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Abstract

In-network data aggregation to increase the efficiency of data gathering solutions for

Wireless Sensor Networks (WSNs) is a challenging task. In the first part of this thesis, we

address the problem of accurately reconstructing distributed signals through the collection

of a small number of samples at a Data Collection Point (DCP). We exploit Principal Compo-

nent Analysis (PCA) to learn the relevant statistical characteristics of the signals of interest

at the DCP. Then, at the DCP we use this knowledge to design a matrix required by the re-

covery techniques, that exploit convex optimization (Compressive Sensing, CS) in order to

recover the whole signal sensed by the WSN from a small number of samples gathered. In

order to integrate this monitoring model in a compression/recovery framework, we apply

the logic of the cognition paradigm: we first observe the network, then we learn the rele-

vant statistics of the signals, we apply it to recover the signal and to make decisions, that

we effect through the control loop. This compression/recovery framework with a feedback

control loop is named “Sensing, Compression and Recovery through ONline Estimation”

(SCoRe1). The whole framework is designed for a WSN architecture, called WSN-control,

that is accessible from the Internet. We also analyze with a Bayesian approach the whole

framework to justify theoretically the choices made in our protocol design.

The second part of the thesis deals with the application of the cognition paradigm to

the optimization of a Wireless Local Area Network (WLAN). In this work, we propose an

architecture for cognitive networking that can be integrated with the existing layered pro-

tocol stack. Specifically, we suggest the use of a probabilistic graphical model for modeling

the layered protocol stack. In particular, we use a Bayesian Network (BN), a graphical rep-

resentation of statistical relationships between random variables, in order to describe the

relationships among a set of stack-wide protocol parameters and to exploit this cross-layer

approach to optimize the network. In doing so, we use the knowledge learned from the ob-

servation of the data to predict the TCP throughput in a single-hop wireless network and to
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infer the future occurrence of congestion at the TCP layer in a multi-hop wireless network.

The approach followed in the two main topics of this thesis consists of the following

phases: (i) we apply the cognition paradigm to learn the specific probabilistic characteristics

of the network, (ii) we exploit this knowledge acquired in the first phase to design novel

protocol techniques, (iii) we analyze theoretically and through extensive simulation such

techniques, comparing them with other state of the art techniques, and (iv) we evaluate

their performance in real networking scenarios.



Sommario

La combinazione delle informazioni nelle reti di sensori wireless è una soluzione promet-

tente per aumentare l’efficienza delle techiche di raccolta dati. Nella prima parte di questa

tesi viene affrontato il problema della ricostruzione di segnali distribuiti tramite la raccolta

di un piccolo numero di campioni al punto di raccolta dati (DCP). Viene sfruttato il metodo

dell’analisi delle componenti principali (PCA) per ricostruire al DCP le caratteristiche stati-

stiche del segnale di interesse. Questa informazione viene utilizzata al DCP per determinare

la matrice richiesta dalle tecniche di recupero che sfruttano algoritmi di ottimizzazione con-

vessa (Compressive Sensing, CS) per ricostruire l’intero segnale da una sua versione cam-

pionata. Per integrare questo modello di monitoraggio in un framework di compressione e

recupero del segnale, viene applicata la logica del paradigma cognitive: prima si osserva la

rete; poi dall’osservazione si derivano le statistiche di interesse, che vengono applicate per

il recupero del segnale; si sfruttano queste informazioni statistiche per prenderere decisioni

e infine si rendono effettive queste decisioni con un controllo in retroazione. Il framework

di compressione e recupero con controllo in retroazione è chiamato “Sensing, Compression

and Recovery through ONline Estimation” (SCoRe1). L’intero framework è stato implemen-

tato in una architettura per WSN detta WSN-control, accessibile da Internet. Le scelte nella

progettazione del protocollo sono state giustificate da un’analisi teorica con un approccio di

tipo Bayesiano.

Nella seconda parte della tesi il paradigma cognitive viene utilizzato per l’ottimizzazione

di reti locali wireless (WLAN). L’architetture della rete cognitive viene integrata nello stack

protocollare della rete wireless. Nello specifico, vengono utilizzati dei modelli grafici proba-

bilistici per modellare lo stack protocollare: le relazioni probabilistiche tra alcuni parametri

di diversi livelli vengono studiate con il modello delle reti Bayesiane (BN). In questo modo,

è possibile utilizzare queste informazioni provenienti da diversi livelli per ottimizzare le

prestazioni della rete, utilizzando un approccio di tipo cross-layer. Ad esempio, queste in-
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formazioni sono utilizzate per predire il throughput a livello di trasporto in una rete wireless

di tipo single-hop, o per prevedere il verificarsi di eventi di congestione in una rete wireless

di tipo multi-hop.

L’approccio seguito nei due argomenti principali che compongono questa tesi è il seguente:

(i) viene applicato il paradigma cognitive per ricostruire specifiche caratteristiche probabi-

listiche della rete, (ii) queste informazioni vengono utilizzate per progettare nuove tecniche

protocollari, (iii) queste tecniche vengono analizzate teoricamente e confrontate con altre

tecniche esistenti, e (iv) le prestazioni vengono simulate, confrontate con quelle di altre tec-

niche e valutate in scenari di rete realistici.



Chapter1

Introduction

The area of communication and protocol design for wireless networks has been widely

researched in the past decades. More recently, the interest of the research community has

been focused on the optimization of wireless networks able to adapt to specific scenarios

with peculiar constraints.

In this work, we exploit a set of mathematical tools, that span the literature of machine

learning [1], convex optimization [2] and probabilistic graphical models [3], in the frame-

work of cognitive networking [4] for the optimization of different kinds of wireless net-

works, e.g., Wireless Sensor Networks (WSNs), tactical networks, or standard Wireless Lo-

cal Area Networks (WLANs). Cognitive networking deals with applying cognition to the

entire protocol stack for achieving stack-wide as well as network-wide performance goals,

unlike cognitive radios that apply cognition only at the physical layer. The idea is to adopt

the cognition paradigm, that consists of four phases: the observation of the network (Ob-

serve), learning key network parameters from the data observed (Learn), the analysis of the

information collected and its exploitation using specific techniques to make decisions (Plan

and Decide), and finally effecting such decisions to optimize the network (Act). Designing a

cognitive network is challenging since learning the relationships between network protocol

parameters in an automated fashion is very complex.

This thesis is divided in two main topics. The former deals with a framework for the

transmission of multi-dimensional environmental signals sensed by a WSN and its opti-

mization. Here the aim is to design a simple strategy that requires the minimum computa-

tion and the minimum energy consumption among the wireless sensors, while being able

to reconstruct the signals at the data collection point with a reconstruction error below a
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Figure 1.1. Cognition cycle scheme applied to a monitoring scenario in a WSN.

given threshold. With this aim, the cognitive paradigm is adopted to learn the statistics of

the signals in order to fully exploit the spatial and temporal correlation characteristics of

the signal. The latter topic of the thesis deals with the optimization of data transmissions in

a WLAN with cognition capabilities. This optimization is performed with the same cogni-

tion paradigm, by learning of relevant network statistics and exploiting this information to

optimize specific network performance.

In the following, we detail both these topics and we conclude the chapter with a descrip-

tion of the organization of the rest of the thesis.

1.1 Compressive Sensing (CS) inWireless SensorNetworks (WSNs)

In the first part of this thesis, we investigate the topic of in-network aggregation and

data compression to increase the efficiency of data gathering solutions, while being able to

measure large amounts of data with high accuracy in a WSN for environmental monitoring.

We address the problem of accurately reconstructing distributed signals through the collec-

tion of a small number of samples at a data gathering point. With this aim, we exploit the

cognition paradigm, whose logical blocks are depicted in Fig. 1.1. The first phase of the cog-

nition cycle is the observation of the signals to be gathered and stored at the Data Collection

Point (DCP) for a given period of training (1. Observe phase). At the DCP, the signals gath-
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ered are exploited to learn the relevant correlation statistics of the signal through Principal

Component Analysis, PCA (2. Learn phase). After the initial training, the WSN starts to

exploit the cognition capabilities: the sensors transmit only the minimum amount of data,

the sampled version of the signal is efficiently reconstructed at the DCP by means of a con-

vex optimization technique provided by Compressive Sensing (CS) [5–8], and the DCP also

estimates the reconstruction quality and gives feedback to the WSN. If the reconstruction

quality is above a certain threshold, some sensors might stop their transmissions, thus sav-

ing precious energy resources, while if the reconstruction quality is below a given threshold,

all nodes should transmit their data to guarantee the required signal reconstruction quality

at the DCP (3. Plan and Decide phase). Finally, the DCP should send a broadcast message

to all the sensors to communicate its decision and to make it effective (4. Act phase).

In detail, the core of the signal reconstruction system is based on CS, a convex opti-

mization technique. CS shows great promise for fully distributed compression in WSNs.

In theory, CS allows the approximation of the readings from a sensor field with excellent

accuracy, while collecting only a small fraction of them at a data gathering point. However,

the conditions under which CS performs well are not necessarily met in practice. In order

to meet these conditions, we need a learning phase to capture the relevant correlation char-

acteristics of the signal to sense, and we use PCA to learn from the past data. With PCA we

can design a transformation basis that sparsifies the signal, i.e., concentrates all the energy of

the signal in only few components. A transformation with these characteristics is required

for CS to retrieve, with good approximation, the original signal from a small number of

samples. Our approach dynamically adapts to non-stationary real world signals through

the online estimation of their correlation properties in the space and time domains. The ap-

proach is tunable and robust, independent of the specific routing protocol in use and able

to substantially outperform standard data collection schemes. In particular, we propose a

mathematical framework for monitoring, in which we show how it is possible to make joint

use of CS and PCA in a WSN scenario, and we depict the probabilistic relations among

all the variables involved through a Bayesian Network (BN). Moreover, we use a two level

Bayesian analysis to analyze the statistics of the principal components of the signals gath-

ered by existing WSNs, designing a probabilistic model that approximates the distribution

of the principal components of these real signals. Then we provide empirical evidence of the

effectiveness of CS in an actual WSN monitoring scenario, underlying the conditions under

which the approach is optimal in the sense of Bayesian estimation (Maximum A Posteriori,
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MAP). Furthermore, we integrate this mathematical framework into an actual technique,

“Sensing, Compression and Recovery through ONline Estimation” (SCoRe1), that collects

the data gathered by the sensor network for an initial training phase, exploits PCA for learn-

ing the structure of the signal, uses CS for recovering the sub-sampled signal through convex

optimization and adopts a feedback control to bound the reconstruction error and to adapt

to non stationary signals. The effectiveness of our recovery algorithm, in terms of number

of transmissions in the network vs reconstruction error, is demonstrated for synthetic and

for real world signals, gathered from the WSN deployment at the University of Padova and

from other WSN testbeds whose data is available in the Internet. We stress that our solution

is not limited to WSNs, but can be readily applied to other kinds of network infrastructures

that require the online approximation of large and distributed data sets.

The main contributions of this part of the thesis are:

1. a preliminary study to quantify the benefits of CS in a realisticmulti-hopWSN scenario

when CS in used in conjunctionwith routing for a static signal (no temporal evolution);

2. the design of a novel mathematical framework to jointly use the statistics learned

through PCA, that exploits the temporal correlation of the signals, and the recovery

technique with CS;

3. a Bayesian analysis to find a suitable statistical model to approximate the statistical

distribution of the principal components of real WSN signals, used to justify theoreti-

cally the mathematical framework proposed;

4. the design of a novel, effective and flexible technique for distributed sampling, data

gathering and recovery of WSN signals, SCoRe1, based on the proposed mathematical

framework;

5. the integration of the sampling/recovery technique into an actual WSN architecture,

named WSN-Control;

6. a performance comparison of different data collection techniques that exploit the pro-

posed framework;

7. a performance comparison of data fitting techniques, with real signals in realisticWSN

scenarios.
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Note: the study on the application of CS and PCA in a WSN scenario was developed in collab-

oration with Riccardo Masiero, so part of the material may be also found in his thesis [9], although

analyzed under a different perspective.

1.2 Bayesian Networks for Cognitive Control

The second main contribution of this thesis deals with the application of cognition to

the entire network protocol stack for the optimization of different metrics in a WLAN. Such

approach is intentionally left as general as possible, so it can be easily applied to different

kinds of network, like, e.g., Tactical Networks, Ad-Hoc networks or standard WLAN. In

our concept of cognitive network, all networking elements track the spatial, temporal, and

spectral dynamics of their own behavior and the behaviors associatedwith the environment.

The information so gathered is used to learn, plan and act in a way that meets network or

application requirements.

In this work, we propose an architecture for cognitive networking that can be integrated

with the existing layered protocol stack and that exploits new and hitherto unused tools

from artificial intelligence. Specifically, we suggest the use of a probabilistic graphical model

for modeling the layered protocol stack. In particular, we use Bayesian Network (BN), a

graphical representation of statistical relationships between random variables, widely used

for statistical inference and machine learning. A graphical model is represented by a graph

structure consisting of vertices connected by directional edges that represent conditional

probability distributions. The structure of the model consists of the specification of a set of

conditional independence relations for the probability model, represented by a set of miss-

ing edges in the graph. Conditional probabilities are used to capture the statistical depen-

dences between variables. The joint probability distribution of a set of random variables can

be easily obtained using the chain rule [3].

In order to exploit the favorable properties of this mathematical tool in a wireless net-

work scenario, we adopt again the four phases of the cognition cycle. In detail, we start

observing at discrete time intervals a set of network parameters from different layers of the

protocol stack (Observe phase). At this point we exploit the BN learning tools to infer a suit-

able structure of probabilistic relations that connects these parameters (Learn phase). With

this structure, we design an inference engine andmake inference on present or future values

of some parameters, and we can also infer the optimal value of a controllable parameter of
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interest (Plan and Decide phase). With the opportunities given by the exploitation of this

inference engine, we can act on the network to tune an appropriate set of controllable pa-

rameters, in order to optimize the performance or to avoid an undesirable behavior of the

network, e.g., the occurrence of congestion at the transport layer (TCP).

The main contributions of this part of the thesis are:

1. the integration of BN into our Cognitive Network framework for wireless networks;

2. the application of BN to study network parameters in realistic wireless LAN scenarios

(single-hop and multi-hop);

3. a performance analysis of the BN inference engine’s accuracy to infer the value of TCP

throughput in a single-hop wireless network scenario;

4. a performance analysis of the BN inference engine accuracy to predict TCP’s conges-

tion status in a realistic multi-hop wireless network scenario.

1.3 Organization of the Thesis

The rest of this thesis work is organized as follows:

Chapter 2. introduces the mathematical tools that are used in the thesis, specifically, CS,

PCA, BN and the Structure Learning (SL) and Parameter Learning (PL) tools to learn

a BN from the observation of the data;

Chapter 3. presents some preliminary results on the possibility to apply CS in a multi-hop

WSN scenario in conjunction with routing; this chapter does not deal with the time

evolution of signals;

Chapter 4. deals with the mathematical framework for monitoring that is the core of the

data compression/recovery technique; it analyzes the learning phase of the cognition

cycle to derive the relevant statistical characteristics of WSN signals and derives the

conditions for optimality (under a Bayesian perspective) of such an approach;

Chapter 5. proposes the compression/recovery techniques that exploit the mathematical

framework for monitoring; different data collection techniques that use this frame-

work are proposed and compared; moreover, the chapter presents a comparison of dif-
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ferent data fitting techniques, including CS, and shows how the compression/recovery

techniques can be integrated into an existing WSN architecture;

Chapter 6. deals with the use of BNs for learning the statistical relationships amongWLAN

stack-wide network parameters, and shows how to apply this knowledge for the TCP-

throughput inference in a single-hop network and for the congestion prediction in a

multi-hop network.

Chapter 7. concludes the thesis and discusses some directions for future extensions of the

research material presented.





Chapter2

Mathematical Preliminaries

In this chapter 1 we briefly overview the mathematical tools that are used in the the-

sis. Section 2.1 is dedicated to the mathematical techniques that are used for the compres-

sion and recovery framework in Wireless Sensor Networks (WSN). These techniques are

exploited in Chapters 4 and 5. Section 2.2.1 describes two probabilistic graphical models [3],

i.e., Bayesian Networks (BNs) and Dynamic Bayesian Networks (DBNs), that are exploited

to describe the conditional independence relations among the parameters of aWLAN.More-

over, these tools are also exploited to make inference on present and future values of some

parameters of interest, with the aim of enhancing the network performance, like e.g., avoid-

ing TCP congestions.

2.1 Compressive Sensing (CS)

Compressive Sensing (CS) [5–7] is a novel data compression technique that uses con-

vex optimization methods [2]. CS exploits the inherent correlation in some input data set

1The material presented in this chapter has been published in:

[C1] G. Quer, H. Meenakshisundaram, B.R. Tamma, B.S. Manoj, R. Rao and M. Zorzi, “Cognitive Network

Inference through Bayesian Network Analysis”, IEEE Globecom 2010, Miami, FL, Dec. 2010.

[C2] G. Quer, D. Zordan, R. Masiero, M. Zorzi and M. Rossi, “WSN-Control: Signal Reconstruction through

Compressive Sensing in Wireless Sensor Networks”, IEEE LCN (SenseApp Workshop), Denver, CO, Oct.

2010.

[C3] G. Quer, H. Meenakshisundaram, B.R. Tamma, B.S. Manoj, R. Rao and M. Zorzi, “Using Bayesian Net-

works for Cognitive Control of Multi-hop Wireless Networks”, MILCOM 2010, San Jose, CA, Nov. 2010.
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x to compress such data by means of quasi-random matrices. If the compression matrix

and the original data x have certain properties, x can be reconstructed from its compressed

version Y , with high probability, by minimizing a distance metric over a solution space.

CS was originally developed for the efficient storage and compression of digital images,

which show high spatial correlation. Recently, there has been a growing interest in these

techniques by the telecommunications and signal processing communities [10]. In contrast

to classical approaches, where the data is first compressed and then transmitted to a given

destination, with CS the compression phase can be jointly executed with data transmission.

This is important for WSNs as compressing the data before the transmission to the Data

Collection Point (DCP) requires to know in advance the correlation properties of the input

signal over the entire network [11] (or over a large part of it) and this implies high transmis-

sion costs. With CS, the content of packets can be mixed as they are routed towards the DCP.

Under certain conditions, CS allows to reconstruct all sensor readings of the network using

much fewer transmissions than routing or aggregation schemes. These characteristics make

CS very promising for jointly acquiring and aggregating data from distributed devices in a

multi-hop wireless sensor network [10].

In Section 2.1.1 we start describing CS, the convex optimization techniques that will

be exploited for the recovery of the previously compressed signal sensed by a WSN. In

this section we also recall the key concepts of the Nesterov algorithm to efficiently solve

the convex optimization problem in CS [12]. In Section 2.1.3 we detail how to obtain the

transformation basis required by CS, that we will use to obtain a sparse representation of

the signal. We learn this basis exploiting the spatial and temporal correlation of the signal

sensed, through Principal Component Analysis (PCA) [13].

2.1.1 CS in WSNs

CS is exploited to perform distributed compression of anN -dimensional signal and cen-

tralized recovery of the signal at the server. We represent the signal as a column vector

x(k) ∈ RN , where each element of the vector corresponds to the value measured by one of

the N sensors, collected according to a fixed sampling rate at discrete times k = 1, 2, . . . ,K.

The signal should be recovered at the server from an ideally small number of random pro-

jections of x(k), namely y(k) ∈ RL with L ≤ N , according to the equation:

y(k) = Φ(k)x(k) . (2.1)
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In our framework Φ(k) captures the way in which the sensor data is gathered at the DCP,

i.e.,Φ(k) is an L×N sampling matrix with a one in each row and at most a single one in each

column, so vector y(k) becomes a subsampled version of x(k). In order to recover the original

sensed signal x(k) from y(k), we assume for the moment that there exists an invertibleN×N

sparsifying matrixΨ such that

x(k) = Ψs(k) , (2.2)

where s(k) ∈ RN and s(k) isM -sparse withM ≤ L, i.e. it has onlyM significant components,

while the other N − M are negligible with respect to the average energy per component,

defined as:

E(k)
s =

√〈
s(k), s(k)

〉

N
, (2.3)

where for any two column vectors a and b of the same length, we define 〈a,b〉 = aTb. At

the receiver, it is equivalent to calculate a good approximation of either of the two vectors

x(k) or s(k), as due to (2.2) there is a one-to-one mapping between them. Using (2.1) and (2.2)

we can write

y(k) = Φ(k)x(k) = Φ(k)Ψs(k) = Θ(k)s(k) , (2.4)

that is in general an ill-posed and ill-conditioned system with Θ(k) = Φ(k)Ψ of dimensions

L × N , since the number of variables N is larger than the number of equations L and a

small variation in the input signal can cause a large variation in the output. However, since

we design the matrix Ψ such that s(k) is a sparse vector, as explained in Section 2.1.3, we

can invert the system and find the optimal solution with high probability solving a convex

optimization problem [6], as described in Section 2.1.2.

2.1.2 Convex Optimizer

At time k, in order to reconstruct the original signal x(k) at the receiver we must invert

the ill-posed system defined by Eq. (2.4), where Ψ is obtained as detailed in the previous

section. For simplicity of the notation, we hereby assume that x = 0, as this only counts

as an additional term. Moreover, under the assumption that s(k) has a certain degree of

sparsity and under specific assumptions on the matrix Θ(k) (that are verified in our case,

see, e.g., [14]), inverting (2.4) has been proven [7] to be equivalent to solving the convex
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0. Initialize x0.

For t ≥ 0,

1. Compute ∇f(xt).

2. Compute rt+1:

rt+1 = argmin
x∈Qp

{
p(x,xt) + 〈∇f(xt),x− xt〉

}
.

3. Compute zt+1:

zt+1 = argmin
x∈Qp

{
p(x,x0) +

t∑

i=0

αi〈∇f(xi),x− xi〉
}
.

4. Update xt+1:

xt+1 = τtzt+1 + (1− τt)rt+1 .

5. Stop if given criterion is satisfied.

Table 2.1. The Nesterov minimization algorithm for smooth functions.

minimization problem

ŝ(k) = argmin
s(k)

‖s(k)‖ℓ1 (2.5)

s.t. y(k) = Θ(k)s(k) ,

where ‖ · ‖ℓ1 is the ℓ1-norm of a vector, i.e., for a given vector a of N elements, ‖a‖ℓ1 =
∑N

i=1 |ai|. InWSN-Control, as suggested in [12], this optimization problem is solved through

NESTA, which is an application to CS of the Nesterov minimization algorithm extended to

non-smooth functions. As a first step, in the following we review the Nesterov minimiza-

tion method [15]. Subsequently, we discuss the extension of this method to non-smooth

functions and finally we explain how it is applied to CS.

Nesterov minimization: this method solves convex optimization problems of the type

min
x∈Qp

f(x) , (2.6)
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where the convex function to minimize, f(x) : Qp → R, is defined in the convex set Qp ⊆
RN , e.g., of the form

Qp = {x : b = Qx} , (2.7)

whereQ is anM×N matrix, withM ≤ N , and b ∈ RM is a given constant vector. Moreover,

the function f(x) must be smooth, i.e., it must be differentiable and its gradient must be

Lipschitz:

‖∇f(x)−∇f(y)‖ℓ2 ≤ C‖x− y‖ℓ2 , (2.8)

where C > 0 is a constant [15]. The algorithm proposed by Nesterov to solve (2.6) is listed

in Table 2.1 and discussed in the following:

0. Initialize x0: a possible initialization method for x0 is x0 = QTb. Set t = 0.

1. Computation of the gradient of f(xt).

2. Computation of rt+1: rt+1 is a first sequence of vectors that converges towards the

minimum of f(x). The first term p(x,xt) is a proximity function (also referred to as

penalty function) weighing more those points that are farther away from the current

solution xt. We have

p(x,xt) =
C

2
‖x− xt‖2ℓ2 . (2.9)

The second term corresponds to a gradient descent minimization with step |x − xt|.
Note that the step size is controlled by the first term, which penalizes large deviations

from xt.

3. Computation of zt+1: zt+1 is a second sequence of vectors that also converges to the

minimum of f(x). The first term is equal to (2.9) but with x0 in place of xt. The sec-

ond term corresponds to a gradient descent minimization accounting for all previous

partial solutions xi, i ≤ t.

4. The solution is updated as a weighted average of rt and zt, using a suitable combina-

tion coefficient τt.

5. A possible stopping criterion, originally proposed in [12], is the following. Let f(·) be
the average of f(·) during the last ten iterations

f(xt) =
1

min{10, t}

min{10,t}∑

i=1

f(xt−i) . (2.10)
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The algorithm is terminated when

∆f =
|f(xt)− f(xt)|

f(xt)
< δ . (2.11)

The coefficients αt, τt must be chosen to guarantee convergence, see [16]. The impact of

the constant δ is studied in the Appendix A.1.

