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Abstract

MIMO ad hoc networks and cognitive radio networks have enjoyed great interest in re-
cent years. The performance gains of these frameworks depend on the ability to control the
transmissions in the wireless channel. In particular, MIMO ad hoc networks exploit mul-
tiuser communications to favor simultaneous transmissions and cognitive radio networks
regulate the access of unlicensed users to the licensed network in order to improve the avail-
able bandwidth utilization. In both cases, the main limiting factor is represented by the
interference that could cause a performance degradation if not properly managed. In this
work, we adopt a broad approach for the study of interference and propose new analytical
approaches that make it possible to quantify and solve the adverse effects of interference in

both MIMO ad hoc and cognitive radio networks.

The first scenario that we consider deals with ad hoc networks with multiple antennas
and multiuser communications. We take into account a cross-layer networking protocol
which integrates medium access control and physical layer with the objective to obtain a
tradeoff between throughput and interference rejection. At the receiver side, the presence
of several simultaneous signals is managed by using a Vertical-Bell Laboratories Layered
Space-Time (V-BLAST) receiving scheme that decouples the superimposed signal to extract
data through a successive interference cancellations process, which is potentially prone to
interference, especially when the quality of the channel estimation is poor. In multiuser
scenarios, these problems may lead to substantial loss of data. In this light, we propose an
analytical technique that evaluates the statistics of the channel estimation errors and develop
an analysis for both correlator-based and Minimum Mean-Square Error channel estimators,
showing that there is a direct dependence of the channel estimation error on the instanta-
neous channel matrix, which also includes interfering transmitters. This is done to obtain

precise expressions that can be used in analytical studies as well as realistic simulation ex-
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periments. In this light, we include the effect of channel estimation errors in an ad hoc
networking protocol simulator and thoroughly evaluate their impact.

A different point of view is required to handle cooperative routing techniques in cogni-
tive radio networks, the second type of wireless network considered in this Thesis. Here, the
problem of scarce radio spectrum availability and the inefficiency of traditional fixed spec-
trum management schemes call for new communications paradigms for spectrum sharing.
Specifically, the presence of unlicensed (or secondary) users that transmit in the portion of
spectrum licensed to primary users generates interference, avoidable only if secondary users
adopt some sensing technique before they decide to transmit. A new paradigm, named spec-
trum leasing, allows licensed users to lease portions of the spectrum to unlicensed users,
avoiding both interference and the need for spectrum sensing. Specifically, the secondary
nodes may cooperate with the primary users serving as extra relays, but only in exchange
for spectrum leasing. Namely, in return for their forwarding of primary packets, secondary
nodes are awarded spectral resources by primary users for transmission of their own traf-
fic. Thus, secondary nodes enforce minimal quality of service requirements in terms of rate
and reliability when deciding whether to cooperate. Results demonstrate the advantages of
the proposed spectrum leasing solution based on opportunistic routing and highlights the

available trade-offs between primary throughput and energy consumption.



Sommario

Negli ultimi anni le tematiche riguardanti le reti MIMO di tipo “ad hoc” e le reti di tipo
“cognitive” hanno riscosso grande interesse. Le prestazioni che i suddetti paradigmi co-
municativi riescono ad ottenere dipendono, essenzialmente, dalla capacita dei medesimi di
controllare le trasmissioni sul canale wireless. La peculiarita di ciascuno dei due sistemi
consiste, nelle reti MIMO ad hoc, nel favorire le trasmissioni simultanee sfruttando le co-
municazioni multi-utente; nelle reti cognitive, nel permettere ’accesso al canale wireless
anche agli utenti privi di licenza, regolandone il comportamento in modo da migliorare
l"utilizzo delle risorse radio. In entrambi i casi, tuttavia, l'interferenza puo rappresentare,
se non adeguatamente gestita, il principale fattore limitante delle prestazioni. Per tale ra-
gione, nel presente elaborato, viene adottato un approccio di ampio respiro per lo studio
dell’interferenza e vengono proposti nuovi metodi analitici che ci permettono di quantifi-
care e risolvere gli effetti negativi generati dall’interferenza nelle reti MIMO ad hoc e nelle
reti cognitive.

Il primo scenario considerato in questa Tesi sono le reti ad hoc con antenne multiple e co-
municazioni multi-utente. Si prende, altresi, in considerazione 1'utilizzo di un protocollo di
tipo cross-layer in grado di integrare il controllo di accesso al mezzo e lo strato fisico, al fine
di ottenere un buon compromesso tra velocita di trasmissione e controllo dellinterferenza.
Questo viene portato a termine grazie all’utilizzo a lato ricevente di un particolare decod-
ificatore (Vertical-Bell Laboratories Layered Space-Time, V-BLAST), il quale riesce a gestire le
comunicazioni multi-utente disaccoppiando dal segnale in ricezione i dati dei vari utenti
attraverso un processo di cancellazioni successive. Tale tecnica € molto promettente, ma e
potenzialmente incline all’interferenza, soprattutto quando la qualita della stima di canale &
scadente. Le sopra descritte problematiche, presenti anche nei scenari multi-utente, possono

causare la perdita di molti dati. Cio detto, nel presente lavoro viene proposta una nuova tec-
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nica tesa a valutare analiticamente le statistiche degli errori di stima di canale per due tipi
di stimatori (stimatore a correlazione e MMSE) ed a dimostrare la sussistenza di una dipen-
denza diretta dell’errore di stima di canale sulla matrice di canale istantanea, la quale, in-
oltre, include pure l'interferenza causata dalle trasmissioni simultanee. Si sono cosi ottenute
delle espressioni matematiche che hanno permesso di effettuare sia precisi studi analitici sia
esperimenti realistici, effettuati questi ultimi su uno simulatore di rete, inserendo 1’effetto
degli errori di stima di canale.

Per riuscire a gestire le tecniche di instradamento cooperative nelle reti radio cogni-
tive, il secondo tipo di rete wireless considerato in questa Tesi, € necessario un approccio
diverso rispetto al caso precedente. Qui, infatti, le principali problematiche, relative alla
scarsa disponibilita di spettro radio e all'inefficienza dei classici sistemi statici di gestione
dello spettro, sono state affrontate proponendo paradigmi innovativi di comunicazione per
la condivisione dello spettro radio. In particolare, la presenza di utenti senza licenza (o
utenti secondari), che trasmettono nella porzione dello spettro adibita esclusivamente a
utenti primari, genera interferenza, evitabile solo se gli utenti secondari adottano partico-
lari tecniche di rilevamento (da utilizzare prima di decidere se trasmettere 0 meno). Un
nuovo paradigma, denominato “spectrum leasing”, permette agli utenti autorizzati di al-
locare delle porzioni dello spettro di appartenenza agli utenti secondari, evitando cosi sia
l'interferenza sia il bisogno di tecniche di rilevamento di altre trasmissioni. Dall’altro canto,
i nodi secondari collaborano con gli utenti primari, proponendosi come ulteriori relay, so-
lamente in cambio di una porzione dello spettro, ovvero in cambio della trasmissione di
pacchetti primari, i nodi secondari richiedono agli utenti primari una porzione della risorsa
spettrale per poter trasmettere il proprio traffico. Tale porzione viene calcolata in base ai pro-
pri requisiti di qualita di servizio, che devono essere rispettati. L’analisi del sopra descritto
nuovo paradigma comunicativo, eseguita in questa tesi, ne evidenzia i vantaggi rispetto ad
un approccio classico, mettendo, inoltre, luce sul compromesso tra velocita di trasmissione

e consumo di energia primaria.
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Chapter

Introduction

Multiuser detection, multiple-input multiple-output (MIMO) systems, cooperative rout-
ing techniques and cognitive radios have recently gained increasing attention in the wireless
networking community, due to network performance improvements that can be achieved
in terms of throughput and full exploitation of the available radio spectrum. However, the
presence of several simultaneous transmissions makes interference a key issue, that must be
taken into account both for the network performance evaluation and especially in the design
of protocols and routing policies. In this Thesis we adopt a broad approach for the study of
multiuser interference and we propose possible solutions to this problem considering two
types of wireless networks: ad hoc networks and cognitive radio networks.

The purpose of this introductory Chapter is to offer a broad perspective of the two wire-
less networks considered and to outline the problems that will be handled throughout the
Thesis. In particular, Sections|1.1/and [1.2 present an introduction to ad hoc networks and
cognitive radio networks, respectively. Finally, Section 1.3|summarizes the organization of

this Thesis.

1.1 Ad Hoc Networks

A wireless ad hoc network is a decentralized wireless network where nodes, which can
independently access (and leave) the network, communicate to each other without using
a preexisting infrastructure (unlike in cellular networks where the base station coordinates

the uplink and the downlink traffic in his cell). Such decentralized networks have enjoyed
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significant interest in the research community in recent years, due to their capability of set-
ting up a self-organizing wireless network in emergency or military scenarios, besides being
suited for commercial applications and for quick communications setup in any environment

where a cabled network is infeasible or not affordable.

Wireless communications are known to be strongly influenced by multipath fading and
interference problems. In fact, the main effect of the multipath propagation of the signal
is a time-varying behavior of the channel, especially in scenarios where line of sight is not
available. This requires some additional complexity at the receiver, which is needed to suc-
cessfully receive the incoming transmission irrespective of the particular channel realization.
The second aspect is represented by the interference. The origin of this problem lies in the
main characteristic of wireless transmissions: the wireless channel, shared by all users, is a
broadcast medium. Each signal is received by all users that lie in the transmission range,
which depends, e.g., on the transmit power and the thermal noise at the receiver. There-
fore, each signal contains useful information for the intended receiver, but at the same time
represents a source of interference for other users inside the transmission range. This can
cause collisions between packets transmitted by different nodes, leading to a significant per-
formance loss in terms of throughput and latency. So, suitable control mechanisms for the
transmissions need to be designed. This problem has been handled by the ad hoc network-
ing research community proposing smart protocols that regulate the access of users to the

wireless channel.

One of the most common approaches considered is to use resource allocation strategies.
This strategy is commonly used in cellular networks, in which the base station controls the
channel access in a centralized method. In this case, each user can simultaneously transmit
its signal only if the centralized controller gives it a portion of the shared resource. In the
TDMA approach the shared resource is time, while in FDMA it is frequency, and in CDMA

the knowledge of codes that permits to reduce the interference.

A second approach used to regulate the access of users to the wireless channel is based on
the carrier sense multiple access with collision avoidance (CSMA /CA) protocol (described
in the 802.11 standard [1]), which tries to regulate the channel access with a two step strategy.
When a node is ready to transmit, it listens to the channel to ensure the absence of other com-

munications with which it would probably interfere (first step) and, if the channel is sensed
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free, it transmits the signal (second step). The channel is considered free (idle channel) when
the perceived power by the node during the first step is below a certain threshold. Clearly,
this scheme, that tries to avoid the occurrence of packet collisions, is conservative and does
not exploit the spatial diversity offered by the wireless channel. Moreover, collisions are still

possible in particular situations (hidden terminal and exposed terminal problem).

Finally, we consider a different solution that does not avoid multiple simultaneous trans-
missions in the same area as the previous strategies, but, instead, favors multiple transmis-
sions, by improving the receiver capabilities with advanced Physical (PHY) layer architec-
tures such as multiuser detection and MIMO systems. Efforts in this direction have led to the
concept of interference cancellation: when interfering signals are present, it may be possible
to decode them, and successively subtract their interference contribution from the received
signal. In addition, with multiple antennas, nodes can handle interference even more easily,

thus letting multiple links coexist within the same area.

The first part of the Thesis (Chapter 2) is focused on the latter strategy. The protocol
considered for channel access management make it possible to have a balance between
throughput and interference rejection by encouraging multiple access, while regulating si-
multaneous transmissions. At the receiver side, the presence of several simultaneous signals
is managed by using a Vertical-Bell Laboratories Layered Space-Time (V-BLAST) receiving
scheme that decouples the superimposed signal to extract data through successive cancella-
tions. However, this scheme relies on channel knowledge at the receiver, and poor quality of
channel estimates can critically impair signal reception. In multiuser scenarios, these prob-
lems may lead to interference and, hence, substantial loss of data. In this light, we propose
an analytical technique that evaluates the statistics of the channel estimation errors in this
scenario where the presence of several simultaneous, symbol-asynchronous signals makes
the problem more complicated than in traditional channel estimation. We present this anal-
ysis of channel estimation errors using both correlator-based and Minimum Mean-Square
Error (MMSE) channel estimators. We show that there is direct dependence of the channel
estimation error on the instantaneous channel matrix, that also includes interfering trans-
mitters. Then, with this approach, we directly evaluate the effect of multiuser interference
in the expression of the channel estimation errors, taking into account all the unwanted

transmissions that degrade the performance of the receiver. The model proposed makes it
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possible to quickly evaluate the performance of channel estimation schemes as a function of
the system parameters. In this light, we include the effect of channel estimation errors in an

ad hoc networking protocol simulator and thoroughly evaluate their impact.

1.2 Cognitive Radio Networks

The growth of the number of wireless systems and services has caused a reduction of the
wireless spectrum availability. This is confirmed by the frequency allocation chart provided
by the National Telecommunications and Information Administration [2], which shows that
almost all frequency bands have been assigned and there is only very little bandwidth avail-
able, that can be used only with emerging wireless products and services. The idea of cog-
nitive radio meets this spectrum shortage. With this new paradigm, new wireless users
(secondary users) can operate in the existing crowded spectrum without degrading the per-
formance of entrenched users (primary users), by using devices with advanced radio and
signal-processing technology along with novel spectrum-allocation policies. On the other
hand, cognitive radio technology requires to collect and process information related to the
presence of other users within the spectrum, which in turn requires advanced sensing and
signal-processing capabilities. Moreover, another constraint is the requirement for signifi-
cant changes in the way wireless spectrum is currently allocated to enable cognitive tech-
niques.

In the previous section, we pointed out the main limitations of a wireless network, in-
cluding interference. In fact, the presence of other users in the network has always been
regarded as a problem so far. In a completely different approach, however, it can be seen
as a way to improve the performance in wireless networks: the idle nodes that lie in the
transmission range of another node can receive the transmitted signal and help the trans-
mitter to forward it. With this form of cooperation, nodes that are not currently transmitting
for their own purposes can offer their own resources to improve the performance of their
transmitting neighbors. In doing so, they are consuming part of their energy to help other
nodes, but an overall gain is likely to be achieved, since transmissions can be completed in
a shorter time, and interference may be lowered as well.

