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Summary 

Connections and fasteners play an essential role in the determination of strength and stability, 

ductility and robustness, i.e., the overall behaviour of timber structures. In particular, connections 

subjected to static loads are to be investigated in terms of strength and stiffness, whereas the ones 

designed to withstand cyclic (e.g., seismic) loads need also the definition of their complete hysteretic 

response. This Ph.D. dissertation focuses on the behaviour of modern connections being developed 

and employed in timber engineering. 

An initial overview on mechanical connections employed in timber structures and their evolution 

is reported in the introductive section of this thesis. Advantages as well as critical issues of traditional 

connections are the motivations for the evolution and the improvements brought by innovative 

connections. Two different applications of innovative timber connections are analysed and hereby 

discussed, each one facing different issues. The first one claims to give an insight into modern 

screws employed in Timber-concrete composite (TCC) structures, where the major objective is to 

achieve maximum strength and above all stiffness. The second is directly focused on the cyclic 

performance of modern connections employed in Cross Laminated Timber (CLT) structures where 

dissipative capacity and structural damping are of utmost importance. Consequently, the present 

manuscript is subdivided into two main parts. 

The first part deals with TCC joints realized with modern screws. The key-point to guarantee 

adequate mechanical performance to these composite structures is the use of connectors that 

demonstrate sufficient shear strength and stiffness at the interface between timber beam and 

concrete slab independently of the presence of an intermediate layer. Modern cylindrical connectors, 

such as self-tapping screws, are rising interest because they combine remarkable performance, 

when their withdrawal capacity is exploited, and quickness of execution especially in case of onsite 

installation. In this paper, a theoretical approach to calculate shear strength and stiffness of TCC 

joints made with inclined screws is discussed and compared to current design procedures. 

Furthermore, a report on short-term push-out tests of TCC joints realized with inclined self-tapping 

screws carried out varying fastener arrangement, diameter and concrete type is given. 

Consequently, a comparison between the results obtained with the theoretical method and 

experimental tests is reported and critically discussed in terms of both strength and stiffness. 

The last section of the first part present the design of an innovative connector that combines the 

use of self-tapping screws and a glass-fibre reinforced polymer (GFRP) element as components to 

realize structural TCC joints. FRP is being used in civil engineering since decades, but most of these 

applications utilize pre-impregnated thermosetting composites, the most common of which is carbon 

fibre-reinforced polymer (CFRP). On the contrary, injection moulded thermoplastic materials are 

relatively new and lack of history of their use in civil infrastructures. The aim is to develop a 

connection that solves typical installation issues of inclined screws and avoids stress concentration 

issues that may occur in the concrete layer. Numerical simulations, carried out to design this 



 

 

particular joint and exploiting a hybrid approach, are described in detail. Then, results from the 

experimental tests conducted to investigate the behaviour of the device subjected to shear loading 

conditions are compared with the analytical predictions valid for inclined screws previously 

described. 

The second part of this work focuses on the developing of an innovative earthquake-resistant 

connections employed for CLT structures. The seismic performance of CLT buildings is mainly 

related to the capability of joints to perform plastic work, since timber elements have limited capability 

to deform inelastically. Nowadays, the use of hold-down and angle bracket connections, which were 

originally developed for platform-frame constructions, has been extended also to CLT buildings. 

Nevertheless, the dissipative capacity of light-frame buildings is mainly diffused in nailing between 

frames and panels while, in CLT walls, the dissipative contribution is exclusively assured by ductile 

joints connecting the panels. The need of more reliable connections that provides well predictable 

and stable hysteretic behaviour, reduced pinching phenomenon (caused by the wood embedment) 

and strength degradation, justifies the continuous development of “innovative” connections. In this 

work, a newly developed connection element that overcomes the aforementioned issues and works 

for both tensile or shear loads is designed and assessed, and various significant aspects are 

discussed. 

Initially, the design procedure of the connection element and preliminary experimental tests that 

validates the numerical predictions are illustrated. Then, improved versions of the device are 

illustrated and their experimental results reported with particular attention in describing their 

hysteretic response and coupled shear-tension strength domain. In this work, an important role is 

also given to the application of the capacity design criteria applied at the joint level in order to 

guarantee the best exploitation of the connection’s dissipative capacity. Therefore, theoretical 

concepts, which describe the overstrength of traditional and innovative connections, confirmed by 

experimental tests of the brackets anchored to a CLT panel, are also given. In the last chapter is 

presented a numerical model that, following a macro-element approach, reproduces the actual cyclic 

response of the investigated device when subjected to combined shear-tension loads. Finally, the 

results of Non-Linear Dynamic Analyses of a case study CLT building realized which such model 

are reported and the seismic capacity of the case study building is evaluated. 

With these two examples, this thesis aims to give an original contribution in the evaluation of 

performance of innovative connection systems for timber structures, combining the use of 

theoretical, numerical and experimental models, and highlighting the emerging differences with 

respect to the use of traditional fasteners and connections.  

 

Keywords: timber engineering, timber-concrete connections, self-tapping screws, analytical model, 

Glass-fibre-reinforced polymers, injection moulding, Cross Laminated Timber, dissipative 

connections, hysteretic model, viscous damping, shear-tensile strength domain, seismic design, 

macro-element model, behaviour factor.   



 

 

Sommario 

Le connessioni e gli elementi di fissaggio svolgono un ruolo essenziale nella determinazione 

della resistenza, stabilità e solidità, ovvero nella risposta globale delle strutture del legno. In 

particolare, le connessioni soggette a carichi statici devono essere studiate in termini di resistenza 

e rigidezza, mentre quelle progettate per resistere a carichi ciclici (ad es. sismici), necessitano anche 

della completa definizione della loro risposta isteretica. Questa tesi si concentra sul comportamento 

dei collegamenti moderni sviluppati e impiegati nell'ingegneria del legno. 

Una prima panoramica sulle connessioni meccaniche impiegate nelle strutture del legno e la 

loro evoluzione è riportata nella sezione introduttiva di questa tesi. Vantaggi e criticità delle 

connessioni tradizionali sono le motivazioni dell’evoluzione e dei miglioramenti prodotti dalle 

connessioni innovative. Vengono analizzate e discusse due diverse applicazioni di connessioni per 

strutture in legno, ognuna delle quali espone aspetti e problematiche diverse. Il primo afferma di 

dare una panoramica delle moderne viti utilizzate nelle strutture composte legno-calcestruzzo 

(TCC), dove l'obiettivo principale è ottenere massima resistenza e ancor più rigidezza. Il secondo, è 

incentrato direttamente nell’analisi delle prestazioni cicliche delle connessioni moderne utilizzate 

nelle strutture in CrossLam (CLT) in cui la capacità dissipativa e lo smorzamento strutturale sono 

della massima importanza. Di conseguenza, il presente manoscritto è suddiviso in due parti 

principali. 

La prima parte riguarda le giunzioni legno-calcestruzzo realizzate con viti moderne. Il punto 

chiave per garantire prestazioni meccaniche adeguate a queste strutture composite è l'utilizzo di 

connettori caratterizzati da un'adeguata resistenza e rigidezza tra trave di legno e soletta di 

calcestruzzo, indipendentemente dalla presenza di uno strato intermedio. I connettori cilindrici 

moderni, come le viti autofilettanti, possiedono un crescente interesse perché combinano elevate 

prestazioni, se è sfruttata la loro elevata capacità ad estrazione, e rapidità di esecuzione. In questo 

lavoro viene proposto un approccio teorico semplificato per calcolare la resistenza al taglio e la 

rigidezza dei giunti TCC realizzati con viti inclinate e poi confrontato con le attuali procedure di 

progettazione. Inoltre, viene fornito un rapporto sulle prove di push-out a breve termine di giunti TCC 

realizzati con viti autofilettanti inclinate, effettuate con vari tipi di fissaggio, diametro e tipo di 

calcestruzzo. Di conseguenza, viene anche riportato un confronto tra i risultati ottenuti con il metodo 

teorico e le prove sperimentali e viene discusso criticamente in termini di forza e rigidezza. 

L'ultima sezione della prima parte comprende la progettazione di un connettore innovativo che 

combina l'utilizzo di viti autofilettanti e polimero termoplastico rinforzato con fibra di vetro (GFRP) 

per realizzare giunti TCC strutturali. Gli FRP vengono utilizzati nell’ingegneria civile da decenni, ma 

la maggior parte di queste applicazioni utilizza compositi termoindurenti pre-impregnati, il più 

comune dei quali è il polimero rinforzato in fibra di carbonio (CFRP). Al contrario, i materiali 

termoplastici sono relativamente nuovi e mancano di storia nell'utilizzo nell'infrastruttura civile. Le 

simulazioni numeriche, effettuate per progettare questo giunto, sono descritte in dettaglio. Quindi, i 



 

 

risultati delle prove sperimentali condotte per esaminare il comportamento del dispositivo sottoposto 

a condizioni di carico di taglio sono confrontati con le previsioni analitiche descritte. 

La seconda parte di questo lavoro si concentra sullo sviluppo di collegamenti innovativi impiegati 

per le strutture in CLT. La prestazione sismica degli edifici CLT è principalmente legata alla capacità 

dei collegamenti di plasticizzarsi, poiché gli elementi del legno hanno una capacità limitata di 

deformazione inelastica. Oggi, l'utilizzo di connessioni quali hold-down e angolari, originariamente 

sviluppati per costruzioni tipo platform-frame, è stato esteso anche agli edifici CLT. Tuttavia, la 

capacità di dissipazione degli edifici a telaio è diffusa soprattutto nella connessione telaio-pannello, 

mentre nelle strutture in CLT il contributo dissipativo è assicurato esclusivamente da connessioni 

duttili che collegano i pannelli. La necessità di una connessione più affidabile che fornisca un 

comportamento isteretico prevedibile ed affidabile, un fenomeno ridotto di “pinching” (causato dal 

rifollamento del legno) e una degrado di resistenza giustifica lo sviluppo continuo di connessioni 

"innovative". In questo lavoro è stato progettato e valutato un elemento di connessione che sormonti 

i problemi sopradescritti e che lavora sia per i carichi di trazione che per taglio, e ne vengono discussi 

gli aspetti più significativi. 

Inizialmente viene illustrata la procedura di progettazione dell'elemento di connessione e dei test 

sperimentali preliminari che convalidano le previsioni numeriche. Successivamente vengono 

descritte le fasi di progettazione e test di ulteriori versioni migliorate delle staffe dissipative e sono 

riportati i loro risultati sperimentali facendo particolare attenzione nel descrivere la loro risposta 

isteretica e il dominio di resistenza tensione-taglio. Un ruolo importante in questo lavoro è dato 

all'applicazione dei criteri di gerarchia delle resistenze (progettazione in capacità) a livello di 

connessione al fine di garantire il miglior sfruttamento della capacità dissipativa della connessione. 

Di conseguenza, vengono forniti concetti teorici che descrivono l’applicazione di tali concetti a 

connessioni tradizionali e innovative, e confermate da prove sperimentali delle staffe oggetto di 

studio ancorate a un pannello CLT. Infine, i risultati di simulazioni numeriche dettagliate e prove 

cicliche quasi-statiche sono state utilizzate per sviluppare un modello di macro-elemento 

implementato in un codice numerico che ha permesso di determinare le prestazioni sismiche di un 

edificio caso studio in CLT realizzato con tali connessioni. 

Con questi due esempi la presente tesi mira a definire un originale procedura di valutazione 

delle performance delle connessioni innovative per legno, combinando l'uso di modelli teorici, 

numerici ed analisi sperimentali e mettendone in evidenza le differenze emergenti rispetto 

all'impiego di sistemi di connessioni tradizionali.  

 

Parole chiave: ingegneria del legno, connessioni legno-calcestruzzo, viti autofilettanti, modelli 

analitici, polimeri fibrorinforzati, stampaggio per iniezione, connessioni per CrossLam, connessioni 

dissipative, modello isteretico, smorzamento viscoso equivalente, dominio di resistenza taglio-

trazione, modello a macro-elementi, fattore di struttura.   
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Introduction 

I.1 Development of connections in timber structures 

The well-known statement ‘‘A structure is a constructed assembly of joints separated by members’’ 

[I.1] highlights the attention that is to be given to connections in timber engineering. Assessments of 

timber buildings damaged after extreme wind o earthquake events often point to inadequate 

connections as the primary cause of damage [I.2]. Therefore, the joints are particularly important, 

since those used in timber construction tend to be weaker than the members being joined [I.3] and 

as a result, condition the behaviour of the entire structure. Consequently, they need to be treated 

with particular care by the designer of timber structures. 

The evolution of the technology of timber joints and of the base material, i.e. structural timber, are 

strictly correlated one to another. Nowadays, the rapid increasing interests of timber at both research 

level and construction level made this development gain more and more momentum. In this context, 

it is possible to distinguish three different typologies of timber connections: carpentry joints, glued 

joints and mechanical joints. 

Carpentry joints express the most fascinating technique to be used in joining members. In this case, 

loads are transferred by means of perpendicular compression stresses and friction without needing 

additional mechanical components. In the past years, the application of this method produced 

exceptional examples of state-of-the-art timber engineering and allowed raising impressive 

monumental structures even in high seismic countries like Japan [I.4]. On the contrary, this technique 

still requires time-demanding operations and extremely high woodworking skills to be owned by the 

carpenters. Even if the introduction of CNC technology helped to recover part of this knowledge, 

carpentry joints are often being preferred by the two other typologies. 

Glued joints are known to be the most efficient in terms of strength and stiffness than the other two 

typologies. However, the research in gluing technology have been producing more results in the 

realization of products realized by processed or sawn wood (e.g., glued-laminated timber, laminated-

veneer lumber, etc.), than in the field of connections. As proof of that, no recognized international 

standards and rules are available yet concerning the design of glued joints. Nevertheless, progress 

in gluing technology led to the development of cross-laminated timber (CLT), and through it, carried 

out important “collateral” consequences in the field of mechanical joints that will be deeply discussed 

in this thesis. 
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The last typology, mechanical joints are by far the most used connecting method in timber 

engineering. They are represented by dowel-type fasteners, i.e. nails, staples, bolts, screws, dowels 

and threaded rods and surface-type fasteners, like split-rings and toothed plate connectors. In both 

categories, forces are transmitted by bending and tensile stresses in the fasteners as well as 

embedment and shear stresses in the wood along the shank [I.3]. Progress in this field have been 

the most conspicuous. The most evident case are self-tapping screws, which are now produced at 

lengths of up to 1.5 m and have substantially changed jointing and reinforcement technology [I.5].  

As anticipated, this thesis will directly focus on the development of mechanical fasteners. However, 

the point-of-view from which connections are studied highly depends on the intended application. 

For example, a very stiff joint designed to withstand static loads may unpredictably fail or be 

incapable to work well if subjected to repeated cyclic loads, and vice versa. Hence, connections 

subjected to static loading conditions will be addressed differently from the ones design for seismic 

loading conditions. The next paragraphs will briefly introduce the argument to help the reader 

understand the choice of splitting the manuscript into two distinct parts. 

I.1.1 Connections in static loading conditions: the case of TCC 

structures joints 

Progress at the joint level allowed attaining further enhancement in the field of hybrid constructions. 

In particular, the studies on mechanically jointed members such as timber-concrete composite (TCC) 

structures have been again taking high consideration as balanced solution between costs and 

structural efficiency. TCC joints are an easy example of the direct consequence that a well-designed 

joint produces on a structure. It is worth noting, that this evidence can easily be extended to every 

timber structure. As an example, moment-resisting joints require the prediction of the rotational 

stiffness achieved by the shear joints in order to assess the overall deflection performed by the 

structure. Consequently, stiffness can be as important as the load bearing capacity and cannot be 

analysed separately. 

 

Fig. I.1 – Comparison of the inelastic behaviour of several type of joints [I.3]. The stiffest joint is glued joint (a) 
followed by punched metal plate fastener (f), split ring (b), double‐sided toothed‐plate (c), 14-mm dowel (d), 
14-mm bolt (e), 4.4 mm nail (g). 

The variety of mechanical connections available for structural purposes, have been analysed also 

when applied to the case of TCC structures (see state of the art in following section 1.1.2). Fig I.1 

compares the inelastic behaviour of various types of mechanical connections. It clearly emerges that 
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these types of connections demonstrate a semi-rigid behaviour with respect to glued joints but, 

depending on the stiffness level to be reached, each of them can be considered valid. However, due 

to the highly dissimilar behaviour obtained within each type, experimental characterization and 

possible development of analytical formulations are two fundamental steps to make easier and 

reliable the design of these joints. In fact, the lack of information regarding the use of modern self-

tapping screws as TCC joints is one of the motivations that led to this thesis work. 

I.1.1.1 Standards and experimental evidence 

Before analysing the behaviour of a connection applied to a timber element, the connection itself 

has to be experimentally characterized with the aim to evaluate its main mechanical properties. For 

example, in Europe dowel-type fasteners like self-tapping screws are to be tested according to EN 

14592 [I.6] in order to define geometry, withdrawal strength, tensile strength, pull-through parameter, 

etc. If a CE marking procedure is needed than, the same screw should follow the European 

Assessment Document procedure [I.7]. Consequently, the static behaviour of a joint involving one 

ore multiple fasteners should be addressed according to specific standards like the European EN 

26891 protocol [I.6] in order to obtain the monotonic load vs. slip curve, which is then analysed to 

obtain the necessary parameters to design it accordingly. Not to forget that also the timber properties 

must be assured by applying appropriate standards like [I.9]. EN 26891 protocol [I.6] allows 

analysing the joint’ behaviour at different load levels. Once that the estimated total force Fest is known 

(e.g., by means of a monotonic test) the range between 10 and 40% of this load determine the 

serviceability limit state (SLS) conditions, which is expressed by the slip modulus Kser. Valuable 

information of near collapse stiffness are then derived by calculating the secant stiffness at 0.6Fmax 

and 0.8Fmax, where Fmax is the maximum force (or peak force) demonstrated in tests. Finally, 

statistical analysis according to [I.10] are to be used to derive characteristic values of the yielding 

force, the peak and ultimate load bearing capacity according to a normal or log-normal distribution.  

 

Fig. I.2 – Loading procedure according to EN 26891 [I.6] 

Analytical methods to derive the load bearing capacity of timber joints subjected to static loads are 

already available in literature. They are based on well-founded hypotheses, which have been 

validated during years throughout intensive experimental characterization and are now taken as valid 

by the whole engineering practice. This work will take them as reference and will try to enhance or 

redefine part of these analytical methods, which were derived from traditional mechanical joints, by 

adapting them to the capabilities obtainable with modern connections. 
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I.1.2 Connections in seismic loading conditions: the case of 

connections for earthquake-resistant CLT structures 

The introduction in the market of cross-laminated timber (CLT) helped timber to widespread all over 

the world and allowed to re-invent the structure’s architecture in the countries that embrace this 

technology. The characteristics of lightness and strength possessed by CLT, took the attraction of 

countries characterized by high seismicity. Immediately, connections employed in traditional, 

platform-frame or balloon-frame buildings were adapted to be used with this technique.. However, it 

has been demonstrated that particular care had to be given to the connection as it turned out that, 

unlike to traditional shear walls, quite all the seismic energy developed by the structure had to be 

withstood by the mechanical joints ([I.11];[I.12]). Research work concentrated more in solving 

installation issues of CLT structures [I.13]. However, the result is that a new generation of high 

performance mechanical connections is strongly needed.  

In traditional joints, the energy dissipation and ductility is assured by the hysteretic behaviour, during 

shear deformation, of dowel-type fasteners that connect the steel element to the timber panel. Two 

mechanisms concur simultaneously: formation of one or two plastic hinges in the connector and 

wood embedment near fasteners ([I.14]-[I.16]). Fig. I.3 clearly explains these phenomena. 

Depending on the slenderness of the fastener, intended as ratio between fastener diameter and 

penetration in the timber member, the cyclic behaviour can change significantly. Fig. I.3a shows the 

hysteretic response of a correctly designed joint where slender fasteners allow to obtain both by 

plastic deformation of steel and wood embedment. On the contrary, Fig I.3b shows that large-

diameter connectors are too stiff to deform plastically, total deformation is given only by wood 

embedment and the amplified pinching phenomenon reduces energy dissipation capacity for 

repeated loading cycles. The best solution in terms of energy dissipation, which is being carried out 

by innovative connections can be obtained ensuring the localization of deformations in steel plates, 

limiting deformation on the wooden side (see Fig. I.3c). 

 

(a) (b) (c) 

Fig. I.3 – Typical hysteresis behaviour of a connection with metal fasteners [I.17].  

I.1.1.1 Standards and experimental evidences 

The aforementioned connection properties and cyclic response affect the whole seismic behaviour 

of a seismic-resistant timber structure. In Europe, Eurocode 8 [I.18] requires the evaluation of the 

mechanical performance of timber connections according to a cyclic loading procedure (recalling EN 

12512 [I.19]). This protocol requires a preliminary estimation of the yielding displacement Vy of the 
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connection. Then, adopting a displacement cyclic procedure with maximum amplitude defined by 

progressive multiples of Vy (Fig I.4) it allows to determine the maximum ductility, as ratio between 

ultimate and yielding displacement Vu / Vy, and the equivalent viscous damping ratio νeq. The latter 

gives important information of the energy dissipating capacity demonstrated by the connection. 

 

Fig. I.4 – Loading procedure according to EN 12512 [I.19] 

This procedure have been assessed when traditional connections made use of the cyclic dissipative 

behaviour of dowel-type fasteners (see Fig. I.3a) and research of innovative systems had not yet 

been addressed. However, the question whether this protocol should be applied or substituted with 

other protocols have always been a delicate question ([I.20];[I.21]). Actually, several different 

procedures are available and may be applicable [I.22]. Innovative connections may require further 

different loading protocol. In fact, rather than pinching phenomenon, these devices may be more 

susceptible to oligo-cyclic fatigue that reduce the ultimate conditions. Nevertheless, a protocol that 

simulates the actual randomness of a seismic shock is still under investigation. 

In this context, analytical and experimental methods used describe the monotonic behaviour are 

substituted with numerical simulations that help the designer to predict the effect of the joint when 

applied to a structure. In fact, the second aim of this thesis is to demonstrate the easiness in 

predicting via numerical simulations, the hysteretic behaviour of these connections with respect to 

traditional connections. 

I.2 Objectives and scope of this dissertation 

The main scope of this thesis work is to give a contribution to international scientific research and 

current design practice about the design of innovative connections for timber structures, with 

particular focus to timber-concrete composite (TCC) system and high energy-dissipating 

earthquake-resistant devices. The initial objective is to clarify the actual behaviour of connections 

employed in timber engineering, on two different case studies: modern connections designed for 

static loading conditions, and connections designed to withstand cyclic forces, due to high seismic 

shock. Henceforth, the present work addresses multiple aspects of research: 

1. The first aspect focus on the use of modern self-tapping screws as connections in TCC 
structures. In detail, existing theoretical approaches that describes the behaviour of these 
fasteners are illustrated and, at the occasion, adapted accordingly. The modifications to the 
analytical models are supported by means of experimental tests. 

2. In the same context, an innovative connection element, which combines inclined self-tapping 
screws and a glass-fibre reinforced polymer produced by injection moulding, is designed and 
tested. To this aim, numerical simulations and experimental tests are reported in order to 



Innovative connection systems for timber structures 
 

6 

define and predict its mechanical behaviour and to introduce GFRP injection moulding 
products into the field of timber engineering. 

3. The second part claims to provide useful instruments to design innovative high-dissipative 
connection for timber structures. In particular, the design process of a new steel device is 
accurately described, together with its experimental investigation. This connection is also 
exploited to give a deep analysis on the capacity design criteria applied to joints in timber 
structures.  

4. Lastly, the impact of its high dissipative capacity and its coupled shear-tension response are 
analysed by means of non-linear dynamic simulations of a case-study CLT structure. A 
macro-element approach has proven to be successful to analyse the potential improvements 
on the seismic response of the CLT buildings that uses such innovative connections and to 
compare the resulting behaviour factor with respect to more traditional solutions. 

The main tools used to obtain the results presented in this dissertation are: 

1. Experimental data from monotonic and cyclic-loading tests of connecting devices and full-
scale complete connection assemblies; 

2. Analytical methods based on code provisions or on actual literature; 

3. Numerical dynamic simulations of linear and non-linear models calibrated on results from 
tests or on code provisions. 

This thesis presents original data, results and conclusions based both on novel research activities, 

which started in the period between 2014 and 2017, and on the continuation of existing research 

activities presented in ([I.23];[I.24]). 

 

Fig. I.5 – Organization of the present work 
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TCC System using GFRP and screws
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LOADING CONDITIONS:

dissipative connections for CLT structures

CHAPTER 3: Development of an high-
dissipative device for CLT structures
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element model to simulate the hysteretic 

behaviour of the dissipative device
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Chapter 1 Timber-concrete composite joints with 

modern self-tapping screws 

Abstract 

Timber-concrete composite structures have become a widespread technique to realize new 

composite floors or improve existing ones. The key-point to guarantee adequate mechanical 

performance to these composite structures is the use of connectors characterized by adequate 

resistance and stiffness between timber beam and concrete slab. Modern cylindrical connectors, 

such as self-tapping screws, are rising interest because they combine high performance mechanical 

properties and quickness of execution. In this paper, a simplified theoretical approach to calculate 

shear load carrying capacity and stiffness of timber-concrete composite (TCC) joints made with 

inclined screws is suggested and compared to available design procedures. Furthermore, a report 

on short-term push-out tests of TCC joints realized with inclined self-tapping screws carried out 

varying fastener arrangement, diameter and concrete type is given. A comparison between the 

results obtained with the theoretical method and experimental tests is reported and critically 

discussed in terms of both load carrying capacity and stiffness. 

 

Research results presented in this section are partially available at Springer via http://dx.doi.org/ 

10.1617/s11527-017-1047-1. Journal Materials and Structures is acknowledged as the original 

source of publication. 

  

http://dx.doi.org/10.1617/s11527-017-1047-1
http://dx.doi.org/10.1617/s11527-017-1047-1
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1.1 Introduction and state of the art 

Timber-concrete-composite (TCC) systems have gradually been introduced in structural engineering 

since the last century, and yet have been wide spreading thanks to its simple conceptual technology: 

combining two materials with different mechanical properties and exploiting their technical 

advantages to create highly efficient composite structures. 

TCC technology was appeared due to the shortage of steel between the two world wars of last 

century [1.1] and was initially developed to refurbish historical floors of buildings in Europe [1.2]. In 

this case, existing timber floors realized with massive timber beams and a single orthogonal layer of 

boards nailed to the beams had to be renovated in order to improve their mechanical performance. 

In particular, the main purpose of these interventions was to enhance the load-bearing capacity and 

increase the bending stiffness (i.e. reduce deflections) to adapt this existing structures to the new 

demands and be suitable to the new, more severe and safer regulations. This technique gradually 

expanded thanks to other implicit advantages such as, reduced vibrational issues, acoustic damping, 

increased thermal mass and structural fire rating. 

The success of this building system widened its use by extending it to the construction of medium-

span (7-15m) horizontal structures [1.3]. Its interests led to the employment of this solution also for 

bridge decks [1.4] and complete bridges [1.5]. In this case, the saving of permanent mass is the main 

advantage. More recently, TCC prefabricated systems have been developed ([1.6];[1.7]) to realize 

economically competitive solutions overcoming some drawbacks such as the time needed for the 

concrete curing, the lower stiffness and higher creep during the concrete curing. Recent extensive 

literature works on TCC systems can be found in ([1.8];[1.9]). 

  

Fig. 1.1 – TCC bridge deck in Finland on the right [1.5] and TCC prefabricated floor on the left [1.6]. 

Apart from the improvement of floors on static loading conditions, this solution has proven to be a 

viable technique to create a theoretically infinitely rigid floor [1.10]-[1.12], which is able to transmit 

uniformly the horizontal forces during a seismic event among the vertical earthquake-resisting 

structures. Consequently, TCC system have been increasing also in seismic prone countries (e.g., 

the Mediterranean area) characterized by a large number of buildings to be renewed and made 

suitable to the new and more severe seismic regulations. For this reason, the mechanical behaviour 

of TCC structures is continuously investigate, now with particular care to the onsite realization of 

such structures. 
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Fig. 1.2 – Renovation of existing timber floors with mechanical connectors before realization of the concrete 
slab. 

1.1.1 Design of TCC structures 

Design procedures of TCC structures is not covered by many timber standards and specific provision 

appears only in Eurocode 5 – Annex B [1.13] and Eurocode 5 – Part 2 [1.14]. In this case, the 

commonly adopted theory is the linear elastic theory, proposed by Newmark [1.15] and Mohler [1.16] 

and endorsed by Ceccotti [1.17] on which the main hypotheses are: a) all materials (concrete, timber, 

and connection) remain within the linear-elastic range until failure of the beam; b) equality between 

vertical deflection and curvature; c) plane cross-sections; d) load applied with a sinusoidal 

distribution; e) joints equally spaced. 

Natterer et al. [1.18] tried to find solutions for different load distributions and effective widths of the 

concrete beam. There is also an elastoplastic design approach, proposed by Frangi and Fontana 

[1.19], in which a rigid perfectly plastic behaviour of the connection is assumed and the failure of the 

beam is reached after subsequent plasticization of the joints among the beam. This method, best 

suited for high-ductility connections, is not as widely known as the first one. 

The first approach (known as γ-method) is based on the assumption that the TCC connection is 

actually a semi-rigid joint and the stresses between the two elements are dependent on the stiffness 

and the spacing of the connectors. The closed form formulations describes the effective stiffness of 

a wood-concrete structure EJeff as: 

22

ttttccccttcceff aJEaJEJEJEEJ    (1.1) 

where E, A and I are the modulus of elasticity, area and the second moment of area of the element 

(subscripts c and t are for concrete and timber respectively). Consequently, the structural efficiency 

of these structures highly depends on the resistance and stiffness demonstrated by the element 

connecting timber and concrete and described in the previous equation by the connection’s reduction 

factor γ. Eq. (1.2) is a simple equation that describes the level of efficiency of a composite beam:  

0

0

EJEJ

EJEJeff








  
(1.2) 

where EJ∞ and EJ0 are respectively the total bending stiffness of the composite structure in case of 

a fully rigid and fully deformable connection. EJeff is the effective bending stiffness reached by the 

structure with the defined connectors and from which results that η may vary between 0 and 1.  
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1.1.2 Connections for TCC structures 

The development of TCC connections is progressing along with the continuous study of the 

composite system. The expansion of TCC structures on various applications, as previously 

described, lead to the realization of numerous types of connection systems. Each one having its 

intrinsic advantages and disadvantages. 

The initial studies of TCC systems, in the first half of the last century, focused on the use of steel Z-

profiles and I-profiles fastened to the timber beam and covered with the concrete layer [1.1]. Then, 

these “rough” mechanical connections were substituted by creating notches in the upper side of the 

timber beam in which the poured concrete acted as a “shear key”. This method can be considered 

as an adaptation from a technique that can be still found in ancient buildings to create timber-to-

timber connections without mechanical fasteners. It exploits the same concept of the link usually 

realized between the rafter and the horizontal tie in a typical timber truss. Shape and definition of the 

notches are still being deeply investigated and, if necessary, reinforced with steel screws or dowel-

type fasteners. Although this connection method have proven to be the one that reach the highest 

level of load carrying capacity and stiffness, it is also recognized as a not very economical when 

notches have to be cut manually [1.20].   

In parallel, other connection elements have been studied to avoid or, at least, limit cutting and 

general woodworks in the timber beam. For example, by creating a single longitudinal cut on the 

upper side of the beam that is then used to place L-shaped metal plates glued in with epoxy resin. 

This solution provides also high levels of efficiency and reduced amount of works with respect to the 

notched system. It was investigated the use of punched metal plate fasteners to be fixed on both 

sides of the beam [1.21] avoiding any wood cutting operation. In this work, the procedure of cutting 

and gluing the L-shaped profiles was substituted by simply fastening the metal plate with nails to the 

top of the beam. 

However, most of the effort was concentrated on solution that reduced the amount of handwork to 

be done on the timber beam by using distributed steel fasteners as the only mechanical connection 

system (see Fig. 1.3). One of the most examined technique is the recognized “Turrini-Piazza 

method” [1.22]: distributed connections are made with L-shaped steel rods glued into timber beams 

and used as dowel-type fasteners. The technique have been developed to refurbish historical timber 

floors and proved to achieve satisfactory results in terms of both load carrying capacity and stiffness. 

Failure of these connectors is due to combined wood embedment phenomenon and plastic hinges 

formation. In particular, the latter phenomenon is also the main aspect, which determine the stiffness 

demonstrated by the joint. However, some limitations arise when an interlayer is present, which 

forces the dowel to work as a standoff beam thus reducing considerably its overall stiffness [1.23]. 

From this concept, several fastening system that used dowel-type fasteners or cylindrical elements 

placed orthogonal to the sliding-plane have been studied in literature ([1.1];[1.21]-[1.31]). These 

fasteners, as previously reported, works in shear, consequently they must involve high core 

diameters to exhibit a rigid behaviour in the timber element while withstanding high loads. To apply 

correctly these fasteners, predrilling of the timber beam is always needed to avoid brittle failures due 

to possible crack propagation along the grain direction. 

All these connections have been tested in research works (examples are referred above) and their 

performance compared by means of experimental tests and numerical simulations. Fig. 1.4a shows 

the load-slip curve obtained from a single test according to a standardized procedure [1.17], while 

Fig. 1.4b shows a comparison of the several connection typologies presented above. It is clear how 

notched solutions are stiffer and offer higher load carrying capacity with respect to dowel-type 
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connections which demonstrate lower stiffness and ultimate resistance but a much higher ductility 

level. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 1.3 – Example of TCC connections: (a) Notch with steel screw [1.2]; (b) Glued-in Rebar at 45° [1.30]; (c) 
Glued-in Rebar at 90°; (d) folded steel plate [1.29]; (e) HSB® connection [1.31]; f) Tecnaria connector [1.27]. 

 

  
(a) (b) 

Fig. 1.4 – Load vs. slip behaviour of a connection: (a) according to standard procedure [1.17]; (b) comparison 
of different categories of connectors from Yeoh et al. [1.8]. 

The use of traditional, more ductile, dowel-type connectors that work in pure shear lead to structures 

with an efficiency ratio η comprised between 0.4-0.6 while modern high-performance fasteners 

(arranged at an angle with respect to the grain) may increase this value to a range of 0.7-0.8. 

Although, the highest efficiency is still reached only by notched and glued solutions. 

In summary, it can be stated that there is not one solution prevailing over the others, but the choice 

of the connection type is strictly correlated to the use for which a TCC structure is going to be 
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designed. For example, notched connection are to be preferred for long span or precast TCC 

structures, where the realization costs can be economically withstood and justified by on-site time 

saving costs. On the contrary, for on-site construction of TCC assemblies, timesaving benefits will 

shift the choice to dowel-type fasteners that do not require particular woodworking of the timber 

beam. 