Application ofNesterovminimization to CS: reference [16] extended theNesterov algo-

rithms to non-smooth functions, showing that this extension is possible when these functions

can be re-written as a maximization problem. Subsequently, with the NESTA algorithm [12],

the theory of [16] has been applied to CS. In detail, (2.5) is re-written as

min
s(k)∈Q′

p

‖s(k)‖ℓ1 , (2.12)

where Q′
p, at time k, is the convex set defined as

Q′
p =

{
s(k) : ‖y(k) −Θ(k)s(k)‖ℓ2 ≤ ǫ

}
, (2.13)

where s(k) ∈ RN is a sparse vector with only M significant elements with M ≪ N , ǫ ≥ 0

is a small number and Θ(k) is an L × N and real matrix having linearly independent rows

(M ≤ L ≤ N ). In [12], ‖s(k)‖ℓ1 is re-written as a maximization problem, i.e.,

‖s(k)‖ℓ1 = max
u∈Qd

〈u, s(k)〉 , (2.14)

where Qd ⊆ RN is the unit sphere defined as

Qd = {u : ‖u‖∞ ≤ 1} . (2.15)

Hence, ‖s(k)‖ℓ1 is approximated by the smooth function

‖s(k)‖ℓ1 ≃ fµ(s
(k)) = max

u∈Qd

{
〈u, s(k)〉 − µ

2
‖u‖2ℓ2

}
. (2.16)

It can be shown that ∇fµ(s
(k)) is Lipschitz with constant C = 1/µ and thus the Nesterov

optimization algorithm can be applied to such function. In conclusion, the NESTA method

of [12] amounts to solving

min
s(k)∈Q′

p

max
u∈Qd

{
〈u, s(k)〉 − µ

2
‖u‖2ℓ2

}
. (2.17)

Note that (2.17) can now be solved using the algorithm in Table 2.1, where the inner max-

imization problem (2.16) can be solved in linear time through the sequential evaluation of

the elements of u. In fact, defining û as

û = argmax
u∈Qd

{
〈u, s(k)〉 − µ

2
‖u‖2ℓ2

}
(2.18)
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we have

ûi =





s
(k)
i /µ |s(k)i | ≤ µ

+1 |s(k)i | > µ and s
(k)
i > 0

−1 |s(k)i | > µ and s
(k)
i < 0

, i = 1, . . . , N , (2.19)

so the maximum fµ(s
(k)) = z of (2.16) becomes

zi =





s
(k)
i

2
/2µ |s(k)i | ≤ µ

|s(k)i | − µ
2 |s(k)i | > µ

, i = 1, . . . , N . (2.20)

2.1.3 Principal Component Analysis (PCA)

In standard CS [7], the sparsifying basis Ψ is assumed to be given and fixed with time,

but this is not the case for a realistic WSN scenario, where the signal of interest, x(k), is un-

known and its statistical characteristics can vary with time. To face this problem we advo-

cate the use of Principal Component Analysis (PCA) [13], which is based on the Karhunen-

Loève expansion, that is a method to represent the best M -terms approximation of a given

N -dimensional signal, withM < N , exploiting the knowledge of the correlation structure of

the signal. Since we do not have perfect knowledge of the correlation structure of the signal

in a WSN monitoring application, we can have a good approximation through PCA, which

is based on estimating the covariance matrix of the signal of interest x(k). We assume to

collect measurements of the signal at discrete times k = 1, . . . ,K, i.e., T = {x(1), . . . ,x(K)},
and from these measurements we can approximate the mean vector x as:

x =
1

K

K∑

k=1

x(k) , (2.21)

and the covariance matrix Σ̂ as:

Σ̂ =
1

K

K∑

k=1

(x(k) − x)(x(k) − x)T . (2.22)

Given the above equations, we consider the orthonormal matrix U whose columns are

the eigenvectors of the covariance matrix Σ̂, placed in decreasing order with respect to the

corresponding eigenvalues. If we define the vector s(k) as:

s(k)
def
= UT (x(k) − x) , (2.23)

by construction we have that the entries of vector s(k) are in decreasing order, i.e., s
(k)
1 ≥

s
(k)
2 ≥ · · · ≥ s

(k)
N . Assuming that the instances x(1),x(2), . . . ,x(K) of the process x are cor-

related, as is often the case in WSN monitoring applications, there exists an M ≤ N such
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that all the component s
(k)
i with i = M + 1, . . . , N are negligible with respect to the average

energy defined in (2.3), where the actual value of M depends on the spatial correlation of

the signal. According to (2.23) we can write

x(k) = x+Ψs(k) , (2.24)

where we have defined the sparsifying matrix Ψ = U. The N -dimensional vector s(k) ob-

tained through PCA turns out to be M -sparse, so it can be efficiently recovered with CS,

solving a convex optimization problem as detailed in the previous section.

In Section 4.1, we will use PCA to calculate at each time k an appropriate matrix Ψ in

order to map the signal x(k) into a sparse vector s(k). Since the matrix changes over time,

and it is based on the signal set T (k)
K =

{
x(k−1),x(k−2), · · · ,x(k−K)

}
, we specify the time

dependences also in the sparsification matrix, that is namedΨ(k). This notation will be used

in Chapter 4 and in Chapter 5.

2.2 Bayesian Networks (BNs)

In this section we briefly describe an interesting tool from probabilistic graphical model-

ing [3], i.e., BayesianNetwork (BN). In the followingwe give a definition of a BN and present

some interesting properties about this graphical model. Then in Sections 2.2.2 and 2.2.3 we

detail the techniques to learn such model from the observation of the data, i.e., Structure

Learning and Parameter Learning, respectively. In Section 2.2.4 we describe a method to

exploit a BN to make inference on the relevant parameters’ values. Finally in Section 2.2.5

we propose an extension of the BN model, the DBN model [3], that takes into account also

the temporal probabilistic relations among the parameters.

2.2.1 BN for Wireless Network optimization

A BN B0 is a graphical model for representing the conditional independence relations

among a set of random variables through a Directed Acyclic Graph (DAG). This graph will

be used to efficiently compute the marginal and conditional probabilities that are required

for inference. A node in the DAG represents a random variable, while an arrow that con-

nects two nodes represents a direct probabilistic relation between the two corresponding

variables. Node i, representing the random variable xi, is a parent of node h if there exists

a direct arc from i to h and we write i ∈ pah, where pah is the set of parents of node h.
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From the graph it is always possible to determine the conditional independence between

two variables, applying a set of rules known as d-separation rules, e.g., see [1], [17] for a

detailed description about BN properties.

In this section we assume to have M discrete variables, x1, . . . , xM , with unknown de-

pendence relations, and we write the realization of the variable xi at time k as x
(k)
i . We

assume to deal with a complete dataset, i.e., the collection of M column vectors of length

N , where N is the number of the independent realizations of the variables at time samples

that for simplicity we indicate as k = 1, . . . , N . In other words we know the values of all

the elements x
(k)
i ∈ DN,M , with i ∈ {1, . . . ,M} and k ∈ {1, . . . , N}. The first step for de-

signing the BN is to learn from the dataset the qualitative relations between the variables

and their conditional independences, in order to represent them in a DAG, as shown in Sec-

tion 2.2.2. The second step, given the DAG, is to infer the quantitative relations in order to

obtain a complete probabilistic structure that describes the variables of interest, as shown in

Section 2.2.3. With the procedure described in this section we obtain a BN B0 that describes

the probabilistic relationships among the variables, but does not take into account any tem-

poral correlation among them, so we call such model a Static BN (SBN), to differentiate it

from the Dynamic BN (DBN) described in Section 2.2.5.

2.2.2 BN Structure Learning

Structure learning is the procedure to define the DAG that represents the quantitative

relation between the random variables. In the literature there are two main methods to de-

sign such DAG. The first is the constraint based method [17], in which a set of conditional

independence statements is established based on some a priori knowledge or on some cal-

culation from the data and this set of statements is used to design the DAG following the

rules of d-separation. The second method is the score based method [18], commonly used

in the absence of a set of given conditional independence statements. This method is able to

infer a suboptimal DAG from a sufficiently large data set DN,M , and consists of two parts:

1. a function to score each DAG based on how accurately it represents the probabilistic

relations between the variables based on the dataset DN,M ;

2. a search procedure to select the DAGs to be scored within the set of all possible DAGs.

The latter is necessary since it is not computationally tractable to score all the possible DAGs

given a set of M random variables and then choose the one with highest score. An exhaus-
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tive enumeration of all structures is intractable for a large value of the number of nodes M ,

as the total number of possible DAGs, f(M), increases super exponentially withM :

f(M) =
M∑

i=1

(−1)i+1 M !

(M − i)!i!
2i(M−i)f(M − i) . (2.25)

For this reason, it is necessary to define a search procedure that selects a small and possibly

representative subset of the space of all DAGs. There exist plenty of search strategies based

on heuristics consisting in different methods to explore the search space and look for a local

maximum of the score function. In general these heuristics do not provide any guarantee

of finding a global maximum for the score function on the space of possible DAGs, as high-

lighted in [3]. In our specific case, we do not deal with a large number of variables, so the

problem can be addressed with a simple heuristic that will be described more in detail in

Section 6.3.2. The former step to infer the DAG from the dataset, the score function, should

be computationally tractable and should balance the accuracy and the complexity of the

structure, i.e., the number of arrows in the graph. It is worth to highlight that a complete

DAG, with all nodes connected with each other directly, can describe all possible probabilis-

tic relations among the nodes and that it is the absence of an arrow that brings information

in the form of conditional independence, discriminating within all the possible probabilis-

tic relations among the variables. In this work we have chosen the Bayesian Information

Criterion (BIC) as a score function. BIC is easy to compute and is based on the maximum

likelihood criterion, i.e., how well the data suits a given structure, and penalizes DAGs with

a higher number of edges. In general it is defined as [19]:

BIC(S|DN,M ) = log2 P (DN,M |S, θ̂S)−
size(S)

2
log2(N) , (2.26)

where S is the DAG to be scored, DN,M is the dataset, θS is the maximum likelihood esti-

mation of the parameters of S and N is the number of realizations for each variable in the

dataset. In the case in which all the variables are multinomial, with a finite set of outcomes

ri for each variable xi, we define qi as the number of configurations over the parents of xi in

S, i.e., the number of different combinations of outcomes for the parents of xi . We define

also Nijk as the number of outcomes of type k in the dataset DN,M ) for the variable xi, with

parent configuration of type j and Nij as the total number of realizations of variable xi in

DN,M ) with parent configuration j. Given these definitions, it is possible to rewrite the BIC
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for multinomial variables as [18]:

BIC(S|DN,M ) =
M∑

i=1

qi∑

j=1

ri∑

k=1

log2

(
Nijk

Nij

)
− log2N

2

M∑

i=1

qi(ri − 1) , (2.27)

which is a computationally tractable function that reduces the scoring function to a counting

problem. For a detailed comparison of scoring functions for structure learning, please refer

to [20].

2.2.3 BN Parameter Learning

Parameter learning is a phase of the learning procedure that consists in estimating the

best set of parameters for the probability structure that connects the variables considered in

the DAG. According to the definition of BN, each variable is directly conditioned only by

its parents, so the estimation of the parameters for each variable xi should be performed

only conditioned on the set of its parents pai in the chosen DAG. There are two main meth-

ods, both asymptotically equivalent, consistent and suitable to be implemented in an on-line

manner, given a sufficient size of the dataset DN,M , namely Maximum Likelihood Estima-

tion (MLE) and Bayesian estimation given Dirichlet priors [21]. In this work we choose MLE

for parameter learning, coherently with the choice of BIC as a scoring function for the struc-

ture learning algorithm. In the case of multinomial variables, we can write with an abuse of

notation2 the ML estimation as:

θ̂xi=k|pa
i
=j =

Nijk

Nij
, (2.28)

where the estimated value θ̂xi=k|pa
i
=j gives an approximation of the posterior distribution

of xi given the evidence pai = j, i.e.:

θ̂xi=k|pa
i
=j ≃ P

[
xi = k|pai = j

]
, (2.29)

2.2.4 BN Inference

After performing the structure learning and parameter learning phases on the dataset

DN,M , we obtain a complete BN that represents the probabilistic relations between the vari-

ables xi, with i ∈ {1, . . . ,M}. At this point we can use the BN to compute marginal and

conditional probabilities on the variables xi in order to make inference. Basically, we use the

2With the notation pa
i
= j we mean that the parents of node i are in the configuration of type j.
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probabilities learned with the MLE method in Section 2.2.3 to design an inference engine,

that is able to calculate the most probable value for the variable of interest. We explain more

clearly this procedure with an example. Given a singly connected3 linear BN with M = 4,

with connections 1 → 2 → 3 → 4, we can apply belief propagation [22] for inference, according

to the d-separation rules. We observe at time k the evidence x1 = x
(k)
1 and x2 = x

(k)
2 and we

want to infer the realization of x4. The belief propagation algorithm updates the marginal

probabilities of all the variables in the network based on the given evidence, yielding as

output the probabilities:

P
[
x4 = x

(k)
4 |x1, x2

]
= P

[
x4 = x

(k)
4 |x2

]
. (2.30)

These probabilities are exploited to calculate the expected value for the variable of interest,

E[x4]. In Chapter 6 the inference engine is used to make predictions for some network

parameters in the Cognitive Network framework.

2.2.5 Dynamic Bayesian Networks (DBNs)

The weak point of the static BN representation B0, described in Section 2.2.1, is that

it considers each realization as independent in time of the previous or the following real-

izations. An alternative representation is described in the following. Each variable in the

dataset can be viewed as a stochastic process xi, with i = 1, . . . ,M , that is a collection of

random variables indexed by a discrete time index k = 1, . . . , N . The set of all stochastic

processes is

X = {x1,x2, . . . ,xM} , (2.31)

and for each time instant k and for each stochastic process i we define the random variable

x
(k)
i , that gives the value assumed by the stochastic process xi at time k. In Section 2.2.1 we

have assumed that the realizations of the processes are independent in time, so for each i =

1, . . . ,M the random variables x
(k)
i and x

(k+1)
i are independent, and we write x

(k)
i ⊥ x

(k+1)
i .

Given this assumption, the stochastic process xi becomes a collection of independent and

identically distributed (iid) random variables x
(k)
i , with k = 1, . . . , N . Given the set of all the

stochastic processes in (2.31), we define the set of the random variables at time k as:

X (k) = {x(k)1 , x
(k)
2 , . . . , x

(k)
M } . (2.32)

3A singly connected network is a network in which the undirected graph has no loops.
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In the static case we assume that X (k) ⊥ X (j), with k 6= j. This is an unrealistic assumption,

since we deal with a set of processes that evolve in time. Indeed, the realizations x
(k)
i and

x
(k+1)
i are, in general, highly correlated, and we should exploit this correlation to have a

better statistical characterization of the dependence relations among the processes.

A more accurate model should be able to capture also the temporal probabilistic evolu-

tion of the processes considered, describing the temporal connections among the variables

x
(k)
i , as well as the temporal connections among the processes. In order to capture these

relations, we use a temporal BN, also known as DBN [3]. The total number of random vari-

ables involved in this model is in principleN ×M , but since the complexity increases super

exponentially with the number of variables [17], we should make some assumptions to be

able to deal with this number of variables and to derive a compact model to represent the

temporal evolution of the processes. In particular, we make:

1. the Markov assumption, that is

P
(
X (k+1)|X (0),X (1), . . . ,X (k)

)
= P

(
X (k+1)|X (k)

)
, (2.33)

and

2. the homogeneity assumption, i.e., the transition probability from a state ξ′ to a state ξ′′

is the same for any time index k, so we can represent the transition probabilities using

a transition model P (X ′′|X ′) for all k:

P
(
X (k+1) = ξ′′|X (k) = ξ′

)
= P

(
X ′′ = ξ′′|X ′ = ξ′

)
. (2.34)

A BN that connectsX (k+1) andX (k), for all k, and that satisfies the two assumptions above is

called a 2-time-slice BN (2-TBN), and can be uniquely defined using Eq. (2.34). Now we can

define a DBN [3], that is a pair 〈B0,B→〉, where B0 is a SBN that defines the relation among

the random variables at time k = 0, while B→ is a 2-TBN that connects the variables at time

k with the variable at time k + 1, for all k = 1, . . . , N .

As in the case of the BN, also for a DBN we can calculate the qualitative and the quantita-

tive relations among the parameters, as detailed in [3].





Chapter3

Exploiting CS in WSNs: interplay

between routing and signal

representation

An important research topic in the area of communication and protocol design for Wire-

less Sensor Networks (WSNs) which needs further investigation is in-network aggregation

and data management to increase the efficiency of data gathering solutions (in terms of en-

ergy cost) while being able to measure large amounts of data with high accuracy.

In this chapter 1 we address the problem of exploiting CS in WSNs taking into account

network topology and routing, which is used to transport random projections of the sensed

data to the Data Collection Point (DCP). Thus, the main contribution of this chapter is the

quantification of the benefits of CS in realistic multi-hop WSNs when CS is used in con-

junction with routing. In addition, we study the problem of finding good transformations

to make real sensed data meet the sparsity requirements of CS and show that widely used

transformations are not suitable for a large spectrum of real signals. We also provide a sim-

ulation based comparison between the commonly used random sampling (considered here

in conjunction with spline interpolation) and CS based data gathering. For this comparison

1The material presented in this chapter has been published in:

[C6] G.Quer, R. Masiero, D.Munaretto, M. Rossi, J. Widmer andM. Zorzi, “On the Interplay Between Routing

and Signal Representation for Compressive Sensing inWireless Sensor Networks”, Information Theory and

Applications Workshop (ITA 2009), San Diego, CA, Jan.-Feb. 2009.
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we use some data matrices synthetically generated, as well as real field data available in the

Internet. In this preliminary study we do not take into account the temporal evolution of

the signals, so we do not deal with a learning phase to infer a suitable matrix to sparsify the

data. In Chapter 4 instead we study the spatial and temporal correlations of time-varying

WSN signals and we exploit the statistical characteristics of such signals in a novel data col-

lection technique, described in Chapter 5. Such technique, differently from the techniques

proposed in this chapter, learns the signals’ statistical characteristics with PCA, detailed in

Section 2.1.3, and exploits this on-line learning of the sparsification basis to recover the sig-

nal with CS.

The rest of this chapter is structured as follows. In Section 3.1 we summarize the related

work on CS applied to WSNs, then in Section 3.2 we present the mathematical notation

adopted. In Sections 3.3, 3.4 and 3.5 we describe the signals, the network model, and the

data gathering protocols, respectively, which we used for the investigation of the benefits

of CS applied to multi-hop WSNs. The simulation results are presented in Section 3.6 and

Section 3.7 concludes the chapter.

3.1 Related Work

The problem of gathering data while jointly performing compression has been receiving

increasing attention. One of the first studies addressing this issue is [23], which highlights

the interdependence among bandwidth, decoding delay and the routing strategy employed.

Under the assumption of dealing with spatial processes satisfying the regularity condition

(justifiable from a physical point of view), the authors claim the feasibility of large-scale

multi-hop networks from a transport capacity perspective. Classical source coding, suitable

routing algorithms and re-encoding of data at relay nodes are key ingredients for joint data

gathering and compression. In fact, sensor network applications involve multiple sources

which are correlated both temporally and spatially. Thus, subsequent work such as [24–

27] and [28] proposed algorithms that involve collaboration among sensors to implement

classical source coding (see e.g., [29–31]) in a distributed fashion. Along the same line, [32]

shows the relation between routing and location of the aggregation/compression points

according to the joint correlation of data among sources. In this way, it is possible to enforce

the collaboration among nodes that are well suited to the statistical description of the signal

measurements.
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In [33], the authors consider a scenariowhere a number of different compression schemes

are available at each node in the network. The selection of which compression scheme to use

is based on the expected tradeoff between computation and communication costs; each node

contributes to this goal through its local data processing. Following the same objective of

minimizing the total energy for compressing and transporting information, [34] investigates

a tunable data compression technique to deal with the tradeoff between computation and

communication costs. In general, for a given connectivity structure, this technique needs to

compute the optimal data gathering tree, which is topology dependent. Moreover, the au-

thors show that when node entropies and the cost for compression are not known, a simple

greedy approximation of the Minimal Steiner Tree provides acceptable performance.

Recently, new methods for distributed sensing and compression have been developed

based on CS theory (see e.g., [6, 7, 35]). Early contributions are [8, 36], where CS is used in a

distributed communication scheme for energy efficient estimation of sensed data in a WSN.

Multi-hop communication and in-network data processing are not considered. Instead, data

packets are directly transmitted by each node to the DCP. This requires synchronization

among nodes.

[37] proposes an early application involving CS for networkmonitoring. The considered

simulation scenario is a network where a small set of nodes fails. The goal is to correctly

identify these nodes through the transmission of random projections (i.e., linear combina-

tions) indicating the status of the nodes. However, these random projections are obtained

by means of a pre-distribution phase (via simple gossiping algorithms), which is very ex-

pensive in terms of number of transmissions. [38] also addresses the problem of gathering

data in distributedWSNs through multi-hop routing. In detail, tree topologies are exploited

for data gathering and routing, and the Wavelet transformation [39] is used for data com-

pression. Even though CS is presented as one of the possible methods for data compression,

the authors do not investigate the impact of the network topology and that of the routing

scheme on the compression process. An interesting application for network monitoring ex-

ploiting CS is presented in [40], where the aim is to efficiently monitor communication met-

rics, such as loss or delay, over a set of end-to-end network paths by observing a subset of

them. The topology is given a priori and the algorithmworks in three steps: 1) compression,

2) non linear estimations and 3) suitable path selection. This last step in particular allows the

selection of the best measurements for CS recovery, and therefore highly impacts the overall

performance of the algorithm. In [41] and [42] an approach to distributed coding and com-
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pression in sensor networks based on CS is presented. The authors advocate the need to

exploit the data both temporally and spatially. The projections of the signal measurements

are performed at each source node, taking into account only the temporal correlation of the

generated information. Thus, it is possible to design the best approximation of the collec-

tion of measurements for each node, since the projections can contain all the elements of

this set. The spatial correlation is then exploited at the DCP by means of suitable decoders

through a joint sparsity model that well characterizes the different types of signals of inter-

est. Finally, the technical report [43] follows an approach similar to the one adopted in this

chapter, concluding that CS is not an effective solution when routing costs are considered.

A further related line of research is that of real and complex network coding [44, 45].

These papers highlight the analogies between network coding (NC) and CS from the view-

point of distributed data processing and routing rules. An important difference between NC

and CS is that CS works in real fields whereas NC exploits algebraic operations over Galois

fields. This leads to practical issues, such as round-off errors that arise when dealing with

real numbers, which are treated in [44].

In our work we address the joint routing and compression problem by exploiting the

spatial correlation among sensor readings in a 2D WSN. The sensor nodes do not need to

be aware of any correlation structure of the input signal. In particular, we only require that

the sensed data has a sparse representation and that the sensor nodes can locally perform

random combinations of the incoming information. The goal is to reconstruct the original

signal with good accuracy from a small subset of samples using distributed CS. To the best

of our knowledge, no papers so far quantified the performance of CS in multi-hop wireless

networks by exploiting actual routing topologies to obtain random projections of the sig-

nal measurements, except for [43]. However, their conclusions about the effectiveness of

CS for synthetic signals are different from ours and they did not address real signal analy-

sis. The objective of our work is to fill this gap investigating the tradeoffs between energy

consumption and reconstruction error for realistic scenarios. Furthermore, we analyze un-

der which conditions CS performs well and under which conditions it fails to improve the

performance.
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3.2 CS notation

For the sake of exposition, we briefly present in this section the CS notation that is

adopted in this chapter. We consider signals representable through one dimensional vec-

tors x in RN , where N is the vector length. We assume that these vectors contain the sensor

readings of a network with N nodes. We further assume that these vectors are such that

there exists a transformation under which they are sparse. Specifically, there must exist an

invertible transformation matrix Ψ of size N ×N such that we can write

x = Ψs (3.1)

and s is sparse. We say that a vector s is P -sparse if it has at most P non-zero entries, with

P < N .

The compression of x entails a linear combination of its elements through a further mea-

surement matrix Φ of size L×N , with L < N . The compressed version of x is thus obtained

as

y = Φx . (3.2)

Now, using (3.1) we can write

y = Φx = ΦΨs
def
= Φ̃s . (3.3)

These systems are ill-posed as the number of equations L is smaller than the number of

variables N . Nevertheless, if s is sparse, it has been shown that the above system can be

inverted with high probability through the use of specialized optimization techniques [6,

46]. The problem to be solved at the receiver is thus to invert the above system so as to

find vector s. Note that in order to do this, the receiver should know the transformation

matrix Ψ that sparsifies x.We do not deal in this chapter with the on-line learning of this

matrix, but we assume that the matrix is given a-priori. Once we know a sparse solution

s⋆ that verifies (3.3), the original data x can be recovered through (3.1), with the convex

optimization method detailed in Section 2.1

From a data gathering point of view, the signal x stores the data readings measured by

the N nodes. These are mixed during their transmission towards the DCP as explained in

Section 3.5. Thus, each route followed by a given packet specifies the coefficients of a row of

Φ. The data gathering point will receive the compressed vector y along with the coefficients

of matrixΦ. In the following,Φ is referred to as routing matrix. Note that the DCP can obtain
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the coefficients ofΦ through different ways, e.g., these coefficients can be sent alongwith the

information packet if the relative overhead is small, or we can use the same pseudo-random

number generator at the nodes and the DCP and synchronize the seeds. The problem to be

solved at the receiver is thus to invert the system (3.3) so as to find vector s. Note that in

order to do this, the receiver should also know the transformation matrix Ψ that sparsifies

x.2 We emphasize that the transformation Ψ is only used at the DCP and not during the

data gathering and routing process, that is instead captured by Φ. In particular, Ψ does not

need to be known at any node but the DCP.

A generalization of the CS technique for 2D signals is detailed in the Appendix at the

end of this chapter.

3.3 Considered Signals and Transformations

In this section we discuss the signals that we consider for the performance evaluation in

this chapter. First, we investigate synthetic signals that are sparse by construction under the

DCT transformation. For these signals the degree of sparseness can be precisely controlled.

As expected, when they are sufficiently sparse CS achieves substantial gains compared to

plain routing schemes. Furthermore, we select a number of signals from real sensor net-

works measuring different physical phenomena. With such signals, we can much better

characterize the performance expected for actual WSN deployments. The problem with real

signals, however, is to find a good transformation that sparsifies them in some domain. This

issue is discussed at the end of the section.

Synthetic signals. Here, for the input signal we use a matrix X that we build starting from

a sparse and discrete 2D signal S in the frequency (DCT) domain. S is obtained through the

following steps:

1. Let K be defined as K =
√
N , where N is the number of values of the 2D signal. We

build a preliminary signal S1 of size K × K having all frequencies (i.e., all entries in

the matrix) with amplitude s1(p, q), where s1(p, q) is picked uniformly at random in

the interval [0.5, 1.5], ∀ p, q = 1, 2, . . . ,K.

2This is a reasonable assumption. For example, for image processing it has been verified that the Fourier

transformation is a good tool for sparsifying real images [35]. Signals gathered by sensor fields usually show

high spatial correlation [47] and can thus be sparsified as we discuss in Section 3.3.
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2. We define a frequency mask as a 2D function that is one for entries in position (p, q)

where p+q ≤ plow or p+q > phigh and zero otherwise. plow and phigh are two thresholds

in the value range {1, 2, . . . ,K}. This function is defined as

triang(p, q)
def
=





1 p+ q ≤ plow or

p+ q > phigh

0 otherwise .

(3.4)

3. We obtain a second signal S2 of size K ×K, whose entries s2(p, q) are calculated as

s2(p, q) = s1(p, q)triang(p, q) . (3.5)

4. We finally obtain S as follows: if s2(p, q) = 0 then s(p, q) = ξ where ξ ∈ [0, 0.01] is a

constant. If instead s2(p, q) > 0, s(p, q) = ξ with probability pd and s(p, q) = s2(p, q)

otherwise. The parameter pd represents the fraction of entries that are on average

deleted from S2. The case ξ > 0 is accounted for to mimic non ideal signals, where

the significant components lie within specific regions according to (3.4) and some noise

floor is also present outside these regions. In this case, with CS we would like to only

retrieve the significant values, while ignoring the noise.

Therefore, the signal S is obtained by first applying a frequency mask, which helps to as-

sess the reconstruction performance for low-frequency, mid-frequency, and high-frequency

signals. In addition, we delete some randomly picked frequencies according to a given

probability pd. This is a simple method to control the characteristics of the signal in the DCT

domain (i.e., the sparsity of the signal and its dominant frequency components) and allows

to understand the effects of the signal structure on the performance of CS. For the results in

Section 3.6 synthetic signals are mapped into matricesX of size 20× 20, which is consistent

with the network topology in Section 3.4 with N = 400 nodes.

Real Signals. We also used real signals from different environmental phenomena, consid-

ering what is likely to be of interest for a realistic wireless sensor network in terms of size

of the network (i.e., number of spatial samples) and type of phenomenon to sense. For the

sensor network, we considered the topology in Section 3.4 with N = 400 sensor nodes.

