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Riassunto

In questa tesi si e svolta una ricerca in ambito cosmologico, incentrata sullo studio dei
“Modelli Unificati” (UDM) per le componenti oscure (materia ed energia oscura)
dell’Universo.

In particolare, la ricerca si é sviluppata nello studio di modelli cosmologici unificati basati
su un campo scalare neutro che rendano conto della dinamica media dell’Universo nelle
varie epoche (Bertacca, Matarrese, Pietroni 2007).

Successivamente si é fatta un’analisi delle proprieta osservabili delle fluttuazioni di tale
campo scalare, in termini di anisotropie del fondo cosmico di radiazione delle micro-onde
(CMB) (Bertacca and Bartolo 2007).

In fine ci si é incentrati nella ricerca delle soluzioni statiche a simmetria sferica in tale
ambito, che permettano di descrivere la dinamica degli aloni oscuri delle galassie (Bertacca,
Bartolo, Matarrese 2007).






Summary

In this thesis I have investigated the possibility that the dynamics of a single scalar
field can account for a unified description of the Dark Matter and Dark Energy sectors:
Unified Dark Matter (UDM). In particular considering the general Lagrangian of k-essence
models, I study and classify them through variables connected to the fluid equation of
state parameter w,. This allows to find solutions around which the scalar field describes
a mixture of dark matter and cosmological constant-like dark energy (UDM) (Bertacca,
Matarrese, Pietroni 2007).

Subsequently I also perform an analytical study of the Integrated Sachs-Wolfe (ISW)
effect within the framework of Unified Dark Matter models based on a scalar field which
aim at a unified description of dark energy and dark matter. Computing the temperature
power spectrum of the Cosmic Microwave Background anisotropies I am able to isolate
those contributions that can potentially lead to strong deviations from the usual ISW
effect occurring in a ACDM Universe. This helps to highlight the crucial role played by
the sound speed in the unified dark matter models. This treatment is completely general
in that all the results depend only on the speed of sound of the dark component and thus
it can be applied to a variety of unified models, including those which are not described
by a scalar field but relies on a single dark fluid (Bertacca and Bartolo 2007).

Finally I also investigated the static and spherically symmetric solutions of Einstein’s
equations for a scalar field with non-canonical kinetic term (Bertacca, Bartolo, Matarrese
2007).
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Chapter 1

Introduction

Gravity® remains the most enigmatic of all the fundamental interactions in nature. At the
Planck scale, large quantum fluctuations signal a breakdown of the effective field theory
description of gravity in terms of general relativity, leading to the expectation that gravity
and our notions of space and time must be radically altered at short distances.

Meanwhile, continuing experimental probes of gravity at large distances reveal strange
phenomena at many length scales, from the flattening of galactic rotation curves to the
accelerating Universe (for more details see the Chapters 1 and 3).

Traditionally, these phenomena are explained by invoking new sources of matter and
energy, such as dark matter and a tiny cosmological constant [1]. It is however worth
contemplating the possibility that gravity itself is changing in the infrared in some way
that might address these mysteries (indeed, this approach is further motivated by the cos-
mological constant problem, which seems to be associated with extreme infrared physics).

In these years alternative routes have been followed, for example Quintessence [2, 3,
45,6, 7,8, 9] and k-essence [10, 11, 12, 13, 14, 15] (a complete list of dark energy models
can be found in the recent review [16]).

The k-essence is characterized by a Lagrangian with non-canonical kinetic term and
it is inspired by earlier studies of k-inflation [14]. In this introduction we will consider the
main mathematical and physical property of the k-essence fields [12, 13, 14, 15].

Starting from k-essence, the main purpose of this thesis is to investigate the dynamics
of a single scalar field for a unified description of the Dark Matter and Dark Energy
sectors: Unified Dark Matter (UDM).

As we know, in the k-essence theories there is a possibility of the presence of su-
perluminal signals on nontrivial backgrounds and, therefore, the breaking of the Lorentz
invariance .

In general, one can consider the questions related to the spontaneous breaking of the
Lorentz invariance such as superluminal propagation of perturbations in nontrivial back-
grounds, attracted a renewed interest among physicists. One of the basic questions here is
whether the theories allowing the superluminal velocities possess internal inconsistencies

Throughout these preliminary sections, we adopt natural units ¢ = h = 1 and have a metric signature
(=, +,+,+). We denote the Planck mass as my = G~ '/2 = 1.22 x 10'? GeV and the reduced Planck
mass as My = (87G) /2 = 2.44 x 10'*® GeV. Here G is Newton’s gravitational constant.

11



12 Introduction

and, in particular, inevitably lead to the causality violation namely to the appearance
of the closed causal curves (CCCs). Concerning this issue there exist two contradicting
each other points of view. Some authors (see, for instance, [17, 18, 19, 20, 21, 22, 23|)
argue that the subliminally propagation condition should a priori be imposed to make
the theory physically acceptable. Indeed , in [17] the authors introduce the “Postulate of
Local Causality” which excludes the superluminal velocities from the very beginning.

Regarding the general plan, this thesis is organized as follows. In this introduction,
first of all, we present a qualitative introduction of the cosmological constant and the
scalar-field dark energy models, i.e. Quintessence which can act as alternatives to the
cosmological constant. Subsequently we discuss the general aspects of causality and prop-
agation of perturbations on a nontrivial background (see for example [15]), determining
the “new aether’made of k-essence fields. In particular, we want to know when the
causality is not violated in generic k-essence [15] and when there are no causal paradoxes
arise in the cases. Then we investigate under which restrictions on the initial conditions
the Cauchy problem is well posed for k-essence equation of motion [15].

In the second Chapter, considering the general Lagrangian of k-essence models, we
study and classify them through variables connected to the fluid equation of state param-
eter w,. This allows to find solutions around which the scalar field describes a mixture
of dark matter and cosmological constant-like dark energy, an example being the purely
kinetic model proposed by Scherrer. Making the stronger assumption that the scalar field
Lagrangian is exactly constant along solutions of the equation of motion, we find a gen-
eral class of k-essence models whose classical trajectories directly describe a unified dark
matter/dark energy (cosmological constant) fluid. While the simplest case of a scalar field
with canonical kinetic term unavoidably leads to an effective sound speed ¢, = 1, thereby
inhibiting the growth of matter inhomogeneities, more general non-canonical k-essence
models allow for the possibility that ¢, < 1 whenever matter dominates.

In the third Chapter we perform an analytical study of the Integrated Sachs-Wolfe
(ISW) effect within the framework of Unified Dark Matter models based on a scalar
field which aim at a unified description of dark energy and dark matter. Computing the
temperature power spectrum of the Cosmic Microwave Background anisotropies we are
able to isolate those contributions that can potentially lead to strong deviations from the
usual ISW effect occurring in a ACDM Universe. This helps to highlight the crucial role
played by the sound speed in the unified dark matter models. Our treatment is completely
general in that all the results depend only on the speed of sound of the dark component
and thus it can be applied to a variety of unified models, including those which are not
described by a scalar field but relies on a single dark fluid.

In the fourth Chapter we investigate the static and spherically symmetric solutions
of Einstein’s equations for a scalar field with non-canonical kinetic term, assumed to
provide both the dark matter and dark energy components of the Universe. In particular,
we give a prescription to obtain solutions (dark halos) whose rotation curve v.(r) is in
good agreement with observational data. We show that there exist suitable scalar field
Lagrangians that allow to describe the cosmological background evolution and the static
solutions with a single dark fluid.

Finally in the fifth Chapter we give our main conclusions.

12



1.1 Introducion of the cosmological constant 13

1.1 Introducion of the cosmological constant

The Einstein tensor G* and the energy momentum tensor 7*” satisfy the Bianchi iden-
tities V,,G* = (0 and energy conservation V, 7" = (. Since the metric g*” is constant
with respect to covariant derivatives (Vg = 0), there is a freedom to add a term Ag,,
in the Einstein equations. Then the modified Einstein equations are given by

1
Ru = 59uwR + Mgy = 87GT,,,. (1.1)

By taking a trace of this equation, we find that —R + 4A = 87G7T. Combining this
relation with Eq. (1.1), we obtain

1
R,, — Agy, = 87G (T;w — §Tg,w> . (1.2)

Let us consider Newtonian gravity with metric ¢,, = 71, + hu, where h,, is the
perturbation around the Minkowski metric 7,,. If we neglect the time-variation and
rotational effect of the metric, Ry can be written by a gravitational potential ®, as
Ryy ~ —(1/2)Ahgy = AP. Note that go is given by goo = —1 — 2. In the relativistic
limit with |p| < p, we have Typg ~ —T =~ p. Then the 00 component of Eq. (1.2) gives

A® =41Gp - A. (1.3)

In order to reproduce the Poisson equation in Newtonian gravity, we require that A = 0
or A is sufficiently small relative to the 47Gp term in Eq. (1.3). Since A has dimensions of
[Length| =2, the scale corresponding to the cosmological constant needs to be much larger
than the scale of stellar objects on which Newtonian gravity works well. In other words
the cosmological constant becomes important on very large scales.

In the FRW background the modified Einstein equations (1.1) give

8tG K A
H>= ""p——+ = 1.4
3 a2+3’ (1.4)
a drG A
—=—— 3p)+ = 1.5
" 3 (P+3p)+ 3 (1.5)

where a = a(t) is the scale factor. This clearly demonstrates that the cosmological
constant contributes negatively to the pressure term and hence exhibits a repulsive effect.

Let us consider a static Universe (a = const) in the absence of A. Setting H = 0 and
d/a =01in Egs. (1.4) and (1.5), we find

o, 3K
p= p_87rGa2'

Equation (1.6) shows that either p or p needs to be negative. When Einstein first tried
to construct a static Universe, he considered that the above solution is not physical? and
so added the cosmological constant to the original Einsten field equations.

(1.6)

2We note however that the negative pressure can be realized by scalar fields.

13



14 Introduction

Using the modified field equations (1.4) and (1.5) in a dust-dominated Universe (p =
0), we find that the static Universe obtained by Einstein corresponds to

A K
P=1a a2—A. (1.7)
Since p > 0 we require that A is positive. This means that the static Universe is a closed
one (K = +1) with a radius a = 1/v/A. Equation (1.7) shows that the energy density p
is determined by A.
The requirement of a cosmological constant to achieve a static Universe can be under-

stood by having a look at the Newton’s equation of motion

; Gm (4ma®p
mi = ——
a? 3 ’
a e
A S 1.8
- 3P (1.8)

Since gravity pulls the point particle toward the center of the sphere, we need a repul-
sive force to realize a situation in which a is constant. This corresponds to adding a
cosmological constant term A/3 on the right hand side of Eq. (1.8).

The above description of the static Universe was abandoned with the discovery of the
redshift of distant stars, but it is intriguing that such a cosmological constant should
return in the 1990’s to explain the observed acceleration of the Universe.

1.1.1 Fine tuning problem

If the cosmological constant originates from a vacuum energy density, then this suffers
from a severe fine-tuning problem. Observationally we know that A is of order the present
value of the Hubble parameter Hy (for the definition of H see chapter 1), that is

A~ HZ = (2.13h x 107 *# GeV)?. (1.9)
This corresponds to a critical density py,

Am?
pr = —2 ~ 10747 GeV?. (1.10)
8
a
Meanwhile the vacuum energy density evaluated by the sum of zero-point energies of

quantum fields with mass m is given by

1 /°° Pk s
vac — 5 m
P 2 ), (@n)3

- L dk k>V'k2 +m?2 . (1.11)

2
4z [y

This exhibits an ultraviolet divergence: py,c o k*. However we expect that quantum field
theory is valid up to some cut-off scale k. in which case the integral (1.11) is finite:
]{54

prac 152 (1.12)

14



1.2 Quintessence 15

For the extreme case of General Relativity we expect it to be valid to just below the
Planck scale: my = 1.22 x 10 GeV. Hence if we pick up kma = mp1, we find that the
vacuum energy density in this case is estimated as

Pvac = 107 GeV* | (1.13)

which is about 102! orders of magnitude larger than the observed value given by Eq. (1.10).
Even if we take an energy scale of QCD for kmax, We obtain pye &~ 1072 GeV* which is
still much larger than py.

We note that this contribution is related to the ordering ambiguity of fields and disap-
pears when normal ordering is adopted. Since this procedure of throwing away the vacuum
energy is ad hoc, one may try to cancel it by introducing counter terms. However this
requires a fine-tuning to adjust p, to the present energy density of the Universe. Whether
or not the zero point energy in field theory is realistic is still a debatable question.

1.2 Quintessence

Quintessence is described by an ordinary scalar field ¢ minimally coupled to gravity, but
as we will see with particular potentials that lead to late time inflation. The action for
Quintessence is given by

1
S = /d4:c\/—g [—ig’“’au(paugo - Vio)|, (1.14)

where V(i) is the potential of the field. In a flat FRW spacetime (for more details see
chapter 1)

ds® = g, datdz” = (—dt* + a®(t)dx?)
where a(t) is the scale factor, the variation of the action (1.14) with respect to ¢ gives

¢+3H¢+d—vzo. (1.15)
dy

The energy momentum tensor of the field is derived by varying the action (1.14) in
terms of gH:
2 08
Ty=———
V=509~
In the flat Friedmann background we obtain the energy density and pressure density of
the scalar field:

1
= 0,00, — Guv 59”%@%@ +V(g)| - (1.16)

1. ;1
Then by solving the Einstein equations (for more details see chapter 1) we obtain
1
= [;zﬂ + V(so)] , (1.18)
a 8rG ..
o v (119)

15



16 Introduction

We recall that the continuity equation, i.e. the equation of motion for ¢ Eq. (1.15), is
derived by combining these equations.

We find that the Universe accelerates for ¢ < V(¢). This means that one requires
a flat potential to give rise to an accelerated expansion. In the context of inflation the
slow-roll parameters

2 2 2 2
i) (lﬂ) o= 1AV (1.20)

‘T 16r \V dg 1= S Vg

are often used to check the existence of an inflationary solution for the model (1.14) [24].
Inflation occurs if the slow-roll conditions, € < 1 and |n| < 1, are satisfied. In the context
of dark energy these slow-roll conditions are not completely trustworthy, since there exists
dark matter as well as dark energy. However they still provide a good measure to check
the existence of a solution with an accelerated expansion. If we define slow-roll parameters
in terms of the time-derivatives of H such as e = —H /H?, this is a good measure to check
the existence of an accelerated expansion since they implement the contributions of both
dark energy and dark matter.
The equation of state for the field ¢ is given by
p_ ¢ —2V(p)

w, =L =¥ —2V¥ 1.21
T @+ 2V(p) (1.21)

In this case the continuity equation Eq. (1.15) can be written in an integrated form:
da

where py is an integration constant. We note that the equation of state for the field
¢ ranges in the region —1 < w, < 1. The slow-roll limit, ¢* < V(¢), corresponds to
w, = —1, thus giving p = const from Eq. (1.22). In the case of a stiff matter characterized
by ¢? > V(p) we have w, = 1, in which case the energy density evolves as p < a~% from
Eq. (1.22). In other cases the energy density behaves as

pxa ™, 0<m<6. (1.23)

Since w, = —1/3 is the border of acceleration and deceleration, the Universe exhibits an
accelerated expansion for 0 < m < 2.
It is of interest to derive a scalar-field potential that gives rise to a power-law expansion:

a(t) oc tP. (1.24)

The accelerated expansion occurs for p > 1. From Eqgs. (1.18) and (1.19) we obtain the
relation H = —4rG@?. Then we find that V(¢) and ¢ can be expressed in terms of H

and H:
3H?2 H
= 1 1.2
v 87TG( +3H2> ’ ( 5)

1/2

(1.26)
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Here we chose the positive sign of ¢. Hence the potential giving the power-law expansion
(1.24) corresponds to

167
Vo) =oewp (—/ 02 ) (127)
P

where Vj is a constant. The field evolves as ¢ o Int. The above result shows that the
exponential potential may be used for dark energy provided that p > 1.

In addition to the fact that exponential potentials can give rise to an accelerated
expansion, they possess cosmological scaling solutions [7, 25| in which the field energy
density (p,) is proportional to the fluid energy density (p,). Exponential potentials were
used in one of the earliest models which could accommodate a period of acceleration today
within it, the loitering Universe [26].

The above discussion shows that scalar-field potentials which are not steep compared
to exponential potentials can lead to an accelerated expansion. In fact the original
quintessence models [3, 8] are described by the power-law type potential

M4—|—a
= (pﬂé

42, , (1.28)

where « is a positive number (it could actually also be negative [27]) and M is constant.
Where does the fine tuning arise in these models? Recall that we need to match the
energy density in the quintessence field to the current critical energy density, that is

PO~ m2 Hy ~ 1077 GeV*. (1.29)

2

The mass squared of the field ¢ is given by m? = % ~ p,/*, whereas the Hubble
expansion rate is given by H? & p,,/m?. The Universe enters a tracking regime in which
the energy density of the field ¢ catches up that of the background fluid when mi decreases
to of order H? [3, 8]. This shows that the field value at present is of order the Planck
mass (o ~ mp1), which is typical of most of the quintessence models. Since pg) ) ~ V(¢o),

we obtain the mass scale
M = (pQmg) == . (1.30)

This then constrains the allowed combination of & and M. For example the constraint
implies M = 1GeV for @ = 2 [9]. This energy scale can be compatible with the one
in particle physics, which means that the severe fine-tuning problem of the cosmological
constant is alleviated. Nevertheless a general problem we always have to tackle is finding
such quintessence potentials in particle physics. One of the problems is highlighted in
Ref. [5]. The Quintessence field must couple to ordinary matter, which even if suppressed
by the Planck scale, will lead to long range forces and time dependence of the constants
of nature. There are tight constraints on such forces and variations and any successful
model must satisfy them.

17



18 Introduction

1.3 k-essence

In first of all, hereafter, we use units such that 87G = ¢ = 1 and signature (—, +, +, +).
Let us consider the k-essence scalar field ¢ with the action:

S, = / o /=L (X, ¢) (1.31)

where .
X =—5VupVho. (1.32)

is the canonical kinetic term and by V, we always denote the covariant derivative as-
sociated with metric g,,. We would like to stress that this action is explicitly generally
covariant and Lorentz invariant. The variation of action (1.31) with respect to g, gives
us the following energy-momentum tensor for the scalar field:

T o= _ 2 0S, 0L(p,X)
= /—gog 00X
In general there are several classical energy conditions for these field configurations, for

example see the Table 1.1 (for a definition of the classical energy conditions, the reader
is referred to [17, 28, 29]). The Null Energy Condition (NEC) T},,n#n” > 0 (where n* is

VoV + L0, X)gu - (1.33)

Weak Energy Condition (WEC) T,utu” >0 where g, ufu’ =—1
&
Tywntn” >0 where g, n#*n” =0
Null Energy Condition (NEC) T,ntn” >0 where gy,nn” =0
Dominant Energy Condition (DEC) Tubu? > Tyt |
where gy ufu” = -1, and g, utv” =0
&
WEC
Null Dominant Energy Condition (NDEC) Turu” > T, vHv|
where g, ufu” = —1, and g, utv” =0

Table 1.1: Energy conditions.

a null vector: g,,n*n” = 0) is satisfied provided 0£/0X > 0. Because violation of this
condition would imply the unbounded from below Hamiltonian and hence signifies the
inherent instability of the system [30] we consider only the theories with 9L£/0X > 0. In
Particular, in this thesis we consider only fluid that satisfied the Weak Energy Condition
(WEC) such that the energy density is positive (or null).

