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Abstract
The continuous pursuit of better prediction quality has gradually led to the develop-
ment of increasingly complex machine learning models, e.g., deep neural networks. De-
spite the great success in many domains, the black-box nature of these models makes
them not suitable for applications in which the model understanding is at least as impor-
tant as the prediction accuracy, such as medical applications. On the other hand, more
interpretable models, as decision trees, are in general much less accurate. In this thesis,
we try to merge the positive aspects of these two realities, by injecting interpretable el-
ements inside complex methods. We focus on kernel methods which have an elegant
framework that decouples learning algorithms from data representations.

In particular, the first main contribution of this thesis is the proposal of a new family
of Boolean kernels, i.e., kernels defined on binary data, with the aim of creating inter-
pretable feature spaces. Assuming binary input vectors, the core idea is to build em-
bedding spaces in which the dimensions represent logical formulas (of a specific form)
of the input variables. As a result the solution of a kernel machine can be represented
as a weighted sum of logical propositions, and this allows to extract from it human-
readable rules. Our framework provides a constructive and efficient way to calculate
Boolean kernels of different forms (e.g., disjunctive, conjunctive, DNF, CNF). We show
that on binary classification tasks over categorical datasets the proposed kernels achieve
state-of-the-art performances. We also provide some theoretical properties about the
expressiveness of such kernels.

The second main contribution consists in the development of a new multiple kernel
learning algorithm to automatically learn the best representation (avoiding the valida-
tion). We start from a theoretical result which states that, under mild conditions, any
dot-product kernel can be seen as a linear non-negative combination of Boolean conjunc-
tive kernels. Then, from this combination, our MKL algorithm learns non-parametrically
the best combination of the conjunctive kernels. This algorithm is designed to optimize
the radius-margin ratio of the combined kernel, which has been demonstrated of be-
ing an upper bound of the Leave-One-Out error. An extensive empirical evaluation, on
several binary classification tasks, shows how our MKL technique is able to outperform
state-of-the-art MKL approaches.

A third contribution is the proposal of another kernel family for binary input data,
which aims to overcome the limitations of the Boolean kernels. In this case the focus
is not exclusively on the interpretability, but also on the expressivity. With this new
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framework, that we dubbed propositional kernel framework, is possible to build kernel
functions able to create feature spaces containing almost any kind of logical proposi-
tions.

Finally, the last contribution is the application of the Boolean kernels to Recom-
mender Systems, specifically, on top-N recommendation tasks. First of all, we propose a
novel kernel-based collaborative filtering method and we apply on top of it our Boolean
kernels. Empirical results on several collaborative filtering datasets show how less ex-
pressive kernels can alleviate the sparsity issue, which is peculiar in this kind of appli-
cations.
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1
Introduc on

Man's reach exceeds his imagina on.

The Pres ge
Robert Angier

In short

1.1 Mo va ons, 3
1.2 Contribu ons, 6
1.3 Publica ons, 8
1.4 Document structure, 9

This chapter opens the curtain of this thesis by introducing the motivations and the
outline of the main contributions.

. Mo va ons
The impressive growth of available data in the last years has offered fertile ground for
machine learning methods to show their capabilities. Machine learning is the branch of
Artificial Intelligence that deal with the development of algorithms able to learn from
experience [Mit97, Alp10]. Given a specific task, and data which represent the past ex-
perience, learning (for a machine) means optimizing some set of parameters of a model
by exploiting the data. Such learned model should be able to make predictions or to
infer useful knowledge from data.

Machine learning can be seen as a point of conjunction between mathematics, statis-
tics, and computer science. Mathematics and statistics offer the instruments for creating
theoretically well founded models, while computer science provides the tools for imple-
menting such models inside the machine.

However, machine learning is not only a matter of good models and efficient code, it
is also, and maybe most, a matter of appropriate data representation. Machines, in their
lower level, can understand only zeros and ones, while data can have the most disparate
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1.1. Motivations

forms, and finding an effective way to represent the available knowledge is not trivial.

. . The representa on problem
The representation problem refers to the problem of converting the available data into
a representation which ideally distill all the relevant information about the task in a
compact manner.

Considering that data are the input of the model, this problem of finding how to
describe the available knowledge is faced since the early stages of a learning process.
Typically, this can be considered as a pre-training step in which the best set of features,
concerning the learning task, are, implicitly or explicitly, defined. In the past, the most
used approach was to fix an a-priori representation, usually extracted from a “man-
ually” performed feature engineering step [HS05]. Thus, the efforts were mainly de-
voted to the search of an appropriate function to solve the given task. Recently, a new
paradigm which involves the learning of the best representation is continuously gaining
interest from the research community. The most representative example of this trend
is deep learning [BCV13, Sch15]. Deep learning models are composed by a sequence
of layers which encode the data representation with different levels of abstraction. In
this way, the burden of creating the best representation is entrusted to the algorithm
itself. Deep neural networks, and all the different kinds of recurrent networks, have im-
proved the state-of-the-art in many domains, especially the ones regarding multimedia
data [BCS+16, RDGF16, GSK+17, DHR+17].

However, the biggest shortcoming of deep models is their complex structure which
makes them sort of black-boxes, despite there have been some attempts to extract inter-
pretable rules from them [ZLMJ16, BAJB17, Tsu00, EL06, GT10]. Moreover, other issues
related to the standard neural networks need to be mentioned [LBLL09, EMB+09, KK01,
PMB13, SMDH13]:

• by design, they do not provide any decoupling between the representation and
the model;

• they are demanding, especially in deep architectures, in terms of resources and
training time;

• they are theoretically not well understood;

• the convergence to the optimal solution is not guaranteed because of the presence
of local minima and the gradient vanishing phenomenon.

An alternative to the deep approach, is represented by kernel methods, which have
had a huge impact in the research community in the first years of the new millen-
nium [SS01, STC04, HSS08, STV04]. Nonetheless, they are still used in many learning
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1.1. Motivations

tasks since they are generally less demanding than deep networks. Kernel methods, as
the name suggest, exploit a very solid theoretical framework concerning kernels.

Loosely speaking, a kernel is a function which represents a similarity in some vec-
tor space. This vector space is induced by a mapping function which takes the input
vector and projects it onto an high dimensional space. What makes such kernel func-
tions so appealing is that this high dimensional mapping is implicitly performed, and
hence its computation is possible and efficient. Thus, defining a kernel function, and
its corresponding mapping, means defining a new data representation. This allows
the application of kernel methods to different kinds of data, as long as a suitable ker-
nel function is provided. Furthermore, kernel methods offer an elegant and theoreti-
cally founded framework that decouples learning algorithms from data representation.
Given a dataset and a kernel method, it is possible to apply on it different kernels with-
out changing the behaviour of the method, which simply solves the problem inside the
new space defined by the kernel.

In the direction of learning the representation instead of fixing it a-priori, kernel
learning has emerged as a new research topic. Given a specific task or set of tasks, in ker-
nel learning the goal is to learn the optimal kernel (i.e., the optimal representation), and
the corresponding implicit feature map. Multiple Kernel Learning (MKL) [DKWH09,
GA11, ADNS15, AD15] is one of the most successful approaches to kernel learning.
MKL methods are designed to combine a set of base (a.k.a. weak) kernels to obtain
a better one. Nevertheless, also kernel methods have their own weaknesses:

• conversely to the deep networks, the representation offered by a kernel is shallow;

• they suffer from scalability issues, since they usually required to store in memory
the full kernel matrix which may become huge when the number of examples is
very large;

Finally, even though much less than deep networks, kernel methods are also treated as
black-box models, and hence their interpretation is not straightforward. However, in the
literature there are approaches that try to extract rules from kernel methods (specifically
SVM) [GT10, BB10, ZSJC05, Die08, FSR05].

. . Interpretability
The lack of interpretability of many machine learning algorithms makes hard their ap-
plication in scenarios in which explanations are as important (if not more) as the pre-
diction quality. For example, in biological/bioinformatic applications it is not always
enough to have a model able to predict whether or not a specific disease is going to ex-
hibit. Instead, it would be very helpful to understand which are the bio-markers (i.e.,
features) related to that specific disease in order to give to the practitioners useful infor-
mation to work with.
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Regarding the need of explanations, in 2016, the European Parliament adopted a set
of comprehensive regulations for the collection, storage and use of personal informa-
tion, the General Data Protection Regulation [GF16]. Inside such regulation, that slates
to take effect as law across the EU in 2018, the first line of the Article 22.1 states that:
“The data subject shall have the right not to be subject to a decision based solely on automated
processing”, and later in the same article it is specified that such decisions must be su-
pervised by human beings. In these contexts, having the possibility of knowing which
are the key elements that guide the machine’s decision can be helpful for the human
supervision.

Beyond these delicate scenarios, another example in which explanations play a huge
role are recommender systems. When a recommendation is conveyed to the user, it
can be accepted or rejected. In case of rejection, without any explanation about the
reason why such recommendation has been provided, the user can lose the trust on the
system, because it simply does not work as expected. On the contrary, with the help of
a reasonable explanation, a bad recommendation can be “justified” by the user [PC07].
Moreover, explanations can also play an active role in the recommendation: anytime a
user does not know anything about the recommended item, the explanation can provide
useful insights about why such item can be of interest for him/her. For these reasons,
recently, this issue is gaining attention from the research community [Tin07, CMEC17,
HVPD17].

The ability to understand machine learning models, is not only useful for the end
user, but it is also important for researchers since it may help in further understanding
the models and in designing better ones.

. Contribu ons
The aim of this thesis is to provide novel methods for facing both the representation and
the interpretability problem. In particular, these problems are addressed in contexts in
which the input data is binary and/or categorical.

The original contributions of this thesis are listed in the following:

• Proposal of a new family of kernels for binary data which creates easy-to-interpret
feature spaces. The core idea of this family of (Boolean) kernels is the definition
of embedding spaces in which the dimensions represent logical formulas over the
input variables. This framework provides a constructive and efficient way to calcu-
late many kernels which are able to mimic logical operations, such as disjunctions,
conjunctions, DNFs and CNFs. Empirical analysis show that, on binary classifi-
cation tasks, the proposed kernels achieve state-of-the-art performance on several
benchmark categorical datasets;

6 Mirko Polato, Ph.D. Dissertation



1.2. Contributions

• Analysis of the expressiveness of the Boolean kernels and the relation with their
capability of dealing with sparse data. This analysis is performed from both the
theoretical and the empirical point of view;

• Theoretical connection between Boolean kernels and dot-product kernels. We
show how dot-product kernels can be computed as linear non-negative combina-
tions of monotone conjunctive Boolean kernels;

• Proof of concept algorithm, based on a genetic approach, for interpreting the solu-
tion of a SVM. The application on a set of artificial and benchmark datasets shows
the potential of Boolean kernels for extracting human-readable rules that explain
the decision;

• Proposal of a novel multiple kernel learning algorithm, dubbed GRAM, designed
to optimize the radius-margin ratio, which has been demonstrated of being an
upper bound of the Leave-one-out error. Empirical results on several benchmark
categorical datasets show that GRAM is able to outperform state-of-the-art MKL
methods;

• Proposal of a second kernel family for binary data, called propositional kernels,
which aspires to overcome the limitations of the Boolean kernels. The aim of the
propositional kernels is not exclusively focused on the interpretability, but also on
the expressive power. This framework is able to build feature spaces, and corre-
sponding kernel functions, that can potentially contain almost any kind of logical
propositions. The framework provides all the theoretical tools for constructing
such kernels in a constructive and efficient manner. An example of application,
on binary classification tasks, shows the potential of this family of kernels;

• Application of kernel methods based on Boolean kernels on Recommender Sys-
tems, specifically, on top-N recommendation. This contribution aims to underline
the applicability of the Boolean kernel framework in a real case-study where ex-
planations can be helpful. Firstly, an efficient kernel-based collaborative filtering
method is proposed. Then, it is applied on several collaborative filtering datasets.
Results show that Boolean kernels are able to alleviate the sparsity issue, which
is peculiar in this kind of applications. Moreover, the resulting decision function
can be used to extract explanation rules for the users, for example, by using the
method proposed in Chapter 7.
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1.3. Publications

. Publica ons
Most of the content of this thesis has been presented in international peer-reviewed
conferences and journals. The complete list of already published papers is shown in the
following.

Journals
J01 Exploi ng sparsity to build efficient kernel based collabora ve filtering for top-N

item recommenda on. Mirko Polato and Fabio Aiolli. Neurocomputing, vol. 268,
pp. 17-26, 2017.

Conferences
C01 Kernel based collabora ve filtering for very large scale top-N item recommenda-

on. Mirko Polato and Fabio Aiolli. In Proceedings of the 25th European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine
Learning’, ESANN ’16, Bruges (Belgium) 2016.

C02 Classifica on of categorical data in the feature space of monotone DNFs. Mirko
Polato, Ivano Lauriola and Fabio Aiolli. In Proceedings of the 26th International
Conference on Artificial Neural Networks, ICANN ’17, Alghero (Italy), 2017.

C03 Radius-margin ra o op miza on for dot-product boolean kernel learning. Ivano
Lauriola, Mirko Polato and Fabio Aiolli. In Proceedings of the 26th International
Conference on Artificial Neural Networks, ICANN ’17, Alghero (Italy), 2017. Ar-
tificial Intelligence and Statistics, AISTATS ’18, 2018.

Workshops
W01 Apreliminary study on a recommender system for the job recommenda on chal-

lenge. Mirko Polato and Fabio Aiolli. In Proceedings of the Recommender Sys-
tems (RecSys) Challenge 2016, Boston (USA, Massachusetts), 2016.

W02 Disjunc ve Boolean Kernels based Collabora ve Filtering for top-N item recom-
menda on. Mirko Polato and Fabio Aiolli. In Proceedings of the 8th Italian Infor-
mation Retrieval Workshop, IIR ’17, Lugano (Svizzera), 2017.
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. Document structure
The thesis is divided in four main parts:

PART I , which has started with this chapter, provides all the background knowledge
necessary to fully understand the remainder of the thesis. We start by defining
the notations used throughout the document, and we also give the descriptions
of the datasets and the metrics used in our experiments. Then, Chapter 4 firstly
presents the learning problem in general, and in the successive sections it goes a
bit deeper in the description of kernel methods and all the other concepts that will
be useful for the understanding of this thesis.

PART II describes the first main contribution, namely the Boolean kernel framework.
In Chapter 6 the Boolean kernel family is presented. For each kernel the descrip-
tion and the method to compute it is provided, as well as a discussion of its prop-
erties. In the last part of the chapter the evaluation assessment of these kernels
is presented and discussed. Chapter 7 presents a proof of concept application of
the Boolean kernels for interpreting the solution of a kernel machine. Chapter 8
describes the second main contribution, that is the propositional kernel frame-
work: first of all, the weaknesses of the Boolean kernels are highlighted, and then
a description of the propositional kernel framework is provided. Finally, an ex-
ample of application of the framework on binary classification tasks is presented.
Lastly, the third main contribution is presented in Chapter 9. Our MKL algo-
rithm, dubbed GRAM, is described from both a theoretical and the algorithmic
point of view. Finally, a thorough evaluation against other state-of-the-art MKL
approaches is performed.

PART III presents the application of the Boolean kernels to the top-N recommenda-
tion problem. We first propose a new kernel-based collaborative filtering method
for implicit feedback datasets. Then, an analysis on how the sparsity influences
the kernels is provided. Finally, an extensive evaluation on several collaborative
filtering datasets is discussed.

PARTI IV concludes the thesis: Chapter 11 wraps up some considerations about this
dissertation and the achieved results of our research. Finally, it gives some possible
research paths that can be followed in the future in order to give continuity to this
research.
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2
Nota on

We could, of course, use any nota on we want; do not laugh at nota ons;
invent them, they are powerful. In fact, mathema cs is, to a large extent,
inven on of be er nota ons.

The Feynman Lectures on Physics, Addison-Wesley, Chapter ( )
Richard Phillips Feynman

In short

2.1 Binary classifica on, 11
2.2 Recommender systems, 13

This chapter introduces the main notations used throughout this thesis. Some of
the concepts treated in this chapter will be resumed in the remainder for a more thor-
ough explanation, however, they are introduced here only to contextualize the nota-
tion. Table 2.1 presents the fundamental symbols exploited in the following. Notation
regarding binary classification and recommender systems are presented in Section 2.1
and Section 2.2, respectively.

. Binary classifica on
A generic supervised learning task consists in inferring a target function from labeled
data (i.e., examples). In the context of supervised binary classification, examples are
a set of pairs of the form {(xi, yi)}Li=1, with vectors xi in some set X and labels yi ∈
{−1,+1}. Usually, in order to assess the goodness of a learning algorithm, the whole set
of data is divided into two sets: a training set {(xi, yi)}li=1 used to build the model, and
a test set {(xi, yi)}Li=l+1 used to estimate the algorithm’s performance. In this document,
training-and-test division is always assumed.
When it is not specified differently the dimension of the vectors xi is assumed to be n.
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Symbol Interpretation

v Bold-faced lower case letters are used to identify vectors, which are con-
sidered by default column vectors

vi The indexed notation identifies the i-th element of the vector v

1n A vector in Rn with all entries set to 1

⟨·, ·⟩ The dot-product (a.k.a. inner or scalar product) of vectors

M Bold-faced capital letters are used to identify matrices

Mi,j The indexed notation identifies the j-th element in the i-th row of
the matrix M

Mi,: The i-th row vector of the matrix M

M:,j The j-th column vector of the matrix M

1n×m A vector in Rn×m with all entries set to 1

In The identity matrix in Rn×n

⊙ The element-wise product of vectors or matrices

∥ · ∥1 The L1 norm (Taxicab norm) of a vector or a matrix

∥ · ∥2 The L2 norm of a vector or a matrix

∥ · ∥F The Frobenius norm of a matrix

∥ · ∥T The trace norm (nuclear norm) of a matrix

·⊺ The transpose of a vector or a matrix

O The big O notation

|A| The cardinality (i.e., number of elements) of the set A

[n] The set of all integers between 1 and n, i.e., {i ∈ Z+ | i ≤ n}

JP K The indicator function which returns 1 if the predicate P is true, and 0
otherwise

Table 2.1: Summary of the used notation throughout this thesis.
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. Recommender systems
Broadly speaking, Recommender Systems (RSs) are information filtering technologies
used to provide personalized advices. The set of those who receive suggestions from
the system are usually called users, and they are indicated by the set U , with |U| = n.
While, what the system suggests to users are called items, and they are denoted by the
set I, with |I| = m.

In general, in order to give personalized recommendations, RSs leverage on histor-
ical data about users’ interactions with items. These interactions, also referred to as
feedbacks, can be divided into implicit and explicit feedbacks. Implicit feedbacks are
those user-item interactions which come from a natural use of the system. In particular,
the user is not asked to give any kind of direct preference to the items. Examples of these
kind of interactions are clicks, views, time spent on a webpage and so on. Conversely,
explicit feedbacks are interactions which represent unambiguously the user’s taste. The
most common example of explicit feedback is the rating, e.g., 1-to-5 stars and thumbs
up versus thumbs down.

In this document, implicit feedbacks are considered as binary information about
interactions between users and items (i.e., exists/not exists an interaction), and they
are collected in the so-called binary rating matrix R ∈ {0, 1}n×m, where users are row
vectors and items are column vectors. By leveraging on the analogy between binary
vectors and sets, the matrix R will be sometimes indicated by its corresponding set of
binary ratingsR ≡ {(u, i) | u ∈ U , i ∈ I,Ru,i = 1}.

 Slight abuse of notation
The notation Ru,i requires that U ≡ [n] and I ≡ [m], which may not be always
the case. In order to ease the readability, the reader can assume that for any set
A exists a bijective function f : A → Z+ which maps each element of A onto an
unique integer in the interval [|A|].

Similarly to the ratings case, the set of items rated by a users u and the set of users
who rated the item i are indicated by the sets Iu ≡ {i ∈ I | (u, i) ∈ R}, and Ui ≡ {u ∈
U | (u, i) ∈ R}, respectively.
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3
Evalua on

Not everything that can be counted counts, and not everything that counts
can be counted.

Albert Einstein

In short

3.1 Metrics, 15
3.2 Datasets, 18

In this chapter we present the metrics and the datasets used during the empirical
evaluations. Firstly, we describe metrics for both the binary classification task and the
recommendation task and then we give a brief description of the benchmark datasets.

. Metrics
. . Binary classifica on

Choosing the appropriate evaluation metric is very important in order to find which
model achieves the best performance. Many measures for evaluating classification (and
information retrieval in general) models have been proposed, but certainly the most
widely used are: precision, recall, accuracy and AUC.

Given a binary classifier and an instance, there are four possible outcomes:

True Positive (TP) the instance is positive (p) and it is classified as positive (p’);

False Negative (FN) the instance is positive (p) and it is classified as negative (n’);

True Negative (TN) the instance is negative (n) and it is classified as negative (n’);

False Positive (FP) the instance is negative (n) and it is classified as positive (p’).

The confusion matrix presented in Figure 3.1 summarizes these possible scenarios.
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Figure 3.1: Confusion matrix for binary classification.

Precision, recall and accuracy
The accuracy is often the starting point for analyzing the quality of a classification model.
Accuracy measures the ratio of correct classifications (i.e., TP and TN) to the total num-
ber of cases evaluated. The analytic formula is the following:

accuracy =
TP + TN

TP + TN + FP + FN (3.1)

Despite its popularity, the accuracy suffers of a critical drawback, known as accuracy
paradox: in the case of unbalanced datasets, a classifier that predicts the dominant (i.e.,
the most probable) class could achieve a very good accuracy. For this reason, accuracy
is usually reported along with precision and recall.

Precision is calculated as the number of TP divided by the total number of elements
labeled as positives by the classifier, i.e., TP and FP. Recall (also known as sensitivity or
true positive rate) is defined as the number of TP divided by the total number of elements
that are actually positives, i.e., TP and FN.

Formally:

precision =
TP
P′ =

TP
TP + FP , recall = TP

P =
TP

TP + FN . (3.2)

AUC
Besides the true positive rate (TPR - i.e., recall), it is also useful to define the false positive
rate (FPR), as the ratio between negative examples classified as positives and the total
number of negative examples:

FPR =
FP

FP + TN . (3.3)
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The higher the TPR the better is the classifier, and conversely, the lower the FPR the
better is the classifier. This tradeoff, usually called benefits (TP) and costs (FP) tradeoff,
can be summarized using the Receiver Operating Characteristics (ROC) graph. ROC
graphs are two-dimensional graphs in which TPR is plotted on the y axis and FPR is
plotted on the x axis. Loosely speaking, one point (i.e., a classifier performance) in ROC
space is better than another if it is on the upper-left of the latter.

A single point in the ROC space represents the goodness of a discrete binary classi-
fier. However, anytime a classifier instead of returning directly a predicted class label
returns a score (e.g., the probability of being positive/negative), its output can be inter-
preted as a ranking. Such ranking can be used with a threshold to produce a discrete
binary classification, e.g., a score above the threshold means positive, and negative oth-
erwise. Each threshold value produces a potential new point in the ROC space, and
ideally by varying the threshold inside the interval (−∞,+∞) it is possible to trace a
curve which starts in the lower left corner (i.e., TPR=FPR=0) and ends up in the upper
right corner (i.e., TPR=FPR=1).

The ROC curve unbinds the assessment of the quality of a ranker from the choice
of a specific classification threshold. A possible way to compare two ROC curves is by
comparing the underlying area: the greater the area the better the performance of the
classifier. This metric is known as Area Under the ROC Curve, or simply AUC (or AU-
ROC) [Faw06]. From a computational point of view, the definition of the AUC given
above is not the most practical one. However, it is also possible to see the AUC from
another perspective, that is, it represents the probability that the ranker will rank a ran-
domly chosen positive instance higher than a randomly chosen negative instance (as-
suming positive ranks higher than negative). This is equivalent to the Wilcoxon test of
ranks [HM82]. This new view of the AUC allows to give a reasonably efficient way to
calculate it: given the predicted scores of n instances, s ∈ Rn, then

AUC(s) =
1

n⊕n⊖

n∑
i=1

n∑
j=1

Jsi > sjK ∈ [0, 1], (3.4)

where n⊕ and n⊖ represent the number of positive and negative examples, respectively.

. . Top-N recommenda on
In top-N recommendation the quality of a method depends on how good the produced
items ranking is for a user, or in other words, the more relevant items are in the top of
the ranking, the better is the method. A ranking metric has already been presented in
Section 3.1.1, namely the AUC, and it applies also for top-N recommendation. Besides
this full-rank metric, many other metrics are very popular in the RSs community and
most of them try to reward the rankings which have many relevant items at the very
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top. Some of them are described in the following.

Average Precision
When additional emphasis on the correctness of the few top-ranked items is required,
the Average Precision (AP) metric is preferred to the AUC [SYZ15]. As for the AUC,
AP can be seen as an area under a curve, specifically the precision-recall curve: given
a ranking su over n items for a user u, this area (i.e., AP) can be approximated by the
following finite sum:

AP(su) =
1

|Tu|

n∑
k=1

Jsuk ∈ TuK · precision@k(su), (3.5)

where Tu is the set of positive (i.e., relevant) items for the user u in the test set, and
precision@k(su) indicates the precision up to the k-th element in the ranking, and it is
calculated by

precision@k(su) =
1

k

k∑
i=1

Jsui ∈ TuK. (3.6)

Usually, in order to accentuate the importance of the top of the ranking, the AP is
limited to a certain position k, as done for the precision, and it is referred to as AP@k.
The average over all the users’ AP@k is called Mean Average Precision at k (mAP@k),
and it is computed as follows:

mAP@k =
1

|U|
∑
u∈U

AP@k(su). (3.7)

. Datasets
In this section, we present the datasets used as benchmark for both binary classification
and recommendation. For each dataset we provide a brief description, the source where
it is possible to get it and the information about the typology, the number of features,
and the number of examples.

. . Binary classifica on
Since our models require binary input vectors, we selected datasets with binary or cat-
egorical features in such a way that the binarization process do not loose information.
In particular, for each dataset the following preprocessing steps have been performed:

• instances with missing attributes have been removed;
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• categorical features, including the binary ones, have been mapped into binary fea-
tures by means of the one-hot encoding [HH13]. This preprocessing keeps for ev-
ery example in the dataset the same number of ones (m), or in other words every
input vector has the same L1-norm;

• non binary tasks (primary-tumor, soybean and dna) have been artificially trans-
formed into binary ones, by arranging the classes into two groups while trying to
keep the number of instances balanced.

In the following a brief description of the benchmark datasets is provided:

dna This dataset contains DNA sequences.

house-votes This dataset includes votes for each of the U.S. House of Representatives
Congressmen on the 16 key votes identified by the Congressional Quarterly Al-
manac.

kr-vs-kp Series of final positions in a chess game: in every game white has the king
and a rook, while black has the king and a pawn on a2 (one square away from
promotion). The task is to predict whether white can win or not.

monks This is a set of three artificial datasets (monks-1,monks-2 and monks-3) over the
same attributes space. It has been created to test a wide range of induction algo-
rithms as reported in [TBB+91].

primary-tumor This is one of three domains provided by the Ljubljana Oncology Insti-
tute that has repeatedly appeared in the machine learning literature.

promoters This dataset contains Escherichia Coli promoter gene sequences (DNA), and
it has been developed to help evaluate a learning algorithm called KBANN [TSN90].

soybean The dataset contains examples of soybean with 35 nominal attributes that de-
scribe the status of the soybean. The task is the diagnosis of soybean’s disease.

spect The dataset describes diagnosing of cardiac Single Proton Emission Computed
Tomography (SPECT) images. Each of the patient is classified into two categories:
normal and abnormal.

splice Splice junctions are points on a DNA sequence at which superfluous DNA is
removed during the process of protein creation in higher organisms. The problem
posed in this dataset is to recognize, given a sequence of DNA, the boundaries
between exons (parts of the DNA sequence retained after splicing) and introns
(parts of the DNA sequence that are spliced out).
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Dataset #Instances #Features Distribution(%) m = ∥x∥1

dna 2000 180 47/53 47

house-votes 232 32 47/53 16

kr-vs-kp 3196 73 52/48 36

monks-1 432 17 50/50 6

monks-2 432 17 33/67 6

monks-3 432 17 53/47 6

primary-tumor 339 34 42/58 15

promoters 106 228 50/50 57

soybean 266 97 55/45 35

spect 267 45 79/21 22

splice 3175 240 48/52 60

tic-tac-toe 958 27 65/35 9

Table 3.1: Datasets information: name, number of instances, number of features, classes
distribution and number of active variables in every example (i.e., ∥x∥1).

tic-tac-toe This dataset encodes the complete set of possible board configurations at
the end of tic-tac-toe games, where × is assumed to have played first. The target
concept is “win for ×”.

