
Facoltà di Ingegneria
Dipartimento di Ingegneria dell’Informazione

Scuola di Dottorato di Ricerca in Ingegneria dell’Informazione – XXII Ciclo
Indirizzo: Scienza e Tecnologia dell’Informazione e della Comunicazione

Ranking Robustly

Direttore della Scuola
Ch.mo Prof. Matteo Bertocco

Supervisore
Ch.mo Prof. Enoch Peserico

Dottorando
Marco Bressan

Abstract

Is the ranking induced by PageRank robust with respect to factors that, intuitively,
should have little weight? Motivated by a large and growing number of applications
of PageRank as a ranking algorithm, we investigate this problem theoretically and
experimentally along two complementary research lines.

The first research line explores to what extent the PageRank-induced ranking of
the nodes of a graph depends on an arbitrary, graph-independent, user-model pa-
rameter – the damping factor. We prove that, on some graphs, the ranking depends
totally on the damping factor and that, in these cases, sampling the rank of a node
on any finite set of damping factors gives very little information about its overall sta-
bility. The novel tool of lineage analysis bypasses the problem and allows to check if
the rank of a node is stable for all (even time-variant) damping factors. We introduce
the notions of strong rank and weak rank, which measure the rank robustness of a
graph’s nodes, and derive two new ranking metrics that benchmark the performance
of ranking algorithms with respect to different scenarios. Experimental results show
that, in real-world graphs, ranking is relatively robust, and suggest ideal damping
factors for PageRank in different application domains.

The second research line investigates whether it is possible to compute the relative
PageRank-induced ranking of a node visiting only a small nearby subgraph. We
answer negatively: to provide a correct ranking any algorithm must visit a number
of nodes that is proportional to the size of the graph, if deterministic, or to its
square root, if randomized. These results hold even when ranking the top nodes
in the graph, even when the gap between their PageRank scores is large. Indeed
our experiments show that, in some real-world cases, any algorithm must visit large
number of nodes, even when inferring ranking through efficient local approximations
of the PageRank scores. Therefore, ranking seems definitely not robust with respect
to the removal of nodes from the graph.

In a nutshell, this work asks how much “information” a graph contains about
the PageRank-induced importance of its nodes and whether this information is local
or distributed – aiming at a full understanding of the robustness of PageRank as a
ranking algorithm. It turns out, that, in terms of variations of the damping factor
and of variations of the link structure in “remote” areas of the graph, PageRank is
not very robust – neither in theory nor, in many cases, in practice.

Sommario

Il ranking indotto da PageRank è robusto rispetto a fattori che, intuitivamente,
dovrebbero avere poco peso? Motivati da un ampio e crescente numero di ap-
plicazioni di PageRank come algoritmo di ranking, investighiamo questo problema
teoricamente e sperimentalmente lungo due linee di ricerca complementari.

La prima linea di ricerca esplora quanto il ranking indotto da PageRank sui
nodi di un grafo dipenda da un parametro del modello sottostante, arbitrario e
indipendente dal grafo – il damping factor. Mostriamo che, in alcuni grafi, il ranking
dipende totalmente dal damping factor a che, in questi casi, campionare il rank di
un nodo per qualsiasi insieme finito di damping factor dà pochissima informazione
sulla sua stabilità complessiva. Il nuovo strumento della lineage analysis supera il
problema e permette di verificare se il rank di un nodo è stabile per tutti i damping
factor, anche tempo-varianti. Introduciamo le nozioni di strong rank e weak rank, che
misurano la robustezza dei rank dei nodi di un grafo, e deriviamo due nuove metriche
che misurano le prestazioni degli algoritmi di ranking rispetto a differenti scenari. I
risultati sperimentali mostrano che, nei grafi reali, il ranking è relativamente robusto,
e suggeriscono damping factor ideali per PageRank in diversi domini applicativi.

La seconda linea di ricerca investiga se sia possibile calcolare il ranking relativo
(indotto da PageRank) di un nodo visitando solo un piccolo sottografo circostante.
Rispondiamo negativamente: per fornire un ranking corretto, ogni algoritmo deve
visitare un numero di nodi che è proporzionale alla taglia del grafo, nel caso deter-
ministico, e proporzionale alla sua radice quadrata, se randomizzato. Questi risultati
valgono anche quando si fornisce il ranking dei nodi più importanti del grafo e la dif-
ferenza tra i loro punteggi PageRank è ampia. In effetti i nostri esperimenti mostrano
che, in alcuni grafi reali, ogni algoritmo deve visitare un grande numero di nodi, an-
che se utilizza approssimazioni efficienti del punteggio PageRank. Quindi, il ranking
sembra essere non robusto rispetto alla rimozione di nodi dal grafo.

In breve, questo lavoro si chiede quanta “informazione” contiene un grafo circa
l’importanza (data da PageRank) dei suoi nodi e se questa informazione sia localiz-
zata o distribuita – mirando a una piena comprensione della robustezza di PageRank
come algoritmo di ranking. Si scopre che, in termini di variazioni del damping factor
e di variazione nella struttura in aree “remote” del grafo, PageRank non è molto
robusto – né in teoria né, in molti casi, in pratica.

Acknowledgements

It is both a duty and a pleasure to thank the many people who helped me, supported
me, and contributed to this work. It is also their merit if I successfully concluded
my Ph.D.

First of all I want to thank my advisor Enoch Peserico for taking me through
what, I believe, has been the best Ph.D. one could desire. He taught me how to be
a well-rounded scientist, conduct beautiful research, and keep a critical but positive
attitude; or at least he tried, for I still have much to learn.

I am really grateful to all the members, current and former, of the Advanced Com-
puting Group. I thank Gianfranco Bilardi, Carlo Fantozzi, Andrea Pietracaprina,
and Geppino Pucci as the leaders of the research group; and I thank my friends and
colleagues Fausto Artico, Paolo Bertasi, Alberto Bertoldo, Federica Bogo, Emanuele
Milani, Alberto Pettarin, Michele Scquizzato, Michele Schimd, Francesco Silvestri,
Fabio Vandin, and Francesco Versaci, for their inestimable company in these years.

A special thank goes to Luca Pretto. His help and unfailing support were invalu-
able for my research and played a large part in this work.

I want to give a sincere thank to the Ph.D. School secretary, Alessandra Calore,
on whom I relentlessly relied during my work.

Last but not least, I have to thank all my friends for their precious presence and,
most important, my parents that have made this possible.

This work was supported in part by:

• University of Padova under Strategic Project STPD08JA32 “AACSE - Algo-
rithms and Architectures for Computational Science and Engineering” and un-
der a 3-years Ph.D. fellowship.

• Italian Ministry of University and Research (MIUR) under project AlgoDEEP
prot. 2008TFBWL4.

• EU under the EU/IST Project 15964 “AEOLUS - Algorithmic Principles for
Building Efficient Overlay Computers”.

Contents

1: Introduction 1
1.1 Motivation and related work . 1
1.2 PageRank . 3
1.3 Score vs. rank . 5
1.4 Outline of the thesis . 6

2: Choose The Damping, Choose The Ranking? 9
2.1 Introduction . 9
2.2 The damping makes the ranking . 11

2.2.1 Notation . 11
2.2.2 Rank can change completely: a proof 12

2.3 Lineage analysis . 16
2.3.1 Better rank for every damping factor? 16
2.3.2 Damping variables . 17
2.3.3 Lineages . 20

2.4 Damping-independent ranking . 23
2.4.1 Strong and weak rank . 23
2.4.2 StrongRank and WeakRank 24

2.5 Experimental results . 27
2.5.1 Data and experimental setup 27
2.5.2 Choose the damping, choose the ranking? 28
2.5.3 The best damping factor . 31

2.6 The damping makes the ranking – in theory if not in practice 34

3: Local Computation of PageRank : The Ranking Side 35
3.1 Introduction . 35
3.2 Limits and pitfalls of the brute force algorithm 36
3.3 Local ranking of nodes . 43
3.4 The cost of local ranking . 44
3.5 Experiments . 51

i

ii Contents

3.5.1 Experimental design . 51
3.5.2 Is ranking local in real graphs? 52
3.5.3 Local ranking with real algorithms 54

3.6 Ranking is not local . 61

4: Conclusions 63

Chapter 1

Introduction

This introductory chapter motivates our research and provides related work (Sec-
tion 1.1), briefly reviews the PageRank algorithm (Section 1.2) and the crucial dif-
ference between score and rank(Section 1.3), before presenting an overview of our
results and the organization of the rest of the thesis (Section 1.4).

1.1 Motivation and related work

PageRank [14] is probably the best known of link analysis algorithms; originally pro-
posed as a means to infer the importance of web pages from the link structure of the
web graph, today it is a reference algorithm in computer science, especially for the
information retrieval, database and natural language processing communities. Para-
doxically, while its utility as a web search algorithm is decreasing in favour of new
techniques such as clickthrough-based measures, its importance is still growing, due
to a large number of applications in diverse fields: web crawling [17], credit and rep-
utation systems [28], ranking in databases [23], text summarization [20], combating
web spam [25], structural re-ranking [31], word sense disambiguation [41], ranking
WordNet synsets [21], and graph-based natural language processing [40]. This sug-
gests to study the algorithm in the abstract, considering it as a graph algorithm
which accepts a graph in input and provides the scores of each node of the graph as
output.

While in the original web application PageRank scores were combined with tradi-
tional text-based information retrieval scores, many of the other applications simply
use the unmodified PageRank scores to rank items in order of precedence, whether for
efficiency or by lack of other valid alternatives. For example, in web crawling scores
are used to decide ‘in what order a crawler should visit the URLs it has seen, in or-
der to obtain more “important” pages first’ [17]. This fact naturally moved research

1

2 Chapter 1. Introduction

towards the ranking induced by PageRank, focusing on the convergence in rank of its
iterative computation [36, 44] and on the dependence of PageRank-induced ranking
on user-model factors [34, 13]. This suggests to consider PageRank as an algorithm
to rank the nodes of a generic graph and to investigate its robustness to perturba-
tions that should intuitively have a limited impact. In particular, we follow the two
main research lines detailed in the following.

In the first research line, we investigate to what extent the ranking depends on
(variations in) the damping factor, an arbitrary graph-independent parameter related
to the user model, likely to differ between users, and hard to assess precisely (see
Section 1.2). It is well understood [39, 10] that the PageRank score of each node of
the graph changes with the damping factor. For example, a damping factor equal to
zero assigns to all nodes the same score (independently from the graph structure),
while progressively higher damping factors tend to “take more into account” the
underlying link structure. Previous work proposed to assign a more “objective” score
to each node as the average score over all possible damping factors [8], or generalized
the damping factor to damping functions [5]. While it is also known that variations
of the damping factor can affect the relative ranking of two or more nodes [34], its
impact is not well understood nor it is known how heavy it is in general. Clearly,
the ranking induced by PageRank elicits confidence only when relatively insensitive
to small variations in the value of the damping factor. This compels to investigate
this sensitivity – or in other words, the robustness of PageRank – to variations in
the damping factor.

In the second research line, we investigate if it is possible to compute the relative
rank of a node by discarding most of its ancestors and considering only a small
subgraph around that node, effectively “pruning” the input graph. A vast body of
research has indeed been carried out on the local computation of PageRank scores.
This research is motivated by the fact that often the input graph is too large to fit
in main memory, and in some cases the complete graph is not even available, instead
being available only a local picture of the input graph. This happens, for instance,
to a web user who can access the web graph only by querying a search engine with
the ‘link:’ option, or to a social network user who can only fetch the links of the
graph (representing, for example, friendship relationships) by browsing the online
profiles of other users. In all these cases it would be useful to compute PageRank
locally, i.e. exploiting only the structure of a small subgraph around the target nodes -
indeed, some experimental research work in information retrieval actually do this (see
e.g. [2]). To this regard, [16] provides heuristics to locally approximate PageRank
scores, [3] gives a well-founded local algorithm to approximate the contributions

1.2. PageRank 3

of the nodes of a graph to the PageRank score of a target node, while [6] proves
the infeasibility of locally approximating the PageRank scores in the worst case,
and provides lower bounds for deterministic and randomized local approximation
algorithms. This raises the problem of locally computing not (only) the scores but
(also) the relative rankings of the nodes in the graph, and lead to ask if it is possible to
compute a correct ranking considering only a small subset of nodes – in other words,
if the ranking induced by PageRank is robust under (intuitively “good”) changes in
the input graph.

1.2 PageRank

In its original form, PageRank is based on a model of a web surfer that probabilis-
tically browses the web graph, starting at a node chosen at random according to
the distribution given by a personalization vector e > 0 whose generic component ev
is the probability of starting at node v; unless otherwise specified, in the following
we adopt e = [1/n, . . . , 1/n] sake of simplicity. At each step, if the current node
has outgoing links to m > 0 other nodes v1, . . . , vm, the surfer next browses with
probability α one of those nodes (chosen uniformly at random), and with probability
1 − α a node chosen at random according to e. If the current node is a dangling
node (i.e. it has no outgoing links) the surfer automatically chooses the next node at
random according to e. If the damping factor α is less than 1 (for the web graph a
popular value is ≈ 0.85 [32, 35]), the probability Pv(t) of visiting the node v at time
t converges for t → ∞ to a stationary probability Pv; this is the score PageRank
assigns to v.

More formally, consider an n-node graph G = (V,A) with no dangling nodes
(i.e. no nodes with no outgoing arcs); if dangling nodes originally exist, the graph is
preprocessed by adding to each of them outgoing arcs towards each node of the graph,
modeling the fact that a web user getting stuck on a web page without outgoing links
would restart the browsing process from a random page. The entries of the transition
probability matrix M = [mi,j] of G are

mi,j =

{
1

outdegree(i)
if an arc exists from vi to vj

0 otherwise
(1.1)

Let the damping factor α be a real number between 0 and 1, and let

T = αM + (1− α)U (1.2)

4 Chapter 1. Introduction

where U is a matrix whose entries equal 1/n. The matrix T can be seen as the
transition probability matrix of the Markov chain describing the browsing pro-
cess of the random web surfer described above. The PageRank row vector P =

[P (v1), P (v2), . . . , P (vn)] is defined as the limit probability vector of this Markov
chain, and can be obtained either as the unique probability vector which is the
solution of the linear system

P = PT (1.3)

or as the limit of the iteration

P(n) = P(n−1)T

where the starting vector P(0) can be an arbitrary probability vector.

Intuitively, the more ancestors (both immediate and far removed) a node has, and
the fewer descendants those ancestors have, the higher the score of that node. This
is synthesized in the following expression of PageRank as a power series, obtained
applying straightforward algebraic manipulations to Equation (1.3):

P =
1− α
n

1(I− αM)−1 =
1− α
n

1
+∞∑
τ=0

(αM)τ (1.4)

where 1 = [1, 1, . . . , 1]. This leads to the following natural, intuitive characterization
of the PageRank score of a node v:

P (v) =
1− α
n

+∞∑
τ=0

ατ
∑
z∈G

infτ (z, v) (1.5)

where the influence infτ (z, v) of z on v gives the probability of ending in v by following
one of the chains of τ arcs from z given that no random jumps are performed.
Equivalently, one can express P (v) as:

P (v) =
∑
z∈G

contrib(z, v) (1.6)

where the contribution contrib(z, v) of z to v is the total probability of ending in v
from z. Therefore, the score of node v can be seen either as the weighted sum, over
each layer τ = 1, . . . ,+∞, of the aggregate influence of its ancestors at layer τ , or
as the sum, over each node z in the graph, of the contribution of z to v.

1.3. Score vs. rank 5

1.3 Score vs. rank

Formally – see Equation (1.3) – PageRank can be defined as the dominant eigenvector
of the stochastic matrix T and is usually computed using the Power Method [32]
or one of its derivations. Thus, one can analyse the impact of input variations
on the score vector using the highly developed toolset of linear algebra [32]. This
is no longer true when dealing with rank: loss of linearity and continuity in the
mathematical model make analysis considerably more difficult and require different
tools. Unfortunately, as remarked in Section 1.1, in many cases rank is far more
important than score, effectively turning PageRank into a pure ranking algorithm;
and since both the score of a node and its rank may change as the input changes, it
is fundamental to understand their crucial difference.

On the one hand, the damping factor affects the score and thus the rank. Equa-
tion (1.5) shows that lower damping factors decrease the likelihood of following long
paths of links without taking a random jump, and thus increase the contribution to a
node of its more immediate ancestors. It is well known, however, that the sensitivity
of the score vector to the damping factor is bounded; therefore, PageRank vectors
obtained for close values of the damping factor are substantially equivalent for what
concerns the score. However, while score is a continuous function of the damping
factor, rank is not; and nothing guarantees any limit on how rapidly the global rank
vector may change in response to variations in the damping factor (one could for
example measure this sensitivity as the ratio between the Kendall rank correlation
coefficient of two rank vectors and the difference of the two damping factors). There-
fore, even abysmally small variations in the damping factor (and in the score vector!)
could in principle lead to enormous variations in the rank vector.

