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ABSTRACT 

In 1970s, the introduction of presymptomatic central nervous system (CNS) therapy 

changed the prognosis of pediatic Acute Lymphoblastic Leukemia (ALL). Before that 

more than half of complete remissions obtained with systemic chemotherapy 

experienced CNS relapse. The contemporary use of risk-directed treatment has 

improved 5-year event-free survival to rates about 80% for childhood ALL. However, 

still CNS relapse remains an important cause of mortality occurring in about 3-8% of 

ALL patients. Recent clinical trials focus in reducing CNS relapse with the use of 

individualized therapy that can avoid both over- and under-treatment. Moreover, several 

studies aim to minimize secondary negative effects related to use of cranial irradiation, 

a treatment still recommended for ALL children at high risk of CNS relapse (i.e: 

patients with CNS leukemia at diagnosis or T-immuniphenotype with high White Blood 

Cell (WBC) count).   

This project aims to deep insight into the mechanisms used by blast cells to infiltrate the 

CNS. We focused on T-ALL as in this leukemia the phenomenon of CNS disease is 

more recurrent than in B-ALL. To identify conserved molecular mechanisms that could 

be at the basis of CNS infiltration we started the analysis on animal models to move 

subsequently to human patients. To goal in this aim we used a gene expression profiling 

(GEP) approach. 

Chapter 1 reports a study performed on two zebrafish models both developing T-ALL 

but that are genetically different; hMYC-ER line overexpresses human C-MYC, while 

hlk model carries an unknown mutation. We demonstrate for the first time that both 

these zebrafish model can mimic the phenomenon of CNS disease in T-ALL. Moreover, 

we found a different predisposition for hMYC-ER and hlk cancers to infiltrate the CNS. 

A whole transcriptome analysis of hMYC-ER and hlk T-ALL helped us to identify 

different molecular mechanisms that could control motility of blast cells. Particularly, 

we identified on cxcr4/cxcl12 axis, an important mechanisms that could predispose T-

lymphoblasts to infiltrate the CNS environment. In fact, we found a positive correlation 

between cxcr4 expression levels and seriousness of CNS infiltration. 
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The importance of CXCR4/CXCL12 axis in determining extramedullary infiltration is 

still debated, as studies on pediatric ALL patients reveal conflicting results. In Chapter 

2, we investigated the association of CXCR4/CXCR4 expression and CNS infiltration, 

using murine models xenoengrafted with human patients T-ALL cells. Also in this 

animal model we found diverse degree of CNS infiltration on xenografted mice derived 

by different human patients. Preliminary results seem to confirm that higher levels of 

CXCR4 expression favour the migration of T-lmphoblasts towards the CNS 

environment. Further analyses of validation are ongoing on a larger cohort.  

In Chapter 3 we switch to study the phenomenon of CNS infiltration on ALL patients. 

GEP analysis was used to compare patients with (CNS+) or without (CNS-) disease. 

However, this approach on human patients failed to find a strong signature that could 

identify CNS+ and CNS- patients. This result underlines the difficulty to study this 

phenomenon directly on human patients, as a high heterogeneity is present inside both 

T- and B-ALL group. Moreover, we could not find an association between CXCR4 

expression and CNS infiltration in a T-ALL cohort and that stress the idea that blasts 

cells can use different mechanisms to infiltrate the CNS and the high expression of 

CXCR4 might be a predisposing factor that requires interaction with others mechanisms.  

T-test analysis performed on zebrafish gene expression results revealed a significant 

different gene expression profile existing inside the zebrafish group overexpressing hC-

MYC (hMYC-ER). This observation challenges us to clarify the importance and the role 

of C-MYC oncogene in T-ALL leukemogenesis. In Chapter 4 we were able to find a 

strong signature insight the group of patients with high expression of C-MYC that can 

discriminate patients with- and without- C-MYC rearrangements. In both Chapter 4 and 

5 we tested the ability of gene expression profiling approach in identifying signature 

within specific subgroup of T-ALL patients. In fact also in Chapter 5 we showed the 

presence of a gene expression profile that characterize patients carrying MLLT10 

rearrangements inside the HOXA category of pediatric T-ALL.  
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RIASSUNTO 

Fino agli anni ’70, la prognosi dei pazienti con Leucemie Linfoblastiche Acute (LAL) e 

coinvolgimentiìo del SNC era particolarmente infausta. Infatti circa il 70% dei pazienti 

presentava una ricaduta con coinvolgimento del SNC. L’introduzione di terapie mirate 

alla prevenzione/trattamento delle infiltrazioni blastiche nel Sistema Nervoso Centrale 

(SNC) all’inizio degli anni ’80 ha rivoluzionato il decorso clinico dei pazienti con 

ricaduta LAL e coinvolgimento del SNC. Attualmente, le ricadute LAL nel SNC 

rappresentano circa il 3-6% di tutte le ricadute e questo miglioramento si può ricondurre 

all’identificazione precoce dei pazienti ad alto rischio di ricaduta e l’uso di terapie 

specifiche per diverse categorie di rischio, che complessivamente, hanno permesso di 

raggiungere un tasso di guarigione che va oltre l’80%. Tuttavia, le ricadute nel SNC 

continuano ad essere un’importante causa di mortalità soprattutto in età pediatrica. 

Recentemente, numerosi trials clinici stanno cercando di ridurre il tasso di incidenza 

delle ricadute LAL che coinvolgono il SNC, attraverso l’uso di terapie individuali che 

permettano di evitare il sovra- o il sotto-dosaggio di chemioterapico per il paziente. 

Inoltre, molti studi stanno cercando di minimizzare gli effetti negativi dovuti all'uso di 

radioterapia, un trattamento ancora raccomandato nella cura delle LAL pediatriche ad 

alto rischio di ricaduta nel SNC (i.e. pazienti con infiltrazione del SNC già alla diagnosi 

o on  LAL di tipo T associata ad un'alta conta di globuli bianchi). 

In questa tesi, abbiamo impiegato lo studio del profilo di espressione genica al fine di 

individuare i possibili meccanismi molecolari che consentano alle cellule leucemiche di 

infiltrare il SNC, utilizzando 2 differenti modelli animali: zebrafish e topi NSG.  I 

processi biologici identificati sono stati quindi validati in una corte di pazienti pediatrici 

alla diagnosi con leucemia limfobalstica acuta. Ci siamo focalizzati in particolar modo 

sulle LAL di tipo T, poichè in questo tipo di leucemie il coinvolgimento del SNC è più 

ricorrente rispetto alle LAL-B sia alla diagnosi che alla ricaduta.  

Il capitolo 1 riporta uno studio effettuato su due modelli di zebrafish geneticamente 

differenti, in grado di riprodurre la LAL-T. La linea transgenica hMYC-ER sviluppa una 

leucemia LAL-T indotta dalla sovraespressione del gene umano C-MYC, mentre il 

modello zebrafish hkl è stato ottenuto tramite mutagenesi chimica non specifica. In 
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questo studio, abbiamo dimostrato come entrambe queste linee modello riescano a 

riprodurre il fenomeno dell infiltrazione delle cellule blastiche nel SNC con diverso 

grado di invasione a seconda del tipo di modello considerato. L’analisi dell'intero 

trascrittoma delle cellule leucemiche estratte dai due modelli di zebrafish, ci ha 

permesso di identificare diversi meccanismi molecolari che possono regolare la 

migrazione e l’infiltrazione delle cellule tumorali. In particolare, l’attivazione dell’asse 

cxcr4/cxcl12 sembra conferire ai linfoblasti T una maggiore capacità di infiltrazione del 

SNC nel modello hMYC-ER, come dimostrato dalla sua maggiore invasivita nel SNC, 

rivelando una correlazione diretta tra l ‘over-espressione del cxcr4 e il grado di 

invasione.    

Nel capitolo 2, abbiamo studiato l'associazione tra espressione del CXCR4 e 

l’infiltrazione del SNC in topi xenotrapiantati con cellule LAL-T provenienti da pazienti 

pediatrici. Risultati preliminari sembrano confermare la correlazione tra alti livelli di 

espressione del CXCR4 e l’aumentata migrazione dei linfoblasti T nel SNC. 

Attualmente ulteriori analisi sono in corso, con lo scopo di validare la relazione 

“espressione CXCR4-infiltrazione del SNC” in una coorte più ampia. 

 
Nel capitolo 3, considerando i risultati precedentemente ottenuti, abbiamo analizzato il 

profilo di espressione genica di pazienti pediatrici alla diagnosi di leucemia 

limfobalstica acuta con (SNC+) o senza (SNC-)  coinvolgimento del SNC. Questo 

approccio non ha portato all’identificazione di una signature in grado di distinguere i  

due gruppi considerati e questo risultato è in parte dovuto al basso numero di pazienti 

analizzati con SNC+ e all’alta eterogenicità genetica presente all interno della corte 

studiata. La mancanza di una diretta correlazione tra l'espressione del CXCR4 e 

l’infiltrazione nel SNC nei pazienti LAL-T suggerisce che più meccanismi molecolari 

possano cooperare per regolare il movimento delle cellule leucemiche e determinarne la 

capacità di infitrare tessuti extra-midollari. L'alta espressione del CXCR4 potrebbe 

essere un fattore di predisposizione che tuttavia richiede l’interazione con altri 

mecanismi per consentire ai linfoblasti-T di entrare nel SNC. 
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Nel capitolo 4 ci siamo focalizzati sul significato biologico della diversa espressione del 

gene C-MYC in pazienti LAL-T in relazione alla varie aberrazioni genetiche che 

possono modulare l’espressione di questo oncogene. Tramite l’analisi dell’espressione 

genica abbiamo individuato una specifica signature  in grado di distinguere pazienti con 

over espressione e riarrangiamenti citogenetici del gene C-MYC.  

Abbiamo successivamente analizzato il profilo di espressione genica di pazienti  LAL-T 

con riarrangiamenti citogentici HNRNPH1-MLLT10 e DDX3X-MLLT10 per 

determinare se questo sottogruppo di pazienti presentava caratteristiche comuni ad altri 

pazienti con riarrangiamenti del gene MLLT10 all’interno della categoria HOXA.  

Attraverso questo studio abbiamo dimostrato i vantaggi legati all’analisi del profilo di 

espressione genica per l'identificazione di particolari signatures che vadano a 

distinguere dei sottogruppi all'interno di specifiche categorie di pazienti affetti da LAL-

T. Lo studio ha permesso inoltre, attraverso l’utilizzo in due diversi modelli animali, di 

identificare comuni specifici meccanismi molecolari legati all’infiltrazione delle cellule 

blastiche nel sistema nervoso centrale.  
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TLP  - Traumatic Lumbar Punction 

vs.   - Versus 

WBC  - White Blood Count 

Zf  - zebrafish 
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Acute Lymphoblastic Leukemia (ALL) is a clonal aggressive malignancy of the bone 

marrow, characterized by abnormal proliferation of lymphoid progenitor cells that 

arrested at premature stage of differentiation, disrupting the normal haematopoiesis and 

infiltrating extramedullary organs. ALL constitutes the most common pediatric cancer, 

representing 80% of all leukemia that occur in children and adolescents [1,2]. This 

malignancy represents a heterogeneous group, characterized by different morphological, 

immunologic and cytogenetic features [3-5]. The malignant clones can originate both 

from the B-cell (85% ALL) and the T-cell lineage (15% ALL) [6-8] and often carry 

specific genetic alterations, such as chromosomal translocation that create specific 

fusion genes, aberrant expression of proto-oncogenes, chromosomal deletion and hypo- 

or hyper-diploidy (figure1). &

!

!

Figure 1: Estimated frequency of genetic abnormalities in ALL. Violet areas refer to T-ALL      
abnormalities; other colours indicate B ALL abnormalities (from Pui et al., 2011 [8]). 

  

The presence of established genetic alterations in blasts cells allowed the identification 

of specific subtypes of disease related to different prognosis [9-12]. For this reason, 

nowadays, genetic aberrations are also used to stratify ALL patients into different risk-

groups, ranging from standard-risk to high-risk. In the last years, multi-agent 

combination chemotherapy and the introduction of a risk-directed treatment allowed 
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ALL patients to receive more appropriate treatment and that resulted in a cure rate of 

more than 85% (5-year event free survival, EFS) in children with ALL [8,13,14]. 

Although the overall EFS have increased significantly over the past decades there are 

still groups of  ALL patients  that experience treatment resistance and relapse [8] and  

remain of major concern [15]. One of these unfavourable events, that position ALL-

patients in  the high-risk strata, is the presence of blast cells in the Central Nervous 

System (CNS) [16].  

"1.&/12/'$3!$/,1&/1&"+/'4+,,4&!''&
The Central Nervous System (CNS) was recognized as possible site of infiltration by 

leukemic cells in the early decades of childhood ALL therapy [17,18]. The presence of 

CNS infiltration (CNS+) is an event that can be present both at diagnosis (<5%) and 

relapse (!30-40%) in ALL pediatric patients and constitutes one of the main challenge 

in the cure of ALL. The ability to enter in the CNS gives an immediate advantage to 

blast cells:  the CNS acts as a shelter for lymphoblasts preventing their exposure to 

chemotherapeutic compounds and serving as a reservoir for relapse [19,20]. The 

presence of blasts cells in the CNS can be related to pathological symptoms, such as 

symptoms of CNS haemorrhage (i.e. altered mental status, headache, neurological 

deficits, seizure) or spinal cord compression (paresthesias, weakness, back pain, bladder 

dysfunction), but most frequently patients experience asymptomatic CNS infiltration 

[16]. The current methodology for the diagnosis of CNS+ ALL is the cytopathological 

examination of a cytospin smear of cerebrospinal fluid (CSF) taken trough lumbar 

puncture. Nowadays, a patient is considered to have CNS infiltration (CNS+) at 

diagnosis with high risk of relapse, when more than 5 White Blood Cells (WBCs)/µL 

are detected in its CSF. In detail, there is a risk classification for CNS disease in ALL: 

CNS 1, identifies the absence of leukemic cells detectable in the CSF; CNS 2, denotes 

the presence of blast cells in a CSF sample with <5 WBCs/µL; CNS 3, refers to CSF 

samples with leukemic cells and >5 WBCs/µL [21]. A recent study stressed the 

importance to detect Minimal Residue Disease (MRD) in the CSF of CNS+ patients 

during treatment, to better recognise cases at high risk of leukemic relapses [22]. This 

study also proposed to use more sensitive techniques than cytopathological analysis of 
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the CSF, such as flow cytometry (FCM) or PCR-based methods [23,24]. In addition, 

several works showed that applying FCM or PCR methods in CSF analysis, many ALL 

patients at diagnosis resulted to have subclinical disease (CNS 2) in the CNS [23-27], 

an information very important as the presence of small numbers of leukocytes in the 

CSF at diagnosis (CNS 2) is still a controversial risk factor [21,28,29]. These 

considerations suggest that also patients that clinically are considered to be without 

CNS infiltration (CNS-) could partially experience this complication; we can easily 

understand the importance of  introducing more sensitive techniques in the diagnosis of 

CNS disease in ALL  to get deeper insight in the clinical significance of subclinical 

CNS infiltration in patients. 

Molecular mechanisms used by ALL-cells to infiltrate the CNS are not well understood.  

Moreover, also the access way to enter in this environment is unknown and is 

hypothesized to be diverse; blast cells could enter the cerebrospinal fluid (CSF) through 

the choroid plexus, use the brain capillaries to invade the parenchyma, infiltrate the 

leptomeninges through bony lesions of the skull or enter through hemorrhages due to 

natural and iatrogenic processes (i.e: lumbar puncture)[16,30]. To understand the access 

way and the molecular mechanisms used by blasts cells to infiltrate the CNS, the study 

of CNS+ patients is not so easy. In fact, patients’ material is few and it is currently not 

possible to study cells extracted from the CSF, as the sample often contains very few 

cells or no cells at all. Moreover, studying patients does not allow to analyze how CNS 

infiltration occurs at the anatomical level.  

Two studies tried to investigate the molecular mechanisms used by ALL cells to 

infiltrate the CNS in pediatric patients; Cario and colleagues compared the 

transcriptome of children with- and without- CNS infiltration in ALL, they found the 

up-regulation of interleukin-15 (IL-15) as a factor that predicted the ability of blasts to 

infiltrate the CNS [31]. Crazzolara and colleagues focused on the expression of CXCR4 

in ALL pediatric patients, showing that higher levels of this chemokine receptor could 

be predictive of blasts ability to infiltrate extramedullary organs [32]. However, the 

results of these studies still need to be reproduced in validation studies.  

Given the difficulties to study the phenomenon of CNS infiltration in patients, the 
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research of CNS leukemia has two important sources in 1) old histological studies 

performed on brains of CNS+ patients (post mortem) and 2) studies of animal models 

that mimic CNS+ ALL.  

Studies of pathological anatomy on the brain of pediatric patients with acute leukemia 

were performed in the 1970s, when the blasts ability to infiltrate the CNS was just 

discovered and 70% of patients presented intracranial leukemia at time of death. An old 

histological study of intracranial leukemic infiltrates  in the CNS of children with acute 

leukemia revealed the presence of different degrees of CNS infiltration that together 

could indicate the way used by blast-cells to infiltrate the CNS until reaching deeper 

sites: the parenchyma. Particularly, this study described  CNS infiltration as a 

progressive arachnoid disease, identifying 1) an initial infiltration of the walls of 

superficial arachnoid veins and surrounding adventitia, with consequent disruption of 

arachnoid trabeculae and contamination of the CSF when the number of cells increased; 

2) a following involvement of the deep arachnoid tissue in grey and white matter 

regions and 3) in association with perivascular arachnoid leukemia, pia-glial-membrane 

disruption and infiltration of parenchyma (figure 2). 

 

 

Figure 2. Diagram of leptomeninges (modified by Weed, Am. J. Anat., Vol 31). 

 

 In summary the study revealed how leukemia cells do not penetrate capillaries of CNS 

parenchyma, but infiltration of the neural tissue is a consequence of arahnoid leukemia 
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progression following disruption of the pia-glial-membrane [33]. In addition, another 

pathological study revealed how, in pediatric acute leukemia, there is a close relation 

between CNS disease (meningeal level) and the eye involvement at the level of both the 

optic nerve and retina [34]. Fortunately, the level of CNS infiltration that is found 

nowadays in  most ALL patients is very different from that described in  studies of the 

1970s; never the less these “old” study are very informative, giving an overview of how 

blast cells can potentially infiltrate the CNS environment if the disease had develop 

when left untreated.  

 

Another important source to study the phenomenon of the CNS infiltration is the use of 

animal models that can mimic CNS+ ALL disease. These models can be obtained 

through both the creation of transgenic models and xenotransplantations of human cells 

(from stable cell lines or directly from ALL patients) in immuno-suppressed animal 

recipients. In the previous decades, several murine models of ALL developing CNS 

infiltration have been created both for the B- and T- lineages; however, multiple 

incongruent results have been obtained from these studies. Buonamici and colleagues 

created a murine model xenografted with human T-ALL cell lines and found in the 

CCR7 expression a key signal for migration of T-lymphoblasts towards the CNS [35]. 

Holland and colleagues studied the presence of CNS infiltration in a mouse model, 

engrafted with human pre-B pediatric ALL cells, identifying an important role played 

by RAC2, AEP and ICAM1 in the process of CNS invasion [36]. Of note, in the latter 

murine model the CNS infiltration involved also the eye level, underlining the ability of 

this model to mimic infiltration found in patients [33]. Moreover, in another study 

performed in a pre-B ALL murine model, the down-regulation of CXCR4 was found in 

CNS-homing cells [37]. Summarizing, different results have been found in studies 

performed both on CNS+ ALL human patients and animal models and the mechanism/s 

used by ALL cell to infiltrate the CNS is/are still unknown.  

In the absence of a clear understanding of the phatogenesis of CNS disease, the design 

of target therapies remains beyond reach. ALL-patients that present CNS infiltration are 

stratified in a high-risk group and usually receive an intensive treatment consisting in a 

combination of intrathecal chemotherapy followed by cranial irradiation. The main 
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benefit of intrathecal therapy is the avoidance of the blood brain barrier. Nowadays, one 

of the main challenge in the cure of ALL is the reduction of treatment-related late 

negative effects that involve about two third of long-term survivors [38]. This challenge 

mainly concerns ALL pediatric patients that present CNS infiltration, as a lot of 

secondary negative complications are associated to cranial irradiation (i.e: cognitive 

deficits, endocrinopathy, second cancers) [38-42]. In the last decades, many efforts have 

attempted to avoid or reduce the use of prophylactic cranial irradiation [43,44] and two 

clinical trials [30,45] demonstrated that cranial irradiation could be completely omitted 

using intensive triple (methotrezate, hydrocortisone and cytarabine) intrathecal therapy 

[46]. The combination of these drugs is highly effective in the treatment of CNS 

infiltration in pediatric patients. However, as CNS relapse still remains an important 

cause of mortality occuring in 3-6% of ALL patients that relapse [16,47,48], cranial 

irradiation is still recommended for 2-20% of patients at very high risk of CNS relapse 

[16]. Several risk factors have been associated to an increased risk to develop CNS 

relapse in ALL pediatric patients; a) the presence of leukemic cells in the CSF both for 

natural or iatrogenic introduction after traumatic lumbar punctures [29,49,50], b) T-cell 

immunophenotype, especially if accompanied by high leukocyte counts [16,51-53] and 

c) genetic abnormalities, such as t(9;22), t(1;19) and MLL rearrangements [16,54]. 
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T-cell Acute Lymphoblastic Leukemia (T-ALLs) is an aggressive hematologic tumor 

arising from the malignant transformation of hematopoietic progenitors of the T-

lineage. T-ALL constitutes 10-15% of pediatric and 25% of adult ALL cases [55]. 

Clinically, T-ALL patients show an extended infiltration of the bone marrow by 

immature T cell lymphoblasts, often associated to high white cell counts, mediastinal 

masses with pleural effusion and increased risk of leptomeningeal infiltration at 

diagnosis [56]. T-ALL is a genetically heterogeneous disease resulting from a multistep 

oncogenic process in which several genetic alterations contribute to arrest the process of 

thymocyte differentiation at  different stages of T-cell maturation and at the same time 

promote proliferation and survival of T-lymphoblasts. Below follow the main genetic 

alterations that have been associated to the pathogenesis of T-ALL.  
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Constitutive activation of NOTCH1signaling  

The NOTCH signaling pathway plays a central role in T-ALL pathogenesis. NOTCH1, 

whose gene is localized on chromosome 9, is a transmembrane receptor involved in 

normal development of T-cell progenitors and thymocytes differentiation. Physiologic 

activation of NOTCH1 is due to the interaction with a DSL ligand that induces two 

proteolitic cleavages in the receptor. These proteolitic cleavages allow the release of the 

intracellular portion of NOTCH1 protein (ICN1) from the membrane to the cytoplasm 

[57]. Than, ICN1 translocates to the nucleus where it acts as transcription factor of 

specific target genes [58]. Aberrant NOTCH1 signaling in T-ALL was initially related 

to a rare chromosomal translocation [t(7;9)(q34;q34.3)] of NOTCH1 with T-cell 

receptor B (TCRB) described in 1% of T-ALL and resulting in a truncated form of 

constitutively active NOTCH1 [59]. The subsequent identification of NOTCH1 

activating mutations in nearly 60% of T-ALL patients [60] underlines the central role of 

NOTCH1 in oncogenic T-cell transformation. NOTCH1 mutations usually involve the 

heterodimerization domain (HD) or the C-terminal PEST domain [60]: mutations in the 

HD domain are present in !40% of T-ALLs and result in a ligand-independent 

activation of the receptor, while mutations in the PEST domain involve !15% of T-

ALLs and impair ICN1 proteasomal degradation with consequence ICN1 stabilization 

in the nucleus. In both cases, the final effect for these mutations is the constitutive 

activation of the NOTCH1 signaling pathway. Another event that contributes to 

NOTCH1 pathway activation in !15% of T-ALL patients is the presence of inactivating 

mutations in the FBXW7, a gene that encodes for a protein involved in NOTCH1 

degradation [61,62]. In the last years, several studies showed how NOTCH1 pathway 

activation in pediatric T-ALL was associated with improved early therapeutic response 

and increased sensitivity to glucocorticoids. However, different results were obtain in 

terms of clinical outcome; in fact, four studies showed an improved outcome in patient 

that present NOTCH1/FBXW7 mutations [63-66], whereas two other studies failed to 

find this association [67,68]. All together these studies show that the prognostic impact 

of NOTCH1 activation seems to be therapy-related. 

 

 



! ! $)!

Deletions of the CDKN2A locus 

More than 70% of T-ALL patients present deletions of the CDKN2A locus [69] 

(chromosomal band 9p21), which contains the p16INK4A and p14ARF tumor 

suppressor genes, which contributes to leukemia progress through loss of cell 

proliferation control [70,71]. The incidence of these deletions has not been investigated 

in large T-ALL cohorts and for the moment their prognostic significance remains 

unknown.   

 

Chromosome  rearrangements in T-ALL 

Among genomic alterations at diagnosis of childhood T-ALL, chromosomal 

translocations that place oncogenic transcription factors (TLX1, TLX3, TAL1, LMO1, 

LMO2, HOXA) under the control of TCR genes (TCRB or TCRA-TCRD) have an 

incidence of 40-50%. In addition, also other non-TCR gene mediated translocations 

could produce fusion products and several genes can be activated or inactivated by the 

presence of somatic copy number variations (amplifications and/or deletions) or specific 

point- or insertion/deletion mutations [72]. 

In the light of these observations, T-ALL is a heterogeneous disease that can present 

multiple genetic aberrations. However, several studied have identified some major 

subtypes that are useful to classify the T-ALL. Particularly, these subtypes are 

associated to specific chromosomal rearrangements, distinct gene expression signatures 

(TAL-like, TLX1/3-like and HOX-like) and different stage of arrest during T cell 

development [7,55,73-75].  

TAL1: Overexpression and aberrant activation of TAL1 is present in about 60% of T-

ALL cases as result of various chromosomal rearrangements [76]. In 20-30% of T-ALL, 

a small intracromosomal rearrangement placed TAL1 under the control of the promoter 

region of SIL, resulting in the SIL-TAL1 fusion product. Moreover, the translocations 

t(1;14)(p32;q11) or the variant t(1;7)(p32;q35) juxtaposes TAL1 under the control of 

TCRA/D enhancers, resulting in its ectopic expression in about 3% of TALL. Late-

cortical T-ALL thymocytes (CD4+, CD8+, CD3+) have been shown to carry the 

activation of the TAL1 transcription factor and this  has been associated to a more 

favourable outcome [70,77-79].  

LMO: Translocations involving the LMO1 [t(11;14)(p15;q11)] and LMO2 
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[t(11;14)(p13;q21)] genes occur only in 9% of pediatric T-ALL cases. However, about 

45% of T-ALL present an aberrant expression of LMO2, suggesting other still unknown 

mechanisms of activation, In most cases, the activation of LMO1 and LMO2 has been  

associated to over-expression of TAL1 [55]. 

TLX1: The aberrant expression of TLX1 is due to a translocation [t(10;14)(q24;q11)] 

that positions TLX1 under  the control of the TCRA/D enhancer [80-82], occurs in 5-

10% of pediatric T-ALL and is usually associated with good prognosis and low risk of 

relapse [55,83]. 

TLX3: The overexpression of TLX3 is present in 20-25% of pediatric ALL and result 

from the t(5;14)(q35;q32) translocation [84]. Both the expression of TLX1 and TLX3, 

have been associated with early- cortical T-ALL [55]. In some studies the aberrant 

expression of TLX3 has been associated to poor prognosis and high incidence of relapse 

[70,79]. 

HOXA: about 3% of T-ALL patients carry translocations of the HOXA cluster of HOX 

genes in TCRB and TCRG loci, with aberrant expression of the HOXA10 and HOXA9 

genes [85]. In addition, over-expression of HOXA genes also characterized T-ALL 

patients that carry other chromosomal translocation generating other chimeric 

transcription factors [86,87]. These translocations include: the PICALM-MLLT10 fusion 

oncogene [t(10;11)(p12;p14)] involving about 5-10% of  T-ALL patients which has 

been  associated with an adverse prognosis [85,88]; the MLL rearrangements (MLL-AF4 

and MLL-ELN) in 5% of  T-ALL, whose prognostic significance remains to be defined  

[89] and the rare deletion del(9)(q34.11q34.13), resulting in the SET-NUP214 fusion 

product [90]. 

 

Next to these rearrangements that characterize the main subgroups, there are also 

translocations involving proto-oncogenes, such as c-MYB and c-MYC. The 

t(6;7)(q23;q34) results in the activation of the c-MYB oncogene through a 

rearrangement with TCRB: this MYB translocation has been  identified in very young 

children (<2 years old) and has been shown to be  characterized by a peculiar gene 

expression profile [91]. Also c-MYC can be activated by translocations with the TCR 

[t(8;14)(q24;q11)] in 1% of T-ALL [92], but usually c-MYC activation is the result of 

different factors. 
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Deregulation of C-MYC expression 

MYC is an important transcription factor controlling several cell functions, such as 

energy metabolism, proliferation and survival [93] and it is also a potent oncogene, 

whose deregulation is present in about 70% of cancers [94-96]. In addition, MYC is a 

complex factor with a dual functional role: while it promotes cell growth and cell cycle 

progression, it can also promote apoptosis through the P53/ARF and BIM pathways. So 

in physiological conditions, the extra cell divisions caused by MYC overexpression is 

balanced by an increased cell-death [97,98].  

In T-ALL, C-MYC plays a critical role in determining tumor growth and maintenance 

and its deregulation at transcriptional level is frequently associated to NOTCH1
m , as C-

MYC is a direct target gene of NOTCH1 [99-101]. Notably, most of the genes 

controlled by NOTCH1 that regulate cell growth, proliferation and metabolism are also 

target of MYC [99,102,103]. This NOTCH1-MYC transcriptional regulatory loop 

position the control of  anabolic cell growth  pathways as an  important mechanism in 

mediating T-Cell malignant transformation by NOTCH1. In addition to NOTCH1
m, 

there are several other physiologic pathways that regulate MYC at transcriptional and 

posttranscriptional levels [236], so alternative routes can induce MYC activation 

independently from NOTCH1
m. One of these alternative mechanisms are FBXW7

 

mutations (FBXW7
m
) that can occur both in  the presence (!20%) or absence (!5%) of 

NOTCH1
m. By preventing degradation of several proteins (among them NOTCH1 and 

MYC), FBXW7
m can contemporary induce NOTCH1-dependent MYC transcriptional 

activation and MYC stabilization at the protein level [61,62,104]. Moreover, C-MYC 

expression can  also be modulated  by LEF1 inactivation (!11%) [105] and C-MYC 

rearrangements with TCR or unknown partner genes, even if these genetic alterations 

are rare in T-ALL (!5%) [106]. In addition, another major cause of MYC activation in 

T-ALL is the downregulation of PTEN (consequent to PTEN deletion or mutations), an 

event that causes the release of AKT-induced inhibition of GSK-3", preventing MYC 

phosphorilation and degradation [107] (figure 3). A recent study in a murine model 

showed that activation of Wnt/"-catenin pathway can induce the development of a 

Notch1-independent T-ALL, characterized by high expression of Myc due to Myc 
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rearrangements and loss of Pten activity [108]. Interestingly, several different networks 

converge to induce the up-regulation of MYC, suggesting a critical role of this 

oncogene in T-ALL leukemogenesis [100,107,109,110].  

 

 

Figure 3. MYC transcription and postranscription modulation. Schematic representation of 
a  few regulators/effectors that modulate MYC expression. (modified from [107]). 
 

The oncogenic potential of MYC in leukemic initiation was demonstrated in many 

animals models [111-115], however, several other studies demonstrated that the 

overexpression of MYC by itself is not sufficient to cause T-ALL and additional events 

are required to initiate leukemogenesis [116-118].  

 

Alterations in signal transduction pathway 

In addition to chromosomal rearrangements previously described, genetic aberration can 

interest also genes that have important functions in controlling and regulating pathways 

related to T-cell proliferation that are frequently deregulated in T-ALL.  

Genetic alterations that involve the tumor suppressor PTEN cause the aberrant 

activation of the PI3K-AKT pathway, as PTEN is a critical negative regulator of this 

pathway [119]. Deletion of PTEN is present in 5-10% of T-ALL, but !17% of T-ALL 

lack PTEN protein expression [120].  

About 5-10% of T-ALL carry RAS-activating mutations that result in accumulation of 

Ras in its active conformation [121-123]. In addition, about 3% of T-ALL present 
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mutations or deletions of a negative regulator of the Ras pathway: the NF1 gene [124]. 

Moreover, several studies have described mutations of the oncogene IL7R in 10% of T-

ALL (gain-of-function exon 6 mutations) [125] and recently it has been demonstrated 

that mutations of this oncogene promote tumor formation through constitutive 

activation of the JAK-STAT signaling pathway [126].  

 

In conclusion, T-ALLs constitute a complex and heterogeneous group of disease, 

resulting from numerous combinations of multigenic aberrations and oncogenic 

cooperation [87] that have been extensively characterized. However, the association 

between genetic alterations and  prognostic impact is often not clear. Moreover, 

although current therapies achieve five years-relapsed-free survival rates for about 75% 

in children, still 30% of patients relapse [127,128]. The high number of relapses stresses 

the importance of gaining deeper insights into molecular mechanisms that control 

malignant transformation and drug resistance, to  eventually develop effective targeted 

therapies. However, one of the main obstacle to achieve this aim lies in T-ALL 

heterogeneity: in fact, in each patient multiple genetic alterations can occur and 

cooperate, determining the activation of particular oncogenic processes that determine a 

specific prognostic significance.  

6%1%&%7*3%../,1&*3,2/'/16&
Microarray technology is a powerful technique that allows the simultaneous analyses of 

the expression of ten of thousands of genes in a sample of interest. In the field of 

leukemia diagnosis and research, microarray gene expression analysis consents to study 

the “whole transcriptome” of cancer cells and help the discovery of genes or gene 

networks that can be related to disease processes. This technology can have multiple 

applications, not only in basic research to investigate molecular mechanisms that 

contribute to disease development, but also to find prognostic marker that can be used in 

the clinic through  the building of a 'prognostic' classifier for patients.  

  

Microarrays technology 

In this project we used the GeneChip Human Genome U133 Plus 2.0 Array and the 

Zebrafish Genome Array (Affymetrix, Santa Clara, CA). This type of microarray 
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platforms can evaluate the expression of coding sequences of genes by assessment of 

the amount of RNA transcription (gene expression profiling, GEP). GeneChips consist 

of a small surface of silicon wafer containing immobilized short (25-30 mer) 

oligonucleotides probes synthesized in situ by photolithographic techniques. The pool 

of transcripts of a sample of interest is labeled with a fluorescent dye and hybridized to 

the microarray. The fluorescent signal bound to the probe is an indicator of the 

expression levels of the corresponding transcript. The use of short oligonucleotides 

probes minimizes the risk of cross-hybridization, consenting high levels of specificity of 

the signal [129,130]. To accurately measure the expression level of a particular 

transcript, a probe set containing 11 probe pairs, is used.  All probe sets are redundant 

and distributed all over the GeneChip.  

Several types of arrays are commercialy available  that are specific for different species 

(Human, Mouse, Zebrafish etc). For human samples, each array contains more than 

54.000 probe sets, which cover more than 47.000 transcripts and variants representing 

approximately 38.500 human genes. Currently, commercial arrays have reached whole 

transcriptome coverage. Often results of mircoarray results are validated using other 

techniqus  such as qRT-PCR.  

 

Several controls are assessed in order to validate the quality of each GeneChip:  

Scale factor: This factor is the mean value of all numbers that are applied by the 

Command Expression Console Software to each signal present on the array to adjust 

them to a target value (default = 100). The Scale Factor is used to assess the 

comparability between GeneChips. We used a maximum of 3-fold difference between 

the highest and lowest Scale Factor.  

Background and Noise: The background represents non-specific binding and auto-

fluorescence of the surface of the array. The noise factor is related to the background 

and represents the variation within the background signal. For the comparison of 

GeneChips with each other, these values should be really similar for each array. The 

mean 10x standard deviation is used. 

Present calls: This control represents the percentage of present probe sets (hybridized 

transcripts) in a GeneChip. Within an experiment we expect that the percentage of 
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present calls remain equal across different GeneChips. The percentage of present calls 

in human tissue should always be higher than 30%. 