Table 3.1 and Table 3.2 summary the information regarding the above described
datasets.
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Dataset Reference URL

dna [HL02] 2#dna

house-votes [Sch87] 1 /congressional+voting+records

kr-vs-kp [Sha87] 2/Chess+(King-Rook+vs.+King-Pawn)

monks [TBB+91] 2/MONK's+Problems

primary-tumor - 2/primary+tumor

promoters [TSN90] 2/Molecular+Biology+(Promoter+Gene+Sequences)

soybean [MC80] 2/Soybean+(Large)

spect [KCT+01] 2/spect+heart

splice [NTS90] 2/Molecular+Biology+(Splice-junction+Gene+Sequences)

tic-tac-toe [MR89] 2/Tic-Tac-Toe+Endgame

Table 3.2: Useful references about the datasets.

. . Recommender Systems
To assess the quality of the top-N recommendation we used many benchmark datasets
available online. Since we assume to have only implicit feedback, for each non-binary
dataset we considered a rating as an implicit feedback regardless the value of the rating.
For the Jester dataset since it is almost fully dense, we considered only the positive
ratings as implicit feedbacks.
In the following a brief description of the benchmark datasets for the recommendation
is provided:

BookCrossing Collected by Cai-Nicolas Ziegler in a 4-week crawl in 2004 from the
BookCrossing community. The full version contains roughly 30k users (anonymized
but with demographic information) providing over one million ratings (explicit /
implicit) about books.

Ciao Ciao (DVD) is a dataset crawled from the entire category of DVDs from the dvd.
ciao.co.uk website in December 2013.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
2https://archive.ics.uci.edu/ml/datasets/
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Dataset Item type |U| |I| |R| Density

BookCrossing 3 Books 2802 5892 70593 0.004%

Ciao Movies 17615 16121 72664 0.025%

FilmTrust Movies 1508 2071 35496 1.13%

Jester 4 Jokes 24430 100 1M 42.24%

MovieLens Movies 6040 3706 1M 1.34%

MSD Music 1.2M 380K 48M 0.01%

Netflix 3 Movies 93705 3561 3.3M 0.99%

Table 3.3: Datasets information: name, type of the items, number of users, number of
items, number of ratings and density of the ratings.

FilmTrust FilmTrust is a small dataset crawled from the entire FilmTrust website in
June 2011.

Jester Anonymous ratings data from the Jester Online Joke Recommender System.
Ratings are in a continuous scale between -10 and +10.

MovieLens Dataset collected by the GroupLens Research Project at the University of
Minnesota. The dataset consists of 5 stars ratings about movies. Each user has
rated at least 20 movies. It also contains simple demographic info for the users
(e.g., age, gender, occupation, zip). We used the version with 1M ratings.

MSD The Million Song Dataset (MSD) is a freely-available collection of audio features
and metadata for a million contemporary popular music tracks.

Netflix Dataset from the Netflix Prize competition held by Netflix from 2007 to 2009.
It contains explicit ratings about movies, and also some information about the
movies.

Table 3.3 and Table 3.4 summarize the information regarding the above described datasets.

3We used a reduced version of the full dataset.
4For experimental purposes, we removed from the Jester dataset all the users with more than 90

ratings (i.e., > 90% of the items).
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Dataset Reference URL

BookCrossing [ZMKL05] http://grouplens.org/datasets/book-crossing

Ciao [GZTYS14] http://www.librec.net/datasets.html#ciaodvd

FilmTrust [GZYS13] http://www.librec.net/datasets.html#filmtrust

Jester [GRGP01] http://goldberg.berkeley.edu/jester-data/

MovieLens [HK15] http://grouplens.org/datasets/movielens

MSD [MBMEL12] https://labrosa.ee.columbia.edu/millionsong/

Netflix [BL] http://www.netflixprize.com

Table 3.4: Useful references about the datasets.
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Learning with kernels

The key to ar ficial intelligence has always been the representa on.

Jeff Hawkins

In short
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In the opening lines of the preface of his textbook Machine Learning [Mit97], Tom
Mitchell provides the following informal definition of machine learning:

“ ”
The field of machine learning is concerned with the ques on of how to
construct computer programs that automa cally improve with experience.

Afterwards, in the introduction, he gives a more rigorous definition:

π Definition : Machine Learning [Mit97]
A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P , if its performance at tasks in T , as mea-
sured by P , improves with experience E.

Even though it seems rather formal, this definition encloses all the fundamental in-
gredients of any machine learning method. Let us break down this definition by in-
stantiating each formal concept to something more concrete. In a single sentence, we
can say that in machine learning problems we try to discover patterns from data [SS01].
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What Mitchell calls experience E is indeed data, which represents the most important
element of all. Without data there would be no learning, as for a human being without
experience. In life, we learn to perform a specific task whenever our experience on that
task is enough to master it. Same for machines, they learn to perform a task T from
data that contain useful information for T . Different tasks can require different kind
of information. Finally, in order to assess whether there is any learning, we need some
way to measure the improvements (i.e., the performance measure P ). For human be-
ings, this P is usually a qualitative assessment rather than a quantitative one, however,
for machines, in most of the cases, we need to be as objective as possible and so the
performance must be quantifiable.

Starting from this general definition of machine learning (ML), in the following of
this chapter we will go a bit deeper inside one of the most successful family of ML ap-
proaches, namely kernel methods. We will also try to give all the necessary background
to fully understand the remainder of this thesis.

. Learning and data representa on
Data represents the experience for the machine. With data we refer to any piece of in-
formation regarding a particular aspect of the reality (assuming artificially generated
data as a special kind of reality). However, this is a rather fuzzy definition, and for our
purposes we need something more specific, but at the same time as much general as
possible. A machine learning problem consists in finding the relation that binds input
objects to specific target values. The standard way to formalize this concept is as follows:
we are given the empirical data (or training data)

D ≡ {(x1, y1), (x2, y2), . . . (xl, yl)}, ∀ i ∈ [l], (xi, yi) ∈ X × Y. (4.1)

Here, X is some nonempty set with elements xi usually called instances, patterns or
inputs. The set Y contains all the possible targets (a.k.a. labels or outputs) and, differently
from X , it can be empty: in that case there are no targets associated with the patterns,
and the learning task is said to be unsupervised. This terms comes from the fact that the
supervision (i.e., the targets) is missing, and all we can do is finding relations between
the patterns themselves. Conversely, anytimeY is nonempty the task is called supervised.

By looking at the set Y we can also distinguish other two classes of learning tasks,
namely classification (a.k.a. pattern recognition) and regression. As the name suggests,
a classification task consists in correlating patterns to their corresponding classes, and
generally the number of classes is limited and always finite, i.e., |Y| <∞. On the other
hand, when the targets can potentially assume an infinite range of values (e.g., real-
valued outputs) the learning task is called regression.
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Loosely speaking, the goal of (supervised) learning is to discover which relation
links the inputs to the outputs. Formally, given the empirical data D, in which we as-
sume exists a function (i.e., relation) f : X → Y such that ∀ (xi, yi) ∈ D, f(xi) = yi, a
learning algorithm tries to find the function (a.k.a. model or hypothesis) h that approx-
imates f as tightly as possible.

 Assumption on the input set X
It is noteworthy that we did not make any assumption on the set X which can
contain any kind of object, e.g., cars, apples or graphs. However, in order to ease
the reading, and for being consistent with the notation, throughout the document
we assume that X ⊆ Rn, for some n ∈ N+.

A crucial aspect of learning is that the available empirical data (or simply data), typ-
ically, do not cover every possible facets of the reality, and hence we have to be able to
generalize in order to respond to “similar” stimuli in “similar” ways. In learning, both
notions of generalization and similarity are essential. In order to generalize to unseen
instances, we have to leverage on our experience (i.e., D): we want to associate to a
new input xnew an output y ∈ Y which is related with an already seen pattern x (i.e.,
(x, y) ∈ D) that is similar to xnew, for some notion of similarity.

The choice of the similarity measure is one of the core questions in ML, and it is
strictly related to the representation (of the inputs) problem. The representation prob-
lem can be divided into two sub-problems: (i) which are the relevant information to
consider; (ii) how to represent such knowledge in a sensible and compact way; clearly,
both problems hugely depend on the learning task.

To this regard, in the past, researchers have focused their efforts on creating new
algorithms to get models from an a-priori fixed representation. Recently, the attention
has drifted towards approaches which try to learn also the optimal representation.

Nowadays, the most clear example of this new trend are the deep neural networks
(DNNs). The success of the deep paradigm is mainly due to its ability to create many
different levels of abstractions of the input representation, and also in its capability of
dealing with highly non-linear functions. However, these capabilities come with a cost:
besides their need of high computational power, the main concern is that, even for ex-
perts in the field, it is not clear, from a theoretical point of view, why DNNs work. This
strong black-box nature makes difficult their application in contexts where the under-
standing of the model is as important as the quality of the model itself.

An alternative to the (deep) neural network based approaches is represented by the
more solid theoretical framework concerning kernels.
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4.2. Kernel function

. Kernel func on
Despite kernel functions have been studied since the first years of the twentieth century
[Mer09], they became very popular in the ML community thanks to the introduction of
the Support Vector Machines (SVM) [BGV92, CV95].

Loosely speaking, a kernel function κ : X ×X → R is a similarity measure between
elements in X . As stated in the previous section, the concept of similarity is very im-
portant in ML because it allows to generalize to unseen patterns.

A more formal definition of a kernel function is the following.

π Definition 4.1 : Kernel function
Given a nonempty set X and a function κ : X × X → R, we say that κ is a kernel
on X × X if κ is:

• symmetric, i.e., if ∀ x, z ∈ X , κ(x, z) = κ(z,x), and

• positive-semidefinite, i.e., if ∀ x1, . . . ,xm ∈ X ,m ≥ 1 the matrix K defined
as Ki,j = κ(xi,xj) is positive-semidefinite.

The symmetric property is self explanatory, while for the positive-semidefiniteness
we need to define when a matrix is defined as such.

π Definition 4.2 : Positive Semidefinite Matrix

A matrix K ∈ Rm×m is called positive semi-definite if for all a1, . . . , am ∈ R it
satisfies

m∑
i=1

m∑
j=1

aiajKi,j ≥ 0, (4.2)

or equivalently, if all its eigenvalues are non-negative.

The matrix K ∈ Rm×m, defined as Ki,j = κ(xi,xj) for any pair of patterns taken
from the set {x1, . . . ,xm}, is called Gram matrix (or kernel matrix) of κ with respect to
x1, . . . ,xm.

The properties in the Definition 4.2 are necessary to guarantee that the function κ

corresponds to a dot-product in some spaceH via a mapping function ϕ,

ϕ : X → H (4.3)
x 7→ ϕ(x), (4.4)
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and hence the kernel κ between x, z ∈ X can be written as:

κ(x, z) = ⟨ϕ(x), ϕ(z)⟩ = ϕ(x)⊺ϕ(z). (4.5)

Equation (4.5) shows that κ can be defined as a dot-product and this underline the
fact that it represents a similarity, specifically, a similarity measure between vectors
in the space H, called feature space. An important observation is that, by defining a
kernel function, we are implicitly defining a new representation of the inputs. With a
slight abuse of notation, in the following we will refer with H to the space of function-
als, called Reproducing Kernel Hilbert Space (RKHS). Roughly speaking, given a positive
semi-definite kernel κ : X × X → R, then there uniquely exists a RKHS H consisting
of functions on X such that κ(·,x) ∈ H for every x ∈ X , and in such space κ owns
the so-called reproducing property. For a more in depth explanation about kernel func-
tions and RKHS please refer to [SS01, STC04]. Table 4.1 provides some examples of well
known kernel functions. There are also several kernel functions designed for particular
applications, such as biology [STV04], natural language processing (NLP) [LSST+02], or
for particular type of input data, e.g., graphs [VSKB10].

In many ML approaches normalizing the data can give many benefits since it avoids,
for example, scaling problems. For instance, with SVMs a feature with a very large value
dominates the other features while computing the kernel. For this reason, it could be
useful to work with the normalized version of a kernel matrix. The normalization of a
kernel function is calculated by

κ̃(x, z) =
κ(x, z)√

κ(x,x)κ(z, z)
, (4.6)

or in its matrix form

K̃ =
K√
dd⊺ , (4.7)

where d is a m-dimensional vector containing the diagonal of K.

. Kernel methods
. . Basic concepts from sta s cal learning theory

In Section 4.1 we pointed out that in ML we want to infer the function h which best
approximates the underpinning relation f in the empirical data. It is clear that a re-

5RBF stands for Radial Basis Function kernel that is also known as Gaussian kernel.
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Name Function κ(x, z) Hyper-parameters

Linear ⟨x, z⟩ -

Polynomial (α⟨x, z⟩+ c)d α, c ∈ R, d ∈ N+

RBF5 exp
(
−γ∥x− z∥22

)
γ ∈ R≥0

Sigmoid tanh(α⟨x, z⟩+ c) α, c ∈ R

Table 4.1: Examples of kernel functions.

quirement in any learning problem is to specify a criterion according to which we can
assess the quality of our approximated function h. This criterion is usually referred to
as loss function and it can be defined as a function L : X × Y × Y → R+ on the triplet
(x, y, f(x)) consisting of a pattern x, a target value y and a prediction h(x) such that
L(x, y, y) = 0 for all x and y.

Since we want to be as much general as possible, we wish to find a prediction func-
tion h that minimizes such loss (a.k.a. error) in as much unseen patterns as possible. In
other words, we aim to minimize the so-called true risk (or test error). Generally, this
is hard to address from both practical and computational point of view, and hence it is
assumed that the test patterns are unavailable. The best we can do is to estimate such
risk by minimizing the expected risk over all possible training patterns. However, this is
also difficult because it can be done only by knowing the real probability distribution
over the patterns, which is in general unknown.

A possible solution is to make an approximation of the expected risk by using only
the available training data. This approximation is called empirical risk. The difference
between the expected risk and the empirical risk is called estimation error or generaliza-
tion error.

π Definition 4.3 : Empirical risk

The empirical risk of an hypothesish : X → Y over the training dataD ≡ {(xi, yi)}li=1

is defined as

Remp[h] =
1

l

l∑
i=1

L(xi, y, h(x)). (4.8)

Now, it is sufficient to find the hypothesis h that minimizes such quantity. This is
called empirical risk minimization (ERM) induction principle.
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Unfortunately, if we allow h to be taken from a large class of functions F we can
always find an h with small Remp[h], but we do not have any guarantee that such h is
also a minimizer of the expected risk.

 Example of a “learning” fail

Let us consider a binary classification problem with training set D ≡ {(xi, yi)}li=1,
we can choose as our hypothesis the function

h(x) =

{
y if (x, y) ∈ D
−1 otherwise.

Without any learning we defined a function with no empirical risk (by definition),
but that actually predicts −1 for all possible new patters.

This observation is at the basis of the popular No-Free-Lunch Theorem [Wol96].
A similar issue to the one described in the example above can be obtained by learning

a very high degree polynomial function that is able to perfectly fit the data. Even though
it has no empirical risk, it is very unlikely that such an unstable function will generalize
well to unseen patterns. Both the just mentioned hypothesis are overfitting the data:
a function h is said to overfit the data if it has very small empirical risk but an high
expected risk.

In order to overcome this problem, the main idea, which comes from statistical learn-
ing theory (or VC-theory) [Vap95], is to limit the “complexity” (capacity) of the set of
functions F . VC-theory provides bounds on the test error, as function of both the em-
pirical risk and the capacity of the class function. The minimization of such bounds
leads to the structural risk minimization principle which is at the basis of the best-known
kernel method, namely SVM.

In practice, instead of directly constrain the set F , a regularization term is added to
the objective function, that is Remp[h]. Such regularization rewards “smoother” func-
tions while penalizes the unstable ones.

π Definition 4.4 : Regularized empirical risk
The regularized empirical risk (or regularized risk) of an hypothesis h : X → Y
over the training data D ≡ {(xi, yi)}li=1 is defined as

Rreg[h] = Remp[h] + λΨ[h], (4.9)
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where λ ≤ 0 is called regularization parameter, and Ψ[h] represents some com-
pactness measure.

The minimum of Rreg[h] represents an upper bound of the empirical risk. In the
following section we will see how this regularized risk are connected to kernel methods.

. . Kernel machines
It is possible to explicitly characterize the form of a minimizer of Rreg[h] using one of
the most known theorem in ML, the Representer Theorem, introduced by Kimeldorf et
al. [KW71].

π Theorem 4.1 : Representer theorem [KW71, HSS08]
Let Ω : R+ → R be a strictly monotonic increasing function, and let X be a
nonempty set, and c : (X × R × R)l → R ∪ {∞} be an arbitrary loss function.
Then each minimizer h ∈ H of the regularized risk functional

c((x1, y1, h(x1)), . . . , (xl, yl, h(xl))) + Ω(∥h∥H), (4.10)

admits a representation of the form

h(x) =
l∑

i=1

αiκ(xi,x), (4.11)

where κ is a kernel function and αi ∈ R, ∀ i ∈ [l].

Theorem 4.3.2 shows that it is possible to express the minimizer of Rreg[h] as a combi-
nation of the training examples, via a kernel function.

Broadly speaking, kernel machines (a.k.a. kernel methods) are a class of ML meth-
ods which minimize some form of Rreg and make use of kernels. By exploiting kernels
this methods are able to transform non linear problems in the input space into tractable
linear ones in some (high dimensional) feature space. Specifically, kernel methods are
defined as convex optimization problems on some feature space. If the problem for-
mulation considers only mappings ϕ inside dot-products, the latter can be computed
by means of their corresponding kernel functions, and the representer theorem gives a
theoretical guarantee that the solution has the form (4.11).

Now, the question is: why are kernels useful? The core idea behind the use of kernel
functions is their ability to implicitly compute similarity between examples in a high
(potentially infinite) dimensional space. This allows to find linear relations in the feature
space which correspond to non linear ones in the input space. This is usually referred
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to as kernel trick. Let us consider for simplicity a binary classification problem in which
patterns are not linearly separable in the input space. Then, thanks to the kernel trick,
it is possible to search for a linear hypothesis in the feature space without the burden of
expliciting the mapping of the patterns in such space, which could be infeasible.

Figure 4.1 shows an example of binary classification in which the patterns are not
linearly separable in the input space (left hand side of the figure). However, thanks to
the mapping function ϕ, in the feature space (right hand side of the figure) there exist
hyperplanes which are able to separate the data points. In the example, the hyperplane
in the feature space corresponds in the input space to an ellipse-shaped boundary that
contains only the “white” data points.

y

x

ϕ

z

y

x

Figure 4.1: Example of binary classification using the kernel trick: (left) in the in-
put space, i.e., R2, examples are not linearly separable, but after the projection (right),
through ϕ, onto an higher dimensional space, i.e., the feature space R3, examples are
separable by, for example, the blue hyperplane.

. . KOMD
In this section we present a kernel method called KOMD (which stands for Kernel Opti-
mization of the Margin Distribution) proposed by Aiolli et al. [ADSMS08]. This classifica-
tion algorithm has been designed to find the hypothesis which maximizes the margin
between positive and negative patterns. The margin of an example is defined as its
distance from the decision boundary (i.e., the hypothesis). Assuming a binary classifi-
cation problem, maximizing the margin means finding the hypothesis which separates
positive and negative examples and it is the farthest from the nearest example. Margin
theory [Vap95, StC99, GR03] provides good support to the generalization performance
of such kind of classifiers (a.k.a. maximum margin classifiers). In Figure 4.2 is depicted
an example of maximum margin hypothesis.

The hypothesis is an hyperplane and it can be defined by ⟨w,x⟩+ b, where w ∈ Rn
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(in the example n = 2) and b ∈ R. The margin is indicated with the greek letter ρ. In
red are highlighted the closest points to the decision boundary.

y

x

ρ

b∥w∥

w

y

x

ρ

Figure 4.2: Left plot: margin of (for example) an SVM, i.e., ρ, of the hyperplane defined
by w, and the offset b. In red are highlighted the examples which lay on the margin.
Right plot: margin as defined by KOMD.

In order to describe KOMD, let us consider a binary classification problem with train-
ing data D ≡ {(xi, yi)}li=1, and let S⊕ ≡ {x | (x, y) ∈ D, y = 1} be the set of positive
patterns, and S⊖ ≡ {x | (x, y) ∈ D, y = −1} be the set of negative patterns. First
of all, the method provides a two players zero-sum game interpretation of the hard-
margin SVM [BGV92]. Let PMIN and PMAX be the two players of the game. The game
takes place in rounds: on each round, PMAX selects an hypothesis h from the hypotheses
spaceH, defined by

H ≡ {h(x) : x 7→ ⟨w, ϕ(x)⟩ − b | ϕ : Rn → RN ,w ∈ Rn s.t. ∥w∥2 = 1, b ∈ R}, (4.12)

and, simultaneously, PMIN picks a pair of (n-dimensional) patterns (x⊕,x⊖) ∈ S⊕ ×
S⊖. In the game, the goal of PMAX is to maximize the achieved margin ρh(x⊕,x⊖) =

h(x⊕)−h(x⊖). On the other hand, PMIN wants to minimize such margin and his strategy
consists in choosing the positive and the negative examples according to a probability
distribution Γ̂ over the sets S⊕ and S⊖, which is taken from the domain of probability
distributions

Γ ≡ {γ ∈ [0, 1]l |
∑

xi∈S⊕

γi = 1,
∑

xj∈S⊖

γj = 1}. (4.13)

The value of the game is the expected value of the margin, and this is equivalent to
the hard-margin SVM which can be solved by optimizing the following optimization
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problem

min
γ∈Γ̂

l∑
i=1

l∑
j=1

yiyjγiγjϕ(xi)
⊺ϕ(xj) = min

γ∈Γ̂
γ⊺YKYγ, (4.14)

where K ∈ Rl×l is the kernel matrix created over the training patterns such that Ki,j =

⟨ϕ(xi), ϕ(xj)⟩, andY ∈ {0,±1}l×l is a diagonal matrix containing the labels of the exam-
ples. Given the optimal solution γ∗ of (4.14), the value of the (non normalized) weights
vector w∗ is given by

w∗ =
∑

(xi,yi)∈D

yiγ
∗
iϕ(xi). (4.15)

In order to punish unstable solutions (see Section 4.3.1), a regularization term is added
to the optimization problem. In particular, the player PMIN is penalized by some extent
if the probability distribution Γ̂, which influences his random choice, has high variance.
This regularization is done over the squared L2-norm of the vector γ, which leads to the
following optimization problem

min
γ∈Γ̂

(1− λ)γ⊺YKYγ + λ∥γ∥22, (4.16)

with λ ∈ [0, 1] the regularization parameter.

 Observations on λ

It is easy to see that anytime λ = 0, the problem (4.16) is indeed the hard-margin
SVM (4.14). At the other extreme, that is λ = 1, the problem becomesminγ∈Γ̂ ∥γ∥2,
which returns the squared distance between the centroid of the convex hull of the
positive and the negative examples in the feature space.

Once the training is over, i.e., the optimal γ∗ has been found, the evaluation on a
new pattern x is computed by:

h∗(x) = ⟨w∗, ϕ(x)⟩ =
∑

(xi,yi)∈D

yiγ
∗
iκ(xi,x), (4.17)

as given by the Representer theorem (see Theorem 4.3.2).
Similarly to the hard-margin SVM, the threshold b is defined as the score of the point

which is in the middle between the optimal points in the convex hull of the positive and
the negative examples in the feature space. Finally, the classification of a new pattern x
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is made according to sign(h∗(x)− b).

. Boolean kernels
In this section we present a family of kernels, called Boolean kernels, designed to learn
Boolean formulas. As far as we know, the first who introduced the idea of Boolean
kernel was Ken Sadohara [Sad01]. In this work the concept of Boolean kernel is actually
related to a single kernel called DNF kernel. Specifically, Sadohara proposed an SVM for
learning Boolean functions: since every Boolean (i.e., logical) functions can be expressed
in terms of Disjunctive Normal Form (DNF) formulas, the proposed kernel creates a
feature space containing all possible conjunctions of negated or non-negated Boolean
variables.

 Disjunctive Normal Form
In logic, a Disjunctive Normal Form (DNF) is a normalization of a logical formula
which is a disjunction of conjunctive clauses. For example, given the Boolean vari-
ables x1, . . . x4 ∈ {0, 1}, (x1 ∧ x2 ∧ x3) ∨ x2 ∨ (x1 ∧ x4) is a valid DNF formula.

In particular, the one presented above is a monotone DNF since it has only vari-
ables in their positive form. A non-monotone DNF, or simply DNF, can contain
negated variables, e.g., (¬x1 ∧ x2 ∧ ¬x3) ∨ x2 ∨ (¬x1 ∧ x4).

For instance, the feature space for a two variables, e.g., x1, x2, DNF contains the follow-
ing 32 − 1 features:

x1, x2,¬x1,¬x2, x1 ∧ x2, x1 ∧ ¬x2,¬x1 ∧ x2,¬x1 ∧ ¬x2, (4.18)

which can be expressed in mathematical form as

x1, x2, 1− x1, 1− x2, x1x2, x1(1− x2), (1− x1)x2, (1− x1)(1− x2). (4.19)

In this way, the resulting decision function of a kernel machine which employs the
DNF kernel (as described in Section 4.3) can be represented as a weighted linear sum of
conjunctions, which in turn can be seen as a kind of “soft” DNF.

Formally, the DNF kernel between x, z ∈ Rn is defined as

κDNF(x, z) = −1 +
n∏

i=1

(2xizi − xi − zi + 2), (4.20)
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while its monotone (i.e., without negations) form is the following

κmDNF(x, z) = −1 +
n∏

i=1

(xizi + 1). (4.21)

By restricting the domain of the vectors in {0, 1}n the computation of the kernels is
simplified as follows

κDNF(x, z) = −1 + 2⟨x,z⟩+⟨x,z⟩, (4.22)

κmDNF(x, z) = −1 + 2⟨x,z⟩, (4.23)

where x = 1n − x is the vector with all the binary entries swapped. Note that the sum
⟨x, z⟩+ ⟨x, z⟩ simply counts the number of common “bits” between x and z. These last
two kernels were independently discovered in [Wat99] and [KRS01].

