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Riassunto: 

Questa tesi riguarda aspetti della farmacologia di due polifenoli: il Resveratrolo e lo 

Pterostilbene.  

 

Queste molecole di origine vegetale sono oggetto di intensa ricerca alla luce dei loro 

effetti biologici e biomedici, d’interesse per varie e distinte patologie legate all’età, 

infiammazione, cancro, obesità, neurodegenerazione e diabete. Tuttavia i meccanismi alla 

base dell’attività del Resveratrolo ed in particolare dello Pterostilbene non sono 

completamente noti. Inoltre, la presenza di gruppi idrossilici liberi (caratteristica tipica dei 

polifenoli) rende queste molecole un buon substrato per gli enzimi del metabolismo di 

fase II, la cui attività ne limita fortemente la biodisponibilità e lo sfruttamento 

farmacologico. 

Nel corso del mio dottorato mi sono occupato di entrambi questi temi.  Descriverò prima 

il lavoro fatto per aumentare la biodisponibilità delle molecole precedentemente 

menzionate. In secondo luogo riassumerò le indagini sui meccanismi molecolari che 

sottendono l’attività dello Pterostilbene e del Resveratrolo. 

La strategia adottata dal mio gruppo per aumentare la biodisponibilità di questi polifenoli, 

considerati alla stregua di farmaci, si basa sull’uso di pro-farmaci. I pro-farmaci sono 

essenzialmente versioni protette di una determinata molecola. Il Resveratrolo in 

particolare presenta tre siti principali che dovrebbero essere protetti dagli enzimi del 

metabolismo di fase II, i gruppo idrossilici. Attraverso un processo di derivatizzazione 

chimica (svolto dal gruppo della prof.ssa Cristina Paradisi) i gruppi idrossilici sono stati 

protetti con dei gruppi sostituenti. La scelta della funzionalità chimica e dei sostituenti 

usati per la protezione è fondamentale per ottenere un pro-farmaco utile. Noi intendiamo 

i pro-farmaci come molecole terapeutiche adatte per la somministrazione orale. Questa 

via di somministrazione presume un’elevata stabilità negli ambienti gastrici ed intestinali, 

seguita da una moderata instabilità in altri ambiti fisiologici (sangue, tessuti, fluidi 

extracellulari) così da rigenerare il polifenolo naturale, attivo. Durante il mio progetto di 

dottorato abbiamo ottimizzato questi componenti dei pro-farmaci, il legame ed il gruppo 

sostituente, lavorando con il Resveratrolo, e poi abbiamo applicato i risultati ottenuti allo 

Pterostilbene. 

Ho iniziato lavorando su derivati acetalici del Resveratrolo. Abbiamo prodotto e testato 

una serie di composti “decorati” con brevi oligomeri di glicole etilenico legati agli ossigeni 

fenolici con dei legami di tipo acetalico. Tramite esperimenti ex vivo ed in vivo abbiamo 
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identificato la molecola con quattro unità di glicole etilenico ed il legame acetale 

propriamente detto (Resv-O-CH(CH3)-OR) come pro-farmaco più promettente di questa 

serie di composti (capitolo 1: “Acetal derivatives as prodrugs of resveratrol”). 

La deprotezione completa per rigenerare Resveratrolo è risultata tuttavia piuttosto lenta. 

Abbiamo quindi deciso di testare nuovi derivati aventi un diverso legame chimico e diversi 

gruppi sostituenti. Il capitolo 2, “New water-soluble carbamate ester derivatives of 

resveratrol”, presenta i risultati ottenuti con derivati del Resveratrolo recanti PEG 350 o 

sostituenti di tipo zuccherino incorporati come carbammato N,N-di-sostituito. Queste 

molecole presentano il vantaggio di essere più idrosolubili, mantenendo al contempo la 

stessa capacità di permeazione delle membrane cellulari. Tuttavia, l’elevata stabilità di 

questi composti è risultata ancora problematica. 

La stabilità del legame carbammico può essere modulata variando il numero e 

caratteristiche dei sostituenti sull’atomo di azoto; abbiamo quindi testato il legame estere 

carbammato N-mono-sostituito, che ci attendevamo fosse più labile rispetto al suo 

equivalente di-sostituito. I capitoli 3 e 4 (rispettivamente “N-monosubstituted carbamate 

ester derivatives of resveratrol” and “Synthesis and evaluation of hydrophilic carbamate 

ester analogos of resveratrol”) presentano due serie di derivati del Resveratrolo 

contenenti aminoacidi, brevi oligomeri di glicole etilenico o sostituenti zuccherini collegati 

allo “scaffold” stilbenico con questo gruppo. La versione N-mono-sostituita del legame 

estere carbammato presenta un’elevata stabilità in ambiente acido, una buona stabilità a 

pH neutro e viene idrolizzata con un’opportuna cinetica in sangue di ratto. La stabilità di 

questi composti dipende in parte dal gruppo sostituente legato all’azoto. Tuttavia la 

maggior parte di essi ha dimostrato una reattività idonea all’uso come pro-farmaci del 

Resveratrolo (capitolo 3). 

Oltre a subire un rapido metabolismo di fase II, il Resveratrolo è anche poco solubile in 

acqua. La sua somministrazione è limitata a pillole o all’uso di eccipienti. Derivati del 

Resveratrolo solubili in acqua potrebbero quindi facilitarne la somministrazione, 

specialmente se cronica. Nel capitolo 4 presento derivati del Resveratrolo tri- di- e mono-

derivatizzati come esteri carbammici N-monosostituiti; in queste molecole il gruppo 

sostituente è di tipo poliidrossilico (diidrossipropile o 6-deossigalattosio), e conferisce 

un’elevata solubilità in acqua.  I derivati con il galattosio sono sostanzialmente confinati 

nell’intestino, dove si accumulano in particolare nei tratti finali, subendovi la progressiva 

perdita dei gruppi protettori. I derivati con il diidrossipropile vengono invece assorbiti 

dall’intestino. In particolare, i risultati migliori sono stati ottenuti somministrando i 

derivati mono-sostituiti. 

Ho quindi applicato le conoscenze acquisite lavorando con il Resveratrolo allo 

Pterostilbene, l’analogo 3,5-dimetilato del Resveratrolo. Poiché lo Pterostilbene è ancora 

poco caratterizzato abbiamo innanzitutto eseguito una dettagliata analisi sulla 

distribuzione della molecola negli organi dopo la sua somministrazione orale (capitolo 5, 

“Pharmacokinetics and tissue distribution of pterostilbene in the rat”). I livelli di 
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Pterostilbene negli organi sono risultati molto elevati in paragone a quelli misurati nel 

sangue. Tuttavia, eccetto che nel cervello, il suo metabolita solfato è risultato la specie 

più abbondante nei tessuti esaminati. Abbiamo quindi testato una piccola libreria di pro-

farmaci dello Pterostilbene basati sul legame carbammico N-monosostituito e 

amminoacidi naturali. Come ci attendavamo, la stabilità di questi derivati è compresa in 

un intervallo utile per l’uso come pro-farmaci. L’assorbimento dei derivati recanti 

amminoacidi apolari è fortemente incrementato (capitolo 6, “Boosting pterostilbene’s 

effects: a prodrug approach”). Oltre ad un intenso e sostenuto assorbimento intestinale, 

alcuni precursori si sono distinti per i livelli di Pterostilbene rigenerati nel sangue. Uno di 

questi composti è stato selezionato come più promettente e la sua distribuzione negli 

organi dopo somministrazione orale è stata mappata seguendo gli stessi criteri adottati 

per lo Pterostilbene (descritti nel capitolo 5). Il derivato stesso è stato la specie più 

abbondante misurata negli organi esaminati, eccetto che nel cervello, mentre i livelli del 

metabolita solfato erano diminuiti e quelli dello Pterostilbene aumentati nella maggior 

parte degli organi esaminati. I pro-farmaci possono quindi essere utili strumenti per 

aumentare la biodisponibilità di alcuni polifenoli. 

Nella seconda parte del mio dottorato ho condotto indagini, ancora in corso, su aspetti 

dei meccanismi cellulari con cui agiscono Resveratrolo e Pterostilbene. A tal scopo 

abbiamo adottato un duplice approccio, sia in vitro che in vivo, presentati in questa sede 

in due diversi capitoli (capitoli 7 e 8, rispettivamente “Transcription factor EB is a crucial 

transducer of the biomedical action of pterostilbene and resveratrol” and “Pterostilbene 

and cognitive performance in the aged rat model: preliminary findings”). 

Gli effetti pleiotropici attribuiti al Resveratrolo ed allo Pterostilbene possono essere 

spiegati da interazioni multiple con proteine che occupano posizioni apicali in importanti 

processi cellulari. L’autofagia è stata a lungo considerata come un banale processo 

catabolico che si svolge in sottofondo tra le varie attività cellulari. Oggi è invece 

considerata come uno dei processi che controllano l’omeostasi cellulare, e la sua errata 

regolazione è implicata in varie patologie. Oltretutto è stato recentemente scoperto un 

fattore di trascrizione, TFEB, che governa la maggior parte degli eventi correlati con 

l’autofagia lisosomiale. Abbiamo verificato se lo Pterostilbene e il Resveratrolo potessero 

agire anche sulla regolazione di questo fattore di trascrizione. Entrambi si sono dimostrati 

in grado di indurre la traslocazione di TFEB dal citoplasma, dove è normalmente 

confinato, al nucleo, dove può promuovere gli eventi correlati all’autofagia. Abbiamo 

inoltre incluso nel nostro lavoro lo studio di alcuni dei principali metaboliti del 

Resveratrolo e dello Pterostilbene. Mentre i solfati di entrambe le molecole sono risultati 

poco attivi, le forme ridotte, tipicamente prodotte dalla flora intestinale, hanno 

dimostrato un’efficacia simile a quella delle molecole non modificate. Ulteriore lavoro 

rimane per poter chiarire quale via di segnalazione sia a monte dell’attivazione di TFEB. 

Sia il Resveratrolo che (ed in particolare) lo Pterostilbene determinano un aumento dei 

livelli di AMPciclico citosolico in cellule HeLa in coltura, probabilmente inibendo 
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determinate classi di fosfodiesterasi. Ulteriore lavoro sarà necessario per valutare il 

coinvolgimento di altre vie di segnalazione (capitolo 7). 

Nel capitolo 5 riporto che lo Pterostilbene presenta un elevato tropismo per il cervello. Le 

concentrazioni misurate in tale organo danno valore ad alcuni lavori che riportano un 

effetto dello Pterostilbene nel contrastare il deterioramento cognitivo legato all’età ed 

alle patologie neurodegenerative come l’Alzheimer e il Parkinson. I meccanismi 

sottostanti questi effetti dello Pterostilbene sono tuttora poco caratterizzati. Lo 

Pterostilbene, attraverso un incremento di AMPciclico citosolico può attivare la via di 

segnalazione PKA/CREB/CBP che, come illustrato dal premio Nobel Eric Kandel, può 

giustificare gli effetti sulla memoria e sull’apprendimento. La sola attivazione di questa via 

tuttavia non può spiegare gli effetti dello Pterostilbene nel trattamento del 

deterioramento cognitivo legato all’età. Recentemente, è stato scoperto che la proteina 

RbAp48 è negativamente regolata in soggetti anziani, sia topi che umani. Questa proteina 

è fortemente coinvolta nei processi di rimodellamento della cromatina, quindi 

nell’espressione genica. I processi complessi come la formazione della memoria 

richiedono l’espressione coordinata di molti geni. I fattori di trascrizione come CREB 

possono indurre l’espressione genica qualora i geni siano loro accessibili. Il 

rimodellamento della cromatina è quindi un processo richiesto e necessario per l’azione 

del CREB. Abbiamo quindi deciso di verificare se l’attività dello Pterostilbene fosse, 

almeno in parte, mediata dalla modulazione di RbAp48. Allo stato attuale i risultati sono 

ancora preliminari, ma sembra che nel giro dentato di ratti anziani TFEB, RbAp48 e Rest 

siano positivamente regolati dopo somministrazione cronica di Pterostilbene. Altro lavoro 

è però necessario per poter chiarire questi punti, inoltre il numero di animali esaminato 

deve essere incrementato per poter avere un dato statisticamente significativo. 

Infine, nel corso del mio dottorato sono stato coinvolto in altri progetti in corso nel 

gruppo. Questa partecipazione ha fatto sì che io fossi incluso fra gli autori di tre 

pubblicazioni, che includo in questa tesi come capitoli 9, 10 ed 11. 
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Summary: 

This thesis deals with aspects of the pharmacology of two polyphenols: Resveratrol and 

Pterostilbene. 

 

These plant-made molecules are the object of intensive research due to their biological 

and biomedical activities, of interest in the context of various pathologies related to age, 

inflammation, neurodegeneration, cancer, obesity and diabetes. However, the 

mechanisms underlying the activity of Resveratrol, and in particular of Pterostilbene, are 

not completely known. Moreover, the presence of free hydroxyl group(s) (the common 

feature of polyphenols) renders both molecules good substrates for enzymes of phase II 

metabolism, whose activity strongly limits the bioavailability and the pharmacological 

exploitation of polyphenols. 

During my graduate studies I have worked on both these themes. I will describe first what 

has been done to increase the bioavailability of both molecules. Second, I will summarize 

my ongoing investigation of the molecular mechanisms accounting for the activity of 

Pterostilbene and Resveratrol.  

The strategy adopted by my research group to improve the efficacy of these polyphenols, 

viewed more as pharmaceuticals than as nutrients, involves the use of prodrugs. Prodrugs 

are essentially protected versions of a given molecule. Resveratrol in particular presents 

three main sites that ought to be protected from phase II enzymes, the hydroxyl groups. 

Through chemical derivatization (performed by the group of prof. Cristina Paradisi) the 

hydroxyl groups were reversibly protected with pro-moieties. The choice of linker group 

and of the pro-moiety is of fundamental importance to construct a useful prodrug. We 

intend prodrugs as therapeutic molecules designed for oral administration. This route of 

administration demands a suitable stability in gastric and intestinal environments, and a 

moderate instability in other physiological matrices (e.g. blood, tissues, extracellular 

fluids) so as to regenerate the active polyphenol once in the latter. During my PhD project 

we have optimized the two key components of the prodrug, the bond and the substituent 

group, working with Resveratrol, and we have then applied the results to Pterostilbene. 

I started my project working on acetal derivatives of Resveratrol. We produced and tested 

a series of derivatives bearing short ethyleneglycol oligomers (OEG) linked to the phenolic 

oxygens via acetal/formal/ketal bonds. Through ex vivo and in vivo tests we have 

identified the acetal derivative Resv-O-CH(CH3)-OR, with R = tetrameric OEG, as the most 
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promising prodrug of this series (chapter 1, “Acetal derivatives as prodrugs of 

resveratrol”). 

Complete deprotection to give Resveratrol was however rather slow. We thus decided to 

test new derivatives based on a different bond system, and different substituent groups. 

Chapter 2, “New water-soluble carbamate ester derivatives of resveratrol”, presents the 

results obtained with Resveratrol derivatives bearing a PEG 350 or a sugar promoiety 

joined to the stilbenoid core through a N,N-di-substituted carbamate ester functionality. 

These molecules present the advantage of an increased water solubility, while 

maintaining to some degree the ability to permeate membranes. However, the high 

stability of these molecules was again problematic. 

The stability vs. hydrolysis of the carbamate bond can be modulated varying the number 

and characteristics of the substituents on the Nitrogen atom; we tested therefore the N-

mono-substitute carbamate group, which we expected to be more labile than its di-

substitued analog. Chapters 3 and 4 (respectively “N-monosubstituted carbamate ester 

derivatives of resveratrol” and “Synthesis and evaluation of hydrophilic carbamate ester 

analogos of resveratrol”) present two series of derivatives of Resveratrol comprising 

amino acids, short ethyleneglycol oligomers (OEG) or sugar promoities linked to the 

scaffold via this group. The N-mono-substituted version of the carbamate bond shows 

high stability in acid, a suitable stability at near-neutral pH, and it undergoes hydrolysis 

with opportune kinetics in rat blood. The stability of these molecules depends in part on 

the substituent group on Nitrogen. However most of our derivatives hydrolyzed with a 

time course compatible with their use as prodrugs of Resveratrol (chapter 3). 

Besides its rapid phase II metabolism, Resveratrol is also poorly soluble in water. Its 

administration is therefore usually as pills or with excipients. Water-soluble prodrugs 

would facilitate Resveratrol administration, especially if given chronically. In chapter 4 I 

present Resveratrol derivatives in which all three, two or one hydroxyl group(s) are 

incorporated into N-monosubstituted carbamate ester moieties; in these molecules the 

pro-moiety is a polyhydroxylated group (dihydroxypropyl or 6-deoxygalactose), and 

confers high water solubility. Galactosyl derivatives were substantially confined to the 

intestine, where they accumulated especially in the lower segments, undergoing the 

progressive loss of the protecting groups. Dihydroxypropyl derivatives instead were partly 

absorbed. Notably, the best results were achieved using mono-substituted derivatives.  

I have then applied the knowledge and know-how gained working with Resveratrol to 

Pterostilbene, the 3,5-dimethylated analogue of Resveratrol. Since Pterostilbene is still 

poorly characterized from a pharmacological point of view we first of all performed a 

detailed analysis of the distribution of the molecule and its major metabolite in the 

organs of rat after its oral administration (chapter 5, “Pharmacokinetics and tissue 

distribution of pterostilbene in the rat”). The levels of Pterostilbene in the organs were 

much higher than those measured in blood. Nonetheless, its sulfate was the predominant 

specie in all tissues examined except the brain.  
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We tested a small library of pro-drugs of Pterostilbene bearing amino acids linked to the 

phenolic oxygen via the N-monosubstitute carbamate ester group. As expected, the rates 

of hydrolysis of these derivatives fell in a range suitable for their use as prodrugs. 

Absorption of Pterostilbene derivatives bearing apolar amino acids was greatly increased 

(chapter 6, “Boosting pterostilbene’s effects: a prodrug approach”). Apart from an intense 

and sustained absorption from the intestinal wall, a few precursors were notable for the 

levels of Pterostilbene they regenerated in blood. One of these compounds was selected 

as the most promising one and its distribution in rat organs was analyzed, following the 

same criteria adopted for Pterostilbene (described in chapter 5). The prodrug itself was 

the major specie measured in all organs examined, except the brain, while levels of the 

sulfate metabolite were decreased and those of regenerated Pterostilbene increased in 

most of the organs examined (in comparison with the administration of Pterostilbene 

itself). Prodrugs can thus be a useful tool to increase the bioavailability of some 

polyphenols. 

In the second phase of my PhD project I conducted an investigation, still to be completed 

at this point, of the cellular processes set in motion by Pterostilbene and Resveratrol. For 

this purpose we adopted in vitro and in vivo approaches, presented here in two separate 

chapters (chapter 7 and chapter 8, respectively “Transcription factor EB is a crucial 

transducer of the biomedical action of pterostilbene and resveratrol: work in progress” 

and “Pterostilbene and cognitive performance in the aged rat model: preliminary 

findings”). 

The pleiotropic effects attributed to Resveratrol and Pterostilbene can be explained by 

multiple interactions with proteins occupying apical positions in important and 

interconnected signaling cascades. Autophagy has been long considered as a “banal” 

background catabolic process. Currently it is instead recognized to be one of the 

important processes that maintain cell homeostasis, and its dysregulation is implicated in 

various pathologies. A transcription factor, TFEB, that governs most of the events in 

lysosomal autophagy has recently attracted much interest. We thus verified whether 

Pterostilbene and Resveratrol might have an impact on the regulation of this transcription 

factor. Both proved capable of inducing the translocation of TFEB from the cytosol, where 

it is normally confined, to the nucleus, where it can promote autophagy-related events. 

We also included in our work the study of some of the major metabolites of Resveratrol 

and Pterostilbene. While sulfates of both molecules were poorly active, the reduced 

forms, typical products of the colonic flora, showed an efficacy comparable to that of the 

unmodified parent molecules. Further work is needed to clarify what signaling  pathways 

are involved upstream of TFEB activation. Both Resveratrol and (in particular) 

Pterostilbene determined an increase of cytosolic cAMP concentration in cultured HeLa 

cells, probably by inhibiting certain classes of phosphodiesterases, but more work is 

needed to explore the possible involvement of other pathways, suggested by some 

aspects of our results (chapter 7). 
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In chapter 5 I have reported that Pterostilbene presents an elevated tropism for the brain. 

The concentrations measured in this organ strengthen the reports showing an effect of 

Pterostilbene in contrasting cognitive aging and neurodegenerative diseases such as 

Alzheimer’s and Parkinson’s. The mechanisms accounting for these effects are however 

poorly characterized. Pterostilbene, through an increase in cytosolic cAMP, can activate 

the PKA/CREB/CBP pathway, which, as shown by Nobel prize winner Eric Kandel, can 

account for the effects on memory formation and learning, boosted by this molecule. The 

activation of this pathway cannot however explain by itself the striking effects of 

Pterostilbene in the treatment of cognitive aging. Recently, the protein RbAp48 has been 

discovered to be downregulated in aged individuals (humans and mice). This protein is 

deeply involved in the chromatin remodeling, thus in the modulation of gene expression. 

Processes like memory formation require the coordinated expression of many genes. 

Transcription factors, such as CREB, can induce gene expression provided that the genes 

themselves are accessible. Chromatin remodeling is thus required for the action of CREB. 

We thus decided to investigate if Pterostilbene activity might be, at least in part, 

mediated by a functional  interaction with RbAp48. Our results are still preliminary, but it 

seems that in the Dentate Gyrus of old rats the transcription factor TFEB, RbAp48 and 

Rest are upregulated upon chronic administration of Pterostilbene. Further work needs to 

be done in order to clarify these points, and the statistical set ought to be increased to 

achieve significance.  

Finally, during my doctoral training I have also been involved in other ongoing projects in 

my group. This involvement has led to my presence in the author list of three 

publications, which I include in this thesis as chapters 9, 10 and 11. 
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Organization of the thesis: 

After a relatively brief general introduction, the bulk of this thesis is organized in chapters 

corresponding to individual topics of research. This organization has been favoured over a more 

traditional, monograph-style layout in part because my work actually developed as a series of 

closely related - but distinct - activities, and mainly with the intent of facilitating reading. Some of 

the chapters correspond to papers already published or almost ready to be submitted, in other 

cases the specific parcel of work was still unfinished as the thesis was due. The corresponding 

section reports the available data and comments, and mentions what remains to be done. At the 

end I have included three papers of which I am a co-author, but which fall outside my main 

research project, although they are related to it. Thus, the chapters are not homogenous in length 

and relevance, and there are may be repetitions. I hope the benefits of such an organization 

outweigh this disadvantage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

11 
 

Introduction:  

Polyphenols are a large and diversified class of plant-derived compounds. Their precise 

definition has been a matter of debate. In 2011 Stephen Quideau proposed this 

definition: “the term polyphenol should be used to define plant secondary metabolites 

derived exclusively from the shikimate-derived phenylpropanoid and/or the polyketide 

pathway(s), featuring more than one phenolic ring and being devoid of any nitrogen-

based functional group in their basic structural expression”.1 However more relaxed 

definitions of polyphenols are generally accepted. Fig 1 presents some of the most 

common and studied classes of polyphenols.  

 

Polyphenols are normally produced by plants in response to stressors such as pathogens 
2, 3 or U.V. radiation,3, 4 or in the regulation of physiological processes (i.e. hormone 

production; 5). 

Much evidence (at least in in vitro studies) suggests that these compounds can be 

potentially useful for human health care. Currently it is widely accepted that these 

molecules can have a role in contrasting cancer, obesity, cardiovascular diseases and 

disorders related to aging, such as neurodegeneration, diabetes and chronic inflammation 

(e.g. 3, 6-13). 

Among the thousands of known plant polyphenols (5000 - 8000 different molecules), 

during my PhD project I worked with Resveratrol and its analogue Pterostilbene (fig 2), 

which were already the major model polyphenols in use in my group when I joined it. The 

choice had been motivated in part by the eminence of these two compounds (especially 

Fig. 1. Some of the most important polyphenol subfamilies. Fig. 1. Some of the most important polyphenol subfamilies. 
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resveratrol) in the field, due to the evidence linking their intake to a variety of (potential) 

positive effects on consumers’ health, and in part by their relatively simple structure and 

fair stability, which obviously facilitate their chemical elaboration and analysis. 

 

Resveratrol (3,5,4’-trihydroxy-trans-stilbene) is one of the polyphenols that have 

attracted the most attention from scientists and physicians. It is a stilbene found in 

grapes, wine, certain roots and its celebrity can probably be traced back to the “French 

paradox”.14, 15 Two decades of intensive research support Resveratrol as a promising drug 

for the treatment or prevention of many human diseases such as type 2 diabetes, 

Alzheimer, Parkinson, cancer, inflammation-related pathologies, cardiovascular problems 

and obesity (e.g. 16-24). 

Pterostilbene (3,5-dimethoxy-4’-hydroxy-stilbene) is found primarily in blueberries and 

grapes. The presence of the two methyl groups renders Pterostilbene more lipophilic than 

Resveratrol. This property in turn leads to a higher bioavailability of the molecule since it 

can diffuse across membranes and tissues more easily. The effects of Pterostilbene are 

still little known, since research has focused mainly on Resveratrol, but it is nowadays 

accepted that its bioavailability makes Pterostilbene even more interesting than 

Resveratrol.25-32 

The biological effects of polyphenols have been ascribed both to their redox properties 

and to interaction with proteins. The structure of polyphenols allows delocalization of 

charges and unpaired electrons, rendering them good radical scavengers (and thus 

antioxidants; 33, 34). An excessive load of radical oxygen species (ROS) can cause damage at 

both cellular and tissue level. A model that remained popular for several years thus 

ascribed the beneficial activities of polyphenols to a direct anti-oxidant action. However, 

in vitro studies that demonstrate the ROS scavenging activity of polyphenols are usually 

performed at high concentrations (20-200 µM), which can hardly be relevant in vivo 

because of their poor bioavailability (see below) and because cells normally possess a 

pool of effective antioxidants, e.g. glutathione, with an overall concentration in the mM 

range. Furthermore, depending on factors such as their concentration, the pH, the 

presence of metal ions capable of maintaining a redox cycle (Fe2+/3+, Cu+/2+) or of oxidizing 

enzymes such as tyrosinases (“polyphenol oxidases”), polyphenols can act as pro-oxidants 

rather than anti-oxidants.34-43 

Fig 2: Molecular structure of Resveratrol and Pterostilbene. 

Resveratrol Pterostilbene 
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Some evidence suggests that a mild ROS intoxication can lead to an increase in health and 

lifespan by inducing the production of proteins involved in the regulation of the oxidative 

level and of mitochondrial homeostasis (mitochondria are the main site of ROS 

production; 44-48). This is the concept of hormesis, which may help explain, in particular, 

preventive effects.49-56 The scheme envisions redox-sensitive transcription factors and 

enzymes driving a feedback loop to maintain the cell’s oxidative balance (fig. 3).55, 57-60 

Potentiation of antioxidant defenses induced by mild pro-oxidants such as dietary 

polyphenols may help blunt a major oxidative challenge, as occurring, for example, at 

reperfusion after ischemia,61, 62 and have positive effects on health and lifespan in 

general.  

On the other hand, current opinion attributes a major role to the interaction of 

polyphenols with proteins, which may account for hormetic or preconditioning effects as 

well. Several such interactions have been documented. For example, resveratrol has been 

shown to interact with hemoglobin,63 human and bovine serum albumin,63-66 caseins,67 β-

lactoglobulin,68, 69 glutathione sulfotransferase-π (GSTP1),70 the mitochondrial ATPase 

(F1),71 PKC-α and –β (but not -ε and -ζ),72 integrin αVβ3,73 estrogen receptor-β (ER-β),70 

dihydronicotinamide riboside quinone reductase 2 (NQO2),74 cycloxygenase-1 and -2,75 

phosphodiesterases,76, 77 peroxisome proliferator-activated receptor (PPAR) -γ and -α78 

and several other proteins.17 In some cases interactions are known to exist, but the 

binding partner has not yet been identified. For example, high-affinity (10-8 M range) 

binding of stilbenoids to brain and skin receptors has been observed by Quirion and 

coworkers.79-81 Whether this involves the EGCG-binding laminin receptor82-86 or other 

membrane protein(s) remains to be established. In other cases functional effects suggest 

a direct interaction, which however remains to be proven. Examples are PKC-γ87 and a 

splice variant of PKC-δ.88 In most cases these interactions occur with relatively low 

affinity. Thus, e.g., COX-1 and -2 are inhibited by Resveratrol with IC50’s of 2.27 and 3.40 

µM respectively,75 IKK at about 1 µM,89 PKC isoforms α and β are half-inhibited at about 2 

µM,72 PDE’s 1-4 at about 6-14 µM,76 DNA topoisomerase II at an irrelevant 65 µM,90 while 

binding to PPAR-γ occurs with an affinity of 1.4 µM,78 to BSA of about 4 µM.64, 66 These 

data highlight the importance of finding ways to increase the levels of active polyphenolic 

species in the organism, where concentrations in the µM range are seldom reached (see 

below).  

 

 

 

Fig 3: A complex molecular role for ROS in promoting health and 
lifespan. Michael Ristow. Nature Medicine, 2014 
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These various mechanisms and multiple molecular interactions impact on many branches 

of the vast and interconnected signaling network in cells. An intense activity is underway 

in many laboratories to characterize the seemingly endless mechanistic facets of 

polyphenol action, and there appears to be no shortage of work in sight in this field of 

investigation. The cellular biochemistry engaged depends not only on the specific 

phytochemical under study, but also on cell type and conditions. Effects on the apical 

elements of signaling cascades, e.g. on PDE’s, integrins or NF-kB, can impact on a plethora 

of enzymes and transcription factors. Modulation of gene expression via epigenetic 

mechanisms is also important. Resveratrol, to keep the focus on stilbenes, can influence 

the cellular transcriptome and proteome via the nucleosome remodeling and 

deacetylating (NuRD) complex91 and, most famously, via activation of SIRT1, an enzyme 

with multiple activities including that of NAD-dependent lysine deacetylase. The action of 

resveratrol on SIRT1 has been a controversial issue, but a consensus seems to have been 

reached: resveratrol does activate the sirtuin, although it might do so indirectly, with the 

intermediacy of AMPK (92-95 but see 96, 97). A direct interaction and modulation has been 

demonstrated for SIRT3 and SIRT5, two of the three mitochondrial isoforms of the 7-

membered family.98, 99 Sirtuins are thought to modulate gene expression, metabolic 

control, cell survival, development, inflammation, aging, neuroprotection (e.g. 100-105). 

This multi-faceted character of polyphenol action has been identified by some authors as 

their key asset: according to this view the simultaneous engagement of multiple 

pathways and processes hampers a re-adjustment of the system to neutralize the action 

of the drug, as often happens with single-target medicinals.17, 106 For diet-or herbal 

preparation-associated effects, cooperativity among the polyphenolic components, as 

well as with other ingredients of food is also considered important, precisely because 

multiple pathways can be activated.107-111 

In this complex scenario the real effectiveness of polyphenols in vivo is still questioned.112-

114 

Despite the multitude of effects and applications proposed for Resveratrol and 

Pterostilbene, their low bioavailability limits their full pharmacological exploitation.115-117 

An extensive phase II metabolism affects the efficacy of these two compounds in in vivo 

studies. After oral administration in fact mainly metabolites are present in the 

bloodstream (118-120; this thesis, chapter 5 121), a statement that applies to all polyphenols, 

since their hydroxyl groups make them ideal substrates for methyl, glucuronyl- and 

sulpho-transferases. Hence the well-founded suspicion that metabolites, rather than the 

parent aglycones, may actually be responsible for the effects of polyphenols. Work is 

underway to explore this obviously complex matter (e.g. 122-129). What seems clear so far 

is that generalizations ought not to be made: whether a metabolite is active (and at what 

levels) or not depends on the specific molecule and cellular process under study. The 

conjugation step leading to the formation of glucuronides or sulphates is reversible, so 
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that these metabolites may well act as a “reservoir” of aglycone, which can be gradually 

regenerated by the action of glucuronidases and sulfatases.88, 130, 131 

A topic which had received insufficient attention until recently (see for example the 

assessment by Scalbert et al., 132, 133), except for some cases, notably equol (revs.: 134-137), 

is that of the metabolites (catabolites) formed by the intestinal flora in the lower segment 

of the intestine (e.g 138-142). These seem to be more bioavailable than the parent 

polyphenols, accounting probably for most of the total absorption of polyphenol-derived 

species, and may well be responsible for a large part of the benefits provided by 

polyphenol consumption.143-155 

More details on these various aspects can be found in the introductory sections of the 

following chapters, where more specific information is presented to provide a context for 

each aspect of this work. 

The project:  

My Ph.D. thesis work has evolved coming to address two aspects of polyphenol research. 

The final goals of these related projects are to increase polyphenol bioavailability, and 

thus, presumably, efficacy, and to gain a better understanding of mechanistic aspects of 

their biological action. Both lines contribute to the development of a pharmacology of 

these natural compounds, which are generally thought of as nutrients, but arguably 

deserve the status of medicinal compounds as well. As briefly mentioned above, much of 

the research concerning polyphenols has been rightly criticized as involving solely in vitro 

systems and unrealistically high concentrations of the compounds (e.g. 156). To avoid this 

pitfall I have adopted throughout mainly an in vivo approach. 

Bioavailability:  

Continuing a previously established 

project in my research group, I have 

spent the first part of my PhD 

period working on the 

bioavailability of Resveratrol and 

Pterostilbene (chapters 1-6). Most 

of the efforts to improve absorption 

and effectiveness of polyphenols has relied so far on the use of sophisticated 

formulations: a variety of colloidal preparates, nanoparticles, liposomes and other carrier 

systems have been deployed, in many cases using mainly in vitro systems to assess their 

efficacy (for an overview see, e.g., chapter 9 and  157-160). My group has taken the 

alternative – or complementary – prodrug approach: the chemical manipulation of the 

“parent” molecule to optionally modify its physico-chemical properties, e.g. 

solubility/lipophilicity, and uptake from the gastrointestinal tract, and most importantly 

to insert protecting groups which prevent metabolic modifications during absorption and 

Fig 4: Schematic example of a prodrug of Resveratrol 
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distribution to the body organs, until they are eventually eliminated by unassisted or 

enzymatic reactions (hydrolysis), regenerating the active compound. Thus, a prodrug 

comprises the parent molecule (or scaffold, cargo), whose sensitive groups (hydroxyls) 

are linked via a labile bond to a promoiety which can impart desirable properties to the 

construct (fig 4). A key feature is the stability of the linker bond group under physiological 

conditions: it must be neither too high, because of the need to regenerate the active 

compound before excretion, nor, obviously, so low as to make the modification 

meaningless. Another point to be kept in mind is the possible bioactivity of the 

compounds that are generated upon shedding of the protecting groups. The prodrug 

approach is popular in the pharmaceutical industry, but has so far found limited 

application with polyphenols (for an overview see chapter 9, 161 and Biasutto & Zoratti, 
162).  

In collaboration with the group of prof. Cristina Paradisi (Dept. of Chemical Sciences, 

University of Padua) we developed new derivatives of both, Resveratrol and 

Pterostilbene, bearing linker and substituent groups. The stability of each of these 

molecules was assessed in acid and near-neutral solution and in blood. The compounds 

performing satisfactorily in these assays were then assessed for absorption, distribution 

and regeneration of the parent compound in pharmacokinetic experiments. 

Mechanisms of action: 

Despite a consistent number of papers devoted to the interactions and mechanisms of 

action of Resveratrol and related stilbenoids, there is still a strong need for further 

elucidation in order to clarify how these molecules work and thus how they can be 

properly exploited. Furthermore Pterostilbene has gained attention only recently, thus its 

mechanisms of action are still poorly characterized, even though it seems logical to 

anticipate that they may be similar to those of Resveratrol. Recent literature suggests that 

Pterostilbene may be even more potent than Resveratrol, presumably due to its higher 

lipophilicity and built-in partial protection from metabolic modifications. 

In chapters 7 and 8 I will present two investigations, still incomplete at this point, 

centered on the cellular mechanisms underlying the activity of Resveratrol and 

Pterostilbene. We adopted both in vitro and in vivo approaches to clarify - at least in part 

- the molecular readout. Since my research group is part of the CNR Institute of 

Neuroscience we are devoting attention to the activity of Pterostilbene on the Central 

Nervous System. Future developments will include a comparison of its efficacy and of that 

of its prodrugs. Given the relevance of autophagy in many biological processes, we are 

exploring its induction by our two stilbenoids. 

Finally, in chapters 10 and 11 I include two already published articles regarding the 

mitochondrial targeting of resveratrol. The specific targeting of Resveratrol was a parallel 

activity running in my lab, carried out especially by dr. Nicola Sassi and dr. Andrea 
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Mattarei. I was partially involved in this project as well, performing some experiments 

with dr. Sassi.  
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1. Acetal derivatives as prodrugs of resveratrol
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2. New water-soluble carbamate ester derivatives of resveratrol
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3. N-monosubstituted carbamate ester derivatives of resveratrol 

 

Abstract:  

Resveratrol (3, 5, 4’-trihydroxy-trans-stilbene) has demonstrated several biological 

activities, but its pharmacological exploitation in vivo is hindered by its rapid elimination 

via phase II conjugative metabolism at the intestinal level and, most importantly, in the 

liver. One approach to bypass this problem relies on prodrugs. We report here the 

synthesis, characterization, stability and in vivo pharmacokinetic behavior of 7 prodrugs 

of resveratrol, in which the OH groups are engaged in an N-monosubstituted carbamate 

ester (-OC(O)NHR) linkage. The purpose was to modulate the physicochemical properties 

and promote the absorption of the parent compound. Each -NHR group derived from the 

corresponding amine RNH2, selected from methoxyoligoethylene glycol amines and 

natural amino acids. 

We report also a convenient, mild-conditions, high-yield protocol for the synthesis of 

3,4’,5-trisubstituted-resveratrol N-monosubstituted carbamate esters involving the 

synthesis and isolation of activated 4-nitrophenyl urethanes followed by 

transesterification with resveratrol. The N-monosubstituted carbamate ester linkage 

showed good stability under acidic conditions, while it underwent slow hydrolysis at 

physiological pH and in whole blood. After administration of carbamate ester-based 

prodrugs to rats by oral gavage, only the methoxyoligoethylene glycol amines- and 

isoleucine-containing prodrugs were absorbed, reaching the circulation as non-

metabolized and partially hydrolyzed species. 

The results suggest that prodrugs of resveratrol based on the carbamate ester bond have 

the appropriate stability profile to be a convenient tool for the systemic delivery of the 

unconjugated parent compound. The choice of promoiety linked to the nitrogen atom in 

the carbamate linkage is a key factor in modulating the properties of the prodrug (i.e., 

water solubility, LogP, chemical and enzymatic stability, absorbtion through 

biomembranes (or via transporters)). Tri-substituted derivatives of Rv may however be 

too bulky to be efficiently absorbed by the intestine.  
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Introduction: 

Resveratrol (trans-3,5,4’-trihydroxystilbene), is a naturally occurring phytoalexin 

produced by plants in response to fungal, bacterial or viral infection or abiotic stresses, 

such as heavy metal ions or ultraviolet light (UV).1  

A large number of studies have identified a range of activities of biomedical interest for 

this compound, including lifespan extension in model systems,2 protection of the 

cardiovascular apparatus,3-6 anti-inflammatory activity,3 improvement of glucose handling 

in diabetes,7, 8 decrease of fat and cholesterol load,9-12 improvements of functionality in 

aging,2, 13-15 neuroprotection,16 cancer chemoprevention17, 18 and potentiation of 

chemotherapy.19, 20  

The efficacy of orally administered resveratrol depends on its absorption, metabolism, 

and tissue distribution. Clinical studies with humans reported mostly small effects, and 

sometimes controversial results.21, 22 Beneficial effects in vivo are in fact limited by low 

bioavailability. Thus, for example, only trace amounts (below 5 ng/mL, i.e., 0.022 µM) of 

intact resveratrol could be detected in blood after administration of a 25 mg oral dose to 

human volunteers.23 Even when a very large dose (2.5 g - 5.0 g) was administered, 

circulating levels of non-metabolized resveratrol were so low as to be considered 

insufficient for any bioactivity.24 Resveratrol, like other polyphenols, is rapidly converted 

to phase II metabolites (mainly glucuronides and sulfates) during absorption and first pass 

through the liver. These hydrophilic metabolites are re-exported to the intestinal lumen 

by enterocyte ABC transporters, and/or rapidly excreted with feces and urine.24, 25 

Nonetheless, they represent the vast majority of resveratrol-derived species in the body 

and their bioactivities are now under investigation to verify whether they may account for 

resveratrol’s effects. The available data suggest that a level of activity may well be 

maintained in specific contexts (e.g.26-29), but conjugation often determines at least a 

partial loss of bioefficacy.30-35 Retention of bioactivity in vivo may be due in part to the 

metabolites acting as a temporary reservoir from which the more active species may be 

regenerated through the activity of enzymes such as glucuronidases and sulfatases.36, 37 

While investigation of these aspects continues, a reduction or delay of phase II 

metabolism would allow progress in the exploitation of resveratrol for biomedical 

purposes.  