1.1.3 Parameters influencing TCC connection’s mechanical 

performance 

The performance of a TCC connection is normally related to the connector’s geometrical and 

mechanical properties and its behaviour in within the timber element only. However, several studies 

listed hereafter, aimed to study the possible changing of performance encountered by using different 

concrete types (e.g., concrete with light aggregates) and the impact of an interlayer between timber 

and concrete (normally employed to withstand the concrete pour during its curing time). 

1.1.3.1 Concrete type 

Normal concrete is an ordinary choice when designing new TCC structures and thanks to the higher 

elastic modulus compared to the timber (about three times), the connections are assumed as nearly 

infinitely stiff in the concrete layer. This is confirmed by the definition of specific Kser for steel-to-

timber and concrete-to timber connections, for which a multiplication factor of 2 is suggested, 

compared to a timber-to-timber connection. 

Lightweight aggregate concrete (LWAC) is a structural concrete which, by containing lightweight 

aggregates, has a significantly reduced density. It is a feasible solution to decrease the dead load of 

concrete structures by partially sacrificing its mechanical performance mostly in terms of stiffness 

(according to EN 1992-1-1 [1.32]). Another advantage is the reduced nominal creep coefficient of 

LWAC, which reduces deflection of TCC beams against normal concrete solutions. For these 

reasons, LWAC is considered as a valuable solution [1.33] to realize even lighter, but still trustworthy, 

timber composite structures. Experimental test conducted by Steinberg et al. [1.34] with LWAC of 

density equal to 1.6 kN/m³  confirmed that the reduced Young’s modulus and a greater tendency to 

split when compared to normal weight concrete, reflects in a lower load carrying capacity and 

stiffness demonstrated by the connector. On the contrary, Fragiacomo et al. [1.27] did not record 

significant differences between normal and lightweight concrete either in the long-term or in the 

short-term collapse tests because the failure took place in both cases in the timber. The influence of 

LWAC with inclined screw connections was also investigated by Jorge et al. [1.35] and Dias et al. 

[1.36] who observed a moderate reduction of the shear load carrying capacity (i.e., about 10%) and 

a more pronounced decrease of the slip modulus (i.e., approximately 30%). 

1.1.3.2 Presence of an intermediate layer 

The presence of an interlayer in timber-concrete composite cross-sections is an important topic, 

especially when considering the retrofitting of existing timber floor. In this case, the orthogonal layer 

of timber boards fastened to the main beams can be used as a formwork for the concrete slab. 

However, this topic was not accounted in the initial studies as the timber and concrete components 

were meant to be in direct contact neglecting any eccentricity effects. The interposition of an 

interlayer, translates into an unwanted load eccentricity on the dowel-type connector, which causes 

an important reduction of the shear load carrying capacity and in particular stiffness. The fact is that 
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even if the interlayer is realized with planks of higher strength, the force is acting orthogonal to the 

fibre direction and consequently manifesting a lower strength and stiffness [1.23]. The presence of 

an interlayer have been investigate also with TCC connections employing screws [1.35] resulting 

that the interlayer changes failure of the connection from a failure due to crushing of the aggregates 

near the screw heads to a ductile failure with withdrawal of screws and consequent plastic hinges 

formation. 

1.1.4 TCC connections with inclined screws 

Thanks to more than a few innovations in the shape of dowel-type fasteners characterized by 

withdrawal strength - annular-ring shank nails, self-tapping screws - their axial load-bearing capacity 

was greatly increased. In particular, the shape of modern screws are clearly different [1.37] from 

mainly laterally loaded screws according to DIN 571 [1.38]. Fig. 1.5 shows a traditional DIN 571 

screw and a modern screw. The latter is characterized by a single core diameter for both the smooth 

shank and the threaded part. A larger pitch and sharper thread angle is the main responsible for the 

characteristic withdrawal parameter fax,k. The reduced screw-in torque during the installation is due 

to presence of additional shank ribs, at the end of the threaded part, and to particular lubricant 

coating treatments of the screw’s surface. These features allow installing them without predrilling, 

while for traditional screw two pre-holes with different diameter are necessary to set the fastener 

correctly. These optimizations allow obtaining higher loads by positioning the screws inclined to fibre 

direction [1.37]. This evidence was obtained, with less evidence, on connections with timber screws 

inclined at 45° with respect to the shear plane. 

(a) 

(b) 
Fig. 1.5 – Timber screws: (a) traditional 16x120 mm DIN 571 screw; (b) 10x160 mm self-tapping screw. 

Therefore, several studies are converging to the idea to exploit these fasteners as standalone TCC 

connections [1.39]-[1.43]. Research works have proven the reliability of these connectors, assessing 

that they can be an optimal solution particularly for short to medium span TCC structures. Actually, 

such connections are offering a balanced opportunity between rapidity of execution and mechanical 

performances. In particular: 

- Apart from specific cases, when the floor to be refurbished is characterized by a big historical 

heritage and for which may require particular cares (i.e. predrilling, low amount of 

connections), the time for the realization of the connection is by far the shortest possible; 

- These fasteners demonstrate high shear strength values especially when the fastener is 

placed at an angle with respect to the grain, thus being axially loaded as well as in bending; 

- Presence of an interlayer marginally affects the shear strength and stiffness, contrary to 

traditional connections. 
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1.2 Analytical methods of calculation 

This section present a comparison between the analytical approach that can be used to calculate 

the shear load carrying capacity and stiffness of a TCC joint realized with inclined screws. According 

to Eurocode 5 [1.13] a quadratic combination of the axial and lateral loading ratios can be used to 

assess the connection capacity. As these conditions resulted to be quite restrictive for modern 

screws, starting from the Johansen’s yielding theory model [1.44], analytical solutions to calculate 

mixed shear-tension or shear-compression capacity have been proposed and validated through 

experimental tests [1.45]-[1.48]. However, there is a lack of information regarding the behaviour of 

screws in crossed configuration and about the contribution of the screw loaded in shear and 

compression to the overall load carrying capacity of the CP. 

The aim of this part of research is to investigate the mechanical behaviour of inclined self-tapping 

screws employed as timber-concrete connectors in both inclined and crossed configurations and 

define an analytical approach through modifications of existing theoretical propositions 

([1.45];[1.46]). Concrete failure evaluations were added to the model as well as minor modifications 

to be able to apply it also in case of partial threaded screws. 

1.2.1 Load bearing capacity 

1.2.1.1 Analytical calculation with Johansen’s theory (EC5 method) 

Two different screw arrangements for a timber-concrete joint were analysed and detailed in Fig. 1.6. 

The first configuration of Fig. 1.6a, involves an inclined screw oriented in the same direction of the 

applied shear force (Fv) with an angle α = 45° with respect to the vertical direction (i.e. perpendicular 

to grain direction). In the second configuration, plotted in Fig. 1.6b, a couple of crossed screws 

inclined at an angle α = ±45° with respect to the vertical direction is placed to set up a single CP. 

  
(a) (b) 

Fig. 1.6 – Loading models for screws according to Eurocode 5: (a) inclined screw; (b) couple of crossed screws. 

According to Fig. 1.6a, the force transmitted to the screw (Fv
t) acts parallel to the shear plane and 

can be split into an axial component (Fax) and a lateral component (Flat) according to the expressions: 

 

(1.3) 
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where α is the fastener inclination with respect to the vertical direction (i.e. perpendicular to grain 

direction). As the inclined screw is subjected to a combined shear-tension loading condition, actual 

design method disposed in Eurocode 5 [1.13] limits the maximum load bearing capacity of a screw 

with the following inequality representing the tension-shear resistance domain: 

 

(1.4) 

where Fax and Flat are respectively the applied axial and shear actions while Fax,lim and Flat,lim are the 

maximum load bearing capacity in axial and shear direction, respectively. 

Similarly to timber-to-timber connections with inclined screws, as reported in [1.49], the load-bearing 

capacity parallel to the shear plane can be written combining Equations (1.3) and (1.4), providing: 

 

(1.5) 

The maximum load bearing capacity Fax,lim should be calculated according to Eurocode 5 [1.13] 

formulation if no other specifications are available for the adopted fastener (e.g., in the fastener 

homologation document). Flat,lim calculation are also provided by Eurocode 5 [1.13] according to the 

Johansen’s Theory [1.44]. In detail, an increment of the shear component Flat,lim is allowed by 

including the so called “rope effect”, which allows exploitation of the withdrawal capacity of a 

fastener. This additional shear capacity is computed as µ·Fc, where µ is a friction coefficient equal 

to 0.25 that multiply the force Fc acting orthogonal to the shear plane, and is suitable for wood-to-

wood surfaces. No specific values are provided in standards for wood-to-concrete surfaces. 

1.2.1.2 Advanced method for shear-tensile loaded screws 

An extension to the original Johansen theory model was proposed by Bejtka and Blass [1.45] to 

evaluate the behaviour of joints loaded in shear, realized with inclined self-tapping screws. 

Kavaliauskas et al. [1.46] applied this model to inclined screws utilized as TCC connections by 

adding two hypotheses: a rigid behaviour of the screw part in the concrete layer and the axial 

withdrawal capacity due to the threaded part of the screws. Thus, the kinematical failures are 

reduced to three modes and the ultimate load-bearing capacity equations were extrapolated from 

equilibrium laws for each of the three modes (see Fig. 1.7). In this work, threaded part leff, responsible 

for the withdrawal strength, is distinguished from the penetration length t, accountable for the lateral 

strength, to extend this model also to partially threaded screws. 

The failure modes according to ([1.45];[1.46]) and represented in Fig. 1.7 correspond to: 

- Mode I: wood embedment with rigid translation of the screw; 

- Mode II: wood embedment plus development of a single plastic hinge at the interface 

between timber and concrete; 

- Mode III: wood embedment with development of two plastic hinges in the wood layer.  
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Fig. 1.7 – Mechanical models of the different failure modes for an inclined screw subjected to shear-tension 
stress extrapolated from [1.45] and adapted to the proposed modifications. 

To obtain the first failure mode the axial and lateral load-carrying capacity Rax and Flat and the 

compression between timber and concrete Fc should be addressed as:  

effaxax ldfR   (1.6) 

cos/1 tdftdfF hhlat   (1.7) 

 sincos  lataxc FRF  (1.8) 

Where fax is the withdrawal strength of fastener, d is the nominal fastener diameter, leff is the threaded 

length of the fastener inserted into the wood member, and t1 is the depth of penetration of fastener 

into timber. The resulting shear force is the sum of each component parallel to the shear plane:  

    sincoscossincossin  lataxclatax
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The second failure mode is obtained through the evaluation of the maximum yielding moment My 

which enables the rigid rotation of the screw portion embedded in the wood layer. With reference to 

Fig. 1.7 equilibrium between internal and external forces yields to: 
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where x is the distance plotted in Fig. 1.7. From the latter expression, the value of x can be 

extrapolated: 
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The resulting shear load acting on the screw is: 
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Substituting Eq. (1.14) in Eq. (1.15) it is possible to write: 
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The compression load Fc responsible for the frictional effect can be expressed again substituting 

Eqs. (1.6) and (1.17) in Eq. (1.8) obtaining: 
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Finally, the resulting shear force is the sum of each component parallel to the shear plane, can be 

obtained by placing Eqs. (1.17) and (1.18) in Eq. (1.9) thus obtaining: 
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The third failure mode contemplates the formation of two plastic hinges in the fastener for which the 

maximum yielding moment can be calculated as function of x, and from which x can is explicated: 
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The resulting shear load acting on the screw and the compression component can be written as: 
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(1.21) 

 sin2cossincos  dfMldfRRF hyeffaxlaxc  (1.22) 

The shear capacity corresponding to the third failure mode is:  

    sincoscossincossin  laxclax

IIIt

v RRFRRF  (1.23) 
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These formulations, adapted to the more convenient definition of the screw inclination α, describe 

the failure modes I, II and III. Hereafter to facilitate the comprehension of all following equations apex 

t and c on each term are referred to the shear-tension loaded and shear-compression load screw 

respectively. The characteristic load-bearing capacity parallel to the shear plane for a screw 

subjected to a combined shear-tension load with the extended method can be written as: 
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Where the three failure modes are resumed through the following expressions: 
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My,Rk and fh,k are the characteristic yielding moment of the screw and wood embedment strength 

while Rax,k is the characteristic axial capacity of the screw. 

With respect to the original propositions ([1.45];[1.46]) experimental evidences described in the next 

section confirm that the latter term, should take into account the possibility that failure might take 

place also the concrete layer. To this aim, Eq.(1.29) introduces this possibility in the evaluation of 

the axial screw capacity: Rax,k should be the minimum between the withdrawal capacity of the 

threaded part Fax,Rk and the pull-through capacity of the screw head into the concrete Fax,Rk,cone, which 

might lead to an anticipated failure in the concrete layer. 

);min( ,,,, coneRkaxRkaxkax FFR   (1.29) 

The first term is calculated according either to EC5 formulation [1.13] or the relevant homologation 

document of the fastener. The second term Fax,Rk,cone, could be evaluated assuming an analogy 

between the behaviour of the countersunk head screw into the concrete layer and the behaviour of 

headed stud anchors in concrete, for which formulations of axial capacity are already provided by 

various regulations [1.50]-[1.52]. Although concrete capacity design has been proved more accurate 

for standard anchors, the 45° concrete cone theory [1.50] could also fit this particular problem as this 

failure model includes the effective depth of the fastener into the concrete layer heff, its head diameter 

dh and the concrete cylinder compressive strength fck resulting in: 

)(96,0,, heffeffckconeRkax dhhfF    
(1.30) 

where heff could be approximately taken as the mean concrete cover of the screw head centroid 

measured parallel to the screw axis. Moreover, as the cone failure might occur either in the upper or 

lower part of the concrete layer depending on the load direction, the heff was distinguished according 

to Fig. 1.8. 
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(a) (b) 

Fig. 1.8 – Failure models in the concrete layer for different loading conditions of an inclined screw subjected 
to shear-tension or shear-compression stress: (a) theoretical model; (b) experimental evidence.  

Fig. 1.9 presents, as a preliminary analysis, a comparison between the analytical predictions of 

Eurocode 5 and the proposed approach. The ratio between the highest load bearing capacity Fv,th,max 

(at 45°) calculated with both models and the current value Fv,th,α for an 8x160 mm self-tapping screw 

with 80 mm of effective length, is calculated and reported in Fig. 1.9a (values calculated with ductile 

failure of the connection, i.e. Failure mode III). For a screw placed perpendicular to the grain, the 

modified approach gives the same Eurocode 5 results in accordance with the Johansen’s theory, 

from which the model is extrapolated. The relative difference increases and reaches its peak at the 

45° inclination as the axial contribution become predominant (see Fig. 1.9b). 

  
(a) (b) 

Fig. 1.9 – Analytical load bearing capacity of an inclined self-tapping screw varying the angle α with respect to 
the grain: (a) comparison between Eurocode 5 and the proposed approach; (b) axial and lateral contribution 
for failure mode 3, expressed by Eq.(1.28). 

1.2.1.3 Couple of crossed screws 

If a crossed screw configuration (Fig. 1.6b) is adopted, the design procedure of fasteners according 

to Eurocode 5 [1.13] provides Eq. (1.5) for both shear-tension and shear-compression loading 

conditions. The approach proposed in this work adopts the same theoretical model leading to Eq. 

(4) for each of the two screws, with the following differences: 

- in Eq. (1.26) to (1.28), the frictional effects, represented by the terms including the µ 

coefficient, are neglected due to the absence of compression loads acting between timber 
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and concrete (see Fig. 1.6b). Such solution is also recommended for timber-to-timber 

connections with crossed screws in [1.49]; 

- in the evaluation of the axial strength Rax,k, the concrete cone failure calculation is 

differentiated between the shear-tensile loaded screw and the shear-compression loaded 

screw (according to Fig. 1.8): 

)(;)( 2,,,1,,, eff

c

coneRkaxeff

t

coneRkax hFFhFF   
(1.31) 

The total strength of the couple of crossed screws should be: 
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(1.32) 

1.2.2 Stiffness 

Since strength and stiffness are two mechanical properties strictly related to one another, 

investigations in the analytical definition of the stiffness of screws used as a timber-concrete 

connection were also taken. Eurocode 5 [1.13] does not contemplate specific rules for the estimation 

of the stiffness of inclined/crossed fasteners. Consequently, a cautelative approach might be to 

evaluate the instantaneous modulus Kser of laterally loaded fasteners. Eq. (1.33) taken from Table 

7.1 of Eurocode 5 [1.13] is valid for dowels, bolts, screws and predrilled nails loaded perpendicularly 

to the shear plane and depends exclusively from the timber properties, summarized by its mean 

density ρm in kg/m³, and fastener diameter d in mm: 

)/(23/
5,1

mmNdK mser  
 

(1.33) 

This formulation, valid for timber-to-timber connections shall be multiplied by a factor 2, to consider 

the higher stiffness of the concrete and implicitly assume no deformation on concrete [1.21]. Even 

Eurocode 5 [1.13] at point 7.1.c allows doubling the stiffness when a rigid element (i.e. steel or 

concrete) is fastened to a wooden member. 

Similarly to the approach proposed for the load bearing capacity, the contribution of lateral and axial 

stiffness should be considered at the serviceability state, assuming a linear-elastic behaviour of the 

screw. Through equilibrium formulations imposed for an inclined screw, the stiffness parallel to the 

sliding plane has the same expression reported in [1.45]. The result is a linear combination of Kser,// 

and Kser, which are the axial and lateral stiffness of the fastener respectively. While the lateral 

stiffness K ser, could be expressed with Eq. (1.33) the axial contribution Kser,// should be evaluated 

experimentally or according to alternative approaches [1.53]. The proposed theoretical stiffness 

expression Kser,th alternative to Eurocode 5 provisions is the following: 
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t

thser KKK
 

(1.34) 

Assuming the standard screw inclination at 45°, Eq. (1.34) reduces to the following simplified 

expression where only the friction coefficient µ appears
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1.3 Experimental tests 

Short-term push-out tests were conducted on 12 series varying the screws diameters, connections 

arrangements and the concrete type adopted for the slab. Tests were repeated 4 times for each 

series for a total of 48 investigated specimens. Push-out tests are normally adopted to assess the 

overall behaviour, stiffness and strength of timber to concrete connections in hybrid T-shape beams. 

1.3.1 Specimen geometry 

Test samples consisted of two concrete elements connected through a central timber member 

connected with fasteners as depicted in Fig. 1.10. The timber beam and the concrete element were 

vertically shifted of about 4 cm to ease the load application in the event that unpredictably high 

displacements occurred. Due to symmetry of the test configuration, applied load is equally shared 

between the two wood-concrete interfaces. Concrete thickness s equal to 6 cm was chosen, as this 

is the slab thickness commonly adopted in these applications. The thickness t of the glulam timber 

element was set to 24 cm, in order to avoid interference between the threads of the inclined screws. 

The total height of the specimen h was 50 cm to allow enough spacing between screws. Details of 

the screw arrangement and spacing are reported in Table 1-1. Fasteners were screwed into timber 

until the counter-sunk head was positioned at half of the concrete thickness. 

Two or three CPs per shear plane were realized. The adopted screw number was: 

- 3 screws on each side (a total of six screws per specimen) for the inclined configuration 

(hereafter labelled as series AN and AL). 

- 2 couple of screws on each side (a total of eight screws per specimen) for the crossed 

configuration (hereafter labelled as series XN and XL) 

Screws spacing was set according to Eurocode 5 [1.1] and the screws homologation document ETA 

11-0027 [1.54] (calculated with d = dnom). Spacing of screws across the specimen width was arranged 

in order to avoid possible interferences and group effects (i.e. to ensure that the effective number of 

fasteners neff = n). 

  
(a) (b) 

Fig. 1.10 – Specimen geometry: (a) AN and AL series; (b) XN and XL series. 

  



 Part I: Innovative connections for timber-concrete composite structures  

28 

Table 1-1 – Nomenclature and geometries of the specimens. 

ID 
Screws N° d a1 a1/d a2 a2/d a3 a3/d a4 a4/d α Concrete 

Type 

N° of tests 

(-) (mm) (mm) (-) (mm) (-) (mm) (-) (mm) (-) (°) (\) 

AN-8  8 100 12.5 40 5.0 125 15.6 60 7.5  

Normal 

4 

AN-10 6 10 100 10.0 40 4.0 125 12.5 60 6.0 +45 4 

AN-12  12 100 8.4 40 3.5 120 10.0 60 5.0  4 

AL-8  8 100 12.5 40 5.0 125 15.6 60 7.5  

Light weight 

4 

AL-10 6 10 100 10.0 40 4.0 125 12.5 60 6.0 +45 4 

AL-12  12 100 8.4 40 3.5 125 10.4 60 5.0  4 

XN-8  8 150 18.8 80 10.0 150 18.8 60 7.5  

Normal 

4 

XN-10 8 10 150 15.0 80 8.0 150 15.0 60 6.0 ±45 4 

XN-12  12 150 12.5 80 6.7 150 12.5 60 5.0  4 

XL-8  8 150 18.8 80 10.0 150 18.8 60 7.5  

Light weight 

4 

XL-10 8 10 150 15.0 80 8.0 150 15.0 60 6.0 ±45 4 

XL-12  12 150 12.5 80 6.7 150 12.5 60 5.0  4 

1.3.2 Materials and test setup 

The timber used for fabricating the test specimens is spruce (Picea abies) glued laminated timber of 

strength class GL24h according to EN 14080 [1.55] with nominal characteristic and mean density 

values of ρk = 385 kg/m³ and ρm = 420 kg/m³ respectively. Moisture content was determined on each 

series of specimen according to EN 13183-2 [1.56] with a mean value of 11.2%. 

Self-tapping screws with counter-sunk head, the same threaded length leff of 80 mm and nominal 

diameters of 8, 10 and 12 mm were tested. Counter-sunk head support the hypothesis of screw 

rigidly embedded into the concrete slab. Characteristic withdrawal strength parameter fax,k and 

bending moment formulation My,Rk were derived directly from the homologation document ETA-

11/0027 [1.54]: 

MPaf kax 0.10,   (1.36) 

6.2

, 60015.0 dM Rky   (1.37) 

For the latter parameter, independency from the inclination angle α up to 45° is tolerated. 

Concrete mechanical properties were evaluated by compressive tests on cubes for each of the four 

groups of specimens according to EN 12390-3 [1.57] and the corresponding mean elastic modulus 

Ecm was calculated following Eurocode 2 provisions. For normal concrete the measured mean 

uniaxial compressive strength was fcm = 35.62 MPa and a corresponding elastic modulus of 

Ecm = 31.256 GPa was calculated. For lightweight aggregate concrete corresponding values were 

fcm = 32.73 MPa and Ecm = 16.072 GPa respectively. Characterization tests on concretes were 

performed just before the start of push-out tests. 

Short-term push-out tests were conducted following loading test protocol according to EN 26891 

[1.58] on a universal machine with a load capacity up to 250 kN. Specimens were subjected to four 

different loading phases, each one characterized by a constant load-rate, following the specified 

imposed loading protocol. The load-rate was specifically calibrated for each specimen on the 
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respective ultimate shear load Fv,est, which was obtained by means of preliminary monotonic tests. 

A picture of the test setup is shown in Fig. 1.11. The applied forces were measured using a load cell 

placed between the actuator and the specimen. Relative displacement between sliding faces were 

measured with two linear variable differential transducers (LVDTs) placed along both shear planes. 

Since EN 26891 [1.58] does not require specific measurements after peak load Fv,peak, tests were 

arbitrarily stopped after a sudden decrease in load capacity or when a slip of 15 mm was achieved. 

   
(a) (b) 

Fig. 1.11 – (a) Loading procedure according to EN 26891 calibrated on Fv,est values; (b) clean specimen before 
tests. 

1.3.3 Test results 

Fig. 1.12 to Fig. 1.14 illustrate the force-displacement curves acquired from tests according to EN 

26891 [1.58]. In order to have a clear view of the load capacity achieved by an inclined screw at 45° 

and its increment obtained with the addition of the second screw in the opposite direction, loads are 

divided by the number of CP comprised by each specimen whereas shown displacements are taken 

as the mean value measured by the couple of LVDTs. 

 

Fig. 1.12 – Experimental load vs. displacement curves for 8 mm screws. Symbols stay for: inclined screws (A 
series) or crossed screws (X series), normal (N) or lightweight (L) concrete. 

Load Cell 

+LVDT

L

V

D

T

L

V

D

T

υ01 υ04 υ07

0

20

40

60

80

100

120

140

0 3 6 9 12 15

L
o

ad
 (

k
N

)

Time (Min)

Φ 8

Φ 10

Φ 12

Load Cell 

L

V

D

T

L

V

D

T



 Part I: Innovative connections for timber-concrete composite structures  

30 

 

Fig. 1.13 – Experimental load vs. displacement curves for 10 mm screws. Symbols stay for: inclined screws 
(A series) or crossed screws (X series), normal (N) or lightweight (L) concrete. 

 

Fig. 1.14 – Experimental load vs. displacement curves for 12 mm screws. Symbols stay for: inclined screws 
(A series) or crossed screws (X series), normal (N) or lightweight (L) concrete. 

Performed tests allow quantifying the experimental shear strength Fv,peak, i.e. the peak load applied, 

hereafter called Fv,exp. Moreover, the instantaneous slip modulus Kser,exp is determined from 

experimental load-displacement curves according to the formulation reported in EN 26891 [1.58]: 

  0104

,,

0104

,

mod,

,

exp,

1.04.0

3/4

4.04.0

 












estvestvestv

i

estv

ser

FFFF
K  

(1.38) 

where ν01 and ν04 correspond to the slip measured at 0.1·Fv,est and 0.4·Fv,est respectively.  

In addition to the evaluation of Fv,exp and Kser,exp, serviceability conditions of the connections in terms 

of strength and displacement are useful parameters to be checked when designing TCC structures. 

Generally, in timber structures, these values could be identified as the yielding point shown by the 

connection. It is worth noting that the definition of the yielding point of dowel-type connections is still 

an open topic as the experimental curves usually exhibit an unclear change in the gradient of the 

load-deformation slope [1.59]-[1.61]. Several conventional methods are available in literature and 

summarized in [1.62]. In this work, the Forintek (FCC) method (see Karacabeyli and Ceccotti [1.63]) 

was adopted. The connection yielding strength and slip (defined by Fv,y and δy respectively) is 

considered as the point on the load-deformation curve corresponding to 50% of the maximum 

experimental strength Fv,exp. 

By analysing the experimental results in Fig. 1.12 to Fig. 1.14 it is possible to observe that all load-

slip curves exhibit a uniform global trend for all specimens: shear strength Fv,exp and service stiffness 
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Kser,exp increase with screws diameter increasing from 8 to 12 mm. Passing from normal to lightweight 

concrete, an increase in deformability without reduction of Fv,exp can be observed as a consequence 

of the reduced elastic moduli of lightweight concrete. After the peak load Fv,exp a constant smooth 

softening behaviour characterizes most single screw tests, while the concrete cone failure has been 

registered in both cases but especially in crossed screw specimens with consequent loss of capacity 

of the shear-compressed screw.  

Table 1-2 lists for each specimen the measured peak shear capacity Fv,exp, the instantaneous slip 

modulus Kser,exp determined with Eq. (1.38) and the conventional yielding point coordinates (Fv,y, δy) 

determined according to [1.63], together with their mean values and variation coefficient (COV). For 

a better visual result, obtained mean values of Fv,exp and Kser,exp are plotted in Fig. 1.16 on the 

assumption that the stiffness is equally distributed over all CPs. 

For the inclined screw configuration scattering of results is quite limited: maximum COV is equal to 

12.0% for Fv,exp and equal to 18.3% for Kser,exp. For the crossed screws configuration the limited COV 

of peak strength is confirmed, but results in terms of stiffness become quite variable and greater 

COVs have been obtained (up to 38.4% for the XN series with 12 mm screws). 

On average, the increase of strength Fv,exp and stiffness Kser,exp with the screw diameter is confirmed 

with all combination of other parameters. 

Conversely, dependences on concrete type do not exhibit a clear trend. In terms of strength, 

specimens with 8 and 10 mm screws unexpectedly demonstrated a higher average strength when 

realized with lightweight concrete. Stiffness of connections was greater with NC, even if with small 8 

mm screw diameters and crossed configuration some results with LC resulted to be greater than 

with NC. 

However, the more interesting observations raised when comparing inclined screw configurations 

with crossed screws configurations (see Fig. 1.15), since means values were contrary to 

expectations. Introduction of the second screw: 

- Uniformly resulted in a loss of stiffness for all screw diameters and concrete types; 

- In case of normal concrete no differences were observed in term of mean strengths between 

AN and XN configurations; 

- In case of lightweight concrete crossed configuration XL resulted to be on average less 

resistant than inclined screw configuration AL. 

The diminishing of stiffness has been explained with the loss of friction contribution. 

The worse performance in terms of load-carrying capacity (see Fig. 1.15), between two inclined 

screws (theoretical) and two crossed screws can be understood if the failure modes are considered. 

In the inclined screw configuration (A) failure mostly occurred on the wood side with the formation of 

a double plastic hinge in connectors coupled with wood embedment phenomenon (see Fig. 1.17a). 

While with crossed screws specimens (X), failure started with the formation of plastic hinges, then 

local failure due to concrete splitting and consequent expulsion ahead of the compressed screws 

(see Fig. 1.17b and c) impaired the shear capacity of the connection. Moreover, lightweight concrete 

is more prone to cone expulsion than normal concrete. 
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Fig. 1.15 – Qualitative comparison of the load–displacement for a CP realized with one or two screws for the 
same fastener diameter. 

Table 1-2 – Experimental strength Fv,exp and stiffness Kser,exp and yielding points (Fv,y; δy) for each specimen, 
average values and variation coefficient (COV).Values are referred to 6 CPs for A-series and to 4 CPs for X-
series. 

AN Series AL Series XN Series XL Series 

Spec. 
ID 

Fv,exp 
(kN) 

Kser,exp 
(kN/mm

) 

Fv,y 
(kN) 

δy 

(mm) 

Spec. 
ID 

Fv,exp 
(kN) 

Kser,exp 
(kN/mm

) 

Fv,y 
(kN) 

δy 

(mm) 

Spec. 
ID 

Fv,exp 
(kN) 

Kser,exp 
(kN/mm

) 

Fv,y 
(kN) 

δy 

(mm) 

Spec. 
ID 

Fv,exp 
[kN] 

Kser,exp 
[kN/mm

] 

Fv,y 
(kN) 

δy 

(mm) 

8_1 75.4 60.2 37.7 0.7 8_1 89.6 36.3 44.8 2.0 8_1 69.4 24.2 34.7 1.4 8_1 68.2 23.6 34.1 1.5 

8_2 78.9 40.9 39.4 1.2 8_2 96.0 34.5 48.0 1.7 8_2 82.3 22.8 41.1 1.9 8_2 62.4 38.7 31.2 1.1 

8_3 81.2 54.0 40.6 0.9 8_3 86.3 43.5 43.1 1.8 8_3 68.0 21.0 34.0 2.2 8_3 65.2 17.2 32.6 2.3 

8_4 79.8 53.3 39.9 1.0 8_4 96.9 44.1 48.4 2.2 8_4 76.8 20.1 38.4 2.7 8_4 62.0 31.0 31.0 1.1 

Mean 78.8 52.1 39.4 1.0 Mean 92.2 39.6 46.1 1.9 Mean 76.2 22.4 38.1 2.0 Mean 64.4 31.1 32.2 1.5 

COV 2.8% 13.7% 1.4% 19.9% COV 4.9% 11.0% 2.4% 10.7% COV 8.3% 7.5% 4.2% 24.2% COV 4.0% 29.2% 2.0% 32.0% 

10_1 85.2 63.2 42.6 0.9 10_1 88.1 45.9 44.1 1.2 10_1 98.2 41.5 49.1 1.4 10_1 79.1 28.4 39.5 1.5 

10_2 104.1 60.1 52.0 1.5 10_2 114.3 51.9 57.2 2.0 10_2 111.0 23.2 55.5 2.3 10_2 87.8 31.3 43.9 1.6 

10_3 97.3 53.3 48.7 1.1 10_3 110.9 48.1 55.4 1.3 10_3 104.7 44.4 52.4 2.9 10_3 85.0 27.8 42.5 1.5 

10_4 107.7 51.1 53.8 1.2 10_4 122.9 44.5 61.4 1.9 10_4 90.0 20.3 45.0 2.5 10_4 83.9 31.2 42.0 1.4 

Mean 98.6 56.9 49.3 1.1 Mean 109.0 47.6 54.5 1.6 Mean 101.0 32.4 50.5 2.3 Mean 83.9 29.7 42.0 1.5 

COV 8.9% 8.8% 4.4% 19.3% COV 12.0% 6.0% 6.0% 22.2% COV 8.0% 34.1% 4.0% 25.5% COV 3.9% 5.5% 1.9% 4.1% 

12_1 128.2 70.5 64.1 1.2 12_1 122.2 55.6 61.1 1.3 12_1 117.0 65.7 58.5 1.8 12_1 104.5 34.2 52.2 1.6 

12_2 129.2 65.5 64.6 1.3 12_2 110.6 46.5 55.3 1.2 12_2 121.5 47.5 60.7 1.9 12_2 102.3 38.0 51.2 1.5 

12_3 111.1 66.2 55.5 0.8 12_3 112.5 62.4 56.3 0.9 12_3 115.0 30.3 57.5 2.2 12_3 108.5 34.6 54.2 2.3 

12_4 118.0 42.4 59.0 1.8 12_4 109.5 56.3 54.7 1.0 12_4 105.5 25.8 52.8 2.1 12_4 106.6 30.4 53.3 1.9 

Mean 121.6 61.1 60.8 1.3 Mean 113.7 55.2 56.8 1.1 Mean 114.7 42.3 57.4 2.0 Mean 105.5 34.3 52.7 1.8 

COV 6.3% 18.3% 3.2% 27.7% COV 4.5% 10.6% 2.3% 13.6% COV 5.2% 38.4% 2.6% 8.0% COV 2.3% 8.1% 1.1% 16.5% 
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(a) (b) 

Fig. 1.16 – Experimental mean values of the shear capacity Fv,exp (a) and service stiffness Kser (b) varying 
screw diameter, screw configuration and concrete type (values are referred to a single CP). 

   
(a) (b) (c) 

Fig. 1.17 – Failure mode of fasteners: (a) wood embedment for inclined screw configuration; (b) wood 
embedment with crossed screw configuration; (c) detail of concrete expulsion. 

