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Sommario

L’interesse iniziale di questo lavoro era testare l’effetto di un generico trat-
tamento applicato a superfici tridimensionali. L’analisi di superfici tridi-
mensionali presenta diversi problemi di varia natura. Innanzi tutto, ai dati
rilevati sulle superfici per mezzo di scansioni laser non sono direttamente ap-
plicabili test statistici per almeno due motivi: il numero di punti rilevati non
è lo stesso per tutti i soggetti, i punti non sono sincronizzati nel senso che
punti riferiti a soggetti diversi, ma aventi la stessa posizione nella sequenza
digitale, possono essere riferiti ad aree diverse della superficie. Questo prob-
lema è stato risolto utilizzando Funzioni a Base Radiale che forniscono dei
coefficienti a cui è possibile applicare direttamente le procedure statistiche. Il
problema è complicato dal fatto che il trattamento può generare, per alcuni
coefficienti, degli effetti positivi su alcuni soggetti e negativi su altri e inoltre
il numero dei coefficienti fornito dalla rappresentazione è notevolmente supe-
riore al numero delle osservazioni. Per risolvere il primo di questi problemi
è nato il multi-sided test. Il suo sviluppo in ambiente non parametrico ha
contribuito a risolvere il secondo problema. Questo test è applicabile nelle
situazioni in cui l’effetto di un trattamento può essere positivo su alcuni in-
dividui e negativo sugli altri. Tale situazione è sostanzialmente diversa da
quella considerata nei tradizionali test bilaterali nei quali si assume che solo
una delle due alternative può essere attiva, non entrambe. Il test multi-sided
considera attive congiuntamente le due direzioni anche se in soggetti diversi.
Al fine di affrontare questa situazione atipica, si possono applicare prima
due “goodness-of-fit” tests, uno per gli effetti positivi e l’altro per quelli
negativi e procedere poi con la loro combinazione non parametrica per via
permutazione. Nelle situazioni in cui il numero di variabili è maggiore del
numero di osservazioni, come nell’analisi di superfici, è conveniente utilizzare
i test di permutazione poiché la potenza del test globale che si ottiene dalla
combinazione dei test parziali, fatte salve alcune condizioni, aumenta mono-
tonicamente al crescere della noncentralità.
Infine, con opportune tecniche di correzione per la molteplicità è possibile
identificare zone delle superfici maggiormente interessate dal trattamento.
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Abstract

The initial objective of this work was to test the effect of a general treatment
on three-dimensional surfaces. The analysis of three-dimensional surfaces
has several problems of different nature. Firstly ordinary statistical tests are
not directly applicable to collected data on the surface using laser scans for
two reasons: the number of collected points is not the same for all subjects,
moreover the points are not synchronized in the sense that points related to
different subjects, but having the same position in the digital sequence, can
be related to different areas of the surface. This problem has been solved
by using Radial Basis Functions that provide coefficients to which statistical
procedures can be applied directly applied. The problem is complicated by
the fact that the treatment may generate on some coefficients positive effects
on some subjects and negative effects on others and also the number of
coefficients obtained from the representation is far greater than the number
of subjects. The multi-sided test is born to solve the first of these problems.
Its development in nonparametric environment has helped also to solve the
second problem. The use of the multi-sided test has proved to be useful in
many situations, where the effect of a treatment can be positive on some
individuals and negative on the rest. Such a situation is essentially different
from that of the traditional two-sided test, in which the alternative is assumed
being active on only one of two directions, but not on both. The multisided-
test allows the two sides alternative to be jointly active although in different
subjects. In order to face such an atypical situation, one can first apply
two goodness-of-fit tests, one for the positive effects and the other for the
negative, and then to proceed with their nonparametric combination within
a permutation framework. The use of permutation test is also useful in the
context where the number of variables is much larger than the number of
subjects, since it can be proven that, if some conditions are satisfied, the
power function of permutation tests monotonically increases as the related
noncentrality parameter increases. This property also holds for multivariate
situations.
Finally, with appropriate multiplicity control techniques we can identify the
areas of surfaces that are mostly affected by the treatment.
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Chapter 1

Introduction

Why permutation multi-sided test? This type of approach is the solution, or
better a part of the solution to a problem of shape analysis considered from
the functional point of view. The initial goal of the work was the construc-
tion of a procedure to check the regions of discrepancy in three-dimensional
surfaces before and after a general treatment (industrial, surgical, pharmaco-
logical, economic, etc.). The surfaces are represented in digital form using a
laser scanning of the original surface. The problem has proved more complex
than anticipated and equally unexpected was the usefulness of the solution,
or rather, as stated previously, part of the solution represented precisely by
multi-sided test. In the three-dimensional analysis there are two major sta-
tistical problems: the effect of the treatment on a component variable may be
positive on some subjects and negative on others, and the number of variables
(e.g. three times the points considered in the surface) is far greater than the
number of observed units. The multi-sided test is born to solve the first of
these problems. Its development in nonparametric environment has helped
to solve the second problem. The use of the multi-sided test has proved to be
useful in different fields such as clinical trials, the environment, epidemiology,
genetics, pharmacology, etc., where there are situations in which the effect
of a drug treatment can be positive on some individuals and negative on the
rest. Formally this situation can be expressed with a model for responses
where a random effect ∆ in the alternative is such that Pr {∆ < 0} > 0,
Pr {∆ > 0} > 0 and Pr {∆ < 0} + Pr {∆ > 0} = 1. Such a situation is es-
sentially different from that of the traditional two-sided test, in which the
alternative is assumed being active on only one of two directions, but not
on both. We want to consider alternatives in which two sub-alternatives

(∆
d
< 0,∆

d
> 0) can be jointly true. Thus, starting for instance from an

underlying unimodal distribution in H0, the response distribution in the al-
ternative may become bimodal. In order to face such an atypical situation,
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one can first apply two goodness-of-fit tests, one for the positive effects and
the other for the negative, and then to proceed with their nonparametric
combination within a permutation framework. Of course the two partial
tests are not independent, since are calculated on the same dataset and so
some kind of dependence is generally present. This dependence is extremely
difficult to model, to analyze and to take into account explicitly. Thus, it
must be analyzed nonparametrically.
The use of permutation test is useful in the context of shape analysis where
the number of variables is much larger than the number of observed subjects,
since it can be proven that, the power function of permutation tests mono-
tonically increases as the related noncentrality parameter increases. This
property also holds for multivariate situations. In particular, for any added
variable the power does not decreases if each variable makes larger noncen-
trality. For a given and fixed number of observations, when the number of
variables and the associated noncentrality parameter both diverge, then the
power of multivariate permutation tests based on nonparametric combining
functions converges to one (finite-sample-consistency) provided that the test
statistics in the null hypothesis converges to a random variable and in the
alternative the global noncentrality diverges.
A strictly related topic to multivariate analysis is the multiplicity control.
A major drawback of multiple testing is the greatly increased probability of
declaring “false significances”, or statistically significant associations where
none exists in reality. A related negative feature is that it is very easy to
overstate the evidence for a particular association if the statistical test that
best supports a given hypothesis is chosen. One solution for solving the mul-
tiplicity dilemma is to make the individual tests more conservative, or more
difficult to arrive at rejecting partial null hypotheses H0i. In this dissertation
we propose a permutation-based test procedure controlling the family wise
error rate (FWE) by Weighted Step-Down Holm methods (WSDH)
Finally, our approach to shape analysis that makes use of the three topics
mentioned above with the representation of surfaces by a particular kind of
three-dimensional splines is presented.

1.1 Main Contributions of the Thesis

An overview of the original results obtained during the Ph.D. thesis devel-
opment and presented in the thesis is given below.

• The multisided-test is a method that checks the presence of an effect
in a random effect model. Traditional two-sided tests require that the
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alternatives

{
∆

d

6= 0

}
is either (∆

d
> 0) or (∆

d
< 0), but not both. So in

the presence of random effects, this kind of alternatives and related tests
are not appropriate because both alternatives can be active. Instead we
need testing for alternatives such that Pr {∆ < 0} > 0, Pr {∆ > 0} > 0
and Pr {∆ < 0} + Pr {∆ > 0} = 1 so both sides can be jointly active
although on different subjects. More generally we present a procedure
that performs a goodness-of-fit test H0 : {F1 = F2} in which in the
alternative hypothesis both stochastic dominance (F1 ≤ F2) and (F1 ≥
F2) can jointly hold in separate sets of units.

• Working with high dimensional data and low sample size a quite impor-
tant problem usually occurs. In (Pesarin, 2001) it is shown that, under
very mild conditions, the power function of permutation tests monoton-
ically increases as the related noncentrality parameter increases. This
is true also for multivariate situations. Specifically, we will see that,
for a given and fixed number of subjects, when the number of variables
and associated noncentrality parameter δ both diverge, then the power
function of multivariate NPC test converges to one if some conditions
are satisfied. Such a property looks very relevant to solve multivari-
ate small sample problems since it ensures that it is possible to obtain
powerful tests in a nonparametric framework by increasing the number
of informative variables while the number of cases is held fixed. An
exhaustive simulation study is also presented.

• We extend the Weighted Step-Down Holm method with data-driven
weights to the permutation framework and in heteroscedastic situa-
tions provided that the chosen weights are permutation invariant. The
simulation study shows that even with heteroscedastic variables, if the
non-centrality parameters are in terms of signal to noise ratio, the sam-
ple variance is still an acceptable permutation invariant indicator for
the construction of the weights.

• We propose a procedure for representing three-dimensional surfaces
using Radial Basis Functions. We use this kind of representation since
in this way we can minimize the penalized residual sum of square, an
index useful for statistical representation of smoothed surfaces. With
this type of representation the application of permutation tests with
the above developments becomes particularly easy.
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Chapter 2

Multi-sided permutation tests

2.1 Introduction

In fields such as chemical trials, the environment, epidemiology, genetics,
pharmacological, etc., situations in which the effect of a drug treatment can
be positive on some individuals and negative on the rest may often occur.
Formally this situation can be expressed using a model for the responses
where a random effect ∆ in the alternative is such that Pr {∆ < 0} > 0,
Pr {∆ > 0} > 0 and Pr {∆ < 0} + Pr {∆ > 0} = 1. Such a situation is es-
sentially different from that of the traditional two-sided test, in which the
alternative is assumed to be active on one of two directions, but not on

both. We wish to consider alternatives in which two sub-alternatives (∆
d
< 0)

and(∆
d
> 0), where

d
< and

d
> stand for dominance in distribution (i.e. stochas-

tic dominance), can be jointly true. Thus, for instance from an underlying
unimodal distribution in H0, the response distribution in the alternative may
become bimodal. In order to deal with such an atypical situation, we can
firstly apply two goodness of fit tests, one for the positive effects and the other
for negative effects, and then proceed with their nonparametric combination
within a permutation framework. Firstly we introduce models with random
effects and highlight the problems associated with estimates of parameters
within the traditional framework and then we propose a methodology for the
nonparametric testing of hypotheses on the random effects.
As every experimentalist knows, subject responses vary from trial to trial.
Furthermore, responses vary from subject to subject. These two sources of
variability, within-subject and between-subjects, must both be taken into ac-
count when making inferences on the population. If we consider the effects
∆ as random, after being observed the permutation analysis treats them in
the same way as fixed effects conditionally to subject, but random between-
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subjects. This allows us to make inferences on population.
Underlying any analysis is a probability model defined as follows: let δ be
the mean effect in the population (i.e. averaged across subjects) and σ2

b the
variability of this effect between subjects. This process reflects the fact that
we are drawing subjects at random from a large population. We take the
within-subject variability into account by modelling the h-th observation in
subject i as being drawn from a distribution Fw with mean ∆i and variance
σ2
w. Given a data set of observations from n subjects with v replications

of observations per subject, the population effect is modelled by a two-level
process

yhi = ∆i + ehi (2.1)

∆i = δ + zi (2.2)

where ehi is a random variable with distribution Fw, mean 0 and variance
σ2
w, zi is a random variable with distribution Fb, mean 0 and variance σ2

b , for
i = 1 . . . n and h = 1 . . . v. The first equation captures the within-subject
variability and the second the between-subject variability. Note that the
within-subject variability σ2

w is assumed to be the same for all subjects. This
assumption is not always reasonable. Nevertheless, it is usually adopted
because no results are available under more complicated models (Scheffé,
1959). Within the parametric normal approach it is also assumed that the
errors {ehi} and {zi} are independent and both distributions Fw and Fb
are Normal. This two-stage process is shown graphically in Figure 2.1. The
dotted line is the Normal distribution with mean δ = 50 and variance σ2

b = 10
from which the ∆i are observed; the solid lines are the Normal distributions
with mean ∆i and variance σ2

w = 3 from which the yhi are observed; and the
crosses represent the observed data yhi. Collapsing the two levels into one
gives

yhi = δ + zi + ehi (2.3)

Considering equations (2.1), (2.2) and (2.3), and the above assumptions of
independence and normality of errors we can write the conditional and un-
conditional distributions of the yhi observations

Yhi|Zi = N(∆i, σ
2
w)

Yhi = N(δ, σ2
w + σ2

b ).

Two observations yhi and yh′i (h′ 6= h) are not statistically independent
(the so-called within-subject dependence). The statistical dependence in the
above random-effects model is formulated in a concept, useful in applications,
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Figure 2.1: The two-stages generating process of the observed yhi

called the interclass correlation coefficient defined as the ordinary correlation
coefficient between observations in the same class (i.e. with the same i)

ρ̃ = E [(yhi − δ)(yh′i − δ)] /σ2
y

= E [(zi + ehi)(zi + eh′i)] /σ
2
y

= E(z2
i )/σ

2
y ;

hence

ρ̃ =
σ2
b

σ2
b + σ2

w

If the number of {vi} are subject-invariant, i.e. are equal for ∀i = 1 . . . n,
the two-way layout is said to be balanced. When the {vi} are not equal, the
model is said to be unbalanced. In the unbalanced framework with random
effects the “best” tests and estimates are not known. The basic problem is
that the distribution theory is much more complicated. The assumptions
made thus far can be summarized as follows:

• (A.1) yhi = δ + zi + ehi;

• (A.2) the n+ nv random variables {ehi} and {zi} are independent;

• (A.3) the {ehi} are N(0, σ2
w)

• (A.4) the {zi} are N(0, σ2
b ).
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2.2 The problem of negative estimates of

variance components

Let ȳ.. be the overall mean of the observations and ȳ.i be the mean of the
observations made on the i-th subject. For model (2.3) we can define the
following sums of squares

SSb = v
n∑
i=1

(ȳ.i − ȳ..)2

SSw =
n∑
i=1

v∑
h=1

(yhi − ȳ.i)2,

Under model (2.3)

ȳ.i = δ + zi + ē.i

ȳ.. = δ + z̄ + ē..

where ē.i, ē.. and z̄ are respectively the mean error of the observations of
subject i, the global mean error of all observations, and the mean error of
the effect.
In order to obtain a distribution theory on which to base classical statistical
analysis, we now add the normality assumption to the errors. Writing gi =
zi + ē.i we have

SSa = v
n∑
i=1

(gi − ḡ.)2

and the random variables {gi} are independently N(0, σ2
g) distributed, where

σ2
g = σ2

b + v−1σ2
b . Therefore in the null hypothesis

∑
i(gi − ḡ.)2/σ2

g behaves
as a central Chi-square variable with n− 1 degrees of freedom, and hence

SSb = vσ2
gχ

2
n−1.

In the same way, from assumption (A.3) we can derive the distribution of
SSw, which is σ2

wχ
2
n(v−1). Therefore, we have the following expectations of

the sample mean squares:

E

[
SSb
n− 1

]
= vσ2

b + σ2
w

E

[
SSw

n(v − 1)

]
= σ2

w.
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We replace σ2
b and σ2

w in the above equations with observed values σ̂2
b and

σ̂2
w, equate the resulting expression to SSb/(n − 1) and SSw/n(v − 1), and

solve for σ̂2
b and σ̂2

w to get

σ̂2
b = v−1

(
SSb
n− 1

− SSw
n(v − 1)

)
σ̂2
w =

SSw
n(v − 1)

.

Clearly the traditional estimate of σ2
b can sometimes be negative. Should this

occur, we do not believe that any such statistical analysis would be useful
until a decision is made as to what to do with the negative estimate. This
is an example of what is known in the literature as “the problem of neg-
ative estimates of variance components” (Nelder, 1954; Thompson, 1962).
Two possible explanations for a negative estimate present themselves: (1)
the assumed model may be incorrect and (2) noise may have obscured the
underlying physical situation. The literature generally treats test on vari-
ance, neglecting those on the model’s random effect. The problem is clearly
present, for example, in epidemiology (Davies et al., 1994; Khoury et al.,
1988) but we have not found acceptable inferential solutions in the litera-
ture. This dissertation proposes a test designed for testing the presence or
absence of this random effect in a nonparametric permutation way, so as to
avoid the problem of estimating the variance components.

2.3 Multi-sided permutation test

2.3.1 Introduction

Our interest is focused on the analysis of the random effect ∆. By working in
a nonparametric permutation framework the problem related to estimating
the variance σ2

b becomes irrelevant, because no “standardization” is required
to derive the reference null distribution when testing for main effects. The
assumption of normality for errors zi in models (2.1) and (2.2) implies they
can assume both negative and positive values. This possible alternation of
values, which occurs with distributions whose support is R, implies that some
individuals may have positive effects and others negative. If we wish to test
the presence or absence of two kinds of effects it seems natural to use a test
in which the null hypothesis and the alternative are

H0 :
{

∆
d
= 0
}

H1 :

{
∆

d

6= 0

}
.
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Traditional two-sided test requires that the alternative (∆
d

6= 0) is either

(∆
d
> 0) or (∆

d
< 0), but not both. So in the presence of random effects,

this kind of alternative and related test are not appropriate. Instead we
need testing for alternatives such that Pr {∆ < 0} > 0, Pr {∆ > 0} > 0 and
Pr {∆ < 0}+Pr {∆ > 0} = 1 so both sides can be active although in different
subjects. More generally, by expressing relationships in terms of cumulative
distribution functions (c.d.f.s), we want to perform a goodness-of-fit test

H0 : {F1 = F2}

in which, in the alternative hypothesis, both stochastic dominance (F1 ≤ F2)
and (F1 ≥ F2) can jointly hold on separate sets of subjects. We call this kind
of test multi-sided test and denote the alternative hypothesis with

H1M : {F1 6= F2} = {[F1 ≤ F2] ∪ [F1 ≥ F2]} ,

where the union symbol ∪ means that one or both of two events can be
satisfied. In Figure 2.2 the traditional two-sided alternative hypothesis is
represented. The solid lines are the alternatives (F1 ≤ F2) and (F1 ≥ F2), of
which only one is active. In Figure 2.3 the multi-sided H1M hypothesis is rep-
resented, where in the alternative (solid line) both (F1 ≤ F2) and (F1 ≥ F2)
are jointly active.
Within the traditional statistical methodology it is difficult to test this type

Figure 2.2: H1 hypothesis Figure 2.3: H1M hypothesis

of hypothesis. However, it can easily be tested within the nonparametric
combination of dependent permutation tests (NPC) framework.
Testing analysis by NPC methods requires that a problem can be broken
down into a set of simpler sub-problems, for each of which a partial permu-
tation test is available, and that these partial tests can be jointly processed.
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Therefore, two different tests are to be applied to the same data. Of course,
each partial test shall be appropriate for one kind of deviation from H0.
Moreover, two partial test statistics are not independent, since they are cal-
culated on the same data set and so some kind of dependence is generally
present. This dependence is extremely difficult to model, analyze and take
into account explicitly. In the context of the NPC approach, it is particu-
larly worth noting that researchers are not required to model an estimate
dependence coefficients among variables and or partial tests because, due to
conditioning on a set of sufficient statistics for F , NPC methods are also
nonparametric with respect to these underling coefficients (Pesarin, 2001).
Permutation methods are known to be conditional inferential procedures in
which conditioning is made on a set of sufficient statistics in the null hypoth-
esis for the underling and usually unknown population distribution F . In
the next section we will discuss about the set of sufficient statistics and the
concept of exchangeability.

