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Abstract

In this thesis Optimal Control (OC) of road vehicles is studied especially focusing on min-

imum lap time simulations. The theory underlying the most used optimal control solving

techniques is described, including both the Pontryagin Maximum Principle and the reduc-

tion to Nonlinear Programming. Direct and indirect methods for optimal control problems

are presented and compared against minimum lap time simulations (LTS).

Modelling of vehicles for OC-LTSs is studied in order to understand how different design

choices can affect simulation outcomes. Novel multibody models of four wheeled vehicles —

a GP2 car and a go-kart — for OC-LTSs are developed and validated thorough comparison

with experimental data. Particular attention is dedicated to the simulation of tyre load

dynamics, that is achieved by a proper modelling of the chassis and suspension motions and

of the aerodynamic forces.

OC-LTSs are applied to electric vehicles too, specifically to optimise the design of an

electric motorbike taking part at the Tourist Trophy Zero competition. A concise yet

effective model is proposed in order to perform reliable simulations on a 60km long road in

a reasonable amount of time. Experimental data is used to validate the model.

A direct full collocation transcription method for OCPs dealing with implicit differen-

tial equations and control derivatives is presented, moreover the structure of the resulting

NLP problem is accurately described. The relationship between the first order necessary

conditions and the Lagrange multipliers of the NLP and OC problems are derived under the

adopted discretisation scheme. The presented transcription method is implemented into a

software which is currently in use at the University of Padova to solve OC-LTSs.
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Notation

Mathematical notation

Non bold letters, e.g. x, indicate scalars, bold lower case letters, e.g. x, denote vectors,

and upper case bold letters, e.g. X, indicate matrices, except where differently specified.

Force vectors, denoted by F , are an exception to this rule. The i-th entry of a vector x

is indicated by xi; similarly, the entry at the i-th row and j-th column of a matrix X is

denoted by Xj
i . Square brackets are used for vectors and matrices. When vector or matrix

elements are separated by a comma, the elements are concatenated in different columns,

i.e. they belong to the same row. For instance, a row vector containing elements a, b, c can

be written as [a, b, c]. When elements are separated by a semicolon, they are concatenated

within the same column, e.g. a column vector containing elements a, b, c can be written

as [a; b; c]. The transpose of a vector v is denoted by vᵀ, e.g. [a; b; c] = [a, b, c]ᵀ. The

binary operators ∗ and / between two vectors or matrices of the same dimensions indicate

respectively the element-wise multiplication and division.

Given a scalar function of a vector variable f(x), ∇xf is the gradient of f(x) with

respect to x, i.e. it is a column vector whose i-th entry is ∂f
∂xi

. Given a vector function

of a vector variable f(x), ∂f
∂x , or equivalently ∂xf , is the Jacobian matrix J of f with

respect to (w.r.t) x, i.e. J ji = ∂fi
∂xj

. It follows from this definition that for a scalar function

the gradient is the transpose of the Jacobian ∇xf =
(
∂f
∂x

)ᵀ
. For a scalar function of

vector variables f(x,y), the Hessian matrix H of f with respect to x and y is denoted by
∂2f
∂x∂yᵀ = ∂2f

∂yᵀ∂x = H, i.e. Hj
i = ∂2f

∂xj∂yi
. The Hessian w.r.t the same variable, ∂2f

∂x∂xᵀ , can

be indicated also with ∂2f
∂x2 . For a generic function of one argument f(·), its derivative with

respect its argument can be denoted by f ′; if the argument is the time, then the derivative

can be indicated also by ḟ .

Reference systems

The orientation matrix OA of a reference system A with respect to a reference system B

is a 3 × 3 matrix such that given a vector v, if va, vb are the coefficients of v respectively
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with respect to the basis of A and B, then the following relationship holds:

vb = OAva (1)

When the reference frame B to which the matrix is referred is not specified, the ground

frame is implicitly considered. Moreover, if pa are the coordinates of a point P in the

reference system A, the coordinates of the same point in the reference system B are:

pb = OApa +


xa,b

ya,b

za,b

 (2)

where xa,b, ya,b, za,b are the coordinates of the origin of A with respect to B.

The orientation and the position of a reference system A with respect to a second

reference system B can be jointly expressed by a 4× 4 matrix WA:

WA =


OA

xa,b

ya,b

za,b

0 0 0 1

 (3)

where OA is the orientation matrix described above. The advantage of the 4 × 4 matrix

convention is that it expresses both the rotation and translation with the same matrix, i.e.

equation (2) becomes:

pb = WApa (4)

Rotation matrices about Cartesian axes are denoted with Rx,Ry and Rz:

Rx(a) =


1 0 0 0

0 cos a − sin a 0

0 sin a cos a 0

0 0 0 1

 , Ry(a) =


cos a 0 sin a 0

0 1 0 0

− sin a 0 cos a 0

0 0 0 1



Rz(a) =


cos a − sin a 0 0

sin a cos a 0 0

0 0 1 0

0 0 0 1



(5)
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Figure 1: SAE axes convention.

Translation matrices are denoted with T :

T (x, y, z) =


1 0 0 x

0 1 0 y

0 0 1 z

0 0 0 1

 (6)

Vehicle models

SAE axes convention is adopted for the vehicle models, i.e. the frame attached to the chassis

of the vehicle has the x-axis pointing to the front of the vehicle, the y-axis pointing to the

right of the driver and the z-axis pointing under the road plane, as shown in figure 1.

A list of common variables used for road and vehicle models are reported in table 1.

Table 1: List of common symbols

Symbol Description

Road variables

xr, yr, zr road middle lane coordinates

ψr road heading angle

σr road slope angle

βr road banking angle

κ road curvature in the x− y plane

ν road curvature in the x− z plane

τ road curvature in the y − z plane (torsion)

Wr road reference frame
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Symbol Description

Vehicle and chassis variables

s chassis position along the road curvilinear abscissa

n chassis lateral displacement w.r.t the road middle lane

z chassis vertical displacement w.r.t. the nominal position

α chassis heading w.r.t the road middle lane

φ chassis roll angle w.r.t the road plane

µ chassis pitch angle w.r.t the road plane

Wv vehicle (chassis) reference frame

Wrel vehicle (chassis) reference frame relative to the road one

V vehicle speed

λ vehicle sideslip angle

Ω vehicle angular velocity about the axis

perpendicular to the road surface

m total mass

Ixx vehicle inertia moment about chassis x-axis

Iyy vehicle inertia moment about chassis y-axis

Izz vehicle inertia moment about chassis z-axis

Ixz vehicle cross inertia moment in the x− z-plane

w wheelbase

b CoM horizontal distance from the rear axle

a CoM horizontal distance from the front axle

h chassis CoM nominal distance w.r.t. the road plane

tv vehicle half width

t
(f)
v vehicle front axle width

t
(r)
v vehicle rear axle width

Wheels and suspensions

z
(âŝ)
w

1 wheel plate vertical displacement w.r.t. the chassis

ω
(âŝ)
w

1 wheel spin velocity

δ steering angle

m
(â)
w

1 wheel mass

I
(âŝ)
w

1 wheel spin inertia moment

F
(âŝ)
s

1 suspension force
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Symbol Description

K
(â)
ss

1 suspension spring stiffness (reduced at wheel)

K
(â)
sd

1 suspension damper stiffness (reduced at wheel)

K
(â)
a

1 suspension anti-roll bar stiffness (reduced at wheel)

Tyres

ξ
(âŝ)
t

1 tyre radial deformation

κ
(âŝ)
t

1 tyre longitudinal slip

λ
(âŝ)
t

1 tyre sideslip angle

forces

N (âŝ)1 tyre load

F
(âŝ)
tx

1 tyre longitudinal force

F
(âŝ)
ty

1 tyre lateral force

τe engine torque

τb braking torque

γ front braking bias

τ
(âŝ)
wd

1 driving torque applied to the wheel

τd overall driving torque (τd =
∑

as τ
(âŝ)
wd )

Fd drag force

Fl down-force (for cars) or lift-force (for motorbikes)

R
(âŝ)
t

1 tyre rolling resistance (force)

τ
(âŝ)
R

1 tyre rolling resistance (torque)

K
(âŝ)
tR

1 tyre rolling resistance (force) coefficient

K
(âŝ)
τR

1 tyre rolling resistance (torque) coefficient

r
(âŝ)
tr

1 tyre rolling radius

r
(âŝ)
t

1 tyre radius

ρ
(âŝ)
t

1 tyre cross section toroid radius

K
(â)
tκ

1 tyre longitudinal stiffness

K
(â)
tλ

1 tyre lateral stiffness

K
(â)
tφ

1 tyre roll stiffness

K
(â)
tr

1 tyre radial stiffness

K
(â)
td

1 tyre radial damping

µ
(â)
x

1 tyre maximum longitudinal adherence

µ
(â)
y

1 tyre maximum lateral adherence
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Symbol Description

Motor and powertrain

τd overall driving torque (traction and braking)

acting on the wheels

τb overall braking torque acting on the wheels

τt overall traction torque acting on the wheels

τ (âŝ)1 torque acting on a single wheel

τg motor to rear axle gear ratio

kd differential stiffness

1The superscript â ∈ {f, r} indicates the front (â = f) or rear (â = r) axle, and ŝ ∈ {r, l},right (ŝ = r)
indicates the right or left (ŝ = l) side.
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Acronyms

A list of acronyms used in this thesis is reported in table 2.

Table 2: List of acronyms

DAE Differential Algebraic Equation
DO Dynamic Optimisation
DP Dynamic Programming
FJ Fritz-John
GA Genetic Algorithm
KKT Karush-Kuhn-Tucker
LP Linear Programming
LTS Lap Time Simulation
NLP Nonlinear Programming
OC Optimal Control
OCP Optimal Control Problem
PMP Pontryagin Maximum Principle
QP Quadratic Programming
SQP Sequential Quadratic Programming





Chapter 1

Introduction

Optimisation problems have fascinated mathematicians since the early civilisations; in the

ancient Greece, Euclid (300 BC) proved that among the rectangles with a given perimeter,

the one with the greatest area is the square, and Zenodorus (200 BC) studied the similar

Dido’s Problem, consisting in finding the figure bounded partially by a straight line which

has the maximum area for a given perimeter. Later, since the 17th century, optimisation

started being systematically studied by famous mathematicians. Optimal control prob-

lems (OCP) are none other than constrained optimisation problems dealing with dynamical

systems; mathematically an OCP consists in the minimisation of a certain functional, con-

strained by the equations describing the evolution of the dynamical system and eventually

by other additional equations. Optimal control theory gained of renovated interest in the

second half of the 20th century, and since then experienced a wide diffusion thanks to the

contemporary improvements in silicon-based calculators that allowed to numerically solve

a larger number of OCPs. Optimisation of road vehicles then became one of the several

application fields of optimal control theory, specifically to calculate the minimum lap time

of vehicles on race tracks and to optimise their design.

This thesis is focused on optimal control problems, in particular with applications to ve-

hicle design optimisation and lap time simulations (LTS). The aim is twofold: first, optimal

control solution methods are studied in order to understand the most suitable approach for

vehicle-related OCPs and, second, to develop vehicle models that both improve the current

state-of-the-art art of LTS models and still lead to OCPs solvable with existing software.

Nowadays optimal control LTS are a very powerful tool for optimisation of road vehicles,

yet they are somehow limited by solving capabilities of current numerical solver that require

the adoption of properly simplified models. Within optimal control problems arising from

LTS, there is need to overwhelm such limitations so as to improve simulation accuracy and

to reduce computational times. This can be achieved in a twofold way: improving solving
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techniques for OCPs and properly modelling vehicle dynamics.

This thesis is divided into six chapters, each covering a slightly different topic. The first

chapter gives an overview of the optimal control theory and of the possible strategies for

solving this class of problems. Indirect and direct approaches will be described in detail

since they are the most used techniques. All the content of the first chapter is derived from

existing literature.

The contribution of this work comes in chapters from 3 to 6. Chapter 3 is dedicated

to the analysis of the current most promising techniques for OCPs, the indirect and direct

methods. The aim is to understand which approach is most suitable to solve vehicle related

OCPs. Despite such methods have been used for decades in LTS, to the best knowledge of

the author a thorough comparison of indirect and direct methods concerning LTS applica-

tions has never been performed. The two currently most used numerical solvers are chosen

as representative for the indirect and direct methods, respectively the Pins and GPOPS-II

software, and they are tested on a set of benchmark problems.

Chapters 4 and 5 are focused on the application of OC to vehicle minimum lap time

problems, regarding respectively four-wheeled vehicles and an electric motorbike. Lap time

simulations have become a tool widely used for the optimisation of vehicle design and setup

especially in the last two decades, when the availability of efficient solvers and the increase of

computer performance made such simulations computationally feasible. Since the beginning

of the 00’s, OC based lap time simulations experienced a significant development, and year

after year they have been improving in terms of vehicle model complexity and simulated

features. State-of-the art lap time simulations are capable of simulating Formula 1 lap

times, taking into considerations for trim-dependent aerodynamic forces, kinetic energy

recovery and secondary energy generation systems, and three dimensional roads. Despite

this, commonly used car model for OC-LTS are based on the quasi-steady-state (QSS) tyre

load simplification, i.e. they assume that, for a given acceleration and speed, tyre loads are

the ones resulting from the stationary car trim for the same acceleration and speed. This

assumption allows to significantly reduce the complexity and size of the resulting OCP,

thus relieving numerical resolvability issues. However it is not completely clear how and

how much the QSS tyre load simplification can affect the simulation outcomes, nor which

level of complexity in the vehicle model should be adopted to get the best compromise

between reliable results and short computational times. The first section of chapter 4

tries to give answer to this question. Three car models with a different level of detail in

the car dynamics (and thus, different in complexity) are compared when used for lap time

simulations and design optimisation. In the second section of the same chapter, a novel GP2

car model for LTS is developed. The GP2 model aims to improve the state-of-the-art of car
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models for LTS by abandoning the QSS tyre load assumption, so as to lead to more accurate

simulation outcomes. Tyre loads are dynamically calculated from tyre radial deformations,

and the suspension kinematics is included in the model, i.e. the complete roto-translation

of the wheel plates is taken into considerations. Ride heights dependent aerodynamic forces

and fully a coupled tyre model are included too. The GP2 model is validated through

comparison with the telemetry data acquired during a qualifying lap on the Montmelò

circuit in the 2012 GP2 season. The third and last section of chapter 4 focuses instead on

the modelling and simulation of a racing go-kart. Go-karts are four wheeled vehicle whose

distinguishing features are the lack of suspensions and rear axle differential, thus their

dynamics is substantially different from that of race cars. Indeed when go-karts turn, an

aligning yaw torque, that opposes to the turning manoeuvre, is generated at the rear axle;

for this reason they are designed to lift the rear inner wheel when turning and braking, so as

to reduce the aligning torque. Differently, rear wheel driven race cars tends to lift the front

(not rear) inner wheel when turning. To the best knowledge of the author, in literature

there is still lack of lap time simulations for go karts. This motivated the development

of a go-kart model for lap time simulations, which is validated through comparison with

experimental data acquired on the “Pista Azzurra” circuit in Jesolo (IT). The simulation

outcomes are then analysed in order to understand if the simulation is able to reproduce

the peculiar dynamics of the go-kart, i.e. the lifting of the rear wheel and the under-steering

behaviour.

Electric and hybrid-electric vehicles are continuously gaining in popularity as the auto-

motive industry is responding to tough environmental regulatory challenges and is aiming

to meet growing consumer demand for energy consumption reduction and more sustainable

living. Contemporary with the wider adoption of electric road vehicles, motor-sport too

has seen an electrification movement. Due to the contemporary interest in “green” vehi-

cles, chapter 5 is dedicated to the design optimisation of an electric motorbike taking part

at the Tourist Trophy Zero challenge. This competition takes place along the full 60km

long Snaefell Mountain Course, with motorcycle racing at high speed while using only the

energy stored in their batteries. It is clear that a careful optimisation of the powertrain

is fundamental to succeed. The optimisation is performed thorough optimal control LTS

and is dedicated to the improvement of the electric power train. Accurate simulation of

the motorbike dynamics is not of primary importance here, since the long road requires a

concise yet effective model. Again, experimental data acquired during a practice session at

the 2015 Tourist Trophy event by the Brunel University team will be used to validate the

model.

In chapter 6 the focus is moved to implicit OCPs. Usually OCPs presented in classic
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textbooks are always in the explicit formulation, i.e. where the first order equations describ-

ing the dynamical system — that are the equation of motion in vehicle OCPs — are explicit

in the state derivatives ẋ = f(x, . . . , t). However, dynamical systems can be more generally

described by implicit first order equations f(ẋ,x, . . . , t) = 0. Even the majority of existing

software for OCPs requires the problem to be described by explicit first order equations, yet

in some applications it may be very cumbersome to write the equations in such form. For

this reason in chapter 6 the implicit OCP formulation is analysed; a direct full collocation

transcription method to convert the implicit OCP into a Nonlinear Programming (NLP)

problem using a midpoint discretisation scheme is described. Moreover the relationship

between the OCP and NLP Lagrange multiplier resulting from the adopted discretisation

scheme is calculated. The described OCP to NLP transcription has been implemented into

a numerical software, named Maverick , which is currently in use in the research group at the

University of Padova in which the author worked during his PhD. This numerical software

is tested on a bench problem consisting in the minimum manoeuvre time for a motorcycle

running on a three-dimensional road.

General conclusions for this thesis will be drawn in chapter 7, together with some con-

siderations of possible future work.

The road model that is used in all the lap time simulations performed in this work is

described in appendix A. Any road model needs to be fed with real data in order to be used

in simulations; a procedure for the calculation of the road model data from experimental

images or GPS points is presented in appendix B. Finally, the motorcycle model used for

the bench problem of the Maverick software is described in appendix C.
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Chapter 2

Optimal control

In this chapter the fascinating theory of optimal control is introduced. Optimal control

solving strategies based on calculus of variations are first described, then they are extended

to the Pontryagin Maximum Principle. Approaches based on nonlinear programming are

discussed too.

2.1 Introduction

The theory of optimal control (also known as dynamic optimisation) can be considered the

natural extension of static optimisation. Static optimisation is used to find the minimum,

or maximum, of a scalar function, that is defined over a finite set of real or integer numbers.

Examples of static optimisation are Linear Programming (LP), Quadratic programming

(QP), Nonlinear Programming (NLP), and integer, or mixed-integer, programming. In Dy-

namic Optimisation (DO) the target, that is the object of which a maximum or minimum

is sought, is a functional, i.e. the unknowns of the optimisation problem are functions, not

numbers as in static optimisation. Systematic research in the field of dynamic optimisation

has been carried on since Bernoulli, Euler and Lagrange [52]. Bernoulli is the author of

the famous Brachistochrone problem1 [20], Euler gave birth to the Euler-Lagrange equa-

tion, a milestone of classical mechanics that exhibits a close connection to DO, Lagrange

developed the well known theory of Lagrange Multipliers that is widely used also for static

optimisation.

In the XX century DO experienced a great gain in interest mainly due to the necessity

to give answer to practical problems. In particular, in the period after the Second World

War two of the war leading countries, USA and URSS, pushed the research in DO for

1The Brachistochrone problem consists in finding the shape of the curve down which a bead sliding from
rest and accelerated by gravity will slip (without friction) from one point to another in the least time.
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tactical interests; the minimum-time-to-climb or the minimum-intercepting-time are two

examples of problems that they were trying to solve. The former consists in finding the

flight trajectory that allows a given aircraft to reach a certain altitude and speed in the

minimum time; clearly, this problem was originated by the necessity to make an aircraft take

off and become a threat for the enemies in the minimum time. The minimum-intercepting-

time problem too deals with war-related purposes; it consists in finding the trajectory

that a missile should follow in order to intercept an aircraft in the minimum time. The

research achievements obtained in those years gave birth to the modern optimal control

theory, which is still the key element for OCPs solving techniques currently used. The

URSS research group, led by Lev Pontryagin, gave birth in 1959 to the famous Pontryagin’s

Maximum Principle (PMP) [76], a milestone in the optimal control theory on which indirect

optimal control methods rely (as it will explained in the following sections). On the other

side, Richard E. Bellman within the RAND (Research And Development) research group in

Santa Monica, developed the theory of Dynamic Programming, a different approach than

the PMP to calculate the solutions of OCPs. Since then OCP theory started being used

for many different purposes, such as planning rocket, spaceship or airplanes trajectories,

chemical reaction control, road vehicles design optimisation [82] and controlling industrial

robots. A survey of classical problems that can be solved with OCP theory can be found

in [11]. The enormous progress of silicon-based calculators in the second half of the 20th

century made the computation of numerical OCP solutions more affordable, leading to

significant diffusion of OCP techniques.

In the following sections the mathematical formulation of an optimal control problem is

presented, then, the two most used numerical solution methods, indirect and direct methods,

will be described.

2.2 Optimal control problems

Optimal control problems, as the name suggests, are a wide class of problems where the

optimal control law for a dynamical systems has to be found; a control law is optimal if it

minimises (or maximises) a certain cost functional named target. The dynamical system is

characterised by state variables x(ζ), controls u(ζ) and parameters p:

x(ζ) =
[
x1(ζ); . . . ;xnx(ζ)

]
u(ζ) =

[
u1(ζ); . . . ;unu(ζ)

]
p =

[
p1; . . . ; pnp

] (2.1)
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The states and controls are function of an independent variable ζ that may be the time,

however it can be more generally whatever independent variable; for instance, in the prob-

lems described in chapters 4 and 5, ζ represents the curvilinear abscissa along the circuit.

The evolution of the states x(ζ) is described by a set of first order differential equations

that depends on the controls and parameters:

dx(ζ)

dζ
= f

(
x(ζ),u(ζ),p, ζ

)
(2.2)

where

f = [f1; . . . ; fnx ] (2.3)

Given an initial point x(ζi), the parameters p and a control law u(ζ), with ζ ∈ (ζi, ζf ),

the evolution of the dynamical system x(ζ) is fully determined and can be calculated by

integrating the differential equations (2.2). In optimal control problems, among all the

control laws u(ζ), the one that minimises the cost function J is sought. Moreover, the

control has to belong to the so-called admissible control set U . The cost functional (or

target) may depend both on the value of the state variables x at the domain boundaries

and on the integral value of a function `:

J = ψ(x(ζi),x(ζf ),p, ζi, ζf ) +

∫ ζf

ζi

`
(
x(ζ),u(ζ),p, ζ

)
dζ (2.4)

where the term ψ that depends on the state at the boundaries of the independent variable

is called Mayer target and the integral one ` is called Lagrange target.

While the dynamical system evolves from ζi to ζf , it is required to satisfy some con-

straints. Constraints may be in the form of boundary conditions, path constraints (i.e.

constraints that must be satisfied for all ζ ∈ (ζi, ζf )) or integral constraints:

φl ≤ φ(x(ζi),x(ζf ),p, ζi, ζf ) ≤ φu
gl ≤ g(x(ζ),u(ζ),p, ζ) ≤ gu ∀ζ ∈ [ζi, ζf ]

hl ≤
∫ ζf

ζi

h(x(ζ),u(ζ),p, ζ)dζ ≤ hu

(2.5)

where φ are the boundary conditions, g are the path constraints and h are the integral

constraints. Summarising, the optimal control problem can be formulated as follows:
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min
u∈U

ψ(x(ζi),x(ζf ),p, ζi, ζf ) +

∫ ζf

ζi

`(x(ζ),u(ζ),p, ζ)dζ (2.6a)

subject to: (2.6b)

dx(ζ)

dζ
= f(x(ζ),u(ζ),p, ζ) (2.6c)

φl ≤ φ(x(ζi),x(ζf ),p, ζi, ζf ) ≤ φu (2.6d)

gl ≤ g(x(ζ),u(ζ),p, ζ) ≤ gu (2.6e)

hl ≤
∫ ζf

ζi

h(x(ζ),u(ζ),p, ζ)dζ ≤ hu (2.6f)

The optimal control problem in (2.6) is the classical OCP formulation that can be found

in classic textbooks as [76, 20, 75, 11]. Solution methods for problems as in (2.6) have been

widely studied in the last years since a large number of optimisation problems for dynamical

systems falls into this formulation. A description of solution strategies is given in the next

section.

Despite being relatively general, the formulation in (2.6) presents some limitations that

may prevent it from being used in certain applications. The dynamics equations (2.6c) are

written in the explicit form, yet the equations for certain dynamical system are cumbersome

to be written in such form. Moreover, if input controls u are discrete (integer numbers),

formulation (2.6) is not directly usable2. While the discussion of integer or mixed-integer

OCPs is out of the scope of this thesis, the formulation with implicit dynamics equations

will be discussed in chapter 6.

2.3 Optimal control solving methods

In this section the solving techniques for optimal control problems are described. After

a brief general introduction, the two most used methods, indirect and direct ones, are

presented more in details.

Solution methods for optimal control problems can be divided into four main categories:

indirect methods, direct methods, Dynamic Programming and Evolutionary Algorithms.

Indirect methods rely on the Pontryagin Maximum Principle (PMP) that allows to derive

the necessary conditions for the optimality of the OCP. The necessary conditions are gen-

erally in the form of a first order differential equation system with mixed initial and final

boundary conditions (named Two Point Boundary Value Problem, TPBVP), plus a small

2If some input controls are discrete, there exists some mathematical “tricks”that allows to re-formulate
the problem as in (2.6) by adding extra variables and constraints.
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optimisation subproblem whose solution gives the optimal control law. When the optimi-

sation subproblem has an explicit solution, then the controls can be substituted into the

TPBVP, which can then be solved using numerical techniques for differential equations.

The workflow of the indirect methods is commonly referred to as “first optimise, then dis-

cretise”, meaning that first the optimisation process is performed (necessary conditions)

and then the discretisation is applied (numerical methods to discretise and solve the neces-

sary conditions). In the direct methods, the workflow is the opposite, “first discretise, then

optimise”: the OCP is first discretised accordingly to a certain discretisation scheme, and

then the optimisation is process is performed on the finite dimensional algebraic variables

resulting from the discretisation. A detailed description of the indirect and direct methods

will be given in sections 2.3.1 and 2.3.2.

Dynamic Programming (DP) is an optimisation algorithm developed in the fifties by

Richard Bellman [5] and that is based on the Hamilton-Jacobi-Bellman equation3. From

a theoretic point of view DP is fascinating because it allows to find the optimal controls

as a function of the states. This means that the optimal control law is known not only

along the optimal solution, but for all the possible configurations of the dynamical system;

in different words, DP gives a control feedback law. This is a great advantage when OCP

are practically used to control real systems. The drawback of DP is that it is affected

by the so called curse of dimensionality, as Bellman itself called it, that lead the DP

problem to increase in size exponentially with the dimension of the state space. Thus, DP

is practically feasible only for small problems. When a control feedback law is sought but

DP results to be non feasible, sensitivity analysis applied to DM and IM can be used to

find a feedback which is effective for small perturbations from the optimal trajectory. A

thorough description of DP and/or Optimal control sensitivity analysis is out of the scope

of this thesis. A brief comparison between the performance of DP, IM and DM can be

found in [12, 86]; in particular, in [12] it turns out that DP algorithm is approximately

1000 times slower than IM or DM even with a problem with only two states. To mitigate

the limitations of DP the Differential Dynamic Programming (DDP) was introduced that

solves a sequence of quadratic subproblems obtained from the quadratic approximations

of the objective function around a reference trajectory [66, 41]. The DDP was further

developed by many other authors to handle highly non linear dynamics subject to state

and control constrains. The Hybrid DDP is currently the state of art of DDP algorithm

3 The Hamilton-Jacobi-Bellman equation for a dynamical system described by the first order equations

x′ = f(x,u, ζ) and with a cost function M(x(ζf )) +
∫ ζf
ζi
l(x,u, s)ds, allows to calculate the cost-to-go

function V (x, ζ), i.e. to the optimal cost for a system starting form point x at ζ. The Hamilton-Jacobi-
Bellman equation can be formulated as: ∂V

∂ζ
+ minu(f ′ ∂V

∂x
+ l). Since the cost-to-go function V (x, ζ) is

defined over the entire state space and is not a function of the time only, it is clear the the size of DP
problems increases exponentially with the state space dimension.
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that combines DDP with some well-proven nonlinear mathematical programming techniques

and was successfully used to solve a large scale spacecraft trajectory optimisation problem

[54, 53].

Finally, Evolutionary Algorithms (EA) are a generic class of meta-heuristic optimisation

algorithms. They uses mechanisms inspired by evolution of biological species to find the

optimal solution of the problem. Generally, they start with a given population of individuals

in the state space and then apply mechanism such as reproduction, mutation, recombination,

and selection to find individuals that make the cost function to decrease. A detailed survey

can be found in [4, 32]. Due to their stochastic nature, EAs are generally significantly slow

compared to indirect or direct methods; moreover they provide suboptimal solutions and

no optimality condition is guaranteed. However they can be straightforwardly used with

non-differentiable problems and are more suitable to find global minima.

A comprehensive summary of optimal control approaches and numerical solution meth-

ods can be found in [78, 38, 12]. In this chapter the main focus is on indirect and direct

methods for OCPs since practical experience shows that they are the most suitable for a

large variety of problems including optimal control of road vehicles. Indeed, as previously

stated, classical DP is practically non feasible even for small problems, and, even if hybrid

DDP is a promising method thanks to its robustness and large convergence radius, yet it

has not been applied to challenging minimum lap time problems. On the other side, EAs

represent a reasonable approach only for those problems that cannot be solved with DM or

IM, being EAs much more demanding (in terms of computing power) than DM or IM. In

the next sections, indirect and direct methods are described more in detail.

2.3.1 Indirect methods

Indirect methods make use of the calculus of variations (CV) or the Pontryagin Maximum

Principle (PMP) to derive the OCP first-order necessary conditions, and then the optimal

control is calculated solving the necessary conditions. The PMP can be considered as an

improvement over the calculus of variations (CV) since it allows to solve a wider family

of problems. In the next subsections, CV is used to derive the necessary conditions of a

case-of-study optimal control problem; then the PMP is presented and compared to CV.The

penalty approach, that allows to handle inequality constraints with the indirect approach,

is then described. Finally this section will briefly introduce numerical methods used to solve

the two points boundary value problems that arise from IMs.
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2.3.1.1 Calculus of variations

The theory of calculus of variations is known since Euler and Lagrange, indeed the Euler-

Lagrange equations for classical mechanics are obtained by CV applied to the Principle of

Least (or Stationary) Action [52]. The calculus of variations, that relies on the Lagrange

multiplier method, can be applied to OCPs that do not include any inequality constraint.

Consider now the following optimal control problem, obtained from (2.6) by neglecting the

inequality constraints and letting the admissible controls be all continuous functions from

R to Rnu :

min
u,ζi,ζf

ψ(x(ζi),x(ζf ),u(ζi),u(ζf ),p, ζi, ζf ) +

∫ ζf

ζi

`(x(ζ),u(ζ),p, ζ)dζ (2.7a)

subject to: (2.7b)

dx(ζ)

dζ
= f(x(ζ),u(ζ),p, ζ) (2.7c)

g(x(ζ),u(ζ),p, ζ) = 0 (2.7d)

φ(x(ζi),x(ζf ),p, ζi, ζf ) = 0 (2.7e)∫ ζf

ζi

h(x(ζ),u(ζ),p, ζ)dζ = h∗ (2.7f)

In particular, the path g and integral h constraints are here considered as equality con-

straints. Using the Lagrange multipliers method, the above presented problem (2.7) can

be converted into an equivalent unconstrained minimisation one with some auxiliary vari-

ables, i.e. the Lagrange multipliers (sometimes referred to also as adjoint variables). The

number of Lagrange multipliers is equal to the number of constraints, and the resulting

unconstrained problem is:

min
x,u,ζi,ζf ,γγγ,λλλ,ρρρ,µµµ

Ĵ =ψ(x(ζi),x(ζf ),u(ζi),u(ζf ),p, ζi, ζf )

+ γγγᵀφ(x(ζi),x(ζf ),p, ζi, ζf )

+

∫ ζf

ζi

`(x(ζ),u(ζ),p, ζ) + λ(ζ)ᵀ
(
dx(ζ)

dζ
− f(x(ζ),u(ζ),p, ζ)

)
+ ρ(ζ)ᵀg(x(ζ),u(ζ),p, ζ) + µᵀ (h(x(ζ),u(ζ),p, ζ)− h∗

)
dζ

(2.8)

where λ(ζ) and ρ(ζ) are the ζ-dependent multipliers associated respectively to the dynam-

ics equations and path constraints, ψ and µ are the ζ-independent multipliers associated

respectively to the boundary conditions and integral constraints.

According to the Lagrange multiplier method, under the assumption that the functions

in (2.8) have continuous first order derivative, if J∗ is the minimum for J in (2.7) and
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u(ζ) = u∗(ζ), ζi = ζ∗i , ζf = ζ∗f are the minimisers, then the minimum for problem (2.8)

is still J∗, and it is obtained for the same minimisers u(ζ) = u∗(ζ), ζi = ζ∗i and ζf = ζ∗f .

Therefore the search for a minimiser of the constrained problem (2.7) is reduced to the

search for a minimizer of the unconstrained problem (2.8).

The minimum for (2.8) can now be calculated through the calculus of variation, which

allows to obtain the first order necessary conditions for the minimum. Indeed, since a

minimum is a stationary point, the first order variation of J ′ must be zero at the minimum.

The first order variation of Ĵ , with respect to x(ζ),u(ζ), ζi, ζf , γγγ,λ(ζ),ρ(ζ),µ, is:

δĴ =δζi

(
∂ψ

∂ζi
+ γγγᵀ

∂φφφ

∂ζi
−
(
`
∣∣∣
ζi

+ λᵀ(ζi)f
∣∣∣
ζi

+ ρᵀ(ζi)g
∣∣∣
ζi

+ µᵀh
∣∣∣
ζi

))
(2.9a)

+δζf

(
∂ψ

∂ζf
+ γγγᵀ

∂φφφ

∂ζf
+

(
`
∣∣∣
ζf

+ λᵀ(ζf )f
∣∣∣
ζf

+ ρᵀ(ζf )g
∣∣∣
ζf

+ µᵀh
∣∣∣
ζf

))
(2.9b)

+δx(ζi)
ᵀ
(

∂ψ

∂x(ζi)
+ γγγᵀ

∂φφφ

∂x(ζi)
+ λᵀ(ζi)

)
(2.9c)

+δx(ζf )ᵀ

(
∂ψ

∂x(ζf )
+ γγγᵀ

∂φφφ

∂x(ζf )
− λᵀ(ζf )

)
(2.9d)

+

∫ ζf

ζi

δxᵀ
(
∂`

∂x
+ λᵀ∂f

∂x
+ ρᵀ

∂g

∂x
+ µᵀ∂h

∂x

)
dζ (2.9e)

+

∫ ζf

ζi

δuᵀ
(
∂`

∂u
+ λᵀ∂f

∂u
+ ρᵀ

∂g

∂u
+ µᵀ ∂h

∂u

)
dζ (2.9f)

+δpᵀ

(
∂ψ

∂p
+ γγγᵀ

∂φφφ

∂p
+

∫ ζf

ζi

(
∂`

∂p
+ λᵀ∂f

∂p
+ µᵀ∂h

∂p

)
dζ

)
(2.9g)

+δγγγᵀφφφ+ δµᵀ

(∫ ζf

ζi

h dζ − h∗
)

+

∫ ζf

ζi

δλᵀ
(
dx(ζ)

dζ
− f

)
dζ (2.9h)

Since at any stationary point the variation of Ĵ must vanish for any arbitrary variation of

x(ζ),u(ζ), ζi, ζf , γγγ,λ(ζ),ρ(ζ) and µ, each term that multiplies δx(ζ), δu(ζ), δζi, δζf , δγγγ, δλ, δρ

and δµ must be identically zero. Imposing that such coefficients must be zero, the necessary

conditions are thus obtained:

0 =
∂ψ

∂ζi
+ γγγᵀ

∂φφφ

∂ζi
−
(
`
∣∣∣
ζi

+ λᵀ(ζi)f
∣∣∣
ζi

+ ρᵀ(ζi)g
∣∣∣
ζi

+ µᵀh
∣∣∣
ζi

)
(2.10a)

0 =
∂ψ

∂ζf
+ γγγᵀ

∂φφφ

∂ζf
+

(
`
∣∣∣
ζf

+ λᵀ(ζf )f
∣∣∣
ζf

+ ρᵀ(ζf )g
∣∣∣
ζf

+ µᵀh
∣∣∣
ζf

)
(2.10b)

0 =
∂ψ

∂x(ζi)
+ γγγᵀ

∂φφφ

∂x(ζi)
+ λᵀ(ζi) (2.10c)
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0 =
∂ψ

∂x(ζf )
+ γγγᵀ

∂φφφ

∂x(ζf )
− λᵀ(ζf ) (2.10d)

0 =
∂`

∂x
+ λᵀ∂f

∂x
+ ρᵀ

∂g

∂x
+ µᵀ∂h

∂x
(2.10e)

0 =
∂`

∂u
+ λᵀ∂f

∂u
+ ρᵀ

∂g

∂u
+ µᵀ ∂h

∂u
(2.10f)

0 =
∂ψ

∂p
+ γγγᵀ

∂φφφ

∂p
+

∫ ζf

ζi

(
∂`

∂p
+ λᵀ∂f

∂p
+ µᵀ∂h

∂p

)
dζ (2.10g)

0 =φφφ (2.10h)

0 =

∫ ζf

ζi

h dζ − h∗ (2.10i)

0 =
dx(ζ)

dζ
− f (2.10j)

0 =g (2.10k)

Equations (2.10) represent the necessary conditions for the unconstrained minimisation

problem (2.8), thus for the optimal control problem (2.7). They are called necessary because

they are satisfied by any stationary point for the functional J ′, thus must be satisfied at the

minimum too. However, a solution of (2.10) may be even a maximum or a saddle point.

The second order variation information should be used in order to ensure that the solution

is a minimum. It should be noted that the controls u satisfying the necessary conditions are

continuous since all functions that appear in (2.10) have continuous first order derivatives

by hypothesis.

The unknowns of problem (2.7) are the domain extrema ζi, ζf , the states x, controls u,

parameters p together with the ζ-dependent λλλ, ρρρ and ζ-independent γγγ, µµµ Lagrange multi-

pliers. If nx, nu, np, ng, nh, nφ are respectively the number of states, controls, parameters,

path constraints, integral constraints and boundary conditions, there are 2nx differential

unknowns, nu+ng ζ-dependent algebraic unknowns and np+nh+2nφ unknown parameters

(ζ-independent). Therefore the solution is fully determined by 2nx differential equations

with as many boundary conditions (algebraic equations) plus nu+ng ζ-dependent algebraic

equations and nh+2nφ ζ-independent algebraic equations. Indeed, it can be noted equations

(2.10) include exactly 2nx differential equations (2.10j), (2.10e), with as many boundary

conditions (2.10c), (2.10d), nu + ng ζ-dependent algebraic equations (2.10f), (2.10k), and

np + nh + 2nφ ζ-independent algebraic equations (2.10g), (2.10i), (2.10h), (2.10a), (2.10b).

2.3.1.2 Pontryagin Maximum Principle

The Pontryagin Maximum Principle is the result of the work made by Lev Pontryagin and

his collaborators in the ’50s, and it is a development over the classical theory of the Calculus
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of Variations. The PMP will be first described as stated by Pontryagin in his work [76],

then it will be compared to the CV approach presented in the previous pages.

Let’s consider a dynamical systems defined by a set of first order equations:

dx(ζ)

dζ
= f

(
x(ζ),u(ζ)

)
(2.11)

where again x(ζ) and u(ζ) are respectively the states and the controls. The functions

f(x(ζ),u(ζ), ζ) are supposed to be continuously differentiable with respect to x, and con-

tinuous in u and ζ. The controls u are not arbitrary functions in Rnu , but belong to the

so called admissible controls. Admissible controls are the functions u that lay within the

control region U ⊂ Rnu , and that are piecewise continuous, i.e. u ∈ U are continuous

except at most on a finite number of points. Among all the admissible controls, the optimal

one is the control that makes the system to move from xi at ζ = ζi to xf at ζ = ζf while

minimising the cost function:

J =

∫ ζf

ζi

f0

(
x(ζ),u(ζ)

)
(2.12)

where f0 is continuously differentiable with respect to x, and continuous in u and ζ. The

theorem stated by the PMP allows to find the necessary conditions that the optimal con-

trols and trajectory must satisfy. It should be noted that every solution x(ζ) of (2.11)

is continuous in [ζi, ζf ], and its ζ-derivative is piecewise continuous (it is not continuous

where the control u is not continuous).

Before the PMP theorem is presented, some basic definitions are now given.

The cost function (2.12) can be included in the state variables by adding a proper zero

entry x0 to x and f0 to f :

x(ζ) =
[
x0(ζ); x1(ζ); . . . ; xnx(ζ)

]
f(ζ) =

[
f0

(
x(ζ),u(ζ)

)
; f1

(
x(ζ),u(ζ)

)
; . . . ; fnx

(
x(ζ),u(ζ)

)] (2.13)

with initial condition x0i = 0. The cost function (2.12) thus becomes:

J =

∫ ζf

ζi

f0

(
x(ζ),u(ζ)

)
= x0f (2.14)

Definition 1 Line Γ.

The line Γ in the space Rnx+1 is a line parallel to the x0 axis and passing through the point

(0,xf ).
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Definition 2 Auxiliary variables ΨΨΨ(ζ).

The variables ΨΨΨ(ζ) = [Ψ0(ζ); Ψ1(ζ); . . . ; Ψnx(ζ)] are called auxiliary variables. They satisfy

(by definition) the first-order equations:

dΨi

dζ
= −ΨΨΨ(ζ)ᵀ

∂f(ζ)

∂xi
i = 0, . . . , nx (2.15)

It should be noted that the auxiliary variables ΨΨΨ are thus continuous in the interval [ζi, ζf ],

and its ζ-derivative is piecewise continuous (it is not continuous where the control u is not

continuous).

Definition 3 Hamiltonian H.

The Hamiltonian H of the system (scalar function) is defined as follows:

H (x,ΨΨΨ,u) = −ΨΨΨᵀf (x,u) (2.16)

The Pontryagin Maximum Principle theorem can now be stated:

Theorem 1 Pontryagin Maximum Principle - fixed endpoints

Let u(ζ), ζi ≤ ζ ≤ ζf , be an admissible control such that corresponding trajectory x(ζ)

which begins at point x0 at ζi passes, at some time ζf through a point on the line Γ. In

order that u(ζ) and x(ζ) be optimal it is necessary that there exists a nonzero continuous

vector function ΨΨΨ(ζ), corresponding to u(ζ) and x(ζ)such that:

1. for every ζ : ζi ≤ ζ ≤ ζf the function H(x(ζ),ΨΨΨ(ζ),u) attains its maximum value 4

at the point u = u(ζ):

H
(
x(ζ),ΨΨΨ(ζ),u(ζ)

)
= sup

u
H
(
x(ζ),ΨΨΨ(ζ),u

)
(2.17)

2. at the boundary ζf , the following relations are satisfied:

sup
u
H
(
x(ζf ),ΨΨΨ(ζf ),u(ζf )

)
= 0, Ψ0(ζf ) ≤ 0 (2.18)

Furthermore, it turns out that if x(ζ),ΨΨΨ(ζ),u(ζ) satisfy equations (2.11) and (2.15), the

time functions Ψ0(ζ) and supuH(x(ζf ),ΨΨΨ(ζf ),u(ζf )) are constant. Thus equation (2.18)

may be verified at any ζ, not just at ζf .

The above stated theorem can be generalised to the case with variable endpoints. The

problem with variable endpoints can be formulated as follows. Let Si and Sf be two

4This is the reason why the Pontryagin Principle is called Maximum principle, even if it is used to
minimise a cost functional.
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manifolds in Rnx of arbitrary (but less than nx) dimensions, respectively ri and rf . The

problem is to find an admissible control u(ζ) which transfers the phase point from any

position xi ∈ Si to any position xf ∈ Sf , and which in doing so imparts a minimum value

to the functional (2.12). In this case the problem has to satisfy the so called transversality

conditions, which relate the trajectory at the boundaries of ζ with the manifolds Si and Sf .

The formulation of the transversality conditions is now given. Let xi ∈ Si and xf ∈ Sf be

certain points, and let Ti and Tf be the tangent planes of Si and Sf which pass through

these points. The planes Ti and Tf have dimensions ri and rf , respectively. Furthermore,

let u(ζ),x(ζ) be the solution of the optimal problem with the fixed endpoints xi and

xf . Finally, let ΨΨΨ(ζ) be a vector whose existence is asserted in theorem (1). The vector

ΨΨΨ(ζ) satisfies the transversality conditions at the left and right endpoint of the trajectory,

respectively if ΨΨΨ(ζi) is orthogonal to Ti and if ΨΨΨ(ζf ) is orthogonal to Tf . The PMP can

now be stated for the variable endpoints problem:

Theorem 2 Pontryagin Maximum Principle - variable endpoints

Let u(ζ), ζi ≤ ζ ≤ ζf , be an admissible control that transfers the system from an initial

point xi to a final point xf , and let x(ζ) be the corresponding trajectory. In order that u(ζ)

and x(ζ) yield the solution of the optimal problem with variable endpoints, it is necessary

that there exists a nonzero continuous vector function ΨΨΨ(ζ), which satisfies the conditions of

theorem (1), and in addition, the transversality condition at both endpoints of the trajectory

x(ζ). If either Si or Sf degenerates into a point, the transversality condition is replaced by

the condition that x passes through that point.

Theorems (1) and (2) deals with a dynamical system where the first order equations

(2.11) and the cost function (2.12) do not depend explicitly on the independent variable

ζ. The necessary conditions in such case can be straightforwardly derived from theorems

(1) and (2) by augmenting the state variables vector x with an extra entry xnx+1 which is

equal to ζ, i.e. fnx+1 = 1. The problem is thus reduced to the one discussed in theorems (1)

and (2), and the necessary conditions can be obtained with the PMP. Integral constraints

present in the OCP given in (2.7) can be converted to boundary conditions by properly

adding extra state variables into the state vector x. The interested reader can find more

details in [76].

It is now clear how the Pontryagin Maximum Principle has a wider application field than

the calculus of variations. First of all, CV requires the functions to have continuous first

order derivatives, thus the resulting controls are continuous. Differently, PMP can be used

to solve problems whose optimal controls have discontinuities at most on a finite number

of points. Moreover PMP can deal with problems where the controls must lay within an

admissible region U , while in CV controls are assumed to span all the function space. Both
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PMP and CV however does not handle problems with inequality constraints; the penalty

approach can be used to overcome this limitation, as described in the next section.

2.3.1.3 Inequality constraints and penalties

In the optimal control problem solved with the CV and PMP in the previous pages, all

the constraints are equality constraints, yet an OCP may in general include inequality

constraints, as in (2.6). This apparently means that neither CV nor PMP can be used to

solve such kind of problems. Using the penalty approach it is possible to transform the

inequality constraints into penalty functions, which are included into the cost function.

The inequality-constrained OCP is thus converted into an (almost) equivalent one without

inequalities, that can thus be solved through CV or PMP. The penalty approach is now

presented.

Consider the OCP (2.6), described in the previous section, that includes inequality

constraints. Inequality constraints comprise boundary terms (2.6d), path constraints (2.6e)

and integral terms (2.6f). Let’s now focus only on the boundary and path inequalities,

neglecting the integral constraints; the case with integral constraints will be discussed later.

Penalty functions (or simply penalties) associated to these inequality constraints pφ, pg are

whatever type of functions that assumes small (relatively to the OCP target) values when

the constraints are satisfied, and high values when they are not:

pφ(φ) ≈

εφ � ψ, if φl ≤ φ ≤ φu

Mφ � ψ, otherwise

pg(g) ≈

ε� `, if gl ≤ g ≤ gu

M � `, otherwise

(2.19)

Accordingly to the above described penalty form, the penalties present an abrupt variation

(i.e. high derivative) when exceeding the constraint boundaries. The derivative of the

penalties is the most relevant property of a penalty function than its value; indeed, penalties

which differ for a constant quantity give the same OCP solution — even though they may

not be equivalent from a numerical point of view. Penalties in (2.19) are general; it is

left to the user (or to the OCP solver) to define a mathematical function for the penalties

which satisfies (2.19). The underlying idea of the penalty approach is that, once pφ and pg

have been defined accordingly to (2.19), the original optimal control problem (2.6) (without

integral constraints) can be modified to an almost equivalent one by adding the penalty
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functions into the cost functional as follows:

min
u

ψ(x(ζi),x(ζf ),u(ζi),u(ζf ),p, ζi, ζf )

+ pφ

(
φ
(
x(ζi),x(ζf ),u(ζi),u(ζf ),p, ζi, ζf

))
+

∫ ζf

ζi

`(x(ζ),u(ζ),p, ζ) + pg

(
g
(
x(ζ),u(ζ),p, ζ

))
dζ

(2.20a)

subject to: (2.20b)

dx(ζ)

dζ
= f

(
x(ζ),u(ζ),p, ζ

)
(2.20c)

The inequality constraints have thus been converted, through the penalty functions, to cost

functional. The only constraints left are the differential equation for the dynamical system

(2.20c). The solution of the OCP with penalty functions is expected to be close to the

one of the original OCP (2.6): since the penalty functions are minimised, the inequality

constraints are (very likely) satisfied. The two solutions are not exactly the same since the

penalty functions act as a regularisation terms because they still affect the target functional

when the constraints are satisfied. It is not guaranteed that the solution of (2.20) does

not violate the inequality constraints. Indeed, if the penalty function is not enough abrupt

in correspondence of the constraint bounds, the solution may violate the constraints or it

may remain far within the constraints bounds. The use of particular penalty functions, like

barrier penalties, can prevent the solution to violate the original constraints.

As previously said, the mathematical expression for penalties is not unique and different

functions may be used. Some example of penalty functions are now given. Possible penalty

functions are reported in figure 2.1, where the constraint upper and lower bounds have been

normalised to −1 and 1 respectively. In the leftmost and centre plot the penalties are of

barrier type, i.e. they tend to infinity when approaching the constraint boundaries; such

penalties enforce the solution to satisfy the constraints. The barrier penalty in the leftmost

plot is the logarithmic penalty plog given by:

plog ∝ − log
(

1− c2
x

)
; cx ≡

c− cu+cl
2

cu − cl
; (2.21)

where c is the constraint value, and cu and cl are the upper and lower bounds. In the

rightmost plot the penalty is a polynomial. The polynomial penalty does not goes to

infinity when the constraint approaches its upper or lower bound, thus the solution may

exceed the constraints boundaries if the penalty weight is too weak. Polynomial penalties,

together with all smooth and non-barrier penalties, have the advantage to be easier to

handle numerically.
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Figure 2.1: Examples of penalty function. In (a), the penalty p(c) has the logarithmic
expression given in equation (2.21); in (b), the penalty is proportional to 1/ cos(xπ/2),
while in (c) the penalty is p(c) = hx2 + (1 − h)x10. In (a) and (b), coloured lines show
different penalty weight; in (c) they refer to different value of the parameter h.

2.3.1.4 Notes on numerical methods

As seen in the previous sections, first order necessary conditions for optimal control prob-

lems (see theorem (1) or equations (2.10)) come in the form of a first order differential

equations system with mixed initial and final boundary conditions (TPBVP), plus a small

optimisation subproblem that gives the optimal control law. Numerical methods for in-

direct OCP approaches must therefore solve a system of differential equations with mixed

boundary conditions; the optimisation subproblem can, in certain cases, be explicitly solved

and the control are thus substituted in the equations.

Most used numerical approaches for OCP indirect methods are shooting, multiple shoot-

ing and finite discretisation. In the shooting method, an initial guess on the initial (or final)

boundary conditions and control history is used to integrate forward (or backward) the dif-

ferential equations, including both states and Lagrange multipliers. The resulting final (or

initial) state resulting from the integration may not satisfy the final (or initial) boundary

conditions. Thus a certain rule — a kind of Jacobian of the boundary conditions with

respect to the guessed variables — is used to adjust the guessed boundary conditions and

control history so as to reduce the discrepancy. This process is repeated until convergence.

