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Abstract

MIMO ad hoc networks and cognitive radio networks have enjoyed great interest in re-

cent years. The performance gains of these frameworks depend on the ability to control the

transmissions in the wireless channel. In particular, MIMO ad hoc networks exploit mul-

tiuser communications to favor simultaneous transmissions and cognitive radio networks

regulate the access of unlicensed users to the licensed network in order to improve the avail-

able bandwidth utilization. In both cases, the main limiting factor is represented by the

interference that could cause a performance degradation if not properly managed. In this

work, we adopt a broad approach for the study of interference and propose new analytical

approaches that make it possible to quantify and solve the adverse effects of interference in

both MIMO ad hoc and cognitive radio networks.

The first scenario that we consider deals with ad hoc networks with multiple antennas

and multiuser communications. We take into account a cross-layer networking protocol

which integrates medium access control and physical layer with the objective to obtain a

tradeoff between throughput and interference rejection. At the receiver side, the presence

of several simultaneous signals is managed by using a Vertical-Bell Laboratories Layered

Space-Time (V-BLAST) receiving scheme that decouples the superimposed signal to extract

data through a successive interference cancellations process, which is potentially prone to

interference, especially when the quality of the channel estimation is poor. In multiuser

scenarios, these problems may lead to substantial loss of data. In this light, we propose an

analytical technique that evaluates the statistics of the channel estimation errors and develop

an analysis for both correlator-based and MinimumMean-Square Error channel estimators,

showing that there is a direct dependence of the channel estimation error on the instanta-

neous channel matrix, which also includes interfering transmitters. This is done to obtain

precise expressions that can be used in analytical studies as well as realistic simulation ex-
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periments. In this light, we include the effect of channel estimation errors in an ad hoc

networking protocol simulator and thoroughly evaluate their impact.

A different point of view is required to handle cooperative routing techniques in cogni-

tive radio networks, the second type of wireless network considered in this Thesis. Here, the

problem of scarce radio spectrum availability and the inefficiency of traditional fixed spec-

trum management schemes call for new communications paradigms for spectrum sharing.

Specifically, the presence of unlicensed (or secondary) users that transmit in the portion of

spectrum licensed to primary users generates interference, avoidable only if secondary users

adopt some sensing technique before they decide to transmit. A newparadigm, named spec-

trum leasing, allows licensed users to lease portions of the spectrum to unlicensed users,

avoiding both interference and the need for spectrum sensing. Specifically, the secondary

nodes may cooperate with the primary users serving as extra relays, but only in exchange

for spectrum leasing. Namely, in return for their forwarding of primary packets, secondary

nodes are awarded spectral resources by primary users for transmission of their own traf-

fic. Thus, secondary nodes enforce minimal quality of service requirements in terms of rate

and reliability when deciding whether to cooperate. Results demonstrate the advantages of

the proposed spectrum leasing solution based on opportunistic routing and highlights the

available trade-offs between primary throughput and energy consumption.



Sommario

Negli ultimi anni le tematiche riguardanti le reti MIMO di tipo “ad hoc” e le reti di tipo

“cognitive” hanno riscosso grande interesse. Le prestazioni che i suddetti paradigmi co-

municativi riescono ad ottenere dipendono, essenzialmente, dalla capacità dei medesimi di

controllare le trasmissioni sul canale wireless. La peculiarità di ciascuno dei due sistemi

consiste, nelle reti MIMO ad hoc, nel favorire le trasmissioni simultanee sfruttando le co-

municazioni multi-utente; nelle reti cognitive, nel permettere l’accesso al canale wireless

anche agli utenti privi di licenza, regolandone il comportamento in modo da migliorare

l’utilizzo delle risorse radio. In entrambi i casi, tuttavia, l’interferenza può rappresentare,

se non adeguatamente gestita, il principale fattore limitante delle prestazioni. Per tale ra-

gione, nel presente elaborato, viene adottato un approccio di ampio respiro per lo studio

dell’interferenza e vengono proposti nuovi metodi analitici che ci permettono di quantifi-

care e risolvere gli effetti negativi generati dall’interferenza nelle reti MIMO ad hoc e nelle

reti cognitive.

Il primo scenario considerato in questa Tesi sono le reti ad hoc con antenne multiple e co-

municazioni multi-utente. Si prende, altresı̀, in considerazione l’utilizzo di un protocollo di

tipo cross-layer in grado di integrare il controllo di accesso al mezzo e lo strato fisico, al fine

di ottenere un buon compromesso tra velocità di trasmissione e controllo dell’interferenza.

Questo viene portato a termine grazie all’utilizzo a lato ricevente di un particolare decod-

ificatore (Vertical-Bell Laboratories Layered Space-Time, V-BLAST), il quale riesce a gestire le

comunicazioni multi-utente disaccoppiando dal segnale in ricezione i dati dei vari utenti

attraverso un processo di cancellazioni successive. Tale tecnica è molto promettente, ma è

potenzialmente incline all’interferenza, soprattutto quando la qualità della stima di canale è

scadente. Le sopra descritte problematiche, presenti anche nei scenari multi-utente, possono

causare la perdita di molti dati. Ciò detto, nel presente lavoro viene proposta una nuova tec-
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nica tesa a valutare analiticamente le statistiche degli errori di stima di canale per due tipi

di stimatori (stimatore a correlazione e MMSE) ed a dimostrare la sussistenza di una dipen-

denza diretta dell’errore di stima di canale sulla matrice di canale istantanea, la quale, in-

oltre, include pure l’interferenza causata dalle trasmissioni simultanee. Si sono cosı̀ ottenute

delle espressioni matematiche che hanno permesso di effettuare sia precisi studi analitici sia

esperimenti realistici, effettuati questi ultimi su uno simulatore di rete, inserendo l’effetto

degli errori di stima di canale.

Per riuscire a gestire le tecniche di instradamento cooperative nelle reti radio cogni-

tive, il secondo tipo di rete wireless considerato in questa Tesi, è necessario un approccio

diverso rispetto al caso precedente. Qui, infatti, le principali problematiche, relative alla

scarsa disponibilità di spettro radio e all’inefficienza dei classici sistemi statici di gestione

dello spettro, sono state affrontate proponendo paradigmi innovativi di comunicazione per

la condivisione dello spettro radio. In particolare, la presenza di utenti senza licenza (o

utenti secondari), che trasmettono nella porzione dello spettro adibita esclusivamente a

utenti primari, genera interferenza, evitabile solo se gli utenti secondari adottano partico-

lari tecniche di rilevamento (da utilizzare prima di decidere se trasmettere o meno). Un

nuovo paradigma, denominato “spectrum leasing”, permette agli utenti autorizzati di al-

locare delle porzioni dello spettro di appartenenza agli utenti secondari, evitando cosı̀ sia

l’interferenza sia il bisogno di tecniche di rilevamento di altre trasmissioni. Dall’altro canto,

i nodi secondari collaborano con gli utenti primari, proponendosi come ulteriori relay, so-

lamente in cambio di una porzione dello spettro, ovvero in cambio della trasmissione di

pacchetti primari, i nodi secondari richiedono agli utenti primari una porzione della risorsa

spettrale per poter trasmettere il proprio traffico. Tale porzione viene calcolata in base ai pro-

pri requisiti di qualità di servizio, che devono essere rispettati. L’analisi del sopra descritto

nuovo paradigma comunicativo, eseguita in questa tesi, ne evidenzia i vantaggi rispetto ad

un approccio classico, mettendo, inoltre, luce sul compromesso tra velocità di trasmissione

e consumo di energia primaria.
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Chapter1

Introduction

Multiuser detection, multiple-input multiple-output (MIMO) systems, cooperative rout-

ing techniques and cognitive radios have recently gained increasing attention in the wireless

networking community, due to network performance improvements that can be achieved

in terms of throughput and full exploitation of the available radio spectrum. However, the

presence of several simultaneous transmissions makes interference a key issue, that must be

taken into account both for the network performance evaluation and especially in the design

of protocols and routing policies. In this Thesis we adopt a broad approach for the study of

multiuser interference and we propose possible solutions to this problem considering two

types of wireless networks: ad hoc networks and cognitive radio networks.

The purpose of this introductory Chapter is to offer a broad perspective of the two wire-

less networks considered and to outline the problems that will be handled throughout the

Thesis. In particular, Sections 1.1 and 1.2 present an introduction to ad hoc networks and

cognitive radio networks, respectively. Finally, Section 1.3 summarizes the organization of

this Thesis.

1.1 Ad Hoc Networks

A wireless ad hoc network is a decentralized wireless network where nodes, which can

independently access (and leave) the network, communicate to each other without using

a preexisting infrastructure (unlike in cellular networks where the base station coordinates

the uplink and the downlink traffic in his cell). Such decentralized networks have enjoyed
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significant interest in the research community in recent years, due to their capability of set-

ting up a self-organizing wireless network in emergency or military scenarios, besides being

suited for commercial applications and for quick communications setup in any environment

where a cabled network is infeasible or not affordable.

Wireless communications are known to be strongly influenced by multipath fading and

interference problems. In fact, the main effect of the multipath propagation of the signal

is a time-varying behavior of the channel, especially in scenarios where line of sight is not

available. This requires some additional complexity at the receiver, which is needed to suc-

cessfully receive the incoming transmission irrespective of the particular channel realization.

The second aspect is represented by the interference. The origin of this problem lies in the

main characteristic of wireless transmissions: the wireless channel, shared by all users, is a

broadcast medium. Each signal is received by all users that lie in the transmission range,

which depends, e.g., on the transmit power and the thermal noise at the receiver. There-

fore, each signal contains useful information for the intended receiver, but at the same time

represents a source of interference for other users inside the transmission range. This can

cause collisions between packets transmitted by different nodes, leading to a significant per-

formance loss in terms of throughput and latency. So, suitable control mechanisms for the

transmissions need to be designed. This problem has been handled by the ad hoc network-

ing research community proposing smart protocols that regulate the access of users to the

wireless channel.

One of the most common approaches considered is to use resource allocation strategies.

This strategy is commonly used in cellular networks, in which the base station controls the

channel access in a centralized method. In this case, each user can simultaneously transmit

its signal only if the centralized controller gives it a portion of the shared resource. In the

TDMA approach the shared resource is time, while in FDMA it is frequency, and in CDMA

the knowledge of codes that permits to reduce the interference.

A second approach used to regulate the access of users to thewireless channel is based on

the carrier sense multiple access with collision avoidance (CSMA/CA) protocol (described

in the 802.11 standard [1]), which tries to regulate the channel access with a two step strategy.

When a node is ready to transmit, it listens to the channel to ensure the absence of other com-

munications with which it would probably interfere (first step) and, if the channel is sensed
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free, it transmits the signal (second step). The channel is considered free (idle channel) when

the perceived power by the node during the first step is below a certain threshold. Clearly,

this scheme, that tries to avoid the occurrence of packet collisions, is conservative and does

not exploit the spatial diversity offered by the wireless channel. Moreover, collisions are still

possible in particular situations (hidden terminal and exposed terminal problem).

Finally, we consider a different solution that does not avoidmultiple simultaneous trans-

missions in the same area as the previous strategies, but, instead, favors multiple transmis-

sions, by improving the receiver capabilities with advanced Physical (PHY) layer architec-

tures such asmultiuser detection andMIMO systems. Efforts in this direction have led to the

concept of interference cancellation: when interfering signals are present, it may be possible

to decode them, and successively subtract their interference contribution from the received

signal. In addition, with multiple antennas, nodes can handle interference even more easily,

thus letting multiple links coexist within the same area.

The first part of the Thesis (Chapter 2) is focused on the latter strategy. The protocol

considered for channel access management make it possible to have a balance between

throughput and interference rejection by encouraging multiple access, while regulating si-

multaneous transmissions. At the receiver side, the presence of several simultaneous signals

is managed by using a Vertical-Bell Laboratories Layered Space-Time (V-BLAST) receiving

scheme that decouples the superimposed signal to extract data through successive cancella-

tions. However, this scheme relies on channel knowledge at the receiver, and poor quality of

channel estimates can critically impair signal reception. In multiuser scenarios, these prob-

lems may lead to interference and, hence, substantial loss of data. In this light, we propose

an analytical technique that evaluates the statistics of the channel estimation errors in this

scenario where the presence of several simultaneous, symbol-asynchronous signals makes

the problem more complicated than in traditional channel estimation. We present this anal-

ysis of channel estimation errors using both correlator-based and Minimum Mean-Square

Error (MMSE) channel estimators. We show that there is direct dependence of the channel

estimation error on the instantaneous channel matrix, that also includes interfering trans-

mitters. Then, with this approach, we directly evaluate the effect of multiuser interference

in the expression of the channel estimation errors, taking into account all the unwanted

transmissions that degrade the performance of the receiver. The model proposed makes it
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possible to quickly evaluate the performance of channel estimation schemes as a function of

the system parameters. In this light, we include the effect of channel estimation errors in an

ad hoc networking protocol simulator and thoroughly evaluate their impact.

1.2 Cognitive Radio Networks

The growth of the number of wireless systems and services has caused a reduction of the

wireless spectrum availability. This is confirmed by the frequency allocation chart provided

by the National Telecommunications and Information Administration [2], which shows that

almost all frequency bands have been assigned and there is only very little bandwidth avail-

able, that can be used only with emerging wireless products and services. The idea of cog-

nitive radio meets this spectrum shortage. With this new paradigm, new wireless users

(secondary users) can operate in the existing crowded spectrum without degrading the per-

formance of entrenched users (primary users), by using devices with advanced radio and

signal-processing technology along with novel spectrum-allocation policies. On the other

hand, cognitive radio technology requires to collect and process information related to the

presence of other users within the spectrum, which in turn requires advanced sensing and

signal-processing capabilities. Moreover, another constraint is the requirement for signifi-

cant changes in the way wireless spectrum is currently allocated to enable cognitive tech-

niques.

In the previous section, we pointed out the main limitations of a wireless network, in-

cluding interference. In fact, the presence of other users in the network has always been

regarded as a problem so far. In a completely different approach, however, it can be seen

as a way to improve the performance in wireless networks: the idle nodes that lie in the

transmission range of another node can receive the transmitted signal and help the trans-

mitter to forward it. With this form of cooperation, nodes that are not currently transmitting

for their own purposes can offer their own resources to improve the performance of their

transmitting neighbors. In doing so, they are consuming part of their energy to help other

nodes, but an overall gain is likely to be achieved, since transmissions can be completed in

a shorter time, and interference may be lowered as well.

In the second part of the Thesis (Chapter 3) we exploit the cognitive radio and coopera-

tion principles to propose a new paradigm that allows the secondary users to transmit in the
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wireless medium and introduces the concept of reward in the cooperation. Specifically, the

secondary nodes may serve as extra relays, and hence as potential next hops for the primary

users, but only in exchange for spectrum leasing. Namely, in return for their forwarding

of primary packets, secondary nodes are awarded spectral resources for transmission of

their own traffic. Secondary nodes enforce minimal Quality-of-Service (QoS) requirements

in terms of rate and reliability when deciding whether to cooperate. With this approach, the

presence of secondary users is exploited and regulated by the primary users, avoiding inter-

ference. Moreover, with respect to classical cognitive radio techniques, the spectrum leasing

approach does not require significant changes in the wireless spectrum allocation (i.e., the

resource is still managed by the primary users). This idea of “spectrum leasing via cooper-

ation”, combined with the principle of opportunistic routing, is the basis of our framework,

which is studied in different types of wireless networks and with different PHY techniques,

showing the advantages of the proposed solution.

1.3 Discussion and Organization of this Thesis

This Thesis addresses some interference-related issues inwireless networks, and presents

two different studies regarding (i) the evaluation of the interference in ad hoc networks by

considering the channel estimation errors and (ii) the proposal of a new cooperative para-

digm in cognitive radio network for the coexistence between primary and secondary users.

In Chapter 2 we start the evaluation of the performance of a Medium Access Control

(MAC) protocol for MIMO ad hoc networks under imperfect channel estimation, by pre-

senting in Section 2.2 an analysis of channel estimation errors using both correlator-based

and MMSE channel estimators. Unlike similar works, we specifically focus on a scenario

where the presence of several simultaneous, symbol-asynchronous signals makes the prob-

lem more complicated than in traditional channel estimation. In particular, we show that

there is direct dependence of the channel estimation error on the instantaneous channel

matrix. In Section 2.2.2.1, for the correlator-based channel estimator only, we also extend

the analysis by specifically accounting for transmit impulses of different shape and possi-

bly infinite duration. Moreover, in Section 2.3 we integrate such formulas into a network

simulator, in order to obtain a precise representation of PHY-level processes, as opposed to

summarizing PHY layer performance into some compact expression. This aspect permits to
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directly evaluate the interference in a complex simulator, without making any assumptions

to make the model tractable. This is done obtaining precise expressions for the statistics of

the estimated channel matrix to be used in analytical studies as well as realistic simulation

experiments. Focusing on a cross layer MAC/PHY protocol we analyze its performance by

means of simulation, where we employ the analysis outlined above to provide an accurate

PHY model. We also highlight the tradeoffs that arise when tuning protocol behaviors and

their interplay with PHY-level parameters, such as the length of the training sequences, the

number of antennas and the type of transmit impulses. This constitutes a further step to-

ward a more realistic model for PHY-level issues in distributed MIMO networks, so that

higher-level protocols can be evaluated based on the resulting considerations.

In Chapter 3 we propose and evaluate an alternative approach to classic cognitive ra-

dio approach, based on a combination of the principles of opportunistic routing and of the

spectrum leasing via cooperation framework. In order to evaluate the performance of this

approach in cognitive radio networks, in Section 3.1 we first study the opportunistic routing

technique. In particular, we study the throughput advantages of opportunistic routing over

conventional multihop routing for linear multihop wireless networks with Type-I Hybrid

Automatic Repeat reQuest (HARQ) and block-fading Rayleigh channel model. In detail, in

Section 3.1.2.1 we derive the end-to-end throughput of opportunistic routing using Markov

chain tools and accounting for fading statistics, considering both fixed-rate and optimal-

rate transmissions. Furthermore, in Appendix A, we show analytical and non-recursive

expressions of the end-to-end throughput for the opportunistic routing technique when the

number of hops in the network is greater than two. Moreover, in Section 3.1.3 we present

a deep throughput analysis using standard information-theoretic performance metrics for

asymptotic signal-to-noise ratio (SNR) regimes, considering the multiplexing gain and en-

ergy efficiency (i.e., minimum energy per bit) of both opportunistic and multihop routing.

Finally, in Section 3.1.4 we give some numerical results to corroborate the analysis.

In Section 3.2, we relate the cooperation principle, the spectrum leasing paradigm and

the opportunistic routing technique. In particular, in Section 3.2.1, we propose a spectrum

leasing mechanism for the coexistence between a primary and a secondary network that is

based on cooperation and opportunistic routing. The primary network consists of a source

and a destination communicating via a number of primary relay nodes. In each transmis-
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sion slot, the next hop is selected in an on-line fashion based on the decoding outcomes in

the previous transmissions according to the idea of opportunistic routing. The secondary

nodes may serve as potential next hops for the primary network, but only in exchange for

leasing of spectral resources so as to satisfy secondary QoS constraints. Four policies that ex-

ploit spectrum leasing via opportunistic routing to different degrees are proposed in Section

3.2.2. These policies are designed to span different operating points in the trade-off between

gains in throughput and overall energy expenditure for the primary network. Analysis is

carried out for networks with a linear geometry and quasi-static Rayleigh fading statistics

by using Markov chain tools. In particular in Appendix B the transition probabilities of

these policies are detailed. Furthermore, two physical layer techniques are considered for

multiplexing of the primary and secondary traffic at the secondary nodes, namely time di-

vision (Section 3.2.1.4) and superposition coding (Section 3.2.1.5). The optimality in terms of

both throughput and primary energy consumption of superposition coding over all possi-

ble multiplexing strategies, for the given routing techniques, is proved in Section 3.2.2.6. In

Section 3.2.3 numerical results demonstrate the advantages of the proposed spectrum leas-

ing solution based on opportunistic routing and illustrate the trade-offs between primary

throughput and energy consumption. Finally, the analysis of this chapter is extended in

Appendix C to a distributed network, showing the effectiveness of the proposed spectrum

leasing via cooperative opportunistic routing technique also in a more general network.





Chapter2

MIMO Ad Hoc Networks

As introduced in Section 1.2, one of the main goals of the ad hoc network research com-

munity has been to design effective and distributed protocols that yield a good throughput,

taking into account practical limitations, such as decentralized channel access management,

channel estimation errors and interference, that could decrease the network performance.

Network performance can be increased by considering the integration of multiple anten-

nas in each terminal of the network. From a practical point of view, the adoption of multiple

antennas can be feasible, due to higher communication frequencies used to communicate.

This technique, which can be seen as a MIMO system between transmitter and receiver,

has become very attractive after Foschini in [3] showed that the use of multiple antennas

at both the receiver and the transmitter makes it possible to significantly increase the link

capacity, effectively making use of multiple parallel radio channels in the same band, by

separation in space. In fact, MIMO technology permits to achieve high spectral efficiency

in Rayleigh fading environments and to enable the protection of communications in the

space domain, by processing and transmitting signals through different antennas, accord-

ing to predefined schemes such as Space-Time Codes (STC) (see, e.g., [4]). In the Layered

STC (LSTC), a subset of STC, the independent coded streams are distributed throughout the

transmission resource array in so-called layers. Then, the objective is to design the layering

architecture and associated signal processing so that the receiver can efficiently separate the

individual layers from one another and can decode each of the layers effectively. A special

case of LSTC is V-BLAST [5], where the encoding component is absent and all resources are

used for parallelizing transmissions (i.e., the vector encoding process is simply a demulti-
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plex operation followed by independent bit-to-symbol mapping of each substream). This

approach is also called Spatial Multiplexing (SM). It has been shown in [6] that there exists a

tradeoff between diversity and SM gain in MIMO networks: V-BLAST achieves the greatest

SM depth, whereas codes such as [7] are optimal in a diversity sense.

Ad hoc networks leverage MIMO techniques transmitting independent and separately

encoded data signals (so-called streams) from each of the multiple transmit antennas. Specif-

ically, if multiple streams are sent by different nodes, each using multiple antennas, all

streams can be taken as a separate contribution by the intended receiver. If channel in-

formation is available at the receiver, the output of its antennas can be recombined and

processed such that the data can finally be recovered. The primary consequence is the co-

existence, without collisions, of multiple data packets in the network provided that some

degree of coordination is maintained among transmitters. Moreover, by splitting a single

packet transmission among multiple antennas (e.g., with V-BLAST), a node is allowed a

higher bit rate, which is proportional to the number of antennas used [8, 9]. However, us-

ing a more powerful PHY layer in combination with existing MAC protocols for ad hoc

networks (such as 802.11 [1]) may not necessarily be the best choice: a better design para-

digm should jointly account for PHY andMAC features in a cross-layer fashion, by allowing

some exchange of information between different layers. The need to regulate multiple ac-

cess in MIMO ad hoc networks has led to the definition of protocols that balance between

throughput and protection from interference, by encouraging multiple access while limiting

simultaneous transmissions. The protocol we consider here is based on a framed channel

access as detailed in [10], and will be summarized in the next Section 2.1. This protocol will

be studied using the analysis presented in Section 2.2, that permits to include the effect of the

interference due to multiuser communications in the expression of the channel estimation

errors.1

2.1 Network Protocol Description

As introduced above, the reference scenario considered in this chapter is an ad hoc net-

work formed of V-BLAST-capable nodes with multiple antennas. V-BLAST [5] is used here

both to improve the communication performance (by increasing the bit rate over a link)

1The material presented in this chapter has been published in [11–14].
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and to offer a greater level of protection against interference (through the cancellation of

unwanted signals), both at the price of more complex signal processing. Since V-BLAST is

based on SIC, it is potentially very prone to interference: if the detection of the first among

a group of signals fails, its cancellation would increase the amount of interference affect-

ing subsequent detections. Furthermore, V-BLAST operations rely on channel knowledge at

the receiver, and poor quality of channel estimates can critically impair signal reception. In

multiuser scenarios these problems may lead to substantial loss of data.

