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Riassunto

Analizziamo alcune proprietà di funzioni a variazione limitata in spazi di Carnot-

Carathéodory. Nel Capitolo 2 dimostriamo che esse sono approssimativamente dif-

ferenziabili quasi ovunque, esaminiamo il loro insieme di discontinuità approssimata e la

decomposizione della loro derivata distribuzionale. Assumendo un’ipotesi addizionale

sullo spazio, che chiamiamo proprietà R, mostriamo che quasi tutti i punti di discon-

tinuità approssimata sono di salto e studiamo una formula per la parte di salto della

derivata. Nel Capitolo 3 dimostriamo un teorema di rango uno à la G. Alberti per

la derivata distribuzionale di funzioni vettoriali a variazione limitata in una classe di

gruppi di Carnot che contiene tutti i gruppi di Heisenberg Hn con n ≥ 2. Uno stru-

mento chiave nella dimostrazione è costituito da alcune proprietà che legano le derivate

orizzontali di una funzione a variazione limitata con il suo sottografico. Nel Capitolo

4 dimostriamo un risultato di compattezza per succesioni (uj) equi-limitate in spazi

metrici (X, dj) quando lo spazio X è fissato ma la metrica può variare con j. Mostri-

amo inoltre un’applicazione agli spazi di Carnot-Carathéodory. I risultati del Capitolo

4 sono fondamentali per la dimostrazione di alcuni fatti contenuti nel Capitolo 2.
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Abstract

We study properties of functions with bounded variation in Carnot-Carathéodory

spaces. In Chapter 2 we prove their almost everywhere approximate differentiabil-

ity and we examine their approximate discontinuity set and the decomposition of their

distributional derivatives. Under an additional assumption on the space, called prop-

erty R, we show that almost all approximate discontinuities are of jump type and we

study a representation formula for the jump part of the derivative. In Chapter 3 we

prove a rank-one theorem à la G. Alberti for the derivatives of vector-valued maps

with bounded variation in a class of Carnot groups that includes all Heisenberg groups

Hn with n ≥ 2. Some important tools for the proof are properties linking the hori-

zontal derivatives of a real-valued function with bounded variation to its subgraph. In

Chapter 4 we prove a compactness result for bounded sequences (uj) of functions with

bounded variation in metric spaces (X, dj) where the space X is fixed, but the metric

may vary with j. We also provide an application to Carnot-Carathéodory spaces. The

results of Chapter 4 are fundamental for the proofs of some facts of Chapter 2.
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Introduction

Functions of bounded variation (BV functions) play an important role in several prob-

lems of Calculus of Variations like minimal area problems and free discontinuity prob-

lems and, since their notion is closely linked to finite perimeter and rectifiable sets, they

also come into use in Geometric Measure Theory. In the classical Euclidean setting,

the structure of functions of bounded variation has been intensively studied. In [69, 90]

BV functions have been introduced as a natural generalization of Sobolev maps while

in [32] one can find BV Theory as a special case of the more recent Theory of Cur-

rents. Some properties of the distributional derivative of a BV function are described

in [10, 31, 43, 44, 68, 73, 91] while the important Rank-One Theorem in the Euclidean

case is proved in [1]. Most of the results about structure properties of BV functions in

the Euclidean case are collected in an organic way in the book [5].

The extension of the Euclidean BV Theory to metric spaces is however much more re-

cent. One of the milestones of Analysis on metric measure spaces is certainly [46], where

Sobolev and BV functions are deeply studied and where the authors show how the va-

lidity of Poincaré-type inequalities and a doubling property of the reference measure

are enough to prove fundamental results like Sobolev inequalities, Sobolev embeddings,

Trudinger’s inequality. The notion of BV function in metric measure spaces has been

then developed in different environments like weighted Euclidean spaces (see [11]),

Finsler structures (see [15]), the so-called good metric measure spaces (see [70]) and

Carnot-Carathéodory spaces (see [17, 20, 23, 34, 38, 39, 36, 41] and the more recent

[8, 6, 9, 19, 22, 28, 59, 66, 85]).

Carnot-Carathéodory spaces (CC spaces for short) represent one of the setting where

BV functions have been most fruitfully introduced. CC spaces first naturally appeared

in the Theory of hypo-elliptic operators, degenerate elliptic operators and singular inte-

grals (see e.g. [49, 87], as well as many others) and only later on they have been object

of studies from a Geometric Measure Theory point of view. The class of CC spaces

is general enough to include the Euclidean spaces (as a trivial case) and all Carnot

groups (or stratified groups). A Sobolev Theory in CC spaces has been systematically

worked out in the literature while only partial results are known for the structure of BV

functions in this setting, so far. We however point out the validity of very important

results concerning BV functions in CC spaces like approximation of BV functions via

9



10 Introduction

smooth maps (see [36]), coarea formulae (see [77, 36]), Sobolev-Poincaré inequalities

(see [41, 35, 46]) and Isoperimetric inequalities (see [34, 41, 79]). Some of the most

notable difficulties in developing analysis in this framework are the lack of a Besicov-

itch derivation Theorem (see e.g. [52]) and the non-existence of a group operation or

a family of dilations that are compatible with the metric structure.

The goal of this Thesis is twofold. First, we extend some of the so-called fine properties

of BV functions, that are well established in Euclidean spaces, in a setting of CC spaces

(we refer the reader to [5] for a deep introduction to the Euclidean case). On a parallel

line we prove a Rank-One Theorem for BV functions in a class of Carnot groups that

includes all Heisenberg groups Hn with n ≥ 2.

Let us now fix some notation about CC spaces. Consider an m-tuple X = (X1, . . . , Xm)

of linearly independent and smooth vector fields in Rn satisfying Hörmander condition

(named after [49]), i.e., the linear span of X1, . . . , Xm together with all their commuta-

tors computed at any point p is the whole Rn. In this case (see [21]) for any p, q ∈ Rn

there exists an X-subunit path γ joining them, i.e., an absolutely continuous curve

γ : [0, T ]→ Rn so that, for almost every t ∈ [0, T ], one has

γ(0) = p, γ(T ) = q and γ̇(t) =
m∑

i=1

hi(t)Xi(γ(t)),

for some h = (h1, . . . , hm) ∈ L
∞([0, T ];Rm) with ‖h‖∞≤ 1. The map d : Rn × Rn →

[0,+∞) defined by

d(p, q) := inf{T > 0 : ∃ an X-subunit γ : [0, T ]→ Rn joining p and q},

is then a distance called Carnot-Carathéodory distance and the metric space (Rn, d)

(equivalently denoted by (Rn, X)) is said to be a Carnot-Carathéodory space. The

metrics d and the Euclidean metric de = | · − · | give the same topology but they are

not metrically equivalent (see [78]). As customary in the literature, we will also assume

that metric balls are bounded with respect to the Euclidean topology. Denoting by

Li(p) the linear span of all the commutators of X1, . . . , Xm up to order i computed

at p ∈ Rn, we will also assume that the dimension of Li(p) is constant and equals

to some integer ni. In this case, the minimum s ∈ N such that Ls(p) = Rn is called

step of the CC space and (Rn, X) is said to be an equiregular CC space of step s.

Equiregularity assumption will be fundamental for our purposes since by [71, 50] the

Hausdorff dimension of the metric space (Rn, d) is given by the so-called homogeneous

dimension Q =
∑s

i=1 i(ni−ni−1) and the metric measure space (Rn, d,L n) (where L n

denotes the n-dimensional Lebesgue measure) is locally Ahlfors Q-regular (see Theorem

1.2.4), i.e., for every compact set K ⊆ Rn there exist C ≥ 1 and R > 0 such that

1

C
rQ ≤ L

n(B(p, r) ≤ CrQ,
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for every p ∈ K and for every r ∈ (0, R). Notice that, by e.g. [82], any CC space can

be lifted to an equiregular one. Despite equiregular CC spaces are not (even locally)

bi-Lipschitz equivalent to any Euclidean space, a blow-up technique can still be fruitful

in this framework. Indeed the metric tangent, in the Gromov-Hausdorff sense (see [45]),

of an equiregular CC space at any point is a Carnot group with the same step. This fact

is a consequence of the papers [13, 14, 76] and it will be heavily used throughout the

Thesis. We recall that Carnot groups are connected, simply connected and nilpotent

Lie groups whose Lie algebra is stratified, and we refer to [33, 75, 59, 55] for more

detailed introduction to the subject. Section 1.3 below contains a brief introduction to

Carnot groups.

Functions of bounded X-variation have been introduced in [41, 36]. Given an open set

Ω in a CC space (Rn, X) and u ∈ L1(Ω), we say that u has bounded X-variation (u ∈

BVX(Ω)) if the distributional derivative DXu := (DX1u, . . . , DXm
u) is (represented) by

a vector-valued Radon measure with finite total variation, i.e., for any ϕ ∈ C1
c (Ω), and

for any i = 1, . . . ,m one has

ˆ

Ω

uX∗
i ϕdL

n = −

ˆ

Ω

ϕd(DXi
u),

and |DXu|(Ω) < +∞. A measurable set E is said to have finite X-perimeter in Ω

if χE ∈ BVX(Ω). A first goal we have in mind is to study some structural proper-

ties of the measure derivative DXu, taking especially into account the decomposition

DXu = Da
Xu + Ds

Xu into the absolutely continuous part Da
Xu and the singular part

Ds
Xu with respect to the Lebesgue measure L n. To this end, as suggested by the

classical theory of BV functions (see [5]), one first needs to classify, roughly speaking,

the type of singularity (or regularity) that a function might have. More precisely, one

needs a consistent theory that includes the notions of jump point and differentiability

point in an approximate sense. This will be done in Section 2.1. Section 2.2 is then

devoted to the proof of the main results about BVX function in all equiregular CC

spaces satisfying the following geometric property that we call R: all sets of finite X-

perimeter have rectifiable essential boundary. The validity of this property is crucial,

non-technical and also natural since it is known to hold in all Euclidean spaces, in all

Carnot groups of step 2 and in all Carnot groups of type ?. The importance of property

R will be discussed into details later on, together with the definition of rectifiability.

Some of the main results about fine properties of BV functions presented in Chapter 2

need some fine blow-up analysis about intrinsic regular hypersurfaces (see Section 1.5).

Chapter 2 and Section 1.5 are mostly new and contained in the work of the author and

his supervisor Davide Vittone [30].

Part of the analysis of singular points for BVX functions requires some blow-up tech-

nique together with the nilpotent approximation of a CC space. Chapter 4 contains a

technical but fundamental lemma (contained in [29]) that ensure compactness of equi-
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bounded sequences (uj) in BVXj , for converging smooth vector fields Xj.

The content of Chapter 3 is contained in [28] and it is devoted to the proof of a Rank-

One theorem for BV functions in all Carnot groups satisfying a slightly weaker version

of property R, called w-R, and a codimension-2 “complementability” property C2. The

classical Rank-One Theorem, whose proof is contained in [1], states that, if u is a Rk-

valued BV function in an open set Ω and Dsu is its singular part of Du with respect

to L n, then the polar decomposition matrix Dsu/|Dsu| : Ω → Rk×n has rank one

|Dsu|-almost everywhere.

Let us analyze and discuss the content of the chapters into details.

Chapter 1 contains introductory content that will be useful in the proofs of the

main results of the following chapters of this Thesis. Section 1.1 contains some covering

lemmata that can be applied to CC spaces, some well-known facts of Measure Theory,

a decomposition criterion for measures in product metric spaces and the definition

of Hausdorff measures and pointwise densities of measures. Section 1.2 contains the

definition of equiregular CC spaces, their main metric and topological properties (see

Theorem 1.2.4). Subsection 1.2.1 contains a proof of Chow’s Theorem (see Theorem

1.2.1). Section 1.3 includes the definition of Carnot groups, well-known facts about

their structure and some examples like Heisenberg groups and the Engel group. Section

1.4 describes the tangent structure, in the Gromov-Hausdorff sense, of a CC space (see

Theorem 1.4.5). Section 1.5 contains the notion of intrinsic Lipschitz and intrinsic

regular hypersurfaces in the context of CC spaces. Some results of this section are due

to the author and to his PhD supervisor Davide Vittone and they are contained in

[30]. It is worth to mention that, by the important paper [51] we know that, already

in Carnot groups, there are examples of intrinsic C1 hypersurfaces that are (from

the Euclidean point of view) fractals. However, we are able to prove some blow-up

properties of such hypersurfaces in equiregular CC spaces (see Proposition 1.5.3 and

Corollary 1.5.4), and to give an estimate of the Hausdorff dimension of the “transversal

subset” of the intersection of two hypersurfaces (see Theorem 1.5.6). In Section 1.6 we

give the definition of functions of bounded X-variation together with a list of known

properties of BVX functions in CC space: approximation by smooth maps (Theorem

1.6.3), Coarea formula (Theorem 1.6.6), Poincaré inequality (Theorem 1.6.7, see also

[20, Theorem 1.2]) and Isoperimetric inequality (Theorem 1.6.8).

The aim of Chapter 2 is to establish “fine” properties of BV functions in CC spaces.

A first non-trivial part of this Chapter consists in fixing the appropriate language in a

consistent and robust manner. Section 2.1 is therefore devoted to the introduction of

approximate notions of continuity, jump point and differentiability point for generic L1
loc

maps in CC spaces. The notion of approximate continuity has been already worked out

in the literature (see e.g. [48, Section 2.7]) by the extension of the Lebesgue Theorem
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to the more general context of doubling, locally compact and separable metric measure

spaces (here reported by Theorem 2.1.2). However, the definition of approximate jump

triple and approximate differentiability in CC spaces (introduced in Definitions 2.1.6

and 2.1.12) are new and require some precise analysis. In the classical theory the jump

set of a L1 function u is, roughly speaking, the set of points p for which there exist

u+(p) 6= u−(p) and a unit direction νu(p) such that, for small r > 0, u is approximately

equal to u+(p) on half of B(p, r) and to u−(p) on the complementary half of B(p, r),

the two halves being separated by an hyperplane orthogonal to νu(p). In CC spaces

this requires a certain amount of work, since there is no “linear” way to divide a ball

into two “half-balls”. We have to replace the notion of hyperplane orthogonal to a

direction ν(p) with an equivalence class of intrinsic C1 hypersurfaces sharing the same

normal at p. To this end the local properties of intrinsic C1 hypersurfaces proved in

Section 1.5 will be of capital importance. Similarly, the classical notion of approximate

differential of a L1 map u at a point p is a linear map that, at small scales, is “almost”

the incremental ratio associated with u at p. In order to define the approximate

differentiability in CC spaces, we again replace the linear map with a germ of intrinsic

regular hypersurfaces. Most of the results in Section 2.1 deal with well-posedness of the

definitions and with Borel regularity of X-jump sets, X-differentiability sets, X-jump

map p 7→ (u+(p), u−(p), νu(p)) and approximate X-gradient.

Section 2.2 contains the main results about “fine” properties of BV functions in CC

spaces. An important result that holds without further assumption on the space is

Theorem 1 below, and it concerns the almost everywhere approximate differentiability

of BVX functions; its classical counterpart is very well-known, see e.g. [5, Theorem

3.83].

Theorem 1. Let (Rn, X) be an equiregular CC space, let Ω ⊆ Rn be an open set and let

u ∈ BVX(Ω;R
k). Then u is approximately X-differentiable at L n-almost every point

of Ω. Moreover, the approximate X-gradient of u coincides L n-almost everywhere with

the density of Da
Xu with respect to L n.

The proof of Theorem 1 is based on Lemma 2.2.6, i.e., on a suitable extension to

CC spaces of the inequality
ˆ

B(p,r)

|u(q)− u(p)|

|q − p|
dL n(q) ≤ C

ˆ 1

0

|Du|(B(p, tr))

tn
dt

valid for a classical BV function u on Rn. Lemma 2.2.6 answers an open problem

stated in [8] and it is new even in Carnot groups. Theorem 1 was proved in the setting

of Carnot groups in [8] together with the following result, which we also extend to our

more general setting. We denote by H Q−1 the Hausdorff measure of dimension Q− 1

and by Su the set of points where a function u does not possess an approximate limit

in the sense of Definition 2.1.1.
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Theorem 2. Let (Rn, X) be an equiregular CC space, let Ω ⊆ Rn be an open set and let

u ∈ BVX(Ω;R
k). Then Su is contained in a countable union of sets with finite H Q−1

measure.

We denote by Ju ⊆ Su the set of X-jump points of u and by (u+(p), u−(p), νu(p)) the

approximate X-jump triple (see Definition 2.1.6) at a point p ∈ Ju. The measures

Dj
Xu := Ds

Xu Ju, Dc
Xu := Ds

Xu (Ω \ Ju),

are called, respectively, jump part and Cantor part of DXu. We want to study some

further properties of DXu and its decomposition

DXu = Da
Xu+Ds

Xu = Da
Xu+Dc

Xu+Dj
Xu.

We state some of them in the following result, which is a consequence of Theorems

2.2.20 and 2.2.4. We denote by S Q−1 the spherical Hausdorff measure of dimension

Q− 1.

Theorem 3. Let (Rn, X) be an equiregular CC space and consider an open set Ω ⊆ Rn,

a function u ∈ BVX(Ω;R
k) and a Borel set B ⊆ Ω. Then the following facts hold:

(i) there exists λ : Rn → (0,+∞) (not depending on Ω nor u) locally bounded away

from 0 such that |DXu|≥ λ|u+ − u−|S Q−1 Ju.

(ii) if H Q−1(B) = 0, then |DXu|(B) = 0.

(iii) if H Q−1(B) < +∞ and B ∩ Su = ∅, then |DXu|(B) = 0.

(iv) Da
Xu = DXu (Ω \ S) and Ds

Xu = DXu S, where

S :=

{
p ∈ Ω : lim

r→0

|DXu|(B(p, r))

rQ
= +∞

}
.

(v) Ju ⊆ Θu, where Θu ⊆ S is defined by

Θu :=

{
p ∈ Ω : lim inf

r→0

|DXu|(B(p, r))

rQ−1
> 0

}
.

However, for classical BV functions much stronger results than Theorems 1 and 3 are

indeed known: some of them are proved in Section 2.2 for BVX functions under the

additional assumption that the space (Rn, X) satisfies the following condition.

Definition 1 (PropertyR). Let (Rn, X) be an equiregular CC space with homogeneous

dimension Q. We say that (Rn, X) satisfies the property R if, for every open set Ω ⊆ Rn

and every E ⊆ Rn with locally finite X-perimeter in Ω, the essential boundary ∂∗E∩Ω

of E in Ω is countably X-rectifiable, i.e., there exists a countable family {Si : i ∈ N}

of C1
X hypersurfaces such that H Q−1(∂∗E ∩ Ω \

⋃∞
i=0 Si) = 0.
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We refer to Definition 1.1.21 for the essential boundary ∂∗E. It was proved in the

fundamental paper [3] that the X-perimeter measure |DXχE| of E can be represented

as θH Q−1 ∂∗E for a suitable positive function θ that is locally bounded away from

0, see Theorem 2.2.3.

The validity of property R (“rectifiability”) in general equiregular CC spaces is an

interesting open question even in Carnot groups (see [7] for a partial result). However,

property R is satisfied in several interesting situations like Heisenberg groups [38],

Carnot groups of step 2 [39] and Carnot groups of type ? [66]: in particular, Theorems

4, 5 and 6 below hold is such classes. We conjecture that property R holds also in all

CC spaces of step 2, see [6]. Building on the results of [27], we prove in Section 2.2.1

the validity of the weaker property LR (“Lipschitz rectifiability”, see Definition 2.2.13)

in all Carnot groups satisfying property (2.34) below; in particular, a weaker version

of Theorem 4 holds in such groups (see Theorem 2.2.15).

The first result we are able to prove assuming property R is a refinement of Theorem 2

and, roughly speaking, it states that H Q−1-almost all singularities of a BVX function

are of jump type.

Theorem 4. Let (Rn, X) be an equiregular CC space satisfying property R, let Ω ⊆

Rn be an open set and let u ∈ BVX(Ω;R
k). Then Su is countably X-rectifiable and

H Q−1(Su \ Ju) = 0.

Assuming property R, Theorem 3 can be refined as follows.

Theorem 5. Under the assumption and notation of Theorem 3, assume that (Rn, X)

satisfies property R. Then

(i) H Q−1(Θu \ Ju) = 0 and Dj
Xu = DXu Θu;

(ii) Dc
Xu = DXu (S \Θu);

(iii) if B ⊆ Ω is such that H Q−1 B is σ-finite, then Dc
Xu(B) = Da

Xu(B) = 0.

Theorem 5 is part of Theorem 2.2.20. We also mention that, assuming property R, one

can define a precise representative up of u (see (2.30)) and prove that the convergence

of the mean values
ffl

B(p,r)
udL n to up(p) holds for H Q−1-almost every p. See Theorem

2.2.18.

Eventually, a further natural assumption – property D (“density”, see Definition 2.2.21)

– concerning the local behavior of the spherical Hausdorff measure S Q−1 of C1
X hy-

persurfaces allows to obtain a stronger result, Theorem 6, about the jump part Dj
Xu.

PropertyD is satisfied in Heisenberg groups, Carnot groups of step 2 and Carnot groups

of type ?, see Subsection 2.2.1; its validity in more general settings is an interesting

open problem that will be object of future investigations. Theorem 6 follows from the

more general Theorem 2.2.23, which deals with a representation of the restriction of

DXu to any countably X-rectifiable set R.
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Theorem 6. Let (Rn, X) be an equiregular CC space satisfying properties R and D;

then, there exists a function σ : Rn × Sm−1 → (0,+∞) such that, for every open set

Ω ⊆ Rn and every u ∈ BVX(Ω;R
k), one has

Dj
Xu = σ(·, νu)(u

+ − u−)⊗ νu S
Q−1 Ju.

Chapter 3 is devoted to the proof of the Rank-One Theorem in a class of Carnot

groups. Its content comes from the paper [28] and it is due to the author, Annal-

isa Massaccesi and Davide Vittone. The Rank-one theorem represents one the most

difficult results in the theory of functions with bounded variation. It states that the

Radon-Nikodým derivative Dsu
|Dsu|

of Dsu with respect to its total variation |Dsu|, which

is a |Dsu|-measurable map from Ω to Rd×n, takes values in the space of rank-one ma-

trices |Dsu|-almost everywhere in Ω.

The Rank-One Theorem was first conjectured by L. Ambrosio and E. De Giorgi in

[4] and it has important applications to vectorial variational problems and systems of

PDEs. It was proved by G. Alberti in [1] (see also [2, 25]): due to its complexity, Al-

berti’s proof is generally regarded as a tour-de-force in measure theory. Two different

proofs of the Rank-One Theorem were recently found. One is due to G. De Philippis

and F. Rindler and it follows from a profound PDE result [26], where a rank-one prop-

erty for maps with Bounded Deformation was also proved for the first time. At the

same time another proof, of a geometric flavor and considerably simpler than those in

[1, 26], was provided by Annalisa Massaccesi and Davide Vittone in [67].

Motivated by these results, in this chapter we consider the following natural general-

ization. If G is a Carnot group of rank m, we say that u ∈ BVG(Ω;Rk) for an open

set Ω ⊆ G, if u ∈ BVX(Ω;Rk) for any basis X = (X1, . . . , Xm) of g1. Upon passing

in exponential coordinates, one can identify G = Rn. Consider the singular part Ds
Gu

of DGu with respect to the Haar measure of the group that we can assume is L n. Is

it true that the Radon-Nikodým derivative Ds
G
u

|Ds
G
u|

is a rank-one matrix |Ds
Gu|-almost

everywhere?

We find two assumptions on G, that we call properties C2 and w-R (see Definitions

3.1.3 and 3.4.1), that ensure the rank-one property for BVG functions in G. We will

discuss later the role played by these properties in our argument. Our first main result

is the following

Theorem 7. Let G be a Carnot group satisfying properties C2 and w-R; let Ω ⊆ G be

an open set and u ∈ BVG,loc(Ω;R
k). Then the singular part Ds

Gu of DGu is a rank-one

measure, i.e., the matrix-valued function
Ds

G
u

|Ds
G
u|
(x) has rank one for |Ds

Gu|-a.e. x ∈ Ω.

It is worth pointing out that Theorem 7 applies to the n-th Heisenberg group Hn,

provided n ≥ 2. Heisenberg groups are defined in Example 1.3.24 and they represent

some of the most simple non-trivial examples of Carnot groups. Notice also that



Introduction 17

property w-R is slightly weaker than property R used in Chapter 2. We however

conjecture that property R and property w-R are indeed equivalent.

Corollary 1. Let u be as in Theorem 7 and assume that G is the Heisenberg group

Hn, n ≥ 2; then, Ds
Gu is a rank-one measure. More generally, the same holds if G is

a Carnot group of step 2 satisfying property C2.

Corollary 1 is an immediate consequence of Theorem 7, see Remarks 3.1.5 and 3.4.3.

This basically follows from the fact that Heisenberg groups Hn satisfy property C2 if

and only if n ≥ 2 and that by [39], all step 2 Carnot groups satisfy property R and in

particular property w-R.

Theorem 7 does not directly follow from the outcomes of [26], see Remark 3.4.6. Its

proof follows the geometric strategy devised in [67] and it is based on the relations

between a (real-valued) BVG function u in G and the G×R-perimeter of its subgraph

Eu := {(x, t) : t < u(x)} ⊆ G × R. This relations can be summarized in our second

main result of this Chapter.

Theorem 8. Suppose that Ω ⊆ G is open and bounded and let u ∈ L1(Ω). Then u

belongs to BVG(Ω) if and only if its subgraph Eu has finite G×R-perimeter in Ω×R.

Actually, the proof of Theorem 7 requires much finer properties than the one stated

in Theorem 8. Such properties are stated in Theorems 3.3.1 and 3.3.2 in the more gen-

eral context of CC spaces. Theorem 3.3.1, from which Theorem 8 follows in a stroke,

focuses on the relations between the horizontal (in Rn) derivatives of u and the hori-

zontal (in Rn × R) derivatives of χEu
. Theorem 3.3.2 instead deals with the relations

between the horizontal normal to Eu and the polar vector σu in the decomposition

DGu = σu|DGu|, and it also deals with the relations between Da
Gu,D

s
Gu and the hor-

izontal derivatives of χEu
. When m = n and Xi = ∂xi

one recovers some results that

belong to the folklore of Geometric Measure Theory and are scattered in the literature

(see e.g. [73], [32, 4.5.9] and [43, Section 4.1.5]). We tried to collect them in a more

systematic way in Section 3.3.

Property w-R (“weak rectifiability”) intervenes in ensuring that the horizontal

derivatives of χEu
are a “rectifiable” measure. A Carnot group G satisfies Property

w-R (see Definition 3.4.1) if, for any open set Ω ⊆ G and any u ∈ BVG(Ω), one has

that the essential boundary ∂∗Eu of its subgraph Eu is G×R-rectifiable and the normal

to the rectifiable set ∂∗Eu coincides H Q-almost everywhere with the measure-theoretic

horizontal normal to Eu. As already pointed out, by Theorem 8, property w-R is weaker

than property R but we conjecture they are actually equivalent. Property w-R is a

non-trivial technical obstruction one has to face when following the strategy of [67]:

the rectifiability of sets with finite G-perimeter in Carnot groups is indeed a major

open problem, which has been solved only in step 2 Carnot groups (see [38, 39]) and
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in the class of Carnot groups of type ? ([66]). See also [7] for a partial result in general

Carnot groups.

Once the rectifiability of ∂∗Eu is ensured, the proof of Theorem 7 follows rather

easily from the technical Lemma 3.2.7, which is the natural counterpart of the Lemma

in [67]. The latter, however, was proved by utilizing the area formula for maps between

rectifiable subsets of Rn, see e.g. [5]. A similar tool is not available in the context of

Carnot groups, and this fact forces us to follow a different path. The proof of Lemma

3.2.7 is indeed achieved by a covering argument that is based on the following result.

Theorem 9. Let k ≥ 1 be an integer, G a Carnot group satisfying property Ck and

let Σ1, . . . ,Σk be hypersurfaces of class C1
G with horizontal normals ν1, . . . , νk. Let also

p ∈ Σ := Σ1 ∩ . . . ∩ Σk be such that ν1(p), . . . , νk(p) are linearly independent. Then,

there exists an open neighborhood U of p such that

0 < H
Q−k(Σ ∩ U) <∞.

In particular, the measure H Q−k is σ-finite on the set

Σt := {x ∈ Σ : ν1(x), . . . , νk(x) are linearly independent}.

By C1
G maps (see Subsection 3.2) we mean continuous functions f for which the

distributional derivative Y f is represented by a continuous function, for any Y ∈ g1.

Theorem 9 is a consequence of Theorems 3.2.3 and 3.2.5 proved, respectively, in [40]

and [62]. These Theorems are collected here in Subsection 3.2.2, together with some

introduction to intrinsic Lipschitz graphs. Theorem 3.2.5, in particular, states the

much deeper property that the set Σt is locally an intrinsic Lipschitz graph. To this

aim, one needs the intersection TpΣ1 ∩ . . . ∩ TpΣk of the tangent subgroups to Σi at p

to admit a (necessarily commutative) complementary homogeneous subgroup that is

horizontal, i.e., contained in exp(g1). This algebraic property is guaranteed by property

Ck (“k-codimensional complementability”), see Remark 3.1.4. We will provide a proof

of Theorem 3.2.5 which does not rely on the homotopy invariance of the topological

degree and is then simpler and shorter than the one in [62].

Property Ck might seem a restrictive one for the validity of Theorem 9. We however

point out that the latter is no longer valid already when k = 2 and G is the first

Heisenberg group H1, which does not satisfy C2: indeed, in this setting the measure

H Q−2(Σt) might be either 0 or +∞ (even locally) as shown by A. Kozhevnikov [53].

See also the recent paper [63].

The fact that Theorem 9 does not apply to H1 (actually, to H1×R×R, see the proof of

Lemma 3.2.7) prevents us from proving the Rank-One Theorem for G = H1. This does

not follow from [26] either (see Remark 3.4.7) and, thus, it remains a very interesting

open problem.
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Chapter 4 deals with technical result about compactness for BV functions in a class

of metric measure spaces. The contents of this Chapter are contained in [29] and they

are due to the author and Davide Vittone. One of the milestones in the theory of func-

tions with bounded variation is the following Rellich-Kondrachov-type theorem: given

a bounded open set Ω ⊆ Rn with Lipschitz regular boundary, the space BV (Ω) of

functions with bounded variation in Ω compactly embeds in Lq(Ω) for any q ∈ [1, n
n−1

).

One notable consequence is the following property: if (uj) is a sequence in BVloc(R
n)

that is locally uniformly bounded in BV , then for any q ∈ [1, n
n−1

) there exists a sub-

sequence (ujh) of (uj) that converges in Lq
loc(R

n). A Rellich-Kondrachov-type result in

metric measure spaces is given in [46, Theorem 8.1]: if a sequence (uj) is bounded in

some W 1,p, then a subsequence converges in some Lq.

In this chapter we study similar compactness properties for sequences (uj) of locally

uniformly bounded BV functions in metric measure spaces (M,λ, dj) where the under-

lying measure space (M,λ) is fixed but the metric dj varies with j. In our main result

we prove that, if dj converges locally uniformly to some distance d on M such that

(M,λ, d) is a (locally) doubling separable metric measure space, and if the functions

uj : X → R are locally uniformly (in j) bounded with respect to a BV-type norm in

(M, dj) and satisfy some local Poincaré inequality (with constant independent of j),

then a subsequence of uj converges in some Lq
loc(M,λ). See Theorem 4.1.1 for a precise

statement. To our knowledge, the strategy we adopt to prove Theorem 4.1.1 is novel

even when the metric on M is not varying (i.e., when dj = d for any j); in particular,

we are able to provide a different proof of the case p = 1 in [46, Theorem 8.1] for

separable metric spaces.

The motivation that led us to Theorem 4.1.1 is given in Chapter 2 from an application

to the study of BV functions in CC spaces. In Theorem 4.2.6 we indeed prove that, if

Xj = (Xj
1 , . . . , X

j
m) are families of smooth vector fields in Rn that, as j →∞, converge

in C∞
loc(R

n) to a family X = (X1, . . . , Xm) satisfying the Chow-Hörmander condition,

and if uj : Rn → R are locally uniformly bounded in BVXj ,loc, then a subsequence ujh
converges in L1

loc(R
n) to some u ∈ BVX,loc(R

n). Theorem 4.2.6 directly follows from

Theorem 4.1.1 once we show that the CC distances induced by Xj converge locally

uniformly to the one induced by X, and that (locally) a Poincaré inequality holds for

BVXj functions with constant independent of j; these two results (Theorems 4.2.4 and

4.2.5, respectively) use in a crucial way some outcomes of the papers [18, 73].

As it is clear by the techniques used in Chapter 2, in the study of fine properties of

BVX functions in CC spaces, and in particular of their local properties, one often needs

to perform a blow-up procedure around a fixed point p: as explained in Theorem 1.4.5,

this produces a sequence of CC metric spaces (Rn, Xj) that converges to (a quotient

of) a Carnot group structure G. In this blow-up, the original BVX function u0 gives

rise to a sequence (uj) of functions in BVXj which, up to subsequences, will converge
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in L1
loc to a BVG,loc function u in G. The function u will be typically a linear map, or a

“jump map” taking two different values on complementary halfspaces of G (see Section

2.1 for a better understanding).
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Chapter 1

Preliminaries

The following chapter is devoted to the introduction of the main definitions and known

results we are going to need throughout this Thesis. Section 1.1 is divided into three

subsections: Subsection 1.1.1 gives some well-known notions in measure theory, Subsec-

tion 1.1.2 contains a classical result about decomposition of measures in metric spaces,

Subsection 1.1.3 gives the classical covering theorems that are valid in “good” metric

spaces, Subsection 1.1.4 introduces the Hausdorff measure, the Hausdorff dimension,

the upper and lower k-densities of a Radon measure µ and the definition of porous

sets, together with some simple (but very useful) propositions (see Propositions 1.1.18

and 1.1.19).

Section 1.2 introduces the definition of Carnot Carathéodory space. A list of some

well-known (but very important) results is given in 1.2.4 while in Subsection 1.2.1 a

proof of Chow’s Theorem (see Theorem 1.2.1) is given. Section 1.3 is devoted to an

introductory presentation of the notion of Carnot group, which will be needed espe-

cially in Chapter 3. Section 1.4 is then devoted to showing the so-called nilpotent

approximation of a CC space (see Theorem 1.4.5).