When used to solve problems over a long domain, shooting technique tends to be ill-

conditioned due to the fact that small variations of the controls in the first part of the

integration domain generally causes large variations of the final state. Multiple shooting

tries to alleviate this issue by splitting the integration domain into n subintervals, and

applying then the shooting technique on each interval. In multiple shooting, the unknown

variables that take part in the solving process are not only the initial or final boundary
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conditions and the control law, but also the value of the integrated variables at the beginning

and at the end of each subinterval.

Finally, in the finite discretisation approach, all the state variables and Lagrange mul-

tipliers are discretised according to a certain integration scheme, e.g. midpoint, Hermite-

Simpson, Runge-Kutta, orthogonal collocation. The differential equations are then writ-

ten as function of the discretised variables (i.e. they are discretised), leading to a finite-

dimensional algebraic equation system which is solved with the desired algorithm, e.g.

Newton-Raphson.

2.3.2 Direct methods

Differently to indirect methods, direct ones follow the “first discretise, then optimise” work-

flow. In direct methods, the OCP is first discretised accordingly to a certain integration

scheme (Euler, Hermite-Simpson, Runge-Kutta, Orthogonal Collocation [88]), then nonlin-

ear programming is used to find the solution of the resulting finite dimensional algebraic

optimisation problem. Direct methods do not make use of the optimal control theory pre-

sented in the previous pages, rather they rely on NLP theory. In the next subsections, an

introduction to NLP is first given, then numerical methods used to solve OCPs through the

direct approach will be briefly described.

2.3.2.1 Introduction to nonlinear programming

Nonlinear Programming (NLP) allows to solve an optimisation problem defined by a finite

set of equality or inequality algebraic constraints over a finite set of algebraic unknowns

variables, together with a cost function (target) that has to be minimised. As the name

suggests, both the constraints and the cost function may be nonlinear. The general problem

type that NLP deals with is the following:

find x∗ = arg min
x∈Rnx

f(x) (2.22a)

subject to:

hi(x) = 0, i = 1, . . . , nh (2.22b)

gi(x) ≤ 0, i = 1, . . . , ng (2.22c)

where x ∈ Rnx is the unknown vector, f is the cost function to minimise, hi are a set of

equality constraints and gi are the inequality ones5.

5Inequality constraints are sometimes omitted in the NLP formulation. Indeed, they could be taken
into considerations by introducing for each inequality constraint gi a slack variables zi, with the constraint
zi = gi, and solving then the augmented NLP problem for zi < 0.
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As in the case of the indirect methods, there exist some necessary conditions that the

minimum of problem (2.22) must satisfy; these conditions are called the Karush-Kuhn-

Tucker (KKT) conditions [10]. Before to present the KKT conditions, some definitions are

first given.

Definition 4 Active inequality set.

The inequality constraint gi(x
∗) ≤ 0 is active at the point x∗ if gi(x

∗) = 0. Moreover, the

set A(x∗) that contains the indices of all the active inequality constraints in x∗ is called the

active constraints set, i.e. j ∈ A(x∗) if gj(x
∗) ≤ 0 is active.

Definition 5 Regular point.

x∗ ∈ Rnx is a regular point if the gradients of the active inequality constraints and the

gradients of the equality constraints are linearly independent at x∗.

Proposition 1 Karush-Kuhn-Tucker conditions.

Let x∗ be a local minimum for the problem (2.22), and let f , hi, gi be continuously dif-

ferentiable and let x∗ be regular. Let L(x,λλλ,µµµ) be the Lagrangian function of the problem,

defined as follows:

L(x,λλλ,µµµ) = f(x) + λλλᵀh(x) +µµµᵀg(x) (2.23)

Then there exists unique Lagrange multiplier vectors λλλ∗Rnh, µµµ∗Rng such that:

∇xL(x∗,λλλ∗,µµµ∗) = 0 (2.24a)

µ∗j ≥ 0, j = 1, . . . , ng (2.24b)

µ∗j = 0, ∀j /∈ A(x∗) (2.24c)

where A(x∗) is the set of active constraints in x∗. If, in addition, f , hi and gi are twice

continuously differentiable, then:

yᵀ
∂2L(x,λλλ,µµµ)

∂x2
y ≥ 0 (2.25)

for all y ∈ Rnx such that:

∇xhi(x
∗)ᵀy = 0, ∀i = 1, . . . , nh

∇xgj(x
∗)ᵀy = 0, ∀j ∈ A(x∗)

(2.26)

The KKT conditions show a close relationship with the Lagrange multiplier theory for

the constrained minimisation of algebraic functions. In the KKT statement the inequality

constraints are divided in active and not active. If, using the Lagrange multiplier method,
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the active inequality constraints are considered as equality constraints while the inactive

ones are disregarded, then the Lagrange multiplier sufficient conditions are equivalent to

the KKT conditions. The last statement in proposition 1, contained in equations (2.25)

and (2.26), provide the second order sufficient conditions for x∗ to be a local minimum,

not a maximum nor a saddle point. Equations (2.25) and (2.26) require the second order

variation of the Lagrangian function in the tangent plane to the feasible region in x∗ to be

positive definite.

The KKT conditions can be further generalised so as not to require the regularity of

the optimal point x∗. The generalisation of the KKT are the Fritz John (FJ) necessary

conditions that were first proposed in 1948 [46]. The statement of the FJ conditions is the

following:

Proposition 2 Fritz John conditions.

Let x∗ be a local minimum for the problem (2.22), and let f , hi, gi be continuously differen-

tiable. Then there exists a scalar µ∗0 and multiplier vectors λλλ∗ ∈ Rnh, µµµ∗ ∈ Rng such that:

µ∗0∇xf(x∗) +

nh∑
i=1

λ∗i∇hi(x∗) +

ng∑
i=1

µ∗i∇gi(x∗) = 0 (2.27a)

µ∗j ≥ 0, j = 1, . . . , ng (2.27b)

µ∗0, λ
∗
1, . . . , λ

∗
nh
, µ∗1, . . . , µ

∗
ng are not all equal to zero (2.27c)

∀ N(x∗) neighbourhood of x∗, ∃x̂ ∈ N(x∗) :(
λ∗ihi(x̂) > 0 ∀i : λ∗i 6= 0

)
∧
(
µ∗i gi(x̂) > 0 ∀i : µ∗i 6= 0

) (2.27d)

In the case that the local minimum x∗ is regular, then the FJ conditions are satisfied with

µ∗0 = 1 and the other multipliers are given by the KKT conditions. If the local minimum x∗

is not regular then since the constraint gradients are linearly dependent the FJ conditions

can be satisfied with µ∗0 = 0.

NLP theory has been widely studied and plenty of algorithms to solve problem (2.22)

have been developed, even for problems with non differentiable functions. While an thor-

ough survey of the NLP solving algorithms is out of the scope of this thesis and can be found

in [99, 10], the basic ideas of the most common ones are now presented. NLP algorithms

include the penalty and augmented Lagrangian method, sequential quadratic programming

(SQP) and interior point or barrier methods.

The penalty methods are used to solve problems as in (2.22) without inequality con-

straints. The problem is attacked by combining the cost function with penalty functions

22



related to the constraints, leading to an unconstrained problem:

find x∗ = arg min
x∈Rnx

f(x) +
µ

2

nh∑
i=1

hi(x)2 (2.28a)

where µ > 0 is a positive penalty parameter. The unconstrained problem (2.28) is solved

for a series of increasing values of µ, until the solution of the constrained optimization

problem is obtained with sufficient accuracy. It may be also possible to find a local solution

of (2.22) in a single step by (i.e. not solving the problem for several values of µ) by using an

exact penalty function. In the augmented Lagrangian methods, the cost function is replaced

by the so-called augmented Lagrangian function, which has the following expression (for

equality-constrained problems):

find x∗ = arg min
x∈Rnx

LA(x,λλλ, µ) = f(x)−
nh∑
i=1

λihi(x) +
µ

2

nh∑
i=1

hi(x)2 (2.29a)

In these methods, λλλ represents some estimate of the optimal Lagrange multiplier vector (see

Proposition 1). At each iterate both the value of λλλ and µ may be updated and the process

is repeated until a sufficient approximation for the solution of (2.22) is obtained.

In the sequential quadratic programming methods, the problem (2.22) is approximated

at each iteration by a quadratic programming subproblem whose solution defines the search

direction. A basic SQP algorithm finds the search direction dk at the k-th iteration as the

solution of:

find d∗ = arg min
d∈Rnx

f(xk) +∇f(xk)
ᵀd+

1

d
dᵀ∇xxL(xk,λλλk,µµµk)d (2.30a)

subject to:

hi(xk) +∇hi(xk)ᵀd = 0, i = 1, . . . , nh (2.30b)

gi(xk) +∇gi(xk)ᵀd ≤ 0, i = 1, . . . , ng (2.30c)

Where the Lagrangian function is the same as defined in Proposition 1. It can be noted

that in such problem the cost function is an approximation of the change of the Lagrangian

function in moving from xk to xk+d, and the constraints are a linearised version of the ones

in (2.22). In the sequential linear-quadratic programming variant, the search direction d is

computed in two stages. First, a linear program, obtained by omitting the quadratic term in

the objective (2.30a) and adding a trust-region constraint to (2.30), is solved. Next, the step

d is calculated by solving an equality-constrained subproblem where only the constraints

that are active at the solution of the linear program are imposed (as equality constraints),
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while the others are neglected.

The underlying idea of the interior point or barrier methods is to use a barrier-penalty

function to find a solution of the original NLP (2.22). Additional variables (called slack

variables) z are introduced to the NLP, and the inequality constraints are moved to the

cost function through penalties on the slack variables, resulting in the following NLP:

find x∗ = arg min
x∈Rnx

f(x)− µ
ng∑
i=1

log(−zi) (2.31a)

subject to:

hi(x) = 0, i = 1, . . . , nh (2.31b)

gi(x)− zi = 0, i = 1, . . . , ng (2.31c)

where µ > 0 is a positive parameter. The NLP problem is thus reduced to contain only

equality constraints. The interior point method tries to find a solution for problem (2.31)

in the limit µ→ 0+. It can be noted that at the solution x∗, the slack variables zi are equal

to the inequality constraints gi(x
∗), moreover, since the target function tends to infinitum

as zi → 0−, the value of the slack variable at the solution z∗i is negative (thus the inequality

constraints are satisfied). The solution of the modified problem (2.31) is an approximation

of the one of the original problem (2.22), and the approximation gets close to the “exact”

solution as µ→ 0+.

The penalty, augmented Lagrangian and interior point approaches present many sim-

ilarities with the penalty method discussed in section 2.3.1.3; in all cases, the inequality-

constrained problem is reduced to an equality-constrained one by adding some penalty

functions to the cost function.

2.3.2.2 Notes on numerical methods

In direct methods, the optimal control problem is translated into a finite dimensional con-

strained minimisation problem (2.22) which is solved using available NLP solvers. Direct

methods however can differ for the variables that are discretised, i.e. both states and con-

trols or only the controls can be discretised. The shooting and multiple shooting methods

for the direct approach are very similar to the same methods for the indirect approach as

described in section (2.3.1.4). In the shooting method, the controls are discretised and,

together with the initial and/or final state variables, they become NLP optimisation vari-

ables. For any given control law, the differential equations are easily integrated allowing

to evaluate the OCP target and constraints. The difficult task in the shooting method is

the evaluation of the target variations with respect to control variations. Differently to
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the shooting method for the OCP indirect approach, OCP Lagrange multipliers are not

considered.

As described in (2.3.1.4), the multiple shooting divides the integration domain into

n intervals, and single-shooting is applied on each subintervals. The values of the state

variables on the N − 1 interface points are added to the NLP optimisation variables.

In the direct full collocation method, both the states and controls are discretised, leading

to a larger NLP. The OCP differential equations and constraints are expressed as functions

of the discrete variables and included as constraints in the NLP problem.

2.3.3 Considerations on indirect and direct methods

In has been shown that indirect methods allows to find the solution of optimal control

problems by solving the necessary conditions for optimality. Since the necessary conditions

come in the form of differential and algebraic equations together with a minimisation sub-

problem, in some cases a closed-form solution exists, i.e. the equations can be analytically

solved. This allows indirect methods to find the exact solution for a (not so small) family of

problems; differently, direct methods are used only for numerical solutions. Even if most of

the OCP arising from practical problems are highly nonlinear and the necessary condition

equations cannot be explicitly solved, there exists a relatively wide class of problems for

which the closed-form solution exists. This class consists in all the physical systems for

which the Euler-Lagrange equations of motions can be analytically solved. Indeed, the

Euler-Lagrange equations can be considered as the solution of a proper Optimal control

problem. Accordingly to the Principle of Least (or Stationary) Action [52], a physical

system moves (or evolves) from an initial state xi to a final state xf in such a way that its

Action A is stationary. The Action A is defined as the integral of the Lagrangian function

over the time:

A =

∫ tf

ti

L(q, q̇, t)dt (2.32)

where q are the generalised coordinates. It is easy to verify that the necessary conditions

(2.10) for an unconstrained OCP with a pure Lagrange target equal to the Action A becomes

exactly the Euler-Lagrange equations:

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= 0 (2.33)

This establishes a fascinating link between optimal control theory and the theory of La-

grangian mechanics.

A second advantage of indirect methods over direct ones from a theoretical point of

view is the calculus of the Lagrange multipliers. The Lagrange multipliers, despite they
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may seem additional variables merely introduced to find the optimality conditions, have

a relevant physical meaning. Indeed, the Lagrange multiplier associated to a certain con-

straint expresses the rate of change of the target with respect to the violation of that

constraint. Therefore the Lagrange multipliers are very useful in sensitivity analyses, where

the variation of the target with respect to variation of the problem data is studied. Ac-

tually, it is not completely correct to state that direct methods do not allow to calculate

the OCP Lagrange multipliers. It has been shown that the KKT conditions (1) make use

of (NLP) Lagrange multipliers, which are clearly different from the OCP ones, but a close

relationship between them exists. Such relationship is not general but strictly depends on

the discretisation scheme used to transcribe the OCP into the NLP problem. In chapter 6

this relationship will be derived for the midpoint discretisation scheme.
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Chapter 3

Indirect and direct methods for

optimal control minimum lap time

simulations

Minimum lap time simulations are nowadays a tool widely used to optimise the design and

setup of road vehicles. Even if several approaches can be adopted to face such problems,

optimal control is the strategy that, to the best knowledge of the author, has been used

in the most relevant works in literature. Both indirect and direct methods have been

intensively used for minimum lap time simulations, yet it is still not clear whether one of

the two approaches is more suitable (e.g. fast, robust, effective) than the other. In this

chapter direct and indirect methods are compared on three three vehicle optimal control

test problems in order to understand what are the differences between the two methods and

if one is more effective in solving minimum lap time OCPs.

3.1 Introduction

In the last decades the applications developed for minimum lap time problems have become a

tool widely used to improve the performance of race vehicles. Minimum lap time problems

not only are of great practical interest to help design, optimise and setup a vehicle for

maximum performance but they also are a challenging theoretical and numerical problems.

Early attempts to solve minimum lap time problems date back to the late 50’s [82]. Later

in the 80’s authors of [68] simulated a section of the Formula One Circuit Paul Ricard in

southern France using a quasi-steady state optimization routine to compute the optimal

controls. Since then, many improvements have been introduced for solving minimum lap

time problems with several authors proposing and developing different solving techniques
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and new theoretical and numerically efficient algorithms also supported by the increase of

the cpu performance. Among all the methods that have been used until now, the ones that

showed the best capabilities falls into four major categories: quasi-steady state, optimal

control based, driver model based and evolutionary algorithm based simulations.

In the quasi-steady state (QSS) approach, the racing line is provided as input and it

is divided into segments in which the vehicle is considered to be in stationary conditions

except for few state variables such as the speed along the racing line. The curvature radius

is then calculated for each segment and the vehicle is assumed to have zero longitudinal

acceleration in those points where the curvature has a local maximum (at the corner apex);

thus the maximum vehicle speed can be calculated in correspondence of such points. Then,

the vehicle speed is reconstructed backward and forward on the basis of the maximum g-g

envelope. Examples of this method can be found in [36, 84, 17, 18, 19, 81]. This method

has shown both good robustness and fast computation times, together with the capability

to use complex vehicle multibody models; however most of the transient behaviours is

neglected (e.g. tyre loads dynamics, yaw dynamics and suspension damper effects) and the

results obtained are less accurate when compared with other minimum time techniques. An

extended iterative steady-state approach was presented [94] to include some of these effects,

e.g. the suspension damping effects. Despite the additional benefits compared to standard

QSS method a comparison with optimal transient solution is not given.

The second family of minimum lap time methods falls into the optimal control prob-

lem (OCP) theory, which are also called transient-optimal control to distinguish them from

quasi steady state simulations [21, 17]. The general idea behind this approach is to trans-

late the minimum lap time problem into an optimal control problem, where the dynamic

equations of motion become constraints of the optimisation process. As described in chap-

ter 2, methods for solving optimal control problems can be mainly grouped into four main

categories: dynamic programming (DP), indirect optimal control, direct optimal control

and evolutionary algorithms (EA).

To the best of the author’s knowledge, despite the theoretical advantages of the Dynamic

Programming, such as handling discrete/continuous variables and guarantee the global opti-

mum, none minimum lap time application has been solved with this method in the literature.

The main reason is that, as described in chapter 2, it suffers from the curse of dimension-

ality even with relatively small vehicle models [86, 12]. Even if hybrid differential dynamic

programming seems a promising method, it is still in the early development stage and it

has not been applied to challenging minimum lap time problems yet.

Indirect and direct methods for optimal control problems, already described respectively

in sections 2.3.1 and 2.3.2, have been widely used for minimum lap time simulations since
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mid 90’s. Early examples of application of indirect optimal control theory this kind of

simulations are reported in [44, 30]. Since the late 90’s various other works have used

this approach both for motorbike lap time simulations [8, 85] and car lap time simulations

[90, 91, 14, 59].

Among the direct methods, direct multiple shooting method (also known as parallel

shooting method) emerged as the one of the most efficient because it is less affected by high

sensitivities and naturally renders itself for parallelisation [22]. In [50] it was successfully

applied to minimum time problem with gear choice using using MUSCOD-II software [33]

and with a partial outer convexification to handle discrete variables. Methods based on

direct full collocation are largely diffused in the community because the resulting NLP can

be easily solved thanks to the availability of IPOPT [95], a robust and efficient interior

point algorithm. The approaches mainly differ from the discretisation method but IPOPT

is the solver used by all of them, e.g. [7] used Lagrange Polynomials to discretise both

control and states, [72] used a trapezoidal integration scheme to convert the optimal control

problem into a NLP problem by means of ICLOCS toolbox [35], various minimum lap time

problems were formulated with a direct orthogonal collocation method based on Radau

pseudo-spectral scheme by means of the software package GPOPS-II [71], which proved

to be effective to illustrate the impact of optimal usage of energy recovery systems on fuel

consumption saving [58] and the impact of aero-suspension interactions and adjustments

on the lap-time performance of the car [65]. Direct methods have rarely been applied to

motorbike models; to the author’s knowledge, the only relevant work is [83] where a full lap

was simulated with a relatively complex motorbike model. However, he did not optimised

at once the trajectory and the controls but a path following algorithm was used to make

the motorbike follow a given trajectory.

Many authors proposed various alternative techniques in order to increase the robustness

and to reduce the computational burden due to the size of the NLP resulting from long

circuit/test course. One of these are the moving horizon techniques, which decompose the

global optimal control problem into a sequence of local optimal control problems over a

finite horizon (i.e. preview length) that is moving forward in time [37, 40, 48, 49] and

satisfies appropriate continuity conditions. Optimisation of the preview length is necessary

to guarantee for finding the global problem optimum. Additionally, this technique cannot

be directly used when optimisation of global variables is required. Another proposed idea

splits the problem into trajectory planning and tracking. Trajectory planning is usually

solved as an optimisation problem on a simplified vehicle model and the tracking task is

performed with a driver model (or controller) that guides the full vehicle along the pre-

calculated trajectory. Examples are [16] that combines geometrical trajectory and speed
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profile optimisation with a simple driver model; [24], and [47] used Model Predictive Control

to implement the tracking task. A noticeable example applied to motorcycle is [83] where

a full lap was simulated with a relatively complex motorbike model using a MPC path

following algorithm to track a given trajectory. However, all these approaches, despite their

ability to be used in combination with complex vehicle models, should be considered as

sub-optimal solutions since the driver model influences the lap time obtained.

Finally, evolutionary approaches, such as genetic algorithms, are the alternative numer-

ical algorithms, for the solution of direct sequential optimal control, compared to derivative

based NLP solvers. A recent application to minimum lap time problem is reported in

[63, 62]. The procedure that leads to the lap time minimisation is the following: for a

given control history defined as piecewise linear, the equations of motion are integrated,

resulting in a certain manoeuvring time; then the genetic algorithm optimises the control

values at given number of knots in unknown time positions and the equations of motions

are integrated with the new controls to evaluate the cost and the constraints. The genetic

algorithm thus selects the control variations that brought to an improvement of the per-

formance and the process is iterated again in a manner very similar to a single shooting

methods. This approach demonstrated to be able to handle very complex vehicle models,

however it also resulted to be significantly slow: the computation of a manoeuvre over two

turns takes approximately one day to execute and the control law shape is derived from

experimental data.

As final a remark of the literature review above, authors think it is worth it investigating

benefits and limitations of optimal control methods for minimum lap time problems that

exhibit the following characteristics:

• they possibility cope with non trivial vehicle models,e.g. several dof (> 5−7) including

highly non-linear tyre model and aerodynamics interaction;

• they can provide simultaneous optimisation of the racing line and the controls;

• they have the ability to compute a simulation in a reasonable amount of time (e.g.

less than few hours);

• they are sufficiently robust to variations on initial guess.

According to the literature review and to the authors knowledge and experience, three

approaches emerged as the most effective to solve minimum lap time problems.

Following the historical development, the first method is an indirect approach imple-

mented by the software Pins (formerly known as XOptima), which is described in [8]. It

has been used since the late 90’s and the most representative minimum lap time results
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achieved with Pins are presented in [8, 85, 27] for motorbike applications, and in [90, 91]

for cars. The second method is a direct multiple shooting method implemented using the

software MUSCOD-II and whose most successful result is in [50]. The last and most recent

method is based on direct optimal control with full direct transcription via pseudo-spectral

collocation and it is represented by the software GPOPS-II , [71]. It was released quite

recently in the 2013 and its state of the art applications in this topic is described in [58, 55].

To the best author’s knowledge, in the literature, there are no comparisons of the ac-

curacy of the solution and numerical performance on minimum lap time problems among

these methods. This gave the motivation for this study to compare the most promising

optimal control approaches on the same optimal control problems, in order to highlight the

similarities and the differences, and possibly understand which one is more indicated for

a particular purpose. Unfortunately MUSCOD-II is not available and for this reason the

chapter only focuses on the comparison of Pins and GPOPS-II software as representative

of state of art methods of indirect and direct approach respectively.

In section 3.2, Pins and GPOPS-II and their approach are briefly presented, then in

section 3.3 they are tested against three vehicle optimal control problems. The compar-

ison will focus on the solution accuracy, robustness with respect to guess perturbations,

constraints enforcement and parameter sensitivity. Finally in section 3.4, the results are

summarised and the software performance discussed.

3.2 Minimum time manoeuvring OCP

In general, a minimum lap time problem can be formulated as an optimal control problem

(see (2.6)) where the target function equals the lap time, and the first order differential

equations are the equations of motion of the vehicle. Constraints are added to ensure the

simulation withstand physical limits like track boundaries, power used, tyre adherence.

The optimal control problem defined in (2.6) is quite general and may not fit the im-

plementation of various software for solving optimal control problems. This is also the

case for the software (Pins, GPOPS-II ) that we have selected for comparison. In these

cases some problem reformulations of the OCP problem may be required.Thus next sub-

sections 3.2.1, 3.2.2 briefly describe the two software with key features and limitations.

3.2.1 OCP: formulation and solution with PINS

Pins is a collection of libraries and programs mainly developed to symbolically formulate

and numerically solve Optimal Control Problems (OCPs) for non linear dynamical systems

described by differential equations. Pins implements an indirect method with penalties
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and barriers to handle generic mixed state and control constraints. The optimal controls

are explicitly derived using the Pontryagin Maximum Principle, which is done formally

building a map that computes the controls as a function of state and co-state. The map is

solved analytically whenever the problem makes it possible, otherwise a numerical procedure

is used to obtain controls and their derivatives with respect to the states and co-states.

The resulting Two-Points-Boundary-Value-Problem (TPBVP) is approximated with finite

difference (based on midpoint quadrature) to give a non-linear algebraic system of equations,

which is solved with a dumped Newton Affine Algorithm specifically developed to exploit

the Bordered Almost Block Diagonal (BABD) structure of the Jacobian [2]. Pins makes

uses of the Maple c© symbolic engine, via the XOptima package, to symbolically formulate

the optimal control problem, automatically generate the equations of necessary conditions

of optimality and the corresponding analytical Jacobians, and finally translate into c++

code. The generated code can be, if necessary, further manipulated by the user and compiled

and linked with libraries contained in MechatronixToolKit by the program pins, in order to

produce a stand alone program or a callable library that can be used in custom code for

different purposes (including real time applications). The MechatronixToolKit is a collection

of c++ libraries of classes such as Non Linear system solvers, Boundary Value Problem

Solvers, ODE-DAE solvers. The library is also complemented with utility classes such

as vehicle components (e.g. tyre models, internal combustion engine models, etc), 2D-3D

road models, splines and various interfaces to other languages such as Mruby and Lua and

MATLAB c©/Simulink.

The OCP formulation in Pins allows for differential equations of the form:

A(x,p, ζ)ẋ = f̃ (x,u,p, ζ) (3.1)

where A is a square matrix that cannot depend on the controls. Multibody and vehicle

dynamic equations can always be written in this form. In practice, the main difference

between 2.6c and (3.1) is that the latter allows the differential equations to be implicit

provided they are linear in the velocities. This is an advantage compared to the majority

of OCP solvers that require the differential equations to be in the explicit form 2.6c where

inversion of matrixAmay be necessary as also found in almost all text books [76, 20, 75, 11].

Pins does not directly handle integral constraints (2.6f) but they can be added to the

problem by converting the integral constraints into differential constraints introducing ad-

ditional states with proper boundary conditions.

Pins treats inequalities (2.6e) augmenting the target function (2.6a) with a weighted

sum of penalty or barrier functions p(g(x,u,p, ζ)) for each inequality. The function p is

designed to be continuously differentiable of class C3 in such a way that it evaluates nearly
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zero (i.e. ε) when g is at a distance h from bound. It then grows to 1 at the bound then

pretty linearly to infinity out of the bound for the penalty and to infinite at the bound for

barrier. Clearly barrier does not allow to break the bound. Parameters h and ε are used

respectively to define when the penalty starts to increase the cost and how much.

The main limitation of Pins is the fact that cannot directly handle DAEs of index

greater equal 1. For what concerns index-1 algebraic constrains only those linear in the

algebraic variables can be used. For DAEs with index of higher order reduction techniques

and penalisation terms in the cost function (2.6a) to avoid constraint drift are necessary [38].

Since Pins implements an indirect method it has to solve the necessary conditions of

optimality which are described by a pure TPBVP since penalty are also used to enforce

constraints on controls. The TPBVP consists of a set of nx differential equations for the

states x, nx adjoint equations for the Lagrange multipliers λ, nu algebraic equations for the

optimal controls u and 2nx + np equations for the boundary conditions. The controls are

formally solved either symbolically or numerically as a function of the states x and Lagrange

multipliers λ. The TPBVP is discretised using a finite difference midpoint scheme and the

resulting large set of algebraic equations is solved with a dumped Newton Affine scheme

that exploits the Jacobian block diagonal structure [8],[9].

Summarising, the key points of Pins approach for the solution of the indirect optimal

control problem are:

• dynamic equations (2.6c) can be given in implicit form, but it has to be linear in the

state derivatives;

• inequality constraints (2.6e) are treated with penalty/barrier functions (constrained

problem converted in equivalent unconstrained problem)

• only index-1 algebraic constraints linear in the algebraic variable can be handled

directly

• the controls are formally solved analytically, if an explicit analytic solution is not

available numerical methods are used

• states are discretised on the mesh points while controls are assumed constants on cells

and thus the TP-BVP problem is solved as a large set of algebraic equations roughly

of dimension (2nx + nu)N + 2nx + np where N is the number of mesh points.

• solution is obtained using custom nonlinear system numerical solver

Further details can be found in [8],[9].
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3.2.2 OCP: formulation and solution with GPOPS

GPOPS-II is a MATLAB c© software intended to solve general optimal control problems

for non linear dynamical systems described by differential-algebraic equations. GPOPS-II

implements a direct full collocation approach by means of pseudo spectral method. The

continuous-time optimal control problem is approximated using a new class of a variable-

order Legendre-Gauss-Radau quadrature orthogonal collocation polynomials resulting into

a sparse nonlinear programming problem. This NLP is then solved using either the NLP

solver IPOPT or the NLP solver SNOPT . A distinguishing feature is the adaptive mesh

refinement method that determines the number of mesh intervals and the degree of the

approximating polynomial within each mesh interval to achieve a specified accuracy. To

achieve this GPOPS-II performs an a-posteriori solution error estimation and refine the

mesh in those mesh segments where the error is higher than a certain threshold; this process

is then repeated until all mesh interval satisfy the desired error threshold. Adopting the

variable order for each mesh interval and the mesh refinement GPOPS-II is able to achieve

high accuracy limiting the use of resources by putting refining only where it is necessary. By

means of the free MATLAB c© package ADIGATOR [98] symbolic gradients and Jacobians

could also be generated.

As for the general formulation of the OCP described by (2.6), GPOPS-II fits the defi-

nition, thus it requires the differential equations to be explicit. In general, vehicle dynamic

equations can often be reduced to the explicit form. However, it may not be possible

when the model complexity increase, which is the case of advanced motorcycle models, e.g.

[85, 27, 28]). For some problems the implicit form is more robust and the solver converge

faster to solution [31]. Since GPOPS-II naturally treats algebraic equations of index 1 the

implicit formulation can be also implemented at the cost of doubling the problem dimension

adding n additional states y and n additional algebraic path constraints as follows

ẋ = y (3.2)

0 = f̃ (x,u,β, t)−A(x,β, t)y (3.3)

GPOPS-II approximate both states and controls using multiple-interval Legendre-Gauss-

Radau quadrature orthogonal collocation method that transcribes the OCP into a NLP of

dimension roughly of nx(N (k) + 1) + nuN
(k) for each k = 1 . . .K intervals. The structure

of the Jacobians and Hessian are sparse matrices that do not show any specific structure

that can be exploited by the NLP solver. Additionally, since GPOPS-II uses IPOPT

as NL solver internally the problem is augmented to handle the equality constraints via

Lagrange multipliers. This is transparent from the user perspective but has an effect on the
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computational performance point of view. Additionally, IPOPT, being an interior point

method, uses barrier functions to treat inequality constraints [95]. However, it adopts

several automatic strategies to adapts the barrier weights during algorithm convergence to

satisfy the inequalities with the higher accuracy possible .

Summarising, the key points of GPOPS-II in the direct solution of the OCP are:

• dynamic equations (2.6c) must be in explicit form otherwise the dynamic system

dimension has to be doubled;

• algebraic constraints index-1 can be used

• automatic mesh refinement algorithm available

• automatic differentiation is available via Adigator to generate the necessary gradients,

Hessian and Jacobians

• the solution is obtained using NLP solver IPOPT that implements a robust and quite

fast interior point algorithm.

Further details on the software can be found in [71].

3.3 Test bench examples for vehicle optimal control prob-

lems

In this section the two software previously presented, Pins and GPOPS-II , are tested on

three test bench vehicle optimal control problems. The first case of study deals with a simple

motorcycle model; it has been chosen because the exact solution can be mathematically

derived, thus it can be used for comparison with numerically calculated solutions. The

second test benchmark consists in the reconstruction of a race circuit from experimental

data; since this OCP does not include any path constraints, it leads to the same minimisation

problem both through the indirect and direct approach. For this reason this problem has

been chosen to test the robustness of Pins and GPOPS-II with respect to perturbations in

the guess. Finally, the third and last test problem consists in a minimum lap time problem

of a relatively simple, yet effective, car model; this represents a typical utilisation scenario

for the studied software. The constraint enforcement, sensitivity to parameter variations

and robustness to guess perturbations will be studied.

3.3.1 Basic two-wheeled minimum manoeuvre

The first optimal control problem consists in the minimum manoeuvre time of a basic

motorcycle model, that has to be moved from the upright configuration (zero roll angle)
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to a leaned configuration (non-zero one) in the minimum time. The assumptions are that

the tyres have zero slip, the suspensions are fixed and the speed is constant. Under these

circumstances the model has one degree of freedom only, the roll angle, see Ch. 6 of [89].

The motorcycle state space model is described by two state variables, the roll angle φ

and the roll rate φdot, and one input, the steering angle δ. The related first order differential

equations are

φ̇ = φdot, Ixxφ̇dot = mh

(
gφ− V 2

L
δ

)
(3.4)

where m is the total (vehicle plus rider) mass, Ixx the roll moment of inertia about line

joining the two tyre contact points, h the distance height of the centre of mass from ground,

L is the wheelbase and g is the gravity. Equation (3.4) can be conveniently rewritten in

order to highlight the independent model parameters:

φ̇dot =
mgh

Ixx

(
φ− V 2

gL
δ

)
≡ A (φ−Bδ) where A =

mgh

Ixx
B =

V 2

gL
(3.5)

The minimum time to roll problem can be formulated as follows:

minimize
tf≥t0

tf

subject to ODEs: φ̇ = φdot, φ̇dot = A (φ−Bδ)

and constraints: |δ| ≤ δmax, φ(t0) = 0, φ(tf ) = φf ,

φdot(t0) = 0, φ(tf )dot = 0

(3.6)

The analytical solution is obtained using the PMP [89]:

tf =
1√
A

(
ln(w)− ln(1 + f)

)
, δ = signφf δ

max ×

+1 0 ≤ t < t∗

−1 t∗ ≤ t ≤ tf
(3.7)

where

f = −
|φf |
Bδmax

, w = 1− f − f2

2
+

√
f(f + 4)(f2 − 4)

2
, t∗ =

ln(1 + w)− ln(2)

ln(w)− ln(1 + f)
(3.8)

Finally, the solution exists only if f > −1 and w is real w > −1 which imply f ∈ (−1, 0]

and:

|φf | < δmaxB (3.9)

It is worth noting that a positive steer angle δ corresponds to a positive roll angle φ in
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steady state conditions, while the bike is performing a right or clockwise turn.

Solution analysis

The numerical solution obtained using the motorcycle dataset of table 3.1 (A = 42.92s−1 and

B = 8.551). The theoretical minimum time with the data used here is tf = 1.07236889954×
10−1s.
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Figure 3.1: The control δ and roll rate φ̇ are shown as function of the roll angle φ. The
solutions provided by Pins and GPOPS-II are shown together with the exact one. Blue
circles represent Pins discretisation points, red crosses GPOPS-II ones.

The solution given by the two solvers on a mesh with 100 discretisation points is shown

in figure 3.1. Settings used for GPOPS-II are reported in table 3.2. It is noted that Pins

uses an equally spaced grid while GPOPS-II puts the discretisation points at the Legendre-

Gauss-Radau points [1], according to to the LGR method therein implemented. Figure 3.1

highlights the bang-bang behaviour of the control δ, which switches from −δmax (steer

opposite to the direction of turning) to +δmax (steer in the direction of turning) at a time

equal to t∗ ≈ 0.47tf ≈ 5 × 10−2s. Both solvers require one mesh interval to capture the

complete change in the control; for this reason, GPOPS-II takes three discretisation points
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Table 3.1: Motorcycle problem dataset

variable value description

g 9.806 [m/s2] gravity
V 11 [m/s] speed
m 273 [kg] total mass
L 1.443 [m] wheelbase
Ix 70.79 [kgm2] roll inertia moment
δmax 20◦ max steer angle
φf 20◦ final roll angle
tgf 1 [s] guess on final time

φg φf t/t
g
f guess on roll angle

to capture the control switch1, while Pins takes only two. The roll rate in figure 3.1 shows

an apex in correspondence of t∗, as consequence of the change in the control.
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Figure 3.2: The relative error to the exact final time tf (top plot) and the distance d∗ of
the time switching instant t∗ from the nearest discretisation points (bottom plot) are shown
as function of the number of discretisation points. The two plots suggest that the solution
accuracy is dominated by the capability to capture the bang-bang trend in the control δ.

1Collocation points captures accurately smooth functions, but discontinuities in non-smooth solutions
can be captured only at mesh interval boundaries.
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The accuracy of the target value tf provided by the two solvers is shown in figure 3.2 as

a function of the number of discretisation points used. The error presents an wavy trend,

which, at a first glance, may appear quite strange, as one would expect that the higher is the

number of discretisation points the more accurate is the solution. Taking into consideration

that the control δ has a bang-bang behaviour, the accuracy of the target value tf strictly

depends on the ability of the integration scheme to capture the discontinuity of the solution.

In particular, the capability of the integration scheme to capture the control discontinuity

depends on the distance d∗ of the exact switching time t∗ from the nearest mesh point: the

higher d∗ is, the less accurately the control discontinuity is captured. The distance d∗ is

shown as function of the number of discretisation points in the bottom plot of figure 3.2. It

is evident that the wavy trend of the target error is exactly the same of the distance d∗, thus

the accuracy of the solution is dominated by the capability to capture the discontinuity of

the δ control at t∗.
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Figure 3.3: The relative error to the exact final time tf is shown as function of the number
of discretisation points used in the intervals t ≤ 0.46tf and t ≥ 0.48tf . In the interval
0.46tf ≤ t ≤ 0.48tf , 104 fixed discretisation points have been used. It can be noted that the
straight lines fitting the error trends have a slope which is in agreement with the integration
accuracy order of the two solvers.

In order to better analyse the accuracy of the solution, the previous analysis has been

re-performed using a large and fixed number of discretisation points near the switching time

t∗. More precisely, 104 fixed discretisation points has been used in the interval 0.46tf ≤
t ≤ 0.48tf , while only the number of discretisation points N in the rest of the domain has

been changed. The results obtained are presented in figure 3.3: GPOPS-II shows a steep

decrease of the target error, and even with few points ≈ 10 it reaches a relative error of only
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10−6. The fitting highlights an accuracy, which goes as ≈ N−4.8. For a number of mesh

points approximately greater than ten, the solution error does not decrease further and

remains stuck at ≈ 10−6 even at N = 103. Pins differently presents a less rapid decrease

of the solution error ≈ N−2, but increasing the number of mesh points it reaches a lower

error; with N ≈ 104 its error is ≈ 10−10. Numeric noise does not allow Pins to go below

such error.

The authors increased the number of mesh point in the interval 0.46tf ≤ t ≤ 0.48tf (up

to 105) and even tuned GPOPS-II parameters (e.g. using auto mesh refinement and/or

lowering IPOPT tolerances, and/or imposing a mesh point at the switching point t = t∗) in

order to achieve a better accuracy for the GPOPS-II solution. However, the best accuracy

obtained was always not lower than ≈ 10−7. Moreover, when trying to increase the solution

accuracy in GPOPS-II using a very fine mesh (either with fixed points or using the automatic

mesh refinement), the solution so obtained suffered of control oscillations near the switching

point t = t∗, as shown in figure 3.4. It is opinion of the authors that if the controls could

be analytically solved (as it is done in Pins) these oscillations may be reduced and the

accuracy of the solution increased. However this cannot be done in GPOPS-II since the

Lagrange multipliers are not available when the evaluation of the first order equations is

performed.

5.025 5.03 5.035 5.04 5.045 5.05 5.055 5.06
-1

-0.5

0

0.5

1

Theoretical
GPOPS

Figure 3.4: Detail of GPOPS-II solution control near the switching point t∗. The solution
is calculated on a fine mesh (mesh tolerance error ≤ 10−11. The control is affected by
noticeable oscillations that prevent the solution final time accuracy to be less then 10−7.

This case of study shows that GPOPS-II uses a better integration scheme that allows to

achieve a good accuracy (relative to Pins) when the solution is smooth and few discretisation

points are used. On the other side Pins demonstrates to be more accurate with a relative

large number of discretisation points and to be able to get closer to the exact solution.
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Table 3.2: GPOPS-II settings

variable value

minimum collocation points 2
maximum collocation points 2

IPOPT tolerance 10−8

method RPM-Differentiation
scaling automatic-bounds

linear solver ma57 [34]

3.3.2 Track reconstruction

The second OCP test consists in the reconstruction of a circuit from experimental data.

In lap time simulations it is common to use a curvilinear abscissa approach [25, 59, 57] to

track the vehicle position along the circuit. Thus the knowledge of the track geometry is

fundamental for such purpose.

The road can be modelled as described in appendix A, where the geometry is given as the

road reference frame Wr and the road width rw as a function of the centre-line curvilinear

abscissa s. As described in appendix A, the road can be described by means of seven

variables: the three coordinates of the road centre-line position xr(s), yr(s), zr(s), together

with the three angles determining the orientation matrix ψ(s), σ(s), β(s) and one additional

variable for the road width rw(s). An effective approach to reconstruct the road geometry

— i.e. these seven variables — from a 3D map of the circuit is presented in appendix B.

This corresponds to an optimal control problem (B.3), where the target to minimise is the

error between the road borders and the reference borders obtained from the 3D map. The

states of the OCP are the variables determining the road position, orientation and width,

the controls are the rate of change of the road orientation and width. The optimal control

problem (B.3) is in the form of an constrained least-square problem, where the constraints

are originated by the first-order equations No path (state) constraints are added to the OCP

formulation (B.3), therefore the actual OCP solved by Pins and GPOPS-II is exactly the

same (even if on slightly different meshes).

Solution analysis

Pins and GPOPS-II have been tested on the reconstruction problem of four different cir-

cuits, two three-dimensional and two two-dimensional: Adria (Italy, 2D), Montmelò (Spain,

2D), Imola (Italy, 3D) and Mugello (Italy, 3D). The numeric dataset used to feed the

OCP (B.3), in particular the target expressions (B.6b), are reported in table 3.3; GPOPS-

II settings are the same of the previous example (see table 3.2). A mesh grid size of 1 meter
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Figure 3.5: Overview of the 3D Mugello circuit.

Table 3.3: Parameters used in the track reconstruction problem.

variable value

wu 1
σuθ 7.0× 10−3

σuσ 2.4× 10−5

σuβ 2.4× 10−5

σurw 0.32
σus 0.20

has been used for all the four tracks2.

Figure 3.5 gives an overview of the reconstructed Mugello circuit, where the elevation

variations along the track are noticeable. The detail of the RACC chicane of Montmelò

circuit is shown in figure 3.6. The reconstructed road borders (blue line for Pins, yellow for

GPOPS-II ) well matches the reference points (purple dots), moreover there is no noticeable

difference in the solution provided by the two solvers. The resulting road curvature (bottom

plot) highlights that the difference between the two solutions is approximately of the 1%.

The difference between the solutions obtained with the two solvers are relatively very

small (up to ≈ 1%) and they are due to the different integration scheme adopted. Indeed,

as previously said, in the track reconstruction problem there are no path constraints, which

means that no penalty terms are used in the indirect approach OCP formulation. Therefore,

the minimisation problem obtained through the indirect and direct approach is exactly the

2It means that one mesh point per meter has been used in Pins, and one mesh interval every two meters,
with two collocation points per mesh interval have been used in GPOPS-II .
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Figure 3.6: Detail of the RACC chicane of Montmelò circuit. In the top image, the road
border reconstructed by Pins and GPOPS-II well matches the experimental data (purple
dots) and not difference between the two solvers can be noticed by eye. The resulting road
curvature (centre and bottom plots) shows that the difference between the two solutions is
of approximately 1%.
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Table 3.4: Summary of the maximum error from the reference track borders and the root
mean square error for each circuit.

Circuit Pins GPOPS-II Pins -GPOPS-II ratio

Maximum error

Adria 2.02× 100 2.01× 100 1.00× 100

Montmelò 1.50× 100 1.54× 100 9.69× 10−1

Mugello 9.01× 10−1 8.59× 10−1 1.05× 100

Imola 8.99× 10−1 8.93× 10−1 1.01× 100

Rms error

Adria 4.01× 10−3 4.00× 10−3 1.00× 100

Montmelò 2.51× 10−3 2.55× 10−3 9.87× 10−1

Mugello 1.79× 10−3 1.78× 10−3 1.00× 100

Imola 1.93× 10−3 1.92× 10−3 1.00× 100

same. The detail of the difference between the solutions provided by the two solvers is

reported in table 3.4: for each circuit, the maximum error from the reference track borders

and the root mean square of such error is calculated. Differences in the solutions are due

to the different integration scheme.

Since the minimisation problem arising from the track reconstruction problem is exactly

the same for Pins and GPOPS-II , it has been chosen as a test case for the robustness of

the solver with respect to perturbation of the initial guess. The robustness has been tested

through the following procedure:

1. A reference guess is first generated both for the states xref and controls uref . The

reference guess is characterised by the following state initialisation: xref
r = xr0, yref

r =

yr0, zref
r = zr0, xref

l = xl0, yref
l = yl0, zref

l = zl0, θref = θ0 and κref = dθ0/dζ0. All other

variables and controls are set to zero (i.e. uref = 0);

2. for each state variable x, a relative noise amplitude, name ax, is chosen. The relative

noise amplitudes used are reported in table 3.5.

3. for each state variable x, its guess x(g) is given by the sum of the reference guess xref

and a noisy term. The noisy term is the product of the relative noise amplitude ax

with a global noise variable ξ and a random variable rx: x(g) = xref + axξrx. The

global noise variable ξ is the same for all state variables, moreover the random variable

rx is uniformly distributed in the interval [−1, 1] and sampled on each mesh point;
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Table 3.5: Variable relative noise amplitudes used to generate the noisy guesses for the
track reconstruction problem. Units are those of SI.

variable x, y,
z

rw θ, σ, β θ̂, σ̂, β̂

relative amplitude 5 1 π/10 0

4. the global noise amplitude ξ is varied from 0 to 1.5 by step of 0.1, and ten different

guesses are generated for each value of ξ, for a total of 150 different guesses;

5. the track reconstruction problem is then solved both with Pins and GPOPS-II using

the noisy guesses. A maximum limit of 500 iterations is used; if the solver does not

manage to solve the problem within this iteration limit, it is considered to fail.

The above described procedure has been repeated for each circuit. The results obtained

are reported in figure 3.7, where the number of iterations required to solve the problem is

shown as function of the noise global amplitude ξ. A number of iterations equal to the

iteration limit (500) indicates the solver has not succeeded in finding the solution. The

results highlight different trends for the 2D and 3D circuits. In 2D circuits (Adria and

Montmelò) GPOPS-II is more robust and manages to solve the problem with all guesses,

even at ξ = 1.5. A certain variance is observed in the number of iterations required to

calculate the solutions for a given ξ, from approximately 20 iterations to 100. Pins fails

to solve the problem for a noise amplitude grater than ξ > 1; however, for ξ ≤ 1 it is able

to calculate the solution in few iterations (≈ 6). The variance in the number of iterations

for Pins is noticeably lower than that of GPOPS-II . In 3D circuits, Pins shows almost

the same behaviour as with 2D circuits. GPOPS-II on the contrary presents a noticeably

higher variability: while sometimes it still manages to solve the problem at ξ = 1.5, other

times it fails even with a low relative noise (ξ ≈ 0.6). On overall Pins demonstrates a

more consistent behaviour, and GPOPS-II manages to handle guesses with an high noise

but sometimes fails even with low-noise guesses. The greater robustness of GPOPS-II

to less accurate guesses is probably due to the IPOPT initialisation procedure, and the

heuristic therein used, to estimate the initial values for the Lagrange multipliers. On the

contrary the current release of Pins does not implement any of such a procedure and sets

the Lagrange initial values to zero. As a general result that authors have drawn there is

that the Lagrange multiplier initialization is crucial for the robustness of both direct and

indirect optimal control solvers.
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Figure 3.7: Robustness of the solvers with respect to noisy guess. The number of iterations
required to compute the solution are plotted versus the relative noise amplitude. An itera-
tion limit of 500 iterations has been chosen for both solvers. Points located at an ordinate
of 500 iterations refer to non-converged problems.
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3.3.3 Lap time simulation

The last OCP test that is analysed is the minimum lap time simulation of a racing GT car

on the Adria International Raceway.

The simulation is performed with a 3-dof car model, which comprises quasi steady state

load transfers and load-dependent tyre adherence. The three degrees of freedom of the car

are: the speed V , the sideslip angle λ and the yaw rate Ω. The car position along the circuit

is tracked by means of three variables: the curvilinear abscissa s, the lateral displacement

from the road centre line n and the heading angle α w.r.t. the road centre line. The first

order equations for the above mentioned six variables are:

ṡ =
V cos(α− λ)

1− nκ
ṅ = V sin(α− λ)

α̇ = Ω− κV cos(α− λ)

1− nκ
MΩV λ+MV̇ = F

(rr)
tx + F

(rl)
tx + F

(fr)
tx + F

(fl)
tx − δ(F (fr) + F (fl))− Fd

M(ΩV − V̇ λ− V λ̇) = δ(F
(fr)
tx + F

(fl)
tx ) + F

(rr)
ty + F

(rl)
ty + F

(fr)
ty + F

(fl)
ty

IzzΩ̇ = a(F
(fr)
ty + F

(fl)
ty )− b(F (rr)

ty + F
(rl)
ty ) + tv(−F (rr)

tx + F
(rl)
tx − F

(fr)
tx + F

(fl)
tx )

(3.10)

where M is the car mass, F
(âŝ)
tx is the tyre longitudinal force where a = f, r indicates the

front or rear axle, and s = r, l indicates the right or left side, F
(âŝ)
ty is the tyre lateral force,

δ is the steering angle, Fd is the drag force, Izz is the yaw inertia moment, a and b are

respectively the distance of the front and rear axle form the centre of gravity and tv is the

car half width. In equations (3.10) the simplifications cos ξ ≈ 1 and sin ξ ≈ ξ have been

adopted for the sideslip λ and steering δ angles.

The drag force Fd is proportional to the square of the speed:

Fd =
1

2
ρCdV

2 (3.11)

where ρ is the air density, Cd is the drag coefficient. Tyre lateral forces are given by a linear

tyre model, while longitudinal ones are related to a single control ux which is related to the

normalized thrust:

F
(fl)
tx = F

(fr)
tx =

Mg

2
f−(ux)γ, F

(rl)
tx = F

(rr)
tx =

Mg

2
(f+(ux) + f−(ux)(1− γ)),

F
(âŝ)
tx = N (âŝ)Ktλλ

(âŝ)
t

(3.12)

where f+ and f− return respectively the positive and negative part of the argument, γ is
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the front braking bias, N (âŝ) is the tyre load, λ
(âŝ)
t is the tyre sideslip angle and Ktλ the

tyre sideslip stiffness. The tyre sideslip angles are given by the following expression:

λ
(rr)
t = λ+

Ω(b+ λtv)

V
λ

(fr)
t = λ+ δ − Ω(a− λtv)

V

λ
(rl)
t = λ+

Ω(b− λtv)
V

λ
(fr)
t = λ+ δ − Ω(a+ λtv)

V

(3.13)

The tyre loads N (âŝ) depend on the delayed vehicle longitudinal ax and lateral ay accelera-

tions:

N (rr) =
Mg

4
+
Mg

4

(
a− b+ axh

a+ b
− ay(1− χ)

h

tv

)
N (fr) =

Mg

4
+
Mg

4

(
−a− b+ axh

a+ b
− ayχ

h

tv

)
N (rl) =

Mg

4
+
Mg

4

(
a− b+ axh

a+ b
+ ay(1− χ)

h

tv

)
N (fl) =

Mg

4
+
Mg

4

(
−a− b+ axh

a+ b
+ ayχ

h

tv

)
(3.14)

where χ is the roll stiffness. The longitudinal ax and lateral ay accelerations follow the

actual vehicle accelerations with a low band pass filter of time constant τax and τay in order

to simulate the suspension load transfer lag:

τax ȧx + ax = V̇ + ΩV λ τay ȧy + ay = ΩV − ˙(V λ) (3.15)

Summarising, the state space model comprises eight degrees of freedom (V, λ,Ω, s, n, α, ax, ay),

with the corresponding eight first order equations (3.10), (3.15) and two controls (ux, δ).

