of impact craters

Impact cratering is a complex process and its current understanding combines both ob-

servational data and computer simulations. In this thesis we used the iSALE hydrocode,

that is a code used for modelling highly dynamic events, and in particular the prop-

agation of the shock wave as well as the behaviour of geologic materials over a broad

range of stress and deformation states. In particular, we simulated two different impact

structures present on terrestrial planets, specifically on Mercury and Mars. After an

overview of the impact craters geological context, we obtained the crater profile from

DTMs, which are generated using satellite images, and we used it to compare our output

simulation results.

For the case of Mercury, we analysed a particular landform showing a steep-sided cone

with associated pyroclastic deposits in order to investigate its origin. This morphology

could suggest a genesis involving explosive volcanism, but through modelling we assessed

the feasibility of another hypothesis. In fact, we demonstrated that the cone is the

intrinsic central peak of an impact crater; indeed the cone lies within an encircling

trough, which is in turn encircled by a ridge that could be interpreted as the rim crest

of a 43 km crater diameter (Thomas et al., 2015). We found that the landform at this

location is not a volcanic construct, but likely represents the extreme end-member of

a large class of volcanic vents circumferential to impact-crater central peak structures,

indicating that the crater-related faults control explosive volcanism at such locations.

The hydrocode modelling was essential to determine the plausibility of our hypothesis.
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We then considered Mars, and we studied the Firsoff crater located in Arabia Terra,

i.e. a representative sample of other many craters presented in that region. This crater is

heavily degraded and for this reason the impact modelling provides a better understand-

ing of the subsequent geologic processes that led to crater post-impact modification, con-

sequently defining which rheological structure of the Martian upper crust characterises

Arabia Terra and if there are local conditions that favour the formation of central bulges.

We have performed several simulations with different sets up in order to understand how

different impact conditions affect the crater formation. We found two possible compo-

sitional scenarios that fit correctly the pristine crater profile of Firsoff: the first consists

of a basaltic crust of fractured megaregolith whose thickness is at least 20 km, while the

second introduces the presence of an anorthosite layer below the fractured basalt stra-

tum. This latter compositional scenario is supported by recent discoveries of anorthosite

patches on Martian highlands (Carter & Poulet, 2013). Since there are many craters

similar to the Firsoff case, a further development of the work will be the study of other

similar craters in Arabia Terra in order to strongly constrain the rheological structures

we found through the modelling.

Boulders on comet 67P

We investigated the surface of comet Churyumov-Gerasimengo 67P focusing our atten-

tion on the possible energetic events that lead to the formation of boulders; i.e. blocks

that are ubiquitous on the surface of the comet. Previous studies of boulders, which

are found on asteroids and planets, are usually associated to impacts, but in 67P comet

case the impact formation process is not sufficient and other formation processes must

be invoked such as sublimation, fragmentation, outbursts and gravitational falls.

In this thesis, we used OSIRIS images to derive the size frequency distribution of

boulders larger than 7 m performing global and localised studies. From these results we

found that similar geomorphological setting display similar cumulative size-frequency

distribution suggesting that energetic formation processes forming boulders, as well as

thermal fracturing, pit formation or gravitational collapse, likely occurred in different

areas of the comet (Pajola et al., 2015). Specifically, on the basis of the different cu-

mulative size-frequency distribution, boulders were classified in the following way: (i)

boulders associated to collapse/pit formation; (ii) boulders associated to gravitational

events triggered by sublimation and/or thermal fracturing; (iii) boulders associated to

the evolution of the origin material formed during both collapsing and gravitational

events. In addition, we found that these energetic formation processes occur equally

on different spatial scale of 67P, in fact the analysis of the Abydos site, the location

where Philae is supposed to be, revealed a size frequency distribution of boulders up

to 1 m that is strictly correlated to the geomorphological unit where Philae stands, in

agreement with what previously found (Lucchetti et al., 2016).
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When smaller spatial scaler are taken into account, we used CIVA images to investi-

gate the formation of microscopic structures, i.e. grains that look like pebbles, in order

to understand if the same energetic processes occur also on cm-scale. The size-frequency

distribution of pebbles is not similar to the ones previously found, suggesting two dif-

ferent explanation: (i) pebbles could be formed primordially, or (ii) the fragmentation

process maybe works in a different way on smaller spatial scale. In this context, our

next step will be the development of a fragmentation model that could explain better

the formation of pebbles and of boulders in general.