2.3.2 Sufficient statistics, exchangeability and similar-
ity

For all problems of practical interest (since not any sequence of numbers is a
sample useful for statistical analyses!) the set of sufficient statistics in the null
hypothesis is the observed data set for whatever underlying distribution. Let
P be the underlying probability measure for the problem, fP (x) the corre-
sponding density with respect to a suitable dominating measure µ of the sam-
pling variable X which takes values on a sample space X , and x ∈ X a realiza-
tion of X, i.e. the observed data set. By sufficiency, given a sample point x, if
x∗ ∈ X and x 6= x∗ is such that the likelihood ratio fP (x)/fP (x∗) = ρ(x,x∗)
is not dependent on fP for whatever P ∈ P , where P is a nonparametric
family of non-degenerate distributions, then x and x∗ are said to contain the
same amount of information with respect to P . So that they are equivalent
for inferential purposes. The set of point which are equivalent to x, with
respect to contained information, is called the orbit associated with x and is
denoted by X/x so that X/x = {x∗ : ρ(x,x∗) isfP − independent}. The same
conclusion is obtained if fP (x) is assumed to be invariant with respect to per-
mutations of the arguments of x, i.e. the elements (x1, . . . , xn). This happens
when the assumption of independence for observable data is replaced by that
of exchangeability:

fP (x1, . . . , xn) = fP (xu∗1 , . . . , xu∗n)

where (u∗1, . . . , u
∗
n) is any permutation of (1, . . . , n). In the context of per-

mutation tests, this concept of exchangeability is often referred to as the
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exchangeability of the observed data with respect to groups if H0 is true.
Orbits X/x are also called permutation sample spaces. It is important to
note that orbits X/x associated with a data set x ∈ X always contain a finite
number of points, as sample size is finite.
Permutation tests are conditional statistical procedures, where conditioning
is with respect to the orbit X/x associated with the observed data set x. In
this way, in the null hypothesis and assuming exchangeability, the conditional
probability distribution of a generic point x′ ∈ X/x, for whatever underlying
population distribution P ∈ P , is

Pr
{
x∗ = x′|X/x

}
=

∑
x∗=x′ fP (x∗) · dµ∑
x∗∈X/x fP (x∗) · dµ

=
#
[
x∗ = x′,x∗ ∈ X/x

]
#
[
x∗ ∈ X/x

] ,

which is P -independent. Of course, if there is only one point in X/x whose
coordinates coincide with those of x′, i.e. if there are no ties in the data set,
this conditional probability becomes 1/n!. Thus, Pr

{
x∗ = x′|X/x

}
is uni-

form on X/x for all P ∈ P . These statements allow permutation inferences
to be invariant with respect to P in H0. Due to this invariance property, per-
mutation tests are distribution-free and nonparametric. Another important
property due to invariance is that the permutation tests enjoy the strong
similarity property (Lehmann, 1986) in the sense that, for all distribution
P ∈ P , the conditional α-size of the tests are X-invariant. This property
means that if data come from continuous distributions, so that the probabil-
ity of finding ties in the data set is zero, the rejection probability in H0 is
invariant with respect to observed data set x, for almost all x ∈ X . Thus,
conditional rejection regions are similar to the unconditional regions. When
data come from non-continuous distributions, the similarity property is only
asymptotically valid. Formally, let Tα be the permutation critical α-value
associated to statistic T and data X. Since Tα depends on X/x, the proba-
bility of finding a sample point X∗ ∈ X/x such that T (X∗) ≥ Tα is precisely
the attainable α-size

Pr
{
X∗ ∈ X/X : T (X∗) ≥ Tα

}
= α

= EX/X
[
I {λ(X∗) ≤ α|X}

]
if and only if H0 is true whatever the data set X ∈ X , where I {A} is the
indicator function, i.e. I {A} = 1 if A is true, 0 otherwise, and λ(X) is the
attainable p-value. Moreover, due to invariance property and noting that the
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relationships (T ≥ Tα) ⇔ (λ ≤ α) is true by definition, if and only if H0 is
true we have

Pr {T (X) ≥ Tα(X)|H0} = EX\X/X
{
EX/X

[
I {λ(X∗) ≤ α|X, H0}

]}
= EX

[
I {λ(X∗) ≤ α|H0}

]
=

∫
X

I {λ(X∗) ≤ α} fP (X)dν(X) = α

where X\X/X represents the partition set induced on the sample space X
by conditioning with respect to the sample point X, so that if X and X′

are two distinct points of X\X/X, then X/X and X/X′ are distinct, i.e. the
intersection of the two orbits X/X and X/X′ is empty. In the last equality
the cardinality of X/X is considered to be X-invariant. The unconditional
statement suggests that, for a permutation test with data from continuous
variables, the attainable α-size is similar for any underlying distribution P ∈
P provided that, in H0, the exchangeability of error components is satisfied.

2.3.3 The statistics

To test the two sub-hypotheses we use the Anderson-Darling type test statis-
tics. To this end let us use X∗ to denote a random permutation of pooled
data set X. This is obtained as X∗ = {X(u∗i ), i = 1, . . . , n;n1, n2}, where
(u∗1, . . . , u

∗
n) is a permutation of (1, . . . , n). Two partial tests are

T ∗1 =
n∑
i=1

S
{
F ∗1 (Xi)− F ∗2 (Xi)

}(
F̂ (Xi)

[
1− F̂ (Xi)

])−1/2

(2.4)

to test the sub-hypothesis H11 : {F1 ≥ F2} and

T ∗2 =
n∑
i=1

S
{
F ∗2 (Xi)− F ∗1 (Xi)

}(
F̂ (Xi)

[
1− F̂ (Xi)

])−1/2

(2.5)

to test the sub-hypothesis H12 : {F1 ≤ F2} where

S {ω} =

{
ω if ω > 0
0 if ω ≤ 0,

and F ∗j (t), j = 1, 2, are the normalized empirical distribution functions on
permuted samples (Brunner et al., 1995; Ruymgaart, 1980) given by

F ∗j (t) =
[
#(X∗ji < t) +

1

2
#(X∗ji = t)

]
/nj
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and F̂ (t) = [n1F1(t) + n2F2(t)] /n. We use the normalized empirical distri-
bution functions because they are especially useful for discrete cases. In the

set of units in which the sub-alternative ∆
d
< 0 is active, where F̂1(t) ≥ F̂2(t),

T1 is unbiased and consistent. Correspondingly, T2 is unbiased and consis-

tent for the sub-alternative ∆
d
> 0. In the following section we demonstrate

the unbiasedness of tests T1 and T2 and in Section 2.3.6 we will see how to
combine the two partial tests in order to obtain a global test.

2.3.4 Exactness and Unbiasedness

As regards the exactness property of two separate tests, let us argue on T ∗1
and extend the same conclusions to T ∗2 . To this end let us observe that: a)
a permutation test is called exact if its null distribution depends only on
exchangeable random errors; b) exactness is intended with respect to attain-
able α-values; c) the number of positive summands in one permutation of
T ∗1 , i.e. ν∗ =

∑
i I[S(F ∗1 − F ∗2 ) > 0], is not invariant over the permutation

sample space X/X; d) then also the conditional p-value Pr{T ∗1 ≥ T o1 |X,ν∗},
where it is emphasized that the latter depends on the subset of permu-
tations sharing the same number of summands ν∗, is not invariant over
X/X as well; e) as a consequence the related attainable p-value becomes
λ(X) =

∑
ν∗ Pr{T ∗1 ≥ T o1 |X,ν∗}Pr(ν∗|X), which then is a mixture of non-

invariant permutation quantities.
This implies that attainable α-values Λ(X) are not X-invariant quantities
even when the observed variable is continuous or there are no ties in X. Thus,
test T ∗1 , which in the null hypothesis depends only on exchangeable random
errors, is an exact test at its attainable α-values, which in turn depend on
X. And so T ∗j ,j = 1, 2, satisfy the similarity property only asymptotically.
Of course, due to this, in a simulation study we cannot expect to exactly
obtain the “desired nominal” α-values in the null hypothesis. In this respect,
reported simulations in section 2.4 show that T ∗j , j = 1, 2, behave as if they
were approximate. Their apparent approximations are mostly due to the
non-invariant property on X of attainable α-values Λ(X). From simulation
results reported below this approximation appears to be quite accurate even
for small sample sizes and unbalanced situations. This may be due to the fact
that, as is well known, the null distribution of Anderson–Darling statistic is
practically invariant over sample sizes ν∗, so that Λ(X) for fixed sample sizes
is an ”almost” X-invariant set, i.e. T ∗j , j = 1, 2, are almost similar.

To show the unbiasedness of multi-sided test we assume the exchange-
ability of errors in H0. We employ the pointwise representation of ele-
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ments of sample space X in H0 and H1. To this end, for any given set
of units we consider the associated sample points in X are denoted by X(0)
in H0 and by X(∆) in H1, where X(0) = X1(0) ] X2(0) and X(∆) =(
X1(0) + ∆1

)
]
(
X2(0) + ∆2

)
, in which

∆ = ∆1 ]∆2 = {∆1i ∼ F∆, i = 1, . . . , n1} ]
{

∆2i
d
= 0, i = 1, . . . , n2

}
represent the pooled vector of stochastic effects ∆ji with known or unknown
c.d.f. F∆. First we show the unbiasedness of test T1, so we consider only the
negative part of effect ∆:

∆−1i =

{
∆1i if ∆1i

d
< 0

0 if ∆1i

d
> 0,

the proof for T2 is similar. In this context, the observed value of T1 in H1 is

T 0
1 (∆) =

n∑
i=1

S
{
F1

(
Xi(0) + ∆−1i

)
− F2

(
Xi(0) + ∆−2i

)}
(
F̂
(
Xi(∆

−
i )
) [

1− F̂
(
Xi(∆

−
i )
)]1/2

To study the unbiasedness we analyze only the numerator of the statistic
as the denominator is permutationally invariant. As ∆−1i decreases, some
more summands in the sum become positive and the value of the positive
summands do not decreases. So T 0

1 (∆) = T 0
1 (0)+τ where τ is a non-negative

quantity. In order to compare the permutation structures of T1 in H0 and in
H1, we consider one generic permutation (u∗1, . . . , u

∗
n) of unit labels (1, . . . , n).

Therefore, the associated values of T ∗1 are T ∗1 (0) and T ∗1 (∆) = T ∗1 (0) + τ ∗,
where τ ∗ is still non-negative since the element u∗i in the sum of equation
(2.4) give the same influence to T1 as before. τ ∗ is much greater when more
units with negative effect are assigned on the first sample from the random
permutation. Clearly τ ∗ can not be larger than τ since all the units under
H1 are in the sample 1 of the observed data. For any generic permutation
we have

Pr
{
T ∗1 (∆) ≥ T 0

1 (∆)|X(∆)
}

= Pr
{
T ∗1 (0) + τ ∗ ≥ T 0

1 (0) + τ |X(0)
}

= Pr
{
T ∗1 (0) + τ ∗ − τ ≥ T 0

1 (0)|X(0)
}

≤ Pr
{
T ∗1 (0) ≥ T 0

1 (0)|X(0)
}

where the weak inequality holds since τ ∗ = τ only for the observed sample
and τ ∗ < τ for all other permutations. This give rise to a pointwise domi-
nance of T ∗1 (∆) with respect to T ∗1 (0) and proves the conditional unbiasedness
of T1 for all data sets X. The unconditional unbiasedness for all sampling
experiments and all underlying population distributions P is obtained by the
similarity property. Similar results hold for T2.
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2.3.5 Consistency

The proof of consistency is easy considering the finite sample consistency
properties of permutation tests, so we postpone the proof to the next chapter.

2.3.6 Combination of partial tests

In order to obtain an overall solution, one way is to properly combine the
two partial tests T1 and T2. Of course, these partial tests and associated
p-values are dependent in a way that in general is extremely difficult to take
into account explicitly. Consequently, when considering their combination,
we take account of such underlying dependence relations nonparametrically;
hence we must work within the NPC approach. Therefore, to test H0 against
H1M we need to combine the p-values λ1 and λ1 of the two partial tests by a
non degenerate and measurable combining function ψ : [0, 1]2 → R. Of many
functions, those which are appropriate for combination testing must at least
satisfy the following mild properties:

1. every combining function ψ must be non increasing in each argument:

ψ(λ1, λ2) ≥ ψ(λ1, λ
′
2)

ψ(λ1, λ2) ≥ ψ(λ′1, λ2)

if at least one λj < λ′j, j = 1, 2;

2. every ψ must attain its supremum value ψ̃, possibly non finite, when
even one argument attains zero: ψ(λ1, λ2)→ ψ̃ if λj → 0, j ∈ (1, 2);

3. ∀α > 0, the critical value of every ψ is assumed to be finite and strictly
smaller than the supremum value: ψα < ψ̃.

Properties 1, 2 and 3, are generally easy to check and justify. In (Pesarin,
2001) it is proved that: (i) if the partial permutation tests are exact, then
the combined test Tψ = ψ(λ1, λ2) is exact; (ii) if all partial permutation tests
are marginally (i.e. separately) unbiased, then Tψ is unbiased; (iii) if both
partial tests are marginally unbiased and at least one is consistent, then Tψ
is consistent. Of the many combining functions ψ that satisfy properties 1,
2 and 3 those mostly often used are :

• Fisher: TF = −2
∑

j log(λj);

• Liptak: TT =
∑

j Φ−1(1− λj);
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• Tippet: TL = maxj(1− λj);

where Φ is the standard normal cumulative distribution function. In the
framework of permutation tests we do not require the assumptions (A.1)-
(A.4) in section 2.1. All that is required is that data are exchangeable be-
tween groups in H0.

2.4 Simulation study

In our simulation study we consider a simplified version of models (2.1) and
(2.2). We consider a univariate model. In the first step we consider the model

yi = µ+ ∆i + ei

∆i = δηi,

where ηi is a random variable that assumes the value -1 and 1, each with
probability 1/2, and δ is a fixed effect. We generate a first sample for any
δ ∈ {0.1, 0.2, 0.5, 1, 2} and a second sample with δ = 0. Of course, as both
test statistics are invariant on the nuisance population quantity µ, on all
simulations we set µ = 0. Different distributions are chosen for random
errors ei. The chosen distributions are: Normal (0,1), Chi square with 3
degrees of freedom, Student’s t with one degree of freedom, Exponential(1),
the Skew normal (Azzalini, 1999) with location parameter 0, scale parameter
1 and shape parameter equal to 5, and a mixture of Binomial distributions.
We consider the sample sizes n = 5, 10, 15 and all possible combinations of n
for each of the two samples. Hence we also considered unbalanced samples.
We replicated the study with 1000 Monte Carlo simulations and considered
1000 samples from the permutation sample space. In some cases, when the
permutation sample space was less than 1000 points, for example when the
sample size was n1 = n2 = 5, we performed the exact test. We calculated
the power of the test for α = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.7, 0.8. For each
of the 1000 Monte Carlo Simulation tests (2.4) and (2.5) were performed
and the two p-values were combined with the three functions, Fisher, Liptak
and Tippet, to obtain three global tests. Figure 2.4 reports the power of
the partial and the global tests obtained using Fisher’s combining function,
with n1 = n2 = 10 and δ = 1 for different values of α, and normal errors.
Figures 2.5 and 2.6, are as above but using the Liptak and Tippet combining
function respectively. Figure 2.7 reports the three tests in terms of δ. Very
similar results are obtained with the other considered distributions. In the
simulation’s second step, we considered a univariate version of models (2.1)
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Figure 2.4: Fisher’s combining
function

Figure 2.5: Liptak’s combining
function

Figure 2.6: Tippet’s combining
function

Figure 2.7: The three global tests

and (2.2)

yi = ∆i + ei (2.6)

∆i = ziηi, (2.7)

where ei has the same meaning as before and zi ∼ U(0, δ) so that ∆ ∼
U(−δ, δ). In this model, effect ∆i is random in the absolute value and also in
the sign. In this simulation δ = 10. Figure 2.8 reports the plot of the power
of T1, T2, and the global test obtained with Fisher’s combining function,
ei = βY1 + (1− β)Y2, where β = 0.25, Y1 ∼ Bin(5, 0.5), and Y2 ∼ Bin(3, 0.2).
Tables 2.1-2.12 show the estimated power of the partial and global tests for
the various values of α, with different distributions of errors. We can see
that the power of the test increases with the size-effect even if the effect has
a random sign. This happens for both partial tests and for the global.
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Figure 2.8: Testing H0 against H1M with zi ∼ U(0, δ)

2.5 Multivariate extension of the test

In our simulations we considered only the univariate version of models (2.1)
and (2.2). The extension to multi-sample and multivariate versions is quite
easy in the framework of multivariate permutation tests and NPC of depen-
dent partial tests. For instance, in the two-sample multivariate case, we can
break down the global, multivariate hypothesis about the presence of random
effects

H0 : {F1(X) = F2(X),X ∈ Rv}

into v sub hypotheses

H0 :
[
{F1(X1) = F2(X1)} . . . ∩ . . . {F1(Xv) = F2(Xv)}

]
= ∩vh=1H0h

where Xh ∈ R, h = 1, . . . , v, considering for each sub-hypothesis H0h the
alternative H1Mh, thus computing v (global)partial tests as before, and pro-
ceeding, with their nonparametric combination in a third step.