OCP constraints

The minimum lap time problem includes some constraints, which ensures that the power

used is less than the a maximum threshold, that the car never exceeds the track boundaries,

and that the tyre forces are less than the tyre maximum adherence. Such constraints can

be expressed as follows:

cp =
V (F

(rr)
tx + F

(rl)
tx )

P (max)
≤ 1 cn =

n

nmax
≤ 1 cn =

−n
−nmax

≤ 1

c
(âŝ)
t =

(
F

(âŝ)
tx

N (âŝ)µ
(âŝ)
x

)2

+

(
F

(âŝ)
ty

N (âŝ)µ
(âŝ)
y

)2

≤ 1

(3.16)

where P (max) is the engine maximum power, nmax is the maximum lateral displacement

which is equal to half of the road width rw minus half of the car width nmax = rw/2 − tv.
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Table 3.6: Car dataset used for the minimum lap time problem.

variable value units description

M 1184 kg total mass
w 2.76 m wheelbase
b 1.404 m wheelbase to front axis distance
b 1.356 m wheelbase to rear axis distance
tv 0.807 m half track width
h 0.4 m CoM height from ground
Izz 1775 kgm2 yaw inertia moment
γ 0.62 - braking bias
χ 0.5 - roll stiffness
ρ 1.2 kg/m3 air density
Cd 0.88 m2 drag coefficient
µx0 1.68 - tyre longitudinal adherence
µy0 1.68 - tyre lateral adherence
Kµ -0.5 - tyre adherence variation with load
Ktλ 44 - tyre lateral stiffness
τay 0.2 s lateral load transfer time constant
τax 0.2 s longitudinal load transfer time constant

P (max) 215 kW maximum power

µ
(âŝ)
x and µ

(âŝ)
y are respectively the tyre longitudinal and lateral adherence, which depend

on the tyre loads:

µ(âŝ)
x = µx0 +Kµ

N (âŝ)

N
(âŝ)
0

µ(âŝ)
y = µy0 +Kµ

N (âŝ)

N
(âŝ)
0

(3.17)

where N
(âŝ)
0 is the tyre load in static conditions and Kµ is constant factor. The numerical

data used to feed the car model is reported in table 3.6.

Solution analysis

The above described car model has been used to simulate the lap time of a GT car on the

Adria International Raceway. A mesh with 1 discretisation point per meter has been used3.

The lap time calculated by Pins and GPOPS-II are respectively 75.721s and 75.429s, with

a relative difference of the approximately 0.3%.

The simulated speed profile is shown in figure 3.8; the speed difference between the

two solutions is always less than 3km/h. In general, Pins simulated speed is higher than

3In GPOPS-II one mesh interval every two meters and two collocation points per mesh interval have
been used.
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Figure 3.8: Simulated speed profile and speed difference (Pins minus GPOPS-II ) along
Adria circuit; the difference between the two solvers is always less than 3km/h. In general,
Pins simulated speed is higher than GPOPS-II one in the middle of the turns but it is
lower in the straights and in the first part of the braking manoeuvre.
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Figure 3.9: Simulated optimal trajectory along Adria circuit. The most significant trajec-
tory difference is in the two intervals comprised between the red and green circles.

GPOPS-II one in the middle of the turns but it is lower in the straights and in the first part

of the braking manoeuvres. The reason can be found in the use of the penalties, which in

general do not allow to reach the control exact limits producing less braking/tractive forces.

As a consequence the optimal solution found try to compensates maximising the speed in

each corner looking for a slightly larger curvature radius.

The effect of the use of the penalties emerges when the optimal trajectories are compared

(see figure 3.9). The two solutions show a good agreement along all the circuit, except in the

two straights track sections comprised between the red circles (the first) and between the

green ones (the second). The difference in the trajectory is more evident in the car lateral

displacement n from the road centre line, which is reported in the top plot of figure 3.10.

In the two mentioned track sections it is evident that Pins trajectory moves towards the

road centre line, while GPOPS-II remains close to the track border in the two straights.

In other words Pins tends to reduce the penalty (associated to the road border constraints,

see (3.16)) by moving to the road centre line. It is opinion of the authors that this effect is

probably evident in these two sections because there this manoeuvre affects only marginally

the lap time.
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Figure 3.10: In the top figure, the lateral displacement n from the road centre line is shown.
The trajectory differences in the two straight sections comprised between the red and green
circles are noticeable. The bottom plot focuses on the road borders constraint enforcement
|cn| (3.16) (|cn| = 1 is the constraint limit). It can be noted that, while GPOPS-II solution
arrives at a constraint value |cn| = 1, Pins one does not go beyond |cn| = 0.995.

The bottom plot of figure 3.10 shows the enforcement of the road borders constraint

cn (see (3.16)). It is possible to notice that, while GPOPS-II solution almost touches the

road borders (|cn| = 1), Pins one does not go beyond |cn| = 0.995. The same behaviour

can be observed also in the other OCP constraints: the maximum power limit and the tyre

adherence limit. The former constraint is shown in figure 3.11; the bottom plot highlights

that Pins solution uses up to ≈ 99% of the maximum power, while GPOPS-II one uses up

to 100% (at least to machine precision). Moreover, similar conclusions can be stated for

the tyre engagement constraints ct(âŝ) (3.16), which are reported in figure 3.12; in this case,

Pins solution arrives up to ≈ 99.7% of the maximum value.

The fact that Pins solution does not reach the exact constraints bounds (track width,

engine power, tyre adherence) is a consequence of the penalty approach used by indirect

methods. However even IPOPT , that is based on an Interior Point algorithm, uses a similar

penalty approach [95]. The main difference between Pins and IPOPT is that the latter

implements an algorithm that automatically sharpens the penalties in order to better better
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Figure 3.11: The power used (S(rr) + S(rl))V is shown in the top plot; the two solutions
present almost identical trends and both get close to the maximum power limit. The bottom
plot focuses on the power-limit-constraint enforcement cp (3.16) (cp = 1 is the constraint
limit). It is possible to notice that, while GPOPS-II arrives at |cp| = 1, Pins arrives up to
cp ≈ 99%.

satisfy the constraints, while in the former the penalties can be fine-tuned only manually.

Since in Pins this is achieved with a continuation procedure, it usually requires longer

computational time and diminishes the robustness to convergence using a non optimal

tuning strategy. The values that have been used are, according to authors’ opinion, is

the best compromise between constraint enforcement, robustness of the solver and low

computational times.

At the beginning of this section it has been stated that Pins simulated lap time is

approximately 0.3s higher than GPOPS-II one, then the results showed that this difference

can be attributed to the lower engine power and tyre engagement usage of Pins solution.

While 0.3s may seem a consistent discrepancy from an engineering point of view, it should

be remembered that the absolute performance resulting from lap time simulations is not of

primary importance because it depends on some parameters that are difficult to measure,

first of all the friction between tyres and asphalt. Usually, the numeric dataset used to

feed the mathematical model is tuned so as to make the simulated car performance match
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Figure 3.12: The tyre engagement ct(âŝ) (3.16) of the four wheels are shown as function of
the curvilinear abscissa. Again, GPOPS-II solution touches the constraint limit, while Pins
arrives up to the ≈ 99.7% of the maximum value.

the telemetry data. Only after this calibration process is performed, the model is used for

simulations and optimisation. Therefore, in lap time simulations the sensitivity to model

parameter variations is much more important than the absolute lap time.

The sensitivity of the two solver has been compared on the optimisation of the braking

bias γ and roll stiffness χ. Simulations have been performed varying the braking bias and

the roll stiffness respectively in the range [0.55, 0.68] and [0.63, 0.8]; the lap times differences

between Pins and GPOPS-II solutions are shown in figure 3.13. One may note that, while

the difference in the simulated lap time varies in the range [0.29s, 0.32s], the location of

the best lap time does not differs relevantly between the two solvers. In particular Pins

minimum lap time is achieved with a braking bias of γ = 0.595 and a roll stiffness of

χ = 0.741 (with an accuracy of 0.001 both for γ and χ), while GPOPS-II minimum lap

time is obtained for the same value of the rolling stiffness but for a braking bias slightly

higher, γ = 0.597. This discrepancy in the location of optimum value of the parameters is

mainly due to two different causes. The first is the different simulated performance: since

Pins solution uses slightly less engine power and tyre adherence, this results in a different

car dynamics and thus optimal braking bias and roll stiffness. The second cause is the

control regularisation induced by the control penalties4 that makes the controls’ solution

to be smoother, thus modifying again the simulated car dynamics. In order to verify that

the different location of the best lap time is due to these two causes, the Pins model has

been modified by increasing the engine maximum power and the tyre adherence and by

4Control penalties are used in the indirect approach to keep the controls bounded.
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Figure 3.13: The difference of the simulated lap time (Pins minus GPOPS-II ) is shown as
function of the braking bias γ (x-axis) and roll stiffness χ (y-axis). The location of the best
lap time is also shown. The right plot focuses on a smaller range of the variables γ and χ in
order to better highlight the differences in the location of the best lap time. The best lap
time time for the Pins ”enhanced” and GPOPS-II ”regularized” models are also shown.

augmenting the track width, so as to make the constraints actually reach their physical

limits. In particular, the engine maximum power has been increased by a 1.015 factor, the

tyre adherence by 1.004, and the track width by 1.01, in accordance with the distance from

the constraints boundaries highlighted in figures 3.10, 3.11 and 3.12. This model, referred

to as Pins ”enhanced” model, shows a best lap time for γ = 0.596 and χ = 0.74, thus it

is located closer to GPOPS-II minimum lap time but differences are still present. Finally

GPOPS-II model has been regularised by adding a small regularisation term proportional

(1 × 102) to the square of the controls into the Lagrange target; this model is referred to

as GPOPS-II ”regularised”. The regularisation is not exactly the same as that of Pins,

yet tries to mimic it. The optimum parameters for the GPOPS-II regularised model are

γ = 0.596 and χ = 0.738, as shown in the right plot in figure 3.13. These results shows

that the car design optimisations performed by Pins and GPOPS-II are in agreement if the

same car performance is simulated and similar regularisation is adopted.

The robustness of the two methods with respect to perturbation of the initial guess

has been studied with the same procedure described in section 3.3.2. Differently from

section 3.3.2, the minimum lap time OCP includes constraints that are treated with different

approaches by direct and indirect methods. The reference (i.e. without noise) guess is

characterised by a non-zero guess speed V0 = 30kph, while all the other variables are left

to zero. The noise relative amplitudes ax for each state variable are reported in table 3.7,

and the noise global amplitude ξ spans from 0 to 1 by steps of 0.1. Moreover, the speed
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Table 3.7: Variable relative amplitudes used to generate the noisy guesses for the minimum
lap time problem. Units are those of SI.

variable n α V λ Ω ax ay ux δ
relative amplitude 7 0.6 60 0.05 1 10 15 1 0.15

V is forced to be greater than 1m/s: when the noised speed results to be less than such

threshold, it is set to 1m/s. This allows to avoid numerical singularities in the first order

equations, which can not be made explicit ODE in the curvilinear abscissa domain s when

V = 0. The solver iterations limit is now increased to 103 since the problem is more difficult

to solve.
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Figure 3.14: Robustness of the solvers with respect to noisy guess. The number of iterations
required to compute the solution are plotted versus the relative noise amplitude. An itera-
tion limit of 103 iterations has been chosen for both solvers. Points located at an ordinate
of 103 iterations refer to non-converged problems.

The results obtained are summarised in figure 3.14, and are significantly different from

those of the reconstruction problem in section 3.3.2. Even with a low noise amplitude

ξ = 0.1 Pins fails to find the solution most of the times, and from ξ = 0.3 it is never

successful. GPOPS-II , like in section 3.3.2, shows a more variable behaviour and for all

values of ξ it sometimes manages to find the solution, sometimes it fails. None of the two

solvers appear to be robust with respect to the added noise. It is opinion of the authors

that the high failure rate highlighted by Pins is consequence of the constraints violation

in the provided guess. When starting from a noisy guess, Pins showed very high residual

since the first iterations and then it straggle to find a feasible (i.e. with low residual)

56



region. High values for the residual (≈ 106) are due to high penalty values (i.e. constraints

violation), which make the problem highly ill conditioned and difficult to solve. Differently

IPOPT , the NLP solver used for GPOPS-II, implements a feature that project the current

state into the constraint-feasible region, thus even if the guess violates the constraints it

automatically project it into a feasible region [95]. It is opinion of the authors that this

is the main advantage that makes GPOPS-II more robust than Pins with respect to less

accurate initial guesses.

3.4 Result discussion and notes on performance

The results presented in the previous section, and in particular those of the basic motor-

cycle problem, confirmed that GPOPS-II implements a more accurate integration scheme

(Gaussian in GPOPS-II , midpoint in Pins) that is able to provide a significantly higher

accuracy than Pins using relatively few mesh points. Despite this, Pins is able to reach the

absolute highest accuracy when using an higher number of mesh points.

Moreover GPOPS-II demonstrated to better handle perturbations (i.e. noise) in the

guess, in particular when constraints are present in the OCP. Indeed, while Pins showed

similar robustness results in the track reconstruction problem, it largely under performed

in the minimum lap time one. It is opinion of the authors that this is mainly due to the

robustness of IPOPT that implements a mechanism that project the variables into the

feasible region, and adopts a reliable initialisation of the Lagrange multipliers. On the

contrary, Pins uses a zero guess for the Lagrange multipliers, moreover, if the guess violates

the constraints, it suffers of ill-conditioning due to the high penalty values (since constraints

are not projected into a feasible region like in IPOPT ).

In the minimum time problem, the constraint enforcement analysis showed that Pins

solution does not reach the exact constraints boundaries (as GPOPS-II does). In particular,

its solution did not make full usage of the track width, engine power and tyre adherence.

This behaviour is a direct consequence of the lack of automatic tuning of the penalty weights

and parameters during the convergence to the solution.

Finally, when tested on a typical utilisation scenario (i.e. optimisation of car design

parameters) the two software provided similar outcomes. In particular, the location of the

optimal braking bias and roll stiffness given by Pins and GPOPS-II were very close, with

relative differences of the order of 10−3. The small differences could be explained by the

slightly different simulated car dynamics due to different constraint usage and regularisation.

In all previous test problems nothing has been stated about the solver performance re-

lated to the time required to compute the solution. A comparison of such performance for

the two algorithm is not an easy task because the two solvers are developed with differ-
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Table 3.8: Solution computing times measured on a desktop computer equipped with an
Intel Xeon E3-1270 v5 processor with 32GB of ram, running on Ubuntu 16.04. GPOPS-II
has always been used with IPOPT as NLP solver and the ma57 linear solver[34]. Pins turns
out to be significantly faster than GPOPS-II in most of the problems.

Problem Number of Pins GPOPS-II GPOPS-II to
mesh points time [s] time [s] Pins time ratio

Motorcycle basic 100 0.2 0.9 4.5
Motorcycle basic 5000 7 2 0.3
Adria 2D 2719 (1 per meter) 0.1 9 90
Montmelo 2D 4650 (1 per meter) 0.1 11 110
Mugello 3D 5244 (1 per meter) 0.5 60 120
Imola 3D 4906 (1 per meter) 0.5 35 70
Car model 2719 (1 per meter) 6 50 8
Car model 54380 (20 per meter) 96 932 10
Car model 543800 (200 per meter) 1184 10180 8.5

ent programming languages. Pins is entirely written in c++ and, even if it uses a Ruby

interpreter to setup the problem data, the solution algorithm and the problem function eval-

uation are computed by compiled code. GPOPS-II instead is developed as a MATLAB c©
library, but uses a compiled NLP solver (a compiled version of IPOPT has been used here).

Thus, function evaluation is done at MATLAB c© level (even if the user may compile the

functions into mex files) while the NLP solution is calculated by compiled code. Thus a

comparison of the solvers performance is not really meaningful to compare the efficiency

of the algorithms, but it is certainly interesting from a practical (i.e. user) point of view.

In the test problem analysed in this work, it has been noticed that Pins is generally sig-

nificantly faster than GPOPS-II ; the measured computing times are reported in table 3.8.

3.5 Summary

In this chapter indirect and direct optimal control methods have been compared on three

test problems related to vehicle optimal control applications. Numerical solvers Pins and

GPOPS-II have been chosen respectively as representative for the indirect and direct ap-

proach since they are the software most used in literature for this purpose. The results

showed that each software has advantages and disadvantages compared to the other. In

particular, Pins excelled in computational time and absolute accuracy, while GPOPS-II

resulted to be more robust and, when using coarse meshes, even more accurate. Moreover,

from a user point of view, GPOPS-II may seem more user-friendly since it does not require
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any fine-tuning of the inequality constraints, which are automatically managed by the NLP

solver. Pins instead requires the user to properly adjust the penalty parameters in order

to achieve the best performance. While this is slightly time consuming, it offers a deeper

control on the solution strategy and allows the user to choose whether to prefer fast solu-

tion computing or accurate constraint enforcement. However, from a general perspective,

it can be stated that initialisation phase of the optimal control problems plays a major

role in solver robustness. On overall results showed that indirect and direct methods on

overall have a similar behaviour when dealing with minimum lap time problems; most of

the observed differences between the two solvers can be explained with different numerical

implementation features rather than with intrinsic differences of indirect and direct meth-

ods. Such implementation features include: integration scheme, multiplier initialisation,

penalty tuning algorithm, projection of the state into feasible region.
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Chapter 4

Modelling and lap time simulations

of four-wheeled vehicles

In this chapter optimal control theory is applied to minimum lap time problems of four-

wheeled vehicles. Particular attention is dedicated to the modelling of the vehicles, since

different modelling choices affect both simulation outcomes and the solving capabilities of

numerical software. The relevance of different modelling choices for the simulation outcomes

is first investigated, then a novel multibody model of a GP2 car for optimal control problems

is proposed and used for lap time simulations on the Montmelò circuit. Finally, similar

modelling and simulation techniques are applied to go-karts.

4.1 Introduction

Since early attempts to solve minimum lap time problems in the late 50’s [82], huge im-

provements have been done in minimum lap time problems, and in the last decades they

have become widely used to simulate the performance of race cars and motorbikes, and to

optimise their design.

Vehicle modelling is a crucial element in lap time simulations, especially in optimal

control ones. The vehicle model should be able to capture the essence of the dynamics so

as to lead to reliable simulations, yet at the same time it should not be too complex —

e.g. with several dof — otherwise the resulting optimal control problem may be practically

non solvable. A good vehicle model thus must include all relevant dynamics features (for

the specific case of study) and at the same time it must lead to a practically solvable, with

current numerical solvers, optimal control problem. Since optimal control numerical solvers

are faster and more robust when the Jacobian and Hessian matrices are calculated exactly

[20, 11] (that means not through numerical approximations), the exact derivatives of the
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vehicle equations of motion should be known. Thus, well-known car models of commercial

multibody software, like ADAMS, Virtual Lab Motion, CarSim, RecurDyn and SimPack are

of little use in optimal control problems. Mathematical modelling is instead the natural way

to develop a vehicle model where the equations of motion, and their derivatives, are known.

All the vehicle models presented in this chapter have been developed with the mathematical

approach, with use of the symbolic algebra software Maple c© and the MBSymba library

[60]. The models are carefully described so as to makes it clear which dynamic features are

included and which are disregarded. A possible different approach for the vehicle modelling

may be the use of software (as those based on Modelica) that allows the user to only declare

bodies and interactions between them; then the software automatically generates a code

for the evaluation of the equations of motion and their derivatives. It is opinion of the

author that the mathematical approach is favourable over the latter approach since it gives

the possibility to read, really understand, and manipulate the equations of motions. A

deep understanding of the equations makes it clear which physical phenomena are included,

moreover it allows to modify the equations by simplifying those terms that are uselessly

complex and may cause numerical issues. On the other hand this approach requires more

expert developer.

Looking at the historical development of optimal control lap time simulations, it can be

noted that the complexity of vehicle models has increased in parallel with the improvements

of numerical solvers and computer processing power. Car models in the first 00’s [21, 22, 23]

used to include seven dof: three dof for the chassis gross motion (longitudinal, lateral and

yaw motion), and four dof for the wheel spins. Tyre loads were calculated in quasi-steady-

state (QSS) conditions by assuming a perfect balance equations of the vertical forces and

of the pitch and roll torques acting on the chassis. Thus the chassis motion inertia was

neglected, moreover a constant ratio between the lateral tyre load transfer at the front axle

and at the rear one was assumed. Since then car models with seven dof has been widely

used [48, 72, 65, 58, 92]. In some applications substantial new features and improvements

are introduced: in [21] and [49] a model that included suspension travel is presented; even

though suspensions are modelled as simple vertical springs (i.e. suspension kinematics is not

taken into account), tyre loads are dynamically calculated and chassis inertia is considered.

Moreover, the same author in [49] adds a thermodynamic tyre model. In [58] the basic seven

dof car model is endowed with an energy recovery system (simulating a Formula 1), in [56]

a three dimensional 1 track model is introduced and in [65] the aerodynamic-suspension

interaction of a Formula 1 car is modelled through a quasi steady state pre-calculated map.

1The term “three-dimensional” road is here used improperly since the road actually is a two-dimensional
manifold. Three-dimensional means that the road is not flat and it extends on a three-dimensional space,
i.e. the road presents elevation variations.
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Sometimes even simpler single track models are used, as in [90, 91]; however these two

works do not aim at solving lap time problems, but at demonstrating the advantage of the

handbrake technique in particular scenarios.

This brief but comprehensive survey of car models for optimal control lap time simula-

tions shows that despite the model complexity has continuously increased with time, these

simulations still almost always rely on a relatively simple seven dof model (three dof for the

chassis gross motion and four for the wheel spins). While the car models with three degrees

of freedom for the chassis gross motion (and QSS tyre loads) lead to a simplification of the

resulting optimal control problem, it is not clear what level of accuracy in the simulation

outcomes these simplified models may provide. In particular these models do not take into

account for the suspension-related loads transfer delay, moreover a constant roll stiffness

ratio between the front and rear axle is assumed, which may be far from reality. Lap time

simulations are often used to optimise the vehicle design and setup, therefore simulation

outcomes should not be negatively affected by simplifications in the vehicle model. It is

a priori not clear what are the most important vehicle dynamics features that should be

included for accurate results. Multiple choices for the desired model structure can be made

and different approximations can be assumed; common simplifications usually affect wheels,

suspensions and/or chassis dynamics. Even controls, that simulate driver inputs, can be

inserted into the model at different levels of the dynamic. For instance, traction control

can relies, in order of complexity, in tyre forces, wheels slip, or axle torque. Generally, the

highest modelling complexity is adopted for the particular dynamic that has to be investi-

gated, while reasonable simplifications are taken in the rest of the model. However, a deep

understanding of consequences of such approximations is still missing in literature, and how

they affect simulation results is yet not well quantifiable.

The first part of this chapter tries to give answer to this question, with a comparison

of three car models with different levels of detail in the car dynamics. The aim is to

understand how different models can influence both simulation outcomes and computational

cost of lap time simulation: it is not a priory clear which complexity should be adopted

to get the best compromise between reliable results and short computational times. In

the second part of this chapter (section 4.3) a state-of-the art model for a GP2 car is

presented. This model aims to improve existing car models for optimal control simulations

by including effects related to suspension kinematics and a more accurate aerodynamic

interaction where drag and lift forces depend on the dynamically calculated ride heights.

Lap time simulation outcomes of this model will be validated through comparison with

experimental data recorded during a qualifying lap in the 2012 season. Finally, the third

part of this chapter (section 4.4) is dedicated to lap time simulation of a racing go-kart.
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The peculiar characteristic of go-karts is the lack of rear axle differential, which leads to

a totally different design strategy from race cars. Section 4.4 is motivated not only by

the particular dynamics resulting from the absence of differential, but also by the lack in

literature of examples of go-kart lap time simulations.

4.2 The significance of high-order dynamics in lap time sim-

ulations

The aim of this section is to understand how different car models can influence both min-

imum lap time simulations outcomes and the computational cost of the optimal control

problem. Three car models with different levels of detail in the car dynamics modelling

are here developed and then compared in minimum lap time simulations and car design

optimisation.

In the first part of this section the three car models, that are a 14 dof GT class model

together with other two simpler (ten and seven dof) models, with will be described. The

full features model (14 dof) is composed by the car chassis which is a rigid bodies with six

dof (translation and rotations in the three space dimensions), plus four wheels with two

additional dof each, respectively the suspension motion and wheel spin. The second model

has been derived by assuming the suspensions to be in quasi steady state conditions, i.e. on

each wheel the suspension force is always balanced by the tyre load. This allows to remove

the four suspension-related dof yet at the same time the chassis motion is not neglected and

the tyre loads are not calculated in quasi steady state conditions. Finally, the third model

is the classically used one with seven dof, i.e. the chassis roll, pitch and vertical motion

with respect to the road plane are neglected and tyre loads are the QSS ones.

In the last part of this section the simulations outcomes obtained with these models will

be compared. Since lap time simulations are often used for the design and setup optimisation

of vehicles, the sensitivity of the three models to variations of the centre of mass position

and of the suspension stiffness will be analysed. Simulations are performed on the Adria

International Raceway.

4.2.1 Full features dynamic car model (14 dof)

The full features multibody model is composed by the chassis body that can translate and

rotate about the three Cartesian axes, plus the four wheels that can spin and move vertically

due to the suspension motion. The model thus comprises 14 degrees of freedom, as reported

in table 4.1: six are related to the chassis motion, plus two additional dof for each wheel, that

are the vertical displacement and the wheel spin. Tyres loads are dynamically calculated
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Table 4.1: Degrees of freedom of the 14 dof car model.

degrees of freedom units description

s m position along road curvilinear abscissa
n m lateral displacement from road middle lane
z m CoM vertical displacement from the nominal height
φ rad chassis roll angle
µ rad chassis pitch angle
α rad chassis yaw angle relative to the road middle lane direction

z
(âŝ)
w m wheel vertical travel

ω
(âŝ)
w rad/s wheel spin

through tyres radial stiffness; tyre longitudinal and lateral forces are calculated as function

of the loads and slip quantities through a Pacejka magic formula. Aerodynamic drag and

down-force have been taken into account too. Controls rely in steering angle and wheel

torques: positive torques are exerted only on the rear axle while negative ones (braking)

are divided between front and rear wheels with a constant bias. A differential with torque

distribution has been implemented in the rear axle.

The road model used here is the 2D model described in appendix A; the 2D road model

has been chosen instead of the 3D one because the Adria circuit does not present any

noticeable elevation variations. With reference to the road coordinate system described in

appendix A, the relative frame Wrel that describes the motion of the vehicle chassis with

respect to (w.r.t) the road middle lane position is given by the following transformation

sequence: a lateral translation of n, a rotation about the z-axis of α, a vertical displacement

of z − h (h is the nominal CoM height from ground), a rotation about the x-axis of φ and

finally rotation about the y-axis of µ. Thus, the vehicle (chassis) frame Wv is equal to:

Wv = WrWrel = WrT (0, n, 0)Rz(α)T (0, 0, z − h)Rx(φ)Ry(µ) (4.1)

where Wr is the road reference system. It turns out the n is the lateral displacement from

the road middle lane, α is the relative heading w.r.t the road middle lane, z is the CoM

vertical displacement w.r.t the nominal position, φ and µ are respectively the roll and pitch

angles2. It is recalled that SAE convention is adopted for the axes orientation. Since wheel

vertical travels of GT cars is less than ≈ 40mm, wheel vertical travels may be considered

small3, and consequently chassis vertical displacement z, roll φ and pitch angles µ are small,

2 It should be noted that the meaning of z, φ and µ is slightly different from the same quantities defined in
section 6.4 for the motorbike model. Here the translation about the z-axis of the quantity z−h is performed
before the roll rotation of the angle φ about the x-axis.

3 Wheel vertical travels can be considered small if compared to the overall car dimensions, track width
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i.e. every function of µ, φ and z has been approximated with its Taylor series expansion up

to the first order. The resulting chassis relative reference system Wrel therefore is:

Wrel =
(
T (0, n, 0)Rz(α)

) (
T (0, 0, z − h)Rx(φ)Ry(µ)

)

=


cosα − sinα 0 0

sinα cosα 0 n

0 0 1 0

0 0 0 1




1 0 µ 0

0 1 −φ 0

−µ φ 1 z − h
0 0 0 1


(4.2)

The equations of motion for the full vehicle are calculated within a frame Wv0 that follows

only the lateral displacement and the relative heading of the vehicle:

Wv0 = WrT (0, n, 0)Rz(α)

= Wr


cosα − sinα 0 0

sinα cosα 0 n

0 0 1 0

0 0 0 1


(4.3)

With this definition ofWv0, the vehicle chassis frameWv can be written asWv = Wv0T (0, 0, z−
h)Rx(φ)Ry(µ). Moreover the frame Wv0, that is shown in figure 4.1, has the same speed

V , sideslip angle λ and yaw rate Ω of the car chassis. These three quantities (V , λ, Ω) are

used as state variables.

Newton equations of motion are calculated within the Wv0 frame, and, taking into

account all the external forces acting on the vehicle (aerodynamic and tyre forces), they

are:

m
(
V̇ + V Ωλ

)
=
∑
âŝ

F
(âŝ)
tx − (F

(fr)
ty + F

(fl)
ty )δ − Fd (4.4a)

m
(
V Ω− V λ̇− V̇ λ

)
=
∑
âŝ

F
(âŝ)
ty + F

(fl)
tx δ + F

(fr)
tx δ (4.4b)

m(z̈ − g) +
∑
âŝ

m(â)
w z̈(âŝ)

w = −
∑
âŝ

N (âŝ) − Fl (4.4c)

where F
(âŝ)
tx , F

(âŝ)
ty , N (âŝ) are respectively the longitudinal, lateral and normal tyres forces

on each wheel, Fd, Fl are the aerodynamic drag and down-force, moreover z
(âŝ)
w

4 are the

and wheelbase, which are respectively of ≈ 1.5m and ≈ 3m. As rough calculation, the ratio between the
maximum positive travel at front minus the maximum negative travel at rear and the car track width is of
≈ 0.05, which indeed is small.

4with â ∈ {r, f} indicating the rear or front axle and ŝ ∈ {r, l} indicating the right or left side.
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Figure 4.1: Representation of the frame Wv0 with respect to the road. The x-y plane of
such frame lays on the road plane. The lateral displacement n and the relative yaw angle
α from the road middle lane are highlighted. The vehicle speed V and the sideslip angle λ
are shown too.

wheel vertical5 travels with respect to the nominal position (positive when the suspension

spring gets compressed), ω
(âŝ)
w are the wheel spin velocities (positive as the vehicle speed)

and m
(â)
w are wheel masses. For sake of simplicity the complete suspension kinematics is

not taken into consideration and the wheels can move only along the z axis of the chassis

frame Wv. In all the equations of motion the time derivatives of z, φ and µ, together with

the drift λ and steering δ angles, have been considered small too.

Euler’s equations calculated w.r.t the origin of the frame Wv0 are the following:

Ixxφ̈+

Izzµ− Ixxµ− Ixz −∑
âŝ

m(â)
w b(â)z(âŝ)

w

 Ω̇ + (Izz − Ixx − Iyy)Ωµ̇

−M
(
hV λ̇+ hλV̇ + (z − h)ΩV

)
−
∑
âŝ

m(â)
w t(âŝ)v z̈(âŝ)

w

−

(Iyy − Izz)φ+
∑
âŝ

m(â)
w t(âŝ)v z(âŝ)

w

Ω2 −
∑
âŝ

m(â)
w z(âŝ)

w ΩV

+I(f)
w (ω̇(fr)

w + ω̇(fl)
w )δ + I(f)

w (ω(fr)
w + ω(fl)

w )δ̇ + Ω
∑
âŝ

I(â)
w ω(âŝ)

w = τx

(4.5a)

5“Vertical” means along the z axis of the chassis frame Wv.
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Iyyµ̈+

(Iyy − Izz)φ+
∑
âŝ

m(â)
w t(âŝ)v z(âŝ)

w

 Ω̇ + (Ixx + Iyy − Izz)Ωφ̇

+M
(

(z − h)V̇ − hλΩV
)

+
∑
âŝ

m(â)
w b(â)z(âŝ)

w +
∑
âŝ

m(â)
w z(âŝ)

w V̇

−
∑
âŝ

I(âŝ)
w ω̇(âŝ)

w +

(Izz − Ixx)µ− Ixz +
∑
âŝ

m(â)
w b(â)z(âŝ)

w

Ω2

+I(f)
w Ω(ω̇(fr)

w + ω̇(fl)
w )δ + I(f)

w Ω(ω(fr)
w + ω(fl)

w )δ̇ = τy

(4.5b)

(Izz + 2Ixzµ)Ω̇−
∑
âŝ

I(â)
w ω(âŝ)

w φ̇− Ixz(φ̈− 2Ωµ̇)− φ
∑
âŝ

I(âŝ)
w ω̇(âŝ)

w = τz (4.5c)

where Ixx, Iyy, Izz are the principal moments of inertia of the car chassis, Ixz is the cross

moment of inertia, I
(r)
w and I

(f)
w are the rear and front wheel spin inertia moment, t

(r)
v =

t
(rl)
v = −t(rr)v is the rear half track, t

(f)
v = t

(fl)
v = −t(fl)v is the front half track, b(r) = b is the

x-axis distance of the car CoM from the rear axle, and b(f) = −a is the x-axis distance of

the car CoM from the front axle. Moreover τx, τy, and τz are respectively the x, y and z

component of the net external torque acting on the chassis:

τx =
∑
âŝ

N (âŝ)(t(âŝ)v + hφ) (4.6a)

τy =FlxA − FdyA +
∑
âŝ

N (âŝ)
(
−b(â) + (h− r(â)

t )µ
)

(4.6b)

τz =
∑
âŝ

F
(âŝ)
tx (t(âŝ)v + hφ) + a

(
F

(fr)
tx + F

(fl)
tx

)
δ

+
∑
âŝ

F
(âŝ)
ty

(
(h− r(â)

t )µ− b(â)
)

+
(
F

(fr)
tx t(f)

v − F
(fl)
tx t(f)

v

)
δ

(4.6c)

where rt is the tyre radius and xA, yA are respectively the x-distance from the CoM and

the height from the road plane of the aerodynamic centre of pressure. It is worth pointing

out that the choice of calculating the Euler equations with respect to the origin of Wv0

simplifies the roll (4.5a) and pitch (4.5b) equations by avoiding the presence of any term

related to longitudinal or lateral tyre forces.

The equations governing the vertical dynamics of the wheels are the following:

m(â)
w

(
z̈(âŝ)
w − g + z̈ + µ̈b(â) − φ̈t(âŝ)v

)
= −N (âŝ) − F (âŝ)

s (4.7)

where F
(âŝ)
s represent the suspension equivalent vertical force applied from the wheels to

the chassis, i.e. a compressed suspension corresponds to a negative force. F
(âŝ)
s is the sum
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Table 4.2: Vehicle parameters

symbol value units description

b 1.12 m distance between the rear axle and the vehicle CoM
a 1.48 m distance between the front axle and the vehicle CoM

w = a+ b 2.6 m wheelbase
h 0.4 m CoM height

2t
(f)
v 1.71 m front track

2t
(r)
v 1.62 m rear track
m 1400 kg total mass
Ixx 400 kgm2 x-axis vehicle inertia (w.r.t. CoM)
Iyy 2000 kgm2 y-axis vehicle inertia (w.r.t. CoM)
Izz 1320 kgm2 z-axis vehicle inertia (w.r.t. CoM)
Ixz 0 kgm2 mixed x-z-axis vehicle inertia (w.r.t. CoM)

m
(f)
w 15 kg front wheel unsprung mass

m
(r)
w 17 kg rear wheel unsprung mass

I
(f)
w 1.1 kgm2 front wheel spin inertia

I
(r)
w 1.3 kgm2 rear wheel spin inertia

r
(f)
t = r

(r)
t 0.29 m nominal tyre radius

r
(f)
tr = r

(r)
tr 0.29 m tyre rolling radius

K
(f)
ss 200× 103 N/m front spring stiffness

K
(r)
ss 180× 103 N/m rear spring stiffness

K
(f)
a 140× 103 N/m front anti-roll bar stiffness

K
(r)
a 120× 103 N/m rear anti-roll bar stiffness

K
(f)
es = K

(r)
es 200× 103 N/m tyres radial stiffness

K
(f)
td = K

(r)
td 150 Ns/m tyres radial damping

cdA 0.34 - aerodynamics drag coefficient
clA 0 - aerodynamics lift coefficient
γ 0.7 - braking bias
kd 100 Nms/rad differential stiffness
N0 5000 N tyre nominal vertical load

µ
(f)
x0 1.57 - front tyre max longitudinal adherence at nominal load

µ
(f)
x0 1.56 - rear tyre max longitudinal adherence at nominal load

µ
(f)
y0 1.41 - front tyre max lateral adherence at nominal load

µ
(f)
y0 1.51 - rear tyre max lateral adherence at nominal load

K
(f)
tλ0 25 rad−1 front tyre sideslip stiffness at nominal load

K
(f)
tλ0 31 rad−1 rear tyre sideslip stiffness at nominal load

K
(f)
tκ0 34 - front tyre longitudinal stiffness at nominal load

K
(f)
tκ0 32 - rear tyre longitudinal stiffness at nominal load
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of the spring, damper and anti-roll bar and is given by:

F (âr)
s = F

(âr)
s0 +K(â)

ss z
(âr)
w +K

(â)
sd ż

(âr)
w +K(â)

a (z(âr)
w − z(âl)

w )

F (âl)
s = F

(âl)
s0 +K(â)

ss z
(âl)
w +K

(â)
sd ż

(âl)
w −K(â)

a (z(âr)
w − z(âl)

w )
(4.8)

where K
(â)
ss , K

(â)
ss , K

(â)
a are respectively the (rear or front) spring, damper and anti-roll bar

stiffness (reduced at the wheel), and F
(âŝ)
s0 are the suspension forces at the nominal car trim

(i.e. the load on the wheel minus the wheel weight).

The wheel spin dynamic equations are:

I(âŝ)
w ω̇(âŝ)

w = τ
(âŝ)
wd − F

(âŝ)
tx

(
r

(âŝ)
t − ξ(âŝ)

)
(4.9)

where Iwθ is the wheel spin inertia, τθη is the overall torque acting on the wheel, r
(âŝ)
t is

the tyre nominal radius, and ξ(âŝ) is the tyre radial deformation. It can be noted that the

expression multiplying the longitudinal tyre force is the loaded radius of the tyre. The tyre

deformations ξ(âŝ) can be calculated through simple kinematic expressions:

ξ(âŝ) = µb(â) − φt(âŝ)v + z(âŝ)
w + z (4.10)

The four torque inputs τ
(âŝ)
wd are not independent each other but depend on one variable,

the overall driving torque τd, which is the sum of the engine (positive part, τe) and braking

(negative part, τb) torque. Moreover the simultaneous presence of a driving torque at the

rear axle and a braking torque at the front one is not allowed:

τd = f+(τd) + f−(τd) ≡ τe + τb (4.11)

where f− and f+ return respectively the (regularized) negative and positive part of the

argument. The traction torque τe is delivered only to the rear axle, while the braking one

τb is split between both axes with a constant front braking bias γ. Moreover, at the rear

axle a velocity sensitive differential is present. Thus, the torque delivered to each wheel is:

τ
(rr)
wd =

τe
2

+ τekd(ω
(rl)
w − ω(rr)

w ) + (1− γ)
τb
2

τ
(rl)
wd =

τe
2
− τekd(ω(rl)

w − ω(rr)
w ) + (1− γ)

τb
2

τ
(fr)
wd = γ

τb
2

τ
(fl)
wd = γ

τb
2

(4.12)

where kd is the differential stiffness.
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Tyre model

Tyre vertical loads may be easily calculated as a function of tyre radial deformations, and

for simplicity it is assumed that the elastic and damping forces are linear:

N (âŝ) = f+
(
N

(âŝ)
0 +K

(â)
tr ξ

(âŝ) +K
(â)
td ξ̇

(âŝ)
)

(4.13)

where N
(âŝ)
0 is the static tyre load, Ktr is the tyre radial stiffness, Ktd is the tyre damping

coefficient and ξ is the deformation given by equation (4.10). The f+ function prevents the

loads to become negative when the wheel lifts.

Longitudinal and lateral tyre forces have been calculated as function of the tyre load N ,

the sideslip λt and longitudinal slip κt according to the Magic Formula Tyre model [70]. In

particular, sideslip angles λ
(âŝ)
t can be calculated as follows:

λ
(rr)
t = arctan

(
V λ+ Ωb

V − Ωt
(r)
v

)
λ

(rl)
t = arctan

(
V λ+ Ωb

V + Ωt
(r)
v

)

λ
(fr)
t = δ + arctan

(
V λ− Ωa

V − Ωt
(f)
v

)
λ

(fl)
t = δ + arctan

(
V λ− Ωa

V + Ωt
(f)
v

) (4.14)

Tyre longitudinal slips are instead given by these relationships:

κ
(rr)
t =

ω
(rr)
w r

(r)
tr

V − Ωt
(r)
v

− 1 κ
(rl)
t =

ω
(rl)
w r

(r)
tr

V + Ωt
(r)
v

− 1

κ
(rl)
t =

ω
(fr)
w r

(f)
tr

V + Ωt
(f)
v

− 1 κ
(rl)
t =

ω
(fl)
w r

(f)
tr

V + Ωt
(f)
v

− 1

(4.15)

where rtr is the tyre rolling radius. Finally, the time lag which is present in the generation of

lateral forces due to lateral compliance of tyre carcass is modelled as a first order relaxation

equation [70] for each tyre:

σ
(r)
tx

V − Ωt
(r)
v

Ḟ
(rr)
tx + F

(rr)
tx = F

(r)
tx,magic

(
N (rr), λ

(rr)
t , κ

(rr)
t

)
σ

(r)
tx

V + Ωt
(r)
v

Ḟ
(rl)
tx + F

(rl)
tx = F

(r)
tx,magic

(
N (rl), λ

(rl)
t , κ

(rl)
t

)
σ

(f)
tx

V − Ωt
(f)
v

Ḟ
(fr)
tx + F

(fr)
tx = F

(f)
tx,magic

(
N (fr), λ

(fr)
t , κ

(fr)
t

)
σ

(f)
tx

V + Ωt
(f)
v

Ḟ
(fl)
tx + F

(fl)
tx = F

(f)
tx,magic

(
N (fr), λ

(fl)
t , κ

(fl)
t

)
(4.16)
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where σ
(r)
tx , σ

(f)
tx are rear and front tyre longitudinal relaxation lengths. Similar expressions

hold for the lateral forces:

σ
(r)
ty

V − Ωt
(r)
v

Ḟ
(rr)
ty + F

(rr)
ty = F

(r)
ty,magic

(
N (rr), λ

(rr)
t , κ

(rr)
t

)
σ

(r)
ty

V + Ωt
(r)
v

Ḟ
(rl)
ty + F

(rl)
ty = F

(r)
ty,magic

(
N (rl), λ

(rl)
t , κ

(rl)
t

)
σ

(f)
ty

V − Ωt
(f)
v

Ḟ
(fr)
ty + F

(fr)
ty = F

(f)
ty,magic

(
N (fr), λ

(fr)
t , κ

(fr)
t

)
σ

(f)
ty

V + Ωt
(f)
v

Ḟ
(fl)
ty + F

(fl)
ty = F

(f)
ty,magic

(
N (fr), λ

(fl)
t , κ

(fl)
t

)
(4.17)

where F
(r)
tx,magic, F

(r)
tx,magic, F

(r)
ty,magic and F

(f)
ty,magic are the functions returning respectively

the rear longitudinal, front longitudinal, rear lateral and front lateral tyre forces (front and

rear tyres have different parameters), accordingly to the the Pacejka Magic Formula Tyre

Model [70]. The dependence of the tyre forces on the tyre roll angle has been neglected. It

is opinion of the author that this simplification does not affect remarkably the results since,

as it will be shown in the next sections, this model is intended to study tyre load dynamics,

not tyre longitudinal or lateral forces.

State space

Chassis, wheels and tyre equations may be reduced to a set of first order equations by

introducing auxiliary variables for the relevant chassis and suspension speeds:

ż = zdot φ̇ = φdot µ̇ = µdot ż(âŝ)
w = z

(âŝ)
w,dot

(4.18)

In conclusion, the state space variable vector x14 for the 14 dof model includes the following

29 variables:

x14 =
[
V ; λ; Ω; z; φ; µ; zdot; φdot; µdot; ω

(âŝ)
w ; z

(âŝ)
w ; z

(âŝ)
w,dot; F

(âŝ)
ty ; F

(âŝ)
tx

]
(4.19)

The control input vector u has 2 variables:

u =
[
τd; δ

]
(4.20)
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Table 4.3: Car natural frequencies

full (14 dof) massless-wheels (10 dof) basic (7 dof)

weave 2.7 Hz 2.7 Hz 2.6 Hz
bounce 2.6 Hz 2.6 Hz −
roll 5.1 Hz 4.9 Hz −
pitch 3.2 Hz 3.1 Hz −
wheels hop 20 ÷ 30 Hz − −
wheels spin 45 Hz 45 Hz 45 Hz

Chassis, wheels and tyre equations, after the reduction to the first order, can be put in the

form:

A14(x14)ẋ14 = f14 (x14,u, t) (4.21)

All numeric data used to feed the model is listed in table 4.2.

Natural frequencies

The natural frequencies of the model so far described are reported in table 4.3, where

they are calculated at a fixed speed of V = 30 m/s and in straight motion Ω = 0. Natural

frequencies of the other two models that will be described in the next subsections are shown

too. It can be noticed that the wheel spin is the fastest dynamics, while the wheel hop is

slower, chassis motions and weave are the lowest. The higher the frequencies are, the more

mesh points need to be used to simulate the dynamics, which produce a larger problem

and numerical ill conditioning could occur. In different words, higher frequencies lead to

problems that are more difficult to solve. A first option to reduce this high-frequency-related

drawback would be to neglect the wheel spin dynamics, i.e. to assume I
(r)
w = I

(f)
w = 0.

However, in order to calculate longitudinal tyre forces it is still necessary to keep spin rates

ω
(âŝ)
w as state variables. In other words, wheel spin equations (4.9) cannot be eliminated and

have to remain as nonlinear algebraic equations. However, such equations cannot be exactly

solved and substituted into the remaining equations; moreover the optimal control software

used here to solve the minimum lap time problem (Pins, see chapter 3), only recently

introduced the support for algebraic constraints of index one. At the time this study was

performed, it strictly required an ODE problem formulation so wheel spin equations has

to be included in the state space. Nevertheless, there are at least two other simplifications

that may be sequentially introduced into the model: the first one is to neglect the vertical

dynamics of the wheels, the second one is to neglect the chassis dynamics associated to the

suspensions. These models are described more in detail in the next sections.
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4.2.2 Massless wheel model (10 dof)

Wheels are responsible of the so-called hop modes which have a frequency range of 20−30 Hz.

If the wheel mass is neglected in the vertical dynamic equation (4.7), the force exerted by

each suspension are exactly balanced by the tyre vertical load. If damping is also neglected,

wheel hop equations (4.7) (substituting (4.8), (4.13), (4.10) into it) becomes algebraic and

linear in the state variables:

K
(r)
tr (z + µb+ φt(r)v + z(rr)

w ) +K(r)
ss z

(rr)
w +K(r)

a (z(rr)
w − z(rl)

w ) = 0 (4.22a)

K
(r)
tr (z + µb− φt(r)v + z(rl)

w ) +K(r)
ss z

(rl)
w −K(r)

a (z(rr)
w − z(rl)

w ) = 0 (4.22b)

K
(f)
tr (z − µa+ φt(f)

v + z(fr)
w ) +K(f)

ss z
(fr)
w +K(r)

a (z(fr)
w − z(fl)

w ) = 0 (4.22c)

K
(f)
tr (z − µa− φt(f)

v + z(fl)
w ) +K(f)

ss z
(fl)
w −K(r)

a (z(fr)
w − z(fl)

w ) = 0 (4.22d)

Therefore the above equations can be solved to express the suspension travel as a function

of the other state variables, which can then substituted into (4.10) to find the resulting tyre

deformations:
ξ̂(rr) = K(r)

es (µb+ φt(r)v + z) +K(r)
ea t

(r)
v φ

ξ̂(rl) = K(r)
es (µb− φt(r)v + z)−K(r)

ea t
(r)
v φ

ξ̂(fr) = K(f)
es (−µa+ φt(f)

v + z) +K(f)
ea φt

(f)
v

ξ̂(fl) = K(f)
es (−µa− φt(f)

v + z)−K(f)
ea φt

(f)
v

(4.23)

where

K(r)
es =

K
(r)
ss

K
(r)
ss +K

(r)
tr

K(r)
ea =

2K
(r)
tr K

(r)
a

(K
(r)
ss +K

(r)
tr )(2K

(r)
a +K

(r)
ss +K

(r)
tr )

K(f)
es =

K
(f)
ss

K
(f)
ss +K

(f)
tr

K(f)
ea =

2K
(f)
a K

(f)
tr

(K
(f)
ss +K

(f)
tr )(2K

(f)
a +K

(f)
ss +K

(f)
tr )

(4.24)

From the above expressions it can be noticed that tyre deformations are given by two terms:

the first is that of a totally rigid suspension with a tyre radial stiffness given by the series

of the suspension and tyre springs, and the second term is due to the anti-roll bar and it

is proportional to the stiffness of the bars. In particular it can be noticed that ξ(âŝ) are

linear expressions of z, φ, µ. To preserve the damping characteristics of the pitch, bounce

and roll chassis modes, the damping coefficient of the tyres is then replaced by a modified

coefficient Ked, that is an approximated equivalent damping, which preserves the damping

ratio of the chassis vibrations modes. Thus, tyre loads are finally given by:

N (âŝ) = f+

(
N

(âŝ)
0 +K(â)

es ξ̂
(âŝ) +K

(â)
ed

˙̂
ξ(âŝ)

)
(4.25)
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After the elimination of wheel hop equations and suspension travel variables, the first

order formulation (4.21) of the ten dof model has 21 state variables:

x10 =
[
V ; λ; Ω; z; φ; µ; zdot; φdot; µdot; ω

(âŝ)
w ; F

(âŝ)
ty ; F

(âŝ)
tx

]
(4.26)

4.2.3 Basic car model (seven dof)

This model neglects the chassis motion due to the suspensions, i.e. variables z, φ, µ are set

to zero and equations (4.4c), (4.5a), (4.5c) are discarded. Therefore only seven dof there

remain: the gross motion variables V , λ, Ω and wheels spin variables ω
(âŝ)
w . However, the

introduction of such simplifications determines the loss of information (i.e. the equations)

necessary to calculate tyre loads N (âŝ). To solve this problem, tyre loads are pre-calculated

in steady state conditions as a function of the longitudinal speed V , longitudinal acceleration

ax and lateral acceleration ay using the 14 dof model:

N (âŝ) = N (âŝ)(V, ax, ay) (4.27)

More precisely, the full features dynamic model is converted into a steady state problem by

equating to zero the right hand side of equations (4.21) (i.e. setting the derivatives to zero),

moreover a fictitious longitudinal gravity field has been introduced to emulate longitudinal

acceleration ax, while the steady state lateral acceleration is simply ay = ΩV . The quasi

static problem has 29 algebraic equations and 32 variables: states 4.19, inputs 4.20 and the

acceleration ax. In conclusion, once variables V , ax, Ω have been fixed, all other variables

may be calculated from the steady state equations (provided that a solution exists).