One of the strategies used to prevent drug metabolism and enhance bioavailability and 

effectiveness is based on prodrugs: the sites undergoing phase II conjugation (in this case 

the phenolic hydroxyls) are temporarily protected by removable groups during 

absorption, first pass through the liver and distribution. This approach is expected to 

increase circulating levels of non-metabolized species, with final regeneration of 

resveratrol, thanks to the removal of protective groups by chemical and/or enzyme-

catalyzed hydrolysis.  
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The carbamoyl moiety provides a promising and versatile protecting group for phenols.38, 

39 It is also suitable for fine-tuning the properties of the molecule, since the nitrogen atom 

can carry one or two substituents which can be used to modulate the stability and 

physicochemical properties of the resulting prodrug. Many prodrugs have been 

developed to improve oral bioavailability of phenolic compounds40-42 but surprisingly 

there are only few examples of carbamate ester prodrugs of polyphenols. Mulholland et 

al.
43 reported the synthesis and evaluation of a water-soluble glycine N-monosubstituted 

carbamate ester prodrug (QC12) of the natural occurring flavonoid quercetin. The 

advantage of QC12 was its high aqueous solubility compared to that of quercetin, 

eliminating the need for formulation in DMSO. Quercetin conjugates with amino acids, 

linked through the N-monosubstituted carbamate ester, were also synthesized by Kim et 

al.,
44 and showed remarkable increases in water solubility, stability, and cell permeability 

compared with the parent polyphenol.  

We report here the synthesis of a series of resveratrol prodrugs, consisting of 

methoxyoligoethylene glycol amines and natural amino acids attached to the resveratrol 

phenolic functions via the N-monosubstituted carbamate linkage (scheme 1). 

Short methoxyoligoethylene glycol chains were previously shown to be very useful in 

modulating physicochemical and absorption properties of derivatives, maintaining many 

properties of longer PEG chains with a more favorable drug loading capacity.45 Among all 

possible amino acid substituents, Leu, Ile and Phe were chosen because they are LAT1 

substrates with affinities in the µM range; aminoacid transporters LAT1 and LAT2 have 

been previously exploited for the transport/absorption of drugs, and they are especially 

useful for the permeation of the blood brain barrier.46-48 Threonine was used as “control”. 

Pharmacokinetic studies were then performed in rats, in order to evaluate in vivo 

absorption, stability and metabolism of these new prodrugs.  

 

Scheme 1. Molecular structure of resveratrol (trans-3,5,4’ -trihydroxy stilbene) and 
its carbamate esters. 
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Experimental protocols:  

Materials and instrumentation. Resveratrol was purchased from Waseta Int. Trading Co. 

(Shangai, P.R.China). Other starting materials and reagents were purchased from Aldrich, 

Fluka, Merck-Novabiochem, Riedel de Haen, J.T. Baker, Cambridge Isotope Laboratories 

Inc., Acros Organics, Carlo Erba and Prolabo, and were used as received. TLCs were run on 

silica gel supported on plastic (Macherey-Nagel Polygram®SIL G/UV254, silica thickness 0.2 

mm) and visualized by UV detection. Flash chromatography was performed on silica gel 

(Macherey-Nagel 60, 230-400 mesh granulometry (0.063-0.040 mm)) under air pressure. 

The solvents were analytical or synthetic grade and were used without further 

purification. 1H NMR spectra were recorded with a Bruker AC250F spectrometer 

operating at 250 MHz and a Bruker AVII500 spectrometer operating at 500 MHz. 

Chemical shifts (δ) are given in ppm relative to the signal of the solvent. HPLC-UV analyses 

were performed with an Agilent 1290 Infinity LC System (Agilent Technologies), equipped 

with binary pump and a diode array detector (190-500 nm). HPLC/ESI-MS analyses and 

mass spectra were performed with a 1100 Series Agilent Technologies system, equipped 

with binary pump (G1312A) and MSD SL Trap mass spectrometer (G2445D SL) with ESI 

source. ESI-MS positive spectra of reaction intermediates and final purified products were 

obtained from solutions in acetonitrile, eluting with a water:acetonitrile, 1:1 mixture 

containing 0.1% formic acid. All experiments reported were performed in triplicate unless 

otherwise stated, and means ± standard deviation values are reported. 

Stability assays: 

Stability under physiological-like conditions. The chemical stability of all new compounds 

was tested in aqueous media imitating gastric (0.1 N HCl, NormaFix) and intestinal (0.1 M 

PBS buffer, pH 6.8) conditions. A 5 µM solution of the compound was prepared from a 5 

mM stock solution in DMSO, and incubated at 37°C for 24 hours; samples withdrawn at 

different times were analysed by HPLC-UV. Hydrolysis products were identified by 

HPLC/ESI-MS analysis of selected samples. Stability of compounds 5e and 7d was also 

studied in 0.1 M PBS buffer, pH 7.4 in the absence or in the presence of 35 mg/ml HSA. 

Samples withdrawn at different time points (0, 10 and 30 min; 1, 2, and 4 h) were 

deproteinized adding 1 vol of acetone, and the supernatants obtained after centrifugation 

(12,000 g, 7 min, 4°C) were analysed by HPLC-UV. 

Non-linear curve fitting was performed using Origin 8.0 data analysis software, using the 

equations described in 45, 49. 

Stability in murine whole blood. Rats were anesthetised and blood was withdrawn from 

the jugular vein, heparinised and transferred into tubes containing EDTA. Blood samples 

(1 mL) were spiked with 5 µM compound (dilution from a 5 mM stock solution in DMSO), 

and incubated at 37°C for 4 hours (the maximum period allowed by blood stability). 

Aliquots were taken after 10 min, 30 min, 1 h, 2 h and 4 h and treated as described below 
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(blood sample treatment and analysis). Cleared blood samples were finally subjected to 

HPLC-UV analysis. 

Blood sample treatment and analysis. Before starting the treatment, 4,4’-

dihydroxybiphenyl was added as internal standard to a carefully measured blood volume 

(25 µM final concentration). Blood was then stabilized with a freshly-prepared 10 mM 

solution of ascorbic acid (0.1 vol) and acidified with 0.6 M acetic acid (0.1 vol); after 

mixing, an excess of acetone (4 vol) was added, followed by sonication (2 min) and 

centrifugation (12,000 g, 7 min, 4°C). The supernatant was finally collected and stored at -

20°C. Before analysis, acetone was allowed to evaporate at room temperature using a 

Univapo 150H (UniEquip) vacuum concentrator centrifuge, and up to 40 µL of CH3CN 

were added to precipitate residual proteins. After centrifugation (12,000 g, 5 min, 4°C), 

cleared samples were directly subjected to HPLC-UV analysis. An alternative treatment 

was used for the aminoacid derivatives to achieve acceptable recovery yields: 0.1 vol of 

0.6 M TEA (pH 8.0) and 4 vol of methanol were added to blood samples (previously spiked 

with the internal standard), then sonicated (2 min) and centrifuged (12,000 g, 7 min, 4°C). 

The supernatant was finally collected and stored at -20°C. Before analysis, methanol was 

allowed to evaporate at room temperature using a Univapo 150H (UniEquip) vacuum 

concentrator centrifuge, and up to 40 µL of CH3CN were added to precipitate residual 

proteins. After centrifugation (12,000 g, 5 min, 4°C), cleared samples were directly 

subjected to HPLC-UV analysis. Metabolites and hydrolysis products were identified by  

comparison of chromatographic retention time with true samples. 

The recovery yields of resveratrol and its metabolites have been reported previously.50, 51 

Internal standard recovery from the two different treatments used to extract OEG- or AA- 

derivatives was 68.7 ± 6.3%45 and 91.8 ± 10.7%, respectively. For the new prodrugs the 

corresponding recoveries, expressed as ratio to the recovery of internal standard, were as 

follows: 7d: 0.903 ± 0.104; 8d: 0.967 ± 0.100; 3e: 0.633 ± 0.088. Recoveries of partially 

protected (disubstituted) derivatives were assumed to be the same as those of the 

corresponding fully substituted prodrug. Knowledge of these ratios allowed us to 

determine the unknown amount of analyte in a blood sample by measuring the recovery 

of the internal standard.52 

Since sample treatment includes an evaporation/concentration step, and there are no 

interfering peaks from the tissue matrix, LOD and LOQ were determined relatively to the 

analytical part of the method (HPLC/UV analysis). The derivatives showed the same 

absorption coefficient of resveratrol itself; LOD and LOQ were thus the same of 

resveratrol (i.e., 0.04 and 0.12 M, respectively; 50), and quantification of the analytes in 

blood samples was done using the same calibration curve of resveratrol (y = 5.3085 x), 

taking into account the recovery ratio of each analyte to that of the internal standard.52  

Pharmacokinetics studies. Derivatives 2e-5e and 6d-8d were administered to overnight-

fasted male Wistar rats from the facility of the Department of Biomedical Sciences, 

University of Padova, as a single intragastric dose (88 µmol/Kg, dissolved in 250 µl DMSO). 
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Blood samples were obtained by the tail bleeding technique: before drug administration, 

rats were anesthetised with isoflurane and the tip of the tail was cut off; blood samples 

(80-100 µL each) were then taken from the tail tip at different time points after drug 

administration. Blood was collected in heparinised tubes, kept in ice and treated as 

described above within 10 min. The AUC values were calculated using the trapezoidal 

rule. All experiments involving animals were performed with the permission and 

supervision of the University of Padova Ethical Committee for Experimentation on 

Animals (CEASA) and Central Veterinary Service, in compliance with Italian Law DL 

116/92, embodying UE Directive 86/609. 

Statistics. Significance in comparisons was assessed using the Wilcoxon Rank Test. 

Results and discussion: 

Chemistry (Prof. C. Paradisi’s group): 

Scheme 2 presents the structures of all resveratrol carbamate esters (-OC(O)NHR) 

synthesized in this piece of work. Different R groups were selected, with the aim of 

modulating and optimizing the physicochemical properties of the derivative (see below, 

Section 3.3). Each -NHR group derives from the corresponding methoxyoligoethylene 

glycol amine (RNH2), with 3 (6d), 4 (7d) and 6 (8d) monomeric units or from a natural 

amino acid (leucine (2e), isoleucine (3e), threonine (4e), phenylalanine (5e)).  

Synthesis of N-monosubstituted carbamate esters is usually carried out in two steps: 

reaction of the desired primary amine with phosgene or its equivalent to give a reactive 

isocyanate derivative, followed by its coupling with the phenolic function.53 These 

Scheme 2. Chemical structure of resveratrol and synthetic resveratrol carbamate ester 
prodrugs 
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procedures tested on resveratrol led to low yields for the trisubstituted derivatives, 

probably due to the high reactivity of the isocyanate group promoting side reactions of 

polymerization entraining the stilbene double bond function. In this study we prepared N-

monosubstituted resveratrol carbamate esters through conversion of the corresponding 

primary amines (2-8) to the activated 4-nitrophenyl carbamates (scheme 3).  

Isolation of the activated 4-nitrophenyl carbamate esters (2c-8c) followed by 

transesterification with resveratrol provided the desired N-methoxyoligoethylen glycol 

(6d-8d) derivatives as well as the t-butyl ether-protected resveratrol-amino acid 

carbamate ester conjugates (2d-5d) in good to excellent yields under mild conditions. 

Amino acids attached to the resveratrol phenolic functions via the N-monosubstituted 

carbamate ester linkage (2e-5e) were obtained by removal of the tert-butyl protecting 

group by treatment with TFA (iii in scheme 3). 

Methoxyoligoethylene glycol amines (6-8) (reagents for the synthesis of 6d-8d) were 

synthesized under mild conditions and with high yields by Staudinger reduction of the 

corresponding methoxyoligoethylene glycol azides, in turn obtained by substitution of the 

tosylate function with sodium azide (scheme 4).  

Hydrolysis studies:  

We previously reported that N,N-disubstituted carbamoyl derivatives are too stable 

under physiological conditions to be used as prodrugs.54 In this work, we thus synthesized 

Scheme 3. Synthesis of resveratrol N-monosubstituted carbamate ester prodrugs. 
Reagents and conditions: (i) bis(4-nitrophenyl) carbonate, DMAP, ACN, 50 °C, 3 h; (ii) Resveratrol, 
DMAP, ACN, 50 °C, 24 h; (iii) TFA, DCM, TIPS, from 0 °C to RT., overnight. 

Scheme 4: Synthesis of methoxyoligoethylene glycol amines. 
Reagents and conditions: (i) TsCl, Pyridine, DMAP, DCM, from 0 °C to RT., 6 h; (ii) NaN

3
, 

water/acetone (1:3), 75 °C, overnight; (iii) PPh
3
, THF, RT, 5 h; (iv) Water, 80 °C, overnight. 
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N-monosubstituted carbamoyl derivatives, and assessed their hydrolytic reactivity in 

solutions mimicking gastric and intestinal pH and in blood.  

All the tested derivatives turned out to be stable at pH values close to that of the human 

stomach (no reaction over 24 hours at 37°C in 0.1 N HCl), but underwent hydrolysis at 

near-neutral pH (pH 6.8, representing intestinal pH) and in blood, with kinetics that may 

be suitable for use in vivo.  

Kinetic analysis of the data was performed by assuming that hydrolysis to resveratrol 

occurred via consecutive loss of the three protecting groups in pseudo-first order 

processes and by considering each pair of isomeric intermediates (potentially) resulting 

from the first and second hydrolysis steps as a single species, i.e. the two 

monosubstituted and the two disubstituted intermediates were handled as species B and 

C, respectively (scheme 5).  

Figure 1 shows, as an example, the time course of the four species (A, B, C and D) 

involved in the case of derivative 6d (incorporating methoxytriethylene glycol amine) and 

the fit of the experimental data obtained using a set of equations analogous to those 

utilized by Kozerski et al.
49 and in our previous work.45

 

 

A: trisubstituted resveratrol derivative

B: disubstituted resveratrol derivatives

C: monosubstituted resveratrol derivatives

D: resveratrol

k1, k2, k3: observed pseudo-first order rate constants

A          B          C          Dk1 k2 k3

Scheme 5. Kinetic scheme for hydrolysis of 2e-5e and 6d-8d 

PBS 0.1 M, pH 6.8 Blood a b 

Figure 1. Kinetics of the hydrolysis of derivative 6d in PBS 0.1 M, pH 6.8, 37°C (a) and in rat blood (b). 
Data from a single representative experiment. Kinetic fit of the experimental data (i.e., time profiles 
of derivative 6d and its hydrolysis products), according to scheme 5.  
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The full set of kinetic constants resulting from fits of this type is presented in table 1 and 

in fig 2. 

Interestingly, the first hydrolysis rate constants of the methoxyoligoethylene glycol 

derivatives (6d-8d) in PBS were considerably higher than those of the amino acid 

derivatives. Within the N-Oligo Ethylene Glycol group, the rates increased slightly as the 

length of the chain increased.  

The stability of the carbamate group in acidic solution and its reactivity at higher pH’s are 

coherent with a mechanism of non-enzymatic hydrolysis for phenolic carbamates which 

envisions the deprotonation of the amidic nitrogen  [R(CO)NHR’] followed by loss of the 

phenate anion to give an isocyanate which rapidly adds water and decomposes releasing 

the amine55 (scheme 6).  

 

 

 

t1/2 (h) k1 (h
-1) k2 (h-1) k3 (h

-1) t1/2 (h) k1 (h
-1) k2 (h-1) k3 (h-1)

6d 6 0,104 ± 0,002 0,030 ± 0,002 0,005 ± 0,002 0,5 1,47 ± 0 ,07 0,43 ± 0,04 0,155 ± 0,009

7d 3,5 0,134 ± 0,007 0,042 ± 0,005 0,007 ± 0,003 0,3 2,0 ± 0,2 0,42 ± 0,06 0,17 ± 0,03

8d 4,5 0,158 ± 0,002 0,0510 ± 0,0006 0,0250 ± 0,0002 0,5 1,25 ± 0,08 0,48 ± 0,05 0,22 ± 0,03

5e 17 0,0425 ± 0,0002 0,0136 ± 0,0004 0,002 ± 0,001 0,3 1,86 ± 0,06 0,056 ± 0,007 0,09 ± 0,02

4e 15 0,0530 ± 0,0008 0,014 ± 0,001 0,006 ± 0,001 0,17 3,9 ± 0,2 0,057 ± 0,006 0,45 ± 0,09

3e > 24 0,0221 ± 0,0002 0,004 ± 0,004 * 1 0,63 ± 0,04 0,12 ±  0,03 0,4 ± 0,1

2e > 24 0,0198 ± 0,0003 0,009 ± 0,002 * 1 0,57 ± 0,06 ND# ND#

*: k3 not calculated; monosubstituted derivative detected only at the latest time point
#: k2 and k3 not determined because of co-elution of di- and mono-substituted derivatives with matrix background interfering peaks

Derivative
PBS 0.1 M, pH 6.8, 37°C Blood

Table 1. Observed pseudo first-order rate constants for the hydrolysis of resveratrol derivatives 2e-5e 
and 6d-8d in PBS 0.1M, pH 6.8, 37°C and in rat blood. Values ± standard error are reported as obtained 
from the fit of all the available data. 
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Figure 2. Observed pseudo first-order rate constants for the hydrolysis of resveratrol derivatives 2e-5e 
and 6d-8d in PBS 0.1M, pH 6.8, 37°C (a) and in rat blood (b). Values ± standard error are reported as 
obtained from the fit of all the available data.  
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This mechanism may help explain the differences in reactivity in PBS solution just 

mentioned: in aminoacid derivatives the presence of a (deprotonated) carboxy group in α 

to the amidic nitrogen would be expected to increase the pKa value of the latter, thus 

slowing down the reaction. The relationship between OEG chain length and rate of 

hydrolysis may on the other hand be tentatively attributed to an increasing 

destabilization of the reagent as the chain length increases due to steric crowding.  

While the fits obtained in analyses such as the one exemplified in fig 1 are satisfactory, 

some features of the data indicate that the assumption of equal reactivity of the 

carbamate group in all three possible species (tri-, di- and mono-substituted resveratrol) 

may not be correct. If it were, one would expect a 3:2:1 proportion for the k1:k2:k3 values. 

This is not the case. In particular, in most cases k1 > 1.5k2, suggesting that one of the 

carbamate groups is hydrolyzed preferentially. Indeed, further data obtained in this 

project and presented in chapter 4  indicate that hydrolysis of the substituent groups in 

positions 3,5 is favoured over hydrolysis of the third substituent, in position 4’.   

Hydrolysis rates greatly increased in blood, suggesting the involvement of enzymes. This 

notion is reinforced by the variability of the rates from one compound to the other.  

 

Scheme 6: Hydrolysis scheme of carbamate in alkaline solution. 
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Figure 3. Observed pseudo first-order rate constants for the hydrolysis of resveratrol derivatives 5e 

(a) and 7d (b) in PBS at pH 6.8, at pH 7.4 in the absence or presence of 35 mg/mL human serum 
albumin, and in rat blood. Values ± standard error are reported as obtained from the fit of all the 
available data.  
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Since plasma albumin is thought to have carbamoyl esterase activity (e.g.56, 57) and it was 

reported to be the predominant component of human plasma catalyzing the hydrolysis of 

phenolic carbamate esters,39 we verified its involvement performing hydrolysis studies in 

aqueous buffer at blood pH values (PBS 0.1M, pH 7.4), in the absence or in the presence 

of a physiological concentration of albumin (35 mg/mL). Two representative members of 

the two different families of derivatives were used for these experiments (7d for OEG 

derivatives; 5e (Phe) for aminoacid derivatives). A slight increase in the hydrolysis rate 

was observed increasing pH from 6.8 to 7.4, but a considerably greater increase was 

indeed observed in the presence of albumin.  

Rates measured in rat blood are considerably higher than achieved with 35 mg/mL of 

human serum albumin. There are multiple possible explanations for this observation: rat 

albumin may be more active than its human counterpart; it may be considerably more 

concentrated than 35 mg/mL; blood may contain a significant level of other carbamate 

esterase activities, not present in commercial albumin; a combination of the above may 

apply.  

It is interesting that the acceleration in blood in comparison with albumin is only 

observed for k1 and, to a lesser extent, k3. k2, the rate of loss of a second protecting group 

from the di-substituted hydrolysis intermediate, is similar with 35 mg/mL HSA or BSA and 

in rat blood. This suggests that a non-albumin hydrolase activity in rat blood may be 

responsible for the strong acceleration observed for k1.  

Pharmacokinetics studies: 

All the N-monosubstituted carbamate ester derivatives were tested for their in vivo 

absorption and metabolism. Pharmacokinetic studies were performed with rats, and each 

compound was administered as a single intragastric bolus, in an equimolar dose/kg body 

weight (88 µmol/kg). Blood samples were taken at different time points, treated as 

described in the Materials and Methods section and analyzed.  

Administration of compounds 6d, 4e, 5e did not result in the appearance of detectable 

amounts of resveratrol, derivatives or any metabolites in blood samples. Measurable 

levels of stilbene derivatives could be found in blood samples only in the case of 

compounds 7d, 8d and 3e.  The products of partial hydrolysis of 2e unfortunately turned 

out to co-migrate with background masking blood components carried over by the 

extraction procedure. Their presence, at low concentrations, cannot therefore be 

excluded. 

The pharmacokinetic profiles for 7d, 8d and 3e are presented in fig 4. 
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Both 7d and 8d were rapidly, although poorly, absorbed, peaking 10min after their oral 

administration. In agreement with the results previously obtained with acetal prodrugs 

(45, chapter 1), the derivative with four units of ethyleneglycol (7d) was better absorbed 

than its counterpart with 6 units (0.3µM vs 0.1µM). In both cases the di-substituted 

hydrolysis products were also present. No measurable amounts of mono-substituted 

derivatives or of Resveratrol could be detected. 

The pharmacokinetic profile of 3e was undoubtedly more rewarding than those of 7d and 

8d. After the oral administration of the amino acid derivative, levels of the tri-substituted 

prodrug in the blood were higher than 0.5µM and, notably, remained at this level for 

several hours. This may indicate that the derivative is constantly absorbed from the 

intestinal mucosae or that it is poorly cleared from the body, so that its level in blood may 

be in equilibrium with its level in the various organs. Di-substituted hydrolysis products 

are also present, and, interestingly, their level is similar to that of the tri-substituted 

molecule. 

Conclusions: 

As hypothesized, the N-monosubstituted carbamate bond is a convenient linker for 

prodrugs of Resveratrol. We previously tested the N,N-disubstituited carbamate linker54 

concluding that it was too stable to regenerate Resveratrol with opportune kinetics. The 

N-monosubsituted version as expected is more labile and presents hydrolysis kinetics 

suitable for a prodrug.  

c 

a b 

Figure 4. Pharmacokinetic profiles after 
oral administration of derivatives 3e (a), 
7d (b) and 8d (c). Data represent average 
values ± standard deviation. N = 3 in all 
cases. 
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The pharmacokinetic performance of the derivatives presented here is however poor. Of 

the whole set of molecules tested, only three derivatives could be measured in blood 

after their oral administration. The one incorporating isoleucine gave the best results.  

While the stability of derivatives bearing the N-monosubstituted carbamate linker is 

satisfactory, absorption is still problematic. More work needs to be done in this sense in 

order to enhance intestinal absorption of carbamate ester derivatives of resveratrol. 
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Appendix:  

Synthesis of derivatives 2e-8d:  

Derivatives were synthesized by the group of prof. Cristina Paradisi, Department  of Chemical 

Sciences, University of Padova. 

Preparation of methoxyoligoethylene glycol-amines (6-8, Scheme 2). 

General Procedure for the preparation of methoxyoligoethylene glycol-p-toluenesulfonates (6a-

8a). Pyridine (1.09 mL, 13.5 mmol, 2.0 eq.) and DMAP (1.65 g, 13.5 mmol, 2.0 eq.) were added to 

a solution of methoxyoligoethylene glycol (6.75 mmol, 1.0 eq.) in DCM (10 mL), and the mixture 

was stirred at 0 °C for 15 min. A solution of tosyl chloride (1.93 g, 10.1 mmol, 1.5 eq.) in DCM (10 

mL) was then added dropwise and the reaction mixture was stirred at room temperature for 6 

hours. The resulting mixture was diluted in DCM (150 mL) and washed with 0.5 N HCl (100 mL). 

The aqueous layer was washed with DCM (5 × 75 mL) and all the organic fractions were collected, 

dried over MgSO4 and filtered. The solvent was evaporated under reduced pressure and the 

residue was purified by flash chromatography. 

2-(2-(2-methoxyethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (6a). Purified by flash 

chromatography using DCM:EtOAc 8:2 as eluent. 95 % yield as a colourless oil. 1H-NMR (250 MHz, 

CDCl3) δ (ppm): 2.43 (s, 3 H, Ar-CH3), 3.35 (s, 3 H, -O-CH3), 3.49-3.66 (m, 10 H, 2 × -O-CH2-CH2-O- + 

-O-CH2-), 4.14 (t, 2 H, Ts-CH2-, 
3JH-H = 5.75 Hz), 7.32 (d, 2 H, Ar-H, 3JH-H = 8.25 Hz), 7.77 (d, 2 H, Ar-H, 

3JH-H = 8.25 Hz); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 144.7, 132.9, 129.7, 127.9, 71.8, 70.6, 70.5, 

70.4, 69.2, 68.6, 58.9, 21.6; ESI-MS (ion trap): m/z 337 [M+H2O+H]+. 

2,5,8,11-tetraoxatridecan-13-yl 4-methylbenzenesulfonate (7a). Purified by flash chromatography 

using DCM:Acetone 8:2 as eluent. 94 % yield as a colourless oil. 1H-NMR (250 MHz, CDCl3) δ 

(ppm): 2.41 (s, 3 H, Ar-CH3), 3.33 (s, 3 H, -O-CH3), 3.48-3.67 (m, 14 H, 3 × -O-CH2-CH2-O- + -O-CH2-), 

4.12 (t, 2 H, Ts-CH2-, 
3JH-H = 4.90 Hz), 7.30 (d, 2 H, Ar-H, 3JH-H = 8.30 Hz), 7.76 (d, 2 H, Ar-H, 3JH-H = 

8.00 Hz); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 144.7, 132.8, 129.7, 127.8, 71.8, 70.6, 70.4, 70.4, 

70.4, 70.3, 69.1, 68.5, 58.9, 21.5; ESI-MS (ion trap): m/z 381 [M+H2O+H]+. 
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2,5,8,11,14,17-hexaoxanonadecan-19-yl 4-methylbenzenesulfonate (8a). Purified by flash 

chromatography using DCM:Acetone 6.5:3.5 as eluent. 98 % yield as a colourless oil. 1H-NMR (250 

MHz, CDCl3) δ (ppm): 2.35 (s, 3 H, Ar-CH3), 3.27 (s, 3 H, -O-CH3), 3.42-3.60 (m, 22 H, 2 × -O-CH2-

CH2-O- + -O-CH2-), 4.05 (t, 2 H, Ts-CH2-, 
3JH-H = 5.00 Hz), 7.25 (d, 2 H, Ar-H, 3JH-H = 7.93 Hz), 7.70 (d, 2 

H, Ar-H, 3JH-H = 8.34 Hz); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 144.6, 132.7, 129.6, 127.7, 71.7, 70.5, 

70.4, 70.4, 70.3, 70.3, 70.3, 69.1, 68.4, 58.8, 21.4; ESI-MS (ion trap): m/z 451 [M+H]+. 

General Procedure for the preparation of methoxyoligoethylene glycol-azides (6b-8b). Sodium 

azide (10.72 g, 0.165 mol, 5.0 eq.) were added to a solution of methoxyoligoethylene glycol-p-

toluenesulfonate (6a-8a) (33 mmol, 1.0 eq.) in a water/acetone solution (1:3, 65 mL), and the 

mixture was stirred at 75 °C overnight. The mixture was then diluted in DCM (250 mL) and washed 

with water (250 mL). The aqueous layer was washed with DCM (5 × 100 mL) and all the organic 

fractions were collected, dried over MgSO4 and filtered. The solvent was evaporated under 

reduced pressure and the residue was purified by flash chromatography. 

1-azido-2-(2-(2-methoxyethoxy)ethoxy)ethane (6b). Purified by flash chromatography using 

DCM:Acetone 9:1 as eluent. 99 % yield as a colourless oil. 1H-NMR (250 MHz, CDCl3) δ (ppm): 

3.32-3.36 (m, 5 H, -O-CH3  + -O-CH2-CH2-N3), 3.48-3.58 (m, 2 H, -O-CH2-CH2-N3), 3.48-3.58 (m, 8 H, 2 

× -O-CH2-CH2-O-); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 71.7, 70.5, 70.5, 70.4, 69.9, 58.8, 50.5; ESI-

MS (ion trap): m/z 190 [M+H]+. 

13-azido-2,5,8,11-tetraoxatridecane (7b). Purified by flash chromatography using DCM:Acetone 

85:15 as eluent. 97 % yield as a colourless oil. 1H-NMR (250 MHz, CDCl3) δ (ppm): 3.32-3.36 (m, 5 

H, -O-CH3  + -O-CH2-CH2-N3), 3.48-3.52 (m, 2 H, -O-CH2-CH2-N3), 3.58-3.65 (m, 12 H, 3 × -O-CH2-CH2-

O-); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 71.8, 70.5, 70.5, 70.5, 70.4, 70.3, 69.9, 58.9, 50.5; ESI-MS 

(ion trap): m/z 234 [M+H]+. 

19-azido-2,5,8,11,14,17-hexaoxanonadecane (8b). Purified by flash chromatography using 

DCM:Acetone 8:2 as eluent. 96 % yield as a colourless oil. 1H-NMR (250 MHz, CDCl3) δ (ppm): 

3.28-3.32 (m, 5 H, -O-CH3  + -O-CH2-CH2-N3), 3.43-3.48 (m, 2 H, -O-CH2-CH2-N3), 3.53-3.61 (m, 20 H, 

5 × -O-CH2-CH2-O-); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 71.6, 70.4, 70.4, 70.3, 70.3, 70.3, 70.3, 

70.3, 70.2, 69.7, 58.7, 50.4; ESI-MS (ion trap): m/z 322 [M+H]+. 

General Procedure for the preparation of methoxyoligoethylene glycol-amines (6-8). 

Triphenylphosphine (10.88 g, 41.5 mmol, 1.25 eq.) in anhydrous THF (25 mL) was added dropwise 

to a solution of methoxyoligoethylene glycol-azide (6b-8b) (33.0 mmol, 1.0 eq.) in anhydrous THF 

(25 mL), and the solution was stirred at RT for 5 hours. Distilled water (20 mL) was then added 

and the mixture was heated under reflux (80°C) and vigorously stirred overnight. The resulting 

mixture was evaporated under reduced pressure and the residue was purified by flash 

chromatography. 

2-(2-(2-methoxyethoxy)ethoxy)ethanamine (6). Purified by flash chromatography using 

DCM:MeOH = 9:1 (+ 1% Et3N) as eluent. 97 % yield as a pale yellow oil. 1H-NMR (250 MHz, CDCl3) 

δ (ppm): 1.57 (s, 2 H, -CH2-NH2), 2.79 (t, 2 H, 3JH-H = 5.25 Hz, -CH2-CH2-NH2), 3.31 (s, 3 H, -O-CH3), 

3.41-3.51 (m, 4 H, -O-CH2-CH2-O- + -O-CH2-CH2-NH2), 3.52-3.63 (m, 6 H, -O-CH2-CH2-O- + -O-CH2-

CH2-O-); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 73.2, 71.6, 70.3, 70.3, 70.0, 58.8, 41.5; ESI-MS (ion 

trap): m/z 164 [M+H]+. 
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2,5,8,11-tetraoxatridecan-13-amine (7). Purified by flash chromatography using DCM:MeOH = 9:1 

(+ 1% Et3N) as eluent. 96 % yield as a pale yellow oil. 1H-NMR (250 MHz, CDCl3) δ (ppm): 1.54 (s, 2 

H, -CH2-NH2), 2.71 (t, 2 H, 3JH-H = 5.25 Hz, -CH2-CH2-NH2), 3.22 (s, 3 H, -O-CH3), 3.34-3.41 (m, 4 H, -

O-CH2-CH2-O- + -O-CH2-CH2-NH2), 3.45-3.51 (m, 10 H, 2 × -O-CH2-CH2-O- + -O-CH2-CH2-O-); 13C-

NMR (62.9 MHz, CDCl3) δ (ppm): 40.7, 39.3, 38.0, 37.9, 37.9, 37.9, 37.6, 26.4, 9.1; ESI-MS (ion 

trap): m/z 208 [M+H]+. 

2,5,8,11,14,17-hexaoxanonadecan-19-amine (8). Purified by flash chromatography using 

DCM:MeOH = 9:1 (+ 1% Et3N) as eluent. 98 % yield as a pale yellow oil. 1H-NMR (250 MHz, CDCl3) 

δ (ppm): 1.78 (s, 2 H, -CH2-NH2), 2.76 (t, 2 H, 3JH-H = 5.25 Hz, -CH2-CH2-NH2), 3.26 (s, 3 H, -O-CH3), 

3.39-3.46 (m, 4 H, -O-CH2-CH2-O- + -O-CH2-CH2-NH2), 3.51-3.56 (m, 18 H, 4 × -O-CH2-CH2-O- + -O-

CH2-CH2-O-); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 72.8, 71.6, 70.3, 70.3, 70.3, 70.2, 70.2, 70.2, 

70.0, 58.7, 41.4; ESI-MS (ion trap): m/z 296 [M+H]+. 

General procedure for the preparation of activated 4-nitrophenyl urethanes (2c-11c, Scheme 1). 

A solution of amine (2-8) (8.2 mmol, 1.0 eq.) and DMAP (2.00 g, 16.4 mmol, 2.0 eq.) in acetonitrile 

(15 mL) was added dropwise to a solution of bis(4-nitrophenyl) carbonate (2.74 g, 9.0 mmol, 1.1 

eq.) in acetonitrile (15 mL) and the resulting solution was stirred at 50 °C for 3 hours. The reaction 

mixture was then diluted in DCM (150 mL) and washed with 0.5 N HCl (100 mL). The aqueous 

layer was washed with DCM (5 × 100 mL) and all the organic fractions were collected, dried over 

MgSO4 and filtered. The solvent was evaporated under reduced pressure and the residue was 

purified by flash chromatography. 

tert-butyl 4-methyl-2-(((4-nitrophenoxy)carbonyl)amino)pentanoate (2c). Purified by flash 

chromatography using DCM:Acetone:Hexane = 8:0.5:1.5 as eluent. The first two spots were 

collected and the solvent was evaporated under reduced pressure, then the residue was absorbed 

on silica and purified by flash chromatography using Hexane:Ethyl Ether = 6.5:3.5 as eluent. 65% 

yield as a pale yellow oil. 1H-NMR (250 MHz, CDCl3) δ (ppm): 0.97-1.01 (m, 6 H, 2 × -CH-CH3), 1.49 

(s, 1 H, -CH-CH3), 1.52-1.85 (m, 11 H, 3 × -C-CH3 and -CH-CH2-), 4.27-4.36 (m, 1 H, NH-CH-), 5.56 (d, 

1 H, -CH-NH-, 3JH-H = 8.5 Hz), 7.33 (d, 2 H, Ar-H, 3JH-H = 9.25 Hz), 8.24 (d, 2 H, Ar-H, 3JH-H = 9.25 Hz); 
13C-NMR (62.9 MHz, CDCl3) δ (ppm): 171.7, 155.8, 152.7, 125.1, 122.0, 82.5, 53.2, 42.0, 28.0, 27.9, 

24.9, 22.8, 22.0. ESI-MS (ion trap): m/z 353 [M+H]+. 

tert-butyl 3-methyl-2-(((4-nitrophenoxy)carbonyl)amino)pentanoate (3c). Purified by flash 

chromatography using DCM:Acetone:Hexane = 8:0.5:1.5. 93% yield as a pale yellow oil. 1H-NMR 

(300 MHz, CDCl3) δ (ppm): 0.95-1.38 (m, 5 H, -CH2-CH3, CH3-CH2-), 1.52 (s, 9 H, 3 × -C-CH3), 1.87-

2.04 (m, 1 H, -CH-CH2-), 4.29 (dd, 1 H, -CH-NH-, 3JH-H = 8.7, 4.3 Hz), 5.76 (d, 1 H, -CH-NH-, 3JH-H = 8.6 

Hz), 7.32-7.37 (d, 2 H, Ar-H, 3JH-H = 9.25 Hz), 8.22-8.28 (d, 2 H, Ar-H, 3JH-H = 9.25 Hz); 13C-NMR (300 

MHz, CDCl3) δ(ppm): 172.2, 157.6, 154.6, 145.5, 126.8, 123.7, 84.3, 79.2, 78.8, 78.3, 60.5, 29.8, 

26.9, 17.1, 13.4. ESI-MS (ion trap): m/z 353 [M+H]+. 

tert-butyl 3-(tert-butoxy)-2-(((4-nitrophenoxy)carbonyl)amino)butanoate (4c). Purified by flash 

chromatography using DCM:Acetone:Hexane = 8:0.5:1.5 as eluent. 93% yield as a pale yellow oil. 
1H-NMR (250 MHz, CDCl3) δ (ppm): 1.19 (s, 9 H, 3 × C-CH3), 1.28 (d, 3 H, -CH-CH3, 

3JH-H = 6.3 Hz), 

1.49 (s, 9 H, 3 × -C-CH3), 4.05-4.17 (m, 1 H, -O-CH-), 4.22-4.33 (m, 1 H, NH-CH-), 5.94 (d, 1 H, CH-

NH-, 3JH-H= 9.5 Hz), 7.35 (d, 2 H, Ar-H, 3JH-H = 9.25 Hz), 8.27 (d, 2 H, Ar-H, 3JH-H = 9.25 Hz); 13C-NMR 
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(62.9 MHz, CDCl3) δ(ppm): 169.7, 156.2, 153.8, 144.9, 125.2, 122.2, 82.5, 74.2, 67.2, 60.8, 28.9, 

28.3, 21.4. ESI-MS (ion trap): m/z 397 [M+H]+. 

tert-butyl 2-(((4-nitrophenoxy)carbonyl)amino)-3-phenylpropanoate (5c). Purified by flash 

chromatography using DCM:Acetone = 9:1 as eluent. 81 % yield as a pale yellow oil. 1H-NMR (250 

MHz, CDCl3) δ (ppm): 1.54 (s, 9 H, 3 × -C-CH3), 3.05-3.35 (m, 2 H, 2 × C-CH2), 4.70 (dd, 1 H, -NH-CH-

CH2- J = 14.7, 6.5 Hz), 6.33 (d, 1 H, -NH-, J = 8.3 Hz), 7.22-7.45 (m, 7 H, Ar-H), 8.23 (d, 2 H, Ar-H, 3JH-

H= 15.5 Hz); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 170.4, 155.8, 152.6, 144.6, 136.0, 129.5, 128.1, 

127.5, 124.9, 121.9, 82.7, 55.6, 38.2, 27.3. ESI-MS (ion trap): m/z 387 [M+H]+. 