One of the drawbacks of these kernels is the exponential growth of the feature space
with the number of involved variables, i.e., 3n− 1 for n variables. In order to have more
control on the size of the feature space, Sadohara et al. [Sad02] proposed a reduced
variation of the DNF kernel in which only conjunctions with up to d variables (i.e., d-
ary conjunctions) are considered. This kernel is called d-DNF kernel, and on binary
vectors it is defined as

κdDNF(x, z) =
d∑

i=1

(
⟨x, z⟩+ ⟨x, z⟩

i

)
, (4.24)

and clearly, if d = n, κdDNF(x, z) = κDNF(x, z). A nice property of the d-DNF kernel is
that it yields a nested sequence of hypothesis spaces, i.e., H1 ⊆ H2 ⊆ · · · ⊆ Hn. Thus,
choosing a degree d (a.k.a. arity) for the kernel implicitly means controlling the capacity
of the hypothesis space, which is a very important aspect in learning (see Section 4.3).
The same idea can also be applied to the monotone DNF kernel [NN14]:

κdmDNF(x, z) =

d∑
i=1

(
⟨x, z⟩
i

)
. (4.25)

Instead of limiting the number of involved variables, Zhang et al. [ZLKY03] proposed a
parametric version of the DNF and mDNF kernel. Specifically, given x, z ∈ {0, 1}n and
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4.4. Boolean kernels

σ > 0, then

κ
(σ)
DNF(x, z) = −1 +

n∏
i=1

(σxizi + σ(1− xi) + σ(1− zi) + 1), (4.26)

κ
(σ)
mDNF(x, z) = −1 +

n∏
i=1

(σxizi + 1). (4.27)

The purpose of the parameter σ is to induce an inductive bias towards simpler or more
complex DNF formulas. In particular, values of σ in the range [0, 1] give a bias to-
wards shorter DNF, while for σ > 1 the bias is more towards complex DNF. When
σ = 1, then κ

(σ)
DNF(x, z) = κDNF(x, z), and the same for the monotone DNF kernel. In

this work the authors also showed that, for binary vectors, the polynomial kernel, i.e.,
κpPOLY(x, z) = (σ⟨x, z⟩+ c)p, c ∈ R, is a Boolean kernel, even though they did not provide
any formal definition of Boolean kernel. However, an important observation is that the
feature space of the polynomial kernel is represented by all the monomials (i.e., con-
junctions) up to the degree p. So, in some sense, it is similar to the d-DNF kernel, the
core difference is that the polynomial associates different weights to the features. It is
worth to notice that the polynomial kernel contains sets of equivalent features in its em-
bedding, e.g., with p = 3 and x ∈ {0, 1}2 we would have the features x2

1x2,x1x
2
2 that are

the same feature x1x2.
In a subsequent work [ZLC05], the same authors proposed a decision rule classi-

fier called DRC-BK, which learns a decision hyperplane through an SVM with Boolean
kernels, specifically κ

(σ)
mDNF, and then it mines classification rules from this hyperplane.

A kernel related to the polynomial is the all-subset kernel [STC04, KT14], defined as

κ⊆(x, z) =
n∏

i=1

(xizi + 1), (4.28)

which considers a space with a feature for each subset of the input variables, including
the empty subset. It is different from the polynomial because it does not limit the num-
ber of considered monomials, and it gives the same weight to all features. It is easy to
see that the all-subset kernel and the monotone DNF kernel are actually the same kernel
up to the constant −1, i.e., κ⊆(x, z) = κmDNF(x, z) + 1.

Both the polynomial and the all-subsets kernel have limited control of which features
they use and how they are weighted. The polynomial kernel uses only monomials of
degree up to p with a weighting scheme depending on a parameter (c). The all-subsets,
instead, makes use of the monomials corresponding to all possible subsets of the n input
variables.

A restricted version of the all-subset kernel is the ANOVA kernel [STC04] in which
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the embedding space is formed by monomials with a fixed degree d without repetition.
For example, given x ∈ {0, 1}3 the feature space of the all-subset kernel would be made
by the features x1,x2,x3,x1x2,x1x3,x2x3,x1x2x3 and ∅, while for the ANOVA kernel
of degree 2 it would be composed by x1x2,x1x3 and x2x3. Formally, the ANOVA kernel
is defined as follows

κdA(x, z) =
∑

1≤i1<i2<···<id≤n

d∏
j=1

xijzij , (4.29)

where i1, i2, . . . , id are all the possible set of indices of cardinality d, taken from [n].
Another well known (Boolean) kernel is the Tanimoto kernel [RSSB05], computed

by

κT(x, z) =
⟨x, z⟩

∥x∥22 + ∥z∥22 − ⟨x, z⟩
, (4.30)

which represents the Jaccard similarity coefficient in binary contexts.

From an application point of view, Boolean kernels have been successfully applied
on face recognition [CHW08, CD09a], spam filtering [LC09], load forecasting [CD09b],
and on generic binary classification tasks [Sad02, ZLKY03].

. Margin, and radius of the MEB
In Section 4.3.3 we introduced the concept of margin and how it can be computed. Let
us recall it: given a training Gram matrix K computed over the training data D, the
margin ρ obtained by a margin maximization algorithm, e.g., an hard-margin SVM, can
be computed (actually its square) by solving the quadratic programming problem

ρ2 = min
γ∈Γ

γ⊺YKYγ, (4.31)

with Γ and Y defined as in Section 4.3.3.
Thanks to the theoretical guarantees regarding the generalization power of hypoth-

esis with large margin, the focus of many ML algorithms is concentrated in finding rep-
resentations able to achieve very large margin. However, there is an aspect that should
not be neglected, that is how data points are distributed in the feature space. In order
to clarify this concept, let us make an example.

Let us assume of choosing the identity matrix as kernel matrix. By definition this
kernel induces an embedding space (i.e., feature space) where each example is mapped
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onto an orthogonal dimension w.r.t. to the others. This guarantees that the induced
RKHS of functionals contains an hypothesis that separates (ρ > 0) the data whatever
the labelling is, and at the same time such margin ρ is quite large. Unfortunately, the
resulting best hypothesis does not have any generalization ability. This is due to different
factors, but one of this is related to the concept of the Minimum Enclosing Ball (MEB),
also called minimum enclosing sphere, of the data points.

The MEB, as the name suggests, represents the smallest hypersphere that contains
all the data points in the feature space (see Figure 4.3). It is clear that the larger the MEB
the higher are the chances of having a large margin too. Yet, defining a feature space
that is naïvely large can lead to a situation like the one just described.

y

x

R

Figure 4.3: Bi-dimensional example of Minimum Enclosing Ball (MEB): R is the radius
of the MEB.

For this reason, there exist methods that take into account the size of the MEB besides
the margin. In order to calculate the size of a MEB, we need to know its radius (R), which
can be computed as in the following

R2 = max
α∈A

α⊺d−α⊺Kα, (4.32)

where A ≡ {α ∈ Rm |
∑m

i=1αi = 1}, and d is m-dimensional vector containing the
diagonal of K. With a normalized kernel matrix (K̃) the computation of the radius can
be simplified as

R2 = 1− min
α∈A

α⊺K̃α, (4.33)

since, by definition, ∀α,α⊺d = α⊺1m = ∥α∥1 = 1.
The argumentations about the connection between the margin and the radius we

will be resumed and discussed more in depth in Section 4.7.1.
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. Expressiveness of kernels
As mentioned in Section 4.2, a kernel function implicitly define a RKHS H of func-
tionals. Since kernel methods are designed to find a linear hypothesis in H, it is use-
ful to have a way for measuring the discriminatory power of such family of functions.
This characteristic is usually called expressiveness (expressivity or complexity) of a ker-
nel. Informally, the expressiveness can be defined as the number of different labelings
(i.e., dichotomies) that the family of functions, induced by the kernel, is able to shat-
ter. In literature different complexity measures have been proposed such as, the VC-
dimension [Vap98, OAR16] and the Rademacher Complexity [KP02, BM03, OGRA15],
to mention the most famous ones. Even though they are theoretically well founded and
they guarantee strict bounds on the generalization error, these complexity measures are
in general computational expensive. For this reason, recently, a very efficient empirical
complexity measure have been proposed, namely the spectral ratio (SR) [ADNS15]. This
measure, which is defined on kernel matrices, represents an empirical approximation
of the actual complexity of a kernel.

Formally, given a Gram matrix K ∈ Rm×m, the spectral ratio of K, C(K), is defined
as the ratio between the trace (nuclear) norm of the kernel K and its Frobenius norm,
that is

C(K) =
∥K∥T
∥K∥F

=

m∑
i=1

Ki,i√
m∑
i=1

m∑
j=1

K2
i,j

. (4.34)

In [Don16] it has been shown the connection between the spectral ratio and the
empirical Rademacher complexity. In particular, under mild conditions, given a ker-
nel matrix K and the class of linear functions F , the following bound holds R̂[F ] ≤
O(
√
C(K)), where R̂[F ] stands for the empirical Rademacher complexity of F . More-

over, the (squared) SR is also a lower bound of the rank of the kernel matrix K:

1 ≤ C(K) ≤
√

rank(K). (4.35)

 Properties of the spectral complexity
The spectral ratio of a kernel matrix owns the following nice properties:

• it is invariant to positive scalar multiplications, i.e., ∀α ≥ 0, C(αK) = C(K);
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• the identity kernel matrix Im, which has rank m, has the maximal spectral
ratio, i.e., C(Im) =

√
m;

• a kernel matrix with all equal (non negative) entries K = α1m×m, α > 0,
which has rank 1, has the minimum spectral ratio, i.e., C(K) = 1.

SR is also connected to the radius of the MEB. In the previous section we showed
that, assuming a normalized kernel matrix K̃, the radius of the MEB can be computed
by (4.33). A good approximation of the radius can be computed as R̃2(K̃) = 1−K, where
K is the average of the entries in the matrix K̃. This simple formulation is actually exact
in the two extreme cases, that is, R2(1m×m) = R̃2(1m×m) = 0 and R2(Im) = R̃2(Im) =

1− 1/m. Such approximation is a lower bound of the radius. This result shows that the
SR can be used as a measure of the intrinsic complexity of the embedding space.

In the following, for measuring the complexity of kernel matrices we will use the
standardized version of the spectral ratio, that is defined by

C̃(K) =
C(K)− 1√

m− 1
∈ [0, 1]. (4.36)

With this normalized version, the identity matrix has complexity 1, while the kernel
with all equal entries has complexity 0.

By following the definition as in [ADNS15], we say that a kernel function κi is more
general than a kernel function κj (i.e., κi ≥G κj) when C(K(i)

D ) ≤ C(K(j)
D ) for any possible

dataset D.

. Mul ple Kernel Learning
In their early years, kernel methods made use of kernels that were specifically designed
(or chose) to face a particular problem. Usually, once a set of kernels were defined,
the best performing one was chosen through a validation step. Even though this is
still a valid and effective approach, recently algorithms that automatically learn the best
representation, i.e., kernel function, have been proposed.

This new way of facing the representation problem is called Kernel Learning (KL)
[CMR10, CKM13, TN04]. One of the most successful KL paradigm is Multiple Kernel
Learning (MKL) [BLJ04, SRSS06], in which a combination of different kernels is used
instead of a single kernel function [GA11]:

κµ(x, z) = fµ({κi(x, z)}Pi=1), (4.37)
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where fµ : RP → R is a combination function, and κi are the base (a.k.a. weak) kernel
functions. From the feature space point of view, the sum of two kernels can be interpret
as the concatenation of the features contained in both the RKHS [StC99], and thus the
weighted sum of a set of weak kernels can be seen as a weighted concatenation of all the
features inside their RKHS.

So, given the combined kernel κµ, its feature spaceHµ is defined by the mapping

x 7→ ϕµ(x) = (
√
µ1ϕ1(x),

√
µ2ϕ2(x), . . . ,

√
µPϕP (x)) ∈ Hµ, (4.38)

where ϕi(x) is the mapping to the feature spaceHi associated with the kernel κi.
MKL algorithms can be mainly used in two ways:

• the set of available kernels correspond to different notions of similarity, and through
a learning method the best kernel or the best combination of kernels is automati-
cally selected;

• the kernels (which can be potentially the same) are based on input representations
or input data coming from different sources.

Moreover, different learning approaches can be adopted to determine the kernels’
combination:

• fixed rule-based [PWCG01, BHN05], in which actually there is not a real learning
since a fixed function is used, e.g., sum of kernels or multiplication of kernels;

• heuristic-based [QL09], where a parametrized combination function is used and
the parameters are learned through some heuristic measure typically applied to
each kernel individually;

• optimization-based [LYL14, AD15], that are the most popular ones, which are
those MKL algorithms that learn the parameters by optimizing a specific target
function.

In this thesis we focus on non-negative combinations of P weak kernels of the form

κ(x, z) =
P∑

p=1

µp⟨ϕp(x), ϕp(z)⟩ =
P∑

p=1

µpκp(x, z), µp ≥ 0 ∀p ∈ [P ], (4.39)

where κ1, κ2, . . . , κP are the weak kernels such that ∀ p ∈ [P ], κp(x, z) = ⟨ϕp(x), ϕp(z)⟩.

. . Radius-margin ra o op miza on
The large part of heuristic-based MKL techniques rely on alignment/similarity between
the combined and an ideal kernel, usually defined as κ(x, z) = 1 iff x and z come from
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the same class, and 0 otherwise. Optimization-based methods, instead, commonly fol-
low the Structural Risk Minimization (SRM) principle and they try to directly maximize
the margin in a similar way as in the case of a single kernel. However, it has been shown
[GCZ10] that the margin is not the unique important aspect of a good representation,
and hence maximizing only the margin can cause scaling problems, initialization prob-
lems, or issues related to the convergency of the optimization problem.

The scaling and the initialization problems are related, since they both depend on
how kernels are scaled. The scaling issue comes from the parameter optimization: by
multiplying one of the weak kernel by a constant a > 0, an arbitrary margin can be
achieved. A similar issue arises when the kernels are selected, since the same constant
multiplication “trick” can be applied prior to the learning. Thus, we can conclude that
the margin itself is not enough to measure the quality of kernels [CVBM02, GCZ10].

Once again, Statistical learning theory (SLT) [Vap95, Vap98, VC00] turned out to
be a valuable element to overcome this problem. Given a training set with l training
examples, SLT provides the following bound on the estimation error (Rest) for single
kernel (K) SVM predictor M [GCZ10]:

Rest[M ] ≤ 1

l

√
O
(
R2

ρ2

)
, (4.40)

where R is the radius of the MEB for K and ρ is the achieved margin.
In support of this result, there is also another bound (similar to (4.40)) which relates

the quality of a representation to the radius-margin ratio: given a separable training
set D ≡ {(xi, yi)}li=1, and an hyperplane (w, b) in the feature space computed by the
maximum-margin algorithm M , then for all probability measures P underlying D the
expectation of the misclassification error (perr) [GM09, CVBM02]

perr(w, b) = P(sign(w⊺ϕ(X) + b) ̸= y)

is bounded by

Rloo[M ] = E [perr(Ml−1(D))] ≤
1

l
E
[

R2(D)
ρ2(M(D),M)

]
,

which is the expected value of the Leave-one-out error. Note that perr is taken over the
random draw of a training set of size l − 1 while radius and margin are computed on
the random training set of size l.

These results definitely state that the generalization error depends on the ratio be-
tween the radius of the MEB and the margin. For this reason, approaches based on the
optimization of both the radius of the MEB and the margin have been recently proposed.

Do et al. [DKWH09] proposed R-MKL, a MKL algorithm which encodes the radius
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directly into the objective function of a soft-margin L2-SVM. However, the direct opti-
mization of the proposed formulation is unfeasible because it is not convex and thus they
provided an approximated convex version. Such algorithm is based on a two phases
procedure: in the first phase a quadratic optimization problem over the hyperplane pa-
rameters is solved, while the weights of the combined kernels are fixed; in the second
phase the weights are optimized through gradient descent. This procedure is repeated
until the stopping criteria are met.

In [DK13] a convex formulation of radius-margin based SVM is proposed, however,
some approximations have been made in order to make the radius-margin ratio opti-
mization tractable. In [LYL14], instead, the radius information is directly incorporated
inside the optimization criterion via the data scattering matrix, which the authors shows
has a close relation with the radius of the MEB.
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5
Collabora ve filtering

Search is what you do when you’re looking for something. Discovery is
when something wonderful that you didn’t know existed, or didn’t know
how to ask for, finds you.

CNN Money,
Jeffrey M. O’Brien

In short

5.1 Collabora ve filtering and top-N recommenda on, 47
5.2 CF-OMD, 51

This chapter introduces the collaborative filtering (CF) approach for making recom-
mendation. Recommender Systems will be the main real-world application of one of
the framework described in this thesis. In this chapter is presented an overview of the
work regarding a particular problem in recommender system, namely the one-class col-
laborative filtering, in which only positive data are known. Finally, we will describe in
detail a CF method which will be extended in the following.

. Collabora ve filtering and top-N recommenda on
Collaborative Filtering (CF) is the de facto approach for making personalized recom-
mendation. CF techniques exploit historical information about the user-item interac-
tions in order to improve future recommendations to users. The general idea behind
(user-based) CF approaches is to suggest to a user u items that have been appreciated
by users that are similar to u, for some notion of similarity. Figure 5.1 shows a simple
example of collaborative recommendation.

In the example the system has to make a recommendation about the movie Kung
Fury to Eve. The two most similar users, i.e., with similar tastes on already seen movies,
are Bob and Carol. Since both of them rated Kung Fury with a thumb down, the system
will not recommend the movie to Eve.

Mirko Polato, Ph.D. Dissertation 47



5.1. Collaborative filtering and top-N recommendation

Inception Gladiator Kung Fury Matrix
Alice
Bob
Carol
Dave
Eve ( )

Table 5.1: Example of user-based CF recommendation: the rating inside the parenthesis
is the recommended one on the basis of the most similar users.

As we have mentioned in Section 2.2, user-item interactions can be explicit or im-
plicit. Explicit feedbacks are unambiguous piece of information about the extent of the
user’s appreciation to an item, and it is often represented by a rating, such as, a 1 to 5
stars scale or a thumbs up vs. thumbs down. Contrarily, an implicit feedback is a binary
information since it means the presence or the absence of a user-item interaction, and it
is by nature ambiguous.

The explicit feedback setting have got most of the researchers attention, however,
recently the focus is constantly drifting towards the implicit one (a.k.a. One-Class CF
problem, OC-CF). This is due to two main reasons: (i) implicit data are much easier to
collect as they do not require any active action by the user: the system is continuously
monitoring the user’s actions; (ii) they are simply more common: the user is not always
willing to give to the system an explicit opinion.

In the implicit feedback setting the goal of a recommender is to produce an ordered
list of items, where those items that are the most likely to have a future interaction with
the user are positioned at the top (top-N recommendation). Top-N recommendation
finds application in many different domains such as TV, movies [HKV08], books [Aio14],
music [Aio13, TBCH11], social media [WWB+13] and so on.

The first approaches for OC-CF problems were non-learning neighbourhood-based
methods [DK11]. Despite this kind of methods do not employ any learning, they have
been shown to be effective on different recommendation scenarios [Aio13, PA16]. More
recently, many learning methods for OC-CF have been proposed. These algorithms are
part of the bigger family of algorithms called model-based CF methods. In the last two
decades, a particular attention has been devoted to latent factor models which try to
factorize the rating matrix into two low-rank matrices, R = WX, where W ∈ Rn×k

represent the user-factors and X ∈ Rk×m the item-factors. These (k) factors can be
seen as “meta-features” that define the user tastes (wu ∈ W), and how much of these
features are present in the item (xi ∈ X). Usually these methods are referred to as
matrix factorization techniques. The prediction of the score of an item for a specific
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user is simply calculated by the dot-product of the corresponding row and column in
the factorized matrices.

One of the most successful factorization approach for implicit feedback, dubbed
WRMF (Weighted Regularized Matrix Factorization), is presented in [HKV08]. In this
work Hu et al. proposed an adaptation of the classic SVD (Singular Value Decomposi-
tion) method in which it minimizes the square-loss using two regularization terms in
order to avoid overfitting. The optimization criterion is defined as:∑

u∈U

∑
i∈I

Cu,i(w
⊺
uxi − 1)2 + λ∥W∥2 + λ∥X∥2, (5.1)

where Cu,i are a-priori weights for each pair (u, i) such that positive feedbacks have
higher weights than negative ones. Despite being designed for top-N recommendation
tasks, this method uses information about the rating values (not binary) to give more
importance to user-item interactions with high rating values. In fact, Cu,i is calculated
by: Cu,i = 1 + αRu,i, where α is a parameter of the method. In their experiments the
best performances have been achieved with α = 40.

In [RFGST09], Rendle et al. proposed a Bayesian Personalized Ranking (BPR) cri-
terion, that is the maximum posterior estimator derived from a Bayesian analysis. In
particular, BPR addresses the OC-CF problem by turning it into a ranking problem and
it assumes that users prefer items they have already interacted with in the past. The
overall goal of this method is to find a personalized total ranking (>u) for any user and
pair of items. To determine the personalized ranking for any i ∈ I, BPR aims to maxi-
mize the posterior probabilities

P(Θ| >u) ∝ P(>u |Θ)P(Θ), (5.2)

where Θ are the parameters of the model. The optimization of Θ is performed through
a criterion, called BPR-OPT, which has connection to the AUC metric and optimizes it
implicitly. Authors finally show how to adopt this criterion for kNN (BPRkNN) and
matrix factorization methods (BPRMF).

In [NK11], Ning et al. presented the method SLIM (Sparse LInear Method) which
learns a sparse coefficient matrix for the items in the system solely from the user rating
profiles, by solving a regularized optimization problem. Specifically, the optimization
problem is defined as:

min
W

1

2
∥R−RW∥2F + β∥W∥2F + λ∥W∥1

s.t. W ≥ 0

diag(W) = 0.
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Since the column of W are independent to each other this optimization problem can
be divided into n sub-optimization problems, one for each column of W as described in
[NK11]. Recently, an extension of the SLIM method, dubbed GLSLIM [CK16], has been
proposed.

Even though the methods mentioned above can seem very different each others, they
all exploit linear relations between users and/or items. The effectiveness of linear mod-
els in collaborative filtering scenarios is further underlined in [BCS14] where Bresler et
al. proposed an online linear model and they demonstrated its performance guarantees.

Moreover, in 2013, the winner of the remarkable challenge organized by Kaggle, the
Million Songs Dataset challenge [MBMEL12], was an extension of the well known (lin-
ear) item-based nearest-neighbors (NN) algorithm [DK04]. This extension [Aio13] (that
we call here MSDw) introduced an asymmetric similarity measure, dubbed asymmetric
cosine. In a classic item-based CF method, the scoring function for a user-item pair (u, i)
is computed by a weighted sum over the items liked by u in the past, that is:

r̂u,i =
∑
j∈I

Wi,jRu,j =
∑
j∈Iu

Wi,j ,

where Wi,j expresses the similarity between item i and item j.
As said previously, one of the main contribution of [Aio13], is the asymmetric cosine

(asymC) similarity. The intuition behind asymC comes from the connection between the
cosine similarity and the conditional probability. In particular, the cosine similarity over
a pair of objects (a, b) can be expressed as the square root of the product of the reciprocal
conditional probabilities. Let a,b ∈ {0, 1}n be the binary vector representations of items
a and b, respectively, then the cosine similarity is:

S 1
2
(a, b) = cos(a,b) =

a⊺b

∥a∥2 · ∥b∥2
= P(a|b)

1
2P(b|a)

1
2 .

The idea of the asymmetric cosine similarity is to give different weights to the condi-
tional probabilities, that is

Sα(a, b) =
a⊺b

∥a∥2α2 ∥b∥
1−α
2

= P(a|b)αP(b|a)1−α,

with α ∈ [0, 1]. In case of binary ratings this asymmetric similarity can be computed as
in the following. Let Ui be the set of users who rated the item i, then the asymC between
item i and item j is defined by:

Wi,j = Sα(i, j) =
|Ui ∩ Uj |
|Ui|α|Uj |1−α

.
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Besides its outstanding performance in terms of mAP@500, the MSD winning solution
is also easily scalable to very large datasets.

More direct approaches for building good rankings over the items are the so-called
learning to rank [ZTTY+07] methods. Learning to rank approaches exploit supervised
machine learning to solve ranking problems. These methods can be divided into three
macro categories: pointwise approaches [WWB+13, BSR+05, ODNDSM13] in which for
each user-item pair a score is predicted and then it is used to build the ranking (very sim-
ilar to the classic CF approaches); pairwise approaches [ZPX+14, RF14] face the ranking
problem as a binary classification problem in which they try to minimize the number of
inversions in the ranking; listwise methods [SLH10, HWL+15] try to directly optimize
one of the ranking evaluation measures. The big challenge here is the fact that most of
the measures are not continuous functions with respect to the parameters of the model
and hence some approximations have to be used.

. CF-OMD
In this section we present the seminal CF algorithm for top-N recommendation, called
CF-OMD (Optimization of the Margin Distribution) [Aio14], upon which our kernel-
based framework (presented in Chapter 10) is based. CF-OMD is inspired by prefer-
ence learning, and designed to explicitly maximize the AUC (see Chapter 3) [Aio05,
ADSMS08]. This method is related to KOMD presented in Section 4.3.3.

In the following we assume of having a dataset of n users and m items. Let the
matrix W ∈ Rk×n be the embeddings of users (arranged in the columns) in a latent
factor space, and X ∈ Rk×m be the embeddings of items (arranged in the columns) in
such space. Given a user u, a ranking over the items can be induced by the factorization
R̂ = W⊺X, where r̂u,i = w⊺

uxi, where wu is a column of W corresponding to the user u
and xi is a column of X corresponding to the item i.

Let us now to fix the item representation as xi = ri/∥ri∥2, and let ρ(i ≺u j) =

(r̂u,i − r̂u,j)/2 = w⊺
u(xi − xj)/2 be the margin for an item pair (i, j) for user u, with

∥w∥2 = 1. Finally, let us also define the probability distribution over the positive and
negative items for u as

Au = {α ∈ Rm
+ |
∑
i∈Iu

αi = 1,
∑
i/∈Iu

αi = 1}. (5.3)

In [Aio14] it is proposed an approach to maximize the minimum margin inspired by
preference learning where the ranking task is posed as a two-players zero-sum game
similar to the one presented in Section 4.3.3.

Let PMAX and PMIN be the players of the game: on each round, PMIN picks a preference
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i ≺u j and, simultaneously, PMAX picks an hypothesis wu with the aim of maximizing
the margin ρ(i ≺u j). Let us now suppose that the strategy of PMIN is to choose the
positive-negative pair of items on the basis of the probability distribution described by
Au. Then, assuming the picking events independent to each others, the probability of
a pair (i, j) is given by αiαj , for i ∈ Ii, j /∈ Ij . Thus, the value of the game, i.e., the
expected margin, can be computed by:

Eα[ρ] =
1

2

∑
i∈Ii,j /∈Ij

αiαj (w
⊺
uxi −w⊺

uxj) , (5.4)

and consequently, when PMIN is free to choose any possible strategy, the equilibrium of
the game is given by

(w∗
u,α

∗
u) = arg max

∥w∥2=1
min
α∈Au

Eα [ρ] . (5.5)

We can now reformulate, through simple mathematical derivations, the expected mar-
gin as:

Eα[ρ] =
1

2
w⊺

uXYα, (5.6)

where Y is a diagonal matrix, Y = diag(y), such that yi = 1 if i ∈ Iu, −1 otherwise.
It can be demonstrated that the w∗

u which maximizes the expected margin is equal to
w∗

u = XYα normalized. As observed for KOMD in Section 4.3.3, the pure maximization
of the minimum margin can lead to poor solutions in terms of generalization capability.
Especially in the implicit feedback context, noise is always present in the negative set
of items. So, two quadratic regularization terms that impose a bias towards uniform
solutions for α are introduced.

Finally, to each regularization term we associate a regularization parameter (λp, λn)
and the following optimization problem is defined in order to maximize the expected
margin:

α∗
u = argmin

α∈Au

α⊺ (YX⊺XY +Λ)α, (5.7)

where Λ is a diagonal matrix such that Λii = λp if i ∈ Iu, otherwise Λii = λn. In
this formulation, λp and λn are regularization parameters (λp, λn ≥ 0) which give more
influence to positive examples and negative examples, respectively.
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6
A new Boolean kernel
framework

No great discovery was ever made without a bold guess.

Isaac Newton

In short

6.1 Preliminaries, 55
6.2 Boolean kernels for interpretable kernel machines, 56
6.3 Monotone Boolean kernels, 58
6.4 Non-monotone Boolean kernels, 64
6.5 Boolean kernels computa on, 66
6.6 Combina on of Boolean kernels, 68
6.7 Analysis of the expressiveness, 72
6.8 Evalua on, 78

This chapter presents one of the main contribution of this thesis. The new family of
kernels that we will describe here owns the characteristic of creating feature spaces that
are very easy to interpret, since they are based on logic. Specifically, features are logical
formulas (of a fixed form) over the input Boolean variables. This makes the solutions
of kernel machines, based on such kernels, understandable because they are combina-
tions of logical rules. Moreover, an extensive evaluation on several categorical datasets
shows how Boolean kernels are able to achieve state-of-the-art performance on binary
classification tasks.