2.6 Conclusions

The test proposed offers the opportunity to test the presence of random
effects due, for example, to medical treatments, industrial process, particular
economic policy etc. The usual two-sided tests in the presence of perfectly
balanced random effects would give zero power so they would not provide
acceptable results. Application of the multi-sided test in the nonparametric
framework is easy as it is a particular form of multi-aspect testing (Salmaso,
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2005). Once the global null hypothesis is rejected, it is straightforward to
proceed with correction for multiplicity to check which of the two, if not
both, tails is actually active.
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α Type δ = 0 δ = 0.1 δ = 0.5 δ = 1 δ = 2 zi ∼ U(0, δ)
0.01 T1 0.004 0.011 0.022 0.060 0.170 0.178

T2 0.007 0.014 0.011 0.006 0.004 0.014
TF 0.005 0.009 0.013 0.038 0.138 0.161
TL 0.009 0.003 0.011 0.011 0.096 0.278
TT 0.005 0.009 0.013 0.038 0.138 0.162

0.05 T1 0.042 0.053 0.080 0.147 0.300 0.340
T2 0.047 0.041 0.056 0.052 0.082 0.120
TF 0.038 0.041 0.066 0.114 0.237 0.262
TL 0.045 0.038 0.053 0.061 0.338 0.560
TT 0.040 0.042 0.064 0.121 0.227 0.216

0.10 T1 0.091 0.123 0.142 0.249 0.366 0.391
T2 0.090 0.083 0.096 0.098 0.144 0.170
TF 0.089 0.093 0.131 0.200 0.409 0.504
TL 0.080 0.088 0.103 0.117 0.447 0.657
TT 0.089 0.094 0.136 0.199 0.382 0.460

0.20 T1 0.176 0.219 0.261 0.361 0.488 0.544
T2 0.212 0.181 0.185 0.200 0.263 0.312
TF 0.177 0.208 0.237 0.335 0.605 0.782
TL 0.189 0.177 0.190 0.220 0.565 0.726
TT 0.181 0.206 0.238 0.347 0.510 0.561

0.30 T1 0.263 0.320 0.362 0.458 0.565 0.587
T2 0.312 0.289 0.265 0.261 0.329 0.362
TF 0.277 0.305 0.337 0.460 0.774 0.896
TL 0.281 0.297 0.284 0.312 0.633 0.738
TT 0.275 0.307 0.340 0.454 0.586 0.614

0.40 T1 0.359 0.420 0.474 0.535 0.625 0.649
T2 0.434 0.393 0.348 0.330 0.384 0.431
TF 0.371 0.409 0.444 0.557 0.851 0.962
TL 0.385 0.389 0.360 0.396 0.664 0.752
TT 0.388 0.400 0.446 0.561 0.751 0.856

0.70 T1 0.671 0.713 0.724 0.753 0.798 0.817
T2 0.722 0.664 0.624 0.554 0.579 0.609
TF 0.686 0.703 0.725 0.793 0.969 0.997
TL 0.701 0.685 0.645 0.634 0.720 0.756
TT 0.675 0.709 0.723 0.792 0.933 0.978

0.80 T1 0.766 0.809 0.813 0.846 0.919 0.958
T2 0.810 0.767 0.727 0.662 0.718 0.777
TF 0.787 0.805 0.810 0.880 0.983 0.999
TL 0.795 0.785 0.743 0.696 0.724 0.757
TT 0.795 0.805 0.818 0.873 0.974 0.995

Table 2.1: Power of the test, n1 = 5, n2 = 10, N(0, 1) distribution
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α Type δ = 0 δ = 0.1 δ = 0.5 δ = 1 δ = 2 zi ∼ U(0, δ)
0.01 T1 0.005 0.005 0.022 0.066 0.180 0.203

T2 0.007 0.011 0.014 0.031 0.080 0.097
TF 0.004 0.009 0.017 0.060 0.188 0.233
TL 0.011 0.006 0.013 0.043 0.466 0.723
TT 0.004 0.009 0.017 0.060 0.185 0.225

0.05 T1 0.047 0.038 0.089 0.174 0.288 0.329
T2 0.037 0.055 0.054 0.101 0.202 0.238
TF 0.037 0.045 0.075 0.177 0.424 0.516
TL 0.064 0.051 0.064 0.137 0.676 0.856
TT 0.036 0.043 0.074 0.173 0.380 0.409

0.10 T1 0.090 0.092 0.145 0.243 0.366 0.396
T2 0.109 0.108 0.099 0.162 0.269 0.303
TF 0.089 0.101 0.135 0.281 0.611 0.766
TL 0.123 0.100 0.129 0.220 0.741 0.885
TT 0.084 0.093 0.143 0.275 0.490 0.567

0.20 T1 0.196 0.190 0.263 0.342 0.467 0.506
T2 0.220 0.206 0.200 0.262 0.375 0.409
TF 0.198 0.201 0.247 0.430 0.847 0.944
TL 0.226 0.208 0.217 0.339 0.800 0.894
TT 0.199 0.200 0.244 0.405 0.635 0.699

0.30 T1 0.302 0.292 0.358 0.419 0.544 0.594
T2 0.317 0.315 0.304 0.353 0.451 0.488
TF 0.320 0.288 0.354 0.553 0.920 0.986
TL 0.308 0.311 0.312 0.422 0.814 0.896
TT 0.300 0.301 0.346 0.513 0.760 0.801

0.40 T1 0.386 0.384 0.441 0.494 0.633 0.662
T2 0.421 0.416 0.388 0.421 0.535 0.576
TF 0.403 0.402 0.448 0.640 0.961 0.996
TL 0.411 0.402 0.395 0.499 0.820 0.896
TT 0.416 0.396 0.463 0.604 0.841 0.905

0.70 T1 0.692 0.682 0.721 0.712 0.832 0.886
T2 0.699 0.717 0.640 0.624 0.739 0.778
TF 0.699 0.703 0.731 0.850 0.997 0.999
TL 0.697 0.699 0.682 0.680 0.834 0.897
TT 0.708 0.715 0.749 0.838 0.983 0.999

0.80 T1 0.779 0.781 0.801 0.799 0.871 0.898
T2 0.799 0.814 0.742 0.697 0.773 0.793
TF 0.789 0.793 0.820 0.917 0.999 0.999
TL 0.796 0.807 0.764 0.727 0.834 0.897
TT 0.803 0.803 0.828 0.902 0.996 0.999

Table 2.2: Power of the test, n1 = 10, n2 = 10, N(0, 1) distribution
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α Type δ = 0 δ = 0.1 δ = 0.5 δ = 1 δ = 2 zi ∼ U(0, δ)
0.01 T1 0.006 0.011 0.064 0.123 0.187 0.182

T2 0.007 0.013 0.014 0.011 0.004 0.006
TF 0.008 0.013 0.054 0.108 0.184 0.173
TL 0.008 0.005 0.017 0.086 0.395 0.354
TT 0.008 0.013 0.055 0.108 0.184 0.173

0.05 T1 0.051 0.057 0.141 0.262 0.367 0.360
T2 0.047 0.045 0.053 0.064 0.144 0.138
TF 0.048 0.048 0.130 0.203 0.282 0.279
TL 0.042 0.038 0.082 0.291 0.681 0.657
TT 0.048 0.052 0.129 0.191 0.200 0.212

0.10 T1 0.099 0.107 0.219 0.317 0.383 0.379
T2 0.103 0.088 0.101 0.129 0.177 0.186
TF 0.099 0.102 0.203 0.352 0.529 0.525
TL 0.107 0.084 0.155 0.453 0.755 0.717
TT 0.098 0.102 0.194 0.326 0.511 0.498

0.20 T1 0.188 0.211 0.352 0.478 0.562 0.552
T2 0.191 0.194 0.182 0.246 0.368 0.352
TF 0.199 0.189 0.322 0.535 0.878 0.855
TL 0.201 0.188 0.280 0.587 0.787 0.767
TT 0.202 0.195 0.320 0.446 0.560 0.565

0.30 T1 0.307 0.323 0.445 0.530 0.569 0.566
T2 0.278 0.291 0.254 0.321 0.402 0.401
TF 0.302 0.293 0.445 0.707 0.958 0.943
TL 0.296 0.273 0.379 0.650 0.790 0.772
TT 0.300 0.298 0.432 0.534 0.598 0.608

0.40 T1 0.408 0.419 0.546 0.625 0.639 0.622
T2 0.388 0.370 0.344 0.408 0.459 0.461
TF 0.383 0.379 0.564 0.838 0.988 0.973
TL 0.403 0.372 0.465 0.693 0.792 0.777
TT 0.379 0.405 0.534 0.724 0.930 0.904

0.70 T1 0.714 0.705 0.808 0.832 0.846 0.817
T2 0.677 0.679 0.569 0.595 0.628 0.625
TF 0.691 0.708 0.829 0.973 0.998 0.998
TL 0.700 0.696 0.681 0.743 0.796 0.782
TT 0.684 0.709 0.791 0.918 0.992 0.981

0.80 T1 0.804 0.804 0.893 0.959 0.996 0.988
T2 0.797 0.781 0.677 0.704 0.770 0.782
TF 0.804 0.797 0.899 0.985 0.999 0.999
TL 0.797 0.793 0.725 0.753 0.796 0.782
TT 0.802 0.794 0.883 0.984 0.999 0.997

Table 2.3: Power of the test, n1 = 5, n2 = 10, χ2
3 distribution



24 Multi-sided permutation tests

α Type δ = 0 δ = 0.1 δ = 0.5 δ = 1 δ = 2 zi ∼ U(0, δ)
0.01 T1 0.010 0.013 0.066 0.160 0.225 0.205

T2 0.019 0.013 0.027 0.068 0.123 0.116
TF 0.016 0.012 0.070 0.171 0.282 0.269
TL 0.012 0.007 0.074 0.376 0.854 0.832
TT 0.016 0.012 0.070 0.171 0.271 0.257

0.05 T1 0.052 0.065 0.172 0.290 0.362 0.352
T2 0.056 0.056 0.108 0.190 0.276 0.265
TF 0.055 0.069 0.199 0.405 0.618 0.588
TL 0.051 0.067 0.218 0.636 0.885 0.873
TT 0.055 0.069 0.193 0.346 0.456 0.434

0.10 T1 0.106 0.118 0.247 0.366 0.428 0.417
T2 0.097 0.119 0.159 0.267 0.352 0.349
TF 0.101 0.121 0.289 0.569 0.910 0.877
TL 0.095 0.121 0.303 0.716 0.891 0.881
TT 0.108 0.121 0.280 0.480 0.638 0.617

0.20 T1 0.208 0.239 0.350 0.477 0.527 0.524
T2 0.193 0.211 0.250 0.370 0.461 0.455
TF 0.210 0.235 0.463 0.808 0.990 0.988
TL 0.198 0.228 0.436 0.781 0.892 0.882
TT 0.203 0.237 0.406 0.633 0.780 0.766

0.30 T1 0.299 0.334 0.444 0.546 0.576 0.568
T2 0.288 0.297 0.338 0.452 0.517 0.514
TF 0.301 0.339 0.577 0.910 0.998 0.997
TL 0.303 0.331 0.531 0.799 0.892 0.882
TT 0.311 0.341 0.513 0.737 0.883 0.868

0.40 T1 0.417 0.439 0.540 0.620 0.673 0.664
T2 0.384 0.406 0.405 0.515 0.598 0.592
TF 0.397 0.451 0.683 0.959 0.999 1.000
TL 0.401 0.431 0.607 0.813 0.892 0.882
TT 0.401 0.450 0.600 0.846 0.964 0.965

0.70 T1 0.714 0.713 0.806 0.850 0.900 0.887
T2 0.690 0.661 0.623 0.682 0.791 0.791
TF 0.700 0.742 0.894 0.994 1.000 1.000
TL 0.713 0.680 0.743 0.828 0.892 0.882
TT 0.692 0.735 0.863 0.989 1.000 0.999

0.80 T1 0.800 0.807 0.850 0.870 0.902 0.894
T2 0.788 0.770 0.705 0.755 0.804 0.808
TF 0.809 0.826 0.945 0.999 1.000 1.000
TL 0.799 0.772 0.771 0.829 0.892 0.882
TT 0.804 0.840 0.913 0.996 1.000 1.000

Table 2.4: Power of the test, n1 = 10, n2 = 10, χ2
3 distribution



Tables 25

α Type δ = 0 δ = 0.1 δ = 0.5 δ = 1 δ = 2 zi ∼ U(0, δ)
0.01 T1 0.011 0.009 0.017 0.024 0.064 0.109

T2 0.012 0.005 0.000 0.010 0.014 0.007
TF 0.012 0.009 0.008 0.018 0.044 0.094
TL 0.010 0.005 0.007 0.017 0.035 0.078
TT 0.012 0.009 0.008 0.018 0.044 0.093

0.05 T1 0.039 0.053 0.075 0.098 0.140 0.238
T2 0.051 0.042 0.021 0.048 0.048 0.070
TF 0.046 0.046 0.047 0.083 0.127 0.191
TL 0.046 0.045 0.040 0.065 0.107 0.237
TT 0.046 0.048 0.047 0.083 0.125 0.176

0.10 T1 0.088 0.105 0.130 0.175 0.211 0.301
T2 0.093 0.092 0.075 0.099 0.083 0.128
TF 0.089 0.089 0.095 0.150 0.197 0.324
TL 0.094 0.096 0.098 0.105 0.184 0.381
TT 0.090 0.095 0.096 0.146 0.188 0.308

0.20 T1 0.187 0.211 0.246 0.295 0.340 0.431
T2 0.211 0.207 0.155 0.176 0.167 0.231
TF 0.185 0.188 0.202 0.269 0.311 0.492
TL 0.191 0.192 0.201 0.214 0.347 0.533
TT 0.181 0.197 0.205 0.274 0.294 0.429

0.30 T1 0.297 0.304 0.360 0.404 0.423 0.507
T2 0.307 0.294 0.254 0.250 0.252 0.305
TF 0.298 0.288 0.292 0.363 0.429 0.653
TL 0.308 0.283 0.303 0.313 0.464 0.610
TT 0.290 0.292 0.302 0.388 0.395 0.525

0.40 T1 0.389 0.395 0.449 0.476 0.526 0.598
T2 0.404 0.405 0.357 0.342 0.350 0.396
TF 0.388 0.401 0.395 0.470 0.542 0.763
TL 0.403 0.376 0.415 0.412 0.558 0.667
TT 0.398 0.418 0.401 0.471 0.507 0.662

0.70 T1 0.679 0.676 0.742 0.740 0.779 0.798
T2 0.706 0.697 0.637 0.600 0.627 0.614
TF 0.718 0.703 0.714 0.737 0.813 0.915
TL 0.724 0.673 0.731 0.697 0.760 0.765
TT 0.704 0.686 0.706 0.723 0.782 0.889

0.80 T1 0.792 0.787 0.846 0.815 0.872 0.881
T2 0.806 0.789 0.755 0.707 0.741 0.738
TF 0.804 0.791 0.824 0.839 0.891 0.944
TL 0.817 0.782 0.812 0.771 0.812 0.786
TT 0.797 0.797 0.811 0.827 0.870 0.941

Table 2.5: Power of the test, n1 = 5, n2 = 10, t1 distribution



26 Multi-sided permutation tests

α Type δ = 0 δ = 0.1 δ = 0.5 δ = 1 δ = 2 zi ∼ U(0, δ)
0.01 T1 0.009 0.013 0.016 0.031 0.067 0.118

T2 0.012 0.006 0.012 0.013 0.033 0.044
TF 0.013 0.010 0.020 0.025 0.067 0.106
TL 0.011 0.011 0.011 0.022 0.091 0.271
TT 0.013 0.010 0.020 0.025 0.067 0.105

0.05 T1 0.051 0.059 0.066 0.102 0.156 0.232
T2 0.054 0.043 0.051 0.058 0.101 0.135
TF 0.054 0.054 0.067 0.083 0.169 0.288
TL 0.057 0.042 0.063 0.084 0.231 0.528
TT 0.050 0.058 0.071 0.080 0.156 0.268

0.10 T1 0.105 0.108 0.126 0.156 0.231 0.300
T2 0.105 0.087 0.095 0.097 0.171 0.186
TF 0.101 0.101 0.123 0.161 0.282 0.442
TL 0.096 0.092 0.112 0.153 0.354 0.634
TT 0.105 0.102 0.117 0.160 0.257 0.367

0.20 T1 0.200 0.207 0.231 0.256 0.346 0.425
T2 0.213 0.200 0.177 0.181 0.266 0.309
TF 0.206 0.206 0.220 0.267 0.464 0.661
TL 0.180 0.178 0.203 0.272 0.483 0.729
TT 0.210 0.195 0.221 0.253 0.402 0.486

0.30 T1 0.300 0.304 0.329 0.367 0.432 0.527
T2 0.299 0.318 0.270 0.270 0.352 0.393
TF 0.316 0.299 0.318 0.361 0.601 0.797
TL 0.275 0.302 0.292 0.376 0.568 0.776
TT 0.323 0.300 0.319 0.342 0.520 0.610

0.40 T1 0.383 0.396 0.430 0.460 0.534 0.613
T2 0.396 0.411 0.371 0.351 0.435 0.487
TF 0.414 0.396 0.420 0.459 0.709 0.872
TL 0.380 0.393 0.388 0.490 0.631 0.804
TT 0.413 0.407 0.408 0.437 0.612 0.734

0.70 T1 0.676 0.697 0.728 0.755 0.760 0.837
T2 0.700 0.696 0.666 0.677 0.680 0.726
TF 0.685 0.713 0.693 0.743 0.885 0.979
TL 0.695 0.691 0.687 0.740 0.770 0.843
TT 0.700 0.707 0.694 0.725 0.857 0.939

0.80 T1 0.780 0.787 0.818 0.840 0.836 0.888
T2 0.789 0.788 0.770 0.784 0.774 0.782
TF 0.794 0.797 0.798 0.839 0.933 0.990
TL 0.795 0.792 0.795 0.823 0.797 0.848
TT 0.785 0.816 0.796 0.820 0.921 0.975

Table 2.6: Power of the test, n1 = 10, n2 = 10, t1 distribution



Tables 27

α Type δ = 0 δ = 0.1 δ = 0.5 δ = 1 δ = 2 zi ∼ U(0, δ)
0.01 T1 0.006 0.011 0.038 0.113 0.189 0.173

T2 0.013 0.010 0.007 0.007 0.000 0.003
TF 0.008 0.013 0.027 0.090 0.189 0.168
TL 0.007 0.020 0.017 0.090 0.567 0.431
TT 0.008 0.013 0.027 0.090 0.189 0.168

0.05 T1 0.045 0.062 0.117 0.242 0.407 0.373
T2 0.047 0.041 0.033 0.044 0.145 0.132
TF 0.049 0.049 0.097 0.190 0.347 0.305
TL 0.048 0.084 0.083 0.269 0.769 0.678
TT 0.050 0.046 0.094 0.186 0.207 0.199

0.10 T1 0.089 0.113 0.192 0.325 0.423 0.405
T2 0.098 0.096 0.084 0.103 0.178 0.172
TF 0.098 0.108 0.161 0.319 0.584 0.536
TL 0.099 0.134 0.144 0.382 0.787 0.733
TT 0.097 0.104 0.153 0.289 0.553 0.505

0.20 T1 0.181 0.232 0.329 0.475 0.621 0.601
T2 0.203 0.183 0.160 0.202 0.344 0.316
TF 0.196 0.219 0.285 0.523 0.952 0.865
TL 0.187 0.238 0.257 0.495 0.797 0.778
TT 0.196 0.211 0.280 0.429 0.603 0.578

0.30 T1 0.274 0.342 0.429 0.547 0.637 0.616
T2 0.309 0.281 0.238 0.288 0.359 0.343
TF 0.288 0.333 0.400 0.681 0.990 0.941
TL 0.285 0.369 0.352 0.563 0.799 0.786
TT 0.292 0.314 0.385 0.532 0.626 0.608