In order to regulate multiple access in MIMO ad hoc networks, we defined a protocol

that balances between throughput and interference rejection, by encouraging multiple ac-

cess while limiting simultaneous transmissions. This protocol is based on a framed channel

access as detailed in [10], and will be summarized here for the reader’s convenience. Each

frame is divided into four phases, namely Request-To-Send (RTS), Clear-To-Send (CTS),

Data and Acknowledgment (ACK). All packets are assumed to be split into fixed-length

Protocol Data Units (PDUs), that are suitable to be sent in a frame using a single antenna.

All control packets (RTS, CTS and ACK) are sent using one antenna. We assume an overall

per-node power constraint, so that the transmit power is inversely proportional to the num-

ber of antennas used. The framed four-way handshake described in the following is then

used to understand how many PDUs to send in parallel, and to which receivers.

The RTS-CTS handshake is used to reach an agreement on the transmissions to be per-

formed, and is described as follows. Before composing RTSs, nodes must take into account

the communication capabilities of their intended receivers. These capabilities are summa-

rized in the concept of class. For what follows, suffice it to say that the class of a neighbor

represents the maximum number of antennas that can be used when transmitting toward

a group of nodes including that neighbor. This enforces a sufficiently low error rate [10].

The class is a restrictive constraint, and must be satisfied for each and every receiver. Each

transmitter may send at most as many PDUs as the minimum class of all its current intended

receivers. For instance, a node could send a total of 8 PDUs to three receivers, each of

which has class 8; on the contrary, if two receivers have class 8 and one has class 4, the node

is constrained to send at most 4 PDUs overall. This applies regardless of how PDUs are

distributed among the receivers. At the end of this process, RTSs are generally made of a

number of requests, each containing the receiver identifier and the number of PDUs to be
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RTS CTS ACK RTSACK DATA

Training Training Training

Figure 2.1. Structure of the transmission frame.

sent to it. These RTSs have the only purpose to carry transmission requests: hence, they do

not block neighboring nodes, unlike in 802.11 [1] (see also the discussion in Section 1.1).

The receivers called upon by the RTSs have now sufficient information to decidewhether

to allow traffic or not. This choice is driven by a CTS policy, which strikes a balance between

throughput and protection against interference, while being constrained by the maximum

number of channels which can be tracked to operate the V-BLAST receiver: in other words,

only a limited number of signals can be detected and canceled. In the following we have

used the Follow Traffic (FT) policy [10]. With FT, each receiver grants at least one request

directed to itself. Other requests are considered in order of decreasing received power: if

they are directed towards the receiver, it prepares to estimate the corresponding channels

and inserts a grant in the CTS; otherwise, the signals are potential interferers, and the re-

ceiver prepares to track their channels, in order to cancel them. This procedure goes on until

all requests have been processed, or until no more channels can be tracked. CTSs are then

transmitted, and PDUs are sent thereafter according to the grants in the CTSs. Finally, ACK

messages are issued back to communicate correct receptions on a per PDU basis. Note that

FT is a cross-layer policy, as it relies on the exchange of information between the PHY and

MAC layers: PHY provides a measure of received power to the MAC, that in turn decides

which PDUs to grant, and correspondingly arbitrates signal detection performed by PHY.

The MAC protocol is finally augmented with a standard exponential backoff, entered

every time a CTS is not received in response to an RTS: namely, upon a missing CTS, a

node refrains from transmissions for a number of frames uniformly drawn at random in the

interval [1, Bmax], where Bmax = 2Nu−1 and Nu is the number of consecutive unanswered

RTSs. This helps limit access persistence and thus reduce congestion. The interested reader

is referred to [15] for a thorough evaluation of backoff policies.

Unlike previous studies on the protocol described above [10, 15–17], in this chapter we

explicitly account for channel training. Taking a practical standpoint, if channel estimation

is performed in the middle of the packet, the coherence of the estimate throughout the re-
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ception is improved, at the price of more buffering: therefore, we assume that a training

sequence of length L is included within any transmitted packet (except ACKs, which may

be transmitted through the same antenna previously used for the CTS). The resulting frame

structure is shown in Figure 2.1.

2.2 Analysis of the Channel Estimation Errors

Recent research work and practical implementations (such as [18]) have shown the high

potential of such MIMO techniques as spatial multiplexing [3] to achieve high bit rates in

wireless communications. At the receiver side, superimposed signals must be decoupled

to extract data, e.g., through successive cancellations as in V-BLAST [5]: however, this kind

of signal processing requires accurate channel estimation [19, 20], [21, pp. 137–162] to work

properly. Compared to point-to-point communications [22], little work has been done on

MIMO channel estimation in networking scenarios [16, 23], where signals coming from dif-

ferent transmitters are non-orthogonal and asynchronous, and estimation errors due to mul-

tiuser interference are to be taken into account. Similarly, the effects of imperfect channel

estimation on network protocols have also been often overlooked.

Our main contribution in this chapter is to provide a thorough analysis of the perfor-

mance of a MAC protocol for MIMO ad hoc networks under imperfect channel estimation.

To this end, we consider two different estimationmethods, i.e., matched filtering on a known

training sequence andMMSE channel estimation. In specific cases, we derive close-form ex-

pressions of their variance and integrate such formulas into a network simulator. This yields

a precise representation of PHY-level processes, as opposed to summarizing PHY layer per-

formance into some compact expression, e.g., the probability of symbol error as a function

of the Signal to Interference and Noise Ratio (SINR); the latter figure, in particular, would

require to make strong assumptions on interference models, potentially leading to an un-

suitable representation of realistic network behaviors. As an example of application, an im-

portant part of this chapter consists of precise expressions for the statistics of the estimated

channel matrix to be used in analytical studies as well as realistic simulation experiments.

We focus on the protocol in [10] (described in Section 2.1) and thoroughly analyze its per-

formance by means of simulation, where we employ the analysis outlined above to provide

an accurate PHY model. We also highlight the tradeoffs that arise when tuning protocol
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behaviors and their interplay with PHY-level parameters, such as the length of the training

sequences, the shape of transmit impulses and the number of antennas. We consider the

general case of a MIMO ad hoc network, where nodes employ V-BLAST [5], and are thus

likely to receive multiple superimposed packets, typically sent through multiple antennas

by different users. As these users are generally located at different distances, their packets

bear different average power, and cannot be assumed to be symbol-synchronous. In more

detail, only the signals coming from the antennas of the same node can be assumed to have

the same average power and to be symbol-synchronous (path length differences between

pairs of antennas are negligible compared to the symbol duration). These effects have an

impact on channel estimation performance and must be taken into account. A direct conse-

quence is that the channel estimation error can be shown to explicitly depend on the channel

matrix as well, and not only on noise power and training sequence length.

A number of studies are available that assess the effects of channel estimation errors on

the overall performance of single-antenna as well as MIMO systems. In the presence of a

time-varying fading channel, a typical approach is to assume that the channel coefficients

are perturbed by an additive random component, which accounts for channel estimation er-

rors, such as an additive white Gaussian noise vector (AWGN) with known covariance. This

approach is followed in [22], where the authors derive upper and lower bounds on the mu-

tual information for Single-Input-Single-Output (SISO) channels. The same approach can be

found in [24] for MIMO systems operating over an independent and identically distributed

(iid) Rayleigh fading channel, and lower and upper bounds for mutual information under

channel estimation errors are derived.

Comparatively less work can be found for the case of general networking scenarios, as it

is difficult to assess the global performance of a whole network with respect to channel esti-

mation errors. The typical model for errors affecting channel estimates is a noisy component

that perturb estimated channel coefficients. In [25], a cross-layer distributed power control

and scheduling protocol for delay-constrained applications overmobile Code-DivisionMul-

tiple Access (CDMA)-based ad hoc wireless networks is proposed. The authors focus on a

SISO channel, whose estimates are perturbed by adding a complex Gaussian component

with known variance at the receiver. In [23], an analysis of multiuser scheduling in MIMO

systems with imperfect channel estimation is presented using the same AWGN estimation
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error model. Network performance is assessed as a function of the number of users and

noise power: however, all signals are considered synchronous here, which is not realistic in

distributed networks. In [26] the authors consider asynchronous transmissions in the con-

text of cooperating base stations in a cellular system. Cooperation is implemented by linear

precoding, assuming perfect channel knowledge at the transmitter. Base stations compen-

sate for propagation delays during their cooperation phase, but can manage only a limited

number of transmitters, and those signals whose delay cannot be compensated will cause

interference.

In the specific case of V-BLAST, most papers focusing on channel estimation errors only

treat point-to-point scenarios, and consider only noise power as an impairment to estima-

tion. For instance, this is the case in [27], where Symbol Error Rate (SER) expressions are de-

rived by taking into account error propagation and suboptimal substream ordering, before

proposing an optimal ordering that reduces error propagation across substreams. In fact, the

main problem affecting V-BLAST is the propagation of errors between subsequent detection

steps, which limits the performance of the SIC procedure. In order to reduce this effect, an

optimal substream ordering criterion to be used along with a Zero Forcing (ZF) or MMSE

detector is presented. Similarly, in [28] channel estimation errors are modeled by adding an

uncorrelated component with known covariance to the current MIMO channel realization.

Unlike in [27], where the focus is on error propagation, in [28] the effects of optimal ordering

are considered and accurate bit error rate (BER) expressions for M-ary Phase-Shift Keying

(MPSK) and M-ary Quadrature Amplitude Modulation (MQAM) modulation at each stage

of the cancellation procedure for a 2×2 MIMO link are derived. A drawback of this analysis

is that it considers only two transmit and two receive antennas in a point-to-point scenario:

therefore, the effects of error propagation can be ignored, because the number of substreams

to be ordered is limited to two. In order to reduce the effects of error propagation, new

methods for sorting and decoding the received streams are presented in [29]. In addition,

a new ordering criterion is presented, whereby at each iteration the substream bearing the

lowest mean square error under channel errors is chosen. Another study of a point-to-point

V-BLAST system is presented in [30], where the estimation of MIMO channels using orthog-

onal training sequences is subject to errors due to noise power and channel variations in

time. The analysis does not consider the effect of these errors on V-BLAST system, but they
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only optimize the training length as functions of the Doppler shift intensity and the number

of antennas, for a given BER.

Summarizing, in this chapter we consider a general networking scenario with symbol-a-

synchronous transmissions; in this case, we derive expressions for correlator-based (in Sec-

tion 2.2.2) and MMSE (in Section 2.2.3) channel estimators, and we evaluate in Section 2.3

the performance of a MAC protocol specifically designed for a V-BLAST-capable network,

described in Section 2.1. The V-BLAST architecture allows to achieve a significant portion

of the theoretical capacity with reasonable implementation complexity [27], but is prone to

errors if the channel state information (CSI) is not accurate: in this light, we also evaluate

the tradeoffs between PHY-layer parameters (which affect estimation accuracy) and MAC

protocol performance.

2.2.1 SystemModel

Assume that each node hasNA antennas. All antennas are used during reception, whereas

in general a node i may use ni ≤ NA antennas for transmission. We focus on a single

receiving node, which hears signals from all transmitting antennas at the various nodes

i = 1, . . . ,M . The channel matrix (of size NA × U , where U =
∑M

i=1 ni) contains the chan-

nel coefficients between all transmitting antennas at all nodes and the NA antennas at the

receiver. We assume flat fading, with iid realizations across the different antenna pairs, that

is, the channel between antenna j of transmitting node i and antenna ℓ at the receiver is a

complex scalar h
(i)
jℓ , with zero-mean complex Gaussian statistics and variance σ2

i (the same

for all antennas j, ℓ since it only depends on the distance between the transmitting and re-

ceiving nodes). We remark that σ2
i includes both transmit power and path loss: thus, the

case of equal receive power for all incoming signals usually considered in the literature can

be included in the notation above by taking σ2
i equal for all is.

For channel estimation purposes, antenna j of user i sends a training sequence sij(t) of

L real binary symbols bij [p] ∈ {−1,+1}, p = 0, . . . , L− 1, namely

sij(t) =
L−1∑

p=0

bij [p]g(t− pT ), (2.1)

where P [−1] = P [1] = 0.5 and g(t) is any impulse, including impulses of infinite duration.

The random ±1 training sequence does not minimize the variance of the estimation error in
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the presence of interferers using the same transmit signal pulses as the sender of the training

sequence: optimal sequences can be designed by solving a minimization problem over the

Mean-Square Error (MSE) of the estimation [31–33]. Results show that if all signals (wanted

and interfering) are symbol-synchronous, there is no gain from the use of optimal sequences;

on the contrary, the gain is maximized if all interferers are symbol-synchronous and bear a

delay of half a symbol period with respect to the wanted training sequence. In a more

general scenario, the MSE is lower by 7 dB than achieved by using a standard Hadamard

sequence. In any event, the optimal sequences can be obtained only by gathering feedback

from the receiver; moreover, optimal sequences would turn only into a lower variance of

channel estimates, making the network performance closer to that of the perfect CSI case,

but would not alter the essence of the PHY-MAC tradeoffs discussed later. Therefore, in the

following we still focus on a random±1 training sequence which, albeit sub-optimal, allows

to keep the analysis simple.

Knowing that in the analysis we assume that the power of sequences sij(t) is 1, as the

actual received power is included in σ2
i (this incorporates the per antenna transmit power

of node i, and is therefore inversely proportional to ni), the signal received at antenna ℓ is

given by

rℓ(t) =
M∑

i=1

ni∑

j=1

h
(i)
jℓ sij(t− τi) + zℓ(t)

=
M∑

i=1

ni∑

j=1

h
(i)
jℓ

L−1∑

p=0

bij [p]g(t− pT − τi) + zℓ(t) (2.2)

where zℓ(t) is the thermal noise at the receiver, modeled as white circular complex Gaussian

with zero mean and power spectral density N0/2 (per dimension), and τi is the propaga-

tion delay of the signals transmitted by the antennas at user i (note that this propagation

delay does not depend on j, ℓ but only on i, as the path length differences between pairs of

antennas of a given transmitter/receiver pair are negligible compared to the symbol dura-

tion T ). With no loss of generality, we focus on the estimation of the channels related to a

specific user m, and assume τm = 0. In the following we will consider the correlator- and

MMSE-based channel estimators.



18 Chapter 2. MIMO Ad Hoc Networks

2.2.2 Correlator-based channel estimation

In this case, the channel coefficient between antenna k of user m and antenna ℓ =

1, . . . , NA of the receiver is estimated by matched filtering on the training sequence smk(t)

(see (2.1)), k = 1, . . . , nm:

ĥ
(m)
kℓ =

1

LT

∫ +∞

−∞
rℓ(t)smk(t) dt

=
1

LT

∫ +∞

−∞

nm∑

j=1

h
(m)
jℓ smj(t)smk(t) dt+

1

LT

∫ +∞

−∞

∑

i6=m

ni∑

j=1

h
(i)
jℓ sij(t− τi)smk(t) dt

+
1

LT

∫ +∞

−∞
zℓ(t)smk(t) dt (2.3)

=
1

LT

∫ +∞

−∞

nm∑

j=1

h
(m)
jℓ





L−1∑

p=0

bmj [p]g(t− pT )
L−1∑

q=0

bmk[q]g(t− qT )



 dt+

+
1

LT

∫ +∞

−∞

∑

i6=m

ni∑

j=1

h
(i)
jℓ





L−1∑

p=0

bij [p]g(t− pT − τi)
L−1∑

q=0

bmk[q]g(t− qT )



 dt +

+
1

LT

∫ +∞

−∞
zℓ(t)

L−1∑

q=0

bmk[q]g(t− qT ) dt. (2.4)

By calling φg(τ) the auto-correlation function of g(t), we have

ĥ
(m)
kℓ =

1

LT

nm∑

j=1

h
(m)
jℓ

L−1∑

p=0

bmj [p]
L−1∑

q=0

bmk[q]

∫ +∞

−∞
g(t− pT )g(t− qT ) dt+

+
1

LT

∑

i6=m

ni∑

j=1

h
(i)
jℓ

L−1∑

p=0

bij [p]
L−1∑

q=0

bmk[q]

∫ +∞

−∞
g(t− pT − τi)g(t− qT ) dt+ Zℓ (2.5)

= h
(m)
kℓ

φg(0)

T
+

1

LT

∑

i6=m

ni∑

j=1

h
(i)
jℓ

L−1∑

p=0

bij [p]

L−1∑

q=0

bmk[q]φg ((p− q)T + τi) + Zℓ (2.6)

where we note that the first rhs term is zero whenever p 6= q or j 6= k, and

Zℓ =
1

LT

∫ +∞

−∞
zℓ(t)smk(t) dt (2.7)

is the filtered noise term. For this term we have E[Zℓ] = 0 and

σ2
Z =E[|Zℓ|2] =

1

(LT )2

∫ +∞

−∞
N0s

2
mk(t) dt

=
N0

LT 2
φg(0), (2.8)

so thatZℓ has circular complex Gaussian distributionwith zeromean and variance N0
LT 2φg(0).
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In (2.3) through (2.6), the system model accounts only for the signals being sent at the

same time as the training sequence used for estimation. Now, recall that we are considering

frame-based channel access: the model in (2.3)–(2.6) applies therefore to one frame at a time,

and would thus require to consider co-frame interference. However, as per the discussion

at the end of Section 2.1, we note that it is convenient to place training sequences within

transmitted packets, so that channel estimates are more likely to be coherent throughout the

packet duration. This separates any training sequence from other frames by a significant

number of symbols for any practical data and signaling packet length. Therefore, co-frame

interference can be neglected, even in the case of long transmit impulses. By way of con-

trast, every other non-channel estimation-related symbol may create interference: however,

if training sequences conform to pseudo-randomness criteria, interference from data is sta-

tistically equivalent to interference from other training sequences. This allows to approxi-

mate interference from data symbols by letting p go from −∞ to +∞ in the second rhs term

in (2.5), as we will do from now on.

From (2.6) we define J
(i,m)
jk as the matched filter output corresponding to antenna j of

user i:

J
(i,m)
jk =

1

LT

∫ +∞

−∞
sij(t− τi)smk(t) dt

=
1

LT

+∞∑

p=−∞

bij [p]
L−1∑

q=0

bmk[q]φg((p− q)T + τi). (2.9)

This term has zero mean, and its variance given τi can be found as

Var[J
(i,m)
jk |τi] =

1

(LT )2
E





L−1∑

q1=0

bmk[q1]

+∞∑

p1=−∞

bij [p1]φg((p1 − q1)T + τi)


×

×



L−1∑

q2=0

bmk[q2]
+∞∑

p2=−∞

bij [p2]φg((p2 − q2)T + τi)




 . (2.10)

We note that the terms in the sums are non-zero only if q1 = q2 = q and p1 = p2 = p; since

E[b2mk] = E[b2ij ] = 1, we have

Var[J
(i,m)
jk |τi] =

1

(LT )2

L−1∑

q=0

+∞∑

p=−∞

φ2
g((p− q)T + τi)

=
1

LT 2

+∞∑

a=−∞

φ2
g(aT + τi), (2.11)
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Hence,

Var[J
(i,m)
jk ] =

∫
Var[J

(i,m)
jk |τi] dF (τi), (2.12)

where F (τi) is the cumulative distribution function of τi.

Consider now the joint statistics of J
(i1,m)
j1,k1

and J
(i2,m)
j2,k2

. In particular, we have that

E

[
J

(i1,m)
j1,k1

J
(i2,m)
j2,k2

]
=

= E

[
1

(LT )2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2si1j1(t1 − τi1)smk1(t1)si2j2(t2 − τi2)smk2(t2)

]

=
1

(LT )2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2E [si1j1(t1 − τi1)smk1(t1)si2j2(t2 − τi2)smk2(t2)] (2.13)

Consider the case i1, i2 6= m. (Note that i 6= m is the only case of interest in (2.6), and in any

event J
(i,m)
jk for i = m is deterministic so that the computation is straightforward.) In this

case we have

E [si1j1(t1 − τi1)smk1(t1)si2j2(t2 − τi2)smk2(t2)] =

= E [si1j1(t1 − τi1)si2j2(t2 − τi2)]E [smk1(t1)smk2(t2)] , (2.14)

which is clearly zero if i1 6= i2, or j1 6= j2, or k1 6= k2 (modeling the used sequences as inde-

pendent randombinary sequences). Similarly, it is possible to show thatE
[
J

(i1,m1)
j1,k1

J
(i2,m2)
j2,k2

]
=

0, ∀i1, i2, j1, j2, k1, k2, if m1 6= m2, because in this case E [sm1k1(t1)sm2k2(t2)] = 0. There-

fore, we can conclude that the variables J
(i,m)
jk can be modeled as a set of iid random vari-

ables, each with approximately Gaussian statistics (by virtue of their being sums of several

binary independent random variables, see (2.9)) of zero mean and variance Var[J
(i,m)
jk ].

While the analysis above applies to any impulse g(t), in the following we will consider

the special case of rectangular impulses, that is

g(t) =





1, for− T
2 ≤ t < T

2 ,

0, otherwise;
(2.15)

A study on the effect of different transmit pulses (i.e., different shape and possibly infinite

duration) is derived in Section 2.2.2.1. For the rectangular pulse, the auto-correlation func-

tion of g(t) is given by

φg(τ) =





T − |τ |, for− T ≤ τ ≤ T,

0, otherwise;
(2.16)
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thus, (2.6) can be rewritten as

ĥ
(m)
kℓ = h

(m)
kℓ +

∑

i6=m

ni∑

j=1

h
(i)
jℓ J

(i,m)
jk + Zℓ. (2.17)

Note that, in the synchronous case, all received training sequences can be assumed to be

orthogonal, and therefore the matched filter output in (2.9), J
(i,m)
jk , is equal to 1 only if j = k,

regardless of the transmit node, and 0 otherwise. Under this assumption, the analysis yields

the well-known close-form expression (e.g., see [34]):

ĥ
(m)
kℓ = h

(m)
kℓ + Zℓ. (2.18)

We are however interested in the asynchronous case, where sequences coming from dif-

ferent users have random time displacement, and therefore cannot be assumed orthogonal,

whereas the signals from the antennas of the same user are synchronously received, and

thus can be assumed to have zero cross-correlation. In other words, J
(m,m)
jk = 1 for j = k,

and 0 otherwise. Because φg(τ) is non-zero only in (−T, T ) if g(t) is rectangular, the only

terms of interest in (2.11) are those for p− q = 0 or −1, which yields

Var[J
(i,m)
jk |τi] =

1

(LT )2

L−1∑

p=0

[τ2
i + (T − τi)

2] (2.19)

and

σ2
J = Var[J

(i,m)
jk ] =

1

(LT )2
2LE[τ2

i ]

=
2

3L
, (2.20)

where the distribution of τi is assumed to be uniform in [0, T ] ∀i (or τi modulo T is uniform

in [0, T ] ∀i), consistently with the approximation that there are infinite symbols per each

interfering sequence.

Finally, the output of the matched filter in the asynchronous case is

ĥ
(m)
kℓ = h

(m)
kℓ + ∆h

(m)
kℓ (2.21)

where

∆h
(m)
kℓ =

∑

i6=m

ni∑

j=1

h
(i)
jℓ J

(i,m)
jk + Zℓ (2.22)
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is the channel estimation error, and Zℓ is complex Gaussian distributed with zero mean and

variance equal to

σ2
Z =

N0

LT 2
φg(0) =

N0

LT
(2.23)

for rectangular pulses.