The following real signals were utilized:

S1. Two signals representing the Wi-Fi strength of the access points in the MIT campus

(Cambridge, MA) [48] and in the Stevens Institute of Technology (Hoboken, NJ) [49].
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S2. Two sets of measurements from the EPFL SensorScope WSN [50], representing ambi-

ent temperature and solar radiation.

S3. Two data readings, one from the Tropical Rainfall Measuring Mission [51] concerning

rain fall in Texas, and one on the temperature of the ocean off the coast of Califor-

nia [52].

S4. Two signals on the level of pollution in two European regions, namely, Benelux and

Northern Italy [53].

These signals were quantized into five levels and rescaled in grids of 20× 20 pixels. The as-

sumption of measuring quantized signals was made as we think this is likely to be the case

in actual WSN deployments, where the devices, due to communication, energy constraints

or accuracy of the on-board sensor, can only sense or communicate the physical phenom-

ena of interest according to a few discrete levels. In addition, for many signals of interest a

quantized representation suffices to fully capture the needed information about the sensed

phenomenon. The eight sample signals, quantized and rescaled as discussed above, are

shown in Fig. 3.7.

Transformations. By construction, for the above synthetic signals the DCT is the right spar-

sification method. These signals were in fact created sparse in the DCT domain. An effective

utilization of CS for real signals requires a good sparsification approach. It is not clear, how-

ever, which approach is best for a given class of signals. Here, we consider four different

transformations, which are commonly used in the image processing literature:

T1. DCT: this is the standard 2D discrete cosine transformation, see the appendix for fur-

ther details.

T2. Haar Wavelet: the Haar Wavelet is recognized as the first knownWavelet and is a good

Wavelet transformation for the sparsification of piece-wise constant signals as the ones

in S1–S4, see [54].

T3. Horz-diff: this is a transformation that we propose here to exploit the spatial correlation

of our signals. First, the 2D signal matrix X is written in vector form as follows:

svec(X) = (x(1, 1), x(1, 2), . . . , x(1,K), x(2,K), x(2,K − 1), . . . , x(2, 1),

x(3, 1), x(3, 2), . . . , x(3,K), x(4,K), x(4,K − 1), . . . , x(4, 1), . . . ) (3.6)
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Figure 3.1. Degree of sparsity for transformations T1–T4. The plot shows the percentage of zero elements

of vector s after using transformations T1–T4.

At this point we obtained the sparse vector s from svec(X) by pair-wise subtraction of

its elements.

T4. HorzVer-diff: according to this transformation the input signal X is processed by: 1)

pair-wise subtraction of the elements along the columns of X and then 2) pair-wise

subtraction of the elements of the resulting matrix, along its rows.

In Fig. 3.1 we show the degree of sparseness achievable using the above transformations

T1–T4 with the considered real signals (a)–(h). Notably, DCT (T1) and Haar Wavelet (T2) are

not effective, whereas T3 and T4 perform best.

DCT and Wavelet transformations in this case have poor performance as, even though

the sampled input signals X are quite large (N = 400 data points) for typical sensor de-

ployments (where each node gathers a single data point), their size is still too small for T1

and T2 to perform satisfactorily. T3 and T4 perform best since they exploit the character-

istics of piece-wise constant signals, even if the sparsity obtained is not sufficient for CS to

work properly. Since standard techniques as T1–T4 are not satisfactory, a more fundamental

approach, i.e., via estimation of the correlation X and Karhunen-Loève expansion, may be

needed. We leave this for future research.
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Figure 3.2. Example of the considered multi-hop topology.

3.4 Network Model

The concern of this chapter is about data gathering in 2D WSNs. Hence, for the rest

of the chapter we consider sensor grids of N nodes as follows. We consider N nodes to be

deployed in a square area with side length L. This area is split into a grid withN square cells

and we place each of the N nodes uniformly within a given cell so that each cell contains

exactly one node. For the transmission rangeR of the nodes we adopt a unit disk model, i.e.,

nodes can only communicate with all other nodes placed at a distance less than or equal to

R.3 We use R =
√
5L/

√
N as this guarantees that the structure is fully connected under any

deployment of the nodes. A further node, the Data Collection Point (DCP), is placed in the

center of the deployment area. We consider geographic routing to forward the data towards

the DCP, where each node considers as its next hop the node within range that provides

the largest geographical advancement towards the DCP. In Fig. 3.2, we show an example

topology; as per the above construction process, each cell has a node and the network is

always connected. The tree in this figure is obtained through the above geographic routing

approach, and is used by the data aggregation protocols to route data towards the DCP.

According to this network scenario, the input signal is a square matrix X with N ele-

3The unit disk graphmodel is used here for simplicity of explanation and topology representation. However,

the presented methodology can be readily applied to more realistic propagation models, e.g., fading channels.
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ments, where element (i, j) (referred to as x(i, j)) is the value sampled by the sensor placed

in cell (i, j) of the sensor grid.

Despite its simplicity and the assumption that each cell contains a sensor node, this

scenario captures the characteristic features (multi-hop routing and all to one transmission

paradigm) of actualWSNdeployments and allows to study the interplay between data gath-

ering and CS.

3.5 Data Gathering Protocols

In this section we present the data gathering protocols that will be considered for the

investigation of the benefits of CS when used in multi-hop WSNs. As pointed out in Sec-

tion 3.1, there is a well studied line of research on the application of CS to data gathering

in wireless networks. Previous studies however adapted the routing technique or the data

transmission phase so as to take full advantage of CS.What we do here is different as we pick

a distributed WSN and consider the usual data gathering paradigm where sensors forward

the packet(s) they receive along shortest paths towards the DCP. This occurs in a completely

unsynchronized and distributed manner, without knowledge about the correlation struc-

ture of the data and without knowing how it is processed at the DCP through CS. Thus, our

aim is to assess whether CS provides performance benefits with respect to standard schemes

even in such distributed and unsynchronized network scenarios.

In what follows we present two schemes: the first is a standard geographical routing

protocol, whereas the second is the same protocol in terms of routing, but it exploits CS for

data recovery at the DCP. We then characterize the structure of theΦmatrix (see Section 3.2)

which is determined by the routing policy.

Data gathering protocols. To simplify the investigation and to pinpoint the fundamental

performance tradeoffs, in this first study we neglect channel access considerations (i.e., col-

lisions, transmission times, etc.). Also, we assume a unit cost for each packet transmission

and we ignore processing overhead at the nodes, as it is expected to be cheap compared to

the cost of packet transmission.

P1. Random sampling with Spline Interpolation (RS-Spline): this is the simplest protocol that

we consider. In this case, each node becomes a source with probability PT = L/N ,

which was varied in the simulations to obtain tradeoff curves for an increasing trans-

mission overhead. On average, L nodes transmit a packet containing their own sensor
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reading. Each packet is routed to the DCP following the path that minimizes the num-

ber of transmissions (as defined by our geographical routing approach). Along this

path, the packet is not processed but simply forwarded. The cost of delivering a single

packet to the DCP is given by the number of hops that connect the originating node to

the data gathering point. The signal is reconstructed by interpolation of the collected

values according to the method in [55].

P2. Random sampling with CS (RS-CS): this protocol is similar to RS-Spline. As above each

node becomes a source with probability PT = L/N . Again, each of these source nodes

transmits a packet containing the reading of its own sensor. As this packet travels

towards the DCP, we combine the value contained therein with that of any other node

that is encountered along the path. Specifically, let vmi with i = 1, 2, ..., ℓm be the

readings of the sensors along the path from nodem to the DCP, where vm1 is the reading

of the node itself and ℓm is the length of the path. Node m sends a packet containing

the value ym1 = α1v
m
1 as well as the combination coefficient α1, where α1 is a value

chosen uniformly at random either from (0, 1] or from the set {−1,+1}.4 The next

node along the path will update the transmitted value and send out ym2 = ym1 + α2v
m
2

where α2 is again a random value. Also the coefficient α2 is included in the data packet

along with with α1. We proceed with these random combinations, where in general

node i+ 1 sends out

ymi+1 = ymi + αi+1v
m
i+1 , (3.7)

until the packet finally reaches the DCP. The DCP extracts ymℓm =
∑ℓm

i=1 αiv
m
i , together

with the vector of α coefficients that were used along the route. These coefficients,

according to the CS formalism in Section 3.2, form the mth row of matrix Φ, referred

to as ϕm. Note that some optimizations are possible. First, if we know in advance the

network topology, we can assign combination coefficients at setup time to all nodes,

rather than including them in the packets. We can further use the same pseudo-

random number generator at the nodes and the DCP and synchronize the seeds. How-

ever, all of this goes beyond the scope of this chapter and we do not focus on how to

optimize the control overhead of CS.

A few observations are in order. Whenwe use CS at the DCP, we receive packets carrying

more valuable information than in the plain forwarding case. The received values are linear

4The implications of the selection of the set to use are discussed in Section 3.6.
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random combinations of the readings of several sensor nodes. For example, considering RS-

CS, when the DCP receives the mth packet it can build a system of the form

y
def
=




y1ℓ1

y2ℓ2
...

ymℓm




=




ϕ1

ϕ2

...

ϕm



vec(X) = Φvec(X) , (3.8)

where the yrℓr with r = 1, 2, . . . ,m are the combined values that were received by the DCP in

the packet that traversed the rth path,X is the input 2D signal,Φ is anm×N matrix whose

generic row r, ϕr, contains the vector of coefficients α included in the packet. Note that, in

general, some of these coefficients might be equal to zero. Specifically, the node in cell (i, j)

of the 2D grid can only contribute to entry (i − 1)K + j of vector ϕr (see also the ordering

shown in the appendix in (3.13)). Thus, the combination coefficient in position (i− 1)K + j

of ϕr, with i, j = 1, 2, . . . ,K, is non-zero if and only if node (i, j) was included in the path

followed by the rth packet and is set to zero otherwise.5 Hence, matrix Φ highly depends

on the network topology and on the selected routing rules as each of its rows will have non-zero

elements only in those positions representing nodes that were included in the path followed

by the corresponding packet.

Note that (3.8) is a system of linear equations that is in general ill-posed (asm ≤ L and L

is expected to be smaller thanN ). At the DCP, we know vector y and matrixΦ and we need

to find the 2D input signal X. We can now use the derivations in the Appendix and rewrite

y = Φ̃vec(S) which is solved for vec(S) using standard CS tools for the 1D case [56], thus

finding the sparsest vec(S) that verifies the system, referred to here as S⋆. S⋆ is finally used

to reconstruct X, i.e.,X⋆ = ΨS⋆ΨT (see also (3.12) in the appendix).

Characterization of the routing matrix Φ. According to our network model, the nodes that

transmit their packet to the DCP are chosen at random. As said above, every row ϕj of Φ

represents a path from a given sensor to the DCP and each forwarding node in this path

contributes with a non zero coefficient. We characterize the sparsity νj of ϕj counting the

number of elements in this row that differ from zero: νj =
∑N

i=1 1{α
j
i 6= 0}, where αj

i is

the ith entry of vector ϕj and 1{E} is the indicator function, which is 1 when event E is

true and zero otherwise. νj is the cost, in terms of number of transmissions, for sending

5Given this, we see that setting an entire column of the matrix to zero, say column c = (i− 1)K + j for given

i and j, means that we completely ignore the contribution of the node placed in cell (i, j). This happens when

none of them received packets passes through this node while being routed to the DCP.
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Figure 3.3. Incoherence I(Φ,Ψ) between the routing matrix Φ, cases R1–R4, and the transformation

matrix Ψ, transformations T1–T4. The maximum value for I(Φ,Ψ) equals the number of nodes in the

network, N = 400.

the jth packet to the DCP. With the network scenario in Section 3.4 it is easy to see that,

for any source node in the network, the number of transmissions required for its packet to

reach the DCP is O(
√
N). Hence, the total cost for the transmission of L packets is O(L

√
N).

As an example, for a network with N = 400 nodes the cost of delivering a packet to the

DCP is ≃ 4.5 transmissions, which is close to
√
N/4. The sparsity of ϕj directly translates

into the sparsity of Φ that, in turn, affects the coherence between the matrices Φ and Ψ. In

the literature, the concept of coherence (or its dual, called incoherence) between these two

matrices is directly related to the effectiveness of the CS recovery phase and is well defined

when they are orthonormal. Specifically, the routing matrixΦ andΨmust be incoherent for

CS to work properly [7].

In our settings, however,Φ is built on the fly according to the routing topology, whereas

Ψ is obtained according to any of the transformations T1–T4 that we discussed in Section 3.3.

In the literature the concept of coherence is not defined for non-orthogonal matrices. How-

ever, according to the rationale in [7, 41] a quantity that is strictly related to the incoherence

can be computed as follows. Roughly speaking, incoherence between two matrices means

that none of the elements of one matrix has a sparse representation in terms of the columns

of the other matrix (if used as a basis). Put differently, two matrices are highly coherent
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when each element of the first can be represented linearly combining a small number of

columns of the second. Hence, to characterize the incoherence we first project each row of

Φ into the space generated by the columns ofΨ. After this, we take the sparsest projections

obtained in this space as an indication of the incoherence. Formally, we have:

ζj = (ΨTΨ)−1ΨTϕT
j , (3.9)

where ϕj is the jth row ofΦ and ζj is the vector of coefficients corresponding to its projection

on the space generated by the columns ofΨ. A measure of the incoherence is then obtained

as

I(Φ,Ψ) = min
j=1,...,N

[ N∑

i=1

1{βj
i 6= 0}

]
∈
[
1, N

]
, (3.10)

where βj
i is the ith entry of vector ζj .

In Fig. 3.3 we show the incoherence, obtained from (3.10), for the four transformation

methods T1–T4 and for the following matricesΦ: R1)Φ is built according to the CS routing

protocol that we explained above, picking random coefficients in {−1,+1}, R2)Φ is built as

in case R1, picking random coefficients in (0, 1], R3) Φ has all coefficients randomly picked

in {−1,+1} and R4) Φ has coefficients uniformly and randomly picked in (0, 1]. As can be

deduced from the results of [37], cases R3 and R4 are near optimal in terms of projections of

themeasurements and can be built through a pre-distribution of the data (that in amulti-hop

WSN is in general demanding in terms of number of transmissions).

From this plot we see that the DCT transformation (T1) has a high incoherence with

respect to all of the considered routing matrices. The remaining transformations T2–T4 all

perform similarly and give satisfactory performance only for cases R3 and R4, whereas for

random projections obtained through the actual routing scheme they are highly coherent

to Φ. This has strong negative implications on the CS recovery performance and will be

discussed in the following section.

3.6 Results

In this section we discuss the results we obtained by simulating the RS and RS-CS data

gathering schemes for synthetic and real signals. The metric of interest is the reconstruction

quality at the DCP, which is defined as follows. Given a 2D input signalX, a matrixΦ and a

vector y (containing the received values that are linear combinations of the sensor readings



38 Chapter 3. Exploiting CS in WSNs: interplay between routing and signal representation

400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total number of transmissions in the network

R
e

c
o

n
s
tr

u
c
ti
o

n
 e

rr
o

r,
 ε

 

 

RS−Spline
RS−CS, p

d
=0

RS−CS, p
d
=0.5

RS−CS, p
d
=0.75

Figure 3.4. Reconstruction quality ε as a function of the total number of packets transmitted in the

network: comparison between RS-Spline and RS-CS for synthetic signals and different values of pd.

in the network) we have that y = Φvec(X). This system, that in general is ill-posed (as

L ≤ N ), is solved for vec(X) = vec(ΨSΨT ) either through norm one [7] or smoothed zero

norm [46] minimization. These methods efficiently find the sparsest S, referred to as S⋆, that

verifies the previous system.6 IfX⋆ = ΨS⋆ΨT is the solution found for this system andX is

the true input signal, the reconstruction error is defined as

ε =
‖vec(X)− vec(X⋆)‖2

‖vec(X)‖2
. (3.11)

3.6.1 Results for Synthetic signals

In Fig. 3.4 we show the reconstruction error ε as a function of the total number of packets

sent in the network for RS-Spline and RS-CS. For this plot we considered a low-pass signal

with plow =
√
N/2 + 1 and phigh =

√
N , with N = 400. Also, we considered three values

of pd ∈ {0, 0.5, 0.75} so as to vary the sparseness of the signal. As a first observation, ran-

dom sampling performs nicely for low-pass signals. Nevertheless, a perfect reconstruction

of the sensed signal at the DCP requires the transmission of a large number of packets (up

to 1800). When the signal is sufficiently sparse (pd ≥ 0.5) CS outperforms standard data

6We found that these twomethods are nearly equivalent in terms of quality of the solution, although the zero

norm is simplest and faster. This might be important for practical implementations.
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Figure 3.5. Reconstruction error ε vs total number of packets transmitted in the network: comparison

between RS-Spline and RS-CS (for transformations T1–T4) for the real signals in Section 3.3.

gathering schemes, requiring less than half the packet transmissions (about 900) to achieve

the same recovery performance. We noticed that values of ε larger than 0.3 always led to

very inaccurate reconstructions of the original signal. Fig. 3.4 was obtained using L1 min-

imization and combination coefficients in the set {−1,+1}. However, we obtained similar

performance using smoothed L0 norm and/or coefficients in the set (0, 1]. Note that using

the set {−1,+1} allows for reduced overhead as, in practical implementations, a single bit

suffices to transmit each coefficient.

For high-pass signals the performance of CS is unvaried for the same degree of sparse-

ness. This is expected as CS recovery operates in the frequency domain and is only affected

by the number of non-zero frequency components and not by their position. Clearly, RS-

Spline with the considered interpolation technique is not appropriate for high-pass signals,

in which case it shows poor recovery performance.

As a consequence, RS-CS shows good recovery performance for synthetic signals as, by

construction, the DCT transformation effectively sparsifies the signal and this transforma-

tion is incoherent with respect to the routing matrix Φ (see Fig. 3.3).
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Figure 3.6. Reconstruction error ε vs total number of packets transmitted in the network: comparison

between RS-Spline and RS-CS (for transformations T1–T4) when a pre-distribution of the data is allowed

so that the routing matrixΦ approaches that of case R4 of Section 3.5.

3.6.2 Results for Real Signals

In Fig. 3.5 we show the reconstruction error ε as a function of the total number of packets

sent in the network for RS-Spline and RS-CS. The sensed signals belong to the data sets

presented in Section 3.3. In this case, differently from the case of synthetic signals, RS-CS

does not outperform RS-Spline, even though the performance of the two methods is very

close. The reason for this is twofold. First, the considered transformations T1–T4 sparsify

the real signals only up to 70% (see Section 3.3). This is mainly due to the characteristics

of the signals and to the small size of the sample set. Second, the transformations with

the best performance in terms of sparsification have a high coherence with respect to the

routing matrix of RS-CS. Hence, while the sparsification performance may suffice, matrix

Φ (routing) does not have the required properties in terms of coherence for CS to perform

satisfactorily.

In fact, for good recovery performance CS needs a good transformation in terms of spar-

sification. Also, transformation and routing matrices must be incoherent. From Figs. 3.1, 3.3

and 3.5 we see that transformations T3 and T4 are the most suitable to sparsify the con-

sidered real signals and this allows them to perform better than T1 and T2 (even though
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they perform poorly in terms of incoherence, see Section 3.5). In addition, although T2 can

sparsify real signals better than T1 (Fig. 3.1), the latter performs better than T2 in terms of

transmission cost vs error reconstruction (Fig. 3.5), since it has better incoherence properties

I(Φ,Ψ) (Fig. 3.3).

Finally, in Fig. 3.6 we accounted for a pre-distribution phase of the data so that matrix

Φ is as close as possible to that of case R4 of Section 3.5 (we verified that case R3 gives

similar performance). In this case, RS-CS outperforms RS-Spline as T1 and T2 provide a

sparse representation of the signal and the routing matrix is sufficiently incoherent with

respect to these transformations. However, this pre-distribution phase (which is similar to

that proposed in [37]) has a high transmission cost for static networks, which is ignored

in Fig. 3.6. In mobile networks, the pre-distribution could take advantage of the nodes’

mobility so as to decrease the cost associated with the construction of Φ. This is not dealt

within this chapter and is left for future research.

3.7 Conclusions

In this chapter we studied the behavior of CS when used jointly with a routing scheme

for recovering two types of signals: synthetically generated and obtained from real sensor

data. We showed that for the synthetic signals the reconstruction at the DCP is enhanced

when applying CS, whereas the application of CS for real sensor data is not straightforward.

Thus, as a next step of our ongoing research, we intend to further investigate which signal

representation and routing allow CS to outperform random sampling in realistic WSN de-

ployments. This requires to jointly investigate the design of the two matricesΦ andΨ, since

the requirements on sparsity and on the incoherence between routing and signal represen-

tation have to be met. With this in mind, in Chapter 4 we study the problem of recovering a

real WSN signals and we exploit the temporal evolution of the signal, i.e., its temporal cor-

relation. In this way, we can apply directly the cognition paradigm to our problem, learning

a suitable sparsifing matrix Ψ and exploiting such matrix to recover the sampled signal.



42 Chapter 3. Exploiting CS in WSNs: interplay between routing and signal representation

3.8 Appendix: CS for 2D WSN signals

In this appendix, we review a knownmethod from image processing to generalize the CS

theory in Chapter 3 to 2D signals, as those gathered by the WSN of Section 3.4. Accordingly,

the input signal is a K × K square matrix X with N = K2 elements. Element (i, j) of this

matrix, x(i, j), is the value sampled by the sensor placed in cell (i, j) of the sensor grid. We

assume that the 2D signalX is sparse under a given transformation. Thus,X can be written

as

X = BSA , (3.12)

where B and A are two non singular matrices and S is a K × K matrix representing the

signal in the transformation domain.

In what follows, we use tools from linear algebra to reformulate the 2D problem as an

equivalent 1D problem. It is worth noting that this transformation does not lose any infor-

mation and preserves the correlation among sensed values in the 2D space.

Now we define a vec(·) function, transforming aK ×K matrix into a vector of lengthN

(through a reordering of the matrix elements)

vec(X) =
(
x(1, 1), . . . , x(k, 1), x(1, 2), . . . , x(k, 2), . . . , x(1, k), . . . , x(k, k)

)T
. (3.13)

As explained in Section 3.5, the values that we collect at the DCP can be represented

through a vector y ofM < N elements. They are linear combinations of the sensor readings

represented by the matrix X of size K × K, and thus y = Φvec(X). The M × N matrix Φ

contains the combination coefficients that are picked at random according to a given distri-

bution. From linear algebra we know that the vector form of a given product among three

matricesA, B and S can be rewritten as [57]

vec(BSA) = (AT ⊗B)vec(S) , (3.14)

where ⊗ is the Kronecker product. Hence, using (3.12) and (3.14) we can write vec(X) =

(AT ⊗ B)vec(S). Using y = Φvec(X) we obtain y = Φ(AT ⊗ B)vec(S) that, defining

Φ̃ = Φ(AT ⊗B), can be rewritten as

y = Φ̃vec(S) , (3.15)

where y is the vector containing the received (combined) values and vec(S) is a column

vector of length N containing the input signal in the transformation domain. Given (3.15)
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we can recover the sparse signal vec(S) using the solvers developed for standard CS theory

in 1D.
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Figure 3.7. Real signals: (a) Wi-Fi strength from MIT, (b) Wi-Fi strength from Stevens Institute of

Technology, (c) Ambient temperature from EPFL SensorScope WSN, (d) Solar radiation from EPFL Sen-

sorScope WSN, (e) Rainfall in Texas, (f) Temperature of the ocean in California, (g) Level of pollution in

Benelux and (h) in northern Italy.



Chapter4

Mathematical framework for

monitoring WSN signals over time

In this chapter1 we look at the problem of designing a mathematical framework for the

compression, collection and reconstruction of real signals gathered from an actual Wireless

Sensor Network (WSN). The approach is suitable to measure large amounts of data with

high accuracy by only requiring the collection of a small fraction of the sensor readings. In

the past few years, the research community has been providing interesting contributions on

this topic.

In particular, we exploit Compressive Sensing (CS) [5–7], a convex optimization tech-

nique that has been detailed in Section 2.1, that takes advantage of the inherent correlation

of the input data by means of quasi-random matrices. CS was originally developed for the

efficient storage and compression of digital images, which show high spatial correlation.

Since the pioneering work of Nowak [8, 10, 36, 58], there has been a growing interest in this

1The material presented in this chapter has been published in:

[C5] R.Masiero,G.Quer, M. Rossi andM. Zorzi, “A BayesianAnalysis of Compressive SensingData Recovery

inWireless Sensor Networks”, The International Workshop on Scalable Ad Hoc and Sensor Networks, SASN’09,

Saint Petersburg, Russia, Oct. 2009.

[J1] G. Quer, R. Masiero, M. Rossi and M. Zorzi, “SCoRe1: Sensing Compression and Recovery through On-

line Estimation for Wireless Sensor Networks”, Under submission to IEEE Trans. Wireless Communication.

[J2] R. Masiero, G. Quer, G. Pillonetto, M. Rossi and M. Zorzi, “Sampling and Recovery with Compressive

Sensing in Real Wireless Sensor Networks”, Under submission to IEEE Trans. Wireless Communication.
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technique also by the networking community. In contrast to classical approaches, where the

data is first compressed and then transmitted to a given Data Collection Point (DCP), with

CS the compression phase can be jointly executed with data transmission.

In Chapter 3 we considered a data field sensed once by the WSN and that should be

reconstructed at the DCP. In this chapter and in Chapter 5 instead we deal with a time

varying signal that is monitored over time by a WSN. In this case, we exploit the spatial

and temporal correlation characteristics of the signal, by learning at the DCP the relevant

statistics needed by CS to work properly, through the use of Principal Component Analysis

(PCA), that is detailed in Section 2.1.3. Then we exploit the learned statistics to recover

the signal through CS from its sampled version that is received at the DCP. Moreover, we

propose a mathematical framework capable of exploiting CS and PCA, and we depict the

probabilistic relations among all the variables involved through a Bayesian Network (BN),

whose characteristics are described in Section 2.2.1.

In order to analyze our framework, we consider different WSN testbeds whose data is

available on-line. We analyze the statistics of the principal components of the signals gath-

ered by these WSNs, designing a probabilistic model that approximates the distribution of

the principal components. To this aim we exploit Bayesian theory, which provides a general

framework for data modeling [59, 60]. The Bayesian approach, in fact, has been addressed

in the very recent literature to develop efficient and auto-tunable algorithms for CS, see [61].

However, previous work addressing CS from a Bayesian perspective has mainly been fo-

cused on the theoretical derivation of CS and its usefulness in the image processing field. In

this chapter, instead, we provide empirical evidence of the effectiveness of CS in an actual

WSN monitoring scenario. Moreover, we identify the conditions under which the recov-

ery through convex optimization (CS) is optimal, i.e., it is equivalent to the Maximum A

Posteriori (MAP) approach. We conclude the chapter with a brief analysis of the recovery

performance with a simple data gathering technique. The integration of the proposed math-

ematical framework into a Data Collection and Recovery technique for WSN signals is de-

scribed in detail in Chapter 5, where we compare this technique with similar data collection

and with standard data recovery techniques.