Internal probe calls: Oligo B2 spiked controls: bioB, bioC, bioD and CRE were added 

to the hybridization. We used this control to judge the hybridization procedure, meaning 

that the probe sets targeting these Oligo B2 transcripts always should be present.  

Poly-A controls: This control represent RNA from 4 different genes derived from B. 

subtilis (LYS, PHE, THR and DAP) that are not transcribed in human beings. This 

control was used to judge if there was no bias during transcription. We expected that 

both human genes and the Poly-A control were retro transcribed in the same ratio. The 

RNA of the 4 genes had different concentration, whereby DAP represents the highest 

concentration and LYS the lowest.  

Ratio GAPDH/!-actin 3’/5’: These housekeeping genes were used to assess the extent 

to which the samples were degraded. Therefore the ratio of the probe sets for the 3’ and 

5’ site were analyzed. When the reverse transcriptase synthesis went well, a ratio of 1 

was expected since only then the reverse transcriptase enzyme fully synthesized 

complete cDNA. We used a ratio of maximal 3 as acceptable.  

 

Data analysis 

The output of a microarray experiments consist of a large amount of data corresponding 

to the  expression levels of thousands of genes. Data analysis requires sophisticated 

computational methods. Before analysis data need to be normalized to allow 

comparison between microarrays  to  control possible variation among experiments. For 

normalization, we used the robust multi-array average (RMA) approach, a method that 

uses a transformation to correct arrays for background, normalizes them using a formula 

based on a normal distribution and uses a linear model to estimate expression values on 

a log scale.  

Classification algorithms are used to discover new categories within a data set (class 

discovery: unsupervised classification) or to assign objects to a priori defined categories 

(class prediction; supervised classification). Specifically for analysis of gene expression, 

unsupervised classification (Class Discovery) is a learning algorithm that clusters 
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unspecified data based on a similar gene expression pattern; supervised analysis (Class 

Comparison, Class Prediction) is a learning algorithm that uses already defined 

(labeled) data in order to identify a set of genes that characterize the pre-specified data. 

The list of differentially expressed genes that constitute a  gene expression signature is 

accompanied by a false discovery rate (FDR) [131] or a P-value corrected for multiple 

testing to give a measure of significance for the results. Hierarchical cluster analysis is 

the most common unsupervised classification algorithm used in microarray analysis and 

allows to graphically represent results of unsupervised or supervised analysis in a tree 

diagram (dendogram) [132]. 

Supervised classification is also used to construct predictive algorithms. Predictive 

algorithms are developed on a “training” data set, where the categories to which objects 

belongs are known and evaluated on an independent “test” data set, in which objects are 

assigned to previously defined categories. To keep in mind, the gene lists obtained from 

hypothesis testing do not necessarily provide the best prediction. Different methods can 

be used to construct predictor algorithms (i.e:  a SVM_support vector machine; 

PAM_predictive analysis of microarrays; kTSP_k-top scoring pairs). 

  

Power of Gene Expression classification in leukemia  

A decade ago, gene expression profiling (GEP) was successfully introduces in 

haematological research. Golub and colleagues were the first pioneers that showed the 

power to use a class discovery method to distincguish AML and ALL as well as B- and 

T-ALL [133]. From this first work, a new word started to rise and nowadays, gene 

expression profiling is widely used in science. Yeoh et al. showed that distinct 

expression profiling could identify all leukemia subtypes that were  important at that 

time for clinical classification (T-ALL, E2A-PBX1, BCR-ABL, TEL-AML1, MLL 

rearrangements, hyperdiploid >50 chromosomes) and could be used for risk-

stratification of pediatric ALL patients  [9]. Nowadays, microarray technology is a 

powerful approach to improve diagnosis in haematological malignancies [134,135], and 

to discover new therapeutic targets [136] for the development of new therapies. Several 

studies confirmed that leukemia subtypes are characterized by specific gene expression 

patterns (class prediction) [9,133,137,138], while others were able to identify new 

categories (class discovery) [55,139,140,141].  
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In ALL, microarray technology was able to discriminate patients, according to the B-

and T-lineage, different stage of maturation or carrying specific genomic 

rearrangements. These studies showed the potential of GEP to facilitate the 

identification of specific leukemia subtypes.  

The international Microarray Innovations in Leukemia (MILE) Study Group has been 

the largest gene expression profiling study in haematology. MILE was a collaborative 

project, designed to assess the clinical accuracy of gene expression profiles for 16 acute 

and chronic leukemia subclasses, myelodysplastic syndromes (MDSs) and the control 

group (non-malignant disorders and normal bone marrow). In stage I of the MILE 

study, gene expression profiling of 2,143 patients (with leukemia and myelodysplastic 

syndromes) were generated with the aim to identify class signatures. In stage II, the 

gene expression profiling-based diagnostic accuracy was validated in an independent 

cohort of 1,191 patient samples, revealing a robust performance of this method to 

classify patients. This study demonstrated for the first time, the possibility to integrate 

the microarray technology in routine diagnostic procedures. 

The following studies were able to identified new categories (class discovery) that allow 

the prediction of patients categories related to prognosis [55,142-144]. Both in B- and 

T- lineage ALL, gene expression based classifiers have been created for the prediction 

of prognosis, revealing the clinical heterogeneity that characterized distinct genetic 

leukemia subgroups. 

Concerning  T-ALL, Ferrando and colleagues revealed that distinct gene expression 

signatures were strongly associated to aberrant expression of main oncogenic 

transcription factors and this division seemed to reflect a specific stage of T cell 

developmental arrest. However, these specific signatures clustered also patients lacking 

the activation of known oncogenes, revealing that other unknown transcription factors 

could raise similar patterns of gene expression. In addition, in this work each group 

revealed by hierarchical clustering was associated with response to treatment and 

prognostic significance [55]. A following study identified the “early T-cell precursor” 

ALL cases showing the increased genomic instability and poor outcome for this 

subgroup that maintained stem cell-like features [86]. Moreover, a new subgroup of 

patients with CASP8AP2 deletion and poor early treatment response in T-ALL was 

identified [145]. 
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Nowadays, numerous efforts are made to successfully integrate microarray technology 

with haematological diagnostic procedures. A recent study used combined interphase 

fluorescence in situ hybridization (CI-FISH), single nucleotide polymorphism (SNP), 

and gene expression profiles (GEP) in T-ALL children stratified according to minimal 

residual disease (MRD) risk categories (AIEOP-BFM ALL2000). This approach 

provided an accurate, genomic diagnosis and a complementary GEP-based 

classification of T-ALL in children, showing a successful diagnosis in over 90% of 

cases and improving patients risk stratification [146]. 

!1/)!'&),4%'.&
Model organisms have been shown to be very useful for studies of human diseases and 

biological processes during development and differentiation. The high degree of 

evolutionary conservation  of  genome and basic cellular processes among both 

vertebrate and invertebrate organisms, allow using animals as models to study many 

human diseases. Of these, vertebrate models have been widely used to gain insight in 

understanding human leukemia. 

Zebrafish model 

In the last decades,  D.rerio (zebrafish) emerged as a useful model to study human 

diseases, owing to  its numerous advantageous features: zebrafish (zf) can develop 

spontaneous tumors [147-149], most oncogenes and tumor suppressors are conserved 

between zf and human [150,151] and it can be easily genetically manipulated. In 

comparison with the murine model, the high fecundity (hundreds of fertilized eggs per 

couple) and the low maintenance cost of zebrafish allow to use this model to perform 

also large-scale forward genetic screens and pharmacological tests in a high-throughput 

manner. Zebrafish embryos develop externally facilitating observations and 

manipulation at different stages during development. Moreover, zf embryos and larvae 

are transparent, a characteristic that makes them an excellent model for real-time 

monitoring of internal organ development as well as for transplantation. In addition, the 

introduction of a stable transparent transgenic line allows real-time monitoring also in 

adult organisms [152]. Multiple approaches can be used in zebrafish to induce 
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leukemia, such as the creation of transgenic models, (xeno)transplantations, chemical or 

insertional mutagenesis.  

One of the main strategies to induce cancer in zf is through the creation of transgenic 

animals that express activated oncogenes (usually mammalian oncogenes) in a tissue-

specific manner,  thus mimicking the human disease. The first transgenic model 

developed in zebrafish was a T-cell leukemia: the rag2 promoter was used to drive 

mouse Myc overexpression in zf lymphoid cells [111]. To visualize cells carrying the 

oncogene, a chimeric EGFP-mMyc trangene was created. Wild-type fish embryos were 

microinjected with the vector with the transgene and 50% of F0 fish developed T-cell 

leukemia. Tumor cells initially grow in the thymus and than disseminate to other 

organs. Moreover these tumor cells could engraft irradiated wild-type adult zebrafish. 

Following studies aimed to improved this model which resulted in the establishment of 

a stable mMyc transgenic line [153] and a conditional line under heat shock control 

[154]. Numerous transgenic models have been developed using the same approach: a 

transgenic line over-expressing bcl2 fused to EGFP under the rag2 promoter was 

developed to block apoptosis in T-ALL cells [155]; a pre-B ALL model was generated 

by induced over-expression of the TEL-AML1 fusion gene [156] and another T-ALL 

model was established by over-expression of human NOTCH1 under the rag2 promoter 

[157]. Recently, another T-ALL transgenic model was created by over-expression of 

human MYC under the rag2 promoter [112] and also two lines for the study of Acute 

Myeloid Leukemia (AML) have been established [158,159].  Moreover, several 

transgenic zf models have been created for the study of  solid tumors, such as melanoma 

[160] and rhabdomyosarcoma [161].  

Transplantation of tumor cells from a donor- to recipient-animal provides information 

about the malignancy of the tumor and this assay has been used to test the ability of zf 

leukemic cells to propagate in a host [111]. This approach is very useful to study 

migration, homing, survival, and proliferation of tumor cells post-transplantation. In this 

context, xenotransplantation provides the opportunity to study human tumor cells in 

vivo. Zebrafish was largely used for transplantation and xenotransplantation of different 

human cells. As already underlined, the transparency of both embryos/larval fishes and 

the stable casper line are a great advantage, because they allow real-time observation of 
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injected cells. Of note, in transplants to zebrafish embryos immunosupression has not 

been used, as immature T- and B- cells are not present until 3-4 day post fertilization 

[162]. In addition, the zebrafish immune system starts to be functional at 28 days [163]. 

Instead, irradiation is often used to suppress the immune system of adult fish to prevent 

rejection of transplanted cells. Several studies have already demonstrated how almost 

all zebrafish models of leukemia created until now present leukemic cells that can 

engraft and perpetuate the tumor in zf recipients [111,156,157,164]. Concerning 

xenografting, the ability of mammalian cancer cells to successfully engraft in the 

zebrafish was established for solid tumors [165,166]. Moreover in  a recent paper it has 

been shown that Jurkat cells could be successfully transplanted in the yolk/blood 

circulation of zebrafish embryos [167], showing that zebrafish embryos can be 

successfully used to perform xenotransplantion of hALL cell lines.  

Tumor initiation and progression usually require genetic mutations and/or chromosomal 

translocations, resulting in the activation of oncogenes or inactivation of tumor 

suppressors. Genomic instability is considered a risk factor for tumor initiation and 

increasing cancer susceptibility. Forward genetic screens performed in zebrafish are 

useful to study the phenomenon of genomic instability and cancer susceptibility. This 

type of study uses chemical or insertional mutagenesis of zebrafish. Chemical 

mutagenesis is used to mutagenize the genome; wild-type male zebrafish are treated 

with a chemical mutagen (ethylnitrosourea, ENU) that causes genomic mutations in the 

premeiotic germ cells. ENU-treated males are then coupled to wild-type females to 

produce a F1 offspring carrying the genomic mutations. At this point eggs can be 

collected by squeezing of a F1 female and fertilization with UV-inactivated sperm to 

produce haploid F2 embryos in which ENU induced mutations can be found (figure 4). 

ENU usually causes point mutations that could result in altered protein sequence, 

truncated proteins, impaired splicing of mRNA precursors or mRNA degradation.  

Instead, insertional mutagenesis requires the use of a retrovirus as insertional mutagen. 

The efficiency of the latter method is lower compared to chemical mutagenesis, 

however, the  important advantage the rapid detection of the gene effected by the 

insertion using the retroviral sequence as a “tag”.  
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These screening approaches aim to discover new mechanisms that can be involved in 

cancer biology. Using these approaches, two studies identified new interesting genes 

implicate in cancer development; in fact, the presence of heterozygosis mutations in b-

myb, a transcriptional regulator [168] and separase, a mitotic regulator [169] have been 

shown to be related to increased cancer susceptibility in adult fish. Moreover, with the 

use of chemical mutagenesis, a study identified multiple lines with heritable 

predisposition to T cell malignancy, recapitulating human T cell neoplasia and showing 

heritable transmission [164]. 

Another advantage of the zebrafish model is the possibility to perform high-throughput 

chemical screening. In these screens, thousands of embryos are arrayed in multi-well-

plates and are treated with chemicals during certain stage of development. Embryos are 

allowed to grow and scored for desired phenotype. At the same time also the toxicity of 

the compound is monitored.  Of note, this approach allows also small drug discoveries 

without knowing the specific molecular targets [170-172]. 

 
Murine model 

The mouse has been shown to have numerous advantages as organismal model to study 

human diseases; in fact, it shares physiological, anatomical and genomic similarities 



! ! %,!

with humans and it is relatively easy to genetically manipulate. Targeting specific genes 

by homologous recombination in mouse embryonic stem (ES) cells allows the creation 

of  transgenic murine models theoretically capable of mimicking the human disease 

driven by the introduced gene. Moreover, transgenic technology allows the creation of 

models that over-expresses oncogenes in a tissue-specific manner and/or with a 

temporal control. Despite these numerous advantages, the prohibitive  maintenance cost 

of mouse colonies forms a limitation for experiments such as large-scale genetic 

screens.  

The main techniques used to induce leukemia in the murine model are: 1) the creation 

of a transgenic line; 2) the use of retroviral transduction/transplantation; 3) 

transplantations. Nowadays, mostly transgenic mouse models are generated using a 

“knock-in” approach [173], in which a chromosomal translocation is generated de novo 

in a conditional manner. An example is the use of  the Cre-lox system to produce tissue-

specific and/or inducible transgene expression. The Cre recombinase recognizes and 

catalyzes DNA recombination between recognition sequences referred to as loxP sites 

[174,175]. Any DNA sequence flanked by loxP sites will be excised by recombination 

if Cre is present in the cell. This approach requires independent lines of transgenic 

animals: the first transgene must contain the gene of interest flanked by loxP sites, 

while the second transgene contains the coding sequences for the Cre recombinase 

protein placed under the control of tissue-specific regulatory elements. Crossing of 

transgenic animals will result in an animal model  each offspring harbouring the 

transgene and activation of the gene of interest only in those cells that express the Cre 

recombinase (tissue-specific). 

An alternative approach to created murine model of leukemia is the use of bone marrow 

(BM) transduction/transplantation (BMT). In this case, BM progenitors are isolated, 

transduced ex vivo with a retrovirus carrying the oncogene of choice. After 

characterization of effects on proliferation, differentiation and self-renewal, the BM 

progenitors can be transplanted into syngeneic recipient mice to observe the 

leukemogenic potential in vivo [76].  

Transplantations and Xenotransplantation models (from human to mouse) are very 

important not only for assaying tumor cell malignancy, but also to testing in vivo 

pharmacological inhibitors. The first experiments of human hematopoietic cells 
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xenotransplantation in irradiated, athymic nude (nu/nu) mice were not successful, as the 

immune system was not completely silenced (mice still had B cells producing 

antibodies, complement and natural killer (NK) cells). The introduction of two new 

murine models changed the world of xenotransplantations; the bg/nu/xid (BNX) was a 

mouse with three recessive mutations (beige/nude/X-linged immunodeficiency) to 

generate a more immuno-deficient model, while the SCID mice carried homozygous 

scid mutations. This mutation resulted in unsuccessful DNA rearrangement that 

impaired the rearrangement of immunoglobulin and T-cell receptor genes, resulting in 

T- and B- cells deficiency. The residual immunity in SCID mouse was due to the NK 

cells, complements and myeloid cells. The SCID model was improved by the 

development of non-obese diabetic (NOD)/SCID mice [177]: this mouse had less 

residual immunity since NOD mice had defects in the complement pathway and 

macrophage function. Xenotransplants in (NOD)/SCID mice presented high levels of 

human cells engraftment [178] and this murine model was largely used for studies of 

human malignancies in vivo. Moreover, the injected primary human ALL and AML 

cells were able to engraft the host organism maintaining the characteristics of the 

original  leukemia [179,180]. Several studies used the (NOD)/SCID xenografted model 

and interesting results have been found regarding the biology of leukemia. Particularly, 

a correlation between xeno-engraftment potential and leukemia aggressiveness in 

humans has been reported [181,182] and the kinetics of human cells engraftment in the 

mouse has been shown to  reflect the human disease (migration of leukemic cells from 

the BM to the spleen, PB an other organs) [179,182].  

A further recent improvement was obtained with the introduction of the NSG murine 

model, in which a deletion in the #-common chain in NOD/SCID mice resulted in the 

elimination of the residual NK cell activity, improving the environment for human cells 

engraftment [184]. Using this new murine model, Soulier and colleagues showed how 

xenograft leukemias appear to arise from minor aggressive subclones of T-ALL patients 

at diagnosis which after transplantation often resemble human leukemias at relapse 

[185]. 

Although the use of  zebrafish or murine models is very useful to gain insight in the 

research of leukemic disease, we have to keep in mind that these animal models mimic 

a leukemia that resembles but cannot perfectly reproduce the human disease and that is 
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due to the insuperable differences between animal and human BM microenvironments. 

Thus, studies on animal models can help to identify important conserved events of 

leukemogenesis or target genes that can be useful for developing therapy, but results 

need to be contextualized in human patients. 

"7"38&/1&'%#0%)/!&
CXCR4 was described for the first time in 1994 as a seven-transmembrane domain 

receptor expressed on the surface of white blood cells [186]. Further studies revealed 

that CXCR4 was highly expressed on the surface of lymphocytes, neutrophils, 

monocyte and Hematopoietic Stem Cells (HSCs). CXCR4 belongs to the G-protein 

coupled chemokine receptor superfamily and selectively binds the CXC chemokine 

Stromal Cell-Derived Factor 1 (SDF-1) also know as CXCL12 [187,188]. CXCL12 is 

produced by stromal cells in the bone marrow (BM), lymph nodes, spleen, vessels and 

brain [189]. The interaction between CXCR4 and CXCL12 has been shown to be 

essential for development, organogenesis, vascularization and normal hematopoiesis 

[190-195]. Particularly, CXCR4-deficient mice show a marked decrease in B 

lymphopoiesis, myelopoiesis, bone marrow colonization and die during the perinatal 

period [192], while CXCL12-deficient mice have defects in myelopoiesis [190]. T-

lineage lymphopoiesis is not affected in mutant embryos, indicating that thymocyte 

maturation does not depend on  the CXCL12/CXCR4 axis. The interaction between 

CXCR4 and CXCL12 is known to regulate the retention and migration of CD34+ HSCs 

within niches in the bone marrow [195-197], the egress of immature B and T 

lymphocytes from the BM into the Peripheral Blood (PB) and lymphoid tissues [198] 

and direct naïve leukocyte trafficking [199]. In fact, CXCL12 is a chemokine that 

induces the migration of monocytes, neuthophils, pro- and pre-B lymphocytes and T-

lymphocytes [200-202]. Interesting, when B-cells develop into mature cells, they 

progressively lose the ability to respond to the CXCL12, even if CXCR4 continues to 

be expressed at high levels on the surface membrane [203-204]. On the contrary, T- 

lymphocytes do not lose the responsiveness to CXCL12, and also in this case CXCR4 is 

expressed in higher percentages on the surface of immature- compared to mature T 

lymphocytes [205].  

CXCR4 transcription is mainly regulated by two transcription factors; Nuclear 
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Respiratory Factor-1 (NRF-1) positively regulates CXCR4 transcription [206,207], 

while Yin-Yang 1 (YY1) is a negative transcription factor for CXCR4 [208]. 

Interestingly, several studies have shown an increase in YY1 activity in the presence of 

decreased expression levels of  MYC, a natural suppressor of YY1 [209]. 

However, multiple external factors can influence the expression of CXCR4 on  the 

surface membrane. Cytokines, including TGF-1!, IL-2, IL-4, IL-6, IL-7, IL-10 and IL-

15, and growth factors, such as EGF, VEGF, basic FGF and stem cell factor, and 

hypoxia (via hypoxia-inducible factor 1-") all induce up-regulation of CXCR4 

[210,211]. While contact with CXCL12, phorbol esters, pertussis toxin and 

inflammatory cytokines, including TNF-" and IFN-#, cause down-regulation of surface 

CXCR4 [210-212].  

The binding of CXCL12 to CXCR4 determines the activation of the chemokine 

receptor. This activation results in phosphorylation and internalization of CXCR4 via 

clathrin-coated pits. After internalization, CXCR4 can either be ubiquitinated and 

degradated in the lysosome [213], or recycled back to the cell surface [210,214]. 

Leukocytes have been shown to have large amounts of intracellular CXCR4 in store for 

prompt responses [214]. Upon activation of CXCR4, there is an increase of intracellular 

calcium levels [216] and diverse G-protein dependent and independent signalling 

pathway are activated leading to multiple biological responses [211,215], such as 

migration, adhesion and transcriptional activation (figure 5).! ./0! 1#02344! 205647! 18!
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Figure 5. General Signal Transduction Pathways and Regulation of CXCR4 [211] 

 

Concerning leukemia, CXCR4 is expressed both in lymphoid and myeloid leukemia. At  

the molecular level, CXCR4 activation promotes leukemia progression. In fact, the 

binding of CXCL12 to the receptor promotes activation of the PI3K/AKT and MAPK 

pathways, which mediate the survival and proliferation of leukemia cells [221]. 

Moreover, the activation of NF-$B pathway is also induced as well as the production of 

matrix metalloproteinases, IL-8 and VEGF, that can help to disrupt the extracellular 

matrix [221,222]. Several studies have suggested that increased CXCR4 expression may 

be associated to poor prognosis in various types of leukemia [223,224], as leukemia 
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cells can migrate into bone marrow niches that confer resistance to chemotherapy. A 

potential therapeutic strategy to overcome this phenomenon could be the use of specific 

inhibitors for CXCR4. Inhibition of CXCR4 may allow leukemia cells to be released 

from the protective niches of the bone marrow. In acute leukemias, CXCR4 levels are 

highest in acute promyelocytic leukemia (French–American–British [FAB] subtype 

M3), myelomonocytic AML (FAB subtypes M4 and M5) and B-lineage ALL [225], 

even if B-cells lose receptor functionality during the maturation process. Several studies 

have suggested that increased levels of CXCR4 expression have a prognostic 

significance in childhood ALL [32], adult AML [226-229] and B-cell CLL [230]. In 

vitro experiments using specific CXCR4 inhibitors (T140, TC140012, T134 and 

AMD3100) on pre-B cell ALL cells resulted in inhibition of CXCL12-induced 

chemotaxis and migration into bone marrow [231]. Moreover, a study on a mouse 

model of pediatric pre-B ALL suggested that the use of CXCR4 inhibitors could 

mobilize leukemic cells into the peripheral blood, impairing metastasis [232]. 

Moreover, CXCR4 inhibition may also be useful in the treatment of high-risk ALL, 

infant MLL-rearranged [233] or ALL carrying the fusion protein BCR–ABL [234]. 

Of note, the importance and the role played by the CXCR4/CXCL12 axis in relation to 

extramedullary leukemia (testicles, CNS, spleen, liver, ovaries) is less understood. The 

first work that investigated this phenomenon indicated that the CXCR4 expression 

could be predictive of extramedullary disease [32]. However, CNS-homing cells 

presented CXCR4 down-regulation in a mouse model of CNS pre-B ALL [37]. In 

addition, another study showed that in children with ALL relapses associated to testicles 

or CNS leukemia blast cells had a significantly lower CXCR4 levels than blasts from 

children with relapsed disease isolated to the bone marrow [235], suggesting that blasts 

were not tightly retained in the bone marrow and allowed to metastasize to the testicles 

and the CNS. Further studies are necessary to clarify the importance of the 

CXCR4/CXCL12 axis in determining extramedullary infiltration by blast cells.  
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Central nervous system (CNS) leukemia at diagnosis and CNS relapse continues to pose 

a significant challenge in the research of an efficient cure for children with Acute 

Lymphoblastic Leukemia (ALL). The prognosis of patients with isolated and mixed 

CNS relapse is particularly poor and treatments used for the cure are very invasive 

(intratechal chemotherapy and cranial irradiation). As CNS irradiation causes a lot of 

secondary negative effects (second cancers, neurocognitive deficits, endocrinphathy), 

efforts are made to improve haematological control and to reduce or avoid the use of 

cranial irradiation using alternative intrathecal treatment. However, CNS irradiation is 

still necessary for patients at high risk of relapse within the CNS, especially for those 

with leukemic involvement of CNS at diagnosis.  

Because little is know about how leukemic cells can invade the CNS, our studies aims to 

deepen the knowledge of molecular mechanisms that regulate this event. We used a 

gene expression profiling approach to gain in this aim. Moreover, our efforts addressed 

potential conserved molecular mechanisms in animal models to be translated to human 

patients.  

With the help of two T-ALL zebrafish models that develop CNS leukaemia, we were 

able to perform whole transcriptome profiles of leukemic cells identifying interesting 

genes that could explain different mechanisms used by leukemic cells to infiltrate the 

CNS. Among these genes the importance of cxcr4 expression in predisposing T-ALL 

cells to infiltrate the CNS was investigated in zebrafish/murine models as well as in 

pediatric human patients.  Moreover, the strong signature found in zebrafish group 

overexpressing huC-MYC (huMYC-ER) challenged us to clarify the importance and the 

role of the C-MYC oncogene in T-ALL  using a GEP approach that we had shown to be 

successful in identifying signatures inside a specific T-ALL subgroup (i.e: T-ALL 

patients carrying MLLT10 rearrangements inside the HOXA subgroup).  
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Central nervous system (CNS) leukemia at diagnosis and relapse continue to pose 

significant challenges toward more effective treatment of Acute Lymphoblastic 

Leukemia (ALL). To determine if zebrafish could model CNS disease in T-ALL, we 

performed histological analyses of CNS involvement in two D. rerio lines [hlk (n=10) 

and hMYC-ER (n=10)] with GFP+ T-ALL. Histological analyses of fish at the most 

advanced stage of disease showed both hlk and hMYC-ER lines had lymphoblastic 

infiltration of the CNS, in the meninges, in the optic nerve and retina, and in some 

animals, the brain parenchyma as well. Moreover, the degree of CNS infiltration was 

higher in hMYC-ER compared to hlk groups (p-value:0,04). FACS-purified cells from 

each fish with CNS involvement (by sorting for GFP) were analyzed for gene 

expression (GeneChip Zebrafish Genome Arrays, Affymetrix, Santa Clara, CA, USA), 

revealing significantly different profiles between hlk and hMYC-ER cancers. 

Particularly, an activation of cxcr4/cxcl12 axis and wnt/!-cathenin pathway was found 

in hMYC-ER and hlk cancers, respectively. Interesting, the cxcr4 expression positively 

correlated with the degree of CNS invasion, suggesting that higher expression of cxcr4 

increased the migratory response of T-lymphoblatsts towards the CNS environment. 

CNS involvement in hlk and hMYC-ER zebrafish cancers position both lines as useful 

models for studying CNS+ T-ALL and the different ability for hMYC-ER and hlk T-

lymphoblasts to infiltrate the CNS suggests that these lines can be used to explore 

different molecular mechanisms that drive CNS invasion in T-ALL.  
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Central nervous system (CNS) leukemia at diagnosis and relapse continues to pose a 

significant challenge in the research of an efficient cure for children with Acute 

Lymphoblastic Leukemia (ALL) [1,2,7]. The prognosis of patients with isolated and 

mixed CNS relapse is particularly poor and treatments used for the cure are very 

invasive (intrathecal chemotherapy and cranial irradiation). As CNS irradiation causes a 

lot of secondary negative effects (second cancers, neurocognitive deficits, 

endocrinopathy), numerous efforts are made to improve haematological control and to 

reduce or avoid the use of cranial irradiation using alternative intrathecal treatment [3-

6]. However, CNS irradiation is still necessary for patients at high risk of relapse within 

the CNS, especially for those presenting CNS leukemia at diagnosis [7]. Because little 

is know about how leukemic cells can invade the CNS, our studies aims to deepen the 

knowledge of molecular mechanisms that regulate this event. Leukemic cells can 

infiltrate the CNS both at diagnosis and relapse in hALLs and this event is more 

frequent in T-ALL compared to B-ALL [7]. For this reason, we focused this project on 

T-ALL and we decided to study the phenomenon of CNS infiltration with the help of 

zebrafish models. Zebrafish (zf) is an attractive model organism for studying cancer; in 

fact, zebrafish can develop spontaneous tumours that resemble those in humans [8-12] 

and this model allows large-scale genetic screens that can be useful to identify 

conserved cancer pathways. In addition, tumor suppressors and oncogenes are 

conserved between human and zebrafish genomes [12,14]. Regarding our specific topic, 

leukemia is not a spontaneous tumor that spreads in zebrafish. However, next to 

spontaneous occurring tumors, malignancies can also be induced in the zebrafish model 

through chemical- (ethylnitrosourea, ENU) and retrovirus insertional- mutagenesis 

[15,16] or through the development of transgenic models that over-express tumor genes 

in a tissue-specific manner [17,18]. In the last ten years, several transgenic zebrafish 

models that develop leukemia have been created, both for T-ALL [17,19-23], pre-B-

ALL [24] and AML [25,26]. Moreover, the transparency of zebrafish embryos and the 

introduction of a transparent stable zebrafish line (casper) [27] give a big advantage for 

real-time monitoring of labelled tumor cells engraftment after transplantation. For our 

study, it is important to know that there are significant similarities between the 

anatomical structures of the CNS (i.e: Blood Brain Barrier (BBB), Blood Retinal 
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Barrier (BRB), meninges) of adult and 3 days post fertilisation (dpf) larval zebrafish 

and that of higher vertebrates [28,29]. To determine if the zebrafish can be a good 

model to study CNS disease in T-ALL, we used two approaches: first, we tried to 

establish an in vivo model of CNS leukemic invasion through serial 

xenotransplantations with human pediatric T-ALL cell lines in wild-type (wt) zebrafish 

of 3 dpf; second, we performed histological analysis of the CNS of two stable T-ALL 

D.rerio lines (hMYC-ER [23] and hlk [30]) developing GFP+ T-ALL. Concerning the 

first approach, the ability of mammalian cancer cells to successfully engraft zf embryos 

and induce neovascularisation is well described for solid tumors [31,32], even if human 

metastatic melanoma cells transplanted in zebrafish embryos move, proliferate and 

survive without engrafting the host tissues [33]. A recent paper showed successful 

Jurkat cells transplants in the yolk/blood circulation of zebrafish embryos [34], 

supporting our choice to perform xenotransplantion of hALL cell lines. Injection of 

labelled human leukemic T-ALL cell lines was performed in wt larval zf at 3 dpf, 

divided in two groups depending on the injection site:  CNS ventricle/parenchyma or 

yolk/blood circulation (figure1). 

!

Figure 1. Site of injection of Jurkat cells in larval zebrafish of 3 dpf. Larval fishes were divided in 
two groups depending on the site of injection that could be at CNS (a) or Yolk (b) site. Red arrows 
indicate the site of injections in the two groups. 

!

Both injection sites were important to observe the ability of human leukemic cells to 

move and invade other tissues apart from the injection site. Moreover, CNS injection (in 

the ventricles/parenchyma) gave immediate insight in the ability of leukemic cells to 

survive in this environment. For xenotransplantation larval fishes at 3 dpf were used to 

avoid rejection of transplanted cells by the zebrafish immune system, which starts to be 

functional from 28 dpf [38].  
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With the second approach, we analyzed the presence of T-lymphoblastic infiltration in 

the CNS of two stable zf lines (hlk and hMYC-ER) that both develop GFP+ T-ALL 

disease. Even if the time to leukemia is different in hlk and hMYC-ER lines (6-8 months 

and 3-4 months respectively), these two zf lines present a similar phenotype regarding 

the spread of disease; in fact, for both lines it is possible to distinguish a stage of 

“localized disease”, in which GFP+ bright masses arise from the thymic region and a 

“final stage” of disease, where GFP+ cells are spread in the entire fish (figure 2).  

!

Figure 2. Whole mount fluorescent microscopy images exemplary of the localized and final stage of 

the disease. Stages were monitored in both hMYC-ER and hlk zebrafish models. (A) At the stage of 

localized disease, T-lymphoblasts (GFP+) had proliferated and were localized at the site of the thymus; 

(B) in the final stage of the disease, leukemic cells had spread to most parts of the body.!

Summarizing, in both zf models T-malignant cells originate in the thymus, spread to the 

peripheral blood, invading gills, retro-orbital area and disseminate into abdominal 

organs, such as the kidney-marrow (zf bone marrow equivalent), spleen, gut, muscles, 

skin and fat. hlk and hMYC-ER lines both develop T-ALL, but they are genetically 

different. Chemical (ENU) mutagenesis (not further characterized) was used to establish 

the hlk zf line, characterized by a dominant heritable predisposition to develop a clonal 

and transplantable T-ALL [30]. Instead, in the transgenic hMYC-ER T-ALL model, the 

rag2 promoter was used to drive the expression of human C-MYC oncogene in 

zebrafish lymphoid cells; also in this case, malignant cells were clonal and could engraft 

irradiated hosts [23]. Even if both these models have been well characterized, the 

presence of CNS infiltraton by T-ALL cells had not been investigated in these zf lines. 

We decided to perform histological analysis of heads of fishes and found for both zf 

lines the involvement of CNS. The discovery of CNS involvement in hlk and hMYC-ER 

zebrafish cancers position both lines as useful models for the study of CNS+ T-ALL. 

Moreover, the degree of CNS infiltration was different comparing hMYC-ER and hlk 

cancers, indicating a different ability of these zf T-ALL cells to infiltrate the CNS. Gene 

expression profiling (GEP) analysis on zebrafish T-ALL cells revealed distinct 



! ! ()!

expression signatures between hMYC-ER and hlk cancers; this observation let us to 

speculate on the presence of different molecular mechanisms that control the invasion 

of hMYC-ER and hlk T-ALL cells in the  CNS environment. 

)!$%3/!'&!14&)%$+,4.&
!

Zebrafish Care and Maintenance 

Fish were kept in colony at 28.5°C on a 12/12 hour (hr) circadian cycle. For all 

procedures, fish were anesthetized with 0.02% tricaine methanesulfonate (MS222). 

After xenotransplantation, larval fishes were maintain 1h at 28°C and than at 33°C to 

allow survival of both human leukemic cells and larval fishes.   

Leukemic Cells preparation and Transplants  

Xenotransplants (Table 1) were performed using leukemia derived cell lines (CCRF-

CEM, P12-ICHIKAWA, DND-41, TALL-1 and Jurkat). !3*106 cells were centrifuged 

and re-suspended in 1 ml of RPMI 1640 medium (10% FBS, 1% ampicilline and 1% 

glutamine). Cells were incubated at 37°C for 30 minutes with label CM-DiI, a lipophilic 

fluorescent tracking dye (Invitrogen, Paisley, UJ) according to the manufacturer’s 

instruction. Larval fish at 3 days post fertilisation (dpf) were used for xenotransplants. 

!50-200 labelled (CM-DiI) leukemic cells were injected per larval fish using a 

microinjector. Larval fishes were divided in two groups depending on the injection site:  

brain ventricle/parenchyma or yolk (Figure1a/b). Each group included 30-80 larval 

fishes. Microscopic observations were made with Leica DMR microscope, equipped 

with a digital camera DC500.  Fishes were observed by fluorescent microscopy daily 

and !5 fishes of each group were fixed in 4% paraformaldehyde at  2, 3, 4, 5, 6, 7 dpi 

for immunohistochemical analysis. All remaining fishes were fixed at 7 days post 

injection (dpi). 
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Table 1. Number of xenotransplantations of 5 human T-ALL cell lines performed per site of 

injection. 