Europa

The presence of a subsurface ocean is a primary topic for Europa, in particular the

interaction between subsurface/surface and outer environment of the satellite is still

under investigation. In addition the recent discovery of a transient plume at the south

pole by HST observations (Roth et al., 2014b) has raised further questions about this

intriguing icy satellite. In view of the future ESA/JUICE mission and, in particular,

of our involvement in the JANUS camera, we focused on two main topics in order to

achieve additional information about the satellite and to be of help to the observation

planning of JUICE/JANUS.

Firstly, we simulated the possible detection by the JANUS visible camera of a plume

deposit, originating by cryovolcanic events, on the surface of Europa. We built up a

simple model of a plume deposit and considered a specific sub-phase of the JUICE mis-

sion, i.e. the E9 Ap-d Europa flyby phase. We studied the possible detection of the

plume deposit during this phase analysing its albedo distribution. Indeed, we expect the

detection of a snow deposit that has a higher albedo than the surrounding Europa’s sur-

face. We calculated the SNR of possible observational scenarios during the Europa flyby

and demonstrated that the simulated plume deposit will be identifiable as a bright spot

by JANUS, even with lower SNR than those expected. Future studies about this issue

will be performed, in particular we will investigate limb observations, once the JANUS

observational scenario will be defined, and we will apply our model to other phases of

the flyby in order to understand if we could observe the phenomenon not only in the

phase considered in this work and, hence, monitoring its variability. The existence and

the possible detection of these plumes is fundamental to better understand the interac-

tion between the satellite subsurface and surface, in fact these transient phenomena are

strictly related to the presence of a subsurface ocean and, hence, also to its depth.

Consequently, we investigated the exospheric background of Europa that is a manda-

tory prerequisite to study the transient plumes, in particular we provided a long list

of reactions regarding the loss processes of Europa’s tenuous atmosphere. The main

results coming from this analysis involves the O2 exosphere loss: we found that the

charge-exchange process has a dominant role in the exosphere loss, contrarily to what
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previously suggested by other works (Lucchetti et al., in press). The results coming

from this work can be useful for the planning of observation strategies and, later, for the

interpretation of the data coming from future missions to the Galilean satellites.

Future works

Eventually, a future work, which was briefly described in the previous chapter, will be the

estimation of the icy shell thickness of Europa that is pivotal in adding hints about the

nature of plumes. In fact, plumes have a liquid source beneath the icy crust of Europa

and, within this context, the study of the surface lineaments and vents distribution

can be used as a base to calculate the icy thickness of the satellites. We expect that

the energetic cryovolcanism causes fractures and vents that reflect a fractal framework

present in the Europa’s surface allowing the rise of the liquid reservoir and therefore the

occurrence of the plume. A fractal clustering analysis of surface features will be used

to analyse their framework and, in particular, their spatial distribution will be utilised

to verify their relationship to a fractured percolating network directly connected to the

subsurface ocean. Such an approach has been already applied on Earth for volcanic

vents and mud volcanoes, on vents present on Martian volcanoes to investigate the

plumbing system deep structure, and on Enceladus, that shows many similarities with

Europa. From this fractal method we will be able to estimate the icy shell thickness

characterising Europa.



Appendix A

This Appendix A contains the refereed published articles where Alice Lucchetti has

worked on and published during the 3 PhD years (2013-2015).

• Loss rates of Europa’s tenuous atmosphere

Planetary and Space Science, in press

Authors: Lucchetti A., Plainaki C., Cremonese G., Milillo A., Cassidy T., Jia

X., Shematovich V.

• Characterization of the Abydos region through OSIRIS high-resolution

images in support of CIVA measurements

Astronomy & Astrophysics, Volume 585, id.L1, 5 pp. (2016)

Authors: Lucchetti A., Cremonese G., Jorda, L., Poulet, F., Bibring, J.-P.,

Pajola, M., La Forgia, F., Massironi M. and the OSIRIS team

• Size-frequency distribution of boulders ≥10 m on comet 103P/Hartley

2

Astronomy & Astrophysics, Volume 585, id.A85, 8 pp. (2016)

Authors: Pajola M., Lucchetti A., Bertini I., Marzari F., A’Hearn M., La Forgia

F.,; Lazzarin M., Naletto G., Barbieri C.

• Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-

Gerasimenko

Astronomy & Astrophysics, Volume 583, id.A37, 17 pp. (2015)

Authors: Pajola M., Vincent J.B., Guttler C., Lee J.C., Bertini I., Massironi M.,

Simioni E., Marzari F., Giacomini L., Lucchetti A., Barbieri C., Cremonese G.

and the OSIRIS team

• A cone on Mercury: Analysis of a residual central peak encircled by an

explosive volcanic vent

Planetary and Space Science, Volume 108, p. 108-116. (2015)

Authors: Thomas R., Lucchetti A., Cremonese G., Rothery D., Massironi M.,

Re C., Conway S.J., Anand M.
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M., Lazzarin, M., Moreno, J. L., Marzari, F., Michalik, H., Naletto, G., Sabau, L., Thomas,

N., Wenzel, K.-P., Bertini, I., Besse, S., Ferri, F., Kaasalainen, M., Lowry, S., Marchi, S.,

Mottola, S., Sabolo, W., Schröder, S. E., Spjuth, S., & Vernazza, P. (2010). E-Type Asteroid

(2867) Steins as Imaged by OSIRIS on Board Rosetta. Science, 327 , 190–. doi:10.1126/

science.1179559.

Keller, H. U., Barbieri, C., Lamy, P., Rickman, H., Rodrigo, R., Wenzel, K.-P., Sierks, H.,

A’Hearn, M. F., Angrilli, F., Angulo, M., Bailey, M. E., Barthol, P., Barucci, M. A., Bertaux,

J.-L., Bianchini, G., Boit, J.-L., Brown, V., Burns, J. A., Büttner, I., Castro, J. M., Cremonese,
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Lopez Moreno, J. J., Marzari, F., Mottola, S., Naletto, G., Preusker, F., Scholten, F.,

Thomas, N., Tubiana, C., & Vincent, J.-B. (2016). Characterization of the Abydos region

through OSIRIS high-resolution images in support of CIVA measurements. A&A, 585 , L1.

doi:10.1051/0004-6361/201527330.

Lucchetti, A., Plainaki, C., Cremonese, G., Milillo, A., Cassidy, T., Xianzhe, J., & Shematovich,

V. (in press). Loss rates of Europa’s tenuous atmosphere. Planet. Space Sci., .

Lundborg, N. (1968). Strength of rock–like materials. Journal of Rock Mechanics and Mining

Sciences, .

Marchi, S., Massironi, M., Cremonese, G., Martellato, E., Giacomini, L., & Prockter, L. (2011).

The effects of the target material properties and layering on the crater chronology: The case

of raditladi and rachmaninoff basins on mercury. Planetary and Space Science, 59 , 1968 –

1980. URL: http://www.sciencedirect.com/science/article/pii/S0032063311001917.

doi:http://dx.doi.org/10.1016/j.pss.2011.06.007. Mercury after the {MESSENGER}
flybys.

Marchi, S., Morbidelli, A., & Cremonese, G. (2005). Flux of meteoroid impacts on Mercury.

A&A, 431 , 1123–1127. doi:10.1051/0004-6361:20041800.

Massironi, M., Simioni, E., Marzari, F., Cremonese, G., Giacomini, L., Pajola, M., Jorda, L.,

Naletto, G., Lowry, S., El-Maarry, M. R., Preusker, F., Scholten, F., Sierks, H., Barbieri, C.,

Lamy, P., Rodrigo, R., Koschny, D., Rickman, H., Keller, H. U., A’Hearn, M. F., Agarwal, J.,

Auger, A.-T., Barucci, M. A., Bertaux, J.-L., Bertini, I., Besse, S., Bodewits, D., Capanna,

C., da Deppo, V., Davidsson, B., Debei, S., de Cecco, M., Ferri, F., Fornasier, S., Fulle, M.,
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Kovacs, G., Kramm, R., Kührt, E., Küppers, M., La Forgia, F., Lara, L. M., Lazzarin, M., Lin,

Z.-Y., Lopez Moreno, J. J., Magrin, S., Michalik, H., Mottola, S., Oklay, N., Pommerol, A.,

Thomas, N., Tubiana, C., & Vincent, J.-B. (2015). Two independent and primitive envelopes

of the bilobate nucleus of comet 67P. Nature, 526 , 402–405. doi:10.1038/nature15511.

Mazrouei, S., Daly, M. G., & Barnouin, e. a. (2014). Block distributions on Itokawa. Icarus,

229 , 181–189. doi:10.1016/j.icarus.2013.11.010.

http://dx.doi.org/10.1016/j.pss.2013.01.009
http://arxiv.org/abs/1212.3626
http://dx.doi.org/10.1063/1.458852
http://dx.doi.org/10.1051/0004-6361/201527330
http://www.sciencedirect.com/science/article/pii/S0032063311001917
http://dx.doi.org/http://dx.doi.org/10.1016/j.pss.2011.06.007
http://dx.doi.org/10.1051/0004-6361:20041800
http://dx.doi.org/10.1038/nature15511
http://dx.doi.org/10.1016/j.icarus.2013.11.010


BIBLIOGRAPHY 153

Mazzarini, F. (2004). Volcanic vent self-similar clustering and crustal thickness in the northern

Main Ethiopian Rift. Geophys. Res. Lett., 31 , L04604. doi:10.1029/2003GL018574.