1.4 Comparison between experimental and analytical 

results 

In this section the 5% characteristics values of load bearing shear strength Fv,exp and stiffness Kser,exp 

derived from experimental tests are compared with analytical provisions. More specifically, the 

following parameters were adopted for the analytical calculation of strength with both the Eurocode 

5 [1.13] method and the proposed approach described in section 1.2.1: 

- Mean ρm = 420 kg/m³ and characteristic ρk = 385 kg/m³ wood density (see section 1.3.2); 

- Friction coefficient μ = 0.25 in compliance with the assumptions of Eurocode 5 [1.13]; 

- Characteristic yield moment My,Rk and withdrawal strength Fax,Rk of screws calculated 

according their homologation certificate [1.54] with: 

  8.0

,, 350/keffkaxRkax lfF 
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- Geometrical properties of screws like leff, dcore and head diameter dh were also taken from 

homologation certificate [1.54]; 

- Characteristic wood embedment strength according to Eurocode 5 [1.13], with d=1,1 def: 

  kkh df  01.01082,0,  
(1.40) 

- Characteristic lateral strength Flat,Rk according to Eurocode 5 (i.e. Johansen’s Theory model 

[1.44]) with the hypothesis of thick steel plate and with d=1.1 dcore; 

- Lateral stiffness Kser, of the screw calculated following Eq. (1.33) with d=1,1 def, multiplied 

by a factor of 2; 

- Axial stiffness Kser,// of the screw calculated following recommendations reported in [1.54]: 

4.02.0

//, 780 efser ldK 
 

(1.41) 

Table 1-3 summarizes the mean shear strength values Fv,exp , the 5% characteristic extrapolations 

Fv,Rk,exp (obtained from statistical analysis of experimental results according to EN 14358 [1.64]) and 

the corresponding theoretical values calculated with both Eurocode 5 provisions [1.13] and the 

modified Johansen equations (Eqs. (1.25) and (1.32) – considering with μ= 0.25). Table also 

includes the mean experimental instantaneous slip modulus Kser,exp, and the corresponding 

theoretical values calculated with Eurocode 5 formulation and the modified approach.  

Table 1-3 – Summary of experimental and theoretical results of Fv (with =0.25) and Kser, relative differences 
ΔFv,Rk and ΔKser (calculated for each CP). 

Series 

Shear strength Stiffness 

Experimental Theoretical Experimental Theoretical 

Mean 
[kN] 

k 5% 
[kN] 

Eurocode 5 Eqs. 1.23, 1.30 
Mean 

[kN/mm] 
SD 

[N/mm] 

Eurocode 5 Eq. 1.33 

Fv,Rk 
[kN] 

ΔFv,Rk 
[%] 

Fv,Rk 
[kN] 

ΔFv,Rk 
[%] 

Kser 
[kN/mm] 

ΔKser 
[%] 

Kser 
[kN/mm] 

ΔKser 
[%] 

AN-8 13.1 11.5 6.4 44.6% 8.3 27.2% 8.7 1.2 4.4 48.8% 5.9 31.7% 

AN-10 16.4 12.8 8.4 34.4% 10.9 14.5% 9.5 0.8 5.3 44.5% 6.4 32.2% 

AN-12 20.3 17.0 10.2 40.2% 13.3 22.1% 10.2 1.9 6.3 38.6% 7.0 31.6% 

AL-8 15.4 13.4 6.4 52.7% 8.3 37.9% 6.6 0.7 4.4 32.7% 5.9 10.2% 

AL-10 18.2 12.8 8.4 34.4% 10.9 14.5% 7.9 0.5 5.3 33.6% 6.4 18.9% 

AL-12 18.9 16.5 10.2 38.4% 13.3 19.8% 9.2 1.0 6.3 32.0% 7.0 24.2% 

Average values for A series 40.8%  22.7%    38.3%  24.8% 

XN-8 19.0 15.5 11.2 27.6% 13.9 10.2% 5.6 0.4 4.4 20.6% 5.6 -0.6% 

XN-10 25.2 21.1 15.6 26.3% 18.4 12.9% 8.1 2.8 5.3 34.9% 6.2 23.3% 

XN-12 28.7 25.0 19.1 23.8% 22.2 11.2% 10.6 4.1 6.3 40.9% 6.8 35.5% 

XL-8 16.1 14.1 11.2 20.1% 13.8 2.1% 7.8 2.3 4.4 42.9% 5.6 27.6% 

XL-10 21.0 18.3 15.6 15.1% 18.2 0.6% 7.4 0.4 5.3 29.0% 6.2 16.4% 

XL-12 26.4 23.0 19.1 17.2% 22.0 4.4% 8.6 0.7 6.3 27.0% 6.8 20.4% 

Average values for X series 21.7%  6.9%    32.5%  20.4% 
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1.4.1 Load bearing capacity 

Fig. 1.18 plot the experimental results for the obtained load bearing capacity and give a visual 

comparison between experimental and theoretical predictions of both Eurocode 5 and modified 

approaches (dotted and dashed lines respectively). 

With the inclined screw configurations the relative difference ΔFv,Rk = 1 – (Fv,Rk,th / Fv,Rk,exp) calculated 

with respect to theoretical provisions of Eurocode 5 varies between 34.4% and 52.7% with an 

average value of 40.8%. On the contrary, the modified approach proposed in section 2.1 for failure 

mode III provides better correspondence with experimental values as the mean relative difference 

ΔFv,Rk is reduced to 22.7%. This confirms that contribution of the withdrawal capacity is relevant. If a 

friction value µ= 0.6 is adopted, i.e. a value more appropriate for the case of direct contact between 

timber and concrete [1.65], such mean relative difference would further reduce to 11.0%. 

The strength difference is less relevant in the crossed screws configurations: the adoption of a 

quadratic axial-shear strength domain for analytical evaluation allows for a mean ΔFv,Rk of 21.7%. 

As the concrete expulsion leads to an early failure of the joint, usage of Eq. (1.25) also for shear-

compression loaded screws leads to overestimating the total strength of the crossed screws. Only 

the inclusion of the concrete cone failure phenomenon (i.e. Eq. (1.31)) leads to a proper evaluation 

of the strength of the screws with inclination contrary to the load direction. The analytical approach 

proposed for crossed screws at 45° shows good fitting with experimental results (mean relative 

difference ΔFv,Rk
 = 3.9%), thus demonstrating that neglecting frictional effects as well as the inclusion 

of concrete failure hypothesis are fundamental in the crossed screws configuration. 

  
(a) (b) 

Fig. 1.18 – Experimental values of average shear strength Fv,exp (dots) and 5% characteristic extrapolations 
(continuous lines) compared with theoretical predictions: (a) inclined screw series; (b) crossed screws series. 
Values are referred to a single CP. Filled area highlights the theoretical contribution of each screws in the 
global strength 

1.4.2 Stiffness 

The modified stiffness equations for Kser proposed in Section 1.4.2 for the inclined screw at 45° - Eq. 

(1.35) - shows a finer matching with the experimental data than EC5 [1.13] predictions (see Fig. 

1.19). The average relative difference ΔKser = 1 – (Kser,exp / Kser,th) calculated with EC5 method is equal 

to 38.3%, while Eq. (1.35) does reduce this value to 24.8%. Additionally, in the proposed approach 

the concrete elastic modulus is not taken into account: further investigations would be needed to 

assess this phenomenon and eventually include this variable into the formulation. 
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Concerning the crossed screw configurations, it appears that the stiffness of the CP does not 

improve when a second inclined screw is added in the opposite direction. On the contrary, the second 

screw does decrease the CP stiffness in several circumstances. Calculating stiffness with Eurocode 

5 recommendations considering only the shear-tensile loaded screw provides conservative results 

(ΔKser = 32.5%), but the modified approach (Eq. (1.35)) reduces such difference to 20.4%. This 

evidence demonstrates that the interaction between the two screws is indeed significant. 

  
(a) (b) 

Fig. 1.19 – Experimental values of slip modulus Kser compared with theoretical predictions: (a) inclined screws 
series; (b) crossed screws series. Values are referred to a single CP. 

1.5 Conclusions 

This chapter presented a detailed analysis on the behaviour of timber-concrete composite joints 

realized with self-tapping screws inclined at 45°. An analytical approach to calculate the load bearing 

capacity and stiffness of such connection was proposed as an extension of consistent literature 

models and reliable design rules. 

Push-out tests were conducted and main mechanical properties were obtained by varying fastener 

diameter, installation configuration and concrete type.  

The evaluation of the serviceability conditions of the connections in terms of load capacity and 

displacement were provided referring to the yielding condition of the experimental load-displacement 

curves according to the method proposed by Karacabeyli and Ceccotti. Regarding the evaluation of 

slip modulus, test showed limited scattering for the inclined screws connection and higher dispersion 

when a crossed screws configuration was adopted. A reduction in term of stiffness Kser shifting from 

normal to lightweight concrete was also found in nearly all configurations, due to the expected lower 

concrete stiffness obtained with lightweight aggregates. Moreover, the contribution of the second 

screw is very limited when considering the overall stiffness of the CP and often leads to even lower 

values.  

Outcomes from experimental tests were used to verify the reliability of the actual design method 

proposed by Eurocode 5 and to perform a preliminary validation of the proposed analytical approach. 

Results showed that in the evaluation of the load bearing capacity, Eurocode 5 method 

underestimates strength of inclined screws at 45° resulting more reliable for crossed screw respect 

to inclined screws TCC joints. However, comparisons also shown that taking into account the screw 
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inclination and the contribution of the withdrawal capacity leads to a better correspondence with 

experimental behaviour from tests. According to the proposed approach, crossed screws in TCC 

connection might lead to a special failure condition with the expulsion of concrete cover, hence 

precautions when estimating the total shear-strength must be taken. Lastly, frictional effects could 

affect the resulting shear force obtained from push-out tests used to evaluate TCC connections 

performances in case of direct contact between timber and concrete. 

As concerning the stiffness estimations, the comparison between the experimental results and the 

analytical estimation shows that Eurocode 5 method provide more conservative values respect to 

those provided by the proposed model. Moreover results demonstrate that the proposed formulation 

lead to more reliable estimation of the CP stiffness than simply neglecting the contribution of the 

shear-compressed screw as proposed by Eurocode 5. 

However further researches are needed before the relationships proposed in this work could be 

incorporated in a code revision. They should focus on the evaluation of the actual contribute of friction 

and of a plausible μ value for timber-concrete connections. Finally, a more extensive and detailed 

experimental campaign should be conducted in order to better validate the proposed model and 

verify the reliability of the standard methods proposed by Eurocode 5. 
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Chapter 2 Development of an innovative TCC 

system using GFRP and modern screws 

Abstract 

An innovative connection system suitable for TCC structures is analysed in deep. The 

investigated connector combines the use of self-tapping screws and glass-fibre infilled thermoplastic 

polymer realized by injection moulding, introducing the latter material in the field of structural 

engineering. The aim is to enhance the use of inclined modern screws as TCC joints by solving 

installation issues typical of these connectors and avoid unwanted brittle failure that may develop in 

the concrete layer. Numerical simulations, carried out to design this joint, are described in detail. The 

results of experimental tests conducted to investigate the behaviour of the device subjected to shear 

loading conditions are reported. A comparison between numerical and experimental results and the 

analytical predictions described in the previous chapter is given. 
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2.1 Introduction and aims of the present work 

2.1.1 State of the art of TCC joints realized with screws 

 

The potential of employing modern screws as TCC connections have been analysed and carefully 

investigated in the academic world, as reported at the beginning of the previous chapter. The natural 

consequence of these research works was the introduction into the market of TCC connections, of 

several systems that exploit the respectable performance obtainable with modern timber screws. In 

the last two decades, several dry connection systems (i.e. systems that require only the mechanical 

work of installing the fasteners into the timber element) have been developed and successfully 

introduced. Table 2-1 lists the main TCC connections available in the Italian and part of European 

market that employ screws. Some solutions still make use of traditional fasteners (i.e. fasteners with 

a smooth shank and large diameter) placed orthogonal to the grain, but the actual market direction 

is the use of modern self-tapping screws placed at an angle of 30° to 45° with respect to the grain. 

Fastener nominal diameter d is normally comprised between 8 and 10 mm (higher diameters are to 

be preferably installed with a pre-drilling). The fastener length vary between a minimum of 100 mm 

to 160-200 mm or even more depending on the fastener withdrawal strength. The characteristic 

shear strength Fv,Rk, the serviceability stiffness Kser and ultimate stiffness Ku are usually given 

separately in case of presence or absence of interlayer and for solid or glue-laminated timber. 

These parameters are normally assessed via experimental tests according to the standards available 

for wood connections ([2.1]-[2.2]) once the material performance requirements and conditions have 

been guaranteed ([2.3]-[2.4]). Currently, no specific standards for timber-concrete composite 

connection exists. Alternatively, European Technical Assessments (ETAs) for the TCC specific 

application are provided, based on experimental proofs and analytical considerations in order to 

provide to the designer the necessary information on the connection’s behaviour. 
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Table 2-1 – Examples of available products within the Italian market. 

Connection system Example Characteristics Fastener geometry 

SFS 
VB Connector [2.5]  

 

Pair of fasteners placed in 
crossed configuration 

(inclined at 45°) 

d = 8.5 mm 
l = 100 ÷ 165 mm 

partial thread 

LECA 
Centrostorico [2.6] 

 

Single fastener inclined at 
45° with a steel angular 

bracket 

d = 10.0 mm 
l = 130 ÷ 150 mm 

partial thread 

HECO 
PSV [2.7] 

 

Three screws at 90° coupled 
with a plastic insert and an 

additional metal fixing 

d = 8.0 mm 
l = 110 ÷ 145 mm 

partial thread 

PETER COX® 
LPR [2.8] 

 

Cold formed steel profile 
fastened with pairs of 

screws at 90° 

d = 8.5mm 
l = 100 ÷ 135 mm 

partial thread 

TECNARIA® 
Connettore Maxi 

[2.9] 

 

Metal connector fastened 
with traditional screws at 90° 

d = 10mm 
l  = 100 ÷ 120 mm 

partial thread 

WÜRTH® 
FT-Connector 

[2.10] 
 

 

Inclined self-tapping screws 
at 30° with additional plastic 
element for precast systems 

d = 8-10mm 
l  = 150 ÷ 600mm 

full thread  

2.1.2 Issues of TCC connections with screws 

The advantages of TCC connections realized with inclined screws have been explicated in the 

previous sections however, this technique actually suffer from issues that are mostly related to the 

onsite installation. In particular, it must be recalled that these connections are rather fastened to the 

timber beam at the construction site without temporarily removing it from the structure, whereas in 

case of prefabricated solutions other typologies (e.g., notches, glued in steel plates) may be 

preferred. Additionally, the renovation of timber floors can mean setting up thousands of connectors 

per jobsite leading to a consequent increase of installation mistakes. The installation issues 

commonly arising for TCC connections with inclined screws can be summarized in: 

- Incorrect application of the designed screw inclination (see Fig. 2.1a). This is the most 

important issue because increasing the inclination α with respect to the shear plane, for 
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example from 45° to 60°, does change the ratio between tensile and shear capacity and 

reduce significantly strength and stiffness ([2.11]-[2.12]); 

- Incorrect penetration of the screw in the timber layer. A reduced penetration 𝑡 into the timber 

side leads to a reduced load bearing capacity, especially in case of high-strength full threaded 

screws or with shorter screws employed with timber beams characterized by thin cross-

sections; 

- Insufficient anchoring to the concrete layer might involve a reduced load bearing capacity 

caused by anticipated concrete failure (short heff to develop the concrete cone). This concept, 

similar to the behaviour of metal anchors, in particularly critical with thin concrete layers. 

Additionally, stress concentrations are to be avoided with LWAC due to its greater tendency 

to split [2.13]; 

- High strength TCC joints realized with two screws in parallel may lead to incorrect spacing 

(see Fig. 2.1b) of the screws perpendicular to the beam (i.e. a2 defined according to EC5 

[2.14]). The result could be an unwanted group effect or anticipated brittle failures due to 

edge proximity. 

In some cases, such issues have been partially overcome by providing to the workers specific 

accessories that accompany the insertion of the screw at the right angle and penetration ([2.6]; 

[2.10]). This drilling template is at times part of the connection system and is to be left in place after 

the screw is in position ([2.6];[2.7]). However, all these accessories have still some limitations/issues, 

for example: pre-installation is still delicate as they require to be glued or screwed to the timber beam 

before inserting the load-bearing screws in position; they are suitable for thick concrete layers [2.10], 

consequently cannot be adopted in high seismic prone areas where mass must be kept as low as 

possible. 

The scope of this research is to develop and assess a system that overcome the aforementioned 

installation issues ensuring at the same times high strength and stiffness to the TCC joint. Differently 

from other connection systems, the self-tapping screws will be combined with a Glass Fibre 

Reinforced Polymer (GFRP) element realized by injection moulding. The choice of this material 

allows the realization of a “more engineered” shape of the connector than classic materials (see 

section 2.2.4), while ensuring great mechanical performance and a cost-efficient production. 

  
(a) (b) 

Fig. 2.1 – Issues that might occur throughout the installation of many screws with an angle respect to the grain. 

  

α<45° a1



Chapter 2: Development of an innovative TCC system using GFRP and screws 
 

 
47 

2.1.3 Thermoplastic materials in civil engineering 

Composite materials are gaining more interests in the field of civil engineering due to their high 

performance, especially when comparing the strength/weight ratio with respect to traditional 

materials. Fibre reinforced polymers (FRP) have been deeply investigated in the past and are now 

often used in multiple structural engineering applications. They are mostly used as strengthening 

methods of existing structures and retrofitting interventions of buildings. They are available in the 

form of carbon fibre strips applied or in pultruded profiles. However, most of these applications utilize 

pre-impregnated thermosetting composites, the most common of which is carbon fibre-reinforced 

polymer (CFRP). On the contrary, thermoplastic materials are relatively new and lack the history of 

use in civil infrastructure [2.15]. Thermoplastic composites typically comprise a commodity matrix 

(e.g., polyethylene (PE), polyamide (PA)) reinforced with glass, carbon or aramid fibres. Generally, 

the matrix component affects the properties of the material when subjected to different environmental 

conditions (e.g., temperature and humidity) while the type and amount (percentage of filling) of fibres 

are mainly responsible for the overall mechanical performance. For example, the same Polyamide 

6 with 15% of glass fibres has half of the strength and stiffness with respect to the same polymer 

reinforced with 50% of carbon fibres [2.15]. Several production methods are available to produce 

thermoplastic materials, however, the most common and used is the moulding process [2.16]. 

Injection moulding is a high efficiency process: once the injection moulds have been designed to the 

customer’s specifications and the presses pre-programmed, the actual moulding process is very 

quick compared to other methods. Plastic injection moulding process hardly takes times and this 

allows more parts to be manufactured from a single mould. The high production output rate makes 

this method more cost effective and efficient. Furthermore, due to high pressure during the moulding 

process, complex and intricate shapes can easily be designed and manufactured which otherwise 

would have been too complicated and expensive to manufacture. 

An important aspect to be accounted when complying with polyamides (PA) is that they are 

susceptible to environmental condition and their mechanical properties depend upon their moisture 

content. Therefore, the main mechanical parameters are usually defined on both dry-as-moulded 

(DAM) and conditioned state. DAM state correspond to the highest mechanical performance (e.g., 

in terms of elastic modulus, maximum tensile and bending stress, etc.) However, designers should 

always refer to the conditioned state, when the material have already reached its equilibrium with a 

specified temperature and relative humidity and, consequently, its actual performance. The rate of 

moisture absorption (i.e. the rate of conditioning) is a function of the temperature. For example, a 4 

mm thick test specimen of PA66 requires more than a year to attain its equilibrium moisture content 

in standard atmosphere 23/50 [2.17]. To condition specimens in a relatively short period, higher 

temperatures are required, and most of the investigated materials have their properties evaluated 

after being accelerated ageing process of EN ISO 1110 [2.18]. As the loss in strength and elasticity 

can be conspicuous, high performance polymers nearly always include a significant amount of fibres, 

which normally vary between 10 and 60%. Lastly, GFRP are subjected to creep phenomena, which 

is also dependent of the percentage of filling. 

Few research works that aims to use composite materials, in particular Glass Fibre Reinforced 

Polymers (GFRP), are known in Timber Engineering field. The only available works, presented by 

the University of Delft [2.19] and Bath ([2.20];[2.21]), concern the study of pultruded GFRP rods to 

realize dowel-type connections. Thermosetting polymers were used to realize dowel type fasteners 

subjected to shear loads with good results but Brandon et al. [2.22] found out that reaction to fire of 

the matrix made by polyester resin was not sufficient to guarantee reliable performance in case of 

fire.  
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2.1.4 Aim of this work 

The scope of this research work is to develop and analyse a connection system for TCC structures 

realized by coupling modern steel self-tapping screws with a composite material element. The 

withdrawal of the screw is still entrusted for the load bearing capacity but the GFRP screw’s socket 

is meant to undertake three purposes: 

- To ensure the correctness of the screw insertion avoiding any installation-related issues; 

- To provide a tight and secure pre-installation on the timber without additional screws ore 

gluing operations; 

- To avoid stress concentration at the fastener-concrete interface and consequent splitting 

failures that is to be expected especially in case of thin concrete layers and high-strength 

screws.  

With regard to the third objective, thanks to the higher strength of GFRP materials with respect to 

concrete, the connector should act as a cushion element that distributes localized stress to larger 

areas. For example, this technique results of primary importance when high load-carrying capacity 

and stiffness are provided by screws with high withdrawal strength (e.g., full-threaded screws). In 

this case, the higher resistance provided on the timber side must be equalled (and exceeded, as 

ductile behaviours are to be preferred) by the resisting mechanism in the concrete layer (Fig. 2.2a). 

This translates into high stress concentration at the screw-concrete interface (i.e. the area in 

proximity to the shank and head of the screw), which must be limited, for example by increasing the 

contact area (Fig. 2.2b).  

It is worth noting, that the modulus of elasticity E of a conditioned polyamide PA6 or PA66 with a 

percentage of filling near 50% vary between 10-12.5 GPa ([2.23];[2.24]) which is comparable the 

modulus parallel to the grain E0 of a common solid timber. It is also roughly comparable to that of a 

LWAC. On the other hand, it has approximately seven times the ultimate stress than common timber 

and four times the strength of normal or lightweight concrete. Then, GFRP can be designed as an 

intermediate element between steel and concrete, which grant a smoother transition of stresses in 

the exchange of forces between fastener and concrete. 

Consequently, it can be expected that once the mechanical behaviour of injection-moulded materials 

is more deeply comprehended, the local reinforcement of timber-to concrete or, more generally, all 

timber connections that suffer from high stress concentrations may be a promising field for future 

research works in structural engineering. In this context, this work could be an encouraging starting 

point from which to begin and develop new connections/devices in timber engineering adopting such 

innovative materials. 

 
 

(a) (b) 
Fig. 2.2 – (a) capacity design applied to a TCC connection; (b) intended reinforcing effect of the GFRP element. 

Strength

P
ro

b
a

b
ili

ty

Failure in 

concrete layerFailure in 

timber layer



Chapter 2: Development of an innovative TCC system using GFRP and screws 
 

 
49 

2.2 Design process assisted by FEM analyses 

Assuming that the behaviour of TCC joints with inclined screws have been analytically derived and 

experimentally assessed, the design of the GFRP socket required the preliminary support of 

numerical simulations. The modelling technique presented in this work, was conceived to obtain 

sufficiently precise and realistic loading conditions in the GFRP component. The arising limitations 

that accompany the numerical model will be clarified in the next sections. The proposed finite 

element (FE) model followed a hybrid approach, i.e. a compromise between computational efficiency 

and reliability of results. The main hypotheses and features of the employed model were: 

- The inelastic response of all the involved materials, i.e. isotropic plasticity was opted for steel 

and orthotropic plasticity for concrete and timber; 

- Partial simplification of the screw-to-timber load transmission: withdrawal strength was 

modelled with an equivalent spring while lateral wood embedment was assured by contact 

elements; 

- Splitting of timber due to tension stresses perpendicular to the grain was not included in the 

model. This simplification was supported by the analysis of the test results (see section 

1.3.3), always confirming always a ductile failure (regarding the timber layer only); 

- No damage model was taken into account for concrete, as the GFRP element shape must 

provide a geometry that assure a sufficient stress distribution to the concrete avoiding 

concrete splitting/crushing. 

It must be emphasized that the last two hypotheses are consistent only for the investigated 

configurations and would need proper consideration in order to be applied in different circumstances. 

As a brief summary, the modelling phase initially concentrated in the replication of the experimental 

tests conducted on screws presented in Chapter 1. Then, the GFRP component was added to the 

FE model to obtain important prediction particularly to the stress level for which the thermoplastic 

may be subjected. This, to avoid excessive stress concentration, optimize the shape and not less 

important, contain creep effects and consequently long-term deformations. 

2.2.1 Details on the numerical modelling of the TCC joint 

A three-dimensional FE model was developed with a commercial software [2.25] to reproduce the 

behaviour of the complete timber-to-concrete connection subjected to a monotonic load parallel to 

the shear plane.  

Realizing a detailed model of a self-tapping screw fastened into the wood should be quite a 

straightforward task once the geometry is known and imported into the software to be meshed 

accordingly. However, it will almost certainly result into an high demanding problem due to the need 

of a high-order and refined mesh in order to simulate the load transmission occurring between the 

screw thread and the wood [2.26]. For this reason a simplified approach have been developed to 

obtain a balanced compromise between precision and computational effort. 

Fig. 2.3 helps to clarify how the FE model was intended to work and to be calibrated. The self-tapping 

screw shape was simplified to a cylinder with diameter equal to 5.4 mm (i.e. the core diameter 

according to the tested screw geometry [2.27]). The transmission of the axial load component was 

obtained by means of a spring element, with stiffness equal to the axial stiffness Kser calculated 
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according to Eq. (1.41) that connects the threaded part of the screw to the sides of the hole. The 

transmission of the lateral component was accounted through frictional contact elements 

(CONTA174 and TARGET170) adopting an augmented Lagrangian formulation [2.27]. The 

orthogonal stiffness multiplier was set to 0.1 in order to help convergence and correctly allow the 

simultaneous crushing of the screw shank into the timber element and the detachment of the screw 

from timber at the opposite side of the fastener. With this model, the only necessary parameter to 

calibrate is the friction coefficient µs between screw and wood. This parameter govern the amount 

of load that translates into wood embedment. Lastly, the countersunk head shape was also modelled 

to account for the correct compression stress distribution that occurs in this area. 

 

Fig. 2.3 – FE model: example of the 3D mesh (left) and load transmission model between screw and timber 
(right). 

Additional contact formulations, available in the software library, were exploited to reproduce the 

interaction between the three materials. A rough contact formulation [2.27]  was added between the 

screw head and the concrete. Friction between concrete and timber was assured by contact 

elements placed all along the sliding interface with a corresponding friction coefficient µ equal to 0.6, 

according to Dias et al. [2.29] and in agreement with the outcomes from the experimental tests (see 

Section 1.4.1). A distributed load was applied to the concrete layer on the side orthogonal to the 

loading direction. Lastly, boundary conditions were added to the timber element (see Fig. 2.3) thus 

forcing the correct displacements direction. 

Yet, the numerical simulations were computationally demanding due to the multiple non-linearities 

included in the model and sufficient mesh refinement necessary to capture the wood embedment 

phenomenon. Therefore it was decided to split the analyses for SLS and ULS conditions: 

- Analyses at service loading conditions (roughly 40-50% of the ultimate strength) where the 

connection is assumed to work mostly in the elastic field. In this case, material plasticity of 

concrete and timber was not required and the complete model was realized by means of 

high-order elements, in particular SOLID186 and SOLID285 elements (20-node quadratic 

elements and 4-node tetrahedral elements [2.30]) to evaluate stiffness and stress level on 

the GFRP element (to predict long-term phenomena). This model was mostly used in the 

initial calibration phase and for the prediction of possible creep deformations. 

- Analyses at near collapse loading conditions were material orthotropic plasticity was 

activated but elements were necessary downgraded to low-order SOLID45 elements [2.30]. 

Patch conforming meshing options combined with automeshing function implemented into 

the software were necessary to investigate the zones were plastic strains concentrates (i.e. 

near the plastic hinge of the connector and in the timber areas in which embedment should 

occur). This model was exploited to investigate the connection at higher loads where 
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deformation in the timber layer due to wood embedment are higher. It was used also for the 

design phase of the GFRP element. 

2.2.2 Modelling of materials 

Timber 

Modelling timber material for numerical analyses of joints is a widely investigated topic ([2.31]-[2.39]) 

and due to the orthotropic nature of the raw material from which is obtained (i.e. sawn wood), several 

studies were conducted starting from experimental evidence. However, quite a few issues need to 

be overcome in order to obtain congruent results and sufficient precision when predicting the non-

linear behaviour of timber, among which there is the material anisotropy. 

In particular, timber is characterized by three orthogonal directions that behave differently: a 

longitudinal direction (or parallel to the grain) and a radial and a tangential direction, which are 

orthogonal to the first. Additionally, an elastic-plastic behaviour characterize timber in all directions 

and the yielding limits, from which large strain occurs, are different in each directions. Lastly, the 

behaviour of timber under compression stresses can be described by an elastic-plastic law with 

hardening, while for tension stresses the material is essentially elastic and characterized by brittle 

failures. 

In spite of these issues, some simplification have been demonstrated to be acceptable and overcome 

part of them. In particular, a common interpretation introduced in structural engineering is the equality 

of behaviour on the plane orthogonal to the fibres, thus switching from an orthotropic behaviour into 

an ideal transversal orthotropic one. Then, for preliminary work timber can be modelled assuming 

an orthotropic linear elastic constitutive law, however the definition of the main mechanical 

parameters (Modulus of elasticity E and Poisson’s ratio ν may be difficult to determine [2.33]. It 

should be at least necessary to model the elastic-plastic behaviour of timber by neglecting the 

hardening effect of compression loads with an elastic – perfectly plastic law. 

The yield criterion to be associated with the constitutive models is an important topic that is 

continuously discussed in literature ([2.31];[2.33]-[2.36]). The commonly adopted yielding criterion is 

the Hill’s criterion [2.40], which is a generalized form of the Von Mises yield principle created to 

account for anisotropy of materials. Further studies aimed to find possible solutions to refine this 

model and take into account the inequality between compression and tension failures that 

characterizes timber. Tsai-Wu strength criterion [2.41] and Hoffman [2.42] were studied in 

([2.35];[2.36]) with numerical analyses replicating experimental evidences finding that the 

combination of Hill and Hoffman method was suitable to replicate the non-linear behaviour of dowel-

type joints in timber. It is worth noting that these models are suitable for monotonic loading as they 

work hardening is involved and therefore are not recommended for cyclic loading analyses. 

In this work, the modified Hill criterion was used. Timber was modelled as an elastoplastic orthotropic 

material with mechanical properties obtained from EN 14080 [2.43] for a GL24h solid timber and 

indication contained in [2.44] for the Poisson’s ratios (see Table 2-2). According to [2.32], no 

distinction was made between the radial (subscript r) and tangential (subscript t) direction with 

respect to fibre, even if in reality they vary by a factor of two. Yielding limit were assumed equal to 

the characteristic values reported in EN 14080 [2.43] and the tangent moduli were set equal to 0.01 

times the Elastic values. It must be emphasized, that for dowel-type joints stressing timber 

orthogonally to the grain and causing brittle failures due to splitting, constitutive models that capture 

both ductile and fragile failures coupled with damage-based equations ([2.45]-[2.46]) can be used. 
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Table 2-2 – Orthotropic material properties chosen for GL24h. 

Parameter  Notations  Notations Value (MPa) Parameter     Value (MPa) 

Elastic Modulus EX EL 11500.00 Tensile yield stress σX
t σL

t 19.20 

Elastic Modulus EY = Ez ET = ER 300.00 Tensile yield stress σY
t σT

t 2.50 

Elastic Tangent modulus EX,t EL,t 115.00 Tensile yield stress σZ
t σR

t 2.50 

Elastic Tangent modulus EY,t = EZ,t ET,t = ER,t 3.00 Compressive yield stress σX
c σL

c 24.00 

Shear Modulus GXY GLT 886.88 Compressive yield stress σY
c σT

c 2.50 

Shear Modulus GZY GRT 125.94 Compressive yield stress σZ
c σR

c 2.50 

Shear Tangent modulus GXY,t GLT,t 8.87 Shear yield stress τXY τLT 2.17 

Shear Tangent modulus GZY,t GRT,t 1.26 Shear yield stress τZY τRT 0.82 

Poisson's ratio υXY υLT 0.29     

Poisson's ratio υZY υRT 0.38     

Poisson's ratio υYX υTL 0.01         

 

Steel 

The steel of the screws used as connecting element between timber and concrete have been 

assumed as an elastoplastic material with a Modulus of Elasticity E equal to 210 GPa and Poisson 

ratio of ν = 0.25. The yielding stress σy equal to 750 MPa was extrapolated from the yielding moment 

formulation of the screw and the screws geometrical properties included in the homologation 

document [2.27] and validated through a preliminary numerical simulation of the screw subjected to 

bending adopting the equivalent core diameter: 

6.2

, 60015.0 dM Rky   (2.1) 

MPaWM plRkyy 750/,   (2.2) 

A tri-linear stress vs. strain curve (see Fig. 2.4b) was used by omitting horizontal yielding branch and 

assuming infinite yielding after the maximum stress is reached [2.33]. An isotropic behaviour was 

chosen for the constitutive law as well as for the yielding criterion. 

Concrete 

The concrete non-linear behaviour can be described according to section 3.1.2 of EN 1992-1-1 

(Eurocode 2 [2.47]) with the following stress vs. strain relation: 





)2(1

2






k

k

fcm

c  
(2.3) 

where the compressive strength 𝜎𝑐 is correlated to the strain 𝜀𝑐 by the mean elastic modulus 𝐸𝑐𝑚 

and the mean compressive strength 𝐹𝑐𝑚 with the following expressions: 

1/ cc    (2.4) 

cmccm fEk /05,1 1  (2.5) 

εc1 is the nominal ultimate strain according to Eurocode 2 [2.47]. From the compressive tests of 

concrete cubes (see section 1.3.2), the following constitutive laws plotted in Fig. 2.4b were obtained 

for both normal and lightweight concrete. An ultimate strain εc1 equal to 0.0035 was assumed for 

normal concrete and equal to 0.00178 for lightweight aggregate concrete. In this work, the concrete 
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material model used exploited a parabola-rectangle relationship, also included in Eurocode 2 [1.32]. 

The hypothesis that concrete failure should not occur with the investigated connection permitted to 

avoid using damage models to evaluate the concrete state of stress. 

  

Fig. 2.4 – Stress vs. strain relations employed for the steel (left) and concrete (right). 

Thermoplastic material 

Modelling thermoplastic materials in still a discussed issue, in particular whether such materials are 

to be considered anisotropic or isotropic. In fact, fibre orientation induced by the injected material 

flowing into the mould causes localized anisotropy in the final product but from a macroscale 

perspective the material can be still considered as homogeneous and isotropic. The first hypothesis 

is often assumed in the design of the mould, where direction of flow, pressure and temperature 

gradients are all taken into account. The latter hypothesis is normally assumed in the engineering 

design process of a component, consequently will be acknowledged also in this work.  

