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“· · · to the acknowledgement of the mystery of God, and of the Father, and of

Christ; In whom are hid all the treasures of wisdom and knowledge”.

Colossians 2:2-3.



Abstract

The demand for reliable small area estimates derived from survey data has in-

creased greatly in recent years due to, among other things, their growing use

in formulating policies and programs, allocation of government funds, regional

planning, small area business decisions and other applications. Traditional area-

specific (direct) estimates may not provide acceptable precision for small areas

because sample sizes are seldom large enough in many small areas of interest.

This makes it necessary to borrow information across related areas through indi-

rect estimation based on models, using auxiliary information such as recent census

data and current administrative data. Methods based on models are now widely

accepted. The principal focus of this thesis is the development of a flexible mod-

eling strategy in small area estimation with demonstrations and evaluations using

the 1989 United States census bureau median income dataset.

This dissertation is divided into two main parts, the first part deals with devel-

opment of the proposed model and comparision of this model to the standard

area-level Fay-Herriot model through the empirical Bayes (EB) approach. Results

from these two models are compared in terms of average relative bias, average

squared relative bias, average absolute bias, average squared deviation as well as

the empirical mean square error. The proposed model exhibits remarkably better

performance over the standard Fay-Herriot model.

The second part represents our attempt to construct a hierarchical Bayes (HB)

approach to estimate parameters for the proposed model, with implementation

carried out by Markov chain Monte Carlo (MCMC) techniques. MCMC was im-

plemented via the Gibbs sampling algorithm using R software package. We used

several graphical tools to assess convergence and determine the length of the burn-

in period. Results from the two models are compared in terms of average relative

bias, average squared relative bias and average absolute bias. Our empirical re-

sults highlight the superiority of using the proposed model over the Fay-Herriot

model. However, the advantage of the proposed model comes at a price since its

implementation is mildly more difficult than the Fay-Herriot model.



Riassunto

L’esigenza di stime affidabili per piccole aree tratte da sondaggi cresciuta notevol-

mente negli ultimi anni, grazie all’aumento del loro utilizzo nella formulazione

delle politiche, nella ripartizione dei fondi statali, nella pianificazione regionale,

nelle applicazioni business e in altre applicazioni. Le tradizionali stime specifiche

per l’area (stime dirette) potrebbero non fornire una precisione accettabile, perch

la numerosit campionaria in molte delle piccole aree d’interesse potrebbe essere ri-

dotta o nulla. Questo rende neccessario sfruttare le informazioni dalle zone simili,

tramitte una stima indiretta basata sui modelli per informazioni ausiliarie come i

dati dei censimenti o i dati amministrativi. I metodi basati sui modelli sono ora

piuttosto diffusi. L’attenzione principale di questa tesi sviluppare una strategia di

modellazione flessibile nella stima di piccole aree, e la sua valutazione utilizzando

il Censimento negli Stati Uniti sul reddito mediano, del 1989.

Questa dissertazione composta di due parti : la prima tratta lo sviluppo del

modello e il confronto del modello proposto con il modello standard di Fay-Herriot

tramite l’approcio di Bayes empirico. I risultati per questi due modelli sono stati

confrontati in termini del bias relativo medio, del bias quadratico medio, del bias

medio assoluto, della deviazione quadratica media ed inotre in termini del errore

quadratico medio empirico. Il modello proposto dimostra un rendimento assai

migliore rispetto al modello standard di Fay-Herriot.

La seconda parte presenta il nostro tentativo di costruire un approccio di Bayes

Gerarchico per la stima dei parametri del modello proposto, con l’attuazione delle

tecniche di Markov Chain Monte Carlo (MCMC). MCMC stato utilizzato tramitte

l’algoritmo di campionamento Gibbs, utilizzando il software R. I risultati dai

due modelli sono stati confrontati in termini di bias relativo medio, bias relativo

quadratico medio e il bias assoluto medio. I nostri risultati empirici sottolineano

la superiorit del modello proposto rispetto al modello Fay-Herriot. Tuttavia, il

vantaggio del modello proposto limitato visto che la sua attuazione leggermente

pi complicata rispetto al modello di Fay-Herriot.
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Chapter 1

Introduction

1.1 Overview

In recent years, the statistical technique of small area estimation (SAE) has been

a very hot topic, and there is an ever-growing demand for reliable estimates of

small area populations of all types. Reliable estimates of the population of small

areas are important for several reasons. These important estimates are used for,

among other things, determination of state funding allocations, determination of

exact boundaries for schools and voting districts, administrative planning, disease

mapping and marketing guidance.

For historical and/or administrative reasons a country is usually divided into re-

gions (municipalities) and these are further divided into districts (counties) or

even further (streets or parts of streets). These smaller units of a country in de-

mographical and epidemiological studies are normally referred to as small areas.

Data users and analysts have got their appetites whetted by richer (inter) national

databases. Naturally, they seek further detail to extend their understanding of the

data, this means that small area data, are needed. Such data may include labour

force, income levels, unemployment, employment, marriages, etc. subdivided into

geographical areas.

1
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From these data, for instance, economic and social development indices could

be calculated for each area. Development indices, which are mainly needed for

the development projects, may be calculated using data on income, employment

and unemployment levels which are to be supplied annually for each small area.

Unemployment rates which may also be used for the distribution of unemployment

benefits may be calculated from labour force survey.

In the medical area, the counts of a disease prevalence or incidence for each small

area may be kept in addition to the expected counts of the disease. The expected

counts are obtained by calculating what we would have often obtained if there was

an equal risk applying to the whole geographical area, but taking into account the

age by sex structure of the study population. Simple statistics such as the ratios

and differences of the observed and expected counts can easily be computed to

give the relative risk of the disease for each small area.

In recent years, the demand for small area statistics abbreviated as SMAS is

increasing and this trend is likely to continue for many years. The reason for

this continuous increase in the demand for SMAS are not far fetched and we will

explain this below.

Traditionally, the national well-being of the population of a nation is measured

by the income per capita. But the nation’s per capita income per se does not

indicate that every member of that nation enjoys the same level of economic and

social development. Typically, within a nation, small areas, in the sequel referred

to as subregions will deviate from this national average. If some subregions have

much lower average per capita income, this causes concern and perhaps asks for

remedial actions. The need to identify such subregions, to develop and stimulate

policy solutions and to administer and evaluate the effects of programs on these

subregions all imply a need for data and statistical information at the relevant

geographical and demographic levels. The SMAS support the realisation of such

objectives.

Further, it is common knowledge that many business decisions depend on local

social, economic and enviromental conditions. Statistics such as the percentage of
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the population that is economically active and its further subdivision into males

and females, the average monthly earnings per employee and electricity consump-

tion in kilowatts per capita can be beneficial for entrepreneurs in their business

decision taking process.

Politicians also show an increasing interest in obtaining statistical information for

geographical areas. For instance when they want to assess the impact of certain

medical policies or legislations on their constituents , they need (geographical)

health information on the inhabitants. For instance, the Regional Industrial De-

velopment Program (RIDP) of Statistics Canada’s small area data program re-

quires the calculation of a “development index” for each of 260 Census Divisions

(Brackstone, 1987). This index, an example of SMAS, is then used to rank the

Census Divisions into four classes that qualify for successively higher maximum

levels of government assistance for approved industrial development projects.

In the recent years, the increasing demand for SMAS has been recognized and

strategies have been developed in several countries to achieve high quality SMAS.

We now discuss what in the past affected most the availability the SMAS. In the

past, data and statistics were respectively collected and computed on national and

provincial levels. For that reason, the volume of data and the statistics required

did not warrant high speed and large computers. However, things are quite differ-

ent these days. The subdivision of a nation into subregions and the extra details

required to compare each subregion to national and provincial data, necessarily

create the need for voluminous data sets. Since the subregions are heterogeneous,

small area data collected over such regions have the characteristic of being hetero-

geneous as well. We can classify the factors that influence heterogeneity in the data

into (1) uncontrollable and (2) controllable factors. Here by uncontrollable fac-

tors, we are referring to factors like: (i) enviromental factors, (ii) exposure factors,

(iii) demographic factors and (iv) differences among individuals. The controllable

factors are for example those related to recording activities.
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Luckily, things have improved considerably in recent years (at least in some west-

ern countries). For instance, we experience in the computer industry, a tremen-

dous advance in software and hardware. Further, there has been much statistical

research which resulted in new modelling methods that can accommodate the

heterogeneous nature of small area data.

This prelude has introduced the idea of small area estimation and has highlighted

that concepts of small area estimation can be applied to a wide variety of situations.

The work presented in this thesis can be divided into two broad categories, the

first, dealing with empirical Bayes approach with inclination towards small area

estimation. The second category involves use of hierarchical Bayes method in small

area estimation. The rest of this thesis is therefore structured in the following way.

Chapter 2 gives an overview of approaches to small area estimation. In chapter

3, general concepts pertaining to frequentist and Bayesian methods are briefly

reviewed. A new model for small area estimation is developed and compared to

standard area level model (Fay and Herriot, 1979) through the empirical Bayes

approach in chapter 4 . In chapter 5, a hierarchical Bayesian approach is developed

to estimate parameters for the proposed model, with implementation carried out

by Markov chain Monte Carlo techniques. The thesis ends with a discussion of the

methods presented and possible future research projects which have been inspired

by this work in chapter 6.

1.2 Main Contributions of the Thesis

Overall it is the aim of this dissertation to demonstrate the effectiveness of use

of a new flexible methodology in small area estimation. We have considered both

the area-level and unit-level models. We have formulated a new flexible small

area model by incorporating a tuning parameter into the random part of standard

area-level (Fay-Herriot) model as well as the standard unit-level small area model.

Bayesian inference in small area estimation has received a renewed research effort.
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This dissertation embodies three research contributions as well as a discussion of

extensions of these.

The first contribution addresses the performance of the proposed flexible model as

compared with standard area-level Fay-Herriot model in the context of empirical

Bayes (EB) approach.

The second contribution develops tools to assess the performance of our proposed

model in a hierarchical Bayes (HB) framework. The novelty here is that we have

developed a flexible way to handle random effects in an area-level small area es-

timation model. The third contribution constructs tools for the empirical Bayes

(EB) framework for the proposed flexible unit-level model as well as standard

unit-level model.



Chapter 2

Approaches to Small Area

Estimation

2.1 Introduction

In this chapter, we briefly review the approaches to small area estimation. Tra-

ditionally there are two types of small area estimation namely direct and indirect

estimation. The direct small area estimation is based on survey design and in-

cludes the Horvitz - Thompson (HT) estimator, generalised regression (GREG)

estimator and modified direct estimator. On the other hand, indirect approaches

are mainly based on different statistical models and techniques. Implicit model

based approaches include synthetic and composite estimations; whereas explicit

models are categorized as area level and unit level models.

2.2 Direct Estimation

Direct estimates are classical design-based estimators that are obtained by apply-

ing survey weights to the sample units in each small area (Saei and Chambers,

2003). Direct estimators only rely on the sample obtained from the survey. For

direct estimation all small areas must be sampled in order to produce these kinds

6
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of estimates. Although it is rare, when survey samples are large enough to cover

all the study areas with sufficient data in each area, different estimators can be

developed. However, a major disadvantage of such estimators is that unaccept-

ably large standard errors may result: this is especially true if the sample size

within the small area is small. The following two estimators are common in direct

estimation.

2.2.1 Horvitz-Thompson (HT) Estimator

The Horvitz-Thompson is the simplest direct estimator. A finite survey population

Ω, consists of N distinct elements identified through the labels {1, 2, · · · , k, · · · N}

contains Ei (Ei ⊂ Ω) subpopulation for a small area i (1, 2, · · · ,m) with Ni el-

ements and
∑m

i=1 Ni = N . Consider a sample s (s ⊆ Ω) drawn from Ω with a

given probability design p(.), and si si ⊂ s is the set of individuals that have been

selected in the sample from the small area i. Suppose the inclusion probability

πk = Pr(k ∈ s) is a strictly positive and known quantity. For the elements k ∈ si,

let (yik, xik) be a set of sample observations, where yik is the value of variable of

interest for the kth unit in the small area i and xik is a vector of auxiliary infor-

mation associated with yik.

Now, if Yi and Xi represent the target variable and the available covariates for a

small area i, then the Horvitz-Thompson estimator (Cochran, 1977) of the popu-

lation total for ith small area can be defined as

Ŷi,HT =
∑
k∈si

dikyik

where dik = 1/πik (k ∈ si ⊂ s) are design weights depending on the given proba-

bility sampling design p(.).

It is worth noting that in principle the HT estimator is not designed to use auxil-

liary information or covariates. However it is possible to consider auxilliary infor-

mation to evaluate this estimator (Sarndal et al., 1992). When πik > 0, ∀k ∈ Ei
and there is sufficient sample size available at ith small area, the HT estimator is
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unbiased but not efficient. In the context of small area estimation problems, with

an inadequate sample, HT estimator can be biased and more unrealible.

2.2.2 Generalized Regression (GREG) Estimator

The generalized regression (GREG) estimator is obtained by combining informa-

tion about the auxiliary variables (Xi), with the individual sample information

from the survey data, and can be defined as

Ŷi,GREG = X
′

i β̂ +
∑
k∈si

dik(yik − x
′

ikβ̂),

β̂ =

(∑
k∈si

dikxikx
′

ik

)−1(∑
k∈si

dikxiky
′

ik

)
.

where β̂ is the sample weighted least square estimates of generalized regression

(Sarndal et al., 1992, Rao, 2003) and other notations have similar definition to

section 2.1.1.