Section 1.5 is devoted to the introduction of the intrinsic regular hypersurfaces. Both

X-Lipschitz and C1
X hypersurfaces are then defined and a study of “fine” properties

of C1
X hypersurfaces is worked out. Some of the results here stated are original (see

Proposition 1.5.3, Corollary 1.5.4 and Theorem 1.5.6). The notion of X-rectifiable set

is also given (see Definition 1.5.7).

Section 1.6 is devoted to the definition of functions of bounded X-variation and of sets

of finite X-perimeter. A list of basic properties and important known results for BV

functions in CC spaces is also given: smooth approximation (see Theorems 1.6.2 and

1.6.3), Coarea formula (see Theorems 1.6.5 and 1.6.6), Poincaré Inequality (see 1.6.7)

and Isoperimetric inequality (see Theorem 1.6.8).

21
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1.1 Some tools from Geometric Measure Theory in

metric spaces

1.1.1 Useful facts from Measure Theory

Definition 1.1.1. Let (M, d) be a locally compact and separable metric space and let

µ and µh (h ∈ N) be Rk-valued Radon measure on M . Then we say that µh weakly∗

converges to µ if one has

lim
h

ˆ

ϕdµh =

ˆ

ϕdµ,

for every ϕ ∈ Cb(M).

We recall that the total variation |µ| of a Rk-valued measure µ = (µ1, . . . , µk) is

defined for Borel sets B as

|µ|(B) := sup

{
∞∑

`=1

|µ(B`)|: ` ∈ N, B` disjoint Borel subsets of B

}

=sup

{
ˆ

B

ϕ · dµ : ϕ :B → Rk Borel function, |ϕ|≤ 1

}
.

We recall here two important classical results: the Riesz’s Representation Theorem

1.1.2 (see [80]) and the Radon-Nykodým Decomposition Theorem 1.1.3 in doubling

metric measure spaces (see [84, Theorem 4.7 and Remark 4.5]).

Theorem 1.1.2. Let M be a locally compact and separable metric space and let L :

Cb(M ;Rk) → R be an additive and bounded functional, i.e., satisfying the following

conditions:

(i) for every u, v ∈ Cb(M ;Rk) one has L(u+ v) = L(u) + L(v);

(ii) ‖L‖:= sup{|L(u)|: u ∈ Cb(M ;Rk), |u|≤ 1} < +∞.

Then, there exists a unique Rk-valued Radon measure µ on X such that

L(u) =
k∑

i=1

ˆ

X

ui dµi,

for every u ∈ Cb(M ;Rk). Moreover one has ‖L‖= |µ|(M).

We recall that, given a metric space (M, d) and a positive Radon measure µ on M ,

we say that µ is doubling with respect to d if there exists C > 0 such that

µ(B(x, 2r)) ≤ Cµ(x, r),

for every x ∈M and for every r > 0.



1.1. TOOLS OF GMT IN METRIC SPACES 23

Theorem 1.1.3. Let M be a locally compact and separable metric space and let µ1 and

µ2 be two positive Radon measures on M . Suppose also that µ2 is doubling. Then the

limit
dµ1

dµ2

(x) := lim
r→0

µ1(B(x, r))

µ2(B(x, r))

exists for µ2-almost every x ∈ M and the map dµ1/dµ2 is µ2-measurable. Moreover,

there exists Z ⊆M such that µ2(Z) = 0 and for any Borel set A ⊆M one has

µ1(A) =

ˆ

A

dµ1

dµ2

dµ2 + µs
1(A),

where µs
1 := µ1 Z.

In case also µ1 is doubling then we may take Z = {dµ1/dµ2 = +∞}.

The proof of Proposition 1.1.4 below can be found for instance in [5, Proposition

1.62].

Proposition 1.1.4. Let (M, d) be a locally compact and separable metric space and let

(µh) be a sequence of Radon measures that weakly∗ converges to µ. Then the following

facts hold.

(a) If µh ≥ 0 for any h ∈ N, then for any lower semicontinuous function ϕ : M →

[0,+∞] one has

lim inf
h

ˆ

ϕdµh ≥

ˆ

ϕdµ,

and for any upper semicontinuous function ψ :M → [0,+∞) one has

lim sup
h

ˆ

ψ dµh ≤

ˆ

ψ dµ.

(b) If the sequence of total variations |µh| locally weakly∗ converges to some λ, then

λ ≥ |µ|. Moreover, if E b M is a µ-measurable set with λ(∂E) = 0, then

µh(E)→ µ(E) as h→ +∞.

1.1.2 Disintegration of measures

We here briefly describe a decomposition criterion for measures in product spaces

known as disintegration of measure (see e.g. [5, Section 2.5]). Recall that given a

σ-algebra E in M and a measure µ on M , we denote by Eµ the smallest σ-algebra

containing E and all the µ-negligible sets. We denote by B the σ-algebra of Borel sets.

Actually, the careful reader will notice that all the definitions and results presented

in this subsection are indeed valid in the case in which Rn and Rm with the usual

Euclidean metric are replaced by two locally compact and separable metric spaces.
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Definition 1.1.5. Let E ⊆ Rn and F ⊆ Rm be open sets, let µ be a positive Radon

measure on E and let ν = νx : E → M(F ;Rk) a map that assigns to each x ∈ E a

Rk-valued Radon measure νx on F . We say that νx is µ-measurable if, for every Borel

set B ⊆ F , the map x 7→ νx(B) is µ-measurable.

Proposition 1.1.6. Let E ⊆ Rn and F ⊆ Rm be open sets, let µ be a positive Radon

measure on E and let ν = νx : E →M(F ;Rk). Then νx is µ-measurable if and only

if, for any open set A ⊆ F , the map x 7→ νx(A) is µ-measurable. Moreover, if νx is

µ-measurable, the map

x 7→

ˆ

E

g(x, y) dνx(y)

is µ-measurable for any bounded Bµ(E)× B(F )-measurable function g : E × F → R.

Definition 1.1.7 (Generalized product of measures). Let E,F, µ and ν be as in Defi-

nition 1.1.5. Assume that for any open set A ⊆ E one has
ˆ

A

|νx|(F ) dµ(x) < +∞.

We say that the generalized product µ⊗ νx of µ and νx is the Rk-valued radon measure

on E × F defined by

µ⊗ νx(B) :=

ˆ

E

(
ˆ

F

χB(x, y) dνx(y)

)
dµ(x),

for any Borel set B in K × F , where K is compact in E.

Notice that Definition 1.1.7 is well-defined by Proposition 1.1.6. Moreover, the formula
ˆ

E×F

f(x, y) d(µ⊗ νx)(x, y) =

ˆ

E

(
ˆ

F

f(x, y) dνx(y)

)
dµ(x), (1.1)

holds for any bounded Borel map f : E × F → R with supt(f) ⊆ K × F , for some

compact K ⊆ E. This is a consequence of the fact that any bounded Borel map can

be uniformly approximated by sequences of simple functions. Formula 1.1 still holds

whenever f is (µ ⊗ νx)-summable or, if k = 1 and νx is positive, whenever f is either

positive or negative.

Theorem 1.1.8 (Disintegration of measures). Let E ⊆ Rn and F ⊆ Rm be two open

sets and let σ be a Rk-valued Radon measure on E ×F . Denote by π : E ×F → E the

canonical projection on the first factor and define µ := π#|σ|. Assume that µ is Radon,

i.e., for every compact set K ⊆ E one has |σ|(K × F ) < +∞. Then, for any x ∈ E,

there exists a Rk-valued Radon measure νx on F such that x 7→ νx is µ-measurable and

for µ-almost every x ∈ E, |νx|(F ) = 1. Moreover, for any f ∈ L1(E × F, |σ|), we have

that

f(x, ·) ∈ L1(F, |νx|) for µ-a.e. x ∈ E, (1.2)

x 7−−→

ˆ

F

f(x, y) dνx(y) ∈ L
1(E, µ), (1.3)
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and the formula
ˆ

E×F

f(x, y) dσ(x, y) =

ˆ

E

(
ˆ

F

f(x, y) dνx(y)

)
dµ(x), (1.4)

holds.

Proof. We construct νx by using Theorem 1.1.2. For any g ∈ Cb(F ) and for any Borel

set B ⊆ E, we define

µg(B) :=

ˆ

B×F

g(y) dσ(x, y).

Then µg is absolutely continuous with respect to µ and µg = π#(gσ). Therefore one

can estimate

|µg|≤ π#|gσ|≤ ‖g‖∞π#|σ|= ‖g‖∞µ.

By Theorem 1.1.3, there exists hg ∈ L∞(E, µ;Rk) such that µg = hgµ and ‖hg‖∞≤

‖g‖∞. Since by construction µg1+g2 = µg1 + µg2 , one also has that hg1+g2 = hg1 + hg2 ,

µ-almost everywhere. Fix a countable dense subset D of Cb(F ). Then we can find a

Borel set N ⊆ E with µ(N) = 0 and such that for any x ∈ E \N one has hg1+g2(x) =

hg1(x) + hg2(x), for any g1, g2 ∈ D. For any x ∈ E \ N we can define Tx : D → Rk,

letting Tx(g) := hg(x). Then, by construction of hg we have |Tx(g)|≤ ‖g‖∞. After

extending Tx on the whole Cb(F ), by Theorem 1.1.2, for any x ∈ E \N , there exists a

Rk-valued Radon measure νx on F such that |νx|(F ) = ‖Tx‖≤ 1 and for any g ∈ Cb(F )

one has

Tx(g) =

ˆ

F

g dνx.

For every x ∈ N , we simply set νx = δy for a fixed arbitrary y ∈ F . Observe now

that for any x ∈ E and any g ∈ D the map x 7→ Tx(g) is µ-measurable. By a simple

approximation argument the same holds for x 7→ Tx(χA), for any open set A ⊆ E. By

Proposition 1.1.6 we get that x 7→ νx is µ-measurable in the sense of Definition 1.1.5.

Let us now prove identity (1.4). For every Borel set B ⊆ E and every g ∈ D one

has
ˆ

E×F

χB(x)g(y) dσ(x, y) = µg(B) =

ˆ

B

hg(x) dµ(x)

=

ˆ

B

(
ˆ

F

g(y) dνx(y)

)
dµ(x) =

ˆ

E

(
ˆ

F

χB(x)g(y) dνx(y)

)
dµ(x).

By an approximation argument, the previous identity holds for all g ∈ Cb(F ) and

then for all g = χA with A ⊆ F open. Equality (1.4) holds then for all the maps

f : E × F → R of the kind f(x, y) = χB(x)χA(y) with B ⊆ E Borel and A ⊆ F open.

This implies that (1.4) holds for all f(x, y) = χB(x, y) for any Borel set B in E × F .

In particular, if B ⊆ E × F is Borel such that |σ|(B) = 0, then χB(x, ·) ∈ L
1(F, |νx|)

and
ˆ

F

χB(x)g(y) dνx(y) = 0,
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for µ-almost every x ∈ E. Then (1.2), (1.3) and (1.4) hold for f = χB for B ∈

Bσ(E×F ). The general case follows eventually by splitting f into positive and negative

part and by an approximation argument.

Let us prove that |νx|(F ) = 1 for µ-almost every x ∈ E. Define, for any x ∈ E and

for any Borel set B ⊆ E × F , the set Bx := {y ∈ F : (x, y) ∈ B}. Then, taking into

account (1.4), one immediately gets

|σ(B)|≤

ˆ

E

|νx|(Bx) dµ(x),

By definition of total variation of σ, this implies

|σ|(B) ≤

ˆ

E

|νx|(Bx) dµ(x).

Hence, with the choice B = E×F and taking the definition of µ into account, one has

|ν|(E × F ) ≤

ˆ

E

|νx|(F ) dµ(x) ≤

ˆ

E

1 dµ(x) = µ(E) = |ν|(E × F ),

which concludes the proof.

Theorem 1.1.9 (Uniqueness of the disintegration). Let E ⊆ Rn and F ⊆ Rm be two

open sets and let σ be a Rk-valued Radon measure on E×F . Denote by π : E×F → E

the canonical projection on the first factor and define µ := π#|σ|. Assume that µ is

Radon, i.e., for every compact set K ⊆ E one has |σ|(K × F ) < +∞. Then assume

x 7→ νx and x 7→ ν ′x are two µ-measurable maps satisfying conditions (1.2) and (1.4)

for every bounded Borel f with compact support and are such that x 7→ νx(F ), x 7→

ν ′x(F ) ∈ L
1(E, µ). Then νx = ν ′x for µ-almost every x ∈ E.

Proof. Let D be a countable and dense set in Cb(F ). Then by (1.4), for any g ∈ D and

any Borel set B b E, one has
ˆ

B

(
ˆ

F

g(y) dνx(y)

)
dµ(x) =

ˆ

B×F

g(y) dσ(x, y) =

ˆ

B

(
ˆ

F

g(y) dν ′x(y)

)
dµ(x).

Therefore we can find N ⊆ E such that µ(N) = 0 and with the property that
ˆ

F

g(y) dνx(y) =

ˆ

F

g(y) dν ′x(y),

for any g ∈ D and for any x ∈ E \ N . By density of D in Cb(F ) we can assert that

νx = ν ′x for µ-almost every x ∈ E.

1.1.3 Covering Theorems

In this subsection we report the covering Theorems we are going to use throughout

this Thesis.

A proof of Theorem 1.1.10 below can be found in [84, Theorem 3.3] or in [48, Theorem

1.2], while a proof of Theorem 1.1.11 can be found in [48, Theorem 1.6].
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Theorem 1.1.10 (5r-Covering Lemma). Let (M, d) be a separable metric space and

let B a family of closed balls in M such that

sup {diamB : B ∈ B} < +∞.

Denote by 5B the closed metric ball with the same center of B and radius 5 times larger

than the radius of B. Then there exists a countable and pairwise disjoint subfamily

F ⊆ B such that ⋃
B ⊆

⋃

B∈F

5B.

Theorem 1.1.11 (Vitali covering Lemma). Let (M, d) be a locally compact and sepa-

rable metric space and let µ be a Radon measure that is doubling with respect to d. Let

A ⊆M and let F be a family of closed balls such that for every x ∈ A

inf{r > 0 : B(x, r) ∈ F} = 0.

Then there exists a countable family G ⊆ F of pairwise disjoint balls such that

µ
(
A \

⋃
G
)
= 0.

Actually, Theorem 1.1.11 can be strengthened to a bigger class of metric measure

spaces. More precisely, let us introduce the following

Definition 1.1.12 ([84]). We say that a locally compact and separable metric space

M satisfies the symmetric Vitali property with respect to a positive Radon measure µ if

every family of balls F which covers the set A := {x ∈M : ∃r > 0 such that B(x, r) ∈

F} finely (i.e. for all x ∈ A, inf{r > 0 : B(x, r) ∈ F} = 0) admits a countable and

pairwise disjoint subfamily F ′ ⊆ F such that

µ
(⋃
F ′ \ A

)
= 0,

provided µ(A) < +∞.

The importance of the symmetric Vitali property is given by Theorem 1.1.13 which

generalizes Theorem 1.1.3.

Theorem 1.1.13 ( [84, Theorem 4.7] ). Let M be a locally compact and separable

metric space and let µ1 and µ2 be two positive Radon measures on M . Assume that M

satisfies the symmetric Vitali property with respect to µ2. Then the limit

dµ1

dµ2

(x) := lim
r→0

µ1(B(x, r))

µ2(B(x, r))

exists for µ2-almost every x ∈ M and the map dµ1/dµ2 is µ2-measurable. Moreover,

there exists Z ⊆M such that µ2(Z) = 0 and for any Borel set A ⊆M one has

µ1(A) =

ˆ

A

dµ1

dµ2

dµ2 + µs
1(A),
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where µs
1 := µ1 Z.

In case that M satisfies the symmetric Vitali property with respect to µ1, then we may

take Z = {dµ1/dµ2 = +∞}.

A sufficient condition that ensures symmetric Vitali property is given in the follow-

ing theorem, which is a consequence of [32, Theorem 2.8.17].

Theorem 1.1.14. Let M be a locally compact and separable metric space and let µ be

an asymptotically doubling positive Radon measure on M , i.e., such that

lim sup
r→0

µ(B(x, 2r))

µ(B(x, r))
< +∞.

for every x ∈ M and every r > 0. Then M has the symmetric Vitali property with

respect to µ.

To conclude this section on covering theorems we point out that one of the main

issues in the analysis of geometric properties of Carnot-Carathéodory spaces (see Sec-

tion 1.2) is the lack of a Besicovitch covering Theorem. The Euclidean formulation

below is contained in [5, Theorem 2.17] and its proof can be found in [16].

Theorem 1.1.15. Let n ∈ N. Then, there exists ξ ∈ N such that the following holds.

For any family F of closed balls in Rn such that the set A of their centers is bounded,

there exist ξ disjoint subfamilies F1, . . . ,Fξ of F such that

A ⊆

ξ⋃

h=1

⋃
Fh.

In particular, any point of A belongs to the intersection of at most ξ closed balls.

Actually Theorem 1.1.15 may fail in general metric spaces and its validity depends

on the metric. A counterexample to Theorem 1.1.15 in the Heisenberg group (see

Section 1.3 and Example 1.3.24) endowed with the Korányi metric is given e.g. in [52,

pag. 17] (see also [83, Section 4]), while a counterexample in the Heisenberg group

endowed with the CC distance has been given in [81]. It is also known that, in any

Carnot group of step greater than 3 endowed with the homogeneous distance, Theorem

1.1.15 is false (see [57]), while there exist homogeneous distances on the Heisenberg

group for which Theorem 1.1.15 holds (see [58]).

1.1.4 Hausdorff measures and densities

We here introduce the notions of Hausdorff measure and of k-density of a measure µ

and we describe their connections through Propositions 1.1.18 and 1.1.19.
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Definition 1.1.16 (Hausdorff measures). Let (M, d) be a metric space and k ≥ 0. We

define for any δ > 0 and for any set E

H
k
δ (E) :=

ωk

2k
inf

{
∞∑

h=0

(diamEh)
k : E ⊆

∞⋃

h=0

Eh, diamEh < δ

}
,

S
k
δ (E) :=

ωk

2k
inf

{
∞∑

h=0

(diamBh)
k : E ⊆

∞⋃

h=0

Bh, Bh balls with diamBh < δ

}
,

where ωα := πα/2Γ(1 + α/2)−1 and Γ(t) :=
´ +∞

0
st−1e−sds is the Euler Γ function.

H k
δ and S k

δ are respectively called Hausdorff premeasure and spherical Hausdorff

premeasure of size δ. The Hausdorff measure and the spherical Hausdorff measure of a

set E are then respectively defined setting

H
k(E) := sup

δ>0
H

k
δ (E) = lim

δ→0
H

k
δ (E),

S
k(E) := sup

δ>0
S

k
δ (E) = lim

δ→0
S

k
δ (E).

It is easy to notice that for any k ≥ 0 the following inequalities hold

H
k ≤ S

k ≤ 2kH k.

The Hausdorff dimension of E is inf{k : Hk(E) = 0} = sup{k : Hk(E) = +∞}.

Definition 1.1.17 (k-densities). If (M, d, µ) is a doubling metric measure space, k ≥ 0

and x ∈M , we define the upper k-density and the lower k-density of µ at x respectively

in the following way

Θ∗
k(µ, x) := lim sup

r→0

µ(B(x, r))

ωkrk
,

Θ∗k(µ, x) := lim inf
r→0

µ(B(x, r))

ωkrk
.

For every Borel set E ⊆ M we will also write for brevity Θ∗
k(E, x) := Θ∗

k(H
k E, x)

and Θ∗k(E, x) := Θ∗k(H
k E, x). If Θ∗

k(µ, x) = Θ∗k(µ, x), then the common value is

denoted by Θk(µ, x) and it is called k-density of µ at x.

The notions of k-density and of Hausdorff k-measure are linked in Propositions

1.1.18 and 1.1.19 below. The proof of Proposition 1.1.18 is an adaptation of [84,

Theorem 3.2].

Proposition 1.1.18. Let (M, d) be a locally compact and separable metric space, let

µ be a positive Radon measure on M , let E ⊆ M be a Borel set and let t > 0. Then

the following facts hold.

(i) If Θ∗
k(µ, x) ≥ t for every x ∈ E , then µ ≥ tS k E.
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(ii) If Θ∗
k(µ, x) ≤ t for every x ∈ E , then µ ≤ 2ktH k E.

In particular, for H k-almost every x ∈M , we have Θ∗
k(µ, x) < +∞.

Proof. (i) Suppose first that E is compact. Given δ ∈ (0, 1), take an open set with

compact closure A containing E and define

F :=
{
B(x, r) ⊆ A : p ∈ E, 0 < r < δ

2
, µ(B(x, r)) ≥ t(1− δ)ωkr

k
}
.

By Theorem 1.1.10, we get a countable sub-family {B(xh, rh) ∈ F : h ∈ N} of pairwise

disjoint closed balls such that

A ⊆
∞⋃

h=0

B(xh, 5rh).

In particular, we have

S
k
5δ(E) ≤

ωk

2k

∞∑

h=0

5krkh ≤
∞∑

h=0

5k
µ(B(xh, rh))

t(1− δ)
≤ 5k

µ(A)

t(1− δ)
< +∞.

By the arbitrariness of δ, we get that S k(E) < +∞. Applying now Theorem 1.1.11 we

get a pairwise and countable disjoint sub-family {B(xh, rh) ∈ F : h ∈ N} of F which

covers S k-almost all E and therefore

S
k
2δ(E) ≤

ωk

2k

∞∑

h=0

2krkh ≤
∞∑

h=0

µ(B(xh, rh))

t(1− δ)
≤

µ(A)

t(1− δ)
.

By the arbitrariness of δ and A we get the thesis in the case that E is compact. In the

general case it is sufficient to notice that, in a locally compact and separable metric

spaces, Radon measures are inner regular, i.e., the measure of every Borel set E can

be approximated by

µ(E) = sup {µ(K) : K is compact , K ⊆ E} .

(ii) Suppose first that E is compact. Take τ > t and define

Eh :=

{
x ∈ E :

µ(B(x, r))

ωkrk
< τ, ∀r ∈ (0, 1

2h
)

}
.

We have that (Eh) is an increasing sequence of sets whose union (by assumption) is E.

By definition of Hausdorff measure, for every h ∈ N we can find a family {Fi,h : i ∈ N}

of sets whose union covers Eh with diamFi,h < 1/h and such that

∞∑

i=0

ωk

2k
(diamFi,h)

k < H
k
1/h(Eh) +

1

h
.
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We can also suppose without loss of generality that for every i ∈ N there exists ξi ∈

Eh ∩ Fi,h. Then also the family {B(ξi, 2ri) : i ∈ N} is a covering of Eh and

µ(Eh) ≤
∞∑

i=0

µ(B(ξi, 2ri)) ≤ τ

∞∑

i=0

ωk2
krki < τ2k

(
H

k
1/h(E) +

1

h

)
.

By the arbitrariness of τ > t and h ∈ N we get the thesis in case E is compact. The

general case follows as in (i).

Corollary 1.1.19. Let (M, d) be a locally compact and separable metric space, let µ a

positive Radon measure on M , let E ⊆ M a Borel set and let f : E → (0,+∞) be a

Borel map. Then the following facts hold.

(i) If Θ∗
k(µ, x) ≥ f(x) for every x ∈ E , then µ ≥ fS k E.

(ii) If Θ∗
k(µ, x) ≤ f(x) for every x ∈ E , then µ ≤ 2kfH k E.

Proof. Let ε > 0 and define for every j ∈ Z the set

Ej := {x ∈ E : (1 + ε)j < f(x) ≤ (1 + ε)j+1}.

Suppose that Θ∗
k(µ, x) ≥ f(x) for every x ∈ E. Then, using (i) of Proposition 1.1.18

we get

µ =
∑

j∈Z

µ Ej ≥
∑

j∈Z

(1 + ε)jS k Ej ≥
∑

j∈Z

f

1 + ε
S

k Ej =
f

1 + ε
S

k E,

which, by the arbitrariness of ε, gives (i).

If we suppose that Θ∗
k(µ, x) ≤ f(x) for every x ∈ E, using (ii) of Proposition 1.1.18 we

have
µ =

∑

j∈Z

µ Ej ≤
∑

j∈Z

2k(1 + ε)j+1
H

k Ej

≤
∑

j∈Z

2k(1 + ε)fS
k Ej = 2k(1 + ε)fS

k E,

which, by the arbitrariness of ε, gives (ii).

As a consequence of the Corollary 1.1.19 we have the following remark.

Remark 1.1.20. Under the same assumptions of Corollary 1.1.19, for H k-almost

every x ∈M we have Θ∗
k(µ, x) < +∞ and for any Borel set B ⊆M the implication

µ(B) = 0⇒ Θk(µ, x) = 0 for H
k-a.e. x ∈ B

holds. In particular, if µ = gH k E we have Θk(µ, x) = 0 for H k-almost every

x ∈M \ E.
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Definition 1.1.21. Given a metric measure space (M, d, µ), a µ-measurable set E ⊆M

and t ∈ [0, 1] we denote by Et the set of points with µ-density t for E, i.e., all x ∈ M

satisfying

lim
r→0

µ(E ∩ B(x, r))

µ(B(x, r))
= t.

The essential boundary of E is then defined by ∂∗E :=M \ (E0 ∪ E1).

Definition 1.1.22. Let (M, d) be a metric space and let E ⊆M be a Borel set. Then

E is said to be porous if there esist α ∈ (0, 1) and R > 0 such that for every x ∈ M

and every r ∈ (0, R) there exists y ∈M such that B(y, αr) ⊆ B(x, r) \ E.

Proposition 1.1.23. Let let (M, d) be a locally compact and separable metric space,

let µ be a doubling Radon measure on M and let E ⊆M be a porous set. Then E1 = ∅

and in particular µ(E) = 0.

Proof. Let α and R be as in Definition 1.1.22. Suppose by contradiction there exists

x ∈ E1. For every r ∈ (0, R) there exists y ∈M such that

B(y, αr) ⊆ B(x, r) \ E.

This implies that
µ(B(x, r) \ E)

µ(B(x, r))
≥
µ(B(y, αr))

µ(B(x, r))
≥ C,

where C > 1 is a suitable constant depending on α and on the doubling constant of

µ. Letting r → 0 and taking into account that x ∈ (M \ E)0, we get a contradiction.

Taking into account Lebesgue Differentiation Theorem 2.1.2 we also get µ(E) = 0.

1.2 Carnot-Carathéodory spaces

In what follows we denote by Ω an open set in Rn and by X = (X1, . . . , Xm) an m-tuple

(m ≤ n) of smooth and linearly independent vector fields on Rn, with 2 ≤ m ≤ n. We

say that an absolutely continuous curve γ : [0, T ]→ Rn is a X-admissible path joining

p and q if γ(0) = p, γ(T ) = q and there exists h = (h1, . . . , hm) ∈ L
∞([0, T ];Rm) such

that for almost every t ∈ [0, T ] one has

γ̇(t) =
m∑

j=1

h(t)Xj(γ(t)). (1.5)

For every p, q ∈ Rn, we define the quantity

d(p, q) := {length(γ) : γ is X-admissible curve joining p and q}, (1.6)

where we agree that inf ∅ = +∞ and where

length(γ) :=

ˆ T

0

‖h(t)‖ dt.
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A sufficient condition that makes d a metric on Rn is given by Theorem 1.2.1, below,

which is proved in [21]. A proof of Theorem 1.2.1 is given in Subsection 1.2.1.

Theorem 1.2.1 (Chow-Rashevsky). Suppose that

∀ p ∈ Rn Lie{X1, . . . , Xm}(p) = TpR
n ∼= Rn, (1.7)

where Lie{X1, . . . , Xm}(p) denotes the linear span of all the iterated commutators of

the vector fields (X1, . . . , Xm) computed at p. Then d is a distance, called Carnot-

Carathéodory distance associated with X.

We will refer to (1.7) as the Chow-Hörmander condition. When (1.7) holds, the metric

space (Rn, d) is said to be a Carnot-Carathéodory space of rank m (CC space, for

short). We will use the notation (Rn, X) to denote the metric space (Rn, d), where d

is understood to be the Carnot-Carathéodory (CC, for short) distance associated with

X. We also denote by B(x, r) and Be(x, r) the metric balls of center x and radius r > 0

induced by the CC distance d and by the Euclidean distance de, respectively.

Remark 1.2.2. If the Chow-Hörmander condition holds, then for every compact set

K ⊆ Rn there exists an integer s(K) such that the following holds: for any x ∈ K,

X1, . . . , Xm and their commutators up to order s(K) computed at x span the whole Rn.

This is an immediate consequence of the fact that X1, . . . , Xm and the map A 7→ det(A)

are of class C∞.

Remark 1.2.3. Given p, q ∈ Rn, denote for shortness by γT,h the X-subunit curve in

AC([0, T ];Rn) joining p and q and satisfying (1.5) for some h ∈ L∞([0, T ];Rm). The

curve γT,h is said to be X-subunit if
∑m

j=1 h
2
j ≤ 1. It is easy to observe, by a change of

coordinates, that the metric d can be equivalently defined by

d(p, q) = inf{‖h‖∞: γ1,h joins p and q},

or by

d(p, q) = inf {T > 0 : ∃h ∈ L∞([0, T ];Rm), |h|≤ 1 s.t. γT,h joins p and q} .

For every p ∈ Rn and for every i ∈ N we denote by Li(p) the linear span of all the

commutators of the vector fields (X1, . . . , Xm) up to order i computed at p. Notice that

Lie{X1, . . . , Xm}(p) =
⋃

i∈N L
i(p). We say that (Rn, X) is equiregular, if there exist

0 = n0 < n1 < · · · < ns = n ∈ N such that, for every p ∈ Rn, one has dimLi(p) = ni.

The natural number s is called step of the Carnot-Carathéodory space. In the following

Theorem we resume some well known facts about the geometry of an equiregular CC

space. For (i) and (iii) see [78], while for (ii) see [71].

Theorem 1.2.4. Let (Rn, X) be an equiregular CC space of step s. Then the following

facts hold.
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(i) For every compact set K ⊆ Rn, there exists M ≥ 1 such that for any p, q ∈ K

1

M
|p− q| ≤ d(p, q) ≤M |p− q|

1
s .

(ii) The Hausdorff dimension of the metric space (Rn, d) is Q :=
∑s

i=1 i(ni − ni−1).

(iii) The metric measure space (Rn, d,L n) is locally Ahlfors Q-regular, i.e., for every

compact set K ⊆ Rn there exist R > 0 and C > 1 such that

1

C
rQ ≤ L

n(B(p, r)) ≤ CrQ, (1.8)

for every p ∈ K and for every r ∈ (0, R). In particular, the metric measure space

(Rn, d,L n) is locally doubling.

We say that (Rn, X) is geodesic if for every p, q ∈ Rn there exists a X-admissible curve

realizing the infimum in (1.6).

Proposition 1.2.5. Let (Rn, X) be a geodesic equiregular CC space; then, for every

p ∈ Rn and for every r > 0 one has L n(∂B(p, r)) = 0.

Proof. By Proposition 1.1.23 it is sufficient to prove that ∂B(p, r) is a porous set.

Take q ∈ ∂B(p, r) and consider a minimizing absolutely continuous path γ : [0, r]→ X

joining p and q, i.e., such that γ(0) = p, γ(r) = q and for every t ∈ [0, r] one has

d(p, γ(t)) = t. Consider ε ∈ (0, 2r] and y = γ(r − ε
2
). Then B(y, ε

2
) ⊆ B(q, ε) and

obviously B(y, ε
2
) ∩ ∂B(p, r) = ∅. Then ∂B(p, r) is porous with α = 1

2
, r0 = 2r.

We assume from now on that the metric balls B(p, r) are bounded with respect to the

Euclidean metric in Rn; in particular, as it has been shown in [75, Theorem 1.4.4], the

CC space (Rn, X) is geodesic.

1.2.1 A proof of Chow’s Theorem

In this Subsection we will provide a proof of Theorem 1.2.1. We will prove in particular

a stronger fact, that is the Hölder-type inequality appearing in (i) of Theorem 1.2.4.

We first need to introduce some notation.

Given α, β ∈ Nk we set α + β := (α1 + β1, . . . , αk + βk) and

|α|:= α1 + · · ·+ αk, α! := α1! · · ·αk! .

Given a vector field X in Rn and k ∈ N we define (adX)
k setting




(adX)

0Y := Y,

(adX)
k+1Y := (adX)

k([X, Y ]),
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for any vector field Y in Rn. For every k ∈ N, for every α, β ∈ Nk and for every vector

fields Y, Z on Rn we eventually define

Cαβ(Y, Z) :=




(adY )

α1(adZ)
β1 · · · (adY )

αk(adZ)
βk−1Z, if βk 6= 0,

(adY )
α1(adZ)

β1 · · · (adY )
αk−1Y, if βk = 0.

(1.9)

Theorem 1.2.6 below contains the so-called Campbell-Hausdorff formula. It is proved

e.g. in [86] or [78, Appendix]. For the notion of left invariant vector field in a Lie group

and of exponential map on a manifold we refer the reader to Section 1.3.

Theorem 1.2.6. For every sufficiently small left invariant vector fields Y, Z in a Lie

group M the series

P (Y, Z) :=
∞∑

j=1

(−1)j

j

∑

α,β∈Aj

1

α! β! |α + β|
Cαβ(Y, Z) (1.10)

converges uniformly, where Aj := {(α, β) ∈ Nj × Nj : αi + βi ≥ 1 for i = 1, . . . , j}. In

such a case we have exp(Y ) exp(Z) = exp(P (Y, Z)).

Notice that formula (1.10) holds also in case Y, Z are vector fields in a CC space

(Rn, X) and Chow-Hörmander condition holds. Lemma 1.2.7 below is a consequence

of Theorem 1.2.6 and its proof can be found in e.g. [78, Proposition 4.3].

Lemma 1.2.7. Let K be a compact set in Rn, k ∈ N, let Y, Z be two vector fields in

Rn and let

Pk(Y, Z) :=
k∑

j=1

(−1)j

j

∑

(α,β)∈Aj

1

α! β! |α + β|
Cαβ(Y, Z),

where Aj is defined as in Theorem 1.2.6. Then, there exists C > 0 such that

|exp(tY ) exp(sZ)(p)− exp(Pk(tY, sZ))(p)|≤ C(|t|k+|s|k)

for every t, s ∈ R sufficiently close to zero and every p ∈ K.

