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Abstract

When linear models fail to explain the dynamic behavior of economic and financial
time series, the researcher has to turn his attention to the nonlinear world. This work
has been devoted to develop novel methodological proposals that may be useful in
explaining the evolution over time of economic indicators and financial instruments.

In Chapter 2, the well established Markov regime switching framework is extended
letting the transition probabilities vary over time according to an observation-driven
updating mechanism. An extensive simulation study shows the ability of our new
model to track several dynamic patterns in transition probabilities. In the illustration
to U.S. Industrial Production growth rate, we show that the model can capture the
dynamic features of regime transition probabilities for means and variances.

In Chapter 3, we adapt the new methodology in order to model the electricity
spot prices. The Markov regime switching has been extensively used in literature
to deal with the spikes that affect the evolution over time of this commodity prices.
The non-homogenous occurrence of jumps may be successfully explained by an hidden
Markov chain with time-varying transition probabilities that can be also influenced
by exogenous variables. The information related to forecasted reserve margin and
forecast demand can be easily included in our proposal to improve the model fit as
well as to describe the occurrence of spikes.

In Chapter 4, we propose a novel semi-nonparametric model to describe accurately
the volatility of financial returns. The finite sample properties are investigated under
both correct and incorrect model specification. The latter case suggests that our
model is able to recover the functional form of volatility as long as the sample size
increases. In empirical relevant settings, features like the asymmetric effect of negative
and positive current shocks on future volatility, known as leverage effect, as well as
the role played by the market condition in influencing the volatility evolution might

be captured by our proposal.






Abstract

Quando i modelli lineari falliscono di spiegare il comportamento dinamico delle serie storiche
finanziarie ed economiche, I’attenzione del ricercatore deve rivolgersi al mondo dei modelli
non lineari. L’intento principale di questo lavoro € quello di sviluppare nuove metodologie
che possano essere utili per spiegare 1’evoluzione nel tempo sia di indicatori economici sia di
strumenti finanziari.

Nel secondo capitolo, i modelli Markov regime switching, ampiamente discussi in lette-
ratura, sono estesi per permettere alle probabilita di transizione di evolvere nel tempo in
accordo con un meccanismo di aggiornamento guidato dalle osservazioni. Attraverso un ap-
profondito studio di simulazione, siamo abili di mostrare la capacita del nuovo modello di
replicare diversi andamenti dinamici nelle probabilita di transizione. Un’analisi empirica &
condotta sul tasso di crescita della produzione industriale statunitense.

Nel terzo capitolo, la nuova metodologia ¢ adattata per modellare efficacemente i prezzi
del mercato elettrico. I modelli a cambio di regime sono stati usati ampiamente in questo
contesto perche sono in grado di cogliere i picchi che influenzano ’evoluzione temporale dei
prezzi energetici. Dal momento che la presenza di questi picchi non ¢ omogenea nel tempo,
una catena di Markov latente e con probabilita di transizione dinamiche puo essere utilizzata
con successo. In particolare, variabili esogene possono essere impiegate per arricchire la
dinamica delle probabilita di transizione. Ad esempio, I'informazione relativa al margine
di riserva previsto e quella relativa alla domanda prevista possono essere incluse nel nostro
modello migliorandone ’abilita descrittiva.

Nel quarto capitolo, proponiamo un nuovo modello semi-nonparametrico per descrivere
accuratamente la volatilita dei rendimenti finanziari. Attraverso uno studio di simulazione,
abbiamo investigato le proprieta dello stimatore da noi proposto in campioni finiti, sia quan-
do il modello & specificato correttamente sia quando non lo &. In entrambi i casi, la forma
funzionale della volatilita ¢ stimata consistentemente anche quando il modello non e corret-
tamente specificato. Da una prospettiva empirica, caratteristiche dei rendimenti finanziari
quali l'effetto asimmetrico di shock negativi e positivi sulla futura volatilita e I'influenza
delle condizione del mercato nell’evoluzione della volatilita possono essere colte dal nostro

modello.
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Chapter 1

Introduction

1.1 Overview

The dynamic behavior of many economic and financial time series can be described
by statistical models letting a subset of parameters changes over time. Cox (1981)
have classified time series models with time-varying parameters into parameter-driven
models and observation-driven models. In the first case, the driving mechanism for
the parameter of interest does not depend on observations but has its own source of
uncertainty. Apart from few cases like linear Gaussian state space models (Harvey,
1989) and Markov regime switching models (Hamilton, 1989), the likelihood function
does not have a closed-form and its evaluation relies on computationally intensive
techniques discussed, for example, in Durbin and Koopman (2012). The Stochastic
Volatility model belongs to this class, see Shephard and Andersen (2009) for a de-
tailed overview. In the latter case, the parameter is a deterministic function of lagged
dependent variable and exogenous variables. Given the current information, the one
step-ahead value of the parameter is perfectly predictable. Typically, the likelihood
function is available in closed-form making the estimation procedure relatively easy.
The Autoregressive Conditional Heteroskedasticity (ARCH) model of Engle (1982)
and the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model
Bollerslev (1986) are members of this class broadly used in financial applications.
Recently, a new observation-driven class has been introduced by Creal et al. (2011,
2013) and Harvey (2013), the Generalized Autoregressive Score (GAS) dynamics. In
this class, the parameter is driven by the scores of the predictive likelihood function.
Due to the generality of this class, score driven models include many well-known time
series models in economics and finance and their flexibility results in a forecasting

performance competitive with respect to correctly specified non linear non-Gaussian



2 Introduction

state space models, as shown in Koopman et al. (2015).

There are situations where linear models are too restrictive and fail to explain the
evolution of variables over time. For example, many economic indicators can be dra-
matically affected by extraordinary episodes such as financial panic, wars and major
changes in policies. In these cases, it is reasonable to identify several subsamples,
or regimes, for the observations letting the probability law change in each regime.
In literature, there are many proposals to handle this nonlinearity as the Thresh-
old Autoregressive (Tong, 1983), the Smooth Transition Autoregressive (Chan and
Tong, 1986) and the Markov regime switching models (Hamilton, 1989). In particu-
lar, Markov regime switching models became widely popular among the econometric
community. They constitute a very flexible class of non linear time series models able
to capture many features of empirical time series. Furthermore, they overcome un-
realistic limitations of ARMA models (Box and Jenkins, 1970) like normality of the
predictive density as well as the marginal density, linearity of conditional expectation
in the past observation and homoscedasticity of conditional variance.

A further distinction can be made between parametric and nonparametric models.
As we observe only a finite number of data, it is impossible to identify the underlying
process without imposing constraints. In a parametric approach, the probability law is
chosen within a specified family with elements index by a finite-dimensional parameter.
However, the parameter space can be thought as a subset of an infinite dimensional
space. This generalization leads to a so called semi-nonparametric model (Chen, 2007).
A comprehensive introduction and explanation of such methods for time series analysis
is offered by Fan and Yao (2003).

1.2 Main contributions of the thesis

In the standard Markov regime switching proposed by Hamilton (1989), the statistical
properties of the latent process which determines the switch across different regimes
are summarized by a transition probability matrix with static transition probabili-
ties. Several authors proposed to let the transition probabilities vary over time by
using lagged values of the dependent variable (Diebold et al., 1994; Filardo, 1994),
state duration (Durland and McCurdy, 1994) or exogenous variables (Perez-Quiros
and Timmermann, 2000). In Chapter 2, along the lines of Filardo (1994) and Diebold
et al. (1994), we assume an autoregressive dynamics for the transition variables. The
dependent variable enters the equation non linearly through the scores of the predictive

density, following the GAS updating mechanism proposed by Creal et al. (2011, 2013)
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and Harvey (2013). In an extensive simulation study, we compare the goodness-of-fit
ability as well as the one-step ahead forecast precision showing that our model outper-
forms the counterparts. Finally, we illustrate the new methodology by an empirical

application to U.S. Industrial Production growth rate.

Markov regime switching models have been widely used to describe the dynamics of
electricity spot prices. They are affected by extreme outliers that cannot be explained
by linear models. Hence, it is particularly convenient to assume a switching mechanism
which alternates quiet periods with jumps. Several specifications of Markov switching
models have been proposed in the context of electricity commodities and a complete
review can be found in Weron (2006). The homogenous latent Markov Chain implies
a constant occurrence of the spikes which is found to be unrealistic in many empirical
works. To overcome this limitation of the Hamilton model, the transition probabili-
ties have been allowed to depend on exogenous variable like reserve margin and load
(Mount et al., 2006) or temperatures (Huisman, 2008). Alternatively, Janczura and
Weron (2010) proposed to estimate periodic transition probabilities directly on price
data.

In Chapter 3 we propose to adapt the methodology introduced in Chapter 2 to
model electricity spot prices. Through an empirical analysis of UK Automated Power
Exchange (APX) spot prices, we find that the GAS methodology can be used to ex-
plain price dynamics successfully especially when exogenous information is not avail-
able. When the forecasted reserve margin and the forecasted demand are included,
we propose a new formulation, namely GAS-exogenous (GASX), which outperforms

the most common alternatives.

Starting from the seminal works of Engle (1982) and Bollerslev (1986), an increas-
ing number of models has been proposed to explore the temporal dependency of the
conditional second moment in financial time series. Additionally, the empirical evi-
dence that negative and positive shocks affect the volatility asymmetrically, originally
documented by Black (1976), has encouraged more sophisticated formulations of func-
tional form of the conditional volatility. The Exponential GARCH model of Nelson
(1991), the Quadratic ARCH proposed independently by Engle and Ng (1993) and
Sentana (1995), the Threshold GARCH of Zakoian (1994) have been developed to
overcome some weakness of the Standard GARCH model remaining in a parametric
setting, see Rodriguez and Ruiz (2012) for an empirical comparison. Another line
of research has been devoted to semi- and non-parametric formulations. Engle and
Gonzalez-Rivera (1991) proposed to leave unspecified the functional form of the error

terms and to estimate it non-parametrically by using a splines or a kernel estimator
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(Linton, 1993). Alternatively, the relationship between the current volatility and the
past returns has been considered as a smooth but unknown function by Pagan and
Schwert (1990), Pagan and Hong (1991) and Linton and Mammen (2005) resulting in
a non-parametric ARCH approach. A generalization has been offered by Audrino and
Bithlmann (2001, 2009) who allowed volatility to be affected by its lagged values, too.
In the latter paper, they estimated the unknown functional form by using multivariate
B-splines. Despite the greater flexibility that all those techniques offer, the stochastic
properties of underlying process and the asymptotic properties of the estimator are
difficult to establish.

In Chapter 4, we propose a new semi-nonparametric methodology based on the
transformed polynomials function introduced by Blasques (2014). The finite sample
properties are studied by an intensive Monte Carlo study. The new formulation leads
to a flexibility that is shown to be relevant in empirical settings. Analyzing several
individual stock returns, it is found that volatility reacts differently depending on

market conditions.



Chapter 2

Time-varying transition
probabilities for Markov regime

switching models

Abstract

We propose a new Markov switching model with time-varying transitions probabilities. The
novelty of our model is that the transition probabilities evolve over time by means of an
observation driven model. The innovation of the time-varying probability is generated by
the score of the predictive likelihood function. We show how the model dynamics can be
readily interpreted. We investigate the performance of the model in a Monte Carlo study
and show that the model is successful in estimating a range of different dynamic patterns
for unobserved regime switching probabilities. We also illustrate the new methodology in an
empirical setting by studying the dynamic mean and variance behaviour of U.S. Industrial
Production growth. We find empirical evidence of changes in the regime switching proba-
bilities, with higher persistence for high volatility regimes in the earlier part of the sample,

and higher persistence for low volatility regimes in the later part of the sample.

Some key words: Hidden Markov Models; observation driven models; time-varying

parameter.

This chapter has been written during my visiting period at Department of Econometrics and
Operation Research, at VU University, Amsterdam. I am deeply thankful to Silvano Bordignon for
the original discussion and to Siem Jan Koopman, Andre Lucas and Francisco Blasques for their
contribution in developing and writing this final version.
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2.1 Introduction

Markov regime switching models have been widely applied in economics and finance.
Since the seminal application of Hamilton (1989) to U.S. real Gross National Prod-
uct growth and the well-known NBER business cycle classification, the model has
been adopted in numerous other applications. Examples are switches in the level of a
time series, switches in the (autoregressive) dynamics of vector time series, switches
in volatilities, and switches in the correlation or dependence structure between time
series; see Hamilton and Raj (2002) for a partial survey. The key attractive feature of
Markov switching models is that the conditional distribution of a time series depends
on an underlying latent state or regime, which can take only a finite number of val-
ues. The discrete state evolves through time as a discrete Markov chain and we can
summarize its statistical properties by a transition probability matrix.

Diebold et al. (1994) and Filardo (1994) argue that the assumption of a constant
transition probability matrix for a Markov switching model is too restrictive for many
empirical settings. They extend the basic Markov switching model to allow for tran-
sition probabilities to vary over time using observable covariates, including strictly
exogenous explanatory variables and lagged values of the dependent variable. Al-
though this approach can be useful and effective, it is not always clear what variables
or which functional specification we should use for describing the dynamics in the
transition probabilities.

Our main focus is to develop a new dynamic approach for the analysis of time
variation in transition probabilities of Markov switching models. We let the transition
probabilities to vary over time as specific transformations of lagged dependent obser-
vations. Hence we adopt an observation driven approach to time-varying parameter
models; see Cox (1981) for a detailed discussion. Observation driven models have the
key advantage that the likelihood is typically available in closed form by means of the
prediction error decomposition. Our main challenge is to specify a suitable functional
form to link past observations to future transition probabilities. For this purpose,
we use the scores of the predictive likelihood function. Such score driven dynamics
have been introduced by Creal et al. (2011, 2013) and Harvey (2013). Score driven
models encompass many well-known time series models in economics and finance, in-
cluding the ARCH model of Engle (1982), the generalized ARCH (GARCH) model of
Bollerslev (1986), the exponential GARCH (EGARCH) model of Nelson (1991), the
autoregressive conditional duration (ACD) model of Engle and Russell (1998), and
many more. Various new and successful applications of score models have appeared
in the recent literature. For example, Creal et al. (2011) and Lucas et al. (2014) study
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dynamic volatilities and correlations under fat-tails and possible skewness; Harvey and
Luati (2014) introduce new models for dynamic changes in levels under fat tails; Creal
et al. (2014) investigate score-based mixed measurement dynamic factor models; Oh
and Patton (2013) and De Lira Salvatierra and Patton (2013) investigate factor copu-
las based on score dynamics; and Koopman et al. (2015) show that score driven time
series models have a similar forecasting performance as correctly specified nonlinear

non-Gaussian state space models over a range of model specifications.

We show that the score function in our Markov switching model has a highly intu-
itive form. The score combines all relevant innovative information from the separate
models associated with the latent states. The updates of the time-varying parameters
are therefore based on the probabilities of the states, given all information up to time
t — 1. In our simulation experiments, the new model performs well and succeeds in
capturing a range of time-varying patterns for the unobserved transition probabilities.
In addition to their intuitive appeal, score driven models also possess information theo-
retic optimality properties. Blasques et al. (2015) demonstrate that observation driven
models with score dynamics improve upon the local Kullback-Leibler divergence of the

statistical model from the true unknown data distribution.

We apply our model to study the monthly evolution of U.S. Industrial Production
growth from January 1919 to October 2013. This long span of time series observations
is known to be characterized by different growth and volatility regimes. Therefore,
the assumption of constant transition probabilities between the different regimes may
be too restrictive. We uncover three regimes for the mean and two regimes for the
variance over the sample period considered. The corresponding transition probabilities
turn out to be time-varying. In particular, the high volatility regime appears to be
much more persistent in the earlier part of the sample compared to the later part.
The converse holds for the low volatility regime. Such changes in the dynamics of the
time series are captured in a straightforward way within our model. Moreover, the fit

of the new model outperforms the fit of several competing models.

As a final contribution, it is worthwhile mentioning that our model also presents
an interesting mix of parameter driven (Markov switching) dynamics with observation
driven score dynamics for the corresponding (transition probability) parameters. In
particular, it is interesting to see that score driven models can still be adopted when
an additional filtering step (for the unobserved discrete states) is required to compute
the score of the resulting conditional observation density. This feature of the new
dynamic switching model is interesting in its own right. Similar developments for a

linear Gaussian state space model have been reported by Creal et al. (2013) and Delle
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Monache and Petrella (2014)

The remainder of the paper is organized as follows. In Section 2.2 we briefly
discuss the main set-up of the Markov switching model and its residual diagnostics. In
Section 2.3 we introduce the new Markov switching model with time-varying transition
probabilities based on the score of the predictive likelihood function. In Section 2.4
we discuss some of the statistical properties of the model. In Section 2.5 we report
the results of a Monte Carlo study. In Section 2.6 we present the results of our
empirical study into the dynamic salient features of U.S. Industrial Production growth.

Section 2.7 concludes.

2.2 Markov switching models

Markov switching models are well-known and widely used in applied econometric stud-
ies. We refer to the textbook of Frihwirth-Schnatter (2006) for an extensive introduc-
tion and discussion. The treatment below establishes the notation and discusses some
basic notions of Markov switching models.

Let {y;, t = 1,...,T} denote a univariate time series of T' observations. We
consider the time series {y;, t = 1,...,T} as a subset of a stochastic process {y;}.
The probability distribution of the stochastic process y; depends on the realizations of
a hidden discrete stochastic process z;. The stochastic process y; is directly observable,
whereas z; is a latent random variable that is observable only indirectly through its
effect on the realizations of y;. The hidden process {z;} is assumed to be an irreducible
and aperiodic Markov chain with finite state space {0,..., K — 1}. Its stochastic
properties are sufficiently described by the K x K transition matrix, II, where m;; is
the (i + 1,7 + 1) element of IT and is equal to the transition probability from state i
to state 7. All elements of II are nonnegative and the elements of each row sum to 1,
that is

K-1
7Tij = ]P)[Zt = j|Zt_1 = Z], Z 7Tij = 1, 7T7;j Z O, \V/Z,j c {O, . ,K — 1} (21)
Jj=0

Let p(-16;,7) be a parametric conditional density indexed by parameters ; € ©
and 1 € U, where 6; is a regime dependent parameter and 1 is not regime-specific.
We assume that the random variables vy, ..., yr are conditionally independent given

z1,...,%r, with densities

el (ze =) ~ p(-0:,9). (2.2)
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For the joint stochastic process {z;,v;}, the conditional density of y; is

K—1
Py, Ii-1) Z p(yel 0, 0) Pz = |9, I;-1), (2.3)
=0

where I; 1 = {yi—1,Yi—2, ...} is the observed information available at time ¢t — 1. All

parameters 1) and 0y, ..., 0x_1 are unknown and need to be estimated.