Human Cell 

lines 

1° Transplant 2° Transplant  3° Transplant  4° Transplant  

TALL1 30 CNS 30 CNS/30YOLK 30 CNS/30YOLK  

DND-41 30 CNS/30YOLK 30 CNS/30YOLK 30 CNS/30YOLK  

P12-

ICHIKAWA 

30 CNS/30YOLK 30 CNS/30YOLK 30 CNS/30YOLK  

CCRF-CEM 30 CNS/30YOLK 30 CNS/30YOLK 30 CNS/30YOLK  

Jurkat 30 CNS/30YOLK 60 CNS/60YOLK 60 CNS/60YOLK 110CNS/130YOLK 
 
!

In addition, injection of labelled Jurkat cells was performed in 30 Tg(fli1:EGFP)y1 

larval zebrafish of 3dpf for each group (injection in brain ventricle or yolk). In 

Tg(fli1:EGFP)y1 zebrafishes the vascular system is labelled with GFP. For confocal 

microscopy, fixed embryos were embedded with 0.7% low-melting agarose and placed 

on a Petri capsule. Stacks were recorded using %40 immersion objective (SP5 spectral 

confocal system; Leica). All images were analyzed with ImageJ software 

(http://rsb.info.nih.gov/ij/). Using confocal microscopy injected fishes were monitored 

for real-time monitoring of malignant cells behaviour. 

Histology, Immunoflorescent analysis (IF) and Immunohistochemistry (IHC) 

Xenotransplanted larval fishes for each group (injected in CNS or yolk) were fixed at 2, 

3, 4, 5, 6 and 7 dpi in 4% paraformaldehyde, paraffin-embedded and sectioned (5µm). 

For IF, whole-mount antibody staining for Ki67 [1:200 mouse monoclonal anti-human 

Ki-7 #M7240 (Dako, Denmark, EU)], HDAC1 [1:200 rabbit polyclonal anti-human 

nuclei #sc-7872 (Santa Cruz Biotechnology, Dallas, TX)] and DAPI [1:10000 (Sigma-

Aldrich, Milano, Italy)] staining was performed. IF images were obtained on a video-

confocal microscope (Vico, Ecliple Ti80, Nikon), equipped with a digital camera. 

5 WIK lck::EGFP
+/+ (used like healthy controls), 5 hMYC-ER and 5 hlk fishes at the 

stage of localized disease  and the heads of 10 hMYC-ER and 10 hlk fishes at the last 

stage of disease, were fixed in 4% paraformaldehyde, paraffin-embedded and sectioned 

(5µm). Hematoxylin and eosin (H&E) staining was performed using standard 
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procedures. For IHC, staining was performed using an anti-GFP antibody [1:400 

dilution; mouse monoclonal antibody #sc- 9996 (Santa Cruz Biotechnology, Dallas, 

TX)] with resolution of GFP+ tissues using a DAB detection kit (Dako, Denmark, EU).  

Microscopy and analysis of quantitative microscopy  

Adult hMYC-ER and hlk fishes were screened for abnormal GFP patterns with an 

Olympus szx 12 fluorescent microscope and camera (Center Valley, PA) and Optronics 

Picture frame software (Goleta, CA). H&E, HIC and IF images were obtained on a 

video-confocal microscope (Vico, Ecliple Ti80, Nikon), equipped with a digital camera. 

For quantitative microscopy analyses images were analyzed with the software open 

source ImageJ. To obtain a comparable measure of the degree of infiltration, we 

analyzed IHC stained slides at the level of the optic chiasm for each specimen. Images 

at the same resolution (10X) were converted to 8-bit greyscale images, and then a 

threshold was applied. ROIs (regions of interest) were manually selected and the 

percentage of CNS infiltration was measured as the ratio between the area involved by 

lymphoblast infiltration (the only area detected in black) and the total area of the CNS 

(considering the total area delimited by the zebrafish skull).   

Flow Cytometry  

The body (except the head) of 10 hMYC-ER and 10 hlk- sacrificed fishes at the last 

stage of disease was placed in PBS1X. Cells were dissociated through pestle mechanic 

movements and passed two times trough 35µm filters (Becton Dickinson (BD), San 

Jose, CA) before analysis. GFP+ positive cells were isolated using a BD fluorescence-

activated cell sorting (FACS) Vantage Instrument (Becton Dickinson). GFP intensity, 

forward-and side-scatter were used for gating. After sorting, cells were centrifuged and 

immediately put on Trizol (Invitrogen, Karlsruhe, Germany).    

RNA extraction and Microarray whole transcriptome expression analysis 

Total RNA from single fish was extracted from FACS GFP+ purified cells using Trizol 

according to the manufacturer’s instruction (Invitrogen, Karlsruhe, Germany). RNA 

concentration was determined using QBit 2.0 Fluorometer (Life Technology, Carlsbad, 

California, U.S.). Total RNA was stored at -80°C. To perform microarray experiments, 
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RNA quality and purity control was assessed on the Agilent Bioanalyzed 2100 (Agilent 

Technologies, Waldbronn, Germany) using “Eukaryote total RNA Assay”. Only RNA 

samples that passed quality controls (6 hMYC-ER and 3 hlk samples) were used to 

perform microarray (Affymetrix GeneChip Zebrafish Genome Arrays) analysis. In vitro 

transcription, hybridization and biotin labelling were performed according to GeneChip 

3’IVT Express kit protocol (Affymetrix, Santa Clara, CA). Microarrays data  (.CEL 

files) were generated using Affymetrix GeneChip Command Console Software 

(AGCC). All microarrays passed the quality controls: scale factor, number of present 

calls, internal probe calls, Poly-A controls and the ratio GAPDH/!-actin 3’/5’.  

Statistical analysis 

Microarray data (.CEL files) were analyzed using Command Expression Console 

(Affymetrix). The .CEL files were normalized using the justRMA algorithm and 

analyzed for supervised and unsupervised analysis, using R-Bioconductor (Version 

2.15.3). Unsupervised analysis (Class Discovery) clusters together unspecified (new) 

specimens based on similar gene expression patterns and filtering only for probe sets 

that present a variance >90%. Supervised analysis (Class Comparison, Class Prediction) 

is a learning algorithm that uses already defined (labelled) data in order to identify a set 

of genes that characterize the pre-specified data. In order to find differently expressed 

probe sets between two groups of interest (in our case hMYC-ER and hlk), we applied a 

Shrinkage t-test on the normalized .CEL files [56]. We used a local false discovery rate 

(lfdr) as correction of the p-value. A lfdr < 0,05 was considered significant for genes 

differently expressed between the two groups. Differently expressed probe sets derived 

from the Shrinkage t-test were used for clustering analysis. Hierarchical clustering 

analysis was used to cluster the specimens in an unsupervised manner using Euclidean 

Distance and Ward’s Method.  

GraphPad Prism 5 software program (GraphPhad Software, La Jolla, CA, U.S.A.) was 

used to perform Pearson correlation analysis, between expression levels of cxcr4a and 

cxcr4b and degree of CNS infiltration. 
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Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) v9.05. STRING, 

based on text mining, was used in order to investigate potential gene/protein networks 

within the list of differently expressed genes between hMYC-ER and hlk groups. 

Reverse-transcription and real-time polymerase chain reaction 

250 ng of RNA extracted from GFP+ cells of single fishes, was reverse transcribed 

using Superscript II (Invitrogen, Karlsruhe, Germany) and random primers following 

standard techniques. SYBR-Green Real-time quantitative PCR (qRT-PCR) was 

performed using the Platinum SYBR-Green qPCR SuperMix UDG (Invitrogen, 

Karlsruhe, Germany) and the 7900 HT Fast Real-Time PCR System (Applied 

Biosystems, Foster City, CA). qRT-PCR was performed in triplicates (both for 

housekeeping and genes of interest) for each sample and standard curve of 3 serial 

dilutions was used as control for each plates. qRT-PCR was executed for detecting 

expression level of cxcr4a, cxcr4b and hMYC genes, while !-actin was used as 

housekeeping gene to normalize gene expression data. Primers are listed in the table 2. 

The specificity of the primers was examined with the corresponding dissociation curve. 

To allow comparison between samples, transcript quantification was performed after 

normalization with !-actin using the Ct method and results were calculated according to 

the following formula 2-&ct [46]. Analysis of expression was performed using the 

GraphPad Prism 5 software and statistical significance was calculates as a P value using 

non-parametric Mann-Whitney test. Two tailed 95% confidence intervals were used to 

assess the significance of the data (P< .05).     

3%.#'$.&
Testing the possibility to establish a model of CNS leukemic infiltration in zebrafish 

The first efforts of this project focused on the establishment of an in vivo model in 

zebrafish that could mimic the phenomenon of leukemic infiltration into the CNS in T-

ALL patients. A total number of ~100-200 transplantations of 5 pediatric T-ALL cell 

lines (table 1) have been performed in larval fishes at 3 days post-fertilization (dpf) as 

previously described (Figure1). Among cell lines injected, Jurkat cells showed a clear 

predisposition to move away from the site of injection invading other loci. On the 
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contrary, CCRF-CEM, DND-41, P12-ICHIKAWA and TALL-1 cell lines did not show 

this ability to move from the site of injection and after 7 days post injection human 

labelled cells were no longer detected in 70-80% of injected larval fishes. Moreover, 

whole-mount analysis on larval fishes injected with T-ALL1 and DND-41 excluded the 

hypothesis of an increased proliferation of these cells causing the loss of the membrane 

dye; no human cells were detected in larval fishes analyzed (data not shown). These 

data suggest that these cell lines are not fit to survive in the zebrafish environment. 

Instead, larval fishes of both groups (injection at the CNS or yolk) transplanted with 

Jurkat, already after 6 hours post-injection (hpi) showed labelled cells both at the site of 

injection (100% larval fish transplanted) and in blood vessels circulating together with 

zebrafish blood cells or accumulated in the ventral caudal region (50% and 10% of 

larval fishes xenotransplanted in the yolk and CNS, respectively) (Figure 3A/4A). To 

better localize the position of Jurkat cells, xenotransplants with Jurkat cells were 

performed in 30 Tg(fli1:EGFP)y1 zebrafish at 3 dpf for both groups: at the CNS site 

and at the yolk. In vivo confocal microscopy showed the presence of Jurkat cells in the 

blood vessels and capillaries from 6 hours onwards and Jurkat cells that were blocked or 

stayed adhered to the wall of blood vessels (Figure 5A and B). Similar results were 

obtained for both groups after longer times post cell injections. Interesting, at 7 days 

post-injection (dpi) 10% of larval fishes of both groups presented Jurkat cells at several 

sites away from the original site of injection, showing the ability of Jurkat cells to 

survive and circulate in zebrafish tissues (Figure 3B/4B). Whole body 

immunofluorescence analysis on larval fishes injected in the CNS or yolk and fixed at 

different time points after injection, where performed. Analysis on larval fishes fixed at 

2 (figure 6 A and B) and 7 dpi revealed the presence of Jurkat cells positive for anti-

Ki67 (marker of proliferating cells) [47] and HDAC (marker of human nuclei) staining. 

However, the total number of cells had not increased from 2 to 7 dpi (data not shown) 

so we can assume that cell death of Jurkat cells had also occurred. 

Lymphoblastic CNS infiltration in hMYC-ER and hlk T-ALL zebrafish models 

To understand if hMYC-ER and hlk zebrafish lines could be good models for the study 

of CNS infiltration by T-ALL cells, we performed detailed histological analysis of the 

CNS at the “localized” and “final” stages of the disease in both zebrafish T-ALL lines 
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(figure 2). First, we performed histological analysis of the CNS for 5 hMYC-ER and 5 

hlk fishes at the stage of localized disease and we observed signs of T-ALL cell 

infiltration. At this early stage of the disease, the sites and extend of CNS infiltration 

were different from one fish to the other. In fact T-ALL cells could be present in the 

neural tube, the parenchyma, the pineal gland and meninges. However, all fishes 

presented CNS involvement to some extend. (figure 7). Histological analysis performed 

at the last stage of the disease for 9 hMYC-ER and 8 hlk fishes, showed a more sizeable 

infiltration of the CNS for both zebrafish lines, with involvement of meninges, optic 

nerve, retina and some infiltration of the parenchyma (figure 8). We found CNS 

infiltration in 8/9 hMYC-ER fishes, compared to 5/8 hlk fishes. For fishes presenting 

CNS involvement, we observed a distinct trend of lymphoblastic infiltration among the 

groups: the hMYC-ER fishes showed a more massive infiltration of the CNS compared 

to the hlk line, while the latter presented a thin layer of CNS infiltration but important 

signs of infiltration under the skin (figure 9). We proceeded with quantitative 

microscopy image analysis to measure the level of CNS infiltration in the two zebrafish 

lines (9 hMYC-ER fishes and 8 hlk fishes), and we found a significant difference in the 

degree of CNS infiltration between the hMYC-ER and the hlk group (Mann-Whitney T-

test, p-value: 0,04) (figure10).  

Gene expression signatures and networks activated in hMYC-ER and hlk models   

To identify active networks that could explain the different ability of hMYC-ER and hlk 

cancers to infiltrate the CNS, we performed whole transcriptome analysis of T-ALL 

cells extracted from the body of hMYC-ER and hlk fishes, of which the heads were used 

for histological analysis. Suitable RNA was available for 6 hMYC-ER and 3 hlk fishes 

all with CNS infiltration. Using a class discovery approach, unsupervised hierarchical 

cluster analysis separated hMYC-ER and hlk groups, underlining a strong gene 

expression profile distinction between hlk and hMYC-ER cancers (figure 11). Class 

comparison analysis, using shrinkage T-test revealed 683 probe sets differently 

expressed between hMYC-ER and hlk lines (lfdr<0,05) (figure 12). Considering genes 

with >1,2-fold change of expression, a set of 317 genes with human homologous genes 

was identified. Among these 215 and 102 human homologous genes were up-regulated 

in the hMYC-ER and hlk group, respectively (table 3). Using STRING (Search Tool for 
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the Retrieval of Interacting Genes/Proteins) analysis, on genes up-regulated in the 

hMYC-ER and hlk group separately, the human homologous gene list revealed to be 

enriched for genes related to motility, cell adhesion and leukocyte transendothelial 

migration (KEGGs pahways). In particular, for the hMYC-ER group, we found an 

activation of the cxcr4/cxcl12 axis, whereas for the hlk group, activation of the wnt/!-

catenin pathway was revealed (figure 13). Specifically, a >2-fold change in cxcr4a and 

>1,3-fold change in cxcr4b expression was observed in hMYC-ER vs. hlk cancers. The 

up-regulation of two distinct gene networks related to cell motility support the 

hypothesis that molecular mechanisms underlying extramedullary organ infiltration in 

hMYC-ER and hlk zebrafish may be different. 

Expression levels of cxcr4a and cxcr4b reflect degree of CNS infiltration 

Here we focused at first on the cxcr4/cxcl12 axis in the two zebrafish lines. Data of gene 

expression profiling on cxcr4a/b expression from array analysis, were validated by 

qRT-PCR. Moreover, we were able to increase the number of samples, by adding 3 

hMYC-ER and 4 hlk samples. These samples had been included also in the quantitative 

microscopy image analysis. qRT-PCR results confirmed the presence of a significant 

different expression of cxcr4a and cxcr4b (p-value 0,0004) between hMYC-ER and hlk 

cancers (figure 14). Importantly, the expression levels of both cxcr4a and cxcr4b 

positively correlated with the degree of CNS infiltration measured by quantitative 

microscopy image analysis (Pearson Correlation R2=0,039 and R2=0,069 respectively) 

(figure 15). 

High expression levels of hMYC are associated with increased cxcr4 transcription 

T-ALL cells presenting high expression of cxcr4a and cxcr4b derived from the hMYC-

ER zebrafish line. This transgenic model presents an induced over-expression of hMYC. 

We analyzed by qRT-PCR the expression levels of hMYC and confirmed that T-

lymphoblasts from the hMYC-ER zebrafish line expressed high levels of human C-MYC 

(data not shown). Several works already showed how hMYC could physically interact 

with hYY1, mutually inhibiting their biological functions in a dose dependent manner 

[35]. As the transcription factor YY1 is the main repressor of CXCR4 transcription [36], 

we speculated that the induced over-expression of hMYC in hMYC-ER zebrafish T-
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lymphoblasts sequestered zfYy1, with consequent increased transcription of cxcr4a and 

cxcr4b  (figure 16). To support this hypothesis, alignment of the protein sequence, 

revealed a high identity between hYY1 and zfYy1 (76% identity) and the domain of 

interaction with MYC, was shown to be completely conserved between h- and zf-YY1 

[35] (figure17).  

Expression of hMYC modifies zf Yy1 activity in the hMYC-ER model 

YY1 can function both as transcriptional activator or repressor of specific target genes 

[35]. Unsupervised hierarchical analysis considering target genes that are activated or 

repressed by YY1 [37] revealed separate clustering of hMYC-ER and hlk groups (figure 

18) and target genes follow the expected direction (activation or repression) in the hlk 

comparing to the hMYC-ER cancer. These analyses of gene expression profiling 

supported our hypothesis: in the hMYC-ER zebrafish line, the biological function of 

zfYy1 is inhibited by the induced over-expression of hMYC and through this 

meachnism zfYy1 target genes are differently expressed compared to the hlk group, 

where zfYy1 maintains its transcriptional activator or repressor function. This 

assumption is supported not only by YY1 target gene expression data from a single 

target gene (like cxcr4a and cxcr4b), but by considering all main YY1 target genes that 

are homologous between human and zebrafish (table 4). Interestingly, hMYC-ER and 

hlk groups present the same expression level of yy1a and yy1b (data not shown). 

4/."#../,1&
Although numerous efforts are made to improve haematological control and to reduce 

or avoid the use of cranial irradiation using alternative intrathecal treatment [5], CNS 

irradiation is still necessary for 2-20% of patients at high risk of CNS relapse [2]. The 

molecular mechanisms that allow ALL cells to enter and infiltrate the CNS are still 

largely unknown. In this study we aimed at identifying a beneficial  D.rerio model that 

could mimic CNS infiltration by T-ALL cells, which may be used to deepen our insight 

into the biological mechanisms that regulate this phenomenon. First, we tried to 

establish an in vivo model through xenotransplants of childhood T-ALL cell lines in 

larval fishes at 3 dpf. Only Jurkat cells showed a clear predisposition to move from the 

original site of injection, circulate, invade other loci and survive in the host organism. 
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The ability of Jurkat cells to survive in the recipients was clear; fluorescent cells were 

detectable in all fishes transplanted both at 2 and 7 dpi. At these time points, labelled 

cells were visualized both at the site of injection (100% larval fishes xenotransplanted in 

yolk or CNS) and circulating in vessels or blocked/adhered in the ventral caudal vein or 

capillaries (50% of  larval fishes xenotransplanted in yolk and 10% larval fishes 

xenotransplanted in the CNS). As yolk at 3 dpf is largely vascularised, the presence of 

circulating cells in 50% larval fishes injected in the yolk is not so surprising. Contrary, 

the presence of circulating cells in 10% of larval fishes injected in the brain ventricles, 

indicated the ability of Jurkat cells to migrate. Moreover, the presence of Jurkat cells, 

which was still detected at 7 dpi in the head of 100% of larval fishes injected in the 

ventricles, underlines the ability of Jurkat cells to survive in the zf CNS environment. 

However, the observation that the number of Ki67 positive cells was higher in larval 

fishes fixed at 2 compared to 7 dpi and that the number of HDAC positive cells did not 

increase from 2 to 7 dpi (data not shown), indicated that there was also considerable cell 

death/apoptosis of Jurkat cells. In conclusion, Jurkat cells can survive, circulate and 

infiltrate zf tissues, however, the number of cells does not increase and Jurkat cells are 

not able to really engraft the host organs. Moreover, even if it has been established that 

the immune system started to be functional at 28 dpf, there are also studies that showed 

the presence of immature T-lymphocyte moving towards the thymus at 4 dpf [39]. The 

latter could explain the death of injected  Jurkat cells in our experiments. All together 

these data suggest that the model of xenografted zebrafish is not useful for studying the 

mechanisms that allow T-ALL cells to infiltrate the CNS. However, xenografting in 

zebrafish can be useful as recipient of human leukemic cells with a possible application 

for testing new experimental inhibitors of circulating human leukemia in vivo using 

high through-put approaches. Using such approaches bypasses the problem of the 

presence of T-lymphocytes at 4 dpf, as chemotherapeutic compounds act in leukemic 

cells but also repress the zf immune system at the same time [40].  

At this point, to study the phenomenon of CNS infiltration by T-ALL cells, we decided 

to proceed using a different approach. We performed histological analysis of the CNS 

of two stable T-ALL D.rerio lines ([hMYC-ER [23] and hlk [30]) that developed GFP+ 

T-ALL. Histological analysis performed at the stage of localized disease showed the firs 
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signs of lymphoblastic infiltration in the CNS (meninges, pineal gland, neural tube, 

parenchyma) for both groups, indicating a genetic predisposition of these leukemic cells 

to also invade the CNS. Histological analysis at the last stage of disease also revealed 

the presence of CNS involvement (meninges, pineal gland, optic nerve, retina, 

parenchyma). Interestingly, the type of CNS invasion found at this stage in these 

models was very similar to CNS infiltration found in pediatric patients at time to death 

in the 1970s. In fact, we found different degrees of infiltration at the meningeal level 

[48], always correlated to optic nerve involvement [49]. These data underline the ability 

of these zf models to mimic the human CNS disease. Moreover, at this stage we 

observed that this event was more frequent in hMYC-ER (88,8%) compared to the hlk 

(62,5%) line and the degree of CNS infiltration was higher in hMYC-ER compared to 

hlk groups (p-value:0,04). These data suggested a different ability for hMYC-ER and hlk 

T-lymphoblasts to infiltrate the CNS. This assumption was supported by whole 

transcriptome analysis performed on FACS-purified cells (through sorting for GFP) 

from the body of each fish presenting CNS infiltration. In fact, Gene Expression 

Profiling (GEP) analysis revealed the presence of two distinct activated motility 

networks and specific gene expression signatures in hMYC-ER and hlk cancers 

respectively. The different trend of CNS infiltration and the different gene expression 

profiles suggested the presence of different mechanisms that regulate and drive motility 

and invasiveness of hMYC-ER and hlk T-lymphoblasts. Particularly, Search Tool for the 

Retrieval of Interacting Genes/Proteins (STRING) analyses showed an activation of 

cxcr4/cxcl12 axis and wnt/!-cathenin pathway in hMYC-ER and hlk cancers, 

respectively. The discovery of CNS involvement in hMYC-ER and hlk zebrafish cancers 

position both lines as useful models for CNS+ T-ALL and different pathways may be 

explored for relevant molecular mechanisms that drive CNS invasion. 

For the moment, we focused on cxcr4/cxcl12, the axis activated in the group with a 

higher degree of CNS infiltration. GEP analysis showed a >2-fold change (FC) and a 

>1,3 FC in cxcr4a and cxcr4b expression in hMYC-ER vs. hlk cancers respectively and 

analysis of qRT-PCR for cxcr4a and cxcr4b validated arrays data. The zebrafish model 

presents two copies of mammalian CXCR4 (cxcr4a and cxcr4b) deriving from genomic 

duplication, which occurred during teleost evolution. The observation that during zf 
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embryogenesis cxcr4a and cxcr4b expression patterns are similar to those of the single 

mammalian CXCR4 gene [41] suggested that zebrafish gene pairs spited mammalian 

gene functions between the two copies [42]. Particularly, cxcr4a conserved the majority 

of CXCR4 functions, while cxcr4b seems to have acquired also other functions in early 

development [41]. Of note, in this study we found that both the expression of cxcr4a 

and cxcr4b positively correlated (R2=0,039 and R2=0,069 respectively) with the degree 

of CNS infiltration found through quantitative microscopy image analysis in hMYC-ER 

and hlk histological preparations. CXCR4 is a chemokine receptor, particularly 

important for haematopoiesis and also for trafficking T-lymphocytes [43]. The higher 

CXCR4 expression and activation in T-lymphocyte increased the migratory response of 

these cells towards its specific ligand CXCL12 gradient. One could speculate that the 

expression level of CXCR4 in leukemic cells could influence the migratory response of 

these cells towards tissues/organs that express the CXCL12, such as bone marrow, 

lymph nodes, spleen and brain [50]. In zebrafish, the expression of both cxcr4a and 

cxcr4b and cxcl12a and cxcl12b in the brain of adult fish has been documented [51]. A 

link between the over-expression of CXCR4 and the increased motility of leukemic 

cells is well documented for AML and CML [52-54]. However, the role of 

CXCR4/CXCL12 axis is not so clear in ALL. In fact, there are discordant hypotheses 

regarding the role of the CXCR4/CXCL12 axis and CNS infiltration in ALL: high 

levels of CXCR4 expression by childhood lymphoblasts have been associated with 

extra-medullary organ infiltration [44]. Alternatively, CNS-homing cells showed 

CXCR4 down-regulation in a mouse xenograft model of CNS pre-B leukaemia with 

levels of CXCR4 expression inversely proportional to the rapidity of CNS disease 

development [45]. Moreover, another study showed that in children with ALL relapses 

associated to testicles or CNS leukemia blast cells had a significantly lower CXCR4 

level than blasts from children with relapsed disease isolated to the bone marrow [55]. 

Further analyses are necessary to clarify the role of CXCR4 expression in predicting the 

ability of hALL cells to infiltrate the CNS. For the moment, with this work we showed 

that higher levels of cxcr4a and cxcr4b seem to confer to T-lymphoblasts an increased 

ability to infiltrate the CNS.  
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Another aspect we investigated was the identification of a possible role of MYC in 

regulating cxcr4a and cxcr4b transcription. Several works already showed the  physical 

interaction of hMYC with hYY1, mutually inhibiting their biological functions in a 

dose dependent manner [35,36]. We speculated that the induced over-expression of 

hMYC in hMYC-ER zebrafish T-lymphoblast caused the total sequestering of the zfYy1 

transcription factor (the main transcriptional repressor of CXCR4) with consequent 

increased levels of cxcr4a and cxcr4b transcription. This hypothesis was supported by 

the unsupervised analysis considering only hYY1 target genes [37], in which hMYC-ER 

and hlk cancers cluster separately: we observed that YY1 target genes moved in 

opposite directions between the two zebrafish lines. Particularly, in the hMYC-ER fishes 

zfYy1 seems not be functional, while in the hlk group zfYy1 target genes move in the 

expected way (activated or repressed). Our data suggest a possible role for c-MYC in 

regulating cxcr4a and cxcr4b transcription and consequently in determining the 

migration of T-ALL cells towards the CNS. High levels of C-MYC could increase 

CXCR4 transcription, conferring to these cells a predisposition to invade tissues 

expressing the CXCL12, such as the brain.  

In conclusion, with this work we found two stable zf lines (hMYC-ER and hlk) that are 

good models of CNS+ T-ALL; these zf lines can have useful applications not only in 

the study of mechanisms used by T-lymphoblasts to infiltrate the CNS, but also for 

testing specific pharmacological inhibitors that can block this phenomenon. This 

discovery is very important, because it allows to bypass the problem of lack of human 

patient material available for such studies. Moreover, these two zf lines presented 

different active gene networks suggesting the presence of two diverse mechanisms that 

regulate the motility of their T-lymphoblasts and resulting in different abilities to 

infiltrate the CNS. These results revealed the presence of more than one molecular 

mechanisms that can determine CNS infiltration, giving a different predisposition to T-

ALL cells to invade the CNS. Particularly, we observed that cxcr4a ad cxcr4b 

expression is not necessary to infiltrate the CNS, but higher expression levels of these 

chemokine receptors significantly increase the ability of T-ALL cells to invade the 

CNS. Moreover, we found in hMYC a modulator of zfYy1 transcriptional function with 

consequent effects on cxcr4a ad cxcr4b transcription. Further studies are necessary to 
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better characterize the molecular mechanisms found in these zf lines (cxcr4/cxcl12 axis 

and wnt/!-cathenin pathway) in relation to CNS invasion also in human patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! ! *-!

2/6#3%.&
 

 

Figure 3: Fluorescent microscopy images show larval fishes injected with labelled Jurkat cells at the site 
of the yolk at 6 hours (panel A) and at 7 days (panel B) post-injection: (A) At 6 hour post injections in 
50% of larval fishes Jurkat cells had moved away from the site of injection (green arrow) and were 
detected in the ventral caudal region (red arrow). (B) At 7 days post injection, Jurkat cells had continued 
to move and were detected in the ventral caudal vein and in the 10% of larval fishes also in the head (red 
arrows). 

 

!

Figure 4: Fluorescent microscopy images show larval fish injected with labelled Jurkat cells in the 
ventricles/parenchyma at 6 hours (panel A) and at 7 days (panel B) post-injection: (A) At 6 hours post 
injections, Jurkat cells had moved away from the site of injection (green arrow) and were detected in the 
ventral caudal region (red arrow) in the 10% of larval fishes injected. (B) At 7 days post injection in 10% 
of larval fishes Jurkat cells were detected at various sites away from the site of injection, like the ventral 
caudal region and near the yolk (red arrows). 
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In vivo confocal images show Jurkat cells in zf blood vessel

 

Figure 5A/B: In vivo confocal images show Jurkat cells (labelled in red) in blood vessels (labelled in 
green) of zebrafish Tg(flil:EGFP) larval fishes at 6 hours post injection. Figures show the majority of 
Jurkat cells adherent to the wall of vessels (at this position only few Jurkat cells move/circulate) at the 

level of the ventral caudal vein. 
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Figure 6: Whole body immunofluorescent analysis of larval fishes transplanted with Jurkat cell line after 
2 dpi. Panel A: exemplar fluorescent microscopy images show the presence of Jurkat cells (some 
underlined with red arrow) at different section levels in larval fishes injected in the YOLK (1, 2, 3, 4). 
These images show the presence of many circulating labelled cells that pass also through the brain blood 
vessels (1, 2). Panel B: exemplar fluorescent microscopy images reveal the presence of Jurkat cells (red 
arrow) at different section levels in larval fishes injected in the CNS (1, 2, 3, 4). There are few cells seen 
in blood vessels, but Jurkat cells are detectable in the CNS (1, 2) and also in the tail (4). 
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IHC analyses reveal the presence of CNS infiltration at different stages of the disease in zf 

T-ALL  models 

 

 

Figure 7 (left pannel): Transversal sections of CNS of fish at the stage of localized disease. Exemplar 
pictures of T-lymphoblast (DAB stained with PO-anti-GFP) infiltration (red arrows) in the CNS at 

several sites: pineal gland (a), neural tube (b), meninges (c). 

Figure 8 (right pannel): Images of histological preparations (transversal section) of CNS of fishes at the 
last stage of disease. Exemplar pictures of T-lymphoblast (DAB stained with PO-anti-GFP) infiltration 
(red arrows) involving the optic nerve (a) the meninges (b) and the parenchyma (c) near the ventricles. 
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Different degree of CNS infiltration between hMYC-ER and hlk zebrafish models 

!

Figure 9 (left pannel) : Comparison of CNS infiltration between hMYC-ER (A) and hlk (B) zebrafish 
models at the same section level (optic nerve). Pictures underline the different T-lymphoblast (DAB 
stained with PO- anti-GFP) infiltration at the meningeal level (red arrows): hMYC-ER showed important 
meningeal infiltration (A) compared to the thin layer infiltrated in the hlk group (B). On the other hand 
hlk T-lymphoblasts had consistently infiltrated the skin (*). 

Figure 10 (right graphic): Significant different degree of CNS infiltration between hMYC-ER and hlk 
zebrafish models at the last stage of disease. CNS infiltration was analyzed by quantitative microscopy 
image analysis of microscopic sections at the level of the optic nerve (Mann-Whitney T-test, p-value: 
0,04). Y-axis shows the % of CNS infiltration measured by quantitative microscopy analyses. 

 

Whole-transcriptome analysis reveals a different signature between hMYC-ER and hlk 

cancers 

!

Figure 11 (left): The heatmap shows the results of unsupervised hierarchical clustering analysis, filtering 
for probe sets that present a variance >90%. Unsupervised analysis clustered the 6 hMC-ER (orange) and 
3 hlk (blue) samples in two arms, revealing distinct gene expression signatures that separated the two zf 
lines. 

Figure 12 (right): Supervised analysis, using Shrinkage T-test, identified 683 probe sets differently 
express between hMYC-ER (orange) and 3 hlk (blue) groups. The heatmap was created using only probe 
sets with a significant different expression from the comparison between groups (lfdr<.05)..  
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Different networks related to cell motility are active in hMYC-ER and hlk zf 

models 

!

Figure 13: Using STRING (Search Tool for the Retrieval of Interacting Proteins) two distinct protein-
protein interaction networks both related to cell motility were retrieved for hMYC-ER (first figure) and 
hlk (second figure) cancers respectively. Differentially expressed cell motility related genes were 
identified for the two fish lines by GEP analysis and homologous human counter parts were analyzed for 
protein-protein interactions. 
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hMYC-ER expresses higher levels of both cxcr4 and cxcr4b compared to the hlk group 

!

Figure 14: Validation of gene expression data of cxcr4a and cxcr4b expression by qRT-PCR. hMYC-ER 

(red) lymphoblasts expressed higher levels of both cxcr4a (left graphic) and cxcr4b (right graphic) 
compared to the hlk samples (green) (Mann Whitney T-test, p-value: 0,0004). 

 

 

Expression levels of cxcr4 and cxcr4b correlate with the degree of CNS infiltration in hMYC-ER 

and hlk models 

!

Figure 15: Positive correlation between the expression levels of cxcr4a (left) and cxcr4b (right) measured 
by qRT-PCR and the percentage of CNS infiltration (measured by quantitative microscopy image 
analysis) (Spearman Correlation). 

 

 

Hypothesis of mechanism that regulate cxcr4 transcription in hMYC-ER group 

!

Figure 16: Hypothesis of the mechanism of regulation of cxcr4a and cxcr4b transcription in hMYC-ER 

fishes. The induced over-expression of hMYC sequestered all zfYY1, inhibiting its biological function as 
a transcriptional repressor of cxcr4. The absence of free zfYy1 allowed an increase in cxcr4 transcription. 
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High identity between human and zebrafish YY1 

!

Figure 17: Protein alignement of Human-Zebrafish-Mouse YY1 sequence revealed a high identity 
between human and zebrafish YY1 (76% identity). Moreover, the domain necessary for the interaction of 
YY1 with MYC is completely conserved (red cube) between the two species [35]. 

 

 

Hierarchical clustering based on main YY1 target genes separate hMYC-ER and 

hlk models 

!

Figure 18: Unsupervised hierarchical analysis considering all main YY1 target  genes (C) or separately 
target genes that are upregulated (A) or downregulated (B) by YY1, divide hMYC-ER (orange) and hlk 
(blue) cancers. Of note, in hMYC-ER group the function of Yy1 seems to be impaired and target genes 
behave in the opposite way compared to the the hlk group. 
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Table 2. Primers used for qRT-PCR 

 

 

 

 

 

 

 

Table 4. Probe sets of the main YY1 target genes homologous between human and 

zebrafish 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GENES PRIMERS 

Forward: 5’-TCATCATCTCCAAGCTGTCG-3’ cxcr4a 

Reverse: 5’-CTCCGTCACGAAGATCCATT-3’ 

Forward: 5’-CTTATTGCGCCTTTTTGAGC-3’ cxcr4b 

Reverse: 5’-ATCCCGTATACTGTAGGGAGGAA-3’ 

Forward: 5’-CCCTCAACGTTAGCTTCACC-3’ hMYC 

Reverse: 5’-CCTCCTCGTCGCAGTAGAAA-3’ 

Forward-5'-AAATCGCTGCCCTGGTCGTT-3' !-actin 

Reverse-5'-CTGTCCCATGCCAACCATCA-3' 

BC!DEFE! *GHIE!JEKJ!KLGDEK!DEFEJ!MN8GEDMOLKEP!IQ!((6!

<20K$3! T2G$,'%)G$GU$V37!

?I<3! T2G$G$GU$V37!

?I<K! T2G$)-'+G$GU$V37!

<14$3$3! T2G%--,*G$GU$V5V37!

/5D3(! T2G%)$$)G$GU$V37!

W5@3! T2G(*('G$GU$V37!

W5@>! T2G(*+,G$GU$V37!

D(&! T2G%-(%G$GU$V37!

D32D$! T2G$*%('G$GX$V37!

T2G%-*+,G$GX$V37!($))6!

T2G%%)$$G$GX$V37!

<<4$&! T2G$($%(G$GX$V37!

BC!DEFE! *GHIE!JEKJ!KLGDEK!DEFEJ!PHRF8GEDMOLKEP!IQ!((6!