4-nitrophenyl (2-(2-(2-methoxyethoxy)ethoxy)ethyl)carbamate (6c). Purified by flash 

chromatography using DCM:Acetone = 9:1 as eluent. 87 % yield as a pale yellow oil. 1H-NMR (250 

MHz, CDCl3) δ (ppm): 3.31 (s, 3 H, -O-CH3), 3.37-3.43 (m, 2 H, -O-CH2-CH2-NH-), 3.49-3.63 (m, 10 H, 

2 × -O-CH2-CH2-O- + -O-CH2-CH2-NH-), 6.06 (t, 1 H, -NH-, 3JH-H = 5 Hz), 7.25 (d, 2 H, Ar-H, 3JH-H = 9.25 

Hz), 8.15 (d, 2 H, Ar-H, 3JH-H = 9.25 Hz); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 155.9, 153.1, 144.3, 

124.8, 121.8, 71.6, 70.2, 70.2, 69.9, 69.3, 58.7, 40.8; ESI-MS (ion trap): m/z 329 [M+H]+. 

4-nitrophenyl 2,5,8,11-tetraoxatridecan-13-ylcarbamate (7c). Purified by flash chromatography 

using DCM:Acetone = 85:15 as eluent. 85 % yield as a pale yellow oil. 1H-NMR (250 MHz, CDCl3) δ 

(ppm): 3.17 (s, 3 H, -O-CH3), 3.24-3.30 (m, 2 H, -O-CH2-CH2-NH-), 3.35-3.50 (m, 14 H, 3 × -O-CH2-

CH2-O- + -O-CH2-CH2-NH-), 6.21 (t, 1 H, -NH-, 3JH-H = 5 Hz), 7.15 (d, 2 H, Ar-H,  3JH-H = 9.25 Hz), 8.03 

(d, 2 H, Ar-H,  3JH-H = 9.25 Hz); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 13C-NMR (63 MHz, CDCl3) δ 

(ppm) 156.1, 153.2, 144.3, 124.9, 121.9, 71.7, 70.4, 70.3, 70.2, 70.1, 69.4, 58.7, 41.0; ESI-MS (ion 

trap): m/z 373 [M+H]+. 

4-nitrophenyl 2,5,8,11,14,17-hexaoxanonadecan-19-ylcarbamate (8c). Purified by flash 

chromatography using DCM:Acetone gradient from 8:2 to 6:4 as eluent. 84 % yield as a pale 

yellow oil. 1H-NMR (250 MHz, CDCl3) δ (ppm): 3.30 (s, 3 H, -O-CH3),  3.37-3.50 (m, 4 H, -O-CH2-CH2-

NH-), 3.55-3.61 (m, 20 H, 5 × -O-CH2-CH2-O-), 6.04 (t, 1 H, -NH-, 3JH-H = 5 Hz), 7.26 (d, 2 H, Ar-H,  3JH-

H = 9.25 Hz), 8.17 (d, 2 H, Ar-H , 3JH-H = 9.25 Hz); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 125.8, 124.9, 

121.8, 115.5, 71.6, 70.3, 70.3, 70.3, 70.2, 70.0, 69.3, 58.8, 40.9; ESI-MS (ion trap): m/z 461 [M+H]+. 

General procedure for the preparation of 3,4’,5-N-monosubstituted-resveratrol carbamate esters 

(2d-8d). A solution of resveratrol (0.24 g, 1.1 mmol, 1.0 eq.) and DMAP (0.52 g, 4.2 mmol, 4.0 eq.) 

in ACN (15 mL) was added to a solution of the activated 4-nitrophenyl urethane (2c-8c) (4.8 mmol, 

4.5 eq) in ACN (5 mL) and the resulting mixture was allowed to react under vigorous stirring at 50 

°C for 24 h. The reaction mixture was diluted with methylene chloride (150 mL) and washed with 

0.5 N HCl (100 mL). The aqueous layer was washed with DCM (5 × 75 mL) and all the organic 

fractions were collected, dried over MgSO4 and filtered. The solvent was evaporated under 

reduced pressure and the residue was purified by flash chromatography. 

(E)-di-tert-butyl 2,2'-((((5-(4-(((1-(tert-butoxy)-4-methyl-1-oxopentan-2-yl)carbamoyl)oxy)styryl)-

1,3-phenylene)bis(oxy))bis(carbonyl))bis(azanediyl))bis(4-methylpentanoate) (2d). Purified by flash 

chromatography using CHCl3 as eluent. 55% yield as a colourless oil. 1H-NMR (250 MHz, CDCl3) δ 

(ppm): 0.93 (m, 18 H, 6 × CH-CH3), 1.44 (s, 27 H, 9 × -C-CH3), 1.48-1.53 (m, 9 H, 3 × CH3-CH and 3 × 

-CH-CH2), 4.23-4.32 (m, 3 H, 3 × -NH-CH), 5.64 (m, 3 H, 3 × -NH-), 6.80-7.07 (m, 7 H, H-4, H-3’, H-5’, 

H-2, H-6, H-7, H-8), 7.47 (d, 2 H, 3JH-H = 8.5 Hz, H-2’, H-6’); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 
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172.1, 172.3, 154.0, 153.7, 151.4, 150.5, 139.0, 134.0, 129.2, 134.0, 129.2, 127.3, 127.0, 121.7, 

116.4, 114.2, 82.0, 53.1, 41.9, 27.9, 24.8, 22.8, 21.9. ESI-MS (ion trap): m/z 868 [M+H]+. 

(E)-di-tert-butyl 2,2'-((((5-(4-(((1-(tert-butoxy)-3-methyl-1-oxopentan-2-yl)carbamoyl)oxy)styryl)-

1,3-phenylene)bis(oxy))bis(carbonyl))bis(azanediyl))bis(3-methylpentanoate) (3d). Purified by flash 

chromatography using Hexane: EtOAc = 8:2. The first spot was separated and the remaining spots 

were collected and the solvent was evaporated under reduced pressure, then purified by flash 

chromatography using DCM:Hexane:EtOAc = 7:2:1. 60 % yield as a colourless oil. 1H-NMR (300 

MHz, CDCl3) δ (ppm): 0.87-1.05 (m, 18 H, 3 × CH2-CH3, 3 × CH-CH3), 1.12-1.33 (m, 6 H, 3 × CH-CH2-

CH3), 1.49 (s, 27 H, 9 × C-CH3), 1.87-2.00 (m, 3 H, 3 × CH-CH-CH3), 4.11 (q, 1 H, -NH-CH-CH-, 3JH-H = 

7.1 Hz), 4.23-4.33 (m, 2 H, 2 × -NH-CH-CH-), 5.79 (d, 3 H, 3 × -NH-, 3JH-H = 8.7 Hz), 6.82-7.30 (m, 7 H, 

H-4, H-3’, H-5’, H-2, H-6, H-7, H-8), 7.43 (d, 2 H, 3JH-H = 8.5 Hz, H-2’, H-6’); 13C-NMR (300 MHz, 

CDCl3) δ(ppm): 170.7, 170.6, 154.1, 153.7, 151.4, 150.6, 139.1, 134.0, 129.2, 127.3, 116.3, 114.2, 

82.1, 58.6, 38.2, 27.9, 25.1, 15.3, 11.6. ESI-MS (ion trap): m/z 868 [M+H]+. 

(E)-di-tert-butyl 2,2'-((((5-(4-(((1,3-di-tert-butoxy-1-oxobutan-2-yl)carbamoyl)oxy)styryl)-1,3-

phenylene)bis(oxy))bis(carbonyl))bis(azanediyl))bis(3-(tert-butoxy)butanoate) (4d). Purified by 

flash chromatography using DCM:ethyl ether = 95:5 as eluent. 58 % yield as a colourless oil. 1H-

NMR (250 MHz, CDCl3) δ (ppm): 1.15 (s, 27 H, 9 × C-CH3), 1.23 (d, 9 H, 3 × CH-CH3, 
3JH-H = 6.2 Hz), 

1.45 (s, 27 H, 9 × C-CH3), 4.04-4.25 (m, 6 H, 3 × CH3-CH and 3×NH-CH), 5.78 (d, 3 H, 3 × -NH-, 3JH-H = 

9.5 Hz), 6.85-7.30 (m, 7 H, H-4, H-3’, H-5’, H-2, H-6, H-7, H-8), 7.43 (d, 2 H, 3JH-H = 8.5 Hz, H-2’, H-

6’); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 169.6, 154.7, 154.3, 151.4, 150.5, 139.0, 133.9, 129.1, 

127.3, 127.1, 121.6, 116.2, 114.1, 81.9, 81.8, 73.7, 66.9, 60.3, 28.5, 27.9, 20.8. ESI-MS (ion trap): 

m/z 832 [M+H]+. 

(E)-di-tert-butyl 2,2'-((((5-(4-(((1-(tert-butoxy)-1-oxo-3-phenylpropan-2-yl)carbamoyl)oxy)styryl)-

1,3-phenylene)bis(oxy))bis(carbonyl))bis(azanediyl))bis(3-phenylpropanoate) (5d). Purified by flash 

chromatography using Hexane:Diethyl ether = 7:3 as eluent until the exit of 4-nitrophenol from 

the column, and Hexane:Diethyl ether:EtOAc = 5:3.5:1.5 thereafter. 57 % yield as a colourless oil. 
1H-NMR (250 MHz, CDCl3) δ (ppm): 1.41 (s, 27 H, 3 × -C-CH3), 3.02-3.30 (m, 6 H, 3 × Ph-CH2), 4.16 

(q, 1 H, NH-CH-CH2, 
3JH-H = 7.1 Hz), 4.64 (q, 2 H, 2 × NH-CH-CH2, 

3JH-H = 6.2 Hz), 5.79 (m, 3 H, 3 × -

NH-), 6.81-7.56 (m, 24 H, Ar-H); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 170.6, 154.0, 153.7, 151.6, 

150.8, 139.4, 136.2, 128.8, 128.7, 127.7, 127.3, 122.0, 116.7, 114.5, 82.8, 55.6, 38.6, 28.2. ESI-MS 

(ion trap): m/z 970 [M+H]+. 

(E)-5-(4-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)carbamate)-1,3-phenylene bis((2-(2-(2-

methoxyethoxy)ethoxy)ethyl)carbamate) (6d). purified by flash chromatography using 

DCM:Acetone = 6.5:3.5 as eluent. 75 % yield as a pale yellow oil. 1H-NMR (250 MHz, CDCl3) δ 

(ppm): 3.08 (m, 9 H, 3 × -O-CH3), 3.39 (s, 9 H, 3 × -O-CH3) 3.42-3.69 (m, 36 H, 6 × -O-CH2-CH2-O- + 3 

× -O-CH2-CH2-NH- ), 5.80 (m, 3 H, 3 × -NH-), 6.86 (t, 1 H, 4JH,H = 2.0 Hz, H-4), 6.90-7.12 (m, 6 H, H-2, 

H-3’, H-5’, H-6, H-7, H-8), 7.45 (d, 2 H, 3JH,H = 8.75 Hz, H-2’, H-6’); 13C-NMR (62.9 MHz, CDCl3) δ 

(ppm): 154.6, 154.3, 151.6, 150.7, 139.1, 133.9, 129.2, 127.4, 127.1, 121.8, 116.3, 114.3, 71.8, 

70.5, 70.2, 70.2, 69.8, 59.0, 40.9; ESI-MS (ion trap): m/z 818 [M+Na]+. 

(E)-5-(4-(,5,8,11-tetraoxatridecan-13-ylcarbamate)styryl)-1,3-phenylene bis(2,5,8,11-

tetraoxatridecan-13-ylcarbamate) (7d). Purified by flash chromatography using DCM:Acetone = 

5:5 as eluent. 88% yield as a colourless oil. 1H-NMR (250 MHz, CDCl3) δ (ppm): 3.35 (s, 9 H, 3 × -O-

CH3),  3.41-3.56 (m, 12 H, 3 × -O-CH2-CH2-NH-), 3.60-3.68 (m, 36 H, 9 × -O-CH2-CH2-O-), 5.81-5.88 
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(m, 3 H, 3 × -NH-), 6.80-7.14 (m, 7 H, H-2, H-4, H-3’, H-5’, H-6, H-7, H-8), 7.44 (d, 2 H, 3JH,H = 8.75 

Hz, H-2’, H-6’); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 154.5, 154.2, 151.5, 150.6, 138.9, 133.7, 

129.1, 127.3, 126.9, 121.7, 116.2, 114.2, 71.7, 70.4, 70.3, 70.3, 70.1, 70.0, 69.6, 58.8, 40.8; ESI-MS 

(ion trap): m/z 928 [M+H]+. 

(E)-5-(4-(2,5,8,11,14,17-hexaoxanonadecan-19-ylcarbamate)styryl)-1,3-phenylene 

bis(2,5,8,11,14,17-hexaoxanonadecan-19-ylcarbamate) (8d). Purified by flash chromatography 

using DCM:Acetone from 4:6 to 2:8 as eluent. 76 % yield as a colourless oil. 1H-NMR (250 MHz, 

CDCl3) δ (ppm): 3.33 (s, 9 H, 3 × -O-CH3),  3.38-3.51 (m, 12 H, 3 × -O-CH2-CH2-NH-), 3.57-3.68 (m, 

60 H, 15 × -O-CH2-CH2-O-), 5.80-5.86 (m, 3 H, 3 × -NH-), 6.80-7.12 (m, 7 H, H-2, H-4, H-3’, H-5’, H-6, 

H-7, H-8), 7.41 (d, 2 H, 3JH,H = 8.75 Hz, H-2’, H-6’); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 154.4, 

154.1, 151.5, 150.6, 138.9, 133.8, 129.1, 127.3, 127.0, 121.7, 116.2, 114.2, 71.7, 70.4, 70.4, 70.3, 

70.3, 70.3, 70.2, 69.7, 58.8, 40.9; ESI-MS (ion trap): m/z 1193 [M+H]+. 

General procedure for the tert-butyl ester deprotection in resveratrol-amino acid carbamoyl 

conjugates (2e-5e) 

Resveratrol-amino acid carbamoyl conjugate (2d-5d) (1.12 mmol) was dissolved in 10 mL of 

dichloromethane at 0°C. 500 μL of triisopropyl silane and 10 mL of TFA were then added and the 

reaction mixture was stirred at room temperature under nitrogen steam overnight. The solvent 

and residual TFA were removed under reduced pressure. The residue was washed with toluene (3 

× 5 mL), and then solvent was evaporated under reduced pressure. The product was purified by 

preparative reverse phase HPLC. 

(E)-2,2'-((((5-(4-(((1-carboxy-3-methylbutyl)carbamoyl)oxy)styryl)-1,3-

phenylene)bis(oxy))bis(carbonyl))bis(azanediyl))bis(4-methylpentanoic acid) (2e). Purified using a 

reverse-phase preparative HPLC column (ACE 5AQ 150 mm × 21.2 mm from 7.5 % to 38 % of ACN 

in water in 14.5 minutes). 89 % yield as a white powder after freeze-drying. 1H-NMR (250 MHz, 

DMSO-d6) δ (ppm): 0.89-0.94 (m, 18 H, 3 × -CH(CH3)2), 1.45-1.81 (m, 9 H, 3 × -CH-CH2- and 3 × 

(CH3)2CH-), 3.98-4.07 (m, 3 H, -NH-CH-), 6.76 (t, 1 H, 4JH-H = 2 Hz, H-4), 7.10-7.38 (m, 6 H, H-3’, H-5’, 

H-2, H-6, H-7, H-8), 7.63 (d, 2 H, H-2’, H-6’, 3JH-H = 8.7 Hz), 8.12-8.21 (m, 3 H, 3 × -NH-); 13C-NMR 

(250 MHz, DMSO-d6) δ(ppm): 174.1, 174.0, 154.4, 154.2, 151.6, 150.7, 139.1, 133.7, 129.3, 127.6, 

126.8, 121.9, 116.3, 114.4, 52.5, 39.6, 24.4, 23.0, 21.2. ESI-MS (ion trap): m/z 700 [M+H]+. 

(E)-2,2'-((((5-(4-(((1-carboxy-2-methylbutyl)carbamoyl)oxy)styryl)-1,3-

phenylene)bis(oxy))bis(carbonyl))bis(azanediyl))bis(3-methylpentanoic acid) (3e). Purified using a 

reverse-phase preparative HPLC column (ACE 5AQ 150 mm × 21.2 mm from 40 % to 70 % of ACN 

in water in 11 minutes). 93 % yield as a white powder after freeze-drying. 1H-NMR (300 MHz, 

DMSO) δ (ppm): 0.86-0.95 (m, 18H, 3 × -CH2-CH3 and 3 × -CH-CH3), 1.21-1.55 (m, 6H, 3 × -CH-CH2), 

1.80-1.91 (m, 3 H, -CH-CH-CH3), 3.89-4.13 (m, 3 H, 3 × NH-CH-CH), 6.77 (t, 1 H, 4JH-H = 2 Hz, H-4), 

7.06-7.37 (m, 6 H, H-3’, H-5’, H-2, H-6, H-7, H-8), 7.63 (d, 2 H, H-2’, H-6’, 3JH-H = 8.7 Hz), 8.04 (d, 1 

H, -NH-, 3JH-H = 8.4 Hz), 8.10 (d, 2 H, 2 × -NH-, 3JH-H = 8.4 Hz); 13C-NMR (300 MHz, DMSO) δ(ppm): 

175.1, 175.0, 156.7, 156.5, 153.8, 152.9, 141.3, 135.8, 131.5, 129.8, 124.1, 118.4, 97.3, 61.0, 38.3, 

26.9, 17.8, 13.5. ESI-MS (ion trap): m/z 700 [M+H]+.  

(E)-2,2'-((((5-(4-(((1-carboxy-2-hydroxypropyl)carbamoyl)oxy)styryl)-1,3-

phenylene)bis(oxy))bis(carbonyl))bis(azanediyl))bis(3-hydroxybutanoic acid) (4e). Purified using a 

reverse-phase preparative HPLC column (ACE 5AQ 150 mm × 21.2 mm from 7.5 % to 38 % of ACN 
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in water in 14.5 minutes). 91 % yield as a white powder after freeze-drying. 1H-NMR (250 MHz, 

DMSO-d6) δ (ppm): 1.17-1.19 (m, 9 H, 3 × -CH-CH3), 4.00-4.23 (m, 6 H, 3 × CH3-CH- and 3× NH-CH-), 

6.80 (t, 1 H, 4JH-H = 2 Hz, H-4), 7.01-7.39 (m, 6 H, H-3’, H-5’, H-2, H-6, H-7, H-8), 7.61-7.72 (m, 5 H, 3 

× -NH- and H-2’, H-6’); 13C-NMR (250 MHz, DMSO-d6) δ(ppm):172.1, 172.1, 154.8, 154.6, 151.7, 

150.8, 139.2, 133.8, 129.4, 127.7, 126.9, 122.0, 116.4, 114.6, 66.5, 60.4, 48.7, 20.5. ESI-MS (ion 

trap): m/z 664 [M+H]+. 

(E)-2,2'-((((5-(4-(((1-carboxy-2-phenylethyl)carbamoyl)oxy)styryl)-1,3-

phenylene)bis(oxy))bis(carbonyl))bis(azanediyl))bis(3-phenylpropanoic acid) (5e). Purified using a 

reverse-phase preparative HPLC column (ACE 5AQ 150 mm × 21.2 mm from 35 % to 65 % of ACN 

in water in 13 minutes). 91 % yield as a white powder after freeze-drying. 1H-NMR (250 MHz, 

DMSO-d6) δ (ppm): 2.86-3.19 (m, 6 H, 3 × Ph-CH2), 4.21-4.30 (m, 3H, 3 × -NH-CH-CH2), 6.47 (t, 1 H, 
4JH-H = 2 Hz, H-4), 6.91-7.33 (m, 21 H, Ar-H and H-3’, H-5’, H-2, H-6, H-7, H-8), 7.58 (d, 2 H, H-2’, H-

6’, 3JH-H = 8.7 Hz), 8.20-8.29 (m, 3H, 3 × -NH-); 13C-NMR (62.9 MHz, DMSO-d6) δ (ppm): 173.0, 

154.3, 154.0, 151.5, 150.7, 139.1, 137.8, 137.8, 133.6, 129.3, 128.3, 127.6, 126.6, 121.8, 116.1, 

114.2, 55.8, 55.0, 36.6; ESI-MS (ion trap): m/z 802 [M+H]+. 
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4. Synthesis and evaluation of hydrophilic carbamate ester 

analogs of resveratrol 

 

Abstract:  

Resveratrol (3, 5, 4’-trihydroxy-trans-stilbene) is an unfulfilled promise for health care: its 

exploitation is hindered by rapid conjugative metabolism in enterocytes and hepatocytes. 

Prodrug development has the potential to improve bioavailability and to advantageously 

modify the chemico-physical properties of the compound. We report here the synthesis 

of precursors in which all or part of the hydroxyl groups are linked via an N-

monosubstituted carbamate ester group to promoieties derived from glycerol or 

galactose, conferring higher water solubility. Kinetic studies of their hydrolysis in solutions 

and in blood indicated that regeneration of resveratrol took place in an appropriate time 

frame. Hydrophilicity hindered absorption from the gastrointestinal tract, which was 

acceptable only for some of the compounds. In these cases the prodrug-derived species 

found in blood after administration of a bolus consisted mainly of partially deprotected 

molecules and of the products of their glucuronidation, thus providing proof-of-principle 

evidence of behavior as prodrugs. The soluble compounds largely reached the lower 

intestinal tract of rats. Upon administration of resveratrol, the major species to be found 

in this region is dihydroresveratrol, produced by enzymes of the intestinal flora. In 

experiments with a fully protected (trisubstituted) deoxygalactose-containing prodrug, 

the major species were the prodrug itself and partially deprotected derivatives, along 

with small amounts of dihydroresveratrol. We conclude that the N-monosubstituted 

carbamate moiety is a suitable one for the generation of prodrugs of polyphenols. The 

behavior of these prodrugs vis-à-vis absorption from the intestine is bound to depend on 

the properties of the chosen promoieties. Groups imparting a high water solubility hinder 

absorption and lead to accumulation of the prodrug and its derivatives in the lower part 

of the intestine, providing a method for the delivery of resveratrol to that organ, where it 

is thought to exert anti-inflammatory and anti-carcinogenic activities. 
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Introduction: 

The scope of resveratrol’s biomedical potentialities is vast. It is well known to the public 

as a “natural drug”, potentially useful on major health battlefields: afflictions of the 

cardiovascular system,2-4 neurodegeneration,5-8 aging,9, 10 diabetes, obesity, metabolic 

syndrome,11-13 cancer.14, 15 Reports suggest effectiveness against such conditions as, e.g., 

acne,16, 17 caries,18 H. pylori-induced pathologies,19, 20 erectile dysfunction in diabetes,21 

osteoporosis,22 noise-induced hearing loss,23, 24 hypertension,25 allergy,26 macular 

degeneration of the retina,27, 28 fatigue.29 

This multiplicity of potential biomedical effects stems from the impact resveratrol has on 

the activity of apical or key proteins in interconnected cellular signaling networks. Among 

its major effects observed in vitro, resveratrol inhibits phosphodiesterases (in particular 

PDE4), leading to an increase of cellular cAMP.30-32 Downstream events include the 

upregulation of AMPK, whose activation by resveratrol (and other phytochemicals)33 is 

clearly supported by data from several labs.34-42 AMPK is a key sensor and regulator of 

cellular energetic status with roles in many pathophysiological situations.43, 44 After much 

debate, a consensus now seems to have been reached that resveratrol also induces 

upregulation of SIRT1, an important NAD-dependent histone deacetylase.45, 46 SIRT1 

activation has actually been reported to be upstream of AMPK activation at low 

resveratrol doses.46, 47 Upregulation of AMPK activity induces mitogenesis and 

autophagy,48-50 largely through inhibition of mTORC151-53 whose activity downregulates 

these processes50 and which is also commonly upregulated in cancers.54 The cAMP-AMPK-

mTORC1 axis presumably accounts to a considerable degree for the antagonistic activity 

vs. neurodegeneration, metabolic syndrome55 and cancer.56 Activation of SIRT1 has 

pleiotropic epigenetic effects, reportedly culminating in life extension and  health 

improvement in mice when elicited by novel small molecules.57, 58 Another, interwined44, 

59, 60 major way resveratrol acts is by antagonizing inflammation.61, 62 Resveratrol 

suppresses NF-kB activation,63-65 with the attendant reduction of NO and prostaglandin 

production due to downregulation of iNOS and COX-2 expression. Chronic inflammation is 

well recognized to be a factor in carcinogenesis.66-68 A relevant example is provided by the 

frequent insurgence of polyposis and colon cancer in humans69-71 and laboratory 

animals72, 73 affected by (experimental in the latter) colitis (inflammatory bowel disease). 

Resveratrol has been reported to be beneficial in rodent models of colitis, polyposis and 

colon cancer induced by sodium dextran sulfate (DSS) or azoxymethane (AOM) + DSS.74-78  

Resveratrol is not, however, free of shortcomings. The major one is its poor 

bioavailability, due to the built-in propensity, common to all polyphenols, to undergo 

phase II metabolic conjugation to give sulfated and glucuronidated derivatives79-86 and 

reduction of the double bond plus other transformations by the colonic flora.87, 88 It has 

therefore often been pointed out89 that the results of studies carried out in vitro with 

high concentrations of unmodified resveratrol may be of little pharmacological or 

nutritional relevance. Another unfavorable characteristic of the “aglycone” is its low 
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water solubility. A variety of formulations and nano-structured delivery systems are being 

tested with the goal of overcoming these obstacles.90-93 Another approach relies on the 

construction of prodrugs, i.e. derivatives with favourable physico-chemical and 

absorption properties which can offer initial protection from metabolism and regenerate 

the active compound with appropriate kinetics.91, 94 Indeed, in view of the many-fold 

activities and possible applications of resveratrol there is a need for customized delivery 

vehicles and/or chemical elaborations to best conform to the specific task at hand. 

Returning to the example of the possible use of resveratrol against colitis and associated 

pathologies, specific delivery to the colon has been achieved using a formulation (Ca 

pectinate beads)95 and sophisticated prodrugs comprising a glucose moiety linked to 

resveratrol via a glycosidic bond and an hydrocarbon chain linked to the sugar ring by 

esterification.96 

Here we report the synthesis and characterization of mono-, di- and tri-substituted 

resveratrol derivatives incorporating promoieties imparting water solubility 

(dihydroxypropyl and 6-deoxygalactosyl moieties) linked via N-monosubstituted 

carbamate ester bonds to the phenolic oxygens of resveratrol (scheme 1). The N-

monosubstituted linkage undergoes hydrolysis more rapidly than N,N-disubstituted 

carbamates,97 and is thus suitable for use in prodrugs. The kinetics of hydrolysis to 

produce progressively de-protected species have been studied, and the fate of the 

prodrugs after oral administration to rats has been investigated. The compounds may be 

useful for all applications in which water solubility and protection from metabolism and 

oxidation are important. 

Experimental section: 

Materials and general chemistry. Resveratrol was purchased from Waseta Int. Trading 

Co. (Shangai, P.R.China). Other starting materials and reagents were purchased from 

Sigma-Aldrich, Fluka, Merck-Novabiochem, Riedel de Haen, J.T. Baker, Cambridge Isotope 

 R1 R2 R3 

2 DHP-C H H 

3 H DHP-C H 

4 DHP-C DHP-C H 

5 H DHP-C DHP-C 

6 DHP-C DHP-C DHP-C 

7 DGAL-C H H 

8 H DGAL-C H 

9 DGAL-C DGAL-C H 

10 H DGAL-C DGAL-C 

11 DGAL-C DGAL-C DGAL-C 

Scheme 1: Molecular structure of resveratrol (1, trans-
3,5,4’-trihydroxy stilbene) and its carbamate esters 
derivatives (2-11). 
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Laboratories Inc., Acros Organics, Carlo Erba and Prolabo, and were used as received. 1H 

and 13C NMR spectra were recorded with a Bruker AC250F spectrometer and a Bruker 

Avance DMX 600. Chemical shifts (δ) are given in ppm relative to the signal of the solvent. 

TLCs were run on silica gel supported on plastic (Macherey-Nagel Polygram®SIL G/UV254, 

silica thickness 0.2 mm) and visualized by UV detection, ninhydrin reaction or KMnO4 

oxidation. Flash chromatography was performed on silica gel (Macherey-Nagel 60, 230-

400 mesh granulometry (0.063-0.040 mm)) under air pressure. The solvents were 

analytical or synthetic grade and were used without further purification. Preparative HPLC 

was performed using a Shimadzu LC-8A equipped with a UV/VIS detector SPD-20A 

Prominence® and a reverse phase column (ACE 5AQ (150 × 21.2 mm)). 

Animals. Adult male Wistar rats (approximately 400 g body weight) from the facility of 

the Department of Biomedical Sciences were used for pharmacokinetic experiments. All 

experiments involving animals were performed after approval by the University of Padova 

Ethical Committee for Experimentation on Animals (CEASA) (Permit Number: 80/2011) 

and of the Italian Ministry of Health, and with the supervision of the Central Veterinary 

Service of the University of Padova, in compliance with Italian Law DL 116/92, embodying 

UE Directive 86/609.  

LogP, Solubility and TPSA. Unless otherwise indicated, the LogPow and solubility values 

reported are predictions obtained using the software ALOGPS 2.1 (available at Virtual 

Computational Chemistry Laboratory, http://www.vcclab.org). “Topological” Polar Surface 

Area98 values were predicted using the Molinspiration Property Calculator 

(www.molinspiration.com). 

HPLC-UV Analysis. Samples (2 µl) were analyzed by HPLC/UV (1290 Infinity LC System, 

Agilent Technologies) using a reverse phase column (Zorbax RRHD Eclipse Plus C18, 1.8 

µm, 50 x 2.1 mm i.d.; Agilent Technologies) and a UV diode array detector (190-500 nm). 

Solvents A and B were water containing 0.1% trifluoroacetic acid (TFA) and acetonitrile, 

respectively. The gradient for B was as follows: 2% (0.5 min), from 2% to 10% in 0.3 min, 

then from 10% to 18% in 1.7 min, then from 18% to 28% in 0.5 min, 28%  for 0.5 min then 

from 28% to100% in 1.8 min; the flow rate was 0.6 mL/min. The eluate was preferentially 

monitored at 286, 300 and 320 nm (corresponding to absorbance maxima of the internal 

standard, derivatives and resveratrol, respectively). The column compartment was 

thermostated at 35°C. 

HPLC/ESI-MS Analysis. HPLC/ESI-MS analyses and mass spectra were performed with a 

1100 Series Agilent Technologies system, equipped with binary pump (G1312A) and MSD 

SL Trap mass spectrometer (G2445D SL) with ESI source operating in full-scan positive or 

negative ion mode, with nebulizer pressure 70 psi, dry gas flow 12 L/min, dry gas 

temperature 350°C. ESI-MS positive mass spectra of reaction intermediates and final 

purified products were obtained by flow injection analysis of solutions in acetonitrile, 

eluting with a water:acetonitrile, 1:1 mixture containing 0.1% formic acid. HPLC/ESI-MS 

was also performed on selected samples from hydrolysis studies and pharmacokinetics. 
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Samples (20 µl) were analyzed using a reversed phase column (Synergi-MAX, 4 µm, 150 x 

4.6 mm i.d.; Phenomenex, Castel Maggiore (BO), Italy). Solvents A and B were water 

containing 0.1% TFA or 5 mM NH4OAc and acetonitrile, respectively. The gradient for B 

was as follows: 10% for 2 min, from 10% to 35% in 20 min, from 35% to 100% in 20 min, 

then 100% for 2 min; the flow rate was 1 mL/min. The eluate was preferentially 

monitored at 286, 300 and 320 nm. MS analysis was performed with an ESI source 

operating in full-scan positive or negative ion mode 

Hydrolysis Reactions. The chemical stability of all new compounds was tested in aqueous 

media approximating gastric (0.1 N HCl, NormaFix) and intestinal (0.1 M PBS buffer, pH 

6.8) pH values. A 5 µM solution of the compound was prepared from a 5 mM stock 

solution in DMSO, and incubated at 37°C for 24 hours; samples withdrawn at different 

times were analysed by HPLC-UV. Hydrolysis products were identified by comparison of 

chromatographic retention time with true samples. Non-linear curve fitting was 

performed using Origin 8.0 data analysis software; the hydrolysis reaction rate constants 

(k) of the starting compounds were calculated through interpolation of data with the 

equation for pseudo-first order reactions: ��� = �����
��	, where: 

[C ] : concentration of the compound 

[C ]0 : concentration of the compound at the initial time t0 

t: time. 

To evaluate the long-term stability under mildly acidic conditions, we stored compound 

11 dissolved in citrate buffer (5 mM) / sucrose (5 mM) solution, pH 5.0, at 4°C or R.T., 

following the disappearance of 11 by HPLC analysis of samples taken at intervals over a 

period of several months. 

Hydrolysis in blood. Rats were anesthetized and blood was withdrawn from the jugular 

vein, heparinized and transferred into tubes containing EDTA. Blood samples (1 mL) were 

spiked with compound (5 µM; dilution from a 5 mM stock solution in DMSO), and 

incubated at 37°C for 4 hours (the maximum period allowed by blood stability). Aliquots 

were taken after 10 min, 30 min, 1 h, 2 h and 4 h and treated as described below. Cleared 

blood samples were finally subjected to HPLC-UV analysis. 

Blood Sample Treatment and Analysis. Before starting the treatment, 4,4’-

dihydroxybiphenyl was added as internal standard to a carefully measured blood volume 

(25 µM final concentration). Blood was then stabilized with a freshly-prepared 10 mM 

solution of ascorbic acid (0.1 vol) and acidified with 0.6 M acetic acid (0.1 vol); after 

mixing, an excess of acetone (4 vol) was added, followed by sonication (2 min) and 

centrifugation (12,000 g, 7 min, 4°C). The supernatant was finally collected and stored at -

20°C. Before analysis, acetone was allowed to evaporate at room temperature using a 

Univapo 150H (UniEquip) vacuum concentrator centrifuge, and up to 40 µL of CH3CN 

were added to precipitate residual proteins. After centrifugation (12,000 g, 5 min, 4°C), 

cleared samples were directly subjected to HPLC-UV analysis.  
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Metabolites and hydrolysis products were identified by HPLC/ESI-MS analysis and/or 

comparison of chromatographic retention time with true samples. 

The recovery yields of resveratrol and its metabolites have been reported previously.99, 100 

For the new prodrugs the corresponding recoveries, expressed as ratio to the recovery of 

internal standard, were as follows: 2: 0.751 ± 0.122, 3: 0.752 ± 0.103, 4: 0.985 ± 0.083, 5: 

1.022 ± 0.035, 6: 0.855 ± 0.111; 7: 1.358 ± 0.119, 8: 1.097± 0.253, 9: 0.682 ± 0.070, 10: 

0.672 ± 0.068, 11: 0.903 ± 0.104 (N = 4 or 5 for all derivatives; mean values ± standard 

deviation). Recoveries ratios of glucuronides were approximated as follows: for the 

glucuronide of 2 (retention time 2.35 min) the ratio used was that of compound 4, which 

has the same substitution pattern; for the two glucuronides of 3 (r.t. 2.38 and 3.08 min) 

the ratio was assumed to be close to 1.0, since the recovery ratios of both isomeric 

prodrugs carrying two protecting groups (4 and 5) were not significantly different from 1. 

Knowledge or assumption of these ratios allowed us to determine the unknown amount 

of analyte in a blood sample by quantifying the recovered internal standard.101 

Pharmacokinetics Studies. Derivatives 2-11 were administered to overnight-fasted male 

rats as a single intragastric dose (88 µmol/Kg, dissolved in 250 µl DMSO). Blood samples 

were obtained by the tail bleeding technique: before drug administration, rats were 

anesthetized with isoflurane and the tip of the tail was cut off; blood samples (80-100 µL 

each) were then taken from the tail tip at different time points after drug administration. 

Blood was collected in heparinized tubes, kept in ice and treated as described below 

within 10 min.  

Intestinal accumulation and distribution. Resveratrol or 11 were chronically 

administered to rats for 48 h. The beverage for the treatments was 5mM citrate buffer 

with sucrose (5mM), pH 5, supplemented with the compound at a concentration 

calculated to provide a daily intake of approximately 220µmoles/kg × day. Preliminary 

experiments showed that this solution was well-liked  by rats, which drank an average of 

about 35 mL daily (hence, e.g., the concentration of resveratrol or derivative was 2.51 

mM for a 400-gram rat). The slightly acidic pH insured the stability of the carbamoyl 

derivative (see below). In the case of resveratrol, 2-hydroxypropyl-β-cyclodextrin (HP-β-

CD) was used to allow its solubilization: resveratrol and HP-β-CD were mixed in a 1:3 ratio 

in citrate buffer, and stirred overnight. 

At the end of the treatment, the treatment solution was replaced with tap water; 1h 

later, animals were sacrificed, and the intestine explanted and cut into 10 cm-long 

segments. The luminal content of each segment was collected, 100mg were weighed, H2O 

(1 vol) was added and the mixture was homogenized by vortexing (2 min). Samples were 

then stabilized and extracted adding 10 mM ascorbic acid (0.1 vol), 0.6 M acetic acid (0.1 

vol) and acetonitrile (3 vol), vortexed (2 min), sonicated (2 min) and centrifuged (12,000 

g, 7 min, 4°C); the supernatant was collected, concentrated, and finally analyzed via 

HPLC-UV and LC-ESI/MS. 
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Statistics. All experiments were performed at least in triplicate. Averages ± s.d. are 

presented. Significance in comparisons was assessed using the Wilcoxon Rank Test. 

Results:  

Synthesis. Syntheses were performed by Prof. C. Paradisi’s group. Derivatives 2-11 

(scheme 1) were obtained through transesterification of resveratrol (1) with the 

appropriate activated 4-nitrophenyl carbamate ester (13, 23). 

The synthesis of 2-6 is outlined in scheme 2. The starting material for the dihydroxypropyl 

carbamate (DHP-C) moiety was commercially available 2,2-Dimethyl-1,3-dioxolane-4-

methanamine (12) which was allowed to react with bis-(4-nitrophenyl) carbonate in 

presence of 4-(dimethylamino)pyridine (DMAP) to give the corresponding activated 

urethane (13) in good yield. Compound 13 was added in slight excess to resveratrol (1) in 

pyridine and in presence of DMAP and allowed to react at 70°C to obtain a mixture of all 

the possible mono-, di- and tri- substituted resveratrol derivatives (14-18). The last step 

consisted in the removal of the isopropylidene protecting groups, freeing the hydroxyl 

functions necessary to enhance the solubility in water of the final products (2-6) which 

were finally isolated by preparative reverse-phase HPLC.  

The synthesis of derivatives 7-11 (scheme 3) was less straightforward, because of the 

need to synthesize the commercially unavailable amine (22). The starting material in this 

case was 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (19), possessing one free 

hydroxyl group, which was esterified with tosyl chloride to obtain compound 20. The 

tosylate group of 20 was easily displaced in the second step by sodium azide giving the 

azide (21) in nearly quantitative yield. Azide 21 was then reduced to the desired primary 

amine (22) under Staudinger reaction conditions in excellent yield. The subsequent 

synthetic steps are equivalent to those reported above for derivatives (2-6), which consist 

in the production of the active urethane (23) followed by transesterification with 

resveratrol to give a mixture of all the possible mono-, di- and tri- substituted resveratrol 

 R1’ R2’ R3’ 

14 DDM-C H H 
15 H DDM-C H 
16 DDM-C DDM-C H 
17 H DDM-C DDM-C 
18 DDM-C DDM-C DDM-C 

Scheme 2. Synthesis of derivatives 2-6 
Reagents and conditions: (a) bis-(4-
nitrophenyl) carbonate, DMAP, THF, 
r.t., 3 h; (b) Resveratrol (1), Pyridine, 
DMAP, 70°C, 16 h; (c) trifluoroacetic 
acid : water 9:1, r.t., 1.5 h. 
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derivatives (24-28), and cleavage of the isopropylidene protecting groups to afford, after 

preparative HPLC isolation, all the desired resveratrol-6-deoxy-galactosyl carbamate ester 

conjugates (7-11).  

LogP, Solubility and TPSA. The octanol/water partition coefficient, water solubility, and 

the polar surface area were estimated for each compound (see Materials and Methods). 

The molecular polar surface area is the sum of the surfaces of polar atoms (oxygen, 

nitrogen) in a molecule.98 The ability to permeate cell membranes is considered to be 

inversely related to this parameter, which is instead positively linked to water solubility. 