On the other hand, “approximating” the rank may be hard. Equation (1.6) sug-
gests to compute (an approximation of) the PageRank score of a node by considering
only a small subset of (highly) contributing ancestors. Although in practice this ap-
pears to yield good results, in theory even approximating PageRank scores using only
a subset of ancestors is impossible in the worst case [6]. It is not known, however, if
the same results hold for the ranking induced by PageRank, even if one could think
that it might be obtained “easier” than the score – after all, the correct ranking can
be reached with scores even remotely close to the correct PageRank scores, while the
opposite is trivially false. But while Equation (1.6) suggests that taking into account
the contributions of more ancestors should always improve the approximation on the
score of a node, which eventually converges to its exact value, it is much harder to
say the same for rank – it could well happen that two nodes “churn around” in the
global ranking as more and more of their ancestors are taken into account, leading

6 Chapter 1. Introduction

to an extremely slow convergence (if any).

Therefore, rank is important because in principle it may exhibit extremely differ-
ent characteristics – such as much higher sensitivity and much slower convergence –
than the score (see as [36]) and deserves an independent analysis. This issue concerns
not only PageRank but also every algorithm that infers the ranks from the scores
(and has been addressed for the HITS algorithm in [37, 38]). Although beyond
the scope of our work, which is focused on PageRank, this more general problem is
certainly an interesting research direction.

1.4 Outline of the thesis

This section summarizes our results and illustrate their organization in the rest of
the thesis.

Chapter 2 is devoted to the first research line, discussing to what extent variations
in the damping factor affect the PageRank-induced ranking of nodes. Section 2.2
shows that, at least on some graphs, the PageRank-induced ranking of nodes de-
pends completely on arbitrarily small variations of the damping factor. Section 2.3
provides analytical tools to verify if a node outranks another simultaneously for all
(time-variant) damping factors and gives to this fact an intuitive justification, totally
independent of PageRank, based on the novel concept of lineage of nodes. Section 2.4
introduces the novel concepts of strong rank and weak rank, which measure the “fuzzi-
ness” of the ranking of a node and of a whole graph, and also allow an evaluation of
PageRank as a function of the damping factor. Section 2.5 describes our experiments
on two real graphs, while Section 2.6 summarizes the results of the chapter. These
results appeared in [12, 13].

Chapter 3 is devoted to the second research line. We define the problem of
locally computing PageRank-induced rankings, providing the first theoretical and
experimental results on this subject. Section 3.2 gives an informal introduction to the
problem in hand, and proves that the reference algorithm used to locally approximate
PageRank scores can not guarantee a correct ranking without taking into account a
number of nodes linear in the size of the input graph, or may even never converge.
Section 3.3 formally defines the problem of local ranking, and Section 3.4 provides the
main theoretical results, showing that the local computation of PageRank-induced
ranking is infeasible in the worst case both for deterministic and for randomized
algorithms - even if only the top ranked nodes are examined and if their PageRank
scores are well separated. Section 3.5 describes two experiments suggesting that the
cost of local ranking in real graphs is actually high and strongly dependent on the

1.4. Outline of the thesis 7

input graph. Section 3.6 summarizes the results of of the chapter.
Finally, Chapter 4 summarizes our results and analyzes their significance, before

looking at directions for future research and concluding with the bibliography.

Chapter 2

Choose The Damping, Choose The
Ranking?

2.1 Introduction

This chapter addresses the fundamental question of how the ranking induced by
PageRank can be affected by variations of the damping factor.

Section 2.2 shows that for any k, at least on some graphs, arbitrarily small varia-
tions in the damping factor can completely reverse the ranking of the top k nodes, or
indeed make them assume all possible k! orderings. It is natural to ask whether this
can happen in “real” graphs encountered in the vast and growing number of applica-
tion domains of PageRank. Experiments sampling ranking for a handful of different
damping factors [24, 34] suggest this is not the case at least for the web graph (leav-
ing open the issue of other application domains). However, verifying rank stability
for discrete variations in the damping factor (e.g. 0.01 increments) is not sufficient
to conclude that rank is stable as the damping factor varies over a whole continuous
interval - just like sampling the function f(x) = sin(100πx) for x = 0.01, 0.02, . . . is
not enough to conclude that f(x) = 0 ∀x ∈ R.

Section 2.3 provides the analytical tools to address this issue. We show a simple,
“natural” condition that is both necessary and sufficient to guarantee that a node
outranks another simultaneously for all damping factors and all damping variables
(informally, time-variant damping factors). This condition, based on the concept of
lineage of a node, can be checked efficiently and has an intuitive justification totally
independent of PageRank.

Section 2.4 leverages lineage analysis to introduce the novel concepts of strong
rank and weak rank. These provide for each node a measure of the “fuzziness” of its
ranking that is subtly but profoundly different from pure rank variation; they also

9

10 Chapter 2. Choose The Damping, Choose The Ranking?

provide a measure of the effectiveness of the random surfer model on a generic graph;
finally, they allow an objective evaluation of the performance of “classic” (α = 0.85)
PageRank and some of its variations (e.g. α→ 0).

Section 2.5 brings the analytical machinery of Section 2.3 to bear on two real
graphs - a snapshot of the .it domain, and the CiteSeer citation graph [1]. Among
other findings, we show that, on both graphs, rank is relatively stable and the ideal
damping factor appears to be 0.8−0.9 to obtain items of high importance to at least
one user, but only 0.5− 0.6 to obtain those items important to every user.

Section 2.6 summarizes our results, analyses their significance, and reviews a few
problems this work leaves open.

2.2. The damping makes the ranking 11

2.2 The damping makes the ranking

This section presents two theorems showing that, at least on some graphs, a minus-
cule variation of the damping factor can dramatically change the ranking of the top
k nodes. More formally, we prove:

Theorem 2.1. For every even k > 1 and every α satisfying 1
k
< α < 1− 1

k
, there is

a graph G of 2k2 + 4k − 2 vertices such that PageRank’s top k nodes are, in order,
〈v1, . . . , vk〉 if the damping factor is α, and 〈vk, . . . , v1〉 if it is α + 1

k
.

Theorem 2.2. Consider an arbitrary set Π of orderings of k nodes v1, . . . , vk (|Π| ≤
k!), and an arbitrary open interval I ⊂ [0, 1], however small. Then there is a graph
G such that PageRank’s top k nodes are always v1, . . . , vk but appear in every order
in Π as the damping factor varies within I.

By Theorem 2.1, there are graphs of ≈ 2M nodes (a size comparable to that of
a citation archive or of a small first level domain) where a variation of the damping
factor as small as 0.001 (e.g. from 0.850 to 0.851) can cause a complete reversal of
the ranking of the top 1000 items; and the sensitivity to the damping factor can grow
even higher for larger graphs. Theorem 2.2 is even more general: for any arbitrarily
small interval of variation of the damping factor, there are graphs in which the top
items assume all possible permutations (but providing bounds on the size of these
graphs is beyond the scope of this work).

The rest of this section is organized as follows. Subsection 2.2.1 introduces some
notation, necessary for the proofs of these two theorems, that will also be of use later.
Subsection 2.2.2 is devoted to the proofs themselves, and may be skipped without
impairing the understanding of the rest.

2.2.1 Notation

The score assigned by PageRank to the node v using a damping factor α, Pv(α) - i.e.
the stationary probability of being on that node according to the model presented in
Subsection 1.2 - can be seen as the sum, over all ` ≥ 0, of the probability of taking,
` timesteps in the past, the last random jump to a node v` at distance ` from v, and
following any path of length ` from v` to v.

More formally, denote by p
`→ v the fact that p is a path of ` + 1 vertices

〈v`, . . . , v1, v〉, from some vertex v` to v. Let branching(p) be the inverse of the
product of the out-degrees ω`, . . . , ω1 of v`, . . . , v1, i.e. branching(p) = 1/(ω` . . . ω1)

(informally, the probability of following the whole path if one starts on the first node

12 Chapter 2. Choose The Damping, Choose The Ranking?

v` and no random jumps are taken). Then (see e.g. [5]):

Pv(α) =
+∞∑
`=0

(1− α)α`
∑
p

`→v

branching(p) · ev` (2.1)

where ev` is the entry of e associated with the first node, v`, of the path p. It is
easy to verify that the term

∑
p

`→v
branching(p) · ev` , the branching contribution at

level `, equals the sum of the row of M` corresponding to v, each weighted by the
corresponding component of e. Intuitively, this term corresponds to the score a node
v would hold after ` timesteps if each node vi started with a score evi and, at each
timestep, bequeathed all of its score dividing it evenly among its children. Note that
branching contribution is completely independent of the damping factor; whereas
the other term of the product, (1 − α)α` (the probability of having taken the last
jump exactly ` timesteps in the past), depends solely on the damping factor and is
independent of the structure of the graph.

2.2.2 Rank can change completely: a proof

Proof. [of Theorem 2.1] For simplicity we set the personalization vector e = [1
n
. . . 1

n
],

but the result can be easily extended to the general case e > 0. Let m be the
smallest integer such that α < k

m
< α + 1

k
— one such m ≤ k2 always exists, since

k
m
− k

m+1
= k

m(m+1)
< 1

k
for k

m
≤ 1 − 1

k
. G is formed by 4 sets of nodes (see Fig-

ures 2.1 and 2.2): V = {v1, . . . , vk} is the set of k nodes whose ranking is reversed
by the variation in α; W = {w1, . . . , wk} and U = {u1, . . . , uk−1, u

′
1, . . . , u

′
k−1} are

two sets of nodes that are parents of nodes in V ; T = {t1, . . . , t2k2} is a set of
nodes that are parents both of nodes in V and of nodes in W . Nodes of V are
sinks; nodes of U and W have outdegree k

2
except for wk that is a sink; nodes of T

have outdegree k. Nodes of T and U have in-degree 0; nodes of W are all linked
(only) by t1, . . . , tm (and thus all have the same score); nodes of V are all linked by
tm+1, . . . , t2k2 , and by one or more nodes of W and/or U (and thus always have a
higher score than every other node). More specifically, vi receives a link from each
of u1, . . . , uk−i and u′1, . . . , u′k−i for i ≤ k/2 and a link from each of ui, . . . , uk−1 and
u′i, . . . , u

′
k−1 for i > k/2 (receiving 2(k − i) links from U); as well as a link from

each of wk+1−i, . . . , wk−1 for i ≤ k/2 (meaning u1 receives no such link) and a link
from each of w1, . . . , wi−1 for i > k/2 (receiving i − 1 links from W). Then, for all
i < k, vi receives two more links from U and one less link from W than vi+1, and
Pᾱ(vi) − Pᾱ(vi+1) ∝ (ᾱ 2

k/2
) − (ᾱ 1

k/2
+ ᾱ2m

k
1
k/2

) = ᾱ
k/2

(1 − ᾱm
k

). The last term is
positive for ᾱ = α and negative for ᾱ = α + 1/k, proving the thesis. �

2.2. The damping makes the ranking 13

2(2k − m)k

k nodes
W

22k nodes

T

k nodes2k − 2 nodes
U V k(k−1)/2

links
k(k − 1)
links

links links
mk

Figure 2.1: The graph G (Theorem 2.1) is formed by the 4 blocks of nodes U, V, W
and T

v1

v2

v4

v3

v5

v6

u1’
u1

u2’
u2

u3

u4

u5’
u5

u4’

u3’

w1

w2

w3

w4

w5

w6

Figure 2.2: The links from U and W to V in the graph G (Theorem 2.1) for k = 4

Proof. [of Theorem 2.2]
We (arbitrarily) choose F = |Π| distinct values α1, . . . , αF in I, and, for each αh,

a k-uple of scores sh1, . . . , shk for v1, . . . , vk that induces a distinct permutation in Π.
For each node vj we build a system AXj = Bj, where

A =

 α1
1 . . . αF1

. . .

α1
F . . . αFF

 Xj =

 x1j

. . .

xFj

 Bj =

 s1j

. . .

sFj

whose solutions x1j, . . . , xFj are the branching contributions at levels 1, . . . , F that
the graph must provide to vj in order to satisfy the score assignment (note that A
is non-singular since it is the product of a Vandermonde matrix and a non-singular
matrix). Although it might not be possible to construct a graph that provides these
exact contributions, we show how to build one that maintains the same ranking
of v1, . . . , vk for each value αh of the damping factor. We use the solutions of the
systems to iteratively build an ancestor forest of k trees, where at step h we add the
nodes at depth h in each tree (step 0 adds the k roots v1, . . . , vk).

We first assume that xhj > 0 for all j = 1, . . . , k, and build level h of the ancestor
tree of vj as follows. Let u be a node in level h − 1 of the ancestor tree of vj, and

14 Chapter 2. Choose The Damping, Choose The Ranking?

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���vj

u

Figure 2.3: Ancestor tree for node vj. Empty nodes are orphans.

let p be the unique (as will immediately be clear) path from u to vj. Create nhj
new nodes and add them a link to u; then add ωhj − 1 children to each of these new
nodes. Note that now there is a unique path from each of these nodes to vj. Now
the branching contribution from the h-th level is (nhj/ωhj) branching(p), and we can
choose nhj, ωhj such that this contribution approximates xhj to an arbitrary degree
of precision. Finally set δh = 0 (the reason will be clear soon).

If instead xhj ≤ 0 for some j, let yh = minj{xhj}, and choose δh > 0 such
that δh + yh > 0. For j = 1, . . . , k replace xhj with xhj + δh (which is positive by
construction) and proceed as above.

We now prove that PageRank ranks v1, . . . , vk in every order in Π as α takes
values α1, . . . , αF . For simplicity we set the personalization vector e = [1

n
. . . 1

n
], but

the result can be easily extended to the general case e > 0. Recalling Eq. 2.1, the
PageRank score for vj is

Pvj(αh) =
1− αh
n

∞∑
`=0

α`h
∑
p

`→v

branching(p)

=
1− αh
n

F∑
`=0

α`h · (xlj + δ`)

=
1− αh
n

F∑
`=1

α`h · xlj +
1− αh
n

(
1 +

F∑
`=0

α`hδ`

)
=

1− αh
n

· shj + qh

and thus, for a fixed h, the relative order of v1, . . . , vk follows the choice of the scores
sh1, . . . , shk. To bring v1, . . . , vk to the top k positions, we increase their score by
adding m parents to each vj; i.e., we choose m equal to the maximum size (in nodes)

2.2. The damping makes the ranking 15

of any ancestor tree. This increases the branching contribution at level 1 of each vj
by the same quantity, but does not affect the ordering; so v1, . . . , vk still assume all
possible permutations in Π as α varies in α1, . . . , αF .

Some readers might note that - at least in some application domains - one is
unlikely to encounter graphs that are acyclic and/or disconnected and wonder about
the applicability of Theorem 2.2 in such cases. It is easy to verify that the PageRank
score vector does not change if one adds to every sink of a generic graph links to every
other node in the graph, and that this modification makes the graph of Theorem 2.2
strongly connected. �

16 Chapter 2. Choose The Damping, Choose The Ranking?

2.3 Lineage analysis

It is natural to ask to what extent PageRank rankings of “real” graphs like the web
graph are affected by variations in the damping factor, particularly in the light of the
results of Section 2.2. Unfortunately, verifying that a node always outranks another
as the damping factor varies by discrete increments (e.g. 0.01) suggests, but can
not conclusively prove that the first node always outranks the second over a whole
continuous interval of variation of the damping factor: by virtue of Theorems 2.1 and
2.2 the ranking could drastically change between those isolated sampling points. For
the same reason, while previous experimental evidence obtained over a set of isolated
values of the damping factor (e.g.[34]) suggests that PageRank is indeed stable even
for large variations, this evidence can not be taken as conclusive. This section shows
how to bypass this problem.

Just like Shannon’s sampling theorem proves that a continuous signal can be
reconstructed from a finite number of samples so long as it is bandwidth-limited,
Subsection 3.1 shows that, so long as PageRank can be approximated using only
a finite number of iterations, one can exploit Sturm’s theorem to verify if a node
outranks another for all damping factors in a finite number of steps. We also consider
a more “robust” notion of rank dominance between nodes — not only for all damping
factors, but also for all “damping variables” — informally, time-variant damping
factors introduced in Subsection 2.3.2 and related to the damping functions of [5].
The core result of this section is a simple condition that can be checked efficiently
and yet is both necessary and sufficient to guarantee that a node outranks another for
all damping variables. Subsection 2.3.3 presents this “dominance” condition, which
is based on the concept of lineage of a node, and turns out to be a very “natural”
concept with a strong intuitive justification totally independent of PageRank.

2.3.1 Better rank for every damping factor?

In theory, one can check if the relative order of two nodes u, v changes as α varies
by verifying if the difference between their PageRank series is both positive and
negative in the interval (0, 1). If one considers PageRank computations truncated
after t iterations for some t (which is always true in practice), this can be done via
Sturm’s theorem [26].