3<73$3! T2G'+&*G$GX$V37!

<37! T2G$-*,G$GU$V37!

5D$! T2G,%&(G$GX$V37!

<@<2'3! T2G$(-((G$GU$V37!

<@<2'K! T2G)*,+G$GU$V37!

<@?3! T2G$+%)*G$GU$V37!

<@?K! T2G%',(-G$GU$V37!

502D"=0$! T2G&+&G$GX$V37!

">$! T2G('$G$GU$V37!

T2G$%,+)G&GU$V3V37!

T2G$%,+)G$GX$V3V37!

T2G$%,+)G%GU$V37!

<=<>?!

T2G$%,+)G$GX$V37!
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Table 3. Genes differently expressed between the hMYC-ER and the hlk group with a 

FC>1.2 that have a human homologous gene 

SC!*GHIE!.EK! :GHMN!$*! BC!DEFE! 3#! TMULF!DEFE!

T2G%&,'%G$GU$V37! -2@! K&B=7(3! %J,)! ABCDEF!

T2G+%,*G$GU$V37! -2@! A=7$$2! %J+$! GDE::!

T2G%+&)G$GX$V37! -2@! YB<Z)&(%&! %J**! 0HIJ!

T2G(,)G$GU$V37! -2@! "7Q! %J'+! KEL!

T2G)$&G$GU%V37! -2@! 571?! %J'*! MENJ!

T2G)&*G$GU%V37! -2@! <>/%! %J&(! <OP6!

T2G,&'(G$GX$V37! -2@! 5KZ<K'*'! %J%&! H>006:!

T2G&'$&G$GU$V37! -2@! >3</<! %J$'! OH<P:!

T2G&*$&G$GX$V37! -2@! 84=<K! %J$$! /ID<!

T2G%&')-G$GU$V37! -2@! 5D20>$! %J-%! M0>QO:!

T2G$%++%G$GX$V37! -2@! /5)57$3! %J--! PMRME:!

T2G+%+$G$GU$V37! -2@! 1>Y&! $J,+! NO'B!

T2G'*)&G$GU$V37! -2@! 51@$$3! $J,&! MN=::!

T2G$-)++G$GU$V37! -2@! <>Q(! $J,$! <OLF!

T2G+-,'G$GU$V37! -2@! 50?3'0! $J+,! MQJH?!

T2G'*)&G$GU%V37! -2@! 51@$$3! $J+(! MN=::!

T2G$*+(&G$GX$V37! -2@! 83?',3! $J+(! /HJ?7H!

T2G$%(,-G$GU$V37! -2@! [3B$3! $J+&! SHC:!

T2G%()*)G$GX$V37! -2@! YB<Z*&$'%! $J*,! PJ0:7!

T2G%%,((G$GX$V37! -2@! 2"4D4$! $J**! >KI0I:!

T2G%$+$'G$GU$V37! -2@! YB<Z$&)+)'! $J*)! <:7%$#FB!

T2G$&,(%G$GX$V37! -2@! D7D=$$K! $J*)! 0E0D::!

T2G'+*)G$GX$V37! -2@! ?I1,K! $J*(! JTN7A!

T2G$G$GU$V37! -2@! ?I<3! $J*&! JT<!

T2G$$%,-G$GX$V37! -2@! ?">=! $J*%! JKOD!

T2G,%--G$GX$V37! -2@! 43D7?'K! $J*-! IH0EJ?A!

T2G',+-G$GU$V37! -2@! B464K! $J)+! CIUI!

T2G%))G$GU$V37! -2@! ?08%3! $J)(! JQ/6H!

T2G$%&))G%GX$V37! -2@! 075$3! $J)-! QEM:!

T2G$-))+G$GU$V3V37! -2@! 26=@&! $J(,! >UD=B!

T2G$$&,+G$GX$V37! -2@! 83?$*%3! $J(,! /HJ:V6H!

T2G),''G$GX$V37! -2@! DDD>0$! $J(,! OQMK6!

T2G%'*'&G$GX$V37! -2@! 5I=B2%K! $J((! U\]^;%!

T2G*-,,G%GX$V37! -2@! 2=350QK! $J('! >DHMQL!

T2G)(&$G$GX$V37! -2@! 51<5$! $J('! MN<M:!

T2G$),'-G%GX$V37! -2@! 23K$$KK! $J('! >HA::A!

T2G,%))G$GX$V37! -2@! YB<Z,%&%$! $J(%! MLH:!

T2G$-)&+G$GX$V37! -2@! 55KD'! $J(%! MMA0?!

T2G$+'*'G$GX$V37! -2@! ><420$<! $J($! O<I>Q:<!

T2G+--'G$GX$V37! -2@! 83253! $J(-! /H>MH!

T2G%%$,(G$GX$V37! -2@! 5"Z>Q0IDL+/&G(! $J',! 'D/RF?!

T2G'*$)G$GX$V37! -2@! =232D3! $J',! D>H>0!



! ! +-!

T2G$$$&&G$GX$V37! -2@! >DI54(K! $J'*! O0TMIF!

T2G+&%&G$GU$V37! -2@! <048&! $J')! <QI/B!

T2G'(,%G$GX$V37! -2@! B34=7$! $J''! CHIDE:!

T2G$+$,'G$GX$V37! -2@! D"Q&<&! $J''! 0KLB<B!

T2G%'&$*G$GU$V37! -2@! <>Q=&! $J'%! <OLDB!

T2G$$-)'G$GX$V37! -2@! 3D4D! $J'%! H0I0:!

T2G*+(,G$GX$V37! -2@! 5I=0$! $J'%! MTDQ:!

T2G*+)%G$GX$V37! -2@! 3<5KB%! $J'$! H<MAC6!

T2G*-+)G$GX$V37! -2@! ?3DQ+"D&! $J'-! JH0LWK0B!

T2G$-,(%G$GX$V37! -2@! <>2%4! $J'-! <O>6I!

T2G$('%G$GX$V37! -2@! YB<Z***&'! $J&,! OAK!

T2G*&%%G$GX$V37! -2@! 5D5K$! $J&+! M0MA:!

T2G$'&-)G$GU$V3V37! -2@! D><>'K! $J&*! 0O<O?!

T2G)'&*G$GU$V37! -2@! D7D=)! $J&(! 0E0DR!

T2G$--&$G$GX$V37! -2@! A6Z8Q+)B$$! $J&'! 4H4B!

T2G$++,+G$GU$V37! -2@! 0Y/%! $J&'! Q'P6!

T2G$&%),G$GX$V37! -2@! 25D2I$! $J&&! >M0>T:!

T2G(%,,G$GU$V37! -2@! 5=@$%! $J&&! MD=:6!

T2G*,*'G$GU$V37! -2@! <><'(! $J&%! <O<?F!

T2G%(&')G$GX$V37! -2@! DD3D><$K! $J&%! 00H0O<:A!

T2G,()G$GU$V37! -2@! YB<Z,%)&$! $J&%! <N=RA:!

T2G$%$'+G$GU$V37! -2@! "=#5! $J&%! KD4M!

T2G%(%+*G$GX$V37! -2@! 7"3$! $J&%! EKH:!

T2G*$,G$GU$V37! -2@! >23D$! $J&%! O>H0:!

T2G+%$%G$GU$V37! -2@! D5?K,3! $J&%! 0MJA7!

T2G%((&-G$GX$V5V37! -2@! 7028$! $J&%! EQ>/:!

T2G&+))G$GX$V37! -2@! <3D2"=$3! $J&-! <H0>KD:!

T2G$&,$%G$GU$V37! -2@! =<12$! $J&-! D<N>:!

T2G%$-)(G$GU$V37! -2@! #D5&)! $J%,! 40MBR!

T2G$)&$,G$GX$V37! -2@! <41<Q! $J%+! <IN<L!

T2G%+-G$GU$V37! -2@! <7==K%! $J%*! <EDDA:!

T2G$-()&G$GU$V37! -2@! ?5"%3! $J%*! JMK6!

T2G%--*&G$GX$V37! -2@! D7KD$K! $J%)! 0EA0:!

T2G&$'%G$GU$V37! -2@! Y5A"?(! $J%)! 'MGKJF!

T2G%(,$)G$GX$V37! -2@! >1Q%! $J%)! ONL6!

T2G$)$$$G$GU$V37! -2@! 75/Y$! $J%(! EMP':!

T2G',+*G$GX$V37! -2@! 3/53$! $J%(! HPMH:!

T2G$-&-$G$GX$V37! -2@! <>+%K! $J%(! <OW6!

T2G&'$%G$GX$V37! -2@! 3D$K$! $J%(! H0:A:!

T2G$$'+)G$GU$V37! -2@! 0>0?$! $J%(! QOQJ:!

T2G%-%&-G$GU$V37! -2@! B?8K! $J%(! CJ/A!

T2G$,-',G$GX$V37! -2@! >QQ&! $J%'! OLLB!

T2G%)(&&G$GX$V37! -2@! YB<Z$$%-,(! $J%'! MOQ6!

T2G'*)-G$GX$V37! -2@! D5?K$-! $J%'! 0MJA:9!

T2G%$*,)G$GX$V37! -2@! 2D5)Q3$! $J%'! >0MRLH:!
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T2G,)$*G$GX$V37! -2@! 51<5&K! $J%'! MN<MB!

T2G*)%+G$GX$V3V37! -2@! Y685D! $J%&! 'U/M0!

T2G+&(G$GX$V37! -2@! D>@Q3! $J%&! 0O=L!

T2G&**$G$GU%V37! -2@! <4>=$%! $J%%! <IOD:6!

T2G'$*,G$GU$V37! -2@! D7D'3$! $J%%! 0E0?H:!

T2G%),(G$GX$V37! -2@! B?>5! $J%%! CJOM!

T2G$-+-'G$GU$V37! -2@! Y<'/%! $J%%! '<?P6!

T2G*)$(G$GX$V37! -2@! 324+K3! $J%%! H>IWA!

T2G%%--G$GX$V37! -2@! ?3D&Q'! $J%$! JH0BL?!

T2G$'*%*G$GX$V37! -2@! D"'Q%K! $J%$! 0K?L6A!

T2G$&%$+G$GX$V37! -2@! "=1+->K! $J%$! KDNW9O!

T2G$%%,(G%GX$V37! -2@! K1D$! $J%-! AN0:!

T2G%(-'G$GX$V37! -2@! "DDQ! $J%-! K00L!

T2G$-)*)G$GU$V37! -2@! <>5%! $J%-! <OM6!

T2G%'-(G$GX$V37! -2@! 23K4&! $J%-! >HAIB!

T2X88@G$G(&GU$V37! -JT<XQ>! YB<Z)(*',! $J%$! ITH>!

T2G*)&+G$GU%V37! -JT<XQ>! <34?&3! $J%$! <HIJB!

T2G%(&(-G$GX$V37! -JT<XQ>! 3>13! $J%$! HON!

T2G$++$$G%GX$V37! -JT<XQ>! YB<Z,%*,,! $J%$! /HJ69?H!

T2G$(&)%G$GU$V37! -JT<XQ>! YB<Z$$-%()! $J%$! EJQJ6FR!

T2G%%)-*G$GU$V37! -JT<XQ>! 43<7K! $J%%! IH<EA!

T2G$-($,G$GX$V37! -JT<XQ>! 72"?*$! $J%%! E>KJV:!

T2G$&%)&G$GX$V37! -JT<XQ>! 043<$! $J%%! QIH<:!

T2G,$%&G$GX$V37! -JT<XQ>! 81@Q$! $J%%! /N=L:!

T2G%'*(G$GX$V37! -JT<XQ>! 5"Z>Q0IL%'4$$G*! $J%%! 0KLB<6H!

T2G%&**(G$GX$V37! -JT<XQ>! =3D$4'3! $J%%! DH0:I?!

T2G&(&,G$GX$V37! -JT<XQ>! YB<Z+(*+,! $J%%! <::%$#F?!

T2G,+%G$GU$V37! -JT<XQ>! #?D$! $J%%! 4J0:!

T2G$*$%(G$GX$V37! -JT<XQ>! YB<Z$(+)-&! $J%%! <>QABI6!

T2G$&*(%G$GU$V37! -JT<XQ>! 5?8=! $J%&! >Q=6!

T2G*)++G$GX$V37! -JT<XQ>! D41>$3! $J%&! 0INO:!

T2G$('-%G$GX$V3V37! -JT<XQ>! ?2D5(! $J%&! J>0MF!

T2G%',%&G$GU$V37! -JT<XQ>! D02D! $J%'! 0Q>0!

T2G$&-+'G$GX$V37! -JT<XQ>! />3<'! $J%'! POH<?!

T2G$%*%-G$GU$V37! -JT<XQ>! Y>//<+K! $J%'! 'OPP<W!

T2G+-)-G$GU$V37! -JT<XQ>! ?057! $J%'! JQME!

T2G$-*'%G$GU$V37! -JT<XQ>! YB<Z((%(,! $J%'! PM0A0:!

T2G%(,$%G$GX$V37! -JT<XQ>! B/23! $J%'! CP>!

T2G$-%$)G$GU$V3V37! -JT<XQ>! YB<Z$$%-$(! $J%'! <KA:!

T2G$--(-G$GX$V37! -JT<XQ>! 3>"D12%! $J%(! HOK0N>6!

T2G$,&*+G$GU$V37! -JT<XQ>! 5?3>&3! $J%(! MJHOB!

T2G$''*,G$GU$V37! -JT<XQ>! YA$-! $J%(! 'G:9!

T2G(,-)G$GX$V37! -JT<XQ>! 72?7(! $J%(! E>JEF!

T2G%)-,)G$GU$V@V37! -JT<XQ>! /3<4$! $J%(! PH<I:!

T2G$++&)G%GX$V37! -JT<XQ>! 81@D$3! $J%)! /N=0:!



! ! +%!

T2G$+'%%G$GX$V3V37! -JT<XQ>! 8</1%! $J%)! /<PN6!

T2G**&+G$GX$V37! -JT<XQ>! 34>/$+3$! $J%)! HIOP:WH:!

T2G*'&,G$GX$V37! -JT<XQ>! ?08%>! $J%)! JQ/6O!

T2G$$($%G$GX$V37! -JT<XQ>! D4<B%! $J%)! 0I<C6!

T2G$*--(G$GX$V37! -JT<XQ>! 235B28%! $J%)! >HMC>/6!

T2G&-$$G$GX$V37! -JT<XQ>! 4>423>&! $J%*! IOI>HOB!

T2G$+'-&G$GU$V37! -JT<XQ>! YB<Z(((*%! $J%*! MELBW!

T2G$*%'%G$GX$V37! -JT<XQ>! Y8D&)4%! $J%*! '/0BRI6!

T2G$%(-,G$GU$V37! -JT<XQ>! 5"Z>Q0IDL+'3+G+! $J%*! /HJ69VH!

T2G%&)(%G$GX$V37! -JT<XQ>! ?D>6$K! $J%+! J0OU:!

T2G'%$%G$GU$V37! -JT<XQ>! 4>/3! $J%+! IOPH!

T2G%(**-G$GU$V37! -JT<XQ>! <7D5! $J%+! <E0M:!

T2G*-*&G$GX$V37! -JT<XQ>! <K@&K! $J%+! <A=B!

T2G&**'G$GX$V37! -JT<XQ>! =0Q$! $J%,! DQL:!

T2G$(%)%G$GU$V37! -JT<XQ>! 57Q&+4! $J%,! MELBWI!

T2G&)%,G$GX$V37! -JT<XQ>! 37D%3%K! $J%,! HE06H6!

T2G%)')-G$GU$V37! -JT<XQ>! 7744$! $J&-! EEII:!

T2G%&-'$G$GX$V37! -JT<XQ>! <3?Q%K$! $J&-! <HJL6A!

T2G$&-),G$GX$V37! -JT<XQ>! Y<&/*K! $J&-! '<BPVA!

T2G$(,))G$GU$V37! -JT<XQ>! >0==>%>! $J&-! OQDDO6O!

T2G$-(%'G$GU$V37! -JT<XQ>! 2K81@%! $J&-! >A/N=6!

T2G$%$$&G$GX$V37! -JT<XQ>! 5"Z>Q0IL%')"$'G'! $J&$! MP<:!

T2G$'+,&G$GX$V37! -JT<XQ>! 0@1B! $J&$! Q=NC!

T2G$%(')G$GU$V37! -JT<XQ>! 6D8&3! $J&$! U0/BH!

T2G%-&')G$GU$V37! -JT<XQ>! 57Q&(4! $J&$! ,Y@BF2!

T2G**+-G$GU$V37! -JT<XQ>! <>*'! $J&$! <OV?!

T2G*'(G$GX$V37! -JT<XQ>! YB<Z()$$)! $J&$! 0OIKJF!

T2G%',+,G$GU$V37! -JT<XQ>! ?I4$-! $J&$! JTI:9!

T2G$(*+$G$GU$V37! -JT<XQ>! #2Q%! $J&&! 4>L6!

T2G$&,,'G%GX$V@V37! -JT<XQ>! D/D7$! $J&&! 0P0E:!

T2G$'$),G$GX$V37! -JT<XQ>! 54<%(3&%3! $J&&! MI<6FHB6!

T2G'(&(G$GU$V37! -JT<XQ>! D7D'3&! $J&(! 0E0?HB!

T2G(()(G$GU$V37! -JT<XQ>! 504?! $J&(! MQIJ!

T2G$-%$)G%GU$V37! -JT<XQ>! YB<Z$$%-$(! $J&(! <KA:!

T2G)*,+G$GU$V37! -JT<XQ>! <@<2'K! $J&(! <=<>?!

T2G(+-,G$GX$V37! -JT<XQ>! B2=3! $J&)! C>D!

T2G%((-G$GU$V5V37! -JT<XQ>! <7KD%! $J&)! <EA06!

T2G$')&,G$GU$V37! -JT<XQ>! D<K>$! $J&)! 0<AO:!

T2G*'*$G$GX$V37! -JT<XQ>! 7?0?$,+K! $J&)! EJQJ:7W!

T2G,))*G$GU$V37! -JT<XQ>! >=3[K$$! $J&)! ODHSA::!

T2G$*&,'G$GX$V37! -JT<XQ>! 4?8%K! $J&+! IJ/6!

T2G%(*&-G$GU$V37! -JT<XQ>! 705! $J&+! EQM!

T2G$,'+)G$GX$V37! -JT<XQ>! YB<Z$-&*(-! $J&+! A/M06!

T2G$*%(+G$GX$V37! -JT<XQ>! 3K<0$! $J&,! HA<Q:!

T2G$&,,-G$GX$V37! -JT<XQ>! 54<%(3$! $J&,! MI<6FH:!



! ! +&!

T2G%*-(G$GX$V37! -JT<XQ>! 5"Z>Q0IL+4$&G'! $J'-! MGH0V9!

T2G,-+)G$GX$V37! -JT<XQ>! 32/B08$+3! $J'-! H>PCQ/:W!

T2G,%%-G$GU$V37! -JT<XQ>! ?3Q$)! $J'$! JHL:R!

T2G(&*G$GU$V3V37! -JT<XQ>! 0D/K&3! $J'$! Q0PAB!

T2G$+'$)G$GX$V37! -JT<XQ>! 5040=KD$! $J'$! MQIQDA0:!

T2G$%'+-G$GU$V37! -JT<XQ>! "?Z),-%'-*! $J'$! MK4H:!

T2G$%&&G$GX$V37! -JT<XQ>! B45K! $J'%! CIM!

T2G*),$G$GX$V37! -JT<XQ>! YB<Z$-$*)$! $J'&! CDH::!

T2G$,%%*G$GU$V37! -JT<XQ>! 7D)&! $J'&! E0RB!

T2G$$+-G$GU$V37! -JT<XQ>! =<<2D$! $J'&! D<<>0:!

T2G$+$,+G$GX$V37! -JT<XQ>! 5"Z>Q0IDL

$,%?$'G*!

$J'&! Q0M:FI:!

T2G&%))G$GX$V37! -JT<XQ>! =3D0D4>! $J'&! DH0Q0IO!

T2G,&+G%GU$V3V37! -JT<XQ>! <ID&<$! $J''! <T0BH?!

T2G$'$%-G$GX$V37! -JT<XQ>! =Q3"=$! $J''! DLHKD:!

T2G$,%&)G$GU$V37! -JT<XQ>! 4?1'K! $J''! IJN?!

T2G%&%,'G$GU$V37! -JT<XQ>! 4@=! $J''! ID=!

T2G$,(+'G$GU$V37! -JT<XQ>! <<><$%(! $J''! <<O<:6F!

T2G%)---G$GX$V37! -JT<XQ>! B2K$-3! $J'(! C>A:9!

T2G%$$+*G$GX$V37! -JT<XQ>! 54<%3&! $J'(! MI<6HB!

T2G&,'(G$GX$V37! -JT<XQ>! 0DK'$4(! $J'(! Q0A?:IF!

T2G'+)G$GU$V37! -JT<XQ>! DDD$2$'KK! $J'(! 000:>:?A!

T2G$+-*'G$GU$V37! -JT<XQ>! <>,,4%! $J'(! <O77I6!

T2G%$&,'G$GU$V37! -JT<XQ>! @"2D%3! $J')! =K>06!

T2G$*'(%G$GU$V37! -JT<XQ>! YB<Z()'))! $J'*! DK0MDH0BH!

T2G,$$-G$GX$V37! -JT<XQ>! A6Z8<$'3$-! $J'+! HE/F!

T2G(,+$G$GU$V37! -JT<XQ>! 37D)#$K%! $J'+! HE0R4:A6!

T2G$$)+G$GU$V37! -JT<XQ>! <35D3! $J'+! <HM0:!

T2G$)$,(G$GX$V37! -JT<XQ>! 5044! $J'+! MQII!

T2G$($*-G$GU$V5V37! -JT<XQ>! YK7K%3! $J'+! 'AEA6!

T2G%-,$-G$GU$V37! -JT<XQ>! 51@$,3! $J'+! MN=:F!

T2G,,+%G$GX$V37! -JT<XQ>! 71@! $J',! EN=!

T2G$&'*%G$GX$V37! -JT<XQ>! 235B2D&! $J',! >HMC>0B!

T2G$*$'$G$GX$V37! -JT<XQ>! 5Q"4K! $J(-! MLKI!

T2G$+',(G$GX$V37! -JT<XQ>! 5"Z>Q0IL',/,G)! $J(-! KCM/7!

T2G%(-($G$GU$V37! -JT<XQ>! 4?=K$! $J($! IJDA:!

T2G'++'G$GU$V37! -JT<XQ>! 2B2K! $J(&! >C>!

T2G,,*)G$GU$V37! -JT<XQ>! Q48%K! $J(&! LI/6!

T2G+%,$G$GU$V5V37! -JT<XQ>! 3<#2%K! $J(&! H<4>6A!

T2G+&-$G$GU$V3V37! -JT<XQ>! /58$! $J(&! PM/:!

T2G$',+%G$GX$V37! -JT<XQ>! 5"Z>Q0IL&=%%G*! $J('! IK0Q!

T2G)+$G$GX$V37! -JT<XQ>! 235>$! $J((! >HMO:!

T2G$'-)&G$GX$V37! -JT<XQ>! 0?4%! $J((! QIJ6!

T2G%(&,+G$GU$V37! -JT<XQ>! YB<Z+)*(,! $J()! I00>:!

T2G(($(G$GX$V37! -JT<XQ>! 0DK'$4&K! $J(*! Q0A?:IB!

T2G$&+)%G$GU$V37! -JT<XQ>! K"Q! $J(+! AKL!



! ! +'!

T2G$)*(%G$GX$V37! -JT<XQ>! <DD0>$! $J(+! <00QO:!

T2G*)'&G$GU$V37! -JT<XQ>! 83?$$)K! $J(+! OQDDORA!

T2G%()-+G$GX$V37! -JT<XQ>! 8/"7! $J(+! /PKE!

T2G$&*,$G$GX$V37! -JT<XQ>! <3>?%3! $J(,! <HOJ6!

T2G((*&G$GU$V37! -JT<XQ>! 324$$! $J(,! H>I::!

T2G$+)*%G$GX$V37! -JT<XQ>! 5"Z</%$$L),"$'G*! $J(,! 0HD=:!

T2G%&,%+G$GX$V37! -JT<XQ>! 8/4&! $J)-! /PIB!

T2G*')*G$GU$V37! -JT<XQ>! 502"=<(! $J)-! MQ>KD<F!

T2G*$-%G$GU$V37! -JT<XQ>! DD>D8K! $J)$! 00O0/!

T2G$*$&*G$GU$V37! -JT<XQ>! 2123K! $J)%! >N>H!

T2G$$$)$G$GX$V37! -JT<XQ>! 5"Z>Q0IL$3*G%! $J)%! QK/?CB!

T2G(((G$GU$V37! -JT<XQ>! =0621B$! $J)%! DQU>NC:!

T2G)+&&G$GX$V37! -JT<XQ>! A00%! $J)&! GQQ6!

T2G'%)%G$GU$V37! -JT<XQ>! "B8%KD%K! $J)&! KC/6A06!

T2G+-)(G$GU$V37! -JT<XQ>! 4?1%! $J)'! IJN6!

T2G*'$*G$GU$V37! -JT<XQ>! 5/&KD(! $J)'! MPBA0F!

T2G%&&*)G%GX$V37! -JT<XQ>! D>4"?$! $J))! 0OIKJ:!

T2G$**',G%GX$V3V37! -JT<XQ>! <IK3! $J))! <TAH!

T2G$--*-G$GX$V37! -JT<XQ>! 8KD$3! $J)*! /A0:!

T2G$%&G$GU$V37! -JT<XQ>! </2=3$! $J)+! <P>DH:!

T2G$(%$%G$GX$V37! -JT<XQ>! YB<Z,%$'-! $J)+! <:%$#6:!

T2G$-*-(G$GU$V37! -JT<XQ>! ?347$! $J*-! JHIE:!

T2G(,,'G$GX$V37! -JT<XQ>! /"K3>/3! $J*$! PKAHOP!

T2G%$**'G$GX$V37! -JT<XQ>! <3?Q%>$! $J*%! <HJL6O!

T2G$*((%G$GU$V37! -JT<XQ>! <<><)K! $J*%! <<O<R!

T2G$(+%'G$GU$V37! -JT<XQ>! YB<Z$('-*-! $J*&! <PME6!

T2G$,($)G$GU$V37! -JT<XQ>! ?85>)K! $J*(! J/MOR!

T2G,'')G$GX$V3V37! -JT<XQ>! D@=! $J*(! 0=D!

T2G$-,-'G$GU$V3V37! -JT<XQ>! 3>>&3! $J*)! HOOB!

T2G)*+%G$GX$V37! -JT<XQ>! ?D=>! $J*)! J0DO!

T2G$*+$*G$GX$V37! -JT<XQ>! 42"B$! $J**! K>KC:!

T2G$,&,(G$GX$V37! -JT<XQ>! 5"Z>Q0IL&,=$G%! $J**! ZMN=:!

T2G$+$$%G%GX$V37! -JT<XQ>! YB<Z$-$-*%! $J*+! >HK:?!

T2G$$$+G$GX$V37! -JT<XQ>! B81>%! $J*+! C/NO6!

T2G$*-+(G$GX$V37! -JT<XQ>! "B/?! $J*,! KCPJ!

T2G&-$%G$GX$V37! -JT<XQ>! Q"8$K! $J*,! LK/:A!

T2G$%**+G$GU$V37! -JT<XQ>! 3675%! $J+-! HUEM6!

T2G%%*+$G$GX$V37! -JT<XQ>! <34K$! $J+-! <HIA:!

T2G$'%&(G$GU$V37! -JT<XQ>! <>'-! $J+$! <O?9!

T2G$%()(G$GX$V37! -JT<XQ>! #37$! $J+$! 4HE:!

T2G%)&'G$GX$V37! -JT<XQ>! 0=DD$! $J+%! QD00:!

T2G'*%(G$GX$V37! -JT<XQ>! [3?&K! $J+&! SHJB!

T2X88@G$G$$GU$V37! -JT<XQ>! 5IQ! $J+'! MTL!

T2G+-+-G$GU$V37! -JT<XQ>! ?"783! $J+'! JKE/!

T2G$+&'$G$GU$V37! -JT<XQ>! =2D%K! $J+)! D>06!



! ! +(!

T2G)&)%G$GX$V37! -JT<XQ>! >0D712! $J+*! OQ0EN>!

T2G$*$+,G$GX$V37! -JT<XQ>! <7>5D43! $J+*! <EOM0I!

T2G$)'%&G$GU$V37! -JT<XQ>! 7/23D)! $J++! JQOB9!

T2G)&%+G$GX$V37! -JT<XQ>! ?I1$0! $J++! JTN:Q!

T2G$+$(+G$GX$V37! -JT<XQ>! 54<'3'K! $J+,! MI<?H?!

T2G,)&&G$GX$V37! -JT<XQ>! 287=%! $J,$! >/ED6!

T2G$'$(,G$GX$V37! -JT<XQ>! />3<,K! $J,%! POH<7!

T2G$&$'%G$GX$V37! -JT<XQ>! 573D%3! $J,&! MEH06!

T2G$*%--G$GU$V37! -JT<XQ>! ?072=4! $J,'! JQE>DI!

T2G$*),%G$GX$V37! -JT<XQ>! D2Q</3! $J,'! 0>L<P!

T2G+$(&G$GU$V37! -JT<XQ>! <4>=B! $J,'! <IOD?!

T2G$$,**G$GX$V37! -JT<XQ>! 422<&&! $J,(! I>><BB!

T2X88@G$G*-GU$V37! -JT<XQ>! /1D@! $J,(! PN0=!

T2G*&G$GX$V37! -JT<XQ>! 5"Z>Q0IL*)Q$)G*! $J,)! >>A0:!

T2G$$%%%G$GX$V37! -JT<XQ>! 3=Q5$K! $J,)! HDLM:A!

T2G$&,*%G$GU$V37! -JT<XQ>! YB<Z)'$$'! $J,+! OOKE?!

T2G&()G$GU$V37! -JT<XQ>! B373%3! $J,+! CHEH6!

T2G+$*)G$GU$V37! -JT<XQ>! D3@(! $J,+! 0H=F!

T2G*%(*G$GX$V37! -JT<XQ>! 235B08$K3! %J--! >HMCQ/:A!

T2G*+-$G$GX$V37! -JT<XQ>! YB<Z$$-(+)! %J--! EM0HD6!

T2X88@G$G%)GU$V37! -JT<XQ>! K4=Q! %J--! AIDL!

T2G)%+(G$GU$V37! -JT<XQ>! B<5/K! %J-%! C<MP!

T2G$)$+&G$GU$V37! -JT<XQ>! >4<! %J-'! OIIB!

T2G%$+++G$GU$V37! -JT<XQ>! [3?%3! %J-'! SHJ6!
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CXCR4 expression and CNS infiltration: a study of murine 

models xenografted with human T-ALL cells 
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The CXCR4/CXCL12 axis seems to be particularly important for metastasis of different 

epithelial, mesenchymal and haemopoietic cancers. Activation of CXCR4 increased 

direct migration of cancer cells towards its specific ligand CXCL12 gradient. As 

CXCL12 is expressed in different type of tissues/organs (bone marrow, liver, spleen, 

kidney, lymph node and CNS), we can speculate that the expression level of CXCR4 in 

leukemic cells, could influence the ability of these cells to infiltrate extramedullary 

tissues, such as the CNS. At the moment, there are discordant hypotheses regarding the 

role of the CXCR4/CXCL12 axis and CNS infiltration in ALL. Through this study, we 

aimed to better clarify the importance of CXCR4/CXCR4 expression in determining the 

ability of T-lymphoblasts to infiltrate the CNS. We decided to use mice xenografted 

with primary pediatric T-ALL cells as we found that also this xenografted murine model 

can present infiltration at the meningeal level with different seriousness. Preliminary 

data revealed that also in the murine model, the expression levels of CXCR4 in T-ALL 

cells have a tendency to correlate with the degree of CNS infiltration at the meningeal 

level. This data underline the importance of CXCR4 expression as a possible conserved 

mechanism able to predispose T-lymphoblasts to enter the CNS. Further studies on a 

larger cohort of xenografted mice are actually ongoing. 
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Acute Lymphoblastic Leukemia (ALL) is the most frequent type of childhood 

malignancy [1] characterized by an uncontrolled growth of immature cells of the T- or 

B- lymphoid lineage. Leukemic cells colonize the bone marrow (BM) and often  also 

extramedullary organs, such as !30-50% spleen or liver [2] and < 5% Central Nervous 

System, CNS [3-4]. The ability to infiltrate the CNS gives a great advantage to 

lymphoblastic cells; in fact, the presence of the Blood Brain Barrier (BBB) impairs the 

entrance of chemotherapeutic compounds and malignant cells that escape into the CNS 

are protected from therapy. The presence of leukemic cells that survive to chemotherapy 

in extramedullary organs is problematic, because it can easily result in leukemic relapse. 

T-cell Acute Lympholastic Leukemia (T-ALL) represents  15% of pediatric ALLs and 

forms a high-risk group of patients. In fact, T-ALL is often associated to  increased 

white cell counts, hepatosplenomegaly, increased risk of leptomeningeal infiltration at 

diagnosis [5] and high risk of CNS relapse [6-7]. For this reason, T-ALL patients 

usually receive intrathecal chemotherapy associate to cranial irradiation, a treatment that 

can result in a number of complications (secondary tumours, growth impairment, 

neurocognitive deficits and endocrinopathy) [7]. The introduction of intensified 

treatment protocols has improved the outcome of children with T-ALL (five-year 

relapse-free survival rates of about 75%), and numerous efforts have been made to 

reduce or avoid the use of cranial irradiation [8]. However, cranial irradiation is still 

necessary for patients at high risk, especially for those that present CNS involvement 

already at diagnosis as well as at relapse [7]. Little is know about how leukemic cells 

can infiltrate the CNS; several studies claimed the discovery of ‘the key mechanism’ 

that allowed ALL cells to invade, survive and colonize the CNS, but results are diverse. 

Holland et al. showed an important role  for RAC2, AEP and ICAM1 expression in 

their study of a murine model of childhood pre-B ALL that developed CNS leukemia 

[9]. Buonamici et al. found a direct relation between CCR7 expression and the ability to 

infiltrate the CNS in a murine model xenografted with human T-ALL cell lines [10]. 

Moreover, there are discordant hypothesis regarding the importance of the 

CXCR4/CXCL12 axis and CNS infiltration; high levels of CXCR4 expression in 

lymphoblasts seem to be predictive of extramedullary organ infiltration in childhood 

ALL patients [11], however CNS-homing cells showed CXCR4 down-regulation in a 
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mouse model of CNS pre-B ALL [12] and children with ALL relapse associated to 

testicles or CNS leukemia showed blast cells with lower CXCR4 levels than blasts from 

cases with isolated bone marrow-relapses [13]. As we also found a positive correlation 

between cxcr4 expression levels and the degree of CNS infiltration in two T-ALL 

zebrafish models (chapter 1 of this thesis), we were particularly interested in studying 

the importance of the CXCR4/CXCL12 axis in human T-ALL metastatic behavior. The 

CXCL12/CXCR4 axis plays an important role in regulating the engraftment of CD34+ 

haematopoietic stem cells into the bone marrow [14-15], the egress of preB and T 

lymphocytes from the BM into the Peripheral Blood (PB) and lymphoid tissues [16] and 

in directing naïve leukocyte trafficking [17]. The interaction of CXCR4 with CXCL12 

activates the receptor, increasing the ability of cells to migrate towards a CXCL12 

chemo-attracting gradient and this is true for cancer cells as well [18-19]. At this point, 

we suppose that the deregulation of CXCR4 expression in T-ALL cells could increased 

the homing of malignant cells towards tissues expressing CXCL12. CXCL12 is 

constitutively expressed in several human organs, particularly in extramedullary tissues 

that are often found to be involved in leukemic infiltration: bone marrow, lymph nodes, 

liver, spleen, kidney and brain [19-20]. The metastatic role of CXCR4 is well 

documented for both solid tumors [18] and haematological diseases, such as malignant 

CD34+ Acute Myeloid Leukemia (AML) and Chronic Lymphoblastic Leukemia (CLL) 

[21-23]. However, the importance of this axis for T-ALL is not clear. Through this 

study, we aimed to better clarify the importance of CXCR4 expression in determining 

the ability of T-lymphoblasts to infiltrate the CNS. We decided to study this 

phenomenon using NSG, or NOD/SCID gamma, (NOD.Cg-Prkdc
scid

 Il2rg
tm1Wjl/SzJ) 

murine models xenografted with a set of primary T-ALL cells of pediatric patients.  