In the second part of the Thesis (Chapter|3) we exploit the cognitive radio and coopera-

tion principles to propose a new paradigm that allows the secondary users to transmit in the
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wireless medium and introduces the concept of reward in the cooperation. Specifically, the
secondary nodes may serve as extra relays, and hence as potential next hops for the primary
users, but only in exchange for spectrum leasing. Namely, in return for their forwarding
of primary packets, secondary nodes are awarded spectral resources for transmission of
their own traffic. Secondary nodes enforce minimal Quality-of-Service (QoS) requirements
in terms of rate and reliability when deciding whether to cooperate. With this approach, the
presence of secondary users is exploited and regulated by the primary users, avoiding inter-
tference. Moreover, with respect to classical cognitive radio techniques, the spectrum leasing
approach does not require significant changes in the wireless spectrum allocation (i.e., the
resource is still managed by the primary users). This idea of “spectrum leasing via cooper-
ation”, combined with the principle of opportunistic routing, is the basis of our framework,
which is studied in different types of wireless networks and with different PHY techniques,

showing the advantages of the proposed solution.

1.3 Discussion and Organization of this Thesis

This Thesis addresses some interference-related issues in wireless networks, and presents
two different studies regarding (i) the evaluation of the interference in ad hoc networks by
considering the channel estimation errors and (ii) the proposal of a new cooperative para-
digm in cognitive radio network for the coexistence between primary and secondary users.

In Chapter [2/ we start the evaluation of the performance of a Medium Access Control
(MAC) protocol for MIMO ad hoc networks under imperfect channel estimation, by pre-
senting in Section 2.2 an analysis of channel estimation errors using both correlator-based
and MMSE channel estimators. Unlike similar works, we specifically focus on a scenario
where the presence of several simultaneous, symbol-asynchronous signals makes the prob-
lem more complicated than in traditional channel estimation. In particular, we show that
there is direct dependence of the channel estimation error on the instantaneous channel
matrix. In Section 2.2.2.1, for the correlator-based channel estimator only, we also extend
the analysis by specifically accounting for transmit impulses of different shape and possi-
bly infinite duration. Moreover, in Section 2.3 we integrate such formulas into a network
simulator, in order to obtain a precise representation of PHY-level processes, as opposed to

summarizing PHY layer performance into some compact expression. This aspect permits to
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directly evaluate the interference in a complex simulator, without making any assumptions
to make the model tractable. This is done obtaining precise expressions for the statistics of
the estimated channel matrix to be used in analytical studies as well as realistic simulation
experiments. Focusing on a cross layer MAC/PHY protocol we analyze its performance by
means of simulation, where we employ the analysis outlined above to provide an accurate
PHY model. We also highlight the tradeoffs that arise when tuning protocol behaviors and
their interplay with PHY-level parameters, such as the length of the training sequences, the
number of antennas and the type of transmit impulses. This constitutes a further step to-
ward a more realistic model for PHY-level issues in distributed MIMO networks, so that

higher-level protocols can be evaluated based on the resulting considerations.

In Chapter 3 we propose and evaluate an alternative approach to classic cognitive ra-
dio approach, based on a combination of the principles of opportunistic routing and of the
spectrum leasing via cooperation framework. In order to evaluate the performance of this
approach in cognitive radio networks, in Section 3.1 we first study the opportunistic routing
technique. In particular, we study the throughput advantages of opportunistic routing over
conventional multihop routing for linear multihop wireless networks with Type-I Hybrid
Automatic Repeat reQuest (HARQ) and block-fading Rayleigh channel model. In detail, in
Section[3.1.2.1 we derive the end-to-end throughput of opportunistic routing using Markov
chain tools and accounting for fading statistics, considering both fixed-rate and optimal-
rate transmissions. Furthermore, in Appendix [A, we show analytical and non-recursive
expressions of the end-to-end throughput for the opportunistic routing technique when the
number of hops in the network is greater than two. Moreover, in Section 3.1.3lwe present
a deep throughput analysis using standard information-theoretic performance metrics for
asymptotic signal-to-noise ratio (SNR) regimes, considering the multiplexing gain and en-
ergy efficiency (i.e., minimum energy per bit) of both opportunistic and multihop routing.

Finally, in Section|3.1.4 we give some numerical results to corroborate the analysis.

In Section 3.2, we relate the cooperation principle, the spectrum leasing paradigm and
the opportunistic routing technique. In particular, in Section|3.2.1, we propose a spectrum
leasing mechanism for the coexistence between a primary and a secondary network that is
based on cooperation and opportunistic routing. The primary network consists of a source

and a destination communicating via a number of primary relay nodes. In each transmis-
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sion slot, the next hop is selected in an on-line fashion based on the decoding outcomes in
the previous transmissions according to the idea of opportunistic routing. The secondary
nodes may serve as potential next hops for the primary network, but only in exchange for
leasing of spectral resources so as to satisfy secondary QoS constraints. Four policies that ex-
ploit spectrum leasing via opportunistic routing to different degrees are proposed in Section
These policies are designed to span different operating points in the trade-off between
gains in throughput and overall energy expenditure for the primary network. Analysis is
carried out for networks with a linear geometry and quasi-static Rayleigh fading statistics
by using Markov chain tools. In particular in Appendix B the transition probabilities of
these policies are detailed. Furthermore, two physical layer techniques are considered for
multiplexing of the primary and secondary traffic at the secondary nodes, namely time di-
vision (Section 3.2.1.4) and superposition coding (Section 3.2.1.5). The optimality in terms of
both throughput and primary energy consumption of superposition coding over all possi-
ble multiplexing strategies, for the given routing techniques, is proved in Section/3.2.2.6| In
Section [3.2.3|numerical results demonstrate the advantages of the proposed spectrum leas-
ing solution based on opportunistic routing and illustrate the trade-offs between primary
throughput and energy consumption. Finally, the analysis of this chapter is extended in
Appendix|Clto a distributed network, showing the effectiveness of the proposed spectrum

leasing via cooperative opportunistic routing technique also in a more general network.






Chapter

MIMO Ad Hoc Networks

As introduced in Section (1.2, one of the main goals of the ad hoc network research com-
munity has been to design effective and distributed protocols that yield a good throughput,
taking into account practical limitations, such as decentralized channel access management,

channel estimation errors and interference, that could decrease the network performance.

Network performance can be increased by considering the integration of multiple anten-
nas in each terminal of the network. From a practical point of view, the adoption of multiple
antennas can be feasible, due to higher communication frequencies used to communicate.
This technique, which can be seen as a MIMO system between transmitter and receiver,
has become very attractive after Foschini in [3] showed that the use of multiple antennas
at both the receiver and the transmitter makes it possible to significantly increase the link
capacity, effectively making use of multiple parallel radio channels in the same band, by
separation in space. In fact, MIMO technology permits to achieve high spectral efficiency
in Rayleigh fading environments and to enable the protection of communications in the
space domain, by processing and transmitting signals through different antennas, accord-
ing to predefined schemes such as Space-Time Codes (STC) (see, e.g., [4]). In the Layered
STC (LSTC), a subset of STC, the independent coded streams are distributed throughout the
transmission resource array in so-called layers. Then, the objective is to design the layering
architecture and associated signal processing so that the receiver can efficiently separate the
individual layers from one another and can decode each of the layers effectively. A special
case of LSTC is V-BLAST [5], where the encoding component is absent and all resources are

used for parallelizing transmissions (i.e., the vector encoding process is simply a demulti-
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plex operation followed by independent bit-to-symbol mapping of each substream). This
approach is also called Spatial Multiplexing (SM). It has been shown in [6] that there exists a
tradeoff between diversity and SM gain in MIMO networks: V-BLAST achieves the greatest
SM depth, whereas codes such as [7] are optimal in a diversity sense.

Ad hoc networks leverage MIMO techniques transmitting independent and separately
encoded data signals (so-called streams) from each of the multiple transmit antennas. Specif-
ically, if multiple streams are sent by different nodes, each using multiple antennas, all
streams can be taken as a separate contribution by the intended receiver. If channel in-
formation is available at the receiver, the output of its antennas can be recombined and
processed such that the data can finally be recovered. The primary consequence is the co-
existence, without collisions, of multiple data packets in the network provided that some
degree of coordination is maintained among transmitters. Moreover, by splitting a single
packet transmission among multiple antennas (e.g., with V-BLAST), a node is allowed a
higher bit rate, which is proportional to the number of antennas used [8,9]. However, us-
ing a more powerful PHY layer in combination with existing MAC protocols for ad hoc
networks (such as 802.11 [1]) may not necessarily be the best choice: a better design para-
digm should jointly account for PHY and MAC features in a cross-layer fashion, by allowing
some exchange of information between different layers. The need to regulate multiple ac-
cess in MIMO ad hoc networks has led to the definition of protocols that balance between
throughput and protection from interference, by encouraging multiple access while limiting
simultaneous transmissions. The protocol we consider here is based on a framed channel
access as detailed in [10], and will be summarized in the next Section 2.1. This protocol will
be studied using the analysis presented in Section[2.2, that permits to include the effect of the
interference due to multiuser communications in the expression of the channel estimation

errors 1

2.1 Network Protocol Description

As introduced above, the reference scenario considered in this chapter is an ad hoc net-
work formed of V-BLAST-capable nodes with multiple antennas. V-BLAST [5] is used here

both to improve the communication performance (by increasing the bit rate over a link)

The material presented in this chapter has been published in [11-14].
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and to offer a greater level of protection against interference (through the cancellation of
unwanted signals), both at the price of more complex signal processing. Since V-BLAST is
based on SIC, it is potentially very prone to interference: if the detection of the first among
a group of signals fails, its cancellation would increase the amount of interference affect-
ing subsequent detections. Furthermore, V-BLAST operations rely on channel knowledge at
the receiver, and poor quality of channel estimates can critically impair signal reception. In

multiuser scenarios these problems may lead to substantial loss of data.

In order to regulate multiple access in MIMO ad hoc networks, we defined a protocol
that balances between throughput and interference rejection, by encouraging multiple ac-
cess while limiting simultaneous transmissions. This protocol is based on a framed channel
access as detailed in [10], and will be summarized here for the reader’s convenience. Each
frame is divided into four phases, namely Request-To-Send (RTS), Clear-To-Send (CTS),
Data and Acknowledgment (ACK). All packets are assumed to be split into fixed-length
Protocol Data Units (PDUs), that are suitable to be sent in a frame using a single antenna.
All control packets (RTS, CTS and ACK) are sent using one antenna. We assume an overall
per-node power constraint, so that the transmit power is inversely proportional to the num-
ber of antennas used. The framed four-way handshake described in the following is then

used to understand how many PDUs to send in parallel, and to which receivers.

The RTS-CTS handshake is used to reach an agreement on the transmissions to be per-
formed, and is described as follows. Before composing RTSs, nodes must take into account
the communication capabilities of their intended receivers. These capabilities are summa-
rized in the concept of class. For what follows, suffice it to say that the class of a neighbor
represents the maximum number of antennas that can be used when transmitting toward
a group of nodes including that neighbor. This enforces a sufficiently low error rate [10].
The class is a restrictive constraint, and must be satisfied for each and every receiver. Each
transmitter may send at most as many PDUs as the minimum class of all its current intended
receivers. For instance, a node could send a total of 8 PDUs to three receivers, each of
which has class 8; on the contrary, if two receivers have class 8 and one has class 4, the node
is constrained to send at most 4 PDUs overall. This applies regardless of how PDUs are
distributed among the receivers. At the end of this process, RTSs are generally made of a

number of requests, each containing the receiver identifier and the number of PDUs to be
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Figure 2.1. Structure of the transmission frame.

sent to it. These RTSs have the only purpose to carry transmission requests: hence, they do

not block neighboring nodes, unlike in 802.11 [1] (see also the discussion in Section1.1).

The receivers called upon by the RTSs have now sufficient information to decide whether
to allow traffic or not. This choice is driven by a CTS policy, which strikes a balance between
throughput and protection against interference, while being constrained by the maximum
number of channels which can be tracked to operate the V-BLAST receiver: in other words,
only a limited number of signals can be detected and canceled. In the following we have
used the Follow Traffic (FT) policy [10]. With FT, each receiver grants at least one request
directed to itself. Other requests are considered in order of decreasing received power: if
they are directed towards the receiver, it prepares to estimate the corresponding channels
and inserts a grant in the CTS; otherwise, the signals are potential interferers, and the re-
ceiver prepares to track their channels, in order to cancel them. This procedure goes on until
all requests have been processed, or until no more channels can be tracked. CTSs are then
transmitted, and PDUs are sent thereafter according to the grants in the CTSs. Finally, ACK
messages are issued back to communicate correct receptions on a per PDU basis. Note that
FT is a cross-layer policy, as it relies on the exchange of information between the PHY and
MAC layers: PHY provides a measure of received power to the MAC, that in turn decides

which PDUs to grant, and correspondingly arbitrates signal detection performed by PHY.

The MAC protocol is finally augmented with a standard exponential backoff, entered
every time a CTS is not received in response to an RTS: namely, upon a missing CTS, a
node refrains from transmissions for a number of frames uniformly drawn at random in the
interval [1, B,,q.], where By, = 2V¢~! and N, is the number of consecutive unanswered
RTSs. This helps limit access persistence and thus reduce congestion. The interested reader

is referred to [15] for a thorough evaluation of backoff policies.

Unlike previous studies on the protocol described above [10,15-17], in this chapter we
explicitly account for channel training. Taking a practical standpoint, if channel estimation

is performed in the middle of the packet, the coherence of the estimate throughout the re-
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ception is improved, at the price of more buffering: therefore, we assume that a training
sequence of length L is included within any transmitted packet (except ACKs, which may
be transmitted through the same antenna previously used for the CTS). The resulting frame

structure is shown in Figure 2.1.