Let x be a generic root of a real polynomial Q(x) with multiplicity m; then x

is a root of Q1(x) = GCD(Q(x), α
dx
Q(X)) with multiplicity m − 1. Sturm’s the-

orem [26] allows one to compute the number of real roots of Q(x) of multiplicity
≥ 1 in the interval (0, 1). Applying it to Q1(x) = GCD(Q(x), α

dx
Q(x)), then to

2.3. Lineage analysis 17

Q2 = GCD(Q1(x), α
dx
Q1(x)) and so on, one can compute the number of real roots of

multiplicity respectively ≥ 2, ≥ 3 and so on, and thus the exact number of real roots
of multiplicity 1, 2, 3 and so on. It is then immediate to verify that the relative order
of u and v changes as α varies over the interval (0, 1) if and only if the difference
between their truncated PageRank series P t

u(α)−P t
v(α) has roots of odd multiplicity

in that interval.
This method has a number of limitations. First, it does not allow an “incremental

refinement” of the rank comparison: it is essentially impossible to extend the analysis
obtained by truncating the PageRank series after t steps to include the effects of one
more step without recomputing everything “from scratch”. Second, its computational
complexity is considerable, since Sturm’s procedure for a single polynomial in general
entails Ω(t) divisions between polynomials of degree ≈ t. Third, it also requires
considerable effort to avoid finite-precision errors, since it can involve a large number
of subtractions and thus “catastrophic cancellations” [30, 43]. Fourth, it provides no
natural interpretation of why a node outranks another for every damping factor.
Fifth, the underlying model is not robust, as it does not capture the possibility
of random surfers whose probability of “pressing the reset button” (one minus the
damping factor) varies with time. The following subsection 3.2 explores this last
issue in greater detail.

2.3.2 Damping variables

It is natural to extend the stochastic model of PageRank to one where the probability
of following one of the current node’s outgoing links is not a constant damping factor
α, but is instead a damping variable α(τ) that is a function of the number of steps τ
taken since the last random jump. E.g. a web surfer might have a high probability
of following a chain of links up to a depth of e.g. 3, and then of “hitting the reset
button” with a random jump. In this case α(τ) would be close to 1 for τ ≤ 3, but
close to 0 for τ > 3 (we formally define α(0) = 1). We can generalize the analysis
carried out in Subsection 2.2.1 to damping variables, and prove that:

Theorem 2.3. If α(τ) ≤ (1− ε) for some ε > 0 and for infinitely many τ , then the
score assigned by PageRank to the node v is:

Pv(α(·)) =
+∞∑
`=0

Jα(·)
∏̀
j=0

α(j)
∑
p

`→v

branching(p) · ev` (2.2)

where Jα(·) is the limit for t → +∞ of the probability Jα(·)(t) that a random
jump occurs at time t, and Jα(·)

∏i−1
j=0 α(j) is the limit for t → +∞ of the damping

18 Chapter 2. Choose The Damping, Choose The Ranking?

function [5] denoting the probability of having taken the last random jump exactly
i steps before time t.

While the meaning of Equation 2.2 and its relationship to Equation 2.1 are quite
intuitive, proving that it holds requires some subtlety; indeed, if the condition α(τ) ≤
(1 − ε) is not satisfied (e.g. if one only requires α(τ) < 1) then the probability of
being at node v at time t might not become stationary as t→∞. In this case, one
might still formally define the score of a node through Equation 2.2, but relating
it to a stochastic surfing model becomes considerably harder; and, perhaps more
importantly, computing the score of a node becomes considerably more difficult, since
the classic iterative algorithms based on the power method can fail to converge.

Note that PageRank in practice is computed using only a finite number τ̄ of
iterations of the power method, effectively truncating the series in equations 2.1 and
2.2 to the τ th term - i.e. employing, rather than a constant damping factor ᾱ, a
damping variable α(τ) equal to ᾱ for τ ≤ τ̄ and to 0 for τ > τ̄ . This provides further
justification for the introduction of damping variables.

The proof that, indeed, the stochastic process above does produce the station-
ary probability described by Theorem 2.3 may be skipped without impairing the
understanding of the rest of the work.

Proof.[of Theorem 2.3] We first show that the probability Jα(·)(`) that a random jump
occurs at time ` converges to a limit. More formally, let ε > 0 and let α : N 7→ [0, 1]

such that α(τ) ≤ 1− ε for infinitely many τ . Then the following limit exists:

Jα(·) , lim
`→+∞

Jα(·)(`) (2.3)

Let L(`) be the time of the last jump before `. By the law of total probability,

Jα(·)(`) =
`−1∑
i=0

P (jump at `|L(`) = i)P (jump at i)

=
`−1∑
i=0

(
1− α(`− i)

)(`−i−1∏
j=0

α(j)
)
Jα(·)(i)

=
`−1∑
i=0

a`−iJα(·)(i)

where a`−i = (1− α(`− i))
(∏`−i−1

j=0 α(j)
)
. Rewrite the last summation as

2.3. Lineage analysis 19

`−1∑
i=0

a`−iJα(·)(i) =
`−k−1∑
i=0

a`−iJα(·)(i) +
`−1∑
i=`−k

a`−iJα(·)(i)

We show that the first term vanishes and the whole summation tends to the second
term, which converges. The first term satisfies

`−k−1∑
i=0

a`−iJα(·)(i) ≤
`−k−1∑
i=0

a`−i =
k∏
j=0

α(j)

thus we choose a sufficiently large constant k0 such that, for ` > k > k0, we have
α(j) ≤ 1−ε for at leastm values of j in 0, . . . , k, wherem is such that (1−ε)m < δ/2;
and then

∏k
j=0 α(j) < δ/2.

The second term converges for `, k → ∞. In fact the last equation can be
rewritten as x(`) =

∑k
i=1 aix(`−i)+δ′, where δ′ < δ/2. The characteristic polynomial

is then
∑k

i=1 aiz
i − (1 − δ′), and the sum of all terms ai is 1 −

∏k
j=0 α(j); then

choose k such that the last quantity is strictly less than 1− δ′ (if α(j) = 0 for j < k,
k0 = j − 1 implies δ′ = 0). Now the roots lie outside the unit circle and the system
converges to a limit Jα(·).

We can now prove the Theorem. Choose δ > 0. The probability of being on node
v at time ` is

P `
v (α(·)) =

∑̀
i=0

πv(i)Jα(·)(`− i)

where πv(i) =
∏i

j=0 α(j)
∑

p
i→v

branching(p) · epi is the probability of reaching v

following i links after a random jump. We rewrite P `
v (α(·)) =

∑λ
i=0 πv(i)Jα(·)(`− i)+∑`

i=λ+1 πv(i)Jα(·)(`− i) and bound the two terms. By equation 2.3, the i-th addend
of the first term converges to Jα(·)πv(i) as `→ +∞ for a fixed λ. Thus we can choose
`0 such that, for every ` ≥ `0,

∣∣∣Jα(·)

λ∑
i=0

πv(i)−
λ∑
i=0

πv(i)Jα(·)(`−i)
∣∣∣ ≤ λ∑

i=0

∣∣∣Jα(·)−Jα(·)(`−i)
∣∣∣ < λ∑

i=0

δ

2(λ+ 1)
= δ/2.

The second term is the probability of reaching v at time ` having taken the last
random jump before time `− λ; therefore it is bounded by the probability of having
taken a path of length λ, which is no more than c(λ). We can now choose λ ≥ λ0

20 Chapter 2. Choose The Damping, Choose The Ranking?

large enough to ensure that c(λ) < (1− ε)m < δ/4.
The two bounds yield, for ` ≥ `0 and λ > λ0,

∣∣∣Jα(·)
∑̀
i=0

πv(i)− P `
v (α(·))

∣∣∣
≤
∣∣∣Jα(·)

λ∑
i=0

πv(i)−
λ∑
i=0

πv(i)Jα(·)(`− i)
∣∣∣+
∣∣∣Jα(·)

∑̀
i=λ+1

πv(i)
∣∣∣+
∣∣∣ ∑̀
i=λ+1

πv(i)Jα(·)(`− i)
∣∣∣

≤δ.

In conclusion, lim
`→+∞

P `
v (α(·)) = Jα(·)

∑+∞
i=0 πv(i). �

For each node v, we now have a well defined score Pv(α(·)). The score vector has
a representation which is very similar to that of the PageRank vector:

P (α(·)) = Jα(·)

+∞∑
`=0

c`M
` · e (2.4)

where c` =
∏`

j=0 α(j). Note that for constant α(·) = α we have Jα(·) = 1 − α and
c` = α`, which yields the classic PageRank formulation as a power series that can be
found e.g. in [5].

2.3.3 Lineages

This subsection provides a simple condition both necessary and sufficient to guaran-
tee that, for all damping variables α(·), the score Pv(α(·)) of a node v is always at
least as high as the score Pw(α(·)) of a node w.

Recall the term
∑

p
`→v

branching(p) · ev` in Equation 2.2 - the level ` branching
contribution to the score of v. Informally, the mth generation of the lineage of v is
equal to the sum of the branching contributions of all levels ` ≤ m. More precisely:

Definition 2.1.

The mth generation of the lineage of v is Lv(m) =
m∑
`=0

∑
p

`→v

branching(p) · ev`

We say that the lineage Lv(·) of a node v is greater than or equal to the lineage
Lw(·) of a node w if it is greater or equal at every generation, in which case we write
simply Lv ≥ Lw.

There is a simple, intuitive interpretation of dominance between lineages. If we
imagine that the authority/reputation/trust of a node is divided evenly among the

2.3. Lineage analysis 21

nodes it points to, having a greater lineage at the mth generation means receiving
more authority from all nodes within at mostm hops. Note that in such a comparison
nodes that are further than m hops away are completely disregarded: this models
the fact that, after all, authority/reputation/trust may be inherited, but only to a
point. If one is uncertain to which point, one can be sure that a node has authority
at least as high as that of another node only if its lineage is at least as high at every
generation.

And, indeed, we show that having a lineage that is at least as high at every
generation is strictly equivalent to receiving an equal or higher score by PageRank
for every damping variable. More formally, we prove:

Theorem 2.4. Lv ≥ Lw ⇔ ∀ α(·) ∈ (0, 1), Pv
(
α(·)

)
≥ Pw

(
α(·)

)

Proof. We first prove the ⇒ side. Recall ci =
∏i

j=0 α(j). The score vector is a
convex linear combination of lineages:

Pv(α(·)) = Jα(·)
∑+∞

i=0 biLv(i)

where bi = ci − ci+1 ≥ 0. Then Pv(α(·)) ≥ Pw(α(·)).

We now prove the ⇐ side. For every integer k ≥ 0, consider

α(i) =

{
1− ε i = 0, . . . , k

ε i > k

where ε ∈ (0, 1) will be defined later. Let P (k)(α(·)) = Jα(·)
∑k

j=0 cjM
j · e – i.e. to

the truncation of the PageRank series to the term of order k. Then we have:

Pv(α(·)) = Jα(·)

k∑
i=0

ci(M
i · e)v + Jα(·)

∞∑
i=k+1

ci(M
i · e)v

≤ P (k)
v (α(·)) + Jα(·)

∞∑
i=k+1

(1− ε)kεi−k n

≤ P (k)
v (α(·)) + Jα(·) ε (1− ε)k−1 n

Considering nodes v and w we have:

P (k)
v (α(·)) + Jα(·) ε (1− ε)k−1 n ≥ Pv(α(·)) ≥ Pw(α(·)) ≥ P (k)

w (α(·))

22 Chapter 2. Choose The Damping, Choose The Ranking?

which can be rewritten as

(1− ε)kLv(k) + ε

k−1∑
i=0

(1− ε)iLv(i) + εJα(·)(1− ε)k−1n

≥ (1− ε)kLw(k) + ε

k−1∑
i=0

(1− ε)iLw(i)

that by hypothesis holds for arbitrarily small ε > 0, implying Lv(k) ≥ Lw(k). �

Note that in practice we do not need to check lineage dominance at every gen-
eration; if we restrict ourselves to damping variables that are 0 for τ > t, we only
need to check at most t generations. This is equivalent to considering PageRank
computations truncated after at most t iterations (effectively truncating the series in
Equations 2.2 and 2.4 to the tth term), which is always true in practice. Thus, one
can check if the relative order of two nodes is the same for every damping variable
in O(t) comparisons; by contrast, the algorithm based on Sturm’s theorem described
in Subsection 2.3.1 requires Ω(t2) operations.

In addition, comparing lineages yields computations that have considerably fewer
problems of numerical stability than those involving Sturm chains. While an in-depth
exploration of this issue is beyond the scope of our work (see e.g. [44]), it is immediate
to verify that computing the `th lineage involves summations where each term is a)
positive and b) obtained as the inverse of a product of a number of integers equal
to the lineage. The products can be computed with a loss of accuracy equal to at
most dlog2(`)e bits; the sum entails an additional loss of at most 1 bit of accuracy
(see e.g. [30, 43]).

Thus, on any graph of size n and outdegree at most g on which PageRank
converges in at most ` iterations, a floating point arithmetic with exponents of
max(log2 log2(`n), log2 log2(g`)) bits and significands greater than ≈ log2(1/ε) +

log2(`) bits suffices to discriminate between lineages within a factor 1 + ε of each
other. In particular, IEEE 754 double precision arithmetic appears more than suf-
ficient to guarantee several dozen bits of precision on the web Graph and on any
“lesser” graph.

2.4. Damping-independent ranking 23

2.4 Damping-independent ranking

Lineages and Theorem 2.4 provide powerful tools to compare two nodes over the
spectrum of all damping variables. This section leverages them to introduce the
concepts of strong rank and weak rank (Subsection 2.4.1), and the related ranking
algorithms StrongRank and WeakRank (Subsection 2.4.2). These provide interesting
measures of the “fuzziness” of rankings, of the “orderability” of the nodes of a graph,
and of the performance of different ranking algorithms based on the random surfer
model.

2.4.1 Strong and weak rank

Given a node v, and assuming for simplicity all ties in lineage score are broken
(e.g. arbitrarily), all other nodes fall into three sets: the set S(v) of nodes stronger
than v (with a greater lineage), the set W (v) of nodes weaker than v (with a lesser
lineage), and the set I(v) of nodes incomparable with v (with a lineage greater at
some generations and lesser at others). The cardinalities of these sets define the weak
and strong rank of v:

Definition 2.2. The weak rank ρw(v) and the strong rank ρs(v) of a node v are,
respectively, |S(v)|+ 1 and |S(v) ∪ I(v)|+ 1.

Note that ρw(v)−1 is the number of those nodes that outperform v for all damping
variables, whereas ρs(v)− 1 is the number of those nodes which outperform v for at
least one damping variable. Thus ρw(v) is a lower bound to the minimum (i.e. best)
rank achievable by v, while ρs(v) is an upper bound to the maximum (i.e. worse)
rank achievable by v; and ρs(v) − ρw(v) is then an upper bound to the maximum
variation in v’s rank. Note that any or all of these three bounds might hold strictly,
and there is a subtle but profound difference between ρs(v)−ρw(v) and the maximum
variation of v’s rank that makes the former more descriptive of the “fuzziness” of v’s
performance. E.g. suppose that v holds 10th rank for all damping variables, but 999

other nodes fill the top 9 positions in turn for different damping variables. In this
case ρs(v) = 1000, since v does not fare definitively better than any of those 999

nodes; and ρw(v) = 1, since none of those 999 nodes fares definitively better than v.
Strong and weak rank also provide a measure of the global rank fuzziness in a

generic graph - that is, of the extent to which the graph can be ordered satisfying
simultaneously every type of user (with different user behaviours described by dif-
ferent damping variables). For a graph G, consider the number sk(G) of nodes with
strong rank k or less. If sk(G) ≈ k, then every user’s top k set has a high density

24 Chapter 2. Choose The Damping, Choose The Ranking?

of nodes also in the top k set of every other user. Conversely, if sk(G) � k, then
few nodes will be of “universal importance”. Similarly, consider the number wk(G)

of nodes with weak rank k or less. If wk(G) ≈ k, then relatively few nodes are
sufficient to include the k most important nodes of every other user. Conversely, if
wk(G) � k, then the the behaviours of different users are sufficiently diverse that,
in order to ensure that no user misses the items of the greatest importance to him,
any algorithm must return a very large collection of items.

The ratio wk(G)/sk(G) can then be seen as a measure of the inevitable price of
obliviousness to the user’s model: the smaller it is, the more well-orderable G is. In
the ideal case, sk(G) = k = wk(G), all users have exactly the same preferences and
every damping variable yields the same ordering.

2.4.2 StrongRank and WeakRank

Strong rank and weak rank automatically induce two new ranking algorithms, Stron-
gRank and WeakRank, that rank nodes respectively in order of strong and weak rank.
Neither necessarily corresponds to PageRank for some damping variable. Stron-
gRank tends to return items that are each of at least moderate importance for
every user (with different user behaviours described by different damping variables).
WeakRank tends to return, for every user, at least a few items that are of high
importance for that user. The evaluation of the effectiveness of StrongRank and
WeakRank as practical ranking algorithms (either on the web or in other application
domains) is certainly a promising direction of future research.