The following proof is contained in [54].

Theorem 1.2.8. Let Ω be a connected open set in Rn, let K ⊆ Ω be a compact set and

let X = (X1, . . . , Xm) be a m-tuple of linearly independent and smooth vector fields.

Assume that in K the Hörmander condition is satisfied by commutators of X1, . . . , Xm

of length at most k ∈ N. Then there exists CK > 0 such that

d(p, q) ≤ CK |p− q|
1/k,

for every p, q ∈ K.
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Proof. Let us start with the following consideration. Given a r-tuple Y = (Y1, . . . , Yr)

of vector fields such that Yj ∈ {±X1, . . . ,±Xm} for every j = 1, . . . , r, then there exists

δ > 0 such that the map

E(Y, t)(p) := exp(tYr) · · · exp(tY1)(p)

is well defined for every t ∈ [−δ, δ]. It readily seen that t 7→ E(Y, t)(p) is X-admissible

and that

d(p, E(Y, t)(p)) ≤ |t|r. (1.11)

For every h ∈ N and for every α ∈ Nh with 1 ≤ αj ≤ m we also define the commutator

(of length h) Xα setting

Xα := [Xα1 , [Xα2 , · · · [Xαh−1
, Xαh

] · · ·]].

By Lemma 1.2.7, for any α ∈ Nh, there exist 1 ≤ r ≤ 4h−1, a r-tuple Y + = (Y1, . . . , Yr)

with Y +
j ∈ {±X1, . . . ,±Xm} and ω1 ∈ C

1([−δ, δ]×K) such that

exp(thXα)(p) = E(Y +, t)(p) + th+1ω1(t, p),

for every p ∈ K and every t ∈ [0, δ]. For the same reason, let Y − be a r-tuple of vector

fields (again chosen among ±X1, . . . ,±Xm) and let ω2 ∈ C
1([−δ, δ]×K) be such that

exp(−thXα)(p) = E(Y −, t)(p) + th+1ω2(t, p),

for every t ∈ [0, δ] and every p ∈ K. We can therefore write

exp(τXα)(p) =




E(Y +, τ 1/h)(p) + τ

h+1
h ω1(p), if τ ∈ [0, δ1/h]

E(Y −, (−τ)1/h)(p) + (−τ)
h+1
h ω2(p), if τ ∈ [−δ1/h, 0],

(1.12)

for every p ∈ K. For any α ∈ Nh, we finally define

Eα(τ) :=




E(Y +, τ 1/h), if τ ∈ [0, δ1/h],

E(Y −, (−τ)1/h), if τ ∈ [−δ1/h, 0].

We claim that (τ, p) 7→ Eα(τ)(p) is of class C1. To prove this it is enough to show that
∂Eα

∂τ
(τ)(p) is continuous in τ = 0. For τ0 > 0, setting t0 = τ

1/h
0 , one has

∂Eα

∂τ
(τ0)(p) = lim

τ→τ0

E(Y +, τ 1/h)− E(Y +, τ
1/h
0 )

τ − τ0

= lim
t→t0

E(Y +, t)− E(Y +, t0)

th − th0

=
1

hth−1
0

∂E

∂t
(Y +, t0)

=
1

hth−1
0

∂ exp(th0Xα)

∂t
+
h+ 1

h
t0ω1(t, p) +

t20
h

∂

∂t
ω1(t0, p)

= Xα(exp(τ0Xα)(p)) + τ
1/h
0

h+ 1

h
ω1(τ

1/h
0 , p) +

τ
2/h
0

h

∂

∂t
ω1(τ

1/h
0 , p),
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where we have used (1.12). Analogously for τ0 < 0 we immediately get that ∂Eα

∂τ
(τ0)(p)

equals

Xα(exp(τ0Xα)(p)) + (−τ0)
1/hh+ 1

h
ω2((−τ0)

1/h, p) +
(−τ0)

2/h

h

∂

∂t
ω2((−τ0)

1/h, p),

which concludes the proof of the fact that (t, p) 7→ Eα(t)(p) is C1. Fix now p0 ∈ K.

By assumption we can find n linearly independent vector fields Xα1 , . . . , Xαn
that are

commutators of X1, . . . , Xm of length at most k. For any t = (t1, . . . , tn) sufficiently

close to 0 the map

F (t1, . . . , tn) = Eαn
(tn) ◦ · · · ◦ Eα1(t1)

is well defined and of class C1. Therefore the matrix

dF (0) = col[Xα1(p0), . . . , Xαn
(p0)],

has full rank and therefore it is open. There exist %, σ > 0 such that

Be(p0, σ) ⊆ F (B(0, %),

and there exists M > 0 such that, for any t ∈ Rn with |t|< %, one has

M |t|≤ |F (t)− F (0)|= |F (t)− p0|. (1.13)

We have then proved that, for any p ∈ K, the orbit of p given by

Op := {q ∈ Ω : ∃ an X-admissible curve γ joining p and q}

is open. Since, by Ascoli-Arzelà’s Theorem, Op is also closed and since Ω is connected,

then Op = Ω1. Consider now q ∈ Be(p, σ) and let t ∈ Rn with |t|< % and F (t) = q.

Then, defining pj = Eαj
(tj)(pj−1) for any j = 1, . . . , n, we have pn = q and, taking

(1.11) into account , one has

d(p0, q) ≤
n∑

j=1

d(pj, pj−1) =
n∑

j=1

d(pj−1, Eαj
(tj)(pj−1))

=
n∑

j=1

d(pj−1, E(Ij, |tj|
1
k )(pj−1)) ≤ C1

n∑

j=1

|tj|
1
k

≤ C2|t|
1
k≤ C2M

−
1
k |F (t)− F (0)|

1
k= CK |q − p0|

1
k ,

where M > 0 comes from (1.13). This concludes the proof.

1This is indeed a proof that every couple of points in Ω can be connected be a X-admissible curve,

i.e., a proof of Theorem 1.2.1.
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1.3 Carnot groups

Carnot groups can be seen as a remarkable subclass of CC spaces. In this section we

introduce their definition and we list some theorems that will be useful in the following

chapters. We start from the definition of Lie group. For an introduction to Carnot

groups see e.g. [75, 59, 55].

Definition 1.3.1 (Lie group). A Lie group (G, ·) is a differentiable manifold G endowed

with a group product · such that the maps



G×G −→ G

(x, y) 7→ x · y
and




G −→ G

x 7→ x−1

are differentiable. We will denote by 0 the neutral element of the group. Moreover for

every g ∈ G we will denote by τg : G→ G the left translation map defined as

τg(x) = g · x.

When no confusion may arise a Lie group will be simply denoted by G. We now recall

the definition of Lie algebra.

Definition 1.3.2. A Lie algebra is a couple (V, [· , ·]) such that V is a linear space on

some field K and [· , ·] is a binary operation [· , ·] : V × V → V that is a Lie bracket,

i.e., it satisfies the following properties.

(i) Linearity. For every λ ∈ K and for every v, w, z ∈ V one has

[λv + w, z] = λ[v, z] + [w, z].

(ii) Anti-symmetry. For every v, w ∈ V we have

[v, w] = −[w, v].

(iii) Jacobi identity. For every v, w, z ∈ V one has

[v, [w, z]] + [w, [z, v]] + [z, [v, w]] = 0.

Definition 1.3.3. Let (G, ·) be a Lie group and let X be a vector field on G. X is

said to be left invariant if, for every x, g ∈ G and every f ∈ C∞(G), one has

(Xf)(τg(x)) = X(f ◦ τg)(x).

The set g(G) (or simply g, for short) denotes the vector space of all left invariant vector

fields on G.
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Notice that if X and Y are two left invariant vector fields on a Lie group G, also the

Lie bracket [X, Y ] defined by

[X, Y ](f) = X(Y (f))− Y (X(f)), ∀f ∈ C∞(G),

is a left invariant vector Field on G. As a consequence, one can easily check that the

couple (g, [·, ·]) is a Lie algebra. This justifies the following

Definition 1.3.4. Let (G, ·) be a Lie group and let g be its Lie algebra. Define g1 := g

and for every i > 1 we set gi := [g, gi−1]. We say that the Lie group G is nilpotent of

step s (s ∈ N) if gs 6= {0} and gs+1 = {0}.

We now recall the definition of exponential map on a differentiable manifold

Definition 1.3.5. Let M be a differentiable manifold, let X be a vector field on M

and let p ∈M . We define exp(X)(p) := γ(1) where γ : [0, 1]→M is the solution of




γ̇(t) = X(γ(t))

γ(0) = p.

It is well known that the exponential map around p provides a local diffeomorphism

between a neighborhood of 0 in TpM and a neighborhood of p on M . Moreover, if M

is a Lie group and X ∈ g, by left invariance we have that for any g ∈M

X(g) = dτgX(0).

This gives the identity exp(X)(p) = p · exp(X)(0). Theorem 1.3.6 below gives us an

important result of global diffeomorphism between the Lie group and the Lie algebra.

Its proof can be found in [86].

Theorem 1.3.6. Let G a simply connected nilpotent Lie group. Then exp : g→ G is

a diffeomorphism.

Definition 1.3.7 (Stratified group). A nilpotent Lie group G of step s is said to be

stratified if there exist linear subspaces g1, . . . , gs of g such that

g = g1 ⊕ . . .⊕ gs, and [g1, gi] = gi+1, for i = 1, . . . , s− 1.

Connected and simply connected stratified Lie groups are also called Carnot groups.

For every λ > 0 we also define δ̃λ : g → g letting δ̃λ(X) = λiX if X ∈ gi and then

extending it by linearity on the whole g.

It is easy to prove the following two propositions.
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Proposition 1.3.8. Let G be a Carnot group. Then for every X, Y ∈ g and for every

λ, µ ∈ (0,+∞) we have

δ̃λ([X, Y ]) = [δ̃λ(X), δ̃λ(Y )] and δ̃λµ(X) = δ̃λ(δ̃µ(X)).

Moreover
{
δ̃λ : λ > 0

}
is a family of automorphisms of g.

Proposition 1.3.9. Let (G, ·) be Carnot group. For every λ > 0 define δλ : G → G

letting δλ(x) := exp(δ̃λ(exp
−1(x))). Then the following facts hold.

(i) For every λ, µ > 0 and every x ∈ G

δλµ(x) = δλ(δµ(x)).

(ii) For every λ > 0 and every x, y ∈ G

δλ(x · y) = δλ(x) · δλ(y).

We define the notion of horizontal curves and their length in a Carnot group G.

Definition 1.3.10 (Horizontal curves and horizontal length). Let G be a Carnot group

with Lie algebra decomposition given by g = g1 ⊕ . . . ⊕ gs. An absolutely continuous

curve γ : [0, T ] → G is said to be horizontal if, for L 1-a.e. t ∈ [0, T ], one has

γ̇(t) ∈ dLγ(t)g1 ∼= g1.

Fix a scalar product 〈· , ·〉G on g1. Denote by |·|G its induced norm on g1 and extend it

on the whole g by setting |X|G= +∞ for any X ∈ g \ g1. Then the horizontal length

of a horizontal curve γ is defined by

`G(γ) :=

ˆ T

0

|γ̇(t)|Gdt.

A proof of Theorem 1.3.11 below can be found in [86].

Theorem 1.3.11. Let (G, ·) and (F, ∗) be two connected and simply connected Lie

groups and let g and f respectively be the associated Lie algebras of left invariant vector

fields. Then (G, ·) is isomorphic (in the sense of Lie groups) to (F, ∗) if and only if g

is isomorphic (in the sense of linear spaces) to f.

The following result allows us, when dealing with Carnot groups, to always consider

G = Rn for n equal to the (topological) dimension of the manifold G.

Proposition 1.3.12. Let (G, ·) be a stratified Lie group of dimension n. Then there

exists a group operation ∗ on Rn such that (G, ·) is isomorphic to (Rn, ∗).
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Proof. Let {X1, . . . , Xn} be a basis of g and for every x, y ∈ Rn define x ∗ y by letting

x ∗ y = z ⇔ exp

(
n∑

i=1

xiXi

)
· exp

(
n∑

i=1

yiXi

)
= exp

(
n∑

i=1

ziXi

)
. (1.14)

Then it is easy to see that the Lie algebra of (Rn, ∗) is isomorphic to g. By Theorem

1.3.11 the thesis follows.

Remark 1.3.13. Actually, the group law in Rn defined in (1.14) can always be written

as

x ∗ y = P (x, y) = x+ y +Q(x, y), (1.15)

where P,Q : Rn×Rn → Rn are polynomial functions. See also 1.3.15 below for a more

precise statement about P and Q.

If g = g1 ⊕ . . . ⊕ gs we set mj = dim(gj) for j = 1, . . . , s and if i is such that

m1 + · · ·+mwi−1
< i ≤ m1 + · · ·+mwi

for some 1 ≤ wi ≤ s we say that the coordinate

xi has degree wi. An equivalent way to define a dilation δλ : Rn → Rn with λ > 0, is

then by

δλ(x) := (λw1x1, λ
w2x2, . . . , λ

wnxn).

Proposition 1.3.14 below lists some well-known properties of Carnot groups and

some relations between δλ and the polynomial P defined in (1.14). A proof of it can

be found in [75].

Proposition 1.3.14. Let (Rn, ·) be a Carnot group. Then, if P is the polynomial

function appearing in (1.15), the following facts hold.

(i) For every x ∈ Rn the inverse element with respect to · is x−1 = −x.

(ii) For every x, y ∈ Rn and for every λ > 0

P (δλ(x), δλ(y)) = δλP (x, y).

(iii) For every x ∈ Rn

P (x, 0) = P (0, x) = 0.

(iv) If (X1, . . . , Xn) is a basis of g and Xj =
∑n

i=1 aij(x)∂i for j = 1, . . . , n and for

some aij ∈ C
∞(Rn), then we have

aij(δλ(x)) = λwi−wjaij(x),

for every i, j = 1, . . . , n.
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Remark 1.3.15. If X1, . . . , Xn and F are defined as in 1.4.1, then the vector fields

X̃1, . . . , X̃n have the structure

X̃j(x) = ∂j +
n∑

i=nwj
+1

aji(x)∂i,

where aji(x) = aji(x1, . . . , xnwi
−1) are homogeneous polynomial of degree wi − wj.

Notice that every Carnot group (Rn, ·) with stratification g = g1 ⊕ . . .⊕ gs has also a

natural structure of equiregular CC space of step s. Indeed, it is sufficient to consider

a basis X = (X1, . . . , Xm) of g1. Directly from the definition of Carnot group we get

the Hörmander condition and the equiregularity. In what follows, when dealing with

a Carnot group (Rn, ·), we always denote by d the CC metric associated with (Rn, X)

and by B(p, r) a metric ball of center p and radius r. The metric space (G, d) has

then Hausdorff dimension Q :=
∑s

j=1 j dim gj (this is called homogeneous dimension

of the Carnot group (Rn, ·)) and it is well-known that, up to multiplicative constants,

the measures H Q, S Q and L n coincide, all of them being Haar measures on G.

Proposition 1.3.16. Let (Rn, ·) be a Carnot group. Then, for every x, y, g ∈ Rn and

every λ > 0, we have

(i) d(τg(x), τg(y)) = d(x, y);

(ii) d(δλ(x), δλ(y)) = λd(x, y).

Proof. Taking into account the left invariance of the vector fields X1, . . . , Xm, the proof

of (i) simply follows by the fact that, if γ : [0, T ] → Rn is a subunit curve joining x

and y, then τg ◦ γ : [0, T ]→ Rn is a subunit curve joining τg(x) and τg(y).

To prove (ii) let γ : [0, T ]→ Rn be a curve joining x and y such that

γ̇(t) =
m∑

j=1

hj(t)Xj(γ(t)) =
n∑

i=1

(
m∑

j=1

hj(t)aij(γ(t))

)
∂i,

with |(h1, . . . , hm)|≤ 1, and define γλ : [0, λT ] → Rn letting γλ(t) = δλ(γ(
t
λ
)). Then

γλ(0) = δλ(x) and γλ(λT ) = δλ(y). By statement (iv) of Proposition 1.3.14, we have

γ̇λ(t) =
n∑

i=1

λwi−1

(
m∑

j=1

hj(
t
λ
)aij(γ(

t
λ
))

)
∂i

=
n∑

i=1

λwi−1

(
m∑

j=1

hj(
t
λ
)aij(δλ−1γλ(t))

)
∂i

=
n∑

i=1

(
m∑

j=1

hj(
t
λ
)aij(γλ(t))

)
∂i =

m∑

j=1

hj(
t
λ
)Xj(γλ(t)).
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Hence we get that, for every T > 0, if d(x, y) ≤ T , then d(δλ(x), δλ(y)) ≤ λT . Then

we get d(δλ(x), δλ(y)) ≤ λd(x, y), for any x, y ∈ G and any λ > 0. Repeating the same

argument with δλ(x), δλ(y) in place of x and y and with λ−1 in place of λ we also get

d(x, y) = d(δλ−1(δλ(x)), δλ−1(δλ(y))) ≤ λ−1d(δλ(x), δλ(y),

which concludes the proof.

In a Carnot group it can be useful to define a homogeneous norm letting for every

x ∈ Rn

‖x‖:=
n∑

i=1

|x|
1
wi ,

and the corresponding boxes given by A(x, r) := {y ∈ Rn : ‖x−1 · y‖≤ r}. We eventu-

ally set A(r) := A(0, r).

A proof of the following results can be found e.g. in [75].

Proposition 1.3.17. Let (Rn, ·) be a Carnot group. Then the following facts hold.

(i) For every x, g ∈ Rn and every r, λ > 0 one has

τgB(x, r) = B(τg(x), r) and δλB(x, r) = B(δλ(x), λr).

(ii) There exists C > 1 such that

A(x, 1
C
r) ⊆ B(x, r) ⊆ A(x, Cr),

for every x ∈ Rn and every r > 0.

Corollary 1.3.18. Let (Rn, ·) be a Carnot group. Then the metric space (Rn, d) is

geodesic, complete and locally compact.

Proposition 1.3.19. Let (Rn, ·) be a Carnot group, E ⊆ Rn a Lebesgue measurable

set. Then the following facts hold.

(i) For every g ∈ Rn one has

L
n(τg(E)) = L

n(E).

(ii) For every λ > 0 one has

L
n(δλ(E)) = λQL

n(E).

In particular, L n(B(x, r)) = rQL n(B(0, 1))

Proof. It is sufficient to apply area formula and use the fact that det(dτg) = 1 and

det(dδλ) = λQ.
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We here recall the notion of calibration, which is widely used in the Calculus of

Variation. Proposition 1.3.21 gives a sufficient condition to find a geodesic in a Carnot

group.

Definition 1.3.20. A closed 1-form ϑ on the Lie algebra g of a Carnot group G is said

to be a calibration on G if for almost every v ∈ TG one has |ϑ(v)|≤ |v|G. We also say

that a horizontal curve γ : [0, T ]→ G is calibrated by ϑ, if ϑ is a calibration and

ϑ(γ̇(t)) = |γ̇(t)|G,

for L 1-almost every t ∈ [0, T ].

Proposition 1.3.21. Let γ : [0, T ] → G be a horizontal curve in a Carnot group G

that is calibrated by ϑ. Then γ minimizes the distance between γ(0) and γ(T ).

Proof. Let ω : [0, T ] → G be a horizontal curve joining γ(0) and γ(T ). Since G is

connected and simply connected, the curves γ([0, T ]) and ω([0, T ]) are homotopic and

therefore
´

γ
dϑ =

´

ω
dϑ. Taking into account that γ is calibrated by ϑ, we get

`G(ω) =

ˆ T

0

|ω̇(t)|Gdt ≥

ˆ

ω

dϑ =

ˆ

γ

dϑ =

ˆ T

0

|γ̇(t)|dt = `G(γ),

which concludes the proof.

Lemma 1.3.22. Let M be a n-dimensional manifold and let R1, . . . , Rn, S1, . . . , Sn be

vector fields in M such that both (R1(x), . . . , Rn(x)) and (S1(x), . . . , Sn(x)) are basis

for TxM , for any x ∈M . Let A :M → Rn×n be such that

Sj(x) =
n∑

`=1

A`
j(x)R`(x),

for any x ∈M and for any j = 1, . . . , n, and define, for i = 1, . . . , n the 1-forms R∗
i , S

∗
i

letting

R∗
i (x)(Rj(x)) = δij,

S∗
i (x)(Sj(x)) = δij,

for any x ∈M and for j = 1, . . . , n. Then S∗
j (x) =

∑n
`=1B

`
j(x)R

∗
` (x), where B = A−T .

Proof. It is enough to consider the following identity

δij = S∗
i (x)(Sj(x)) =

n∑

`=1

B`
i (x)R

∗
` (x)

(
n∑

k=1

Ak
j (x)Rk(x)

)

=
n∑

`=1

n∑

k=1

B`
i (x)A

k
j (x)δ`k =

n∑

k=1

Bk
i (x)A

k
j (x) =

(
BT (x)A(x)

)j
i
,

to conclude the proof.
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The proof of Proposition 1.3.23 below is contained [88, Proposizione 7.4].

Proposition 1.3.23. Let G be a Carnot group with Lie algebra g = g1⊕. . .⊕gs, and let

X ∈ g1. Then the curve [0, 1] 3 t 7→ exp(tX) is the unique (up to reparametrizations)

geodesic joining 0 and exp(X). In particular d(0, exp(tX)) = |X|.

Proof. Up to a normalization argument, we can assume without loss of generality that

|X|= 1. Let X =: X1, X2, . . . , Xn be an adapted basis for g. We also identify G with

Rn by exponential coordinates as in Definition 1.4.1 so that we can also assume (see

Remark 1.3.15)

Xj(x) = ∂j +
n∑

i=nwj
+1

aij(x)∂i,

for every j = 1, . . . , n and x ∈ G. Then, for any x ∈ G, the lower triangular matrix

A(x) := col(X1, . . . , Xn) is such that Ai
i(x) = 1 for any i = 1, . . . , n. It is also clear

that Xj(x) =
∑n

`=1A
`
j(x)∂`. Define for j = 1, . . . , n the 1-form X∗

j letting

X∗
j (x)(Xi(x)) = δji,

for any i = 1, . . . , n and any x ∈ G. Then, by Lemma 1.3.22, X∗
j (x) =

∑n
`=1B

`
j(x)dx`,

where B = A−T . By the structure of A, we get that B is upper triangular and Bi
i(x) = 1

for any x ∈ G and any i = 1, . . . , n. Then X∗
1 = dx1. We want to prove that X∗

1 is a

calibration in G for the curve

γ : [0, 1]→ G

t 7→ exp(tX).

Fix x ∈ G and take v ∈ TxG. If v is not horizontal it is trivially true that X∗
1 (x)(v) ≤

|v|= +∞. Otherwise if v =
∑m

i=1Xi(x)vi, then X∗
1 (x)(v) = v1 ≤ (

∑m
i=1 v

2
i )

1/2. Notice

also that |X∗
1 (x)(v)|= |v| only if v = λX1(x) for λ ∈ R. Since γ̇(t) = X1(γ(t)) has this

form, then X∗
1 (γ(t))(γ̇(t)) = |γ̇(t)|. Therefore X∗

1 is a calibration for γ. By Proposition

1.3.21 we infer that γ is a geodesic between 0 and exp(X).

It is now enough to prove that all the geodesics joining 0 and exp(X) are a parametriza-

tion of γ. Consider a geodesic ω : [0, 1] → G joining 0 and exp(X). Then γ and ω

share the same extremal points and, since X∗
1 is closed, we have

`G(ω) =

ˆ 1

0

|ω̇(t)|dt ≥

ˆ

ω

dX∗
1 =

ˆ

γ

dX∗
1 =

ˆ 1

0

|γ̇(t)|dt = `G(γ) = `G(ω).

Hence for L 1-almost every t ∈ [0, 1] one has |ω̇(t)|= X∗
1 (γ(t))(γ̇(t)). This is possible

only if ω̇(t) = λγ̇(t) for some λ ∈ R.

We conclude this section presenting some notable examples of Carnot groups.
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Example 1.3.24. Apart from Euclidean spaces, which are the only commutative

Carnot groups, the most basic examples of Carnot groups are Heisenberg groups.

Given an integer n ≥ 1, the n-th Heisenberg group Hn is the 2n + 1 dimensional

Carnot group of step 2 whose Lie algebra is generated by X1, . . . , Xn, Y1, . . . , Yn, T and

the only non-vanishing bracket relations among these generators are given by

[Xj, Yj] = T for any j = 1, . . . , n.

The stratification of the Lie algebra is given by g1 ⊕ g2, where g1 := span{Xj, Yj : j =

1, . . . n} and g2 := span{T}. In exponential coordinates

Rn × Rn × R 3 (x, y, t)←→ exp(x1X1 + · · ·+ ynYn + tT )

one has

Xj = ∂xj
−
yj
2
∂t, Yj = ∂yj +

xj
2
∂t, T = ∂t.

Example 1.3.25. The Engel group E is the Carnot group of step 3 and rank 2 whose

Lie algebra is is generated by X1, X2 and the only non-vanishing bracket relations are

given by

[X1, X2] =: −X3 and [X1, X3] =: −X4.

The stratification of the Lie Algebra is therefore given by given by g = g1⊕g2⊕g3 where

g1 = span{X1, X2}, g2 = span{X3} and g3 = span{X4}. In exponential coordinates

R4 × R 3 (x1, x2, x3, x4)←→ exp(x1X1 + x2X2 + x3X3 + x4X4)

one has

X1 = ∂1,

X2 = ∂2 − x1∂3 +
x21
2
∂4,

X3 = ∂3 − x1∂4,

X4 = ∂4.

Notice that the homogeneous dimension of E is given by Q = 2 · 1 + 1 · 2 + 1 · 3 = 7

while the topological dimension is 4.

Finally, we define the notion of Carnot group of type ? introduced in [66]; this will be

used in Section 2.2.1.

Definition 1.3.26. A Carnot group G is said to be of type ? if there exists a basis

(X1, . . . , Xm) of the Lie algebra g such that

[Xj, [Xj, Xi]] = 0,

for every i, j = 1, . . . ,m.
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Notice that the Heisenberg group Hn is of type ?, while the Engel group is not. The

group of upper triangular matrices with 1’s on the diagonal is a Carnot group of type

?. In particular, there exist Carnot groups of type ? of any dimension and arbitrarily

large step.

1.4 Nilpotent approximation

In this section we describe the so-called nilpotent approximation of a CC space that

is, roughly speaking, its infinitesimal structure.

Definition 1.4.1 (Adapted exponential coordinates). Let (Rn, X) be an equiregular

CC space and let p ∈ Rn be fixed; choose an open neighborhood V ⊆ Rn of p and

smooth vector fields Y1, . . . , Yn such that

• Yi = Xi for any i = 1, . . . ,m;

• for every q ∈ V and every k = 1, . . . , s the set {Y1(q), . . . , Ynk
(q)} is a basis of

Lk(q);

• for every i = m + 1, . . . , n the vector field Yi is chosen among the iterated com-

mutators of X1, . . . , Xm.

Then there exist a neighborhood U of 0 in Rn for which the map

F : U → Rn

x 7→ exp(x1Y1 + · · ·+ xnYn)(p)
(1.16)

is well defined. We say that (x1, . . . , xn) are adapted exponential coordinates around p.

The definition of F depends on p; when confusion may arise, we underline this

dependence by using the notation Fp to denote (for any x ∈ Rn for which it is defined)

the map Fp(x) := exp(x1Y1 + · · ·+ xnYn)(p). When needed, we will also write F (p, x)

to denote exp(x1Y1 + · · · + xnYn)(p); notice that, for every bounded set V ⊆ Rn, one

can find an open neighborhood U of 0 in Rn such that F is well defined in V × U .

For every p ∈ Rn and every j = 1, . . . ,m, we define

X̃j := dF−1
p (Xj ◦ Fp).

It is readily seen that if X satisfies the Chow-Hörmander condition, then also X̃ does

and we denote by d̃ the CC distance in Rn associated with the m-tuple of vector fields

X̃ = (X̃1, . . . , X̃m), and by B̃(0, r) the metric balls around the origin induced by d̃.

Again, when confusion may arise we shall use the notation B̃p(0, r) to specify that the

metric ball is induced by the map Fp. Since dFp(0)ej = Yj(p), we have X̃j(0) = ej for
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every j = 1, . . . ,m. Moreover, it is easy to verify that, for every p ∈ Rn and every

sufficiently small r > 0 one has

d(Fp(x1), Fp(x2)) = d̃(x1, x2),

for every x1, x2 ∈ B̃(0, r). Consequently Fp(B̃(x, r)) = B(Fp(x), r).

Remark 1.4.2. If we define µp := (F−1)#L n, i.e. the measure such that

µp(A) = L
n (F (A)) =

ˆ

A

|det∇F | dL n,

for every Borel set A in Rn, then, it is easy to see that, whenever 0 < ε < |det∇Fp(0)|,

there exists an open neighborhood U of 0 such that

(|det∇Fp(0)| − ε)L
n U ≤ µp U ≤ (|det∇Fp(0)|+ ε)L

n U. (1.17)

Definition 1.4.3. If (Rn, X) is a CC space and Y1, . . . , Yn are as in Definition 1.4.1

we define the jth degree of the coordinates at p letting

wj(p) := min{k ∈ N : Yj(p) ∈ L
k(p) \ Lk−1(p)},

If the space (Rn, X) is equiregular, wj do not depend on p and it we can define, for

every r > 0, the anisotropic dilation δr letting

δr : R
n → Rn

x 7→ (x1, . . . , r
wixi, . . . , r

sxn) .
(1.18)

Eventually, we introduce the pseudo-norm

‖x‖:=
n∑

j=1

|xj|
1
wj ,

and the sets

A(r) := {y ∈ Rn : ‖y‖≤ r} . (1.19)

It is easy to prove that δr (A(1)) = A(r). We also say that a function f : Rn → R

is δ-homogeneous of degree w ∈ N if for every p ∈ Rn and every λ > 0 one has

f(δλp) = λwf(p).

By the following proposition, proved in [78], the family of balls {B̃(0, r) : r ∈ (0, R)}

gives the same topology as the family {A(r) : r ∈ (0, R′)}.

Theorem 1.4.4. Let K ⊆ Rn be a compact set in an equiregular CC space (Rn, X)

and let U be a neighborhood of 0 such that, for every p ∈ K, the map Fp is well-defined

in U . Then there exists C > 1 such that

1

C
‖x‖≤ d̃p(0, x) ≤ C‖x‖,

for every x ∈ U and every p ∈ K.
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The following Theorem is proved in [76, Theorem 2.3 and Proposition 2.5].

Theorem 1.4.5. Let (Rn, X) be an equiregular CC space and let p ∈ Rn. Then if U is

a neighborhood of p and if Y1, . . . , Yn are vector fields as in Definition 1.4.1, we define

Ỹi := dF−1
p (Yi ◦ Fp) in a neighborhood V of 0 so that Fp(V ) = U . Let aij ∈ C

∞(V ) be

such that for every i = 1, . . . , n and for every x ∈ Rn one has

Ỹi(x) =
n∑

j=1

aij(x)∂j.

Then, for any i, j = 1, . . . , n, there exist a polynomial pij and a smooth function rij ∈

C∞(V ) so that aij = pij + rij and the following conditions hold.

(a) If wj ≥ wi, then pij is δ-homogeneous of degree wj − wi.

(b) If wj ≤ wi, then pij = δij (in particular pij = 0 if wj < wi).

(c) rij(0) = 0 and limx→0‖x‖
wi−wjrij(x) = 0.

Moreover, if we define for i = 1, . . . ,m and r > 0 the vector fields

X̂i(x) :=
n∑

j=1

pij(x)∂j and X̃r
i = r(dδ1/r)[Ỹi ◦ δr],

then, for any i = 1, . . . ,m, X̃r
i converges to X̂i as r → 0 in the C∞

loc-topology and the

couple (Rn, X̂ := (X̂1, . . . , X̂m)) is a Carnot group.

The vector fields X̂1, . . . , X̂m introduced in Theorem 1.4.5 are known in the lit-

erature as the nilpotent approximation of X1, . . . , Xm at the point p. The structure

(Rn, X̂) is known as the tangent Carnot-Carathéodory structure of (Rn, X) at the point

p. We shall denote by d̂ the Carnot-Carathéodory distance associated with X̂ and by

B̂ the corresponding balls. When confusion may arise, we shall use the notation B̂p

to specify the dependence on the point p. Notice that, by the fact that (Rn, X̂) is a

Carnot group, there exists Ĉ > 0 such that

L
n(B̂(x, r)) = ĈrQ, (1.20)

for every x ∈ Rn and for all r > 0. It will be useful to notice the following

Remark 1.4.6. Let K ⊆ Rn be a compact set; then there exists M ≥ 1 such that the

constant Ĉ = Ĉp appearing in (1.20) satisfies

1

M
≤ Ĉp ≤M ∀ p ∈ K.

This follows because, by Theorem 1.4.9, for any p ∈ K

Ĉp = lim
r→0

L n(B̂p(0, r))

rQ
= lim

r→0

L n(B̃p(0, r))

rQ
= lim

r→0

L n(F−1
p B(p, r))

rQ

=
1

|det∇Fp(0)|
lim
r→0

L n(B(p, r))

rQ

and one can conclude by using Theorem 1.2.4 (iii) and the smoothness of F (p, x).
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By [76, Remark 2.6] we also have the following

Proposition 1.4.7. Let (Rn, X) be an equiregular CC space and x ∈ Rn. Then we

have

exp
(
x1X̂1 + · · ·+ xnX̂n

)
(0) = x.

Corollary 1.4.8. Let (Rn, X) be an equiregular CC space, and let r > 0. Then for

every p ∈ Rn one has

x ∈ B̂p(0, r)⇐⇒ −x ∈ B̂p(0, r).

Proof. By Proposition 1.4.7 and by simple properties of Carnot groups we immediately

get

−x = exp

(
−

n∑

j=1

xjX̂j

)
(0) =

[
exp

(
n∑

j=1

xjX̂j

)
(0)

]−1

= x−1,

which combined with the left invariance of d̂ with respect to the group operation implies

d̂(0,−x) = d̂(0, x−1) = d̂(x · 0, x · x−1) = d̂(x, 0).

This concludes the proof.

The proof of Theorem 1.4.9 below can be found in [13] or [14].