2.2 Analysis of the Channel Estimation Errors

Recent research work and practical implementations (such as [18]) have shown the high
potential of such MIMO techniques as spatial multiplexing [3] to achieve high bit rates in
wireless communications. At the receiver side, superimposed signals must be decoupled
to extract data, e.g., through successive cancellations as in V-BLAST [5]: however, this kind
of signal processing requires accurate channel estimation [19,20], [21, pp. 137-162] to work
properly. Compared to point-to-point communications [22], little work has been done on
MIMO channel estimation in networking scenarios [16,23], where signals coming from dif-
ferent transmitters are non-orthogonal and asynchronous, and estimation errors due to mul-
tiuser interference are to be taken into account. Similarly, the effects of imperfect channel
estimation on network protocols have also been often overlooked.

Our main contribution in this chapter is to provide a thorough analysis of the perfor-
mance of a MAC protocol for MIMO ad hoc networks under imperfect channel estimation.
To this end, we consider two different estimation methods, i.e., matched filtering on a known
training sequence and MMSE channel estimation. In specific cases, we derive close-form ex-
pressions of their variance and integrate such formulas into a network simulator. This yields
a precise representation of PHY-level processes, as opposed to summarizing PHY layer per-
formance into some compact expression, e.g., the probability of symbol error as a function
of the Signal to Interference and Noise Ratio (SINR); the latter figure, in particular, would
require to make strong assumptions on interference models, potentially leading to an un-
suitable representation of realistic network behaviors. As an example of application, an im-
portant part of this chapter consists of precise expressions for the statistics of the estimated
channel matrix to be used in analytical studies as well as realistic simulation experiments.
We focus on the protocol in [10] (described in Section 2.1) and thoroughly analyze its per-
formance by means of simulation, where we employ the analysis outlined above to provide

an accurate PHY model. We also highlight the tradeoffs that arise when tuning protocol
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behaviors and their interplay with PHY-level parameters, such as the length of the training
sequences, the shape of transmit impulses and the number of antennas. We consider the
general case of a MIMO ad hoc network, where nodes employ V-BLAST [5], and are thus
likely to receive multiple superimposed packets, typically sent through multiple antennas
by different users. As these users are generally located at different distances, their packets
bear different average power, and cannot be assumed to be symbol-synchronous. In more
detail, only the signals coming from the antennas of the same node can be assumed to have
the same average power and to be symbol-synchronous (path length differences between
pairs of antennas are negligible compared to the symbol duration). These effects have an
impact on channel estimation performance and must be taken into account. A direct conse-
quence is that the channel estimation error can be shown to explicitly depend on the channel

matrix as well, and not only on noise power and training sequence length.

A number of studies are available that assess the effects of channel estimation errors on
the overall performance of single-antenna as well as MIMO systems. In the presence of a
time-varying fading channel, a typical approach is to assume that the channel coefficients
are perturbed by an additive random component, which accounts for channel estimation er-
rors, such as an additive white Gaussian noise vector (AWGN) with known covariance. This
approach is followed in [22], where the authors derive upper and lower bounds on the mu-
tual information for Single-Input-Single-Output (SISO) channels. The same approach can be
found in [24] for MIMO systems operating over an independent and identically distributed
(iid) Rayleigh fading channel, and lower and upper bounds for mutual information under

channel estimation errors are derived.

Comparatively less work can be found for the case of general networking scenarios, as it
is difficult to assess the global performance of a whole network with respect to channel esti-
mation errors. The typical model for errors affecting channel estimates is a noisy component
that perturb estimated channel coefficients. In [25], a cross-layer distributed power control
and scheduling protocol for delay-constrained applications over mobile Code-Division Mul-
tiple Access (CDMA)-based ad hoc wireless networks is proposed. The authors focus on a
SISO channel, whose estimates are perturbed by adding a complex Gaussian component
with known variance at the receiver. In [23], an analysis of multiuser scheduling in MIMO

systems with imperfect channel estimation is presented using the same AWGN estimation
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error model. Network performance is assessed as a function of the number of users and
noise power: however, all signals are considered synchronous here, which is not realistic in
distributed networks. In [26] the authors consider asynchronous transmissions in the con-
text of cooperating base stations in a cellular system. Cooperation is implemented by linear
precoding, assuming perfect channel knowledge at the transmitter. Base stations compen-
sate for propagation delays during their cooperation phase, but can manage only a limited
number of transmitters, and those signals whose delay cannot be compensated will cause

interference.

In the specific case of V-BLAST, most papers focusing on channel estimation errors only
treat point-to-point scenarios, and consider only noise power as an impairment to estima-
tion. For instance, this is the case in [27], where Symbol Error Rate (SER) expressions are de-
rived by taking into account error propagation and suboptimal substream ordering, before
proposing an optimal ordering that reduces error propagation across substreams. In fact, the
main problem affecting V-BLAST is the propagation of errors between subsequent detection
steps, which limits the performance of the SIC procedure. In order to reduce this effect, an
optimal substream ordering criterion to be used along with a Zero Forcing (ZF) or MMSE
detector is presented. Similarly, in [28] channel estimation errors are modeled by adding an
uncorrelated component with known covariance to the current MIMO channel realization.
Unlike in [27], where the focus is on error propagation, in [28] the effects of optimal ordering
are considered and accurate bit error rate (BER) expressions for M-ary Phase-Shift Keying
(MPSK) and M-ary Quadrature Amplitude Modulation (MQAM) modulation at each stage
of the cancellation procedure for a 2 x 2 MIMO link are derived. A drawback of this analysis
is that it considers only two transmit and two receive antennas in a point-to-point scenario:
therefore, the effects of error propagation can be ignored, because the number of substreams
to be ordered is limited to two. In order to reduce the effects of error propagation, new
methods for sorting and decoding the received streams are presented in [29]. In addition,
a new ordering criterion is presented, whereby at each iteration the substream bearing the
lowest mean square error under channel errors is chosen. Another study of a point-to-point
V-BLAST system is presented in [30], where the estimation of MIMO channels using orthog-
onal training sequences is subject to errors due to noise power and channel variations in

time. The analysis does not consider the effect of these errors on V-BLAST system, but they
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only optimize the training length as functions of the Doppler shift intensity and the number
of antennas, for a given BER.

Summarizing, in this chapter we consider a general networking scenario with symbol-a-
synchronous transmissions; in this case, we derive expressions for correlator-based (in Sec-
tion[2.2.2) and MMSE (in Section [2.2.3) channel estimators, and we evaluate in Section 2.3
the performance of a MAC protocol specifically designed for a V-BLAST-capable network,
described in Section The V-BLAST architecture allows to achieve a significant portion
of the theoretical capacity with reasonable implementation complexity [27], but is prone to
errors if the channel state information (CSI) is not accurate: in this light, we also evaluate
the tradeoffs between PHY-layer parameters (which affect estimation accuracy) and MAC

protocol performance.

221 System Model

Assume that each node has N4 antennas. All antennas are used during reception, whereas
in general a node ¢ may use n; < N4 antennas for transmission. We focus on a single
receiving node, which hears signals from all transmitting antennas at the various nodes
i =1,..., M. The channel matrix (of size Nao x U, where U = "M n,;) contains the chan-
nel coefficients between all transmitting antennas at all nodes and the N4 antennas at the
receiver. We assume flat fading, with iid realizations across the different antenna pairs, that
is, the channel between antenna j of transmitting node i and antenna ¢ at the receiver is a
complex scalar hg.ie), with zero-mean complex Gaussian statistics and variance o7 (the same
for all antennas j, ¢ since it only depends on the distance between the transmitting and re-
ceiving nodes). We remark that o2 includes both transmit power and path loss: thus, the
case of equal receive power for all incoming signals usually considered in the literature can
be included in the notation above by taking o equal for all is.

For channel estimation purposes, antenna j of user i sends a training sequence s;;(t) of

L real binary symbols b;;[p] € {—1,+1},p=0,..., L — 1, namely

L-1

si(t) = bilplg(t — pT), (2.1)

p=0
where P[—1] = P[1] = 0.5 and ¢(t) is any impulse, including impulses of infinite duration.

The random =1 training sequence does not minimize the variance of the estimation error in
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the presence of interferers using the same transmit signal pulses as the sender of the training
sequence: optimal sequences can be designed by solving a minimization problem over the
Mean-Square Error (MSE) of the estimation [31-33]. Results show that if all signals (wanted
and interfering) are symbol-synchronous, there is no gain from the use of optimal sequences;
on the contrary, the gain is maximized if all interferers are symbol-synchronous and bear a
delay of half a symbol period with respect to the wanted training sequence. In a more
general scenario, the MSE is lower by 7dB than achieved by using a standard Hadamard
sequence. In any event, the optimal sequences can be obtained only by gathering feedback
from the receiver; moreover, optimal sequences would turn only into a lower variance of
channel estimates, making the network performance closer to that of the perfect CSI case,
but would not alter the essence of the PHY-MAC tradeoffs discussed later. Therefore, in the
following we still focus on a random +1 training sequence which, albeit sub-optimal, allows

to keep the analysis simple.

Knowing that in the analysis we assume that the power of sequences s;;(t) is 1, as the
actual received power is included in o2 (this incorporates the per antenna transmit power
of node i, and is therefore inversely proportional to n;), the signal received at antenna / is

given by

M n;
Zzhﬂ SU +Zé( )
=1 j=1
M n;
=33 ny me[p (t —pT — 7)) + z(t) 2.2)
=1 j=1 p=0

where z,(t) is the thermal noise at the receiver, modeled as white circular complex Gaussian
with zero mean and power spectral density Ny/2 (per dimension), and 7; is the propaga-
tion delay of the signals transmitted by the antennas at user ¢ (note that this propagation
delay does not depend on j,  but only on 4, as the path length differences between pairs of
antennas of a given transmitter /receiver pair are negligible compared to the symbol dura-
tion T'). With no loss of generality, we focus on the estimation of the channels related to a
specific user m, and assume 7, = 0. In the following we will consider the correlator- and

MMSE-based channel estimators.
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2.2.2 Correlator-based channel estimation

In this case, the channel coefficient between antenna k& of user m and antenna ¢ =

1,..., N4 of the receiver is estimated by matched filtering on the training sequence $,,;(t)

(see (2.1)), k=1,...,np

cmy _ 1 [T

1 [t
- IT Z hgé S (t)Smk(t) dt + / Z Z hjé Sij(t — 73)smi(t) dt
a - i#m j=1
1 +o0
1 “+oo Mm L—1 L—1
=T SRS binglplg(t —pT) > buklalg(t — gT) p dt+
T =1 p=0 q=0
1 400 n L—-1 L—1
b [ SRS S builpla(t = pT — 1) S buelalg(t — aT) ¢t +
T itm j=1 p=0 =0
1 00 L-1
tI7 z(1) Z bmklglg(t — ¢T) dt. (2.4)
o =

n L-1 L—1
7 (m 1 ™ m —+00
b = T > ge ) > bmjlpl Y bmklal / (t — pT)g(t — ¢T) dt+
j=1 p=0 q=0 —00
1 i N i L-1 +00
TIT SN S bulel Y bukld] / g(t —pT —7)g(t — ¢T) dt + Z, (2.5)
i#mj=1  p=0 4=0 —o0
(m) $g(0) | 1 NN ok S
=hi S o DD M P> bmildldg (0 — )T +7) +Z¢ (26)
i#Em j=1 p=0 q=0

where we note that the first rhs term is zero whenever p # g or j # k, and

1 +o00

7= —
CTIT

Zﬁ(t)smk (t) dt (27)

is the filtered noise term. For this term we have E[Z/] = 0 and
1 +oo
(LT)? J-o

= 20.6,(0), @8

oy =E[|Z,]°] = Noso,(t) dt

so that Z; has circular complex Gaussian distribution with zero mean and variance % 772 04(0).
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In through (2.6), the system model accounts only for the signals being sent at the
same time as the training sequence used for estimation. Now, recall that we are considering
frame-based channel access: the model in (2.3)—(2.6) applies therefore to one frame at a time,
and would thus require to consider co-frame interference. However, as per the discussion
at the end of Section 2.1, we note that it is convenient to place training sequences within
transmitted packets, so that channel estimates are more likely to be coherent throughout the
packet duration. This separates any training sequence from other frames by a significant
number of symbols for any practical data and signaling packet length. Therefore, co-frame
interference can be neglected, even in the case of long transmit impulses. By way of con-
trast, every other non-channel estimation-related symbol may create interference: however,
if training sequences conform to pseudo-randomness criteria, interference from data is sta-
tistically equivalent to interference from other training sequences. This allows to approxi-
mate interference from data symbols by letting p go from —oo to +oo in the second rhs term
in (2.5), as we will do from now on.

From (2.6) we define J J(,im) as the matched filter output corresponding to antenna j of

user 1:
Jj(;ﬂm) LlT - 31] (t )Smk(t) dt
Z bij[p] Z kg (P — T + 7). (2.9)
p*—oo

This term has zero mean, and its variance given 7; can be found as

i,m 1 — =
VaT[JJ(k’ mi] = W]E D bmila] D biglpilég((pr — a)T +7) | x
q1=0 p1=—00
L—1 +o0o
D bmilae) D bilpaldg((p2 — a2)T +7) | | - (2.10)
q2=0 p2=—00

We note that the terms in the sums are non-zero only if g1 = ¢ = ¢ and p; = py = p; since
Eb2,] = E[b?j] =1, we have

L—-1 4oo
Var[J](;C’m)h = LT 5 Z Z qbg p—q)T +m)
q=0 p=—00
1 X
=175 > bplaT + ), (2.11)

a=—00
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Hence,

Var[J(™)] = / Varl 14" ] dF(r), 2.12)

where F(7;) is the cumulative distribution function of 7;.