. Preliminaries
First of all, since in literature a formal definition of Boolean kernel is missing, let us
formally define this concept.
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6.2. Boolean kernels for interpretable kernel machines

π Definition 6.1 : Boolean kernel function

A Boolean kernel function is a kernel function κ(x, z) = ⟨ϕ(x), ϕ(z)⟩ such that:

• x, z ∈ {0, 1}n, n ∈ N>0;

• the embedding functionϕ : {0, 1}n → {0, 1}N , N ∈ N>0, maps the input vari-
ables in a feature space composed by logical formulas over the input Boolean
variables.

It is worth to notice that, if we restrict the input to binary vectors, all the kernels
presented in Section 4.4 are compliant with this definition, with the only exceptions of
κ
(σ)
mDNF and κ

(σ)
DNF when σ ̸= 1.

Another Boolean kernel, that we did not mention before, is the linear kernel, i.e.,
κLIN(x, z) = ⟨x, z⟩, in which the features correspond to the Boolean literals themselves.
This kernel simply counts how many active Boolean variables the input vectors have in
common.

Definition 6.1 implicitly provides a very simple interpretation of what kind of sim-
ilarity a Boolean kernel function κ(x, z) computes, that is, it counts how many logical
propositions of a fixed form over the input variables are satisfied in both input vectors.

. Boolean kernels for interpretable kernel machines
As mentioned in the introduction, the main goal of this new family of Boolean kernels
is to construct feature spaces that are to some extent easy to interpret. Logic is a lan-
guage that humans are used to handle, and it is often used to explain reasoning and
facts. Decision trees, for example, are very appreciated because they naturally provide
a straightforward interpretation of their underlying model: every node is a simple logic
rule over the input attributes, and a path from the root to a leaf is a conjunction of such
rules.

Figure 6.1 shows an example of a very simple decision tree. Even without any explicit
description, it is easy to grasp what it represents. The task is the prediction of whether
any kind of accident is going to happen. The involved variables are: the taken route (A
or B), the speed of the vehicle (less or more than 70 km/h) and if it is raining or not.
On the basis of these conditions the value of the leaves indicate the probability of no
accidents.

Beyond the fact that the example is trivial and not very interesting, it is clear that
interpreting a decision tree is easy, and in many applications it is a desirable (if not
necessary) feature for a learning model. Unfortunately, since they are very easy models,
from an accuracy point of view, usually, decision trees are not the best choice, and hence
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Route = A

Speed > 70 km/h
Raining

Not raining

Speed ≤ 70 km/h
Raining

Not raining

Route = B

Speed > 70 km/h
Not raining

Raining

Speed ≤ 70 km/h
Raining

Not raining

0.4

0.75

0.80

0.95

0.45

0.2

0.35

0.8

Figure 6.1: A very simple decision tree: internal nodes, i.e., the rules over the variables,
are drawn as circles, while the leaves, i.e., the predicted label, are depicted as triangles.
The values associated to the leaves indicate the confidence of the decision.

this nice feature of their becomes much less useful.
On the other hand, kernel methods have demonstrated to achieve state-of-the-art

performance on many tasks, but they are considered as black-boxes. For example, let us
take the output of a SVM: the decision function has this form (as given by the Represen-
ter Theorem 4.3.2):

f(x) =
∑
xi∈S

yiαi⟨ϕ(xi), ϕ(x)⟩ =
∑
xi∈S

yiαiκ(x,xi), (6.1)

where S is the set of so-called support vectors (the only ones with a weight αi > 0)
[SS01]. The meaning behind this function is not as clear as for the decision tree. Even
if we were able in some way to extract the most relevant features, it is unlikely that we
could give them a reasonable meaning. What we can observe is that this difficulty of
interpretation hugely depends on the kernel function and its induced embedding space.
More complex the space more difficult the interpretation.

For this reason, we propose a set of kernels based on propositional logic which in-
duce easy-to-interpret feature spaces. Before digging into the description of the kernels,
we need to define some special notations.

Throughout the chapter, whether it is not specified differently, we will refer to vectors
x, z ∈ {0, 1}n, and with a slight abuse of notation, we use the same notation to refer to
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6.3. Monotone Boolean kernels

the sets interpretation of those vectors: an element (i.e., variable) is contained in the set
if it is true in the vector. With Φ we indicate the universal set (the set corresponding to
the vector 1n) with cardinality n. Given a set A we refer to its i-th element with Ai for
some enumeration of the elements of A, and with [A]k ≡ {S ⊆ A | |S| = k} we express
the set of all the subsets of A of cardinality k.

Finally, it is noteworthy that for any binary vector x holds ⟨x,x⟩ = ∥x∥22 = ∥x∥1
which is the number of ones contained in it, i.e., the cardinality of its set interpretation.
For the sake of brevity we will use the notation ∥x∥ when x is considered a vector and
|x|when it is interpreted as a set.

. Monotone Boolean kernels
A Boolean formula (or function) f : {0, 1}n → {0, 1} is called monotone if it does not
contain any not operator. In other words, f is monotone if by replacing a 0 (i.e., false)
with a 1 (i.e., true) its truth value can only change from false to true, i.e., f ’s value can
only increase.

. . Monotone Literal kernel
In logic, a literal is an atomic formula or its negation. Since we are treating monotone
functions, we have only literals in their positive form.

In a Boolean vector, the literals are the variables themselves, and hence the embed-
ding function ϕL : {0, 1}n → {0, 1}n is the identity. Consequently, the monotone Literal
(L) kernel, κL(x, z) = ⟨ϕL(x), ϕL(z)⟩, counts how many true (i.e., positive) input literals
the vectors have in common. Actually, κmL is exactly the linear kernel κLIN(x, z) = ⟨x, z⟩,
which simply performs the dot-product between the input Boolean vectors.

. . Monotone Conjunc ve kernel
In Boolean algebra, given two variables x, z ∈ {0, 1}, the conjunction (i.e., and) between
x and z, denoted by x ∧ z, is satisfied if and only if x = z = 1, that is if and only if both
variables are true.

Given two Boolean vectors x and z, the monotone Conjunctive (mC) kernel κcmC(x, z)

counts how many monotone conjunctions, of a fixed arity c, of the variables are true (i.e.,
equals to 1) in both x and z.

Formally, the embedding of the mC-kernel of degree c ∈ [n] is given by

ϕc
mC : x 7→ (ϕ

(b)
mC (x))b∈Bc , (6.2)
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x

ϕ2
mC(x)

x1

x2

x3

x4

xn-1

xn

x1 ∧ x2

x1 ∧ x3

x1 ∧ xn

x2 ∧ x3

x2 ∧ x4

x2 ∧ xn

xn-1∧ xn

z

ϕ2
mC(z)

z1

z2

z3

z4

zn-1

zn

z1 ∧ z2

z1 ∧ z3

z1 ∧ zn

z2 ∧ z3

z2 ∧ z4

z2 ∧ zn

zn-1∧ zn

κ2mC(x, z)

Figure 6.2: Depiction of the mC-kernel of degree 2: firstly the input vectors are mapped
into the feature space which is formed by all conjunctions with arity 2 (without repe-
tition). Then, the kernel is computed by “matching” (dotted lines) the corresponding
features. Arrows from the input vectors to the feature vectors indicate when a variable
influences the conjunction.

where Bc = {b ∈ {0, 1}n | ∥b∥1 = c}, and

ϕ
(b)
mC (x) =

n∏
i=1

xbi
i = xb, (6.3)

where the notation xb stands for xb1
1 xb2

2 · · ·xbn
n .

The dimension of the embedding is
(
n
c

)
, that is the number of possible combinations

of c different variables, while the resulting kernel (κcmC) is computed by

κcmC(x, z) = ⟨ϕc
mC(x), ϕ

c
mC(z)⟩

=
∑
b∈Bc

xbzb =
∑
b∈Bc

(x⊙ z)b =

(
⟨x, z⟩
c

)
=

(
κmL(x, z)

c

)
, (6.4)

where the last but one equality holds because the number of times that ∀ i,bi = 1 such
that xizi = 1 is exactly the number of combination of c variables taken from ⟨x, z⟩.

Figure 6.2 gives a graphical representation of the computation of the mC-kernel of
degree 2.
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Proper es of the mC-kernel
The mC-kernel owns some peculiarities that are worth to mention:

• κcmC is the ANOVA kernel (see Section 4.4) of degree c with binary vectors as input;

• the sparsity of the kernel increases with the increasing of the degree c. This is
due to the fact that the number of active conjunctions decreases as the number of
involved variables increases (see Figure 6.5);

• the dimension of the feature space is not monotonically increasing with c. The
dimension reaches its maximum when c = ⌊n2 ⌋ and then starts to decrease, this is
due to the binomial coefficient;

• when c = 1 the resulting mC-kernel is equal to the mL-kernel, i.e., the linear ker-
nel:

κ1mC(x, z) =

(
⟨x, z⟩
1

)
= ⟨x, z⟩ = κmL(x, z) = κLIN(x, z);

• given a vector x such that ∥x∥ < c, its mapping in the embedding space will be the
null vector. From a computational stand point, this can cause issues, e.g., when-
ever the induced kernel has to be normalized;

• the computational complexity of this kernel function is very efficient O(n+ c).

π Proposition 6.1

Time complexity of κcmC computation is O(n+ c).

Proof. Given x, z ∈ {0, 1}n, the complexity of the dot-product ⟨x, z⟩ is linear in n,
so it is O(n). For any q ∈ N, the binomial coefficient q choose c is computed by

(
q

c

)
=

c−1∏
i=0

q − i

i+ 1
,

and hence it has a complexity O(c). Therefore, the overall computational com-
plexity is O(n+ c).

In practice, c is usually order of magnitude smaller than n, i.e., c ≪ n, so the
complexity of κcmC is reduced to O(n).
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Connec on with the DNF kernel [Sad01]
As said previously, both works [KS05] and [Sad01] independently proposed the mono-
tone DNF kernel, in which the feature space is represented by all possible conjunctions
of positive Boolean literals.

This kernel is applicable to points in Rn, however, if we restrict to the case in which
the input vectors are in {0, 1}n then it can be computed as follows:

κmDNF(x, z) = −1 +
n∏

i=1

(xizi + 1) = 2⟨x,z⟩ − 1.

Actually, the monotone form of the DNF kernel counts how many (any degree) con-
junctions of variables are satisfied in both x and z, and this is related to what the mC-
kernel does. In fact, we can express the monotone DNF kernel as a linear combination
of mC-kernels of degree 1 ≤ c ≤ n as in the following:

κmDNF(x, z) = 2⟨x,z⟩ − 1 =

n∑
d=0

(
⟨x, z⟩
c

)
− 1 =

n∑
c=1

κcmC(x, z).

. . Monotone Disjunc ve kernel
The disjunction of two Boolean variables x, z ∈ {0, 1}, denoted by x ∨ z, is satisfied
anytime at least one of the variables is true, or in other words, it is not satisfied if and
only if x = z = 0.

The embedding of the monotone Disjunctive kernel (mD-kernel) is the same as the
mC-kernel, but the logical interpretation is different. In the mD-kernel, as the name
suggests, the combinations of variables inside the feature space represent disjunctions
of variables, e.g., x1x4x6 ≡ x1 ∨ x4 ∨ x6. Formally, the embedding of the mD-kernel of
degree d ∈ [n] is given by

ϕd
mD : x 7→ (ϕ

(b)
mD (x))b∈Bd

, (6.5)

where

ϕ
(b)
mD (x) = J⟨x,b⟩ > 0K, (6.6)

and Bd is defined as in the previous section. As for the conjunctive case, the dimension
of the embedding space is

(
n
d

)
. From a logical stand point, the mD-kernel of degree d

between x and z counts the number of disjunctions of d variables that are satisfied in
both x and z.

In order to ease the understanding of how the mD-kernel (κdmD) is computed, we
rely on a set theory interpretation. Let us denote with Nd(x) =

(|x|
d

)
the number of
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combinations of size d that can be formed using elements of the set x, and since Φ (as
defined in Section 6.2) is the universal set holds that Nd(Φ) =

(
n
d

)
.

To obtain the value κdmD(x, z) we have to count all the d-disjunctions that contain
at least an active variable of x and z (potentially the same). A more intuitive way to
compute this value is to face the problem in a negative fashion, that is, we subtract from
all the possible d-combinations the ones with no active elements from both x and z.

First of all, from the total Nd(Φ) we subtract all the possible inactive combinations
of x, that is, using the set interpretation, Nd(x). Analogously, we can do the same for
z. Now, we have removed twice the combinations made of elements taken from x ∪ z

and thus we need to add its contribution once, that is Nd(x ∪ z). We can now formally
define κdmD as

κdmD(x, z) = ⟨ϕd
mD(x), ϕ

d
mD(z)⟩ = Nd(Φ)−Nd(x)−Nd(z) +Nd(x ∪ z)

=

(
n

d

)
−
(
n− |x|

d

)
−
(
n− |z|

d

)
+

(
n− |x| − |z|+ |x ∩ z|

d

)
=

(
n

d

)
−
(
n− ⟨x,x⟩

d

)
−
(
n− ⟨z, z⟩

d

)
+

(
n− ⟨x,x⟩ − ⟨z, z⟩+ ⟨x, z⟩

d

)
.

(6.7)

x
z

Φ

(a) Nd(Φ)

x
z

Φ

(b) −Nd(x)

x
z

Φ

(c) −Nd(z)

x
z

Φ

(d) Nd(x ∪ z)

Figure 6.3: The blue striped sections show the set of elements, (a) and (d), used to create
the active combinations, while the red ones, (b) and (c), are the combinations that are
discarded from the counting.

Figure 6.3 gives a graphical intuition of how the kernel is computed. Figure 6.3(a)
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x
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mD(x)
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x3

x4

xn-1

xn

x1 ∨ x2

x1 ∨ x3

x1 ∨ xn

x2 ∨ x3

x2 ∨ x4

x2 ∨ xn

xn-1∨ xn

z

ϕ2
mD(z)

z1

z2

z3

z4
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z1 ∨ z2

z1 ∨ z3

z1 ∨ zn

z2 ∨ z3

z2 ∨ z4

z2 ∨ zn

zn-1∨ zn

κ2mD(x, z)

Figure 6.4: Depiction of the mD-kernel of degree 2: firstly the input vectors are mapped
into the feature space which is formed by all disjunctions with arity 2 (without repe-
tition). Then, the kernel is computed by “matching” (dotted lines) the corresponding
features. Arrows from the input vectors to the feature vectors indicate when a variable
influences the disjunction.

represents all the possible combinations while Figure 6.3(b) and Figure 6.3(c) show the
set of elements used to create the combinations that are discarded from the counting.
Finally, Figure 6.3(d) illustrates the set of variables that are used to re-add the combina-
tions which have been discarded twice. Figure 6.4 instead gives a graphical representa-
tion of the computation of the mD-kernel of degree 2.

Proper es of the mD-kernel
The mD-kernel owns the following nice properties:

• for any degree d ≥ 2 the resulting mD-kernel matrix is fully dense.

π Proposition 6.2

For any dataset D and for any d ≥ 2 the mD-kernel matrix of degree d in-
duced by D, i.e., Ki,j = κdmD(xi,xj), is fully dense.

Proof. Given two generic examples x, z from the dataset D such that ∃ p, q |
xp = 1 ∧ zq = 1, then, for d ≥ 2, the feature space induced by ϕd

mD has at least
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one feature which contains the disjunction between the p-th and the q-th variables
of the vectors, which is active in both ϕd

mD(x) and ϕd
mD(z) and hence the kernel

κdmD(x, z) ≥ 1.

• the mD-kernel has the same complexity as the mC-kernel.

π Proposition 6.3

Time complexity of κdmD computation is O(n+ d);

Proof. As said in the proof of the Proposition 6.3.2, the complexity of
(
q
d

)
computa-

tion isO(d), while the complexity of |x| := ∥x∥2, |z| := ∥z∥2 and |x∩ z| := ⟨x, z⟩ is
O(n). So, with the exception of the first binomial which has a complexity ofO(d),
all the binomials in κdmD(x, z) has a complexity of O(n + d) and hence the overall
complexity is equals to O(n+ d).

Likewise the mC-kernel, in general, the degree d is order of magnitude smaller
than n (i.e., d≪ n) and hence the complexity of κdmD can be reduced to O(n).

• the dimension of the feature space is not monotonically increasing with d. The
dimension reaches its maximum when d = ⌊n2 ⌋ and then starts to decrease, this is
due to the binomial coefficient;

• as for the mC-kernel, when d = 1 the mD-kernel is equal to the linear one

κ1mD(x, z) =

(
n

1

)
−
(
n− |x|

1

)
−
(
n− |z|

1

)
+

(
n− |x| − |z|+ |x ∩ z|

1

)
= n− (n− |x|)− (n− |z|) + (n− |x| − |z|+ |x ∩ z|)
= |x ∩ z| := ⟨x, z⟩ = κmL(x, z) = κLIN(x, z);

• given a vector x such that ∥x∥ ≥ n − d, its mapping in the embedding space will
be the vector with all entries equal to 1, since in every combinations of d variables
at least one is true.

. Non-monotone Boolean kernels
Conversely to the monotone case, non-monotone Boolean formulas can contain negated
literals, e.g., ¬xi, and for this reason there is the need to consider the negated variables
in the computation of the kernels.
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. . Non-monotone Literal kernel
In order to include the contribution of the negated literals, we need to add to the mL-
kernel the number of false literals in common between x and z. Let us define the nega-
tion kernel first, which simply count how many false variables the two input vectors
have in common. The embedding function of the negation simply maps the vectors
onto their “opposite”, that is

ϕN(x) = 1n − x, (6.8)

and consequently the negation kernel is defined as

κN(x, z) = ⟨ϕN(x), ϕN(z)⟩ = ⟨(1n − x), (1n − z)⟩ = n− ⟨x,x⟩ − ⟨z, z⟩+ ⟨x, z⟩. (6.9)

The Non-monotone Literal (L) kernel, κL(x, z), counts how many true and false vari-
ables x and z have in common. Its feature mapping is simply the concatenation of the
two mappings ϕmL and ϕN, and thus the kernel is defined as a sum of kernels as in the
following:

κL(x, z) = κmL(x, z) + κN(x, z) = n− ⟨x,x⟩ − ⟨z, z⟩+ 2⟨x, z⟩. (6.10)

Clearly the embedding space has dimension 2n, and for any input vector x holds
that κL(x,x) = n. The proof is trivial since every element of x is equal to itself no matter
whether is true or false.

. . Non-monotone Conjunc ve kernel
The non-monotone Conjunctive (C) kernel is related to the mC-kernel: it counts how
many non-monotone conjunctions, of a certain arity c, are true in both x and z. Concep-
tually is very similar to the monotone case but it has to consider also variables in their
negated state.

A key aspect of the C-kernel is that its feature space contains all the possible com-
binations of the input variables, but each variable is in either its positive or negative
state. However, we can observe that, anytime a variable compare in a conjunction in
both its positive and negative states the conjunction can not be satisfied (i.e., it is a con-
tradiction). We can leverage on this observation and define the C-kernel as a special
case of the mC-kernel. Actually the C-kernel of degree c ∈ [n] is the mC-kernel applied
to vectors in the space spanned by the embedding function of the L-kernel, that is:

κcC(x, z) =

(
⟨ϕL(x), ϕL(z)⟩

c

)
=

(
κL(x, z)

c

)
=

(
n− ⟨x,x⟩ − ⟨z, z⟩+ 2⟨x, z⟩

c

)
, (6.11)
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which is by definition a kernel. From the definition above we can argue that the feature
space has dimension

(
2n
c

)
. Nevertheless, for the observation made before, we can also

define a valid feature space of dimension 2c
(
n
c

)
that is the number of possible conjunc-

tions of c literals taken in either positive or negative state. All the combinations (i.e.,
features) which are not considered, that are

(
2n
c

)
−2c

(
n
c

)
, are always 0 because they form

inconsistent formulas, i.e., x1 ∧ ¬x1, and thus they can be omitted.
Another nice property of the C-kernel is the following: for any c ∈ [n] and any input

vector x holds that κcC(x,x) =
(
n
c

)
. The proof is straightforward since ∀ x, κL(x,x) = n.

. . Non-monotone Disjunc ve kernel
The non-monotone Disjunctive (D) kernel counts how many non-monotone disjunc-
tions, of a certain arity d, are true in both x and z. Clearly, the embedding is the same
as the C-kernel, but the logical interpretation is different since here we treat disjunc-
tions instead of conjunctions. As for the monotone case, we derive the kernel function
κdD(x, z) in a negative fashion.

The number of all possible combinations of arity d of Boolean variables that can be
in their negated form is 2d

(
n
d

)
, that is the dimension of the feature space. For both, x and

z we have to discard the combinations that are false, which are exactly
(
n
d

)
because for

each set of d different variables, there exists only one assignment of the negations such
that the disjunction is falsified. For example, let us take the variables x1 = 1, x2 = 0 and
x3 = 1, only the disjunction ¬x1 ∨ x2 ∨ ¬x3 is false, while all the others 23 − 1 negation
assignments satisfy the disjunction. Finally, we have to re-add the false combinations
that have been discarded twice, that are the combinations made with variables that are
false in both vectors. This can be seen as the opposite of what the C-kernel computes,
however since we generate all possible combinations with all possible negation assign-
ments, the counting is actually the same as the C-kernel. This holds because it is like to
consider the C-kernel but with both vectors negated point-wise. We can thus define the
D-kernel of degree d ∈ [n] as

κdD(x, z) = 2d
(
n

d

)
−
(
n

d

)
−
(
n

d

)
+ κcC(x, z) = (2d − 2)

(
n

d

)
+ κcC(x, z). (6.12)

Similarly to the C-kernel, the D-kernel owns the following property: for any d ∈ [n] input
vector x holds that κdD(x,x) = (2d − 1)

(
n
d

)
. The proof is trivial since ∀ x, κdC(x,x) =

(
n
d

)
.

. Boolean kernels computa on
The computational complexity of the Boolean kernels described in the previous sections
is bounded by the complexity of the calculation of the binomial coefficient, that is O(k)
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with k the arity of the combinations. Hence, computing an entire kernel matrix over n-
dimensional examples taken from a dataset with l examples, would lead to a complexity
ofO((k+n) ·l2). Despite the fact that it is not possible to reduce such complexity, we can
take advantage of the recursive nature of the binomial coefficient in order to compute
the kernels in a recursive fashion. By doing so, it is possible to compute higher degree
kernel matrices by recovering kernel matrices of lower degrees.

Let the matrix K0 be the base (Boolean) kernel matrix over the dataset D, such that
K0

i,j = ⟨ϕ(xi), ϕ(xj)⟩, for xi,xj ∈ D and some ϕ with codomain {0, 1}n. Then, we can
recursively define the Boolean kernels for both monotone and the non-monotone case
as described in the following.

. . mC-kernel
By definition, the mC-kernel matrix of arity 1, that isK1

mC, is equivalent to the base kernel
matrix K0. By using K0 as base case, we can recursively define the mC-kernel matrix as

Kc+1
mC = Kc

mC ⊙
(

1

c+ 1

(
K1

mC − c1l1
⊺
l

))
.

. . mD-kernel
Let us define the matrices

S = diag(K0) · 1⊺l , Nx = n1l1
⊺
l − S, and Nxz = Nx − S⊺ +K0.

Then we define, recursively in its parts, the mD-kernel matrix Kd
mD as

Kd
mD = N(d) −N(d)

x −N(d)
x

⊺
+N(d)

xz ,

where

N(d+1) = N(d) ⊙
(
n− d

d+ 1
1l1

⊺
l

)
,

N(d+1)
x = N(d)

x ⊙
(

1

d+ 1

(
Nx − d1l1

⊺
l

))
, and

N(d+1)
xz = N(d)

xz ⊙
(

1

d+ 1

(
Nxz − d1l1

⊺
l

))
,

with the corresponding base cases N(1) = n1l1
⊺
l , N(1)

x = Nx and N
(1)
xz = Nxz .

Mirko Polato, Ph.D. Dissertation 67



6.6. Combination of Boolean kernels

. . C-kernel
By relying on the previous definition of S and the base case kernel matrix

K1
C = n1l1

⊺
l − S− S⊺ + 2K0,

the C-kernel matrix can be recursively defined by

Kc+1
C = Kc

C ⊙
(

1

c+ 1

(
K1

C − c1l1
⊺
l

))
.

. . D-kernel
Using the previous definitions of the matrices N(d) and Kc

C, we can define the D-kernel
matrix, recursively in its parts, as

Kd+1
D =

(
(2d − 2)1l1

⊺
l

)
⊙N(d) −Kd

C.

. Combina on of Boolean kernels
Given the family of Boolean kernels defined in the previous sections, we have now all the
basic elements to build more complex Boolean kernels that represent a specific logical
concept. Table 6.1 provides a summary of all the just presented Boolean kernels. It easy
to see that all kernels are functions of dot-products of the input vectors, and this allow us
to define new kernels by replacing those dot-products with other Boolean kernels. The
logical interpretation of the new kernel depends on how the base Boolean kernels are
combined. In the following we present some new Boolean kernels generated by using
this method.

. . Disjunc ve Normal Form kernels
In Section 4.4 we described the DNF-kernel and the mDNF-kernel [Sad01]. These ker-
nels owe their names to the fact that the solution of the kernel machine can be interpreted
as a (monotone) DNF. However, the way we have assigned names to kernels is strictly
related to which feature space they create. For this reason, we are going to re-use the
same kernel names for two new Boolean kernels in which the feature space is formed
by DNF formulas. In the remainder, when not specified differently, we will refer with
DNF-kernel and mDNF-kernel to the following kernels.
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κ κ(x, z) κ(x,x) |ϕ|

κmL ⟨x, z⟩ ∥x∥ n

κc
mC

(
κmL(x, z)

c

) (
|x|
c

) (
n

c

)

κd
mD

(
n

d

)
−
(
n− ∥x∥

d

)
−
(
n− ∥z∥

d

)
+

(
n− ∥x∥ − ∥z∥+ ⟨x, z⟩

d

) (
n

d

)
−
(
n− ∥x∥

d

) (
n

d

)
κN n− ∥x∥ − ∥z∥+ ⟨x, z⟩ n− ∥x∥ n

κL κmL(x, z) + κN(x, z) n 2n

κc
C

(
κL(x, z)

c

) (
n

c

)
2c
(
n

c

)

κd
D (2d − 2)

(
n

d

)
+ κd

C(x, z) (2d − 1)

(
n

d

)
2d
(
n

d

)

Table 6.1: Summary of the just described Boolean kernels: |ϕ| stands for the dimension
of the feature space.

Monotone DNF-kernel
We have already given a definition of Disjunctive Normal Form in Section 4.4. Here we
focus on the monotone case. The idea of the monotone DNF kernel (mDNF-kernel) is
to compute the dot-product of vectors in a feature space composed by monotone DNF
(mDNF) formulas over the input variables.

In particular, the variables are mapped onto a space containing all the monotone
DNF formulas composed by disjunctions of exactly d conjunctive clauses formed by c

literals, that we will call mDNF(d,c) for brevity. For example, given d = 2 and c = 3 a
possible mDNF is (x1 ∧ x3 ∧ x5) ∨ (x2 ∧ x3 ∧ x4).

Since, DNFs are disjunctions of conjunctive clauses we can combine the embedding
maps of the mC-kernel and the mD-kernel in this way

ϕd,c
mDNF : x 7→ ϕd

mD(ϕ
c
mC(x)) (6.13)

obtaining the desired feature space for the mDNF(d,c).
From the embedding definition, we can see that in order to calculate the mDNF-

kernel we have to compute the mD-kernel of degree d in the space formed by all con-
junctions of degree c.

