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Abstract

The biological e�ectiveness of ionizing radiation is closely related to the number and spatial
distribution of its initial interactions within critical subcellular structures of nanometric
size, such as the DNA. The detailed analysis of this interaction pattern is the main aim
of nanodosimetry, which is the study of the stochastics of radiation interactions at the
nanometre scale.

At the Legnaro National Laboratories of the Italian Institute of Nuclear Physics, the
Startrack nanodosimetric counter is operative, which can measure the ionization yield in
sensitive volumes of nanometric size. From these data, new track structure descriptors can
be de�ned, which are measurable and directly correlated to given biological e�ects.

This thesis aims at the development of new techniques and methodologies to be applied
to the nanodosimetric analysis, in order to optimize the correlation between the physical
description of track structure given by nanodosimetry and biological e�ects at cellular level,
as a �rst step towards its application to radiation therapy and radiation protection.

The work described in this thesis has been carried out at the Legnaro National Lab-

oratories of the Italian National Institute of Nuclear Physics, in the framework of the

experiments MITRA and NADIR.
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Chapter 1

Introduction

The action of ionizing radiation on living organisms takes the form of a complex chain of
physical, chemical and biological processes initiated in sub-cellular structures, which can
possibly evolve into more or less permanent damage at cellular, tissue or organ level, and
in the most severe cases result in the death of the organism itself. Even if the deleterious
e�ects at tissue or organ level can become evident only after days, months or even years
after the initial exposure, a correlation must exist between the initial features of radiation
interactions and the likelihood of late e�ects. In the �eld of human healthcare, both for
the protection from hazard radiation exposure and for the optimization of treatment plans
in radiotherapy, there is the need to identify physical quantities that are measurable at
the relevant target size and suitable to characterize the e�ectiveness of radiation to induce
biological damage.

In radiological clinical practice as well as in radiation protection, the likelihood of late
biological e�ects is generally correlated to the absorbed dose D, which is de�ned as the
mean energy dε imparted by ionizing radiation to a given volume of matter, divided by
its mass dm (ICRU, 2011):

D =
dε

dm
(1.1)

The unit of absorbed dose is the Gray [Gy], which corresponds to 1 J/kg. However,
absorbed dose alone is not enough to quantify the e�ectiveness of ionizing radiation. For
the same absorbed dose, particles of di�erent type and energy induce varying amount of
damage: lower for photons and electrons, higher for protons, neutrons or heavier ions.

These di�erences in radiation response for particles of di�erent type and energy can
be quanti�ed, for instance, by means of clonogenic assays, which assess the fraction of
surviving(1) cells after irradiation with a given dose. By repeating the assay for di�erent
dose levels, survival curves can be drawn to describe cell survival as a function of absorbed
dose. Two examples of such curves are reported in Figure 1.1: for a given dose level, the
fraction of surviving cells is higher for photon irradiation than for carbon ion. The curve
generally exhibits a shoulder when the cells are irradiated with photons or electrons, while
its shape is exponential when the irradiation is carried out with protons or heavier ions,

(1)A cell is considered as surviving if it is able to produce a colony of at least 50 daughters (corresponding
to 5 or 6 duplication cycles). This is done in order to exclude cells which have a limited reproductive
capacity as a consequence of radiation damage.
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Chapter 1 � Introduction

Figure 1.1: Examples of cell survival curves for radio-resistant CHO-K1 (Chinese hamster ovary) cells,
under irradiation of orthovoltage X-rays and low-energy carbon ions. The variation of the RBE with the
survival level is also shown. Modi�ed from (Weyrather, 2004).

especially at low energies. In addition, the shape of the survival curve depends on the
intrinsic radiosensitivity of the cell line.

In order to quantify the di�erences in cell survival curves produced by di�erent ra-
diations, an empirical parameter can be introduced, the Relative Biological E�ectiveness

(RBE). It is de�ned as the ratio of the absorbed dose of a reference radiation (usually
gamma rays from a 60Co source) and that of the radiation under consideration which must
be given in order to obtain the same biological e�ect. The RBE is 1 for X-rays, gamma rays
and high-energy electrons, while it increases to about 3 for carbon ions used in radiother-
apy. For any given biological system, the RBE depends on the way the radiation interacts
with the system, speci�cally on the type and spatial distribution of the interactions, which
in turn depend on the radiation quality (particle type and energy).

A commonly used descriptor of radiation quality is the (unrestricted) linear energy

transfer (LET), de�ned(2) as the mean energy lost per unit path length by an incident
particle due to electronic interactions, which is numerically equal to the electronic stopping
power (ICRU, 2011):

LET =
dE

dl
(1.2)

In the above formula, dE is the energy lost by the incident particle and dl is the travelled
path length.

The variation of RBE for 10% cell survival as a function of LET is shown in Figure 1.2

(2)Strictly speaking, the given de�nition of LET applies only to charged particles. However, a general-
ization of the LET concept can be made also for indirectly ionizing radiation such as photons or neutrons,
based on the average LET of the secondary particles they generate.
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Chapter 1 � Introduction

Figure 1.2: Dependence of RBE for 10% cell survival on the LET in water of the incident radiation, for
di�erent cell lines under proton and light ion irradiation. The data are taken from the PIDE database
(Friedrich, 2013). Figure taken from (Durante, 2016).

for di�erent incident radiations: the general trend is an increase up to values of 100 −
150 keV/µm, a maximum and then a decrease for higher LET values (Durante, 2016).
However, this unique trend is only a �rst approximation: at a closer view, particles of
the same LET give rise to di�erent RBE. In particular, the position of the maximum is
particle-type dependent, and shifted to lower LET values for particles of lower charge state.
For the same LET value, low-Z ions are therefore slightly more e�ective than high-Z ones
(Schardt, 2010). The limitations of LET as a radiation quality descriptor are due to the
fact that it fails to describe the microscopic pattern of particle interactions, because it does
not take into account the �ne structure of particle tracks with emerging delta electrons. It
is clear that the same LET can be reached by light ions with low velocity or alternatively
by heavier particles with higher energy. The track structure of ions at the same LET di�ers
in the penumbra extension, because the energy and range of ejected secondary electrons
increase with ion velocity.

As an example, Table 1.1 shows the values of some track-structure parameters for
several ions having the same LET of 100 keV/µm. Data refer to propane gas at density of
1 g/cm3 (Grosswendt,2014). It is worth observing that protons have the smallest speci�c
energy, corresponding to the minimum mean free path for primary ionizations (λρ)ion and
also to the shortest penumbra radius (Rρ)δ. The penumbra radius depends only on ion
velocity, and not on atomic number or charge.

Because of that, for slower ions the energy deposition is more localized around the
primary particle path, and this locally high interaction density can explain the increased
e�ectiveness of protons with respect to that of neon ions of the same LET. The so-called
particle track structure, i.e. the detailed spatial and temporal pattern of initial interactions,
must be taken into account for a full understanding of radiation e�ects.
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Chapter 1 � Introduction

Ion type E/m [MeV/u] (λρ)ion [µg/cm2] Max Eδ [keV] (Rρ)δ [µg/cm
2]

1H 0.15 0.0505 0.33 0.789
4He 1.4 0.0563 3.0 20.5
12C 21 0.0590 45 2150
16O 44 0.0631 95 7800
20Ne 75 0.0649 163 19900

Table 1.1: Comparison of track structure parameters for particles with the same LET of 100 keV/µm
in propane at unit density: speci�c energy E/m, mass mean free path for primary ionizations (λρ)ion,
maximum energy of the secondary electrons Eδ and corresponding penumbra radius (Rρ)δ, calculated
according to (Kiefer, 2008).

(a) γ rays (b) 16O (c) 56Fe

Figure 1.3: γH2AX foci distributions (green blobs) in human skin �broblast cells (type 82-6) irradiated
horizontally with (a) 662-keV gamma rays from a 137Cs source, (b) 77-MeV/u oxygen ions, (c) 600-MeV/u
iron ions. The cells are stained with a DNA marker (blue regions). The tracks of oxygen and iron ions
passing through the cells can be clearly identi�ed. From (Wang, 2013).

The importance of track structure for the assessment of biological damage is also con-
�rmed by the analysis of the activity of DNA repair mechanisms, which can be monitored
experimentally with immuno�uorescence techniques thanks to the phosphorylation (i.e.,
the addition of a PO3

2� 2-phosphoryl group) of the histone protein H2AX (Rogakou,
1998): after the radiation insult, thousands of H2AX proteins near the damaged site are
phosphorylated to γH2AX, highly amplifying the e�ect. If these proteins are tagged with
�uorescent compounds, the resulting blot (called focus) around the original damage site
can be visualized by confocal microscopy, allowing to correlate the spatial distribution of
initial lesions with the incident radiation quality, as shown in Figure 1.3. With such an
analysis, it can be seen that for gamma radiation the damage is uniformly distributed
inside the cell, while for oxygen and iron ions the damage is localized in well-de�ned spa-
tial positions around the primary particle track. The biological e�ectiveness of ionizing
radiation is therefore critically dependent on particle track structure.

Because of its critical importance for reproduction and all regulatory activities of the
cell, it is generally assumed that DNA is the critical target for radiation action (Good-
head, 1994). The correlation between particle track structure and biological damage should
therefore be stronger if the former is studied at the DNA level, i.e. considering a spatial
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Chapter 1 � Introduction

scale of about 1 nm. At this scale, a description based on the continuous slowing-down ap-
proximation is not valid and the discrete and stochastic nature of the interaction processes
must be taken into account. This is the main aim of nanodosimetry, which is the study of
the stochastics of radiation interactions in sensitive volumes of nanometric size.

A complete study of the track structure, including all physical processes at play (elastic
scattering, atomic and molecular excitations, ionizations, charge-changing processes. . . ) is
nowadays possible by means of Monte Carlo track structure codes (see Chapter 2), provided
that a complete and accurate database of interaction cross sections is available. This is
not a trivial requirement, since experimental cross section data in the low-energy range are
a�ected by large uncertainties (Nikjoo, 2006; Incerti,2010b). In any case, this approach
remains unfeasible experimentally.

Due to this limitation, experimental nanodosimetry studies only the ionization compo-
nent of particle tracks, which is nowadays possible by means of single-electron or single-ion
counting techniques. It is assumed that the stochastics of the ionization process rules the
induction of initial DNA damage and that it is still signi�cant to determine the �nal cel-
lular consequences, in spite of the long and complex chain of intermediate chemical and
biological processes (Conte, 2012).

At the Legnaro National Laboratories of the Italian Institute of Nuclear Physics, the
Startrack nanodosimetric counter is operative (De Nardo, 2002a). Its core part is an
almost wall-less sensitive volume �lled with gas at low pressure, with a thickness in mass
per area which is the same as that of a nanometric volume at unit density. The number of
low-energy electrons produced in this volume by ionizing radiation can be extracted and
counted by means of an electron collector and ampli�cation system, allowing the study of
the ionization yield as a function of the radiation quality.

An extensive study has already been carried out for many light ions of interest for
hadrontherapy, namely, protons, lithium and carbon ions at di�erent energies (Conte,
2012; Conte, 2014), both when the sensitive volume is crossed centrally by the incident
beam and when the primary particles pass outside it at a �xed distance. The results of
this study showed a consistent characterization of the ionization yield when the counter is
�lled at the design gas pressure of 300 Pa, corresponding to a mass thickness of 2µg/cm2,
i.e. about 20 nm at unit density. However, it is expected that the correlation between
particle track structure and biological response is more direct when the sensitive volume
size is closer to DNA dimensions. It is therefore of interest to investigate if the operative
range of the Startrack counter can be extended in order to reach a sensitive volume size of
about 1 nm.

Apart from the Startrack counter, two other nanodosimeters are operative to date. It
has been shown that these devices provide a consistent characterization of particle track
structure, based on measurements and taking into account its discrete and stochastic na-
ture. The measurement of the ionization yield obtained with these counters could be the
basis for the de�nition of new physical descriptors of radiation quality, directly correlated
with given end-points of biological damage, to be applied in radiation therapy or radiation
protection. In this respect, the main drawback of these nanodosimetric counters is that
they are designed for fundamental research and are therefore very complex and bulky, not
suited for an everyday use. The development of a simpli�ed, portable nanodosimeter could
pave the way for a more widespread application of nanodosimetry to radiation protection

13



Chapter 1 � Introduction

or radiation therapy.
This thesis has therefore a three-fold objective:

� To characterize the response of the Startrack counter in di�erent operating condi-
tions, in particular, at several gas densities, in order to analyse the stochastics of the
ionization yield in a volume about 1 nm in size;

� To study the correlations between initial features of radiation interactions and the
likelihood of �nal biological damage, in order to de�ne new descriptors of radiation
quality based on the nanodosimetric analysis of particle track structure;

� To carry out a proof-of-principle study for a portable nanodosimeter, in order to see
if a simpli�ed device based on nanoparticles which are sensitive to ionizing radiation
can provide enough information for a consistent characterization of particle track
structure.

These objectives are analysed in Chapter 4, 5 and 6 respectively, after a description of
the state of the art of nanodosimetry, both from the experimental and the computational
point of view (Chapter 2), and a detailed description of the structure and working prin-
ciples of the Startrack counter (Chapter 3). The main results of this work and its future
perspectives are �nally summarized in the Conclusions.
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Chapter 2

Nanodosimetry

It has been seen in the Introduction that radiation e�ects are strongly correlated to the
topology of initial physical interactions analysed at the nanometre scale, where the discrete
and stochastic nature of the physical processes plays a relevant role. In this respect,
nanodosimetry can provide valuable help for the characterization of particle track structure.

At the nanometre scale, radiation e�ects are due to the incidence of single primary
particles, because the probability of two-particle crossing is very low and can be neglected
but for very high doses. Nanodosimetry analyses therefore the stochastic of the ionization
yield for single particle traversal. Moreover, the investigation is restricted to charged
ions and the secondary electrons they produce in sites of nanometric size, because the
probability of photon or neutron interactions can be neglected given their much longer
scattering length. For the same reason, nuclear reactions induced by charged particles do
not play a role.

In experimental nanodosimetry, and in some cases in Monte Carlo simulations as well,
it is assumed that from the point of view of particle transport and degradation a sensitive
volume of millimetric size in which the density is of the order of 10−6 g/cm3 (for instance,
a gas-�lled volume at a pressure of around 100 Pa) is equivalent to a volume of nanometric
size at unit density. The ionization yield is assumed to be the same in volumes of identical
thickness in mass per area, and di�erences between gas and condensed phase are assumed
to play only a minor role.

This Chapter presents the state of the art of nanodosimetry, both from the experi-
mental and the theoretical point of view: after a discussion of the general methodology of
nanodosimetry (valid for both experiment and simulations), the results obtained with the
Startrack counter at the standard gas pressure of 300 Pa are discussed for di�erent incident
radiation qualities and impact parameters. The experimental cluster size distributions are
then used to validate the results of the MC-Startrack simulation code, a Monte Carlo track
structure code which was speci�cally developed to simulate step-by-step the electron pro-
duction and collection from the sensitive volume of the Startrack counter. A theoretical
model for the description of particle track structure and a possible procedure to relate the
ionization yields in di�erent materials are also discussed. Finally, an experimental �nding
which could be the basis for a new concept of radiation quality is presented and discussed.
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Chapter 2 � Nanodosimetry

Figure 2.1: Pictorial representation of the nanodosimetric analysis: an ionizing particle passes at a
distance d from the centre of a cylindrical target volume of diameter D. Each red sphere represents an
ionization event. At the passage of each primary ion, the number ν of ionizations inside the target volume
is counted, and the ionization cluster-size distribution is derived by repeating this procedure for a huge
number of primary particles.

2.1 The nanodosimetric analysis

The nanodosimetric study of particle tracks (both experimental and Monte Carlo) focuses
on the analysis of the number ν of ionizations produced inside a sensitive target of equiv-
alent nanometric size at the passage of each primary particle. In such small volumes this
magnitude is dominated by its statistical �uctuations, and it must be analysed by consid-
ering its probability distribution Pν , usually called the ionization cluster-size distribution

(ICSD). This distribution describes the interplay between the track structure of the inci-
dent particle and the features of the target volume, and depends on the type and energy
of the incident ion, on the shape, size and chemical composition of the target, and on the
irradiation geometry (more speci�cally, from the distance between each particle track and
the centre of the target volume, the so-called impact parameter).

In practical nanodosimetric experiments as well as in Monte Carlo simulations, once the
target geometry and the shape of the radiation �eld have been de�ned, a huge number of
primary particles is shot towards the target, and the number of ionization induced by each
of them inside the sensitive volume is recorded in a histogram. The frequency distribution
of the number of ionizations is then derived by normalizing on the total number of primary
ions Nprim. If Nprim is high enough, the frequency distribution can be used as an estimator
for the probability distribution Pν :

Pν(Q, d,D) ≈ Nν(Q, d,D)

Nprim
for Nprim →∞ (2.1)

The dependence on particle type and energy (i.e., the radiation quality Q), on the impact
parameter d and on target size D are made explicit. If an extended beam is considered
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2.1 � The nanodosimetric analysis

Figure 2.2: Ionization cluster-size distribution Pν measured with the Startrack counter for α particles
from a 244Cm source in a sensitive volume with a mass thickness of 2µg/cm2.

(i.e., a distribution of di�erent impact parameters is present) the dependence on the beam
geometry should also be considered. Since Pν is a probability distribution, it is de�ned for
0 ≤ Pν ≤ 1; and it is normalized to 1:

∞∑
ν=0

Pν(Q, d,D) = 1 (2.2)

An example of the shape of the probability distribution Pν for α particles produced by a
244Cm calibration source crossing centrally the target volume (impact parameter d = 0 mm)
is shown in Figure 2.2.

From the Pν distribution, speci�c track structure descriptors can be derived. The most
straightforward are the moments Mξ:

Mξ =
∞∑
ν=0

νξPν(Q, d,D) (2.3)

The �rst moment M1 for ξ = 1 corresponds to the mean number of ionizations produced
by particles of that type and energy inside the target volume, while the second moment
M2 is related to the variance of the distribution, which is M2 −M2

1 .
The inverse cumulative distribution function Fk can also be de�ned:

Fk =

∞∑
ν=k

Pν(Q, d,D) (2.4)

It follows from this de�nition that Fk can increase up to a maximum value of 1. The Fk
values correspond to the probability of measuring k or more ionizations in a nanometric
target volume at the passage of each primary particle: they are therefore related to the
degree of complexity of the damage.
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Chapter 2 � Nanodosimetry

2.2 Nanodosimetric counters

In order to count the number of ionizations produced by incident primary particles, two
di�erent approaches can be used: one based on the counting of the low-energy electrons
produced in the ionization process, the other based on the counting of ions. The latter has
the advantage that ions have a higher mass and do not easily escape the target volume,
improving the detection e�ciency. However, they are di�cult to separate in time due to
their low di�usion, and the recombination probability is high. The ions must therefore
be extracted from the interaction region and ampli�ed in vacuum, requiring a di�erential
pumping system. The counting of electrons does not require a vacuum stage, however,
their e�cient collection is more di�cult due to their lower mass.

Three di�erent nanodosimeters are operative at present: the Startrack Counter at the
Legnaro National Laboratories of INFN, the Ion Counter installed at the Physikalisch-
Technische Bundesanstalt in Germany, and the Jet Counter developed at the National
Centre for Nuclear Research in Poland. Di�erently from the Startrack counter, the latter
two are based on ion-counting techniques. A fourth counter, based on the same design
of the Ion Counter, was developed and installed at the Loma Linda University Medical
Centre (Bashkirov, 2006), but is no longer operative to date.

The Startrack counter is based on single-electron counting techniques and was devel-
oped with the aim of studying the ionization yield of di�erent charged ions at varying
distance from the primary particle track: it is therefore installed on a movable platform in
order to move it orthogonally to the beam trajectory (De Nardo, 2002a). The main idea
on which the design is based is to separate physically the region of production of the elec-
trons (the so-called interaction region) from that of ampli�cation, by means of a transfer
section in which the electrons are separated in time so that they reach the multiplication
stage individually (De Nardo, 2002b). Each electron gives therefore rise to a single pulse,
and gas gain �uctuations do not a�ect the information on the number of initial ionizing
events. A schematic drawing of the counter is shown in Figure 2.3; a detailed analysis of
its structure and working principles can be found in Chapter 3.

Figure 2.3: Startrack Counter: schematic drawing of the operation principle.
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2.2 � Nanodosimetric counters

Figure 2.4: Ion Counter: schematic drawing of the operation principle. From (Hilgers, 2015).

The wall-less sensitive volume of the counter is a cylinder 3.7 mm in both diameter and
height. It is �lled with pure propane at a pressure that can in principle be varied to change
its mass thickness. The design has however been optimized for a standard pressure of
300 Pa, corresponding to a mass thickness of 2µg/cm2. In this con�guration, the average
detection e�ciency is about 20%.

The Ion Counter (Garty, 2002) consists of a low-pressure cylindrical interaction cham-
ber, connected to an acceleration stage in vacuum. The interaction chamber contains a
wall-less sensitive volume de�ned by a parallel-plate capacitor with a hole 1 mm in diam-
eter on the bottom electrode, which connects it to the following acceleration stage. The
distance between the two plates of the capacitor is 50 mm. Rutherford scattering on a
gold foil is used in order to reduce the beam intensity before its entrance in the gas-�lled
chamber.

Primary particles cross the sensitive volume and then hit a trigger detector which gives
the start signal for the acquisition. The ions produced by ionizations in the gas drift
towards the aperture due to the low electric �eld which is present between the capacitor
plates, and are then collected by an ion counter located in the acceleration stage. Only
the ions produced above the extraction aperture can be collected e�ectively; however, the
exact shape and size of the target volume is de�ned by means of an e�ciency map contour,
and depends on the gas pressure inside the interaction chamber and on the electric �eld
both in the parallel-plate capacitor and in the acceleration stage. The Ion Counter is
usually operated with propane or nitrogen. A schematic drawing of its operating principle
is reported in Figure 2.4.

The Jet counter (Pszona, 2000) consists of a stainless steel cylindrical interaction cham-
ber, 10 mm in diameter and 5 mm in height, separated from a gas reservoir by means of a
piezoelectric valve. When the valve is opened, a jet of nitrogen expands into the interac-
tion chamber through a nozzle 1 mm in diameter, and is ionized by the incident particles
which cross the interaction chamber at half its height. The ions are then extracted from
the cavity into a vacuum chamber by means of an electric �eld de�ned by a grid; another
grid guides them to the ampli�cation stage. A turbomolecular pump ensures the removal
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Chapter 2 � Nanodosimetry

Figure 2.5: Jet Counter: schematic drawing of the operation principle.

of the residual nitrogen before the following gas jet.
The equivalent size of the target volume depends on the gas pressure inside the reservoir

and the opening time of the valve; and is assessed by measuring the transmission of mono-
energetic electrons through the gas layer. Such measurements have also shown that the
sensitive volume is well de�ned only for about 200µs; an electronic gate is therefore used to
count only the ions produced in this time window. The average detection e�ciency is about
40%. A schematic drawing of the Jet Counter is shown in Figure 2.5. This counter can
also measure the cluster size distribution produced by incident primary electrons (Bantsar,
2006); however, in this case the measured distribution is due to more than one electron,
due to their large angular scattering which makes the development of a proper trigger
di�cult. The single-event cluster size distribution is therefore derived from a deconvolution
procedure, assuming a Poissonian time structure of the primary beam.