Theorem 1.4.9. Let (Rn, X) be an equiregular CC space, and let X̂ = (X̂i, . . . , X̂m)

be as in Theorem 1.4.5. Then, for every p ∈ Rn the following holds

lim
r→0

(
sup

{
|d̃(x, y)− d̂(x, y)|

r
: x, y ∈ B̃p(0, r)

})
= 0. (1.21)

Corollary 1.4.10. Let (Rn, X) be an equiregular CC space and let p ∈ Rn. For every

ε > 0, there exists R > 0 such that for every r ∈ (0, R) one has

B̃(0, (1− ε)r) ⊆ B̂ (0, r) ⊆ B̃(0, (1 + ε)r).

Proof. By (1.21), for every ε > 0 there exists R > 0 such that, for every r ∈ (0, R)

and every x, y ∈ B̃(0, r), one has

∣∣∣d̃(x, y)− d̂(x, y)
∣∣∣ ≤ εr.

This completes the proof.
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1.5 Hypersurfaces of class C1
X

This section is devoted to the study of hypersurfaces with intrinsic C1 regularity; we

work in a fixed equiregular CC space (Rn, X). As customary, given an open set Ω ⊆ Rn

we denote by C1
X(Ω) the space of continuous functions f : Ω → R Ω such that the

derivatives X1f, . . . , Xmf are represented, in the sense of distributions, by continuous

functions.

Definition 1.5.1 (C1
X-hypersurface). We say that S ⊆ Rn is a C1

X-hypersurface (or

hypersurface of class C1
X) if for every p ∈ S there exist R > 0 and f ∈ C1

X(B(p,R))

such that the following facts hold

(i) S ∩ B(p,R) = {q ∈ B(p,R) : f(q) = 0};

(ii) Xf(ξ) 6= 0 on B(p,R).

Moreover, for every p in S we define the horizontal normal νS(p) ∈ Sm−1 to S at p

letting

νS(p) :=
Xf(p)

|Xf(p)|
.

The horizontal normal is well-defined up to a sign and, in particular, it does not

depend on the choice of f : this is a consequence, for instance, of Corollary 1.5.4 below.

We also introduce the notion of intrinsic Lipschitz regularity for hypersurfaces in-

troduced in [89]. We say that a map f : Ω → R is X-Lipschitz if it is Lipschitz

with respect to the CC distance. It is well known that if f is X-Lipschitz, then

Xf = (X1f, . . . , Xmf) is in L∞(Ω). Vice versa, (see [37, 42]), if f ∈ C(Ω) and

Xf ∈ L∞(Ω), then f is X-Lipschitz in any open set Ω′ b Ω.

Hypersurfaces with X-Lipschitz or C1
X regularity have locally finite (Q−1)-dimensional

Hausdorff measure, see [89].

Definition 1.5.2 (X-Lipschitz hypersurface). We say that S ⊆ Rn is an X-Lipschitz

hypersurface if for every p ∈ S there exist R > 0 and anX-Lipschitz map f : B(p,R)→

R such that the following holds.

(i) B(p,R) ∩ S = {q ∈ B(p,R) : f(q) = 0};

(ii) there exist C > 0 and 1 ≤ j ≤ m such that Xjf(q) ≥ C for L n-a.e. q ∈ B(p,R).

Given ν ∈ Rm we define L̃ν : Rn → R letting

L̃ν(ξ) :=
m∑

i=1

νiξi. (1.22)

This notation will be extensively used throughout this chapter. The following

proposition shows that the maps L̃ν provide a sort of first-order “linear” approximation

for C1
X functions.
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Proposition 1.5.3. Let p ∈ Ω, R > 0 and let f ∈ C1
X(B(p,R)). Then

lim
r→0

(
sup

{
|f(Fp(x))− f(p)− L̃Xf(p)(x)|

r
: x ∈ B̃(0, r)

})
= 0.

Proof. It is not restrictive to assume that f(p) = 0. Let r ≤ R and take x ∈ B̃(0, r).

Denote d = d̃(x, 0) and take a geodesic γ ∈ Lip([0, d];Rn) such that γ(0) = 0, γ(d) = x

and there exists h : [0, d]→ Rm such that for L 1-a.e. t ∈ [0, d] we have

|h(t)|= 1 and γ̇(t) =
m∑

j=1

hj(t)X̃j(γ(t)).

Notice that X̃j(0) = ej and hence by Lipschitz continuity of the vector fields we find

C > 0 such that for every y ∈ B̃(0, r) and for every j = 1, . . . ,m

|X̃j(y)− ej|≤ Cr.

Therefore, for every k = 1, . . . ,m

∣∣∣∣xk −
ˆ d

0

hk(t)dt

∣∣∣∣ =
∣∣∣∣
(
ˆ d

0

γ̇(t)dt

)

k

−

ˆ d

0

hk(t)dt

∣∣∣∣

=

∣∣∣∣∣

m∑

j=1

ˆ d

0

hj(t)
(
X̃j(γ(t))

)
k
dt−

m∑

j=1

ˆ d

0

hj(t) (ej)k dt

∣∣∣∣∣

=

∣∣∣∣∣

m∑

j=1

ˆ d

0

hj(t)
(
X̃j(γ(t))− ej

)
k
dt

∣∣∣∣∣ ≤ mCrd ≤ mCr2.

Hence, if for every x ∈ B̃(0, r) we set d := d̃(x, 0) and we denote by h a control

associated with the geodesic γ that links 0 to x, we have

lim
r→0

(
sup

{
1

r

∣∣∣∣xk −
ˆ d

0

hk(t)dt

∣∣∣∣ : x ∈ B̃(0, r), k = 1, . . . ,m

})
= 0. (1.23)

Notice also that for every x ∈ B̃(0, r)

f(Fp(x)) = f(Fp(x))− f(Fp(0)) = f(Fp(γ(d)))− f(Fp(γ(0)))

=

ˆ d

0

m∑

j=1

Xjf(Fp(γ(t)))hj(t)dt.

Take ε > 0. By (1.23) and the continuity of Xf in p, we can choose r0 ∈ (0, R) such

that for every r ∈ (0, r0)

sup

{
1

r

∣∣∣∣(x1, . . . , xm)−
ˆ d

0

h(t)dt

∣∣∣∣ : x ∈ B̃(0, r)

}
<

ε

2|Xf(p)|
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and |Xf(Fp(x)) − Xf(p)|< ε/2 for every x ∈ B̃(0, r). Then, for any r ∈ (0, r0) and

every x ∈ B̃(0, r), we have

|f(Fp(x))− L̃Xf(p)(x)| =

∣∣∣∣∣

ˆ d

0

〈h(t), Xf(Fp(γ(t)))〉 dt−
m∑

j=1

Xjf(p)xj

∣∣∣∣∣

≤

ˆ d

0

|h(t)||Xf(Fp(γ(t)))−Xf(p)|dt

+ |Xf(p)|

∣∣∣∣(x1, . . . , xm)−
ˆ d

0

h(t)dt

∣∣∣∣

< d
ε

2
+ |Xf(p)|

∣∣∣∣(x1, . . . , xm)−
ˆ d

0

h(t)dt

∣∣∣∣ .

The result follows by dividing both sides by r and taking into account that d ≤ r.

An immediate consequence of Proposition 1.5.3 is Corollary 1.5.4, where we start

using the following convenient notation: given t ∈ R and a function f : I → R defined

on some set I, we denote by {f > t}, {f = t}, etc. the sets {x ∈ I : f(x) > t}, {x ∈ I :

f(x) = t}, etc. This notation will be extensively used in this chapter.

Corollary 1.5.4. Let Ω ⊆ Rn be an open set, p ∈ Ω and f ∈ C1
X(B(p,R)) for some

R > 0. Suppose that f(p) = 0 and |Xf(p)|= 1. Define a C1
X-hypersurface letting

S := {q ∈ B(p,R) : f(q) = 0}. Then, for every ε > 0, there exists r0 > 0 such that

F−1
p (S) ∩ B̃(0, r) ⊆

{
ξ ∈ B̃(0, r) : −εr ≤ L̃Xf(p)(ξ) ≤ εr

}
, (1.24)

for every r ∈ (0, r0). Moreover, one has

lim
r→0

1

rQ
L

n
(
{ξ ∈ B̃(0, r) : f(Fp(ξ))L̃Xf(p)(ξ) < 0}

)
= 0. (1.25)

Proof. Fix ε > 0 and apply Proposition 1.5.3 to get r0 > 0 such that for every 0 <

r < r0 and for every x ∈ B̃(0, r) we have |f(Fp(x))− L̃Xf(p)(x)|≤ εr. Then, if we take

x ∈ B̃(0, r) ∩ {L̃Xf(p) ≥ 2εr}, we also get

f(Fp(x)) ≥ εr.

Reasoning in the same way with the set {L̃Xf(p) ≤ −2εr} we readily get (1.24). The

previous argument shows that for any ε > 0 there exists r0 > 0 such that for any

r ∈ (0, r0) we have

B̃(0, r) ∩ {(f ◦ Fp)L̃Xf(p) ≤ 0} ⊆ B̃(0, r) ∩ {−εr ≤ L̃Xf(p) ≤ εr}.

The proof of (1.25) follows by noticing that, by Theorem 1.4.4

L
n(B̃(0, r) ∩ {−εr ≤ L̃Xf(p) ≤ εr}) ≤ CεrQ,

for a suitable constant C independent on r.
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Remark 1.5.5. Let (Rn, X) be an equiregular CC space, p ∈ Rn, R > 0 and suppose

f1, f2 ∈ C
1
X(B(p,R)) are such that f1(p) = f2(p) = 0 and Xf1(p) = Xf2(p). Then one

has

lim
r→0

1

rQ
L

n(B(p, r) ∩ {f1f2 ≤ 0}) = 0.

Indeed, taking into account (1.24) we observe that

lim
r→0

1

rQ
L

n(B(p, r) ∩ {f1f2 = 0}) = 0.

On the other hand, since L̃Xf1(p) = L̃Xf2(p) we have

{ξ ∈ B(p, r) : f1(ξ)f2(ξ) < 0} ⊆
(
B(p, r) ∩ {f1f2 < 0} ∩ {L̃Xf1(p) ◦ F

−1
p > 0}

)

∪
(
B(p, r) ∩ {f1f2 < 0} ∩ {L̃Xf1(p) ◦ F

−1
p ≤ 0}

)
,

that combined with (1.25) completes the proof.

Theorem 1.5.6. Let (Rn, X) be an equiregular CC space and let S1, S2 ⊆ Rn be two

hypersurfaces of class C1
X . Then the set

E := {ξ ∈ S1 ∩ S2 : νS1(ξ) /∈ {±νS2(ξ)}}

is H Q−1-negligible.

Proof. By a localization argument and by the fact that C1
X-hypersurfaces are σ-finite

with respect to H Q−1, we can suppose without loss of generality that

H
Q−1(S1) < +∞ and S

Q−1(E) < +∞

and that S1 is bounded in Rn. If, for every δ > 0, we define

Eδ := {p ∈ E : |〈νS1(p), νS2(p)〉|≤ 1− δ},

then we have E =
⋃
{Eδ : δ ∈ (0,+∞) ∩Q}.

Fix ε ∈ (0, 1/4) and define for every R > 0 the set Eδ,R of all the points p of Eδ such

that the following three properties hold for every r ≤ 2R

(a) if C > 0 is the constant appearing in Theorem 1.4.4, for every x ∈ A(Cr) we

have B̂p(x, εr) ⊆ B̃p(x, 2εr);

(b) for i = 1, 2 we have F−1
p (Si ∩ B(p, 2r)) ⊆ {x ∈ Rn : |L̃νSi

(p)(x)|< εr};

(c) diamB(p, r) = diam B̃p(0, r) ≥ r.
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By Theorems 1.4.9 and 1.5.4 and the fact2 that diam B̂p(0, r) = 2r we deduce that

Eδ,R ↗ Eδ as R→ 0.

Take now 0 < η < R
2
. Then there exist a sequence (qh) in Rn and a sequence (rh) in

(0, η) such that

Eδ,R ⊆
∞⋃

h=0

B(qh, rh) and

∞∑

h=0

(rh)
Q−1 ≤

∞∑

h=0

(diamB(qh, rh))
Q−1 ≤ S

Q−1
η (Eδ,R) + 1.

We can suppose without loss of generality that for every h ∈ N there exists ph ∈

B(qh, rh) ∩ Eδ,R. Therefore for every h ∈ N one has B(qh, rh) ⊆ B(ph, 2rh) and conse-

quently

Eδ,R ⊆
∞⋃

h=0

B(ph, 2rh).

Taking Theorem 1.4.4 into account, we can find C > 0 such that for every h ∈ N one

has

F−1
ph

(Eδ,R ∩ B(ph, 2rh)) ⊆ Ah :=
{
x ∈ Rn : ‖x‖≤ Crh, |L̃νSi

(ph)(x)|≤ εrh, for i = 1, 2
}
.

We prove now that L n(Ah) ≤ Cδε
2rQh for some Cδ > 0 depending on δ. In fact, since

|〈νS1(ph), νS2(ph)〉|≤ 1− δ, we have (up to an orthogonal change of coordinates)
{
x ∈ Rn : |L̃νSi

(ph)(x)|< εrh for i = 1, 2
}
⊆ Q2(0, Cδεrh)× Rm−2,

where Q2(z, s) denotes the 2-dimensional cube of center z and size s. Hence

Ah ⊆

(
Q2(0, Cδεrh) ∩

{
x ∈ Rm :

m∑

j=1

|xj|≤ Crh

})
×

{
x ∈ Rn−m :

n∑

j=m+1

|xj|
1
dj≤ Crh

}

and consequently L n(Ah) ≤ Cδε
2rQh . For every h ∈ N, combining Theorem 1.1.10 and

the fact that Ah is compact, we can find Nh ∈ N and a family {xh,j : j = 1, . . . , Nh} of

points of Ah such that {B̂ph(xh,j, εrh) : j = 1, . . . , Nh} covers Ah and {B̂ph(xh,j, ε
rh
5
) :

j = 1, . . . , Nh} is pairwise disjoint. Reasoning as above, it is easy to see that

L
n
({
x ∈ Rn : d̂ph(x,Ah) <

εrh
5

})
≤ C̃δε

2rQh ,

for some δ > 0. Therefore, we can estimate

Nh ≤
L n

({
x ∈ Rn : d̂ph(x,Ah) <

εrh
5

})

L n
(
B̂ph(xh,j,

εrh
5
)
) ≤ Ĉδε

2−Q

2This is an easy consequence of the fact that, by Proposition 1.3.23, the curve t 7→ exp(tX̂1) is

globally length minimizing.
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for some Ĉδ > 0 depending only on δ. By property (a) we have also B̂ph(xh,j, εrh) ⊆

B̃ph(xh,j, 2εrh), and hence the family

{
B̃ph(xh,j, 2εrh) : j = 1, . . . , Nh

}

is a covering of Ah, that is also a covering of F−1
ph

(Eδ,R ∩ B(ph, rh)). Therefore, the

family {B(F−1
ph

(xh,j), 2εrh) : j ∈ N} is a covering of Eδ,R ∩ B(ph, 2rh). In particular,

recalling that ε ∈ (0, 1/4) we have

S
Q−1
η (Eδ,R) ≤ S

Q−1
4εη (Eδ,R) ≤

∞∑

h=0

S
Q−1
4εη (Eδ,R ∩B(ph, 2rh))

≤
∞∑

h=0

Nh∑

j=1

(
diamB(F−1

ph
(xh,j), 2εrh)

)Q−1
≤

∞∑

h=0

Nh(4εrh)
Q−1

≤
∞∑

h=0

Ĉδεr
Q−1
h ≤ Ĉδε(S

Q−1
η (Eδ,R) + 1).

Letting η → 0 we get S Q−1(Eδ,R) ≤ Ĉδε(S
Q−1(Eδ,R) + 1), which gives, letting R→ 0

S
Q−1(Eδ) ≤ Ĉδε(S

Q−1(Eδ) + 1).

Letting now ε → 0 we get, for any δ > 0, that S Q−1(Eδ) = 0 , i.e., S Q−1(E) = 0.

This concludes the proof.

Definition 1.5.7 (X-rectifiability). Let (Rn, X) be an equiregular CC space of homo-

geneous dimension Q ∈ N and let R ⊆ Rn. We say that R is countably X-rectifiable

(respectively, countably X-Lipschitz rectifiable) if there exists a family {Sh : h ∈ N} of

C1
X-hypersurfaces (resp., X-Lipschitz hypersurfaces) such that

H
Q−1

(
R \

∞⋃

h=0

Sh

)
= 0. (1.26)

Moreover we say that R is X-rectifiable (resp., X-Lipschitz rectifiable) if R is countably

X-rectifiable (resp., countably X-Lipschitz rectifiable) and H Q−1(R) < +∞.

Definition 1.5.8 (Horizontal normal). Let R ⊆ Rn be countably X-rectifiable and

let (Sh) be a family of C1
X-hypersurfaces such that (1.26) holds. Then the horizontal

normal νR : R→ Sm−1 to R is defined by

νR(p) := νSh
(p) if p ∈ R ∩ Sh \

⋃

k<h

Sk .

By Theorem 1.5.6, νR is well-defined H Q−1-a.e. on R, up to a sign.
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1.6 Functions with bounded X-variation

In this section, Ω denotes a fixed bounded open subset of Rn.

Definition 1.6.1. We say that u ∈ L1
loc(Ω) is a function of locally bounded X-variation

in Ω, and we write u ∈ BVX,loc(Ω), if there exists a Rm-valued Radon measure DXu =

(DX1u, . . . , DXm
u) in Ω such that, for every open set A b Ω, for every i = 1, . . . ,m

and for every ϕ ∈ C1
c (A), one has

ˆ

A

ϕ d (DXi
u) = −

ˆ

A

uX∗
i ϕ dL

n, (1.27)

where X∗
i denotes the formal adjoint of Xi. If u ∈ L1(Ω), we say that f has bounded

X-variation in Ω (u ∈ BVX(Ω)) if, in addition, the total variation |DXu| of DXu is

finite on Ω.

Moreover, we say that a measurable set E ⊆ Rn has locally finite X-perimeter (resp.,

finite X-perimeter) in Ω if χE ∈ BVX,loc(Ω) (resp., χE ∈ BVX(Ω)). In such a case we

define the X-perimeter measure PE
X of E by PE

X := |DXχE|. It will sometimes be useful

to write PX(E, ·) instead of PE
X .

As customary, we write BVX(Ω;Rk) := BVX(Ω)
k, and similarly for BVX,loc(Ω;R

k).

It can be useful to observe that if u ∈ BVX(Ω;Rk), the following inequalities hold

max
1≤i≤k

|DXu
i|(Ω) ≤ |DXu|(Ω) ≤

k∑

i=1

|DXu
i|(Ω). (1.28)

If A b Ω is open and u ∈ BVX,loc(Ω), one can easily prove that

|DXu|(A) = sup

{
ˆ

A

u
m∑

i=1

X∗
i (ϕi) dL

n : ϕ ∈ C1
c (A;R

m), |ϕ|≤ 1

}
;

actually, u ∈ BVX(A) if and only if the supremum on the right-hand-side is finite.

The following important approximation result is proved in [36, Theorem 24.2.2].

Theorem 1.6.2. Let u ∈ BVX(Ω;R
k). Then there exists a sequence (uh) in C∞(Ω;Rk)

such that

lim
h
‖uh − u‖L1(Ω;Rk)= 0 and lim

h
|DXuh|(Ω) = |DXu|(Ω).

Actually, by [36, Theorem 2.2.2], the following stronger approximation result holds.

Theorem 1.6.3. Let (Rn, X) be a CC space and let Ω ⊆ Rn be an open set. Then,

for any u ∈ BVX(Ω), there exists a sequence (uh) in C∞(Ω) ∩ BVX(Ω) such that the

following convergences hold.

uh → u in L1(Ω),

|DXuh|(Ω)→ |DXu|(Ω),

|DXi
uh|(Ω)→ |DXi

u|(Ω), ∀ i = 1, . . . ,m

|(DXuh,L
n)|(Ω)→ |(DXu,L

n)|(Ω).

(1.29)
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The following easy Proposition will be useful in the sequel.

Proposition 1.6.4. Let Ω, Ω̃ be two open sets in Rn and let G : Ω → Ω̃ be a diffeo-

morphism. Let also X1, . . . , Xm be vector fields on Ω and define for every i = 1, . . . ,m

the vector fields Yi := dG(Xi) on Ω̃. Then

u ∈ BVX,loc(Ω)⇔ v := u ◦G−1 ∈ BVY,loc(Ω̃). (1.30)

More precisely, for every open set U b Ω, setting V := G(U), one has, for every

u ∈ BVX,loc(Ω), that

m|DXu|(U) ≤ |DY v|(V ) ≤M |DXu|(U) (1.31)

for m := infU |det∇G| and M := supU |det∇G|.

Proof. We claim that, for any open set U b Ω and any u ∈ BVX,loc(Ω), one has

v := u ◦G−1 ∈ BVY (V ) and |DY v|(V ) ≤M |DXu|(U).

This would be enough to conclude: indeed, the claim would imply both the⇒ implica-

tion in (1.30) and the second inequality in (1.31), while the⇐ implication in (1.30) and

the first inequality in (1.31) simply follow by replacing X,U, u,G with, respectively,

Y, V, v,G−1 and noticing that m = (supV |det∇(G
−1)|)−1.

Let us prove the claim. We first assume that u ∈ C∞(U), so that also v is smooth

on V . For every ϕ ∈ C1
c (V ;Rm) with |ϕ|≤ 1, by a change of variable we have that

ˆ

V

〈Y v, ϕ〉dL n =

ˆ

U

〈Xu, |det∇G|(ϕ ◦G)〉dL n,

which gives

|DY v|(V ) ≤M |DXu|(U).

In case u ∈ BVX(U) is not smooth, by Theorem 1.6.2 we can consider a sequence (uh)

in C∞(U) that converges to u in L1(U) and such that

lim
h
|DXuh|(U) = |DXu|(U).

Defining vh := uh ◦ G
−1, we easily get that vh converges to v in L1(V ) as h → +∞.

Eventually, by the lower semicontinuity of the total variation one has

|DY v|(V ) ≤ lim inf
h
|DY vh|(V ) ≤M lim inf

h
|DXuh|(U) =M |DXu|(U),

which concludes the proof.

The following Theorem links the total variation of a X-Lipschitz function to the

perimeter of its sublevel-sets. Its proof can be found in [77].
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Theorem 1.6.5 (Coarea Formula for X-Lipschitz functions). Let (Rn, X) be a CC

space, let u : Rn → R be a X-Lipschitz function and let g : Rn → [0,+∞] be a

L n-measurable function. Then, if we define Es := {u < s}, we have

ˆ

Rn

g|Xu|dL n =

ˆ +∞

−∞

(
ˆ

{u=s}

gd(PXEs)

)
ds.

By Theorem 1.6.2, one can easily improve Theorem 1.6.5 to Theorem 1.6.6 (see [36,

Theorem 2.3.5]).

Theorem 1.6.6 (Coarea Formula for BVX functions). Let (Rn, X) be a CC space, let

Ω be an open set in Rn and let u ∈ BVX(Ω). Then, if we define Es := {u < s}, we

have

|DXu|(Ω) =

ˆ +∞

−∞

PX(Es,Ω)ds.

The following result is essentially [20, Theorem 1.2]; note, however, that the di-

mension Q appearing in [20, Theorem 1.2] is slightly different from the homogeneous

dimension we are considering.

Theorem 1.6.7. Let Ω be an open subset of an equiregular CC space (Rn, X) of homo-

geneous dimension Q and let K ⊆ Ω be compact; then, there exists C > 0 and R > 0

such that, for every p ∈ K, r ∈ (0, R) and u ∈ BVX,loc(Ω), the inequality

(
 

B(p,r)

|u− up,r|
Q

Q−1 dL n

)Q−1
Q

≤
C

rQ−1
|DXu|(B(p, r))

holds, where up,r :=
ffl

B(p,r)
u dL n.

Proof. The proof easily follows by [46, Theorem 5.1] on taking into account Theorem

1.2.4, [20, Theorem 1.1], [46, Corollary 9.8 and Theorem 10.3] and Theorem 1.6.2.

An easy consequence of Theorem 1.6.7 is the following isoperimetric inequality.

Theorem 1.6.8 (Isoperimetric inequality in CC spaces). Let (Rn, X) be an equiregular

CC space and let K ⊆ Rn be a compact set. Then there exist C > 0 and R > 0 such

that, for every p ∈ K, r ∈ (0, R) and every L n-measurable set E ⊆ Rn, one has

min {L n(E ∩ B(p, r)),L n(B(p, r) \ E)}
Q−1
Q ≤ CPX(E,B(p, r)).



60 CHAPTER 1. PRELIMINARIES



Chapter 2

Fine properties of BVX functions

This chapter contains the main results of [30]. Section 2.1 is devoted to the introduc-

tion of the approximate notions of continuity, X-jumps and X-differentiability for L1
loc

functions in an equiregular CC space. Approximate continuity is classical in locally

compact, doubling and separable metric measure space (see Theorem 2.1.2) and does

not require any additional work in this context. The notions of approximate X-jump

and approximate X-differentiability (see Definitions 2.1.6 and 2.1.12 respectively) are

instead new and require some fine results about C1
X hypersurfaces already proved in

Section 1.5. The notation Su, Ju and Du is introduced to denote respectively the sin-

gular set of u (i.e., the set in which u is not approximately continuous), the X-jump

set of u and the X-differentiability set of u. Propositions 2.1.8 and 2.1.13 are devoted

to proving the well-posedness of these definition. Propositions 2.1.3, 2.1.11 and 2.1.15

deal with the Borel regularity of Su,Ju and Du. A fact widely used in this section

is the nilpotent approximation of an equiregular CC space introduced with Theorem

1.4.5.

Section 2.2 contains the main results of this chapter about properties of BV functions

in equiregular CC spaces. As customary in the literature, we will also assume that the

CC balls are bounded with respect to the Euclidean topology. The first technical but

very important result is Lemma 2.2.2 which deals with the embedding of BVX,loc(Ω)

into L1∗

loc(Ω) with 1∗ = Q
Q−1

. Although the proof might seem to follow a classical plot,

we point out that a compactness result for equi-bounded sequences of BVXj functions

for converging Xj is here needed. This is provided by Theorem 4.1.1 and more precisely

by Theorem 4.2.6.

Theorem 2.2.9 proves that BVX functions are approximately X-differentiable almost

everywhere and this follows by the inequality proved in Lemma 2.2.6 which is new also

in the framework of Carnot groups.

In the case in which the CC space satisfies property R (see Definition 2.2.12), then

all functions of bounded X-variation u satisfy some stronger properties. Theorem

2.2.14 states that Ju is X-rectifiable and it coincides H Q−1-almost everywhere with

61
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Su. Theorem 2.2.20 gives information on the “fine” structure of the decomposition

DXu = Da
Xu+D

j
Xu+D

c
Xu where Dj

Xu and Dc
Xu denote respectively the X-jump part

and the Cantor part of the measure derivative DXu (see Definition 2.2.8): in Theorem

2.2.20 results (a) and (b) hold without the assumption of the validity of property R.

Finally Propositions 2.1.5 and 2.2.17 then imply Theorem 2.2.18 which deals with the

convergence of the mean values of a BVX function to the so-called precise representa-

tive, which is H Q−1-a.e. well defined whenever the CC space satisfies property R.

Theorem 2.2.23 instead gives a precise structure of the X-jump part of the measure

derivative on a general X-rectifiable set in case the CC space satisfies both properties

R and D (see 2.2.21).

Section 2.2.1 is devoted to describing some classes of CC spaces satisfying property

R, LR (see Definition 2.2.13) and/or D. More specifically, a class of Carnot groups

satisfying property LR (studied in the upcoming paper [27]) is described.

2.1 Approximate notions of continuity, X-jumps and

X-differentiability

In this section we introduce the notions of approximate continuity, approximate X-

jumps and approximate X-differentiability. Given a Radon measure µ, we use the

notation
 

A

u dµ :=
1

µ(A)

ˆ

A

u dµ,

to denote the mean integral of a measurable function u on a µ-measurable set A with

µ(A) > 0. Although we are going to work in equiregular CC spaces, Definition 2.1.1 and

Proposition 2.1.3 are valid in a wide class of metric measure spaces. For the reader’s

convenience, we are nonetheless going to show them in this higher general framework.

We say that a triple (M, d, µ) is a metric measure space if (M, d) is a complete metric

space and µ is a positive Radon measure on (M, d). In case (M, d) is locally compact,

we also say that (M, d, µ) is locally doubling if, for every compact set K ⊆ M , there

exist C > 1 and R > 0 such that

µ(B(p, 2r)) ≤ Cµ(B(p, r)),

for every p ∈ K and every r ∈ (0, R). We then often refer to equiregular CC spaces

(Rn, X) as metric measure spaces identified with the triple (Rn, d,L n), where d is the

CC metric associated with the m-tuple of vector fields X and L n is the Lebesgue

measure. Recall that, by property (iii) of Theorem 1.2.4, the measure L n is locally

doubling with respect to the metric d.

Definition 2.1.1 (Approximate Limit). Let (M, d, µ) be a locally compact, separable

and locally doubling metric measure space. Assume Ω ⊆ M is an open set, u ∈
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L1
loc(Ω, µ;R

k), z ∈ Rk and p ∈ Ω. We say that z is the approximate limit of u at p if

lim
r→0

 

B(p,r)

|u(y)− z| dµ(y) = 0.

We denote by u?(p) the approximate limit of u at p and by Su the set of points in Ω

where u does not admit an approximate limit

If the approximate limit exists, it is also unique. We denote by Su the subset of Ω

in which u does not admit an approximate limit. In the following, if u ∈ L1(Ω, µ;Rk)

and p ∈ Ω \ Su, we denote by u?(p) the approximate limit of u at p.

We here state the Lebesgue’s differentiation Theorem, whose proof can be found for

instance in [48, Section 2.7].

Theorem 2.1.2 (Generalized Lebesgue Theorem). Let (M, d, µ) be a separable, locally

compact and locally doubling metric measure space, let Ω ⊆ M be open and let u ∈

L1
loc(Ω, µ;R

k). Then for µ-almost every p ∈ Ω, u admits an approximate limit at p and

u(p) = u?(p).

The proof of Proposition 2.1.3 is an easy adaptation of the Euclidean one [5, Propo-

sition 3.64].

Proposition 2.1.3 (Properties of Approximate Limits). Let (M, d, µ) be a separable,

locally compact and locally doubling metric measure space, let Ω ⊆ M be open and let

u ∈ L1
loc(Ω, µ;R

k). Suppose that µ(∂B(p, r)) = 0 for every p ∈ X and for every r > 0.

Then, the following facts hold.

(i) Su is a Borel set with µ(Su) = 0 and u? : Ω \ Su → Rk is a Borel map.

(ii) For every f ∈ Lip(Rk;RN) we have Sf◦u ⊆ Su and for every p ∈ Ω \ Su,:

(f ◦ u)?(p) = f(u?(p));

Proof. (i). By the generalized Lebesgue Theorem 2.1.2 we already know that µ(Su) = 0

and u(p) = u?(p) for µ-almost every p ∈ Ω.

To prove that Su is a Borel set it is sufficient to prove that

Ω \ Su =
∞⋂

n=1

⋃

q∈Qk

{
ξ ∈ Ω : lim sup

r→0

 

B(ξ,r)

|u(y)− q| dµ(y) <
1

n

}
. (2.1)

Indeed, if this were true, since the function

ξ 7−−→

 

B(ξ,r)

|u− q| dµ

is continuous, the right-hand side of the equality (2.1) would be a Borel set.

The inclusion ⊆ in (2.1) is trivial for the density of Q in R. On the other hand, if p
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is a point in the right-hand side of (2.1), then, for every n ∈ N, we can find qn ∈ Qk

such that lim sup
r→0

 

B(p,r)

|u(y)−qn|dµ(y) <
1

n
. We prove that (qn) is a Cauchy sequence

noticing that

|qh − qk|=

∣∣∣∣
 

B(p,r)

(qh − qk) dµ

∣∣∣∣ ≤
 

B(p,r)

|u(y)− qh| dµ(y) +

 

B(p,r)

|u(y)− qk| dµ(y).

Hence there exists z ∈ Rk such that lim
h
qh = z and it is easy to see that z = u?(p) and

therefore p ∈ Ω \ Su.

(ii). Let f ∈ Lip(Rk;RN) and fix p ∈ Ω \ Su. Then we have
ˆ

B(p,r)

|f(u(y))− f(u?(p))| dL n(y) ≤ Lip(f)

ˆ

B(p,r)

|u(y)− u?(p)| dL n(y);

from which we deduce that Sf◦u ⊆ Su and

(f ◦ u)?(p) = f(u?(p)).

This concludes the proof.

Proposition 2.1.4. Let (M, d, µ) be a separable, locally compact and locally doubling

metric measure space, let Ω ⊆ M be open and let u ∈ L1
loc(Ω, µ;R

k). Suppose that

µ(∂B(p, r)) = 0 for every p ∈ M and for every r > 0. If p ∈ Ω \ Su, then, for any

ε > 0, the set

Eε := {q ∈ Ω : |u(q)− u?(p)|> ε}

has density 0 at p. Conversely, if u ∈ L∞
loc(Ω, µ;R

k) and z ∈ Rk are such that, for any

ε > 0, the set

Eε := {q ∈ Ω : |u(q)− z|> ε}

has density 0 at p, then p ∈ Ω \ Su and z = u?(p).

In particular, if p ∈ Ω \ Su and t 6= u?(p), then p /∈ ∂∗{u > t}.

Proof. Suppose p ∈ Ω \ Su. By Chebychev inequality we have

ε
µ(Eε ∩ B(p, r))

µ(B(p, r))
≤

 

B(p,r)

|u− u?(p)| dµ,

which goes to 0 as r → 0.

Conversely, suppose u ∈ L∞
loc(Ω, µ;R

k) and let z be as in the statement. Then, for

any r ∈ (0, 1), we have
 

B(p,r)

|u− z| dL n ≤ (‖u‖L∞(B(p,1),µ;Rk)+|z|)
µ(B(p, r) ∩ Eε))

µ(B(p, r))
+ ε

µ(B(p, r) \ Eε))

µ(B(p, r))
.