The conditional mean of y; given z; and I;_; may contain lags of y; itself. Francq
and Roussignol (1998) and Francq and Zakoian (2001) derive the conditions for the
existence of an ergodic and stationary solution for the general class of Markov switching
ARMA models. In particular, they show that global stationarity of y; does not require

the stationarity conditions within each regime separately.

As an example, consider the case K = 2 for a continuous variable y; with condi-

tional density

p(-|ze) :N( (1= z0)po + 2epa , 07 ), (2.4)

where po and j; are static regime-dependent means, and o2 is the common variance.

The latent two-state process {z;} is driven by the transition probability matrix IT

1—
m— 00 oo : (25)
1—m 11
where the transition probabilities satisfy 0 < mgy, 71 < 1. We have 6; = pu; for
1= 07 1a and ¢ - (0-2’ To0, 7Tll)l-

To evaluate equation (2.3), we require the quantities P(z; = i[¢), I;—1) for all t. We
can compute these efficiently using the recursive filtering approach of Hamilton (1989).
Assuming we have an expression for the filtered probability P(z;,_y = |1, I;_1), we can

obtain the predictive probabilities P(z; = i|y), [;_1) as

K-1
]P)(Zt = ’Lllp, It—l) == Z Tki * P(Zt_l == I{ZWJ, ]t—l)- (26)
k=0

Hence, the conditional density of y; given [, _; is given by
K—1K-1
p(yt!w,IH) = Z Z p yt|017 C Tk - ]P)(thl = ]fW,[tfl)- (2~7)

=0 k=0

We can rewrite this expression more compactly in matrix notation. Define &_; as the
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K —dimensional vector containing the filtered probabilities P(z,_1 = i|t), I[;_1) at time
t—1 and let 1, be the K —dimensional vector collecting the densities p(y;|0;, ) at time
t fori=0,...,K — 1. It follows that (2.7) reduces to

P(yelih, Li—r) = & 1. (2.8)
The filtered probabilities & can be updated by the Hamilton recursion

B (H, ft—l) © 0 59

“= §oadln, (29)
where ® denotes the Hadamard element by element product. The filter needs to be
started from an appropriate set of initial probabilities P(zo = i|v, Iy). The smoothed
estimates of the regime probabilities P(z; = |1, I7) can be obtained from the algorithm
of Kim (1994). The Hamilton filter in (2.9) is implemented for the evaluation of the the
log-likelihood function which is numerically maximized with respect to the parameter
vector (6, ...,0%_1,¢') using a quasi-Newton optimization algorithm. To avoid local

maxima, we consider different starting values for the numerical optimization.

Diagnostic checking in Markov regime switching models is somewhat more compli-
cated when compared to other time series models because the true residuals depend on
the latent variable z;. Hence the residuals are unobserved. A standard solution is the
use of generalized residuals which have been introduced by Gourieroux et al. (1987) in
the context of latent variable models. They have been used in the context of Markov
regime switching models by Turner et al. (1989), Gray (1996), Maheu and McCurdy
(2000), and Kim et al. (2004). Given the filtered regime probabilities P(z; = i|¢), I;_1),
fori=0,..., K —1, let ¢; be the standardized generalized residual

K-1

o= PP =iy, 1), t=1,...T. (2.10)

=0 g

with conditional mean y; and variance o2 of y; in regime 7. In the context of switching
models, Smith (2008) defines the Rosenblatt residual é;, based on Rosenblatt (1952),

& =" (Z_ P(z = i, )@ (o) (v — i) )) : (2.11)

where ® denotes the cumulative distribution function of a standard normal with the

corresponding inverse function ®~!. If y, is generated by the distribution implied by
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the Markov switching model, then the Rosenblatt residual é; is standard normally
distributed. Furthermore, Smith (2008) shows in an extensive Monte Carlo study
that Ljung-Box tests based on the Rosenblatt transformation have good finite-sample
properties for the diagnostic checking of serial correlation in the context of Markov

regime switching models.

2.3 Time-varying transition probabilities

In the previous section we considered the transition probability matrix IT to be constant
over time. Diebold et al. (1994) and Filardo (1994) argue for having time-varying
transition probabilities II;. They propose to let the elements of II, be functions of
past values of the dependent variable y; and of exogenous variables. The Hamilton
filter and Kim smoother can easily be generalized to handle such cases of time-varying
IT;. A key challenge is to specify an appropriate and parsimonious function that links
the lagged dependent variables to future transition probabilities. For the specification
of the dynamics of II;, we adopt the generalized autoregressive score dynamics of
Creal et al. (2013); similar dynamic score models have been proposed by Creal et al.
(2011) and Harvey (2013). We provide the details of the score driven model for
time-varying transition probabilities in the Markov regime switching model. The new
dynamic model is parsimonious and the updating mechanism is highly intuitive. Each
probability update is based on the weighting of the likelihood information p( - |6;, )

in (2.2) for each separate regime i.

2.3.1 Dynamics driven by score of predictive likelihood

The parameter vector ¢ contains both the transition probabilities as well as other
parameters capturing the shape of the conditional distributions p(y.|v, I;_1). With
a slight abuse of notation, we split 1 into a dynamic parameter f; that we use to
capture the dynamic transition probabilities, and a new static parameter * that
gathers all remaining static parameters in the model, as well as some new static
parameters that govern the transition dynamics of f;. For example, in the two-state
example of Section 2.2 we may choose f; = (foot, fi1,) with foo: = logit(mgo,) and
fi1r = logit(m1+), where logit(moo¢) = log(mgo,t) — log(1 — moo,), and log(-) refers to
the natural logarithm. At the same time, we set ¢* = (02, w, A, B), where w, A, and
B are defined below in equation (2.12). For the remainder of this paper, we denote

the conditional observation density by p(vy:|fi, ¥*, I;_1).
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In the framework of Creal et al. (2013), the dynamic processes for the parameters
are driven by information contained in the score of the conditional observation density
p(Ye| fi, ", ;1) with respect to f;. The main challenge in the context of Markov
switching models is that the conditional observation density is itself a mixture of
densities using the latent mixing variable z;. Therefore, the shape of our conditional
observation density as given by equation (2.3) is somewhat involved.

The updating equation for the time-varying parameter f; based on the score of the

predictive density is given by

0
logp(yt|ftu¢*u-[t—l>) (212)

ft+1 :w—l—Ast—FBft, St :St-Vt, Vt = —
of:

where w is a vector of constants, A and B are coefficient matrices, and s; is the scaled
score of the predictive observation density with respect to f; using the scaling matrix
S;. The updating equation (2.12) can be viewed as a steepest ascent or Newton
step for f; using the log conditional density at time ¢ as its criterion function. An
interesting choice for S;, as recognized by Creal et al. (2013), is the square root matrix
of the inverse Fisher information matrix. This particular choice of S; accounts for the
curvature of V; as a function of f;. Also, for this choice of S; and under correct model

specification, the scaled score function s; has a unit variance; see also Section 2.4.

2.3.2 Time-varying transition probabilities: the case of 2 states

We first consider the two-state Markov regime switching model, K = 2. We let
the transition probabilities mpo; and 1, vary over time while the two remaining
probabilities are set to mp1; = 1 — g+ and w9 = 1 — w11, as in (2.5). We specify the

transition probabilities for the two regimes as
Tt = 03 + (1 — 20;;) exp(_fii,t)/(l + exp(—fiir)), 1 =0,1,

where fyo, and f11, are the only two elements in the time-varying parameter vector
fi, and where the two parameters 0 < §; < 0.5, for 7« = 0,1, can be set by the
econometrician to limit the range over which m;; can vary. In the application in
Section 2.6, we set 0;; = 0, for ¢+ = 0, 1, such that m;; can take any value in the interval
(0,1).

We prefer to work with a parsimonious model specification and therefore we typ-
ically have diagonal matrices for A and B in (2.12). The updating equation for the

time-varying parameter f; is given by equation (2.12) where the scaling is set to
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S, = I;%° where T,_, is the 2 x 2 Fisher information matrix corresponding to the
2 x 1 score vector V; defined in (2.12). The score vector for the conditional density
in (2.7) takes the form

t 9 5 *) — t 0 ) * *
Vo= e ot 1), (2.13)

. B Plz;—1 = O[yp*, I,_1] - (1 — 2d00)m00,¢ (1 — 7o0,t)
o Tin) = ( Pl = 1, o] - (1 — 2000 (1 — ) ) - B9

This expression has a highly intuitive form. The first factor in (2.13) is the difference
in the likelihood of y; given z; = 0 versus z; = 1. The difference is scaled by the
total likelihood of the observation given all the static parameters. If the likelihood
of y given z, = 0 is relatively large compared to that for z; = 1, we expect foo
to rise and f11+ to decrease. This is precisely what happens in equations (2.13) and
(2.14). The magnitudes of the steps are determined by the conditional probabilities
of being in regime 2;_; = 0 or z;_; = 1, respectively, at time ¢ — 1. The remaining
factors (1 — 20;;)m;; (1 — my), for ¢ = 0,1, are due to the logit parameterization. In
particular, if we are almost certain of being in regime z; ; = 0 at time ¢ — 1, that is
P[z;—1 = 0|¢*, [;_1] =~ 1, then we take a large step with fyo; but we do not move fi;,
by much. Obviously, if we are almost certain of being in regime z; 1 = 0, y; can only
learn us something about myy,. We do not learn much about ;;, in this case. The
converse holds if we are almost certain of being in regime 2;_; = 1 at time ¢t — 1, in
which case we can only learn about fi;; = logit(m1). The weights for the filtered
probabilities in the vector g(fi,1*, I;_1) in (2.13) takes account of this.

The conditional Fisher information matrix based on (2.13) is singular by design.
The vector g(fi,1*, I;—1) on the right-hand side of (2.13) is I;_;-measurable and hence
the expectation of its outer product remains of rank 1. Therefore, we scale the score
by a square root Moore-Penrose pseudo-inverse? of the conditional Fisher information

matrix. We have

o = Gy P00, ") — p(yrl6r, ¥7)] / p(yeld", Ti)
VI 0elBo. %) — plyel61, ) / plyeler®, Timy) dys

(2.15)

with G; = g(ft, Y, It,l) / Hg(fmw*? [ffl)

’2If + € R"™ is a vector, then the Moore-Penrose pseudo-inverse of zx’ is given by
|z|~*z2’, and its square root by ||z 3za’, as ||x||Sza!|z]|Pza’ = |z|| "tz As
g(fe,¥*, I;_1) is I;_1-measurable, scaling the score by the square root Moore-Penrose pseudo-
inverse of the conditional Fisher information matrix yelds an expression proportional to

||g(ft7 77[1*, It—1)||739(ft77/)*7 It—l)g(fta 11[}*5 It—l),g(fta 11[}*5 It—l) = ||g(ft7d}*vIt—l)”ilg(ft?w*?It—l)'

, and where the integral has no closed form
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in general and is computed numerically, for example using Gauss-Hermite quadrature
methods. An alternative to the analytic Moore-Penrose pseudo-inverse is a numerical
pseudo inverse; for example, we could use the Tikhonov regularized matrix inverse as
given by 12‘_1{2 = ()\I +(1— )\)Zt,l)ilm, with unit matrix I and fixed scalar 0 < A < 1.

For A — 0 the Tikhonov inverse collapses to the Moore-Penrose pseudo-inverse.

2.3.3 Time-varying transition probabilities: the case of K
states
We can easily generalize the two-regime model to K regimes. To enforce that all transi-

tion probabilities are non-negative and sum to one (row-wise), we use the multinomial

logit specification. Given a set of values for 0 < ¢;; < 0.5, we set

—1
K-1
7Tij,t = 5ij + (1 — 2(513) exp(fmt) 1 + Z exp(fij,t)] s (216)
j=1
K-1
Tik—10=1— Y m;:(6;),
j=1

fori =0,...,K —1and 5 = 0,...,K — 2. The time-varying parameters f;;,
corresponding to the time-varying transition probabilities m;;,, are collected in the
K(K —1) x 1 vector f;. The vector f; is subject to the updating equation (2.12). The

ingredients for the scaled score vector in the updating equation (2.12) are given by

V. = JVi, vl — dlog p(y:|v*, I 1) @&

I, = E[J'VIVIYY, ! Ovec(IL) Pyl Li—1)’

where ® is the Kronecker product and the elements of J; = dvec(1l;)/0f, are given by

(1 — 251‘]')71'1‘]‘775(1 — Wij,t)y fOI‘ 7= i/ /\j = j/,
—(1 - 251']')71'1']',75 UFYIED) for 1 = i/ /\] 7é j/,

0, otherwise,

871'1']‘7,5 .

Ofjra

fori,i =0,..., K —1land 5,5/=0,..., K — 2.

2.4 Statistical properties

Next we study the stochastic properties of the estimated dynamic transition proba-

bilities in our score driven Markov switching model. In particular, we analyze the
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behavior of the estimated time-varying parameter as a function of past observations
Y1, ..., Y1, parameter vector ¢*, and initial point f;. We write the process as {ft}
with f; == fi(y*, f), for t = 1,...,T. We follow Blasques et al. (2014b), who use
the stationarity and ergodicity (SE) conditions formulated by Bougerol (1993) and
Straumann and Mikosch (2006) for general stochastic recurrence equations. Define
X, = (f!,€)) as the stacked vector of filtered time-varying parameters f, and filtered
probabilities & as defined in (2.9). We define & = & (¢*, &) for some initial point &;.
Our stochastic recurrence equation for the filtered process {X;} now takes the form
X = H(Xt,yt;w*), where

a(gta ftv Ye; V)

~ - ét+1 _ % ) =
Xt+1 - [ r ] - H(Xt’yt’w ) o Cd"‘AS(gtaﬁayt;w*) +B'ft ’

t+1

where s(&, fi, ;1) is the scaled score defined in (2.15) and (&, fr, ys;1*) is the
fraction defined in (2.9) for the recursion &1 = a(fy, &,y 0*) = (H’ ft_1> ©)
n / (é_lﬂnt) The following proposition states sufficient conditions for the filtered
process {X;(v*, X1)} with initialization at X; := (&}, f{)’ to converge almost surely
and exponentially fast (e.a.s) to a unique limit SE process {X;(¢*)}.?

PROPOSITION 1. Let {y:} be SE, with 0;; in (2.16) satisfying 6;; > 0 for all pairs
(1,7), and assume that for every ¥* € U*

(i) Elog"

H(gb fl,y1>¢*>“ < 005

(i) Elnsup ;g “H(f,f,yl,zb*)H <0;

where H(X,yy;0*) = 0H(X,y1;¢*)/0X denotes the Jacobian function of H w.r.t. X .
Then {X,(¢*, X1)} converges e.a.s. to a unique SE process {X,(v*)}, for every i* €
U*, that is || X, (¢, X1) — X (49| “%" 0 as t — oo Voo* € U,

Proof. The assumption that {y;} is SE implies that {n;} in (2.9) is SE. Together with the continuity
of H (and the resulting measurability w.r.t. the Borel o-algebra), it follows that {H (-, -, y¢,¥*)} is SE
for every 1* by Krengel (1985, Proposition 4.3). Condition C1 in Bougerol (1993, Theorem 3.1) is
immediately implied by assumption (i) for every ¢* € ¥*. Condition C2 in Bougerol (1993, Theorem
3.1) is implied, for every 1)* € W*, by condition (7). As a result, for every o* € U*, {X,(*, f1)}
converges almost surely to an SE process { X (¢*)}. Uniqueness and e.a.s. convergence is obtained by
Straumann and Mikosch (2006, Theorem 2.8). O

3We say that a random sequence {X;} converges e.a.s. to another random sequence {X;} if there
is a constant ¢ > 1 such that || X; — X7|| “3 0; see Straumann and Mikosch (2006) for further
details.
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Proposition 1 effectively defines those combinations of §, A and B for which we
can ensure that the filtered sequence {X,(¢*, fi)} converges e.a.s. to an SE limit for
a given SE data sequence {y;}. We emphasize that a finite w is required for condition
(1) to hold since w enters the H function. However, w plays no role in the contraction
condition (7i) as it does not influence the Jacobian H. Numerical experiments (not
reported here) suggest that stability is achieved by a wide range of combinations of
the parameters 0, A and B, where J is a vector containing all d;;. In particular, the set
of stable combinations (A,B) becomes larger for higher values of 4. This mechanism
is intuitive because the entries of the vector o bound the elements of the vector £ and
IT away from zero and one. As a result, 6 > 0 ensures that the denominator in (2.9)
is bounded away from zero and hence the sequence {{;} becomes more stable.

Proposition 1 is essential in characterizing the stochastic properties of the filtered
time-varying parameters. It does not only allow us to have further insights into the
nature of the filtered estimates f; in the Monte Carlo study of Section 2.5, but it
also enables us to interpret the parameter estimates of the score driven time-varying
parameter model. The SE nature of the filtered sequence is also an important ingre-
dient in obtaining proofs of consistency and asymptotic normality of the maximum
likelihood estimator that rely on an application of laws of large numbers and central

limit theorems; see Blasques et al. (2014a).

2.5 Monte Carlo study

2.5.1 Design of the simulation study

To investigate the performance of our estimation procedure for the Markov regime
switching model with time-varying transition probabilities, we consider a Monte Carlo
study for the two regime model (2.4). The two regimes consist of two normal dis-
tributions with common variance 02 = 0.5 and means py = —1 and p; = 1. We
set dgp = 017 = 0 and consider 6 different forms of time variation for the transition
probabilities mpo; and 714 The patterns are summarized in Table 2.1 and range
from a constant set of transition probabilities, via slow and fast continuously changing
transition probabilities, an incidental structural break in the middle of the sample, to
a logistic dynamic transition probabilities driven by the lagged variable y;_; in the
spirit of Diebold et al. (1994) and Filardo (1994). We investigate the robustness of
our estimation procedure in these different settings. It is clear from the outset that

for all of the data generation processes considered in this study, our regime switching
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Table 2.1: Simulation patterns for myo; and 71

Model T00,t i1t
1.  Constant 0.95 0.85
2. Slow Sine 0.5+ 0.45 cos (4nt/T) 0.5 — 0.45 cos (4nt/T)
3. Sine 0.5 + 0.45 cos (87t/T) 0.5 — 0.45 cos (87t/T)
4. Fast Sine 0.5 + 0.45 cos (207t /T) 0.5 — 0.45 cos (207t /T)
5. Break 0.2 Tyreryay + 0.8 Lusray 08 Lizeryay +02 Lisyyay
6. Autoregressive (1 +exp(—1.2y4_1)) " (14 exp(0.3y,—1)) "

model with time-varying parameters is misspecified.