It is immediately obvious, however, that StrongRank and WeakRank can provide
benchmarks to classify the performance of other other ranking algorithms based on
the surfer model. If for every k many of the top k items returned by a ranking
algorithm are also among the top k items returned by StrongRank (the “intersection
metric” of [22]), one can reasonably deduce that a large fraction of items returned by
that algorithm is of at least moderate importance for every user. Similarly, a large
intersection with WeakRank points to an algorithm that returns, for every user, a
large fraction of that user’s top choices.

A complete analysis of the complexity of StrongRank and WeakRank would re-
quire taking into account the properties of the target graph (and thus of the applica-
tion domain) as well as caching and parallelizability issues. This is beyond the scope
of our work; however, the remainder of this section provides a few basic results (that
can be skipped without impairing the understanding of the rest of the chapter).

It is not difficult to prove that the worst case complexity of PageRank (for one
value of the damping factor) on a graph of n nodes equals that of StrongRank and

2.4. Damping-independent ranking 25

WeakRank:

Theorem 2.5. The worst case complexity of computing StrongRank and WeakRank
up to lineage ` on an n node graph is O(`n2), equal to that of computing the first `
iterations of PageRank.

StrongRank and WeakRank can then be computed for any graph of up to millions
of nodes on a PC in a few days; and very few application domains of PageRank entail
larger graphs (the World Wide Web being one notable exception). Graphs of much
larger size n are manageable by PageRank itself only if of low (average) degree
g � n; and in such graphs, one is often interested only in the top k ranking nodes,
with k � n. When these graphs are ∆−well orderable, i.e. there are at most k∆

nodes with WeakRank less than k and at least k/∆ with StrongRank less than k

(this seems to hold with 2 ≤ ∆ ≤ 4 for k > 100 in social networks like the web, see
Section 2.5) we can refine Theorem 2.5 into Theorem 2.6:

Theorem 2.6. The worst case complexity of computing the top k ranks of Stron-
gRank and WeakRank up to lineage ` on a ∆−well orderable graph of average degree
g and n nodes is, respectively, O(n`g(1 + log(k)

g
+ ∆(k+`)(log(∆)+k)

ng
)) and O(n`g(1 +

log(k)
g

+ k2∆3+∆(k+`)(log(∆)+k)
ng

)) vs. a complexity of O(n`g) for the top k ranks and the
first ` iterations of PageRank.

For max(log(n), g, `) ≤ k ≤
√
n the complexity of StrongRank and WeakRank

becomes respectively O(n`g(1 + log(k)+∆
g

)) and O(n`g(1 + log(k)+∆3

g
)). Thus, even

in the case of the (indexed) web graph it still appears possible to compute the top
≈ 105 ranks of StrongRank and WeakRank in time comparable to that of PageRank
(within an order of magnitude - several hours on a single PC).

The rest of this section is devoted to the proof of Theorem 2.6, of which Theorem
2.5 is corollary.
Proof. We first describe two initial “preprocessing” steps that are common to Stron-
gRank and WeakRank, before detailing how each algorithm computes its top k

ranked nodes; finally, we analyse the worst case complexity for the top k ranks
and the first ` iterations of PageRank.

The first preprocessing step computes the lineages, up to level `, of all the n nodes
of the graph. This can be done in time O(ngl) by iteratively computing the lineage
at each level i, which takes an average O(g) (the average (in)degree of the graph)
for each of the n nodes. The second preprocessing step extracts, for each of the `
levels, the top k nodes (as ranked by lineage) in non-decreasing order. This takes
O(n log(k)) steps for each level using a max-heap of size k. The cost of performing
these two steps adds up to O(lng + ln log(k)).

26 Chapter 2. Choose The Damping, Choose The Ranking?

To find the top k nodes ranked by StrongRank, it is sufficient to consider all
the nodes with strong rank less than k∆, which by definition of ∆ are at least k.
These nodes are necessarily in the intersection of the sets of top k∆ nodes (ranked
by lineage) at each level. Since ∆ is unknown in advance, one can use a binary
search over the size of these sets until an intersection of size between k and k + ` is
found; this takes O(log(k∆)) steps, each computing the intersection between ` sets
of size O((k+ `)∆) each; and the cost sums up to O(log(k∆)`(k+ `)∆). For each of
the (less than) k + ` nodes in the intersection found, one computes its strong rank
as the number of nodes which are ranked higher (by lineage) in at least one level.
This takes O(kl∆) steps for each node, for a total of O((k + `)kl∆) steps. Thus
the cost of StrongRank, including the two preprocessing steps, is O(lng+ ln log(k)+

log(k∆)`(k+`)∆+(k+`)lk∆). When k is reasonable (i.e. log(k) = O(g)) and when,
as in the case of the web graph, ∆ is a small constant and ` = O(k) (i.e. PageRank
converges in a few thousand iterations) then, in the formula above, a) the second
term is O(lng); b) the third term is O(`k∆g) = O(lng) (since k∆ ≤ n); c) the fourth
term is O(`k2∆) = O(`n∆). This yields a total cost of O(lng + ln∆) steps.

To find the top k nodes ranked by WeakRank, it is sufficient to consider all nodes
with a weak rank less than k, which are at least k and, by definition of ∆, no more
than k∆. These nodes are necessarily in the union of the sets of top k∆ nodes (as
ranked by lineage) at each level; i.e. the union of the same sets considered in the
computation of StrongRank above, yielding the same cost. This union has cardinality
at most k∆2 — otherwise there would be more than (k∆)∆ nodes with weak rank
less than k∆, which is impossible by definition of ∆. For each of these O(k∆2) nodes,
its weak rank is the number of nodes ranked higher (by lineage) at each level. This
(using lineage rankings) takes no more than kl∆ steps for each node, and O(k2`∆3)

total steps. Thus the cost of WeakRank, including the two preprocessing steps, is
O(lng + ln log(k) + log(k∆)`(k + `)∆ + k2`∆3); under the same assumptions made
above, this becomes O(lng + ln∆3).

Note that the cost of computing the top k nodes ranked by PageRank using the
first ` iterations is equal to the cost of the first preprocessing step, O(lng) (as it is
the most efficient method), plus the cost of extracting the top k nodes, which takes
O(n log(k)) using a max-heap. This yields a total cost of O(lng) steps. �

In the web graph ∆ appears to be bounded by a small constant not exceeding
2.5 (see Subsection 2.5.2 below). Thus we could run StrongRank and WeakRank
for k = 20000 even for a fairly large snapshot of the .it domain in a few hours on a
personal computer.

2.5. Experimental results 27

2.5 Experimental results

This section brings the analytical machinery of Section 2.3 to bear on “real” graphs
- a 2004 snapshot of the .it domain web graph, and a 2007 snapshot of the Cite-
Seer citation graph. Subsection 2.5.1 briefly presents the data and the experimental
setup. Subsection 2.5.2 evaluates the extent to which the nodes of those graphs can
be ordered in a fashion satisfying simultaneously every user (with different user be-
haviours described by different damping variables). Finally, Subsection 2.5.3 analyses
the performance of PageRank as α varies from nearly 0 to nearly 1 by evaluating
the intersection of its top k node set with the top k node set of StrongRank and
WeakRank.

2.5.1 Data and experimental setup

We analyse the 40M node, 1G link snapshot of the 2004 .it domain published by [42],
and the 0.7M node, 1.7M link snapshot of the late 2007 CiteSeer citation graph [1]
(nodes are articles and links are citations). We use the WebGraph package [42],[11]
for their manipulation.

.it, as a national first level domain, provides a large and (unlike e.g. .com or
.gov) “well-rounded” portion of the web graph with a size still within reach of our
storage and computational resources. Furthermore, the primary language of .it is
not shared by any other country (unlike e.g. .uk or .fr), minimizing distortions in
ranking introduced by the inevitable cut of links with the rest of the web. We perform
two pre-processing steps on the .it snapshot. First, we remove intra-domain links
(which constitute strongly biased conferral of authority, see [29] and [27]). Second,
we merge all dynamic pages generated from the same base page, dealing with pages
(like the homepage of a forum’s dynamic language) automatically linked by a huge
collection of other template-generated pages. Both steps appear to markedly improve
the human-perceived quality of the results.

Then, we compute the lineage of each node up to the 128th generation for both
graphs. Note that, in theory, lineages should be compared for all generations. Stop-
ping at the 128th generation is equivalent to considering damping variables α(τ)

that are 0 for τ > 128, and (typical) PageRank implementations that compute the
score vector using at most 128 iterations and disregarding authority propagation
over paths longer than 128 hops. This appears reasonable because for all damping
factors/variables except those extremely close to 1, the branching contribution of
levels beyond the 128th is dwarfed by rounding errors of finite precision comput-
ing machinery; and because, empirically, the set of the top k items returned by

28 Chapter 2. Choose The Damping, Choose The Ranking?

StrongRank and WeakRank when considering only the first ` generations appears to
almost completely stabilize as ` grows larger than 60 − 100 (Fig. 2.4 and 2.5 show
the normalized intersection between the top k item sets returned by StrongRank and
WeakRank when considering 128 lineages, and the top k item sets returned when
considering ` lineages for ` = 1, . . . , 128).

2.5.2 Choose the damping, choose the ranking?

Figures 2.6 and 2.7 show the number of k−strongly ranked nodes and the number
of k−weakly ranked nodes for the .it domain graph and the CiteSeer citation graph
as k varies from 1 to 16000. The two graphs exhibit a strikingly similar behaviour,
with a few differences.

Both in the .it and in the CiteSeer graph the ratio wk/k between the number
wk of k−weakly ranked nodes and k is never higher than 6, and converges relatively
quickly to a value between 1.5 and 2.5 (it is never larger than 4 for k ≥ 7 on the .it
graph, and for k ≥ 127 on the CiteSeer Graph). This ratio represents the inevitable
cost of obliviousness to the user model: the set of all those items that are outranked
by less than k other items for some damping variable has size at least wk.

The ratio sk/k between the number sk of k−strongly ranked nodes and k is
considerably smaller than 1 in both graphs - particularly in the CiteSeer graph.
This ratio represents the fraction of items that are robustly in the top k, for all
damping factors and variables. For the CiteSeer graph, the ratio is ≈ 0.05 for
k < 200, converging to a value between 0.5 and 0.6 for k > 10000. For the .it graph,
it is slightly larger: between 0.1 and 0.2 for k < 200, converging to a value between
0.4 and 0.5 for k > 10000.

Thus, ranking sensitivity to the damping factor in “real” graphs appears not
nearly as high as that of the synthetic graphs of Section 2.2, but still considerable -
particularly for the top 10−100 items. To return all items that would appear among
the top k for some damping factor or variable, even the “best” ranking algorithm
might have to return from 2 to 4 times as many items; and although any choice of
the damping factor will guarantee among the top k a non-negligible core of items
that would also be returned among the top k for every other choice, this core appears
relatively small, between 5% and 40% of the total.

2.5. Experimental results 29

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Level

N
or

m
al

iz
ed

 in
te

rs
ec

tio
n

si
ze

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 in
te

rs
ec

tio
n

si
ze

k = 16
k = 64
k = 256
k = 1024

Figure 2.4: .it web graph: convergence of top k-strong (left) and top k-weak (right)
sets as a function of lineage generation, for different values of k

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Level

N
or

m
al

iz
ed

 in
te

rs
ec

tio
n

si
ze

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 in
te

rs
ec

tio
n

si
ze

k = 16
k = 64
k = 256
k = 1024

Figure 2.5: CiteSeer citation graph: convergence of top k-strong (left) and top
k-weak (right) sets as a function of lineage generation, for different values of k

30 Chapter 2. Choose The Damping, Choose The Ranking?

10
0

10
1

10
2

10
3

10
410

0

10
1

10
2

10
3

10
4

10
5

 k
 s
 wk

k

Figure 2.6: .it web graph: sk (number of k-strongly ranked nodes) and wk (number
of k-weakly ranked nodes), as a function of k

10
0

10
1

10
2

10
3

10
410

0

10
1

10
2

10
3

10
4

10
5

 k
 s
 w

k

k

Figure 2.7: CiteSeer citation graph: sk (number of k-strongly ranked nodes) and wk
(number of k-weakly ranked nodes), as a function of k

2.5. Experimental results 31

2.5.3 The best damping factor

In this subsection we deploy StrongRank and WeakRank as a testbed to evaluate
the performance of PageRank for different damping factors (see Subsection 2.3.3)
on the .it graph and on the CiteSeer graph. Figures 2.8,2.9,2.10 and 2.11 show the
fraction of the top k items returned by PageRank that are also among the top k

items returned respectively by StrongRank and WeakRank, for k = 16, 64, 256 and
1024, as the damping factor varies between 0.01 and 0.99 in steps of 0.01.

Again, the behaviour of PageRank is strikingly similar on the two graphs. For
both of them and for all four values of k, the size of the intersection set is between
0.38k and 0.93k for all damping factors sampled (but note that, in theory, anything
could happen between those discrete sampling points - see Section 2.2!). Thus, for
all damping factors, including ones very close to 0 that make the computation of the
score vector particularly efficient [10], PageRank always returns a set of results in
common with both StrongRank and WeakRank of reasonable size.

For both graphs, the largest intersection with WeakRank is achieved for damping
factors in the 0.8 − 0.9 range; whereas the largest intersection with StrongRank
is achieved for damping factors in the 0.5 − 0.6 range. Which is more desirable?
Ultimately, it depends on the nature of the application. For example, a web search
engine typically returns to a user many more “leads” than that user will follow. In
this context a false negative (not returning a “good” page) is far more damaging
than a false positive (returning a “mediocre” page). Thus, a large intersection with
WeakRank is more desirable, being indicative of an algorithm that returns, for every
user, a large fraction of that user’s top choices. It is then perhaps not surprising
that the typical value assigned to the damping factor in search engines is indeed
0.85! On the other hand, in a trust/reputation system a false positive (returning as
highly trusted an item the user would not trust) is far more damaging than a false
negative (not returning as trusted an item the user would actually trust). A large
intersection with StrongRank is then more desirable, being indicative of an algorithm
that returns only items that are at least moderately trusted by every user model;
and a damping factor closer to 0.5 - as suggested in [4] - might be a better choice.

32 Chapter 2. Choose The Damping, Choose The Ranking?

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

d

no
rm

al
iz

ed
 in

te
rs

ec
tio

n

k = 16
k = 64
k = 256
k = 1024

Figure 2.8: .it graph: PageRank/StrongRank intersection metric as α varies

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

d

no
rm

al
iz

ed
 in

te
rs

ec
tio

n

k = 16
k = 64
k = 256
k = 1024

Figure 2.9: .it graph: PageRank/WeakRank intersection metric as α varies

2.5. Experimental results 33

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

d

no
rm

al
iz

ed
 in

te
rs

ec
tio

n

k = 16
k = 64
k = 256
k = 1024

Figure 2.10: CiteSeer: PageRank/StrongRank intersection metric as α varies

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

d

no
rm

al
iz

ed
 in

te
rs

ec
tio

n

k = 16
k = 64
k = 256
k = 1024

Figure 2.11: CiteSeer: PageRank/WeakRank intersection metric as α varies

34 Chapter 2. Choose The Damping, Choose The Ranking?

2.6 The damping makes the ranking – in theory if

not in practice

This chapter addresses the fundamental question of how variations in PageRank’s
damping factor can affect the ranking of nodes. We showed that, at least on some
graphs, arbitrarily small variations in the damping factor can make the top ranked
nodes assume all possible orderings, which is deeply unsatisfying should one be aim-
ing at an “objective” ranking. Previous experiments suggested this was not the case
at least for the web graph (leaving open the issue of other application domains), but
verifying rank stability on a finite set of damping factors is not sufficient to conclude
that rank is stable as the damping factor varies over a whole continuous interval.
We solved this problem developing lineage analysis, that allows to compare the rank
of two nodes “in one shot” for all (even time-variant) damping factors using just
a finite set of lineage measurements. Lineage analysis also provides a simple, very
“natural” interpretation of rank dominance for all damping factors that is completely
independent of PageRank; and it induces the notions of strong rank and weak rank
of a node, related to, but subtly different from, those of best and worse rank - and
more descriptive, since they capture the level of churn “around” a node whose rank is
relatively stable overall yet highly unstable compared to its individual competitors.
Experimental results show that, in real graphs, the rank is relatively stable but not
completely insensitive to variations in the damping factor.