Consider now the joint statistics of .J ;fllgn) and J ](;2,;2”). In particular, we have that

E [J(ihm)J(izvm)} _

Ji,kr Y j2,ke

1 —+oo —+o00
=E {(LT)Q / dt / dtasiyjy (t1 — Tiy ) Smky (81)Sigjs (B2 — Tig) Sk, (t2)
1 —+oo —+00
= [ AeBl = s s — s ()] @13)

Consider the case i1,i2 # m. (Note that ¢ # m is the only case of interest in (2.6), and in any

event J](,i’m) for i = m is deterministic so that the computation is straightforward.) In this

case we have

IE [8iy, (F1 — Tiy ) Smky (£1) Sigga (B2 — Tig) Sy (t2)] =

= B [siy5, (t1 — Tiy)Sings (t2 — Tin)] I [y (t1) Sk (B2)] 5 (2.14)

which is clearly zero if i1 # i, or ji # j2, or k1 # k2 (modeling the used sequences as inde-

J(il,ml) J(iz,mz)

pendent random binary sequences). Similarly, it is possible to show that I£ | J; 7 ™J; %

0, Vii,i2,71,72, k1, ke, if mi # mg, because in this case E [s,,, 1, (t1)Smqk, (t2)] = 0. There-

fore, we can conclude that the variables J ](Zm)

can be modeled as a set of iid random vari-
ables, each with approximately Gaussian statistics (by virtue of their being sums of several
binary independent random variables, see (2.9)) of zero mean and variance Var|[.J j(,i,m)]
While the analysis above applies to any impulse g(t), in the following we will consider
the special case of rectangular impulses, that is
1, for— 5 <t< %,

g(t) = (2.15)
0, otherwise;

[N

A study on the effect of different transmit pulses (i.e., different shape and possibly infinite
duration) is derived in Section|2.2.2.1. For the rectangular pulse, the auto-correlation func-
tion of g(t) is given by
T—|r|, for—T <7<T,
bg(T) = (2.16)

0, otherwise;
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thus, (2.6) can be rewritten as

i) — pim) ZZhﬂ i (2.17)

i#m j=1
Note that, in the synchronous case, all received training sequences can be assumed to be
orthogonal, and therefore the matched filter output in (2.9), J ;Zm), isequal to 1 only if j =k,
regardless of the transmit node, and 0 otherwise. Under this assumption, the analysis yields

the well-known close-form expression (e.g., see [34]):
W = ni 4 7. (2.18)

We are however interested in the asynchronous case, where sequences coming from dif-
ferent users have random time displacement, and therefore cannot be assumed orthogonal,
whereas the signals from the antennas of the same user are synchronously received, and
thus can be assumed to have zero cross-correlation. In other words, J ](]:,nm) =1forj =k,
and 0 otherwise. Because ¢4(7) is non-zero only in (=7, T) if g(t) is rectangular, the only

terms of interest in (2.11) are those for p — ¢ = 0 or —1, which yields

Var[J(Zm |7i] = —7)? (2.19)
and
(i.m) 1
o2 = Var[J ;7] = (1) g 2LIE[T; 2]
2
= (2.20)

where the distribution of 7; is assumed to be uniform in [0, 7] Vi (or 7; modulo 7" is uniform
in [0, 7] Vi), consistently with the approximation that there are infinite symbols per each
interfering sequence.

Finally, the output of the matched filter in the asynchronous case is

iy = h{ + Anl (2.21)
where
NRESY Z W™ + 2 (2.22)

i#m j=1
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is the channel estimation error, and Z; is complex Gaussian distributed with zero mean and

variance equal to
No No

0% = 17a%(0) = T (2:23)

for rectangular pulses.

It is useful to summarize the above calculations in matrix form. Let H(® be the channel

matrix between user i = 1, ..., M and the receiver, defined as
VA oA A"
W, || g
HO— | S A (2.24)
n Rl D%
L hgzj)\fA e h’/(zzi)NA ] L ﬁ5\71/')14 ]

where we highlight row vectors through the underline notation z, in order to differentiate
from them column vectors, which are indicated using the boldface notation x. Let the overall

channel matrix from all transmitting antennas to the antennas of the receiver be

H-— [H(U,H(?),...,H(M)}

hgn hgm ﬁgM) hy
_ | =] | (2.25)
1 2 M
30 A I 7Y
Define now
(¢,m) .
~ J, i FEm,
Jhm = ¢ Tk 7 (2.26)
0, otherwise.
Let j,gm) be the column vector collecting all variables j](z;m) for all antennas of the transmit-
ting users:
Fom) _ [Fam)  Fm) F2m) - 52m) Fom)  sm)] T
T = [T TR T T TR T @2
and define the matrix
Jm — [jgmx...,m] . (2.28)

With this notation, and defining the column vectors

> (m 2 (m s (m) 1T m m m) 1T
B = B B = D, e
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and

Z=1[Z,....Zn,]" (2.30)

fork=1,...,n,andm =1,..., M, we can rewrite (2.21) and (2.22) in vector form as

h™ = n™ +HI™ + 2, (2.31)

which shows that the channel estimation error vector Hj,gm) + Z can be generated by mul-

tiplying the channel matrix H by the training sequence correlation vector j,(gm) (whose non-

zero elements can be drawn randomly and independently ~ N(0, 2 )), and adding the noise

vector. By grouping in a matrix all the above quantities with subscript £ = 1,...,n,,, we
obtain
H™ =HM™ L HI™ + 7/ (2.32)
and, by further grouping all these results for all nodes m = 1,..., M, we have
Hcorr = H+HI 4+ Z” (2.33)
where
J=[3m 3@  Fwm ﬂ : (2.34)

and Z', Z" are matrices of iid elements ~ N(0, 2%).

2.2.2.1 Different Transmit Waveforms

In this section we extend the analysis presented above by specifically accounting for
transmit impulses of different shape and possibly infinite duration. This constitutes a fur-
ther step toward a more realistic model for PHY-level issues in distributed MIMO networks,
so that higher-level protocols (e.g., see Section2.1) can be evaluated based on the resulting
considerations. These results will be presented in Section 2.3.3|

We consider several choices for the transmit pulse g(¢) (see (2.1)):

e rectangular pulse:

g(t) = -y (2.35)

e Sinc pulse:

(2.36)
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Figure 2.2. Variance of the non-zero elements in J, for varying length of the training sequence, L, and

different transmit pulses.

o raised cosine (RC) pulse [35] of roll-off parameter aE

(e eos ()
g(t) = sinc <> — (2.38)
T 1 — 4%22152
o Gaussian pulse of variance factor a
£\ 2
g(t) = ) Lemalz)". (2.39)
™

For the rectangular pulse the close-form variance formula has been obtained in (2.20): in fact
the only terms of interest in (2.11) are those for a = 0, where ¢4(7;) =T — 7, and a = —1,
where ¢4(—T + 7;) = 7;. Therefore

, T—1)2%+ 72
Var[J},@’m)ln} B Vi LT%Q R (2.40)
and the variance of J ](;m) is o2 = 2/(3L) (see (2.20)).
*The raised cosine frequency characteristic is given as
T, 0<|fl <5
GUY =4 {1 eos [ (1))}, <1< e @3

0, |fI> %42
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=s/L

2
J

0.6 _
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Scale factor s in the equation ¢
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RC pulse roll-off (o) and scaled Gaussian pulse variance factor (a/10)

Figure 2.3. Variation of the scale factor s in the equation 0% = s/L with pulse parameters. For visu-
alization purposes, the abscissa represents both the RC pulse roll-off factor o and a scaled version of the
Gaussian pulse variance factor a, i.e., a/10. The value of 0% obtained using rectangular pulses is also

shown for reference.

The variance for the other type of pulses listed before is numerically derived and is
shown in Figure 2.2 The figure shows that Gaussian pulses offer the best performance, by
virtue of their autocorrelation, which is also Gaussian, and is either low-valued and wide
(low a) or high-valued and narrow (high a). RC pulses offer different variance behavior
depending on the value chosen for the roll-off factor a. In particular, a low « yields higher
variance, as in the case of a Sinc pulse, but when « increases up to 0.9 the RC pulse decays
to zero more rapidly, and hence has a narrower autocorrelation function, reaching the same
performance as that of the Gaussian pulse with a = 4. In other words, a high roll-off factor

reduces the variance of J , due to the fewer dominating terms in (2.10).

Plotting Figure[2.2 in a log-log scale confirms that the relation between 0% and the length
of the training sequence L is linear of constant slope equal to —1 in log scale, and therefore
of the type 0% = s/L in linear scale. Figure 2.3/shows the variation of the scale factor s as a
function of the parameters of RC and Gaussian pulses in comparison to a rectangular pulse,

and confirms preceding comments on Figure namely, RC pulses with a high roll-off
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factor o or a Gaussian pulse with a low variance factor a yield better performance, mainly
due to their narrower autocorrelation function. As a final observation, the choice of a trans-
mit pulse is generally driven by other considerations than its impact on the performance
of channel estimation in MIMO ad hoc networks; however, this impact is not negligible,
and must be carefully taken into account in simulations: the methodology to calculate o2
presented so far, as well as the scale factors reported in Figure 2.3/ for some specific pulse
choices, are of help in this task. In Section 2.3.3 we study this aspect in the MAC protocol
for MIMO ad hoc network introduced in Section[2.1.

2222 Case Study

The analysis introduced in Section 2.2.2/allows to analytically compute various statisti-
cal metrics related to the channel estimation errors. Also, it can be readily used to simulate
the effect of channel estimation errors in an ad hoc network, and to study their impact on
network performance. As an example, consider a network with three nodes, i.e., two trans-
mitters and one receiver, each equipped with two antennas. The transmitting nodes use
both their antennas. The receiver wants to estimate the eight flat fading channel coefficients
between each of the transmit antennas and its own receive antennas. The channel matrix
can be written as H = (h;l )) with k,l,m = 1,2,

NN T o

1 1 2 2
h by by by

where h,(:;) is the channel coefficient between the k-th antenna of the m-th transmitter and
the (-th antenna of the receiver. According to Eq. (2.33), the estimation error depends on the
instantaneous responses of all channels. For a given realization of the channel conditions, we
are interested in computing the mean and variance of the estimation error, Ah,(c?), m,k,{ =
1,2, which is given by Equation (2.22). We have
Elan’| =0 and  EB[lAR{P| =3 Z| @) 3L iVT (2.42)
i#m j=1

With a slight abuse of notation, we define the matrices |H|? = (\h )12) and E[|AH|?] =
(E[|Ahkl 12]) with k,I,m =1,2:
BV B P RYP kP

|H|2: 2 2 (2))2 2
B2 (nSy 12 RGP (RS

(2.43)
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1 1 2 2
o EIARYP] E[ARYP EnAh&l’m E[| ARG
E[|AH[?) = "y D12 21 (2.44)
E[ ARG 2] E[ARS) ] EIARG 2] E[ARS)
The following equations give an example of results obtained for two independent and
randomly generated channel realizations. The transmitters are at the same distance from the
receiver, noise is neglected, and L = 16 (these results can be easily scaled to other values of

L, as the variance of the channel estimation is inversely proportional to L in this case). First

realization:

9 6.63e-2 4.35e-3 0.554 1.32e-3
H|* = , (2.45)
0.164 1.56e-3 2.12  0.645

9 2.3e-2 2.3e-2 2.94e-3 2.94e-3
E [|[AH|?] = (2.46)
0.1152 0.1152 6.89e-3 6.89e-3

Second realization:

HJ? 3.04e-3 0.038 5.33e-5 1.58e-3 (2.47)
0.467 0.0308  5.33 16.0 ’ ‘

9 6.8e-5 6.8e-5 1.71e-3 1.71e-3
E [|[AH|?] = (2.48)

0.889 0.889 2.07e-2 2.07e-2
These results confirm that E[\Ah%)m does not depend on k, as expected. Also, they
show that the ratio of the error variance to the channel strength greatly depends on the chan-

nel matrix, which poses significant challenges for accurate channel estimation in a multi-

user scenario.

2.2.3 MMSE channel estimation

With reference to (2.2),

M n;

ZZhﬂs” 7i) + ze(t)

i=1 j=1
M n;

=553 nY wa[p (t —pT — 1) + 20(t),
p=0

=1 j=1

let us now define r, as the row vector of the samples of the received symbols at antenna ¢:

ry=1[re(T),...,re(LT)], £=1,...,Ny. (2.49)
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The scalar r¢(¢T) is suitable to be expressed using matrix notation. Let s;(¢T" — 7;) be the
training symbols sent by all antennas of node i as seen by the receiver at time ¢7', ¢ =
1,...,L:

si(¢T — 1) = [sin(¢T — i)y - -, Sin,; (¢T — Ti)]T /VLT, q=1,...,L, (2.50)

where we recall that s;;(¢7" — ;) € {—1,+1},j =1,...,n;, i = 1,..., M, and that 7; is the
propagation delay experienced by all signals of user i. Let us consider the gth symbol of all

training sequences; by grouping the corresponding received versions into a vector, we get
s(qT) = [Sl(qT—Tl)T,...,sM(qT—TM)T] , g=1,...,L, (2.51)

and by recalling that U = "M n;, we can write the U x L matrix of all training symbols

received from all transmit antennas as

S=[s(1)",...,s(LT)"] =

Sl(T—Tl) Sl(LT—Tl)
= : : . (2.52)
SM(T — TM) v S]V[(LT — TM)
Using (2.24), (2.25), (2.50) and (2.51) the signal received at antenna ¢ in (2.2) becomes:
M ng )
= SN WYsii(aT) + ze(qT)
i=1 j=1
= Z ( 1 si1(aT) + hég)slz(qT) +...4 hffi)esmi(qTD + zo(qT)
= h,(g )Sl(qT )T+ b s (T — )T + ze(qT)
= hys(qT)" + 2(qT), (=1,...,Na, q=1,...,L. (2.53)
Focus for the moment on a perfectly synchronous case, whereby 7, = 0,7 = 1,..., M. By
calling
Zy = [ZE(T)a cee 7Z€(LT)] ) (254)

a compact form of (2.49) is then

=hS+z, £=1,..., Ny (2.55)
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By further grouping r,, ¢ = 1,..., N4, we obtain

1 hl 21
Rg = . _ . S .
Ny QNA ZNy
= HS + Zs, (2.56)

where both Rg and Zg have size N4 x L. Let us now rewrite (2.56) in vectorized form [34]

rs = vec (Rg) = vec (In,HS) + vec (Zs)
= (ST ® Iy, ) vec (H) + zg

= Sh + zg, (2.57)

where ® denotes the Kronecker product. The linear MMSE estimator of the MIMO channel
H is [36]

EMMSE = vec (ﬁMMSE)
= Qprg Py s, (2.58)
where
Pprg = E [hr§] and & = [rsrf]. (2.59)

Under the assumption that all signals are time synchronous, we get the well-known expres-
sions

Dpr, = PpS" and By = SBRS” + By, (2.60)

where

®p = E [hh"] and @,q = E [zs2§] = Nolrn,. (2.61)

Therefore the MMSE estimator in the synchronous case becomes (see also [34])
hyvivse = PpS’ (§q>h§H + @zs) s, (2.62)
We now use the following variant of the Woodbury identity [37]: let A and B be positive

definite matrices, then

1

ACH (CACH + B) ' = (A" +cHBlC) T cH B (2.63)
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In our tractation, welet A = &, B = ®,, and C = S. Itis straightforward to show that A
and B are positive definite.