The rest of the chapter is structured as follows: in Section 4.1 we show the mathematical

details to jointly use CS and PCA, in Section 4.2 we propose the framework to exploit these

two techniques, then we analyze a large number of WSN testbeds and signals in Section 4.3.

In Section 4.4 we design the probabilistic model, that exploits a two level Bayesian infer-
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ence to study the principal components of real signals, and in Section 4.5 we identify the

optimality conditions for the recovery with CS. Section 4.6 concludes the chapter.

4.1 Joint Compressive Sensing and Principal Component Analysis

In this section we combine the information learned with Principal Component Analysis

(PCA) with the Compressive Sensing (CS) technique. This scheme is exploited to solve the

system in (2.4) after L data packets have been collected from the WSN, and PCA is the

technique to learn the transformation matrixΨ from the past data.

In Chapter 3 we use CS for the recovery of 2D real signals by considering different trans-

formation matrices. However, we notice that none of them is sufficiently good in terms of

1. sparsification and

2. incoherence with respect to Φ.

In summary, while the results2 obtained for synthetic signals are very promising, those

achieved for real signals are unsatisfactory. In this section we solve this issue showing that

the theoretical performance benefits of CS can still be retained if we use PCA to build the

transformation matrix needed by CS.

We have seen in Section 2.1.3 that PCA is a method for representing through the best

M -term approximation a generic N -dimensional signal, where N > M , and in Section 2.1.1

we have introduced CS, a technique to recover an N -dimensional signal through the recep-

tion of a small number of samples L, with L < N . In this section we propose a technique

that jointly exploits PCA and CS to reconstruct a signal x(k) at each time k, assuming that

the signal is correlated both in time and in space, but that in general it is non-stationary.

This means that the statistics that we have to use in our solution (i.e., sample mean and co-

variance matrix, in (2.21) and (2.21), respectively) must be learned at runtime and might not

be valid throughout the entire time frame in which we want to reconstruct the signal. We

should also make the following assumption, that will be justified in the next sections:

1. at each time k we have perfect knowledge of the previousK process samples, namely

we perfectly know the set T (k) =
{
x(k−1),x(k−2), · · · ,x(k−K)

}
, referred to in what

follows as training set;3

2In terms of reconstruction error vs number of transmissions.
3In Chapter 5 we present a practical scheme that does not need this assumption in order to work.
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2. there is a strong temporal correlation between x(k) and the set T (k) that will be ex-

plicated in the next session via a Bayesian network. The size K of the training set is

chosen according to the temporal correlation of the observed phenomena to validate

this assumption.

Using PCA, from Eq. (2.23) at each time kwe can map our signal x(k) into a sparse vector

s(k). The matrixU and the average x can be thought of as computed iteratively from the set

T (k), at each time sample k. Accordingly, at time k we indicate matrix U as U(k) and we

refer to the temporal mean and covariance of T (k) as x(k) and Σ̂(k), respectively. Hence, we

can write:

x(k) − x(k) = U(k)s(k) . (4.1)

Now, using Eqs. (2.1) and (4.1), we can write:

y(k) −Φ(k)x(k) = Φ(k)(x(k) − x(k)) = Φ(k)U(k)s(k) , (4.2)

where with the symbolΦ(k) wemake explicit that also the routing matrixΦ can change over

time. The form of Eq. (4.2) is similar to that of (3.3) with Φ̃ = Φ(k)U(k). The original signal

x(k) is approximated as follows:

1. finding a good estimate4 of s(k), namely ŝ(k), using the techniques in [6] or [46] and

2. applying the following calculation:

x̂(k) = x(k) +U(k)ŝ(k) , (4.3)

where x̂(k) is the approximation of the original signal x(k).

4.2 Mathematical Framework formonitoring and Sparse SignalModel

In this section we describe a model to represent a broad range of environmental sig-

nals that can be gathered from a Wireless Sensor Network (WSN). The aim is to analyze

the stochastic properties of these signals, in order to select the most appropriate sampling,

compression and recovery techniques to minimize the number of transmitting nodes while

keeping a certain level of reconstruction accuracy, as detailed in Section 3.6.

4In this chapter we refer to a good estimate of s(k) as ŝ(k) such that ‖s(k) − ŝ(k)‖2 ≤ ǫ. Note that by keeping

ǫ arbitrarily small, assumption 1) above is very accurate.
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Figure 4.1. Bayesian network used to model the probability distribution of the innovation signal s.

We have chosen to represent the variables involved with a Bayesian Network (BN), i.e.,

a Directed Acyclic Graph (DAG) where nodes represent random variables and arrows rep-

resent conditional dependencies among them, as detailed in Section 2.2. From the DAG it is

always possible to determine the conditional independence between two variables, apply-

ing a set of rules known as d-separation rules, e.g., see [1] for a detailed description about BNs

properties. In this section, we propose two graphical models which illustrate the perspective

we adopted in Sec. 4.4 and Sec. 3.6, respectively:

1. Fig. 4.1 represents a stochastic model for the signal s;

2. Fig. 4.2 is a BN which links together all the variables involved in our analysis, high-

lighting those required to define our monitoring framework.

In detail, with Fig. 4.1 we introduce a Bayesianmodel to describe the statistical properties

of the elements of s(k). Given the realizations of the signal s(k) at time k = 1, . . . ,K, we use

a Bayesian estimation method, described in Sec. 4.4, to infer a suitable modelM along with

the best-fitting values of its parameters. In particular, for a Gaussian model the parameters

to infer are the mean value m of each component and the standard deviation σ, whereas

for a Laplacian model are the location parameter µ and the scale parameter λ, respectively.
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Figure 4.2. Bayesian network used to model the considered real signals. In the scheme we highlight the

monitoring framework at each time sample k.

This modeling approach is exploited in Sec. 4.4 to determine which stochastic model, chosen

among a set of plausible ones, better describes the signal s(k).

Fig. 4.2, instead, depicts the whole considered framework that involves the following

variables for each time sample k: the training set T (k), the WSN signal x(k), its compressed

version y(k), obtained sampling x(k) according to matrix Φ(k), the invertible matrix Ψ(k),

obtained through PCA, and the sparse representation s(k), as it has been detailed in Sec-

tion 2.1. From the results presented in Sec. 4.4, it turns out that s(k) is well approximated by

a Laplacian distribution. Analyzing the DAG in Fig. 4.2, based on the d-separation rules, we

can make the following observations:

• data gathering: the WSN signal x(k) is independent of the stochastic sampling matrix

Φ(k), whose nature is described in Chapter 5, but the observation of y(k) reveals a link

between these two variables;

• PCA transformation: this is the core of our model, that describes how the system
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learns the statistics of the signal of interest x(k). According to the dynamic system

framework, Ψ(k) can be seen as the state of a system, since it summarizes at each

instant k all the past history of the system, represented by the matrix T (k). The system

input is the signal s(k), that can be seen as a Laplacian or Gaussian innovation process.

This type of priors on the signal induces estimators that use, respectively, the L1 and

L2 norm of the signal as regularization terms. Hence, such priors are often used in the

literature in view of the connection with powerful shrinkage methods such as ridge

regression and LASSO, as well as for themany important features characterizing them,

e.g., see Section 3.4 in [62] for a thorough discussion. Note also that the observation of

the WSN signal x(k) has a twofold effect: the former is the creation of a deterministic

dependence between the PCA basis Ψ(k) and the sparse signal s(k), that otherwise

are independent; the latter is the separation of Ψ(k) and s(k) from the data gathering

variables, i.e., they become independent of y(k) and Φ(k);

• sparse signal model: we observe that the priors assigned to the variable M and to

the corresponding parameters µ (resp. m) and λ (resp. σ) are non informative, except

for the non-negativity of the variance. Here the observation of the sparse signal s(k)

separates the sparse signal model from the monitoring framework, i.e., after observing

the signal s(k), the variable M and the corresponding parameters µ (resp. m) and λ

(resp. σ) will no longer be dependent on the variables of the monitoring framework,

so they can be analyzed separately as we do in Sec. 4.4.

In the next section we will describe the real world signals that will be used to develop

a statistical analysis on the principal component distribution and from which we obtain a

set of realizations for the signal s(k). In Sec. 4.4 we will show that the Laplacian is a good

model to represent the principal components of typical WSN data. In turn, this provides a

justification for using CS in WSNs, as detailed in Section 4.5.

4.3 WSN online testbeds

The ultimate aim of WSN deployments is to monitor the evolution of a certain physical

phenomenon over time. Examples of applications that require such infrastructure include

monitoring for security, health-care or scientific purposes. Many different types of signals

can be sensed, processed and stored, e.g., the motion of objects and beings, the heart beats,
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Figure 4.3. Layout of the WSN testbed at the University of Padova.

or environmental signals like the values of temperature and humidity, indoor or outdoor.

Very often the density of sensor network deployments is very high and therefore sensor

observations are strongly correlated in the space domain. Furthermore, the physics itself of

the observed signals makes consecutive observations of a sensor node to be also temporally

correlated.

The spatial and temporal correlation represents a huge potential that can be exploited

designing collaborative protocols for the nodes constituting a WSN. In this perspective, we

can think of reducing the energy consumption of the network by tuning the overall number

of transmissions required to monitor the evolution of a given phenomenon over time. The

appeal of the techniques presented in Chapter 2 follows from the fact that CS enables us

to significantly reduce the number of samples needed to estimate a signal of interest with

a certain level of quality. Clearly, the effectiveness of CS is subject to the knowledge of a

transformation basis for which the observed signals result sparse.

In this section we illustrate the WSNs and the gathered signals that will be used in Sec-

tion 4.4 to test, using the Bayesian framework presented in Section 4.2, whether CS and PCA

are effective for real signals, i.e., whether the real signal transformed by the PCA matrix is

actually sparse.

Networks. In addition to our own experimental network deployed on the ground floor of

the Department of Information Engineering at the University of Padova, we consider other

threeWSNswhose sensor reading databases are available on-line, and a further deployment

called Sense&Sensitivity, whose data has been kindly provided to the authors byDr. Thomas
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Watteyne of the Dust Networks, Incorporation. A brief technical overview of each of these

five experimental network scenarios follows.

T1 WSN testbed of the Department of Information Engineering (DEI) at the University of

Padova, shown in Figure 4.3. The WSN is collecting data from 68 TmoteSky wireless

sensor nodes [63], [64]. The node hardware features an IEEE 802.15.4 Chipcon wireless

transceiver working at 2.4GHz and allowing a maximum data rate of 250 Kbps. These

sensors have a TI MSP430 micro-controller with 10 Kbytes of RAM and 48 Kbytes of

internal FLASH;

T2 LUCE (Lausanne Urban Canopy Experiment) WSN testbed at the Ecole Polytechnique

Fédérale de Lausanne (EPFL), [50]. Thismeasurement system exploits 100 SensorScope

weather sensors which have been deployed across the EPFL campus. The node hard-

ware is based on a TinyNodemodule equippedwith a Xemics XE1205 radio transceiver

operating in the 433, 868 and 915 MHz license-free ISM (Industry Scientific and Medi-

cal) frequency bands. Also these sensors have a TI MSP430 micro-controller;

T3 St-Bernard WSN testbed at EPFL, [65]. This experimental WSN deployment is made of

23 SensorScope stations deployed at the Grand St. Bernard pass at 2400 m, between

Switzerland and Italy. See point T2 for a brief description of the related hardware;

T4 CitySense WSN testbed, developed by Harvard University and BBN Technologies, [66].

CitySense is an urban scale deployment that will consist of 100 wireless sensor nodes

equipped with an ALIX 2d2 single-board computer. The transmitting interface is re-

configurable by the user and by default it operates in 802.11b/g ad hoc mode at 2.4

GHz. Nowadays this WSN deployment counts about twenty nodes;

T5 The Sense&Sensitivity [67] testbed is a WSN of 86 WSN430 nodes, which embed Texas

technology: a MSP430 micro-controller and a CC1100 radio chip operating in the ISM

band (from 315 to 915 MHz).

Signals. From the above WSNs, we gathered seven different types of signals: S1) tempera-

ture; S2) humidity; S3-S4) luminosity in two different ranges (320− 730 and 320− 1100 nm,

respectively); S5) wind direction; S6) voltage and S7) current. Concerning the signals gath-

ered from our testbed T1, we collected measurements from all nodes every 5 minutes for 3

days. We repeated the data collection for three different measurement campaigns, choosing
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WSN Testbed T1 (DEI)

# of frame # of starting time stopping time

nodes length frames (G.M.T) (G.M.T) signals

Camp. A 37 5 min 783 13/03/2009, 09:05:22 16/03/2009, 18:20:28 S1 S2 S3 S4 S6

Camp. B 45 5 min 756 19/03/2009, 10:00:34 22/03/2009, 17:02:54 S1 S2 S3 S4 S6

Camp. C 31 5 min 571 24/03/2009, 11:05:10 26/03/2009, 10:15:42 S1 S2 S3 S4 S6

WSN Testbed T2 (EPFL LUCE)

# of frame # of starting time stopping time

nodes length frames (G.M.T) (G.M.T) signals

Camp. A 85 5 min 865 12/01/2007, 15:09:26 15/01/2007, 15:13:26 S1 S2 S5

Camp. B 72 5 min 841 06/05/2007, 16:09:26 09/05/2007, 14:13:26 S1 S2 S5

Camp. C 83 30 min 772 02/02/2007, 17:09:26 18/02/2009, 19:09:26 S6 S7

WSN Testbed T3 (EPFL St Bernard)

# of frame # of starting time stopping time

nodes length frames (G.M.T) (G.M.T) signals

Camp. A 23 5 min 742 03/10/2007, 12:35:37 06/10/2007, 02:35:37 S1 S2 S5

Camp. B 22 5 min 756 19/10/2007, 12:35:37 22/10/2007, 03:35:37 S1 S2 S5

Camp. C 22 30 min 778 02/10/2007, 07:06:05 19/10/2007, 12:06:50 S6 S7

WSN Testbed T4 (CitySense)

# of frame # of starting time stopping time

nodes length frames (G.M.T) (G.M.T) signals

Camp. A 8 60 min 887 14/10/2009, 14:01:57 21/11/2009, 00:01:57 S1

Camp. B 8 60 min 888 14/10/2009, 13:00:01 21/11/2009, 00:00:01 S5

WSN Testbed T5 (Sense&Sensitivity)

# of frame # of starting time stopping time

nodes length frames (G.M.T) (G.M.T) signals

Camp. A 77 15 min 65 26/08/2008, 14:46:46 27/08/2008, 07:31:07 S1 S3 S4 S6

Table 4.1. Details of the considered WSN and gathered signals.
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different days of the week. Regarding the data collection fromWSNs T2–T5, we studied the

raw data available on-line with the aim of identifying a portion of data that could be used as

a suitable benchmark for our research purposes. This task has turned out to be really chal-

lenging due to packet losses, device failures and battery consumption that are very common

and frequent in currently available technology. For the acquisition of the signals we divided

the time axis in frames (or time slots) such that each of the working nodes was able to pro-

duce a new sensed data per frame. Details of the signals extracted from the records of T1–T5,

and organized in different campaigns, are reported schematically in Table 4.1.

4.4 Sparsity Analysis of Real Signal Principal Components

In this section we aim to infer the statistical distribution of the vector random process

s from the samples {s(1), s(2), . . . , s(T )} which are obtained from the above WSN signals.

The parameter T is the duration (number of time samples) of each monitoring campaign in

Table 4.1.

From the theory [13] we know that signals in the PCA domain (in our case s) have in

general uncorrelated components. Also, in our particular case we experimentally verified

that this assumption is good since E[sisj ] ≃ E[si]E[sj ] for i, j ∈ {1, . . . , N} and i 6= j. In

our analysis, we make a stronger assumption, i.e., we build our model of s considering

statistical independence among its components, i.e., p(s1, . . . , sN ) =
∏N

i=1 p(si). A further

assumption that we make is to consider the components of s as stationary over the entire

monitoring period5. The model developed following this approach can be integrated into

a data collection technique for WSNs and it leads to good results, as shown in Chapter 5,

which allow us to validate these assumptions.

Owing to these assumptions, the problem of statistically characterizing s reduces to that

of characterizing the random variables

si =
N∑

j=1

uji(xj − xj) , i = 1, . . . , N , (4.4)

where the r.v. uji is an element of matrixU in eq. (4.1) and the r.v. xj is an element of vector

x.

5Note that this model is able to follow also signals whose frequency content varies over time since the signal

basis adapts to the data.
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A statistical model for each si can be determined through the Bayesian estimation pro-

cedure detailed below. Similarly to the approach adopted in [68], we rely upon two levels

of inference.

First level of inference. Given a set of competitive models {M1, · · · ,MN} for the observed
phenomenon, each of them depending on the parameter vector θ, we fit each model Mi

to the collected data denoted by D, i.e., we find the θMAP that maximizes the a posteriori

probability density function (pdf)

p(θ|D,Mi) =
p(D|θ,Mi)p(θ|Mi)

p(D|Mi)
, (4.5)

i.e.,

θMAP = argmaxθp(θ|D,Mi) , (4.6)

where p(D|θ,Mi) and p(θ|Mi) are known as the likelihood and the prior respectively, whilst

the so called evidence p(D|Mi) is just a normalization factor which plays a key role in the

second level of inference.

Second level of inference. According to Bayesian theory, the most probable model is the

one maximizing the posterior p(Mi|D) ∝ p(D|Mi)p(Mi). Hence, when the models Mi are

equiprobable, they are ranked according to their evidence. In general, evaluating the evi-

dence involves the computation of analytically intractable integrals. For this reason, we rank

the different models according to a widely used approximation, the Bayesian Information

Criterion (BIC) [19], that we define as:

BIC(Mi)
def
= ln [p(D|θMAP ,Mi)p(θMAP |Mi)]−

ℓi
2
ln(T ) , (4.7)

where θMAP is defined in (4.6), ℓi is the number of free parameters of model Mi and T

is the cardinality of the observed data set D. Roughly speaking, the Bayesian Information

Criterion (BIC) provides insight in the selection of the best fitting model penalizing those

models requiring more parameters.

According to the introduced formalism we consider {s(1), s(2), . . . , s(T )} as the set of col-
lected data D; further, the observation of the experimental data gives empirical evidence for

the selection of four statistical modelsMi and corresponding parameter vectors θ:

M1 a Laplacian distribution with θ = [µ, λ], that we call L;

M2 a Gaussian distribution with θ = [m,σ2], that we call G;
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Figure 4.4. Empirical distribution and model fitting for a principal component (the second) of signal S1,

temperature.

M3 a Laplacian distribution with µ = 0 and θ = λ, that we call L0;

M4 a Gaussian distribution withm = 0 and θ = σ2, that we call G0.

The space of models for each si is therefore described by the set {L,G,L0,G0}. In detail,

for each signal S1−S7 in the correspondingWSNs and campaigns of Table 4.1, we collected

the T + K signal samples
{
x(1−K), . . . ,x(−1),x(0),x(1), . . .x(T )

}
from which we computed

{
s(1), s(2), . . . , s(T )

}
according to what explained in Sec. 4.1. Then, for each component si, i =

1, . . . , N, and for each model Mi, i = 1, . . . , 4, we have estimated the parameters (i.e., the

most probable a posteriori, MAP ) that best fit the data according to (4.5). These estimations

are related to the BN in Fig. 4.1 and since we deal with Gaussian and Laplacian distributions,

they have well known and closed form solutions [60]. In detail, for each component si:

M1 µ̂ = µ1/2(si) and λ̂ =

∑T
k=1

∣

∣

∣
s
(k)
i −µ̂

∣

∣

∣

T ,where µ1/2(si) is themedian of the data set
{
s
(1)
i , . . . , s

(T )
i

}
;

M2 m̂ =
∑T

j=1 s
(k)
i

T and σ̂2 =

∑T
k=1

(

s
(k)
i −m̂

)2

T−1 ;

M3 λ̂ =

∑T
k=1

∣

∣

∣
s
(k)
i

∣

∣

∣

T ;

M4 σ̂2 =

∑T
k=1

(

s
(k)
i

)2

T .
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Figure 4.5. Empirical distribution and model fitting for a principal component (the second) of signal S3,

luminosity in the range 320− 730 nm.

Figs. 4.4–4.5 show two examples of data fitting according to the aforementioned models;

in these figures we plot the empirical distribution and the corresponding inferred statistical

model for a generic principal component (but not the first one, as explained in the follow-

ing) of the temperature (S1) and the luminosity (S3), respectively. Both these signals have

been observed during the data collection of the campaign A, in the WSN testbed T1 (DEI).

From the graphs in Figs. 4.4–4.5 we see that the distribution of the principal components

of our signals is well described by a Laplacian distribution. Formally, the best among the

four considered models can be determined ranking them according to the Bayesian Infor-

mation Criterion (BIC) introduced in Eq. (4.7). Since we assigned non informative priors to

the model parameters, p(θMAP|Mi) is a constant for each Mi and therefore the BIC can be

redefined as:

BIC(Mi)
def
= ln p(D|θMAP ,Mi)−

ℓi
2
ln(T ) . (4.8)

Fig. 4.6 shows the BIC for the aforementioned humidity signal, for all its principal com-

ponents and for all the consideredmodels. From this figurewe see that the Laplacianmodels

better fit the data for all principal components si, i = 1, 2, . . . , N . The average BIC for each

model, for the different signals, campaigns and WSN tesbeds, is shown in Table 4.2. The

values of this table are computed averaging over the N principal components. From these
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Figure 4.6. Bayesian Information Criterion (BIC) per Principal Component, for each model M1–M4,

WSN T1 (DEI), campaign A and signal S2, humidity.

results we see that model L0 provides the best statistical description of the experimental

data. In fact, the BIC metric is higher for Laplacian models in all cases; furthermore, L0 has

a higher evidence with respect to L, since it implies the utilization of a single parameter. As

previously mentioned, the over-parameterization of the model is penalized according to the

factor T
−ℓ
2 (see Eq. (4.8)). Based on the above results, we can conclude that the Laplacian

model describes slightly better than the Gaussian one the real signals’ principal components

obtained according to our proposed framework, for all the considered signals. Furthermore,

it is worth noting that the first principal components (to be more precise, the firstK−1 prin-

cipal components6 of the signal, where K is the training set length) have different statistics

from the remaining ones, in terms of both signal range dynamics and amplitude of the com-

ponents. This is due to the fact that the first K − 1 components actually map the observed

signal into the training set vector space, instead the remaining ones are random projections

of the signals. The former capture the “core” of the signal x, the latter allow to recover its

details which can lie outside the linear span of the training data. In our simulations we set

K = 2, in accordance to the rationale presented in the Appendix A.2, so that only the first

6Note that, according to Eq. (4.3), the matrixU(k) is obtained from the elements of the training set T (k) minus

their mean, i.e., from the set
{
x(k−1) − x(k),x(k−2) − x(k), · · · ,x(k−K) − x(k)

}
which spans a vector space of

dimension at most K − 1.
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Figure 4.7. Empirical distribution and model fitting for the first principal component of signal S1, tem-

perature.

principal component shows a behavior different from the one illustrated in Figs. 4.4–4.5 as

reported in Figs. 4.7–4.8. In any case, the Laplacian model still fits better the observed data

compared to the Gaussian one.

4.5 Bayesian MAP Condition and CS Recovery for Real Signals

In the previous section we have seen that the Laplacian model is a good representa-

tion for the principal components of typical WSN signals. This legitimates the use of CS in

WSNs when it is exploited according to the framework presented in Section 4.2; to support

this claim we review in this section a Bayesian perspective that highlights the equivalence

between the output of the CS reconstruction algorithm and the solution that maximizes the

posterior probability in Eq. (4.5).

Assume a Data Collection Point (DCP) is placed in the center of a WSN with N sensor

nodes and let our goal be to determine at each time k all the N sensor readings by just

collecting at the DCP a small fraction of them. To this end we exploit the joint CS and

PCA scheme presented in Section 4.1. Eqs. (4.1)–(4.3) show that the considered framework

does not depend on the particular topology considered; the only requirement is that the
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Figure 4.8. Empirical distribution and model fitting for the first principal component of signal S3, lumi-

nosity in the range 320− 730 nm.

sensor nodes be ordered (e.g., based on the natural order of their IDs). Our monitoring

application can be seen, at each time k, as an interpolation problem: from a sampled M -

dimensional vector y(k) = Φx(k) ∈ RM , we are interested in recovering, via interpolation,

the signal x(k) ∈ RN . Typically (e.g., see [68]) this problem can be solved through a linear

interpolation on a set F of h basis functions fi ∈ RN , i.e., F = {f1, · · · , fh}. We can assume

that the interpolated function has the form:

x(k) = x(k) +
h∑

i=1

θifi . (4.9)

In accordance to what explained in Section 2.1.3, at each time k we can do the following

associations: the columns of the PCA matrix U(k) as the set of h = N basis functions, i.e.,

F = {f1, · · · , fN} = {u(k)
1 , · · · ,u(k)

N } = U (k); the sparse vector s(k) = (s
(k)
1 , · · · , s(k)N )T as the

parameter vector θ = (θ1, · · · , θN )T . In this perspective the interpolated function has the

form (see Eq. (4.1))

x(k) − x(k) =
N∑

i=1

s
(k)
i u

(k)
i . (4.10)

A Bayesian approach would estimate the most probable value of s(k) = (s
(k)
1 , · · · , s(k)N )T

by maximizing a posterior pdf of the form p(s(k)|y(k),U (k),M), where M is a plausible
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model for the vector s(k). To avoid confusion, it is important to note that in this section

the interpretation of all the variables involved is slightly different from the one adopted in

Sec. 4.4. In detail, now the vector s(k) is seen as the parameter vector θ in Eq. (4.5), whilst the

vector y(k) represents the set D of collected data. Moreover, the observed phenomenon x(k)

is modeled through both a set U (k) of basis functions (i.e., the columns of the matrix U(k))

and a model M for the parameter vector s(k), according to the BN in Fig. 4.2. In Eq. (4.5)

we indicated with the symbolMi a possible model for the observed phenomenon: here that

symbol is replaced with the couple (U (k),M), where M refers directly to s(k). Using the

symbol M to indicate a model for s(k) (even if s(k) is now interpreted as the parameter vec-

tor θ) allows us to highlight the correspondence between the adoption of a particular model

for s(k) and the results of the study carried out in Sec. 4.4. This correspondence will become

clear in the following.

As in [68], we assume also that M can be specified by a further parameter set α (called

hyper-prior) related to s(k), so that the posterior can be written as

p(s(k)|y(k),U (k),M) =

∫
p(s(k)|y(k), α,U (k),M)p(α|y(k),U (k),M)dα .