From weak and strong rank we derive two new ranking algorithms, StrongRank
and WeakRank, which provide useful benchmarks to compare different link analysis
algorithms in terms of their ability to, respectively, return “universally useful” results,
and to ferret out results of high importance to niches of users. A more thorough
evaluation of StrongRank and WeakRank is certainly a promising direction for future
research. StrongRank and WeakRank can also be used to evaluate different values of
the damping factor — validating the “folk lore” result that 0.85 is ideal, at least for
search engines and other applications where it is far more important to avoid false
negatives then false positives. For applications where the reverse is true, our results
suggest that a value closer to 0.5 might be more effective, reflecting the results of [4].
It is surprising that, in this regard, the .it and CiteSeer graphs exhibit exactly the
same characteristics - it would be interesting to investigate if (and perhaps why) this
is the case in other application domains of PageRank.

Chapter 3

Local Computation of PageRank :
The Ranking Side

3.1 Introduction

This work tackles the problem of computing locally the ranking induced by PageRank
on k target nodes of an input graph, studying if the correct ranking can be obtained
at a low cost, i.e. by visiting only small subgraphs around those target nodes.

Section 3.2 gives an informal introduction to the problem in hand, and proves
that the reference algorithm used to locally approximate PageRank scores can not
guarantee a correct ranking without visiting a number of nodes linear in the size of
the input graph, or may even never stabilize.

Section 3.3 formally defines the problem of local ranking, taking into account the
case of nodes whose PageRank scores are significantly separated, and Section 3.4
gives the main theoretical results, proving that local ranking is infeasible in the
worst case both for deterministic and for randomized algorithms - even if only the
top ranked nodes are examined and if their PageRank scores are well separated.

Section 3.5 describes two experiments suggesting that the cost of local ranking
in real graphs is actually high and strongly dependent on the input graph.

Section 3.6 summarizes our results.

35

36 Chapter 3. Local Computation of PageRank : The Ranking Side

3.2 Limits and pitfalls of the brute force algorithm

This section investigates the brute force algorithm, one of the simplest methods
to locally approximate the PageRank score of a single node, in light of the local
ranking problem. Although unlikely to be among the best local ranking algorithms
(see Section 3.5), the brute force is still a reference algorithm for at least two reasons.
First, it is the basis of virtually every known local score approximation algorithm
(such as those proposed in [6] and [16]). These in turn are natural bases for local
ranking algorithms. Second, the brute force algorithm naturally derives from the
expression of PageRank given by Equation (1.5) that turns out to be very useful in
the analysis of those algorithms. Thus it is important to understand why the brute
force algorithm may fail to be the basis for a good local ranking algorithm – one
that, ideally, should incur a limited cost and return a correct result. Indeed, as we
shall prove after a short review, a naive brute force-based ranking algorithm may
incur extremely high costs to guarantee a correct result (Theorem 3.1) or oscillate
indefinitely between two “opposite” results (Theorem 3.2).

Recall from Section 1.2 that the PageRank row vectorP = [P (v1), P (v2), . . . , P (vn)]

is defined as the limit probability vector of a Markov chain, and can be obtained either
as the unique probability vector which is the solution of the linear system P = PT

or as the limit of the iteration P(n) = P(n−1)T, where the starting vector P(0) can be
any probability vector. When considering a local computation of PageRank, how-
ever, none of these avenues can be followed, since the entire graph structure is not
available; in this case, a natural way of computing the PageRank score P (v) of a
single node v is given by Equation 1.5:

P (v) =
1− α
n

+∞∑
τ=0

ατ
∑
z∈G

infτ (z, v)

where the influence infτ (z, v) of z on v gives the probability of ending in v by following
a chain of τ arcs from z. Indeed, given an n-node graph G and a target node v ∈ G,
the brute force algorithm performs a breadth-first visit of the ancestors of v, querying
at iteration τ all the ancestors of layer τ and cumulating their influence on v weighted
by 1−α

n
ατ . After iteration `, the resulting brute force score at layer ` is

P (`)(v) =
1− α
n

∑̀
τ=0

ατ
∑
z∈G

infτ (z, v) (3.1)

If graph G has no dangling nodes, P (`)(v) converges from below to the PageRank
score of v given by Equation (1.5). A natural way to compute the relative rank-

3.2. Limits and pitfalls of the brute force algorithm 37

ing of two target nodes u and v is then to compare their brute force scores P (`)(u)

and P (`)(v) once ` has reached a sufficiently large threshold `0. Unfortunately, such
threshold is unknown a priori, and this may lead to a premature halt and an in-
correct ranking. Indeed we prove that, for any given `0, there exist graphs where
the “decisive” layer is at depth `0 + 1 while the ranking induced by the output of
the brute force algorithm at every iteration up to `0 is the complete reversal of the
correct ranking. Before stating the result formally in the next theorem, we provide
a lemma that will greatly simplify our proofs.

Lemma 3.1. Let G be a graph, v ∈ G a dangling node, and build G′ adding a
self-loop (v, v) to G. Let B(v) and B′(v) be the brute force scores of v computed
respectively on G and G′. Then B′(v) = B(v)

1−α .

Proof. Every path from u to v in G′ is the unique concatenation of a path from u to
v in G and t ≥ 0 self-loops (v, v). Conversely, every path p : u → v in G generates,
for t = 0, . . . ,∞, the paths from u to v in G′ that are the concatenation of p : u→ v

and t self-loops (v, v) that damp the contribution by a factor αt. Thus the expression
of B′(v) given by Equation (3.1) can be rewritten as:

B′(v) =
1− α
n

∞∑
τ=0

ατ
∑
u∈G

infτ (u, v)
∞∑
t=0

αt

=
1− α
n

∞∑
τ=0

ατ
∑
u∈G

infτ (u, v)
1

1− α

= B(v)
1

1− α

�

By Lemma 3.1, one can compute the brute force score of a node whose only
outgoing arc forms a self-loop by excluding it from each layer and multiplying the
result by a constant factor. We can now state Theorem 3.1.

Theorem 3.1. For any k ≥ 2, any α ∈ (0, 1) and any `0 > 0 there exists a graph
where the ranking induced by P (`) on the top k nodes v1, . . . , vk is:

v1 < . . . < vk for ` ≤ `0

vk < . . . < v1 for ` > `0

Proof. We exhibit a graph G that satisfies the statement. G consists of k subgraphs
G1, . . . , Gk. Subgraph Gi (Figure 3.1) contains node vi and its self-loop (making the
graph free of dangling nodes), k− i+ 1 orphan nodes that have vi as their sole child,

38 Chapter 3. Local Computation of PageRank : The Ranking Side

and `0 + 1 layers of ancestors structured as a tree of depth `0 with root node vi and
indegree d (d will be computed below) pointed by an additional `0 + 1-th layer of im
orphans (m will be computed below).

k−i+1

.i m

vi

Figure 3.1: Subgraph Gi (Theorem 3.1) containing node vi and all its ancestors.

Node vi has one less parent but m more ancestors at layer `0 + 1 than node vi−1

and thus, intuitively, receives a lower contribution from the first layers but a higher
contribution from the last ones. We now exhibit values of m and d that satisfy the
statement of the theorem. Consider vi and vj for 1 ≤ i < j ≤ k. For ` ≤ `0 node vi
receives, from layers 1 to `, the contribution of j − i parents more than vj through
paths that possibly include many self-loops on the target node:

P (`)(vi) = P (`)(vj) +
1− α
n

(j − i)
∑̀
τ=1

ατ > P (`)(vj)

and thus vi is ranked higher than vj. For ` = `0 + 1, node vi receives from layer
`0 +1 the contribution of (j−i)m ancestors less than vj and the expression of P (`)(vi)

becomes:

P (`)(vj) +
α

n
(j − i)(1− α`0+1)− 1− α

n
(j − i)mα`0+1

which, for m > 1−α`0+1

α`0 (1−α)
, is smaller than P (`)(vj) and thus vi is ranked lower than vj.

It is easy to see that this ranking also holds for any ` ≥ `0 + 1 and that it is the
correct ranking since the brute force scores converge to the PageRank scores.

To make v1, . . . , vk the top k nodes in the graph, balance the im arcs incoming
from layer `0 + 1 so that the number of parents of any ancestor at layer `0 is at most
d im
d`0
e which, for a sufficiently large d, is no more than d. Note that v1, . . . , vk have

3.2. Limits and pitfalls of the brute force algorithm 39

more than d parents and, in general, at any layer they have more ancestors (with
outdegree 1, which translates to a higher contribution) than any other node in the
graph – thus, they are the top k. �

By Theorem 3.1, for any `0 > 0 there exist graphs where, to compute the correct
relative ranking of the top k nodes, not only the brute force algorithm must take into
account at least the first `0 +1 layers, but halting at any layer below `0 +1 yields the
same complete reversal of the correct ranking – a misleading “stability” condition.

Although to correctly rank the top k nodes of the graph of Theorem 3.1 the brute
force algorithm incurs a very high cost (exponential in ` and linear in n), it still
converges in a finite number of iterations. Unfortunately, the situation can worsen
in presence of cycles that produce periodical oscillations in the relative ranking of
nodes. The following theorem proves that in this case the number of iterations
required to converge to a stable ranking may be unbounded:

Theorem 3.2. For any even integer k > 1 and any rational α ∈ (0, 1) there exists
a graph where the ranking induced by P (`) on the top k nodes v1, . . . , vk satisfy, for
any i ∈ [1, k

2
], any j ∈ [k

2
+ 1, k], and any ` ≥ 0:

vi = vj for ` ≡ 0 mod 3

vi < vj for ` ≡ 1 mod 3

vi > vj for ` ≡ 2 mod 3

Proof. We exhibit a graph G that satisfies the statement. G consists of k/2 identical
subgraphs G1, . . . , Gk/2. Subgraph Gi (Figure 3.2) contains nodes vi and vi+k/2, the
set of nodes Wi (described below) and 2 nodes that are the sole children of vi and
the sole parents of vi+k/2.

Let w =
∑

x∈Wi

1
outdegree(x)

. According to Equation (3.1), the scores of vi and
vi+k/2 are respectively:

P (vi) =
1− α
n

(
1 + α(1 + w) + 2α2 + α3 + α4(1 + w) + . . .

)
P (vi+k/2) =

1− α
n

(
1 + 2α + α2 + α3(1 + w) + α4 + . . .

)

40 Chapter 3. Local Computation of PageRank : The Ranking Side

iv

vi+k/2

Wi

Figure 3.2: Subgraph Gi (Theorem 3.2) has a cycle that causes a perpetual
oscillation in the relative ranking given by the brute force algorithm.

and their difference D(vi+k/2, vi) = P (vi+k/2)− P (vi) is:

D(vi+k/2, vi) =
1− α
n

(
α(1− w)− α2 + α3w

)∑
t≥0

α3t

=
1− α
n

α
(
(1− α)− w(1− α2)

) 1

1− α3

For vi and vi+k/2 to oscillate indefinitely in rank as ` grows, their brute force scores
must converge to the same value or, equivalently, D(vi+k/2, vi) = 0, which is true for
w = 1

1+α
. Since α is rational by hypothesis, w is also a rational p/q for some integers

p and q and thus let Wi contain p nodes with q children each (vi being one of them).

We now prove that the relative rankings oscillate. Note that for any 1 ≤ i ≤ k/2

and any k/2+1 ≤ j ≤ k we have D(`)(vj, vi) = D(`)(vi+k/2, vi). Substituting w = 1
1+α

in the expression of D(`)(vi+k/2, vi) and taking τ = b`/3c, we have for the three cases
` ≡ 0, 1, 2 mod 3:

D(`)(vj, vi) = D(3τ)(vj, vi) = D(3τ)(vi+k/2, vi)

=
1− α
n

(
α

α

1 + α
− α2 + α3 1

1 + α

) τ−1∑
t=0

α3t

=
1− α
n

(
α2 − α2 − α3 + α3

1 + α

) τ−1∑
t=0

α3t

= 0

3.2. Limits and pitfalls of the brute force algorithm 41

D(`)(vj, vi) = D(3τ+1)(vj, vi)

= D(3τ)(vj, vi) +
1− α
n

α3τ+1 α

1 + α

=
1− α
n

α3τ+2

1 + α

> 0

D(`)(vj, vi) = D(3τ+2)(vj, vi)

= D(3τ+1)(vj, vi)−
1− α
n

α3τ+2

=
1− α
n

(
α3τ+2

1 + α
− α3τ+2

)
< 0

To prove that nodes v1, . . . , vk are the top k ranked at any iteration by the brute
force algorithm, note that the score of each child z of vi,

P (z) =
1− α
n

(
1 +

α

2
+
α2

2
(1 + w) + α3 +

α4

2
+ . . .

)
is term-by-term not larger (and iteration-by-iteration smaller) than the scores of
both vi and vi+k/2. Finally, nodes of set Wi are orphans and thus ranked lower than
both vi and vi+k/2. �

By Theorem 3.2, there exist graphs where the relative ranking given by the brute
force algorithm on the top k nodes never converges nor shows stability. Note that,
depending on α, p and q, the size of the graph in Figure 3.2 can become arbitrarily
large but also range in the tens – a situation where the brute force algorithm presents
an excellent cost performance yet its output oscillates indefinitely.

Although by Theorems 3.1 and 3.2 the brute force algorithm may in theory be-
come impractical, other algorithms could perform better for at least three reasons.
First, they could visit the ancestors of the target nodes using a strategy that is not
breadth-first: for example, visiting highly-contributing ancestors earlier. Second,
they could compute the approximate PageRank scores more accurately: for exam-
ple, taking into account the cycles in the graph to compute “in one shot” the total
contribution of an ancestor appearing in an infinite number of layers, thus elimi-
nating potential rank oscillations. Third, as the number of visited nodes increases,
the approximation error on the PageRank scores drops (eventually going beyond the
resolution of a physical machine) and the correct ranking of the target nodes may

42 Chapter 3. Local Computation of PageRank : The Ranking Side

become apparent after just a few steps, especially if their scores are not too close.
Thus, it is necessary to spend some more effort on a more rigorous definition of

the “local ranking” problem; which we shall do in the next Section.

3.3. Local ranking of nodes 43

3.3 Local ranking of nodes

This section formally restates the local ranking problem, that was informally in-
troduced in Section 3.1, taking into account the observations raised at the end of
Section 3.2.

Formally, a local algorithm is an algorithm that has no direct access to (the arcs
of) a graph G, but must instead query a link server for G that accepts (the ID of) a
node v in input and returns (the IDs of) the parents and children of v in output. The
local ranking problem consists in ranking a subset of nodes of a graph using only local
algorithms. Since the major bottleneck of local algorithms is the communication with
the link server, their cost can be defined as the number of queries performed. The
cost of locally ranking two target nodes u, v ∈ G is then the minimum cost incurred
by any algorithm A to correctly rank u and v.

In this work, the local ranking problem is considered in a PageRank context.
Formally, given a graph G, a damping factor α, and k target nodes v1, . . . , vk ∈ G,
one must rank the target nodes in nonincreasing order of their PageRank scores (with
ties broken arbitrarily) using only local algorithms. In many applications, however,
only the top PageRank scores really matter. Furthermore, often only the ranking
induced by well-separated scores matters - if two scores are very close to each other,
they could be considered equivalent (after all, PageRank itself gives an approximate
model of the reality), and they are practically indistinguishable if their difference is
smaller than the resolution of a modern machine. To deal with this last issue, we
modify the problem and require to rank all and only the target nodes whose relative
PageRank distance is not less than a given ε. Formally, given a graph G, a damping
factor α, and k target nodes v1, . . . , vk ∈ G, the local ε-ranking problem requires
to rank each pair u, v of target nodes with P (u)/P (v) ≥ 1 + ε in decreasing order
of their PageRank scores using only local algorithms. The definitions of cost of an
algorithm A and cost of local ranking given above can be ported to this context with
obvious modifications.

It is thus natural to ask how high the cost of local ε-ranking is – even considering
only the top nodes of a graph. The next section proves some theoretical lower bounds
on this cost, for both randomized and deterministic algorithms.

44 Chapter 3. Local Computation of PageRank : The Ranking Side

3.4 The cost of local ranking

In general, locally computing the exact PageRank score of a single node may require
a number of queries proportional to the size n of the whole graph. More surprisingly,
a very high number of queries may be required even to compute an ε-approximation
of the PageRank score of a single node, i.e. a value between 1 − ε and 1 + ε times
the score itself. In particular (see [6]), to ε-approximate the score of a node for a
reasonable constant ε, any deterministic local algorithm incurs a cost of Ω(n) queries
in the worst case, while any randomized (with deterministic cost) Monte Carlo local
algorithm with constant confidence incurs an expected cost of Ω(

√
n) queries in the

worst case.
It is not known, however, if the same bounds apply to the problem of locally com-

puting the relative ε-ranking of two or more target nodes, as described in Section 3.3.
We prove that this is indeed the case: the following Theorem 3.3 shows that, in the
worst case, locally ranking the top k nodes of a graph requires Ω(α

√
n/ε) queries for

both Las Vegas algorithms and Monte Carlo algorithms with constant confidence,
while Theorem 3.4 takes the bound to Ω(n) for deterministic algorithms.