Thus, we can rewrite (2.62) as follows

~ _ N1
Base = (@, +5"2,)S) 80 rs, .64
where @y, is a block-diagonal matrix with elements U?Ini Nyt =1,..., M, thatis,
O'%ImNA
®p = E [hh''] = (2.65)
012\41n1v1NA

By replacing (2.57) in (2.64), through straightforward algebra we obtain
~ g\ 1 He =
Bvvise = (@5 + Ng'S"S)  Ng! (S"Sh +8"zs). (2.66)
Due to the properties of the Kronecker product, we have
7H7
S'S=os®1In,, (2.67)

where ®g = SS* is the cross-correlation matrix of the training sequences in the synchronous
case.

Let us now consider the case of asynchronous received signals: in this scenario, the
7is, 4 = 1,..., M, are not zero in general. This condition reflects on ®g, which must be
computed according to the model in (2.5)—(2.6). To make the task simpler, let us subdivide

®g as follows:
s@H o x@M)

bg = : : ; (2.68)
s s (MM)

where the term in position (j, k) of (»™), according to (2.6) and considering a rectangular

g(t), is
@m) _ 1T — (7 — Tim) -« Ti — Tm =
S = > buklplbi; [p] + T > bk [plbislp — 1]
p=0 p=1
L[t (im)
= ﬁ Sij(t - (Ti - Tm))smk(t) dt = ij s (2-69)

—00
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where j = 1,...,n;, k = 1,...,n,,. Note that Z¢™) im =1,..., M represents the cross-
correlation matrix of the sequences sent by all transmit antennas of users ¢ and m. Collecting

the elements of ®g in (2.68) as in equation (2.27) yields

s"s= [, o, gt g ey, = Ty,

1Y ng 0 Y s

=J®Iy, +Iyn,, (2.70)

where matrix J can be modeled as a set of iid random variables ~ A (0, 3%) (see Section|2.2.2
for details). We note that if the received signals are perfectly synchronous the orthogonality
among sequences is preserved (i.e. ¢ = m case, when the training sequences are sent from
the same transmitter), hence

In,, i=m,

»Em) = (2.71)
Oy,, otherwise,

and S”'S reduces to

S"S =1yn,. 2.72)

As in (2.8), it is straightforward to conclude that the noise vector in (2.66), §st = w, has
iid elements ~ CN (0, %) when ¢(t) is the rectangular pulse. To conclude, the linear MMSE

estimator for asynchronous signals takes the following form

Baavise = |51+ Ny (T2 Iy, + Tuw, )| Tt (h+ (e )n+w)l @73

The last expression of linear MMSE estimation, (2.73), is directly comparable with equation

(2.33) derived for the correlator, which can be expressed in vectorized form as:

ECORR:h+ (j@INA>h+W . (2.74)

Equations (2.73) and (2.74) clearly show that the error matrices related to a correlator-
based or MMSE channel estimator have two components, one proportional to the channel
matrix, <3 Q1IN A) h, which include interfering transmitters, and one independent of it, w.

In the following section, we elaborate on the effects of imperfect channel estimation at

the receiver by applying the analysis carried out so far to the evaluation of the performance

of a MIMO ad hoc network.
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2.3 Impact of Channel Estimation Errors in a PHY-MAC Protocol

The results in this section are derived adopting the MAC protocol described in Section
2.1in a network with 25 nodes deployed in a square grid within a 100 m x 100 m area, so that
the distance between nearest neighbors is 25 m. All nodes are static and frame-synchronous
for the whole duration of the simulations. As in [10], we choose this specific topology be-
cause all nodes potentially receive a significant amount of interference from one another,
a demanding scenario for the MAC protocols under test. Each node generates packets ac-
cording to a Poisson process of rate A packets per second per node. Each packet is formed
of k PDUs, with k uniformly chosen in {1,2,3,4}. Packets waiting to be sent are stored in
a queue which can hold up to 120 PDUs. If the storage time exceeds a custom number of
2500 frames, the packet times out and is discarded. Each PDU is 1000 bits long, whereas
signaling packets are 200 bits long. These values do not account for the length of the train-
ing sequence, L. For simulations with imperfect channel estimation, we assume that each
packet contains such a sequence (see also the frame structure in Figure 2.1). In these cases,
we use the models derived in Section [2.2.2, for correlator-based estimator, and in Section
2.2.3| for MMSE estimator, to consider the imperfect channel estimation. The results here-
after are obtained for N4 = 4 and N4 = 8 antennas at each node (we assume the antennas
are sufficiently spaced, so as to yield a capacity very close to that an iid Rayleigh MIMO
channel, see [38]). During the reception phase, a node uses all antennas to run the V-BLAST
algorithm with the maximum number of degrees of freedom. On the contrary, the number
of antennas to use during transmissions is chosen according to the directives of the received

CTS packets (in particular, node i uses exactly n; antennas, see also Section[2.1).

We employ the analytical approach devised in [17] in order to accurately model PHY-
level details, without an excessive burden for the simulator. This technique approximates all
contributions to the receive SINR as Gaussian, and separately accounts for the impairments
caused by noise, imperfect cancellations, and signals that are still to be canceled in the V-

BLAST stack.
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Figure 2.4. Average throughput as a function of X for the MMSE and CORR detectors, L = 128, com-
pared to perfect channel estimation. The considered number of antennas is Na = 4 (grey curves) and

N4 = 8 (black curves).

2.3.1 Study of MAC performance under perfect and imperfect channel estima-

tion

Figure 2.4 shows the total average network throughput (in Mbps) as a function of traf-
fic in case of both perfect and imperfect CSI at the Receiver (CSIR). Both the MMSE and
correlator-based (CORR) estimators are shown; in addition, the study is performed for both
Ny = 4 and Ny = 8. In this evaluation the length of the training sequences is fixed to
L = 128. For a fair comparison, the perfect estimation case also assumes that a training
sequence of the same length L = 128 is added to the transmission of RTSs, CTSs and PDUs.
Figure highlights the performance degradation incurred with imperfect CSIR, which
translates into a reduced maximum throughput, about 25% lower when using MMSE, and
up to 55% lower when using CORR with either number of antennas. In fact, imperfect CSIR
makes the V-BLAST detection algorithm much more prone to interference, causing a greater
probability of error and thus lower throughput. We stress that two negative effects add up
to impact on the detection performance of V-BLAST. First, a wrong channel estimation leads

to canceling an incorrect contribution from the received signal, even in the case of correct
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Figure 2.5. Comparison of throughput as a function of X for the estimation error model employed in this
2

e’

work against an additive Gaussian error model of given variance o, normalized to the average power

received from a given distance, chosen as 50m (e50) and 75m (e75), N4 = 8.

detection. This leaves a trace of the canceled signal, which will decrease the SINR of all
following detections. Second, even with perfect channel estimation, a wrong detection and
cancellation (e.g., due to low SINR) may double the interference of the current signal on
subsequent detection steps. Therefore the last signals in the V-BLAST detection order (that
would experience the best SINR thanks to previous cancellations in the perfect CSIR case)
are in fact the most affected. This limits the maximum achievable transmission parallelism.
We also note that the throughput does not decrease to zero, but is instead maintained at a
constant level for increasing A because of MAC-level backoff, which limits channel access

attempts and thus interference.

As expected, using N4 = 4 antennas results in lower network performance, while main-
taining roughly the same proportion among the perfect CSIR, MMSE and CORR curves. For
this reason, and because N4 = 8 allows more degrees of freedom to the MAC protocol, we
will concentrate on the V4 = 8 case, with the understanding that for lower N4 the results

are conceptually similar, though scaled down.

Our estimation error model is able to capture the effects of concurrent transmissions
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Figure 2.6. Average throughput as a function of L for both MMSE and CORR, A = 500, 800 pkt/s/node,
Ny=38.

(that create interference to each other), whose interfering power varies on a per frame basis,
on the accuracy of channel estimation. Simpler models of the kind H = H + AH, where
the error is modeled as an additive Gaussian term AH of given variance o2 (independent
of H), are perhaps more straightforward, but do not consider the impact of multiple access
interference. In addition, it is not clear how o2 is to be computed as a function of the sys-

tem parameters. A comparison between our model and the Gaussian displacement model

2

¢ is set to either 0.02 or 0.04, normalized to

is shown in Figure 2.5, where the variance o,
the average power received from a given distance, set to 50 m and 75m, and indicated in the
tigure with €59 and e75 respectively. We observe that only by empirically fine-tuning the nor-
malized variance value can the grey curves (representing the simpler model) approach the
black curves, where the estimation error model accounts for time-varying interference, and

is thus tightly related to the system parameters. This shows that in a multiple-access context

our model is significantly better and easier to use than the traditional Gaussian approach.

The length of the training sequence L is a key parameter, affecting both channel estima-
tion and network performance in a non-trivial way. A longer training sequence improves

the estimation accuracy, see (2.20), but also causes greater overhead, thus decreasing the effi-



36 Chapter 2. MIMO Ad Hoc Networks

ciency of all transmissions (recall that a training sequence is added to the transmission of all
packets except ACKs, see Section 2.1). To quantify this concept, consider Figure 2.6, where
throughput is plotted against L for A = 500 and A = 800 pkt/s/node. The figure highlights
that throughput is low in two opposite conditions, i.e., when L is too small and when it is
too large. In the first case, the overhead imposed by channel estimation is negligible, but
channel estimates are unreliable: therefore, nodes experience low transmission success ratio
and throughput. Conversely, when L is large, channel estimates are very reliable, but a large
fraction of the MAC frame is occupied by the training sequence: this leaves little room for
data and results in low throughput as well. Referring to Figure|2.6, the optimal setting (from
a throughput point of view) strikes a balance between low overhead and good channel esti-
mation, and depends on the type of estimator, as well as on A: for example, MMSE requires
L = 128 if MAC-level throughput has reached saturation (A = 800, see Figure 2.4), but only
L between 32 and 64 for A = 500, which causes lower traffic, hence interference: therefore,
the required channel estimation accuracy is also lower. A similar argument holds for CORR
as well: however both A = 500 and 800 lie in the MAC throughput saturation region, unlike

in the MMSE case: this explains the smaller differences between the two CORR curves.

In order to better assess the impact of the overhead due to channel estimation, we intro-
duce two different efficiency metrics. The first, named transmission efficiency, is defined as
the ratio of correctly received information bits over all sent bits, averaged over all nodes and
frames. This definition allows to balance between the greater estimation accuracy (thus bet-
ter probability of success) and the greater overhead incurred by increasing the length of the
training sequence, L. However, it does not explicitly depend on the behavior of the protocol
(e.g., on the way receivers are chosen and links are set up), but only on PHY-level parame-
ters (i.e., L). For this reason we consider the class efficiency, which is more closely related to
our MAC protocol. In each frame, we compute this metric as follows: we take the sum of the
number of PDUs ACKed by all receivers (provided that the ACK is correctly received); then
we consider the set of receivers of each transmitter, take the minimum class of the receivers
within each set, and sum all minimum classes (the minimum class within a set of intended
receivers in a frame has been introduced in Section 2.1). Finally, we take the ratio of the two,
and average it over all frames. Note that the minimum class depends on which receivers a

transmitter must send packets to (thus on the traffic pattern), and is determined during the
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Figure 2.7. Transmission efficiency and class efficiency as a function of L for both MMSE and CORR,
A = 800 pkt/s/node, Ny = 8.

RTS phase; conversely the number of correctly received PDUs (which is calculated based
on the information reported in ACKs) is a result of all protocol decisions within the frame.

Therefore the class efficiency represents a very protocol-specific outcome.

We highlight that, given a minimum class ¢, the best a transmitter can do is to have ¢
PDUs get through correctly to their receivers. In other words, the class efficiency metric is
equal to 1 if all transmitters can satisfy the latter condition in all frames. The transmission
efficiency and class efficiency metrics are plotted against L in Figure Coherently with
throughput curves, transmission efficiency shows a maximum around L = 128 for MMSE
and L = 32 for CORR, but does not decrease to zero for low L. The latter represents a
particular network situation where most of the RTS packets are not decoded due to bad
channel estimation: this reduces traffic artificially, because nodes spend most of their time
in backoff. Therefore, very few data transmissions actually occur, and due to the very low
interference they almost always succeed. This makes the transmission efficiency significant,
despite the very low throughput. For very high L, instead, the overhead required by channel
estimation is very large, hence the transmission efficiency drops. The class efficiency exhibits

a more regular behavior: as L increases, the better accuracy of channel estimation allows
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Figure 2.8. Average PDU and RTS success ratio as a function of A for both MMSE and CORR, for
L =128 and Ny = 8.

both more signaling packets and more PDUs to be received correctly, and therefore a larger
number of PDUs to be ACKed. Hence, class efficiency grows with L, is greatest at L = 128
for MMSE and stabilizes around a near-maximum value at very high L. For CORR, class
efficiency is monotonically increasing for increasing L: this is explained in terms of the
resulting larger traffic and lower probability of error, which makes it possible to correctly

convey more traffic through activated links.

To sum up, a good choice for L is found by jointly considering Figures|2.6 and 2.7: for
MMSE, the best value of L is around 128, which jointly optimizes throughput and efficiency;
for the poorer CORR estimator, L = 64 is good for throughput and transmission efficiency,
whereas class efficiency is suboptimal. However, a larger value would make little sense,
given the short length of signaling packets (200 bits), and choosing a larger value for L

would imply a waste of resources.