The thermoplastic material selected for the TCC joint is Domamid® 6G50 300 BK (A1-005-V50-B), 

a Polyamide 6 with a glass fibre filling of 50% and for which technical specifications extrapolated 

from [2.23]-[2.24] are reported in Fig. 2.5. In detail, it was chosen an inelastic isotropic constitutive 

law (see Fig. 2.6) with modulus E set equal to 11,000 MPa and the stress strain failure limits (σu,εu) 

were set to 145 MPa and 0.045 respectively. Additionally, the correctness of the stress-strain 

relationship was verified by replicating experimental tests of available non-structural components 

realized with the same material. The tested element, a bracket system used to support ventilated 

facades substructures, was tested monotonically until failure. An excerpt of one of the tested 

configuration and the comparison between experimental and numerical results are reported in Fig. 

2.7. 

Nylon based materials are susceptible to creep phenomenon and, consequently, an increase of long-

term deformations which might reflects in a progressively reduced service stiffness Kser of the 

connection system. A way to control this phenomenon is to limit the stress levels (at the serviceability 

conditions). According to [2.48] and to creep curves of GRFP materials with similar properties, the 

strain increments due to creep might be limited to acceptable values if the stress is under 80MPa. 

Isochronous curves are often made available by producers to help designers predicting long-term 

strains and therefore with their support more detailed consideration regarding the designed element 

are given in Section 2.3.6. 
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Fig. 2.5 – Domamid® A1-005-V50-B technical datasheet. 

  
Fig. 2.6 – Stress vs. strain relations on DAM (dashed line) and conditioned state (continuous line) of GFRP. 
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Fig. 2.7 – Excerpt of the material model calibration on the tested conditioned brackets made with GFRP. 

2.2.3 Calibration of the numerical model 

The numerical model was calibrated by replicating experimental tests of the inclined screws with 

normal concrete (AN series) and crossed screws with LWAC (XL series). Calibration consisted in 

finding a plausible friction value µs (reported in Table 2-3) of the contact area between screw and 

timber to match the stiffness experienced in tests Kser,exp. Stiffness from FE model was calculated 

likely to the experimental test, namely between 0.1 and 0.4 of the estimated shear load Fv,est (i.e. Eq. 

(1.38)). As calibration of the stiffness concerns only the initial branch of the force vs. displacement 

curve (in this case up to 2 mm) these analyses were mostly conducted with the SLS model. The ULS 

model, which included the Hill potential criterion, was used investigate the connection at higher 

displacements. However, due to the high demanding computational resources analyses at ULS were 

conducted only for the AN series. Fig. 2.8 and Fig. 2.9 show a visual comparison between the 

experimental and numerical force vs. displacement curves. A value of µs = 0.55 resulted to be 

applicable for the case of shear-tension loaded screw. 

Table 2-3 – Calibration of frictional parameter µs of the stiffness Kser (in kN/mm) between experimental evidence 
and numerical simulations. 

Screw configuration Inclined screws Crossed screws 

Concrete type Normal concrete Lightweight concrete 

Kser,exp 8,68 - 7,75 - 

Kser,fem (µs=0.00) (kN/mm) 4,80  44.7% 6,51 16.0% 

Kser,fem (µs=0.15) (kN/mm) 5,19 40.2% 7,34 5.3% 

Kser,fem (µs=0.40) (kN/mm) 6,33 27.1% 8,50 -9.7% 

Kser,fem (µs=0.55) (kN/mm) 7,46 14.0% 8,73 -12.7% 
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(a) (b) 

Fig. 2.8 – Inclined screw results: (a) total accumulated strains at 12.0 kN of shear load; (b) load vs. slip curves. 

  
(a) (b) 

Fig. 2.9 – Crossed screws results: (a) double hinges development (displacement x5 times); (b) load vs. slip 
curves. 

2.2.4 Design of the GFRP element 

Although mechanical tests described in Chapter 1 confirmed an increase of shear strength and 

stiffness proportional to the fastener diameter, a nominal diameter of 8 mm was found to be suitable 

for this project. In particular, the main assumption was to use higher Connection Point (CP) spacing, 

by placing two screws in parallel for each CP and using a single GFRP connector for the couple of 

inclined screws. Consequently, screw spacing orthogonal to the grain direction (a2 ≥ 4d) and edge 

distance (a4 ≥ 2.5d) according to Eurocode 5 [2.14], had to be limited by using 8-mm timber screws. 

Additionally, the beams of timber floors subjected to strengthening are usually characterized by thin 

cross-sections, which makes more difficult the installation of large diameter fasteners and increase 

the risk of brittle failures for beams that may be prone to longitudinal cracking. Lastly, from a 

preliminary cost benefit analysis, the strength increase obtained from an 8-mm to a 10-mm screw 

was not justified by the increase of production costs from the first to the second diameter. 

With the aim to solve the installation issues, improve easiness of use and realize a cost-efficient 

solution, the element: 

- Should be used as a guide for the screw to be inserted at 45° and fix the screw at the correct 

depth in both concrete and timber layer; 
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- Should be also used as spacer for the steel mesh which is incorporated in the concrete layer; 

- Should be pre-installed quickly without need of particular accessories or mechanical tools; 

- Should be moulded from a two-part die in order to keep production costs low; 

- Should have dimensions optimized for thin structures. Most of concrete slabs thickness vary 

from 5 to 6cm to keep weight as low, especially in the retrofitting of simple timber floors; 

Preliminary experimental and numerical investigations were performed to define the gross-sections 

and element thicknesses. The final trapezoidal shape was refined with subsequent optimizations 

(see Fig. 2.10). During the refinement process, 3D prototypes were also realized by 

stereolithography (see Fig. 2.11). These prototypes proved to be very useful in the evaluation of the 

easiness of installation. 

First samples (Rev_0 and Rev_1) incorporated squat teeth at the bottom shrill providing neither 

capacity to block the connector on the timber surface nor stability to for the screw insertion. These 

samples incorporate two orthogonal hollows placed at the bottom to block the steel mesh 

intersection. Subsequently, this feature was removed as it resulted to be inapplicable even with slight 

variations of the steel mesh arrangement. 

In Rev_2, a feature to help longitudinal spacing along the beam was included in the zone between 

the two screws. The undercut shape given to the three sides opposing to the concrete compression 

was considerably improved. This to obtain an efficient clamping effect whilst simplifying the overall 

shape and adapting it to the needs of moulding process. 

  

Rev_0 Rev_1 

  
Rev_2 Rev_3 

Fig. 2.10 – Evolution of the connector’s shape during the design process. 
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Fig. 2.11 – Prototypes realized by stereolithography. 

The final shape (Rev_3) consist of a hollow block of GFRP with outer dimensions of 75x60x25 mm 

including the following features (see Fig. 2.12): 

- Sloping/undercut on all three sides to improve the clamping effect to the concrete layer; a 

wider surface opposing to the concrete increase the development of the concrete cone 

leading to a higher strength on the concrete side thus ensuring ductile failure; 

- 10-mm sharp teeth at the bottom to ensure the positioning and blocking of connector during 

the screw insertion. The shape of the teeth were refined and tested carefully until the 

complete blocking of the element occurred with only a couple of rubber mallet hits; 

- 12-mm wide hollow used to support the steel wire mesh comprised in the concrete layer; as 

usual wire diameters are between 6 and 8 mm a non-perfect alignment of connectors is 

allowed; 

- Conical hollows suitable for countersunk head screws to reduce stress concentration 

transferred to the GFRP element. 

 
Fig. 2.12 – Main features of the GFRP connector. 

In this case, the ULS model was used to predict the behaviour of the connection. Results of the 

numerical simulations are reported in Fig. 2.13 and are referred to the final shape. Observing the 

load vs. slip curves analysis, it emerges a slight decrease of the initial stiffness due to the gap present 

between the screw shank and the GFRP hole. Then, screw start again to work in tension and develop 

the same stiffness as the screw-only configuration. However, this issue should be overcome easily 

by employing full thread screws that avoid this initial bending effect. The inelastic strains at screw-

to-timber and connector-to-concrete interfaces have been considerably mitigated (in comparison to 



Chapter 2: Development of an innovative TCC system using GFRP and screws 
 

 
59 

Fig. 2.8a). This ensure a much better coupling with the concrete and helps to distribute the stress 

concentration that affected the screw-only configuration (see Fig. 2.13d). 

The higher stress in the GFRP part are localized in proximity to the screw’s head and will be further 

examined in the evaluation of long term deformations predictions caused by creep (see section 

2.3.6). 

 (a) (b) 

  
(c) (d) 

Fig. 2.13 – FE simulation results: (a) load vs. slip curve per single screw; (b) total accumulated strain; (c,d) 
equivalent Von Mises stress and contact status measured at 12.0 kN of shear load per screw. 
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2.3 Experimental tests 

Experimental tests were conducted at the Construction Materials Testing Laboratory of the 

Department of Civil, Environmental and Architectural Engineering of the University of Padova, to 

assess the mechanical performance of the studied connector. Eight different configurations, each 

one comprising five specimens (40 specimens in total, configured according to Table 2-4), were 

tested varying the screw withdrawal strength, concrete type and presence of an interlayer between 

timber and concrete. 

Table 2-4 – Summary of the tested specimen’s characteristics. 

ID Presence of Interlayer 
Concrete 
type 

Screw Type 
N° of connectors / N° 
of screws 

N° of 
tests 

NA_PT 

 

Normal concrete 

Partial thread 4 / 8 5 

NA_FT Full thread 4 / 8 5* 

LA_PT 
Light weight 
concrete 

Partial thread 4 / 8 5 

LA_FT Full thread 4 / 8 5 

NB_PT 

 

Normal concrete 

Partial thread 4 / 8 5 

NB_FT Full thread 4 / 8 5* 

LB_PT 
Light weight 
concrete 

Partial thread 4 / 8 5 

LB_FT Full thread 4 / 8 5 

* 2 of the 5 specimens used an increased length of 195 mm  

2.3.1 Specimen geometry 

The same push-out configuration and geometry described in Section 1.3.1 was employed for the 

tests. Two connectors (4 screws) were fastened on each side of the specimen. Details of the 

connector’s arrangement and spacing are reported from Fig. 2.14 to Fig. 2.16. Spacing of the 

fasteners a1 parallel to the grain was calculated to avoid any interference between the connectors. 

The theoretical effective number nef was calculated according to EC5 [2.14] with the following 

expression: 
















 4 19.0

13
;min

d

a
nnnef  (2.6) 

where d correspond to the outer thread diameter.  

A 6-mm thick 100x100 mm steel mesh was placed in the middle of the concrete layer to help possible 

anticipated failure due to concrete splitting. Such phenomenon was evidenced in preliminary test 

with full thread screws in which no reinforcing bars were disposed. This should underline that, for 

component tests of TCC high-strength joints and thin concrete topping, splitting could easily occur 

and anticipate the ductile failure in the timber side. 
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Fig. 2.14 – Geometry of specimens without interlayer. 

 

Fig. 2.15 – Geometry of specimens with a 25-mm timber planks interlayer. 

  
(a) (b) 

Fig. 2.16 – Detail of Connector and screw installation onto the timber beam. 
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2.3.2 Material and test setup 

The timber used for fabricating the test specimens is spruce (Picea abies) glued laminated timber of 

strength class GL24h according to EN 14080 [2.43] with nominal characteristic and mean density 

values of ρk = 385 kg/m³ and ρm = 420 kg/m³ respectively. 25-mm thick timber boards were used to 

simulate the interlayer and nailed with small diameter nails, thus allowing slip of the layer of boards 

with respect to the timber beam. Moisture content was determined on each specimen with a pin-type 

thermo-hygrometer providing a mean value of 11.6%. 

The screws used to fasten the nylon-based connector in the timber element involve a partial thread 

and full thread shank, henceforth named PT and FT screws respectively. Both screws have nominal 

diameter d equal to 8 and main geometrical parameters are reported in Table 2-5.  A total length of 

160 mm was suitable to allow the whole tread of the PT screws to be placed in the timber beam also 

for the specimens with the interlayer, thus exploiting its maximum withdrawal strength Fax (see Fig. 

2.16). FT screws have a shorter thread pitch from PT screws, which increases the withdrawal 

capacity according to its homologation document [2.49]. Checks of minimum spacing and edge 

distance were done according to Eurocode 5 [2.14] (calculated with d = dnom) to avoid possible group 

effects. 

Table 2-5 – Screw characteristics according to ETAs ([2.27];[2.49]). 

Parameter 
Nominal 
length 

Threaded 
length 

Nominal 
diameter 

Core 
diameter 

Head 
diameter 

Thread 
pitch 

(units) l (mm) leff (mm) d (mm) dcore (mm) dhead (mm) p (mm) 

Partial thread screws (PT) 160 80 8.0 5.4 6.0 6.0 

Full thread screws (FT) 155/195 145/185 8.0 5.2 5.2 5.2 

The mechanical performance were evaluated by compressive tests on cubes for each of the four 

groups of specimens according to EN 12390 [2.50] and the corresponding mean elastic modulus Ecm 

was calculated following Eurocode 2 provisions. For normal concrete the measured mean uniaxial 

compressive strength was fcm = 37.01 MPa and a corresponding elastic modulus of Ecm = 32.575 GPa 

was calculated. For lightweight aggregate concrete corresponding values were fcm = 25.53 MPa and 

Ecm = 15.414 GPa respectively. Characterization tests on concretes were performed just before the 

start of push-out tests. 

EN 26891 [2.51] loading protocol was used to evaluate main mechanical parameters of the 

connection. The total estimated force, on which the loading procedure was calibrated (see Fig. 

2.17a), was evaluated by analytical prediction using the theoretical model described in section 

1.2.1.2. An Fv,est value of 140 kN and 100 kN were calculated for full-thread and partial thread screws 

respectively. The vertical load was applied to the central timber beam and relative slip were 

measured by a couple of Linear Variable Differential Transducers (LVDTs) placed according to Fig. 

2.17b. 
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(a) (b) 

Fig. 2.17 – (a) loading protocol calculated according to [2.51]; (b) specimen with interlayer on the testing 
machine and position of LVDTs. 

2.3.3 Test results 

Fig. 2.18 to Fig. 2.21 illustrate the force-displacement curves obtained from tests according to EN 

26891 [2.51] allowing a parallel comparison between the load capacity reached with by FT and PT 

screws. In this case, loads are referred to the total load applied to the specimen, while plotted 

displacement are the mean values measured by the couple of LVDTs. A ductile failure took place in 

all specimens and, as expected, the connection with FT screws and absence of interlayer (NA_FT 

and LA_FT series) achieved the highest peak shear strength Fv,peak due to their high withdrawal 

strength. In detail, a combined withdrawal of the screw and partial wood embedment phenomena 

near the timber-concrete interface was observed in all specimens (see Fig. 2.22). In general, wood 

embedment was less evident than the screw only-tests, especially when the interlayer was present 

(according to similar tests available in [2.52]), showing that the shear contribution became minimal 

in this case. It is worth noting that the composite socket was almost intact and no significant cracking 

effects were observed in the concrete slab (also due to presence of the reinforcing steel mesh).  
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Table 2-6 summarize the average values and COV of the measured shear strength Fv,Rk,exp, 

serviceability stiffness Kser,exp and the calculated conventional yielding point Fv,y, dy (determined like 

in screw only tests with Fv,y = 0.5Fv,exp and dy = d(Fv,y) [2.53]). The total estimated load Fv,est matched 

with the average strength values obtained in all the eight configurations. Scattering of the measured 

peak shear strength was always limited with a maximum COV of 6.3% and 15.2% for NA and NB 

series respectively. Also the average stiffness Kser,exp showed less dispersion than the screw-only 

tests and did not affect specific series with respect to other. Regarding the conventional yielding 

point, it emerges that FT screws manifested higher yielding strength Fy but higher yielding 

displacement dy (of about 0.3÷0.5 mm). This should be taken into account when designing a TCC 

structures that an increased relative slip must be accepted. Analysing the load vs. slip curves and 

the visual comparison of the mean results for strength and stiffness reported in Fig. 2.25 and Fig. 

2.26, the impact of each analysed variable could be summarized as follows: 

- Concrete type: no substantial differences were measured on the load bearing capacity 

between the normal concrete topping and LWAC topping when slab and timber beam were 

in direct contact (i.e. no interlayer was present). Only the combination of PT screws and 

presence of interlayer produced a noteworthy reduction of the load bearing capacity from 

normal to LWAC. The reduced stiffness of LWAC does not significantly affect the 

serviceability stiffness Kser,exp, with respect to the screw only tests reported in the previous 

chapter. This should be attributed to the fact that besides from the concrete topping, the 

screw is in contact only with the GFRP socket, which has a lower Elastic modulus than normal 

concrete and closer to the one of LWAC.  

- Interlayer presence: The interlayer presence seems not to produce any significant changes 

for the shear strength demonstrated by partial thread screws as all the threaded part is kept 

on the timber beam on both configurations. On the contrary, the decrease measured on FT 

screws specimens is clearly due to the lower penetration and effective threaded length leff 

between NA_FT and NB_FT series causing a reduction of the withdrawal capacity. 

Regarding stiffness Kser,exp, the observed reduction of the mean values occurred with the 

interposition of the timber boards are comprised in the range of 10-15%, contrary to traditional 

connections [2.54]. The observed uniform reduction is due to the lower penetration of the 

screw in the timber element and perhaps to the additional eccentricity of the shear load which 

causes additional shear deformation to the fasteners; 

- Type of screws: strength increases with FT screws according to the higher withdrawal 

parameter fax,k and higher effective length leff in the timber element. Regarding the 

serviceability stiffness Kser,exp, a uniform decrease was observed when PT screws were 

substituted with FT screws, whereas switching between the two concrete types provided 

negligible variations in all studied cases. As a consequence, the mean yielding displacement 

dy shifted from a range of 1.4-2.0 mm to values between 2.0-2.5 mm.  
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Fig. 2.18 – Experimental load vs. displacement curves for specimens without interlayer and normal concrete 
(NA series): PT screws and FT screws. 

  

Fig. 2.19 – Experimental load vs. displacement curves for specimens without interlayer and lightweight 
concrete (LA series): PT screws and FT screws. 

  

Fig. 2.20 – Experimental load vs. displacement curves for specimens with interlayer and normal concrete (LA 
series): PT screws and FT screws. 
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Fig. 2.21 – Experimental load vs. displacement curves for specimens without interlayer and lightweight 
concrete (LA series): PT screws and FT screws. 

  

   

Fig. 2.22 – Investigation of connection after failure: (a) screw withdrawal with partial rotation of the plastic 
element; no critical failure observed in the thermoplastic connector. 

  

Fig. 2.23 – Localized failure of a specimen with interlayer (ID:LB_FT_5) observed at large displacements. 
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Fig. 2.24 – Mean values of load-carrying capacity and serviceability stiffness calculated per single CP. 
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Table 2-6 – Experimental shear strength Fv,exp, stiffness Kser,exp and yielding point (Fv,y; δy) for each specimen, 
average values and variation coefficient (COV). 

NA Series LA Series 

Spec. ID 
Fv,exp 

(kN) 
Kser,exp 
(kN/mm) 

Fv,y 

(kN) 

δy 
Spec. ID 

Fv,exp 

(kN) 
Kser,exp 
(kN/mm) 

Fv,y 

(kN) 

δy 

(mm) (mm) 

NA_PT_1 92,8 50,5 46,4 1,4 LA_PT_1 92,3 50,0 46,2 1,6 

NA_PT_2 92,6 44,6 46,3 1,4 LA_PT_2 101,5 65,8 50,7 1,7 

NA_PT_3 85,3 66,0 42,7 1,7 LA_PT_3 90,7 50,9 45,4 1,7 

NA_PT_4 88,2 54,8 44,1 1,3 LA_PT_4 95,3 40,3 47,7 1,7 

NA_PT_5 90,1 71,3 45,0 1,3 LA_PT_5 97,7 53,1 48,9 1,7 

Average 89,8 57,4 44,9 1,4 Average 95,5 52,0 47,8 1,7 

COV 3,2% 17,6% 3,2% 10,6% COV 4,1% 16,1% 4,1% 1,6% 

NA_FT_1 136,9 39,2 68,5 2,1 LA_FT_1 153,1 57,4 76,5 1,8 

NA_FT_2 157,8 51,2 78,9 2,2 LA_FT_2 149,8 42,8 74,9 2,0 

NA_FT_3 153,1 54,8 76,6 2,2 LA_FT_3 169,0 43,7 84,5 2,2 

NA_FT_4* 191,9 38,0 96,0 2,5 LA_FT_4* 169,4 36,7 84,7 2,5 

NA_FT_5* 150,3 44,7 75,1 2,2 LA_FT_5* 178,8 39,6 89,4 2,3 

Average 149,3 48,4 74,6 2,2 Average 157,3 48,0 78,6 2,0 

COV 6,3% 14,4% 6,3% 2,6% COV 5,6% 14,5% 5,6% 7,3% 

         

NB Series LB Series 

Spec. ID 
Fv,exp 

(kN) 
Kser,exp 
(kN/mm) 

Fv,y 

(kN) 

δy 
Spec. ID 

Fv,exp 

(kN) 
Kser,exp 
(kN/mm) 

Fv,y 

(kN) 

δy 

(mm) (mm) 

NB_PT_1 113,9 50,6 56,9 2,0 LB_PT_1 96,4 37,2 48,2 1,3 

NB_PT_2 104,3 52,5 52,2 1,8 LB_PT_2 107,7 55,4 53,9 1,4 

NB_PT_3 114,9 44,3 57,5 1,9 LB_PT_3 91,1 46,5 45,5 1,2 

NB_PT_4 117,7 48,0 58,9 2,0 LB_PT_4 89,3 39,4 44,6 1,5 

NB_PT_5 119,5 43,9 59,8 2,1 LB_PT_5 112,0 52,7 56,0 1,5 

Average 114,1 47,9 57,0 2,0 Average 99,3 46,2 49,7 1,4 

COV 4,7% 7,3% 4,7% 5,2% COV 9,3% 15,8% 9,3% 9,6% 

NB_FT_1 163,5 45,8 81,8 2,7 LB_FT_1 153,1 38,3 76,5 2,6 

NB_FT_2 152,1 30,0 76,0 2,7 LB_FT_2 118,4 40,3 59,2 2,2 

NB_FT_3 141,3 37,5 70,6 2,5 LB_FT_3 148,9 40,7 74,5 2,5 

NB_FT_4 138,2 33,4 69,1 2,5 LB_FT_4 107,1 38,7 53,5 2,0 

NB_FT_5 124,7 38,0 62,4 2,3 LB_FT_5 113,9 38,2 56,9 2,0 

Average 144,0 36,9 72,0 2,5 Average 128,3 39,2 64,1 2,3 

COV 9,3% 14,7% 9,3% 5,9% COV 15,2% 2,8% 15,2% 11,1% 

* specimens with higher length of screws 
** mean values and COV calculated for a sample number of 3 

2.3.4 Comparison with analytical calculations 

Results obtained from the experimental campaign are now compared with theoretical predictions 

either for the shear strength Fv,rk and stiffness Kser. The mechanical parameters accounted for the 

analytical calculations, extrapolated from the screws ETA documents ([2.27];[2.49]), are briefly 

summarized: 
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- Characteristic withdrawal parameter fax,k equal to 10.0 N/mm² and 11.1 N/mm² for PT and PF 

screws; 

- Characteristic yielding moment My,Rk according to Eq. (1.37); 

- Characteristic wood embedment capacity fh,k calculated according to Eurocode 5 [2.29] with 

ρk = 385 kg/m³ ; 

Table 2-7 shows the characteristic experimental Fv,rk,exp values calculated according to EN 14358 

[2.55] assuming a coefficient ks = 2.48 for all configuration with except for NA_FT and LA_FT series 

for which ks = 3.34 was used, to account for the reduced number of samples. Values are referred to 

a single CP (i.e. two screws). The relative difference ΔFv,Rk = 1 – (Fv,Rk,th / Fv,Rk,exp) calculated with 

respect to theoretical provisions of Eurocode 5 [2.14] (i.e. Eq.(1.5)) shows the same trend obtained 

in the screw-only test campaign. An average difference of 37.1% was obtained for test involving PT 

screws, which increases to 42.3% for FT screws. The theoretical proposition for inclined screws 

formulated [2.56] (reported in Section 1.2.1.2) and calculated with a friction coefficient µ = 0.25 

reduces this difference to a mean value of 24.4% and 18.1%. Assuming µ = 0.6 yet reduces this gap 

to 19.1% and 7.6%. The trend depicted for the shear strength is reflected also when analysing the 

calculated relative difference ΔKser = 1 – (Kser,th / Kser,exp). Eurocode 5 shows an important safety 

margin, ΔKser = 29.6% and 19.5% for PT and FT screws, given by its simplified formulation that do 

not account for screw inclination and withdrawal capacity contribution (see Eq.(1.33)). The 

alternative method shows a good fitting with experimental results thus overestimating the stiffness 

for LWAC or with presence of interlayer. In these cases, the hypothesis of a fully rigid behaviour of 

the fastener in the concrete joint may not be applied. A plausible suggestion would be to avoid 

including the multiplication factor of 2 in the formulation of the lateral stiffness Kser,. 

Fig. 2.25 to Fig. 2.28 show a visual comparison of the values above discussed and add to the 

comparison a prediction of the axial/shear contribute per CP derived with Eq.(1.25). 

Table 2-7 – Comparison between experimental and analytical results per CP. 

Series Shear strength Fv,rk Stiffness Kser 

Experimental 
Fv,rk,exp 

Theoretical 
Fv,rk,th 

Experimental 
Kser,exp 

Theoretical 
Kser,th 

 Eq. 1.5 (EC5) Eq. 1.25  Eq. 1.35 (EC5) Eq. 1.33 

Mean Fv,Rk,exp Fv,Rk  ΔFv,Rk Fv,Rk  ΔFv,Rk Mean Kser ΔKser Kser ΔKser 

(kN) (kN) (kN) (%) (kN) (%) (kN/mm) (kN/mm) (%) (kN/mm) (%) 

NA_PT 22.4 19.8 14.2 28.3% 15.9 19.6% 14.4 8.9 38.1% 11.6 18.9% 

LA_PT 23.9 21.1 14.2 32.6% 15.9 24.4% 13.0 8.9 31.6% 11.6 10.5% 

NB_PT 29.9 25.0 12.2 51.1% 15.1 36.2% 12.0 8.9 25.7% 11.6 2.7% 

LB_PT 24.8 19.3 12.2 36.5% 15.1 17.3% 11.6 8.9 23.1% 11.6 -0.8% 

Average values   37.1%  24.4%   29.6%  7.8% 

NA_FT 37.3 29.0 16.9 41.9% 24.8 14.5% 12.1 8.6 29.3% 13.2 -9.4% 

LA_FT 39.3 31.7 16.9 46.7% 24.8 21.7% 12.0 8.6 28.6% 13.2 -10.4% 

NB_FT 31.2 27.8 14.3 48.5% 18.2 29.1% 9.2 8.6 7.3% 12.2 -31.6% 

LB_FT 32.1 21.2 14.3 32.3% 18.2 6.9% 9.8 8.6 12.7% 12.2 -23.9% 

Average values   42.3%  18.1%     19.5%   -18.8% 
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Fig. 2.25 – Characteristic shear strength Fv,Rk,exp calculated according to EN 14358 [2.55] and analytical values. 

    

Fig. 2.26 – Mean service stiffness Kser,exp and analytical values Kser,th. 

   

Fig. 2.27 – Axial and lateral contribution calculated for each configuration (µ = 0.25). 
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2.3.5 Comparison with the screw only configuration 

Obtained results are also compared to the screw-only configuration of the previous experimental 

campaign. However, a valid comparison is suitable only within the same boundary conditions: a) 8-

mm partial thread screws; b) absence of interlayer; c) normal and lightweight concrete. Therefore, 

Fig. 2.28 shows the superposition between AN-8 and NA_PT series and AL-8 to LA_PT series. No 

significant difference emerges in terms of load bearing capacity with the addition of the GFRP 

element. Regarding the mean experimental stiffness Kser,exp the GFRP component produced a 

decrease of stiffness from 17.4 to 14.4 kN/mm for normal concrete while specimens with LWAC 

produced the same results (13.2 and 13.0 kN/mm respectively). This could be explained by the fact 

that the elastic modulus E of the GFRP part is more similar to that of LWAC than to a normal 

concrete.  

Nevertheless, the important outcome of the GFRP socket is that for each of the 40 tests failure was 

localized in the timber layer and no sudden strength losses were noticed due to splitting and/or 

concrete cone expulsion as evidenced in several test with the screw-only configuration. 

No comparison regarding the enhanced easiness of screw insertion is contemplated in this section. 

      

Fig. 2.28 – Experimental load vs. displacement curves with normal concrete (left) and lightweight concrete 
(right). 

2.3.6 FE model results and considerations on the creep 

phenomena  

Thermoplastic materials suffer from creep phenomena, which is directly connected to the level of 

stress constantly applied to the element. Giving a prediction on the actual stress level can be a 

complex task. However, a possible solution would be to apply the same considerations, already well 

consolidated in timber structures, to evaluate the deflections at the serviceability limit states. 

According to Eurocode 5 [2.14] permanent and long-term loads are responsible for the creep 

deformation of timber structures. More specifically, TCC structures should involve long-term tests to 

account for the actual contribution of the connection to the global behaviour. A literature review of 

such tests can be found in [2.57], explaining that difficulties in the tests setup are responsible for the 

shortage of information available. However, by crosschecking experimental data, numerical 

simulations and creep information of the materials, some preliminary precautions can be 

extrapolated. 
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In particular, by analysing the force-displacement curves and, the load range for which Kser is 

evaluated (i.e. 0.1÷0.4 Fv,est ), eventual prediction on the quasi-permanent stress level allocated on 

the GFRP element can be drawn. For partial thread and full thread screws, these values for each 

connector are equal to 10.0 and 14.0 kN respectively. Alternatively, the highest calculated yielding 

strength Fy can be taken as a reference (see Fig. 2.29a), which correspond to a value of 57.0 kN (or 

14.25 kN per connector). In case of FT screws this value raise to 78.4 kN (19.6 kN per connector). 

Examining the numerical simulations (conducted with the SLS model), at these loads the Von Mises 

stress near the screw’s head are contained within 70-80 MPa (see details of Fig. 2.29b). Specific 

creep curves that correlate the increase of deformation for a constant applied stress are not available 

for the adopted GFRP material, but valuable information for similar PA6 materials are available in 

[2.23]-[2.24]. Isochronous Stress-strain curves obtained from the mentioned resources are shown in 

Table 2-8. With these hypotheses, the long-term serviceability stiffness can be calculated according 

to Eq. (2.7) in compliance with EC5 [2.14] assuming a contribution to creep of both the screw kdef,w 

and the nylon part kdef,GFRP: 

)1( 2

,

def

ser
finser

k

K
K


  (2.7) 

GFRPdefwdefdef kkk ,,2  (2.8) 

As an initial simplification, the factor for the nylon-based part 𝑘𝑑𝑒𝑓,𝐺𝐹𝑅𝑃 can be extrapolated from the 

isochronous stress-strain curves with the following relation:  

1
10

100000
, 

h

h
GFRPdefk





 
(2.9) 

where ε10h and ε100000h are the strain values at 10 and 100,000 hours respectively for a given stress 

level. Assuming the maximum calculated value of 0.75 for kdef,GFRP for whatever stress level (see 

Table 2-8), the suggested kdef is equal to 1.34 for glued laminated timber and 1.55 for solid timber. 

  

(a) (b) 
Fig. 2.29 – (a) Mean yielding point for NB_PT series; (b) Von Mises stress distribution in the GFRP element  
in proximity of the housing for the countersunk head screw. 
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Table 2-8 – Stress-strain relationship and equivalent kdef values. 

σ (MPa) ε (10h) ε (100000h) kdef,GFRP  

0 0 0 0.00 

 

9.8 0.081 0.106 0.30 

18.7 0.167 0.245 0.47 

27.6 0.265 0.423 0.60 

36.5 0.374 0.628 0.68 

45.4 0.494 0.852 0.72 

54.3 0.625 1.090 0.74 

63.2 0.767 1.330 0.73 

72.1 0.919 1.570 0.71 

81.0 1.080 1.810 0.68 

90.0 1.250 2.040 0.63 

2.4 Conclusions 

This chapter presented an evolution of TCC connections employing screws inclined at 45°. The 

experimentation described in the Chapter 1 of the present manuscript was taken as a basis for the 

study of a system that would make the use of such connections more efficient. In particular the 

investigate solution aimed to solve two problems: a) the typical onsite issues detected during the 

installation of the screws into the timber beams (i.e. correctness of the screw inclination and 

penetration); b) the possibility to develop anticipated failure in the concrete layer observed in the 

previous chapter. 

A finite element model of the complete timber-to-concrete connection, which followed a hybrid 

modelling approach, was developed to replicate the experimental results. Material non-linearities like 

orthotropy of timber and elastoplastic behaviour of the screw were included whereas the load 

transmission between screw and wood was modelled by means of equivalent springs and frictional 

contact elements. 

The FEM model was necessary to design a GFRP socket that, coupled with two inclined screws, 

intended to fulfil the aforementioned functions. Additionally, the model has been used to define the 

state of stress to which the GFRP component should be subjected in the short and long term in order 

to predict analytically the deformability factor kdef of the complete system. 

Outcomes from experimental tests were used to evaluate the mechanical behaviour of the complete 

system varying: withdrawal strength of screws, presence of a wood interlayer, type of concrete. 

Comparisons with analytical predictions of the actual Eurocode 5 method and the approach 

described in the previous chapter were made. The conservative nature of Eurocode 5 provisions 

were confirmed also in this case. Likely, to the screw-only configuration, a better fitting was achieved 

with the proposed approach that have been validated also varying the screw strength and the 

presence of interlayer. 

The contribution of the GFRP component has not lead to significant changes on the load bearing 

capacity while it slightly affected the stiffness if normal concrete is used. The last important outcome 
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is that the thermoplastic element fulfilled the protection against concrete splitting or concrete cone 

failure in all the tested configurations. 

Further research might involve deeper analyses to evaluate the effectiveness of the simplified 

numerical approach in the investigation of TCC joints realized with modern screws. GFRP materials 

produced by injection moulding could be helpful in the continuous improvements of timber 

connections provided that sufficient care is taken into account in determining the actual conditions 

of environment and loading conditions to whom they will be subjected during their working life. 
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Chapter 3 Development of an innovative high-

dissipative device for CLT structures 

Abstract 

The need of more reliable connections for earthquake-resistant CLT shear-wall assemblies that 

provides well-known hysteretic behaviour, reduced pinching phenomenon (caused by the wood 

embedment) and strength degradation justify the continuous development of “innovative” 

connections. In this chapter, a newly developed connection device for CLT structures that works for 

both tensile and shear loads is designed and assessed, and the significant aspects of its hysteretic 

behaviour are discussed. 

The design procedure of the connection system and preliminary experimental test that validates 

the numerical predictions are illustrated. Then, subsequent versions of the dissipating device are 

described and its experimental results reported with particular attention in describing its hysteretic 

response and coupled shear-tension strength domain. The application of the capacity design criteria 

to innovative connections is also thoroughly assessed and supported by experimental evidence. 
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3.1 Introduction 

The seismic behaviour of CLT buildings has been studied by numerous researchers from various 

countries. Quasi-static tests of shear-wall systems and shake-table tests of full-scale buildings [3.1]-

[3.5] showed that CLT structures are characterized by high strength and stiffness when subjected to 

seismic actions. However, they might exhibit low ductility and dissipative capacity if not correctly 

designed to prevent brittle failure or if realized with large and continuous wall elements, without 

vertical joints (i.e., if characterized by prevailing sliding behaviour). 