0.40 T1 0.379 0.455 0.537 0.651 0.723 0.699
T2 0.438 0.379 0.327 0.364 0.464 0.442
TF 0.391 0.433 0.525 0.775 0.996 0.974
TL 0.381 0.469 0.434 0.601 0.799 0.791
TT 0.389 0.416 0.492 0.678 0.965 0.918

0.70 T1 0.656 0.739 0.804 0.861 0.921 0.869
T2 0.678 0.665 0.588 0.618 0.707 0.645
TF 0.714 0.748 0.787 0.936 1.000 0.998
TL 0.600 0.676 0.594 0.650 0.799 0.794
TT 0.718 0.729 0.765 0.896 0.999 0.981

0.80 T1 0.732 0.802 0.865 0.929 0.996 0.989
T2 0.743 0.735 0.657 0.681 0.795 0.796
TF 0.803 0.819 0.845 0.959 1.000 1.000
TL 0.603 0.734 0.597 0.651 0.799 0.794
TT 0.824 0.822 0.853 0.957 1.000 0.997

Table 2.7: Power of the test, n1 = 5, n2 = 10, ei = βY1 + (1 − β)Y2, where
β = 0.25, Y1 ∼ Bin(5, 0.5), and Y2 ∼ Bin(3, 0.2)



28 Multi-sided permutation tests

α Type δ = 0 δ = 0.1 δ = 0.5 δ = 1 δ = 2 zi ∼ U(0, δ)
0.01 T1 0.008 0.021 0.048 0.140 0.222 0.203

T2 0.010 0.008 0.018 0.067 0.139 0.120
TF 0.007 0.020 0.038 0.156 0.298 0.258
TL 0.010 0.016 0.025 0.280 0.888 0.832
TT 0.008 0.020 0.036 0.147 0.276 0.250

0.05 T1 0.055 0.065 0.146 0.258 0.370 0.343
T2 0.048 0.050 0.082 0.170 0.266 0.249
TF 0.060 0.065 0.140 0.338 0.638 0.572
TL 0.044 0.071 0.107 0.484 0.898 0.890
TT 0.063 0.063 0.133 0.306 0.466 0.442

0.10 T1 0.101 0.119 0.228 0.340 0.450 0.429
T2 0.100 0.111 0.135 0.244 0.340 0.317
TF 0.108 0.124 0.227 0.512 0.953 0.848
TL 0.103 0.134 0.179 0.584 0.899 0.894
TT 0.103 0.115 0.229 0.428 0.636 0.592

0.20 T1 0.196 0.229 0.337 0.448 0.559 0.541
T2 0.203 0.211 0.238 0.354 0.469 0.441
TF 0.204 0.233 0.381 0.751 0.999 0.988
TL 0.198 0.260 0.290 0.667 0.899 0.895
TT 0.202 0.230 0.363 0.584 0.790 0.746

0.30 T1 0.302 0.326 0.414 0.519 0.625 0.596
T2 0.298 0.314 0.325 0.440 0.533 0.499
TF 0.301 0.340 0.504 0.860 1.000 1.000
TL 0.301 0.356 0.378 0.697 0.899 0.895
TT 0.294 0.326 0.476 0.710 0.885 0.851

0.40 T1 0.386 0.423 0.486 0.591 0.708 0.689
T2 0.395 0.412 0.400 0.506 0.608 0.585
TF 0.399 0.449 0.611 0.914 1.000 1.000
TL 0.401 0.463 0.460 0.719 0.899 0.895
TT 0.400 0.440 0.575 0.802 0.985 0.965

0.70 T1 0.676 0.697 0.731 0.814 0.887 0.886
T2 0.688 0.693 0.625 0.684 0.805 0.799
TF 0.693 0.742 0.825 0.979 1.000 1.000
TL 0.623 0.725 0.607 0.742 0.899 0.895
TT 0.690 0.730 0.804 0.960 1.000 1.000

0.80 T1 0.769 0.803 0.804 0.866 0.914 0.895
T2 0.780 0.784 0.702 0.753 0.845 0.809
TF 0.806 0.834 0.892 0.994 1.000 1.000
TL 0.625 0.785 0.616 0.742 0.899 0.895
TT 0.791 0.838 0.867 0.982 1.000 1.000

Table 2.8: Power of the test, n1 = 10, n2 = 10, ei = βY1 + (1 − β)Y2, where
β = 0.25, Y1 ∼ Bin(5, 0.5), and Y2 ∼ Bin(3, 0.2)



Tables 29

α Type δ = 0 δ = 0.1 δ = 0.5 δ = 1 δ = 2 zi ∼ U(0, δ)
0.01 T1 0.014 0.009 0.041 0.128 0.199 0.185

T2 0.011 0.007 0.014 0.007 0.000 0.010
TF 0.009 0.008 0.036 0.108 0.193 0.174
TL 0.007 0.009 0.012 0.056 0.416 0.363
TT 0.009 0.008 0.036 0.108 0.193 0.174

0.05 T1 0.056 0.051 0.128 0.273 0.394 0.360
T2 0.047 0.044 0.049 0.060 0.174 0.150
TF 0.048 0.048 0.099 0.205 0.295 0.292
TL 0.040 0.052 0.057 0.205 0.711 0.643
TT 0.051 0.051 0.104 0.207 0.216 0.220

0.10 T1 0.109 0.086 0.206 0.335 0.414 0.395
T2 0.094 0.095 0.098 0.141 0.207 0.194
TF 0.099 0.099 0.172 0.347 0.596 0.545
TL 0.094 0.096 0.107 0.335 0.758 0.709
TT 0.103 0.095 0.177 0.333 0.568 0.510

0.20 T1 0.224 0.204 0.312 0.466 0.575 0.570
T2 0.185 0.183 0.179 0.231 0.356 0.352
TF 0.209 0.184 0.301 0.527 0.889 0.850
TL 0.200 0.195 0.208 0.467 0.784 0.763
TT 0.203 0.181 0.305 0.476 0.621 0.589

0.30 T1 0.315 0.304 0.409 0.532 0.598 0.590
T2 0.272 0.299 0.257 0.311 0.388 0.387
TF 0.292 0.285 0.410 0.674 0.975 0.945
TL 0.298 0.295 0.311 0.537 0.787 0.768
TT 0.298 0.288 0.398 0.555 0.638 0.632

0.40 T1 0.434 0.382 0.512 0.616 0.650 0.648
T2 0.363 0.407 0.350 0.385 0.434 0.437
TF 0.412 0.396 0.502 0.768 0.992 0.984
TL 0.392 0.385 0.413 0.591 0.787 0.777
TT 0.409 0.387 0.491 0.697 0.931 0.922

0.70 T1 0.720 0.686 0.785 0.803 0.815 0.812
T2 0.684 0.688 0.573 0.554 0.606 0.606
TF 0.705 0.701 0.773 0.943 1.000 1.000
TL 0.695 0.724 0.655 0.679 0.787 0.780
TT 0.693 0.699 0.764 0.906 0.995 0.992

0.80 T1 0.805 0.803 0.861 0.923 0.991 0.976
T2 0.777 0.789 0.680 0.663 0.777 0.780
TF 0.798 0.800 0.866 0.966 1.000 1.000
TL 0.786 0.810 0.718 0.693 0.787 0.780
TT 0.797 0.792 0.861 0.967 1.000 1.000

Table 2.9: Power of the test, n1 = 5, n2 = 10, SN(1, 5) distribution



30 Multi-sided permutation tests

α Type δ = 0 δ = 0.1 δ = 0.5 δ = 1 δ = 2 zi ∼ U(0, δ)
0.01 T1 0.004 0.011 0.052 0.139 0.222 0.209

T2 0.013 0.007 0.014 0.068 0.116 0.102
TF 0.008 0.012 0.048 0.161 0.265 0.248
TL 0.004 0.013 0.032 0.247 0.882 0.848
TT 0.008 0.012 0.047 0.161 0.255 0.235

0.05 T1 0.054 0.061 0.129 0.270 0.368 0.360
T2 0.063 0.044 0.073 0.164 0.276 0.254
TF 0.053 0.053 0.130 0.349 0.626 0.590
TL 0.050 0.050 0.131 0.475 0.904 0.903
TT 0.053 0.050 0.128 0.319 0.469 0.435

0.10 T1 0.090 0.111 0.208 0.349 0.424 0.406
T2 0.122 0.093 0.123 0.242 0.338 0.325
TF 0.117 0.110 0.207 0.509 0.936 0.856
TL 0.096 0.093 0.202 0.577 0.904 0.906
TT 0.117 0.105 0.202 0.434 0.644 0.614

0.20 T1 0.190 0.222 0.306 0.448 0.547 0.534
T2 0.199 0.207 0.241 0.345 0.458 0.441
TF 0.204 0.194 0.350 0.694 1.000 0.983
TL 0.187 0.208 0.331 0.679 0.905 0.909
TT 0.212 0.204 0.331 0.591 0.762 0.731

0.30 T1 0.281 0.317 0.411 0.522 0.609 0.596
T2 0.301 0.307 0.319 0.423 0.524 0.511
TF 0.297 0.311 0.472 0.820 1.000 0.998
TL 0.286 0.304 0.414 0.727 0.905 0.909
TT 0.297 0.308 0.447 0.690 0.857 0.835

0.40 T1 0.375 0.402 0.513 0.593 0.688 0.671
T2 0.382 0.396 0.388 0.489 0.602 0.597
TF 0.384 0.427 0.579 0.905 1.000 1.000
TL 0.396 0.418 0.500 0.751 0.905 0.909
TT 0.389 0.429 0.547 0.793 0.971 0.953

0.70 T1 0.711 0.708 0.766 0.828 0.907 0.904
T2 0.705 0.679 0.626 0.657 0.794 0.789
TF 0.668 0.717 0.821 0.985 1.000 1.000
TL 0.709 0.721 0.717 0.783 0.905 0.909
TT 0.656 0.706 0.819 0.961 1.000 1.000

0.80 T1 0.803 0.813 0.837 0.857 0.910 0.912
T2 0.809 0.776 0.723 0.716 0.806 0.804
TF 0.763 0.816 0.904 0.990 1.000 1.000
TL 0.814 0.816 0.767 0.784 0.905 0.909
TT 0.753 0.803 0.887 0.988 1.000 1.000

Table 2.10: Power of the test, n1 = 10, n2 = 10, SN(0, 1, 5) distribution



Tables 31

α Type δ = 0 δ = 0.1 δ = 0.5 δ = 1 δ = 2 zi ∼ U(0, δ)
0.01 T1 0.009 0.016 0.039 0.096 0.160 0.164

T2 0.005 0.005 0.020 0.014 0.007 0.008
TF 0.006 0.008 0.038 0.082 0.150 0.159
TL 0.012 0.016 0.020 0.023 0.174 0.287
TT 0.006 0.008 0.038 0.082 0.150 0.159

0.05 T1 0.056 0.069 0.122 0.195 0.319 0.357
T2 0.047 0.040 0.067 0.050 0.084 0.111
TF 0.045 0.056 0.115 0.175 0.245 0.271
TL 0.059 0.052 0.079 0.127 0.426 0.588
TT 0.045 0.058 0.113 0.175 0.211 0.216

0.10 T1 0.100 0.112 0.185 0.265 0.346 0.382
T2 0.091 0.098 0.109 0.109 0.155 0.185
TF 0.102 0.108 0.191 0.261 0.431 0.509
TL 0.097 0.098 0.152 0.251 0.591 0.676
TT 0.103 0.109 0.189 0.245 0.403 0.468

0.20 T1 0.214 0.220 0.313 0.404 0.526 0.545
T2 0.190 0.189 0.185 0.196 0.286 0.331
TF 0.200 0.211 0.305 0.401 0.658 0.792
TL 0.202 0.197 0.275 0.410 0.694 0.733
TT 0.191 0.210 0.294 0.374 0.501 0.567

0.30 T1 0.302 0.319 0.406 0.485 0.548 0.559
T2 0.287 0.282 0.265 0.286 0.349 0.399
TF 0.292 0.310 0.427 0.549 0.826 0.920
TL 0.288 0.305 0.374 0.508 0.718 0.748
TT 0.299 0.308 0.398 0.468 0.595 0.625

0.40 T1 0.394 0.422 0.527 0.604 0.654 0.620
T2 0.390 0.388 0.349 0.358 0.422 0.462
TF 0.393 0.394 0.527 0.669 0.919 0.968
TL 0.393 0.402 0.461 0.590 0.737 0.759
TT 0.404 0.409 0.498 0.600 0.812 0.876

0.70 T1 0.706 0.727 0.792 0.829 0.851 0.809
T2 0.688 0.650 0.592 0.585 0.603 0.616
TF 0.679 0.708 0.801 0.921 0.990 0.996
TL 0.715 0.696 0.658 0.717 0.769 0.771
TT 0.685 0.707 0.762 0.844 0.951 0.981

0.80 T1 0.798 0.825 0.883 0.930 0.980 0.978
T2 0.788 0.755 0.708 0.682 0.713 0.757
TF 0.793 0.802 0.873 0.962 0.998 0.999
TL 0.813 0.799 0.733 0.734 0.770 0.771
TT 0.790 0.815 0.873 0.942 0.994 0.997

Table 2.11: Power of the test, n1 = 5, n2 = 10, Exp(1) distribution



32 Multi-sided permutation tests

α Type δ = 0 δ = 0.1 δ = 0.5 δ = 1 δ = 2 zi ∼ U(0, δ)
0.01 T1 0.007 0.015 0.047 0.122 0.198 0.206

T2 0.012 0.006 0.022 0.049 0.107 0.128
TF 0.009 0.013 0.040 0.117 0.232 0.255
TL 0.016 0.009 0.048 0.167 0.590 0.764
TT 0.009 0.013 0.040 0.116 0.226 0.247

0.05 T1 0.042 0.063 0.136 0.227 0.322 0.339
T2 0.050 0.048 0.086 0.135 0.239 0.252
TF 0.036 0.054 0.139 0.283 0.518 0.556
TL 0.062 0.058 0.141 0.331 0.769 0.869
TT 0.039 0.052 0.139 0.260 0.433 0.451

0.10 T1 0.083 0.120 0.216 0.305 0.385 0.409
T2 0.099 0.091 0.140 0.217 0.304 0.332
TF 0.096 0.112 0.234 0.400 0.719 0.819
TL 0.111 0.111 0.227 0.445 0.812 0.881
TT 0.092 0.111 0.222 0.362 0.561 0.591

0.20 T1 0.174 0.223 0.330 0.418 0.491 0.522
T2 0.203 0.174 0.230 0.320 0.403 0.435
TF 0.194 0.213 0.383 0.597 0.898 0.979
TL 0.213 0.196 0.355 0.581 0.832 0.881
TT 0.182 0.211 0.356 0.522 0.689 0.741

0.30 T1 0.270 0.321 0.426 0.486 0.555 0.575
T2 0.315 0.276 0.323 0.384 0.471 0.498
TF 0.287 0.316 0.499 0.738 0.964 0.995
TL 0.306 0.300 0.454 0.653 0.841 0.882
TT 0.289 0.316 0.460 0.628 0.790 0.841

0.40 T1 0.383 0.444 0.522 0.561 0.651 0.655
T2 0.415 0.376 0.400 0.458 0.559 0.590
TF 0.390 0.417 0.608 0.834 0.984 0.999
TL 0.410 0.396 0.536 0.707 0.844 0.882
TT 0.377 0.397 0.560 0.738 0.888 0.944

0.70 T1 0.693 0.743 0.779 0.812 0.870 0.875
T2 0.724 0.669 0.647 0.636 0.736 0.769
TF 0.705 0.692 0.863 0.969 0.998 1.000
TL 0.710 0.697 0.731 0.774 0.847 0.882
TT 0.684 0.709 0.820 0.925 0.991 1.000

0.80 T1 0.799 0.818 0.845 0.856 0.884 0.882
T2 0.822 0.774 0.719 0.716 0.762 0.790
TF 0.793 0.796 0.926 0.985 0.999 1.000
TL 0.814 0.792 0.763 0.780 0.847 0.882
TT 0.797 0.815 0.895 0.969 0.997 1.000

Table 2.12: Power of the test, n1 = 10, n2 = 10, Exp(1) distribution



Chapter 3

Finite-sample consistency of
combination-based permutation
tests

3.1 Introduction

As we said in the introduction of this dissertation, the second problem to be
addressed in the analysis of three-dimensional surfaces is that the number
of variables (e.g. three times the points -landmarks- considered in the sur-
face) is far greater than the number of observed units. A similar situation
is not at all unusual, in many cases for example in analysis of microarrays
and genomics (Salmaso and Solari, 2005, 2006), shape analysis (Bookstein,
1991), functional data analysis (Ramsay and Silverman, 1997, 2002; Ferraty
and Vieu, 2006) it may happen that the number of observed variables is
very much larger than that of subjects. In Pesarin (2001) it is shown that,
under very mild conditions, the power function of permutation tests based
on associative statistics monotonically increases as the related standardized
noncentrality functional increases. This is true also for multivariate situa-
tions. In particular, for any added variable the power does not decreases if
this variable makes larger standardized global noncentrality. This property
allow us to define the notion of finite-sample consistency for those kinds of
combination-based permutation tests. The concept of finite-sample consis-
tency is different from the traditional property of consistency of a parametric
test. Generally we are interested in studying the power W of a test when the
sample size goes to infinity. A test is usually defined consistent if

lim
n→∞

Wn = 1 (3.1)
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when H0 is not true. Within the finite-sample consistency sufficient con-
ditions are established as to ensure that the power of the test goes to one
when the number of ”informative” variables V diverges, while the number of
observations remains fixed, that is

lim
V→∞

WV,n = 1 (3.2)

when H0 is not true.
In this chapter we will show some fundamental aspects about the finite-
sample consistency giving sufficient conditions in order that the rejection
rate converges to one, for fixed sample sizes at any attainable α-values, when
the number of variables diverges. We will present a simulation study. At the
end, using some results presented here we could easily prove the consistency
of multi-sided test.

3.2 Finite sample consistency

As a guide, we refer to one-sided two-sample designs and we use the same
notation of previous chapter. Here we discuss testing problems for stochastic
dominance alternatives as are generated by symbolic treatments with non-
negative random shift effects ∆. In particular, the alternative assumes that

treatments produce effects ∆1 and ∆2, respectively, and that ∆1

d
> ∆2,.