Finally, take p ∈ Ω \ Su and let t 6= u?(p). We already know that both {u > u?(p) + ε}

and {u < u?(p) − ε} have density 0 at p, for every ε > 0. If t > u?(p), then choosing

ε = t− u?(p) we have that {u > t} has density 0 at p. If t < u?(p), choose η > 0 such

that ε = u?(p)− t−η > 0 to infer that {u < t+η} has density 0 at p, and consequently

{u ≥ t+ η} has density 1 at p. This implies that also {u > t} has density 1 at p.
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We now introduce the notion of jump points in the setting of equiregular CC spaces

(Rn, X). This requires a certain amount of work, one of the reasons being that there

is no canonical way of separating a CC ball B(p, r) into complementary “half-balls”

B+
ν (p, r), B

−
ν (p, r). We will use as separating sets an arbitrary hypersurface S of class

C1
X such that νS(p) = ν, and one of the issues (Remark 2.1.9 below) is proving well-

posedness of our definition independently of the choice of S. For any fixed p ∈ Rn,

ν ∈ Sm−1 and r > 0, we introduce the notation B+
ν (p, r) and B−

ν (p, r) as follows.

Consider R > 0 and f ∈ C1
X(B(p, r)) such that f(p) = 0 and Xf(p)/|Xf(p)|= ν 1;

then, for any r ∈ (0, R), we set

B+
ν (p, r) := B(p, r) ∩ {f > 0}

B−
ν (p, r) := B(p, r) ∩ {f < 0}.

These objects are well-defined only if r is small enough. Moreover, there is a clear

abuse of notation, since B±
ν (p, r) depend on the choice of f . However, this will not

effect the validity of our results.

Before introducing the notion of approximate X-jumps we state some properties of

the “half-balls” B±
ν (p, r). Proposition 2.1.5 is used in the proof of Theorem 2.2.18.

Proposition 2.1.5. Let (Rn, X) be an equiregular CC space and let Ω ⊆ Rn be an

open set. Then, for any p ∈ Ω and ν ∈ Sm−1.

lim
r→0

L n (B+
ν (p, r))

L n (B(p, r))
= lim

r→0

L n (B−
ν (p, r))

L n (B(p, r))
=

1

2

Proof. Let U be a neighborhood of p and let f ∈ C1
X(U) be such that f(p) = 0 and

Xf(p) = ν. Fix ε ∈ (0, 1). By Proposition 1.5.3 and Theorem 1.4.9 we can suppose

without loss of generality that, for every small enough r > 0, one has Fp(B̃(0, r)) =

B(p, r) and

F−1
p (B+

ν (p, r)) = B̃(0, r) ∩ {ξ ∈ Rn : f(Fp(ξ)) > 0}

⊆ B̂(0, (1 + ε)r) ∩
{
ξ ∈ Rn : L̃ν(ξ) ≥ −εr

}
.

(2.2)

Analogously

B̂(0, (1− ε)r) ∩
{
ξ ∈ Rn : L̃ν(ξ) ≥ εr

}
⊆ B̃(0, r) ∩ {ξ ∈ Rn : f(Fp(ξ)) > 0}

= F−1
p (B+

ν (p, r)).
(2.3)

Applying δ1/r to both sides of (2.2) and evaluating the Lebesgue measure we get

L n
(
F−1
p (B+

ν (p, r))
)

rQ
= L

n
(
δ1/r

(
F−1
p (B+

ν (p, r))
))

≤ L
n
(
B̂(0, 1 + ε) ∩

{
ξ ∈ Rn : L̃ν(ξ) ≥ −ε

})
.

1One can consider for instance f = L̃ν ◦ Fp.
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Taking the lim sup as r → 0 and letting ε→ 0 we infer

lim sup
r→0

L n
(
F−1
p (B+

ν (p, r))
)

rQ
≤ L

n
(
B̂(0, 1) ∩

{
ξ ∈ Rn : L̃ν(ξ) ≥ 0

})

=
1

2
L

n
(
B̂(0, 1)

)
,

where the last equality follows from Corollary 1.4.8. With the same argument, from

(2.3) we get

lim inf
r→0

L n
(
F−1
p (B+

ν (p, r))
)

rQ
≥

1

2
L

n
(
B̂(0, 1)

)
,

hence

lim
r→0

L n
(
F−1
p (B+

ν (p, r))
)

rQ
=

1

2
L

n
(
B̂(0, 1)

)
. (2.4)

By Corollary 1.4.10

lim
r→0

L n(B̃(0, r))

rQ
= lim

r→0
L

n(δ1/r(B̃(0, r))) = L
n(B̂(0, 1)), (2.5)

and combining (2.4) and (2.5) we get

lim
r→0

L n
(
F−1
p (B+

ν (p, r))
)

L n(B̃(0, r))
=

1

2
.

If c := |det∇F (0)|> 0, using (1.17) we notice that, for every 0 < ε < c and every

sufficiently small r > 0, one has

(c− ε)L n
(
F−1
p (B+

ν (p, r))
)

(c+ ε)L n(B̃(0, r))
≤

L n (B+
ν (p, r))

L n(B(p, r))
≤

(c+ ε)L n
(
F−1
p (B+

ν (p, r))
)

(c− ε)L n(B̃(0, r))
.

The result follows by passing to the limit as r → 0, letting ε→ 0 and by using a similar

argument for B−
ν .

Definition 2.1.6 (Approximate X-jumps). Let (Rn, X) be an equiregular CC space,

let u ∈ L1
loc(Ω;R

k) and p ∈ Ω. We say that u has an approximate X-jump at p if there

exist a, b ∈ Rk with a 6= b and ν ∈ Sm−1 such that

lim
r→0

 

B+
ν (p,r)

|u− a|dL n = lim
r→0

 

B−
ν (p,r)

|u− b|dL n = 0. (2.6)

In this case we say that (a, b, ν) is an approximate X-jump triple of u at p. We denote

by Ju the set of approximate X-jump points of u and by (u+(p), u−(p), νu(p)) the

(unique up to equivalence, see Proposition 2.1.9 below) approximate X-jump triple for

u at p ∈ Ju.

Remark 2.1.7. Using e.g. Proposition 2.1.5 one easily proves that Ju ⊆ Su.
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Notice that, if u has an approximate jump at p associated with (a, b, ν), then it

is also associated with the triple (b, a,−ν). For this reason, it will be sometimes

convenient to consider the space of approximate X-jump triples endowed with the

equivalence relation (a, b, ν) ≡ (a′, b′, ν ′) if and only if (a, b, ν) = (a′, b′, ν ′) or (a, b, ν) =

(b′, a′,−ν ′).

The following Proposition 2.1.8 shows that theX-jump triple (u+(p), u−(p), νu(p)) is

unique up to equivalence, for the map Rk×Rk×Sm−1 3 (a, b, ν)→ wa,b,ν ∈ L
1
loc(R

n;Rk)

defined by (2.7) below satisfies

wa,b,ν = wa′,b′,ν′ ⇐⇒ (a, b, ν) ≡ (a′, b′, ν ′).

In the theory of classical BV functions a jump point can be detected, via a blow-up

procedure, in terms of L1
loc-convergence to a function taking two different values on

complementary half-spaces; this is the content of the next statement, which also gives

an equivalent definition of approximate X-jump points.

Proposition 2.1.8. Let (Rn, X) be an equiregular CC space, Ω an open set, u ∈

L1
loc(Ω;R

k), p ∈ Ω and let a, b ∈ Rk with a 6= b and ν ∈ Sm−1 be fixed. Then the

following statements are equivalent:

(i) p ∈ Ju and (u+(p), u−(p), νu(p)) ≡ (a, b, ν);

(ii) if Fp denotes the map of adapted exponential coordinates around p, as r → 0, the

functions ũr := u ◦ Fp ◦ δr converge in L1
loc(R

n;Rk) to

wa,b,ν(y) :=




a if L̃ν(y) > 0

b if L̃ν(y) < 0.
(2.7)

Proof. We can assume without loss of generality that k = 1.

We prove the implication (i)⇒(ii); we can assume that (u+(p), u−(p), νu(p)) =

(a, b, ν) and, writing w := wa,b,ν , we prove that for any fixed R > 0 one has

lim
r→0

ˆ

B̂(0,R)

|u ◦ Fp ◦ δr − w| dL
n = 0.

By a change of variables, this is equivalent to proving that

lim
r→0

1

rQ

ˆ

B̂(0,r)

|u ◦ Fp − w| dL
n = 0. (2.8)

Let f be the real function of class C1
X defined on a neighborhood of p used to define,

as in (2.1), the half-balls B±
ν (p, r) appearing in (2.6); we set for brevity

B̂+
ν (0, r) := B̂(0, r) ∩ {L̃ν > 0}, B̂−

ν (0, r) := B̂(0, r) ∩ {L̃ν < 0}

B̃+
ν (0, r) := B̃(0, r) ∩ {f ◦ Fp > 0}, B̃−

ν (0, r) := B̃(0, r) ∩ {f ◦ Fp < 0}.
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By Theorem 1.4.9 there exists an increasing function ω : (0,+∞)→ (0,+∞) such that

lim
r→0+

ω(r)

r
= 0 and B̂(0, r) ⊆ B̃(0, r + ω(r))

for any sufficiently small r. Therefore

1

rQ

ˆ

B̂(0,r)

|u ◦ Fp − w| dL
n

=
1

rQ

(
ˆ

B̂+
ν (0,r)

|u ◦ Fp − a| dL
n +

ˆ

B̂−
ν (0,r)

|u ◦ Fp − b| dL
n

)

≤
1

rQ

(
ˆ

B̃+
ν (0,r+ω(r))

|u ◦ Fp − a| dL
n +

ˆ

B̂+
ν (0,r)\B̃+

ν (0,r+ω(r))

(|u ◦ Fp − b|+|a− b|) dL
n

+

ˆ

B̃−
ν (0,r+ω(r))

|u ◦ Fp − b| dL
n +

ˆ

B̂−
ν (0,r)\B̃−

ν (0,r+ω(r))

(|u ◦ Fp − a|+|a− b|) dL
n

)

and using B̂±
ν (0, r)\B̃

±
ν (0, r+ω(r)) ⊆ B̃(0, r+ω(r))\B̃±

ν (0, r+ω(r)) ⊆ B̃∓
ν (0, r + ω(r))

≤
1

rQ

(
2

ˆ

B̃+
ν (0,r+ω(r))

|u ◦ Fp − a| dL
n + 2

ˆ

B̃−
ν (0,r+ω(r))

|u ◦ Fp − b| dL
n

+ |a− b|L n(B̃(0, r + ω(r)) ∩ {(f ◦ Fp)L̃ν ≤ 0})

)

and (2.8) follows from (2.6) and Corollary 1.5.4 taking also Theorem 1.2.4 into account.

For the converse implication one has to prove that, if (ii) holds and f is a C1
X real

function on a neighborhood of p such that f(p) = 0 and Xf(p)/|Xf(p)|= ν, then (2.6)

holds with B±
ν (p, r) defined (see (2.1)) in terms of f . By Theorem 1.2.4 and a change

of variables, proving (2.6) amounts to proving that

lim
r→0

1

rQ

ˆ

B̃+
ν (0,r)

|u ◦ Fp − a| dL
n = lim

r→0

1

rQ

ˆ

B̃−
ν (0,r)

|u ◦ Fp − b| dL
n = 0

and this can be done by a boring adaptation, that we omit, of the previous argument.

Remark 2.1.9. The proof of Proposition 2.1.8 implicitly shows that the validity of

(2.6) does not depend on the choice of the function f used in (2.1) to define B±
ν (p, r).

Remark 2.1.10. Let Ω, u, z and p be as in Definition 2.1.1. Then u has approximate

limit z at p if and only if, as r → 0, the functions u ◦ Fp ◦ δr converge in L1
loc(R

n;Rk)

to the constant function z. This is just an easy adaptation of the proof of Proposition

2.1.8 with a = b = z.

The proof of Proposition 2.1.11 below is standard and it is an easy adaptation of

[5, Proposition 3.69].

Proposition 2.1.11. Let (Rn, X) be an equiregular CC space, Ω be an open set and

let u ∈ L1
loc(Ω). Then the following facts hold:
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(i) Ju is a Borel set and, up to a choice of a representative for jump triples, the

function

Ju → R× R× Sm−1

p 7→ (u+(p), u−(p), νu(p))

is Borel;

(ii) for every f ∈ Lip(R), and p ∈ Ju we have

p ∈ J(f◦u) ⇔ f(u+(p)) 6= f(u−(p))

and in this case ((f ◦ u)+(p), (f ◦ u)−(p), νf◦u(p)) ≡ (f(u+(p)), f(u−(p)), νu(p)).

Otherwise p /∈ S(f◦u) and (f ◦ u)?(p) = f(u+(p)) = f(u−(p)).

Proof. (i) Let {(ah, bh, νh) : h ∈ N} be a countable dense subset of R×R× Sm−1. For

every h ∈ N, define the function wh : Rn → R setting

wh(y) :=




ah if L̃νh(y) ≥ 0,

bh if L̃νh(y) < 0.

Recalling notation (1.19), we first prove that

(Ω \ Su) ∪ Ju =
∞⋂

`=1

∞⋃

h=0

{
p ∈ Ω : lim sup

r→0

 

A(r)

|u ◦ Fp − wh| dL
n <

1

`

}
. (2.9)

Thanks to Proposition 2.1.8 and since that the sets A(r) are equivalent, for small radii,

to the balls B̂(0, r), the inclusion ⊆ is straightforward.

To prove ⊇, take p ∈ Ω such that for every ` ∈ N \ {0} there exists wh`
such that

lim sup
r→0

 

A(r)

|u ◦ Fp − wh`
| dL n <

1

`
.

We prove that there exist a, b and ν such that (wh`
) is convergent in L1(A(1)) to

w(y) :=




a if L̃ν(y) ≥ 0,

b if L̃ν(y) < 0.

Possibly passing to a subsequence, we can suppose that the sequence (νh`
) converges

to some ν. Define C := L n (A(1)) and let k ∈ N be such that for every h, k ≥ k the

set

A+(1) :=
{
y ∈ A(1) : L̃νh(y) > 0 and L̃νk(y) < 0

}



70 CHAPTER 2. FINE PROPERTIES OF BVX FUNCTIONS

is such that L n(A+(1)) ≥ 1
4
C. Then for such h and k, using a change of variable

formula, we have

|ah − ak| =

 

A+(1)

|ah − ak| dL
n ≤

4

C

ˆ

A+(1)

|wh − wk| dL
n

≤
4

C

ˆ

A(1)

|wh − wk| dL
n =

4

CrQ

ˆ

A(r)

|wh − wk| dL
n

≤ 4

 

A(r)

|u ◦ Fp − wh| dL
n + 4

 

A(r)

|u ◦ Fp − wk| dL
n.

Passing to the lim sup as r → 0 we get that (ah`
) is Cauchy and therefore convergent

to some a ∈ R. Using the same technique we also get that (bh`
) is convergent to some

b ∈ R. It is then easy to prove that wh converges in L1(A(1)) to w. Now, for sufficiently

large h ∈ N and for sufficiently small r > 0, from
ˆ

A(r)

|u ◦ Fp ◦ δr − w| dL
n ≤

ˆ

A(r)

|u ◦ Fp ◦ δr − wh| dL
n +

ˆ

A(1)

|wh − w| dL
n,

we get the remaining inclusion ⊇ in (2.9). Notice that the right-hand side of (2.9) is a

Borel set if, for any h ∈ N, and any small enough r, the function

p 7−−→

 

A(r)

|u ◦ Fp − wh| dL
n

is continuous. This is clearly true if u is of class C∞. In the general case fix p ∈ Ω,

r > 0 and take ε > 0 and v ∈ C∞(Ω) such that

‖u− v‖L1(B(p,C1r))< ε,

where C1 > 0 is such that Fp(A(r)) b B(p, C1r). By triangular inequality, we find
 

A(r)

|u ◦ Fp − u ◦ Fq| dL
n ≤

 

A(r)

|u ◦ Fp − v ◦ Fp| dL
n

+

 

A(r)

|v ◦ Fp − v ◦ Fq| dL
n

+

 

A(r)

|v ◦ Fq − u ◦ Fq| dL
n < Cε,

for some C > 0, for every sufficiently small r and for every q sufficiently close to p; in

particular, Ju is a Borel set.

According to Definition 2.1.6, for any p ∈ Ju, we can find an X-jump triple

(u+(p), u−(p), ν(p)), and we can define the function φ : Ju → Rm letting φ(p) :=

(u+(p) − u−(p))ν(p). Since φ(p) 6= 0, up to a change of sign, we can assume that

ν(p) = φ(p)/|φ(p)|. If we prove that φ is Borel, then also ν would be Borel. Set

wp(y) :=




u+(p) if L̃ν(p)(y) > 0;

u−(p) if L̃ν(p)(y) < 0,
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and

Ã(r) :=

{
y ∈ Rn : |(y1, . . . , ym)|+

n∑

j=m+1

|yj|
1
wj≤ r

}
.

Notice that the sets Ã(r) are equivalent to A(r) and that Ã(r) are rotationally invariant

in the first m coordinates. By Proposition 2.1.8, we have that
ˆ

Ã(1)

wp∂iψ dL
n = lim

ε→0

ˆ

Ã(1)

(u ◦ Fp ◦ δε)∂iψ dL
n

= lim
ε→0

1

εQ

ˆ

Ã(ε)

u(Fp(y))∂iψ(δε−1(y)) dL n(y),

for every ψ ∈ C∞
c (Ã(1)) and for every i = 1, . . . , n. Hence, we get that, for every

ψ ∈ C∞
c (Ã(1)) and for every i = 1, . . . , n, the function

p 7→

ˆ

Ã(1)

wp∂iψ dL
n

is Borel. Fix p ∈ Ju and take a sequence (ψh) in C∞
c (Ã(1)) converging to χÃ(1).

Computing the (Euclidean) measure derivative of wp, we easily get

φi(p)H n−1
e (Ã(1) ∩ {y ∈ Rn : L̃ν(p)(y) = 0})

= Diwp(Ã(1)) = lim
h

ˆ

Ã(1)

ψh dD
iwp = − lim

h

ˆ

Ã(1)

wp∂iψh dL
n,

for every i = 1, . . . , n. Since the quantity H n−1
e (Ã(1) ∩ {y ∈ Rn : L̃ν(p)(y) = 0})

does not depend on p, we deduce by the previous step that φ is a Borel function and

therefore ν is Borel.

Eventually, since by Proposition 2.1.8 we have

u+(p) = lim
ε→0

1

εQ

ˆ

A(ε)

χ{L̃ν(p)>0}u ◦ Fp dL
n,

we complete the proof.

The proof of (ii) is completely analogous to the euclidean one.

We are now ready to introduce the notion of approximate X-differentiability.

Definition 2.1.12 (Approximate X-differentiability). Let (Rn, X) be an equiregular

CC space, u ∈ L1
loc(Ω;R

k) and p ∈ Ω \ Su. We say that u is approximately X-

differentiable at p if there exist a neighborhood U of p and f ∈ C1
X(U ;R

k) such that

f(p) = 0 and

lim
r→0

 

B(p,r)

|u− u?(p)− f |

r
dL n = 0. (2.10)

The subset of points of Ω in which u is approximately X-differentiable will be denoted

by Du.
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If f is as in Definition 2.1.12, we call Xf(p) the approximate X-gradient of u at

p. By the following Proposition approximate X-gradients are uniquely determined and

therefore we denote by Dap
X u(p) the approximate X-gradient of u at p.

Proposition 2.1.13 (Uniqueness of approximate X-differential). Let (Rn, X) be an

equiregular CC space, u ∈ L1
loc(Ω;R

k) and p ∈ Ω. Let R > 0 and let f1, f2 ∈

C1
X(B(p,R);Rk). Suppose formula (2.10) holds for both f = f1 and for f = f2. Then

p ∈ Du, f1(p) = f2(p) = 0 and Xf1(p) = Xf2(p). Conversely, if f1(p) = f2(p) = 0

and Xf1(p) = Xf2(p), then formula (2.10) holds for f = f1 if and only if it holds for

f = f2.

Proof. It is not restrictive to assume k = 1. Define for i = 1, 2 the functions Li :=

L̃Xfi(p). Suppose first that both f1, f2 satisfy (2.10). Fix ε > 0 and, by Proposition

1.5.3, choose r > 0 such that

|fi(F (x))− Li(x)|

%
<
ε

2
,

for every % ∈ (0, r) and x ∈ B̃(0, %). Then, for such values of %, we have
 

B̃(0,%)

|L1 − L2|

%
dL n ≤

 

B̃(0,%)

|f1 ◦ Fp − f2 ◦ Fp|

%
dL n + ε

≤ C

 

B(p,%)

|f1 − f2|

%
dL n + ε

≤ C

 

B(p,%)

|u− u?(p)− f1|+ |u− u
?(p)− f2|

%
dL n + ε.

It follows that

lim
%→0

 

B̃(0,%)

|L1 − L2|

%
dL n = 0. (2.11)

If Xf1(p) 6= Xf2(p), by Theorem 1.4.4 one would get, for some C,C1 > 0
 

B̃(0,%)

|L1 − L2| dL
n =

1

L n(B̃(0, %))

ˆ

B̃(0,%)

|L1 − L2| dL
n

≥
1

L n (A(C1%))

ˆ

A
(

%

C1

)|L1 − L2| dL
n

= C
%Q+1

%Q
= C%,

that contradicts (2.11). This proves the first part of the statement

Suppose now that Xf1(p) = Xf2(p) and that f1 satisfies (2.10). Then we have

L1 = L2 and
 

B(p,%)

|u− u?(p)− f2|

%
dL n

≤

 

B(p,%)

|f1 − L1 ◦ F
−1
p |+|u(y)− u

?(p)− f1|+|f2 − L2 ◦ F
−1
p |

%
dL n.

By Proposition 1.5.3, this completes the proof.
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As for approximate X-jump points and approximate continuity points, also approx-

imate X-differentiability points can be detected by a blow-up procedure.

Proposition 2.1.14. Let (Rn, X) be an equiregular CC space, Ω be an open subset of

Rn, u ∈ L1
loc(Ω;R

k) and let p ∈ Ω \ Su. Then u is approximate X-differentiable at p if

and only if there exists z = (z1, . . . , zk) ∈ Rk×m such that, as r → 0, the functions

u ◦ Fp ◦ δr − u
?(p)

r

converge in L1
loc(R

n;Rk) to (L̃z1 , . . . , L̃zk). In this case we have Dap
X u(p) = z.

Proof. Assume first that p ∈ Du and let z := Dap
X u(p). Given R > 0, by Corollary

1.4.10 one has
ˆ

B̂(0,R)

∣∣∣∣
u ◦ Fp ◦ δε − u

?(p)

ε
− L̃z

∣∣∣∣ dL
n =

1

εQ

ˆ

B̂(0,εR)

∣∣∣∣∣
u ◦ Fp − u

?(p)− L̃z

ε

∣∣∣∣∣ dL
n

≤ C

 

B̃(0,2εR)

∣∣∣∣∣
u ◦ Fp − u

?(p)− L̃z

2εR

∣∣∣∣∣ dL
n,

which proves the first implication⇒. Conversely, for any R > 0 and any small enough

ε > 0, we have

1

εQ

ˆ

B̃(0,εR)

∣∣∣∣∣
u ◦ Fp − u

?(p)− L̃z

ε

∣∣∣∣∣ dL
n ≤

1

εQ

ˆ

B̂(2εR)

∣∣∣∣∣
u ◦ Fp − u

?(p)− L̃z

ε

∣∣∣∣∣ dL
n

=

ˆ

B̂(0,2R)

∣∣∣∣
u ◦ Fp ◦ δε − u

?(p)

ε
− L̃z

∣∣∣∣ dL
n(y),

which concludes the proof.

The proofs of the following two Propositions are standard and follows closely [5,

Proposition 3.71] and [5, Proposition 3.73], respectively.

Proposition 2.1.15 (Properties of approximate differentiability points). Let (Rn, X)

be an equiregular CC space, Ω be an open set in Rn and let u ∈ L1
loc(Ω;R

k). Then Du

is a Borel set and the map Dap
X u : Du → Rm×k is a Borel map.

Proof. Consider a dense subset {zi : i ∈ N} of Rm×k. Reasoning as in Proposition

2.1.11 one can prove that

Du =
∞⋂

h=1

∞⋃

i=0

{
p ∈ Ω \ Su : lim sup

%→0

1

%Q+1

ˆ

A(%)

∣∣∣u ◦ Fp − u
?(p)− L̃zi

∣∣∣ dL n <
1

h

}
,

which implies that Du is a Borel set.

We now prove that Dap
X u is Borel. Using Theorem 1.4.4, for any p ∈ Du one has

lim
ε→0

1

εQ+1

ˆ

δεP

∣∣∣u ◦ Fp − u
?(p)− L̃Dap

X
u(p)

∣∣∣ dL n = 0,
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where for every n-tuple of positive real numbers (`1, . . . , `n)

P = P (`1, . . . , `n) := {ξ ∈ Rn : ∀j = 1, . . . , n 0 ≤ ξ
1/wj

j ≤ `j}

is the anisotropic box with axis that are parallel to the coordinate ones (e1, . . . , en).

By a change of variable formula we get

1

L n(P )

ˆ

P

L̃Dap
X

u(p) dL
n =

1

L n(P )
lim
ε→0

1

εQ+1

ˆ

δεP

(u ◦ Fp − u
?(p)) dL n.

From this we deduce that, for any n-tuple (`1, . . . , `n) the function

p 7−−→
1

L n(P )

ˆ

P

L̃Dap
X

u(p) dL
n (2.12)

is Borel. Now, for every i = 1, . . . ,m and for every h ∈ N \ {0}, define the rectangles

P i
h := P (1/h, . . . , 1/h, 1, 1/h, . . . , 1/h). A simple computation shows that

lim
h

1

L n(P i
h)

ˆ

P i
h

L̃Dap
X

u(p) dL
n = 1

2
(Dap

X u(p))i .

This completes the proof.

Proposition 2.1.16 (Locality). Let (Rn, X) be an equiregular CC space, Ω an open

set in Rn and u, v ∈ L1
loc(Ω;R

k). Suppose p ∈ Ω is of density one for the set

{q ∈ Ω : u(q) = v(q)}. Then the following facts hold.

(a) If p ∈ Ω \ (Su ∪ Sv), then u?(p) = v?(p).

(b) If p ∈ Ju ∩ Jv, then (u+(p), u−(p), νu(p)) ≡ (v+(p), v−(p), νv(p)).

(c) If p ∈ Du ∩ Dv then Dap
X u(p) = Dap

X v(p).

Proof. To prove (a), let p ∈ Ω\(Su∪Sv). By Remark 2.1.10, the functions ũε := u◦Fp◦δε

and ṽε := u ◦Fp ◦ δε converge respectively to u?(p) and v?(p) in L1
loc(R

n;Rk), as ε→ 0.

In particular, as ε → 0, the families (ũε) and (ṽε) converge in measure in B̂(0, R) to

u?(p) and v?(p), respectively. By a change of variable formula we have

lim
ε→0

L
n
({
ξ ∈ B̂(0, R) : ṽε(ξ) 6= ũε(ξ)

})

= lim
ε→0

1

εQ
L

n
({
ξ ∈ B̂(0, εR) : u(Fp(ξ)) 6= v(Fp(ξ))

})
= 0,

which tells us that (ũε) and (ṽε) must have the same measure limit and so u?(p) = v?(p).

To prove (b), let p ∈ Ju ∩Jv. By using Proposition 2.1.8 and the same argument used

in (a) we easily get that the functions

U(y) :=




u+(p) if L̃νu(p)(y) > 0;

u−(p) if L̃νu(p)(y) < 0,
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and

V (y) :=




v+(p) if L̃νv(p)(y) > 0;

v−(p) if L̃νv(p)(y) < 0,

coincide for L n-almost every y ∈ B̂(0, R). Therefore one has

(u+(p), u−(p), νu(p)) ≡ (v+(p), v−(p), νv(p)).

To prove (c), let p ∈ Du ∩ Dv. By (a) we already know that u?(p) = v?(p). It is also

clear that
u(Fp(δε(y)))− u

?(p)

ε
6=
v(Fp(δε(y)))− v

?(p)

ε

if and only if u(Fp(δε(y))) 6= v(Fp(δε(y))). The thesis follows by Proposition 2.1.14 and

by an argument that is similar to part (a) of the proof.

2.2 Fine properties of BV functions in CC spaces

Recall Definition 1.1.16 for the notion of Hausdorff measure. We denote by H k the

k-dimensional Hausdorff measure built with respect to the CC metric. We denote by

H k
e the k-dimensional Hausdorff measure built with respect to the Euclidean metric.

Lemma 2.2.1. Let (Rn, X) be an equiregular CC space, let Ω ⊆ Rn be an open set and

let (Eh) be a sequence of measurable sets in Ω such that

lim
h

L
n(Eh) = 0 and lim

h
PX(Eh; Ω) = 0.

Then, for every α ∈ (0, 1), we have

H
Q−1

(
∞⋂

h=1

{
p ∈ Ω : lim sup

r→0

L n(Eh ∩ B(p, r))

L n(B(p, r))
≥ α

})
= 0.

Proof. Denote by Eα
h the set
{
q ∈ Ω : lim sup

r→0

L n(Eh ∩ B(q, r))

L n(B(q, r))
≥ α

}
,

and suppose without loss of generality that L n(Eh) > 0 for every h ∈ N.

Let K b Ω. By Theorem 1.2.4 there exist C > 1 and R > 0 such that, for every q ∈ K

and every 0 < r < 2R, we have

1

C
rQ ≤ L

n(B(q, r)) ≤ CrQ. (2.13)

On the other hand, for any sufficiently large h ∈ N, we have
(
2CL n(Eh)

α

)
< RQ.
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Fix now p ∈ Eα
h ∩K and define δh :=

(
4CL n(Eh)

α

) 1
Q

. Then we have

L n(Eh ∩ B(p, δh))

L n(B(p, δh))
≤
CL n(Eh)

δQh
=
α

4
.

On the other hand, by definition of Eα
h we can find arbitrarily small radii r > 0 such

that
L n(Eh ∩B(p, r))

L n(B(p, r))
≥
α

2
.

Taking into account Proposition 1.2.5, a continuity argument allows us to find 0 < % ≤

δh such that

L
n(Eh ∩B(x, %)) =

α

2
L

n(B(x, %)). (2.14)

By the 5r-covering Lemma 1.1.10, we can find a family {B(pj, %j) : j ∈ N} of pairwise

disjoint balls in Ω such that, for every j ∈ N,

pj ∈ E
α
h ∩K,

L
n(Eh ∩ B(pj, %j)) =

α

2
L

n(B(pj, %j)),

Eα
h ∩K ⊆

∞⋃

j=0

B(pj, 5%j). (2.15)

Since L n(Eh) is finite, by Theorem 1.6.8 we get M > 0 such that

α

2C
%Qj ≤

α

2
L

n(B(pj, %j)) = L
n(Eh ∩ B(pj, %j)) ≤

(
M PX(Eh;B(pj, %j))

) Q

Q−1
.

Therefore we have that

%Q−1
j ≤M

(
2C

α

)Q−1
Q

PX(Eh;B(pj, %j)),

for every j ∈ N. Finally

H
Q−1
10δh

(
K ∩

∞⋂

i=0

Eα
i

)
≤H

Q−1
10δh

(K ∩ Eα
h )

(2.15)
≤ ωQ−15

Q−1

∞∑

j=0

%Q−1
j

≤ ωQ−15
Q−1M

(
2C

α

)Q−1
Q

∞∑

j=0

PX(Eh;B(pj, %j))

≤ ωQ−15
Q−1M

(
2C

α

)Q−1
Q

PX(Eh; Ω).

Taking the limit for h→∞ we get

H
Q−1

(
K ∩

∞⋂

i=0

Eα
i

)
= 0,

which, by the arbitrariness of K, completes the proof.
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Before passing to the next result, we introduce some notation that we are going

to use frequently in what follows. Let p ∈ Rn be fixed and let Fp denote exponential

coordinates as in (1.16), for a fixed choice of a basis Y1, . . . , Yn as in (1.16). Given

r > 0 and i ∈ {1, . . . ,m}, define

X̃r
i := r(dδr−1)[X̃i ◦ δr]. (2.16)

By Theorem 1.4.5, we know that X̃r
i converges to X̂i in C∞

loc, for every i = 1, . . . ,m.

Moreover, if d̃r, B̃r(ξ, %) denote, respectively, distance and balls with respect to the

metric induced by the vector fields (X̃r
1 , . . . , X̃

r
m), it is easy to see that the function

δr : (R
n, X̃r)→ (Rn, X̃) satisfies

d̃r(ξ, η) =
1

r
d̃(δrξ, δrη).

By Theorem 1.4.9, the convergence

lim
r→0

B̃r(0, %) = B̂(0, %) (2.17)

holds in the Gromov-Hausdorff sense, B̂(0, %) denoting a ball in the tangent Carnot

group at p (recall Theorem 1.4.5). Moreover, given u ∈ BVX,loc(R
n) we set

ũ := u ◦ Fp and ũr := ũ ◦ δr; (2.18)

notice that

|DX̃r ũr|(B̃r(0, %)) = r1−Q|DX̃ ũ|(B̃(0, r%)).

We implicitly assume from now on in this chapter that the CC balls are bounded

with respect to the Euclidean metric. This natural hypothesis will guarantee the use

of Theorem 4.2.6.

Lemma 2.2.2. Let u ∈ BVX(Ω). Then

H
Q−1

({
p ∈ Ω : lim sup

r→0

 

B(p,r)

|u|
Q

Q−1 dL n = +∞

})
= 0.

Proof. Possibly taking |u| instead of u, we can suppose that u ≥ 0; we also assume

without loss of generality that Ω is bounded in Rn. Define the set

D =

{
p ∈ Ω : lim sup

r→0

|DXu|(B(p, r))

rQ−1
= +∞

}
.