Mazzarini, F., & Isola, I. (2010). Monogenetic vent self-similar clustering in extending continental

crust: Examples from the East African Rift System. Geosphere, 6 , 567–582. doi:10.1130/

GES00569.1.

McEwen, A. S., Eliason, E. M., Bergstrom, J. W., Bridges, N. T., Hansen, C. J., Delamere,

W. A., Grant, J. A., Gulick, V. C., Herkenhoff, K. E., Keszthelyi, L., Kirk, R. L., Mellon,

M. T., Squyres, S. W., Thomas, N., & Weitz, C. M. (2007). Mars Reconnaissance Orbiter’s

High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research

(Planets), 112 , 5. doi:10.1029/2005JE002605.

McGetchin, T. R., Settle, M., & Chouet, B. A. (1974). Cinder cone growth modeled af-

ter Northeast crater, Mount Etna, Sicily. J. Geophys. Res., 79 , 3257–3272. doi:10.1029/

JB079i023p03257.

McGrath, M. A., & Johnson, R. E. (1989). Charge exchange cross sections for the io plasma

torus. Journal of Geophysical Research: Space Physics, 94 , 2677–2683. URL: http://dx.

doi.org/10.1029/JA094iA03p02677. doi:10.1029/JA094iA03p02677.

McGrath, M. A., Lellouch, E., Strobel, D. F., Feldman, P. D., & Johnson, R. E. (2004). Satellite

atmospheres. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter. The Planet,

Satellites and Magnetosphere (pp. 457–483).

McKinnon, W. B., & Alexopoulos, J. S. (1994). Some Implications of Large Impact Craters and

Basins on Venus for Terrestrial Ringed Craters and Planetary Evolution. LPI Contributions,

825 , 81.

McSween, H. Y., Grove, T. L., & Wyatt, M. B. (2003). Constraints on the composition and

petrogenesis of the Martian crust. Journal of Geophysical Research (Planets), 108 , 5135.

doi:10.1029/2003JE002175.

McSween, H. Y., Taylor, G. J., & Wyatt, M. B. (2009). Elemental Composition of the Martian

Crust. Science, 324 , 736–. doi:10.1126/science.1165871.

Melosh, H. (2000). A new and improved equation of state for impact computations. In Lunar

and Planetary Science Conference.

Melosh, H. (2011). Planetary Surface Processes. Cambridge Planetary Science. Cambridge

University Press. URL: http://books.google.it/books?id=3bQD1DJgliIC.

Melosh, H. J. (1977). The Role of Slumping in Crater Modification. In Lunar and Planetary

Science Conference (p. 658). volume 8 of Lunar and Planetary Science Conference.

Melosh, H. J. (1979). Acoustic fluidization - A new geologic process. J. Geophys. Res., 84 ,

7513–7520.

Melosh, H. J. (1982). A schematic model of crater modification by gravity. J. Geophys. Res.,

87 , 371–380. doi:10.1029/JB087iB01p00371.

http://dx.doi.org/10.1029/2003GL018574
http://dx.doi.org/10.1130/GES00569.1
http://dx.doi.org/10.1130/GES00569.1
http://dx.doi.org/10.1029/2005JE002605
http://dx.doi.org/10.1029/JB079i023p03257
http://dx.doi.org/10.1029/JB079i023p03257
http://dx.doi.org/10.1029/JA094iA03p02677
http://dx.doi.org/10.1029/JA094iA03p02677
http://dx.doi.org/10.1029/JA094iA03p02677
http://dx.doi.org/10.1029/2003JE002175
http://dx.doi.org/10.1126/science.1165871
http://books.google.it/books?id=3bQD1DJgliIC
http://dx.doi.org/10.1029/JB087iB01p00371


154 BIBLIOGRAPHY

Melosh, H. J. (1989). Impact cratering: A geologic process.

Melosh, H. J., & Gaffney, E. S. (1983). Acoustic fluidization and the scale dependence of impact

crater morphology. J. Geophys. Res., 88 , 830. doi:10.1029/JB088iS02p0A830.

Melosh, H. J., & Ivanov, B. A. (1999). Impact Crater Collapse. Annual Review of Earth and

Planetary Sciences, 27 , 385–415. doi:10.1146/annurev.earth.27.1.385.