The equation of motion for the scalar field is obtained by variation of action (1.31)
with respect to ¢ i.e. 6S/dp =0,

2
L oL _

G"'V ,V,o —2X =~ =0,
ViVup =2X 555 T 9,

(1.34)

18



1.3 k-essence 19

where the “effective” metric is given by

oL 0*L
G* (p, V) = ax? g — 2 VHEeV @ . (1.35)

First of all, we have to impose that this second order differential equation is hyperbolic
that is, G* has the Lorentzian signature and hence describes the time evolution of the
system provided [21, 31, 32]. If we want to know when hyperbolic condition is satisfied
we have to impose an opportune condition to Lagrangian. In this case, for simplicity we
can assume that £ only depends on X, though our results also apply if the Lagrangian
depends on ¢ itself. It can be proved (see Theorem 10.1.3. of [33]) that if the metric G*
is Lorentzian, the field equation admits a well-posed initial value-formulation (at least
locally), so all we have to show is that G*” has a negative determinant.

Let G g and n denote the matrices with elements G gh and VH#pVYp respectively.
We then have

L &L dc\* ?L/dX? |

where g~! denotes the inverse of g, and we have assumed d£/dX # 0. Using the identity
det e = A we find

2L/dX? 2L/dX?
1 - — = 1 1-— 1.
det( dﬁ/ng n) exp[trn( dﬁ/ng n)}, (1.37)

and expanding the logarithm in a Taylor series around the identity we obtain

PL)dx? (1) (2L /dX> ok
rin (1= GEE n) = 2 (dﬁ/dX) tr(-g 'n)
&2L)dX>
dCjdxX )

= In (1 +2X (1.38)

where we have used tr (—g™n)* = (2X)*. Finally, substituting equation (1.38) back into
equation (1.37) we arrive at our desired result

d£)4 ot . Wo/AX 42X dPL/dX*

det G = (_ dL/dX

o5 (1.39)

By assumption, the metric of spacetime is Lorentzian, so that det g < 0. Therefore, Gis
Lorentzian if and only if
dL/dX
2Xd’°L/dX? + d[,/dX

When this condition holds everywhere the Leray’s theorem (see P. 251 of Ref. [33] and
Ref. [34] ) states that the perturbations 7 on given background ¢, (x) propagate causally
in metric G* (py, Vipg). moreover, in this case, the effective metric G** determines
the characteristics (cone of influence) for k-essence, see e.g. [31, 32]. For nontrivial

>0. (1.40)

19



20 Introduction

configurations of k-essence field d,¢ # 0 and the metric G is generally not conformally
equivalent to ¢g””; hence in this case the characteristics do not coincide with those ones for
canonical scalar field the Lagrangian of which depends linearly on the kinetic term X. As
we will can see in the next section starting from the behavior of small perturbations on
a given background, the characteristics determine the local causal structure of the space
time in every point of the manifold. Hence, the local causal structure for the k-essence
field is generically different from those one defined by metric g,,. Subsequently we will
see that for the coupled system of equations for the gravitational field and k-essence the
Cauchy problem is well posed only if the initial conditions are posed on the hypersurface
which is space-like with respect to both metrics: ¢ and G* (see P. 251 of Ref. [33]
and Refs. [34, 31, 35] for details). If you return previously to the hyperbolicity condition
(1.40), it is convenient to introduce the following function

, OL/0X

OXOL/OX? + OL]0X (1.41)

Cc

For the case X > 0 plays the role of “speed of sound” for small perturbations [14] propa-
gating in the preferred reference frame, where the background is at rest. It is well known
that in the case under consideration there exists an equivalent hydrodynamic description
of the system (see for example Refs. [36, 37]) and the hyperbolicity condition (1.40) is
equivalent to the requirement of the hydrodynamic stability ¢ > 0.

1.4 Local causal structure for the k-essence field

Let us consider scalar field ¢ interacting with external source J (x). The equation of
motion for the scalar field is

L oL _
000X = Op

G"N V0 —2X —J (1.42)
where metric G# is given by (1.35). Suppose ¢y is the background solution of (1.42) in
the presence of source Jy (x) and gravitational metric g,, (). Let us consider a slightly
perturbed solution ¢ = o + 7 of (1.42) with the source J = Jy + 0J and the original
unperturbed metric g, (z). The equation of motion for 7 is

GV N, — VIV 1 — M1 = —4J, (1.43)
where
PL L 0GP
1 — _ %
\% (.’E) = (2Xa(pa2X + agan oxX VQV5Q00> \% @o , (144)
and ; , -
M?(z) = 2X 0L oL oG VoV . (1.45)

0p20X ¢ Oy
Considering the eikonal (or short wavelength) approximation [38] we have

7 (z) = A(x)exp [iwS (z)] ,
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1.5 Action for perturbations 21

where w is a large dimensionless parameter and the amplitude A (x) is a slowly varying
function. In the limit w — oo the terms containing no second derivatives, V#* () V7
and M? (z) 7, become unimportant and (1.43) becomes

G*"9,50,S = 0. . (1.46)

The equation of motion in the eikonal approximation (1.46) is conformally invariant. The
surfaces of constant eikonal S (constant phase) correspond to the wave front (charac-
teristic surface) in spacetime. Thus the 1-form 0,5 is orthogonal to the characteristic
surface. The influence cone at point P is formed by the propagation vectors N* tangen-
tial to the characteristic surface N#0,5 = 0 and positive projection on the time direction.
Using (1.46) one can chose N* = G*0,S and verify that this vectors are tangential to
the characteristic surface. The metric G* has an inverse G’;j due to the requirement of
hyperbolicity (Lorentzian signature of é’“’). Therefore 0,5 = é;,,lN # and we obtain the
equation for the influence cone in the form

G, N'N” = 0.

Thus the metric G’lj,} governs the division of acoustic spacetime into past, future and inac-
cessible “spacelike” regions (or in other words this metric yields the notion of causality).
Therefore

0*L)0X?

NENY = 2| 2 — N#)?

Juw K ( OL/OX ) (VoY)
_ g2y (Vup NH)?

and if (02£/0X?) / (0L/0X) is negative, then g,, N*N” < 0, that is, N* is spacelike and
the cone of influence on this background is larger than the light cone: the wave front (or
signal) velocity is larger then the speed of light. Note that this is a coordinate independent
statement.

1.5 Action for perturbations

For 7 in the spacetime of arbitrary dimension D > 2 3 and neglecting the metric pertur-
bations dg,,, there exists conformal transformation where it is really possible to rewrite
(1.42) in canonical form. In other words there must exist € (g, Xo), such that

GH = QG . (1.48)
and the equation of motion for perturbations 7 takes a canonical (Klein-Gordon) form

G"™ D,D,r — M%m = —4I, (1.49)

3Note that this method makes sense for the dimensions D > 2 only. That happens because in D = 2
all metrics are conformally equivalent to 7,, and the wave equation is conformally invariant, see e.g.
Ref. [33], P. 447.
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where D, is a covariant derivative with associated with the new metric G**: DNG“/” = 0.
Therefore one can rewrite the equation of motion for the scalar field perturbations and
for D = 4 in the following form

1
V-G
Note that the equations of motion (1.42) and (1.49) should have the same influence
cone structure. The equation (1.49) for the perturbations has exactly the same form
as equation for the massive Klein-Gordon field in the curved spacetime. Therefore the
metric G* describes the “emergent” or “analogue” spacetime where the perturbations

live. In particular this means that the action from which one can obtain the equation of
motion in the canonical Klein-Gordon form (1.49)

9, (\/—GG””B,,W) — M%7 = —41 . (1.50)

e

S, = %/d‘lx\/—(} [—G’“’@uwa,ﬂr — MZ%m® + 27r(5]} , (1.51)

where the emergent metric G# is the conformally transformed eikonal metric G*, defined
n (1.35),

w—=__ %  Aw_ _ G w  (OPLIOXPN L, o
o= (8£/8X)2G 0L/0X [g ( dL]0X VEpVZp! . (1.52)

The inverse metric G;Wl can be easily calculated using the ansatz G;Wl = a0, +8V 00V
and the condition

GGV =10y (1.53)
Therefore it is given by the formula

_ oL/ox [ \ (825/8X2
oL/ox |,

Gl W) v“gavuga] . (1.54)

S

Finally the effective mass is

3 2 Sa
Mg = m [ Bgfng - gzi - agio VaVMOo] , (1.55)
and the effective source for perturbations is given by
= (65/0#)25,1 (1.56)
For the reference we also list the formula
V-G = /—detG;;} = /=g——— (9L / 8X) (1.57)

Now, using the inverse to G matrix one can define the “emergent” interval

dS? = Gl dada”, (1.58)
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1.5 Action for perturbations 23

which determines the influence cone for small perturbations of k-essence on a given back-
ground ?. At first glance it looks like the theory under consideration has emergent bimetric
structure. However, this theory is inherently different from the bimetric theories of grav-
ity because the emergent metric refers only to the perturbations of k-essence and is due
to the non-linearity of the theory, while in the bimetric gravity theories both metrics have
fundamental origin and are on the same footing.

The derived above form of the action and of the equation of motion for perturbations
is very useful. In particular, it simplifies the stability analysis of the background with
respect to the perturbations of arbitrary wavelengths, while the hyperbolicity condition
(1.40) guarantees this stability only with respect to the short-wavelength perturbations.

It is important to mention that besides of the usual hyperbolicity condition (1.40) one
has to require that 0£/0X is nowhere vanishes or becomes infinite. The points where
O0L/0X vanishes or diverges, generally correspond to the singularities of the emergent
geometry. It follows from equations (1.52) and (1.54) that these singularities are of the
true nature and cannot be avoided by the change of the coordinate system. Therefore one
can argue that before the singularities are formed the curvature of the emergent spacetime
becomes large enough for efficient quantum production of the k-essence perturbations
which will destroy the classical background and therefore 0£/0X cannot dynamically
change its sign. Hence, if one assumes that at some moment of time the k-essence satisfies
the null energy condition, that is, 0L/0X everywhere in the space then this condition
can be violated only if one finds the way to pass through the singularity in the emergent
geometry with taking into account the quantum production of the perturbations. This
doubts the possibility of the smooth crossing of the equation of state w = —1. The
statements above generalize the results obtained in [39] and re-derived later in different
ways in next Chapter in cosmological context.

In deriving (1.51) and (1.49) we have assumed that the k-essence is sub-dominant
component in producing the gravitational field and consequently have neglected the met-
ric perturbations induced by the scalar field. For k-essence dark energy [12, 13| action
(1.51) can be used only when k-essence is a small fraction of the total energy density
of the Universe, in particular, this action is applicable during the stage when the speed
of sound of a successful k-essence has to be larger than the speed of light [40]. During
k-inflation [41, 42, 43] the geometry g, is determined by the scalar field itself and there-
fore the induced scalar metric perturbations are of the same order of magnitude as the
perturbations of the scalar field. For this case the action for cosmological perturbations
was derived in [14], see also [44]. One can expect therefore that this emergent geometry
G" has a much broader range of applicability and determines the causal structure for
perturbations also in the case of other backgrounds, where one cannot neglect the induced
metric perturbations.

If the hyperbolicity condition (1.40) is satisfied, then at any given point of spacetime
the metric G;,,l can always be brought to the canonical Minkowski form
diag(—1,1,1,1) by the appropriate coordinate transformation. However, the quadratic
forms g, and G;Vl are not positively defined and therefore for a general background there

4Note that in order to avoid confusion we will be raising and lowering the indices of tensors by
gravitational metric g"¥ (g,.) throughout this Chapter.
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exist no coordinate system where they are both simultaneously diagonal. In some cases
both metrics can be nevertheless simultaneously diagonalized at a given point, so that,
e.g. gravitational metric g,, is equal Minkowski metric and the induced metric G;,} is
proportional to diag(—c?,1,1,1), where ¢, is the speed of sound (3.12). For instance,
in isotropic homogeneous Universe both metrics are always diagonal in the Friedmann
coordinate frame.

We conclude this section with the following interesting observation. The effective
metric (1.54) can be expressed through the energy momentum tensor (1.33) as

Gy = g + BT (1.59)
where OL/OX . OPLJOX? 92L/5X?
a=—— ~keGrax W P=sgray

As we have pointed out the cosmological perturbations propagate in G;,} even if the back-
ground field determines the dynamics of the Universe. In this case the energy momentum
tensor for the scalar filed satisfies the Einstein equations and eventually we can rewrite
the effective metric in the following form

G;Vl = (a — gR) Gu + BRL,. (1.60)

The “metric redefinition” (1.60) (i.e. g, <> G,;) does not change the light cone and
hence the local causality only in the Ricci flat R, = 0 spacetimes. However, neither in
the matter dominated Universe nor during inflation the local causals structures determined
by g, and G;Vl are equivalent.

1.6 Causality conditions on nontrivial backgrounds

The causality paradox is avoided when superluminal signals propagate in the background
which breaks the Lorentz symmetry. The observers cannot send a message to themselves
in the past.

In this section we discuss the causality issue for superluminal propagation of pertur-
bations on some nontrivial backgrounds, in particular, in Minkowski spacetime with the
scalar field, in Friedmann Universe and for black hole surrounded by the accreting scalar
field.

First, we would like to recall a well-known paradox sometimes called “tachyonic anti-
telephone” [45] arising in the presence of the superluminal hypothetical particles tachyons
possessing unbounded velocity cienyon, > 1. In this case we could send a message to our
own past. Indeed, let us consider some observer, who is at rest with respect to his reference
frame and sends a tachyon signal to an astronaut in his spacecraft. In turn, after receiving
this signal, the astronaut can communicate back sending the tachyon signal. As this signal
propagates the astronaut proper time ¢’ grows. However, if the speed of the spacecraft is
larger than 1/ciachyon, then the tachyon signal propagates backward in time in the original
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1.6 Causality conditions on nontrivial backgrounds 25

rest frame of the observer. Thus, the observers can in principle send information from
“their future” to “their past”. It is clear that such situation is unacceptable from the
physical point of view.

Now let us turn to the case of the Minkowski spacetime filled with the scalar field,
which allows the “superluminal” propagation of perturbations in its background. For
simplicity we consider a homogeneous time dependant field ¢ (¢). Its “velocity” 0, is
directed along the timelike vector, u* = (—1,0,0,0). Why does the paradox above not
arise here? This is because the superluminal propagation of the signals is possible only in
the presence of nontrivial background of scalar field which serves as the aether for sonic
perturbations. The aether selects the preferred reference frame and clearly the equation
of motion for acoustic perturbations is not invariant under the Lorentz transformations
unless ¢; = 1. In the moving frame of the astronaut the equation for perturbations
has more complicated form than in the rest frame and the analysis of its solutions is
more involved. However, keeping in mind that k-essence signals propagate along the
characteristics which are coordinate independent hypersurfaces in the spacetime we can
study the propagation of sonic perturbations, caused by the astronaut, in the rest frame
of the aether and easily find that the signal propagates always forward in time in this
frame. Hence no closed causal curves can arise here.

We would like to make a remark concerning the notion of “future-” and “past” directed
signals [15]. The notion of past and future is determined by the past and future cones in
the spacetime and has nothing to do with a particular choice of coordinates. Thus, the
signals, which are future-directed in the rest-frame remain the future-directed also in a
fast-moving spacecraft, in spite of the fact that this would correspond to the decreasing
time coordinate t'. The confusion arises because of a poor choice of coordinates, when
decreasing t' correspond to future-directed signals and vice versa [15].

Another potentially confusing issue is related to the question which particular velocity
must be associated with the speed of signal propagation, namely, phase, group or front
velocity [15]. It is important remember that neither group nor phase velocities have any
direct relation with the causal structure of the spacetime. Indeed the characteristic sur-
faces of the partial differential equations describe the propagation of the wavefront. This
front velocity coincides with the phase velocity only in the limit of the short wavelength
perturbations. Generally the wavefront corresponds to the discontinuity of the second
derivatives and therefore it moves “off-shell” (a more detailed discussion can be found
in e.g. [46]). The group velocity can be less or even larger than the wavefront velocity.
One can recall the simple examples of the canonical free scalar field theories: for normal
scalar fields the mass squared, m? > 0, is positive and the phase velocity is larger than c
while the group velocity is smaller than ¢; on the other hand for tachyons (m? < 0) the
situation is opposite. Thus, if the group velocity were the speed of the signal transfer, one
could easily build an opportune time-machine using canonical scalar field with negative
mass squared, m? < 0 [15]. This, however, is impossible because the causal structure in
both cases (m? > 0 and m? < 0) is governed by the same light cones.

To prove the absence of the closed causal curves (CCC) in those known situations
where the superluminal propagation is possible, we use the theorem from Ref. [33] (see
p. 198): A spacetime (M, g,,) is stably causal if and only if there exists a differentiable
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function f on M such that V*f is a future directed timelike vector field. Here M is a
manifold and g,, is metric with Lorentzian signature. Note, that the notion of stable
causality implies that the spacetime (M, g,,) possesses no CCCs and thus no causal
paradoxes can arise in this case. The theorem above has a kinematic origin and does
not rely on the dynamical equations. In the case of the effective acoustic geometry the
acoustic metric G;Vl plays the role of g,, and the function f serves as the “global time
function” of the emergent spacetime (M, G;Wl) For example, in the Minkowski spacetime
filled with the scalar field “ether” one can take the Minkowski time ¢ of the rest frame,
where this field is homogeneous, as the global time function. Then we have

62[,/8)(2) 900

L/oX )~ (0L)0X) ¢, (1.61)

uv _ G 00

G"o,to,t = mg (1 +2X

Even for those cases when the speed of perturbations can exceed the speed of light, ¢, > 1,

this expression is positive, provided that £ x > 0, and the hyperbolicity condition (1.40)

is satisfied. Thus 0,t is timelike with respect to the effective metric G;,,l; hence the
conditions of the theorem above are met and no CCCs can exist.