In our Monte Carlo study we consider three different sample sizes: T = 250, 500, 1000.
The number of Monte Carlo replications is set to 1000. A burn-in period of B = 100
observations is simulated for all sample sizes to reduce the influence of a starting
point. Our main model of interest is the score driven (SD) model with K = 2 states,
as described in detail in Sections 2.3.1 and 2.3.2. For each data generating process
and sample size, we estimate the static parameters ¢* using the method of maximum
likelihood. Given the estimated values for the static parameters, we compute the fil-
tered parameters 7o and 717 using the updating equations in (2.12). We compare
the results to those for the Markov switching model with time invariant transition
probabilities (Const.) and to those for the Markov switching model with time-varying
transition probabilities (TVP) as in specification 6 of Table 2.1 and similar to the
model used by Diebold et al. (1994) and Filardo (1994).

2.5.2 The simulation results

Table 2.2 presents Monte Carlo averages and standard errors of the maximized log-
likelihood, the corrected Akaike Information Criterion (AICc), and the Bayesian In-
formation Criterion (BIC) of Schwarz (1978). The AICc is the original AIC of Akaike
(1973), but with a stronger finite sample penalty as proposed by Hurvich and Tsai
(1991).

We learn from Table 2.2 that the average maximized log-likelihood values are
uniformly higher for the models with time-varying transition probabilities (TVP and
SD) compared to the model with constant transition probabilities (Const.). This

result is not surprising since the time-varying models are a dynamic generalization
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of the static model and have more parameters. We notice that the score driven (SD)
model outperforms the TVP model in terms of average log-likelihood values. The only
exception is given by the Autoregressive DGP with a large sample size of T" = 1000.
More convincing than the results for average likelihood values are the fact that the
time varying parameter models produce overall substantially smaller AICc and BIC
values than the constant model. The only exception is the data generating process
with constant transition probabilities. In all other cases, our SD model with time-
varying transition probabilities performs substantially better than the static model.
However, this finding does not hold for the TVP specification; the SD model only
outperforms the TVP model, used as the data generating process, when the same

autoregressive dynamics are adopted.

In Table 2.3, we present Monte Carlo averages of measures of forecast precision for
the different models. Following Perez-Quiros and Timmermann (2001), the first two

conditional moments for our two-regime Markov-switching model are given by

pe = Ely|Zi—1] = polPlxy = 0|Z4—1] + i Plzy = 1|Z,_4],
of = V{(ye — w)*[Ti-1] = 0% + Ploy = 0Ti1](pto — ) + Play = UZ,1] (1 — ).

We use the two moments to compute the one-step-ahead Mean Absolute Forecast
Error (MAFE) and the Mean Squared Forecast Error (MSFE) statistics

T

1 1
MAFE = T Z lye — pel, MSFE = T Z(yt —)?
t=1 t=1

together with their standardized counterparts

Yt — Mt
Ot

1 T
MASFE = — 3°

T N2
. MSSFE= %" <M> _
T t=1

T Ot

We find that for all data generating processes with time-varying transition probabil-
ities, the new score driven model has again the best performance. Only for the data
generating process with constant transition probabilities does the constant model per-
form best in terms of the standardized criteria. However, the differences are small in
this case. Interestingly, in terms of forecasting performance the score driven model
outperfoms the TVP model for the unstandardized forecast error criteria, even if the
autoregressive specification is the data generating process. Only for large sample
sizes and in terms of the standardized criteria does the TVP specification outperform.

Hence even when the model is mis-specified, the score driven specification appears to
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Table 2.2: Simulation results I: log-likelihood and goodness-of-fit statistics

We have simulated 1000 time series from each data generation process (DGP) listed in Table 2.1 and
for sample sizes T' = 250, 500, 1000. The static parameters are estimated by the method of maximum
likelihood, for the Markov regime switching model with static probabilities (Const.), with autoregres-
sive time-varying transition probabilities (TVP) and with score driven (SD) updating time-varying
transition probabilities. In the latter case, the underlying time-varying parameters are updated using
equation (2.12). We report the sample averages and standard error for the 1000 simulated series of
the maximized log-likelihood value (LogLik), the corrected Akaike Information Criterion (AICc), the
Bayesian Information Criterion (BIC).

LogLik AICc BIC
DGP T Const. TVP SD Const. TVP SD Const. TVP SD
950 Mean  -316.913  -315.832  -311.724 644.072  646.127  642.198 652.244  657.449  656.600
MC SE 0.437 0.439 0.449 0.875 0.879 0.898 0.875 0.879 0.898
Constant 500 Mean  -636.358  -635.461  -632.067 1282.838 1285.150  1282.502 1294.601 1301.559  1303.525
MC SE 0.628 0.629 0.641 1.256 1.258 1.283 1.256 1.258 1.283
1000 Mean -1274.725 -1273.928 -1271.112 2559.510 2561.969  2560.406 2574.799  2583.345  2587.853
MC SE 0.892 0.894 0.958 1.784 1.787 1.915 1.784 1.787 1.915
950 Mean  -375.769  -373.917  -361.709 761.783  762.297  742.169 769.955  773.619  756.571
MC SE 0.341 0.339 0.336 0.681 0.679 0.672 0.681 0.679 0.672
Slow Sine 500 Mean  -746.710  -743.013  -713.123 1503.541  1500.253  1444.614 1515.303 1516.662 1465.638
MC SE 0.536 0.520 0.507 1.072 1.039 1.013 1.072 1.039 1.013
1000 Mean -1510.835 -1503.562 -1429.336 3031.730 3021.238 2876.854 3047.019 3042.614  2904.302
MC SE 0.708 0.730 0.701 1.416 1.459 1.402 1.416 1.459 1.402
950 Mean  -375.530  -373.888  -365.224 761.306  762.238  749.197 769.478  773.560  763.599
MC SE 0.338 0.337 0.342 0.675 0.674 0.684 0.675 0.674 0.684
Sine 500 Mean  -753.633  -750.461  -726.737 1517.387  1515.150 1471.841 1529.149 1531.559  1492.865
MC SE 0.479 0.475 0.473 0.958 0.951 0.946 0.958 0.951 0.946
1000 Mean -1502.200 -1494.190 -1434.108 3014.460 3002.493  2886.397 3029.749  3023.869 2913.844
MC SE 0.759 0.736 0.710 1.519 1.472 1.420 1.519 1.472 1.420
950 Mean  -375.584  -374.174  -369.202 761.413  762.811  757.155 769.585  774.133  T71.557
MC SE 0.338 0.335 0.346 0.676 0.669 0.692 0.676 0.669 0.692
Fast Sine 500 Mean  -753.745  -751.370  -T737.734 1517.611 1516.968 1493.836 1529.373  1533.377  1514.859
MC SE 0.476 0.473 0.472 0.952 0.945 0.943 0.952 0.945 0.943
1000 Mean -1507.202 -1501.431 -1459.101 3024.464 3016.975 2936.384 3039.753  3038.351  2963.831
MC SE 0.698 0.695 0.688 1.396 1.390 1.377 1.396 1.390 1.377
950 Mean  -375.158  -373.361  -360.459 760.562  761.185  739.668 768.734  772.507  754.070
MC SE 0.349 0.353 0.363 0.698 0.707 0.726 0.698 0.707 0.726
Broak 500 Mean  -756.263  -751.225  -721.268 1522.648 1516.677  1460.903 1534.410 1533.087 1481.926
MC SE 0.517 0.560 0.488 1.035 1.120 0.976 1.035 1.120 0.976
1000 Mean -1518.157 -1507.037 -1441.303 3046.375  3028.188  2900.787 3061.664 3049.564 2928.234
MC SE 0.814 0.943 0.720 1.627 1.886 1.441 1.627 1.886 1.441
250 Mean  -376.482  -373.334  -369.484 763.210  761.131  757.717 771.382 772453  772.120
MC SE 0.305 0.310 0.336 0.610 0.619 0.672 0.610 0.619 0.672
Autoregressive 500 Mean -755.220 -749.792 -749.116 1520.562 1513.811 1516.599 1532.324  1530.220 1537.622
MC SE 0.415 0.417 0.445 0.829 0.835 0.891 0.829 0.835 0.891
Mean -1512.601 -1502.849 -1507.000 3035.262 3019.812  3032.182 3050.551  3041.188  3059.629

1000
MC SE 0.587 0.590 0.604 1.175 1.180 1.207 1.175 1.180 1.207
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Table 2.3: Simulation results II: forecast precision measures

We have simulated 1000 time series from each data generation process (DGP) listed in Table 2.1
and for sample sizes T = 250,500,1000. The static parameters are estimated by the method of
maximum likelihood, for the Markov regime switching model with static probabilities (Const.), with
autoregressive time-varying transition probabilities (TVP) and with score driven (SD) time-varying
transition probabilities. In the latter case, the underlying time-varying parameters are updated
using equation (2.12). We report the sample averages and standard errors for the 1000 simulated
series of mean absolute one-step ahead forecast error (MAFE), mean squared one-step ahead forecast
error (MSFE), mean absolute standardized one-step ahead forecast error (MASFE) and mean squared
standardized one-step ahead forecast error (MSSFE). The one-step ahead forecast errors are computed
within the sample that is used for parameter estimation.

MAFE MSFE MASFE MSSFE
DGP T Const. TVP SD Const. TVP SD Const. TVP SD Const. TVP SD
250 0.7017  0.6998 0.6885 0.8314 0.8261 0.7991 0.7741  0.7786 0.7844 1.0001  1.0085 1.0177
Constant 500 0.7037 0.7029  0.6987 0.8360 0.8337 0.8236 0.7738 0.7762 0.7795 1.0001 1.0051 1.0105
1000 0.7044 0.7040 0.7025 0.8375 0.8365 0.8325 0.7736  0.7752  0.7764 1.0003  1.0039  1.0050
250 0.9449 0.9319 0.8925 1.3259 1.3006 1.2091 0.8266 0.8229 0.8064 1.0136  1.0124 0.9875
Slow Sine 500 0.9225 0.9045 0.8671 1.2863 1.2516 1.1575 0.8205 0.8147 0.7965 1.0165 1.0136 0.9776
1000 0.9503  0.9279  0.8699 1.3383 1.2963 1.1639 0.8283 0.8210 0.7989 1.0166 1.0135 0.9809
250 0.9439 0.9329 0.9073 1.3247 1.3026 1.2407 0.8275 0.8244 0.8126 1.0172 1.0156  0.9962
Sine 500 0.9451 0.9283 0.8972 1.3285 1.2967 1.2177 0.8271 0.8221 0.8052 1.0170  1.0157 0.9827
1000 0.9335 0.9082 0.8741 1.3084 1.2599 1.1708 0.8235 0.8146 0.7973 1.0175 1.0123 0.9761
250 0.9458 0.9383 0.9217 1.3309 1.3161 1.2774 0.8280 0.8258 0.8183 1.0193 1.0182 1.0075
Fast Sine 500 0.9461 0.9358  0.9200 1.3308 1.3117 1.2678 0.8282 0.8256 0.8150 1.0194 1.0199 0.9968
1000 0.9433  0.9247 0.9019 1.3269 1.2920 1.2277 0.8269 0.8213 0.8065 1.0194 1.0182 0.9843
250 0.9482 0.9349 0.8765 1.3283 1.3036 1.1913 0.8270 0.8233  0.8068 1.0104 1.0106 1.0148
Break 500 0.9562 0.9315 0.8715 1.3441 1.2986 1.1824 0.8298 0.8220 0.8022 1.0121 1.0108 1.0084
1000 0.9622 0.9334 0.8672 1.3570  1.3040 1.1765 0.8314 0.8224 0.7992 1.0131 1.0118 1.0057
250 0.9607 0.9482 0.9302 1.3485 1.3223 1.2864 0.8264 0.8253 0.8168 0.9963 0.9993 0.9876
Autoregressive 500 0.9632  0.9528 0.9497 1.3532  1.3307 1.3260 0.8267 0.8261 0.8227 0.9959  0.9991 0.9934
1000 0.9635 0.9544 0.9573 1.3539  1.3340 1.3415 0.8267 0.8266 0.8255 0.9962  0.9996 0.9966

be highly competitive to the correctly specified statistical model in terms of its fore-
casting performance; similar findings, but in the context of nonlinear non-Gaussian

state space models, are also reported in Koopman et al. (2015).

Next we verify the precision of the filtered transition probability estimates. In a
Monte Carlo study, the transition probabilities 7o, and 7, are simulated as part of
the data generation process. Hence we are able to compare true transition probabilities

with their filtered estimates and compute the mean squared error (MSE) and the mean
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absolute error (MAE) statistics.

The results in Table 2.4 provide strong evidence that the Markov regime switching
model with time-varying transition probabilities is successful in producing accurate
filtered estimates of the probabilities for all time-varying patterns. It is only for the
data generating process with constant transition probabilities that the MSE and MAE
statistics for the static model are smaller than those for the model with score driven
dynamics. For this case, however, the absolute value of all statistics are an order of
magnitude smaller than for all the other data generating processes. We also observe
that for increasing sample sizes T', the MSE and MAE statistics mostly decrease for
the score driven model, while this does not happen for the static model. To put these
findings in some perspective, we emphasize that the sinusoid patterns have the same
number of swings over the entire sample for different sample sizes. Therefore, the
change in the transition probabilities gets smaller per unit of time as T' increases. It
follows that the updating equation (2.12) for the time-varying model can track the true
transition probability more accurately as T  increases. The inaccuracy of the estimates

obtained from the static model, however, remains unaffected.



22 Time-varying transition probabilities for Markov regime switching models

Table 2.4: Simulation results III: filtered transition probabilities

We have simulated 1000 time series from each data generation process (DGP) listed in Table 2.1
and for sample sizes T = 250,500,1000. The static parameters are estimated by the method of
maximum likelihood, for the Markov regime switching model with static probabilities (Const.), with
autoregressive time-varying transition probabilities (TVP) and with score driven (SD) time-varying
transition probabilities. In the latter case, the underlying time-varying parameters are updated using
equation (2.12). We report the sample averages for the 1000 simulated series of the mean squared
error (MSE) and the mean absolute error (MAE) of the one-step ahead forecast of two transition
probabilities g9 and ;. The one-step ahead forecast errors are computed within the sample that
is used for parameter estimation.

MSE MAE MSE MAE

00 i1

DGP T Const. TVP SD Const. TVP SD Const. TVP SD Const. TVP SD

250 0.0003 0.0140 0.0127 0.0146  0.0477  0.0494 0.0038 0.0796  0.0594 0.0447  0.1877  0.1655
Constant 500 0.0002  0.0047 0.0062 0.0102  0.0281  0.0321 0.0016  0.0440 0.0252 0.0297 0.1323  0.1065
1000 0.0001  0.0015 0.0032 0.0072  0.0174  0.0211 0.0007 0.0284 0.0103 0.0204  0.0992  0.0688

250 0.1723  0.2155 0.0572 0.3368 0.3729  0.1933 0.1862  0.2415 0.0408 0.3556  0.4015 0.1623
Slow Sine 500 0.2235 0.2993  0.0446 0.3928 0.4546  0.1759 0.1930 0.2476  0.0288 0.3486  0.3942 0.1343
1000 0.1785 0.2756  0.0296 0.3540 0.4386  0.1425 0.1584  0.2305 0.0203 0.3190 0.3835 0.1120

250 0.1867 0.2353 0.0742 0.3563 0.3949  0.2252 0.1742  0.2180 0.0633 0.3374 0.3733  0.2030
Sine 500 0.1755 0.2372  0.0576 0.3387 0.3910  0.1973 0.1872  0.2619 0.0408 0.3575 0.4208 0.1651
1000 0.2013  0.2905 0.0446 0.3684 0.4435  0.1760 0.1898 0.2702  0.0280 0.3523  0.4203 0.1346

250 0.1714  0.2136  0.1009 0.3371  0.3699  0.2611 0.1760  0.2221  0.0950 0.3444  0.3801 0.2538
Fast Sine 500 0.1767  0.2340 0.0780 0.3412  0.3884  0.2328 0.1809 0.2453 0.0674 0.3487 0.4018 0.2161
1000 0.1808 0.2593 0.0619 0.3464 0.4119  0.2082 0.1832 0.2676 0.0488 0.3501  0.4207 0.1825

250 0.1072  0.1301  0.0511 0.2203  0.2517  0.15836 0.1583  0.2347 0.0310 0.3650  0.4185 0.1339
Break 500 0.1357  0.1860  0.0250 0.2710  0.3240  0.1179 0.1656  0.2516  0.0230 0.3561  0.4251 0.1100
1000 0.1426  0.2105 0.0162 0.2915 0.3543  0.0956 0.1571  0.2455 0.0168 0.3354 0.4089 0.0888

250 0.1055 0.0452 0.1139 0.2710  0.1628  0.2769 0.0814 0.0413 0.0875 0.2633  0.1757  0.2620
Autoregressive 500 0.1027  0.0352  0.1043 0.2681 0.1520  0.2678 0.0796  0.0339  0.0797 0.2638 0.1605 0.2568
1000 0.1017  0.0297 0.1011 0.2668 0.1460  0.2651 0.0785 0.0298 0.0764 0.2634 0.1513  0.2564

2.6 An empirical study of U.S. Industrial Produc-

tion

Markov regime switching models are often used in empirical studies of macroeconomic
time series. We therefore illustrate our new methodology for time-varying transition
probabilities in an empirical study concerning a key variable for macroeconomic policy,
U.S. Industrial Production (IP). The time series for IP is obtained from the Federal
Reserve Bank of St. Louis economic database (FRED); we have monthly seasonally
adjusted observations from January 1919 to October 2013, T' = 1137. We analyze the
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percentage growth of IP (log-differences x100) and consider the resulting series as our
y; variable. Figure 2.1 presents both the IP index and the IP percentage log differences
ys. Since the seminal paper of Hamilton (1989), modeling the different regimes in
variables related to economic growth has proved important. Typically, different growth
regimes can be distinguished, such as negative, slow, and high growth. Over long time
spans as in our current application, additional challenges relate to the difference in the
volatility of growth, as well as to the stability of the transition probabilities between
the different regimes. For example, it may be challenging to empirically distinguish
regimes of low volatility-high growth from regimes of high volatility-negative growth.
Given the encouraging results from the simulation study, it is for this challenge where

our new model with score driven dynamics can be useful.