GREG estimator could be negative in some small areas when the linear regression

overestimates the variable of interest as well as when there is no sample observa-

tion in the small area i. A comprehensive discussion about the GREG estimator in

the context of small area estimation is given by Rao (1999b). The GREG estima-

tor is approximately design-unbiased for small area estimation but not consistent

because of high residuals. This estimator can take more general form (by choosing

the revised weights, which is the product of design weight and estimation weight,

instead of design weights) to provide estimates for all target variables under differ-

ent small areas, and hence the GREG estimator ensures consistency of results of

different areas when aggregated over different variables of interest (see Rao, 2003,

pg. 13).
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2.2.3 Modified Direct Estimator

The modified direct estimator can be used to improve estimators reliability by

borrowing strength for estimating the regression coefficient over small areas. If

auxiliary information Xi in the ith domain is available, then a modified direct

estimator of population total is given by

Ŷi,MD = Ŷi + (Xi − X̂i)
′
β̂,

where Ŷi and X̂i are the HT estimators of the target variable Yi and covariates Xi

respectively for the small area i, and β̂ =

(∑
k∈si

dkxkx
′

k

)−1(∑
k∈si

dkxky
′

k

)
is the

overall sample weighted least square estimates of regression coefficients.

The modified direct estimator is approximately design-unbiased as the overall

sample size increases, even if the regional sample size is small. Although the

modified direct estimator borrows strength for estimating the overall regression

coefficients, it does not increase the effective sample size, unlike indirect small area

estimators (Rao, 2003). This estimator is also referred to in Woodruff (1966) , and

Battese et al. (1988) as the modified GREG estimator or the “survey regression”

estimator.

2.3 Indirect Estimation

Indirect or model-based small area estimators rely on statistical models to pro-

vide estimates for all small areas. Once the model is chosen, its parameters are

estimated using the data obtained in the survey. An important issue in indirect

small area estimation is that auxiliary information or covariates are needed. In

this section we review four statistical techniques of indirect estimation.



Chapter 2. Approaches to Small Area Estimation 10

2.3.1 Synthetic Estimation

The name synthetic estimator derives from the fact that these estimators borrow

strength by synthesising data from many different areas. Gonzalez (1973) defines

an estimator as synthetic when a reliable direct estimator for a large area is used to

derive an indirect estimator for a small area belonging to the large area under the

assumption that all small areas have the samilar characteristics as the large area.

In addition, Levy (1979) and Rao (2003) provide extensive overviews on various

synthetic estimation approaches and its application in small areas estimation.

The synthetic estimators are derived by partitioning the whole population into a

series of mutually exclusive and exhaustive cells and deriving the estimate as sum

of products. Suppose the whole sample domain Y ′ is partitioned in Y.j’s large

domains and a reliable direct estimate Ŷ.j of the jth domain total can be obtained

from the survey data; the small area, i, may cut across j so that Y.j =
∑
i

Yij,

where Yij is the total for cell (i,j). Further let Xij be auxiliary information total

available for the ith small area within jth. Then synthetic estimator of small area

total Yi =
∑
j

Yij can be defined as

Ŷi,S =
∑
j

(Xij/X.j)Ŷ.j,

where X.j =
∑
i

Xij (Ghosh and Rao, 1994, see). This estimator is also known

as the ratio-synthetic estimator. The most commonly used regression-synthetic

estimator of the ith area population total can be defined as

Ŷi,S = X ′iβ̂,

where Xi is the known total of available auxuliary information in a small area i

and β denotes estimates of population regression coefficients. Synthetic estima-

tor performs well only if the true regression coefficient happens to be close to β̂



Chapter 2. Approaches to Small Area Estimation 11

in all considered areas. Otherwise the synthetic estimator can be highly biased

in some areas. The assumption that the area-specific regression coefficients are

approximately equal is what Rao (2003) calls implicit modelling.

2.3.2 Composite Estimation

In the practise of survey statistics, as the sample size in a small area increases, a

direct estimator becomes more desirable than a synthetic estimator. This holds

whether or not the surveys are designed to produce estimates for small areas. In

other words, when area level sample sizes are relatively small the synthetic es-

timator outperforms the traditional direct estimator, whereas when the sample

sizes are large enough the direct estimator outperforms the synthetic estimator. A

weighted sum of these two estimators would be an ideal alternative to chosing one

over the other in order to balance their degree of bias, and this type of estimator

is called composite estimator.

According to Ghosh and Rao (1994), the composite estimator of the population

total Yi for a small area i can be defined as

Ŷi,C = φiŶi,D + (1− φi)Ŷi,S,

where Ŷi,D and Ŷi,S denote direct and synthetic estimator of Yi respectively. φi

is a suitably chosen weight that lies between 0 and 1. Schaible (1978) provides a

detailed discussion on choice of weights for the composite estimator. The choice of

optimal weight (φopti ) can be obtained by minimising the mean square error (MSE)

of the composite estimator, Ŷi,C , with respect to φi (Ghosh and Rao, 1994, Rao,

2003). This yields

φopti =
MSE(Ŷi,S)

MSE(Ŷi,D) +MSE(Ŷi,S)
.
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A number of estimators proposed in literature have the form of composite estima-

tors, for instance the James-Stein estimator proposed by James and Stein (1961)

which considers common weight φ. Efron and Morris (1975) have generalised

the James-Stein estimator. Composite estimators are biased and they may have

improved precision depending on the selection of the weight.

2.3.3 Basic Area Level Model

Small area estimators are based on area level computations if the models link small

area information on response variable to area-specific auxiliary variables. One of

the most widely used area level models for small area estimation was proposed

by Fay and Herriot (1979). According to the Fay-Herriot model, a basic area

level model assumes that the small area parameter of interest θi is related to

area-specific auxiliary data xi through a linear model

θi = xTi β + νi, i = 1, . . . ,m. (2.1)

where m is the number of small areas, β = (β1, . . . , βp)
′

is p × 1 vector of re-

gression coefficients, and the νi’s are area-specific random effects assumed to be

independent and identically distributed (iid) with E(νi) = 0 and var(νi) = A.

The assumption of normality may also be included.

The area level model assumes that there exists a direct survey estimator yi for the

small area parameter θi such that

yi = θi + ei, i = 1, . . . ,m. (2.2)

where the ei is the sampling error associated with the direct estimator yi. We

also assume that the ei’s are independent normal random variables with mean

E(ei|θi) = 0 and sampling variance var(ei|θi) = Di. Combining models (2.1) and

(2.2) yields the area level linear mixed model
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yi = xTi β + νi + ei. (2.3)

Note that model (2.3) involves both model based random errors νi and design-

based sampling errors ei. It takes the sampling design into account through the

survey weights in the direct estimator yi. Rao (1999a) indicates that the success of

small area estimation through a model based approach largely depends on getting

good auxiliary information that leads to small model variance A, relative to known

or estimated sampling variance Di.

2.3.4 Basic Unit Level Model

The basic unit level model is based on unit level auxiliary variables. These vari-

ables are related to the unit level values of response through a nested error linear

regression model. This type of model can be represented by the following equation

yij = xTijβ + νi + eij. (2.4)

where yij is the response of unit j, j = 1, 2, · · · , Ni, in area i, i = 1, 2, · · · ,m. xij

is the vector of auxiliary variables, β is the vector of regression parameters, νi is

the random effect of area i and eij the individual unit error term. The area effects

νi are assumed independent with mean zero and variance σ2
u, The errors eij are

independent with mean zero and variance σ2
e . In addition, the νi’s and eij’s are

assumed to be independent.

The nested error unit level regression model (2.4) was first used to model county

crop areas in North-Central Iowa, USA (Battese et al., 1988).
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2.4 Discussion

In this chapter, we have looked at the various approaches of small area estimation

that have been described in the literature. In the practice of survey statistics

the direct design-based estimators have been highly appreciated, because they

are at least approximately design unbiased even in complex samplings designs.

The model-based estimators, which rest on sampling from an infinite population

characterized by a stochastic model, can suffer from severe bias if the model is

not correct. In addition, they may be biased and inconsistent with respect to the

chosen design.

In small area estimation the question is often about the trade off between bias and

variance. With small sample sizes the unbiasedness of the direct estimators may

be of no practical value due to large variance of the estimator. The model-based

estimators are prone to bias, but they have the advantange of small variances

compared to the design-based estimators. There is evidence that the model-based

small area estimators outperform the direct estimators with respect to the es-

timation accuracy measured with mean squared error (MSE) (Torabi and Rao,

2008). This is possibly why the model-based approach is widely accepted as the

framework for small area estimation.



Chapter 3

Review: Linear Mixed Models

and Bayesian Methods

3.1 Introduction

In this chapter we present an overview of linear mixed model as well as its

characteristics within the Bayesian framework. It is not intended to be an all-

encompassing exposition on the subject, the rationale is to briefly explore the

methods used for parameter estimation throughout the thesis. In addition, it

serves as an introduction to the models used in chapter 4 and 5. The model-based

small area estimation largely employs linear mixed models involving random area

effects. The auxiliary variables are introduced in the fixed part of the model as

covariates.

Linear mixed models have a wide range of applications. In particular, the ability

to predict linear combination of fixed and random effects is one the more attrac-

tive properties of such models. In a series of papers, Henderson (1975) developed

the best linear unbiased prediction (BLUP) method for mixed models. However,

the BLUP methods described in Henderson (1975) assumed that the variances

associated with random effects in the mixed model (the variance components)

15
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are known. In practice such variance components are unknown and have to be

estimated from the data. There are several methods for estimating variance com-

ponents reviewed in Harville (1977). The predictor obtained from the BLUP when

unknown variance components are replaced by associated estimators is called the

empirical best linear unbiased predictor (EBLUP) and is described in Robinson

(1991).

Mixed models have been used to improve estimation of small area characteristics

of small area based on survey sampling or census data by Fay and Herriot (1979),

Ghosh and Rao (1994), Rao (1999b) and Pfeffermann (2002). In this context,

estimation of a small area mean is equivalent to prediction of the realization of the

unobservable random area effect in a linear mixed model for the superpopulation

distribution of the variable defining this mean. See Valliant et al. (2000) for a

discussion of the distinction between the traditional interpretation of model-based

prediction and its application in survey sampling.

In addition to EBLUP, empirical Bayes (EB) and hierarchical Bayes (HB) estima-

tion and inference methods have been also applied to small area estimation. Under

the EB approach, Bayes estimation and inferential approaches are used in which

posterior distributions are estimated from data. Under the HB approach, unknown

model parameters (including variance components) are treated as random, with

values drawn from specified prior distributions. Ghosh and Rao (1994) review the

application of these estimation methods in small area estimation. You and Rao

(2000) have used HB methods to estimate small area means under random effect

models.

3.2 Linear Mixed Effects Models

A linear mixed effect model is a model that contains both the fixed and random

effects. That is
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Y = Xβ + Zb + e (3.1)

where Y is a (n × 1) vector of responses, X is a (n × p) design matrix that

characterizes the systematic part of the response, β is a (p × 1) is a vector of

parameters referred to as fixed effects, that complete the characterization of the

systematic part of the response. Z is a (n × k) design matrix that characterizes

random variation in the response attributable to among-unit sources. b is a (k×1)

is a vector of random effects and e is a (n × 1) vector of within-unit deviations

denoting variation due to sources like measurement error.

The random effects b and the residuals e can come from any probability distri-

bution, but they are commonly assumed to be independent. Another common

assumption about these distributions is that they are both normal with mean

zero, that is

 b

e

 ∼ N
 0

0

 ,
 G 0

0 R


where G is a (k×k) covariance matrix that defines the among-unit sources and R

is a (n×n) covariance matrix that defines the within-unit sources. The covariance

matrices G and R are functions of a set of variance parameters (σ). Therefore we

can write G = G(σ), R = R(σ) and Σ = Σ(σ). With these assumptions, we have

E(y) = E(Xβ + Zb + e)

= Xβ and

var(y) = var(Xβ + Zb + e)

= var(Zb) + var(e)

= ZGZT + R

= Σ
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The model with the above assummptions on b and e implies that Y are multivari-

ate normal random vectors of dimension n with a particular form of covariance

matrix. That is

Y ∼ N (Xβ,Σ). (3.2)

3.2.1 Estimation of Model Parameters

ANOVA Method

In variance component models, where all the parameters in σ are variances, Anal-

ysis of Variance (ANOVA) method or the Henderson 3 method (Henderson, 1953)

based on equating the ANOVA mean squares to their expected values and solving

the estimates from the resulting system of equations can be used for estimating

σ. The Henderson 3 method (also known as method of fitting constants) has been

suggested for use in small area models (Prasad and Rao, 1990). ANOVA meth-

ods are non-iterative and therefore easy to implement, yield unbiased variance

estimates and they do not require normality of random effects.

The regression coeffcients β can be estimated by the generalized least squares:

βGLS = (X′Σ−1X)−1X′Σ−1Y (3.3)

The estimator βGLS is the best linear unbiased estimator of β. If the covari-

ance matrix Σ = ZG(σ)ZT + R(σ) is unknown, it is replaced with its estimate

Σ̂ = ZG(σ̂)ZT + R(σ̂), where σ̂ is obtained via the ANOVA method, for exam-

ple. Anova methods are only applicable to limited choice of models. In order to

overcome this, we need to use maximum likelihood (ML) and restricted maximim

likelihood (REML) estimation methods, which are applicable to more general mod-

els and boast of attractive properties like consistency, efficiency and asymptotic

normality of the estimators (see (Searle et al., 1992)).
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Maximum Likelihood Estimation (ML) and Residual Max-

imum Likelihood Estimation (REML)

In standard mixed model where both residual and random effects are normally

distributed, the marginal distribution is also normal (Verbeke and Molenberghs,

1997) with functional form

f(y; β,Σ) = (2π)−
n
2 |Σ|−

1
2 exp

{
−1

2
(y −Xβ)

′
Σ−1(y −Xβ)

}
(3.4)

This marginal likelihood for standard normal mixed model can be maximized with

respect to fixed effects β and the variance parameters σ. Maximization for β yields

the generalized least squares estimate

β = (X′Σ−1X)−1X′Σ−1Y

which is unbiased for β. The maximum likelihood estimates of the variance pa-

rameters are biased downwards (Verbeke and Molenberghs, 1997, 2000). The

bias arises because estimation of the fixed effects is not taken into consideration

when estimating the variance parameters. An unbiased method for estimating the

variance parameters is obtained if the observed data are partitioned by a linear

transformation. This idea was introduced by Patterson and Thompson (1971) and

is called restricted maximum likelihood (REML).