It is useful to summarize the above calculations in matrix form. Let H(i) be the channel

matrix between user i = 1, . . . ,M and the receiver, defined as

H(i) =




h
(i)
11 . . . h

(i)
ni1

h
(i)
12 . . . h

(i)
ni2

...
...

h
(i)
1ℓ . . . h

(i)
niℓ

...
...

h
(i)
1NA

. . . h
(i)
niNA




=




h
(i)
1

h
(i)
2

...

h
(i)
ℓ
...

h
(i)
NA




, (2.24)

where we highlight row vectors through the underline notation x, in order to differentiate

from them column vectors, which are indicated using the boldface notation x. Let the overall

channel matrix from all transmitting antennas to the antennas of the receiver be

H =
[
H(1),H(2), . . . ,H(M)

]

=




h
(1)
1 h

(2)
1 . . . h

(M)
1

...
...

h
(1)
NA

h
(2)
NA

. . . h
(M)
NA


 =




h1

...

hNA


 . (2.25)

Define now

J̃
(i,m)
jk =





J
(i,m)
jk , i 6= m,

0, otherwise.
(2.26)

Let J̃
(m)
k be the column vector collecting all variables J̃

(i,m)
jk for all antennas of the transmit-

ting users:

J̃
(m)
k =

[
J̃

(1,m)
1k . . . J̃

(1,m)
n1k

J̃
(2,m)
1k . . . J̃

(2,m)
n2k

. . . J̃
(M,m)
1k . . . J̃

(M,m)
nMk

]T
, (2.27)

and define the matrix

J̃(m) =
[
J̃

(m)
1 , . . . , J̃(m)

nm

]
. (2.28)

With this notation, and defining the column vectors

ĥ
(m)
k =

[
ĥ

(m)
k1 , . . . , ĥ

(m)
kNA

]T
, h

(m)
k =

[
h

(m)
k1 , . . . , h

(m)
kNA

]T
(2.29)
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and

Z = [Z1, . . . , ZNA
]T (2.30)

for k = 1, . . . , nm andm = 1, . . . ,M , we can rewrite (2.21) and (2.22) in vector form as

ĥ
(m)
k = h

(m)
k + HJ̃

(m)
k + Z, (2.31)

which shows that the channel estimation error vector HJ̃
(m)
k + Z can be generated by mul-

tiplying the channel matrix H by the training sequence correlation vector J̃
(m)
k (whose non-

zero elements can be drawn randomly and independently∼ N (0, 2
3L)), and adding the noise

vector. By grouping in a matrix all the above quantities with subscript k = 1, . . . , nm, we

obtain

Ĥ(m) = H(m) + HJ̃(m) + Z′ (2.32)

and, by further grouping all these results for all nodesm = 1, . . . ,M , we have

ĤCORR = H + HJ̃ + Z′′ (2.33)

where

J̃ =
[
J̃(1), J̃(2), . . . , J̃(M)

]
, (2.34)

and Z′,Z′′ are matrices of iid elements ∼ N (0, N0
LT ).

2.2.2.1 Different Transmit Waveforms

In this section we extend the analysis presented above by specifically accounting for

transmit impulses of different shape and possibly infinite duration. This constitutes a fur-

ther step toward a more realistic model for PHY-level issues in distributedMIMO networks,

so that higher-level protocols (e.g., see Section 2.1) can be evaluated based on the resulting

considerations. These results will be presented in Section 2.3.3.

We consider several choices for the transmit pulse g(t) (see (2.1)):

• rectangular pulse:

g(t) =





1, for− T
2 ≤ t < T

2 ,

0, otherwise;
(2.35)

• Sinc pulse:

g(t) = sinc

(
t

T

)
=

sin
(
πt
T

)
(
πt
T

) ; (2.36)
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Figure 2.2. Variance of the non-zero elements in J̃, for varying length of the training sequence, L, and

different transmit pulses.

• raised cosine (RC) pulse [35] of roll-off parameter α 2

g(t) = sinc

(
t

T

)
cos
(
παt
T

)

1 − 4α2t2

T 2

; (2.38)

• Gaussian pulse of variance factor a

g(t) =

√
a

π
e−a(

t
T )

2

. (2.39)

For the rectangular pulse the close-form variance formula has been obtained in (2.20): in fact

the only terms of interest in (2.11) are those for a = 0, where φg(τi) = T − τi and a = −1,

where φg(−T + τi) = τi. Therefore

Var[J
(i,m)
jk |τi] =

(T − τi)
2 + τ2

i

LT 2
, (2.40)

and the variance of J
(i,m)
jk is σ2

J = 2/(3L) (see (2.20)).

2The raised cosine frequency characteristic is given as

G(f) =

8

>

>

>

<

>

>

>

:

T, 0 ≤ |f | < 1−α
2T

T
2

˘

1 + cos
ˆ

πT
α

`

|f | − 1−α
2T

´˜¯

, 1−α
2T

≤ |f | ≤ 1+α
2T

0, |f | ≥ 1+α
2T

;

(2.37)
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Figure 2.3. Variation of the scale factor s in the equation σ2
J = s/L with pulse parameters. For visu-

alization purposes, the abscissa represents both the RC pulse roll-off factor α and a scaled version of the

Gaussian pulse variance factor a, i.e., a/10. The value of σ2
J obtained using rectangular pulses is also

shown for reference.

The variance for the other type of pulses listed before is numerically derived and is

shown in Figure 2.2. The figure shows that Gaussian pulses offer the best performance, by

virtue of their autocorrelation, which is also Gaussian, and is either low-valued and wide

(low a) or high-valued and narrow (high a). RC pulses offer different variance behavior

depending on the value chosen for the roll-off factor α. In particular, a low α yields higher

variance, as in the case of a Sinc pulse, but when α increases up to 0.9 the RC pulse decays

to zero more rapidly, and hence has a narrower autocorrelation function, reaching the same

performance as that of the Gaussian pulse with a = 4. In other words, a high roll-off factor

reduces the variance of J̃, due to the fewer dominating terms in (2.10).

Plotting Figure 2.2 in a log-log scale confirms that the relation between σ2
J and the length

of the training sequence L is linear of constant slope equal to −1 in log scale, and therefore

of the type σ2
J = s/L in linear scale. Figure 2.3 shows the variation of the scale factor s as a

function of the parameters of RC and Gaussian pulses in comparison to a rectangular pulse,

and confirms preceding comments on Figure 2.2: namely, RC pulses with a high roll-off
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factor α or a Gaussian pulse with a low variance factor a yield better performance, mainly

due to their narrower autocorrelation function. As a final observation, the choice of a trans-

mit pulse is generally driven by other considerations than its impact on the performance

of channel estimation in MIMO ad hoc networks; however, this impact is not negligible,

and must be carefully taken into account in simulations: the methodology to calculate σ2
J

presented so far, as well as the scale factors reported in Figure 2.3 for some specific pulse

choices, are of help in this task. In Section 2.3.3 we study this aspect in the MAC protocol

for MIMO ad hoc network introduced in Section 2.1.

2.2.2.2 Case Study

The analysis introduced in Section 2.2.2 allows to analytically compute various statisti-

cal metrics related to the channel estimation errors. Also, it can be readily used to simulate

the effect of channel estimation errors in an ad hoc network, and to study their impact on

network performance. As an example, consider a network with three nodes, i.e., two trans-

mitters and one receiver, each equipped with two antennas. The transmitting nodes use

both their antennas. The receiver wants to estimate the eight flat fading channel coefficients

between each of the transmit antennas and its own receive antennas. The channel matrix

can be written as H = (h
(m)
kl ), with k, l,m = 1, 2,

H =


 h

(1)
11 h

(1)
21 h

(2)
11 h

(2)
21

h
(1)
12 h

(1)
22 h

(2)
12 h

(2)
22


 (2.41)

where h
(m)
kℓ is the channel coefficient between the k-th antenna of the m-th transmitter and

the ℓ-th antenna of the receiver. According to Eq. (2.33), the estimation error depends on the

instantaneous responses of all channels. For a given realization of the channel conditions, we

are interested in computing the mean and variance of the estimation error, ∆h
(m)
kℓ , m, k, ℓ =

1, 2, which is given by Equation (2.22). We have

E

[
∆h

(m)
kℓ

]
= 0 and E

[
|∆h(m)

kℓ |2
]

=
∑

i6=m

ni∑

j=1

|h(i)
jℓ |2

2

3L
+
N0

LT
(2.42)

With a slight abuse of notation, we define the matrices |H|2 = (|h(m)
kl |2) and E[|∆H|2] =

(E[|∆h(m)
kl |2]) with k, l,m = 1, 2:

|H|2 =


 |h(1)

11 |2 |h(1)
21 |2 |h(2)

11 |2 |h(2)
21 |2

|h(1)
12 |2 |h(1)

22 |2 |h(2)
12 |2 |h(2)

22 |2


 (2.43)
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E[|∆H|2] =


 E[|∆h(1)

11 |2] E[|∆h(1)
21 |2] E[|∆h(2)

11 |2] E[|∆h(2)
21 |2]

E[|∆h(1)
12 |2] E[|∆h(1)

22 |2] E[|∆h(2)
12 |2] E[|∆h(2)

22 |2]


 (2.44)

The following equations give an example of results obtained for two independent and

randomly generated channel realizations. The transmitters are at the same distance from the

receiver, noise is neglected, and L = 16 (these results can be easily scaled to other values of

L, as the variance of the channel estimation is inversely proportional to L in this case). First

realization:

|H|2 =


 6.63e-2 4.35e-3 0.554 1.32e-3

0.164 1.56e-3 2.12 0.645


 , (2.45)

E
[
|∆H|2

]
=


 2.3e-2 2.3e-2 2.94e-3 2.94e-3

0.1152 0.1152 6.89e-3 6.89e-3


 (2.46)

Second realization:

|H|2 =


 3.04e-3 0.038 5.33e-5 1.58e-3

0.467 0.0308 5.33 16.0


 , (2.47)

E
[
|∆H|2

]
=


 6.8e-5 6.8e-5 1.71e-3 1.71e-3

0.889 0.889 2.07e-2 2.07e-2


 (2.48)

These results confirm that E[|∆h(m)
kℓ |2] does not depend on k, as expected. Also, they

show that the ratio of the error variance to the channel strength greatly depends on the chan-

nel matrix, which poses significant challenges for accurate channel estimation in a multi-

user scenario.

2.2.3 MMSE channel estimation

With reference to (2.2),

rℓ(t) =

M∑

i=1

ni∑

j=1

h
(i)
jℓ sij(t− τi) + zℓ(t)

=
M∑

i=1

ni∑

j=1

h
(i)
jℓ

L−1∑

p=0

bij [p]g(t− pT − τi) + zℓ(t),

let us now define rℓ as the row vector of the samples of the received symbols at antenna ℓ:

rℓ = [rℓ(T ), . . . , rℓ(LT )] , ℓ = 1, . . . , NA. (2.49)
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The scalar rℓ(qT ) is suitable to be expressed using matrix notation. Let si(qT − τi) be the

training symbols sent by all antennas of node i as seen by the receiver at time qT , q =

1, . . . , L:

si(qT − τi) = [si1(qT − τi), . . . , sini
(qT − τi)]

T /
√
LT , q = 1, . . . , L, (2.50)

where we recall that sij(qT − τi) ∈ {−1,+1}, j = 1, . . . , ni, i = 1, . . . ,M , and that τi is the

propagation delay experienced by all signals of user i. Let us consider the qth symbol of all

training sequences; by grouping the corresponding received versions into a vector, we get

s(qT ) =
[
s1(qT − τ1)

T , . . . , sM (qT − τM )T
]
, q = 1, . . . , L, (2.51)

and by recalling that U =
∑M

i=1 ni, we can write the U × L matrix of all training symbols

received from all transmit antennas as

S =
[
s(T )T , . . . , s(LT )T

]
=

=




s1(T − τ1) . . . s1(LT − τ1)
...

...

sM (T − τM ) . . . sM (LT − τM )


 . (2.52)

Using (2.24), (2.25), (2.50) and (2.51) the signal received at antenna ℓ in (2.2) becomes:

rℓ(qT ) =

M∑

i=1

ni∑

j=1

h
(i)
jℓ sij(qT ) + zℓ(qT )

=
M∑

i=1

(
h

(i)
1ℓ si1(qT ) + h

(i)
2ℓ si2(qT ) + . . .+ h

(i)
niℓ
sini

(qT )
)

+ zℓ(qT )

= h
(1)
ℓ s1(qT − τ1)

T + . . .+ h
(M)
ℓ sM (qT − τM )T + zℓ(qT )

= hℓs(qT )T + zℓ(qT ), ℓ = 1, . . . , NA, q = 1, . . . , L. (2.53)

Focus for the moment on a perfectly synchronous case, whereby τi = 0, i = 1, . . . ,M . By

calling

zℓ = [zℓ(T ), . . . , zℓ(LT )] , (2.54)

a compact form of (2.49) is then

rℓ = [rℓ(T ), . . . , rℓ(LT )] =

= hℓ
[
s(T )T , . . . , s(LT )T

]
+ zℓ

= hℓS + zℓ, ℓ = 1, . . . , NA. (2.55)
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By further grouping rℓ, ℓ = 1, . . . , NA, we obtain

RS =




r1
...

rNA


 =




h1

...

hNA


S +




z1

...

zNA




= HS + ZS, (2.56)

where both RS and ZS have size NA × L. Let us now rewrite (2.56) in vectorized form [34]

rS = vec (RS) = vec (INA
HS) + vec (ZS)

=
(
ST ⊗ INA

)
vec (H) + zS

= Sh + zS, (2.57)

where ⊗ denotes the Kronecker product. The linear MMSE estimator of the MIMO channel

H is [36]

ĥMMSE = vec
(
ĤMMSE

)

= ΦhrS
Φ−1

rS
rS, (2.58)

where

ΦhrS
= E

[
hrHS

]
and ΦrS

= E
[
rSr

H
S

]
. (2.59)

Under the assumption that all signals are time synchronous, we get the well-known expres-

sions

ΦhrS
= ΦhS

H
and ΦrS

= SΦhS
H

+ ΦzS
, (2.60)

where

Φh = E
[
hhH

]
and ΦzS

= E
[
zSz

H
S

]
= N0ILNA

. (2.61)

Therefore the MMSE estimator in the synchronous case becomes (see also [34])

ĥMMSE = ΦhS
H
(
SΦhS

H
+ ΦzS

)−1
rS. (2.62)

We now use the following variant of the Woodbury identity [37]: let A and B be positive

definite matrices, then

ACH
(
CACH +B

)−1
=
(
A−1 + CHB−1C

)−1
CHB−1. (2.63)
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In our tractation, we let A = Φh, B = ΦzS
and C = S. It is straightforward to show that A

and B are positive definite.

Thus, we can rewrite (2.62) as follows

ĥMMSE =
(
Φ−1

h
+ S

H
Φ−1

zS
S
)−1

S
H

Φ−1
zS

rS, (2.64)

where Φh is a block-diagonal matrix with elements σ2
i IniNA

, i = 1, . . . ,M , that is,

Φh = E
[
hhH

]
=




σ2
1In1NA

. . .

σ2
MInMNA


 (2.65)

By replacing (2.57) in (2.64), through straightforward algebra we obtain

ĥMMSE =
(
Φ−1

h
+N−1

0 S
H
S
)−1

N−1
0

(
S
H
Sh + S

H
zS

)
. (2.66)

Due to the properties of the Kronecker product, we have

S
H
S = ΦS ⊗ INA

, (2.67)

whereΦS = SSH is the cross-correlationmatrix of the training sequences in the synchronous

case.

Let us now consider the case of asynchronous received signals: in this scenario, the

τis, i = 1, . . . ,M , are not zero in general. This condition reflects on ΦS, which must be

computed according to the model in (2.5)–(2.6). To make the task simpler, let us subdivide

ΦS as follows:

ΦS =




Σ(1,1) . . . Σ(1,M)

...
...

Σ(M,1) . . . Σ(M,M)


 , (2.68)

where the term in position (j, k) of Σ(i,m), according to (2.6) and considering a rectangular

g(t), is

Σ
(i,m)
jk =

T − (τi − τm)

LT

L−1∑

p=0

bmk[p]bij [p] +
τi − τm
LT

L−1∑

p=1

bmk[p]bij [p− 1]

=
1

LT

∫ +∞

−∞
sij(t− (τi − τm))smk(t) dt = J

(i,m)
jk , (2.69)
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where j = 1, . . . , ni, k = 1, . . . , nm. Note that Σ(i,m), i,m = 1, . . . ,M represents the cross-

correlation matrix of the sequences sent by all transmit antennas of users i andm. Collecting

the elements of ΦS in (2.68) as in equation (2.27) yields

S
H
S =

[
J

(1)
1 , . . . ,J(1)

n1
, . . . ,J

(M)
1 , . . . ,J(M)

nM

]
⊗ INA

= J ⊗ INA

= J̃ ⊗ INA
+ IUNA

, (2.70)

wherematrix J̃ can bemodeled as a set of iid random variables∼ N
(
0, 2

3L

)
(see Section 2.2.2

for details). We note that if the received signals are perfectly synchronous the orthogonality

among sequences is preserved (i.e. i = m case, when the training sequences are sent from

the same transmitter), hence

Σ(i,m) =





INA
, i = m,

0NA
, otherwise,

(2.71)

and S
H
S reduces to

S
H
S = IUNA

. (2.72)

As in (2.8), it is straightforward to conclude that the noise vector in (2.66), S
H
zS = w, has

iid elements∼ CN
(
0, N0

LT

)
when g(t) is the rectangular pulse. To conclude, the linear MMSE

estimator for asynchronous signals takes the following form

ĥMMSE =
[
Φ−1

h
+N−1

0

(
J̃ ⊗ INA

+ IUNA

)]−1
N−1

0

(
h +

(
J̃ ⊗ INA

)
h + w

)
. (2.73)

The last expression of linear MMSE estimation, (2.73), is directly comparable with equation

(2.33) derived for the correlator, which can be expressed in vectorized form as:

ĥCORR = h +
(
J̃ ⊗ INA

)
h + w . (2.74)

Equations (2.73) and (2.74) clearly show that the error matrices related to a correlator-

based or MMSE channel estimator have two components, one proportional to the channel

matrix,
(
J̃ ⊗ INA

)
h, which include interfering transmitters, and one independent of it, w.

In the following section, we elaborate on the effects of imperfect channel estimation at

the receiver by applying the analysis carried out so far to the evaluation of the performance

of a MIMO ad hoc network.
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2.3 Impact of Channel Estimation Errors in a PHY-MAC Protocol

The results in this section are derived adopting the MAC protocol described in Section

2.1 in a network with 25 nodes deployed in a square grid within a 100 m×100 m area, so that

the distance between nearest neighbors is 25 m. All nodes are static and frame-synchronous

for the whole duration of the simulations. As in [10], we choose this specific topology be-

cause all nodes potentially receive a significant amount of interference from one another,

a demanding scenario for the MAC protocols under test. Each node generates packets ac-

cording to a Poisson process of rate λ packets per second per node. Each packet is formed

of k PDUs, with k uniformly chosen in {1, 2, 3, 4}. Packets waiting to be sent are stored in

a queue which can hold up to 120 PDUs. If the storage time exceeds a custom number of

2500 frames, the packet times out and is discarded. Each PDU is 1000 bits long, whereas

signaling packets are 200 bits long. These values do not account for the length of the train-

ing sequence, L. For simulations with imperfect channel estimation, we assume that each

packet contains such a sequence (see also the frame structure in Figure 2.1). In these cases,

we use the models derived in Section 2.2.2, for correlator-based estimator, and in Section

2.2.3, for MMSE estimator, to consider the imperfect channel estimation. The results here-

after are obtained for NA = 4 and NA = 8 antennas at each node (we assume the antennas

are sufficiently spaced, so as to yield a capacity very close to that an iid Rayleigh MIMO

channel, see [38]). During the reception phase, a node uses all antennas to run the V-BLAST

algorithm with the maximum number of degrees of freedom. On the contrary, the number

of antennas to use during transmissions is chosen according to the directives of the received

CTS packets (in particular, node i uses exactly ni antennas, see also Section 2.1).

We employ the analytical approach devised in [17] in order to accurately model PHY-

level details, without an excessive burden for the simulator. This technique approximates all

contributions to the receive SINR as Gaussian, and separately accounts for the impairments

caused by noise, imperfect cancellations, and signals that are still to be canceled in the V-

BLAST stack.
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Figure 2.4. Average throughput as a function of λ for the MMSE and CORR detectors, L = 128, com-

pared to perfect channel estimation. The considered number of antennas is NA = 4 (grey curves) and

NA = 8 (black curves).

2.3.1 Study of MAC performance under perfect and imperfect channel estima-

tion

Figure 2.4 shows the total average network throughput (in Mbps) as a function of traf-

fic in case of both perfect and imperfect CSI at the Receiver (CSIR). Both the MMSE and

correlator-based (CORR) estimators are shown; in addition, the study is performed for both

NA = 4 and NA = 8. In this evaluation the length of the training sequences is fixed to

L = 128. For a fair comparison, the perfect estimation case also assumes that a training

sequence of the same length L = 128 is added to the transmission of RTSs, CTSs and PDUs.

Figure 2.4 highlights the performance degradation incurred with imperfect CSIR, which

translates into a reduced maximum throughput, about 25% lower when using MMSE, and

up to 55% lower when using CORR with either number of antennas. In fact, imperfect CSIR

makes the V-BLAST detection algorithmmuch more prone to interference, causing a greater

probability of error and thus lower throughput. We stress that two negative effects add up

to impact on the detection performance of V-BLAST. First, a wrong channel estimation leads

to canceling an incorrect contribution from the received signal, even in the case of correct
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Figure 2.5. Comparison of throughput as a function of λ for the estimation error model employed in this

work against an additive Gaussian error model of given variance σ2
e , normalized to the average power

received from a given distance, chosen as 50m (ε50) and 75m (ε75), NA = 8.

detection. This leaves a trace of the canceled signal, which will decrease the SINR of all

following detections. Second, even with perfect channel estimation, a wrong detection and

cancellation (e.g., due to low SINR) may double the interference of the current signal on

subsequent detection steps. Therefore the last signals in the V-BLAST detection order (that

would experience the best SINR thanks to previous cancellations in the perfect CSIR case)

are in fact the most affected. This limits the maximum achievable transmission parallelism.

We also note that the throughput does not decrease to zero, but is instead maintained at a

constant level for increasing λ because of MAC-level backoff, which limits channel access

attempts and thus interference.

As expected, usingNA = 4 antennas results in lower network performance, while main-

taining roughly the same proportion among the perfect CSIR, MMSE and CORR curves. For

this reason, and because NA = 8 allows more degrees of freedom to the MAC protocol, we

will concentrate on the NA = 8 case, with the understanding that for lower NA the results

are conceptually similar, though scaled down.

Our estimation error model is able to capture the effects of concurrent transmissions
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Figure 2.6. Average throughput as a function ofL for bothMMSE and CORR, λ = 500, 800 pkt/s/node,

NA = 8.

(that create interference to each other), whose interfering power varies on a per frame basis,

on the accuracy of channel estimation. Simpler models of the kind Ĥ = H + ∆H, where

the error is modeled as an additive Gaussian term ∆H of given variance σ2
e (independent

of H), are perhaps more straightforward, but do not consider the impact of multiple access

interference. In addition, it is not clear how σ2
e is to be computed as a function of the sys-

tem parameters. A comparison between our model and the Gaussian displacement model

is shown in Figure 2.5, where the variance σ2
e is set to either 0.02 or 0.04, normalized to

the average power received from a given distance, set to 50 m and 75 m, and indicated in the

figure with ε50 and ε75 respectively. We observe that only by empirically fine-tuning the nor-

malized variance value can the grey curves (representing the simpler model) approach the

black curves, where the estimation error model accounts for time-varying interference, and

is thus tightly related to the system parameters. This shows that in a multiple-access context

our model is significantly better and easier to use than the traditional Gaussian approach.

The length of the training sequence L is a key parameter, affecting both channel estima-

tion and network performance in a non-trivial way. A longer training sequence improves

the estimation accuracy, see (2.20), but also causes greater overhead, thus decreasing the effi-
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ciency of all transmissions (recall that a training sequence is added to the transmission of all

packets except ACKs, see Section 2.1). To quantify this concept, consider Figure 2.6, where

throughput is plotted against L for λ = 500 and λ = 800 pkt/s/node. The figure highlights

that throughput is low in two opposite conditions, i.e., when L is too small and when it is

too large. In the first case, the overhead imposed by channel estimation is negligible, but

channel estimates are unreliable: therefore, nodes experience low transmission success ratio

and throughput. Conversely, when L is large, channel estimates are very reliable, but a large

fraction of the MAC frame is occupied by the training sequence: this leaves little room for

data and results in low throughput as well. Referring to Figure 2.6, the optimal setting (from

a throughput point of view) strikes a balance between low overhead and good channel esti-

mation, and depends on the type of estimator, as well as on λ: for example, MMSE requires

L = 128 if MAC-level throughput has reached saturation (λ = 800, see Figure 2.4), but only

L between 32 and 64 for λ = 500, which causes lower traffic, hence interference: therefore,

the required channel estimation accuracy is also lower. A similar argument holds for CORR

as well: however both λ = 500 and 800 lie in the MAC throughput saturation region, unlike

in the MMSE case: this explains the smaller differences between the two CORR curves.