 R1’ R2’ R3’ 

24 DIG-C H H 
25 H DIG-C H 
26 DIG-C DIG-C H 
27 H DIG-C DIG-C 
28 DIG-C DIG-C DIG-C 

Scheme 3. Synthesis of 
derivatives 7-11 
Reagents and conditions: (i) Tosyl 
chloride, Pyridine, DMAP, from 
0°C to r.t., 5 h; (ii) Sodium azide, 
DMSO, 160°C, 1.5 h; (iii) 
Triphenylphosphine, THF, r.t., 4 h; 
(iv) Water, reflux, 16 h; (a) bis-(4-
nitrophenyl) carbonate, DMAP, 
THF, r.t., 3 h; (b) Resveratrol (1), 
Pyridine, DMAP, 70°C, 16 h; (c) 
trifluoroacetic acid : water 9:1, 
r.t., 1.5 h. 

Compound Log Pow PSA (Å2) Solubility (g/L) 

Resveratrol (1) 2.69 ± 0.12 (b) 60.68 0.039 ± 0.009 (b) 

2 1.57 119.24 0.049 

3 1.57 119.24 0.054 

4 0.15 177.80 0.12 

5 0.15 177.80 0.13 

6 -1.27 236.36 0.20 

7 0.52 168.93 1.38 

8 0.52 168.93 1.51 

9 -1.94 277.18 2.53 

10 -1.94 277.18 2.80 

11 -4.34 385.43 > 4.22 (b) 
(b)

 Experimental value; see1 
Table 1. LogP

ow
, water solubility and topological PSA values of resveratrol and 

of its carbamate ester derivatives. Algorithm-predicted values unless 
indicated. 
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Hydrolysis in Acid and Near-Neutral Solution. All the compounds proved to be stable 

over a 24 h period in acid solution (0.1 N HCl, 37°C). On the other hand, derivatives 

underwent hydrolysis of the carbamoyl bond in 0.1 M PBS buffer, pH 6.8, 37°C (fig 1). 

Table 2 shows the pseudo 1st order hydrolysis rate costants (k) of the starting compounds, 

and fig 1 presents the kinetic plots and fits for the dihydroxylpropyl derivatives. Kinetics 

were very similar for dihydroxypropyl and 6-deoxygalactosyl carbamate ester derivatives 

(cf. 2 vs. 7, 3 vs. 8, 4 vs. 9, 5 vs 10, 6 vs. 11 in table 2). 

The different reactivity of the two di-substituted isomers (3,4’- vs 3,5-; i.e. 4 vs. 5, 9 vs. 

10) suggests that the simultaneous presence of two carbamoyl moieties in positions 3 and 

5 accelerates the hydrolysis process at these positions. This hypothesis is supported by 

the hydrolysis behaviour of the tri-substituted derivatives 6 and 11, which generate 

mainly the 3,4’- isomers 4 and 9. The 3,5-disubstituted isomers 5 and 10 were detected 

only in very low amounts, because of the higher hydrolysis rate at position 3- in 

Figure 1. Hydrolysis of Resveratrol 

dihydroxypropyl carbamate ester 

derivatives (2-6) in PBS 0.1 M, pH 6.8, 37°C. 

Data are expressed as % of the initially 

loaded compound. The fit is for pseudo-

first order kinetics. 

b 

c 

e 

d 

a 
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comparison to position 4’- when all the three OH’s of resveratrol are carbamoylated, and 

because of the higher hydrolysis rate of the 3,5-disubstituted derivatives compared to the 

3,4’-disubstituted ones. When only one carbamoyl function is present in the molecule, 

the rate of its hydrolysis is not affected by the position occupied (similar reactivity of 4’- 

and 3- monosubstituted derivatives, cf. 2 vs 3, 7 vs 8 in table 2).  

To verify whether these derivatives would withstand long-term storage in liquid form we 

followed the hydrolysis of compound 11 in citrate buffer (5 mM each) at pH 5.0 or 6.0, 

4°C or R.T., over several months. The results (fig 2) indicate that indeed hydrolysis is very 

slow under these conditions.  

Hydrolysis in Blood. Hydrolysis in blood (fig 3) was faster than in PBS pH 6.8. Reaction 

rates were similar for dihydroxypropyl and 6-deoxygalactosyl carbamate ester derivatives. 

As in PBS, hydrolysis was accelerated/promoted by the presence of two carbamoyl groups 

in positions 3- and 5-. When only one carbamoyl moiety was present in the molecule (i.e., 

with mono-substituted derivatives), the rate of hydrolysis depended on the substitution 

2 3 4 5 6 7 8 9 10 11

k (h
-1

)
0.0366 ± 

0.0008

0.0362 ± 

0.0003

0.087 ± 

0.001

0.2063 ± 

0.0009

0.3072 ± 

0.0008

0.0369 ± 

0.0009

0.0315 ± 

0.0003

0.088 ± 

0.001

0.238 ± 

0.007

0.329 ± 

0.003

Table 2. Hydrolysis reaction rate costants (k) in PBS 0.1M, pH 6.8, 37°C. 

pH 5, RT 

pH 5, 4°C 

pH 6, RT pH 6, 4°C 

Figure 2. Kinetics of hydrolysis of 11 under the specified conditions. 
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position, with the compound substituted in 4’- reacting markedly more rapidly than the 3-

substituted isomer (see fig 3 and table 3). This indicates the involvement of a 

regioselective (enzymatic) hydrolysis mechanism, since in PBS the kinetics are similar in 

the two cases. Plasma albumin has carbamoyl esterase activity102, 103 and it has been 

reported to be the main component of plasma catalyzing hydrolysis of phenolic 

carbamate esters.104
 

b 

c 

e 

d 

a 

Figure 3. Hydrolysis of resveratrol 

dihydroxypropyl carbamates (2-6)  in 

blood. Data are expressed as % of the 

initially loaded compound. 

2 3 4 5 6 7 8 9 10 11

k (h
-1

)
0.35 ± 

0.03

0.081 ± 

0.003

0.36 ± 

0.02

1.36 ± 

0.04

1.4 ± 

0.1

0.70 ± 

0.06

0.114 ± 

0.009

0.34 ± 

0.02

1.1 ± 

0.2

3.9 ± 

0.5

Table  3. Pseudo 1st order hydrolysis rate costants (k) in rat blood, 37°C 
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Pharmacokinetic Studies. In vitro stability studies thus indicated that the rate of 

hydrolysis of the carbamoyl bond in our derivatives is of the correct order of magnitude 

for our intended applications as prodrugs. We therefore proceeded to investigate the 

behaviour of our compounds in pharmacokinetics studies in vivo. 

Dihydroxypropyl carbamate ester derivatives 

Following administration of a single intragastric bolus, the mono-substituted derivatives 

were readily absorbed, but also extensively metabolized: low concentrations of the 

unmodified derivative were detected in blood, together with considerably higher 

amounts of metabolite(s) (fig 4). The mono-substituted derivative 3 produced two 

different metabolites, while the 4’-isomer 2 produced only one. Maximum concentration 

was reached approximately 1 hour after administration (fig 5, d-e). The two isomers 

differed however in their kinetic profile: both 2 and its metabolite persisted in the 

bloodstream for a longer time than 3 and its metabolites.  

HPLC-UV-ESI/MS analysis showed that the metabolites were the products of 

glucuronidation of the mono-substituted derivatives, still bearing the protective 

carbamoyl group (fig 4 shows a representative analysis).  

It was not possible to definitely associate each of the two peaks observed in HPLC and 

HPLC-MS chromatograms to one or the other of the two isomeric glucuronides formed 

from 3. They are referred to below by their chromatographic retention times under our 

standard analysis protocol, 2.38 and 3.08 min respectively. We note however that the r.t. 

of 2.38 min is very similar to the r.t. of 2.35 min characteristic of the single mono-

glucuronidated metabolite formed from 2, which necessarily carries the carbamoyl 

promoiety in position 4’ and the glucuronide group in 3. It is likely that the compound 

with r.t. 2.38 min, which is carbamoylated in position 3, has a similar structure, i.e., that it 
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Figure 4. LC-MS analysis of a blood sample taken 2h after administration of 2. a) UV 
chromatogram, 300 nm; “BiPh” is the internal standard. b, c) ESI mass spectra of the 
metabolite, acquired in the positive (b) and negative (c) ion current mode, 
respectively. 
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carries the glucuronic acid moiety in position 4’. It follows that in the metabolite with r.t. 

3.08 the two substituents probably occupy positions 3 and 5. 

The tri- and di-substituted derivatives (4-6) were poorly absorbed. The relative amount of 

non-conjugated vs. conjugated (glucuronidated) derivatives in the bloodstream was 

inversely correlated to the fraction (1/3, 2/3, 3/3) of protected hydroxyls in the original 

prodrug.  

When 6 was administered, the intact derivative rapidly reached the bloodstream, and 

underwent hydrolysis to the 3,4’-disubstituted derivative (4) (position 3/5- is more prone 

to hydrolysis than position 4’; see “Stability in PBS and blood”). The 3-glucuronide of 2 

and the glucuronide with r.t. 3.08 of 3  were also detected, and reached maximum 

concentration at later times (tmax at 8h and 2h, respectively).  

b 

c 

e 

d 

a 

Figure 5. Pharmacokinetic profiles after 

oral administration of resveratrol 

derivatives (2-6). Data represent average 

values + standard deviation. N = 3 in all 

cases 
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Absorption of disubstituted derivatives was rapid, with the unmodified prodrug peaking 

in blood about 30 minutes after gavage. Administration of the 3,4’-(dihydroxypropyl) 

derivative (4) resulted in detectable levels of two of the possible glucuronides of 2 and 3 

namely the ones with r.t. 2.35 and 2.38 min; no other intermediate products were 

detected. On the other hand, administration of the 3,5-(dihydroxypropyl) isomer (5) 

resulted in appearance of 3 and of its glucuronide with r.t. 2.38 min.  

6-Deoxygalactosyl carbamate ester derivatives 

Pharmacokinetic determinations provided no evidence of absorption for 3,4’,5- and 3,5-

derivatives (11 and 10) after oral administration.  

Fig 4 shows the pharmacokinetic profiles of 3,4’-, 3- and 4’- substituted derivatives (9, 8 

and 7 respectively). Compounds were generally poorly absorbed (fig 6, a). Absorption of 9 

was rapid, reaching 10 minutes after administration a low peak blood concentration, 

which then remained approximately constant for up to 2 hours. 8 reached an early peak 

in blood (fig 6B), with the concentration then decaying in an approximately exponential 

manner, down to undetectable levels after about 4 hours. The 4’-substituted derivative 

(7) again differed significantly from its isomer: it showed a delayed absorption with the 

maximum concentration of total species in blood reached at approximately 2 hours after 

administration. Metabolites or resveratrol could not be reliably identified in any 

pharmacokinetic run with deoxygalactosyl carbamate ester derivatives.  

Figure 6. Pharmacokinetic profiles after 
oral administration of resveratrol 6-
deoxygalactosyl derivatives 7-9. Data 
represent average values + standard 
deviation. N = 3 in all cases.  

a b 

c 
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Intestinal Levels. The highly soluble derivative 11 did not enter systemic circulation after 

oral administration.  Poor intestinal absorption may however be expected to result in high 

levels in the lumen of the lower intestinal tract, suggesting possible applications  for the 

treatment of intestinal disorders.  

After chronic administration, a striking difference was observed in the intestinal fate of 

resveratrol and 11: in the colon and caecum the former was present mainly as its 

bacterial metabolite dihydroresveratrol (fig 7), while the latter was mainly present as 

partially hydrolyzed derivatives (fig 8). Low amounts of resveratrol and dihydroresveratrol 

were also detected. 

Conclusions: 

The new resveratrol derivatives presented here proved to have a satisfactory reactivity vs. 

chemical hydrolysis. In particular, they are stable in acid solution, and can therefore 

survive the gastric stage. In near-neutral solution and blood the rate of hydrolysis is 

relatively slow. In vivo experiments they displayed satisfactory adsorption in the case of 

mono-substituted dihydroxypropyl derivatives (2, 3). Remarkably, sulphated metabolites 

were below detection limits in all cases. We were also unable to confirm formation of the 

products expected to arise from glucuronidation of di-protected species, while the 

compounds bearing only one promoiety could be acted upon by glucuronyltransferase 

activities in vivo.  
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Figure 7. Resveratrol and its 
metabolites in the lower 
intestine of rats after 
chronic administration. a) 
Amounts of resveratrol 
dihydroresveratrol and 
resveratrol sulfates in 
caecum and colon after 48h 
of chronic treatment with 
approx. 220 µmol/kg×day of 
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ESI mass spectrum of 
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Derivatives comprising the 6-deoxygalactose moiety (7-11) are more hydrophilic, and thus 

less permeable than derivatives 2-6 which incorporate the dihydroxypropyl moiety. The 

trisubstituted compound 11 is the most soluble, and was not absorbed in the 

gastrointestinal tract; however, interestingly, chronic administration of this compound 

resulted in its accumulation in the intestine. The presence in colon and caecum of 

partially hydrolyzed derivatives of 11 suggests protracted gradual release of intact 

resveratrol, which would be expected to be rapidly reduced to dihydroresveratrol by 

bacterial enzymes. These findings suggest a possible use of glycosyl-resveratrol 

derivatives for the treatment of colitis and prevention of colon cancer. 
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Appendix: 

Synthesis of derivatives 2-9 

Derivatives were synthesized by the group of prof. Cristina Paradisi, Department  of Chemical 

Sciences, University of Padova. 

[N-(2,2-dimethyl-1,3-dioxolane-4-methan)-carbamoyl]-4-nitrophenol (13): Bis-4-(nitrophenyl) 

carbonate (3.47 g, 11.4 mmol, 1 eq.) in 20 mL of anhydrous THF and DMAP (2.79 g, 22.8 mmol, 2 

eq.) were mixed in a 100 mL round-bottom flask with a magnetic stirrer under N2. 2,2-dimethyl-

1,3-dioxolane-4-methanamine (12, 1.5 g, 11.4 mmol, 1 eq.) in THF (20 mL) was then added 

dropwise at RT. After three hours the mixture was taken up in EtOAc (150 mL), transferred to a 

500 mL separation funnel and washed with 0.5 M HCl (3 × 150 mL). The organic phase was then 

dried over MgSO4 and filtered. The solvent was evaporated under reduced pressure and the 

residue was purified by flash chromatography on silica gel (eluent: CH2Cl2/EtOAc, 9.5:0.5) to 

afford 13 (75% yield). 1H-NMR (250 MHz, CDCl3) δ (ppm): 1.38 (s, 3H, -CH3), 1.48 (s, 3H, -CH3), 

3.28-3.61 (m, 2H, -NH-CH2), 3.70-4.14 (m, 2H, -CH2-), 4.28-4.37 (m, 1H, -CH-), 7.32 (d, 2H, Ar-H, 3JH-

H: 9.25 Hz), 8.25 (d, 2H, Ar-H, 3JH-H: 9.25 Hz); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 155.7, 153.3, 

144.7, 125.1, 121.9, 109.6, 74.2, 66.5, 43.6, 26.7, 25.0; ESI-MS (ion trap): m/z 297 [M+H]+. 

(4’-mono-, 3-mono-, 3,4’-di-, 3,5-di-, 3,4’,5-tri-) [N-(2,2-dimethyl-1,3-dioxolane-4-methan)-

carbamoyl]-resveratrol (14-18): 13 (1.24 g, 4.2 mmol, 2.6 eq.) and pyridine (10 mL) were placed in 

a 100 mL round-bottom flask with magnetic stirrer and under N2. Resveratrol (1, 0.37 g, 1.6 mmol, 

1.0 eq.) and DMAP (0.79 g, 6.4 mmol, 4.0 eq.) in pyridine (10 mL) was added and the reaction was 

allowed to proceed at 70°C overnight. The mixture was then taken up with 150 mL of EtOAc, 

transferred to a separation funnel and washed with 0.5 M HCl (5 × 150 mL). The organic phase 
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was then dried over MgSO4 and filtered. The solvent was evaporated under reduced pressure. The 

resulting solid was purified by flash chromatography (eluent: CH2Cl2/Acetone, 7.5:2.5) to afford 

0.57 g of a mixture of 14-18 used as such for the subsequent synthetic step. ESI-MS (ion trap): 14, 

15: m/z 386 [M+H]+; 16, 17: m/z 543 [M+H]+; 18: m/z 700 [M+H]+. 

(4’-mono-, 3-mono-, 3,4’-di-, 3,5-di-, 3,4’,5-tri-)[N-(2,3-dihydroxypropyl)-carbamoyl]-resveratrol 

conjugates (2-6):  The mixture (14-18, 0.57 g) obtained in the previous step was added to a 

solution of TFA/water (90:10, 5 mL). The resulting mixture was vigorously stirred for 1.5 h at RT 

and then dried under vacuum. The residue was then separated by preparative HPLC (from 0% to 

40% ACN in 17 minutes) and lyophilized to afford derivatives: 2 (0.129 g, cumulative yield of the 

final two steps: 23%), 3 (0.068 g, cumulative yield of the final two steps: 12%), 4 (0.135 g, 

cumulative yield of the final two steps: 18%), 5 (0.038 g, cumulative yield of the final two steps: 

5%) and 6 (0.085 g, cumulative yield of the final two steps: 9%). 

2: 1H-NMR (250 MHz, DMSO-d6) δ (ppm): 2.95-3.25 (m, 2H, -CH2-), 3.35 (d, 2H, 3JH-H = 5.25 Hz, -

CH2-), 3.51-3.66 (m, 1H, -CH-), 6.17 (t, 1H, 4JH,H = 2.0 Hz, H-4), 6.45 (d, 2H, 4JH,H = 2.0 Hz, H-2, H-6), 

7.03-7.10 (m, 4H, H-3’, H-5’, H-7, H-8), 7.57 (d, 2H, 3JH-H = 8.5 Hz, H-2’, H-6’), 7.65 (t, 1H, 3JH-H = 5.75 

Hz, -N-H); 13C-NMR (62.9 MHz, DMSO-d6) δ (ppm): 158.5, 154.5, 150.5, 138.8, 133.8, 128.6, 127.2, 

127.1, 121.9, 104.7, 102.3, 70.3, 63.8, 44.1; ESI-MS (ion trap): m/z 346 [M+ H]+. 

3: 1H-NMR (250 MHz, DMSO-d6) δ (ppm): 2.93-3.23 (m, 2H, -CH2-), 3.34 (d, 2H, 3JH-H = 5.25 Hz, -

CH2-), 3.52-3.61 (m, 1H, -CH-), 6.38 (t, 1H, 4JH,H = 2.0 Hz, H-4), 6.73-6.78 (m, 4H, H-2, H-6, H-3’, H-

5’), 6.90 (d, 1H, 3JH-H = 16.5, H-7), 7.07 (d, 1H, 3JH-H = 16.5, H-8), 7.42 (d, 2H, 3JH-H = 8.75, H-2’, H-6’), 

7.58 (t, 2H, 3JH-H = 5.75 Hz, 2 × -N-H); 13C-NMR (62.9 MHz, DMSO-d6) δ (ppm): 158.0, 157.4, 154.5, 

152.2, 139.3, 128.9, 128.0, 127.8, 124.6, 115.5, 110.0, 109.7, 107.8, 70.3, 63.8, 44.0; ESI-MS (ion 

trap): m/z 346 [M+ H]+. 

4: 1H-NMR (250 MHz, DMSO-d6) δ (ppm): 1H-NMR (250 MHz, DMSO-d6) δ (ppm): 2.95-3.25 (m, 4H, 

2 × -CH2-), 3.36 (d, 4H, 3JH-H = 5.25 Hz, 2 × -CH2-), 3.53-3.62 (m, 2H, -CH-), 6.41-6.43 (m, 1H, H-4), 

6.77-6.80 (m, 2H, H-2, H-6), 7.02-7.19 (m, 4H, H-3’, H-5’, H-7, H-8), 7.52-7.61 (m, 4H, 2 × -NH-, H-

2’, H-6’); 13C-NMR (62.9 MHz, DMSO-d6) δ (ppm): 158.1, 154.5, 154.4, 152.2, 150.6, 138.7, 133.6, 

128.0, 127.6, 127.3, 121.9, 110.3, 110.1, 108.4, 70.2, 70.3, 63.7, 44.0; ESI-MS (ion trap): m/z 463 

[M+H]+. 

5: 1H-NMR (250 MHz, CDCl3) δ (ppm): 1H-NMR (250 MHz, DMSO-d6) δ (ppm): 2.96-3.25 (m, 4H, 2 × 

-CH2-), 3.36 (d, 4H, 3JH-H = 5.25 Hz, 2 × -CH2-), 3.54-3.63 (m, 2H, 2 × -CH-), 6.64-6.80 (m, 3H, H-4, H-

2, H-6), 6.97-7.24 (m, 4H, H-3’, H-5’, H-7, H-8), 7.40 (d, 2H, 3JH-H = 8.5 Hz, H-2’, H-6’), 7.70 (t, 2H, 3JH-

H = 5.75 Hz, 2 × -N-H); 13C-NMR (62.9 MHz, DMSO-d6) δ (ppm): 157.6, 154.3, 151.8, 139.4, 130.0, 

128.2, 127.7, 123.7, 115.8, 115.6, 114.0, 70.3, 63.8, 44.2; ESI-MS (ion trap): m/z 463 [M+H]+. 

6: 1H-NMR (250 MHz, CDCl3) δ (ppm): 1H-NMR (250 MHz DMSO-d6) δ (ppm): 2.94-3.25 (m, 6H, 3 × 

-CH2-), 3.35 (d, 6H, 3JH-H = 5.25 Hz, 3 × -CH2-), 3.53-3.62 (m, 3H, 3 × -CH-), 6.78 (t, 1H, 4JH,H = 2.0 Hz, 

H-4), 7.10-7.36 (m, 6H, H-2, H-6, H-3’, H-5’, H-7, H-8), 7.59-7.74 (m, 5H, H-2’, H-6’, 3 × -N-H); 13C-

NMR (62.9 MHz, DMSO-d6) δ (ppm): 154.4, 154.2, 151.7, 150.8, 138.8, 133.5, 129.1, 127.5, 126.7, 

122.0, 116.2, 114.6, 70.3, 63.8, 44.1; ESI-MS (ion trap): m/z 580 [M+H]+. 

(1,2:3,4-di-O-isopropylidene-6-O-(p-toluensulfonate))-α-D-galactopiranose (20): Pyridine (3.1 

mL, 38.4 mmol, 2.0 eq.) and DMAP (3.51 g, 28.7 mmol, 1.5 eq.) were added to a solution of 
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1,2:3,4-di-O-isopropylidene-α-D-galactopiranose (19, 5.0 g, 19.2 mmol, 1.0 eq.) in CH2Cl2 (20 mL), 

and the mixture was stirred at 0°C for 15 min. A solution of tosyl chloride (5.49 g, 28.7 mmol, 1.5 

eq.) in CH2Cl2 (20 mL) was then added dropwise and the mixture was stirred at room temperature 

for 5 hours. After adding H2O (30 mL), the mixture was diluted in CH2Cl2 (150 mL) and washed 

with 0.5 N HCl (5 × 100 mL). The organic layer was dried over MgSO4 and filtered. The solvent was 

evaporated under reduced pressure and the residue was purified by flash chromatography 

(eluent: CH2Cl2/EtOAc, 9:1) to afford 7.33 g of 20 (92 % yield). 1H-NMR (250 MHz, CDCl3) δ (ppm): 

1.26 (s, 3H, -C-CH3), 1.30 (s, 3H, -C-CH3), 1.33 (s, 3H, -C-CH3), 1.49 (s, 3H, -C-CH3), 2.43 (s, 3H, Ar-

CH3), 4.00-4.20 (m, 4H, H-4, H-5, H-6), 4.28 (dd, 1H, 3J3-2 = 2.5 Hz, 3J3-4 = 2.5 Hz, H-3), 4.57 (dd, 1H, 
3J2-1 = 2.5 Hz, H-2), 5.44 (d, 1H, 3J1-2 = 5 Hz, H-1), 7.32 (d, 2H, Ar-H, 3JH-H = 10 Hz), 7.80 (d, 2H, 3JH-H = 

7.5 Hz); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 144.7, 132.7, 129.7, 128.0, 109.5, 108.9, 96.0, 70.4, 

70.3, 70.3, 68.1, 65.8, 25.9, 25.7, 24.9, 24.3, 21.6; ESI-MS (ion trap): m/z 415 [M+H]+. 

(1,2:3,4-di-O-isopropylidene-6-deoxy-azido)-α-D-galactopiranose (21): Sodium azide (5.84 g, 89.8 

mmol, 5.0 eq.) was added to a solution of 20 (7.22 g, 17.4 mmol, 1.0 eq.) in DMSO (40 mL), and 

the mixture was stirred at 160 °C for 1.5 hours under nitrogen. The resulting mixture was poured 

into ice water (500 mL), and extracted with EtOAc (2 × 250 mL). The organic layer was dried over 

MgSO4 and filtered. The solvent was evaporated under reduced pressure and the residue was 

purified by flash chromatography (eluent: CH2Cl2/EtOAc, 97:3) to afford 4.60 g of 11 (93 % yield). 
1H-NMR (250 MHz, CDCl3) δ (ppm): 1.33 (s, 6H, 2 × -C-CH3), 1.44 (s, 3H, -C-CH3), 1.53 (s, 3H, -C-

CH3), 3.34 (dd, 1H, 2J6*-6 = 12.5 Hz, 3J6*-5 = 5 Hz, H-6*), 3.50 (dd, 1H, 2J6-6* = 12.5 Hz, 3J6-5 = 7.5 Hz, H-

6), 3.87-3.93 (m, 1H, H-5), 4.18 (dd, 1H, 3J4-3 = 2.5 Hz, 3J4-5 = 7.5 Hz, H-4), 4.31 (dd, 1H, 3J3-2 = 2.5 Hz, 
3J3-4 = 2.5 Hz, H-3), 4.61 (dd, 1H, 3J2-1 = 7.5 Hz, 3J2-3 = 2.5 Hz, H-2), 5.53 (d, 1H, 3J1-2 = 5 Hz, H-1); 13C-

NMR (62.9 MHz, CDCl3) δ (ppm): 109.5, 108.7, 96.3, 71.0, 70.7, 70.3, 66.9, 50.6, 25.9, 25.9, 24.8, 

24.3; ESI-MS (ion trap): m/z 286 [M+H]+. 

(1,2:3,4-di-O-isopropylidene-6-deoxy-amino)-α-D-galactopiranose (22): A solution of 

triphenylphosphine (5.49 g, 20.9 mmol, 1.3 eq.) in THF (35 mL) was added dropwise to a solution 

of 21 (4.60 g, 16.1 mmol, 1.0 eq.) in THF (60 mL), and the mixture was stirred at RT for 4 hours 

under nitrogen. Distilled water (25 mL) was then added and the resulting mixture was heated to 

reflux and vigorously stirred for 15 hours. Solvents were removed under vacuum and the residue 

was purified by flash chromatography (eluent: CH2Cl2/MeOH, 95:5 + 1% of triethylamine) to afford 

4.05 g of 22 (97 % yield). 1H-NMR (250 MHz, CDCl3) δ (ppm): 1.32 (s, 6H, 2 × -C-CH3), 1.34 (s, 2H, -

NH2), 1.43 (s, 3H, -C-CH3), 1.51 (s, 3H, -C-CH3), 2.82 (dd, 1H, 2J6*6 = 15 Hz, 3J6*-5 = 5 Hz, H-6*), 2.95 

(dd, 1H, 2J6-6* = 12.5 Hz, 3J6-5 = 7.5 Hz, H-6), 3.65-3.71 (m, 1H, H-5), 4.21 (dd, 1H, 3J4-3 = 7.5 Hz, 3J4-5 = 

2.5 Hz, H-4), 4.30 (dd, 1H, 3J3-2 = 5 Hz 3J3-4 = 2.5Hz, H-3), 4.58 (dd, 1H, 3J2-1 = 10 Hz, 3J2-3 = 2.5 Hz, H-

2), 5.53 (d, 1H, 3J1-2 = 2.5Hz, H-1); 13C-NMR (62.9 MHz, CDCl3) δ (ppm): 109.1, 108.4, 96.3, 71.7, 

70.7, 70.5, 69.4, 42.3, 26.0, 25.9, 24.9, 24.3; ESI-MS (ion trap): m/z 260 [M+H]+. 

[N-(1,2:3,4-di-O-isopropylidene-6-deoxy-α-D-galactopyranosyl)-carbamoyl]-4-nitrophenol (23): 

A solution of 22 (1.0 g, 3.9 mmol, 1.0 eq.) in THF (15 mL) was added dropwise to a solution of bis 

(4-nitrophenyl) carbonate (1.17 g, 3.9 mmol, 1.0 eq.) and DMAP (1.01 g, 7.8 mmol, 2.0 eq.) in THF 

(20 mL) and the mixture was stirred at RT for 5 hours. The resulting mixture was diluted in EtOAc 

(150 mL) and washed with 0.5 N HCl (3 × 100 mL). The organic layer was dried over MgSO4 and 

filtered. The solvent was evaporated under reduced pressure and the residue was purified by 

flash chromatography (eluent: CH2Cl2/Hexane, 75:25) to afford 1.27 g of 23 (78 % yield). 1H-NMR 

(250 MHz, CDCl3) δ (ppm): 1.34 (s, 3H, -C-CH3), 1.35 (s, 3H, -C-CH3), 1.46 (s, 3H, -C-CH3), 1.51 (s, 
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3H, -C-CH3), 3.34-3.44 (m, 1H, H-6*), 3.55-3.65 (m, 1H, H-6), 3.95-4.01 (m, 1H, H-5), 4.23 (dd, 1H, 
3J4-3 = 10 Hz, 3J4-5 = 2.5 Hz, H-4), 4.34 (dd, 1H, 3J3-2 = 2.5 Hz, 3J3-4 = 5 Hz, H-3), 4.63 (dd, 1H, 3J2-1 = 7.5 

Hz, 3J2-3 = 2.5 Hz, H-2), 5.55 (d, 1H, 3J1-2 = 5 Hz, H-1), 5.60 (dd, 1H, 3JNH-6* = 7.5 Hz, JNH-6 = 5 Hz, -NH), 

7.28-7.32 (m, 2H, H-2’, H-6’), 8.21-8-25 (m, 2H, H-3’, H-5’); 13C-NMR (250 MHz, CDCl3) δ (ppm): 

155.9, 153.3, 144.7, 125.0, 121.9, 109.5, 108.8, 96.3, 71.5, 70.7, 70.4, 66.0, 41.8, 26.0, 25.9, 24.9, 

24.3; ESI-MS (ion trap): m/z 425 [M+H]+. 

(4’-mono-, 3-mono-, 3,4’-di-, 3,5-di-, 3,4’,5-tri-)-[N-(1,2:3,4-di-O-isopropylidene-6-deoxy-α-D-

galactopyranosyl)-carbamoyl]-resveratrol (24-28): A solution of resveratrol (0.15 g, 0.66 mmol, 

1.0 eq.) and DMAP (0.32 g, 2.64 mmol, 4.0 eq.) in pyridine (10 mL) was added to a solution of 23 

(1.13 g, 2.7 mmol, 4.0 eq.) in pyridine (10 mL) and the resulting mixture was allowed to react 

under vigorous stirring at 70°C for 16 hours. The reaction mixture was then diluted in EtOAc (200 

mL) and washed with 0.5 N HCl (5 × 150 mL). The organic layer was dried over MgSO4 and filtered. 

The solvent was evaporated under reduced pressure and the residue was purified by flash 

chromatography using EtOAc:Hexane 5.5:4.5 as eluent to afford 0.39 g of a mixture of 24-28 used 

as such for the subsequent synthetic step. ESI-MS (ion trap): 24, 25: m/z 514 [M+H]+; 26, 27: m/z 

799 [M+H]+; 28: m/z 1084 [M+H]+. 

(4’-mono-, 3-mono-, 3,4’-di-, 3,5-di-, 3,4’,5-tri-)-[N-(6-deoxy-galactosyl)-carbamoyl]-resveratrol 

(7-11) 

The mixture (24-28, 0.39 g) obtained in the previous step was added to a solution of TFA/water 

(90:10, 3 mL) and vigorously stirred at RT. After 1.5 hours the resulting mixture was precipitated 

with 40 mL of diethyl ether, the material was centrifuged and the solvent was decanted. The 

white powder obtained was then washed with diethyl ether three more times to eliminate traces 

of TFA. The residue was then dried under vacuum, separated by preparative HPLC (from 0% to 

38% ACN in 17 minutes) and lyophilized to afford derivatives: 7 (0.040 g, cumulative yield of the 

final two steps: 14%), 8 (0.023 g, cumulative yield of the final two steps: 8%), 9 (0.093 g, 

cumulative yield of the final two steps: 22%), 10 (0.025 g, cumulative yield of the final two steps: 

6%) and 11 (0.094 g, cumulative yield of the final two steps: 17%). 

7: 1H-NMR (600 MHz, DMSO-d6) δ(ppm): 8.00 (t, 1H, JNH-6*= JNH-6 = 6 Hz, -NH-), 7.56 (d, 2H, J2’’-3’’ = 

12 Hz, H-2’’, 6’’), 7.07 (d, 2H, J3’’-2’’ = 6 Hz, H-3’’, 5’’ ), 7.10-7.31 (m, 2H, H-8, 9), 6.43 (s, 2H, H-2’, 6’), 

6.15 (s, 1H, H-4’), 4.89-5.00 (m, 1H, H-1), 4.24-3.17 (m, 12H, H-2, 3, 4, 5, 6, 6*, 6 OH); 13C-NMR 

(151 MHz, DMSO-d6) δ (ppm): 158.6, 154.5, 150.5, 138.8, 133.9, 128.7, 127.3, 127.1, 121.9, 104.7, 

102.4, 97.6, 92.7, 73.3, 72.4, 71.9, 69.5, 69.2, 68.9, 68.6, 68.0, 41.8, 41.6; ESI-MS (ion trap): m/z 

434 [M+H]+. 

8: 1H-NMR (600 MHz, DMSO-d6) δ (ppm): 7.68 (t, 1H, JNH-6*= JNH-6 = 6 Hz, -NH- ), 7.41 (d, 2H, J2’’-3’’= 6 

Hz, H-2’’, 6’’), 6.16-7.08 (m, 7H, H-3’’,5’’, 2’, 4’, 6’, 8, 9), 3.17-4.95(m, 13H, H-1, 2, 3, 4, 5, 6, 6*,6 

OH); 13C-NMR (151 MHz, DMSO-d6) δ (ppm): 158.5, 157.9, 154.9, 152.6, 139.8, 129.4, 128.4, 

128.3, 125.0, 115.9, 115.5, 115.1, 114.8, 110.4, 110.2, 108.2, 97.9, 93.1, 73.7, 72.8, 72.3, 69.9, 

69.6, 69.3, 69.0, 68.5, 42.1, 42.0; ESI-MS (ion trap): m/z 434 [M+H]+. 

9: 1H-NMR (600 MHz, DMSO-d6) δ (ppm): 7.71 (m, 2H, -NH-), 7.58 (d, 2H, J2’’-3’’= 6 Hz, H-2’’, 6’’), 

7.08-7.18 (m, 4H, H-3’’5’’, 8, 9), 6.81 (s, 1H, H-2’), 6.79 (s, 1H, H-4’), 6.41 (s, 1H, H-6’), 4.94-5.01 

(m, 2H, 2 × H-1), 3.18-4.26 (m, 22H, 2 × H-1, 2, 3, 4, 5, 6, 6*, 8 OH); 13C-NMR (151 MHz, DMSO-d6) 

δ (ppm): 158.2, 154.5, 154.5, 152.3, 150.6, 138.9, 133.7, 128.2, 127.7, 127.4, 121.9, 110.4, 110.2, 
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108.4, 101.7, 97.5, 97.5, 92.7, 82.6, 82.2, 76.2, 73.3, 73.3, 72.4, 72.4, 72.0, 71.9, 69.5, 69.2, 68.9, 

68.6, 68.1, 68.0, 41.7, 41.6; ESI-MS (ion trap): m/z 639 [M+H]+. 

10: 1H-NMR (600 MHz, DMSO-d6) δ (ppm): 7.74 (t, 2H, JNH-6*= JNH-6 = 6 Hz, -NH-), 7.42 (d, 2H, J2’’-3’’= 

6 Hz, H-2’’, 6’’), 6.97-7.18 (m, 4H, H-3’’5’’, 8, 9), 6.79 (s, 1H, H-2’), 6.76(s, 1H, H-4’), 3.07-4.24 (m, 

23H, H-6’, 2 × H-1, 2, 3, 4, 5, 6, 6*, 8 OH); 13C-NMR (151 MHz, DMSO-d6) δ (ppm): 157.6, 154.3, 

154.2, 151.7, 151.7, 130.1, 130.0, 128.2, 127.8, 115.6, 115.3, 97.5, 97.5, 92.7, 73.3, 73.3, 72.4, 

71.9, 71.9, 69.4, 69.3, 68.9, 68.8, 68.6, 68.0, 41.8, 41.7, 41.6. ESI-MS (ion trap): m/z 639 [M+H]+. 

11: 1H-NMR (600 MHz, DMSO-d6) δ (ppm): 7.68-7.81 (m, 3H, -NH-), 7.60 (d, 2H, J2’’-3’’= 6 Hz, H-2’’, 

6’’), 7.11-7.33 (m, 6H, H-3’’5’’, 8, 9, 2’, 6’), 6.78 (s, 1H, H-4’), 2.98-4.95 (m, 33H, 3 × H-1, 2, 3, 4, 5, 

6, 6*, 12 OH); 13C-NMR (151 MHz, DMSO-d6) δ (ppm): 154.4, 154.2, 151.7, 150.8, 138.9, 134.5, 

133.5, 129.2, 127.5, 126.7, 122.0, 116.3, 101.7, 97.5, 92.7, 82.6, 82.1, 76.1, 73.3, 72.4, 71.9, 69.4, 

69.2, 68.9, 68.6, 68.0, 68.0, 41.8, 41.7. ESI-MS (ion trap): m/z 845 [M+H]+. 
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5. Pharmacokinetics and tissue distribution of  

pterostilbene in the rat
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Synthesis of pterostilbene-4’-sulfate (Pt-S) 

Chlorosulfonic acid (0.128 g, 1.10 mmol, 5.0 eq.) in acetonitrile (0.5 mL) was added 

dropwise to a vigorously stirred solution of pterostilbene (Pt, 0.056 g, 0.22 mmol, 1.0 eq.) 

and pyridine (0.5 mL) in acetonitrile (2.0 mL) in a 50 mL conical centrifugation tube 

(FalconTM type) at -20 °C. The reaction mixture was allowed to warm to room temperature. 

After 16 h the resulting reaction mixture was concentrated to about 1.5 mL under a weak 

nitrogen stream and solutes were precipitated with diethyl ether (40 mL). The slurry was 

then centrifuged (2200 rpm, 5 minutes) and the solvent decanted. The residue (a pale 

yellow gel) was dissolved in the minimum amount of acetonitrile and precipitation was 

repeated. The resulting solid was dissolved in 2 mL of water/methanol 1:1 and applied to a 

column (1.5 cm × 15.0 cm) of cation-exchange resin (Dowex 50WX8, K+ form, 10 g) and 

eluted with water. Fractions containing the desired product (identified by UV-detection on 

TLC) were combined and purified by reverse phase preparative HPLC using an ACE 5 AQ 

(150 mm × 21.2 mm) column and a flow rate of 17 mL/min (eluents: ACN and H2O; from 

10 to 60% ACN in 20 minutes; detection at 300 nm). Fractions containing the desired 

product were lyophilized to afford Pt-S as a bright white solid (0.062 g, 75%).  

Purity (HPLC/UV) ≥ 99%. 

1H NMR (500 MHz, DMSO) δ 7.50 (d, J = 8.6 Hz, 2H), 7.23 (d, J = 16.4 Hz, 1H), 7.18 (d, 

J = 8.6 Hz, 2H), 7.06 (d, J = 16.4 Hz, 1H), 6.76 (d, J = 2.0 Hz, 2H), 6.39 (t, J = 2.0 Hz, 

1H), 3.78 (s, 6H). 13C NMR (126 MHz, DMSO) δ 161.11, 153.79, 139.79, 132.23, 129.04, 

127.50, 127.47, 120.97, 104.70, 100.19, 55.65.  