3.2.2 Prediction of Random Effects

As noted in equation (3.2), the distribution of the observed outcomes y is not

dependent on the observed random effects b. However, the b do appear in the

linear model (3.1) and may be of interest for interpretation. These effects are

drawn from a known distribution, with mean zero and variance defined by the

(estimated) variance parameters. For this reason, prediction of the random effects
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once the variance parameters are known is different from estimation of fixed effects

and variance components.

The predictions should be unbiased. That is, they have zero expected value and

their variance is equal to the relevant variance component. Another desirable

attribute that could be imposed is that the predictions have minimum variance of

all unbiased predictors. These requirements, along with linearity, lead to a class

of predictors known as best linear unbiased predictors (BLUPs). For a detailed

discussion on the use of BLUPs see Robinson (1991) and Searle et al. (1992).

The minimum variance requirement of BLUPs implies that the distance between

the unbiased predictors and the true effects is minimized amongst all choices of

predictors. This leads to the BLUPs being unbiased predictors that minimize the

mean squared error (MSE) between the true and predicted effects. Therefore

MSE = E
(

(b− b̃(y))2
)

= E
(
E
(

(b− b̃(y))2
)
|y
)

= E
(

var(b|y) + E2 (b|y)− 2E (b|y) b̃(y) + b̃2(y)
)

= E (var(b|y)) + E
(

(E(b|y)− b̃(y))2
)
.

showing that MSE is minimized if b̃ = E(b|y).

Under the assumptions of model (3.1), b and y have a joint multivariate normal

distribution

 b

y

 ∼ N
 0

Xβ

 ,
 G GZ′

ZG Σ

 (3.5)

Using (3.5), we have that the expression of conditional expectation of b given data

y is

E(b|y) = E(b + cov(b,y)[cov(y)]−1(y − E(y))

= GZ′Σ−1(y −Xβ).

(3.6)
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This linear function in y is the best linear predictor of b. When β is replaced by

its estimator β̂ in 3.6, we get

b̃ = GZ′Σ−1(y −Xβ̂). (3.7)

b̃ is the best linear unbiased predictor (BLUP) for b. In cases where Σ is not

known, one forms the “approximate” BLUP for b as

b̂ = GZ
′
Σ̂−1(y −Xβ̂). (3.8)

This predictor (3.8) is often referred to as the empirical Bayes estimator for b.

The conditional expectation E(yi|bi) = Xiβ + Zibi. The BLUP for Xiβ + Zibi is

Xiβ̂ + ZiGZ
′

iΣ̂i
−1

(yi −Xiβ̂). (3.9)

The predictor (3.9) has the interpretation that it may be rewritten in the form of

a weighted average combining information from individual i only and information

from the population. The BLUP for Xiβ + Zibi may be viewed as borrowing

strength across individuals to get the best prediction for individual i.

In the context of small area estimation, the concept of borrowing strength is

closely related to the concept of shrinkage (Longford, 2005). When the data from

a region is small, giving weak information on that region, the regional estimate is

strengthened by supplementing the regional data with the global data. The smaller

the regional data, the more weight the global information gets in the estimation.

This is equivalent to strong shrinkage towards the global estimate. When the

regional data are large, the local information receives more weight compared to the

global information, and thus there will be less shrinkage in the regional estimate.
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3.3 The Bayesian Paradigm

Bayesian methods provide a way to reason coherently about the world around us,

in the face of uncertainty. Bayesian approaches are based on a mathematical han-

dling of uncertainty, initially proposed by Bayes and Laplace in the 18th century

and further developed by statisticians and philosophers in the 20th century. Be-

fore proceeding, it is useful to present the fundamental ideas behind the Bayesian

approach to statistical analysis.

Suppose you are interested in estimating parameter θ from data y = {y1, · · · , yn}

by using a statistical model described by a density p(y|θ). Further, let π(θ) denote

the prior distribution that expresses your beliefs about the parameter before you

examine the data. Bayesian philosophy rests on use of Bayes’ theorem, which

enables one to combine the prior distribution and the model to obtain the posterior

distribution, p(θ|y) in the following way:

p(θ|y) =
p(θ,y)

p(y)
=
p(y|θ)π(θ)

p(y)
=

p(y|θ)π(θ)∫
p(y|θ)π(θ)dθ

The quantity

p(y) =

∫
p(y|θ)π(θ)dθ

is the normalizing constant of the posterior distribution. This quantity p(y) is

sometimes called the marginal distribution of the data. Simply put, Bayes’ theo-

rem tells you how to update existing knowledge with the new information. You

begin with a prior belief π(θ), and after learning information from data y, you

update the belief about θ and obtain p(θ|y). These are the essential elements of

the Bayesian approach to data analysis.

The use of Bayesian methods in applied problems has exploded during the 1990s.

The availability of fast computing machines was combined with a group of itera-

tive simulation methods known as Markov chain Monte Carlo (MCMC) algorithms
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that greatly aided the use of complex Bayesian models. The idea behind MCMC

is to produce approximate samples from the posterior distribution of interest,

by generating a Markov chain which has the posterior as its limiting distribution.

This revolutionary approach to Monte Carlo was originated in the particle Physics

literature in Metropolis et al. (1953). It was then generalised by Hastings (1970)

to a more statistical setting. However, it was Gelfand and Smith (1990) that

introduced MCMC methods to mainstream statistics and since then, the use of

Bayesian methods for applied statistical modelling has increased rapidly.

A comprehensive account of MCMC-related issues and the advances in statistical

methodology generated by using this set of computational tools until 1995 is pro-

vided in Gilks et al. (1996). In an introductory technical level, Congdon (2001,

2003) describes the analysis of a wide range of statistical models using Bayesian

inference using Gibbs sampling(BUGS), freely available software for Bayesian in-

ference using MCMC, see Spiegelhalter et al. (1996).

3.3.1 Markov Chain Monte Carlo Sampling

The Markov chain Monte Carlo (MCMC) method is a simulation method for sam-

pling from posterior distributions and computing posterior quatities of interest.

MCMC methods sample successively from a target distribution. The Markov chain

method has been quite successful in modern Bayesian computing. Only in simple

Bayesian models can analytical forms of the posterior distributions be recognized

and summarize inferences directly. In complex models, posterior densities are too

difficult to work with directly. With the MCMC method, it is possible to generate

samples from a posterior denstity p(θ|y) and to use samples to approximate ex-

pectations of quantities of interest. Most importantly, if the simulation algorithm

is implemented correctly, the Markov chain is guaranteed to converge to the target

distribution p(θ|y), regradless of where the chain was initialized. Furthermore, if

the chain is run for a long time, one can recover p(θ|y) to any precision. Also, the



Chapter 3. Overview of Statistical Methods 24

simulation algorithm is easily extensible to models with a large number of param-

eters or high complexity. We present the basic Metropolis(-Hastings) algorithm

and the Gibbs sampler.

The Metropolis Algorithm

The Metropolis algorithm can be used to obtain random samples from any com-

plicated target distribution of any dimension that is known up to a normalizing

constant. Suppose you want to obtain T samples from a univariate distribution

with probability density function f(θ|y). Suppose θt is the tth sample from f . To

use the Metropolis algorithm, you need to have an initial value θ0 and a symmetric

proposal density q(θt+1|θt) (meaning that the likelihood of jumping to θt+1 from

θt is the same as the likelihood of jumping back to θt from θt+1).

For the (t+ 1)th iteration, the algorithm generates a sample from q(.|.) based on

the current sample θt, and it makes a decision to either accept or reject the new

sample. If the new sample is accepted, the algorithm repeats itself by starting at

the new sample. If the new sample is rejected, the algorithm starts at the current

point and repeats. The Metropolis algorithm can be summarized (Tierney, 1994,

Gelman et al., 2004) as follows:

1. Set t = 0. Choose a starting point θ0. This can be an arbitrary point as

long as f(θ0|y) > 0.

2. Generate a new sample, θnew, by using the proposal distribution q(.|θt).

3. Calculate the ratio of densities and get the following quantity:

r = min

{
f(θnew|y)

f(θt|y)
, 1

}

4. Sample u from the uniform distribution U(0, 1).

5. Set θt+1 = θnew if u < r; otherwise set θt+1 = θt
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6. Set t = t + 1. If t < T , the number of desired samples, return to step 2.

Otherwise stop.

This algorithm defines a chain of random variates whose distribution will converge

to the desired distribution f(θ|y), and so from some point forward, the chain of

samples is a sample from the distribution of interest. In Markov chain terminol-

ogy, this distribution is called the stationary distribution of the chain. For more

detailed descriptions and proofs of the Metropolis algorithm, see Roberts (1996)

and Liu (2001).

The Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorthim is a more general form of the Metropolis

algorithm that was proposed by Hastings (1970). The MH algorithm uses an

asymmetric proposal distribution, that is, there is no requirement that q(θt+1|θt) 6=

q(θt|θt+1). The difference in its implementation comes in calculating the ratio of

densities (Robert and Casella, 2004, Gelman et al., 2004). The acceptance ratio

is now:

r = min

{
f(θnew|y)q(θt|θnew)

f(θt|y)q(θnew|θt)
, 1

}

Allowing an asymmetric proposal distribution can be useful in increasing the

speed of the random walk. The Metropolis algorithm can be extended to a high-

dimensional problem by using a multivariate version of proposal distribution q(.|.).

Chib and Greenberg (1995) provide a useful tutorial on the algorithm.

Gibbs Sampler

The Gibbs sampler, named by Geman and Geman (1984), is a special case of the

Metropolis sampler in which the proposal distributions exactly match the poste-

rior conditional distributions and the proposals are accepted 100% of the time.

Gibbs sampling requires decomposition of the joint posterior distribution into full
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conditional distributions for each parameter in the model and then sampling from

them. The sampler can be efficient when the parameters are not highly dependent

on each other and the full conditional distributions are easy to sample from. When

parameters are highly correlated with each other, one might experience poor mix-

ing or slow convergence of the Markov chain because the chain slowly traverses

the parameter space.

Suppose θ = (θ1, θ2, · · · , θk) is the parameter vector, p(y|θ) is the likelihood, and

π(θ) is the prior distribution. The full posterior conditional distribution is

π(θi|θj, i 6= j) ∝ p(y|θ)π(θ).

The Gibbs sampler works as follows:

1. Set t = 0, and choose an arbitrary initial value of θ(0) =
(
θ

(0)
1 , θ

(0)
2 , · · · , θ(0)

k

)
.

2. Generate each component of θ as follows:

• draw θ
(t+1)
1 from π(θ1|θ(t)

2 , · · · , θ(t)
k ,y)

• draw θ
(t+1)
2 from π(θ2|θ(t+1)

1 , θ
(t)
3 · · · , θ

(t)
k ,y)

• · · ·

• draw θ
(t+1)
k from π(θk|θ(t+1)

1 , θ
(t+1)
2 · · · , θ(t+1)

k−1 ,y)

3. Set t = t + 1. If t < T , the number of desired samples, return to step 2.

Otherwise stop.

In order to compute the posterior statistics with sufficient precision, the Monte

Carlo process needs a large of iterations (T ). It is a common practice to discard

the initial portion of a Markov chain sample so that the effect of initial values on

the posterior inference is minimized. More details on the choice of starting values

and the number of burn-in iterations are discussed by Gelman and Rubin (1992)

and Gelfand (2000).
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3.3.2 Assessing MCMC Covergence

Simulation-based Bayesian inference requires using simulated draws to summarize

the posterior distribution or calculate relevant posterior quantities of interest.

There are usually two issues. First, one has to decide whether the Markov chain

has reached its stationary or the desired posterior distribution. Second, you have

to determine the number of iterations to keep after the Markov chain has reached

stationarity. Convergence diagnostics help to resolve these issues. See Cowles and

Carlin (1996), Brooks and Roberts (1998) and Gelman et al. (2004) for detailed

discussions about convergence diagnostics. Assessement of convergence involves

the use of visual analysis (e.g. autocorrelation and trace plots) as well as statistical

dignostic tests.

Visual Analysis via Autocorrelation and Trace Plots

Trace plots of samples versus the iteration index can be very useful in assessing

convergence. The trace plots informs whether the chain has converged to its

stationary distribution. A trace plot and autocorrelation function plot can also

tell you whether the chain is mixing well, a chain that mixes well traverses its

posterior space rapidly. The aspects of stationarity recognizable from the trace

plot are a relatively constant mean and variance.

MCMC Convergence Diagnostics

The convergence diagnostics of Gelman and Rubin (1992), Brooks and Gelman

(1997) currently are the most popular amongst the statistical community, at least

in part because computer programs for their implementation are available from

their creators. In addition to Gelman and Rubin diagnostics, we briefly discuss the

methods of Geweke (1992), Raftery and Lewis (1992, 1996) and of Heidelberger

and Welch (1981, 1983).
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Gelman and Rubin method (Gelman and Rubin, 1992) is based on analysing mul-

tiple simulated MCMC chains by comparing the variances within the chain and the

variance between chains. Large deviation between these two variances indicates

nonconvergence.

Define {θt : t = 1, 2, · · · , n} to be a collection of a single Markov chain output.

The Parameter θt is the tth sample of the Markov chain. Suppose you have M

parallel MCMC chains intialized from various parts of the target distribution.