The current version of European seismic code Eurocode 8 [3.6] does not consider explicitly CLT as 

a structural system, and the closest definition is “glued wall panels with glued diaphragms”. 

Therefore, CLT is classified as a low-ductility system and a behaviour factor q0 = 2 is suggested for 

the design of CLT buildings, regardless of assembling variables. 

Actually, the seismic response of CLT structures is mostly dependent on the building geometry (e.g., 

slenderness), number, type, arrangement and design of joints used to assemble timber panels and 

the capability of connections to guarantee a suitable amount of plastic work. Such dependency was 

demonstrated by experimental tests of different shear walls [3.3], shake-table tests of different 

buildings [3.2];[3.5] and numerical and analytical simulations of buildings and wall systems with 

different geometries. In the building practice, the adoption of large panels with few joints allows the 

reduction of time and costs for on-site assembling. However, the use of narrow panels allows one to 

optimize the use of the material and to reduce the weight and dimensions to be lifted and transported. 

The University of Padova [3.7]-[3.9] proved that slender and highly-jointed buildings can show higher 

displacement and dissipative capacity than squat and scarcely-jointed buildings. This is obtained by 

assuring a rocking behaviour of each panel and by using ductile fasteners. The authors also obtained 

different behaviour factor values, depending on building geometry and panel arrangement.  

 

 
(a) Hold-down 

 
(b) Angle bracket 

 
(c) Panel to panel joint 

Fig. 3.1 – Traditional earthquake-resistant connections employed in CLT shear walls. 

Consequently, the seismic performance of CLT buildings is strictly related to the capability of 

connections to perform plastic work, since timber elements have limited capability to deform 
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inelastically [3.10]-[3.11]. Nowadays, the use of hold-down and angle bracket connections, which 

were originally developed for platform-frame constructions, has been extended also to CLT buildings. 

Nevertheless, the dissipative capacity of light-frame buildings is mainly diffused in nailing between 

frames and panels, i.e., in the shear deformation of the wall [3.12]-[3.16]. This condition could be 

also achieved by assembling massive timber elements using ductile fasteners [3.17]. Contrariwise, 

in CLT walls, the dissipative contribution is exclusively assured by ductile connections at the base of 

the panels or by slender fasteners at vertical joints, being cross-wise layers reciprocally glued. 

Eurocode 8 [3.6] commands the evaluation of the mechanical performance of timber connections 

according to a cyclic loading procedure (recalling EN 12512 [3.18]) and define the requirements for 

ductility: “the dissipative zones shall be able to deform plastically for at least three fully reversed 

cycles at a static ductility ratio of 4 for ductility class M structures and at a static ductility ratio of 6 for 

ductility class H structures, without more than a 20% reduction of their resistance”. 

Actually, hold-downs, angle brackets and vertical joints belongs to L or M ductility class (rarely H) 

but they show a marked pinching behaviour due to the wood embedment phenomenon, which 

reduces the energy dissipation capability of connections (see Fig. 3.2). This fact, can be measured 

by calculating the drop of equivalent viscous damping ratio νeq ([3.18];[3.19]) that occurs between 

the 1st and 3rd cycle. Tomasi and Sartori [3.16] performed experimental tests of traditional 

connections applied to the original intended building technique (i.e. platform-frame shear walls) 

obtaining νeq at the third cycle under 5% for hold-down loaded in tension and a range of 10-20% for 

angle brackets loaded in shear. Tomasi and Smith [3.20] investigated the cyclic performance of angle 

brackets loaded in shear and confirmed the range of 10-20%. Gavric et al. [3.21] calculated a 

decrease from 8.1–8.5 % to 2.8–3.6 % for axially loaded connections and from 19.8-21.4 % to 14.6-

16.1 % for connections loaded in shear. 

Moreover, traditional connections are optimized for uniaxial loading but their resistance can be 

considerably weakened [3.9] when coupling effects (i.e. tension-shear interaction) are taken into 

account (see Fig. 3.3), leading to an undesired brittle behaviour ([3.22]-[3.24]).  

(a) (b) 

(c) (d) 
Fig. 3.2 – Typical hysteretic response of traditional CLT joint [3.23]: force vs. displacement curve, strength 
degradation and viscous damping of a typical hold-down in tension (a,b) and an angle bracket in shear (c,d). 
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Brittle failures can occur also when the capacity design approach [3.24]-[3.25] is not correctly applied 

(see Fig. 3.3). The application of the capacity concept to the design of hold-downs and angle 

brackets is not an easy task dealing with timber structures, due to the difficulty of assuring the 

overstrength of brittle components versus ductile ones. This is because the strength of fasteners 

embedded in timber members could be far greater than the design characteristic value evaluated 

according to Johansen’s theory [3.26], as proposed in Eurocode 5 [3.27]. In fact, scattering of 

material strength and correspondent deviation values are sensibly greater on the timber side than 

on the steel side of connections. Consequently, the actual strength of nails or screws might exceed 

the maximum strength of connected perforated steel plates, leading to unexpected fragile behaviour. 

Therefore, when using CLT constructions, there is the need to shift the weakest element of the 

capacity design chain, toward the steel ductile components of the connection, the yielding load of 

which can be forecasted more reliably than for fasteners embedded in timber members. 

  
Fig. 3.3 – Example of brittle ore “less ductile” failures occurred on experimental tests ([3.21];[3.24]) and lateral 
yielding of an hold-down due to coupling effects [3.9]. 

3.1.1 State of the art on innovative connections for CLT 

buildings 

The need of high energy-dissipating connections has been arising in parallel to the increased interest 

to develop CLT structures in high seismic-prone areas (e.g., New Zealand and Southern Europe). 

Furthermore, a considerable attention in this topic is also due to the raising attention in the study of 

medium to high-rise building realized with CLT monolithic panels, which require high-performance 

connections placed at the foundation to withstand the ever-increasing demand of strength. Lastly, 

innovative connection systems are also being developed in the perspective of low-damage 

structures, whose aim is to withstand subsequent seismic events by applying minor interventions at 

the structure between one event and another. In this case the fuse-like connection system must 

prevent the timber panel being damaged (and the whole structure as well) and should consent a fast 

and efficient replacement of the worn-out element. 

The high efficiency of innovative devices in terms of hysteretic response (see Fig. 3.4) can be 

achieved through the following methods: 

- Yielding of specific steel components (i.e. fuses) or portion of them; 

- Yielding of specific components with displacement restrained by additional elements that limit 

unwanted deformations (i.e. concepts of Buckling Restrained Bracing system); 

- Friction between sliding components, sometimes enhanced by interposing additional metal 

components (e.g., thin brass sheets). 
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Fig. 3.4 – Typical hysteretic response of a CLT joint: traditional connection in which energy dissipation is 
demanded to the nails (image on the left, from [3.20]); (b) innovative connection in which energy dissipation is 
demanded to steel plasticization (image on the right, from [3.28]). 

The study of efficient devices for CLT shear wall systems mainly started with the study of low-

damage solutions employing self-centering structures. In New Zealand, dissipating devices coupled 

with post-tensioned shear walls were originally designed for multi-storey RC structures [3.29]. The 

favourable results lead to the analyses of steel connection devices capable of high relative 

displacement while maintaining a rather unaltered energy dissipation capacity [3.30].  

Lately, this hybrid building technology have been extended to engineered timber shear walls [3.31] 

and referred to as Pres-Lam (Prestressed Laminated timber) system. Iqbal et al. [3.32] and Smith et 

al. [3.33] carried out further research studies on LVL walls. This knowledge was applied also to post-

tensioned timber frames [3.34] but studies concentrated mostly in shear wall assemblies. 

The UFP connector (Fig. 3.5a) originally developed in the 1970s [3.35] involved a simple U-shape 

realized from bending of a sufficient thick steel plate. This device was designed as a high 

performance vertical joint device necessary to fasten adjacent panels [3.28] and dissipate energy 

exploiting the rocking behaviour of high and slender CLT panels restrained at the base by post-

tensioned cables. 

Fused-type buckling-restrained dissipaters (Fig. 3.5b,c) concepts have also been transferred to high-

strength CLT connections by Sarti et al. and Kramer et al. ([3.36]-[3.37]) and subsequently applied 

to a self-centering system [3.38]. In this case, the connection obviously requires more refinement 

that the U-shape element but can withstand higher tensile loads. 

The use of slip-friction devices have been investigated by Loo et al. [3.39] where a high-performance 

hold-down was designed and tested. The connection system involved 12mm thick steel plates 

connected with bolts that slip through slotted holes. Tension was kept constant by using proper 

Belleville steel washers. The tension-only behaviour of the connections was assured with specifically 

designed shear-keys placed at the panel base to prevent any possible slip of the panel and 

consequent shear loading to the dissipating devices. More recently, an enhanced version was 

proposed by the same University of Auckland [3.40]. 

Innovative solutions have also been studied without coupling the topic to self-centering systems. 

Polastri et al. [3.41] developed a solution suitable for prefabricated CLT structures, which 

incorporates self-tapping wood construction screws, LVL inserts and a high strength steel device. 

This solution is meant to enhance CLT seismic performance and reduce meanwhile the on-site 

installation costs by partially fastening the joint to the CLT panel in the factory. 

University of Salerno [3.42] designed and tested high-efficient angle brackets (named XL-Stubs) that 

concentrate energy dissipation in the knee-joint substituting traditional hold-downs while, more 

recently, Schmidt and Blass [3.43] presented a study on a steel plate combined with special LVL 
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inserts and secured into the CLT panel to realize high-ductility energy-dissipating panel-to-panel 

joints. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 3.5 – Examples of innovative connections for CLT structures: (a) UFP [3.28]; (b) Fuse-type dissipater 
[3.37]; (c) Fuse-type dissipater [3.38]; (d) Slip-friction connector [3.39]; XL-Stub [3.42]; (f) Steel plate dissipater 
[3.43]. 

It is worth noting that the term “innovative connection” used in this work does not necessarily mean 

a device that introduces new technologies or particular materials to the cause of CLT connections 

but should intend a different way of conceiving the connection. In fact, a duality characterizes 

traditional or innovative connections, which is sketched in Fig. 3.6. Generally, both types of 

connection comprise two components: a fastening system (e.g., dowel-type fasteners) to anchor the 

connector to the panel and the connector itself (e.g., hold-downs, steel plates). That being said, the 

concept of innovative connections is to switch the dissipative and usually ductile element from the 

fastening components to the connector. This process is governed, and must be carefully taken into 

account, by capacity design. 

 

Fig. 3.6 – Duality of failure mechanisms between traditional and innovative connections. 

Innovative

connections

Traditional

connections

Steel plate
Fastening to 

the panel

Steel plate
Fastening to 

the panel

DUCTILE COMPONENT BRITTLE COMPONENT

CAPACITY DESIGN 

CAPACITY DESIGN 
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3.1.2 Capacity design of connections for CLT structures 

Research results presented in this section are partially available in the Proceedings of International 

Network on Timber Engineering Research (INTER), meeting 50, 28-31 August 2017, Kyoto, Japan. 

Paper INTER/50-15-5 [3.44]. 

In order to exploit completely the improved reliability of ductile innovative connections it is mandatory 

to guarantee that failures or incompatible deformations be not localized in the brittle parts of the 

connection. In this context, a digression in the theoretical concepts of the capacity design criteria 

applied either to traditional or innovative CLT connection and the general procedure for the robust 

evaluation of proper γRd values is reported. 

The capacity design approach was originally developed for RC structures [3.45]. Its extension to 

timber and specifically to CLT structures has been formally defined and applied ([3.24];[3.25];[3.46]-

[3.48]). Capacity design needs the definition of reliable overstrength factors γRd, which are not 

provided in the current version of Eurocode 8 [3.6] for timber structures. A proposal for revision of 

Chapter 8 of Eurocode 8 [3.6] is available in literature ([3.49]; [3.50]). In these works, a γRd for the 

CLT building technology and the formulations for its application in the capacity design are proposed. 

The main obstacle to apply capacity design with traditional connections derives from the uncertainty 

in evaluating the actual strength of fasteners (i.e., the ductile component of traditional connections), 

which often largely exceeds the corresponding characteristic load-bearing capacity provided by 

Codes, e.g., Eurocode 5 [3.27] or specific Technical Approvals (ETAs). This evidence and the high 

standard deviation values exhibited by the ductile part of such connections result in frequent events 

of brittle failures [3.24]. Conversely, the use of innovative connections, characterized by low 

scattering of strength properties and well-predictable yielding and peak forces, makes capacity 

design more accessible. In this case, the underestimation of the actual strength of dowel-type 

fasteners (i.e., the brittle component of innovative connections) is on the safe side in the application 

of the capacity design. 

Fig. 3.7 shows a conceptual model according to [3.46] of the capacity design of the weakest brittle 

component, starting from the strength properties of the ductile element of the system. It has to be 

highlighted that, the component of the connection that is desirable to deform plastically and fail 

before the others is identified as ductile, whereas all the other components that are brittle or less 

ductile are in any case identified as brittle. For example, the fastening of a connection to the CLT 

panel will be referred as the ductile part of a traditional connection or the brittle part of an innovative 

connection, independently from its actual ductility. 
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Fig. 3.7 – Yielding and peak strength of a ductile element and their statistical distribution. 

This approach is based on the scattering of peak strength of the ductile part and the analytical 

procedures applied to evaluate such strength (i.e., rules according to a Code). The main parameters 

in Fig. 3.7 are: 

- dy  yielding displacement; 

- dpeak displacement corresponding to peak strength; 

- Fcode
 −

   characteristic load-bearing capacity estimated according to Code; 

- Fpeak
 −

 5th percentile of the maximum strength obtained by tests; 

- Fpeak
 mean

  mean value of the maximum strength obtained by tests; 

- Fpeak
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  95th percentile of the maximum strength obtained by tests; 
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- Fy
 −

   5th percentile of the yielding strength obtained by tests; 

- Fy
 mean

  mean value of the yielding strength obtained by tests; 

- Fy
 +

   95th percentile of the yielding strength obtained by tests; 

- γ
Rd

  overstrength factor; 

- γ
an

  analytical overstrength (Fpeak
 − = γ

an
 Fcode

 −
); 

- γ
sc

  scattering of peak strength (Fpeak
 + = γ

sc
 Fpeak

 −
). 

- Subscripts B or D identify brittle elements or the ductile element respectively. 

The capacity design consists in fulfilling inequality (3.1), i.e., the brittle parts of the system must 

assure a 5th-percentile load-bearing capacity higher or equal to the 95th-percentile peak strength of 

the ductile part, which is expressed as the product of the overstrength factor γRd and the Code 

strength FD, code
 −

 : 

FB,code
-

 ≥ FD,peak
+

=γ
Rd

 ∙ FD,code
-

  (3.1) 

Hence, the overstrength factor γRd can be defined directly as a unique term, according to Eq. (3.2), 

or can be split into two parts as in Eq.(3.3). 

γ
Rd

 = FD,peak
+

/ FD,code
-

  (3.2) 

γ
Rd

 = γ
sc

∙γ
an

 = FD,peak
+

 / FD,peak
 -

 ∙ FD,peak
 -

 / FD,code
 -

  (3.3) 

The described conceptual model is based on the hypothesis that a set of experimental tests (at least 

three) is available to characterize the statistical distribution of the peak strength of the ductile 

component and then to compute directly FD,peak
 +

. However, this experimental characterization is 

generally not available, and FD,peak
 +

 is normally unknown by practitioners. For the same reason, in 

this formulation the brittle component is defined with the value FB,code
 –

 and not FB,y
 –

 or FB,peak
 –

. 

Furthermore, by using FB,code
 –

 (f.e., by means of the European Yelding Model [3.27]) the designer 

has sufficient guarantees that the brittle elements behave mostly in the pre-yielding phase, and 

consequently, by exploiting their highest stiffness, do not alter the stiffness of the dissipating device. 

Note that γ
Rd

 is code-dependent being strictly correlated to the analytical method used to compute 

FD, code
 −

, which is the only value available to practitioners. This aspect is of utmost importance for 

timber connections, and specifically for CLT, for which FD, code
 −

 is currently not univocally defined, 

depending on the chosen values of parameters in the calculation model. For instance, for a dowel-

type fastener, FD,code
 −

 is normally computed according to Eurocode 5 [3.27], applying the Johansen’s 

Theory [3.26], but the resulting load-bearing capacity is not univocal, depending on the chosen 

values of parameters in the analytical formulations and on the special rules provided by product 

approvals (e.g., European Technical Approval, ETA). Therefore, γ
Rd

 values are affected not only by 

the statistical variability of the strength of the ductile element (γ
sc

) but also by the analytical method 

to estimate its characteristic strength, according to a particular Code (γ
an

). Therefore, it is 

fundamental that γRd values proposed in a Code be consistent with the analytical methods and 

parameters available in the same Code. 

It must be evidenced that, differently from the proposal in ([3.48]-[3.50]), the factor β
Sd

, accounting 

for the strength degradation due to cyclic loading, does not appear in Eq. (3.1). According to the 

cited works, factor β
Sd (≤ 1.0) should divide FD, code

 −
 to estimate the first cycle strength starting from 
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load-bearing capacity of the third loading cycle. However, according to the Johansen’s Theory [3.26] 

or specific ETAs, FD,code
 −

 already represents the monotonic strength of metal fasteners. Therefore, 

the further division of FD,code
 −

 by β
Sd

 would be conceptually not consistent with the theory used to 

estimate the load-bearing capacity of the connector. Otherwise, the strength FB, code
 –

 could be 

reduced by β
Sd

 when the brittle component is subjected to strength degradation, but such provision 

results to be excessively conservative since the application of capacity design is intended to prevent 

the entering of brittle components into their inelastic field. 

Finally, it is worth emphasizing that, the example provided in Fig. 3.7 displays a typical connection 

characterized by an elastic-hardening skeleton curve with a final softening behaviour. According to 

standards for loading tests (e.g., EN 12512 [3.18]), the failure load Fu can be lower than the peak 

strength, when ultimate displacement du is higher than the displacement at maximum strength dpeak. 

Note that Fu is not needed for the application of the capacity design and has not to be confused with 

the peak strength. 

3.1.2.1 Capacity design for CLT connections 

As mentioned above, the application of capacity design to traditional connections is based on the 

evaluation of the strength properties of the ductile part, which is in most cases realized with small 

diameter nails or screws. 

An exhaustive experimental research about steel-to-timber joints with ring shank nails for CLT is 

available in [3.48]. According to these tests and depending on the chosen parameters to compute 

FD, code
 −

 and on the angle of the force to the face lamination of the panel, the obtained γRd values are 

in the range between about 1.6 and 2.6, thus demonstrating the strict correlation between γRd and 

the analytical models and parameters to compute FD, code
 −

. These values may be used to apply the 

capacity design at connection level, to design the steel plate of the connection or the anchoring to 

foundation or floor. 

Gavric et al. [3.21] evaluated γ
Rd

 from tests in shear or tension of angle brackets and hold-downs 

anchored to CLT floors or to foundation. Values of γ
sc

 and γ
an

 were given; γ
Rd can be obtained from 

their product, resulting in values in the range between about 2.0 and 3.4. These values may be useful 

to apply a capacity design at wall level, i.e., selected ductile connections should yield before others 

so assuring a rocking-type failure instead of a sliding one [3.7], or at the building level, where a “box” 

behaviour of the building should be assured, allowing an effective transmission of shear forces 

among adjacent panels [3.24]. 

The adoption of innovative connections developed to localise yielding in steel parts, and therefore 

with well-defined and predictable yielding and peak strength, undoubtedly would result in a more 

reliable application of the capacity design. No formulas are normally available to evaluate the load-

bearing capacity of such connections. According to Eurocode 3 [3.51], in steel structures FD, code
  −

 is 

normally assumed coincident with nominal FD, y
  −

: this assumption can be extended to innovative 

connections and, according to Eq. (3.2), γRd can be obtained directly as ratio between FD, peak
 +

 and 

FD, y
  −

. Testing of the ductile component can be handled separately from tests of brittle components. 

It is worth noting that for these connections, if their strength and stiffness depend only on the property 

of steel and not on other phenomena (e.g., friction and wood embedment), FD, y
  −

 might be computed 

with good accuracy also by means of detailed finite-element analyses if a robust non-linear 

constitutive law reproducing the actual elastoplastic behaviour of steel (e.g., the Ramberg & Osgood 

law [3.52]) is adopted. 
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3.1.3 Aim of this work 

The aim of this work is to develop and characterize an innovative dissipative connection, specifically 

developed for CLT buildings, that improves the intrinsic ductility and the cyclic behaviour of CLT wall 

systems. 

The connector is designed to be applied with minor adaptation as a panel-to-foundation, panel-to-

panel and floor-to-panel joint. The connection system exploit the aforementioned energy dissipation 

methods and has been designed for low to medium-rise CLT buildings and could, on the occasion, 

be coupled with self-centering systems. 

The newly-developed connection element look forward to apply a reliable capacity design at the joint 

level. In detail, the availability of results from cyclic-loading tests allows the detailed application of 

capacity design. Reliability of the obtained γRd for the capacity design of the fastening of the 

innovative bracket to a CLT panel is demonstrated through experimental evidences. The proposed 

procedure for γRd evaluation is comparatively applied also to traditional connections, for which 

experimental data are available in literature, to give a contribution towards the reliability of capacity 

design of CLT, and in general of timber buildings. 
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3.2 Design, testing and mechanical characterization of an 

innovative dissipative connection 

Contents of this chapter are the results of a three-year work, which prompted a continuous 

improvement of the analysed system and produced subsequent versions of the dissipative device. 

Within each version, the investigations aimed to characterize different aspects of the connection 

obtaining at the end an exhaustive representation of the system (see Table 3-1). In particular, the 

work can be summarized in three phases, each one distinguished by a version of the connector: 

- Version 1: the study aimed to find the optimal shape that guarantee the best compromise 

between strength, ductility and dissipative capacity; 

- Version 2: the investigations focused on the anchoring of the device to the CLT element with 

particular attention to the capacity design rules; 

- Version 3: the analyses focused on the easiness of installation proposing an alternative 

anchoring system integrated into the main element; 

Table 3-1 – Analysed aspect within each version. 

Version 
Of the element 

Investigated aspects 

Cyclic 
performance 

Capacity 
design 

Reusability of 
the system 

Easiness of 
installation 

Version 1 Yes No No No 

Version 2 Yes Yes Yes No 

Version 3 Yes Yes No Yes 

3.2.1 Design Criteria 

Currently adopted connectors for CLT panels are differentiated to prevent either sliding (angle 

brackets) or rocking movements (hold-downs). Conversely, the connection proposed in this work 

operates properly in both circumstances and has a definite behaviour when subjected to mixed axial 

and shear forces (deeply discussed in Chapter 4). It assures high ductility before failure and 

demonstrates negligible pinching behaviour, allowing one to emphasize the dissipative capacity 

under cyclic loading. The utilization of the proposed connection to realize both panel-to-foundation 

and panel-to-panel joints of shear walls is sketched in Fig. 3.8a. The usage of the bracket on different 

loading conditions (e.g., in in Fig. 3.8b the connection is loaded in tension/shear while in in Fig. 3.8c-

d is loaded in shear only), requires a clear definition of its mechanical response in its entire shear-

tensile strength domain and for each specific application. Recalling that the adequate seismic design 

of a specific building involves the decision about their number, position and dimensions in fulfilment 

of the capacity design criteria, the main mechanical parameters such as yielding and ultimate 

strength, displacement capacity and overstrength factors are to be defined within each possible 

configuration. 

A practical example can be drawn analysing Fig. 3.8c and d (external and concealed panel-to-panel 

application) where the X-brackets are theoretically subjected to the same demand of strength and 

displacement capacity but shows a different post-elastic behaviour (discussed in detail in 3.2.5): 

softening for the external bracket and hardening for the concealed one. This lead, even for the same 

geometry of the bracket, to distinct values of yielding point (Fy; d(Fy)) peak point (Fpeak; d(Fpeak)) and 

consequently, to distinct overstrength factors. As stated in Section 3.1.2.1 it emerges once again the 
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primary importance of the experimental characterization when analytical instruments and numerical 

simulations lack of precision or reliability in predicting the actual behaviour of connections. 

The main objectives to be fulfilled through the parametric design of the connection’s shape were: 

displacement capacity not less than that of alternative typically-used connections; high ductility class 

according to Eurocode 8 [3.6]; strength comparable to the traditional connectors [3.23]; optimized 

shape with minimum scraps’ production in the manufacturing process. 

  

 
(a) 

    
(b) (c) (d) 

Fig. 3.8 – (a) Conceptual disposition of X-brackets in shear walls realized with CLT panels; (b) panel-to-
foundation joint; (c) panel-to-panel joint; (d) concealed panel-to-panel joint. 
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3.2.2 Version 1 

Research results presented in this section are partially available at MDPI via 

http://dx.doi.org/10.3390/ma9030139 [3.53]. Journal Materials is acknowledged as the original 

source of publication. 

3.2.2.1 Parametric Design Assisted by Numerical Modelling 

Once the first-tentative “X” shape was decided, a parametric Finite-Element (FE) model with 

modifiable geometries was used to derive the optimal dimensions, which fulfil the design criteria 

listed above. A 3D FE model of the X-bracket using high-order solid elements was implemented into 

ANSYS Workbench [3.54]. The twelve geometrical parameters chosen as the variable in the model 

are evidenced with letters in Fig. 3.9a. To allow a single-cut production process, as shown in Fig. 

3.9b, reciprocal constraints among geometrical properties were imposed (see the red and blue lines 

in Fig. 3.9a). Cylindrical hinges placed on the four fixing points allowed the rotation of the horizontal 

arms. The non-linear geometrical analysis option was activated to account for possible buckling 

phenomenon under high displacements. A compression only surface placed on the back of the 

bracket forced the possible out-of-plane buckling only on the opposite side (i.e. to simulate the 

presence of the CLT panel on its back). 

An elastic-plastic constitutive law combined with a Von Mises yield criterion and a kinematic 

hardening model was adopted to simulate steel cyclic behaviour. In the parametric design phase, 

the elastic and hardening moduli of S275JR steel were set to 200,000 and 780 MPa, respectively, 

whereas yielding stress and ultimate stress were set to 275 MPa and 430 MPa, respectively. To 

minimize failure risk due to low-cyclic fatigue, a limit to the maximum strain of steel was imposed 

[3.55] when determining the ultimate displacement capacity for the X-brackets. Accordingly, 

maximum axial deformation of the X-brackets was limited between +10% and −2% (the possibility of 

limited compressive deformation was accounted for), while their allowable shear strain was set in 

the range ±6%.  

Nearly 80 different combinations of the parameters were examined. Each combination consisted of 

a pure tension and pure shear pushover and/or cyclic loading analysis. Part of the outcomes of the 

final analyses are shown in Fig. 3.10: results of each change were compared with the previous one 

by calculating the relative strength increment ΔF measured at a fixed displacement level and the 

corresponding plastic strain increment/decrement Δε. The analyses ended when changes on a 

single parameter produced only increments of the total accumulated plastic strains. 

The parametric analyses were helpful, as modifying the length and thickness of vertical and 

horizontal arms allowed one to calibrate shear and tensile displacement capacity, respectively. 

Additionally, the variation of stiffness and strength was permitted by changing the internal curvature 

radius. The dimensions of the final shape listed in Table 3-2 allowed one to balance at the same 

time the strength, stiffness and ductility values of the connector and to assure similar performance, 

both in shear and in tension. The chosen thickness of 6.0 mm was found to be a balanced solution 

to withstand high loads, while avoiding premature triggering of local buckling phenomena. The 

internal curvature radius connecting vertical and horizontal arms was modified until the highest 

amount of plasticized area was involved. In particular, the high ductility in shear is mainly assured 

by the plastic deformation of the vertical arm, whereas in tension by the bending deformation of the 

horizontal arms. Results from tests and simulations described hereafter have confirmed the good 

balance among the main mechanical performances to assure an optimal seismic behaviour of the 

device.  

http://dx.doi.org/10.3390/ma9030139
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(a) 

 
(b) 

Fig. 3.9 – Shape and geometry of the connection: (a) model parameters; (b) manufacturing process from a 
steel plate. 

Table 3-2 – Main dimensions of X-brackets relative to Fig. 3.10a. 

Parameters (units) Dimensions Parameters (units) Dimensions 

a (mm) 303.0 h (mm) 85.0 

b (mm) 233.0 i (mm) 89.0 

c (mm) 33.0 j (mm) 23.5 

d (mm) 35.0 k (mm) 30.0 

e (mm) 31.0 l (mm) 1.0 

f (mm) 33.0 Thickness (mm) 6.0 

g (mm) 26.5 Hole diameter (mm) 16.0 
 

 

Fig. 3.10 – Excerpt from the parametric analyses results. Final parameters of version 1 and 2 are highlighted 
in green. 
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Fig. 3.11 shows the deformation at maximum imposed displacements, in pure tension and pure 

shear loading. The grey contour shows plastic regions in which the yielding stress has been 

exceeded. The position and extension of yielded areas vary with the loading type; however, the 

spread of yielding is well evident for both tests. 

  
(a) 

 
 (b) 

Fig. 3.11 – Numerical model: equivalent Von Mises stress contour on deformed geometry of X-brackets: (a) 
tension loading; (b) shear loading. Plastic regions are evidenced in grey colour. 

3.2.2.2 Experimental tests of prototypes 

After the design and optimization phases, preliminary experimental tests on prototypes have been 

conducted to obtain the actual cyclic behaviour of X-brackets. Three tests were performed in pure 

tension (T1, T2, T3) and as many in pure shear (S1, S2, S3). A couple of X-brackets was placed into 

a rigid portal in every test. Therefore, a total of twelve equal X-brackets were tested. 

Tests were performed at the Laboratory of Construction and Materials, Department of Civil, 

Environmental and Architectural Engineering (ICEA) of the University of Padova. 

Two specific setups were designed for tension and shear tests (Fig. 3.12). In order to evaluate 

exclusively the behaviour of the X-brackets, suitable rigid steel frames were realized to transmit load 

from the actuators. The couple of X-brackets were fixed externally on both sides of the supporting 

frame without any buckling restraining elements. This arrangement allows the local buckling 

phenomenon for large cycles, permitting the connector to work properly, but avoids unrealistic global 

out-of-plane deformation. As concerns the tension configuration (see Fig. 3.12), the two lower fixing 

points were connected to a rectangular 20 mm-thick steel plate rigidly fixed to the portal. The two 

upper fixing points were connected to another rectangular 20 mm-thick plate fixed to the hydraulic 

jack through an eyebolt mechanism. The pure shear loading was obtained with an unbraced steel 

truss, in which the X-brackets operated as the cross-bracing element (see Fig. 3.12). 15mm-thick 

angle-shaped steel plates were used for the steel truss. The whole assembly was positioned in a 

rotated configuration, in order to keep the loading direction as close as possible to the virtual diagonal 

line. In actual applications, friction might occur between the X-bracket and connected elements, so 

increasing the apparent strength and dissipative capacity of the connections. The unreliability of the 

friction effects imposes that they must be disregarded. Therefore, in all of experimental tests, 

polytetrafluoroethylene (Teflon - PTFE) sheets were interposed between contact surfaces to 

minimize friction and to determine purely the connection capacities assured by the X-bracket. 

Cyclic tests were performed according to the quasi-static loading protocol recommended by EN 

12512 [3.18]. The cyclic procedure was stopped after reaching a relative displacement of 30 mm; 

then the specimens were loaded monotonically until their failure. Tests were conducted under 

displacement control with a deformation rate of 0.02 mm/s. 



Chapter 3: Development of an innovative high-dissipative seismic device for CLT structures 
 

 
97 

  
(a) (b) (c) (d) (e) (f) 

Fig. 3.12 – Setup and imposed deformations: (a,b,c) rigid frame for tension tests; (d,e,f) unbraced steel truss 
for shear tests. 

Experimental tension and shear tests on X-brackets were reproduced with the same FE model 

adopted in the parametric design phase. Mean steel parameters introduced in the numerical models 

exposed later have been derived from tensile tests according to EN ISO 6892-1 [3.56] on specimens 

obtained from the same steel sheet with which the X-brackets were produced. Fig. 3.13 plots the 

results of the experimental tests in comparison with those from numerical analyses for a single 

bracket. Displacement were measured by means of one LVDT directly fixed on each side of the 

supporting steel plates. For tension tests, the transducer measured directly the relative displacement 

Δy of the two rigid plates (see Fig. 3.12c), while the shear deformation was measured by converting 

the virtual diagonal elongation (see Fig. 3.12f) into the actual shear displacement Δx. This was 

possible by the absence of gaps in the 16-mm holes of every steel component. 

 
(a) 

 
 (b) 

Fig. 3.13 – Experimental cycles in comparison to FEM results per bracket: (a) Tension tests; (b) shear tests. 

On the 30 mm cycle of the tension test (Fig. 3.13a), the reloading path decreased gradually due to 

the instability phenomenon. For the same reason, the maximum compression force measured during 

unloading was lower than the tension one, but still maintained a wide hysteresis area and, 

consequently, an appropriate dissipative capacity. The numerical model tolerably underestimated 

force and stiffness for the unloading sequences. 

Results from the shear tests are plotted in terms of force-displacement curves in Fig. 3.13b. The 

progressive rotation of the steel frame was accounted for the correct evaluation of the shear 

component of the applied force. The experimental hysteresis loops are perfectly centered on the 

origin of the axis, thus demonstrating the suitability of the setup configuration. The experimental 

cyclic shear tests were stopped at about ±15 mm due to the limitations of the test setup. Then, X-
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brackets were deformed monotonically up to 50, 58 and 80 mm in Tests S1, S2 and S3, respectively. 

In general, no noticeable strength degradation was observed in the experimental tests, and cracks 

induced by oligo-cyclic fatigue were not observed. Some differences appear between the 

experimental curves of Specimens S1, S2 and S3. They are mainly in the un-loading branches, when 

buckling of the web portion (clearly evidenced in Fig. 3.14) strongly affects the response of the 

brackets. Perhaps, such differences are within the normal scattering of the experimental tests.  

Numerical simulations of cyclic shear tests were extended up to ±30 mm. In the range ±15 mm, the 

numerical results are in good agreement with the experiments, even if the numerical predictions 

slightly over-estimate shear force at higher displacements. This was possible as the numerical model 

permitted large deformations and considered out-of-plane buckling of the X-brackets, as shown in 

Fig. 3.14. 

Fig. 3.15 shows the tested specimens subjected to very large displacement (35 mm in the tension 

test, 50 mm in the shear test). The main evidence is that X-brackets are able to experience large 

plastic deformations before failure, in both loading configurations. Instability phenomena of limited 

parts of the specimen occurred during both shear and axial tests without impairing significantly the 

mechanical performance of the connectors. A direct comparison between deformed geometries in 

Fig. 3.11 and Fig. 3.15 again shows the consistency between numerical analysis and experimental 

validation. Specimens failed for very large displacements due to stress concentration in fillet “j” in 

Fig. 3.9a. Therefore, the ductility of X-brackets could be further improved with a proper modification 

of this detail. 