Now we consider the Minkowski spacetime with an arbitrary inhomogeneous back-

ground ¢ (x) and verify under which conditions one can find a global time ¢ for both ge-

ometries g, and G;Wl and thus guarantee the absence of CCCs. Let us take the Minkowski

t, " 0,t0,t = —1, and check whether this time can also be used as a global time for G;,,l.

We have
2 2
uv _ Cg 1 8 E/@X u 2
G"9,t0,t OL/0X [ + (78[,/6)( (6utv ©o)
Cs PLIDXEN
= — 1 —_— 1.62
0L/0X [ * ( 9LjOX ) ‘PO} ! (1.62)

and assuming that ¢, > 0, £ x > 0 we arrive to the conclusion that ¢ is a global time for
emergent spacetime provided

2 2
- (a L)X

W) (0 (z*))* >0, (1.63)

holds everywhere on the manifold M. This inequality is obviously always satisfied in the
subluminal case. It can be rewritten in the following form

5[ (Ggfar ) (Faen) >0, 10

from where it is obvious that, if the spatial derivatives are sufficiently small then this
condition can also be satisfied even if ¢, > 1. Note that the breaking of the above
condition for some background field configuration ¢q () does not automatically mean the
appearance of the CCCs. This just tells us that the time coordinate ¢t cannot be used as
the global time coordinate. However it does not exclude the possibility that there exists
another function serving as the global time. Only, if one can prove that such global time
for both metrics does not exist at all, then there arise causal paradoxes.

26



1.6 Causality conditions on nontrivial backgrounds 27

In the case of the Friedmann Universe with “superluminal” scalar field, one can choose
the cosmological time ¢ as the global time function and then we again arrive to (1.61),
thus concluding that there exist no CCCs. In particular, the k-essence models, where the
superluminal propagation is the generic property of the fluctuations during some stage of
expansion of the Universe [40], do not lead to causal paradozes.

The absence of the closed causal curves in the Friedmann Universe with k-essence can
also be seen directly by calculating of the “effective” line element (1.58). Taking into
account that the Friedmann metric is given by

ds® = g, datdr” = —dt* + a*(t)dx* , (1.65)
we find that the line element (1.58), corresponding to the effective acoustic metric, is

oL/0X

Cs

dS* = G datda” = (—c2dt® + a*(t)dx’) . (1.66)

The theory under consideration is generally covariant. After making redefinitions,

VOL]OX) cydt — dt

and,

a2(t) (DL/DX) Jcs — (1)

the line element (1.66) reduces to the interval for the Friedmann Universe (1.65), where
obviously no causality violation can occur. Thus we conclude that both the k-essence
[12, 13] and the “superluminal” inflation with large gravity waves [43] are completely safe
and legitimate on the side of causality.

When X = —1¢"9,000,¢0 is negative everywhere in the spacetime the background
field itself can be used as the global time function. Indeed for general gravitational
background g,, and ¢, > 0, (0L/0X) > 0 we have

2X

pv (24 -
" 0,000,000 <0 and  G"3,p00,¢0 (@L/oX) <,

<0, (1.67)

and due to the fact that X > 0 the sign in front V#¢, can be chosen so that the vector
Vg is always future directed on M. Therefore g () or (—¢g (x) if necessary) can serve
as a global time in both spacetimes (M, g,,) and (M, G;,}), and no causal paradoxes
arise.

In all examples above we have considered the “superluminal” acoustic metric. Thus,
if there exist no CCCs in (M, G;,}) then there are no CCCs with respect to metric g,
because acoustic cone is larger than the light cone. It may happen that in some cases it
is not enough to prove that there no CCCs separately in (M, G;Wl) and (M, g,,) and
one has to use the maximal cone or introduce an artificial cone [47] encompassing all
cones arising in the problem. It is interesting to note that, if the k-essence realizes both
“superluminal” and subluminal speed of sound in the different regions of the manifold,
then there exist hypersurface where the k-essence metric is conformally equivalent to the
gy and one can smoothly glue the maximal cones together everywhere on M. After
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that one can consider a new “artificial metric” GEU as determining the complete causal
structure of the manifold.

We would like to point out that although the theorem on stable causality allowed
us to prove that there is no causal paradoxes in those cases we considered above, it is
no guaranteed that CCCs cannot arise for some other backgrounds. Indeed, in [23] the
authors have found some configurations of fields possessing CCCs: one for the scalar field
with non-canonical kinetic term and another for the “wrong”’-signed Euler-Heisenberg
system. In both cases the small perturbations propagate superluminally on rather non-
trivial backgrounds [15].

1.7 Conditions for the well posed Cauchy problem

Using the theorem on stable causality we have proved that the “superluminal” k-essence
does not lead to any causal paradoxes for cosmological solutions and for accretion onto
black hole. However, the consideration above is of a kinematic nature and it does not
deal with the question how to pose the Cauchy problem for the background field ¢, and
it’s perturbations 7.

It was pointed out in [23] that in the reference frame of the spacecraft moving with
respect to nontrivial background, where ¢, > 1, with the speed v = 1/¢; the Cauchy
problem for small perturbations 7 is ill posed. This happens because the hypersurface
of the constant proper time ' of the astronaut is a null-like with respect to the acoustic
metric G;,,l Hence t' = const is tangential to the characteristic surface (or sonic cone
see section 1.4) and cannot be used to formulate the Cauchy problem for perturbations
which “live” in this acoustic metric. Intuitively this happens because the perturbations
propagate instantaneously with respect to the hypersurface t' = const. Moreover, for
v > 1/cs, the sonic cone deeps below the surface ¢ = const) and in the spacetimes of
dimension D > 2 the Cauchy problem is ill posed as well because there always exist two
directions along which the perturbations propagate “instantaneously” in time ¢'. This tell
us that not every imaginable configuration of the background can be realized as the result
of evolution of the system with the well formulated Cauchy problem and hence not every
set of initial conditions for the scalar field is allowed.

In this Section we will find under which restrictions on the initial configuration of
the scalar field the Cauchy problem for equation (1.34) is well-posed. For this purpose
it is more convenient not to split the scalar field into background and perturbations and
consider instead the total value of the field ¢ = ¢y + 7. The k-essence field interacts
with gravity and therefore for consistency one has to consider the coupled system of
equations for the gravitational metric g,, and the k-essence field ¢. In this case the
Cauchy problem is well posed only if the initial data are set up on a hypersurface ¥ which
is simultaneously spacelike in both metrics: g,, and G} (for details see P. 251 of Ref. [33]
and Refs. [34, 31, 35]). We will work in the synchronous coordinate system, where the
metric takes the form

ds® = —dt® + ypdz'dz® | (1.68)

and select the spacelike in g,, hypersurface ¥ to be a constant time hypersurface ¢ = ¢,.
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1.7 Conditions for the well posed Cauchy problem 29

The 1-form 0,t vanishes on any vector R* tangential to ¥: R*0,t = 0. This 1-form is
timelike with respect to the gravitational metric g,,, that is ¢"0,t0,¢t < 0. In case when
Lagrangian for k-essence depends at maximum on the first derivatives of scalar field the
initial conditions which completely specify the unambiguous solution of the equations of
motion are the initial field configuration ¢(x) and and it’s first time derivative ¢(x) =
(—9"0ut0,¢)y. Given these initial conditions one can calculate the metric G;Vl and
consequently the influence cone at every point on . First we have to require that for a
given set of initial data the hyperbolicity condition (1.40) is not violated. This imposes
the following restriction on the allowed initial values ¢(x) and ¢(x):

c;l=1+ [((ﬁ(x))2 — (Vgp(x))Q] % >0, (1.69)

where we have denoted (Vgo(x)) = v*9;00,¢. In addition we have to require that the

hypersurface X is spacelike also with respect to emergent metric G*¥, that is, for every
vector R*, tangential to 3, we have G;,}R“R” > 0, or

s (e \2PL)IX?
1+¢ (Vo)) ac7ox >0 (1.70)

If at some point on > the vector R* becomes null-like with respect to G;Wl, that is,
G;“}R“R” = 0, the signals propagate instantaneously and one cannot guarantee the con-
tinuous dependence on the initial data or even the existence and uniqueness of the solution,

see e.g. [48]. Using (3.12) the last inequality can be rewritten as

2 2
2 O L/OX ) > 0. (1.71)

e (1 + ((x)) OLjOX

Therefore, given Lagrangian L (¢, X) and hypersurface ¥ one has to restrict the initial
data (¢(x), ¢(x)) by inequalities (1.69) and (1.70) (or equivalently (1.71)), to have a well
posed Cauchy problem. The condition (1.71) is always satisfied in the subluminal case for
which (02£/0X?) / (0£/0X) > 0. In addition, we conclude that, if these conditions are
satisfied everywhere on the manifold M and the selected synchronous frame is nonsingular
in M, then time ¢ plays the role of global time and in accordance with the theorem about
stable causality no causal paradoxes arise in this case.

As a concrete application of the conditions derived let us find which restrictions should
satisfy the admissible initial conditions for the low energy effective field theory with La-
grangian £(X) ~ X — X?/u* + ..., where p is a cut off scale Ref. [23]. In this case (1.71)

imply that not only X < p*, but also (¢(x))* < p! and (6@(}())2 < p*. Note that
these restrictions can be rewritten in the Lorentz invariant way: for example the first
condition takes the form (g"*9,t0,p)” < u.

Finally let us note that even well-posed Cauchy problem cannot guarantee the global
existence of the unique solution for nonlinear system of the equations of motion: for
example, the solution can develop caustics [49] or can become multi-valued [50].
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Chapter 2

Unified Dark Matter models in
k-essence Cosmology

2.1 Introduction

The confidence region of cosmological parameters emerging from the analysis of data
from type Ia Supernovae (SNIa), Cosmic Microwave Background (CMB) anisotropies
and the large scale structure of the Universe, suggests that two dark components govern
the dynamics of the present Universe. These components are the Dark Matter (DM),
responsible for structure formation, and an additional Dark Energy (DE) component that
drives the cosmic acceleration observed at present (see Fig 2.1).

In this Chapter we focus on Unified models of Dark Matter and dark energy (UDM)
that can provide an alternative to our interpretation of the nature of the dark compo-
nents of our Universe. These models have the advantage over the DM + DE models (e.g.
ACDM) that one can describe the dynamics of the Universe with a single dark fluid which
triggers the accelerated expansion at late times and is also the one which has to cluster
in order to produce the structures we see today. However, the viability of UDM models
strongly depends on the value of the effective speed of sound ¢, [53, 14, 44], which has to
be small enough to allow structure formation [54, 55, 56] and to reproduce the observed
pattern of CMB temperature anisotropies [53, 57, 54, 58, 59].

Several adiabatic or, equivalently, purely kinetic models have been investigated in the
literature. For example, the generalized Chaplygin gas ([60, 61, 62] (see also [63]), the
Scherrer [64] and generalized Scherrer [57] solutions, the single dark perfect fluid with
a simple 2-parameter barotropic equation of state [65], or the homogeneous scalar field
deduced from the galactic halo spacetimes [66].

Moreover, one can build up scalar field models for which the constraint that the La-
grangian is constant along the classical trajectories allows to describe a UDM fluid [57]
(see also Ref. [67], for a different approach). Alternative approaches to the unification
of DM and DE have been proposed in Ref. [68], in the frame of supersymmetry, and in
Ref. [69], in connection with the solution of the strong CP problem.
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Figure 2.1: The QQ)-QS\O) confidence regions constrained from the observations of SN Ia,

CMB and galaxy clustering. We also show the expected confidence region from a SNAP
satellite for a flat Universe with Q) ~ 0.27. From Ref. [51] (see also Ref. [52]).
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2.2 Cosmological solutions in k-essence 33

One could easily reinterpret UDM models based on a scalar field Lagrangian in terms
of — generally non-adiabatic — fluids [36, 37]. In this Chapter we consider the general
Lagrangian of k-essence models and classify them through two variables connected to
the fluid equation of state parameter w,. This allows to find attractor solutions around
which the scalar field is able to describe a mixture of dark matter and cosmological
constant-like dark energy, an example being Scherrer’s [64] purely kinetic model. Next,
we impose that the Lagrangian of the scalar field is constant, i.e. that p, = —A, where
A is the cosmological constant, along suitable solutions of the equation of motion, and
find a general class of k-essence models whose attractors directly describe a unified dark
matter/dark energy fluid. While the simplest of such models, based on a neutral scalar
field with canonical kinetic term, unavoidably leads to an effective speed of sound ¢; which
equals the speed of light, thereby inhibiting the growth of matter perturbations, we find
a more general class of non-canonical (k-essence) models which allow for the possibility
that ¢; < 1 whenever matter dominates.

The plan of this Chapter is as follows. In Section 2.2 we introduce the general class of k-
essence models and we propose a new approach to look for attractor solutions. In Section
2.3 we apply our formalism to obtain the attractors for the purely kinetic case. Moreover
for completeness in Section 1.3.5 we provide the spherical collapse top-hat solution for
UDM models based on purely kinetic scalar-field Lagrangians, which allow to connect the
cosmological solutions to the static configurations (see Chapter 3).

In Section 2.4 we generalize our model giving general prescriptions [Egs. (2.120) and
(2.122)] which allow to obtain unified models where the dark matter and a cosmological
constant-like dark energy are described by a single scalar field along its attractor solutions

2.2 Cosmological solutions in k-essence

Let us reconsider the following action

R
S=8c+S,+ Sm= /d4a:\/—g [5 + L(go,X)] + S (2.1)

where
If X is time-like S, describes a perfect fluid with

17, = (p+P)upt + P Guw (2.2)
where
is the pressure,
Ip(p, X
p=plo,x) =2x 8N s x) (2.4
is the energy density and the four-velocity reads
\Y
Uy = A2 (2.5)

V2X
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34 Unified Dark Matter models in k-essence Cosmology

Now we assume a flat, homogeneous Friedmann-Robertson-Walker background metric
ie.

ds® = —dt* + a(t)*8;;dx'dz’ = a(n)*(—dn® + 6;;dz'da?) (2.6)

where a(t) is the scale factor, d;; denotes the unit tensor and dn = dt/a is the conformal

time. In such a case, if we neglect the baryonic matter, the background evolution of the
Universe is characterized completely by the following equations

1
H* = 2(p+ps). (2.7)
. 1
H:—é(p+p+p3+p3), (2.8)

where the dot denotes differentiation w.r.t. the cosmic time ¢ and where pg and pg are the
energy density and the pressure of the barionic matter and/or the radiation, respectively.
On the background X = £¢? and the equation of motion for the homogeneous mode ¢(t)

becomes 5 52 5 52 5
p P sy O P o 0P _
(aX+2X8X2)(’0+8X(3H(’0)+8g08)(@ 9 0. (2.9)

As already explined in the previous Chapter, the k-essence equation of state w = p/p
is just

p

- xE 5 (2.10)

w

while the effective speed of sound, which is the quantity relevant for the growth of per-
turbations, reads [14, 44]

* = 0p/0X) " T 12X 2%

Cc

Moreover, one could easily reinterpret k-essence models based on a scalar field La-
grangian in terms of — generally non-adiabatic — fluids [36, 37].

2.2.1 Lagrangian of the type L(¢, X) = f(¢)g(X)

Let us assume that the scalar field Lagrangian depends separately on X and ¢, i.e. that
it can be written in the form

p(e, X) = f(©)9(X) , (2.12)
then Eq. (4.6) becomes
p=1(e) 2x D y(x)) (213

Notice that the requirement of having a positive energy density imposes a constraint on
the function g, namely,

dg
2X— 2.14
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2.2 Cosmological solutions in k-essence 35

having assumed f > 0. Eq. (2.9) can be rewritten as follows

L df

FiN = AN.X ) (2.15)
dyg g dyg
(a_X + 2X6X2> dX + [3 <2X8—X)
+ AN X, f(N, X)) (2)(5—}"( _ gﬂ AN =0, (2.16)

where dN = da/a. Eq. (2.15a) defines the parameter A as a generic function of N (also
through X and f); the same parameter A in Eq. (2.15b) is considered as a function of
both N and X (also through f).

Now we want to find the set of scalar field trajectories where Eq. (2.15b) defines an
exact differential form. To this aim, first of all we have to study the differential form

P(X,N)dX +Q(X,N)dN =0 (2.17)

One possible way is to search for an integral factor I, explicit function of N, which makes
exact the differential form (2.17). In our situation P(X, N) = P(X), thus I(N) is just

dI 9Q(X,N)

In this case we have to impose the integrability condition

dQ(X,N)
S = alN)P(X) (2.19)

so that N
I(N) = exp/ dN'a(N') (2.20)

depends only on .
Using the explicit expressions of Q(X, N) and P(X) the condition (2.19) becomes

X 00 (00 02X 2% - )

7% o (2o g)—i—()\—a)a—X:O. (2.21)

It is easy to see that A\ — « is a function of (at least) X; then, defining G(X) = a — A,
Eq. (2.21) becomes

0(2x%) oG g 0 (2X2% - g)
3T—a—x(”a—x— )‘ ox (2:22)
which can be trivially integrated to give
3 (2X§—;) LK=a (QXg—; - g> (2.23)
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36 Unified Dark Matter models in k-essence Cosmology

with K a generic constant. Without loss of generality we can set K = 0 so that
a—A=G=3w+1). (2.24)

Replacing Eq. (2.23) in Eq. (2.15b) we find

(5—; + 2X§;§’2> dX + a(N) <2X§—; . g) dN =0 (2.25)
Multiplying both sides by I(/N) we finally obtain
d [(2)(@ — g) el” dN’a<N’>} =0 (2.26)
0X
whose solution is
<2X§—§ - g) = Ke~ /" dN'a(V) (2.27)

where K is a new integration constant. Using the general equation (2.27) we can express
the energy density as

p = Re= I AN"@UNI-XN) _ fgo=3 ™ dN'(we(N')41) | (2.28)

If \ - 0and @« — 0 then w — —1 and Kf — const. . Therefore, in such a case the
energy density p tends to a constant value

Po X = /70 AN"a(N) (2.29)

For A = 0 the Lagrangian £ (i.e. the pressure p) depends only on X, that is we are
obtaining the equations that describe the purely kinetic model i.e. when £ = £(X).