To finally use the quasi-static expression (4.27) in the seven dof dynamic model it is

necessary to calculate the longitudinal and lateral accelerations as a function of the state

variables. The easiest solution is to add ax and ay to the state variable vector, with the

following first order low pass filter as corresponding equations:

τaxȧx + ax = V̇ + ΩV λ

τayȧy + ay = ΩV − V̇ λ− V λ̇
(4.28)

where τax and τay are the filter time constants. Such filters introduce an artificial time lag

between tyre loads and vehicle acceleration variations. This can be considered as a simplified

description of the time lag which is naturally induced by suspensions in real vehicles.6

6 A possible different approach could consist in modelling the suspension dynamics by using the following
differential equation for each tyre load: τNN

′ + N = N(ax, ay), where N(ax, ay) is the tyre load in steady
state conditions with longitudinal and lateral accelerations ax, ay. The time constant τN would be such to
simulate the correct suspension-induced time lag. This approach however requires two more state variables
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In conclusion, the first order formulation (4.21) of the seven dof model has 17 state

variables:

x7 =
[
V ; λ; Ω; ax; ay; ω

(âŝ)
w ; F

(âŝ)
ty ; F

(âŝ)
tx

]
(4.29)

4.2.4 Vehicle tracking

The state spaces of the three car models completely determine the car dynamics, however

they have to be augmented including the road tracking variables (s, n, α) in order to be

usable for minimum lap time problems. When the three variables s, n, α are added to

the state variables, three more equations, associated to these variables, must be added to

the first order equation system. These three equations can be obtained by expressing the

longitudinal and lateral speed of the frame Wv0 (see (4.3)) both as function of the state

variables V , λ, Ω and as function of the time derivatives of the tracking variables ṡ, ṅ, α̇:

V cosλ = ṅ sinα+ ṡ cosα(1− κ) (4.30a)

−V sinλ = ṅ cosα− ṡ sinα(1− κ) (4.30b)

Ω = α̇+ ṡκ (4.30c)

where κ is the road curvature (see appendix A). These equations are the first order equations

that determine the time evolution of the tracking variables. They can also be made explicit

in ṡ, ṅ, α̇:

ṡ =
V cos (α− λ)

1− nκ(s)
(4.31a)

ṅ = V sin (α− λ) (4.31b)

α̇ = Ω− κ(s)
V cos (α− λ)

1− nκ(s)
(4.31c)

Since the sideslip angle λ has been assumed small, the simplification sinλ ≈ λ and cosλ ≈ 1

can be used.

4.2.5 Formulation of the minimum lap time OCP

The minimum lap time problem are usually described in the space domain rather than in

the time domain since practical evidence shows that the former makes the resulting optimal

control problem to be easier to solve [25, 59, 57]. Thus, the time to space transformation

described in appendix A is used to formulate the OCP in the road curvilinear abscissa

domain. The expression for ṡ (4.31a) shows that the time to space transformation is not

than the used one.
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singular provided that V > 0, i.e. the vehicle never stops, and n < 1/κ(s), i.e. the vehicle

never passes over the local curvature centre of the road.

Optimal control solutions typically include abrupt variation of the control inputs, which

conflict with the dislike of jerk felt by human drivers [93, 13, 15]. To obtain smoother

manoeuvres, the model is therefore controlled by the steering angle rate and the longitudinal

jerk. According to this, the two driver inputs τd and δ have been included to the state

variables, while the controls have been moved to their time derivatives, jτ and jδ, satisfying

the following equations:

jδ = δ̇ jτ = τ̇d (4.32)

where jτ is the longitudinal jerk control, which (mainly) controls the longitudinal dynamics,

and jδ is the lateral jerk control, which (mainly) controls the lateral dynamics. Thus, the

optimal control state variables include the car model variables (either 14, ten or seven

depending on the model), plus the tracking variables n and α, and the driver inputs τd and

δ. The controls are the derivatives of the driver inputs, jδ and jτ . The road curvilinear

abscissa is instead the domain variable.

In order to minimise the lap time, the OCP target is composed only of a Lagrange

term equal to 1/ṡ, such that its integral along the road curvilinear abscissa is equal to the

lap time. Equation (4.31a) clearly shows that the quantity 1/ṡ can be easily expressed as

function of the other state variables.

The OCP boundary conditions are cyclic, meaning that all the state variables at the

end of the domain (i.e. when s equals the road length) must be equal to their initial value

(i.e. s = 0).

A constraint is added to the optimal control problem in order to prevent the vehicle

from exiting from the track:

−
(
rw
2
− tv

)
< n <

rw
2
− tv (4.33)

where tv is the maximum between the rear t
(r)
v and front t

(f)
v half width of the car, and rw

is the road width (that is a function of s). Another constrain is used to limit the overall

traction torque τd to maximum engine torque available τ
(max)
e as follows:

τd < τgτ
(max)
e

τgω(rr)
w + ω

(rl)
w

2

 (4.34)

where τg is the engine to rear axle gear ratio. It should be noted that τgτ
(max)
e is the

torque available at the rear axle, assuming that the proper gearbox ratio is used while
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driving. Moreover, the maximum engine torque depends on the engine spin velocity. A

third constraint has been added to the OCP in order to prevent the ideal driver from

locking the front wheels when braking: indeed real drivers tend to avoid such manoeuvre as

long as it causes high tyre wear and makes the tyre to loose performance. Mathematically

this constraint has been expressed as:

κ(fr) ≥ κmin κ(fl) ≥ κmin (4.35)

where κmin ≈ −0.6 is the minimum slip value as it would result in unacceptable tyre wear.

Finally, the control inputs jτ , jδ, which are strictly related to the driving torque and

steering angle rate by equations (4.32), are limited in magnitude so as to avoid control rates

higher than what a human driver can sustain:

−jτ,max ≤ jτ ≤ jτ,max − jδ,max ≤ jy ≤ jδ,max (4.36)

where jτ,max and jδ,max are the maximum value allowed for jτ and jδ controls.

The resulting optimal control problem is solved using Pins, the numeric OCP solver

based on an indirect approach (see section 3.2.1).

4.2.6 Simulations results

The three models described in this section have been compared on a full lap simulation on

the Adria International Raceway. The trajectory resulting from the 14 dof model simulation

is illustrated in figure 4.2a, while the vehicle speed and accelerations are shown in figure

4.2b. The maximum braking and lateral accelerations are ≈ 15m/s2, and the maximum

positive longitudinal one is ≈ 10m/s2, limited by the engine power limit. The simulated lap

time is of 73.789s, which is not so different from a qualifying lap-time of the GT1 series.

The computational time for a single simulation is respectively ≈ 1700s on a standard

PC equipped with an Intel Core 2 Quad Q9300 CPU. Simulations have been repeated for

the ten dof and seven dof models, finding simulated lap times respectively of 73.790s and

72.967s, while the computational time was respectively 970s and 560s. In other words,

simplified models lead to a lap time prediction very similar to the one of the 14 dof model,

but using respectively only the 57% and 33% of computational time.

In lap time simulations it is more important to capture the lap time sensitivity to

vehicle setup variations that its absolute value, which is quite difficult to find because of

the uncertainty of some parameters, first of all tyre adherence in real conditions. Thus the

accuracy of the three models is tested through a comparison in the sensitivity with respect to

the variation of two car characteristics, rather than looking at the absolute lap-time for each
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Figure 4.2: Trajectory and gross-motion resulting from optimal control simulation on the
circuit of Adria. The track is treaded counter-clockwise.

model. The first parameter that has been analysed is the longitudinal position of the centre

of mass: its distance from the rear axle has been varied in the range 1.12m < b < 1.26m.

The lap-times obtained with the three models are shown in figure 4.3a. The 14 dof model

shows a kind of parabolic trend, with the best performance obtained for b = 1.215m. The

ten dof model lap-times are very close to that of the full one: the highest time difference is

of ≈ 0.01s and the minimum time also is reached at the same value of b. Differently, the

basic seven dof model shows some discrepancies with respect to the other two models: the

lap-times are significantly lower and, more important, the minimum time is obtained at a

different position of the CoM, precisely for b = 1.155m.

In the second parametric analysis, the stiffness of the front suspensions spring has been

varied in the range 160×103N/m < K
(f)
ss < 240×103N/m, and the calculated lap-times are

shown in figure 4.3b. Again, the lap-times obtained with the full and massless-wheel models

are very close, and the minimum time is obtained for the lowest value of the spring stiffness

(while the absolute minimum seems to be located outside interval of analysis). In the range

of stiffness considered, the lap-times varies of ≈ 0.1s between the lowest and the highest.

On the contrary, the basic model appears to be less sensitive to changes of the suspension

stiffness, with lap-times varying of only 0.01s in the same range of stiffness. Moreover, a

local minimum lap time is shown for K
(f)
ss = 180× 103N/m.

Since the main difference between the three models lays in the way tyres loads are

calculated, the results of the previous analyses suggest that the steady state tyre loads

approach adopted for the basic model does not manage to faithfully reproduce the tyres

79



1.1 1.15 1.2 1.25 1.3
b (CoM horizontal position) [m]

72.8

73

73.2

73.4

73.6

73.8
La

p 
tim

e 
[s

]
Lap time vs CoM x-position

full
massless wheel
basic

(a) Parametric analysis of the x-position of the
CoM b (the reference value is b = 1.120m).

full
massless wheel
basic

160 180 200 220 240

Kss
(f) [103 N/m]

La
p 

tim
e 

[s
]

Lap time vs front spring stiffness

73.02

73.45

73.5

73.55

(b) Parametric analysis of the stiffness of the

front suspensions spring K
(f)
ss (reference is

K
(f)
ss = 200× 103N/m).

Figure 4.3: Parametric analyses comparison of the three models.
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Figure 4.4: Rear left tyre load for the full model (top plot) and difference with respect the
other two models (bottom plot). While for the massless wheel model tyre load differences
are of few tens of Newton, for the basic model differences arrive up to 1kN . In the simulation
for the basic model the trajectory of the full model has been imposed in order to remove
trajectory-related load differences.
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load dynamics. In order to confirm this, the simple model has been compared on the exact

same trajectory of the full model, so as to remove any trajectory-related load differences.

Thus, a simulation has been performed with the basic model on an imposed trajectory

(the one obtained with the full model). The load on the rear left tyre resulting from this

simulation is shown in figure 4.4. In the top plot the rear left tyre load for the full model

is presented; in the bottom plot the differences with respect the other two models are

highlighted. The basic model shows a tyre load difference of up to 1 × 103N with respect

to the full model, while the massless-wheel one differs up to only 80N .

The analysis of tyre load transfer, together with the results of the parametric analyses,

suggests that the the massless-wheel model represents a useful simplification with respect

to the full one, since it reduces the simulation computing time and at the same time it

preserver a good accuracy on the simulated vehicle dynamics (in particular of tyre loads).

On the contrary, the basic seven dof model leads to different simulation outcomes in both

the parametric analysis, thus the model results to be over-simplified. It might be possible

that the differences between the three dynamics modelling levels can increase or diminish if

the dataset of a different car category are used. However, it has been shown that there are

differences between the models and also a rough quantification of them has been provided.
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4.3 GP2 race car

In this section a novel and accurate GP2 car model for optimal control problems is devel-

oped and used for OC lap time simulations. In the previous section 4.2 it has been shown

that car models with quasi steady state tyre loads may lead to significantly different design

optimisation outcomes and therefore more accurate car models should be used in lap time

simulations, at least when tyre loads dynamics is of relevant importance. Tyre load transfer

can be dynamically simulated by including in the car model all the six chassis dof together

with the four suspension-related ones. Compared to a QSS tyre loads model, this approach

allows to dynamically simulate load transfers taking into account for suspension effects, at

the expense of three or seven additional dof, as seen in section 4.2. In the same section, it has

been shown that suspension degrees of freedom may be neglected if suspension travels can

be expressed (or estimated) from the other state variables. The GP2 model here presented

extends the models of the previous section by taking into consideration for the suspension

kinematics and for a more complex aerodynamic forces. The increase of the model com-

plexity is such that it is no longer possible to express the suspension travel as function of

the other state variables, as in the massless wheel model. Indeed, the nonlinearities of the

suspension kinematics and aerodynamic forces make the suspension force balance equation

not analytically solvable.

In the next subsection the multibody model is described and the corresponding equations

of motion are presented. The multibody model is composed by the main chassis (6 dof)

and four wheels, which are connected to the chassis by means of the suspension system;

wheels can spin about their spin axis (4 dof) and move with the suspension travel (other 4

dof). Suspension kinematics is accurately analysed in order to understand how tyre lateral

and longitudinal forces contribute to the vehicle trim and thus load transfer. Then, the

minimum lap time simulation outcomes are presented and the results are validated through

comparison with experimental data acquired during a qualifying lap on the Montmelò circuit

in 2012.

4.3.1 Multibody model of the GP2 Car

A GP2 car is a rear wheel drive formula car characterized by very stiff suspensions and

high aerodynamic downforce generated by rear and front wings. The aerodynamics of GP2

cars is quite complex and wing force intensity depends on ride heights, therefore any model

used to simulate GP2 car dynamics should carefully reproduce not only aerodynamic forces,

but also all parameters that determine vehicle trim, first of all suspensions and tyres. The

model here developed abandons the quasi-steady state tyre load simplification since it has
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been showed that it negatively influences simulations outcomes (as discussed in section 4.2).

Suspension kinematics are taken into consideration because they have a relevant influence

on vehicle performance [6, 64]. A car model that includes this features leads to a relatively

complex minimum lap time optimal control problem, that may be very difficult to solve. The

car mathematical model is thus a key element, together with the optimal control formulation

and software used, to successfully solve the resulting problem.

The chassis is modelled exactly as it has been done in section 4.2.1 for the 14 dof car

model. The chassis is a rigid body that can translate and rotate about the three axes

(SAE axis convention is adopted); it is recalled that position variables associated to these

six degrees of freedom (dof) are: the position along the curvilinear abscissa s, the lateral

displacement from the road middle lane n, the CoM vertical displacement z w.r.t its nominal

height h, the chassis roll φ and pitch µ angles, and the chassis yaw angle relative to the

road middle lane direction α. Wheels are connected to the main chassis through short-long

arm suspensions, that introduce one additional dof per wheel; the vertical (i.e. along the

z axis of the chassis frame) motion of a generic wheel is named z
(âŝ)
w

7. As the suspension

moves, the actual rigid motion of the wheel plate has been included in the model, including

translations and rotations about all axes. Suspension forces take into account coil springs,

torsion bars, dampers and anti-roll bars. Finally, wheel spins add four more dof ω
(âŝ)
w .

All the degrees of freedom are the same of the 14 dof car model, reported in table 4.1. A

speed sensitive differential is present at the rear axle. Tyre longitudinal forces are calculated

through a nonlinear tyre model, and aerodynamic drag and lift forces depend on ride heights.

Summarizing, the model comprises the same 14 mechanical dof as the car model presented

in section 4.2.1; the list of the 14 dof can be found in table 4.1. Additional variables are

listed in table 4.4.

Table 4.4: GP2 model variables.

variable units description

V m/s chassis on-road speed

λ rad chassis drift angle

Ω rad/s chassis yaw rate

ysr m steering rack displacement

h(f) m front ride height

h(r) m rear ride height

7It is recalled that the superscript â ∈ {r, f} indicates the rear or front axle and ŝ ∈ {r, l} indicates the
right or left side.
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variable units description

κ m−1 road curvature

δ(âŝ) rad wheel steering angle

φ
(âŝ)
w rad wheel camber angle w.r.t the road plane

x
(âŝ)
w m wheel plate displacement along x-axis

(with respect to nominal position)

y
(âŝ)
w m wheel plate displacement along y-axis

(with respect to nominal position)

γ
(âŝ)
w rad wheel plate camber angle (w.r.t the nominal position)

µ
(âŝ)
w rad wheel plate pitch angle (w.r.t the nominal position)

ψ(âŝ) rad wheel plate yaw (steering) angle (w.r.t the nominal position)

N (âŝ) N tyre load

F
(âŝ)
tx N tyre longitudinal force

F
(âŝ)
ty N tyre lateral force

τe Nm engine torque

τb Nm braking torque

τ
(âŝ)
wd Nm driving torque applied to the wheel

F
(âŝ)
s N suspension force acting on the chassis and counter-reacting on the

wheel

Fd N drag force

F
(f)
l N front axle aero-downforce

F
(r)
l N rear axle aero-downforce

Rt N tyre rolling resistance

ξ(âŝ) m tyre radial deformation

κ
(âŝ)
t - tyre longitudinal slip

λ
(âŝ)
t rad tyre sideslip angle

V
(âŝ)
tx m/s tyre contact point longitudinal speed

V
(âŝ)
ts m/s tyre contact point spinning speed

V
(âŝ)
ty m/s tyre contact point lateral speed
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4.3.1.1 Suspension kinematics

In a GP2 car the suspension system is based on short-long arm (SLA) type, as shown in

figure 4.5: the wheel is connected to the chassis by means of two A-shaped arms that end

with spherical joints, plus the steering rod which ends either in a movable spherical joint, in

the case of the front suspension, or in a fixed spherical joint, in the case of the rear one (even

if the rear wheels have no steer, this latter rod will be referred to as “steering rod”, as for the

front suspension). The position of attachment points together with rod lengths completely

determine the rigid motion that the wheel follows when the suspension moves up and down.

The knowledge of the precise suspension kinematics is important to accurately reproduce

Figure 4.5: Front (left) and rear (right) short-long arm suspension scheme.

the load transfers, even in stationary conditions. Indeed, since the tyre contact point moves

fore and aft as well as left and right in the road plane as the suspension moves up and down,

tyre lateral and longitudinal forces influence the equilibrium of the suspension. Moreover,

each wheel not only translates as the suspension moves, but it also rotates about all the

three axes; such rotations influence the in-plane forces generated by the tyre as long as they

modify both the tyre sideslip and camber angles.

Here the kinematics of the 2011 Dallara GP2 car will be analysed, while some numerical

results for the steady state configuration will be provided in section 4.3.1.4. From the

kinematic point of view, the SLA suspension is a special case of the multilink suspension

and it is composed by five rods attached through spherical joints to the chassis at one edge,

and to the wheel plate at the other edge, as shown in figure 4.5. Attachments points that

are fixed to the vehicle frame and are named: upper front chassis point C1, lower front

chassis point C2, upper rear chassis point C3, lower rear chassis point C4 and steer chassis

point C5. This latter point, which is connected to the steering rod, is fixed to the chassis
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in the case of the rear suspension, while in the front one it moves along the y-axis as the

driver steers. On the wheel side, attachments points are named: upper front wheel point

P1, lower front wheel point P2, upper rear wheel point P3, lower rear wheel point P4 and

steer wheel point P5. Due to the design of this SLA suspensions, the point P1 coincide

with P3, and P2 with P4 (see figure 4.5). The wheel plate position and orientation can

be completely described by the displacement of the wheel plate centre w.r.t its nominal

configuration (x
(âŝ)
w , y

(âŝ)
w , z

(âŝ)
w ), the yaw angle ψ(âŝ), the camber angle γ

(âŝ)
w and the spin

angle µ
(âŝ)
w :

w(âŝ) =
[
x(âŝ)
w ; y(âŝ)

w ; z(âŝ)
w ; γ(âŝ)

w ;µ(âŝ)
w ;ψ(âŝ)

]
(4.37)

The rigid motion of the wheel is described by the 4 × 4 transformation matrix method as

follows:

W (w(âŝ)) = W
(âŝ)
0 T (x(âŝ)

w , y(âŝ)
w , z(âŝ)

w )Rz(ψ
(âŝ))Rx(γ(âŝ)

w )Ry(µ
(âŝ)
w ) ≡W (âŝ)

0 S(w(âŝ))

(4.38)

where W
(âŝ)
0 is the wheel reference system in nominal conditions, T (x

(âŝ)
w , y

(âŝ)
w , x

(âŝ)
w ) is

the translation transformation matrix, and Ri(a) are the rotation matrices around i-axis

of an angle a. From the equivalence in (4.38), S(w(âŝ)) is the transformation matrix that

gives the wheel plate configuration with respect to its nominal position. Since the suspension

linkages allow the wheel to have only one degree of freedom, the coordinates w are mutually

dependent and can be expressed as function of only one independent parameter; the wheel

plate vertical displacement z
(âŝ)
w has been chosen as independent dof since it represents the

most important movement of the suspension. The five mathematical constraints necessary

to remove the dependent variables can be obtained by imposing that the distance between

the connecting points located at the extremities of each rod must be equal to the rod

length. As the wheel plate moves, the coordinates of each connecting point on the wheel

side P i = (xP i , yP i , zP i , 1) can be easily calculated from their nominal position P i
0:

P i(âŝ) = W
(âŝ)
0 S(w(âŝ))W

−1(âŝ)
0 P

i(âŝ)
0 (4.39)

Therefore the five constraints (for each wheel) can be expressed by the following relationship:

(xP i − xCi)2 + (yP i − yCi)2 + (zP i − zCi)2 − l2i = 0, i ∈ {1..5}, (4.40)

where li is the length of the rod connecting P i with Ci. In conclusion, a set of five algebraic
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constraint equations is obtained for each suspension:

φ
(âŝ)
i

(
w(âŝ)

)
= 0, i ∈ 1..5 (4.41)

These constraint equations have been solved numerically for the given suspension geometry,

both rear and front. The displacement of the wheel centre x
(rr)
w , y

(rr)
w , as well as camber γ

(rr)
w ,

pitch µ
(rr)
w and steer ψ

(rr)
w angles of the rear right wheel plate are depicted as a function of

the vertical travel z
(rr)
w in figure 4.6. The figure shows that the wheel plate translation along

x and y direction are less than 1mm, moreover the camber and steer angles are smaller than

0.5◦ and 0.02◦. The trend of x, y, γ, µ and δ as function of z has been fitted by polynomials

up to the second order, and the resulting fittings are shown in figure 4.6 by continuous

lines. The fitting of such variables is required to analytically express all the movements of

the wheel plate as function of z, as it is necessary for the development of the multibody

model described in the next section. In the front suspension the position of the steering

chassis point (P5) along the y-axis is controlled by the driver input on the steering wheel,

therefore the movements of the front wheel plate (x
(fŝ)
w , y

(fŝ)
w , γ

(fŝ)
w , µ

(fŝ)
w , ψ

(fŝ)
w ) depend both

on the wheel vertical shift z
(fŝ)
w and on the steering rack lateral displacement ysr. Figure

4.7 shows the front right wheel motion as function of z
(fr)
w when the steering is null, while

figure 4.8 shows the same quantities as function of ysr when the suspension travel is zero.

Similarly to the rear suspension, the variables x
(fr)
w , y

(fr)
w , γ

(fr)
w , µ

(fr)
w , ψ

(fr)
w have been fitted

by polynomials up to the second order as function of z
(fr)
w and ysr, and the resulting fits

are shown in the figures by continuous lines.

Figures 4.6 to 4.8 demonstrate that the rotation angles of both rear and front wheel plate

are small; indeed the largest angle is the yaw one of the front wheels, that is typically

limited to ±10◦, while the other angles are lower than 0.5◦. Since such angles are small,

they can be linearised, i.e. the rotations of such angles can be expanded in Taylor series up

to the first order. The transformation matrix (4.38) then becomes:

W (w(âŝ)) = W
(âŝ)
0


1 −ψ(âŝ)

w µ
(âŝ)
w x

(âŝ)
w

ψ
(âŝ)
w 1 −γ(âŝ)

w y
(âŝ)
w

−µ(âŝ)
w γ

(âŝ)
w 1 z

(âŝ)
w

0 0 0 1

 (4.42)

Even if x
(âŝ)
w , y

(âŝ)
w , γ

(âŝ)
w , ψ(âŝ) are infinitesimal, they have a noticeable effect on the tyre

forces: indeed a small camber angle of ≈ 0.2◦ generates a lateral force variation of 2− 3%.

The study of which terms are significant for the overall car performance and which are

negligible will be presented in section 4.3.1.4. The transformation matrix (4.42), where the
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Figure 4.6: Rear wheel plate movements: x
(rr)
w , y

(rr)
w displacements and γ

(rr)
w , ψ

(rr)
w , µ

(rr)
w

angles are represented as function of the wheel vertical travel z
(rr)
w . The continuous lines

represent the fitting.

Figure 4.7: Front wheel plate movements: x
(fr)
w , y

(fr)
w displacements and γ

(fr)
w , ψ

(fr)
w , µ

(fr)
w

angles are represented as function of the wheel vertical travel z
(fr)
w when ysr = 0. The

continuous lines represent the fitting.

Figure 4.8: Front wheel plate movements: x
(fr)
w , y

(fr)
w displacements and γ

(fr)
w , ψ

(fr)
w , µ

(fr)
w

angles are represented as function of the steering rack displacement ysr when the vertical

displacement is null z
(fr)
w = 0. The continuous lines represent the fitting.
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Table 4.5: Spring and damper travels.

variable and fit description

υ(rŝ) = −0.832z
(rŝ)
w rear dampers and coil springs travel

υ(fr) = −0.879z
(fr)
w + 0.0662ysr front right damper travel

υ(fl) = −0.879z
(fl)
w − 0.0662ysr front left damper travel

θfr = −0.722z
(fr)
w + 0.0541ysr front right torsion bar angle1

θfl = −0.722z
(fl)
w − 0.0541ysr front left torsion bar angle1

1: the coefficients are expressed in degrees per millimetre

Ranges are: −20 mm < z
(âŝ)
w < 20 mm, −14 mm < ysr < 14 mm

quantities x
(âŝ)
w , y

(âŝ)
w , γ

(âŝ)
w , µ

(âŝ)
w , ψ(âŝ) are replaced by 2nd degree polynomials in z

(âŝ)
w (and

ysr), will be used in the development of the multibody car model described in the next

section.

The analysis of suspension kinematics is also necessary to calculate the equivalent ver-

tical force at wheel of the torsion bars, coil springs, dampers and anti-roll bars. The rear

wheels are connected through a push-rod and a rocker to the dampers and the coil springs,

as shown in figure 4.5. The rear anti-roll bar is connected to the left and right rocker

through two link-bars. In the front suspensions, again, a push-rod connects the wheel to

a rocker; however, this rocker is not free to rotate around its pivot because it is connected

to the chassis with a torsion bar. Thus, when the suspension moves, the elastic force is

exerted by this torsion bar. Then, the damper and the anti-roll bar are attached to the

rocker similarly to the rear suspension design. The travel of the dampers, rear coil springs

and front torsion bars has again been fitted by polynomials as functions of z
(âŝ)
w and ysr,

and the resulting polynomial coefficients are reported in table 4.5

4.3.1.2 Equations of motion

In this section the equations of motion for the GP2 car model are calculated. The same

road and vehicle tracking model described in section 4.2.1 is used here. The 2D road

model is used since the Montmelò circuit (that is where the lap time simulations will be

performed) does not present relevant elevation variations. As in section 4.2.1 the relative

frame Wrel that describes the motion of the chassis w.r.t the road middle lane position

(see equation (A.6)) is given by the following transformation sequence: a lateral translation

of n, a rotation about the z axis of α, a vertical displacement of z − h (h is the nominal

CoM height from ground), a roll rotation of φ and a pitch rotation of µ. In a GP2 car,

since the suspensions are very stiff (significantly more than in GT cars), the chassis vertical

displacement z, roll φ and pitch angles µ are very small, indeed they lay in the ranges
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0 mm < z < 25 mm, |φ| < 1◦, |µ| < 0.5◦). Thus the resulting chassis relative reference

system Wrel therefore is the same reported in equation (4.2).

Newton and Euler equations of motion are still calculated within the frame Wv0 defined

in equation (4.3). In the Newton and Euler equations for the full vehicle the acceleration

terms related to the second order derivative of the wheel plate longitudinal x
(âŝ)
w and lateral

y
(âŝ)
w displacements, as well as of the wheel plate camber φ

(âŝ)
w , yaw ψ(âŝ) and spin µ

(âŝ)
w

angles, have been neglected, since they are small compared to the acceleration terms related

to the chassis (z, φ, µ) and wheel plate vertical displacement z
(âŝ)
w (see section 4.3.1.1).

Moreover, the drift and wheel steering angles have been considered small since it is always

lower than ≈ 10◦ in the case of a GP2 car. Newton and Euler equations are therefore

almost the same of the one described for the 14 dof GT car model (4.4) (4.5), yet some

differences are present. Indeed, in the GP2 model the tyre rolling resistance is considered,

the aerodynamic downforce is divided into the front and rear axle components, and all the

wheels have a steering angle. Thus, Newton equations are:

m(ΩV λ+ V̇ ) =
∑
âŝ

F
(âŝ)
tx −

∑
âŝ

δ(âŝ)
w F

(âŝ)
tx − Fd −Rt (4.43a)

m(ΩV − V̇ λ− V λ̇) = +
∑
âŝ

δ(âŝ)
w F

(âŝ)
tx (4.43b)

m(z̈ − g) +
∑
âŝ

m(â)
w z̈(âŝ)

w = −F (f)
l − F (r)

l −
∑
âŝ

N (âŝ) (4.43c)

where V is the vehicle speed, λ the sideslip angle, Ω is the car yaw rate (about the axis

perpendicular to the road plane), F
(âŝ)
tx and F

(âŝ)
ty are the longitudinal and lateral tyre forces,

m
(â)
w are wheel masses, Fd is the drag force, F

(f)
l , F

(r)
l are the aerodynamic downforce at

the front and rear axles and Rt is the rolling resistance of the four wheels.

Under the same assumptions used for the Newton equations, the Euler equations are

almost the same of the 14 dof GT car model (4.5), with the differences that the steering

angles of the rear wheels now appear, moreover the x, y and z component of the net external

torque acting on the chassis τx, τy, and τz are different due to the displacements of the wheel

plates. Thus the updated Euler equations are (still calculated w.r.t the origin of the frame
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Wv0 defined in (4.3)):

Ixxφ̈+

Izzµ− Ixxµ− Ixz −∑
âŝ

m(â)
w b(â)z(âŝ)

w

 Ω̇

+(Izz − Ixx − Iyy)Ωµ̇−M
(
hV λ̇+ hλV̇ + (z − h)ΩV

)
−
∑
âŝ

m(â)
w t(âŝ)v z̈(âŝ)

w −

(Iyy − Izz)φ+
∑
âŝ

m(â)
w t(âŝ)v z(âŝ)

w

Ω2

−
∑
âŝ

m(â)
w z(âŝ)

w ΩV + I(f)
w (ω̇(fr)

w + ω̇(fl)
w )δ

+I(f)
w (ω(fr)

w + ω(fl)
w )δ̇ +

∑
âŝ

I(â)
w ω(âŝ)

w Ω = τx

(4.44a)

Iyyµ̈+

(Iyy − Izz)φ+
∑
âŝ

m(â)
w t(âŝ)v z(âŝ)

w

 Ω̇ + (Ixx + Iyy − Izz)Ωφ̇

+M
(

(z − h)V̇ − hλΩV
)

+
∑
âŝ

m(â)
w b(â)z(âŝ)

w +
∑
âŝ

m(â)
w z(âŝ)

w V̇

−
∑
âŝ

I(âŝ)
w ω̇(âŝ)

w +

(Izz − Ixx)µ− Ixz +
∑
âŝ

m(â)
w b(â)z(âŝ)

w

Ω2

+I(f)
w Ω(ω̇(fr)

w + ω̇(fl)
w )δ + I(f)

w Ω(ω(fr)
w + ω(fl)

w )δ̇ = τy

(4.44b)

(Izz + 2Ixzµ)Ω̇−
∑
âŝ

I(â)
w ω(âŝ)

w φ̇− Ixz(φ̈− 2Ωµ̇)− φ
∑
âŝ

I(âŝ)
w ω̇(âŝ)

w = τz (4.44c)

where Ixx, Iyy, Izz are the principal moments of inertia of the car chassis, Ixz is the cross

moment of inertia, Iw is the wheel spin inertia moment, t
(r)
v = t

(rl)
v = −t(rr)v is the rear half

track, t
(f)
v = t

(fl)
v = −t(fl)v is the front half track, b(r) = b is the x-axis distance of the car

CoM from the rear axle, and b(f) = −a is the x-axis distance of the car CoM from the front

axle. Then, the x, y and z components of the net external torque acting on the chassis τx,

τy, and τz are:

τx =
∑
âŝ

N (âŝ)(t(âŝ)v + hφ− y(âŝ)
w + r

(â)
t γ(âŝ)

w ) (4.45a)

τy =F
(r)
l b(r) − F (f)

l b(f) +
∑
âŝ

N (âŝ)
(
−b(â) + (h− r(â)

t )µ+ x(âŝ)
w

)
(4.45b)
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τz =
∑
âŝ

F
(âŝ)
tx (b(â)δ(âŝ)

w + t(âŝ)v + hφ− y(âŝ)
w + r

(â)
t γ(âŝ)

w )+

−
∑
âŝ

F
(âŝ)
ty

(
t(âŝ)v δ(âŝ)

w + b(â) − (h− r(â)
t )µ− x(âŝ)

w

) (4.45c)

where r
(r)
t is the rear tyre radius, and r

(f)
t is the front tyre radius.

As previously introduced, the suspension kinematics and the nonlinear aerodynamic

forces make it no more possible to express the suspension-related degrees of freedom z
(âŝ)
w

as explicit function of the other state variables (as it has been done for the massless wheel

model in section 4.2.2). Indeed, the suspension force balance equations resulting after

neglecting the wheel masses are nonlinear and quite complex. Such balance equations could

be included as path constraints in the OCP, however the optimal control software used here

to solve the minimum lap time problem (Pins, see chapter 3), at the time of this work

did not allow to use algebraic constraints. Thus the wheel vertical travels z
(âŝ)
w must be

included in the state space model, and the related equations of motion must be calculated.

Such equations are here obtained using the Lagrangian approach which, in contrast to

the Newton one, allows the suspension links reaction forces to be disregarded. With the

generalized force approach, the suspension equations can be derived from:

d

dt

(
∂K(âŝ)

∂ż
(âŝ)
w

)
− ∂U (âŝ)

∂z
(âŝ)
w

= Q(âŝ) (4.46)

where ż
(âŝ)
w is the time derivative of the wheel vertical displacement z

(âŝ)
w , K(âŝ) is the

kinetic energy of the wheel, U (âŝ) is the gravitational potential energy, and Q(âŝ) is the

generalized force acting on the wheel. Suspension equations take into account for the

suspension kinematics, i.e. that tyre contact point moves fore and aft as well as left and

right in the road plane as the suspension moves up and down, so as that tyre lateral and

longitudinal forces influence the equilibrium of the suspension. Moreover, each wheel not

only translates as the suspension moves, but it also rotates about all the three axes; such

rotations influence the in-plane forces generated by the tyre as long as they modify both

the tyre sideslip and camber angles. Then the explicit equation form is:

m(â)
w (z̈ − z̈(âŝ)

w + b(â)µ̈− t(âŝ)v φ̈− g) =

− F (âŝ)
s −N (âŝ) + F

(âŝ)
tx

∂x(âŝ)
w

∂z
(âŝ)
w

+
∂µ

(âŝ)
w

∂z
(âŝ)
w

r
(â)
t +

∂y
(âŝ)
w

∂z
(âŝ)
w

ψ(âŝ)
w +

∂ψ
(âŝ)
w

∂z
(âŝ)
w

γ(âŝ)
w r

(â)
t


− F (âŝ)

ty

∂y(âŝ)
w

∂z
(âŝ)
w

+
∂γ

(âŝ)
w

∂z
(âŝ)
w

r
(â)
t +

∂x
(âŝ)
w

∂z
(âŝ)
w

ψ(âŝ)
w


(4.47)
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where F
(âŝ)
s is the suspension force acting on the chassis and counter-reacting on the wheel.

The terms ∂x
(âŝ)
w /∂z

(âŝ)
w , ∂y

(âŝ)
w /∂z

(âŝ)
w , ∂µ

(âŝ)
w /∂z

(âŝ)
w , ∂γ

(âŝ)
w /∂z

(âŝ)
w and ∂ψ

(âŝ)
w /∂z

(âŝ)
w are

those related to suspension kinematics and, as it can be noticed, they determine how the

tyre longitudinal and lateral forces contribute to suspension motion. When equation (4.47)

is derived from (4.46), the inertial terms related to the time derivative of the secondary

wheel plate variables in uas =
[
x

(âŝ)
w ; y

(âŝ)
w ; γ

(âŝ)
w ;ψ

(âŝ)
w ;µ

(âŝ)
w

]
have been neglected as long as

they do not have a relevant physical effect on suspension dynamics. Indeed such terms are

related to small inertial forces (less than 0.1 times the inertial force related to z̈w
(âŝ)) that

do not play an important role in time simulations, as demonstrated in section 4.2 with the

massless-wheel model. On the contrary, the terms related to the ratio between variables in

uas and z
(âŝ)
w are required to take into account the anti-lift, anti-squat or scrub behaviour of

the suspension and are relevant even in determining the stationary trim of the suspension

or of the vehicle [6, 64].

Wheel spin motion is governed by tyre forces and the driver’s braking or driving input

torques. Euler equations for the wheel spins are:

I(â)
w ω̇(âŝ)

w = τ
(âŝ)
wd − F

(âŝ)
tx (r

(â)
t − z(âŝ)

w − z − b(â)µ+ t(âŝ)v φ) (4.48)

where I
(â)
w is wheel inertia moment around the spin axis (including also half of the axle and

powertrain inertias in the rear wheels), r
(â)
t is the tyre radius, F

(âŝ)
tx is the tyre longitudinal

force and τ
(âŝ)
wd is the torque delivered to the wheel. In the above equation the inertial

terms related to the fact that the wheel spin axis is not fixed but moves with and with

respect the chassis have been neglected because their expression is complex but their effect

is negligible.

4.3.1.3 Forces

The multibody car model here presented is fully described by the chassis Newton (4.43)

and Euler (4.44) equations, together with the suspension (4.47) and wheel spin (4.48) ones,

however the forces that appears in these equations still have to be made explicit. In this

section the suspension, tyre and aerodynamic forces, together with the wheel driving torques

are expressed in terms of the model state variables and controls.

The four torque inputs τ
(âŝ)
wd depend on one variable, the overall driving torque τd,

exactly as it has been done for the 14 dof GT car model. Thus wheel torques τ
(âŝ)
wd are

given by equations (4.11) together with (4.12). It can be noticed that the engine torque is

only positive, in other words the engine brake torque is neglected; this is a consequence of

the lack of experimental data regarding the negative torque exerted by the engine at zero
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throttle.

Suspensions forces F
(âŝ)
s acting on the chassis and counter-reacting on each wheel are

the sum of elastic (spring), damper, anti-roll bar F
(âŝ)
sa and bump rubber F

(âŝ)
sp forces:

F (âŝ)
s = K(âŝ)

ss z(âŝ)
w +K

(âŝ)
sd ż(âŝ)

w + F (âŝ)
sa + F (âŝ)

sp (4.49)

where K
(âŝ)
ss is the elastic force stiffness exerted by the torsion bars (front suspensions)

or coil springs (rear suspensions), K
(âŝ)
sd is the damping coefficient and z

(âŝ)
w is the wheel

travel. The elastic and damping forces are expressed by a linear relationship as long as the

velocity ratio between the wheel travel and torsion bar rotation angle or damper travel is

constant in the working range of the suspensions. The anti-roll bar forces F
(âŝ)
sa depend on

the difference between right and left wheel displacement:

F (rr)
sa = K(r)

a (z(rr)
w − z(rl)

w ) = −F (rl)
sa

F (fr)
sa = K(f)

a (z(fr)
w − z(fl)

w ) = −F (fl)
sa

(4.50)

where K
(r)
a and K

(f)
a are the rear and front reduced anti-roll bar stiffness. The last force

F
(âŝ)
sp in equation (4.49) is the force due to the bump rubbers, which prevent the suspen-

sions from excessive travel. The bump rubber forces are given by splines used to fit the

experimental force versus deflection curve data. Both the experimental data and the fitting

splines are shown in figure 4.9, together with the spring forces. Figure 4.9 highlights that

the rear bump rubber force equals the rear spring force at a wheel travel of only 6mm, and

the front bump rubber force equal the front torsion bar one at a wheel travel of 9mm. For

higher wheel displacement, the bump rubber forces significantly exceed the spring/torsion

bar forces and this makes the suspension rates highly non-linear.

In a GP2/F1 car model, tyres cannot be considered completely rigid as long as their

radial stiffness is comparable to that of suspensions. The tyre manufacturer provides a

specific formula to calculate the stationary tyre radial deformation as function of the tyre

load, spin, pressure, camber and lateral force:

ξ(âŝ) =
N (âŝ)

p1ρ
(âŝ)
p + a1ω2

w
(âŝ) + a2ω

(âŝ)
w + a3 + c1

∣∣∣γ(âŝ)
w

∣∣∣+ f1F
(âŝ)
ty

2
/N (âŝ)

+ b1ω
2
w

(âŝ)
+ b2ω

(âŝ)
w

(4.51)

where N (âŝ) is the tyre load, ξ(âŝ) the tyre radial deformation, ω
(âŝ)
w the wheel spin, ρ

(âŝ)
p

is the tyre pressure, p1, a1, a2, a3, c1, f1, b1 and b2 are constant coefficients. As long as tyre

radial deformations are determined by the chassis and suspensions trim, while tyre loads are

not, the previous formula has been numerically inverted in order to obtain the tyre loads
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Figure 4.9: Bump rubber force for the rear and front suspensions. The orange dashed line
show the torsion bar (front) or coil spring (rear) forces. The net force exerted on the wheel
is significantly non-linear for a wheel travel of 6mm (front) and 4mm (rear).

as function of the other variables:

N (âŝ) = f+(n
(â)
d ξ(âŝ) + n

(â)
do ξ

(âŝ)ω(âŝ)
w + n(â)

o ω2
w

(âŝ)
+ n(â)

y F
(âŝ)
ty

2
+ n(â)

c ξ̇) (4.52)

where n
(â)
d , n

(â)
do , n

(â)
o and n

(â)
y are the coefficients used to fit the data calculated using

(4.51). The camber dependence has been neglected, and the pressure has been considered

to be constant at 19psi for the rear tyre, and 20psi for the front one. A damping coefficient

nc has been added to simulate the tyre radial damping. The f+ function ensures that

the tyre load never becomes negative. The tyre radial deformations are determined by the

chassis and suspension trims, and they are given by the same formulas used for the 14 dof

GT-car model (4.10). With the approach that has been adopted, lateral and longitudinal

load transfers are automatically calculated according to the model state variables as well

as suspension characteristics. Longitudinal F
(âŝ)
tx and lateral F

(âŝ)
ty tyre forces are given

by a Magic Formula Tyre model [70], as functions of tyre load, longitudinal slip, sideslip

and camber angles. Moreover a relaxation equation for every tyre force has been added

because it is known that tyre forces raise with a certain time delay with respect to input

variables, especially in the case of lateral forces [70]. The equations governing the tyre force

relaxations are similar to the one used for the 14 dof GT-car model (4.16), (4.17), except
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for the different speed of the tyre contact point:

σ
(â)
tx

V
(âŝ)
tx

Ḟ
(âŝ)
tx + F

(âŝ)
tx = F

(â)
tx,magic(N

(âŝ), κ
(âŝ)
t , λ

(âŝ)
t , φ(âŝ)

w )

σ
(â)
ty

V
(âŝ)
tx

Ḟ
(âŝ)
ty + F

(âŝ)
ty = F

(â)
ty,magic(N

(âŝ), κ
(âŝ)
t , λ

(âŝ)
t , φ(âŝ)

w )

(4.53)

where φ
(âŝ)
w is the wheel camber angle, σtx and σty are the relaxation lengths of the tyre

in the longitudinal and lateral direction, Ftx,magic and Fty,magic are the stationary Magic

Formula tyre forces, κ
(âŝ)
t , λ

(âŝ)
t , φ

(âŝ)
w are respectively the tyre longitudinal slip, sideslip

angle and camber angle and V
(âŝ)
tx is the tyre contact point longitudinal speed. The slip

quantities necessary to calculate the tyre forces can be obtained as function of the model

state variables as shown below:

V
(âŝ)
tx =V + Ωt(â)

v + µ̇(h− r(â)
t + ẋ(âŝ)

w + Ωφh

+ Ωγ(âŝ)
w r

(â)
t − Ωb(â)(ψ(âŝ)

w + δ
(âŝ)
w0 )− Ωy(âŝ)

w

V
(âŝ)
ty =Ω(x(âŝ)

w − b)− φ̇h− γ̇(âŝ)
w r

(â)
t + ẏ(âŝ)

w − V λ

+ (h− r(â)
t )Ωµ− (V − Ωt(â)

v )(ψ(âŝ)
w + δ

(âŝ)
w0 )

V
(âŝ)
tr =µ̇(âŝ)

w r
(â)
tr − ω(âŝ)

w (r
(â)
t + z + z(âŝ)

w + b(â)µ− t(â)
v φ)

κ(âŝ) =
V

(âŝ)
tr

V
(âŝ)
tx

− 1

λ(âŝ) =−
V

(âŝ)
ty

V
(âŝ)
tx

φ(âŝ)
w =φ+ φ

(âŝ)
w0 + γ(âŝ)

w

δ(âŝ)
w =δ

(âŝ)
w0 + ψ(âŝ)

w

(4.54)

where φw and δw are respectively the wheel camber and steer angle (measured in the road

plane), φw0 and δw0 are the wheel camber and steer angle at the car nominal trim, Vty

and Vtr are the tyre contact point lateral and rolling speeds, rtr is the tyre rolling radius.

Moreover in the computation of λ(rr) the approximation tan(x) ≈ x holds.

The rolling resistance of each tyre is proportional to the tyre load. Thus, the total

rolling resistance force has been approximated with the following expression:

Rt = K
(r)
tR

(
Mg

a

w
+ F

(r)
l

)
+K

(f)
tR

(
Mg

b

w
+ F

(f)
l

)
(4.55)

where K
(r)
tR and K

(f)
tR are the rear and front tyre rolling resistance coefficients.
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Aerodynamic forces that act on the car are as follows:

Fd =
1

2
ρCd(h

(r), h(f))V 2

F
(r)
l = −1

2
ρC

(r)
l (h(r), h(f))V 2

F
(f)
l = −1

2
ρC

(f)
l (h(r), h(f))V 2

(4.56)

where Fd is the drag force, F
(r)
l and F

(f)
l are respectively the rear and front aerodynamic

downforce, ρ is air density, Cd, C
(r)
l , C

(f)
l are the drag, rear lift and front lift coefficients

that depend on the rear h(r) and front h(f) ride heights as third-degree polynomials given

by the car manufacturer. The coefficients used in such polynomials are those provided by

the car manufacturer and depend on the wing regulations. The average front and rear ride

heights can be easily calculated as function of z and µ on the basis of elementary geometrical

considerations:

h(r) = h
(r)
0 + µb− z h(f) = h

(f)
0 − µa− z (4.57)

where h
(r)
0 and h

(f)
0 are respectively the rear and front ride height nominal values.

4.3.1.4 Steady State Analysis

The model described so far can be utilized to analyse the vehicle steady state trim and

to verify the influence of suspension design on load transfers. The steady state trim of

the car can be calculated solving an equation system including equations (4.43) (4.44)

(4.47) (4.48), with the conditions that all the time derivatives of the variables are zero, i.e.

V̇ = λ̇ = Ω̇ = φ̇ = µ̇ = ż = z
(âŝ)
w = ω̇w

(âŝ) = 0, thus solving an algebraic system. In order

for such equations system to be determined, two auxiliary conditions have to be imposed

(due to the presence in the equations of two unknown controls):V = V0

Ω = Ω0

(4.58)

where V0 and Ω0 can be arbitrarily chosen. The solution gives the car stationary trim for

different values of the speed and yaw rate. The longitudinal acceleration can be artificially

introduced in the steady state equations by adding a horizontal virtual gravity ax, acting

on all the bodies. The numeric data used to feed the model is reported in table 4.3.1.4.
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Table 4.6: GP2 data used for simulations.

symbol value units description

g 9.81 m/s2 gravitational acceleration

ρ 1.2 kg/m3 air density

h 0.31 m centre of gravity (CoG) height

b = b(r) 1.34 m x-axis distance between the rear axle and the

vehicle CoG

a = −b(f) 1.78 m x-axis distance between the front axle and

the vehicle CoG

w 3.12 m wheelbase

t
(f)
v = tfl = −tfr 0.739 m front half track

t
(r)
v = trl = −trr 0.708 m rear half track

h
(r)
0 6× 10−2 m nominal rear ride height

h
(f)
0 2× 10−2 m nominal front ride height

γ 0.62 - front braking bias

ψrr0 −0.04 deg rear right wheel nominal yaw angle

γrr0 −0.5 deg rear right wheel nominal camber angle

ψfr0 0.09 deg front right wheel nominal yaw angle

γfr0 −2.7 deg front right wheel nominal camber angle

m 700 kg vehicle mass (rider included)

Ixx 200 kgm2 roll moment of inertia

Iyy 1000 kgm2 pitch moment of inertia

Izz 1100 kgm2 yaw moment of inertia

Ixz 0 kgm2 mixed moment of inertia

m
(r)
w 30.4 kg rear wheel mass

m
(f)
w 24.4 kg front wheel mass

I
(r)
w 1.55 kgm2 rear wheel spin inertia (including half of rear

axle)

I
(f)
w 1 kgm2 front wheel spin inertia

n
(r)
d 2.03× 10−5 N/m rear tyre load coefficient

n
(f)
d 1.96× 10−5 N/m front tyre load coefficient
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symbol value units description

n
(r)
do 728 Ns/m rear tyre load coefficient

n
(f)
do 473 Ns/m front tyre load coefficient

n
(r)
o 5.85× 10−2 Ns2 rear tyre load coefficient

n
(f)
o 1.57× 10−2 Ns2 front tyre load coefficient

n
(r)
y −1.39× 10−5 N−1 rear tyre load coefficient

n
(f)
y −1.9× 10−5 N−1 front tyre load coefficient

n
(r)
c 500 Ns/m rear tyre load damping stiffness

n
(f)
c 500 Ns/m front tyre load damping stiffness

K
(r)
tR 0.01 - rear tyre rolling resistance coefficient

K
(f)
tR 0.01 - front tyre rolling resistance coefficient

r
(r)
tr 0.31 m rear tyres radius

r
(f)
tr 0.31 m front tyres radius

σ
(r)
tx = σ

(f)
tx 0.1 m tyres lateral relaxation length

σ
(r)
ty = σ

(f)
ty 0.1 m tyres longitudinal relaxation length

Figure 4.10 shows the tyre loads versus the centripetal acceleration ac = ΩV at a speed of

V = 40m/s, both for a fixed longitudinal acceleration ax = g (plots in the top row) and

ax = −g (plots in the bottom row). In order to highlight the influence of suspension design

on vehicle trim, such figure compares the tyre loads of the GP2 car (normal model) with

those calculated for a car that is exactly the same of the one studied so far, but where the

wheel plane moves only vertically, i.e. x
(âŝ)
w = y

(âŝ)
w = γ

(âŝ)
w = µ

(âŝ)
w = 0 (simple model).

The results show that for a longitudinal acceleration ax = g the tyre loads are almost equal

for the two models, even though there are differences of ≈ 2mm in the suspension trim

(which are not shown) since the simple model does not include any anti-squat behavior.

This is not a general result because it depends on the suspension design, car trim and

tyre forces, and a different scenario can lead to different outcomes. Indeed, when the

car is in stationary braking conditions (i.e. braking at constant negative acceleration),

some differences in the results between the two models arise, as shown in the two plots at

the bottom of figure 4.10: in the full model the rear axle lateral load transfer is higher,

while the front one is lower (this allows greater negative accelerations before locking the

front wheels). More precisely, for a centripetal acceleration ac = 15.4m/s2, the lateral load

transfer at the rear axle for the full and simple models are respectively of 2016N and 1853N ,
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with a relative difference of approximately 8%. This steady state analysis confirms that the

suspension kinematics influences the tyre loads even in stationary conditions. Moreover,

since load transfers are a key feature that influences the manoeuvrability of four-wheeled

vehicles, suspension kinematics should not be disregarded in minimum lap time simulations

as long as really accurate results are needed.
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Figure 4.10: Static tyre loads at a speed of 40m/s and longitudinal acceleration ax = 1g
(top) and ax = −1g (bottom). Continuous lines refer to the normal model, dashed ones to
the simple one.

4.3.2 State space and OCP formulation

Some of the state variables used in the model equations (4.43) to (4.48) appear with their

second order derivatives. The equations may be immediately reduced to an ODE system

by introducing auxiliary variables for the relevant chassis and suspension speeds:

ż = zdot φ̇ = φdot µ̇ = µdot ż(âŝ)
w = z

(âŝ)
w,dot

(4.59)
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At this point, equations (4.43) to (4.59), plus the road tracking equations (4.31) completely

describe car dynamics as a system of 32 first order differential equations with as many

state variables and 2 inputs, respectively the overall driving torque τd and the steering rack

displacement ysr.

The optimal control formulation is very similar to the one already described in section

4.2.5, thus it is only briefly presented here. The two driver inputs τd and ysr have been

included to the state variables, while the controls have been moved to their time derivatives,

jτ and jy, satisfying the following equations:

jy = ẏsr jτ = τ̇d (4.60)

Moreover, the state variable s is made the independent variable of the OCP by performing

the time to space transformation described in section A.