In order to better assess the impact of the overhead due to channel estimation, we intro-

duce two different efficiency metrics. The first, named transmission efficiency, is defined as

the ratio of correctly received information bits over all sent bits, averaged over all nodes and

frames. This definition allows to balance between the greater estimation accuracy (thus bet-

ter probability of success) and the greater overhead incurred by increasing the length of the

training sequence, L. However, it does not explicitly depend on the behavior of the protocol

(e.g., on the way receivers are chosen and links are set up), but only on PHY-level parame-

ters (i.e., L). For this reason we consider the class efficiency, which is more closely related to

ourMAC protocol. In each frame, we compute this metric as follows: we take the sum of the

number of PDUs ACKed by all receivers (provided that the ACK is correctly received); then

we consider the set of receivers of each transmitter, take the minimum class of the receivers

within each set, and sum all minimum classes (the minimum class within a set of intended

receivers in a frame has been introduced in Section 2.1). Finally, we take the ratio of the two,

and average it over all frames. Note that the minimum class depends on which receivers a

transmitter must send packets to (thus on the traffic pattern), and is determined during the
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Figure 2.7. Transmission efficiency and class efficiency as a function of L for both MMSE and CORR,

λ = 800 pkt/s/node, NA = 8.

RTS phase; conversely the number of correctly received PDUs (which is calculated based

on the information reported in ACKs) is a result of all protocol decisions within the frame.

Therefore the class efficiency represents a very protocol-specific outcome.

We highlight that, given a minimum class c, the best a transmitter can do is to have c

PDUs get through correctly to their receivers. In other words, the class efficiency metric is

equal to 1 if all transmitters can satisfy the latter condition in all frames. The transmission

efficiency and class efficiency metrics are plotted against L in Figure 2.7. Coherently with

throughput curves, transmission efficiency shows a maximum around L = 128 for MMSE

and L = 32 for CORR, but does not decrease to zero for low L. The latter represents a

particular network situation where most of the RTS packets are not decoded due to bad

channel estimation: this reduces traffic artificially, because nodes spend most of their time

in backoff. Therefore, very few data transmissions actually occur, and due to the very low

interference they almost always succeed. This makes the transmission efficiency significant,

despite the very low throughput. For very highL, instead, the overhead required by channel

estimation is very large, hence the transmission efficiency drops. The class efficiency exhibits

a more regular behavior: as L increases, the better accuracy of channel estimation allows
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Figure 2.8. Average PDU and RTS success ratio as a function of λ for both MMSE and CORR, for

L = 128 and NA = 8.

both more signaling packets and more PDUs to be received correctly, and therefore a larger

number of PDUs to be ACKed. Hence, class efficiency grows with L, is greatest at L = 128

for MMSE and stabilizes around a near-maximum value at very high L. For CORR, class

efficiency is monotonically increasing for increasing L: this is explained in terms of the

resulting larger traffic and lower probability of error, which makes it possible to correctly

convey more traffic through activated links.

To sum up, a good choice for L is found by jointly considering Figures 2.6 and 2.7: for

MMSE, the best value of L is around 128, which jointly optimizes throughput and efficiency;

for the poorer CORR estimator, L = 64 is good for throughput and transmission efficiency,

whereas class efficiency is suboptimal. However, a larger value would make little sense,

given the short length of signaling packets (200 bits), and choosing a larger value for L

would imply a waste of resources.

Up to this point, we have mostly considered the impact of imperfect CSIR on PDU recep-

tion. However, a second interesting effect is observed during the RTS/CTS exchange phases.

To explain this, let us consider Figure 2.8, which shows the average transmission success

ratios for RTSs and PDUs as a function of traffic for fixed L = 128, thus fixed channel esti-
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mation accuracy. For comparison, the curves for the perfect CSIR case are also shown. Even

in case of perfect CSIR, increasing traffic has a detrimental impact on RTS transmissions,

which is due to more frequent channel access by all nodes. The PDU success ratio, instead,

is more stable thanks to the way transmissions are granted (the CTS policy described in Sec-

tion 2.1, which tends to control interference). With imperfect CSIR, the success ratio of both

signaling packets and PDUs decreases even further, because of poor detections and wrong

cancellations. (Choosing e.g., L = 2048 would make the two sets of curves more similar.)

This shows that the throughput loss due to imperfect channel estimation is not simply due

to more frequent PDU losses, but also to corrupted signaling packets, which do not allow

links to be set up correctly.

2.3.2 The effect of different CSIR accuracy for signaling and data packets

Unlike before, let us allow the signaling packets and PDUs to use training sequences of

different lengths (Lsig and Ldata , respectively): by differentiating between estimation accu-

racy for signaling and data, we can get some more insight about how channel estimation

affects MAC performance. In Figure 2.9, we consider the MMSE estimator, and plot con-

tour curves of throughput and transmission efficiency as Lsig and Ldata are independently

varied from 1 to 2048. A greater Lsig yields better protection to RTSs: as more RTSs are cor-

rectly received, more links are established. Conversely, a greater Ldata protects PDUs, but

only those that have actually been sent. Therefore, a greater Ldata can increase throughput

significantly only if enough links can be established, i.e., only for high Lsig as well. For ex-

ample, take Lsig = 32: increasing Ldata causes throughput to increase up to roughly 40 Mbps

(for Ldata between 128 and 256), after which no further improvements are possible, because

the number of active links is limited by Lsig . Conversely, take Ldata = 32: increasing Lsig

initially improves throughput, but only up to roughly Lsig = 32. In fact, for greater Lsig

more RTSs are received correctly, hence more links are set up, and Ldata = 32 cannot en-

force a sufficiently accurate channel estimation to enable correct detections. Thanks to the

superposition of throughput and efficiency, Figure 2.9 allows to tune the working point on

the efficiency-throughput tradeoff by varying Lsig and Ldata . For example, to ensure an effi-

ciency of at least 0.5 and a throughput of at least 30 Mbps we can choose any pair of Lsig and

Ldata within the intersection of the corresponding contour curves. For example, the choice
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Figure 2.9. Contour curves of average transmission efficiency and throughput when using the MMSE

estimator. Curves are plotted as a function of the length of the training sequences used for signaling

messages (Lsig ) and PDUs (Ldata ), λ = 800 pkt/s/node, NA = 8. Each curve in the Figure is obtained

as the intersection of the efficiency or throughput surfaces as a function of Ldata and Lsig with a horizontal

plane corresponding to the efficiency or throughput value indicated by the label on each curve.

Lsig = 32, Ldata = 128 satisfies both constraints. Conversely, if the constraints are too strict

(e.g., an efficiency of 0.6 and a throughput of 40 Mbps) the requirements are incompatible

and the curves do not intersect. For comparison, note that CORR (Figure 2.10) achieves

worse performance, both in terms of maximum throughput and efficiency, and in terms of

tradeoff between the values of the two metrics.

In order to get a better grasp on the tradeoff between different performance figures as

a function of channel estimation accuracy, let us now choose two metrics between which

we evaluate a tradeoff for fixed packet generation rate λ. In Figure 2.11 we consider the

throughput and transmission efficiency values achieved by all (Lsig , Ldata) pairs, and plot

the convex hull of the resulting scatterplot: this allows to pick only the pairs that offer the

best (i.e., outermost) metric values. Power-of-2 pairs are shown using circles and crosses and

highlighted through labels. Note that, in order to get a denser scatterplot with a smoother

convex hull, we have also considered pairs where (Lsig and Ldata) are not powers of 2. Fig-

ure 2.11 shows the described plots for both MMSE and CORR, at λ = 500 (grey curves) and
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Figure 2.10. Contour curves of average transmission efficiency and throughput when using the CORR

estimator. Curves are plotted as in Figure 2.9.

λ = 800 packets per second per node (black curves). The important section of the curves is

the top-right corner, where the best combination of throughput and efficiency is achieved.

A good choice of (Lsig , Ldata) which optimizes throughput in spite of a suboptimal trans-

mission efficiency, is (32, 256) for MMSE and (128, 256) for CORR, at λ = 800. Note that the

λ = 500 curve for MMSE exhibits a flat region at the top-right corner, because this value of λ

lies in the linear increase region of MAC-level throughput, see Figure 2.4: as a consequence,

the maximum throughput achievable corresponds to delivering all generated PDUs; in turn,

the optimum values of (Lsig, Ldata) are just sufficient to ensure accurate channel estimation

for all packets. We highlight that transmission efficiency and class efficiency (the capability

of transmitters to saturate the minimum class among their set of receivers) are competing

constraints in terms of training length. Figure 2.12 plots the convex hull of the scatterplot

of class efficiency vs. throughput performance points, and clearly shows this fact. While

the values reaching optimal throughput (uppermost part of the curves) are the same as in

Figure 2.11, best class efficiency (rightmost part of the curves) requires quite higher values

of Lsig and Ldata .

The PDU transmission success ratio and average delivery delay are also important met-
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Figure 2.11. Convex hull of the scatterplot of transmission efficiency vs. throughput performance points

for varying pairs of Lsig and Ldata ,NA = 8. Some relevant points corresponding to power-of-two training

sequence lengths are highlighted for reference.

rics in a wireless network. The contour plot of these metrics is shown in Figure 2.13 for

MMSE. We observe that the optimal values for success ratio are expectedly found for high

Ldata; however, long training sequences excessively prolong the duration of the frame, lead-

ing to longer delivery delays: therefore, the best point for delay is around (128, 512). As

observed before, the CORR estimator requires longer training sequences to achieve suffi-

cient estimation accuracy; therefore, lower success ratios and higher delays are experienced,

the best point for delay being around (256, 1024), see Figure 2.14. We highlight that the lat-

ter point has only a purely theoretical meaning, suggesting that minimum delay is achieved

when links are set up as fast as possible (Lsig = 256 gives very good estimates for RTSs)

and data is protected from estimation errors (Ldata = 1024). The choice among the working

points discussed so far should depend on the primary metric to be optimized. Considering

the MMSE case, the best throughput is obtained at (32, 256), the best efficiency at (4, 64), the

best delay at around (128, 512). These could be jointly optimized by, e.g., defining objec-

tive functions which encompass different performance indications into a synthetic figure of

merit.
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Figure 2.12. Convex hull of the scatterplot of class efficiency vs. throughput performance points for vary-

ing pairs of Lsig and Ldata . Some relevant points corresponding to power-of-two training sequence lengths

are highlighted for reference.

A standard way to do so is to normalize metrics so that they take values in the interval

[0, 1], and consider a linear combination of thosemetrics withweights ωi such that
∑

i ωi = 1.

This corresponds to establishing a linear relationship between the value of a metric and the

“satisfaction” of the network designer with that metric [39, Chapter 3]. In this joint evalu-

ation, we consider throughput, transmission efficiency, class efficiency and delivery delay,

which we index from 1 to 4 and average using a weighing vector ω = [ω1, . . . , ω4]. In Fig-

ure 2.15 we consider three different vectors, namely [0, 0.5, 0.5, 0] (equal importance of trans-

mission efficiency and class efficiency), [0.4, 0.3, 0.3, 0] (giving importance to throughput and

then equally to the efficiency metrics) and [0.25, 0.25, 0.25, 0.25] (weighing all metrics uni-

formly). We observe that a different choice of weights moves the optimum performance

point from a low Lsig to a higher Lsig whenever the focus is on throughput rather than on

pure efficiency. Similarly, if delay is brought into the average, the optimum working point

is shifted toward even higher Lsig and Ldata, so that more links are established, packets are

more readily transmitted, and also correctly detected (by virtue of a high Ldata).



44 Chapter 2. MIMO Ad Hoc Networks

1 2 4 8 16 32 64 128 256 512 1024 2048
1

2

4

8

16

32

64

128

256

512

1024

2048

L
sig

L
d
a
ta

 

 

0.10.3

0.5

0.7

0.8

0.85

0.9

0.92

0.93

0.97

0.96

0.95
0.94

0.93

0.9
10

30

50

70

90

110
130

150

200

250
350

350

200
90

30
110

90130

150

Average PDU success ratio

Delivery Delay [ms]

Figure 2.13. Contour curves of average PDU transmission success ratio and delivery delay when using

the MMSE estimator. Curves are plotted as a function of the length of the training sequences used for

signaling messages (Lsig ) and PDUs (Ldata ), λ = 800 pkt/s/node, NA = 8.

2.3.3 Effect of Different Transmit Waveforms

In the previous section we have analyzed a multiuser MIMO networks employing either

correlator-based or MMSE channel estimators and we have then observed how PHY-level

parameters, such as the length of the training sequences, affect higher-level metrics, such

as throughput, efficiency, delay and success ratio. In the following, we consider the same

model used before with correlator-based channel estimator only and we evaluate the im-

pact of different pulse shapes introduced in Section 2.2.2.1 on the global performance of the

network.

Figure 2.16 shows throughput (in Mbps) as a function of traffic in case of both perfect

and imperfect CSIR (i.e., correlator-based channel estimator). All impulse types of Section

2.2.2.1 are considered. For this first comparison, the length of the training sequences is fixed

to L = 128. Figure 2.16 highlights the performance degradation incurred with imperfect

CSIR regardless of the particular choice of the transmit impulse g(t), as compared to the

case where perfect CSIR is available. In line with the observations in Figures 2.2 and 2.3,

pulses yielding a lower value of σ2
J correspond to better network performance. Taking the
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Figure 2.14. Contour curves of average PDU transmission success ratio and delivery delay when using

the CORR estimator. Curves are plotted as a function of the length of the training sequences used for

signaling messages (Lsig ) and PDUs (Ldata ), λ = 800 pkt/s/node.

two extreme cases, for L = 128 the value of σ2
J with the Sinc pulse is 4 times higher than with

the Gaussian pulse, a = 1: this translates into a difference of 8 Mbps in network performance

at the MAC level.

Similarly to the previous section, we now perform a different analysis by letting training

sequences for signaling and data packets have different length (i.e., Lsig and Ldata , respec-

tively). Figures 2.17 and 2.18 provide a representation of the tradeoff between throughput

and efficiency as a function of Lsig and Ldata by means of contour curves. In particular, Fig-

ure 2.17 refers to the use of a Gaussian pulse with a = 1, whereas Figure 2.18 corresponds to

a Sinc pulse. Both figures give first of all some general information about the main impair-

ments to a correct network behavior, namely the setup of a low number of links (due to a

low Lsig which leads to high probability of error for RTSs, see also comments of Figure 2.9),

and the insufficient accuracy of channel estimates for PDUs, due to a low Ldata. If either

is too low, both throughput and efficiency are limited. Note that throughput is low even if

Ldata is too small compared to Lsig, as the accuracy of channel estimates for PDUs becomes

insufficient to support traffic over all links set up by correct RTSs. Because network metrics
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are deeply affected by the accuracy of channel estimation, and in particular by the value of

σ2
J , transmit pulses leading to high σ2

J explain the worse performance. For example, Fig-

ure 2.17 shows that by choosing Lsig = 64 and Ldata = 256, a throughput of 25 Mbps and

an efficiency of 0.47 can be achieved. Conversely, not only is this working point not avail-

able to the Sinc case (Figure 2.18), but the best tradeoff is also shifted toward Lsig = 128,

Ldata = 256, which indeed achieves both lower throughput and worse efficiency, in spite of

longer training.

In order to make a better point about the tradeoffs involving all pulses discussed in

Section 2.2.2.1, we plot in Figure 2.19 the convex hull of the scatterplot of all points having

coordinates equal to the transmission efficiency–throughput pairs obtained for all pairs of

Lsig and Ldata. Figure 2.19 presents four such curves, related to a Gaussian pulse with a = 1,

a Sinc pulse, a rectangular pulse, and an RC pulse with α = 0.5. First, this figure allows to

establish a ranking among pulses, in that it is easy to figure out whether the Pareto-optimal

part of a curve (i.e., region of the curves closest to the upper-right corner of the graph)
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Figure 2.16. Average throughput as a function of λ for different types of transmit impulses and with

L = 128, compared to perfect channel estimation.

is dominated by other curves or not: for example, the Gaussian pulse achieves again the

best performance, whereas the Sinc pulse offers throughput-efficiency pairs with the lowest

values. As a second outcome, Figure 2.19 also allows to pick the “best” configurations, i.e.,

those that allow to travel along the Pareto-optimal convex hull section and thus make a

preference on throughput by sacrificing some efficiency, or vice-versa. In line with previous

results, we observe that those points characterized by a high throughput are reached only

through a higher Lsig when using pulses leading to higher σ2
J , e.g., the Sinc and RC pulses,

compared to the Rectangular and Gaussian pulses.

2.4 Conclusions

In this chapter, we have thoroughly assessed the impact of channel estimation accuracy

on the performance of aMAC protocol forMIMO ad hoc networks and pointed out the main

tradeoffs that arise. Channel estimation is a very relevant problem in wireless networks

using advanced PHY techniques such as spatial multiplexing and layered multiuser detec-

tion; in addition, the presence of several simultaneous and asynchronous signals makes the
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Figure 2.17. Contour curves of throughput and transmission efficiency as a function of the length of the

training sequences for signaling packets (Lsig) and for PDUs (Ldata), for the Gaussian pulse, a = 1.

problem more complicated than in traditional channel estimation. We have first described

an analytical model for the computation of the statistics of the channel estimation error. Our

analysis considers multiuser MIMO networks employing either correlator-based or MMSE

channel estimators, and highlights the direct dependence of the channel estimation error on

the instantaneous channel matrix, permitting an analytical evaluation of the interference di-

rectly in the channel estimation errors expression (see Equations (2.73) for MMSE and (2.74)

for correlator-based channel estimator). Moreover, we showed the interplay between the

transmit pulse shape and the variance of the channel estimates gathered by a correlator-

based channel estimator. The bias of channel estimates due to cross-talk among different

training sequences as well as among training sequences and data symbols has been quan-

tified; the parameters of the inverse proportionality relationship tying the variance of this

bias and the length of the training sequence have been quantified and related to pulse pa-

rameters such as the roll-off factor of RC pulses or the variance factor of Gaussian pulses.

The analyzed formulas for the statistics of the estimation errors have then been inserted

into a simulator for MIMO ad hoc networks with a detailed MAC implementation and used

to observe how PHY-level parameters, such as the length of the training sequences and the
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Figure 2.18. Contour curves of throughput and transmission efficiency as a function of the length of the

training sequences for signaling packets (Lsig) and for PDUs (Ldata), for the Sinc pulse.

number of antennas, affect higher-level metrics, such as throughput, efficiency, delay and

success ratio. Our approach makes it possible to evaluate the robustness of networking pro-

tocols against channel estimation inaccuracies and interference, and to understand how to

control the impact of channel errors in order to achieve prescribed tradeoff points among

MAC-level metrics. Finally, we evaluate the impact of different pulse shapes on the perfor-

mance of the network.
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Figure 2.19. Convex hull of the scatterplot of throughput-transmission efficiency points for different types

of transmit impulses. The most important tradeoff choices on the hull are labeled for reference.



Chapter3

Cooperative Routing Techniques in

Cognitive Radio Networks

The wireless medium opens up the possibility for the coexistence of different networks

through appropriate interferencemanagementmechanisms. In particular, a scenariowherein

a hierarchy exists between a “primary” network, whose performance should be guaranteed,

and a “secondary” network, whose nodes must respect strict requirements so as not to inter-

fere with the primary network, is attracting increasing attention under the label of “cognitive

radio”. One approach to cognitive radio prescribes the primary network to operate as if the

secondary nodes were not present and the secondary nodes to limit their interference to the

primary receivers below an acceptable level [40]. In this work, instead, we consider an al-

ternative approach based on a combination of the principles of opportunistic routing and of

the “spectrum leasing via cooperation” framework of [41, 42]. In fact, the problem of scarce

radio spectrum availability and the inefficiency of traditional fixed spectrum management

schemes call for new communications paradigms for spectrum sharing [43]. Spectrum leas-

ing is one such paradigm in which licensed users are allowed to lease portions of the spec-

trum to unlicensed users. In a standard implementation, spectrum leasingwould be effected

at a system level with “spectrum servers” allocating resources to secondary users [44, 45].

Moreover, secondary users would be charged for their use of the spectral resources. Instead,

references [41,42] propose a novel approach in which spectrum leasing is performed locally

and dynamically by primary devices and remuneration from secondary to primary takes

place in the form of cooperation. In the approach of [41, 42], secondary nodes accept to
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cooperate only if granted enough spectrum with respect to their desired QoS requirements.

This work proposes to implement spectrum leasing via cooperation in a multihop sce-

nario by means of opportunistic routing.

Opportunistic routing is a well-known technique that aims at increasing the throughput

of multihop networks over fading channels by exploiting the channel diversity offered by

the availability of multiple possible next hops. In particular, selection of the next hop is

made in an opportunistic fashion based on the channel conditions, and thus decoding out-

comes, of previous transmissions of the given packet, thanks to appropriate feedback from

the decoders. The next Section 3.1 studies the throughput advantages of opportunistic rout-

ing over conventional multihop routing for linear multihop wireless networks with Type-I

HARQ and quasi-static Rayleigh fading channels. We recall that in Type-I HARQ error cor-

rection coding is used, but previous undecodable transmissions are discarded and detection

is done only based on the current transmission [46]. The end-to-end throughput of oppor-

tunistic routing is derived using Markov chain tools and accounting for fading statistics.

Both fixed-rate and optimal-rate transmissions are considered. Moreover, an investigation

of the throughput using standard information-theoretic performance metrics for asymptotic

SNR regimes is provided. Specifically, the multiplexing gain and energy efficiency (i.e., min-

imum energy per bit) of both opportunistic and multihop routing are analyzed. Numerical

results are given to corroborate the analysis.

In Section 3.2, different policies that exploit spectrum leasing via opportunistic routing

to different degrees are proposed. These policies are designed to span different operating

points in the trade-off between gains in throughput and overall energy expenditure for the

primary network. Moreover, two physical layer techniques are considered for multiplexing

of the primary and secondary traffic at the secondary nodes, namely time division and Su-

perposition Coding (SC). The optimality of the proposed routing techniques is proved, in

terms of both throughput and primary energy consumption of SC over all possible multi-

plexing strategies. Finally, numerical results demonstrate the advantages of the proposed

spectrum leasing solution based on opportunistic routing and the available trade-offs be-

tween primary throughput and energy consumption.1

1The material presented in this chapter has been published in [47–49].
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3.1 Opportunistic Routing Analysis

Multihop routing is a conventional strategy used to forward a packet from source to

destination through a number of hops in wireless ad hoc networks. Analysis of this class of

protocols from a communication and information-theoretic standpoint has been pioneered

by [50] under the assumption of links affected by additive white Gaussian noise only (i.e.,

no fading). This work shows that multihop transmission, with or without spatial reuse,

performs very well in the power-limited regime (i.e., for low, SNRs), but becomes inefficient

in the bandwidth-limited regime (i.e., for high SNRs). Analysis in the power-limited regime

is performed using the standard measure of minimum energy per bit (over noise spectral

density) required for a reliable transmission, Eb/N0|min. Reference [51] extends these re-

sults to non-ergodic fading channels by studying the end-to-end outage probability, while

ergodic fading is considered in [52]. Finally, [46] studies the end-to-end throughput for the

same class of networks of [51] by assuming HARQ protocols to combat channel outages.

However, no asymptotic SNR analysis is provided in [46].

As introduced above, a new routing paradigm has been introduced that potentially im-

proves on standard multihop routing by exploiting the availability of multiple possible next

hops in an adaptive manner: the next relay is selected based on the current channel condi-

tions (and thus reception outcomes), as well as the distance to the destination [53–59]. These

works focus on proposing different protocols to select the next hop based on alternative

metrics.