It is interesting to note that, if & > 0 the term exp (— fN dN’a(N’)) determines the
value of py. In order to have p > 0 we have to require K > 0.
Before concluding this section it is worth to make some comments on w and ¢?. First

of all, if we impose the conditions 1 < w and ¢ > 0, in terms of « and w, or, equivalently,
of @ and ), the effective speed of sound, Eq. (3.12), reads

»_ (w+1)dhnX __a—AdhnX >0

= 2.
K 2a¢ dN 6 dN — (2:30)
Thus, in purely kinetic models (A = 0), we get
1dlnX
— <0. 2.31
a dN (2:31)

Therefore if o > 0, X can only decrease in time down to its minimum value.
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2.2 Cosmological solutions in k-essence 37

2.2.2 Study of the solutions for o = 0: ”scaling k-essence”

If X is constant (dX/dN = 0) then, from Eq. (2.21), @ = 0. In this situation we have

that
1 df 1 1df
2 = Y N N=-3w+1 2.32
is constant because w is function only of X.
Now if we consider the case in which the Universe is dominated by a fluid with constant

equation of state wg then

H=N ~2/[3(wg + 1)t] (2.33)
and Eq. (2.32) becomes
dlnf/dInt ~ =2(w +1)/(wp + 1) . (2.34)
Therefore we get
_g wtl _o_wtl
f ~ ‘[,‘ wptl ~u QD wp+1 (235)

because if ¢ is constant then

¢ ~V2Xt. (2.36)

In other words, we have recovered, although in a more general way, the result of Ref. [10,
11]. These models have been dubbed “scaling k-essence ” (see also Ref. [70]). In such a
case, the equation of state w can be written as

w=PFwsg+1)/2-1, (2.37)

where f = ¢,

If wg = w we have only the k-essence as background and we get 8 = 2 (see for example
Refs. [12, 13] and [70]).

Using the latter approach, we can see that if f = ¢ and if the background of the
Universe is dominated by a fluid with constant equation of state wg, whenever @ — 0,
we have that all the viable functions g(X) have the solutions of motion that converge to
the scaling solution (a “viable g(X)” is a function that does not have a diverging speed
of sound ¢?).

Otherwise if &« — ¢ > 0 for N — +oo (i.e. when « converges an opportune positive
constant), we have 2X ;—; — g — 0 and we get three possible solutions:

i) if g — const. we have w — oo, which is not acceptable;

ii) if g — 0 and w — const. # 0 we get w — ¢? > 0 [71]; this solution cannot be used
to describe an accelerated Universe;

iii) if ¢ — 0 and w — 0 we get 0 < ¢ < 1; obviously, also in this case the Universe
cannot accelerate.
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38 Unified Dark Matter models in k-essence Cosmology

Now, if o # 0 and f = ¢? we have that

@. (2.38)

a=3w+1)— gﬁ(wg—i—l)

Therefore, starting from Eq. (2.21), we note that when o — 0 we have that QXj—j”( —qg—
const. # 0 and, consequently, X must be necessarily a constant. Indeed, starting from
the equation 2.X :—§ — g = const. we can have two possibilities: either X is constant or
we need resolve directly this differential equation. If we solve the differential equation we
obtain immediately that g = bv/2X + const. . In this case it easy to see that speed of
sound ¢? is diverging [72].

Therefore, if ¢ # bv/2X + const., finally we can conclude that the solution of the equation
of motion converges in to the scaling solution.

Obviously it is necessary to use a opportune g(X) such that for N — 400 we have
that @« — 0. In Ref [10, 11] the author use properly this property in order to derived a
condition for the existence of tracker solutions for the system of matter/radiation and a
scalar field with only non-canonical kinetic terms.

Moreover, in literature, there are a subclass of k-essence models Ref. [12, 13] feature
a tracker behavior during radiation domination, and a cosmological constant behavior
shortly after the transition to matter domination. Indeed these models have § = 2.
In particular, as long as this transition seems to occur generically for purely dynamical
reasons, these models are claimed to solve the cosmic coincidence problem without fine-
tunning. Subsequently, it was realized that the latter models [12, 13] have too small a
basin of attraction in the radiation era [73].

2.3 Study of the attractors for UDM with purely ki-
netic Lagrangians

In this section we want to make a general study of the attractor solutions of our model
in the purely kinetic case, i.e. for A = 0.

First of all let us stress that starting from the barotropic or adiabatic equation of state
p = p(p) we can describe through a purely kinetic k-essence Lagrangian, obviously if there
is the inverse function for p = p(p). In this case we have to solve the equation

dp(X)
0X

p(p(X)) =2X — p(X) (2.39)

when X is time-like.
For A = 0, from Eq. (2.24) we get o = 3(w + 1) and

dg 0%g \ dX g\
(a—X+2X8X2>d—N+3<2Xa—X = 0. (240)

In particular in this section we focus mainly on Unified models of Dark Matter and
dark energy (UDM) that can provide an alternative to understand the nature of the dark
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2.3 Study of the attractors for UDM with purely kinetic Lagrangians 39

components of our Universe. In this case a single fluid behaves both as dark matter and
dark energy.
Moreover, as we already explained above, in the A = 0 case the Lagrangian £ (i.e. the
pressure p) depends only on X and, through Eq. (2.39), it can be described as adiabatic
single fluid p = p(p). In literature UDM the models described with a adiabatic equation
of state p = p(p), are also called ‘Quartessence” (see for example Ref. [64] and [61, 62]).
Now we want to make a general study of the attractor solutions in this case. For
A =0, Eq. (2.9) gives the following nodes,

N dg
1 X=X=0 2 —| =0 2.41
) ? ) dX X ? ( )
with X a constant. Both cases correspond to w = —1, as one can read from Eq. (2.10).

In these cases we have either X = 0 or dg/0X = 0 on the node. We know from
Eq. (2.31) that the worth of X can only decrease in time down to its minimum value.
This implies that w, from Eq. (2.10), will tend to —1 for N — oc.

At this point we can study the general solution of the differential equation (2.40). For
X # 0 and dg/0X # 0 the solution is [64]

dg ? -6

with £ a positive constant. This solution was previously derived although in a different
form in Ref. [74]. As N — oo, X or dg/dX (or both) must tend to zero, which shows
that, depending on the specific form of the function ¢g(X), each particular solution will
converge toward one of the nodes above. From Eq. (2.42), for N — oo, the value of X or
0g/0X (or of both of them) must tend to zero. Then, it is immediate to conclude that
w — —1 is an attractor for N — oo and confirms that each of the above solutions will be
an attractor depending on the specific form of the function g(X).

Let us also note that, for A # 0, if we require w — —1 (in this case o = \) for N — oo,
the density p tends to a constant. Moreover, as far as w — —1 we have either X = 0
(implying ¢ = const) or dg/0X = 0 (which also implies that g is time-independent).
Then, from Eq. (2.13) it is easy to see that f(¢) should take a positive constant value.

In what follows we will provide some examples of stable node solutions of the equation
of motion, some of which have been already studied in the literature. The models below
are classified on the basis of the stable node to which they asymptotically converge.

2.3.1 Case 1): Generalized Chaplygin gas

An example of case 1) is provided by the Generalized Chaplygin (GC) model (see e.g.
Refs. [60, 61, 62, 58, 59, 75, 76, 54]) whose equation of state has the form

pac\ '
Pac = —pPx (—p ) ; (2.43)

where now pgc = p and pgec = p and p, and p, are suitable constants.
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40 Unified Dark Matter models in k-essence Cosmology

Through the equation p = 2.X a%())(() — g(X) and the continuity equation 25 + (pgc +

pec) = 0 we can write pge and pge as functions of either X or a. When the pressure
and the energy density are considered as functions of a we have

¥/ (147) .
s ( —f’%) [1+ va~ 8] 15 (2.49)
P+
v/ (1+7) )
pec = ( f/:) [1 4 va 3] (2.45)
Px

with v = const.; when instead the pressure and the energy density are considered as
functions of X we have

1
—p, v/(1+7) ]
pec =~ | —/ [1 — pX 2 } (2.46)
p

*

1+
. v/ (147) U

pco = | —i/5 [1 — pX ] (2.47)
ps

with u = const. To connect p and v we have to use Eq. (2.42). We get

1 —xft » =1/
— U P
v=u <4k> (,0*_1/7> . (2.48)

It is necessary for our scopes to consider the case v > 0 (so that ¢Z > 0) so that a > 0
and dln X/dN < 0 (see Eq. (2.31)). Note that v = —1 corresponds to the standard
“Chaplygin gas” model. Let us also consider > 0 and v > 0.

It easy to see from that for small a (i.e. for V3T G < 1) the expression (2.45) is

approximated by
v/(147)
pcc = (T) vitia (2.49)
P

%

that corresponds to a Universe dominated by dust-like matter. For large values of the
2 1 1

cosmological radius a i.e. ,uﬁ X <1 (v31#7a > 1) we can approximate pgc and pge in

the following way

v/(1+7) » v/(1+7)
—Dx v 14y —Dx .
Pac = = (ﬁ) [1 B ] — - (Tm) =-A  (2:50)

v/(1+7) 1 » v/(1+7)
—Dx 14y —Mx
pPcec = (ﬁ) |:]. + mIUIX 2y :| — (p_1/7> =A (251)
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which, in turn, corresponds to an empty Universe with a cosmological constant (i.e a de
Sitter Universe).
In other words this models explain the acceleration of the Universe via an exotic equation
of state causing it to act like dark matter at high density and like dark energy at low
density. The model is interesting for phenomenological reasons but can be motivated
by a brane-world interpretation. Therefore an attractive feature of the model is that it
can explain both dark energy and dark matter in terms of a single component, and has
therefore been referred to as “unified dark matter” (UDM) or “quartessence”.

Now, we can see immediately that the speed of sound is strictly connected with the
equation of state of this fluid and with the value of 7. Indeed we have that

1
1+ va 3G+70] °

= —yw = fy[ (2.52)
In the generalized Chaplygin gas model, the sound speed is small at early times (when
a is small) and becomes larger at late times. Therefore if one study the fluctuations in
the Chaplygin gas models find (see next Chapter) that if 7 is not very near to 0, these
models are ruled out by the matter power spectrum Ref. [54] or the CMB (see for example
Ref. [58, 59, 75, 76, 77]). In particular if the sound of speed of the dark matter is very
different to zero, its fluctuation are either unstable toward collapse when ¢ < 0 (since
the large sound speed at late times leads to either blow-up of the perturbations) or start
to oscillate when ¢ > 0.

2.3.2 Case 1): The Chimento model

Another model that falls into this class of solution is the one proposed in Ref. [72], in
which ¢ = bv/2X — A (with b a suitable constant) which satisfies the constraint that
p = —A along the attractor solution X = 0. This model, however is well-known to imply
a diverging speed of sound.

2.3.3 Case 2): The Scherrer solution model

For the solution of case 1) we want to study the function g around some X = X # 0. In
this case we can approximate g as a parabola with g—)’}

x=0
9= 0o+ g2(X — X)2. (2.53)

with gy and g, suitable constants. This solution, with gy < 0 and g, > 0, coincides with
the model studied by Scherrer in Ref. [64].

It is immediate to see that for X — X # oo and N — oo the value of dX/dN goes to
zero. Replacing this solution into Eq. (2.42) we obtain

42X (X = X)) = ka™®, (2.54)
while the energy density p becomes

A

p=—go+49:X (X — X) +3g(X — X)2. (2.55)
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42 Unified Dark Matter models in k-essence Cosmology

Now if we impose that today X is close to X so that

= <1 (2.56)
X
then Eq. (2.54) reduces to
-3
X=X|1+ <3> ] (2.57)
aq
with a1 < a and with

(1/a1)~% =[1/(2¢2)](k/X®Y?  for e< 1. (2.58)

As a consequence, the energy density becomes

ai

-3

In order for the density to be positive at late times, we need to impose gy < 0. In this
case the speed of sound (3.12) turns out to be

2= % _ % <a11> - (2.60)

We notice also that, for (a/a;)”> < 1 we have ¢2 < 1 for the entire range of validity of
this solution.

Thus, Eq. (2.59) tells us that this k-fluid behaves like a very low sound-speed with a
background energy density that can be written as

p=pr+ pom (2.61)

where p, behaves like a “dark energy” component (py = const.) and ppy behaves like a
“dark matter” component (ppy o a~2). Note that, from Eq. (2.59), X must be different
from zero in order for the matter term to be there. (For this particular case the Hubble
parameter H is a function only of this fluid H? = p/3).

This model has been variously referred to as “Unified Dark Matter” (UDM).

If the Lagrangian is strictly quadratic in X we can obtain explicit expressions for the
pressure p and the speed of sound c¢; in terms of p, namely

48 30 +p)]7] 1
= _ —go X%1— |1+ = i - 2.62
D 3go+992 { [ +4 wX? +3P; ( )
1
1 3 !
@ Ll 3t 1 (2.63)
3 4 92X2 3

Looking at these equations, we observe that in the early Universe case (X > X ie.
p > (—go)) the k-essence behaves like radiation.
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Therefore, the k-essence fluid in this case behaves like a low sound-speed fluid with a
density which evolves like the sum of a “dark matter” (DM) component with p oc a3 and
a “dark energy” (DE) component with p = const.. The only difference from a standard
ACDM model is that in this k-essence model, the dark energy component has ¢? < 1.

Starting from the observational constraints on ppy and ppg, the value of a; is deter-
mined by the fact that the k-essence must begin to behave like dark matter prior to the
epoch of equal matter and radiation. Therefore, a; < a.y, where a., is the scale factor at
the epoch of equal matter and radiation, given by ae; = 3 x 10™* (where we have imposed
that the value of the scale factor today ag = 1). At the present time, the component of
p corresponding to dark energy in equation (2.59) must be roughly twice the component
corresponding to dark matter, so

—go = 8g2X*(1/a1)~>. (2.64)
Substituting a; < a, into this equation, we get [64]
— _ 1y 9 3
e =¢la=1)= X’ < 8ay, (2.65)
< 2x10710, (2.66)

In practice, if we assume that g(X) has a local minimum that can be expanded as a
quadratic and when Eq. (2.56) is not satisfied (i.e. for a < a1), we can say nothing about
the evolution of X and p.

The stronger bound ¢y < 1078 is obtained by Giannakis and Hu [55], who considered
the small-scale constraint that enough low-mass dark matter halos are produced to reionize
the Universe. On the other hand the sound speed can be made arbitrarily small during
the epoch of structure formation by decreasing the value of € in equation.

One should also consider the usual constraint imposed by primordial nucleosynthesis on
extra radiation degrees of freedom, which however leads to a weaker constraint. Moreover
the Scherrer model differs from ACDM in the structure of dark matter halos both because
of the fact that it behaves as a nearly pressure-less fluid instead of a set of collisioness
particles. Analytically we will discuss this problem when we we will study the static
configuration of the UDM models. Practically we will see that when X < 0, the energy
density of the Scherrer model is negative. Thus, p must depend strongly on the time. In
this way, this model will behave necessarily as a fluid and shock, in the static configuration.
[55].

2.3.4 Case 2): the Generalized Scherrer solution models

Starting from the condition that we are near the attractor X = X # 0, we can generalize
the definition of g, extending the Scherrer model in the following way

p=g=go+gn(X—X)” (2.67)

with n > 2 and gy and g, suitable constants.
The density reads

A

p=(2n—1)gn(X — X)" +2Xng,(X — X)" " — g (2.68)
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If
" =[(X-X)/X]"< 1, (2.69)

a —3/(n-1)
- ( ) (2.70)
Ap—1

¢ )_3 - (2.71)

Ap—1

Eq. (2.42) reduces to

A

X=X

(where a,_; < a) and so p becomes

p = 2nX"g, (

with
(1/an-1)" = [1/ (ngn)](k/ X"/ (2.72)
for " < 1.

We have therefore obtained the important result that this attractor leads exactly to
the same terms found in the purely kinetic model of Ref. [64], i.e. a cosmological constant
and a matter term. We can therefore extend the constraint of Ref. [64] to this case
obtaining

(€)™ " = —go/(4nX"g,) <1071 . (2.73)

A stronger constraint would clearly also apply to our model by considering the small-scale
constraint imposed by the Universe reionization, as in Ref. [55].
If we write the general expressions for w and ¢? we have

e _{1+ <g_n> (X_X)n] [1_2nj( (9_") (X — X)"'— (20— 1) (g_"> (X—X)n] -1

9o 9o 9o
) (2.74)
¢ = _(X=X) — (2.75)
2(n—1)X + (2n — 1)(X — X)

For ¢ < 1 we obtain a result similar to that of Ref. [64], namely

-3
w:—l—l—Qn(g”)( g ) ) (2.76)
‘90| Ap—1

1
e 2.77
“=om-1° (2.77)
On the contrary, when X > X we obtain
w e~ ¢~ ! (2.78)
% 2n-—1 '

In this case we can impose a bound on n so that at early times and/or at high density
the k-essence evolves like dark matter. In other words, when n > 1, unlike the purely
kinetic case of Ref. [64], the model is well behaved also at high densities.

In the next subsection we study spherical collapse for the generalized Scherrer solution
models.
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2.3.5 Spherical collapse for generalized Scherrer solution models

Let we assume a flat, homogeneous Friedmann-Robertson-Walker background metric. In
such a case, the background evolution of the Universe is characterized completely by the
following equations

1
: 1
H=—5+p), (2.80)

where the dot denotes differentiation w.r.t. the cosmic time .
Now let us consider a top-hat spherical over-density with the purely kinetic model with
the Lagrangian £ = —A + g,(X — )2')" and with g, > 0. For this particular case within
the over-dense region we have a single dark fluid undergoing spherical collapse, which is
described by the following equation

= (on + 300) (2.81)

where R, pr and pg are respectively the scale-factor, pressure and energy density of the
over-dense region; pg and pg are defined by the following expressions

pr=A+2ng, X (Xp— X)" ' 4+ (2n — 1)go(Xg — X)" (2.82)

A

with Xz = X (R) a function of time.
The equation of motion is

Jd9r gr\ dXg JOgr
2X 2Xp—=2 ) =0. 2.84
(6XR 249Xz ) ANy 3\ 2 egx, ) =0 (2.84)

where dNgp = dR/R. The solution of Eq. (2.84) (for 0gr/0Xg, Xr #0 ) is

agR 2 . -6
Xg (m) = kgR (2.85)

[ 2
where we can choose kr = RS | Xgr ((%"(—};) ] , with Ry, the value of R at turnaround.
a

Replacing Eq. (2.83) in Eq. (2.85) we find

- . 2
Xp |ngn(Xg — X)"*l} = kgR° (2.86)
Using now the explicit expressions for pr and pr we arrive at the following set of equations

R 1 N . R
R~ 3 ~A+ng, X(Xp—X)"'+ (n+ 1)ga(Xp — X)" (2.87)

(Xg—X) 14+ X(Xg — X)X D) = nZ—ZQR*G. (2.88)
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For (Xz — X)/X < 1 Eq. (2.87) becomes

R 1 . 1 R\
“=—2<¢-A wl Xr, — X" (XR,, X)? 2.89
i 3{ g X, = X 0! (1) } (2.89)
We can now write all the equations that describe the spherical collapse
a\’ 1
— = - 2.90
(a> 3 (P + ppm) (2.90)
ppn = A (2.91)
-3
~ | a
pom = 2ngn| X — X|"_1(XmX)5 (a_> (2.92)
ta
R 1
E = _6 (pRDM - QPRA) (293)
- 1n—1 o\ L R -
PRom = 2ngn|Xta - X| (XRtaX) 2 R (294)
ta

where a;, = a(ty,)-
Following now the same procedure of Ref. [78] we can define z and y

a

= 2 2.95
x a (2.95)
R
= . 2.96
y R (2.96)
In this way we can redefine ppy and pgy,,, such that

3H2 Qpu(z =1

pom = ta DN;( ) (2.97)
x
3HEQpu(z =1

Prow = (— D;‘f,,( ) (2.98)

where Qpy is the (k-essence) dark matter density parameter, and ¢ = (p/ppm)|z=1- Then
Egs. (2.90) and (2.93) become

d 1
== @ @) (2:99)
Py 1 5
P _2—y2 [C -2y KA} ) (2'100)
_ 1- QDM ($ = 1) -
Q,,, (@) = (1 Q. (@=T) :c?’) : (2.101)

where dr = Hy,+/Q,,, (x =1) and Ky = p, /[3BHEQ,,,, (x = 1)].
Defining U as the potential energy of the over-density and using energy conservation
between virialization and turnaround,
RoOU
Ut ==| =U,, 2.102
[ " 2 aR:|vir ' ( )
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we obtain .
(1+ )y — 299" = 5 (2-103)
where e
q= (p—A> ==2, (2.104)

in full agreement with Ref. [79].