An example of the ionisation cluster size distribution measured with the three di�erent
counters is reported in Figure 2.6: their shape is markedly di�erent, due to the di�erent
response function of each detector. In particular, the one measured by the Jet counter is
peaked at a lower cluster size, because its sensitive volume is the smallest of the three, while
the distribution measured by the Ion counter is shifted to higher cluster sizes, because of
its higher detection e�ciency which allows to analyse bigger clusters as well.

2.3 Experimental nanodosimetry with the Startrack counter

An extensive study of particle track structure has been carried out with the Startrack
counter in the standard working conditions of 300 Pa of propane pressure, corresponding
to a mass thickness of the sensitive volume of 2µg/cm2 (Conte, 2012; Conte, 2014). The
ionization cluster size distributions Pν(Q, d,D) have been measured for protons, deuterons,
lithium and carbon ions, at several incident energies and impact parameters. The impact
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2.3 � Experimental nanodosimetry with the Startrack counter

Figure 2.6: Ionization cluster size distributions measured with the Jet counter (green), the Ion counter
(orange) and the Startrack counter (blue), for 72-MeV carbon ions at impact parameter d = 0 mm.

Ion type
E E/m (λρ)ion D/λion

Max Eδ Max (Rρ)δ
[MeV] [MeV/u] [µg/cm2] [keV] [µg/cm2]

1H 20 20 2.05 1.0 43.6 2010
2H 16 8 0.941 2.2 17.4 411
6Li 48 8 0.105 19.3 17.4 411
7Li 26.7 3.81 0.0565 35.6 8.31 115
12C 96 8 0.0261 77.6 17.4 411
12C 240 20 0.0569 35.6 43.6 2010

α source 5.8 1.45 0.0587 34.5 3.16 22.4

Table 2.1: Summary of the radiation qualities used for the study at 300 Pa of propane pressure. For
each primary ion, the following parameters are given: the speci�c energy E/m, the mean free path for
primary ionization (λρ)ion, the mean number of primary ionizations along the target diameter D/λion, the
maximum energy Eδ of secondary electrons and their corresponding maximum mass range (Rρ)δ.

parameter d was varied between 0 mm and 8 mm, corresponding to an equivalent distance
between 0 and 44 nm, after scaling at unit density. The beam diameter, as de�ned by the
collimators system, was 0.8 mm, corresponding to 4.4 nm at unit density.

Table 2.1 reports the ion type, energy and mass mean free path for primary ionizations
of the analysed radiation qualities, together with the maximum energy of the secondary
electrons set in motion by the primary ions and an estimation of their maximum range.
Even if the penumbra of particle tracks extends to much wider distances than the range of
impact parameters considered in this study, about 99% of all ionizing collisions produced
by secondary electrons take place within a distance of 50 nm from the primary track (Conte,
2012), and the number of electrons with an energy close to the maximum one is very small.
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Figure 2.7: Ionization cluster size distributions at impact parameter d = 0 mm for di�erent radiation
qualities: 20-MeV protons (dark blue squares), 16-MeV deuterons (light blue diamonds), 48-MeV 6Li ions
(green circles), 240-MeV carbon ions (yellow triangles) and 96-MeV carbon ions (red upside-down triangles).
Statistical uncertainties are plotted.

In the following, the main results of this study are presented separately for the case
of the track core (d ≤ D/2) and the penumbra region (d > D/2). The case of impact
parameter d = 0 mm is analysed in more detail.

2.3.1 Cluster-size distributions in the track core region

Figure 2.7 reports the measured ionization cluster size distributions for 20-MeV protons,
16-MeV deuterons, 48-MeV 6Li ions, 240-MeV and 96-MeV carbon ions. The probability
distributions have two di�erent shapes: either a monotonic decrease with a maximum at
cluster size zero or a peaked shape with a maximum at a cluster size that depends on the
radiation quality. This is explained by the di�erent average number of primary ionizations
in the sensitive volume, given by D/λion: in particular, for protons and deuterons this
number is 1 and 2 respectively (see Table 2.1), while it is about 20 or higher for all other
radiation qualities. Given an average detection e�ciency of 20%, these values are in good
agreement with the position of the maxima in the cluster size distributions.

The shape of the Pν distributions depends therefore critically on the value of D/λion.
Due to this, the distribution for particles of the same charge state is shifted to higher cluster
sizes when the velocity is lower, due to the higher ionization cross section at lower speci�c
energy. For particles at the same velocity, the primary ionization cross section scales with
the Z2 of the incident ion, shifting the cluster size distribution to higher clusters the
higher the ion charge state. For particles of the same D/λion, the shape of the distribution
is approximately the same (Conte, 2014).
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(a) (b)

Figure 2.8: (a) Ionization cluster size distributions for 240-MeV carbon ions at di�erent impact parameters
in the penumbra region, scaled by the factor (d/D)−2.55: 4 mm (upside-down triangles), 5 mm (diamonds),
6 mm (triangles) and 8 mm (circles); (b) Ionization cluster size distributions at an impact parameter d =
4 mm for di�erent radiation qualities, scaled by D/λion: 96-MeV carbon ions (red upside-down triangles),
26.7-MeV 7Li ions (yellow diamonds), 48-MeV 6Li ions (green circles), and 20-MeV protons (blue squares).
In both cases, the probability of cluster size zero has been recalculated from the normalization equation.

If other impact parameters in the range d ≤ D/2 are considered, it is found that the
position of the maximum decreases with increasing impact parameter, due to the shortening
of the average chord length through the sensitive volume. In the track core region, the
shape of the cluster distribution is therefore mainly determined by the ionization mean
free path of the primary particle, especially when the latter is short with respect to the
dimensions of the sensitive volume. However, the contribution of secondary electrons a�ects
the cluster size distribution, in particular at higher cluster sizes, and cannot be neglected
even in the track core region.

2.3.2 Cluster-size distributions in the penumbra region

In the penumbra region, it was found that the shape of the cluster size distribution is very
similar for all impact parameters and radiation qualities: a high probability of measuring
zero electrons followed by an exponential decrease for higher cluster size, with approx-
imately the same slope for all impact parameters. For ν > 0, the distributions di�er
therefore only by a constant factor. The only exception is the case of d = 3 mm, for which
a non-constant slope is visible, especially at lower clusters, due to the dense ionization
cloud in the immediate vicinity of the primary track.

The decreasing probability of measuring cluster size greater than zero with increasing
impact parameter is due to the combined e�ect of degradation of secondary electrons and
reduction of the solid angle under which the sensitive volume is seen by the primary beam.
The measured F1 values scale with the impact parameter approximately as (d/D)−2.55,
almost independently on the radiation quality (Conte, 2012). The dependence of the
probability distributions on the impact parameter d is therefore only due to this factor, as
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Figure 2.9: Mean ionization cluster size as a function the impact parameter d, for di�erent radiation
qualities, normalized to the value at d = 0 mm: 26.7-MeV 7Li ions (violet), and carbon ions at 240 MeV
(blue), 150 MeV (green) and 96 MeV (orange). Di�erent symbols correspond to di�erent measuring shifts.
For some of the data, uncertainties are plotted on both M1 and d. The latter are estimated as 2/3 of the
beam radius, i.e. ± 0.25 mm.

shown in Figure 2.8(a).
The shape of the curve does not change with the type of primary particle or its velocity,

however, the probability of measuring a cluster size greater than 0 is higher for ions with
higher primary ionization density, due to the higher number of secondary electrons set in
motion along a relevant track length. This suggests therefore a scaling on D/λion, which
is presented in Figure 2.8(b): the probability of cluster sizes greater than zero is directly
proportional to the mean number of primary ionizations along a relevant track segment.

The probability of a delta electron to enter the sensitive volume depends therefore
critically on both impact parameter (scaling as (d/D)−2.55) and radiation quality (scaling
withD/λion). However, if the electron indeed enters the sensitive volume, the probability of
occurrence of a given ionization cluster is independent of these parameters. Similar results
on the independence of the shape of the Pν distribution in the penumbra region from
impact parameters and radiation quality were obtained with ion-counting nanodosimeters
(Hilgers, 2017; Bashkirov, 2009).

For each impact parameter, the mean value M1 of the ionization cluster size distribu-
tions also scales with the average number of primary ionizations D/λion. Its dependence
on the impact parameter d is instead shown in Figure 2.9: it shows a nearly constant value
in the track-core region and a marked decrease when the primary beam begins to exit from
the sensitive volume. For large impact parameters, i.e. from about 4 mm, the steepness
of this decrease is reduced and the values of M1 scale approximately with the solid angle
under which the sensitive volume is seen from the primary particle, i.e. roughly as 1/d2.
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2.4 Monte Carlo study of particle tracks

Monte Carlo methods are intrinsically suited to solve the problem of radiation transport
and degradation inside a medium, due to their stochastic nature and lower need for sim-
plifying assumptions as compared to analytical calculations. For macroscopic target vol-
umes, the condensed history approach (Berger, 1963) is usually applied in order to obtain
a su�cient level of accuracy in the description of the physical processes with reasonable
computing times. However, this approach is inadequate for nanodosimetry: a step-by-step
simulation of all the interactions is required for a detailed study of particle track structure.

To address this aim, many track structure codes have been developed (see (Nikjoo,
2006) for a detailed list). These codes model explicitly all collisions of the primary particle
and the secondary electrons down to an energy of about 10 eV for electrons and around
0.3 MeV/u for ions. Apart from the physical track structure description, some of these
codes also extend their modelling capability to the chemical di�usion of radicals and DNA
damage, for instance Geant4-DNA (Incerti, 2010b; Bernal, 2015), partrac (Friedland,
2011) and kurbuc (Uehara, 1993).

The main disadvantage of these codes is that they include cross section for either water
vapour or liquid water only, and the simulations cannot be directly compared to experimen-
tal data. In order to overcome this problem, a home-made code, called MC-Startrack, was
developed by Grosswendt (Grosswendt, 2002a) to simulate the physics of the Startrack
counter. It includes cross section databases for propane, nitrogen and carbon dioxide,
which allow to simulate both pure propane and propane-based tissue-equivalent mixtures.
Its main features and its validation against experimental data are described in the follow-
ing.

2.4.1 The MC-Startrack code

The MC-Startrack code can simulate the track structure of electrons and light ions in an
energy range of 10 eV to 100 keV and 0.1 MeV/u to 100 MeV/u, respectively. It is based
on three main assumptions:

� A light ion travels along straight lines in the medium without changing its nature:
i.e., elastic scattering and nuclear collisions are neglected for short track segments;

� Energy transfers to the medium due to excitations and ionizations do not appreciably
change the primary particle energy;

� Charge-changing processes can be neglected; electron pick-up is taken into account
by means of an e�ective charge state, which depends on the ion velocity.

The simulation of the primary particle track is therefore reduced to that of its ionizing
interactions, while the transport and degradation of secondary electrons is simulated in
detail.

The calculation of the total ionization cross section for the primary particle and the
single-di�erential one with respect to energy can be based on two di�erent models, the
Hansen-Kocbach-Stolterfoht (HKS) model (ICRU, 1996) or the one by Rudd (Rudd, 1992).
The HKS model is based on an impact-parameter dependent semi-classical calculation
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for each electron shell of the target molecule; the electrons are treated independently
assuming a screened hydrogen-like wave function. The total cross section is then obtained
by summing on the contribution from all shells.

The Rudd model is a semi-empirical parametrization based on the molecular promo-
tion model at low energies and on the classical binary encounter approximation at higher
energies, corrected to agree with the Bethe theory of ionization (Rudd, 1988). Since the
model was originally developed only for proton impact, the cross section for a di�erent ion
of charge state Z and kinetic energy E/m is derived by scaling the proton cross section at
the same speci�c energy by Z2. In both cases, the secondary electron spectrum is assumed
to be independent of Z. For the speci�c case of propane, since no set of parameters was
derived in the original work by Rudd et al. (Rudd, 1992), the cross sections were derived
from those for methane by scaling on the ratio of the number of valence-shell electrons for
both molecules, as proposed by Wilson and Toburen (Wilson, 1975).

To determine the polar emission angle of the ejected electron, the double-di�erential
cross section provided by the HKS model is used. Since the track is assumed to have
cylindrical symmetry, the azimuthal angle is assumed to be uniformly distributed between
0 and 2π.

For what concerns the transport and degradation of secondary electrons, elastic scat-
tering, ionization and excitation processes are taken into account. The total cross section
(which determines the mean free path) is then given by the sum of the partial cross sec-
tions for each of these processes, grouping under the label of �excitations� all non-ionizing
processes. Since the medium is assumed to be homogeneous and unpolarised, the electrons
are assumed to travel along straight lines between one interaction and the next. The elec-
trons are transported as long as their energy exceeds 10 eV, a value somewhat lower than
the ionization threshold, which is 11.1 eV for propane, 15.6 eV for nitrogen and 10.9 eV for
liquid water. When their energy becomes less than 10 eV, the transport is stopped and the
residual energy is assumed to be deposited locally.

Elastic scattering is treated by using the Rutherford di�erential cross section dσel/ dΩ
with respect to angle, modi�ed to take atomic screening into account. Its integration on
the solid angle therefore gives the total elastic scattering cross section as a function of the
incident electron energy. However, both the di�erential and the total cross sections depend
on the atomic screening parameter η, which is a�ected by large uncertainties at low energies.
An additional �tting of experimental data with a correction factor at energies below 30 eV
was therefore used to obtain a third functional dependence for the total elastic scattering
cross section σel; in this way dσel/ dΩ, σel and η can be determined as a function of the
incident electron energy. The azimuthal angle is again assumed to be uniformly distributed
between 0 and 2π.

Excitation processes are treated di�erently for di�erent target media. For nitrogen and
carbon dioxide, two di�erent functional forms are considered, one for allowed transitions
and Rydberg states, and another for forbidden transitions (Grosswendt, 2000). The pa-
rameters from which the cross sections depend are taken from (Porter, 1976) in the case of
nitrogen and from (Jackman, 1977) in the case of carbon dioxide. In the case of propane,
one integrated cross section for atomic excitation is used, derived by Chouki (Chouki,
1994) from a �t on experimental data. For all three gases, cross sections for a set of vibra-
tional excitations, molecular dissociation and electron attachment are implemented, even
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Figure 2.10: Electron-impact cross sections for propane implemented in the MC-Startrack code: total
scattering cross section (red), cross section for elastic scattering (green), excitation processes (violet) and
ionization (blue).

if their contribution is less relevant and can in some cases be neglected (De Nardo, 2002a).
After an excitation process, the �ight direction of the incident electron is assumed to be
unchanged, and its energy is decreased by the amount lost to the target molecule. The
excitation energy is assumed to be absorbed locally.

Both for propane and carbon dioxide, an integrated ionization cross section over all
molecular subshells is considered, which is in both cases derived from (Chouki, 1994) in an
analogous way as for propane excitations. For nitrogen, four di�erent molecular subshells
were considered, and for each one the cross section was derived from the binary-encounter-
Bethe model (Kim, 1994) using the data of (Hwang, 1996) for the binding energies, kinetic
energies and occupation numbers. The di�erential cross section with respect to energy was
modelled by a Breit-Wigner curve, as proposed by (Green, 1972). Due to energy conserva-
tion, the maximum secondary electron energy was assumed to be εmax(T ) = 1

2(T − I(T )),
where T is the incident electron energy and I(T ) the ionization potential of the target
molecule. The faster electron is assumed to be the primary one. The ionization potential
I(T ) was assumed to depend on incident energy in order to take into account the contribu-
tion from inner shells; this dependence was obtained from a weighted mean of the binding
energies, using the partial cross sections of each subshell (Hwang, 1996) as weighting factor.

After ionization, the polar angle of emission of the ejected electrons was calculated from
the kinematic equations of Berger (Berger, 1970), including some corrections at energies
lower than 200 eV to improve the agreement with experimental data; in particular, an
isotropic distribution is used at energies below 50 eV. The azimuthal angles are uniformly
distributed between 0 and 2π, with the constraint ϕ2 = π − ϕ1, arising from momentum
conservation.
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(a) HKS model (b) Rudd model

Figure 2.11: Comparison between experimental and simulated ionization cluster size distributions at
impact parameter d = 0 mm for di�erent radiation qualities: 20-MeV protons (blue squares), 16-MeV
deuterons (violet diamonds), 48-MeV 6Li ions (green circles) and 26.7-MeV 7Li ions (orange triangles). The
simulations have been carried out using (a) the HKS (dashed lines) and (b) the Rudd model (continuous
lines) for primary ionizations. For the experimental data, statistical uncertainties are plotted.

The trend of the electron-impact cross sections implemented in MC-Startrack is shown
in Figure 2.10 for the case of propane. For a more detailed description of the cross section
models, the reader is referred to (De Nardo, 2002a; Grosswendt, 2002b; Grosswendt, 2000).

2.4.2 Validation of the MC-Startrack code

The results of the MC-Startrack code were validated against the experimental ionization
cluster size distributions measured with the Startrack counter, in order to assess which
of the two primary ionization models, i.e., the HKS or the Rudd one, leads to a better
agreement with experimental nanodosimetric data (Grosswendt, 2014). To some extent,
the response function of the counter was implemented in the code: in particular, the non-
uniform detection e�ciency, an additional ampli�cation e�ciency factor and the loss of
resolution for bigger clusters due to insu�cient time separation of the collected electrons
were considered.

Figure 2.11 shows a comparison between some of the experimental data for impact
parameter d = 0 mm already presented in Figure 2.7 and Monte Carlo simulations, carried
out either with the HKS or the Rudd model. For protons and deuterons, the HKS model
seems to reproduce better the experimental data, however, the agreement is worse for
densely ionizing particles such as low-energy 7Li ions. For the case of 48-MeV 6Li ions,
both simulated distributions are slightly shifted with respect to the experimental one, the
Rudd one at lower clusters and the HKS at higher ones. The agreement at high clusters is
however much better with the HKS model.

If the penumbra region is considered, the agreement between measured and calculated
distributions is de�nitely better with the Rudd model: the distributions simulated with the
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(a) HKS model (b) Rudd model

Figure 2.12: Comparison between experimental and simulated ionization cluster size distributions at
impact parameter d = 4 mm for di�erent radiation qualities: 20-MeV protons (blue squares), 48-MeV 6Li
ions (green circles) and 96 MeV carbon ions (yellow triangles). The simulations have been carried out
using (a) the HKS (dashed lines) and (b) the Rudd model (continuous lines) for primary ionizations. For
the experimental data, statistical uncertainties are plotted.

HKS model highly overestimate the cluster size distributions for all radiation qualities, as
shown in Figure 2.12. This better agreement is related to the smaller number of secondary
electrons set in motion when the Rudd model is used (Grosswendt, 2014). A similar
better agreement is also found if the M1 pro�le as a function of the impact parameter is
considered.

The agreement between measured and simulated distributions is therefore better if the
Rudd model is applied, in particular in the penumbra region, and for densely-ionizing
particles also in the track-core. For sparsely-ionizing particles a reasonable agreement is
also obtained with the Rudd model, even if not as good as with the HKS one. For these
reasons, the Rudd model was used in all further simulations presented in this work, even
if the HKS model has the advantage of having no adjustable parameter (as opposed to the
11 free parameters of the Rudd model) and being directly applicable to all ion types.

2.5 Stochastics of the ionization yield in di�erent materials

Since the ionization cross section and particle transport properties depend on target mate-
rial, it can be expected that the ionization yield in nanometric target volumes will change
if di�erent target materials are considered. This is not a problem for a computational
study of track structure, as long as a database of relevant cross sections is available for the
material of interest. However, an experimental study of track structure is not feasible in
all materials, especially in the condensed phase.

Due to this limitation, the question arises if the ionization yield measured or calculated
in one material can be related to that in a di�erent one, and in particular to liquid water,
which is commonly assumed as a substitute for biological tissue. In order to investigate
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this point, the stochastics of the ionization yield is discussed in the following in greater
detail; a possible procedure to relate cluster size distributions measured or calculated in
di�erent materials is then presented.

2.5.1 The compound Poisson process

If a travelling length of the order of the nanometre is considered, the energy loss of the
primary particle can be neglected, and a constant ionization cross section can be assumed
along the particle path. Since each interaction occurs independently of the previous ones,
the number of primary ionizations along such a track segment will depend only on the ratio
between the considered track length D and the mean free path for primary ionizations λion;
in particular, it will be given by a Poisson distribution of parameter κ(Q,D) = D/λion,
where the overbar stresses the fact that it corresponds to the average number of primary
ionizations.

If the secondary electron contribution is considered, each primary ionization can (at
least in principle) give rise to a secondary electron track, and the probability distribution
of the number of ionizations inside a volume of size D whose centre is located at a distance
d ≥ 0 mm from the particle track is given by a compound Poisson process (De Nardo,
2002a):

Pν(Q, d,D) =

∞∑
κ=0

[κ(Q,D)]κ e−κ(Q,D)

κ!
· p(κ)
ν (Q, d,D) (2.5)

In the above equation, the �rst term in the summation is the Poisson probability of
producing exactly κ primary ionizations along the track segment, given a mean number κ of
ionizations. The second term represents the probability that, given a number κ of primary
ionizations, a cluster size ν is produced inside the target volume. Since primary ionization
events are statistically independent, this probability is given by the κ-fold convolution of
the probability distribution p(1)

ν (Q, d,D) for single primary ionizations (κ = 1):

p(κ)
ν (Q, d,D) = p(1)

ν (Q, d,D) ∗ p(1)
ν (Q, d,D) ∗ . . . ∗ p(1)

ν (Q, d,D) (2.6)

The convolution operation, indicated by the asterisk, is performed κ times (κ-fold convo-
lution), and is de�ned for two discrete functions fν and gν as (f ∗ g)ν =

∑ν
µ=0 fν−µgµ.

The probability distribution p(1)
ν (Q, d,D) is independent of the stochastics of primary

ionizations, but depends only on the properties of secondary electron ejection and degrada-
tion in the material. Because of this, it depends only on the speci�c energy of the primary
particle; as opposed to κ which depends both on its charge state and speci�c energy.