Figure 2.1: U.S. Industrial Production (monthly, seasonally adjusted) and percentage
growth rates (log-differences x100)
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2.6.1 Three model specifications

After some preliminary analysis, we consider a model with three regimes for the mean
(m = 0,1,2) and two regimes for the variance (v = 0,1). The three regimes for the
mean may represent recession, stability and growth periods in U.S. production. Each
regime for the mean consists of a constant and p,, lagged dependent variables for y;,
with m = 0,1,2. The constant and the p,, autoregressive coefficients are collectively

subject to the regime to which they belong. The two regimes for the variance may
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simply distinguish periods of low and high volatility. To remain within a parsimonious
modelling framework, we adopt the model specification of Doornik (2013) to structure
the transition probability matrix. Doornik analyzes a quarterly time series of post-war
U.S. gross domestic product growth by means of a Markov switching mean-variance

component model.

Model I: static specification

Let {2} and {27} denote the hidden processes that determine the mean and the

variance for the density of y;, respectively. We have
y | (2 =m,z] = v, 1,_4) NN( Lt O ), m=20,1,2, v=0,1, (2.17)
with the three mean equations

Mt = Gom + P1m¥Yt—1+ -+ Opro mYt—pps m=0,1,2, (2.18)

where ¢q ,,, is an intercept, ¢1 ., . . ., ¢p,. m are autoregressive coefficients, for p,, € N*,

and o? and o3 are the two variances. The transition probabilities for the mean and

variance are collected in the matrices IT* and 117, respectively, which are given by

@ p I w
Too To1 1 — Moo — o1 o 1 — 7o
= aty, my 1—mxly—nt I = 00 0. (2.19)
10 711 10 11 | 1 - o
u [ T — T 11
T Ta1 Moo — T21

We follow Doornik (2013) in specifying the transition probability matrix for the 3x2 =
6 regimes as
I1=1I° ® IT*,

where the 36 probabilities in II are a function of 6 mean and 2 variance probabilities.
Compared to a fully unrestricted model with 6 regimes, the current specification is
much more parsimonious, while still allowing for a considerable degree of flexibility to
capture the salient dynamics of the data. The conditional density of y; given I, ; can

be expressed in terms of the filtered probabilities as in (2.8). We have
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Py, L—1) = &, (17 @ I

/
P[zzlfil =0,2{ ;= OW), ]t—l] p(yt§ Ho,t, 087 It—l)
Plzfy =1,27 1, =0[¢), I, g, 08, I
(2124 t.l |0, ;1] (I° @ TT#) p(ye ,Ul,t. o> Li-1)
P[Z;il =2,z{ = 1|77Z)7]t—1] p(?/t;MQ,t,U%Jt—ﬂ
(2.20)

Model II: time-varying variance probabilities as function of |y, 1|

As a benchmark, we also construct a model in the spirit of Diebold et al. (1994) and
Filardo (1994). We specify the time-varying transition probabilities for the variance

regimes in II{ as a logistic transformation of the lagged dependent variable, that is

exp(gvvt)
gv = ot = Cop T Clu|Yt—1], UZO,]., 2.21
ot 1+6Xp(gvv,t> vt o b |yt 1| ( )
where ¢g, is an intercept and c;, is a fixed coefficient, for v = 0,1. The four ¢

coefficients are estimated by the method of maximum likelihood, jointly with the

other coefficients.

Model III: time-varying variance probabilities as function of score

We considered several extensions of the current specification with time-varying tran-
sition probabilities. After a preliminary analysis, we found that for the current appli-
cation only the introduction of time-varying transition probabilities for the variance
regimes substantially improves the fit of the model. We therefore only present the re-
sults for this specification. Note that once the probabilities 17 are made time-varying,
all regime transition probabilities II = I1? ® II* become time-varying.

Empirically, there appears no need to shrink the range of 7;;, ex ante, such that
we can set 6; = 0 for ¢ = 0,...,5, where §; was defined in Section 2.3. Using the

framework of Section 2.3.2, we specify the time-varying matrix 117 as

o o eXp(fvv,t)

™ - ) v = 07 17 = ) /7
vu,t 1 i eXp(fvv,t) ft (fOO,t fll,t)

where f; is updated over time as in (2.12).

The resulting conditional density for v, is given by p(y,|v*, I,_1) = &,_, (II7 @ II*) 1.
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The regime probability structure of Doornik (2013) is more restricted than the one
for the general K-regime Markov switching model in Section 2.3.3. We therefore have

different expressions for the score vector and scaling matrix. The score vector is given
— /
by Vt = (Vooﬂg y Vll,t) s Where

70, (L =77, +) ) ( ory
V,,, = Lt wt w6 (= o) n, v=0,1,
! p(ytwj*? It—l) -t ﬂ—gv,t "

with &_; and 7, defined implicitly in (2.20). To compute the conditional Fisher Infor-
mation E[V,V}], where E| -] is the expectations operator with respect to p(y:|*, I;-1),
we evaluate four numerical integrals by a Gauss-Hermite method for every time ¢ and

for each value for the parameter vector ™.

2.6.2 Parameter estimates, model fit and residual diagnostics

Table 2.5 presents the parameter estimates for the three model specifications. For all
models we consider p,, = 3 lags in (2.18), with m = 0, 1,2. Other values of p,, have
been considered but do not substantially improve the fit. Parameter estimates are ob-
tained by numerically maximizing the log-likelihood function with respect to the static
parameter vector v or 1)*. The associated standard errors are obtained by numerically
inverting the Hessian matrix at the maximized log-likelihood value. The sets of esti-
mated coefficients for the three mean regimes are very similar across the three model
specifications. The introduction of time-varying variance transition probabilities only
has a limited effect on the specification of the mean. The coefficient ¢y, determines
the interpretation of a regime: m = 0 corresponds to low IP growth, m = 1 represents
a recession, and m = 2 identifies a high IP growth regime. The autoregressive coeffi-
cients @1, ..., ¢3m,m show that in “normal years” IP growth is persistent, while during
recessions IP growth is subject to persistent cyclical dynamics. Periods of high IP
growth are very short lived given the strongly negative autoregressive coefficients for
m = 2. The estimated transition probabilities reveal the typical situation in regime
switching models that once we are in a recession or low growth regime, it is most likely
that we remain in this regime. It is only for the high growth regime that it is more
likely to move to a low growth regime while the probability to stay, 7y = 1 —7hy — b,
is estimated around 0.35.

For the variance regimes, the models clearly distinguish between a low (approxi-
mately 0.3) and a high (approximately 5.5 to 6.0) variance regime. The magnitudes of

these variances are again comparable across the different models. For Model I, both
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variance regimes are highly persistent with probabilities 7§, and 7{; both estimated
close to 1. We also learn from Table 2.5 that the model fit improves upon introducing
time-varying variance transition probabilities, both for Model IT and Model III. The
maximized log-likelihood values increase by 8 and 17 basis points at the cost of an
additional 2 and 4 parameters for Model II and II1, respectively. The corrected Akaike
information criterion and the Bayesian information criterion clearly point to Model
IIT as the best comprimise to model fit and a parsimonious model specification. The
time-varying transition probabilities for the low volatility (v = 0) and high volatility
(v = 1) regimes in Model III are highly persistent: the estimates for the diagonal
elements of B are very close to unity. From Model II we may conclude that only
the transition probability of a low volatility regime is time-varying: the estimate of
c11 is not significant. For Model III we find somewhat stronger evidence that both
transition probabilities are time-varying: the estimates of both diagonal elements of
A are significant at the usual level of 5%.

Finally, Table 2.5 presents diagnostic test statistics for the generalized and Rosen-
blatt residuals which we have discussed in Section 2.2. The p-values for the well-known
Jarque-Bera x? normality test and the Ljung-Box y? serial correlation test, for the
residuals and the squared residuals, indicate that all models are capable of describing
the salient features in IP growth. There are some differences between the statistics
for the generalized and Rosenblatt residuals, but the differences are small and do not
affect the main conclusions. The Jarque-Bera test indicates that the IP growth time

series is subject to a few outlying observations.

2.6.3 Signal extraction: regime transition probabilities

In Figure 2.2 we present the smoothed estimates of probabilities for mean and vari-
ance regimes and the filtered estimates of (time-varying) transition probabilities for all
models. Model II appears unable to capture the dynamics in the transition probabil-
ities. We have learned from Table 2.5 that the estimate of ¢; ; is not significant. This
is also reflected in Figure 2.2: the filtered probability estimates for the high variance
regime are almost constant over time. On the other hand, the filtered probability
estimates for the low volatility regime are highly erratic. The filtered probabilities
for Model III show an entirely different pattern. Both the low and high volatility
transition probabilities evolve gradually over time. In particular, the persistence of
the low volatility regime appears to have increased over time, with values around 0.7
in the early part of the sample, and values close to 1 in the second half of the sample.

The converse holds for the high volatility regime. The persistence probability 77, is
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Table 2.5: U.S. Industrial Production: parameters, model fit and residual diagnostics

In the first two panels we report the maximum likelihood estimates with standard errors in parantheses
below, for Models I, II and III. In the first panel the parameter estimates for the mean f,, ; in
(2.17) are reported for each regime m = 0,1,2: the intercept ¢g ,,, the autoregressive coefficients
®1,m;- -, 3 m, and the transition probabilities ngj, for j = 0,1, in II* of (2.19). In the second panel
the two regime variance estimates for o2 are reported. The variance transition probability for Model
I 79, is estimated directly while we have 77, = logit™'(x,) for Model II (2, = co,,) and for Model
I (z, = w,/(1 — Byy)), for v = 0,1, where w, and B,, are the (v + 1)* elements of vector w and
diagonal matrix B in (2.12), respectively. The time-varying variance probabilities are determined in
Model II by ¢; ., and in Model IIT by A,, and B,, which are the (v + 1) diagonal elements of A
and B in (2.12), respectively, for v = 0,1. In the third panel we report model fit statistics: Fit(1)
is maximized log-likelihood value; Fit(2) is AICc; Fit(3) is BIC, see Section 2.5.2. We further report
the p-values of the residual diagnostic (RD) test statistics for the generalized (e;) and Rosenblatt’s
residuals (&;): RD(1) is Jarque-Bera normality x2(2) test; RD(2) is Ljung-Box serial correlation x?(6)
test; RD(3) is as RD(2) for squared residuals.

Model I (22 parameters) Model IT (24 parameters) Model III (26 parameters)
m=0 m=1 m=2 m=0 m=1 m=2 m=0 m=1 m=2
®0,m 0.076  -0.212 0.846 0.068  -0.277 0.837 0.043  -0.128 0.737
(0.038) (0.182) (0.168) (0.037)  (0.140) (0.172) (0.033) (0.095) (0.128)
d1,m 0.316 1.121 -0.609 0.327 1.126 -0.621 0.351 1.087 -0.479
(0.050)  (0.096) (0.135)  (0.050) (0.088) (0.130)  (0.040) (0.079) (0.107)
b2.m 0.212  -0.569  -0.395 0.220  -0.526  -0.484 0.234  -0.537  -0.221
(0.050) (0.146) (0.123)  (0.040) (0.139) (0.086)  (0.037) (0.108) (0.086)
?3,m 0.105 0.076 0.039 0.113 0.011 0.133 0.112 0.036 0.103
(0.037) (0.107) (0.124) (0.035) (0.115) (0.101) (0.030) (0.065) (0.092)
™o 0.909 0.111 0.577 0.909 0.113 0.592 0.864 0.145 0.576
(0.041) (0.103) (0.140)  (0.032) (0.072) (0.142)  (0.036) (0.070) (0.175)
Yy 0.016 0.858 0.055 0.014 0.858 0.073 0.021 0.842 0.048
(0.019) (0.092) (0.052)  (0.012) (0.064) (0.062)  (0.015) (0.059) (0.055)
v=20 v=1 v=20 v=1 v=20 v=1
03 0.336 5.579 0.351 5.866 0.317 5.920
(0.025) (0.629) (0.026)  (0.691) (0.023) (0.541)
T, 0.980 0.947 0.996 0.883 0.886 0.702
(0.007)  (0.018) (0.003)  (0.053) (0.080)  (0.200)
€1 -1.899 0.108
(0.419)  (0.209)
Ay 0.132 0.148
(0.058)  (0.074)
By 0.998 0.989
(0.003)  (0.011)
i1=1 1=2 1=3 1=1 1=2 =3 1=1 1=2 1=3
Fit(7) -1642 3330 3439 -1634 3317 3437 -1625 3302 3433

RD(i) e,  0.065 0.772 0.556 0.032 0.968 0.659 0.019 0.792 0.924
RD(i) é&;  0.011 0.409 0.648 0.012 0.830 0.738 0.007 0.632 0.676
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Figure 2.2: U.S. Industrial Production: smoothed and filtered transition probability

Smoothed probability estimates for the recession regime in the mean and for the high variance regime.
Filtered transition probability estimates for the low and high variance regimes. In the first graph,

the vertical gray areas indicate recessions according to the NBER, business cycle classifications.

Smoothed Recession Mean Regime P[z"=1|y,l1]

o
- NBER Recession phases |
wn
©
o |
o
= Model| e== Modelll = ModeIIII|
T T T T T T T T T T T T T T T T T T T
1919 1929 1939 1949 1959 1969 1979 1989 1999 2009
Time
Smoothed High Variance Regime P[z/=1[y, ]
o 4
Yo}
i
o
2
| = Model| === Modelll === Modellll
T T T T T T T T T T T T T T T T T T T
1919 1929 1939 1949 1959 1969 1979 1989 1999 2009
Time
Filtered Low Variance probability “goo Filtered High Variance probability nfﬂ
4 — 4
o | ! i o |
o [ 3 o
H ]
- I N -
: :
< : <
o ' o
o | == Modelll === Model lll o | | === Modell == Modelll === Modellll
e T T T T T e T T T T T
1920 1940 1960 1980 2000 1920 1940 1960 1980 2000

Time Time



30 Time-varying transition probabilities for Markov regime switching models

close to 1 up to the 1940s. After that, the probability decreases substantially to values
around 0.5, and slowly rises again towards the end of the sample. The pattern for the
filtered probabilities is consistent with the empirical pattern in the data in Figure 2.1.
In the earlier part of the sample, high volatility levels are predominant. Towards the
middle of the sample, large volatilities are incidental and short-lived. Interestingly,
towards the end of the sample and particularly during the years of the financial crisis,
the U.S. debt ceiling crisis, and the European sovereign debt crisis, higher volatility
levels appear to cluster again.

The empirical patterns are corroborated by the parameter estimates in Table 2.5.
In particular, the parameter estimates for the diagonal elements of B are both close
to 1; this suggests that the dynamic transition probabilities evolve gradually over
time. The estimates of both diagonal elements of A have the correct sign and lead to
parameter changes that increase the local fit of the model in terms of log-likelihood.

Finally, we present the smoothed estimates of 2z, in the top panels of Figure 2.2,
together with the NBER business cycle classifications. We conclude that all models
result in higher smoothed recession probabilities during NBER recessions. The model
fit for a model with time-varying transition probabilities (Model II or III) is typically
higher than that of the static Model I. From the smoothed probabilities for the high
variance regime we see that most of the high variance regime period is located in the
first half of the sample. The second episode of high variance is during the financial
crisis, with the intermediate period having predominantly a low level of volatility.
We notice that some, but not all, NBER recessions correspond to periods of high
volatility. This supports the use of our current framework with separate regimes for

the (conditional) means and for the variances.

2.7 Conclusion

We have introduced a new methodology for time-varying transition probabilities in
Markov switching models. We have shown that an observation driven modeling frame-
work based on the score of the predictive likelihood as in Creal et al. (2013) provides an
effective tool to describe the dynamics of transition probabilities. The dynamics can
easily be interpreted while the information embedded in the conditional observation
densities is fully incorporated in the transition probability updates. We have formu-
lated conditions for the estimated time-varying probabilities from our score driven
model to converge to stationary and ergodic stochastic processes.

By means of an extensive Monte Carlo study, we have shown that our observation
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driven model adequately tracks the dynamic patterns in transition probabilities, even
if the model is misspecified. Both for structural breaks and slowly variations in regime
transition probabilities, our model yields a large improvement in model fit compared to
a model with constant transition probabilities only. The model also performs well with
respect to nonlinear autoregressive parameterizations of the transition probabilities.
In our empirical study for U.S. Industrial Production growth, we have shown how
the model can capture the dynamic features of regime transition probabilities for
means and variances. Our score driven model outperforms both the Markov switching
model with constant probabilities and with transition probabilities depending on a
lagged dependent variable. In particular, the patterns filtered by our model can be
interpreted and have economic relevance: a higher (lower) persistence for high (low)
volatility regimes in the beginning (at the end) of our long time series span from
January 1919 to October 2013. A key finding is that high volatility periods appear
to re-occur and become more persistent again at the end of the sample, during the
financial and sovereign debt crises. We conclude that the model can provide a useful
benchmark in settings where transition probabilities in a regime switching model may

vary over time.






Chapter 3

Markov switching model for
electricity prices: an empirical

comparison

Abstract

In empirical literature it is well known that Markov regime switching models represent an
attractive choice to capture the complex dynamics of electricity spot prices characterized
by the presence of jumps or spikes. A crucial decision that the researcher has to take is re-
lated to how many regimes to use. Through an empirical analysis of UK Automated Power
Exchange (APX) electricity spot prices we found evidence in favour of a three regime spec-
ification. Due to the non-homogenous occurrence of spikes, the standard assumption that
the transition probabilities are constant is too restrictive and several proposals have been
made to overcome this limitation. We compare several specifications and we show that the
mechanism driven by the scores of the predictive likelihood is a valid alternative to those
models which exploit exogenous information like forecasted reserve margin and forecasted

demand.