2.4 UDM Scalar Field with canonical kinetic term

Starting from the barotropic equation of state p = p(p) we can describe the system either
through a purely kinetic k-essence Lagrangian, as we already explained in the last section,
or through a Lagrangian with canonical kinetic term, as in quintessence-like models. The
same problem has been solved in Ref. [80], although with a different procedure and for a
different class of models. In the second case we have to solve the two differential equations

X=V(p) = ple,X) (2.105)
X+V(e) = ple,X) (2.106)

where X = ¢?/2 is time-like. In particular if we assume that our model describes a unified
dark matter/dark energy fluid we can proceed as follows: starting from p = —3H (p+p) =

—/3p(p+ p) and 2X = (p + p) = (dw/dp)*p* we get

oot L [ AP
V3 Jo () + )27

up to an additive constant which can be dropped without any loss of generality. Inverting
the Eq. (2.107) i.e. writing p = p(¢) we are able to get V(p) = [p(¢) — p(p(¥))]/2.
Now we require that the fluid has constant pressure p = —A, i.e. that the Lagrangian
of the scalar field is constant along the classical trajectory corresponding to perfect fluid
behavior. In other words one arrives at an exact solution with potential and we get

3
cosh? (%(p) +1

see also Ref. [67]. For large values of o, V() o exp(v/3¢) (equivalently, for large values of
—, V(¢) x exp(—v/3¢p)) and our scalar field behaves just like a pressureless dark matter
fluid. Indeed, this asymptotic form, in the presence of an extra radiation component,
allows to recover one of the stable nodes obtained in Ref. [7] for quintessence fields with
exponential potentials, where the scalar field mimics a pressureless fluid. Under the latter
hypothesis we immediately obtain

(2.107)

Vi) =2

5 (2.108)

—larccos 1/2
e(p) = 7 h(p/A)" (2.109)
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48 Unified Dark Matter models in k-essence Cosmology

which can be inverted to give the scalar field potential of Eq. (2.108) as V(¢) = (p(p) +
A)/2. One then obtains

which can be immediately integrated, to give

V3A

2 14+¢ _
o(t) = 7 In (—) , £ =exp —5 (t— t*)] ) (2.111)

1-¢
for t > t,, with t, such that ¢(t — t.) — oco. Replacing this solution in the expression for
the energy density one can easily solve the the Friedmann equation for the scale-factor as
a function of cosmic time,

sinh?/3 [@ (t— t*)]

sinh?/? [@ (to — t*)]

a(t) = ag : (2.112)

which coincides with the standard expression for a flat, matter plus lambda model [81],
with Qoa/Qom = sinhQ[@(to —t.)], Qoa and ,, being the cosmological constant and
matter density parameters, respectively.

Using standard criteria (e.g. Ref. [16]) it is immediate to verify that the above trajec-
tory corresponds to a stable node even in the presence of an extra-fluid (e.g. radiation)
with equation of state Wayida = Phuia/Pruia > 0, Where pguiq and pguiq are the fluid pressure
and energy density, respectively. Along the above attractor trajectory our scalar field be-
haves precisely like a mixture of pressureless matter and cosmological constant. Using the
expressions for the energy density and the pressure we immediately find, for the matter
energy density

pm = p — A = Asinh? (?gp) xa®. (2.113)

The peculiarity of this model is that the matter component appears as a simple conse-
quence of having assumed the constancy of the Lagrangian.

A closely related solution was found by Salopek & Stewart [82], using the Hamiltonian
formalism.

To conclude this section, we should stress that, like any scalar field with canonical kinetic
term [83], our UDM model predicts ¢ = 1, as it is clear from Eq. (3.12), which inhibits
the growth of matter inhomogeneities. In summary, we have obtained a “quartessence”
model which behaves exactly like a mixture of dark matter and dark energy along the
attractor solution, whose matter sector, however is unable to cluster on sub-horizon scales
(at least as long as linear perturbations are considered).

2.5 UDM Scalar Field with non-canonical kinetic term

We can summarize our findings so far by stating that purely kinetic k-essence cannot
produce a model which exactly describes a unified fluid of dark matter and cosmological

48
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constant, while scalar field models with canonical kinetic term, while containing such
an exact description, unavoidably lead to ¢? = 1, in conflict with cosmological structure
formation. In order to find an exact UDM model with acceptable speed of sound we
consider more general scalar field Lagrangians.

2.5.1 Lagrangians of the type L(p, X) = g(X) — V(p)

Let us consider Lagrangians with non-canonical kinetic term and a potential term, in the
form

Ly, X) =g(X) =V(p) . (2.114)
The energy density then reads
dg(X
p=2x B yx) 4 v(e), (2.115)

while the speed of sound keeps the form of Eq. (3.12). The equation of motion for the
homogeneous mode reads

dg d2g\ dX dg\ _ dV
(d—x”X@>d—N+3<2Xd—x =TuN (2.116)

One immediately finds

p+p= zx% =2F(X) . (2.117)

We can rewrite the equation of motion, Eq. (2.116), in the form

dF dx dv
[2Xd—X - ]—“] X (6]—'+ d—N) =0. (2.118)

It is easy to see that this equation admits 2 nodes, namely:

1) dg/dX|% =0 and

A~

2) X =0.

In all cases, for N — oo, the potential V should tend to a constant, while the kinetic
term can be written around the attractor in the form

x-x\"
g(X) = M* n>2, 2.119
M4

with M a suitable mass-scale and the constant X can be either zero or non-zero. The
trivial case g(X) = X obviously reduces to the one of Section 4.

Following the same procedure adopted in the previous section we impose the constraint
p = —A, which yields the general solution p,, = 2F(X).
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50 Unified Dark Matter models in k-essence Cosmology

This allows to define ¢ = ¢(p,,,) as a solution of the differential equation

o = 2F [g A ] | (2.120)

As found in the case of k-essence, the most interesting behavior corresponds to the
limit of large n and X = 0 in Eq. (2.119), for which we obtain

A\ 12
<8M4) ’
leading to V(¢) & ppm/2n — A, and ¢? = 1/(2n — 1) ~ 0. The Lagrangian of this model is
similar to that analyzed in Ref. [66].

: (2.121)

pm ~ A sinh™

2.5.2 Lagrangians of the type L(¢, X) = f(¥)g(X)

Let us now consider Lagrangians with a non-canonical kinetic term of the form of Eq. (2.12),

namely L(¢p, X) = f(¢)g(X).
Imposing the constraint p = —A, we obtain f(¢) = —A/g(X), which inserted in the
equation of motion yields the general solution

dln|g| __Pm
dX 2N

The latter equation, together with Eq. (2.120) define our general prescription to get
UDM models describing both DM and cosmological constant-like DE.

As an example of the general law in Eq. (2.122) let us consider an explicit solution.
Assuming that the kinetic term is of Born-Infeld type, as in Refs. [84, 85, 67],

g(X) = —/1-2X/M*, (2.123)
with M a suitable mass-scale, which implies p = f(p)/1/1 — 2X/M?*, we get

M*  ka™?
O = ke

X (2.122)

(2.124)

where k = pp(a,)a®/A and a, is the scale-factor at a generic time t,. In order to obtain
an expression for ¢(a), we impose that the Universe is dominated by our UDM fluid, i.e.
H? = p/3. This gives

2M2 - -1/2 ™
a) = arctan[ ka3 ] — —} , 2.125
pla) = o {aretan | (Ra™) 7] - 3 (2125)
which, replaced in our initial ansatz p = —A allows to obtain the expression (see also
Ref. [67])
A
flp) = ) (2.126)

Jcos [ (%) ¢ |
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If we expand f(¢) around ¢ = 0, and X/M* < 1 we get the approximate Lagrangian

A

L~ S/

3A
.2 2
—A|l : 2.127
@ [ +aan? } (2.127)
Note that our Lagrangian depends only on the combination ¢/M?, so that one is free to
reabsorb a change of the mass-scale in the definition of the filed variable. Without any
loss of generality we can then set M = A%, so that the kinetic term takes the canonical
form in the limit X < 1. We can then rewrite our Lagrangian as

L=\ YEZ2X/A (2.128)

eos ()|

This model implies that for values of v/3p ~ —m and 2X/A ~ 1,

3
cos (%(p) x a’/? V1-2X/Aoxa3?, (2.129)

the scalar field mimics a dark matter fluid. In this regime the effective speed of sound is
2=1-2X/A =0, as desired.

To understand whether our scalar field model gives rise to a cosmologically viable
UDM solution, we need to check if in a Universe filled with a scalar field with Lagrangian
(2.128), plus a background fluid of e.g. radiation, the system displays the desired solution
where the scalar field mimics both the DM and DE components. Notice that the model
does not contain any free parameter to specify the present content of the Universe. This
implies that the relative amounts of DM and DE that characterize the present Universe
are fully determined by the value of ¢g = ¢(to). In other words, to reproduce the present
Universe, one has to tune the value of f(¢) in the early Universe. However, a numerical
analysis shows that, once the initial value of ¢ is fixed, there is still a large basin of
attraction in terms of the initial value of dy/dt, which can take any value such that
2X/A < 1.

The results of a numerical integration of our system including scalar field and radiation
are shown in Figures 1 - 3. Figure 1 shows the density parameter, Qypy as a function
of redshift, having chosen the initial value of ¢ so that today the scalar field reproduces
the observed values Qpy & 0.268, Qpg &~ 0.732 [52]. Notice that the time evolution of
the scalar field energy density is practically indistinguishable from that of a standard
DM plus Lambda (ACDM) model with the same relative abundances today. Figure 2
shows the evolution equation of state parameter wypy; once again the behavior of our
model is almost identical to that of a standard ACDM model for 1 + z < 10%. Notice
that, since ¢ = —wypw, the effective speed of sound of our model is close to zero, as
long as matter dominates, as required. In Figure 3 we finally show the redshift evolution
of the scalar field variables X = ¢?/2 and ¢: one can easily check that the evolution
of both quantities is accurately described by the analytical solutions above, Eqgs. (2.124)
and (2.125), respectively (the latter being obviously valid only after the epoch of matter-
radiation equality).
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52 Unified Dark Matter models in k-essence Cosmology

Figure 2.2: Evolution of the scalar field density parameter vs. redshift. The continuous
line shows the UDM density parameter; the dashed line is the density parameter of the
DM + DE components in a standard ACDM model; the dotted line is the radiation
density parameter.
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Figure 2.3: The redshift evolution of the scalar field equation of state parameter wypwu
(continuous line) is compared with that of the sum of the DM + DE components in a
standard ACDM model (dashed line).
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Figure 2.4: Redshift evolution of the scalar field of the scalar field variables X = ¢?/2
(top) and ¢ (bottom).
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Chapter 3

ISW effect in Unified Dark Matter
Scalar Field Cosmologies: an
analytical approach

3.1 Introduction

The recent attitude in analyzing the observational consequences of the DE models has
been that of considering not only the background equation of state and its evolution
with time, but also to focus on the sound speed which regulates the growth of the dark
energy fluid perturbations on different cosmological scales. In this case the sound speed
has been often treated as a completely independent parameter in order to explore the
consequences on the CMB anisotropies and its effects on the low £ multipoles [86, 87, 77].
The efficiency of this method relies on the observation that, for a single scalar field with
canonical kinetic term, the speed of sound is equal to the speed of light, and thus it can
cluster only on scales of the horizon size, while for other models it can be lower than
unity, implying the possibility of clustering on smaller scales [53]. Another important
issue is whether the dark matter clustering is influenced by the dark energy and, for the
unified models, it becomes especially relevant in view of this approach. In the GCG model
(both as dark energy and unified dark matter) strong constraints come from the CMB
anisotropies [76, 58, 59] and the analysis of the mass power spectrum [54]. In the Scherrer
solution the parameters of the model have to be fine-tuned in order for the model not to
exhibit finite pressure effects in the non-linear stages of structure formation [55].

In this Chapter we consider cosmological models where dark matter and dark energy
are manifestations of a single scalar field, and we focus on the contribution to the large-
scale CMB anisotropies which is due to the evolution in time of the gravitational potential
from the epoch of last scattering up now, the so called late Integrated Sachs-Wolfe (ISW)
effect [88]. Through an analytical approach we point out the crucial role of the speed of
sound in the unified dark matter models in determining strong deviations from the usual
standard ISW occurring in the ACDM models. Our treatment is completely general in
that all the results depend only on the speed of sound of the dark component and thus
it can be applied to a variety of models, including those which are not described by a
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scalar field but relies on a single perfect dark fluid. In the case of ACDM models the
ISW is dictated by the background evolution, which causes the late time decay of the
gravitational potential when the cosmological constant starts to dominate [89]. In the
case of the unified models there are two simple but important aspects: first, the fluid
which triggers the accelerated expansion at late times is also the one which has to cluster
in order to produce the structures we see today. Second, from the last scattering to the
present epoch, the energy density of the Universe is dominated by a single dark fluid,
and therefore the gravitational potential evolution is determined by the background and
perturbation evolution of just such a fluid. As a result the general trend is that the possible
appearance of a sound speed significantly different from zero at late times corresponds to
the appearance of a Jeans length (or a sound horizon) under which the dark fluid does not
cluster any more, causing a strong evolution in time of the gravitational potential (which
starts to oscillate and decay) and thus a strong ISW effect. Our results show explicitly
that the CMB temperature power spectrum C, for the ISW effect contains some terms
depending on the speed of sound which give a high contribution along a wide range of
multipoles /. As the most straightforward way to avoid these critical terms one can require
the sound speed to be always very close to zero (see Sec. 3.3.2 for a more detailed discussion
on this point). Moreover we find that such strong imprints from the ISW effect comes
primarily from the evolution of the dark component perturbations, rather than from the
background expansion history. The Chapter is organized as follows. In Sec. 3.2 we obtain
the evolution equation for the gravitational potential. In Sec. 3.3 we start the analytical
analysis of the ISW effect, dividing the resulting expression for the angular CMB power
spectrum according to three relevant regions: those perturbation modes that enter the
horizon after the acceleration of the Universe becomes relevant, and perturbation modes
that are inside or outside the sound horizon of the dark fluid. In Sec. 3.3.2 we point out
those contributions to the ISW effect that are triggered by the sound speed and that are
responsible for a strong ISW imprint. Sec. 3.4 contains our conclusions and a discussion
of our results applied to various unified dark matter models.

3.2 Linear perturbations in scalar field unified dark
matter models

Reconsidering the action that describes most of the dark matter unified models within
the framework of k-essence

S=8c+S,= /d4x\/—_g [g + E((p,X)] (3.1)

As already explined in the previous Chapter, if X is time-like, S, describes a perfect
fluid with T, = (p + p)u,u, + p gy, With pressure

L=p(p, X), (3-2)

and energy density
Ip(, X)

= X) =2X
p = p(p,X) 5%

— (e, X) (3-3)
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where

Ve
Nord (3.4)

Uy =

the four-velocity.
Now, using the conformal time like a time variable, and assuming a flat, homogeneous
Friedmann-Robertson-Walker background metric we have

ds® = —dt* + a(t)?6;da’dz’ = a(n)*(—dn? + 6;;dz'dz?), (3.5)

where a(t) is the scale factor,d;; denotes the unit tensor and dn = dt/a is the conformal
time. In such a case, the background evolution of the Universe is characterized completely

by the following equations

1
H =d’H® = §a2p, (3.6)

.1
H =W =a’H=—Za’(p+p), (3.7)

where ‘H = d'/a, the dot denotes differentiation w.r.t. the cosmic time ¢ and a prime
w.r.t. the conformal time 7. On the background X = $¢? = ¢"?/(2a?) and the equation
of motion for the homogeneous mode ¢(t),the equation of state w = p/p, are already
considered in the first Chapter.

On the other hand we will focus on the other relevant physical quantity, the speed of
sound, which enters in governing the evolution of the scalar field perturbations. Consid-
ering small inhomogeneities of the scalar field

p(t,x) = po(t) + dp(t, @), (3-8)
we can write the metric in the longitudinal gauge as
ds® = —(1 +2®)dt* + (1 — 2®)a(t)*6;;dx' da? (3.9)
since 677 = 0 for i # j [90].

From the linearized (0 — 0) and (0 — i) Einstein equation one obtains (see Ref. [14]
and Ref. [44])

2 _1‘12(17'*’/)) dyp I
V@_Qicgﬂ ’H%Jrcb ; (3.10)
d\" 1a? 5
<a2ﬁ> :5% (%§+q>> , (3.11)
0

where one defines a “speed of sound” ¢? relative to the pressure and energy density
fluctuation of the kinetic term [14] as

P (0p/0X)  Zpoyox[p

Cc
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Egs. (3.10) and (3.11) are sufficient to determine the gravitational potential ® and the
perturbation of the scalar field. Defining two new variables

©o

uz2L V=2 (7—[&/) +(I>> , (3.13)

where
)

csH ’
we can recast (3.10) and (3.11) in terms of v and v [44]

v u

csAu =z (;)I : csv =10 (5)1 (3.14)

where

g L _(+p/p)"

Cs 2 V3a
Starting from (3.14) we arrive at the following second order differential equations for
u [44]

I

u" — 2V — %u =0. (3.15)

Notice that this equation can also be used to describe any perfect fluid with equation of
state p = p(p), up to a redefinition of ¢,. In this case ¢ = p'/p' corresponds to the usual
adiabatic sound speed. In this way, with the same equation (3.15), we can also describe
the ACDM model. Also pure kinetic Lagrangian (3.2) £(X) models (see for example
Ref. [57]), can be described as a perfect fluid with the pressure p uniquely determined by
the energy density, since they both depend on a single degree of freedom, the kinetic term
X.