If the hyper-prior can be inferred from the data and has non zero values α̂, maximizing

the posterior corresponds to maximizing p(s(k)|y(k), α̂,U (k),M), that as shown in [68] corre-

sponds to maximizing the following expression

p(s(k)|y(k),U (k),M) ∝ p(s(k)|y(k), α̂,U (k),M)

=
p(y(k)|s(k),U (k))p(s(k)|α̂,M)

p(y(k)|α̂,U (k),M)
, (4.11)

where p(y(k)|s(k),U (k)) represents the likelihood function, p(s(k)|α̂,M) is the prior and p(y(k)|α̂,U (k),M)

is a normalization factor. The parameters α̂ are estimatedmaximizing the evidence p(y(k)|α,U (k),M),

which is a function of α. Note that here the hyper-prior plays, in regard to s(k), exactly the

same role as the parameter vector θ in the previous section, where s(k) was interpreted as

the collected data setD of the observed phenomenon; for example, if we chooseM = L0 for

s(k) then α = λ, i.e., the hyper-prior is the scale parameter of the Laplacian prior assigned to

s(k).

In Eq. (4.10), without loss of generality we can assume that x(k) = 0, thus the constraints

on the relationship between y(k) and s(k) can be translated into a likelihood of the form (see

Eq. (4.2)):

p(y(k)|s(k),U (k)) = δ(y(k),Φ(k)U(k)s(k)) , (4.12)
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where δ(x, y) is 1 if x = y and zero otherwise. In Sec. 4.4, we have seen that the statistics

of vector s(k) is well described by a Laplacian density function with location parameter µ

equal to 0 (L0). This pdf is widely used in the literature [46, 61] to statistically model sparse

random vectors and, owing to the assumption of statistical independence of the components

of s(k), we can write it in the form:

p(s(k)|α̂,M = L0) =
e−α̂

∑N
i=1 |s

(k)
i |

(2/α̂)N
. (4.13)

In this equation, all the components of s(k) are assumed to be equally distributed. If (4.11)

holds, we can obtain the following posterior:

p(s(k)|y(k),U (k),L0) ∝ p(s(k)|y(k), α̂,U (k),L0)

∝ p(y(k)|s(k),U (k))p(s(k)|α̂,L0). (4.14)

Using (4.12)–(4.14), maximizing the posterior corresponds to solving the problem

argmax
s(k)

p(s(k)|y(k),U (k),L0)

= argmax
s(k)

p(y(k)|s(k),U (k))p(s(k)|α̂,L0)

= argmax
s(k)

δ(y(k),Φ(k)U(k)s(k))
e−α̂

∑N
i=1 |s

(k)
i |

(2/α̂)N

= argmin
s(k)

N∑

i=1

|s(k)i |, given that y(k) = Φ(k)U(k)s(k)

= argmin
s(k)

‖s(k)‖1, given that y(k) = Φ(k)U(k)s(k) , (4.15)

which is the convex optimization problem solved by the CS reconstruction algorithms (see [6]

and [12]). In our approach, unlike in the classical CS problems, the sparsificationmatrixU(k)

is not fixed but varies over time adapting itself to the current data.

4.6 Conclusions

In this chapter we investigated the effectiveness of data recovery through joint Compres-

sive Sensing (CS) and Principal Component Analysis (PCA) in Wireless Sensor Networks

(WSNs). At first, we have shown that PCA is suitable for the Learn phase of the cogni-

tion paradigm, reaching the goal of capturing the relevant signal statistics from the past

collected data. Then we have proposed a mathematical framework able to exploit both CS
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and PCA for monitoring WSN signals, and we framed our recovery scheme into the con-

text of Bayesian theory proving that, under certain assumptions on the signal statistics, the

use of CS is legitimate, and we identified the conditions under which it is optimal, in terms

of recovery performance. Hence, as the main contribution we have shown that these as-

sumptions hold for real world data, which we gathered from several WSN deployments

and processed according to our framework. This allows us to conclude that the learning

phase using PCA is a good solution and the use of CS not only is legitimate in our recovery

scheme but also makes it possible to obtain very good performance for the considered data

sets. In the next chapter, we will define the compression/recovery technique that integrates

this mathematical framework. Logically, this technique will play the role of the Plan and

Decide phase of the cognition paradigm, as it will be able to make decisions on the future

behavior of the WSN. Moreover, with the introduction of the feedback into the network, we

will also define the Act phase, that will effect the decision made.
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WSN Testbed T1 (DEI)

S1 S2 S3 S4 S5 S6 S7

L 1382.8 1059.8 2191.7 1760.9 - 4656.9 -

G 1042.1 804.9 1690.0 1154.5 - 3814.1 -

L0 1385.5 1062.4 2194.9 1764.1 - 4660.1 -

G0 1044.9 807.60 5078.3 1157.4 - 3816.9 -

WSN Testbed T2 (EPFL LUCE)

S1 S2 S3 S4 S5 S6 S7

L -36.1 -992.3 - - -3694.9 1854.1 -972.8

G -195.3 -1163.7 - - -4026.5 1191.4 -1520.3

L0 -33.3 -989.5 - - -3691.5 1856.3 -969.6

G0 -192.5 -1160.9 - - -4023.6 1194.2 -1517.3

WSN Testbed T3 (EPFL St Bernard)

S1 S2 S3 S4 S5 S6 S7

L -82.3 -1473 - - -3700.2 1617.8 -1557.5

G -487.4 -1700.7 - - -3850.3 1087.9 -1877.2

L0 -79.3 -1469.9 - - -3697.3 1619.0 -1554.2

G0 -484.7 -1697.8 - - -3847.5 1090.7 -1874.2

WSN Testbed T4 (CitySense)

S1 S2 S3 S4 S5 S6 S7

L -858.1 - - - -4309.5 - -

G -1094.6 - - - -4384.2 - -

L0 -856.8 - - - -4306.4 - -

G0 -1091.9 - - - -4381.2 - -

WSN Testbed T5 (Sense&Sensitivity)

S1 S2 S3 S4 S5 S6 S7

L -127.7 - -196.2 -184.4 - 110.0 -

G -176.1 - -232.1 -227.5 - 70.2 -

L0 -125.7 - -194.2 -182.3 - 111.9 -

G0 -174.7 - -230.6 -225.8 - 71.8 -

Table 4.2. Bayesian Information Criterion (BIC) averaged over all Principal Components and relative

campaigns, for each modelM1–M4, for each testbed T1–T5 and each corresponding provided signal among

S1 (Temperature), S2 (Humidity), S3 (Light), S4 (IR), S5 (Wind), S6 (Voltage) and S7 (Current).





Chapter5

SCoRe1: Sensing, Compression and

Recovery through OnNline Estimation

for WSNs

5.1 Introduction and Related Work

In this chapter 1 we present a lightweight and self-adapting framework called “Sens-

ing, Compression and Recovery through ONline Estimation”, SCoRe1, for the estimation of

large data sets with high accuracy through the collection of a small number of sensor read-

ings. SCoRe1 integrates the mathematical framework proposed in Chapter 4 into a data

compression, collection and recovery technique designed to work in a WSN. The mathe-

matical framework at the core of SCoRe1, presented in Section 4.2, is based on the joint

1The material presented in this chapter has been published in:

[C2] G. Quer, D. Zordan, R. Masiero, M. Zorzi and M. Rossi, “WSN-Control: Signal Reconstruction through

Compressive Sensing in Wireless Sensor Networks”, IEEE LCN (SenseApp Workshop), Denver, CO, Oct.

2010.

[C4] R. Masiero, G. Quer, D. Munaretto, M. Rossi, J. Widmer and M. Zorzi, “Data Acquisition through joint

Compressive Sensing and Principal Component Analysis”, IEEE Globecom 2009, Honolulu, HW, Nov.-

Dec. 2009.

[J1] G. Quer, R. Masiero, M. Rossi and M. Zorzi, “SCoRe1: Sensing Compression and Recovery through On-

line Estimation for Wireless Sensor Networks”, Under submission to IEEE Trans. Wireless Communication.
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use of Compressive Sensing (CS) and Principal Component Analysis (PCA) [13], to devise

a scheme where the processing of the signal is only required at the Data Collection Point

(DCP), whereas data gathering and routing are independent of it. The main objective of

such framework is to be very general, i.e., suitable to be implemented for a monitoring ap-

plication independently of the observed signal. This requirement is very appealing when

we think about a network of nodes equipped with different sensors, and therefore capable

of sensing different signals. We do not want protocols specifically designed for signals with

given statistical characteristics, so that a node should select the right protocol according to

the currently sensed signal. Conversely, we would like to have a transmission protocol that

requires no prior knowledge of the observed signal characteristics, but nevertheless is able

to adapt to them. We stress that SCoRe1 is proposed for WSNs, but can be readily applied

to other types of network infrastructures that require the approximation of large and dis-

tributed datasets with spatial or temporal correlation. Furthermore, this technique fulfills

the tasks of the Plan and Decide phase, and, with the presence of the feedback to the WSN,

also of the Act phase of the cognitive paradigm.

We present also two other simple data collection techniques that exploit the mathemat-

ical framework of Chapter 4, in order to show the reason for some specific design choices

for SCoRe1, like the adoption of a controller to bound the signal error and to iteratively

adapt to the specific statistical characteristics of the signal monitored. Moreover, we exploit

a wide set of signal processing techniques for the approximation of the signal in space and

time and we devise an original data gathering scheme that autonomously adapts the num-

ber of collected measurements according to a runtime estimate of the signal reconstruction

error. In detail, the signal of interest can be approximated according to (i) a deterministic

approach, i.e., through a proper fitting of the collected measurements, as in the case of the

spline method, and to (ii) a probabilistic approach, i.e., the signal is estimated from the col-

lected measurements and some a priori statistical knowledge of the signal, as in the case

of CS or the Least Square Error (LSE) method. Chapter 4 showed that CS recovery can be

exploited for data interpolation since the signal model which is at the basis of CS describes

well real signal characteristics. Here we apply CS within an actual framework for WSN sig-

nal monitoring and show that it performs as well as or better than the other state of the art

techniques analyzed. Finally, we propose WSN-control, an architecture that integrates data

compression, collection and recovery into an actual WSN. The recovery technique is imple-

mented in an application server that can be accessed by the Internet ant that is connected to



5.2. Iterative Monitoring Framework 69

the WSN through a WSN gateway.

Our present work is related to the literature on signal recovery, e.g., see [69], and in

particular to Bayesian theory, e.g., see [59, 60], and the main contributions of this chapter

with respect to the state of the art are:

• the design of a novel, effective and flexible technique for distributed sampling, data

gathering and recovery of signals from actual WSN deployments, named SCoRe1, that

integrates the mathematical framework described in Chapter 4;

• the proposal of the WSN-Control architecture to access and control all the operations

in a WSN from an application server external to the WSN and connected to the In-

ternet, and the integration of the proposed compression/recovery technique into such

architecture;

• a performance comparison of different data collection techniques that exploit the pro-

posed framework;

• a performance comparison of different data-fitting techniques with real signals in re-

alistic WSN scenarios.

The rest of this chapter is structured as follows. In Section 5.2 we describe our data col-

lection framework, the distributed sampling method and the controller module to bound

the signal reconstruction error. Here we present also two alternative data collection tech-

niques to illustrate our choices of protocol design. In Section 5.3 we give a mathematical

overview of the main approaches to recover data from an incomplete measurement set, fol-

lowed by the description of the recovery algorithms to apply these approaches in our mon-

itoring framework. Then, in Section 5.4 we present the WSN-control software architecture

in which we integrate the data collection techniques. In Section 5.5 we analyze the perfor-

mance of the proposed schemes and recovery techniques for different kinds of real signals

gathered from different WSNs. Finally, Section 5.6 concludes the chapter.

5.2 Iterative Monitoring Framework

In this section we present our data collection framework called SCoRe1 (Sensing, Com-

pression an Recovery through ON-line Estimation) for distributed compression and central-

ized recovery of a multi dimensional signal in a WSN with N sensor nodes. A diagram
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Figure 5.1. Diagram of the proposed sensing, compression and recovery scheme. Note that theController,

which includes the Error estimator and the Feedback Control blocks, is a characteristic of SCoRe1 and

is not present in the other DC techniques.

showing the logic blocks of this framework is presented in Fig. 5.1 and will be detailed in

Section 5.2.1. Let x(k) ∈ RN be the N -dimensional signal (one reading per sensor node)

sampled at discrete times k = 1, 2, . . . . At each time k the Data Collection Point (DCP) col-

lects a compressed version y(k) = Φ(k)x(k), y(k) ∈ RL, of the original signal x(k) ∈ RN . The

sampling matrix Φ(k) ∈ RL×N , with L ≤ N , has one element equal to 1 per row and at most

one element equal to 1 per column, indicating which nodes transmit their data sample to the

DCP at time k, while all the other elements are equal to zero. Thus, the elements in y(k) ∈ RL

are a subset of those in x(k) (spatial sampling). Note that reducing the number of nodes that

transmit to the DCP is a key aspect as each sensor is supposed to be a tiny battery powered

unit with a finite amount of energy that determines its lifetime. Furthermore, the nodes of

the WSN have limited computational resources, so it is necessary to design a compression

technique which does not require much computational power at the nodes and which only

needs a minimum amount of control messages to be exchanged among them. At each time

k the transmitting nodes are chosen in a distributed way according to a simple Random

Sampling (RS) technique to be executed in each node of the WSN, as we detail shortly. The

DCP is the sink of the WSN and is connected to a remote server that is not battery powered

so it does not have stringent energy requirements and has enough computational resources

to execute signal recovery algorithms. The DCP is responsible for collecting the compressed

data y(k), sending a feedback to the WSN and recovering the original signal from y(k). Ac-
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cording to the IDs of the nodes that have transmitted, which are included in the received

packets, the DCP obtains a further matrixΦ(k) that will be used in the recovery phase. Next,

we detail the blocks which compose our framework and that are illustrated in Fig. 5.1.

5.2.1 SCoRe1 Framework: Description of Blocks

Wireless Sensor Network (WSN): in this chapter we considered data collected from our

own experimental network deployed on the ground floor of the Department of Informa-

tion Engineering at the University of Padova and other four WSNs whose sensor reading

have been published on-line. A brief technical overview of each of these five experimental

network was presented in Section 4.3. The geometry of the considered deployment is not

important, i.e., the nodes can be placed arbitrarily in a given area. Our framework, in fact,

is flexible and does not depend on a specific topology; the only requirement is that the sen-

sor nodes can be ordered, e.g., based on their IDs. Multi-hop paths are taken into account

for transmission energy computation by assigning to each node a weight proportional to its

distance from the DCP. Thus, the information coming to the DCP from a node which is three

hops distant will “cost” three times as much as the information gathered from a node with

one-hop distance.

Random Sampling (RS): the RS scheme is used to decide in a fully distributed way which

sensors transmit their data to the DCP and which remain silent, at any given time v. This

scheme has been chosen because it allows us to have a simple and general solution that

can easily adapt to different signal characteristics and changes. In detail, at each time v

each sensor node decides, with probability p
(v)
tx , whether to transmit its measurement to

the DCP. This decision is made independently of the past and of the behavior of the other

nodes, so there is no need for a large memory in each sensor, nor for further control packets

within the network. The probability of transmission p
(v)
tx can be fixed beforehand and kept

constant, or can be varied as a function of the reconstruction error. The random behavior of

the network is driven by this probability, so it is interesting to study the performance bounds

of the random sampling scheme for a given p
(v)
tx = ptx. In order to give an idea on how the

value of the probability p
(v)
tx translates into the behavior of the sensor network, we want to

calculate the average time after which, given a fixed ptx, all the sensors have transmitted

their value at least once to the DCP, with probability higher than a given p. To this aim

we define the random variable VN , that gives the minimum number of time samples after
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which all nodes have transmitted at least once, and we want to find the expected value of

this variable and the minimum number of time samples after which with probability p all

nodes have transmitted at least once. We define a = 1−ptx and b = ptx as the probability that

a single node is silent and the probability that it transmits in a given instant v, respectively.

Interpreting b as the probability of success in a Bernoulli process, the random variable VN

can be seen as the minimum number of time samples after which N independent Bernoulli

processes have at least one success each. The probability of success for a single Bernoulli

process at the vth slot after v − 1 failures is:

P [V1 = v] = av−1b , (5.1)

that defines the probability mass function (pmf) of the variable V1, the minimum number of

time samples needed for the first success of a Bernoulli process. The probability of at least

one success after v slots is:

P [V1 ≤ v] =
v∑

j=1

aj−1b = 1− av , (5.2)

and given that the N Bernoulli processes are independent we find the probability that all of

them have had at least a success after v slots:

P [VN ≤ v] = (1− av)N . (5.3)

Inverting this formula, it is possible to calculate the minimum number of time samples after

which with probability p all nodes have transmitted at least once, that is:

v =

⌈
log

(
1− p1/N

)

log a

⌉
. (5.4)

From the probability in (5.3), we can calculate also the pmf of VN , that is:

pVN
(v) = P [VN ≤ v]− P [VN ≤ v − 1] = (1− av)N − (1− av−1)N , (5.5)

and from this pmf we can define the expectation of VN :

E[VN ] =
+∞∑

v=1

vpVN
(v) =

N∑

j=1

(
N

j

)
(−1)j+1 1

1− aj
. (5.6)

Data Collection Point (DCP): the role of DCP is threefold:

1. it receives as input y(k) and returns the reconstructed signal x̂(k),
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2. it adapts p
(k)
tx and sends its new value to the sensor nodes; this is done to reduce the

number of transmissions in the network while bounding the reconstruction error, and

3. it provides the recovery block with a training set T̂K1 for x(k); this training set is used

to infer the structure of the signal, which is then exploited by the signal recovery al-

gorithm. T̂K1 is formed by the K1 previously reconstructed signals x̂(j) for j < k, so it

can be written as T̂K1 = {x̂(k−K1), . . . , x̂(k−1)}.

Recovery: the recovery method adopted in our framework is based on the joint use of CS

and PCA. All the details about CS and PCA are presented in Section 2.1, while the mathe-

matical framework that exploits both of them and that is integrated in SCoRe1 is presented

in Chapter 4. In Section 5.3 we present a set of different recovery methods that may be

adopted in our framework and we compare them in Section 5.5.

Controller: the controller block is responsible for the estimation of the quality of the signal

reconstruction at the data collection point and for giving a feedback to the WSN based on

this quality. In particular, the quality of reconstruction is quantified with the relative recon-

struction error of the signal, and is estimated by the Error Estimation block described in the

following.

Error Estimation: the reconstruction error that we want to estimate is defined as

ξ
(k)
R =

‖x(k) − x̂(k)‖2
‖x(k)‖2

, (5.7)

where x̂(k) is the signal reconstructed by the recovery block at time k and ‖ · ‖2 is the 2-norm
function for a vector. Note that at the DCP we do not have x(k), but only y(j) = Φ(j)x(j) and

x̂(j), for j ≤ k. Since the quantity ξ
(k)
0 = ‖y(k) − Φ(k)x̂(k)‖2/‖y(k)‖2 is always zero, due to

the fact that the received samples are reconstructed perfectly, i.e., Φ(k)x̂(k) = Φ(k)x(k), one

might use some heuristics to calculate the error from the past samples. In this chapter we

use the following formula:2

ξ(k) =

∥∥∥∥∥∥


 y(k)

y(k−1)


−


 Φ(k)x̂(k−1)

Φ(k−1)x̂(k)



∥∥∥∥∥∥
2

·



∥∥∥∥∥∥


 y(k)

y(k−1)



∥∥∥∥∥∥
2




−1

, (5.8)

With this heuristic we compare the spatial samples collected at time k, i.e., y(k), with the

reconstructed values at time k−1, i.e., x̂(k−1), sampled in the same points of the compressed

2We tried other heuristics and verified through extensive simulation that they perform similarly and worse

than the one in (5.8). These are not listed here as they do not provide any additional insight.
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values at time k, i.e., Φ(k)x̂(k−1). Then we compare the same signals inverting k and k −
1. Note that ξ(k) does not only account for the reconstruction error but also for the signal

variability. This introduces a further approximation to the error estimate, but on the other

hand it allows the protocol to react faster if the signal changes abruptly and this is a desirable

feature. In fact, if the signal significantly differs from time k − 1 to time k, ξ(k) will be large

and this will translate into a higher p
(k+1)
tx (see below).

Feedback Control: this block calculates the new p
(k+1)
tx for the next time k + 1 and sends a

broadcast message with this new value to the network nodes. The calculation of the new ptx

is made according to a technique similar to TCP’s congestion window adaptation, where ptx

is exponentially increased in case the error is above a defined error threshold τ (to quickly

bound the error) and is linearly decreased otherwise. In detail, we define the constants

C1 ∈ [1,+∞[, C2 ∈ {1, 2, . . . , N} and pmin
tx , the minimum value allowed for the probability

of transmission, and we calculate the new probability of transmission as:

p
(k+1)
tx =




min

{
p
(k)
tx C1, 1

}
if ξ(k) ≥ τ

max
{
p
(k)
tx − C2/N, pmin

tx

}
if ξ(k) < τ .

(5.9)

5.2.2 Role of the Controller

In order to illustrate the choices done for the design of SCoRe1 and in particular in order

to highlight the advantaged of using the Controller block, here we consider two simple

strategies for iteratively sensing and recovering a given signal that do not require the use of

a Controller, and we compare them with SCoRe1. In detail, we want to show how the use

of the Controller, with the Error Estimation and the Feedback Control blocks, can improve

the performance of the data collection technique and automatically adapt the recovery to

the specific signal analyzed. Moreover, we show the influence of the choice of an iterative

or an approximate training set T̂K1 . The two simple data collection strategies analyzed are

referred to as 2 Phases and Fixed ptx, respectively.

2 Phases: according to this data collection technique, the network monitors the entire signal

x(k) for a certain period of time (referred to as training phase) and sends it to the DCP, which

is responsible for inferring the signal statistics during this period. For the subsequent period

(monitoring phase), the DCP only requires a small fraction of the nodes to transmit, being able

to accurately reconstruct the signal from its under-sampled version. Due to the fact that the

monitored signal is non-stationary, its statistics may vary with time and should therefore be
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periodically updated at the DCP. In detail, this protocol alternates the following two phases

of fixed length in number of Data Collection Rounds (DCRs)3:

1. a training phase of K1 DCRs, during which the DCP collects the readings from all N

sensors and uses them to compute the statistics needed by the recovery algorithm.

During this phase, the probability of transmission at each sensor is set to p
(k)
tx = 1, so

the DCP collects a training set TK1 = {x(k−K1), . . . ,x(k−1)} that will be used to infer

the relevant statistics;

2. a subsequent monitoring phase of K2 DCRs, with K2 ≥ K1, during which (on average)

only L ≤ N nodes transmit, according to the adopted random sampling scheme with

p
(k)
tx = L/N . The signal of interest is thus reconstructed from this data set by the

recovery algorithm, using the statistics computed in the training phase.

In other words, training and monitoring phases are interleaved as follows:

. . . ,y(k), . . . ,y(k+K1−1)

︸ ︷︷ ︸
training phase

ptx = 1

dim(y(j)) = N

,y(k+K1), . . . ,y(k+K1+K2−1)

︸ ︷︷ ︸
monitoring phase

ptx = L/N

E
[
dim(y(j))

]
= L

, . . .

where dim(y(j)) is the number of the components of y(j) and E[dim(y(j))] is the expected

value of dim(y(j)).

Note that for the 2 Phases technique the training set TK1 does not contain approximations

(reconstructions) of the past signals, but those actually collected during the training phase.

The major drawback of this technique is that it is very sensitive to the choice of the param-

eters that govern the compression and the recovery phases. These parameters are: (1) the

average number of sensors L that transmit during the monitoring phase, which determines

p
(k)
tx = L/N . (2) The length of the training phase (K1) and of the monitoring phase (K2),

that should be chosen according to the temporal correlation of the observed phenomenon.

In this chapter we analyze the performance as a function of the value of p
(k)
tx , while the anal-

ysis of the influence of the parameters K1 and K2 can be found in Appendix A.2. All these

parameters, p
(k)
tx , K1 and K2, must be chosen at the beginning of the transmission and they

3A Data Collection Round (DCR) is the time period between two consecutive readings of each sensor. In a

DCR, we should reconstruct at the DCP the readings from all sensors.
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can only be tuned manually. Hence, even if the initial choice is optimal, this technique is

not able to adapt to sudden changes in the signal statistics. Moreover, the training phase

accounts for the biggest part of the total cost in terms of number of transmissions, as shown

by the study reported in Appendix A.2.

Fixed ptx: a solution to the latter problem is to eliminate the training phase, so the nodes

at each time k transmit with a fixed probability p
(k)
tx = ptx: this is the Fixed ptx technique.

Here, the training set needed by the recovery block to infer the statistics that allows the

reconstruction of x(k) from y(k) is formed by the previously reconstructed signals x̂(j) for

j < k, so it can be written as T̂K1 = {x̂(k−K1), . . . , x̂(k−1)}. The main drawbacks of this

scheme is that without any control loop for ptx, the energy consumption cannot be easily

adapted to the observed signal and the reconstruction error can grow unbounded as will be

shown shortly.

5.3 Data recovery from an incomplete measurement set

The recovery algorithm (see Fig. 5.1) is executed at the DCP and, at any time k, tries to

recover the original signal x(k) ∈ RN from its compressed version y(k) ∈ RL, with L ≤ N . To

this end, in the Section 4.1 we presented a mechanism that jointly exploits CS and PCA for

signal interpolation in WSN and that from here on we will call CS-PCA. Obviously, many

alternatives exist in the literature, each based on a particular signal model. Given a signal

model, theoretical analysis can tell us which is the best, or the optimal, recovery mechanism

to adopt. However, when we apply the chosen mechanism to real signals, we can obtain

unsatisfactory results if the chosen model does not capture well the signal characteristics.

In Chapter 4, we have analyzed the statistical distribution of the principal components for a

set of real signals, computed exploitingK1 past samples of the signals themselves. We have

seen that the principal components are well modeled by a Laplacian distribution. Adopting

this statistical model for the signal transformed by the PCA basis, the CS recovery algorithm

is found to be optimal.

In what follows, we first review well-known state-of-the-art interpolation techniques

that formally solve the following problem:

Problem 5.3.1 (Interpolation Problem). Estimate x̂(k) (such that ‖x̂(k) − x(k)‖2/‖x(k)‖2 ≃ 0)

knowing that y(k) = Φ(k)x(k), where y(k) ∈ RL, L ≤ N and Φ(k) is an [L ×N ] sampling matrix,
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i.e., all rows of Φ(k) contain exactly one element equal to 1 and all columns of Φ(k) contain at most

one element equal to 1, whilst all the remaining elements are zero.

Each technique is based on a particular signal model, that we explicitly describe as well.

At the end of this section, we detail how the presented recovery techniques can be imple-

mented within the iterative monitoring framework of SCoRe1. In this way they can be com-

pared against the proposed CS-PCA method. The performance results presented in Sec-

tion 5.5, even if limited to the signals therein explained, will give insights on which of the

analyzed techniques is more suitable to be used with real signals (and therefore, which is

the signal model among those considered that best describes the reality).