Theorem 3.3. Choose integers k > 1 and n0 ≥ 6k3, a damping factor α ∈ (0, 1),
and an ε ∈

[
α2k2

4n0
, α

2

24k

]
. Then

• for any Las Vegas local algorithm A there exists a graph of size n ∈ Θ(n0)

where the top k nodes v0, . . . , vk−1 are ε-separated and, to compute their relative
ranking, A performs an expected Ω

(
α
√

n
ε

)
queries.

• for any Monte Carlo local algorithm A with constant confidence there exists a
graph of size n ∈ Θ(n0) where the top k nodes v0, . . . , vk−1 are ε-separated and,
to compute their relative ranking, A performs Ω

(
α
√

n
ε

)
queries.

The proof is based on a reduction from the 1-OR problem. In this problem, the
instance is a binary string x of length m ≥ 1 such that either all its bits are 0, in
which case the solution is 0, or exactly one is 1, in which case the solution is 1 – i.e.,
the solution is ‖x‖. Local algorithms for 1-OR can retrieve the value of a bit only
via a bit server. We use Yao’s principle [45] to show that the expected cost of any
Las Vegas randomized local algorithm for 1-OR is at least m

2
in the worst case:

Lemma 3.2. The expected worst-case cost of any Las Vegas randomized local algo-
rithm for 1-OR is at least m

2
.

Proof.[of Lemma 3.2] Any (Las Vegas) algorithm performs a sequence of queries
and stops either when it finds a 1 or every bit has been queried (every algorithm

3.4. The cost of local ranking 45

behaving differently would produce an incorrect result and/or incur unnecessary
costs). Consider an input probability distribution where each of the m + 1 possible
m-bit strings (m of them contain exactly a 1, and one contains only zeros) has
probability 1

m+1
. Whatever the sequence of queries, the probability that the j-th

query returns 1 (and thus that the cost is j) is 1
m+1

. Therefore the expected cost is
at least

m∑
j=1

j
1

m+ 1
=
m

2

By Yao’s principle, this is a bound on the expected number of queries performed by
any randomized Las Vegas algorithm on its worst-case input. �

Proof.[of Theorem 3.3] Let A be a randomized Monte Carlo (Las Vegas) local algo-
rithm that ranks the top k nodes of a graph performing (in expectation) SA queries
to the link server; we use A to build a randomized Monte Carlo (Las Vegas) local
algorithm B that solves k − 1 independent instances of 1-OR performing (in expec-
tation) SB ≤ SA queries to the bit server. Lemma 3.2 gives a lower bound on (the
expected value of) SB, and thus on (the expected value of) SA.

Let x1, . . . ,xk−1 be k−1 m-bit instances of 1-OR and b a positive integer (proper
values of m and b will be computed below). We describe a link server that lets A run
on a graph G consisting of k disjoint subgraphs G0, G1, . . . , Gk−1. For i = 1, . . . , k−1,
subgraph Gi (Figure 3.3) contains the target node vi and its self-loop, m + 1 nodes
u0
i , . . . , u

m
i that have vi as their sole child, ib nodes w0

i , . . . , w
ib−1
i that have u0

i as their
sole child and, for j = 1, . . . ,m, kb nodes wjkbi , . . . , w

(j+1)kb−1
i that have uji as their

sole child if xi(j) = 1 or a self-loop if xi(j) = 0. Subgraph G0 contains the reference
target node v0 and its self-loop, m + 1 nodes u0

0, . . . , u
m
0 that have v0 as their sole

child and kb nodes w0
0, . . . , w

kb−1
0 whose sole child is u0

0.
The link server for G is described by the following rules:

1. when queried for uji with i, j ≥ 1, it queries the bit server for xi(j); if the
bit equals 1 then it returns vi as the sole child and wjkbi , . . . , w

(j+1)kb−1
i as the

parents, else it returns vi as the sole child and no parents.

2. when queried for wji with i ≥ 1 and j ≥ kb, it computes j′ = b j
kb
c and queries

the bit server for xi(j
′); if the bit equals 1 then it returns uj

′

i as the sole child
and no parents, else it returns wji as the sole child and no parents.

3. otherwise, it answers without querying the bit server.

It is easy to see that this is a link server for the graph G. Given the output of
algorithm A, algorithm B computes the solution of xi as follows. If A ranks vi lower

46 Chapter 3. Local Computation of PageRank : The Ranking Side

wi
0

u i
1

wi
ib−1

wi
(j+1)kb−1

wi
jkb

v i

u i
0

u i

j
u i

m

Figure 3.3: Subgraph Gi (Theorem 3.3). Node u0
i always has exactly ib parents;

node uji has kb parents if and only if xi(j) = 1, else it has an associated group of kb
“disconnected parents”.

than v0, then B returns 0; if A ranks vi higher than v0, then it returns 1. We prove
that if A ranks correctly v0, . . . , vk−1 then B solves correctly the k − 1 instances of
1-OR.

Since G has no dangling nodes, by Lemma 3.1 the scores of the target nodes are
1

1−α times the brute force score computed on the same nodes ignoring their self-loops.
Thus, according to Equation (3.1) these scores become:

P (v0) = 1
n

(1 + α(m+ 1) + α2kb)

P (vi) = 1
n

(1 + α(m+ 1) + α2(i+ k‖xi‖)b) i ≥ 1

By hypothesis, algorithm A ranks v0, v1, . . . , vk−1 and, in particular, computes the
relative ranking of v0 and vi for i = 1, . . . , k−1. But v0 is ranked lower than vi if and
only if k < i+ k‖xi‖, which is true if and only if ‖xi‖ = 1. Conversely, vi is ranked
lower than v0 if and only if i+k‖xi‖ < k, which is true if and only if ‖xi‖ = 0. Thus,
if A ranks correctly v0, . . . , vk−1, then B solves correctly the k−1 instances of 1-OR.

We now exhibit values of m and b such that G and the target nodes satisfy the
thesis. In particular, choose

m =

⌈
α
√
n0/ε

12k

⌉
and b =

⌊
2
√
εn0

αk

⌋

It is immediate to verify that the number of nodes n in the graph is in Θ(mbk2) which,
substituting the above values for m and b, is in Θ(n0). The hypothesis n0 ≥ 6k3

guarantees also that b ≥ 1 and m ≥ kb ≥ 2; this implies that v0, v1, . . . , vk−1 are the
top k nodes in the graph since each of them has at least m+ 1 > kb parents and at

3.4. The cost of local ranking 47

least one grandparent – more than any other node in the graph. Furthermore, any
two target nodes are ε-separated since one of them has the same number of parents
but at least b grandparents more than the other, and thus the difference ∆P between
their scores satisfy ∆P ≥ α2b

n
which, divided by the maximum possible score of a

target node (obtained for i = k − 1 and ‖xi‖ = 1) gives a lower bound on the score
separation of any two target nodes:

∆P

P
≥ α2b

n

/ 1

n

(
1 + α(m+ 1) + α2(k − 1 + k)b

)
≥ α2b

2(m+ kb+ 1)
≥ α2b

5m

where the last inequality follows from kb ≤ m and 1 ≤ m/2. Plugging in the above
values for b and m we obtain:

∆P

P
≥ α2b

5m
=

α2
⌊

2
√
εn0

αk

⌋
5

⌈
α
√
n0/ε

12k

⌉ ≥ α2
√
εn0

αk

5
α
√
n0/ε

6k

=
6

5
ε > ε

which proves that the target nodes are ε-separated.
We now compute the cost of locally ranking the target nodes v1, . . . , vk. The link

server performs at most one query to the bit server for each query performed by A,
therefore SB ≤ SA. If A (and thus B) is a Las Vegas algorithm, Lemma 3.2 gives a
worst-case expected cost of at least m/2 bit queries for each of the k − 1 instances
solved by B, and thus E[SA] ≥ E[SB] ≥ m

2
(k − 1) ∈ Ω(mk). If A (and thus B) is a

Monte Carlo algorithm with constant confidence (note that B is correct if A is, thus
the confidence of B is equal to at least the confidence of A), a sensitivity argument
for randomized algorithms with bounded error [15] gives a worst-case cost of Ω(m)

bit queries for each of the k−1 instances, and thus SA ≥ SB ∈ Ω(mk). In every case
SA ∈ Ω(mk) which, plugging in the above value for m and recalling that n0 ∈ Θ(n),
becomes:

SA ∈ Ω

(⌈
α
√
n0/ε

12k

⌉
k

)
= Ω

(
α

√
n

ε

)

which concludes the proof. �

The bound for deterministic algorithms is even stronger. Intuitively, an adver-
sarial link server can adaptively build a worst-case graph by refusing to give enough
information until Ω(n) queries have been performed. More formally:

48 Chapter 3. Local Computation of PageRank : The Ranking Side

Theorem 3.4. Choose integers k > 1 and n0 ≥ k2, a damping factor α ∈ (0, 1),
and an ε ≤ α2

20k
. For any deterministic local algorithm A there exists a graph of size

n ∈ Ω(n0) where the top k nodes v0, . . . , vk−1 are ε-separated and, to compute their
relative ranking, A performs Ω(n) queries.

Proof. The proof is based on an adversarial argument. Let A be a deterministic
local algorithm that ranks the top k nodes of a graph performing SA queries to the
link server; we exhibit an adversarial link server that lets A run on a worst-case
graph G similar to the graph of Theorem 3.3 and consisting of k disjoint subgraphs
G0, G1, . . . , Gk−1. Letm and b be two positive integers (their values will be computed
below). For i = 1, . . . , k − 1, subgraph Gi (Figure 3.4) contains the target node vi
and its self-loop, m + 1 nodes u0

i , . . . , u
m
i that have vi as their sole child, ib nodes

w0
i , . . . , w

ib−1
i that have u0

i as their sole child and kb nodes wibi , . . . , w
(i+k)b−1
i that may

either have self-loops or have uji as their sole child for some 1 ≤ j ≤ m. Subgraph
G0 contains the reference target node v0 and its self-loop, m + 1 nodes u0

0, . . . , u
m
0

that have v0 as their sole child, and kb nodes w0
0, . . . , w

kb−1
0 that have u0

0 as their sole
child.

w i
0

u i

1

w i

ib−1
w i

ib
w i

(i+k)b−1

v i

u i

0
u i

j

u i

m

Figure 3.4: Subgraph Gi (Theorem 3.4). Node u0
i always has ib parents, while nodes

wibi , . . . , w
(i+k)b−1
i may or may not have uji as their sole child.

The link server exploits the fact that the mapping of node IDs (i.e. the content of
queries) to nodes in the graph can be chosen arbitrarily and can force a deterministic
algorithm to query almost all the nodes before collecting enough information to
compute a correct ranking. Indeed this is what the link server does, following this
rule:

• on the firstmk queries, it never maps an ID to any of the nodes wibi , . . . , w
(i+k)b−1
i

for i = 1, . . . , k − 1 or any of their children.

3.4. The cost of local ranking 49

Note that this is a legitimate behaviour since each of the k subgraphs G0, . . . , Gk−1

has at least m nodes that are neither wibi , . . . , w
(i+k)b−1
i nor their children.

We now exhibit values of m and b such that G and the target nodes satisfy the
theorem. In particular, choose

m =
⌈n0

k

⌉
and b =

⌊n0

k2

⌋
Since the number of nodes in graph G is n ∈ Θ(mk + k2b), these choices for m and
b imply n ∈ Θ(n0). The hypothesis n0 ≥ k2 guarantees also that m ≥ kb and b ≥ 1;
this implies that v0, . . . , vk−1 are the top k nodes in the graph since at any level they
have more ancestors than any other node.

It remains to prove that the target nodes are ε-separated. Since the number of
parents and grandparents of vi is the same as in the graph of Theorem 3.3, and since
kb ≤ m, the difference between scores satisfies the same lower bound ∆P

P
≥ α2b

5m
. The

substitution of b and m gives

∆P

P
≥ α2b

5m
≥
α2
⌊
n0

k2

⌋
5
⌈
n0

k

⌉ ≥ α2 n0

2k2

52n0

k

≥ α2

20k
≥ ε

which proves that the target nodes are ε-separated.

Note that the link server can invalidate any ranking of the target nodes that A
should output before querying at least mk nodes. To prove this, suppose that A has
performed less thanmk queries and let vi be a target node such that one of its parents
uji has not been queried (as stated before, one such node must exist). If A ranks vi
higher than v0, the link server disconnects wibi , . . . , w

(i+k)b−1
i from uji ; otherwise, it

connects wibi , . . . , w
(i+k)b−1
i to uji . The expression (see proof of Theorem 3.3) of the

score of vi shows that in either case A gives an incorrect ranking. Therefore A must
incur a cost of at least mk which, plugging in the above value for m and recalling
that n0 ∈ Θ(n), becomes:

SA ≥ mk =
⌈n0

k

⌉
k ≥ n0 ∈ Ω(n)

which concludes the proof. �

It is easy to see that, as the sizes of the graphs of Theorems 3.3 and 3.4 increase,
the multiplicative constants effectively bring the upper bound on the choice of ε
within a small constant factor of α2

k
, which takes the lower bounds on the incurred

costs within a small constant factor of, respectively, Ω(
√
kn) and Ω(n). Therefore,

by Theorems 3.3 and 3.4 there exist graphs of size in the billions (comparable to

50 Chapter 3. Local Computation of PageRank : The Ranking Side

the estimated size of the web graph) where, assuming a “standard” damping factor
of 0.85, the PageRank scores of the top 10 nodes are ε-separated for a constant
ε ≈ 0.1, which in absolute terms can be orders of magnitude greater than the average
PageRank score 1

n
, yet any “useful” (i.e. with a reasonable confidence level) local ε-

ranking algorithm incurs ≈ 100k queries in the randomized case and ≈ 1B queries
in the deterministic case.

It is now clear that, at least in theory, there exist pathological cases that make the
local ε-ranking problem intractable. In practice, real graphs may behave differently,
and good algorithms may be able to compute the correct relative ranking of the
target nodes at a reasonable cost. The next section gives experimental results to
shed light on this point.

3.5. Experiments 51

3.5 Experiments

This section describes two experiments, both making use of known score approxi-
mation algorithms ([6, 16]), to estimate how far the theoretical lower bounds of Sec-
tion 3.3 are in practice from the cost of local ranking on real graphs. Subsection 3.5.1
introduces the experimental setting, while Subsections 3.5.2 and 3.5.3 detail the two
experiments and the results obtained.

3.5.1 Experimental design

We ran the experiments on two publicly available real graphs crawled by the Lab-
oratory for Web Algorithmics at the University of Milan (graphs crawled with Ubi-
Crawler [9] and compressed with WebGraph [11]). The first is a large snapshot (over
40M nodes and 1150M arcs) of the 2004 .it web domain; since the structure of
the web graph is self-similar [19], these experimental results naturally extend to the
whole web graph. Furthermore, the .it graph is relatively isolated from the rest of
the web because most pages are written in Italian, a language seldom used outside
this domain; thus, this graph is well suited for link analysis experiments – carving it
out of the whole web does not imply suppressing many links. The second graph is a
fairly large snapshot (over 5M nodes and 79M arcs) of the 2008 LiveJournal friend-
ship graph, where nodes represent users and a directed arc from u to v means that
u reputes v as a friend (the graph is not symmetric). Conferral of importance has
a natural meaning in this graph, and its nature is completely different from that of
the web, providing a wider experimental basis to test our theory. Furthermore, it is
a completely isolated graph and thus no arcs have been discarded by the crawling
process.

Graph preprocessing deserves a special note. It is well known that PageRank
treats dangling nodes as having virtual outgoing arcs towards all the nodes of the
graph [33]. This makes it difficult to approximate PageRank scores locally since
the influence of these virtual arcs can only be guessed – the link server provides
only the real arcs. Surprisingly, the literature on local score approximation always
neglects this important issue. We conjecture that guessing this influence requires
statistical considerations similar to those used in [18] to estimate the influence of the
surrounding (unknown) graph on the nodes of a (known) subgraph; however, this
problem is beyond the scope of the present work. These reasons led us to eliminate
all the dangling nodes by repeated pruning. For both graphs, this removed less than
15% of the nodes and less than 6% of the arcs.

For the sake of simplicity, in both experiments we restricted the problem to the

52 Chapter 3. Local Computation of PageRank : The Ranking Side

ranking of pairs of target nodes, which we sampled among the top ranked nodes of the
graphs. This latter choice has two reasons. First, in most practical applications only
the top scores really matter. Second, nodes with a high PageRank score are likely to
have many ancestors on many layers, and therefore are the best candidates to test
the worst-case lower bounds provided by theorems of Section 3.3. We thus computed
the exact PageRank scores of all the nodes of the graphs, using 100 iterations of the
power method and a “standard” value of 0.85 for α, and from each graph we selected
the top 10k nodes – about the top 1% in each graph. Then we sampled 1000 pairs
uniformly at random among all the pairs of nodes u, v that are (1+ε, 1+2ε)-separated,
i.e. (1 + ε)P (v) ≤ P (u) ≤ (1 + 2ε)P (v), for values of ε ranging from 0.01 · 20 (scores
differing by 1-2%) to 0.01 · 28 (scores differing by 256-512%) in doubling steps. On
each sample, we ran the experiments detailed in the following two subsections.