Thus, the hypotheses are H0 : {X1
d
= X2} ≡ {P1 = P2}, and H1 : {(X1 +

∆1)
d
> (X2 + ∆2)}. Extensions to non-positive, two-sided alternatives are

straightforward. Note that under H0 data of two samples are exchange-
able, in accordance with the notion that subjects are randomized to treat-
ments. Without loss of generality, we assume that effects in H1 are such that

∆1 = ∆
d
> 0 and Pr{∆2 = 0} = 1. Condition ∆2

d
= 0 agrees with the notion

that an active treatment is only assigned to subjects of first sample and a
placebo to those of the second. In this situation, since effects ∆ may depend

on null responses X1, stochastic dominance (X1 + ∆)
d
> X2 = X is compati-

ble with non-homoscedasticities in the alternative. Thus, the null hypothesis

may also be written as H0 : {∆ d
= 0}. In the context of this dissertation,

it is also worth noting that observed variable X, random deviates Z, sample
space X , and random effect ∆ are V -dimensional, with V ≥ 1.
In what follows we consider associative test statistics defined as T ∗(∆) =∑

i ϕ[X∗1i(∆)]/n1−
∑

i ϕ[X∗2i(∆)]/n2, where ϕ is any non-degenerate measur-
able non-decreasing function of the data and so T ∗(∆) corresponds to the
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comparison of sampling ϕ-means: T ∗(∆) = ϕ̄∗1 − ϕ̄∗2 say. Of course, the ob-
served value of T (∆) is T o(∆) =

∑
i ϕ[X1i(∆)]/n1−

∑
i ϕ[X2i]/n2, and T o(0)

and T ∗(0) are the related observed and permutation values when ∆
d
= 0.

We want investigate the rejection behaviour of permutation test T when the
random effect ∆ can diverge to the infinity. Any test statistic is a map-
ping from the sample space to the real line, T : X n → R1. So that we
investigate on a test T by comparing its behaviour in H0 to that in H1,
that is T (X(0)) to T (X(∆)). Such a comparison, together with their re-
spective asymptotic behaviour, will be perfectly clear in the permutation
framework if we are able to write their related random variables in the
form T (X(∆)) = T (X(0)) + φT (∆,X(0)), where the induced noncentral-
ity φT (∆,X(0)) is a random function which may diverge in probability, i.e.
such that lim∆→∞ Pr{φT > t} = 1, for any real t.
Since main inferential conclusions associated with permutation tests are con-
cerning the observed data set X related to the given set of n = n1 + n2

individuals, the notion of consistency that is truly useful is the weak form
(or in probability) which essentially states that for divergent values of non-
centrality parameter induced by the test statistic, the limit rejection probability
of test T is of one for any fixed α > 0. The sense of this is that, for fixed
sample sizes and large values of induced noncentrality, the rejection proba-
bility of T approaches one. With reference for simplicity to fixed effects δ, in
practice this means that the rejection rate is greater in H1 than in H0, that
is when δ > 0 than when δ = 0. Similarly, it is easy to establish that the
rejection rate of H0 is greater for larger δ. That is, if δ < δ′, then for any
attainable α-value

Pr{λ(X(δ)) ≤ α|X n
/X(δ)} ≤ Pr{λ(X(δ′)) ≤ α|X n

/X(δ′)}

and

EP

[
Pr{λ(X(δ)) ≤ α|X n

/X(δ)}
]
≤ EP

[
Pr{λ(X(δ′)) ≤ α|X n

/X(δ′)}
]

where EP (•) is the mean value of (•) with respect to P . Similar relations
are true also for random effects ∆. Considering the finite-sample property of
permutation test it will easy to show the consistency of multi-sided test.

3.2.1 Weak unconditional finite-sample consistency of
T

Let us argue for fixed effects δ first. The extension to random effects ∆ will
be considered in the specific section.
Suppose that the following conditions are satisfied:
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• T is any associative test statistic for one-sided hypotheses;

• sample sizes (n1, n2) are fixed and finite;

• the data set X(δ) = (Z1 + δ,Z2), where (Z1,Z2) = Z ∈ X n are i.i.d.
measurable real random deviates whose parent distribution is PZ(z) =
Pr {Z ≤ z} and δ = (δ, . . . , δ)′ is the vector of non-negative fixed effects;

• fixed effects δ diverge to the infinity according to whatever monotonic
sequence {δv, v ≥ 1}, the elements of which are such that δv ≤ δv′ for
any pair v < v′.

then the permutation unconditional rejection rate of test T converges to 1 for
all α-values not smaller than the minimum attainable α; so that T is weak
unconditional finite-sample consistent.

To show the unconditional finite-sample consistency of T we consider the
observed data set X(δ) = (Z1 + δ,Z2) for fixed deviates Z; of course X(δ)
depends by δ. The permutation support induced by the test statistic T when
applied to the data set X(δ) is TX(δ) = {T ∗(δ) = T (X∗(δ)) : X∗(δ) ∈ X n

/X(δ)}.
Depending on Z, in the sequence {δv, v ≥ 1} there is a value δZ of δ such that
the related observed value T o(X(δZ)) is right-extremal for the induced per-
mutation support TX(δZ), that is T o(X(δZ)) = maxTX(δZ)

{T ∗(δZ) : X∗(δZ) ∈
X n
/X(δZ)}. This δZ can be determined by observing that a sufficient condition

for right-extremal property of T o is that

min
n1

(Z1i + δZ) > max
n2

(Z2i), (3.3)

indeed, since ϕ is monotonic non-decreasing, we necessarily have that∑
i

ϕ(Z1i + δZ)/n1 >
∑
i

ϕ(Z2i)/n2

and so T o(X(δZ)) is right-extremal because for all permutations X∗(δZ) 6=
X(δZ) it is T o(X∗(δZ)) < T o(X(δZ)).

Observing that the random deviates Zji are i.i.d., the probability of the event
in equation (3.3) is

Pr

{
min
n1

(Z1i + δ) > max
n2

(Z2i)

}
=

∫
X
{[1− PZ(t− δ)]n1} d [PZ(t)]n2 , (3.4)

the limit of which, as δ goes to the infinity according to the given sequence
{δv, v ≥ 1}, is of 1 since the measurability of random deviates Z implies
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that limz→−∞ Pr(Z ≤ z) = 0, limz→+∞ Pr(Z ≤ z) = 1, and because, by
the Lebesgue’s monotone convergence theorem (see Lehmann, 1986, pg. 39)
in force of which the limit of an integral is the integral of the limit, the
associated sequence of probability measures {PZ(t− δv), v ≥ 1} converges to
zero monotonically for any t.

An interpretation of this is that the probability of finding a set Z ∈ X n

for which there does not exist a finite value of δZ ∈ {δv, v ≥ 1} such that
minn1(Z1i + δZ) > maxn2(Z2i) converges to zero monotonically as δ diverges.
This implies that the unconditional rejection rate

Wα(δ) =

∫
X

Pr{λ(X(δ)) ≤ α|X n
/X(δ)} dPZ(z),

where PZ is the multivariate distribution of vector Z, as δ tends to the infinity
converges to 1 for all α-values not smaller to the minimum attainable α-value
αa, which for one-sided alternatives is of 1/

(
n
n1

)
(it is of 2/

(
n
n1

)
for two-sided

alternatives).

It is to be emphasized that the notion of unconditional finite-sample consis-
tency, defined for divergent fixed effects δ, is different from the traditional
notion of (unconditional) consistency of a test, which in turn considers the
behaviour of rejection rate for given δ when min(n1, n2) diverges. It is known
that, in order to attain permutation unconditional consistency it is required
that random deviates Z at least possess finite second moment (Lehmann,
1986; Pesarin, 2001). Here we only require they are measurable, so that in
this respect it is to be emphasized that random deviates Z are not required
to be provided with finite moments of any positive order. For instance, they
can be distributed according to Cauchy Cau(0, σ) or Pareto Pa(θ, σ), with
shape parameter 0 < θ ≤ 1, and both with finite scale coefficients σ > 0, etc.

3.2.2 Unconditional finite sample consistency for V →
∞

To see the strict relation between this form of consistency and that described
in equation (3.2), let us firstly consider a case where in a two-sample problem
there are V ≥ 1 homoschedastic variables X = (X1, ..., XV ), in which the
observed data set is X(δ) = {δh + Zh1i, i = 1, . . . , n1;Zh2i, i = 1, . . . , n2;h =

1, . . . , V }, and the hypotheses are H0 : {X1
d
= X2} = {δ = 0} against

H1 : {X1

d
> X2} = {δ ≥ 0}, where δ is the vector of fixed effects, i.e.

δ = (δ1, ..., δV )′, in which δh is the effect for the h-th variable and 0 is the
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vector with V null components. Consider that the permutation test statistic
has the form

T ′′∗(δ) = ψ(V )
V∑
h=1

[
X̄∗h1(δh)− X̄∗h2(δh)

]
,

where ψ(V ) is such that the statistic T (X(0)) is measurable as V diverges,
so that limz→∞ Pr{T (X(0)) ≤ z;PZ} = 1, and

X̄∗hj(δh) =

nj∑
i=1

X∗hji(δh)/nj = T ∗h (δh),

j = 1, 2, are permutation sample means of the h-th variable. In other terms,
the statistic T ′′ is a measurable sum of V partial tests Th in accordance to the
direct combination of several partial tests, that is a global test statistic T ′′ is
given by the form T ′′ =

∑
h Th, T

o =
∑

h T
o
h and T ′′∗r =

∑
h T
∗
hr, r = 1, . . . , B

for the combined test, observed, and permutation values respectively. Sup-
pose now that the noncentrality parameter induced by the test statistic, that
is the global effect δ̄V = ψ(V )

∑
h≤V δh, diverges as V diverges. To see the

unconditional finite-sample consistency of T , let us consider the permuta-
tionally equivalent form of the test statistics

T ′′∗(δ) = ψ(V )
V∑
h=1

n1∑
i=1

X∗h1i(δh) = ψ(V )

n1∑
i=1

V∑
h=1

X∗h1i(δh)

=

n1∑
i=1

Y ∗1i(δ) = T ′′∗(0) + n1δ̄
∗
V ,

where the Y1i(δ) = ψ(V )
∑

h≤V Xh1i(δh), i = 1, . . . , n1, are univariate data
transformations which summarize the whole set of information on effects δ
collected by the V variables, δ̄∗V = ψ(V )

∑
h≤V δ

∗
h, and T ′′∗(0) is the null

permutation value of T ′′ which is a function only of random deviates Z∗1 ∈ Z.
The right-hand side expression shows that a multivariate test statistic is
reduced to one one-dimensional quantity. Thus conditions of section 3.2.1
are satisfied because, by assumption, T ′′∗(0) is measurable and δ̄V is assumed
to diverge. And so T is unconditionally finite-sample consistent.

A typical case occurs when all component variables Xh(δh), h = 1, . . . , V are
provided with finite mean value, that is when E [|Xh(δh)|] <∞, h = 1, . . . , V.
In such a case, we may put ψ(V ) = 1/V. So that, under to conditions for the
the law of large numbers for dependent variables (Feller, 1968), T ′′∗(X(0))
converges to zero in probability (at least). Thus, if δ̄V =

∑
h≤V δh/V is

positive in the limit all assumptions at beginning of section 3.2.1 are met,
T ′′ is finite-sample consistent.
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3.2.3 Weak unconditional consistency of T for n→∞
In this section we will consider the relationship between the finite sample
consistency and the traditional notion of consistency described in equation
(3.1). Suppose that conditions of section 3.2.1 hold and so T is a finite sample
consistent statistic. We consider the case of a two-sample problem for one-
sided alternatives with the data set X(δ) = {δ + Z1i, i = 1, . . . , n1;Z2i, i =
1, . . . , n2}, where E [Zji] = 0 and the two sample sizes (n1, n2) satisfy the
relation (n1 = vm1, n2 = vm2) so that they can diverge according to the
sequence {(vm1, vm2), v ≥ 1}.
Let us observe that the effect δ is now a fixed and unknown constant and
that sample sizes diverge, so that the traditional notion of consistency may
be applied to T . For any integer v ≥ 1, let us arrange the one-dimensional
data set X1(δ) = (δ+Z1) = {δ + Z1i, i = 1, . . . , n1} and X2 = Z2 = {Z2i, i =
1, . . . , n2} into respectively the V -dimensional sets Y1(δ) = {Y11i = X1i, Y21i =
X1,v+i, . . . , Yv1i = X1,(m1−1)v+i, i = 1, . . . ,m1} and Y2 = {Y12i = X2i, Y21i =
X2,v+i, . . . , Yv2i = X2,(m2−1)v+i, i = 1, . . . ,m2}, where (n1, n2) = (vm1, vm2).
That is

X1,1
...
X1,i
...
X1,vm1

 =


X1,1 . . . X1,i . . . X1,v

. . . . . . . . . . . . . . .
X1,kv+1 . . . X1,kv+i . . . X1,(k+1)v

. . . . . . . . . . . . . . .
X1,(m1−1)v+1 . . . X1,(m1−1)v+i . . . X1,m1v

(3.5)

=


Y1,1,1 . . . Yh,1,1 . . . Yv,1,1
. . . . . . . . . . . . . . .
Y1,1,i . . . Yh,1,i . . . Yv,1,i
. . . . . . . . . . . . . . .
Y1,1,m1 . . . Yh,1,m1 . . . Yv,1,m1

 (3.6)

and
X2,1
...
X2,i
...
X2,vm2

 =


X2,1 . . . X2,i . . . X2,v

. . . . . . . . . . . . . . .
X2,kv+1 . . . X2,kv+i . . . X2,(k+1)v

. . . . . . . . . . . . . . .
X2,(m2−1)v+1 . . . X2,(m2−1)v+i . . . X2,m2v

(3.7)

=


Y1,2,1 . . . Yh,2,1 . . . Yv,2,1
. . . . . . . . . . . . . . .
Y1,2,i . . . Yh,2,i . . . Yv,2,i
. . . . . . . . . . . . . . .
Y1,2,m2 . . . Yh,2,m2 . . . Yv,2,m2

 (3.8)



40 Finite-sample consistency

Thus the data vector X(δ), with 1 column and n = n1 +n2 rows, is organized
into a matrix Y(δ) with ν columns and m = m1 + m2 rows. Of course, as
v diverges also min(n1, n2) diverges. If we apply the same statistic as before
we observe that, for any v ≥ 1,:

T (X(δ)) =
1

n1

n1∑
i=1

X1i(δ)

=
1

m1

m1∑
i=1

1

v

v∑
h=1

Yh1i(δ) = T (Y(δ))

that is the two statistics coincide. Test statistic T when applied to the data
set Y(δ), as in the previous example is unconditionally finite-sample consis-
tent, because all the required conditions are satisfied by assumption.
Moreover, we may also write T (X(δ)) = T (X(0)) + δ = T (Y(δ)), stressing
that two forms have the same null distribution and the same non-centrality
parameter which does not vary as v diverges, whereas the null component
T (X(0)) as v diverges collapses almost surely towards zero by the strong law
of large numbers because, by assumption, the random deviates Z have first
moment equal to 0 and observations in Z are i.i.d.. Thus, the rejection prob-
ability for both ways converges to 1, ∀ δ > 0. And so weak unconditional
finite-sample consistency implies weak unconditional consistency, in accor-
dance with the traditional notion of consistency, for all α ≥ α-attainable.

3.2.4 Weak unconditional finite-sample consistency for
random effects

The previous results can be extended to divergent random effects ∆ according
to whatever sequence {∆v, v ≥ 1}, whose elements are stochastically non-

decreasing, i.e. ∆v

d

≤ ∆v+1,∀v ≥ 1,and provided that limv→∞ Pr{∆v >
u} → 1 for every finite u.
It is easy to verify that the finite sample consistency of e test T holds also
for random effects if we consider that to apply the Lebesgue’s monotone
convergence theorem to (3.4) it suffices that PZ(t−∆′′ ≤ u) is stochastically

dominated by PZ(t − ∆′ ≤ u) for every u, whenever ∆′
d

≤ ∆′′. So that
the associated sequence of probabilities {PZ [t − ∆v], v ≥ 1} monotonically
converges to zero.

This property is useful because it extends the validity of previous results to
the case of heteroscedastic variables. Let us consider a heteroscedastic data
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set is X(δ) = (δh + σhZh1i, i = 1, . . . , n1, σhZh2i, i = 1, . . . , n2;h = 1, . . . , V )

for the hypotheses H0 : {X1
d
= X2} = {δ = 0} against H1 : {X1

d
> X2} =

{δ ≥ 0}, where δh and σh are the fixed effect and the scale coefficient of the
hth variable. Suppose also that the test statistic has the form

T ′′∗(δ) = ψ(V )
V∑
h=1

[X̄∗h1(δh)− X̄∗h2(δh)]/Sh,

where, as in section 3.2.2,

X̄∗hj(δ) =

nj∑
i=1

X∗hji(δh)/nj = T ∗h (δ),

and Sh is a permutation invariant statistic for the hth scale coefficient σh,
that is a function S[Xhji(δh), i = 1, . . . , nj, j = 1, 2] of pooled data, so that
both conditional and unconditional distributions of [X̄h1(δh)−X̄h2(0)]/Sh are
invariant with respect to scale σh, h = 1, . . . , V, and ψ(V ) is such that the
statistic T ′′∗(0) is measurable as V diverges. Therefore, the statistic T ′′∗ is a
measurable sum of V scale-invariant partial tests T ∗h . Since Sh is a function of
random data Z ∈ X n, and thus is a random object, the scale-invariant non-
centrality parameter ψ(V )

∑
h≤V δh/Sh becomes a random quantity which we

may denominate ∆V . Also, we may denominate the tests statistic as T (∆V ).
Suppose now that the associated sequence of random effects {∆V , V ≥ 1},
being the sum of V stochastically non-negative quantities, diverges as V di-
verges. To see the finite-sample consistency of T (∆V ), let us consider the
permutationally equivalent form of the test statistics

T ∗(∆V ) = ψ(V )
V∑
h=1

n1∑
i=1

X∗h1i(δh)/Sh = ψ(V )

n1∑
i=1

V∑
h=1

X∗h1i(δh)/Sh

=

n1∑
i=1

Y ∗1i(δ) = T ′′∗(0) + n1∆∗V ,

where the Y1i(δ), i = 1, . . . , n1, are univariate data transformations which
summarize the whole set of information on effects δ collected by the V vari-
ables and ∆∗V = ψ(V )

∑
h≤V δ

∗
h/Sh. The right-hand side expression shows

that a multivariate test statistic is reduced to one univariate. It is worth
noting that we do not ask that all δh are positive, what is important is that
∆V diverges at least in probability as V diverges while T ′′∗(0) is measurable.
Therefore, T is unconditional finite-sample consistent at least in the weak
form. It is also to be emphasized that it is not required that the V variables
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are independent, actually they can be dependent in any way, because their
dependences are nonparametrically taken into consideration by the NPC pro-
cedure. What is important is that the distribution induced by T (X(0)) is
measurable and that of T (X(δ)) diverges at least in probability. It is also
important to observe that, since the statistics Sh are functions of the data,
the resulting random effects ∆V , being data dependent, are not independent
on random deviates Z.

3.3 Consistency of multi-sided test

In the previous chapter we introduced the multisided-test, a method useful to
testing the presence of random effects. The test is given by the combination
of two partial tests T1 and T2. Each partial test separately checks one side of
deviation from H0. In paragraph 2.3.4 we proved that the test is exact and
unbiased. To prove its consistency in the usual way we should verify that the
critical values Tα(X) are almost surely asymptotically finite for every α > 0.
This proof is not easy to obtain because asymptotically the test consists of
an infinite sum of elements. We will see instead that, using the finite-sample
consistency property, the proof is immediate.
Here we report the multi-sided test statistic for testing the sub-hypothesis

H01 :
{

∆
d
= 0
}

against H11 :

{
∆

d
< 0

}
.