In conclusion, optimal control states include 33 variables:

x =
[
n;α;V ;λ; z; zdot;φ;φdot;µ;µdot; Ω; z(âŝ)

w ; z
(âŝ)
w,dot;ω

(âŝ)
w ;F

(âŝ)
ty ;F

(âŝ)
tx ; ysr; τd

]
(4.61)

plus two inputs:

u =
[
jy; jτ

]
(4.62)

and as many implicit first order differential equations.

The OC target to be minimised is equal to the lap time (the integral of 1/ṡ, see equation

(4.31a)) and the OCP boundary conditions are cyclic. OC constraints include the road

boundaries limit, the engine power limit, the front tyre negative slip limit and the control

bounds, exactly as it has been done in section 4.2.5.

The Pins software described in chapter 3.2.1 has been chosen to solve the minimum lap

time OCP.

4.3.3 Lap time simulation and model validation

Optimal control simulation has been carried out on the circuit of Montmelò in Barcelona.

The simulation, that required to solve a system of nearly 1.5× 105 algebraic equations and

as many discrete variables, took approximately 26 minutes to be computed on an Intel Core

i7 based desktop computer, suggesting the proposed model, together with the used software

(Pins, see section 3.2.1), is very efficient. In the first part of this section the car model will

be validated through a comparison between simulation results and the experimental data

acquired in a qualifying lap of a driver in 2012 GP2 season, while the second part will be

focused on the analysis of the car dynamics.
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Figure 4.11: Optimal trajectory on Montmelò circuit. Numbers within ochre boxes indicate
the value of the road centre line abscissa in meters.

Figure 4.11 shows the car trajectory resulting from the simulation; the road geometry

has been reconstructed with the procedure described in appendix B. As expected, the ideal

driver tends to smooth the trajectory through corners in order to achieve the minimum

time. Figure 4.12 compares the simulated and the experimental speed profiles; there is

good agreement between simulation and telemetry especially in the first two thirds of the

track, while in the last sector the simulated speed is slightly higher than the real one in

correspondence of the corner apex points. Indeed the simulated lap time (91.287s) is lower

than the real one (91.600s) by approximately 0.3s. It is known that in a qualifying lap at the

Montmelò circuit, in the third sector rear tyres are very warm and their performance tends

to decrease, thus this phenomenon might generate the discrepancies between simulated and

real speed profile that arises in that part of the track. In figure 4.12 both longitudinal ax

and lateral ay accelerations are also reported, and it can be observed that the simulated ones

are close to the real ones; ax and ay bounds are of approximately −40m/s2 < ax < 20m/s2

and
∣∣ay∣∣ < 30m/s2. The resulting g-g diagram, which is represented in the bottom-left

corner of figure 4.13, highlights an ellipsoidal shape for positive accelerations, while it has

a remarkable triangular shape for negative ones; this difference arises mainly because of

the front inner wheel locking that occurs when braking while steering, limiting the lateral

acceleration. The maximum accelerations that the car can withstand highly depend on the

speed, as long as the aerodynamic downforce increases with the square of the speed. The

influence of the speed on the acceleration limits is also shown in figure 4.13: ax is the one

which varies more with the speed, passing from −20m/s2 < ax < 20m/s2 at a speed of
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distance travelled. Blue continuous lines refer to simulation outcomes, orange dashed ones
to telemetry data.
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The car model reproduces well the real accelerations envelope, moreover the increase of
accelerations bounds with speed due to aerodynamic down-force is highly noticeable and
well captured.
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≈ 100km/h up to −40m/s2 < ax < 5m/s2 at a speed of ≈ 250km/h, while the lateral

acceleration increases only from −20m/s2 < ay < 20m/s2 to −28m/s2 < ay < 28m/s2

for the same speed range. From speed and acceleration comparisons, it can be stated that

the model developed in this chapter is able to well reproduce the dynamics of a GP2 car.

Some differences are clearly present, but they could be reduced with a better measurement

of some parameters affecting the performance, first of all tyre characterisation and road

geometry.

The motion of the chassis along the track is shown in figure 4.14, where the vertical

displacement z, together with roll φ and pitch µ angles are reported. All these quantities

are small, indeed z is comprised between 0mm and 25mm, the roll angle is lower than 1◦

and the pitch angle is never larger than 0.5◦. The very limited chassis displacements are

consequence of the high suspension stiffness, which is even greater than that of the tyres

due to the presence of suspension bump rubbers. Indeed, suspension travels are in the range

−10mm < z
(âŝ)
w < 7mm (where negative values correspond to a compressed suspension),

while tyre radial deformation spans in 0mm < ξ(âŝ) < 30mm, as it can be observed in figure

4.15. Within such limited range of suspension travel and tyre deformation, tyre loads vary

from almost 0 to 6000N .

Even if chassis and suspensions motions are so limited, they noticeably affect both

aerodynamic forces and load transfers. Figure 4.14 shows also the aerodynamic drag and

downforce together with the ride heights and the downforce balance (i.e. the front by

total downforce ratio F
(f)
l /(F

(f)
l + F

(r)
l )). In such figure, the aerodynamic force trends

resemble that of the speed, due to the strict dependence of the former on the square of

the latter. However, as long as ride heights change along the track, varying in the range

−5mm < h(f) < 21mm (front ride height) and 40 < h(r) < 60 (rear ride height), the

downforce balance also changes. Indeed the downforce balance generally increases with the

speed, moreover it bumps up in correspondence of high braking manoeuvres. It can be

observed that, when the car withstands high negative accelerations, the front ride height

decreases while the rear one increases due to the chassis pitch, thus affecting aero balance.

Moreover, the minimum value of the front ride height is negative (−5mm) which might

seem non-realistic; however, it should be considered that the leading edge of the skid plane

is located well behind the front axle (that is where the front ride height is calculated), and

that the skid plane is quite flexible, thus slightly negative values for the front ride heights

are very likely to be reached when the car is bottoming on the road surface.

As previously said, chassis and suspension motions not only influence aerodynamic

forces, but also load transfers. The lateral load transfer at the rear axle (N
(r)
lat ≡ N (rr) −

N (rl)) versus that at the front one (N
(f)
lat ≡ N (fr) − N (fl)) resulting from the simula-
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N
(r)
lat = 1.12N
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tion is shown in figure 4.16, where the two dashed lines correspond to a constant ratio

N
(r)
lat = 1.12N

(f)
lat and N

(r)
lat = 0.66N

(f)
lat . It is clear that the roll stiffness N

(r)
lat /N

(f)
lat changes

by a factor of almost 2 along the track, depending on the trim of the car. Since the roll

stiffness is determined, at a first approximation, by the ratios between tyre, anti-roll bar,

coil spring, torsion bar stiffness and by the suspension design, its variation is caused by the

non-linear suspension rates (the non-linearity is due to the bump rubber forces) and sus-

pension kinematics. In different words, a non constant roll stiffness means that, depending

on the instant trim of the car, each wheel “sees” a different reduced vertical stiffness to the

chassis, and the roll stiffness varies as a consequence. This effect instead is not captured by

the most commonly used QSS car models where, in order to determine the loads on each

wheel, it is generally assumed that the roll stiffness is constant. Thus this effect is neglected

in works assuming a constant roll ratio as [21, 22, 23, 49, 72, 65] and [58].
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4.4 Racing go-kart

In the previous sections of this chapter different models have been proposed for lap time

simulation of racing cars; this section instead is focused on the modelling and simulation of

go-karts. This section is motivated mainly by two reasons: first, go-karts are four wheeled

vehicles with a significantly different dynamics than cars and, second, in literature there is

lack of optimal control based simulations regarding go-karts.

Go-karts are four wheeled vehicle that, unlike cars, do not have suspensions nor differ-

ential, therefore their dynamics is different from that of other four wheeled vehicles. The

absence of rear axle differential makes the two rear wheels to have a strictly correlated

longitudinal slip and this characteristic makes it more difficult for a kart to turn than cars.

Indeed, when turning at constant speed, the rear inner tyre has a positive slip while the rear

outer tyre has a negative one; thus longitudinal forces that tend to oppose to cornering are

generated. In order to reduce this effect, the inner rear wheel should be unloaded as much

as possible: it’s quite usual to see expert drivers lifting up the such wheel while cornering.

On the contrary, rear-driven race cars tend to lift the inner front wheel when cornering.

The frame stiffness “seen” by each wheel and the steering geometry are the most important

parameters that affect this phenomenon; moreover, the absence of suspensions makes the

tyre and the frame compliances absorb all shocks induced by road unevenness. Thus kart

frame stiffness becomes a key feature that profoundly affects kart performance, as high-

lighted in [69] through a multibody simulated analysis and a comparison with experimental

data; such study was focused on circular trajectories at constant speed only.

In this section kart dynamics has been studied with use of lap time optimal control

simulations. Simulations have been carried out on the track “Pista Azzurra”, in Jesolo

(IT), and the results have been validated by comparison with experimental data acquired

on the same track. In the following subsections the mathematical model of the kart and

the optimal control formulation are described. Then the model validation is presented,

including the kart analysis in laboratory, the data acquiring and the telemetry-simulation

comparison. Finally, the simulations outcomes are presented and particular attention is

dedicated to the go-kart dynamics and tyre slippage along a turn.

4.4.1 Go-Kart Model

A go-kart is a four wheeled, rear axle traction vehicle whose distinguishing features are the

absence of the suspensions system and differential. Since the vehicle has four contact points

with the road, it is hyperstatic. Therefore, the load distribution on each tyre depends on the

tyre radial compliance as well as the compliance of the chassis, which is quite deformable.
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Figure 4.17: Schematic go-kart model. Red springs, that connect each wheel to the chassis,
represent the chassis vertical stiffness seen by the wheel. Blue springs, connecting each
wheel to the asphalt (grey circles), represent the tyre radial stiffness. Anti-roll bars (not
represented) connect the left and right wheel joint points (green circles).

The absence of the differential on the traction axle makes any cornering manoeuvre prob-

lematic. Indeed, while cornering, the inner rear wheel has a smaller forward velocity, but

the same spin velocity than the outer one. Thus the inner longitudinal slip is bigger than

the outer one, which leads to a yaw torque opposite to the yaw rate. Since the longitudinal

force is approximately proportional both to the longitudinal slip and tyre load, to reduce

such undesired effect, the vertical load of the inner wheel should be as low as possible and

ideally null. This condition may be achieved by designing a proper combination of tyres

and chassis stiffness, as well as steering system geometry. Steering geometry indeed plays

an important role in load transfers: due to the particular linkages between front wheels

and chassis, when steering the inner front tyre gets pulled down by a quantity proportional

to the steering angle, while the outer front tyre is lifted up by the same amount. Thus,

part of the vertical load is transferred to the the front inner wheel and the rear inner one

gets more - if not completely - unloaded. Such essential features are fully embraced in

the mathematical model of the vehicle here developed. The inertia of the vehicle (chassis,

engine, tanks, steering, wheels, etc.) is modelled with a single rigid body. Indeed vehicle

vibrations and any high frequency dynamics are not of interest in lap time simulations.

The mass and inertia of the rider are also incorporated in such rigid body, since the seat

is very stiff and the rider body is constricted. Some racing riders are still able to partially

move their torso while cornering; however, this effect is not so relevant and it is completely

neglected here. To capture the actual distribution of vertical tyres load, the chassis compli-

ance seen by each wheel is modelled with a lumped parameters approach using four vertical

linear springs that connect each wheel hubs to the chassis, while other four vertical linear
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springs connect wheel hubs to the ground and represent tyres radial stiffness, as depicted

in figure 4.17. Front and rear anti-roll bars, not shown in the figure, are included; as it

will described in the following sections, they exert to each wheel a force proportional to the

difference between the right and left wheel travels. The 125cc go-kart studied in this article

was equipped with rear brake only, so the spin dynamics of the rear axle is included into

the model, while front axle is neglected. According to this description, the vehicle model

has a total of seven degrees of freedom (dof), six of them associated to the vehicle gross

motion and the latter associated to the rear axle spin rotation.

The road model and the vehicle tracking variables used here are the same of the one

described in section 4.2.1 and 4.3.1. The 2D road model is here adopted because the “Pista

Azzura” race circuit is flat. As in section 4.2.1 and 4.3.1, n, α and z represent respectively

the chassis lateral displacement from the road middle lane, the chassis relative heading

angle and the CoM vertical displacement from the nominal height h. Moreover φ and µ

are the chassis roll and pitch angles, and, since the chassis and tyres are very stiff, they are

considered to be small, i.e. all functions of φ and µ are expanded in Taylor series up to the

first order in such variables. Finally, V , λ and Ω are respectively the speed, drift angle and

yaw rate of the Wv0 frame (4.3), as in the car model described in section 4.2.1.

Newton’s equations, that describe the vehicle translation respectively along the longi-

tudinal, lateral and vertical directions, are similar to the ones obtained for the 14 GT car

model (4.4). The differences are the absence of the inertial terms due to the suspensions,

the absence of the front tyre longitudinal forces, moreover the steering δ and sideslip λ

angles are not assumed to be small since go-karts may be driven at relatively high slip and

steering angles. Thus the resulting Newton equations are:

m

(
d(V cosλ)

dt
+ ΩV sinλ

)
= F

(rr)
tx + F

(rl)
tx −

(
F

(fr)
ty + F

(fl)
ty

)
sin δ − Fd (4.63a)

m

(
ΩV cosλ− d(V sinλ)

dt

)
= F

(rl)
ty + F

(rr)
ty +

(
F

(fl)
ty + F

(fr)
ty

)
cos δ (4.63b)

m(z̈ − g) = −
∑
âŝ

N (âŝ) (4.63c)

where N (âŝ), F
(âŝ)
ty , F

(âŝ)
tx are respectively the vertical, lateral and longitudinal tyre forces.

The front steering angle δ is assumed to be equal for both wheels.

The Euler equations of motion, calculated with respect to the origin of the frame Wv0
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defined in (4.3), are:

Ixxφ̈+ (Izzµ− Ixxµ− Ixz) Ω̇ + (Izz − Ixx − Iyy)Ωµ̇

−M
(
h
d(V sinλ)

dt
+ (z − h)ΩV cosλ

)
−(Iyy − Izz)φΩ2 + I(f)

w

d

dt

(
sin δ

(
ω(fr)
w + ω(fl)

w

))
+ Ω

(
I(f)
w (ω(fr)

w + ω(fl)
w ) cos δ + Iaωa

)
= τx

(4.64a)

Iyyµ̈+ (Iyy − Izz)φΩ̇ + (Ixx + Iyy − Izz)Ωφ̇+M

(
(z − h)

d(V cosλ)

dt
− hΩV sinλ

)
−

(
I(f)
w

d

dt

(
cos δ

(
ω(fr)
w + ω(fl)

w

))
+ Iaω̇a

)
+
(
(Izz − Ixx)µ− Ixz

)
Ω2

+I(f)
w Ω

d

dt

(
sin δ

(
ω̇(fr)
w + ω̇(fl)

w

))
= τy

(4.64b)

(Izz + 2Ixzµ)Ω̇−
∑
âŝ

I(â)
w ω(âŝ)

w φ̇− Ixz(φ̈− 2Ωµ̇)

− d

dt

φ(I(f)
w

(
cos δ

(
ω(fr)
w + ω(fl)

w

))
+ Iaω̇a

)+
d

dt

(
µI(f)

w

(
sin δ

(
ω(fr)
w + ω(fl)

w

)))
= τz

(4.64c)

where t
(r)
v and t

(r)
v are respectively the rear and front kart half width, ωa is the axle spin

velocity, and the inertia Ia includes all parts connected to the shaft (wheels, disk brake,

etc.) as well as the equivalent inertia of the engine, which is connected to the rear axle by

a fixed ratio chain transmission.

τx =
∑
âŝ

N (âŝ)(t(âŝ)v ) + (N (rl) +N (rr))hφ

+ (N (fl) +N (fr))

(
r

(f)
t µ sin δ cos δ + φ

(
h− r(f)

t + r
(f)
t cos2 δ

)) (4.65a)

τy =FlxA − FdyA + (N (rl) +N (rr))
(
b+ (h− r(r)

t )µ
)

+ (N (fl) +N (fr))

(
a+ r

(f)
t φ sin δ cos δ + µ

(
h− r(f)

t cos2 δ
)) (4.65b)
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τz =F
(rl)
tx (t(r)v + hφ) + F

(rr)
tx (−t(r)v + hφ)(F

(rl)
ty + F

(rr)
ty )

(
b+ µ(h− rt)

)
(F

(fl)
ty + F

(fr)
ty )

(
−a cos δ + µ cos δ(h− rt)− φ sin δ(h− rt)

)
− (F

(fl)
ty + F

(fr)
ty )t(f)

v sin δ

(4.65c)

Finally, the model is completed by the following rear axle spin equation:

Iaω̇a = τd − F
(rr)
tx (r

(r)
tr − ξ(rr))− F (rl)

tx (r
(r)
tr − ξ(rl)) (4.66)

where r
(r)
tr is the rear tyre rolling radius, ξ(rr) and ξ(rl) are rear right and rear left tyre

deformations, and τd is the axle torque due either to the engine (τd > 0) or the brake

(τd < 0).

Tyres

Since the vehicle has four contact points with the road, it is not possible to determine the

tyre vertical load unless the compliances of tyres and chassis are considered. Since in a

kart the tyre stiffness is generally three to five times greater than chassis stiffness, while

the wheel mass is of the order of 10−2 times the vehicle mass (rider included), vibration

frequencies of the wheels with respect to the chassis are far faster than the eigen-frequencies

of vehicle gross motion, so chassis and wheels may be considered as a unique rigid body,

which is attached to the road by means of massless springs and dampers. According to

these assumptions, for each wheel the load force due to tyre deformation can be considered

equal to the vertical force due to chassis deformation; this approach is the same adopted

in the development of the massless wheel car model in section 4.2.2. Moreover the results

obtained from the comparison of the full model with the massless one justify the modelling

choice to neglect wheel hop dynamics (see 4.2.6).

Following the same approach used for the massless wheel car model, chassis vertical

displacements z
(âŝ)
c on each wheel attach point can be expressed as a function of the other

state variables by equating the tyre load to the force due to the chassis deformation. The

procedure is exactly the same that has been done for the massless wheel car model in section

4.2.2, if the suspension travel are replaced by the chassis deformations8. The only difference

with the massless wheel model is the presence in equation (4.68) of the terms proportional

to βδ. Neglecting the damping contribute to the tyre loads, the balance equations for the

8From a mathematical modelling point of view, suspension travels and chassis-wheel attach point dis-
placements are equivalent, yet their physical origin is different.
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vertical forces acting on the wheels are:

K(r)
cs z

(rr)
c +K(r)

a (z(rr)
c − z(rl)

c ) +K
(r)
tr ξ

(fr) = 0

K(r)
cs z

(rl)
c −K(r)

a (z(rr)
c − z(rl)

c ) +K
(r)
tr ξ

(fl) = 0

K(f)
cs z

(fr)
c +K(f)

a (z(fr)
c − z(fl)

c ) +K
(f)
tr ξ

(rr) = 0

K(f)
cs z

(fl)
c −K(f)

a (z(fr)
c − z(fl)

c ) +K
(f)
tr ξ

(rl) = 0

(4.67)

where z
(âŝ)
c are frame vertical displacements on the wheel attach points, K

(f)
cs , K

(r)
cs are

the chassis stiffness at the front and rear axles, and K
(r)
a and K

(f)
a are the rear and front

anti-roll bar stiffness. In equations (4.67) the first terms represent the force due to chas-

sis deformations, the second terms are the force of the anti-roll bars and the last terms

stand for tyres deformations loads. Tyre deformations can be calculated with the following

expressions:

ξ(fr) = z + z(fr)
c − aµ+ t(f)

v φ+ βδδ

ξ(fl) = z + z(fl)
c − aµ− t(f)

v φ− βδδ

ξ(rr) = z + z(rr)
c + bµ+ t(r)v φ

ξ(rl) = z + z(rl)
c + bµ− t(r)v φ

(4.68)

where ±βδδ is the linear approximation of the kinematic relationship that link the vertical

motion of the wheel centre to the steering angle. In different words βδ is the ratio between

the front right wheel vertical displacement and the steering angle. It can be noted that

equations (4.68) are very similar to (4.10), with the difference that suspensions travel are

replaced by chassis deformations and with the addition of the term βδδ.

Once the expressions for z
(âŝ)
c are obtained solving (4.67), they can be substituted into

the tyre deformation expressions (4.68) obtaining an expressions for the tyre deformations

that is similar to the one obtained for the massless wheel model ((4.24)):

ξ̂(rr) = K(r)
es (µb+ φt(r)v + z) +K(r)

ea t
(r)
v φ

ξ̂(rl) = K(r)
es (µb− φt(r)v + z)−K(r)

ea t
(r)
v φ

ξ̂(fr) = K(f)
es (βδδ − µa+ φt(f)

v + z) +K(f)
ea (βδδ + φt(f)

v )

ξ̂(fl) = K(f)
es (βδδ − µa− φt(f)

v + z)−K(f)
ea (βδδ + φt(f)

v )

(4.69)

where Kes and Kea are the equivalent spring and anti-roll bar stiffnesses, and they are given

by expression (4.24), with the only difference that suspension stiffness K
(â)
ss is now replaced

by the chassis stiffness K
(â)
cs . Finally, tyre loads are calculated using the tyre deformations

ξ(âŝ) as in (4.25).
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Table 4.7: Pacejka’s tyre magic formula coefficients

coefficient rear tyre front tyre

pCx1 2.3 -
pDx1 0.9 -
pEx1 0.95 -
pKx1 20 -
pKx2 1 -
pKx3 −0.5 -
pCy1 2.3 2.13
pDy1 1.5 1.5
pEy1 0.9 0.8
pKy1 −37.6 −34.1
pKy2 1.6 1.6
prBx1 14 -
prBy1 12 -
prCy1 0.6 -
λFz0 1.6 1.6

All Pacejka’s coefficients ([70], chapter 4) that are not listed
here have been set to their neutral value (either 0 or 1).

Lateral and longitudinal tyres forces are calculated according to the Pacejka Magic For-

mula [70] as a function of tyre vertical load N , sideslip angle λt and longitudinal slip κt,

exactly as done in section 4.2.1. The expressions for the tyre sideslip angles and longitu-

dinal slips can be found respectively in equations (4.14) and (4.15). Moreover, relaxation

equations are used on the tyre forces, as in (4.16) and (4.17)9. All the coefficients used

in these the Pacejka formula are listed in table 4.7; the parameters that does not appear

in such table have been set to their neutral value (either zero or one). This because only

the tyres lateral stiffness has been measured in lab tests (as it will be described in section

4.4.3.1), thus only the smallest number of parameters in the Pacejka’s magic formulas has

been used.

4.4.2 State space and OCP formulation

Newton’s equations (4.63) and (4.64) may be immediately reduced to the first order by

introducing auxiliary variables for the relevant chassis speeds:

ż = zdot φ̇ = φdot µ̇ = µdot (4.70)

9The only small difference with the equations of section 4.2.1 is that now the angle δ is not considered
small, thus expressions are not linearised in δ.
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At this point, equations (4.63)-(4.66), (4.70), together with the tyre equations (4.16), (4.17),

the road equations (4.31) and their subordinate expressions completely describe the go-kart

dynamics as a system of 17 first order differential equations with as many state variables

and 2 inputs, respectively the rear axle torque τd, which (mainly) control the longitudinal

dynamics, and the steering angle δ, which (mainly) control the lateral dynamics.

As it has been done for the previous models, the steering angle and driving torque are

not controlled directly, but via its time derivative, so as to limit jerky manoeuvres:

jδ = δ̇ jτ = τ̇d (4.71)

In conclusion, the vehicle dynamics is described by means of a set of two inputs:

u =
[
jδ; jτ

]
(4.72)

plus 19 state variables:

x =
[
s;n;α; z;φ;µ;u; v; zdot; Ω;φdot;µdot;ωa;F

(rr)
ty ;F

(rl)
ty ;F

(fr)
ty ;F

(fl)
ty ; δ, τd

]
(4.73)

and as many implicit first order differential equations.

Finally, the optimal control problem is formulated as described in section 4.2.5. The

time to space transformation described in appendix A is used so that the variable s becomes

the independent variable. Some constraints are added to the OCP so as to force the vehicle

to stay within the track borders, not to exceed the engine maximum power and not to lock

the wheels. The model parameters used for the simulations are reported in table 4.8.

The optimal control problem is solved using Pins (see section 3.2.1).

4.4.3 Experimental test and model validation

In order to provide a validation of the mathematical model by comparison between simula-

tion results with experimental telemetry, a precise measurement of the go-kart characteristic

is first necessary. Indeed, the reliability of the simulation is highly affected by the agreement

of the data used with real kart properties.

In the next part of this section, the description of the procedure used to measure go-

kart characteristics is reported, while in the second one simulation results are compared to

experimental data.
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Table 4.8: Go-kart dataset.

symbol value units description

h 0.250 m m centre of gravity (CoG) height
a 0.645 m m distance between the front axle and the vehicle CoG
b 0.400 m m distance between the rear axle and the vehicle CoG
p 1.045 m wheelbase

2t
(f)
v 1.055 m m front track

2t
(r)
v 1.200 m m rear track
βδ 0.058 m/rad m front wheel hub displacement to steering angle ratio

m 165 kg m vehicle mass (rider included)
Ixx 20 kgm2 e roll moment of inertia
Iyy 15 kgm2 e pitch moment of inertia
Izz 25 kgm2 e yaw moment of inertia
Ixz 5 kgm2 e mixed moment of inertia
Ia 0.2 kgm2 e spin inertia of the rear axle

ρ 1.2 kg/m3 air density
Fd 0.7 m2 e drag surface coefficient

K
(r)
cs 60× 103 N/m m rear chassis stiffness (vertical displacements)

K
(f)
cs 17.7× 103 N/m m front chassis stiffness (vertical displacements)

K
(r)
a 0 N/m rear anti-roll bar stiffness(1)

K
(f)
a 0 N/m front anti-roll stiffness(1)

K
(r)
tr 61.3× 103 N/m m rear tyres radial stiffness

K
(f)
tr 64.5× 103 N/m m front tyres radial stiffness

K
(r)
td 1.0× 103 Ns/m e rear tyres radial damping

K
(f)
td 1.0× 103 Ns/m e front tyres radial damping

r
(r)
tr 0.139 m m rear tyres rolling radius

τ
(max)
e 17.6 Nm m maximum engine torque (@ 10250 rpm)

P (max) 20.1 kW m maximum engine power (@ 11500 rpm)

m: Measured value, e :Estimated value, f : Fitted value.
(1): The go-kart used for the track test was not endowed with anti-roll bars.
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4.4.3.1 Lab tests

The geometry, inertia and compliance of the go-kart, as well as tyre properties, have been

measured to feed the simulation model. The geometry of the chassis have been carefully

measured by using a 3D coordinate-measuring machine. Weighing balances have been used

to measure the go-kart mass and its longitudinal position, the CoG vertical position was

estimated by tilting the vehicle until it reached its (unstable) equilibrium position on the

two lateral wheels. Such geometric and inertial data was used to build a virtual prototype of

the go-kart, which has been used to estimate the moment of inertia as well as to estimate the

frame stiffness by means of a FEM analysis. The frame is complex and its representation in

term of few lumped springs used in the vehicle dynamic illustrated section 4.4.1 disregards

many degrees of freedom and the correlation of such lumped stiffness to FEM analysis is

not trivial. As previously described, in this case the lumped stiffness are four linear springs

that connect each wheel centre to the chassis, as depicted in figure 4.17. Such stiffnesses

have been estimated by simultaneously locking three wheels hub and by applying a vertical

force on the last one. Vehicle parameters are collected in table 4.8.

Tyres properties have been measured on the rotating tyre test rig which is available at

the Department [26]. The identification of the vertical structural stiffness K
(r)
es , K

(f)
es has

been carried out by applying different vertical loads in the range of 0−1500N both front and

rear tyres showed a good linear behaviour. Tyre adherence was measured with a vertical

load of 560N , which is approximately the load of a rear tyre in static conditions. Figure

4.18 shows the ratio between the lateral force and vertical load as a function of the sideslip

angle, for both the front and rear tyre. The tyre behaviour in the range between 0◦ and 6◦ of

sideslip angle has been accurately identified, but unfortunately the adherence peak was not

reached during measurements; indeed, the friction between the tyre and the test rig were

exaggeratedly high (as the tyre test rig was not specifically designed to measure kart tyres).

It is worth pointing out that in actual driving conditions the adherence limit remarkably

depends on many parameters and in particular on the asphalt characteristics. Hence the

correlation with lab measurement would not be very easy in any case. On the contrary,

the cornering stiffness, i.e. the tyre behaviour at low sideslip angles, mainly depends on

the tyre carcass characteristics and it is not so much influenced by the tyre-road friction

properties [70] [42]. For this reason, tyres adherence peak have been adjusted to fit the

experimental maximum accelerations (that can be read in figure 4.21). Tyre forces that

were used for the simulation are reported in figure 4.19. Rear tyre normalized lateral force

is shown for different values of longitudinal slip to highlight the coupling between lateral and

longitudinal forces. For the front tyre the force is shown only for κt = 0 because the front

tyre’s longitudinal slip is not modelled. Tyres adherence values, together with all coefficients
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Figure 4.18: Lateral force of front and rear tyres measured on the test rig. Continuous red
lines represent data fit.

Figure 4.19: Tyre forces: normalized lateral forces are shown for rear and front tyre at a
vertical load of 560N . For rear tyre the force is shown at different values of longitudinal
slip.

of Pacejka’s magic formula, are summarized in table 4.8. The lateral friction peak coefficient

(1.50) is significantly higher than longitudinal one (0.90) because in kart tracks thin layers

of rubber get often deposited on the asphalt in curves due to high tyre slippage. Thus

turns are characterized by higher friction coefficient than straights, and this effect can be

modelled by considering tyres with greater lateral adherence. Such adherence conditions

are confirmed in section 4.4.3.3 by the validation of the model with experimental data. The

engine torque curve used in this simulation is the one provide by Iame (www.iame.it).

4.4.3.2 Track tests

The go-kart has been equipped with an Inertial Measurement Platform (IMU) composed by

three accelerometers and three gyrometers. Moreover, a Hall sensor has been installed on

the rear axle to measure the spin velocity and a rotational potentiometer has been installed

on the steering system to measure the steering angle. All sensors have been connected to
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Figure 4.20: Satellite view of the “Pista Azzurra” with simulation trajectory overlying
(yellow line). Numbers inside boxes shows the value of the curvilinear abscissa s along
the track every 100m. The turn inside the black rectangle is the one analysed in the next
chapter.

the data logger by means of a dedicated CAN bus. Tests have been carried out at “Pista

Azzurra” (Jesolo), which is a national category race-track 1051m long with an average width

of 8m. Test were carried out on a cold day in November, with adherence conditions far from

being optimal, by an expert driver who participates in go-kart races at Italian level. Figure

4.21b and 4.21c highlighted the bounds of both the lateral accelerations |ay| < 15m/s2 and

longitudinal one −7m/s2 < ax < 5m/s2. While the traction acceleration is limited by the

engine power, lateral and braking accelerations are limited by tyre adherence, where lateral

adherence is much bigger than the longitudinal one thanks to the rubber deposits that tyres

leave in curve. It is worth pointing out that, most likely, the driver was not able to drive

very close to the tyre adherence limit and hence the acceleration bounds are a measure

of driver’s capability rather than tyre adherence. However, this is not a big issue for the

validation of the simulation software, as the focus will be posed on the comparison between

speed profile of real and virtual driver, constrained within the same accelerations bounds.

4.4.3.3 Validation

The simulation took approximately 230s on a common laptop equipped with an Intel Core-i7

640M processor. Figure 4.20 shows a satellite view of the track with the overlying trajectory

resulting from optimal manoeuvring method. The trajectory confirms that the kart remains
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Figure 4.21: Vehicle gross motion for the full lap: dashed red lines refer to telemetry data,
continuous blue ones to simulation results.
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always within borders of the real track, suggesting that road has been accurately reproduced.

Simulated and experimental time-lap are respectively 53.575s and 53.580s. However, this

is not an indication of the quality of the simulation since the information on the time

lap has been used to fine tune tyre adherence, which has been estimated from measured

lateral and longitudinal accelerations. The accuracy of the simulation should be instead

evaluated by comparing measured data with simulated ones as they both vary along the

track, as reported in figure 4.21: dashed red lines refer to telemetry data, continuous blue

ones to simulation. The simulated speed profile reproduces faithfully the experimental one;

there are some slightly discrepancies in the speed at the middle of some turns, where the

simulation is sometime faster, other slower. In addition to the simulation errors that are

certainly present because of model approximation and parameter inaccuracy, it should be

kept into consideration that asphalt was not perfectly dry so some parts of the circuit had

a different adherence compared to others. Moreover, the driver was very skilled but not

professional. So, it is opinion of the author that the accordance between simulation and

experiments is excellent. Longitudinal and lateral accelerations also reproduce faithfully

the measured trend. Simulated signals are obviously smoother than the experimental ones,

due to the absence of every source of unwanted vibrations. For this reason, the peak

value of experimental accelerations are higher than the simulated one. The experimental

lateral acceleration and yaw rate signal are less affected by external noise with respect to

longitudinal acceleration and they have a better correspondence with the corresponding

simulated quantities.

Figure 4.22 shows additional variables that are available for the simulation only and

that are quite useful to analyse the go-kart behaviour. Rear tyre longitudinal and lateral

slips are reported respectively on the first and second line. As shown in the figure, sideslip

angles of rear tyres are quite identical for left and right sides, while for the longitudinal

slips there are significant differences. Due to the absence of a differential, such slippage

differences are consequences of the yaw motion only. Thus, at a given time only one tyre

can have the combination of κt and λt that produces the maximum force: this means that

it is not possible to bring both tyres at adherence limits in the same manoeuvre, and the

optimal control obviously tends to engage to the limit (at a longitudinal slip κt of ≈ 0.105)

the tyre that has more load, i.e. the outer one. When it reaches such conditions, the

inner one consequently is forced to have a greater slippage and reaches the high slip values

(≈ 0.17) that are beyond the maximum of the Pacejka’s magic formula. Regarding sideslip

angles, tyres are never pushed beyond the maximum of the magic formula thanks to the

optimality condition. Moreover only the front tyre sideslip angle go slightly beyond the

maximum adherence value (λt ≈ 0.17rad). This is not in contradiction with the optimality
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Figure 4.22: Simulation details: in tyre slip charts, blue lines refer to the right tyre, red
lines to the left one. Horizontal yellow lines represent the value at which the maximum
of tyre adherence is reached for a non-combined tyre force. In the chart d, the blue line
represents the used torque, the red one the maximum available torque.
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Figure 4.23: Turn analysis: optimal trajectory. Blue lines represent kart edge trajectories,
numbers in rectangular box show the value of the curvilinear abscissa s. The location of
the turn in the circuit is shown in figure 4.20

condition because lateral force does not decrease suddenly after the peak (see figure 4.19);

moreover, keeping the front tyres at a higher steering angle helps the vehicle to brake. The

rear tyres instead are limited to lower sideslip angles because their lateral slippage is due

only to kart drift angle. However, thanks to the higher sideslip stiffness, the rear tyres get

extremely close to their maximum lateral adherence (at λt ≈ 0.15rad). Finally, the last

graph reported in figure 4.22 shows that engine torque represents the limiting factor when

traction is required, and the delivered thrust never exceeds the maximum available power.

4.4.4 U-turn analysis

In order to better understand kart dynamics, this section focuses on in-depth analysis of the

vehicle behaviour while running along a particular curve of the entire track, the clockwise

one comprised between 120m and 215m of the curvilinear abscissa s. This is the turn within

black box in figure 4.20; the detail of the track and the optimal trajectory are shown in figure

4.23: the kart reaches the external track borders at the entrance of the curve, then it passes

at the apex in the middle of the turn, finally, after exiting the curve, it remains in a central

position before approaching the next, counter-clockwise turn. The speed profile in figure
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between the real curvature radius and the kinematic one (that is the radius of curvature
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126



4.24 shows that the kart starts from a speed of ≈ 85km/h and brakes to ≈ 45km/h with a

maximum longitudinal deceleration ax ≈ −5.5m/s2: even if the estimated longitudinal tyre

friction is equal to 0.91, the maximum deceleration is significantly lower than 0.91g because

the kart has brakes on the rear axle only. Braking deceleration remains nearly constant to

its maximum until s ≈ 165m, then for 165m < s < 185m, ax grows up to its maximum

value of 4m/s2. Such acceleration is kept nearly constant while exiting the turn. Lateral

acceleration also is kept almost constant at ≈ 13m/s2 while turning (150m < s < 200m).

Steering angle, drift angle and yaw rate trends highlight that a small pendulum manoeuvre

is exploited before the beginning of the turn. Summarizing, the manoeuvre can be dividend

into three phases that can be roughly associated to braking (125m < s < 165m), cornering

(165m < s < 185m) and accelerating (185m < s < 210m). The ratio between the real

curvature radius and the kinematic one (steering ratio) is lower than one after the second

half of the manoeuvre, when the vehicle is accelerating, and it’s greater than one during all

the rest of the time except for a short transient at turn entrance in correspondence of the

pendulum manoeuvre. When the yaw rate passes through zero the steering ratio diverges

to infinity since the kinematic curvature radius is zero. The under-steering behaviour of

the kart at the entrance of the turn is confirmed also by figure 4.24e, which shows that the

front tyres sideslip angle is almost the double of that of rear ones.

The tyre slip and forces that are generated in this manoeuvre are shown in figure 4.25.

In the braking phase, longitudinal slips are obviously negative for both tyres and they are

near the value at which the maximum of the (uncoupled) longitudinal adherence is exerted.

Maximum longitudinal adherence is clearly never reached because of the lateral sideslip

angle that is not zero. Then, while turning, the longitudinal slip of the two tyres shows

significant differences due to the yaw motion (the absence of differential forces the wheels

to have the same spin) and, since the yaw is positive, the right tyre has always a higher slip.

When the kart has exited from the turn and the yaw rate is nearly zero, the longitudinal

slip of the two tyres becomes equal again. Regarding the lateral slippage, the sideslip angles

of rear tyres starts increasing from zero when the kart enters the curve, then they reach a

maximum at the middle of the turn and then decrease and become zero again when the

kart has exited the turn. The rear tyre sideslip angles never reach the value at which the

maximum lateral adherence would be generated. Concerning front tyres, it can be noticed

that the difference between right and left load is significant but not as huge as for rear

tyres. This is a clear evidence that the steering effect transfers a considerable load to the

front inner wheel. Finally, the sideslip angles of front tyres have a trend that is almost

proportional to that of the steering angle (figure 4.25d, cyan line).

Adherence ellipses shown in the bottom-right corner of figure 4.25 confirms what has
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Figure 4.25: Turn analysis: tyres kinematic. Blue lines refers to right tyres, red ones to left
tyres. Yellow lines, when present, show the sum of left and right tyres. Horizontal green
lines in figure c, d and g represent the value at which the maximum of tyre adherence is
reached for a non-coupled tyre force at nominal load. In plot d the cyan line represents
the steering angle. In figure h, asterisks refer to right tyre, circles to left one; numbers
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vertical loads in a and b clearly highlight how the right rear tyre (inner tyre) gets completely
unload during the manoeuvre.
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been said in the previous chapter: in every cornering only the outer tyre has the combination

of longitudinal slip and sideslip angle engage it to the limits of adherence ellipses. Indeed

red points are arranged over a bigger ellipsoidal shape. Finally, from the comparison of

rear tyres longitudinal forces in figure 4.25 with the steering ratio shown in figure 4.24, it

can be noticed that, at least as rough approximation, the vehicle is under-steering when

braking, and over steering when accelerating. Taking into consideration the rear tyre load

distribution, this behaviour is reasonable: since most of the longitudinal force is exerted by

the outer tyres (the inner tyre has is less loaded, or even is fully unloaded), when braking

such force generates an aligning yaw torque, and a turning yaw torque when accelerating.
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4.5 Summary

The state of the art of minimum time optimal control simulations for race cars has been

considerably improved in the last years thanks to the increase in computer processing power

and enhancement of numerical solver; nowadays relatively complex car models can be used

for optimal control based simulations. However, car multibody models for optimal control

lap time simulations are still generally based on quasi steady state tyre loads in order to

reduce the state-space dimension (thus the numerical size) of the resulting problem and to

make the problem easier to solve. Such assumptions can lead to suboptimal results when

lap time simulations are used to optimize car setup parameters related to the car dynamics,

like the centre of mass position or the suspension design.

In the first part of this chapter three car models with different dynamics detail have

been compared for minimum lap time problems in order to understand whether simplifying

modelling assumption can affect simulation outcomes. The most accurate car model includes

the chassis as a rigid body with six dof together with the wheels vertical motion and spin

rotation, for a total of 14 dof. Tyre loads are calculated dynamically through tyre radial

deformations. The other two models have been derived form the first one by introducing

some simplifications: in the ten dof model the wheel mass is neglected, yet the chassis still

includes siz dof, and in the basic seven dof model the chassis motion due to suspensions

is neglected too. In the ten dof model tyre loads dynamics is still included while in the

basic model quasi-steady state tyre loads are used. The aim of the ten and seven dof

models is to provide simpler tools to use in optimal control simulation without losing in

accuracy of the simulations outcomes. Lap time simulations have been performed on the

Adria International Raceway circuit. Results showed that simulation outcomes obtained

with the massless-wheel model are in agreement with the ones given by the full model:

both models lead to the same10 simulated lap-time and optimum value of the braking bias

and suspension stiffness. Moreover, the massless wheel model brought to a reduction of the

43% in the computing time. Differently, the basic model highlighted remarkable differences:

not only the simulated lap time are less close to the full model ones (difference of ≈ 0.4s, but

also in the two parametric analysis the best performance is obtained for different position

of the CoM and different front spring stiffness than the other models. Moreover, even

imposing on the basic model the exact trajectory obtained through the full one, significant

differences in the tyre loads have been highlighted. Thus, despite the basic model has the

lowest computing time (67% less than the full one), the loss in dynamics accuracy seems to

10Results given by the massless wheel and full model are not exactly the “same” since small numerical
difference are unavoidably present. However, such differences are so small that they are not meaningful from
a practical point of view.
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affect too remarkably the simulations outcomes, at least for the CoM and spring stiffness

optimisation. Among the three models, the massless wheel one gives the best compromise

between short computing times and accuracy of the simulation results. Finally, it should be

considered that the massless-wheel model relies on the simple force balance equation 4.22

resulting from the elimination of the wheel mass. Indeed, since equation 4.22 is linear in the

suspension travel, it has been possible to express it as function of the other state variables.

If a more accurate suspension model including the suspension kinematics is used (so as

that the wheel does not move only along the vertical axis), then the force balance equation

would result to be much more complicated and it would include also the tyre lateral and

longitudinal forces through a nonlinear relationship. Thus, it would be no more possible

to express the suspension travel as function of the state variables as it has been done here.

However the massless wheel simplification could be anyway obtained by imposing the force

balance equations as OCP path constraints (if the OCP solver allows it), leading to four

additional equations (one per each suspension), instead of the eight additional equations of

motion for the suspension dynamics (two first order equations per suspension).

In the second part of this chapter an improved model for GP2 cars (and other formula

cars) has been developed. The aim of the GP2 model is to extend the 14 dof car model by the

including the full suspension kinematics and an accurate aerodynamic forces. At the same

time the model must be concise enough in order to be used for optimal control applications;

the symbolic approach in deriving the equations of motion is here of great importance. More

in detail, the GP2 formula car multibody model includes: chassis, suspension and wheel

dynamics, full Magic Formula tyre forces, non linear tyre loads and ride-height-dependent

aerodynamic forces. Suspension kinematics has been deeply analysed and included in the

car model, as long as it has a significant effect on tyre loads; moreover its impact on overall

car performance has been highlighted in steady state conditions. An indirect optimal control

approach has then been adopted to successfully perform a full lap time simulation on the

circuit of Montmelò in a reasonable amount of time (approximately half an our on a common

computer), and the model has been validated by comparison with the telemetry data of an

official qualifying lap in 2012. The experimental data have shown a good agreement in speed,

accelerations and accelerations-speed dependence. The simulated tyre loads highlighted a

roll stiffness that changes by a factor ≈ 2 along the circuit. Commonly used car models

based on quasi steady state loads are not able to capture this effect as long as they assume

a constant roll stiffness. This shows that the additional complexity of the car model here

developed do really lead to an improvement of the simulated tyre load dynamics.

The third part of this chapter has focused on lap time simulation of go-karts. This type

of four-wheeled vehicles is indeed significantly different from race cars due to the absence
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of suspensions and rear axle differential. The multi-body model here adopted is equivalent

to the ten dof massless-wheel one, once the suspensions are replaced by the chassis stiffness

at the wheel attachment points. Of course rear wheels have the same speed. This model,

fed with go-kart characteristics measured in lab tests, has been demonstrated to reproduce

enough accurately the telemetry data recorded during experimental track test with an expert

driver. Measured speed and accelerations showed good agreement with simulated signals.

Simulations results have been exploited to study the dynamics of go-karts, with particular

attention to tyre slippages. Racing manoeuvres that bring to the lifting of the rear inner

wheel when turning has been reproduced in the lap time simulation. The importance of

such manoeuvre due to the lack of differential has been highlighted too.
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Chapter 5

Design optimisation of an electric

motorbike for the Tourist Trophy

Zero Isle of Man competition

In this chapter optimal control lap time simulations are applied to the design optimisation

of an electric motorbike taking part at the Tourist Trophy Zero race. While in the previous

chapter particular attention was put in the modelling of the vehicle dynamics, the main

focus is here shifted to the powertrain as long as it is the key element of electric vehicles

and it will be object of an optimisation study.

5.1 Introduction

Electric (EV) and hybrid electric (HEV) vehicles are continuously gaining in popularity as

the automotive industry is responding to tough environmental regulatory challenges and

is aiming to meet growing consumer demand for energy consumption reduction and more

sustainable living. Contemporary with the wider adoption of electric road vehicles, motor-

sport too has seen an electrification movement. More driven by the innovation aspect and

opportunities through technological advantage, it brought forward consideration for low

carbon racing categories. The pinnacle of motor-sport, Formula 1, opened up regulations

to introduce hybridization in 2009. Energy-efficiency competitions have gained widespread

appeal such as the Shell Eco Marathon, while an all new FIA electric racing single seater

championship Formula E saw the light in 2014. Motorcycle racing led the way however,

with TTXGP holding the first international low carbon, zero-emission Grand Prix on the

Isle of Man in 2009. TTXGP was succeeded by the TT Zero Challenge and incorporated

as an official event class of the historic Isle of Man Tourist Trophy or TT from 2010, where
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racing has been taking place annually on the infamous 37.73mi Snaefell Mountain course

since 1911.

Generally speaking, the energy consumption and performance of EVs depend signifi-

cantly on driving inputs and vehicle design parameters, therefore optimisation techniques

have been applied to EVs as demonstrated in literature [51, 97, 96, 87, 80, 29, 74]. For

road vehicles, where the performance is not of primary importance, optimisation is mainly

related to energy management, while for racing vehicles the main goal is minimum time

optimisation [58, 61, 3].

TT Zero is a time trial race whereby electric motorcycles aim to complete one 60km

lap on closed public roads along the Snaefell Mountain Course. Achieving minimum time

is thus the main goal, and the optimisation of such a motorcycle would fall into the racing

category. However, energy management optimisation is not negligible due to the unusual

length of the TT course, therefore the TT Zero Challenge fits in-between a road and race

application and corresponding design considerations must be made.

This chapter aims to optimise through optimal control lap time simulations a TT Zero

motorcycle design, as run by the Brunel Racing team from Brunel University London.

Brunel Racing has entered an electric racing motorcycle in the inaugural TTXGP and in

every subsequent TT Zero Challenge to date. Experimental data gathered during testing

and racing on the Isle of Man will serve to validate the optimal control model presented here.

Using an optimal control approach for the TT Zero application is a challenging proposition

for two main reasons: first, the length of the Mountain Course is nearly 12 times that of

a common racing circuit; second, the mathematical model must capture both the vehicle

dynamics and power-train characteristics.

Despite optimal control simulations have been widely used in recent years for lap time

optimisation of various vehicles, to the best of the author’s knowledge, such work has not

yet been reported on for applications comparable in complexity to that of the TT Zero

Challenge. Optimisation studies related to electric vehicles have thus far been performed

with other strategies than optimal control simulations [79, 51, 97, 96, 80, 29], even though

optimal control theory could be applied, as already demonstrated by [87, 74, 58]. The

model presented here does for the first time offer a comprehensive lap time and design

optimisation for TT Zero, by incorporating a motorcycle dynamics model, an electric power

train configuration model and a race course over a long distance with three-dimensional

track geometry including non-negligible slope and elevation changes.

Using a sound modelling approach for all relevant characteristics of motorcycle, power

train and road is key to successfully solve the optimal control problem. Indeed, the com-

plexity of the motorcycle and power train models, together with the long road that increases

134



the numerical size of the problem, may lead to long computational solving times or even to

a non-solvable problem.

In the next section, the motorcycle and power train models are described in further

detail. The mathematical models introduced aim to correctly capture real world behaviour,

while remaining simple enough to allow computations to run in just a few minutes. Simula-

tion outcomes are then validated through comparison with experimental data from the TT

Zero race. Finally, the models are used in a design optimisation exercise, focusing on three

critical performance parameters for the electric motorcycle: direct drive gear ratio, battery

pack size and motor configuration.

5.2 Road

The TT course runs for 37.73mi or approximately 60km over closed public roads and the

Snaefell Mountain on the Isle of Man (British Isles). The road is characterised by several

slopes and elevation variations, thus a three-dimensional 1 model of the track is required

in order to perform realistic simulations. The road model used here is the full 3D road

described in appendix A, which takes into account for all three curvatures κ, ν, τ . In order to

perform any lap time simulation, it is necessary to know the 3D road geometry, i.e the road

middle lane C(s), the road width rw(s) and the rotation angles ψ, σ, β or, alternatively, the

road curvatures κ, ν, τ . The road geometry has been reconstructed through the procedure

described in appendix B. Road borders have been gathered from Google satellite and the

elevation data has been then added using an on-line tool (www.gpsvisualizer.com). Since

these tools do not provide such an accuracy to distinguish the different elevation between the

right and left road borders, the two borders have been assumed to have the same elevation,

i.e. the road banking angle β has been considered to be zero. The raw road data obtained

with these tools is shown in figure 5.1; the green markers indicate the value of the estimated

curvilinear abscissa s every 10 kilometres.

The road resulting from the reconstruction process is shown in figure 5.2 focusing on a

small part of the course comprised between 40.95km < s < 41.4km. It can be noted that

the resulting road borders (blue lines) well match the input points (red crosses). At the

same time, the road elevation, the x− y curvature κ and the slope show smooth trends. In

order to verify the correctness of the reconstructed road data, it has been compared with

the experimental trajectory acquired through a GPS sensor during the practice session at

the 2015TT Zero event. Figure 5.3 focuses on three different turns: it can be noticed

1The term “three-dimensional” road is here used improperly since the road actually is a two-dimensional
manifold. Three-dimensional means that the road is not flat and it extends on a three-dimensional space,
i.e. the road presents elevation variations.
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Figure 5.1: Illustration of the Snaefell Mountain Course road data. The x− y coordinates
(left image) have been acquired from Google satellite images, while the elevation profile was
derived via an on-line tool www.gpsvisualizer.com. In the left picture the x − y view
is represented. The green markers indicate the value of the estimated curvilinear abscissa
s every 10 kilometres. The right one shows the relative elevation of the TT course. The
elevation peak in correspondence of the Snaefell Mountain is evident.
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Figure 5.2: The road geometry obtained through solving the optimal control problem is
shown here for a small part of the course in the range 40.95km < s < 41.4km. The left
image shows the road input data (red crosses) and borders resulting from the optimal control
problem (blue lines) for the part of road comprised between 40.95km < s < 41.4km. Road
elevation, x− y curvature κ and slope percentage are shown in the figure one the right.
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Figure 5.3: Focus on three different turns of the TT road: the black lines are the recon-
structed road borders, the orange line is the motorbike trajectory acquired by the GPS
sensor. The experimental data confirms the correctness of the road reconstruction proce-
dure.

that, considering the uncertainty in the GPS signal, the road borders have been accurately

reconstructed. The experimental data thus confirm the validity of the road reconstruction

process and justify the use of the so reconstructed road for minimum time simulations on

the TT circuit.