Up to this point, we have mostly considered the impact of imperfect CSIR on PDU recep-
tion. However, a second interesting effect is observed during the RTS/CTS exchange phases.
To explain this, let us consider Figure 2.8, which shows the average transmission success

ratios for RTSs and PDUs as a function of traffic for fixed L = 128, thus fixed channel esti-
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mation accuracy. For comparison, the curves for the perfect CSIR case are also shown. Even
in case of perfect CSIR, increasing traffic has a detrimental impact on RTS transmissions,
which is due to more frequent channel access by all nodes. The PDU success ratio, instead,
is more stable thanks to the way transmissions are granted (the CTS policy described in Sec-
tion|2.1, which tends to control interference). With imperfect CSIR, the success ratio of both
signaling packets and PDUs decreases even further, because of poor detections and wrong
cancellations. (Choosing e.g., L = 2048 would make the two sets of curves more similar.)
This shows that the throughput loss due to imperfect channel estimation is not simply due
to more frequent PDU losses, but also to corrupted signaling packets, which do not allow

links to be set up correctly.

2.3.2 The effect of different CSIR accuracy for signaling and data packets

Unlike before, let us allow the signaling packets and PDUs to use training sequences of
different lengths (L, and L4444, respectively): by differentiating between estimation accu-
racy for signaling and data, we can get some more insight about how channel estimation
affects MAC performance. In Figure we consider the MMSE estimator, and plot con-
tour curves of throughput and transmission efficiency as L, and L 44, are independently
varied from 1 to 2048. A greater L;, yields better protection to RTSs: as more RTSs are cor-
rectly received, more links are established. Conversely, a greater L 44, protects PDUs, but
only those that have actually been sent. Therefore, a greater L 44, can increase throughput
significantly only if enough links can be established, i.e., only for high L;, as well. For ex-
ample, take L, = 32: increasing L 4,4, causes throughput to increase up to roughly 40 Mbps
(for L 444, between 128 and 256), after which no further improvements are possible, because
the number of active links is limited by Lg,. Conversely, take L 4., = 32: increasing L,
initially improves throughput, but only up to roughly L, = 32. In fact, for greater L,
more RTSs are received correctly, hence more links are set up, and L4, = 32 cannot en-
force a sufficiently accurate channel estimation to enable correct detections. Thanks to the
superposition of throughput and efficiency, Figure 2.9/allows to tune the working point on
the efficiency-throughput tradeoff by varying L;, and L 44,. For example, to ensure an effi-
ciency of at least 0.5 and a throughput of at least 30 Mbps we can choose any pair of L;, and

L 441, within the intersection of the corresponding contour curves. For example, the choice
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Figure 2.9. Contour curves of average transmission efficiency and throughput when using the MMSE
estimator. Curves are plotted as a function of the length of the training sequences used for signaling
messages (L) and PDUs (L 4qt0), A = 800 pkt/s/node, Ny = 8. Each curve in the Figure is obtained
as the intersection of the efficiency or throughput surfaces as a function of L 4410 and L, with a horizontal

plane corresponding to the efficiency or throughput value indicated by the label on each curve.

Lsig = 32, L, = 128 satisfies both constraints. Conversely, if the constraints are too strict
(e.g., an efficiency of 0.6 and a throughput of 40 Mbps) the requirements are incompatible
and the curves do not intersect. For comparison, note that CORR (Figure 2.10) achieves
worse performance, both in terms of maximum throughput and efficiency, and in terms of
tradeoff between the values of the two metrics.

In order to get a better grasp on the tradeoff between different performance figures as
a function of channel estimation accuracy, let us now choose two metrics between which
we evaluate a tradeoff for fixed packet generation rate A. In Figure 2.11 we consider the
throughput and transmission efficiency values achieved by all (Lgig, Ldqtq) pairs, and plot
the convex hull of the resulting scatterplot: this allows to pick only the pairs that offer the
best (i.e., outermost) metric values. Power-of-2 pairs are shown using circles and crosses and
highlighted through labels. Note that, in order to get a denser scatterplot with a smoother
convex hull, we have also considered pairs where (L, and Lg,:,) are not powers of 2. Fig-

ure2.11 shows the described plots for both MMSE and CORR, at A = 500 (grey curves) and
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Figure 2.10. Contour curves of average transmission efficiency and throughput when using the CORR

estimator. Curves are plotted as in Figure|2.9.

A = 800 packets per second per node (black curves). The important section of the curves is
the top-right corner, where the best combination of throughput and efficiency is achieved.
A good choice of (Lyg, Lgatq) Which optimizes throughput in spite of a suboptimal trans-
mission efficiency, is (32, 256) for MMSE and (128, 256) for CORR, at A = 800. Note that the
A = 500 curve for MMSE exhibits a flat region at the top-right corner, because this value of A
lies in the linear increase region of MAC-level throughput, see Figure 2.4! as a consequence,
the maximum throughput achievable corresponds to delivering all generated PDUs; in turn,
the optimum values of (Lsig, Ldata) are just sufficient to ensure accurate channel estimation
for all packets. We highlight that transmission efficiency and class efficiency (the capability
of transmitters to saturate the minimum class among their set of receivers) are competing
constraints in terms of training length. Figure plots the convex hull of the scatterplot
of class efficiency vs. throughput performance points, and clearly shows this fact. While
the values reaching optimal throughput (uppermost part of the curves) are the same as in
Figure best class efficiency (rightmost part of the curves) requires quite higher values

of Lig and L gt

The PDU transmission success ratio and average delivery delay are also important met-
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Figure 2.11. Convex hull of the scatterplot of transmission efficiency vs. throughput performance points
for varying pairs of Ls,q and L gqia, Na = 8. Some relevant points corresponding to power-of-two training

sequence lengths are highlighted for reference.

rics in a wireless network. The contour plot of these metrics is shown in Figure 2.13 for
MMSE. We observe that the optimal values for success ratio are expectedly found for high
Lgata; however, long training sequences excessively prolong the duration of the frame, lead-
ing to longer delivery delays: therefore, the best point for delay is around (128,512). As
observed before, the CORR estimator requires longer training sequences to achieve suffi-
cient estimation accuracy; therefore, lower success ratios and higher delays are experienced,
the best point for delay being around (256, 1024), see Figure 2.14. We highlight that the lat-
ter point has only a purely theoretical meaning, suggesting that minimum delay is achieved
when links are set up as fast as possible (Ls; = 256 gives very good estimates for RTSs)
and data is protected from estimation errors (Lgata = 1024). The choice among the working
points discussed so far should depend on the primary metric to be optimized. Considering
the MMSE case, the best throughput is obtained at (32, 256), the best efficiency at (4, 64), the
best delay at around (128,512). These could be jointly optimized by, e.g., defining objec-
tive functions which encompass different performance indications into a synthetic figure of

merit.
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A standard way to do so is to normalize metrics so that they take values in the interval
[0,1], and consider a linear combination of those metrics with weights w; such that ) |, w; = 1.
This corresponds to establishing a linear relationship between the value of a metric and the
“satisfaction” of the network designer with that metric [39, Chapter 3]. In this joint evalu-
ation, we consider throughput, transmission efficiency, class efficiency and delivery delay,
which we index from 1 to 4 and average using a weighing vector w = [wy,...,ws]. In Fig-
ure2.15 we consider three different vectors, namely [0, 0.5, 0.5, 0] (equal importance of trans-
mission efficiency and class efficiency), [0.4, 0.3, 0.3, 0] (giving importance to throughput and
then equally to the efficiency metrics) and [0.25,0.25, 0.25, 0.25] (weighing all metrics uni-
formly). We observe that a different choice of weights moves the optimum performance
point from a low L, to a higher Ly, whenever the focus is on throughput rather than on
pure efficiency. Similarly, if delay is brought into the average, the optimum working point
is shifted toward even higher Ly, and Lgaa, so that more links are established, packets are

more readily transmitted, and also correctly detected (by virtue of a high Lgata).
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Figure 2.13. Contour curves of average PDU transmission success ratio and delivery delay when using
the MMSE estimator. Curves are plotted as a function of the length of the training sequences used for
signaling messages (L i) and PDUs (L ga1a), A = 800 pkt/s/node, Ny = 8.

2.3.3 Effect of Different Transmit Waveforms

In the previous section we have analyzed a multiuser MIMO networks employing either
correlator-based or MMSE channel estimators and we have then observed how PHY-level
parameters, such as the length of the training sequences, affect higher-level metrics, such
as throughput, efficiency, delay and success ratio. In the following, we consider the same
model used before with correlator-based channel estimator only and we evaluate the im-
pact of different pulse shapes introduced in Section|2.2.2.1/on the global performance of the
network.

Figure 2.16/ shows throughput (in Mbps) as a function of traffic in case of both perfect
and imperfect CSIR (i.e., correlator-based channel estimator). All impulse types of Section
2.2.2.1/are considered. For this first comparison, the length of the training sequences is fixed
to L = 128. Figure[2.16 highlights the performance degradation incurred with imperfect
CSIR regardless of the particular choice of the transmit impulse g(t), as compared to the
case where perfect CSIR is available. In line with the observations in Figures 2.2/ and 2.3)

pulses yielding a lower value of ¢% correspond to better network performance. Taking the
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Figure 2.14. Contour curves of average PDU transmission success ratio and delivery delay when using
the CORR estimator. Curves are plotted as a function of the length of the training sequences used for
signaling messages (L i) and PDUs (L gq1q), A = 800 pkt/s/node.

two extreme cases, for L = 128 the value of 02 with the Sinc pulse is 4 times higher than with
the Gaussian pulse, a = 1: this translates into a difference of 8 Mbps in network performance

at the MAC level.

Similarly to the previous section, we now perform a different analysis by letting training
sequences for signaling and data packets have different length (i.e., L, and L 4444, respec-
tively). Figures and [2.18|provide a representation of the tradeoff between throughput
and efficiency as a function of Ly, and L 44, by means of contour curves. In particular, Fig-
ure(2.17 refers to the use of a Gaussian pulse with a = 1, whereas Figure|2.18|corresponds to
a Sinc pulse. Both figures give first of all some general information about the main impair-
ments to a correct network behavior, namely the setup of a low number of links (due to a
low Lg; which leads to high probability of error for RTSs, see also comments of Figure 2.9),
and the insufficient accuracy of channel estimates for PDUs, due to a low Lgata. If either
is too low, both throughput and efficiency are limited. Note that throughput is low even if
Lgata is too small compared to Lsg, as the accuracy of channel estimates for PDUs becomes

insufficient to support traffic over all links set up by correct RTSs. Because network metrics
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and PDUSs (L 4qt4), A = 800 pkt/s/node and Ny = 8.

are deeply affected by the accuracy of channel estimation, and in particular by the value of
02, transmit pulses leading to high o2 explain the worse performance. For example, Fig-
ure 2.17 shows that by choosing Lg, = 64 and Lgata = 256, a throughput of 25 Mbps and
an efficiency of 0.47 can be achieved. Conversely, not only is this working point not avail-
able to the Sinc case (Figure[2.18), but the best tradeoff is also shifted toward Lg, = 128,
Lgata = 256, which indeed achieves both lower throughput and worse efficiency, in spite of

longer training.

In order to make a better point about the tradeoffs involving all pulses discussed in
Section 2.2.2.1, we plot in Figure(2.19 the convex hull of the scatterplot of all points having
coordinates equal to the transmission efficiency-throughput pairs obtained for all pairs of
Lsig and Lgata. Figure2.19/presents four such curves, related to a Gaussian pulse witha = 1,
a Sinc pulse, a rectangular pulse, and an RC pulse with o = 0.5. First, this figure allows to
establish a ranking among pulses, in that it is easy to figure out whether the Pareto-optimal

part of a curve (i.e., region of the curves closest to the upper-right corner of the graph)
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Figure 2.16. Average throughput as a function of X for different types of transmit impulses and with

L = 128, compared to perfect channel estimation.

is dominated by other curves or not: for example, the Gaussian pulse achieves again the
best performance, whereas the Sinc pulse offers throughput-efficiency pairs with the lowest
values. As a second outcome, Figurem also allows to pick the “best” configurations, i.e.,
those that allow to travel along the Pareto-optimal convex hull section and thus make a
preference on throughput by sacrificing some efficiency, or vice-versa. In line with previous
results, we observe that those points characterized by a high throughput are reached only
through a higher Ly, when using pulses leading to higher ¢, e.g., the Sinc and RC pulses,

compared to the Rectangular and Gaussian pulses.

2.4 Conclusions

In this chapter, we have thoroughly assessed the impact of channel estimation accuracy
on the performance of a MAC protocol for MIMO ad hoc networks and pointed out the main
tradeoffs that arise. Channel estimation is a very relevant problem in wireless networks
using advanced PHY techniques such as spatial multiplexing and layered multiuser detec-

tion; in addition, the presence of several simultaneous and asynchronous signals makes the
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problem more complicated than in traditional channel estimation. We have first described
an analytical model for the computation of the statistics of the channel estimation error. Our
analysis considers multiuser MIMO networks employing either correlator-based or MMSE
channel estimators, and highlights the direct dependence of the channel estimation error on
the instantaneous channel matrix, permitting an analytical evaluation of the interference di-
rectly in the channel estimation errors expression (see Equations (2.73) for MMSE and (2.74)
for correlator-based channel estimator). Moreover, we showed the interplay between the
transmit pulse shape and the variance of the channel estimates gathered by a correlator-
based channel estimator. The bias of channel estimates due to cross-talk among different
training sequences as well as among training sequences and data symbols has been quan-
tified; the parameters of the inverse proportionality relationship tying the variance of this
bias and the length of the training sequence have been quantified and related to pulse pa-

rameters such as the roll-off factor of RC pulses or the variance factor of Gaussian pulses.