The moments of the p(1)
ν (Q, d,D) can also be de�ned:

mξ =
∞∑
ν=0

νξ p(1)
ν (Q, d,D) (2.7)

Using the formalism of characteristic functions, it can be shown (De Nardo, 2002a) that the
momentsmξ are related to the momentsMξ of the full probability distribution Pν(Q, d,D).
This can be understood given the strong relation between the corresponding probability
distributions implied in the compound Poisson process. In particular, the moments mξ are
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related to the cumulants(1) Cξ of the Pν distribution through the mean number of primary
ionizations κ(Q,D):

Cξ(Q, d,D) = κ(Q,D) ·mξ(Q, d,D) (2.8)

Since the �rst cumulant is the mean value of the distribution and the second is the variance,
for the speci�c cases of ξ = 1 and 2 it can be obtained that

M1(Q, d,D) = κ(Q,D) ·m1(Q, d,D)

M2(Q, d,D)− [M1(Q, d,D)]2 = κ(Q,D) ·m2(Q, d,D)
(2.9)

The ratio of the second to the �rst moment of the p(1)
ν (Q, d,D) distribution is therefore

independent of κ(Q,D) and can be obtained from the ratio of the variance and the mean
of the full Pν(Q, d,D) distribution.

2.5.2 Material equivalence

The problem of a possible correspondence between ionization yields measured or calcu-
lated in di�erent materials has been analysed by Grosswendt et al. (Grosswendt, 2004a;
Grosswendt, 2004b), considering in particular the �lling gases used in experimental nan-
odosimetry, namely propane and nitrogen, compared to liquid water. Their analysis starts
from the consideration, supported by some experimental evidence (Wilson, 1975), that the
energy distribution of secondary electrons depends only weakly on the chemical structure
of the target molecule. This can be explained by the fact that ionizing interactions usually
take place with electrons of the external molecular shells, which have a low binding energy,
and the energy transfer is not limited to well-de�ned quanta as in the case of excitations.
It should therefore be possible to derive a scaling procedure to relate ionization cluster-size
distributions in di�erent materials.

A �rst requirement is that the two distributions have the same mean cluster size M1.
Using Eq. 2.8 and the fact that κ(Q,D) = D/λion, it can be obtained in terms of mass per
area:

(Dρ)H2O = (Dρ)gas ×
(λρ)H2O

ion

(λρ)gas
ion

× mgas
1 (Q, d,D)

mH2O
1 (Q, d,D)

(2.10)

where ρ is the target density. Apart from a density scaling, the �rst fractional term is
related to the ionization cross section for the primary particle and the second one to the

(1)The cumulants of a probability distribution can be obtained from the natural logarithm of the char-
acteristic function Φ(ω):

Cξ = i−n
d(n) ln[Φ(ω)]

dω

This is analogous to the way the moments of the distribution can be obtained from the characteristic
function itself:

Mξ = i−n
d(n)Φ(ω)

dω

The cumulants of a probability distribution are related to its moments and vice versa. In particular, the
nth-cumulant is an nth-order polynomial function of the �rst n moments. For the �rst two cumulants, the
following relations are valid:

C1 = M1 C2 = M2 −M1

i.e., the �rst cumulant is the mean value of the distribution, while the second is the variance.
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Figure 2.13: Comparison between cluster size distributions obtained by Monte Carlo simulations for
4.6-MeV α particles at an impact parameter d = 0 mm, with varying target sizes in di�erent materials:
(Dρ) = 0.4µg/cm2 in nitrogen (empty squares), propane (full squares) and liquid water (diamonds);
corresponding distributions for target dimensions scaled according to Eq. 2.11: (Dρ) = 0.578µg/cm2 for
nitrogen (empty circles), (Dρ) = 0.321µg/cm2 for propane (full circles). From (Grosswendt, 2004b).

transport and degradation of secondary electrons. An analogous requirement can be made
for all the higher order cumulants Cξ, giving rise to a set of equations identical to Eq. 2.10
apart from the substitution of m1 with mξ in the last term. An exact correspondence
between target sizes in di�erent materials seems therefore possible only if the ratio of the
same-order moments of the probability distribution p(1)

ν in both materials is constant.
An approximate scaling procedure can however be derived by assuming that sec-

ondary electron production and transport are similar in the two materials. In this case
mgas
ξ ≈ mH2O

ξ , and the last term in Eq. 2.10 can be set equal to 1 for all values of ξ, re-
gardless of radiation quality, target size and impact parameter. The water-equivalent size
can therefore be obtained by scaling on the ratio between the mean free paths for primary
ionizations in the two media:

(Dρ)H2O = (Dρ)gas (λρ)H2O
ion

(λρ)gas
ion

(2.11)

This scaling is in particular valid for all those cases where the secondary electron contri-
bution is negligible (for instance, low-velocity primary particles, target crossed along its
central axis and/or small target size). An example of the results of this approximate scal-
ing procedure is reported in Figure 2.13, for cluster-size distributions obtained by Monte
Carlo simulations.

The general validity of this approximate scaling procedure has been veri�ed by Gross-
wendt et al. (Grosswendt, 2004a) for low-energy (approximately 5 MeV) α particles in
target volumes �lled with propane or nitrogen, both for central crossing of the primary
beam and in the penumbra region of particle tracks. A very good agreement was found
between the cluster size distributions measured and simulated in the gaseous medium and
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Figure 2.14: Mean free path for primary ionization for α particles as a function of the speci�c energy,
in nitrogen (solid circles), propane (solid triangles) and liquid water (empty circles). From (Grosswendt,
2004b).

the simulated ones in liquid water, if the target sizes are scaled according to Eq. 2.11.
Moreover, the trend of the mean free path for primary ionizations as a function of the spe-
ci�c energy is very similar in the three materials which were considered (see Figure 2.14).
Their ratio depends therefore only weakly on primary particle energy, and since the ion-
ization cross section also scales with the square of the charge state of the incident ion, a
unique scaling factor can be applied for all types and energies of the primary particles.
This factor is equal to 1.24 for propane and to 0.693 for nitrogen.

2.6 Nanodosimetric descriptors of radiation quality

As discussed in Chapter 1, LET has been traditionally used as a physical descriptor of
radiation quality, even if its correlation with radiobiological e�ects is not straightforward.
This can be traced back to two main shortcomings of LET: namely, it does not take into
account the stochastic nature of particle track structure and it is not easily measurable
in unknown radiation �elds. On the other hand, nanodosimetric quantities derived from
ionization cluster size distributions are measurable and intrinsically suited for a stochas-
tic description of the radiation quality. They could therefore be ideal candidates for the
development of a possible correlation between measurable physical quantities and radiobi-
ological e�ects. The complementary cumulative distribution functions Fk, which represent
the probability of measuring a cluster of k or more electrons within the sensitive volume,
are particularly suited for this purpose, since they are intuitively linked to damage com-
plexity: if a primary particle hits a DNA strand, the degree of clustering of the initial
ionization yield within nanometric distance is likely to be correlated to the probability of
late damage (Goodhead, 1994).
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Figure 2.15: Synopsis of the F2 values as a function of M1, measured with the three nanodosimetric
counters in propane and nitrogen, for di�erent incident radiation qualities.

In the framework of the BioQuaRT(2) project, extensive measurement campaigns were
carried out with the three nanodosimeters, in order to compare their response in various
operating conditions. This comparison gave rise to a very interesting result which is shown
in Figure 2.15: if the track core region is considered, the cumulative probability F2 of
measuring at least two ionizations in the sensitive volume describes a unique curve when
plotted as a function of the mean ionization yield M1, regardless of the incident radiation
quality, the target size and chemical composition, the detection e�ciency and in general the
speci�c response function of each nanodosimeter, even if the ICSD will change according
to these parameters.

A similar result is obtained also for F1 and F3, as shown in Figure 2.16 for measurements
carried out with the Startrack counter: all values lie on unique curves that depend only
on the k value, regardless of the speci�c radiation quality. If the type or the energy of the
primary particle is changed, theM1 value will change, but the corresponding Fk move along
the same curves according to these unique relations. The Fk values for k = 1, 2, and 3 are
thus uniquely determined by M1, regardless of the incident radiation quality and target
parameters.

The behaviour of the cumulative probabilities Fk can be explained starting from the
compound Poisson process discussed in Section 2.5.1: considering the case of central pas-
sage and a 100% detection e�ciency, if κ primary ionizations are produced, a cluster of
ν ≥ κ ionizations will be measured by the counter. Therefore p(κ)

ν (Q,D) = 0 for ν < κ;

(2)https://www.ptb.de/emrp/bioquart-home.html
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Figure 2.16: Complementary cumulative distributions Fk for k = 1 (blue), k = 2 (green) and k = 3 as
a function of the mean cluster size M1, measured by the Startrack counter for di�erent incident radiation
qualities. Symbols correspond to experimental data, solid lines are an interpolation of the data points.

and the summation on κ in Eq. 2.5 does not extend to in�nity but is limited to κ ≤ ν:

Pν(Q,D) =

ν∑
κ=0

[κ(Q,D)]κ e−κ(Q,D)

κ!
· p(κ)
ν (Q,D) (2.12)

The probabilities P0, P1 and P2 can be calculated taking into account that p(0)
ν = δ0ν :

P0(Q,D) = e−κ(Q,D)

P1(Q,D) = κ(Q,D) p
(1)
1 (Q,D) e−κ(Q,D)

P2(Q,D) = κ(Q,D) p
(1)
2 (Q,D) e−κ(Q,D) +

1

2
[κ(Q,D)]2 [p

(1)
1 (Q,D)]2 e−κ(Q,D)

(2.13)

Taking into account that M1(Q,D) = κ(Q,D)m1(Q,D), the unique curves found for
F1, F2 and F3 con�rm that the single-electron probability distribution p(1)

ν (Q,D) depends
only weakly on radiation quality and site size. The weak dependence on particle type and
energy is more easily understandable given the similar shape of the low-energy part of the
secondary electron spectrum at di�erent speci�c energies of the primary ion. The weak
dependence on target size D is however more di�cult to explain, since the site size for the
three nanodosimeters di�ers by one order of magnitude (25 nm for the Startrack counter,
2 − 20 nm for the Jet counter and 1 − 4 nm for the Ion counter, depending on gas type
and pressure). Part of the explanation could lie in the large fraction of secondary electrons
which are emitted with an energy below the ionization threshold; however, the invariance
with the site size is probably valid only for a limited range of target dimensions.
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Chapter 3

The Startrack counter

The Startrack counter was developed with the aim of studying the ionization component of
particle tracks for light ions of medical interest, in sensitive volumes about 20 nm in size.
It is based on single-electron counting techniques and is installed at the Tandem-ALPI
accelerator facility of INFN-LNL.

This Chapter describes in detail its structure and working principles, its response func-
tion (in particular, its e�ciency and time resolution), and the data analysis procedure.
Finally, the concept of �e�ective� target size is introduced, in order to take into account
the role of the detection e�ciency in the description of track structure properties.

3.1 The single-electron counter

The Startrack counter is installed on the +50° beam line at the Tandem-ALPI accelerator
complex of Legnaro National Laboratories. This complex is composed of a two-stage Van-
der-Graa� accelerator optionally followed by a superconductive resonant-cavities linear
accelerator; ions from protons to gold can be accelerated up to a maximum energy of
about 35 MeV times the ion charge state. For this study, the ions of interest are protons
and other light ions up to carbon, which can be accelerated up to an energy of 20 MeV/u.

As discussed in Chapter 2, the design of the counter is based on the physical separation
between the interaction region and the ampli�cation one. This is done by means of an
electron collector and a drift column in which the electrons di�use so that they reach
the multiplication stage well separated in time. Each recorded pulse is therefore assumed
to be produced by a single primary electron, regardless of its amplitude, removing the
�uctuations due to avalanche statistics.

The single-electron counter is therefore composed of four main parts:

� A sensitive volume, where the interaction of the beam with the �lling gas takes place;

� An electron collector, which extracts the electrons from the sensitive volume and
guides them to the transfer stage;

� A drift column, which separates in space and time the collected electrons, allowing
to count them separately;

� A multi-step avalanche chamber (MSAC), which performs the ampli�cation stage.
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Figure 3.1: Details of the electrodes de�ning the sensitive volume and the electron collector. The top
grey layer represents the base of the connector to the drift column. The thin red square shows the nominal
sensitive volume 3.7 mm in diameter and height. The nominal position of the primary beam is along a
diameter on its median plane. The dash-dotted line shows the axis of rotational symmetry. Modi�ed from
(De Nardo, 2002b).

Each of these four sections is described in the following.

3.1.1 The sensitive volume and the electron collector

The nominal sensitive volume is an almost wall-less cylinder 3.7 mm in diameter and height.
Since it must be transparent to the primary beam and to fast electrons emerging from
particle tracks, it has no physical boundaries (which would absorb secondary electrons
and attenuate and possibly fragment the primary beam), but its border is de�ned by an
electrostatic �wall� which keeps inside the volume the low-energy electrons generated inside
it and repels the ones produced outside. This means that the electric �eld inside the volume
must have a strong vertical component in order to suck the low-energy electrons into the
collector, while outside it a strong radial component must be present in order to give rise
to the repulsion e�ect.

A schematic cross-sectional drawing of the sensitive volume and the electron collector
is shown in Figure 3.1. It can be seen that the nominal sensitive volume is de�ned by
means of four electrodes: the cathode which de�nes the bottom of the cylinder, the �rst
circular electrode of the collector which de�nes the upper surface, and two circular rings
for the lateral one. The spacing between the two rings is equal to the one between the �rst
ring and the collecting hole and the second ring and the cathode.

The shape of all electrodes and support structures was designed with the aim of reducing
electron absorption and secondary emission from their surface as much as possible and of
improving electric �eld uniformity in the sensitive volume area (De Nardo, 1998). In
particular, the cathode has a cavity on its top face to reduce absorption of electrons
which may be scattered towards it, the two rings are only 0.1 mm-thick to reduce �eld
perturbations and the surface of the �rst electrode of the collector which looks towards the
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sensitive volume has been reduced to a minimum. Two external �eld-shaping electrodes are
also present in order to improve the repulsion e�ect of the transversal component outside
the nominal volume: a cylinder coaxial to the cathode and another one around the electron
collector, which has a hole to allow the passage of the ion beam. All the electrodes have
rounded edges to avoid high electric �elds which may cause discharges.

The electrodes are biased with negative voltages, which decrease in absolute value going
from the cathode to the electron collector in order to provide the vertical component of the
electric �eld. The exact voltage values have been chosen in order to maximise the electron
collection e�ciency.

The sensitive volume is joined to the drift column by means of the electron collector,
which is composed of eight 1.5 mm-thick circular electrodes forming an upside-down cone,
to minimize electron absorption. The electrodes are made of a conductive tissue equivalent
plastic (A150) and separated by insulators. They are biased with decreasing negative
voltages and form an electrostatic lens which guides the electrons to the base of the drift
column. A detailed description of the design choices for the electrodes de�ning the sensitive
volume and the collector can be found in (De Nardo,2002b; De Nardo, 1998).

As pointed out before, the physical size of the detecting volume is 3.7 mm in both
diameter and height. The equivalent volume size is de�ned by the density of the �lling
gas, which varies with the type of gas and its pressure. The Startrack counter is �lled with
pure propane, with a pressure in the range 150−300 Pa. The equivalent volume size scaled
at unit density is therefore between 10 nm and 25 nm.

3.1.2 The drift column: drift and di�usion of the electron cluster

The electron collector is connected to the base of the drift column by means of another
truncated cone, de�ned by six circular aluminium electrodes biased independently. Its
purpose is to match the relatively strong (30 V/cm) electric �eld at the top of the electron
collector to the much lower one of the drift column. The initial electron cluster is defocused
by this electrostatic lens, which causes some electron losses on the drift column walls, which
are kept to a minimum by the accurate selection of the electrodes voltages. However, this
defocusing e�ect also improves the time resolution of the detector, due to the di�erent
length of the trajectories of the surviving electrons.

The drift column is composed by a stack of 2 mm-thick stainless steel discs, which are
equally spaced at a distance of 3 mm by insulating rings and connected by a high-precision
resistor chain which acts as a voltage divider. Their internal diameter is 90 mm and the
total drift column length is 17 cm. A scheme of the detector showing the connector and
the drift column is shown in Figure 3.2.

Inside the column, the combined e�ect of the low electric �eld and the frequent collisions
with gas molecules induces a drift motion of the electron cluster superposed to a thermal
di�usion both transversally and longitudinally with respect to the electric �eld lines. The
arrival time of the electrons is Gaussian distributed, with a mean value t = L/vd (where L
is the drift column length and vd is the drift velocity) and a standard deviation σt which
can be expresses as the ratio of the spatial dispersion σL and the drift velocity σt = σL/vd.

The drift velocity can be calculated considering the fact that in order to reach an
equilibrium condition, in each collision with the gas molecules the electrons lose all the
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Figure 3.2: Details of the connector, the drift column and the multi-step avalanche chamber, showing
the six connector electrodes, the rings composing the drift column and the MSAC meshes.

energy they gained between one collision and the next:

vd =
eE

m
τ = µ−E (3.1)

where e and m are the electron charge and mass, respectively, E is the value of the electric
�eld and τ is the mean time between collisions. The factor µ− multiplying the electric �eld
is called mobility of the electrons and is inversely proportional to the gas pressure.

Assuming that all electrons start their drift and di�usion motion from the same spatial
position, the spatial dispersion σL of the cluster at the end of the drift column can be
calculated as

σL =
√

2Dt =

√
2D

L

vd
(3.2)

where D is the di�usion coe�cient, which can be calculated from the kinetic theory of
gases. However, the presence of the electric �eld changes the mean kinetic energy of
the electrons, which cannot be expresses simply by the pure thermal limit ε = 3

2kBT . A
phenomenological quantity, the so-called characteristic energy εk, is therefore introduced
in order to take this fact into account (Peisert, 1984): for a given type of gas, it depends
only on the reduced electric �eld E/P . The di�usion coe�cient can then be expressed as

D =
εk
eE

vd =
εk
e
µ− (3.3)

and the spatial dispersion σL takes the form

σL

(
L,
E

P
,E

)
=

√
2εk
e
· L
E

= σ

(
E

P

)√
L

E
(3.4)
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(a) Drift velocity (b) Spatial dispersion

Figure 3.3: (a) Drift velocity vd of electrons (red) as a function of the reduced electric �eld. (b) Transverse
(blue) and longitudinal (green) normalized spatial dispersion σ0 as a function of E/P . The increasing
di�erence with increasing reduced electric �eld is visible. The data are calculated for a temperature of
20°C. Experimental data from (Schmidt, 1992).

Since the operating pressure is usually �xed by the equivalent volume size under analysis,
Eq. 3.4 can be rewritten as a function of E/P and P instead of E:

σL

(
L,
E

P
, P

)
=

√
2εk
eE/P

· L
P

= σ0

(
E

P

)√
L

P
(3.5)

From the above equations it can be seen that both the drift velocity and the spatial
dispersion depend on the reduced �eld value E/P ; however, for a given E/P value the
spatial dispersion depends also from the absolute value of E (or equivalently, of the pressure
P ). Another issue to be taken into account is that the approximation of the spatial
dispersion being the same in directions parallel and orthogonal to the electric �eld is
acceptable only if the E/P value is not too high: two di�erent di�usion coe�cients DL

and DT must be considered for the longitudinal and transverse directions if this is not the
case.

The dependence of the drift velocity vd and of the longitudinal and transverse normal-
ized spatial dispersion σ0 on the reduced electric �eld are shown in Figure 3.3. In order to
count independently each of the electrons belonging to the initial cluster, it is necessary
that they arrive at the end of the drift column separated by a time interval greater that the
signal formation time. From the above equations, it can be seen that this requires a small
drift velocity and a large longitudinal di�usion, i.e., a low reduced electric �eld. However,
reducing E/P implies also an increase in transversal di�usion, giving rise to absorption
losses on the column electrodes. A good compromise could be found for values between 0.1
and 0.2 V/(cm mbar), for which the longitudinal di�usion is approximately equal to the
transverse one. However, since the MSAC is a fast detector, the requirement of minimiza-
tion of absorption losses is stricter than the one of su�cient time separation. The best
compromise for the reduced electric �eld value is therefore around 0.25−0.3 V/(cm mbar).
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As a �nal remark, it should be noted that in a rigorous analysis the reduced electric
�eld should be expressed not as E/P but as E/N , where N is the number density of
the gas, i.e., the number of molecules per unit volume. The latter is a quantity which
is more directly related to the microscopic description of the kinetic theory, and depends
on both pressure and temperature. However, E/P is easier to measure, and for any given
temperature value the two quantities are proportional to each other. In order to remove the
e�ect of ambient temperature variations, temperature-controlled gauges have been used to
monitor the gas pressure inside the counter.

3.1.3 The multi-step avalanche chamber: ampli�cation stage

To obtain a reliable estimation of the number of electrons belonging to the initial clus-
ter, the detector performing signal ampli�cation must provide high gain and fast timing
properties. For this reason, a multi-step avalanche chamber was selected: using more am-
pli�cation stages allows to work at lower pressure, reach a higher gas gain (of the order
of 107 − 108) and at a given gain to reduce the onset of secondary avalanches. An addi-
tional advantage is that the ions produced in the ionization process are swept away very
fast because of the high electric �eld, preventing charge build-up. These properties make
the MSAC much more suited for single-electron counting than other types of single-stage
proportional counters, such as parallel-plate avalanche counters or multi-wire proportional
chambers (Breskin, 1984).

The multi-step avalanche chamber of the Startrack detector is composed by �ve stainless
steel meshes separated by a 3 mm gap. The wires of the meshes have a diameter of 120µm
and a pitch of 500µm. The signal of the chamber is read by a fast current ampli�er. Since
its rise time is of the order of 10 ns, two electrons separated by 20 ns or more are counted
as separate.

The total gain G of the MSAC is given by the product of the gains Gi of each stage,
multiplied by the transfer e�ciency tij from one stage to the next. Since in this case four
stages are present, the total gain can be expressed as Gtot = G1 t12 G2 t23 G3 t34 G4. It
reaches a value of 2 · 107.

The transfer e�ciency from one stage to the next depends not only on the optical
transparency of the mesh, but also on the ratio of the electric �eld values in the stages
before and after each mesh. In particular, an e�cient transfer from a stage with high
electric �eld to another with a lower one can only take place if the initial avalanche has a
lateral spread greater than the pitch of the wires: this can be understood given the shape
of the electric �eld lines, most of which end on the wire surface in this case.

The development of the avalanche inside the detector can be described by the so-called
�rst Townsend coe�cient α, de�ned as the number of secondary electrons produced by
a single primary one per unit path length along the direction of the electric �eld. The
increase dn of the number n of electrons in the avalanche along the path length dx can
then be expressed as:

dn(x) = α(x)n(x) dx (3.6)

The integration of this expression along a path from one electrode to the following one
gives the total gain of a single stage, which corresponds to the ratio between the �nal and
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the initial number of electrons:

lnG =

∫ xf

xi

α(x) dx (3.7)

It is usually assumed that the Townsend coe�cient α is a function of the reduced electric
�eld E/N only; however, various functional forms for this dependence exist (Aoyama,1985).
Townsend proposed the following relation for the case of uniform electric �eld (Mitev,
2005):

α

N
= Ae

− B
E/N (3.8)

where A and B are gas-dependent parameters. This expression has been experimentally
veri�ed for parallel-plate geometries and moderate electric �eld strengths. However, it was
shown (Mitev, 2005) that if the electric �eld is not uniform α/N is not a unique function
of E/N , but depends also on the gradient of the electric �eld and on the geometry of the
detector in use. This dependence arises from the presence of non-equilibrium(1) between
the electron swarm and the electric �eld; on the contrary, in the equilibrium case α/N
is a function of E/N only. In any case, for a complete characterization of the avalanche
process a microscopic description by means of the Boltzmann equation must be used: for
the equilibrium case, this can be done by iterative numerical methods, while Monte Carlo
techniques are needed for non-equilibrium ones (Mitev, 2005).