Each chain is of length n after discarding the burn-in, the simulations are labelled

as {θtm : t = 1, 2, · · · , n;m = 1, 2, · · · ,M}. The between-chain variance B and the

within-chain variance W are calculated as

B =
n

M − 1

M∑
m=1

(θ̄.m − θ̄..)2, where θ.m =
1

n

n∑
t=1

θ̄tm, θ̄.. =
1

M

M∑
m=1

θ̄.m

W =
1

M

M∑
m=1

s2
m, where s2

m =
1

n− 1

n∑
t=1

(θtm − θ̄.m)2

The posterior marginal variance, var(θ|y), is a weighted average of W and B. The

estimate of the variance is

V̂ =
n− 1

n
W +

M + 1

nM
B

If all M chains have reached the target distribution, the posterior variance estimate

should be very close to the within-chain variance W . Therefore the ratio V̂ /W

should be close to unity. The square root of this ratio is called the potential scale

reduction factor (PSRF). Large PSRF indicates that the between chain variance

is substantially greater than the within chain variance, so that longer simulation

is needed. If the PSRF is close to 1, you conclude that each of the M chains has

stabalized.
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The Geweke test (Geweke, 1992) compares values in the early part of the Markov

chain to those in the latter part of the chain in order to detect failure of con-

vergence. Geweke (1992) recommends the use of methods from spectral analysis

to assess convergence of the Gibbs sampler when the intent of the analysis is to

estimate the mean of some function of the parameters being simulated. Disad-

vantages of Geweke’s method include that it is sensitive to the specification of the

spectral window. In addition, while his diagnostic is quantitative, Geweke does

not specify a procedure for applying it but instead leaves that to the experience

and subjective choice of the statistician.

Heidelberger and Welch test (Heidelberger and Welch, 1981, 1983) consists of

two parts: a stationary portion test and a half-width test. The stationarity test

assesses the stationarity of a Markov chain by testing the hypothesis that the chain

comes from a covariance stationary process. The half-width test checks whether

the Markov chain sample size is adequate to estimate the mean values accurately.

If the interest lies in posterior percentiles, you want a diagnostic test that evaluates

the accuracy of the estimated percentiles. The Raftery-Lewis test (Raftery and

Lewis, 1992, 1996) is designed for this purpose. Raftery and Lewis emphasize

that being able to pin down the accuracy of the estimation of quantiles is very

useful since they are at the heart of density estimation as well as providing robust

estimates of center and spread of a distribution.

3.4 Model Selection for Small Area Estimation

Auxiliary data (predictor variables) play an important role in small area estima-

tion. The choice of small area models depends on the availability of auxiliary

data and the relationship between these data and the variables of interest at the

small area level. Auxiliary data are often obtained from various administrative

and census records. Interest lies in borrowing strength from these auxiliary data

to boost accuracy of the small area estimates.
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When a large pool of potential auxiliary variables is available, the selection of a

subset of suitable auxiliary variables is necessary in many small area estimation

projects. Model selection techniques may be applied to select the best set of

auxiliary variables. With the classical modeling approach, the Akaike information

criterion (AIC) and Bayesian information criterion (BIC) are commonly used for

model selection purposes. For detailed information on these criteria and how to

use them in small area context, refer to Rao, 2003, pg. 105-107. For the HB

approach, a commonly used model selection criterion is the deviance information

criterion (DIC) proposed by Spiegelhalter et al. (2002).

DICs are comparable only over models with the same observed data. Let θ, y and

p(y|θ) denote the unknown parameters of the model, the data and the likelihood

respectively and let f(y) be a function of the data alone. Then the deviance is

defined as:

D(θ) = −2log[p(y|θ)] + 2log[f(y)]. (3.10)

The second term in the deviance involves y only and cancels out when com-

paring deviances from different models. The posterior mean of the deviance,

D̄ = E[D(θ)|y], is a measure of goodness of fit of the model. The larger the

value of D̄, the poorer the fit. The measure of effective number of parameters of

a Bayesian model is computed as:

PD = D̄ − D̄(θ), (3.11)

where θ̄ = E[y|θ] is the posterior mean of the parameters. The larger the pD, the

easier it is for the model to fit the data. The DIC is calculated as:

DIC = PD + 2D̄ − D̄(θ). (3.12)
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The model with the smallest DIC is judged to be the model that would best pre-

dict a replicate dataset of the same structure as the one observed. Incorporating

pD in the DIC calculation penalizes complex models. DIC assumes that the pos-

terior mean is a good measure of the parameter. For more details on DIC, see

Spiegelhalter et al. (2002) and Gelman et al. (2004).



Chapter 4

Empirical Bayes Approach

4.1 Introduction

In this chapter, we present the empirical Bayes (EB) approach in the estimation

of parameters. The EB method requires a direct estimate of the characteristic of

interest and variables correlated with that characteristic to be available. The direct

estimate of the characteristic is regressed on these correlated variables and for each

observation a regression estimate of the characteristic is calculated in addition to

the direct estimate. The EB estimator is then a weighted average of the direct

estimate and the linear regression estimate of the characteristic. The weights on

the two estimates depend on the sampling variance of the direct estimates and

how well the model fits the data.

The organization of this chapter is as follows. In section 4.1 we present the stan-

dard area-level model. A new model is described in section 4.2. The setup of a

simulation study to assess the performance of the proposed model is presented in

section 4.3. We wrap up with the results of the simulation study and a discussion

of results in section 4.4.

32
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4.2 Fay-Herriot Model

According to the well-known Fay-Herriot model (Fay and Herriot, 1979) in small

area estimation, a basic area level model assumes that the small area parameter

of interest θi is related to area specific auxiliary data xi through a linear model

θi = xTi β + νi, i = 1, . . . ,m. (4.1)

where m is the number of small areas, β = (β1, . . . , βp)
′

is p × 1 vector of re-

gression coefficients, and the νi’s are area-specific random effects assumed to be

independent and identically distributed (iid) with E(νi) = 0 and var(νi) = A.

The assumption of normality may also be included.

The area level model assumes that there exists a direct survey estimator yi for the

small area parameter θi such that

yi = θi + ei, i = 1, . . . ,m, (4.2)

On combining equations (4.1) and (4.2), we obtain

yi = xTi β + νi + ei, i = 1, . . . ,m, (4.3)

where ei is the sampling error associated with the direct estimator yi. We also as-

sume that the ei’s are independent normal random variables with mean E(ei|θi) =

0 and sampling variance var(ei|θi) = Di. We further assume that Di(i = 1, . . . ,m)

are known.
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4.2.1 Estimation of the parameters of the Fay-Herriot Model

The Bayes estimator of θi under the Fay-Herriot model (Fay and Herriot, 1979) is

developed under the following models:

yi|θi ∼ N (θi, Di)

and the prior distribution of θi, i = 1, . . . ,m is

θi ∼ N (xTi β,A)

Equivalently, we can write

f(yi|θi) =
1√

2πDi

exp

(
− 1

2Di

(yi − θi)2

)
and π(θi) =

1√
2πA

exp

(
− 1

2A
(θi − xTi β)2

)

Therefore from the Bayesian models we have that

f(y, θ|β,A) =
m∏
i=1

1√
2πA

exp

(
− 1

2A
(θi − xTi β)2

)
· 1√

2πDi

exp

(
− 1

2Di

(yi − θi)2

)
.

(4.4)

where y = (y1, y2, · · · , ym)T and θ = (θ1, θ2, · · · , θm)T .

On looking at the exponential parts in equation (4.4) without the (-1/2) factor,

we see that

1

Di

(yi − θi)2 +
1

A
(θi − xTi β)2 =

(
1

Di

+
1

A

)
θ2
i − 2

(
yi
Di

+
xTi β

A

)
θi + ki

=

(
1

Di

+
1

A

){
θi −

(
yi
Di

+
xTi β

A

)
/

(
1

Di

+
1

A

)}2

+ ki

where ki is a constant independent of θi. Thus

θi|β,A, yi ∼ N
(
xTi β +

A

A+Di

(yi − xTi β),
ADi

A+Di

)
(4.5)
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The best linear predictor of θi = xTi β + νi is E[θi|yi] = E[xTi β + νi|yi]. Under

normality, yi and θi have a joint normal distribution with means xTi β and xTi β.

Also, var(yi) = Di + A; var(θi) = var(xTi β + νi) = A and Cov(yi, x
T
i β + νi) = A.

Hence based on this formulation and when β and A are known, we can view that

the Bayes predictor of θi, θ̂
B
i is

θ̂Bi = E[θi|yi, θ, A]

= E[xTi β + νi|yi, β, A]

= xTi β +
A

A+Di

(yi − xTi β)

= Bix
T
i β + (1−Bi)yi.

where Bi = Di/(Di + A), i = 1, 2, · · · ,m. However, in practice both β and A

are unknown and are replaced by β̂ and Â respectively in θ̂Bi to get the empirical

Bayes predictor θ̂EBi

θ̂EBi = xTi β̂ +
Â

Â+Di

(yi − xTi β̂)

= B̂ix
T
i β̂ + (1− B̂i)yi.

We estimate parameters β and A from the marginal distribution of yi. Marginally,

yi ∼ N (θi, Di + A)

For known A, the best linear unbiased estimator of β is the weighted least squares

estimator β̃. To estimate β and A, we iteratively solve the equations (Fay and

Herriot, 1979)

β̃ = (XTΣ−1X)−1XTΣ−1y, Σ = diag(D1 + A, · · · , Dm + A). (4.6)

and
m∑
i=1

(y − xTi β̃)2/(Di + A) = m− r(X). (4.7)
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where r(X) denotes the rank of design matrix X assumed to be equal to number

of model parameters p and less than m and equation (4.7) is obtained via method

of moments (details of this derivation are provided in Appendix A).

4.3 Proposed Area-Level Model

In the new model, we assume that there exists a direct survey estimator yi for the

small area parameter θi such that

yi = θi + ei, (4.8)

and the small area parameter of interest θi is related to area specific auxiliary data

xi through a linear model

θi = x
′

iβ + δiνi, i = 1, . . . ,m. (4.9)

On combining equations (4.8) and (4.9), we obtain

yi = xTi β + δiνi + ei, i = 1, . . . ,m, (4.10)

where ei is the sampling error associated with the direct estimator yi. We also as-

sume that the ei’s are independent normal random variables with mean E(ei|θi) =

0 and sampling variance var(ei|θi) = Di. We further assume that Di(i = 1, . . . ,m)

are known. The model specification is completed by defining a model tuning pa-

rameter δi which can take a value of zero or one in a Bernoulli fashion. ν1, . . . , νm

and δ1, . . . , δm are assumed to be independent.

In the new model (4.10), we have taken a new approach in constructing the random

part of the standard Fay-Herriot model (4.3) by introducing a tuning parameter

δi, this parameter takes a value of zero (random part in model (4.3) vanishes)

when enough data is available in the ith small area to perform ordinary linear
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regression. On the other hand, the tuning parameter takes a value of one when

there is insufficient data in the ith small area necessitating incorporation of a

random effect for the corresponding small area.

Given that δi = 1, νi ∼ N (0, A), pr(δi = 1) = p and assuming that A, p, and β

are known, the Bayes predictor of θi becomes:

θ̂Bi = E(θi|y)

= xTi β + E[δiνi|y]

= xTi β + E[E(δiνi|δi,y)|y]

= xTi β + E [νi|δi = 1,y] · pr[δi = 1|p, β,y]

On observing that

yi|νi, δi = 1, β ∼ N (xTi β + νi, Di); νi|δi = 1 ∼ N (0, A);

and

νi|δi = 1, β,y ∼ N
(

A

A+Di

(yi − xTi β),
ADi

A+Di

)
;

The Bayes predictor of θi becomes

θ̂Bi = xTi β +
A

A+Di

(yi − xTi β) · pr(δi = 1|p, β, A,y)

= xTi β +
A

A+Di

(yi − xTi β) · p̂i(p, β, A);

the probability p̂i(p, β, A) = pr(δi = 1|p, β, A,y) is derived by observing that

pr(δi = 1|y, A) =
pr(δi = 1, yi)

f(yi)

=
f(yi|δi = 1)pr(δi = 1)

f(yi|δi = 1)pr(δi = 1) + f(yi|δi = 0)pr(δi = 0)
.
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But

yi|δi = 1 ∼ N (xTi β,A+Di) and yi|δi = 0 ∼ N (xTi β,Di).

Therefore,

p̂i(p, β, A) =

1√
2π(A+Di)

exp
(
− (yi−xTi β)2

2(A+Di)

)
× p

1√
2π(A+Di)

exp
(
− (yi−xTi β)2

2(A+Di)

)
× p+ 1√

2πDi
exp

(
− (yi−xTi β)2

2Di

)
× (1− p)

Hence the marginal density of yi, f(yi), is:

f(yi) =
p√

2π(A+Di)
exp

(
−(yi − xTi β)2

2(A+Di)

)
+

(1− p)√
2πDi

exp

(
−(yi − xTi β)2

2Di

)

The empirical Bayes predictor (θ̂EBi (β̂, p̂, Â; yi)) of θi can be obtained by estimating

the parameters β, p and A from the marginal distribution of Y1, . . . , Ym:

f(y|β, p, A) =
m∏
i=1

[
p√

2π(A+Di)
exp

(
−(yi − xTi β)2

2(A+Di)

)
+

(1− p)√
2πDi

exp

(
−(yi − xTi β)2

2Di

)]

Note that A = 0 will lead to p̂ = 0. On the other hand, p = 0 will make the

estimation of A impossible. So we shall assume that p > 0 and A > 0.