The analyzed formulas for the statistics of the estimation errors have then been inserted
into a simulator for MIMO ad hoc networks with a detailed MAC implementation and used

to observe how PHY-level parameters, such as the length of the training sequences and the
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number of antennas, affect higher-level metrics, such as throughput, efficiency, delay and
success ratio. Our approach makes it possible to evaluate the robustness of networking pro-
tocols against channel estimation inaccuracies and interference, and to understand how to
control the impact of channel errors in order to achieve prescribed tradeoff points among
MAC-level metrics. Finally, we evaluate the impact of different pulse shapes on the perfor-

mance of the network.
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Chapter

Cooperative Routing Techniques in

Cognitive Radio Networks

The wireless medium opens up the possibility for the coexistence of different networks
through appropriate interference management mechanisms. In particular, a scenario wherein
a hierarchy exists between a “primary” network, whose performance should be guaranteed,
and a “secondary” network, whose nodes must respect strict requirements so as not to inter-
fere with the primary network, is attracting increasing attention under the label of “cognitive
radio”. One approach to cognitive radio prescribes the primary network to operate as if the
secondary nodes were not present and the secondary nodes to limit their interference to the
primary receivers below an acceptable level [40]. In this work, instead, we consider an al-
ternative approach based on a combination of the principles of opportunistic routing and of
the “spectrum leasing via cooperation” framework of [41,42]. In fact, the problem of scarce
radio spectrum availability and the inefficiency of traditional fixed spectrum management
schemes call for new communications paradigms for spectrum sharing [43]. Spectrum leas-
ing is one such paradigm in which licensed users are allowed to lease portions of the spec-
trum to unlicensed users. In a standard implementation, spectrum leasing would be effected
at a system level with “spectrum servers” allocating resources to secondary users [44, 45].
Moreover, secondary users would be charged for their use of the spectral resources. Instead,
references [41,42] propose a novel approach in which spectrum leasing is performed locally
and dynamically by primary devices and remuneration from secondary to primary takes

place in the form of cooperation. In the approach of [41,42], secondary nodes accept to
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cooperate only if granted enough spectrum with respect to their desired QoS requirements.

This work proposes to implement spectrum leasing via cooperation in a multihop sce-

nario by means of opportunistic routing.

Opportunistic routing is a well-known technique that aims at increasing the throughput
of multihop networks over fading channels by exploiting the channel diversity offered by
the availability of multiple possible next hops. In particular, selection of the next hop is
made in an opportunistic fashion based on the channel conditions, and thus decoding out-
comes, of previous transmissions of the given packet, thanks to appropriate feedback from
the decoders. The next Section 3.1/studies the throughput advantages of opportunistic rout-
ing over conventional multihop routing for linear multihop wireless networks with Type-I
HARQ and quasi-static Rayleigh fading channels. We recall that in Type-I HARQ error cor-
rection coding is used, but previous undecodable transmissions are discarded and detection
is done only based on the current transmission [46]. The end-to-end throughput of oppor-
tunistic routing is derived using Markov chain tools and accounting for fading statistics.
Both fixed-rate and optimal-rate transmissions are considered. Moreover, an investigation
of the throughput using standard information-theoretic performance metrics for asymptotic
SNR regimes is provided. Specifically, the multiplexing gain and energy efficiency (i.e., min-
imum energy per bit) of both opportunistic and multihop routing are analyzed. Numerical

results are given to corroborate the analysis.

In Section 3.2, different policies that exploit spectrum leasing via opportunistic routing
to different degrees are proposed. These policies are designed to span different operating
points in the trade-off between gains in throughput and overall energy expenditure for the
primary network. Moreover, two physical layer techniques are considered for multiplexing
of the primary and secondary traffic at the secondary nodes, namely time division and Su-
perposition Coding (SC). The optimality of the proposed routing techniques is proved, in
terms of both throughput and primary energy consumption of SC over all possible multi-
plexing strategies. Finally, numerical results demonstrate the advantages of the proposed
spectrum leasing solution based on opportunistic routing and the available trade-offs be-

tween primary throughput and energy consumption.!

The material presented in this chapter has been published in [47-49].
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3.1 Opportunistic Routing Analysis

Multihop routing is a conventional strategy used to forward a packet from source to
destination through a number of hops in wireless ad hoc networks. Analysis of this class of
protocols from a communication and information-theoretic standpoint has been pioneered
by [50] under the assumption of links affected by additive white Gaussian noise only (i.e.,
no fading). This work shows that multihop transmission, with or without spatial reuse,
performs very well in the power-limited regime (i.e., for low, SNRs), but becomes inefficient
in the bandwidth-limited regime (i.e., for high SNRs). Analysis in the power-limited regime
is performed using the standard measure of minimum energy per bit (over noise spectral
density) required for a reliable transmission, Ej/No|min. Reference [51] extends these re-
sults to non-ergodic fading channels by studying the end-to-end outage probability, while
ergodic fading is considered in [52]. Finally, [46] studies the end-to-end throughput for the
same class of networks of [51] by assuming HARQ protocols to combat channel outages.

However, no asymptotic SNR analysis is provided in [46].

As introduced above, a new routing paradigm has been introduced that potentially im-
proves on standard multihop routing by exploiting the availability of multiple possible next
hops in an adaptive manner: the next relay is selected based on the current channel condi-
tions (and thus reception outcomes), as well as the distance to the destination [53-59]. These
works focus on proposing different protocols to select the next hop based on alternative

metrics.

In this section, we consider a linear multihop network over quasi-static fading channels

as in [46,51]. Our contributions are as follows:
(1) We derive the end-to-end throughput of opportunistic routing with Type-I HARQ);
(if) We address the asymptotic regimes of high SNR (i.e., bandwidth-limited) and low
SNR (i.e., power-limited) for both multihop and opportunistic routing, by studying

the multiplexing gain and minimum energy per bit £, /No|min of the two schemes [60].

Throughout, we consider both the cases where the transmission rate is fixed and where the

transmission rate can be optimized based on channel statistics.
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Figure 3.1. A linear multihop network with k hops over quasi-static fading channels.

3.1.1 System model

We consider a linear multihop network, where the source F{, wants to communicate
with the destination Fj, at a normalized distance of one, possibly taking advantage of a set
of k — 1 relays, F1, ..., F_1, equally spaced with inter-node distance A = 1/k, as depicted in
Figure [3.1. All nodes work in half-duplex mode (i.e., they cannot receive and transmit at the
same time). Transmission is organized in blocks of n (complex) channel uses each. Recall
that, from standard theory, n (complex) channel uses over a bandwidth of W Hz amount to
n/W seconds in the absence of bandwidth expansion (see, e.g., [61]).

In each block, only one node (source or relay) is active, i.e., no spatial reuse is allowed.
In the first block, the source Fj transmits a packet of nR bits, where R is the rate of the first
transmission in bits/c.u. (channel use), or equivalently (in the absence of bandwidth expan-
sion) in bits/s/H z (throughout the section, we will use bits/c.u. or bits/s/H z interchange-
ably). In the following blocks, the source may retransmit the packet or else the relays, upon
decoding previous transmissions, may forward or retransmit the packet, until the final des-
tination F}, correctly receives it. We will discuss different transmission policies in the next
sections. In general, it is assumed that transmission of each block is followed by some sig-
naling, such as ACK/ Not ACK messages. When the current packet is successfully received,
a new packet is transmitted by the source Fy, and the procedure repeats. Notice that this
amounts to assuming the source is always backlogged.

Let y;(b,t) be the discrete-time (complex) baseband sample received by node j, j €
{Fi,..., F};} during the b-th block, at channel use ¢, t = 1,..., n:

k
|7 =1l

/2
yj(b, t) = < >n hzj(b)azz(b, t) + Zj(b, t), (31)

where z;(b, t) is the complex white Gaussian noise term with zero mean and power

E[|z;(b,1)|*] = No and z;(b, ) is the symbol transmitted by the currently active node i, i €
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{Fo,..., Fr_1}. We enforce the per-block power constraint
1 n 5
. <
- tE 1 E [|:El(b,t)| } P. (3.2)

The channel coefficient between the i-th transmitter and the j-th receiver in (3.1), h;;(b),
models quasi-static Rayleigh fading, i.e., it is a complex Gaussian random variable with
zero mean and unit power, which is assumed to be constant within each block. Moreover, it
is assumed to vary independently from block to block. Channels are known to the receivers
but not to the transmitters. Finally, the term (k/|j — i|)”/ % in (3.1) represents the path loss
over the distance d = |j —i| /k (i.e., |j — i| hops) between transmitter ¢ and receiver j with
path-loss exponent 7.

From (3.1), we define the SNR ~ as the ratio between the maximum average power re-

ceived by F}, directly from source Fj and the noise power N, that is

= ]]\;0. (3.3)

With this definition, we have that /d" is the SNR for a transmission that covers distance d.
Let P,,:(d) denote the probability that a certain packet transmitted by node 7 is not de-
coded correctly by node j with d = |j —i| /k. It is well known that this probability is given

by the outage probability (see, e.g., [61]):
Pout(d) =Pr {IOgQ (1 + ’hij’27d_77) S R}

of 1
=1—exp <— d >, (3.4)

where we have used the fact that fading is Rayleigh.
We are interested in comparing the throughput, measured in bits/s/Hz, of multihop
and opportunistic routing, both coupled with Type-I HARQ. The next section defines the

throughput and evaluates it for these two strategies.

3.1.2 Throughput Analysis

The goal of this section is to determine the end-to-end throughput for both multihop and
opportunistic routing. We define the throughput 7'(k, R) as the average number of success-
fully delivered bits per second per Hz, given the total number of hops k£ and the transmission

rate R. Using renewal theory, it is possible to show that (see, e.g., [62]):

T(k,R) = m%][%N] = ESV} [bits/s/Hz), (3.5)
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where N is the number of transmission blocks necessary to transmit a given packet cor-
rectly, starting from the original transmission by the source I until correct decoding at the
destination Fj,.

While definition (3.5) applies to the case where the transmission rate R is selected by the
application and fixed, in many scenarios devices can tune their transmission rate. Therefore,
we also consider an alternative definition of throughput 7% (k), in which the transmission
rate R is optimized:

T (k) = sup T(k, R). (3.6)

Notice that there is a clear and well-known trade-off in the optimization of R: increasing R
allows to send more bits to the destination (increasing the numerator in (3.5)), but also leads
to an increased error probability and therefore to more transmissions (thus increasing the
denominator in (3.5)). We also emphasize that optimization of rate R in (3.6) only requires
knowledge of the channel statistics (and not of the instantaneous values) at the source.

The rest of the section derives the end-to-end throughput (3.5) and (3.6) for both multi-
hop and opportunistic routing with Type-I HARQ.

3.1.2.1 Multihop Routing

With multihop routing, each packet goes through all the k£ hops: the source Fj retrans-
mits the packet until relay F; decodes it successfully; then, the link between F; and F; is
operated in the same way, and so on, until the destination Fj, decodes correctly. Assuming
Type-I HARQ on each hop, previous retransmissions are discarded at each receiver and the
probability of outage for any transmission is given by with d = A. Thus, we easily
evaluate the throughput (3.5) with fixed rate R as:

Ty (k, R) = ]EfN] - %(1 ~ Pou(A))
R 2k 1
~ R exp (_ — ) (3.7)

where the number of retransmissions N is a geometric random variable with success proba-
bility given by (1— Py (A)). Moreover, note that the result in Eq. (3.7) can also be interpreted
by observing that each slot contains a successful transmission with probability 1 — P,,:(A),
and since all transmitters use the same fraction of slots on average, the probability that a

successful slot corresponds to a packet reaching the final destination is 1/k.
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For the throughput with optimized rate, we easily extend the result in [63] for a single-

hop network (k = 1) to obtain the following Lemma.

Lemma 3.1.1. The end-to-end throughput for a multihop scheme with k hops and optimized rate is

given by
e o B 2 — 1
mn (k) = o OP <_’Yk")’ (3.8)
with
x Wo (]{;77/7)
mh loge 9 (3'9)
where Wy (z), known as the Lambert W function, is the unique solution of the equation
W(z)eV®) =2 for z>0. (3.10)

3.1.2.2 Opportunistic Routing

With opportunistic routing, after each (re)transmission of the current packet, all decod-
ing nodes issue an ACK message. If the destination is among the decoding nodes, trans-
mission of the current packet is terminated and the next packet is transmitted by the source
Fpy. Otherwise, the transmitter for the next hop is selected opportunistically as the decoding
relay that is the closest to the destination. The exact mechanism as to where and how the
decision is made is not of concern here, and has been studied in [55-58]. With opportunis-
tic routing, the average number E[N] of hops per packet can potentially be greatly reduced
with respect to standard multihop routing, thus boosting the throughput (3.5) and (3.6).

To derive the throughput of opportunistic routing, we use the theory of Markov chains.
Specifically, there are k£ + 1 states in the chain, one for each node in the linear network,
with state Sy referring to scenarios where the current packet is at the source Fy, states S;,
i =1,...,k — 1, similarly defined, and S}, representing the state where the destination has
successfully decoded. Recalling that we assume Type-I HARQ, the current transmitter re-
transmits the packet until at least one of the downstream nodes has successfully decoded.

Based on this, the transition matrix can be found as
Ps5(0,0) ... Psg(0,k)
0 0 Pss(k, k)
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where Pg s(i,j) is the probability that, given that the current state is ¢ (i.e., the transmitter
is node i = 0,...,k — 1), the next state is j (i.e., the next relay is j for j = ¢,i + 1,....k —
1 or the destination has decoded for j = k). The first k states are transient and the last
state, corresponding to the packet having been received at the destination, is absorbing. The

transition probabilities are given by:

Py s(k, k) = 1; (3.12)
k
Ps,s(i,j) = (1 = Pout((j — 9)A)) H Pout((€ = i)A),
t=j+1
i=0,....,k—1, j=1,...,k; (3.13)
Ps 5(i,7) =0, otherwise. (3.14)

Proposition 3.1.2 (End-to-end Throughput of Opportunistic Routing). The throughput (3.5)

for fixed transmission rate R of opportunistic routing is given by

R
Topp(k, R) = —, (3.15)
Vo
where vy is the first entry of vector v = [vy, . . ., vk—1], which is evaluated as
v=>1-Q) "1, (3.16)

where 1 is a (k — 1) x 1 vector with all entries equal to 1, matrix Q is obtained from P by removing

the last row and the last column and Lis the (k — 1) x (k — 1) identity matrix.