5.3 Motorcycle model

Since the TT Mountain Course is approximately 60km long, a simple model is required

to execute optimal control simulations over such a long distance in a reasonable amount

of time. The use of a motorcycle model with several degrees of freedom over such a long

road can make the resulting optimal control problem difficult to solve, leading to long (e.g.

hours) computational times or even to a numerically non solvable problem [20, 11]. Thus

accurate dynamics modelling is here forgone in order to keep the model simple, yet at the

same time a non-trivial power-train model has to be used. The simplest way to describe a

vehicle running while staying in contact with the road is a single body that moves on the

road plane; however, for a motorcycle the roll motion is very important because it has a

remarkable influence on the dynamics. Therefore, the most simple model that captures the

essence of the motorcycle dynamics (i.e. g-g diagram and roll motion) is a body that can
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Figure 5.4: Illustration of the transformations from the road frame Wr to the vehicle frame
Wv. On the left image, the lateral displacement from the centre line n and the relative
heading α of the frame Wv0 are shown. On the right image, the mono-wheel is shown with
respect the frame Wv0. The yaw rate Ω, the roll angle φ, the vertical displacement z of the
frame Wv and the wheel spin ωw are highlighted.

move and roll on the road plane, plus a rotating body which accounts for the gyroscopic

effects. Such bodies can be thought of as a mono-wheel moving on the road plane, where

its mass and inertia tensor are those of the motorcycle.

With reference to the road model described in appendix A, the motorcycle chassis po-

sition and orientation w.r.t the road frame Wr are described by means of four variables:

the lateral displacement from the centre line n, the relative heading α (see figure 5.4), the

vertical displacement z, and the roll angle φ. In particular, the relative frame Wrel is given

by the following sequence of transformations: a lateral displacement of n, a rotation about

the z-axis of α, a vertical translation of ρt − z (ρt is the rear tyre toroid radius), a roll

rotation of φ and finally a vertical translation of h − ρt to reach the CoM position. The

frame Wrel is thus equal to:

Wrel =
(
T (0, n, 0)Rz(α)

) (
T (0, 0, ρt − z)Rx(φ)T (0, 0, ρt − h)

)

=


cosα − sinα 0 0

sinα cosα 0 n

0 0 1 0

0 0 0 1




1 0 0 0

0 cosφ − sinφ (h− ρt) sinφ

0 sinφ cosφ z − ρt − cosφ(h− ρt)
0 0 0 1


(5.1)

Similarly to what has been done for the car models in the previous chapter, it is convenient

to define the frame Wv0 that follows only the lateral displacement and the relative heading

138



of the vehicle:
Wv0 = WrT (0, n, 0)Rz(α)

= Wr


cosα − sinα 0 0

sinα cosα 0 n

0 0 1 0

0 0 0 1


(5.2)

It can be noted that the roll rotation of the angle φ is about an axis parallel to the x-axis

of the frame Wv0, but passing through the centre of the wheel toroid (the point O in figure

5.4), so the contact point between the wheel and the tarmac is always in the origin of Wv0.

Moreover, the mono-wheel can spin with angular velocity ωw (positive when the motorcycle

moves forward) about the wheel centre, for a total of six degrees of freedom.

The mono-wheel model used here is tracked along the road by five dof: s, n, z, φ and

α. For the derivation of the vehicle equations of motion (i.e. the equations associated to

these five dof), the approach described in appendix A could be adopted, yet here a different

approach is used avoiding any algebraic equation 2 . In particular, the speed V , sideslip

angle λ and yaw rate Ωv0z (see figure 5.4) of the frame Wv0 have been used as velocity

variables instead of the velocities of the vehicle frame Wv. The speed V lies in the road

surface and the yaw rate Ωv0zO (and the vertical displacement z too) is aligned with the

z-axis of the frame Wv0, i.e. it is perpendicular to the road plane. The first order equations

describing the time variation of the variables s, n and α can be expressed in terms of the

speed variables V , λ, Ωv0z, and of the road curvature in the x − y transversal plane κ

through the same equations used for the 2D roads (4.31)3. Since the sideslip angle λ is

generally smaller than 10◦, the approximations sinλ ≈ λ and cosλ ≈ 1 have been adopted.

Since the equations associated to the remaining variables z, V , λ, φ and ωw are derived

within the frame Wv0, it is useful to give the expression of the angular velocity Ωv0 =[
Ωv0x,Ωv0y,Ωv0z

]
and of the velocity Vv0 =

[
Vv0x, Vv0y, Vv0z

]
of the frame Wv0. All of them

can be expressed as a function of the state variables and of road geometry through the

following relationship:

Ωv0 =


Ωv0x

Ωv0y

Ωv0z

 =


ṡ(ν sinα+ τ cosα)

ṡ(ν cosα− τ sinα)

Ωv0z

 (5.3a)

2At the time of this work, the available Pins version could not handle any algebraic constraint in the
OCP formulation.

3Since the frame Wv0 lies on the road surface, its motion is indeed bi-dimensional and, since its velocities
has been used as state variables, the tracking equations for the frame Wv0 are the ones used for the 2D road
models.
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Vv0 =


Vv0x

Vv0y

Vv0z

 =


V

−V λ
ṡτn

 (5.3b)

It should be noted that the velocity Vv0 and the angular velocity Ωv0 of the frame Wv0 in

(5.3) can be fully expressed as function of state variables by substituting ṡ in (5.3) with

expression (4.31a). The Newton equations along the three axis of the frame Wv0 that

describe the time evolution of V, λ, z, are:

mV̇v0x + [cosφ(−h+ ρt)− ρt + z]mΩ̇v0y

−2m(h− ρt)(Ωv0z cosφ− Ωv0y sinφ)φ̇

−m sinφ(h− ρt)Ω̇v0z + 2mΩv0y ż −mΩv0xΩv0z(h− ρt) cosφ

+mΩv0xΩv0y(h− ρt) sinφ

+m[(−ρt + z)Ωv0x + Vv0y]Ωv0z +mΩv0yVv0z = Ftx − Fd −mgσ cosα

(5.4a)

mV̇v0y +mφ̈ cos(φ)(h− ρt) +m[(h− ρt) cosφ+ ρt − z]Ω̇v0x −m sinφ(h− ρt)φ̇2

−2m sinφΩv0x(h− ρt)φ̇− 2mΩv0xż −m(h− ρt)(Ω2
v0z + Ω2

v0x) sinφ

−mΩv0yΩv0z(h− ρt) cosφ−m[(ρt − z)Ωv0y − Vv0x]Ωv0z −mΩv0xVv0z

= Fty + Fl sinφ+mgσ sinα

(5.4b)

mz̈ +mφ̈ sin(φ)(h− ρt) +m cosφ(h− ρt)φ̇2

+2m cosφΩv0x(h− ρt)φ̇

+m sinφ(h− ρt)Ω̇v0x +mv̇z +m cosφ(h− ρt)(Ω2
v0x + Ω2

v0y)

+mΩv0yΩv0z(h− ρt) sinφ

−m(−ρt + z)Ω2
v0x +mΩv0xVv0y −m(−ρt + z)Ω2

v0y

−mΩv0yVv0x = mg −N − Fl cosφ

(5.4c)

where m is the total mass of the motorcycle plus the rider, h is the reference distance of

the centre of mass (CoM) from ground, rt is the wheel cross section radius, Ftx, Fty and

N are respectively the wheel longitudinal, lateral and normal force, Fd is the drag force,

Fl is the aerodynamic lift force. Since the road slope σ is always smaller than 10◦, the

approximations sinσ ≈ σ and cosσ ≈ 1 have been adopted. Moreover, the Euler equation

governing the roll dynamics, calculated with respect to the origin of the frame Wv0, is the
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following:

{[−(h− ρt)(z − ρt) cosφ+ (h− ρt)2]m+ Ixx}φ̈+ IxxΩ̇v0x

+(Ωv0z cosφ− Ωv0y sinφ)Igyωw + sinφ(z − ρt)Fl
+(Iyy − Izz)[cosφ sinφ(Ω2

v0y − Ω2
v0z) + Ωv0yΩv0z(1− 2 cosφ2)] +mτφ = 0

(5.5)

where Ixx, Iyy, Izz are the inertia moments of the motorcycle with respect to the Cartesian

axes, Igy = 2Iwy + Ieyτg is the gyroscopic moment of inertia, i.e. the sum of the front and

rear wheel y-axis inertia moment Iwy and the engine y-axis inertia Iey, taking into account

the motor to wheel gear ratio τg. τφ is the sum of several terms proportional to the mass

of the mono-wheel which appears as consequence that the Euler equation is not written

with respect to the centre of gravity. The chosen pole (the origin of the frame Wv0) has

the advantage that tyre forces does not appear in equation (5.5). The expression of τφ is

the following:

τφ = (h− ρt) [sinφ(z̈ − Ωv0yVv0x + Ωv0xVv0y + V̇v0z − g)

− cosφ(V̇v0y − 2Ωv0xż + Ωv0xVv0z − Ωv0zVv0x + gσ sinα)]

+ (h− ρt)(ρt − z)[2 cosφΩ̇v0x − 2 cosφΩv0zΩv0y + sinφ(Ω2
v0y − Ω2

v0z − φ̇2 − 2Ωv0xφ̇)]

+ (h− ρt)2[Ω̇v0x + sinφ cosφ(Ω2
v0y − Ω2

v0z)− 2 cos2 φΩv0xΩv0y]

+ (z2 − 2ρtz)Ω̇v0x + (h− z)(h− 2ρt + z)Ωv0yΩv0z

+ (ρt − z)(V̇v0y − Vv0zΩv0x + Vv0xΩv0z − 2żΩv0x − gσ sinα)

(5.6)

Another equation is required to describe the spin motion of the mono-wheel, which is the

Euler equation of the mono-wheel about its y-axis:

ω̇wIwy =τd − τR − Ftx[rt − ρt(1− cosφ)− z cosφ]

+ Iwy[Ω̇v0y cosφ+ sinφΩ̇v0z + (Ωv0z cosφ− Ωv0y sinφ)φ̇]
(5.7)

where τd is the driving torque applied to the rear wheel, τR is the rolling resistance torque

and Iwy is the inertia moment of the wheel only. The six variables used in equations (5.4),

(5.5), (5.7) to capture the six degrees of freedom of the mono-wheel are: V, λ, z, φ,Ωv0z, ωw.

No equation is used to describe the time evolution of the yaw rate Ωv0z because it is a

control input.

The previous equations depend on the external forces and torques, and on the internal

driving torque τd acting on the motorcycle. The driving torque τd is actually the sum of
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the positive traction motor torque and the negative braking torque:

τd = τt + τb =⇒ τt = f+(τd), τb = f−(τd) (5.8)

where f+(x) and f−(x) are two functions that return the positive and negative part of the

argument respectively; the simultaneous usage of the brake and the gas is not allowed in

this model. The external forces are the tyre longitudinal force Ftx, the tyre lateral force Fty,

and the aerodynamic drag Fd and lift Fl; the only external torque is the rolling resistance

τR. The tyre longitudinal Ftx and lateral Fty forces, together with the rolling resistance τR

and the tyre load N are given by a linear tyre model, limited by an adherence ellipse:

Ftx = NKtκκt

Fty = NKtλλt +Ktφφ)

τR = (N cosφ+ Fty sinφ)KτR

N = f+(Ktrz +Ktdż)

(5.9)

where Ktκ, Ktλ and Ktφ are the tyre longitudinal, lateral and roll stiffness, Ktr and Ktd

are the tyre radial stiffness and damping stiffness, and finally the function f+ ensures the

tyre load to be non negative. The tyre forces Ftx and Fty are forced to lie within the tyre

adherence ellipse: (
Ftx
Nµx

)2

+

(
Fty
Nµy

)2

≤ 1 (5.10)

where µx and µy are the the maximum longitudinal and lateral tyre adherence respectively.

The longitudinal tyre slip, κt, is given by:

κt =
ωw[rt − ρt + cosφ(ρt − z)]− V

V
(5.11)

where r is the rear wheel radius. Finally, the drag and lift aerodynamic forces are propor-

tional to the square of the motorcycle speed:

Fd =
1

2
ρacdAV

2 Fl =
1

2
ρaclAV

2 (5.12)

where ρa is the air density, Cd and Cl are the drag and lift coefficients. The numeric values

of the motorcycle data used to feed the model are listed in table 5.1.
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Table 5.1: Electric motorbike dataset.

symbol value units description

g 9.81 m/s2 gravitational acceleration

ρ 1.2 kg/m3 air density

h 0.6 m centre of gravity (CoG) height

rt 0.3 m wheel radius

ρt 0.1 m wheel toroid radius

m 290 kg motorbike mass including rider and 4 battery packs

Ixx 19 kgm2 motorbike roll moment of inertia

Igy 2.1 kgm2 gyroscopic moment of inertia

Iwy 0.7 kgm2 wheel spin moment of inertia

Ktλ 12 - tyre sideslip stiffness

Ktφ 1 - tyre roll stiffness

Ktr 2× 105 N/m tyre radial stiffness

Ktd 1× 103 Ns/m tyre radial damping

µx 0.8 − tyre longitudinal adherence

µy 0.6 − tyre lateral adherence

KτR 0.015 m tyre rolling resistance

cdA 0.41 m2 drag coefficient

clA 0.03 m2 lift coefficient

5.4 Powertrain model

For the inaugural TTXGP grand prix in 2009, a wide variety of first designs were brought

to the grid. The BX electric motorcycle chassis from the Brunel Racing team carried a

simple power train, consisting of a single brushed DC motor, matching controller and a

Lithium Ion battery pack. From 2010 and the first TT Zero Challenge onward, the BX

power train was upgraded to a dual brushed DC motor configuration, matching controller

and various sizes of a Lithium Polymer battery pack. This configuration became a favourite
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among entries for TTXGP national championships and Isle of Man TT Zero events, and

best represents first generation designs. The BX dual motor power train with Li-Po pack

from Brunel Racing was developed year on year until the 2015 TT Zero event, and it is this

latest version BX-15 that has been modelled here.

Figure 5.5: Equivalent electric circuits of battery and electric motor.

The BX-15 power train is composed of two customized Agni 95R brushed DC and axial

flux motors, supplied by a bespoke Kokam Li-Po battery pack in “4P24S” (4 parallel of

24 series) cell arrangement and governed by an off-the-shelf 1200A Kelly KDHE controller.

The two motors have been balanced so that the total power delivery is equally split over

each one. The electrical equivalent model used to describe the behaviour of such an electric

power train is given in figure 5.5 and is composed of two main circuits, a battery circuit

and a motor circuit, connected via a motor controller that drives the motor voltage/current

input so as to deliver the requested torque at the motor output shaft.

The two motors in the power train have been modelled via a single motor circuit: indeed,

two motors working in parallel can be seen as equivalent to a single motor of the same

characteristics but half the internal resistance. The battery pack is modelled via a battery

circuit, composed of an ideal voltage supply Vbn in series with a resistor Rb that accounts

for the battery pack’s internal resistance [43]. Output voltage Vbn decreases linearly with

battery discharge status, from Vbn1 when the battery pack is fully charged to Vbn0 when

it is fully discharged. Therefore, the closed loop battery voltage Vmb may be calculated as

follows:

Vmb = Vbn − ibRb (5.13a)

Vbn = Vbn0 + (Vbn1 − Vbn0)
e

ei
(5.13b)

where ib is the current flowing in the batteries, e and ei are respectively the actual and

initial battery charge status. The motor controller is a DC to DC converter from the battery

144



circuit to the motor circuit, and for simplicity the conversion efficiency ηmc is assumed to

be constant, yielding to the following power balance equation:

Vmmim = ηmcVmbib (5.14)

where Vmm is the motor controller voltage output to the motor circuit which is related to

the current im circulating in the motor and the the self-induced or back electromagnetic

force (e.m.f.) Ve. Indeed, in steady condition the voltage balance is:

Vmm = imRm(T ) + Ve (5.15)

where the Rm represents the armature winding resistance, which depends on motor tem-

perature T . Finally, the conversion of the electric power into mechanical power is governed

by the well known proportional equations [43, 45]:

Ve = κV (T )ωm τe = κτ (T )f+(im − im0) (5.16)

where ωm is the motor rotational speed, im0 is the engine current offset, τe the motor torque,

κτ (T ) the torque constant and κV (T ) the back e.m.f constant, with κτ (T ) < κV (T ) because

of eddy current and other conversion losses.

In the equations (5.15) and (5.16) three motor characteristics depend on the motor

temperature: the armature winding resistance Rm and the just mentioned proportional

constants κτ , κV . Specifically, Rm increases with motor temperature while κτ (T ), κV (T )

diminish because the hotter the motor, the lower the magnetic flux of the permanent magnet

is. A linear relationship has been used to capture the variation with temperature of these

three quantities:

Rm(T ) = Rm0 + σR(T − T0)

κV (T ) = κV 0 − σm(T − T0)

κτ (T ) = κτ0 − σm(T − T0)

(5.17)

where T0 is the corresponing temperature for the reference values Rm0, κV 0 and κτ0.

Since motor characteristics vary with motor temperature, another equation is required

to describe the motor temperature variation over time. The motor heat balance allows to

calculate the motor temperature rate on the basis of incoming Qin and outgoing Qout heat

flux:

CṪ = Qin −Qout (5.18)
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where

Qin = Vmmim − ωmτe Qout = q(T − Text) (5.19)

where C is the motor thermal capacity, Text is the environmental temperature and q is the

conduction coefficient, which is asusmed to vary linearly from q0 when the motorcycle is

stopped, to q1 at a speed V1 = 150km/h:

q = q0 +
q1 − q0

V1
V (5.20)

It is worth pointing out that no dynamic effects have been included in the model of the

electric power train: indeed, electromagnetic transients are much faster than mechanical

ones and the former may be neglected for our purposes. In other words, for a step variation

of the controlled voltage Vmm (or current, im) it is reasonable to assume that the current im

(or voltage, Vmm) as well as the motor torque τe vary instantaneously, while the variation

of the motor speed ωm and e.m.f. Ve are governed by vehicle inertia through equation (5.7).

In conclusion using equations (5.15) and (5.16), the controller voltage Vmm can be

expressed as function of the motor torque τe and motor speed ωe

Vmm = Ve + imRm = ωeκV +
τe
κτ
Rm (5.21)

Moreover, taking into account the powertrain efficiency ηc and the gear ratio τg between

the motor speed ωe and wheel speed ω (ωe = ωwτg), it is possible to express τe as a function

of the wheel traction torque τt:

τe =
τt
ηcτg

(5.22)

Using equations (5.13) and (5.14) it is also possible to obtain an expression for the

battery current ib and motor controller voltage at the battery side Vmb as function of the

motor torque τe and speed ωe

ib =
Vbn
2Rb
−

√
ηm(V 2

bnηm − 4( τeκτ )2RbRm − 4 τeκτRbωeκV )

2Rbηm

Vmb = Vbn − ibRb

(5.23)

The expression of ib is useful because it allows to evaluate the discharge rate of the battery

charge:

ė = −Vbnib (5.24)

Also, efficiency values both of the motor only and of the power train i.e. motor, battery

pack and motor controller, are shown in figure 5.6 as a function of motor speed and motor
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torque. It can be noticed that the brushed DC motors used in BX-15 are characterised by

an efficiency up to ≈ 85%, and that further losses in the complete power train drop the

efficiency value by an additional ≈ 5%.

0.4 0.4

0
.4

0
.4

0.5 0.5

0
.5

0
.5

0.
6

0.
6

0.6 0.6

0.
65

0.
65

0.65 0.65

0.
7

0.
7

0.7 0.7

0.75

0.75 0.75

0.8

0
.8

0.8

0.85

Motor speed [rad/s]
50 100 150 200 250 300 350

M
o
to

r 
to

rq
u
e
 [
N

m
]

20

40

60

80

100

120

140

160

0.4 0.4

0
.4

0
.4

0.5 0.5

0.
5

0
.5

0.6

0.
6

0.6 0.6

0.65

0.6
5

0.65

0.7

0.7 0.7

0.75

0.75 0.75

Motor speed [rad/s]
50 100 150 200 250 300 350

M
o
to

r 
to

rq
u
e
 [
N

m
]

20

40

60

80

100

120

140

160

Figure 5.6: Contour plot of efficiency values as a function of the motor speed and motor
torque. The left plot refers to the motor efficiency only, while the right plot shows overall
power train efficiency, including motor, battery pack and motor controller. Data shown was
derived for a motor temperature of 25◦C.

Finally, it should be noted that the only variables that the electric motor model adds

to the state space model are the motor temperature T and the battery charge e. All other

quantities are algebraic expressions of other variables and controls.

5.5 State space and OCP formulation

The vehicle dynamics and electric power train equations described in the previous sections

can be put together to form a first order ordinary differential equation system that com-

pletely characterises the model. In order to do this, two auxiliary variables have to be

introduced because both roll angle φ and the vertical displacement z appear respectively in

equation (5.5) and (5.4) with the second order derivative:

φ̇ = φdot ż = zdot (5.25)

At this point, equations (4.31), (5.4), (5.5), (5.7), (5.18), (5.24), (5.25) completely describe

the mono-wheel dynamics as a system of 12 first order differential equations with as many
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state variables xs and 2 inputs us:

xs =
[
s; n; α; V ; λ; z; φ; ωw; T ; e; φdot; zdot

]
us =

[
Ωv0z; τd

] (5.26)

Recalling that the motor torque τe can be easily expressed as function of the control τd

(5.22), all other electric variables as Vmm, im, ib, Vb can be expressed as function of τd and

the state variable ωw using equations (5.16) (5.15) (5.23).

The minimum time problem is here formulated as in section 4.2.5, 4.3.2 and 4.4.2, thus

it is only briefly described. The transformation from time to space domain described in

appendix A is adopted, thus the variable s is made the independent variable and few con-

straints are used to make the simulation withstand the real racing conditions. In particular

such constraints ensure that:

(a) the motorcycle never exceeds the road borders, considering that the track has width

rw(s);

(b) the roll rate is lower than the maximum one real driver can handle φ
(max)
dot ;

(c) the yaw rate is less than the one real motorcycle can achieve Ω(max) (this constraint

has to be included because the yaw rate is a control);

(d) the tyre forces never exceed the adherence ellipse, as already discussed in section 5.3

(the maximum longitudinal and lateral tyre adherence are µx, µy respectively);

(e) the motor current remains lower than the maximum motor current i
(max)
m ;

(f) the power absorbed by the motor controller from the battery pack is lower than the

maximum battery pack power P
(max)
b ;

(g) the battery charge e does not become negative.

Such conditions can be expressed by the following relationships:

rw/2 ≤ n ≤ rw/2 (5.27a)

−φ(max)
dot ≤ φdot ≤ φ

(max)
dot (5.27b)

−Ω(max) ≤ Ωv0z ≤ Ω(max) (5.27c)(
Ftx
Nµx

)2

+

(
Fty
Nµy

)2

≤ 1 (5.27d)

im ≤ i(max)
m (5.27e)
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Vbnib ≤ P
(max)
b (5.27f)

e ≥ 0 (5.27g)

The Pins software described in chapter 3.2.1 has been used as numerical solver.

5.6 Simulation results and model validation
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Figure 5.7: Experimental (red) and simulated (blue) speed profile versus distance travelled.

The minimum time optimal control simulation has been carried out on the entire Snaefell

Mountain Course obtaining a theoretical lap time of 29 minutes and 31 seconds, which is

in good agreement with the physical lap of 29 minutes and 47 seconds, registered during a

practice session of the 2015TT Zero event. The simulation took less than three minutes to

compute on a desktop PC equipped with an Intel Core i7 processor, using a discretisation

mesh with one point every meter (leading to a total of ≈ 60×103 mesh points); this suggest

that the used optimal control solver, together with the motorcycle model presented in this

work, is very efficient. The simulated motorcycle speed along the track is shown in figure

5.7 together with the experimental one; the figure highlights a good qualitative agreement

between the experimental data and the simulation. It can be observed that the simulation is

slightly faster than the actual rider between the 40th and 50th kilometre. This is the section

of the course with the most significant positive slope (ascent of the Snaefell Mountain) and,

as the bottom graph of figure 5.8 suggests, demands more power in simulation. As the real

rider had some freedom not to apply maximum power over the entire course so as to prevent

excessive motor load and preserve battery pack energy (even if battery pack capacity was
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Figure 5.8: Battery pack voltage (top graph), current (centre graph) and power (bottom
graph) vs. distance travelled. Red lines refer to experimental data, blue lines to simulation.

sized with contingency to avoid full battery discharge), this may be the reason why the

rider navigated the final climbing section of the course somewhat slower than he could, as

optimal control simulation indicates.

Figure 5.8 reports on the energy usage along the course: battery pack voltage, cur-

rent and power delivery in simulation are shown together with the experimental data, and

demonstrate very good agreement for all three parameters. The simulated battery pack

voltage (top graph) agrees well with the experimental data, capturing not only the ex-

pected decreasing trend of the battery discharge process but also the location and duration

of voltage recovery effects when load is being removed. These voltage effects align with

the current and power drops observed in the centre and bottom graphs respectively, as

the rider releases the throttle. The simulated battery pack current draw and power drain

further match well with current and power as measured on track, as well as with the speed

graphs from figure 5.7, only showing slightly greater values for the first 15 kilometres of

the course and slightly lower values between the 40th and 50th kilometre, indicating that

the rider was pushing beyond optimal energy drain at the start and started to preserve

energy near the end. It can be expected that there are additional smaller effects impacting
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Figure 5.9: Motor voltage (top graph), current (centre graph) and power consumption
(bottom graph) vs. distance travelled. Red lines refer to experimental data, blue lines to
simulation.

on power drain and efficiency near the start and towards the final heavy load stages of the

race, such as the cold start and high final temperatures, and the fact that battery charge

status is always slightly above nominal in the beginning and close to non-linear drop-off for

individual battery cells near the final stages. Even though the experimental data could not

provide reliable specific temperature nor individual battery cell information to quantify the

impact of such factors, the fact that the deviations observed between simulation and exper-

iment in figure 5.8 occur only near the start and end of the race distance, exactly when both

the rider would be adjusting his riding style and the aforementioned temperature and indi-

vidual battery characteristics are most dominant, underlines that the modelling approach

is sound.

Figure 5.9 shows the motor related variables. The simulated motor current (centre

graph) however presents some differences with the experimental data. In the first part of

the TT course, the experimental motor current is, on average, higher than the simulated

current, while in the second part the opposite can be observed. The same behaviour can

be noticed for the power absorbed by the motor, which is a consequence of the current
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Figure 5.10: Battery pack current draw vs. motorcycle speed (left) and motor driving volt-
age (right). The simulated data (blue dots) shows the same linear trend as the experimental
data (red dots).
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Figure 5.11: Power delivered to the ground versus power drained from battery (simulated
data). The black solid and dashed lines correspond respectively to an overall efficiency of
the 100% and 70%: the simulated motorcycle highlights an efficiency close to the 70%.

deviations as power is calculated via the product of motor voltage and motor current. This

discrepancy can be due to the uncertainty in the measurement of motor current: indeed,

the motorcycle was equipped with two motors working in parallel, yet only the current
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drawn by the left motor has been captured due to a failure in the right motor sensor.

Total motor current had to be estimated by multiplying the left current by two, as the dual

motor configuration had been balanced at the start to have the two motors working equally.

However, not only is it known that each brushed DC Agni 95R motor is subject to a degree

of variation from the nominal specification due to the non-automated production process

applied (affecting armature internal resistance for example), balancing of multiple motor

configurations also has to performed track side, especially after servicing that must occur

after each track outing. The balancing process consists of manual tuning (i.e. not via motor

controller programming) of the brush holder setup of each motor in the configuration, and

is therefore prone to slight deviations around the ideal brush holder positions, which carries

no impact for normal road and short circuit race applications but could affect individual

motor temperature, power and efficiency, and therefore motor balancing within a multiple

configuration, when under sustained heavy loading over a long distance such as around

the TT Snaefell Mountain Course. And indeed, the two motors used here did turn out

to have an asymmetric loading along the course, as found from temperature observations.

Even though the balanced motors were mounted to ensure the same exposure to ambient

air cooling, different working temperatures of ≈ 30◦ for the left and ≈ 50◦ for the right

motor were observed. Such discrepancy suggests that an asymmetric motor loading existed

along the course, which was not incorporated in the simulation where an average working

temperature for a balanced motor model was taken at ≈ 40◦.

Further evidence that the mathematical models of motorcycle and electric power train

are reliable can be taken from figure 5.10. The left graph shows a linear trend between

simulated battery pack current draw and motorcycle speed, which corresponds well with

experimental observations. The same holds true for the battery pack current and the motor

driving voltage on the right graph, as would be expected since motor speed and motor

voltage are proportionally related for brushed DC motors.

Finally, figure 5.11 illustrates from simulation data the calculated overall efficiency of

the complete energy conversion process: the mechanical power to ground is plotted as

a function of the energy drained from the battery pack. The black lines correspond to

overall efficiencies of 100% (solid) and 70% (dashed). The simulated motorcycle (blue dots)

demonstrates an average overall efficiency close to or slightly below the 70% marker line.

5.7 Motorbike optimisation

The previous section has demonstrated the ability of the mathematical model to faithfully

reproduce the entire run on the TT course, suggesting that simulation can now also be

used to optimise the motorcycle design for the specific course. Lap time simulation can
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be effective in quickly highlighting performance variations, for example during selection of

motorcycle configuration or race setup parameters for which optimal values are not easily

identified other than by experience or extensive historical data. In this section the value of

optimisation via lap time simulation for the design and setup alterations of three important

electric motorcycle parameters will be demonstrated: the wheel-to-motor gear ratio, the

battery pack capacity, and the number of motors within the power train configuration will

be optimised.

The wheel-to-motor gear ratio mainly influences the motorcycle performance because it

modifies both wheel torque and top speed. Since maximum motor torque and motor speed

result from motor design and build and thus are fixed, a shorter wheel-to-motor gear ratio

allows to reach higher wheel torque, and therefore faster motorcycle accelerations, yet at

the same time it reduces maximum motorcycle speed. Moreover, figure 5.6 showed that, for

a given motor power, the overall power train efficiency of motor, controller and battery pack

increases as motor torque decreases, except for very low motor torques. On the basis of

these considerations it is not immediately clear which gear ratio should be best used for the

TT course. Different runs on the TT course have been simulated varying the wheel-to-motor

gear ratio in the range 2.5 to 4.3, with step changes of 0.1; all the other characteristics of

the motorcycle were kept unchanged. Results are shown in figure 5.12 and compared with

reference values from the data and setup of the (non-optimized) BX-15 chassis, as detailed

in section 5.4. It can be noticed that the optimal lap time is approximately 1 minute and

45 seconds (≈ 6%) less than the reference time, and it is obtained for a gear ratio of 3.4,

which is significantly higher than the reference gear ratio 2.8. A lap time reduction of

this magnitude corresponds to an increase in average motorcycle lap speed from 122km/h

(75.8mph) to 130km/h (80.8mph). It can be observed that the optimal gear ratio provides

neither maximum top speed4, nor maximum 0− 120km/h acceleration. In fact, maximum

top speed is achieved with a gear ratio equal to 3.1, while maximum acceleration is obtained

with the shortest gear ratio considered (4.3). Figure 5.12 further shows that the gear ratio

influences significantly the amount of energy used over the entire course (fourth graph from

the top): the maximum energy usage (41MJ or 11.4kWh) is obtained with a gear ratio

equal to 3.3, which is close to the optimal one, while the reference data shows approximately

10% less energy usage (37MJ or 10.3kWh) with gear ratio 2.8. None of the gear ratios

considered here would fully drain the battery pack; indeed the BX-15 battery pack size was

intentionally over-dimensioned on safety grounds to prevent full discharge. Moreover, the

bottom graph in figure 5.12 shows that the overall efficiency, calculated as the total energy

delivered to the wheel divided by the battery pack energy used, increases continuously with

4It is the maximum speed achieved on the course, not the motorcycle top speed.
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Figure 5.12: From top to bottom, overall lap time, top speed, 0 − 120km/h acceleration
time, energy used and overall power train efficiency are all shown vs. wheel-to-motor gear
ratio. The red circle indicates the configuration used in the TT Zero Challenge, the green
diamond indicates the optimal configuration as found through simulation. The black line
in the fourth graph from the top represents total energy stored in the battery pack.

the gear ratio, at least in the range considered. The optimal gear ratio 3.4 uses slightly less

battery pack energy than gear ratio 3.3, and still allows to diminish the lap time thanks to

a higher efficiency.

Motor current, voltage and motorcycle speed are compared in figure 5.13 for the reference
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Figure 5.13: Comparison between reference gear ratio 2.8 (blue lines) and optimised gear
ratio 3.4 (magenta lines) for motor current, motor voltage and motorcycle speed.

and optimal gear ratios. As expected, the optimal gear ratio uses on average a higher motor

driving voltage, but a lower motor current; in particular, with the optimal gear ratio the

motor voltage is often equal to the maximum value above which motor damage could occur,

while in the reference setup such voltage values are never reached. The speed profile (bottom

graph) shows that the optimal gear ratio provides higher accelerations but lower top speed

than the reference setup, corresponding to the discussion regarding figure 5.12.

The second parameter under scrutiny is the battery pack capacity: an undersized battery

pack will not provide enough power required by the motor, but an oversized battery pack

would add extra weight to the motorcycle for the same energy usage. Sizing the pack

capacity correctly is therefore again a critical but not straightforward design decision where

simulation can help. Several runs haave been simulated with varying battery pack sizes and

thus varying amounts of stored energy available, while keeping the energy density constant

(at 0.51MJ/kg or 142Wh/kg as in the experimental reference setup). The results obtained

are illustrated in figure 5.14, where the top graph shows lap time and the bottom graph

percentage energy used (e.g. 100% means the battery pack has been completely drained).

With the lowest battery capacity of 25MJ (6.9kWh) considered, no energy is left at the

156



end of the race and indeed to conclude the race it is necessary to adopt some energy

saving strategies while navigating the course. As pack capacity increases, lap times reduce

significantly and minimum lap time is reached for a capacity of (approximately) 37MJ

(10.3kWh). Greater pack capacities are not necessary and the increment in weight reduces

performance; however, the extra weight influences the lap time less significantly than energy

saving strategies. This suggests that it is more convenient to provide the motorcycle with

a slightly over-sized and heavier battery pack, than risking to be forced to adopt an energy

conserving riding style.
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Figure 5.14: Overall lap time (top) and battery usage percentage (bottom) are shown vs.
the total amount of energy stored in the battery pack (energy density held constant at
reference value 0.51MJ/kg or 142Wh/kg). The red circle indicates the configuration used
in the TT Zero Challenge, the green diamond indicates the optimal configuration as found
through simulation.

The lap times shown in figure 5.14 are calculated with the reference gear ratio 2.8, which

is not optimal; moreover, it has been previously shown that the gear ratio affects the battery

usage (figure 5.12). Therefore, it is expected that the gear ratio and battery size should

actually be optimised together. Figure 5.15 shows lap time as a function of both gear ratio

and battery capacity. A lap time of 27 minutes and 34 seconds (nearly two minutes or

≈ 6.5% faster than the reference configuration) may be obtained with a gear ratio of 3.4

and a battery pack capacity of ≈ 42MJ (11.7kWh), corresponding to an increase in average

motorcycle lap speed from 122km/h (75.8mph) to 131km/h (81.4mph). The contour graph

highlights that the lap time significantly increases when the chosen gear ratio is far from

the optimal one (i.e. greater than 3.6 or lower than 3.3) or when the battery capacity is

under-sized (i.e. less than 37MJ or 10.3kWh). Moreover, figure 5.15 confirms what was

157



1
6
6
0

1
6
6
0

1
6
8
0

1
6
8
0

1680

1
6
8
0

1
6
8
0 1

7
0
0

1
7
0
0

1700

1700

1
7
0
0

1
7
2
0

1
7
2
0

1720

1720

1
7
2
0

1
7
2
0

1740

1
7
4
0

1
7
4
0

1
7
4
0

1
7
4
0

1760

1
7
6
0

1
7
6
0

1
7
8
0

1
7
8
0

1
8
0
0

1
8
0
0

1
8
2
0

1
8
2
0

1
8
4
0

1
8
4
0

Wheel-to-motor gear ratio
2.5 2.8 3.1 3.4 3.7 4

B
a

tt
e

ry
 e

n
e

rg
y
 [

M
J
]

34

36

38

40

42

44

46

48

50

52

54

Figure 5.15: Lap time contour graph as a function of gear ratio and battery pack capacity.
The minimum lap time of 27 minutes and 34 seconds (1654s) is obtained with a gear ratio
of 3.4 and a battery pack capacity of ≈ 42MJ (11.7kWh). The red circle indicates the
configuration used in the TT Zero Challenge, the green diamond indicates the optimal
configuration as found through simulation.

already observed in figure 5.14, namely that an over-sized battery pack leads to a slight

performance decrease, but an under-sized battery pack causes a significant increase of the

lap time. By the way the figure shows also that the gear ratio and the battery capacity

optimization are almost independent.

The third parameter that has been optimised here through lap time simulation is the

number of motors in the power train. BX-15 was equipped with a dual motor configuration,

a popular choice because of relative ease of packaging and obvious advantage over a single

motor of the same specification. Considering that the performance of the motorcycle studied

in this work is limited mainly by motor power, adding one motor seems a worthwhile

consideration at first. However one more motor would also add 11kg of extra weight, and it

would require a bigger battery pack. For this reason it cannot be clear a priori whether two

or three motors would constitute the best configuration, and simulation can again provide

clarity.

The lap time on the TT course for a motorcycle with a triple motor configuration, with

no other changes applied, has been simulated; total mass was increased by 11kg (weight of
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one motor) but the reference gear ratio and battery pack capacity were kept unchanged.

The simulated lap time (26 minutes and 6 seconds or 1566s, as reported in table 5.2)

turned out to be significantly lower than that of the dual motor configuration (even of

the optimised version). But the simulation showed also that with three motors the 4P24S

battery pack is being fully discharged, suggesting that the performance could be increased

by parallel mounting an extra battery sequence. However, in 5P24S pack arrangement it

turns out that the lap time becomes five seconds more (1571s, see table 5.2), therefore

the additional energy provided by the extra battery capacity does not compensate for the

increased motorcycle weight. In conclusion, a three motor configuration is the best choice

in terms of minimum lap time because it allows to increase the average speed on the TT

Course by the ≈ 14% from 122km/h (75.8mph) to 138km/h (85.7mph) (with the reference

gear ratio). However, these results should be considered against the actual design and build

process, since a triple motor configuration is more difficult to package and integrate into

the motorcycle chassis than the dual motor configuration.

Table 5.2: Comparison of lap times with different motor configurations and battery pack
arrangements.

2 motors & 4P24S
(51MJ - 14.2kWh)

3 motors & 4P24S
(51MJ - 14.2kWh)

3 motors & 5P24S
(64MJ - 17.8kWh)

Lap
time

29m 31s 26m 7s 26m 11s

Battery
usage

72% 100% 85%

5.8 Summary

Electric and hybrid vehicles are nowadays rapidly gaining in popularity, but performance

and energy consumption optimisation remain a challenging task. In this chapter optimal

control has been used to simulate an electric motorcycle for the TT Zero Challenge over

the entire 60km-long (37.73mi) Snaefell Mountain Course on the Isle of Man. A simple

motorcycle multibody model, able to capture the essence of the dynamics, has been used in

order to efficiently run simulations over such a long road. A three-dimensional road model

and an electric power train model, consisting of battery pack, DC brushed motors and motor

controller, have been implemented. The model allows to efficiently perform simulations over

the 60km road course in less than three minutes, and the simulation outcomes have been

validated through comparison with experimental data acquired by the Brunel Racing team
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during the 2015 TT Zero event.

Lap time simulation was then used to optimise the design of the racing motorcycle,

in particular the wheel-to-motor gear ratio, the battery pack capacity and the number of

motors in the power train. Results showed that the gear ratio has a significant influence

on the performance and on the efficiency of the power train, with the use of the optimal

(shorter) gear ratio leading to a lap time reduction of approximately 2 minutes or 6% of

the reference experimental data. Perhaps surprisingly, battery pack capacity turned out to

affect lap time only marginally, as long as the pack is sized or over-sized so as not to be

fully discharged over one lap. However, when battery pack capacity is under-sized, such

that energy saving riding strategies must be adopted in order to complete the entire course,

the lap time increases significantly as the reduction in motorcycle weight does not overcome

the lack of energy to ride at full performance throughout. Finally, the optimisation of the

multiple motor configuration demonstrated that adopting an extra motor and upgrading to

a triple (from dual) configuration brings along additional performance improvement: the

extra available power reduces lap time and overcomes the increase in weight.

These results suggest that the bespoke developed optimal control model for lap time

simulation can serve as a valuable tool in the motorcycle design process, because of the

sensitivity it harnesses in motorcycle parameter variation studies and the relatively short

computing time that is required.
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Chapter 6

Direct transcription method for

implicit optimal control problems

In the previous chapters the classical formulation of optimal control problem, i.e. where

the dynamical system is described by explicit1 differential equations and the controls are

algebraic variables, has been described and applied to minimum lap time problems. In this

chapter the formulation including fully implicit differential equations and control derivatives

is considered and a direct full collocation transcription method for implicit optimal control

problems is presented. The aim is to provide a tool for optimal control problems that leave

a larger freedom from a modelling point of view. In the next section, the advantages of

implicit equations is described, then the implicit optimal control formulation is presented

and the first order necessary conditions are derived. The direct transcription method for

solving the implicit OCP is then described and implemented in the Maverick software that

is currently in use at the University of Padova. Finally, the implicit OCP formulation is

applied on a case-of-study problem of a motorbike performing a U-turn manoeuvre on a

three-dimensional road.

6.1 Advantages of the implicit formulation

Optimal control theory, at least in the form it can be found in classic books as [76, 20, 75, 11]

has always considered OCPs with explicit first order equations, i.e. where the dynamical

system of the optimal control problem is described by differential equations in the form:

x′ = f(x,u,p, ζ) (6.1)

1In the previous chapters, when using the Pins software, equations of motion have always been considered
also implicit but linear in the derivative, i.e. they can be made explicit with a matrix inversion.
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Moreover, many commercial numerical optimal control software have been developed so as to

deal only with explicit first order equations (6.1), like GPOPS-II and Falcon. Explicit first

order equations however may represent a limiting factor in some optimal control problem

applications. For instance, whenever the dynamical system of the optimal control problem is

a mechanical or multibody system, the first order equations (2.6c) arise from the equations

of motion, and the state variable vector x is strictly related to the degrees of freedom of the

system. For a multibody system the first-order equations, that are obtained by reducing

to the first order the equations of motion (that are of the second order), can be generally

written in the form:

A(x,u,p, ζ)x′ = B(x,u,p, ζ) (6.2)

where A is a square matrix (called mass matrix) and B a vector. However, equation (6.2)

cannot be used as dynamical equation (2.6c) in OCPs because the classic OCP theory do

not apply to such equation. If the mass matrix is diagonal or if its inverse can be exactly

calculated, equation (6.2) can be put in the explicit form (6.1). Usually, for simple systems

with few degrees of freedom, i.e. up to approximately ten state variables, the exact (not

numerical) inverse of the mass matrix can be calculated. However optimal control problems

may include more state variables so as that the mass matrix inverse can be calculated

only numerically; an example are the equations of the motorbike multibody model used

in [85, 28, 27] or of the GP2 car model described in section 4.3. When the mass matrix

cannot be exactly inverted, an explicit optimal control software can still be used if “tricky”

strategies are adopted. Two possibilities, for instance, are the following:

• the mass matrix is inverted numerically and the first order equations are calculated

as x′ = A−1B, where the matrix A and the vector B are numerically evaluated.

This strategy has two main drawbacks: first, the evaluation of the equations is slower

because it requires a matrix inversion and, second, the Jacobian and Hessian matrices

for the equations are usually numerically calculated. It is known that the use of

numerically approximated derivatives makes the solving algorithm slower and often

less robust [20, 11].

• algebraic variables a∗ are introduced into the optimal control problem, so as that

equations 6.2 are replaced by x′ = a∗. Moreover, the algebraic variables must satisfy

the path constraints Aa∗ = B. The explicit form of the equations of motion is thus

obtained at the expense of additional controls and path constraints, resulting into a

problem of significantly greater size. For some problems the implicit form is more

robust and the solver converge faster to solution [31].

Despite the equations of motion of all multibody systems can be — at least in theory —

162



written in the linear-implicit form (6.2), in the case of complex dynamical systems the equa-

tions may not be straightforwardly written as in (6.2). Moreover, some dynamical systems

may be described by equations which are intrinsically implicit in the state derivatives2; an

example is the muscular activation dynamics problem treated in [31]. In such problem the

equations cannot be written neither in explicit form, nor in the linear-implicit one (6.2).

From a more general point of view, every first order dynamical system is described by

differential equations in the form:

f(x′,x,u,p, ζ) = 0 (6.3)

The availability of a numerical optimal control solver that allows to use implicit equations

as in (6.3) is of great advantage from the modelling point of view, especially when the

dynamical system equations are cumbersome to write as in (6.1) or (6.3). However, if an

OCP is governed by an implicit dynamical equation (6.3), the classical OCP theory does

not guarantee the existence of a solution. In the next section some sufficient conditions for

the existence of a solution are discussed.

6.2 Implicit optimal control formulation

An implicit optimal control problem is characterised by implicit first order equations:

f(x′,x,u,p, ζ) = 0 (6.4)

Equation (6.4) represents a general DAE system where part of the state variables x may

be algebraic, i.e. they are determined by algebraic equations and their derivatives do not

appear. In classical optimal control formulations, controls u have been always considered

piecewise continuous algebraic variables, and their derivatives do not appear in the OCP.

However, under these hypothesis, an OCP described by equation (6.4) is not guaranteed

to have one, and only one, solution. Indeed, the Pontryagin Maximum Principle cannot

be applied here. If calculus of variation is exploited to obtain the necessary conditions

for the solution, then the derivative d
dζ

∂f
∂x′ has to be calculated, thus the control and all

other algebraic variables have to be differentiable (unless the equations have a particular

structure, but this depends on the specific dynamical system). The exact calculus of the

necessary conditions through CV will be carried out in the next section. It is opinion of

the author that such prerequisites for the controls and the algebraic variables (i.e. to be

differentiable) are probably not the most general hypothesis under which the existence and

2 In such dynamical system the control is by definition differentiable, while in classic OCP theory it is
required to be only piecewise continuous, as discussed in section 2.3.1.2.
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uniqueness of a solution for an OCP described by the implicit dynamical equation (6.4) is

guaranteed, exactly as, in classical OCP theory, CV has more stringent hypothesis than the

PMP. The development of a complete and solid theory for implicit OCPs is out of the scope

of this chapter, as it would require an entire thesis dedicated to this subject.

At first sight it may seem a very strict requirement for the controls to be differentiable,

since there are plenty of classic OCP examples where the controls are discontinuous. In par-

ticular, in all OCPs where the dynamical equations and the target are linear in the controls,

the solution exhibits a bang-bang behaviour (where there are no singular arcs), i.e. the con-

trols jump discontinuously between their maximum and minimum values. However, even

if a relatively small regularisation term proportional to the square of the controls is added

to the Lagrange target, the theoretical bang-bang behaviour is lost and the controls do not

show discontinuities. This regularisation technique is often used when solving numerically

OCPs to make the problem less stiff and easier to solve. Moreover, when the penalty ap-

proach (see section 2.3.1.3) is adopted as solving strategy, the penalties act as regularising

terms and the OCP solution presents smooth controls. For these reasons, it is opinion of

the author that from a practical point of view, the requirement of differentiable controls

is not too restrictive since OCPs whose solution is characterised by discontinuous controls

can be regularised to obtain approximated solutions with smooth controls. Moreover, in

the real world it is often impossible to reproduce discontinuous (in the mathematical sense)

controls.

If controls are assumed to be differentiable, it can be useful to use their derivatives in

the OCP formulation, i.e. in the target and constraints expressions. This gives a greater

flexibility in the OCP modelling: regularisation terms related to the control derivatives can

be included into the target so as to suppress control oscillations, and bounds on the control

rates can be imposed as path constraints. Therefore it comes natural to let the first order

equations (6.4) — and similarly the OCP target and constraints — depend on the control

derivatives. This requires the controls to be twice differentiable in order to use CV to derive

the necessary conditions.

Generalising further the OCP formulation, the optimal control problem can be multi-

phase, i.e. the first order equations, target and constraints may change (a fixed number

of times) in each phase. A classical example is the launch of a multi-stage rocket. The

resulting formulation for a multi-phase (p = 1, . . . , P ) implicit optimal control problem,

with differential controls, is the following:
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min
u

P∑
p=1

ψ(p)(x(ζ
(p)
i ),x(ζ

(p)
f ),u(ζ

(p)
i ),u(ζ

(p)
f ),p, ζ

(p)
i , ζ

(p)
f ) (6.5a)

+

∫ ζ
(p)
f

ζ
(p)
i

`(p)(x(ζ),x′(ζ),u(ζ),u′(ζ),p, ζ)dζ (6.5b)

subject to: (for p = 1, . . . , P ) (6.5c)

f (p)(x(ζ),x′(ζ),u(ζ),u′(ζ),p, ζ) = 0 (6.5d)

g
(p)
l ≤ g

(p)(x(ζ),x′(ζ),u(ζ),u′(ζ),p, ζ) ≤ g(p)
u (6.5e)

h
(p)
l ≤

∫ ζ
(p)
f

ζ
(p)
i

h(p)(x(ζ),x′(ζ),u(ζ),u′(ζ),p, ζ)dζ ≤ h(p)
u (6.5f)

φ
(p)
l ≤ φ

(p)(x(ζ
(p)
i ),x(ζ

(p)
f ),u(ζ

(p)
i ),u(ζ

(p)
f ),p, ζ

(p)
i , ζ

(p)
f ) ≤ φ(p)

u (6.5g)

x
(p)
l ≤ x

(p) ≤ x(p)
u (6.5h)

u
(p)
l ≤ u

(p) ≤ u(p)
u (6.5i)

p
(p)
l ≤ p

(p) ≤ p(p)
u (6.5j)

αl ≤ α(x(ζ1,...,P
i ),x(ζ1,...,P

f ),u(ζ1,...,P
i ),u(ζ1,...,P

f ),p, ζ1,...,P
i , ζ1,...,P

f ) ≤ αu (6.5k)

where the subscripts l,u indicate respectively the minimum (lower) and maximum (upper)

bounds and the superscript (p) denotes the phase. Since controls are assumed differentiable,

controls and states are completely equivalent from a mathematical point of view; indeed,

it can be noted that the above reported formulation (6.5) is symmetric between states and

controls. The only distinction between states and controls is that the latter are the inputs

of the dynamical system and the former are determined by the control inputs.

6.2.1 First order necessary conditions

In this section the first order necessary conditions for the implicit OCP (6.5) are calculated.

Such necessary conditions give the equations that the Lagrange multipliers satisfy, which

will be used in the next sections to find the relationship between the Lagrange multipliers

and the KKT multipliers of the direct transcription method that will be presented.

For sake of conciseness, a single-phase version of the problem (6.5) is here considered;

the extension to the multi-phase problem is straightforward. Moreover the constraints on

the states, controls and parameters (6.5h) (6.5i) (6.5j) will be neglected since they can be

thought as included in the path constraints (6.5e).