By Proposition 1.1.18 we have that H
Q−1(D) = 0. For every h ∈ N we can find

th ∈ (h, h+ 1) such that

PX({u > th},Ω) ≤

ˆ h+1

h

PX({u > t},Ω) dt.
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Define Eh := {u > th}. Since u ∈ L1(Ω) we have that limh L n(Eh) = 0 and applying

the Coarea Formula of Theorem 1.6.6 we get

∞∑

h=0

PX(Eh,Ω) ≤

ˆ +∞

0

PX({u > t},Ω) dt = |DXu|(Ω) < +∞,

and therefore limh PX(Eh,Ω) = 0. We are in a position to apply Lemma 2.2.1. Defining

for every h ∈ N

Fh =

{
p ∈ Ω : lim sup

r→0

L n(Eh ∩ B(p, r))

L n(B(p, r))
≥ α

}
,

where α > 0 will be chosen later depending on Ω only, we have that H Q−1 (
⋂∞

h=0 Fh) =

0. It is then sufficient to prove the inclusion

L :=

{
p ∈ Ω : lim sup

r→0

 

B(p,r)

|u|
Q

Q−1dL n = +∞

}
⊆ D ∪

∞⋂

h=0

Fh. (2.19)

To this aim, we fix p /∈ D ∪
⋂∞

h=0 Fh and we prove that p /∈ L. Define up,r :=
ffl

B(p,r)
udL n. Applying Theorem 1.6.7, we get C > 0 and R > 0 such that

 

B(q,r)

|u(y)− uq,r|
Q

Q−1dL n(y) ≤ C

(
|DXu|(B(q, r))

rQ−1

) Q
Q−1

, (2.20)

for every q ∈ Ω and all 0 < r < R. It is then enough to prove that lim supr→0 up,r <

+∞: in this case, in fact, the previous inequality and the definition of D would imply

that p /∈ L.

Suppose by contradiction that there exists a sequence (rj) such that limj rj = 0

and limj up,rj = +∞. Define ũ, ũrj as in (2.18) (with r = rj) and ṽj := ũrj − up,rj ; set

also

X̃j
i := X̃

rj
i and X̃j := (X̃j

1 , . . . , X̃
j
m).

Since p /∈ D, for any % > 0 the sequence r1−Q
j |DXu|(B(p, %rj)) is uniformly bounded

with respect to j ∈ N; by Proposition 1.6.4, the same is true for the sequence

|DX̃j ṽj|(B̃j(0, %)) = r1−Q
j |DX̃ ũ|(B̃(0, %rj)),

where B̃j(0, %) := B̃rj(0, %), according to the notation introduced before (2.18). Taking

also (2.17) into account, this proves that, for any compact set K ⊆ Rn, the sequence

|DX̃j ṽj|(K) is bounded; by (2.20), also ‖ṽj‖L1(K) is bounded.

Taking Theorem 1.4.5 into account, by Theorem 4.2.6, we can find w ∈ L1(B̂(0, 1))

such that (possibly extracting a subsequence)

lim
j
‖ṽj − w‖L1(B̂(0,1))= 0.
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Consequently, for almost every q ∈ B̂(0, 1), we have

lim
j
u(Fp(δrjq)) = +∞,

and then, for every h ∈ N,

L
n(B̂(0, 1)) = lim

j
L

n({q ∈ B̃j(0, 1) : u(Fp(δrjq)) > th})

= lim
j

L n({q ∈ B̃(0, rj) : u(Fp(q)) > th})

rQj

= lim
j

1

rQj

ˆ

B(p,rj)∩Eh

|det∇F−1
p | dL

n

≤ |det∇F−1
p (p)|lim sup

r→0

L n(Eh ∩ B(p, r))

L n(B(p, r))

L n(B(p, r))

rQ

≤
C

|det∇Fp(0)|
lim sup

r→0

L n(Eh ∩ B(p, r))

L n(B(p, r))

where C > 0 is given by Theorem 1.2.4 with K = Ω. Notice that L n(B̂(0, 1)) depends

on p. Using (2.17) we obtain

lim sup
r→0

L n(Eh ∩ B(p, r))

L n(B(p, r))
≥
|det∇Fp(0)|

C
L

n(B̂(0, 1))

=
|det∇Fp(0)|

C
lim
r→0

L
n(B̃r(0, 1))

=
|det∇Fp(0)|

C
lim
r→0

1

rQ
L

n(B̃(0, r))

=
|det∇Fp(0)|

C
lim
r→0

1

rQ

ˆ

B(p,r)

|det∇F−1
p | dL

n

≥
1

C
lim inf
r→0

L n(B(p, r))

rQ
≥

1

C2
.

This proves that p ∈
⋂∞

h=0 Fh for α := 1/C2, a contradiction.

The following result is proved in [3] and it will be of capital importance throughout

this Chapter. Recall Definition 1.1.21 for the notion of essential boundary ∂∗E of

a measurable set E. Observe also that, in the context of CC spaces, the reference

measure is L n and ∂∗E is equivalently defined as the set of points p ∈ Rn such that

lim inf
r→0

L n(E ∩ B(p, r))

L n(B(p, r))
< 1 and lim sup

r→0

L n(E ∩ B(p, r))

L n(B(p, r))
> 0.

Theorem 2.2.3. Let (Rn, X) be an equiregular CC space of homogeneous dimension

Q; let E ⊆ Rn be a set with finite X-perimeter in an open set Ω ⊆ Rn. Then

PE
X Ω = ηH Q−1 (Ω ∩ ∂∗E) (2.21)

for a suitable positive function η that is locally bounded away from zero. Moreover

lim sup
r→0

PE
X (B(p, 2r))

PE
X (B(p, r))

<∞ for PE
X -a.e. p ∈ Ω ∩ ∂∗E.
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Theorem 2.2.4. Let (Rn, X) be an equiregular CC space of homogeneous dimension

Q. Then there exists λ : Rn → (0,+∞) locally bounded away from 0 such that, for

every open set Ω ⊆ Rn and any u ∈ BVX(Ω;R
k) one has

|DXu|≥ λ|u+ − u−|S Q−1 Ju.

Moreover, for any Borel set B ⊆ Ω the following implications hold:

H
Q−1(B) = 0 ⇒ |DXu|(B) = 0; (2.22)

H
Q−1(B) < +∞ and B ∩ Su = ∅ ⇒ |DXu|(B) = 0. (2.23)

Proof. Take p ∈ Ju. By Proposition 2.1.8 the sequence ũr := u ◦ Fp ◦ δr converges in

L1(B̂(0, 1)) as r → 0 to the function

wp(y) :=




u+(p) if 〈ν(p), y〉 ≥ 0

u−(p) if 〈ν(p), y〉 < 0.

Defining X̃r
i as in (2.16) and using Propositions 4.2.7 and 1.6.4 we obtain for any

positive ε that

lim inf
r→0

|DXu|(B(p, r))

rQ−1
≥|det∇Fp(0)| lim inf

r→0
|DX̃r ũr|(B̃r(0, 1))

≥|det∇Fp(0)| lim inf
r→0

|DX̃r ũr|(B̂(0, 1− ε))

≥|det∇Fp(0)| |DX̂wp|(B̂(0, 1− ε)),

whence

lim inf
r→0

|DXu|(B(p, r))

rQ−1
≥|det∇Fp(0)| |DX̂wp|(B̂(0, 1))

≥|det∇Fp(0)| |u
+(p)− u−(p)|H n−1

e (ν⊥ ∩ B̂(0, 1))

(2.24)

Using the Ball-Box Theorem (see, for instance, the version given in [72, equation (1.1)])

one can easily see that, for any p ∈ Rn, there exist c > 0 and a neighborhood U of p

such that the function λ(q) := |det∇Fq(0)|H
n−1
e (ν⊥ ∩ B̂q(0, 1)) is such that λ ≥ c on

U . By Corollary 1.1.19, this proves the first part of the statement.

By Theorem 2.2.3, the implication (2.22) is trivially true in case k = 1 and u = χE

for some E ⊆ Rn with finite X-perimeter. If k = 1 and u ∈ BVX(Ω), we define

Es := {u > s} and we apply Theorem 1.6.6 (and, again, Theorem 2.2.3) to get

|DXu|(B) =

ˆ +∞

−∞

PX(Es;B) ds =

ˆ +∞

−∞

(
ˆ

B∩∂∗Es

ηs dH
Q−1

)
ds

for suitable positive functions ηs. This allows to infer (2.22). In the general case k ≥ 1,

it is sufficient to recall inequality (1.28).
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In order to prove (2.23) we take a Borel subset B of Ω and u ∈ BVX(Ω) such that

B ∩ Su = ∅. If k = 1, by Theorem 1.6.6 we obtain again

|DXu|(B) =

ˆ +∞

−∞

(
ˆ

B∩∂∗Es

ηs dH
Q−1

)
ds

=

ˆ

B

ˆ

R

ηs(p)χ∂∗Es
(p) ds dH Q−1(p) = 0,

the last equality following from Proposition 2.1.4. In the case u ∈ BVX(Ω;Rk), k ≥ 2,

it is sufficient to notice that B ∩ Su = ∅ implies B ∩ Suj = ∅ for every j = 1, . . . , k.

Using inequality (1.28) we can complete the proof.

Let us recall once more the notation up,r :=
ffl

B(p,r)
u dL n.

Lemma 2.2.5. Let (Rn, X) be an equiregular CC space of homogeneous dimension

Q and let Ω ⊆ Rn be an open bounded set. Then there exist C = C(Ω) > 0 and

R = R(Ω) > 0 such that, for every p ∈ Ω, every u ∈ BVX(Ω) and every 0 < r <

min{R, 1
2
d(p, ∂Ω)}, one has

|up,2r − up,r| ≤ Cr1−Q|DXu|(B(p, 2r)).

Proof. We use Theorems 1.2.4 and 1.6.7 to estimate

|up,2r − up,r| =

∣∣∣∣
 

B(p,r)

(u− up,2r) dL
n

∣∣∣∣ ≤ C

 

B(p,2r)

|u− up,2r| dL
n

≤C

(
 

B(p,2r)

|u− up,2r|
Q

Q−1 dL n

)Q−1
Q

≤ Cr1−Q|DXu|(B(p, 2r)).

Lemma 2.2.6. Let (Rn, X) be an equiregular CC space of homogeneous dimension

Q and let Ω ⊆ Rn be an open bounded set. Then there exist C = C(Ω) > 0 and

R = R(Ω) > 0 such that the following holds: for every p ∈ Ω, u ∈ BVX(Ω) and

0 < r < min{R, 1
2
d(p, ∂Ω)} with p /∈ Su, one has

ˆ

B(p,r)

|u(q)− u?(p)|

d(p, q)
dL n(q) ≤ C

(
|DXu|(B(p, r)) +

ˆ 1

0

|DXu|(B(p, tr))

tQ
dt

)
.

In particular we have also

ˆ

B(p,r)

|u(q)− u?(p)|

d(p, q)
dL n(q) ≤ C

ˆ 2

0

|DXu|(B(p, tr))

tQ
dt.
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Proof. Let u, p, r be as in the statement; denote for shortness ui := up,2−ir, i ∈ N. Since

ui → u?(p) as i→∞ we estimate

ˆ

B(p,r)

|u(q)− u?(p)|

d(p, q)
dL n(q)

≤
∞∑

i=1

ˆ

B(p,2−i+1r)\B(p,2−ir)

|u(q)− u?(p)|

2−ir
dL n(q)

≤
∞∑

i=1

2i

r

ˆ

B(p,2−i+1r)\B(p,2−ir)

(
|u(q)− ui−1|+

∞∑

j=i−1

|uj − uj+1|

)
dL n(q)

and use Lemma 2.2.5 and Theorem 1.6.7 to get

≤C
∞∑

i=1

2i

r

(
2−ir|DXu|(B(p, 21−ir)) +

∞∑

j=i−1

(
21−ir

)Q (
2−(j+1)r

)1−Q
|DXu|(B(p, 2−jr))

)

≤C
∞∑

i=1

(
|DXu|(B(p, 21−ir)) +

∞∑

j=i−1

2(j−i+1)(Q−1)|DXu|(B(p, 2−jr))

)

=C
∞∑

k=0

(
1 + 1 + 2Q−1 + (2Q−1)2 + · · ·+ (2Q−1)k

)
|DXu|(B(p, 2−kr))

≤C
∞∑

k=0

2(k+1)(Q−1) − 1

2Q−1 − 1
|DXu|(B(p, 2−kr)).

Since Q ≥ 2 we have 2Q−1 − 1 ≥ 2Q−1

2
and hence

ˆ

B(p,r)

|u(q)− u?(p)|

d(p, q)
dL n(q) ≤ C

∞∑

k=0

2k(Q−1)|DXu|(B(p, 2−kr))

= C

(
|DXu|(B(p, r)) +

∞∑

k=1

2k(Q−1)|DXu|(B(p, 2−kr))

)

= C

(
|DXu|(B(p, r)) +

∞∑

k=1

ˆ 21−k

2−k

2kQ|DXu|(B(p, 2−kr)) dt

)

≤ C

(
|DXu|(B(p, r)) +

∞∑

k=1

ˆ 21−k

2−k

|DXu|(B(p, tr))

tQ
dt

)

= C

(
|DXu|(B(p, r)) +

ˆ 1

0

|DXu|(B(p, tr))

tQ
dt

)
,

which completes the proof.

Definition 2.2.7 (Absolutely continuous and singular parts). Let u ∈ BVX(Ω;R
k).

We denote by Da
Xu and Ds

Xu, respectively, the absolutely continuous and singular part

of DXu with respect to L n.
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Definition 2.2.8 (Jump and Cantor parts). Let (Rn, X) be an equiregular CC space

and let Ω ⊆ Rn be an open set. Let u ∈ BVX(Ω;Rk). The measures

Dj
Xu := Ds

Xu Ju, Dc
Xu := Ds

Xu (Ω \ Ju),

are called, respectively, jump part of the measure derivative of u and Cantor part of

the measure derivative of u.

Theorem 2.2.9. Let (Rn, X) be an equiregular CC space, let Ω ⊆ Rn be an open set

and let u ∈ BVX(Ω;R
k). Then u is approximately X-differentiable at L n-almost every

point of Ω. Moreover the approximate differential Dap
X u coincides L n-almost every-

where with the density of the absolutely continuous part of the distributional derivative

DXu with respect to L n.

Proof. We can assume without loss of generality that k = 1. Suppose DXu = vL n +

Ds
Xu is the Radon-Nykodým decomposition of the measure DXu with respect to L n.

By the Radon-Nykodým Theorem in doubling metric spaces (see Theorem 1.1.3), at

L n-almost every p ∈ Ω we have

lim
r→0

Ds
Xu(B(p, r))

rQ
= 0. (2.25)

It is sufficient to prove that, for every p ∈ Ω \ (Su ∪ Sv) for which (2.25) holds, u is

approximately X-differentiable at p with Dap
X u(p) = v?(p).

Let R > 0 and f ∈ C1(B(p,R)) be such that f(p) = 0 and Xf(p) = v?(p) and

define

w(q) := u(q)− u?(p)− f(q).

Then w ∈ BV (B(p,R)), p ∈ B(p,R)\Sw and w?(p) = 0. We are in a position to apply

Lemma 2.2.6 to the function w and get C > 0 so that, for small enough r,

1

rQ

ˆ

B(p,r)

|u(q)− u?(p)− f(q)|

d(p, q)
dL n(q) ≤

C

rQ

ˆ 2

0

|DXw|(B(p, tr))

tQ
dt

≤ C sup
t∈(0,2)

|DXw|(B(p, tr))

(tr)Q
.

It is then enough to show that limr→0 r
−Q|DXw|(B(p, r)) = 0. Taking into account

that DXw = (v −Xf)L n +Ds
Xu and (2.25), it suffices to check that

lim
r→0

1

rQ

ˆ

B(p,r)

|v −Xf | dL n = 0,

which follows by Theorem 2.1.2 and the inequality |v − Xf |≤ |v − v?(p)|+|v?(p) −

Xf |.
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One important fact about BV function is about the existence of a trace operator

depending on a sufficiently smooth boundary. The following theorem is a consequence

of some results contained in [89]. We introduce the notation

B±
f (p, r) := {q ∈ B(p, r) : ±f(q) > 0},

for p ∈ Rn, r > 0 and a function f .

Theorem 2.2.10. Let (Rn, X) be an equiregular CC space, let Ω ⊆ Rn be an open

set and let f ∈ C1
X(Ω) be such that Xf 6= 0 on Ω; let S be the C1

X-hypersurface

S := Ω ∩ {f = 0}. Then, for any open set U b Ω, we have H Q−1(S ∩ U) < ∞.

Moreover, there exist two linear operators T+, T− : BVX,loc(Ω) → L1
loc(S,H

Q−1) such

that, for any u ∈ BVX,loc(Ω), one has

lim
r→0

1

rQ

ˆ

B+
f
(p,r)

|u− T+u(p)| dL n = lim
r→0

1

rQ

ˆ

B−
f
(p,r)

|u− T−u(p)| dL n = 0,

for H Q−1-a.e. p ∈ S. In particular,

T±u(p) = lim
r→0

1

rQ

ˆ

B±
f
(p,r)

u dL n,

for H Q−1-a.e. p ∈ S.

Proposition 2.2.11. Let (Rn, X) be an equiregular CC space and let Ω ⊆ Rn be an

open set. Let R ⊆ Ω be a countably X-rectifiable set. Then, for every u ∈ BVX(Ω;R
k)

and for H Q−1-almost every p ∈ R, there exists a couple (u+(p), u−(p)) ∈ Rk×Rk such

that

lim
r→0

1

rQ

ˆ

Ω∩B+
νR(p)

(p,r)

|u−u+(p)|dL n = lim
r→0

1

rQ

ˆ

Ω∩B−
νR(p)

(p,r)

|u−u−(p)|dL n = 0. (2.26)

Proof. Without loss of generality we can assume k = 1. Let u ∈ BVX(Ω) be fixed.

By definition of countable X-rectifiability we can find a family {Si : i ∈ N} of C1
X-

hypersurfaces in Rn such that

H
Q−1

(
R \

∞⋃

i=0

Si

)
= 0.

For every i ∈ N we can write, at least locally, Si = {fi = 0} and we can suppose that

Xfi 6= 0 on Si. Formula (2.26) easily follows (with u±(p) = T±u(p) and ν(p) = νR(p))

from Theorem 2.2.10 for H Q−1-a.e. p ∈ R such that #{i ∈ N : p ∈ Si} = 1. It is then

enough to show that, for any fixed couple i, j ∈ N with i 6= j, the following holds: for

H Q−1-almost every point p ∈ Si ∩ Sj, the equivalence

(T+
i u(p), T

−
i u(p), νSi

(p)) ≡ (T+
j u(p), T

−
j u(p), νSj

(p)) (2.27)
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holds. Here, T±
i , T

±
j are the trace operators provided by Theorem 2.2.10 with f = fi, fj.

Fix a point p ∈ Si∩Sj where νSi
(p) = ±νSj

(p); recall that this fact occurs at H Q−1-

a.e. p ∈ Si∩Sj. Assume that νSi
(p) = νSj

(p), i.e., Xfi(p)
|Xfi(p)|

=
Xfj(p)

|Xfj(p)|
; by Theorem 2.2.10

we have, for H Q−1-a.e. such p, that

|T±
i (p)− T±

j (p)| = lim
r→0

1

rQ

∣∣∣∣∣

ˆ

{±fi>0}∩B(p,r)

u dL n −

ˆ

{±fj>0}∩B(p,r)

u dL n

∣∣∣∣∣

≤ lim
r→0

1

rQ

ˆ

{fifj≤0}∩B(p,r)

|u| dL n

≤ lim
r→0

1

rQ
L

n({fifj ≤ 0} ∩ B(p, r))1/Q
(
ˆ

B(p,r)

|u|
Q

Q−1dL n

)Q−1
Q

.

By Remark 1.5.5, we have

lim
r→0

1

rQ
L

n({fifj ≤ 0} ∩ B(p, r)) = 0,

while by Lemma 2.2.2 we also have that for H Q−1-almost every p ∈ Ω

lim sup
r→0

1

rQ

ˆ

B(p,r)

|u|
Q

Q−1dL n < +∞.

This proves that T±
i (p) = T±

j (p) for H Q−1-a.e. p ∈ Si ∩ Sj such that νSi
(p) = νSj

(p).

A similar argument shows that T±
i (p) = T∓

j (p) holds for H Q−1-a.e. p ∈ Si ∩ Sj with

νSi
(p) = −νSj

(p). This proves (2.27) and concludes the proof.

The results below show how some assumptions on the regularity of the essential

boundary of sets with finite perimeter can induce some regularity of the sets Su, when-

ever u ∈ BVX(Ω;Rk).

Definition 2.2.12 (Property R). Let (Rn, X) be an equiregular CC space with ho-

mogeneous dimension Q ∈ N. We say that (Rn, X) satisfies property R if, for every

open set Ω ⊆ Rn and every E ⊆ Rn with locally finite X-perimeter in Ω, the essential

boundary ∂∗E ∩ Ω is countably X-rectifiable.

Definition 2.2.13 (Property LR). Let (Rn, X) be an equiregular CC space with

homogeneous dimension Q ∈ N. We say that (Rn, X) satisfies property LR if, for

every open set Ω ⊆ Rn and every E ⊆ Rn with locally finite X-perimeter in Ω, the

essential boundary ∂∗E ∩ Ω is countably X-Lipschitz rectifiable.

Theorem 2.2.14. Let (Rn, X) be an equiregular CC space, let Ω ⊆ Rn be an open

set and let u ∈ BVX(Ω;R
k). Then Su is contained in a countable union of sets with

finite H Q−1 measure. Moreover, if (Rn, X) satisfies property R, then Su is countably

X-rectifiable and H Q−1(Su \ Ju) = 0.



86 CHAPTER 2. FINE PROPERTIES OF BVX FUNCTIONS

Proof. Since Su = ∪k
α=1Suα , it is not restrictive to suppose k = 1. By the Coarea

Formula we get a countable and dense set D ⊆ R such that for every t ∈ D the level

set {u > t} has finite X-perimeter. We first prove that

Su \ L ⊆
⋃

t∈D

∂∗{u > t} (2.28)

where, as in Theorem 2.2.2, L denotes the H Q−1-negligible set

L :=

{
p ∈ Ω : lim sup

r→0

 

B(p,r)

|u|
Q

Q−1dL n = +∞

}
.

For this purpose, take p /∈ L and suppose that p /∈
⋃

t∈D ∂
∗{u > t}; we will prove that

p /∈ Su. By definition, p is either a point of density 1 or a point of density 0 in {u > t},

for every t ∈ D. Notice that for every t ∈ D ∩ (0,+∞) one has

L n ({u > t} ∩ B(p, r))

L n(B(p, r))
≤

1

t

 

B(p,r)

|u| dL n ≤
1

t

(
 

B(p,r)

|u|
Q

Q−1dL n

)Q−1
Q

and therefore, if t ∈ D ∩ (0,+∞) is large enough, p is a point of density 0 for {u > t}.

Analogously, if t ∈ D ∩ (−∞, 0) and −t is large enough, p is a point of density 1 for

{u > t}. Hence we can find a real number

z = z(p) := sup {t ∈ D : {u > t} has density 1 at p} .

By the density of D in R we get that for every t > z, {u > t} has density 0 at p and

for every t < z, {u > t} has density 1 at p.

We prove now that z is the approximate limit of u at p. To this end define Eε :=

{|u− z|> ε} and estimate

1

rQ

ˆ

B(p,r)

|u− z| dL n ≤ εC +
1

rQ

ˆ

Eε∩B(p,r)

|u− z| dL n

≤ εC +
1

rQ
(L n(Eε ∩ B(p, r)))1/Q

(
ˆ

B(p,r)

|u− z|
Q

Q−1 dL n

)Q−1
Q

= εC +

(
L n(Eε ∩B(p, r))

rQ

)1/Q(
1

rQ

ˆ

B(p,r)

|u− z|
Q

Q−1 dL n

)Q−1
Q

.

Since both {u > z + ε} and {u < z − ε} have density 0 at p, one has

lim
r→0

L n(Eε ∩ B(p, r))

rQ
= 0

and, since p /∈ L, we get

lim sup
r→0

1

rQ

ˆ

B(p,r)

|u− z| dL n ≤ Cε,
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from which we deduce that p /∈ Su, as desired.

Assume now (Rn, X) satisfies property R. Then, (2.28) together with the fact that

H Q−1(L) = 0, imply that Su is countably X-rectifiable. It remains to prove that

H Q−1(Su \ Ju) = 0. Let ν = νSu
be the horizontal normal to Su. By Proposition

2.2.11, for H Q−1-almost every p ∈ Su, there exist u+(p) and u−(p) in Rk such that

lim
r→0

1

rQ

ˆ

B+
ν(p)

(p,r)

|u− u+(p)| dL n = 0

and

lim
r→0

1

rQ

ˆ

B−
ν(p)

(p,r)

|u− u−(p)| dL n = 0.

According to Definition 2.1.6, we are equivalently saying that the approximate jump

triple (u+(p), u−(p), ν(p)) exists for H Q−1-almost every p ∈ Su. This concludes the

proof.

The proof of Theorem 2.2.14 can be easily extended in order to prove the following

result.

Theorem 2.2.15. Let (Rn, X) be an equiregular CC space satisfying property LR and

let u ∈ BVX(Ω;R
k). Then Su is countably X-Lipschitz rectifiable.

Remark 2.2.16. Notice that combining Theorem 2.2.14 and Proposition 2.2.11, we

have that, whenever (Rn, X) satisfies propertyR, the set Ju is rectifiable and therefore,

for H Q−1-almost every p ∈ Ju, one has that (u+Ju
, u−Ju

, νJu
) is an approximate X-jump

triple for u at p.

As for classical BV functions (see e.g. [5, pag. 177]), the (approximate) convergence

of u ∈ BVX to u?(p) at points p /∈ Su can be improved in a L1∗-sense, as we now state.

Proposition 2.2.17. Let (Rn, X) be an equiregular CC space, Ω ⊆ Rn an open set

and let u ∈ BVX(Ω). Then

lim
r→0

 

B(p,r)

|u− u?(p)|
Q

Q−1dL n = 0 for H
Q−1-a.e. p ∈ Ω \ Su.

Proof. We first prove that

lim
r→0

|DXu|(B(p, r))

rQ−1
= 0 for H

Q−1-a.e. p ∈ Ω \ Su. (2.29)

Let t > 0 be fixed and consider the set

Et :=

{
p ∈ Ω \ Su : lim sup

r→0

|DXu|(B(p, r))

rQ−1
> t

}
.

By Theorem 1.1.18 one has H Q−1(Et) < +∞ and then, by Theorem 2.2.4, we have

|DXu|(Et) = 0 and again Proposition 1.1.18 gives H Q−1(Et) = 0. Since this is true

for all positive t, formula (2.29) immediately follows.
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Combining Theorem 1.6.7 and (2.29) we immediately get that

lim
r→0

 

B(p,r)

|u− up,r|
Q

Q−1dL n = 0,

for H Q−1-a.e. p ∈ Ω. The conclusion then follows by

|u− u?(p)|
Q

Q−1≤ 2
1

Q−1

(
|up,r − u

?(p)|
Q

Q−1+|u− up,r|
Q

Q−1

)
,

together with u?(p) = limr→0 up,r.

When (Rn, X) satisfies property R, Ω ⊆ Rn is open and u ∈ BVX(Ω;R
k), by

Theorem 2.2.14 the precise representative up

up(p) :=





u?(p) if p ∈ Ω \ Su,

u+(p) + u−(p)

2
if p ∈ Ju

(2.30)

is defined H Q−1-a.e. on Ω. We have the following result.

Theorem 2.2.18. Let (Rn, X) be an equiregular CC space satisfying property R, Ω ⊆

Rn an open set and let u ∈ BVX(Ω;R
k). Then

lim
r→0

 

B(p,r)

u dL n = up(p) for H
Q−1-a.e. p ∈ Ω.

Proof. The statement easily follows for H Q−1-a.e. p ∈ Ω \ Su by Proposition 2.2.17.

By Theorem 2.2.14 it suffices to prove the statement for all p ∈ Ju, which directly

follows from Proposition 2.1.5 and Definition 2.1.6.

Remark 2.2.19. When (Rn, X) satisfies property R, then Dc
Xu = Ds

Xu (Ω \ Su): to

see this, it is enough to combine Theorems 2.2.4 and 2.2.14.

We now want to study the properties of the decomposition DXu = Da
Xu+Dc

Xu+

Dj
Xu.

Theorem 2.2.20 (Properties of Cantor part and jump part). Let u ∈ BVX(Ω;R
k).

Then the following facts hold:

(a) Da
Xu = DXu (Ω \ S) and Ds

Xu = DXu S, where

S :=

{
p ∈ Ω : lim

r→0

|DXu|(B(p, r))

rQ
= +∞

}
.

Moreover, if E ⊆ Rk is such that H 1
e (E) = 0, then Dap

X u = 0 L n-a.e. in

(u?)−1(E).
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(b) Let Θu ⊆ S be defined by

Θu :=

{
p ∈ Ω : L(p) := lim inf

r→0

|DXu|(B(p, r))

rQ−1
> 0

}
.

Then Ju ⊆ Θu.

Moreover, if (Rn, X) satisfies property R, then

(c) H Q−1(Θu \ Ju) = 0 and Dj
Xu = DXu Θu. More generally, for every Borel set

Σ containing Ju and σ-finite with respect to H Q−1, we have Dj
Xu = DXu Σ.

(d) Dc
Xu = DXu (S \Θu).

(e) if B ⊆ Ω is such that either H Q−1 B is σ-finite or B = (u?)−1(E) for some

H 1
e -negligible set E ⊆ Rk, then Dc

Xu(B) = 0.

Proof. In order to prove the first part of statement (a) it is sufficient to apply Radon-

Nykodým Theorem in doubling metric spaces (see e.g. [84, Theorem 4.7 and Remark

4.5]). Concerning the second part, assume first that k = 1 and let B := (u?)−1(E). By

Proposition 2.1.4, for any t /∈ E we have B ∩ ∂∗{u > t} = ∅. By Theorems 1.6.6 and

2.2.3 we obtain

|DXu|(B) =

ˆ

R

PX({u > t} ∩ B) dt = 0 =

ˆ

R\E

ˆ

∂∗{u>t}∩B

θt dH
Q−1 dt = 0,

where θt denote suitable positive functions. When k ≥ 1 and i = 1, . . . , k we set

Ei := {t ∈ R : t = zi for some z ∈ E}; the set Ei is such that L 1(Ei) = 0 and by

(1.28)

|DXu|(B) ≤
k∑

i=1

|DXu
i|(B) ≤

k∑

i=1

|DXu
i|(((ui)?)−1(Ei)) = 0.

We then conclude by Theorem 2.2.9.

By (2.24) in the proof of Theorem 2.2.4 we have Ju ⊆ Θu, and statement (b)

follows.

We now prove (c). Applying Proposition 1.1.18 we get that for every h ∈ N \ {0}

|DXu| {L ≥
1
h
} ≥

1

h
ωQ−1H

Q−1 {L ≥ 1
h
}, (2.31)

where L is defined in statement (b). In particular, H Q−1
(
{L ≥ 1

h
}
)
< +∞. By (2.23)

|DXu|
(
{L ≥ 1

h
} \ Su

)
= 0

and consequently (by (2.31)) also H Q−1({L ≥ 1
h
} \ Su) = 0. Since {L ≥ 1

h
} ↗ Θu, on

passing to the limit for h→ +∞ we get H Q−1(Θu \ Su) = 0. Taking Theorem 2.2.14

into account, we conclude that H Q−1(Θu \ Ju) = 0.
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Let now Σ be as in statement (c). Then, taking into account Theorem 2.2.4 and the

fact that H Q−1(Su \ Ju) = 0, we have

DXu Σ = DXu Ju +DXu (Σ \ Ju)

= Dj
Xu+DXu (Σ \ Su) +DXu (Σ ∩ Su \ Ju)

= Dj
Xu+DXu (Σ \ Su).

Since Σ is σ-finite with respect to H Q−1, using (2.23) we get that DXu (Σ \ Su) = 0,

and so DXu Σ = Dj
Xu.

Statement (d) follows from (a), (b), (c) and the decomposition DXu = Da
Xu +

Dc
Xu+Dj

Xu, which immediately give that Dc
Xu = DXu (S \Θu).

We prove (e) in case H Q−1 B is σ-finite; we can assume (see e.g. [5, Theorem

1.43]) that B is a Borel set. Using Theorems 2.2.4 and 2.2.14 we get that |DXu|(B \

Ju) = 0, which gives (Da
Xu+Dc

Xu) B = 0.

Concerning the second part of statement (e), suppose first that k = 1 and let B =

(u?)−1(E) with L 1(E) = 0. By Proposition 2.1.4 we know that ∂∗{u > t}∩B = ∅ for

every t /∈ E. Applying the Coarea Formula of Theorem 1.6.6 we get

|DXu|(B) =

ˆ

E

ˆ

∂∗{u>t}∩B

θt dH
Q−1dt = 0

for suitable positive functions θt. In the general case k ≥ 2 define for every i = 1, . . . , k

the sets Ei := πi(E), where πi denotes the canonical projection πi(x1, . . . , xk) = xi.

Noticing that L 1(Ei) ≤H 1
e (E) = 0, we can use (1.28) to estimate

|DXu|((u
?)−1(E)) ≤

k∑

i=1

|DXu
i|((u?)−1(E)) ≤

k∑

i=1

|DXu
i|(((ui)?)−1(Ei)) = 0,

and conclude the proof.

The problem of studying “intrinsic” measures of submanifolds of a CC space goes

back to M. Gromov [45, 0.6.b]: the interested reader might consult [60, 64, 65, 77] and

the references therein. Since we do not intend to dwell on such questions, we follow a

different (“axiomatic”) path; this is based on the following definition, where we choose

to work with the spherical Hausdorff measure S Q−1, rather than the standard one,

because the results mentioned above (as well as [38, 39]) suggest S Q−1 to be more

natural than the standard measure H Q−1.

Definition 2.2.21 (Property D). Let (Rn, X) be an equiregular CC space with ho-

mogeneous dimension Q ∈ N. We say that (Rn, X) satisfies property D if there exists

a function ζ : R× Sm−1 → (0,+∞) such that, for every C1
X-hypersurface S ⊆ Rn and

every p ∈ S, one has

lim
r→0

S Q−1(S ∩B(p, r))

rQ−1
= ζ(p, νS(p)).
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Remark 2.2.22. If (Rn, X) is an equiregular CC space satisfying property D and

R ⊆ Rn is X-rectifiable, then we have

lim
r→0

S Q−1(R ∩ B(p, r))

rQ−1
= ζ(p, νR(p)) for S

Q−1-a.e. p ∈ R,

where ζ is as in Definition 2.2.21.

Let us prove this fact. Let Si, i ∈ N, be a family of C1
X-hypersurfaces such that

S Q−1(R \ ∪i∈NSi) = 0; it is enough to show that, for any fixed i ∈ N, we have

lim
r→0

S Q−1(R ∩ B(p, r))

rQ−1
= ζ(p, νR(p)) for S

Q−1-a.e. p ∈ R ∩ Si.