3.5.2 Is ranking local in real graphs?

The goal of the first experiment is to estimate a lower bound on the cost of locally
ranking ε-separated nodes as a function of ε. This bound can be seen as the size
of the minimal set of nodes that must be visited to compute correctly the relative
ranking of two target nodes, a concept formalized in the following definition:

Definition 3.3. Let u, v be nodes of graph G and let A be a local ranking algorithm.
The minimal set SA(G, u, v) for A contains the minimal number of nodes of G that
A fetches to correctly rank u and v.

In other words, SA(G, u, v) is a minimal set of nodes such that A correctly ranks
u and v if it fetches any set S ⊇ SA(G, u, v). Clearly, a general (i.e. valid for all
algorithms) lower bound on the size of SA(G, u, v) gives a lower bound on the cost of
locally ε-ranking u and v in G. Note that, for any choice of G, u and v, there always
exists an algorithm A such that SA(G, u, v) = ∅. For example, a trivial algorithm
returning a constant ranking could rank correctly some of the pairs of nodes in G;
unfortunately, it would rank incorrectly all the remaining. It is therefore natural to
restrict the definition to algorithms that provide a correct ranking for any pair of
target nodes u and v of any possible graph G – in other words, algorithms that solve
the ε-ranking problem.

We further restrict to algorithms that compute approximate scores as the sum
of the (known) contributions of the visited nodes on the target nodes, and thus do
not overestimate the real score, which is similar if not identical to the behaviour
of algorithms proposed in literature. We conjecture that any local algorithm that
behaves differently would fail for some input G,u,v : intuitively, if the algorithm does

3.5. Experiments 53

not know anything about the unexplored part of the graph, and yet it estimates the
score of the target node exceeding the sum of the contributions of the visited nodes,
then the rest of the graph could be adversarially built to make the PageRank score
of the target node lower than the estimated score – and make the algorithm fail.
Thus, we consider only algorithms that approximate the PageRank score as the sum
of the contributions of the visited nodes.

Under these assumptions, a(n ideal) “perfect” algorithm PER would build a set
SPER(G, u, v) containing all and only the top c contributors of the highest ranked
node u for a sufficiently large c such that P̃ (u) =

∑
z∈SPER(G,u,v) contrib(z, u) ≥ P (v).

It is easy to see that, on any superset S ⊇ SPER(G, u, v), algorithm PER estimates
P̃ (u) ≥ P (v) and P̃ (v) ≤ P (v), therefore inferring the correct ranking from the
inequality P̃ (u) ≥ P̃ (v), while any set smaller than SPER(G, u, v) would lead to
P̃ (u) < P (v) and to an incorrect result. Therefore the cardinality of SPER(G, u, v)

is a lower bound to the cost of locally ranking u and v. Note that, since the con-
tribution of an ancestor z is α times the average of the contributions of its children,
at least one of them has a contribution not smaller than that of z; therefore, if
SPER(G, u, v) contains z, it also contains one of its children. This implies that nodes
of SPER(G, u, v) form a connected graph and are in principle reachable by those al-
gorithms that query only the parents of already-queried nodes – i.e. virtually any
“reasonable” algorithm.

In practice, for each pair u,v we estimated their minimal set as follows. We col-
lected the first 15 layers of the ancestors of u, stopping earlier if their number reached
a given threshold (0.02n for the .it graph and 0.2n for the LiveJournal graph). These
ancestors induced a subgraph where we ran 40 iterations of the brute force algorithm
with u as the target node. This yielded the contribution of each collected ancestor,
which was used to sort them and build an approximated minimal set.

Figure 3.5 illustrates the average size of the estimated minimal sets as a function
of ε for both graphs. As expected, this size increases as ε decreases – ranking poorly-
separated nodes costs more than ranking well-separated ones. In the .it web graph,
the cost of local ranking is 100 to 1000 times smaller than the size of the graph, but
still in the order of 104− 105 queries, which may be intolerably high for applications
that use a remote link server. Surprisingly, in the LiveJournal graph minimal sets
are much larger, in spite of the significantly lower graph size (< 4.8M vs. > 37M
nodes) and average degree (< 16.5 vs. > 30). Indeed, except for ε ≈ 1, the number of
collected ancestors almost always reached the threshold of 0.2n and their contribution
was not sufficient to give a correct ranking. Thus, ε-ranking in the LiveJournal graph
is strongly non-local except for extremely separated nodes.

54 Chapter 3. Local Computation of PageRank : The Ranking Side

10
3

10
4

10
5

10
6

10
7

.01.02.04.08.16.32.641.282.56a
v
e
ra

g
e
 e

s
ti
m

a
te

 m
in

im
a
l
s
e
t
s
iz

e

ε

.it web graph
LiveJournal graph

Figure 3.5: Average size of estimated minimal sets for (ε, 2ε)-separated nodes as a
function of ε for the .it web graph and the LiveJournal graph

3.5.3 Local ranking with real algorithms

The second experiment evaluates the performance of two real (i.e. returning wrong
results in some cases) algorithms, giving an upper bound on the cost of local ranking
if one accepts an unavoidably positive rate of error.

We first tested the brute force (BF) algorithm, which serves more as a benchmark
than as a realistic efficient method for local ranking. BF explores the ancestors of
each of the two target nodes layer by layer, computing their approximate scores
according to Equation (3.1) and inferring their relative ranking. Figures 3.6 - 3.7
(.it graph) and 3.9 - 3.10 (LiveJournal graph) show respectively the average cost
(number of visited nodes) and the average precision (fraction of correctly ranked node
pairs), for different values of (ε, 2ε), as a function of the number of layers visited from
0 to 25 – a limit that seems sufficient to saturate the set of visited nodes. Figures 3.8
(.it web graph) and 3.11 (LiveJournal graph) show, for different values of (ε, 2ε), the
competitive ratio of BF, i.e. its average cost over the average size of the estimated
minimal sets, as a function of the number of layers visited. As one might expect
from a naive brute force-based ranking algorithm, BF incurs overwhelmingly high
costs (several million queries) in both graphs, even to guarantee a precision ≥ 0.9

for only the most separated nodes.

In the .it web graph, the average cost incurred by BF saturates to slightly more
than ten millions, or ≈ 0.25n, and its estimated competitive ratio (the ratio of the
average cost to the average size of estimated minimal sets) to achieve a precision
≥ 0.9 is ≈ 10 for the highest separations and range from 20 to more than 100 for
all the others – thus, at least in principle, there is abundant space for performance

3.5. Experiments 55

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0 5 10 15 20 25

a
v
e

ra
g

e
 c

o
s
t

layer

(2.56,5.12)
(1.28,2.56)
(0.64,1.28)
(0.32,0.64)
(0.16,0.32)
(0.08,0.16)
(0.04,0.08)
(0.02,0.04)
(0.01,0.02)

Figure 3.6: .it web graph, BF algorithm : average cost vs. layers visited, for
different values of (ε, 2ε)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

a
v
e

ra
g

e
 p

re
c
is

io
n

layer

(2.56,5.12)
(1.28,2.56)
(0.64,1.28)
(0.32,0.64)
(0.16,0.32)
(0.08,0.16)
(0.04,0.08)
(0.02,0.04)
(0.01,0.02)

Figure 3.7: .it web graph, BF algorithm : average precision vs. layers visited, for
different values of (ε, 2ε)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

0 5 10 15 20 25

a
v
g

.
c
o

s
t

/
a

v
g

.
m

in
im

a
l
s
e

t
s
iz

e

layers visited

(2.56,5.12)
(1.28,2.56)
(0.64,1.28)
(0.32,0.64)
(0.16,0.32)
(0.08,0.16)
(0.04,0.08)
(0.02,0.04)
(0.01,0.02)

Figure 3.8: .it graph, BF algorithm : ratio of average cost to average size of esti-
mated minimal sets vs. layers visited, for different values of (ε, 2ε)

56 Chapter 3. Local Computation of PageRank : The Ranking Side

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0 5 10 15 20 25

a
v
e

ra
g

e
 c

o
s
t

layer

(2.56,5.12)
(1.28,2.56)
(0.64,1.28)
(0.32,0.64)
(0.16,0.32)
(0.08,0.16)
(0.04,0.08)
(0.02,0.04)
(0.01,0.02)

Figure 3.9: LiveJournal graph, BF algorithm : average cost vs. layers visited, for
different values of (ε, 2ε)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

a
v
e

ra
g

e
 p

re
c
is

io
n

layer

(2.56,5.12)
(1.28,2.56)
(0.64,1.28)
(0.32,0.64)
(0.16,0.32)
(0.08,0.16)
(0.04,0.08)
(0.02,0.04)
(0.01,0.02)

Figure 3.10: LiveJournal graph, BF algorithm : average precision vs. layers visited,
for different values of (ε, 2ε)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

0 5 10 15 20 25

a
v
g

.
c
o

s
t

/
a

v
g

.
m

in
im

a
l
s
e

t
s
iz

e

layers visited

(2.56,5.12)
(1.28,2.56)
(0.64,1.28)
(0.32,0.64)
(0.16,0.32)
(0.08,0.16)
(0.04,0.08)
(0.02,0.04)
(0.01,0.02)

Figure 3.11: LiveJournal graph, BF algorithm : ratio of average cost to average size
of estimated minimal sets vs. layers visited, for different values of (ε, 2ε)

3.5. Experiments 57

improvements in this case. In the LiveJournal graph, the average cost of BF saturated
to about two millions, or ≈ 0.4n, while its estimated competitive ratio to achieve
a precision ≥ 0.9 ranges from 2 to 5 for every separation except the two highest,
dropping to 0.4 for ε = 2.56. This points not to the (unlikely) efficiency of BF, but
to the “hardness” of graph as an instance for the local ranking problem.

Observe that neither the average in-degree of the graphs (> 30 for .it vs < 16.5

for LiveJournal) nor the sizes of their largest strongly connected component (≈ 0.72n

for .it vs. ≈ 0.78n for LiveJournal , see [42]) do easily predict the number of nodes
visited by the BF algorithm or the size of the estimated minimal sets illustrated in
Figure 3.5.

We then tested an improved version (ImPBF) of the pruned brute force algo-
rithm [6] (PBF). This is an intuitively efficient variation of the BF algorithm that,
at each layer τ ≥ 1, does not visit all the parents of layer τ − 1 but only those
whose estimated contribution (i.e. over paths that are known at iteration τ) to the
score of the target node is above a given threshold. The conjecture underpinning
this heuristics is that the nodes with a small contribution over paths of length ≤ τ

probably give a small overall contribution, and their parents probably do the same.
Counterexamples show that sometimes this is false [7], but [16] shows that in prac-
tice on real web graphs this heuristics works well; and although other algorithms
for local score approximation exist (see [16]), they have less clear theoretical back-
grounds, make unrealistic assumptions (such as the knowledge of the number of arcs
in the graph), or give approximations that may exceed the true PageRank score – all
assumptions that do not fit our general model. We terminated PBF either when no
more candidates had a sufficient estimated contribution, or when the cost reached
a threshold of 0.1n, at which point it could be considered Θ(n). On the subgraph
induced by the visited nodes, ImPBF runs BF for 40 iterations (while PBF typically
did not visit more than 20th layers) or until the relative per-iteration increment
in the estimated score drops below 0.1%. This “squeezes” out most of the overall
contribution of the visited nodes, giving a more accurate score approximation.

We ran ImPBF for different contribution thresholds, ranging from 10−1 to 10−7.
Figures 3.12 - 3.13 (.it graph) and 3.15 - 3.16 (LiveJournal graph) show respectively
the average cost and the average precision of the ImPBF algorithm as a function of
the contribution threshold, for different values of (ε, 2ε); Figures 3.14 (.it graph)
and 3.17 (LiveJournal graph) show, for different values of (ε, 2ε), the competitive
ratio of ImPBF, i.e. its average cost over the average size of the estimated minimal
sets, as a function of the contribution threshold.

In the .it web graph, ImPBF guaranteed a precision ≥ 0.9 for any ε > 0.02

58 Chapter 3. Local Computation of PageRank : The Ranking Side

incurring a cost within a factor 2.5 to 5 of the estimated minimal set size. Thus, its
performance is reasonably close to the optimum even for very small separations, yet
the cost still ranges in the hundreds of thousands, or in the order of 0.01n – too high
in many cases.

In the LiveJournal graph, ImPBF guaranteed a precision ≥ 0.9 only for ε ≥ 0.64,
incurring a cost of a few thousand nodes, or approximately 0.1 times the average
estimated minimal set size. For any ε < 0.64, its precision dropped below 0.9,
falling below 0.7 for ε < 0.16, and the cost increased to a large fraction of the
estimated minimal set size – confirming that ranking in this graph is strongly non-
local except for extremely-separated nodes. Note that the precision of ImPBF in the
LiveJournal graph tends to decrease as the contribution threshold lowers and the
cost increases. This counterintuitive behaviour is likely due to the saturation of the
cost threshold set to 0.2n, and confirms that local ranking is a definitely non-trivial
problem.

3.5. Experiments 59

10
3

10
4

10
5

10
6

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

a
v
e
ra

g
e
 c

o
s
t

pruning threshold

(2.56,5.12)
(1.28,2.56)
(0.64,1.28)
(0.32,0.64)
(0.16,0.32)
(0.08,0.16)
(0.04,0.08)
(0.02,0.04)
(0.01,0.02)

Figure 3.12: .it graph, ImPBF algorithm : average cost vs. contribution threshold,
for different values of (ε, 2ε)

0

0.2

0.4

0.6

0.8

1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

a
v
e
ra

g
e
 p

re
c
is

io
n

pruning threshold

(2.56,5.12)
(1.28,2.56)
(0.64,1.28)
(0.32,0.64)
(0.16,0.32)
(0.08,0.16)
(0.04,0.08)
(0.02,0.04)
(0.01,0.02)

Figure 3.13: .it graph, ImPBF algorithm : average precision vs. contribution
threshold, for different values of (ε, 2ε)

10
-1

10
0

10
1

10
2

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

a
v
g
.
c
o
s
t
/
a
v
g
.
m

in
im

a
l
s
e
t
s
iz

e

pruning threshold

(2.56,5.12)
(1.28,2.56)
(0.64,1.28)
(0.32,0.64)
(0.16,0.32)
(0.08,0.16)
(0.04,0.08)
(0.02,0.04)
(0.01,0.02)

Figure 3.14: .it graph, ImPBF algorithm : ratio of average cost to average size of
estimated minimal sets, for different values of (ε, 2ε)

60 Chapter 3. Local Computation of PageRank : The Ranking Side

10
3

10
4

10
5

10
6

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

a
v
e
ra

g
e
 c

o
s
t

pruning threshold

(2.56,5.12)
(1.28,2.56)
(0.64,1.28)
(0.32,0.64)
(0.16,0.32)
(0.08,0.16)
(0.04,0.08)
(0.02,0.04)
(0.01,0.02)

Figure 3.15: LiveJournal graph, ImPBF algorithm : average cost vs. contribution
threshold, for different values of (ε, 2ε)

0

0.2

0.4

0.6

0.8

1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

a
v
e
ra

g
e
 p

re
c
is

io
n

pruning threshold

(2.56,5.12)
(1.28,2.56)
(0.64,1.28)
(0.32,0.64)
(0.16,0.32)
(0.08,0.16)
(0.04,0.08)
(0.02,0.04)
(0.01,0.02)

Figure 3.16: LiveJournal graph, ImPBF algorithm : average precision vs. contribu-
tion threshold, for different values of (ε, 2ε)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

a
v
g
.
c
o
s
t
/
a
v
g
.
m

in
im

a
l
s
e
t
s
iz

e

pruning threshold

(2.56,5.12)
(1.28,2.56)
(0.64,1.28)
(0.32,0.64)
(0.16,0.32)
(0.08,0.16)
(0.04,0.08)
(0.02,0.04)
(0.01,0.02)

Figure 3.17: LiveJournal graph, ImPBF algorithm : ratio of average cost to average
size of estimated minimal sets, for different values of (ε, 2ε)

3.6. Ranking is not local 61

3.6 Ranking is not local

Imagine you are a social network user who wants to search, in a list of potential
candidates, for the best candidate for a job on the basis of their PageRank-induced
importance ranking. Is it possible to compute the ranking by visiting only small
subnetworks around the nodes that represent each candidate (i.e. by considering only
the friends of the candidates, the friends of their friends and so on, but without going
too far in the network)? Motivated by questions of this kind - naturally arising in the
large and still growing number of IR applications which use PageRank only for its
ranking capabilities - this is the first work to define and address the general problem
of locally computing the ranking induced by PageRank on k target nodes of a graph.
Our work shows that locally computing the ranking is in general infeasible by proving
that, in an n-node graph, every deterministic algorithm may fail to produce the
correct ranking when visiting less than Ω(n) nodes and every randomized algorithm
may fail to produce the correct ranking when visiting less than Ω(

√
kn) nodes in

expectation.
Our research provides the notion of minimal set, which characterizes and allows

to compute, on a given graph, the minimum number of nodes any correct algorithm
must visit – leaving open the issue for different or more specific classes of algorithms.
Experiments carried out on large, publicly available crawls of the web and of a social
network show that also in practice the size of minimal sets may be considerably
large, even if the ranking algorithms lever on efficient local score approximations.
Indeed, (simple) variations of the naive (and highly inefficient) brute force algorithm
incur costs close to the minimum cost even to guarantee a 90% rate of correctness,
definitively confirming that ranking is non-local. Furthermore, the size of minimal
sets may be surprisingly higher in smaller, more sparse graphs than in larger, more
dense ones; their characterization in terms of properties of the underlying graph
deserves more study.