In this section, we consider a linear multihop network over quasi-static fading channels

as in [46, 51]. Our contributions are as follows:

(i) We derive the end-to-end throughput of opportunistic routing with Type-I HARQ;

(ii) We address the asymptotic regimes of high SNR (i.e., bandwidth-limited) and low

SNR (i.e., power-limited) for both multihop and opportunistic routing, by studying

the multiplexing gain and minimum energy per bit Eb/N0|min of the two schemes [60].

Throughout, we consider both the cases where the transmission rate is fixed and where the

transmission rate can be optimized based on channel statistics.
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Figure 3.1. A linear multihop network with k hops over quasi-static fading channels.

3.1.1 System model

We consider a linear multihop network, where the source F0 wants to communicate

with the destination Fk at a normalized distance of one, possibly taking advantage of a set

of k− 1 relays, F1, ..., Fk−1, equally spaced with inter-node distance ∆ = 1/k, as depicted in

Figure 3.1. All nodes work in half-duplex mode (i.e., they cannot receive and transmit at the

same time). Transmission is organized in blocks of n (complex) channel uses each. Recall

that, from standard theory, n (complex) channel uses over a bandwidth ofW Hz amount to

n/W seconds in the absence of bandwidth expansion (see, e.g., [61]).

In each block, only one node (source or relay) is active, i.e., no spatial reuse is allowed.

In the first block, the source F0 transmits a packet of nR bits, where R is the rate of the first

transmission in bits/c.u. (channel use), or equivalently (in the absence of bandwidth expan-

sion) in bits/s/Hz (throughout the section, we will use bits/c.u. or bits/s/Hz interchange-

ably). In the following blocks, the source may retransmit the packet or else the relays, upon

decoding previous transmissions, may forward or retransmit the packet, until the final des-

tination Fk correctly receives it. We will discuss different transmission policies in the next

sections. In general, it is assumed that transmission of each block is followed by some sig-

naling, such as ACK/Not ACKmessages. When the current packet is successfully received,

a new packet is transmitted by the source F0, and the procedure repeats. Notice that this

amounts to assuming the source is always backlogged.

Let yj(b, t) be the discrete-time (complex) baseband sample received by node j, j ∈
{F1, . . . , Fk} during the b-th block, at channel use t, t = 1, . . . , n:

yj(b, t) =

(
k

|j − i|

)η/2
hij(b)xi(b, t) + zj(b, t), (3.1)

where zj(b, t) is the complex white Gaussian noise term with zero mean and power

E[|zj(b, t)|2] = N0 and xi(b, t) is the symbol transmitted by the currently active node i, i ∈
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{F0, . . . , Fk−1}. We enforce the per-block power constraint

1

n

n∑

t=1

E

[
|xi(b, t)|2

]
≤ P. (3.2)

The channel coefficient between the i-th transmitter and the j-th receiver in (3.1), hij(b),

models quasi-static Rayleigh fading, i.e., it is a complex Gaussian random variable with

zero mean and unit power, which is assumed to be constant within each block. Moreover, it

is assumed to vary independently from block to block. Channels are known to the receivers

but not to the transmitters. Finally, the term (k/ |j − i|)η/2 in (3.1) represents the path loss

over the distance d = |j − i| /k (i.e., |j − i| hops) between transmitter i and receiver j with

path-loss exponent η.

From (3.1), we define the SNR γ as the ratio between the maximum average power re-

ceived by Fk directly from source F0 and the noise power N0, that is

γ =
P

N0
. (3.3)

With this definition, we have that γ/dη is the SNR for a transmission that covers distance d.

Let Pout(d) denote the probability that a certain packet transmitted by node i is not de-

coded correctly by node j with d = |j − i| /k. It is well known that this probability is given

by the outage probability (see, e.g., [61]):

Pout(d) = Pr
{
log2

(
1 + |hij |2γd−η

)
≤ R

}

= 1 − exp

(
−2R − 1

γd−η

)
, (3.4)

where we have used the fact that fading is Rayleigh.

We are interested in comparing the throughput, measured in bits/s/Hz, of multihop

and opportunistic routing, both coupled with Type-I HARQ. The next section defines the

throughput and evaluates it for these two strategies.

3.1.2 Throughput Analysis

The goal of this section is to determine the end-to-end throughput for both multihop and

opportunistic routing. We define the throughput T (k,R) as the average number of success-

fully delivered bits per second per Hz, given the total number of hops k and the transmission

rate R. Using renewal theory, it is possible to show that (see, e.g., [62]):

T (k,R) =
nR

nE[N ]
=

R

E[N ]
[bits/s/Hz], (3.5)
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where N is the number of transmission blocks necessary to transmit a given packet cor-

rectly, starting from the original transmission by the source F0 until correct decoding at the

destination Fk.

While definition (3.5) applies to the case where the transmission rate R is selected by the

application and fixed, in many scenarios devices can tune their transmission rate. Therefore,

we also consider an alternative definition of throughput T ∗(k), in which the transmission

rate R is optimized:

T ∗(k) = sup
R≥0

T (k,R). (3.6)

Notice that there is a clear and well-known trade-off in the optimization of R: increasing R

allows to send more bits to the destination (increasing the numerator in (3.5)), but also leads

to an increased error probability and therefore to more transmissions (thus increasing the

denominator in (3.5)). We also emphasize that optimization of rate R in (3.6) only requires

knowledge of the channel statistics (and not of the instantaneous values) at the source.

The rest of the section derives the end-to-end throughput (3.5) and (3.6) for both multi-

hop and opportunistic routing with Type-I HARQ.

3.1.2.1 Multihop Routing

With multihop routing, each packet goes through all the k hops: the source F0 retrans-

mits the packet until relay F1 decodes it successfully; then, the link between F1 and F2 is

operated in the same way, and so on, until the destination Fk decodes correctly. Assuming

Type-I HARQ on each hop, previous retransmissions are discarded at each receiver and the

probability of outage for any transmission is given by (3.4) with d = ∆. Thus, we easily

evaluate the throughput (3.5) with fixed rate R as:

Tmh(k,R) =
R

E[N ]
=
R

k
(1 − Pout(∆))

=
R

k
exp

(
−2R − 1

γkη

)
, (3.7)

where the number of retransmissionsN is a geometric random variable with success proba-

bility given by (1−Pout(∆)). Moreover, note that the result in Eq. (3.7) can also be interpreted

by observing that each slot contains a successful transmission with probability 1 − Pout(∆),

and since all transmitters use the same fraction of slots on average, the probability that a

successful slot corresponds to a packet reaching the final destination is 1/k.
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For the throughput with optimized rate, we easily extend the result in [63] for a single-

hop network (k = 1) to obtain the following Lemma.

Lemma 3.1.1. The end-to-end throughput for a multihop scheme with k hops and optimized rate is

given by

T ∗
mh(k) =

R∗
mh

k
exp

(
−2R

∗

mh − 1

γkη

)
, (3.8)

with

R∗
mh =

W0 (kηγ)

loge 2
, (3.9)

whereW0(z), known as the LambertW function, is the unique solution of the equation

W(z) eW(z) = z, for z > 0. (3.10)

3.1.2.2 Opportunistic Routing

With opportunistic routing, after each (re)transmission of the current packet, all decod-

ing nodes issue an ACK message. If the destination is among the decoding nodes, trans-

mission of the current packet is terminated and the next packet is transmitted by the source

F0. Otherwise, the transmitter for the next hop is selected opportunistically as the decoding

relay that is the closest to the destination. The exact mechanism as to where and how the

decision is made is not of concern here, and has been studied in [55–58]. With opportunis-

tic routing, the average number E[N ] of hops per packet can potentially be greatly reduced

with respect to standard multihop routing, thus boosting the throughput (3.5) and (3.6).

To derive the throughput of opportunistic routing, we use the theory of Markov chains.

Specifically, there are k + 1 states in the chain, one for each node in the linear network,

with state S0 referring to scenarios where the current packet is at the source F0, states Si,

i = 1, . . . , k − 1, similarly defined, and Sk representing the state where the destination has

successfully decoded. Recalling that we assume Type-I HARQ, the current transmitter re-

transmits the packet until at least one of the downstream nodes has successfully decoded.

Based on this, the transition matrix can be found as

P =




PS,S(0, 0) . . . PS,S(0, k)

0
. . .

...

0 0 PS,S(k, k)


 , (3.11)
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where PS,S(i, j) is the probability that, given that the current state is i (i.e., the transmitter

is node i = 0, ..., k − 1), the next state is j (i.e., the next relay is j for j = i, i + 1, ..., k −
1 or the destination has decoded for j = k). The first k states are transient and the last

state, corresponding to the packet having been received at the destination, is absorbing. The

transition probabilities are given by:

PS,S(k, k) = 1; (3.12)

PS,S(i, j) = (1 − Pout((j − i)∆))
k∏

ℓ=j+1

Pout((ℓ− i)∆),

i = 0, . . . , k − 1, j = i, . . . , k; (3.13)

PS,S(i, j) = 0, otherwise. (3.14)

Proposition 3.1.2 (End-to-end Throughput of Opportunistic Routing). The throughput (3.5)

for fixed transmission rate R of opportunistic routing is given by

Topp(k,R) =
R

v0
, (3.15)

where v0 is the first entry of vector v = [v0, . . . , vk−1], which is evaluated as

v = (I − Q)−1
1, (3.16)

where 1 is a (k − 1) × 1 vector with all entries equal to 1, matrix Q is obtained from P by removing

the last row and the last column and I is the (k − 1) × (k − 1) identity matrix.

Proof. The proposition follows from the theory of absorbing Markov chains (see, e.g., [64,

Section. 4.5]). Let vi be the expected number of steps before the chain is absorbed given that

the chain starts in state Si, i = 0, . . . , k − 1. Then, from standard first-step analysis, we have

the set of equations (which is recursive, due to the triangular form of matrix (3.11)):

vi = 1 +
∑

j 6=k

PS,S(i, j) vj with i 6= k, (3.17)

Equation (3.16) is readily obtained from the matrix formulation for such set of equations

(see, e.g., [64, Section. 4.5]).

Remark 3.1.1. When k is large, closed-form (i.e., non-recursive) expressions for (3.15) are very

involved. Here, we report the throughput for k = 2 (the expressions for k = 3 and k = 4 are
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reported in Appendix A):

Topp(2, R) =

R

[
1 −

(
1 − e

− 2R
−1

2ηγ

)(
1 − e

− 2R
−1

γ

)]

2 − e
− 2R

−1
γ

. (3.18)

Unfortunately, a closed-form expression for T ∗
opp(k) appears to be hard to find. In the

next section, we shed some light on the performance analysis by focusing on asymptotic

SNR regimes for both multihop and opportunistic routing.

3.1.3 Asymptotic Analysis

In this section, we focus on the asymptotic regimes of high and low SNR.

3.1.3.1 High SNR (Bandwidth-Limited Regime)

Consider first the case where the SNR is large (i.e., the bandwidth-limited regime). For

a fixed transmission rate R, it is meaningful to consider the value of the throughput (3.5)

as γ → ∞, since the throughput remains necessarily finite, being bounded by R. However,

when optimizing the transmission rate R, the throughput (3.6) scales with SNR, so that it is

more meaningful to study the multiplexing gain, defined as (see, e.g., [61]):

lim
γ→∞

T ∗(k)

log2 γ
. (3.19)

Proposition 3.1.3 (High-SNR Characterizations). The high-SNR throughput (3.5) with fixed

transmission rate R is given by:

lim
γ→∞

Tmh(k,R) =
R

k
, (3.20)

for multihop routing, whereas for opportunistic routing we have

lim
γ→∞

Topp(k,R) = R. (3.21)

When rate R is optimized, the multiplexing gain of throughput (3.6) is

lim
γ→∞

T ∗
mh(k)

log2 γ
=

1

k
, (3.22)

for multihop routing, whereas for opportunistic routing we have the bounds

lim
γ→∞

T ∗
opp(k)

log2 γ
= 1. (3.23)
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Proof. The results (3.20) and (3.21) follow easily from the fact that Pout(d) → 0 for a fixed

rateR and any d. Specifically, for opportunistic routing, this implies that direct transmission

from source to destination is successful with high probability.

The multiplexing gain in (3.22) is derived from eq. (9) in [63], conveniently adapted.

Finally, to show (3.23), we prove that:

1 − ǫ ≤ lim
γ→∞

T ∗
opp(k)

log2 γ
≤ 1, (3.24)

where ǫ > 0 is arbitrarily small. The upper bound follows from cut-set arguments: the

throughput of opportunistic routing cannot be larger than the throughput of a systemwhere

relays and destination fully cooperate for decoding. Moreover, the throughput of the latter

system is upper bounded by its ergodic capacity, i.e., by

E[log2(1 +
k∑

j=1

|h0j |2γ(k/j)η)], (3.25)

whosemultiplexing gain is one [61]. This follows immediately from the definition of through-

put, noting that the latter can be written as

E[R · 1(log2(1 +
k∑

j=1

|h0j |2γ(k/j)η)) < R)] ≤ E[ log2(1 +
k∑

j=1

|h0j |2γ(k/j)η))], (3.26)

where 1(·) is the indicator function. To obtain the lower bound in (3.24) it is enough to

consider the following suboptimal transmission scheme: set the rate at

R(γ) = log2 γ
(1−ǫ) (3.27)

and consider only the link between source and destination. This scheme clearly sets a lower

bound on the achievable throughput, namely

T ∗
opp(k) ≥ R(γ) exp

(
−2R(γ) − 1

γ

)
. (3.28)

Letting ǫ be arbitrarily small in (3.24) we conclude the proof.

Discussion of the results of Proposition 2 is postponed to Section 3.1.4.

3.1.3.2 Low SNR (Power-Limited Regime)

We now focus on the energy efficiency of multihop and opportunistic routing. Specifi-

cally, we evaluate the minimum energy per bit required for reliable transmission, which is



3.1. Opportunistic Routing Analysis 61

defined as [60]
Eb(k,R)

N0

∣∣∣∣
min

= inf
γ

γ

T (k,R)
(3.29)

for transmission with fixed rate R and

Eb(k)
∗

N0

∣∣∣∣
min

= inf
γ

γ

T ∗(k)
(3.30)

for transmission with optimized rate. As already explained in Section 3.1, this is a stan-

dard measure on the performance of transmission schemes [60] and has been considered in

related routing scenarios in [50, 51].

Proposition 3.1.4 (Energy Efficiency of Multihop Routing). The minimum energy per bit for

multihop routing with fixed transmission rate is given by:

Eb(k,R)

N0

∣∣∣∣
min,mh

= inf
γ

γ

Tmh(k,R)

= e k1−η 2R − 1

R
, (3.31)

whereas for optimized rate, we have:

Eb(k)
∗

N0

∣∣∣∣
min,mh

= inf
γ

γ

T ∗
mh(k)

= e k1−η loge 2. (3.32)

Proof. The first equality, (3.31), is obtained by noticing that the convexity of the exponential

function implies that γ/Tmh(k,R) is also convex, and therefore the minimum is foundwhere

its derivative is zero. The optimal value of the SNR, which maximizes energy efficiency, is

γ = (2R − 1)k−η. (3.33)

For (3.32) we first note that the quantity

γ

T ∗
mh(k)

=
kγ loge 2

W0(kηγ)
exp

(
1

W0(kηγ)
− k−η

γ

)
, (3.34)

where we have exploited the equation exp (W(z)) = z/W(z), is an increasing function of

the SNR and therefore:

inf
γ

γ

T ∗
mh(k)

= lim
γ→0

γ

T ∗
mh(k)

. (3.35)

We then expand (3.34) using the first two terms of the Taylor expansion of

W0(z) =
∞∑

n=1

zn(−n)n−1/n! (3.36)
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(see, e.g. [63]) to obtain the approximation for small SNR

γ

T ∗
mh(k)

∼= k loge 2

kη − k2ηγ
exp

(
1

1 − kηγ

)
.

The proof is concluded by evaluating the limit (3.35).

Remark 3.1.2. We emphasize that, from the proof given above, the value of SNR that maxi-

mizes the energy efficiency (3.29) for multihop routing with fixed transmission rate is γ =

(2R−1)k−η, whereas if one allows optimal rate selection (3.30) the optimal γ → 0. This is due

to the well-known fact that energy efficiency is maximized at vanishing spectral efficiencies,

that is R→ 0 and γ → 0, if one can optimize the transmission rate [60].

Remark 3.1.3 (Wideband slope for multihop routing). Beside the minimum energy per bit

Eb/N0|min, reference [60] defines also the slope S0 of the spectral efficiency at Eb/N0|min

in order to provide a more complete description of the rate behavior in the power-limited

regime. This can be easily calculated for multihop routing with optimized rate and is given

by [60]:

S0,mh = −
2

[
Ṫ ∗
mh(k)

∣∣∣
γ=0

]2

T̈ ∗
mh(k)

∣∣∣
γ=0

=
2

e k
[bits/s/Hz/(3dB)], (3.37)

where Ṫ ∗
mh(k)|γ=0 and T̈ ∗

mh(k)|γ=0 denote the first and second derivative of the end-to-end

throughput curve evaluated in nats/s/Hz with γ = 0. Note that the slope of the throughput

of the multihop (and opportunistic) routing for fixed rate turns out not to be well-defined

due to the fact that (see Remark 3.1.2) the energy Eb/N0|min is not attained for vanishing

throughput (see also discussion in [60]).

General expressions for energy efficiency in the case of opportunistic routing are difficult

to obtain. In the rest of section, we consider some approximation for k = 2.

3.1.3.2.1 Energy-EfficiencyApproximations forOpportunistic routing Herewe consider

analytical approximations for the minimum energy per bit with fixed rate and k = 2,

Eb(2, R)/N0|min,opp, and optimized rate, Eb(2)∗/N0|min,opp (recall (3.29) and (3.30), respec-

tively). The approximations are based on suboptimal choices for the optimal SNR in (3.33)
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Figure 3.2. End-to-end throughput of opportunistic routing, Topp(k,R) (solid lines), and multihop rout-

ing, Tmh(k,R) (dashed lines), versus SNR, γ, for transmission rate R = 1 [bits/s/Hz] and η = 3.

and optimal rate in (3.9), that are expected to be close-to-optimal. The key observation is

that, for low SNR, opportunistic routing will be often forced to use all the hops like multi-

hop routing. Therefore, setting the optimal SNR and rate to the corresponding optimal SNR

and rate for multihop routing (namely γ = (2R − 1)k−η and R∗
mh = W0 (kηγ) / loge 2) leads

to potentially good approximations. Using these choices, we obtain

Eb(2, R)

N0

∣∣∣∣
min,opp

= inf
γ

γ

Topp(2, R)

≃ e
(
2 e2η −1

) (
2R − 1

)

2η (e + e2η −1)R
(3.38)

for fixed rate, and

Eb(2)∗

N0

∣∣∣∣
min,opp

= inf
γ

γ

T ∗
opp(2)

≃ e
(
2 e2η −1

)
loge 2

2η (e+ e2η −1)
, (3.39)

for optimized rate. Our numerical results show that indeed these are good approximations.
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Figure 3.3. End-to-end throughput of opportunistic routing, T ∗

opp(k,R) (solid lines), and multihop rout-

ing, T ∗

mh(k,R) (dashed lines), versus SNR, γ, for optimized rate and η = 3.

3.1.4 Numerical Results

Here we provide some numerical results to corroborate the analysis above. We first

study the end-to-end throughput versus SNR for both fixed rate (Figure 3.2) and optimized

rate (Figure 3.3). Startingwith fixed rate, Figure 3.2 shows the end-to-end throughput versus

SNR for different numbers of hops k = {2, 3, 4}, path loss η = 3 and transmission rateR = 1

[bits/s/Hz]. It is seen that for sufficiently large SNR (i.e., γ % 10 dB), the asymptotic results

of Proposition 3.1.3 apply. In particular, as per (3.20) and (3.21), while opportunistic routing

is able to attain the maximum throughput of Topp(k, 1) = 1 [bits/s/Hz] for every k, multihop

routing shows the well-known performance degradation in the bandwidth-limited regime

(recall beginning of Section 3.1), which amounts here to a factor of k, i.e., Tmh(k, 1) = 1/k

[bits/s/Hz]. Turning to the performance with optimized rates, Figure 3.3 confirms the ad-

vantages of opportunistic routing and validates the results in Proposition 3.1.3: when the

SNR is large enough (here, γ % 20 dB), the throughput of opportunistic routing increases

with a slope independent of k and larger by a factor of k with respect to multihop routing.

We now explicitly consider the throughput ratio ρ = T ∗
mh(k)/T

∗
opp(k) between multihop

and opportunistic routing in Figure 3.4 for different path loss exponents η = {2.5, 3, 4} and
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Figure 3.4. Ratio ρ = T ∗

mh(k)/T ∗

opp(k) between the throughput of multihop and opportunistic routing

versus SNR, γ, for k = {2, 4} and η = {2.5, 3, 4} and optimized rate.

k = {2, 4} versus SNR for optimized rate. The figure points out that opportunistic routing

has better gains for smaller path loss exponents (η = 2.5), due to the larger number of relays

that are potentially reachable at each transmission and may thus serve as next hop.

Finally, Figure 3.5 focuses on the energy efficiency of the considered schemes by showing

the throughput versus the energy per bit over noise power spectral density, i.e., Eb/N0 =

γ/T ∗(k) (recall (3.30)), for k = {2, 3, 4}, path loss η = 3 and optimized rate. First of all,

we note that the simulation results confirm the values analytically derived in (3.32) for the

minimum energy per bit (Eb(k)
∗/N0|min,mh = {−3.27,−6.79,−9.29} dB for k = {2, 3, 4})

and in (3.37) for the slope S0,mh of the multihop case (see Figure 3.5). We also note that

the approximation given by (3.39) is close to the value found in the simulation, which uses

a brute-force approach to find the optimum rate R∗
opp (Eb(2)∗/N0|min,opp ≃ −3.27 dB)2. It

is also concluded that opportunistic routing fails to outperform multihop routing in the

power-limited regime, being unable to exploit the path diversity, unlike in the bandwidth-

limited regime.

2Also for the fixed rate case the simulation results are consistent with (3.38).
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Figure 3.5. End-to-end throughput of opportunistic routing, T ∗

opp(k) (solid lines), and multihop routing,

T ∗

mh(k) (dashed lines), versus Eb/N0 for η = 3 and optimized rate.
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3.2 Spectrum Leasing via Cooperative Opportunistic Routing

As we introduced at the beginning of this chapter, the main idea of this remaining sec-

tion is that secondary nodes may serve as potential hops for a primary network that routes

packets based on opportunistic routing, under the condition that the secondary nodes are

leased enough spectral resources to satisfy their QoS requirements as well. In other words,

secondary nodes may accept to serve as next hops, but, in return, if selected, they require to

be leased part of the spectrum for their own transmissions. The primary network, thanks to

spectrum leasing via cooperative opportunistic routing, may gain on two fronts:

(i) Throughput, due to the improved multiuser diversity in the selection of the next hop that

is afforded by the availability of secondary nodes;

(ii) Primary energy consumption, due to the fact that transmissions can be delegated to the

secondary network.

This work studies the trade-off between these two metrics by proposing protocols that work

at different operating points of this trade-off. The analysis accounts for different possible

multiplexing techniques at the secondary nodes, namely Time DivisionMultiplexing (TDM)

and SC (see, e.g., in [61,65]). It is proved that SC is optimal in terms of both throughput and

primary energy consumption over all possible multiplexing strategies.