)!$%3/!'.&!14&)%$+,4.&
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T-ALL xenografts establishment 

Primary T-ALL cells were obtained from bone marrow (BM) of newly diagnosed 

pediatric patients, according to the guidelines of the local ethics committees. For 

xenografts establishment, 6- to 9-weeks-old mice were injected intravenously (i.v.) with 



! ! ,(!

10 x 106 T-ALL cells in 300 'l of Dulbecco's Phosphate Buffer Saline (PBS). NSG 

mice were purchased from Charles River (Wilmington, MA). Procedures involving 

animals and their care  were conform  institutional guidelines that comply with national 

and international laws and policies (EEC Council Directive 86/609, OJ L 358, 12 

December, 1987). T-ALL engraftment was monitored by periodic blood drawings and 

flow cytometric analysis of CD5 and CD7 markers over a 5-month period. Mice were 

sacrificed when more than 40% of cells in the PB resulted positive for the CD7 or CD5. 

TCR analysis 

The recombination, insertion and deletion of Immunoglobulin (Ig) and T-cell receptor 

(TCR) gene segments results in an individual gene sequence unique for each 

lymphocyte, named N-region. This genes junctional region can be considered a 

fingerprint-marker specific of each lymphocytes and consequentially, of each lymphoid 

neoplasia. We used this biological characteristic to check that xenografted cells from 

each mouse maintained the rearrangement of  the leukemia of the patient of origin. 

Histology and scoring system 

Skulls of sacrificed xenotransplanted mice were fixed in 4% paraformaldehyde, 

decalcified, paraffin-embedded and sectioned (5µm) according to standard procedures. 

Hematoxylin and eosin (H&E) staining was performed using standard protocols. 

Histopathological examination was performed in a blind fashion and details concerning 

experimental design were revealed only at the end of the analysis. T-lymphoblasts 

infiltration was found in the bone marrow of the skull, in dental alveoli, oral and 

rhinopharingeal mucosa, orbital space, middle ear and meninges.  

The following scoring system was used to classify the degree of lymphoblastic 

infiltration: 

Bone marrow 

0.  No invasion/colonization 
1. Focal or multifocal invasion/colonization with partial effacement of preexisting 

hematopoietic population 
2. Diffuse invasion with almost complete or complete effacement of preexisting 

hematopoietic population and focal disruption of bony encasement 
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3. Diffuse invasion with complete effacement of preexisting hematopoietic 
population and extensive disruption of bony encasement 
 

Dental alveoli 

0. No invasion 
1. Focal or multifocal invasion with partial effacement of periodontal ligament and 

dental pulp 
2. Diffuse invasion with almost complete or complete effacement of periodontal 

ligament and dental pulp 
3. Diffuse invasion with complete effacement and disruption of the alveolar socket 

 
Oral and rhinopharingeal mucosa 

0. No invasion 
1. Focal or multifocal infiltration and expansion of lamina propria and submucosa 
2. Segmental infiltration and expansion of lamina propria and submucosa 
3. Diffuse infiltration and expansion of lamina propria and submucosa with 

disruption of mucosal architecture and multiple infiltrative extension into the 
surrounding soft tissues 
 

Orbital space 

0. No invasion 
1. Focal or multifocal infiltration with partial obliteration of orbital soft tissues 
2. Diffuse invasion with almost complete or complete obliteration of orbital soft 

tissues and focal invasion of extraorbital structures 
3. Diffuse invasion with almost complete or complete obliteration of the orbits and 

extensive invasion of extraorbital structures 
 
Middle ear 

0. No invasion 
1. Focal or multifocal infiltration and expansion of lamina propria and submucosa 
2. Diffuse infiltration and expansion of lamina propria and submucosa 
3. Diffuse infiltration and expansion of lamina propria and submucosa with with 

disruption of mucosal architecture and multiple infiltrative extension into the 
surrounding soft tissues 

 

Meninges 

0. No invasion 
1. Focal or multifocal infiltration of dura mater with partial expansion and 

obliteration of arachnoid space 
2. Segmental to diffuse infiltration of dura mater with extensive expansion and 

obliteration of arachnoid space 
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3. Diffuse infiltration of dura mater with extensive expansion and obliteration of 
arachnoid space and focal/multifocal compression and degeneration of the 
subjacent neuroparenchyma 

Flow Cytometry and CXCR4 expression analysis 

Cells derived from both the spleen and the peripheral blood of 29 xenoengrafted mice 

were analyzed, by Flow cytometry (FCM) for CXCR4 expression. Briefly, 5*105 cells 

both from the mice spleen and PB, after haemolysis with ACK Lysis buffer (8.29 g/L 

NH4Cl, 1mM EDTA and 1g/L KHCO3), were stained with FITC-conjugated antibody 

against human CD45, a PE-coniugated antibody against human CXCR4, a PC5-

conjugated antibody against human CD7 and an APC-conjugated antibody against 

human CD3, following manufacture’s instructions. Unlabeled cells were first acquired 

to ensure labeling specificity. Jurkat cells were used to test the efficient staining of all 

antibodies. Relative percentages of different subpopulations were calculated based on 

live- gated cells (as measured by the physical parameters of side scatter and forward 

scatter). In particular the percentage of CXCR4 positive cells was calculated on the 

gated human CD45+ population. All antibodies were provided by BD (Becton 

Dickinson, San Jose, CA) and all samples were analyzed on the Navios Flow cytometer 

(Beckman Coulter, Brea, CA). 

RNA extraction, Reverse-transcription and Real-time polymerase chain reaction 

Total RNA from ! 5*105 cells extracted from the spleen of each mouse using Trizol, 

according to the manufacturer’s instruction (Invitrogen, Karlsruhe, Germany). RNA 

concentration was determined using NanoDrop ND-1000 Spectrophotometer 

(NanoDrop Technologies Inc, Wilmington, DE). RNA quality and purity control was 

assessed with the Agilent Bioanalyzed 2100 (Agilent Technologies, Waldbronn, 

Germany) using “Eukaryote total RNA Assay”. 1 µg of RNA was reverse transcribed 

using Superscript II (Invitrogen, Karlsruhe, Germany), and random primers following 

standard techniques. SYBR-Green Real-time quantitative PCR (qRT-PCR) was 

performed using the Platinum SYBR-Green qPCR SuperMix UDG (Invitrogen, 

Karlsruhe, Germany) and the 7900 HT Fast Real-Time PCR System (Applied 

Biosystems, Foster City, CA). qRT-PCR was executed for detecting expression level of 
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human CXCR4, while GUS was used as housekeeping gene to normalize gene 

expression data. qRT-PCR was performed in triplicates (both for housekeeping and 

genes of interest) for each sample and standard curve of 3 serial dilutions was used as 

control for each plates. Primers are listed in table 2. The specificity of the primers was 

examined with the corresponding dissociation curve. To allow comparison between 

samples, transcript quantification was performed after normalization with GUS using 

the Ct method and results were calculated according to the following formula 2-&ct, as 

previously described [24]. Analysis of expression was performed using the GraphPad 

Prisim 5 software. 

Mice xenografted with Jurkat cells 

NOD-SCID-common # chain knock-out mice were obtained from Jackson Laboratory, 

USA and maintained in specific pathogen-free (spf) animal facility. Ten week old mice 

were injected with 10x106 Jurkat cells i.v. and sacrificed after 21 days. 

Spleens were homogenized and the recovered cell suspension was washed in Complete 

Medium (RPMI 1640 containing 10% FBS, sodium pyruvate, glutamax, 2-

mercaptoethanol, non-essential aminoacids, penicillin and streptomycin) (GIBCO). Reb 

blood cells were lysed with ACK Lysis buffer (8.29 g/L NH4Cl, 1mM EDTA and 1g/L 

KHCO3). Blood was treated with ACK Lysis buffer and the leukocytes fraction washed 

in complete medium.  

For FACS analysis, ex-vivo cells were pre-incubated with blocking anti-FC# Receptor 

mab (HB197 hybridoma supernatant) prior to labeling with appropriate antibodies. 

Mabs conjugated with biotin, FITC, allophycocyanin, or allophycocyanin-Cy7 specific 

for the following antigens were used: hCD45 (LuBioScience GmbH); mLy6G and 

mLy6C (Becton Dickinson AG); mCD11b and hCD184 (CXCR4) (BioLegend). All 

samples were acquired with a BD LSR FortessaTM FACS (BD Biosciences) and 

analyzed with FlowJo software (Tree Star).  
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Murine models xenografted with pediatric T-ALL cells and CNS lymphoblastic 

infiltration 

The first efforts of this work investigated if murine models xenografted with pediatric 

T-ALL cells developed lymphoblastic CNS infiltration. We started with histological 

analysis of a first set of 18 xenografted mice heads. This analysis showed that 

xenografted mice developed T-ALL CNS disease to variable extends. Infiltration was 

observed in the bone marrow of the skull (BM), dental alveoli, oral and rhinopharingeal 

mucosa, middle ear, orbital space and meninges. The meningeal infiltration was of 

particular interest for this study where meningeal infiltration was used as a measure of 

the ability of T-ALL cells to eventually infiltrate the CNS. For each location analyzed 

mice presented different degrees of infiltration (figure 1A and B). A score for the degree 

of infiltration was applied ranging from 1-3 (table 1) according to the scoring system 

described in Material and Methods. Once we knew that, like the zebrafish model, also 

the murine model xenografted with pediatric T-ALL cells could be useful to study the 

phenomenon of CNS infiltration, we proceeded with the analysis of a second set of 

histological preparations of 29 xenografted mice heads. This second set of analysis is 

still ongoing. 

Murine models xenografted with pediatric T-ALL expressed variable levels of 

CXCR4  

We found that also mice xenografted with pediatric T-ALL cells developed CNS 

disease with variable degrees of infiltration. At this point, we decided to use the murine 

model to better understand the importance of CXCR4/CXCR4 (protein and mRNA) 

expression in relation to extramedullary infiltration in T-ALL. For all 29 mice included 

in the second set of histological analysis we measured CXCR4 expression both at 

protein and mRNA levels. The aim of this analysis was to clarify the biological 

meaning for human T-ALL cells to have high or low levels of CXCR4 in relation to 

their ability to infiltrate the CNS in an in vivo murine model.  
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Flow Cytometry (FCM) was used to detect human (CD45+) CXCR4 positive cells in 

samples derived both from mice spleen and Peripheral Blood (PB). With this analysis 

we wanted to investigate the relation between the percentage of human CXCR4+ cells 

and the seriousness of CNS infiltration. Data revealed among mice the presence of 

variable percentages of hT-ALL cells that were double positive (CD45+/CXCR4+) in 

specimens of the spleen and PB (figure 2A and B). However, we have to consider that 

the amount of CXCR4 at T-cells surface can be influenced by the presence of CXCL12 

in mouse spleen and vessels. As the binding of CXCL12 to CXCR4 causes the 

internalization of the chemokine receptor, the human cells (CD45+) that were found to 

be negative for CXCR4 can be attributed to interactions with CXCL12 in the murine 

environment and not to a real absence of CXCR4.  

 Levels of CXCR4 in Jurkat cells xenografted in the mouse   

To have an idea of the influence of the mouse microenvironment on CXCR4 

expression, we evaluated the percentage of CD45+/CXCR4+ cells in a murine model 

xenografted with the Jurkat cell line. Jurkat cells derived from in vitro culture expressed 

high levels of CXCR4 and cells were 100% double positive (CD45+ /CXCR4+) by 

FCM analysis. After xenografting, Jurkat cells extracted from spleen and PB showed 

partial loss of positivity, strongly suggesting the influence of murine CXCL12 on 

CXCR4 protein expression at the human T-cell surface (figure 3).  

Variable amount of CXCR4 are expressed by leukemic cells infiltrating mouse spleen 

At this point, we decided to measure CXCR4 expression using qRT-PCR to obtain a 

measure of chemokine receptor quantifications that would be less dependent on short-

term dynamic interactions with the microenvironment (e.g. CXCL12 levels). qRT-PCR 

was performed on samples extracted from mice spleen. Also for CXCR4 transcription 

we found a range of expression levels among mice (figure 4). Interestingly, no 

correlation was found between the expression of CXCR4 at the protein and mRNA 

level. 
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CXCR4 transcription tends to reflect the degree of CNS infiltration (preliminary 

results)  

For the moment, data of both histological analysis and qRT-PCR were available for 7 

matched sample pairs of the first set of 18 xenografted mice heads analyzed. 

Preliminary results show how CXCR4 expression levels tend to correlate with the 

degree of CNS infiltration (figure 5). Further analysis will be performed when 

histological analysis data will be completed also for the new set of 29 xenografted mice.   

4/."#../,1&
The ability of lymphoblasts to infiltrate the CNS continues to represent a great 

challenge in the cure of patients with ALL that present this complication. To deepen 

insight into the mechanisms that allowed ALL cells to invade the CNS is very important 

but also difficult at the same time. In fact, little material coming from ALL patients is 

available for studies, especially for material directly extracted from the cerebrospinal 

liquor of ALL patients with CNS involvement. To overcome these limitations, we 

decided to use NSG (NOD.Cg-Prkdc
scid

 Il2rg
tm1Wjl/SzJ) murine models xenografted with 

primary T-ALL cells of a set of pediatric patients. It has been largely shown how 

primary leukemic cells transplanted into murine recipients (NSG) cause the 

development of a disease, which is very similar to human leukemia. The first efforts of 

this study were focused in understanding if the T-ALL xenografted NSG murine model 

could also mimic the phenomenon of CNS disease. In a first set of histological analysis 

of mice, we found the presence of human T-ALL cells in the meninges of 12/18 

samples. Moreover, we found different degrees of infiltration (figure 1), that we divided 

in 3 levels depending on the meningeal layer interested and the amount of T-

lymphoblasts infiltrated in the meninges (table 1). These data showed that also the 

xenografted murine model can be a useful model for the study of CNS infiltration by 

human T-ALL cells. However, we have to underline that the presence of CNS 

involvement was more frequent in the mouse models compared to the pediatric T-ALL 

patients’ cohorts. Indeed, the mouse model could present CNS infiltration even if this 

situation had not presented itself in the donor patient at diagnosis. However, even if this 

xenografted model does not directly reflect the situation in the matched human patients, 
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it is very useful to deepen insight into mechanisms that regulate CNS homing by human 

T-ALL cells. Different results have been obtained by studies on mechanisms that allow 

CNS leukemia: particular importance was given to RAC2, AEP and ICAM1 expression 

in the pre-B mouse model [9] and to CCR7 expression in a T-ALL xenografted murine 

model [10]. Moreover, the expression levels of CXCR4 have been shown to give 

discordant results in determining CNS infiltration by blast cells [11-13]. 

 As we also found a positive correlation between cxcr4 expression levels and the degree 

of CNS infiltration in two T-ALL zebrafish models (chapter 1 of this thesis), we 

decided to use the murine model to understand if CXCR4 expression levels might 

predict the ability of T-ALL cells to infiltrate the CNS. Data of flow cytometry revealed 

the presence of different percentages of human (CD45+) CXCR4 positive cells in the 

peripheral blood and Spleen among mice (figure 2A/B). However, we have shown that 

CXCR4 protein expression levels are affected by dynamic changes due to the presence 

of the ligand CXCL12 in the mouse microenvironment. That is not surprising 

considering that human and murine CXCL12 present a high identity at the protein level 

(!92%) and that also in mice  CXCL12 is produced by stromal cells at different sites, 

such as BM, lymph nodes, spleen, vessels and brain [29]. When CXCL12 binds the 

CXCR4, the chemokine receptor is temporary internalized from the surface membrane 

of cells and no longer detectable by FCM. The latter can explain the presence of human 

cells that result to be CXCR4 “negative” by flowcytometry. To understand the influence 

of the microenvironment on CXCR4 surface membrane expression, we observed flow 

data obtained from a mouse model xenografted with Jurkat cells (figure 3). Also in this 

case, Jurkat cells that are 100% CXCR4 positive during in vitro culture showed 

diminished positivity of CXCR4 in an in vivo model (data of Spleen and Peripheral 

blood). These data underline the notion that CXCR4 surface expression in T-ALL cells 

is indeed highly variable and under direct influence of the microenvironment of an in 

vivo model. This influence makes it difficult to quantify the real amount of CXCR4 

expression in T-ALL cells. To have a measure of the intrinsic CXCR4 expression we 

decided to measure CXCR4 mRNA transcription through qRT-PCR analysis. qRT-PCR 

analysis revealed that in general T-ALL cell have a high expression of CXCR4, however 

also at the transcriptional level we found variability among samples (figure 4). 



! ! $-&!

Interestingly, preliminary data for 7 samples included in the first set of histological 

analysis revealed that in the murine model, CXCR4 expression of T-ALL cells have a 

tendency to correlate with the degree of CNS infiltration at the meningeal level (figure 

5). These data seem to confirm previous results obtained in the zebrafish model 

(Chapter 1 of this thesis) and underline the importance of CXCR4 expression levels as a 

conserved mechanism able to predispose T-ALL cells to enter the CNS. These 

preliminary results will be validated when histological analysis of the new set of 29 

cases will be concluded.   
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Figure 1. Histological analysis of two xenografted murine models with different degrees 

of CNS infiltration 
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Variable amount of human CXCR4 positive T-ALL cells in murine model 

 

Figure 2: Graphics show the variable percentage of human CXCR4 positive cells (gated on CD45+) 
found in the spleen (A) and Peripheral Blood (B) of xenoengrafted mice. Data obtained by FCM. Each 
bar corresponds to mice xenografted with different patients. Y-axis shows the percentage of CXCR4+ 
cells, calculated on amount of CD45+ cells. 

 

Influence of mouse microenvironment in CXCR4 expression at the T-cell surface 

 

Figure 3: Figures show the variation of CXCR4 expression in the surface of Jurkat cells from in vitro 
culture (A) to in vivo environment (B/C). (A) Image shows that all Jurkat cells (100%) in vitro culture are 
positive for CXCR4; (B-C) figures show variation of CXCR4 expression when Jurkat cells are 
xenotransplanted in murine model; particularly, Jurkat cells extracted from the spleen (B) or peripheral 
blood (C) of xenografted mouse partially lose their positivity. 
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Variable amount of CXCR4 are expressed by leukemic cells infiltrating mouse spleen  

 

Figure 4: Dot plot show the expression levels of CXCR4 in human T-ALL cells extracted from the spleen 
of different xenoengrafted mice. Data from qRT-PCR after normalization with the housekeeping gene, 
according to the formula formula 2-&ct [24]. Y-axis represents the RQ-value.  

 

 

CXCR4 transcription levels tend to correlate with the degree of CNS infiltration 

 

Figure 5: Preliminary data available for 7 cases. X-axis represents transcription level of CXCR4, Y-axis 
represents the degree of CNS infiltration at the meningeal level. Each dot corresponds to different sample. 
Pearson-correlation analysis was performed showing that results are not significant (p-value >.05). 
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Table 1: Results of histological analysis for the first set of 18 xenografted mice are 

summarized in this table. The score associated to each different structures reflect its 

degree of infiltration. 

 

#01 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 2 
Dental alveoli 0 
Oral and rhinopharingeal mucosa 0 
Orbital space 0 
Middle ear 0 

Head 

Meninges 0 
Tot 2 
#02 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 2 
Dental alveoli 0 
Oral and rhinopharingeal mucosa 1 
Orbital space 0 
Middle ear 0 

Head 

Meninges 1 
Tot 4 
#03 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 2 
Dental alveoli 0 
Oral and rhinopharingeal mucosa 1 
Orbital space 0 
Middle ear 1 

Head 

Meninges 1 
Tot 5 
#04 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 2 
Dental alveoli 0 
Oral and rhinopharingeal mucosa 1 
Orbital space 0 
Middle ear 1 

Head 

Meninges 1 
Tot 5 
#05 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 2 
Dental alveoli 1 

Head 

Oral and rhinopharingeal mucosa 1 
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Orbital space 0 
Middle ear 2 

 

Meninges 2 
Tot 8 
#06 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 3 
Dental alveoli 0 
Oral and rhinopharingeal mucosa 2 
Orbital space 1 
Middle ear 2 

Head 

Meninges 2 
Tot 10 
#07 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 2 
Dental alveoli 0 
Oral and rhinopharingeal mucosa 0 
Orbital space 0 
Middle ear 0 

Head 

Meninges 2 
Tot 4 
#08 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 2 
Dental alveoli 0 
Oral and rhinopharingeal mucosa 0 
Orbital space 0 
Middle ear 0 

Head 

Meninges 0 
Tot 2 
#09 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 2 
Dental alveoli 0 
Oral and rhinopharingeal mucosa 0 
Orbital space 1 
Middle ear 1 

Head 

Meninges 1 
Tot 5 
#10 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 2 
Dental alveoli 0 
Oral and rhinopharingeal mucosa 0 
Orbital space 0 
Middle ear 0 

Head 

Meninges 1 
Tot 3 
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#11 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 2 
Dental alveoli 0 
Oral and rhinopharingeal mucosa 1 
Orbital space 0 
Middle ear 0 

Head 

Meninges 1 
Tot 4 
#12 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 2 
Dental alveoli 0 
Oral and rhinopharingeal mucosa 1 
Orbital space 0 
Middle ear 0 

Head 

Meninges 2 
Tot 5 
#13 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 2 
Dental alveoli 0 
Oral and rhinopharingeal mucosa 1 
Orbital space 0 
Middle ear 1 

Head 

Meninges 1 
Tot 5 
#14 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 2 
Dental alveoli 0 
Oral and rhinopharingeal mucosa 0 
Orbital space 0 
Middle ear 0 

Head 

Meninges 1 
Tot 3 
#15 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 2 
Dental alveoli 0 
Oral and rhinopharingeal mucosa 0 
Orbital space 0 
Middle ear 0 

Head 

Meninges 0 
Tot 2 
#16 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 1 Head 

Dental alveoli 0 



! ! $$-!

Oral and rhinopharingeal mucosa 0 
Orbital space 1 
Middle ear 0 

 

Meninges 0 
Tot 2 
#17 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 2 
Dental alveoli 0 
Oral and rhinopharingeal mucosa 0 
Orbital space 0 
Middle ear 0 

Head 

Meninges 0 
Tot 2 
#18 

Anatomical 

segment 

Structures Degree of infiltration/colonization 

Bone marrow 2 
Dental alveoli 0 
Oral and rhinopharingeal mucosa 0 
Orbital space 0 
Middle ear 0 

Head 

Meninges 0 
Tot 2 

 

 

 

 

 

Table2. Primers used for qRT-PCR 

GENES PRIMERS 

Forward: 5’-CAGCAGGTAGCAAAGTGACG-3’ CXCR4 

Reverse: 5’-ATAGTCCCCTGAGCCCATTT-3’ 

Forward: 5’-GAAAATATGTGGTTGGAGAGC-3’ GUS 

Reverse: 5’-CGAGTGAAGATCCCCTTTTTA-3’ 
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Gene Expression Profiling analysis of ALL pediatric patients 

with Central Nervous System infiltration at diagnosis 
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Central nervous system (CNS) infiltration by leukemic cells in children with de novo 

acute lymphoblastic leukemia (ALL) is until the present day a major concern. Padiatric 

patients   with this unfavorable characteristic have a lower event-free survival and 

undergo intensive therapy directed against the central nervous system. The molecular 

mechanisms contributing to central nervous system infiltration are unclear. In order to 

explore potential biologic properties of ALL cells infiltrating the central nervous 

system, we applied whole-genome gene expression profiling to identify differently 

expressed genes that may characterize this phenomenon comparing ALL patients with 

(CNS+) and without (CNS-) central nervous system infiltration. We analyzed the gene 

expression profiles of pediatric patients  with de novo acute lymphoblastic leukemia 

committed to either the T- or B-cell lineage, of which 4 and 7 patients respectively, 

were positive for central nervous system infiltration at diagnosis. However we failed to 

find a strong signature that could identify CNS+ and CNS- patients. Results underlined 

the difficulty to study this phenomenon directly on human patients with this approach, 

as a high heterogeneity is present inside both T- and B-ALL and different mechanisms 

could drive blast cells in the CNS environment. 
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Childhood Acute lymphoblastic leukemia (ALL) is an aggressive tumor characterized 

by abnormal proliferation of lymphoblastic progenitor cells. ALL is committed to either 

the B- (B-ALL !85%) and the T- (T-ALL !15%) cell lineage and represents a large 

heterogeneous group with distinct morphology, immunophenotype and genetic 

abnormalities that are used to stratify patients into risk-groups ranging from standard-

risk to high-risk [1][2]. The presence of lymphoblasts infiltrating the Central nervous 

system (CNS) is an event that can be present both at diagnosis (<5%) and relapse (!30-

40%)[3][4] in ALL patients and is an unfavorable feature that stratifies patients in the 

high risk group. The presence of CNS infiltration is not always accompanied by clinical 

symptoms and  is usually detected through a lumbar puncture of the cerebrospinal fluid 

(CSF) [3]. Over the past years, the 5-year event free survival rate (EFS) of ALL 

pediatric patients has considerably improved due to more appropriate risk stratification 

and treatment. Although the overall EFS has increased significantly, reaching 

percentages above 85% [5], there are still patients that remain of  major concern, such  

as patients with CNS infiltration [6]. In the seventies and eighties of last century, 

leukemic patients with CNS infiltration were mostly treated with cranial irradiation, 

even if cranial irradiation caused many secondary diseases, such as secondary cancer 

development. Recently, numerous efforts have been made to reduce the use of 

radiations and two studies demonstrated that cranial irradiation could be completely 

omitted using intensive triple intrathecal therapy (methotrezate, hydrocortisone and 

cytarabine) [3][4] [7]. Even if at reduced dosage, cranial irradiation is still 

recommended to treat patients that have been assigned to the  high-risk group with CNS 

relapses, such as those that presented CNS leukemia at diagnosis (>5 White Blood 

Cells/µL with blasts) and/or T-cell phenotype ALL with high WBC counts [8].  

Several studied investigated mechanisms used by lymphoblasts to infiltrate the CNS, 

but results are variable. Two studies tried to identify a common mechanism used by 

ALL cells to infiltrate the CNS, without distinguishing between B- and T- lineage ALL; 

Gunnar Cario and colleagues studied the differences in gene expression between 

children with- and without- CNS infiltration in ALL, proposing the up-regulation of 

interleukin-15 as predictor of the ability of blasts to infiltrate the CNS. However, these 
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results have not been reproduced in other studies [9]. Indeed, Crazzolara and colleagues 

focused their attention on CXCR4, showing that higher expression levels of this 

chemokine receptor could be predictive of blasts ability to infiltrate extramedullary 

organs in ALL pediatric patients. However, in their work, data regarding CNS 

infiltration were not shown [10]. On the contrary, other studies investigated possible 

mechanisms of CNS infiltration focusing in specific ALL subgroups; Buonamici and 

colleagues identified in the CCR7 expression the key signal directing T-lymphoblasts 

towards the CNS using a murine model xenografted with human T-ALL cell lines.  

Also the latter study lacks confirmation by and validation in further studies [11]. 

Holland and colleagues underlined an important role played by RAC2, AEP and 

ICAM1 expression in determining CNS involvement in a mouse model xenografted 

with human pre-B pediatric ALL cells [12]. Instead, in another study performed in a 

pre-B ALL murine model, CNS-homing cells showed CXCR4 down-regulation both at 

the transcriptional and protein level, complicating the understanding of the role played 

by CXCR4 in determining CNS infiltration [13]. Moreover, another study showed that 

in children with ALL relapses associated to testicles or CNS leukemia blast cells had a 

significantly lower CXCR4 level than blasts from children with relapsed disease 

isolated to the bone marrow [28]. 

In conclusion, different results have been found in these works and the mechanism/s 

used by ALL cell to infiltrate the CNS is/are still poorly understood. As the mechanisms 

related to pathogenesis of CNS infiltration are unknown, the creation of a target-

directed therapy that could prevent this phenomenon is still a big challenge. In this 

study we aimed to investigate the presence of a specific gene expression signature that 

could characterize ALL patients with (CNS+) and without (CNS-) CNS infiltration at 

diagnosis. To achieve this aim we used the genome-wide Gene Expression Profiling 

approach on specimens of pediatric ALL patients enrolled in the “Associazione Italiana 

Ematologia-Oncologia Pediatrica” (AIEOP) ALL-2000 protocol and we separately 

analyzed   a T-ALL and a B-ALL patients at diagnosis. For each cohort, we compared 

CNS+ and CNS- patients; in this way, differentially expressed genes between the two 

groups (CNS+ vs. CNS-) were addressed. Moreover, we investigated in patients our 
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results previously obtained from studies of zebrafish and murine models; in particular, 

we analyzed the expression levels of CXCR4 in a T-ALL cohort.  
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Human leukemia samples  

Bone marrow or Peripheral Blood aspirates were collected from pediatric patients with 

B-ALL or T-ALL at diagnosis. All patients selected for this study were enrolled in the 

AIEOP ALL-2000 protocol. Patients’ parents or legal guardians did provide written 

informed consent for the use of patient material for biomedical research in accordance 

with the Declaration of Helsinki. For gene expression profiling analysis we used the 

following two cohorts: 

T-ALL cohort: 45 pediatric patients at diagnosis of T-ALL enrolled in the AIEOP 2000 

protocol. PB or BM specimens were available to perform GEP. Four patients showed 

CNS infiltration at diagnosis with more than 5 lymphoid blasts/µl in the cerebrospinal 

fluid (CSF) and 41 without CNS Infiltration. In Table 1 we reported the biological and 

clinical features of  T-ALL patients analyzed in this study.  

B-ALL cohort: 58 pediatric patients at diagnosis of B-ALL, enrolled in the AIEOP 2000 

protocol. PB or BM specimens were available to perform GEP. Seven patients showed 

CNS infiltration at diagnosis with more than 5 lymphoid blasts/µl in the cerebrospinal 

fluid (CSF) and 51 without CNS Infiltration. In Table 2 we reported the biological and 

clinical features of  B-ALL patients analyzed in this study. 

RNA isolation, quality controls and quantification 

Mononucleated cells (MNC) were isolated via the Ficoll-Paque method (GE Healthcare 

companies, Buckinghamshire, United Kingdom), which is based on density gradient 

centrifugation. Total RNA from MNC derived from bone marrow (BM) or peripheral 

blood (PB) aspirates was extracted using Trizol (Invitrogen, Karlsruhe, Germany), 

according to manifactures’ instructions. To perform gene expression experiments, 

extremely high quality of total RNA is required. To assess the quality of RNA, Agilent 

Bioanalyzer Expert 2100 (Agilent Technologies, Waldbronn, Germany) was used. RNA 
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concentration was determined using QBit 2.0 Fluorometer (Life Technology, Carlsbad, 

California, U.S.). NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies Inc, 

Wilmington, DE). The instruments provide the sample concentration in ng/µl and the 

absorbance of the sample at 260nm and 280nm. The ratio (260/280) ranging from 1.8 to 

2.1 indicate good quality of RNA (ratio < 1.8 means protein contamination and ratio > 

2.1 RNA degradation and truncated transcripts).  

Gene expression profiling 

Only RNA samples that passed the high quality controls were diluted to 100ng in a total 

volume of 3µl DEPC treated water to perform gene expression experiments. In vitro 

transcription, hybridization and biotin labelling were performed according to GeneChip 

3’IVT Express kit protocol (Affymetrix, Santa Clara, CA). The Affymetrix GeneChip 

Scanner was used to measure all intensities of the signals of each probe set on the 

GeneChip and stores all signals in a .DAT file (Raw image). Integrated software 

converts all raw signals into numbers, which were stored in a .CEL file. All GEP 

profiles used in these experiments were assessed for their comparability and quality, 

using different quality controls: Scale Factor, number of present calls, internal probe 

calls, Poly-A controls and the ratio GAPDH/!-actin 3’/5’.  

Statistical analyis 

Microarray data (.CEL files) were analyzed using Command Expression Console 

(Affymetrix). R-Bioconductor (Version 2.15.3) was used to analyze the .CEL files data 

in an unsupervised and supervised manner. Unsupervised analysis (Class Discovery) is 

a learning algorithm that clusters unspecified specimens together based on similar gene 

expression patterns and is therefore highly unbiased. Supervised analysis (Class 

Comparison, Class Prediction) is a learning algorithm that uses already defined 

(labeled) data in order to identify a set of genes that characterize the pre-specified data. 

The .CEL files first were normalized using the justRMA algorithm. justRMA is an 

algorithm fulfilling 2 steps, namely background adjustment of all the probe sets present 

on the GeneChip and quantile normalization to make the values of all the GeneChips 

comparable. In order to find differently expressed probe sets we applied a Shrinkage t-

test on the normalized .CEL files [19]. We used a local false discovery rate (lfdr) as 
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correction of the p-value; a ldfr < 0,05 was considered significant for genes differently 

expressed between 2 groups. Differently expressed probe sets derived from the 

Shrinkage t-test were used for clustering analysis. Hierarchical clustering analysis was 

used to clusterize the specimens in an unsupervised manner using Euclidean Distance 

and Ward’s Method. Euclidean Distance and Ward’s Method compute the distance 

between two groups in a metric space. qRT-PCR statistical analyses and graphs were 

generated by GraphPad Prism software (Version 5.0.0).  

Gene Ontology analysis 

Differently expressed genes between CNS infiltrate (CNS+) and non-infiltrated (CNS-) 

ALL pediatric patients were analyzed using Database for Annotation, Visualization and 

Integrated Discovery (DAVID) v6.7.  
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Gene Expression Profiling of pediatric T-ALL and B-ALL patients at diagnosis 

With this project we aimed to investigate the presence of a specific gene expression 

signature that could distinguish ALL patients with (CNS+) or without (CNS-) Central 

Nervous System infiltration at diagnosis. In order to identify different expression 

signatures between CNS+ and CNS- ALL patients at diagnosis, we performed Gene 

Expression Profiling (GEP) experiments (using Affymetrix HG U133 Plus 2.0 arrays) in  

45 T-ALL and 58 B-ALL pediatric patients enrolled in the AIEOP 2000 protocol. 

CNS infiltration in pediatric T-ALL patients 

We started with the analysis of 45 T-ALL pediatric patients, including 4 CNS+ cases. 

Using supervised analysis (Shrinkage T-test, lfdr <0,05), we identified 582 probe sets 

differently expressed between CNS+ (n=4) versus CNS- (n=41) patients (lfdr < 0.05). 

Unsupervised hierarchical clustering analysis (using the 582 probe sets differently 

expressed) separated the 45 patients in two main branches (figure 1); the branch on the 

right comprised only CNS- patients, while in the left arm the CNS+ patients clustered 

together with a small group of 5 CNS- patients. Interestingly, the 4 CNS+ patients 
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clustered together based on a similar gene expression signature using the 582 probe sets 

(517 genes) differently expressed between CNS+ versus CNS- patients. Particularly, we 

found 125 and 391 genes up-regulated in CNS+ and CNS- patients, respectively (table 

3). However, the majority of genes differently expressed between CNS+ and CNS- 

groups showed  a low fold change (FC) which could be attributed to the small number 

of CNS+ samples available for this analysis and by the presence of a group of CNS- 

patients that behaved similar  to CNS+ cases. The observation that some T-ALL CNS- 

patients behaved similar to CNS+ cases flattened differences between groups (CNS+ vs. 

CNS-) and contributes to the absence of a strong signature for patient with CNS 

infiltration at diagnosis. Moreover, these results lead to the assumption that CNS+ T-

ALL patients are a heterogeneous group and mechanisms that drive their T-

lymphoblasts towards the CNS could be diverse, impairing the extraction of a strong 

gene expression signature. This hypothesis is strengthened by results of unsupervised 

analysis (figure 2): CNS+ patients cluster independently of one another, suggesting a 

weak similarity in gene expression profiling. Interesting, the phenomenon of CNS 

infiltration at diagnosis in T-ALL seems  not  to depend on  the cytogenetic subgroup of 

patients that was predicted using a GEP classifier for cytogenetic subgroup [16]. In fact, 

two patients with CNS infiltration presented a TALLMO signature, while the others 

were predicted to be TLX1 and TLX3.  

We further investigated the list of  517 genes differently expressed between CNS+ 

versus CNS- patients at  the molecular level, in order to inquire more detailed 

information on potential gene networks that may be related to CNS infiltration. Gene 

ontology analysis using DAVID software revealed a significant (p-value=0,005) up-

regulation of the Wnt/"-catenin pathway (figure 3) in CNS- patients.  