4.3.1 Estimation of the Parameters of the Proposed Model.

Under the following models

Yi|δi, p, β, A ∼ N(x′iβ,Di + δiA), i = 1, . . . ,m

δi|p ∼ Bernoulli(p)

We can estimate A from

Y T

(
Σ−1 − Σ−1X(XTΣ−1X)−1XTΣ−1

)−1

Y = m− r(X)
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where

Σ = D + A∆

D = diag(D1, . . . , Dm)

∆ = diag(δ1, . . . , δm)

The probability pr(δi = 1|A, β, p,y) is obtained from

P (δi = 1|A, β, p,y) =
p

p+ (1− p)
√

Di+A
Di

exp
{
− (yi−xTi β)2A

2Di(Di+A)

} (4.11)

and the regression coefficients are obtained by using the relation

β =

(
XTΣ−1X

)
XTΣ−1y.

We start with an initial guess of the parameters A0,β0 and p0 and repeat the

following iterations k = 1, . . . , N times. Now, using equation (4.11), we draw R

random sample samples of δ’s. Then we get

p̂(k) =
1

m

m∑
i=1

P (δi = 1|A(k−1), β(k−1), p(k−1),y)

and Â(k) can be obtained by solving the equation

1

R

R∑
j=1

Y T

(
Σ−1
j − Σ−1

j X(XTΣ−1X)−1XTΣ−1
j

)
Y = m− r(X)

where Σj = D + A∆j(j = 1, · · · , R). Finally β̂(k) can be obtained by solving

β̂(k) =

{
R∑
j=1

(
XT Σ̂−1

j(k)X

)}−1( R∑
j=1

XT Σ̂−1
j(k)y

)
,

where Σ̂j(k) = D + Â(k)∆j.
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4.4 Unit-level Small Area Model

4.4.1 Introduction

In this section, we develop the empirical Bayes (EB) approach in the estimation

of parameters of the standard unit-level model and our new model. A unit level

model can be used when unit-specific response variables are available in each small

area. This class of models can incorporate auxiliary information at both the unit

and area level (Moura and Holt, 1999). The area-specific random effect terms in

unit level models can capture the correlation possibly present among the sample

units within a sample area. The main advantage of unit level models is that

they can incorporate all possible sources of uncertainity; in particular, they can

capture the uncertainity due to estimation of the sampling variances. Unit level

models are not always easy to apply in small area estimation problems because

practitioners need to find auxiliary variables appearing in the sample (at unit-

level) and in administrative registers (at area level). Confidentiality of unit-level

data puts more obstacles to the use of these models.

4.4.2 Unit Level Standard Model

In the standard unit-level model, its assumed that unit-specific auxiliary data

Xij = (xij1, · · · , xijp)T are available for each population element j in each small

area i. Further variable of interest yij, is assumed to be related to Xij through a

nested error linear regression model

yij = xTijβ + νi + eij. (4.12)

where yij is the response of unit j, j = 1, 2, · · · , Ni, in area i, i = 1, 2, · · · ,m. xij

is the vector of auxiliary variables, β is the vector of regression parameters, the

random effect νi represents the effect of area characteristics that are not accounted

for by the auxiliary variables Xij and eij the individual unit error term. The area
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effects νi are assumed independent with mean zero and variance σ2
u, The errors eij

are independent with mean zero and variance σ2
e . In addition, the νi’s and eij’s

are assumed to be independent.

The small area parameter of interest, θi, may be approximated by

θi = X̄T
i β + νi, i = 1, · · · ,m. (4.13)

assuming that Ni is large, where X̄i is the vector of population means of the

xij for the ith area, that is, X̄i =
∑Ni

j=1 xij/Ni. The sample data {yij, xij, j =

1, · · · , ni, i = 1, · · · ,m} are assumed to obey model (4.12), i.e.,

yij = xTijβ + νi + eij, j = 1, · · · , ni, i = 1, · · · ,m. (4.14)

where ni is the sample size in the ith small area. This implies that the selection

bias is absent. For a proof of this absence of selection bias, see (Rao, 2003, pg.

79). Assuming that νi ∼ N (0, σ2
u), i = 1, · · · ,m and expressing yij|β, νi, σ2

e ∼

N (xTijβ + νi, σ
2
e), j = 1, · · · , ni, i = 1, · · · ,m, we have the distribution of νi from

the unit-level model (4.14) conditional on yij, β, σ2
u, and σ2

e as

νi|yij, β, σ2
u, σ

2
e ∼ N

(
Bi(ȳi − x̄Ti β), Bi

σ2
e

ni

)

where Bi = σ2
u/(σ

2
u + n−1

i σ2
e) and (ȳi, x̄i) are the sample means for the ith area.

Hence,

E[νi|yij, β, σ2
u, σ

2
e ] = Bi(ȳi − x̄Ti β). (4.15)

Using equation (4.13) and (4.15), we obtain the the Bayes predictor of θi, θ
B
i as

θBi = E[θi|yij, β, σ2
u, σ

2
e ]

= X̄T
i β +Bi(ȳi − x̄Ti β)

= (1−Bi)X̄
T
i β +Bi[ȳi + (X̄i − x̄i)Tβ)].

(4.16)
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Replacing β, σ2
u and σ2

e by β̂, σ̂2
u and σ̂2

e respectively we obtain the empirical Bayes

predictor of θi, θ
EB
i

θEBi = (1− B̂i)X̄
T
i β̂ + B̂i[ȳi + (X̄i − x̄i)T β̂)], (4.17)

where B̂i = σ̂2
u/(σ̂

2
u + n−1

i σ̂2
e).

4.4.3 Proposed Unit-Level Model

In the new unit-level model, we assume that unit-specific auxiliary data Xij =

(xij1, · · · , xijp)T are available for each population element j in each small area i.

Further variable of interest yij, is assumed to be related to Xij through a nested

error linear regression model

yij = xTijβ + δiνi + eij. (4.18)

where yij is the response of unit j, j = 1, 2, · · · , Ni, in area i, i = 1, 2, · · · ,m.

xij is the vector of auxiliary variables, β is the vector of regression parameters,

the random effect νi represents the effect of area characteristics that are not ac-

counted for by the auxiliary variables Xij and eij the individual unit error term.

δi, i = 1, . . . ,m are independent Bernoulli random variables. The area effects νi

are assumed independent with mean zero and variance σ2
u, the errors eij are in-

dependent with mean zero and variance σ2
e . In addition, the νi’s and eij’s are

assumed to be independent.

The small area parameter of interest, θi, is approximated by

θi = X̄T
i β + δiνi, i = 1, · · · ,m. (4.19)
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assuming that Ni is large, where X̄i is the vector of population means of the

xij for the ith area, that is, X̄i =
∑Ni

j=1 xij/Ni. The sample data {yij, xij, j =

1, · · · , ni, i = 1, · · · ,m} are assumed to obey model (4.18), i.e.,

yij = xTijβ + δiνi + eij, j = 1, · · · , ni, i = 1, · · · ,m. (4.20)

On assuming that β, σ2
u, σ

2
e and p (where pr(δi = 1) = p) are known and that

νi ∼ N (0, σ2
u), i = 1, · · · ,m when δi = 1 , we get the Bayes predictor of θi from

the unit-level model (4.20) as

θ̂Bi = E(θi|y)

= XT
i β + E[δiνi|y]

= XT
i β + E[E(δiνi|δi,y)|y]

= XT
i β + E [νi|δi = 1,y] · pr[δi = 1|y]

(4.21)

On observing that

yij|νi, δi = 1, β ∼ N (xTijβ + νi, σ
2
e); νi|δi = 1 ∼ N (0, σ2

u);

and

νi|δi = 1, β, σ2
u, σ

2
e ,y ∼ N

(
Bi(ȳi − x̄Ti β), Bi

σ2
e

ni

)
;

where Bi = σ2
u/(σ

2
u + n−1

i σ2
e) and (ȳi, x̄i) are the sample means for the ith area.

The Bayes predictor of θi becomes

θ̂Bi = X̄T
i β +Bi(ȳi − x̄Ti β) · pr(δi = 1|p, β,y) (4.22)
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the probability pr(δi = 1|p, β, A,y) is derived by observing that

pr(δi = 1|y) =
pr(δi = 1, yij)

f(yij)

=
f(yij|δi = 1)pr(δi = 1)

f(yij|δi = 1)pr(δi = 1) + f(yij|δi = 0)pr(δi = 0)
.

(4.23)

where

yij|δi = 1 ∼ N (xTijβ, σ
2
u + σ2

e) and yij|δi = 0 ∼ N (xTijβ, σ
2
e).

4.5 Simulation Study

Our simulation study is based on the 1989 United States Census Bureau four-

person families median income dataset. The United States Department of Health

and Human services provides energy assistance to low-income families. Elegibility

for the program is determined by a formula where the most important variable

is an estimate of the current median income of four-person families by states

(the 50 states and District of Columbia). The variables in this dataset includes:

yi: State median income based on the current year from the current population

survey (CPS) data, xi: Adjusted state median income for the current year and

Di: Sampling variance associated with yi.

We generate data using two different set ups. In the first case, we use the Fay-

Herriot model as defined by equations (5.1) and (5.2) to generate data as follows:

(i) Generate values of θ and y from the Fay-Herriot model where

θi = xTi β + νi, yi = θi + ei, i = 1, . . . ,m

(ii) Use the Fay-Herriot model to fit the generated data and estimate the pa-

rameters β, θ and A.
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(iii) Use the proposed model to fit the generated data to estimate estimate the

parameters β, p and A. The estimated values of parameters θ are obtained

using parameters β, θ, p, A and equation (5.5).

Under the modeling assumptions of Fay-Herriot model, we have that

νi ∼ N (0, 5× 106), ei ∼ N (0, Di) and β = (4700, 0.7)T ,

where D = diag(D1, D2, · · · , Dm).

In the second set-up, we use the proposed model as defined by equations (5.3) and

(5.4) to generate data as follows:

(i) Generate values of θ and y using the proposed model where

θi = xTi β + δiνi, yi = θi + ei, i = 1, . . . ,m

(ii) Fit the generated data to the Fay-Herriot model to estimate the parameters

β, θ and A.

(iii) Use the proposed model to fit the generated data to estimate estimate the

parameters β, θ, p and A. The estimated values of parameters θ are obtained

using parameters β, θ, p, A and equation (5.5).

In the porposed model, we assume that νi ∼ N (0, 5 × 106), ei ∼ N (0, Di) and

β = (4700, 0.7)T ,

whereD = diag(D1, D2, · · · , Dm). Three different datasets are generated using the

proposed model because the values of δi are generated from Bernoulli distribution

with sucess probability p taking values of 0.25, 0.5 and 0.75.

4.5.1 Performance Criteria

Estimation of the variance components is relatively easy whereas the assessment

of the uncertainity due to the estimation is a big challenge. Extensive references

on assessing this uncertainity can be found in the SAE literature. For example,
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Prasad and Rao (1990) used a mean squared error (MSE) criterion to measure un-

certainity of EBLUP under a general linear mixed model, and proposed an approx-

imation to the MSE using the Taylor series method under normality assumption

of the Fay-Herriot model. Lahiri and Rao (1995) demonstrated the robustness of

this approximation against non-normality. More recently, Jacknife methods (e.g.

Lohr and Rao (2009)) and parametric bootstrap methods (Lahiri (2003), Hall and

Maiti (2006)) have been proposed to estimate the MSE. For extensive reviews on

resampling methods, we refer to the paper by Gershunskaya et al. (2009).

In this study, the performance of the empirical Bayes (EB) estimates obtained

under the two models is examined from two general standpoints: the accuracy

of the point estimates and the MSE of the estimates. The former is considered

through the relative errors and absolute relative errors of the EB estimates and

the empirical MSE is estimated following the double bootstrap approach proposed

by Hall and Maiti (2006). A comparison of MSE values will be made between the

Fay-Herriot model and the proposed model.

4.5.1.1 Empirical Comparision of Empirical Bayes Estimates

Empirical comparision is considered through the relative errors and absolute rela-

tive errors of the EB estimates. The EB estimates are compared according to four

different criteria recommended by the panel on small area estimates of population

and income set up by the United States committee on National Statistics in 1978

(Ghosh et al., 1996, Datta et al., 2002). We compare the EB estimates on the

basis of average relative bias, average squared relative bias, average absolute bias

and average squared deviation.