The experiments raised a major flaw in existing literature on local approximation
of PageRank scores, regarding the lack of a proper treatment of the (frequent) case
of graphs with dangling nodes. Investigating this question is certainly an interesting
direction for future research.

Chapter 4

Conclusions

This thesis addresses the fundamental question of how robust is the ranking induced
by PageRank to variations in parameters which should, intuitively, have little weight.

In terms of variations in the damping factor we show that, in some cases, PageR-
ank is extremely unstable. Indeed, arbitrarily small perturbations may completely
reverse the ranking of the top nodes in the graph. One would like to predict these
situations but, as we prove, the intuitive method of sampling rank for a discrete
set of different damping factors does not give any definitive information about its
stability. Thus, previous experimental results only suggest, but not prove, that in
real graphs rank is insensitive to variations of the damping factor. Fortunately, there
exist mathematical tools to analyze these situations. The novel concept of lineage
analysis provides a simple and natural interpretation of rank stability, and allows
one to assess whether the ranking of the nodes of a particular graph is “robust” to
variations of the damping factor. It turns out that theoretical worst-case graphs do
not arise in practice: in real graphs, ranking appears to be considerably but not
totally stable with respect to the damping factor. This marginal sensitivity can be
exploited for tuning purposes. In this sense, we develop two ranking metrics that es-
timate the best damping factors under different user scenarios, and provide a further
motivation for the empyrical choice of some “classic” values of the damping factor.

Another factor that should, intuitively, have little weight on the relative ranking
of two nodes is the link structure in remote portions of the graph. Unfortunately, we
show this is not generally the case for the ranking induced by PageRank - both in
theory and in practice. The first step is investigating if it is possible to compute the
relative ranking of a set of nodes taking into account only small “local” subgraphs.
We first show that the classic brute force, breadth first algorithm is impractical: it
may both be inefficient and return a wrong ranking. However, other algorithms could
in theory perform better, especially when ranking nodes whose PageRank scores are

63

64 Chapter 4. Conclusions

significantly separated. It turns out that, even in this case, no algorithm (randomized
or deterministic) can give a correct ranking without visiting a large fraction of the
graph – at least for some graphs. However, one could guess that real graphs are not as
“hard” as the worst cases predicted by theory, and that the minimum number of nodes
to take into account to provide a correct ranking is reasonably small. Surprisingly,
it turns out that, in real graphs, one must take into account an impractically high
number of nodes to provide a correct ranking even with a modest confidence level.
Furthermore, this property of “intractability” does not appear to be easily predictable
from the general properties of a graph. Our experiments expose a major flaw in the
existing literature on the local approximation of PageRank scores, regarding the lack
of proper treatment of the (frequent) case of graphs with dangling nodes.

This work leaves open several directions of future research, both theoretical and
experimental. Perhaps the most promising involves a generalization of our results
to other ranking algorithms that infer ranks from scores, such as HITS or SALSA.
Previous work addresses (at least partially) the issue for HITS [37, 38], but there is
still a wide gap between known results and a general theory that covers the whole
class of ranking algorithms. Another promising direction is the study of robustness
with respect to other factors. For example, it woould be interesting to investigate how
the ranking vector changes in response to very small perturbations in the input graph,
such as the deletion or addition of few nodes or arcs. As we remark in Section 3.5,
there is also a major flaw in the existing literature on local score approximation:
previous research ignores the presence of dangling nodes, which may considerably
affect the final score (and rank) of each node. Investigating the impact of dangling
nodes - both in theory and in practice - also deserves more effort. Finally, we did
not address issues of numerical stability, which may have great importance especially
when dealing with (variations of) the damping factor, yet another crucial direction
of future research.

List of Figures

2.1 The graph G (Theorem 2.1) is formed by the 4 blocks of nodes U, V,
W and T . 13

2.2 The links from U and W to V in the graph G (Theorem 2.1) for k = 4 13
2.3 Ancestor tree for node vj. Empty nodes are orphans. 14
2.4 .it web graph: convergence of top k-strong (left) and top k-weak

(right) sets as a function of lineage generation, for different values
of k . 29

2.5 CiteSeer citation graph: convergence of top k-strong (left) and top
k-weak (right) sets as a function of lineage generation, for different
values of k . 29

2.6 .it web graph: sk (number of k-strongly ranked nodes) and wk (number
of k-weakly ranked nodes), as a function of k 30

2.7 CiteSeer citation graph: sk (number of k-strongly ranked nodes) and
wk (number of k-weakly ranked nodes), as a function of k 30

2.8 .it graph: PageRank/StrongRank intersection metric as α varies . . . 32
2.9 .it graph: PageRank/WeakRank intersection metric as α varies 32
2.10 CiteSeer: PageRank/StrongRank intersection metric as α varies . . . 33
2.11 CiteSeer: PageRank/WeakRank intersection metric as α varies 33

3.1 Subgraph Gi (Theorem 3.1) containing node vi and all its ancestors. . 38
3.2 Subgraph Gi (Theorem 3.2) has a cycle that causes a perpetual oscil-

lation in the relative ranking given by the brute force algorithm. . . . 40
3.3 Subgraph Gi (Theorem 3.3). Node u0

i always has exactly ib parents;
node uji has kb parents if and only if xi(j) = 1, else it has an associated
group of kb “disconnected parents”. 46

3.4 Subgraph Gi (Theorem 3.4). Node u0
i always has ib parents, while

nodes wibi , . . . , w
(i+k)b−1
i may or may not have uji as their sole child. . 48

3.5 Average size of estimated minimal sets for (ε, 2ε)-separated nodes as
a function of ε for the .it web graph and the LiveJournal graph . . . 54

3.6 .it web graph, BF algorithm : average cost vs. layers visited, for
different values of (ε, 2ε) . 55

65

66 List of Figures

3.7 .it web graph, BF algorithm : average precision vs. layers visited,
for different values of (ε, 2ε) . 55

3.8 .it graph, BF algorithm : ratio of average cost to average size of
estimated minimal sets vs. layers visited, for different values of (ε, 2ε) 55

3.9 LiveJournal graph, BF algorithm : average cost vs. layers visited, for
different values of (ε, 2ε) . 56

3.10 LiveJournal graph, BF algorithm : average precision vs. layers vis-
ited, for different values of (ε, 2ε) . 56

3.11 LiveJournal graph, BF algorithm : ratio of average cost to average
size of estimated minimal sets vs. layers visited, for different values of
(ε, 2ε) . 56

3.12 .it graph, ImPBF algorithm : average cost vs. contribution thresh-
old, for different values of (ε, 2ε) . 59

3.13 .it graph, ImPBF algorithm : average precision vs. contribution
threshold, for different values of (ε, 2ε) 59

3.14 .it graph, ImPBF algorithm : ratio of average cost to average size of
estimated minimal sets, for different values of (ε, 2ε) 59

3.15 LiveJournal graph, ImPBF algorithm : average cost vs. contribution
threshold, for different values of (ε, 2ε) 60

3.16 LiveJournal graph, ImPBF algorithm : average precision vs. contri-
bution threshold, for different values of (ε, 2ε) 60

3.17 LiveJournal graph, ImPBF algorithm : ratio of average cost to average
size of estimated minimal sets, for different values of (ε, 2ε) 60

Bibliography

[1] CiteSeer metadata. http://citeseer.ist.psu.edu/oai.html.

[2] Brian Amento, Loren Terveen, and Will Hill. Does “authority” mean quality?
Predicting expert quality ratings of web documents. In Proceedings of the 23rd
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 296–303, 2000.

[3] Reid Andersen, Christian Borgs, Jennifer Chayes, John Hopcroft, Vahab Mir-
rokni, and Shang-Hua Teng. Local computation of PageRank contributions.
Internet Mathematics, 5(1–2):23–45, 2008.

[4] Konstantin Avrachenkov, Nelly Litvak, and Kim Son Pham. A singular pertur-
bation approach for choosing PageRank damping factor. ArXiv Mathematics
e-prints, 2006.

[5] Ricardo Baeza-Yates, Paolo Boldi, and Carlos Castillo. Generalizing PageRank:
Damping functions for link-based ranking algorithms. In Proceedings of the 29th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 308–315, 2006.

[6] Ziv Bar-Yossef and Li-Tal Mashiach. Local approximation of PageRank and
reverse PageRank. In Proceedings of the 17th ACM Conference on Information
and Knowledge Management (CIKM), pages 279–288, 2008.

[7] Ziv Bar-Yossef and Li-Tal Mashiach. Local approximation of PageRank and
reverse PageRank. Technical report, Israel Institute of Technology, 2008.

[8] Paolo Boldi. Totalrank: ranking without damping. In Proceedings of the
14th ACM International World Wide Web Conference (WWW) (Special interest
tracks and posters), pages 898–899, 2005.

[9] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Ubi-
crawler: A scalable fully distributed web crawler. Software: Practice & Experi-
ence, 34(8):711–726, 2004.

67

http://citeseer.ist.psu.edu/oai.html

68 Bibliography

[10] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. PageRank as a function
of the damping factor. In Proceedings of the 14th ACM International World
Wide Web Conference (WWW), pages 557–566, 2005.

[11] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression
techniques. In Proceedings of the 13th ACM International World Wide Web
Conference (WWW), pages 595–601, 2004.

[12] Marco Bressan and Enoch Peserico. Choose the damping, choose the ranking?
In Proceedings of the 6th International Workshop on Algorithms and Models for
the Web Graph (WAW), pages 76–89, 2009.

[13] Marco Bressan and Enoch Peserico. Choose the damping, choose the ranking?
Journal of Discrete Algorithms (JDA), 8(2):199–213, 2010.

[14] Sergey Brin and Lawrence Page. The anatomy of a large scale hypertextual web
search engine. In Proceedings of the 7th ACM International World Wide Web
Conference (WWW), 1998.

[15] Harry Buhrman and Ronald De Wolf. Complexity measures and decision tree
complexity: A survey. Theoretical Computer Science, 288:2002, 1999.

[16] Yen-Yu Chen, Qingqing Gan, and Torsten Suel. Local methods for estimating
PageRank values. In Proceedings of the 13th ACM International Conference on
Information and Knowledge Management (CIKM), pages 381–389, 2004.

[17] Junghoo Cho, Hector Garcia-Molina, and Lawrence Page. Efficient crawling
through URL ordering. Computer Networks, 30(1–7):161–172, 1998.

[18] Jason V. Davis and Inderjit S. Dhillon. Estimating the global PageRank of
web communities. In Proceedings of the 12th ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD), pages 116–125, 2006.

[19] Stephen Dill, Ravi Kumar, Kevin S. McCurley, Sridhar Rajagopalan, D. Sivaku-
mar, and Andrew Tomkins. Self-similarity in the web. ACM Transactions on
Internet Technology, 2(3):205–223, 2002.

[20] Güneş Erkan and Dragomir R. Radev. LexRank: Graph-based lexical centrality
as salience in text summarization. Journal of Artificial Intelligence Research
(JAIR), 22:457–479, 2004.

Bibliography 69

[21] Andrea Esuli and Fabrizio Sebastiani. PageRanking WordNet synsets: An ap-
plication to opinion mining. In Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics (ACL), pages 424–431, 2007.

[22] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing top k lists. In
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 28–36, 2003.

[23] Floris Geerts, Heikki Mannila, and Evimaria Terzi. Relational link-based rank-
ing. In Proceedings of the 30th International Conference on Very Large Data
Bases (VLDB), pages 552–563, 2004.

[24] David Gleich, Peter W. Glynn, Gene H. Golub, and Chen Greif. Three results
on the PageRank vector: eigenstructure, sensitivity, and the derivative. In Web
Information Retrieval and Linear Algebra Algorithms, 2007.

[25] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Pedersen. Combating web spam
with TrustRank. In Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB), pages 576–587, 2004.

[26] D. G. Hook and P. R. McAree. Graphics gems. chapter Using Sturm sequences
to bracket real roots of polynomial equations, pages 416–422. Academic Press
Professional, Inc., 1990.

[27] X. M. Jiang, G. R. Xue, H. J. Zeng, Z. Chen, W.-G. Song, and W.-Y. Ma. Ex-
ploiting PageRank at different block level. In Proceedings of the ACM Workshop
on Wireless Security (WISE), 2004.

[28] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The Eigen-
Trust algorithm for reputation management in P2P networks. In Proceedings
of the 12th ACM International World Wide Web Conference (WWW), pages
508–516, 2003.

[29] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM, 46:604–632, 1999.

[30] Donald E. Knuth. Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Addison-Wesley Professional, third edition, November 1997.

[31] Oren Kurland and Lillian Lee. PageRank without hyperlinks: Structural re-
ranking using links induced by language models. In Proceedings of the 28th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 306–313, 2005.

70 Bibliography

[32] Amy N. Langville and Carl D. Meyer. Deeper inside PageRank. Internet Math-
emathics, 1(3):335–380, 2004.

[33] Amy N. Langville and Carl D. Meyer. Google’s PageRank and Beyond: The
Science of Search Engine Rankings. Princeton University Press, Princeton, 2006.

[34] Massimo Melucci and Luca Pretto. PageRank: When order changes. In Pro-
ceedings of the 29th European conference on IR research (ECIR), pages 581–588,
2007.

[35] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The Page-
Rank citation ranking: bringing order to the Web. Technical report, Stanford
InfoLab, 1998.

[36] Enoch Peserico and Luca Pretto. What does it mean to converge in rank?
In Proceedings of the 1st International Conference on Theory of Information
Retrieval (ICTIR), pages 239–245, 2007.

[37] Enoch Peserico and Luca Pretto. HITS can converge slowly, but not too slowly,
in score and rank. In Hung Q. Ngo, editor, Computing and Combinatorics -
15th Annual International Conference, COCOON 2009, volume 5609 of Lecture
Notes in Computer Science, pages 348–357, Berlin Heidelberg, 2009. Springer.

[38] Enoch Peserico and Luca Pretto. Score and rank convergence of HITS. In Mark
Sanderson, ChengXiang Zhai, Justin Zobel, James Allan, and Javed A. Aslam,
editors, Proceedings of the 32nd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 770–771, New
York, 2009. ACM.

[39] Luca Pretto. A theoretical analysis of Google’s PageRank. In Proceedings of the
9th International Symposium on String Processing and Information Retrieval
(SPIRE), pages 131–144, 2002.

[40] Dragomir R. Radev and Rada Mihalcea. Networks and natural language pro-
cessing. AI Magazine, 29(3):16–28, 2008.

[41] Paul Tarau, Rada Mihalcea, and Elizabeth Figa. Semantic document engineer-
ing with WordNet and PageRank. In Proceedings of the 20th Annual ACM
Symposium on Applied Computing (SAC), pages 782–786, 2005.

[42] University of Milan - DSI. Laboratory for Web Algorithmics. http://law.dsi.
unimi.it/.

http://law.dsi.unimi.it/
http://law.dsi.unimi.it/

Bibliography 71

[43] James H. Wilkinson. Rounding Errors in Algebraic Processes. Dover Publica-
tions, Incorporated, 1994.

[44] Rebecca S. Wills and Ilse C. F. Ipsen. Ordinal ranking for Google’s PageRank.
SIAM Journal on Matrix Analysis and Applications, 30(4):1677–1696, 2009.

[45] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of
complexity. In Proceedings of the 18th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 222–227, 1977.

	Introduction
	Motivation and related work
	PageRank
	Score vs. rank
	Outline of the thesis

	Choose The Damping, Choose The Ranking?
	Introduction
	The damping makes the ranking
	Notation
	Rank can change completely: a proof

	Lineage analysis
	Better rank for every damping factor?
	Damping variables
	Lineages

	Damping-independent ranking
	Strong and weak rank
	StrongRank and WeakRank

	Experimental results
	Data and experimental setup
	Choose the damping, choose the ranking?
	The best damping factor

	The damping makes the ranking – in theory if not in practice

	Local Computation of PageRank : The Ranking Side
	Introduction
	Limits and pitfalls of the brute force algorithm
	Local ranking of nodes
	The cost of local ranking
	Experiments
	Experimental design
	Is ranking local in real graphs?
	Local ranking with real algorithms

	Ranking is not local

	Conclusions