Signal Models and Interpolation Techniques

The a priori knowledge that we can have about the signal of interest x(k) helps us build

a model for such signal. This knowledge can be deterministic, e.g., a description of the

physical characteristics of the observed process, or probabilistic, e.g., the formulation of a

probability distribution, called prior, to describe the possible realizations of x(k). In both

cases, the acquired knowledge on the signal to recover can be obtained by observing or

processing a set of representative realizations of the signals of interest (i.e., the training set

T (k)
K1

or the approximate training set T̂ (k)
K1

). In summary, to compute x̂(k) from y(k), we need a

model of x(k) that can be built according to two different approaches: a deterministic approach

or a probabilistic approach, detailed in Sections 5.3.1 and 5.3.2, respectively. The Deterministic

approach allows us to define two recovery methods, the Biharmonic Spline (Spline) and the

Deterministic Ordinary Least Square (DOLS). The probabilistic approach instead is adopted

in the Probabilistic Ordinary Least Square (POLS), that assumes a Gaussian distribution of

the principal components, and in the CS-PCAmethod, that assumes a Laplacian distribution

of the principal components. The implementation details of the four recovery methods are

detailed in Section 5.3.3.

5.3.1 Recovery Methods based on Deterministic Signal Models

A possible way to think of x(k) ∈ RN is as a signal whose elements depend on d−di-

mensional coordinates. To be more concrete, we can think of an environmental monitored

signal collected from a WSN of N nodes that we order according to their IDs. Each node

i, with i = {1, . . . , N}, at time k senses a value which is represented by element x
(k)
i of
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vector x(k). Since the considered node i is deployed in a specific location of the network, it

is also linked to a set of geographical coordinates (e.g., latitude and longitude, which can be

represented with a d = 2 dimensional coordinate vector c(i)). x
(k)
i represents the reading of

the i−th network node, which in turn is associated with a vector of d coordinates c(i), and

therefore we can express x
(k)
i as a function of c(i), i.e., x

(k)
i (c(i)). A straightforward way to

model x(k) is by defining a proper function of the d−dimensional coordinate c, φ(c) (e.g., the

Green function) that satisfies regularity conditions (e.g., smoothness) inferred by “typical”

realizations of the signal of interest x(k) [55]. Thus, we can write each element i of x(k) as

x
(k)
i (c(i)) ≃

L∑

j=1

αjφ(c
(i) − c(j)) , (5.10)

where the function φ(·) is used as a building block for x(k) and αj is the weight associated to

φ(·) centered in c(j), with j = 1, . . . , L, that is the d−dimensional coordinate corresponding

to the physical placement of the node from which we received the j−th measurement.

The Biharmonic Spline Interpolation (Spline) [55] method solves Problem 5.3.1 exploit-

ing the deterministic model in (5.10); the objective is to find a biharmonic function that

passes through L data points stored in the L−dimensional vector y(k). In this context, the

elements of both y(k) and x(k) are seen as a function of d coordinates. Namely, to each

element j of the L−dimensional vector y(k) is associated a d−dimensional index c(j) =

[c
(j)
1 , . . . , c

(j)
d ]T . Similarly, to each element i of the N−dimensional vector x(k) is associated

the d−dimensional index c(i). In order to interpolate the L points in y(k) we require to sat-

isfy for each element of x(k) the smoothness condition4 ∇4x̂(k)(c) =
∑L

j=1 αjδ(c − c(j)) ,

given that, if c = c(j) then x̂(k)(c(j)) = y
(k)
j , where c(j) is the coordinate vector c(j) =

[c
(j)
1 , . . . , c

(j)
d ]T ∈ Rd related to the reading y

(k)
j (e.g., the geographical location of the reading

y
(k)
j ). The solution is proved to be:

x̂(k)(c) =
L∑

j=1

αjφd(c− c(j)) , (5.11)

where φd(·) is the Green function for the d−dimensional problem5. The constants α1, . . . , αL

are found by solving the linear system y
(k)
i =

∑L
l=1 αlφd(c

(j) − c(l)), ∀ j ∈ {1, . . . , L}. To

conclude, the solution x̂(k) ∈ RN is the vector whose element i is equal to x̂(k)(c(i)), namely,

4Here, ∇4 is the biharmonic operator which allows to formalize regularity conditions on the fourth-order

derivatives; δ(·) is defined as δ(x) = 1 if x = 0, δ(x) = 0 otherwise.
5E.g., φ1(c) = |c|3, φ2(c) = |c|2(ln |c| − 1) and φ3(c) = |c|.
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the recovered value associated with the d−dimensional index c(i).

An alternative way to determine a model for x(k) allows us to abstract from the knowl-

edge of where the signal sources are placed. Further, this second method is adaptable to the

spatio-temporal correlation and structure of the signal. Observing that generally a physical

phenomenon is correlated in time and that its spatial correlation can be considered as sta-

tionary over a given time period (e.g., from k −K1 until k), a natural way to proceed is by

assuming that x(k) lies in the vector space spanned by the K1 previous samples contained

in the training set T (k)
K1

, or in the approximate training set T̂ (k)
K1

, i.e., in span
〈
T (k)
K1

〉
, or in

span

〈
T̂ (k)
K1

〉
, respectively. According to the formalism introduced in Section 2.1.3, let us re-

fer to the temporal mean and the covariance matrix of the elements in T (k)
K1

as x(k) and Σ̂(k),

respectively. Let us consider also the ordered set U (k) = {u(k)
1 , . . . ,u

(k)
N } of unitary eigen-

vectors of Σ̂(k), placed according to the decreasing order of the corresponding eigenvalues.

Let U
(k)
M be the [N ×M ] matrix whose columns are the first M elements of U (k). To build a

model of x(k) based on the assumption that this one lies in span
〈
T (k)
K1

〉
, we can write:

x(k) ≃ x(k) +V(k)s(k) = x(k) +U
(k)
M s(k) , (5.12)

where, in general,V(k) can be any [N×M ]matrix of orthonormal columns (obtained at time

k from the set {x(k−K1) − x(k), . . . ,x(k−1) − x(k)}, e.g., through the Gram-Schmidt process),

with M ≤ N ; here we set V(k) = U
(k)
M because given M ≤ N , the best way to represent

with M components each element out of a set of N−dimensional elements is through PCA.

In order to show that PCA is the solution to this representation problem, we should look

at it from a geometric point of view. We can consider each sample x(k), for all k, as a point

in RN and look for the M -dimensional plane (with M ≤ N ) which provides the best fit to

all the elements in T (k)
K1

, and therefore for all the vectors that lie in span
〈
T (k)
K1

〉
, in terms

of minimum Euclidean distance. The key point of PCA is the Ky Fan theorem [70], that is

reported here to show an important aspect of the Deterministic approach followed in this

Section.

Theorem 5.3.1 (Ky Fan Theorem). Let Σ ∈ RN×N be a symmetric matrix, let λ1 ≥ · · · ≥ λN be

its eigenvalues and u1, . . . ,uN the corresponding eigenvectors (which are assumed to be orthonor-

mal, without loss of generality). Given M orthonormal vectors b1, . . . ,bM in RN , with M ≤ N , it
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holds that

max
b1,...,bM

M∑

j=1

bT
j Σbj =

M∑

j=1

λi , (5.13)

and the maximum is attained for bi = ui, ∀i.

According to the Ky Fan Theorem, maximizing
∑M

j=1 b
T
j Σ̂

(k)bj corresponds to finding

the linear transformation F :RN →RM that maximally preserves the information contained

in the training set T (k)
K1

. In other words, this corresponds to maximizing the variance of

the M -dimensional (linear) approximation of each element in span
〈
T (k)
K1

〉
that, in turn, is

strictly related to the information content of each signal in T (k)
K1

. Because of Theorem 5.3.1,

the bestM -dimensional approximation of any signal x ∈ span
〈
T (k)
K1

〉
is given by [13]

x̂ = x(k) +U
(k)
M

(
U

(k)
M

)T
(x− x(k)) ,

where
(
U

(k)
M

)T
(x − x(k)) is the projection of x − x(k) onto its best fitting M -dimensional

plane. In summary, if the original point of interest x(k) ∈ span
〈
T (k)
K1

〉
, we can transform it

into a point s(k) ∈ RM as follows:

s(k)
def
=

(
U

(k)
M

)T
(x(k) − x(k)) . (5.14)

Multiplication of (5.14) by U
(k)
M and summation with the sample mean return the best ap-

proximation of the original vector, in accordance to (5.12).

To solve Problem 5.3.1 exploiting the model in Eq. (5.12) we can simply use the Ordinary

Least Square (OLS) method [69], thus we refer to this recovery solution as Deterministic

Ordinary Least Square (DOLS). From y(k) = Φ(k)x(k) and the assumption that Eq. (5.12)

holds, we can write

y(k) = Φ(k)(x(k) +U
(k)
M s(k)) . (5.15)

The ordinary least square solution of Eq. (5.15) is given by

ŝ(k) = (Φ(k)U
(k)
M )†(y(k) −Φ(k)x(k)) (5.16)

and it allows us to estimate the signal x(k) as x̂(k) = x(k) +U
(k)
M ŝ(k). In the above expression

the symbol † indicates the Moore-Penrose pseudo-inverse matrix.

Recalling that in Eq. (5.15) y(k) is an [L× 1] vector whilst s(k) is an [M × 1] with M ≤ L,

the system in Eq. (5.15) is in general overdetermined and may have no solutions (e.g., when

all the L measurements are linearly independent). In this case (5.16) minimizes ‖(y(k) −
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Φ(k)x(k)) −Φ(k)U
(k)
M s(k)‖ℓ2 , obtaining ŝ(k) as the nearest (according to the Euclidean norm)

possible vector to all the L collected measurements. If L = M , instead, the Moore-Penrose

pseudo-inverse coincides with the inverse matrix and ŝ(k) is uniquely determined.

5.3.2 Recovery Methods based on Probabilistic Signal Models

This alternative approach allows us to introduce an uncertainty in the model of x(k),

in order to improve the effectiveness and robustness of the model when exploited for the

recovery of the signal at the DCP. The introduction of the uncertainty in the model translates

into a significant improvement in the recovery performance, as will be shown in Section 5.5.

Considering Eq. (5.12), this can be reformulated as:

x(k) ≃ x(k) +V(k)s(k) = x(k) +U(k)s(k) , (5.17)

where V(k) is now an [N ×N ] matrix of orthonormal columns set equal to the PCA matrix

U(k) following the same rationale as above. Here, the cardinality of the model’s parameters

isN (i.e., the dimension of vector s(k)), which is surely larger than or equal to the dimension

of span
〈
T (k)
K1

〉
. The model in (5.17), therefore, allows us to account for the fact that x(k)

could not perfectly lie in span
〈
T (k)
K1

〉
. This kind of approach has been implicitly adopted

also in Chapter 4 and, recalling Fig. 4.2, we can see that we need further assumptions on the

system input s(k) to fully characterize the model in Eq. (5.17), i.e., we have to assign a prior

to s(k). In practice, as it was shown in Chapter 4, s(k) is a vector random process that we can

assume to be, e.g., a Gaussian multivariate process6 or a Laplacian vector process with i.i.d.

components.

When we assign a Laplacian prior to s(k), we can solve Problem 5.3.1 through our pro-

posed recovery CS-PCA that corresponds tominimizing ‖s(k)‖ℓ1 , given that y(k) = Φ(k)Ψs(k),

as shown in Chapter 4.

Differently, whenwe assign a Gaussian prior to s(k), we can solve Problem 5.3.1 again via

the Ordinary Least Square Method (OLS); we refer to this recovery method as Probabilistic

Ordinary Least Square Method (POLS). In this case, we just have to rewrite Eq. (5.16) as

ŝ(k) = (Φ(k)U(k))†(y(k) −Φ(k)x(k)) . (5.18)

6This is the standard way of dealing with such problems, which appeals to the central limit theorem of

probability theory [71].
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In this equation, the dimension of y(k) is less than the dimension of s(k), i.e., L < N . There-

fore, Eq. (5.18) is the solution of an ill-posed system, which theoretically allows an infinite

number of solutions. Nevertheless, a multivariate Gaussian prior on s(k) with zero mean

and independent components7, i.e., p(s(k)) ∼ N (0,Σs)whereΣs is a diagonal matrix, helps

us to choose, among all the possible solutions, the one estimated as8

ŝ(k) = argmax
s(k)

p(s(k)|y(k)) = argmax
s(k)

p(y(k)|s(k))p(s(k))

= argmax
s(k)

δ(y(k),Φ(k)U(k)s(k))
1

(2π)
L
2 det(Σs)

L
2

exp

{
−‖Σss

(k)‖22
2

}

= argmin
s(k)

‖Σss
(k)‖22, given that y(k) = Φ(k)U(k)s(k) (5.19)

that corresponds to the solution in Eq. (5.18), namely the minimum of ‖s(k)‖ℓ2 given that

y(k) = Φ(k)U(k)s(k).

5.3.3 Implementation of Signal Recovery Methods

Each of the interpolation techniques explained above can be implemented at the DCP of

our monitoring framework, specifically in the recovery block shown in Fig. 5.1. As previ-

ously remarked, at each time sample k, we can think of x(k) as an N−dimensional signal

whose elements depend on coordinates in d dimensions. If we measure x(k) in L different

coordinate points, collecting the measurement set {y(k)1 , . . . , y
(k)
L }, for the recovery stage we

can proceed as follows, using the Deterministic approach:

1) Biharmonic Spline (Spline)

a) compute α1, . . . , αM solving y
(k)
j (c(j)) =

∑M
l=1 αlφd(c

(j) − c(l)) ∀ j ∈ 1, . . . ,M ;

b) estimate x
(k)
i as x̂

(k)
i (c(i)) =

∑M
j=1 αjφd(c

(i) − c(j)) ∀ i ∈ 1, . . . , N .

Alternatively, if we assume to know theK1 previous samples T (k)
K1

= {x(k−K1), . . . ,x(k−1)}
or the approximate training set T̂ (k)

K1
= {x̂(k−K1), . . . , x̂(k−1)}, with K1 ≤ N , we can abstract

from the knowledge of the physical coordinates associated to x(k). In this case we need

7Note that s(k) can be assumed to have independent components if obtained through (5.14). If s(k) is the

vector of principal components of T
(k)
K1

, these are known to be uncorrelated and therefore, under the assumption

of gaussianity and zero mean, they are also independent.
8We recall here that, in the formulas (5.19), δ(·) is a function defined as: δ(x,y) = 1 if x = y, δ(x,y) = 0

otherwise.
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to compute the PCA matrix U(k) from T (k)
K1

(or T̂ (k)
K1

). Then, knowing the matrix U(k) and

knowing also the sampled signal y(k) = Φ(k)x(k), we can use a Deterministic approach and

setM = K1 − 1. At each time k we can estimate x(k) according to:

2) Deterministic Ordinary Least Square (DOLS)

a) estimate s(k) as ŝ(k) = (Φ(k)U
(k)
K1−1)

†(y(k) −Φ(k)x(k)) ;

b) estimate x(k) as x̂(k) = x(k) +U
(k)
K1−1ŝ

(k) .

If we adopt a probabilistic approach, we can implement one of the two methods described,

depending on the statistical distribution that we assume for the principal components of

signal x(k):

3) Probabilistic Ordinary Least Square (POLS)

a) estimate s(k) as ŝ(k) = (Φ(k)U(k))†(y(k) −Φ(k)x(k)) ;

b) estimate x(k) as x̂(k) = x(k) +U(k)ŝ(k) .

4) Joint CS and PCA (CS-PCA)

a) estimate s(k) as ŝ(k) = argmin
s(k)

‖s(k)‖ℓ1 , given that y(k) = Φ(k)U(k)s(k) ;

b) estimate x(k) as x̂(k) = x(k) +U(k)ŝ(k) .

The performance of the four different reconstruction techniques is compared in Sec-

tion 5.5, in the case of a perfect knowledge of the training set T (k)
K1

, and in the case of an

approximate training set T̂ (k)
K1

.

5.4 WSN-Control Architecture

In this section, we briefly show how to integrate the SCoRe1 technique into an existing

WSN architecture for monitoring environmental signals. Up to now, we have described

the simple protocol executed at the sensor nodes, i.e., RS, and the recovery algorithms with

the feedback control, executed at the Data Collection Point (DCP), that represents the sink

to which all the nodes transmit their data and the application server connected to it, in

which all the recovery calculations are made. In this section, we see that the DCP entity is

physically divided into two separate components, i.e., the WSN gateway that collects the
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Figure 5.2. WSN-Control architecture.

data sent by the sensors and the application server. These two components are connected

through the Internet. A diagram of the WSN-Control architecture is given in Fig. 5.2. The

WSN (possibly composed of separate sensor islands) is accessed through a number of WSN

gateways. Sensor nodes adopt a protocol stack based on 6LoWPAN and run a suitable

routing protocol to send the gathered data to the gateways. For a more detailed description

of the protocols running in the WSN the reader is referred to [72].

The core of the WSN-Control system is the Application Server (see Fig. 5.2). This server

is a Web application composed of the following blocks: 1) Visualization, 2) Communication

and 3) Signal Reconstruction and Feedback Control.

1) Visualization: this block creates a 3D representation of the gathered data, and is also

responsible for the user interface and for the related Applet and Java Server Page (JSP)

technology [73].

2) Communication: this block is responsible for the reception of data from the WSN and

for the transmission of data gathering requests to the sensor nodes. In addition, along

with these requests, it also broadcasts feedback messages that set the transmission be-

havior of all the sensor nodes for the next data collection round.

3) Signal Reconstruction and Feedback Control: in this block the learning mechanism, the

reconstruction technique and the feedback control are implemented. At each data col-

lection round, the entireWSN signal is reconstructed from the receivedmeasurements.
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Figure 5.3. Inter-node correlation for different signals gathered from the 5 different WSNs considered.

Feedback messages are generated and sent to the sensor nodes based on the time sam-

ple according to the SCoRe1 technique so as to adapt the transmission behavior for the

following data collection rounds. In particular, our aim is to minimize the number of

nodes that send their measurements at each data collection round, while keeping the

reconstruction error below a certain threshold.

The Web application is connected to a database that maintains the WSN measurements col-

lected at previous data collection rounds. These are instrumental to the estimation of the

signal statistics that, in turn, are used to obtain the incoherent transformation basis needed

by CS, as detailed in Chapter 4.

5.5 Performance Analysis

In this section we analyze the performance of the proposed monitoring framework com-

paring the data collection techniques of Section 5.2 and analyzing the performance of our

framework when used in conjunction with the signal recovery methods of Section 5.3. We

analyze the statistics of all the signals gathered from the WSN deployments described in

Section 4.3 and we choose a relevant subset of them for our performance analysis9.

9The proposed framework is flexible and does not depend on a specific network topology. Its only require-

ment is that the sensor nodes must be ordered according to some criterion, e.g., using their IDs.
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Figure 5.4. Intra-node correlation for the signals chosen among all the signals considered in Fig. 5.3.

Signals: We considered five different types of WSNs, each one of them sensing different

types of signals for a total of 24 signals. For each signal x(k) ∈ RN , with k = 1, . . . ,K,

we calculate the average inter-node correlation ρs(x
(k)), defined as the average correlation

between the one dimensional signals sensed by node i, xi(k), and the one sensed by node j,

xj(k), for all the couples of nodes i, j:

ρs(x
(k)) =

1

K

K∑

k=1

N∑

i=1

∑

j>i

(
x
(k)
i − E[xi]

)(
x
(k)
j − E[xj ]

)

((N2 −N)/2)σxi
σxj

. (5.20)

ρs(x
(k)) gives us a measure of the expected sparsity of the principal components s(k) ∈ RN .

If we calculate the principal components of a signal with maximum inter-node correlation,

i.e., ρs(x
(k)) = 1, we will obtain a signal s(k) with only the first component different from

zero. On the contrary, if we calculate the principal components of a signal with minimum

inter-node correlation ρs = 0, we will obtain a signal s(k) with all components that are

significant. In Fig. 5.3 we depict the inter-node correlation for all the signals considered and

we divide them according to the signal type, i.e., Temperature, Humidity, Solar Radiation,

indoor Luminosity, Wind and Voltage. We notice that the signals Temperature, Humidity

and Solar Radiation have on average a high inter-node correlation (ρs(x
(k)) ≃ 0.7), while

indoor Luminosity, Wind and Voltage have a lower inter node correlation (ρs(x
(k)) ≃ 0.25).

To further analyze these signals, we consider the intra-node correlation ρm(x(k)), that is the
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correlation of the one dimensional signal x
(k)
i sensed by a single node with the same signal

shifted by m time samples, i.e., x
(k+m)
i , averaged for all the N entries of x(k) ∈ RN . It is

defined as:

ρm(x(k)) =
1

N

N∑

i=1

∑K
k=1

(
x
(k)
i − E[xi]

)(
x
(k+m)
i − E[xi]

)

Kσ2
xi

. (5.21)

For representation purposes, we choose one signal for each type, within the 24 signals de-

picted in Fig. 5.3, and we represent for each chosen signal the temporal correlation ρm(x(k)),

for m = 1, . . . , 8 in Fig. 5.4. We notice that Temperature, Humidity and Solar Radiation

signals keep a high intra-node correlation even for m = 8 (ρ8(x
(k)) ≥ 0.85), while for Lumi-

nosity and Wind signals the temporal correlation quickly decreases (ρ8(x
(k)) ≤ 0.65). The

voltage signal has different characteristics, since even if its inter-node and intra-node corre-

lations are similar to the ones of Luminosity and Wind, it is a nearly constant signal, so it

should be treated accordingly.

Given this signal characterization, we choose a subset of the signals that is representa-

tive for the different statistical characteristics of each one of the signals analyzed. We use

the signals gathered from theWSN testbed deployed on the ground floor of the Department

of Information Engineering at the University of Padova using N = 68 TmoteSky wireless

nodes equipped with IEEE 802.15.4 compliant radio transceivers. We have chosen these sig-

nals since they are representative of the whole signal set we considered, and since we can set

for how long we should gather a given signal, in order to have meaningful performance of

the compression/recovery scheme. In particular, we consider 5 signals divided accordingly

to their statistical characteristics:

S1) two signals with high temporal and spatial correlation, i.e., the ambient temperature

[°C] and the ambient humidity [%];

S2) two signals with lower correlation, i.e., the photo sensitivity [A/W] in the two ranges

320− 730 nm and 320− 1100 nm;

S3) the battery level [V] of the sensor nodes during the signal collection campaign.

The signals are gathered from theWSN testbed at the University of Padova. The results have

been calculated through off-line simulation of the techniques, in particular they have been

obtained from 100 independent simulation runs and by averaging the performance over all

signals in each class.
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Figure 5.5. Performance comparison of three iterative monitoring schemes when perfect knowledge of the

past is exploited, for signals S1, temperature and humidity.

The rest of the section is structured as follows: in Section 5.5.1 we analyze the perfor-

mance of the data collection and control techniques, whereas in Section 5.5.2 we investigate

the performance of the signal recovery methods.

5.5.1 Performance of Data Collection techniques

In the followingwe test the performance of the framework using the three DC techniques

described in Section 5.2: 2 Phases, Fixed ptx and SCoRe1. These are used in all experiments

in conjunction with the joint CS and PCA (CS-PCA) recovery method of Section 5.3, so as to

check the impact on the performance of the chosen data collection scheme. Similar results

can be obtained for any of the other recovery methods presented in this chapter.

The x-axis of Figs. 5.5–5.15 represents the normalized cost expressed as the average frac-

tion of packet transmissions in the network per time sample, formally:

Cost =
1

K

K∑

k=1

∑N
n=1DnIn(k)∑N

n=1Dn

, (5.22)

whereK is the number of considered time instants (i.e., the overall duration of the data col-

lection), N is the total number of nodes in the WSN, Dn is the distance in terms of number

of hops from node n to the DCP and In(k) is an indicator function, with In(k) = 1 if node n
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Figure 5.6. Performance comparison of three iterative monitoring schemes when perfect knowledge of the

past is exploited, for signals S2, light.

transmits and In(k) = 0 if node n remains silent at time k. Note that a normalized cost equal

to 1 corresponds to the case where all nodes transmit during all time instants 1, 2, . . . ,K,

which accounts for the maximum energy consumption for the network. Conversely, the nor-

malized cost is zero when all nodes remain silent during all time instants. The y-axis shows

the signal reconstruction error at the end of the recovery process, calculated accordingly

to (5.7). In order to vary the cost (x-axis) for the three techniques we modify the following

parameters:

1) for 2 Phases and Fixed ptx we vary the probability of transmission ptx that is set at the

beginning of the data gathering in the range ]0, 1[ ;

2) for SCoRe1, we vary the error threshold τ used in (5.9) in the range ]0, 1[ setting the

feedback control parameters as C1 = 1.3, C2 = 3 and pmin = 0.05 .

In the figures, the training set length isK1 = 2 and the the monitoring phase length is set to

K2 = 4, as suggested by the performance analysis in the Appendix A.2. Moreover, the three

DC techniques are compared for the following cases:

A) perfect knowledge of the past, i.e., the training set is TK = {x(k−K), . . . ,x(k−1)} ;

B) adaptive knowledge of the past, i.e., the training set is T̂K = {x̂(k−K), . . . , x̂(k−1)} for
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Figure 5.7. Performance comparison of three iterative monitoring schemes when perfect knowledge of the

past is exploited, for signals S1–S3.

Fixed ptx and SCoRe1, while for 2 Phases the training set consists of the data collected

during the last training phase.

Performance for case A: the performance for this case is shown in Figs. 5.5, 5.6 and 5.7.

From Fig. 5.5 we note that the three techniques all perform very well in case of a slowly

varying signal (S1). However, when the signal varies in an unpredictable way (S2), see

Fig. 5.6, SCoRe1 outperforms the other two techniques. We found that for signal S3 the error

is close to zero for all techniques since in this case the signal is nearly constant; thus, the

performance for this case is not shown.

In Fig. 5.7 we test the performance of the three data collection techniques in the case of

a signal whose statistics change over time, e.g., from high correlation to low correlation due

to some unpredictable events. In particular, we assume that this signal assume, over time,

the characteristics of all the three signals (S1–S3) in series. In this case, SCoRe1 significantly

outperforms the other two techniques because it is able to iteratively adapt the transmission

rate to the different statistical characteristics of the signals, e.g., slow varying or changing

in an unpredictable way. This is a very important aspect of SCoRe1 since, even if the signal

characteristics remain unchanged during the monitoring, often we do not know these sta-

tistical characteristics of the signal before the compression/recovery mechanism starts and

we should fix the parameters of the technique a priori. For this reason, it is very useful to
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Figure 5.8. Performance comparison of three iterative monitoring schemes, with online estimation of the

past, for signals S1, temperature and humidity.

have a technique able to perform well even if its parameters are fixed without knowing the

exact statistical characteristics of the signal.

Performance for case B: the performance for case B is shown in Figs. 5.8, 5.9 and 5.10. All

techniques perform slightly worse with respect to case A. In particular, Fixed ptx does not

adapt its transmission probability as a function of the reconstruction error that, in turn,

gets very large for small values of ptx. As in the previous case, if we look at the average

performance over all signals, see Fig. 5.10, SCoRe1 significantly outperforms the other two

techniques.