Some key words: FElectricity spot prices, Spikes, Markov regime-switching, Time-

varying transition probabilities, Score driven models.
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3.1 Motivation

The electricity sector has been liberalized over the past three decades. In 1989 the
UK Electricity Act determined the creation of the first organized electricity market in
Europe. After the Central Electricity Generating Board was dismissed, a pool was con-
stituted. However, the pool was heavily dominated by only two companies, National
Power and Powergen. Attracted by the prospect of large profits new competitors put
pressure on political authorities to enter to the market. The New Electricity Trading
Arrangements, issued in March 2001 replaced the pool with a system of voluntary bi-
lateral markets and power exchanges encouraging new competitors. In the same year,
the UK Automated Power Exchange (APX) opened a spot market.

An increasing number of models have been developed in empirical literature for
the financial instrument or other commodity markets. However, those models may be
inadequate to deal with the uniqueness of electricity as a commodity. Indeed, elec-
tricity markets are characterized by extreme changes in spot prices known as jumps
or spikes. Several nonlinear models have been proposed to include discontinuous com-
ponents in realistic models of electricity price dynamics. Since the seminal work of
Hamilton (1989), the Markov switching class of models became very popular. The key
attractive feature of Markov switching models is that the conditional distribution of
a time series depends on an underlying latent state or regime, which can take only a
finite number of different values. The discrete state evolves through time as a discrete
Markov chain and its statistical properties are summarized by a transition probability
matrix. Ethier and Mount (1998) proposed a two state specification in which both
regimes were governed by autoregressive processes of the first order with different or
common variances. Huisman and Mahieu (2003) introduced a third regime, the jump
reversal regime, that describes how prices move back to the baseline regime after the
initial jump has occurred. Huisman and De Jong (2003) proposed a model with only
two regimes, a stable mean reverting AR(1) regime and a spike regime. In order to cope
with the heavy-tailed nature of spikes, Weron et al. (2004) and Janczura and Weron
(2009, 2010) replaced the normal distribution of the spike regime with log-normal and
Pareto distributions.

Another line of research has been devoted to overcome the unrealistic assumption
of static transition probabilities. Huisman (2008) showed that spike intensity varies
over time, influenced by seasonal fluctuations in climate conditions like temperature
and the number of daylight hours. In econometric literature, Diebold et al. (1994) and
Filardo (1994) allowed the transition probabilities dynamics to be driven by lagged
values of the dependent variable or by explanatory variables (Gray, 1996). In the
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same spirit, Mount et al. (2006) used fundamental variables as reserve margin forecast
and load to model the transition probabilities. Janczura and Weron (2010) considered
seasonal transition probability estimated directly on the price by a kernel density

estimator.

In the previous chapter, we extended Diebold et al. (1994)’s and Filardo (1994)’s
proposal by using the score of the predictive density in the updating mechanism ac-
cording to the Generalized Autoregressive (GAS) models formulated by Creal et al.
(2011, 2013) and Harvey (2013). In an extensive simulation study, we have emphasized
the ability of their model to capture a range of dynamic patterns for the unobserved
transition probabilities by linking non linearly past observations to future transition
probabilities while in an empirical application to U.S. Industrial Production growth
rate, we showed that the dynamic features of regime transition probabilities for means

and variances can be well described by the novel formulation.

Main purpose of this chapter is to adapt the promising GAS approach to deal
with the peculiarity of electricity price dynamic. Differently from what we did in the
previous chapter, the normality assumption is not convenient for the regime-specific
distributions and more sophisticated choices have been discussed and utilized for de-
scribing the extreme price regimes. Through an empirical comparison on UK APX
spot prices we show its ability to accurately describe the non-linear price dynamics.
A crucial decision the researcher has to take concerns the number of regimes used to
describe the price dynamics. Similarly to Janczura and Weron (2010) we find that
a three regime specification with a baseline regime alternated by two spikes regimes
is the favorite choice both from a statistical and an economic perspective. The time-
varying transition probabilities driven by the scores of the conditional densities are
found to be a preferred choice over both the static and seasonal transition probabilities.
When we include in our model the exogenous information contained in the forecasted
demand and forecasted margin reserve, the fitting ability increases substantially. As
second methodological result, we show that the GAS methodology can be easily ex-
tended to include explicitly the exogenous information in the transition probabilities
dynamics. In our empirical application, we find that the novel proposal overcomes the

alternatives.

In Section 3.2 the dataset is introduced and pre-filtering techniques are discussed
to detect the cyclical and seasonal components from the raw prices. In Section 3.3
the econometrics methodology is presented. In Section 3.4, the results for both two
and three regime specifications are presented and discussed. Finally, in Section 3.5,

we conclude.
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3.2 Dataset and pre-filtering

We analyze mean daily day-ahead spot prices from the UK Automated Power Ex-
change spot market. The data can be found on www.bmreports.com. The sample
contains 2048 daily observations and covers the 5-year period April, 1, 2005 - Novem-
ber, 8, 2010. Mount et al. (2006) have shown that the load and the implicit reserve
margin, defined as total offered capacity minus load, can be used as explanatory vari-
ables to describe the conditional mean and predict accurately the spikes in electricity
prices. As the forecasted load is announced to suppliers one day-ahead, this informa-
tion can be used to forecast prices for the next day. Also the forecasted reserve margin
is known as it is calculated by subtracting the forecasted load from the day-ahead total
offered capacity. The dataset analyzed in this paper contains the forecasted demand
rather than the forecasted load. Although there exists some ambiguity in terminology,

for the purpose of this paper we consider the two quantities substantially equivalent.

Spot prices and forecasted demand are far from being stationary. In order to deal
with this characteristic, we consider the spot price (or the one day-ahead demand)
X; as a sum of three independent parts: a long-term component 7;, which repre-
sents the non periodic price levels, a weekly periodic component s; which incorporates
the seasonal fluctuations due to climate and consumption conditions and a stochastic
component Y;, X; = T, + s; + Y;. A multiplicative model and the logarithmic trans-
formation applied to Y; would be more appropriate if the researcher hypothesized
interactions among the components. As in Weron (2009) and Janczura and Weron
(2010), the trend component is estimated from raw data X; using a wavelet filtering-
smoothing technique. Then, the weekly component s; is estimated on the de-trended
series X; — T} as the average week over all sample; we refer to Weron (2006) for alter-
native deseasonalization techniques. Lastly, the resulting stochastic component Y; is
shifted so that the minimum of the new process is the same as the minimum of X;.
In Figure 3.2, the original series is plotted together with the trend component. Notice
that the reserve margin has not been treated as it can be assumed stationary. The
Autocorrelation Function (ACF) for the estimated stochastic component Y; shown in
Figure 3.1, suggests that both the long term and the seasonal components have been
successfully detected and removed by both the price and forecasted demand series.
The Augmented Dickey-Fuller statistics, estimated to -9.521 for prices and to -7.692
for forecasted demand does not reject the null hypothesis of stationary at 0.01 signif-
icant level in both cases. In the remainder of this paper, we focus our attention in

modeling the dynamic of the stochastic component of one-day-ahead price, Y;.



3.2 Dataset and pre-filtering 37

Figure 3.1: UK APX Spot Prices: stochastic components

Autocorrelation function up to 100 lags for stochastic component of prices (on left) and of forecasted
demand (on right).
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Figure 3.2: UK APX Spot Prices: original series, long-term and cyclical components

Prices, forecasted demand and forecasted reserve margin. Original series (dashed line) and
trend/cyclical component estimated by wavelet filter (straight line).
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3.3 Methodology

3.3.1 Markov-switching models

We invite the reader to refer to Subsection 2.2 for an introduction of the basics of
Markov switching models. For the sake of clarity, we report the main notation. Let
{ys, t =1,--- ,T} denote a univariate time series of 1" observations. The probability
distribution of the stochastic process y; depends on the realizations of a hidden discrete
stochastic process z;. The stochastic process y; is directly observable, whereas z; is
a latent random variable that is observable only indirectly through its effect on the
realizations of y;. The hidden process {z;}icz is assumed to be an irreducible and
aperiodic Markov chain with finite state space {0, - -- , K —1}. Its stochastic properties
are sufficiently described by the (K x K') transition matrix, II, where each element 7,

of 1T is equal to the transition probability from state i to state j,
WlJ:P[Zt:j‘Zt_lzl], V%,]E {0, ,K—l} (31)

All elements of II are nonnegative and the elements of each row sum to 1, i.e. m; > 0,
Vi,j € {0,--- K —1} and ¥/ 'm; = 1, Vi = 0,--- ,K — 1. Let p(-]6,%) be a
parametric conditional density indexed by parameters # € © and ¢ € ¥. We assume
that the random variables yy,--- ,yr are conditionally independent given zy,--- , zp,
with densities y;| (z, = @) ~ p( - |6;, 1) with regime dependent parameter ;, and regime
independent parameter ¢. The density of 4, conditional on the information available

at time t — 1, denoted by I;_1, is

K-1
p(ytlt/},ft 1 Z p yt|9w Zt = i’¢>]t—1)7 (3-2)

=0
where both v and 6,...,0k_1 need to be estimated. The conditional mean of y;

given z; and [;,_; may contain lags of y; itself. To evaluate (3.2), we require the
quantities P(z; = i[¢), ;1) for all . We can compute these efficiently using the
recursive filtering approach of Hamilton (1989). Define §i—1)¢t—1 as the K —dimensional
vector containing the filtered probabilities P(z;—y = i|¢, [;—1) at time ¢t — 1 and let
n: be the K —dimensional vector collecting the densities p(y:|0;,v) at time ¢ for i =
0,..., K—1. Then the filtered probabilities &, are updated by the Hamilton recursion

(H/ ft—l\t—l) ©
52—1\1&—11_[7715 ,

St = (Y, Ii1) = fllt—l\t—lnnta (3-3)
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where ©® denotes the Hadamard element by element product. The filter needs to be
started from an appropriate set of initial filtered probabilities P(zy = i|¢, Iy). If we are
also interested in making inference about the smoothed regime probabilities P(z, =
i1, IT), then we can use the algorithm of Kim (1994) to compute these efficiently.

3.3.2 Choice of regime densities

A detailed overview of the Markov-switching models applied to the electricity spot
prices appears in Weron (2006) and in Janczura and Weron (2010). The presence of
spikes in the spot electricity prices suggests that there exists a non-linear mechanism
switching between normal and high-price states or regimes that can be conveniently
modeled as a latent process. Typically, the base regime is assumed to be driven by a
mean-reverting diffusion process that is discretized as an autoregressive process of the
first order,

Yep = 0+ (1 = B)yi—1p + ovey, (3.4)

where the error terms, ;, follow a standard Gaussian distribution. As the regimes
are often assumed to be independent from each other, then during a spike the base
regime becomes latent. Janczura and Weron (2012) suggested to replace the latent
variables 41, in (3.4) with their expectations 1, = Elyi—1[1/1—1] based on the
whole information available at time ¢ — 1. The expected values g, = E[y; 51| can be

computed using the following recursive formula

Elyes|te] = yepPlze = blby] + {a + (1 — B)E[y—1,

el }Plze 7 O[¢e]. (3.5)

Following Mount et al. (2006) we can include in (3.4) exogenous variables as the
forecasted demand and the forecasted reserve margin. As these variables may have a
different scale, we standardized them by subtracting the sample mean and dividing by

the sample standard deviation. The equation for the base regime becomes

Ytp = Q + (1 - 6)yt71,b + 'Vmarginmt + ’}/demanddvt + OvEt, (36)

where m; denotes the (standardized) forecast reserve margin at time ¢, announced to
suppliers one day ahead and d; denotes the (standardized) forecast demand.
For the spike and downward spike regimes, we follow Janczura and Weron (2009)

and Janczura and Weron (2010), who used, respectively, a median-shifted log-normal
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distribution and an inverted shifted log-normal distribution, i.e.,

log (s — y(q1)) ~ N(is,02),  yus > ylq1), (3.7)
log (—yra + y(@2)) ~ N(pa,03),  Yra < y(a), (3.8)

where 0 < ¢1,¢2 < 1 and y(g¢;) denotes the g;-th percentile of the empirical cumulative
distribution functions of the data. A typical choice is the median, i.e. g1 = g2 = 0.5

but in our empirical results, we obtain better results setting ¢; = 0.25 and ¢, = 0.75.

3.3.3 Time-varying transition probabilities specification

In (3.1) and (3.3), we assumed that the transition probabilities are constant over time.
However, there is numerous empirical evidence that this assumption could be too
restrictive. Diebold et al. (1994) and Filardo (1994) proposed to make the transition
probabilities dynamic including past values of the dependent variable. Gray (1996)
used past values of exogenous variables. For analysing energy prices Mount et al.
(2006) modeled the transition probabilities as function of load and reserve margin and

Huisman (2008) used temperature as a proxy for reserve margin.

Without introducing exogenous variables, Janczura and Weron (2010) assumed
that the transition probabilities are periodic functions. Their estimation procedure
relies on a modification of Expectation-Maximization (EM) algorithm (cfr. Hamilton,
1989). From the smoothed regime probabilities obtained with Kim’s smoother, they
estimated the transition probabilities independently for each of the four seasons. In
order to make those probabilities smoothed, they applied a kernel density smoother
with a Gaussian kernel. We introduce the following notation for the periodic time-

varying transition probabilities
Tijt = g(ﬂ-ij,Spring’ Tij,Summers Tij Fall 71-ij,Wimfer)a (39)

where 7;; spring denotes the transition probability estimated during the Spring and g(-)

the kernel smoother.

Mount et al. (2006) modeled dynamically the transition probability as function of

(forecasted) demand and reserve margin. For the generic transition probabilities m;;,
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(3.1) is replaced by

exp(fijt) =
Tijt = . ; Tik—1¢=1— ) T, (3.10)
T+ R exp(fija) 32_21 !
fije = wij + 03y, + 05 dy, (3.11)

where the multinomial logit transformation in (3.10) ensures all transition probabil-
ities being non-negative and summing to one (row-wise) and in (3.11) the one day
ahead forecasted values of the exogenous variables are included in the dynamics of the

transition probability.

The novel approach proposed in the previous chapter specifies the dynamics of the
transition probabilities according to the generalized autoregressive score (GAS) frame-
work of Creal et al. (2013). After applying again the multinomial logit transformation
in (3.10) to the transition probabilities, all the time-varying parameters f; in (3.11)

are collected into the vector f;. Then, the GAS updating mechanism is given by

f,.1 =w+ Bf, + AT, %°V,, (3.12)
0 | P
Vt = p(yt‘%ft’ ! 1>7 Itfl =E [Vtv:t];
t

where w is a vector of constants, A and B are diagonal matrices, and V, is the score of
the conditional observation density, p(y;|v, f;, I; 1), with respect to f;. With a slight
abuse of notation, the vector v collects all the statistic parameter of regime-specific
distributions as well as the parameters that drive the GAS updating mechanism and it
needs to be estimated numerically by maximizing the log-likelihood function. Z; ; is
the square root of the inverse Fisher Information matrix. The conditional observation
density is computed by the Hamilton filter and given by (3.3). The GAS mechanism
thus takes a steepest ascent or Newton type step in f; using the time ¢ log conditional
density as its criterion function. The choice of the inverse square root of the Fisher
Information matrix for scaling the score f;, as done in Creal et al. (2013), accounts for

the curvature of V, as a function of f;.

If the exogenous variables are included in the mean equation for the baseline regime
and the GAS approach is chosen for modeling dynamically the transition probabilities,
the update mechanism in (3.12) is still valid. Indeed, it can be easily shown that the
score and the Fisher Information matrix of the conditional density are functions of the

exogenous information. However we can also include directly in (3.12) the forecasted
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reserve margin and demand in the following way
(f1 =AMy = APdyyy) = w+ B (£ — Ay, — APdy) + ALV, (3.13)

where AM and AP are diagonal matrix. In the rest of the paper, we call the GAS
model with exogenous variables the GAS-eXogenous (GASX) model.

3.3.4 Estimation and diagnostic

Hamilton (1989) used the Expectation-Maximization (EM) algorithm, (cfr. Dempster,
1977) to maximize the expected log-likelihood with respect to the parameter vector, 6.
The EM procedure is computationally efficient when the maximization step is available
in closed-form. Following Janczura and Weron (2010) we use the EM algorithm to
obtain the parameter estimates for the model with periodic time-varying transition
probabilities introduced in (3.9). For all other specifications, we maximize directly the
log-likelihood function computed by Hamilton filter using a quasi-Newton optimization
algorithm. The Akaike Information Criterion (AIC) (see Akaike 1973, 1974) and the
Bayesian Information Criterion (BIC) (see Schwarz, 1978) are chosen to measure the

quality of a statistical model for a given set of data.

In order to assesses the correct specification of regime densities, we classified the
observation y; in regime i if the smoothed probability of being in regime 7 at time ¢,
P[r, = i], is bigger than the smoothed probability of being in any other regime j, for
Vi,j€0,---, K —1and j #i. We compare the empirical distribution of observations
classified into regime ¢ with the theoretical distribution through the Kolmogorov-
Smirnov statistics. The unknown parameters that index the theoretical distribution
are estimated by Maximum Likelihood Estimator. To verify the correct specification
of the baseline regime, we require a further step as the Kolmogorov-Smirnov test can
be used only on independent samples. After identifying these observation which are
classified into the baseline regime, we estimated the standardized residuals &; from (3.4)
or from (3.6). The Kolmogorov-Smirnov test can be performed on those standardized

residuals to verify the normality assumption.
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3.4 Empirical results

3.4.1 Results for Markov-switching models with 2 regimes

We start by modeling the stochastic component Y; with the two-regime Markov Switch-
ing model with dynamics switching between the baseline regime in (3.4) and the spike
regime in (3.7). Static transition probabilities are considered as a benchmark for all
the time-varying specification introduced in Subsection 3.3.3. When the forecasted
reserve margin and demand are taken into account, we replaced (3.4) by (3.6).