Using the same sets analogy as in Section 6.3.3, the mDNF-kernel between the vec-
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tors x, z ∈ {0, 1}n is calculated by:

κd,cmDNF(x, z) =

(
Nc(Φ)

d

)
−
(
Nc(Φ)−Nc(x)

d

)
−
(
Nc(Φ)−Nc(z)

d

)
+

(
Nc(Φ)−Nc(x)−Nc(z) +Nc(x ∩ z)

d

)
=

((n
c

)
d

)
−
((n

c

)
− κcmC(x,x)

d

)
−
((n

c

)
− κcmC(z, z)

d

)
+

((n
c

)
− κcmC(x,x)− κcmC(z, z) + κcmC(x, z)

d

)
.

(6.14)

Note that in order to compute the kernel we need to know the dimension of the feature
space of the mC-kernel, that is

(
n
c

)
. By construction, the dimension of the feature space

is
((nc)

d

)
.

As for the previous monotone kernels, it is easy to see that for d = c = 1 the mDNF-
kernel is the linear kernel:

κ1,1mDNF(x, z) = n− (n− |x|)− (n− |z|) + (n− |x| − |z|+ |x ∩ z|)
= κ1mD(x, z) = κLIN(x, z).

 Notation overload
We are reusing for these new kernels the name (m)DNF-kernel which has been
presented in Section 4.4. However, we think that such name is the right one for our
kernels since they actually represent what is inside the feature space, and hence,
in order to be consistent, we borrowed the names.

Non-monotone DNF-kernel
The difference between a monotone DNF and a non-monotone one is simply the fact
that the latter can contain negated variables inside the conjunctive clauses. So, from an
embedding point of view, the only difference is the inner embedding, which is in the
DNF case the mapping function of the C-kernel. Formally, the embedding function of
the DNF-kernel with d conjunctive clauses made of c literals, i.e., DNF-kernel(d,c), is

ϕd,c
DNF : x 7→ ϕd

mD(ϕ
c
C(x)). (6.15)
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With the same approach used in the monotone DNF we can define the DNF-kernel(d,c)
as in the following:

κd,cDNF(x, z) =

(
2c
(
n
c

)
d

)
−
(
2c
(
n
c

)
− κcC(x,x)

d

)
−
(
2c
(
n
c

)
− κcC(z, z)

d

)
+

(
2c
(
n
c

)
− κcC(x,x)− κcC(z, z) + κcC(x, z)

d

)
.

(6.16)

By construction, the dimension of the feature space is
(2c(nc)

d

)
. Similarly to the mono-

tone DNF, it is easy to see that for d = c = 1 the DNF-kernel is the (non-monotone)
Literal kernel:

κ1,1DNF(x, z) = n− (n− n)− (n− n) + (n− n− n+ κL(x, z)) = κL(x, z).

. . Conjunc ve Normal Form kernels

 Conjunctive Normal Form
In logic, a Conjunctive Normal Form (CNF) is a normalization of a logical formula
which is a conjunction of disjunctive clauses, for example, given the Boolean vari-
ables x1, . . . x4 ∈ {0, 1}, (x1 ∨ x2 ∨ x3) ∧ x2 ∧ (x1 ∨ x4) is a valid CNF formula.

In particular, the example above is a monotone CNF. A non-monotone CNF, or
simply CNF, can contain negated variables, e.g., (¬x1∨x2∨¬x3)∧x2∧ (¬x1∨x4).

Monotone CNF-kernel
The construction of a CNF formula is very close to the DNF one, the only difference is
that the operations (i.e., or/and) are applied in the reverse order. For this reason, to
build the embedding of the CNF-kernel it is sufficient to swap the combination of the
embedding functions w.r.t. to the DNF case. By using the same notation as for the DNF,
c indicates the number of conjunctions and d the cardinality of the disjunctive clauses.
The monotone CNF embedding function is given by

ϕc,d
mCNF : x 7→ ϕc

mC(ϕ
d
mD(x)), (6.17)

which leads to a feature space of dimension
((nd)

c

)
. Consequently, the mCNF-kernel(c,d)

is defined as

κc,dmCNF(x, z) =

(
κdmD(x, z)

c

)
. (6.18)
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Evidently, when d = c = 1 the mCNF-kernel is the linear kernel:

κ1,1mCNF(x, z) =

(
κ1mD(x, z)

1

)
= κ1mD(x, z) = κmL(x, z) = κLIN(x, z).

Non-monotone CNF-kernel
For the same considerations made in the transition from the mDNF to the DNF-kernel,
we can define the embedding function of the non-monotone CNF-kernel(c,d) as

ϕc,d
CNF : x 7→ ϕc

mC(ϕ
d
D(x)) (6.19)

and the corresponding kernel function as

κc,dCNF(x, z) =

(
κdD(x, z)

c

)
. (6.20)

Clearly the feature space has dimension
(
2d(nd)

c

)
and if d = c = 1 we have that

κ1,1CNF(x, z) =

(
κ1D(x, z)

1

)
= κ1D(x, z) = κL(x, z).

. Analysis of the expressiveness
In this section, we show some properties about the expressiveness of the just described
kernels according to the spectral ratio of their corresponding kernel matrices (see Sec-
tion 4.6).

We consider normalized kernels by means of the formula (4.6). The use of normal-
ized kernels leads to a nice property about the relation of the SR of two kernel functions.
Formally, let us define the following lemma.

π Lemma 6.1

Let be κ̃ and κ̃′ two normalized kernel functions with their corresponding kernel
matrices K̃ and K̃′ ∈ Rm×m. If, for any x, z ∈ Rn, κ̃(x, z)2 ≥ κ̃′(x, z)2 holds, then
C(K̃) ≤ C(K̃′).

Proof. Assume that κ̃(x, z)2 ≥ κ̃′(x, z)2 holds for any x, z. Then, we can say that the
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following inequality holds:

∥K̃∥2F =
m∑
i=1

m∑
j=1

K̃2
i,j ≥

m∑
i=1

m∑
j=1

K̃′ 2
i,j = ∥K̃′∥2F. (6.21)

Since kernels are normalized, ∥K̃∥T = ∥K̃′∥T = m, we have that:

C(K̃) =
∥K̃∥T
∥K̃∥F

=
m

∥K̃∥F
≤ m

∥K̃′∥F
=
∥K̃′∥T
∥K̃′∥F

= C(K̃′).

. . Expressiveness of the mC-kernel
By construction, the features of the mC-kernel of degree c have a clear dependence with
the features of the same kernel of degree c−1. For example, consider the feature x1x2x3
(i.e., x1 ∧ x2 ∧ x3) from the feature space of a mC-kernel of degree 3, its value is strictly
related to the ones of the features x1x2, x1x3 and x2x3 of an mC-kernel of degree 2.
Specifically, the conjunctive feature x1x2x3 is true if and only if all the “sub-features”
x1x2, x1x3 and x2x3 are also true, which, in turn, are true if and only if x1, x2 and x3 are
true. Figure 6.5 gives a visual representation of these dependencies.

x1 x2 x3

x1x2
def
= x1 ∧ x2 x1x3

def
= x1 ∧ x3 x2x3

def
= x2 ∧ x3

x1x2x3
def
= x1 ∧ x2 ∧ x3

c=1

c=3

c=2

Figure 6.5: Dependencies between different degrees of the mC-kernel. Nodes are fea-
tures and the grey ones are the active (i.e., true) features.

Intuitively, higher the arity of the conjunction less likely is that it is satisfied, and
hence we expect that the higher the order of the mC-kernel, the higher the degree of
sparsity of the corresponding kernel matrix. We will prove this is true (for the normal-
ized kernel) and we also show that the degree c induces an order of expressiveness in
κ̃cmC(x, z).
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π Theorem 6.1

Given x, z ∈ {0, 1}n, ∥x∥, ∥z∥ ≥ m for any choice of c ∈ [m], the c-degree nor-
malized mC-kernel κ̃cmC is more general than (c+1)-degree normalized mC-kernel
κ̃c+1

mC , that is κ̃cmC ≥G κ̃c+1
mC .

Proof. By Lemma 6.7 it is sufficient to prove that

κ̃cmC(x, z)
2 ≥ κ̃c+1

mC (x, z)2

is true. Let us call nx = ∥x∥, nz = ∥z∥ and nxz = ⟨x, z⟩, then:

κ̃cmC(x, z)
2 =

κcmC(x, z)
2

κcmC(x,x)κ
c
mC(z, z)

=

(
⟨x, z⟩
c

)2

(
⟨x,x⟩

c

)(
⟨z, z⟩
c

) =

(
nxz

c

)
(
nx

c

)
(
nxz

c

)
(
nz

c

) .

Now, let us examine the first term of the product. We have:(
nxz

c

)
(
nx

c

) =

nxz!

c!(nxz − c)!
nx!

c!(nx − c)!

=
nxz!

nx!

(nx − c)!

(nxz − c)!
.

Since nxz ≤ nx by definition, we can say that:(
nxz

c

)(
nx

c

) =
nxz!

nx!

(nx − c)!

(nxz − c)!
=

nxz!

nx!

(nx − c)(nx − c− 1) . . . (nxz − c+ 1)(nxz − c)!

(nxz − c)!
,

and so:(
nxz

c

)(
nx

c

) =
nxz!

nx!
[(nx − c)(nx − c− 1) . . . (nxz − c+ 1)] ≥

nxz!

nx!
[(nx − c− 1)(nx − c− 2) . . . (nxz − c)] =

(
nxz

c+1

)(
nx

c+1

) .
The same inequality is clearly valid for the other term

(
nxz

c

)(
nz

c

)−1

, and hence:

κ̃cmC(x, z)
2 =

(
nxz

c

)
(
nx

c

)
(
nxz

c

)
(
nz

c

) ≥
(

nxz

c+ 1

)
(

nx

c+ 1

)
(

nxz

c+ 1

)
(

nz

c+ 1

) = κ̃c+1
mC (x, z)2.
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Note that analogous analysis can be done for the non-monotone conjunctive kernel.

. . Expressiveness of the mD-kernel
With very similar considerations as for the mC-kernel, it is evident that there exists a
dependence between features of a mD-kernel of degree d and d + 1. Let us consider
the feature x1x2x3 (i.e., x1 ∨ x2 ∨ x3) of the mD-kernel of degree 3. This will be active
anytime at least one of the features x1x2, x2x3 or x1x3 of the mD-kernel of degree 2 is
active. In Figure 6.6 a visual depiction of these dependencies is provided.

x1 x2 x3

x1x2
def
= x1 ∨ x2 x1x3

def
= x1 ∨ x3 x2x3

def
= x2 ∨ x3

x1x2x3
def
= x1 ∨ x2 ∨ x3

d=1

d=3

d=2

Figure 6.6: Dependencies between different degrees of the D-Kernel. The nodes are
features and the colored ones are active features.

In this case, conversely to the mC-kernel, we expect that the higher the order of the
mD-kernel the higher the degree of density of the corresponding kernel matrix. The
following theorem proves that this holds.

π Theorem 6.2

Given x, z ∈ {0, 1}n, for any choice of d ∈ N, the d-degree normalized mD-kernel
κ̃dmD is more specific than the (d+1)-degree normalized mD-kernel κ̃d+1

mD , that is
κ̃dmD ≤G κ̃d+1

mD .

Proof. By Lemma 6.7 it is sufficient to prove that

κ̃dmD(x, z)
2 ≤ κ̃d+1

mD (x, z)2 (6.22)

is true. Let us consider the left hand side term of the inequality (6.22):

κ̃dmD(x, z)
2 =

κdmD(x, z)
2

κdmD(x,x)κ
d
mD(z, z)

=
κdmD(x, z)

κdmD(x,x)

κdmD(x, z)

κdmD(z, z)
.
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We can rewrite the term κdmD(x, z)

κdmD(x,x)
as:

κdmD(x, z)

κdmD(x,x)
=

Nd(Φ)−Nd(x)−Nd(z) +Nd(x ∪ z)

Nd(Φ)−Nd(x)
= 1− Nd(z)−Nd(x ∪ z)

Nd(Φ)−Nd(x)
.

Let us explain the meaning of the last fraction: at the numerator, Nd(z)−Nd(x ∪ z)

counts the number of d-combinations without repetition which have at least one active
variable in x but not in z. Similarly, the denominator, that is Nd(Φ)−Nd(x), counts the
d-combinations without repetition which have at least one active variable in x. Formally,
we have:

Nd(z)−Nd(x ∪ z) = (nx − nxz)Nd−1(z \ {az}), and
Nd(Φ)−Nd(x) = nxNd−1(Φ \ {ax}),

where ax ∈ x and az ∈ z are generic active variables in x and z, respectively. So, we
have that

κdmD(x, z)

κdmD(x,x)
= 1− (nx − nxz)

nx

Nd−1(z \ {az})
Nd−1(Φ \ {ax})

= 1− (nx − nxz)

nx

(
n− nz − 1

d− 1

)
(
n− 1

d− 1

)

= 1− (nx − nxz)

nx

(n− nz − 1)!

(d− 1)!(n− nz − d)!

(n− 1)!

(d− 1)!(n− d)!

= 1− (nx − nxz)

nx

(n− nz − 1)!

(n− 1)!

(n− d)!

(n− nz − d)!

= 1− β
(n− d)(n− d− 1) . . . (n− nz − d+ 1)(n− nz − d)!

(n− nz − d)!

= 1− β[(n− d)(n− d− 1) . . . (n− nz − d+ 1)],

where β =
(nx − nxz)

nx

(n− nz − 1)!

(n− 1)!
. Thus, it is easy to see that

κdmD(x, z)

κdmD(x,x)
= 1− β[(n− d)(n− d− 1) . . . (n− nz − d+ 1)] ≤

1− β[(n− d− 1)(n− d− 2) . . . (n− nz − d)] =
κd+1

mD (x, z)

κd+1
mD (x,x)

.
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Since the same consideration can be made for κdmD(x, z)

κdmD(z, z)
, we can conclude that

κ̃dmD(x, z)
2 =

κdmD(x, z)

κdmD(x,x)

κdmD(x, z)

κdmD(z, z)
≤ κd+1

mD (x, z)

κd+1
mD (x,x)

κd+1
mD (x, z)

κd+1
mD (z, z)

= κ̃d+1
mD (x, z)2.

Note that analogous considerations can be done for the non-monotone disjunctive
kernel.

. . Expressiveness of the normal form kernels
In the normal form case, it is very difficult to define a full order of expressiveness in the
lattice of the kernels. Nevertheless, there are some relations that we can be inherited
from the (m)C-kernel and (m)D-kernel. In fact, given a normal form kernel κ, by fixing
one of its degrees, i.e., d or c, we can leverage on the considerations made in the previous
sections and state that κd,c ≤G κd+1,c and κd,c ≥G κd,c+1.

However, in more general cases the existence of some kind of order between the
degrees is not trivial to demonstrate. A nice observation we can do about DNFs is that,
in its extreme case, when c is equal to the maximum number of ones in the vectors, its
expressiveness in terms of SR is 1 (its corresponding Gram matrix is indeed an identity
matrix). We can also say something similar for the CNF, when d is maximum the SR
is 0 (the Gram matrix is a constant matrix). So, in both cases we expect some kind of
convergence towards the maximum (resp. minimum) expressiveness.

Empirical results, depicted in Figure 6.7, show that our intuitions are correct. Differ-
ent curves represent different datasets (see Section 3.2). Moreover, we can also observe
two different behaviours between DNF and CNF:

• in the DNF figures we can notice that the expressiveness is monotonically increas-
ing with the degrees and this could suggests that, in general, κd,c(m)DNF ≤G κd+1,c+1

(m)DNF ;

• in the CNF case, the behaviour of the complexity is less predictable. The figures
show that with the increasing of the degrees, the expressiveness increases until a
certain point, and then starts to decrease monotonically towards 0.

Figure 6.8 summarizes the hierarchical structure of the expressiveness of the (m)DNF-
kernel and the (m)CNF-kernel.
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Figure 6.7: Spectral complexity on the benchmark dataset of the normal form kernels
varying the degrees d and c, where d = c.

. Evalua on
In this section we assess the quality of the Boolean kernels described in this chapter.
Firstly, we describe the evaluation setting and then a discussion of the obtained results
will follow.

. . Evalua on protocol
We evaluated the effectiveness of the proposed kernels on several benchmark datasets
(Section 3.2) using the standard SVM as classifier. We compared the Boolean kernels
with the linear kernel and the prominent RBF kernel (Section 4.2). For each dataset, we
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. . . . . . . . .

Figure 6.8: Hierarchy of the expressiveness of the (m)DNF-kernel(d,c) (left hand side),
and the (m)CNF-kernel(d,c) (right hand side). Solid arrows, e.g., A → B, indicate that
A is more expressive than B, and this relation can be proved by means of Theorem 6.1
and Theorem 6.2. Dashed arrows, A 99K B, indicate relations that should be valid but
that we only have empirical evidence.

performed 20 runs of a 5-fold nested cross validation and the average AUCs with their
standard deviations have been recorded. The validated parameters for each kernel are
presented in Table 6.2, while the SVM regularization parameter C have been validated
in the set of values {2−5, 2−4 . . . , 24}.

All these experiments have been made on a MacBook Pro late 2012 with 16GB of
RAM and CPU Intel® Core i7 @ 2.70GHz. The methods and the experiments have been
implemented in python with the machine learning module Scikit-learn [PVG+11]. The
source code is freely available at the github repository https://github.com/makgyver/
pyros.

Kernel Parameters

Linear -

RBF γ ∈ {10−4, . . . , 103}

(m)C-kernel c ∈ [1, 2, 3, 4, 5]

(m)D-kernel d ∈ [1, 2, 3, 4, 5]

NF-kernel d ∈ [1, 2, 3, 4], c ∈ [1, 2, 3, 4]

Table 6.2: Validated parameters for the kernels.

The choice of the range of validated degrees for the Boolean kernels has been arbi-
trarily chosen, however we wanted to use low degrees in order to build “simple” feature
spaces.
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. . Experimental results on the ar ficial datasets
The first set of experiments have been performed on artificial datasets in which the class
labels depend on a randomly generated Boolean formula of a specific form. In particular,
for every normal form formula and for every pair of degrees (d, c) with 2 ≤ d, c ≤
3, we generated a dataset with 1000 instances of 100 features with a fixed number of
active variables, where exactly half of the instances have positive labels (i.e., they satisfy
the formula). We created three sets of these datasets to finally get 12 toy datasets per
normal form. We omitted formulas with d = 1 or c = 1 because the tasks were too easy
and all the tested kernels performed with the maximum AUC. In these experiments we
compared the normal form kernels with the RBF and the linear kernel. The obtained
results are reported in Table 6.3. The first evident fact is that the linear kernel is always

Kernel mDNF mCNF DNF CNF Rank

Linear 87.87 88.29 91.77 95.06 6.00

RBF 90.42 90.39 93.43 95.68 5.00

mDNF-kernel 90.98 90.86 93.92 95.89 2.75

mCNF-kernel 91.01 90.81 93.95 95.91 2.25

DNF-kernel 91.00 90.84 93.90 95.92 2.00

CNF-kernel 91.00 90.83 93.88 95.92 2.50

Table 6.3: AUC(%) performances on artificial datasets. In bold, for each dataset, it is
highlighted the best performing kernel. The underlined result indicate the performance
of the kernel which corresponds to the formula that generates the dataset. The column
“Rank” indicates the average rank of the method w.r.t. the others.

the worst performing one, followed by the RBF kernel which performs, on average, half
a point less than the normal form kernels. It is also interesting to notice that all the
tested normal form kernels achieved very good performance on all datasets regardless
of the formula that generated them. Even though the average rank highlights the DNF-
kernel as the best performing kernel, the AUCs of all the proposed kernels are very close
to each other. We argue that this can be due to the fact that the expressiveness of the
normal form with respect to the target is close between the kernels.
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Kernel dna house krkp prim promo soy spect spli t-t-t mnk2

Linear 98.21
±0.09

99.38
±0.17

99.12
±0.03

73.10
±1.05

97.41
±0.96

99.43
±0.15

84.01
±1.48

98.48
±0.05

97.88
±0.39

48.02
±3.27

RBF 98.84
±0.06

99.39
±0.20

99.97
±0.03

72.82
±0.94

97.60
±0.95

99.61
±0.14

83.92
±1.52

99.12
±0.04

98.52
±0.20

99.00
±0.45

mC 99.03
±0.04

99.31
±0.24

99.95
±0.02

73.04
±0.97

97.50
±0.92

99.64
±0.09

83.96
±1.43

99.36
±0.03· 97.88

±0.39
100.0
±0.00·

mD 98.97
±0.05

99.32
±0.27

99.73
±0.02

72.96
±0.89

97.50
±0.94

99.67
±0.08

84.00
±1.44

99.19
±0.04

97.88
±0.39

91.09
±2.27

mDNF 99.07
±0.04· 99.30

±0.25
99.96
±0.02

72.99
±0.88

97.57
±0.96

99.68
±0.08

83.96
±1.45

99.36
±0.03· 97.88

±0.39
100.0
±0.00·

mCNF 99.04
±0.04

99.30
±0.25

99.96
±0.02

73.07
±0.83

97.55
±1.06

99.69
±0.08

83.95
±1.46

99.36
±0.03· 97.88

±0.39
100.0
±0.00·

C 99.06
±0.04· 99.37

±0.25
99.95
±0.02

73.05
±0.88

97.42
±0.91

99.66
±0.10

83.96
±1.41

99.28
±0.03· 98.38

±0.26
100.0
±0.00·

D 98.96
±0.05

99.33
±0.31

99.73
±0.02

73.18
±0.84

97.49
±0.83

99.66
±0.07

84.17
±1.46

99.21
±0.04

98.38
±0.26

87.30
±3.01

DNF 99.04
±0.05

99.35
±0.27

99.96
±0.02

72.90
±0.83

97.46
±0.95

99.67
±0.08

84.03
±1.43

99.24
±0.03

98.38
±0.26

100.0
±0.00·

CNF 99.04
±0.04

99.35
±0.27

99.96
±0.02

72.98
±0.79

97.46
±0.97

99.67
±0.08

83.99
±1.45

99.25
±0.03· 98.38

±0.26
100.0
±0.00·

Table 6.4: AUC(%) performances on benchmark datasets with the standard deviation
over the 20 runs. In bold, for each dataset, it is highlighted the best performing kernel.
The • near the standard deviation indicates a performance that is significantly better
than RBF (more than two standard deviations).

. . Experimental results on the benchmark datasets
With the following experiments we want to assess the quality of our proposed ker-
nel functions on binary classification tasks on benchmark datasets. The performance
achieved by the different kernels are reported in Table 6.4. Note that the datasets monks-1
and monks-3 are not present in the table for space reasons. However, all the results are
also depicted in Figure 6.9.

A first observation about the results is that the normal form kernels achieved usually
very good performance w.r.t. the other kernels. It is worth noticing that the normal form
kernels are always better than their correspondent “base kernels” (disjunctives and con-
junctives) and this is due to the fact that the normal forms are a generalizations of their
base kernels. Moreover, this behaviour is also a confirmation that the validation had
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Figure 6.9: AUC results on many benchmark datasets: the proposed kernels are com-
pared to the linear kernel and the RBF kernel.
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Figure 6.9: AUC results on many benchmark datasets: the proposed kernels are com-
pared to the linear kernel and the RBF kernel.
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worked properly. Unsurprisingly, the linear kernel is in general (7 out of 12) the worst
performing one because it is unable to adequately represent the non linear relations
in the data. Conversely, as expected, the RBF kernel achieves very good AUC scores
even though it is not as good as our Boolean kernels in some of the datasets, specifically
dna, monks-2, monks-3 and splice in which the RBF-kernel performance is significantly
worse than the one of our proposals.

A peculiarity of the monks datasets is that their labelling can be explained by DNF
rules. The obtained results on these datasets show that most of the proposed Boolean
kernels achieve an AUC of 100% while RBF, despite it has a good performance, is not
perfect. This is due to the fact that these Boolean kernels contain the target formula
in the feature space, or at least they contain a set of related formulas that combined
together are able to mimic the target one.

On average, the worst performing Boolean kernels are the disjunctives (both mono-
tone and non-monotone) and this can be easily explained by their poor expressiveness
(see Section 4.6).

These results show that our Boolean kernels can achieve state-of-the-art performance
on categorical datasets, with the convenience of creating embedding spaces that are easy
to interpret, and this gives the opportunity to apply rule extraction approaches directly
on the feature space.

84 Mirko Polato, Ph.D. Dissertation



7
Interpre ng SVM

What is the most resilient parasite? Bacteria? A virus? An intes nal worm?
An idea. Resilient... highly contagious. Once an idea has taken hold of the
brain it's almost impossible to eradicate. An idea that is fully formed - fully
understood - that s cks; (taps forehead) right in there somewhere.

Incep on [talking about extrac on]
Dominic "Dom" Cobb

In short

7.1 Features relevance in the feature space, 85
7.2 Interpre ng BK-SVM, 87
7.3 Experiments, 89

In this chapter we propose a simple way for extracting rules from the solution of a
kernel method using Boolean kernels. First of all, we provide the theoretical foundations
upon which our method is based. Then, we present a proof of concept method and we
show its applicability on some datasets. The proposed method is based on the general
purpose framework concerning genetic algorithms. What we want to underline here is
that interpreting kernel machines based on Boolean kernels is feasible.

. Features relevance in the feature space
In the previous sections of this chapter we have given a series of kernels for which we
can easily interpret their features in the embedding space. Now, our goal is to find
a way to extract from such feature spaces those features that are the most relevant in
the decision of a kernel machine. This task can be seen as a feature relevance/feature
selection problem.

Several definitions of relevance have been suggested in the literature, for example,
Almuallim et al. [AD91] give the following definition of relevance, under the assump-
tions that all features and the label are Boolean and that there is no noise.
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π Definition 7.1 : Relevant Feature [AD91]
A feature Xi is said to be relevant to a concept C if Xi appears in every Boolean
formula that represents C and irrelevant otherwise.

Definition 7.1 correlates the relevance of a feature to the target concept, while there
are other definition that relate the relevance to the behaviour of a particular hypothesis
h.

π Definition 7.2 : Relevant feature for h [NPnBT07]
A feature Xi is relevant to the hypothesis h if

P(h(Xi, Fi) ̸= h(X ′
i, Fi)) > 0

where Xi and X ′
i are independent samples from the marginal distribution of the

feature Xi, and Fi ≡ {X1, X2, . . . , Xi−1, Xi+1, . . . , Xn} is the set of all features but
Xi.

In other words, Definition 7.2 states that a feature is relevant to an hypothesis h if re-
sampling such feature according to its marginal distribution influences the behaviour
of the classifier with a non-zero probability. Such definition has also been extended to
hypothesis class, in which a feature is relevant for the hypothesis classH if it is relevant
for all hypothesis h ∈ H in the sense of Definition 7.2 [GPH17].

However, the underlying data distribution is unknown and hence it is impossible to
say exactly whether a feature is relevant for an hypothesis. For this reason a possible
approach is to use some heuristics to estimate the relevance. In [GPH17], Göpfert et
al. gave a very simple heuristic for the feature relevance for the hypothesis class of
linear classifier. In particular, given a linear classifier, i.e, an hyperplane, defined by the
pair (w, b), the relevance of a feature f can be calculated by the absolute value of its
corresponding weights in w, that is wf .