Suppose eiTR denotes the true median income for the ith state, and ei is any

estimate of eiTR, i = 1, · · · ,m. Then

1. Average relative bias (ARB)

ARB =
1

m

m∑
i=1

∣∣∣∣ei − eiTReiTR

∣∣∣∣
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2. Average squared relative bias (ASRB)

ASRB =
1

m

m∑
i=1

(
ei − eiTR
eiTR

)2

3. Average absolute bias (AAB)

AAB =
1

m

m∑
i=1

|ei − eiTR|

4. Average squared deviation (ASD)

ASD =
1

m

m∑
i=1

(ei − eiTR)2

4.5.1.2 Estimation of MSE Using Double Bootstrap Technique for the

Fay-Herriot Model

After obtaining the parameter estimates ξ̂ =
(
Â, β̂

)
for the Fay-Herriot model

from the simulated data, we need to gauge the performance of the Fay-Herriot

model by estimating the mean-squared error of small area parameter θEBi . We

achive this by using the double bootstrap technique of Hall and Maiti (2006). This

technique enables us to obtain a bias-corrected, mean-squared error estimator of

θEBi . We generate 500 bootstrap samples at each level of the double bootstrap as

described in the algorithm below
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Double Boostrap Algorithm for the Fay-Herriot Model

1. Do this b1 = 1, . . . , B1 times

generate v∗b1 from N
(

0, Â
)

calculate θ∗b1

(
ξ̂
)

= Xβ̂ + v∗b1

generate y∗b1 = θ∗b1

(
ξ̂
)

+ e∗b1 where e∗b1 ∼ N(0, D)

get ξ̂∗b1 =
(
Â∗b1 , β̂

∗
b1

)
from the bootstrap data

(
y∗b1 , X,D

)
For each b1, do this b2 = 1, . . . , B2 times

generate v∗∗b2 from N
(

0, Â∗b1

)
calculate θ∗∗b2

(
ξ̂∗b1

)
= Xβ̂∗b1 + v∗∗b2

generate y∗∗b2 = θ∗∗b2

(
ξ̂∗b1

)
+ e∗∗b2 where e∗∗b2 ∼ N(0, D)

get ξ̂∗∗b2 =
(
Â∗∗b2 , β̂

∗∗
b2

)
from the bootstrap data

(
y∗∗b2 , X,D

)
calculate θ̂∗∗EBPb2

= Xβ̂∗∗b2 +
Â∗∗b2

Â∗∗b2
+D

(
y∗∗b2 −Xβ̂

∗∗
b2

)
calculate θ̂∗EBPb1

= Xβ̂∗b1 +
Â∗b1

Â∗b1
+D

(
y∗b1 −Xβ̂

∗
b1

)

2. Now calculate the first phase bootstrap estimator (M̂SE1) and second phase

bootstrap estimator (M̂SE2)

M̂SE1 = 1
B1

∑B1

b1=1

(
θ̂∗EBPb1

− θ∗b1(ξ̂)
)2

M̂SE2 = 1
B1

∑B1

b1=1
1
B2

∑B2

b2=1

(
θ̂∗∗EBPb2

− θ∗∗b2
(
ξ̂∗b1

))2

and finally, M̂SE =


2M̂SE1 − M̂SE2, if M̂SE1 > M̂SE2

M̂SE1 exp
{
M̂SE1−M̂SE2

M̂SE2

}
, otherwise.
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4.5.2 Estimation of MSE Using Double Bootstrap Tech-

nique for the Proposed Model

We use the parameter estimates ξ̂ =
(
Â, p̂, β̂

)
obtained from the proposed model

in the estimation of the mean-squared error of small area parameter θEBi using the

double bootstrap technique of Hall and Maiti (2006). We generate 500 bootstrap

samples at each level of the double bootstrap as described in the algorithm below

Double Boostrap Algorithm for the Proposed Model

1. Do this b1 = 1, . . . , B1 times

generate δ∗b1 from Bernoulli (p̂)

generate v∗b1 from N
(

0, Â
)

calculate θ∗b1

(
ξ̂
)

= Xβ̂ + δ∗b1v
∗
b1

generate y∗b1 = θ∗b1

(
ξ̂
)

+ e∗b1 where e∗b1 ∼ N(0, D)

get ξ̂∗b1 =
(
Â∗b1 , β̂

∗
b1
, p̂∗b1

)
from the bootstrap data

(
y∗b1 , X,D

)
For each b1, do this b2 = 1, . . . , B2 times

generate δ∗∗b2 from Bernoulli
(
p̂∗b1
)

generate v∗∗b2 from N
(

0, Â∗b1

)
calculate θ∗∗b2

(
ξ̂∗b1

)
= Xβ̂∗b1 + δ∗∗b2 v

∗∗
b2

generate y∗∗b2 = θ∗∗b2

(
ξ̂∗b1

)
+ e∗∗b2 where e∗∗b2 ∼ N(0, D)

get ξ̂∗∗b2 =
(
Â∗∗b2 , β̂

∗∗
b2
, p̂∗∗b2

)
from the bootstrap data

(
y∗∗b2 , X,D

)
calculate θ̂∗∗EBPb2

= Xβ̂∗∗b2 +
Â∗∗b2

Â∗∗b2
+D

(
y∗∗b2 −Xβ̂

∗∗
b2

)
p̂rob

∗∗
b2

calculate θ̂∗EBPb1
= Xβ̂∗b1 +

Â∗b1
Â∗b1

+D

(
y∗b1 −Xβ̂

∗
b1

)
p̂robb1
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The definition of probability p̂rob is given by equation (4.11).

2. Now calculate the first phase bootstrap estimator (M̂SE1) and second phase

bootstrap estimator (M̂SE2)

M̂SE1 = 1
B1

∑B1

b1=1

(
θ̂∗EBPb1

− θ∗b1(ξ̂)
)2

M̂SE2 = 1
B1

∑B1

b1=1
1
B2

∑B2

b2=1

(
θ̂∗∗EBPb2

− θ∗∗b2
(
ξ̂∗b1

))2

and finally, M̂SE =


2M̂SE1 − M̂SE2, if M̂SE1 > M̂SE2

M̂SE1 exp
{
M̂SE1−M̂SE2

M̂SE2

}
, otherwise.
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4.6 Simulation Results

Table 4.1: Empirical Comparison of EB Estimates under Fay-Herriot Model
(FH) and Proposed Model (PM) using Four Different Criteria.

Data Simulated from the Fay-Herriot Model

Average Average Average Average
relative squared absolute squared

Model deviation relative deviation deviation deviation

FH 1329642 0.00340 899.41 0.0454
PM 1368768.47 0.00328 875.46 0.0439

Table 4.2: Empirical Comparison of EB Estimates under Fay-Herriot Model
(FH) and Proposed Model (PM) using Four Different Criteria assuming that p

= 0.25.

Data Simulated from the Proposed Model

p = 0.25

Average Average Average Average
relative squared absolute squared

FH 638664.3 0.00177 590.53 0.0301
PM 445436.78 0.00082 452.45 0.0217

Table 4.3: Empirical Comparison of EB Estimates under Fay-Herriot Model
(FH) and Proposed Model (PM) using Four Different Criteria assuming that p

= 0.5 and 0.75.

Data Simulated from the Proposed Model

p = 0.50

Average Average Average Average
relative squared absolute squared

Model deviation relative deviation deviation deviation

FH 1083228 0.00285 802.63 0.0412
PM 732942.42 0.00188 702.07 0.0348

p = 0.75

FH 1371545 0.00369 925.40 0.0468
PM 893110.28 0.00208 729.75 0.0359
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For each of the simulation settings described in Section 4.4, it is investigated how

the small area parameters θ would be affected under the two models. We have

compared the results of Fay-Herriot model and the proposed model on the basis

of average absolute relative bias, average squared relative bias, average absolute

bias and average squared deviation under two different simulation settings when

the data is simulated from the area-level Fay-Herriot model as well as the area-

level proposed model. Table (4.1) to (4.3) reports the values of these measures of

empirical comparision.

The results in tables (4.1) to (4.3) appear to suggest a better fit for the proposed

method compared to the standard area-level (Fay-Herriot) model. The percentage

improvement in terms of average absolute relative bias, average squared relative

bias, average absolute bias and average squared deviation ranges from 5% to 22%.

We now present the results of empirical comparision of the Fay-Herriot model

and the proposed model in terms of empirical MSE obtained using the double-

bootstrap approach.

Figure 4.1: Plots of empirical values of MSE using double-bootstrap approach:
Comparison of the Fay-Herriot model and the proposed model at p = 0.25, 0.5

and 0.75
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Figure (4.1) provides a visual comparison of the Fay-Herriot model and the pro-

posed model in terms of empirical MSE obtained via the double-bootstrap ap-

proach. The vertical axis on the charts gives the empirical value of MSE over 500

double-bootstrap iterations, while the horizontal axis gives the state (small area)

indicator.

We see that the proposed model is markedly better than the fay-Herriot model at

p = 0.5 and p = 0.75 in all the small areas whereas the porposed model potrays

better performance than the standard Fay-Herriot model for the majority of the

small areas at p = 0.25. However, for the data that was simulated from the

Fay-Herriot model, we do not seem to witness a clear winner between the two

competing models in terms of empirical MSE as is evident in the top-left panel in

figure (4.1).



Chapter 5

Hierarchical Bayes Approach

5.1 Introduction

In this chapter, we place the Fay-Herriot model and the proposed model into

the hierarchical Bayes (HB) framework. Estimates of the posterior mean and the

corresponding credible interval of the model parameters are obtained using the

Gibbs sampling method. The full Bayesian approach requires the determination

of the joint posterior distribution of all the model parameters given the data.

The posterior distribution is known to be proportional to the product of the data

likelihood and the prior distribution of all model parameters.

5.2 Area-level Model

According to the Fay-Herriot model (Fay and Herriot, 1979) in small area estima-

tion, a basic area level model assumes that the small area parameter of interest θi

is related to area specific auxiliary data xi through a linear model

θi = xTi β + νi, i = 1, . . . ,m, (5.1)

54
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where m is the number of small areas, β = (β1, . . . , βp)
′

is p × 1 vector of re-

gression coefficients, and the νi’s are area-specific random effects assumed to be

independent and identically distributed (iid) with E(νi) = 0 and var(νi) = A.

The assumption of normality may also be included.

The area level model assumes that there exists a direct survey estimator yi for the

small area parameter θi such that

yi = θi + ei, i = 1, . . . ,m, (5.2)

where the ei is the sampling error associated with the direct estimator yi. We

also assume that the ei’s are independent normal random variables with mean

E(ei|θi) = 0 and sampling variance var(ei|θi) = Di.

5.2.1 Bayesian formulation

We present the Fay-Herriot model in a hierarchical Bayes framework using the

following distributions:

Conditional on the θi, β, and A, the direct survey estimate yi is normally dis-

tributed with mean θi and variance Di, where Di(i = 1, 2, · · · ,m) are known.

i.e.

yi ∼ N (θi, Di)

Conditional on β and A, θi is normally distributed with mean XT
i β and variance

A, where Xi are known design matrices.

θi ∼ N (XT
i β,A)

We assume that marginally β and A are mutually independent with prior distri-

bution given as β ∝ 1.
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The joint posterior distribution of parameters given data is:

π(θ1, · · · , θm, β, A|y) ∝ exp

(
−

m∑
i=1

(yi − θi)2

2Di

)
exp

(
−

m∑
i=1

(θi −XT
i β)2

2A

)
A−

m
2 π(β,A)

where

π(β,A) =
D̄

(A+ D̄)2
and D̄ =

∑m
i=1 Di

m
.

We are interested in estimating the small area parameter θi. In the hierarchical

Bayes analysis, θi is estimated by its posterior mean E(θi|y) and the associated

uncertainity is measured by the posterior variance. We use Gibbs sampling (Gel-

man and Rubin, 1992, Gelfand, 2000) to obtain the posterior mean and posterior

variance of θi. In order to implement the Gibbs sampler we generate samples

from the full conditional distributions of the parameters β, A and θi. The full

conditional distributions are as outlined below:

1. The conditional distribution of θ given β, A and data y is multivariate

normal:

θi|y, β, A ∼ N
(
Dix

T
i β + Ayi
A+Di

,
ADi

A+Di

)
Equivalently, we can write the conditional distribution of θ given β, A and

data y as:

θi|y, β, A ∼ N
(
Bix

T
i β + (1−Bi)yi, (1−Bi)Di

)
,

where

Bi =
Di

Di + A

2. The conditional distribution of β given θ, A and data y is multivariate

normal:

β|y, θ, A ∼ N
(
(XTX)−1XT θ, A(XTX)−1

)
3. The conditional distribution of A given θ, β and data y is:
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π(A|β, θ,y) ∝ exp

(
−

m∑
i=1

(θi −XT
i β)2

2A

)
A−

m
2

1

(A+ D̄)2

5.2.2 Gibbs Sampling Algorithm

The resulting Markov chain Monte Carlo (MCMC) algorithm is outlined as follows:

Step 1: Set k = 1 and initialize parameters β, A, and θ and as outlined below:

β(1) = (XTD−1X)−1XTD−1y, D = diag(D1, D2, · · · , Dm), A(1) = D̄/2

and

θ(1) is a vector of normal random variates with mean (Dix
T
i β(1)+A(1)yi)/(A(1)+

Di) and variance A(1)Di/(A(1) +Di) .

For k = 2, · · · ,M , implement steps (2) to (4).

Step 2: Generate A(k) from inverse gamma distribution (3) . It is assumed that

g = 1/A(k) has gamma distibution with parameters a = m/2 and b =

2/
∑

(θi − XT
i β)2 (using the parameterization that has mean ab and vari-

ance ab2).

Use accept-reject algorithm.

(i) Draw g from Gamma(m/2, 2/
∑

(θi −XT
i β)2).

(ii) Set A = g−1 and calculate T = A/(A+ D̄)2.

(iii) Draw U ∝ U(0, 1). If U/4D̄ < T then A(k) = A otherwise go back to

(i).

Step 3: Generate θ(k) using conditional distribution (2) using β(k−1) and A(k).

Step 4: Generate β(k) from multivariate normal distribution (2) using θ(k) and A(k).
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5.3 Proposed Model

In this section, we develop the hierarchical Bayes framework for the proposed

model. We consider a basic area level model such that the small area parameter

of interest θi is related to area specific auxiliary data xi through a linear model

θi = xTi β + δiνi, i = 1, . . . ,m. (5.3)

where m is the number of small areas, δ1, . . . , δm are iid Bernoulli random variables

(i.e. δi ∼ Bern(p)), β = (β1, . . . , βp)
′

is p× 1 vector of regression coefficients, and

the νi’s are area-specific random effects assumed to be independent and identically

distributed (iid) with E(νi) = 0 and var(νi) = A. The assumption of normality

may also be included. Here ν1, . . . , νm and δ1, . . . , δm are assumed to be indepen-

dent.

In this area level model we further assume that there exists a direct survey esti-

mator yi for the small area parameter θi such that

yi = θi + ei, i = 1, . . . ,m, (5.4)

where the ei is the sampling error associated with the direct estimator yi. We

also assume that the ei’s are independent normal random variables with mean

E(ei|θi) = 0 and known sampling variance var(ei|θi) = Di.