Unfortunately we do not know the exact solution for a generic Lagrangian. However
we can consider the asymptotic solutions i.e. long-wavelength and short-wavelength per-
turbations, depending whether ¢2k? < [0"/6]| or c2k? > |0" /0|, respectively. This means
to consider perturbations on scale much larger or much smaller than the effective Jeans
length for the gravitational potential

Ny =c;10/6"] .

For a plane wave perturbation u o< ug(n)exp(ikz) in the short-wavelength limit
(c2k* > 10" /6|) we obtain

we = Ci(R) cos (k /ﬂ " eudi ) (3.16)

where Cy is a constant of integration. Instead, neglecting the decaying mode, the long-
wavelength solution (c2k? < |60"/6)) is

n d’”
we = Ay(7)0 / o, (3.17)

n
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where Ay is a constant of integration .
Once u is computed we can obtain the value of the gravitational potential ® through
Eq. (3.13) and the perturbation of the scalar field from Eq. (3.11)

5o = Nﬁ% : (3.18)

3.3 Analytical approach to the ISW effect

Let us now focus on the ISW effect. The ISW contribution to the CMB power spectrum

is given by
2

21l 1 1 00 dk @ISW ,k
4 22 Jo k 20+ 1
where ©°W is the fractional temperature perturbation due to ISW effect
;%" (1o, k) o
——=r =2 [ (7, k)jilk(no — 7)ld7 3.20
N1 /77 (7, k)5ulk(no — 7)]d, (3.20)

with 1y and 7, the present and the last scattering conformal times respectively and j; are
the spherical Bessel functions.

We now evaluate analytically the power spectrum (3.19). As a first step, following the
same procedure of Ref. [89], we notice that, when the acceleration of the Universe begins
to be important, the expansion time scale 7/, = n(w = —1/2) sets a critical wavelength
corresponding to kn;, = 1. It is easy to see that if we consider the ACDM model then
M2 = nNa i-e. when ax/ao = (Q0/Q4)"/? [89]. Thus at this critical point we can break the
integral (3.19) in two parts [89]

20+1 1
i PV = o2 [To,(kmjo < 1) + Ie,(kmi o > 1)] , (3.21)
where ( ) U g \ ‘G}SW(WO k)|2 ( |
Io,(kme < 1) = / — = 3.22
S/ ; k 20+ 1
and

© gk |08 (n,, k 2
I@l(km/2>1)5/ —k?’w. (3.23)

1/m1 ) k 20+1
As explained in Ref. [89] the ISW integrals (3.20) takes on different forms in these two

regimes

Ouisw (1m0, k) _ { o (o el e < (3.24)

20+1 205 (m) i/ k knije > 1

where A®; is the change in the potential from the matter-dominated (for example at
recombination) to the present epoch 1y and

me~no— (I4+1/2)/k
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is the conformal time when a given k-mode contributes maximally to the angle that this
scale subtends on the sky, obtained at the peak of the Bessel function j,. The first limit
in Eq. (3.24) is obtained by approximating the Bessel function as a constant evaluated at
the critical epoch 7;/,. Since it comes from perturbations of wavelengths longer than the
distance a photon can travel during the the time 7,/,, a kick (2A®;) to the photons is
the main result, and it will corresponds to very low multipoles, since 7,/ is very close to
the present epoch 7. It thus appears similar to a Sachs-wolfe effect (or also to the early
ISW contribution). The second limit in Eq. (3.24) is achieved by considering the strong
oscillations of the Bessel functions in this regime, and thus evaluating the time derivative
of the potentials out of the integral at the peak of the Bessel function, leaving the integral

[89]
I, E/O Ji(y)dy = g% (3.25)

With this procedure, replacing (3.24a) in (3.22) and (3.24b) in (3.23) we can obtain the
ISW contribution to the CMB anisotropies power spectrum (3.19).

Now we have to calculate, through Eqs. (3.16)-(3.17) and (3.13), the value of ®(k, ) for
kmse < 1 and knijp > 1. As we will see that main differences (and the main difficulties)
of the unified dark matter models with respect to the ACDM case will appear from the
second regime of Eq. (3.24).

3.3.1 Derivation of Ig, for modes kn;/; < 1

In the UDM models when k7o < 1 then ¢2k* < |0"/0| is always satisfied. This is due
to the fact that before the dark fluid start to be relevant as a cosmological constant, for
n < 112, its sound speed generically is very close to zero in order to guarantee enough
structure formation, and moreover the limit k72 < 1 involves very large scales (since
/2 is very close to the present epoch). For the standard ACDM model the condition is
clearly satisfied. In this situation we can use the relation (3.17) and ®; becomes

o, = Ay, <1 - ZEZ; /nn a2(ﬁ)dﬁ) . (3.26)

We immediately see that Ay, = ®4(0), the large scale gravitational potential during the
radiation dominated epoch. The integral in Eq. (3.26) may be written as follows

[ @an=ne+ [ @an, (3.27)

i R

where Ip = fan a®(77)d7 and ng is the conformal time at recombination. When 7; < 7 <
ng the UDM Models behave as dark matter !. In this temporal range the Universe is

In fact the Scherrer [64] and generalized Scherrer solutions [57] in the very early Universe, much
before the equality epoch, have ¢; # 0 and w > 0. However at these times the dark fluid contribution is
sub-dominant with respect to the radiation energy density and thus there is no substantial effect on the
following equations.
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dominated by a mixture of “matter” and radiation and I becomes

5 3
%R +&p+ ﬁ) (3.28)

IR = TN« Qe¢q < 3

where ae, is the value of the scalar factor at matter-radiation equality, £ = 7/n. and
N = (peqaly/24)™/% = neg/(V2 — 1). With these definitions it is easy to see that ap =
eq(E% + 2€). Notice that Eq. (3.26) is obtained in the case of adiabatic perturbations.
Since we are dealing with unified dark matter models based on a scalar field, there will
always be an intrinsic non-adiabatic pressure (or entropic) perturbation. However for the
very long wavelengths, k7,2 < 1 under consideration here such an intrinsic perturbation
turns out to be negligible [14]. For adiabatic perturbations ®x(ng) = (9/10)®,(0) [90]
and accounting for the primordial power spectrum,

k3‘q>k(0)|2 = Bkn_l )

where n is the scalar spectral index, we get from Eq. (3.24a)

1/n1/2 dk 1.9
I@l(lﬁ’rh/z < 1) ~ 4(2l -+ 1)B/ ?kn_ ]l [lﬁ(’l]@ — 771/2)]
0
1 H(m) [/” 2 ] ’
— — a”(n)d , 3.29

where we have neglected I since it gives a negligible contribution.

A first comment is in order here. There is a vast class of unified dark matter models
that are able to reproduce exactly the same background expansion history of the Universe
as the ACDM model (at least from the recombination epoch on wards). For example
this is the case of the the Scherrer and generalized Scherrer unified models [64] [57], the
generalized Chaplygin gas [60, 61, 62] for the parameter o which tends to zero, the models
proposed in Ref. [57] and [67] where one impose the langrangian (i.e. the pressure) to be
a constant, and also the model of a single dark perfect fluid proposed in Ref. [65]. For
such cases it is clear that the low £ contribution (3.29) to the ISW effect will be the same
that is predicted by the ACDM model. This is easily explained considering that for such
long wavelength perturbations the sound speed in fact plays no role at all.

3.3.2 Derivation of Ig, for modes kn;/2 > 1

As we have already mentioned in the previous section, in general a viable UDM must
have a sound speed very close to zero for n < 7,3 in order to behave as dark matter also
at the perturbed level to form the structures we see today, and thus the gravitational
potential will start to change in time for n > 7, /5. Therefore for the modes k7, > 1, in
order to evaluate Eq. (3.24b) into Eq. (3.23) we can impose that 1y > 71/, which, from the
definition of 1y ~ 1o—(I4+1/2)/k, moves the lower limit of Eq. (3.23) to (I+1/2)/(n0—m12)-
Moreover we have that 7,5 ~ 19. We can use this property to estimate any observable at
the value of 7. Defining

n

X =—", and k=knis, (3.30)
/2
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we have
da [+1/2
ar, = a(nk) = a(xx) = ao + v oxk =1—mpHMo / ; (3.31)
X K
X0
taking ap = 1, and
dd,, dd,, d>®,, l1+1/2
—— (k) = mp® () = ——| - 3.32
dx (Xk) /2 (Uk) dx dy? P ) ( )
X0 X0

where

Sve = CMe—m0 1+ 1/2
Xk = Xk — Xo = = - .
/2 K

Notice that the expansion (3.32) is fully justified, since as already mentioned above, the
minimum value of « in Eq. (3.23) moves to (I +1/2)/(n0/m:/2 — 1), making dx; much less
than 1. Therefore we can write

2

|©115w (o, k) — 4 @5 () 1y 2: Al @( )| =
(20 +1)2 k R | ax
= —— - - 2—
K2 [ dx (xo) dx (o) dx? bo) v )7
d2q>k 2 [+ 1/2 2
- [y, ( . ) _ (3.33)

In this case, during 7,2 < n < 19, there will be perturbation modes whose wavelength
stays bigger than the Jeans length or smaller than it, i.e. we have to consider both the
possibilities ¢2k? < [0"/6] and ¢2k* > |60"/6|. In general the sound speed can vary with
time, and in particular it might become significantly different from zero at late times.
However, just as a first approximation, we exclude the intermediate situation because
usually 71/, is very close to 7o (this situation will be briefly analyzed later).

Perturbation modes on scales bigger than the Jeans length.

When c2k? < 0"/6| the value of ®(n;,) can be written from Eq.(3.26) as

() = (0,00 = 20)aton) [ (1 [ ta(f)df)]t_t( e

k)
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Now, using this expression in Eq. (3.33), with the primordial power spectrum k3|®;(0)|?

BE™ ! the value of (3.23) may be written as

[ ~ 2
Io,(kmyje > 1) o o1 | [ dE . |dDy -| B
e
_ 1 [ xo—=1\""|dd,
— 4IQB n—1 YEE
2(1+1/2 —1\" " dd 2o
2 . /2) ( Xo £ o) T2 ()4
4—n [+1/2 dx dx
~ 2
(I+1/2)2 [ xo—1\"""|d2®,
— 3.35
T 5o e e o) (3.35)

with (d®k/dX)y, = /2P (n0) and with (d*@x/dx?)x, = 17}, 5 (m0)-

A second relevant comment follows from the fact that I} ~ 1/I for [ > 1. We thus see
that for n = 1 and for [ > 1 the contribution to the angular power spectrum from the
modes under consideration is

I(1+1)

A7

Io,(knj > 1)

ISW __
G =i+ 1) 2m2(21 + 1)

1
~ l .
In other words we find a similar slope as in [89, 91] found in the ACDM model. Recalling
the results of the previous section, this means that in the unified dark matter models the
contribution to the ISW effect from those perturbations that are outside the Jeans length
is very similar to the one produced in a ACDM model. The main difference on these
scales will be present if the background evolution is different from the one in the ACDM

model, but for the models where the background evolution is the same, as those proposed
in Refs. [64, 57, 67, 65] no difference at all can be observable.

Perturbation modes on scales smaller than the Jeans length.

When c2k? > |0" /60| we must use the solution (3.16) and through the relation (3.13a) the
gravitational potential is given by

1 K o\ g
®(n) = 5+ p)"/*(n) Ci(ms2) cos (k / cs(n)dn) : (3.36)
My/2
In Eq. (3.36) Cx(nm1/2) = ®x(0)C} /s is a constant of integration where
H(n1/2) ( M2 20\ 5
[1 — = Ip + a (n)dn)]
01/2 —9 (M1/2) nR (3.37)

(P + p)Y/2(n1)2) ’

and it is obtained under the approximation that for n < 7/, one can use the longwave-
length solution (3.26), since for these epochs the sound speed must be very close to zero.
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Notice that Eq. (3.36) shows clearly that the gravitational potential is oscillating and
decaying in time.

Defining for simplicity c’ = Cf/Q(P + p)(no)/4, we take the time derivative of the
gravitational potential appearing in Eq. (3.24b) by employing the expansion of Eq.(3.33).
We thus find that Eq. (3.23) yields

Io, (k2 > 1) 2 572, n—1 2 Fodr o,
sl AC"BITn )y 4 Cirsizery (L +1/2) /% S cos (Dok) | +
X0~
FodE
+ Ciran,ey (1 +1/2) v AT COS (Do) | +
xo—1
9 * dk , 4 )
+ Cirauzsep(l+1/2) vy i cos(Dok) sin(Dyk) | +
Xo-1
C C l 2 > @ n—1 2 D
+ [ k300,23 T Cia iz, ( +1/2)] Lo &31{6 cos™(Dok) | +
xo—1

> d
4+ Ciraposry(1+1/2)? [/ A n—1 sin?(Dyk)

+1/2 K3
xo—1
* dk )
+ Cusirse(l+1/2) s FK cos(Dyk) sin(Dyk) | +
L x0T
*odk o,
+ Czgney (I +1/2) L 2t cos (Do) | +
- Xxo—1
©dE 1o
+ Ciran,s23 (1 +1/2) i 2t sin (Dok) | +
LY o1
* dk )
+ [C{kz,lo,sc}+C{k2,z2,sc}(l+1/2)2] !ﬁﬁp ?mn’l cos(Dyk) sin(Dyk) | +
Xo=T
> dk .
+  Ciri,0,52) / — k" sin®(Dyk) | +
12 K
xo—1

*© d
+ Ciri,ey (I + 1/2)? [/ 4R nt cos?(Dok) | +

+1/2 K

xo—1

+ Cirpser(l+1/2) [/ @Iin_l cos(Dyk) sin(Dyk)

+1/2 K

} (3.38)

xo—1
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with Dy = [* ¢s(x)dX and where

2
C _ {(p+p),xx 1 [(p+p),xr}
k502,c2} = 7~ — 5| T )

p+p) 2| (+p) »
B P+’ [0+ 1o+p)x
Ciragiery = —2 -5 ,
(p+ p) (p+p) 2 (p+p) ;
+ 1/(p+ 2 + Cs
Corrinag =44 c, P+ppx 1 ((p P),x) [(p Plx | _x] ’
(p+p) 2\ (p+p) (p+p) s .
(p+p) ]2 { [(p+p) sn 11’
C S [70{ ; C 21 = 4 Cs X + =X 5
{k3,10,c?} (p n p) {k3,12,s2} (p + p) cs .
-
Cirzz,e2y = 4 P 7(]) * P) 1 (L + p),x)
T L etp) 2\ (p+p) /| XO’
_ P+ 1 [(+p)x\ P+)x [P+0)x | Cox]
Cikgarsey =496 |5~ — o | 77— —Cs +—= ,
p+p) 2\ (p+p) p+p) L 0+p) o | »
(p+,0)x 2 (p+p)x Cs,x
Ciraar,e2y = —4 [057 ; Ciror,s2y =8¢ |35+ —
(p+p) y (p+p) s »
(p+p)x s [(P+0)x | Csx
Cir2,0,5c) = —4 [057’ ; Cir2y2,5c) =84C5 | 7 + —
(p+p) , (p+p) o »
Cirr0,52) = 4C§‘XO , Cirr,c2) = 4C§‘X0 ; Cirtit,sey = SCg‘XO .
(3.39

In this case we have defined (-) , = d(-)/dx and we recall that the dimensionless variables
x and & are defined in Eq. (3.30). We have indicated the coefficients Cqx;,i, (s} in such
a way to signal that they multiply an integral in x of k" !/k/ times sin(Dgk) cos(Dqgk)
and the overall multipole coefficient is (I + 1/2)". We can infer from (3.38) that for
n < 1 all integrals are convergent. Notice that a natural cut-off in the various integrals is
introduced for those modes that enter the horizon during the radiation dominated epoch,
due to the Meszaros effect that the matter fluctuations will suffer until the full matter
domination epoch. Such a cut-off will show up in the gravitational potential and in the
various integrals of Eq. (3.38) as a (ke,/k)* factor, where k,, is the wavenumber of the
Hubble radius at the equality epoch.

A simple inspection of Eq. (3.38) shows one of our main results. The terms of Eq. (3.38)
where the coefficients C turn out to be proportional to the sound speed c; cause the growth
of I(I + 1)Ie,(kmj2 > 1)/(20 + 1), (and hence of the power spectrum [(! + 1)C; through
Eq. (3.21)), as [ increases. This means that, if the sound speed of the unified dark matter
fluid starts to differ significantly from zero at late times, the consequence is to produce
a very strong ISW effect, and clearly this does not happen in a ACDM Universe since
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¢2 = 0 always. This effect is easily explained by considering that the energy density of the
Universe in the unified models is dominated at late time by a just single fluid. Therefore
an eventual appearance of a Jeans length (i.e. a departure of the sound speed from zero)
makes the oscillating behavior of the dark fluid perturbations under the Jeans length
immediately visible through a strong time dependence of the gravitational potential. In
fact one can verify that the scalar field fluctuations (3.18) are oscillating and decaying in
time as d¢ ~ (kcg/a)sin(k f"i/z ¢sdn). Similar results have been discussed in the case of

the GCG model in Refs. [58, 59].
We point out that the potentially most dangerous term in Eq. (3.38) is the one iden-
tified by the coefficient Cyz 49 02y

K
xo—1

4 2 n—1, 2
4cS|X0 (1+1/2) [[Hn K" cos®(Dyk) | - (3.40)

Such a term makes the power spectrum /(I + 1)C; to scale as [* until [ & 25. This angular
scale is obtained by considering the peak of the Bessel functions in correspondence of the
cut-off scale keg, | & keq(10 — m1/2). In fact, for smaller scales, the integral identified by
the coefficient Cyy 49,2y Will decrease as 1/£.

Intermediate case.

Now we shall briefly discuss the intermediate case that corresponds to perturbation modes
that initially are outside the Jeans length and then, due to a time variation of the sound
speed, they fall inside them. This corresponds to consider the range [(14+1/2)/(xo—1)]* <
k5 = 0.y /0] /¢ < KZ,. In this case k > (I +1/2)/(xo — 1) and so we can use the same
procedure described before. Indeed when k ~ kj i.e. ¢?k% ~ |6”/6)| it can be written as

follows
1/2
(z+ / )},@:1 (3.41)
X0 X0 kg

KJ:I{J(Z):Bl“f‘\/BlQ—f—A (342)

where By = {[In(c})]x — [In0,/0l]x}] (20 + 1)/4 and A = [|0,,/0]/(2eD)]],,

immediately see that Ig, (k712 > 1) can be divided into two parts. The first part is
identical to (3.35) except for the upper limit of the integral. Indeed now the upper limit
is £7(1). In order to derive the second part we note that now the lower limit of the integral

- [Cg |9,x></9‘_1} X

{ [Ci \9,xx/9|_1]

i.e.

in k is ks(l) and that ug(nx) = Cx(ns) cos ( f"’“ cs(n ) where 7; is the conformal time
when c§|mk2 ~ 0"/6], . (n, is function of k) and

((m)) (I +fWJ 2( dﬂ)}
(P + p)'(ns)

Cel(ny) = 20,(0) - (3.43)
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3.4 Discussion of some examples

In most of the UDM models there are several properties in common. It is easy to see that
in Eq.(3.27) Ig is negligible because of the low value of a.,.