In the light of a previous work [10] and results found in the chapter 1 and chapter 2, we 

decided to investigate the CXCR4 expression in T-ALL pediatric patients. The dot plots 

showed how in general blast cells of the T-lineage express high levels of CXCR4 (figure 

5), independently from CNS infiltration. Of note, we can notice a patient with lower 

expression of CXCR4 inside the group of CNS+ patient that strengths our hypothesis of 

more than one mechanism that can drive blast cells in the CNS environment. This 

analysis shows that CXCR4 transcription in blast cells is very high both in patients with- 
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and without- CNS infiltration. We have to remember that with the previous results 

(chapter 1 and 2) we showed that expression levels of CXCR4 are not necessary to 

infiltrate the CNS, but could confer an increased ability for lymphoblasts to infiltrate 

this environment.  

CNS infiltration in pediatric B-ALL patient 

We continued gene expression analysis in a cohort of 58 B-ALL patients, including 7 

CNS+ and 51 CNS- cases. Supervised analysis using Shrinkage t-test with lfdr 

correction (lfdr<0.05) resulted in 460 probe sets differently expressed between CNS+ 

and CNS- B-ALL patients at diagnosis. The dendogram of hierarchical clustering 

revealed a highly similar gene expression signature for the 7 CNS+ B-ALL patients and 

11 CNS- B-ALL patients that cluster together in one branch (figure 4). . We further 

investigated the list of probe sets (343 known genes) differently expressed between 

CNS+ versus CNS- patients. Particularly, 138 genes and 206 genes were up-regulated in 

the CNS+ and CNS- group respectively. Also in this case genes present  low FCs  that 

could  be attributed to the presence of a group of CNS- patients with a  signature similar 

to that of CNS+ cases. We performed gene ontology analysis, using DAVID software 

and identified  in the B-ALL cohort, gene networks  related to cytoskeleton remodeling 

pathways. In table 4 we reported genes and pathways related to cytoskeleton remodeling 

that were found to be down-regulated in CNS+ patients. This may indicate that 

pathways related to cytoskeleton remodeling could play a role in the mechanisms used 

by B-ALL cells to infiltrate the CNS.  

Expression of IL-15 in T-ALL and B-ALL  

CNS infiltration is more likely to occur in T-ALL than in B-ALL patients [8]. B- and T-

ALL patients do not differ only in cell lineage but also in genetic landscape, 

transcriptome and treatment. At this point, we wanted investigate in both the T-ALL 

and B-ALL cohort, the expression of Interleukin-15, a gene that has been shown to be 

important in determining CNS invasion [9]. Moreover, we were interested in IL-15 

because it can enhance CXCR4 transcription [27]. In our cohort, IL-15 is significantly 

more expressed in T- compared to the B-lineage ALL samples (figure 6). 
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In the previous chapters of this thesis the gene networks that seem to facilitate the 

entrance of lymphoblasts in the CNS were studied in animal models (zebrafish and 

mouse xenografted with human T-ALL cells). Here we investigated this aspect in 

pediatric patients samples using whole transcriptome analysis. We examined the 

presence of gene expression profiling signatures that could distinguish patients with 

(CNS+) or without (CNS-) CNS involvement.  

We started our analysis on a cohort of 45 T-ALL pediatric patients at diagnosis in which 

4 cases where CNS+. Applying supervised analysis we identified 582 known genes 

differently expressed between CNS+ and CNS- T-ALL patients (lfdr<0.05), however 

these genes presented a low FC which is indicative of a limited distinction in gene 

expression profiling between the two groups  (CNS+ vs. CNS-). Interesting, gene 

ontology analysis (DAVID) identified an up-regulation of the Wnt/"-catenin pathway in 

the group without CNS infiltration; in Chapter 1 of this thesis we already found that the 

activation of this pathway was present in the zf line (hlk), which showed low levels of 

CNS infiltration. One might speculate that an increased activation of the Wnt/"-catenin 

pathway determines a reduced ability of T-lymphocyte to infiltrate the CNS. 

Next we applied a supervised analysis on patients with de novo B-ALL and we 

identified 460 probe sets differently expressed between CNS+ and CNS- B-ALL 

patients. However, also in this case the FCs were not high. For the B-ALL cohort gene 

ontology analysis showed that several genes up- (n=2) and down- (n=10) regulated were 

directly involved into cytoskeleton remodelling pathways, suggesting that CNS 

infiltration could be associated with alterations in the cytoskeleton. However, as 

indicated by the low FCs also for B-ALL we failed to find a strong signature that 

distinguished patients with- and without- CNS involvement. 

Both these two gene expression analyses on a T- and B-ALL cohort failed to identify a 

strong signature that identified patients with CNS involvement at diagnosis. The 

intricacy to find a strong signature that identifies CNS+ cases in both T- and B-ALL 

cohorts could be due to several causes; 1) the small number of patient analyzed  (n=4 

CNS+T-ALL and n=7 CNS+ B-ALL); 2) the presence of a group of patients without 
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CNS infiltration that cluster together with the CNS+ cases, flattening the difference 

between CNS+ and CNS- and 3) the mechanisms that allow lymphoblasts to infiltrate 

the CNS could be many and entailing different gene networks activation and different 

gene expression profiles for samples of ALL patients with CNS disease.  

It is surprising to observe how in both T- and B-ALL cohort, a group of patients without 

CNS infiltration had a very similar signature to CNS+ cases. In this respect we should 

remember that the current methodology to diagnosis the presence of CNS infiltration in 

pediatric ALL patients uses cytological analysis of a smear of CSF. Several studies have 

already shown the importance of using more sensitive techniques, such as flow 

cytometry (FCM) or PCR-methods, to detect CNS disease. In fact, using FCM and PCR 

for CSF analysis, several patients classified as CNS- resulted having a subclinical 

infiltration of the CSN [17][18][19][20][21] and the presence of small numbers of 

leukocytes in the CSF at diagnosis remains a controversial risk factor [22][23][24].  As 

the classification of CNS disease is not still perfect, we can speculate that also our 

cohorts might include patients with subclinical CNS infiltration among the CNS- group, 

which could partially explain the rather weak gene expression signature for CNS+ 

patients. Moreover, the CNS- cases that clustered together with the CNS+ cases could 

represent this group. Of course that is only a speculation and further studies need to be 

performed to clarify this hypothesis.  

In this work, we also investigated if our previously results found to be related to an 

increased ability to infiltrate the CNS in animal models (Chapter 1 and 2) could be 

transferred to human ALL  samples. Particularly, we investigate the levels of CXCR4 

transcription in the T- ALL cohort and we found a high expression of CXCR4 both in 

CNS+ and CNS- patients. Notably, within the group of T-ALL CNS+ patients, we 

found 3 patients with very high- and one patient with lower- CXCR4 expression levels. 

We can speculate that these patients reflect both the zebrafish models with high- 

(hMYC-ER) and low (hlk) expression of CXCR4. When we look back at chapter 1, the 

expression levels of CXCR4 did not discriminate between CNS+ and CNS- specimens, 

but positive correlated with the seriousness of CNS infiltration. However, also patients 

without CNS infiltration showed high CXCR4 transcription levels indicating that 

expression levels of CXCR4 alone are not indicative of higher degrees of CNS 
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infiltration in human patients. At this point, it is necessary to underline that the 

phenomenon of CNS infiltration in human patients can not directly be compared to 

CNS infiltration in animal models: whereas CNS infiltration in zebrafish and murine 

models consisted of massive infiltration at the meningeal levels, CNS infiltration in 

human patients referred to blast cells (>5 WBC/µL with blasts) detected in the CSF and 

we might expect that the biological phenomenon we are observing is not exactly the 

same. In fact, in animal models we were in front of an extreme situation that could 

represent CNS leukemia in patients in the 1970s [25] fortunately no longer observed in 

human patients. The passage from animal model and human patients is not so linear. As 

several events related to microenvironment can influence CXCR4 transcription [26], 

further analysis need to investigate not only the expression level of CXCR4, but also its 

regulation in human T-ALL.  

Analysis of expression of IL-15, an interleukin related to the ability to infiltrate the CNS 

[9] and capable to increase CXCR4 transcription, revealed increased expression levels in 

T- compared to B- lineage. Interesting, B-cells lose the ability to respond to CXCL12 

during maturation, even if the chemokine receptor CXCR4 continues to be highly 

expressed on the membrane surface [14][15]. These observations suggest that T-

lymphoblasts present both higher expression of IL-15 and functional CXCR4, two 

factors that seem  advantageous for lymphoblasts to infiltrate the CNS and which could 

partially suggest why the incidence of CNS infiltration is higher in T- compared to B-

ALL. 

Further studies are needed to understand if mechanisms favoring  CNS invasion 

observed in animal models can be translated to human patients. Moreover, further 

studies are required that directly address CNS+ disease in human patients.  
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Supervised analysis of the T-ALL cohort using the 582 probe sets differently expressed 

between CNS+ and CNS- patients at diagnosis 

 

Figure 1: CNS+ patients are underlined in blue (n=4), CNS- patients in orange (n=41). 

Hierarchical clustering of the T-ALL patients (n=45) was made using the 582 probe sets found 

with the Shrinkage T-test with lfdr <0.05. X-axis represents patients while the Y-axis shows the 

probe sets of the list. Euclidean distance and Ward’s method were used for clustering. The 

dendogram reveals two main branches; the branch on the right comprises only CNS- patients, 

while in the left branch the CNS+ patients clustered together with 5 CNS- patients. 

Unsupervised analysis hierarchical clustering of T-ALL patients at diagnosis 

 

Figure 2: CNS+ patients are underlined in blue (n=4), CNS- patients in orange (n=41). CNS+ 

patients (blue) cluster independently in different branches in an unsupervised analysis, revealing 

a different gene expression profiling between samples. 
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Activation of Wnt/"-catenin pathway in CNS- T-ALL pediatric patients 

 

Figure 3: Pathway analyses tools DAVID 6.7 revealed a significant activation of the Wnt/"-

catenin pathway in T-ALL patients without CNS infiltration. Red stars indicate genes of the 

Wnt/"-catenin pathway that resulted significantly upregulated in the gene list derived from the 

comparison between CNS- vs. CNS+ groups. 
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Supervised Analysis of the B-ALL cohort using the 460 probe sets differently expressed 

between CNS+ and CNS- patients at diagnosis 

 

Figure 4: Hierarchical clustering of the B-ALL patients (n=58) with CNS infiltration (blue) and 
without CNS infiltration (orange) at diagnosis based on a list of 460 probe sets obtained after 
applying a Shrinkage T-test with lfdr <0.005. The CNS+ B-ALL patients cluster together with a 
highly similar gene expression signature. X-axis represents the patients and the Y-axis the 
genes. For clustering we used Euclidian distance and Ward’s method. 

 

Figure 6: Dot plot for IL-15 in T-ALL and B-ALL. The dot plot shows expression levels of 
IL-15 for T-ALL and B-ALL patients. Data show higher expression levels in T- compare to B-
lineage. X-axis represents the T- and B-ALL subgroups and the Y-axis the genes expression 
data for IL-1 
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CXCR4 expression in a cohort of T-ALL 

 

Figure 5: Graph represents gene expression profiling (GEP) data for the expression of a probe 

set representing the CXCR4 gene. Each dot corresponds to one patient. The expression value of 

CXCR4 for each patient is given in log2 scale after normalizing GEP data with justRMA 

algorithm normalization. X-axis represents patients and the Y-axis the genes expression. Dot 

plot shows CXCR4 expression levels on a cohort of 45 T-ALL pediatric patients. The blue dots 

represent the 4 CNS+ cases. In red are underlined CNS- patients that clusterized with CNS+ 

cases in the supervised analysis.  
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Table 3. Genes differently expressed between CNS+ and CNS- T-ALL patients 

*GHIE!.EK! :EFE!!.QUIOE! $N8GEDMOLKEP!\F! 3#!

%$*'+'V37! 9;$! 9]U_! $J&'!

%$'))-V37! R.^X$! 9]U_! $J&'!

%-((''V5V37! 9;%! 9]U_! $J&$!

$()-&(,V37! HiCj! 9]U_! $J%+!

%%-&-*V37! 9T%''! 9]U_! $J%)!

%''*$-V37! C;^kl! 9]U_! $J%&!

%&),$-V37! W;HC&,! 9]U_! $J%$!

$(((($&V37! HRXU%! 9]U_! $J$,!

$(),+%*V37! X.^*! 9]U_! $J$,!

%&(,$&V37! m]S++-! 9]U_! $J$,!

%%'-&)V5V37! CWg;$! 9]U_! $J$,!

$((,-'%V37! ]TkSg)! 9]U_! $J$*!

$((',,,V37! ;XU^iS$g! 9]U_! $J$*!

%&('*&V37! WiT)! 9]U_! $J$*!

%%**($V37! HT9T(! 9]U_! $J$*!

%%()($V37! kgi%i%! 9]U_! $J$)!

%$'-$%V37! i;XH$! 9]U_! $J$(!

$((()$-V37! X^l! 9]U_! $J$(!

%&%-%)V37! Mi;9'! 9]U_! $J$(!

%%-+-&V37! U.XWgHC$! 9]U_! $J$'!

%$+(+,V37! CHX;)! 9]U_! $J$'!

$()%%*$V@V37! X;M^iS*! 9]U_! $J$'!

%%'(,)V37! UC9''X$! 9]U_! $J$'!

%-',$+V5V37! WCC.&! 9]U_! $J$'!

%$(%)+V37! lRXX-*('! 9]U_! $J$'!

%&%%,(V37! ^SW$! 9]U_! $J$'!

$((%+&(V37! Ti]]T$g! 9]U_! $J$'!

%%+(-)V37! ]UW9i'X! 9]U_! $J$'!

%$$%--V5V37! iS9Xg%! 9]U_! $J$&!

%$+(,*V5V37! 9RUT$! 9]U_! $J$&!

$(('&-,V37! iRS'^&! 9]U_! $J$%!

%$)$$(V37! ]S$! 9]U_! $J$%!

$(()(,,V5V37! X;HH%$! 9]U_! $J$%!

$()-*&'V37! Cj9*%*,%'! 9]U_! $J$%!

%&$,,(V37! 9,128+%! 9]U_! $J$%!

%%'$*&V5V37! W;HC&-! 9]U_! $J$%!

%$,&))V37! Xni]! 9]U_! $J$%!

%%*(+(V37! X.XT$! 9]U_! $J$%!

%&(,%*V37! :Hj$! 9]U_! $J$$!

%&*+()V37! ;XH$^TU$! 9]U_! $J$$!

%-%,*,V5V37! 9;igmS! 9]U_! $J$$!

%$+'&*V5V37! Cm.SC$! 9]U_! $J$$!

%-&%$$V5V37! W.W;%! 9]U_! $J$$!



! ! $&%!

%&)'+$V37! SXM! 9]U_! $J$$!

%%(%*+V37! H;lXg%! 9]U_! $J$$!

%&(+$-V37! m]S$+%! 9]U_! $J$$!

%'&,(*V37! Cj9'--')'! 9]U_! $J$-!

%&+%,(V37! 9$*128'%! 9]U_! $J$-!

%%)+-%V5V37! Cj9,))$-! 9]U_! $J$-!

%%)*,-V37! Wj;]%! 9]U_! $J$-!

%$('%(V37! g.^&! 9]U_! $J$-!

%-'(*+V37! HHRH(l$! 9]U_! $J$-!

%$'('&V@V37! olR! 9]U_! $J$-!

%-(($+V5V37! 9WXMH! 9]U_! $J$-!

%%)--,V37! TH9T! 9]U_! $J$-!

$(())$&V5V37! TH\$,C'! 9]U_! $J$-!

%$*)&&V37! k;g$! 9]U_! $J$-!

%&-($)V37! 9*128&-! 9]U_! $J$-!

%%&(,$V37! ;]S$&(! 9]U_! $J$-!

%$(%+&V37! Cj9&&,%,-! 9]U_! $J$-!

%&%&$%V37! HHH);&! 9]U_! $J$-!

%$-%$,V37! UH$--! 9]U_! $J-,!

%%*$+*V37! 9gCC$! 9]U_! $J-,!

$((&$&&V37! 9,128*%! 9]U_! $J-,!

%$(,%%V37! ;iHU$! 9]U_! $J-,!

%-$'&)V37! iRS'i! 9]U_! $J-,!

%&$,*-V37! 9$'128$$+! 9]U_! $J-,!

%%*(*(V5V37! 9$'128$-%! 9]U_! $J-,!

%&*-*)V37! ]9U.]! 9]U_! $J-,!

%$%(*%V37! U.l&+C! 9]U_! $J-,!

%$',$*V37! H;lXX$! 9]U_! $J-,!

$((*&)-V37! C;HH;9! 9]U_! $J-,!

%$-(&$V37! ];%9$! 9]U_! $J-,!

$()&)*'V37! S9;C%! 9]U_! $J-,!

%'%&*-V37! W.MST%C! 9]U_! $J-,!

%$*(-&V37! U.l$*g! 9]U_! $J-,!

%%%'''V37! X;W9:&! 9]U_! $J-,!

%-%+$*V5V37! UU$+! 9]U_! $J-+!

%%*$)%V37! mg.g%)! 9]U_! $J-+!

%%**))V37! CR^'! 9]U_! $J-+!

%%$(%&V5V37! ;;X^T! 9]U_! $J-+!

$()''+%V37! X.H(j! 9]U_! $J-+!

%&$-))V5V37! 9C9]'! 9]U_! $J-+!

%$*'%*V5V37! MR;X! 9]U_! $J-+!

%%+&($V37! MiX.;$! 9]U_! $J-+!

$()*%$&V37! H]]! 9]U_! $J-+!

%&($)%V37! WTW'! 9]U_! $J-+!

%$$-)*V5V37! ^XU*! 9]U_! $J-+!



! ! $&&!

%%)-&)V@V37! 9XUH%! 9]U_! $J-+!

%$,,)+V37! m]S(+,! 9]U_! $J-*!

%$-*$(V5V37! UHR].%! 9]U_! $J-*!

%&'&-+V37! .kg^9H)! 9]U_! $J-*!

%'%&-'V37! fRg^! 9]U_! $J-*!

%$%,(,V5V37! ^]H.Xg! 9]U_! $J-*!

%$&-+*V5V37! iiS$T! 9]U_! $J-*!

%%*,-'V37! XmR%! 9]U_! $J-*!

%&-*-)V5V37! 9XWl%]%! 9]U_! $J-*!

%%,&$*V37! lH]X(! 9]U_! $J-*!

$(('(,(V37! U\WHl! 9]U_! $J-*!

%-%,-*V5V37! ]g]! 9]U_! $J-*!

%$'-)-V37! UUgH$! 9]U_! $J-*!

%$*$+*V37! Wk9(X9! 9]U_! $J-*!

%%,$'$V37! fT;&&! 9]U_! $J-*!

%&&(,,V37! Cj9*%+-)$! 9]U_! $J-*!

%&+++-V37! ^.S&X! 9]U_! $J-)!

$((&',&V3V37! .TM! 9]U_! $J-)!

$()&-&'V37! ^HT$! 9]U_! $J-)!

%%,+-&V5V37! ]kT.&! 9]U_! $J-)!

%%'*(,V5V37! 9$%128%&! 9]U_! $J-)!

%$,,&$V5V37! lCMC$%! 9]U_! $J-)!

%&%%(&V37! 9(128()! 9]U_! $J-)!

%$'$,*V5V37! Ui.Tg$! 9]U_! $J-)!

%%*%*'V37! U\]p%gH! 9]U_! $J-)!

%%(*$-V37! ^]g'! 9]U_! $J-)!

%%%%-'V5V37! ;;]&! 9]U_! $J-)!

%%*+%,V37! ^\C.C$g! 9]U_! $J-)!

%-*()'V@V37! j^.! 9]U_! $J-(!

%%$,))V37! ^H;$&*! 9]U_! $J-(!

%-&$(%V37! W;HC'-! 9]U_! $J-(!

%-+*$(V37! .W9j$! 9]U_! $J-(!

%%)'$%V37! H]RU;! 9]U_! $J-(!

%&$*$'V5V37! XH'g$! 9]U_! $J-(!

%$++-,V37! HX]l%! 9]U_! $J-'!

%$-,)+V5V37! ;.]'! 9]U_! $J-&!

%--)'(V37! ^XgX;XH! 9]UL! $J-'!

%$'-+-V@V37! H;l9UM! 9]UL! $J-'!

%-$)-)V5V37! HfH$! 9]UL! $J-(!

%$-%-+V@V37! gX^)! 9]UL! $J-(!

%$')()V@V37! W\j$9! 9]UL! $J-(!

%$,%)$V37! 9*128%)! 9]UL! $J-(!

%%,%*-V@V37! UUgH'! 9]UL! $J-(!

%$+(&&V5V37! k9lC$! 9]UL! $J-(!

%$&,&*V5V37! S.Up$! 9]UL! $J-(!



! ! $&'!

%%&-$)V@V37! m;X]g%! 9]UL! $J-)!

%$-'%+V5V37! M^U! 9]UL! $J-)!

%$&)((V37! \fMXi! 9]UL! $J-)!

%-$,$'V5V37! Ui9)&! 9]UL! $J-)!

%%%$,,V5V37! gR]&! 9]UL! $J-)!

%$)-&%V5V37! i;^R9&! 9]UL! $J-)!

%$$,(-V37! kg;'! 9]UL! $J-)!

%$&)',V37! U;US*! 9]UL! $J-)!

%-$*$*V37! W;HC',! 9]UL! $J-)!

%-+,&+V37! H;99! 9]UL! $J-)!

%%('*)V37! ^HX]l$! 9]UL! $J-)!

%-$'('V5V37! ]HiHHU! 9]UL! $J-)!

%-*$%'V5V37! ^]g(! 9]UL! $J-)!

%-%$*&V5V37! nimS$! 9]UL! $J-*!

%-')$*V5V37! X9T! 9]UL! $J-*!

%-,%(+V5V37! UW9&! 9]UL! $J-*!

%%')*)V37! .WiT'! 9]UL! $J-*!

%-*$)&V5V37! Xl.$! 9]UL! $J-*!

%-%$-,V37! X;SRH%! 9]UL! $J-*!

%&%%$,V@V37! kUH%$! 9]UL! $J-*!

%$$,),V37! MUH,-XX$! 9]UL! $J-*!

%--,,-V37! .;RW%+! 9]UL! $J-*!

%-$$'-V5V37! ;Xg(9! 9]UL! $J-*!

%$%*$*V37! HCilMW$! 9]UL! $J-*!

%$)$-(V@V37! HHH%;'! 9]UL! $J-*!

%%)$-+V37! m9&M$+! 9]UL! $J-*!

%-+''(V5V37! gXm$g! 9]UL! $J-*!

%-'*+,V37! SW]C$! 9]UL! $J-*!

%--*)*V5V37! SXW$%-X! 9]UL! $J-*!

%%',*,V5V37! kUH&)! 9]UL! $J-*!

%$+&--V37! 9$)128(&! 9]UL! $J-*!

%-%$)$V37! Hl]$! 9]UL! $J-*!

%--+%(V5V37! M\jk$! 9]UL! $J-*!

%$+)$%V5V37! .UU9'! 9]UL! $J-*!

%$%,,'V37! .Mj9%! 9]UL! $J-*!

%$*+))V37! 9HUS*! 9]UL! $J-*!

%--+(%V@V37! ^]g%! 9]UL! $J-*!

%%)-+%V5V37! U9XS'! 9]UL! $J-*!

%-%-'*V5V37! 9g:)! 9]UL! $J-*!

%%$($%V37! .WiW%%%! 9]UL! $J-*!

%-%'+-V5V37! TiTT! 9]UL! $J-+!

%$+&'(V37! .WiW$*)X! 9]UL! $J-+!

%-'$-'V37! U]XH9%! 9]UL! $J-+!

%--)',V37! ]k9g$! 9]UL! $J-+!

%-$%')V5V37! j.kg$! 9]UL! $J-+!



! ! $&(!

$((,&,*V5V37! H;;$'! 9]UL! $J-+!

%-+,&%V37! HHH'9! 9]UL! $J-+!

%$(%*&V5V37! .XTX&! 9]UL! $J-+!

%%(-,-V37! U\n]$! 9]UL! $J-+!

%%(-%(V37! R^US+! 9]UL! $J-+!

%-$(,&V5V37! m9&M$(! 9]UL! $J-+!

%%&+$+V5V37! ;US$! 9]UL! $J-+!

%--)$&V37! XH%W$! 9]UL! $J-+!

%$&)),V37! S9Mj$! 9]UL! $J-+!

%%'%(-V5V37! Ui9RUgH%! 9]UL! $J-+!

%%%)&&V37! .gC$:;$! 9]UL! $J-+!

%-&(,*V5V37! fgH'! 9]UL! $J-+!

%$$+*'V5V37! lX.)g! 9]UL! $J-+!

%$-$%(V5V37! gX]S$! 9]UL! $J-+!

%-(*'+V5V37! ;]S$%)! 9]UL! $J-+!

%$+)+$V5V37! UTS%C$! 9]UL! $J-+!

%%',&&V5V37! pWpT$9! 9]UL! $J-+!

%-++&-V5V37! UkH.)M! 9]UL! $J-+!

%%$(-&V5V37! lH]X&! 9]UL! $J-+!

%$*+*+V5V37! 9T9%*! 9]UL! $J-,!

%$*,-&V37! U.;]'! 9]UL! $J-,!

%%)''%V37! Xg.g$! 9]UL! $J-,!

%&&&))V37! Sg:j'! 9]UL! $J-,!

%-%&%)V37! iMW.%! 9]UL! $J-,!

%$*+,,V37! .WiW%$'! 9]UL! $J-,!

%-%)-$V5V37! M.X.US$! 9]UL! $J-,!

$((&&,)V3V37! 99T9$&! 9]UL! $J-,!

%--)&'V37! HS]$! 9]UL! $J-,!

%$&')*V37! ;]T%! 9]UL! $J-,!

%$%*+&V37! ;ggH)! 9]UL! $J-,!

%--*%*V5V37! X9.;%! 9]UL! $J-,!

%-,$$&V5V37! MW^%-g! 9]UL! $J-,!

%-$-+%V5V37! T9.]$! 9]UL! $J-,!

%$&))(V37! Uj:'! 9]UL! $J-,!

%$-'-*V37! HHW$X! 9]UL! $J-,!

%$$-%,V@V37! S^S$+! 9]UL! $J-,!

%'&'$'V37! HHRC%! 9]UL! $J-,!

%$%$)*V5V37! UWX;9g$! 9]UL! $J-,!

%%&-%(V5V37! XH$W$! 9]UL! $J-,!

%-*+%'V5V37! WXm! 9]UL! $J-,!

%-(')-V37! ]HXU%! 9]UL! $J-,!

%-$-'-V37! ^]XR%! 9]UL! $J-,!

%-+&)'V37! R]HH'X! 9]UL! $J-,!

%%+%-'V37! HUWg'! 9]UL! $J-,!

%%'**(V37! RfU$! 9]UL! $J-,!



! ! $&)!

%-$*-%V5V37! HHH$;$-! 9]UL! $J-,!

%%*'-%V5V37! k.H%&! 9]UL! $J-,!

%&))),V37! Cj9$--(-*',(! 9]UL! $J-,!

%&-$-)V37! m:T9! 9]UL! $J-,!

%%%)$)V5V37! kUH$)! 9]UL! $J-,!

%--*'(V5V37! ^]g$! 9]UL! $J-,!

%-$,-&V37! ko9;9$! 9]UL! $J-,!

%$%-%+V37! ;gW%(! 9]UL! $J-,!

%%*-'*V@V37! mg.g'! 9]UL! $J-,!

%&-%$&V37! 9$,128'&! 9]UL! $J-,!

%$%$-*V5V37! TM:,! 9]UL! $J-,!

%-$*')V37! .H(&! 9]UL! $J-,!

%--,%%V37! lTiC;$! 9]UL! $J-,!

%''+-'V37! UoU.W$! 9]UL! $J-,!

%%&$&%V5V37! .;RW+! 9]UL! $J$-!

%-%+-(V5V37! Xg99$! 9]UL! $J$-!

%$%-+$V@V37! H;;9%X! 9]UL! $J$-!

%$$(-&V5V37! ;Xg$'! 9]UL! $J$-!

%-+$$'V5V37! RU^%-C%! 9]UL! $J$-!

%$%($%V5V37! 9X;W$! 9]UL! $J$-!

%$$&(+V5V37! 9Rm$! 9]UL! $J$-!

%%+&&*V37! HffH%X! 9]UL! $J$-!

%$+(%%V5V37! WXH$U! 9]UL! $J$-!

%-&+&&V5V37! .^jC]%! 9]UL! $J$-!

%&$+)-V37! g;fT$! 9]UL! $J$-!

%%(,*,V37! HCilM^%! 9]UL! $J$-!

%%%(-+V5V37! X;^Ck$! 9]UL! $J$-!

%'$)$$V5V37! S]T9&X! 9]UL! $J$-!

%%$,*%V5V37! UTS'! 9]UL! $J$-!

%%&$&+V5V37! TM:&)! 9]UL! $J$-!

%-(&%%V5V37! W.S$! 9]UL! $J$-!

%&',%'V5V37! m]S)+*! 9]UL! $J$-!

%&)%),V37! m]S)%+! 9]UL! $J$-!

%-&%(+V37! T;XH$! 9]UL! $J$-!

%%)-*-V37! 9,128$'%! 9]UL! $J$-!

%-%-%'V37! XU]X$! 9]UL! $J$-!

$((($%(V37! ^9S9$! 9]UL! $J$-!

%$*)()V37! UWX;9X'! 9]UL! $J$-!

%-&%&,V5V37! 9]j.&! 9]UL! $J$-!

%$%+-+V37! ]SX.9%RH! 9]UL! $J$-!

%%&-$,V37! SXW$%,g! 9]UL! $J$-!

$((+*+%V3V37! Cj9$--$&-((*! 9]UL! $J$-!

%$&(*,V5V37! iH&--! 9]UL! $J$-!

%$'*)+V@V37! R^ln$L(! 9]UL! $J$-!

%-&',$V5V37! 9iH(*! 9]UL! $J$-!



! ! $&*!

%%,*)(V37! m]S%-*! 9]UL! $J$-!

&,+&(V37! UgS$! 9]UL! $J$-!

%$'),-V37! .XS$g! 9]UL! $J$-!

$(((*&-V3V37! 9SC$! 9]UL! $J$-!

%-+)+(V@V37! g;T%! 9]UL! $J$$!

%-(*'-V5V37! ;gW'%! 9]UL! $J$$!

%-,-%'V5V37! U\]9;RH! 9]UL! $J$$!

%$'&$(V@V37! 9XC;! 9]UL! $J$$!

%%*%(*V5V37! 9$-128')! 9]UL! $J$$!

%--),(V37! HHH%;$X! 9]UL! $J$$!

%&)%(,V37! U.l'! 9]UL! $J$$!

%'$%&&V@V37! 9%$128+$! 9]UL! $J$$!

%'-(('V37! XlXH+C! 9]UL! $J$$!

%&*&&&V37! ;ggH'! 9]UL! $J$$!

%-$$-$V5V37! g9CXS$! 9]UL! $J$$!

%-)))(V5V37! g9C%C$! 9]UL! $J$$!

%'&%,(V37! ;gW%*! 9]UL! $J$$!

%%(+-$V37! Sg:j&%! 9]UL! $J$$!

%-%)%$V37! R;S&! 9]UL! $J$$!

%--*-%V5V37! TT:%'! 9]UL! $J$$!

(+,,'V37! 99%T$X! 9]UL! $J$$!

$())&'-V37! U]j;T+! 9]UL! $J$$!
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Pathway Gene Name Description 

Formation of actin bundles, 
filaments and cytoskeleton 

AKAP13     
ARRB1 
EZR 

MAPK8 

PDCD6IP 

PKN2 

RANBP9          
RICTOR 
SMARCA4!

!

TPR!

A kinase anchor protein 13 
Arrestin, Beta 1 

Ezrin 

Mitogen-activated protein kinase 8 
Programmed Cell-Death 6 interacting protein 
Protein kinase N2 
RAN binding protein 9 
RPTOR independent companion of MTOR, complex 2 
SWI/SNF-Related Matrix-Associated Actin-Dependent 
Regulator Of Chromatin 

Translocated promoter region 

Binding & linkage of actin 
cytoskeleton 

EZR Ezrin 

 

Formation of actin stress 
fibers 

AKAP13 

 

ARBB1 

         
PDCD6IP 

 

PKN2         
 

SMARCA4 

A kinase anchor protein 13 
 

Arrestin, Beta 1 

Programmed Cell-Death 6 interacting protein 

Protein kinase N2 
 

SWI/SNF-Related Matrix-Associated Actin-Dependent 
Regulator Of Chromatin 
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Gene Expression Profiling defines T-ALL patients carrying C-MYC 

rearrangements within a group with high expression of C-MYC 

!-.$3!"$&
GEP analysis performed on zebrafish models revealed the presence of a strong signature 

distinguishing the group overexpressing hC-MYC (hMYC-ER). Even if this part is not 

directly related to CNS invasion, these observations challenge us to clarify the 

importance and the role of C-MYC oncogene in T-ALL patients. Genetically, hT-ALLs 

are a heterogeneous group, distinguished in subgroups characterized by chromosomal 

rearrangements and related gene expression profiling signatures (TALLMO, HOXA, 

TLX1, TLX3). In pediatric T-ALL patients ~65% present NOTCH1 mutations with 

consequent activation of the NOTCH1 pathway. MYC seems to have a critical role for 

tumor growth and maintenance, even if its overexpression is not sufficient to guide 

alone lymphomagenesis. In T-ALL, MYC overexpression is usually trigged by 

NOTCH1 activation, however there are some cases that present MYC upregulation 

independently from NOTCH1 mutations: MYC/TCR translocations (~1% T-ALLs), 

FBXW7 mutations (~5% T-ALLs), down-regulation/absence of PTEN, MYC 

translocation with unknown partner genes. Recently, it was shows how an activation of 

the Wnt/"-catenin pathway in T-cells trigged the development of T-ALL characterized 

by an overexpression of C-MYC, due to high percentages of both MYC secondary 

genomic rearrangements and loss of PTEN. This work underlines the presence of a 

subgroup of T-ALL independent from Notch1 activation but with a high expression of 

C-MYC. In this part of the work, we used a gene expression profiling approach to study 

T-ALL patients that have different C-MYC expression levels to define if C-MYC 

deregulation can have also a prognostic value. Moreover, we investigated the different 

events that triggered C-MYC upregulation (NOTCH1 activation, FBOX and PTEN 

mutations, MYC rearrangements) to understand the biological meaning of  different 

causes that result all in C-MYC over-expression. Finally, were able to find a strong 

signature insight the group of patients with high expression of C-MYC that can 

discriminate patients with- and without- C-MYC rearrangements. 
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T-cell Acute Lymphoblastic Leukemia (T-ALL) is an aggressive haematopoietic cancer 

resulting from an uncontrolled clonal proliferation of T-immature lymphoid cells that 

represents !15% of pediatric and !25% of adult T-ALLs [1]. Genetically, hT-ALLs 

represent a heterogeneous malignancy distinguished in main subgroups characterized by 

specific chromosomal rearrangements and related to distinct gene expression profiling 

signatures (TALLMO, HOXA, TLX1, TLX3) [2-4]. Independently from the subgroups, 

more than 50% of T-ALL patients carried NOTCH1 mutations (NOTCH1
m) [5] with 

consequent constitutive NOTCH1 pathway activation and transcription of direct 

NOTCH1 target genes, suggesting an universal role of NOTCH1 in T-ALL 

pathogenesis. Several studies have already shown the central role played by NOTCH1 

activation in promoting T-ALL development; moreover, these  works identified C-MYC 

as a NOTCH1 directed target gene having a critical role in determining tumor growth 

and maintenance both in mouse- [6] and human- [7,8] NOTCH1-dependent T-ALL. 