 
(a) 

 
 (b) 

Fig. 3.14 – Plate buckling under shear loading: (a) Experimental evidence; (b) numerical prediction. 

 
(a) 

 
 (b) 

Fig. 3.15 – Deformed specimens: (a) Axial test; (b) shear test. 
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3.2.2.3 Analysis of Test Results 

The performed cyclic tests allowed one to define the main mechanical parameters for a proper 

characterization of the tested elements. Various methods were proposed to compute these 

parameters ([3.18];[3.57]). In this work, the envelope of the hysteresis curves was fitted using the 

analytical formulation proposed by Foschi and Bonac [3.58]. Then, Method (a) of EN 12512 [3.18] 

was chosen for both axial and shear tests, in order to obtain the best linear fitting of the envelope 

curve. This method is suitable to interpolate data with two well-defined linear branches, and the 

yielding point is defined by the intersection of these two lines. Moreover, also the equivalent elastic–

plastic energy (EEEP) method [3.59] was used to analyse the results of the shear test, because of 

the almost elastic perfectly plastic behaviour. From the bi-linear curves, it was then possible to obtain 

the elastic and post-elastic stiffness (kel,kpl), yielding point (dy,Fy), failure condition (du,Fu), and 

ductility ratio μ and to classify the proposed connection into the appropriate ductility class, according 

to Eurocode 8 [3.6], i.e., low (L), medium (M) or high (H) ductility class. Table 3-3 and Table 3-4 list 

the obtained results referring to a single bracket, i.e., each of them represents the mean result 

between the couple of X-brackets contemporarily tested. Therefore, average values, standard 

deviations (SD) and 5th and 95th characteristic values (k
-
,k

+
), were computed considering a sample 

of six elements for both tension and shear tests. 

Results show that the proposed connection is characterized by a high initial stiffness and adequate 

strength for both tension and shear loads. However, the most valuable result is the very high value 

of ductility obtained, coupled with almost the null strength degradation and limited pinching effect. 

High values of ductility are the consequences of a combination of large displacement capability du, 

similar or greater than typically used connections, and an early yielding condition dy. The highest 

values were obtained for the axial configuration. However, ductility for the shear configuration was 

computed assuming dy as 50 mm, although in Test 3, failure of the specimen occurred for a 

displacement equal to 80 mm, whereas Tests 1 and 2 were stopped before failure. If the ultimate 

displacement capacity of 80 mm was assumed, ductility values in shear tests would become higher 

and comparable to those from axial tests. It must be highlighted that these steel connection have 

evidently a different displacement capacity if the load is applied monotonically or cyclically, due to 

the accumulation of plastic strain and consequent failure due to oligocyclic fatigue typical of steel 

elements. Analysing values of initial stiffness and of yielding and ultimate forces from the two 

configurations, it can be observed that the connection shows a similar response when subjected to 

shear or axial loads. 

Table 3-4 lists the 5th and the 95th percentile of the ultimate and yielding force (k
-
,k

+
), computed 

according to EN 1990 [3.60]. According to the capacity design criteria the ratio described in Eq. (3.2) 

is fundamental for the estimation of the overstrength factor to be used in the capacity design 

approach. Since only steel from a single sheet has been used for the realization of the tested X-

brackets, the obtained values should be further amplified to account for the typical randomness of 

steel properties. Furthermore, characteristic values were obtained from a limited number of tests; 

therefore, the actual dispersion of the parameters may be different, resulting in slightly different 

overstrength values. Nevertheless, it can be stated qualitatively that the proposed connection 

assures limited values of γ
Rd

, which are lower than those shown by traditional connections failing on 

the timber side (ductile failure). This indicates that the adoption of capacity design rules would 

become less onerous in designing CLT structures with innovative connections. This topic will be 

better examined in the Section 3.2.3.3.2 where an example of application to a CLT panel is 

investigated in deep. 
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Table 3-3 – Tension tests: main mechanical parameters according to EN 12512 method a [3.18]. 

Parameters 
(units) 

Test T1 Test T2 Test T3 Mean SD COV k- k+ 

Fy (kN) 17.55 18.37 17.99 17.97 0.36 2.03% 17.18 18.76 

dy (mm) 1.89 2.01 1.98 1.96 0.06 3.02% 1.83 2.09 

Fmax (kN) 37.18 37.84 38.25 37.76 0.48 1.28% 36.70 38.81 

du (mm) 44.30 47.30 47.00 46.20 1.48 3.20% - - 

kel (kN/mm) 9.31 9.12 9.08 9.17 0.11 1.17% 8.94 9.40 

kpl (kN/mm) 0.46 0.43 0.45 0.45 0.01 3.30% 0.42 0.48 

 (Vu) (-) 23.49 23.49 23.72 23.57 0.12 0.52% 23.30 - 

Ductility 
Class 

H H H - - - - - 

Table 3-4 – Shear tests: main mechanical parameters according to EN 12512 method a [3.18] and EEEP 
method [3.59]). 

Parameters 
(units) 

Test S1 Test S2 Test S3 Mean SD k- k+ 

EN EEEP EN EEEP EN EEEP EN EEEP EN EEEP EN EEEP EN EEEP 

Fy (kN) 26.71 27.41 29.41 28.88 28.14 27.83 28.09 28.04 1.21 0.68 25.46 26.56 30.71 29.52 

dy (mm) 2.38 2.60 4.00 4.45 4.02 4.53 3.46 3.86 0.84 0.98 1.63 1.73 5.30 5.99 

Fmax (kN) 29.00 27.41 29.70 28.88 28.40 27.83 29.03 28.04 0.58 0.68 27.76 26.56 30.30 29.52 

du (mm) 50.00* 50.00* 58.00* 58.00* 50.00 50.00 - - - - - - - - 

kel (kN/mm) 11.24 10.55 7.36 6.49 7.00 6.14 8.53 7.73 2.10 2.19 3.95 2.95 13.12 12.50 

kpl (kN/mm) 0.05 0.00 0.01 0.00 0.00 0.00 - - - - - - - - 

 (du=50mm) 21.04 19.24 12.51 11.24 12.44 11.03 - - - - - - - - 

Ductility 
Class 

H H H H H H - - - - - - - - 

* Tests 1 and 2 were stopped before the ultimate displacement. 

3.2.3 Version 2 

After the encouraging results obtained with the version 1 of the X-bracket, a second prototype was 

conceived applying minor shape adjustments, involving fillet radius and hole spacing, with the aim 

to further improve the connection’s strength. Geometry of the zones subjected to yielding, which is 

responsible of the actual hysteretic behaviour, was not modified. A 6-mm thick steel plate, with 

strength corresponding to a S450 steel grade according to EN 10025-2 [3.61], was chosen to realize 

the latest specimens cyclically tested in the laboratory of construction material testing of Department 

ICEA of the University of Padova. 

3.2.3.1 Experimental tests 

Six mechanical tests (three in tension and three in shear) were performed according to the quasi-

static cyclic-loading protocol of EN 12512 [3.18], imposing a yielding displacement dy,est equal to 

4mm, calculated according to initial numerical simulations and preliminary monotonic tests. The 

same symmetric test procedure of the version 1 was followed, by anchoring a couple of X-brackets 

to a rigid steel frame, with M16 8.8-class steel bolts (Fig. 3.16). Therefore, six brackets were tested 

in tension and six in shear. Two LVDTs According to EN 12512 [3.18] the cyclic procedure should 

be stopped at 30 mm of relative displacement. However, for the tension tests the X-brackets were 
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cyclically loaded up to their actual failure, which occurred at 48mm, i.e., 12dy,est, due to the strength 

degradation recorded at that cycle amplitude (see Fig. 3.17b). 

  
(a) (b) 

Fig. 3.16 – Test setup of version 2 and positioning of LVDTs for tensile (a) and shear (b) tests. 

Obtained results show that the proposed connector is characterized by large ductility resulting from 

a combination of high elastic stiffness and elevated displacement capacity. These properties confer 

to a CLT structure realized with these connections, a low-damage rigid behaviour for low-intensity 

earthquakes, and high displacement capacity for high seismic shocks. In tension tests, failure 

occurred due to large amount of plastic deformations of the vertical web, which is subjected to out-

of-plane buckling during the unloading phase and consequent strength degradation during the 

reloading (see Fig. 3.17a). This phenomenon starts from the 24mm cycles, whereas up to this 

deformation, no instability or strength degradation occurred. Moreover, for the subsequent 32, 40 

and 48mm cycles, the hysteretic response was still very acceptable and all the three repeated cycles 

were successfully completed (see Fig. 3.17b). Also for shear tests, failure was located in the vertical 

web, which is subjected to repeated load inversions and consequent out of plane buckling 

phenomena for large deformations (i.e. ±16mm cycles in Fig. 3.18a). However also for shear tests, 

all three ±32mm cycles were completed without showing excessive strength degradation (see Fig. 

3.18b). 

  

 
  

(a) (b) 
Fig. 3.17 – Axial tests of the X-brackets: photos of non-deformed and deformed specimens (a) and force-
displacement curves for a single bracket (b) (ductility evaluated as du/dy_est according to the loading procedure). 
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(a) (b) 
Fig. 3.18 – Shear tests of the X-brackets: photos of non-deformed and deformed specimens (a) and force-
displacement curves for a single bracket (b) (ductility evaluated as du/dy_est according to the loading procedure). 

3.2.3.2 Analysis of Test Results 

Mechanical parameters and ductility 

The performed cyclic tests allowed defining the main mechanical parameters as the previous 

version, by fitting the envelope of the hysteresis curves using the analytical formulation proposed by 

Foschi and Bonac [3.58] and applying proper bi-linearization methods. In particular, similarly to 

version 1, due to the different post-elastic behaviour of the connector, method (a) of EN 12512 [3.18] 

was chosen for tensile tests results while the EEEP method [3.59] was considered suitable for pure 

shear tests. 

  
(a) (b) 

Fig. 3.19 – Envelope of cycles and bi-linearization of tension (a) and shear (b) tests of the X-brackets. 

From the obtained bi-linear curves (see Fig. 3.19), it was possible to classify the proposed 

connection into the appropriate ductility class (Low (L), Medium (M) and High (H), according to 

Eurocode 8 [3.6]. These values are listed in Table 3-5, whereas the equivalent viscous damping νeq 

and strength degradation ΔF are discussed in the next subsection. Characteristic 5th percentile and 
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95th percentile values were calculated assuming a normal distribution according to EN 1990 [3.60] 

and EN 14358 [3.62]. The upgrade of the steel strength produced an increment of strength and 

stiffness with respect to version 1 compatible with the difference between an S275 and S455 [3.61]. 

The higher amount of cycles performed on both configurations with respect to version 1  showed a 

reduced ultimate displacement capacity of the X-bracket, especially in shear configuration. However, 

the slighter re  

Table 3-5 – Tension tests: main mechanical parameters according to EN 12512 method a [3.18]. 

Parameter 
(units) 

TEST T1 TEST T2 TEST T3 Mean SD COV 
EN 1990 EN 14358 

k- k+ k- k+ 

Fy (kN) 28.59 29.51 28.16 28.75 0.62 2.14% 27.41 30.09 25.39 32.11 

dy (mm) 3.26 3.08 3.21 3.18 0.08 2.53% 3.01 3.36 2.81 3.55 

Fmax (kN) 46.60 47.60 47.30 47.17 0.46 0.97% 46.17 48.17 41.65 52.68 

du (mm) 40.00 40.00 40.00 40.00 0.00 0.00% - - - - 

kel (kN/mm) 8.78 9.57 8.77 9.04 0.41 4.57% 8.14 9.94 7.98 10.10 

kpl (kN/mm) 0.49 0.49 0.52 0.50 0.02 3.12% 0.47 0.53 0.44 0.56 

 (du) (-) 12.29 12.98 12.46 12.58 0.32 2.56% 11.87 - 11.10 0.00 

Ductility 
Class 

H H H - - - - - - - 

Table 3-6 – Shear tests: main mechanical parameters according to EEEP method [3.59]. 

Parameter 
(units) 

TEST 1 TEST 2 TEST 3 Mean SD COV 
EN 1990 EN 14358 

k- k+ k- k+ 

Fy (kN) 39.15 39.51 39.84 39.50 0.31 0.78% 38.83 40.17 34.88 44.12 

dy (mm) 1.24 1.26 1.25 1.25 0.01 0.97% 1.23 1.28 1.11 1.40 

Fmax (kN) 43.91 43.59 44.45 43.98 0.39 0.88% 43.14 44.83 38.84 49.13 

du (mm) 32.00 32.00 24.00 - - - - - - - 

kel (kN/mm) 31.64 31.25 31.75 31.55 0.23 0.74% 31.03 32.06 27.85 35.24 

kpl (kN/mm) 0.00 0.00 0.00 0.00 - - - - - - 

(Vu) (-) 25.86 25.31 19.13 23.43 3.34 14.27% 16.14 - 15.61 0.00 

Ductility 
Class 

H H H - - - - - - - 

 

Hysteretic response 

With reference to the hysteretic loops of Fig. 3.17b and Fig. 3.18b, three different displacement 

ranges can be identified to clarify the usage of the connector for high-ductility CLT buildings: 

- The elastic range, which is characterized by high elastic stiffness and therefore high strength 

vs. low displacement, which is favourable for static lateral loads (e.g., wind action) or low-

intensity earthquakes (i.e., damage limitation state - DLS) 

- The working range, which comprises an optimal behaviour of the X-bracket in terms of high 

dissipation capacity, limited instability phenomena, no pinching behaviour and low strength 

degradation, all conditions that are favourable for high-intensity earthquakes (i.e., ultimate 

limit state - ULS). In this displacement range the response of this connector is much better 

than traditional connections ([3.20]-[3.21]) and the hysteretic property of the structural steel 

is entirely employed; 

- The high-ductility range, which is characterized by instability phenomena during unloading, 

lower dissipative capacity and higher strength degradation than the working range. However, 
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this range is useful to assure the high ductility, i.e., to avoid failure even if the working range 

is exceeded during the earthquake guaranteeing a wide safety margin. This displacement 

range is not reached by traditional connections, which normally fail for displacements lower 

or equal than 30mm ([3.21];[3.23]). 

Fig. 3.20 and Fig. 3.21 show the calculated equivalent viscous damping ratio νeq within each half 

cycle and the corresponding maximum strength. Tension tests shows that the calculated νeq at the 

3rd cycle is comprised between 6 and 15% in the working range. These values are much higher than 

traditional connections (see section 3.1). The measured strength degradation ΔF becomes 

significant only for very high ductility values (d/dy > 6) where the accumulated plastic strains are 

leading to the failure of the vertical web. With reference to shear tests, the device is characterized 

by an early yielding displacement dy resulting in a high inelastic working range with viscous damping 

ratio always higher than 30%. Also registered strength degradation ΔF within 1st and 3rd cycle is 

negligible up to ductility values μ equal to 8 (that is d = ±16mm). Even if the high ductility range is 

characterized by a pinching behaviour due to buckling phenomena described in the previous section, 

νeq values are still much higher than traditional angle brackets [3.20]. The slight dispersion of eq 

measured in the μ=4 cycles is due to an earlier out-of-plane buckling initiation of the web occurred 

in test 2. 

 

 

Fig. 3.20 – Progress of viscous damping ratio and strength during the cyclic tests for tensile tests. 
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Fig. 3.21 – Progress of viscous damping ratio and strength during the cyclic tests for shear tests. 

3.2.3.3 Application of the capacity design 

3.2.3.3.1 Overstrength factors 

The tension tests of the X-bracket and the bi-linearization method (a) of EN 12512 [3.18] returned 

FD, y
 −

 and FD, peak
 +

 values FD, code
 −

 of 27.41 kN and 48.17 kN respectively, according to EN 1990 [3.60]. 

Therefore, the resulting overstrength factor γ
Rd for the X-bracket loaded in tension, according to the 

conceptual model presented in section 3.1.2 and assuming FD, code
 −

 = FD, y
 −

, is equal to 1.76. In shear 

loading conditions, γ
Rd

 is equal to 1.15, resulting from FD, y
 −

 and FD, peak
 +

 values of 38.83 kN and 44.83 

kN respectively. This lower value for the shear tests is mainly due to the perfectly plastic behaviour. 

Table 3-7 shows a comparison of γ
Rd

 values for traditional hold-downs, angle brackets and for steel-

to-timber joints with ring shank nails laterally loaded in parallel or perpendicular to face lamination of 

the CLT panel. These values have been extrapolated from literature ([3.21];[3.48]), assuming as 
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FD, code
 −

 the characteristic load-bearing capacities evaluated according to Eurocode 5 [3.27], which 

are available in the same research works. It is worth noting that the obtained γ
Rd

 for the X-bracket 

is mostly due to the post-elastic stiffness and the high displacement capacity of the connector and 

not to the dispersion of results. Therefore, if lower ultimate displacement levels are reached during 

an earthquake a wide safety margin is assured applying such value. 

Table 3-7 – Comparison of overstrength factors for the innovative bracket, steel-to-timber nails and standard 
hold-downs and angle brackets. 

Connector / Fastener γ
sc

  γ
an

 γ
Rd

  

X-bracket Version 2 in tension 1.04 1.68 1.76 

X-bracket Version 2 in shear 1.04 1.11 1.15 

Nails loaded parallel to face lamination* 1.27 1.61 2.04 

Nails loaded perpendicular to face lamination* 1.53 1.69 2.59 

Hold-down in tension** 1.30 2.60 3.38 

Hold-down in shear** 1.38 - - 

Angle bracket in tension** 1.23 2.80 3.44 

Angle bracket in shear** 1.16 1.70 1.97 

*Values extrapolated from [3.48]; **Values extrapolated from [3.21]  

3.2.3.3.2 Anchoring to the CLT panel 

The anchoring of the X-bracket to a CLT panel subjected to tensile loads was designed, referring to 

the mechanical properties of the bracket in tension and γ
Rd

 evaluated in the previous section. The 

timber element is a 120mm thick CLT panel composed by 5 layers of C24 timber boards. The two 

16mm diameter upper fixing points of the X-bracket are supposed to be fastened to the panel with 

two 16x200mm 8.8-class calibrated bolts, to allow the horizontal arms to rotate and to dissipate 

energy due to steel plasticization. These two cylindrical restraints are subjected to high concentrated 

forces, which would result in predominant wood embedment, compromising the dissipative 

properties of the connection. Several techniques are available both to improve strength and stiffness 

of dowel-type joints and to reduce the pinching phenomenon (e.g., punched steel plates, toothed 

plate connectors, hollow steel tubes) [3.63]. In this application, a technique similar to punched metal 

plates [3.64] has been chosen, using a thin steel plate placed between the bracket and the panel 

with two 16mm diameter holes in correspondence to the fixing points of the bracket. A rectangular 

S275JR steel plate with dimensions of 330x200x3mm, was designed and fastened to the panel with 

fourteen 8x100mm self-tapping partially threaded screws. The characteristic load-bearing capacity 

of the screws FB,code
 −

 was computed according to Eurocode 5 [3.27]. In detail, a total shear strength 

FB,code
 −

 = 52.86 kN was obtained for the effective number of screws, evaluating the characteristic 

embedment strength in the timber member fh,k according to Eurocode 5 formulation [3.27], assuming 

the fastener yield moment My,Rk and withdrawal capacity fax,k according to ETA [3.65] and a the 

characteristic value of panel density ρ
k
 equal to 385 kN/m3.  This value of FB, code

 −
 is higher than γ

Rd 

·FD,code
 −

 = 48.24 kN (assuming again FD,code
 −

 = FD,y
 −

), thus fulfilling Eq. (3.3) and complying with the 

capacity design. In addition, the other brittle mechanisms of the complete connections were verified 

according to the capacity design, i.e., shear failure of bolts, steel plate embedment and plug-shear 

failure of the CLT panel. Spacing and edge distance of fasteners were verified according to Eurocode 

5 [3.27]. 

A cyclic-loading test of the complete connection was conducted following the same cyclic-loading 

procedure and setup adopted for the bracket, in order to obtain a direct comparison between the 
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hysteretic behaviour of the X-bracket and of the complete connection. The experimental test of the 

complete connection was conducted only in tension. However, by changing the plate dimensions 

and the position of the screws, it is possible to realize the same over-resistant connection in case of 

shear loading conditions. 

It is worth noting that the symmetric disposition was intentionally made to simulate the actual 

conditions of anchoring the CLT panel to the concrete foundation: it should imply two external X-

brackets for each connection point whereas a one-sided application, and its consequent load 

eccentricity, could anticipate the out-of-plane buckling of the web and reduce the load bearing 

capacity, especially with mainly tensile loading conditions.  Fig. 3.22 shows the photos of a non-

deformed and a deformed specimen. Displacement were measured with a couple of LVDTs per side. 

In particular, one instrument (LVDT_1) measured the relative displacement (uplift) between the steel 

frame (lower fixing point of the X-bracket and the CLT panel while the second (LVDT_2) measured 

the relative slip between the steel plate and the CLT panel. In these tests, the external bracket was 

not in contact with the CLT panel (due to the 3-mm steel plate) and any secondary frictional effects 

were avoided by the insertion of PTFE sheets in correspondence of the 16-mm steel bolts (see Fig. 

3.22). However, the possible frictional effects induced by an adherence of the X-bracket and the CLT 

panel, for example by adopting a different anchoring system, should not be relevant for the rather 

small contact surface between the arms of the bracket and the timber element. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3.22 – Test of the complete connection: (a) photo of the non-deformed specimen; (b) specimen at 
maximum vertical displacement of 48m; (c,d) failure due to accumulated plastic work in the connector’s web. 

From the superimposition of the results recorded for the X-bracket and the test of the complete 

connection, a very similar hysteresis behaviour (Fig. 3.23a) and a negligible decrease of dissipative 

capacity and strength was evidenced (Fig. 3.23b-c). The maximum relative slip of the 3-mm steel 
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plate is contained within 0.4mm, negligible with respect to the displacement amplitude of the bracket. 

The reduction of strength and dissipative capacity (in terms of viscous damping ratio νeq [3.18]) for 

the complete connection with respect to the mean value from the three tests of the X-bracket can be 

quantified from a comparison of the red and the black lines in Fig. 3.23b-c for all the loading cycles. 

It can be noted that no relevant strength reduction was recorded: a mean difference in strength equal 

to 2.75 kN (about 8.0%) was obtained in the working range and lower value in the high-ductility 

range. This proves that in the high-ductility range, characterized by the highest tensile loads, the 

proposed connection system is still able of withstanding the imposed loads and the hardening 

behaviour of the X-bracket (included in γ
Rd

 =1.76) is completely exploited, in compliance with the 

capacity design approach. A slight decrease of viscous damping ratio was recorded in the working 

range. However, the resulting values show again the high dissipation capability of the X-bracket also 

considering the slight reduction of performances due to the low elastic deformation of the fastening 

system. The recorded viscous damping ratios both in the working and in the high-ductility range are 

substantially higher than traditional hold-downs, having νeq of about 3 due to marked pinching 

behaviour [3.20]. 

 

(a) 

  
(b) (c) 

Fig. 3.23 – Comparison among tests of brackets and of the complete connection in tension: (a) hysteresis 
cycles; (b) Equivalent viscous damping; (c) Maximum force per loading cycle (dy,est = 4.00 mm). 
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3.2.3.3.3 Repeated test of the anchoring to the CLT panel (low damage design) 

Low-damage design is gaining more and more interests ([3.36];[3.66]), especially in high seismic 

zones, where multiple earthquakes could affect the life of a building. Such technique is being 

investigated in several research works, in particular for multi-storey timber buildings but might be 

applied also to low-rise structures with specific DLS and ULS requirements (for example, structures 

of high importance class [3.6]). 

The aim of this test was to give a preliminary evaluation of the possibility to use the investigated 

connection as “fuse” that is to be easily replaced after a medium intensity seismic shock. The 

analysis of the self-centering system is not part of this work, but examples can be found in 

([3.36];[3.39]). For this purpose, the tested anchoring system described in the previous section was 

reused with a new dissipative element.  

The failed connection was dismounted from the anchoring system. Negligible damage was observed 

in the steel plates, where only minor steel embedment and slight plastic deformations were 

experienced by the 16-mm dowels. Then, a new X-bracket was anchored to the panel with new steel 

bolts while the self-tapping screws that fastened the rectangular plate were not replaced. The same 

loading procedure [3.18] was applied to the specimen. An initial gap of about 1m was observed and 

affected the resulting elastic stiffness kel while the hardening branch presented the same inclination, 

i.e. the same post-elastic stiffness kpl (see Table 4-1). Results show that the device can withstand 

another cyclic loading procedure without significant losses in terms of strength and, more important, 

dissipative capability. This is the result of the damage-free design criteria used to design the 

anchoring element at both strength and stiffness level. Fig. 3.24 evidences that the dissipative 

capacity is almost fully exploited and neglecting the elastic phase, the mean strength loss ∆F 

measured on each cycle was of about 2.5%.  

Table 3-8 – Test results: main mechanical parameters according to EN 12512 method a [3.18]. 

Parameter 
BRACKET 
ONLY(mean) 

BRACKET 
+ CLT_1 

BRACKET 
+ CLT_2 

 

Fy (kN) 28.75 26.17 24.93 

 

dy (mm) 3.18 4.69 5.77 

Fu(40mm) (kN) 47.17 48.64 53.85 

du (mm) 40.00 47.99 54.98 

kel (kN/mm) 9.04 5.36 7.49 

kpl (kN/mm) 0.50 0.57 0.66 

µ (du) (-) 12.58 10.22 19.86 

Ductility Class H H H 
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Fig. 3.24 – Comparison among first and second test of the complete connection in tension: (a) hysteresis 
cycles; (b) Maximum force and relative difference per loading cycle (dy,est = 4.00 mm). 

3.2.4 Version 3 

Since the experimental results of the X-bracket connected to the CLT confirmed the possibility to 

exploit its dissipative capacity without significant energy losses, a further step into the refinement of 

the device was handled with the third version. The key-point of this design phase was to obtain a 

version that incorporates the elements necessary to fix rigidly the device to the CLT panel. For this 

reason a new concealed version was designed, starting from the same concept used for the 

concealed joist hangers commonly designed to support timber beams.  

The possibility to realize multiple elements from a single cut (see Fig. 3.9) was sacrificed by the 

integration, into the bracket’s shape, of a supporting element that restrains the main element and 

avoid the concentration of forces on the four dowels that block the connector. The main shape of the 

connector (i.e. thickness and curvature radius of the arms) was not modified with except of the area 

near the four fixings. This to maintain unaltered the hysteretic behaviour of the  In this zone, the 

characteristic outline of the X-brackets was transformed into round shapes to let the arms rotate into 

a housing created into a steel counter plate and deform according to the different modes evidenced 

in version 1 and 2 (see Fig. 3.11). The shape of the counter plate was designed to withstand the 
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reaction of the plates when subjected to shear and tension load: the lower part (near the edge of the 

panel) work as a cantilever beam and the outline was carefully designed to avoid possible skidding 

of the bracket from its housing. The whole assembly is meant to be concealed in an appropriate 

milling realized in the middle layer of the CLT wall. Milling can be localized (see Fig. 3.25b) or 

continuous along the whole panel edge. The fastening of this version exploit the same 16-mm steel 

bolts for the main fixings, whereas the counter plate is to be fastened with self-drilling steel dowels. 

Position of these dowels was designed through FEM simulations in order to find the disposition that 

better distributes the shear forces among the fasteners. Edge distance and spacing were also 

checked. 

It is worth noting that a higher level of prefabrication can be achieved with this version. First, the 

central milling of the CLT panel is to be prepared in factory. The holes that houses the 16-mm steel 

bolts, with their correct edge distance and spacing, might be replicated in the CLT side by means of 

a portable drilling template. The self-drilling dowels might also be installed with a drilling guide in 

their correct position. Also the 16mm holes might be realized in factory, but that requires a much 

higher precision in placing the X-bracket in the correct position otherwise the dowels might not be 

aligned with the holes. 

  
(a) (b) 

Fig. 3.25 – 3D model of the X-bracket version 3 (a) and example of application as a hold-down (b). 

3.2.4.1 Capacity design 

It is worth noting the importance of a correct capacity design approach in order to exploit the 

maximum amount of energy that the connector is capable to dissipate. As previously assessed for 

the fastening of version 2 bracket, it is mandatory to ensure that failure of the bracket FD, peak
 +

 occurs 

before the shear reaction acting on the dowels becomes bigger than the shear strength FB, code
 −

 

calculated according to EC5 [3.27]. As the dowel-type connections (i.e. 8 self-drilling dowels and 2 

calibrated bolts) are working in parallel, the total force transmitted by the brackets is distributed 

among the dowels proportionally to their stiffness (i.e. the fastener diameter). The mechanical 

properties and characteristic shear strength of fasteners calculated according to EC5 [3.27] are 

reported in Table 3-9.  

Fasteners to CLT were schematized through equivalent linear springs with stiffness equal to the 

lateral stiffness of dowel type fasteners Kser calculated according to table 3.1 of EN 1995-1-1 [3.27]. 

Table 3-9 lists the mechanical properties of dowels for a GL24h class timber. In detail, for a mean 

density ρm of 410 kg/m³, Kser were set equal to 9.02 kN/mm and 23.1 kN/mm for the self-drilling 

dowels and the calibrated bolts respectively, providing a total stiffness of the fastening of 127.05 
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kN/mm. Monotonic tensile and shear loading conditions were replicated assuming a maximum 

working uplift of 20mm and slip of ±24 mm.  

Table 3-9 – Mechanical parameters of dowels. 

Type of fastener  d N° My,Rk  Kser  Fv,Rk  

 (mm) (-) (kNmm) (kN/mm) (kN) 

16-mm 8.8 class steel bolts 16 2 324.3 23.1 36.1 

7-mm self-drilling bolts 7 8 30.9 10.1 9.2 

According to tests provided by the producer of the designed self-drilling dowels [3.67], an 

overstrength factor γ
Rd

 of almost 1.6 further improves that reliability of capacity design. Fig. 3.26 

displays the position for the 7-mm dowels. Fig. 3.27 and Fig. 3.28a show the numerical predictions 

of the load slip curves for the connector used as a hold-down, as a panel-to-panel joint thus subjected 

to only positive displacements. Fig. 3.28b shows the absolute resulting shear force acting on the 

dowels during the cyclic loading and confirms that dowels should accomplish mainly elastic 

deformations and satisfy the equation Fv, fem
 −

< Fv, code
 −

 with Fv, code
 −

 = Fv,Rk
 

. The only apparent issue 

was concentrated on dowels M6 and M7 (see Fig. 3.26) for the bracket subjected to tensile loads. 

Consequently, these dowels were shifted as much as possible from the M16 dowels, yet meeting 

the minimum requirements for the edge distance according to Eurocode 5 [3.27]. The same outputs 

for the X-bracket version 3 loaded in shear are reported in Fig. 3.29 and Fig. 3.30. 

Lastly, buckling of the bracket was included in the model although the CLT panel is supposed to 

restrain possible out-of-plane deformations. This because, preliminary analyses implied that for high 

amplitude cycles, compression strength of CLT orthogonal to the fibre might not be sufficient to avoid 

crushing of the timber boards. 

 

Fig. 3.26 – Dimensions of version 3 and position of 7-mm self-drilling dowels (M1 to M8) and 16-mm dowels. 
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(a) (b) 

Fig. 3.27 – Out-of-plane deformations: (a) at vertical uplift of 20 mm; (b) residual deformation after the complete 
cyclic loading procedure. 

  
(a) (b) 

Fig. 3.28 – Numerical simulation results: (a) hysteretic response of bracket for cyclic tensile loading; (b) total 
absolute shear reaction of dowels vs. bracket uplift. 

  
(a) (b) 

Fig. 3.29 – Out-of-plane buckling at a 24mm of horizontal slip: (a) out-of-plane displacements; (b) Von Mises 
stress distribution (post-yielding zones in red). 
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(a) (b) 

Fig. 3.30 – Numerical simulation results: (a) hysteretic response of bracket for cyclic shear loading; (b) total 
absolute shear reaction of dowels vs. bracket slip. 

3.2.4.2 Experimental tests 

Test of the third version of the bracket were conducted tested in the laboratory of construction 

material testing of Department ICEA of the University of Padova. 

The cyclic performance of the bracket only (i.e., hysteretic behaviour of the steel element) must 

logically be the same obtained with version 2, therefore tests directly aimed to analyse the bracket 

anchored to the CLT wall. A test setup was designed to investigate the X-bracket behaviour working 

as an hold-down (henceforth called V3HD) or as shear connection (henceforth called V3SH) for a 

panel-to-panel joint (see Fig. 3.31 and Fig. 3.32). In particular: 

- For tension tests, a single bracket was anchored to a 5-layered CLT panel with a thickness 

of 100mm (20-20-20-20-20) and dimensions of 1300x1000mm. The panel was secured to an 

HEA 140 steel beam by means of four M24 steel rods, and welded to an eyebolt mechanism, 

in order to apply the vertical displacement with an hydraulic actuator. The base plate of the 

bracket was fixed to the rigid frame with four 16-mm 5.8 class steel rods. Although the 

investigation focus primary on the fastening to the CLT wall, spacing of the four rods were 

designed following a preliminary design of the anchoring to the concrete foundation by means 

of chemical resins. Two UNP profiles with additional timber elements protected with PTFE 

sheets were placed on each side of the portal to avoid possible out-of-plane displacements 

of the whole assembly. The vertical uplift of the concealed bracket was monitored with two 

LVDTs that measured the relative displacement between mid-point of the horizontal steel 

baseplate and the CLT panel (see Fig. 3.33a). 

- For shear tests, a symmetrical solution was designed. The same central CLT panel of the 

tension tests was attached by means of the investigated brackets to two lateral CLT 

rectangular elements with the same thickness and dimensions of 1300x600mm each. These 

elements were restrained to the rigid portal by means of M24 steel rods. Also in this case 

out-of-plane displacements were restrained with UNP profiles. No frictionless material was 

interposed between the panel edges to simulate the actual conditions of a CLT assembly. 

The panel-to-panel slip was measured with two LVDTs, for each bracket, on each side of the 

panel in proximity of the fixing points (see Fig. 3.33b). 
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Fig. 3.31 – Test setup for X-bracket V3HD. 

 
Fig. 3.32 – Test setup for bracket V3SH. 
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(a) (b) 

Fig. 3.33 – Position of LVDTs to assess displacements of each bracket for tension tests (a) and shear test (b). 