By relying on a similar heuristic, we define the relevance of a feature in the feature
space as in the following. Let us consider an hypothesis from the solution of an SVM
using a Boolean kernel as kernel function over a dataset D ≡ {(xi, yi)}li=1. We know
from the Representer Theorem 4.3.2 that the hyperplane of a SVM can be written as

w =
∑
i∈S

yiαiϕ(xi)

with S = S+ ∪S− is the set of support vector indexes where S+ (S−) the set of positive
(respectively, negative) support vector indexes.
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Let us now consider for simplicity examples of fixed norm in feature space, i.e.,
∥ϕ(x)∥ = q, and let δf (x) ∈ {0, 1} be the value of the feature f (i.e., a logic formula
in the case of Boolean kernels) in the feature space of x. Then the associated weight for
a feature f can be calculated by:

wf =
1

q

∑
i∈S

yiαiδf (xi)

=
1

q

∑
i∈S+

αiδf (xi)−
1

q

∑
i∈S−

αiδf (xi),
(7.1)

where αi are the contributions of the support vectors to the solution of the SVM.
Our aim is to find the formula f such to maximize the value wf . Since all αi are

positives and
l∑

i=1
yiαi = 0, then this problem can be reduced to the one of finding the

formula such that wf = q−1
∑

i∈S+

αi. It is easy to show that if (i) the set is separable, (ii)

the target concept is given by a target formula g, and (iii) the feature space contains g,
then

wg = argmax
f

wf =
1

q

∑
i∈S+

αi. (7.2)

This is due to the fact that the target function generates the labels, then δf (xi) = 1⇔
yi = +1. Moreover, any other formula f for which it holds has wf = wg.

In the case of non-separability, maximizing the value of wf is still a good heuristic
since it is a way to minimize the loss with respect to the decision function.

. Interpre ng BK-SVM
This section describes how Boolean kernels can be used in order to interpret a kernel
machine solution, such as anSVM. First of all we present a new Boolean kernel computed
as combination of mC-kernels and mD-kernels. Then, an algorithm for interpreting a
SVM based on Boolean kernels (BK-SVM) will be presented.

. . The feature space of monotone DNFs
As described in Chapter 6, by composing the mC-kernel and the mD-kernel it is pos-
sible to define the mDNF-kernel in which the feature space is composed by monotone
DNF formulas over the input variables. A shortcoming of the mDNF-kernel defined
in such way is that the mDNF formulas have a fixed form, that is, they are composed
by disjunctions of d conjunctive clauses made of c literals. In order to overcome this
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limitation, instead of directly composing the feature maps of the mC-kernel and the
mD-kernel, we first create a feature space composed by all conjunctions up to a certain
arity C, by concatenating the feature spaces of κcmC for c ∈ [1, C], that is

ϕC
Σ(x) = (ϕ1

mC(x), ϕ
2
mC(x), . . . , ϕ

C
mC(x)).

The corresponding kernel can be implicitly computed [STC04] by

κCΣ(x, z) =

C∑
c=1

κcmC(x, z).

Now, by composing ϕC
Σ with ϕd

mD (for some d) we obtain a feature space constituted
of all possible mDNFs made of d conjunctive clauses of at most C literals. This kernel
can be calculated by replacing ⟨x, z⟩ (i.e., the linear kernel) with κCΣ(x, z) and n with∑C

c=1

(
n
c

)
in Eq. (6.7). Finally, by summing up all these kernels with d ∈ [1, D] we obtain

a kernel with a feature space composed of all possible mDNF formulas with at most D
conjunctive clauses of at most C literals. Formally,

κD,C
∗ (x, z) =

C∑
d=1

κdmD(ϕ
C
Σ(x), ϕ

C
Σ(z)).

. . Rule extrac on via Gene c Algorithm
Finding the best feature is not an easy task because of the huge dimensionality of the
feature space and hence, in general, an exhaustive search is not feasible. For this reason,
we adopted a genetic algorithm (GA) based optimization. The design choices for the
GA are described in the following:

population it is formed by 500 randomly initialized individuals, i.e., mDNF formulas
with at most D conjunctions made of at most C literals;

fitness given a formula f , its fitness is equals to the weight wf as in Eq. (7.2);
crossover given two mDNF formulas f and g, the crossover operator creates a new in-

dividual by randomly selecting a subset of the conjunctive clauses from the union
of f and g while keeping the number of clauses ≤ D.

mutation given a mDNF formula, the mutation operator randomly performs one out
of the following three actions: (i) removing one of the conjunctive clauses (when
applicable); (ii) adding a new random conjunctive clause; (iii) permuting a literal
in one of the conjunctions with another literal picked from the ones that are not
currently included in it;

selection we adopted the elitist selection (20%) strategy to guarantee that the solution
quality will not decrease.
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. Experiments
. . Experimental se ngs

The experiments have been performed on 10 binary datasets in which the number of
ones is the same for every instance. This is not a limitation since, given a dataset with
categorical features, each instance can be converted into a fixed norm binary vector by
means of the one-hot encoding [HH13]. The artificial datasets (indicated by the prefix
art-) have been created in such a way that the positive class can be described by a mDNF
formula over the input variables. All the experiments have been implemented in python
2.7 using the modules Scikit-Learn, MKLpy and pyros available in the PyPi repository.

The details of the datasets are summarized in Table 7.1. We evaluated the proposed

Dataset #Inst. #Ft. Rule

tic-tac-toe 958 27 mDNF, d = 8, c = 3

monks-1 432 17 (x0 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x5) ∨ x11

monks-3 432 17 mDNF, d = 7, c = 2

art-d2-c4 1000 30 (x11 ∧ x9 ∧ x1 ∧ x14) ∨ (x27 ∧ x17)

art-d3-c3 1000 30 (x3 ∧ x28) ∨ x27 ∨ (x14 ∧ x7 ∧ x26)

art-d4-c2 1000 30 x3 ∨ (x0 ∧ x7) ∨ (x5 ∧ x9) ∨ x8

art-d4-c3 1000 30 (x25 ∧ x21) ∨ (x15 ∧ x5 ∧ x19) ∨ (x0 ∧ x26) ∨ (x8 ∧ x21 ∧ x20)

art-d5-c4 1000 30 mDNF, d = 5, c ≤ 4

art-d5-c5 1000 30 mDNF, d = 5, c ≤ 5

Table 7.1: Information of the datasets: number of instances, number of binary features
and the rule which describes the positive class.

algorithm in terms of the most used metrics for evaluating explanation rules [BB10],
namely, comprehensibility, accuracy and fidelity. Comprehensibility is the extent to which
the extracted representations are humanly comprehensible. In our case we can assume
high comprehensibility because the retrieved rules are simple (and short) logical propo-
sitions over the input binary variables. The accuracy of a classification function (or rule)
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f over the test set Tts is equal to

accuracy(f, Tts) =
|{(x, y) ∈ Tts | Jf(x) ⇐⇒ y = +1K}

|Tts|
.

The fidelity over the test set Tts of a rule f w.r.t. a decision function h learnt by a learning
algorithm is computed by

fidelity(f, h, Tts) =
|{(x, y) ∈ Tts | Jf(x) ⇐⇒ h(x) = +1K}|

|Tts|
.

For each dataset the experiments have been repeated 5 times by using different 70%-
30% training-test splits. In each experiment an hard-SVM with the kernel κ5,10∗ has been
trained over the training set and then the most relevant formula has been extracted using
the GA (described in Section 7.2.2) with C = 5, D = 10, the mutation probability set to
0.6 and the maximum number of generations set to 103.

. . Results
The achieved results are summarized in Table 7.2. As evident from the table, in every
dataset the best rule extracted by the GA is indeed the one which (almost always) ex-
plains the label and the decision of the SVM (the fidelity is very high). Moreover, despite
the huge search space (on average 1045 formulas), the number of generations required
to find the best rule is very low.

To highlight how the weights learned by the SVM are indeed useful to guide the
research of the GA (through the fitness), we also tried to retrieve the best formula by
using the same GA with αi = 1/L,∀ i ∈ [1, L]. In this case the fitness corresponds to
the training accuracy. Figures 7.1 and 7.2 show the comparison between the GA w/
and w/o SVM. From the figures, it is evident that using the GA guided by the SVM
ensures that a better rule will be found with fewer generations. It is also worth to men-
tion that computing the fitness over all the training set is significantly less efficient than
calculating it for the support vectors only.
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SVM Best Rule Fidelity

Dataset Train Test Train Test Train Test GA #Gen.

tic-tac-toe 100.00
±0.00

98.33
±0.87

100.00
±0.00

100.00
±0.00

100.00
±0.00

98.33
±0.87

358.00
±156.81

monks-1 100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

9.20
±3.37

monks-3 100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

230.40
±385.79

art-d2-c4 100.00
±0.00

98.87
±0.50

99.89
±0.23

99.40
±0.80

99.89
±0.23

99.07
±0.68

10.60
±3.55

art-d3-c3 100.00
±0.00

97.13
±1.13

100.00
±0.00

100.00
±0.00

100.00
±0.00

97.13
±1.13

14.60
±7.34

art-d4-c2 100.00
±0.00

97.87
±0.75

100.00
±0.00

100.00
±0.00

100.00
±0.00

97.87
±0.75

15.0
±2.28

art-d4-c3 100.00
±0.00

95.07
±1.34

100.00
±0.00

100.00
±0.00

100.00
±0.00

95.07
±1.34

35.20
±19.36

art-d5-c4 100.00
±0.00

96.00
±0.67

99.71
±0.57

99.20
±1.60

99.71
±0.57

96.00
±0.67

340.40
±338.10

art-d5-c5 100.00
±0.00

94.27
±0.85

99.97
±0.06

99.40
±0.33

99.97
±0.06

94.20
±0.85

61.20
±17.68

Table 7.2: Experimental results averaged over 5 runs: for each dataset the accuracy (%)
in both training and test is reported for SVM and for the extracted rule. It is also reported
the fidelity of the rule w.r.t the SVM as well as the average number of generations re-
quired to the GA to find the best rule.
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Figure 7.1: Comparison between the GA guided by the SVM (w/) and w/o the SVM.
The plot shows the average accuracy on the test set.
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Figure 7.2: Comparison between the GA guided by the SVM (w/) and w/o the SVM.
The plot shows the average number of generations required by the GA to find the best
rule.
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8
Proposi onal kernels

Logic takes care of itself; all we have to do is to look and see how it does it.

Ludwig Wi genstein

In short

8.1 Limita ons of the Boolean kernels, 93
8.2 Proposi onal kernels formula on, 95
8.3 Construc on of a proposi onal kernel, 96
8.4 Proposi onal kernels' applica on, 100

This chapter presents a new kernel family related to the Boolean kernels, but that
overcome their expressiveness limitation imposed in the design in order to get easy-
to-interpret feature spaces. This novel framework, dubbed propositional kernel frame-
work, allows to create feature spaces with any possible structure of logical formulas. It
is clear that this flexibility makes their interpretation harder, however they can express
logical concept that Boolean kernels cannot. We also provide an algorithm for generat-
ing propositional kernels, and by using it we show examples of application on several
binary classification problems.

. Limita ons of the Boolean kernels
In Chapter 6 we have proposed a set of Boolean kernels designed to produce inter-
pretable feature spaces composed of logical formulas over the input variables. How-
ever, this nice characteristic comes with a cost: the set of possible logical formulas that
can be formed is limited. In particular, there are two aspects which limit the logical
expressiveness of the Boolean kernels:

(i) they do not consider clauses with the same variable repeated more than once.
Even though such feature is, from a logical point of view, appropriate, it cause
many issues when we have to formally define the kernel functions, since we need
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to introduce the binomial coefficient which makes harder both the reasoning and
the computation;

(ii) they are “symmetric”: each Boolean concept, described by a feature in the em-
bedding space, is symmetric in their clauses. For example, an mDNF-kernel(3,2)
creates mDNF formulas that are disjunctions of 3 conjunctive clauses of 2 vari-
ables. So, every single conjunctive clause is in some sense symmetric to the others
(each of them have exactly 2 variables). It is not possible to form an mDNF of the
form (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x4) where different conjunctive clauses have different
arity.

For these reasons, in this chapter we propose a framework to produce kernels with a
corresponding feature space that can potentially express any fixed logical proposition
over the input variables.

In order to accomplish our goal, we need to overcome the limitations of the Boolean
kernels, and we have also to provide a way to construct any possible logical formulas.

Overcoming the first limitation of the Boolean kernels, i.e., no repeated variables in
the formulas, is very simple: it is sufficient to include any possible combination, even
those ones that are logically a contradiction or a tautology.

Regarding the symmetry, some considerations need to be done. Let us assume we
want to create a kernel function such that its feature space is composed of mDNF of
the form f(a, b, c) = (a ∧ b) ∨ c, using the Boolean kernels. Recalling the definition in
Section 6.6.1, the embedding map of an mDNF-kernel is defined as the composition of
the embedding maps of the mD-kernel and the mC-kernel as:

ϕ̃mDNF : x 7→ ϕ̃mD(ϕ̃mC(x)),

where we have omitted the degrees and put a ~ over the functions to emphasize that
we do not want to be linked to specific degrees. By this definition, there is no way to
get a feature space with only formulas like f since we would need conjunctive clauses
with different degrees, which is not possible. Now, let say we redefine ϕ̃mC, in such a
way that it can contain both conjunctions of degree 1 and degree 2, for example, by sum-
ming an mC-kernel of degree 1 and an mC-kernel of degree 2. The resulting mapping
ϕ̃mDNF would not create an embedding space with only f -like formulas anyway, because
it would also contain formulas like (a) ∨ b. Unfortunately, we cannot overcome this last
issue using Boolean kernels in the way they are defined.

The main problem originates from the basic idea behind Boolean kernels, that is
creating logical formulas “reusing” the same set of inputs in each literal. For example,
let us consider the disjunction (a∨b) and let us try to construct the feature space of such
formulas using the Boolean kernels. Given an input binary vector x, the first literal of
the disjunction, i.e., a, can be any variables of x and the same can be said for b. It is clear
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that we cannot break this symmetry since we are taking both literals from the same pool
of variables.

. Proposi onal kernels formula on
On the basis of the observations made in the previous section, we now give the intuition
behind the construction of the propositional kernels.

Let us take into consideration logical formulas of the form f⊗(a, b) = a⊗ b where ⊗
is some Boolean operation over the variables a, b ∈ {0, 1}. In order to construct formulas
in such a way that a is taken from a set of variables and b from (possibly) another set,
we need to consider two different input Boolean domains, that we will call A and B,
respectively. These domains are intended as sets of other Boolean formulas over the
input variables. Now, given an input vector x ∈ {0, 1}n, we map x in both the domain
A and B, i.e., ϕA(x) and ϕB(x), and then we perform the Boolean function f⊗ by taking
one variable from ϕA(x) and one from ϕB(x). Figure 8.1 graphically shows the above
described procedure.

x

ϕA(x)

ϕB(x)

(ϕA(x)a ⊗ ϕB(x)b)a∈A,b∈B ϕA⊗B(x)

ϕA

ϕB

Figure 8.1: A graphical depiction of the idea behind the propositional kernels for break-
ing the symmetry of the Boolean kernels: the input vector is mapped onto two, po-
tentially different, spaces, and then the final feature space is composed of all possible
pairs of features one taken from the space of ϕA and one taken from the space of ϕB .
Finally the logical interpretation of such final features depend on the operation we want
to perform.

Formally, we can define a generic propositional kernel embedding function for the
logical operator ⊗ over the domains A and B as:

ϕA⊗B(x) : x 7→ (ϕA(x)a ⊗ ϕB(x)b)a∈A,b∈B, (8.1)

and consequently the corresponding kernel function κA⊗B(x, z) is defined by

κA⊗B(x, z) = ⟨ϕA⊗B(x), ϕA⊗B(z)⟩ =
∑

(a,b)∈A×B

(ϕA(x)a⊗ϕB(x)b)(ϕA(z)a⊗ϕB(z)b). (8.2)
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The kernel κA⊗B(x, z) counts how many logical formulas of the form a ⊗ b, with a

taken from the feature space of ϕA and b taken from the feature space of ϕB, are true
in both x and z. To check whether this formulation is ideally able to build kernels for
a generic Boolean formulas, let us reconsider the example of the previous section, i.e.,
f(a, b, c) = (a ∧ b) ∨ c. If we assume that the domain A contains all the formulas of the
form (a ∧ b), while the domain B contains single literals (actually it corresponds to the
input space), then using Equation (8.2) we can define a kernel for f by simply posing
⊗ ≡ ∨. It is easy to see that, by using similar considerations as in the example above,
we can derive any kernel. However, we need to design a method to compute it without
expliciting any of the involved spaces (with the exception of the input space).

. Construc on of a proposi onal kernel
Since we want to be as much general as possible, we need to define a constructive
method for generating and computing a propositional kernel, rather than a specific for-
mulations for any possible different formula.

For doing this, we leverage on a well known result which states that Boolean formu-
las can be defined as strings generated by a context-free grammar.

π Definition 8.1 : Grammar for propositional logic [BA12]
Formula in propositional logic are derived from the context-free grammar, GP ,
whose terminals are:

• a set of symbols P called atomic propositions;

• a set B of Boolean operators.

The context-free grammar GP is defined by the following productions:

F ::= p, p ∈ P
F ::= ¬F
F ::= F ⊗ F, ⊗ ∈ B

A formula is a word that can be derived from the nonterminal F .

Starting from the grammar GP , we can define the propositional kernel framework
by providing a kernel for each production, and then, with simple combinations, we will
be able to build any propositional kernel by following the rules of the grammar.

The first production, i.e., F ::= p, is trivial since is the monotone literal kernel (κmL)
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presented in Chapter 6. Similarly, the second production, i.e., F ::= ¬F , which rep-
resents the negation, corresponds to the negation kernel (κN) which has been also pre-
sented in Chapter 6.

The third and last production, i.e., F ::= F ⊗ F , is the trickiest one: it represents a
generic binary operation between two logical formulas.

In order to be general with respect to the operation F ⊗ F , we need a way for dis-
tinguishing the two operands and, moreover, we cannot make any assumption about
what the operator represents. For these reasons, we will refer to the first and the second
operand with A and B, respectively. Regarding the operation ⊗, we consider a generic
truth table as define in Table 8.1, where y⊗(a, b) is the truth value given all possible com-
binations of a, b ∈ {0, 1}.

a b y⊗(a, b)

0 0 0⊗ 0
0 1 0⊗ 1
1 0 1⊗ 0
1 1 1⊗ 1

Table 8.1: Generic truth table for the ⊗ operation.

It is easy to see that the kernel we want to define for the operation ⊗ has exactly the
form of the kernel κA⊗B(x, z) described in the previous section: each operand is taken
from (potentially) different spaces, i.e., different formulas, and the kernel counts how
many of these logical operations are true in both the input vectors.

Since we have to count the common true formulas, we need to take into account the
configurations of a and b that generate a true value for y⊗(a, b), and given those true
configurations we have to consider all the true joint configurations between the inputs.
In other words, a formula can be true for x from a certain configuration while it can be
also true for z from another configuration. For example, let the formula be a disjunction
of arity 2 (a ∨ b), then given a feature of the embedding space this can be true for x

because its a-part is true, and vice versa for z. To clarify this last concept, please consider
the Table 8.2.

It is evident that the value of the kernel is the sum over all the possible joint configu-
rations of the common true target values between x and z. In order to compute that, for
each row of the Table 8.2 we calculate the true formulas in x and z for the configuration
corresponding to the row. For example, in the first row of the table we have to count all
the common true formulas such that the features in A and in B are false in both x and
z, and this can be computed by:

(1|A| − ϕA(x))
⊺(1|A| − ϕA(z))(1|B| − ϕB(x))

⊺(1|B| − ϕB(z)),
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ax bx az bz y⊗(ax, bx)y⊗(az, bz)

0 0 0 0 (0⊗ 0)(0⊗ 0)
0 1 0 0 (0⊗ 1)(0⊗ 0)
1 0 0 0 (1⊗ 0)(0⊗ 0)
1 1 0 0 (1⊗ 1)(0⊗ 0)
0 0 0 1 (0⊗ 0)(0⊗ 1)
...

...
...

...
...

1 1 1 1 (1⊗ 1)(1⊗ 1)

Table 8.2: Joint truth table between x and z for the operation ⊗.

which is actually the product of the negation kernels in the domain A and B, that is:

κNEG(ϕA(x), ϕA(z))κNEG(ϕB(x), ϕB(z)).

Such computation can be generalized over all the possible 16 configurations, i.e., the
rows of the joint truth table, by the following formula

κA⊗B(x, z) =
∑

(ax,bx)∈B

∑
(az,bz)∈B

y⊗(ax, bx)y⊗(az, bz)ΨA(x, ax)
⊺ΨA(z, az)ΨB(x, ax)

⊺ΨB(z, bz)

(8.3)

where B ≡ {(a, b) | a ∈ {0, 1}, b ∈ {0, 1}} and ΨA : {0, 1}n × {0, 1} → {0, 1}|A| is defined
as

ΨA(x, ax) = (1− ax)1|A| + (2ax − 1)ϕA(x) =

{
ϕA(x) if ax = 1

1|A| − ϕA(x) if ax = 0
,

and the definition is analogous for ΨB.
In its worst case, that is when the joint truth table has 1 in every configuration, the

formula has 16 non-zero terms. However, we have to underline that actually only a small
set of operations need the computation of the corresponding kernel via Equation (8.3)
since we can use logic equivalences and apply them with the propositional kernels. The
only exceptions where the logic equivalences do not hold for the propositional kernels is
when there are constraints in the variables. For example, in logic we can express the xor
operation by means of and, or and not, i.e., a⊕ b↔ (a∧¬b)∨ (¬a∧ b), but this cannot be
done with kernels since we have no way to fix the relations between the first conjunctive
clause and the second conjunctive clause. In all the other cases, logic equivalences hold,
e.g., the De Morgan’s laws and the double negation rule, and this allows to compute,
for example, the implication kernel in terms of the disjunctive propositional kernel and
the negation kernel.
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In the following we provide a couple of instantiation examples of Equation (8.3) for
computing the propositional kernels.

 Example of conjunction
The truth table of the conjunction has only one true output, that is y∧(1, 1). Hence,
there exists a unique term in the summation of κA∧B s.t. y∧(ax, bx)y∧(az, bz) = 1,
that is when ax = bx = az = bz = 1. This leads to the following formulation

κA∧B(x, z) = ΨA(x, 1)
⊺ΨA(z, 1)ΨB(x, 1)

⊺ΨB(z, 1)

= ϕA(x)
⊺ϕA(z) · ϕB(x)

⊺ϕB(z)

= κA(x, z)κB(x, z),

which is actually the number of possible conjunctions a ∧ b that are satisfied in
both x and z s.t. a ∈ A, b ∈ B. This can be defined as the product between the
number of common true formulas in A and the number of common true formulas
in B, that is the product of the kernels κA and κB.

 Example of exclusive disjunction
The truth table of the exclusive disjunction has two true outputs, that is when a

and b have different truth values. So in this case, the joint truth table have four
non-zero terms:

κA⊕B(x, z) =ΨA(x, 1)
⊺ΨA(z, 1)ΨB(x, 0)

⊺ΨB(z, 0)+

ΨA(x, 1)
⊺ΨA(z, 0)ΨB(x, 0)

⊺ΨB(z, 1)+

ΨA(x, 0)
⊺ΨA(z, 1)ΨB(x, 1)

⊺ΨB(z, 0)+

ΨA(x, 0)
⊺ΨA(z, 0)ΨB(x, 1)

⊺ΨB(z, 1),

that through simple math operations is equal to

κA⊕B(x, z) =κA(x, z)κ¬B(x, z)+

(κA(x,x)− κA(x, z))(κB(z, z)− κB(x, z))+

(κA(z, z)− κA(x, z))(κB(x,x)− κB(x, z))+

κ¬A(x, z)κB(x, z),
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where κ¬A and κ¬B are the negation kernels applied on the domains A and B, re-
spectively.

. Proposi onal kernels' applica on
As said in the previous section, we can generate any8 propositional formula by means
of κA⊗B and the context-free grammar described in Definition 8.3.

In this section we describe a possible application of this framework on binary classi-
fication tasks. In these experiments we compared the propositional kernels to the linear
kernel in terms of AUCs on the benchmark datasets described in Section 3.2. We used
SVM as the kernel machine and we validated the C parameter in the set {10−5, . . . , 104}
and all kernels have been normalized.

Since we aimed to emphasize the expressivity power of the propositional kernels,
we need to define a criterion for doing model selection. It is evident that we cannot
systematically generating all possible propositional kernels and hence we decided to
random generate them through the procedure described in Algorithm 8.1. In the view
of a model selection step, we avoided the validation because it can be very demanding,
and we opted for using the radius-margin ratio as a model selection criterion, that is
supported by theoretical results as we have seen in Section 4.7.1.

In particular, for each dataset the following procedure has been employed: we gen-
erated 30 random propositional kernels using the Algorithm 8.1, and for each generated
propositional kernel, the AUC and the radius-margin ratio has been calculated.

In these experiments we fixed in Algorithm 8.1 the η decay parameter to 0.7 which on
average generates formulas with 5 binary operators. Figure 8.2 shows the distribution
of the length of the formulas over 1000 generations by fixing η to 0.7.

By tuning η it is possible to give a bias towards shorter formulas (when η > 1) or,
conversely, towards longer formulas (when η → 0). This way of limiting the expressivity
is not the only one, since the length of a formula is not the only criterion to evaluate
its expressivity. For example, another criterion could consider the probability that a
formula is true by considering some distribution over the variables. With this criterion,
formulas with less probability of being true are more expressive than others with higher
probability.

The ratio-AUC plots are depicted in Figure 8.3, where the reported AUCs are the
average over a nested 5-fold cross validation (the validation only consider the C of the
SVM). The datasets monks-1 and monks-3 have been omitted because all kernels per-
formed with the maximum AUC. From the plots is pretty clear that choosing the kernel

8Any non constrained propositional formula as discussed in Section 8.3.
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Algorithm 8.1: genprop: Algorithm for generating a random propositional kernel.
KNOT is a function with signature (KA, |A|) with K a propositional kernel, and Kop
are functions with signature (KA, |A|,KB, |B|)withKA,KB propositional kernels.

Input:
X ∈ {0, 1}m×n: input data (examples on the rows);
η ∈ [0,+∞] : decay;
t ∈ N+: tree depth (default: 0)
Output:
K: propositional kernel;
dim: dimension of the feature space

1 p← eηt

1+eηt

2 if random(0,1) < p then
3 return XX⊺, n ▷ recursion base case: linear kernel
4 else
5 op← random({¬,∧,∨,⊕,→,←,↔, ↓, ↑,↛,↚})
6 if op = ¬ then
7 return KNOT(genprop(X, η, t+ 1))
8 else
9 return Kop(genprop(X, η, t+ 1), genprop(X, η, t+ 1))

10 end
11 end

0 1 2 3 4 5 6 7 8
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length

co
un

t

Figure 8.2: Distribution of the formulas’ length on 1000 random propositional kernel
generations with η = 0.7.

with minimum ratio is a very good heuristic, and hence, we have a theoretical founded
criterion for avoiding validation which is in general a very demanding step.

In almost all datasets the linear kernel had very bad performance with respect to
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Figure 8.3: AUC score and reached ratio for each considered dataset. In general, high
AUC values correspond to small ratio. The red dotted line indicates the performance of
the linear kernel.
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Figure 8.3: AUC score and reached ratio for each considered dataset. In general, high
AUC values correspond to small ratio. The red dotted line indicates the performance of
the linear kernel.

the propositional kernels. It is also noteworthy that in all datasets, but primary-tumor,
promoters and soybean, the radius-margin ratio achieved by the linear kernel was out
of scale w.r.t. to the ones in the plots. This is due to the fact that such datasets are not
linearly separable. Surprisingly, despite this issue, the linear kernel performed well in
spect.

Although this has been a feasibility test for the applicability of the propositional
kernel framework, it has shown the potential of this family of kernels.
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9
Boolean kernel learning

I'm afraid that the following syllogism may be used by some in the future.

Turing believes machines think;
Turing lies with men;
Therefore machines do not think.

Yours in distress, Alan.