T ∗1 =
n∑
i=1

S
{
F ∗1 (Xi)− F ∗2 (Xi)

}(
F̂ (Xi)

[
1− F̂ (Xi)

])−1/2

(3.9)

where

S {ω} =

{
ω if ω > 0
0 if ω ≤ 0,

We can rewrite the vector of observations

X(∆) = {X1i = µ+ ∆i + Z1i, i = 1, . . . , n1; X2i = µ+ Z2i, i = 1, . . . , n2}

in the matrix form Y(∆) as in equation (3.6) and (3.8) whose rows are of the
form Yji(∆) =

{
Y1ji = Xj,v(i−1)+1, . . . , Yhji = Xj,v(i−1)+h, . . . , Yvji = Xj,vi

}
,

j = 1, 2, where v ≥ 1, n1 = m1v, n2 = m2v and n = (m1 + m2)v. As in ex-
amples above, we can rewrite the test (3.9) in the permutationally equivalent



3.4 Simulation study 43

form:

T ∗1 =
1

n

m1+m2∑
i=1

v∑
h=1

S
{
F ∗1 (Yhi)− F ∗2 (Yhi)

}(
F̂ (Yhi)

[
1− F̂ (Yhi)

])−1/2

=
1

v

v∑
h=1

T ∗h

where

T ∗h =
1

m1 +m2

m1+m2∑
i=1

S
{
F ∗1 (Yhi)− F ∗2 (Yhi)

}(
F̂ (Yhi)

[
1− F̂ (Yhi)

])−1/2

Where the random variables Th, under H0, are i.i.d. with 0 mean and fi-
nite variance. As n1 or n2 diverges, also v diverges so we can apply the
Kolmogorov’s strong law of large numbers (Lessi, 1993) which states that

lim
v→∞

1

v

v∑
h=1

Th(0)
a.s.
= 0

so the whole null distribution collapses towards 0 with probability one, hence
for every α-value not smaller than the minimum attainable, the critical point
of T1 is zero. As shown in paragraph 2.3.4, in the alternative the statistic
T1(∆) increases with the effect ∆ and then falls in the critical region with
probability one.

3.4 Simulation study

In this section we report some results of a simulation study performed with
the goal to test the unconditional power behaviour of a two-sample multi-
variate test processed according to the direct combination of several partial
tests. So the global test statistic is given by the form T ′′D =

∑
h Th, T

′′o
D =∑

h T
o
h and T ′′∗Dr =

∑
h T
∗
hr, r = 1, . . . , B for the combined test, observed, and

permutation values respectively. Hence the combined p-value is given by
λ̂
′′

=
∑

r I(T ′′∗Dr ≥ T ′′oD )/B.
We consider a two-sample problem where there are V ≥ 1 variables, X =
(Xh, h = 1, . . . , V ), Xh = Xh1]Xh2, where Xh1 = (δh+σhZh1i, i = 1, . . . , n1)
are the observations of variable h on the first sample and Xh2 = (σhZh1i, i =
1, . . . , n2) are the observations of variable h on the second sample, δh and σh
are respectively the non-centrality parameter and scale coefficient of variable
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h. The Zhji, j = 1, 2 are the random errors generate with different, indepen-
dent distributions.
We perform the multivariate one-sided test

H0 :
{

X1
d
= X2

}
=

{⋂
h

Xh1
d
= Xh2

}

against the dominance alternative H1 :

{
X1

d
> X2

}
=

{⋃
hXh1

d
> Xh2

}
and the two-sided test H0 :

{
X1

d
= X2

}
=
{⋂

hXh1
d
= Xh2

}
against the

non-dominance alternative H1 :

{
X1

d

6= X2

}
=

{⋃
hXh1

d

6= Xh2

}
.

For every simulations we used different combinations of the number of vari-
ables V , the sample size n1 and n2, the α-value and the non centrality pa-
rameter δ. In particular the following values are used:

• V set on the seven values 1, 2, 10, 20, 50, 100, 1000;

• n1 = n2 set on the four values 3, 5, 10, 20;

• α set on the six values 0.05, 0.1, 0.2, 0.3, 0.5, 0.8;

• δ set on the seven values 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1.

We replicated the study with 1000 Monte Carlo simulations and considered
B = 1000 samples from the permutation sample space.
In the following presentation are reported only the result for δ = 0.2 and for
α = 0.05. The full table are avaible on request to the author. We considered
different distributions for the random variables Zhji and for each distribution
proper test statistic are used:

• Standard Normal Distribution: for σh = 1 (homoscedasticity) and for
unilateral test:

T ′′∗N =
V∑
h=1

n1∑
i=1

X∗h1i =

n1∑
i=1

V∑
h=1

X∗h1i =

ni∑
i=1

T ∗1i

For non-directional test we used the statistic:

T ′′∗Nb =

(
1

n1

n1∑
i=1

T ∗1i −
1

n2

n2∑
i=1

T ∗2i

)2

.
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V δ = 0 δ = 0.05 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1.0
1 0.049 0.054 0.063 0.081 0.103 0.18 0.269 0.433
2 0.053 0.066 0.082 0.131 0.166 0.277 0.443 0.662
10 0.059 0.098 0.139 0.264 0.415 0.726 0.922 0.998
20 0.051 0.083 0.142 0.347 0.577 0.928 0.993 1
50 0.059 0.128 0.271 0.639 0.912 1 1 1
100 0.048 0.169 0.398 0.882 0.995 1 1 1
1000 0.049 0.747 0.999 1 1 1 1 1

Table 3.1: Power of the T
′′
N test, n1 = n2 = 5, Zhij ∼ N(0, 1), α = 0.05

V δ = 0 δ = 0.05 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1.0
1 0.05 0.048 0.052 0.064 0.075 0.111 0.153 0.262
2 0.05 0.045 0.046 0.059 0.078 0.157 0.262 0.49
10 0.046 0.05 0.069 0.153 0.25 0.558 0.848 0.991
20 0.047 0.069 0.099 0.238 0.463 0.866 0.992 1
50 0.039 0.077 0.151 0.492 0.82 0.999 1 1
100 0.055 0.113 0.271 0.766 0.98 1 1 1
1000 0.059 0.578 0.983 1 1 1 1 1

Table 3.2: Power of the T
′′

Nb test, n1 = n2 = 5, Zhij ∼ N(0, 1), α = 0.05

where T ∗ji =
∑V

h=1 X
∗
hji, j = 1, 2. The estimated power of the multi-

variate one-sided and two-sided test are reported respectively in Table
3.1 and 3.2, both for α = 0.05 and with n1 = n2 = 5.
For σh 6= σk, h 6= k (heteroscedastic variables) we define the permu-

tationally invariant square sum of deviation for variable h as:

SS(Xh) =

√√√√ 2∑
j=1

nj∑
i=1

X2
hji − nX

2

h

where Xh = 1
n

∑2
j=1

∑nj
i=1 Xhji. The permutation test statistic be-

comes:

T ′′∗N (σ) =

n1∑
i=1

V∑
h=1

X∗hji(σ)

SS(Xh)
=

n1∑
i=1

T ∗1i(SS)

The two-sided test now becomes:

T ′′∗Nb(σ) =

(
1

n1

n1∑
i=1

T ∗1i(SS)− 1

n2

n2∑
i=1

T ∗2i(SS)

)2

where

T ∗ji(SS) =
V∑
h=1

X∗hji(σ)

SS(Xh)
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V δ = 0 δ = 0.05 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1.0
1 0.05 0.059 0.069 0.082 0.103 0.161 0.247 0.404
2 0.055 0.063 0.076 0.104 0.147 0.27 0.414 0.666
10 0.047 0.078 0.112 0.209 0.341 0.685 0.914 0.998
20 0.056 0.098 0.174 0.365 0.582 0.92 0.997 1
50 0.03 0.092 0.238 0.607 0.891 0.999 1 1
100 0.055 0.19 0.406 0.872 0.993 1 1 1
1000 0.053 0.711 0.999 1 1 1 1 1

Table 3.3: Power of the T
′′
N(σ) test, n1 = n2 = 5, Zhij ∼ N(0, 1), α = 0.05

V δ = 0 δ = 0.05 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1.0
1 0.044 0.045 0.046 0.051 0.064 0.108 0.16 0.258
2 0.045 0.046 0.047 0.053 0.072 0.156 0.244 0.444
10 0.043 0.047 0.067 0.142 0.255 0.57 0.844 0.988
20 0.045 0.054 0.079 0.188 0.401 0.833 0.979 1
50 0.059 0.078 0.149 0.442 0.801 0.998 1 1
100 0.047 0.1 0.269 0.73 0.975 1 1 1
1000 0.052 0.574 0.987 1 1 1 1 1

Table 3.4: Power of the T
′′

Nb(σ) test, n1 = n2 = 5, Zhij ∼ N(0, 1), α = 0.05

for j = 1, 2. The estimated power of the one-sided and two-sided test
with heteroscedastic variables are reported respectively in Table 3.3 and
3.4, both for α = 0.05 and with n1 = n2 = 5. In Figure 3.1 we report
the power of the two-sided test with homoscedastic and heteroscedastic
variables for different number of variables, normal error, δ = 0.2. The
power of the two tests are very similar.

• Student-t with two degree of freedom distribution. For one-sided and
two-sided test with homoscedastic variables we can use the same test
statistics as before and so T ′′∗t = T ′′∗N and T ′′∗tb = T ′′∗Nb.. In Table 3.5 and
3.6 are reported the estimated power functions with Student-t errors.
The remaining settings are as before.

Since the Student’s t2 distribution has infinite second moment we
can’t use the SS(Xh) statistic to standardize the variables. In place of
SS(Xh) we can use the sum of absolute deviates from mean:

S(Xh) =
2∑
j=1

nj∑
i=1

∣∣Xhji −Xh

∣∣
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Figure 3.1: The two-sided tests with normal error

V δ = 0 δ = 0.05 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1.0
1 0.047 0.049 0.053 0.067 0.081 0.126 0.179 0.246
2 0.051 0.057 0.066 0.087 0.11 0.162 0.23 0.335
10 0.046 0.058 0.076 0.106 0.146 0.251 0.414 0.609
20 0.052 0.068 0.087 0.15 0.223 0.399 0.583 0.793
50 0.05 0.085 0.119 0.202 0.326 0.613 0.801 0.928
100 0.067 0.104 0.146 0.305 0.475 0.779 0.916 0.979
1000 0.049 0.163 0.417 0.855 0.966 0.993 0.997 0.999

Table 3.5: Power of the T
′′
t test, n1 = n2 = 5, Zhij ∼ t2, α = 0.05

V δ = 0 δ = 0.05 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1.0
1 0.04 0.042 0.045 0.05 0.053 0.066 0.099 0.16
2 0.042 0.044 0.046 0.044 0.05 0.079 0.138 0.236
10 0.055 0.058 0.06 0.072 0.093 0.177 0.3 0.532
20 0.056 0.057 0.061 0.085 0.134 0.289 0.466 0.728
50 0.057 0.058 0.067 0.11 0.183 0.429 0.688 0.895
100 0.047 0.056 0.079 0.187 0.347 0.677 0.866 0.96
1000 0.046 0.1 0.281 0.765 0.944 0.988 0.996 0.999

Table 3.6: Power of the T
′′

tb test, n1 = n2 = 5, Zhij ∼ t2, α = 0.05
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V δ = 0 δ = 0.05 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1.0
1 0.054 0.057 0.064 0.081 0.092 0.127 0.181 0.262
2 0.056 0.065 0.073 0.088 0.104 0.154 0.226 0.345
10 0.032 0.044 0.054 0.109 0.178 0.37 0.571 0.815
20 0.051 0.081 0.113 0.197 0.303 0.579 0.818 0.966
50 0.047 0.092 0.148 0.334 0.545 0.883 0.978 0.999
100 0.044 0.113 0.202 0.484 0.777 0.988 1 1
1000 0.056 0.347 0.811 1 1 1 1 1

Table 3.7: Power of the T
′′
t (σ) test, n1 = n2 = 5, Zhij ∼ t2, α = 0.05

V δ = 0 δ = 0.05 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1.0
1 0.034 0.038 0.041 0.052 0.062 0.084 0.112 0.181
2 0.056 0.054 0.055 0.055 0.061 0.087 0.133 0.218
10 0.052 0.054 0.061 0.081 0.106 0.216 0.388 0.642
20 0.046 0.048 0.059 0.094 0.168 0.396 0.659 0.918
50 0.054 0.06 0.08 0.194 0.355 0.778 0.948 0.998
100 0.044 0.064 0.122 0.342 0.639 0.966 0.998 1
1000 0.05 0.241 0.673 1 1 1 1 1

Table 3.8: Power of the T
′′

tb(σ) test, n1 = n2 = 5, Zhij ∼ t2, α = 0.05

So for heteroscedastic variables, we used the statistics:

T ′′∗t (σ) =

n1∑
i=1

V∑
h=1

X∗h1i(σ)

S(Xh)
=

n1∑
i=1

T ∗1i(S)

for one-side test and:

T ′′∗tb (σ) =

(
1

n1

n1∑
i=1

T ∗1i(S)− 1

n2

n1∑
i=1

T ∗2i(S)

)2

for two-side test where

T ∗ji(S) =
V∑
h=1

X∗hji(σ)

S(Xh)

for j = 1, 2. In Table 3.7 and 3.8 we report the estimated power for
these last test.

• Standard Cauchy. This distribution has no moment so we must use
the sample median as location index and the median absolute devia-
tion (MAD) as scale indicator to standardize the variables. For ho-
moscedastic variables and for one-sided and two-sided test we used
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V δ = 0 δ = 0.05 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1.0
1 0.031 0.037 0.041 0.049 0.054 0.077 0.094 0.125
2 0.049 0.052 0.056 0.072 0.088 0.115 0.16 0.227
10 0.05 0.058 0.077 0.104 0.171 0.318 0.487 0.705
20 0.055 0.074 0.089 0.148 0.247 0.509 0.739 0.919
50 0.04 0.075 0.118 0.293 0.467 0.829 0.966 0.998
100 0.046 0.092 0.169 0.42 0.738 0.972 1 1
1000 0.053 0.311 0.757 0.996 1 1 1 1

Table 3.9: Power of the T
′′
C test, n1 = n2 = 5, Zhij ∼ Cau(0, 1), α = 0.05

V δ = 0 δ = 0.05 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1.0
1 0.036 0.041 0.042 0.042 0.043 0.051 0.064 0.085
2 0.045 0.045 0.047 0.051 0.06 0.065 0.083 0.126
10 0.037 0.042 0.047 0.062 0.083 0.188 0.312 0.511
20 0.041 0.052 0.061 0.092 0.149 0.329 0.55 0.808
50 0.052 0.055 0.071 0.156 0.322 0.677 0.892 0.985
100 0.04 0.057 0.093 0.26 0.543 0.91 0.99 1
1000 0.056 0.189 0.591 0.978 1 1 1 1

Table 3.10: Power of the T
′′

Cb test, n1 = n2 = 5, Zhij ∼ Cau(0, 1), α = 0.05

respectively:

T
′′∗
C =

n1∑
i=1

T̃ ∗1i T
′′∗
Cb =

(
1

n1

n1∑
i=1

T̃ ∗1i −
1

n2

n1∑
i=1

T̃ ∗2i

)2

where T̃ ∗ji = Me(X∗hji), j = 1, 2 and Me is the median operator. The
estimated power function of these two tests are in Table 3.9 and 3.10.
To standardize the variable we use the index

MAD (Xh) = Me
∣∣∣Xhi − X̃h

∣∣∣ ,
where X̃h = Me [Xhi] calculated on the pooled data set. If we in-

dicate with ˜T ∗ji(MAD) = Me
[
X∗hji/MAD(Xh)

]
, j = 1, 2, for non-

homoscedastic variables and for one side and two side test we can use
respectively:

T ′′∗C (σ) =

n1∑
i=1

˜T ∗1i(MAD)

T ′′∗Cb(σ) =

(
1

n1

n1∑
i=1

˜T ∗1i(MAD)− 1

n1

n2∑
i=1

˜T ∗2i(MAD)

)2
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V δ = 0 δ = 0.05 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1.0
1 0.036 0.041 0.042 0.042 0.043 0.051 0.064 0.085
2 0.045 0.045 0.047 0.051 0.06 0.065 0.083 0.126
10 0.037 0.042 0.047 0.062 0.083 0.188 0.312 0.511
20 0.041 0.052 0.061 0.092 0.149 0.329 0.55 0.808
50 0.052 0.055 0.071 0.156 0.322 0.677 0.892 0.985
100 0.04 0.057 0.093 0.26 0.543 0.91 0.99 1
1000 0.056 0.189 0.591 0.978 1 1 1 1

Table 3.11: Power of the T
′′
C(σ) test, n1 = n2 = 5, α = 0.05

V δ = 0 δ = 0.05 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1.0
2 0.046 0.044 0.041 0.043 0.039 0.051 0.072 0.101
5 0.045 0.048 0.051 0.061 0.08 0.134 0.237 0.376
10 0.055 0.059 0.064 0.097 0.125 0.262 0.424 0.696
20 0.052 0.052 0.064 0.117 0.195 0.452 0.721 0.928
50 0.055 0.065 0.094 0.251 0.455 0.845 0.967 1
100 0.045 0.073 0.157 0.422 0.727 0.983 0.999 1
500 0.048 0.149 0.477 0.963 1 1 1 1
1000 0.041 0.298 0.779 1 1 1 1 1

Table 3.12: Power of the T
′′

Cb(σ) test, n1 = n2 = 5, α = 0.05

In Table 3.11 and 3.12 the estimated power of the T ′′C(σ) and T ′′Cb(σ)
respectively. In Figure 3.2 we report the power of the two-sided test
with homoscedastic and heteroscedastic variables for different number
of variables with Cauchy distributed errors, δ = 0.2. Again, the power
of the two tests are very similar.
For the two-sided test with heteroscedastic variables we use another
kind of statistic

T ′′∗Cb(σ)Me =
(

Me
[

˜T ∗1i(MAD)
]
−Me

[
˜T ∗2i(MAD)

])2

the power obtained with this statistic is reported in Table 3.13, and in
Figure 3.3 we report the power of the statistics T ′′∗Cb(σ) and T ′′∗Cb(σ)Me

both obtained with δ = 0.2. In Figure 3.4 we report a similar com-
parison, obtained with t2-Student distributed heteroscedastic random
errors, between the statistic Ttb(σ) and

T ′′∗tb (σ)Me = (Me [T ∗1i(S)]−Me [T ∗2i(S)])2

Clearly the statistics T ′′Cb(σ)Me and T
′′

tb(σ)Me are not associative as
using the median operator instead of the mean as in statistics T ′′Cb(σ)
and T

′′

tb(σ) anyway, the power of the test converges quickly to 1 as
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Figure 3.2: The two-sided tests with Cauchy distributed errors

V δ = 0 δ = 0.05 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1.0
2 0.042 0.043 0.047 0.048 0.058 0.058 0.079 0.11
5 0.052 0.056 0.054 0.067 0.089 0.148 0.22 0.344
10 0.045 0.048 0.051 0.067 0.108 0.233 0.398 0.628
20 0.058 0.063 0.076 0.12 0.198 0.429 0.66 0.902
50 0.042 0.049 0.085 0.231 0.427 0.785 0.955 0.992
100 0.046 0.07 0.136 0.372 0.672 0.963 0.997 1
500 0.045 0.166 0.46 0.949 0.999 1 1 1
1000 0.043 0.253 0.743 1 1 1 1 1

Table 3.13: Power of the T
′′

Cb(σ)Me test, n1 = n2 = 5, α = 0.05
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Figure 3.3: Comparison of statistics T
′′

Cb(σ) and T
′′

Cb(σ)Me

Figure 3.4: Comparison of statistics T
′′

tb(σ) and T
′′

tb(σ)Me
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V δ = 0 δ = 0.05 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1.0
2 0.054 0.048 0.053 0.068 0.077 0.142 0.254 0.481
5 0.058 0.051 0.045 0.073 0.12 0.273 0.505 0.812
10 0.039 0.04 0.067 0.128 0.239 0.553 0.838 0.984
20 0.054 0.053 0.081 0.201 0.419 0.842 0.989 1
50 0.035 0.059 0.139 0.483 0.828 0.998 1 1
100 0.047 0.108 0.27 0.782 0.986 1 1 1
500 0.048 0.369 0.871 1 1 1 1 1
1000 0.047 0.568 0.983 1 1 1 1 1

Table 3.14: Power of the two-sided test, with mixture of a fixed and a random
effect give by ∆t = 0.5∆t−1 + e, e ∼ N(0, 0.1), n1 = n2 = 5, Zhij ∼ N(0, 1),
α = 0.05

V δ = 0 δ = 0.05 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1.0
2 0.123 0.11 0.098 0.071 0.056 0.041 0.048 0.128
5 0.033 0.035 0.032 0.058 0.104 0.243 0.453 0.764
10 0.063 0.044 0.026 0.016 0.027 0.124 0.37 0.822
20 0.012 0.022 0.037 0.101 0.225 0.623 0.919 1
50 0.03 0.067 0.134 0.425 0.783 0.997 1 1
100 0.025 0.074 0.224 0.701 0.958 1 1 1
500 0.359 0.032 0.02 0.815 1 1 1 1
1000 0.03 0.089 0.733 1 1 1 1 1

Table 3.15: Power of the two-sided test, with mixture of a fixed and a random
effect give by ∆t = 0.5∆t−1 + e, e ∼ N(0, 1), n1 = n2 = 5, Zhij ∼ N(0, 1),
α = 0.05

for the associative statistic. This convergence suggests the validity of
the finite sample consistency also for non-associative statistics. In this
work, however, we will not go further in this direction. This result
also suggests that outside the exponential family, the sample mean is
not necessarily the best choice because the statistic is not minimal
sufficient.