As shown in Table 3.1, the fit of the model with periodic transition probabili-
ties is not statistically better than the benchmark model. The log-likelihood value
improves roughly by 3 points but at the cost of six more parameters. This result
is not surprising as we have removed the seasonal component of prices by using the
pre-filtering techniques illustrated in Section 3.2. The other dynamic specifications
show a statistically significant improvement in fitting as both AIC and the BIC are
smaller than those of static model. We notice that the GAS specification outperforms
the counterparts when no exogenous information is considered. Adding the forecasted
reserve margin and demand into the baseline regime mean equation increases the log-
likelihood values for both TVP and GASX models. The novel GASX specification
results in a remarkably smaller values of the information criteria than those obtained
with the TVP specification.

The Kolmogorov-Smirnov test is not able to give us an indication in favor of a
particular transition probabilities specification. However, the statistics accepts the
null hypothesis at level 0.10 of correct specification for the spike regime and does
not accept it for the baseline regime. Also the QQ-plot of baseline regime residuals
estimated by the GASX model, shown in Fig. 3.3 (a), indicates an heavy deviation
from normality in the left tail. The comparison between theoretical and empirical
distribution for the spike regimes, Fig. 3.3 (b), confirms substantially the correct
specification indication provided by Kolmogorov-Smirnov statistics.

In Table 3.1 we report the parameter and standard error estimates for all the
models. The parameter estimates are very similar among the different models. The
baseline regime exhibits a strong mean-reverse dynamic, the estimates of 5 is 0.307 to
0.308 ( SE 0.018 to 0.019) for models without exogenous information and 0.383 ( SE
0.019) for models with exogenous information. To capture the low spikes, the baseline
regime variance is estimated to be quite high, roughly 15 to 16, (SE 0.54 to 0.59). In
both the TVP and GASX models the forecasted reserve margin does not improve the

baseline regime mean specification while the forecasted demand does. The standard
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deviation of the spike regime is estimated smaller than the mean indicating that the
log-normal parametrization is able to accurately describe extreme prices.

We have already seen that when no extra-information is taken into account, the
transition probabilities dynamics are well captured by the GAS specification in terms
of goodness-of-fit. Looking at the updating equation parameters, we notice that the
processes are highly persistent with By, estimated equal to 0.955 (SE 0.018) and By
estimated equal to 0.895 (SE 0.084). The scaled score is statistically different from
zero for baseline regime transition probabilities whereas is not for the spike regime.

In the TVP model, the transition probabilities are driven by the exogenous vari-
ables. In the GASX model, the transition probabilities are driven by an autoregressive
process as well as by the exogenous variables. For both the specifications, the fore-
casted reserve margin affects positively the probability of staying in baseline regime
and negatively the probability of staying in spike regime. As expected, a reduc-
tion in forecasted margin level leads to an increasing probability that a spike occurs.
Regarding the forecasted demand, the effect is not concordant. While in the TVP
specification, the forecasted demand has a positive impact on both probabilities, in
the GASX specification the forecasted demand is positively correlated with the prob-
ability of staying in spike regime and negatively with the probability of staying in
baseline regime. This seems more coherent with the economic intuition: when a large
demand is forecasted, it is more probable that a spike will occurs. The parameters
related to the conditional scores, Ay, and A, are positive as expected and statistically
different from zero. We noticed that the autoregressive dynamic is different in the
GASX specification if compared with the GAS model. In particular, the estimates of
By, reduces to 0.197 from the value 0.955 estimated by the model without exogenous

information.
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Table 3.1: UK APX Spot Prices: goodness-of-fit for models with 2 regimes

We have estimated the Markov switching model with two regimes on the stochastic component, y;, of
UK APX Spot Prices. For the first three models, the baseline state is given by the discretized mean-
reversion diffusion process in (3.4) where the unknown value of y;,_1 ; is estimated by its conditional
mean given by (3.5) and the spike state density is the shifted log-normal distribution in (3.7). For
TVP and GASX models, (3.4) is replaced by (3.6). The transition probabilities follow the specification
illustrated in Subsection 3.3.3. We report the maximized log-likelihood value (LogLik), the corrected
Akaike Information Criterion (AICc), the Bayesian Information Criterion (BIC), the p-values of
Kolmogorov-Smirnov tests on observation classified as spike (KS Spike) and on standardized residuals

classified in baseline regime (KS Base), the estimated number of spikes (N Spikes).

Without extra-info With extra-info

Static Periodic GAS TVP GASX
logLik -5856 -5853 -5824 -5682 -5653
N. par 7 13 11 13 17
AIC 11726 11732 11670 11391 11341
BIC 11765 11805 11731 11465 11436
KS Base 0.000 0.000 0.000 0.000 0.000
KS Spike 0.986 0.740 0.896 0.989 0.895
N. Spikes 366 358 355 358 346

Figure 3.3: UK APX Spot Prices: diagnostic for GASX model with 2 regimes

Theoretical normal quantities vs sample quantiles for standardized residuals of the baseline regime

(a) and empirical and theoretical distribution for the spike regime (b).
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Table 3.2: UK APX Spot Prices: parameter estimates for models with 2 regimes

We have estimated the Markov switching model with two regimes on the stochastic component, ¥, of
UK APX Spot Prices. For the first three models, the baseline state is given by the discretized mean-
reversion diffusion process in (3.4) where the unknown value of y;_1 5 is estimated by its conditional
mean given by (3.5) and the spike state density is the shifted log-normal distribution in (3.7). For
TVP and GASX models, (3.4) is replaced by (3.6). The transition probabilities follow the specification
illustrated in Subsection 3.3.3. We report parameter estimates and numerical standard errors.

Without exogenous information With exogenous information
Static Periodic GAS TVP GASX

«@ 11.823 (0.710) 11.842 (0.708) 11.838 (0.712) 14.707 (0.743) 14.762 (0.746)
Ié] 0.307 (0.018)  0.308 (0.018) 0.307 (0.019) 0.383 (0.019) 0.383 (0.019)
02 e 16.137 (0.586) 16.135 (0.583) 16.259 (0.592) 15.091 (0.541) 15.271 (0.539)
Ymargin -0.093 (0.098) -0.072 (0.098)
Ydemand 0.948 (0.105) 0.983 (0.105)
Hspike 2.009 (0.033) 2.010 (0.066) 2.031 (0.067) 2.040 (0.066) 2.065 (0.062)
Ogire  1.050 (0.047) 1051 (0.047) 1.042 (0.047) 1.027 (0.045) 1.023 (0.043)
b 0.923 (0.007) 0.920 (0.016) 0.959 (0.007) 0.909 (0.030)
Tss 0.646  (0.027) 0.591 (0.043) 0.439 (0.040) 0.460 (0.018)
App 0.384 (0.077) 1.539 (0.438)
Ay 0.363 (0.217) 1272 (0.275)
By, 0.955 (0.018) 0.197 (0.110)
B, 0.895 (0.084) 0.920 (0.033)
operein 1.597 (0.181)  1.752 (0.194)
jmargin -0.694 (0.108) -1.868 (0.305)
§idemand 0.407 (0.154) -0.519 (0.140)
ydemand 7.615 (0.001) 0.537 (0.231)
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3.4.2 Results for Markov-switching models with 3 regimes

In the previous subsection we noticed that the baseline regime was not correctly speci-
fied. The estimate of the variance parameter was quite high and the QQ-plot exhibited
a deviation from the normality assumption in the left tail. To overcome those draw-
backs we add a third regime to model the downward spike by using the inverted shifted
log-normal distribution introduced in (3.8). In Table 3.3, we report the goodness-of
fit results and in Table 3.4 the parameter and standard error estimates. The fitting
performance is uniformly improved. The Kolmogorov-Smirnov statistics accepts the
null hypothesis of correct specification for all the regimes. Also the empirical density
functions of the two extreme regimes plotted against the theoretical density functions
(Figure 3.4a and 3.4c) confirm that the distributions are well specified. The QQ-plot
of the baseline regime standardized residual (Figure 3.4b) does not show a heavy left
tail and deviations from normality, although not statistically significant, are equally
distributed on both tails.

As already noticed for the Markov-switching models with 2 regimes, the GAS
update mechanism for transition probabilities outperforms both the Static and the
Periodic specification when no exogenous information is considered. When the fore-
casted reserve margin and the forecasted demand are included into the model, the
GASX model outperforms the TVP model in terms of log-likelihood value that de-
creases about 86 points. This improvement is confirmed also by noticing that both
information criteria take the smallest values in the novel specification.

Looking at Table 3.4, we see that for the baseline regime, the variance estimate is
reduced to about 8 from the value equal to 16 estimated in the two-regime models while
the estimate of 3 increases to 0.52-0.59 (it was 0.31 for models with two regimes). Also
the mean estimate increases from 12 to 21,/23. The magnitude of forecasted demand in
the baseline mean equation reduces to about 0.7 from the value previously estimated
equal to 0.9 while the reserve margin remains statistically not significant. The drastic
reduction of the variance parameter estimate gives us another indication in favor of
the three regime specification in which low prices are captured by the downward spike
regime. The estimates related to the spike regime distribution remain substantially
unchanged if compared with the two regime specifications.

In the GAS model, the transition probabilities dynamics are well specified. All the
autoregressive parameter estimates suggest that the processes are highly persistent,
furthermore, the parameters related to the scaled score are positive. In the TVP and
GASX models, differently from the estimates obtained in the two regime specifica-

tions, the effects of the exogenous variables on transition probabilities have the same
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sign. As expected, the forecasted reserve margin affects positively the probability of
staying in the baseline regime and the probability of shifting from the spike to the
baseline regime while affects negatively all the other transition probabilities. In par-
ticular, we highlight the large magnitude estimated for the parameter 645, -2.999 for
the TVP model and -2.977 for the GASX model. A reduction in the forecasted reserve
margin increases largely the probability of switching from the downward spike regime
to the spike regime. The forecasted demand influences positively all the transition
probabilities. While in the two regime models, the parameter d;, was estimated posi-
tive in the TVP model and negative in the GASX model, now the estimates have the
same sign. As we already pointed out, we cannot directly compare the autoregressive
parameters estimated in the GAS model with these estimated in the GASX model.
The dynamics are influenced by the exogenous information impact and result in two
negative persistence parameter estimates, By, and B,s. However, also in the GASX
specification all the parameters related to the scaled score are positive as expected.
In Figure 3.5a-3.5¢ we show the expected duration of the three regimes for GAS and
GASX models. For the regime i, the expected duration is given by 1/(1 — m;). Static
transition probabilities imply constant expected duration that may not be reasonable
for electricity prices. It is interesting to compare the time-varying expected duration
with the spikes and downward spikes enlightened in Figure 3.5d. For the GASX model
the exogenous information affects the expected duration dynamics over all the sample
period. On the contrary, for the GAS model, when the probability of being in a
particular regime is small, the related expected duration remains nearly equal to the
previous level. When a particular regime is more likely to happen, also the expected

duration reacts sensibly.

Figure 3.4: UK APX Spot Prices: diagnostic for GASX model with 3 regimes

Empirical and theoretical distribution for the spike regime (a) and the downward spike regime (c).

Theoretical normal quantities vs sample quantiles for standardized residuals of the baseline regime (b).
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Table 3.3: UK APX Spot Prices: goodness-of-fit for models with 3 regimes

We have estimated the Markov switching model with three regimes on the stochastic component,

y¢, of UK APX Spot Prices.

For the first three models, the baseline state is given by the dis-

cretized mean-reversion diffusion process in (3.4) where the unknown value of y;,_1 is estimated

by its conditional mean given by (3.5), the spike state density is the shifted log-normal distribution
in (3.7), the downward spike regime density is the shifted inverse log-normal distribution in (3.8).
For TVP and GASX models, (3.4) is replaced by (3.6). The transition probabilities follows the
specification illustrated in Subsection 3.3.3. We report the maximized log-likelihood value (LogLik),
the corrected Akaike Information Criterion (AICc), the Bayesian Information Criterion (BIC), the

p-values of Kolmogorov-Smirnov tests on observation classified as spike/downward spike (KS Spike/

D. spike) and on standardized residuals classified in baseline regime (KS Base), the estimated number

of spikes/downward spikes (N Spikes/ D. spikes).

logLik

N. par

AIC

BIC

KS Base

KS Spike
KS D. Spike
N. Spikes
N. D. Spikes

Without extra-info

With extra-info

Static
-5302
13
10631
10704
0.256
0.768
0.239
405
322

Periodic
-5282

31
10627
10801
0.162
0.787
0.197
408

326

GAS
-5201
25
10452
10593
0.114
0.372
0.125
396
330

TVP
-0126
27
10307
10459
0.457
0.731
0.225
395
322

GASX
-5040
39
10159
10379
0.595
0.705
0.181
379
335
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Table 3.4: UK APX Spot Prices: parameter estimates for models with 3 regimes

We have estimated the Markov switching model with three regimes on the stochastic component, y;,
of UK APX Spot Prices. For the first three models, the baseline state is given by the discretized
mean-reversion diffusion process in (3.4) where the unknown value of y;_1 5 is estimated by its con-
ditional mean given by (3.5), the spike state density is the shifted log-normal distribution in (3.7),
the downward spike regime density is the shifted inverse log-normal distribution in (3.8). For TVP
and GASX models, (3.4) is replaced by (3.6). The transition probabilities follows the specification

illustrated in Subsection 3.3.3. We report parameter estimates and numerical standard errors.

Without exogenous information With exogenous information
Static Periodic GAS TVP GASX
a 20.992 (1.225) 21.115 (1.220) 21.283 (1.200) 23.576 (1.234) 23.468 (0.462)
B 0.528 (0.031)  0.531 (0.031) 0.534 (0.030) 0.593 (0.031) 0.588 (0.012)
02 e 8.567 (0.393)  8.418 (0.375) 8.575 (0.394) 8.136 (0.366)  8.260 (0.253)
Ymargin -0.027 (0.082) -0.034 (0.082)
Ydemand 0.706  (0.096)  0.706 (0.091)
Kspike 1.912 (0.063) 1.901 (0.062) 1.975 (0.065) 1.948 (0.064)  2.007 (0.061)
Ospike 1.071 (0.044) 1.076 (0.044) 1.059 (0.045) 1.050 (0.044) 1.044 (0.020)
Hdown 1.669 (0.043)  1.653 (0.043) 1.635 (0.045) 1.669 (0.043)  1.631 (0.045)
T down 0.673 (0.032)  0.683 (0.032) 0.676 (0.034) 0.666 (0.032) 0.678 (0.033)
Tbb 0.848  (0.007) 0.859 (0.024)  0.886 (0.007)  0.329 (0.001)
Tab 0.330 (0.010) 0.383 (0.013)  0.515 (0.019)  0.940 (0.009)
Tab 0.234 (0.026) 0.358 (0.082)  0.287 (0.034) 0.373 (0.001)
Ths 0.102  (0.006) 0.091 (0.008)  0.065 (0.006)  0.347 (0.030)
Tss 0.636 (0.010) 0.582 (0.013)  0.421 (0.019)  0.043 (0.006)
Tds 0.025 (0.011) 0.032 (0.016)  0.011 (0.008)  0.252 (0.002)
App 0.446  (0.086) 0.486  (0.084)
Ag 0.077 (0.092) 0.010  (0.004)
Aap 0.252  (0.098) 0.308  (0.098)
Aps 1.103  (0.279) 8.583  (1.935)
Ags 0.461  (0.216) 4.386  (0.995)
Ags 4.073  (2.637) 2.257 (0.775)
By 0.994  (0.003) 0.992  (0.001)
By 0.992  (0.008) -0.979  (0.003)
Bay 0.987 (0.017) 0.983  (0.002)
Bys 0.932  (0.025) 0.232  (0.061)
Bas 0.951 (0.037) -0.141  (0.166)
Buas 0.743  (0.180) 0.902  (0.005)
grarain 0.324 (0.157)  0.119 (0.171)
grmargin 0.069 (0.383)  0.097 (0.368)
gmargin -0.661 (0.233) -0.896 (0.237)
gyarain -1.045 (0.220) -1.614 (0.263)
ymargin -0.832  (0.389) -1.167 (0.399)
perain -2.999  (0.749) -2.977 (0.529)
Sdemand 0.703 (0.163)  0.725 (0.162)
§demand 0.501 (0.350)  0.564 (0.188)
§dgmand 0.392 (0.172)  0.233 (0.323)
Sfemand 1.137 (0.204)  1.072 (0.230)
ydemand 0.842 (0.355)  0.904 (0.396)
§demand 1.151  (0.484)  1.574 (0.556)
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Figure 3.5: UK APX Spot Prices: graphical results for GAS and GASX models with 3
regimes

Comparison between GAS and GASX model for expected duration of the baseline regime (a), spike
regime (b) and downward spike (c) regime . Stochastic component y; and identified downward spikes
and spikes (d) from the TVP model.
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3.5 Conclusions

Electricity prices represent an interesting challenge for econometricians. In order to ex-
plain the spiky behavior that characterizes their evolution over time, Markov-switching
models are broadly used. Although many authors proposed to use a two-regime spec-
ification we found empirical evidence in favor of a more complex three-regime spec-
ification. A discretized mean-reverting diffusion process is able to capture the price
evolution when the market is quiet while low and high prices are modeled by a log-
normal and a shifted log-normal distributions, respectively.

The spikes do not occur homogeneously over time suggesting that static transition
probabilities may be too restrictive in modeling electricity prices. To overcome this
limitation of the standard Markov switching model, we compare several alternatives to
model dynamically the transition probabilities. In particular, we assumed a seasonal
structure or we used exogenous variables like forecasted reserve margin and demand
to explain their dynamics. Again, we adopted the novel GAS updating mechanism
which exploits the information contained in the score of the conditional density to
drive the transition probabilities dynamics. We extended the GAS formulation to
include auxiliary information into the dynamics of transition probabilities explicitly
and we called the new specification GAS-eXogenous (GASX).

The alternatives have been compared by analyzing the UK APX spot prices and
we have found a strong empirical evidence in favor of the score driven specifications.
In particular, the GASX model outperforms the counterparts suggesting that the tran-
sition probabilities dynamics may be explained accurately by combining the autore-
gressive structure driven by the scores of the conditional densities and the exogenous
information. Our findings are similar to those of the recent literature in pointing out
how the forecasted reserve margin and forecast demand are able to improve the model

fit as well as to describe the occurrence of spikes.



Chapter 4

Transformed polynomials for

modeling conditional volatility

Abstract

We propose a flexible model for filtering time-varying conditional volatilities. In partic-
ular, we make use of novel transformed polynomial functions to update the unobserved
time-varying conditional volatility parameter. The flexible updating equation is shown to
approximate arbitrarily well any continuous function and to have known convergence rates of
approximation on Hoélder spaces. A Monte Carlo study explores the finite sample properties
of the estimator. Finally, a number of applications shows the good performance of the model

in empirically relevant settings.