MYC is involved in cell growth and proliferation in diverse solid and hematologic 

malignancies [9], but this oncogene can promote also apoptosis through the BIM and 

P53/P14ARF pathways [10,11]. However, the over-expression of C-MYC alone is not 

sufficient to determine T-ALL development and other events are required to initiate 

leukemogenesis [12,13]. The potential role of MYC activation in initiating T-ALL 

tumorigenesis was demonstrated both in transgenic zebrafish- [14,15] and mouse 

models [16-18], where the induced over-expression of C-MYC lead to T-ALL 

development with high penetrance and short latency. However, a recent work suggested 

that these animal models fail to reproduce the natural events that give rise to leukemia 

in human patients, as the accumulation of secondary hits is a slow process that is 

necessary for tumor development, according to a “multi-genomic alteration” model of 

hT-ALL pathogenesis [19]. Instead, transgenic animal models massively over-express 

C-MYC in specific target tissues, accelerating the leukemogenic process and moving 

away from human kinetics of oncogenesis.  In Chapter 1 of this thesis, we used the 

transgenic hMYC-ER zebrafish model that over-expressed human C-MYC under the 

zebrafish rag2 promoter [15]. Even if this model does not perfectly reflect the process 

of human leukemogenesis, it can be considered a very good model for studying the 

biology of T-ALL cases characterized by high C-MYC expression. In T-ALL human 
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patients, C-MYC over-expression is usually triggered by NOTCH1 activation. However, 

there are other events that can drive C-MYC up-regulation independently from 

NOTCH1
m; C-MYC translocations with T-cell receptor (~1% T-ALLs) [20] or unknown 

partner genes may directly cause an up-regulation of C-MYC, while FBXW7
m (~5% 

TALLs) [21-23] and down-regulation/absence of functional PTEN/AKT activation 

(~15-20% TALLs) [24-27] stabilize MYC impairing its degradation [28]. A recent 

study showed how MYC expression both at the mRNA and protein level resulted highly 

variable in a cohort of 164 mixed adult and pediatric T-ALL patients [28]. Even if the 

majority of T-ALL patients show a high expression of C-MYC, the role/importance or 

prognostic value of this oncogene is still not clear, among other things due to the 

complexity and variability of oncogenic networks that can occur in T-ALLs. A paper 

related T-ALL cell lines glucocorticoid resistance to up-regulation of cellular 

metabolism and proliferation due also to C-MYC signaling pathway activation [29], 

however the prognostic significance of C-MYC over-expression in T-ALL is still not 

understood. In fact, C-MYC over-expression is usually related to NOTCH1
m and 

activation of  the NOTCH1 pathway has been associated to improved response to 

treatment in three different cohort of T-ALL, but showing different outcome that seems 

to be therapy-dependent [30-32]. However, patients with C-MYC over-expression due to 

loss of PTEN in  the absence of NOTCH1
m were associated with resistance to 

chemotherapy and poor long-term outcome [27]. Recently, the activation of the Wnt/"-

catenin pathway in T-cells has been shown to trigger the development of  NOTCH1 

independent T-ALL characterized by over-expression of C-MYC due to high incidence 

of MYC secondary genomic rearrangements and/or loss of PTEN [33]. This work 

underlines the presence of a subgroup of T-ALL independent from NOTCH1 activation 

but with a high expression of C-MYC that could be related to poor prognosis. C-MYC 

over-expression seems to have diverse values depending on different T-ALL contexts.  

In this part of the work, we focussed on T-ALL patients that have different C-MYC 

expression levels to define if this C-MYC deregulation is related to a specific gene 

expression profiling signature. Moreover, we investigated the different events that 

triggered C-MYC deregulation (NOTCH1 activation, FBXW7 mutations, MYC 

rearrangements) to understand the biological meaning of different causes that result all 

in C-MYC over-expression.  
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Human leukemia samples  

Bone marrow or Peripheral Blood aspirates were collected from pediatric patients with 

or T-ALL at diagnosis. All patients selected for this study were enrolled in the AIEOP 

ALL-2000 protocol. Patients’ parents or legal guardians did provide written informed 

consent for the use of patient material for biomedical research in accordance with the 

Declaration of Helsinki.  

RNA isolation, quality controls and quantification 

Mononucleated cells (MNC) were isolated via the Ficoll-Paque method (GE Healthcare 

companies, Buckinghamshire, United Kingdom), which is based on density gradient 

centrifugation. Total RNA from MNC derived from bone marrow (BM) or peripheral 

blood (PB) aspirates was extracted using Trizol (Invitrogen, Karlsruhe, Germany), 

according to manifactures’ instructions. To perform gene expression experiments, 

extremely high quality of total RNA is required. To assess the quality of RNA, Agilent 

Bioanalyzer Expert 2100 (Agilent Technologies, Waldbronn, Germany) was used. RNA 

concentration was determined using QBit 2.0 Fluorometer (Life Technology, Carlsbad, 

California, U.S.). NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies Inc, 

Wilmington, DE). 

 

Fluorescence in situ hybridization (FISH) 

Two break apart FISH assays were used to study CMYC rearrangements: the 

commercial LSI MYC dual color break apart rearrangement probe (Vysis, Abbott) and 

homebrew DNA clones mapping upstream (RP11-367L7) and downstream (RP11-

26E5) CMYC (http://www.chori.org/BACPAC). TCRB was studied with RP11-1220K2 

and RP11-556I13; TCRAD with RP11-242H9 and RP11-447G18. Double colour 

double fusion FISH assays were done to investigated cryptic translocations between 

CMYC and TCRB or TCRAD. 
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Gene expression profiling 

Only RNA samples that passed the high quality controls were diluted to 100ng in a total 

volume of 3µl DEPC treated water to perform gene expression experiments. In vitro 

transcription, hybridization and biotin labelling were performed according to GeneChip 

3’IVT Express kit protocol (Affymetrix, Santa Clara, CA). The Affymetrix GeneChip 

Scanner was used to measure all intensities of the signals of each probe set on the 

GeneChip and stores all signals in a .DAT file (Raw image). Integrated software 

converts all raw signals into numbers, which were stored in a .CEL file. All GEP 

profiles used in these experiments were assessed for their comparability and quality, 

using different quality controls: Scale Factor, number of present calls, internal probe 

calls, Poly-A controls and the ratio GAPDH/!-actin 3’/5’.  

 

Statistical analysis 

Microarray data (.CEL files) were analyzed using Command Expression Console 

(Affymetrix). R-Bioconductor (Version 2.15.3) was used to analyze the .CEL files data 

in an unsupervised and supervised manner. Unsupervised analysis (Class Discovery) is 

a learning algorithm that clusters unspecified specimens together based on similar gene 

expression patterns and is therefore highly unbiased. Supervised analysis (Class 

Comparison, Class Prediction) is a learning algorithm that uses already defined 

(labeled) data in order to identify a set of genes that characterize the pre-specified data. 

The .CEL files first were normalized using the justRMA algorithm. justRMA is an 

algorithm fulfilling 2 steps, namely background adjustment of all the probe sets present 

on the GeneChip and quantile normalization to make the values of all the GeneChips 

comparable. In order to find differently expressed probe sets we applied a Shrinkage t-

test on the normalized .CEL files [35]. We used a local false discovery rate (lfdr) as 

correction of the p-value; a ldfr < 0,05 was considered significant for genes differently 

expressed between 2 groups. Differently expressed probe sets derived from the 

Shrinkage t-test were used for clustering analysis. Hierarchical clustering analysis was 

used to clusterize the specimens in an unsupervised manner using Euclidean Distance 
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and Ward’s Method. Euclidean Distance and Ward’s Method compute the distance 

between two groups in a metric space.  

Gene Ontology and Protein-Protein Interacting Analyses 

Differently expressed genes dereived by Shrinkage T-test analysis were analyzed using 

Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7 and 

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) v9.05. STRING, 

based on text mining, was used in order to investigate potential gene/protein networks 

within in the list of differently expressed genes. Gene ontology was performed with 

DAVID.  

 

Gene Set Enrichment Analysis (GSEA) 

Gene Set Enrichment Analysis (GSEA) is a method that can be used to identify groups 

of genes that share common biological functions or belong to the same gene pathways 

described in the public domain [36]. For each group of gene sets, GSEA calculates an 

enrichment score and evaluates statistical significance n the enrichment score (ES). The 

ES reflects the degree to which a gene set is over represented. For this stud we 

conducted GSEA analysis using the GSEA software [16] version 4.0 to identify gene 

sets in the public domain that share the expression pattern enriched in our current study. 

As recommended by GSEA guidelines, only gene sets with a false discovery rate (FDR) 

q-value lower than 0.05 were considered.  

Sanger Sequencing 

The screening of NOTCH1 and FBXW7 mutations was performed for 40 T-ALL 

specimens comprising patients of the two quartiles with high and low expression of C-

MYC (table1), and 4 additional cases of T-ALL carrying C-MYC translocation (table2). 

Briefly, DNA was extracted from the bone marrow (BM) or peripheral blood (PB) of 

each patient using the Puregene DNA isolation kit according to the manufacturer’s 

instructions (QIAGEN). 20 ng/µl of genomic DNA was used for PCR-amplified 

(primers reported in the Table3), using according to optimized protocols for each gene. 
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NOTCH1 and FBXW7 PCR products were purified using illustra™ ExoStar™ enzymes 

(VWR International Ltd, Lutterworth, England). All PCR products were quantified 

using the NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies Inc, 

Wilmington, DE). Sanger sequencing was performed on both strands using BigDye 

Terminator v1.1 Sequencing kit (Applied Biosystems, Weiterstadt, Germany) and 

analyzed on an automated fluorescence-based analyzer according to the manufacturer’s 

protocol.  
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C-MYC expression levels in a cohort of 78 T-ALL pediatric patients 

This work aimed to clarify the biological significance of C-MYC oncogene expression 

in T-ALL development. Data of gene expression profiling considering a cohort of 78 T-

ALL patients at diagnosis, revealed the presence of a broad range of variable expression 

levels of C-MYC among patients. The expression levels of C-MYC formed a continuum 

observing the entire cohort, but we could distinguish the presence of two opposite 

groups with “high” or “low” expression of C-MYC respectively (figure 1). We used a 

descriptive statistical method to define two opposite groups, calculating the quartiles 

based on C-MYC expression and we identified 20 patients with low (first quartile) and 

20 patients with high (fourth quartile) expression of C-MYC.  

 

Different gene expression profiling signatures between groups with Low and High C-

MYC expression  

To understand the different gene networks that move in relation to having high or low 

C-MYC expression, we performed a T-test on GEP data comparing the patients of the 

two opposite quartiles for C-MYC expression (Q1-Q4). Shrinkage T-test revealed the 

presence of 115 genes significantly differently expressed between Q1 and Q4 groups. 

Supervised analysis separated patients belonging to the Q1 and Q4 group, except for 4 

patients with high expression of C-MYC that clustered together with the patients of Q1 

(figure 2). However, genes that were differently expressed did not present high fold 
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changes (FCs) and explained the rather weak signature found between the two  groups. 

The distinction between patients with high and low C-MYC expression levels is not 

related to a strong gene expression signature, which is maybe due to the high variability 

of events that regulate C-MYC expression in T-ALL patients. Moreover, Gene Set 

Enrichment Analysis (GSEA) did not reveal a particular enrichment of known gene sets 

when comparing the two groups. There is only a tendency for the group with high C-

MYC expression to have an enrichment of the WNT and CXCR4 pathways, but the p-

value is not significant (figure 3). 

 

NOTCH1, FBXW7 mutation screening 

Different events directly or indirectly induce C-MYC over-expression: NOTCH1
m 

frequently sustain up-regulation of C-MYC [7,8], causing constitutive activation of the 

NOTCH1 pathway; FBXW7
m can favour both indirect C-MYC over-expression 

(impairing active NOTCH1 degradation) and C-MYC protein stabilization directly 

preventing its proteasomal degradation [21-23]. We decided to investigate the causes 

that could be held responsible for C-MYC deregulation among the patientss with high 

MYC expression in our patient cohort. We screened NOTCH1, FBXW7 mutations for 

each patient of the two quartiles with high or low expression of C-MYC. We analysed 

the regions frequently mutated in T-ALL for each of these genes: NOTCH1 for the HD 

and PEST domains (26, 27, 28, 34T and 34P exons) while FBXW7 was screened for 

mutations in exons 9 and 10. Moreover, to have an overview of effective NOTCH1 

activation, we monitored the expression levels of NOTCH1 direct target genes (HES1, 

DELTEX1 CR2 and PTCRA) using gene expression profiling data. (Table1). With this 

analysis we were able to identify 1 case (patient 36) with over-expression of C-MYC not 

related to NOTCH1, FBXW7 mutations. These data suggested that this patient could 

carry other events that could explain C-MYC over-expression, such as a C-MYC 

rearrangements. 

 

Rearrangements of C-MYC can cause the “high” expression of C-MYC  

FISH [37,38] analysis using specific probes for C-MYC was performed for the 7/20 

cases that presented low expression of C-MYC (Q1) and 13/20 cases with high 
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expression of C-MYC (Q4) (table 1). The aim of this analysis was to identify 

rearrangements of C-MYC that could explain the over-expression of this oncogene 

occurring in the presence or absence of NOTCH1 and FBXW7 mutations. C-MYC 

reciprocal translocations, i.e. an hybridization pattern characterized by 1 fusion signal 

and 2 separated green and orange signal occurred in 5 cases (figure 7) and involved 

TCRB or TCRAD in two samples. New as yet unidentified partner would be involved in 

the other 3 cases as cryptic rearrangements with TCRB or TCRAD were excluded. Inside 

the group with “high” C-MYC expression, we identified one patient (patient 36) with a 

C-MYC translocation (with an undefined partner gene).  

Different signature among T-ALL patients with high expression of C-MYC related to 

C-MYC rearrangements 

Recently, in a mouse model a subgroup of T-ALL was identified  that was shown to be 

triggered by the activation of the Wnt/"-cathenin pathway, an event that seemed to be 

related to the development of secondary C-MYC rearrangements and loss of PTEN [33]. 

This mouse model developed a NOTCH1 independent T-ALL leukemia that migh 

identify a subgroup with bad prognosis, in fact the loss of PTEN in the absence of 

NOTCH
m has been shown to be related to poor outcome [28]. To understand if also in 

human T-ALL there is a subgroup of patients with high MYC expression independent of 

NOTCH1 mutations or activation in general, we decided to increase our cohort of 

patient with high expression of C-MYC (Q4) with patients carrying C-MYC 

translocations. Using a gene expression profiling approach, we wanted to investigate the 

biological significance and possibly the prognostic impact of C-MYC over-expression 

due to distinct genomic aberrations (activation of NOTCH1, mutation of FBXW7, C-

MYC translocations). We increased the high C-MYC group with 1 pediatric and 3 adult 

cases carrying C-MYC rearrangements in the absence of NOTCH
m and FBXW7

m. FISH 

specific for C-MYC rearrangements had been performed for all patients and this 

technique allowed to detect and quantify also sub-clones carrying C-MYC 

rearrangements. All patients analyzed by GEP had the C-MYC rearrangement in the 

major clone. Analysis of C-MYC expression revealed that the 5 cases with MYC 

rearrangements had high expression of this oncogene (Figure 4). Shrinkage T-test 

revealed the presence of 174 genes differently expressed comparing C-MYC rearranged 
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vs. non C-MYC rearranged groups. We have to remember that the group without C-

MYC rearrangement is enriched for NOTCH1 and FBXW7 mutations. Supervised 

analysis showed how patients carrying C-MYC translocations in absence of NOTCH1
m
 

clustered together, separately from the patients without translocations (Figure 5). Only 

one patient without a C-MYC translocation clustered in the group with C-MYC 

rearrangements.  

To investigate the genes differently expressed between the two groups (C-MYC 

rearranged vs. non C-MYC rearranged) we performed gene ontology and protein-protein 

interaction analyses using DAVID and STRING software, respectively. Both DAVID 

and STRING analysis showed a significant enrichment for the NOTCH1 signaling 

pathway (p-value: 0.002) in the group without C-MYC rearrangements (Figure 6). This 

enrichment was confirmed also by Gene Set Enrichment analysis (GSEA).  

4/."#../,1&
In this chapter, we aimed to investigate the biological meaning of C-MYC aberrant 

expression in relation to T-ALL disease. Oncogenic MYC deregulation is a complex 

process involving multiple events (MYC rearrangements, NOTCH1 and FBXW7 

mutations) that complicate the understanding of C-MYC- mediated oncogenesis in T-

ALL. In a cohort of 78 pediatric T-ALL patients, we found different expression levels 

of C-MYC. Particularly, we identified two groups characterized by high and low 

expression levels of this oncogene. To deepen insight in the biological impact of C-

MYC deregulation, we performed gene expression profiling analysis comparing these 

two groups. However, this analysis failed to identify a strong signature that could 

distinguish the two groups in a perfect way. This result can be attributed to the 

undeniable heterogeneity that characterize the T-ALLs and major subgroups with C-

MYC deregulation; in fact a multiplicity of pathways and genetic alteration may control 

C-MYC transcription [34]. Moreover, we have to consider that also post-transcriptional 

control can play an important role in determining MYC protein levels and C-MYC 

transcription levels do not in all cases corresponds to protein levels [28].  

Interestingly, inside the group with high expression of C-MYC, different molecular 

mechanisms can determine C-MYC overexpression or MYC stabilization (MYC 
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rearrangements, NOTCH1 and FBXW7 mutations). Usually the over-expression of C-

MYC is related to activation of the NOTCH1 signalling pathway, an event related to 

improved response to treatment [30-32]. Analyzing NOTCH1 direct target genes 

expression, we were able to identify some patients with high expression of C-MYC not 

associated to NOTCH1 and FBXW7 mutations. One among these patients carried a C-

MYC rearrangement. A recent work on a mouse model identified the presence of a 

NOTCH-independent subgroup of T-ALL characterized by high expression of C-MYC 

that can be related to poor prognosis. This subgroup was related to Wnt/"-catenin 

pathway activation and was characterized by  a high incidence of C-MYC 

rearrangements and loss of PTEN. To explore the presence of this Wnt/"-catenin-

dependent T-ALL subgroup also in T-ALL patients with high expression of C-MYC, we 

amplified our cohort introducing four patients carrying C-MYC rearrangements in  the 

absence of NOTCH1
m. Analysis of gene expression profiling revealed a strong signature 

between patients with- or without- C-MYC rearrangements. Interestingly, this strong 

signature was associated to the presence of NOTCH1 pathway activation in the group of 

patients without C-MYC rearrangements. Although we failed to find activation of the 

Wnt/"-catenin pathway inside the group with C-MYC translocations, with this study we 

were able to show that inside the group of T-ALL characterized by an higher expression 

of C-MYC overexpression, the subgroup of patients carrying C-MYC rearrangements 

presents a NOTCH1-independent leukemia compared to the group without C-MYC 

rearrangement that seems to be strongly related to NOTCH1 pathway activation. 

Further analysis need to be performed increasing the number of patients carrying C-

MYC rearrangements. Importantly, the screening of PTEN mutations is ongoing, to have 

a complete view of the major modulators of MYC deregulation at the protein level. 
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Dot plot showing the variable expression levels of C-MYC in a cohort of 78 T-ALL patients 

based on GEP data 

 

Figure 1: The expression value of the C-MYC probe set (202431_s_at) for each patient (single dot) is 
given in a log2 scale after normalizing all GEP data with the  justRMA algorithm. Using descriptive 
statistics the cohort  was divided in quartiles and identified two opposed groups characterized by low 
(blue square) or high (orange square) expression of C-MYC (Q1 and Q4 respectively). 

 

 

Heatmap showing supervised analysis for groups with high (blue) or low (orange) 

expression of C-MYC 

 
 

Figure 2: Hierarchical clustering based on a list of 115 probe sets obtained after Shrinkage T-test 
between groups with high (blue) and low (orange) C-MYC expression (lfdr<.05). 
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Gene Set Enrichment Analysis for the group with high expression of C-MYC 

 

!

Figure 3. GSEA analyses showing the tendency for the group with HIGH expression of C-MYC to be 
enriched for the WNT and CXCR4 pathways. However, this enrichment is not sgnificative. 

 

 

 

All C-MYC rearranged cases presented a high expression of C-MYC oncogene 

 

 
 
 
Figure 4: Dot plot showing the expression levels of C-MYC for the 4 new cases with a C-MYC 

rearrangements. In red are indicated the 4 additional cases (patients 41, 42, 43, 44) with C-MYC 

rearrangements that were included for new analysis. 
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Heatmap shows supervised analysis for groups with- (blue) and without (orange) C-MYC 

rearrangements 

 
 

Figure 5: Hierarchical clustering based on a list of 174 probe sets obtained after Shrinkage T-test 
between groups with- (blue) and without (orange) C-MYC translocation (lfdr<.05).  
 

 

Protein-Protein Analysis with STRING 9.05 for the group with high expression of C-MYC in 

absence of C-MYC rearrangements 
 

 
Figure 6: Analysis with STRING version 9.05 on genes significantly up-regulated in the group without 
C-MYC rearrangements shows enrichment in the NOTCH pathway  (KEGG pathway) for the group 
without MYC translocations compared to the group where MYC is rearranged. 
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FISH assay with LSI CMYC break apart probe (Vysis-Abbott) 

 
Figure 7: Two nuclei with C-MYC rearrangement. One Fusion signal corresponds to the CMYC wild type 
allele, two separated green and orange signals indicate a balanced CMYC translocation. 
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Table 1. Patients belonging to the two groups with low (Q1) and high (Q4) expression of C-MYC 
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Features of T-ALL patients carrying C-MYC rearrangements 

 

Table 2: FISH details of 5 (2 pediatric and 3 adult) patients with C-MYC translocations. All 5 patients 
presented C-MYC rearrangements in the major clone. The C-MYC translocation involved both TCR and 
unknown rearranged partner genes. List of abbreviations: wt: wild-type; ND: not defined. 
 

In Table 3 are listed the primers used for the screening of NOTCH1 and FBXW7 

 

 

 

 

 

 

 

 

 

 

 

SAMPLE 

 

AGE Type-MYC FISH STATUS 
NOTCH1 

STATUS 

FBXW7 

STATUS 

36 11 NO TCR 
del(1)(p32)/SIL-TAL1 (86%) 
C-MYC-translocation (70%) 

DIED wt wt 

41 5 NO TCR 
C-MYC-translocation  

t(1;8)(q32;q24) 
del(4)(p15) 

ND ND ND 

42 56 NOTCR 

del(9)(p21)/CDKN2A-B bial (95%) 
C-MYC-translocation (62%) 

MYB/6q23 gain 
MTCP1/Xq28 gain (34%) 

trisomy 7 (37%) 

DIED wt wt 

43 44 TCR 

del(9)(p21)/CDKN2A-B bial (88.5%) 
del(1)(p32)/SIL-TAL1 (82%) 

TCRA/D-C-MYC (90%) 
LOSS: PTEN/10q23 (12%) 
GAIN:AF10/10p13 (86%) 

ALIVE wt wt 

44 25 TCR 

del(9)(p21)/CDKN2A-B bial (72%) 
del(6q15)/CAS8AP2 (69%) 

del(1)(p32)/SIL-TAL1 (74%) 
t(7;11)(q34;p15)/TCRB-LMO1 

(66%) 
TCRAD-C-MYC (62%) 

DIED wt wt 

Exons Primers Product Size 

for-5'_GCTGAGGGAGGACCTGAACTTGG_3'  NOTCH1 ex26 

rev-5'_CCTGAGCTGGAATGCTGCCTCTA_3' 
812bp  

for-5'_CATGGGCCTCAGTGTCCT_3' NOTCH1 ex27 

rev-5'_TAGCAACTGGCACAAACAGC_3' 
335bp 

for-5'_GAGAGTGGGTGAGGAGGC_3' NOTCH1 ex28 

rev-5'_GTGAGGATGCTCGGCCAG_3' 
346 bp 

for-5'_ACAGATGCAGCAGCAGAACC_3' NOTCH1 ex34P 

rev-5'_CCTGGGGCCAGATAAAACAGTACA_3' 
721 bp 

for-5'_GCTGGCCTTTGAGACTGG_3' NOTCH1 ex34T  
rev-5'_CTCCTGGGGCAGAATAGTGT_3' 

592 bp 

for-5'_TGATGGGATCATTTTATACGGATG_3' FBXW7 ex9  
rev-5'_GACAAAACGCTATGGCTTTCC_3' 

495 bp 

for-5'_CCCAACTTCCCATTCCCTTA _3' FBXW7 ex10  
rev-5'_TTTCTTCATGCCAATTTTAACG_3' 

583bp 
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MLLT10 gene, located at 10p13, is a known partner of MLL and PICALM in specific 

leukemic fusions generated from recurrent 11q23 and 11q14 chromosome 

translocations. Deep sequencing recently identified NAP1L1/12q21 as another MLLT10 

partner in T-ALL. In pediatric T-ALL we have identified two RNA processing genes, 

i.e., HNRNPH1/5q35 and DDX3X/Xp11.3 as new MLLT10 fusion partners. Gene 

expression profile signatures of the HNRNPH1- and DDX3X- MLLT10 fusions placed 

them in the HOXA subgroup. Remarkably they were highly similar only to PICALM-

MLLT10 positive cases. The present study showed MLLT10 promiscuity in pediatric T-

ALL and identified a specific MLLT10 signature within the HOXA subgroup. 
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New genomic technologies, including whole genome analysis and gene expression 

profiling (GEP) dramatically improved cytogenetic-molecular classification of T-cell 

Acute Lymphoblastic Leukemia (T-ALL) which affects about 15% of children with 

ALL.1 At least 6 main genetic categories, i.e. TAL/LMO, TLX1, TLX3, NKX2-1/NKX2-

2, MEF2C, and HOXA have been identified. The HOXA group includes cases with 

TCRB-HOXA, SET-NUP214, MLL-translocations, and PICALM-MLLT10.1,2 In a case 

of Early T-cell Precursor-ALL (ETP-ALL) the NAP1L1/12q21 gene, member of the 

nucleosome assembly protein family, was recently identified as another MLLT10 

partner.3 

Interestingly, PICALM-MLLT10, MLL-MLLT10, and NAP1L1-MLLT10 fusions all 

retained the OM-LZ domain at their C-terminal. 3-5 It exerts a leukemogenic effect by 

interacting with chromatin modifying proteins such as the H3K79 methyltransferase 

hDOT1L.6,7 

The present study focuses on two new MLLT10 fusion genes in pediatric T-ALL, 

placing them within the HOXA subgroup. 

)!$%3/!'.&!14&)%$+,4.&
A Combined Interphase (CI) FISH test (Supplementary Table 1) was applied in 42 

pediatric T-ALL enrolled in the AIEOP ALL protocol (number NCT 00613457). 

Informed consent according to the Declaration of Helsinki was obtained from parents. 

To identify the new MLLT10 fusions we used a 5’-RACE-PCR (Invitrogen, Carlsbad, 

CA, USA) and thermoscript RT-PCR System (Invitrogen) according to the 

manufacturer’s instructions. Primers are listed in Supplementary Table 2. PCR products 

were subcloned into pGEM-T easy vector (Promega, Madison, WI, USA) and 
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sequenced with AB3500 Genetic analyzer (Applied Biosystem, Foster City, CA, USA). 

SNPs analysis was performed using Whole Genome Cytogenetic 2.7M array 

(Affymetrix, Santa Clara, CA, USA).  

Statistical Methods for Microarray Data (Affymetrix hgu 133 plus 2 arrays) were 

analyzed using the Bioconductor package for R (v2.14.1). Data were deposited at GEO 

repository (Series Accession Number GSE42765; http://www.ncbi.nlm.nih.gov/geo/). 

Heatmaps were created using Ward’s method and Euclidean distance. The heatmap for 

the unsupervised analysis was created using the probe sets with the highest variances 

(threshold 90%), while the heatmap for the supervised analysis was created with 

differentially expressed probe sets. Arrays were normalized using robust multiple-array 

average (RMA).8 Batch effects were removed using ComBat.9 Differentially expressed 

genes were identified by the shrinkage T-statistic.10 False positive findings were 

prevented by the local False Discovery Rate (lFDR). Probe sets with local FDR below 

0.05 were considered significant.11,12
 

3%.#'$.&!14&4/."#../,1&
CI-FISH identified MLLT10 rearrangements in 6/42 (14.3%) patients. Four of the total 

cohort (9.5%) showed the PICALM-MLLT10 fusion and two (4.8%) MLLT10 

translocations to unknown partner(s). Clinical, hematological, cytogenetic and 

molecular data of these two patients are shown in Table 1. MLLT10 FISH probe gave 

three signals in 55% of nuclei in case 1 and in 60% in case 2. In case 1 metaphase-FISH 

confirmed the split between the short and the long arms of one chromosome 10, 

resulting in the der(10)inv(10)(p12q25) seen at karyotype. The 10q breakpoint localized 

to band 25.3, in a ~12 kb region without genes (Supplementary Figure 1A). 
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The MLLT10 gene breakpoint was narrowed to between exons 14 and 15 in patient 1 

and between exons 1 and 3 in patient 2 (Supplementary Figure 1B and 1C). 5’ RACE-

PCR and sequencing showed an HNRNPH1-MLLT10 in-frame transcript in the first 

case and a DDX3X-MLLT10 fusion transcript in the second (Figure 1A and 1C). These 

results were confirmed by RT-PCR, cloning and sequencing. Subsequently a diagnostic 

double color double fusion test was developed in both cases (Figure 1B and 1D). The 

only common additional genetic lesion was a mutated NOTCH1 gene (Table 1). 

HNRNPH1 and DDX3X are involved in RNA processing. HNRNPH1 encodes for a 

member of the ubiquitous heterogeneous nuclear ribonucleoprotein subfamily 

(hnRNPs). It is an RNA binding protein that is involved in pre-mRNA processing, and 

mRNA metabolism and transport.13 A HNRNPH1 frameshift mutation was previously 

described in gastric cancer14 and a HNRNPH1 splice variant with protein truncation was 

identified in murine breast cancer cells.15 Interestingly, a variant HNRNPH1 protein, 

covalently modified by O-linked acetyl hexosamine (GlcnaC), was isolated in acute 

leukemia with 11q23 cytogenetic changes.16 

DDX3X is a member of the large family of RNA helicases with a DEAD box domain 

(Asp-Glu-Ala-Asp), that is involved in RNA transcription, splicing, mRNA transport, 

translation initiation and cell cycle regulation.17 DEAD box RNA helicases were 

implicated in diverse forms of leukemia. 18,19 Recently, mutations inside and outside the 

DEAD box domain were detected in around 3% of patients with Chronic Lymphocytic 

Leukemia.20 

Structural analysis of HNRNPH1-MLLT10 and DDX3X-MLLT10 fusions showed 

HNRNPH1 maintained three RNA recognition motifs while DDX3X lost the DEAD 

box domain, at the N-terminal. At the C-terminal, MLLT10 lost 2/3 NLS domains in 
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patient 1 but maintained all 3 in patient 2 (Figure 1A and 1C). As in other MLLT10 

fusions,3-5 both cases retained the OM-LZ domain, which is needed to induce AML in 

mice bearing PICALM-MLLT10 or MLL-MLLT10.6,7 Interestingly DOT1L inhibitors 

binding the OM-LZ domain were successful in controlling MLL-MLLT10 and PICALM-

MLLT10 murine leukemias.21  

Whether these rare MLLT10 partners are part of a functional complex or share a 

common regulation pathway remains to be investigated. The Net View Tools software 

(http://netview.tigem.it/netview_project/netview_tools.html)22 showed DDX3X was 

significantly co-expressed and directly linked (Mutual Information >0.1) to HNRNPH1, 

PICALM, and NAP1L1 (Supplementary Table 3).  

We applied GEP to determine whether HNRNPH1-MLLT10 and DDX3X-MLLT10 

shared leukemogenic properties with other MLLT10 recombinations within the HOXA 

category of T-ALL.23-24 In an unsupervised analysis of 11 T-ALL samples with the 

HOXA signature, the 6 cases with MLLT10 rearrangements (4 PICALM-MLLT10, 1 

HNRNPH1-MLLT10, and 1 DDX3X-MLLT10) clustered separately from the other 5 

cases (1 MLL-ENL, 1 MLL-AF6, 2 TCRB-HOXA, and 1 SET-NUP214) (Figure 1E). T-

test analysis revealed significant (lFDR<0.05) differences in expression of 280 probe 

sets (Supplementary Table 4). Supervised analysis with these probe sets confirmed two 

subgroups (Figure 1F). In the HOXA patients with MLLT10 rearrangements HHEX gene 

expression was higher (> 1.5 fold-change) than in those without. HHEX is highly 

expressed in normal hematopoietic stem cells and down-regulated during normal T cell 

development.25 
HHEX over-expression was found in ETP (as seen in our case n. 1) and 

linked to up-regulation of MEF2C which directly binds the HHEX promoter.2 

Interestingly, HHEX is a member of the NK-like family of class II homeobox genes. In 
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the other sub-group of 5 patients without MLLT10 rearrangements Gene Set Enrichment 

Analysis (GSEA) showed enrichment of HOXA  class I homeobox genes and target 

genes (Supplementary Figure 2). Although these findings need to be confirmed in a 

larger series of T-ALL, present results suggest that MLLT10 recombinations underlie a 

specific signature, within the HOXA category of T-ALL.  

The present study provides insights into the biological pathways involved in MLLT10 

recombinations in pediatric T-ALL. Finding two new MLLT10 fusion genes, involving 

HNRNPH1 and DDX3X, highlights the role of the MLLT10 gene, and particularly of its 

OM-LZ domain in this type of leukemia.  
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Table 1. Clinical, immunophenotypic, hematologic, molecular and cytogenetic data.       

Patients 
Sex/
age 

Diagnosis 
WBC 

(x10
9
/L) 

CALM-

MLLT10 

MLL-

ENL 

MLL-

AF4 

SIL-

TAL1 
NOTCH1 FLT3 Karyotype CI-FISH SNPs 

MRD 
+33/+78 

Chemotherapy 
†
 

Follow-up 
(months) 

1                      

(UPN 
1036616)   

F/7 ETP-ALL 10,55 n.a. n.a. neg neg mut* neg 
46,XX,inv(10) 

(p12q25)[2] 
/46,XX[17] 

SPLIT:  

MLLT10/10p12  

(55%) 
LOSS: 

IKZF1/7p12  

(10%) 

normal  +/+ 

 High risk, no 
transplant  

donor 

33+ 

2                         
(UPN 

1023865) 
M/11 

Cortical 

T-ALL 

152,8 neg neg n.a. neg mut** neg failed 

SPLIT:  

MLLT10/10p12 
LOSS:  

PAX5,CDKN2A/B, 

JAK2/9p13-24 
GAIN:  

RP11-
501C14/17q21.31                        

LOSS  

9p24.3-p11.2: 
from 0 to 

47 508 608 bp 
GAIN  

17q21.32-

q25.3: 
from 45 273 
751 

to  

78 786 769 bp  

+/-  Standard risk 73+ 

F=female; M=male; WBC= White Blood Cell; n.a.= data not available; neg.=negative; mut= mutated; MRD=Minimal Residual Disease; * c.4766_4767insAGCAGAACCGGAGCAGCTGCGCAACAGCTC; 
p.S1589_F1590insAEPEQLRNSS; ** c.G4793C; p.R1598P; NOTCH1 mutation numbers refer to CCDS 43905.1 and NP_060087.3; † AIEOP LLA 2000 (Supplementary reference 1)!
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Figure 1 

Panel A: Two HNRNPH1-MLLT10 splicing isoforms were identified in patient 1. 

Upper panel: direct sequencing showed an in-frame HNRNPH1-MLLT10 isoform 

joining nucleotide 1324 (HNRNPH1 exon 11) to nucleotide 2097 (MLLT10 exon 15). 

Bottom panel: cloning and sequencing showed nucleotide 6701 (HNRNPH1 intron 10) 

fused in-frame with nucleotide 2097 (MLLT10 exon 15). Hypothetical fusion protein 

was shown in which HNRNPH1 maintained all three RNA Recognition Motifs (RRM) 

at the N-terminal and MLLT10 lost 2/3 Nuclear Localization Signals (NLS). MLLT10 

mantained the critical OM-LZ domain at the C-terminal. Primer and sequence numbers 

refer to GenBank accession NC_000005.9, NM_005520.2, NP_005511.1 for 

HNRNPH1 and NM_004641.3, NP_004632.1 for MLLT10. 

Panel B: DCDF-FISH test: probes for MLLT10 (RP11-418C1 and RP11-249M6) in 

orange and for HNRNPH1 (CTD-3223H16 and RP11-410B18) in green, showed 1 

fusion signal on der(10) (arrow). 