5.3.1 Posterior Distributions

Under the modelling assumptions in equation (5.3) and (5.4), the joint posterior

density of parameters given data is:
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f(β, δ, p, A|y) ∝
m∏
i=1

pδi(1− p)1−δi ·
m∏
i=1

{
(A+Di)

− δi
2 exp

(
−δi(yi − x

T
i β)2

2(A+Di)

)}
·

m∏
i=1

{
D
− (1−δi)

2
i exp

(
−(1− δi)(yi − xTi β)2

2Di

)}
· π(β) · π(p) · π(A)

which simplifies to

f(β, δ, p, A,y) ∝ p
∑
δi(1− p)m−

∑
δi ·

m∏
i=1

{
(A+Di)

− δi
2 exp

(
−δi(yi − x

T
i β)2

2(A+Di)

)}
·

m∏
i=1

{
D
− (1−δi)

2
i exp

(
−(1− δi)(yi − xTi β)2

2Di

)}
· π(β) · π(p) · π(A)

To complete the Bayesian model specification, the prior distributions are assigned

as follows:

π(p) = uniform(0, 1), π(A) =
D̄

(A+ D̄)2
and D̄ =

∑m
i=1Di

m

Again, like in the standard Fay-Herriot model, our main interest lies in the es-

timation of the small area parameter θi. The Bayes predictor of parameter θi

is

θ̂Bi = xTi β +
A

A+Di

(yi − xTi β) · pr(δi = 1|β,A, p,y)

= xTi β +
A

A+Di

(yi − xTi β) · p̂i;
(5.5)

where p̂i = pr(δi = 1|β,A, p,y).

We use Gibbs sampling (Gelman and Rubin, 1992, Gelfand, 2000) to generate

samples from the full conditional distributions of the parameters β, A, and p.

The full conditional distributions of these parameters are outlined below:

1. The conditional distribution of β given δ, A and p and data y is
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π(β|δ, p, A,y) ∝ exp

(
−1

2

m∑
i=1

δi
A+Di

(yi − xTi β)2

)
×

exp
(
−1

2

∑m
i=1

(1−δi)
Di

(yi − xTi β)2
)

Therefore the conditional distribution of β given δ, p, A and y is multivariate

normal with mean-vector H−1g and covariance matrix H−1, i.e.

β|y, δ, p, A ∼ N (H−1g,H−1)

where

H =
m∑
i=1

{
δi

A+Di

+
(1− δi)
Di

}
xix

T
i ,

and

g =
m∑
i=1

{
δi

A+Di

+
(1− δi)
Di

}
xiyi, xi = (1, xi1)T .

2. The conditional distribution of δi = 1 given β, p, A and y is

pr(δi = 1|p, β, A,y) =
p

p+ (1− p)
√

A+Di
Di

exp
{
− (yi−xTi β)2

2

(
1
Di
− 1

A+Di

)}
3. The conditional distribution of p given β, δ, A and y is

p|β, δ, A,y ∼ Beta

(
m∑
i=1

δi + 1,m−
m∑
i=1

δi + 1

)

4. The conditional distribution of A given β, p, δ and y is

Π(A|β, δ, p,y) ∝ exp

(
−1

2

m∑
i=1

δi
A+Di

(yi − xTi β)2

)
·
m∏
i=1

(A+Di)
− δi

2 · π(A)

we allow

π(A) =
D̄

(A+ D̄)2
and D̄ =

∑m
i=1Di

m
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Gibbs Sampling Algorithm: Proposed model

Step 1: Set k = 1 and intialize parameters β, p, A, and δ and as outlined below:

β(1) = (XTD−1X)−1XTD−1y,

where D = diag(D1, D2, · · · , Dm) and X = (1,x)T .

p(1) = 0.2,

A(1) = D̄/2 and

δ(1) is a vector of Bernoulli random variates with success probability p1.

For k = 2, 3, · · · , N , implement steps (2) to (5).

Step 2: Generate A(k) from conditional distribution (4).

In order to sample from the full conditional distribution of A given β, p, δ

and y, we use the accept-reject algorithm. The target density is

f(A) =
m∏
i=1

{
exp

(
−1

2
(yi − xTi β)2(

1

A+Di

− 1

A+ D̄
)

)(
A+Di

A+ D̄

)− 1
2

}δi

·

1

(A+ D̄)2+ 1
2

∑
δi

exp

(
−
∑
δi(yi − xTi β)2

2(A+ D̄)

)

The proposal density is

g(A) =
1

(A+ D̄)2+ 1
2

∑
δi

exp

(
−
∑
δi(yi − xTi β)2

2(A+ D̄)

)
and

M = max
A

f(A)

g(A)
.

In order to stabilize the calculations, we define ψ(A) = log f(A)
g(A)

and then eval-

uate ψ(A) at A = 10−10, 10−9, · · · , 1010 and take the maximum of expψ(A)

to approximate M.

Accept-Reject Algorithm:

(a)
∑
δi = 0, A(k) =

1− U
U

D̄ where U ∼ uniform(0, 1)

(b)
∑
δi > 0

(i) Draw U from uniform(0, 1)
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(ii) Draw R from truncated gamma distribution with shape =
1

2

∑
δi + 1

and scale =
2∑

δi(yi − xTi β)2

(iii) R < 1
D̄

, then take A(k) =
1

R
− D̄, otherwise draw another sample R.

(iv) If
f(A(k))

M · g(A(k))
> U then take A(k) as a sample from f , otherwise go back

to (ii) and draw another sample from truncated gamma distribution.

Step 3: Generate β(k) from multivariate normal distribution (1).

Step 4: Generate δ(k) using conditional distribution (2) and parameters β(k), A(k),

and p(k−1).

Step 5: Generate p(k) from beta distribution defined in (3) and values of δ(k)

5.4 Simulation Study

Our simulation study is based on the 1989 United States Census Bureau four-

person families median income dataset. The United States Department of Health

and Human services provides energy assistance to low-income families. Elegibility

for the program is determined by a formula where the most important variable

is an estimate of the current median income of four-person families by states

(the 50 states and District of Columbia). The variables in this dataset includes:

yi: State median income based on the current year from the current population

survey (CPS) data, xi: Adjusted state median income for the current year and

Di: Sampling variance associated with yi.

We generate data using two different set ups. In the first case, we use the Fay-

herriot model as defined by equations (5.1) and (5.2) to generate data as follows:

(i) Generate values of θ and y from the Fay-Herriot model where

θi = xTi β + νi, yi = θi + ei, i = 1, . . . ,m
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(ii) Use the Fay-Herriot model to fit the generated data and estimate the pa-

rameters β, θ and A.

(iii) Use the proposed model to fit the generated data to estimate estimate the

parameters β, p and A. The estimated values of parameters θ are obtained

using parameters β, θ, p, A and equation (5.5).

Under the modeling assumptions of Fay-Herriot model, we have that

νi ∼ N (0, 5× 106), ei ∼ N (0, Di) and β = (4700, 0.7)T ,

where D = diag(D1, D2, · · · , Dm).

In the second set-up, we use the proposed model as defined by equations (5.3) and

(5.4) to generate data as follows:

(i) Generate values of θ and y using the proposed model where

θi = xTi β + δiνi, yi = θi + ei, i = 1, . . . ,m

(ii) Fit the generated data to the Fay-Herriot model to estimate the parameters

β, θ and A.

(iii) Use the proposed model to fit the generated data to estimate estimate the

parameters β, θ, p and A. The estimated values of parameters θ are obtained

using parameters β, θ, p, A and equation (5.5).

In the proposed model, we assume that νi ∼ N (0, 5 × 106), ei ∼ N (0, Di) and

β = (4700, 0.7)T ,

whereD = diag(D1, D2, · · · , Dm). Three different datasets are generated using the

proposed model because the values of δi are generated from Bernoulli distribution

with sucess probability p taking values of 0.25, 0.5 and 0.75.
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5.4.1 Empirical Comparision of Hierarchical Bayes Esti-

mates

In this simulation study the performance of the hierarchical Bayes (HB) estimators

is examined from the accuracy of the point estimates standpoints. This is consid-

ered through the relative errors and absolute relative errors of the HB estimates.

The HB estimates are compared according to four different criteria recommended

by the panel on small area estimates of population and income set up by the United

States committee on National Statistics in 1978 (Ghosh et al., 1996, Datta et al.,

2002). We compare the HB estimates on the basis of average relative bias, average

squared relative bias, average absolute bias and average squared deviation.

Suppose eiTR denotes the true median income for the ith state, and ei is any

estimate of eiTR, i = 1, · · · ,m. Then

1. Average relative bias (ARB)

ARB =
1

m

m∑
i=1

∣∣∣∣ei − eiTReiTR

∣∣∣∣
2. Average squared relative bias (ASRB)

ASRB =
1

m

m∑
i=1

(
ei − eiTR
eiTR

)2

3. Average absolute bias (AAB)

AAB =
1

m

m∑
i=1

|ei − eiTR|

4. Average squared deviation (ASD)

ASD =
1

m

m∑
i=1

(ei − eiTR)2
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5.5 Simulation Results

We report on a simulation study that investigates the performance of the proposed

model as compared to the Fay-Herriot model. For both models (Fay-Herriot model

and the proposed model), we initialize the model parameters and run an Markov

Chain Monte Carlo (MCMC) chain until convergence is attained. We checked

the convergence of the chain under each of the two models via trace plots and

autocorrelation plots of parameters β, p, and A. The details of the initial values

of parameters β, p, and A can be found in section 5.4. Each chain was ran for a

total of 20,000 iterations whereby the first 5,000 iterations were taken as burn-in

and the other 15,000 iterations used for convegence check and to compute posterior

inference for the parameters of interest.

We present in tables to the results of empirical comparision of the Fay-Herriot

model and the proposed model under four different simulation settings. Also

presented in figures to are the histograms, autocorrelation plots and trace plots

for the estimated parameters β, p, and A. For the posterior estimates of the model

parameters, we computed the means and the corresponding 95% credible intervals

for each parameter. These posterior inference statistics are presented in table 5.2,

5.4, 5.6 and 5.8.
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5.5.1 Simulation: Data generated using Fay-Herriot model

In this subsection, we present the results after analysing the data simulated from

the Fay-herriot model. We ran one long chain with length 20,000 iterations. We

discard the first 5,000 iterations. The trace plots, histograms and autocorrela-

tion plots for β, p, and A are presented in figure (5.1). The results of empirical

comparision of the estimates under the two models are presented in table (5.1).

Table 5.1: Empirical Comparison of HB estimates under Fay-Herriot model
(FH) and proposed model (PM) using four different criteria. Data simulated

from the Fay-Herriot model

Data Simulated from the Fay-Herriot Model

Average Average Average Average
relative squared absolute squared

Model deviation relative deviation deviation deviation

FH 1330049.85 0.0034 899.92 0.0454
PM 1356812.87 0.0035 908.61 0.0459

Figure 5.1: Data simulated from the Fay-Herriot model: Histograms, trace
plots and autocorrelation plots for β0, β1, A and p for the last 15,000 after a
burn-in of 5,000 iterations. The point * in the histograms plots denotes the true

value of the corresponding parameter.
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Table 5.2: Posterior summary statistics for data simulated from Fay-herriot
model.

Fay-Herriot Model Proposed Model
95% HDR 95% HDR

mean 2.5% 97.5% mean 2.5% 97.5%
β0 4340.41 2674.31 5917.17 4242.24 2588.28 5852.46
β1 0.70 0.63 0.78 0.71 0.64 0.78
A 4202862.21 3592770.13 4894461.15 4627162.51 3718889.96 5811476.73
p - - - 0.91 0.77 0.98

From figure (5.1), we can see that all the chains are stabilized and well mixed. The

results in table (5.1) suggest that both models are equally good, no model seems

to be a clear winner when the data is generated from the Fay-Herriot model.

This motivates us to argue that our proposed model is ideal even in the case

where standard Fay-Herriot model would seem more appropriate. The posterior

estimates are presented in table (5.2) and we see that we obtain good estimats for

all the parameters.

5.5.2 Simulation: Data generated using proposed model

when p=0.25.

Table 5.3: Empirical Comparison of HB estimates under Fay-Herriot model
(FH) and proposed model (PM) when data is simulated from the proposed

model assuming that p = 0.25.

Data Simulated from the Proposed Model

p = 0.25

Average Average Average Average
relative squared absolute squared

Model deviation relative deviation deviation deviation

FH 1116510.22 0.0046 598.28 0.0306
PM 896793.43 0.0029 482.75 0.0254
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Figure 5.2: Data simulated from the proposed model when p = 0.25: His-
tograms, trace plots and autocorrelation plots for β0, β1, A and p for the last

15,000 after a burn-in of 5,000 iterations.

Table 5.4: Posterior summary statistics for data simulated from the proposed
model (p = 0.25).

Fay-Herriot Model Proposed Model
95% HDR 95% HDR

mean 2.5% 97.5% mean 2.5% 97.5%
β0 4720.50 3472.51 5944.72 4689.33 3641.17 5715.50
β1 0.68 0.63 0.74 0.69 0.65 0.74
A 1515104.18 1193255.21 1882942.25 8533315.14 5169677.99 13549118.54
p - - - 0.17 0.12 0.25

The resultant trace plots, histograms and autocorrelation plots for β, p, and A

are presented in figure (5.2). From this figure, we can see that all the chains are

stabilized and well mixed and the autocorrelations appear to dampen quickly. Al-

though the statistical results of posterior estimates are somewhat worse as seen in

table (5.4), the results of empirical comparision of the two models are presented in

table (5.3). These results suggest that the proposed model offers better estimates

than the Fay-Herriot model in this case.
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5.5.3 Simulation: Data generated using proposed model

when p=0.5.

Table 5.5: Empirical Comparison of HB estimates under Fay-Herriot model
(FH) and proposed model (PM) when data is simulated from the proposed

model assuming that p = 0.5.