Moreover in the various models usually we have that strong differences with respect to
the ISW effect in the ACDM case can be produced from those scales that are inside
the Jeans length as the photons pass through them. For these scales (which depend on
the particular model) the perturbations of the unified dark matter fluid play the main
role. On larger scales instead we find that they play no role and ISW signatures different
from the ACDM case can come only from the different background expansion history.
We have found that when k* > k% = ¢;2(0" /6| (see (3.15)) one must take care of the
term in Eq. (3.38) proportional to Cy2,2}- Indeed this term grows faster than the other
integrals contained in (3.38) when [ increases up to | & 25. It is responsible for a strong
ISW effect and hence it will cause in the CMB power spectrum [({ +1)C;/(27) a decrease
in the peak to plateau ratio (once the CMB power spectrum is normalized). In order
to avoid this effect, a sufficient (but not necessary) condition is that all the models have
to satisfy ¢2k? < |0"/0)| for the scales of interest. The maximum constraint is found in
correspondence of the scale at which the contribution Eq. (3.38) proportional to Cy 2,2}
takes it maximum value, that is k =~ k.,. For example in the Generalized Chaplygin Gas
model (GCG), i.e when p = —AY(+2) /p® and 2 = —aw, we deduce that |a] < 107*
(see Refs. [62] [58] [59] and [63]). This is also in accordance with [54] which performs an
analysis on the mass power spectrum and gravitational lensing constraints thus finding a
more stringent constraint.

As far as the generalized Scherrer solution models [57] are concerned, in these models the
pressure of the unified dark matter fluid is given by p = ¢,(X — X)™ — A, where g, is
a suitable constant and n > 1. The case n = 2 corresponds to unified model proposed
by Scherrer [64]. In this case we find that imposing the constraint ¢2k* < |6”/6)| for the
scales of interest we get that ¢ = (X — X;)/Xo < (n —1) 107

If we want to study in greater detail what happens in the GCG model when c2k? >> 0" /0|
we discover the following things:

e for 107* < a < 5 x 1073, where we are in the “Intermediate case”. Now ¢ = —aw
is very small and the background of the cosmic expansion history of the Universe
is very similar to the ACDM model. In this situation the pathologies, described
before, are completely negligible.

e When treating 6 x 1072 < o < 1 a very strong ISW effect will be produced and we
have estimated the same orders of magnitude for the decrease of the peak to plateau
ratio in the anisotropy spectrum [({ + 1)C;/(27) (once it is normalized) that can
be inferred from the authors of [58] obtained in the numerical simulations (having
assumed that the production of the peaks during the acoustic oscillations at recom-
bination is similar to what happens in a ACDM model, since at recombination the
effects of the sound speed will be negligible).
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An important observation arises when considering those UDM models that reproduce the
same cosmic expansion history of the Universe as the ACDM model. Among these models
one can impose the condition w = —c? which, for example, is predicted by UDM models
with a kinetic term of the Born-Infeld type [57] [67] [92]. In this case, computing the
integral in Eq. (3.38) proportional to Cyzi 2.2} Which give the main contribution to the
ISW effect we have estimated that the corresponding decrease of peak to plateau ratio is
about one third with respect to what we have in the GCG when the value of « is equal
to 1. The special case o = 1 is called “Chaplygin Gas” (see for example [61]) and it is
characterized by a background equation of state w which evolves in a different way to the
standard ACDM case.

From these considerations we deduce that this specific effect stems only in part from the
background of the cosmic expansion history of the Universe and that the most relevant
contribution to the ISW effect is due to the value of the speed of sound c2.
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Chapter 4

Halos of Unified Dark Matter Scalar
Field

4.1 Introduction

A complete analysis of UDM models should necessarily include the study of static solu-
tions of Einstein’s field equations. This is complementary to the study of cosmological
background solutions and would allow to impose further constraints to the Lagrangian of
UDM models. The authors of Refs. [32] and [66] have studied spherically symmetric and
static configuration for k-essence models. In particular, they studied models where the ro-
tation velocity becomes flat (at least) at large radii of the halo. In these models the scalar
field pressure is not small compared to the mass-energy density, similarly to what found in
the study of general fluids in Refs. [93, 94, 95, 96], and the Einstein’s equations of motion
do not reduce to the equations of Newtonian gravity. Further alternative models have
been considered, even with a canonical kinetic term in the Lagrangian, that describe dark
matter halos in terms of bosonic scalar fields, see e.g. Refs. [97, 98, 99, 100, 101, 102, 103].
In this Chapter we assume that our scalar field configurations only depend on the radial
direction. Three main results are achieved. First, we are able to find a purely kinetic
Lagrangian which allows simultaneously to provide a flat rotation curve and to realize a
unified model of dark matter and dark energy on cosmological scales. Second, we have
found an invariance property of the expression for the halo rotation curve. This allows
to find purely kinetic Lagrangians that reproduce the same rotation curves that are ob-
tained starting from a given density profile within the standard Cold Dark Matter (CDM)
paradigm. Finally, we consider a more general class of models with non-purely kinetic
Lagrangians. In this case we extend to the static and spherically symmetric spacetime
metric the procedure used in Ref. [57] to find UDM solutions in a cosmological setting.
Such a procedure requires that the Lagrangain is constant along the classical trajectories;
we are thus able to provide the conditions to obtain reasonable rotation curves within a
UDM model of the type discussed in Ref. [57].

The plan of the Chapter is as follows. In Section 4.2 we provide the general framework
for the study of static spherically symmetric solutions in UDM models. Section 4.3 is
devoted to the general analysis of purely kinetic Lagrangians, while in Section 4.4 we
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analyze more general models with non-canonical kinetic term.

4.2 Static solutions in Unified Dark Matter

We consider the following action
4 R
S=8¢+S,+S= [ d'zv/—yg §+£(¢,X) + Sp (4.1)
where S, describes the baryonic matter and we redefine
1
X = —ivung“ga . (4.2)

Asin the previous chapters, we use units such that 87G = ¢ = 1 and signature (—, +, +, +)
(greek indices run over spacetime dimensions, while latin indices label spatial coordinates).
Obviously, also in this case, the energy-momentum tensor of the scalar field ¢ is defined
in the following way

2 §S, OL(p,X)

Y — =
Ty, =g o o VeV L X)gu (4.3)
and its equation of motion reads
oL oL
v# [ ] =—. 4.4
90,7)) ~ O 4

We consider a scalar field which is static and spatially inhomogeneous, i.e. such that
X < 0. In this situation the energy-momentum tensor is not described by a perfect fluid
and its stress energy-momentum tensor reads

T/:pu = (p|| + p)nunu — PGy (45)

where

ny = Vup/vV/—2X and py = £ —2X0L/0X. In particular, p is the pressure in the
direction parallel to n, whereas p, is the pressure in the direction orthogonal to n,. It is

simpler to work with a new definition of X. Indeed, defining X = —x we have
.= Viup/(2x)" (4.7)
dp
P =2X7——p- 4.8
1= 2X5, (4.8)

Let us consider for simplicity the general static spherically symmetric spacetime metric
ie.
ds* = —exp (2a(r)) dt* + exp (28(r)) dr? + r*dQ?, (4.9)
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where dQ? = df? + sin? §d¢? and « and B are two functions that only depend upon r.
As the authors of Refs. [32, 66] have shown, it is easy to see that the non-diagonal term
T vanishes. Therefore ¢ could be either strictly static or depend only on time. In this
Chapter we study the solutions where ¢ depends on the radius only.

In the following we will consider some cases where the baryonic content is not negligible
in the halo. In this case we will assume that most of the baryons are concentrated within
a radius 7. If we define M, as the entire mass of the baryonic component then for r > 7,
we can simply assume that M, is concentrated in the center of the halo.

Considering, therefore, the halo for r > r, starting from the Einstein’s equations and
the covariant conservation of the stress-energy (or from the equation of motion of the
scalar field, Eq. (4.4)), we obtain

S e (28} =p = ot (120)
MiM. P
:—2 {exp[-2(a+f)]lrep 20)] —1} =p <= o' = [Sf_ ﬁ} !
"
&P [_(f +25)l {[r expal 8" — [r (exp oz)'}l} =p, (4.12)
% = —(p| + ) (4.13)

(which are the 00, rr and 06 components of Einstein’s equations and the 7 component of
the continuity equation respectively) where

exp (=26(r)) = 1 = (M + M,)/(4xr)

and
R = In[r? exp(a(r))]

. Here a prime indicates differentiation with respect to the radius r.

A first comment is in order here. If §) 3’ = 0 and i) [r (exp a)'}' > 0, then we can
immediately see that p < 0. These conditions must therefore be avoided when trying to
find a reasonable rotation curve. For example, neglecting the baryonic mass, the special
case of p = A/r? and exp(a) ~ r™, where A and m are constants, fall into this case.
We thus recover the no-go theorem derived in Ref. [66] under the assumption that the
rotation curve v, < 1 is constant for all r.

The value of the circular velocity v, is determined by the assumption that a massive test
particle is also located at # = 7/2. We define as massive test particle the object that
sends out a luminous signal to the observer who is considered to be stationary and far
away from the halo. Considering the motion of massive test particle, say a star, in a
such a halo, its trajectory is then described by a curve z* = (¢, 7,6, ¢) parameterized by
some affine parameter; here we use its proper time 7. Its four velocity is then simply
u* = dz# /dr. Due to spherical symmetry, we can assume without loss of generality that

71



72 Halos of Unified Dark Matter Scalar Field

the star’s ecliptic is located in the # = 7/2 plane. Since the star is a massive particle, its
norm is u,u* = —1, which becomes the constraint equation

exp (20)i% — exp (28)7% — r?¢? = 1, (4.14)

where a dot denotes a derivative with respect to proper time 7. Since the metric does not
explicitly depend on @, the star’s angular momentum [ is conserved,

1 =r%. (4.15)

Similarly, the metric does not explicitly depend on ¢, and there is a conserved energy FE,
E = exp (2a)t. (4.16)

Substituting equations (4.16) and (4.15) into equation (4.14), we find a first integral for

the motion of the star,
1

57*2 +V(r) =0, (4.17)
where its effective potential is
1 12 1 5
V(r) = exp(=268) 1+ — | — S E?exp[-2(a + B)]. (4.18)

Note that the potential explicitly depends on the energy. Stationary orbits at radius r
exist if V and dV/dr vanish at that radius. The former condition yields

l2
1+ 3= E?exp [—2a(r)], (4.19)
whereas the latter gives us
? 12
- (1 + 7“_2> 5t E*(d' + B') exp [-2a(r)] = 0. (4.20)

Substituting equation (4.19) into equation (4.20) and using the Eqs. (4.10), (4.11) and
(4.4), we get the following equation
12/r? (M + M,)(r) py(r)

— 2
1+12/r2 8mr Ty (421)

which directly relates the angular momentum [ to the density profile of the halo.
In this case, through the definition of the star’s angular momentum [ and the Eq. (4.21),
the value of v. = [/r can be rewritten as

s pr*/24+ (M + M,)/(8nr)

L [p||r2/2 + (M + M*)/(87T7‘)} ’ (4.22)

v
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4.3 Unified Dark Matter models with purely kinetic Lagrangians 73

but when we consider the weak-field limit condition (M + M,)/(87r) < 1 and since the
rotation velocities of the halo of a spiral galaxy are typically non-relativistic, v, < 1,
Eq. (4.22) simplifies to [32]

M + M, r?
vzm +p|| .

¢ &r 2
A second comment follows from the fact that the pressure is not small compared to
the mass-energy density. In other words we do not require that general relativity reduces
to Newtonian gravity (see also Refs. [93, 94, 95, 96]). Notice also that in the region where
ve &~ const. < 1 it is easy to see that in general exp(a) & const. since from Eqs. (4.11)
and (4.23) one obtains ra/ ~ vZ.
Finally, let us point out one of our main results. We can see that the relation (4.23)
is invariant under the following transformation

(4.23)

p—p=p+o(r) p| — o) =p|+q(r) (4.24)

if

3q(r) + rq(r)' = —o(r), (4.25)
up to a proper choice of some integration constants. Thanks to this transformation we can
consider an ensemble of solutions that have the same rotation curve. We will come back
to this point in more detail in the next section. Obviously, these solutions have to satisfy
the Einstein’s equations (4.10), (4.11) and (4.12), and the covariant conservation of the
stress-energy (4.13). Moreover, we will require the validity of the weak energy conditions,
p=>0and p;+p>0,ie.

exp (—25) dp

2 (o + ") = ZX& >0. (4.26)

In the following sections we will consider first a purely kinetic Lagrangian £(X) and
then two Lagrangians £ = f(¢)g(X) and £ = g(X) — V().

4.3 Unified Dark Matter models with purely kinetic
Lagrangians

Let us consider a scalar field Lagrangian £ with a non-canonical kinetic term that depends
only on X or x. Moreover, in this section we assume that M, =0 (or M > M,).

First of all we must impose that £ is negative when X < 0, so that the energy density
is positive. Therefore, we define a new positive function

9s(x) = —L(X) . (4.27)

As already explained in Ref. [32], when the equation of state p; = pj(p) is known, one
can write the purely kinetic Lagrangian that describes this dark fluid with the help of
Egs. (4.6) and (4.8). Alternatively, using (4.13), one can connect p and p in terms of r
through the variable R. Moreover, it is easy to see that starting from the field equation of
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motion (4.4), there exists another relation that connects x (i.e. X) with r. This relation

. dgs()]" __ k
X[ dx ]  [r2expa(r)]’ (4.28)

with & a positive constant. If we add an additive constant to g,(x), the solution (4.28)
remains unchanged. One can see this also through the Eq. (4.13). Indeed, using Eqs. (4.6)
and (4.8) one immediately finds that Eq. (4.13) is invariant under the transformation
p—p+K p;— p;— K. In this way we can add the cosmological constant K = A to
the Lagrangian and we can describe the dark matter and the cosmological constant-like
dark energy as a single dark fluid i.e. as Unified Dark Matter (UDM).

Let us notice that one can adopt two approaches to find reasonable rotation curves
ve(r). A static solution can be studied in two possible ways:

i) The first approach consists simply in adopting directly a Langrangian that provides
a viable cosmological UDM model and exploring what are the conditions under
which it can give a static solution with a rotation curve that is flat at large radii.
This prescription has been already applied, for example, in Ref. [32].

ii) A second approach consists in exploiting the invariance property of Eq. (4.23),

with respect to the transformation (4.24) (when the condition (4.25) is satisfied).
Usually in the literature one reduces the problem to the Newtonian gravity limit,
because one makes use of a CDM density profile, i.e. one assumes that in Eq. (4.23),
p < M/(4nr?). We can therefore use Egs. (4.24) and (4.25) to obtain energy den-
sity and pressure profiles p(r) and pj(r) that reproduce the same rotation curve in
a model with non-negligible pressure. Next, we find an acceptable equation of state
p| = p)(p) such that we can reconstruct, through Egs. (4.6) and (4.8), the expres-
sion for the Lagrangian £. Such a procedure establishes a mapping between UDM
and CDM solutions that predict the same halo rotation curve v.(r). As a starting
point we could, of course, use very different CDM density profiles to this aim, such
as the modified isothermal-law profile [104], the Burkert profile [105], the Moore
profile [106], the Navarro-Frenk-White profile [107, 108] or the profile proposed by
Salucci et al. (see for example [109]).
As we have already mentioned, the possible solutions one finds in this way have to
satisfy the Einstein equations (4.10), (4.11) and (4.12), the conservation of stress-
energy (4.13) and the weak energy conditions. Moreover, the resulting UDM scalar
field Lagrangian must be able to provide cosmological solutions that yield an ac-
ceptable description of the cosmological background (see, e.g., Ref. [57]) and low
effective speed of sound (see for example Refs. [14, 44, 56]) so that cosmic structure
formation successfully takes place and CMB anisotropies fit the observed pattern
[54, 55, 58, 59].

Below, using approach i), we provide a worked example of a UDM model with purely
kinetic Lagrangian which is able to describe a flat halo rotation curve and then, using
approach ii), we give a general systematic procedure to obtain a possible Lagrangian of
UDM model starting from a given CDM density profile.
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4.3 Unified Dark Matter models with purely kinetic Lagrangians 75

4.3.1 Approach i): The generalized Scherrer solution

Let us consider the generalized Scherrer solution models obtained in Ref. [57]. These
models are described by the following Lagrangian

L=-A+g, (X -X) (4.29)

where g, > 0 is a suitable constant and n > 1. The case n = 2 corresponds to the
unified model proposed by Scherrer [64]. If we impose that today [(X — X)/X]|" < 1,
the background energy density can be written as

p(a(t)) = pa + pou (4.30)

where p, behaves like a “dark energy” component (py = const.) and ppy behaves like a
“dark matter” component i.e. ppy o a3, with a(t) the scale factor.
A static solution for the generalized Scherrer model can be obtained in two possible ways:

1) Starting from the analysis of Ref. [66], in the case of a barotropic Lagrangian for
the homogeneous field. The authors of Ref. [66] indeed concluded that for n > 1
flat halo rotation curves can be obtained. In particular they studied spherically
symmetric solutions with the following metric,

Tx

b
ds® = — <1) dt* + N(r)dr® + r*dQ*. (4.31)

where r, is a suitable length-scale and b = 2v7. In the trivial case where N(r)
is constant they find £(X) oc X*° with b < 1. For X > X the Lagrangian
L=—A+ g,(X — X)™ takes precisely this form.

2) In the analysis of Ref. [32], solutions where ¢ is only a function of the radius are
considered. When the Lagrangian has the form £ oc X", with n ~ 10° the halo
rotation curve becomes flat at large radii. In this case n must be an odd natural
number, such that the energy density is positive. Our model is able to reproduce
this situation when the matter density is large, i.e. when |X| > X.