HRMS (ESI-): m/z 335.0589 [M-H]-, calcd for C16H15O6S:.335.0595. 
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Quantification of analytes in blood and tissue samples 

The concentration of Pt or Pt-S in the original sample [A] was determined as follows: 

 

Where:  

• [A] m and [IS]m are the concentrations of analyte (A) or internal standard (IS), 

respectively, measured in the final/treated sample; 

• [IS]spike is the known concentration of IS in a solution of H2O:ACN, 1:1 spiked with 

the same amount of IS as in the sample before treatment; 

• AreaA,m and AreaIS,m are the HPLC peak area of the analyte or internal standard, 

respectively, measured in the final/treated sample; 

• AreaIS,spike is the HPLC peak area of IS, measured in the spiked H2O:ACN solution; 

• αA and αIS are the slopes of the calibration curves for A or IS, respectively, which 

correlates HPLC peak area with concentrations; 

• RA/IS is the ratio of recovery yields of A and IS, previously determined from 

samples spiked with known amounts of both A and IS (see below and Table 1). 

 

We can arguably assume that 1 g of tissue corresponds to 1 mL volume, and thus the 

concentration of analyte per gram of tissue lysate (nmol/g) can be approximated to 

concentration in µM units (i.e., nomol/mL). 

 

 

[A] =
[A] m

[IS]m

[IS]spike

1  
RA/IS

× ×
Recovery IS 
Recovery A =

AreaA,m

αA
= ×

αIS

AreaIS,m

AreaIS,spike

αIS
× × =

1  
RA/IS

AreaA,m

αA
= ×

AreaIS,spike
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Recovery yields 

To establish the recovery yields of Pt and Pt-S from blood and organs, the protocols for the 

treatment of blood or tissues were applied to samples spiked with a known amount of Pt or 

Pt-S.  

Recoveries of Pt, Pt-S and internal standard were determined as follows: 

 

Where: 

• [A] spike is the known concentration of the analyte (A) in a solution of H2O:ACN, 

1:1 spiked with the same amount of A as in the sample before treatment; 

• AreaA,spike is HPLC peak area of A, measured in the spiked H2O:ACN solution. 

All the other abbreviations are the same as described for analyte quantification in blood 

and tissue samples (see above).  
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Area IS,spike
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×
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×

=

=
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Supporting Information Table 1. Comparison of pharmacokinetic data for resveratrol 

(Resv) and pterostilbene (Pt).  

a) some data were deduced from published graphs. 
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6. Boosting pterostilbene’s effects: a prodrug approach 

 

Abstract:  

Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene, Pt) is the di-methylated analogue 

of Resveratrol (Rv). The methyl groups in positions 3 and 5 increase lipophilicity, 

bioavailability and efficacy. Pt is under investigation for its activity against metabolic 

disorders, neurodegenerative and cardiovascular diseases, inflammation, cancer. 

The bioavailability of Pt, while higher than that of Rv, is negatively affected by the free –

OH group in position 4’ which is an ideal target for the conjugative enzymes of phase II 

metabolism. As shown in Azzolini et al.,1 after an oral administration of Pt to fasted rats Pt 

sulphate was the major species in blood and organs. 

We thus aimed to lessen this problem by protecting the free –OH group of Pt. Our group 

has developed prodrug tools to reversibly protect the free phenolic functionalities of Rv 

(e.g. chapters 3 and 4). Here we present a series of Pt derivatives in which the hydroxyl is 

protected via a carbamoyl linkage to a natural aminoacid. The carbamoyl bond presents 

the stability characteristics required for prodrugs, and amino acids might a priori be 

recognized and used by amino acid transporters, thus boosting Pt absorption. 

Administration of derivatives of non-polar amino acids led to the best results. Absorption 

of the derivatives was high (blood concentrations in the range of 100 µM) and the release 

of Pt was important when isoleucine or β-alanine were used as promoiety. The Pt prodrug 

incorporating isoleucine was then used for further analysis, and the distribution in several 

organs of prodrug, Pt and Pt-sulfate was studied as a function of time after oral 

administration.  

The results indicate that in comparison to administration of Pt as such the prodrug 

affords: 

1. Increased absorption of the molecule 

2. Considerable reduction of metabolism 

3. Higher concentrations of pterostilbene, sustained for several hours, in most of the 

organs examined  
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Introduction: 

Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene, Pt) is a di-methylated form of 

Resveratrol (3, 5, 4’-trihydroxy-trans-stilbene, Rv) found in blueberries and grapes. While 

Rv has been intensively studied because of its potential multi-faceted usefulness in many 

areas of human health care, Pt has only recently emerged as a therapeutic compound. 

The literature suggests that, apart from the structure, Rv and Pt share also many 

beneficial properties. Rv was addressed to be effective against type 2 diabetes2-5 and 

metabolic disease,6-8 cardiovascular diseases,9-11 inflammation,12-14 neurodegenerative 

disorders15-17 and cancer.18-23 Pt now is under intensive investigation for the same 

targets.24-27  

The mechanisms behind this multi-targeted activity of Pt are not fully understood, but the 

effects are in part ascribable to modulation of Nrf2/Keap1 signaling,28-30 inhibition of the 

NF-kB pathway31-34 and perhaps to regulation of gene expression through the 

MTA1/NuRD complex.35 

Pt was found to possess a higher efficacy compared to Rv in various investigations,36-38 a 

superiority possibly due to a higher bioavailability. Nutakul et al.38 have found that, in 

vitro, intracellular levels of Pt were 2-4 fold higher than those of Rv after an equimolar 

dose treatment. The presence of the two methyl groups indeed renders Pt more 

lipophylic than Resveratrol. Its greater lipophylicity may provide the explanation for its in 

vitro potency, attributable to an efficient permeation of membranes and/or interaction 

with target proteins. In vivo data agrees with those obtained in vitro: Pterostilbene shows 

a greater bioavailability compared to Resveratrol when orally administered.39  

However, the presence of the hydroxyl group in position 4’ renders Pt a good substrate 

for phase II metabolism enzymes. Depending on the model used, the major phase II 

metabolites found after Pt oral administration are sulfates and glucuronides. In our 

previous work1 we have demonstrated that, except for the brain, the main species found 

in major rat organs after an oral administration of Pt is the sulfate. Literature in general 

focuses on the activity of the aglicones, while attention for metabolites is very recent.40 In 

the following chapter we show that Pt and Rv can induce autophagy. Metabolites were 

also investigated for their role in autophagy. While the main species found in the colon, 

namely dihydro-Rv and dihydro-Pt, showed high efficacy in the induction of autophagy, 

similar to that of the corresponding aglicones, sulfates were in general less effective. 

Moreover, phase II metabolites are expected to be rapidly excreted and to be confined to 

aqueous compartments, thus excluding themselves from important sites of action such as 

the brain or adipose tissue. 
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Prodrugs might be a convenient tool to reduce Pt phase II metabolism and slow down its 

clearance, thus increasing its in vivo efficacy. Previous work by my research group has 

identified the carbamoyl bond as the most convenient linkage for prodrugs of Rv 

(chapters 3 and 4). The carbamoyl group in fact presents an elevated stability in an acid 

environment similar to that of the gastric mucosae, it is fairly stable at neutral pH, similar 

 

Isoleucine (Ile, 2) 

Leucine (Leu, 3) 

β-alanine (betaAla, 4) 

Valine (Val, 5) 

Aliphatics 

 

Aspartic acid (Asp, 9) 

Acidic ( - ) 

 

Arginine (Arg, 10) 

Basic ( + ) 

 

Phenylalanine (Phe, 6) 

Aromatic 

 
Asparagine (Asn, 7) 

Threonine (Thr, 8) 

Hydrophilic 

Fig 1: Pt (1) was protected at the hydroxyl group by chemical derivatization. The aminoacids 
shown were attached to the stilbenoid structure via a carbamoyl bond linking the α-amino 
group and the phenolic oxygen, producing the corresponding derivatives 2-10 
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to that of the intestinal mucosae, and it is hydrolyzed with opportune kinetics in blood. 

However, we have noticed that a multiple substituent pattern may be an obstacle for the 

permeation of derivatives through the intestinal walls.  

In chapter 4 indeed we obtained the best results (sum of prodrugs + phase II metabolites) 

when we administered mono-substituted derivatives. In so doing unfortunately two of 

the three hydroxyl’s groups of Rv were exposed to phase II enzymes. Pt carries only one 

free hydroxyl group, so in a carbamate prodrug the obstacle to absorption should be 

limited. We have also previously tested several substituent groups (chapters 3 and 4). 

Natural amino acids can be considered the most convenient: they are indeed safe, 

present several transporters that might enhance the absorption of our derivatives and 

their structure facilitates the chemical synthesis of derivatives comprising the carbamoyl 

bond. 

Here we present the synthesis and the characterization of a series of derivatives of Pt 

comprising the carbamoyl bond system and an amino acid (fig 1).  

Materials and Methods: 

Chemicals and general chemistry procedures. Pterostilbene was purchased from Waseta 

Int. Trading Co. (Shangai, P.R.China). Other starting materials and solvents were obtained 

from Wonda Science, Sigma Aldrich, Fluka & Riedel-de Haen, Carlo Erba Reagenti, Iris 

Biotech, Cambridge Isotope Laboratories Inc., Acros Organics, Prolabo, Merck-

Novabiochem, J.T. Baker,  and were used as received. 

TLCs were run on silica gel supported on plastic (Macherey-Nagel Polygram ® SIL 

G/UV254, silica thickness 0.2 mm) and visualized by UV detection using a Spectroline 

NMS-240 lamp. Purifications were performed by flash chromatography on silica gel 

(Macherey-Nagel 60, 230-400 mesh granulometry 0.063-0.0040 mm) under air pressure 

or by the automated chromatography system BÜCHI Sepacore® flash system X10 or by 

preparative HPCL using a Shimadzu LC-8A with UV-Vis spectrophotometric detection and 

an inverse phase column (C18-functionalized silica) ACE 5 AQ, 150x21,2 mm. 

Mass spectrometry analyses were performed by Agilent Technologies MSD SL Trap with 

an electrospray source and ion trap analyzer. A Phenomenex® Gemini 3u 110A column 

was used for HPLC-ESI/MS separations. 

NMR spectra were recorded with a Bruker AC 200F spectrometer operating at 200 MHz 

(for 1H-NMR) and 50 MHz (for 13C-NMR), or a Bruker AV300 FT-NMR UltraShield operating 

at 300 MHz (for 1H-NMR) and 75 MHz (for 13C-NMR), or a Bruker AVII500 UltraShield 

operating at 500 MHz (for 1H-NMR) and 126 MHz (for 13C-NMR).  

Syntheses were carried out by the group of Prof. C. Paradisi (Dept. of Chemical Sciences) 

and are described in the Appendix. 
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Animals. Adult male Wistar rats (approximately 400 g body weight) from the facility of 

the Department of Biomedical Sciences were used for pharmacokinetic experiments. All 

experiments involving animals were performed after approval by the University of Padova 

Ethical Committee for Experimentation on Animals (CEASA) (Permit Number: 80/2011) 

and by the Italian Ministry of Health, and with the supervision of the Central Veterinary 

Service of the University of Padova, in compliance with Italian Law DL 116/92, embodying 

UE Directive 86/609.  

HPLC-UV Analysis. Samples (2 µl) were analyzed by HPLC/UV (1290 Infinity LC System, 

Agilent Technologies) using a reverse phase column (Zorbax RRHD Eclipse Plus C18, 1.8 

µm, 50 x 2.1 mm i.d.; Agilent Technologies) and a UV diode array detector (190-500 nm). 

Solvents A and B were water containing 0.1% trifluoroacetic acid (TFA) and acetonitrile, 

respectively. The gradient for B was as follows: 10% (0.5 min) then from 10% to 100% in 5 

min; the flow rate was 0.6 mL/min. The eluate was preferentially monitored at 286, 300 

and 320 nm (corresponding to absorbance maxima of the internal standard, 

derivatives/metabolites and pterostilbene, respectively). The column compartment was 

maintained at 35°C.  

Hydrolysis Reactions. The chemical stability of all new compounds was tested in aqueous 

media approximating gastric (0.1 N HCl, NormaFix) and intestinal (0.1 M PBS buffer, pH 

6.8) pH values. A 5 µM solution of the compound was prepared from a 5 mM stock 

solution in DMSO, and incubated at 37°C for 24 hours; samples withdrawn at different 

times were analyzed by HPLC-UV. Hydrolysis products were identified by comparison of 

chromatographic retention time with true samples. Non-linear curve fitting was 

performed using Origin 8.0 data analysis software; the hydrolysis reaction rate constants 

(k) of the starting compounds were calculated through interpolation of data with the 

equation for pseudo-first order reactions: ��� = �����
��	, where: 

[C ] : concentration of the compound 

[C ]0 : concentration of the compound at the initial time t0 

t: time. 

Hydrolysis in blood. Rats were anesthetized and blood was withdrawn from the jugular 

vein, heparinized and transferred into tubes containing EDTA. Blood samples (1 mL) were 

spiked with compound (5 µM; dilution from a 5 mM stock solution in DMSO), and 

incubated at 37°C for 4 hours (the maximum period allowed by blood stability). Aliquots 

were taken after 10 min, 30 min, 1 h, 2 h and 4 h and treated as described below. Cleared 

blood samples were finally subjected to HPLC-UV analysis. 

Blood Sample Treatment and Analysis. Before starting the treatment, 4,4’-

dihydroxybiphenyl was added as internal standard to a carefully measured blood volume 

(25 µM final concentration). Blood was then stabilized with a freshly-prepared 10 mM 

solution of ascorbic acid (0.1 vol) and acidified with 0.6 M acetic acid (0.1 vol); after 

mixing, an excess of acetone (4 vol) was added, followed by sonication (2 min) and 



Chapter 6 

130 
 

centrifugation (12,000 g, 7 min, 4°C). The supernatant was finally collected and stored at -

20°C. Before analysis, acetone was allowed to evaporate at room temperature using a 

Univapo 150H (UniEquip) vacuum concentrator centrifuge, and up to 40 µL of CH3CN 

were added to precipitate residual proteins. After centrifugation (12,000 g, 5 min, 4°C), 

cleared samples were directly subjected to HPLC-UV analysis.  

Metabolites and hydrolysis products were identified by comparison of chromatographic 

retention time with true samples. 

The recovery yields of pterostilbene and its metabolite have been reported previously.1 

The recovery yields of the new prodrugs were obtained following the same protocol and 

are listed in table 1. Briefly, the recovery yield of each analyte was calculated as the ratio 

of the amount recovered to that of recovered internal standard. Knowledge of these 

ratios allowed us to determine the amount of analyte in a blood/organ sample by 

measuring the recovery of the internal standard (see 41). 

Pharmacokinetics Studies:  

Blood. Derivatives 2-10 were administered to overnight-fasted male rats as a single 

intragastric dose (88 µmol/Kg, dissolved in 250 µl DMSO). Blood samples were obtained 

by the tail bleeding technique: before drug administration, rats were anesthetized with 

isoflurane and the tip of the tail was cut off; blood samples (80-100 µL each) were then 

taken from the tail tip at different time points after drug administration. Blood was 

collected in heparinized tubes, kept in ice and treated as described above (blood sample 

treatment and analysis) within 10 min.  

Organ distribution. The organ distribution profile of derivative 2 was determined as 

described in Azzolini et al.1 Briefly, after a single intragastric oral administration of the 

derivative (same procedure as for blood pharmacokinetic determinations) animals were 

anesthetized with isoflurane and sacrificed (N = 3 or 4 for each time point). Blood was 

collected in heparinized tubes, kept in ice and treated as described above within 10 min. 

Brain, lungs, heart, liver, kidneys, testes and skeletal muscles (soleus, gastroctemius and 

anterior tibialis) were explanted, weighed and immediately frozen in liquid nitrogen.  1 g 

of thawed tissue was mixed with 1 mL of D-PBS (Euroclone), and homogenized with a 

motorized polypropylene pestel (Sigma, for brain and testes) or with an Ultra-Turrax T25 

homogenizer (Janke & Kunkel, for all other tissues). 200 mg of tissue homogenate were 

transferred into a vial and spiked with the internal standard (4,4’-dihydroxybiphenyl, 

dilution from a 50× stock solution in acetonitrile, 25 nmol/g tissue final concentration). 10 

µL of a freshly-prepared 10 mM solution of ascorbic acid, 10 µL of 4.35 M acetic acid, and 

500 µL of acetone were added. Samples were vortexed (2 min), sonicated (2 min) and 

then centrifuged (12,000 g, 7 min, 4°C). An accurately measured portion of the 

supernatant was finally collected and stored at -20°C. Further processing and analysis was 

carried out as described above for blood samples. The Area Under the Curve (AUC) values 

were calculated using the trapezoidal rule.  
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Recovery yields of 1 and 1-sulfate from the organs are those reported in Azzolini et al.1 

The recovery yield of 2 from the organs was determined following the same procedure 

adopted for 1 and 1-sulfate. Briefly, 1 g of tissue (from an untreated animal) was mixed 

with 1 mL of PBS containing 5 nmoles of 2 (dilution from a 100× stock solution in DMSO), 

and homogenized. 200 mg aliquots of the homogenate were then taken and processed as 

described above. Recoveries of 2 from the organs are listed in table 2. 

Results: 

Hydrolysis in media mimicking gastric and intestinal pH: 

Apart from an easy absorption from the intestine, prodrug candidates should also 

regenerate the parent compound with opportune kinetics. In agreement with previous 

results (chapters 3 and 4) the carbamoyl bond turned out to be stable in acidic media (pH 

= 1; 24h, 37°C) in these compounds. At near-neutral pH (6.8), the derivatives underwent 

hydrolysis, whose rate depended on the substituent group (figure 1), but was generally 

low. Derivatives 7 and 8 hydrolyzed most rapidly, while reaction rates were slowest for 

derivatives 3, 6 and 9 (see table 1). 

 

 

Table 1: Recovery ratios and hydrolysis constants of derivatives 2-10. Recovery ratio  
(analyte/internal standard) from blood are given as mean values  ± standard deviation. N 
≥ 4 for each condition. Pseudo-first-order rate constant were calculated as best fit of the 
experimental points using the first order exponential equation: [C] = [C

0
]*exp(-kt) 

Substituent Recovery ratio K (h
-1

) in PBS pH 6,8 K (h
-1

) in rat 

blood 

2 Isoleucine 1.124 ± 0.088 0.00547 ± 0.00008 0.28 ± 0.01 

3 Leucine 0.759 ± 0.068 0.00465 ± 0.00005 0.059 ± 0.004 

4 β-alanine 0.697 ± 0.033 0.0070 ± 0.0006 0.96 ± 0.05 

5 Valine 0.892 ± 0.077 0.0065 ± 0.0002 0.114 ± 0.007 

6 Phenylalanine 0.854 ± 0.029 0.0050 ± 0.0004 0.025 ± 0.002 

7 Asparagine 0.712 ± 0.058 0.0114 ± 0.0006 0.174 ± 0.005 

8 Threonine 0.714 ± 0.063 0.01320 ± 0.00007 0.131 ± 0.005 

9 Aspartic acid 0.884 ± 0.048 0.0034 ± 0.0004 0.034 ± 0.003 

10 Arginine 0.778 ± 0.035 0.0099 ± 0.0002 0.31 ± 0.03 
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Hydrolysis in blood:  

Fresh blood from the jugular vein of a rat was thermostatically kept at 37°C and spiked 

with a known amount of the derivatives. Due to the limited stability of blood outside the 

body, the experiments were terminated after 4 hours. 

The higher pH of blood in comparison to that of our PBS solution (7.4 vs. 6.8) and the 

presence of esterase activities in blood (for a discussion please see chapter 3) make 

hydrolysis in blood faster than in PBS. k values in blood are indeed in most cases higher by 

a factor of at least 10 compared to those obtained in PBS solution (see table 1). Derivative 

4 (with β-alanine) regenerated 1 with the fastest kinetics, while derivatives 3, 6 and 9 

exhibited the lowest rates. Derivative 6 (with phenylalanine) was affected the least by the 

presence of an higher pH and hydrolytic enzymes (fig 3).  

Blood pharmacokinetics: 

In vitro (pH = 1 and pH = 6.8) and ex vivo (blood) stability profiles of derivatives 2-10 

indicated their suitability for use as prodrugs of pterostilbene. We therefore proceeded to 

determine the pharmacokinetic profile of each of them.  

Fig 2: Hydrolysis of derivatives 2-10 in PBS 0.1M, pH 6.8, 37°C. Data are expressed as % of the initially 
loaded compound. The fit is for pseudo-first order kinetics. 

Isoleucine β-alanine Leucine 

Asparagine Phenylalanine Valine 

Threonine Aspartic acid Arginine 
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Here the results are presented by class of 

substituent group. Graphs are identified by 

the number of the derivative administered 

(see legends, black line) 

1. Derivatives with aliphatic amino acids as 

promoieties (2-5):  

Derivatives 2-5 when orally administered 

were rapidly and extensively absorbed by 

the intestine (fig 4), reaching very high 

concentrations in blood. As reported in table 

2, compounds 2, 3 and 5 peaked at values 

around 100 µM (94 ± 49 µM, 113 ± 86 µM 

and 202 ± 36 µM, respectively). The 

maximum concentration of compound 4 was 

also high, but less so than for the other 3 

derivatives (50 ± 11 µM). 

Fig 3: Hydrolysis or derivatives 2-10 in blood. Data are expressed as % of the initially loaded compound. 
The fit is for pseudo-first order kinetics. 

Isoleucine β-alanine Leucine 

Asparagine Phenylalanine Valine 

Threonine Aspartic acid Arginine 

Table 2: Blood pharmacokinetics C
max

 and t
max

 

parameters of derivatives 2-10. N ≥ 3 for each 
condition. Mean values ± standard deviation 
are shown. 

 
Cmax (µM) tmax (h) 

2 94.07 ± 49.19 2 

3 112.71 ± 85.52 2 

4 49.86 ± 10.96 1/2 

5 102.60 ± 36.03 4 

6 40.40 ± 50.44 2 

7 0.83 ± 0.32 1 

8 5.74 ± 8.86 1/6 

9 1.42  ± 2.02 1/6 

10 0.73 ± 0.32 2 

 



Chapter 6 

134 
 

Compounds 2, 3 and 5 reached their maximum concentration in blood 2 hours after 

administration and their level was sustained until the 8th hour, then it slowly dropped to 

almost complete clearance at 24h (fig 4, 2 and 3). Pterostilbene (1), the hydrolysis 

product, as well as its major metabolite, 1-sulfate, were formed in all cases. After the 

administration of 3 and 5 other minor metabolites were detected, but due to their low 

amount it was not possible to identify them. 

Derivative 4 plateaued in the interval from 30 min to 2 hours after administration, then it 

rapidly decreased (fig 4, 4). The high rate of hydrolysis (fig 3, 4) and the rapid and 

consistent formation of 1-sulfate suggest that this compound is also well absorbed, but it 

rapidly hydrolyzes to produce 1 which is subsequently sulfated. Unidentified metabolites 

were present also in this case (fig 4, 4). 

2. Derivative with an aromatic amino acid promoiety (6): 

Derivative 6 is also lipophilic, and analogously to derivatives 2-5 it also reached an 

elevated concentration in blood, sustained for several hours after its oral administration 

(fig 5, 6). However its high stability in blood limited the release of 1. Levels of 1 were low, 

but phase II metabolite 1-sulfate was present, indicating a certain degree of hydrolysis of 

the parent compound under physiological condition. 6 peaked at 2 hours and 1-sulfate at 

8 hours. 

 

Fig 4: Pharmacokinetic profiles after oral administration of derivatives 2-5. Data 
represent average values ± standard deviation. N ≥ 3 in all cases. 
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3. Derivatives with hydrophilic amino acid  promoieties (7 and 8):  

Compared to previously discussed molecules, the concentrations attained by these two 

derivatives in blood were very low. 7 reached a disappointing 0.8 µM after 30 minutes, 

while 8 peaked at 5.7 µM after 10 minutes and then rapidly dropped. In the case of 7 no 

other species were detected, while 8 yielded traces of 1-sulfate. 

4. Derivatives with charged amino acid promoieties (9, acidic and 10, basic):  

Administration of 9 and 10 led to very low concentrations of the derivatives in blood (1.4 

µM after 10 minutes and 0.7 µM after 2 hours, respectively, in the case of 9). 1 and 1-

sulfate were detected only after administration of 9, and as mere traces. 

This pharmacokinetics analysis clearly indicates that compounds bearing aliphatic and 

aromatic amino acid promoieties (2-6) give the best results. We intend prodrugs as a tool 

to increase the levels of the parent compound in the body. Blood cannot be considered as 

Fig 5: Pharmacokinetic profiles after oral 
administration of derivatives 6-10. 6 
bears an aromatic amino acid, 7 and 8 an 
hydrophilic amino acid and 9 and 10 a 
charged amino acid. Data represent 
average values ± standard deviation. N ≥ 
3 in all cases. 
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fully representative of the body in terms of the levels of 1, 1-sulfate and of our 

derivatives. Its aqueous character renders the blood much more attractive for hydrophilic 

compounds than for lipophilic ones, as previously mentioned in Azzolini et al.1 (chapter 

5). However a complete organ distribution study of each derivative is time- and energy-

expensive. Blood pharmacokinetics are therefore a useful way to separate those 

compounds which have no chance to function as prodrugs from those presenting 

desirable  characteristics.  

The Area Under the Curve (AUC0-24) parameter gives a quantitative idea of the results 

obtained in blood pharmacokinetics. The AUC0-24 of the total amount of pterostilbene-

derived species after administration of derivatives 2 to 6 was definitely higher compared 

to that resulting from administration of 1 as such (fig 6, a).  

a b 

c d 

e Fig 6: a, AUC
0-24

 of the total circulating species 

derived from 1-6 after oral administration of 
equimolar doses of 1-6. b, AUC

0-24
 of the 

derivatives 2-6. c, AUC
0-24

 of 1-sulfate. d, AUC
0-

24
 of 1 after the administration of the indicated 

compound. Panel e shows the pharmacokinetic 
profile of 1 when it is administered as such and 
when it is released by hydrolysis of the 
prodrugs. Error bars represent standard 
deviation. 
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AUC0-24 values are provided in fig 6 for the three species contributing to the total: the 

unchanged prodrugs (fig 6, b), 1-sulfate (fig 6, c) and 1 (fig 6, d). While the AUC0-24 of 1-

sulfate is similar in all cases (fig 6, c), the relative contribution of 1 and the derivatives is 

quite different depending on what was administered. 

Derivatives 2, 3 and 5 afforded the highest values of overall AUC0-24. The highest AUC0-24 

for 1 was produced instead upon administration of 2 (the isoleucine derivative) and 4 (the 

β-alanine derivative). 

The data indicate that all the derivatives when orally administered had a better AUC0-24 

compared to the oral administration of 1 as such, but at the same time they also indicate 

that for our purposes derivatives 3, 5 and 6 are not convenient prodrugs of Pt. In fig 6, d 

and 6, e indeed it is possible to appreciate that only derivatives 2 and 4 were able to 

boost the AUC0-24 of 1 to very high values. 

We finally decided to proceed with a detailed analysis of the organ distribution of the 

compounds of interest after a single oral administration, using compound 2. 

Distribution of derivative 2 into major organs: 

The recovery ratio of 2 was satisfactory for all the organs examined (see table 3). The time 

points at which we performed the analysis differ from those of the blood 

pharmacokinetics. Samplings at 10 minutes, 1 hour and 24 hours were replaced with 

analyses carried out at 12 and 16 hours. This was done to better cover the period in which 

the levels of prodrug and its derivatives in the body were high. In the blood 

pharmacokinetics study with 2 we detected only the prodrug itself, 1 and 1-sulfate (fig 4, 

2). In liver and kidneys also other minor unidentified metabolites were present, which are 

not further mentioned here because of their low concentration.  

Blood analysis was repeated as a control for the 

experiment. Levels of 2, 1 and 1-sulfate were 

comparable to those observed in the blood 

pharmacokinetics study (fig 7, blood).   

2 was the major species observed in most of the 

organs examined, exceptions being the brain and 

skeletal muscle. 1 and 1-sulfate concentrations 

varied depending on the properties of the tissue 

examined.  

1 was the predominant species in the brain, 

reaching 20 nmoles/g 8 hours after the 

administration of the prodrug. Notably, in brain 

the levels of 1 remained above 10 nmoles/g for 

several hours, from the 4th to the 10th. 1 was also 

 

Organs Recovery ratio of 2 

Brain 0.933 ± 0.089 

Lungs 0.887 ± 0.111 

Heart 0.909 ± 0.087 

Liver 0.830 ± 0.063 

Kidneys 0.678 ± 0.082 

Testes 0.866 ± 0.091 

Muscles 0.958 ± 0.064 

Table 3: Recovery of 2 from tissues. 
N ≥ 4 for each condition. Mean 
values ± standard error  are shown. 
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present at appreciable levels in the other organs, with concentrations comprised between 

10 and 20 nmoles/g in most of cases (except blood), peaking at the 8th hour.  

Testes Skeletal 
muscle 

Fig 7: Concentration versus time profiles of derivative 2, 1 and 1-sulfate in blood and 
tissues. A single intragastric dose of 2 (88 µmoles/kg body weight) was administered to rats 
at time 0. Reported are mean values ± standard deviation. N ≥ 3. 

Liver Kidneys 

Lungs Heart 

Blood Brain 
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1-sulfate was present at high levels in the liver and kidneys (Cmax approximately 60 and 25 

nmoles/g, respectively) while in the brain, testes and skeletal muscle its levels were low 

(Cmax approximately 0.5, 3 and 2 nmoles/g, respectively). 

Our previous article, “Pharmacokinetics and tissue distribution of pterostilbene in the rat” 

(1, chapter 5) can be considered as a control for this part of the work. Figure 8 compares 

the AUC values for pterostilbene (1; panel a) and its sulfate (1-sulfate; panel b) obtained 

integrating the curves of the organ pharmacokinetics after the administration of 2 (black 

bars) and those from that work (grey bars). 2 was administered to fasted animals with the 

same molar dose used in Azzolini et al.1 (chapter 5). 

AUC comparison indicates that by administering prodrug 2 we obtained a consistent 

increase in the AUC of 1 in most of the organs examined. Minor differences were found in 

the kidneys, lungs and blood, while the AUC doubled in the brain, heart, testes and 

skeletal muscle. In the liver the AUC of 1 was similar in the two cases. 

When orally administered, compounds are absorbed by the intestine and funneled 

through the systemic circulation to the liver. This might explain why administration of 2 

results in a lower AUC of 1-sulfate in the liver: while by administering 1 all the absorbed 

phenol is filtered in the hepatocyte network (and much remains entrapped in the tissue), 

by administering 2 hepatic clearance concerns to a large extent the prodrug. 1 will reach 

the liver only after being generated by hydrolysis of 2, which is distributed in the body.  

As previously seen (fig 6, c), the AUC of 1-sulfate in blood does not differ when 1 or 2 are 

administered. In testes, skeletal muscle and brain its dependence on the specie 

administered is minor, while differences are more important in lungs, heart, liver and 

kidneys. In particular in the heart, skeletal muscle, testes and in the kidneys the 

administration of 2 reduced overall levels of 1-sulfate by a factor of 2, while in liver and 

a b 

Fig 8: AUC
0-16h

’s comparison between results obtained in Azzolini et al.1 (grey bars) and those 

obtained in this work (black bars). a, AUC
0-16

 of 1 after the administration of the indicated 

compound. b, AUC
0-16

 of 1-sulfate after the administration of the indicated compound. Error 

bars represent standard deviation. 
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lungs the difference was even larger. This presumably reflects the elimination of part of 

the prodrug as such (unaltered). 

Conclusions: 

Carbamoyl bond-based prodrugs of pterostilbene have been shown to be effective in 

increasing its bioavailability. 

The stability in media mimicking gastric and intestinal pH of all the derivatives is high. At 

the same time derivatives 2-10 undergo hydrolysis at a moderate rate in blood. From a 

practical point of view this means that the derivatives, when orally administered, can pass 

intact through the stomach and the intestine, be distributed in the body through the 

blood and finally regenerate the natural compound in the organs. 

All the derivatives were screened through blood pharmacokinetics. Compounds bearing 

aliphatic and aromatic amino acids gave the best results. Derivatives 2-6 were able to 

reach blood concentrations in the range of 50-100 µM. Among these derivatives, 2 and 4 

afforded the highest levels of Pterostilbene. 

2 was selected for further analysis. We have previously reported the distribution in major 

organs of pterostilbene following administration of pterostilbene itself; compound 2 was 

studied under the same conditions in order to compare the results obtained in the two 

experiments. By administering the prodrug we obtained: 

1. Increased absorption of the molecule 

2. Consistent reduction of metabolism 

3. Higher concentrations of pterostilbene, sustained for several hours, in most of the 

organs examined  
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Appendix:  

Synthesis of derivatives 2-10:  

Derivatives were synthesized by the group of prof. Cristina Paradisi, Department of Chemical 

Sciences, University of Padova. 

4’-[N-(isoleucinyl)-carbamoyl]-pterostilbene (Pt-CP-Ile, 2): 

1. 4’-[N-(isoleucinyl-tert-butyl)]-pterostilbene 

A solution of L-isoleucine tert butyl ester hydrochloride (0.5005 g, MW = 223.74 g/mol, n = 2.23 

10-3 mol, 1 eq) and DMAP (1.0883 g, MW = 122.17 g/mol, 8.91 10-3 mol, 4 eq) in DCM dry (7 mL) 

was added dropwise to a solution of bis-(4-nitrophenyl) carbonate (0.7142 g, MW = 304.21 g/mol, 

n = 2.35 10-3 mol, 1.05 eq) in DCM dry (4.5 mL). The resulting mixture was stirred at 50°C for 4 

hours. Then, pterostilbene (0.7523 g, MW = 256.3 g/mol, n = 2.93 10-3 mol, 1.3 eq) was added to 

the solution. The resulting mixture was stirred at 50°C overnight, and then it was diluted in DCM 

(100 mL) and extracted with HCl 0.5 M (2 × 100 mL). The organic layer was dried over with MgSO4 

and filtered. The solvent was evaporated under reduced pressure and the product was purified 

from PNP, and Pt by flash chromatography using petroleum ether/DCM/ethylic ether (5/4/1) as 

eluent, and from Ile-OtBu-PNPC by flash chromatography using petroleum ether/Et2O (7/3) as 

eluent, to afford Pt-CP-Ile-OtBu as a colourless oil (0.7803 g, MW = 469.25 g/mol, n = 1.66 10-3 

mol, 74.3 % yield). 

MS-ESI (ion trap) = 470 m/z [M+H+]  

1H NMR (200 MHz, CDCl3) δ (ppm) = 7.48 (d, J = 8.4 Hz, 2H), 7.19 – 6.82 (m, 4H), 6.66 (d, J = 2.0 Hz, 

2H), 6.39 (m, 1H), 5.62 (m, 1H), 4.29 (m, 1H), 3.83 (s, 6H), 1.95 (m, 1H), 1.50 (m, 11H), 0.97 (m, 

6H). 

13C NMR (50 MHz, CDCl3) δ(ppm) = 170.91, 161.20, 154.31, 150.64, 139.40, 134.54, 128.45, 

127.50, 121.90, 104.66, 100.17, 82.40, 58.82, 55.49, 38.50, 28.21, 25.30, 15.54, 11.88. 

2. 4’-[N-(isoleucinyl)-carbamoyl]-pterostilbene 

TFA (2.5 mL, MW = 114.02 g/mol, n = 3.26 10-2 mol, 40.25 eq) was added to a solution of Pt-CP-Ile-

OtBu (0.3798 g, MW = 469.25 g/mol, n = 8.1 10-4 mol, 1 eq) and TIPS (0.625 mL, 5 % v/v) in DCM 

dry (10 mL). The mixture was stirred at 0°C overnight. The TFA and the solvent were evaporated 

under reduced pressure. The product was titrated with toluene (2 × 5 mL) and purified by flash 

chromatography using petroleum ether/acetone (7/3) as eluent, to afford Pt-CP-Ile-OH as a white 

solid (0.2537 g, MW = 413.18 g/mol, n = 6.14 10-4 mol, 76 % yield).  

MS-ESI (ion trap) = 413 m/z, 434 m/z [M+Na]+ 

1H NMR (200 MHz, CDCl3) δ (ppm) = 8.06-8.03 (m, 1H) 7.49 (d, J = 8.5 Hz, 2H), 7.04 (m, 4H), 6.66 

(d, J = 1.9 Hz, 2H), 6.40 (m, 1H), 4.46 (m, 1H), 3.83 (s, 6H), 1.86 (m, 1H)1.53-1.21 (m, 1H) 0.94-0.85 

(m, 1H), 1.03 (m, 6H). 

13C NMR (50 MHz, CDCl3) δ (ppm) = 176.02, 160.66, 154.11, 150.02, 138.93, 134.31, 128.42, 

127.93, 127.11, 121.42, 104.27, 99.77, 58.05, 55.07, 37.53, 24.60, 15.25, 11.32. 
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4’-[N-(leucinyl)-carbamoyl]-pterostilbene (Pt-CP-Leu, 3) 

1. [N-(tert-butyl-leucinyl)-carbamoyl]-p-nitrophenol (PNPC-Leu-OtBu). 

Leucine tert butyl ester hydrocloride (1.5997 g, MW = 223.74 g/mol, n = 7.15·10-3 mol, 1 eq) was 

dissolved in 35 mL of acetonitrile. DMAP (1.7590 g, MW = 122.17 g/mol, n = 1.44·10-2 mol, 2 eq) 

and bis(4-nitrophenyl)carbonate (2.1766g, MW = 304.21 g, n = 7.15·10-3 mol, 1 eq) were added at 

the previous solution. The reaction mixture was stirred at room temperature for 3 hours and then 

was warmed up to 50°C and stirred for another hour. The resulting mixture was diluted in DCM 

(200 mL), washed with 0,5 N HCl (150 mL) and extracted with 2 × 100 mL of dichloromethane. The 

organic layer was dried over MgSO4 and filtred. The solvent was evaporated under reduced 

pressure and the residue was purified by flash chromatography using Petroleum Ether:Ethyl 

Ether=6,5:3,5 as eluent. Solvent was evaporated under reduced pressure to afford 1.9800 g of 

product (78.6% yield). 

1H NMR (CDCl3, 300 MHz) δ (ppm): 8.205 (d, 2H, aromatic meta position, 3JH-H = 9 Hz), 7.295 (d, 

2H, aromatic ortho position, 3JH-H = 9 Hz), 5.735 (d, 1H, CH-NH, 3JH-H = 9 Hz), 4.26-4.34 (m, 1H, NH-

CH), 1.52-1.83 (m, 3H, NH-CH-CH2 and CH3-CH-CH3), 1.48 (s, 9H, 3 × C-CH3), 0.97 (d, 6H, 2 × CH-

CH3, 
3JH-H = 9 Hz); 

13C NMR (CDCl3, 300 MHz) δ (ppm): 171.72, 155.76, 152.69, 144.76, 125.10, 121.96, 82.50, 53.23, 

41.99, 27.98, 24.89, 22.81, 21.98. 

2. [N-(tert-butyl-leucinyl)-carbamoyl]-pterostilbene (Pt-CP-Leu-OtBu). 

A solution of pterostilbene (0.5015 g, MW = 256.3 g/mol, n = 1.96·10-3 mol, 1 eq) in 20 mL of 

acetonitrile was prepared. PNPC-Leu-OtBu (1.3791 g, MW = 396.43 g/mol, n = 3.91·10-3 mol, 2 eq) 

and DMAP (0.4723 g, MW = 122,17 g/mol, n = 3,86·10-3 mol, 2 eq) were added to the previous 

solution. The mixture was stirred at 50°C under nitrogen stream overnight. The reaction progress 

was checked by TLC. The resulting mixture was diluted in DCM (100 mL), washed with 0,5 N HCl 

(100 mL) and extracted with 2 × 100 mL of DCM. The organic layer was collected and dried over 

MgSO4. The solvent was evaporated under reduced pressure and the residue was purified from 4-

nitrophenol by flash chromatography using Petroleum Ether:Dichloromethane:Ethyl Ether=5:4:1, 

and from the residual PNPC-Leu-OtBu  by flash chromatography using Petroleum Ether:Ethyl 

Ether=7:3. The solvent was evaporated under reduced pressure to afford 0.8902 g of product 

(86.2% yield). 