Data Simulated from the Proposed Model

p = 0.50

Average Average Average Average
relative squared absolute squared

Model deviation relative deviation deviation deviation

FH 1532593.12 0.0058 1165.56 0.0603
PM 1288522.80 0.0036 830.08 0.0423

Figure 5.3: Data simulated from the proposed model when p = 0.5: His-
tograms, trace plots and autocorrelation plots for β0, β1, A and p for the last
15,000 after a burn-in of 5,000 iterations. The point * in the histograms plots

denotes the true value of the corresponding parameter.
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Table 5.6: Posterior summary statistics for data simulated from the proposed
model (p = 0.50).

Fay-Herriot Model Proposed Model
95% HDR 95% HDR

mean 2.5% 97.5% mean 2.5% 97.5%
β0 3264.57 1813.34 4697.09 3439.07 2097.21 4780.66
β1 0.75 0.69 0.82 0.74 0.68 0.80
A 2910852.29 2403098.07 3462882.55 5494823.55 3930702.02 7588448.63
p - - - 0.54 0.42 0.69

The trace plots, histograms and autocorrelation plots for β, p, and A are presented

in figure (5.3). The trace plots in figure (5.3) indicates that the chains appears

to have reached a stationary distribution. It also has good mixing. The autocor-

relation plots indicates low autocorrelation and appear to dampen quickly. This

provides added evidence of the convergence of the Markov chain. The results pre-

sented in table (5.5) indicate that the proposed model is consistently superior to

the Fay-Herriot model. The statistical results are presented in table (5.6). From

this table, we see that we obtain better results using the proposed model than the

standard fay-Herriot model.

5.5.4 Simulation: Data generated using proposed model

when p=0.75.

Table 5.7: Empirical Comparison of HB estimates under Fay-Herriot model
(FH) and proposed model (PM) when data is simulated from the proposed

model assuming that p = 0.75.

Data Simulated from the Proposed Model

p = 0.75

Average Average Average Average
relative squared absolute squared

Model deviation relative deviation deviation deviation

FH 1979706.56 0.0074 1308.36 0.0679
PM 1499093.99 0.0041 969.79 0.0491
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Figure 5.4: Data simulated from the proposed model when p = 0.75: His-
tograms, trace plots and autocorrelation plots for β0, β1, A and p for the last

15,000 after a burn-in of 5,000 iterations.

Table 5.8: Posterior summary statistics for data simulated from the proposed
model (p = 0.75).

Fay-Herriot Model Proposed Model
95% HDR 95% HDR

mean 2.5% 97.5% mean 2.5% 97.5%
β0 5158.88 3531.58 6783.82 4723.46 3218.03 6250.50
β1 0.68 0.61 0.75 0.70 0.63 0.76
A 4143076.00 3505689.03 4861893.09 5953074.54 4621120.87 7602451.25
p - - - 0.69 0.58 0.83

The trace plots, histograms and autocorrelation plots for β, p, and A are presented

in figure (5.4). The trace plots in figure (5.3) indicates that the chains appears

to have reached a stationary distribution. It also has good mixing. The auto-

correlation plots indicates low autocorrelation and efficient sampling. The results

presented in table (5.7) indicate that the proposed model is consistently superior

to the Fay-Herriot model. The statistical results are presented in table (5.8). From

this table, we see that we obtain better results using the proposed model than the

standard fay-Herriot model.
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5.6 Discussion of results

In this chapter, we provide information that allows one to assess the relative

performance of the proposed model when compared to the standard Fay-Herriot

model. We have implemented the hierarchical Bayes (HB) method of estimation.

The empirical results described in section 5.5 are evidence that our proposed model

has promise as an advancement over the standard Fay-Herriot model, in particular

it performed reasonably well in terms of .

An advantage of the HB approach is that the inferences are “exact” unlike the EB

approach, and it can handle complex small area models using MCMC methods,

but it needs specification of a prior on the model parameters. The HB approach

is attractive but caution should be exercised when using MCMC methods. For

example, MCMC algorithms could lead to seemingly reasonable inferences about a

non existent posterior distribution. This happens when the posterior distribution

is improper, yet the Gibbs conditional distributions used in generating the MCMC

samples are proper Hobert and Casella (1996).



Chapter 6

Concluding Remarks and Future

Research

This concluding chapter summarises the work presented in this thesis and sug-

gests some future directions. In Chapter 1, we introduced the idea of small area

estimation and highlighted that concepts of small area estimation can be applied

to a wide variety of situations. Chapter 2 gives an overview of approaches to small

area estimation. In chapter 3, we concentrated on review of the general concepts

pertaining to frequentist and Bayesian methods. Our new model for small area

estimation is developed and compared to standard area level model (Fay and Her-

riot, 1979) through the empirical Bayes (EB) approach in chapter 4 . In chapter

5, a hierarchical Bayes (HB) approach is developed to estimate parameters for the

proposed model, with implementation carried out by Markov chain Monte Carlo

(MCMC) techniques. MCMC was implemented via the Gibbs sampling algorithm

using R software package. We used several graphical tools to assess convergence

and determine the length of the burn-in period.

We have examined the performance of our proposed model in the estimation of

median income of four person families based on the 1989 United States census

bureau dataset. Our simulation studies established clearly the superiority of using

the proposed model over the standard Fay-Herriot model. However, the advantage

73
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of the proposed model comes at a price since the its implementation is mildly more

difficult than the Fay-Herriot model.

We have proposed an EB estimator of the median income of four-person fami-

lies at the state level. Compared to the corresponding HB procedure, it saves a

tremendous computing time and is very simple to implement.

We are aware of the limitations of this study. We have confined our attention to

the framework of linear mixed models with normal random terms namely area-

level random effects and/or the sampling errors of the direct survey estimates.

The theory of general linear mixed models relies largely on the normality of ran-

dom effects (McCulloch and Searle, 2001). In real life, however, the normality of

area effects is not always justified and heavy-tailed distributions and asymmetric

distributions are frequently encountered in empirical studies (see Azzalini (1985,

1986) and Hampel et al. (1986)) and therefore it would be a rewarding topic for

future research to assess the performance of our proposed model under non-normal

features related to skewness, kurtosis and heavy tails. We also intend to further ex-

plore the method we proposed for unit-level small area estimation via a simulation

study using a unit-level data.

In addition, it may happen that a relatively few observations do not follow a small

area model that adequately explains bulk of data. Outliers may occur in individual

observations. Such outlying observations may adversely affect estimation of model

parameters. The problem of investigating sensitivity of our approach to outliers

is an interesting avenue of future research and it is probably the one, where the

next step will be taken.

In this study, our estimation of prediction mean square error(MSE) in the empirical

bayes approach was based on double-bootstrap procedure. A possible disadvantage

of this bootstrap method is that the bias of the MSE estimator may be sensitive

to the choice of number of bootstrap samples, B. It may be advisable to study

sensitivity as B changes.
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The approach proposed in this work will hopefully broaden the applicability of the

small area estimation. As with any applied statistical method, practical experience

will be required to assess its final merit.



Appendix A

Program Documentation

A.1 Computational Aspects

A number of different computer packages, including R, WinBUGS and SAS are

used to prepare data or fit different models. Appendix B has listings of selected but

important R programs developed using the hierarchical Bayes Approach. These

do not include all data preparation programs. Inevitably, as software develops

new functionality is introduced and it may become simpler to build the models in

a different package.

Use the provided programs with love and caution. Please advise me if you find

any mistakes.

A.2 Hierarchical Bayes Approach

The main R program for the hierarchical Bayes approach using the proposed
model.

#load library

library(mvtnorm)

library(foreign)
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################################################
# #
# Read in the US median income dataset #
# generated by FH model and new model #
# using p = 0.25,0.5 and 0.75 #
# #
################################################

# data generated by new model: p = 0.25

usincome=read.dbf(’E:/Toni/PhD/PhD project/DATA/usincomeD225.dbf’)

attach(usincome)

m = length(x)

# D matrix

d = diag(D)

# X = Design matrix

X = as.matrix(data.frame(int=rep(1,m),x))

# Y = response matrix

Y = as.matrix(y)

# Number of iterations

nsim = 20000

# Values used in computation of M

M.a = 10^c(-10:-1,1:10)

###########################################
# #
# Intial Values #
# #
###########################################

# Vector Beta

beta = array(0,c(nsim,2))

beta0 = solve(t(X)%*%solve(d)%*%X)%*%t(X)%*%solve(d)%*%Y

beta[1,] = t(beta0)

# Intial Value of A

A0 = meanD/2

sigma = array(0,c(nsim,1))

sigma[1] = A0
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# Intial Value of P

P0 = 0.6

P = array(0,c(nsim,1))

P[1] = P0

#################################################
# #
# Intial values of Delta from Bernoulli #
# distribution with success probability P0 #
# #
#################################################

delta0 = rbinom(m,1,P0)

Delta = array(0,c(nsim,m))

Delta[1,] = delta0

#########################################################
# #
# This function calculates the conditional #
# probability of delta_i=1 given beta, A, p and data #
# #
#########################################################

fdelta = function(y,A,D,p,X,beta)
{

term = sqrt((A+D)/D)*exp(-((y-X%*%beta)^2)*(1/D-1/(A+D))/2)
alpha = p/(p+(1-p)*term)
return(alpha)

}

#####################################
# #
# A function to Generate blank plot #
# #
#####################################

blankplot <- function()
{
plot(0,0,type="n",xlim=c(0,1),ylim=c(0,1),xaxt ="n",

yaxt="n",xlab="",ylab="",bty="n")

}

# K Number of chains

K = 3

# Matrix to store values of ASD,ASRB,AAB and ARB

store = matrix(0,nrow=4,ncol=K)
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rownames(store) = c("ASD", "ASRB", "AAB","ARB")

for(n in 1:K){

#################################
# #
# Gibbs Sampling Algorithm #
# #
#################################

for(k in 2:nsim)
{
#####################################
# #
# Generate a blank plot #
# #
#####################################

blankplot()

counter = round(k*100/nsim,1)

text(0.5,0.9,"Percentage of simulations completed is",
cex=1.4,col="blue")

text(0.4,0.6,counter,cex=7,col="blue")

######################################
# #
# Generating A #
# #
# #
######################################

# Ratio of Target and Proposal density

fAgA = function(sigma,delta,beta)
{

prod((exp(-0.5*((y-X%*%beta)^2)*(1/(sigma+D)-1/(sigma+meanD)))*
((sigma+D)/(sigma+meanD))^(-0.5) )^(delta))

}

fAgA.v <- Vectorize(fAgA,’sigma’)

#################################################
# #
# Function to calculate M #
# #
#################################################

log.psi = function(A)
{

exp(-0.5*sum(Delta[k-1,]*((((Y-X%*%beta[k-1,])^2)*
(meanD-D))/((A+D)*(A+meanD))+log(A+D)-log(A+meanD))))
}
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log.psi.v = Vectorize(log.psi,"A")

M = max(log.psi.v(M.a))

if(sum(Delta[k-1,]) > 0)

{
T = 0

#################################
# #
# Acception-Rejection Algorithm #
# #
#################################

while (runif(1) > T)
{

R = 1

while(R > 1/meanD)
{

# Draw a random sample from gamma distribution
# Parameters of gamma distribution

sh = 1+(sum(Delta[k-1,])/2)

sc = 2/(t(Y-X%*%beta[k-1,])%*%diag(Delta[k-1,])%*%(Y-X%*%beta[k-1,]))

R = rgamma(1, shape=sh, scale=sc)
}

# Calculate the value of A

A = 1/R-meanD

# Calculate the ratio T

T = fAgA(A,Delta[k-1,],beta[k-1,])/M

}
sigma[k] = A
}else
{
U = runif(1)
sigma[k]=(1-U)*meanD/U
}

##########################################
# #
# Generating Beta from Multivariate #
# Normal distribution #
# #
##########################################

# Variance-covariance matrix and Mean Vector
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ratio1 = Delta[k-1,]/(sigma[k]+D)

ratio2 = (1-Delta[k-1,])/D

# covariance matrix for beta

H = solve(t(X)%*%diag(ratio1)%*%X+t(X)%*%diag(ratio2)%*%X)

g = t(X)%*%diag(ratio1)%*%Y+t(X)%*%diag(ratio2)%*%Y

#mean-vector for beta

meanbeta = H%*%g

beta[k,] = rmvnorm(1, mean =meanbeta, sigma=H)

##################################
# #
# Generating delta using #
# function fdelta #
# #
##################################

alph = fdelta(y=y,A=sigma[k],beta=beta[k,],D=D,p=P[k-1],X=X)

Delta[k,] = ifelse(runif(m)<=alph,1,0)

#########################################
# #
# Generating P from beta distribution #
# #
#########################################

# Parameters of beta distribution

shape1 = 1+sum(Delta[k,])

shape2 = m+1-sum(Delta[k,])

P[k] = rbeta(1, shape1=shape1, shape2=shape2)

} # end of gibbs sampling

#####################################
# Calculating values of p(delta=1)#
# #
#####################################

pdelta1 = array(0,c(nsim,m))

for(i in 1:nsim)
{
pdelta1[i,] = P[i]/(P[i]+(1-P[i])*(sqrt((sigma[i]+D)/D))
*exp(-((y-X%*%beta[i,])^2/2)*(1/D-1/(sigma[i]+D))))
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}

pdel = rowMeans(pdelta1)

#####################################
# Calculating values of theta #
# #
#####################################

thetnw = array(0,c(nsim,m))

for(i in 1:nsim)
{
thetnw[i,] = X%*%beta[i,]+pdel[i]*sigma[i]*(y-X%*%beta[i,])/(sigma[i]+D)
}

burnin = 5000

thetanw = colMeans(thetnw[burnin:nsim,])

ASD.NM = mean ((thetanw-theta)^2)
ASRB.NM = mean (((thetanw-theta)/theta)^2)
AAB.NM = mean (abs(thetanw-theta))
ARB.NM = mean (abs((thetanw-theta)/theta))

store[,n] = c(ASD.NM, ASRB.NM, AAB.NM,ARB.NM)

}
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