The Townsend coe�cient α/N and the gain G are non-stochastic magnitudes which
describe the mean value of the pulse-height spectrum. However, the avalanche process is
intrinsically a stochastic one, and large �uctuation in the number of �nal electrons can
take place. Various theoretical analyses have been carried out in order to understand the
shape of the pulse-height spectrum originated by single-electron avalanches in proportional
counters. The �rst one was carried out by Snyder (Snyder, 1947), who based the analysis on
the assumption that the ionization probability for each electron depends only on the electric
�eld value, regardless of the distance between one collision and the next: in other words,
the ionization probability does not depend on electron energy. With this assumption, if the
average gain is su�ciently high (G > 100), an exponential distribution for the pulse-height
spectrum is obtained.

In practical cases, however, an exponential pulse-height spectrum is observed only for
low and uniform electric �elds (Alkhazov, 1970). This can be explained by the fact that
the electrons lose nearly all their energy in collisions with the gas molecules, and they need
to travel some distance in order to gain enough energy before another ionizing collision can
take place. This distance is equal to I/E, where I is the ionization potential of the gas
molecule and E the value of the electric �eld. Therefore, a constant ionization probability
makes sense only if the mean free path for ionizing collisions λion is much greater than
I/E: in this case, the electrons reach an equilibrium distribution by means of non-ionizing
collisions before further ionizations can take place.

If this assumption is not valid and λion ≈ I/E, the pulse-height spectrum has a de�nite
maximum and a lower variance. In this case, the ionization probability depends not only

(1)The term equilibrium describes a situation in which the distribution function of the electrons belonging
to the avalanche does not depend on spatial position. This requires the presence of a uniform electric �eld
(Mitev, 2005).
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Figure 3.4: Examples of normalized Polya distributions with mean value Xm = 1 and di�erent variance
b. Modi�ed from (Ferretti, 2006).

on the strength of the electric �eld, but also on the previous interactions undergone by the
electron. In particular, by assuming that the probability of further ionizations depends on
the number of electrons already present in the avalanche, a Polya distribution is obtained
(Byrne, 1969; Alkhazov, 1970):

h(X) = C

(
X

Xm b

) 1
b
−1

e−
X

Xm b (3.9)

Xm is the mean value of the distribution (i.e., the average pulse height), b is the vari-
ance and C is a normalization constant, equal to 1/(b Γ(1/b)) (where Γ(x) represents the
Gamma function). No de�nite theoretical framework exists to predict the value of the pa-
rameter b in di�erent con�gurations, and its determination is carried out experimentally.
Some examples of Polya distribution with Xm = 1 and di�erent values of b are shown in
Figure 3.4: it can be noted that for b = 1 an exponential distribution is obtained.

In conditions of high gain and low pressure, secondary electron avalanches can occur
in the detector, giving rise to spurious signals. In particular, two di�erent mechanisms can
trigger this process: UV emission by excited gas molecules and ion neutralization at the
cathode. In both cases, the secondary emission occurs at the electrodes unless the gas is
a mixture of components with di�erent ionization potentials, since these UV photons are
produced by excitation processes in the gas molecules and have an energy lower than the
ionization threshold. In particular, electrons can be extracted by photoelectric processes
or by the energy liberated when an ion reaches the cathode and is neutralized: the latter
process has however a low e�ciency since this energy can be dissipated by other processes
in the cathode itself. An additional advantage of a multi-step ampli�cation detector is that
secondary emission is relevant only if it happens in the �rst stage: in all other cases, the
electrons do not go through the full ampli�cation process and the resulting lower signal
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can be more easily discriminated by the electronic chain.
Extensive studies have been carried out on the probability of secondary avalanches

in the MSAC of the Startrack detector (De Nardo, 1995; Dalla Pellegrina, 1998). They
pointed out the fact that at a given pressure value secondary emission increases with
increasing ampli�cation, and it is higher the lower the pressure. This gives rise to a limit
to the maximum gain: for pure propane, the gain must be kept to values around 107 for
the probability of secondary avalanches to be less than 3% (De Nardo, 1995). Concerning
this, the possibility to introduce a transfer region (i.e., a region with low electric �eld and
no multiplication) has also been studied; the purpose was to increase the lateral spread of
the avalanche due to di�usion, reducing space charge and increasing the maximum gain.
However, this possibility was later discarded, due to the superior performance of a four-
stage ampli�cation con�guration in terms of timing properties (Dalla Pellegrina, 1998).

A �nal consideration should be done about the neutralization of ions produced in the
avalanche process, which can either dissociate in smaller molecules or form larger ones.
These by-products can be deposited on the wires (in particular the larger ones) and lead
to a degradation of the performance (ageing). This is particularly critical for the case of
organic gases, which can form (CH2)n polymers. To minimize these e�ects, materials with
high chemical a�nity to these type of ions must be avoided. Moreover, the gas must be
kept as pure as possible, and wires with large diameter must be used in order to reduce
the electric �eld in their immediate neighbourhood.

3.2 The measuring setup

The counter previously described is inserted in a vacuum chamber, which ensures the
stability of the working pressure and the purity of the gas by means of a gas-�ow system.
This chamber also contains the trigger detector and a 244Cm α calibration source. Another
vacuum chamber is located before the one which contains the detector, and houses the beam
diagnostics. The two chambers are separated by a Mylar window 1.5µm thick, allowing the
passage of the primary beam. A photo of the measuring chambers is shown in Figure 3.5.

For a complete collection of the electron cluster produced by a primary particle, about
20µs are necessary. To minimize pile-up e�ects, the counting rate of the detector must be
kept below 1 kHz, while the minimum beam current produced by the Tandem accelerator
is about 1 nA (109 particles per second). The primary beam is therefore defocused by
means of the quadrupole magnets of the beam line, in order to lower further its intensity.
However, this gives rise to a divergent beam, which must be cleaned before reaching the
counter.

The arrangement of the measuring setup is shown in Figure 3.6. The �rst chamber is
kept in vacuum, at a pressure of about 10−4 Pa, and houses two niobium collimators and
two di�erent detectors which can be alternatively moved into the beam path, by means
of step motors. The �rst is a Faraday cup, which can measure up to a beam intensity of
1 MHz. For lower intensities, the second beam monitor is used, which is a stack of two
micro-channel plates (MCP), able to measure the 2D pro�le of the beam in order to verify
its centring and uniformity. The two MCPs are connected in series in order to reach a
gain of 108. The spatial resolution is given by the area of the reading anode pads which is
1 mm2; the pads are read sequentially and the charge signal of each one is integrated for
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Figure 3.5: Photo of the Startrack apparatus: on the left side, the measuring chamber in which the drift
column and the MSAC of the counter are visible. On the right side, the beam diagnostic chamber with
two collimators, the micro-channel plates and the Faraday cup.

Figure 3.6: Graphical representation of the arrangement of beam monitors and shapers along the nominal
beam path. Numbers from 1 to 5 represent the di�erent collimators; SV is the nominal sensitive volume.
The Veto detector (shown in red) has been removed from the beam line. Figure modi�ed from (Conte,
2010).

1 ms before being processed by the electronic chain. For their operation, the MCPs require
a high vacuum level of about 10−4 Pa. That is the reason why the diagnostic chamber
must be kept in vacuum.

The second chamber houses the single-electron counter, the trigger detector, additional
collimators and the alpha calibration source. Both the counter and the alpha source can be
moved orthogonally to the nominal beam axis by means of step motors, up to a maximum
distance of 10 mm from it, with a position accuracy better than 0.1 mm. Behind the last
collimator, the beam diameter is 0.8 mm. The trigger is a solid state silicon detector, which
is quite fast (signal formation time of about 10 ns) and has a very high e�ciency for the
detection of positive ions. It is reverse biased at −50 V, and the thickness of the depletion
region is 100µm. To reduce further pile-up e�ects, an additional silicon detector with a
large active area (shown in red in Figure 3.6) was used as veto. This option was later
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discarded because it was shown that the rejection procedure did not change signi�cantly
the resulting cluster-size distributions.

The measuring chamber is �lled with propane at a pressure between 150 and 300 Pa.
This gas was chosen because it allows to reach higher gas gains while keeping the probability
of secondary emission to reasonable values (3%); moreover, it ensures a wide lateral spread
of the avalanche (Breskin, 1983). Tests were carried out also with tissue equivalent propane
(propane-TE) and dimethyl ether, which is also almost tissue equivalent (Dalla Pellegrina,
1998; De Nardo, 1995). However, in propane-TE the onset of secondary avalanches started
already at a gain of 106, probably because of the presence of nitrogen (De Nardo, 1995)
which has a high cross section for the production of UV photons. Dimethyl ether was
selected because it is a low di�usion gas, which allows a better de�nition of the sensitive
volume; however, secondary emission has found to be too high also at the lowest gains
(Dalla Pellegrina, 1998). Methane and methane-TE were discarded because of their low
self-absorption of UV light, leading again to secondary avalanches (De Nardo, 1998). In-
stead, bigger polyatomic molecules like propane are more e�cient in absorbing photons,
and allow the dissipation of excess energy in collisions or dissociations.

In order to ensure the purity of the gas and the stability of detector gain over time,
fresh propane is continuously �owed in the measuring chamber, at a �ow rate of 1.8 sccm(2).
The fresh gas is inserted near the MSAC, which is the most critical region due to the
gas degradation induced by the avalanche. A feedback pumping system maintains the
pressure constant inside the measuring chamber, by means of an electric valve controlled
by a pressure gauge. An additional line allows to �ow argon inside the chambers before
opening the vacuum vessel, in order to minimize adsorption of ambient electronegative
gases by the walls.

3.3 Detection e�ciency and time resolution

The total counting e�ciency of the Startrack counter is the product of three factors: the
collection e�ciency of low-energy electrons in the sensitive volume, the transfer e�ciency
in the drift column (i.e. the fraction of electrons which are not absorbed by its electrodes)
and the multiplication e�ciency of the multi-step avalanche chamber, i.e., the fraction of
incoming electrons which give rise to detectable pulses (assuming a constant gas gain). In
short, εtot = εSV · εdrift · εMSAC.

The ampli�cation e�ciency of the MSAC can be estimated by �tting the single-electron
gain distribution with a Polya function and calculating the percentage of counts above the
experimental threshold, as described by (Ferretti, 2006). The e�ciency estimated with this
procedure is usually between 80% and 90%, but depends of course both on the reduced
electric �eld in the MSAC stages and on the noise level.

The collection e�ciency inside the sensitive volume depends on the actual point of
production of the electron, i.e. on the local reduced electric �eld and its gradient; but also
on the absolute gas pressure. The spatial dependence of the product εSV · εdrift was calcu-
lated by means of a dedicated Monte Carlo code, simulating microscopically the electron
transport from the point of production to the �rst mesh of the MSAC, taking into account
(2)The Standard Cubic Centimetre per Minute (sccm) is a unit of measurement for the mass �ow, and

corresponds to a �ow of 1.67 · 10−2 cm3/s of a gas at standard temperature and pressure (101 325 Pa, 0°C).
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Figure 3.7: Colour-coded plot of the e�ciency map εSV · εdrift at a gas pressure of 300 Pa and a temperaure
of 20°C. The white square represents the nominal sensitive volume; the four yellow circles show the position
of the two ring electrodes that help to de�ne the sensitive volume wall. Figure taken from (Conte, 2012).

non-equilibrium phenomena (De Nardo, 2002b). Figure 3.7 shows the resulting e�ciency
map for the standard gas pressure of 300 Pa: it can be seen that the e�ciency has a ra-
dial symmetry and is of course higher for electrons produced near the collector, decreasing
strongly while going towards the cathode. For a given vertical position, the e�ciency is
higher on the central axis, reaching a maximum value of 60% at the centre of the collector
hole. The selectivity of the sensitive volume electrostatic wall was also calculated: it was
found that about 90% of the collected electrons are originated within the nominal sensitive
volume, while only 10% from outside (De Nardo, 2002b).

At a gas pressure of 300 Pa, the average value of the product εSV · εdrift is 23%; the total
detection e�ciency is therefore about 20%. Since the interaction mean free paths scale with
the gas pressure, it is expected that the shape of the e�ciency map is maintained if the
pressure is changed, and the absolute e�ciency values are only scaled by a constant factor.
This point will be further discussed in Chapter 4.

To check the consistency of the e�ciency map, measurements of the e�ciency inside
the sensitive volume were also carried out, by adding a contaminant with low ionization
potential inside the gas and scanning the volume with a laser. Even if the experimental
data were found to be higher than the results of corresponding Monte Carlo calculations,
they suggest that the shape of the e�ciency map is realistic (De Nardo, 2002b).

The response function of the Startrack counter depends not only on its collection ef-
�ciency for a single electron, but also on the size of the cluster. This is because for big
clusters the probability increases that two electrons reach the MSAC separated by less
than 20 ns, giving rise to overlapping signals. This probability can be calculated by nu-
merical methods (Grosswendt, priv. comm.), taking into account the Gaussian arrival time
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distribution of the electrons G(t) and the width of the single impulse ∆t:

η2 =

∫ ∆t

0
dt G(t)

∫ t+∆t

t
dt′G(t′) (3.10)

where t ∈ [0,∆T ] is the arrival time of the �rst electron and t′ ∈ [t, t+ ∆t] is the arrival
time of the second one. This equation assumes that the distribution G(t) is truncated
and renormalized in the time window [0,∆T ] in which the acquisition is active after each
trigger signal. The probability for the two electrons to be counted separately is therefore
1− η2.

If a cluster of µ electrons is considered, the probability that the time distance between
two successive electrons is greater than ∆t is again 1−η2. The probability to count them as
µ separate pulses is therefore given by (1−η2)µ−1; while the probability to count them all as
a single pulse is (η2)µ−1. The probability of counting ν electrons out of an initial number of
µ is therefore described by the binomial distribution B(N, k), with parameters N = µ− 1
(corresponding to the total number of time intervals) and k = µ − ν (corresponding to
the number of time intervals which are smaller than ∆t, i.e., the number of undetected
electrons):

εν,µ =

(
µ− 1

µ− ν

)
(η2)µ−ν(1− η2)ν−1 (3.11)

A matrix can therefore be built, describing the probability of counting ν electrons from
an initial number of µ:

Eν,µ =


1 0 0 0 0 . . .
0 1 ε1,2 ε1,3 ε1,4 . . .
0 0 0 ε2,3 ε3,4 . . .
0 0 0 0 ε4,4 . . .
...

...
...

...
...

. . .

 (3.12)

ν is the row index in the matrix, while µ is the column index. Due to its de�nition as a
probability, a normalization condition on each column applies:

∑µ
ν=0 εν,µ = 1. Since the

counting of zero electrons is possible only if the initial cluster size is zero, ε0,µ = δ0µ.
The measured cluster size distribution Pν is the result of the multiplication of matrix

Eν,µ and the distribution Pµ which corresponds to the ideal case of in�nite time resolution:

Pν =
∞∑
µ=0

Eν,µ Pµ (3.13)

This equation is usually applied to cluster size distribution obtained by Monte Carlo sim-
ulation in order to compare them with the experimental ones. It has been seen that the
change is relevant for cluster sizes greater than 15; however, a dependence of this value on
the gas pressure is expected due to the variation of the longitudinal di�usion.

3.4 Data analysis procedure

After each trigger signal, a PCI analogue to digital acquisition board acquires a waveform of
16µs in length at a rate of 5·108 s−1 (500 MHz), which is then stored for o�-line processing.
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(a)

(b)

Figure 3.8: Example of waveforms sampled by the acquisition system (green) and the corresponding
correlation spectrum (red). The blue line represents the selected threshold level, each blue dot an accepted
pulse. (a) Complete waveform, (b) zoom on a single pulse.

Each waveform correspond therefore to one primary particle. To enhance the signal-to-
noise ratio and help discriminating pulses in rapid succession, correlation techniques are
applied to the acquired spectrum: in particular, the correlation function between the
measured waveform and a test impulse selected from the real measured ones is calculated
by means of a dedicated software. From this correlation spectrum of each waveform, the
number of peaks above a pre-de�ned threshold is computed and stored in a �le for further
analysis, together with the height and arrival time of each pulse. An example of a raw
waveform and the corresponding correlation one is reported in Figure 3.8.

The following analysis steps are shown in Figure 3.9: �rstly, the time and gain dis-
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Steps of the data analysis procedure: (a) scatter plot of the arrival time of the pulses (x
axis) after each trigger signal (y axis); (b) time distribution of the pulses (blue dots) and Gaussian �t
(red curve); (c) gain distribution (orange dots) and Polya �tting function (red curve); (d) resulting cluster
distribution after applying a time window and a lower gain threshold; (e) comparison between on and
corresponding off measurement; (f) �nal cluster size distribution after the deconvolution procedure. The
data are shown for 72-MeV carbon ions at impact parameter d = 0 mm, at a gas pressure of 300 Pa. In the
cluster size distributions, statistical uncertainties are plotted.
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tributions of the accepted pulses are plotted, in order to check that they are consistent
with the expected distributions. A �t is performed by means of a least-squares algorithm,
using a Polya function for the pulse-height spectrum and a Gaussian superposed with a
uniform background for the time-of-arrival one. This uniform background is due to random
coincidences (for instance due to cosmic rays) and spurious pulses due to electronic noise.

In order to eliminate such events, a �lter both in time and in gain is then applied: if a
signal has an amplitude below the given gain threshold, it is discarded and the number of
electrons in the cluster is reduced by one. If a signal has arrived outside the expected time
window, the entire event is discarded and the total number of valid events (i.e., primary
ions) is decreased by one. This is because such an event has a very high probability of
being due to a random coincidence. The �nal cluster size distribution is then obtained by
counting the number of remaining electrons for each primary particle and normalizing the
resulting distribution on the number of valid events.

The cluster size distribution obtained with this procedure is shown in Figure 3.9(d) for
incident 72-MeV carbon ions: it has a maximum at cluster 13 and a long tail up to cluster
40. The latter is due to delta rays emitted by the primary particle which enter in the
drift column through the electron collector hole: the ionizations induced in the propane
gas inside the column are therefore detected with high e�ciency (Conte, 2010). Since
these events are induced by the primary particle, they are correlated with it and most
of them are not eliminated by the �ltering with a time window. This e�ect is of course
more relevant for small impact parameters, due to the higher solid angle under which the
electron collector hole is seen by the incident particle.

In order to compensate for this e�ect, after each measurement a second acquisition
is always performed, in which the electric �eld inside the sensitive volume is reversed
(the so-called off measurements). In this way the electrons produced inside the sensitive
volume are driven to the cathode, and only those produced inside the drift column are
detected. Since in both cases the voltage gap between the cathode and the �rst electrode
of the electron collector is only a few electronvolts, the secondary electron spectrum is
not altered signi�cantly by the �eld reversion. The total measured on distribution (i.e.,
the one with the electric �eld shaped so to collect electrons from the sensitive volume) is
the result of a convolution of the �real� ionization cluster size distribution in the sensitive
volume and the off distribution (Conte, 2010):

P (ON)
ν =

ν∑
j=0

P ∗ν−j P
(OFF)
j (3.14)

An unfolding procedure is therefore applied to reconstruct the distribution of the number
of ionizations inside the sensitive volume only:

P ∗0 =
P

(ON)
0

P
(OFF)
0

; P ∗ν =
P

(ON)
ν −

∑ν
j=1 P

∗
ν−j P

(OFF)
j

P
(OFF)
0

(3.15)

3.5 Determination of the e�ective site size

The physical size of the cylindrical sensitive volume of the Startrack counter is 3.7 mm in
both height and diameter. Since the counter is �lled with pure propane at a pressure of
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(a) (b)

Figure 3.10: (a) Ionization cluster size distributions measured with the Startrack counter at impact
parameter d = 0 mm, for 25-MeV protons (blue), 5.8-MeV α particles (orange) and 16.4-MeV 7Li ions
(green), compared with Monte Carlo simulation with the MC-Startrack code taking into account the
e�ciency map. (b) The same experimental distributions compared with simulations at 100% detection
e�ciency, considering a sensitive volume of 4 nm in propane (equivalent to 5 nm in water).

300 Pa (ρ = 5.47µg/cm3 at a temperature of 25°C), this corresponds to a size of about
20 nm after scaling at unit density. Pure propane is not tissue-equivalent, however, accord-
ing to the approximate scaling procedure discussed in Section 2.5.2, the ionization cluster
size distributions measured in a propane volume of size Dp are the same as those in a
liquid water volume of size Dw = 1.24Dp. The water-equivalent size of the sensitive vol-
ume of the Startrack counter is therefore 25 nm. In this volume, the average experimental
detection e�ciency is 20%.

However, the response function of the counter in�uences strongly the resulting ioniza-
tion cluster size distributions. In particular, the non-uniform detection e�ciency reduces
the number of collected electrons, shifting the distributions to lower clusters. A deconvo-
lution of the response function of the detector from the measured data should therefore
be carried out in order to derive the original cluster distribution in the target volume (De
Nardo, 2002a). Such a procedure is however very complex and prone to errors, moreover, it
requires that both the measured ICSD and the response function of the detector are known
with an accuracy which is much beyond the one presently attainable in experiments. A
di�erent analysis has therefore been carried out, based on the de�nition of an e�ective

target size Deff , in which the ICSD measured at 100% detection e�ciency are the same as
those measured in a bigger volume at a lower and possibly non-uniform detection e�ciency.

The possibility to de�ne such an e�ective target size and its eventual determination in
the case of the sensitive volume of the Startrack counter at 300 Pa of gas pressure were in-
vestigated by comparison with Monte Carlo simulations carried out with the MC-Startrack

code. A �rst set of simulations was carried out taking into account the response function
of the detector, in order to validate the code against experimental data: in particular, the
spatially-dependent e�ciency map, the time resolution and an additional uniform detec-
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tion e�ciency factor (representing, for instance, the MSAC ampli�cation e�ciency) were
included in the simulations. An example of such a validation is reported in Figure 3.10(a),
but also in Section 2.4.2.

Then, another set of simulations for the same radiation qualities was carried out at
100% detection e�ciency, in order to estimate Deff . A �rst guess is that it is equal to the
physical size of the detecting volume (scaled at unit density) multiplied by the average
detection e�ciency:

(Dρ)eff = (Dρ)phys · ε (3.16)

This is supported by the transmission properties of the binomial distribution (De Nardo,
2002a), from which it follows that M exp

1 (Q, d,D, ε) = εM1(Q, d,D); and by the result of
the comparison between ionization cluster size distribution measured with the Ion Counter
and the Jet Counter, measured during the BioQuaRT experiment.