Panel C: Two DDX3X-MLLT10 splicing isoforms were identified in patient 2. Upper 

panel: sequencing showed an in-frame DDX3X-MLLT10 isoform joining nucleotide 958 

(DDX3X exon 2) to nucleotide 510 (MLLT10 exon 3). Bottom panel: cloning and 

sequencing showed an in-frame isoform with nucleotide 900 (DDX3X exon 1) fused 

with nucleotide 590 (MLLT10 exon 4). The hypothetical fusion protein lost the DDX3X 

DEAD box domain at the N-terminal and maintained part of the Plant Homeo Domain 

(PHD), all three NLS and the OM-LZ domain at the C-terminal. Primer and sequence 

numbers refer to GenBank accession NM_001356.3, NP_001347.3 for DDX3X and 

NM_004641.3, NP_004632.1 for MLLT10. 

Panel D: DCDF-FISH with probes for DDX3X in green (RP11-1058N11, flanking 5’, 
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and RP11-10K13, flanking 3’) and MLLT10 in red (RP11-418C1 and RP11-249M6), 

showed 1 fusion signal (arrow). 

Panel E: Unsupervised analysis of 11 T-ALL HOXA patients. In such unsupervised 

analysis patients bearing MLLT10 rearrangements and those without MLLT10 

rearrangements (1 MLL-ENL, 1 MLL-AF6, 2 TCRB-HOXA, and 1 SET-NUP214) are 

naturally clustered in two distinct groups. PICALM-MLLT10 patients are indicated in 

orange; patient 1 and patient 2 (HNRNPH1-MLLT10, DDX3X-MLLT10) in green and 

patients without MLLT10 rearrangements in blue. 

Panel F: Supervised analysis was created using the significative probe sets from the 

comparison of HOXA patients with MLLT10 rearrangements (4 with PICALM-MLLT10 

and the two new cases with HNRNPH1-MLLT10, DDX3X-MLLT10) vs patients without 

MLLT10 rearrangements (1 MLL-ENL, 1 MLL-AF6, 2 TCRB-HOXA, and 1 SET-

NUP214). Patients bearing MLLT10 recombinations are indicated in orange or green 

while patients without MLLT10 rearrangements are indicated in blue. 
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Supplementary Figure 1:  

Panel A: Schema of der(10)inv(10)(p12q25)t(5;10)(q35;q25) in patient 1: 

the10q disruption was located at 10q25.3. A region of about 12 kb without 

genes (NCBI build 37.3) was flanked by fosmid G248P87999G12 and by RP11-

411P18, which was translocated to chromosome 5. FISH located the 5q 

breakpoint at band 35.3 between NSD1 (CTC-549A4) and SQSTM1 (RP11-
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379P7) which translocated to der(10) together with the 5q subtelomeric probe 

RP1-240G13. 

Panel B: Metaphase analysis of inv(10) in patient 1: the MLLT10 breakpoint 

was investigated with 6 fosmids: G248P86314F1, G248P8684D10, 

G248P87580B3, G248P89434C6, G248P88419G5, G248P89761F10, 

spanning the entire gene. Fosmids G248P89434C6 (MLLT10 exons 10-14, 

green) and G248P88419G5 (MLLT10 exons 15-23, red), gave split signals on 

der(10) (arrow). 

Panel C: MLLT10 break apart assay in patient 2 showed RP11-418C1 (red) 

gave a split signal indicating the breakpoint occurred within exons 1-3. 

!

!

!

!

Supplementary Figure 2: Selected enriched gene sets from GSEA. 
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Figure showed positively enriched gene sets, containing genes upregulated in 

the “other HOXA” group (number 1) compared with that bearing MLLT10 

rearrangements (number 0). Left side: the first pathway was characterized by 

an upregulation of the HOXA5 targets genes; Right side: the second pathway 

was characterized by the upregulation of different HOXA genes (HOXA1, 

HOXA2, HOXA5, HOXA6, HOXA9, HOXA10). Green trace showed the 

enrichment score based on hits of genes (indicated by the band on the x axis) 

that are ordered depending on their level of correlation with one of the two 

phenotypes compared (in our case “other HOXA” vs “MLLT10 

rearrangements”). 

 

Supplementary Table 1: FISH probes  

CI-FISH (Supplementary reference 2) 

Gene/region Centromeric probe Spanning probe Telomeric probe 

SIL/TAL1/1p33 G248P80397F3   RP11-346M5 

LEF1/4q25   
G248P81593B3 G248P81094A7  

RP11-840M18 
  

TLX3/5q35 
RP11-182E4  

RP11-453D13 
  

RP11-117L6   

CTB-31E20  

RP11-266N12 

CASP8AP2/6q15   RP11-81C7   

GRIK2/6q16   RP1-258B3   

MYB/6q23   RP1-32B1   

IKZF1/7p12   CTC-736O2   

HOXA@/7p15 RP1-170O19   RP1-167F23 
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TCRB@/7q34 RP11-1220K2   RP11-556I13 

PAX5/9p13   RP11-243F8   

CDKN2A/B/9p21   
G248P82010F5 G248P82557D2  

RP11-149I2 
  

JAK2/9p24 RP11-39K24   RP11-125K10 

ABL1/9q34 RP11-57C19   RP11-83J21 

NUP214/9q34 RP11-143H20 RP11-544A12   

NOTCH1/9q34 RP11-83N9 RP11-413M3 RP11-251M1 

MLLT10/10p12 RP11-249M6   RP11-418C1 

PTEN/10q23   RP11-380G5   

LMO2/11p13 RP11-313G13   RP11-60G13 

WT1/11p13   RP1-74J1   

LMO1/11p15 RP11-782G4   RP11-1065L8 

NUP98/11p15 RP11-348A20   CTD-3234F16 

PICALM/11q14 RP11-90K17   RP11-12D16 

MLL/11q23 RP11-832A4 RP11-770J1 
RP11-861M13  

RP11-158I9 

ETV6/12p13 
RP11-418C2  

RP11-297N18 
  RP11-434C1 

NAP1L1/12q21 RP11-290L1   RP11-453D16 

TCRAD@/14q11 RP11-242H9   RP11-447G18 

BCL11B/14q32 RP11-74H1 RP11-431B1   

NF1/17q11 RP5-926B9   
RP5-1002G3  

RP11-501C14 

PTPN2/18p11   CTD-2280F20   

AML1/21q22   RP5-1107L6   

PHF6/Xq26   G248P80005E1   

MLLT10 narrowing 

Gene/region Centromeric probe Spanning probe Telomeric probe 
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MLLT10/10p12  G248P86314F1  

MLLT10/10p12  G248P8684D10  

MLLT10/10p12  G248P87580B3  

MLLT10/10p12 

(exons 10-14) 
 G248P89434C6  

MLLT10/10p12 

(exons 15-23) 
 G248P88419G5  

MLLT10/10p12  G248P89761F10  

10q narrowing 

Gene/region Centromeric probe Spanning probe Telomeric probe 

RET/10q11.21  RP11-351D16  

TET1/10q21.3  RP11-524O24  RP11-119F7 

TLX1/10q24.31 RP11-108L7  RP11-107I14 

ADD3/10q25.1 RP11-182C2  RP11-252O7 

TCF7L2/10q25.2  RP11-139K1  

3' CASP7, 

DCLRE1A/10q25.3 
 RP11-211N11  

3' NHLRC2/10q25.3  G248P81309A4 G248P81596B5  

flanking 3' 

NHLRC2/10q25.3 
 G248P82625E6 G248P84642G1  

ADRB1/10q25.3  G248P87999G12  

MIR2110/10q25.3  RP11-411P18  

FAM160B1/10q25.3   RP11-106M7  

ATRNL1/10q25.3  RP11-359H22  

GFRA1/10q25.3  RP11-96N16  

flanking 3’ 

EMX2/10q26.11 
 RP11-99L6  

5' CASC2/10q26.11  RP11-354M20  

BAG3/10q26.11 RP11-179H18  RP11-88I10 

WDR11/10q26.12 RP11-323P17  RP11-95I16 
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FGFR2/10q26.13  RP11-62L18  

DMBT1/10q26.13  RP11-481L19  

BNIP3/10q26.3  RP11-50E23  

GPR123/10q26.3 RP11-97M24  CTD-2557L14 

* In bold are indicated probes flanking 10p12 and 10q25 breakpoints in patient 1. 

Supplementary Table 2: Primers used in 5'-RACE and RT-PCR experiments !

Patients Primers used in 5'-RACE Sequences (5'->3') 

1 MLLT10ex21_3191R GGGTAGGGTTCTGGGACATT 

2 MLLT10ex11_1529R ATGACTGTTGGGAGTGAGAG 

Patients Primers used in nested PCR Sequences 

HNRNPH1ex5_586F GTGCAGTTTGCTTCACAGGA 

HNRNPH1ex6_794F CTGGCTTTGAGAGGATGAGG 

HNRNPH1ex8_965F TCCAGAGCACAACAGGACAC 

MLLT10ex16_2319R TGAGATGGTGCCTGACTGAG 

1 

MLLT10ex17_2419R TAGGTTGCGGCTATTGTCTC 

DDX3X_501F TAGGGTTTTAGCGGAGAGCAC 

DDX3X_514F GAGAGCACGGGAAGTGTAG 
2 

MLLT10ex4_620R CTCCATCCTTATGGGGACAA 

Primer numbers refer to Genbank accession: NM_005520.2 for HNRNPH1, 

NM_001356.3 for DDX3X and NM_004641.3 for MLLT10.!

Supplementary Table 3: Connected genes ranked by Mutual Information (MI). !

Probeset Id Gene Symbol MI MI 

Cons 

Probeset ID Gene Symbol 

201210_at DDX3X 0.142 0 201031_s_at HNRNPH1 

201210_at DDX3X 0.103 0 208753_s_at NAP1L1 

201210_at DDX3X 0.09 0 208754_s_at NAP1L1 

201210_at DDX3X 0.07 0 204528_s_at NAP1L1 

201210_at DDX3X 0.075 0 212511_at PICALM 

212514_x_at DDX3X 0.16 0 215236_s_at PICALM 

!
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Connections between DDX3X-HNRNPH1, DDX3X-PICALM and DDX3X-

NAP1L1 are significant (MI>0.1).  

(http://netview.tigem.it/netview_project/netview_tools.html). 

Supplementary Table 4: List of genes with significantly different expression (p 

<0.05) in the “other HOXA” and the “MLLT10 rearranged” groups, after t-test 

analysis on gene expression results. !

Probe Symbol Cytoband p-value FC 

232424_at PRDM16 1p36.23-p33 0.005259157 2.41 

244413_at CLECL1 12p13.31 9.59E-09 2.15 

213506_at F2RL1 5q13 0.001086216 1.90 

1557167_at HCG11 6p21 0.043036153 1.83 

1556261_a_at   0.000192345 1.76 

237458_at   0.033178575 1.69 

231747_at CYSLTR1 Xq13.2-q21.1 0.005259157 1.61 

240413_at PYHIN1 1q23.1 6.39E-05 1.59 

215933_s_at HHEX 10q23.33 0.001086216 1.58 

1569479_at ZNF718 4p16.3 0.023225169 1.57 

204689_at HHEX 10q23.33 0.001086216 1.55 

221045_s_at PER3 1p36.23 0.000192345 1.52 

233903_s_at ARHGEF26 3q25.2 0.000393532 1.51 

238127_at FLJ41484 13q34 0.023225169 1.50 

227889_at LPCAT2 16q12.2 0.023225169 1.50 

232686_at SIGLECP3 19q13.3 0.033178575 1.48 

229822_at   0.001086216 1.47 

206120_at CD33 19q13.3 0.000192345 1.44 

1562067_at   0.002392781 1.44 

209108_at TSPAN6 Xq22 0.011065268 1.42 

37966_at PARVB 22q13.2-q13.33 0.023225169 1.42 

228538_at ZNF662 3p22.1 0.001086216 1.40 

212686_at PPM1H 12q14.1 0.023225169 1.40 

241696_at CNTLN 9p22.2 0.000413972 1.39 

204638_at ACP5 19p13.3-p13.2 0.000192345 1.38 

202449_s_at RXRA 9q34.3 0.002392781 1.38 

243113_at   0.033178575 1.37 

1563226_at SLC38A10 17q25.3 0.023225169 1.37 

215695_s_at GYG2 Xp22.3 0.012520058 1.36 

215813_s_at PTGS1 9q32-q33.3 0.013232319 1.36 

225255_at MRPL35 2p11.2 0.019228939 1.35 
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205418_at FES 15q26.1 0.003034408 1.35 

205222_at EHHADH 3q26.3-q28 4.47E-05 1.35 

237497_at   0.005259157 1.34 

223487_x_at GNB4 3q26.33 0.008376883 1.34 

57082_at LDLRAP1 1p36-p35 0.008376883 1.34 

240661_at LOC284475 1p13.1 0.023225169 1.31 

1561899_at CLECL1 12p13.31 0.012520058 1.31 

239062_at LOC100131096 17q25.3 0.000393532 1.31 

203128_at SPTLC2 14q24.3 0.014162154 1.31 

210964_s_at GYG2 Xp22.3 0.038059584 1.30 

233467_s_at TSPAN32 11p15.5 1.18E-07 1.29 

1558105_a_at   0.043036153 1.28 

221879_at CALML4 15q23 0.033178575 1.27 

1566040_at   0.043036153 1.27 

214235_at CYP3A5 7q21.1 0.012520058 1.27 

227999_at PWWP2B 10q26.3 0.012520058 1.26 

233428_at   0.013232319 1.26 

1569401_at CLEC12A 12p13.2 0.019228939 1.25 

39318_at TCL1A 14q32.1 0.013232319 1.25 

242966_x_at   6.39E-05 1.24 

1556116_s_at TNPO1 5q13.2 0.038059584 1.24 

234645_at   0.023225169 1.24 

223467_at RASD1 17p11.2 0.033178575 1.24 

205505_at GCNT1 9q13 0.000545837 1.24 

220558_x_at TSPAN32 11p15.5 0.002696521 1.23 

224708_at KIAA2013 1p36.22 0.003034408 1.22 

223995_at SLC12A9 7q22 0.014162154 1.22 

228066_at C17orf96 17q12 0.012520058 1.22 

204394_at SLC43A1 11p11.2-p11.1 0.001906421 1.21 

211582_x_at LST1 6p21.3 0.023225169 1.21 

236501_at SALL4 20q13.2 0.008376883 1.20 

214181_x_at LST1 6p21.3 0.023225169 1.20 

241466_at   0.023225169 1.19 

232309_at LOC202181 5q35.3 0.023225169 1.19 

204336_s_at RGS19 20q13.33 0.023225169 1.18 

229686_at P2RY8 Xp22.33 0.002852378 1.18 

227344_at IKZF1 7p13-p11.1 0.003034408 1.17 

236454_at RNF212 4p16.3 0.001086216 1.17 

201954_at ARPC1B 7q22.1 0.005259157 1.15 

220600_at C3orf75 3p21.31 0.033178575 1.15 

208736_at ARPC3 12q24.11 4.47E-05 1.14 

201143_s_at EIF2S1 14q23.3 0.019228939 1.13 

201651_s_at PACSIN2 22q13.2-q13.33 0.043036153 1.11 

221267_s_at FAM108A1 19p13.3 0.001906421 1.10 

217839_at TFG 3q12.2 0.033178575 -1.08 
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224630_at ERLEC1 2p16.2 0.043036153 -1.08 

221493_at TSPYL1 6q22.1 0.038059584 -1.09 

203279_at EDEM1 3p26.1 0.000192345 -1.11 

217858_s_at ARMCX3 Xq21.33-q22.2 0.023225169 -1.11 

201738_at EIF1B 3p22.1 0.013232319 -1.11 

218497_s_at RNASEH1 2p25 0.001086216 -1.12 

227141_at TYW3 1p31.1 0.043036153 -1.12 

209067_s_at HNRPDL 4q21.22 1.18E-07 -1.12 

203261_at DCTN6 8p12-p11 0.023225169 -1.12 

218740_s_at CDK5RAP3 17q21.32 0.023225169 -1.12 

203484_at SEC61G 7p11.2 0.033178575 -1.12 

210178_x_at SRSF10 1p36.11 0.011065268 -1.12 

223766_at LOC100133130 10q11.22 0.003034408 -1.14 

230659_at EDEM1 3p26.1 0.002392781 -1.14 

207079_s_at MED6 14q24.2 0.001086216 -1.14 

226285_at CAPRIN1 11p13 0.033178575 -1.14 

218582_at MARCH5 10q23.32-q23.33 0.012520058 -1.14 

213447_at   0.003034408 -1.14 

222307_at LOC282997 10q25.2 0.012520058 -1.14 

217825_s_at UBE2J1 6q15 0.000192345 -1.14 

218178_s_at CHMP1B 18p11.21 0.033178575 -1.14 

201057_s_at GOLGB1 3q13 0.012520058 -1.14 

225811_at C11orf58 11p15.1 0.043036153 -1.14 

228349_at KIAA1958 9q32 0.013232319 -1.15 

227640_s_at   0.023225169 -1.15 

213594_x_at SRSF10 1p36.11 3.94E-05 -1.15 

202583_s_at RANBP9 6p23 0.000393532 -1.15 

202557_at HSPA13 21q11 0.019228939 -1.16 

223486_at GTPBP8 3q13.2 0.023225169 -1.16 

222435_s_at UBE2J1 6q15 0.011065268 -1.16 

1554678_s_at HNRPDL 4q21.22 0.000192345 -1.16 

235566_at TMF1 3p21-p12 0.011065268 -1.16 

225284_at DNAJC3 13q32.1 0.023225169 -1.17 

1555832_s_at KLF6 10p15 0.014162154 -1.17 

202798_at SEC24B 4q25 0.023225169 -1.17 

205068_s_at ARHGAP26 5q31 0.008376883 -1.18 

204299_at SRSF10 1p36.11 3.39E-06 -1.18 

219335_at ARMCX5 Xq22.1-q22.3 0.023225169 -1.18 

209712_at SLC35D1 1p32-p31 0.012520058 -1.18 

223117_s_at USP47 11p15.3 0.033178575 -1.18 

210285_x_at WTAP 6q25-q27 0.000413972 -1.18 

39729_at PRDX2 19p13.2 0.023225169 -1.18 

235112_at   0.014162154 -1.18 

224606_at KLF6 10p15 1.08E-06 -1.18 

1553686_at C18orf25 18q21.1 0.023225169 -1.18 
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213372_at PAQR3 4q21.21 3.94E-05 -1.19 

202842_s_at DNAJB9 14q24.2-q24.3 0.011065268 -1.19 

213074_at PHIP 6q14 0.043036153 -1.19 

212542_s_at PHIP 6q14 0.033178575 -1.20 

214289_at PSMB1 6q27 0.012520058 -1.20 

239562_at MTHFD2L 4q13.3 0.013232319 -1.20 

223602_at USP30 12q24.11 0.023225169 -1.20 

235526_at   0.014162154 -1.20 

1560029_a_at C11orf57 11q23.1 0.013232319 -1.20 

231269_at ASCC3 6q16 0.006117516 -1.20 

206181_at SLAMF1 1q23.3 0.033178575 -1.20 

238946_at   0.011065268 -1.20 

238114_at PCMTD1 8q11.23 0.012520058 -1.21 

232126_at COQ2 4q21.23 0.023225169 -1.21 

235103_at MAN2A1 5q21-q22 8.44E-06 -1.21 

228857_at GNL1 6p21.3 0.001906421 -1.21 

200732_s_at PTP4A1 6q12 0.008376883 -1.21 

228330_at ZUFSP 6q22.1 0.023225169 -1.21 

213212_x_at   0.013232319 -1.21 

227160_s_at C20orf7 20p12.1 0.002852378 -1.21 

1555562_a_at ZCCHC7 9p13.2 0.038059584 -1.21 

201799_s_at OSBP 11q12-q13 0.000545837 -1.22 

218696_at EIF2AK3 2p12 0.011065268 -1.22 

203097_s_at RAPGEF2 4q32.1 0.008376883 -1.22 

1554661_s_at CNST 1q44 0.036210511 -1.22 

218013_x_at DCTN4 5q31-q32 0.013232319 -1.22 

1555274_a_at EPT1 2p23.3 0.000545837 -1.22 

227018_at DPP8 15q22 8.44E-06 -1.22 

222519_s_at IFT57 3q13.13 0.023225169 -1.23 

204526_s_at TBC1D8 2q11.2 3.94E-05 -1.23 

200898_s_at MGEA5 10q24.1-q24.3 0.023225169 -1.23 

233952_s_at ZNF295 21q22.3 0.023225169 -1.23 

228789_at MTMR6 13q12 0.008376883 -1.23 

244828_x_at NAF1 4q32.2 0.001958125 -1.23 

201775_s_at KIAA0494 1pter-p22.1 0.023225169 -1.23 

1553749_at FAM76B 11q21 0.005259157 -1.23 

1565651_at ARF1 1q42 0.008376883 -1.24 

202722_s_at GFPT1 2p13 0.023225169 -1.24 

204334_at KLF7 2q32 0.008376883 -1.24 

203017_s_at SSX2IP 1p22.3 4.47E-05 -1.24 

210048_at NAPG 18p11.22 0.019228939 -1.24 

1559862_at COPA 1q23-q25 0.013232319 -1.25 

222303_at   1.28E-09 -1.25 

1561965_at SNRPB2 20p12.1 0.001906421 -1.25 

1553133_at C9orf72 9p21.2 0.001906421 -1.25 
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223846_at AZI2 3p24.1 0.023225169 -1.25 

229790_at TERF2 16q22.1 0.000413972 -1.25 

225539_at ZNF295 21q22.3 0.023225169 -1.25 

219631_at LRP12 8q22.2 0.000393532 -1.25 

239124_at   0.001086216 -1.26 

244360_at FBXL17 5q21.3 6.39E-05 -1.26 

242325_at YWHAH 22q12.3 0.000192345 -1.26 

240432_x_at KLF7 2q32 0.023225169 -1.26 

235369_at C14orf28 14q21.2 0.023225169 -1.27 

1556144_at DHX30 3p21.31 0.023225169 -1.27 

1559023_a_at KIAA0494 1pter-p22.1 0.012520058 -1.27 

1555448_at MUDENG 14q22.3 0.011065268 -1.27 

212225_at EIF1 17q21.2 0.000545837 -1.27 

233138_at C18orf1 18p11.21 0.023225169 -1.27 

227767_at CSNK1G3 5q23 0.002575538 -1.27 

228370_at   0.001086216 -1.28 

232483_at MED17 11q14 0.000192345 -1.28 

242776_at ZCCHC6 9q21 0.000413972 -1.28 

231833_at RBM33 7q36.3 0.023225169 -1.28 

231793_s_at CAMK2D 4q26 0.023225169 -1.28 

243982_at KLHL28 14q21.2 0.013232319 -1.28 

237495_at MPP7 10p12.1 0.033178575 -1.28 

1569450_at CAPZA2 7q31.2-q31.3 0.011065268 -1.29 

242073_at   0.012520058 -1.29 

231953_at BPTF 17q24.3 0.038059584 -1.29 

201776_s_at KIAA0494 1pter-p22.1 0.005259157 -1.29 

233035_at   0.033178575 -1.29 

202766_s_at FBN1 15q21.1 0.008376883 -1.30 

1554038_at LARP1B 4q28.2 0.001086216 -1.30 

239862_at   0.013232319 -1.30 

227384_s_at   0.023225169 -1.31 

202558_s_at HSPA13 21q11 0.005259157 -1.31 

230764_at   0.033178575 -1.33 

243649_at FBXO7 22q12-q13 0.012520058 -1.33 

213292_s_at SNX13 7p21.1 0.001086216 -1.33 

221211_s_at C21orf7 21q22.3 0.023225169 -1.33 

231042_s_at   0.003034408 -1.34 

233480_at TMEM43 3p25.1 0.023225169 -1.34 

242999_at ARHGEF7 13q34 0.033178575 -1.34 

240513_at EIF3M 11p13 0.012520058 -1.34 

1568665_at RNF103 2p11.2 8.44E-06 -1.35 

1568627_at SMEK2 2p16.1 0.033178575 -1.35 

213093_at PRKCA 17q22-q23.2 0.005259157 -1.36 

202375_at SEC24D 4q26 0.023225169 -1.36 

239540_at   1.08E-06 -1.36 
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239200_at   0.023225169 -1.37 

242756_at   0.001086216 -1.37 

226750_at LARP1B 4q28.2 1.28E-09 -1.37 

225019_at CAMK2D 4q26 0.023225169 -1.37 

1554339_a_at COG3 13q14.13 0.019228939 -1.38 

1554785_at CCDC82 11q21 0.023225169 -1.38 

200731_s_at PTP4A1 6q12 0.008376883 -1.39 

227755_at   0.000192345 -1.39 

207850_at CXCL3 4q21 0.008376883 -1.40 

228555_at CAMK2D 4q26 0.023225169 -1.40 

1555279_at ARMC8 3q22.3 0.023225169 -1.41 

222167_at   0.012520058 -1.41 

226393_at CYP2U1 4q25 3.39E-06 -1.41 

232615_at   0.008376883 -1.41 

244700_at SEC61B 9q22.32-q31.3 6.39E-05 -1.41 

207068_at ZFP37 9q32 0.011065268 -1.42 

240485_at   8.44E-06 -1.42 

224994_at CAMK2D 4q26 0.000192345 -1.43 

216121_at   0.023225169 -1.43 

202083_s_at SEC14L1 17q25.2 0.008376883 -1.44 

239415_at MAP9 4q32.1 0.005259157 -1.44 

215351_at RTCD1 1p21.2 0.013232319 -1.45 

1554290_at HERC3 4q21 0.023225169 -1.45 

215209_at SEC24D 4q26 0.023225169 -1.47 

219532_at ELOVL4 6q14 0.013232319 -1.47 

1560846_at   0.023225169 -1.49 

212254_s_at DST 6p12.1 0.043036153 -1.49 

1555281_x_at ARMC8 3q22.3 8.44E-06 -1.49 

1568609_s_at   0.000545837 -1.49 

60084_at CYLD 16q12.1 0.023225169 -1.50 

226120_at TTC8 14q31.3 0.000393532 -1.50 

239005_at FLJ39739 1q21.1 0.000192345 -1.51 

212602_at WDFY3 4q21.23 0.001086216 -1.53 

202381_at ADAM9 8p11.22 0.008376883 -1.54 

220576_at PGAP1 2q33.1 6.39E-05 -1.55 

222142_at CYLD 16q12.1 0.012520058 -1.56 

229139_at JPH1 8q21 0.008376883 -1.57 

212606_at WDFY3 4q21.23 0.002696521 -1.57 

232304_at PELI1 2p13.3 0.002575538 -1.60 

236260_at LOC100287598 16p13.2 1.08E-06 -1.60 

1556911_at   6.39E-05 -1.60 

208015_at SMAD1 4q31 0.001086216 -1.61 

212526_at SPG20 13q13.3 0.011065268 -1.61 

207738_s_at NCKAP1 2q32 0.023225169 -1.61 

241801_at PGAP1 2q33.1 8.44E-06 -1.62 
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207705_s_at NINL 20p11.22-p11.1 0.008376883 -1.62 

204201_s_at PTPN13 4q21.3 0.012520058 -1.63 

212263_at QKI 6q26 0.014162154 -1.65 

216693_x_at HDGFRP3 15q25.2 0.011065268 -1.70 

237491_at   9.59E-09 -1.70 

232098_at DST 6p12.1 8.44E-06 -1.72 

235391_at FAM92A1 8q22.1 0.012520058 -1.74 

235451_at SMAD5 5q31 0.023225169 -1.76 

213469_at PGAP1 2q33.1 0.012520058 -1.76 

209526_s_at HDGFRP3 15q25.2 0.005259157 -1.79 

239725_at PGAP1 2q33.1 1.16E-11 -1.80 

218847_at IGF2BP2 3q27.2 4.47E-05 -1.81 

228266_s_at HDGFRP3 15q25.2 0.011065268 -1.84 

217963_s_at NGFRAP1 Xq22.2 0.033178575 -1.86 

202351_at ITGAV 2q31-q32 0.011065268 -1.91 

207781_s_at ZNF711 Xq21.1 0.012520058 -1.94 

242457_at   0.023225169 -1.98 

201579_at FAT1 4q35 6.39E-05 -2.05 

228423_at MAP9 4q32.1 1.18E-07 -2.06 

220145_at MAP9 4q32.1 0.000545837 -2.07 

210517_s_at AKAP12 6q24-q25 0.013232319 -2.18 

228988_at ZNF711 Xq21.1 1.56E-06 -2.18 

209524_at HDGFRP3 15q25.2 0.008376883 -2.21 
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Acute Lymphoblastic Leukemia (ALL) is an aggressive malignancy of lymphopoietic 

cells characterized by a clonal proliferation of blast cells originated from lymphoid 

precursors arrested at early stages of differentiation. ALL is the most common cancer 

and the most successfully treated malignancy in children, with long-term survival rates 

reaching over 80% as result of risk-directed treatment and intensifies cure protocols. 

Although advances in genomic and molecular analysis have improved the ability to 

stratify patients in risk groups that receive appropriate treatment, still a quarter of 

children experience relapse and have poor outcomes, failing to achieve a complete 

remission. Relapse in ALL is characterized by disease recurrence at extramedullary 

sites, such as the Central Nervous System. At diagnosis <2% of ALL patients present 

CNS disease, but at relapse >30% have infiltration at this site. Reaching leukemic cells 

in the so-called “sanctuary-sites”, such as the CNS, require specific therapies that can be 

invasive (i.e: cranial irradiation) and related to several deleterious effects. Modern 

diagnostic techniques improved the ability to categorize risk, allowing clinicians to 

optimize therapy including that directed to the CNS. Moreover, numerous efforts have 

been made to reduce or avoid the use of cranial irradiation. The need to use cranial 

irradiation in the cure of patient with CNS disease is still debated, in fact some studies 

propose to avoid this treatment. However, cranial irradiation is still recommended for 2-

20% of ALL at high risk of CNS relapse, such as patients with CNS infiltration at 

diagnosis or presenting T-immunophenotype with high WBC count. This overview 

shows the importance to understand molecular mechanisms that allow or predispose 

blast cells to infiltrate the CNS in order to improve the CNS-directed treatment. 

With this work we aimed to deep insight into molecular mechanisms that allow T-ALL 

cells to infiltrate the CNS. Particularly, to gain in this aim we used a whole 

transcriptome analysis approach (gene expression profiling) starting from animal 
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models to arrive to T-ALL patients. We studied T-cell Acute Lymphoblastic Leukemia 

(T-ALL) as the incidence of CNS infiltration is higher in T-ALL compared to B-ALL. 

We identify for the first time the presence of CNS infiltration in two zebrafish models 

that develop T-ALL (hMYC-ER and hlk). These two zf lines are genetically different 

and could represent different subgroup of human T-ALL; hMYC-ER model overexpress 

the human C-MYC as a larger number of T-ALL patients, while hlk line carries an 

unknow mutation. Interesting, the type of CNS invasion in these models was very 

similar to CNS infiltration found in pediatric patients at time to dead in 1970s. In fact, 

we found different degree of infiltration at the meningeal level, often correlated to optic 

nerve involvement. These data underline the ability of these zf models to mimic the 

human CNS disease. This discovery is very important, not only for the study of 

mechanisms that predispose T-ALL cell to enter in the CNS, but also to perform 

pharmacological test in a high-throughput manner. Another important aspect was the 

presence of a different trend of CNS infiltration that was characteristic for each zf line: 

hMYC-ER zf line presented higher levels of CNS infiltration compare to hlk model. 

GEP analysis allowed us to identify two different molecular networks active in hMYC-

ER and hlk cancer, suggesting the idea that T-ALL cells could use different mechanisms 

to infiltrate the CNS. Particularly, we found a positive correlation between the degree of 

CNS infiltration and the expression levels of the chemokine receptor cxcr4. This result 

suggests that higher expression levels of cxcr4 increase the ability of T-ALL cells to 

infiltrate the CNS. Interesting, in zebrafish the transcription of cxcr4 was also related to 

high expression levels of C-MYC oncogene.  

At this point we decided to validate the results found in zebrafish using another animal 

model closer to human patients: we used murine models xenografted with primary T-

ALL cells coming from pediatric patients. We demonstrated that also in xenografted 

mice, human T-ALL cells could mimic the phenomenon of CNS infiltration. 

Importantly, we found another useful model to study the phenomenon of CNS. 

Moreover, mice xenografted with different patients presented variable degree of CNS 

infiltration, suggesting a different predisposition of T-ALL cells to invade the CNS 

environment. Results found in murine model were very similar to previous ones obtain 

in zebrafish. At this point we decided to investigate also in xenografted model the 
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CXCR4 as one possible molecular mechanism that predispose T-ALL cells to invade the 

CNS. Preliminary results seem to validate the relation between higher CXCR4 

expression levels and the increased ability of blast cells to invade the CNS. Other 

analyses on a larger cohort of xenoengrafted mice are ongoing. Once confirmed the 

importance of this chemokine receptor in regulating the phenomenon of CNS invasion, 

we could start to test specific inhibitor for CXCR4, such as ADM3100, in murine model 

xenografted with T-ALL cells that we know to infiltrate the CNS.  

We do not limit the study of CNS infiltration to animal models, but we preceded this 

work performing a whole transcriptome analysis on human pediatric T-ALL patients 

with- and without- CNS infiltration at diagnosis. The study of CNS infiltration directly 

in human patient is not easy, as little material is available for research and it is not 

possible to study cells directly extracted from the cerebrospinal fluid. GEP analysis 

failed to find a strong signature that could distinguish patients with- and without CNS 

involvement. Moreover, in T-ALL human patients we were not able to find the 

correlation between higher expression levels of CXCR4 and the CNS infiltration, as 

almost all CNS- patients highly expressed the CXCR4. The passage from animal model 

to human patients is not so linear. First, the biological process we are observing in 

patients and animal models is not exactly the same, in fact, animal models present an 

extreme infiltration that might happen in human if disease is not treated and that could 

partially change the gene expression profiling of blast cells. Second, it is possible that a 

group of patients is underestimated for CNS disease and is classified among CNS- 

cases; that increases the complexity to study this phenomenon in human patients. Third, 

different mechanisms could be used by T-ALL cells to infiltrate the CNS; in fact, we 

proposed the CXCR4/CXCL12 axis as one possible mechanisms or a predisposing 

factor to enter in the CNS, but not as the absolute mechanisms that can discriminate 

between CNS+ and CNS- cases. Further studies are necessary to better understand the 

role of CXCR4 in human patients, maybe studying also the activation of this chemokine 

receptor in T-ALL cells. 

Another aspect we investigated inside the human pediatric T-ALL group was related to 

C-MYC expression levels. Previously, we have seen that hMYC-ER line is also a 

zebrafish model that can mimic human T-ALL overexpressing C-MYC. The prognostic 
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significance of C-MYC activation is not still understood. Analysis of C-MYC expression 

on a cohort of T-ALL patients revealed different expression level of C-MYC oncogene; 

particularly it is possible identify a group with high- and low- expression of C-MYC. 

However, GEP analysis failed to found a signature that can distinguish these groups. 

Once again we are in front of this problem; human T-ALL is a complex disease in 

which multiple events can occur to contribute and give rise to leukemogenesis process. 

In fact, many factors can contribute to C-MYC deregulation (NOTCH1, FBXW7, PTEN 

mutations and C-MYC rearrangements). To give a prognostic significance to C-MYC 

deregulation, it is probably necessary to investigate not only the deregulation of the 

single gene but contextualize its expression in different T-ALL contexts. To understand 

the biological meaning to have C-MYC upregulated by different causes, we compared 

patients with C-MYC rearrangement in absence of NOTCH1
m
 and patients without C-

MYC rearrangement but possible NOTCH1, FBXW7, PTEN mutations. A strong 

signature separated cases with-and without C-MYC rearrangement. Of note, the 

subgroup of patients carrying C-MYC rearrangements presents a NOTCH1-independent 

leukemia compared to the group without C-MYC rearrangement that seems to be 

strongly related to NOTCH1 pathway activation. 

In this thesis work we tested the ability of GEP analysis in distinguish signatures also 

inside specific T-ALL subgroups, such us in the subgroup of T-ALL patients with high 

expression of C-MYC. This power of GEP was already tested in another study, where 

we were able to identified a specific signature for patients carrying MLLT10 

rearrangements, inside the HOXA subgroup in pediatric T-ALL. 

 

 

 

 

 

 



! ! "#$!

!