1H NMR (CDCl3, 500 MHz) δ (ppm): 8,01 (d, 1H, O-(C=O)-NH, 3JH-H = 10 Hz), 7.465 (d, 2H, H-2' and 

6', 3JH-H = 5 Hz), 7.13 (d, 2H, H-3' and 5', 3JH-H = 10 Hz), 6.93-7.06 (d+d, 2H, H-7 and 8), 6.66 (d, 2H, 

H-2 and 6, 4JH-H = 2 Hz), 6.40 (t, 1H, H-4, 4JH-H = 2 Hz), 4.32-4.36 (m 1H, Leu Cα-H), 3.80 (s, 6H, O-

CH3), 1.75-1,83 (m, 1H, Leu Cγ-H), 1.55-1.70 (m, 2H, Leu Cβ-H2), 1.50 (s, 9H, (C=O)-O-C(CH3)3 ), 0.98-

1.00 (dd, 6H, Leu Cδ-H3 and Leu Cε-H3). 

13C NMR (CDCl3, 500 MHz) δ (ppm): 172.12, 160.94, 154.17, 150.47, 139.22, 134.37, 128.55, 

128..22, 127.33, 121.75, 104.52, 100.00, 82.03, 55.27, 41.90, 27.97, 24.86, 22.82, 21.99. 

3. [N-(leucinyl)-carbamoyl]-pterostilbene (Pt-CP-Leu-OH). 
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Pt-CP-Leu-OtBu ( 0.7958 g, MW = 469.57 g/mol, n = 1.69·10-3 mol, 1 eq) was dissolved in 25 mL of 

anhydrous dichloromethane and 5 mL of TFA ( MW = 114.02 g/mol, n = 6.53·10-2 mol, 42.7 eq) 

were added to the solution. The mixture was stirred at room temperature for 3 hours under 

nitrogen stream. The reaction progress was checked by TLC. After 3 hours the solvent and the 

residual TFA were evaporated under reduced pressure. The residue was titrated with toluene (2 × 

5 mL), and then solvent was evaporated under reduced pressure. The product was purified by 

automated chromatography system using Petroleum ether:Acetone=7:3. Solvent was evaporated 

under reduced pressure to afford 0.5103 g of product (73.0% yield). 

1H NMR (CDCl3, 500 MHz) δ (ppm): 7.47 (d, 2H, H-2' and 6', 3JH-H = 10 Hz), 7.13 (d, 2H, H-3' and 5', 
3JH-H = 10 Hz), 6.94-7.06 (d+d, 2H, H-7 and 8), 6.655 (d, 2H, H-2 and 6, 4JH-H = 2 Hz), 6.40 (t, 1H, H-4, 
4JH-H = 2 Hz), 4.43-4.48 (m 1H, Leu Cα-H), 3.82 (s, 6H, O-CH3), 1.72-1.84 (m, 2H, Leu Cβ-H2), 1.61-

1.67 (m, 1H, Leu Cγ-H), 0.98-1.00 (dd, 6H, Leu Cδ-H3 and Leu Cε-H3). 

13C NMR (CDCl3, 300 MHz) δ (ppm): 172.12, 160.94, 154.17, 150.47, 139.22, 134.37, 128.55, 

128..22, 127.33, 121.75, 104.52, 100.00, 82.03, 55.27, 41.90, 27.97, 24.86, 22.82, 21.99. 

ESI-MS:825 m/z [2(Pt CP-Leu-OH)]- 

4’-[N-(β-alanin)-carbamoyl]-pterostilbene (Pt-CP-betaAla, 4): 

1. [N-(β-alanin-tert-butyl)]-p-nitro-phenylcarbamate 

A solution of β-alanine-tert-butyl ester (0.5048 g, MW = 181.66 g/mol, n = 2.78 10-3 mol, 1 eq) and 

4-(dimethylamino)pyridine (0.6828 g, MW =122.17 g/mol, n = 5.59 10-3 mol, 2 eq) in ACN (5 mL) 

was added dropwise to a solution of bis(4-nitrophenyl) carbonate (0.8253 g, MW = 304.21 g/mol, 

n = 2.71 10-3 mol, 1 eq) in ACN (20 mL). The resulting mixture was stirred at 50°C overnight. The 

solution was diluted in DCM (150 mL) and washed with HCl (2 × 100 mL). The organic layer was 

dried with MgSO4 and filtered. The solvent was evaporated under reduced pressure. The product 

was purified by flash chromatography using CHCl3/acetone (99/1) as eluent, to afford β-Ala-OtBu-

PNPC as a colourless oil (0.5693 g, MW = 310.3, n = 1.83 10-3 mol, 65.3 % yield). 

MS-ESI (ion trap) = 333 m/z [M+Na]+  

1H NMR (300 MHz, CDCl3) δ (ppm) = 8.24 (d, J = 9.1 Hz, 2H), 7.32 (d, J = 9.1 Hz, 2H), 5.81 (s, 1H), 

3.52 (m, 2H), 2.54 (t, J = 5.9 Hz, 2H), 1.48 (s, 9H). 

13C NMR (75 MHz, CDCl3) δ (ppm) = 171.97, 156.26, 153.40, 145.11, 125.46, 122.26, 81.82, 37.31, 

35.41, 28.36. 

2. 4’-[N-(β-alanin-tert butyl ester)-carbamoyl]-pterostilbene 

A solution of DMAP (0.5482 g, MW = 122.17 g/mol, n = 4.49 10-3 mol, 2 eq) and pterostilbene 

(0.7246 g, MW = 256.3 g/mol, n = 2.83 10-3 mol, 1.3 eq) in DCM dry (5 mL) was added to a solution 

of β-Ala-OtBu-PNPC (0.6685 g, MW = 310.3 g/mol, n = 2.15 10-3 mol, 1 eq) in DCM dry (6 mL). The 

mixture was stirred at 50°C overnight. The solvent was evaporated under reduced pressure and 

the product was purified by flash chromatography using CHCl3/Et2O/petroleum ether (5/1.5/3.5) 

as eluent, to afford Pt-CP--Ala-OtBu as a colourless oil(0.8322 g, MW = 427.20 g/mol, n = 1.95 

10-3 mol, 90.4 % yield). 



Chapter 6 

146 
 

MS-ESI (ion trap) = 428 m/z [M+H+]  

1H NMR (500 MHz, CDCl3) δ (ppm) = 7.50 (d, J = 8.5 Hz, 2H), 7.18 – 6.94 (m, 4H), 6.69 (d, J = 2.2 Hz, 

2H), 6.42 (t, J = 2.1 Hz, 1H), 3.85 (s, 6H), 3.53 (m, 2H), 2.55 (t, J = 6.0 Hz, 2H), 1.51 (s, 9H).  

13C NMR (126 MHz, CDCl3) δ (ppm) = 171.73, 160.99, 154.46, 150.57, 139.29, 134.37, 128.59, 

128.33, 127.40, 121.79, 104.55, 100.03, 81.27, 55.37, 36.92, 35.34, 28.14. 

3. 4’-[N-(β-alanin)-carbamoyl]-pterostilbene 

TFA (5 mL, MW = 114.02 g/mol, n = 6.53 10-2 mol, 33.5 eq) and TIPS (5 % v/v) were added to a 

solution of Pt-CP-β-Ala-OtBu (0.8322 g, MW = 427.20 g/mol, n = 1.95 10-3 mol, 1 eq) in DCM dry (5 

mL). The mixture was stirred at 0°C overnight and then the TFA and the solvent were evaporated 

under reduced pressure. The product was titrated with toluene (2 × 5 mL) and purified by flash 

chromatography using CHCl3/acetone (7/3) as eluent, to afford Pt-CP-β-Ala-OH as a white solid 

(0.5989 g, MW = 371.14 g/mol, n = 1.61 10-3 mol, 82.5 % yield).  

ESI+-MS (ion trap): 371 m/z 

1H NMR (500 MHz, DMSO) δ (ppm) = 7.60 (d, J = 8.6 Hz, 2H), 7.20 (m, 4H), 6.79 (d, J = 2.1 Hz, 2H), 

6.43 (t, J = 2.1 Hz, 1H), 3.79 (s, 6H), 3.31 (m, 2H), 2.49 (t, J = 7.0 Hz, 2H) 

13C-NMR (126 MHz, DMSO) δ (ppm) = 172.72, 160.70, 154.21, 150.58, 139.11, 133.83, 128.14, 

127.32, 121.98, 104.47, 99.90, 55.22, 39.52, 36.73, 33.97. 

4’- [N-(valinyl)-carbamoyl]-pterostilbene (Pt-CP-Val, 5) 

1. 4’-[N-(tert-butyl-valinyl)-carbamoyl]-p-nitrophenol (PNPC-Val-OtBu). 

Valine tert butyl ester hydrocloride (0.9967 g, MW = 209.71 g/mol, n = 4.75·10-3 mol, 1 eq) was 

dissolved in 35 mL of acetonitrile. DMAP (1.1696 g, MW = 122.17 g/mol, n = 9,57·10-3 mol, 2 eq) 

and bis(4-nitrophenyl)carbonate (1.4672 g, MW = 304.21 g, n = 4.82·10-3 mol, 1 eq) were added at 

the previous solution. The reaction mixture was stirred at room temperature for 4 hours at 50°C 

under nitrogen stream. The resulting mixture was diluted in DCM (200 mL), washed with 0.5 N HCl 

(150 mL) and extracted with 2 addition of 100 mL of dichloromethane. The organic layer was dried 

over MgSO4 and filtred. The solvent was evaporated under reduced pressure and the residue was 

purified by flash chromatography using Petroleum Ether:Ethyl Ether = 7:3 as eluent. Solvent was 

evaporated under reduced pressure to afford the product as a yellow oil (1.2316 g, 76.6% yield). 

1H NMR (CDCl3, 500 MHz) δ (ppm): 8.16 (d, 2H, aromatic meta position, 3JH-H = 10 Hz), 7.29 (d, 2H, 

aromatic ortho position, 3JH-H = 10 Hz), 6.02 (d, 1H, CH-NH, 3JH-H = 10 Hz), 4.19-4.21 (m, 1H, Val Cα-

H), 2.16-2.23 (m, 1H, Val Cβ-H ), 1.45 (s, 9H, 3 × C-CH3), 0.975 (d, 3H, 3JH-H = 5 Hz, CH-CγH3), 0.91(d, 

3H, 3JH-H = 10 Hz, CH-CγH3); 

13C NMR (CDCl3, 500 MHz) δ (ppm): 170.70, 155.88, 153.11, 144.65, 124.97, 121.90, 82.44, 59.57, 

31.38, 27.94, 18.87, 17.30. 

2. 4’- [N-(tert-butyl-valinyl)-carbamoyl]-pterostilbene (Pt-CP-Val-OtBu). 

A solution of Pt (0.7479 g, MW = 256.3 g/mol, n = 2,92·10-3 mol, 1 eq) in 30 mL of acetonitrile was 

prepared. PNPC-Val-OtBu (1.4820 g, MW = 338.36 g/mol, n = 4.38·10-3 mol, 1.5 eq) and DMAP 
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(0.7139g, MW = 122.17 g/mol, n = 5.84·10-3 mol, 2 eq) were added to the previous solution. The 

mixture was stirred at 50°C under nitrogen stream overnight. The reaction progress was checked 

by TLC. The resulting mixture was diluted in DCM (100 mL), washed with 0.06 N HCl (100 mL) and 

extracted with 2 × 100 mL of DCM. The organic layer was collected and dried with MgSO4. The 

solvent was evaporated under reduced pressure and the residue was purified from PNPC-Val-

OtBu by flash chromatography using Petroleum Ether:Acetone:Ethyl Ether = 7:1:2. The fraction 

collected was purified from the residual 4-nitrophenol  by flash chromatography using Petroleum 

Ether:Dichloromethane:Acetone = 5:4:1, the solvent was evaporated under reduced pressure to 

afford the product as a pale yellow oil (1.0492 g , 86,2% yield). 

1H NMR (CDCl3, 500 MHz) δ (ppm): 7.455 (d, 2H, H-2' and 6', 3JH-H = 9 Hz), 7.14 (d, 2H, H-3' and 5', 
3JH-H = 10 Hz), 6.92-7.05 (dd, 2H, H-7 and 8), 6.655 (d, 2H, H-2 and 6, 4JH-H = 3 Hz), 6.40 (t, 1H, H-4, 
4JH-H = 3 Hz), 5,91 (t, 1H, O-(C=O)-NH), 4.27-4.30 (q, 1H, Val Cα-H), 3.78 (s, 6H, O-CH3), 2.20-2.06 

(m, 1H, Val Cβ-H), 1.50 (s, 9H, (C=O)-O-C(CH3)3 ), 1.035 (d, 3H, Val CH-Cγ-H3), 0.965 (d, 3H, Val CH-

Cγ-H3). 

13C NMR (CDCl3, 500 MHz) δ (ppm): 170.86, 160.85, 154.36, 150.44, 139.12, 134.23, 128.43, 

128.09, 127.22, 121.64, 104.43, 99.87, 81.96, 59.41, 55.11, 31.36, 27.89, 18.85, 17.34. 

3. 4’- [N-(valinyl)-carbamoyl]-pterostilbene (Pt-CP-Val-OH). 

Pt-CP-Val-OtBu ( 0.7196g, MW = 455.54 g/mol, n = 1,58·10-3 mol, 1 eq) was dissolved in 25 mL of 

anhydrous dichloromethane and 5 mL of TFA ( MW = 114.02 g/mol, n = 6.53·10-2 mol, 42.7 eq) 

were added to the solution. The mixture was stirred at room temperature for 3 hours under 

nitrogen stream. The reaction progress was checked by TLC. After 3 hours the solvent and the 

residual TFA were evaporated under reduced pressure. The residue was titrated with toluene (3 × 

5 mL), and then solvent was evaporated under reduced pressure. The product was purified by 

automated chromatography system using Petroleum ether:Acetone = 6:4 to afford 0.4504g of 

product (71.5% yield). 

1H NMR (CDCl3, 500 MHz) δ (ppm): 7.49 (d, 2H, H-2' and 6', 3JH-H = 10 Hz), 7.14 (d, 2H, H-3' and 5', 
3JH-H = 10 Hz), 6.95-7.07 (dd, 2H, H-7 and 8), 6.66 (d, 2H, H-2 and 6, 4JH-H = 3 Hz), 6.40 (t, 1H, H-4, 
4JH-H = 3 Hz), 5.57 (d, 1H, O-(C=O)-NH, 3JH-H = 10Hz), 4.41-4.44 (q, 1H, Val Cα-H), 3.83 (s, 6H, O-CH3), 

2,29-2,35 (m, 1H, Val Cβ-H), 1.085 (d, 3H, Val CH-Cγ-H3), 1.015 (d, 3H, Val CH-Cγ-H3); 

13C NMR (CDCl3, 500 MHz) δ (ppm): 176.44, 161.10, 154.82, 150.40, 139.36, 134.81, 128.91, 

128.35, 127.27, 121.86, 104.72, 100.22, 59.14, 55.53, 31.23, 19.20 17.52. 

ESI-MS: 797 m/z [2(Pstb CP-Val-OH)]- 

4’-[N-(phenylalanin)-carbamoyl]-pterostilbene (Pt-CP-Phe, 6) 

1. 4’-[N-(phenylalanin tert-butyl ester)-carbamoyl]-pterostilbene 

A solution of L-phenylalanine tert butyl ester hydrochloride (0.5062 g, MW = 257.8 g/mol, n = 1.96 

10-3 mol, 1 eq) and DMAP (1.0417 g, MW = 122.17 g/mol, 8.53 10-3 mol, 4.3 eq) in DCM dry (4 mL) 

was added dropwise to a solution of bis-(4-nitrophenyl) carbonate (0.6333 g, MW = 304.21 g/mol, 

n = 2.1 10-3 mol, 1.06 eq) in DCM dry (5 mL). The resulting mixture was stirred at 50°C for 4 hours. 

Then, pterostilbene (0.6651 g, MW = 256.3 g/mol, n = 2.59 10-3 mol, 1.3 eq) was added to the 
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solution. The resulting mixture was stirred at 50°C overnight, and then it was diluted in DCM (100 

mL) and extracted with HCl 0.5 M (3 × 100 mL). The organic layer was dried over MgSO4 and 

filtered. The solvent was evaporated under reduced pressure and the product was purified by 

flash chromatography using CHCl3/EtOAc (99.5/0.5) as eluent to afford Pt-CP-Phe-OtBu as a 

colourless oil (0.6350 g, MW = 503.58 g/mol, n = 1.26 10-3 mol, 66 % yield) 

MS-ESI (ion trap): 504 m/z [M+H]+ 

1H NMR (200 MHz, CDCl3) δ (ppm) = 7.52 (d, J = 8.6 Hz, 2H), 7.33 (m, 5H), 7.09 (m, 4H), 6.70 (d, J = 

2.1 Hz, 2H), 6.44 (t, J = 2.1 Hz, 1H), 5.61 (m, 1H), 4.63 (m, 1H), 3.87 (s, 6H), 3.20 (m, 2H), 1.48 (s, 

9H). 

13C NMR (75 MHz, CDCl3) δ (ppm) = 170.46, 161.12, 153.87, 150.54, 139.39, 136.08, 134.61, 

129.68, 128.78, 128.61, 128.41, 127.50, 127.21, 121.87, 104.69, 100.18, 82.71, 55.49, 38.48, 

31.01, 28.05. 

2. 4’-[N-(phenylalanin)-carbamoyl]-pterostilbene 

TFA (4.5 mL, MW = 114.02 g/mol, n = 5.87 10-2 mol, 54 eq) and TIPS (0.450 mL, 5 % v/v) were 

added to a solution of Pt-CP-Phe-OtBu (0.6350 g, MW = 503.58 g/mol, n = 1.3 10-3 mol, 1 eq) in 

DCM dry (4.5 mL). The mixture was stirred at 0°C overnight. The TFA and the solvent were 

evaporated under reduced pressure. The product was titrated with toluene (2 × 5 mL) and 

purified by flash chromatography using DCM/acetone (97/3) + 1% AcOH as eluent. The product 

was dissolved in acetonitrile and water and it was lyophilized to afford Pt-CP-Phe-OH as a white 

solid (0.380 g, MW = 447.4 g/mol, n = 8.49 10-4 mol, 67.4 % yield). 

MS-ESI (ion trap): 447 m/z 

1H NMR (500 MHz, DMSO) δ(ppm) = 8.31 (s, 1H), 8.19 (m, 1H), 7.57 (d, J = 8.6 Hz, 2H), 7.29 (m, 

5H), 7.06 (m, 4H), 6.77 (d, J = 2.2 Hz, 2H), 6.41 (t, J = 2.2 Hz, 1H), 4.25 (m, 1H), 3.77 (s, 6H), 3.15 

(m, 1H), 2.92 (m, 1H). 

13C NMR (126 MHz, DMSO) δ (ppm) = 173.42, 161.13, 154.68, 150.85, 139.52, 138.23, 134.34, 

129.65, 128.72, 128.52, 127.78, 126.96, 122.19, 104.91, 100.37, 79.65, 56.16, 55.67, 36.97. 

4’-[N-(asparagin)-carbamoyl]-pterostilbene (Pt-CP-Asn, 7) 

1. 4’-[N-(asparagin tert-butyl ester)-carbamoyl]-pterostilbene 

A solution of L-asparagine tert butyl ester hydrochloride (0.4048 g, MW = 224.68 g/mol, n = 1.8 

10-3 mol, 1 eq) and DMAP (0.8922 g, MW = 122.17 g/mol, n = 7.3 10-3 mol, 4 eq) in ACN dry (6 mL) 

and DCM dry (7 mL) was added dropwise to a solution of bis-(4-nitrophenyl) carbonate (0.5659 g, 

MW = 304.21 g/mol, n = 1.86 10-3 mol, 1.03 eq) in ACN dry (5 mL). The resulting mixture was 

stirred at -15°C for 15 minutes. Then, pterostilbene (0.6019 g, MW = 256.3 g/mol, n = 2.35 10-3 

mol, 1.3 eq) was added to the solution. The resulting mixture was stirred at -15 °C and it reached 

r.t. overnight. The mixture was diluted in DCM (10 mL) and extracted with HCl 0.5 M (10 mL) and 

DCM (3 × 10 mL). The organic layer was dried over MgSO4 and filtered. The solvent was 

evaporated under reduced pressure and the product was purified by flash chromatography using 

EtOAc/petroleum ether(8/2) as eluent to afford Pt-CP-Asn-OtBu as a colourless oil (0.5824 g, MW 

= 470.5 g/mol, n = 1.24 10-3 mol, 68.7 % yield) 
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MS-ESI = 493 m/z [M+Na]+ 

1H NMR (300 MHz, CDCl3) δ (ppm) = 7.47 (d, J = 8.5 Hz, 2H), 7.15 – 6.84 (m, 4H), 6.65 (d, J = 1.9 Hz, 

2H), 6.39 (m, 2H), 5.87 (m, 2H) 4.49 (m,1H), 3.82 (s, 6H), 2.83 (m, 2H), 1.48 (s, 9H). 

13C NMR (75 MHz, CDCl3) δ (ppm) = 172.50, 169.86, 161.10, 154.64, 150.53, 139.35, 134.65, 

128.83, 128.35, 127.50, 121.92, 104.69, 100.19, 82.79, 77.16, 55.48, 51.51, 37.29, 27.99. 

2. 4’-[N-(asparagin)-carbamoyl]-pterostilbene 

A solution of Pt-CP-Asn-OtBu (0.7599 g, MW = 470.5 g/mol, n = 1.6154 10-3 mol, 1 eq) in DCM dry 

(6.2 mL) and TIPS (0.62 mL) (5 % v/v) was stirred at -15 °C. TFA (6.2 mL, MW = 114.02 g/mol, n = 8 

10-2 mol, 50 eq) at -15 °C was added dropwise to the previous solution. The mixture is stirred at 

room temperature for 4 hours. TFA and the solvent were evaporated under reduced pressure. 

The product was titrated with toluene (2 × 3 mL) and purified by flash chromatography using 

DCM/MeOH (97.5/2.5) + 1% AcOH, to afford Pt-CP-Asn-OH as a white solid (0.5115 g, MW = 414.4 

g/mol, n = 1.23 10-3 mol, 76.4 % yield) 

MS-ESI (ion trap) = 415 m/z [M+H]+ 

1H NMR (300 MHz, DMSO) δ (ppm) = 7.98 (m, 1H), 7.60 (d, J = 8.5 Hz, 2H), 7.34 – 6.88 (m, 4H), 

6.78 (d, J = 1.7 Hz, 2H), 6.42 (m, 1H), 4.40 (m, 1H), 3.78 (s, 6H), 2.75 – 2.53 (m, 2H). 

13C NMR (75 MHz, DMSO) δ (ppm) = 172.90, 171.16, 160.68, 153.98, 150.47, 139.08, 133.89, 

128.28, 128.09, 127.34, 121.79, 104.47, 99.92, 55.21, 50.84, 39.52, 36.66. 

4’-[N-(threonyl)-carbamoyl]-pterostilbene (Pt-CP-Thr, 8)  

1. [N-(tert-butyl-threonyl-tert-butyl)-carbamoyl]-p-nitrophenol (PNPC-Thr(OtBu)-OtBu). 

A solution of tert-butyl ester threonine tert-butyl ester (1.59 g, MW = 231.34 g/mol, n = 6.89·10-3 

mol, 1 eq) and DMAP (1.7032 g, MW = 122.17 g/mol, 1.39·10-2 mol, 2 eq) in THF (20 mL) was 

added dropwise to a solution of bis (4-nitrophenyl) carbonate (2.13 g, MW = 304.21 g/mol, n = 

7.00·10-3 mol, 1 eq) in THF (15 mL), and the mixture was stirred at room temperature for 3 hours. 

The resulting mixture was diluted in DCM (200 mL) and washed with 0.5 N HCl (3 additions of 100 

mL). The organic phase was dried over MgSO4 and filtred. The solvent was evaporated under 

reduced pressure and the residue was purified by flash chromatography using 

CH2Cl2:Acetone:Petroleum Ether = 8:0.5:1.5 as eluent, to afford 2.4842 g of product (91.0 % yield). 

1H NMR (CDCl3, 300 MHz) δ (ppm): 8.255 (d, 2H, aromatic meta position, 3JH-H = 9 Hz), 7,365 (d, 

2H, aromatic ortho position, 3JH-H = 9 Hz), 5,895 (d, 1H, CH-NH, 3JH-H = 9 Hz), 4,24-4,31 (m, 1H, NH-

CH), 4.09-4.13 (m, 1H, tBuO-CH), 1.50 (s, 9H, 3 × C-CH3), 1,285 (d, 3H, CH-CH3, 
3JH-H = 9 Hz), 1.20 (s, 

9H, 3 × CH3); 

13C NMR (CDCl3, 300 MHz) δ (ppm): 169.45, 155.95, 153.60, 144.74, 125.04, 121.94, 82.37, 74.02, 

66.96, 60.60, 28.69, 28.06, 21.18. 

2. [N-(tert-butyl-threonyl-tert-butyl)-carbamoyl]-pterostilbene (Pt-CP-Thr(OtBu)-OtBu). 

A solution of pterostilbene (0.5027 g, MW = 256.3 g/mol, n = 1,96·10-3 mol, 1 eq) in 20 mL of 

acetonitrile was prepared. PNPC-Thr(OtBu)-OtBu (1.5470 g, MW = 396.43 g/mol, n = 3.92·10-3 mol, 
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2 eq) and DMAP (0.4784 g, MW = 122.17 g/mol, n = 3,92·10-3 mol, 2 eq) were added to the 

previous solution. The mixture was stirred at 50°C under nitrogen stream overnight. The reaction 

progress was checked by TLC. The resulting mixture was diluted in DCM (3 × 100 mL) and washed 

with 0.05 N HCl (100 mL). The organic layer was collected and dried over MgSO4. The solvent was 

evaporated under reduced pressure and the residue was purified by flash chromatography using 

Petroleum Ether:Acetone:Ethyl Ether = 8:1:1. The solvent was evaporated under reduced 

pressure. The product was obtained as an oil (0.8862 g, 90.3% yield). 

1H NMR (CDCl3, 300 MHz) δ (ppm): 7.47 (d, 2H, H-2' and 6', 3JH-H = 6 Hz), 7.155 (d, 2H, H-3' and 5', 
3JH-H = 9 Hz), 6.92-7.07 (d+d, 2H, H-7 and H-8), 6.645 (d, 2H, H-2 and 6, 4JH-H = 3 Hz), 6.39 (t, 1H, H-

4, 4JH-H = 3 Hz), 5,815 (d, 1H, O-(C=O)-NH, 3JH-H = 9 Hz), 4.23-4.26 (dd, 1H, Thr Cα-H), 4,12-4,16 (dd, 

1H, Thr Cβ-H), 3.80 (s, 6H, 2 × O-CH3), 1.49 (s, 9H, (C=O)-O-C(CH3)3), 1.27 (d, 3H, Thr Cγ-H, 3JH-H = 6 

Hz), 1.19 (s, 9H, Cβ-O-C(CH3)3). 

13C NMR (CDCl3, 300 MHz) δ (ppm): 169.85, 160.99, 154.92, 150.64, 139.27, 134.37, 128.29, 

121.78, 104.55, 100.02, 82.04, 71.88, 67.17, 60.56, 55.28, 28.74, 28.08, 21.05 

3. [N-(threonyl)-carbamoyl]-pterostilbene (Pt CP-Thr-OH). 

Pt-CP-Thr(OtBu)-OtBu (0.8862g, MW = 499.60 g/mol, n = 1.77·10-3 mol, 1 eq) was dissolved in 25 

mL of anhydrous dichloromethane and 5 mL of TFA (MW = 114.02 g/mol, n = 6.53·10-2 mol, 36.9 

eq) were added to the solution. The mixture was stirred at room temperature for 3 hours. The 

reaction progress was checked by TLC. After 3 hours the solvent and the residual TFA were 

evaporated under reduced pressure. The residue was titrated with toluene (3 × 5 mL) , and then 

was evaporated under reduced pressure. The product was purified by automated 

chromatography system using chloroform + 1% acetic acid:methanol=9.8-9.5:0.2-0.5. Solvent was 

evaporated under reduced pressure. The residue was dissolved in 5 mL of dichloromethane and 

added to 200 mL of petroleum ether where the product was riprecipitated as a white solid. The 

precipitate was filtered by Büchner filter to afford 0.4736 g of product (68.9% yield). 

1H NMR (DMSO, 300 MHz) δ (ppm): 7.54-7.62 (m, 3H, H-2', 6' and O-(C=O)-NH), 7.06-7.31 (m, 4H, 

H-3', 5', 7 and 8), 6.78 (d, 2H, H-2 and 6, 4JH-H = 3 Hz), 6.42 (t, 1H, H-4, 4JH-H = 3 Hz), 4.12-4.19 (m, 

1H, Thr Cα-H), 4.00-4.04 (dd, 1H, Thr Cβ-H), 3.78 (s, 6H,  2 × O-CH3), 1.16 (d, 3H, Thr Cγ-H, 3JH-H = 6 

Hz). 

13C NMR (DMSO, 300 MHz) δ (ppm): 171.97, 160.67, 154.85, 150.50, 159.07, 133.93, 128.18, 

127.35, 121.85, 104.47, 99.92, 66.39, 60.23, 55.21, 20.42. 

ESI-MS: 801 m/z [2(Pt CP-Thr-OH)]- 

4’-[N-(aspartic acid)-carbamoyl]-pterostilbene (Pt-CP-Asp, 9) 

1. 4’-[N-(aspartic acid di-tert-butyl ester)-carbamoyl]-pterostilbene 

A solution of L-aspartic acid tert butyl ester hydrochloride (0.5025 g, MW = 281.77 g/mol, n = 1.78 

10-3 mol, 1 eq) and DMAP (0.8372 g, MW = 122.17 g/mol, 6.85 10-3 mol, 3.8 eq) in ACN dry (7 mL) 

was added dropwise to a solution of bis-(4-nitrophenyl) carbonate (0.5843 g, MW = 304.21 g/mol, 

n = 1.92 10-3 mol, 1.08 eq) in ACN dry (3 mL). The resulting mixture was stirred at 50 °C for 10 

minutes. Then, pterostilbene (0.5997 g, MW = 256.3 g/mol, n = 2.34 10-3 mol, 1.3 eq) was added 
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to the solution. The resulting mixture was stirred at 50°C for 1 hour, and then it was diluted in 

DCM (100 mL) and extracted with HCl 0.1 M (100 mL) and DCM (3 × 100 mL). The organic layer 

was dried over MgSO4 and filtered. The solvent was evaporated under reduced pressure and the 

product was purified by flash chromatography using DCM/petroleum ether/ acetone (5.5/4/0.5) 

as eluent to afford Pt-CP-Asp(tBu)-OtBu as a colourless oil (0.5824 g, MW = 527.61 g/mol, n = 

1.104 10-3 mol, 62 % yield) 

MS-ESI (ion trap) = 550 m/z [M+Na]+ 

1H NMR (300 MHz, CDCl3) δ (ppm) = 7.48 (d, J = 8.7 Hz, 2H), 7.18 – 6.88 (m, 4H), 6.66 (d, J = 2.2 Hz, 

2H), 6.39 (t, J = 2.2 Hz, 1H), 6.06 (m, 1H), 4.50 (m, 1H), 3.82 (s, 6H), 2.87 (m, 2H), 1.47 (s, 18H). 

13C NMR (75 MHz, CDCl3) δ (ppm) = 171.86, 171.28, 162.72, 155.96, 152.20, 141.00, 136.21, 

130.37, 130.03, 129.11, 123.50, 106.28, 101.78, 84.26, 83.46, 57.45, 57.08, 52.83, 39.41, 29.83, 

29.76, 29.68, 29.61. 

2. 4’-[N-(aspartic acid)-carbamoyl]-pterostilbene 

A solution of Pt-CP-Asp(tBu)-OtBu (0.5824 g, MW = 527.61 g/mol, n = 1.104 10-3 mol, 1 eq) in 3.4 

mL of DCM dry and 0.34 mL of TIPS (5 % v/v) was stirred at 0 °C. TFA (3.4 mL, MW = 114.02 g/mol, 

n = 4.4 10-2 mol, 40 eq) at -78 °C was added dropwise to the previous solution. The mixture is 

stirred at room temperature for 4 hours. TFA and the solvent were evaporated under reduced 

pressure. The product was titrated with toluene (2 × 3 mL) and purified by flash chromatography 

using CHCl3/MeOH (95/5) + 1% AcOH, to afford Pt-CP-Asp-OH as a white solid (0.3320 g, PM = 

415.4 g/mol, n = 8 10-4 mol, 72,4 % yield)  

MS-ESI (ion trap) = 416 m/z [M+H]+ 

1H NMR (300 MHz, DMSO) δ (ppm) = 8.10 (m, 2H), 7.60 (d, J = 8.2 Hz, 1H), 7.36 – 6.98 (m, 4H), 

6.78 (m, 2H), 6.39 (m, 1H), 4.39 (m, 1H), 3.78 (s, 6H), 2.72 (m, 2H). 

13C NMR (75 MHz, DMSO) δ (ppm) = 172.33, 171.61, 160.66, 154.02, 150.42, 139.05, 133.92, 

128.29, 128.06, 127.33, 121.77, 104.45, 99.91, 55.19, 50.68, 39.52, 36.06. 

4’-[N-(arginin)-carbamoyl]-pterostilbene (Pt-CP-Arg, 10) 

1. 4’-[N-(arginin-tert butyl-ester)-carbamoyl]-pterostilbene 

A solution of L-arginine tert butyl ester di-hydrochloride (0.5010 g, MW = 303.23 g/mol, n = 1.65 

10-3 mol, 1 eq) and DMAP (0.4196 g, MW = 122.17 g/mol, n = 3.43 10-3 mol, 2 eq) in DCM dry (4 

mL) was added dropwise to a solution of bis-(4-nitrophenyl) carbonate (0.5169 g, MW = 304.21 

g/mol, n = 1.7 10-3 mol, 1.03 eq) in DCM dry (3 mL). The resulting mixture was stirred at -15°C for 

5 hours. Then, a solution of pterostilbene (0.5498 g, MW = 256.3 g/mol, n = 2.145 10-3 mol, 1.3 

eq) and DMAP (0.2091 g, MW = 122.17 g/mol, n = 1.71 10-3 mol, 1 eq) in DCM dry (2 mL) was 

added to the solution. The resulting mixture was stirred at -15° C for two days. The resulting 

mixture was diluted in EtOAc (100 mL) and extracted with HCl 0.5 M (100 mL) and EtOAc (3 × 100 

mL). The organic layer was dried over MgSO4 and filtered. The solvent was evaporated under 

reduced pressure and the product was purified by flash chromatography using DCM/MeOH (9/1) 

as eluent to afford Pt-CP-Arg-OtBu as a colourless oil (0.4051 g, MW = 512.6 g/mol, n = 7.9 10-4 

mol, 48 % yield) 
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MS-ESI = 513 m/z [M+H]+ 

1H NMR (300 MHz, CDCl3) δ = 7.43 (d, J = 8.2 Hz, 2H), 7.00 (m, 7H), 6.62 (m, 2H), 6.40 (m, 1H), 6.36 

(m, 1H), 4.13 (m, 1H), 3.78 (s, 6H), 3.44 (s, 1H), 3.16 (m, 2H), 1.82 (m, 2H), 1.64 (m, 2H), 1.44 (s, 

9H). 

13C NMR (75 MHz, CDCl3) δ (ppm) = 171.27, 161.07, 157.50, 155.09, 150.38, 139.30, 134.74, 

128.95, 128.20, 127.57, 121.99, 104.74, 100.19, 82.82, 77.16, 55.45, 54.36, 41.05, 28.18, 27.99. 

2. 4’-[N-(arginin)-carbamoyl]-pterostilbene 

A solution of Pt-CP-Arg-OtBu (0.4051 g, MW = 512.6 g/mol, n = 7.9 10-4 mol, 1 eq) in DCM dry (3 

mL) and TIPS (0.3 mL) (5 % v/v) was stirred at -15 °C. TFA (3 mL, MW = 114.02 g/mol, n = 3.95 10-2 

mol, 50 eq) at -15 °C was added dropwise to the previous solution. The mixture was stirred at -15 

°C for 3 hours and then overnight at room temperature. TFA and the solvent were evaporated 

under reduced pressure. The product was titrated with toluene (2 × 3 mL) and purified by flash 

chromatography using DCM/MeOH (8/2) + 1% AcOH, to afford Pt-CP-Arg-OH as a white solid 

(0.2700 g, PM = 456.5 g/mol, n = 6 10-4 mol, 75 % yield) 

MS-ESI (ion trap) = 457 m/z [M+H]+ 

1H NMR (300 MHz, DMSO) δ (ppm) = 8.11 (m, 1H), 7.89 (m, 1H), 7.60 (d, J = 8.5 Hz, 2H), 7.36 – 

6.95 (m, 7H), 6.77 (d, J = 1.7 Hz, 2H), 6.41 (m, 1H), 4.02 (m, 1H), 3.78 (s, 6H), 3.15 (m, 2H), 1.81 (m, 

2H), 1.62 (m, 2H). 

13C NMR (75 MHz, CDCl3) δ 173.37, 160.69, 157.00, 154.34, 150.48, 139.07, 133.91, 128.29, 

128.09, 127.38, 121.83, 104.48, 99.92, 55.22, 53.76, 39.52, 25.29. 
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7. Transcription factor EB is a crucial transducer of the biomedical 

action of pterostilbene and resveratrol: work in progress 

 

Abstract: 

Polyphenols are a large and diversified class of natural compounds produced by plants 

mainly in response to stressing conditions. In our laboratory, we focus our attention on 

stilbenoids, in particular Resveratrol (trans 3-5-4’ trihydroxystilbene, Rv) and 

Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene, Pt). These compounds exhibit, at 

least in vitro, a variety of activities of potential relevance for many areas of health care 

due to not only its redox properties but mainly to its ability to interact with various 

proteins. Although the beneficial effects of these two compounds are well-established, 

much remains to be learned about their molecular mechanisms of action.  

Autophagy is a cellular catabolic process activated by cells in response to stressing 

conditions. It involves lysosomes whose biogenesis and function are under the control of 

TFEB, the transcription factor activated under nutrients deprivation conditions. The 

relationship between polyphenols and autophagy is well established. In particular, a pro-

autophagic role is ascribed to Rv. 

Thus, we wanted to verify: 1) whether not only Rv but also - and perhaps more effectively 

- Pt could induce TFEB translocation into the nucleus of cells and consequently 

autophagy; 2) the efficacy in our system of Rv and Pt metabolites, the main species 

present in the body after the ingestion of polyphenols; 3) in case of a positive answer to 

the 1st point, how these two molecules trigger TFEB traslocation. 

HeLa cells overexpressing TFEB-GFP, kindly provided by Prof. Ballabio of TIGEM-Naples, 

were treated with different concentrations of Rv and Pt and with two types of 

metabolites and monitored by confocal microscopy for up to three hours. To verify the 

implication of AMPK and its upstream signaling, cells were treated also with a known 

AMPK activator (A769662). Variations of cellular cAMP levels were also measured using a 

FRET-based sensor (Dr. Giulietta Di Benedetto, IN-CNR). 

Both Rv and Pt, in our system, induce TFEB translocation into the nucleus of HeLa cells 

already at low, physiologically meaningful concentrations, but to a lesser extent than 

nutrient deprivation. Up to now, in fact, starvation remains the most potent migratory 

stimulus. Moreover, while sulfated forms phase II metabolites are almost uneffective, 

compounds resulting from the reduction of the stilbenic double bond (formed in the 

lower intestinal tract by bacterial enzymes) show an activity similar to that of the parent 

compounds. 

cAMP measurements instead show that our polyphenols induce in HeLa cells a slight 

increase in cAMP concentration. Addition of Forskolin or of IBMX (respectively a known 

potent activator of AC and a broad-spectrum inhibitor of PDE) induced in both cases a 

further increase of cAMP. 
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Finally, treatment with the AMPK activator, even though performed at the concentration 

known from the literature to efficiently up-regulate this kinase, shows a lower TFEB 

translocation into the nucleus if compared to the one induced by Rv and Pt. This leads us 

to speculate that our compounds might induce TFEB nuclear translocation also by 

modulating other signaling pathways. 