The first order necessary conditions are different from those derived in chapter 2 since

the new problem has a different formulation. One of the differences is that in the implicit
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problem the target (6.5b), the first order equations (6.5d) and the constraints (6.5e) (6.5f)

depend on the control derivatives. Moreover, the boundary conditions now depend on

the controls and the first order equations have an different structure. While this does

not prevent to use CV to derive the necessary conditions3, problem (6.5) presents some

inequality constraints which makes it unsuitable for CV. Thus, the necessary conditions

can be calculated only if constraints (6.5e), (6.5f) and (6.5g) are replaced by the following

equality constraints:

g∗j (x(ζ),x′(ζ),u(ζ),u′(ζ),p, ζ) = g∗j (ζ) (6.6a)∫ ζf

ζi

h∗j (x(ζ),x′(ζ),u(ζ),u′(ζ),p, ζ)dζ = h∗j (6.6b)

φj(x(ζ
(p)
i ),x(ζ

(p)
f ),u(ζi),u(ζf ),p, ζi, ζf ) = φ̂∗j (6.6c)

where the superscript ∗ indicates the optimum value, i.e. the value assumed by the inequal-

ity constraints along the solution. Even if inequality constraints are replaced by equality

ones, since g∗j (ζ), h∗j , φ
∗
j , are the values at the solution, the Lagrange multipliers remain

unchanged, thus they are zero unless when the inequality constraints are active. Clearly,

the optimum values g∗j (ζ), h∗j and φ∗j cannot be known before the solution is calculated, so

the necessary conditions cannot be used to really find the solution. However, it is possible

to virtually substitute the inequality constraints with equations (6.6) just to derive the

equations that the Lagrange multipliers satisfy.

The necessary conditions for the equality constrained problem are now calculated. The

Lagrangian of the problem is:

Ĵ =ψψψ(x(ζi),x(ζf ),u(ζi),u(ζf ),p, ζi, ζf ) + γγγᵀφ(x(ζi),x(ζf ),u(ζi),u(ζf ),p, ζi, ζf )

+

∫ ζf

ζi

[
`(x,x′,u,u′,p, ζ) + λλλ(ζ)ᵀf(x,x′,u,u′,p, ζ)

]
dζ

+

∫ ζf

ζi

ωωω(ζ)ᵀ
(
g
(
x,x′,u,u′,p, ζ

)
− g∗

)
dζ

+ υυυᵀ

(∫ ζf

ζi

h(x,x′,u,u′,p, ζ)dζ − h∗
)

(6.7)

where γγγ, λλλ(ζ), ωωω(ζ) and υυυ are the Lagrange multipliers. As previously said, it follows from

the definition of g∗j , h
∗
j , φ

∗
j that these Lagrange multipliers are zero when the constraints

3Under the hypothesis that states and controls are twice differentiable.
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are not active:
ωj(ζ) = 0 if ζ /∈ Ag,j

υj = 0 if j /∈ Ah

γj = 0 if j /∈ Aφ

(6.8)

where the sets Ag,j , Ah, Aφ are the active constraints set:

ζ̂ ∈ Ag,j ⇐⇒ gj is active at ζ = ζ̂

j ∈ Ah ⇐⇒ hj is active

j ∈ Aφ ⇐⇒ φj is active

(6.9)

An inequality constraints is said to be active if its value is equal to its lower or upper bound.

Taking the first variation of the unconstrained target Ĵ (6.7) and equating it to zero

for any arbitrary variation in all the variables and multipliers, the following equations (first

order necessary conditions) are obtained:

0 =
∂ψ

∂v

∣∣∣
ζi

+ γγγᵀ
∂φφφ

∂v

∣∣∣
ζi
− ∂`

∂v′

∣∣∣
ζi
− λλλᵀ ∂f

∂v′

∣∣∣
ζi
−ωωωᵀ ∂g

∂x′

∣∣∣
ζi
− υυυᵀ ∂h

∂x′

∣∣∣
ζi

(6.10a)

0 =
∂ψ

∂v

∣∣∣
ζi

+ γγγᵀ
∂φφφ

∂v

∣∣∣
ζf

+
∂`

∂v′

∣∣∣
ζf

+ λλλᵀ
∂f

∂v′

∣∣∣
ζf

+ωωωᵀ ∂g

∂x′

∣∣∣
ζf

+ υυυᵀ
∂h

∂x′

∣∣∣
ζf

(6.10b)

0 =
∂`

∂v
+ λλλᵀ

∂f

∂v
+ωωωᵀ ∂g

∂v
+ υυυᵀ

∂h

∂v
+

d

dζ

(
∂`

∂v′
+ λλλᵀ

∂f

∂v′
+ωωωᵀ ∂g

∂v′
+ υυυᵀ

∂h

∂v′

)
(6.10c)

0 =
∂ψ

∂p
+ γγγᵀ

∂φφφ

∂p
+

∫ ζf

ζi

(
∂`

∂p
+ λλλᵀ

∂f

∂p
+ωωωᵀ ∂g

∂p
+ υυυᵀ

∂h

∂p

)
dζ (6.10d)

0 =φφφ; 0 = f ; 0 = g − g∗; 0 =

∫ ζf

ζi

h dζ − h∗ (6.10e)

Equations (6.10e) simply express the constraints satisfaction (including the first order equa-

tions). These equations are originated from the first order variation of the unconstrained

target with respect to the Lagrange multipliers. Since the Lagrange multipliers ωωω, γγγ, υυυ are

identically zero outside the active sets (6.9), equations (6.10e) can be eventually imposed

only inside the active sets, i.e.:

0 =φj for φj ∈ Aφ

0 =gj − g∗j for ζ ∈ Ag,j

0 =

∫ ζf

ζi

hjdζ − h∗j for hj ∈ Ah

(6.11)

Equations (6.10a) to (6.10d) are instead the co-equations that determine the Lagrange

multipliers.
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Figure 6.1: Midpoint integration scheme used for the transcription of the OCP into an NLP.
The states x and controls u are discretised on each mesh point, equations and constraints
are evaluated at the middle of each mesh interval.

Summarising, the first order necessary conditions for the implicit OCP (6.6) are equa-

tions (6.10), where the last equations (6.10e) can be eventually replaced by (6.11).

6.3 Direct full collocation to NLP transcription

In this section a direct full collocation method for solving the implicit optimal control

problem (6.5) is described. First, the chosen discretisation scheme is presented and then

resulting NLP problem structure is described. The close relationship between the NLP

Lagrange multipliers and the Lagrange multipliers of the first order necessary conditions

(6.10) is then derived. Finally, a brief overview of the software implementation is presented.

6.3.1 Discretisation scheme

Every numerical approach to optimal control problem, regardless it is indirect or direct,

relies upon a discretisation scheme. The discretisation scheme allows to transform the

infinite dimensional problem (6.5) into a finite dimensional one that can be numerically

solved using a calculator. For the direct full collocation transcription described in this

section, a midpoint discretisation scheme has been chosen. Even though it is not as accurate

as Gaussian methods [88, 77], it has the advantage that it leads to sparser Jacobian and

Hessian matrices. Moreover, being an implicit method, it does not suffer of high instability

issued as the explicit ones, like the forward Euler method.
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In the description of the discretisation scheme, a single-phase (P = 1) problem is con-

sidered for sake of conciseness. The extension to a multi-phase one is straightforward.

Considering problem (6.5), the independent variable ζ is discretised into N + 1 mesh points

ζ0, ζ1, . . . , ζN , with ζ0 = ζi and ζN = ζf . Therefore the interval (ζi, ζf ) is divided into N

mesh intervals of length θk = ζk+1− ζk for k = 1, . . . , N , as depicted in figure 6.1. The mid-

dle point of each mesh interval are indicated with an over-line ζk = (ζk+1−ζk)/2. The state

variables x and controls u are discretised in correspondence of the mesh points xk = x(ζk)

and uk = u(ζk) (see figure 6.1). On the contrary, the parameters p does not require any

discretisation since they are already discrete variables.

In order to evaluate the first order equations (6.5d) at the middle of each mesh interval,

an estimate of the state and control and of their derivatives is required. The state and

control derivatives are estimated at the middle of each mesh interval ζk accordingly to the

midpoint method:

x′k ≡
dx

dζ

∣∣∣
ζk

≈ xk+1 − xk
θk

u′k ≡
du

dζ

∣∣∣
ζk

≈ uk+1 − uk
θk

(6.12)

Similarly, the state and control at the middle of each mesh interval are estimated as the

average of their values at the interval boundaries:

xk ≡ x(ζk) ≈
xk+1 + xk

2

uk ≡ u(ζk) ≈
uk+1 − uk

2

(6.13)

The Lagrange target (6.5b), first order equations (6.5d), path (6.5e) and integral (6.5f)

constraints are thus evaluated at the N points ζ0, . . . , ζN :

`(x(ζk),x
′(ζk),u(ζk),u

′(ζk),p, ζk) ≈ `(xk,x′k,uk,u′k,p, ζk) = `k (6.14a)

f(x(ζk),x
′(ζk),u(ζk),u

′(ζk),p, ζk) ≈ f(xk,x
′
k,uk,u

′
k,p, ζk) = fk (6.14b)

g(x(ζk),x
′(ζk),u(ζk),u

′(ζk),p, ζk) ≈ g(xk,x
′
k,uk,u

′
k,p, ζk) = gk (6.14c)

h(x(ζk),x
′(ζk),u(ζk),u

′(ζk),p, ζk) ≈ h(xk,x
′
k,uk,u

′
k,p, ζk) = hk (6.14d)

Finally, the Mayer target (6.5a) and the boundary conditions (6.5g) are evaluated at the

domain extrema ζ0 and ζN :

ψ(x(ζi),x(ζf ),u(ζi),u(ζf ),p, ζi, ζf ) = ψ(x0,xN ,u0,uN ,p, ζ0, ζN ) (6.15a)

φ(x(ζi),x(ζf ),u(ζi),u(ζf ),p, ζi, ζf ) = φ(x0,xN ,u0,uN ,p, ζ0, ζN ) (6.15b)
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With the midpoint discretisation scheme here adopted, derivatives have a very sparse

structure. Indeed, given the discrete equations fk and constraints gk, hk, the following

relationships hold for their derivatives:

∂fk
∂xk

=
1

2

∂fk
∂x
− 1

θk

∂fk
∂x′

,
∂fk
∂xk+1

=
1

2

∂fk
∂x

+
1

θk

∂fk
∂x′

,
∂fk
∂xj

= 0 for j 6= k, k + 1

∂fk
∂uk

=
1

2

∂fk
∂u
− 1

θk

∂fk
∂u′

,
∂fk
∂uk+1

=
1

2

∂fk
∂u

+
1

θk

∂fk
∂u′

,
∂fk
∂uj

= 0 for j 6= k, k + 1

∂gk
∂xk

=
1

2

∂gk
∂x
− 1

θk

∂gk
∂x′

,
∂gk
∂xk+1

=
1

2

∂gk
∂x

+
1

θk

∂gk
∂x′

,
∂gk
∂xj

= 0 for j 6= k, k + 1

∂gk
∂uk

=
1

2

∂gk
∂u
− 1

θk

∂gk
∂u′

,
∂gk
∂uk+1

=
1

2

∂gk
∂u

+
1

θk

∂gk
∂u′

,
∂gk
∂uj

= 0 for j 6= k, k + 1

∂hk
∂xk

=
1

2

∂hk
∂x
− 1

θk

∂hk
∂x′

,
∂hk
∂xk+1

=
1

2

∂hk
∂x

+
1

θk

∂hk
∂x′

,
∂hk
∂xj

= 0 for j 6= k, k + 1

∂hk
∂uk

=
1

2

∂hk
∂u
− 1

θk

∂hk
∂u′

,
∂hk
∂uk+1

=
1

2

∂hk
∂u

+
1

θk

∂hk
∂u′

,
∂hk
∂uj

= 0 for j 6= k, k + 1

∂`k
∂uk

=
1

2

∂`k
∂u
− 1

θk

∂`k
∂u′

,
∂`k
∂uk+1

=
1

2

∂`k
∂u

+
1

θk

∂`k
∂u′

,
∂`k
∂uj

= 0 for j 6= k, k + 1

(6.16)

The above equations state that each NLP constraint, regardless it is fk, gk, hk, depends

only on few NLP variables: xk, xk+1, uk, uk+1. Moreover the same holds for the discretised

target `k. These relationship will be extensively used when calculating the structure of the

NLP Jacobian and Hessian.

The above described discretisation scheme is suited for optimal control problems where

the derivatives of all the states and controls appear in the equations. When this is not the

case, i.e. some states or control are algebraic variables, a slightly modification is required.

In order to keep as concise as possible the description of the NLP structure in the follow-

ing sections, the discussion of the changes required to handle algebraic variables will be

postponed to section 6.3.4.

6.3.2 NLP problem structure

In this section the structure of the NLP problem resulting from the optimal control problem

(6.5) discretised accordingly to the midpoint method presented in section 6.3.1 is described.

As in section 6.3.1, for sake of conciseness a single phase problem is here considered; the

generalisation to a multi-phase one is straightforward.

In the previous section the states and controls have been discretised in correspondence

of each mesh point. Therefore, all the NLP variables can be grouped into a single vector y
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as follows:

y =



y0

y1

...

yN

yN+1


, where

y0 = [x0;u0]

y1 = [x1;u1]
...

...

yN = [xN ;uN ]

yN+1 = p

(6.17)

The number of the NLP optimisation variables ny (i.e. the size of the vector y) is equal to:

ny = (nx + nu)(N + 1) + np (6.18)

where nx, nu, np are respectively the number of the states x, controls u and parameters p

of the OCP (6.5). The lower yl and upper yu bounds for the NLP variables y can be easily

obtained from the OCP bounds (6.5h), (6.5i) and (6.5j):

yl =



[xl;ul]

[xl;ul]
...

[xl;ul]

pl


, yu =



[xu;uu]

[xu;uu]
...

[xu;uu]

pu


(6.19)

The NLP target J is given by the sum of the Mayer and Lagrange target, and, accord-

ingly to the midpoint discretisation, it is equal to:

J = ψ(xo,xN ,u0,uN ,p, ζ0, ζN ) +

N−1∑
k=0

`kθk (6.20)

where `k has been defined in (6.14a), and θk is the width of the k-th mesh interval.

NLP constraints include the optimal control first order equations (6.14b), path con-

straints (6.14c), integral constraints (6.14d) and the boundary conditions (6.15b). All the
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NLP constraints can be grouped into a single vector c that has the following expression4:

c =



c0

c1

...

cN−1

cN

cN+1


where

c0 =
[
fᵀ

0 ; gᵀ0
]

c1 =
[
fᵀ

1 ; gᵀ1
]

...
...

cN−1 =
[
fᵀ
N−1; gᵀN−1

]
cN =

∑N−1
k=0 hkθk

cN+1 = φφφ(xo,xN ,u0,uN ,p, ζ0, ζN )

(6.21)

The number of NLP constraints nc is equal to:

nc = (nf + np)N + ni + nb (6.22)

where nf , np, ni and nb are respectively the number of first order equations, path constraints,

integral constraints and boundary conditions. The upper cu and lower cl bounds for the

NLP constraints c can be derived from the bounds for the OCP boundary conditions, path

and integral constraints:

cl =



[0; gl]

[0; gl]
...

[0; gl]

hl

φφφl


, cu =



[0, gu]

[0, gu]
...

[0, gu]

hu

φφφu


(6.23)

where 0 is a zero vector of size nf .

Summarising, the NLP problem originated from the OCP (6.5) through the discretisa-

tion scheme presented in section 6.3.1 is the following:

min
y

J = ψ(xo,xN ,u0,uN ,p, ζ0, ζN ) +

N−1∑
k=0

`kθk (6.24a)

subject to: (6.24b)

cl ≤ c(y) ≤ cu (6.24c)

4 A different choice could be to multiply the NLP constraints by the mesh interval amplitude θk, i.e.
ck = θk [fk; ck]. The motivation for this choice is clear when the equations are explicit x′ = f , because this
results in equating to zero the integration error, i.e. δx = θkf . The two choices lead to different meaning of
the NLP constraints and, thus, of the associated Lagrange multipliers. In section 6.3.3 it will be shown how
they affect the relationship between OCP and NLP multipliers.

172



yl ≤ y ≤ yu (6.24d)

where J is the NLP target (6.20), y are the NLP variables (6.17) and c are the NLP

constraints (6.21).

In order to efficiently solve an NLP problem, not only its target and constraints has

to be known, but also the target gradient, the constraints Jacobian and the Lagrangian

Hessian should be provided. In the following pages the structure of the NLP Jacobian and

Hessian are described.

6.3.2.1 NLP target gradient

The gradient ∇yJ of the target J (6.20) with respect to the NLP variables y (6.17) can be

calculated simply by performing the derivatives of the discretised target with respect to the

NLP variables. The target gradient thus has the following structure:

∇yJ =



∇x0J

∇u0J

∇x1J

∇u1J
...

∇xN−1J

∇uN−1J

∇xNJ

∇uNJ

∇pJ



=



∇x0ψ +∇x0`0θ0

∇u0ψ +∇u0`0θ0

θ0∇x1`0 + θ1∇x1`1

θ0∇u1`0 + θ1∇u1`1
...

θN−2∇xN−1`N−2 + θN−1∇xN−1`N−1

θN−2∇uN−1`N−2 + θN−1∇uN−1`N−1

θN−1∇xN `N−1

θN−1∇uN `N−1

∇pψ +
∑N−1

k=0 θk∇p`k



(6.25)

The sparse structure of the target gradient is consequence of the “local” integration scheme

adopted: indeed ∇xj`k = 0 and ∇uj`k = 0 for all j 6= k and j 6= k + 1 because `k depends

only on xk,uk,xk+1,uk+1 and p.

It can be noted that in the target gradient (6.25), the derivatives are taken with respect

to the NLP variables. However it is more convenient to express the derivatives in terms of

the optimal control problem variables x, x′, u, u′ and p. In such way, the target gradient

can be easily evaluated once the derivatives of the optimal control problem target (6.5a),

(6.5b) are known. Substituting equations (6.16) into (6.25), the NLP target gradient can
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Figure 6.2: Block structure of the NLP constraints Jacobian.

be expressed as follows:

∇yJ =



∇x0J

∇u0J

∇x1J

∇u1J

...

∇xN−1J

∇uN−1J

∇xNJ

∇uNJ

∇pJ



=



1
2

(
∂ψ
∂xi

+ ∂`0
∂x

)
− 1

θ0
∂`0
∂x′

1
2

(
∂ψ
∂ui

+ ∂`0
∂u

)
− 1

θ0
∂`0
∂u′

1
2

(
∂`0
∂x + ∂`1

∂x

)
− 1

θ1
∂`1
∂x′ + 1

θ0
∂`0
∂x′

1
2

(
∂`0
∂u + ∂`1

∂u

)
− 1

θ1
∂`1
∂u′ + 1

θ0
∂`0
∂u′

...

θN−2

2
∂`N−2

∂x +
θN−1

2
∂`N−1

∂x − ∂`N−2

∂x′ +
∂`N−1

∂x′

θN−2

2
∂`N−2

∂u +
θN−1

2
∂`N
∂u −

∂`N−2

∂u′ +
∂`N−1

∂u′

1
2

(
∂ψ
∂xf

+ θN−1
∂`N−1

∂x

)
+

∂`N−1

∂x′

1
2

(
∂ψ
∂uf

+ θN−1
∂`N−1

∂u

)
+

∂`N−1

∂u′

∂ψ
∂p +

∑N−1
k=0 θk

∂`k
∂p



(6.26)

6.3.2.2 NLP constraint Jacobian

The NLP constraint Jacobian matrix has nc rows and ny columns, and in real optimal

control problems its size can be very large. However, thanks to the local structure of the

midpoint discretisation scheme, the Jacobian matrix is sparse and most of its entries are

identically zero.
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NLP constraints include first order equations fk, path constraints gk, integral constraints

h and the boundary conditions φφφ. Accordingly to equation (6.16), fk, gk, and h depend on

few NLP variables (xk, xk+1, uk, uk+1); moreover also the boundary conditions depend on

few variables:
∂φφφ

∂xj
= 0

∂φφφ

∂uj
= 0 for j 6= 0 and j 6= N (6.27)

The resulting NLP constraint Jacobian matrix J thus has the structure shown in figure

6.2, where only the diagonal part and the right and bottom bands are filled. Matrix blocks

named JAk and JBk with k = 0, . . . , N are originated from the first order equations and

path constraints, the bottom block JC is the Jacobian of the integral constraints and the

blocks JD1, JD2, JD3 are related to the boundary conditions.

Each block JAk is the Jacobian of the k-th first order equations fk and path constraints

gk with respect to the discrete variables xk, uk, xk+1 and uk+1, while JBk is the Jacobian

with respect to the optimisation parameters p:

JAk =
[
∂fk
∂xk

∂fk
∂uk

∂fk
∂xk+1

∂fk
∂uk+1

∂gk
∂xk

∂gk
∂uk

∂gk
∂xk+1

∂gk
∂uk+1

]
JBk =

∂fk∂p
∂gk
∂p

 (6.28)

As in the case of the gradient target (6.25), it is more convenient to express the Jacobian

in terms of derivatives taken with respect to the the optimal control problem variables x,

x′, u, u′ and p. Substituting (6.16) into (6.28), the block JAk becomes:

JAk =

1
2
∂fk
∂x −

1
θk

∂fk
∂ẋ

1
2
∂fk
∂u −

1
θk

∂fk
∂u̇

1
2
∂fk
∂x + 1

θk

∂fk
∂ẋ

1
2
∂fk
∂u + 1

θk

∂fk
∂u̇

1
2
∂gk
∂x −

1
θk

∂gk
∂ẋ

1
2
∂gk
∂u −

1
θk

∂gk
∂u̇

1
2
∂gk
∂x + 1

θk

∂gk
∂ẋ

1
2
∂gk
∂u + 1

θk

∂gk
∂u̇

 (6.29)
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The Jacobian of the integral constraints JC has instead the following structure:

JC =
[
∂h0
∂x0

∂h0
∂u0

∂h0+h1
∂x1

∂h0+h1
∂u1

· · · ∂hN−1+hN
∂xN−1

∂hN−1+hN
∂uN−1

∂hN
∂xN

∂hN
∂uN

]

=



θ0
2
∂h0
∂x −

∂h0
∂x′

θ0
2
∂h0
∂u −

∂h0
∂u′

θ0
2
∂h0
∂x + θ1

2
∂h1
∂x +

(
∂h0
∂x′ −

∂h1
∂x′

)
θ0
2
∂h0
∂u + θ1

2
∂h1
∂u +

(
∂h0
∂u′ −

∂h1
∂u′

)
...

θN−2

2
∂hN−2

∂x +
θN−1

2
∂hN−1

∂x +
(
∂hN−2

∂x′ −
∂hN−1

∂x′

)
θN−2

2
∂hN−2

∂u +
θN−1

2
∂hN−1

∂u +
(
∂hN−2

∂u′ −
∂hN−1

∂u′

)
θN−1

2
∂hN−1

∂x − ∂hN−1

∂x′
θN−1

2
∂hN−1

∂u − ∂hN−1

∂u′



ᵀ

(6.30)

Finally, blocks JD1, JD2 and JD3, that are related to the boundary conditions, are equal

to:
JD1 =

[
∂φφφ
∂x0

∂φφφ
∂u0

]
=
[
∂φφφ
∂xi

∂φφφ
∂ui

]
JD2 =

[
∂φφφ
∂xN

∂φφφ
∂uN

]
=
[
∂φφφ
∂xf

∂φφφ
∂uf

]
JD3 =

[
∂φφφ
∂p

] (6.31)

6.3.2.3 NLP Lagrangian Hessian

The NLP Lagrangian function L is defined as the sum of the NLP target and of the NLP

constraints, each multiplied by its corresponding (NLP) Lagrange multiplier:

L = J +
N−1∑
k=0

(
ΛΛΛᵀ
kfk + ΩΩΩᵀ

kgk
)

+ ΥΥΥᵀ
N−1∑
k=0

(hkθk) + γγγᵀφφφ (6.32)

where J is the NLP target (6.20), ΛΛΛk,ΩΩΩk,ΥΥΥ and γγγ are the Lagrange multipliers associated

respectively to the first order equations fk, path constraints gk, integral constraints h and

boundary conditions φφφ5.

The solution of an NLP problem can be calculated in less time and more robustly if

the Hessian of the NLP Lagrangian function L (6.32) with respect to the NLP variables y

(6.17) is known. Numerical NLP solvers indeed make use of the NLP Lagrangian Hessian

when the user can provide it. The structure of the Lagrangian Hessian matrix for the NLP

5 Previously bold lower-case greek symbols have been used for the OCP Lagrange multipliers, here the
corresponding upper-case greek symbols are used for the NLP Lagrange multipliers. In this case bold
upper-case symbols denote vectors, not matrices.
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Figure 6.3: Block structure of the NLP Lagrangian Hessian. The upper triangular part is
not shown because the matrix is symmetric.

problem (6.24) is now described.

The Lagrangian Hessian is a square symmetric matrix of dimensions ny×ny and, as the

NLP constraints Jacobian, it is sparse and most of its entries are identically zero (thanks to

the structure of the NLP obtained through the discretisation scheme). The block structure

of the Hessian matrix is shown in figure 6.3; it can be noted that, similarly to the Jacobian

matrix, only the part close to its diagonal and a lower band 6 are filled. With reference to

figure 6.3, matrix blocks named HAk and HBk are related to the second derivatives of the

NLP target and NLP constraints gk, gk+1, gN (that include first order equations, path and

integral constraints):

HAk = θk
∂2 (`k + ΥΥΥᵀhk)

∂v2
k

+ θk−1
∂2 (`k−1 + ΥΥΥᵀhk−1)

∂v2
k

+
∂2
(
ΛΛΛᵀ
kfk + ΩΩΩᵀ

kgk
)

∂v2
k

+
∂2
(
ΛΛΛᵀ
k−1fk−1 + ΩΩΩᵀ

k−1gk−1

)
∂v2

k

for k = 1, . . . , N − 1

HBk = θk
∂2 (`k + ΥΥΥᵀhk)

∂vk+1∂v
ᵀ
k

+
∂2
(
ΛΛΛᵀ
kfk + ΩΩΩᵀ

kgk
)

∂vk+1∂v
ᵀ
k

for k = 0, . . . , N − 1

(6.33)

where vk is a vector (used here for a compact notation) that includes both the discretised

6Since the Hessian is symmetric, there is also a filled band in the right-most part of the matrix, which is
equal to the transpose of the lower band.
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states xk and controls uk: vk = [xk;uk]. The first HA0 and last HAN blocks have a

different expression due to the presence of the boundary conditions and Mayer target:

HA0 = θ0
∂2 (`0 + ΥΥΥᵀh0)

∂v2
0

+
∂2
(
ΛΛΛᵀ

0f0 + ΩΩΩᵀ
0g0 + ψ + γγγᵀφφφ

)
∂v2

0

HAN = θN
∂2 (`N + ΥΥΥᵀhN )

∂v2
N

+
∂2
(
ΛΛΛᵀ
NfN + ΩΩΩᵀ

NgN + ψ + γγγᵀφφφ
)

∂v2
N

(6.34)

Each block HAk and HBk can be written in a more explicit form by substituting twice

(6.16) in (6.33) and (6.34):

HAk =
θk
4

∂2 (`k + ΥΥΥᵀhk)

∂v2
+

1

θk

∂2 (`k + ΥΥΥᵀhk)

∂v′2
− 1

2

∂2 (`k + ΥΥΥᵀhk)

∂v∂v′ᵀ
− 1

2

∂2 (`k + ΥΥΥᵀhk)

∂v′∂vᵀ

+
θk−1

4

∂2 (`k−1 + ΥΥΥᵀhk−1)

∂v2
+

1

θk−1

∂2 (`k−1 + ΥΥΥᵀhk−1)

∂v′2

+
1

2

∂2 (`k−1 + ΥΥΥᵀhk−1)

∂v∂v′ᵀ
+

1

2

∂2 (`k−1 + ΥΥΥᵀhk−1)

∂v′∂vᵀ

+
1

4

∂2
(
ΛΛΛᵀ
kfk + ΩΩΩᵀ

kgk
)

∂v2
+

1

θ2
k

∂2
(
ΛΛΛᵀ
kfk + ΩΩΩᵀ

kgk
)

∂v′2

− 1

2θk

∂2
(
ΛΛΛᵀ
kfk + ΩΩΩᵀ

kgk
)

∂v∂v′ᵀ
− 1

2θk

∂2
(
ΛΛΛᵀ
kfk + ΩΩΩᵀ

kgk
)

∂v′∂vᵀ

+
1

4

∂2
(
ΛΛΛᵀ
k−1fk−1 + ΩΩΩᵀ

k−1gk−1

)
∂v2

+
1

θ2
k−1

∂2
(
ΛΛΛᵀ
k−1fk−1 + ΩΩΩᵀ

k−1gk−1

)
∂v′2

+
1

2θk−1

∂2
(
ΛΛΛᵀ
k−1fk−1 + ΩΩΩᵀ

k−1gk−1

)
∂v∂v′ᵀ

+
1

2θk−1

∂2
(
ΛΛΛᵀ
k−1fk−1 + ΩΩΩᵀ

k−1gk−1

)
∂v′∂vᵀ

(6.35a)

HBk =
θk
4

∂2 (`k + ΥΥΥᵀhk)

∂v2
− 1

θk

∂2 (`k + ΥΥΥᵀhk)

∂v′2
+

1

2

∂2 (`k + ΥΥΥᵀhk)

∂v∂v′ᵀ
− 1

2

∂2 (`k + ΥΥΥᵀhk)

∂v′∂vᵀ

+
1

4

∂2
(
ΛΛΛᵀ
kfk + ΩΩΩᵀ

kgk
)

∂v2
− 1

θ2
k

∂2
(
ΛΛΛᵀ
kfk + ΩΩΩᵀ

kgk
)

∂v′2

+
1

2θk

∂2
(
ΛΛΛᵀ
kfk + ΩΩΩᵀ

kgk
)

∂v∂v′ᵀ
− 1

2θk

∂2
(
ΛΛΛᵀ
kfk + ΩΩΩᵀ

kgk
)

∂v′∂vᵀ

(6.35b)
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HA0 =
θ0

4

∂2 (`0 + ΥΥΥᵀh0)

∂v2
+

1

4

∂2 (ψ + γγγᵀφφφ)

∂v2
i

+
1

θ0

∂2 (`0 + ΥΥΥᵀh0)

∂v′2
+

1

θ2
0

∂2 (ψ + γγγᵀφφφ)

∂v′2i

− 1

2

∂2 (`0 + ΥΥΥᵀh0)

∂v∂v′ᵀ
− 1

2θ0

∂2 (ψ + γγγᵀφφφ)

∂vi∂v
′ᵀ
i

− 1

2

∂2 (`0 + ΥΥΥᵀh0)

∂v′∂vᵀ
− 1

2θ0

∂2 (ψ + γγγᵀφφφ)

∂v′i∂v
ᵀ
i

+
1

4

∂2
(
ΛΛΛᵀ

0f0 + ΩΩΩᵀ
0g0

)
∂v2

+
1

θ2
0

∂2
(
ΛΛΛᵀ
kf0 + ΩΩΩᵀ

0g0

)
∂v′2

− 1

2θ0

∂2
(
ΛΛΛᵀ
kf0 + ΩΩΩᵀ

0g0

)
∂v∂v′ᵀ

− 1

2θ0

∂2
(
ΛΛΛᵀ
kf0 + ΩΩΩᵀ

0g0

)
∂v′∂vᵀ

(6.35c)

HAN =
θN−1

4

∂2 (`N−1 + ΥΥΥᵀhN−1)

∂v2
+

1

4

∂2 (ψ + γγγᵀφφφ)

∂v2
f

+
1

θN−1

∂2 (`N−1 + ΥΥΥᵀhN−1)

∂v′2
+

1

θ2
N−1

∂2 (ψ + γγγᵀφφφ)

∂v′2f

+
1

2

∂2 (`N−1 + ΥΥΥᵀhN−1)

∂v∂v′ᵀ
+

1

2θN−1

∂2 (ψ + γγγᵀφφφ)

∂vf∂v
′ᵀ
f

+
1

2

∂2 (`N−1 + ΥΥΥᵀhN−1)

∂v′∂vᵀ
+

1

2θN−1

∂2 (ψ + γγγᵀφφφ)

∂v′f∂v
ᵀ
f

+
1

4

∂2
(
ΛΛΛᵀ
N−1fN−1 + ΩΩΩᵀ

N−1gN−1

)
∂v2

+
1

θ2
k

∂2
(
ΛΛΛᵀ
N−1fN−1 + ΩΩΩᵀ

N−1gN−1

)
∂v′2

+
1

2θk

∂2
(
ΛΛΛᵀ
N−1fN−1 + ΩΩΩᵀ

N−1gN−1

)
∂v∂v′ᵀ

+
1

2θk

∂2
(
ΛΛΛᵀ
N−1fN−1 + ΩΩΩᵀ

N−1gN−1

)
∂v′∂vᵀ

(6.35d)

where v is a vector (used here for a compact notation) that includes both the states x

and controls u: v = [x;u]. In (6.35) it can be noted that only the blocks HA0 and HAN

include the second order derivatives of the boundary conditions gN+1 with respect to y0

(i.e. x0,u0) and yN (i.e. xN ,uN ).

Block in the lower bandHC0, . . . ,HCN are related to the second derivatives with respect

to optimisation parameters yN+1 and the other NLP variables y0, . . . ,yN .

Hessian blocks HC0, . . . ,HCN in the bottom band of the NLP Hessian (see figure 6.3)

are related to the second order derivatives with respect to the NLP parameters yN+1 and

the other NLP variables y0, . . . ,yN In particular, blocks HCk are very similar to HAk,
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where the partial derivative ∂vk is replaced by ∂p:

HCk = θk
∂2 (`k + ΥΥΥᵀhk)

∂p∂vk1tr
+ θk−1

∂2 (`k−1 + ΥΥΥᵀhk−1)

∂p∂vᵀk

+
∂2
(
ΛΛΛᵀ
kfk + ΩΩΩᵀ

kgk
)

∂p∂vᵀk
+
∂2
(
ΛΛΛᵀ
k−1fk−1 + ΩΩΩᵀ

k−1gk−1

)
∂p∂vᵀk

for k = 1, . . . , N − 1

HC0 = θ0
∂2 (`0 + ΥΥΥᵀh0)

∂p∂vᵀ0
+
∂2
(
ΛΛΛᵀ

0f0 + ΩΩΩᵀ
0g0 + ψ +φφφ

)
∂p∂vᵀ0

HCN = θN
∂2 (`N + ΥΥΥᵀhN )

∂p∂vᵀN
+
∂2
(
ΛΛΛᵀ
NfN + ΩΩΩᵀ

NgN + ψ +φφφ
)

∂p∂vᵀN
(6.36)

As in the case of the diagonal blocks HAk, the main difference between HCk for k =

1, . . . , N−1 and the boundary blocksHC0,HCN is the presence in the latter of the boundary

conditions and Mayer target. Again, each block HCk can be written in a clearer form by

substituting (6.16) into (6.36):

HCk =
θk
2

∂2 (`k + ΥΥΥᵀhk)

∂p∂vᵀ
− ∂2 (`k + ΥΥΥᵀhk)

∂p∂v′ᵀ

+
θk−1

2

∂2 (`k−1 + ΥΥΥᵀhk−1)

∂p∂vᵀ
+
∂2 (`k−1 + ΥΥΥᵀhk−1)

∂p∂v′ᵀ

+
1

2

∂2
(
ΛΛΛᵀ
kfk + ΩΩΩᵀ

kgk
)

∂p∂vᵀ
− 1

θk

∂2
(
ΛΛΛᵀ
kfk + ΩΩΩᵀ

kgk
)

∂p∂v′ᵀ

+
1

2

∂2
(
ΛΛΛᵀ
k−1fk−1 + ΩΩΩᵀ

k−1gk−1

)
∂p∂vᵀ

+
1

θk−1

∂2
(
ΛΛΛᵀ
k−1fk−1 + ΩΩΩᵀ

k−1gk−1

)
∂p∂v′ᵀ

(6.37a)

HC0 =
θ0

2

∂2 (`0 + ΥΥΥᵀh0)

∂p∂vᵀ
+

1

2

∂2 (ψ + γγγᵀφφφ)

∂p∂vᵀi
− ∂2 (`0 + ΥΥΥᵀh0)

∂p∂v′ᵀ
− 1

θ0

∂2 (ψ + γγγᵀφφφ)

∂p∂v′ᵀi

+
1

2

∂2
(
ΛΛΛᵀ

0f0 + ΩΩΩᵀ
0g0

)
∂p∂vᵀ

− 1

θ0

∂2
(
ΛΛΛᵀ
kf0 + ΩΩΩᵀ

0g0

)
∂p∂v′ᵀ

(6.37b)

HCN =
θN−1

2

∂2 (`N−1 + ΥΥΥᵀhN−1)

∂p∂vᵀ
+

1

2

∂2 (ψ + γγγᵀφφφ)

∂p∂vᵀf

+
∂2 (`N−1 + ΥΥΥᵀhN−1)

∂p∂v′ᵀ
+

1

θN−1

∂2 (ψ + γγγᵀφφφ)

∂p∂v′ᵀf

+
1

2

∂2
(
ΛΛΛᵀ
N−1fN−1 + ΩΩΩᵀ

N−1gN−1

)
∂p∂vᵀ

+
1

θN−1

∂2
(
ΛΛΛᵀ
kfN−1 + ΩΩΩᵀ

N−1gN−1

)
∂p∂v′ᵀ

(6.37c)

Finally, the block HD is simply the Hessian of the Lagrangian function (6.32) restricted
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to the NLP (and OCP) parameters yN+1 = p:

HD =
∂2

∂p2

ψ +

N−1∑
k=0

`kθk +

N−1∑
k=0

(
ΛΛΛᵀ
kfk + ΩΩΩᵀ

kgk
)

+ ΥΥΥᵀ
N−1∑
k=0

(hkθk) + γγγᵀφφφ

 (6.38a)

6.3.3 Relationships between OCP and NLP Lagrange multipliers and

necessary conditions

In optimal control problems the Lagrange multipliers related to the first-order necessary

conditions (see section 2.3.1) have a relevant physical meaning. Such Lagrange multipliers

indeed express the rate of change of the target with respect to the violation of the con-

straints to which they are associated, and in several applications it is important to know

such Lagrange multipliers. However when using a direct approach to solve the OCP only

the NLP multipliers (2.24) are known7, and the OCP multipliers can only be estimated.

The estimated OCP multipliers are of great importance not only for their physical meaning,

but also because they can be used to check how accurately the NLP solution satisfies the op-

timality conditions and co-equations (see section 2.3.1). For these reasons, an OCP to NLP

direct transcription method should give an estimation of the OCP Lagrange multipliers.

In this section the relationship between the OCP and NLP Lagrange multipliers is

derived when using the discretisation scheme described in section 6.3.1. First, the equations

that characterise the NLP necessary conditions are described, then the relationships between

the OCP and NLP necessary conditions and Lagrange multipliers are derived.

As described in section 2.3.2, an NLP solution is characterised not only by the local

minimum x∗, but also by a set of Lagrange multipliers that satisfy the KKT conditions

(2.24). Using the notation adopted in the definition of the Lagrangian function (6.32),

the NLP Lagrange multipliers are ΛΛΛk, ΩΩΩk (with k = 0, . . . , N − 1), ΥΥΥ and ΓΓΓ that are

associated respectively to the constraints fk (first order equations), gk (path constraints),

h (integral constraints) and φφφ (boundary conditions). Equation (2.24) states that the first

order variation of the Lagrangian function with respect to the optimisation variables is

zero (at the solution). For sake of conciseness, as in section 6.2.1 a single-phase version

of the original problem (6.5) is considered; the extension to the multi-phase problem is

straightforward. Moreover, the constraints on the states, controls and parameters (6.5h)

(6.5i) (6.5j) will be disregarded since they can be thought as included in the path constraints

7 The reader should carefully note that the OCP Lagrange multipliers are different from the NLP ones.
The former are the ones that satisfy the first order necessary conditions for the OCP (see section 2.3.1), and
they have an important physical meaning. The NLP Lagrange multipliers, differently, satisfy the first order
necessary conditions for the NLP problem, i.e. for a large number of algebraic equations (see section 2.3.2).
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(6.5e). The first order necessary conditions of this simplified NLP problem are:

0 =
∂L
∂y0

=
∂ψ

∂y0
+ θ0

∂`0
∂y0

+ ΛΛΛᵀ
0

∂f0

∂y0
+ ΩΩΩᵀ

0

∂g0

∂y0
+ θ0ΥΥΥ

ᵀ∂h0

∂y0
+ ΓΓΓᵀ ∂φφφ

∂y0
(6.39a)

0 =
∂L
∂yk

=θk−1
∂`k−1

∂yk
+ θk

∂`k
∂yk

+ ΛΛΛᵀ
k−1

∂fk−1

∂yk
+ ΛΛΛᵀ

k

∂fk
∂yk

+ ΩΩΩᵀ
k−1

∂gk−1

∂yk
+ ΩΩΩᵀ

k

∂gk
∂yk

, for k = 1, . . . , N − 1

(6.39b)

0 =
∂L
∂yN

=
∂ψ

∂yN−1
+ θN−1

∂`N−1

∂yN−1
+ ΛΛΛᵀ

N−1

∂fN−1

∂yN − 1
+ ΩΩΩᵀ

N−1

∂gN−1

∂yN−1

+ θN−1ΥΥΥ
ᵀ∂hN−1

∂yN−1
+ ΓΓΓᵀ ∂φφφ

∂yN−1

(6.39c)

0 =
∂L
∂p

=
∂ψ

∂yN+1
+ ΓΓΓᵀ ∂φφφ

∂yN+1

+
N−1∑
k=0

(
θk

∂`k
∂yN+1

+ ΛΛΛᵀ
k

∂fk
∂yN+1

+ ΩΩΩᵀ
k

∂gk
∂yN+1

+ θkΥΥΥᵀ
∂hk
∂yN+1

) (6.39d)

It will be now shown how equations (6.39) are closely tied to the OCP necessary conditions

(6.10); this relationship will be used to express the OCP multipliers as function of the NLP

ones. For this purpose it is more convenient to express equations (6.39) using derivatives

calculated not with respect to the NLP variables, but with respect to the OCP variables.

Thus, using the inverse of relationship (6.16), they become:

0 =
∂L
∂y0

=
∂ψ

∂vi
+
θ0

2

∂`0
∂v
− ∂`0
∂v′

+ ΛΛΛᵀ
0

(
1

2

∂f0

∂v
− 1

θ0

∂f0

∂v′

)
+ ΩΩΩᵀ

0

(
1

2

∂g0

∂v
− 1

θ0

∂g0

∂v′

)
(6.40a)

0 =
∂L
∂yk

=
θk−1

2

∂`k−1

∂v
− 1

2

∂`k−1

∂v′
+
θk
2

∂`k
∂v

+
1

2

∂`k
∂v′

+ ΛΛΛᵀ
k−1

(
1

2

∂fk−1

∂v
+

1

θk−1

∂fk−1

∂v′

)
+ ΛΛΛᵀ

k

(
1

2

∂fk
∂v
− 1

θk

∂fk
∂v′

)
+ ΩΩΩᵀ

k−1

(
1

2

∂gk−1

∂v
+

1

θk−1

∂gk−1

∂v′

)
+ ΩΩΩᵀ

k

(
1

2

∂gk
∂v
− 1

θk

∂gk
∂v′

)
+ ΥΥΥᵀ

(
θk−1

2

∂hk−1

∂v
+

1

2

∂hk−1

∂v′
+
θk
2

∂hk
∂v
− 1

2

∂hk
∂v′

)
, for k = 1, . . . , N − 1

(6.40b)
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0 =
∂L
∂yN

=
∂ψ

∂vf
+
θN−1

2

∂`N−1

∂v
+
∂`N−1

∂v′
+ ΛΛΛᵀ

N−1

(
1

2

∂fN−1

∂v
+

1

θN−1

∂fN−1

∂v′

)
+ ΩΩΩᵀ

N−1

(
1

2

∂gN−1

∂v
+

1

θN−1

∂gN−1

∂v′

) (6.40c)

0 =
∂L
∂p

=
∂ψ

∂p
+ ΓΓΓᵀ∂φφφ

∂p
+
N−1∑
k=0

(
θk
∂`k
∂p

+ ΛΛΛᵀ
k

∂fk
∂p

+ ΩΩΩᵀ
k

∂gk
∂p

+ θkΥΥΥ
ᵀ∂hk
∂p

)
(6.40d)

Summarising, equations (6.40) have been derived by equating to zero the first order variation

of the NLP Lagrangian with respect to the NLP variables. Moreover they are satisfied at

the NLP solution since they are optimality necessary conditions.

It will be now shown that under the following relationship between the NLP and OCP

Lagrange multiplier, equations (6.40) are equivalent to equations (6.10) in the limit N →∞
(and they are an approximation for finite N):

ΛΛΛk → λλλ(ζk)θk, ΩΩΩk → ωωω(ζk)θk, ΓΓΓ→ γγγ, ΥΥΥ→ υυυ (6.41)

It can be noted that the OCP ζ-independent multipliers (γγγ, υυυ) are mapped directly to

the corresponding OCP ones, while the ζ-dependent multipliers (λλλ, ωωω) are mapped to the

corresponding OCP multipliers evaluated at the middle of each mesh interval, multiplied

by the mesh interval width. Similar results have been obained in [12] for a slightly different

OC problem and using an equispaced mesh.

First of all, it can be noted that the NLP solution satisfies equations (6.10e) because they

have been discretised and added to the NLP as constrains (by construction of the NLP).

Moreover, it is easy to note that equation (6.40d) is the discretised version of equation

(6.10d) accordingly to (6.41) and to the midpoint discretisation scheme. Similarly, equations

(6.40a) and (6.40c) become equivalent respectively to equation (6.10a) and (6.10b) in the

limit θ0 → 0 and θN−1 → 0. Indeed, if θ0 ≈ 0 and θN−1 ≈ 0, the terms proportional to the

derivatives of `0, `N−1, f0, fN−1,g0, and gN−1 with respect to v tend to zero (if the value

of the derivatives are bounded). Finally, it only remains to demonstrate that equations

(6.40b) are the discretised version of (6.10c). This is slightly more cumbersome to show

than the other equations.

Suppose to discretise equation (6.10c) not at the middle of each mesh interval, but at the

dual point ζ∗k = ζk − (ζk − ζk−1) which is located between the points ζk−1 and ζk as shown

in figure 6.4. Moreover, since the NLP multipliers, target and constraints are discretised

at the middle of each mesh interval (accordingly to (6.41)), the equation discretised at ζ∗k
should be expressed using these NLP multipliers, target and constraints (i.e. their values
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Figure 6.4: Representation of the dual point ζ∗k (highlighted in orange) position in the mesh.
ζ∗k is located between ζk−1 and ζk. The weighting coefficients ak, bk that appear in equation
(6.42) are shown multiplied by the dual interval width θ∗k.

at the middle of each mesh intervals). Following the midpoint discretisation scheme, the

quantities ∂`
∂v , λλλᵀ ∂f∂v , ωωωᵀ ∂g

∂v and ∂g
∂v that appear in equation (6.10c) can be estimated at the

dual point ζ∗k as follows:

∂`

∂v

∣∣∣
ζ∗k
≈ bk

∂`

∂v

∣∣∣
ζk−1

+ ak
∂`

∂v

∣∣∣
ζk(

λλλᵀ
∂f

∂v

)∣∣∣
ζ∗k
≈ bk

(
λλλᵀ
∂f

∂v

)∣∣∣
ζk−1

+ ak

(
λλλᵀ
∂f

∂v

)∣∣∣
ζk(

ωωωᵀ ∂g

∂v

)∣∣∣
ζ∗k
≈ bk

(
ωωωᵀ ∂g

∂v

)∣∣∣
ζk−1

+ ak

(
ωωωᵀ ∂g

∂v

)∣∣∣
ζk

υυυᵀ
∂h

∂v

∣∣∣
ζ∗k
≈ υυυᵀ

(
bk
∂h

∂v

∣∣∣
ζk−1

+ ak
∂h

∂v

∣∣∣
ζk

)
(6.42)

where ak and bk are two weights that depend on the distance between ζ∗k , ζk−1 and ζk (see

figure 6.4):

θ∗k =
θk−1 + θk

2
ak =

1

2

θk
θ∗k

bk =
1

2

θk−1

θ∗k
(6.43)

The above relationship implies that ak + bk = 1. With ak and bk defined as above, the

expression in (6.42) are estimated at the dual point assuming they vary linearly from ζk−1

to ζk (accordingly to the midpoint integration scheme).

Moreover, an estimate at the dual point ζ∗k for the ζ-derivatives that appear in (6.10c)
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is required:

d

dζ

∂`

∂v′

∣∣∣
ζ∗k
≈ 1

θ∗k

(
∂`

∂v′

∣∣∣
ζk

− ∂`

∂v′

∣∣∣
ζk−1

)
d

dζ

(
λλλᵀ
∂f

∂v′

)∣∣∣
ζ∗k
≈ 1

θ∗k

[(
λλλᵀ
∂f

∂v′

)∣∣∣
ζk

−
(
λλλᵀ
∂f

∂v′

)∣∣∣
ζk−1

]
d

dζ

(
ωωωᵀ ∂g

∂v′

)∣∣∣
ζ∗k
≈ 1

θ∗k

[(
ωωωᵀ ∂g

∂v′

)∣∣∣
ζk

−
(
ωωωᵀ ∂g

∂v′

)∣∣∣
ζk−1

]

υυυᵀ
d

dζ

∂h

∂v′

∣∣∣
ζ∗k
≈ υυυᵀ

θ∗k

(
∂h

∂v′

∣∣∣
ζk

− ∂h

∂v′

∣∣∣
ζk−1

)
(6.44)

Again, these ζ-derivatives are estimated assuming each function varies linearly between two

known points (accordingly to the midpoint integration scheme).

Substituting equations (6.42) and (6.44) into (6.10c), the following expression holds:

0 =
θk−1

2θ∗k

∂`

∂v

∣∣∣
ζk−1

+
θk
2θ∗k

∂`

∂v

∣∣∣
ζk

+
1

θ∗k

(
∂`

∂v′

∣∣∣
ζk

− ∂`

∂v′

∣∣∣
ζk−1

)

+
θk−1

2θ∗k

(
λλλᵀ
∂f

∂v

)∣∣∣
ζk−1

+
θk
2θ∗k

(
λλλᵀ
∂f

∂v

)∣∣∣
ζk

+
1

θ∗k

((
λλλᵀ
∂f

∂v′

)∣∣∣
ζk

−
(
λλλᵀ
∂f

∂v′

)∣∣∣
ζk−1

)

+
θk−1

2θ∗k

(
ωωωᵀ ∂g

∂v

)∣∣∣
ζk−1

+
θk
2θ∗k

(
ωωωᵀ ∂g

∂v

)∣∣∣
ζk

+
1

θ∗k

((
ωωωᵀ ∂g

∂v′

)∣∣∣
ζk

−
(
ωωωᵀ ∂g

∂v′

)∣∣∣
ζk−1

)

+
θk−1

2θ∗k
υυυᵀ
∂h

∂v

∣∣∣
ζk−1

+
θk
2θ∗k

υυυᵀ
∂h

∂v

∣∣∣
ζk

+
υυυᵀ

θ∗k

(
∂h

∂v′

∣∣∣
ζk

− ∂h

∂v′

∣∣∣
ζk−1

)
(6.45)

Equation (6.45), multiplied by θ∗k and using the inverse mapping of (6.41), becomes equation

(6.40b).

Summarising, it has been shown that the mapping (6.41) allows to relate the OCP La-

grange multipliers and necessary conditions to the NLP ones. In particular the ζ-dependent

OCP multipliers λλλ(ζk), ωωω(ζk) correspond to the NLP multipliers ΛΛΛk, ΩΩΩk divided by the mesh

interval width θk. For the ζ-independent Lagrange multipliers γγγ, υυυ there is instead a direct

mapping to the NLP multipliers ΓΓΓ, ΥΥΥ. However, it has been shown that the latter are equal

to the former only in the limit θ0 → 0, θN−1 → 0, i.e. when the mesh is made enough fine.

In real applications, ΓΓΓ, ΥΥΥ are an approximation of γγγ, υυυ that can be improved by lowering

the mesh intervals width.

It can be noted that a more direct mapping between λλλ(ζk), ωωω(ζk) and ΛΛΛk, ΩΩΩk could be

obtained if the NLP constraints fk, gk would be replaced respectively by fkθk and gkθk. In
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Figure 6.5: Modification of the midpoint integration scheme used for the transcription of
the OCP into an NLP. The algebraic states and controls, denoted by a superscript (a) are
discretised at the middle of each mesh interval ζk. The discretisation of the first order
equations, constraints, and other (differential) states and controls is not affected.

such case, the mapping (6.41) would become:

ΛΛΛk → λλλ(ζk), ΩΩΩk → ωωω(ζk), ΓΓΓ→ γγγ, ΥΥΥ→ υυυ (6.46)

Finally, it should be considered that the close relationship between the OCP necessary

conditions and the NLP ones does not mean that the two approaches are exactly equivalent.