3.2.1 SystemModel and Multiplexing Techniques

In Figure 3.6 we show a primary and a secondary network that coexist via spectrum

leasing. The aim of the primary source P0 is to communicate with the primary destination Pk,

at a normalized distance of one, possibly taking advantage of multihop routing through two

sets of additional nodes placed along two parallel linear geometries with vertical distance

∆V. Both sets are composed of k− 1 nodes: the first one is formed by primary nodes, denoted

by P1, . . . , Pk−1 whose only role is that of forwarding information from P0 to Pk; the second

set of nodes, instead, consists of secondary (unlicensed) nodes S1, . . . , Sk−1 that can access the

channel only if spectrum is leased by the primary network, as will be discussed below. Pri-

mary nodes have ∆H = 1/k inter-node distance. The secondary nodes are aligned with the

primary nodes, and thus have the same inter-node distance. More generally, we will con-

sider a partial secondary deployment in which only one every α secondary nodes in Figure 3.6
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Figure 3.6. A primary linear multihop network (grey circles) with k hops and a secondary network (white

circles) aligned with respect to primary relay nodes.

is active so that the number of secondary nodes is k/α − 1 (assumed to be an integer) with

inter-node distance α∆H. For simplicity, where not stated otherwise, we will assume α = 1

in the following. This work relies on geometrical simplifying assumptions with the objective

of having both a solvable theoretical model and an insightful analysis of spectrum leasing

via cooperative routing techniques. More general network topologies will be considered in

Appendix C.

As in Section 3.1.1, all devices considered cannot receive and transmit at the same time,

i.e., half-duplex mode is considered. Transmission is organized in blocks of n (complex)

channel uses each, where only one node is active (i.e., no spatial reuse is allowed). In the

first block, the source P0 transmits a packet of nRP bits, where RP is the transmission rate of

the original (primary) transmission in bits/s/Hz. In the following blocks, retransmissions

take place, if necessary, according to a Type-I HARQ process (i.e., error correction coding is

used, but previous undecodable transmissions are discarded and detection is only based on

the current transmission [46]). Retransmissions in each block may be done by the source P0,

or by the primary relays P1, . . . , Pk−1 or secondary nodes S1, . . . , Sk−1, as long as the latter

have correctly decoded in the previous block. After the packet is correctly delivered to the

destination, the primary source P0 transmits a new packet and the process repeats.

3.2.1.1 Opportunistic Routing and Spectrum Leasing

The next hop decisions in the network are made by primary nodes based on the feedback

received at the end of the previous block from all nodes that have successfully received

the packet. Thanks to this information (i.e., which nodes, both primary and secondary,

were able to decode the packet transmitted in the previous block), the primary network
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can schedule transmissions in an opportunistic fashion based on the channel conditions, and

thus the decoding outcomes, in previous blocks. The exact mechanism as to where and

how the decision is made is not of concern here, and has been studied in [56]. Channel

resources for feedback allocation will not be included in the analysis (as usually considered

in the literature on opportunistic routing), assuming that the feedback information will be

available to the primary nodes as required by the different protocols to be introduced below.

As discussed above, secondary nodesmay serve as relays for the current primary packet.

However, secondary nodes follow the spectrum leasing via cooperation (relaying) principle

stated in [41]: in fact, they do not cooperate for free, but they accept to serve as relays only

if they are granted sufficient resource for their own traffic as well.

In this section we evaluate TDM and SC as two techniques to multiplex primary and

secondary traffic. Specifically, in the TDM approach primary and secondary data are multi-

plexed by the secondary node Si in the time domain: a portion β of the time slot is used to

forward the primary packet and the remaining part to transmit own data in the secondary

network. SC, instead, is a physical layer technique in which a transmitter can simultane-

ously send independent messages to multiple receivers. Specifically, the secondary node

transmits a signal obtained by superimposing the packet carrying its own data and the pri-

mary packet intended for the primary network. In particular, the secondary transmitter

encodes and modulates both packets at the selected rates and scales the power of each mod-

ulated symbol to match the chosen power split, assigning a portion 0 ≤ ψ ≤ 1 to the primary

packet and 1 − ψ to its own packet. Finally, the complex baseband symbols (or waveforms

with pass band representation) are added to obtain the transmitted signal. So, the shared

resource in this approach is the transmitted power [65]. Both the time fraction β for TDM and

the power fraction ψ for SC are selected by the primary and secondary nodes so as to satisfy

their own QoS requirements in terms of rate and reliability, which are expressed in terms of

outage probabilities as explained below after introducing the signal model.

3.2.1.2 Signal Model and Secondary QoS Requirements

Considering a transmission from node Ni ∈ {P0, . . . , Pk−1, S1, . . . , Sk−1}, let
yNiNj

(b, t) denote the discrete-time (complex) baseband sample received by node Nj , with



70 Chapter 3. Cooperative Routing Techniques in Cognitive Radio Networks

Nj ∈ {P1, . . . , Pk, S1, . . . , Sk−1}, during the b-th block, at channel use t, t = 1, . . . , n:

yNiNj
(b, t) = d

−η/2
NiNj

hNiNj
(b)xNi

(b, t) + zNj
(b, t), (3.40)

where d
−η/2
NiNj

is the path loss between theNi-th transmitter and theNj-th receiver with power

path-loss exponent η. The distance dNiNj
can assume three forms (see also Figure 3.6):

(a) if both nodes Ni and Nj lie on the same line, i.e., for transmissions between primary

relays or secondary nodes, dNiNj
is given by |j − i|∆H;

(b) if Ni is the source P0 and the destination is a primary or secondary relay or Ni is a relay

and Nj is the destination Pk, dNiNj
is equal to ∆(T,D)

|j−i|, where

∆(T,D)
a =

√
(a∆H)2 + (∆V/2)2;

(c) finally, if the transmission is between two relays, one in the primary network and one

in the secondary, dNiNj
= ∆(R)

|j−i| with ∆(R)
a =

√
(a∆H)2 + ∆2

V.

The channel coefficient between transmitter Ni and receiver Nj is represented by hNiNj
(b),

and assumed to be quasi-static Rayleigh fading, i.e., it is a complex Gaussian random vari-

able with zero mean and unit power, assumed to be constant within each block, but to vary

independently from block to block. The channel state information hNiNj
(b) is not known to

the transmitterNi, but only to the receiverNj . Network geometry, and thus distances dNiNj
,

are known to all nodes. The term xNi
(b, t) represents the discrete-time (complex) baseband

sample transmitted by the scheduled node Ni ∈ {P0, . . . , Pk−1, S1, . . . , Sk−1}, with the fol-

lowing per-symbol power constraint:

E

[
|xNi

(b, t)|2
]
≤ EN, t = 1, . . . , n (3.41)

where EN is equal to EP or ES when the transmitter is a primary or a secondary node,

respectively (i.e., Ni ∈ {P0, . . . , Pk−1} or Ni ∈ {S1, . . . , Sk−1}). Finally, we let zNj
(b, t) be

the complex white Gaussian noise term with zero mean and power E[
∣∣zNj

(b, t)
∣∣2] = N0. We

assume randomly generated Gaussian codebooks throughout.

We define γP as the SNR for primary users, which is given by the ratio between the

maximum average energy directly received by Pk from the source P0 and the noise power

N0:

γP =
EP

N0
. (3.42)
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Hence, for a transmission from a primary node that covers a distance d the average SNR is

γPd
−η. For consistency, the transmission from a secondary node that covers a distance d is

given by γSd
−η, with

γS =
ES

N0
. (3.43)

To derive the time fraction β for TDM and the power fraction ψ for SC that meet the QoS

requirements of the secondary users, we assume that each secondary nodewants to transmit

at rate RS to a node at distance dS with outage probability ǫS. In Sections 3.2.1.4 and 3.2.1.5

derivations of β and ψ are derived, respectively.

3.2.1.3 Outage Probabilities for Primary Transmission

Consider transmission from a primary node Pi. Assuming that the coding block is long

enough, the probability that a packet transmitted by the primary node Pi is not decoded

correctly by a node (primary, Pj , or secondary, Sj) at distance d
3 is given by [61]:

Pout,P(d) = Pr
{
log2

(
1 + |h|2γPd−η

)
≤ RP

}
= 1 − exp

(
−2RP − 1

γPd−η

)
. (3.44)

3.2.1.4 Outage Probabilities for Secondary Transmission: TDM

Secondary nodes transmit both primary and secondary data according to the spectrum

leasing via cooperation principle. So, we need to evaluate the two corresponding outage

probabilities. Recalling that the secondary node transmits the primary packet for a fraction

β of the time, we start with TDM.

Let P (TDM)

out,SP(d) define the outage probability of a primary packet transmitted by a sec-

ondary node, at a distance d. Similarly to (3.44), this is given by:

P (TDM)

out,SP(d) = Pr
{
β log2

(
1 + |h|2γSd−η

)
≤ RP

}
= 1 − exp

(
−2RP /β − 1

γSd−η

)
. (3.45)

Notice that the rate for secondary transmissions of the primary packet needs to be increased

to RP /β to compensate for the fact that only a fraction of time β is used for primary data.

3In the rest of this work, for simplicity, we do not write explicitly the expressions of distance, dNiNj
, and

channel coefficient, hNiNj
, between transmitter Ni and receiver Nj , but only d and h, with the understanding

that the subscript NiNj is implied.
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Similarly, the outage probability of a secondary packet transmitted by a secondary node

is given by

P (TDM)

out,SS(d) = 1 − exp

(
−2RS /(1−β) − 1

γSd−η

)
. (3.46)

The choice of β depends, as discussed above, on the QoS requirements of the secondary

nodes. Recalling that a fraction 1 − β of the time is used for the secondary’s own traffic and

imposing the condition on the outage probability in (3.46) as P (TDM)

out,SS(dS) = ǫS, we obtain:

β = 1 − RS

log2

[
1 − loge (1 − ǫS) γSd

−η
S

] . (3.47)

3.2.1.5 Outage Probabilities for Secondary Transmission: SC

With SC, the secondary node sends the sum of two (complex) codewords, one for the

primary with power ψES and one for the secondary with power (1 − ψ)ES.

We consider a receiver that employs two decoders in parallel. The first decoder attempts

to decode the desired packet (primary for a primary node and secondary for a secondary)

by treating the undesired packet, which is superimposed, as additive Gaussian noise. The

second decoder, instead, first attempts to estimate the undesired packet, cancels it from the

received signal and then decodes the desired packet from the interference-free signal. The

overall decoder successfully obtains the desired message if either one of the two decoders

discussed above decodes correctly (this can be checked via cyclic redundancy check (CRC),

see for instance [62]). It is noted that this decoder is capacity-achieving for the Gaussian

broadcast channel [65]. Further discussion on this issue can be found in Section 3.2.2.6.

For the SC approach, the outage probability for a primary packet transmitted by a sec-

ondary node Si to a node Nj (primary or secondary) at distance d can be found to be given

by

P (SC)

out,SP(d) = Pr

{
log2

(
1 +

|h|2ψESd
−η

N0 + |h|2(1 − ψ)ESd−η

)
≤ RP

∩
[(

log2

(
1 +

|h|2(1 − ψ)ESd
−η

N0 + |h|2ψESd−η

)
≤ RS

)
∪
(

log2

(
1 +

|h|2ψESd
−η

N0

)
≤ RP

)]}

(3.48)

= Pr
{
|h|2 ≤ min

(
H(1)

P ,H(2)
P

)}
= 1 − exp

[
−min

(
H(1)

P ,H(2)
P

)]
, (3.49)

where the threshold H(1)
P and H(2)

P are defined below. The first term in (3.48) represents the

outage probability of the first decoder, in which the interference (i.e., secondary packet) is
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treated as noise. The remaining term is the outage probability of the successive decoding

scheme, where the receiver first decodes the secondary packet and then the primary one.

The outage probability of the latter decoder measures the event that decoding of either the

secondary packet in the first stage or the primary in the second stage is incorrect. The over-

all outage probability (3.48) is the probability that both the first and the second decoder fail.

As such, in equation (3.49), H(1)
P and H(2)

P represent the minimum values that the channel

coefficient |h|2 can assume without causing an outage for the two decoders. These thresh-

olds can be evaluated for the first decoder (which treats interference as noise) and for the

successive decoding scheme as

H(1)
P =





∞, 0 ≤ ψ ≤ 1 − 2−RP

2RP−1
(1−(1−ψ)2RP )γSd−η , 1 − 2−RP < ψ ≤ 1

(3.50)

H(2)
P =





max
{

2RS−1
(1−ψ2RS )γSd−η

, 2RP−1
ψγSd−η

}
, 0 < ψ < 2−RS

∞, ψ = 0 and 2−RS ≤ ψ ≤ 1
(3.51)

Notice from (3.50), (3.51) that if the allocated power is too small, the channel gain threshold

values for which there is no outage become infinite (i.e., outage occurs with probability one

for all finite channel gains).

Similarly to (3.48), the outage probability that a secondary packet (superimposed with

a primary message) transmitted by a secondary node Si is not decoded correctly by a sec-

ondary node Sj placed at distance d is given by

P (SC)

out,SS(d) = 1 − exp
[
−min

(
H(1)

S ,H(2)
S

)]
, (3.52)

where H(1)
S and H(2)

S are

H(1)
S =





2RS−1
(1−ψ2RS )γSd−η

, 0 ≤ ψ < 2−RS

∞, 2−RS ≤ ψ ≤ 1
(3.53)

H(2)
S =





∞, 0 ≤ ψ ≤ 1 − 2−RP and ψ = 1

max
{

2RP−1
(1−(1−ψ)2RP )γSd−η ,

2RS−1
(1−ψ)γSd−η

}
, 1 − 2−RP < ψ < 1

(3.54)

As with TDM in Section 3.2.1.4, given the secondary QoS requirements (dS, RS, ǫS), one

can obtain the resource allocation parameter ψ. While for TDM this could be easily done in

closed-form (3.47), for SCwe had to resort to a numerical solution of the equationP (SC)

out,SS(dS) =

ǫS, for a given rate pair (RP,RS).
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The next section defines the performance criteria of interest in this work, i.e., primary

throughput (recalling the definition given in Section 3.1.2, Equation (3.5)) and average pri-

mary energy consumption, and proves the superiority of the SC scheme over TDM.

3.2.2 Throughput and Primary Energy Analysis

The goal of this section is to first define the performance metrics of interest, then intro-

duce four routing policies that exploit spectrum leasing via opportunistic routing to different

degrees, and finally show the optimality of SC.We fix the primary rateRP and the secondary

QoS requirements (dS, RS, ǫS) or equivalently the parameters β and ψ. Notice that these pa-

rameters can be calculated by the secondary network and made known to the primary, that

can then decide which form of spectrum leasing (if any) is convenient.

Similarly to (3.5) in Section 3.1.2, let T (k,RP,Q) be the primary end-to-end throughput,

defined as the average number of successfully transmitted bits per second per Hz, given

the total number of hops k, the primary transmission rate RP and the parameter Q, which

represents the secondary QoS constraints (dS, RS, ǫS) or equivalently the parameter β for

TDM or ψ for SC. Using renewal theory, the throughput can be calculated as

T (k,RP,Q) =
RP

E[N ]
, (3.55)

where N is the total number of blocks, including both primary and secondary transmissions,

necessary to transmit a given packet correctly from the source P0 to the destination Pk.

We also define the primary energy E(k,RP,Q) as the average overall energy used by the

primary network to deliver a packet successfully. We measure this quantity via the number

of blocks involving primary transmissions that are necessary to correctly deliver a packet

from the source P0 to the destination Pk,

E(k,RP,Q) = E[NP], (3.56)

where NP represents the number of primary transmissions.

We now detail the four proposed transmission policies for the primary packets. We

remark that all four policies are based on a Type-I HARQ so that decoding is performed

in each block by discarding previous transmissions. Extension to more complex forms of

HARQ is possible but would lead to a different analysis and is left as future work. All

policies are implemented using both receiver techniques introduced above (i.e., TDM and
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SC). Note that the policy descriptions below apply identically to both cases, as they only

differ at the PHY level.

3.2.2.1 Policy 1: only Primary (only-P)

The only-P policy does not exploit spectrum leasing and is introduced here for reference.

Only the primary nodes are involved in transmissions. A basic opportunistic routing strat-

egy is assumed. Accordingly, in each block the transmitter is selected opportunistically as

the primary node that has decoded the previous transmission and is the closest to the desti-

nation. Since we assume Type-I HARQ, the current transmitter retransmits the packet until

at least one of the downstream nodes has successfully decoded. A new packet is transmitted

by P0 as soon as the destination Pk decodes successfully.

3.2.2.2 Policy 2: only Secondary (only-S)

The only-S policy aims minimizing the primary transmissions, and thus the primary

energy consumptionE(k,RP,Q) (3.56), thanks to spectrum leasing, while possibly suffering

some throughput loss. This is accomplished by forcing the source to send the information

only through secondary nodes {S1, . . . , Sk−1}, i.e., without exploiting any primary relay

{P1, . . . , Pk−1} and thus the multiuser diversity arising from their presence as well. The

only primary (re)transmissions allowed are thus from the source P0. So, only-S has the same

topology of only-P, but a different exploitation of the relays. In fact, when a secondary

relay is considered as transmitter, only a portion β of the time-slot is used to transmit the

primary packet and also the transmission power may be different (i.e., EP 6= ES in general).

An opportunistic routing scheme is used on the secondary network, where transmission is

granted to the secondary node that has decoded the previous transmission and that is the

closest to the destination.

3.2.2.3 Policy 3: Primary to Secondary (P-to-S)

The only-S policy introduced aboveminimizes the primary transmissions thanks to spec-

trum leasing, but may suffer from a poor throughput as, once the packet has entered the

secondary network, the multiuser diversity arising from the presence of primary nodes,

and their transmission power, is not leveraged. So the main limitation of only-S is the scarce
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Figure 3.7. An illustration of the P-to-S policy. Spectrum leasing is performed from node P1 to S3, with

backward window with parameterm = 2.

exploitation of the primary relays as the next hop. The P-to-S policy, proposed here, and the

P-and-S policy, to be discussed in the next subsection, attempt, to different extents, to offer

a better trade-off between primary throughput and energy that does not disregard through-

put and multiuser diversity and that can be controlled via a parameterm.

In the only-S policy, the source P0 retransmits until at least one secondary node, or the

destination Pk, decodes. If a primary relay decodes, the policy does not use it. With P-to-S,

the idea instead is to use primary relays unless a secondary node in a “sufficiently good”

position, as dictated by m, has decoded. From that point on, the packet is handled by the

secondary network as in the only-S strategy.

Specifically, at each block in which a primary node is transmitting, the primary network

first determines the type of relay closest to the destination that has successfully decoded. If

the latter node is a secondary, it is selected for the next hop. If it is a primary, in order to

save primary energy, the node is selected only if the best secondary node is at least m hops

behind. In other words, the next transmitter is selected as either the primary node at hand

or the closest secondary node as long as the latter is within a window of m hops from the

position of the primary node toward the source. This windowwill be referred to as backward

window and we generally have 0 ≤ m ≤ k − 2.

The idea is illustrated in Figure 3.7, where a possible scenario in which P1 is the current

transmitter, P4 is themost advanced decoding node (a black cross indicates a nodewhich has

not successfully decoded) andm = 2. Before selecting node P4 as the next hop, the primary

network checks whether any secondary relay within the backward window {S4, S3, S2} has

decoded the packet. If this is the case, the transmitter picks the most advanced such node

as the next hop. In this particular example, relay S3 is selected, because node S4 has not
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successfully decoded. Note that S1 is outside the backward window, and cannot be used even

though it has successfully decoded the packet (a grey dotted cross is used to highlight that

this node cannot be selected).

3.2.2.4 Policy 4: Primary and Secondary (P-and-S)

In the P-to-S policy, when a packet enters the secondary network, it cannot return to

the primary one, except for the final destination Pk. This is again done in an attempt to

save the primary energy, but it limits the multiuser diversity and the resource available to

the secondary transmitter, causing a throughput reduction. The proposed P-and-S policy

removes this constraint to favor throughput maximization. The policy is again described by

a parameterm.

Let us start with m = 0. The idea here is simply to select in each block the node that is

the closest to the destination among those that have decoded, irrespective of whether such

node is primary or secondary. This strategy clearly privileges primary throughput, since

it exploits all the transmission opportunities afforded by the network. In order to obtain

a more controllable trade-off between throughput and energy, we generalize this policy by

lettingm > 0 and operating as follows.

Let m > 0. The policy extends P-to-S allowing transmissions from secondary back to

primary relays, but with a constraint on theminimumprogress given by the so called forward

window. In particular, if the transmitter is a primary node, the strategy works as for the P-

to-S policy. However, if the transmitter is a secondary, in order to enhance throughput, we

enable the selection also of primary nodes, as long as the primary node to be selected is at

least m hops ahead of the most advanced secondary decoding node. Thus, a primary relay

can receive the packet from a secondary node only if it is outside the forward window, which

is of sizem hops4 and starts from the most advanced decoding secondary node towards the

destination.

We remark that the use of the backward window and the forward window is quite different:

the backward window includes the secondary relays that can be selected as next hops when a

primary node is the current transmitter; the forward window includes the primary relays that

cannot be selected as the next hop when a secondary node transmits.

4In principle, one could choose two different sizes for forward and backward windows, but this is not further
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Figure 3.8. An illustration of the P-and-S policy. The transmission granted is handed between secondary

relays S1 and S2.

In Figure 3.8 we illustrate a possible scenario, where relay S1 is the current transmitter

and m = 2. Node S2 is the most advanced secondary decoding relay (nodes that have not

decoded are marked with a black cross), whereas the best decoding primary relay is P3.

However, nodes P2 and P3 cannot be selected for the next hop because they are inside the

forward window (a gray dotted cross indicates this fact). Therefore, the P-and-S policy selects

node S2 in this case.

3.2.2.5 Evaluating Primary Throughput and Energy

In order to evaluate the performance metrics throughput (3.55) and average primary en-

ergy (3.56) for the protocols discussed above, we use the theory of Markov chains, as simi-

larly done in Section 3.1.2.2. In this case, wemodel the network with a chain of 2k states, one

for each primary and secondary node. State P0 refers to a situation where the current packet

is at the source P0, the primary states Pi and secondary states Si, i = 1, . . . , k − 1, are sim-

ilarly defined, and Pk represents the state where the destination has successfully decoded.

Recalling that we assume Type-I HARQ, the current transmitter retransmits the packet until

at least one of the nodes admitted by the specific policy has successfully decoded. So, the

transition matrix is organized in four blocks as

Φ =


 ΦP,P ΦP,S

ΦS,P ΦS,S


 , (3.57)

where the states are ordered as P0, P1, . . . , Pk, S1, . . . , Sk−1, and ΦA,B, A,B ∈ {P, S} are the

submatrices that collect all the transition probabilities from nodes of type A (Primary, P , or

investigated here.
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Secondary, S) to B. In general, in matrix ΦA,B the term ΦA,B(i, j) represents the probability

that, given the current state Ai (i.e., the transmitter is node Ai, with i = 0, . . . , k− 1 if A = P

and i = 1, . . . , k − 1 if A = S), the next state is Bj , with j = i, i + 1, . . . , k when B = P and

j = 1, . . . , k − 1 if B = S (this is because the policies allow backward transmissions if the

receiver is a secondary node).

In matrix (3.57), the first k states and the last k−1 states are transient, whereas the k+1-th

state, corresponding to the packet being received at the destination, is absorbing. Depend-

ing on the routing policy adopted, the transition probabilities will assume different expres-

sions and will be detailed in the Appendix B. The average primary energy and throughput

are derived as detailed in the Lemma below, which follows from standard Markov chain

theory [66, Cap. 3] (see also Proposition 3.1.2).

Lemma 3.2.1. The end-to-end throughput (3.55) and the primary energy (3.56) for fixed primary

transmission rate RP are given by

T (k,RP,Q) =
RP

vP0

and E(k,RP,Q) = wP0 , (3.58)

where vP0 and wP0 are the first elements of vectors

v = [vP ,vS ] = [vP0 , . . . , vPk−1
, vS1 , . . . , vSk−1

] (3.59)

and

w = [wP ,wS ] = [wP0 , . . . , wPk−1
, wS1 , . . . , wSk−1

], (3.60)

which are evaluated as

v = (I − Q)−1
1 and w = (I − Q)−1

r, (3.61)

where 1 is a (2k − 1) × 1 vector with all entries equal to 1 and r is the reward vector

r = [rP , rS ] = [rP0 , . . . , rPk−1
, rS1 , . . . , rSk−1

] (3.62)

where rP is a k× 1 vector with all ones, rS is a (k− 1)× 1 vector with all zero elements and I is the

(2k−1)× (2k−1) identity matrix. Finally, matrix Q is obtained from Φ by removing the (k+1)-th

row and the (k + 1)-th column.
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3.2.2.6 Optimality of SC approach

In [67] the authors consider the outage capacity of a two-user quasi-static fading broad-

cast channel when the transmitter has no information about the instantaneous state of the

channel. It is proved that SC with Gaussian codewords is optimum. The following Propo-

sition uses this result to prove that, in our system, the considered SC scheme is optimal for

both throughput and primary energy consumption, that is, it is the best among all possi-

ble multiplexing schemes to be employed by the secondary nodes. We recall that, when

transmitting, the secondary nodes multiplex primary and secondary messages.