Proof. The proposition follows from the theory of absorbing Markov chains (see, e.g., [64,
Section. 4.5]). Let v; be the expected number of steps before the chain is absorbed given that
the chain starts in state S;, ¢ = 0, ...,k — 1. Then, from standard first-step analysis, we have

the set of equations (which is recursive, due to the triangular form of matrix (3.11)):
vi=1+Y Pgg(i,j)v; with i #£F, (3.17)
itk
Equation (3.16) is readily obtained from the matrix formulation for such set of equations

(see, e.g., [64, Section. 4.5]). O

Remark 3.1.1. When k is large, closed-form (i.e., non-recursive) expressions for (3.15) are very

involved. Here, we report the throughput for k£ = 2 (the expressions for k£ = 3 and k = 4 are
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reported in Appendix/A):
_2fia _2fa
wp- () ()]
Topp(2, R) = . (3.18)

Unfortunately, a closed-form expression for T,,,(k) appears to be hard to find. In the

next section, we shed some light on the performance analysis by focusing on asymptotic

SNR regimes for both multihop and opportunistic routing.

3.1.3 Asymptotic Analysis

In this section, we focus on the asymptotic regimes of high and low SNR.

3.1.3.1 High SNR (Bandwidth-Limited Regime)

Consider first the case where the SNR is large (i.e., the bandwidth-limited regime). For
a fixed transmission rate R, it is meaningful to consider the value of the throughput (3.5)
as 7 — 00, since the throughput remains necessarily finite, being bounded by R. However,
when optimizing the transmission rate R, the throughput (3.6) scales with SNR, so that it is

more meaningful to study the multiplexing gain, defined as (see, e.g., [61]):

lim T (k)

. (3.19)
y—o0 logy

Proposition 3.1.3 (High-SNR Characterizations). The high-SNR throughput (3.5) with fixed

transmission rate R is given by:

R
lim T4 (k, R) = —, (3.20)
Y—00 k
for multihop routing, whereas for opportunistic routing we have
lim Typp(k, R) = R. (3.21)
=00
When rate R is optimized, the multiplexing gain of throughput (3.6) is
T, (k 1
lim Loun(F) = -, (3.22)
y—oo logyy  k
for multihop routing, whereas for opportunistic routing we have the bounds
Ty, (k
lim %() =1. (3.23)

v—oo logyy
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Proof. The results (3.20) and (3.21) follow easily from the fact that P,,.(d) — 0 for a fixed

rate R and any d. Specifically, for opportunistic routing, this implies that direct transmission
from source to destination is successful with high probability.
The multiplexing gain in (3.22) is derived from eq. (9) in [63], conveniently adapted.
Finally, to show (3.23), we prove that:
1—e< 7121010 QEZQ(];) <1, (3.24)
where € > 0 is arbitrarily small. The upper bound follows from cut-set arguments: the
throughput of opportunistic routing cannot be larger than the throughput of a system where

relays and destination fully cooperate for decoding. Moreover, the throughput of the latter

system is upper bounded by its ergodic capacity, i.e., by

k
Eflogy(1+ > |hoj[*y(k/5)™)], (3.25)
j=1

whose multiplexing gain is one [61]. This follows immediately from the definition of through-

put, noting that the latter can be written as
k k
E[R - 1(logy(1+ Y |ho;[*v(k/5)") < R)] < E[logy(1+ Y |ho[*v(k/5)")],  (3.26)
j=1 j=1
where 1(-) is the indicator function. To obtain the lower bound in (3.24) it is enough to

consider the following suboptimal transmission scheme: set the rate at
R(y) = logy 77 (3.27)

and consider only the link between source and destination. This scheme clearly sets a lower

bound on the achievable throughput, namely

. oR(v) _ 1
Topp(k) > R(’Y) exp *f : (328)
Letting € be arbitrarily small in (3.24) we conclude the proof. O

Discussion of the results of Proposition 2 is postponed to Section 3.1.4.

3.1.3.2 Low SNR (Power-Limited Regime)

We now focus on the energy efficiency of multihop and opportunistic routing. Specifi-

cally, we evaluate the minimum energy per bit required for reliable transmission, which is
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defined as [60]
Ey(k, R) . o
— inf 29
N 0 min 12 T(k ) R) (3 )
for transmission with fixed rate R and
Ey(k)* : ¥
=inf —— 3.30
NO min H’; T (k) ( )

for transmission with optimized rate. As already explained in Section (3.1, this is a stan-
dard measure on the performance of transmission schemes [60] and has been considered in

related routing scenarios in [50,51].

Proposition 3.1.4 (Energy Efficiency of Multihop Routing). The minimum energy per bit for

multihop routing with fixed transmission rate is given by:

Ey(k, R) i

NO min,mh v Tmh<k7 R)

2f —1
=ek'M=—— 3.31
ek, (3:31)

whereas for optimized rate, we have:
Ey (k)" i
NO min,mh v T;Lh(k)

=ek'log, 2. (3.32)

Proof. The first equality, (3.31), is obtained by noticing that the convexity of the exponential
function implies that /7,1 (k, R) is also convex, and therefore the minimum is found where

its derivative is zero. The optimal value of the SNR, which maximizes energy efficiency, is
y= 2% - 1)k, (3.33)

For (3.32) we first note that the quantity

y k’yloge2ex ( 1 B k:") (334)
Tonk) ~ Wolkrn) = \Wo(kmy) ~ 7 )" |
where we have exploited the equation exp WV (z)) = z/W(z), is an increasing function of

the SNR and therefore:

R .
o ) AT (3.35)

We then expand (3.34) using the first two terms of the Taylor expansion of

Wo(z) =Y 2"(—n)"""/n! (3.36)

n=1
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(see, e.g. [63]) to obtain the approximation for small SNR

v o klog.2 o 1
Trnk) k1 — K2y P \T— kg )"
The proof is concluded by evaluating the limit (3.35). O

Remark 3.1.2. We emphasize that, from the proof given above, the value of SNR that maxi-
mizes the energy efficiency for multihop routing with fixed transmission rate is v =
(2 —1)k~", whereas if one allows optimal rate selection (3.30) the optimal ¥ — 0. This is due
to the well-known fact that energy efficiency is maximized at vanishing spectral efficiencies,

thatis R — 0 and v — 0, if one can optimize the transmission rate [60].

Remark 3.1.3 (Wideband slope for multihop routing). Beside the minimum energy per bit

Ey/No|min, reference [60] defines also the slope Sy of the spectral efficiency at Ep/No|min
in order to provide a more complete description of the rate behavior in the power-limited
regime. This can be easily calculated for multihop routing with optimized rate and is given

by [60]:

Ty ()|

_ é bits/s/Hz=/(3dB)). (3.37)

=0

where T, (k)|,—o and T, (k)|,—o denote the first and second derivative of the end-to-end
throughput curve evaluated in nats/s/H z with v = 0. Note that the slope of the throughput
of the multihop (and opportunistic) routing for fixed rate turns out not to be well-defined
due to the fact that (see Remark [3.1.2) the energy E}/No|min is not attained for vanishing

throughput (see also discussion in [60]).

General expressions for energy efficiency in the case of opportunistic routing are difficult

to obtain. In the rest of section, we consider some approximation for k = 2.

3.1.3.2.1 Energy-Efficiency Approximations for Opportunistic routing Here we consider
analytical approximations for the minimum energy per bit with fixed rate and k = 2,
Ey(2, R)/No| and optimized rate, Ey(2)*/Nolyip opp (recall (3.29) and (3.30), respec-

min,opp’

tively). The approximations are based on suboptimal choices for the optimal SNR in (3.33)
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Figure 3.2. End-to-end throughput of opportunistic routing, T,,,(k, R) (solid lines), and multihop rout-
ing, Tonn(k, R) (dashed lines), versus SNR, ~, for transmission rate R = 1 [bits/s/Hz] and n = 3.

and optimal rate in (3.9), that are expected to be close-to-optimal. The key observation is
that, for low SNR, opportunistic routing will be often forced to use all the hops like multi-
hop routing. Therefore, setting the optimal SNR and rate to the corresponding optimal SNR
and rate for multihop routing (namely v = (2% — 1)k~ and R*,, = W) (k") / log, 2) leads

to potentially good approximations. Using these choices, we obtain

Eb(27 R) . Y
_— =inf ————
NO min,opp v Topp(2, R)
e(2e?" —1) (2 - 1) (3.38)
21 (e+e2" —1)R '
for fixed rate, and
Ep(2)" = inf v
NO min,opp v Tt;kpp(2)
e (2 e?" —1) log, 2 (3.39)

21 (e+e2" —1) ’

for optimized rate. Our numerical results show that indeed these are good approximations.
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Figure 3.3. End-to-end throughput of opportunistic routing, T, (k, R) (solid lines), and multihop rout-

opp

ing, T . (k, R) (dashed lines), versus SNR, ~, for optimized rate and n = 3.

3.1.4 Numerical Results

Here we provide some numerical results to corroborate the analysis above. We first
study the end-to-end throughput versus SNR for both fixed rate (Figure 3.2) and optimized
rate (Figure 3.3). Starting with fixed rate, Figure(3.2/shows the end-to-end throughput versus
SNR for different numbers of hops k = {2, 3,4}, path loss n = 3 and transmission rate R = 1
[bits/s/H z]. It is seen that for sufficiently large SNR (i.e., v 7z 10 dB), the asymptotic results
of Proposition 3.1.3/apply. In particular, as per (3.20) and (3.21), while opportunistic routing
is able to attain the maximum throughput of 7,,,,(k, 1) = 1 [bits/s/ H z] for every k, multihop
routing shows the well-known performance degradation in the bandwidth-limited regime
(recall beginning of Section 3.1), which amounts here to a factor of k, i.e., T,,n(k,1) = 1/k
[bits/s/Hz]. Turning to the performance with optimized rates, Figure 3.3 confirms the ad-
vantages of opportunistic routing and validates the results in Proposition (3.1.3: when the
SNR is large enough (here, v = 20 dB), the throughput of opportunistic routing increases
with a slope independent of k and larger by a factor of k with respect to multihop routing.

We now explicitly consider the throughput ratio p = T, (k)/T,,,(k) between multihop
and opportunistic routing in Figure (3.4 for different path loss exponents n = {2.5,3,4} and
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Figure 3.4. Ratio p = Ty, (k)/T;,,(k) between the throughput of multihop and opportunistic routing
versus SNR, v, for k = {2,4} and n = {2.5, 3,4} and optimized rate.

k = {2,4} versus SNR for optimized rate. The figure points out that opportunistic routing
has better gains for smaller path loss exponents (1 = 2.5), due to the larger number of relays
that are potentially reachable at each transmission and may thus serve as next hop.

Finally, Figure 3.5/focuses on the energy efficiency of the considered schemes by showing
the throughput versus the energy per bit over noise power spectral density, i.e., E/Ng =
v/T*(k) (recall (3.30)), for k = {2,3,4}, path loss n = 3 and optimized rate. First of all,
we note that the simulation results confirm the values analytically derived in (3.32) for the
minimum energy per bit (Ey(k)*/No| i = {—3.27,—6.79,-9.29} dB for k = {2,3,4})
and in (3.37) for the slope Sy, of the multihop case (see Figure(3.5). We also note that
the approximation given by is close to the value found in the simulation, which uses

a brute-force approach to find the optimum rate R}, (Ep(2)*/No| ~ —3.27 dBE. It

opp min,opp

is also concluded that opportunistic routing fails to outperform multihop routing in the
power-limited regime, being unable to exploit the path diversity, unlike in the bandwidth-

limited regime.

2 Also for the fixed rate case the simulation results are consistent with (3.38).
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Figure 3.5. End-to-end throughput of opportunistic routing, Ty, (k) (solid lines), and multihop routing,
T 1, (k) (dashed lines), versus Ey, /Ny for n = 3 and optimized rate.
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3.2 Spectrum Leasing via Cooperative Opportunistic Routing

As we introduced at the beginning of this chapter, the main idea of this remaining sec-
tion is that secondary nodes may serve as potential hops for a primary network that routes
packets based on opportunistic routing, under the condition that the secondary nodes are
leased enough spectral resources to satisfy their QoS requirements as well. In other words,
secondary nodes may accept to serve as next hops, but, in return, if selected, they require to
be leased part of the spectrum for their own transmissions. The primary network, thanks to

spectrum leasing via cooperative opportunistic routing, may gain on two fronts:

(1) Throughput, due to the improved multiuser diversity in the selection of the next hop that

is afforded by the availability of secondary nodes;

(i) Primary energy consumption, due to the fact that transmissions can be delegated to the

secondary network.

This work studies the trade-off between these two metrics by proposing protocols that work
at different operating points of this trade-off. The analysis accounts for different possible
multiplexing techniques at the secondary nodes, namely Time Division Multiplexing (TDM)
and SC (see, e.g., in [61,65]). It is proved that SC is optimal in terms of both throughput and

primary energy consumption over all possible multiplexing strategies.

3.2.1 System Model and Multiplexing Techniques

In Figure 3.6/ we show a primary and a secondary network that coexist via spectrum
leasing. The aim of the primary source Py is to communicate with the primary destination Py,
at a normalized distance of one, possibly taking advantage of multihop routing through two
sets of additional nodes placed along two parallel linear geometries with vertical distance
Ay. Both sets are composed of k£ — 1 nodes: the first one is formed by primary nodes, denoted
by Pi, ..., P;—1 whose only role is that of forwarding information from Py to P; the second
set of nodes, instead, consists of secondary (unlicensed) nodes Sy, ..., Si_1 that can access the
channel only if spectrum is leased by the primary network, as will be discussed below. Pri-
mary nodes have Ay = 1/k inter-node distance. The secondary nodes are aligned with the
primary nodes, and thus have the same inter-node distance. More generally, we will con-

sider a partial secondary deployment in which only one every « secondary nodes in Figure(3.6
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Figure 3.6. A primary linear multihop network (grey circles) with k hops and a secondary network (white

circles) aligned with respect to primary relay nodes.

is active so that the number of secondary nodes is k/a — 1 (assumed to be an integer) with
inter-node distance aAy. For simplicity, where not stated otherwise, we will assume o = 1
in the following. This work relies on geometrical simplifying assumptions with the objective
of having both a solvable theoretical model and an insightful analysis of spectrum leasing
via cooperative routing techniques. More general 