The comparison of the experimental cluster size distributions with the simulations at
100% detection e�ciency in an e�ective volume 5 nm in size is reported in Figure 3.10(b):
the agreement between the distributions is generally quite good, even if some di�erences
are present. The 25 nm sensitive volume of the Startrack counter, which has an average
detection e�ciency of 20%, can therefore be considered approximately equivalent to an
e�ective water target 5 nm in size, in which the detection e�ciency is 100%.

However, a complete correspondence cannot be expected: in the case of a 5 nm volume
at 100% detection e�ciency, the fraction of secondary electrons which are able to escape
the target volume is about 20%, while it decreases to about 3% in the case of a volume
25 nm in size. The degradation of secondary electrons is therefore very di�erent in the
two volumes. The information on the spatial structure of the tracks is partially lost by
the smoothing produced by the bigger volume and low detection e�ciency, however, some
level of invariance of the ionization yield seems to be present in the immediate vicinity of
primary particle tracks, allowing the de�nition of an e�ective target size.
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Reduction of the target size

The Startrack counter has successfully investigated the stochastics of the ionization yield
of di�erent radiation qualities in target volumes of nanometric size. From these measure-
ments, it has been found that the cumulative distributions F1, F2 and F3 are uniquely
determined by the mean ionization yield M1, regardless of the speci�c radiation quality
under analysis. Moreover, measurements carried out with other nanodosimetric counters
also lie on this unique curve, con�rming its general validity regardless of the detection
e�ciency, the type of counting gas, and the sensitive volume size. From this, it could
be expected that also for the Startrack counter, changing the target size (by changing
the gas pressure) or the detection e�ciency will cause a shift in the M1 value, but the
corresponding Fk should move along the same curves accordingly.

In order to test this assumption, tests were carried out at di�erent gas pressures,
corresponding to varying equivalent sizes of the target volume. In particular, the pressure
range below 300 Pa has been investigated, in order to reach e�ective sensitive volume
dimensions of about 1 nm. At the standard propane pressure of 300 Pa, it has been found
that an �e�ective� target size can be de�ned, by scaling the water-equivalent size with the
average detection e�ciency, which is about 20% at this pressure. The sensitive volume of
the Startrack counter is therefore equivalent to an e�ective water volume about 5 nm in
size. If the gas density is further reduced, an e�ective target size of about 1− 2 nm could
be achieved.

However, the reduction of gas pressure will produce a decrease in the detection e�-
ciency, due to the change in the electron transport parameters due to the variation of the
reduced electric �eld. The e�ective target size reduction could therefore be stronger than
what would be expected from the decrease in the gas pressure alone. Moreover, the very
de�nition of an e�ective target size could be problematic at a lower gas pressure: it could
be that the site size at which the measured cluster size distributions are equivalent to those
at 100% detection e�ciency changes with the radiation quality, due to the di�erences in
the secondary electron spectrum.

This Chapter discusses some preliminary tests which have been carried out in order to
characterize the response function of the Startrack counter at a pressure lower than the
standard one of 300 Pa, in order to measure nanodosimetric magnitudes in a volume about
1 nm in size. First results for a pressure of 200 Pa and an impact parameter d = 0 mm
are presented, which show that the response of the counter is consistent in these condi-
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tions. The possibility to de�ne an e�ective target size at this pressure is then discussed.
Afterwards, results at other gas pressures are presented and discussed, together with the
variation of nanodosimetric magnitudes with the site size. Finally, preliminary results for
other impact parameters are presented.

4.1 Measurements at a gas pressure of 200 Pa

At a gas pressure of 200 Pa, the physical size of 3.7 mm of the sensitive volume of the Star-
track counter corresponds to a length in mass per area of 1.35µg/cm2, which is equivalent
to a site size of 13.5 nm when scaled at unit density. The detection e�ciency will also
change as a consequence of the reduction of gas pressure, because of the variation of elec-
tron transport parameters due to the change in the reduced electric �eld. However, these
parameters are not a function of the E/P value only: even if the voltage gaps between the
various stages are scaled in order to keep the E/P ratio constant, the strong non-uniformity
of the electric �eld gives rise to non-equilibrium phenomena which can signi�cantly alter
the transport parameters (Mitev, 2004).

This problem is particularly critical for the sensitive volume and the electron collector,
due to their small size and the strong inhomogeneity of the electric �elds in this area. The
secondary electrons generated by ionizing events are emitted randomly, and must travel
some distance before they reach equilibrium with the electric �eld. This so-called relaxation
length depends critically on the number of inelastic collisions undergone by the electron,
and therefore on the gas density. It is therefore expected that the detection e�ciency and
the selectivity of the sensitive volume are signi�cantly worsened by this e�ect.

Monte Carlo simulations of the electron transport inside the sensitive volume and the
connector should therefore be carried out in order to determine the voltage values that
optimize the detection e�ciency and the selectivity of the electrostatic walls. An experi-
mental determination of the detection e�ciency such as that carried out at a pressure of
300 Pa (described in Section 3.3) should also be made in order to check the consistency of
the detection e�ciency pro�le, given the large uncertainties in the electron impact cross
sections at low energy.

For these �rst tests, the absolute values of the voltage biases have been kept constant
on all the electrodes de�ning the sensitive volume and the electron collector, so that the
reduced electric �eld is scaled by a constant factor in each spatial point of the interaction
region. It has then be assumed as a �rst approximation that the detection e�ciency
scales linearly with the reduced electric �eld. This means that the shape of the e�ciency
map presented in Figure 3.7 is maintained if only the gas pressure is changed, while the
absolute value of the detection e�ciency at each point is scaled by a constant factor which
is independent of spatial position.

This assumption has been checked by comparison between experimental measurements
with the 244Cm α-source and Monte Carlo simulations carried out with the MC-Startrack

code. Figure 4.1 presents a comparison between the experimental ionization cluster size
distributions at 200 Pa and at 300 Pa of gas pressure, compared with simulation results.
The simulated distribution at 200 Pa includes the same e�ciency map used for the sim-
ulations at 300 Pa of gas pressure and an additional e�ciency factor of 24%, in order to
take into account the postulated uniform reduction of the average detection e�ciency with
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Figure 4.1: Comparison between measured and simulated ICSD for α particles from a 244Cm source, at
a gas pressure of 300 Pa (green circles) and 200 Pa (orange squares). Symbols represent experimental data,
lines correspond to Monte Carlo simulations. For the experimental data, the statistical uncertainties are
plotted.

Ion type E [MeV] D/λion εMSAC Add e� MC M1 exp
M1

κ(Q)
corr

1H 25 0.542 78% 21% 0.0371 0.079
7Li 16.4 35.4 99% 27% 3.16 0.081
12C 96 51.7 90% 24% 3.87 0.075
12C 72 65.9 90% 24% 4.90 0.074

α source 5.8 23.0 90% 24% 1.82 0.079

Table 4.1: Summary of the radiation qualities used for the study at 200 Pa of propane pressure. The
M1/κ(Q) values in the last column have been corrected for a MSAC e�ciency of 90%.

decreasing gas pressure. At 300 Pa, this factor was set to 70%. The ampli�cation e�ciency
of the MSAC, estimated from Polya �ts of the gain distributions, is approximately 90%
for both experimental measurements.

The agreement between the experimental and the simulated ICSD at 200 Pa is very
good, con�rming the validity of the above-mentioned approximation. The M1 values are
1.8 at 200 Pa and 7.3 at 300 Pa; from their ratio, the detection e�ciency at 200 Pa can
be estimated to be about 7%, assuming that the M1 values at 100% detection e�ciency
scale approximately with the size in mass per area of the sensitive volume. This approxi-
mation can be justi�ed given the low speci�c energy (1.44 MeV/u) of α particles from the
calibration source.

The investigation has then been extended to other radiation qualities, namely, 25-MeV
protons, 16.4-MeV 7Li ions, and carbon ions of 96 MeV and 72 MeV. Since these measure-
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(a) 1H, 25 MeV (b) 7Li, 16.4 MeV

(c) 12C, 96 MeV (d) 12C, 72 MeV

Figure 4.2: Comparison between measured and simulated ICSD for di�erent radiation qualities, at a
gas pressure of 200 Pa and impact parameter d = 0 mm: (a) 25-MeV protons, (b) 16.4-MeV 7Li ions, (c)
96-MeV carbon ions, (d) 72-MeV carbon ions. Symbols represent experimental data, lines correspond to
Monte Carlo simulations.

ments were carried out in di�erent shifts and in di�erent operating conditions, the MSAC
ampli�cation e�ciency can vary: for each measurement, it has been estimated from the �t
of the pulse-height distribution with a Polya function. Table 4.1 reports, for these radiation
qualities, the value of D/λion at 200 Pa of propane pressure, the estimated value of the
MSAC e�ciency, the experimental mean cluster size distribution M1 and the additional
e�ciency factor included in the Monte Carlo simulations. The result of the comparison
between measured and simulated distributions is shown in Figure 4.2. The additional e�-
ciency factor included in the MC calculations has been estimated by scaling the one used
for alpha particles by the ratio of the MSAC ampli�cation e�ciency in the two cases.

The agreement between measured and simulated distributions is very good for all the
radiation qualities which have been considered. The small di�erences which are present
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Figure 4.3: Mean ionization cluster size M1 as a function of LET in propane, for a gas pressure of 200 Pa
and primary particles of di�erent charge state: Z ≤ 3 (blue), and Z = 6 (red). Symbols correspond to
experimental data, lines are the best �t with a straight line through zero y = mx.

at higher cluster sizes are probably due to incomplete background subtraction (especially
in the case of carbon ions) or small variations in the operating conditions during mea-
surements. For what concerns the M1 values, it can be seen in Table 4.1 that they scale
approximately with D/λion, after a correction for the ratio of the speci�c MSAC e�ciency
with that of the measurement with the alpha calibration source. However, for carbon ions
this ratio is lower than for ions which have a lower charge state, due to the contribution
of secondary electrons to the total M1: in fact,

M1(Q,D, ε) = εM1(Q,D, ε = 1) = ε κ(Q,D)m1(Q,D, ε = 1) (4.1)

(where ε is the average value of the total detection e�ciency), and the contribution of
secondary electrons can change the value ofM1 substantially. This point is further stressed
in Figure 4.3, which shows the corrected values of M1 as a function of LET in propane at
unit density for the incident ion. The proportionality factor between M1 and LET is lower
for carbon ions than for particles of lower charge state, due to their higher velocity for a
given LET value, which gives rise to a broader track.

4.1.1 Estimation of the e�ective volume size

At 200 Pa of gas pressure, the physical size in mass per area of the sensitive volume of
the Startrack counter is 1.35µg/cm2, which is equivalent to 13.5 nm when scaled at unit
density. This is equivalent to a volume size of about 17 nm in liquid water. As for the case
of 300 Pa of gas pressure, the question arises if this physical dimension can be related to
an e�ective target size which takes into account the average detection e�ciency, which in
this case is about 7%, independently of the speci�c radiation quality under analysis.
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Figure 4.4: Comparison between measured ICSD for α particles from a 244Cm source, and simulations at
100% detection e�ciency in a volume of 0.12µg/cm2 of mass per area. The simulated ICSD in a volume
of the �expected� Deff = εDphys is also reported for comparison. For the experimental data, statistical
uncertainties are plotted.

Ion type Energy εMSAC (Dρ)phys C3H8 MC Deff H2O corr

1H 25 MeV 78% 0.10µg/cm2 1.5 nm
7Li 16.4 MeV 99% 0.13µg/cm2 1.5 nm
12C 96 MeV 90% 0.12µg/cm2 1.5 nm
12C 72 MeV 90% 0.12µg/cm2 1.5 nm

α source 5.8 MeV 90% 0.12µg/cm2 1.5 nm

Table 4.2: E�ective volume size obtained for di�erent radiation qualities by comparison with Monte Carlo
simulation with 100% detection e�ciency. The Deff values in the last column have been corrected for a
MSAC e�ciency of 90%.

The possibility to de�ne an e�ective target size has been investigated again with Monte
Carlo simulations carried out with the MC-Startrack code. For the case of a gas pressure
of 300 Pa, this can indeed be done, and it is found that Deff = εDphys. If an analogous
estimation is carried out for the case of 200 Pa, an e�ective target size of 1.2 nm in liquid
water would be expected. This is however not the case: the comparison with Monte Carlo
simulations shows that the e�ective target size is bigger.

Figure 4.4 shows the result of the comparison in the case of α particles from the
244Cm calibration source: the simulated distribution for a target 1.2 nm in size is peaked
at a cluster size much lower than the experimental one. More simulations were therefore
carried out increasing the size of the propane target with steps of 0.4 nm, in order to �nd
the value of D which gives the closest M1 value to the experimental one. The latter was
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4.1 � Measurements at a gas pressure of 200 Pa

(a) 1H, 25 MeV (b) 7Li, 16.4 MeV

(c) 12C, 96 MeV (d) 12C, 72 MeV

Figure 4.5: Comparison between measured ICSD for di�erent radiation qualities and simulations at 100%
detection e�ciency. The volume sizes considered in the simulations have been scaled for the ratio of the
MSAC e�ciency for each speci�c radiation quality to that for α particles. The simulated ICSD in a volume
of the �expected�Deff = εDphys is also reported for comparison. (a) 25-MeV protons, (b) 16.4-MeV 7Li
ions, (c) 96-MeV carbon ions, (d) 72-MeV carbon ions.

found for a sensitive target size of 1.5 nm in liquid water, and in this case, the calculated
ICSD reproduces very well the trend of experimental data.

This value for the e�ective target size is con�rmed by the comparison for other radiation
qualities, shown in Figure 4.5: if the ampli�cation e�ciency of the MSAC is the same as
that for the measurement with the α source, the agreement between the experimental
ICSD and the simulated one in a target of 1.5 nm is very good. In the case of protons and
lithium ions, the MSAC e�ciency is di�erent, so the distribution at 1.5 nm do not show the
same trend as the experimental data. However, if the target size of the simulation is scaled
with the ratio of the MSAC e�ciency with that of the measurement with alpha particles,
a very good agreement is again found (see Table 4.2 for further details). At 200 Pa of
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(a) α source (b) 7Li, 16.4 MeV

(c) 12C, 96 MeV (d) 12C, 72 MeV

Figure 4.6: Comparison between measured and simulated ICSD for di�erent radiation qualities, at a gas
pressure of 170 Pa and impact parameter d = 0 mm: (a) 5.8-MeV α particles from the 244Cm calibration
source, (b) 16.4-MeV 7Li ions, (c) 96-MeV carbon ions, (d) 72-MeV carbon ions. Symbols represent
experimental data, lines correspond to Monte Carlo simulations.

propane pressure, the sensitive volume of the Startrack counter is therefore equivalent to
an e�ective target of 1.5 nm in liquid water.

4.2 Measurements at a gas pressure of 170 Pa

Other preliminary tests have been carried out at a gas pressure of 170 Pa. At this pressure,
the physical size in mass per area of the sensitive volume is 1.15µg/cm2, corresponding to
11.5 nm if scaled at unit density. Also in this case, the voltage biases on all electrodes of
the interaction region and the electron collector have been kept constant, and it has been
assumed that the detection e�ciency scales linearly with the reduced electric �eld.

This assumption has been checked again by comparison between experimental mea-
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4.2 � Measurements at a gas pressure of 170 Pa

Figure 4.7: Mean ionization cluster size M1 as a function of LET in propane, for a gas pressure of 170 Pa
and primary particles of di�erent charge state: Z ≤ 3 (blue), and Z = 6 (red). Symbols correspond to
experimental data, lines are the best �t with a straight line through zero y = mx.

Ion type E [MeV] D/λion εMSAC Add e� MC M1 exp
M1

κ(Q)
corr

7Li 16.4 30.0 90% 14% 1.44 0.048
12C 96 44.0 91% 14% 1.83 0.042
12C 72 56.0 90% 14% 2.33 0.042

α source 5.8 19.6 90% 14% 0.921 0.047

Table 4.3: Summary of the radiation qualities used for the study at 170 Pa of propane pressure.

surements with the α particle source and Monte Carlo simulations. The result of this
comparison is presented in Figure 4.6(a): if an additional e�ciency factor of 14% is consid-
ered in the simulation, the calculated ICSD reproduces very well the trend of experimental
data at 170 Pa of propane pressure. This is con�rmed also by a similar analysis carried out
for other radiation qualities, reported in Figure 4.6: since the MSAC e�ciency, estimated
from a Polya �t on the pulse-height distributions, is about 90% for all of them, the same
factor of 14% has been considered in all simulations. A good agreement is generally found
between the measured and the simulated ICSD, even if at such a low gas pressure the mea-
sured distributions exhibit a longer tail at higher clusters, especially in the case of carbon
ions, which is probably due to incomplete background subtraction. The approximation
of linear scaling of the detection e�ciency with the reduced electric �eld seems therefore
to hold also for a propane pressure of 170 Pa. In this case, the approximate value of the
detection e�ciency, estimated from the ratio of M1 values at 170 Pa and at 300 Pa, is 4%.

The value of D/λion, the experimental M1 value and the ratio of the two are reported
in Table 4.3. At 170 Pa of pressure, M1 still scales approximately with D/λion, however,
a di�erence of about 13% is found in the ratio M1/κ(Q) for carbon ions with respect to
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(a) α source (b) 7Li, 16.4 MeV

(c) 12C, 96 MeV (d) 12C, 72 MeV

Figure 4.8: Comparison between measured ICSD at a gas pressure of 170 Pa for di�erent radiation
qualities, and simulations at 100% detection e�ciency: (a) 5.8-MeV α particles from the 244Cm calibration
source, (b) 16.4-MeV 7Li ions, (c) 96-MeV carbon ions, (d) 72-MeV carbon ions. Symbols represent
experimental data, dotted lines correspond to Monte Carlo simulations.

ions of lower charge state. In the case of 200 Pa, the latter was 9%: this seems therefore
to indicate an increasing di�erence in the contribution of secondary electrons to the total
M1 for smaller volume sizes. This is also con�rmed by the trend of M1 as a function of
LET in propane reported in Figure 4.7: the di�erence between the slope of the best �t line
between carbon ions and particles of lower charge state is 15%, while it is 10% at a gas
pressure of 200 Pa.

4.2.1 Estimation of the e�ective volume size

The possibility to de�ne an e�ective target size, in which the cluster size distributions at
100% detection e�ciency are the same as the measured ones, has also been investigated
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4.3 � Measurements at other gas pressures

Figure 4.9: Measured ICSD for 16.4-MeV 7Li ions, at an impact parameter d = 0 mm, varying the
propane pressure inside the sensitive volume of the Startrack counter.

for a propane pressure of 170 Pa. In this case, the size in mass per area of the sensitive
volume is 1.15µg/cm2, which is equivalent to 14 nm in liquid water, and the detection
e�ciency is about 4%. Given the fact that the de�nition of Deff as the product of the
physical water-equivalent size and the average detection e�ciency does not hold already
at a gas pressure of 200 Pa, the value of Deff has been investigated by carrying out many
simulations varying the propane target size with steps of 0.4 nm, and then choosing for
each radiation quality the one for which the resulting M1 value was closer to that of the
experimental ICSD. The results of this study are reported in Figure 4.8.

It can be seen that for lithium ions and alpha particles the target size which gives
the best agreement with the experimental distribution is D = 0.73 nm (corresponding to
0.91 nm in liquid water), while for carbon ions it is D = 0.66 nm (0.83 nm in liquid water).
The two values di�er by about 10%, implying that the concept of an e�ective target size
seems to fail for small site sizes. However, further measurements with other radiation
qualities and gas pressures are needed in order to con�rm this �nding.

4.3 Measurements at other gas pressures

Further tests have been carried out by varying the propane pressure inside the counter in
the range 150− 300 Pa, with a step of 10 Pa, in order to investigate the operational limits
of the Startrack counter and the variations of nanodosimetric magnitudes with the size in
mass per area of the sensitive volume. This investigation was carried out with 7Li ions
at an energy of 16.4 MeV, considering only the case of central passage (impact parameter
d = 0 mm). In all cases, the voltage biases to all the electrodes of the sensitive volume and
the electron collector have been kept constant, and a linear scaling of the e�ciency with
the reduced electric �eld has been assumed. At a propane pressure of 150 Pa, the size of
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Figure 4.10: Mean values of the ICSD measured for 16.4-MeV 7Li ions for di�erent gas pressures, as a
function of the sensitive volume size in mass per area. Symbols represent experimental data, the dotted
curve is a best �t with a power function y = mxc.

the sensitive volume is about 10 nm when scaled at unit density.
The measured ionization cluster size distributions are reported in Figure 4.9, for dif-

ferent propane pressures. As expected, their maximum is shifted to lower clusters with
decreasing volume dimensions, however, this shift is not linear with the target size in mass
per area, due to the combined e�ect of the strong reduction of the detection e�ciency with
decreasing gas pressure and the change in the secondary electron contribution to the total
ionization yield. This point is further stressed in Figure 4.10, which shows the trend ofM1

as a function of the sensitive volume size: the increase of M1 with increasing Dρ is supra
linear and, as a �rst very rough approximation, can be modelled with a power function of
exponent 3.5.

4.4 Complementary cumulative distribution functions

For the standard gas pressure of 300 Pa, it was found that the values of the complementary
cumulative distributions F1, F2 and F3 de�ne a unique curve when plotted as a function
of the mean ionization yieldM1, regardless of the speci�c radiation quality under analysis.
Moreover, measurements obtained with other nanodosimetric counters also lie on the same
curves, regardless of the speci�c sensitive volume size, type of �lling gas and detection
e�ciency. It is therefore interesting to see if this invariance holds also for the measurements
with di�erent volume size discussed in this Chapter.

Figure 4.11 presents the values of F2 obtained with the Startrack counter for the radia-
tion qualities previously discussed, for propane pressure of 200 Pa and 170 Pa, superposed
with the unique curve of F2 as a function of M1 for the three di�erent nanodosimetric
counters presented Figure 2.15. Some additional experimental data at 300 Pa of propane
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Figure 4.11: F2 values plotted as a function of M1 for the measurements carried out with the Startrack
counter at a propane pressure lower than the standard one of 300 Pa, compared with the unique curve of
Figure 2.15 obtained from measurements with di�erent nanodosimetric counters.

pressure are also shown. The agreement between the new data points and the curve de�ned
by previous measurements is very good, con�rming that the relation between F2 andM1 is
independent of all speci�c measuring conditions. This is also con�rmed by the analysis of
the data obtained with 16.4-MeV 7Li ions in sensitive volumes of varying mass thickness,
reported in Figure 4.12.