Setting R∆Si := (R\Si)∪(Si\R), by Remark 1.1.20 (applied with µ := S Q−1 (R∆Si))

we obtain

lim
r→0

S Q−1((R∆Si) ∩ B(p, r))

rQ−1
= 0 for S

Q−1-a.e. p ∈ R ∩ Si,

which gives for S Q−1-a.e. p ∈ R ∩ Si

lim
r→0

S Q−1(R ∩ B(p, r))

rQ−1
= lim

r→0

S Q−1(Si ∩ B(p, r))

rQ−1
= ζ(p, νSi

(p)) = ζ(p, νR(p))

as desired.

Assuming properties R and D we are able to prove the following result, where we

use the notation u+R, u
−
R of Proposition 2.2.11.

Theorem 2.2.23. Let (Rn, X) be an equiregular CC space satisfying properties R and

D; then, there exists a function σ : Rn × Sm−1 → (0,+∞) such that the following

holds. For every open set Ω ⊆ Rn, u ∈ BVX(Ω;R
k) and every countably X-rectifiable

set R ⊆ Rn one has

DXu R = σ(·, νR)(u
+
R − u

−
R)⊗ νR S

Q−1 R.

In particular, Dj
Xu = σ(·, νu)(u

+ − u−)⊗ νu S Q−1 Ju.

Proof. We can assume without loss of generality that k = 1 and S Q−1(R) < +∞. By

Theorems 2.2.14 and 2.2.4 we can also assume that R ⊆ Ju. Given p ∈ Rn, we work

in adapted exponential coordinates Fp around p and we define

σ(p, ν) :=
|det∇Fp(0)|H

n−1
e (ν⊥ ∩ B̂p(0, 1))

ζ(p, ν)
,

where ζ is as in Definition 2.2.21 and, as in the proof of Theorem 2.2.4, H n−1
e denotes

the Euclidean Hausdorff measure in Rn.
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Let µR := DXu R; by Theorem 2.2.4 we have µR � S Q−1 R. By Remark 2.2.22

and Theorem 1.1.13, it is enough to prove that for S Q−1-a.e. p ∈ R

lim
r→0

µR(B(p, r))

S Q−1(R ∩ B(p, r))
= σ(p, νR(p))(u

+
R(p)− u

−
R(p))νR(p);

notice that the limit above exists S Q−1-almost everywhere. Taking into account Re-

mark 2.2.22 and the fact that (by Remark 1.1.20)

lim
r→0

|DXu− µR|(B(p, r))

rQ−1
= 0 for S

Q−1-a.e. p ∈ R,

it suffices to prove that, for S Q−1-a.e. p ∈ R, there exists a sequence ri → 0 such that

lim
i→+∞

DXu(B(p, ri))

rQ−1
i

= |det∇Fp(0)|H
n−1
e (ν⊥ ∩ B̂p(0, 1))(u

+
R(p)− u

−
R(p))νR(p).

We prove that such a sequence exists at all points where lim supr→0
|DXu|(B(p,r))

rQ−1 < ∞,

which holds for S Q−1-a.e. p ∈ R due to Remark 1.1.20.

Let then such a p ∈ R be fixed; since R ⊆ Ju, the functions ũr := u◦Fp◦δr converge

in L1
loc(R

n) to

wp(y) :=




u+(p) if L̃νR(p)(y) ≥ 0

u−(p) if L̃νR(p)(y) < 0,

where we used the fact that νR = νJu
= νu S Q−1-a.e. on R. Let ũ := u ◦ Fp; since

(recall notation (2.16)) |DX̃r ũr|(B̃r(0, %)) = |DX̃ ũ|(B̃(0, r%))/rQ−1 is bounded as r → 0

for any positive %, by Remark 4.2.8 the sequence DX̃r ũr weakly∗ converges in Rn to

DX̂wp as r → 0. Let si be an infinitesimal sequence such that |DX̃si
ũsi | weakly∗ to

some measure λ in Rn; let % ∈ (0, 1) be such that λ(∂B̂p(0, %)) = 0 (which holds for all

except at most countably many %) and define ri := %si. Proposition 1.6.4 gives

lim
i→∞

DXu(B(p, ri))

rQ−1
i

=|det∇Fp(0)| lim
i→∞

DX̃ ũ(B̃(0, ri))

rQ−1
i

=|det∇Fp(0)| lim
i→∞

DX̃si
ũsi(B̃si(0, %))

%Q−1
.

We prove in a moment that

lim
i→∞

DX̃si
ũsi(B̃si(0, %))

%Q−1
=
DX̂wp(B̂p(0, %))

%Q−1
; (2.32)

assuming this to be true, we have

lim
i→∞

DXu(B(p, ri))

rQ−1
i

=|det∇Fp(0)|
DX̂wp(B̂p(0, %))

%Q−1

=|det∇Fp(0)|H
n−1
e (ν⊥ ∩ B̂p(0, 1))(u

+
R(p)− u

−
R(p))νR(p).
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and the proof would be concluded.

Let us prove (2.32). Defining

µi := DX̃si
ũsi B̃si(0, %), µ := DX̂wp B̂p(0, %)

and taking into account part (b) of Proposition 1.1.4, it suffices to show that

µi
∗
⇀ µ and |µi|

∗
⇀ λ B̂p(0, %). (2.33)

Concerning the first statement in (2.33), fix a test function ϕ ∈ Cc(R
n); then

lim
i→∞

ˆ

ϕ dµi = lim
i→∞

ˆ

B̃si
(0,%)

ϕ dDX̃si
ũsi

= lim
i→∞

ˆ

B̂p(0,%)

ϕ dDX̃si
ũsi +

ˆ

B̃si
(0,%)\B̂p(0,%)

ϕ dDX̃si
ũsi −

ˆ

B̂p(0,%)\B̃si
(0,%)

ϕ dDX̃si
ũsi

= lim
i→∞

ˆ

B̂p(0,%)

ϕ dDX̂wp,

where the last equality follows from the weak∗ convergence of DX̃si
ũsi to DX̂wp and

the fact that (denoting by ∆ the symmetric difference of sets)

lim
i→∞
|DX̃si

ũsi |(B̃si(0, %)∆B̂p(0, %)) = 0

that, in turn, can be proved as follows. For any ε > 0 there exists δ ∈ (0, %) such that

λ(B̂p(0, %+ δ) \ B̂p(0, %− δ)) < ε;

by Theorem 1.4.9 we obtain

lim sup
i→∞

|DX̃si
ũsi |(B̃si(0, %)∆B̂p(0, %)) ≤ lim sup

i→∞
|DX̃si

ũsi |(B̂p(0, %+ δ) \ B̂p(0, %− δ))

≤λ(B̂p(0, %+ δ) \ B̂p(0, %− δ)) < ε,

where we used part (a) of Proposition 1.1.4.

The first statement in (2.33) is proved; the second one can be easily proved by the

very same argument taking into account that |µi|= |DX̃si
ũsi | B̃si(0, %).

2.2.1 An application to some classes of Carnot groups

Some of the main results of this chapter rely on properties R,LR or D; in this section

we show how they can be in some meaningful CC spaces and, in particular, in some

large classes of Carnot groups.

We start by introducing the X-reduced boundary FXE of a set E with finite X-

perimeter and its measure-theoretic horizontal inner normal. Recall that the reduced

boundary was the object originally considered by E. De Giorgi in the seminal paper

[24] about the rectifiability of sets with finite (Euclidean) perimeter in Rn.
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Definition 2.2.24. If (Rn, X) is a CC space and E is a set of locally finiteX-perimeter,

then by Riesz representation theorem there exists a PE
X -measurable function νE : Rn →

Sm−1 such that

DXχE = νEP
E
X .

We call νE the measure-theoretic horizontal inner normal to E.

Definition 2.2.25 (Reduced boundary). Let E ⊆ Rn be a set with locally finite X-

perimeter. The X-reduced boundary FXE of E is the set of points p ∈ Rn such that

PX(E,B(p, r)) > 0 for any r > 0 and

ν̃E(p) := lim
r→0

DXχE(B(p, r))

|DXχE|(B(p, r))

exists with |ν̃E(p)|= 1.

For sets with finite (Euclidean) perimeter in Rn the symmetric difference between

the essential boundary and the reduced one is H n−1
e -negligible, see e.g. [5, Theorem

3.61]. In our setting we have the following result, which is a known consequence of

Theorem 2.2.3, see e.g. [38, Theorem 7.3] for the Heisenberg group case and [39, Lemma

2.26] for step 2 Carnot groups. Notice that the proof of Theorem 2.2.26 below also

shows that νE = ν̃E a.e. on FXE.

Theorem 2.2.26. Let (Rn, X) be an equiregular CC space of homogeneous dimension

Q and let E ⊆ Rn be a set of locally finite X-perimeter. Then H Q−1(∂∗E \FXE) = 0.

Proof. By Theorem 2.2.3 we have DXχE = θνEH Q−1 ∂∗E for a suitable positive

function θ. Therefore it is enough to prove that, for H Q−1-almost every p ∈ ∂∗E, one

has

lim
r→0

DXχE(B(p, r))

|DXχE|(B(p, r))
= νE(p).

This fact directly follows from [32, Theorem 2.9.8] taking into account Theorem 2.2.3

and [32, Theorem 2.8.17].

The papers [38, 39, 66] prove the countable X-rectifiability of the reduced bound-

ary of sets with locally finite X-perimeter in, respectively, Heisenberg groups, Carnot

groups of step 2, and Carnot groups of type ?. These results, in conjunction with

Theorem 2.2.26, show that property R is satisfied in these settings.

Actually, Theorem 2.2.26 and the results about blow-up and representation of the

X-perimeter available in Heisenberg groups ([38, Theorems 4.1 and 7.1]), step 2 Carnot

groups ([39, Theorems 3.1 and 3.9]) and Carnot groups of type ? [66, Theorems 4.12

and 4.13] imply that also property D is satisfied in these settings.

Using also the left-invariance of the structure we can conclude what follows.
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Theorem 2.2.27. Heisenberg groups, Carnot groups of step 2 and Carnot groups of

type ? satisfy properties R and D. In particular, Theorems 2.2.14, 5, 6 and 2.2.18 hold

in these settings.

Moreover, the function σ(p, ν) appearing in 6 and 2.2.18 does not depend on the

point p ∈ Rn.

In [27] a class of Carnot groups G satisfying the following assumption

there exists at least one direction X in the first layer of the stratified Lie

algebra of G such that t 7→ exp(tX) is not an abnormal curve
(2.34)

is considered (see e.g. [74] for the notion of abnormal curve). This class includes,

for instance, the Engel group, which is the simplest example where the rectifiability

problem for sets with finite X-perimeter is open. One of the main results of [27] is the

following one: for any set E with finite X-perimeter in a Carnot group G satisfying

(2.34), the reduced boundary FXE is countably X-Lipschitz rectifiable. Together with

Theorem 2.2.26, this gives the following result.

Theorem 2.2.28. The property LR is satisfied in all Carnot groups G such that (2.34)

holds; in particular, Theorem 2.2.15 holds in such groups.

For the reader’s convenience, we here introduce the notion of end-point map and of

abnormal curve in a Lie group and we show that Condition (2.34) is purely algebraic.

Definition 2.2.29. Let G be a Lie group and let V ⊆ g be a linear subspace of its Lie

algebra g identified with T0G and let u ∈ L2([0, 1];V ). We denote by γu the (unique)

solution of the following ODE



γ̇(t) =

(
dLγ(t)

)
0
u(t),

γ(0) = 0.
(2.35)

Vice versa, if γ is a solution of (2.35) for some u ∈ L2([0, 1];V ), then we set uγ := u.

We define the end-point map End : L2([0, 1];V )→ G letting End(u) = γu(1).

The proof of Proposition 2.2.30 below can be found in [74, Proposition 5.2.5] (for

the proof of (2.2.30)) and in [56, Proposition 2.3] (for the proof of 2.37). Recall that

Adg := (dLg ◦ dRg−1)
0

denotes the adjoint map associated with g ∈ G.

Proposition 2.2.30. Let G be a Lie group and let V ⊆ g be a linear subspace of its

Lie algebra g. The end-point map End is smooth and its differential is given by

d(End(u))(v) =
(
dRγu(1)

)
0

ˆ 1

0

Adγ(t)v(t) dt, (2.36)

for any v ∈ L2([0, 1];V ). In particular, the image of the differential is given by

Im(dEnd(u)) =
(
dRγ(1)

)
0
span{Adγ(t)V : t ∈ [0, 1]}. (2.37)



96 CHAPTER 2. FINE PROPERTIES OF BVX FUNCTIONS

Definition 2.2.31. Let G be a Lie group and let V ⊆ g be a linear subspace of its

Lie algebra g. An absolutely continuous curve γ : [0, 1]→ G is said to be abnormal if

Im(dEnd(uγ)) 6= Tγ(1)G.

Remark 2.2.32. Combining Definition 2.2.31 and identity (2.37) it is readily seen

that, in a Carnot group G of step s, condition (2.34) is equivalent to

(
dRγ(1)

)
0
span{Adγ(t)V : t ∈ [0, 1]} = Tγ(1)G,

for V = g1, and γ(t) := exp(tX) for X ∈ g1. Since dRγ(1) is a diffeomorphism we just

need to compute the dimension of span{Adexp(tX)g1 : t ∈ [0, 1]} =: W .

Recalling that Adexp(tX)Y = eadXY , adXY = [X, Y ] and that

eadX =
∞∑

k=0

1

k!
(adX)

k ,

one gets the formula

Adexp(tX)Y = Y + t[X, Y ] +
t2

2
[X, [X, Y ]] +

t3

6
[X, [X, [X, Y ]]] + ... (2.38)

for any X, Y ∈ g and t ∈ R. Evaluating (2.38) in t = 0 one has that g1 ⊆ W . Since

W is a linear space and g1 ⊆ W one gets that also [X, Y ] ∈ W for any Y ∈ g1, i.e.,

[X, g1] = adXg1 ⊆ W . Reasoning in the same way one gets (adX)
kg1 ⊆ W for any

k = 1, . . . , s. This implies

span{Adexp(tX)g1 : t ∈ [0, 1]} = span{(adX)
kg1 : k = 0, . . . , s}.

Therefore Condition (2.34) is equivalent to say that there exists X ∈ g1 such that

span{(adX)
kg1 : k = 0, . . . , s} = g.



Chapter 3

The Rank-One Theorem in a class of

Carnot groups

The current Chapter is devoted to the proof of the Rank-One Theorem for BV functions

in a class of Carnot groups satisfying properties C2 and w-R (see Definitions 3.1.3 and

3.4.1 below). The results of this chapter are contained in [28]. The Rank-One Theorem

is stated and proved in Section 3.4 (see Theorem 3.4.5) and it is a consequence of the

results proved in Section 3.3 and Lemma 3.2.7.

Section 3.3 deals with the relations between the total variation of a function of bounded

X-variation and the X†-perimeter of its subgraph, whenever X = (X1, . . . , Xm) is a

family of smooth and linearly independent vector fields in Rn and X† is the correspond-

ing (m + 1)-tuple of vector fields in Rn+1 defined according to (3.10): Theorem 3.3.1

has as first consequence that a function u ∈ L1 has bounded X-variation in an open

set Ω if and only if its subgraph χEu
has bounded X†-perimeter in Ω × R; Theorem

3.3.2 instead deals with the relations between the measure-theoretic horizontal inner

normal to the subgraph Eu of u ∈ BVX and the polar vector of DXu.

Lemma 3.2.7 is proved in Section 3.2 and it is a consequence of Theorem 3.2.6 which

gives an estimate on the Hausdorff dimension of the transversal subset of the inter-

section of k regular hypersurfaces assuming the Carnot group satisfies the algebraic

property Ck. Section 3.2 introduces the notation about intrinsic regular hypersurfaces

in Carnot groups (see Subsection 3.2.1, these results are contained also in Section 1.5

in the more general context of CC spaces), and the notion of intrinsic Lipschitz graphs

in Carnot groups (see Subsection 3.2.2). The most notable result of Subsection 3.2.2

is represented by Theorem 3.2.5 which is proved in [62] and it guarantees that, in a

Carnot group of rank m, the “transverse” subset of the intersection of k intrinsic regular

hypersurfaces is locally an intrinsic Lipschitz graph whenever k ≤ m. The proof of this

result is here given by a more simple argument based on the extension Lemma 3.2.4

for C1 regular maps.

97
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3.1 Preliminaries

In this chapter, G will denote a Carnot group of rank m, step s, Lie algebra g and Ω

will be an open set in G. Notice that by Theorem 1.3.12 we will assume that G = Rn

by means of exponential coordinates

F (x1, . . . , xn) = exp (x1X1 + · · ·+ xnXn) .

Given a Carnot group G we will frequently deal with products like G×RN . This is the

Carnot group with algebra g×RN with product defined by [(X, t), (Y, s)] = ([X, Y ], 0)

for any X, Y ∈ g, t, s ∈ RN and whose stratification is given by (g1 × RN) ⊕ (g2 ×

{0})⊕ . . .⊕ (gs × {0}). Throughout this chapter, given a Borel set E ⊆ G and r > 0,

we denote by Er the open neighborhood of E of size r given by

Er := {p ∈ G : d(p, E) < r}.

Since Carnot groups are special cases of equiregular CC spaces we say that u ∈ BVG(Ω)

if u ∈ BVX(Ω) for any basis X = (X1, . . . , Xm) of g1. This is a well-posed definition

by the fact that, if X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym) are two basis of g1 and

u ∈ L1
loc(G), then u ∈ BVX,loc(G) if and only if BVY,loc(G) (see also Proposition 1.6.4).

Definition 3.1.1. We say that W ⊆ G is a vertical plane of codimension k, 1 ≤ k ≤ m,

if there exists a linear subspace w ⊆ g1 of dimension m − k such that W = exp(w ⊕

g2 ⊕ . . .⊕ gs).

Notice that a vertical plane W is a homogeneous subgroup (i.e. δrW = W for any

r > 0) of G with topological dimension (n − k) and Hausdorff dimension Q − k. It is

also easy to see that intersections of vertical planes is again a vertical plane (of possibly

higher codimension). The following simple Lemma will be used in the proof of Lemma

3.2.7.

Lemma 3.1.2. Let W ⊆ G be a vertical plane of codimension k and let x ∈W, r > 0

and ε ∈ (0, 1) be fixed. Then, the set W ∩ B(x, r) can be covered by a family of balls

{B(y`, εr)}`∈L of radius εr with cardinality #L ≤ (4/ε)Q−k.

Proof. By dilation and translation invariance, it is not restrictive to assume that x = 0

and r = 1. Let {y` : ` ∈ L} be a maximal family of points of W∩B(0, 1) such that the

balls B(y`, ε/2) are pairwise disjoint; working by contradiction, it can be easily seen

that the family {B(y`, ε) : ` ∈ L} covers W ∩ B(0, 1). The measure H Q−k is locally

finite on W (see e.g. [61, 65, 64]), left-invariant and it is (Q − k)-homogeneous with

respect to dilations. In particular, setting M := H Q−k(W ∩ B(0, 1)), we have
(ε
2

)Q−k

M #L =
∑

`∈L

H
Q−k(W ∩ B(y`, ε/2)) ≤H

Q−k(W ∩ B(0, 2)) = 2Q−kM,

which proves the claim.
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Definition 3.1.3. Let G be a Carnot group with rank m and let 1 ≤ k ≤ m be an

integer. We say that G satisfies property Ck if the first layer g1 of its Lie algebra has

the following condition: for any linear subspace w of g1 of codimension k there exists

a commutative complementary subspace in g1, i.e., a k-dimensional subspace h of g1
such that [h, h] = 0 and g1 = w⊕ h.

Remark 3.1.4. According to Definition 3.1.1, a Carnot group satisfies property Ck if

and only if, for any vertical plane W of codimension k in G, there exists a complemen-

tary homogeneous subgroup H that is horizontal, i.e., such that H ⊆ exp(g1). Notice

also that, in this case, H is necessarily commutative.

Remark 3.1.5. The Heisenberg group Hn satisfies property Ck if and only if 1 ≤ k ≤ n.

All Carnot groups satisfy property C1. Free Carnot groups (see [47]) satisfy property

Ck if and only if k = 1.

A Carnot group G of rank m satisfies property Cm if and only if G is abelian (i.e.,

G ≡ Rm).

Remark 3.1.6. It is an easy exercise to show that, if k ≥ 2 and G satisfies property

Ck, then G satisfies property Ch for any 1 ≤ h ≤ k.

Lemma 3.1.7. Let N ≥ 1 be an integer. Then, a Carnot group G has the property Ck

if and only if G× RN has the property Ck.

Proof. It is clearly enough to prove the statement for N = 1.

Assume first that G has the property Ck and let w be a k-codimensional subspace

of the first layer g1 × R of the Lie algebra of G × R. We have two cases according to

the dimension of w′ := w ∩ (g1 × {0}):

• if dim w′ = m − k, by using property Ck of G one can find a k-dimensional

commutative subspace h of g1 such that g1×{0} = w′⊕ (h×{0}). In particular,

g1 × R = w⊕ (h× {0});

• if dim w′ = m + 1 − k, then w = w′ ⊆ g1 × {0} and, by Remark 3.1.6, one can

find a (k − 1)-dimensional commutative subspace h of g1 such that g1 × {0} =

w⊕ (h× {0}). In particular, g1 × R = w⊕ (h× R).

In both cases we have found a commutative complementary subspace of w.

Assume now that G×R satisfies property Ck and let w be a k-codimensional linear

subspace of g1. Then w × R is a k-codimensional linear subspace of g1 × R, hence it

admits a k-dimensional commutative complementary subspace h in g1 × R. Denoting

by π : g1 × R → g1 the canonical projection, it is readily noticed that π(h) is a k-

dimensional commutative subspace of g1 such that g1 = w⊕ π(h). This concludes the

proof.
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3.2 Intrinsic hypersurfaces and graphs

3.2.1 Intrinsic regular hypersurfaces

We now introduce some notation about intrinsic regular maps and hypersurfaces in

Carnot groups, taking into account Section 1.5. For the purpose, fix an orthonormal

basis (X1, . . . , Xm) in g1. We say that a continuous real function f on an open set

Ω ⊆ G is of class C1
G if, for any Y ∈ g1, the horizontal derivative Y f , in the sense of

distributions, is represented by a continuous map in Ω. In this case we write f ∈ C1
G(Ω)

and we set ∇Gf := (X1f, . . . , Xmf).

A set S ⊆ G is a C1
G hypersurface if, for any p ∈ S, there exist an open neighborhood

U of p and f ∈ C1
G(U) such that

S ∩ U = {y ∈ U : f(y) = 0} and ∇Gf 6= 0 on U.

In this case, we define the horizontal normal to S at p as νS(p) :=
∇Gf(p)
|∇Gf(p)|

∈ Sm−1. The

normal νS(p) = ((νS(p))1, . . . , (νS(p))m) is defined up to sign and it can be identified

with a horizontal vector at p by

νS(p) = (νS(p))1X1(p) + · · ·+ (νS(p))mXm(p).

We also recall that a C1
G-hypersurface has locally finite H Q−1-measure, see e.g. [89].1

Given p ∈ S, the hyperplane νS(p)
⊥ in g is a Lie subalgebra. The associated

subgroup TpS := exp(νS(p)
⊥) is called tangent subgroup to S at p. TpS is an example

of vertical plane of codimension 1.

Restating Corollary 1.5.4 in this context, we can say that

∀p ∈ S, ∀ε > 0, ∃R > 0 : (p−1S) ∩ B(0, r) ⊆ (TpS)εr ∩ B(0, r), ∀r ∈ (0, R). (3.1)

Notice also that

TpS = exp({X ∈ g1 : Xf(p) = 0} ⊕ g2 . . .⊕ gs);

in particular, while νS(p) depends on the scalar product 〈·, ·〉 on g, the subgroup TpS

is intrinsic.

3.2.2 Intrinsic Lipschitz graphs

The aim of this section is proving Theorem 3.2.5, due to V. Magnani [62], for which we

will need the preparatory Lemma 3.2.4. Actually, its use could be avoided by utilizing

a local version of Theorem 3.2.3 which, even though not explicitly stated there, would

easily follow adapting the techniques of [40]. We note however that Lemma 3.2.4, and

1Actually, this also follows from Theorem 3.2.6 with k = 1.
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(3.2) in particular, provide also a proof of (3.1).

To introduce the notion of intrinsic Lipschitz graphs we follow [40]. Let W,H be

homogeneous complementary subgroups of G, i.e., such that W∩H = {0} and G = WH.

In particular, for any x ∈ G there exist unique xW ∈ W and xH ∈ H such that

x = xWxH. Recall (see e.g. [40, Remark 2.3]) that any homogeneous subgroup W is

stratified, that is, its Lie algebra w is a subalgebra of g and w = w1 ⊕ . . .⊕ws where

wi = w∩gi. Moreover, the metric (Hausdorff) dimension of W is QW :=
∑s

i=1 i dimwi.

The intrinsic graph of a function φ : W→ H is defined by

gr φ := {wφ(w) : w ∈W}.

We introduce the homogeneous cones CW,H(x, α) of center x ∈ G and aperture α > 0

as

CW,H(x, α) := xCW,H(0, α) where CW,H(0, α) := {y ∈ G : ‖yW‖≤ α‖yH‖}.

Definition 3.2.1. A function φ : W → H is intrinsic Lipschitz if there exists α > 0

such that

∀ x ∈ gr φ gr φ ∩ CW,H(x, α) = {x}.

We say that S ⊆ G is an intrinsic Lipschitz graph if there exists an intrinsic Lipschitz

map φ : W→ H such that S = gr φ.

Remark 3.2.2. A function φ : W→ H is intrinsic Lipschitz if and only if there exists

β > 0 such that for any x ∈ gr φ

gr φ ∩D(x,H, β) = {x},

where the homogeneous cone D(x,H, β) is defined by

D(x,H, β) := xD(H, β) and D(H, β) :=
⋃

h∈H

B(h, βd(h, 0)).

Indeed, it is enough to observe that, for any α > 0 and β > 0, there exist βα > 0 and

αβ > 0 such that

CW,H(0, α) ⊃ D(H, βα) and D(H, β) ⊃ CW,H(0, αβ).

This, in turn, is a consequence of a homogeneity argument based on the following fact:

if S := {y ∈ G : ‖y‖= 1} and

Aα := S ∩ int(CW,H(0, α)), Bβ := S ∩ int(D(H, β)),

then {Aα}α>0 and {Bβ}β>0 are monotone families of (relatively) open subsets of S such

that the intersection ⋂

α>0

Aα =
⋂

β>0

Bβ = H ∩ S

is a compact set.
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A key tool in the proof of the rank-one Theorem 3.4.5 is Lemma 3.2.7 which, in

turn, uses Theorem 3.2.6 below. We denote by π : G×R→ G the canonical projection

π(x, t) = x.

The following result will be used in the proof of Theorem 3.2.6.

Theorem 3.2.3 ([40, Theorem 3.9]). Let W,H be homogeneous complementary sub-

groups of G, let φ : W → H be intrinsic Lipschitz and let α > 0 be as in Definition

3.2.1. Then there exists a positive C = C(W,H, α) such that

1

C
rQW ≤ HQW(gr φ ∩ B(x, r)) ≤ CrQW ∀ x ∈ gr φ, r > 0.

Lemma 3.2.4. Let Ω ⊆ G be open, f ∈ C1
G(Ω), p ∈ Ω and let A := ∇Gf(p). Then,

for any ε > 0 there exist an open set U ⊆ Ω with p ∈ U and a function g ∈ C1
G(G)

such that

(i) g = f on U ;

(ii) |∇Gg − A|< ε on G.

Proof. Without loss of generality we can assume that p = 0 and identify G = Rn by

means of exponential coordinates. We preliminarily fix a smooth function χ : G→ [0, 1]

such that χ ≡ 1 on B(0, 1) and χ ≡ 0 on G \ B(0, 2). For any r > 0, the functions

χr := χ ◦ δ1/r satisfy

0 ≤ χr ≤ 1, χ ≡ 1 on B(0, r), χ ≡ 0 on G \B(0, 2r), |∇Gχr|≤
C

r

for some positive C independent of r.

Let ε > 0. By Proposition 1.5.3, we can fix r > 0 such that |∇Gf − A|< ε on

B(0, 2r) and for every ξ ∈ B(0, 2r)

|f(ξ)− L̃A(ξ)|< 2εr. (3.2)

We now define g := χrf + (1− χr)L̃A; statement (i) is readily checked, while for (ii)

|∇Gg − A|= |χr∇Gf + (1− χr)A+ (f − L̃A)∇Gχr − A|

≤ χr|∇Gf − A|+|f − L̃A||∇Gχr|

≤ ε+ 2Cε.

The proof is then accomplished.

We can now prove the main result of this section. Since property C1 holds in any

Carnot group, when k = 1 Theorem 3.2.5 states in particular that hypersurfaces of

class C1
G in a Carnot group G are locally intrinsic Lipschitz graphs of codimension 1.
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Theorem 3.2.5 ([62, Theorem 1.4]). Let G be a Carnot group of rank m and let

Σ1, . . . ,Σk, k ≤ m, be hypersurfaces of class C1
G with horizontal normals ν1, . . . , νk; let

p ∈ Σ := Σ1 ∩ . . .∩Σk be such that ν1(p), . . . , νk(p) are linearly independent. Consider

the vertical plane W := TxΣ1∩ . . .∩TxΣk of codimension k and assume that there exists

a complementary homogeneous horizontal subgroup H such that G = WH. Then, there

exists an open neighborhood U of p and an intrinsic Lipschitz φ : W→ H such that

Σ ∩ U = gr φ ∩ U.

Proof. We work in exponential coordinates associated with an adapted basisX1, . . . , Xn

of g such that

H = exp(span {X1, . . . , Xk}), W = exp((span {Xk+1, . . . , Xs})⊕ g2 ⊕ . . .⊕ gs).

By definition we can find an open neighborhood U of x and f = (f1, . . . , fk) ∈

C1
G(U ;R

k) such that Σ ∩ U = {q ∈ U : f(q) = 0} ∩ U and the m × k matrix-valued

function ∇Gf has rank k in U . Actually, by our choice of the basis, the k × k minor

M := (X1f(p), . . . , Xkf(p)) has rank k.

Let ε > 0, to be fixed later and only depending on M . By Lemma 3.2.4, possibly

restricting U we can assume that f is defined on the whole G, that f ∈ C1
G(G;Rk) and

|∇Gf −∇Gf(p)|< ε; in particular,

|(X1f, . . . , Xkf)−M |< ε on G.

It will be enough to prove that the level set R := {q ∈ G : f(q) = 0} is an intrinsic

Lipschitz graph. We divide the proof of this claim into two steps.

Step 1: R is the intrinsic graph of some φ : W→ H. It is enough to show that, for

any w ∈W, there exists a unique h ∈ H such that f(wh) = 0; this will allow to define

the map φ(w) := h.

The map (h1, . . . , hk)←→ exp(h1X1+ · · ·+hkXk) is a group isomorphism between

H and Rk. Upon identifying H and Rk in this way, for any w ∈ W we can consider

fw : Rk → Rk defined by fw(h) := f(wh). This map is of class C1 and

∇fw(h) = (X1f(wh), . . . , Xkf(wh)).

We have |∇fw −M |< ε which, if ε is small enough, implies that fw is a C1 diffeomor-

phism of Rk: see e.g. the argument in [32, 3.1.1]2. This concludes the proof of Step

1; we also notice that, possibly reducing ε, there exists c > 0 such that (see again [32,

3.1.1])

|f(wh1)− f(wh2)|= |fw(h1)− fw(h2)|≥ c|h1 − h2|, ∀ h1, h2 ∈ Rk. (3.3)

2The careful reader will notice that the argument in [32, 3.1.1] works also when the parameter δ

introduced therein is +∞.
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Step 2: φ is intrinsic Lipschitz. By Remark 3.2.2 it is enough to prove that, for

any x ∈ G, one has

gr φ ∩D(x,H, β) = {x}

for a suitable β > 0 that will be chosen in a moment.

Let then x ∈ gr φ be fixed; consider x′ ∈ D(x,H, β), so that x′ = xy for some

y ∈ D(H, β). By definition, there exists h ∈ H such that

d(0, h−1y) = d(h, y) ≤ βd(h, 0).

Denoting by L the Lipschitz constant of f , and using (3.3), we deduce that

|f(x′)|=|f(xhh−1y)− f(x)|

≥|f(xh)− f(x)|−|f(xhh−1y)− f(xh)|≥ c‖h‖−Ld(h, y) ≥ (c̃− βL)d(0, h)

for some c̃ > 0. In particular, if β is small enough, one can have f(x′) = 0 only if

h = 0, which immediately gives x′ = x. This concludes the proof.

3.2.3 Hypersurfaces vs. Lipschitz graphs

Theorem 3.2.6. Let k ≥ 1 be an integer, G a Carnot group satisfying property Ck

and let Σ1, . . . ,Σk be C1
G-hypersurfaces with horizontal normals ν1, . . . , νk. Let also

p ∈ Σ := Σ1 ∩ . . . ∩ Σk be such that ν1(p), . . . , νk(p) are linearly independent. Then,

there exists an open neighborhood U of p such that

0 < H
Q−k(Σ ∩ U) <∞.

In particular, the measure H Q−k is σ-finite on the set

Σt := {x ∈ Σ : ν1(x), . . . , νk(x) are linearly independent}.

Proof. By property Ck and Remark 3.1.4, the vertical plane W := TpΣ1 ∩ . . . ∩ TpΣk

admits a complementary horizontal homogeneous subgroup H. One can then easily

conclude using Theorems 3.2.3 and 3.2.5.

Lemma 3.2.7. Let G be a Carnot group satisfying property C2. Let Σ1,Σ2 be C1
G

hypersurfaces in G× R with unit normals νΣ1 , νΣ2. Then, the set

R :=




p ∈ Σ1 : ∃ q ∈ Σ2 such that

π(q) = π(p),

(νΣ1(p))m+1 = (νΣ2(q))m+1 = 0,

νΣ1(p) 6= ±νΣ2(q)





is H Q-negligible.
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Proof. Let us consider the distances dG×R and dG×R×R on (respectively) G × R and

G× R× R defined by

dG×R((x, t), (x
′, t′)) := d(x, x′) + |t− t′| ∀ x, x′ ∈ G, t, t′ ∈ R,

dG×R×R((x, t, s), (x
′, t′, s′)) := d(x, x′) + |t− t′|+|s− s′| ∀ x, x′ ∈ G, t, t′, s, s′ ∈ R,

where d is the Carnot-Carathéodory distance on G. Such distances are left-invariant

and homogeneous, hence they are equivalent to the Carnot-Carathéodory distances on

(respectively) G×R and G×R×R; in particular, it is enough to prove the statement

when the Hausdorff measure H Q is the one induced by dG×R on G × R. We will use

the same notation B(a, r) for balls of radius r > 0 in either G,G × R or G × R × R,

according to which group the center a belongs to.