 

Introduction: 

Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene, Pt) a close relative of storied 

Resveratrol (Rv), is emerging as a credible candidate for membership in plant phenolics’ 

hall of fame.3-5 The numerous biomedically relevant activities of Pterostilbene are broadly 

similar to those of Resveratrol, but the former apparently is more effective,3, 6, 7 

presumably because it is absorbed more readily8 and in most tissues it reaches higher 

levels after oral administration.9 This seems to be particularly significant in the case of the 

brain, and coherently pterostilbene improves intellectual performance in aged animals 

with greater efficacy than resveratrol.10 The (multiple) molecular mechanisms underlying 

the effects of Pterostilbene have not yet been comprehensively investigated, although 

several recent studies have dealt with aspects of its modulation of interlinked cellular 

signaling pathways (e.g.: 11-28). Given the results of these studies and the structural 

similarity of the two compounds, it is 

logical to postulate that largely the same 

cellular processes may account for the 

effects of resveratrol and pterostilbene 

(and other natural stilbenoids such as 

pinosylvin and piceatannol). The 

signaling cascade induced by resveratrol 

has been delineated in many studies 

(e.g., 1, 2, 25, 29, 30). A focal point is 

activation of AMPK which, among 

various effects, potentiates mitogenesis 

and autophagy,31-33 largely through 

inhibition of mTORC1, whose activity 

downregulates these cellular processes 

(e.g. 34-37). The antagonistic relationship 

between AMPK and mTORC1 is relevant 

in various contexts, in particular those of 

obesity and metabolic syndrome (e.g. 38-

40). Stimulation of autophagy has been 

given at least partial merit for important 

activities of resveratrol, such as 

promotion of β-amyloid disposition in 

neuronal cells,41, 42 protection against 

Fig1: A modified cartoon from Biasutto L et al.,1 
showing the signaling cascade identified by Park and 
colleagues2 and the confluent ROS-induced signaling.   
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prion protein-induced neurotoxicity43 and from oxidative damage,44-46 cardioprotection,47, 

48 anti-inflammatory action,49 lifespan extension in model organisms,50-53 amelioration of 

age-related functional decline54 and of neurodegeneration (e.g. 55-57). Indeed, resveratrol 

has been proposed as a potential treatment for diseases such as Alzheimer’s and 

Parkinson’s (e.g. 58-60). Pterostilbene has also been observed to stimulate autophagy.17, 24, 

61-64 

The master regulator of autophagy is Trascription Factor EB (TFEB) (revs.: 33, 65-67). Under 

normal circumstances TFEBp is Ser-phosphorylated by mTORC1 (at the lysosomal 

surface). Phosphorylated TFEB is complexed with the 14-3-3 protein and thereby 

constrained to the cytosol.68-70 Importantly, besides starvation which directly modulates 

the AMPK/mTOR axis, ROS are another major autophagy-stimulating factor.71, 72 The 

signaling pathway involved in this case reportedly involves the assembly of complexes on 

the surface of peroxisomes, and also leads to the downregulation of mTORC1 activity.73 

When its phosphorylation level decreases due to downregulation of the kinase, TFEB 

translocates to the nucleus where it increases its own expression (a positive feedback 

loop) as well as that of genes involved in lysosomal autophagy, lipophagy and fatty acid β-

oxidation. Thus TFEB upregulation may well help in the disposal of excess fat. A recent 

study has shown that hepatic overexpression of TFEB resulted in a lean phenotype, and 

significantly decreased both diet-induced and genetic obesity and metabolic syndrome,66, 

74 allowing hope that modulation of TFEB may permit the treatment and/ or prevention of 

these modern afflictions.75 Interestingly, and coherently with the emerging picture, 

pterostilbene has been reported to exert anti-obesity effects16, 76 as well as 

neuroprotection,10, 77 another context where autophagy is important (e.g. 59, 78-80).  

A very recent high-profile paper81 has reported the identification of a nutrient-sensing, 

autophagy-regulating axis formed by nuclear receptors FXR (farnesoid X receptor; a 

sensor of the nutrient-rich state) and CREB (cAMP response element binding protein). 

CREBp reportedly activates lipophagy and upregulates autophagy genes with the help of 

the co-activator CRCT2. This pleiotropic, crucial transcription factor is involved, among 

many other processes, in long-term memory formation, in which the cAMP-PKA-CREB-Nr4 

a genes axis has a major part,82-84 and thus its activation would help explain the cognitive 

effects of our compounds (chapter 8) as well.  

In view of the above, we tested whether pterostilbene could cause nuclear localization of 

a TFEB-GFP chimera expressed by engineered HeLa cells. Since this was the case, and a 

point of interest in polyphenol research is the relative efficacy of a given polyphenol, its 

analogs and metabolites, we extended the assay to resveratrol and some metabolites of 

both compounds. We furthermore checked that the signaling expected to be upstream of 

TFEB migration is indeed taking place, verifying whether an increase of cAMP occurred.  
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Materials and methods: 

Chemicals. Pterostilbene and Resveratrol were purchased from Waseta Int. Trading Co. 

(Shangai, P.R.China). Other starting materials for the synthesis of metabolites of Pt and Rv 

were from Wonda Science, Sigma Aldrich, Fluka & Riedel-de Haen, Carlo Erba Reagenti, 

Cambridge Isotope Laboratories Inc., Acros Organics, Prolabo, Merck-Novabiochem, J.T. 

Baker, and were used as received.  

Cell culture. in vitro experiments were conducted with the HeLa cell line. For confocal 

microscopy experiments we used HeLa overexpressing a TFEB-GFP construct, from prof. 

Andrea Ballabio’s laboratory (chimera cells were obtained as specified by Settembre C et 

al.69). Western blot and FRET experiments were performed with HeLa wild type (WT) cells, 

from dr. Giulietta Di Benedetto’s laboratory.  

HeLa WT cells were cultured in high glucose DMEM (Sigma Aldrich) supplemented with 

10% FBS (fetal bovine serum, Euroclone). HeLa TFEB-GFP were cultured in high glucose 

DMEM supplemented with 10% FBS and G418 (Sigma Aldrich, 100µg/ml).  

Confocal microscopy. A LEICA SP2 confocal microscope equipped with a Medical System 

Corporation thermostat was used. The light source was the emission from an Ar/HeNe 

laser at 488nm (25% power; gain 760, offset -0.4 for GFP fluorescence; gain 136 and 

offset -9.8 for bright field images). Images were taken through a 40X oil immersion 

objective. The thermostat was set at 37°C. 

18 hours prior to the confocal microscopy experiments, 200.000 HeLa TFEB-GFP cells 

were seeded onto round glass coverslips (24mm diameter, BDH) placed in the wells of a 6 

multiwell plate. Cells were cultured overnight in standard DMEM medium to allow 

adhesion. Before the experiment, the coverslip was mounted in an appropriate holder, 

gently rinsed with PBS (1x) and then covered with 1ml of Leibovitz’s L-15 medium 

(Invitrogen, supplemented with 10% FBS, no phenol red).  

Microscopy experiments were performed in temperature-controlled system without CO2 

superfusion. Leibovit’s L-15 medium is designed for supporting cell growth in 

environments without CO2 equilibration, thus it was preferred over DMEM. 

Drugs, media, treatments. Controls received DMSO (Sigma Aldrich) at the final 

concentration associated with addition of drugs, which was in all cases 0.1% of total 

volume. HBSS (Sigma Aldrich), starvation medium, was used as positive control. 

Pterostilbene (Pt) and Resveratrol (Rv) were used at final concentrations of 25µM, 10µM, 

1µM. Pterostilbene 4’-sulfate (Pt-S, 25µM), dihydro-pterostilbene (dihydro-Pt, 25µM), 

resveratrol 4’-sulfate (Rv-4’S, 25µM), resveratrol 3-4’-disulfate (Rv-3-4’S), dihydro-

resveratrol (dihydro-Rv, 25µM) were synthesized by Dr. A Mattarei of the Dept. of 

Chemical Sciences of the University of Padova and were of >98% purity in all cases. Other 

drugs used were: A 769662 (Abcam, 25µM), Rolipram (Abcam, 100µM, 25µM), IBMX 
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(Abcam, 100µM), PEG-SOD and PEG-CAT (Sigma Aldrich, 40u/ml and 500u/ml, 

respectively). 

Drugs were dissolved in a sterile solution of DMSO (Sigma Aldrich). Stock solution were 

prepared 1000x the desired working solution, so as to fix the final DMSO percentage at 

0.1% in all cases. TFEB migration was monitored for 3 hours after the addition of the drug. 

Images were taken every 15 minutes. 

Images were analyzed using the program ImageJ 1.48v (http://imagej.nih.gov/ij). TFEB 

migration was measured as a fluorescence ratio nucleus/cytosol. A few circular fields 

(regions of interest, ROIs) were drawn within the area of the nuclear and cytosolic cross 

sections of a given cell and their mean pixel intensity reading was used for fluorescence 

ratio determinations. For each image at least 5 cells were analyzed, and all ratios were 

combined to obtain a final average value of the TFEB-GFP nuclear/cytosolic concentration 

ratio. 

cAMP-FRET based sensor. cAMP variations were measured as described by Oliveira et 

al.85 Experiments were performed by dr. Giulietta Di Benedetto (CNR Institute of 

Neuroscience and Venetian Institute of Molecular Medicine, Padova). The EPAC1-based 

FRET sensor H30 described in Ponsioen B. et al.86 was used.  Briefly, HeLa WT cells were 

seeded onto 24-mm diameter round glass coverslips. Transfection was performed at 50-

70% of confluence with the FuGENE-6 transfection reagent according to manufacturer’s 

instructions. 1-2 µg of DNA were added to each coverslip. Imaging experiments were 

performed 24-48h after the transfection with H30. For imaging, cells were maintained in 

Hepes-buffered Ringer-modified saline (125mM NaCl, 5mM KCl, 1mM Na3PO4, 1mM 

MgSO4, 5.5mM glucose, 1mM CaCl2 and 20mM Hepes, pH 7.5) at room temperature. 

Images were taken with an inverted microscope (IX50, 60x NA 1.4 oil immersion 

objective, Olympus), acquired using custom-made software and processed using imageJ. 

FRET changes were measured as changes in the background-subtracted 480/545nm 

fluorescence emission intensities on excitation at 430nm and expressed as either R/R0, 

where R is the ratio at time t and R0 is the ratio at time = 0s, or ΔR/R0 where ΔR = R-R0.  

Western blot. Cells were lysed in RIPA buffer supplemented with fresh phosphatase 

inhibitors (Sigma Aldrich, Phosphatase inhibitor cocktail 2 n° P5726 and Phosphatase 

inhibitor cocktail 3 n° P0044) and protease inhibitors (Sigma Aldrich, Protease inhibitor 

cocktail n° P2714). The RIPA lysate was kept at ice temperature for 15min, then 

centrifuged (14000rcf, 20min, 4°C). The supernatant was collected and stored at -80°C. 

Protein content was estimated with the Bradford assay. Prior to electrophoresis, the 

lysate was supplemented with sample buffer (1X: 62.5mM Tris-HCl pH 6.8, 2% SDS, 10% 

glycerol, 50mM DTT, 0.02% bromophenol blue) and heated at 95°C for 5min. From 10 to 

20 micrograms of proteins per lane were loaded on 4-12% Bis-Tris gel (NUPAGE, 

Invitrogen). For the detection of high molecular weight proteins, 50 to 60 micrograms of 

proteins per lane were loaded on 3-8% Tris-Acetate gel (NUPAGE, Invitrogen). After 

electrophoretic separation proteins were transferred to PVDF membranes (300V-400mA-
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1h at 4°C or 30V-90mA-overnight at 4°C for high molecular weight proteins). Membranes 

were saturated with 5% BSA (Sigma Aldrich, n° A9647) in TBS 1X at room temperature for 

1h, then incubated with primary antibody (in TBS Tween 0.1%, 5% BSA) overnight at 4°C, 

washed with TBS Tween 0.1% and incubated with HRP-conjugated secondary antibody. 

Detection was performed using the ECL method (Pierce) in a ChemiDoc system (BioRad). 

Antibodies against the following proteins were used: TFEB (MBS716265 - MyBiosource, 

polyclonal, 1:1000); H3 (#9715 - Cell Signaling, polyclonal, 1:9000); β-Tubulin (sc-9104 - 

Santa Cruz, polyclonal 1:1000); LC3B (#3868 - Cell Signaling, monoclonal, 1:1000); HSP90 

(610419 - BD, monoclonal, 1:1000); Ph-CREB (#9198(Ser133) - Cell Signaling, monoclonal 

1:1000); Ph-AKT (#4060(Ser473) - Cell Signaling, monoclonal, 1:2000 - and 

#13038(Thr308) – Cell Signaling, monoclonal, 1:1000); Ph-ERK (#9101(Thr202/Tyr204) - 

Cell Signaling, polyclonal, 1:1000); Ph-AMPKα (#2535(Thr172) - Cell Signaling, monoclonal 

1:1000); Ph-ACC (#11818(Ser79) - Cell Signaling, monoclonal, 1:1000).  

Nuclear/cytosolic fractionation. The protocol was adapted from Gagnon KT et al.87 

Cultured cells were lysed in a 0.5% Triton X-100 buffer (HLB) for 10 minutes at ice 

temperature. Buffer composition was as follows: 50mM Tris-HCl, 137.5mM NaCl, 5mM 

EDTA, 0,5% Triton X-100 and 10% vol/vol glycerol, freshly added phosphatase and 

protease inhibitors. The lysate was then vortexed (5s), then centrifuged (800rcf, 8min, 

4°C). The supernatant, constituting the cytosolic fraction, was collected and stored at -

80°C. The pellet, containing nuclei, was washed twice by resuspension in HLB and 

centrifugation (200rcf, 2min, 4°C).  

Isolated nuclei were finally lysed in RIPA buffer for Western blot analysis, or preserved in 

ice-cold HBSS for spettrofotometric/FACS analysis. 

Triton X-100 was preferred over alternative detergents such as Np-40 or Igepal CA-630 

since it better preserves the endoplasmic reticulum surrounding the nucleus. TFEB is a 

small protein of 52-53 kDa. Nuclear pores are relatively permeable to small proteins, thus 

we decided to use a milder detergent and preserve as much as possible the integrity of 

the nuclear membranes in order to limit the loss of nuclear TFEB during the nuclei 

isolation procedures. 

For the isolation of nuclei from liver and brain tissues the dissected organs were promptly 

immersed in ice-cold PBS with Ca2+ and Mg2+ (D-PBS, Sigma Aldrich), and minced with 

scissors. Tissues were then homogenized with a Potter device (Teflon pestle, 3-4 strokes), 

filtered with a cell strainer (Falcon: 352360, 100µm), centrifuged at 500rcf, 10min, 4°C. 

Supernatants were discarded and pellets resuspended with ice-cold HLB. Subsequent 

steps were as described above for the isolation of nuclei from cultured cells.  

The effectiveness of the fractionation procedure was verified a posteriori by Western blot 

analysis. Histone-3 and β-tubulin were used as nuclear and cytosolic marker, respectively, 

to verify the purity of the two fractions. 
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FACS analysis of nuclei. Nuclei were obtained as described above, and kept in ice-cold 

HBSS. They were stained with Propidium Iodide (Sigma) at a final concentration of 

1µg/ml, (incubation in darkness at 37°C, 20min). A Beckton Dickinson II flow cytometer 

was used. 10000 nuclei were counted for each measurement.  

Synthesis of Pt and Rv metabolites. This part of the work was performed by the group of 

prof. Cristina Paradisi. Sulfates were synthetized as previously described in Mattarei et 

al.88 

Dihydro derivatives of resveratrol and pterostilbene were prepared by hydrogenation of 

corresponding stilbenes following the procedure reported by D.C. Rueda et al.89 with 

minor modification. Solutions of each stilbene (1.00 mmol) in absolute EtOH (15 ml) were 

stirred under H2 for 6 h in the presence of 10% Pd/C. The reaction mixtures were filtered 

over Celite to remove the catalyst, and evaporated to dryness. The resulting residues 

were purified by flash column chromatography, using a hexane/EtOAc gradient, to afford 

target dihydro compounds dihydro-Rv (92% yield) and dihydro-Pt (95% yield). The 

spectroscopic data of compounds were in agreement with the literature. 

Results and discussion: 

Pt and Rv induce nuclear translocation of TFEB: 

To test whether Pt and Rv induced TFEB translocation to the nucleus, HeLa TFEB-GFP cells 

in Leibovitz’s L-15 medium were initially treated with 25µM Pt or Rv and TFEB migration 

was followed by confocal microscopy. 0.1% DMSO was added in negative controls to 

verify that the vehicle per se did not induce migration. HBSS was used as experimental 

a b 

c Fig 2: Pt and Rv induce TFEB migration from 
the cytosol to the nucleus. (a) Representative 
images taken at 0 and 3h after DMEM-HBSS 
exchange or addition of Pt or Rv. (b)  TFEB-GFP 
migration to the nucleus was faster in HBSS-
induced starvation compared to Pt or Rv 
treatment. However, (c) at 3h nuclear/cytosol 
ratios were similar in the three cases. N = 2 or 
3, error bars represent standard deviation 
(when N = 3) or average deviation (for N = 2). 
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medium in order to “starve” the cells, thus providing the positive control. HBSS provides 

pH maintenance, osmotic balance, water and essential inorganic ions but no energy 

source. Energy deprivation leads to a decrease of ATP levels in the cell, while ADP and 

AMP levels increase, leading to the activation of AMPK.90 mTORC1, the protein 

responsible for TFEB phosphorylation, and thus for its cytoplasmatic confinement, is a 

direct target of AMPK.91 Phosphorylation by AMPK leads to inhibition of mTORC1 activity. 

The phosphorylation level of TFEB thus decreases and its migration to the nucleus is 

favored.65 

As expected, the vehicle (DMSO) does not itself induce TFEB migration (fig 2, b-c), while 

HBSS-induced starvation has a strong effect (fig 2, a-c). 

Both Pt and Rv, when supplied at 25µM in complete Leibovitz’s L-15 medium, are able to 

induce a consistent migration of TFEB to the nucleus (fig 2, a-c). However, the kinetics by 

which starvation, Pt and Rv act are different. Starvation is the most potent stimulus: 

maximal nuclear translocation of TFEB is achieved in 1 hour (fig 2, b). The effect of Pt and 

Rv instead is more progressive, and migration reaches its maximum level at the end of the 

three-hour period (fig 2, b-c).  

In vivo, concentrations of Pt and Rv in the 25µM range are however difficult to reach. 

While Pt can reach this level in organs such as liver and kidney after a moderate 

pharmacological dosage by oral administration,9 for Rv it is nearly impossible to attain 

these levels even after administration of high doses p.o. Moreover, also for Pt, in organs 

such as the brain, heart, lungs and skeletal muscle the concentrations achieved are 

considerably lower than in liver and kidney. Given in particular the reports that Pt and Rv 

a 

b 

c 

d 

Fig 3: Low doses of Pt and Rv induce TFEB migration from the cytosol to the nucleus. 10µM and 1µM Pt 
(a, b) or Rv (c, d) were as effective as 25µM in inducing TFEB migration. N = 2 or 3, error bars represent 
standard deviation or average deviation. 
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exert positive effects in ameliorating brain pathologies and dysfunctions (e.g. Alzheimer’s 

disease, Parkinson’s disease, cognitive aging; see the introduction), we sought to define 

the effects of more physiological levels (1 and 10 µM) of both molecules on TFEB 

distribution. 

As shown in fig 3, both concentrations, 1µM and 10µM, of both molecules, Pt and Rv, 

where about as effective as the higher 25µM concentration in inducing TFEB migration. 

While many investigations have demonstrated an activity of polyphenols at 

unphysiologically high concentrations (e.g. 2), this report is one of the few showing 

efficacy at physiological levels. 

Pt and Rv metabolites: 

In vivo, Rv and Pt are mostly transformed into metabolites. Several authors therefore 

propose that the effects ascribed to polyphenols may instead be accounted for by their 

major phase II metabolites (e.g. 92, 93). Polyphenols are also subjected to modification by 

the colonic flora. In another context during my thesis work (chapter 4) I administered 

chronically Rv to rats. In the caecum and colon I was able to quantify only dihydro-Rv, the 

reduced form of trans-Rv. Various authors have reported effects of Rv against colon 

cancer and Crohn disease.7, 94-97 We decided therefore to also verify the effects of Pt and 

Rv phase II sulfates and reduced forms (synthesized by the group of prof. Cristina 

Paradisi) in our experimental system. Sulfates and reduced forms of Pt and Rv are present 

at high concentration in organs and colon, respectively, after administration p.o. of 

pharmacological doses. For this reason so far we have tested these compounds only at 

25µM. 

Fig 4: Reduced forms of Pt and Rv, but not sulfate metabolites, induce TFEB migration from the nucleus 
to the cytosol. Experiments with 25µM Pt or Rv (panels a-d, blue) are shown for comparison purposes. 
Reduced forms of Pt and Rv, namely dihydro-Pt and diydro-Rv were about as effective as Pt and Rv 
themselves in inducing TFEB-GFP migration to the nucleus (a-d). Sulfates of both Pt and Rv had only a 
small or no effect. N = 2 or 3, error bars represent standard deviation or average deviation. 
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TFEB distribution was perturbed by dihydro-Pt and dihydro-RV, while the sulfates were 

almost uneffective (fig 4, a-d). In fig 4 the results obtained with 25µM Rv and Pt are 

shown for comparison purposes. Dihydro-Pt and dihydro-Rv not only led to 

nuclear/cytosolic ratios for TFEB (fig 4, a, c) similar to those observed upon administration 

of the parent compounds, but did so with comparable kinetics (fig 4, b, d). Pt-sulfate was 

poorly effective, inducing only a small shift of TFEB to the nucleus, if any. Rv-3-sulfate and 

Rv-3,4-disulfate definitely were completely inert (fig 4, c, d).  

One possible explanation of these results might be reconduced to the different ability of 

these molecules to cross the plasma membrane. While Pt and Rv, as well as the reduced 

forms (dihydro-Pt and dihydro-Rv) are relatively non polar, mostly neutral (at 

physiological pH) molecules and thus can passively diffuse through cell membranes, 

sulfate (and probably glucuronide) forms are bound to encounter difficulties. The 

negatively charged sulfate group confers an elevated hydrophilicity to the molecules, 

which remain confined outside of the cell.  

Pt and Rv, the starting point:   

Fig 5: cAMP levels after Pt or Rv  administration. Epac-based FRET sensor H30 was used. Forskolin 
(25µM) fully activates ACs while IBMX (100µM) inhibits PDEs. Pt and Rv induce an increase in 
cytosolic cAMP (a, b). The effect of Pt is more pronounced than that of Rv. Forskolin and IBMX were 
added after Pt or Rv, and led to a further increase in cAMP levels in the cytosol of HeLa cell. 100 µM 
IBMX induced TFEB-GFP migration to the nucleus, but was less effective than 25 µM Pt or Rv (c, d). N 
= 2 or 3, error bars represent average deviation or standard deviation. 

a 

d c 

b 
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The plethoric activity of Pt and Rv is presumably the consequence of interactions with 

multiple proteins. However, obviously some interactions may be more important than 

others for a given end-effect. In 2012, Park et al.,2 have proposed PDE 1, 3 and 4 as a 

major target of Rv. In particular they discovered that Rv acts as a competitive inhibitor of 

cAMP on PDEs. In view of this, we decided to first, confirm their results with an 

alternative approach, second, to verify if Pt effects may also be part of a cAMP-dependent 

signaling cascade. 

cAMP signaling is largely mediated by two proteins, protein kinase A (PKA) and cAMP-

regulated guanine nucleotide exchange factors (Epac1 and Epac2, Oliveira R.F. et al.85). 

The binding of cAMP to PKA or Epac leads to a conformational change of these proteins. 

H30-FRET-based biosensors exploit the conformational change of Epac1 protein in order 

to measure the cAMP level in a given environment.85 We thus measured the variation of 

cAMP concentration in HeLa WT cells transiently transfected with an Epac1-FRET-based 

biosensor (H30-FRET) after addition of Pt or Rv. 

H30-FRET-based experiments were performed by dr. Giulietta Di Benedetto (CNR Institute 

of Neuroscience, Venetian Institute of Molecular Medicine, Padua). 

Both Pt and Rv at 25µM dose induced an increase in cytosolic cAMP (fig 5, a, b). Pt in 

particular yielded the more pronounced increase. Forskolin (25µM) and IBMX (100µM) 

were used as controls. Forskolin potently activates Adenylate Cyclases (AC, 98) while IBMX 

is a non-specific inhibitor of PDEs.99 Both these drugs are normally used as a reference in 

cAMP-FRET measurements.  

Administration of Forskolin and IBMX after Pt/Rv induced a further increase in cAMP 

levels (fig 5, a, b). As shown by Park et al.,2 Rv does not increase cAMP by activating AC, 

but rather by inhibiting some PDE subfamilies. This can explain why by activating AC or 

completely inhibiting PDEs we were able to measure a further increase in cAMP levels (fig 

5, a, b).  

Notably, the increase in cAMP levels after Forskolin addition to cells previously treated 

with Pt or with Rv was of the same order of magnitude of that induced by the addition of 

Forskolin to untreated cells (fig 5, b). Since Rv does not act via AC, we can presume that 

this also applies to Pt. Otherwise, if part of the effect of Pt were mediated by AC 

activation, we would expect to observe a smaller change in cAMP levels when applying 

Forskolin to Pt-treated cells.  

The addition of IBMX after forskolin instead led to a similar plateau in cAMP levels 

independently of whether the cells had been previously treated with Pt, Rv, or neither 

stilbenoid (fig 5, a, b). This further confirms that Rv, and probably Pt, increases 

intracellular cAMP levels by inhibiting certain subclasses of PDEs. When all the PDE 

subfamilies are inhibited by IBMX, indeed, one cannot observe a significant difference in 

cAMP levels related to the presence of Rv or Pt (fig 5, b).  
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However, HeLa cells treated with Pt showed an higher increase in cAMP levels than HeLa 

cells treated with Rv. Assuming that in both cases the mechanism involves PDEs 

inhibition, we can hypothesize that the superior potency of Pt might be due to: 

1. Inhibition of other subclasses of PDE (besides subclasses 1, 3 and 4, as suggested by 

Park et al.2) 

2. A stronger inhibition of subclasses 1, 3 and 4.  

3. Both of the above 

We next wondered whether TFEB migration from the cytosol to the nucleus might be due 

to the observed increase in intracellular levels of cAMP. HeLa TFEB-GFP cells were thus 

treated with IBMX 100µM only. IBMX was able to induce the migration of the 

transcription factor to the nucleus, but to a lower extent than 25µM Pt or Rv (fig 5, c, d). 

Pt- and Rv-induced TFEB migration is thus probably in part downstream of effectors other 

than cAMP.  

Park et al.2 excluded PKA as a possible downstream mediator of Rv in HeLa cells, while a 

role of Epac was supported. The conclusion was based on specific silencing of PKA or Epac 

mRNAs. Briefly, Rv was able to activate AMPK when PKA was silenced, but not when Epac 

was silenced. Given the recent findings by Seok et al.81 (see Introduction), I decided to 

also consider the possibility of a role of CREBp in autophagy. CREB is phosphorylated, and 

thus activated, by PKA.100, 101 If Rv or Pt do not have PKA as a downstream effector, the 

phosphorylation status of CREB should be unaffected by them.   

Western blot analysis is still in progress. Here I report preliminary results obtained with 

HeLa cells by using an extremely high concentration of Pt or Rv (100µM). This part of the 

work is being done in preparation for a more physiological an exhaustive investigation 

which is being planned (see below). HeLa WT cell were seeded in a 6 multiwell plates 

(200.000 cells per well, as done for the TFEB migration experiments) and treated as 

described in fig 6. Pt, but not Rv, induced CREB phosphorylation, at levels comparable to 

Fig 6: Western blot analysis detecting the phosphorylated forms 
of CREB (Ph-CREB, Ser 133) or HSP90 (housekeeping). 0.1% 
DMSO, starvation (HBSS), 100µM Pt or Rv and IBMX (50µM) + 
Forskolin (25µM) were used as treatments. Cell were lysed with 
RIPA buffer 90min after the beginning of the treatment. 
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those induced by IBMX-Forskolin treatment. This result is in agreement with the findings 

by Park et al.2 Rv indeed does not induce dramatic CREB phosphorylation, thus PKA seems 

not to be involved in signaling downstream of Resveratrol. Conversely, Pt induces a strong 

phosphorylation of CREB, indicating PKA, as well as Epac, as downstream effectors of its 

activity. 

Is AMPK involved in Pt and Rv-induced TFEB migration? 

As previously shown, a rise in cAMP level is not sufficient to trigger TFEB migration in a 

manner similar to that of Pt and Rv (fig 5). As mentioned above, mTORC1 is a direct target 

of AMPK. To test and verify the hypothesis that AMPK is behind TFEB migration, we have 

adopted a double approach. First, we treated HeLa TFEB-GFP cell with a specific activator 

of AMPK, the compound A769662.102 A769662 was used at 25µM because it affords a 

near-maximal activation of AMPK and still higher concentration may lead to the inhibition 

of mitochondrial oxygen consumption and thus to an increase in AMP:ATP ratio.102 

As shown in fig 7, administration of A769662 to HeLa TFEB-GFP cells induced migration of 

TFEB to the nucleus. However the effect was relatively weak, lower than that of Rv or Pt, 

suggesting that AMPK may not be the only and obligatory intermediate in the signaling 

cascades initiated by stilbenoids.  

The second approach is based on western blot analysis. As previously mentioned, this 

part of the work is still ongoing and data are too preliminary to be showed here. 

Conclusions:  

As expected, given the cardinal role attributed to TFEB as a master regulator of 

autophagy, and the evidence that stilbenoids induce autophagy, in cultured HeLa cells Rv 

and Pt induce migration of a TFEB-GFP chimera to the nucleus, at concentrations as low 

as 1 µM.  

Dihydro-Rv and dihydro-Pt, the products of bacterial hydrogenation of the carbon-carbon 

double bond in the stilbenoid skeleton, are about as effective as Rv and Pt themselves, a 

Fig 7: 25µM A769662 induces TFEB-GFP migration to the nucleus. The results obtained with 25µM Pt 
and Rv are shown for comparison purposes. N = 2 or 3, error bars represent average or standard 
deviation. 



Chapter 7 

166 
 

significant finding strengthening the view that the metabolites of polyphenols may have 

much to do with the beneficial effects of these natural compounds. On the contrary, 

negatively charged, hydrophilic sulfates of Rv and Pt have no significant effect, likely 

because they do not enter cells.  

TFEB relocation is accompanied by an increase of cAMP levels, already observed by other 

authors and ascribed to the primary event, inhibition of members of the PDE family. 

According to the mechanistic scheme developed by Park et al.2 for resveratrol, the cAMP 

increase is upstream of AMPK activation and mTORC1 inhibition, i.e., autophagy 

induction. The signal cascade for resveratrol was found to involve the GEF Epac1, but not 

PKA. A recent report has furthermore implicated CREB in autophagy induction. 

Coherently, my preliminary results indicate that it becomes phosphorylated upon 

administration of Pt (but not resveratrol) to the cells (fig 6). CREB phosphorylation is 

executed by PKA, and thus it is also downstream of cAMP.  

There appears however to be a still-to-be-investigated difference between the modes of 

action of Rv (which does not cause massive phosphorylation of CREB) and Pt (which 

does). Furthermore, my results indicate that a cAMP increase due to PDE inhibition may 

not be sufficient to explain the induction of TFEB translocation, since upon treatment of 

the cells with IBMX, a PDE pan-inhibitor, TFEB translocation was lower than that induced 

by Rv or Pt (fig 5). 

AMPK activation also might account only partially for TFEB migration, since nearly full 

activation  by A769662 induced nuclear translocation of the TFEB-GFP chimera to a 

similar or lower extent than treatment with the stilbenoids. 

Perpectives: 

The results obtained so far in this part of the work encourage us to concentrate our 

efforts on the analysis of the mechanisms of action of Rv and Pt. Having established that 

Pt and Rv strongly induce TFEB migration, at least in vitro, we plan to investigate 

downstream and especially upstream events. 

Besides AMPK, mTORC1 activity can be regulated by other proteins such as AKT and ERK, 

the phosphorylation levels of which in the presence of stilbenoids are currently under 

investigation.  

AMPK activation by both Pt and Rv needs to be confirmed in our experimental model. 

PDEs inhibition by Rv has already been proven, but that Pt also inhibits 

phosphodiesterases remains an hypothesis. We plan to clarify this crucial event also for 

Pt. 

Pt and Rv can induce an increase in ROS levels.64, 103-105 ROS are sensed by the Nrf2/Keap1 

complex, which is activated and induces the transcription of ROS scavengers. ROS are 
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recognized as autophagy inducers.106 Through the use of cell permeant scavenger of ROS 

(namely PEG-CAT and PEG-SOD) we shall verify how important is the contribution of ROS 

in modulating Pt- and Rv-induced-TFEB localization.  

After an in vitro detailed mechanistic investigation of Pt and Rv pro-autophagy activity, 

we aim to show the same effects and the involvement of the same pathways also in vivo. 

A few experiments in this direction have been already performed.  
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8. Pterostilbene and cognitive performance in the aged rat model: 

preliminary findings 

 

Summary: 

Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene, Pt) is a natural dietary compound 

and a major polyphenolic component of blueberries. This compound is emerging as 

potentially very beneficial for health care. Several recent papers report that it can, for 

example, contrast inflammation and cancer and improve cognitive performance and 

short-term memory impaired by old age or neurodegeneration. Pt is more bioavailable 

than its celebrated non-methylated analogue, Resveratrol (Rv), and, notably, it can cross 

the blood brain barrier. While the literature contains reports of effects of Pt in 

prevention/treatment of cognitive impairment in old individuals, no studies have 

investigated the detailed mechanisms underlying these observations.  

The intent of this study is to identify the downstream effectors of Pt treatment in aged 

rats. At this time I have completed a preliminary feasibility study. We selected from the 

literature a panel of genes and proteins that potentially might be regulated by treatment 

with Pt. These proteins and genes are suitable markers to evaluate the impact on the 

general cognitive capacity of the old treated animal (BDNF and Psd95, two proteins that 

directly correlate with the functionality of neurons and synapses), the autophagy status 

(TFEB, the recently discovered master regulator of autophagy) and the modulation of 

protein and genes expression (RbAp48 and Rest). 

The cognitive capacity of two groups of 4 aged (18 months) rats was evaluated through 

behavioral tests. One of the two groups then received Pt p.o. for 20 consecutive days, and 

the cognitive assessment was repeated. VentroMedial Prefrontal cortex (PFc), Perirhinal 

cortex (PRNLc), Dentate Gyrus (DG) and the rest of Hippocampus (HIP) were then 

collected and analyzed by RT-qPCR or western blot. 

The inadequate numerosity of the experimental groups in this preliminary experiment 

prevents, as expected, the achievement of statistical significance of the results. 

Nonetheless, trends can be detected and the basis has been set for further work which is 

expected to lead to reliable conclusions. Data indicates that after Pt administration the 

treated group presented a consistent improvement in memory and learning tests 

administered 24 hours after the training session. Gene expression analysis indicates that 

in general the DG is the area most solicited by the treatment with Pt. bdnf gene 

expression seems to be unaffected by Pt treatment while rbbp4 (the gene of RbAp48), 

tfeb, dlg4 (the gene of Psd95) and rest tend to be up-regulated in the treated animal 

group.  

Our data, although preliminary, confirm that chronic administration of pharmacological 

amounts of Pt has positive effects at a behavioral level in old animals. Gene and protein 

analysis suggests that behavioral improvement may be related to: 1. a rearrangement in 

the synaptic architecture (Psd95), 2. change in the acetylation level of histones (RbAp48) 

and 3. an increase in autophagy (TFEB).  
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Introduction: 

A number of papers report that assuming plant-derived foods or juices rich in 

antioxidants enhances the intellectual performance of rodents afflicted by age or 

neurodegeneration.2-14 Similar effects can be observed also in young15 and middle-aged16 

rats and aged humans.17-19 These foods contain a number of putative active ingredients, 

such as flavonoids, anthocyanins and resveratrol, which may have synergic action. While 

resveratrol itself has been reported to positively affect memory and cognition (e.g. 20-30), 

this study focuses on pterostilbene, i.e. 3,5-dimethylresveratrol, which is emerging as a 

possibly more effective antagonist of age in the modulation of intellectual function31-34 

and in mice reportedly protects against inflammation-linked learning and memory 

impairment35 and has anxiolytic action.36 The question arises of the mechanisms of action 

of active food constituents. Considerable work to clarify these fundamental aspects has 

been carried out with flavonoids37-49 and resveratrol.50 The protective effects of the latter 

may be partly ascribed to its anti-inflammatory action. Neuroinflammatory processes are 

believed to play a crucial role in the development of neurodegenerative diseases, due in 

part to an increased production of reactive oxygen species (ROS) (e.g. 51-53). Resveratrol is 

able to counteract ROS production by antagonizing NADPH oxidase (e.g. 54-56) and by 

accelerating mitochondrial O2
-  detoxification through upregulation of SOD2 (e.g. 57, 58). In 

addition resveratrol (as well as ROS and pterostilbene) can induce the expression of other 

antioxidant enzymes such as NAD(P)H quinone oxidoreductase 1 (NQO1), heme 

oxygenase 1 (HMOX1), glutamate-cysteine ligase (GCL) and glutathione S transferases 

(GSTs) through the upregulation of Nrf2 signaling.59-61 The transcription factor Nrf2 is 

tightly bound to Keap1, which facilitates ubiquitin-mediated degradation of the 

transcription factor. Upon oxidative stress the Nrf2/Keap1 complex is disrupted and Nrf2 

can translocate to the nucleus where it promotes the transcription of ARE-targeted genes 

(e.g. 62-64). Resveratrol also contrasts inflammation through the inhibition of nuclear 

factor kappa B (NFkB) (e.g. 65-67) via inhibition of upstream IKK kinase (e.g. 68-70) and via 

SIRT1-mediated deacetylation of NFkB itself (e.g. 71, 72). NFkB targets many pro-

inflammatory genes, such as cytokines and chemokines (e.g. 73-78). Resveratrol and anti-

inflammatory action are recognized to have beneficial effects also on the vascular and 

micro-vascular system (e.g. 25, 30, 54, 79-82). NADPH oxidases are one of the possible 

pharmacological targets (e.g. 83), and resveratrol can act at this level, again through 

SIRT1.54, 55 Age- or disease-related circulation deficits can contribute heavily to cognitive 

impairment84-88 (see also below).  

Unsurprisingly, given the structural similarity, the effects of Pt are in line with those 

ascribed to resveratrol,33, 34, 89 but its efficacy seems to be higher.31 We have determined 

the pharmacokinetics of Pt and its major metabolite, the sulfate, in various organs after 

administration of a bolus.90 The brain differs from other organs in that Pt as such is the 

major specie, presumably due to its lipophilicity. The levels it reaches are considerably 

higher than those of resveratrol after administration of an equimolar dose; this may 

account, at least in part, for its greater effectiveness. 
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In particular, Pt improved performance in spatial learning and memory tests (radial arm, 

water maze),31 implying effects on spatial memory. Thus, the hippocampus and perirhinal 

cortex may be affected. A question arising is therefore that of the molecular mechanisms 

of Pt action. Memory formation and its deterioration with aging are complex processes 

which are not known in full detail (rev.: 91, 92). It is clear however that memory is linked to 

the strengthening, de novo formation and remodeling of connections between nervous 

cells, the spines, thus upregulation of proteins and activities involved in these processes 

may be expected.  