• Mixture of a fixed and random correlated effects. In this simulations
we add to the fixed effect an autocorrelated part given by the AR(1)
process ∆t = 0.5∆t−1 + e, where e is a Normal innovation with mean
0 and with two different variances: σAR = 0.1 and σAR = 1. With this
kind of processes we want to study the behaviour of the power of the test
when the effects are in some way dependent. We performed the two-
sided test with Normal(0,1) errors and σh 6= σk, h 6= k. The statistic
used is the T ∗Nb(σ). In Table 3.14 and 3.15 the estimated power of
these two-sided tests with σAR = 0.1 and σAR = 1 respectively. When



54 Finite-sample consistency

Figure 3.5: The two-sided tests with random effect

the variance of the AR process is greater is evident a non monotonically
convergence of the power to one. This behaviour is due to the major
noise introduced by the AR process. This situation is evident in Figure
3.5.

3.5 Conclusion

The finite sample consistency is a very important property which should be
taken into account by experimenter when defining the design of the observa-
tional or experimental study. The simulation study confirmed what we have
seen theoretically. Of course, it has to be underlined that only informative
variables allow us to gain in power. With the NPC approach we can deal with
situations where the number of variables is considerably larger than the num-
ber of observations. However, in these contexts the problem of multiplicity
immediately arises. We will discuss about this topic in the next chapter.



Chapter 4

Nonparametric Weighted Step
Down Holm Method with
heteroscedastic variables

4.1 Introduction

In previous chapters we saw how the permutation methods deal with issues
where the number of variables to be treated is far greater than the number
of observations. In previous chapters the focus is placed on the global test
obtained by the combination of partial tests. In this chapter we will instead
consider the partial individual tests, we will see the problems of multiplicity
and we will propose a permutation-based test procedure controlling the fam-
ily wise error rate (FWE) by Weighted Step Down Holm methods (WSDH).
It is shown that in this contest the choice of the weights must be permu-
tation invariant. By a simulation study we “controlled” that the weights
chosen as function of the variance of the pooled data set are good also for
heteroscedastic variables.

4.2 The multiple testing problem

The issue of multiplicity control occurs in any situation where a problem is
structured into more than one statistical test. This situation occurs very
frequently in practice and there is an increasing tendency among researchers
to analyze complex data sets from many viewpoints, formulating and test-
ing myriads of hypotheses. In many cases a global multivariate test (e.g.
when comparing two independent or dependent groups) is not sufficient for
the experimenter who wishes to know which of the variables takes part in
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the observed effects. In this article, therefore, we consider statements about
individual null hypothesis H01, . . . , H0V , rather than just the global null hy-
pothesis H0 =

⋂
hH0h. A major drawback of multiple testing is the greatly

increased probability of declaring ”false significances”, or statistically signif-
icant associations where none exists in reality. A related negative feature is
that it is very easy to overstate the evidence for a particular association if
the statistical test that best supports a given hypothesis is chosen. One solu-
tion for solving the multiplicity dilemma is to make the individual tests more
conservative, i.e. to arrive at rejecting H0h with more difficulty. Such a pro-
cedure is called a Multiple Testing Procedure (MTP). MTPs are commonly
devised to control the Family-wise Error Rate (FWE). The strong form of
FWE is the probability of rejecting any true null hypothesis Hh contained in
a subset of true null hypotheses S; stated formally:

FWE(S) = Pr(Reject all least one H0h, h ∈ S|H0h is true for all h ∈ S).

A simultaneous test procedure is said to control the FWE in the strong
sense if FWE(S) ≤ α for any subset S of hypotheses that happens to be
true. Various MTPs have been proposed to control FWE. An overview can
be found in Hochberg and Tamhane, 1987. Closed testing and step-wise
methods are particularly popular because of their improved power (Marcus
et al., 1976).
Here we consider a nonparametric permutation approach applied to step-
down weighted methods. Weighted methods are useful when some Hh are
more important than others. For example, main effect tests might be consid-
ered more important than interactions, primary endpoints in clinical trials
might be considered more important than secondary endpoints, and so on.

4.3 Weighted step-down method

The simplest and the first weighted multiple testing procedure is the weighted
single-step Bonferroni (WSSB) method (Westfall and Krishen, 2001): reject
H0h if ph ≤ whα, where ph is the unadjusted p-value of hypothesis Hh and
wh is the weight assigned to hypothesis Hh, wh ≥ 0,

∑
wh = 1.

Holm developed a weighted step-down testing method using the Bonferroni
inequality and the min ph/wh statistic. Firstly we consider Holm’s original
step-down (SDH) method then we extend it to the weighted form. Given
a set of p-values sorted in increasing order p(1) ≤ . . . ≤ p(V ) corresponding
to null hypotheses H(1), . . . , H(V ), hypothesis H(k) is rejected under the SDH
method if p(h) ≤ α/(V −h+1), for all h = 1, . . . , k. The intuitive rationale is
as follows: once H(1) has been rejected using Bonferroni critical value α/V ,
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we should believe that H(1) is false. Thus, there are only V − 1 hypotheses
which might still be true, implying the critical value α/(V − 1) for H(2), and
so on.
The method is popular because it is uniformly more powerful than the single-
step Bonferroni method and yet retains control of the FWE in the strong
sense. However, in many circumstances, the various hypotheses are not
equally important. For example, in a two-way ANOVA model, main effect
contrasts might be considered more important than interaction contrasts.
If so, it is reasonable to allocate larger weights to the tests of primary im-
portance. In this sense Holm extended his step-down testing method to
incorporate weights as follows: once the weights have been assigned sort the
weighted p-values qh = ph/wh into increasing order q(1) ≤ q(2) . . . ≤ q(V ),
where q(k) = qhk and hk denotes the index of the kth ordered weighted
p-value. Define the set Sk = hk, . . . , hV , k = 1, . . . , V . By letting H(k)

denote the hypothesis corresponding to q(k), the weighted step-down Holm
(WSDH) method rejects H(k) if q(h) ≤ α/

∑
k∈Sh wk for all h = 1, . . . , k.

When the weights are all equal to 1/V , the method reduces to the ordinary
SDH method.

4.4 Permutation WSDH

We consider a two-sample test assuming a model with fixed additive effects:

Xhji = µh + δhj + σhjZhji (4.1)

where Xhji indicate the ith observation, i = 1, . . . , nj, from the sample j =
1, 2 of the variable h = 1, . . . , V , µh represents a population constant for the
hth variable, δhj represents effect on the hth variable in sample j, and Zhji
are V -dimensional random errors, which are assumed to be exchangeable
with respect to groups or samples, independent with respect to units, with
null mean vector E(Z) = 0) and with unspecified distribution. σhj is the
scale coefficient of variable h and may depend on the treatment. Note that
we do not assume homoscedasticity among variables, as in Kropf et al., 2004
and Westfall and Krishen, 2001. We wish to choose the weights wh on the
basis of the experimental data so no a priori knowledge is required. As it is
well known, the weights must be permutationally invariant quantities in the
sense that for all points in the permutation sample space X/X the weight of
variable h is the same. The WSDH method is implemented as follows:

1. Calculate the p-values for the usual permutation two-sample two-sided
test for each of the V variables.
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2. For each variable h, determine the permutation invariant weight wh =
sηh, where sh is a chosen permutation invariant statistic and η is a
positive fixed coefficient.

3. Calculate the weighted p-values qh = ph/wh and sort the variables for
increasing values: qh1 ≤ qh2 ≤ . . . ≤ qhV or q(1) ≤ q(2) ≤ . . . ≤ q(V )

respectively. Define the index sets Su = hu, hu+1, . . . , hV , for u =
1, 2, . . . , V .

4. The ordered hypothesis H(u) for u = 1, 2, . . . , V is rejected as long as
q(u) ≤ α/

∑
k∈Su wk.

We can prove that this procedure maintains the FWE in the strong sense.
We follow the arguments used in Kropf et al., 2004 for the Wilcoxon test.
Let S0 be the subset of variables that satisfy H0 and h0 the first variable
under H0 after the ordering of step 3 above. If the procedure controls the
FWE, the null hypothesis for variable X(h0) is accepted with probability 1−α
at least. If the procedure stops before reaching this variable, a rejection of
any true null hypothesis is avoided. Let Sh0 be the set constructed as at
point 3. Obviously S0 ⊆ Sh0 since both sets contain all variables fulfilling
the true null hypotheses but Sh0 possibly contains other variables. Note
that for a fixed X/X, the weights wh for h = 1, . . . , V are fixed too because
they depend on the pooled sample data, and so are permutation invariant
quantities. Hence the variable with min qh is also fixed in X/X as well as the
ordering subscripts h1, . . . , hV . So the permutation test for this variable is
the usual one. Conditional on X/X we have:

Pr

(
q(h0) ≤

α∑
k∈Sh0

wk
|X/X

)
≤ Pr

(
q(h0) ≤

α∑
k∈S0

wk
|X/X

)
since

∑
k∈S0

wk ≤
∑

k∈Sh0
wk. The probability of declaring a test h ∈ S0

significant is equivalent to:

Pr

(
min
h∈S0

qh ≤
α∑

k∈S0
wk
|X/X

)
= Pr

(⋃
h∈S0

(
qh ≤

α∑
k∈S0

wk
|X/X

))

= Pr

(⋃
h∈S0

(
ph ≤

αwh∑
k∈S0

wk
|X/X

))

≤
∑
h∈S0

Pr

(
ph ≤

αwh∑
k∈S0

wk
|X/X

)
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Where the latter is the well-known Bonferroni inequality. As sample sizes
tend to infinity, attainable p-values become dense in the unit interval, so when
H0h is true, ph becomes uniformly distributed in the interval [0, 1] (Pesarin,
2001). Therefore under H0h, Pr(ph ≤ c) ≤ c for any constant c and thus:

Pr

(
q(h0) ≤

α∑
k∈Si0

wk
|X/X

)
≤

∑
h∈S0

Pr

(
ph ≤

αwh∑
k∈S0

wk
|X/X

)
≤

∑
h∈S0

αwh∑
k∈S0

= α

The similarity property (see paragraph 2.3.2) of permutation tests in contin-
uous non-degenerate situations is attained for almost all data set X. This
property allows us to extend the conditional inference to the unconditional
inference so the inequality above is valid also unconditionally.

4.5 The choice of the weights

If we consider homoschedastic variables, the sample variance of the pooled
data set is a good choice for the weights as shown in Kropf et al., 2004.
What happens if the variables are heteroscedastic? In our simulation study
we consider a two-sample test with a data set composed of five observations
per sample from N(µh, σ

2
h) where µh is a U(0, 10) and σ2

h is a U(1, 10000).
Since the variables are heteroscedastic the non-centrality parameters δh are
set δh = δ

√
σ2
i , with δ = 2. We wish to check the power behaviour. In

the literature there have been several definitions of power given for multiple
testing. We consider the total power i.e. the probability of detecting all true
alternatives. In Figure 4.1 it is shown the behaviour of the sample variances
for each of the generated 100 variables. The first 10 variables are generated
under H1, the other 90 under H0. The sample variance appears to be a
good indicator to identify the variables under H1 since for these variables it
assumes generally greater values than the variables under H0.
Figure 4.2 shows the power of the test evaluated after 1000 runs of Monte
Carlo Simulation. It also shows the type I error which is under control for
each value of η.

4.6 Conclusions

The accurate interpretation of statistical data is a concern of physicians,
politicians sociologists, engineers, and scientists everywhere. A problem that
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Figure 4.1: Sample variances of the variables

Figure 4.2: Power of the test
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recurs in research studies, on which these professionals depend, is the exten-
sive analysis of data. Modern computing equipment makes extensive analysis
quite inexpensive, relative to the cost of obtaining the data. Once the data
is available and on the computer, researchers question and analyze it from
every possible angle, to miss no information. The result of such extensive
data analysis, or “data mining”, is the increased chance of inaccurately in-
terpreted data. In particular, spurious results may be claimed to be real. For
this reason some kind of corrections of the p-value obtained is necessary.
In the previous chapter we saw that in the non-parametric framework, the
addition of informative variables increases the power of the combined test.
Even the combination of partial tests can be seen as a kind of correction
to solve the multiplicity dilemma, even if the combined test does not re-
veal what partial tests are actually significant. In this chapter we extended
the WSDH method with data-driven weights to the permutation framework.
The simulation study shows that even with heteroscedastic variables, if the
non-centrality parameters are in terms of signal to noise ratio, the sample
variance is still an acceptable indicator for the construction of the weights.
If V = 1, the application of methods for the multiplicity control to multi-sided
test allows to verify which of the two tails, if not both, of the distributions
of the random effect ∆ are active. If V > 1 is possible to identify which vari-
ables are really effected by the treatment. In a three-dimensional surfaces
analysis, this allows for the possibility of identifying the areas in which the
treatment has produced an effect. This type of analysis will be discussed in
detail in the next chapter.
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Chapter 5

Nonparametric Functional Data
Analysis of 3-D surfaces

5.1 Introduction

The theoretical aspects presented in previous chapters here are used to solve a
testing problem connected to three-dimensional surface analysis. This chap-
ter opens with a brief description of the surgical problem that motivated
the research, then we discuss some concepts relating to functional data from
which we borrow the theoretical rationale for our choice of representing three-
dimensional surfaces by means of Radial Basis Functions. Within this type of
representation the application of permutation tests becomes easily justified.

5.2 A three-dimensional data in orthognathic

surgery

5.2.1 Oral-maxillofacial surgery

Dentofacial malformations are pathologies of the shape and size of the face.
The oral-maxillofacial surgeon who attempts to correct these by deformations
and segmentation of the facial skeleton into parts and recomposes them in or-
der to modify the size, the form, and location of typical regions. A variation
in the skeletal support induces a modification of the nearby soft tissues and
thus of the facial aesthetics. Up until a few years ago the guiding principle
behind the reconstruction of the maxilla was represented by the occlusion
and by the mean statistical measure of the skeletal dimensions typical of
the population to which the patient belonged. Experience has shown that
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this clinical principle does not necessarily mean that the soft tissues anal-
ogously achieve the standards and thus that facial aesthetics improves. At
present time surgeons prefer to define - in a preliminary way- the aesthetic
goal to achieve, that is the desired form of the soft issues. The movements
of the teeth and maxilla that are necessary to obtain that goal are then de-
cided. In the past, every clinical decision concerning the direction and the
quantity of required skeletal movements was based upon the surgeon’s intu-
ition and experience. Recently, 2-dimensional software capable of modifying
the features of the face in relation to dentoskeletal movements have joined
the conventional support instruments used in clinics, such as models of the
dental arches, radiographs and face photos. Naturally the basic problem be-
hind these procedures is the accuracy of the prediction that they produce.
Simulations have been shown to be moderately accurate when the surgical
movements shift the skeletal hard tissue and thus the related soft tissues
in a forward-backward direction. The inadequacy of the 2-dimensional ap-
proach for the prediction of variations induced by surgical treatment and
the need of utilizing a representation and modification patterns containing
3-Dimensional data have become evident to the oral-maxillofacial surgeon.

5.2.2 The 3-Dimensional approach

A number of methods of facial reconstruction and 3-Dimensional analyses
have been proposed in the literature. The technology based on the Struc-
tured Light Systems, such as those based on laser scanning (Moss et al.,
1994), is capable of faithfully reproducing the features of the facial surface so
that these can be evaluated. Its clinical applications, thus, permit an accu-
rate evaluation of the modifications of the pre- and post-operative surfaces.
In particular a complete laser scan of the face of a patient is composed by a
collection of approximately 1,500,000 three-dimensional points which permit
details up to order of 0.5 mm. Even with this new methodology the develop-
ment, on statistical basis, of a prediction model of the modifications induced
on soft tissues consequent to skeletal movements in maxillofacial surgery is
far from being easy to achieve. It should be remembered that the soft tis-
sues present non linear modifications with respect to the movements of the
underlying skeletal structures connected to:

1. the type of surgical intervention to be carried out;

2. the diversity of the individual patient’s response to the surgical trauma
undertaking the same intervention;

3. the personal experience of the surgeon.
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The complexity and the intrinsic non linearity of the induced modifications
justify the decision to derive the possible correlations from statistical analysis.
The problem is so complex that it is still unclear which areas of the soft tissues
are really involved by the skeletal movements in the surgery. In particular,
the subjectivity of patient response, as indicated in point 2 above, makes it
difficult to assess the direction of changes in some areas. So, the effect of the
same maxillofacial surgery, in one area, may be positive on some subjects
and negative on others.
In the following paragraphs, we introduce the functional data in R, then we
extend the results from R to R3 to represent three-dimensional surfaces, since
the scattered data supplied form the laser scan are considered observations of
an underlying function s : R3 → R. Then, as the representation of a surface
does involve a large (sometimes very large) set of data for each individual,
we must apply to this representation the multi-sided tests, the NPC method
for multivariate testing, and the multiple testing analysis on selected areas.