Finally, comparing Fig. 5.7 with Fig. 5.10 we see that the reconstruction performance of

Fixed ptx is significantly impacted by inaccuracies in the estimation of the signal statistics,

whereas in 2 Phases and SCoRe1 these inaccuracies are counter balanced by the training

phase in 2 Phases (with a significant increase in the cost) and by the proposed feedback

control loop in SCoRe1 (with a smaller increase in the cost).

5.5.2 Performance of the Recovery Techniques

In the following, we show performance curves for the different recovery techniques illus-

trated in Section 5.3 and used in conjunctionwith the DC technique Fixed ptx, chosen because

it highlights more accurately the performance differences between the recovery techniques
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Figure 5.9. Performance comparison of three iterative monitoring schemes, with online estimation of the

past, for signals S2, light.

analyzed. The considered recovery techniques are: Biharmonic Spline (Spline), Determin-

istic Ordinary Least Square (DOLS), Probabilistic Ordinary Least Square (POLS) and Joint

CS and PCA (CS-PCA). Note that DOLS cannot be considered as an effective solution since

it is affected by a numerical stability problem. Nevertheless, we considered it in view of its

simplicity and low complexity. We will further come back to this issue in the following.

We compare the recovery techniques considering a fixed transmission probability in the

range [0.1, 1] with steps of 0.05 for the Fixed ptx data collection scheme. Moreover, we con-

sider the two cases A) and B) (with or without a perfect knowledge of the past) as in Section

5.5.1.

Performance for case A: Figs. 5.11 and 5.12 show the comparison of the recovery techniques

performance for signals S1 and S2, respectively. From these figures, we see that CS-PCA

and POLS are the best recovery techniques to use in conjunction with our monitoring frame-

work. Both Gaussian and Laplacian seem to be a good choice as a prior for s. Also DOLS,

despite its simplicity and low complexity, works well under the assumption that the training

set TK is perfectly known. As previously mentioned, however, this approach is generally

ill-conditioned and in some cases results in out-of-scale outcomes (disregarded in Figs. 5.11

and 5.12) and is also expected not to be robust against noise (i.e., in our case the error due

to imperfect knowledge of the past when T̂K is considered as the training set, see Figs. 5.13
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Figure 5.10. Performance comparison of three iterative monitoring schemes, with online estimation of the

past, for signals S1–S3.

and 5.14). Note also that CS-PCA and POLS can be effective solutions in conjunction with

our iterative monitoring framework in the presence of highly variable signals, see Fig. 5.12,

signal S2.

Performance for case B: In Figs. 5.13 and 5.14, instead, we can see that an imperfect knowl-

edge of the training set severely impacts the recovery performance of Spline and DOLS.

This is however not as dramatic for CS-PCA and POLS. It is also interesting to note that in

this second case (i.e., imperfect knowledge of TK , substituted by T̂K), POLS outperforms

CS-PCA. In fact, the introduction of a further error in the model, i.e., an uncertainty on the

training set, makes the Gaussian prior for s more effective than the Laplacian one, in ac-

cordance to the central limit theorem (e.g., see [71]). Nevertheless, both POLS and CS-PCA

remain valid solutions for a monitoring application framework, since the performance loss

from the ideal case A to the realistic one B is sufficiently small. Spline allows to reach good

performance only above a transmission probability of 0.8. Furthermore, its use in conjunc-

tion with our iterative method leads to huge errors due to: (i) the tendency of our protocol

to systematically avoid transmissions when possible; (ii) the approximation of the error es-

timate; (iii) the variability of the signal and (iv) the fact that Spline does not exploit any

previous knowledge on the statistics of the signal to recover.

Finally, in Fig. 5.15 we report similar performance curves using the signals gathered from
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Figure 5.11. Performance comparison of our iterative monitoring scheme used in conjunction with the

recovery techniques, when a perfect knowledge of the past is exploited and for signals S1, temperature and

humidity.

the EPFL WSN deployment LUCE, see [50]. The results shown in these figures are obtained

averaging the recovery performance achieved over 100 runs for signals S1, i.e., temperature

and humidity, and assuming imperfect knowledge of the signal statistics. The WSN deploy-

ment LUCE consists of more than 80 nodes and the performance in Fig. 5.15 shows that all

the above observations remain valid in this case as well. This provides evidence that our

proposed monitoring framework, used with POLS and CS-PCA, is an effective solution for

monitoring applications for WSNs in different scenarios.

5.6 Conclusion

In this chapter we studied joint sampling, recovery and protocol adaptation for dis-

tributed signals monitored by a WSN. We proposed a novel technique, called SCoRe1, to

perform these tasks based on PCA to learn the data statistics, CS to recover the signal

through convex optimization and a feedback controller that tries to bound the error. Us-

ing data measured in two different testbeds, we have shown that our technique achieves

good performance in terms of reconstruction accuracy vs network cost (i.e., number of trans-

missions required). Thanks to our approach, we showed that CS recovery can be adopted
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Figure 5.12. Performance comparison of our iterative monitoring scheme used in conjunction with the

recovery techniques, when a perfect knowledge of the past is exploited and for signals S2, light.

for networking when exploited as an interpolation technique, differently from the literature

where CS is mainly used as a method to jointly perform data acquisition and compression.

Our approach is also robust to unpredictable changes in the signal statistics, and this makes

it very appealing for a wide range of applications that require the approximation of a large

and distributed dataset, with a certain spatial or temporal correlation.
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Figure 5.13. Performance comparison of our iterative monitoring scheme used in conjunction with the

recovery techniques, with online estimation of the past, for signals S1, temperature and humidity.
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Figure 5.14. Performance comparison of our iterative monitoring scheme used in conjunction with the

recovery techniques, with online estimation of the past, for signals S2, light.
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Figure 5.15. Performance comparison of our iterative monitoring scheme used in conjunction with the

recovery techniques,with online estimation of the past, for signals S1, temperature and humidity. These

performance curves are obtained with signals gathered from the EPFL WSN deployment LUCE, see [50].





Chapter6

Cognitive Network Control using

Bayesian Networks

6.1 Introduction

Cognitive networking [74, 75] is an emerging paradigm that deals with how wireless

systems learn relationships among network parameters, network events, and observed net-

work performance, plan and make decisions in order to achieve local, end-to-end, and

network-wide performance as well as resource management goals. In cognitive networks,

all nodes track the spatial, temporal, and spectral dynamics of their own behavior, as well

as of the environment. The information gathered is used to learn, plan and act in a way that

meets network or application Quality of Service (QoS) requirements.

One of the key requirements of a cognitive network is to learn the relationships among

network protocol parameters spanning the entire stack in relation with the operating net-

work environment. In this chapter 1 we use a probabilistic graphical modeling approach,

Bayesian Networks (BNs), in order to create a representation of the dependence relation-

ships between significant network parameters in multi-hop wireless network environments.

1The material presented in this chapter has been published in:

[C1] G. Quer, H. Meenakshisundaram, B.R. Tamma, B.S. Manoj, R. Rao and M. Zorzi, “Cognitive Network

Inference through Bayesian Network Analysis”, IEEE Globecom 2010, Miami, FL, Dec. 2010.

[C3] G. Quer, H. Meenakshisundaram, B.R. Tamma, B.S. Manoj, R. Rao and M. Zorzi, “Using Bayesian Net-

works for Cognitive Control of Multi-hop Wireless Networks”, MILCOM 2010, San Jose, CA, Nov. 2010.
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As an example, tactical communication environments are dynamic and very challenging,

and there is no predefined protocol configuration that optimally operates in these condi-

tions. In these scenarios, learning the optimal parameter set for the network protocol stack,

by using the BN structure constructed from historical network behavior, can help efficiently

meet QoS requirements.

Cognitive networking is different from cognitive radios or cognitive radio networking

in that the latter two typically apply cognition only at the PHY layer to dynamically detect

and use spectrum holes, and focus strictly on dynamic spectrum access. We notice that there

are still some open problems to solve before cognition can be applied to the entire protocol

stack. First, the probabilistic relationships among the various parameters that span across

the entire protocol stack are not clearly understood. Second, the tools that can be used to

determine such complex relationships are not well known. The traditional layered protocol

stack has helped establish an order and structure in the role of various protocols and hence

has greatly contributed to the faster progress of networking systems. The popular alter-

native to layered protocol stack operation, cross layer networking, has been cautioned by

recent results [76,77] which show that cross-layer research can be less useful if not designed

and implemented within the larger scope of abstraction of network systems in a way similar

to the time proven relation between architecture and protocols. Unfortunately, there exist no

comprehensive approaches, as observed in [77], that can be used to study the crucial cross-

layer behavior across all the layers. Therefore, our cognitive networking architecture does

not adopt a fully cross-layer approach, but keeps the layered structure of the network intact.

At the same time, however, it uses some cross-layer principles, as the core of the cognitive ar-

chitecture is the BN that represents the relationships among network parameters belonging

to different layers. Moreover, the approach is designed to optimize specific performance at

the transport layer using the information coming from other layers, in a cross-layer fashion.

In this chapter, we propose a cognitive network node architecture that can be integrated

with the existing layered protocol stack. Our work partially addresses the requirement of

modeling the layered protocol stack using new and hitherto unused tools from artificial in-

telligence. Specifically, we consider the use of BNs, a graphical representation of statistical

relationships among random variables, widely used in machine learning [1]. An introduc-

tory description about BNs and the details about the learning techniques used to infer the

BN from the data observation are presented in Section 2.2.

The use of BN for modeling the protocol stack provides us with a unique tool, not only to
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learn the influence of certain parameters on others, but also to apply the inferred knowledge

and achieve a certain desired level of performance at the higher layers. For example, our

modeling enables a node to determine which combinations of lower layer parameters are

useful for achieving a certain higher layer throughput performance. The main contributions

of this work are:

1. the integration of BN into our Cognitive Network framework;

2. the application of BN to study network parameters in realistic Wireless LAN (WLAN)

scenarios (single-hop and multi-hop);

3. a performance analysis of the BN inference engine’s accuracy in the single-hop sce-

nario to infer the value of TCP throughput;

4. a performance analysis in a realistic multi-hop wireless network scenario of the BN

inference engine predicting the TCP’s congestion status;

The rest of this chapter is organized as follows: Section 6.2 discusses our architecture

for cognitive networking in detail, Section 6.3 presents the application of BN learning to a

WLAN single-hop scenario and shows the performance of the inference engine to predict

TCP throughput. Section 6.4 presents the application of BN learning to multi-hop network-

ing scenarios and shows the performance of the inference engine to predict TCP congestion

status. We conclude the chapter in Section 6.5.

6.2 Cognitive Network Architecture

Here we present the network architecture in which we want to integrate the BN tools.

The network parameters within a stack or within a particular protocol can be classified into

two basic categories: observable parameters and controllable parameters. The observable

parameters provide important information about the characteristics or behavior of the pro-

tocol and the status of the network system. For example, in the MAC layer, the average

packet retransmission count provides information about the packet losses and retransmis-

sions; however, it cannot be directly controlled, although we can set the maximum retrans-

mission limit. Examples of controllable parameters include the TCP Congestion Window

(T.CW), with its minimum and maximum levels allowed. Note that the controllable param-

eters in a given layer may affect the observable parameters in some other layer.



102 Chapter 6. Cognitive Network Control using Bayesian Networks

Figure 6.1. The Cognitive Network Architecture.

Our approach uses a fully distributed solution where software modules called Cognitive

Agents (CA) are plugged into each layer as well as protocols of importance, so that we have

access to the protocol parameters in each layer. Communication among the CAs is coordi-

nated through a backplane called CogPlane [75]. Each CA is responsible for periodically

sampling a set of protocol parameters and repositorizing the sampled data to a Cognitive

Repository. The CogPlane contains a Cognitive Execution Function (CEF), that serves as the

brain of the cognitive network protocol stack and executes the optimization of protocols

within the stack. We decompose the cognitive action into the four phases of the “Cognition

Cycle” [4]: 1) Observe, 2) Learn, 3) Plan and Decide, and 4) Act.

Fig. 6.1 shows the architecture of the cognitive network protocol stack that (in the Ob-

serve phase) collects parametric information from each layer and (in the Learn phase) learns

the effect of controllable parameters on observable parameters and (in the Plan and Decide

phase) determines the values to be assigned to various controllable parameters in order to

meet the performance requirements imposed by the application layer, and finally (in the Act

phase) reconfigures the network elements.
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The Observe phase includes in-stack and out-of-stack parameter observation. The ob-

serve action, within the protocol stack, is done by periodically sampling the observable and

controllable protocol parameters across all layers. For in-stack parameter observation, the

CAs will be designed to periodically sample the state of the network parameters. The main

out-of-stack parameter is the wireless traffic information which is collected by the CA in the

physical layer.

The Cognitive Execution Function (CEF) is the brain of the cognitive network node

where the optimization decisions for protocol within the stack are made. CEF realizes the

Learn and the Plan and Decide phases of the cognition cycle. The Learn phase consists of

the process of building the BN structural relationship between the observable and control-

lable network parameters within the network protocols, network layers, and environment

parameters such as spectrum, location, and time. Our approach is to first identify a set of

important parameters from each layer of the protocol stack or from representative protocols

in each layer. Once the temporal behavior data of such parameters is collected in a given

spatial domain, the challenge is to derive critical causality relationships between parame-

ters. We use the above discussed BN model for deriving the critical causality relationship

between parameters. The BN learning model has been presented in Section 2.2, and in this

chapter it is applied to learn the relationships among some in-stack network parameters for

single-hop networks in Section 6.3 and for multi-hop networks in Section 6.4.

The Plan and Decide phase of the system focuses on decomposing the network or user

performance objectives into real actionable information within the controllable parameter

set of the entire protocol stack. The spatio-temporal-spectral characteristics derived from

historical information, in the form of the probabilistic structure in the graphical models, will

provide significant knowledge for this phase. The Plan and Decide phase would translate

abstract objectives, e.g., minimum throughput required or maximum end-to-end delay that

can be tolerated by the application layer protocol, into the real controllable network param-

eters, e.g., combinations of multi-layer protocol parameter values. A key role in this phase

is the prediction of the values of the network parameters of interest given the observations,

in order to choose the appropriate actions to perform in the network.

Finally, in the Act phase the decision is effected. Compared to the other phases, this

phase is far less complex. For example, in this phase, the CEF sends instructions to be

executed at all or selected layers or protocols in the form of identified controllable param-

eters and their suggested values. As an example, the initial congestion window and slow
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start threshold of TCP can be instructed to a new node based on the network environment’s

spatio-temporal characteristics [75]. The process of Act may be carried out at different scales

on different devices. For example, a client node in a Wireless LAN uses this framework to

observe local node parameters and to optimize certain flows of that node, whereas a wire-

less AP can use LANwide parameters to help optimize the network for certain high priority

client nodes.

In conclusion, a cognitive network’s protocol stack has a Cognitive Agent (CA) at each

layer. During the Observation phase, these agents collect traces of a variety of network pa-

rameters. This information is then propagated to the Cognitive Repository. The Learning

phase begins once sufficient data has been collected in the repository. In this phase, the

learning module of the Cognitive Controller uses the repository data to learn both the struc-

ture and parameters of a BN representing the relationships between the various network

parameters. The learned BN and its parameters are passed to the Inference Module in the

Decision & Inference phase. This module infers the values of certain controllable parameters

required to achieve target values of some other parameters. The Decision Module commu-

nicates the inferred values of these controllable parameters to the CA of the appropriate

network layer.

6.3 Single-Hop networks: Learning a Bayesian model for Cogni-

tive Networks

In this section, we look at how the BN Structure Learning (SL) and Parameter Learning

(PL) algorithms, described in Section 2.2.2 and in Section 2.2.3, respectively, are used in the

learning phase to infer the probabilistic relations between the MAC and TCP parameters of

the single-hop network considered. While we focus on the relationship between TCP and

MAC as an example in this section, our strategy can be generalized for the entire protocol

stack.

6.3.1 Network Scenario

We analyze a scenario with up to 40 active users that produce 20 independent TCP flows

within the WLAN and communicate through one Cognitive Access Point (CogAP). The Co-

gAP is responsible for learning a suitable Bayesian Network (BN) based on the data col-
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lected at each active node and for taking consequent decisions to optimize the traffic in the

network. The 20 TCP flows are simulated using the ns-3 discrete event network simula-

tor [78], augmented with hooks that collect the values of selected TCP andMAC parameters

at regular sampling intervals for each flow. In particular, the TCP parameters collected are

the following: x1 is the congestion window value (T.CW), i.e., the total amount of data

[bytes] that can remain unacknowledged at any time; x2 is the congestion window status

(T.CWS), which can take one of three values based on the TCP algorithm: linear increasing,

exponentially increasing or exponentially decreasing; x3 is the Round Trip Time (T.RTT),

i.e., the last value registered in the sampling interval of the time between when a packet is

sent and when the corresponding acknowledgement is received; x4 is the TCP throughput

(T.THP), i.e., the total amount of unique data [bytes] acknowledged in a sampling interval.

The selected MAC parameters are the following: x5 is the Contention Window (M.CTW),

i.e., the maximum number of slots the node will wait before transmitting a packet at the

MAC level, according to a random back off interval between zero and CW; x6 is the number

of MAC transmissions (M.TX), i.e., the total number of original MAC packets transmitted

in the sampling interval; x7 is the number of MAC retransmissions (M.RTX), i.e., the total

number of MAC retransmissions in the sampling interval. Among the parameters described

above, T.CWS, T.THP, M.CTW, M.TX, and M.RTX have a finite number of outcomes, less

than or equal to nq = 30. Also the remaining two parameters, T.CW and T.RTT, have been

quantized to nq levels, in order to apply the structure and parameter learning algorithms

for multinomial variables, since they are computationally more efficient and require less

training data. These parameters have been quantized in nq levels chosen according to their

estimated nq−quantiles2. We perform the learning methods in two datasets, namely D1
N,M

and D2
N,M , that differ by the sampling intervals in which we register the network parame-

ters values, ∆T1 = 100 ms and ∆T2 = 1000 ms, respectively. The number of samples is of

the order of N ≃ 5× 104 samples and the number of parameters isM = 7 in both datasets.

6.3.2 Designing the Bayesian Network from the data

The SL algorithm, described in Section 2.2.2, is performed by a score based method im-

plemented in Matlab and available in [80]. This phase is the most computationally demand-

2Since it is unrealistic to introduce a complex non-uniform quantizer in each node, we have chosen this

quantizer that performs better than the uniform one in the case of non uniform realistic variables, as suggested

by intuition looking at the cdf of the variables, and as formally explained in [79].
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Figure 6.2. BNs learned (a) from the dataset D1

N,M with sampling time ∆T1 = 100 ms and (b) from the

dataset D2

N,M with∆T2 = 1000 ms.

ing, as forM = 7 parameters it requires to discriminate from a set of about 1.1× 109 DAGs.

We have used three different search procedures, namely 1) Hill Climbing (HC), 2) a Markov

Chain Monte Carlo method (MCMC) and 3) a simple heuristic. The first two are classi-

cal methods described in [81] and implemented in [80]. The simple heuristic we propose

in this section consists in dividing the net into two subnets, one for the MAC parameters

(MMAC = 3) and one for the TCP parameters (MTCP = 4), and finding the best structure

for each one of them, separately scoring all the possible DAGs, that for each subnet are less

than 103. Then these two separate subnets form the initial structure given as input to the

HC algorithm. Each search procedure gives a DAG as a result and we choose among these

three DAGs the one with the highest BIC score in Eq. (2.27). From datasetD1
N,M we obtained

the DAG depicted in Fig. 6.2-(a) that represents the static connection between the parame-

ters sampled at intervals of ∆T1 = 100 ms. From dataset D2
N,M instead we obtain the DAG

depicted in Fig. 6.2-(b), that is slightly different from the previous one. The reasons for this

difference are that when a longer sampling period is used, the data shows that there is a

direct probabilistic relation between the TCP throughput (T.THP) and the number of MAC

retransmissions (M.RTX), while the MAC contention window value (M.CTW) becomes in-

dependent of the other parameters. In the graph the former translates into the appearance

of a direct edge between M.RTX and T.THP and the latter translates into the disappearance

of the edge connecting M.CTW with M.RTX. All the other differences in the graph can be

explained similarly.



6.3. Single-Hop networks: Learning a Bayesian model for Cognitive Networks 107

60 65 70 75 80 85 90 95 100
20

30

40

50

60

70

80

90

100

110

120

Samples in D
2

N,M

T
h
ro

u
g
p
u
t 
[k

b
y
te

s
]

 

 

Measured T.THP

Estimated T.THP

Figure 6.3. Measured value and estimated value of T.THP (with evidence Xe = {all}) for 40 consecutive
samples in D2

N,M .

6.3.3 Learning the Inference Engine

The Plan and Decide phase of our cognitive network is implemented using a Bayesian

inference engine, that is able to predict the value of certain network parameters based on the

observation of some other parameters. The inference engine is designed using the PL algo-

rithm described in Section 2.2.3, that defines quantitatively the probability relations among

the parameters based on the given training set. The estimate of an unobserved parameter xi

is the expectation of such parameter based on the probability mass function (pmf) learned

using Eq. (2.28), where the probability is conditioned on the set of observed parameters, i.e.,

the evidence Xe. The estimated value for xi at time k becomes:

x̂
(k)
i = E

[
x
(k)
i |Xe

]
. (6.1)

6.3.4 Performance Evaluation of the Inference Engine

The Bayesian inference engine exploits the BN structure to infer the expected values of

certain important parameters based on the evidence. We apply the inference engine to the

two different DAGs that connect the network parameters in the cases of sampling interval

∆T1 = 100ms and∆T2 = 1000ms, depicted in Fig. 6.2. Nowwe use such structures to infer

the value of the TCP throughput (T.THP) based on some evidence, i.e., the measured values
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Figure 6.4. Performance of the T.THP inference engine for ∆T1 = 100 ms.

of a subset, possibly empty, of the network parameters, Xe. In Fig. 6.3 we show the mea-

sured and the estimated T.THP for 40 consecutive samples, with sampling time ∆T2, in the

case where we have as evidence all the other network parameters. In order to measure the

accuracy of the T.THP estimate, we define the normalized Root Mean Square Error (RMSE),

i.e.:

ξ =

√
∑N

k=1

(
x̂
(k)
4 − x

(k)
4

)2

√
∑N

k=1

(
x
(k)
4

)2
, (6.2)

where x
(k)
4 is the actual value of T.THP at time k and x̂

(k)
4 is the estimated value based on the

evidence in the setXe. In the simulations we used the data collected from the ns-3 simulator

mentioned in Section 6.3.1, while the inference engine is written in Matlab. In Figs. 6.4 and

6.5 we represent the performance of the inference engine for the TCP throughput estimate

for ∆T1 = 100 ms and ∆T2 = 1000 ms, respectively. In the x-axis we vary the length of the

training set for parameter learning, in logarithmic scale, and in the y-axis we represent the

normalized RMSE calculated as in Eq. (6.2). The total number of sample intervals used in

this simulation is N = 4 · 104. The curves in the graphs correspond to different evidence

subsets for the estimate. In particular, we analyze the performance of the inference engine

in these cases: 1) Xe = ∅, there is no evidence and the T.THP is estimated based on its

marginal distribution; 2) Xe = {T.RTT}, the evidence is the TCP RTT; 3) Xe = {T.CW},
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Figure 6.5. Performance of the T.THP inference engine for ∆T2 = 1000 ms.

the TCP Congestion Window; 4) Xe = {M.RTX}, the number of MAC retransmissions; 5)

Xe = {M.TX}, the number of MAC transmissions; 6) Xe = {T.RTT, T.CW, T.CWS, M.TX,

M.RTX, M.CTW}, where all the parameters but the TPC throughput are observed.

In particular in Fig. 6.4, with∆T1 = 100ms, we have a small improvement compared to

the case of no evidence when we measure the number of MAC retransmissions, while we

have a bigger improvement when measuring the number of MAC transmissions, which is

the parameter most related to TCP throughput, as expected in our scenario. It is interesting

to notice that for a training set smaller than 2 · 103 samples the inference engine performs

better with the knowledge of only M.TX than with the knowledge of all the parameters. In

order to explain this behavior, we should notice from Fig. 6.2-(a) that M.TX and T.CW sep-

arate T.THP from the rest of the network, according to the rules of d-separation. Moreover,

when the training set is too short the estimates of the values of the variables are not precise,

so that including additional variables (T.CW in this case) adds potentially inaccurate infor-

mation which negatively affects the overall throughput estimate performance. Instead, with

∆T2 = 1000 ms (see Fig. 6.5), the (now more accurate) knowledge of T.CW and T.RTT does

provide some advantages for throughput inference, even though M.TX still has a dominant

role in the considered single-hop scenario.

Observing the performance results we conclude that our inference engine helps the Plan

and Decide phase not only in predicting the behavior of certain network parameters but
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Figure 6.6. Network scenario: dumbbell topology.

also in guaranteeing quality of T.THP estimate with proper choice of the evidence. A key

application to exploit the T.THP inference engine is to adapt the controllable parameters

such as T.CW, T.CWS and M.CTW to achieve the desired T.THP.

6.4 Multi-Hop networks: Inferring Network Congestion through

a BNModel

In this section, we derive Bayesian Network (BN) structures that probabilistically con-

nect some of the significant protocol stack parameters in different multi-hop wireless net-

work scenarios. Then with the BN structure we design an engine that can be implemented

in each cognitive network node to predict in advance the congestion status of the network.

Knowingwhen congestion will arise is very useful for the efficiency of transport layer proto-

cols; however, TCP and its popular variants do not have any mechanism to predict conges-

tion in advance. Such a reactive nature of TCP leads to packet losses andwastage of precious

network resources like bandwidth and energy, which are essential for efficient communica-

tion in mobile network environments such as tactical networks. In this section, with the

help of the BN structure derived observing the network environment and the current net-

work state, we infer the congestion status of the network that will help TCP to proactively

make decisions on how to adapt the value of the congestion window.

6.4.1 Network scenarios

We considered two multi-hop network topologies, a dumbbell topology depicted in

Fig. 6.6 and a random topology, andwe conducted experiments using the ns-3 discrete event

network simulator [78]. The protocol stack in the simulator is augmented with hooks that

collect the values of selected TCP and MAC parameters at regular sampling intervals for

each flow, as in the case of single-hop scenario in Section 6.3. These hooks simulate the
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behavior of the Cognitive Agents (CAs), that are responsible for reading and collecting the

parameters’ values. In the dumbbell topology, we have two nodes on either side connected

by a string of 7 intermediate nodes. Adjacent nodes are separated by 250 m, have a trans-

mission range of 300m, and have fixed PHY data rate of 2Mbps. The Optimized Link State

Routing (OLSR) is employed as the routing protocol. We have one TCP flow (ftp file trans-

fer session from TCP sender to TCP receiver in Fig. 6.6) and one Constant Bit Rate (CBR)

flow (UDP sender to UDP receiver in Fig. 6.6), hence each flow has eight hops. The CBR

sending rate is equal to either 20 Kbps or 40 Kbps, to provide two levels of congestion to

the TCP flow, Low Congestion (LC) and High Congestion (HC), respectively. The cognitive

TCP source node samples the parameters of interest at 100 ms and 200 ms interval, respec-

tively, in two sets of experiments. This scenario is very simple but sufficient to understand

the basic relations between parameters.