Proposition 3.2.2 (Optimality of Superposition Coding). Fix primary rate RP, secondary QoS

requirements (dS, γS, RS, ǫS) and any of the proposed routing strategies. The following holds:

(i) Any throughput T (k,RP,Q) that can be attained by any multiplexing scheme of primary and

secondary codewords (not necessarily randomly generated according to a Gaussian codebook)

at the secondary nodes can also be achieved by the SC scheme with Gaussian codewords studied

in Section 3.2.1.5;

(ii) The primary energy E(k,RP,Q) used by the SC scheme is no larger than the amount of energy

expended by any other multiplexing scheme.

Proof. Consider any multiplexing scheme at the secondary node Si. In our model, let

M ⊂ {P1, . . . , Pk, S1, . . . , Sk−1} (3.63)

denote the set with cardinality |M| = M of primary and secondary receivers that, depend-

ing on the specific routing strategy, try to decode the primary message and let N (2) be the

intended receiver of the secondary message. Fix the outage probability of such scheme at all

nodes. We want to show that for given outage probabilities, SC can achieve rates as large as

any other scheme. This would prove that SC is also throughput and primary energy optimal.

It can be easily argued that, since the probability of outage at each receiver only depends on

the corresponding fading channel, there areM thresholds kN(1) that represent the minimum

channel values |hSiN(1) |2, ∀N (1) ∈ M, that allow receivers to successfully decode the pri-

mary packet. Similarly, the secondary node is in outage if and only if |hSiN(2) |2 < kS , where

kS is the threshold on its channel coefficient [67]. Moreover, it can be argued that if decoding
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is successful at the threshold channel values, it must also be successful for larger channel val-

ues. So, fix such channel thresholds. Rates (RP,RS) will be correctly decoded if and only if

they are inside the capacity region of the Gaussian (non-fading) broadcast channel with the

given channel coefficients. In particular, one can focus on the two-user broadcast channel

formed by the secondary user and the primary channel with the worst overall channel (since

decoding of the primary packet at this node also implies decoding at the better nodes). It is

known that Gaussian SC can achieve any point in the capacity region of the Gaussian broad-

cast channel with an outage probability no larger than any other scheme [65]. Therefore, SC

is optimal for both throughput and primary energy: the minimal outage probability leads to

both an optimal throughput, due to the fact that fewer retransmissions are necessary, and a

decreased primary energy, due to the larger number of secondary relays that are potentially

reachable at each transmission by the proposed routing schemes.

3.2.3 Numerical Results

In this last part of the chapter we first provide some numerical evidence about the supe-

riority of SC over TDM, which was proved in Proposition 3.2.2. Then, focusing on the SC

scheme, we elaborate on the advantages of spectrum leasing and on the design of the pro-

posed schemes. Throughout this section we fix the following parameters: number of hops

k = 12, path loss η = 3, geometry of the network ∆V = ∆H = 1/k and transmitting power

of secondary users ES = EP (then also the SNRs are equal, γP = γS = γ, see Section 3.2.1.2).

We consider two secondary deployments: (i) Full (α = 1) and (ii) Partial (α > 1). As for

the secondary QoS requirementsQ, we assume that each secondary node wants to transmit

its own traffic at rate RS to a node with SNR equal to γ at distance dS = 1/10 with outage

probability ǫS = 0.1.

A comment on the calculation of the secondary transmission parameters based on the

QoS requirements Q is in order. For TDM, from (3.47), the time fraction β is equal to 0.83,

for RS = 1 bits/s/Hz and regardless of RP. As for SC, the value of ψ that satisfies the sec-

ondary QoS constraint P (SC)

out,SS(dS) = ǫS in (3.52) is not necessarily unique, but depends on the

particular decoder employed, namely treating interference as noise (H(1)
S in (3.53)) or adopt-

ing a successive decoding scheme (H(2)
S in (3.54)). We select the solution that maximizes the

primary rate, i.e., the highest feasible ψ.
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Figure 3.9. End-to-end throughput and overall primary energy as a function of the primary transmission

rate RP for a network with the same number of primary and secondary relays (k − 1) (full secondary

deployment) for k = 12 hops, SNR γ = −3dB, m = 1 and RS = 1 bits/s/Hz. Each line is obtained by

varying the transmission rate RP as {1.8, 2.4, 2.7, 2.9, 3.2, 3.4, 3.6, 3.9, 4.1, 4.8, 5.2} bits/s/Hz.

3.2.3.1 Comparison of SC and TDM

Figure 3.9 evaluates the gain of SC scheme over TDM for P-to-S and P-and-S policies, by

varying the primary transmission rate RP in a full secondary deployment for γ = −3dB,

m = 1 and RS = 1 bits/s/Hz. Each curve is obtained by evaluating the pair end-to-end

throughput and primary energy of a given scheme (i.e., SC or TDM) and policy for different

RP and keeping all the other parameters fixed. For the rest of this section, the primary energy

E(k,RP,Q) is expressed in dB, i.e. 10 log10E(k,RP,Q). Figure 3.9 confirms the optimality

of the SC scheme for both P-to-S and P-and-S, regardless of RP. In fact, as already proved in

Proposition 3.2.2, the better outage provided by SC results in a better throughput and in a

primary energy saving. It is also seen that, for each policy, there exists a rate that maximizes

the throughput. Such rate is different for distinct policies. For example, the throughput-

optimal rates in the SC scheme for only-P (i.e., no spectrum leasing) is RP = 3.9 bits/s/Hz,

for P-to-S is RP = 3.2 bits/s/Hz and for P-and-S is RP = 3.6 bits/s/Hz. In order to reduce

the primary energy consumption, at the cost of a reduced throughput, one can decrease the
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Figure 3.10. End-to-end throughput and overall primary energy of P-and-S policy plotted varying RS

for a network with full secondary deployment and with less secondary relays (k/α−1) than primary nodes

(k − 1) (partial secondary deployment) for α = 4, k = 12 hops, transmission rate RP = 2.7 bits/s/Hz,

γ = −8dB andm = 1.

transmission rate RP for all policies except P-to-S. In fact, in general, a lower transmission

rate causes a wider coverage range of the primary transmission. So, when the transmission

rate is low the progress towards the destination increases, and this makes it less likely that

a packet enters the secondary network. Thus, when the transmission rate decreases in the

P-to-S policy, it is more likely to remain in the primary network, which leads to a higher

primary energy consumption. It is finally noted that the energy gain of spectrum leasing

over the only-P (no spectrum leasing) policy are substantial irrespective of the choice of the

transmission rate. Moreover, spectrum leasing combined with the SC scheme outperforms

only-P (no spectrum leasing) in terms of throughput for RP < 4.8 bits/s/Hz.

The impact of secondary QoS requirements, quantified by parameter RS, for full and

partial secondary deployment with α = 4 is considered in Figure 3.10 for only P-and-S pol-

icy and for γ = −8dB, m = 1 and RP = 2.7 bits/s/Hz. The throughput and primary

energy superiority of SC scheme over TDM is confirmed also in this case, regardless of RS.

Particularly, SC scheme is less affected by secondary rate variations, due to the better out-
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Figure 3.11. End-to-end throughput and overall primary energy plotted varying the SNR, γ, for a network

with full secondary deployment, for k = 12 hops, primary transmission rate RP = 2.9 bits/s/Hz,m = 1

and RS = 1 bits/s/Hz. Each line is obtained by varying γ as {−20,−15,±10,±8,±5,±3, 0}dB.

age probability reached by this scheme respect to TDM, with equal constraints. Moreover,

the throughput performances of only-P (no spectrum leasing) are outperformed by P-and-S

policy with SC scheme for RS < 2.6 bits/s/Hz. Finally, we note that partial deployment

presents a better throughput when RS > 3.2 bits/s/Hz respect to full deployment. In fact,

when RS is high, avoid using secondary nodes (and the partial deployment does) leads to a

gain in terms of outage probability. This gain is reduced when RS decreases, (i.e. when sec-

ondary transmissions are preferable respect to primary transmissions) due to the secondary

nodes which require a lower portion of the transmitting power to forward its own data.

3.2.3.2 Design and Advantages of Spectrum Leasing

In the rest of this section we numerically evaluate the impact of secondary relays on the

primary network only. Given the discussion above for SC and TDM, we focus only on the

optimal scheme SC to numerically study the spectrum leasing features. We first study the

trade-off between end-to-end throughput and the overall primary energy consumption as

a function of the SNR γ for two different secondary nodes deployments (full in Figure 3.11
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Figure 3.12. End-to-end throughput and overall primary energy plotted varying the SNR, γ, for a

network with partial secondary deployment for α = 3, k = 12 hops, primary transmission rate

RP = 2.9 bits/s/Hz, m = 1, RS = 1 bits/s/Hz and γ that assumes the following values

{−20,−15,±10,±8,±5,±3, 0}dB.

and partial, with α = 3, in Figure 3.12), fixing the remaining protocol parameters to m = 1,

RP = 2.9 bits/s/Hz and RS = 1 bits/s/Hz. Each curve is obtained by evaluating the pair

end-to-end throughput and primary energy of a given policy for different γ (ranging from

−20 dB to 10 dB), thus different ψ, and keeping all the other parameters fixed. From Figure

3.11, it is seen that, with the given parameters, spectrum leasing policies with full secondary

deployment aremore energy efficient with respect to the only-P policy (no spectrum leasing),

especially as the SNR decreases, due to the larger benefits afforded by opportunistic routing.

Such gains, while still substantial, decrease with a partial secondary deployment as

shown in Figure 3.12 for α = 3. In both cases, however, when γ ≃ −20dB, the secondary

QoS requirements are satisfied only with ψ close to 0, where the throughput of the spectrum

leasing policies is almost 0, due to the low power assigned to the primary packet. Moreover,

when the SNR decreases, the throughput of only-S and P-to-S is affected by the partial de-

ployment due to the longer secondary hops. In this case, the P-and-S policy is to be preferred

as it is able to keep the same level of throughput of Figure 3.11 (but with larger primary en-
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Figure 3.13. End-to-end throughput and overall primary energy shown varyingm for a network with full
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γ = −3dB and RS = 1 bits/s/Hz. The lines are obtained by varyingm from 0 to 10.

ergy). Better performance can be obtained by optimizing on the forward and backward window

sizem, as discussed next.

Figure 3.13 shows end-to-end throughput and primary energy by varying m for full

and partial secondary deployment with α = 4 and for parameters γ = −3 dB, RP =

3.4 bits/s/Hz and RS = 1 bits/s/Hz. Similar to the discussion above, the P-and-S policy

outperforms only-S and P-to-S from a throughput point of view, especially in the partial sec-

ondary deployment scenario. The only-S policy in the full secondary relay scenario is very

close to the performance of P-to-S for highm, and is not visible in the graph. However, this

behavior confirms the strict relationship between these two policies, especially for high m.

Moreover, it is clear that the parameter m allows to trade-off energy and throughput. For

the policies P-to-S and P-and-S, increasingm (m ≥ 4) trades throughput for a decreased pri-

mary energy consumption, due to the larger number of secondary transmissions admitted.

When m is sufficiently low (m ≤ 4), the throughput increases differently in P-to-S and P-

and-S. For the P-to-S policy, which employs only the backward window and blocks secondary

transmissions to primary relays, the throughput and primary energy are larger due to the
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Figure 3.14. End-to-end throughput and overall primary energy plotted varying RS for a network with
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lower number of secondary nodes available to lease the spectrum. In P-and-S this limit is

overcome by removing the block from the secondary transmissions and by introducing the

forward window. Thus, due to the capability of exploiting more path diversity, the P-and-S

policy is able to obtain larger throughputs (for larger energy consumptions) than P-to-S.

Finally, in Figure 3.14, we consider the impact of RS on the four policies for the SC

scheme, for full and partial secondary deployment with α = 4, γ = −3 dB, RP = 2.9

bits/s/Hz and m = 1. We note that increasing the secondary QoS requirements (i.e., in-

creasing RS) leads to a decreased throughput without affecting the primary energy for all

policies, except P-and-S. Indeed, in all policies except P-and-Smodifying RS does not change

the number of primary transmissions, but only the amount of power leased to the primary

network. Instead, for P-and-S an higher RS leads to both a decreased throughput and an

increased primary energy, due to the larger number of secondary transmissions towards

primary nodes. In fact, when RS is high the number of secondary transmissions increases,

but also the possibility to return on the primary network increases as well. If this happens,
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the next hop will be covered by a primary transmission thus consuming primary energy.

Moreover, with partial secondary deployment for α = 4, P-and-S confirms to be able to best

adapt to the lack of secondary nodes, by increasing primary transmissions. This causes a

larger primary energy, but to a smaller extent than only-S and P-to-S.

3.3 Conclusions

The first goal of this chapter was to study the end-to-end throughput of opportunis-

tic routing with Type-I HARQ over a linear multihop wireless network. Special empha-

sis was given on the impact of the number of hops and the path loss on the performance

advantages with respect to multihop routing, by studying the asymptotic performance in

the bandwidth-limited and power-limited regimes. Our study quantifies the gains achiev-

able in the high-SNR (bandwidth-limited) regime for both fixed and optimized transmission

rates, while showing negligible advantages in the low SNR (power-limited regime). Given

the effectiveness of multihop routing in the power-limited regime, these results make op-

portunistic routing an excellent candidate to solve the performance limitations identified

in [50,51] for multihop routing in the bandwidth-limited regime (see Section 3.1). We finally

remark that this work relies on several simplifying assumptions, and does not account for

spatial reuse, and thus interference, [50,52]. Moreover, it should be noted that opportunistic

routing, when considering other criteria such as delay and congestion, may not always be

desirable (see, e.g., [59]). These aspects will be considered in future work.

In the second part of the chapter, a novel approach to regulate the coexistence of primary

and secondary nodes in multihop networks based on spectrum leasing and opportunistic

routing is proposed. In particular, it is proposed that primary nodes may, in a local and dy-

namic fashion, select secondary nodes as next hops for primary traffic by allowing the latter

to exploit the spectral resource for secondary data with QoS guarantees. This approach is

an implementation of the previously proposed idea of spectrum leasing via cooperation.

We have designed different routing strategies based on this principle that provide different

trade-offs between gains in terms of primary throughput and energy. Moreover, we have

shown that secondary nodes can optimally multiplex primary and secondary traffic using a

physical layer strategy known as superposition coding. Our results demonstrate the effec-

tiveness of the proposed paradigm.



Chapter4

Conclusions

In this Thesis we discussed several issues concerning interference, multiuser communi-

cations and radio spectrum availability in wireless networks. We adopted a broad approach

that permits to both highlight the main limitations in complex wireless networks, such as

MIMO ad hoc networks with multiple simultaneous access, and develop a new cooperative

paradigm in cognitive radio networks.

In the first part of the work we evaluated the performance of a MAC protocol for MIMO

ad hoc networks in the presence of channel estimation errors, by analytically modeling the

interference contribution due to multiuser communications in the expression of the channel

estimation error. Indeed, the presence of several simultaneous and asynchronous signals in

these types of networks, where advanced PHY techniques such as spatial multiplexing and

layered multiuser detection are considered, makes the problem of the channel estimation

significantly more complicated than in traditional channel estimation. We considered the

analytical model for the computation of the statistics of the channel estimation error, and we

developed two analysis both correlator-based andMMSE channel estimators. Moreover, we

also highlighted the direct dependence of the channel estimation error on the instantaneous

channel matrix. To make the analysis even more general, we also analyzed the interplay

between the transmit pulse shape and the variance of the channel estimates gathered by a

correlator-based channel estimator. Moreover, we quantified the bias of channel estimates

due to cross-talk among different training sequences as well as among training sequences

and data symbols and the parameters of the inverse proportionality relationship tying the

variance of this bias and the length of the training sequence. These parameters are related to
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pulse parameters such as the roll-off factor of RC pulses or the variance factor of Gaussian

pulses. The analysis for the estimation errors has then been inserted into a simulator for

MIMO ad hoc networks with a detailed MAC implementation and used to observe how

PHY-level parameters (e.g., length of the training sequences and number of antennas) affect

higher-level metrics (e.g., throughput, efficiency, delay and success ratio). The robustness

of networking protocols against channel estimation inaccuracies and interference has been

evaluated with our approach, which makes it also possible to understand how to control

the impact of channel errors in order to achieve prescribed tradeoff points among MAC-

level metrics. Finally, we analyzed the impact of different pulse shapes on the performance

of the network.

In the second part of the Thesis we linked the cognitive radio and the cooperation prin-

ciples, designing a new paradigm that both allows the secondary users to transmit in the

wireless medium and exploits the concepts of opportunistic routing and reward in cooper-

ation. At first, we studied the end-to-end throughput of opportunistic routing with Type-I

HARQ over a linear multihop wireless network, focusing, in particular, on the impact of the

number of hops and the path loss on the performance advantages with respect to multihop

routing. This allows to prove and quantify the gains achieved by opportunistic routing in

the high-SNR (bandwidth-limited) regime for both fixed and optimized transmission rates,

while showing negligible advantages in the low SNR (power-limited regime). Given the

effectiveness of multihop routing in the power-limited regime, these results make oppor-

tunistic routing both an excellent candidate to solve the performance limitations for multi-

hop routing in the bandwidth-limited regime and a good starting point for the development

of a novel approach that regulates the coexistence of primary and secondary nodes in mul-

tihop networks. More specifically, we proposed a framework where primary nodes may,

following the spectrum leasing paradigm, select secondary nodes as next hops for primary

traffic by allowing the latter to exploit the spectral resource for secondary data with QoS

guarantees. We designed different routing strategies based on this principle, which allow

to provide different trade-offs between gains in terms of primary throughput and energy

consumption. Moreover, we showed the optimality of superposition coding, proving that

it is the best among all possible multiplexing schemes to be employed by the secondary

nodes. Finally, with numerical results we demonstrated the effectiveness of the proposed
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paradigm in a linear network. The performance obtained by this new approach justified

the extension to a more realistic scenario, the distributed network (see Appendix C). Here,

two heuristic policies with low complexity have been proposed following the guidelines

discovered in the linear network case. Also in this case, numerical results demonstrated

the throughput and energy gains attainable by the proposed spectrum leasing approach by

the primary network, while allowing also the secondary nodes to transmit. Moreover, we

showed that the heuristic policies provide flexible solutions which permit to almost reach

the performance of the optimal policy. In particular, we observed that the performance of

the proposed spectrum leasing via cooperative opportunistic routing technique is better in

a distributed network than in a network with linear topology. This gain is due to the im-

proved multiuser diversity offered by the distributed network, where all nodes are placed

at different distance with respect to each other.

4.1 Future directions

Results in the first part of the Thesis show that one of the main limiting factors on the

network performance is the presence of unwanted signals at the receiving side. The mech-

anisms to control transmissions in order to limit interference in scenarios where channel

estimation errors are considered remain as a future area of research. To do this, one would

have to evaluate the interference level during the signaling phase to maximize the success

reception probability during the data transmission, thus implementing some sort of inter-

ference prediction. With this approach, receivers would be able to better control their own

transmissions in a distributed way. In order to further increase the ability of the receivers

to confirm during the signaling phase only transmissions that will be successfully decoded

during the data phase (thereby increasing success ratio and throughput), one would need

to derive the probability that a node fails the reception of a signal, given that the previous

signals are correctly received (here we are considering a V-BLAST SIC scheme for multiuser

detection).

In the second part of the Thesis we proposed a new paradigm for cognitive radio net-

works. We note that our work relies on several assumptions, that permit, however, to obtain

insightful results on the framework introduced. At first, we studied the performance of

opportunistic routing in a linear network, adopting as a metric to choose the next relay its
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distance to the destination. Extensions of this approach to more general cases remain as a

future area of work. For example, other relay selection criteria could be considered to bal-

ance the tradeoff between routing the packets along the shortest path and distributing the

traffic across the networks. Moreover, one could take into account the effects of spatial reuse,

and thus interference, in networks where opportunistic routing is adopted. Given these fu-

ture directions for opportunistic routing, we plan to insert these improvements in cognitive

radio networks, where spectrum leasing is adopted. Moreover, we plan to relax the sec-

ondary QoS requirements from the actual parameter ψ (see Section 3.2.1.1), which depend

on a single-hop transmission, to a more general constraint that depends on the end-to-end

transmission of the secondary packet in a multihop scenario.

From the discussions and the results presented in this thesis it is clear that interference

plays a fundamental role in the design of wireless communication systems. In fact, the

study of its effects in complex networks and the proposal of counter-measures still remain

as a very promising future area of research. In this Thesis some work in this direction has

been done, mainly on the quantification of the interference effects in ad hoc networks and

the interference management in cognitive radio networks.
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End-to-End Throughput Expression of

Opportunistic Routing

The non-recursive closed-form expression of the end-to-end throughput for fixed trans-

mission rate R of opportunistic routing given in (3.15) in Section 3.1.2.2 is very difficult to

obtain in general (see Remark 3.1.1). In the following we give the throughput expression for

k = 3 and k = 4.

A.1 Throughput for k = 3

The closed-form expression of the throughput for a linear network with opportunistic

routing (see (3.15)) for k = 3 is given by

Topp(3, R) =
Topp,NUM (3, R)

Topp,DEN (3, R)
(A.1)
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and

Topp,DEN (3, R) = e
− 2R
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3ηγ
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γ
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
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
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−η
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

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

(A.3)

A.2 Throughput for k = 4

The throughput for a linear network with opportunistic routing and k = 4 is given by

Topp(4, R) =
Topp,NUM (4, R)

Topp,DEN (4, R)
(A.4)

where

Topp,NUM (4, R) = e
− 2R

−1
4ηγ

(
1 −

(
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)(
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))
×

×
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1 − e

2R
−1

( 3
4)

−η
γ



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γ
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( 3
4)

−η
γ



(

1 − e
2R

−1
2ηγ

)
R

(A.5)

and

Topp,DEN (4, R) =
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AppendixB

Transition Probabilities for Spectrum

Leasing Policies

In this Appendix, we define the transition probabilities of the policies described in Sec-

tion 3.2.2 needed to calculate the matrix (3.57).1 In order to keep the expressions simple, we

will use the following notations:

1. Pout,TP(a) = Pout,TS(a) = Pout,P(∆
(T,D)
a ) for transmissions from source (T) to primary (P)

or secondary (S) relays;

2. Pout,TD(k) = Pout,P(k∆H) for transmissions from source (T) to destination (D);

3. Pout,PP(a) = Pout,P(a∆H), Pout,SS(a) = Pout,S(a∆H) for transmissions between primary

relays (PP) and between secondary relays (SS);

4. Pout,PS(a) = Pout,P(∆
(R)
a ), Pout,SP(a) = Pout,S(∆

(R)
a ) for transmissions between the two

sets of relays, primary to secondary (PS) and vice versa (SP);

5. Pout,PD(a) = Pout,P(∆
(T,D)
a ), Pout,SD(a) = Pout,S(∆

(T,D)
a ) for primary (P) or secondary (S)

transmissions to destination (D).

1The material presented in this chapter has been published in [49].
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B.1 only-P

The only non-zero submatrix in only-P (no spectrum leasing) is ΦP,P, that describes the

transition probabilities between primary nodes. We have:

ΦP,P =




ΦP,P(0, 0) . . . ΦP,P(0, k)

0
. . .

...