Alternatively, if we wish to avoid large n (c.f. case 2) above) we can start from the
following Lagrangian

L=—A+exgn (\X| —X) (4.32)
where €x is some differentiable functiAon of X that is 1 when X > X and —1 when
X < —X <0. In this way when X > X > 0 we recover the Lagrangian of the generalized
Scherrer solutions. When X < 0 and y = —X > X we get

L=—-A-yg, (X — X) (4.33)
and, with the help of Egs. (4.6) and (4.8), we obtain
~\ 7 N ~\n—1
p=-p.=-L, p=(2n—1)g, (X—X) +2ng, X (X—X) —A. (4.34)
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A ~ ~ ~ ~\n—1
Now, requiring that x be close to X (i.e. (X - X) < X) and 2ng,X (X - X) >
O(A), and starting from the relation (4.28) that connects x with r, we get

%) L 4.35
(X_ ) " ng, X1/2 r2exp (ar)) (4.85)

Consistency with our approximations implies that we have to consider the following ex-
pressions for radial configurations with r bigger than a minimum radius r,;,. In this case
p and p become

A B B
2 exp (o(r)) ' P~ P exp (a(r)]/D

D= (436)

N N n/(n—1)
where A = 2(kX)'/? and B = g, [kl/Q/(nanl/z)} :
Using the Eqs. (4.10) and (4.11), we be able to calculate the values of the metric terms
exp (o) and exp (3) and, thus the value of p and p. Alternatively we know that when
ve ~ const. < 1 at large radii, in a first approximation, we can set exp(«a(r)) ~ C =
const. Therefore for n # 3, we can write the function M as

A7 B n—1 3
M(r) ~ Fnftn) (n —7 + D) (4.37)
where we could also set D = 0 for n > 3. Instead, when 1 < n < 3, the second term has

to be larger than the first one.
In these cases v? becomes

A B n—1 1 D
2 ~ -
v (r) = 20 + 2 On/(n—1) (n — 372/(n-1) + r ) : (4.38)

For n = 3 we have
N 47 B

M(T)fvm

In (;) + M(7) (4.39)

where r > 7 and

9 _ i+ B lln (r> M (7)
©T2C T 2032y '
In other words we see that the circular velocity becomes approximately constant for
sufficiently large r.

However, let us stress that exp(«(r)) cannot be strictly constant, and that it should
be chosen in such a way that the positivity of Eq. (4.12) is ensured.

This example can be generalized also to M, # 0. Obviously, in such a case we have to
assume that r > 7, > 7. In this case k, rmyim, A, B (through exp(3(r))) and C' depend
on M,.

The spherical top-hat solution for this model, which provides the link with the cos-
mological initial conditions, is described in the second Chapter.

(4.40)

v

T &rr
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4.3.2 Approach ii): A general prescription to obtain UDM La-
grangians starting from a profile of an energy density dis-
tribution of CDM

Defining the energy density distribution of CDM as pcpm(r) (with pepym = 0), the trans-
formation (4.24) becomes

p(r) = pcpm(r) + o(r), p(r) =q(r) . (4.41)

Now, starting from a given CDM density profile, through Eqs. (4.10), (4.11), (4.13) and
(4.25) we can determine exp (o) , exp (3), p and pj . In a second step we provide the
conditions to ensure that the energy density is positive !. In this case, after some simple
but lengthy calculations, we find

o) (rMLM_er(r)> - 2Q%(r)

A7
+9(r) <4r + 3M%:I(T) + 4T3pCDM> = W (4 + 37"QPCDM) ’
(4.42)
Br) = o) - el (1.43)
A(r) = %(T’;(”, (4.44)
o) = 1220 (4.45)

where Q(r) = r(r’¢+ 1), B(r) = rexp(—28) and A(r) = (ra/ + 1). Here we define
Mecpwm(r) = 4r [ #pepm(F) di. At this point it is easy to see that Eq. (4.42) does not
admit a simple analytical solution for a generic pcpy. On the other hand we know that,
through pcpw, all these functions depend on the velocity rotation curve v.(r). Moreover
v2(r) < 1. Therefore, defining 7, as the value that v, assumes when the rotation curve is
flat at large radii or the maximum value of v, with a particular profile of pcpy, we can
expand @, A and B as

_9\2
v
Q(r) = Qu(r) + 639(1)(7‘) + —( 20') Quy(r)+ ...,
_9\2
_ v;
A(r) = A(o) (7‘) + ’U?.A(l) (7‘) + ( 2!) A(z) (7‘) + ...,
_9\2
v
B(T) = B(o) (7“) -+ ’536(1) (7‘) + ( 26') B(g) (T‘) + ..., (4.46)
Following this procedure we can determine p and p) in a perturbation way, i.e.
» (2)”
p(r) = poy(r) + vpay(r) + 51 p)(r) + ... (4.47)

IThanks to this condition, through Einstein’s Eq. (4.12), we can evade the no-go theorem derived in
Ref. [66].

7



78 Halos of Unified Dark Matter Scalar Field

_9\2

pi(r) = pyj)(r) + 2p ) (r) + (UQC!) Pr)+.... (4.48)

Now, looking at the various CDM density profiles which have been proposed in the liter-
ature [104, 105, 106, 107, 108, 109], we see that we can always take pcpm as

peom(r) = V2 popm 1) (7) (4.49)
then .
MCDM(T) = @zMCDM (1)(T) =47 ’Ug/ fQ,OCDM (1)(?) dr . (450)
0

For the zeroth-order terms we immediately obtain

Qo = 1,

Ag = 1,
B(O) = T. (4.51)

At the first order we get

2 (" s
Qu = ;/ 7"3PCDM(1)(7') dr ,
0

1 Mcpwm (1)(r)

Aoy = 5
2 (7. M, r
By = ;/0 7“3PCDM (1)(7“) dr — %1)() . (4.52)
For completeness we write also the second order for Q
1 " M 7) [2
Q) =~ / areon ) (7) [tQu)(f)—?*QpCDMm(f) . (4.53)
r Jo 47 7

Let us stress that if one considers also terms O (9), Eq. (4.22) instead of Eq. (4.23) should
be used. In such a case, v, slightly changes with respect to the velocity rotation curve
that one obtains using a CDM density profile.

For our purposes we can consider only the zeroth and the first-order terms. At this
point, we can finally calculate the value of p and p; . We get

1 - ! 2 T
p(r) = pcom(r) + ri%(r) =] (74/ 7 peom (1) (F) dFf — peom (1)(7')) . (4.54)
0
_ 2 T
Zﬂﬂ=g%%l=ﬁgof%wwMﬂﬁ. (4.55)

As far as the values of the metric terms exp («) and exp (/) are concerned, we obtain the
following expressions

" 1 Mcpwm 1) (7) df}

exp (20) = exp (20(F)) exp [@f / o e (4.56)
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2

r M,
exp (—28) = 1+ 7;—2 (2/ 7 peom (1) (F) dFf — r%) . (4.57)
0

Now, it is immediate to see that if we want a positive energy density we have to im-
pose 2 [ #pcpm (1)(F) dF > 1* pepm1)(r). From Eq. (4.10) we know that M(r) =
4 f:(o) #p(F) + M(7«)) and Mcpm(r) = 4 [7 #pepm(7) dF + Mopu(T). Therefore we
need to know what is the relation between 7 and 7). This condition is easily obtained if
we make use of Eq. (4.23). Indeed, we get

M(l)(f(o))_MCDM(l)(F)_i_ 2

#(0) o
4 — / 7 popm (1) (F) dF = / 7 peom 1) (F) dit - (4.58)
T T0) Jo T

which finally guarantees the invariance of the rotation velocity with respect to the trans-
formation in Eqgs. (4.24) and (4.25).

Let us, to a first approximation, parametrize the various CDM density profiles, at very
large radii (i.e. when we can completely neglect the baryonic component) as

=2
K U,

rn

(4.59)

PCDM =

where k is a proper positive constant which depends on the particular profile that is
chosen [104, 105, 106, 107, 108, 109]. For example for many of the density profiles the
slope is n = 3 for large radii [105, 106, 107, 108, 109].

In this case a positive energy density p > 0 requires n > 2. At this point let us focus
on the case where 2 < n < 4, since this gives rise to the typical slope of most of the
density profiles studied in the literature. Therefore we obtain for p(r) and py(r):

n—21 2 1

=7, — =7, — . 4.60
pr) Ve By nn py(r) Ve By nm (4.60)
In particular,
1) for n =2, we get
1
p(r) =0, pi(r) = poom = T; K = (4.61)

and for the relation between 7y and 7 one can choose, for example, 7y = 7 = 0.
In other words, for large radii we have that p(r) < p)(r).

2) Also for 2 < n < 3 one can choose 7y =7 = 0.

3) Forn=3
o) = poo, B =2k (462
and, through Eq. (4.58), we have to impose that
M (F0) = Moom y(7) _ <M) 9.
dr T

(4.63)

Notice that the energy density profile is the same as the CDM one only for large
radii so that M,)(r) differs from Mcpy )(7)-
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4) In addition, for 3 < n < 4, also through Eq. (4.58), we have to impose that

M () = Meom(r) _ 77" (n=2) 5, (4.64)
Amr n—3 (4—-n)(n=3) @ '

Now let us focus where 2 < n < 4. Starting from Eq. (4.60) to express p; = pj(p) we
solve Eq. (4.8) to recover the Lagrangian for the scalar field

2k
(n—2

p(x) = —L = kx™=7 p(x) = )xﬁ (4.65)
where k is a positive integration constant. We can see that, for this range of n, the
exponent is larger than 1; thus there are no problems with a possible instability of the
Lagrangian (see Refs. [32, 15, 31]). Therefore, through the transformation p — p + A
p| — p| — A, this Lagrangian can be extended to describe a unified model of dark matter
and dark energy. Indeed, starting from the Lagrangian of the type (4.32), when |X| > X
and if k = g,, £ takes precisely the form (4.65).

Finally, we want to stress that this prescription does not apply only to the case of an
adiabatic fluid, such as the one provided by scalar field with a purely kinetic Lagrangian,
but it can be also used for more general Lagrangians L£(p, X).

4.4 Unified Dark Matter models with non-purely ki-
netic Lagrangians

Let us consider more general Lagrangians of type £ = L(p, X), with a non-canonical
kinetic term, in order to find a UDM model with acceptable cosmological speed of sound.
In this case we have one more degree of freedom: the scalar field configuration itself.
Therefore, we have to impose a new condition to the solutions of the equation of motion.
Ref. [57] required that the Lagrangian of the scalar field is constant along the classical
trajectories. We want to know whether such a condition could be applied to the static
spherically symmetric spacetime metric. We would also like to know what the behavior
of the rotation velocity v, in the halo of a spiral galaxy is like for this class of models. In
the next subsections we will consider first a Lagrangian of the form £ = f(¢)g(X) and
then a Lagrangian of the form £ = ¢(X) — V(¢). In these cases, for simplicity, we will
assume that f(¢) and V(p) are positive.

4.4.1 Lagrangian of the type £ = f(¢)g(X)

Let us write the Lagrangian in the form £ = f(¢)g(X) = —f(¢)gs(x). Immediately
we notice that the requirement of having a positive energy density imposes that g(x) is
positive. In this particular case the equation of motion (4.4) becomes

%{m‘gxdg;)((x) _gs(X)‘}+2ng§>(<x) [2ng§><<><> SR LY R
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Moreover from Eq. (4.8) we obtain for p

dln [gs(x
i = f(©)gs(x) {QX% = 1} : (4.67)
X
Following the procedure previously explained we impose the constraint £ = —p = —A,
i.e.
A
flo) = ——, 4.68
2 9s(x) (468)
which, inserted in the equation of motion (4.66), allows to find the following general
solution il L/
dx r2exp (@)

where £ is a constant of integration. Now, inserting Eqs. (4.68) and (4.69) into the relation

(4.67), we obtain
Ak
=———-A. 4.70
PI= 2 exp (o) (4.70)
Using this expression and considering the halo for r > r, and M > M,, we are finally
able to get the expression for the rotation velocity

o AE/2 Ar?

Ve

~ o (@) 3 (4.71)
If exp (o) & const. this expression leads to a flat rotation curve for all radii 7 < 7,y such
that 2, < 3k/(2exp (a)) and provided that the constant k is positive. Therefore, in
the future we will always neglect the second term in Eq. (4.71).

It is important to stress that the results outlined in Eqs. (4.68)-(4.71) give an efficient
recipe to obtain a flat halo rotation curve within the UDM scenario. Once a Langrangian
(i.e. g(X)) leading to a viable UDM model on cosmological scales is obtained by impos-
ing the constraint £L = —A (see Ref. [57]), a flat rotation curve is guaranteed through
Eq.(4.71). There are however two important requirements that have to be satisfied. The
function g,(x) must allow for a positive integration constant k& through Eq.(4.69), and
the Lagrangian must satisfy the stability conditions discussed in Refs. [32, 15, 31]), which
require L/0X > 0 and 0L/0X +2X9*>L/0X? > 0 (so that the speed of sound is positive
both in the cosmological setting and for the static solution).

In the second part of this subsection we will consider first a situation where M, = 0,
in other words when our halo is composed only of the dark fluid, and then a situation
where there is a non-negligible baryon contribution in the inner part of the halo.

Case M, = 0: halo composed only of the dark fluid

Starting from p = A and p| = Ak/(r?exp (o)) — A we can explicitly calculate the value
of exp («) and exp () through Egs. (4.10) and (4.11). Therefore, for M, = 0 we get

exp (—28) =1- A?TQ , (4.72)
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Ak A2\ Y2 [ 2k A2,
exp(a):T{(l—?> A_k_ln (5) )1/2 +153, (4.73)

Ar2
1—(1-4-
where « is a suitable positive integration constant. In particular, the value of x should be
such that the term on the RHS of Eq. (4.73) is positive, i.e.

@) ]

It is very important to stress that, in this case, the weak energy conditions are satisfied.

In other words, through this prescription, we are able to evade the no-go theorem derived
in Ref. [66].
Using Eq. (4.73) and Eq. (4.71) we can obtain the following expression for the circular

velocity
2\ 1/2 AN1/2
v2(r) = l—A—T 2—K—ln (3) r
A N

In order to have values of v, ~ 1073 we must impose that 2x/(Ak) ~ 10° < 3/(Ar2,.).
Imposing this condition we can obtain an approximately flat halo rotation curve.

+ 1} . (4.75)

A simple inspection of Eqgs. (4.73), (4.74) and (4.75) shows an interesting property of
our result. There is a minimum radius rmi, ~ (A/3)72[cosh (2k/(Ak))]™" required for
the validity of (4.74). Obviously it is necessary that rpin < 7gar (K Tmaz) Where 744 is
the typical radius of our halo.

Case M, # 0: non-negligible baryonic component in the center of the halo

In this subsection we assume that r > r,. If M > M, we recover the same result of the
previous subsection; if M, > O(Ar?), using Egs. (4.10) and (4.11), we obtain

M,

—28)~1— 4.
exp (—26) - (4.76)
MY [ k. A\ 12
exp (o) ~ Ak { (1 - 47rr) K—k + cosh™ (]\7/7> -1 . (4.77)

where k, is a suitable positive integration constant. In particular it easy to see that
k. and k (through exp (8(r))) depend also on the value of M,, since one is considering
r > 1. Obviously, these functions exist only for » > r, > M, /(4r), having defined r,
as the value of the radius for which exp (a(r,)) = 0. In this case, using the approximate
relation (4.23), v, reads

1/2
v2%1 1—M* /
) A7y

-1
K Ay 1/2 M.

ha h! -1 . 4.
A s (M*> ] } t g (4.78)
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To have halo rotation velocities v, ~ 1072 for r > r,, we need to impose 2k, /(Ak) ~ 10°.
One can see that this condition leads to r, ~ M, /(4m). Moreover, also in this case we
have a minimum radius 7,,;, such that v?(r,,;,) = 1. Starting from Eq. (4.22) we get

Tomin = T - (4.79)

4.4.2 Lagrangian of the type £ = g(X) — V()

In this subsection we briefly discuss Lagrangians of the type £ = ¢g(X) — V(). Let us
rewrite £ as £ = —[gs(x) + V(¢)]. In order to have p > 0 we impose that g;(x) > 0. For
these Lagrangians the equation of motion (4.4) becomes

dgs(X) 2
dos() | 1™ [X< i ” V()
X +2 = —""

4.
dy dR dR (4.80)

Requiring that the Lagrangian of the scalar field is constant along the classical trajectory,
i.e

Vip) = —gs(x) + A, (4.81)
from the Eq. (4.80) we get

ngs(X) __k/2

= 4.82
dx r2exp (4.82)

where k is a positive constant.
Now, inserting Eq. (4.82) into Eq. (4.8) we obtain the same expressions for p; and v, that
we obtained in the last subsection i.e. Egs. (4.70) and (4.71), respectively.
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Chapter 5

Conclusions

In this thesis we have investigated the possibility that the dynamics of a single scalar
field can account for a unified description of the dark matter and dark energy sectors. In
particular in the the first Chapter we have studied the case of purely kinetic k-essence,
showing that these models have only one late-time attractor with equation of state w, =
—1 (cosmological constant). Studying all possible solutions near the attractor we have
found a generalization of the Scherrer model [64], which describes a unified dark matter
fluid.

Subsequently, we have generalized our analysis to the case where the Lagrangian is
not purely kinetic and we have given general prescriptions [Egs. (2.120) and (2.122)] to
obtain unified models where the dark matter and a cosmological constant-like dark energy
are described by a single scalar field along its attractor solutions.

In the second Chapter we perform an analytical study of the Integrated Sachs-Wolfe
(ISW) effect within the framework of Unified Dark Matter models based on a scalar field.
Our treatment is completely general in that all the results depend only on the speed of
sound of the dark component and thus it can be applied to a variety of unified models,
including those which are not described by a scalar field but relies on a single dark fluid.

In the third Chapter we have investigated static spherically symmetric solutions (“dark
halos”) of Einstein’s equations for a scalar field with non-canonical kinetic term. Assuming
that the scalar field depends only on the radius, we studied Unified Dark Matter models
with purely kinetic Lagrangians. In particular, we obtained a purely kinetic Lagrangian
which allows simultaneously to produce flat halo rotation curves and to realize a unified
model of dark matter and dark energy on cosmological scales. Moreover, we gave a
prescription to obtain UDM model solutions that have the same rotation curve v.(r) as
a CDM model with a specified density profile. Next, we considered a more general class
of Lagrangians with non-canonical kinetic term. In this case we have one more degree of
freedom (the scalar field configuration itself) and we need to impose one more constraint.
To this aim, we required that the Lagrangian is constant, £L = —A along the solutions
of the equation of motion. We have studied whether this condition can be applied to
the static spherically symmetric space-time metric and what the behavior of v.(r) is for
this class of models. Let us finally stress that these solutions allow for the possibility to
find suitable Lagrangians that describe with a single fluid viable cosmological and static
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solutions.
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