In the early 1970’s Nobel prize winner Eric Kandel and coworkers hypothesized that there 

may be a connection between short-memory formation and cAMP-mediated signaling.93, 

94 They observed that neurotransmitters such as serotonin and dopamine could increase 

levels of cAMP. This discovery was followed by the observation that long-term memory 

formation involved the migration of PKA and MAPK (downstream effectors of cAMP) to 

the nucleus, activation of the transcription factor CREB-1 (cAMP Response Element 

Binding Protein-1) and consequent increased expression of a set of genes leading to the 

growth of new synaptic connections.95-99 Aging-related cognitive decline affects, among 

many other functions, long-term memory formation.100 Given the importance of the 

cAMP/CREB pathway in the formation of such memory, efforts are under way to find a 

pharmacological approach for the modulation of memory formation.100-102 Particularly 

interesting in this context is the role of Phosphodiesterases (PDEs). PDEs are a vast class 

of proteins (more than 100) classified in 11 groups, which can hydrolyze the 

phosphodiester bond of cAMP and cGMP. These protein are in some cases selective for 

cAMP or cGMP and they can be ubiquitously expressed or selectively expressed in certain 

areas. What is now clear is that their pharmacological regulation can be important for 

intervention on several dysfunctions. Rolipram, an inhibitor of PDE4, has already been 

tested for boosting long-term memory formation.101 While Resveratrol was shown by 

Park et al.103 to be an inhibitor of PDE class 1, 3 and 4, Pt activity in this respect is still not 

characterized. In our laboratory we have addressed the question of whether Pt can cause 

an increase of cellular [cAMP]. Pt turns out to be more potent than Resveratrol in this 

respect, thus presumably activating PKA and ultimately the CREB/CBP pathway. Part of 

our future efforts will aim to define the interaction of Pt with PDEs.  

Epigenetic modifications of neural cells are recognized to underlie memory consolidation 

and learning and conversely to play a role in cognitive decline and neurodegeneration 

(e.g. 104-113). Modulation of histone acetylation may be one of the mechanisms.114-116 

Epigenetic effects may well be responsible for a considerable portion of Pt action. Gene 

expression is strongly regulated by modifications such as DNA and histone 

acetylation/methylation. Activation of the cAMP/CREB/CBP pathway can be irrelevant if 

the target genes are not accessible to the transcription factor. Histone 

acetylation/deacetylation in particular leads to an alteration of the accessibility of the 

DNA to proteins. Histone tail acetylation causes a relaxation of the chromatin structure. 
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Acetyl group indeed masks the positive charge of lysine residues on the tail of histones 

that are important for the interaction with the negative charge of the DNA backbone.  

In 2013 it was discovered that a protein, Retino Blastoma Associated Protein 48 (RbAp48), 

is downregulated in the dentate gyrus of senescent individuals (human and mice) and 

that its restoration (in a mouse model, through AAV carriers) leads to recovery of 

cognitive capacity in old animals.117 This protein is part of a large complex called NuRD 

(Nucleosomal Remodeling and Deacetylase complex) where it directly interacts with the 

protein MTA-1 (among others). In general, NuRD consists of several proteins whose 

coordinated function is to repress gene transcription.118-122 However, this is not the only 

way by which RbAp48 acts in the modulation of the gene transcriptions. Another pathway 

(fig 1) relies on the interaction of RbAp48 with CBP (CREB Binding Protein). CBP in 

particular is recruited by the phosphorylated form of CREB, which is formed downstream 

of an increase of intracellular cAMP levels. CBP is an acetyltransferase (HAT) which uses 

acetyl-coenzyme A as an acetyl group donor to transfer an acetyl group to the ε-amino 

group of lysine residues in the N-terminal tails of the four core histones. As previously 

anticipated this acetylation results in DNA relaxation, thus exposure of promoter 

sequences to transcription factors (e.g. 123). Zhang and coworkers124 demonstrated that 

the interaction of RbAp48 with CBP induces an increase in the acetyl-transferase activity 

of this protein, leading to an increase in the transcription of genes under the control of 

the CREB promoter. 

Aging is also a matter of impaired renewal. Autophagy, in its various declinations, is the 

process that provides the turnover of cellular content. Dysfunctional proteins and 

Fig 1: Schematic representation 
of cAMP/PKA/CREB pathway   
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organelles, as well as pathogens, can be recycled and constituent (mainly amino acids and 

lipids) reused by the cell. Recently a transcription factor (EB) has been identified as 

coordinator of the expression of autophagic proteins and lysosomal biogenesis.125-129 

Transcription factor EB (TFEB) under basal conditions is kept in the cytosolic compartment 

in a phosphorylated form. Autophagic stimuli, such as starvation, induce the translocation 

of this factor to the nucleus where it can bind CLEAR-box sequences (5’-GTCACGTGAC-3’) 

inducing the transcription of the relative genes. Dysfunctional neurons often present 

dysfunctional organelles and stockpiles of unfolded protein.130, 131 In chapter 7 I have 

reported that Pt induces the translocation of TFEB to the nucleus, thus enhancing 

autophagy in HeLa cells. 

Given this chart of Pt’s potentialities in the treatment of cognitive aging, we decided to 

investigate in a rat model the real effectiveness of Pt treatment and the possible 

involvement of autophagy (TFEB) and of the epigenetic modulator RbAp48 in its effects. 

For a fuller picture of Pt activity in cognitive aging we also looked at two common markers 

of synaptic plasticity, BDNF and Psd-95, and to another protein that is emerging as an 

important regulator for gene expression in old animals/humans, Rest. 

The Repressor Element-1 Silencing Transcription factor (Rest) is a zinc finger repressor 

protein that triggers gene silencing. Rest activity is crucial during neural differentiation 

and in STEM cells.132, 133 Its expression drops to very low levels after differentiation. Rest 

is increased again in the aged brain; its role is under investigation since recent work 

indicates a central role in tumorigenesis. However Rest activity is still poorly characterized 

and it may well be involved in cognitive aging. 

The two common markers of synaptic plasticity previously mentioned are the Brain 

Derived Neurotropic Factor (BDNF) and the Post Synaptic Density protein-95 (Psd-95). 

Synaptic plasticity includes the strengthening or weakening of synaptic connections. 

Regulation can take place at the pre-synaptic site by modulating the release of 

neurotransmitter molecules or post-synaptically by changing the number, types, or 

properties of neurotransmitter receptor.134 BDNF is a member of the neurotrophin (NT) 

family, it binds the tropomyosin-related kinase receptor B (TrkB) and their interaction 

leads to the activation of the Mitogen-Activated Protein Kinase (MAPK), Phospholipase Cγ 

(PLCγ), and Phosphatidylinositol 3-kinase (PI3K) pathways.135-138 Psd-95 is a scaffold 

protein that interacts with cytoskeleton components as well as receptors, ion channels 

and cell adhesion molecules. Psd-95 exerts structural functions and its levels are directly 

correlated with synaptic plasticity.139, 140 

Here is presented a pilot study, still incomplete at this point, whose results and 

perspective will be discussed in the conclusions. Part of this work is done in collaboration 

with the groups of prof. Nicoletta Berardi and dr. Alessandro Sale, IN-CNR of Pisa. 
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Materials and methods: 

Animals and ethics statements. All procedures complied with Italian Ministry of Health 

(Law 116/92) and European Community Council (Directive 86/609/EEC) guidelines. 

4 males and 4 females Sprague Dawley rats, 18 months old, were housed in an animal 

room with a 12h/12h light/dark cycle, with food and water available ad libitum. For two 

weeks before the experiments the rats were handled daily. All experimental procedures 

were carried out during the light phase. 

Animals were subdivided in two groups, treated and untreated. Females and males were 

equally distributed among experimental groups (50%). Treated animals received twice a 

day (8 am – 8 pm) for 20 consecutive days a 22.5mg/kg dose of Pt (Waseta Int. Trading 

Co., Shangai, P.R. China) (the molar equivalent of 20 mg/kg of resveratrol) in a palatable 

jelly (prepared as described by Zhang Lei (141; materials were from commercial shops), 

while the untreated group received “unloaded” jelly.  

Palatable jelly was preferred over incorporation in food or drinking water as a route of 

administration. As reported by Zhang141, it ensures both low stress to the animal and a 

controlled administration of the compound. Jellies were administered as a food 

supplement and were prepared as follows: 

- 2.8gr of dried jelly (PaneAngeli) was re-hydrated with 20ml of citrate buffer 

(10mM, pH 5) at room temperature for 10 minutes. 

- the solution was heated at 55-60°C under stirring for 30 minutes. 

- 4 drops of sweetener were added (Diete.tic, Eridania) as well as 400µl of chocolate 

flavoring (Estratti Bertolini). The preparate was further stirred and aliquoted into a 

48 well-plate (500µl) and kept at -20°C. Pt was added to the jellies for the treated 

group, immediately after the sweetener and the flavoring. Each single loaded jelly 

contained the dose of 22.5mg/kg of Pt. During the preparation the different 

weight of male and female animals was considered. 

To avoid initial prudence towards novel foods animals were initially trained to overcome 

neophobia. Training was performed as specified by Zhang141. All the animals were 

voluntary eating the jelly after the training. 

As sketched in fig 2, animals were evaluated for their cognitive performances before and 

after the jelly administration. T maze test, object recognition test and object in context 

test (described below) were performed. Given the long duration of the behavioral 

assessment, we decided to protract the jelly administration (loaded or unloaded) during 

the entire period of the memory and learning evaluation post-treatment, at the end of 

which animals were sacrificed under deep anesthesia (Isoflurane). Brain was collected 

and ventromedial prefrontal cortex, perirhinal cortex, dentate gyrus and hippocampus 
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were dissected and rapidly frozen by immersion of a sealed vial in a bath of isopentane 

and dry ice. Samples were stored at -80°C until use. Lungs, heart, liver, kidneys, skeletal 

muscle (gastrocnemius, tibialis anterior and soleus), testes (males) and the remaining 

brain were also removed and frozen. Blood was collected at decapitation and 

immediately processed as described below.  

T-maze. The T-maze protocol was adapted from Dominguez G et al.142 Briefly, animals 

were placed for ten successive trails separated by 90-s inter-trial intervals at the starting 

point of the T-maze cage. An alternation response was considered each time the subject 

entered the arm opposite to the one visited on the immediately previous trial. Alternation 

rate was calculated taking into account the nine successive trials, and expressed as the 

mean of the arm alternation. To avoid olfactory cues, the apparatus was washed with 

water/EtOH after each trial.  

Object recognition (ORT). The ORT protocol was previously described by Silingardi, et 

al.143 Briefly, the apparatus consisted of a square arena constructed in PVC with black 

walls and white floor. The objects were three-dimensional plastic cubes (15 cm wide) 

made of transparent Plexiglas that differed for the visual patterns lining the walls. Box 

and objects were cleaned up between trials to stop the build-up of olfactory cues.1 

The experimental protocol was modified from Ennaceur and Delacour.144 Briefly, rats 

received one session of 5 min duration in the empty arena to help them habituate to the 

apparatus and test room (habituation phase). Twenty-four hours later, each rat was 

placed in the arena and exposed to two identical objects (sample phase) for 5 min and 

returned to its cage. After a delay of 1h or 24h, rats were placed back in the arena and 

exposed to a familiar object (object identical to those in sample phase) and to a novel 

object for 5 min (test phase). Objects were placed in the same locations as in sample 

phase. The time spent exploring each object was recorded for each animal and for each 

condition, and a discrimination index was calculated (described below in the 

“measurements and statistics” section). 

memory and 
learning baseline 

memory and 
learning evaluation 

day 0 day 20 

pterostilbene administration Fig 2: Experimental scheme 
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For each retention time interval, the new object for half of the animals, treated or 

untreated, was the familiar object for the other half; also the position of the novel and 

the familiar object (left–right) was balanced. For the two test sessions, 1h or 24h, 

different pairs of object were used. At least 5 days separated the two tests. When 

different groups of animals performed the same ORT test we used the same pairs of 

objects. 

Object in context test (OCT). The OCT protocol was previously described by De Rosa et 

al.1 and adapted with minor modifications. Briefly, two open field arenas made of 

poly(vinyl chloride) were used. Each arena constituted a different experimental condition 

(A and B). In condition A, horizontal white stripes were applied on the black walls of the 

arena. The floor was covered with rough Plexiglas (fig. 3a). In condition B, the arena had 

gray walls, and the floor was made of Plexiglas (fig. 3a). The particular object for a given 

test was randomly determined, but each object was used for only one experimental 

condition. The OCT was used to determine whether rats were sensitive to a change in 

context for a given object. Thus, previous familiarization with the two environments was 

fundamental. The habituation phase started 2 days before the block of tests and 

consisted of two sessions. In each session, treated and untreated rats were exposed to 

both conditions (A and B) for 5 min. The OCT was divided into four sample phases and a 

test phase, each lasting 3 min (fig. 3b). The retention interval within the sample phases 

was 3 min. There was a 5 min interval between the last sample phase and the test phase. 

In the sample phase, two objects were placed in adjacent corners of the arena; phases 1 

and 4 comprised objects A1 and A2 in environment A, and phases 2 and 3 comprised 

Fig 3: (a) Three-dimensional representation of conditions A (Left) and B (Right) in 
OCT. (b) Schematic representation of sample/test conditions in OCT. Condition A is 
represented by the shaded box, and condition B is shown by the plain box. Objects are 
represented by the symbols. Image modified from De Rosa et al.1 
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objects B1 and B2 in environment B (fig. 3b). The test phase was in the same environment 

as sample phase 4, but one of the objects (A2) was replaced by B2. In this way, one object 

was in the same environment as in the sample phase, and the other object was in a 

different environment from the sample phase (fig. 3b). To avoid the eventual preference 

for one of two environments, half of the rats began the sample phase in environment A 

with object A1 and A2 and finished with the same environment with object A1 and B2 and 

vice versa. 

Measurements and Statistics. The standard measure for the statistical analysis in the 

ORTs was the time spent exploring the two objects. The exploration of an object was 

defined as directing the nose to the object at a distance of <2 cm and touching it with the 

nose. Turning around, climbing over, or sitting on the object were not included. In the 

sample phase, if the exploration time was <3 sec, the rat were discarded from the sample. 

Rats also were excluded from the sample if they spent <1 sec exploring both new and 

familiar objects in the test phase. In the sample phase, the total time spent exploring each 

object was recorded and compared across different treatments with Student’s t test. For 

OCT, two-way ANOVA was used. In the test phase, comparisons between time spent 

exploring the new and old objects were performed within groups (analysis performed by 

using paired t tests). A discrimination index (DI) was calculated as the difference between 

the time spent exploring new and old object divided by the total time spent exploring the 

objects [(n - f)/(f + n), where n represents new and f represents familiar]. DIs were 

compared across treatments with a t test. For the T-maze, performance in discriminating 

side (sx versus dx) was compared across treatments with a t test. 

Tissue treatments and HPLC analysis. HPLC analysis, tissues and blood treatment were 

performed as previously described in chapter 5.90  

Quantitative real Time-PCR (qPCR). Total RNA was obtained from dentate gyrus, 

hippocampus, ventromedial prefrontal cortex and perirhinal cortex of both, treated and 

untreated animals. RNA was extracted following TRIzol® (Invitrogen) extraction methods, 

according to manufacturer’s instructions. RNA was eluted in RNase-free water and stored 

at -80°C until use. The concentration and quality of each sample were measured by 

NanoDrop (Thermo Scientific). 100ng of RNA were converted to cDNA using Superscript® 

VILO™ (Invitrogen) following the manufacturer’s instructions. Reverse transcription was 

performed in a thermal cycler (Hybaid Touchdown Thermal Cycle): 25°C for 10 min, 42°C 

for 120 min, 85 °C for 5 min. All RNA samples were simultaneously converted to cDNA to 

minimize experimental variability. Superscript® VILO™ does not require initial 

denaturation of RNA, as indicated by manufacturer’s instructions. Specific primers were 

either designed using Primer3input (http://bioinfo.ut.ee/primer3-0.4.0/primer3/) or 

Primer Blast NCBI (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) or taken from 

already published sequences (for actb: 145; for gapdh and bdnf: 146). Thermodynamic 

specificity was determined using BLAST sequence alignment (NCBI: 

http://blast.ncbi.nlm.nih.gov/Blast.cgi; Integrated DNA Technologies (IDT): 
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http://eu.idtdna.com/calc/analyzer). All primers were purchased from Sigma Aldrich. 

Primer sequences were as follows: 

Glyceraldehyde 3-phosphate dehydrogenase (gapdh): fw ATCACCATCTTCCAGGAGCG rv 

GATGGCATGGACTGTGGTCA 

Actin beta (actb): fw CCGCGAGTACAACCTTCTTG rv GCAGCGATATCGTCATCCAT 

Meis homeobox 1 (meis1): fw GCACAGGTGACGATGATGAC rv GAAGGATGGTGAGTCCCGTA 

Tryptofan 2,3-dioxygenase (tdo2): fw AGAAAGAGGTGCTGCTCTGC rv GAGGTCAGCAACTGGAAAGG 

TYRO 3 protein tyrosine kinase (tyro3): fw CCCTTTACTTGCTTGCTTCG rv AATGGCGTGGAAATTCTGAG    

Desmoplakin (dsp): fw CACTCCCAGTCTTCACAGCA rv TTTCTCCAGGTCCCACAATC 

Discs, large homolog 4 (dlg4): fw GAGTGCTTCTCAGCCATCGT rv ATGTAGGGGCCTGAGAGGTC 

Retinoblastoma binding protein 4 (rbbp4): fw GCTCCCTAATGACGATGCTC rv ATGATGCAAGGGTTCTGAGG 

RE1-silencing transcription factor (rest): fw AACTCACACAGGAGAACGCC rv TGTGAACCTGTCTTGCGTGT 

Transcription factor EB (tfeb): fw GGGCTACATCAACCCCGAAA rv CCGGCTCTCAGCATCTGTTA 

Brain-derived neurotrophic factor (bdnf): fw ATAGGAGACCCTCCGCAA rv CTGCCATGCATGAAACACTT   

Quantitative PCR was performed in duplicate in a 96-well IQ5 Thermal Cycler (BioRad) 

using SYBR green chemistry. gapdh and actb were tested as putative reference genes. 

gapdh turned out to provide the most reproducible output, and was used to normalize 

cycle threshold (CT) values. All samples were run simultaneously with RNA- and RT-

negative controls. The efficiency of each run was determined by a standard curve 

obtained through a serial dilution of cDNAs from a pool of the analyzed sample. 

Normalization was performed by the ΔCT method. Data are expressed as means ± SEM (n 

= 4). Comparisons were made using the t-test (p < 0.05). 

Results:  

Behavioral tests: 

Before the training session animals were handled and habituated to eat jelly (vehicle 

only). In order to overcome the initial neophobia animals were subjected to short starving 

intervals (e.g. 4-6 h) during the light phase. Calorie restriction (CR) is known to attenuate 

age-related deficits (e.g. 147-151). In order to exclude the possibility of a CR-induced 

improvement in the cognitive performance of the animals, the jelly training phase was 

performed one month before the beginning of the experiments. Short starving intervals 

were limited to the strictly necessary (2 or 3 session for each animal). The animals 

received vehicle jelly weekly during the baseline assessment period in order to maintain 

their interest for the flavor of the jelly. 
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Baseline evaluation of the cognitive status of the old animals indicated that the whole 

cohort of animals was homogeneous and presented age-related impairment in 

performing the tasks (data not shown). 

Behavioral tests were selected to probe different areas and different functions of the 

brain. Aging impairs, among many other functions, memory formation and 

consolidation.152 Given the nature of this pilot study, we decided to adopt a broad 

approach to detect any possible effect of Pt in memory. 

ORT mainly reflects the activity of the perirhinal cortex. This area of the brain is heavily 

involved in the identification of environmental stimuli and object recognition.143, 153-155 

OCT evaluates preferentially hippocampus activity. Hippocampus among other functions 

is largely responsible for processes such as consolidation of short term memory to long 

term memory, memory retrival and spatial navigation.155-160 T-maze exists in many 

different variants developed in order to evaluate different aspect of brain function. 

Forced alternation and left-right discrimination tasks using the T-maze is widely used to 

assess working memory and reference memory in rodents, and it also depends on 

hippocampal function.161, 162  

Object recognition test: 

Object recognition test was performed twice, in order to evaluate the spatial memory of 

the animals treated and untreated 1h or 24h after the training session. Each time 

different objects were used avoiding reminding of the previous test. 

Treated and untreated animals had a similar performance in recognizing the new object 

when the test was performed 1h after the training session (fig 4-a, index ctrl = 0.337 ± 

0.044, index Pt = 0.215 ± 0.039). However, the treated group had a definitely improved 

index score in comparison with the untreated group when the test was performed 24 

hours after the training session (fig 4-b, index ctrl = -0.120 ± 0.130, index Pt = 0.158 ± 
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Fig 4: Object recognition memory. Tests were performed 1h (a) and 24h (b) after the training session. 
Discrimination index (Index) was calculated with the following formula: (n – f)/(n + f), where n 
represents new and f represents familiar object. a: untreated (Ctrl) and treated (Pt) animals did not 
significantly differ in recognizing the new object 1h after the training phase. b: treated animals (Pt) tend 
to explore the new object more than untreated animals 24h after the training phase  (t-test, p = 0,088). 
Error bars represent SEM 

a b 



Chapter 8 

186 
 

0.044). Even though the difference is not statistically significant (p = 0.088) due to the low 

numerosity, the results obtained in the 24h test suggest that Pt ameliorates the 

consolidation of spatial memory, while no improvement in short-term memory is 

suggested by the 1h test. 

Object in context test:  

As for ORT, object in context test was performed 1h and 24h after the training sessions. 

Pt treatment again was effective in the phase of memory consolidation (24h, fig 5-b), 

while Pt administration seemed to be ineffective when the assay was performed 1h after 

the training session (fig 5-a). This result confirms and supports the idea that Pt treatment 

positively affects memory, particularly in the phase of its consolidation. 

T maze: 

Working memory stimulation requires the coordinated activity of many functions and 

areas of the brain. Sensor and motor cortex, spatial orientation and short term memory 

are particularly solicited. In our experiment the animals were free to choose between left 

and right arm, with a short latency within 10 trials. Even though differences are not 

significant, treated animals seem to obtain a better score than untreated animals (fig 6).  
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Fig 6: T maze test. The index was calculated as the 
mean of the arm alternation. 
The working memory of the treated group seems to 
be more efficient than that of the untreated group 
(ctrl, p = 0,072). Error bars represent SEM 

Fig 5: Object in context test. Tests were performed 1h (a) and 24h (b) after the training sessions. The 
discrimination index (Index) was calculated as described in fig  4. The performance of treated group 
(Pt) was similar to that of untreated group (ctrl) 1h after the last training session (a). 24h after the last 
training session treated animals (Pt) were significantly better than untreated animals in performing the 
task (b, p = 0,009). Error bars represent SEM 
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HPLC: 

As a control for Pt administration the major organs of treated animals were analyzed by 

HPLC in order to verify and measure the presence of Pt and its main metabolite in rats, Pt-

sulfate (Pt-S). Animals were sacrificed at different times after the last Pt administration, 

so absorption and clearance (in addition to the normal variability) can account in part for 

the variability in the concentrations of Pt and Pt-S found among the 4 treated animals.  

Pt and Pt-S were present in all treated animals. Distribution in major organs of Pt and Pt-S 

is similar to the one previously published by our group.90 However in this work animals 

were not fasted and the administration was chronic. Liver and kidney showed the highest 

concentration of both Pt and Pt-S; Pt was the predominant specie in the brain while the 

metabolite was predominant in the liver and kidneys (fig 7). 

qPCR: 

Kandel and coworkers117 have identified the dentate gyrus as one of the areas most 

affected by age, and the area that shows decreased expression of RbAp48 upon aging.  

The dentate gyrus is wrapped up by other brain structures, mostly the hippocampus. 

Given the difficulty of the dissection we decided to perform a molecular control for our 

a b 

c d 

Fig 7: Levels of Pt and Pt-S in the organs of treated animals. Females (a, b) and males (c, d) have a 
similar amount and distribution of both species. Pt was the predominant specie in the brain (a-d) 
and in female’s skeletal muscle (a, b), while Pt-S was more abundant in liver, kidneys and blood 
(a-d). 
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dentate gyrus preparation. As suggested by Hagihara163 it is possible to verify the 

accuracy of the dentate gyrus dissection measuring by RT-qPCR the level of expression of 

certain genes that are selective for the dentate gyrus (dsp and tdo2) or for the remaining 

hippocampus (meis1 and tyro3). 

tdo2 and dsp were consistently up-regulated in the whole cohort of the DG samples, 

indicating that the isolate contains the DG. However, meis1 and tyro3 expression was 

similar in both rest-of-hippocampus and DG preparates. This indicates that during the 

dissection part of the hippocampus was dissected along with the DG, and it represents a 

significant contamination in our samples. Since the DG was identified as DG, we decided 

to proceed further with the analysis even if this contamination was present (fig 8).  

Markers of synaptic plasticity: 

RT-qPCR analysis suggested that bdnf gene expression is not significantly affected by the 

treatment with Pt in any of the areas examined.  

dlg4 (the gene of Psd-95) also seems not to be up-regulated in the treated group. 

However, in the DG of treated animals there might be a slight up-regulation of the gene.  
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Fig 8: Gene expression in the dentate gyrus (DG) and 
remaining hippocampus (HIP). gapdh was used to 
normalize gene expression. Each bar represents the 
average of 8 animals. Error bars represent SEM. 

Fig 9: Quantitative PCR analysis with a bdnf specific probe (a) and a dlg4 specific probe (b). Gene 
expression is normalized on gapdh. Each bar represents the average of 4 animals. Error bars represent 
SEM. 
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Both bdnf and dlg4, appeared to be negatively regulated by Pt treatment in the PRNLc. 

However, this result has a particularly low significance due to the small amount of PRNLc 

material we obtained. RNA extracted from this areas was indeed very scarce, due to the 

size of this portion of the cortex and due to the age of the animals. This point will be 

discussed in the conclusions section. 

Autophagy induction: 

Since it is considered the master regulator of autophagy and lysosomal biogenesis (see 

above), we examined TFEB as a marker of Pt autophagy induction. One of the genes 

controlled by TFEB is its own.164 Its activation therefore is expected to lead to an increase 

of TFEB mRNA and protein levels (positive feedback loop). Hippocampus, pre-frontal 

cortex and perirhinal cortex TFEB levels seemed to be unaffected by Pt administration. On 

the other hand, the gene seems to respond in the DG. This outcome would be in 

agreement with the results of our previous work (chapter 7) which clearly indicates, at 

least in vitro, a correlation between Pt administration and TFEB nuclear localization.  

Epigenetics and transcription silencing: 

rbbp4 (gene of RbAp48 protein) and rest follow the same pattern seen for dlg4 and tfeb. 

In both cases gene expression seems to be up-regulated in the DG whereas the other 

areas examined apparently are not influenced by Pt administration. 

 

 

a b 

Fig 10: Quantitative PCR analysis with probes 
specific for tfeb (a), rbbp4 (b) and rest (c). 
Gene expression is normalized on gapdh. Each 
bar represents the average of 4 animals. Error 
bars represent SEM 
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Discussion: 

Taken together our preliminary data suggests the following:  

1. Behavioral results confirm that Pt ameliorates cognitive impairment in old rats, at least 

deficits concerning spatio-temporal memory. 

2. Molecular study suggests that this effect may be due to a rearrangement in the 

synaptic architecture (dlg4 increase, if any), to a change in the acetylation level of 

histones (rbbp4 increase) and to an increase in autophagy level that can exert a renewal 

of intracellular components (tfeb increase). 

3. Molecular differences in the treated group were primarily found in the dentate gyrus. 

This agrees with the fact that the DG is one of the areas most affected by the age. 

However behavioral and molecular results need to be confirmed, since our sample size is 

too small. A similar study performed by Joseph’s group32 reports, at a behavioral level, 

results similar to ours. However Joseph’s work used 14 animal per group (more than 

three times our numerosity) and a longer administration of the drug (9 weeks versus 6 

weeks). 

Also, dentate gyrus dissection ought to be improved. Most of the hippocampus seems to 

respond poorly to Pt administration: we were unable to detect any significant effect in 

any of the genes we monitored in this region (except of course the DG). Given the 

contamination of our DG isolate with part of the neighboring hippocampus tissue we can 

hypothesize that we are underestimating variation in the DG. 

The use of old animals moreover makes the work difficult. 18 month-old rats suffer from 

many deficits; two of four females (the untreated animals) had a clearly formed breast 

cancer that was discovered at the end of the experimental protocol, while the whole 

cohort of animals was suffering from a mild lack of appetite that made the administration 

of the jelly difficult. At a molecular level we noticed a consistent reduction in the yield of 

the RNA extraction and protein extraction from a given weight of wet tissue.  

Concluding, data are encouraging. At a behavioral level Pt treatment was effective, as 

previously shown in a few papers.31, 32 Molecular data, taken with the necessary caution, 

are also encouraging. Except for bdnf expression, in the other cases there was a trend of 

increased gene expression in the DG. Statistics can be improved by adding more animals 

to the experimental set and by sharpening the DG dissection.  

Interestingly, a future aspect of this work will be to find an explanation for the restricted 

effects of Pt treatment in the DG. The gene for phosphodiesterase-1b displays an 

enriched expression in the DG.165 Resveratrol inhibits PDE 1, 3 and 4.103 Currently there 

isn’t any evidence that Pt acts primarily by inhibiting PDE, but we have found (chapter 7) 

that its administration leads to an increase in the cAMP levels in cultured cells, and many 

papers report similarities between the activities of Pt and Resveratrol. This suggests that 
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the high expression of pde-1b and the restricted activity of Pt in the DG might be 

correlated. 
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Supplementary Figure 1. Effects of RDM-4’BTPI on intracellular O2-· generation. 

Fluorescence microscopy experiment with MitoSOXTM-loaded CT-26 cells. Representative 

images (λexc: 500-520 nm; λem>570 nm) acquired 1 minute before (A) and 30 minutes after 

(B) addition of 5 µM RDM-4’BTPI. The Regions of Interest (ROI) identified in panels A 

and B are those used to generate the fluorescence plots shown in Fig. 2D. 

 

The MitoSOXTM fluorescence increase was homogenous and took place in all cells, at 

variance with the behavior reported by the Ca2+ probe Fluo-4 (Fig. 2A-C). 
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Supplementary Figure 2. Effect of Resveratrol and known respiratory chain inhibitors on 

respiration fully stimulated by FCCP. Rates of respiration by CT-26 cells were determined 

using a Seahorse XF24. A representative experiment is shown. Compounds were added at 

the indicated concentration to cells previously treated with 0.2µM FCCP. Data were 

normalized to the initial FCCP-elicited OCR for each set of wells and are presented as % 

changes with respect to that level.  
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Supplementary Figure 3. Effects of RDM-4’BTPI on the oxygen consumption rate and 

ROS generation by isolated rat liver mitochondria. A) An exemplary polarographic trace 

illustrating the experimental protocol. In this example 5 mM succinate was the respiratory 

substrate and 2 µM rotenone was present. The bars above the trace indicate what 

segments of the trace itself were used to calculate (by linear interpolation) the slope 

coefficients shown in panels B and C. RLM: 0.5 mg.prot./mL; RDM-4’BTPI: 50 µM; ADP: 

100µM; FCCP: 100nM. See below for other details. B) and C) Plot of the average values 

± s.d. of the relative slope measured in repeat experiments (N = 3) analogous to the one in 

panel A. Blue columns: no RDM-4’BTPI addition. Red or green columns: after RDM-

4’BTPI addition. Slope values are normalized setting the slope of the state 4 (no addition 

except respiratory substrate) segment = 100. D) and E) Effects of RDM-4’BTPI on ROS 

generation by RLM. Flow cytometry experiments with H2DCF-DA -loaded RLM. 

Respiratory substrate was glutamate/malate (5mM and 2.5mM respectively; panels B and 

D) or succinate (5 mM) in the presence of 2µM rotenone (panels C and E). 

 

 

Rate of respiration by isolated RLM. The rate of respiration by RLM was measured in 

polarographic assays using a Clark electrode inserted in a thermostatted (25 °C) and stirred 

enclosed chamber with an airtight injection port. The electrode was controlled by an 

HansaTech CB1D control box and interfaced with a personal computer by a Microlink 751 

digitizer. The standard medium contained 250 mM sucrose, 20 mM 3-[N-

morpholino]butanesulfonic acid (MOPS), 10 mM Tris-Base, 1 mM Pi/K+, 0.5 mM Mg2+, 

pH 7.0. RLM were used at a concentration of 0.5 mg prot./mL. The relative rate of oxygen 

consumption under the various conditions was obtained as the slope of the interpolation 

(best linear fit) of the relevant segment of the polarograph output (dimensions: mV/min) 

divided by the slope of the best linear fit of the output in the presence of mitochondria and 

respiratory substrate only. 

Flow cytometry with RLM.  ROS generation in isolated RLM was measured in flow 

cytometry experiments using the fluorescent probe dichlorofluorescein (DCF), as described 

in [38]. Briefly, RLM were resuspended in the assay buffer (250 mM sucrose, 20 mM 3-

[N-morpholino]butanesulfonic acid (MOPS), 10 mM Tris-Base, 1 mM Pi/K+, 0.5 mM 

Mg2+, pH 7.0) at a concentration of 0.5 mg prot./mL, and loaded with 2’,7’-

dichlorodihydrofluorescein-diacetate (H2DCF-DA, 10 µM) in the presence of Cyclosporin 

A (CsA; 1 µM) (25°C, 10 min). 5 mM glutamate plus 2.5 mM malate or 5 mM succinate 
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plus 2 µM rotenone were added to allow respiration via complex I or complex II, 

respectively. After loading, RLM were divided into identical aliquots. At time zero the 

various compounds were added and data were collected after the desired incubation times 

(50,000 counts for each measurement). A Beckton Dickinson Canto II flow cytometer was 

used. Excitation was at 488 nm and fluorescence was collected in the 506-540 nm interval. 

To exclude debris and aggregates, samples were gated based on light-scattering properties 

in the side scatter and forward scatter modes, as determined in preliminary experiments 

with RLM stained with NAO or TMRM. Data were analyzed using the BD VISTA 

software. Averages ± s.d. of the medians of RLM fluorescence distribution histograms are 

plotted, normalized to the value measured immediately after addition of the compounds 

(time = 0). 
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Supplementary Figure 4. The decline of “recovered” respiration at high concentrations of 

oligomycin is not significantly affected by permeant Catalase (PEG-CAT) at 

concentrations (500 U/ml) shown to strongly reduce cell death (Sassi N., et al. Curr Pharm 

Des 2014). The plots show rates of respiration by CT-26 cells as determined using 

Seahorse XF24. Representative experiments are shown. 5 µM (final concentration) of the 

indicated derivative was added to cells after inhibition of ATP synthase activity with 

oligomycin 1 µg/mL (OL 1) or 10 µg/mL (OL 10).  
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Supplementary Figure 5. Impact of CsA on cytotoxicity induced by mitochondriotropic 

resveratrol derivatives. MTT assay readout. CT-26 cells were grown for 3 days in the 

presence of the specified compounds. Experiments were performed as described below. 

 

Cell growth/viability (MTT) assays. CT-26 cells were seeded in standard 96-well plates 

and allowed to grow overnight in DMEM + 10% FBS (200 µL) to insure their attachment. 

Initial density was 3000 cells/well. After cell attachment, the growth medium was replaced 

with DMEM + 10% FBS containing the desired compounds. Final DMSO concentration 

was 0.1% in all cases (including controls). Cells were incubated with the compounds for 72 

h; every 24 h the medium was substituted by a fresh aliquot (with compounds). At the end 

of the incubation period the medium was removed and 100 µL of PBS containing 10% 

CellTiter 96® AQUEOUS One solution (Promega) were added into each well. After 1 h of 

color development at 37°C, absorbance at 490 nm was measured using a Packard Spectra 

Count 96-well plate reader. All measurements were performed in quadruplicate in each 

experiment. 
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Supplementary Figure 6. Effects of acetylated and methylated resveratrol derivatives on 

the extracellular acidification rate (ECAR). ECAR was determined using Seahorse XF24. 

Representative experiments are shown. 5 µM R-BTPIs (A), RDA-BTPIs (B) or RDM-BTPIs 

(C) were added to CT-26 cells when indicated. 
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Abbreviations: 

AC: adenylate cyclase 

ACN: acetonitrile (CH3CN) 

AMP: 5'-adenosine monophosphate 

AMPK: 5'-adenosine monophosphate (AMP)-activated protein kinase 

AOM: azoxymethane 

ARE: antioxidant response element 

AUC: area under the curve 

BDNF: brain-derived neurotrophic factor 

BSA: bovine serum albumin 

cAMP: cyclic AMP 

CBP: CREB binding protein (also called CREBBP) 

CREB: cAMP response element-binding protein 

Cmax: maximal concentration 

COX: cyclooxygenase 

D-PBS: Dulbecco’s phosphate buffered saline 

DG: dentate gyrus 

DHP-C: dihydroxypropyl carbamate 

DI: discrimination index 

DMAP: 4-(dimethylamino)pyridine 

DMSO: dimethyl sulfoxide  

DSS: sodium dextran sulfate 

EDTA: ethylenediaminetetraacetic acid 

ECL: enhanced chemiluminescence 

EGCG: epigallocatechin gallate 

EPAC: exchange protein activated by cAMP  

ER-β: estrogen receptor beta 

EtOAc: ethyl acetate 
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EtOH: ethanol 

GCL: glutamate-cysteine ligase 

GSTP1: glutathione sulfotransferase-π  1 

GSTs: glutathione S transferases  

H30-FRET: epac-H30  Fluorescence Resonance Energy Transfer 

HAT: acetyltransferase 

HBSS: Hank’s balanced salt solution 

HIP: hippocampus 

HLP: hypotonic lysis buffer 

HMOX1: heme oxygenase 1 

HP-β-CD: 2-hydroxypropyl-β-cyclodextrin 

HPLC-ESI/MS: high performance liquid chromatography-electrospray ionization/mass 

spectrometry 

HPLC-UV: high performance liquid chromatography-UV 

HRP: horseradish peroxidase 

IBMX: 3-isobutyl-1-methylxanthine 

IkB: inhibitor of kappa B 

IKK: IκB kinase 

LAT: L-type aminoacids transporter 

LOD: limit of detection 

LOQ: limit of quantification 

MAPK: mitogen-activated protein kinases 

MTA1: metastasis associated protein 1 

mTORC1: mammalian target of rapamycin complex 1 

NADP: nicotinamide adenine dinucleotide phosphate 

NF-kB: nuclear factor kappaB 

NLB: nuclear lysis buffer 

NMR: nuclear magnetic resonance 
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NQO2: dihydronicotinamide riboside quinone reductase 2 

Nrf2/Keap1: nuclear factor erythroid 2 [NF-E2]-related factor 2/Kelch-like erythroid cell-derived 

protein with CNC homology [ECH]-associated protein 1 

NuRD: nucleosome remodeling deacetylase complex 

OCT: object in context test 

OEG: oligo ethyleneglycol 

ORT: object recognition test 

Pd/C: palladium/carbon 

PDE: phosphodiesterase  

PFc: prefrontal cortex 

PLCγ: phospholipase C γ 

PI3K: phosphatidylinositol 3-kinase 

PKA: protein kinase A 

PKC: protein kinase C 

PRNLc: perirhinal cortex 

PSD95: postsynaptic density protein 95 (the corresponding gene is named dlg4) 

PPAR: peroxisome proliferator-activated receptor 

Pt: pterostilbene 

Pt-S: pterostilbene 4’-Sulfate 

RIPA: radio immune assay (buffer) 

RbAp48: retinoblastoma associated protein 48 (also called RBBP4, retinoblastoma binding protein 

4, the corresponding gene is named rbbp4) 

REST: RE1-silencing transcription factor (also called neuron-restrictive silencer factor, NRSF) 

ROS: reactive oxygen species 

RT-qPCR: quantitative reverse transcription PCR 

Rv: resveratrol 

Rv-3-sulfate: resveratrol-3-Sulfate 

Rv-3,4’-disulfate: resveratrol-3,4’-diSulfate 

SIRT: sirtuin 
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SOD: superoxide dismutase 

TBS: tris-buffered saline 

TEA: triethylamine 

TFA: trifluoroacetic acid 

TFEB: transcription factor EB 

Tmax: time to maximal concentration 

TrkB: tropomyosin-related kinase receptor B  
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