0 0 ΦP,P(k, k)


; (B.1)

ΦP,P(0, 0) =
k−1∏

ℓ=1

Pout,TP(ℓ)Pout,TD(k); (B.2)

ΦP,P(0, k) = 1 − Pout,TD(k); (B.3)

ΦP,P(0, j) = (1 − Pout,TP(j))
k−1∏

ℓ=j+1

Pout,TP(ℓ)Pout,TD(k), j = 1, . . . , k − 1; (B.4)

ΦP,P(i, j) = (1 − Pout,PP(j − i))
k−1∏

ℓ=j+1

Pout,PP(ℓ− i)Pout,PD(k − i),

i = 1, . . . , k − 1, j = i, . . . , k − 1; (B.5)

ΦP,P(i, k) = 1 − Pout,PD(k − i), i = 1, . . . , k − 1; (B.6)

ΦP,P(k, k) = 1; (B.7)

ΦP,P(i, j) = 0, otherwise. (B.8)

The other submatrices are zero, that is

ΦP,S = 0[k+1,k−1], ΦS,P = 0[k−1,k+1] and ΦS,S = 0[k−1,k−1], (B.9)

where 0[c,d] is a zero matrix with c rows and d columns.

B.2 only-S

In only-S the only primary transmissions allowed are from the source, which leads to

submatrices ΦP,P and ΦP,S:

ΦP,P =




ΦP,P(0, 0) 0 . . . 0 ΦP,P(0, k)

0[k−1,k+1]

0 . . . 0 ΦP,P(k, k)


; (B.10)
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ΦP,P(0, 0) = Pout,TD(k)
k−1∏

q=1

Pout,TS(q); (B.11)

ΦP,P(0, k) = 1 − Pout,TD(k); (B.12)

ΦP,P(k, k) = 1. (B.13)

ΦP,S =


 ΦP,S(0, 1) . . . ΦP,S(0, k − 1)

0[k,k−1]


; (B.14)

ΦP,S(0, j) = Pout,TD(k) (1 − Pout,TS(j))
k−1∏

q=j+1

Pout,TS(q), j = 1, . . . , k − 1. (B.15)

Finally, submatrices ΦS,P and ΦS,S reflect the fact that secondary transmissions can reach

only other secondary relays or the destination:

ΦS,P =




ΦS,P(1, k)

0[k−1,k]

...

ΦS,P(k − 1, k)


; (B.16)

ΦS,P(i, k) = 1 − Pout,SD(k − i), i = 1, . . . , k − 1. (B.17)

ΦS,S =




ΦS,S(1, 1) . . . ΦS,S(1, k − 1)

0
. . .

...

0 0 ΦS,S(k − 1, k − 1)


; (B.18)

ΦS,S(i, j) = (1 − Pout,SS(j − i))Pout,SD(k − i)
k−1∏

q=j+1

Pout,SS(q − i),

i = 1, . . . , k − 1, j = i, . . . , k − 1. (B.19)

ΦA,B(i, j) = 0 with A,B ∈ {P, S}, in all other cases.

B.3 P-to-S

Submatrix ΦP,P assumes the same structure of the only-P (no spectrum leasing) policy,

but the transition probabilities have to consider the presence of the unlicensed network. We
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have:

ΦP,P =




ΦP,P(0, 0) . . . ΦP,P(0, k)

0
. . .

...

0 0 ΦP,P(k, k)


; (B.20)

ΦP,P(0, 0) =
k−1∏

ℓ=1

Pout,TP(ℓ)Pout,TD(k)
k−1∏

q=1

Pout,TS(q); (B.21)

ΦP,P(0, k) = 1 − Pout,TD(k); (B.22)

ΦP,P(0, j) = (1 − Pout,TP(j))
k−1∏

ℓ=j+1

Pout,TP(ℓ)Pout,TD(k)
k−1∏

q=j−m

[
1 + 1{q>0} (Pout,TS(q) − 1)

]
,

j = 1, . . . , k − 1; (B.23)

ΦP,P(i, j) = (1 − Pout,PP(j − i))

k−1∏

ℓ=j+1

Pout,PP(ℓ− i)Pout,PD(k − i)·

k−1∏

q=j−m

[
1 + 1{q>0} (Pout,PS(|q − i|) − 1)

]
, i = 1, . . . , k − 1, j = i, . . . , k − 1;

(B.24)

ΦP,P(i, k) = 1 − Pout,PD(k − i), i = 1, . . . , k − 1; (B.25)

ΦP,P(k, k) = 1. (B.26)

In the following submatrix the effect of spectrum leasing and of the backward window with

parameter m are taken into account to express the transition between primary and sec-

ondary relays:

ΦP,S =




ΦP,S(0, 1) . . . ΦP,S(0, k − 1)
...

...

ΦP,S(k − 1, 1) . . . ΦP,S(k − 1, k − 1)

0 . . . 0




; (B.27)
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ΦP,S(0, j) = (1 − Pout,TS(j))
k−1∏

ℓ=(j+m)+1

Pout,TP(ℓ)Pout,TD(k)
k−1∏

q=j+1

Pout,TS(q),

j = 1, . . . , k − 1; (B.28)

ΦP,S(i, j) = (1 − Pout,PS(j − i))

k−1∏

ℓ=(j+m)+1

Pout,PP(ℓ− i)Pout,PD(k − i)

k−1∏

q=j+1

Pout,PS(q − i),

i = 1, . . . , k − 1, j = i, . . . , k − 1; (B.29)

ΦP,S(i, j) = 1{(i−j)≤m} (1 − Pout,PS(i− j))Pout,PD(k − i)
k−1∏

ℓ=(j+m)+1

Pout,PP(ℓ− i)·

k−1∏

q=j+1

Pout,PS(|i− q|), i = 2, . . . , k − 1, j = 1, . . . , i− 1. (B.30)

and ΦA,B(i, j) = 0 with A,B ∈ {P, S} in all other cases. ΦS,P and ΦS,S are equal to the

submatrices of the only-S policy in (B.16) and (B.18), respectively.

B.4 P-and-S

SubmatricesΦP,P andΦP,S are equal to those of the P-to-S policy, so they are not reported.

However, in this policy the behavior of the secondary network is different, so ΦS,P and ΦS,S

are derived considering the presence of primary relays, as limited by the forward window.

We have:

ΦS,P =




0 0 ΦS,P(1, 2) . . . ΦS,P(1, k)
...

... 0
. . .

...

0 0 0 0 ΦS,P(k − 1, k)


; (B.31)

ΦS,P(i, j) = 1{m≤(j−i)} (1 − Pout,SP(j − i))
k−1∏

ℓ=j+1

Pout,SP(ℓ− i)Pout,SD(k − i)
k−1∏

q=j

Pout,SS(q − i)·

[
1 + 1{m≥2}

(
−1 +

m−1∏

t=1

Pout,SS(j − t− i)
)]
, i = 1, . . . , k − 2, j = i+ 1, . . . , k − 1;

(B.32)

ΦS,P(i, k) = 1 − Pout,SD(k − i), i = 1, . . . , k − 1. (B.33)

ΦS,S =




ΦS,S(1, 1) . . . ΦS,S(1, k − 1)

0
. . .

...

0 0 ΦS,S(k − 1, k − 1)


; (B.34)
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ΦS,S(i, j) = (1 − Pout,SS(j − i))
k−1∏

ℓ=m+j

Pout,SP(ℓ− i)Pout,SD(k − i)
k−1∏

q=j+1

Pout,SS(q − i),

i = 1, . . . , k − 1, j = i, . . . , k − 1. (B.35)

ΦS,B(i, j) = 0 with B ∈ {P, S}, in all other cases.

B.5 Partial secondary deployment

The previous expressions can be derived also for a secondary deployment with α > 1.

In this case matrix Φ (3.57) and vectors v, 1, w and r in Lemma 3.2.1 (Section 3.2.2.5) have to

be reduced in accordance to the number of active secondary relays. This change has effects

on the calculation of the transition probabilities derived above. In particular, it is sufficient

to modify Pout,TS(a) and Pout,SS(a) by accounting for α and the number of hops covered by

packet transmission and Pout,PS(a) as follows

Pout,TS(a) =





Pout,TS(a), rem(a, α) = 0

1, otherwise
,

Pout,SS(a) =





Pout,SS(a), rem(a, α) = 0

1, otherwise

and, supposing transmission between Pi and Sj

Pout,PS(a) =





Pout,PS(a), rem(j, α) = 0

1, otherwise
,

and rem(a, α) is the remainder of the integer division a/α. The other probabilities remain

unchanged.



AppendixC

Spectrum Leasing via Cooperative

Opportunistic Routing in a General

Network Topology

In Section 3.2 we described a novel approach to regulate the coexistence of primary and

secondary nodes in multihop networks based on spectrum leasing via cooperative oppor-

tunistic routing. With the objective of having both a solvable theoretical model and an in-

sightful analysis of this technique, we considered a simple and tractable linear network

topology.1

In collaboration with Cristiano Tapparello, a PhD Student of the University of Padova,

we considered the issues related to the coexistence of primary and secondary users in a

distributed network (see [C6] of List of Publications). The objective of this work has been

to both find optimal spectrum leasing policies and design heuristic policies that route a

primary packet through primary and secondary transmitters, in an arbitrary topology, in

order tomaximize the desired trade-off between end-to-end throughput and primary energy

consumption for the given secondary QoS requirements.

In this chapter our interest is focused only on the performance of spectrum leasing via

cooperative opportunistic routing in a distributed network, with respect to the case where

only the primary network is used. So, in the following sections we will not discuss about

1The material presented in this chapter has been published in [68].
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Figure C.1. A possible representation of a primary distributed network (grey circles) with NP = 6 relay

nodes and a secondary network (white circles) with NS = 7 relay nodes.

the optimal policies (see [C6] and [69] for a complete analysis), but we will focus only on

both the description of the heuristic policies and the effectiveness of the proposed paradigm,

with respect to the case where spectrum leasing is not considered.

C.1 SystemModel

Similarly to Section 3.2.1, we consider the communication between the primary source

P0 and the primary destination Pk through two sets of relays. The two sets are composed

by NP primary nodes and NS secondary nodes, respectively. With respect to Section 3.2.1,

here we consider only SC to multiplex primary and secondary messages when a secondary

node is the transmitter, since this strategy was proved to be optimal (see Section 3.2.2.6).

Moreover, the node arrangement is different from Figure 3.6. In fact, we consider here two

sets of relays arbitrarily placed in a square area with normalized side equal to one, where

source P0 and destination Pk are positioned in the middle of two opposite sides (see Figure

C.1). The position of each node is static and known by all nodes in the network.

In the next sectionwe describe two heuristic policies that exploit the spectrum leasing via

opportunistic routing paradigm. Before doing that, we briefly recall the outage probability

for a packet transmitted by the primary node, Pout,P(d) (see (3.44)), or by the secondary node,
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P (SC)

out,SP(d) (see (3.49)):

Pout,P(d) = 1 − exp

(
−2RP − 1

γPd−η

)
(C.1)

P (SC)

out,SP(d) = 1 − exp
[
−min

(
H(1)

P ,H(2)
P

)]
, (C.2)

where

H(1)
P =





∞, 0 ≤ ψ ≤ 1 − 2−RP

2RP−1
(1−(1−ψ)2RP )γSd−η , 1 − 2−RP < ψ ≤ 1

(C.3)

H(2)
P =





max
{

2RS−1
(1−ψ2RS )γSd−η

, 2RP−1
ψγSd−η

}
, 0 < ψ < 2−RS

∞, ψ = 0 and 2−RS ≤ ψ ≤ 1
(C.4)

In addition, we define the outage probability pout(a, b) for any transmission between a trans-

mitter a and a receiver b:

pout(a, b) =





Pout,P(da,b) when a is a primary node

P (SC)

out,SP(da,b) when a is a secondary node,

(C.5)

where da,b is their distance.

C.2 Heuristic Routing Policies

In this section we detail two heuristic policies that adopt the spectrum leasing via oppor-

tunistic routing technique and are suitable to be implemented in real distributed scenarios

as they have a reduced complexity with respect to the optimal policies described in [C6].

In order to control the trade-off between the primary energy consumption and the end-

to-end throughput we define the parameter K: it represents the maximum number of pri-

mary relays that can be used to route a primary packet from the source to the destination,

i.e., and not the number of retransmissions performed by the primary nodes.

The K information is contained in the packet header and is decremented by one unit

each time a new primary relay is selected. Every time the source transmits a new primary

packet (time slot k = 0), we have Kres = K and Kused = 0 (K = Kused + Kres), where

Kres is the number of primary relays that can still be used and Kused represents the number

of primary relays already used in the current routing path. In the subsequent time slot

k = 1, 2, 3, . . ., if Kres is greater than 0 the next relay can be either a primary or a secondary
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node, otherwise (i.e.,Kres = 0), the current primary transmitter is the last primary node that

can be used along the routing path and subsequent relays must all be secondary nodes. The

effect of K is to limit the available multiuser diversity, due to the low number of possible

receivers that can act as the next hop. Moreover, secondary users only allocate a portion ψ

of the total power for their primary transmissions, so that they can cover a shorter distance

with respect to primary transmissions for the same outage probability (assuming they use

the same transmission power). Thus, a reduction of the primary energy consumption, which

we enforce through K, comes at the expense of a further decreased performance in terms

of geographical advancement toward Pk and thus of a throughput low. This will be further

discussed in Section C.3.

We now detail the two heuristic routing policies for primary packets.

C.2.1 K-Closer

The objective of the K-Closer policy is to minimize the overall number of transmissions

(N in (3.55) in Section 3.2.2) in the network while limiting the maximum energy consump-

tion of primary users through the budget parameterK. Let us consider a generic transmitter

node at time slot k, which sends a copy of the packet. All nodes that correctly receive this

packet are ranked by the transmitter according to their distance from the destination Pk so

that closer nodes have a higher rank.2 The transmitter chooses as next relay the receiver

with the highest rank only if Kres > 0 (and Kres is decremented by one if this receiver is a

primary node), otherwise (i.e.,Kres = 0) it grants the secondary node with the highest rank.

This process is iterated until the primary packet is correctly received by the destination Pk.

C.2.2 K-One Step Look Ahead (K-OSLA)

The potential drawback of K-Closer is to choose a relay with a small number of neigh-

bors in its proximity, due to the limited amount of information that it uses. Notably, this

leads to an increase in the average number of retransmissions that are necessary to reach the

next relay. In what follows, we extend theK-Closer heuristic to avoid this situation.

We assume that each relay node a can estimate its proximity δa to the destination Pk, that

2This implies a feedback mechanism from the receivers to the transmitter, whose design is out of the scope

of this work.
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is δa = da,Pk
. Moreover, relay node a can both collect this metric from all other nodes (both

primary and secondary) that are closer to the destination with respect to itself, and build an

ordered set B(a) =
{
b1, b2, . . . , b|B(a)|

}
with them which satisfy the following order: δbi ≤

δbi+1 ≤ δa with i = 1, . . . , |B(a)| − 1. At the same time, node a also determines the ordered

subset BS(a) ⊆ B(a), with BS(a) =
{
c1, c2, . . . , c|BS(a)|

}
, which only contains the secondary

nodes in B(a). This procedure is carried out for each relay node a of the distributed network,

except the destination Pk. Given these informations, node a can determine the geographical

advancement toward Pk provided by a relay node b (if it is chosen as next transmitter) as

ga,b = δa − δb. (C.6)

Moreover, node a can also compute the expected geographical advancement toward the

destination Pk by considering the following two metrics:

E[ga] =

|B(a)|∑

i=1

ga,bi [1 − pout(a, bi)]

|B(a)|∏

j=i+1

pout(a, bj) , (C.7)

E[gSa ] =

|BS(a)|∑

i=1

ga,ci [1 − pout(a, ci)]

|BS(a)|∏

j=i+1

pout(a, cj) . (C.8)

In the first case, node a takes into account both primary and secondary nodes, while in the

latter only secondary are used.

Finally, we introduce Ga,b, that represents, with respect to a, the overall expected ad-

vancement provided in the next two transmission hops, if node b is selected

Ga,b = ga,b + E[gb]. (C.9)

Similarly defined is GSa,b, which considers only secondary nodes as possible relay nodes:

GSa,b = ga,b + E[gSb ]. (C.10)

The K-OSLA policy is described in the following. Node a has to transmit the primary

packet, so it sends a copy of it. Let {r1, . . . , rM} be the M receiving nodes that success-

fully decoded the copy of the packet. If Kres > 1, the transmitter a rearranges this set

according to the metrics {Ga,r1 , . . . , Ga,rM} (see (C.9)) and selects as relay the receiver node

r∗ ∈ {r1, . . . , rM} with the highest metric Ga,r∗ (i.e., Ga,r∗ ≥ Ga,ri ∀ i = 1, . . . ,M ). If r∗ is

a primary user, Kres is decremented by one. When Kres = 1, the transmitter a orders the
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set {r1, . . . , rM} using the metrics defined both in (C.9) and in (C.10). In particular, if r1 is a

primary node the Ga,r1 metric is calculated, otherwise (i.e., r1 is a secondary node) GSa,r1 is

used. This process is done for all receivers ri, with i = 1, . . . ,M . Afterwards, the transmitter

a selects as relay the receiver node (primary or secondary) with the highest metric, and if it is

a primary user,Kres is decremented by one. Finally, ifKres = 0, only secondary nodes of the

set {r1, . . . , rM} are ranked according to the metric defined in (C.10) and the secondary node

having the highest metric is selected by the transmitter as the next relay. This procedure is

iterated until the packet is correctly received by Pk.

C.3 Results

In this section we present the performance of the heuristic routing policies described

above, emphasizing the advantages of spectrum leasing in a distributed network.

For the results in this section we consider a random network with one source P0, one

destination Pk, NP = 8 primary nodes, an equal transmission power for primary and sec-

ondary users, i.e., EP = ES, which yields γP = γS = γ, where we set γ = −5 dB. Relay

nodes are uniformly placed at random in a square area with normalized side equal to one,

where source P0 and destination Pk are positioned in the middle of two opposite sides. For

the QoS of the secondary network we consider the following (see also Section 3.2.3). The

fraction of power allocated to primary transmissions ψ is computed by imposing an outage

probability of ǫS = 0.1 for the transmission for a secondary packet, at rate RS, between any

two secondary nodes placed at a distance dS = 0.1 (the same of Section 3.2.3). When there

are multiple values of ψ that satisfy the QoS requirements (as in 3.2.3), we always select the

value of ψ that maximizes the primary throughput, i.e., the highest ψ. We plot the perfor-

mance of the considered routing schemes in terms of primary end-to-end throughput (3.55)

vs primary energy consumption (expressed in dB, i.e., 10 log10E(k,RP,Q), see (3.56)).

In Figure C.2 we set RP = 3 bits/s/Hz, RS = 1 bits/s/Hz and NS = 8. The points in

this figure have been obtained by varying ξ in [0, 1] for the optimal policy3 (Optimal) and

3With the term optimal we refer here to policies that minimize, across all the possible evolutions of the sys-

tem, the expected throughput (throughput optimal), the expected total transmission energy expended by primary

users (energy optimal) or a combination of throughput and primary energy through a weighting factor ξ ∈ [0, 1]

(see [C6] for details).
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Figure C.2. End-to-end throughput vs overall primary energy plotted varying ξ ∈ [0, 1] for the optimal

policy (solid line) and K ∈ {0, . . . , NS} for the heuristic policies (dotted lines). The results are obtained

for NP = NS = 8, γ = −5 dB, RP = 3 bits/s/Hz and RS = 1 bits/s/Hz.

K in {0, . . . , NS} for the heuristic policies (K-Closer andK-OSLA). The performance of op-

timal and heuristic policies when spectrum leasing is not used (indicated in the figure as

“No SL”) is also shown for comparison. We observe that cooperation via spectrum leasing

allows for improved performance in terms of throughput and energy. Both K-Closer and

K-OSLA for increasing K provide better throughput performance at the cost of a slightly

increased primary energy consumption. This is due to the fact that larger values of K en-

able the selection of a large number of primary relay nodes. As expected,K-OSLA improves

over K-Closer in terms of throughput performance, especially for high values of K (K ≥ 3

in the figure). In fact, for increasing K the multiuser diversity is higher as more primary

nodes can be selected along the path from P0 to Pk. Note that, as we discuss below, see Fig-

ure C.4, the throughput increase ofK-OSLA can even be much larger than the one shown in

Figure C.2 if we increase RS (i.e., the secondary QoS requirements). For the primary energy

consumption, as expected, forK = 0 (i.e., the relays are all secondary nodes) the energy ex-

penditure of the two schemes is the same. Instead, forK ≥ 1,K-OSLA has a slightly higher

energy consumption with respect to K-Closer and this is due to the fact that the expected
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Figure C.3. End-to-end throughput vs overall primary energy: comparison of optimal throughput policy

(ξ = 1) and the two heuristic policies with K = 8. Each point in the graph represents the pair end-

to-end throughput and overall primary energy plotted varying the number of secondary nodes deployed

NS ∈ {0, 2, 4, 6, 8, 12}, with NP = 8, γ = −5 dB, RP = 3 bits/s/Hz and RS = 1 bits/s/Hz. NS = 0

represents the case where spectrum leasing is not used.

advancement metric slightly favors primary nodes. In fact, these nodes provide higher ex-

pected advancements due to the higher transmission power they use for the transmission of

primary packets.

With Figure C.3we investigate how close heuristic policies can get to the optimal through-

put performance (ξ = 1). The curves in this figure have been obtained setting K = 8 and

varying the number of secondary nodes NS ∈ {0, 2, 4, 6, 8, 12}. Here, we note that the usage

of spectrum leasing allows for a substantial increase in the throughput (twofold increase)

and primary energy performance (gains as high as 6 dB) with respect to the case where

only primary transmissions are allowed (i.e., NS = 0). Moreover, K-OSLA approaches the

optimal throughput performance for nearly all values of NS .

In the last figure, we look at the impact of the QoS requirements of secondary users,

expressed through RS, considering ξ = 1 for the optimal routing policy and K = 8 for the

heuristic policies (so as to maximize their throughput performance). Figure C.4 is obtained
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Figure C.4. End-to-end throughput vs overall primary energy plotted varying RS for the throughput

optimal policy (ξ = 1) and for the heuristic policies with K = 8, NP = 8, γ = −5 dB and RP = 3

bits/s/Hz. The curves are obtained by varying RS ∈ {0.5, 1.5, 2.5, 3.5, 4.5} bits/s/Hz.

for a fixed number of secondary nodes NS = 8, RP = 3 bits/s/Hz and varying the sec-

ondary transmission rate RS ∈ {0.5, 1.5, 2.5, 3.5, 4.5} bits/s/Hz. First of all, for increasing

RS the primary throughput decreases, up to a certain point, for all schemes. This is because

an increasing RS leads to a smaller coverage for the secondary transmissions, which means

that more secondary transmissions (and secondary relays) are needed to reach Pk. How-

ever, when RS becomes too high (i.e., RS ≥ 2.5 bits/s/Hz in the figure) the secondary nodes

are no longer used as relays because the fraction of power ψ that they allocate to primary

transmissions is too small to allow the correct reception, at any node, of the primary packets

they send. Hence, more and more primary nodes are used and the end-to-end through-

put increases. For this same reason, the primary energy always increases for increasing RS.

The latter aspects are emphasized byK-OSLA: this scheme obtains a much higher through-

put at the cost of a higher primary energy consumption, especially when RS is high. In

fact, with respect to K-Closer, K-OSLA uses the expected advancement metric which se-

lects with higher probability a primary node as the next relay (the expected advancement of

secondary nodes is smaller than that of primary users). Finally, we note that, for the consid-
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ered value of RS,K-OSLA outperforms the optimal routing policy with no spectrum leasing

(here referred to as “No SL”), providing better throughput as well as energy performance.

C.4 Conclusions

In this chapter we extended the approach presented in Section 3.2 for a simpler linear

network topology to a more generic distributed network. Two heuristic policies with low

complexity were also proposed. Our numerical results lend evidence to the throughput and

energy gains that can be attained by the proposed spectrum leasing approach by the pri-

mary network, while allowing also the secondary nodes to transmit. Moreover, the heuris-

tic policies are shown to provide flexible solutions that perform close to the optimal policy.

Finally, we note that the spectrum leasing via cooperative opportunistic routing technique

in distributed scenarios is even more effective than the same approach used in linear net-

work topologies. This is due to the increased multiuser diversity, which comes from the

additional degrees of freedom of a two-dimensional node deployment.
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