In the second scenario, we have a mesh network with 40 nodes, initially arranged in an

8 × 5 pattern with 250 m between horizontally and vertically adjacent nodes and moving

randomly at a speed of 1 m/s within a square area of 2500 × 2500 m2. Each node has a

transmission range of 300 m and is set up to be either the sender or the receiver in an ftp

session over TCP. We have 20 such TCP flows that go on throughout the duration of the

experiment. We have 20 of the nodes that were also involved as either transmitter or receiver

of CBR traffic with rate 20 Kbps. The routing protocol is again OLSR and all the nodes were

set to use the Minstrel physical layer rate control algorithm [82]. One of the ftp sender nodes

was cognitive and capable of observing its network stack parameters at 100ms intervals.

6.4.2 Network parameters

In this section, we deal with MAC and TCP parameters, similarly to what has been done

in Section 6.3, and briefly reported here. Specifically, we take three parameters from the

MAC layer and four parameters from the transport layer. IEEE 802.11 and TCP are chosen as

MAC and transport protocols, respectively. The MAC parameters are the number of packets

transmitted at the MAC layer (M.TX), the value of the 802.11 contention window (M.CTW),

and the number of retransmissions at MAC layer (M.RTX). M.CTW is a controllable param-

eter and the other two are observable parameters. The TCP parameters are the congestion

window value (T.CW), the Round Trip Time (T.RTT), the instantaneous TCP throughput
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(T.THP) and the network congestion status (T.CS), that is a binary parameter, with outcome

1when a congestion is detected and 0 otherwise.

In each sampling interval k, the network parameters are obtained as follows. T.RTT(k) is

the last value registered in the sampling interval k of the time between when a packet is sent

and when the corresponding acknowledgement is received; T.THP(k) is the total amount

of unique data [bytes] acknowledged in a sampling interval k, divided by the length of the

sampling interval [s]; T.CW(k) is the value of the Congestion Windows at time k [bytes];

M.CTW(k) is the maximum number of slots the node will wait before transmitting a packet

at the MAC level, according to a random back off interval between zero and M.CTW(k);

M.TX(k) is the total number of original MAC packets transmitted in the sampling interval;

M.RTX(k) is the total number of MAC retransmissions in the sampling interval. T.CS(k) at

each time sample k is defined as:

T.CS(k) =





1 , if T.CW(k)/T.CW(k − 1) ≤ 0.6 ,

0 , if T.CW(k)/T.CW(k − 1) > 0.6 .
(6.3)

The threshold is set to 0.6 because we are mainly interested in detecting significant drops of

the congestion window. We aim to infer at time k the value of T.CS(k+n), with n = 1, . . . , 5,

using current values of all the observable parameters, so we want to predict the occurrence

of congestion to be able to act before it strongly affects the network.

All the parameters collected, except T.RTT, are multinomial, with a finite but possibly

large number of outcomes. In order to make the calculation simpler and more efficient we

quantize all the parameters to a maximum of nq = 30 levels, so it is possible to apply the

SL and PL algorithms for multinomial variables explained in Sections 2.2.2 and 2.2.2, re-

spectively, without the need for a very long training set to learn the probabilistic structure.

Indeed, a finer quantization would lead to a more accurate estimation, but at the price of

requiring a longer training set for proper learning of the probabilistic structure. Moreover,

it was not realistic to introduce a complex non-uniform quantizer, given the limited compu-

tation capacity of the CA, so we chose to quantize the parameters’ values according to their

estimated nq−quantiles, that translates in our case into better estimation performance than

uniform quantization.
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Figure 6.7. BN structure learned from the historical network dataset and chosen as representative for all

the multi-hop scenarios considered.

6.4.3 BN Structure Learning

As a first step for the Learn phase, we infer the structure of the BN using a score based

method available in the MATLAB BNT toolbox [80], with a similar procedure to the one

described in Section 6.3, exploiting the three search heuristics described in Section 6.3.2. For

each one of the network scenarios described in Section 6.4.1 we obtain a slightly different

DAG, and we choose the DAG in Fig. 6.7 as a structure for the inference in the rest of this

section, since it has a good BIC score (see Eq. (2.27)) in all the scenarios considered, even if

not optimal.

6.4.4 Congestion Inference

The prediction of T.CS, the congestion status, presents some fundamental issues that

are addressed in this section. First of all, the BN gives us the qualitative (the DAG) and

quantitative (Eq. (2.28)) probabilistic relations between the network parameters at a given

time instant. In order to predict at time k the value of T.CS(k + n), with n ≥ 1, we need to

introduce the time dimension in ourmodel. In order to do so, we put the variable T.CS(k+n)

in our BN structure in place of T.CS(k) andwe use theML estimation in Eq. (2.28) to calculate

the quantitative relations among the parameters of the new BN structure.

A second issue that arises is due to the fact that the prior for the variable T.CS(k + n)

is not uniform, but instead P [T.CW(k + n) = 0] ≫ P [T.CW(k + n) = 1], since congestion

rarely occurs. If we simply aim at minimizing the misclassification rate, the predictor would

always infer a value of T̂.CS(k + n) = 0, because this is by far the most likely outcome.

This predictor brings no information, so it is not useful. In order to solve this problem we

introduce a loss function [1], i.e., we penalize with different weights the misclassification
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Figure 6.8. Average prediction error for T.CS(k + 2) as a function of the training set length for different

evidence sets, in case (a) the value we want to infer is T.CS(k + 2) = 0 and (b) T.CS(k + 2) = 1.

when congestion occurs, L1,0, and when congestion does not occur, L0,1. In other words,

with the introduction of the loss function we aim at maximizing the probability of a certain

occurrence multiplied by the corresponding loss function weight, i.e.:

P [T.CS(k + n) = b|evidence] · Lb,1−b , (6.4)

for b ∈ {0, 1}. As we are interested in the relative values of these weights, we fix L0,1 = 1

and we vary L1,0. L1,0 = 1 corresponds to the case in which we just aim at minimizing the

overall misclassification rate.

The inference engine we propose uses the probabilities in Eq. (2.28) to maximize Eq. (6.4)

and as a result the inferred parameter given the evidence Xe is:

T̂.CS(k + n) = max
b∈{0,1}

P [T.CS(k + n) = b|Xe] · Lb,1−b . (6.5)

6.4.5 Performance analysis

In this section, we analyze the accuracy of the inference engine in predicting at time

k the value of T.CS(k + n), i.e., the presence or absence of congestion at time k + n, with

n ≥ 1. The performance of the engine is analyzed as a function of the length (in number of

samples) of the training set used to learn the relations between the parameters and to define

the inference engine with Eqs. (2.28) and (6.5). During the training set the parameters are
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Figure 6.9. Average prediction error for T.CS(k + 2) as a function of the training set length for different

values of the loss function weight L1,0, in case (a) the value we want to infer is T.CS(k + 2) = 0 and (b)

T.CS(k + 2) = 1.
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Figure 6.10. Average prediction error for T.CS(k+2) as a function of the training set length for different

network topologies (dumbbell network (DNet) and a random mobile network (RNet)), for different values

of the time sampling ∆T and congestion levels (LC: low congestion and HC: high congestion), in case (a)

the value we want to infer is T.CS(k + 2) = 0 and (b) T.CS(k + 2) = 1.
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Figure 6.11. Average prediction error for T.CS(k+n) as a function of the training set length for different

values of n, in case (a) the value we want to infer is T.CS(k + n) = 0 and (b) T.CS(k + n) = 1.

recorded and then they become the input for the inference engine. In the y-axis of the figures

we represent the average error for the inference, that is the expected value of |T.CS(k+ n)−
T̂.CS(k + n)|, where T.CS(k + n) is the actual value of T.CS at time k + n and T̂.CS(k + n)

is the inferred value. Since T.CS is a binary variable, this value can be viewed also as the

frequency of an error in the estimation. We need to analyze separately the two cases in

which the value we aim to infer is T.CS(k + n) = 0 and T.CS(k + n) = 1, since otherwise the

average error would be dominated by the error in the former case (no congestion), that is a

much more frequent event, and the predictor that minimizes the total error would simply

give T̂.CS(k + n) = 0, as discussed earlier.

In Figs. 6.8, 6.10 and 6.11, we vary the evidence set, the network scenario and the value

of n, respectively, fixing the value of the loss function to L1,0 = 7, and we analyze the perfor-

mance of the inference in case the value we aim to infer is T.CS(k + n) = 0 (no congestion),

in Fig. 6.8-(a), Fig. 6.10-(a) and Fig. 6.11-(a), and T.CS(k+ n) = 1 (congestion), in Fig. 6.8-(b),

Fig. 6.10-(b) and Fig. 6.11-(b). In Fig. 6.8 we represent the average error for the inference of

T.CS(k+ 2) in the dumbbell topology scenario of Fig. 6.6, in the case of low congestion (LC)

and we vary the evidence set. In the case of no evidence, the prediction is equal to the prior

for T.CS, so we always predict T.CS(k + 2) = 0, indeed in this case the error in Fig. 6.8-(a)

is equal to zero, while in Fig. 6.8-(b) the error is equal to one, the maximum. The only pre-

dictors that give us useful information are the ones with T.CW in the evidence set. For a
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sufficient length of the training set, they give an error of almost 0.25 and 0.35, for congestion

and no congestion (false positive), respectively.

In Fig. 6.10 we consider as evidence T.CW(k) and compare the performance for different

multi-hop network scenarios, i.e., the dumbbell topology in Fig. 6.6 with low congestion

(LC) and high congestion (HC) and with the parameters sampled every ∆T = 100 ms and

∆T = 200 ms, and the random multi-hop network with mobility described in Section 6.4.1.

The results depicted in the figure show that the inference engine performs similarly in these

cases, with a frequency of false positives between 0.3 and 0.45 and a misclassification rate

in case of congestion between 0.1 and 0.25 in all cases. Accordingly, we expect the infer-

ence engine to work well also in different kinds of topologies with different environmental

conditions.

In Figs. 6.11 we compare the performance of the inference engine for T.CS(k+n), varying

the value of n = 1, . . . , 5, where k is the time sample at which we make the prediction and

k+n is the time sample of the predicted value T̂.CS(k+n). We observe that the performance

is almost constant when the actual value to be inferred is T.CS(k + n) = 0, as shown in

Fig. 6.11-(a), while it varies significantly when T.CS(k + n) = 1. In this case, as expected,

the performance decreases with n, and for n = 5 we have a misclassification rate in case of

congestion and in the absence of congestion of about 0.5 and 0.4, respectively, a performance

close to the extreme case of the randompredictor, and this gives an approximate limit in time

to the possibility of predicting congestion with these models.

In Fig. 6.9 we vary the value of the loss function weight to determine a suitable value,

considering the evidence Xe =T.CW(k). In case L1,0 = 1 the inference engine is just pre-

dicting the most probable value, T̂.CS(k + n) = 0. A good choice for L1,0 is the one that

guarantees a false positive error significantly smaller than 0.5 and minimizes the error in

case of congestion, i.e., L1,0 = 7. Furthermore, Fig. 6.9, in case T.CS(k + n) = 0, may seem

misleading since the average error grows with longer training set lengths, but this can be ex-

plained observing that, for a short training set,N < 2 · 102, we have a large misclassification

error (> 0.7) in case of congestion, so the predicted value is almost always T̂.CS(k + n) = 0

in this case.
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6.5 Conclusions

In this work we proposed the integration of the Bayesian Network (BN) model into an

architecture for Cognitive Networking for the optimization of a wireless network scenario.

Cognitive networks learn their operating environment and the protocol parameter relation-

ships in order to achieve network-wide performance objectives. In this context, we have

shown that the use of BN is very promising for learning the probabilistic structure and de-

signing an inference engine for the chosen parameters. We have seen that for a single-hop

network the inference engine can be exploited to achieve performance goals like a minimum

guaranteed level for the TCP throughput. Moreover, as an interesting application of BNs for

multi-hop cognitive wireless networks, we studied the problem of predicting in advance the

congestion status of the network.

A typical cognitive network has the following four major phases of operation: Observe,

Learn, Plan and Decide, and Act. The Observe phase focuses on sampling the network

protocol parameters as a function of time. In our Cognitive Network approach, the Learn

phase deals with learning the structure and parameters of the BN from the observed data.

Our use of BN included the construction of a BN model where nodes represent the network

protocol parameters and the edges represent the conditional dependencies between them.

The Plan and Decide phase deals with inferring the values of necessary protocol parameters

from the BN such that the network protocol performance objectives can be achieved. The

results support the following observations: (i) BN is a useful tool for cognitive networking

to determine, represent and exploit the probabilistic dependencies and conditional indepen-

dences between protocol parameters; (ii) exploiting BN, we can design an inference engine

to accurately predict the behavior of protocol parameters; (iii) we can obtain useful insights

on the influence of the data size used for training on the accuracy of network parameter

behavior prediction; and (iv) we found that the current value of TCP’s congestion window

has a strong influence on accurately predicting the congestion status of a multi-hop network

at future time instants.

Our future plans include the following: (a) implementing the Act phase of the cogni-

tive network operation, (b) studying more complex BN models to also describe the time

dependencies between network parameters, (c) investigating other methods for efficient in-

ference over BN, (d) improving the prediction accuracy, (e) devising algorithms that exploit

the predicted congestion status of the network to adapt the value of the congestion window
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before severe congestion occurs, and (f) studying the effect of misclassification rates on TCP

performance in terms of throughput and packet losses.





Chapter7

Conclusions

In this thesis we have discussed the application of the cognition paradigm to the perfor-

mance optimization of different kinds of wireless networks. To perform the four phases of

the cognition paradigm, we used techniques from machine learning, convex optimization

and probabilistic graphical modeling adapted to our specific needs, and exploited them in a

number of realistic scenarios.

In detail, the task of the first approach studied in this thesis is to design an efficient in-

network aggregation and data compression technique forWireless SensorNetworks (WSNs),

in order to increase the efficiency of data gathering solutions, while being able to measure

large amounts of data with high accuracy. After a preliminary study to quantify the bene-

fit of the use of Compressive Sensing (CS) in a realistic multi-hop scenario, we designed a

novel mathematical framework that follows the cognition paradigm. This framework is able

to learn the signal statistics required by CS through the use of Principal Component Analy-

sis (PCA) from the past data that is observed and stored. We performed a Bayesian analysis

to statistically model the principal components of real WSN signals in order to justify the

approach and to show the optimality conditions from a Bayesian perspective. Moreover, we

designed a novel and effective data compression/recovery technique, able to estimate the

reconstruction error and to make decisions on the future behavior of the network. We pro-

posed also a feedback mechanism to iteratively change the number of nodes transmitting at

each round, making the decisions effective. Such techniques were integrated in an existing

WSN architecture. Finally, the performance of the data collection techniques that exploit the

proposed framework was evaluated and we proposed also a performance comparison of

data fitting techniques using real signals from actual WSN testbeds.
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In the second part of this thesis we applied the cognitive framework to a wireless net-

work, e.g., a WLAN or a tactical network, in order to optimize specific performance met-

rics using information from different network layers in a cross-layer fashion. We proposed

an architecture for cognitive networking that exploits a probabilistic graphical model, i.e.,

Bayesian Network (BN), for learning the statistical relationships among a set of parameters

of the protocol stack. In particular, we learned such relationships from the observation of the

past behavior of the network, using Structure Learning (SL) and Parameter Learning (PL)

techniques for BNs. We used the knowledge learned with the BN to design an inference en-

gine and to make inference on present or future values of some parameters of the protocol

stack. We applied these tools to study and optimize realistic wireless scenarios (single-hop

and multi-hop). Finally, we evaluated the performance of the BN inference engine’s accu-

racy to infer the value of TCP throughput in a single-hop wireless network scenario and

we made a performance analysis of the BN inference engine’s accuracy to predict TCP’s

congestion status in a realistic multi-hop wireless network scenario.

7.1 Future Directions

The application of cognition for performance optimization in a wireless network is a

challenging topic, since it is necessary to choose the appropriate optimization technique

from the literature and to appropriately tune its parameters to deal with a realistic scenario,

where many ideal assumptions may not hold. Nonetheless, using cognition may lead to

significant performance increasing in many scenarios that still need optimization. In this

thesis, we applied these tools to real data, and we solved some specific problems, but there

are still a lot of optimization opportunities. Regarding the first part, the approach with the

learning phase (PCA) and the recovery with convex optimization (CS) is very promising for

WSNs, but there is still a need for a general model that is able to capture all the relevant

statistical characteristics of the signals that may be sensed by a WSN. Ideally, the technique

should be able to adapt also to the extreme cases of a signal fully correlated or made of inde-

pendent components. This general model should be used to classify the signals according to

their characteristics. The technique for compression/recovery should be able to recognize

the class to which the sensed signal belongs and to act on the WSN accordingly, e.g., choos-

ing the sampling rate or the data fitting technique depending on the signal characteristics.

Moreover, the extended technique should be implemented and tested in an existing WSN.



7.1. Future Directions 123

As regards the second approach proposed in this thesis, the exploitation of BNs and all

the learning techniques to infer a suitable probabilistic structure from the observation of the

data is a very promising way for the optimization of wireless networks. In this thesis, we

used these methods to face very specific tasks, such as the prediction of congestion in multi-

hop networks. On the one side, it is very interesting to complete this study designing an ad

hoc transport layer technique able to fully exploit the knowledge of the probability of con-

gestion, i.e., able to iteratively adapt the congestion windows to an optimal value in order to

maximize the throughput and at the same time minimize the occurrence of congestion. On

the other side, the BN approach in this thesis has been presented in a very general way and

can be easily adapted to face different optimization problems in a wireless network, e.g., it

may be used to predict the QoS for call admission control in a wireless network with VoIP

traffic. Furthermore, this approach has a natural extension, that is the study of the temporal

evolution of the probabilistic relations among the set of chosen parameters. In this thesis

we presented the notation for the Dynamic Bayesian Network (DBN) model, but in order

to learn the relations directly from the data there is still a need to design specific Structure

Learning (SL) and Parameter Learning (PL) techniques for learning the DBN model from

the temporal evolution of the data. The DBNmodel is more general than the BN model and

it may be exploited for learning and optimization of a wider set of networks.





AppendixA

Further performance analysis

In this Appendix we analyze the performance of the data collection framework varying

some parameters of the techniques, in order to infer an acceptable value for each parameter,

i.e., a value for which the technique performwell in the simulation considered. This value is

used in the data collection performance analysis of Chapter 5. In Section A.1 we set up the

parameters δ and ǫ for the NESTA algorithm, using the notation introduced in Section 2.1.2.

In Section A.2 instead we set up the parameters K1 and K2 of the 2 Phases data collection

technique, that is used for the data collection techniques comparison in Section 5.5.

A.1 NESTA: Parameter setting

For the sake of this performance analysis, we use signals gathered from theWSN testbed

named T1 in Section 4.3, which has been deployed on the ground floor of the Department of

Information Engineering, University of Padova, Italy, including N = 68 TmoteSky wireless

sensor nodes that communicate with IEEE 802.15.4 radio transceivers. These sensors can

measure five different signals: temperature, humidity, luminosity in two different ranges

(320–730 and 320–1100 nm), and the voltage of their battery. For the performance analysis

we have considered temperature and humidity, which have high spatial and temporal corre-

lation, and luminosity, that instead is an unpredictable signal with high variability in space

and time. In the following we test the performance of the NESTA algorithm integrated in

the Signal Reconstruction and Feedback Control module.

The NESTA algorithm has been rewritten in C++ and integrated into the signal re-

construction module of WSN-Control. The implementation of the algorithm is available

125
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Figure A.1. Performance of the NESTA algorithm for a luminosity signal, varying δ and ǫ.

from [83], while we refer the reader to [12] for the original version of NESTA. As a first step,

we selected the parameters of the optimization δ, which determines when the algorithm

stops, see (2.11), ǫ, which is a constant used to relax the equality in (2.7), see (2.13) and µ,

which is related to the accuracy of the approximation of the ℓ1-norm, see (2.16). In our re-

sults we have fixed the value of µ, keeping into account that smaller values imply a better

approximation and bigger values imply a faster convergence. We have chosen µ = 10−2,

since by simulations we have noticed that this value only marginally impacts the result of

the minimization while guaranteeing a fast convergence. In Figs. A.1 and A.2 we repre-

sent the performance of the algorithm varying δ and ǫ for the luminosity signal. The x-axis

represents ptx during the monitoring phase, while the y-axis represents the average relative

reconstruction error in the whole simulation (k = 1, . . . ,K), defined in (5.7), and reported

here:

ξR =
1

K

K∑

k=1

ξ
(k)
R , (A.1)

where ξ
(k)
R is the relative reconstruction error at time k, i.e.,

ξ
(k)
R =

‖x(k) − x̂(k)‖2
‖x(k)‖2

. (A.2)

In Fig. A.1 we notice that varying the value of δ in the range [10−4, 10−5] does not affect

the recovery performance; for our results we picked δ = 10−5. In Fig. A.2 instead we vary
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Figure A.2. Performance of the NESTA algorithm for a luminosity signal, with δ = 10−5 and varying ǫ.

ǫ ∈ [10−3, 1]. For ǫ ≤ 10−2, the reconstruction error is quite insensitive to ǫ, while it sharply

increases for larger values of ǫ. We decided to adopt ǫ = 10−2 as it provided reasonable

performance across all our experiments. It is worth noting that for ǫ = 1we reach the upper

bound of the reconstruction error, represented by the error in the case where we have no

optimization, but we consider as reconstructed signal x̂(k) = x, i.e., the average calculated

over the previous training set, see (2.21). This is due to the fact that for a large value of ǫ

the constraints are relaxed, so the set of possible solutionsQ′
p includes also the null solution

ŝ(k) = 0, that is the sparsest one in Eq. (2.5). In this case the algorithms (2.24) gives as

outcome x̂(k) = x.

A.2 2 Phases Data Collection technique

In this section we apply the joint CS and PCA recovery technique integrated in the 2

Phases Data Collection Technique (DCT) described in Section 5.2.2. The aim of this perfor-

mance analysis is to compare the performance of 2 Phaseswith a standard data compression

and recovery technique, names RS-Spline, described in detail in Section 3.5, that consists in a

distributed sampling of the signal, following the random sampling scheme detailed in Sec-

tion 5.2.1, and a standard reconstruction by spline interpolation [55]. Moreover, we study

the impact of the two parameters K1 and K2 in the performance of 2 Phases. K1 and K2 are
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Figure A.3. Reconstruction Error ξR vs E[Cround]: humidity.
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Figure A.4. Reconstruction Error ξR vs E[Cround]: luminosity.

the length in data collection rounds of the training phase and the length of the monitoring

phase, respectively. In this section we consider signals gathered from the WSN deployment

T1, described in Section 4.3.
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Figure A.5. Average Reconstruction Error ξR (signals 1–5) vs E[Cround].

We define the ratio ζ between the duration of monitoring and training phases:

ζ =
K2

K1
, (A.3)

that should be chosen according to the temporal correlation of the observed phenomena.

In Figs. A.3–A.5 we show the performance in terms of reconstruction error ξR, defined

in (A.1), as a function of the average cost per round, which in this section is given by the

number of transmissions for the collection of a single instance of the signal xk in a multi-

hop network1. In these plots each training phase lasts K1 = 2 rounds and ζ = 4 (the impact

of these parameters is addressed at the end of this section). A training phase entails a cost

K1CN , whereCN is the total number of transmissions needed to gather the readings from all

nodes. The average number of packets sent during the following 2ζ = 8 monitoring phases

depends on ptx, which is varied from 1/N to 1, and ξR is computed for each case. For a given

ptx = L/N each monitoring phase has an average total cost of ζK1E[CL], where E[CL] is the

total number of transmissions needed to collect the readings from the source nodes during

a data collection round. Thus, the average cost per round is calculated as:

E[Cround] =
CN + ζE[CL]

1 + ζ
. (A.4)

1The reason for which we represent in the x-axis the cost in terms of total number of transmissions instead of

the probability of transmission Ptx is due to the fact that in this section we want to do a fair comparison with a

standard technique like RS-Spline, so we need to define a cost function that is suitable for both the techniques.



130 Appendix A. Further performance analysis

20 40 60 80 100 120 140 160 180 200 220 240 260
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

Expected cost per round, E[C
round

]

R
e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r,

 ε

 

 

lower bounds

RS−PCA−CS, K=2 ζ=2

RS−PCA−CS, K=2 ζ=4

RS−PCA−CS, K=2 ζ=6

RS−PCA−CS, K=2 ζ=8

Figure A.6. Average ξR (signals temperature, humidity, luminosity and voltage) vs E[Cround], K1 = 2,

ζ ∈ {2, 4, 6, 8}.

For comparison, in the plots we also show the recovery performance of RS-Spline. The

cost per round for RS-Spline is E[CL].

In Figs. A.3–A.5we demonstrate the effectiveness of our recovery technique, i.e., 2 Phases.

These results show that the mathematical framework of Chapter 4 provides substantial ben-

efits with respect to standard data gathering schemes. In Fig. A.3 ξR is close to zero as this

specific signal varies slowly in time, i.e., its correlation structure is quasi-stationary during a

monitoring phase. Also, we note that for those signals showing higher variations over space

and time, such as luminosity, RS-Spline has unsatisfactory performance.

In the last two graphs, Figs. A.6 and A.7, we show the impact of K1 and ζ on the per-

formance. From Fig. A.6 (fixed K) we see that decreasing ζ leads to: 1) a higher minimum

admissible cost to bear per round due to an increase of the overhead 2) despite the increase

of overhead, a decreased cost per round for a given quality goal since the signal’s recon-

stuction algorithm uses fresher information and 3) a smaller variance for ξR. From Fig. A.7

(fixed ζ) we see that decreasing K is beneficial. This means that, for the considered signals,

a smaller reconstruction error is achievable through more frequent updates of x and Σ̂. In

Figs. A.6 and A.7 solid and dotted lines without marks represent lower bounds on the error

recovery performance, which are obtained as follows. For each (K, ζ) pair, the actual re-

covery performance evaluates the reconstruction accuracy of the signal when training and
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Figure A.7. Average ξR (signals temperature, humidity, luminosity and voltage) vs E[Cround], K1 ∈
{2, 4, 6, 8}, ζ = 4.

monitoring phases alternate. In this case, during a monitoring period each input signal xk is

reconstructed using 2 Phaseswith x and Σ̂ calculated exploiting the signals gathered during

the last training phase. Differently, the lower bound on the reconstruction error of 2 Phases

for each (K1, ζ) pair and for each time k is obtained using 2 Phases with x and Σ̂ calculated

assuming perfect knowledge of the previous K instances of the signal xk−1, . . . , xk−K1 . The

cost associated with the new ξR is set equal to that of the real 2 Phases scheme for the given

(K1, ζ) pair. These curves reveal the impact of the obsolescence of x and Σ̂ during the mon-

itoring phase for the considered signals. In particular, the recovery performance degrades

for either increasing ζ (Fig. A.6) orK1 (Fig. A.7).
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