Indeed, if equations (6.10) are discretised and solved, the resulting finite dimensional alge-

braic equation system would be slightly different than (6.40) (plus the constraint equations).

The two approaches become closer and closer in the limit N →∞ and θk → 0.

6.3.4 Notes on algebraic variables

The discretisation scheme proposed and used in the previous sections, where both states

and controls are discretised at the boundaries and the equations at the middle of each mesh

interval, has been motivated by the need for having available control derivatives in the

optimal problem formulation. There are optimal control problems where the controls, and

some states, are algebraic variables and their derivatives do not appear in the first order

equations. For this class of problems the discretisation scheme requires a slight modification

in order to avoid numerical issues. If the same discretisation method proposed in section

6.3.1 is used for the algebraic variables, then on a mesh with N + 1 discretisation points,

every algebraic state or control is discretised into N+1 discrete variables, one on each mesh

point. Moreover there are only in N equations (f0,. . . ,fN−1), one per each mesh interval,

where they take part, thus the problem is under-determined. This issue can be avoided

by discretising the algebraic states and controls not on each mesh point ζk, but on each

mesh interval middle point ζk, as shown in figure 6.5. The discretisation of the first order

equations, constraints, and other (differential) states and controls is not modified.
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The change in the resulting NLP structure discussed in section 6.3.2 is only marginal,

and is not described here.

Boundary conditions that depend on algebraic variables need particular attention, since

they not only need to satisfy the algebraic constraints, but also other hidden constraints

[38, 39]. With the proposed discretisation scheme for the algebraic variables and constraints,

these issues are outflanked since boundary conditions cannot depend on such variable, which

are not discretised at the exact boundary of the domain, i.e. ζi, ζf .

Finally, it is easy to verify that the relationship between the NLP and the OCP Lagrange

multipliers for the algebraic variables is the same as in (6.41) — or (6.46) if the NLP

equations are multiplied by θk.

6.3.5 Software implementation

The full collocation transcription method for implicit OCPs described in the previous pages

has been implemented in a software called Maverick that is available on GitHub at http:

//github.com/stavoltafunzia/Maverick. Maverick is composed of a Maple c©8 library

that allows to easily declare the optimal control problem (variables, equations, constraints,

boundary conditions and target) in a symbolic algebra environment, and of a core written

in C++ for the translation of the OCP to an NLP problem. All data necessary to solve the

OCP, like the numeric dataset, the mesh to use, the problem scaling and the solver settings,

can be declared from a user friendly Python and/or Lua interface.

The main features of the Maverick software are the following:

• it allows to easily declare the OCP from within the Maple c© symbolic algebra software;

• it automatically generate the first and second order derivatives of the OCP functions;

• it automatically generate the C++ code for the OCP functions;

• user-friendly interface to control the solver workflow and for the declaration of the

OCP dataset, mesh, scaling, and solver settings;

• it automatically convert the OCP to NLP problem (including Jacobian and Hessian

matrices);

• it automatically refine the mesh to satisfy the requested equation integration accuracy.

The workflow of the Maverick software is shown in figure 6.6. The core of the software

is entirely written in C++ so as to provide very fast function evaluations and to reduce

8Maple is a symbolic algebra software
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computing times of the solution. The core of the software acts as a junction between the

OCP and the NLP problem; the OCP functions, that are coded in C++, are evaluated on

the desired mesh and the corresponding NLP problem is built, including target, constraints

and Jacobian and Hessian matrices. The evaluation is performed on multiple threads to

exploit multi-core architecture. The NLP problem is then solved by third party NLP solvers,

like IPOPT [95]. The OCP dataset, together with the desired mesh, OCP scaling, and

solver settings, is declared in Python and/or Lua languages and passed to the C++ core

through dedicated interfaces. The OCP C++ code, even if it can be manually written, is

automatically generated from within the Maple c© software thanks to the Maverick -Maple c©
library. This allows the user to easily declare the OCP variables, equations, constraints,

boundary conditions and target in the symbolic algebra environment without caring of

calculating the functions derivatives nor writing a single line of C++ code. The calculus

of OCP functions derivatives and the transcription into C++ code is automatically done

by the Maverick -Maple c© library. The Maple c© environment becomes even more appealing

and easy to use for the OCP declaration when the MBSymba library is used. MBSymba

library [60] is a tool that automatically generates the equations of motion for a dynamical

system after the uses specifies the relevant reference systems, bodies and forces in a user-

friendly way. Finally Maverick can automatically refine the mesh if the equation integration

accuracy is not satisfied on the current mesh. This is achieved by estimating the integration

accuracy on each mesh interval, and splitting the interval into sub-intervals 9 if the estimated

accuracy is below the user-selected threshold.

Maverick software has been used to solve the optimal control problem described in the

next section; such problem consists in finding the minimum manoeuvre time of a motorbike

performing a U-turn on a road characterised by relevant elevation variations. The software

is currently in used in the research group at the University of Padova in which the author

worked during his PhD.

6.4 Application to 3D road-vehicle models

Among the applications where the implicit optimal control formulation is advantageous over

the classic explicit formulation, there is the problem arising from a vehicle with 6 degrees of

freedom (for the chassis motion) moving on a three dimensional road. In this section such

OCP is first presented, then it will be solved for a motorbike executing a 180-degrees U-turn

on a three-dimensional road 10 . A thorough comparison of Maverick and of the implicit

9The number of intervals in which a single mesh interval is split is calculated with an heuristic algorithm.
10The term “three-dimensional” road is here used improperly since the road actually is a two-dimensional

manifold. Three-dimensional means that the road is not flat and it extends on a three-dimensional space,
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Figure 6.6: Overview of the Maverick software structure. The user can declare the OCP in
the symbolic algebra environment Maple c©, then the OCP dataset and all solver settings
can be specified through Python and/or Lua interfaces. Maverick software generates the
C++ code for the OCP and converts it to an NLP problem that is then solved by a (free)
third party library.
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formulation with respect to other existing OCP software and the explicit formulation is out

of the scope of this chapter, which aims only to give some kind of “proof of work” of the

developed software.

A three-dimensional road for optimal control problems of vehicles can be modelled as

in appendix A. Following the road model there described, the vehicle frame Wv is related

to the road one Wr through the following transformation:

Wv(t) = Wr(s(t))Wrel(xrel(t)) (6.47)

where Wrel is the relative transformation frame that depends on the relative degrees of

freedom xrel. In the general case, a vehicle has six dof (related to the chassis) thus xrel

includes five variables, three of which are related to the rotations about the three axis

and two of which are related to translations (one perpendicular to the road plane and

one perpendicular to the road middle lane). The degree of freedom associated with the

remaining translation along the road middle lane, s(t), is already included in the Wr frame.

The rotations and translations can be performed in different orders, leading to slightly

different meaning of the five dof xrel. Here the Wrel matrix is given by the following

transformation sequence: a displacement of n along the y-axis, followed by a rotation of α

about the z-axis, a rotation of φ about the x-axis, a translation of −h+ z along the z-axis

(h is the CoM nominal height from ground) and finally a rotation of µ about the y-axis.

Thus the Wrel matrix is:

Wr(s) =

 cosµ cosα−sinφ sinα sinµ − cosφ sinα sinµ cosα+sinφ sinα cosµ −(h−z) sinψ sinα
cosµ sinα+sinφ cosα sinµ cosφ cosα sinµ sinα−sinφ cosα cosµ n+(h−z) sinφ cosα

− sinµ cosφ sinφ cosµ cosφ −(h−z) cosφ
0 0 0 1

 (6.48)

Thus n is the lateral displacement from the road middle lane, α is the heading angle w.r.t

the road middle lane, φ is the roll angle, z is the vertical displacement from the nominal

CoM height and µ is the pitch angle. These five variables, together with the position of the

vehicle along the road middle lane s, completely determine the position and orientation of

the vehicle.

The equations of motion for the vehicle gross motion requires 12 variables in order to be

described by a set of first order equations. Therefore, in addition to the six position position

variables s, n, h, φ, µ and α, six more (velocity) variables are needed. The additional six

velocity variables can be arbitrarily chosen as long as they are linearly independent; for

instance they may be the time derivative of the position variables. However Newton and

Euler equations can be written in a very compact form if the velocities of the vehicle frame

i.e. the road presents elevation variations.
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Figure 6.7: Sparse structure of the matrix A in equation (6.50).

vv and ωv are used as the additional six state variables. Indeed, with this choice the Newton

and Euler equations for the whole vehicle become:

F = mv(v̇v + ωv × vv)

τ = Ivω̇v + ωv × Ivωv
(6.49)

where F and τ are respectively the sum of the net external forces and torques acting on the

vehicle, mv and Iv are the vehicle mass and inertia tensor. Summarising, with this choice

the state space model includes the following variables: s, n, h, φ, µ, α, vvx, vvy, vvz, ωvx,

ωvy, ωvz.

While the explicit Newton and Euler equations of motion (6.49) depend on the vehicle

model used (the external forces and torques depend on the vehicle model), the other six

first order equations are independent of the vehicle model: these equations relate the rate

of the position variables to the vehicle frame velocities vv, ωv. Such equations, that can be

derived through kinematics considerations, include only the state space variables, the time

derivatives of the six position variables, and the road curvatures:

vvx

vvy

vvz

ωvx

ωvy

ωvz


= A



ṡ

ṅ

ż

φ̇

µ̇

α̇


(6.50)

where vvx, vvy, vvz, ωvx, ωvy, ωvz are the components of the vectors vv, ωv, and the matrix
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A has the following non-zero entries:

A1
1 =(h− z) cos(φ) sin(α) cos(µ)τ − (h− z) cos(φ) cos(µ) cos(α)ν

+ sin(α) sin(φ)n sin(µ)κ− (h− z) cos(µ) sin(φ)κ

− cos(φ)τn sin(µ)− cos(µ) cos(α)nκ− sin(α) sin(φ) sin(µ) + cos(µ) cos(α)

A2
1 = cos(α) sin(φ) sin(µ) + sin(α) cos(µ)

A3
1 = sin(µ), A5

1 = −(h− z) cos(µ) sin(φ)

A1
2 = cos(φ) sin(α)nκ+ (h− z) sin(α)ν + (h− z)τ cos(α)

+ τ sin(φ)n− cos(φ) sin(α)

A2
2 = cos(φ) cos(α), A4

2 = h

A1
3 =(h− z) cos(φ) sin(α)τ sin(µ)− (h− z) cos(φ) cos(α)ν sin(µ)

− sin(α) cos(µ) sin(φ)nκ− (h− z) sin(φ) sin(µ)κ

+ cos(φ) cos(µ)τn− cos(α)n sin(µ)κ+ sin(α) cos(µ) sin(φ) + cos(α) sin(µ)

A2
3 =− cos(µ) cos(α) sin(φ) + sin(α) sin(µ)

A3
3 =− cos(µ), A6

3 = −(h− z) sin(φ) sin(µ)

A1
4 =− sin(α)τ sin(φ) sin(µ) + cos(α)ν sin(φ) sin(µ)− cos(φ) sin(µ)κ

+ sin(α) cos(µ)ν + cos(µ)τ cos(α)

A4
4 = cos(µ), A6

4 = − cos(φ) sin(µ)

A1
5 =− cos(φ) sin(α)τ + cos(φ) cos(α)ν + sin(φ)κ, A5

5 = 1, A6
5 = sin(φ)

A1
6 = sin(α) cos(µ)τ sin(φ)− cos(µ) cos(α)ν sin(φ) + cos(φ) cos(µ)κ

+ sin(α)ν sin(µ) + τ cos(α) sin(µ)

A4
6 = sin(µ), A6

6 = cos(φ) cos(µ)

(6.51)

The resulting sparse structure of the matrix A is shown in figure 6.7. Since the matrix A is

not diagonal, these equations are not explicit. It comes thus natural to use an implicit OCP

formulation. If an explicit OCP formulation is required, the equations must be written

in explicit form. This could be done by inverting the matrix A, but it would make the

equations more complex. Moreover, if the vehicle Newton and Euler equations include the

derivative of the position variables (as it is in the motorbike model that is used here), then

the six equations in (6.50) cannot be made explicit separately from the equations of motion

(6.49). Thus, it is the mass matrix of the whole 12 equations that has to be inverted, and

this may not be doable.
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Table 6.1: Motorcycle numeric dataset used for the U-turn manoeuvre simulation.

variable value units description

m 300 kg total mass
w 1.4 m wheelbase
b 0.6 b rear wheel to CoM longitudinal distance
Ixx 40 kgm2 total inertia moment about the x-axis
Izz 60 kgm2 total inertia moment about the y-axis
Ixx 40 kgm2 total inertia moment about the z-axis

Iwf = Iwr 1 kgm2 rear and front wheel spin inertia
Ie 1 kgm2 engine spin inertia reduced at wheel

rt = rtr 0.3 m tyre nominal and rolling radius

µ
(r)
x = µ

(f)
x 1 − tyre maximum longitudinal adherence

µ
(r)
y = µ

(f)
y 1 − tyre maximum lateral adherence

K
(r)
tλ 10 1/rad rear tyre sideslip stiffness

K
(r)
tφ 10 1/rad rear tyre roll stiffness

K
(r)
er = K

(f)
er 20× 103 N/m equivalent radial stiffness

K
(r)
ed = K

(f)
ed 1× 103 Ns/m equivalent damping

cdA 0.5 m2 drag coefficient
clA 0 m2 lift coefficient

6.4.1 3D U-turn motorcycle example

In this section the minimum time problem of a motorbike that performs a 180-degrees

U-turn on a 3D road is presented.

The motorbike model is composed by the main chassis plus the two wheels. The de-

tailed description of the motorbike model is not of primary importance here and can be

found in appendix C. What is here relevant is that the Newton and Euler equations, as

described in appendix C, are neither explicit nor linear in the derivatives of the state space

variables. Indeed, the tyre lateral force expression includes some terms that are quadratic

in the derivatives of the position variables. Thus, the equations cannot be straightforwardly

written neither in the classic explicit form (6.1) nor using the mass matrix (6.2); thus the

implicit OCP formulation is of great advantage here. The minimum manoeuvre time prob-

lem is here solved with the implicit OCP to NLP transcription procedure described in this

chapter and implemented in the Maverick software; IPOPT has been used as NLP solver.

The dataset used to feed the model is reported in table 6.1.

The 3D road is composed of a flat straight line 100m long, followed by a 180-degrees

U-turn approximately 200m long (curvature radius of ≈ 63m) and a final flat straight

50m long. The overall elevation variation is of approximately 20 meters and it is entirely

comprised in the U-turn section, with an average slope along the road middle lane of 12◦
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Figure 6.8: Three-dimensional overview of the 180◦ U-turn (“up hill”).
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Figure 6.9: Road curvatures (left) and tilting angles (road) along the 180◦ U-turn (“up
hill”).
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Figure 6.10: Trajectory of the motorcycle. The difference between the “up hill” and “down
hill” roads is noticeable. The maximum distance between the two trajectories is of ≈ 3m.

0 50 100 150 200 250 300 350
s [m]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Ty
re

 lo
ad

 [N
]

rear up hill
front up hill
rear down hill
front down hill

Figure 6.11: Tyre loads along the 180◦ U-turn . Bump effects are very clear for the “up
hill” motorcycle at s ≈ 150m and s ≈ 240m: tyre loads first increase (at s ≈ 150 both tyre
loads are greater than the motorcycle weight) and then diminish to almost zero. In the
“down hill” road a small bump can be observed at s ≈ 240m.
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and a maximum one of the 29◦. A 3D overview of the road is shown in figure 6.8. The

road curvatures, together with the slope and banking angles, are shown in figure 6.9. The

κ curvature is almost constant along the turn, with a value of ≈ 0.015m−1, while the other

curvatures ν and κ have an oscillating trend. The road slope σ increases from zero up

to ≈ 20◦ and then decreases back to zero, moreover the banking angle oscillates between

positive and negative values, being always less than 10◦ in magnitude.

In order to highlight the influence of the road geometry on the U-turn manoeuvre, the

manoeuvre has been simulated both on the road just described, and on the same road with

the opposite elevation, i.e. with opposite slope and banking angles. The original road will

be referred to as “up hill”, the latter as “down hill”. The simulated manoeuvre time is of

11.727s for the “up hill” road, and 11.642s for the “down hill” one. Significant differences

in the motorbike trajectory can be observed between the two roads, as shown in figure 6.10.

It can be noted that in the first part of the turn the “up hill” trajectory is farther from

the interior of the turn, and the maximum distance between the two trajectories is slightly

greater than 3m. The different trajectory choice are a consequence of the different road

slope variations, that leads to different loads on the tyres. Tyre loads are shown in figure

6.11: it is evident that at s ≈ 150m the motorcycle in the “up hill” road experiences a

significant bump that makes the tyre loads to significantly increase first (both front and

rear tyre loads are higher than the motorcycle weight), and then to become almost zero.

The same behaviour can be noticed also at s ≈ 240m. The motorcycle in the “down hill”

road instead presents smoother tyre loads, yet a small bump can be observed at s ≈ 240m.

The example here described has shown that the implicit OCP formulation can be advan-

tageous in some applications, including OC simulations of vehicles running on 3D roads.

Moreover, the influence of road slope variations on the motorcycle manoeuvre has been

shown to affect both the motorcycle trajectory and tyre loads.

6.5 Summary

In this chapter optimal control problems with implicit first order dynamics equations have

been studied. It has been shown that implicit dynamics equations are of great advantage

from a modelling point of view since they allow to more easily develop the mathematical

model of dynamical systems. Moreover, in some scenarios, writing explicit first order equa-

tions may be really cumbersome. It is not so unusual to find dynamical systems where the

implicit formulation is advantageous; indeed the equations of motion of mechanical systems

are intrinsically implicit11, and not always they can be straightforwardly written in explicit

11 The equations of motion of mechanical systems are generally linear in the state derivatives, thus they
can be written as in equation (6.2). However, sometimes it may be not straightforwardly written in such
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form. Moreover some dynamical systems may be intrinsically described by functions that

are implicit in the state derivatives, as in the muscular activation dynamics problem treated

in [31].

In addition to the implicit first order equations, the OCP formulation here presented

allows for the control derivatives to appear in the expressions of the OCP target, constraints

and equations. This gives even more freedom from a modelling point of view, since it allows

to add constraints or regularisation terms related to the control rates.

The first order necessary conditions for this type of implicit optimal control problems

have been calculated, and a direct full collocation transcription method for the numerical

solution of the implicit OCP has been presented. The NLP problem resulting from the

full direct collocation with a midpoint discretisation method has been accurately described,

with particular attention to the sparse structure of the Jacobian and Hessian matrices.

Moreover, the relationship between the NLP Lagrange multipliers and necessary conditions

and the OCP ones has been derived, so as that OCP Lagrange multipliers can be estimated

even if a direct method is used to solve the OCP.

Finally, the direct transcription method has been implemented in a software called

Maverick that is currently in use at the University of Padova. This software allows to easily

formulate the OCP in a symbolic algebra environment (based on Maple c© software), then

it automatically generates the OCP C++ code and transcribes it to an NLP that is solved

with third party solvers. An automatic mesh refinement algorithm is also implemented.

User friendly Python and/or Lua interfaces can be used to control the solver and to specify

the problem dataset. Maverick software has been used to solve a case-of-study implicit

OCP problem, consisting in the minimum manoeuvre time of a motorbike performing a

U-turn on a 3D road. The problem has been easily solved and the effects of the 3D road

geometry on the motorbike dynamics have been highlighted.

form, as in the motorcycle U-turn manoeuvre example described in this chapter, and the full implicit
formulation turns out to be easier to use.
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Chapter 7

Conclusions

This thesis studied optimal control problems applied to vehicle minimum lap time sim-

ulations. Since OC-LTS capabilities are currently limited by the solving effectiveness of

existing numerical software with high fidelity vehicle models, the intent of this work has

been two-fold: first to understand which is the best approach to face this kind of problems

and, second, to propose properly featured vehicle models that both improve the state-of-the

of LTS models and that still lead to OCPs solvable with existing software.

The review of existing solving techniques for optimal control problems suggested that

indirect and direct methods are the most suitable approaches for solving lap time simula-

tion optimal control problems. Due to the lack of evident advantages or disadvantages of

one method over the other, this work started with the comparison of indirect and direct

OCP approaches when applied to OC-LTS. Even if several differences have been highlighted

between the solutions provided by the chosen indirect and direct solvers, the results sug-

gested that both methods are almost equally effective, being the observed differences due to

specific numeric implementation of the representative software rather than being intrinsic

to the different theoretical approaches.

This thesis then focused on the study of how different vehicle models can affect simula-

tion outcomes. In particular it has been shown that the QSS tyre load assumption, despite

being widely used in OC-LTS car models, is a too coarse simplification when accurate tyre

load dynamics is required, for instance when optimising the centre of mass position or

suspension design.

On the basis of this result, a novel GP2 car model for LTS has been developed. Its

distinguishing features are the dynamically calculated (i.e. no QSS) tyre loads, the inclusion

of the complete suspension kinematics, the ride-dependent aerodynamic forces and the full

coupled tyre model. Despite the relatively high complexity of the model, the lap time

simulation has been performed in a reasonable amount of time — approximately half an
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hour — using a common computer and an indirect approach. The model has been validated

with telemetry data acquired during a qualifying lap in the 2012 GP2 season.

Go-karts have been taken into consideration in this thesis too, since in literature there

is no evidence of OC-LTS applied to this peculiar type of four wheeled vehicles. A go-

kart model, including with dynamic tyre loads, have been presented and validated with

experimental data. The simulations showed to be able to reproduce the specific dynamics

of go-karts, characterised by the under-steering behaviour in the entrance of the turns and

by the lifting of the rear inner wheel.

Since electric vehicles are continuously gaining in popularity both in motor-sports and

urban environment, this thesis has dealt with the optimisation of an electric vehicle too. The

studied electric vehicle is a motorbike taking part at the Tourist Trophy Zero competition.

Due to the length of the Snaefell Mountain Course a simple model is required in order to

perform an entire simulation in a reasonable amount of time. The model presented in this

thesis indeed is very concise; it captures the essence of the motorbike dynamics and focuses

on the electric powertrain. This model, validated through comparison with experimental

data, is able to perform a simulation on the full Snaefell Mountain Course in very few

minutes. The simulations individuated the optimal motor and battery configuration for the

motorbike, moreover it has been shown that the proper choice of the gear ratio can lead to

a substantial increase in performance.

Finally, implicit optimal control problem have been studied. Since the implicit formula-

tion is of great advantage from a modelling point of view, in this work a numeric software

for implicit OCP has been developed. The software is based on a direct full collocation

transcription method. The NLP structure resulting from the discretisation scheme adopted

has been carefully presented, moreover the relationship between the OCP and NLP neces-

sary conditions and Lagrange multipliers have been derived. The software, that has been

tested and proved to work on a bench problem consisting in a minimum manoeuvre time of

a motorbike on a three dimensional road, is currently in use at the University of Padova.

7.0.1 Future work

The work carried on in this thesis gives possibility for several future developments, regarding

both vehicle model features for OC-LTS and numeric optimal control software.

The GP2 model can be extended to fit the current Formula 1 car architecture. While

the modelling of the car dynamics (chassis, suspensions, aerodynamics, differential) for a

Formula 1 car is almost the same of a GP2 one, the former is characterised by a quite

intricate energy management systems which comprises a kinetic energy recovery system

and a mechanism that deliver part of the engine energy either to the rear wheels (as kinetic
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energy) or to the internal battery storage (as electric energy). The inclusion of such feature

would result in a merge between the GP2 model presented in this work and the Formula 1

model described in [58].

The tyre model used in the GP2 model may be further extended by taking into consider-

ation for thermodynamic tyre properties and wear. It is well known that tyre characteristics

highly depend on tyre temperature, thus a thermodynamic tyre model would be of great in-

terest for more accurate lap time simulations. Moreover tyre wear is a relevant phenomenon

when simulations are performed not only over a single lap but over an entire race distance.

In some motor-sports categories tyre degradation is one of the major characteristics that

determine the performance over the entire race, thus the knowledge of optimal tyre usage

strategy is fundamental to success. These two tyre characteristics — thermodynamic be-

haviour and wear — have not been included in the GP2 model due to the lack both of data

necessary to feed any mathematical model and of experimental data for a proper validation,

but they are certainly worth to be included in a future development.

Particular attention has been dedicated to improve the tyre load transfer dynamics in

OC-LTS. In all the car models used in this work, with the only exception of the go-kart one,

the car chassis has been considered infinitely rigid, thus not contributing to the distribution

of the tyre loads on the wheels. Whether this modelling assumption is correct or not depends

highly on the car that is considered, since the chassis to suspension stiffness ratio may vary

significantly from one car category to another. It would be of great interest to study the

influence of the chassis compliance in determining tyre loads, and, if relevant, to include

this effect in a lap time simulations. This would improve further the accuracy of lap time

simulation outcomes.

Both the GP2 and go-kart models can be used for optimisation of the car design and

setup. A thorough study on the optimisation of these type of vehicles with confirmation

from experimental data is out of the scope of this thesis, but would be a surely interesting

future work. In particular, the accurate modelling of chassis and suspension motions may

give the possibility for more effective OC-LTS in the optimisation of vehicle centre of mass

position and suspension design or setup.

This thesis has focused on the vehicle modelling and on the resolution of the minimum

lap time optimal control problem, yet the driver model hasn’t been investigated thoroughly.

The driver has been assumed to be able to drive the vehicle at its maximum performance

and to reproduce every driving input, provided the input has a limited maximum rate.

Clearly this is a very coarse approximation of the behaviour of a real driver. Every driver

has its own subjective feeling and prefers a specific car dynamical behaviour, and in motor-

sports it is very important to make the driver feel comfortable (in its racing meaning) with
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a given car. A theoretically less performing vehicle but well suited for a specific driver may

allow him to achieve lower lap times. Therefore it would be useful to introduce in lap time

simulations some kind of metric that gives information on how a certain driver would “like”

or “dislike” driving the vehicle as the simulation suggests. The optimisation problem then

would become a multi (actually, double) objective optimisation one, where the lap time and

the driver’s “fitness” are the two targets to minimise (the former) and maximise (the latter)

together. This is certainly an interesting topic that could lead lap time simulations to take

into account for human-related factors.

From the point of view of numerical OCP solution, this work presented a direct software

for the transcription of implicit OCP to an NLP problem. Numerical software for OCP

should be able to find the solution in a short time (compared to human scales) and should

be robust. The software developed in this work offers good performances in the numerical

evaluation of the NLP functions (target, Jacobian, Hessian), taking advantages of multi-

core architectures. Very little work would be necessary to use GPU architecture for the

evaluation of NLP functions, which can lead to a speed-up for very large problems. A

significant part of the computational time is spent within the NLP solver — a third party

library, like IPOPT — thus an improvement of this component is essential for fast OCP

solutions. A possible enhancement could be the use of a bespoke linear algebra solver —

used by every NLP solver — that exploits the particular structure of the Jacobian and

Hessian matrices arising from the OCP nature of the NLP problem. Moreover, NLP solvers

are designed to face a wide class of constrained optimisation problems; when focusing on

OCP originated problems, the entire NLP solving algorithm could be tuned so as to achieve

a better robustness and speed when used for this class of problems.
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Appendix A

Road model

Optimal control simulations of road vehicles always rely upon a road model that allows to

track the position and orientation of the vehicle with respect to the road and to the ground.

In this thesis the road is modelled as a ribbon characterised by a certain orientation and

width that both vary along the road. This model captures the road slope and banking,

which are the main features of a three dimensional road; irregularities and bumps are not

considered, yet they could be added as a further work.

The road ribbon R, that is a bi-dimensional surface within the three-dimensional space,

can be described by means of its middle lane C(s), its orientation Or with respect to the

ground frame Wg (assumed fixed) and its width rw. The road middle lane C(s) is a 1-

dimensional parametric curve function of the independent parameter s that corresponds to

the distance travelled along the road middle lane:

C(s) =
[
xr(s); yr(s); zr(s)

]
(A.1)

where xr,yr and zr are the Cartesian coordinates of the road middle lane with respect to

the ground frame.

In order to describe the ribbon orientation matrix Or(s), a ribbon frame has to be

defined first. The ribbon frame is here defined as an orthonormal frame centred in C(s),
with the x-axis unit vector ex aligned with the road middle lane, the y-axis unit vector

ey perpendicular to the ex vector and lying on a line that intersect the road right border,

and the z-axis unit vector ez given by the inner product between ex and ey, so as it is

perpendicular to the road surface. Mathematically, the unit vectors that determines the
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ribbon orientation matrix are defined as follows:

ex(s)

∥∥∥∥dC(s)ds

∥∥∥∥ =
dC(s)
ds

ey(s) = v : v⊥ex ∧‖v‖ = 1 ∧ ∃k 6= 0 : kv ∈ br(s)

ez(s) = ex(s)× ey(s)

(A.2)

where br(s) is the road right border parametric curve and ∧ is the and operator. It should

be noted that SAE convention is used for the axis orientation. The ribbon frame orienta-

tion matrix Or(s) (w.r.t the ground) is the matrix whose columns contain respectively the

coordinates of the unit vectors ex, ey, ez expressed in the ground frame. The ribbon frame

orientation matrix Or(s) can be fully described by three parameters that are related to

the three different rotations that allow to rotate from the ground frame to the road ribbon

frame. Many conventions can be used to express these three parameters [67]. Here the zyx

convention is adopted, i.e. the three parameters correspond to three rotations, the first

about the z-axis, the second about the y-axis and the third about the x one:

Or(s) = Rz(ψ)Ry(σ)Rx(β)

=

[
cosψ cosσ − sinψ cosβ+cosψ sinσ sinβ sinψ sinβ+cosψ sinσ cosβ
sinψ cosσ cosψ cosβ+sinψ sinσ sinβ − cosψ sinβ+sinψ sinσ cosβ
− sinσ cosσ sinβ cosσ cosβ

] (A.3)

where Ri(ξ) is the rotation of an angle ξ about the i − th Cartesian axis (x, y or z). The

angles ψ, σ and β are respectively the road heading (i.e. the direction of travelling), slope

(i.e. travelling uphill or downhill) and banking (i.e. the road leaning). In the case of a flat

road the slope σ and banking β angles are always zero. With the definitions given above, it

follows that the road middle lane C(s) can be obtained by integrating in s the first column

of the road ribbon frame Or(s):

C(s) =


xr(s)

yr(s)

zr(s)

 =

∫ s

0


cosψ(t) cosσ(t)

sinψ(t) cosσ(t)

− sinσ(t)

 dt (A.4)

The road middle lane C(s) and orientation matrix Os(s) can be put together into the

4× 4 road frame matrix Wr that fully determines the road position and orientation:

Wr(s) =

[
cosψ cosσ − sinψ cosβ+cosψ sinσ sinβ sinψ sinβ+cosψ sinσ cosβ xr
sinψ cosσ cosψ cosβ+sinψ sinσ sinβ − cosψ sinβ+sinψ sinσ cosβ yr
− sinσ cosσ sinβ cosσ cosβ zr

0 0 0 1

]
(A.5)

The road frame Wr is shown in figure A.1. The scalar ribbon width rw(s) completes the
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road characterisation.

Figure A.1: Coordinate system of the road model. The road frame Wr with respect to the
ground frame Wg and the road width are shown.

Vehicle tracking

When a vehicle moves on the road, its reference frame Wv(t) can be expressed relatively to

the road frame Wr(s(t)):

Wv(t) = Wr(s(t))Wrel(xrel(t)) (A.6)

where s(t) is the position of the vehicle along the road middle lane (now seen as a function

of time) and Wrel is the relative frame matrix of the vehicle with respect to the road frame

that depends on the vehicle degrees of freedom xrel(t) relative to the road. Depending on

the vehicle model, xrel can comprise up to five dof: indeed a rigid body may have up to six

dof, but one of the six is the curvilinear coordinate s(t).

When calculating the vehicle equations of motion, velocities of the road frame Wr(s(t))

generate apparent forces that must be taken into account. The translational vv and angular

ωv velocities of the vehicle frame can be expressed as the sum of the road frame and relative

frame velocities:

vv = vr + vrel, ωv = ωr + ωrel (A.7)

where vr, ωr are respectively the translational and angular velocities of the road frame and

vrel, ωrel are the velocities of the frame Wrel with respect to the road frame Wr. If Newton

and Euler equations for the whole vehicle are calculated within the vehicle frame Wrel, they

assume a very simple form where the net external forces F and torques τ are equated to
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respectively to the inertial forces Fi and inertial torques τi:

F = Fi

τ = τi
(A.8)

While the external forces and torques at the left hand side of the above equations depend

on the vehicle model, the inertial forces and torques at the right hand side of the above

equations are equal to:

Fi = mv(v̇v + ωv × vv)

τi = Ivω̇v + ωv × Iωv
(A.9)

where mv is the total mass and Iv is the total inertia tensor.

The relative frame velocities vrel, ωrel depend only on the time derivative of the relative

degree of freedom ẋrel(t), moreover the road velocities vv, ωv depend only on the time

derivative of the curvilinear abscissa ṡ(t) and on the road characteristics. The translational

speed vr of the road frame is given by the following simple expression, being only the x

component nonzero:

vr(ṡ(t)) = ṡ(t)
[
1; 0; 0

]
(A.10)

The angular velocity of the road frame too has a simple expression if it is expressed in terms

of the road curvatures κ(s), ν(s), τ(s): κ is curvature in the x − y transversal plane, ν is

the curvature in the sagittal plane x− z and τ is the torsion:

ωr(ṡ(t)) = ṡ(t)
[
τ(s(t)); ν(s(t)); κ(s(t))

]
(A.11)

The road curvatures can be expressed as function of the road frame angle rates:

κ = cosσ cosβψ′ − sinβσ′

ν = cosσ sinβψ′ + cosβσ′

τ = β′ − sinσψ′

(A.12)

where the superscript ′ indicates the derivative with respect to the curvilinear abscissa s.

In the case of a flat road the only curvature that is non-zero is κ.

It has been shown that the road geometry generate inertial forces that appear in the

Newton and Euler equations of motion. Even if Newton and Euler equations can be written

in a different form than (A.9), inertial forces due to the road must appear. Moreover, road

curvatures defined in (A.12) allows to easily express the road frame angular velocities as

function of ṡ only.
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Time to space domain transformation

In optimal control lap time simulations it is more convenient to use the road curvilinear

abscissa s as independent variable rather than the time t, since practical experience shows

that problems so formulated are easier to be solved by optimal control numerical solvers

[25, 59, 57]. In particular, the curvilinear abscissa s can be used as independent variable if

and only if the function s(t) is invertible, so as that a bijective map from t to s exists. This

is in general true if the vehicle never inverts its motion and if the road width is always less

than the road local curvature radius, in which case the road surface could overlap itself and

the function s(t) may be non injective.

When a bijective map from t to s exists, the curvilinear abscissa s can be removed

from the state variables of the optimal control problem and can be made the independent

variable. Denoting by x is the state variable vector of the time-domain problem and by xs

is the state variable vector for the space domain problem, the following relationship holds:

x =
[
s; xs

]
(A.13)

Once s becomes the independent variable, all the derivatives w.r.t the time that appear in

the equations of motion must be expressed as derivative w.r.t s. This can be easily done

using the chain derivative rule:

dxs(t)

dt
=
dxs(s)

ds

ds(t)

dt
=
dxs(s)

ds
ṡ (A.14)

Using the above expression, all the functions ft

(
xs(t),

dxs(t)
dt

)
in the original time domain

optimal control problem can be expressed as function of the space-derivatives fs

(
xs(s),

dxs(s)
ds

)
in the space domain optimal control problem:

fs

(
xs(s(t)),

dxs(s(t))

ds

)
= ft

(
xs(t),

dxs(t)

dt

1

ṡ

)
(A.15)

Looking at the above transformation, it is clear that the time derivative of s cannot be

zero, otherwise the right hand side would be undefined. However, under the hypothesis

that there exists a bijective map from t to s, ṡ is never zero otherwise the map would not

be bijective.

Finally, it should be noted that the quantity ṡ must be expressed as a function of the new

state variables xs. This can be achieved finding a kinematic relationship that expresses the

longitudinal speed of the road frame (that is exactly ṡ, see equation (A.10)) as a function

of the other velocities. In certain cases this expression may be not trivial, and since all the

219



time-derivatives in the first order equations are multiplied by 1/ṡ (see equation (A.15)), the

time to space domain transformation may lead to a substantial increase in the complexity

of the equations. This problem can be avoided by keeping ṡ as an algebraic state variable

in the space domain optimal control problem.
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Appendix B

Road data reconstruction

The road model presented in appendix A fully describes the road geometry by means of the

road middle lane C(s), width rw and orientation angles (heading ψ, slope σ and banking β),

or equivalently the curvatures (κ, ν, τ), as function of the road curvilinear abscissa s. It

is thus necessary to know such data in order to perform any simulation on the given road.

From a practical point of view, the road data that can be measured are the coordinates

of a set of points belonging to the road left border
[
x

(i)
rl0; y

(i)
rl0; z

(i)
rl0

]
, i = 1, . . . , N and

the set of corresponding right border point coordinates1
[
x

(i)
rr0; y

(i)
rr0; z

(i)
rr0

]
, i = 1, . . . , N .

These sets of coordinates can be obtained, for instance, with GPS sensors or from Google

satellite images. In the latter case, satellite images give a flat representation of the road (i.e.

the elevation is not considered), thus they must combined with another tool that provides

the missing elevation data (e.g. www.gpsvisualizer.com). When the sets of points are

obtained, the position of the road middle lane can be estimated. Since the road middle lane

is equidistant (by definition) from the road borders, the coordinates of N points belonging

to the middle lane
[
x

(i)
r0 ; y

(i)
r0 ; z

(i)
r0

]
, i = 1, . . . , N can be calculated simply taking the average

of the coordinates on the right and left borders:

[
x

(i)
r0 ; y

(i)
r0 ; z

(i)
r0

]
=

[
x

(i)
rl0; y

(i)
rl0; z

(i)
rl0

]
+
[
x

(i)
rr0; y

(i)
rr0; z

(i)
rr0

]
2

i = 1, . . . , N (B.1)

The sets of middle lane points can be interpolated by splines so as to obtain an estimate of

the middle lane 1D-parametric curve s0, moreover the arc length of this curve is an estimate

of the curvilinear abscissa s0. The right and left border point coordinates can similarly be

1 It is here assumed that the n-th left border point corresponds to the n-th right border point, i.e. the
line connecting these two points is perpendicular to the road middle lane. If the sets of points do not satisfy
this property, some algorithms has to be used in order to obtain two sets of points satisfying such property.
The description of such algorithm, that depends on the methodology used to extract the point coordinates,
is out of the scope of this thesis.
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interpolated to obtain an estimate of the coordinates as function of the estimated curvilinear

abscissa s0:

s0(s0) =
[
xr0(s0); yr0(s0); zr0(s0)

]
bl0(s0) =

[
xrl0(s0); yrl0(s0); zrl0(s0)

]
br0(s) =

[
xrr0(s0); yrr0(s0); zrr0(s0)

] (B.2)

where br0(s0) and bl0(s0) are the estimates of the road right and left borders.

Once the estimates of the road right and left borders are obtained, the road heading ψ

and slope σ angles could be calculated differentiating equation (A.4). Moreover the banking

angle β and road width rw could be obtained by imposing the road borders to pass through

the border estimates br0(s0), bl0(s0). However, the road data br0(s0), bl0(s0) is affected by

a certain noise due to the measurement process, and the differentiation of equation (A.4)

would amplify it. The noise can be reduced by calculating the road data not directly, as

described just above, but through an optimal control problem where some regularisation

terms are included to ensure a certain smoothness of the resulting road. The procedure is

very similar to the one described in [73], and it is here reported.

The optimal control problem consists in finding the road geometry (i.e. α(s), σ(s), β(s),

rw(s)) that minimises the distance of the road borders br, bl from their estimates br0, bl0,

and ensuring at the same time a certain smoothness. Mathematically, the optimal control

problem can be formulated as follows:

min
u

∫ s0f

0
S(x) + wuU(u) ds0 (B.3a)

subject to:

x′ = f(x,u) (B.3b)

where x is the state variables vector that contains the road geometry variables, u is the

control vector and f(x,u) are the first order equations.

The state variables vector includes the road middle lane coordinates, the road orientation

angles, the road width and the road curvilinear abscissa s: x = [xr; yr; zr; α; σ; β; rw;

s]. The variable s is a state of the optimal control problem because the road curvilinear

abscissa is not known before solving the OCP, and only its estimate, s0 is available. The

independent variable of the OCP is the road curvilinear abscissa estimate (and s0f is its

value at the end of the road).

The control vector u determines the variation of the state variables with s0; thus it

includes urw that controls the road width rate r′w, us that controls the curvilinear abscissa

rate s′ and three variables u1, u2, u3 that control the first order derivatives of the road
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angles α′, σ′, β′. In particular the controls u1, u2, u3 can be either the exact derivatives

of the road angles, or the road curvatures κ, ν, τ ; indeed the road angle rates and the

curvatures express the same information and are related through equation (A.12). Here the

controls u1, u2, u3 are assumed to be road angle rates.

Summarising, the state and control vector are the following:

x =
[
xr; yr; zr; ψ; σ; β; rw; s

]
u =

[
urw; us; uψ; uσ; uβ

] (B.4)

and the first order equations f(x,u) are:

x′ =



x′r

y′r

z′r

ψ′

σ′

β′

r′w

s′


= f(x,u) =



us (cosψ cosσ)

us (sinψ cosσ)

−us sinσ

uψ

uσ

uβ

urw

us


(B.5)

It can be noticed that in the first three entries of f the term us (that is equal to ds
ds0

) makes

the derivatives of the road angles to be expressed w.r.t s0 and not s. If the estimate of the

road curvilinear abscissa s0 is close to the real one s, then us is approximately equal to one.

If the road curvatures κ, ν, τ would have been chosen in place of the controls uψ, uσ, uβ,

then the fourth to sixth equations in f would have been different.

The OCP target in (B.3) is composed by two terms: the first, S(x), is related to

the distance of the road borders from the estimated ones, and the second, U(u′), is the

regularisation term (wu is a constant):

S(x) =‖br − br0‖2 +‖bl − bl0‖2 (B.6a)

U(u′) =

∥∥∥∥∥∥
[
urw
σurw

+
us
σus

+
uψ
σuψ

+
uσ
σuσ

+
uβ
σuβ

]∥∥∥∥∥∥
2

(B.6b)

where br, bl are the coordinates of the road right and left borders, br0, bl0 are their estimates

and σus , σurw , uψ, uσ, uβ are scaling coefficients. It can be noted that the term U penalises

the control derivatives so as to keep smooth the road curvatures2. The coordinates of the

2 In classical OCP formulation, where the controls are algebraic variables and their derivatives must not
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road right and left borders, br and bl, can be expressed as function of the state variables:

br =


xr + rw

2 (cosψ sinσ sinβ − sinψ cosβ)

yr + rw
2 (sinψ sinσ sinβ + cosψ cosβ)

zr + rw
2 cosψ sinβ



bl =


xr − rw

2 (cosψ sinσ sinβ − sinψ cosβ)

yr − rw
2 (sinψ sinσ sinβ + cosψ cosβ)

zr − rw
2 cosψ sinβ


(B.7)

The solution of the optimal control problem (B.3) allows to find the road middle lane

C(s), orientation Or(s), and curvatures κ, ν, τ as a function of the curvilinear abscissa s.

This formulation allows to remove the noise affecting the input data (3D road map) by

weighting the controls in the target function: the greater wu is, the more the controls are

penalised and the more the output data is filtered.

appear, the state space can be augmented by including the controls of problem (B.3) as state variables.
Thus the penalty on the control in (B.6b) can then be expressed as a penalty on the control itself.

224



Appendix C

Motorbike model on a

three-dimensional road

The motorbike model used for the U-turn manoeuvre in section 6.4 is here presented. This

model does not aim to provide an accurate description of the motorbike dynamics, rather it

is intended as a toy model for simulations on a three-dimensional road model. Despite its

conciseness, this model captures the essence of a motorbike dynamics (i.e. load transfers,

gyroscopic effects and g-g diagram), moreover it highlights the advantages of an implicit

optimal control formulation from a modelling perspective.

The model is composed by the chassis main body, that has six degrees of freedom, plus

the two wheels. The road model is the 3D one described in appendix A. The motorbike

is tracked by means of the six variables as described in 6.4: the curvilinear abscissa s, the

lateral displacement from the road middle lane n, the heading angle w.r.t the road middle

lane α, the roll angle φ, the vertical displacement from the nominal CoM height z and the

pitch angle µ. Thus the road to vehicle transformation matrix Wrel is the one described in

section 6.4 (see equation (6.48)).

Newton and Euler equations

The equations of motion for the whole vehicle can be easily expressed as function of the net

external forces F , torques τ , chassis speed vv and angular velocity ωωωv through the following

equation:

F =mv(v̇v + ωv × vv)

τ =Ivω̇v + ωv × Ivωv + Iwω̇w + ωw × Iwωw
(C.1)

where mv is the total mass (motorcycle plus rider), Iv is the total inertia tensor, Iw is an

inertia tensor that includes only the spin inertia of the wheels and ωw is the spin velocity
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of the wheels. It can be noted that the Euler equation in (C.1) is the equation of a body

(the whole motorcycle) plus a spinning body (wheels) that adds extra gyroscopic effects.

Since the wheel spin velocity ωw in equation (C.1) contributes only to gyroscopic effects, it

is calculated for simplicity in zero-slip conditions, thus it is equal to the ratio between the

forward motorcycle speed vvx and the tyre rolling radius rtr (assumed equal for the front

and rear wheels):

ωw =

[
0; −vvx

rtr
; 0

]
(C.2)

Moreover, the wheel inertia Iw tensor includes both the front I
(f)
w and rear I

(r)
w wheel spin

inertia together with the engine (reduced to wheel) inertia Ie:

Iw =


0 0 0

0 I
(f)
w + I

(r)
w + Ie 0

0 0 0

 (C.3)

The external forces F and torques τ are due to the gravity, tyre and aerodynamic

forces. Tyre forces include the tyre load N , the longitudinal Ftx and lateral Fty forces.

Aerodynamic forces are the drag Fd and Fl ones. Thus the external forces and torques can

be decomposed as follows:

F =F
(r)
t + F

(f)
t + Fa + Fg

τ =p
(r)
t × F

(r)
t + p

(f)
t × F

(f)
t + pa × Fa

(C.4)

where F
(r)
t , F

(f)
t are the vectors respectively of the rear and front tyre forces, Fa is the

vector of the aerodynamic forces and Fg takes into account for the gravity:

F
(r)
t =


F

(r)
tx

F
(r)
ty

−N (r)

 , F
(f)
t =


F

(f)
ty

F
(f)
ty

−N (f)

 , Fa =


−Fd

0

−Fl

 , Fg = mg


Fgx

Fgy

Fgz


Fgx = sin(β) cos(σ) cos(α) sin(φ)µ− cos(σ) cos(φ) cos(β)µ

+ sin(φ) sin(σ) sin(α)µ+ sin(β) cos(σ) sin(α)− sin(σ) cos(α)

Fgy = sin(α) cos(φ) sin(σ) + cos(α) cos(φ) cos(σ) sin(β)

+ sin(φ) cos(σ) cos(β)

Fgz = sin(β) cos(σ) sin(α)µ− sin(β) cos(σ) cos(α) sin(φ)

− cos(α) sin(σ)µ− sin(σ) sin(α) sin(φ) + cos(φ) cos(σ) cos(β)

(C.5)
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In the Euler equation (C.4), p
(r)
t and p

(f)
t are respectively the rear and front tyre contact

point coordinates (w.r.t the motorcycle CoM), and pa are the coordinates of the aero-

dynamic centre of pressure (w.r.t the motorcycle CoM). The gravity does not generates

external net torques on the motorbike.

Aerodynamic forces

Aerodynamic drag Fd and Fl forces are proportional to the square of the speed:

Fd =
1

2
ρcdA‖vv‖2 , Fl =

1

2
ρclA‖vv‖2 (C.6)

where ρ is the air density, cdA and clA are respectively the drag and lift coefficients.

Tyre forces

Tyre longitudinal forces (F
(r)
tx , F

(f)
tx ) together with the front tyre lateral force F

(f)
ty are

directly controllable by the driver through throttle, braking and steering inputs. Therefore

these three quantities F
(r)
tx , F

(f)
tx , F

(f)
ty are control inputs in the optimal control problem,

with the restriction that F
(r)
tx can be only positive (i.e. braking with the rear wheel is

avoided) and F
(f)
tx can be only negative. Differently, the tyre loads and the rear tyre lateral

force are calculated as follows:

F
(r)
ty = N (r)

(
K

(r)
tλ λ

(r)
t +K

(r)
tφ φ

)
N (r) = N

(r)
0 +K(r)

er ξ
(r) +K

(r)
ed ξ̇

(r)

N (f) = N
(f)
0 +K(f)

er ξ
(f) +K

(f)
ed ξ̇

(f)

(C.7)

where K
(r)
tλ and K

(r)
tφ are respectively the rear tyre sideslip and roll stiffness, N0 is the tyre

load in static conditions and ξ is the tyre radial deformation. Moreover Ker and Ked are

respectively the equivalent vertical stiffness and damping coefficient and take into account

both for the tyre and suspension compliance. In different words, Ker is given by the series

of the tyre and suspension stiffness (reduced at wheel), and Ked is tuned so as to preserve

the damping ratio.

The tyre deformations ξ can be calculated through kinematic considerations, and they

are given by:

ξ(r) = cosφ (z + bµ) , ξ(f) = cosφ (z − aµ) (C.8)

where b and a are respectively the longitudinal distance of the rear and front wheel from

the CoM. The expressions in (C.8) have been expanded in Taylor series up to the first order

in µ.
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The rear tyre sideslip angle λ
(r)
t depends instead on the rear tyre contact point lateral

vty and longitudinal vtx speed:

λ
(r)
t =− arctan

(
vty
vtx

)
vtx =vvx − rtµ̇+ (µb+ h)ωvy + µvvz

vty = sinφ
(
µωvy(h− rt) + vvx)− ωvyb− vvz

)
− cosφ

(
µωvz(t)rt + bωvz + hωvx − vvy

)
(C.9)

The rear tyre contact point lateral vty and longitudinal vtx speeds have been expanded in

Taylor series up to the first order in µ.

Finally, tyre forces are limited by an adherence ellipse as follows: F
(r)
tx

N (r)µ
(r)
x

2

+

 F
(r)
ty

N (r)µ
(r)
y

2

≤ 1,

 F
(f)
tx

N (f)µ
(r)
x

2

+

 F
(f)
ty

N (f)µ
(r)
y

2

≤ 1 (C.10)

where µx and µy are respectively the tyre longitudinal and lateral maximum adherence.

State space

The motorcycle model here presented has six degrees of freedom, thus 12 variables are

required to describe it by a set of first order equations. Six of the 12 variables are the

tracking variables that determine the position and orientation of the motorcycle in the

space. These six variables are: s, n, z, α, φ, and µ. The other six velocity variables are

instead the speed and angular velocity of the motorcycle: vvx, vvy, vvz, ωvx, ωvy, ωvz. The

six first order equations related to the position variables are equations (6.50), while the other

six equations are the Newton and Euler ones (C.4) (once the expressions of the external

forces have been substituted into them). Controls rely on the tyre longitudinal forces and

on the front tyre lateral force: F
(r)
tx , F

(f)
tx , F

(f)
ty .

It should be noted that equations (C.4) are not linear in the state space variable deriva-

tives. Indeed, both the rear tyre load N (r) and the rear tyre sideslip angle λ
(r)
t depend on

state variable derivatives (the former through (C.8), the latter through (C.9)). The rear

tyre lateral force F
(r)
ty as expressed in (C.7) depends on the product of N (r) by λ

(r)
t , thus

it is quadratic in the state variable derivatives, at least with the formulation here adopted.

For this reason the first order equations of this simple motorcycle model cannot be written

neither in the explicit form (6.1), nor in the linear form (6.2). An implicit OCP formulation

allows instead to straightforwardly use this model for optimal control simulations.
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