The general validity of the unique relations between the Fk values and the mean ioniza-
tion yieldM1 is con�rmed also by the analysis of F1 and F3, reported in Figure 4.13. Given
these unique relations, which are valid regardless of the type and energy of the particles
composing the radiation �eld and the speci�c operating conditions of the nanodosimeters,
the complementary cumulative distribution functions appear as promising candidates to
correlate the nanodosimetric track structure description to the biological likelihood of late
damage.

4.5 Preliminary results for other impact parameters

In the case of carbon ions at an energy of 96 MeV and 72 MeV, a preliminary investigation
of the variation of the ICSD with the impact parameter has been carried out at a propane
pressure of 200 Pa. An impact parameter range between 0 and 5 mm was considered, which
corresponds to a range in mass per area up to about 1.8µg/cm2. The resulting ionization
cluster size distributions are reported in Figure 4.14 for the case of 72 MeV carbon ions:
as expected, the maximum of the distribution moves to lower cluster sizes if the impact
parameter increases. Moreover, the two distributions at d = 4 mm and d = 5 mm are
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Figure 4.12: F2 values plotted as a function of M1 for 16.4-MeV 7Li ions from measurements carried
out with the Startrack counter in sensitive volumes of varying mass thickness, compared with the unique
curve of Figure 2.15 obtained with di�erent nanodosimetric counters.

Figure 4.13: Values of F1 and F3 plotted as a function ofM1 for the same measurements carried out with
the Startrack counter presented in Figure 4.12, compared with the unique curves of Figure 2.16 obtained
from measurements at a propane pressure of 300 Pa.
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4.5 � Preliminary results for other impact parameters

(a) Track core (b) Penumbra

Figure 4.14: Experimental ionization cluster size distributions for 72 MeV carbon ions measured at a
propane pressure of 200 Pa, corresponding to a target size of 1.35µg/cm2, for di�erent impact parameters
in the range 0 − 5 mm.

Figure 4.15: Mean ionization cluster size M1 as a function the impact parameter d at a gas pressure of
200 Pa, for carbon ions at 96 MeV (orange squares) and 72 MeV (green diamonds). The data at 300 Pa
shown in Figure 2.9 are also plotted for comparison (gray symbols and dashed trend line). Uncertainties
are plotted on both M1 and d: the latter are estimated again as 2/3 of the beam radius, i.e. ± 0.25 mm.

parallel to each other, as it was found for a gas pressure of 300 Pa. However, this behaviour
of the distributions in the penumbra region is not con�rmed by the analysis of the data
at an energy of 96 MeV: in this case, the two distributions are not parallel to each other.
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This could be an e�ect of incomplete or excessive background subtraction in one of the
two cases.

The trend of the mean ionization yield as a function of the impact parameter is reported
in Figure 4.15: the shape of the M1 pro�le is approximately the same as that for the
case of 300 Pa of propane pressure. This is somewhat surprising because at a pressure
of 200 Pa each physical impact parameter corresponds to a smaller distance in mass per
area from the primary particle track than in the case of 300 Pa: the electron degradation
should therefore be di�erent in the two cases. The invariance of the pro�le with gas
density suggests therefore that M1 is mainly determined by the solid angle under which
the sensitive volume is seen from the primary particle track, which is the same at 200 Pa
and 300 Pa, and that the di�erences in secondary electron degradation play only a minor
role. However, further measurements are needed in order to clarify this point.
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Chapter 5

Track structure and radiobiology

In the previous Chapters, an analysis of the stochastics of the ionization yield for di�erent
radiation qualities and in sensitive volumes of di�erent size has been carried out. In
particular, it has been shown that the complementary cumulative distribution functions
Fk are unique functions of the mean ionization yieldM1, regardless of the incident radiation
quality, the target volume size, the type of interaction medium, and the detection e�ciency
of the counter. Now, the question arises whether the purely physical description of the track
structure presented up to now can be correlated to di�erent end-points of radiobiological
damage.

Various studies have been carried out concerning this point, based on assumptions of
di�erent complexity (Grosswendt, 2004b; Garty, 2010) in order to relate the ionization
yield in a target volume of nanometric size to the yield of SSB, DSB or clustered lesions.
The latter are usually estimated from measurements carried out with plasmid DNA, or
from simulations with track structure codes which implement also geometrical models
of the DNA molecule. The predictions of these models are quite consistent with these
estimations, however, further assumptions are needed in order to correlate DNA damage
yields with e�ects at cellular level.

In this Chapter, a di�erent analysis is presented, which correlates directly nanodosi-
metric quantities and radiobiological data of cell survival, obtained from the literature. It
starts from the intuitive idea that the Fk values are related to damage complexity, and
from the fact that the shape of the curves de�ned by Fk as a function of M1 shows a
saturation for high values ofM1, which is similar to the trend of inactivation cross sections
as a function of LET.

In order to make a direct comparison between the physical and the radiobiological data,
it would be necessary to make pairwise measurements of inactivation cross sections and
nanodosimetric quantities. This has not been done yet, and the comparison is therefore
necessarily based on literature data. Nevertheless, an astonishing correspondence can be
drawn between the stochastics of the ionization yield in nanometric volumes and biological
e�ects at cellular level.

The radiobiological data which have been used for this analysis have been taken from
the literature sources listed in the PIDE database(1) (Friedrich, 2013). This is a database
of about 800 cell survival experiments taken from a literature review including at present
(1)http://www.gsi.de/bio-pide
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about 80 publications, from which RBE values can be calculated. A wide range of radiation
qualities and cell lines is considered, allowing to study the in�uence of various physical and
biological parameters.

5.1 Inactivation cross sections

The shape of cell survival curves is described mathematically by the so-called linear-
quadratic dose-response model of cell survival, which expresses the functional dependence
between surviving fraction and absorbed dose as a second order polynomial in the semi-
logarithmic scale:

S(D) = e−(αD+βD2) (5.1)

where S(D) is the surviving fraction at dose D. The α parameter corresponds to the
initial slope of the survival curve, while the β parameter describes its shoulder and has
been related to the in�uence of cellular repair mechanisms, which become saturated at
high doses. The α and β parameter are reported in the PIDE database for each survival
experiment, together with the primary particle type, energy and LET of the incident beam.

In order to compare track structure quantities, which refer to single particle tracks, to
radiobiological data, a �uence-related parameter must be de�ned to describe cell survival.
Formally, the probability per unit �uence for a biological e�ect to occur is expressed by
the action cross section. The inactivation cross section σ is used to express the probability
that the cell is inactivated by the passage of a single particle that hits the critical target.
It is de�ned for a given survival level l from the slope sl of the survival curve in the
semi-logarithmic plot (Belloni, 2002):

σlφl = slDl (5.2)

where φl is the �uence and Dl is the dose corresponding to the survival level l. sl can be
expressed as

sl = − d lnS(D)

dD

∣∣∣∣
D=Dl

= α+ 2βDl (5.3)

and Dl is related to α, β and l by the linear-quadratic equation 5.1, which gives

− ln l = αDl + βD2
l (5.4)

Solving this equation for Dl and taking into account that for monoenergetic beams dose
and �uence are related by the relation

D =
LET

ρ
φ (5.5)

the inactivation cross section for each survival level l can be expressed as

σl =
LET

ρ

√
α2 − 4β ln l (5.6)

The inactivation cross section depends therefore on the observed biological end point
and, on the physical side, on the speci�c radiation quality used to irradiate the biological
sample. If each hit target is inactivated by a single particle traversal, σ approaches the
geometrical cross section of the sensitive structure.
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Figure 5.1: Comparison between F2 and inactivation cross sections at 5% survival level for V79 cells,
plotted as a function of the mean cluster sizeM1 calculated in a volume of 1 nm. The grey symbols are the
F2 data reported in Figure 2.16 scaled by a constant factor, coloured symbols correspond to radiobiological
data for irradiation with protons (blue) and carbon ions (orange). The literature sources for the biological
data are listed in the Figure with the �rst author of the corresponding paper and the year of publication,
as done in the PIDE database.

5.2 Comparison for the V79 cell line

In radiobiological modelling, the inactivation cross sections are generally plotted as a func-
tion of the incident LET. However, as discussed in the Introduction, LET is not descriptive
of the �ne structure of particle tracks: it would therefore be better to plot inactivation
cross sections as a function of the mean ionization yield M1 rather than LET. It is clear
that M1 depends both on radiation quality and on target size: the �relevant� size of the
biological target must therefore be determined before signi�cant nanodosimetric magni-
tudes can be measured. In other words, the track structure quantities become signi�cant
to characterize the biological e�ectiveness of ionizing particles only if they are measured
in a volume of a well-de�ned size, determined as the one that o�ers the best correlation
between physical Fk and biological cross sections data. The quantitative determination of
the relevant target size for each speci�c biological end point has been made by means of
Monte Carlo simulations with the MC-Startrack code, calculating M1 and Fk in di�erent
site sizes for many radiation qualities, and then choosing the site size that optimized the
correlation with biological e�ects.

For a �rst quantitative analysis of this correlation, the radio-resistant V79 cell line
(Chinese hamster lung �broblast) has been chosen, due to the huge amount of studies in
which it was employed. The data were taken from the PIDE database, considering proton
and carbon ion irradiation. Figure 5.1 presents a comparison between inactivation cross
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(a) 0.5 nm (b) 2 nm

(c) 1 nm

Figure 5.2: Inactivation cross sections at 5% survival level for V79 cells plotted as a function of F2, cal-
culated for volumes of di�erent size: (a) 0.5 nm, (b) 2 nm, (c) 1 nm. Symbols correspond to radiobiological
data for irradiation with protons (blue) and carbon ions (orange). The grey line is the best �t of the data
points with a straight line through zero y = mx, carried out in the double-logarithmic representation. The
literature sources for the biological data are listed in the Figure.

D [nm] Prop. factor [µm2] Reduced χ2 Pearson's R

0.5 141 ± 6 0.0221 0.9699
1.0 63 ± 2 0.0134 0.9819
2.0 32 ± 2 0.0291 0.9601

Table 5.1: Proportionality �t results of σ5% as a function of F2 for V79 cells, when F2 is calculated in
nanometric volumes of di�erent size. The reduced χ2 and Pearson's correlation coe�cients, calculated in
the double-logarithmic representation, are also shown.
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Figure 5.3: Comparison between F3 and inactivation cross sections at initial survival level for V79 cells,
plotted as a function of the mean cluster size M1 in a volume of 1.5 nm. The grey symbols are the F3 data
reported in Figure 2.16 scaled by a constant factor; coloured symbols correspond to radiobiological data
for irradiation with protons (blue) and carbon ions (orange). The cell survival experiments from which the
biological data have been taken are the same as for the case of σ5%.

sections at 5% survival level for V79 cells and F2 values, both plotted as a function of M1

in a site size of 1 nm in liquid water. The F2 values have been scaled by a constant factor
C5% = 63µm2, corresponding to the saturation level of the inactivation cross sections,
which is related to the geometrical cross section of the nucleus of V79 cells. It can be seen
that F2 reproduces very well the trend of σ5%, if the site size in which M1 is measured is
equivalent to 1 nm in liquid water. For di�erent site sizes the correlation worsens consid-
erably, as shown in Figure 5.2 and Table 5.1(2). At a site size of 1 nm, σ5% and F2 are
instead proportional to each other.

In order to extend the study to a di�erent biological end-point, Figure 5.3 presents a
comparison between the inactivation cross section σα at low doses (100% survival) and F3

values, again for V79 cells irradiated by protons or carbon ions. In this case, the correlation
is optimized if M1 is calculated in a volume of 1.5 nm, and the scaling factor applied to
F3 values is Cα = 54µm2. F3 and σα are therefore proportional to each other if the site
size in which F3 is measured corresponds to 1.5 nm in liquid water. This is con�rmed by
the analysis of the correlation between F3 and σα as a function of the site size, reported
in Figure 5.4 and Table 5.2: maximum correlation is found for a sensitive volume size of
1.5 nm.

(2)The data reported in this Table and in the following ones are the results of unweighted least square
�ts carried out in the double-logarithmic representation. The reduced χ2 coincides therefore with the sum
of square residuals divided by the number of degrees of freedom.
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(a) 1 nm (b) 2.5 nm

(c) 1.5 nm

Figure 5.4: Inactivation cross sections at initial survival for V79 cells as a function of F3, calculated for
volumes of di�erent size: (a) 1 nm, (b) 2.5 nm, (c) 1.5 nm. Symbols correspond to radiobiological data for
irradiation with protons (blue) and carbon ions (orange). The grey line is the best �t of the data points
with a straight line through zero y = mx, carried out in the double-logarithmic representation.

D [nm] Prop. factor [µm2] Reduced χ2 Pearson's R

1.0 106 ± 5 0.0214 0.9804
1.5 54 ± 2 0.0117 0.9894
2.5 25 ± 1 0.0398 0.9633

Table 5.2: Proportionality �t results of σα as a function of F3 for V79 cells, when F3 is calculated in
nanometric volumes of di�erent size. The reduced χ2 and Pearson's correlation coe�cients, calculated in
the double-logarithmic representation, are also shown.
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5.3 Comparison for other cell lines

The study was then extended to other radio-resistant cell lines, in particular, the Chinese
Hamster Ovary cells (CHO), the Human Salivary Gland cells (HSG) and the human T1
lymphoblast cells, under irradiation of protons and carbon ions, considering again the
cases of 5% survival level (high doses) and initial survival (low doses). The results are
reported in Figure 5.5: also for these cell lines the correlation is optimized if a site size of
1 nm is considered for F2, and one of 1.5 nm for F3, con�rming the validity of the model
independently of the speci�c cell line. The proportionality coe�cients between σ5% and
F2 and σα and F3, which are reported in Table 5.3, are instead dependent on the type of
cells, due to the di�erent saturation level of the inactivation cross sections.

A strong correlation seems therefore to be present between radiobiological cross sections
at di�erent survival levels and nanodosimetric measurements in speci�c site sizes, if repair-
pro�cient cell lines are considered. In particular, the probability F2 of measuring two or
more ionizations within a volume of 1 nm is proportional to the inactivation cross section
at high doses, while F3 measured in a volume of 1.5 nm is proportional to the inactivation
probability at low doses. An intuitive �rst idea about a possible reason for this can be that
in the latter case the repair mechanisms for DNA damage are still e�ective, while in the
former they are saturated; a bigger ionization cluster is therefore needed in the �rst case
to produce a non-repairable damage than in the second one.

The consistency of this idea is con�rmed by the analysis of the inactivation cross section
for the XRS5 cell line, a radio-sensitive mutant of the CHO cell line which shows a reduced
repair capability for DNA double strand breaks. For these cells, the survival curve is a
straight line in a semi-logarithmic plot and the inactivation cross section σ is the same
for all survival levels. The result of the comparison with nanodosimetric data is shown in
Figure 5.6: it can be seen that σ is proportional to F1, measured in a volume of 0.3 nm.
For this radio-sensitive cell line, a smaller ionization cluster seems therefore related to
a non-repairable damage than for cells which are pro�cient in DNA repair, even if the
number of radiobiological data points is small and does not allow a full validation of this
hypothesis. The much smaller target size which optimizes the correlation is somewhat
surprising; however, the concept of a characteristic distance between neighbouring ionizing
events loses part of its meaning when a single ionization is enough to produce a non-
repairable damage. The much higher proportionality coe�cient (CXRS5 = 190µm2) is
instead due to the higher probability of inactivation for the XRS5 cell line compared to
other radio-resistant cells irradiated with the same radiation quality.

Cell line
5% survival initial survival

C5% Red. χ2 Pearson's R Cα Red. χ2 Pearson's R

CHO 74 ± 4 0.0152 0.9796 68 ± 4 0.0179 0.9797
HSG 92 ± 3 0.00301 0.9926 72 ± 5 0.0160 0.9817
T1 92 ± 5 0.0116 0.9793 49 ± 4 0.0351 0.9551

Table 5.3: Proportionality coe�cients between σ5% and F2 and σα and F3 for the CHO, HSG and T1
cell lines, considering a target size of 1 nm for the case of σ5% and of 1.5 nm for σα. The reduced χ

2 and
Pearson's correlation coe�cients, calculated in the double-logarithmic representation, are also shown.
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(a) σ5%, CHO cells (b) σα, CHO cells

(c) σ5%, HSG cells (d) σα, HSG cells

(e) σ5%, T1 cells (f) σα, T1 cells

Figure 5.5: Comparison between inactivation cross sections at 5% and initial survival level and exper-
imental values of F2 and F3, for di�erent cell lines: (a) CHO cells, 5% survival, (b) CHO cells, initial
survival, (c) HSG cells, 5% survival, (d) HSG cells, initial survival, (e) T1 cells, 5% survival, (f) T1 cells,
initial survival. The grey symbols are the F2 or F3 data reported in Figure 2.16 scaled by a constant factor;
coloured symbols correspond to inactivation cross sections calculated in a volume 1 nm in size for the case
of 5% survival, and 1.5 nm in size for the case of initial survival. The literature sources for each cell line
are given in the Figure.
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Figure 5.6: Comparison between inactivation cross sections for the radio-sensitive cell line XRS5 and the
values of F1, plotted as a function of the mean cluster size M1 in a volume of 0.3 nm. The grey symbols
are the F1 data reported in Figure 2.16 scaled by a constant factor; red symbols correspond to inactivation
cross sections. The literature source for these data is given in the Figure.

5.4 Nanodosimetric modelling of cell survival curves

The direct proportionality between F2 and σ5% and F3 and σα allows to calculate the
α and β parameters of the linear-quadratic dose response model, through the following
equations, which follow directly from the de�nitions of σ5% and σα:

α(Q) = CαF3(Q)
φ

D

β(Q) =
[CαF3(Q)]2 − [C5%F2(Q)]2

4 ln 0.05

(
φ

D

)2 (5.7)

Here, φ is the particle �uence and D is the corresponding absorbed dose. To determine the
values of the proportionality factors Cα and C5% for any given biological system, a precise
and reproducible calibration procedure should be de�ned.

In radiobiological campaigns reference measurement are generally carried out by expos-
ing cells to photon �elds. Although there is evidence that nominally low-LET radiations
have di�erent e�ects on cells (Hunter, 2009) both 250 kV X-rays and 60Co γ-rays are al-
ternatively used as reference radiation, assuming an RBE value of 1 for X-rays, γ-rays and
high-energy electrons. On the other hand, the RBE of carbon ions used in radiotherapy
increases to about 3.

In order to calibrate nanodosimetric measurements on radiobiological ones, the param-
eters of the linear-quadratic �t of the survival curve obtained for the reference photon �eld
can be used to calculate Cα and C5%; after this calibration, the values of F2 and F3 mea-
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(a) 5% survival (b) initial survival

Figure 5.7: Calibration of the nanodosimetric data on radiobiological ones for photon reference �elds, in
order to determine the corresponding Fk values: (a) inactivation cross sections at 5% survival level as a
function of F2 in a volume of 1 nm, giving a calibration factor C5% = 63µm2 (orange line), (b) inactivation
cross section at initial survival as a function of F3 in a volume of 1.5 nm, giving a calibration factor
Cα = 54µm2 (blue line). The corresponding photon Fk data are reported in Table 5.4; the literature
sources for the biological data are given in the Figure.

Radiation �eld LET [keV/µm2] F2(D = 1nm) F3(D = 1.5nm)

60Co γ-rays 0.2 0.00034091 0.00012000
250 kV X-rays 2 0.0028500 0.0011672

Table 5.4: Values of F2 and F3 recommended for the calibration of nanodosimetric data on radiobiological
ones, for two common reference radiation �elds: 60Co γ-rays and 250 kV X-rays.

sured in di�erent radiation �elds allow the calculation of the α and β parameters of the
linear quadratic model for the cell line under analysis by means of Eq. 5.7, and therefore
the prediction of cell survival curves for any radiation quality.

The two photon �elds commonly used as reference radiation correspond to LET values
of approximately 2 keV/µm for 250 kV X-rays, and 0.2 keV/µm for 60Co γ-rays (ICRU,
1970). From a comparison of the radiobiological and the nanodosimetric data for a limited
set of literature references (reported in Figure 5.7), the values reported in Table 5.4 are
recommended for calibration on γ-rays or 250 kV X-rays.

However it should be observed that survival data for exposure to photon �elds are often
a�ected by large uncertainties. As an example, Figure 5.8 shows the inactivation cross
sections for V79 cells irradiated by protons at di�erent energies, measured by di�erent
groups (Belli, 1998; Folkard, 1996). In this case, the linear-quadratic �tting of the survival
curve for reference radiation (γ-rays from a 60Co source) resulted in an almost identical
inactivation cross section, and the calibration of nanodosimetric data on the cross section
for photon irradiation gives a factor C5% = σ5%/F2 = 71µm2. The function C5%F2 is
represented by the grey line in Figure 5.8. The data from Belli on the right side of the Figure
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Figure 5.8: Calibration of the nanodosimetric data on radiobiological ones for photon reference �elds,
considering the data of Belli (Belli, 1998) and Folkard (Folkard, 1996).

Figure 5.9: Comparison between the calibration factor obtained from the photon reference data of Belli
(Belli, 1998) and Folkard (Folkard, 1996) during proton irradiation campaigns (grey continuous line), and
that obtained from the reference data of Belli (Belli, 2008) in a di�erent measurement campaign with
carbon ions (red dashed line).

are signi�cantly lower than the corresponding values predicted by nanodosimetry, but they
were not con�rmed by other authors (see Figure 5.1). However, apart from data measured
for very slow protons, which are critical themselves and a�ected by large uncertainties, the
e�ectiveness of higher-energy protons is generally well predicted by nanodosimetry, after
calibration on the reference 60Co gamma �eld.

Unfortunately this is not always the case. In Figure 5.9 the inactivation cross sections
for the same V79 cell line irradiated with carbon ions are also shown, together with the
result for the reference �eld. In this case the cross section for 60Co irradiation was smaller
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(a) 24 keV/µm (b) 50 keV/µm

(c) 222 keV/µm (d) 303 keV/µm

Figure 5.10: Comparison between cell survival curves derived from radiobiological experiments (Belli,
2008) and those calculated from nanodosimetric values of F2 and F3, considering carbon ions of di�erent
LET.

than in the case of the proton measurement campaign. However, the data for carbon ion
irradiation lie almost on the same curve as the proton ones, without a signi�cant shift
to lower values. If the nanodosimetric quantity F2 is calibrated on the cross section for
photon irradiation obtained in the measurement campaign with carbon ions, the predicted
nanodosimetric values lie on the red dashed line of Figure 5.9 (C5% = 54µm2). It is clear
that the choice of the calibration value is critical and should be performed carefully.

To give an example of the application of the suggested procedure and its limits, Fig-
ure 5.10 shows a comparison between survival curves derived from radiobiological experi-
ments and calculated from nanodosimetric magnitudes, for V79 cells irradiated with carbon
ions at four di�erent incident LET values. Nanodosimetric survival curves were calculated
with C5% = 63µm2 and Cα = 54µm2, i.e. the best-�t values obtained in Section 5.2. It
can be observed that, at least in these cases, the agreement between radiobiological sur-
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vival curves (obtained by best �tting of the linear-quadratic equation) and nanodosimetric
survival curves (uniquely determined by F2 and F3 after proper calibration on photons
reference �elds) is very satisfactory in most cases.