Alan Turing

In short

9.1 Dot-product kernels as combina on of mC-kernels, 105
9.2 GRAM: Gradient-based RA o Minimiza on algorithm, 110
9.3 Evalua on, 114

In Section 4.7 we gave a general view of the Multiple Kernel Learning paradigm. In
this section we present an MKL approach based on the solid theoretical concept concern-
ing the margin and the radius of the MEB (see Section 4.5 and Section 4.7.1). Specifically,
the proposed MKL algorithm, dubbed GRAM, try to minimize the exact radius-margin
ratio by means of a two-phases approach: in the first phase, the kernel combination
is fixed, and the optimization problems for both the radius and margin are solved; in
the second phase, a gradient descent step is performed over the combination weights.
We then apply this algorithm in order to learn non-parametrically the best combination
of mC-kernels (that we demonstrated of having a strict relation with the family of dot-
product kernels) on several binary classification tasks. A thorough empirical evaluation
shows that GRAM is able to achieve state-of-the-art performance.

. Dot-product kernels as combina on of mC-kernels
The concept of kernels’ combination is intrinsically present inside the notion of Dot-
Product kernel (DPK), in fact, it has been proved [DA16, Sch42] that any kernel func-
tion of the form κ(x, z) = f(⟨x, z⟩), which is function only of the dot-product between
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the examples, can be decomposed as a Dot-Product Polynomial (DPP), that is a linear
non-negative combination of Homogeneous Polynomial Kernels (HP-kernels), as in the
following:

κ(x, z) = f(⟨x, z⟩) =
+∞∑
d=0

adκ
d
HP(x, z) =

+∞∑
d=0

ad⟨x, z⟩d, (9.1)

with opportune coefficients ad ≥ 0.
In both binary and multi-class contexts, the combination (9.1) can be made non-

parametric by optimizing the coefficients ad from data via MKL [DA16, LDA17].
In this section we show an extension of the above-mentioned result in the case of

binary valued data x, z ∈ {0, 1}n. Specifically, we demonstrate that any DPK defined on
Boolean input vectors can be seen as a non-negative linear combination of mC-kernels
of different degrees. We will refer to this combination as monotone Conjunctive kernel
Polynomial (mCKP).

The feature space of an homogeneous polynomial kernel of a given degree d is com-
posed by all the monomials of degree d, each weighted by some coefficient. When the
input patterns are binary, many of these monomials collide in a single one, since the
factors of the monomials xp

i has the same value for every p ≥ 1. This observation allows
us to give the following theorems concerning the relationship between mC-kernels and
HP-kernels.

π Theorem 9.1

Given x, z ∈ {0, 1}n, then any HP-kernel can be decomposed as a finite non-
negative linear combination of mC-kernels (a mCKP) of the form:

κdHP(x, z) =

d∑
s=0

h(s, d) κsmC(x, z), h(s, d) ≥ 0. (9.2)

Proof. Given x, z ∈ {0, 1}n, by definition:

κsmC(x, z) =

(
⟨x, z⟩
s

)
=
∑
b∈Bs

xbzb
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where Bs ≡ {b ∈ {0, 1}n
∣∣ ∥b∥1 = s}. Moreover, we have:

κdHP(x, z) = ⟨x, z⟩d =

(
n∑

i=1

xizi

)d

=
∑
p∈Pd

(
d!
∏
pi∈p

1

pi!

)
︸ ︷︷ ︸

q(p,d)

xpzp

=
∑
p∈Pd

q(p, d)xpzp,

(9.3)

with Pd ≡ {p ∈ Nn
0

∣∣∥p∥1 = d}. By partitioning the elements p ∈ Pd so that vectors with
the same number of non zero entries lie in the same set, we can rewrite Eq. 9.3 as

κdHP(x, z) =
d∑

s=0

∑
p∈Ps

d

q(p, d)xpzp, (9.4)

where Ps
d ≡ {p ∈ Pd

∣∣ ∑n
i=1Jpi > 0K = s}.

Let us now further partition the set Ps
d in such a way to have two vectors taken from

Ps
d in the same class of equivalence if and only if they share the same components greater

than zero. Specifically, given b ∈ Bs, then Ps
d(b) ≡ {p ∈ Ps

d | ∀i : pi > 0 ⇐⇒ bi = 1}.
With this notation, we can rewrite Eq. 9.4 as:

κdHP(x, z) =
d∑

s=0

∑
b∈Bs

xbzb
∑

p∈Ps
d(b)

q(p, d). (9.5)

Now, we can observe that, when s is fixed, then
∑

p∈Ps
d(b)

q(p, d) is constant over the
elements b ∈ Bs. This is because the terms of the summations are the same (possibly
permuted).

So, by taking any representative bs ∈ Bs, we can rewrite Eq. 9.5 as:

κdHP(x, z) =
d∑

s=0

 ∑
p∈Ps

d(bs)

q(p, d)


︸ ︷︷ ︸

h(s,d)

∑
b∈Bs

xbzb

 =
d∑

s=0

h(s, d) κsmC(x, z).

In the following we will show that, assuming Boolean input vectors with the same num-
ber of true variables (i.e., with fixed L1-norm), a similar result of Theorem 9.1 holds
when using normalized mC-kernels.

Mirko Polato, Ph.D. Dissertation 107



9.1. Dot-product kernels as combination of mC-kernels

π Theorem 9.2

Given x, z ∈ {0, 1}n such that ∥x∥1 = ∥z∥1 = m, m > 0, then any HP-kernel
can be decomposed as a finite non-negative linear combination of normalized mC-
kernels, that is:

κdHP(x, z) =
d∑

s=0

h(m, s, d) κ̃smC(x, z), h(m, s, d) ≥ 0. (9.6)

where h(m, s, d) ≥ 0 is a non-negative real value which depends on m, s and d.

Proof. Consider the normalized mC-kernel, defined as follows:

κ̃smC(x, z) =

(
⟨x, z⟩
s

)
(
⟨x,x⟩
s

) 1
2
(
⟨z, z⟩
s

) 1
2

.

Since we assume ∥x∥1 = ∥z∥1 = m, we can write:

κ̃smC(x, z) =

(
⟨x, z⟩
s

)
(
m

s

) 1
2
(
m

s

) 1
2

=
1(
m

s

)κsmC(x, z)

where we used the fact that for binary vectors ∥ · ∥1 = ∥ · ∥22 always holds and hence, by
Theorem 9.1 we can conclude:

κdHP(x, z) =
d∑

s=0

h(s, d)

(
m

s

)
︸ ︷︷ ︸

h(m,s,d)

κ̃smC(x, z) =
d∑

s=0

h(m, s, d) κ̃smC(x, z).

It is worth to notice that, when dealing with categorical data, fixing the L1-norm of
the input vectors is not so restrictive since such fixed number of active variables can be
achieved by means of the one-hot encoding (without any loss of information).

Exploiting the result in Equation (9.1) and the previous theorems, we can get the
following corollary.
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π Corollary 9.1

Given x, z ∈ {0, 1}n such that ∥x∥1 = ∥z∥1 = m, m > 0, then any DPK can be de-
composed as a finite non-negative linear combination of normalized mC-kernels:

κ(x, z) = f(⟨x, z⟩) =
m∑
s=0

g(m, s) κ̃smC(x, z), g(m, s) ≥ 0 (9.7)

Proof. By using Theorem 9.1, if ∥x∥1 = ∥z∥1 = m, we have that κdHP(x, z) can be seen as a
non-negative linear combination of the first d normalized mC-kernels. By inserting this
result in [DA16] we obtain:

κ(x, z) = f(⟨x, z⟩) =
+∞∑
d=0

ad

d∑
s=0

h(m, s, d) κ̃smC(x, z).

Recalling that anytime s > m then h(m, s, d) = 0, we can limit the inner summation up
to min(m, d) as in the following

f(⟨x, z⟩) =
+∞∑
d=0

ad

min(d,m)∑
s=0

h(m, s, d) κ̃smC(x, z).

Let us now define the function

ĥ(m, s, d) =

{
h(m, s, d) if s ≤ d

0 otherwise
.

By inserting it in the previous equation we get

f(⟨x, z⟩) =
+∞∑
d=0

ad

m∑
s=0

ĥ(m, s, d) κ̃smC(x, z), (9.8)

and since the inner summation does not depend on d anymore, we can rewrite (9.8) as

f(⟨x, z⟩) =
m∑
s=0

+∞∑
d=0

adĥ(m, s, d)︸ ︷︷ ︸
g(m,s)

κ̃smC(x, z),

with both ad and ĥ(m, s, d) non negatives, and thus we can conclude that g(m, s) ≥ 0,
which proves the theorem.
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. GRAM: Gradient-based RA o Minimiza on algorithm
In the previous section we showed that any Dot-Product kernel defined on Boolean vec-
tors can be seen as a parametric linear In this section, we propose a non-parametric
version of such combination by learning the coefficients of the mCKP via the optimiza-
tion of the radius-margin ratio of the combined kernel. Specifically, we search on the
kernel space

κ(x, z) =

P∑
s=1

µsκ̃
s
mC(x, z), (9.9)

where ∀ s,µs ≥ 0 are the parameters to optimize with the constraint that
∑P

s=1µs = 1.
Inside this space we want to find the kernel that minimizes the exact (squared) radius-
margin ratio for which we have already shown being an upper bound of the leave-one-
out error (see Section 4.7.1).

Since we are considering convex kernel combinations, in order to guarantee that the
solution µ = [µ1, . . . ,µP ] stays in the feasible range of values, i.e., ∥µ∥ = 1, we exploit
the properties of the exponential, and we perform a change of variables by introducing
a new vector of variables β ∈ RP such that

µs(β) =
eβs

P∑
r=1

eβr

, ∀ s ∈ [P ].

This allows us to obtain an unconstrained problem easier to optimize.
First of all, let us recall how the radius of the MEB and the margin are computed.

Given a normalized kernel matrix K̃ constructed over examples of the dataset D ≡
{(xi, yi)}li=1, and the diagonal matrix Y ∈ {0, 1,−1}L, s.t. Yi,i = yi, then the radius
of the MEB and the margin are computed by

ρ2 = min
γ∈Γ

γ⊺YK̃Yγ, R2 = 1− min
α∈A

α⊺K̃α,

where Γ is defined as in Section 4.3.3, and ∥α∥1 = 1. For later convenience, let us now
define the combined kernel as a function of β as

K̃β =

P∑
r=1

µr(β)K̃r, (9.10)

where K̃r are the normalized kernel matrix associated with the r-th kernel function κr.
We can now write the radius-margin ratio minimization problem as in the following:

110 Mirko Polato, Ph.D. Dissertation



9.2. GRAM: Gradient-based RAtio Minimization algorithm

min
β

Ψ(β), with Ψ(β) =
1− α̂(β)⊺

(∑P
r=1µr(β)K̃r

)
α̂(β)

γ̂(β)⊺Y
(∑P

r=1µr(β)K̃r

)
Yγ̂(β)

=
1− α̂(β)⊺K̃βα̂(β)

γ̂⊺YK̃βYγ̂(β)
,

(9.11)

where

α̂(β) = arg min
α∈A

α⊺K̃βα, (9.12)

with A ≡ {α ∈ RL
+, ∥α∥1 = 1}, and

γ̂(β) = argmin
γ∈Γ

γ⊺YK̃βYγ, (9.13)

with Γ ≡ {γ ∈ [0, 1]L |
∑

j:yj=1
γi = 1,

∑
i:yi=0

γj = 1}. By definition
P∑

r=1
µr(β) = 1, thus

Ψ(β) =

P∑
r=1

eβr

ar(β)︷ ︸︸ ︷(
1− α̂(β)⊺K̃rα̂(β)

)
P∑

r=1
eβr

(
γ̂(β)⊺YK̃rYγ̂(β)

)
︸ ︷︷ ︸

br(β)

≈ ⟨e
β,a⟩
⟨eβ,b⟩

= Ψ̂(β) (9.14)

where eβ = [eβ1 , . . . , eβP ], a = [a1, a2, . . . , aP ]
⊺, b = [b1, b2, . . . , bP ]

⊺ and we assume
a,b constants around a given β. In order to optimize the function Ψ(β) we perform
a series of steps of gradient descent on the approximated function Ψ̂(β) followed by a
new computation of both a = a(β) and b = b(β).

The gradient of Ψ̄(β) with respect to the parameter βr, ∀r ∈ [P ] is computed by:

∂Ψ̂(β)

∂βr

=
are

βr⟨eβ,b⟩ − bre
βr⟨eβ,a⟩

⟨eβ,b⟩2
=

eβr(ar⟨eβ,b⟩ − br⟨eβ,a⟩)
⟨eβ,b⟩2

To summarize: starting from β = 0, and consequently from the uniform distribution
over base kernels µ(β), at each iteration, the kernel combination is computed using the
current µ(β), and then the vectors a = a(β) and b = b(β) are computed as described
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above. Finally, the update of β and µ(β) are performed as in the following:

βr ← βr − η
eβr

∑
s e

βs(arbs − asbr)

⟨eβ,b⟩2
∀r ∈ [P ], (9.15)

µ← 1∑
r e

βr
eβ, (9.16)

where η is the learning rate. This iterative procedure continues until one of the stop
criterion is met.

Algorithm 9.1: GRAM
Input:
KL = [K̃1, K̃2, . . . , K̃P ]: weak kernels’ list;
Y ∈ {−1, 0, 1}l×l : diagonal matrix of labels;
η: initial learning rate
Output: µ ∈ RP

≥0: vector of kernels’ weights
1 β ← [0, 0, . . . , 0] ∈ RP

2 µ← eβ /P
3 t← 0

4 η(0) ← η
5 do
6 K(t) ←

∑P
r=1 µrK̃r

7 α(t) ← argradius(K̃(t))

8 γ(t) ← argmargin(K̃(t),Y)

9 a← (1−α(t)⊺K̃rα
(t)) ∀ K̃r ∈ KL

10 b← (γ(t)⊺YK̃rYγ(t)) ∀ K̃r ∈ KL

11 ∆β ← eβr
∑

s eβs (arbs−asbr)

⟨eβ,b⟩2 ∀ r ∈ [1, P ]

12 β ← β + η(t) ·∆β

13 µ← eβ∑
r eβr

14 t← t+ 1

15 η(t) ← η(t−1) if the current step improved the solution, else η(t−1)

2

16 while stop conditions are not reached
17 return µ

A summary of the whole procedure is reported in Algorithm 9.1. In the algorithm,
the functions radius and margin refer to the Equation (4.32) and (4.31), respectively.

It is worth to notice that GRAM is not strictly related with the Boolean kernels since
its optimization criterion is always valid and thus it is applicable with all kind of kernels.

. . Stopping criteria and convergence
The convergence is reached as soon as one of the following stopping criteria is met:
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• maximum number of iterations (max_iter) is reached;

• the improvement of the objective function is below an a-priori fixed tolerance.

Concerning the selection of the gradient step η, a procedure similar to the well known
Backtracking Line-Search [BV04] has been used. Starting from η = 1, anytime the value of
the objective function is worse (i.e., greater) than its value in the previous iteration, i.e.,
Ψ̂(β)(i+1) ≥ Ψ̂(β)(i), than the gradient step is updated according to η(i+1) ← 1

2η
(i) and

the procedure is repeated without updating the weights µ(i+1) ← µ(i).

. . Extension to non-normalized kernels
In the algorithm described above we only considers normalized kernels, however it is
possible to extend such procedure to non-normalized kernels. In order to deal with non-
normalized kernels, the objective function to minimize, i.e., Ψ(β), has to be modified as
in the following

Ψ(β) =
α̂(β)⊺

(∑P
r=1µr(β)dr

)
− α̂(β)⊺Kβα̂(β)

γ̂(β)⊺YKβYγ̂(β)
, (9.17)

where dr is a l-dimensional vector containing the diagonal of the r-th kernel matrix Kr.
The evaluation of a(β) have been modified, since the radius optimization sub-problem
now considers the non-normalized case. The rest of the procedure depends on a(β) and
optimizes it directly, and so it is not affected by the above modification. Nonetheless, in
our evaluation setting we focused only on the normalized case. In the remainder withm

we will refer to the number of ones in the input vectors, which is fixed for each dataset.

. . Computa onal complexity
The GRAM algorithm optimizes the radius-margin ratio by solving a two-layered pro-
cedure, as described in Section 9.2.

In each step, in order to evaluate the current ratio, the algorithm solves two convex
optimization problems with linear constraints, whose complexity is more than quadratic
respect to the number of examples (lines 7 and 8 of Algorithm 9.1). The computational
cost of these convex problems is independent of the number of kernels.
When the optimization problems are solved, a and b are evaluated, then the gradient
vector ∆β and weights µ are computed (lines 9-13). However, these operations depend
linearly on the number of base kernels.
Finally, the complete procedure is repeated until convergence, and the overall compu-
tational complexity depends on the number of iterations.

On the other hand, in order to solve the problem efficiently, the algorithm requires
the whole set of kernel matrices in memory, ensuring a fast access to each of them.
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. Evalua on
In this section the whole set of experiments is presented. The set of considered datasets
are the one described in Section 3.2, with the exception of the monks datasets because all
the MKL approaches have been able to achieve the maximum AUC. In the following we
will describe the experimental methodology and we will also discuss the comparisons
with several hard baselines, including state-of-art MKL algorithms.

. . The base learner
In all the following experiments, an hard margin SVM (that is KOMD with λ = 0, see
Section 4.3.3) has been used as base learner to fit models exploiting kernels combined
by MKL algorithms. Combinations are formed by mC-kernels with different degrees.
Moreover, since we employ an hard SVM, for any combination of P kernels, an identity
matrix I of proper dimension has been added in order to ensure the linear separability
of the data. So, the considered kernels’ combination has the following form

K̃µ =
P∑

s=1

µsK̃s + µP+1I (9.18)

where K̃s is the normalized kernel matrix computed by using the mC-kernel of arity s,
and

P+1∑
s=1

µs = 1, and µs ≥ 0 ∀s ∈ [P + 1].

Note that, if there are not duplicated examples, the normalized mCK of arity m is al-
ready an identity kernel. In fact, for all x, κm∧ (x,x) =

(
m
m

)
= 1 and for x ̸= z, κm∧ (x, z) =(⟨x,z⟩

m

)
= 0 since ⟨x, z⟩ < m..

Learning the combination via multiple kernel learning on an hard-margin SVM is an al-
ternative to the soft-margin L2-SVM [CKS+03], where the value of the trade-off hyper-
parameter C is selected through a validation procedure, and the kernel is composed
by the fist P terms of the combination, i.e., excluding the identity. For an L2-SVM the
margin ρ can be efficiently computed by solving the following optimization problem:

min
w,b,ρ,ξ

C∥ξ∥22 − ρ

s.t. yi(⟨w, ϕ(xi)⟩+ b) ≥ ρ− ξi ∀i = 1, . . . , l

∥w∥2 = 1
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which can be mapped into its dual form [STC04] as

max
α
−α⊺Y (K+ µ(C)I)Yα

s.t. ∥α∥1 = 1

α⊺y = 0

α ⪰ 0

where in our case K =
P∑

s=0
µsK̃, µ(C) = µP+1 and y is the diagonal of Y.

The risk of learning the value µ(C) via MKL, instead of through a standard vali-
dation procedure, is to overfit the data if the MKL algorithm has weak regularization
capability. For this reason, in our experiments the MKL approaches are also compared
in terms of capacity of regularization and overfit resistance.

. . Evalua on protocol
The weak kernels considered inside the combination are all the normalized mC-kernels
from the degree 1 up to m, where m is the number of active (i.e., non-zero) features in
each example in a benchmark dataset.

In order to evaluate our MKL algorithm, its performances have been compared with
the ones of several state-of-the-art MKL methods in terms of both AUC and radius-
margin ratio (or simply ratio).

The MKL methods considered in our experiments are listed below:

Average: the average of the weak kernels, with weights ∀r,µr = 1
P . Even though this

might seems a trivial baseline, it is well known to work fine;

EasyMKL: EasyMKL [AD15] is a state-of-the-art MKL technique which tries to maxi-
mize the sole margin between the classes;

R-MKL: conversely to EasyMKL, this MKL approach, presented in [DKWH09], aims
to minimize an approximation of the radius-margin ratio;

GRAM: the MKL algorithm presented in this chapter.

For comparison, the available data have been equally (i.e., 50/50) split in train and
test sets: the training set has been used to learn the combined kernel for each MKL
method. The combined kernel returned by each approach has been used to evaluate the
ratio and then to fit an hard-margin SVM as base learner. Note that the radius-margin
ratio considered in the evaluation is defined as

ratio = l−1R
2

ρ2
,
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Dataset GRAM R-MKL EasyMKL Average

dna 98.70±0.24
10.35±0.33

98.36±0.28
10.83±0.36

98.30±0.27
12.26±0.32

97.89±0.29
17.76±0.19

house-votes 99.15±0.42
6.74±0.63

99.01±0.38
7.21±0.82

98.88±0.44
7.65±0.71

98.85±0.46
7.92±0.61

kr-vs-kp 99.92±0.03
7.06±0.12

99.88±0.04
7.52±0.10

99.90±0.04
7.24±0.12

99.88±0.04
7.52±0.10

primary-tumor 72.65±2.81
21.96±0.68

68.80±2.96
78.69±9.14

72.05±2.72
22.18±0.70

68.81±2.96
78.90±9.16

promoters 95.99±1.63
16.68±1.11

96.00±1.61
16.70±1.12

96.30±1.18
23.43±0.38

96.29±1.20
23.65±0.33

soybean 99.55±0.48
7.93±0.87

99.55±0.46
8.59±0.81

99.54±0.39
9.39±0.69

99.44±0.43
11.20±0.54

spect 84.00±3.04
13.63±1.13

76.97±4.98
71.46±16.95

84.17±3.11
14.13±1.15

77.00±4.96
71.66±16.99

splice 99.19±0.12
8.55±0.22

98.81±0.15
9.49±0.91

98.89±0.15
10.42±0.27

98.74±0.17
17.23±0.59

tic-tac-toe 99.83±0.15
12.81±0.23

99.26±0.33
15.21±0.30

99.36±0.30
14.67±0.26

99.26±0.33
15.22±0.30

Table 9.1: AUC(%) scores (first row) and ratios (×102, second row) of the compared MKL
methods. In bold are highlighted the best AUCs for each benchmark dataset.

where l is the number of training examples, R the radius of the MEB and ρ the margin.
Finally, the AUC scores have been calculated on the test set. In order to improve the
statistical significance of the results, 30 runs of each experiment with different splits
(the same set for all the methods) have been performed. Regarding the GRAM stopping
criteria, the tolerance has been fixed to 10−8, and the maximum number of iterations to
1000, which has never been reached in our experiments.

. . Experimental results
The mean AUC (and standard deviation) evaluated on the test sets as well as the av-
erage radius-margin (and standard deviation) ratio on the training sets are reported in
Table 9.1. As expected, the results show a significant ratio improvement of the GRAM
algorithm with respect to the other MKL baselines, in particular, w.r.t. EasyMKL and
Average.

In order to give an empirical confirmation about the relation between the radius-
margin ratio and the error achieved by a representation, a qualitative comparison has
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Figure 9.1: AUC score and reached ratio for each considered dataset. High AUC values
correspond to small ratio.

been considered, and it is summarized in Figure 9.1. The figure concerns GRAM and
the R-MKL algorithm, and it is easy to notice that high AUC scores correspond to small
radius-margin ratios (upper left corner), while relatively low AUCs correspond to quite
high ratios.

. . The selec on of the number of kernels
In the previous experiments, m+1 kernels have been used to learn the best Dot-Product
Kernel for a given problem, where m is fixed and it depends on the number of non-
zero features for each example. However, m may not be the best choice for a problem,
and algorithms may overfit when this value increases. Moreover, for some datasets, the
whole set of kernels used inside the MKL combination can be very expensive to compute
and to handle in memory, such as splice, promoters or kr-vs-kp, where the m value
and the number of examples l are high.

In order to limit this issue, an extension of the previous methodology have been
analyzed, in which only a subset of the whole set of m kernels has been considered.
More formally, for each d ∈ [m], we consider combinations of d + 1 kernels including
mC-kernels with degrees 1, . . . , d and the identity matrix. Note that a combination of
d < m−1 mC-kernels may bound the expressiveness of the algorithm, and the solution
may not be the best DPK for the given problem, but only an approximation, according
to the theorems showed in Section .

In Figure , for all datasets the AUC score and ratio reached by all MKL methods
while increasing the number d of mC-kernel are reported.

As shown in the figures, the proposed algorithm always achieves better ratio scores
compared with other state-of-art MKL methods. Furthermore, an empirical evidence is
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Figure 9.2: AUC (left) and ratio (right) varying the degree of the mC-kernel (x axis).
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Figure 9.2: AUC(%) (left) and ratio (right) varying the degree of the mC-kernel (x axis).
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Figure 9.2: AUC(%) (left) and ratio (right) varying the degree of the mC-kernel (x axis).
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that GRAM’s ratio do not suffer from overfitting, and the algorithm is able to discard
kernels which does not contribute in the minimization of the ratio, and hence it assigns
to them a null weight. So, when a new kernel is added to the list, the algorithm can only
improve its solution, reducing the ratio. This means that the number d of used kernels
is not an hyperparameter and it does not require validation. However, a fixed number
of kernels can be a poor choice for the other algorithms since the models may overfit
easily and m may not be the best number of mCKs to use (as highlighted in the figures).

The AUC scores also remain stable in the proposed method, showing an empirical
evidence of the effectiveness of the ratio-optimization approach.

Convergence and computa onal complexity
The computational time for a representative set of datasets is depicted in Figure 9.3. It is
worth to notice that it is possible to further improve the efficiency of the quadratic pro-
gramming problems by exploiting, for example, the Sequential Minimal Optimization
(SMO) technique [Pla98]. Figure 9.4 shows two representative empirical evaluations
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Figure 9.3: Average computational time of the algorithm using different number of
weak-kernels while fixing the number of steps to 100. For each dataset we run the algo-
rithm 5 times on an Intel ® Core™ i7-6700HQ CPU @ 2.60GHz 2.59GHz.
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Figure 9.4: Convergence of GRAM with different initial η values.

of the GRAM’s convergence by using the backtracking line-search with different initial
learning rates. In both the depicted datasets we can notice that, whatever the initial-
ization of the learning rate η, the algorithm is able to reach a minimum in a reasonable
number of iterations.

Weights' evalua on
In order to better understand the behaviour of the algorithms, in Figure 9.5 is reported
the weights’ distribution for GRAM and the baselines.

From the figure it is self-evident that margin maximization can give very different
combinations with respect to the minimization of the radius-margin ratio. We can ob-
serve that the weight vectors learned by GRAM are very sparse, and hence only a small
subset of kernels are combined to form the final kernel. The most typical configuration
sets only two coefficients with large values, one low degree mC-kernel and one high
degree mC-kernel.
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Figure 9.5: Distribution of the weights when combining mC-kernels of degrees 1 to m.
For each dataset, we appended a further identity matrix to the kernels list.
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Figure 9.5: Distribution of the weights when combining mC-kernels of degrees 1 to m.
For each dataset, we appended a further identity matrix to the kernels list.
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In Section 2.2 and Chapter 5 we gave an overview of what recommender systems are,
which are the peculiarities of different kinds of feedback, and we also presented a brief
review of the state-of-the-art method for top-N item recommendation. In this chap-
ter we present a real-world application of the Boolean kernel framework. In particular,
we start by introducing a novel kernel-based method for CF top-N recommendation,
which is based on the seminal method called CF-OMD described in Section 5.2. Then,
such method is used with different kernels on several implicit feedback datasets. Em-
pirical results show how Boolean kernels, in particular the mD-kernel, can improve the
recommendation accuracy. Extensive analysis show how the mD-kernels are able to al-
leviate the sparsity issue of this kind of datasets when kernels are used. Moreover, the
provided solution can be used to extract rules for explaining the recommendation, for
example by using the method described in Chapter 7.

In the remainder of the chapter we will use the same notation as described in Sec-
tion 2.2 and in Chapter 5.
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. Efficient CF-OMD
Despite CF-OMD has shown state-of-the-art performance in terms of AUC [Aio14], it
is evident that such model is not suitable to deal with large datasets. In fact, let us
assume that each optimization problem can be solved by an algorithm with a complexity
quadratic on the number of parameters, then, since we have to solve one problem for
each user, the total complexity would be O(nTSm

2), where nts is the number of users in
the test set.