3.2.4.3 Test Results 

A total of three tests were performed in this phase: two for tensile loading conditions and one for 

shear loading conditions. The EN 12512 cyclic loading protocol [3.18] was adopted in all tests 

imposing a dy,est of 2 mm for both shear and tension tests (V3HD bracket has only two arms subjected 

to deformations compared to version 1 and 2, and consequently has half of the displacement 

capacity). Fig. 3.34a and b shows the obtained force vs. displacement loops and the comparison 

with the numerical predictions. Regarding tension tests (Fig. 3.35a), the bracket succeeded in all the 

20-mm amplitude cycles but failed at an uplift of 24 mm (Fig. 3.35b) due to the accumulated plastic 

work in proximity of the horizontal arms (Fig. 3.35c). No damage was evidenced either in the dowel-

type fasteners or in the CLT panel (Fig. 3.35d). Frictional effects are confirmed to be responsible for 

the higher manifested strength FSH with respect to version 2 (see FEM comparison in Fig. 3.34a): 

the predicted strength increment due to friction (μ = 0.60) measured at 20 mm is of 51.2%. The fact 

that the web is welded to the lower base does significantly reduce the buckling phenomena during 

compression. The shear test (Fig. 3.36) showed a hysteretic response typical of cyclically loaded 

steel connectors with a more “stable” behaviour than version 2. Failure occurred in the steel 

component (see Fig. 3.37a) after the completion of the 24-mm cycles Fig. 3.37b), but it is worth 

noting the important confinement effect demonstrated by the CLT panel with respect to the out-of-

plane buckling of the central web.  

The device worked with the same principle of Buckling-restrained bracings (BRB) where the steel 

fuses are confined into a grout of concrete. In particular, only at large deformations (near failure 

conditions) the pushing of the web caused failure of the inner CLT boards layers due to compression 

orthogonal to the grain allowing the rotation of the vertical web (see Fig. 3.37c). 
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(a) (b) 

  
(c) (d) 

Fig. 3.34 – Hysteresis loops and backbone curves of tension tests (a,c) and shear tests (b,d). 

Bi-linearization of the envelope curves were accomplished with the EN 12512 method a [3.18] on 

both loading conditions and the corresponding mechanical parameters are reported in Table 3-10. It 

emerges the similar yielding conditions (Fy,dy) and ductility either in tension or in shear, but also the 

very different post-elastic behaviour. As already mentioned, the latter fact has to be taken into 

account when designing the anchoring to the CLT panel. Further details on the comparison with 

version 2 are given in the following subsection. 

Table 3-10 – Mechanical parameters and hysteretic loops for V3HD and V3SH bracket. 

Parameter V3_HD_1 V3_HD_2 V3_SH_1 BI-LINEARIZATION 

Fy (kN) 37.75 36.64 41.70 

 

dy (mm) 1.76 1.71 2.39 

Fmax (kN) 87.57 88.19 47.50 

du (mm) 20.00 20.00 24.00 

kel (kN/mm) 21.43 21.43 17.43 

kpl (kN/mm) 2.22 2.22 0.27 

(Vu) (-) 11.34 11.68 10.03 

Ductility Class H H H 
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(a) 

(b) 

(c) 

(d) 

Fig. 3.35 – V3HD test: (a) test setup; (b) specimen at max uplift of 24mm; (c) failure of the X-bracket; (d) holes 
in timber panel after test. 

 

Fig. 3.36 – V3SH test setup. 
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(a)  

 
(b) 

 
(c) 

Fig. 3.37 – V3SH test: (a) failure of the X-bracket; (b) specimen at 24mm of slip; (c) damaged inner layers. 

3.2.5 Comparison between the investigated versions 

In this section the hysteretic response of the tested versions are analysed in deep but, as X-brackets 

version 1 and 2 differ only by the type of steel employed and some minor shape changes, the 

comparison of the hysteretic behaviour is given only between X-brackets V2 and V3.  

From a functional point of view, each of the brackets has its own advantages and disadvantages: 

- Version 1 and 2: do not require any particular woodworking of the CLT panel as it is fixed 

externally. The buckling of the connector, that becomes relevant for high displacement, 

induces pinching phenomenon and partial loss of dissipating capability. Fire-protection has 

to be addressed like traditional connections. 

- Version 3: does implicitly satisfy the capacity design if fasteners that fix the counter plate are 

placed according to the tested configuration. Fire-protection is given by the presence of the 

CLT layers. Main drawbacks are that it does require a partial milling of the panel edge; 

Dimensions may become relevant for panels with a short base-length. 

Regarding the mechanical performances, the have been increasing within each version (see Table 

3-11). The change of steel grade from version 1 to version 2 produced a yielding strength increment 

for tensile loading ΔFHD and shear loading conditions ΔFSH of nearly 60.0% and 40.6% respectively. 

Switching to version 3 provide more interesting results. Although steel was downgraded to an S355 

the tensile yielding strength increased of an additional 29.4%, reaching a similar load bearing 

capacity to when loaded in shear, which on the contrary did not change considerably. This was 

caused by two different effects: 1) the increased vertical spacing of the M16 bolts allowed the 

horizontal arms to work more in tension than the previous versions; 2) the frictional effect of the plate 

rotating over the housing of the counter-plate produced a considerable strength increment (see 

previous section). The higher vertical spacing affected the response to shear loading with a limited 

increase of shear strength FSH and a reduction of elastic stiffness of 44.8%. In conclusion, X-bracket 

version 3 has demonstrated to be a more balanced solution from a designer point of view in term of 

load bearing and displacement capacity. 

The different hysteretic response between version 2 and version 3 (see Fig. 3.38) is highlighted 

through the computation of the equivalent viscous damping ratio 𝜐 and the total amount of dissipated 

energy. In Fig. 3.38a the displacement of version 2 were divided by a factor 2 allowing to evaluate 

better the strength increment obtained with version 3. Fig. 3.38c-d show the change of post-elastic 

behaviour of the brackets. It clearly emerges that each application had to be tested in order to assess 

its mechanical parameters and determine the correct overstrength factor to be chosen within each 

version. 
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Table 3-11 – Comparison of the three tested versions (mean values). 

Parameter Version 1   Version 2   Version 3 

  Tension Shear   Tension Shear   Tension Shear (*) 

Steel (-) S275JR  S450JR  S355JR 

Dimensions B x H 
(mm x mm) 

303 x 233  303 x 233  420 x 360 (**) 

Spacing of fixings 
(mm x mm) 

237 x 180  243 x 185  243 x 200 

Fy (kN) 17.97 28.09  28.75 39.5  37.19 41.70 

dy (mm) 1.96 3.46  3.18 1.25  1.74 2.39 

Fu (kN) 37.76 29.03  47.17 43.98  87.88 47.50 

du (mm) 46.20 50.00  40.00 24.00  20.00 24.00 

kel (kN/mm) 9.17 8.53  9.04 31.55  21.43 17.43 

kpl (kN/mm) 0.45 -  0.50 -  2.22 0.27 

µ (du) (-) 23.57 14.45  12.58 23.43  11.51 10.03 

Ductility Class H H   H H   H H 

*    one test only 
**  including counter plate 
*** value for monotonic load  

In Fig. 3.39a,b the comparison is given on the basis of an equivalent ductility level (i.e. di/dy,est) to 

account for the different displacement capacity between the two versions. The calculated damping 

at the 1st and 3rd cycle is comparable up to d/dy,est = 6 but version 3 shows values in the range of 12-

15% also for high displacements (6 < d/dy,est ≤ 10). Additionally, the reduced pinching phenomena 

is confirmed by the minor damping losses measured from the 1st to the 3rd cycles. Typical values for 

traditional connections (i.e. hold-downs) are in the range between 9% (1st cycle) and 3% (third cycle) 

[3.21]. Lastly, the combination of higher strength and dissipative capacity translate into an increment 

of total cumulated energy ΔEd dissipated by the connector of 54.0%. 

Comparison on shear cyclic loading responses are presented for the same cyclic amplitude (Fig. 

3.39c,d). A reduction of the equivalent viscous damping ratio was measured for all the displacement 

amplitudes, but still high values were computed if compared to traditional connections (angle 

brackets) ([3.20];[3.21]). Also in this case, the dissipative capacity did not vary significantly between 

the 1st and 3rd cycle. Furthermore, the softening-to-hardening poste-elastic change occurred with V3 

produced an amount of cumulated dissipated energy nearly equal to V2 with at a lower number of 

cycles and lower displacement amplitude. 

Unfortunately, very limited information regarding the energy dissipation capabilities of traditional 

connectors are available in literature. It is therefore not possible to make a direct comparison in terms 

of dissipated energy for a given strength or displacement level. However, in the following Chapter 

(section 4.4.4), the replication of experimental tests of CLT panel assemblies taken from literature 

will allow to give some preliminary prediction also in these terms. 
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(a) (b) 

  
(c) (d) 

Fig. 3.38 – Comparison of load vs. displacement cycles, envelope curves and bi-linearization of version 2 and 
3 on tension (a,c) and shear (b,d).  
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Fig. 3.39 – Viscous damping ratio and dissipated energy for the X-brackets loaded in tension (a,b) and in shear 
(c,d). 

3.3 Conclusions 

This chapter presented the development of an innovative highly dissipative connection system for 

Cross-laminated Timber structures. The concept on which the research have been based was to 

shift the dissipating element from the usual dowel-type fasteners employed in traditional connections 

to the steel element meanwhile preserving the fasteners from behaving inelastically. 

The design phases of each connection were described in detail, and the prediction of the FE models 

have been confirmed each time by means of proper experimental tests. These tests involved the 

imposition of cyclic loading conditions at increasing displacement both in tension and in shear 

according to the standardised procedure of EN 12512. 

Version 1 and 2 of the device focused the energy dissipation in the development of plastic strains. 

A significant increase of the total dissipative capacity and load bearing capacity was achieved by 

introducing friction phenomena and reducing out-of-plane buckling effects with Version 3. This 

modifications allowed the device to performed as an hybrid device that exploited the same principle 
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of Buckling-Restrained Bracing fuses typical of steel structures and slip-friction connection systems 

demonstrating the highest mechanical performance. 

Obtained results allowed determining the main mechanical parameters. The high ductility class 

according to Eurocode 8 [3.6] was achieved with the combination of a high elastic stiffness and a 

displacement capacity comparable or even higher than traditional connections. The calculated 

equivalent viscous damping ratio was approximately double than traditional connections either in 

shear or in tension. Lastly, strength degradation became relevant only for very high displacement 

and ductility values (µ ≥ 6). 

Particular care was given to the determination of a correct capacity design procedure. The theoretical 

definitions of the capacity design rules available in literature were extended to the field of innovative 

connections for CLT structures. Further experimental tests allowed to assess the presented 

procedure and to express the whole dissipative capacity of the element without incurring into 

unwanted brittle failures. 
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Chapter 4 Development of a Macro-element model 

to simulate the hysteretic behaviour of the dissipative 

device 

Abstract 

In this last chapter, the numerical procedure used to evaluate the seismic performance of CLT 

shear wall assemblies adopting the investigated device is reported. The experimental data collected 

through the cyclic loading tests have proven the correctness of the detailed numerical model. Such 

results allowed to extend the analysis with detailed models and to define the complete strength-

domain that describes the shear-tensile interaction on the connection element. Moreover, a macro-

element model approach realized with a second numerical code allowed to compute NLDAs of a 

case-study CLT building with reduced computational effort. The obtained results concluded in the 

evaluation of a plausible behaviour factor that could characterize a CLT shear wall assembly that 

employ the investigated connections. 
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4.1 Introduction 

A fundamental issue in the seismic design of complex CLT shear-wall assemblies is the definition of 

suitable values of the stiffness and distribution of connections, which influence the building 

fundamental period, the distribution of seismic forces and the displacement and drift of each storey 

[4.1]. The vibration period depends on the mass distribution and on the global stiffness of the 

building, which is highly sensitive to deformability of the connection elements. The distribution of 

seismic forces is function of stiffness of the shear-walls, which on its own depends on stiffness of 

seismic-resisting connections. Displacements and inter-storey drifts depend on the deformation of 

the shear walls, which can be a rocking, sliding and/or shear deformation. Consequently, for a 

precise modelling of a building the definition of the strength and stiffness of each connection is 

crucial. As an example, in platform-frame buildings the correct modelling of panel-to-frame 

connections or of equivalent shear stiffness of each shear wall is fundamental (predominant shear 

behaviour). Conversely, in CLT buildings the most important elements to be modelled are angle 

brackets, hold-downs and panel-to-panel joints (predominant rocking and sliding mechanisms). 

Even in a linear-elastic design process, engineers are therefore required to solve an iterative scheme 

[4.1]. In detail, the connection stiffness influences the fundamental period of the building, the 

distribution of forces and drifts and meanwhile, the external force in each connection induced by 

earthquake is a function of the period and of the connection stiffness. Therefore, the load bearing 

capacity of the connections has to be compatible with the external force (Ultimate Limit State 

verification – ULS [4.2]) and the drift of each storey has to be compatible with the limitation of damage 

of non-structural elements (Damage Limitation State verification – DLS [4.2]). It is therefore clear 

how even in a simplified analysis that is a linear elastic analysis requires precise information on the 

connection’s behaviour when subjected to tension, shear or a combination of them.  

In this context, Trutalli [4.1] and Pozza et al. [4.3] analysed the behaviour of a series of cyclic loading 

experimental tests on CLT shear-walls anchored with different arrangements of shear-resisting 

connections. The main outcomes confirmed that mechanical parameters and seismic capacity (e.g., 

strength, ductility, and behaviour factor) were considerably worsened with respect to the case of no 

axial-shear interaction within each connection. Such result was also demonstrated by Izzi et al. [4.4] 

with a numerical approach. More recently, deeper experimental tests were performed to investigate 

the strength domain of traditional connections in a rocking CLT shear wall system ([4.5];[4.6]). 

Additionally, once experimental tests confirm the reliability of the connections, Non-linear dynamic 

simulations are to be performed in order to predict the actual response of a CLT structures (i.e. the 

response of each connection/device that link adjacent panels or the whole structure to the 

foundation). 

4.1.1 Numerical approaches to simulate CLT structures 

With regard to numerical models, various approaches for simulating CLT structures are available in 

literature, which can be subdivided in two main categories [4.7]. The first one considers the building 

as an assembly of single wall elements, disregarding the hysteretic behaviour of single connections 

and concentrating the non-linear behaviour in the wall macro-elements, e.g., [4.8]-[4.10]. With the 

second methodology, the building is modelled as an assembly of CLT panels and connection 

elements ([4.7]; [4.11]-[4.15]). This ‘‘component approach” is proven to be more accurate, but it 

requires the use of numerical models capable of reproducing the actual behaviour of all the 

connection elements used to fasten each other the CLT panels and the foundations. However, the 



 Chapter 4: Development of a Macro-element model to simulate the dissipative device 
 

 
131 

majority of the models is calibrated through uniaxial experimental tests accomplished for a single 

connection element. 

With both modelling approaches, elements capable of representing the non-linear behaviour of an 

entire CLT shear wall or a single connection, are needed in order to reproduce faithfully the response 

of CLT structures. Several examples are available in literature, starting from the hysteretic model 

proposed by Ceccotti and Vignoli [4.16], implemented into the non-linear dynamic analysis program 

Drain-2DX [4.17], used to reproduce the shaking table tests carried out on the well-known SOFIE 

project [4.8]. More recently, the hysteretic model proposed in origin to reproduce the behaviour of 

reinforced concrete beam-column joints [4.18] was profitably adopted to reproduce the response of 

CLT assemblies accounting for pinching behaviour of timber connections. However, such hysteretic 

models are suitable for reproducing the uniaxial behaviour of the connection elements, but are not 

capable to account for a combined application of axial and shear forces. 

An important attempt to account for axial-shear coupling in CLT connections was presented in 

Rinaldin et al. [4.15]. where shear-tension coupling was dealt with by defining an elliptical strength 

domain for yielding axial and shear strengths of the connection system without specific reference to 

experimental tests on axial-shear coupled interaction. In their model uncoupled (axial and shear) 

tests are used to calibrate the hysteretic law and the axial-shear interaction is taken into account 

only once, modifying the backbone envelope curve when the domain yielding surface is first reached. 

More recently, Pozza et al. [4.6] developed a potential solution to analyse this topic basing its 

numerical model on significant experimental tests that reproduced the behaviour of hold-downs 

subjected to axial loading when a lateral force is already acting and partially compromising its 

response. 

4.1.2 Aim of this work 

In this concluding chapter, the procedure used to evaluate the seismic performance of CLT shear 

wall assemblies by means of numerical simulations is reported step-by-step (see Fig. 4.1). The 

experimental data collected through the cyclic loading tests and elaborated were correctly 

reproduced by the numerical simulations. Such results allowed extending the analysis of the 

connection to the definition of a complete strength domain, which describes the shear-tensile 

interaction effect on the connection element. This characterization was carried out with non-linear 

pushover analyses (NLSA) conducted with the 3D model (see 3.2.2.1), from now on named detailed 

model. The next step involved the implementation of a 2D numerical model, exploiting a macro-

element approach, which allowed replicating the cyclic behaviour of the bracket with a much lower 

computational effort. The calibration of the Macro-Element model (MEM), otherwise referred as 

simplified model, was carried out from the cyclic loading test ran in pure shear and pure tension. The 

cyclic response of the MEM, when mixed tension/shear loading conditions occur, was evaluated 

comparing the results from non-linear cyclic analyses of case study CLT walls anchored with the 

investigated devices and performed with both detailed and simplified modelling approaches. It is 

implicitly assumed that the detailed model is able to reproduce the actual hysteretic behaviour of the 

steel element on all loading conditions. Comparison in terms of base shear strength, displacement 

capacity and total dissipated energy confirmed the respectable outcomes of the MEM approach in 

all the possible working conditions (i.e. using the X-bracket as hold-down, angle bracket or vertical 

joint). The last step consisted of running NLDA of a case-study CLT building for which traditional 

connections were substituted with the investigated connections. Then, by adopting an hypothetical 

design procedure, well described in the respective section, the performance of the bracket were 

measured in terms of potential behaviour factor demonstrated by the analysed building. The 
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described procedure is summarized in the following diagram. It must be emphasized that also in this 

case, innovative dissipative connections that bypass the issue of reproducing the hysteretic 

response of traditional fasteners are easier to be reproduced numerically. In conclusion, this fact 

make even more reliable the outcomes from numerical analyses of CLT structures that employ 

innovative connection systems. 

Lastly, all the procedure reported in this chapter was based on the experimental data collected for 

the Version 2 of the X-bracket. It is clear that the following approach is meant to be valid also for the 

other tested versions but, more important, it could be hypothetically applied to whatever innovative 

connection or device is characterized by a well-known hysteretic behaviour that have been assessed 

through detailed experimental tests. 

 

Fig. 4.1 – Work-flow adopted in this work to evaluate the seismic response of a CLT building employing the 
studied devices by means of a MEM approach. 

4.2 Definition of the strength domain 

Research results presented in this section are partially available Marchi, L., Trutalli, D., Scotta, R., 
Pozza, L., and Ceccotti, A. (2016). “A new dissipative connection for CLT buildings”. In Proceedings 
of the Third International Conference ICSA, 27-29 July 2016, Guimaraes, Portugal. Structures and 
Architecture 17:169-177. DOI: http://dx.doi.org/10.1201/b20891-20 

 

Since the X-bracket can be used as a hold-down or an angle bracket, and consequently be subjected 

to combined loadings, it is mandatory that its shear-tensile strength domain has to be predicted. To 

this aim, displacement-controlled pushover analyses have been conduced, with 10 intermediate 

angles α between pure shear condition (α = 0°) and pure tension condition (α = 90°). Obtained curves 

(see Fig. 4.2) are linear (i.e., forces proportional to deformations) in the initial elastic phase, and 

deviated when entering the plastic phase. The yielding limits shown in Fig. 4.3 were evaluated 

applying method “a” of EN 12512 [4.19] to the resulting inclined force FTOT and decomposing the 

obtained values in tension and shear components, FHD and FSH respectively (Method 1). The peak 

strength was fixed at achievement of the ultimate steel strain.  

ENa method was applied also after the decomposition of the inclined force to the single components 

(Method 2). In particular the bi-linearization was applied to FSH for angles α ≤ 45° and to FHD for 45 

< α ≤ 90°. The latter method can be considered more reliable, because the yielding limits are 

evaluated on the “principal” component for angles α < 30° and α > 55° and, lower values are provided 

at the highest level of coupling (i.e., the range 30° ≤ α ≤ 55°) (see Fig. 4.4). A simple linear law can 

be used to fit the failure strength, although it can be seen that for lower angles (≤ 30°) the shear 
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force is not impaired by tension loads, suggesting that shear bracket might work respond well to 

shear loads even if the panels causes tension forces (e.g., due to rocking behaviour). 

    
(a) (b) 

Fig. 4.2 – Pushover curves varying the angle of the applied force. 

   
(a) (b) 

Fig. 4.3 – Strength at yielding and failure obtained from the analyses for the bracket working mainly in tension 
FHD (a) and mainly in shear FSH (b). 

  
(a) (b) 

Fig. 4.4 – Strength domain definition with 10 axial/shear deformation ratios: (a) method 1; (b) method 2. 
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4.2.1 Abacus of strength 

The need to dispose of sufficient strength and stiffness at every connection point of the building has 

led to investigate one last aspect of the studied bracket: the changes of its main mechanical 

properties (i.e. represented by yielding and failure limits) varying the bracket thickness and form-

factor. This requisite could be explained by analysing the case of a multi-storey building, for which 

the maximum dissipative capacity shall be reached. This coincides to the condition for which all the 

employed connections do plastic work and consequently dissipate energy. In fact it can easily be 

expected that, for a multi-storey regular building (in plane and in elevation), the request of strength 

at the foundation level is much higher than the one demanded at the second floor. Consequently, 

the design method for CLT connections structures require iterative procedure to obtain the “optimal” 

solution. This procedure aims to define the proper disposition and strength of the brackets all along 

the building. For traditional connections (i.e. hold-downs and angle brackets), the number of nails 

can be changed to adapt at each demand, while for the X-bracket, three solutions are available: 

- Change of steel grade; 

- Increase number of bracket placed at each point; 

- Change the aspect ratio of the bracket. 

The first solution allows determining the actual design strength of the X-bracket by introducing a 

multiplying factor equal to fy,k /fy,test where fy,k is the yielding strength of the chosen grade and 

fy,test the yielding test obtained for experimental test (450MPa). The second choice has obvious limits 

that are “more practical”. In particular number of brackets is limited to two for the external version, 

ore only one for the concealed solution. The third possibility is investigated in this section taking into 

account the possible changes of thickness t or form factor, henceforth noted as λ. 

To this purpose, an analytical procedure supported by numerical simulation was adopted, by 

exploiting the same 3D model and parametric analysis described in Section 3.2.2.1. Further 

pushover curves were conducted varying ratios between axial and shear deformations α, the 

thickness t between 4 and 10 mm and the form factor between 0.75 ≤ λ ≤ 1.125 and for each 

combinations yielding point (Fy,dy) and failure (Fu,du) were defined. Results of the numerical 

simulations are reported in Fig. 4.5 and Table 4-1. It is worth noting that some combinations are 

missing: this is due to the unfavourable combination where thickness is small and form factor high 

and vice versa. Analysing Fig. 4.5a,c it emerges that varying the thickness t, at a given forma factor, 

produces proportional variations in strength, whereas does not significantly affect both yielding and 

ultimate displacements (dy,du). However, a clear proportionality of strength with respect to t and λ is 

visible in all cases.  
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(a) (b) 

   
(c) (d) 

Fig. 4.5 – Shear-tension domains of the varying t and λ: yielding (a,b) and ultimate (c,d) conditions. 
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Table 4-1 – Results from parametric analyses in terms of yielding point (Fy,dy), ultimate failure (Fu,du) and 

ductility μ. 

    λ = 0.75 λ = 0.875 λ = 1.00 λ = 1.125 

    HD SH HD SH HD SH HD SH 

t= 4 

Fy 14.7 19.9 16.9 23.2         

dy 3.2 3.3 3.6 3.7         

Fu 27.6 24.8 31.8 28.8         

du 34.1 34.3 38.8 40.4         

μ 10.7 10.4 10.8 10.9         

t= 6 

Fy 22.0 30.0 25.6 34.4 28.8 39.4 32.6 44.5 

dy 3.2 3.3 3.7 3.8 4.2 4.2 4.9 5.0 

Fu 42.1 38.0 48.7 42.0 55.5 49.6 61.2 54.8 

du 34.9 37.4 40.0 35.0 45.0 46.7 49.8 48.5 

μ 10.9 11.3 10.8 9.2 10.7 11.1 10.2 9.7 

t= 8 

Fy 29.3 40.0 34.1 46.0 38.6 52.2 43.0 59.5 

dy 3.1 3.1 3.7 3.5 4.2 4.4 4.7 5.0 

Fu 56.8 51.6 65.2 59.4 75.7 67.2 82.7 75.7 

du 35.0 40.0 39.7 45.0 46.2 49.4 50.4 56.2 

μ 11.3 12.9 10.7 12.9 11.0 11.2 10.7 11.2 

t =10 

Fy         48.3 65.5 54.3 74.5 

dy         4.0 4.5 4.7 5.0 

Fu         95.4 85.5 105.3 95.7 

du         46.7 52.6 51.7 58.4 

μ         11.7 11.7 11.0 11.7 

The numerical simulations confirmed that the strength at failure due to pure shear FSH,u and pure 

tension FHD,u are similar for each combination. It was therefore possible to propose analytical 

formulas for the computation of the strength F with suitable correlation between t and λ. The first 

formulation correlates the strength values with t and λ by means of four coefficients, as shown by 

Eq. (4.1): 

F(λ,t) = k1∙t k2+k3∙λ
 k4  (4.1) 

F(λ,t) = (k1+k2∙t)λ
 k3  (4.2) 

F(λ,t) = (k1+k2∙λ) t k3  (4.3) 

where F(λ,t) can be either FHD or FSH.   

The second and third formulation propose a function according to Eq. (4.2) and Eq. (4.3), have the 

same proposition where t and λ were exchanged. 

Two separate formulation could be defined, one for tension and one for shear, due to the different 

post-elastic behaviour of the bracket (hardening for tension and perfect plastic for shear). However, 

a unique solution for both cases was searched in order to simplify the final proposition. By calculating 

the mean value μ
F
 and the difference δF of the tension and shear strength, it was observed that the 

ratio Δ = δF / μ
F
 is almost constant for all the combinations of t and λ (see Table 4-2). 
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Table 4-2 – Mean value μ
F
 and difference δF between tension and shear strength. 

  λ = 0.75 λ = 0.875 λ = 1.00 λ = 1.125 

  FHD FSH μF δF Δ (%) FHD FSH μF δF Δ (%) FHD FSH μF δF Δ (%) FHD FSH μF δF Δ (%) 

t= 4 

Fy 14.7 19.9 17.3 5.2 30.1 16.9 23.2 20.1 6.3 31.4                     

Fu 27.6 24.8 26.2 -2.7 -10.5 31.8 28.8 30.3 -2.9 -9.6                     

t= 6 

Fy 22.0 30.0 26.0 8.0 30.8 25.6 34.4 30.0 8.8 29.3 28.8 39.4 34.1 10.6 31.1 32.6 44.5 38.6 11.9 30.9 

Fu 42.1 38.0 40.0 -4.1 -10.3 48.7 42.0 45.4 -6.8 -14.9 55.5 49.6 52.5 -5.9 -11.2 61.2 54.8 58.0 -6.4 -11.1 

t= 8 

Fy 29.3 40.0 34.7 10.7 30.9 34.1 46.0 40.1 11.9 29.7 38.6 52.2 45.4 13.6 30.0 43.0 59.5 51.3 16.5 32.2 

Fu 56.8 51.6 54.2 -5.2 -9.6 65.2 59.4 62.3 -5.9 -9.4 75.7 67.2 71.4 -8.5 -11.9 82.7 75.7 79.2 -7.0 -8.9 

t =10 

Fy                     48.3 65.5 56.9 17.2 30.2 54.3 74.5 64.4 20.2 31.4 

Fu                     95.4 85.5 90.4 -9.9 -10.9 #### 95.7 #### -9.7 -9.6 

 

It is therefore convenient to: 1) calibrate the analytical formulation by using as interpolating 

magnitude the mean force μ
F
; 2) evaluate to the analytical values of FHD and FSH thanks to the mean 

value of 𝛥 extrapolated from all the numerical predictions (noted as Δ̅). As a result: 

{FHD(λ,t) ; FSH(λ,t)} = β∙μ
F

(λ,t)  (4.4) 

where 𝛽 is equal to 1 ± (�̅�/2)/100 and 𝜇𝐹 is calculated according to one of the previous polynomial 

formulations. Fitting of results returned a value of 𝛽 equal to 0.945 for tension and 1.055 for shear. 

The evaluation of the parameters 𝑘𝑖 was performed via the solver subroutine included in Microsoft 

Excel using the Generalized Reduced Gradient method. 

By observing the residual plots it can be stated that the third proposition demonstrates a proper fitting 

of the results either for yielding and ultimate strength, which translates into the following equations: 

{FHD,y;FSH,y}=(1∓ 0.155)∙(0.13+5.62∙t)λ
0.9

  (4.5) 

{𝐹𝐻𝐷,𝑢; 𝐹𝑆𝐻,𝑢} = (1 ∓ 0.055) ∙ (0.45 + 7.29 ∙ 𝑡)𝜆1.065  (4.6) 

   
Fig. 4.6 – Abacus representation for the strength estimation with the three formulations. 
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(a) (b) 

  
(c) (d) 

  
 (e)  (f) 

Fig. 4.7 – Residual plots obtained with the first (a,b), second (c,d) and third (e,f) analytical formulations. 

4.3 Macro-element model 

Research results presented in this section are partially available Marchi, L., Trutalli, D., Scotta, R., 

and Pozza, L. (2017). “Numerical simulation of the coupled tension-shear response of an innovative 

dissipative connection for CLT buildings”. In Proceedings of the 6th ECCOMAS Thematic 

Conference on Computational Methods in Structural Dynamics and Earthquake Engineering 

(COMPDYN), 15-17 June 2017, Rhodes Island, Greece 

 

A numerical model was implemented within the open-source research FEM code “Open System for 

Earthquake Engineering Simulation–OpenSees” [4.20] with the aim to perform analyses currently 

characterized by several non-linearities with a relatively low computational effort if compared to 

detailed 3D models (described in the Chapter 3). In the proposed solution, the complex connector’s 

shape was simplified into a Macro-Element composed by few sub-elements each one incorporating 

specific mechanical parameters according to the material models available in the OpenSees library 

[4.20]. Fig. 4.8 shows a superposition between the outline of the X-bracket and the 6-nodes ME. 
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With regard to Fig. 4.8, the model is composed by: 

- Six nodes, represented in figure by the six black dots. Nodes 1 to 4 have spacing equal to 

the actual spacing of the X-bracket’s fixing points while the two additional nodes, 5 and 6, 

are placed exactly between node 1 and 2 and nodes 3 and 4 respectively; 

- Four elastic beam element, represented by the black lines, connect the two upper fixing point 

nodes with node 5 and the two lower ones with node 6. They simulate the connectors’ flanges 

having a common node in the flange-web intersection; 

- One beam element representing the web of the connector, connects nodes 5 and 6 thus 

linking the four horizontal arms (flanges) of the X-bracket; 

- One column element (that works only in compression) placed in parallel to the previous 

element; 

- Six hinge elements, represented by the red and green dots, are responsible for the inelastic 

response of the element and calibrated through a moment/curvature relationship; 

Each beam element has a cross-section dimension similar to the actual version 2 of the X-bracket 

with yielding moment/curvature parameters My and θy derived on the hypothesis of an S450 steel 

grade. This choice is arbitrarily chosen in order to try giving a physical justification to the chosen 

parameters. It is worth noting that the main goal is to try reproducing the hysteretic behaviour of the 

element, and whatever combination of dimensions and yielding conditions may be chosen, should 

lead to the same results. 

The need to decouple the behaviour of the MEM in case of pure tension or pure shear loads, forces 

to distinguish the non-linear moment/curvature law of the flanges with respect to the web (Fig. 4.8b). 

Regarding the flanges, plasticity is concentrated on one end of the element only (red dots in Fig. 

4.8a). On the contrary, the web incorporates two hinges at its ends (green dots on element 15 in Fig. 

4.8a). In fact, beams and non-linear hinges are modelled exploiting beamWithHinges elements [4.20] 

which considers plasticity concentrated over a specified length from the end nodes. Lastly, a 

Hysteretic material model is applied to the 2D elements, and calibrated through additional 

parameters in order to reproduce the hysteretic response of the beams (see Fig. 4.8b and section 

4.3.1). As the X-brackets is characterized by some pinching phenomenon due to buckling 

phenomena occurring at high displacement, the column element is necessary to simulate the 

different secant stiffness that characterizes the unloading phase. The flowchart of the model 

implemented in OpenSees is depicted in Fig. 4.9 whereas an example of the numerical code is 

available in 0.1. 

  
(a) (b) 

 
Fig. 4.8 – Macro element Model of the X-bracket (a) and Moment/curvature law applied to the hinges (b). 
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Fig. 4.9 – Flowchart of the intended Macro element Model. 

4.3.1 Calibration of the MEM model 

Fig. 4.10 shows a comparison between experimental evidence of X-bracket version 2, reported in 

section 3.2.3, and numerical prediction of the 3D model (detailed) and the MEM (simplified). 

Analysing the cyclic tensile results (see Fig. 4.10a,b) the detailed model almost overlaps the 

experimental hysteretic loops which translate into a good matching of the elastic Kel and post-elastic 

stiffness Kpl and dissipated energy. Within high displacements, the overestimation of the peak 

compression force in the unloading phase is (energetically) balanced by and underestimation of the 

stiffness during 2nd and 3rd reloading cycles. The shear response (see Fig. 4.10c and d) of the 

detailed model is almost identical in the range ±12mm. However, high amplitude cycles are difficultly 

replicated by the detailed model due to particular buckling phenomena (and localized plastic strain) 

occurring in the X-bracket web for repeated reversed cycles. 

As for the MEM, the hysteretic response to tensile loading conditions is correctly captured. In detail, 

the lower dissipated energy, emerging from low-amplitude cycles, is mainly due to the lower the 

absence of buckling phenomena observed in the experimental test, while the column element is 

always active in all the displacement range. However, the dissipated energy measured for high 

displacement cycles is very well replicated from the model (see Fig. 4.10b) and demonstrated by the 

equal gradient of the experimental and numerical curves. As an anticipation, the model is being 

further enhanced by adding a threshold level to the column element up to which the buckling remains 

inactive. This, to reduce the underestimation of 21% that is left at the end of the cyclic procedure. 

Lastly, the MEM is also faithfully reproducing the shear loading conditions where, apart from low 

amplitude range (-4mm, +4mm), is capable to reproduce both loading and unloading stiffness and 

strength degradation. 
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(a) 

 
(b) 

  

 
(c) 

 
(d) 

Fig. 4.10 – Comparison of cyclic loading tests: Pure tension test hysteretic loops and respective cumulated 
energy for pure tension (a,b) and pure shear (c,d) loading. 