This preliminary study needs to be further extended to other radiation qualities and
cell lines, in order to assess its reliability for the determination of survival curves. However,
if these �ndings are con�rmed, they could be the basis for a new de�nition of the radiation
quality by means of nanodosimetric measurements.
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Chapter 6

Towards a portable nanodosimeter

In the previous Chapters, it has been shown that speci�c track structure descriptors can be
derived from measurements of the ionization yield in volumes of equivalent nanometric size,
which are closely related to biological e�ects at cellular level. In particular, unique relations
are found between the values of the complementary cumulative distribution function Fk
and the mean ionization yield M1, regardless of the speci�c radiation quality, the sensitive
volume size and the speci�c operating conditions of the nanodosimeter. Moreover, it has
been found that the values of Fk for di�erent values of k are directly proportional to
inactivation cross sections for di�erent biological end-points: if radio-resistant cell lines are
considered, the cross section for 5% survival at high doses is proportional to F2, while that
for initial survival at low doses is proportional to F3. For repair-de�cient cells, the cross
section is the same for all survival levels and is proportional to F1.

After the nanodosimetric data are calibrated on the speci�c cell line under analysis
using a reference radiation quality, the response of the cell in di�erent radiation �elds can
be predicted from measurements of F2 and F3, which are directly proportional to σ5% and
σα. The α and β parameters of the linear-quadratic model can then be calculated, allowing
the reconstruction of the cell survival curve.

The nanodosimetric description of track structure is therefore a promising candidate
to build a new concept of radiation quality, measurement-based and directly correlated
to biological e�ects. This could be of interest for applications in both radiation therapy
and radiation protection, where clonogenic assays are routinely used as the golden stan-
dard for the assessment of radiation e�ects, in order to shorten the time needed for the
experiment and remove the source of uncertainty due to biological variability. However,
the three nanodosimeters which have been built up to date are very complex and bulky,
and consequently not suited for the everyday use required, for instance, in radiotherapy or
radiation protection applications. This problem could be overcome with the development
of a simpli�ed, portable nanodosimeter, able to analyse signi�cant features of particle track
structure at the nanometre level. A possible way to build such a device seems to be the
use of nano-structured technology, in which nanoparticles that are sensitive to ionizing
radiation are dispersed in a given volume of tissue-equivalent material.

In order to investigate if the simpli�ed track structure description that could be ob-
tained from such a device is still meaningful for the estimation of biological e�ects, a
proof-of-principle study has been carried out by means of Monte Carlo simulations. A
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simulation tool has been developed for this purpose, based on the physical models of the
Geant4-DNA track structure code. After an introduction of the physical models on
which this toolkit is based, this Chapter discusses the structure of the simulation setup
and presents results for two di�erent cases of tracking choices, which are then discussed
in order to assess the suitability of such a detector concept for the estimation of radiation
e�ects.

6.1 The Geant4-DNA code

The Geant4-DNA toolkit was originally developed in collaboration with the European
Space Agency (Incerti, 2010a) to extend the modelling capability of the Geant4 toolkit
down to the 10-eV energy range, for radiobiology and radioprotection applications. It is an
open-source, regularly-maintained sub-library of Geant4, in which it is fully integrated.
It includes also a chemistry module for the simulation of water radiolysis and di�usion
of free radicals, and various geometrical models of di�erent DNA organizational levels,
including a full atomistic approach, in order to study yields of DNA strand breaks and
base oxidations (Incerti, 2016). Its main disadvantage is that the physical models are valid
for liquid water only.

Models are de�ned for electrons, protons and alpha particles, including their charge
states (i.e., neutral hydrogen, neutral helium and singly-charged helium). Gamma interac-
tions are also de�ned by means of the low-energy electromagnetic models of the Geant4
toolkit (the so-called Livermore models), which are validated down to a threshold energy
of 250 eV (Geant4, Physics Reference Manual). Some ions heavier than helium are also
considered. For each process, one or more models are implemented; these models can cover
di�erent energy ranges or be alternatives for the same one. The choice of the best model
for each speci�c application is the responsibility of the user, however, default models are
de�ned, which are described in the following.

For electrons, elastic scattering, atomic and vibrational excitations, ionization and elec-
tron attachment are modelled. The treatment of ionization and excitations is based on a
dielectric response function determined according to (Em�etzoglou, 2003), modi�ed in part
in order to improve agreement with experimentalW -values (Kyriakou, 2015). Four �outer�
ionization shells, one �inner� ionization shell (the K-shell of oxygen), and �ve discrete exci-
tation levels are considered. The energy-di�erential and total cross sections are calculated
in the Born approximation, including some perturbation corrections at energy below 1 keV
and relativistic corrections at energies above 10 keV. Both after an ionization and an ex-
citation event, the polar and azimuthal angle of the ejected electrons are calculated using
the same algorithm as the one implemented in MC-Startrack.

Cross sections for vibrational excitations up to an energy of 100 eV are derived from
experimental data on ice �lms (Michaud, 2003); electron attachment is modelled in the
energy range between 4 and 13 eV according to the data of (Melton, 1972). Elastic collisions
can be treated according to two di�erent models: one is a theoretical calculation based on
a central potential and a partial-wave decomposition (Champion, 2009), the other is based
on a screened Rutherford cross section similar to the one implemented inMC-Startrack, but
with a di�erent parametrization for the screening parameter. At energies below 200 eV, this
second model is replaced by the formula proposed by (Brenner, 1983), in order to improve
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(a) (b)

Figure 6.1: (a) Electron-impact cross sections implemented in Geant4-DNA: total scattering cross
section (red), cross section for elastic scattering (green), atomic excitations (violet), vibrational excitations
(orange) and ionizations (blue). Excitation and ionization cross sections are summed over all the sub-shells.
The cross sections for vibrational excitations are de�ned up to a maximum energy of 100 eV. (b) Cross
section for excitations (blue) and ionizations (red) due to proton impact.

agreement with experimental data. For a detailed description of electron interactions, the
reader is referred to (Kyriakou, 2015). The general trend of Geant4-DNA electron-impact
cross sections is shown in Figure 6.1(a).

For protons, alpha particles, and their charge states, the processes which are imple-
mented are ionization, electronic excitation, elastic scattering and electron capture and
loss. Ionizations cross sections are derived from the Rudd model (Rudd, 1992), similarly
to the case of MC-Startrack ; the empirical parameters were modi�ed in order to adapt
them to the liquid phase (Dingfelder, 2000). Excitation is modelled according to Miller
and Green (Miller, 1973), using a speed scaling from the electron excitation cross section.
For alpha particles and helium ions, the cross section are derived from those for protons
by means of a speed scaling procedure which takes into account the e�ective charge of
the incident particle, in an analogous way to the case of MC-Startrack. For fast protons
only (energy above 500 keV), a complementary model for the treatment of excitations and
ionizations is de�ned, which uses the �rst Born approximation and the dielectric formalism
for liquid water, including some corrections to take into account the polarization of the
medium and relativistic e�ects. The cross sections for excitation and ionization due to
proton impact are reported in Figure 6.1(b).

Electron loss and capture are modelled according to the semi-empirical models of
Dingfelder (Dingfelder, 2000; Dingfelder, 2005), obtained by analytical �tting of exper-
imental cross section data for water vapour. Elastic scattering is modelled using a classical
approach based on a screened Coulomb potential (Tran, 2015); the screening functions are
derived from (ICRU, 1993) for protons and from (Ziegler, 1985) for α particles. For a
detailed description of protons and α-particle processes, see (Incerti, 2010b).

Some ions heavier than helium are also considered, namely 7Li, 9Be, 11B, 12C, 14N,
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Figure 6.2: Geometry of the simulated setup. The sensitive spheres are shown in red in the Figure. The
direction of incidence of the primary beam is parallel to the central axis of the two cylinders.

16O, 28Si and 56Fe. For these ions, only ionization processes are modelled, for energies
above 0.5 MeV/u. The treatment is based on the Rudd model, using a speed scaling which
takes into account the e�ective charge of the ion (Francis, 2012). A relativistic correction
is included for higher energies.

6.2 Description of the simulated setup

The detecting setup which is modelled in the simulation is composed of two coaxial cylin-
ders, which lie with their main axis parallel to the direction of incidence of the primary
particle beam. In the inner cylinder, a set of nanometre-sized spheres is embedded, which
represent the radiation-sensitive targets. These spheres are randomly distributed inside
the inner cylinder, with the only constraint of no overlapping. The dimensions of the inner
cylinder have been kept �xed to 20 nm for both length and diameter; for the outer one,
the same height of 20 nm is considered, while the diameter has been enlarged to 40 nm.
This has been done in order to reduce border e�ects due to energetic secondary electrons
which could escape the inner cylinder. In practice, such a detector could be realized, for
instance, by dispersing a certain number of quantum dots in a PMMA layer.

The cylinders are irradiated by a circular homogeneous beam of diameter Db equal to
20 nm, centred on the main axis of the cylinders. Its cross section coincides with that of the
inner cylinder, and the initial direction of the primary particles is parallel to the central
axis. Since in Geant4-DNA the interaction cross sections are implemented for liquid
water only, all the elements of the simulated setup are made of this material, however,
there is the possibility to de�ne a di�erent density value for each element of the setup. A
picture of the geometry implemented in the simulation is shown in Figure 6.2.

Gas-based nanodosimeters measure the frequency distribution of the number of ioniza-
tions produced by primary particles inside a sensitive volume of millimetric size �lled with
a low-density gas, which is considered equivalent to a nanometric volume at unit density
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(a) (b)

Figure 6.3: Pictorial representation of the two di�erent tracking con�gurations which have been consid-
ered: (a) full simulation of the secondary electron tracks, (b) simulation of the secondary electron tracks
originated inside the sensitive spheres only, up to the geometrical boundary of the target of production.

based on the equality of their mass thickness. However, the experimental determination
of the exact number of ionizations inside a solid volume of nanometric size (for instance
inside a quantum dot) could be hardly feasible. In order to deal with this situation and to
simplify the track structure description, an alternative possibility was investigated in this
study, under the hypothesis that each sphere is able to give a detectable signal if at least
a minimum number k of ionizations takes place inside it. A sphere is therefore considered
�hit� if the number of ionizations it measures is greater than or equal to a pre-de�ned
threshold value k, representing the sensitivity of each detector.

During the simulations, the number of ionizations within each target at the passage
of each primary ion is recorded, and used to calculate both the ionization cluster size
distributions for each sensitive sphere and the frequency distribution of the number of
�hit� targets, by normalising on the total number of incident ions. The features of these
distributions are then compared and analysed as a function of both the radiation quality
and the geometrical parameters of the setup, such as the number Nt of sensitive spheres,
their diameter Dt, and the threshold value k. Primary beams of protons and carbon ions
are considered, in an energy range from 1 to 60 MeV and 0.5 to 400 MeV/u respectively,
corresponding to an LET range from 1 to 1000 keV/µm. The number of sensitive spheres
varies between 20 and 100 and their diameter spans the range between 1 nm and 3 nm.
Threshold values of 1, 2 and 3 are analysed.

Two di�erent tracking options are considered for each radiation quality and geometrical
con�guration: in the �rst, all secondary electron tracks are simulated until they become
non-ionizing or escape the setup boundaries; in the second, only the electron tracks origi-
nated inside the detecting spheres are simulated, and they are terminated as soon as they
leave the volume of their production. A pictorial representation of these two tracking
con�gurations is reported in Figure 6.3. The aim of simulations performed in this second
modality is to separate the e�ect of secondary electrons from that of primary particles, in
order to study only the e�ect of the track-core region or that of the full penumbra.

6.3 Study of border e�ects

In order to check the consistency of the results of these simulations with nanodosimetric
data for a broad beam geometry, Figure 6.4 presents the ionization cluster-size distributions
P

(i)
ν (Q) produced by incident carbon ions at an energy of 240 MeV inside each sensitive
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Figure 6.4: Probability distribution P
(i)
ν of the number ν of ionization events in each of the detecting

spheres, for an incident beam of 240-MeV carbon ions and a con�guration with 50 targets 3 nm in diameter.

volume (i), for a target con�guration with 50 detectors 3 nm in diameter, in the case where
all secondary electron tracks are simulated. The shape of the distributions is consistent
with what is expected for a single nanometric volume irradiated by a homogeneous broad
beam (Conte, 2015), moreover, it is very similar for all the spheres regardless of their
speci�c position with respect to the target border and the particle beam. However, some
di�erences are present, in particular at small cluster sizes. These are due to two di�erent
e�ects:

� Since the primary ion trajectories are restricted to the inner cylinder, the target
spheres located close to the radial border will score less ionizations than targets near
the central axis, because of the lack of secondary electrons coming from the penumbra
of primary ions outside the inner cylinder.

� The absence of a build-up layer in front of the cylinders and of a backscattering one
at their end enhances the probability of secondary electron escape. Because of this,
targets located close to the front and back surface will score less ionizations than
those located near the middle plane.

The result of both these e�ects is that a gradient of ionization density is present in the
cylinder if the full penumbra of secondary electrons is simulated, so that target spheres
located close to the border will score less ionizations than those located near the centre.
This is shown in Figure 6.5: the value of P1 near the centre is much higher than near the
border, explaining the di�erences in the cluster size distributions. The amount of these
di�erences is higher for densely-ionizing particles, and is particularly relevant for small
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Figure 6.5: Colour-coded plot of the value of P
(i)
1 as a function of the spatial position inside the inner

cylinder. The calculation is done for 240-MeV carbon ions and a con�guration with 100 spheres 3 nm in
diameter.

Primary ion P0 P1 P2 P3 P4 F1 F2 F3

1H, 20 MeV 0.0% 4.3% 3.7% 5.7% 6.6% 4.3% 4.5% 6.1%
4He, 80 MeV 0.0% 4.3% 3.9% 6.6% 6.8% 4.1% 4.2% 5.8%
12C, 240 MeV 0.3% 12.4% 7.2% 5.0% 4.0% 7.4% 4.2% 3.3%
12C, 150 MeV 0.5% 14.0% 10.5% 7.8% 6.0% 8.7% 5.4% 3.9%
12C, 60 MeV 1.1% 15.5% 13.5% 12.9% 11.8% 11.1% 8.0% 6.0%

Table 6.1: Relative variance (in percentage) of the values of P
(i)
ν and F

(i)
k for an ensemble of 50 sensitive

spheres 3 nm in diameter, considering di�erent values of ν and k, as a function of radiation quality, when
the full penumbra is simulated.

cluster sizes. However, if the cumulative distributions F (i)
k are considered, the impact of

these di�erences is reduced, as shown in Table 6.1.
As for the case of a single target volume discussed in the previous Chapters, the cumu-

lative distributions F (i)
k represent the probability that at the passage of a single ionizing

particle a cluster of k or more ionizations is formed inside the (i)-th detector. For each
value of k, F (i)

k coincides therefore with the probability that the (i)-th sphere is �hit� if a

threshold value k is de�ned, and the mean value Fk of F (i)
k on all the detecting spheres

represents the average probability for each sphere to be �hit� if a threshold value k is
considered.

Given the 10% relative variance in the F (i)
k values when the full penumbra is simulated,

the question arises whether it is meaningful in this case to de�ne a unique average proba-
bility of being hit for all the spheres, regardless of their spatial position, or if the di�erent
F

(i)
k values produce di�erences which cannot be neglected. This issue can be solved by

comparing the theoretical probability distributions of the number of hit spheres in the two
cases, assuming that all spheres respond independently and track-induced correlations in
their response can be neglected:
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Figure 6.6: Comparison between a binomial distribution of parameters N = Nt and p = Fk (red
continuous line) and the convolution of Nt Bernoulli distributions (black dashed line with black dots)

taking into account the di�erences in the probability F
(i)
k of being hit for each sensitive sphere, for an

incident beam of 240-MeV carbon ions, a threshold value k = 1 and a con�guration with 50 spheres 3 nm
in diameter.

� If the dependence on spatial position can be neglected as a �rst approximation, the
di�erent F (i)

k can be replaced by a single average value Fk = 1
Nt

∑Nt
i=1 F

(i)
k , a unique

probability p = Fk of being hit can be de�ned for all the spheres and the distribution
of the number of hit targets should be a binomial distribution B(Nh; N, p) with
parameters N = Nt and p = Fk.

� If the dependence on spatial position cannot be neglected, the probability for each
target to be hit should be described by a Bernoulli distribution of parameter p = F

(i)
k

(i.e., a binomial distribution of parameters N = 1 and p = F
(i)
k ). The probability of

obtaining a number Nh of hit spheres will be given by the convolution CNt of these
Nt Bernoulli distributions bi(Nh;F

(i)
k ):

P (Nh) = b1(Nh;F
(1)
k )∗b2(Nh;F

(2)
k )∗. . .∗bNt(Nh;F

(Nt)
k ) = CNt(Nh; F

(1)
k , . . . , F

(Nt)
k )

The asterisk indicates the convolution operation de�ned in Section 2.5.1.

These two distributions are compared in Figure 6.6, considering 240-MeV carbon ions
as incident radiation quality, a threshold value k = 1 and a geometrical con�guration with
50 target spheres 3 nm in diameter: the di�erence between the two curves is almost unno-
ticeable. It can therefore be stated that as a �rst approximation each detector responds in
the same way to the radiation �eld, and the frequency distribution of the number of such
detectors being �hit� by radiation can be used to characterize the radiation quality also
when the full penumbra produced by secondary electron tracks is simulated.
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6.4 Analysis of the probability distributions

From the number of �hit� spheres in each event, the probability distribution P̃h(k |Q) of the
number of hit targets is derived by normalizing on the total number of primary particles,
as for the ionization cluster size distributions. It represents the probability that at the
passage of each ionizing particle of quality Q (de�ned by ion type and velocity) a number
h of spheres is hit, out of a total of Nt. The P̃h(k |Q) distribution is therefore de�ned for
0 ≤ h ≤ Nt.

In the ideal case where track-induced correlations are neglected, it is expected that
the distribution of the number of hit spheres is binomial, with parameters N = Nt and
p = Fk, as discussed in Section 6.3. However, particle tracks are highly-structured objects,
and sensitive spheres which are aligned along the direction of motion of primary ions have
a higher probability to respond together. Track-induced correlations cannot therefore be
neglected, and the shape of the P̃h(k |Q) distribution will deviate from a binomial. In
particular, it could be assumed that

P̃h(k |Q) =

Nt∑
n=h

Cn

(
n

h

)
(Fk)

h(1− Fk)n−h (6.1)

where Cn is a function which takes into account the spatial distribution of the n targets
with respect to a random track.

However, since the spheres are uniformly distributed inside the inner cylinder, the mean
value H1 of the P̃h(k |Q) distribution should be independent of track-induced correlations.
The mean number of hit spheres at the passage of each primary ion is therefore expected
to be Nt Fk, according to the intuitive idea that the average number of hit targets is the
product of the total number of targets and the probability for each of them to be hit. This
will be rigorously shown in Section 6.5.

In the following, the trend of the P̃h(k |Q) distributions is analysed separately for
the case where the full penumbra is simulated and for that in which only the secondary
electrons produced inside the sensitive targets are tracked up to their boundaries.

6.4.1 Simulation of the full penumbra

Figure 6.7 presents the probability distribution of the number of hit spheres resulting from
the same simulated data plotted in Figure 6.4. A binomial distribution with parameters
N = Nt and p = Fk and a Poisson distribution with parameter λ = NtFk are also plotted
for comparison. Even if the mean value of the distribution is in good agreement with the
theoretical estimation NtFk, it can be seen from the Figure that neither a binomial nor a
Poisson model describe satisfactorily the simulated data.

In order to study the dependence of this distribution on target parameters, Figure 6.8
shows the trend of P̃h(k |Q) for con�gurations with di�erent number of spheres and di�er-
ent diameters, considering again 240-MeV carbon ions and a threshold value k = 1. It is
clear from the Figure that an increase in the number of targets or in their diameter shifts
the distribution towards higher h values, due to the higher amount of volume available
for detection, and that the deviations from a binomial distribution due to track-induced

93



Chapter 6 � Towards a portable nanodosimeter

Figure 6.7: Probability distribution of the number of hit targets, for an incident beam of 240-MeV carbon
ions, considering a con�guration with 100 detecting spheres 3 nm in diameter and a threshold value k = 1
(orange circles with red line). For comparison, a binomial distribution (green dashed line) and a Poisson
one (thick black line) with the same mean value are also plotted.

(a) Dependence on Nt (b) Dependence on Dt

Figure 6.8: Probability distributions of the number of hit targets, for an incident beam of 240-MeV
carbon ions and di�erent geometrical con�gurations. (a) Dependence on target number, for spheres 3 nm
in diameter: Nt = 20 (squares with red line), Nt = 50 (diamonds with blue line), and Nt = 100 (circles
with green line). The distribution obtained by 5-fold convolution of that with Nt = 20 is also plotted
(empty circles with green dashed line). (b) Dependence on target diameter, for a con�guration with 100
spheres: Dt = 1 nm (squares with red line), Dt = 1.5 nm (diamonds with blue line), and Dt = 3 nm (circles
with green line). For comparison, corresponding binomial distributions with the same mean values are also
plotted (dashed lines).
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(a) 12C, 240 MeV (b) 12C, 8 MeV

(c) 1H, 20 MeV (d) 1H, 1 MeV

Figure 6.9: Dependence of the shape of the probability distribution of the number of hit targets on
radiation quality and threshold value, for a setup with 100 spheres 3 nm in diameter. (a) 240-MeV carbon
ions, (b) 8-MeV carbon ions, (c) 20-MeV protons, (d) 1-MeV protons. Threshold values of k = 1 (orange
circles), k = 2 (blue squares) and k = 3 (green diamonds) are shown. For comparison, corresponding
binomial distributions with the same mean values are also plotted in most cases (dashed lines).

correlations are particularly important for a higher number of targets and bigger sphere
diameter.

In particular, Figure 6.8(a) shows the distribution of the number of hit targets if the
number Nt of spheres is changed: the distribution for a lower target number deviates less
from a binomial than that for a con�guration with more sensitive spheres. For the case of
di�erent target sizes, shown in Figure 6.8(b), the deviations from a binomial are smaller
for smaller sphere diameters. However, even if in some cases track-induced correlations
are small, they must be studied for each speci�c con�guration: an example is that the
distribution for a con�guration with 100 detecting spheres cannot be derived from that
with 20 by means of a simple 5-fold convolution, as shown in Figure 6.8(b).
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Examples of how the P̃h(k |Q) distributions vary with radiation quality and threshold
value are shown in Figure 6.9, for a system with 100 detecting spheres 3 nm in diameter. It
can be seen that, for the same type of primary ion, the distribution shifts towards higher
h values when the energy of the ion is lower. This is mainly due to the increase in the
ionization cross section for the primary particle. If primary beams of the same velocity
(i.e., the same energy per unit mass) are considered, the distribution shifts towards lower
values of h when the atomic number Z is lower, re�ecting the decrease of the ionization
cross section with decreasing ion charge.