Melosh, H. J., & McKinnon, W. B. (1978). The mechanics of ringed basin formation. Geo-

phys. Res. Lett., 5 , 985–988. doi:10.1029/GL005i011p00985.

Melosh, H. J., & Ryan, E. V. (1997). NOTE: Asteroids: Shattered but Not Dispersed. Icarus,

129 , 562–564. doi:10.1006/icar.1997.5797.

Melosh, H. J., Ryan, E. V., & Asphaug, E. (1992). Dynamic fragmentation in impacts -

Hydrocode simulation of laboratory impacts. J. Geophys. Res., 97 , 14735. doi:10.1029/

92JE01632.

Metrich, N., & Wallace, P. (). Volatile abundances in basaltic magmas and their degassing paths

tracked by melt inclusions. In Rev. Mineral. Geochem..

Michalski, J. R., Cuadros, J., Niles, P. B., Parnell, J., Deanne Rogers, A., & Wright, S. P. (2013).

Groundwater activity on Mars and implications for a deep biosphere. Nature Geoscience, 6 ,

133–138. doi:10.1038/ngeo1706.

Michikami, T., Nakamura, A. M., Hirata, N., Gaskell, R. W., Nakamura, R., Honda, T., Honda,

C., Hiraoka, K., Saito, J., Demura, H., Ishiguro, M., & Miyamoto, H. (2008). Size-frequency

statistics of boulders on global surface of asteroid 25143 Itokawa. Earth, Planets, and Space,

60 , 13–20. doi:10.1186/BF03352757.

Milillo, A., Orsini, S., & Daglis, I. A. (2001). Empirical model of proton fluxes in the equato-

rial inner magnetosphere: Development. J. Geophys. Res., 106 , 25713–25730. doi:10.1029/

2000JA900158.

Milillo, A., Plainaki, C., De Angelis, E., Mangano, V., Massetti, S., Mura, A., Orsini, S., &

Rispoli, R. (in press). Analytical model of Europa’s O2 exosphere. Planet. Space Sci., .

Milillo, A., Wurz, P., Orsini, S., Delcourt, D., Kallio, E., Killen, R. M., Lammer, H., Massetti,

S., Mura, A., Barabash, S., Cremonese, G., Daglis, I. A., Angelis, E., Lellis, A. M., Livi, S.,

Mangano, V., & Torkar, K. (2005). Surface-Exosphere-Magnetosphere System Of Mercury.

Space Sci. Rev., 117 , 397–443. doi:10.1007/s11214-005-3593-z.

Morabito, L. A., Synnott, S. P., Kupferman, P. N., & Collins, S. A. (1979). Discovery of currently

active extraterrestrial volcanism. Science, 204 , 972. doi:10.1126/science.204.4396.972.

Moratto, Z. M., Broxton, M. J., Beyer, R. A., Lundy, M., & Husmann, K. (2010). Ames Stereo

Pipeline, NASA’s Open Source Automated Stereogrammetry Software. In Lunar and Plane-

tary Science Conference (p. 2364). volume 41 of Lunar and Planetary Science Conference.

http://dx.doi.org/10.1029/JB088iS02p0A830
http://dx.doi.org/10.1146/annurev.earth.27.1.385
http://dx.doi.org/10.1029/GL005i011p00985
http://dx.doi.org/10.1006/icar.1997.5797
http://dx.doi.org/10.1029/92JE01632
http://dx.doi.org/10.1029/92JE01632
http://dx.doi.org/10.1038/ngeo1706
http://dx.doi.org/10.1186/BF03352757
http://dx.doi.org/10.1029/2000JA900158
http://dx.doi.org/10.1029/2000JA900158
http://dx.doi.org/10.1007/s11214-005-3593-z
http://dx.doi.org/10.1126/science.204.4396.972


BIBLIOGRAPHY 155

Morbidelli, A., & Rickman, H. (2015). Comets as collisional fragments of a primordial planetes-

imal disk. A&A, 583 , A43. doi:10.1051/0004-6361/201526116. arXiv:1504.04512.

Mottola, S., Arnold, G., Grothues, H.-G., Jaumann, R., Michaelis, H., Neukum, G., & Bibring,

J.-P. (2007). The Rolis Experiment on the Rosetta Lander. Space Sci. Rev., 128 , 241–255.

doi:10.1007/s11214-006-9004-2.

Mottola, S., Arnold, G., Grothues, H.-G., Jaumann, R., Michaelis, H., Neukum, G., Bibring,
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