Some key words: Conditional volatility, GARCH, Transformed polynomial function,

Semi-nonparametric models.

This chapter has been written during my visiting period at Department of Econometrics and
Operation Research, at VU University, Amsterdam. I am deeply thankful to Francisco Blasques for
the original discussion and to Andre Lucas and Siem Jan Koopman for the numerous suggestions
that improved this final version.
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4.1 Introduction

Financial time-series are often characterized by clusters of volatility and heavy tails.
The autoregressive heteroskedasticity (ARCH) model introduced in the seminal contri-
butions of Engle (1982) and the generalized autoregressive heteroskedasticity (GARCH)
model of Bollerslev (1986) have become the benchmark against which more sophisti-
cated models are compared. The GARCH(1,1) models a sequence of returns {y; }+ez
as

Yy = oy, YVt € 7,

where {u;}iez is a sequence of normal independently distributed random variables,

and o; evolves according to
2 2 2
o =w+ay +Bo;, Vtel.

In a parametric setting, many efforts have been made to model the asymmetric re-
sponse of volatility to positive and negative past returns. The Generalized Quadratic
ARCH (GQARCH) model proposed independently by Engle and Ng (1993) and Sen-
tana (1995), the Threshold GARCH (TGARCH) model of Zakéian (1994), the GJR-
GARCH of Glosten et al. (1993), the Asymmetric Power ARCH (APARCH) of Ding
et al. (1993) are the most popular alternatives, capable of addressing this phenomenon
which is known as leverage effect and was originally documented by Black (1976). In
a semi-parametric, nonparametric or semi-nonparametric setting, many models have
been designed to overcome some of the restrictiveness of the parametric assumptions in
Gaussian GARCH models. For example, Linton (1993) and Drost and Klaassen (1997)
proposed kernel-based estimates of the density of the error term. A different stream of
research focused on the functional form of the volatility function. These nonparamet-
ric models focus however on the ARCH volatility and do not nest the GARCH(1,1).
Pagan and Schwert (1990), Pagan and Hong (1991) and Linton and Mammen (2005)
considered nonparametric ARCH model where the conditional volatility is a smooth
function of previous values of returns. The estimated news impact curves for S&P500
returns in Linton and Mammen (2005) turn out to be considerably asymmetric with
a minimum at positive returns (rather than zero) and non-quadratic tails. More re-
cently, Audrino and Bithlmann (2001,2009) proposed an estimation algorithm for the
more general case where volatility is assumed to be a smooth but unknown function
of past returns and past realizations of the volatility. However, they did not derive

the stochastic properties of their model or establish asymptotic properties for their
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estimator.

This chapter proposes a flexible model for filtering time-varying conditional volatil-
ities. Following Audrino and Buhlmann (2009), we assume that the conditional vari-
ance depends on past values of returns and volatility through an unknown continuous
function ¢, i.e.

ot = ¢(07, ), VteEL.

We make use of novel transformed polynomial functions introduced by Blasques (2014)
to update the unobserved time-varying conditional volatility parameter. In Section 4.2
we introduce the transformed polynomial functions to model the conditional volatility.
In Section 4.3, we show through an extensive Monte Carlo simulation study the ability
of our novel approach in approximating the true and unknown function both under
correct specification and misspecification. In Section 4.4 we analyze the returns of
ten different stocks which compose the S&P100 Index and we find that our method is
robust. The comparison for a number of parametric and semi-nonparametric models

is illustrated on IBM stock returns. Finally, in Section 4.5 we conclude.

4.2 Transformed polynomial functions

The transformed polynomial function has been introduced by Blasques (2014) to model
the conditional expectation. Assume that the univariate sequence {y; }1cz is generated

by
v = o(y—1) + &1, tEL,

where {&;}1ez is a i.i.d. sequence. When the true function ¢ is assumed to be con-
tinuous in y, it is shown that it can be approximated arbitrarily well by the k—order

transformed polynomial function

k
Prp(y,0) = 0y + 01y + <Z 91y2> - ¢5(y), (4.1)
i=2
where 8 = (0,01, ,0;) € R*! is the parameter vector and the transformation

function is defined as ¢g(y) = exp(8 y?) with § is a scalar satisfying 8 < 0. The
transformation function plays a crucial role in bounding the tail behavior by a linear
function.

If the researcher follows a parametric approach and adopts a given fixed order £k,

then the parametric ML estimator:
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(i) converges to a pseudo-true parameter 8; € O that minimizes the Kullback-
Leibler divergence between the true probability measure of the data and the

model implied measure if k£ is not large enough for the model to be well specified;

(ii) converges to the true parameter 8, € Oy if k is large enough for the model to

be well specified.

Instead, in a semi-nonparametric (SNP) approach, the researcher lets the order k
diverge to infinity with sample size T'. As a result, the transformed polynomial function
Dk can be used in conjunction with a sieve maximum likelihood (ML) estimator
to consistently estimate any true function ¢ that is continuous in y. As § — 0,
the consistency of the SNP estimator is guaranteed by the fact that the space of
transformed polynomials IP’(;)?) is dense on the space of continuos functions on X,
denoted by C(X) in sup-norm for every compact ) C R, see Proposition 1 in Blasques
(2014).

In the analysis of financial time series, the researcher is interested in modeling the
conditional variance dynamics rather than the conditional mean. The data generating

process for the time-varying volatilities is assumed to take the form
Yt = Oy, Vt € Za

where {u;}iez is a 1.i.d. sequence with common density u; ~ f,. Typical choices for

fu are normal and Student’s t-distributions. The volatility o; evolves according to
2 2
Jt-‘,—l - ¢<yta Jt)a Vi € Z7

where ¢ is a continuous function in y; and 2. In order to approximate the unknown
function ¢ the transformed polynomial function in (4.1) can be generalized as a func-

tion of y; and o?. This yields the filtering equation of the form
6t2+1 = ﬁk(ytﬁf; 0), VteN.

where 8 € 0, C R™* is the vector of parameters that parametrizes the transformed
polynomial p*(y;,52;0) of order k. The dimension of parameter vector, n(k), is an
increasing function of transformed polynomial order k. While in modeling the condi-
tional expectation it is convenient that the transformation function recovers a linear
behavior in the tails, the positivity of the conditional variance can be guaranteed al-

lowing the tail behavior to be dominated by the quadratic term in y; and the linear
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term in 2. Thus, the transformed polynomial j*(y;, 5%; 8) takes the form

P (1,675 0) =too + 20 ¥; + Vo1 67 (4.2)
+ > Wy or exp (B ui+ BT 6))
1<i+j<k

where (7, 7) € {NoxNp}\ (2,0) (0,1)}. The vector 8 contains the unknown parameters:
the intercept g, all polynomial coefficients 1); j, as well as the coefficients of the
exponential term 37 and 5}’2. As in (4.1), the exponential term coefficients have to
be not positive. It is quite intuitive to notice that in the tails the behavior of the
transformed polynomial function is bounded by the parametric GARCH(1,1) while
the true function ¢(y;,0?) is well approximated in those regions for which the data
provide information.

Blasques (2014) shows that the transformed polynomials functions can (i) approx-
imate arbitrarily well any continuous functions, (ii) perform better than polynomials
in approximating contracting functions, and, (iii) ensure that the filter is invertible
and that the parameter vector 6 is identified. As a data generating process (DGP),
the transformed polynomials also ensure that the process is strictly stationary, er-
godic, has fading memory and bounded unconditional moments. However, the results
in Blasques (2014) may not apply directly to the conditional volatility model. Indeed
the transformed polynomial functions in (4.2) are bivariate as they are function of ¥,
and 2. Furthermore, the inclusion of the filtered conditional volatility sequence may
complicate the stochastic properties of the process. In this paper we investigate the

finite sample properties of the MLE through a Monte Carlo study.

4.3 Finite sample properties

4.3.1 Maximum likelihood estimator under correct specifica-
tion

In Section 4.2 we pointed out the difference between a parametric and a semi-nonparametric
approach to the parameter estimation. In particular, when the order of the trans-
formed polynomial, £, is large enough or the model is correctly specified, we ex-
pect that the MLE, é(a%), converges to the true parameter 6,. In this first experi-
ment, we sample an artificial sequence of {y; }1ez from a standard normal distribution

with conditional variance given by the transformed polynomial function introduced in
(42) We set k = 37 and 6 = [wO()y ¢107 /8%7 ¢01, 6?2) ¢207 ¢117 ¢307 5‘33)1] = [0‘57_
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0.15, —0.08, 0.60, —0.01, 0.25, 0.35, —0.15, 0.05]. This choice for the parameters
leads to a conditional variance which reacts asymmetrically to positive and negative
past shocks. Furthermore, this leverage effect is more pronounced when the market is
already excited. We simulate a very long sequence of observations setting 7" = 10000.
A burn-in period equal to BI = 500 observations is simulated to reduce the effect of
starting point, 0%, in the estimates.

The results averaged over 5000 replications reported in Table 4.1 seem to sug-
gest the consistency of parametric ML estimator. The empirical distribution of the
estimates, shown in Figure 4.2, does not deviate from the normality assumption.

The News Impact Curve (NIC) function has been introduced by Engle and Ng
(1993) to measure the impact of shocks y on the one-step ahead conditional variance.
For the GARCH(1,1) model, it takes the form NIC(y) = oo + y*. Given the
flexibility of the TP-GARCH model which takes into account also the interaction effect
between the shock y and the volatility o2, we define the News Impact Curve function
as the estimated transformed polynomial function in (4.2) in which the volatility is
fixed to an arbitrary value, 62, NIC(y,5°) = pF(y,5?). If we look at Figure 4.1, the
parametric ML estimator for @ under correct specification seems to be able to estimate

correctly also the News Impact Curve functions.

Table 4.1: Simulation results I: maximum likelihood estimator under correct specification

We have simulated 5000 time series of length 10000 from the DGP y; = o?us, Vt € N, where
uy ~ N(0,1) and o7, = p*(y;,0%;0), see details in the text. Taking the first 500 observations
as burn-in, we estimated the parameter vector, €, by maximizing numerically the log-likelihood
function. We report the sample averages and the Monte Carlo Standard Errors for the parameter
vector estimates, the maximized log-likelihood value (LogLik), the averaged mean squared error of
the one-step ahead forecast of oy (MSE) and its averaged mean absolute value (MAE).

Yoo Y10 By o1 87" 2o P11 P30 B3
True 0.50 -0.15 -0.08 0.60 -0.01 0.25 0.35 -0.15 -0.05
Mean 0.5014 -0.1682 -0.0859 0.6000 -0.0102 0.2494 0.3622 -0.1490 -0.0483
MC SE 0.0005 0.0021 0.0006 0.0002  0.0002 0.0002 0.0011 0.0003  0.0001

logLik MSE 62 MAE 52
Mean -19047 0.0782 0.1204
MC SE 2 0.0013 0.0005
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Figure 4.1: News Impact Curve functions under correct specification

True (red line) and 95% point-wise confidence intervals (blue region) over 5000 MC replications.
Sample size T=10000, BI =500.
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Figure 4.2: Parameter estimation under correct specification

Empirical density (histogram) and normal density (red line) over 5000 MC replications. Sample size
T=10000, BI =500.
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4.3.2 Maximum likelihood estimator under incorrect specifi-

cation

In a semi-nonparametric approach, we let the order k of the transformed polynomial
function in (4.2) diverge to infinity as the sample size increases. The sieve ML esti-
mator is expected to consistently estimate any true function ¢ continuous in (y;, o?).
Similarly to the study in Blasques (2014), the aim of this second Monte Carlo simula-
tion experiment is to recreate artificially this situation. We use the following functional

form for the conditional variance,

071 = oy, 07) =0.5 + 0.25y; + 0.507
+5.25 [1 + tanh(~0.55,)] {0.5 + 0.2tanh [0.5(07 — 9)|},  (4.3)

where tanh(-) denotes the hyperbolic tangent. We remark that the function defined
in (4.3) cannot be expressed as a finite number of polynomial terms. Furthermore,
the conditional volatility exhibits a leverage effect, particularly pronounced when the
market is excited. Then y,, t = 1,---,T are sampled from a normal distribution
with mean zero and variance 2. For three sample sizes, T = 1000, 2500 and 5000 we
estimated a GARCH(1,1) model and a TP-GARCH model in which order k& and/or
number of parameter n increase along with sample size. A burn-in period equal to
BI = 500 observations is simulated to reduce the effect of starting point, o?. The
results are averaged over 1000 replications. In Table 4.2 we report the findings on
goodness-of-fit. For all sample sizes, the TP-GARCH model outperforms the GARCH
counterpart in fitting ability. This is not surprising as the GARCH model is nested in
the TP-GARCH model. More interestingly, the superiority of the TP-GARCH model
is confirmed by the corrected Akaike Information Criterion (AICc) and the Bayesian
Information Criterion (BIC) of Schwarz (1978). The AICc is the original AIC of Akaike
(1974), but with a stronger finite sample penalty as proposed by Hurvich and Tsai
(1991). Some caution should be used in looking at BIC as all the estimated models
are clearly misspecified. Both the Mean Squared Error (MSE) and the Mean Absolute
Error (MAE) computed between the true o2 and the filtered estimate 6% decrease
as the sample size increases but the filtered estimate obtained with the TP-GARCH
model is always more precise than its Standard GARCH counterpart. A remarkable
exception is given by the MSE measure for 7" = 5000 that has a bigger value than
the one for T' = 2500. We have chosen not to report the parameter vector estimates
but the third order transformed polynomial function with seven extra-parameters used

for the largest sample size suffers from a certain degree of uncertainty that increases
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the variability in the filtered conditional variance, especially for extreme values of y

and/or G2

On the other hand, the MAE measure, less sensitive to extreme values
by construction, results in a smaller value for T = 5000 than for 2500. We leave
further investigation to future research. If we decided to adopt a rule to fix the
transformed function coefficients a priori reducing the number of parameters that have
to be estimated, as done in the empirical application, the issue could be overcome.
In order to better understand the ability of the semi-nonparametric approach in
estimating the true function ¢(y;, 02) we define another precision measure, namely the
absolute norm of the News Impact Curve function, denoted by ¢;(57), for a fixed value

of the conditional variance, 72,

= [ [etv.6%) = #(y.5%)| dP). (4.4)

where Py(y) denotes the true unconditional probability measure of y;. A consistent

estimator for (4.4) is given by

Z\ 6y, 0%) — B (. %) (4.5)

t

The TP-GARCH model clearly outperforms the parametric counterpart both for a
low level of 6% equal to the 20th percentile of the true conditional variance (¢4 in
Table 4.2) and for a high level equal to the 80th percentile (¢ in Table 4.2). As the
sample size increases, the precision measure improves uniformly. For the TP-GARCH
model this result seems able to confirm the consistency of the sieve ML estimator.
The difference becomes more evident if we take a look at Figure 4.3 in which the 95%
point-wise confidence intervals for the News Impact Curve functions are displayed
together with the true function. While the confidence bands estimated by the TP-
GARCH model always contain the true function, this is not true for those estimated
by the GARCH model. Although the true model is clearly misspecified in both cases,
one could argue that the approximation implied by the TP-GARCH model leads to a
consistent estimator of ¢(y;, 02) whereas the GARCH model is unable to approximate

the true function even if the sample size diverges.
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Table 4.2: Simulation results II: maximum likelihood estimator under incorrect specifica-
tion

We have simulated 1000 time series from the model y; = o2u;, t = 1,--- , T, where u; ~ N(0,1) and
o2 is given by Eq. 4.3 for three sample sizes, T = 1000, 2500 and 5000. For each series, we estimated
the GARCH (1,1) and the TP-GARCH model by maximizing numerically the log-likelihood function.
In the latter case, we set a larger degree, k, of the transformed polynomial and/or a larger number
of parameter, n, as T increases. We report the sample averages over the 1000 simulated series of the
maximized log-likelihood value (LogLik), the AICc and the BIC, the mean squared error of the one-
step-ahead forecast of 02 (MSE), its mean absolute error value (MAE), the estimate of the absolute
norm of the NIC function for 6% equal to the 20th and 80th percentiles of the true o2, £ and £{,
defined in (4.5).

Sample Size  Model k. n logLik AICc  BIC MSE 4> MAE 42 o
1000 CGARCH 2 3 2764 5534 5549 26.80 3.67 2.29 3.32
TP-GARCH 2 5 -2746 5503 5528 13.09 2.02 1.09 1.32
2500 GARCH 2 3 -6911 13828 13845 22.68 3.54 2.19  3.23
TP-GARCH 2 9 -6860 13738 13790 6.01 1.39 0.84 1.12
5000 GARCH 2 3 -13827 27661 27681 21.36 3.50 2.15  3.20

TP-GARCH 3 16 -13724 27480 27584 8.52 1.26 0.77 1.02
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Figure 4.3: News Impact Curve functions under incorrect specification

True (red line) and 95% point-wise confidence intervals for the GARCH model (grey region) and
for the TP-GARCH model (blue region) over 1000 MC replications. Sample size T=1000, 2500, 5000.
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4.4 Applications

4.4.1 Comparative results for ten different stocks

In Section 4.2, we introduced the TP-GARCH model to overcome some restrictive-
ness of the GARCH model like the inability to deal with the leverage effect and the
lack of interaction between volatility and returns in the functional form of the con-
ditional variance. Here, we propose to compare empirically the novel method with
other well-established counterparts. In the broad class of parametric candidates, we
have chosen the GARCH(1,1) model for its simplicity and the GQARCH model, pro-
posed by Sentana (1995), which includes the leverage effect in a very parsimonious
way. The Spline-GARCH, described in Chen (2011), is chosen as semi-nonparametric
alternatives because it nest the GARCH(1,1) model, it is relatively simple to estimate
although it has strong theoretical properties. We analyzed the daily log-returns from
ten different stocks exchanged in the USA stock market observed from January 1, 1993
to December 31, 2013, for a total of T' = 5477 observations. We analyzed the stocks
form the following firms: Apple, IBM, Coca Cola, Boeing, Mc Donald’s, Microsoft,
Exxon, Walt Disney, Citigroup and General Electrics.