So, efficiency wise, the main drawback of CF-OMD is the number of parameters it
has to estimate, that is equal to the number of items. By analyzing the results reported
in [Aio14], we can notice that increasing the value of λn do not particularly affect the
achieved AUC. This can be justified by the fact that high values of λn tend to flatten the
contribution of the ambiguous (implicit) negative feedbacks toward the average, and
this mitigate the relevance of these noisy information.

In collaborative filtering contexts the data sparsity is particularly accentuate, this
means that, on average, the number of ambiguous negative feedbacks is orders of mag-
nitude greater than the number of positive ones. More formally, given a user u, let
m⊕ = |Iu| and m⊖ = |I \ Iu| then m = m⊖ + m⊕, where m+

u ≪ m⊖, and generally
O(m) = O(m⊖).

By exploiting these last observations, we can simplify the optimization problem (5.7),
by fixing λn = +∞, which means that ∀i /∈ Iu,αi = 1/m⊖ (we call this sub-vector α⊖):

α∗
u = argmin

α∈Au

∥α⊺
⊕X⊕ − µ⊖∥2 + λp∥α⊕∥2

= argmin
α∈Au

∥α⊺
⊕X⊕∥2 − ∥µ⊖∥2 − 2α⊺

⊕X
⊺
⊕µ⊖ + λp∥α⊕∥2

= argmin
α∈Au

α⊺
⊕X

⊺
⊕X⊕α⊕ + λp∥α⊕∥2 − 2α⊺

⊕X
⊺
⊕µ⊖,

(10.1)

where

µ⊖ =
∑
i/∈Iu

αixi =
1

m⊖

∑
i/∈Iu

xi = α⊖X⊖

is the centroid of the convex hull spanned by the negative items and α⊕ are the weights
associated with the positive items,X⊕ andX⊕ are the sub-matrices ofX containing only
the columns corresponding to the positive and the negative items, respectively. Note
that all norms ∥ ·∥ in Equation 10.1 are intended as L2-norm, that is ∥ ·∥2, and, when not
specified differently, the same abbreviation is assumed in the following. The number
of parameters in (10.1) is equal to m⊕ and thus the complexity drops from O(nTSm

2) to
O(nTSm⊕

2), where m⊕ = E[|Iu|] is the expected number of the positive items per user.
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Implementa on detail
Although the large improvement in terms of complexity, a naïve implementation could
have an additional cost due to the calculation of µ⊖. Recalculating such value from
scratch for each user would have a complexity of O(nTSnm⊖), where m⊖ = E[|I \ Iu|],
and it can be approximated with O(nTSnm).

To overcome this possible issue, we propose an efficient incremental way of calcu-
lating µ⊖. Let us consider the mean over all items

µ =
1

m

∑
i∈I

xi,

then, for a given user u, we have

µ⊖ =
1

m⊖

(
m · µ−

∑
i∈Iu

xi

)
.

From a computational stand point, it is suffice to compute the sum
∑
i∈I

xi only once

(i.e., m · µ) and then, for every µ⊖, subtract the sum of the positive items. Using this
simple trick, the overall complexity drops to O(nm) +O(n2

TSm⊕). In the remainder we
will refer to this method as ECF-OMD.

. Kernelized CF-OMD
The CF method proposed in Section 10.1, can be seen as a particular case of a kernel
method. In fact, inside the optimization problem (10.1) we have the matrix X⊺

⊕X⊕ that
is actually a kernel matrix, in particular a linear kernel matrix. Let us call this matrix
K⊕ with the corresponding kernel function κ. Thus, we can reformulate (10.1) as:

α∗
u = argmin

α⊕∈Au

α⊺
⊕K⊕α⊕ + λp∥α⊕∥2 − 2α⊺

⊕q, (10.2)

where the elements of the vector q ∈ Rm⊕ are defined as

qi =
1

m⊖

∑
j /∈Iu

κ(xi,xj). (10.3)

Throughout the thesis we will refer to this method as CF-KOMD. It is worth to notice
that, inside the optimization problem (10.2) any kernel function can be plugged.
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The induced ranking is obtained using the scoring function

r̂u = X⊺w∗
u = K⊺

⊕,:α⊕ − q (10.4)

where K⊕,: ∈ R|Iu|×|I| is the matrix which contains the subset of rows corresponding
to the positive set of items for the user u.

A nice property of the optimization problem (10.2) is its insensibility to the addition
of constant kernel matrices. In other words, adding a constant to the whole kernel matrix
does not affect the solution of CF-KOMD (this can be demonstrated also for CF-OMD
and KOMD).

Proof. Let K = K0 + K̂ be a kernel matrix where K0 = k01m×m, k0 > 0, is a constant
matrix. Let also κ̂ and κ0 be the kernel functions associated to K̂ and K0, respectively.
Then, the vector q can be defined as:

qi =
1

m⊖

∑
j /∈Iu

(κ0(xi,xj) + κ̂(xi,xj))

=
1

m−
u

m⊖ · k0 +
∑
j /∈Iu

κ̂(xi,xj)


= k0 + q̂i ⇒ q = k0 + q̂,

where k0 = k01n. Now, we can rewrite the optimization problem (10.2) as (we omit the
⊕ subscription for brevity):

α∗
u = argmin

α∈Au

α⊺(k0 + K̂)α+ λp∥α∥2 − 2α⊺(k0 + q̂)

= argmin
α∈Au

α⊺K0α+α⊺K̂α+ λp∥α∥2 − 2α⊺k0 − 2α⊺q̂,

where both α⊺K0α and −2α⊺k0 are constant values independent from α,

α⊺K0α = k0
∑
i∈Iu

∑
j∈Iu

αiαj = k0
∑
i∈Iu

αi

∑
j∈Iu

αj = k0;

−2α⊺k0 = −2
∑
i∈Iu

k0αi = −2k0
∑
i∈Iu

αi = −2k0;

and thus the solution of the optimization problem does not depend on the constant
matrix K0:

α∗
u = argmin

α∈Au

α⊺K̂α+ λp∥α∥2 − 2α⊺q̂,
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and this is the same as the optimization problem (10.2).

Approxima on of q
It is possible to further lower the complexity by providing a good approximation of qu

that can be computed only once, instead ofnts times. The idea consists in replacing every
qui with an estimate of E[κ(xi,x)] which is the expected value of the kernel between the
item i and every other items. Formally, let us consider, without any loss of generality, a
normalized kernel function κ and let the approximation of q be q̂ such that:

q̂i =
1

m

∑
j∈I

κ(xi,xj), ∀ i. (10.5)

At each component of q̂, the approximation error is bounded by 2m⊕m
−1, which is

linear on the sparsity of the dataset.

Proof.

|q̂i − qi| =

∣∣∣∣∣∣ 1m
∑
j∈I

κ(xi,xj)−
1

m⊖

∑
j /∈Iu

κ(xi,xj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1m
∑
j∈Iu

κ(xi,xj) +
∑
j /∈Iu

κ(xi,xj)

− 1

m⊖

∑
j /∈Iu

κ(xi,xj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1m
∑
j∈Iu

κ(xi,xj)−
m−m⊖
m ·m⊖

∑
j /∈Iu

κ(xi,xj)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1m
∑
j∈Iu

κ(xi,xj)

∣∣∣∣∣∣+
∣∣∣∣∣∣m−m⊖
m ·m⊖

∑
j /∈Iu

κ(xi,xj)

∣∣∣∣∣∣
≤
∣∣∣m⊕
m

∣∣∣+ ∣∣∣∣m−m⊖
m ·m⊖

m⊖

∣∣∣∣ ≤ m⊕ +m−m⊖
m

= 2
m⊕
m

.

. Sparsity and long tail distribu on
As mentioned in Section 10.1, CF datasets are, in most of the cases, very sparse and in
general the distribution of the ratings assume a long tail form [And06]. From the items
perspective, this means that a small set of items, the most popular ones, receive great
part of the whole set of ratings.
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In order to study the behaviour of the kernel functions on CF datasets, we would like
to understand which are the conditions under which kernel matrices are sparse and in
which ones, instead, they tend to be dense. For studying this phenomenon we use the
linear kernel as a representative example, but results also apply for every dot-product
kernel as well because they can be “sparsified” in such a way that their zero entries are
the same as for the linear kernel.

This sparsification procedure is based on a well known result from harmonic theory
[KK12] that states:

π Theorem 10.1

A function f : R → R defines a positive definite kernel κ : B(0, 1) × B(0, 1) as
κ : (x, z) 7→ f(⟨x, z⟩) iff f is an analytic function admitting a Maclaurin expansion
with non-negative coefficients, f(x) =

∑∞
s=0 asx

s, as ≥ 0.

As emphasized in [KK12, DA16], many kernels used in practice [SS01] satisfy the
above-mentioned condition.

From Theorem 10.3 we can observe that the kernel matrices induced by these kernels
defined by that expansion are, in general, dense due to the zero degree term (i.e., s = 0)
which is a constant added to all the entries of the matrix. Since we have demonstrated
that adding a constant matrix to the kernel does not change the solution of CF-KOMD,
we can “sparsify” these kernels by removing the zero degree factor, obtaining kernel
matrices whose sparsity depends only on the distribution of the input data. This also
implies that the sparsity of these sparsified kernels are exactly the same as of the linear
kernel.

So, let K = X⊺X (X ∈ Rn×m) be a kernel matrix and let P(Ki,j ̸= 0) be the proba-
bility that an entry Ki,j is non-zero. Given an a-priori probability distribution over the
ratings, and assuming the independence of the ratings, we can estimate the probability
of having a non-zero value in the Gram matrix with:

P (Ki,j ̸= 0) = 1− P (Ki,j = 0)

= 1−
∏
h

P (Xi,hXj,h = 0)

= 1−
∏
h

(1− P (Xi,hXj,h ̸= 0))

= 1−
∏
h

(1− P (Xi,h ̸= 0)P (Xj,h ̸= 0))

= 1− (1− P (Xi,h ̸= 0)P (Xj,h ̸= 0))n

(10.6)

where P (Xi,h ̸= 0) and P (Xj,h ̸= 0) are the probability of having a non-zero entry in
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the rating matrix.
It is worth to notice that, assuming the uniform distribution, such probability is ac-

tually the density of the matrix. However, it does not take into account the fact that
all the elements in the diagonal of the kernel are for sure non zero (assuming non null
examples). Hence, we can estimate the kernel density d(K), with K ∈ Rm×m, as in the
following:

d(K) =
1

m2

[
m+ (m2 −m)P(Ki,j ̸= 0)

]
. (10.7)

By looking at Equation (10.7) and (10.6), we can argue that anytime both Xi and
Xj are popular items, and hence, P(Xi,h ̸= 0) and P(Xj,h ̸= 0) are close to 1, then
P(Ki,j ̸= 0) tends to be high and K is likely to be dense. On the other hand, when one
of the vectors represents an unpopular item, then the probability P(Ki,j ̸= 0) is likely
close to zero. Considering that we are assuming a long tail distribution over the items,
most of the kernel entries which correspond to dot-product of two unpopular have few
users that rated both of them and so such kernel entries tend to be sparse.

Though, all our considerations are based on the assumption that users are uniformly
distributed and in real datasets this is not often the case.

If we assume a long tail distribution over the users, the probability of having at least
one user in common between two items would be generally high, since the ratings for
an item are likely to be concentrated on the (few) most active users.

. . Empirical analysis of CF datasets
In order to validate our previous considerations, we empirically analyzed a set of CF
datasets comparing the theoretical sparsity with uniform ratings distribution with the
actual sparsity of the linear kernel.

The empirical analysis have been performed as follows. For each dataset, we built
the corresponding rating matrix R, we calculated the expected density using (10.6) by
fixing P(Xi,h ̸= 0) equals to the density of R. Then, we computed the linear kernel
KLIN = R⊺R and finally we compared the theoretical sparsity d(KLIN). Table 10.1 sum-
marizes the empirical results. Even though our intuitions seem to be confirmed by most
of the datasets, we can notice that for BookCrossing and Ciao KLIN is more dense than
the estimate. To further analysis this strange behaviour for each dataset we plotted its
distribution over both users and items. These plots are depicted in Figure 10.1 and Fig-
ure 10.2. The plots are in loglog scale and the blue line represents the best fitting power
low function. The fitting has been made using the least square method.

From the plots we can observe that:

6For this analysis we used the 10M version of the MovieLens dataset.
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Power law fit Users distribution
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Figure 10.1: Users’ distribution of the datasets. In blue is depicted the best fitting power
law curve. The plot is in log scale.
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Power law fit Items distribution
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Figure 10.2: Items’ distribution of the datasets. In blue is depicted the best fitting power
law curve. The plot is in log scale.
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Dataset Density R Density KLIN d(KLIN)

BookCrossing 0.003% 0.687% 0.011%

Ciao 0.025% 2.51% 0.12%

FilmTrust 1.13% 11.11% 17.74%

Movielens 6 1.34% 85.56% 99.99%

Netflix 0.99% 98.03% 99.99%

Table 10.1: Analysis of the sparsity of the linear kernel.

• none of the items’ distributions follows exactly a power low, especially the head
of the distribution;

• datasets with a very dense linear kernel tend to have shorter tails;

• generally items are long tailed while users tend to be more uniform distributed;

• users distributions are in general not well fitted by a power law, with the exception
of Ciao and BookCrossing datasets.

IT is clear that Ciao and BookCrossing are the only two datasets with a well defined
long tail distribution over both the users and the items. This confirm our intuition about
the likelihood of having a more dense kernel with both the long tailed distributions.
This represents a crucial point of our analysis: having a long tailed users’ distribution
belong with the long tailed items’ distribution, increases the chances of having a non-
zero dot-product X⊺

iXj because, even though the items are sparse, the non-zero values
are concentrated on a small fraction of the users.

We can conclude that, the long tail distribution over the items keeps the kernel sparse
while a long tail distribution over the users increases its density.
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. Evalua on
In this section we evaluate our proposals on different aspects: scalability, performance,
and time complexity.

. . Scalability
Before going deep in the performance evaluation of the proposed kernel-based method
against several state-of-the-art algorithm, in this section we want to test the scalability
of our proposal on a very large scale dataset. Specifically, we used the MSD dataset to
compare the training time and the performance of ECF-OMD and CF-KOMD against
the winner of the MSD Kaggle challenge, i.e., MSDw (see Section 5.1). We used the
same setting as the challenge, that is: the training set is composed by 1M users (plus
10K users as validation set) with all their listening history and for the rest (i.e., 100K
users) only the first half of the history is provided, while the other half constitutes the
test set.

In these experiments we fixed the ECF-OMD and CF-KOMD hyper-parameter λp to
0.01 (different values do not change the solution so much). Cf-KOMD has been tested
with the Homogeneous polynomial kernel of degree 2, while the setting of the MSDw
algorithm is the same used to win the challenge [Aio13].

The achieved results (AUC and map@500) are presented in Table 10.2. As we can
notice, MSDw maintains its leadership performance in terms of mAP@500 (the same
metric used in the challenge), while for the AUC all the methods have very similar per-
formance. This underline the fact that both ECF-OMD and CF-KOMD are designed to
optimize the AUC rather than the mAP.

Metric MSDw ECF-OMD CF-KOMD

mAP@500 0.169 0.164 0.160

AUC 0.973 0.970 0.970

Table 10.2: Ranking accuracy on MSD using AUC and mAP@500. In bold are highlighted
the best results.

The computational costs of all the compared methods on this dataset are reported
in Figure 10.3.

The computational times reported in Figure 10.3 are the average over one thousand
test users. All methods run on a machine with 150Gb of RAM and 2×Eight-Core Intel
® Xeon ® CPU E5-2680 0 @ 2.70GHz. Note that the times in the figure have a constant
overhead due to read operations. Results show that ECF-OMD and CF-KOMD are al-
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Figure 10.3: Average computational time in hours for 1K users.

most 5 time faster than MSDw, however, they require more RAM to store the kernel
matrices. It is worth to notice that CF-KOMD has a computational time very close to
ECF-OMD, and this highlights the positive effects of the complexity optimization pre-
sented in Section 10.2.

. . Top-n recommenda on
Evalua on protocol
We compared the CF methods in terms of AUC (see Chapter 3) and for each dataset we
performed 5 repetition of the test with different splits (the same for all methods). In
particular, each dataset has been pre-processed as in the following:

1. we split randomly the users in 5 sets of the same dimension;

2. for each user in a set we further split its ratings in two halves;

3. at each round test, we use all the ratings in 4 sets of users plus the first half of
ratings of the remaining set as training set, and the rest as test set.

This setting avoids situations of cold start for users, because in the training phase we
have at least some ratings for every user. The results reported in the figures are the
average AUCs, with their standard deviation, over the 5 folds. In these experiments, for
computational reasons, we did not consider the MSD dataset.

Compared methods
In the following we list all the methods and the parameters tested in our experiments:

MSDw [Aio13] the winner method of the MSD challenge described in Chapter 5. The
asymC parameter α has been tested in the set {0, 0.15, 0.25, 0.5, 0.75, 1};

ECF-OMD the efficient version of CF-OMD. For this algorithm we fix λ = 0.1 since
other values do not change the solution very much;

CF-KOMD the kernelized version of ECF-OMD. In particular we tested the following
kernels:
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Tanimoto (CF-KT) which does not have parameters;
Polynomial (CF-KHP) homogeneous of degree 2;
mC-kernel (CF-KmC) with different degrees greater or equal than 2.
mD-kernel (CF-KmD) with different degrees greater or equal than 2.

Non-monotone kernels are not adapt for this kind of application since the negative
data points are actually unknown (i.e., unlabelled).

SLIM [NK11] described in Chapter 5. We tested β in the range [1,5] and λ in the set
{0.1, 0.5, 1, 2};

WRMF [HKV08] described in Chapter 5. Since we use implicit feedback we fix the value
of α to 1. We also fixed the number of factors to 50 and the learning rate to 0.01,
while the regularization parameter λ has been tested in the range {1, 10, 100, 300};

BPR-MF [RFGST09] described in Chapter 5. Also for this algorithm we fixed the num-
ber of factors to 50 and the learning rate to 0.01, while the regularization parame-
ters have been fixed to 0.0025.

We implemented all methods, but SLIM, in python and the source code is freely
available on github at https://github.com/makgyver/pyros. Regarding SLIM, we used
the implementation provided by the authors, that can be downloaded at
https://www-users.cs.umn.edu/~ningx005/slim/html/.

Experimental results
The best performance of the tested algorithms are reported in Table 10.3. It is worth
to notice that we did not perform validation but, for each method, we selected the best
average result on the test set over all the hyper-parameters configuration. Since we ex-
haustively try he configuration indicated in the previous section, the procedure is quite
fair, or at most might foster methods with many hyper-parameters.

In 4 out of 6 the best performing method is CF-KOMD with the mD-kernel as kernel
function. In particular, the increasing of the AUC with respect to the linear case (i.e.,
ECF-OMD) is impressive, especially on Ciao and Jester. It is also worth to notice that,
for the mD-kernel, the best score on Ciao is reached with degrees greater than 100 which
are surprisingly high. However, this can be due to the combination of some peculiar
features of this dataset, such as, its high degree of sparseness, its high number of features
(i.e., users) and its double long tailed distribution. These characteristics entail a very
slow decrease of the complexity with the increasing of d, as underlined in Figure 10.8.
In general, Ciao has been a problematic dataset for most of the tested methods, the only
exceptions are BPR-MF, MSDw and CF-KOMD with the disjunctive kernel.

7Using the implementation provided by the authors we were not able to do the test on this dataset.
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Method BookX Ciao FilmTrust Jester Movielens Netflix

MSDw 0.743
±0.004

0.824
±0.008

0.961
±0.004

0.727
±0.001

0.875
±0.001

0.939
±0.0002

SLIM 0.714
±0.004

0.788
±0.016

0.969
±0.004

0.658
±0.003

0.861
±0.005

-7

WRMF 0.739
±0.004

0.755
±0.007

0.956
±0.005

0.739
±0.004

0.877
±0.006

0.927
±0.001

BPR-MF 0.691
±0.005

0.848
±0.004

0.959
±0.007

0.649
±0.002

0.874
±0.005

0.848
±0.001

ECF-OMD 0.731
±0.003

0.718
±0.006

0.961
±0.005

0.602
±0.003

0.896
±0.0005

0.943
±0.001

CF-KHP 0.748
±0.002

0.731
±0.003

0.961
±0.006

0.601
±0.003

0.893
±0.0003

0.937
±0.001

CF-KT 0.744
±0.003

0.734
±0.004

0.964
±0.005

0.626
±0.003

0.895
±0.0004

0.941
±0.001

CF-KmC 0.695
±0.005

0.540
±0.009

0.951
±0.008

0.601
±0.003

0.892
±0.0004

0.936
±0.001

CF-KmD 0.751
±0.005

0.841
±0.006

0.971
±0.004

0.727
±0.002

0.895
±0.0004

0.944
±0.001

Table 10.3: AUC results on 6 CF datasets. Results are reported with their standard de-
viation. For each dataset the highest AUC is highlighted in bold.

Regarding the mC-kernel, results confirm that too high expressiveness do not lead
to good performances. In fact, in all the cases its best results have been reached with
d = 2. It is important to underline that the null vector problem described in Section
6.3.2 has artificially been solved by forcing in the kernel matrix a 1 in correspondence
of the diagonal of these degenerate examples. Even though this is a reasonable fix, it is
an arbitrary choice. Overall, the compared baselines have achieved good performance
but in general a bit worse than our proposals bar WRMF on the Jester dataset, where
CF-KOMD had very poor results with the exception of the mD-kernel, BPR on Ciao and
SLIM on FilmTrust. In all these cases the differences are not statistically significant.

The problem with the compared approaches (excluding MSDw) is their huge num-
ber of hyper-parameters that need to be tuned, while CF-KOMD has only the hyper-
parameters of the used kernel function, since the λp can be actually fixed to 0.01.
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. . Computa onal complexity
In Section 6.2 we have shown that the computational complexity of the mD-kernel is
O(n + d), where n is the number of dimension of the input vectors, and d the degree
of the kernel. This complexity concerns only the computation of the kernel function
between two binary vectors. In the calculation of the entire kernel matrix the number of
examples (in this case the number of items) plays a huge role. Indeed, Figure 10.4 (left
plot) shows that all the kernel matrix computations, but Ciao, is really fast.

On the other hand, by using the recursive method presented in Section the kernel
computation can be (for low degrees) even faster. However, in this case, the time com-
plexity increases linearly with the arity of the kernel because of the increasing of the
number of recursive calls (see the right plot of Figure 10.4). Nonetheless, for low de-
grees the recursive method is more efficient than the standard one since it is based on
matrix operations rather than entry by entry operations.

BookCrossing Ciao FilmTrust
Jester MovieLens Netflix
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0

500

1,000

degree

tim
e
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)
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Figure 10.4: Time, in seconds, for calculating the mD-kernel on different datasets.

All these experiments have been performed on a MacBook Pro late 2012 with 16GB
of RAM and CPU Intel ® Core™ i7 @ 2.70GHz.
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. . Spectral ra o
In Section 6.2 we have proved how the spectral ratio is linked with the arity of the mC-
kernel and the mD-kernel. To further support our theoretical proves, Figures 10.5 and
Figure 10.6 show, over all the CF datasets, the behaviour of the mC-kernel and the mD-
kernel SR varying the degree. We include in the plots the kernels of degree 1 (i.e., the
linear kernel) for two reasons:

1. it gives a visual idea of how fast/slow the SR of the kernel matrix increases/de-
creases with respect to the linear one;

2. for each dataset, it offers a meeting point between the two curves (the mC-kernel
and the mD-kernel curves).

Besides supporting our previous results, the plots show that augmenting the degree,
the decrease of the SR in the mD-kernel is smoother than its increase in the mC-kernel,
which reaches very rapidly values near to 1 (so the kernel matrix is vey similar to the
identity kernel). This justifies the fast decay of the performance of the mC-kernel on all
datasets.
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Figure 10.5: Spectral complexity of the mC-kernel varying the degree.
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Figure 10.6: Spectral complexity of the mD-kernel varying the degree.

. . Effect of the degree on the Boolean kernels
In Figure 10.7 and Figure 10.8 are depicted the AUC scores achieved with different de-
grees of the mc-kernel and the mD-kernel, respectively. In both cases the trend of the
plots are quite consistent: the performance of the mD-kernel slowly increase until it
reaches a peak and then it starts to constantly decrease. In some cases the peak is actu-
ally in the smallest non-trivial degree d = 2 and thus the plot is always decreasing.

On the other hand, the performance of the mC-kernel rapidly decrease. This is a
further confirmation that in these kind of datasets CF-KOMD works better by using
kernels with low expressiveness, even lower than the linear kernel.
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Figure 10.7: Performance of different mC-kernel degrees.
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Figure 10.8: Performance of different mD-kernel degrees.
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11
Conclusions and future
work

Do not go gentle into that good night,
Old age should burn and rave at close of day;
Rage, rage against the dying of the light.

Do not go gentle into that good night
Dylan Thomas

. Conclusions
In this thesis we focused on the representation problem in machine learning by facing it
from different perspectives. The first aim was to propose theoretical well founded tools
that can ease the understanding of established machine learning models such as kernel
methods. Besides the interpretability, we also wanted to provide methods which are
able to achieve state-of-the-art performance on specific domains concerning categorical
data.

The main contribution of the thesis is a new perspective on kernel functions. We
proposed families of kernels with the goal of creating embedding spaces that can be
understood and, consequently, that can be used to extract rules able to explain the de-
cision of a kernel machine.

The first family of kernels, called Boolean kernels, offers the possibility of creating
feature spaces composed of well formed logical formulas which allow to extract easy-
to-read rules from the solution of a SVM. An example of such procedure is presented as
well as an extensive evaluation of the kernels on several binary classification tasks.

The second proposed family of kernels, dubbed propositional kernels, try to over-
come the limitations of the Boolean kernels, especially from the expressivity point of
view. Propositional kernels are able to construct almost any logical proposition, and
hence they can be useful when there is the need of more flexibility. We provided an
elegant and efficient way to compute and generate these kernels as well as an example
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of application.
On the other hand, we have also investigated in new algorithms for learning the

best representation for a given task. Our second main contribution is in fact a multiple
kernel learning algorithm, which is based on an optimization criterion that gives many
theoretical guarantees about the quality of the solution. Extensive empirical evalua-
tions showed that our proposal outperforms state-of-the-art MKL algorithms on several
benchmark datasets.

Finally, the Boolean kernel framework has been applied in a very different domain
w.r.t. the classification problem, namely on top-N recommendation tasks. Firstly, we
have proposed a very efficient kernel-based collaborative filtering method. Then we ap-
plied on top of it our Boolean kernels on several recommender system datasets showing
state-of-the-art results. A very important observation is the ability of the Boolean ker-
nels, in particular the mD-kernel, of alleviating the sparsity issue typical in RSs.

. Future work
By analyzing the weaknesses and the possible extensions of all the novelties of this thesis
we can underline these possible paths that can be followed in the future:

• extend the applicability of our Boolean kernels to real-valued datasets. A possi-
bility could be to study methods for binarizing real values in some smart way in
order to loose as less information as possible. Heuristics, for example based on
the entropy could be a first possible approach that deserves a try;

• application of the algorithm GRAM on datasets with real valued data, as well as,
an in depth theoretical analysis about its convergence;

• development of efficient and theoretical well founded methods for interpreting
the solution of kernel machines. Our proof of concept is only a first step in this
direction, we aim to develop smarter and more efficient algorithms based, for ex-
ample, on some heuristics. The next step will be to test such methods on real world
datasets in order to see whether the extracted rules are easy to interpret also for
non expert users;

• developing new methods for generating and extracting the best propositional ker-
nel using the proposed framework;

• Studying whether it is possible to extend the propositional kernel framework to
fuzzy logic.
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