5.3 Functional Data

5.3.1 Some properties of functional data

The basic philosophy of functional data analysis is to think of observed data
functions (typically curves) as singles, rather than merely as a sequence of
individual observations. The term functional in reference to observed data
refers to the intrinsic structure of the data rather than to their explicit form.
In practice, functional data are usually observed and recorded discretely as
v pairs (th, yh), and yh is a snapshot of the function at point th, possibly
blurred by measurement error. Not always time is the continuum over which
functional data are recorded; certainly other continua may be involved, such
as spatial position, frequency, weight, and so forth.
What would it mean for functional observation to be known in functional
form s, where s, in this contest, refers to a function? We do not mean that s
is actually recorded for every value of t, because that would involve storing
an uncountable number of values. Rather, it means that the existence of
a function s giving rise to the observed data is assumed. In addition, for
typical kind of analyses we have to carry out, we assume that the underlying
function s is smooth, so that a pair of adjacent data values yh and yh+1 are
necessarily linked together to some extent and unlikely to be too different
from each others. If this smoothness property do not apply, there would be
nothing much to be gained by treating the data as functional rather than
just multivariate observations.
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Clearly, working with facial surfaces the assumption that the underlying func-
tion is smooth is justified. Smooth usually means that function s possesses
one or more derivatives, indicate by Ds, D2s and so on, so that Dms refers to
the derivative of order m and Dms(t) is the value of that derivative at point
t. We will usually want to use discrete data yh, h = 1, . . . , v to estimate the
function s and at same time a certain number of its derivatives.
The actual observed data, however, may not be at all smooth due to the
presence of noise or measurement error. Some of this externally induced
variation may indeed have all the characteristics of noise, that is, be form-
less and unpredictable, or it may be high-frequency variation that we could
in principle model, but for practical reasons choose to ignore. Sometimes
this noise level is a tiny fraction of the size of the function that it reflects,
and then we say that the signal-to-noise ratio (S/N ratio) is high. However,
higher levels of variation of the yh around the corresponding s(th)’s can make
extracting a stable estimate of the function and some of its derivatives a real
challenge.
Clearly we are concerned with a collection or sample of functional data,
rather than just a single function s: one function for each sampled indi-
vidual. Specifically, using the same indices used in previous chapters, the
observation of the function of subject i, si might consist of vi pairs (thi, yhi),
h = 1, . . . , vi. If we consider the observations pre- and post-surgery, like in
one-sample paired problems, we can indicate the underlying functions s1i and
s2i whose observations are respectively the pairs (th1i, yh1i), and (th2i, yh2i),
h = 1, . . . , vi, i = 1, . . . , n. Until it is necessary, we will use the simplified
notation s.

5.3.2 The interplay between smooth and noisy varia-
tion

Smoothness, in the sense of possessing a certain number of derivatives, is a
property of the true underlying (latent) function s. Of course, it may not be
at all obvious in the raw data vector y = (y1, . . . , yv), owing to the presence
of observational error or noise that is superimposed on the underlying signal
as a consequence of the measurement process, how to separate noise from
signal. We express this in notation as:

yh = s(th) + εh (5.1)

where the noise, disturbance, error, perturbation or otherwise exogenous
term εj contributes a roughness to the raw data, for which, as usual we
assume E [εj] = 0. Of course, in this model signal and noise are confounded.
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Thus, one of the task in representing the raw data as functions may be to
attempt to filter out this induced noise as efficiently as possible, instead to
try separating them.
When comparing sample functions discretized according to (thi, yhi), h =
1, . . . , vi we meet some more problems:

1. the number of really observed points is not necessarily invariant with
respect to individuals: vi are not constant numbers;

2. points thi and thj are generally not synchronized in the sense that yhi
and yhj do not correspond to observations on the same point in the
surface and for all individuals, so that they are not directly comparable
(e.g., points of two photos taken in different occasions on the same
subject cannot be synchronized by just considering their ordering in
the digital sequence).

A direct implication of 2. is that we cannot directly compare curves by
means of standard permutation multivariate tools based on their multivari-
ate discretized representation, because of lack of synchronization of observed
points. In fact, it is well-known that in multivariate comparisons it is com-
pulsory to compare variables having the same name: weights with weights,
speeds with speeds, etc. To this end we must represent observed curves by
means of suitable series expansions so that we can compare their ordered
coefficients which are then synchronized due to their ordering. Of course,
assumed suitable smoothness property of s allow for series expansions.

5.3.3 Smoothing data using a basis system by least
squares

A basis function system is a set of known functions φk that are mathemat-
ically independent of each other and that have the property that we can
approximate arbitrarily well any function by taking a weighted sum or linear
combination of a sufficiently large number K of these functions. The most
familiar basis system of functions is the collection of monomials that are used
to construct power series

1, t, t2, . . . , tK ,

or the well known Fourier series system

1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), . . . , sin(Kωt), cos(Kωt).

Basis function procedures represent a function s by a linear expansion

s(t) =
K∑
k=1

ckφk(t), (5.2)
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in terms of K known basis functions φk.
If our goal is to fit the discrete observations yj, j = 1, . . . , n using the model
(5.1), by a basis function expansion for s(t) of the form (5.2), we can use a
simple linear smoother choosing the expansions ck that minimizes the least
squares criterion

SMSSE(y|c) =
v∑

h=1

[
yh −

K∑
k=1

ckφk(th)

]2

. (5.3)

for a given basis functions φk.
How to choose the order of the expansion K? The larger K, the better the
fit to the data, but of course we then risk also fitting noise or variation that
we wish to ignore, but if K is too small, we may miss some important aspects
of the smooth function s that we are trying to estimate. This trade-off can
be expressed in another way. For large values of K, the bias in estimating
s(t), that is

Bias [ŝ(t)] = s(t)− E [ŝ(t)] ,

is small. In fact, if the notion of additive errors having null expectation
holds, then we know that the bias will be zero for K = v. But, one of the
main reasons that we do smoothing is to reduce the influence of noise on
the estimate ŝ. Consequently we are also interested in the variance of the
estimate

Var [ŝ(t)] = E
[
{ŝ(t)− E [ŝ(t)]}2] .

If K = v, this is almost certainly to be unacceptably high. Reducing variance
leads to look for smaller values of K, but of course not so small as to make
the bias unacceptable. The worse the signal-to-noise ratio in the data, the
more reducing sampling variance will outweigh controlling bias. One way of
expressing what we really want to achieve is mean squared error

MSE [ŝ(t)] = E
[
{ŝ(t)− s(t)}2] .

In most applications we can’t actually minimize this quantity since s(t) as-
sumed to be unknown. However, an important equation in statistics link
mean squared error to bias and sampling variance by the simple additive
decomposition

MSE [ŝ(t)] = Bias2 + Var [ŝ(t)] .

What this relation tells us is that it would be worthwhile to tolerate a little
bias if the result is a big reduction in sampling variance. In fact, on the one
hand, we wish to ensure that the estimated curve gives a good fit to the data.
On the other hand, we do not wish the fit to be good if this results in a curve
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s that is excessively “wiggly” or locally variable. A completely unbiased esti-
mate of the function value s(th) can be produced by a curve fitting yh exactly,
since this observed value is itself an unbiased estimate of s(th) according to
our error model. But any such curve must have high variance, manifested
in the rapid local variation of the curve. MSE can often be dramatically
reduced by sacrificing some bias in order to reduce sampling variance, and
this is a key reason for imposing smoothness on the estimated curve. By re-
quiring that the estimate vary only gently from one value to another, we are
effectively “borrowing information” from neighbouring data values, thereby
expressing our faith in the regularity of the underlying function s that we are
trying to estimate. This pooling of information is what makes our estimated
curve more stable, at cost of some increase in bias. The roughness penalty
makes explicit what we sacrifice in bias to achieve an improvement MSE.

5.3.4 The penalized sum of squared errors fitting cri-
terion

The square of the second derivative [D2s(t)]
2

of a function at t is often called
its curvature at t, since a straight line, which has no curvature, has a zero
second derivative. Consequently, a natural measure of a function’s roughness
is the integrated squared second derivative

PEN2(s) =

∫ [
D2s(t)

]2
dt.

Highly variable functions can be expected to yield high values of PEN2(s)
because their second derivatives are large over at least some of the range of
interest.
Now we need to modify the last squares fitting criterion (5.3) so as to allow
the roughness penalty PEN2(s) to play a role in defining the estimate of s,
We define a compromise that explicitly trades off smoothness against data
fit by defining the penalized residual sum of squares as

PENSSEλ(s|y) =
v∑

h=1

[
yh −

K∑
k=1

ckφk(th)

]2

+ λPEN2(s),

Our estimate of the function is obtained by finding the function s that min-
imize PENSSEλ(s|y) over the space of functions s for which PEN2(s) is
defined.
The parameter λ is a smoothing parameter that measures the rate of ex-
change between fit to the data, as measured by the residual sum of squares
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in the first term, and variability of the function s, as quantified by PEN2(s)
in the second term. As λ becomes larger and larger, functions which are
not linear must incur a more substantial roughness penalty through the
term PEN2(s), and consequently the composite criterion PENSSEλ(s|y) must
place more and more emphasis on the smoothness of s and less and less on
fitting the data. For this reason, as λ→∞ the fitted curve s must approach
the standard linear regression to the observed data, where PEN2(s) = 0. On
the other hand, for small λ the curve tends to become more and more variable
since there is less and less penalty placed on its roughness, and as λ→∞ the
curve s approaches a function interpolating the data and satisfying s(th) = yh
for all h. However, even in this limiting case the interpolating curve is not ar-
bitrarily variable; instead, it is the smoothest twice-differentiable curve that
exactly fits the data. Generally the basis functions used in one-dimensional
case are the Fourier basis, B-spline basis and Wavelets. How these basis
functions work in two- or three-dimensional spaces? The tensor product is
the easiest way since it uses rectangular partition of the domain and thus it is
a very natural extension of the univariate case. But if the domain is not rect-
angular the tensor product does not work. Also the multivariate extension
of Functional Principal Components Analysis (Bosq, 2000) is not applicable
since data are not synchronized (see below) to the same argument.
We must use other basis function for the three-dimensional surfaces as we
will see in the following paragraph.

5.4 Representation of 3D surfaces with Ra-

dial Basis Function

5.4.1 Fitting an implicit function to a surface

We wish to find a function f which implicitly defines a surface M and satisfies
the equation f(th) = 0 where th ∈ R3 for h = 1, . . . , v are points lying on
the surface. In order to avoid the trivial solution that f is zero everywhere,
off-surface points are appended to the input data and are given non-zero
values. This gives a more useful interpolation problem: Find f such that

f(th) = 0 h = 1, . . . , v on-surface points,
f(th) = yh 6= 0 h = v + 1, . . . , V off-surface points.

This still leaves the problem of generating the off-surface points th for h =
v + 1, . . . , V and the corresponding values yh. An obvious choice for f is
a signed-distance function, where the yh are chosen to be the distance to
the closest on-surface point. Points outside the object are assigned positive
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Figure 5.1: Off-surface points along surface normals.

values, while points inside are assigned negative values. These off-surface
points are generated by projecting along surface normals as illustrated in
Figure 5.1. Experience has shown that it is better to augment a data point
with two off-surface points, one either side of the surface.

5.4.2 The Radial Basis Functions

Given a set of scattered data points pairs (th, yh), h = 1, . . . , V , where the
points h = 1, . . . , v are zero-valued surface points and the points h = v +
1, . . . , V are non-zero off-surface points, we want to approximate the signed-
distance function f(th) = yh, by an interpolating function s(t).
If we consider the roughness penalty PEN2(s) in R3 it becomes:

PEN2(s) =

∫
R3

[(
∂2s(t)

∂t21

)2

+

(
∂2s(t)

∂t22

)2

+

(
∂2s(t)

∂t23

)2

+ 2

(
∂2s(t)

∂t1t2

)2

+ 2

(
∂2s(t)

∂t1t3

)2

+ 2

(
∂2s(t)

∂t2t3

)2 ]
dt

In Duchon, 1977 is shown that the family of functions that minimize the
PEN2(s) among the functions with square integrable second derivatives has
the form

s(t) = p(t) +
K∑
k=1

ck‖t− qk‖, (5.4)
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that is a particular form of a Radial Basis Function (RBF). In general, an
RBF is a function of the form

s(t) = p(t) +
K∑
k=1

ckφ(‖t− qk‖),

where:

• s : R3 → R is the radial basis function,

• p is a low degree polynomial, typically linear or quadratic,

• ck, k = 1, . . . , K are the coefficients,

• φ is a real valued function called the basis function, and ‖ • ‖ is the
Euclidian norm in R3

• qk, k = 1, . . . , K are the RBF centers.

The RBF consists of a weighted sum of a radially symmetric basic function
φ located at the centers qk and a low polynomial p. RBF’s are popular for
approximate scattered data as the associated system of linear equations is
guaranteed to be invertible under very mild conditions on the locations of
the data points th (Carr et al., 1997). If we choose φ(r) = r we have the
form (5.4) known as biharmonic spline.
If we impose the interpolation conditions s(th) = yh, for h = 1, . . . , V and
we chose a polynomial p(th) = β0 + β1t1 + β2t2 + β3 + t3, where ti, i = 1, 2, 3
are the elements of the vector t, then the coefficients ck of the (5.4) and of
the polynomial p(th) that minimize the PEN2(s) can be found solving the
linear system [

A T
T
′

0

] [
c
β

]
=

[
y
0

]
, (5.5)

where

A = (ahk) = (‖th − qk‖),

T =



1 t11 t11 t13
...

...
...

1 th1 th1 th3
...

...
...

1 tV 1 tV 1 tV 3


,

c = (c1, . . . , ck, . . . , cK),

β = (β0, β1, β2, β3),

y = (y1, . . . , yh, . . . , yV ).
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However, if there is noise in the data, as we assumed with model (5.1), the
interpolation conditions s(th) = yh, h = 1, . . . , V are too strict and we would
prefer to place more emphasis on finding a smooth function, hence we prefer
minimize the PENSSEλ(s|y) index. To have the coefficients ck of the (5.4)
and of the polynomial p(th) that minimize the PENSSEλ(s|y) we must solve
the linear system (Carr et al., 1997)[

A− 8V πλI T
T
′

0

] [
c
β

]
=

[
y
0

]
, (5.6)

where the parameter λ balances smoothness against fidelity to the data.

5.5 Fast Multipole Method

Solving the systems (5.5) or (5.6) by ordinary or direct methods is computa-
tionally expensive and rapidly becomes impossible as V becomes larger than
a few thousand. We recall that in our problem each laser scan is composed by
1,500,000 points. Not only are the storage requirements for the systems (5.5)
or (5.6) O(V 2) and the work to solve the system O(V 3), but the work associ-
ated with evaluating s(t) is also O(V ). Greengard and Rokhlin (Greengard,
Rokhlin, 1987) proposed the Fast Multipole Method (FMM) to reduce the
processing time for the RBF. A full description of the FMM can be found in
Beatson et al., 1992. We give a brief outline of the method.
The FMM makes use of the simple fact that when computations are per-
formed, infinite precision is neither required nor expected. Once this is re-
alized, the use of approximations is allowed. With the centers clustered in
a hierarchical manner, far- and near-field expansions are used to generate
an approximation to that part of the RBF due to the centers in a partic-
ular cluster. A judicious use of approximate evaluation for cluster “far”
from evaluation point and direct evaluation for clusters “near” to an evalu-
ation point allows the RBF to be computed to any predetermined accuracy
and with a significant decrease in computation time compared with direct
evaluation. These fast evaluation methods, when used together with fitting
methods (Beatson et al., 1999), greatly reduce the storage and computational
costs of using RBFs. They reduce the cost of solving the systems (5.5) or
(5.6 from O(V 3) to O(V log V ) operations. The fast methods introduce two
parameters: a fitting accuracy and evaluation accuracy. The fitting accuracy
specifies the maximum allowed deviation of the fitted RBF value from spec-
ified value at the interpolation nodes. The evaluation accuracy specifies the
precision with which the fitted RBF is then evaluated.
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5.5.1 RBF centers reduction

Conventionally, an RBF approximation uses all the input data points as
centers of the RBF, so K = V , qk = th, k, h = 1, . . . , V . However, the
same input data may be able to be approximated to the desired accuracy
using significantly fewer centers. A simple greedy algorithm consists of the
following steps:

1. Choose a subset from the V points th and fit an RBF only to these.

2. Evaluate the residuals εh = yh − s(th).

3. If max [εh] < fitting accuracy then stop.

4. Else append new centers where εh is large.

5. Re-fit RBF and go to 2.

It is important to note that the centers need not to correspond to points
th.

5.6 Application of the tests

Let us indicate with

X1i = {th1i, yh1i, h = 1, . . . , V }
and

X2i = {th2i, yh2i, h = 1, . . . , V } ,
i = 1, . . . , n the observations pre-and post-surgery, respectively, where the
off-surface points are already included. Clearly V is far greater than the
number of units n. Let s(Xji) the smoothing surfaces obtained by RBF
methods above.
Considering that:

• given the centers qk the choice of the coefficients ck to approximate a
surface is unique (Faul and Powell, 1999);

• the centers need not to correspond to points th,

it is possible to use the same centers for all surfaces. Clearly, if the centers are
the same the differences between surfaces are all detectable by the coefficients
ck. Hence is possible to apply the test to the new “derived variables” Y1i =
(ck1i, k = 1, . . . , K) and Y2i = (ck2i, k = 1, . . . , K), i = 1, . . . , n. Again
K can be much larger than n, but as we seen in previous chapters, we can
handle this situation easily with permutation test also if random effects are
present using the multi-sided test extended to K-dimensional variables.
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5.7 Conclusion

In this final chapter we have seen only a summary presentation of the approx-
imation of surfaces by means of the RBF. In particular, we do not described
how to generate points off-surface by projecting along surface normal and we
have provided only some hints of a FMM algorithm. These algorithms are
very complex and essential for the development of the surfaces but from a sta-
tistical point of view these arguments are not particularly interesting because
they are of a mathematical and computational nature. Clearly, the proposed
methodology is applicable in each field (automotive, aeronautical, geological,
etc..) where a digitized surface is available. Unfortunately we have not found
commercial software having these algorithms implemented. To write original
software would have taken away a lot of resources not only in terms of time.
For this reason is not possible to see a practical application of covered top-
ics. We preferred to devote more attention to the study and development of
the necessary (and new) statistical methods, such as multisided-tests, finite-
sample consistency and weighted multiple testing procedures, as useful tools
for analyzing 3-D surfaces. We consider such methods of great practical
usefulness and of wide application.
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