In financial econometrics, it is widely known that returns are affected by lep-
tokurtosis, i.e. heavy tails. For this reason, we assume both Gaussian and Student’s
t-density for the marginal distribution of the errors, u;. The Student’s t-distribution,
which contains the normal one as special case, has been broadly used to deal with
the leptokurtosis of the financial returns. More complex alternatives are left to future

research.

As we already pointed out, all the competing models nest the GARCH (1,1) for-

mulation, in which the conditional variance evolution can be expressed as
2 _ 2 2
o, = Yoo + Y20Y;_1 + V01071 (4.6)
In the GQARCH model, the asymmetric effect is modeled by introducing y;_; in (4.6)
2 _ 2 2
0y = Yoo + VY20Yi_q1 + Y0101 + Y1oYi-1. (4.7)

Sentana (1995) has extensively studied the parameter vector restrictions that ensure

the stationarity and positiveness of the volatility filtered sequence. In the Spline-
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GARCH model, the conditional volatility is specified as follows

D K
o7 = oo + Yo107_, + Z f/fdoyf_1 + Z YVie(Ye—1 — fk)f; (4.8)
d=1 k=1

where D is the degree of the polynomial and &, k = 1,..., K are the internal knots,
typically estimated from the empirical distribution of the data. Common choices for D
and K are 3 and 2, respectively. Following Chen (2011) the GARCH(1,1) formulation
is recovered by setting v, = 0 for all k£ and ¢4 = 0 for all d # 2. By using the GARCH
estimates as starting values, the parameters are jointly estimated by maximizing nu-
merically the penalized log-likelihood, where the penalization is introduced to ensure

the positivity of the conditional volatility.

A similar approach can be used for our formulation. After having obtained the
GARCH estimates, the other parameters can be added and jointly estimated. How-
ever, here we adopt a rule to fix the [ parameters rather than estimating them,
differently from what we have done in our simulation studies. As we have already
seen, the transformation function exp(fY y? + 5;’2 577) in (4.2) plays an important
role in avoiding a divergent behavior in the tails. In the same spirit of Linton and
Mammen (2005), who proposed to combine their semi-nonparametric estimator with
a parametric model for the tails, we can choose values of 3¢ and 8% so that the para-
metric GARCH functional form is recovered for values larger in absolute values than

an arbitrary but reasonable threshold. More precisely, we suggest the following rule

Y
7

for the parameters related to the transform functions on the return y,

1 %
gy = 28 Wal) <e/2‘yq’ ) Wiz12... (4.9)
Yq
where e is a small constant, y, is the qth percentile of the empirical cumulative distri-

bution of the data. Analogously, the parameters related to the conditional variance,
0.2
7 0
suggest to use the filtered conditional variance obtained by the GARCH(1,1) model.

In Figure 4.4 we show the effects of choosing different y, on 7. Differently from

can be fixed by a similar rule where y, is replaced by ;. For estimating 67, we

the method proposed by Linton and Mammen (2005) the nature of the transform
polynomial function guarantees the continuity of p*(y;, 52;0) in (y;, 52).

For the TP-GARCH model, a quadratic and a cubic transformed polynomial func-
tions are estimated. Then, in order to obtain a parsimonious representation, the
parameters in the cubic expansion which are not statistically different from 0 are

discarded, i.e. which a significance smaller than the 0.05.
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Figure 4.4: Cutting rule for 5Y

Cutting rule for three different choices of y,: max(¥0.0001, Y0.9999) (on left), max(yo.001,Yo.999) (in the
middle),max(yo.01,%0.00) (on right). Dashed lines: exp(—/3{y?), straight lines: y exp(—A37y?). The
vertical dashed lines corresponds to the empirical percentiles of y. e = 0.01.

In Table 4.3 we report the Bayesian Information Criterion (BIC) estimated for the
different models. The BIC values have been chosen to compare the fitting ability of
the competing models because we found that this criterion penalizes the models with
a large parameter vector more strongly than other criteria like AICc. A overfitting
issue could occur if a model with too many parameters was selected and this situation
is particularly dangerous in a semi-nonparametric setting. Nevertheless some caution
should be used as the Bayesian Information criterion is asymptotic valid only if the
model is correctly specified. Summarizing what we learn from Table 4.3 we can say the
following: (i) The Likelihood Ratio Test (not shown here) performed on the degree-of-
freedom parameter estimated when the error term is assumed Student’s t-distributed
is statistically relevant for all stocks. Also the BIC values are estimated bigger when
the error term is normal distributed. (ii) The Likelihood Ratio Test (not shown here)
performed on the asymmetry parameter ¢y of the GQARCH model reveals that the
leverage effect is statistically relevant for all stocks. Furthermore, the GQARCH
model results in a smaller BIC than the GARCH model. (iii) The TP-GARCH model
is highly competitive. In 12 cases, it is selected as the best model according to the
information criterion. Even when the GQARCH model is preferred, the TP-GARCH
model beats the other semi-nonparametric model, the Spline-GARCH.

In Figure 4.5 we compare the News Impact Curve functions estimated by GQARCH
and TP-GARCH models with Student’s t-disturbances. The greater flexibility offered
by our model becomes clear if we look at the difference in the functional form of
conditional variance given a low and an high value of volatility, 62, respectively equal

to the 20th and the 80th percentiles of the empirical cumulative distribution of the
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filtered volatility, 62, t = 1,---,T, estimated by the GARCH model. When the
volatility level increases, the NIC function estimated by the GQARCH model is shifted
up but the form remains unchanged. On the contrary, the different market condition,
synthesized by the volatility level, affects the functional form of the News Impact
Curve estimated by the TP-GARCH model. When the market is calm, i.e. low level
of 62, the impact of the news (returns) is mild. Consequently the TP-GARCH News
Impact Curve function is estimated below the parametric counterpart for a large subset
of the return range. Exceptions can be found for Boeing and Walt Disney returns.
Exactly the opposite happens when the market is excited, i.e. high level of 2. The
TP-GARCH News Impact Curve function is estimated at an higher level, especially for
negative shocks. The greater flexibility offered by our novel model can be appreciated
by noticing another peculiarity. The leverage effect is particularly pronounced when
the market is excited but it tends to be mitigated for extreme negative shocks. In
the GARCH model as well as in the GQARCH formulation, the conditional volatility
explodes for large shocks (in absolute value). This undesirable drawback seems to
be substantially corrected by our proposal that reduces the effect of outliers on the

filtered volatility estimation.
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Table 4.3: Goodness-of-fit results for ten log-returns from S&P100 index

We analyzed the daily log-returns of ten stocks observed from January 4, 1993 to December 31,
2013, for a total of 5477 observations. We assume the model y; = o?u; as DGP, where u; follows
a Normal distribution (N) and a Student’s t-distribution (ST). The functional form of o7 is given
by (4.6) for the Standard GARCH (1,1) model, by (4.7) for the GQARCH model, by (4.8) for the
Spline-GARCH model and by (4.2) for the TP-GARCH model. For the Spline-GARCH D has been
set equal to 3 and K equal to 2. & and & are estimated by the 25th and 75th percentiles of
data. For the TP-GARCH model we assume a second and a third order transformed polynomial.
Then, we removed the parameter not significant at the 0.05 level from the cubic specification. The
statistic parameter are estimated by maximizing numerically the log-likelihood function. We report

the Bayesian Information Criterion (BIC).

Stock Error GARCH GQARCH Spline-GARCH TP-GARCH
Quad. Cubic Final
N 26709 26605 26586 26604 26555 26546
APPLE
ST 25771 25758 25788 25767 25756 25719
BM N 20777 20694 20660 20646 20610 20593
ST 20068 20040 20049 20037 20030 20006
N 18001 17931 17947 17958 17971 17940
COCACOLA
ST 17639 17616 17634 17639 17640 17616
N 21706 21648 21674 21662 21690 21662
BOEING
ST 21285 21262 21288 21274 21305 21271
N 19240 19220 19241 19221 19232 19209
MCDONALDS
ST 18890 18888 18930 18897 18917 18886
N 22186 22190 22175 22195 22148 22139
MICROSOFT ? 7
ST 21550 21549 21554 21557 21546 21524
N 18601 18574 1 18584 1 18591
EXXON 860 8603 858 8606 859
ST 18439 18424 18463 18436 18461 18433
. N 21574 21513 21522 21509 21504 21497
Walt Disney
ST 21021 20988 21020 21013 21022 21002
" N 23469 23435 23442 23429 23443 23418
Citigroup
ST 23096 23072 23098 23077 23093 23078
GE N 20034 19985 19999 19985 19975 19951

ST 19758 19728 19734 19745 19746 19721
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Figure 4.5: News Impact Curve functions for ten log-returns from S&P100 index

We display the estimated News Impact Curve functions for a low and a high values of the filtered
conditional variance estimated by the GARCH model equal to the 20th and the 80th percentiles of
the empirical cumulative distribution functions, respectively. The error term is assumed to follow
the Student’s t-distribution. The range of x-axis corresponds to 1st-99th percentiles of log-returns.
GQARCH (dashed line) and TP-GARCH (straight line).
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4.4.2 Case study: IBM log-return

While in the previous Subsection, we were able to show the robustness of the TP-
GARCH model with respect to other parametric and semi-nonparametric alternatives
by analyzing a large number of financial series; here, we try to offer the reader a deep
insight of our model and for helping us, we decided to focus our attention to the
IBM stock return, displayed in Figure 4.4 (a). In Table 4.4 we report the results on
goodness-of-fit and on parameter estimates. As we have already pointed out, the Stu-
dent’s t-distribution assumption leads to uniformly better results. Not surprisingly, in
the models with Student’s t-distributed error term, the inverse of degree of freedom
parameter, 1/v, is estimated statistically far from 0. Consistently to the findings in
financial econometrics literature, we found an empirical evidence that the financial
returns exhibit a leptokurtosis that cannot well captured by the normal distribution.
The Student’s t-distribution seems to be more appropriate but other choices are left
to future research. The GARCH(1,1) model, used as benchmark, results in the largest
values of both AICc and BIC. The information criteria supports those models that
are more flexible in modeling the conditional volatility. For example, the GQARCH
model, adding just one more parameter, it is able to increase substantially the fitting
ability. The leverage effect included by this model through the parameter 1, is esti-
mated statistically relevant with estimates equal to —0.099 (SE 0.013) with normally
distributed error terms and —0.073 (SE 0.013) when the normal density is replaced
by the Student’s t. The findings on the Spline-GARCH model have mixed interpre-
tation. The improvement gained with respect to the GARCH model is supported by
the information criteria for both the error term specification. However, the more par-
simonious GQARCH model is favored when the Student’s t-distribution is assumed
for the errors.

The results are strongly more convincing for the TP-GARCH. Both information
criteria choose the TP-GARCH model as the best compromise between model fitting
ability and parsimony. In the TP-GARCH model with Student’s t-error terms, the
leverage effects is captured by the negative sign estimated for the parameter 3.
An interaction effect between volatility and returns is modeled by the parameter ;9
while the statistically significant estimate of parameter 19, suggests a sort of “leverage-
interaction” mixed effect. However, the large number of parameter estimated by the
TP-GARCH model makes the interpretation of parameters difficult.

When we have commented the estimates of the News Impact Curve functions in
the previous subsection, we argued that the TP-GARCH model was less sensitive to

outliers than the competing models. The filtered conditional volatility shown in Figure
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4.4 (b) confirms that intuition. In particular, during the so-called “dot-com” bubble
crisis and, more recently, during the “subprime crisis” the TP-GARCH approach miti-
gates the effect of big shocks on the volatility estimation. The same conclusion can be
reached by comparing the the News Impact Curve functions displayed in Figure 4.4
(c) for a low and a high level of volatility, 52. Although, at a first sight, the Spline-
GARCH model looks appealing for the strong leverage phenomenon estimated, the
volatility is not guaranteed to be positive at extreme values of y. Our proposal does
not suffer from this undesirable drawback. Outside of those regions in which data give
more information, the GARCH(1,1) functional form is recovered and the conditional
variance function is ensured to be positive. For moderate values of y, the leverage
effect is accurately described and results to be especially pronounced when the market
is already excited, i.e., high level of &2.

Finally, some diagnostic analysis is proposed to assess the statistical quality of
the TP-GARCH model with Student’s t-distributed error term. The Rosenblatt’s
transformation can be applied to the standardized residuals defined as & = y; /5, for
t=1,---,T. The normalization obtained by the Rosenblatt’s transformation enables
us to use the standard diagnostic tools, shown Figure 4.6. The normal QQ-Plot does
not exhibit significative deviations from the distribution assumption. The normal-
ized residuals as well as their squares are serially uncorrelated suggesting that the
TP-GARCH model is able to capture sufficiently accurately the conditional variance

dynamics.

Figure 4.6: IBM log-return: diagnostics results

As the Student’s t-distribution is assumed for the errors, the Rosenblatt’s transformation is applied

to the standardized residuals. QQ normal plot (left), Autocorrelation function of residuals (centre)

and of squared residuals (right).
Normal Q-Q plot ACF Residuals ACF Squared Residuals
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Figure 4.7: IBM log-return: filtered conditional variance and News Impact Curve functions

The Student’s t-distribution is assumed for the errors. (a) Daily IBM log-returns January 1, 1993
to December 31, 2013 (b) Filtered conditional volatility for different models. (c¢) News Impact
Curves: Low variance (LOW) corresponds to the 20th percentile of the filtered conditional variance
estimated by TP-GARCH and high variance to the 80th percentile. Vertical dashed lines correspond
to 0.1th and 99.9th percentiles of y;.
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Table 4.4: IBM log-return: parameter estimates and goodness-of-fit

We analyzed the daily log-returns of IBM stock observed from January 4, 1993 to December 31,
2013, for a total of 5477 observations. We assumed as DGP the following model y; = o?u;, where
u; follows a Normal distribution (a) and a Student’s t-distribution (b). The functional form of o7 is
given by (4.6) for the Standard GARCH (1,1) model, by Eq.(4.7) for the GQARCH model, by (4.8)
for the Spline-GARCH model and by (4.2) for the TP-GARCH model. For the Spline-GARCH D
has been setter equal to 3 and K equal to 2. & and & are estimated by the 25th and 75th percentiles
of data. For the TP-GARCH model we use a third-degree transformed polynomial specification
and then we removed the parameter not significant at the 0.05 level. The statistic parameter
are estimated by maximizing numerically the log-likelihood function. We report the maximized
log-likelihood value (LogLik), the corrected Akaike Information Criterion (AICc), the Bayesian

Information Criterion (BIC) and the parameter estimates with numerical SE between parentheses.

(a) Normal disturbances

Model Goodness-of-fit Parameter Estimates
LogLik N par. AlCc BIC Yoo Yo1 a0 Y10
-1 . 2 . 2 .32 . .92 .
GARCH 0375.75 3 0757.50 20777.3 0.030 0.926 0.068
(0.007) (0.011)  (0.010)
-10330.01 4 20 .02 20694.4 .0 0.930 .061 -0.(
GOARCH 1330.0 0668.0 0694.45 0.038 ).93( 0.06 0.099
(0.007)  (0.009)  (0.009) (0.013)
-10291. 2 1. 2 .54 . 91 .14 -0.022
Spline-GARCH 0291.53 9 0601.09 20660.5 0.038 0.918 0.149 0.0
(0.008) (0.009) (0.026) (0.031)
- 5 5 44
TP-GARCH 10262.48 8 20540.99 20593.83 0.030 0.955 0.017 0.068
(0.004) (0.002)  (0.004) (0.029)
P30 71 Y2 &1 &2

0.009 -0.022  0.006 -0.812 0.890
(0.002) (0.007) (0.007)

Yoz Y1 o3 Yoy

-0.033  -0.139 0.003  -0.071

Spline-GARCH

TP-GARCH
(0.006) (0.022) (0.001) (0.009)
(b) Student’s t-disturbances
Model Goodness-of-fit Parameter Estimates
LOngk N par. AlCc BIC ’l/)o[) 1/)01 1:920 1,910 1/1/
-10017.26 4 20042.52  20068.95 0.010 0.958 0.040 0.228
GARCH 7 7 ?
(0.003)  (0.002)  (0.003) (0.014)
-9998.80 5 20007.62 20040.65 0.018 0.951 0.046 -0.073 0.224
GQARCH ? 7
(0.004) (0.004) (0.005) (0.013) (0.014)
Spline-GARCH -9981.49 10 19983.01 20049.06 0.023 0.933 0.139 0.001 0.219
(0.009) (0.011) (0.034) (0.037) (0.014)
TP-GARCH -9969.04 8 19954.11  20006.95 0.009 0.967 0.020 0.214
(0.003)  (0.002)  (0.003) (0.013)
Y30 71 Y2 &1 &

0.008 -0.023 0.010 -0.812 0.890
(0.002) ( 0.009) ( 0.008)
Yog 30 P12 a1
-0.028 -0.016 -0.030 0.073
(0.007)  (0.008)  (0.007) (0.015)

Spline-GARCH

TP-GARCH
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4.5 Conclusion

We extended the transformed polynomial functions introduced by Blasques (2014) by
proposing a novel semi-nonparametric approach to model the conditional volatility, the
Transformed Polynomials GARCH (TP-GARCH). Our model is particularly relevant
in those fields, like empirical finance, where the researcher is interested in model-
ing financial time series characterized by cluster volatility, leptokurtosis and leverage
effect.

Through two Monte Carlo simulation studies we explored the finite sample prop-
erties both under correct and incorrect specification. In the first artificial study we
simulated observations from a model in which the conditional variance evolves ac-
cording to the TP-GARCH updating equation and the findings suggested that the
parametric ML estimator of the parameter vector may be consistent and normally
distributed. In the second experiment, the misspecified functional form of the condi-
tional variance is approximated accurately well by the TP-GARCH model whereas the
GARCH model fails. The sieve ML estimator seems to be consistent as the approxi-
mation become more accurate as long as the sample size and the order of transformed
polynomial increase.

In an empirical analysis conducted on the log-returns of ten blue chips stocks traded
in the USA market, the TP-GARCH formulation has been tested against a number
of parametric and semi-parametric alternatives. The filtered volatility estimated by
the TP-GARCH model has been shown to react more flexibly to different market
conditions and, at the same time, to be less influenced by outliers.

The extension of theoretical framework developed by Blasques (2014) remains still
a challenging open research question and efforts will be devoted to fill the gap in the

next future.
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