4.4 MEM application to Case-study CLT shear walls 

The evaluation of the combined shear-tensile interaction was given by the numerical simulation of 

full-scale CLT shear-walls adopting various configuration of wall geometry and number and position 

of the brackets. FE simulations of typical CLT shear walls fastened with the investigated device were 

realized with both models. Quasi-static cyclic-loading tests were simulated according to EN 12512 

protocol 4) with increasing amplitude taking as a reference an horizontal top-displacement at yielding 

𝑑𝑦 equal to 10 mm. The four chosen walls have exactly reproduced the CLT specimens (dimension 

of 2.95 x 2.95 m, aspect ratio 1:1 and vertical distributed load 18.5 kN/m) tested at CNR-IVALSA 

laboratory within the SOFIE project [4.21]. These configurations were chosen to allow a direct 

comparison with shear-walls representative of the CLT technology and anchored using traditional 

connection system. Wall I.1 is anchored with two hold-downs and two angle brackets whereas wall 

I.2 exploited two hold-downs and four angle brackets. Wall 2.4 and 3.1 have the same height but are 

composed by two panels jointed together. The vertical joint is realized in the first case (wall 2.4) with 

a half-lap joint fastened with ten 8x100mm self-tapping screws. The second wall have two lines of 

20 screws in a LVL spline joint [4.21]. 

Fig. 4.11 shows the geometry and connection arrangement of the modelled CLT shear walls 

employing the newly developed connection: 
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- Wall A simulates the condition of the minimum number of brackets necessary to anchor a 

single panel at the base. The connection placed at the corner act mainly as hold-downs, thus 

are mainly subjected to tensile loading condition; 

- Wall B presents the normally designed condition of  a typical panel where an additional 

bracket is placed in the middle to absorbs mainly shear loads; 

- Wall D.1 has four brackets placed at the base and a single bracket acting as vertical joint; 

- Wall D.2 have the same configuration of D.1 but two brackets are placed as element 

connecting the two panels. 
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Fig. 4.11 – Geometry and connection arrangement of the investigated walls: tested walls with traditional 
connections (first row); simulated walls with innovative connections (second row). 

4.4.1 Detailed model 

Linear elastic membrane elements with thickness of 85 mm (5 layers of 17-mm thick timber boards) 

were used to simulate the timber panels (see Fig. 4.12). The panel orthotropy was included by 

calculating equivalent Elastic moduli in the horizontal EEq,x and vertical directions EEq,y and shear 

Moduli G according to [4.22]. The innovative brackets were modelled with the same FE non-linear 

model already validated in Section 3.2.2.1, assuming that it is able to reproduce the behaviour of X-

brackets under combined tension and shear loads. The mesh thickness of the X-bracket was partially 

condensed by reducing the total number of tetrahedral elements for each connection from 15.000 

to 5.000, to reduce the computational effort while maintaining enough accuracy of the overall cyclic 

response. This was possible by strongly reducing the number of elements in all the areas where 

plastic strains do not take place (e.g., zones near the fixing points). The preservation of reliability of 

the 3D model can be evaluated by examining the correctness of the cyclic response of each X-

bracket, reported in Appendix A.2. Steel and CLT mechanical properties adopted in the numerical 

models are listed in Table 4-3. Coupling constraint equations were applied in correspondence of the 

fixing points to avoid relative displacements between panels and X-brackets and permit exclusively 

the relative rotation (hinge connections). No gap elements were introduced at this stage to account 

for possible wood embedment phenomenon. Frictionless only-compression contact elements were 
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placed along the interface between wall and supporting elastic curb, so disregarding the contribution 

of friction effects to shear strength and dissipation. Constant distributed vertical load was distributed 

along the top edge, whereas imposed cyclic horizontal displacement of increasing magnitude was 

imposed to the top corner of the CLT wall. 

Table 4-3 – Main parameters used in the detailed 3D model. 

Steel connectors 
(mean values from tensile test, 
see Section 3.2.3) 

Timber panel 
(typical mean values 
for CLT panels) 

Parameter   Value Parameter   Value 

Elastic Modulus E (MPa) 210000.0 Eq. Elastic modulus EEq,x (MPa) 5040.0 

Tangent Modulus ET (MPa) 957.0 Eq. Elastic modulus EEq,y (MPa) 7360.0 

Yielding stress σy (MPa) 450.0 Shear modulus Gxy (MPa) 450.0  

Ultimate true stress σu (MPa) 700.0 Shear modulus Gyz (MPa) 76.8 

Poisson’s ratio ν (-) 0.25 Shear modulus Gxz (MPa) 115.2 

Mesh size range (mm) 5.0-8.0 Mesh size range (mm) 30.0÷200.0 

Thickness t (mm) 6.0 Thickness t (mm) 85.0 

 

  
Fig. 4.12 – Detailed numerical model: Adopted constraints and example of the FE model of Wall D.2 

4.4.2 Macro-element model 

The CLT walls were modelled using 4-node quadrilateral element (ShellMITC4) already available in 

OpenSees [4.20]. Like in the detailed FE model, the mesh size reflects a balance between speed 

and accuracy, and carry the same orthotropic material model properties. The concrete curb was 

modelled by including elastic no-tension truss elements fixed to the nodes of the panel base. Each 

bracket, modelled with the described MEM, was connected to the mesh by using equalDOF 

commands, which construct a multi-point constraint between chosen nodes. In detail, nodes 1 and 

2 of Fig. 4.8 were connected to the panel edge nodes. Actually, the MEM was not yet implemented 

as an independent external subroutine (i.e. each X-bracket have to be built and recalled separately) 

however this feature will be developed in the future to further reduce the computational effort 

necessary to carry out NLDAs.  
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Fig. 4.13 – Simplified mesh of wall D.2 implemented into OpenSees. 

4.4.3 Main results 

Results from the two modelling methods are directly compared at both the single connection level 

and to the overall behaviour of the shear walls. In this instance, it is implicitly assumed that the 

detailed model accurately reproduce the brackets behaviour and consequently the actual cyclic 

behaviour of the CLT walls in the studied configurations. From a first look at the comparison of the 

force vs. displacement hysteretic loops (see Fig. 4.14) within all the configurations, the MEM is 

confirmed to reproduce correctly the cyclic behaviour of the brackets. Varying disposition and, 

consequently, the possible shear-tension interaction does not introduce any noteworthy issues in 

the results. Fig. 4.15 shows the total amount of dissipated energy by the system (i.e., the totality of 

the X-brackets). It is again confirmed the suitability of the Macro-Element approach. The only 

emerging differences are relative to the vertically jointed walls. In this case, the MEM seems to over-

estimate the total base shear force. This is because in the 3D model the vertical joint was realized 

by means of the X-Brackets only and the input cyclic shear force, applied to the top left corner of the 

wall conveyed as an axial force from one panel to the other only through the bracket. Conversely, 

with the ME model the horizontal load was applied directly on the upper edge of both panels. This 

can easily be ascertained by analysing the force vs. displacement curve registered for each 

connection and in particular for the brackets placed as panel-to-panel joints (see Appendix A). 

One final assumption is that the Macro-element model does reproduce the X-bracket cyclic 

behaviour within the entire displacement domain and not only on pure shear or pure tension loading. 
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Wall A Wall B 

  
Wall D.1 Wall D.2 

Fig. 4.14 – Force vs. top displacement loops: comparison between detailed and Macro-Element model. 

  

Wall A Wall B 

  
Wall D.1 Wall D.2 

Fig. 4.15 – Total dissipated energy evaluated at the peak points: comparison between detailed model and 
MEM. 
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4.4.4 Prediction of the mechanical properties 

As a supplement to the analyses, the mechanical parameters of the investigated walls are reported 

in Table 4-4. Either in Wall A and in wall B, failure in tension occurs for the brackets at the opposite 

corners but the contribution of a single bracket placed as angular bracket (from wall A to wall B) 

produces a conspicuous amount of base shear strength (roughly 39.9% at yielding and of 36.6% at 

failure). The calculated ductility values are remarkable for a CLT shear wall system. As already 

mentioned this is mostly due to the combination of high elastic stiffness and good displacement 

capacity. As expected, splitting the wall into two panels let the complete assembly take advantage 

of all the dissipative capacity procured by the innovative devices. Yielding strength doubles from 

Wall A to D.1 and from Wall B to D.2. A significant improvement is to be highlighted when an 

additional bracket is placed as vertical joint (wall D.1 to D.2). In fact, Wall D.1 fails in the panel-to-

panel joint while in Wall D.2 the brackets at the corners are responsible for failure. Lastly, both jointed 

panel express the highest displacement capability (up to 80mm or 2.7% of drift). The calculated 

equivalent viscous damping ratio [4.19] on the 1st and 3rd cycles are mostly in the range of 15-20% 

with peaks up to 25-30% (see Fig. 4.16). One last noteworthy result is that the obtained total 

dissipated energy at the end of the cyclic procedure, even in the scarcely jointed condition of Wall 

A, is much higher than the one obtained with traditional connections [4.21]. 

Table 4-4 – Main parameters according to EN 12512 method a [4.19]. 

Parameter WALL A WALL B WALL D.1 WALL D.2 Bi-linearization  

Fy (kN) 25.34 35.28 55.39 70.62 

 

dy (mm) 4.96 5.59 8.82 9.11 

Fmax (kN) 45.70 62.50 64.60 84.40 

du (mm) 60.00 60.00 80.00 80.00 

kel (kN/mm) 5.11 6.31 6.28 7.75 

kpl (kN/mm) 0.37 0.50 0.13 0.19 

 (Vu) (-) 12.10 10.73 9.07 8.78 

νeq 1st (%) at 60mm 19.4 17.0 20.5 18.0 

νeq 3rd (%) at 60mm 16.0 12.8 15.0 16.9 

Ed (kJ) 34.1 36.5 34.9 45.9 

Ductility Class H H H H 
 

 

Fig. 4.16 – Equivalent viscous damping ratio of the four examined walls. 
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4.5 MEM application to a Case-study CLT building and 

computation of q-factor 

In this final step, (according to Fig. 4.1) the MEM was put to the test in carrying NLDAs to assess 

the results, in terms of behaviour factor q, that employing proper connections designed for CLT 

structures can achieve on a case-study building. Part of the same numerical analyses conducted by 

Trutalli and Pozza [4.23] were carried out by substituting traditional angle brackets and hold-downs 

with the proposed connections. 

The behaviour factor q was computed according to the Peak Ground Acceleration (PGA) approach 

([4.8];[4.24]). According to this method, the q-factor is calculated through the ratio between PGAd 

and PGAu. The first term is the value of PGA at design condition derived through via analytical or 

numerical calculations. The second term is the PGA value corresponding to the near-collapse 

conditions and is derived through NLDAs. Additionally, the q-factor can be expressed as the 

multiplication of two sub-factors: the intrinsic q-factor q0 and design over-strength Ω [4.9]. The former 

factor q0 expresses the ductility, hysteresis dissipation and all the other intrinsic over-resistances 

(e.g., obtained from a post-elastic hardening behaviour).  The latter takes into account the difference 

between the actual necessary strength of a component or a complete system and the strength 

actually required by them. Linking this concept, to the PGA approach above reported, allows a clear 

method of calculation of the terms q0 and Ω. The q0-factor can be defined as the ratio between PGAu 

and PGAy, obtained directly from the yielding force of the building. Ω-factor can be computed in 

addition, as ratio between yielding and design force (see section 1.3). 

4.5.1 Assumed design hypotheses and building specifications 

 

A realistic case-study building was designed with the aim to obtain the most suitable estimation of 

the intrinsic behaviour factor q0. The following design hypotheses were made: 

- The connections were designed according to Equivalent Linear Static Analysis, with the 

following data, according to Eurocode 8 [4.25]: type 1 elastic response spectra with type A 

soil, behaviour factor q=1, design PGA equal to 0.35g (the highest value for Italian territory) 

with a building importance factor of 1 and maximum spectral amplification factor equal to 2.5; 

- The design value of the resistance of the brackets was assumed equal to yielding conditions 

obtained in the experimental tests (see Section 3.2.3.2). In particular, FHD,d and FSH,d were 

set equal to 27.41 kN and 38.83 kN. To take into account the shear-tensile interaction the 

shear strength was multiplied by a factor of 0.8 obtaining an FSH,d of 31.6 kN. To switch from 

experimental resistance to the design no other partial resistance coefficient γm or load 

duration coefficient kmod were used; 

- The rounding on number of connectors, i.e. the difference between the required and the 

actual strength was necessarily taken into account. Contrary to nailed connection, it is not 

possible to avoid this step (for example by calculating the exact number of nails for traditional 

connections). The design overstrength  was therefore calculated as specified (coherently 

with design assumption). A way to reduce this factor would be to exploit the abacus of 

strength provided in Section 4.2.1 and calculate the parameters (i.e. t and λ) that produces 

the desired design strength, however this procedure was not accounted at this stage;  
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- The shear-tension strength domain defined in Section 4.2 was used to evaluate the near-

collapse condition of the connections for the computation of PGAu,i with NLDAs; 

The case-study building involved a three-storey CLT structure with a total base length of 8.75 m, 

regular in plan and in elevation. The chosen façade was taken from a real application (Progetto 

Case, L’Aquila, Italy, see Fig. 4.17). 

The total mass of the building M consisted in 60 t distributed as 24 t for the first two storeys and 12 

t at the upper one. A resulting design shear force Fh,d of 203 kN was calculated assuming the site 

conditions described above. The studied building was calculated with three different panel 

assemblies Fig. 4.17. In detail, the first condition assumed that no vertical joints were present and 

each floor was built with a singular massive squat panel. The second configuration added only one 

vertical joint that split the façade into two parts. The last arrangement provided the maximum amount 

of vertical joint possible (i.e. joints every 1.25m) 

 

Fig. 4.17 – Case study building façade. 

   
No vertical joints One vertical joint Vertical joints every 1.25 m 

Fig. 4.18 – Bracket disposition and consequent vertical fragmentation of panels. 

The design of the X-bracket disposition was provided by imposing equivalence between the 

horizontal force applied to each storey and the shear resistance of the brackets and the equilibrium 

to possible overturning of the building. Pushover analyses (NLSA) were conducted to predict the 

overstrength sub-factor  that was implicitly assumed within each of the three analysed 

configurations. This was done by applying a bi-linearization method to the pushover curves obtained 

for each of the three connections arrangements. 
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The NLDAs were carried out for each case study with increasing PGA levels, starting from the design 

value, to define the failure value corresponding to the near-collapse condition. The NLDA were 

performed considering 3 earthquakes, artificially generated with SIMQKE_GR [4.26], so as to 

respect the spectrum compatibility requirement according to the design elastic spectrum. The 

application of various seismic signals had the aim of defining the influence of the frequency content 

of the earthquakes on the building response. The dynamic equilibrium equations were integrated 

with a time step of 0.01s, by adopting an equivalent viscous damping of 2%, according to the 

Rayleigh model. The choice of this damping coefficient was made according to Ceccotti [4.8]. The 

assumed near-collapse condition for the evaluation of the PGAu,i corresponds to the first failure of a 

connector, defined as maximum admissible displacement reached by the MEM during the applied 

earthquake. The values of ultimate displacements were assumed according to the strength domain 

of the connection. The displacement domain (see Fig. 4.5c,d) was partially simplified by assuming 

as an ultimate displacement du = (dx,u
2 + dy,u

2)1/2 a value of 38 mm.  

Fig. 4.19 shows pushover curves, used to design the building, overlapping the NLDA results 

increasing PGA, i.e., the points representing the maximum base shear vs. corresponding top 

displacements. Two horizontal force distributions were examined in the NLSAs: one proportional to 

that of the first modal shape of the building (NLSA_1) and the other proportional to storey masses 

(NLSA_2). As Fig. 4.19 shows, there is a good fit between NLSAs and NLDAs. The interval between 

the curves defines the range of possible responses of the building during an earthquake. 

 

Fig. 4.19 – Comparison of results from NLSA and NLDA for the three building configurations. No joints in red, 
one joint in green and five joints in blue. 

Fig. 4.20 plots the maximum displacement registered by the brackets at the base floor. There is a 

clear transition between failure due to combined rocking-sliding behaviour of the panels, observed 

in the case of no vertical joints, to a pure rocking failure obtained for the highly-jointed solution. From 

this plots emerges also that all connections entered the post-elastic phase (i.e. d > dy ≈ 4mm) but 

part of them did not exploited the whole dissipative capacity. A perfect design condition would 

guarantee that each connection element develops the highest plastic deformations before reaching 

the near-collapse condition due to the diffused failure of all connections in the building. In this way, 

the maximum base shear force and the maximum ductility might be reached together. 
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No joints One vertical joint Five vertical joints 

Fig. 4.20 – Maximum displacements of the base brackets for the three buildings. 

Lastly, Table 4-5 reports the outcomes obtained from the PGA approach: 

- In general, high values of q-factor are achieved within all panel arrangements. Even with a 

predominant sliding failure of the panels high ductility and dissipative capacity can be 

achieved; 

- As expected, the higher is the number of joints, the higher will be the resulting intrinsic 

behaviour factor q0;  

- The base shear at PGAy reduces at the increasing of joints thanks to the different post elastic 

behaviour that the structures assumes. In fact, the rocking behaviour is related to a 

pronounced hardening behaviour of the X-brackets, i.e., when they are subjected to 

predominant tensile loads. This translates into a reduction of the Ω-factor for the chosen bi-

linearization method; 

- Higher ductility means higher displacements. In highly-jointed configurations the DLS 

conditions could prevail on the USL condition thus reducing the actual behaviour factor for 

this particular case. 

- From a brief comparison with the analyses conducted for the same building and seismic 

conditions, but employing traditional connections [4.23], it clearly emerges the improvements 

on ductility and dissipative capacity obtained with the studied connections. Traditional 

connections produced a q-factor equal to 3.41, 3.48 and 3.63 respectively for the case of no 

vertical joints, one joint and five vertical joints. In that study the design Ω-factor was equal to 

1 so q0 = q. 

It must be highlighted that these outcomes are taken from a restricted amount of analyses. A larger 

set of earthquakes and building configurations must be analysed in order to validate and extend 

these results. 

Table 4-5 – Evaluation of q-factor for the three analysed building configurations. 

Case study 
Top displ. 
at PGAu 

Base shear 
at PGAy 

Max base 
shear 

PGAu PGAd q0 Ω q 

  (mm) (kN) (kN) (g) (g)       

No joints 78 263 408.7 0.77 0.33 3.7 1.3 4.7 

One joint 105 244 437.9 0.88 0.33 4.5 1.2 5.4 

Joints every 1.25m 181 220 438.0 1.00 0.33 5.7 1.1 6.2 
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4.6 Conclusions 

This chapter described the numerical reproduction of the hysteretic behaviour of the innovative 

bracket by means of a Macro-element approach.  The model was developed to simulate thoroughly 

the cyclic behaviour of the bracket that has been derived experimentally with a more computationally 

efficient solution. The proposed Macro-element, exploiting few non-linear elements, has proven to 

be capable of replicating the X-bracket behaviour when subjected to either tension or shear loads or 

a combination of them. 

The model was successfully tested by conducting numerical simulations of full-scale CLT shear walls 

anchored at the base with the investigated devices. Four different bracket dispositions were 

simulated and a comparison between a detailed 3D model employing contact formulations and other 

non-linearities was made. The Macro-element approach reproduced correctly the shear-tension 

interaction that identify the bracket and allowed providing valid estimations of the energy dissipated 

by the complete system. 

The Macro-element was then put to the test to perform non-linear dynamic analyses, with the aim of 

evaluating the performance of CLT structures that employ specifically designed connections. 

Obtained results confirmed that high behaviour factors are possibly achieved also with CLT 

structures once innovative connections are employed. 

The innovative joint proved to be modelled more easily and reliably in comparison to traditional joints. 

This is a natural consequence of the stable and well-known hysteretic behaviour that characterizes 

the inelastic response of steel elements. 

Further studies should concentrate in the extension of the analyses to further case-study 

configurations and possibly apply this modelling approach to a complete 3D model. Additionally, 

simplified design rules should be investigated in order to reduce as much as possible the Ω-factor. 
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Chapter 5 Conclusions and future works 

The outcomes of this thesis lead to the following remarks.  

In particular, main original outcomes from the analyses of TCC joints made with modern fasteners 

are:  

- The use of modern self-tapping screws as TCC connections placed at an angle of 45° with 

respect to the grain provides suitable levels of load bearing capacity. This is valid for 

connection points realized with either a single inclined screw or a pair of crossed screws. 

Experimental results show that in its evaluation, Eurocode 5 method underestimates load 

capacity of inclined screws resulting more reliable for crossed screw respect to inclined 

screws TCC joints. 

- The equilibrium equations originally developed in the Johansen’s theory model for dowel-

type fasteners loaded in shear, rewritten taking into account the contribution of the withdrawal 

capacity (enhanced by the screw inclination), leads to a better correspondence with 

experimental evidence. Furthermore, frictional effects could affect the resulting shear force 

obtained from push-out tests used to evaluate TCC connections performances in case of 

direct contact between timber and concrete. When single inclined screws are employed, a 

frictional value of 0.6 could be used; 

- According to the alternative approach to Eurocode 5, crossed screws in TCC connection 

might lead to a special failure condition with the expulsion of concrete cover, hence 

precautions when estimating the total shear-strength must be taken. Moreover, the efficiency 

level, calculated as ratio between load bearing capacity and number of screws (in analogy 

with the effective number of screws), proved to be lower for a crossed screw configuration.  

- As concerning the stiffness estimations, the comparison between the experimental results 

and the analytical formulas shows that Eurocode 5 method provide more conservative values 

respect to those provided by the proposed model. Moreover results demonstrate that the 

proposed formulation lead to more reliable estimation of the CP stiffness than simply 

neglecting the contribution of the shear-compressed screw as proposed by Eurocode 5; 

- The hybrid FE approach chosen to simulate the experimented complete timber-to-concrete 

connection proves to reproduce faithfully the load exchanges occurring between timber and 

concrete layers through the inclined fastener. This technique requires the calibration of a 

single parameter, i.e., the friction coefficient between the screw shank and the timber, once 

the main mechanical properties of the materials are known; 

- This modelling technique proves to be useful in the design of a GFRP socket that, coupled 

with two inclined screws, overcomes the critical installation issues of TCC joints. Additionally, 

the model turned to be a helpful tool in the definition of the state of stress to which the GFRP 

component should be subjected in the short and long term in order to predict analytically the 

deformability factor kdef of the complete system; 

- The conservative nature of Eurocode 5 provisions, analysed through additional experimental 

tests of TCC joints with the GFRP socket, are confirmed also in this case. Likely, to the screw-

only configuration, a better fitting is achieved with the proposed approach that has been 

validated also varying the screw strength and the presence of interlayer; 
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- The contribution of the GFRP component does not lead to significant changes on the load 

bearing capacity while it slightly affects the stiffness if normal concrete is used. The 

thermoplastic element fulfilled the protection against concrete splitting or concrete cone 

failure in all the tested configurations. This is proven valid also in the most critical combination 

of lightweight concrete and screws with high withdrawal capacity; 

- GFRP materials produced by injection moulding could be helpful in the continuous 

improvements of timber connections once provided that sufficient care is taken into account 

in determining the actual conditions of environment and loading conditions to whom they will 

be subjected during their working life. 

Further researches are needed before the relationships proposed in this work could be incorporated 

in a code revision. They should focus on the evaluation of the actual contribute of friction and of a 

plausible μ value for timber-concrete connections. Finally, a more extensive and detailed 

experimental campaign should be conducted in order to better validate the proposed model and 

verify the reliability of the standard methods proposed by Eurocode 5. 

 

Regarding the experimentation provided in the field of novel connections for CLT structures: 

- The concept of innovative connections is based on the idea to shift the dissipating element 

from the usual dowel-type fasteners employed in traditional connections to a properly 

designed steel element meanwhile preserving the fasteners from behaving inelastically. The 

high efficiency of innovative devices in terms of hysteretic response can be achieved through 

the combination of yielding of specific components, restraining of unwanted displacements 

and friction between sliding parts. 

- The experimental characterization of the investigated device confirmed the significant 

mechanical performance achieved with respect to traditional connections. High ductility class 

can be achieved with the combination of a high elastic stiffness and a displacement capacity 

comparable or even higher than traditional connections. The calculated equivalent viscous 

damping ratio with the innovative device is approximately double than traditional connections 

either in shear or in tension due to the reduced pinching phenomenon. 

- A correct capacity design procedure is of utmost importance to take all benefits that 

characterize innovative CLT connections. The theoretical definitions of the capacity design 

rules available in literature can be more reliably extended to the design of innovative 

connections. Experimental tests are a priority to assess the actual behaviour of the connector 

procedure and to evaluate the intrinsic overstrength of the connection in order to design its 

anchoring to the panel and express the whole dissipative capacity of the element without 

incurring into unwanted brittle failures. 

- Capacity design applied to innovative connection allows the design of damage-free joints or, 

more precisely, fuse-like joints that can be easily substituted immediately after a seismic 

event in order to restore as much as possible the safety of the structure.  

- The axial-shear interaction is a relevant topic in CLT connections and the evaluation of their 

strength and displacement domain is more easily comprehensible for connections that 

concentrate energy dissipation in specific components or mechanisms.  

- Innovative joints can be more reliably modelled in comparison to traditional joints. This is a 

natural consequence of a stable and well-known hysteretic behaviour that characterizes the 

elastic-plastic cyclic response of steel elements. This was proven with the definition of 

numerical macro-element able to macroscopically reproduce the tension and shear 
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combined behaviour of the innovative joints. Such macro-model was used to perform non-

linear dynamic analyses, with the aim to evaluate the performance of CLT structures that 

employ specifically designed connections. Obtained results confirm that high behaviour 

factors are possibly achieved also with CLT structures when innovative connection are 

employed. 

Additional studies should focus on the extension of the numerical analyses to further case-study 

configurations or the application of this modelling approach to a 3D case study building. 
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Appendix A Macro-element model details 

A.1 Numerical code of the MEM 

The following code have been implemented in OpenSees to simulate the X-bracket Version 2 

geometry realized in S450 steel grade. The code does reproduce the bracket-only condition and 

neglects any effects derived from the hypothetical anchoring system of the bracket. This assumption 

have been proven valid if capacity design criteria is correctly fulfilled. 

proc xbracket {index xst yst} { 

 

model BasicBuilder -ndm 3 -ndf 6;  # Define the model builder, ndm=#dimension, ndf=#dofs 

 

################################################################# 

#          Define Section Properties and Elements               #   

################################################################# 

 

# define material properties 

set Es  134166;  # steel Young's modulus 

 

# define web section 

set A_w  474.0 ;  # cross-sectional area 

set I_w  142200.0;  # moment of inertia 

set My_w  3434130.0;  # yield moment 

set tetay_w 5.367E-03; 

 

# define flange section 

set A_f  247.0;  #cross-sectional area (full section properties) 

set I_f  29722.33;  # moment of inertia  (full section properties) 

set My_f  1133359.5;  # yield moment 

set tetay_f 5.579e-03; 

 

# set up geometric transformations of element 

geomTransf Linear 1  0  0  -1 

 

# Set hysteretic Material 

set s1p_f  [expr 1.5*$My_f] 

set e1p_f  0.0001 

set s2p_f  [expr 2.9*$My_f] 

set e2p_f  [expr 28*$tetay_f] 

set s3p_f  0 

set e3p_f  [expr 100*$tetay_f]     

set s1n_f  [expr -$s1p_f] 

set e1n_f  [expr -$e1p_f] 

set s2n_f  [expr -$s2p_f] 

set e2n_f  [expr -$e2p_f] 
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set s3n_f  [expr -$s3p_f] 

set e3n_f  [expr -$e3p_f] 

set pinchX_f 0.28 

set pinchY_f 0.18 

set damage1_f 0        

set damage2_f 0    

uniaxialMaterial Hysteretic 100 $s1p_f $e1p_f $s2p_f $e2p_f $s3p_f $e3p_f $s1n_f $e1n_f 

$s2n_f $e2n_f $s3n_f $e3n_f $pinchX_f $pinchY_f $damage1_f $damage2_f 

 

set s1p_w  [expr 0.9*$My_w] 

set e1p_w  0.0001 

set s2p_w  [expr 1.3*$My_w] 

set e2p_w  [expr 33*$tetay_w] 

set s3p_w  0 

set e3p_w  [expr 100*$teta_w] 

set s1n_w  [expr -$s1p_w] 

set e1n_w  [expr -$e1p_w] 

set s2n_w  [expr -$s2p_w] 

set e2n_w  [expr -$e2p_w] 

set s3n_w  [expr -$s3p_w] 

set e3n_w  [expr -$e3p_w] 

set pinchX_w 0.0001 

set pinchY_w 0.001 

set damage1_w 0.000039 

set damage2_w 0.295 

uniaxialMaterial Hysteretic 200 $s1p_w $e1p_w $s2p_w $e2p_w $s3p_w $e3p_w $s1n_w $e1n_w 

$s2n_w $e2n_w $s3n_w $e3n_w $pinchX_w $pinchY_w $damage1_w $damage2_w 

 

################################################################# 

#                  Limitation to compression                    # 

################################################################# 

 

set epsyP  1 

set epsyN  -0.3 

uniaxialMaterial ElasticPP 300 $Es $epsyP $epsyN  

 

#Set BeamwithHinges Element 

section Uniaxial 1 100 Mz  #section flange 

section Uniaxial 2 200 Mz  #section web 

section Uniaxial 3 300 P 

section Aggregator 23 200 Mz 300 P 

set Lpi_f  1 

set Lpi_w  1 

 

################################################################# 

#            Creation of nodes     #  

################################################################# 

 

# nodal coordinates: 

set l_f  118.5; 

set l_w  90.0; 

 

# node tag          xCrd          yCrd  ndf  

node [expr $index*i+1]  [expr -1.*$l_f+$xst]  $yst         0; 

node [expr $index*i+2]  $xst                  $yst  0; 

node [expr $index*i+3]  [expr $l_f+$xst]      $yst  0; 

node [expr $index*i+5]  $xst                  [expr -2.*$l_w+$yst] 0; 

node [expr $index*i+6]  [expr -1.*$l_f+$xst]  [expr -2.*$l_w+$yst] 0; 

node [expr $index*i+7]  [expr $l_f+$xst]      [expr -2.*$l_w+$yst] 0; 

 

fix  [expr $index*i+6] 1 1 1 0 0 0;  

fix [expr $index*i+7] 1 1 1 0 0 0;  

 

################################################################# 

#           Creation of elements    #  

################################################################# 

# element beamWithHinges $eleTag $iNode $jNode $secTagI $Lpi $secTagJ $Lpj $E $A $Iz $Iy 

$G $J $transfTag 

element beamWithHinges [expr $index*i+10] [expr $index*i+1] [expr $index*i+2] 

   1 0 1 $Lpi_f 
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   $Es $Af $If 10e7 

   10e7 10e7 1 

element beamWithHinges [expr $index*i+11] [expr $index*i+2] [expr $index*i+3]   

1 $Lpi_f 1 0  

   $Es $Af $If 10e7  

   10e7 10e7 1 

element beamWithHinges [expr $index*i+14] [expr $index*i+5] [expr $index*i+6] 

   1 $Lpi_f 1 0 

   $Es $Af $If 10e7 

   10e7 10e7 1 

element beamWithHinges [expr $index*i+15] [expr $index*i+5] [expr $index*i+7] 

   1 $Lpi_f 1 0 

   $Es $Af $If 10e7 

   10e7 10e7 1 

element beamWithHinges [expr $index*i+12] [expr $index*i+2] [expr $index*i+5] 

   2 $Lpi_w 23 $Lpi_w 

   $Es $Aw $Iw 10e7 

   10e7 10e7 1 

 

equalDOF [expr  $index*10000+1] [expr   $index*10000+3] 1 2 

 

} 
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A.2 Detailed results of case-study CLT shear walls 

This section reports the detailed outcomes from the analysed case-study CLT shear walls anchored 

with the investigated bracket. For each of the four investigated walls are plotted in sequence: the 

cumulated dissipated energy by the system, the dissipated energy within each half-cycle and the 

tensile force vs. uplift, shear force vs. slip and uplift vs. slip curves for each bracket. It is worth noting 

that the plotted circular displacement domain underestimates the displacement capacity for 

predominant tension conditions. Therefore, the cycles exceeding the limit of 38 mm in mostly uplift 

are yet taken as valid in the estimation of the mechanical parameters of the shear wall. 

A.2.1 Wall A 

Detailed results obtained with either the 3D model or Macro-element model. 
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A.2.2 Wall B 

Detailed results obtained with either the 3D model or Macro-element model. 

  

   

   

   

  

0

2500

5000

7500

10000

12500

15000

17500

20000

0 5 10 15 20 25 30 35 40

C
u

m
u

la
te

d
 E

n
er

g
y
 [

J]

Half cycle number

Detailed MEM

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 5 10 15 20 25 30 35 40

C
u

m
u

la
te

d
 E

n
er

g
y

 [
J

]

Half cycle number

Detailed MEM

-40

-20

0

20

40

60

0 10 20 30 40 50 60

T
e
n

si
le

 F
o

r
c
e
 [

k
N

]

Uplift [mm]

Det. Br.  n°1 MEM - Br. n°1

-50

-30

-10

10

30

50

-30 -20 -10 0 10 20 30

S
h

e
a

r
 F

o
r
c
e
 [

k
N

]

Slip [mm]

Det. Br.  n°1 MEM - Br. n°1

-5

5

15

25

35

45

-40 -30 -20 -10 0 10 20 30 40

U
p

li
ft

 [
m

m
]

Slip [mm]

Det. Br.  n°1 MEM - Br. n°1

Displ. Domain

-40

-20

0

20

40

60

0 10 20 30 40 50 60

T
e
n

si
le

 F
o

r
c
e
 [

k
N

]

Uplift [mm]

Det. Br.  n°2 MEM - Br. n°2

-50

-30

-10

10

30

50

-30 -20 -10 0 10 20 30

S
h

e
a

r
 F

o
r
c
e
 [

k
N

]

Slip [mm]

Det. Br.  n°2 MEM - Br. n°3

-5

5

15

25

35

45

-40 -30 -20 -10 0 10 20 30 40

U
p

li
ft

 [
m

m
]

Slip [mm]

Det. Br.  n°2 MEM - Br. n°1

Displ. Domain

-40

-20

0

20

40

60

0 10 20 30 40 50 60

T
e
n

si
le

 F
o

r
c
e
 [

k
N

]

Uplift [mm]

Det. Br.  n°3 MEM - Br. n°3

-50

-30

-10

10

30

50

-30 -20 -10 0 10 20 30

S
h

e
a

r
 F

o
r
c
e
 [

k
N

]

Slip [mm]

Det. Br.  n°3 MEM - Br. n°3

-5

5

15

25

35

45

-40 -30 -20 -10 0 10 20 30 40

U
p

li
ft

 [
m

m
]

Slip [mm]

Det. Br.  n°3 MEM - Br. n°1

Displ. Domain



Innovative connection systems for timber structures 
 

164 

A.2.3 Wall C 

Detailed results obtained with either the 3D model or Macro-element model. 
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A.2.4 Wall D 

Detailed results obtained with either the 3D model or Macro-element model. 
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