The deviations from a binomial distribution re�ect the di�erent track structure of these
ions: in particular, a long tail is present in the distributions due to the contribution of low-
energy secondary electrons, which alters the distribution shape in particular in the case of
low-energy carbon ions, due to their very short mean free path for primary ionization. For
any radiation quality, an increase in the threshold value causes a shift of the distribution
to the left, due to the more restrictive condition for a sphere to be considered hit. The
relative deviations from a binomial generally decrease with increasing threshold, however,
this is not always the case, in particular if the mean free path for primary ionizations is
larger than the sphere diameter (as it is the case for 20-MeV protons).

6.4.2 Simulation of electrons generated inside the spheres only

If secondary electron tracks are simulated only within the target spheres, and their tracks
are terminated when they leave the sphere of production, track-induced correlations are
expected to play a more relevant role. In particular, the lateral extension of the track is
zero in this case, and therefore only the targets located along the direction of incidence of
the primary particle have a chance to respond. This implies that a maximum number of
hit spheres exists, which corresponds to the ratio between the length of the inner cylinder
and the diameter of the detecting sphere.

Figure 6.10 presents the P̃h(k |Q) distribution for 240-MeV carbon ions, considering
a geometrical con�guration identical to that of Figure 6.7 (100 spheres 3 nm in diameter,
threshold value k = 1), but for the case where secondary electron tracks are terminated
when they leave the sphere of production. The distribution is de�ned only for a number
of hit spheres of 6 or lower and clearly deviates both from a binomial and a Poisson
distribution. Its exact shape depends on the arrangement of the spheres within the inner
cylinder; however, it shows values lower than the corresponding binomial for h = 1, and
higher for h = 2 and 3. This is a general feature that is independent of the arrangement of
the targets in the speci�c case presented: it re�ects the likelihood of having a number h of
spheres aligned along a track, for this speci�c number of targets Nt and sphere diameter
Dt.

The variation of the P̃h(k |Q) distribution with target parameters is shown in Fig-
ure 6.11, for 240-MeV carbon ions and a threshold value k = 1. Both reducing the number
of spheres without changing their diameter and reducing the sphere diameter without
changing their number produce similar e�ects, i.e., the distribution is shifted to lower
values and its similarity with a binomial is increased, due to the fact that less spheres
are aligned along a track. The relevant e�ect of track-induced correlations when the sec-
ondary electrons are simulated within the target spheres only is shown very clearly in
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Figure 6.10: Probability distribution of the number of hit targets in the case where the secondary electron
tracks are simulated only within the sphere of production, for an incident beam of 240-MeV carbon ions,
a con�guration with 100 detecting spheres 3 nm in diameter and a threshold value k = 1 (orange circles
with red line). For comparison, a binomial distribution (green dashed line) and a Poisson one (thick black
line) with the same mean value are also plotted.

(a) Dependence on Nt (b) Dependence on Dt

Figure 6.11: Probability distribution of the number of hit spheres for 240-MeV carbon ions, considering
di�erent geometrical con�gurations. (a) Dependence on target number, for spheres 3 nm in diameter:
Nt = 20 (squares with red line), Nt = 50 (diamonds with blue line), and Nt = 100 (circles with green line).
The distribution obtained by 5-fold convolution of that with Nt = 20 is also plotted (empty circles with
green dashed line). (b) Dependence on target diameter, for a con�guration with 100 spheres: Dt = 1 nm
(squares with red line), Dt = 1.5 nm (diamonds with blue line), and Dt = 3 nm (circles with green line).
For comparison, corresponding binomial distributions with the same mean values are also plotted (dashed
lines).
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(a) 12C, 240 MeV (b) 12C, 8 MeV

(c) 1H, 20 MeV (d) 1H, 1 MeV

Figure 6.12: Dependence of the shape of the probability distribution of the number of hit targets on
radiation quality and threshold value, for a setup with 100 spheres 3 nm in diameter. (a) 240-MeV carbon
ions, (b) 8-MeV carbon ions, (c) 20-MeV protons, (d) 1-MeV protons. Threshold values of k = 1 (orange
circles), k = 2 (blue squares) and k = 3 (green diamonds) are shown. For comparison, corresponding
binomial distributions with the same mean values are also plotted in most cases (dashed lines).

Figure 6.11(a): the distribution obtained from the 5-fold convolution of that with Nt = 20
is completely di�erent from that with Nt = 100, and much more similar to a binomial
than the latter. This is due to the fact that track-induced correlations are lost almost
completely in the convolution.

The dependence on radiation quality and threshold value is presented in Figure 6.12,
for the same type and energy of primary particles discussed in Figure 6.9, considering a
con�guration with 100 spheres 3 nm in diameter. The maximum value of 6 hit spheres
can be seen very clearly in all cases, apart from the sparsely-ionizing 20-MeV protons for
which the mean free path is longer than the size of the sensitive spheres. The shape of the
distributions can therefore be changed only within this limit, and tends to assume a more
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rounded shape when either the threshold value is lowered or the incident radiation is more
densely ionizing. When the mean free path for primary ionizations becomes much shorter
than target diameter, the distribution converges for all threshold values to the stochastic
distribution of the number of targets along a random chord parallel to the central axis of
the containing cylinder: this is clearly visible in the case of 8-MeV carbon ions, reported
in Figure 6.12(b).

When the secondary electrons are simulated only within the sphere of production, the
distribution of the number of hit targets is thus the result of a convolution of the stochastic
distribution of the number of targets aligned along a track and the probability of inducing
at least k ionizations within a sphere crossed by the trajectory of the primary particle.
The latter depends on the ratio between the target diameter and the mean free path for
primary ionizations. It is therefore clear why for sparsely-ionizing particles such as 20-MeV
protons the similarity to a binomial distribution is more pronounced: the stochastics of
the number of ionizations within the single sphere dominates over that of the number of
targets aligned along a track. This feature can also be seen for higher threshold values in
the case of 1-MeV protons, shown in Figure 6.12(d).

6.5 Analysis of the mean values

The mean valuesH1 have been calculated from the distribution of the number of hit targets
h as

H1(k |Q) =

Nt∑
h=0

h P̃h(k |Q) (6.2)

In order to show that H1(k |Q) = Nt Fk(Q), a Boolean function hi,j can be de�ned
for each target (i), which assumes a value of 1 if the target is hit during the event j, and
a value of 0 if it is not. Using this function, the value of F (i)

k for each target (i) can be
de�ned as the ratio of the number of times in which the target is hit to the total number
of primary events Np:

F
(i)
k =

1

Np

Np∑
j=1

hi,j (6.3)

Moreover, H1 can also be expressed more directly as the mean number of hit targets over
all the primary events:

H1 =
1

Np

Np∑
j=1

Nj =
1

Np

Np∑
j=1

Nt∑
i=1

hi,j (6.4)

where Nj is the number of targets which are hit in the event j. By changing the summation
order it can �nally be obtained

H1 =

Nt∑
i=1

1

Np

Np∑
j=1

hi,j =

Nt∑
i=1

F
(i)
k = Nt Fk (6.5)

The relation H1(k |Q) = Nt Fk(Q) is therefore valid for all incident radiation qualities,
threshold values and geometrical con�gurations of the target spheres.

99



Chapter 6 � Towards a portable nanodosimeter

(a) (b)

Figure 6.13: Dependence of the mean number of hit spheres H1 on radiation quality, for protons (blue)
and carbon ions (orange), considering a threshold value k = 2, when the full penumbra created by secondary
electrons is simulated: (a) dependence on LET, (b) dependence on the average ionization yield M1 inside
each target sphere. Squares with dotted line correspond to a con�guration with Nt = 100 and Dt = 3 nm,
circles with continuous line to one with Nt = 900 and Dt = 1 nm.

Given the strong link betweenH1(k |Q) and Fk(Q), it is expected that the trend of these
two magnitudes is identical when the type and energy of incident radiation is changed. The
variation of H1 as a function of the radiation quality is presented in Figure 6.13 for the case
where the full penumbra created by secondary electrons is simulated, and in Figure 6.14 for
that in which the secondary electron tracks are simulated only inside the spherical targets
of production. In both cases, the values of H1 are plotted both as a function of the incident
LET and of the mean ionization yield M1 averaged over all the target spheres, calculated
from the ionization cluster-size distributions for each sphere (i):

M1 =
1

Nt

Nt∑
i=1

M
(i)
1 (6.6)

In both cases, plotting the values of H1 as a function ofM1 strongly reduces the di�erences
that are seen between protons and carbon ions when the same data are plotted as a function
of LET. This points again to the fact that particles of the same LET have di�erent track
structure: in particular, proton tracks are narrower than carbon ion ones for a given LET
value, because their velocity is lower. The probability of hitting more spheres within the
10 nm radius of the containing cylinder is therefore higher as well.

For what concerns the case where the full penumbra is simulated, it can be seen in
Figure 6.13 that H1 increases with increasing LET with a constant slope up to an LET
value of 100 keV/µm, then it keeps increasing but with a less steep slope. This trend is
maintained for di�erent target diameters and also for di�erent thresholds, apart from some
di�erences in the slopes before 100 keV/µm: in particular, for k = 1 the slope in this LET
range is lower. Similar di�erences are seen for di�erent sphere diameters and threshold
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(a) (b)

Figure 6.14: Dependence of the mean number of hit spheres H1 on radiation quality, for protons (blue)
and carbon ions (orange), considering a threshold value k = 2, when secondary electrons are simulated
only within the sphere of production: (a) dependence on LET, (b) dependence on the average ionization
yield M1 inside each target sphere. Squares with dotted line correspond to a con�guration with Nt = 100
and Dt = 3 nm, circles with continuous line to one with Nt = 900 and Dt = 1 nm.

values when the data are plotted as a function of M1. In any case, the value of H1 keeps
increasing both with increasing LET and with increasing M1, regardless of the speci�c
target size and threshold value under consideration.

The trend is completely di�erent when the secondary electron tracks are terminated as
soon as they leave the sphere of production: in this case, a clear saturation is visible for
high LET or M1, regardless of target diameter and threshold value. This can be explained
by the fact that when the mean free path for primary ionizations becomes much smaller
than the target diameter, all the spheres crossed by a primary ion will be hit. The mean
number of hit targets converges therefore to the mean number of spheres crossed by a
random chord parallel to the central axis of the inner cylinder, since primary particles
travel approximately on straight lines parallel to this axis and are arranged uniformly on
the cross section of the incident beam.

The saturation value depends of course on the number Nt of sensitive spheres, and
since H1(k |Q) = Nt Fk(Q) it re�ects the saturation of the Fk values. For the case where
the secondary electron tracks are simulated only within the target sphere of production,
Fk is the product of two factors: the probability that the primary particles enters the
target sphere and the probability that if it indeed enters the target sphere, it produces
more than k ionizations within it, according to the law of conditional probability. The
�rst factor is given by the ratio of the cross section of the target sphere to that of the
primary beam, i.e. D2

t /D
2
b , since the beam is uniform. The second depends on radiation

quality and is conceptually identical to the cumulative probability of inducing more than
k ionizations in a single target volume de�ned in Section 2.1, provided that the primary
particle indeed crosses the volume of interest. Due to the latter constraint, this probability
will be indicated in the following with Fk

(c)
.
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Figure 6.15: Comparison between simulated and experimental values of Fk
(c)

as a function of the thresh-
old value k, for 20-MeV protons (blue) and 240-MeV carbon ions (orange) when the secondary electrons
are transported only up to the boundary of the sphere of production. Squares with dotted line corre-
spond to experimental data measured with the Startrack counter, circles with continuous line to Geant4
simulations. Statistical uncertainties are plotted for the Monte Carlo data only.

For the case where the secondary electrons are transported only up to the boundary of
the sphere of production, the value of H1 can thus be expressed as

H1(k |Q) = Nt
D2
t

D2
b

Fk
(c)

(Q) (6.7)

and H1 saturates to a value of Nt ·D2
t /D

2
b when Fk

(c) → 1. The LET orM1 value at which
the saturation is reached and the slope before saturation depend on the threshold value,
as it can be expected from the proportionality between H1 and Fk

(c)
.

Given this �nding, it can be interesting to compare the results of these simulations
to experimental measurements carried out with the Startrack counter, and to inactivation
cross sections for di�erent survival levels. The former comparison is shown in Figure 6.15,
for 20-MeV protons and 240-MeV carbon ions, as a function of the threshold value k.
For the simulated data, a con�guration with 100 detecting spheres 3 nm in diameter is
considered, and H1 values have been divided by the factor Nt ·D2

t /D
2
b in order to obtain

Fk
(c)
. Experimental data are derived from ionization cluster-size distributions measured

with the Startrack counter at a propane pressure of 300 Pa, corresponding to an e�ective
target size of 5 nm at unit density. Since measurements in a site size of 3 nm have not been
taken yet for these radiation qualities, an impact parameter of 1.5 mm (corresponding to
2 nm) has been considered in order to obtain an e�ective travelling length of 3 nm inside the
target volume. The di�erent chord length distribution and the asymmetry in the secondary
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(a) (b)

Figure 6.16: Comparison between inactivation cross sections for V79 cells at two survival levels and
Geant4 simulations (squares) for di�erent target sizes and threshold values. (a) σ5% compared with
scaled H1 values for a con�guration with 900 sensitive spheres 1 mm in diameter, considering a threshold
value k = 2. (b) σα compared with scaled H1 values for a con�guration with 400 sensitive spheres 1.5 mm
in diameter, considering a threshold value k = 3. The saturation value of H1 is 2.25 in both cases. The
inactivation cross sections are shown in light blue for irradiation with protons, in orange with carbon ions.

electron degradation are expected to play only a minor role in this case. Indeed, the two
curves are very similar, and all experimental points lie within the statistical uncertainty of
the simulation.

Figure 6.16 compares the results of Geant4 simulations to inactivation cross sections
at 5% survival level and at initial survival. Given the results presented in Section 5.2,
it can be expected that for the case of σ5%, the correlation is optimized considering a
threshold value k = 2 and sensitive targets 1 nm in size, while for σα values of k = 3 and
Dt = 1.5 nm must be considered. Moreover, since H1 saturates at a value of Nt ·D2

t /D
2
b , it

should be scaled by a factor Cσ ·D2
b/(Nt ·D2

t ), where Cσ is the same scaling factor applied
in Section 5.2 to experimental data. This is indeed the case: after H1 values are scaled for
this factor in order to match their saturation level to that of inactivation cross sections,
the agreement between the two sets of data is very good.

The detector concept implemented in this study seems therefore a promising candidate
for the development of a portable nanodosimeter, since the mean number H1 of hit targets
retains enough information for a consistent characterization of the radiation �eld. This
is because H1 is equal to Nt Fk, where Nt is the number of detecting spheres and Fk is
the probability for each of them to be �hit�. Therefore, if the total number of spheres is
known and the threshold value k with which they respond is tuneable, an estimation of the
single-event quantity Fk can be made from the value of H1, providing access to a quantity
which would probably be unmeasurable in a real nanometric volume at unit density. In
addition, since H1 is de�ned as a mean value, it can be obtained by normalising the total
number of hit targets on the total number of primary ions, thus removing the need for
single particle detection, provided that the incident particle �uence is kept low enough so
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that the probability of two-particle hit inside a single sphere is negligible.
However, the trend of H1 as a function of incident LET matches that of inactivation

cross sections only if the geometrical boundary of the sensitive targets is impenetrable
to secondary electrons. The latter fact makes the feasibility of such a detector far from
obvious, even if other constraints on target number, diameter and threshold tuning are
met.
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Conclusions

The work presented in this thesis developed towards three main aims:

1. To measure the ionization yield in a sensitive volume about 1 nm in size: the operative
range of the Startrack counter had therefore to be extended to pressure values lower
than the standard one of 300 Pa, assessing at the same time the e�ect of a drastic
decrease in the detection e�ciency.

2. To identify nanodosimetric magnitudes which can be used as monitors for biological
e�ects at cellular level, by analysing the correlation between measurable descriptors
of particle track structure and given end-points for cell survival.

3. To investigate if a simpli�ed multi-target system retains enough information for a
consistent characterization of the track structure, even if it does not measure the full
stochastic distribution of the ionization yield, as a �rst proof-of principle study for a
compact, portable nanodosimeter to be used for radiotherapy or radiation protection
applications.

For what concerns the �rst aim, the main conclusions of this work are resumed in the
following:

� The Startrack counter gives a consistent characterization of the track structure at a
gas pressure of 200 Pa, both for sparsely-ionizing and densely-ionizing radiation. A
comparison with the Monte Carlo code MC-Startrack suggests that the assumption
of a uniform scaling of the e�ciency map when the gas pressure is reduced is reliable.
In these conditions, the average detection e�ciency is about 7%. From a comparison
with Monte Carlo simulations carried out at 100% detection e�ciency, an e�ective
target size of 1.5 nm can be de�ned for the Startrack counter at this pressure.

� At a gas pressure of 170 Pa, the validity of the approximation of uniform scaling
of the e�ciency map is con�rmed, and the average detection e�ciency is about
4%. However, �rst indications arise from the comparison with simulations at 100%
e�ciency that the de�nition of an e�ective target size is problematic at this pressure,
since the site size that optimizes the correlation between experimental and calculated
data varies slightly with the radiation quality. Further measurements and simulations
are therefore needed in order to investigate this point.
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� Preliminary tests with a single radiation quality (7Li at 16.4 MeV) indicate that the
response of the Startrack counter is consistent up to a minimum propane pressure of
150 Pa. The measurements should however be extended to other radiation qualities.

Concerning the second aim, an outstanding correlation is found between the inverse
cumulative distribution functions Fk obtained from experimental measurements and in-
activation cross sections for di�erent end-points of cell survival. In particular, for radio-
resistant cell lines, the inactivation cross section σ5% at 5% survival level is proportional
to the cumulative probability F2 of measuring two ionizations in a target volume 1 nm in
size, and the cross section σα for initial survival is proportional to the cumulative prob-
ability F3 of measuring at least three ionizations in a target volume 1.5 nm in size. For
radio-sensitive cell lines, such as the mutant XRS5, the inactivation cross section is the
same for all survival level, and it was found to be proportional to F1, i.e., the probability
of measuring at least one ionization in the target volume, if the latter is 0.3 nm in size.

This direct proportionality between inactivation cross sections and cumulative proba-
bilities was found to be valid regardless of the speci�c cell line which is considered: both
rodent (V79, CHO) and human (HSG, T1) radio-resistant cell lines show the same be-
haviour, only with a di�erent proportionality factor, which is speci�c for each cell line.
Given the direct proportionality between F2 and σ5% and F3 and σα, the α and β param-
eters of the linear-quadratic dose-response model of cell survival can be calculated for an
unknown radiation �eld from a nanodosimetric measurement of F2 and F3, after the pro-
portionality factor C5% and Cα for the speci�c cell line under analysis have been derived
from a calibration on radiobiological data, using a reference radiation quality. The full
cell survival curve can thus be reconstructed from nanodosimetric measurements, also in
unknown radiation �elds.

The validity of this procedure has been studied on a set of published cell survival
curves for V79 cells irradiated by carbon ions with di�erent incident LET, obtaining in
most cases quite a good agreement between the literature curve and the nanodosimetry-
derived one. Some discrepancies are however found, in particular at higher LET. This
study must therefore be extended in order to assess possible uncertainties and limits of
applicability.

However, direct nanodosimetric measurements cannot be obtained at present for all
radiation qualities considered in the literature cell survival curves examined in the present
study, due to the beam energy limits of the Tandem-ALPI accelerator complex of INFN-LNL.
In particular, for carbon ions the maximum available energy is 240 MeV, corresponding to
an LET of about 100 keV/µm and a M1 in a volume of 1 nm of about 1.1; the available
carbon ion qualities are therefore those identi�ed by the red area shown in Figure 7.1. Vice
versa, in the case of charge state Z = 1 the minimum energy at which a stable operation
of the accelerator can be achieved is about 8 MeV for protons and 4 MeV for deuterons.
The latter corresponds to an LET of about 10 keV/µm and to a M1 of 0.1 in a volume of
1 nm; the available range is therefore that shown in blue in Figure 7.1.

Given the limited portability of the Startrack counter, it would be necessary to build
a simpli�ed version of it, which could be moved to other accelerator facilities in order to
investigate both higher-energy carbon ion beams and lower-energy proton ones. In this
way, nanodosimetric measurements could be carried out with the same radiation qualities
used in the radiobiological experiments, and a one-to-one correspondence between the two
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Figure 7.1: Range of radiation qualities for which the F2 value corresponding to a given inactivation cross
section can be measured at present with the Startrack counter installed at the Tandem-ALPI accelerator
facility at INFN-LNL: full symbols correspond to radiobiological data for which the corresponding F2 value
can be measured at present, for protons (blue) and carbon ions (orange); empty ones to data for which
the corresponding nanodosimetric measurement cannot be carried out.

sets of data could be made.
For what concerns the third aim, a simulation tool has been developed in order to

study particle track structure in a multi-target environment. It is based on the Geant4-
DNA physical models of theGeant4 toolkit and models a set of nanometre-sized spherical
detecting volumes dispersed in a cylindrical outer layer. Each sensitive volume is considered
�hit� if k or more ionizations take place inside it, where k is a tuneable threshold value
which represents the sensitivity of individual targets to radiation damage. Two di�erent
tracking options have been considered: in the �rst one, the full penumbra is simulated; in
the second one, the secondary electrons are simulated only up to the geometrical boundary
of the volume of their production.

It has been found that for both tracking options the mean value H1 of the distribution
is given by Nt · Fk, where Nt is the number of target spheres and Fk is the average proba-
bility for each of them to be �hit�, which corresponds to the k-th value of the cumulative
distribution function of the ionization cluster size distribution (i.e., at least k ionizations
take place within the sensitive volume). Therefore, if the total number of spheres is known,
an estimation of the single-event quantity Fk can be made from the value of H1. More-
over, when the secondary electrons are simulated only up to the boundary of the volume of
their production, the trend of H1 reproduces that of inactivation cross sections both at 5%
survival level and at initial survival, if the target diameter and threshold value are tuned
to speci�c values (k = 2 and diameter of 1 nm in the �rst case, and k = 3 and diameter of
1.5 nm in the second).
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The setup implemented in this study seems therefore a good detector concept for a
portable nanodosimeter, since the mean number H1 of hit targets retains enough informa-
tion for a consistent characterization of particle track structure. This could be of interest
for the application of nanodosimetry to radiation therapy and radiation protection. How-
ever, the trend of H1 as a function of LET matches that of inactivation cross sections
only if the target spheres are screened from the secondary electron contribution generated
by primary particles not directly crossing their volume. The requirement of an ideally
impenetrable boundary of the sensitive structures increases the di�culty in the practical
realization of such a detector concept. Experimental and theoretical options to overcome
this problem will be a matter for future study.
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