The sets

Σ̃1 := {(x, t, s) ∈ G× R× R : (x, t) ∈ Σ1, s ∈ R}

Σ̃2 := {(x, t, s) ∈ G× R× R : (x, s) ∈ Σ2, t ∈ R}

are clearly C1
G-hypersurfaces in G× R× R and, moreover,

νΣ̃1
(x, t, s) = ((νΣ1(x, t))1, . . . , (νΣ1(x, t))m, (νΣ1(x, t))m+1, 0 )

νΣ̃2
(x, t, s) = ((νΣ2(x, s))1, . . . , (νΣ2(x, s))m, 0 , (νΣ2(x, s))m+1).

Let us define

R̃ :={P ∈ Σ̃1 ∩ Σ̃2 : (νΣ̃1
(P ))m+1 = (νΣ̃2

(P ))m+2 = 0, νΣ̃1
(P ) 6= ±νΣ̃2

(P )}

={(x, t, s) ∈ Σ̃1 ∩ Σ̃2 : (νΣ1(x, t))m+1 = (νΣ2(x, s))m+1 = 0, νΣ1(x, t) 6= ±νΣ2(x, s)}.

By construction we have π̃(R̃) = R, where π̃ : G × R × R → G × R is the group

homomorphism defined by π̃(x, t, s) := (x, t); moreover the measure H Q R̃ is σ-finite

by Theorem 3.2.6 (notice that we are also using Lemma 3.1.7). We are going to show

that H Q(π̃(T )) = 0 for any fixed T ⊆ R̃ such that S Q(T ) < ∞; this will be clearly

enough to conclude.

For any P ∈ T and i = 1, 2, the tangent space TP Σ̃i equals Wi×R×R for a suitable

vertical hyperplane Wi of G. In particular, setting W = W(P ) := W1 ∩W2, we have

by (3.1) that, for any P ∈ T and any ε ∈ (0, 1), there exists r0 = r0(ε, P ) > 0 such

that

(P−1T ) ∩ B(0, r) ⊆(W× R× R)εr ∩ B(0, r)

=(Wεr × R× R) ∩ B(0, r), for any r ∈ (0, r0).
(3.4)

Notice also that W is a vertical plane of codimension 2 in G. Let ε > 0 be fixed and

for any j ∈ N \ {0} define

Tj := {P ∈ T : r0(ε, P ) ≥
1
j
}
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Since Tj ↗ T , the proof will be accomplished by showing that for any fixed j

H
Q(π̃(Tj)) < Cε, (3.5)

where C > 0 is a constant that will be determined in the sequel.

Let us prove (3.5). Fix δ ∈ (0, 1/j); since H Q(Tj) ≤ H Q(T ) < +∞, one can find

a (countable or finite) family {B(Qi, ri/2) : i ∈ I} of balls in G × R × R such that

0 < ri < δ,

Tj ⊆
⋃

i∈I

B(Qi, ri/2) and
∑

i∈I

(ri/2)
Q ≤

∑

i∈I

(diam B(Qi, ri/2))
Q ≤ C1

where C1 := H Q(T ) + 1. We can also assume that Tj ∩ B(Qi, ri/2) is non-empty

for any i. Choosing Pi ∈ Tj ∩ B(Qi, ri/2), for any i the balls B(Pi, ri) have then the

following properties:

Pi ∈ Tj, 0 < ri < δ, Tj ⊆
⋃

i∈I

B(Pi, ri) and
∑

i∈I

rQi ≤ 2QC1. (3.6)

Setting Wi := W(Pi), by (3.4) we have

(P−1
i Tj) ∩B(0, ri) ⊆((Wi)εri × R× R) ∩ B(0, ri)

=((Wi)εri ∩ B(0, ri))× (−ri, ri)× (−ri, ri).
(3.7)

By Lemma 3.1.2, for any i we can find a family of balls {B(yi,`, εri) : ` ∈ Li} such that,

for any ` ∈ Li and any yi,` ∈Wi, we have

#Li ≤ (8/ε)Q−2 and Wi ∩ B(0, 2ri) ⊆
⋃

`∈Li

B(yi,`, εri).

In particular

(Wi)εri ∩ B(0, ri) ⊆ (Wi ∩ B(0, ri + εri))εri ⊆
⋃

`∈Li

B(yi,`, 2εri). (3.8)

Let us also fix points {τk}k∈Ki
⊆ (−ri, ri) such that #Ki ≤ 2ε−1 and

(−ri, ri) ⊆
⋃

k∈Ki

(τk − 2εri, τk + 2εri). (3.9)

By (3.7), (3.8) and (3.9) we get

(P−1
i Tj) ∩ B(0, ri) ⊆

⋃

`∈Li
k,h∈Ki

B(yi,`, 2εri)× (τk − 2εri, τk + 2εri)× (τh − 2εri, τh + 2εri).

For any ` ∈ Li and k, h, h′ ∈ Ki one has

π̃(B(yi,`, 2εri)× (τk − 2εri, τk + 2εri)× (τh − 2εri, τh + 2εri))

=π̃(B(yi,`, 2εri)× (τk − 2εri, τk + 2εri)× (τh′ − 2εri, τh′ + 2εri))

=B(yi,`, 2εri)× (τk − 2εri, τk + 2εri)

⊆B((yi,`, τk), 4εri),
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which, using (3.6), implies that

π̃(Tj) ⊆
⋃

i

π̃(Tj ∩B(Pi, ri))

⊆
⋃

i

⋃

`∈Li
k,h∈Ki

π̃(Pi(B(yi,`, 2εri)× (τk − 2εri, τk + 2εri)× (τh − 2εri, τh + 2εri)))

⊆
⋃

i

⋃

`∈Li
k∈Ki

π̃(Pi)B((yi,`, τk), 4εri)

=
⋃

i

⋃

`∈Li
k∈Ki

B(pi`k, 4εri),

where pi`k := π̃(Pi)(yi,`, τk) ∈ G× R. Using again (3.6) we obtain that

H
Q
2εδ(Tj) ≤

∑

i∈I

#Li #Ki (8εri)
Q ≤ ε

∑

i∈I

26Q−5rQi ≤ 27Q−5C1ε,

which, by the arbitrariness of δ ∈ (0, 1/j), gives claim (3.5).

3.3 BVX functions and their subgraphs

Given a system X = (X1, . . . , Xm) of linearly independent and smooth vector fields in

Rn, we introduce the family X† = (X†
1, . . . , X

†
m+1) of linearly independent vector fields

in Rn+1 defined for (x, t) ∈ Rn × R by

X†
i (x, t) := (Xi(x), 0) ∈ Rn+1 ≡ Rn × R if i = 1, . . . ,m

X†
m+1(x, t) := ∂t.

(3.10)

The aim of this section is the study of the relations occurring between a function

u ∈ BVX(Ω) and the X†-perimeter of its subgraph

Eu := {(x, t) ∈ Ω× R : t < u(x)} ⊆ Ω× R,

where Ω is an open set in Rn.

The following result is the natural generalization of some classical facts about Eu-

clidean functions of bounded variation, see e.g. [43, Section 4.1.5]. We denote by

π : Rn+1 → Rn the canonical projection π(x, t) := x and by π# the associated push-

forward of measures.

Theorem 3.3.1. Suppose Ω is bounded in Rn and let u ∈ L1(Ω). Then u belongs to

BVX(Ω) if and only if its subgraph Eu has finite X†-perimeter in Ω× R.

Moreover, writing D′
X†χEu

:= (DX†
1
χEu

, . . . , DX†
m
χEu

), then the following statements

hold.

(i) π#DX†
i
χEu

= DXi
u for any i = 1, . . . ,m;
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(ii) π#∂tχEu
= −L n;

(iii) π#|DX†
i
χEu
|= |DXi

u| for any i = 1, . . . ,m;

(iv) π#|∂tχEu
|= L n;

(v) π#|D
′
X†χEu

|= |DXu|.

(vi) π#|DX†χEu
|= |(DXu,−L n)|.

Proof. Suppose first that χEu
∈ BVX†(Ω× R). We fix a sequence (gh) in C∞

c (R) such

that gh is even, gh ≡ 1 on [0, h], gh ≡ 0 on [h + 1,+∞) and
´

R
gh(t)dt = 2h + 1. Let

ϕ ∈ C1
c (Ω;R

m) with |ϕ|≤ 1 be fixed. By the Dominated Convergence Theorem, we

have that
ˆ

Ω×R

ϕ(x) · d(D′
X†χEu

)(x, t) = lim
h→+∞

ˆ

Ω×R

gh(t)ϕ(x) · d(D
′
X†χEu

)(x, t)

= − lim
h→+∞

ˆ

Ω×R

χEu
(x, t)gh(t)divϕ(x) dL

n+1(x, t)

= − lim
h→+∞

ˆ

Ω

(
ˆ u(x)

−∞

gh(t) dt

)
divϕ(x) dL n(x).

For every z ∈ R and every h ∈ N we have

ˆ z

−∞

gh(t) dt ≤ |z|+h+
1

2
and lim

h→+∞

(
ˆ z

−∞

gh(t) dt− h−
1

2

)
= z;

using the fact that
´

Ω
divϕ(x)dL n(x) = 0, by the Dominated Convergence Theorem,

we obtain

ˆ

Ω×R

ϕ(x) · d(D′
X†χEu

)(x, t) = − lim
h→+∞

ˆ

Ω

(
ˆ u(x)

−∞

gh(t) dt− h−
1

2

)
divϕ(x) dL n(x)

= −

ˆ

Ω

u(x)divϕ(x) dL n(x)

=

ˆ

Ω

ϕ(x) · d(DXu)(x).

(3.11)

In particular, u ∈ BVX(Ω) and, for any open set A ⊆ Ω,

|DXu|(A) ≤ |D
′
X†χEu

|(A× R),

|DXi
u|(A) ≤ |DX†

i
χEu
|(A× R) for any i = 1, . . . ,m.

(3.12)

Before passing to the reverse implication we observe two facts. First, for any ϕ ∈ C1
c (Ω),
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one has
ˆ

Ω×R

ϕ(x) d (∂tχEu
) (x, t) = lim

h→+∞

ˆ

Ω×R

ϕ(x)gh(t) d (∂tχEu
) (x, t)

= − lim
h→+∞

ˆ

Ω×R

ϕ(x)g′h(t)χEu
(x, t) dL n+1(x, t)

= − lim
h→+∞

ˆ

Ω

ϕ(x)

(
ˆ u(x)

−∞

g′h(t) dt

)
dL n(x)

= − lim
h→+∞

ˆ

Ω

ϕ(x)gh(u(x)) dL
n(x)

= −

ˆ

Ω

ϕ dL n

(3.13)

whence, for any open set A ⊆ Ω,

L
n(A) ≤ |∂tχEu

|(A× R). (3.14)

Second, if ϕ ∈ C1
c (Ω;R

m+1), one has by (3.11) and (3.13)
ˆ

Ω×R

ϕ(x) · d(DX†χEu
)(x, t) =

ˆ

Ω

ϕ(x) · d(DXu,−L
n)(x),

which gives for any open set A ⊆ Ω

|(DXu,−L
n)|(A) ≤ |DX†χEu

|(A× R). (3.15)

Suppose now that u ∈ BVX(Ω). Let A ⊆ Ω be open and let ϕ ∈ C1
c (A × R) and

i = 1, . . . ,m be fixed. Let (uh) be a sequence in C∞(A) ∩ BVX(A) satisfying (1.29)

(with A in place of Ω); then
ˆ

A×R

ϕ d(DX†
i
χEuh

)

= −

ˆ

A×R

χEuh
(x, t)[(X†

i )
∗ϕ](x, t) dL n+1(x, t)

= −

ˆ

A

(
ˆ uh(x)

−∞

n∑

j=1

∂xj
(aij(x)ϕ(x, t)) dt

)
dL n(x)

= −

ˆ

A

(
n∑

j=1

∂xj

ˆ uh(x)

−∞

aij(x)ϕ(x, t) dt−
n∑

j=1

aij(x)ϕ(x, uh(x))∂xj
uh(x)

)
dL n(x)

=

ˆ

A

ϕ(x, uh(x))Xiuh(x) dL
n(x),

(3.16)

where we used the fact that x 7→ aij(x)
´ uh(x)

−∞
ϕ(x, t) dt is in C1

c (A). In a similar way

ˆ

A×R

ϕ d(∂tχEuh
) = −

ˆ

A

(
ˆ uh(x)

−∞

∂tϕ(x, t)dt

)
dL n(x)

= −

ˆ

A

ϕ(x, uh(x)) dL
n(x).

(3.17)
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Formulas (3.16) and (3.17) imply that for any ϕ ∈ C1
c (A× R;Rm+1)

ˆ

A×R

ϕ · d(DX†χEuh
) =

ˆ

A

ϕ(x, uh(x)) · d(DXuh,−L
n)(x).

Since χEuh
→ χEu

in L1(A× R), we obtain

|DX†χEu
|(A× R) ≤ lim inf

h→+∞
|DX†χEuh

|(A× R) ≤ lim
h→+∞

|(DXuh,−L
n)|(A)

=|(DXu,−L
n)|(A) < +∞,

(3.18)

which proves that χEu
∈ BVX†(Ω × R), as desired. Notice that, using the lower

semicontinuity in a similar way, one also gets

|D′
X†χEu

|(A× R) ≤ |DXu|(A)

|DX†
i
χEu
|(A× R) ≤ |DXi

u|(A) for any i = 1, . . . ,m

|∂tχEu
|(A× R) ≤ L

n(A) < +∞.

(3.19)

Eventually, statements (i) and (ii) follow from (3.11) and (3.13), while statements

(iii)–(vi) are consequences of formulas (3.12), (3.14), (3.15), (3.18) and (3.19).

For u ∈ BVX,loc(Ω) we recall the decomposition of its distributional derivatives

DXu = Da
Xu + Ds

Xu as introduced in Chapter 2. We also write Da
Xu = XuL n for

some function Xu ∈ L1
loc(Ω;R

k×m).

We will also consider the polar decomposition DXu = σu|DXu|, where σu : Ω →

Sm−1 is a |DXu|-measurable function. In case u = χE is the characteristic function of

a set E ⊆ Ω×R of locally finite X†-perimeter in Ω×R, we write DX†χE = νE|DX†χE|

for some Borel function νE = ((νE)1, . . . , (νE)m+1) called measure-theoretic horizontal

inner normal to E.

The following result is basically a consequence of Theorem 3.3.1.

Theorem 3.3.2. Let u ∈ BVX(Ω) and define

S := {(x, t) ∈ Ω× R : (νEu
)m+1(x, t) = 0}

T := {(x, t) ∈ Ω× R : (νEu
)m+1(x, t) 6= 0} .

Then, the following identities hold

νEu
(x, t) = (σu(x), 0) for |DX†χEu

|-a.e. (x, t) ∈ S; (3.20)

νEu
(x, t) =

(Xu(x),−1)√
1 + |Xu(x)|2

for |DX†χEu
|-a.e. (x, t) ∈ T ; (3.21)

π#(DX†χEu
S) = (Ds

Xu, 0); (3.22)

π#(DX†χEu
T ) = (Da

Xu,−L
n). (3.23)
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Proof. Thanks to Theorem 3.3.1 (vi), we can disintegrate the measure |DX†χEu
| with

respect to |(DXu,−L n)| (see Theorem 1.1.8): for every x ∈ Ω, there exists a proba-

bility measure µx on R such that for every Borel function g ∈ L1(Ω× R, |DX†χEu
|)

ˆ

Ω×R

g(x, t) d|DX†χEu
|(x, t) =

ˆ

Ω

(
ˆ

R

g(x, t) dµx(t)

)
d|(DXu,−L

n)|(x).

It follows that, for any Borel function ϕ : Ω→ R, one has
ˆ

Ω

ϕ(x) d(DXu,−L
n)(x) =

ˆ

Ω

ϕ(x) dπ#(νEu
|DX†χEu

|)(x)

=

ˆ

Ω×R

ϕ(x)νEu
(x, t) d|DX†χEu

|(x, t)

=

ˆ

Ω

ϕ(x)

(
ˆ

R

νEu
(x, t) dµx(u)

)
d|(DXu,−L

n)|(x).

(3.24)

Since Da
Xu and Ds

Xu are mutually singular we have

|(DXu,−L
n)|= |(Da

Xu,−L
n)|+|(Ds

Xu, 0)|=
√

1 + |Xu|2L n + |Ds
Xu|

and (3.24) gives
ˆ

Ω

ϕ d
(
(Xu,−1)L n + (σu, 0)|D

s
Xu|
)

=

ˆ

Ω

ϕ(x)

(
ˆ

R

νEu
(x, t) dµx(t)

)
d
(√

1 + |Xu|2L n + |Ds
Xu|
)
(x).

Denote by I a subset of Ω such that L n(I) = 0 and |Ds
Xu|(Ω \ I) = 0. Considering

Borel test functions ϕ such that ϕ = 0 in Ω \ I, we deduce that for |Ds
Xu|-a.e. x ∈ I

one has

(σu(x), 0) =

ˆ

R

νEu
(x, t) dµx(t).

Taking on both sides the scalar product with (σu(x), 0) we get
〈
(σu(x), 0),

ˆ

R

νEu
(x, t) dµx(t)

〉
= 1,

and, since µx(R) = 1 and (for |(DXu,−L n)|-a.e. x ∈ Ω) |νEu
(x, t)|= 1 for µx-a.e. t,

we deduce that

νEu
(x, t) = (σu(x), 0) for |Ds

Xu|-a.e. x ∈ I and µx-a.e. t ∈ R,

i.e.,

νEu
(x, t) = (σu(x), 0) for |DX†χEu

|-a.e. (x, t) ∈ I × R. (3.25)

Taking into account again (3.3) and letting ϕ be such that ϕ = 0 on I, we instead

obtain
ˆ

Ω

ϕ
(Xu,−1)√
1 + |Xu|2

√
1 + |Xu|2 dL n

=

ˆ

Ω

ϕ(x)

(
ˆ

R

νEu
(x, t) dµx(t)

)√
1 + |Xu(x)|2 dL n(x).
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Consequently, for L n-a.e. x ∈ Ω \ I, we have
ˆ

R

νEu
(x, t) dµx(t) =

(Xu(x),−1)√
1 + |Xu(x)|2

.

Reasoning as before, we deduce that

νEu
(x, t) =

(Xu(x),−1)√
1 + |Xu(x)|2

for L
n-a.e. x ∈ Ω \ I and µx-a.e. t ∈ R,

or equivalently

νEu
(x, t) =

(Xu(x),−1)√
1 + |Xu(x)|2

for |DX†χEu
|-a.e. (x, t) ∈ (Ω \ I)× R. (3.26)

Formula (3.25) implies that |DX†χEu
|-a.e. (x, t) ∈ I×R belongs to S and that |DX†χEu

|-

a.e. (x, t) ∈ T belongs to (Ω \ I)×R. Similarly, (3.26) says that |DX†χEu
|-a.e. (x, t) ∈

(Ω \ I) × R belongs to T and that |DX†χEu
|-a.e. (x, t) ∈ S belongs to I × R. Since S

and T are disjoint, this is enough to conclude (3.20) and (3.21). Statement (3.22) now

easily follows because

π#(DX†χEu
S) = π#(νEu

|DX†χEu
| (I × R)) = (σu, 0)|(DXu,−L

n)| I = (Ds
Xu, 0)

Similarly, one has

π#(DX†χEu
T ) =π#(νEu

|DX†χEu
| ((Ω \ I)× R))

=
(Xu,−1)√
1 + |Xu|2

|(DXu,−L
n)| (Ω \ I) = (Xu,−1)L n,

which gives (3.23).

3.4 The rank-one theorem in a class of Carnot groups

Definition 3.4.1. We say that a Carnot group G satisfies property w-R if for any

bounded open set Ω ⊆ G and any u ∈ BVG(Ω), the set ∂∗Eu is (G× R)-rectifiable set

and the identity

νEu
= ν∂∗Eu

,

holds H Q-a.e. on ∂∗Eu, where ν∂∗Eu
is the normal of the rectifiable set ∂∗Eu while

νEu
is the measure-theoretic horizontal inner normal to Eu.

Notice that, by Theorem 2.2.3, we have that the measure derivative DG×RχEu
of

the characteristic function of the subgraph Eu of u can be represented as

DG×RχEu
= ν∂∗Eu

θH Q ∂∗Eu, (3.27)

for some positive density θ ∈ L1(∂∗Eu,H
Q).

Notice also that, in Definition 3.4.1, the measure DG×RχEu
has finite total variation by

Theorem 3.3.1.
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Remark 3.4.2. In view of Theorem 3.3.1, if G satisfies property R, then G satisfies

property w-R. We however conjecture that property w-R is indeed equivalent to

property R.

Remark 3.4.3. If G is a Carnot group of step 2, then G satisfies property w-R: this

follows from the fact that G×R is also a step 2 Carnot group and that the rectifiability

theorem holds in any step 2 Carnot group, see [39].

Remark 3.4.4. If (3.27) holds, then

|DG×RχEu
|= θH Q ∂∗Eu.

Theorem 3.4.5. Let G be a Carnot group satisfying properties C2 and w-R; let Ω ⊆ G

be an open set and u ∈ BVG,loc(Ω;R
k). Then the singular part Ds

Gu of DGu is a rank-one

measure, i.e., the matrix-valued function
Ds

G
u

|Ds
G
u|
(x) has rank one for |Ds

Gu|-a.e. x ∈ Ω.

Proof. Without loss of generality, one can assume that u = (u1, . . . , uk) ∈ BVG(Ω;R
k)

and that Ω is bounded. For any i = 1, . . . , k we write Ds
Gu

i = σi|D
s
Gui| for a |Ds

Gui|-

measurable map σi : Ω → Sm−1; notice that, using the notation of Section 3.3, the

equality σi = σui
holds |Ds

Gui|-a.e. We also let Ei := {(x, t) ∈ Ω × R : t < ui(x)} be

the subgraph of ui, that has finite G-perimeter in Ω× R by Theorem 3.3.1. Denoting

by ∂∗Ei the essential boundary of Ei and writing νi = νEi
for the measure-theoretic

horizontal inner normal to Ei, we have, by Theorem 3.3.2 and Remark 3.4.4, that

|Ds
Gui|= π#(θiH

Q Si) for some positive θi ∈ L
1(∂∗Ei,H

Q),

where Si :=
{
p ∈ ∂∗Ei : (νi(p))m+1 = 0

}
and π# denotes push-forward of measures

through the projection π defined by G× R 3 (x, t) 7→ x ∈ G. By rectifiability, we can

assume that ∂∗Ei is contained in a union ∪`∈NΣi
` of C1

G hypersurfaces Σi
` in G× R.

Using Theorem 3.3.2, Remark 3.4.4 and Lemma 3.2.7, the following properties hold

for H Q-a.e. p ∈ S1 ∪ . . . ∪ Sk:

if p ∈ Si, then νi(p) = (σi(π(p)), 0) (3.28)

if p ∈ Σi
`, then νi(p) = ±νΣi

`
(p) (3.29)

if p ∈ Σi
` and ∃ q ∈ Sj ∩ Σj

k ∩ π
−1(π(p)), then νΣi

`
(p) = ±νΣj

k
(q). (3.30)

Up to modifying each Si on a H Q-negligible set and each σi on a |Ds
Gu

i|-negligible set,

we can assume that (3.28), (3.29) and (3.30) hold for any p ∈ S1 ∪ . . . ∪ Sk and that,

for any i = 1, . . . , k, σi = 0 on Ω \ π(Si).

Since Ds
Gu = (σ1|D

s
Gu

1|, . . . , σk|D
s
Gu

k|) and |Ds
Gu| is concentrated on π(S1) ∪ . . . ∪

π(Sk), it is enough to prove that the matrix-valued function (σ1, . . . , σk) has rank 1 on

π(S1) ∪ . . . ∪ π(Sk). This will follow if we prove that the implication

i, j ∈ {1, . . . , k}, i 6= j, x ∈ π(Si) =⇒ σj(x) ∈ {0, σi(x),−σi(x)},
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holds. If i, j, x are as above and x /∈ π(Sj), then σj(x) = 0. Otherwise, x ∈ π(Si) ∩

π(Sj), i.e., there exist p ∈ Si and ` ∈ N such that π(p) = x and σi(x) = ±νΣi
`
(p) and

there exist q ∈ Sj and N ∈ N such that π(q) = x and σj(x) = ±νΣj
N
(p). By (3.30), we

obtain σj(x) = ±σi(x), as wished.

Remark 3.4.6. As an easy consequence of Remarks 3.1.5 and 3.4.3, Theorem 3.4.5

holds for the Heisenberg group G = Hn provided n ≥ 2. This result does not directly

follow from [26], as we now briefly explain using the notation of Example 1.3.24 and

restricting for simplicity to n = 2, the general case n ≥ 2 being a straightforward

generalization.

Let u ∈ BVG(Ω;Rk) for some open set Ω ⊆ H2. It can be easily seen that the matrix-

valued measure (µ1, µ2, µ3, µ4) := DGu = (X1u,X2u, Y1u, Y2u) satisfies the equations

A µ :=




X1µ2 −X2µ1

Y1µ4 − Y2µ3

X1µ4 − Y2µ1

Y1µ2 −X2µ3

X1µ3 − Y1µ1 + Y2µ2 −X2µ4




= 0

in the sense of distributions. Write the first-order differential operator A (the hori-

zontal curl in H2, see [12, Example 3.12]) in the form

A = A1∂x1 + A2∂x2 + A3∂y1 + A4∂y2 + A5∂t

for suitable Aj = Aj(x, y, t) and consider the wave cone ΛA (x, y, t) (see [26]) associated

with A

ΛA (x, y, t) :=
⋃

q∈R5\{0}

kerAx,y,t(q), where Ax,y,t(q) := 2πi
5∑

j=1

Aj(x, y, t)qj.

One can readily check that

Ax,y,t(q) = 0 for q := (−2y, 2x, 1) ∈ R5 \ {0},

i.e., the wave cone ΛA (x, y, t) is the full space for any (x, y, t) ∈ H2. In particular, [26,

Theorem 1.1] gives no information on the polar decomposition of Ds
Gu.

Remark 3.4.7. The rank-one property for BV functions in the first Heisenberg group

remains a very interesting open question, since it does not follow either from Theorem

3.4.5 (because property C2 fails for H1) or from [26, Theorem 1.1], as we now explain.

Let u ∈ BVG(Ω;Rk) for some open set Ω ⊆ G := H1; we use again the notation of

Example 1.3.24 and we set p = (x, y, t) ∈ H1 ≡ R3. One can check that (µ1, µ2) :=

DGu = (Xu, Y u) satisfies

A µ :=

(
YXµ1 − 2XY µ1 +XXµ2

Y Y µ1 − 2YXµ2 +XY µ2,

)
= 0
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in the sense of distributions. Now A (the horizontal curl in H1, see [12, Example 3.11])

is a second-order differential operator that one can write as

A =
∑

|α|=2

Aα(p)∂
α,

where α ∈ N3 is a multi-index and ∂α = ∂α1
x ∂α2

y ∂α3
t . As before, one can define the wave

cone

ΛA (p) =
⋃

q∈R3\{0}

kerAp(q), where Ap(q) = (2πi)2
∑

|α|=2

Aα(p)q
α.

Again, one has

Ap(q) = 0 for q := (−2y, 2x, 1) ∈ R3 \ {0}

and the wave cone ΛA (x, y, t) is the full space. More precisely, this follows from the

computations below. First, we observe that

XY = ∂xy − 2x∂xt + 2y∂yt − 4xy∂tt − 2∂t =

= ∂(1,1,0) − 2x∂(1,0,1) + 2y∂(0,1,1) − 4xy∂(0,0,2) − 2∂(0,0,1);

YX = ∂xy − 2x∂xt + 2y∂yt − 4xy∂tt + 2∂t =

= ∂(1,1,0) − 2x∂(1,0,1) + 2y∂(0,1,1) − 4xy∂(0,0,2) + 2∂(0,0,1);

XX = ∂xx + 4y∂xt + 4y2∂tt = ∂(2,0,0) + 4y∂(1,0,1) + 4y2∂(0,0,2);

Y Y = ∂yy − 4x∂yt + 4x2∂tt = ∂(0,2,0) − 4x∂(0,1,1) + 4x2∂(0,0,2).

Then, the matrices Aα’s are given by

A(1,1,0)(x, y, t) =

(
−1 0

0 −1

)

A(0,1,1)(x, y, t) =

(
−2y 0

−4x −2y

)

A(1,0,1)(x, y, t) =

(
2x 4y

0 2x

)

A(2,0,0)(x, y, t) =

(
0 1

0 0

)

A(0,2,0)(x, y, t) =

(
0 0

1 0

)

A(0,0,2)(x, y, t) =

(
4xy 4y2

4x2 4xy

)
.



116 CHAPTER 3. RANK-ONE THEOREM

It follows that for every (ξ, η, τ) 6= (0, 0, 0) one has

A2
(x,y,t)(ξ, η, τ) = −4π

2
(
ξηA(1,1,0)(x, y, t) + ητA(0,1,1)(x, y, t) + ξτA(1,0,1)(x, y, t)

+ ξ2A(2,0,0)(x, y, t) + η2A(0,2,0)(x, y, t) + τ 2A(0, 0, 2)
)

= −4π2

(
−ξη − 2yητ + 2xξτ + 4xyτ 2 4yξτ + ξ2 + 4y2τ 2

−4xητ + η2 + 4x2τ 2 −ξη − 2yητ + 2xξτ + 4xyτ 2

)

= −4π2

(
−ξη − 2yητ + 2xξτ + 4xyτ 2 (ξ + 2yτ)2

(η − 2xτ)2 −ξη − 2yητ + 2xξτ + 4xyτ 2

)
,

and hence, with the choice τ = 1, ξ = −2y and η = 2x, we get

A2
(x,y,t)(ξ, η, τ) =

(
0 0

0 0

)
,

as claimed.



Chapter 4

A compactness result for BV functions

in metric spaces

The following chapter deals with a compactness criterion for equibounded sequences

(uj) in metric measure spaces when the underlying metric varies with j ∈ N. The

results of this chapter are contained in [29]. Section 4.1 is devoted to the proof of the

main Theorem 4.1.1. The proof follows basically by combining a Poincaré inequality

and an approximation scheme of functions in terms of their mean values on balls.

Section 4.2 has the goal of showing an application of Theorem 4.1.1 to the case of

equiregular CC spaces (Rn, X) with bounded (in the Euclidean metric) metric balls.

The first part of this section is devoted to proving that the sequence of CC metric

(dj) built with respect to moving vector fields Xj = (Xj
1 , . . . , X

j
m) converges uniformly

to the reference CC distance d if the frame Xj converges to X smoothly enough (see

Theorem 4.2.4). The proof of Theorem 4.2.4 requires some preparatory lemmata (see

Lemmata 4.2.2 and 4.2.3) and a uniform ball-box inequality (see Theorem 4.2.1) coming

from the application of the results of [18, 73]. The main result of this section (see

Theorem 4.2.6) then follows by taking into account the uniform Poincaré inequality

given by Theorem 4.2.5.

4.1 The main result

In the statement of the following theorem the locality is to be understood with respect

to the topology induced by d. Also, all the compacts sets considered are compact with

respect to the topology induced by d.

Theorem 4.1.1. Let M be a set, q ≥ 1, δ > 0 and let d, dj (j ∈ N) be metrics

on M such that (M, d) is locally compact and separable. Let λ, µj (j ∈ N) be Radon

measures on M and consider a sequence (uj) in Lq
loc(M,λ). Suppose that the following

assumptions hold.

117
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(i) The sequence (dj) converges to d in L∞
loc(M ×M,λ).

(ii) (M, d, λ) is a locally doubling metric measure space, i.e., for any compact set

K ⊆M there exist CD ≥ 1 and RD > 0 such that

∀ x ∈ K, ∀r ∈ (0, RD) λ(B(x, 2r)) ≤ CDλ(B(x, r)).

(iii) For every compact set K ⊆M there exist CP , RP > 0 and α ≥ 1 such that

∀x ∈ K, ∀j ∈ N, ∀r ∈ (0, RP ) ‖uj − uj(B
j)‖Lq(Bj ,λ)≤ CP r

δµj(αB
j),

where Bj := Bj(x, r) denotes a ball in (M, dj), αB
j := Bj(x, αr) and uj(B

j) :=
ffl

Bj ujdλ.

(iv) For every compact set K ⊆M there exists MK > 0 such that

∀j ∈ N ‖uj‖L1(K,λ)+µj(K) ≤MK .

Then there exist u ∈ Lq
loc(M ;λ) and a subsequence (ujh) of (uj) such that (ujh) con-

verges to u in Lq
loc(M ;λ) as h→ +∞.

Concerning the classical Euclidean case when (M, dj, λ) = (M, d, λ) = (Rn, |·|,L n),

we invite the reader to compare the assumption in (iii) with the well-known Poincaré

inequality

‖u− u(Br)‖Lq(Br)≤ Crδ|Du|(Br), ∀ q ∈ [1, n
n−1

) with δ := n
q
+ 1− n > 0

valid for for any BV function u on any ball Br ⊆ Rn of radius r and where u(Br) denotes

the mean value L n(Br)
−1

´

Br
u dL n of u in Br, C > 0 is a geometric constant, and

|Du| denotes the total variation measure associated with u (i.e., the total variation of

the distributional derivatives of u).

Proof. Let K ⊆ M be a fixed compact set and let ε > 0. We first prove that there

exists a subsequence (ujh) such that

lim sup
h,k→+∞

‖ujh − ujk‖Lq(K;λ)≤ 2C0ε, (4.1)

for some C0 > 0 depending on K only.

Consider an open set U1 ⊆M such that K ⊆ U1, U1 is compact and

λ(U1 \K) ≤
1

4Cβ+3
D

λ(K), (4.2)

where β is an integer such that 2β > 2α and α is given by condition (iii). By the

5r-covering Theorem (see Theorem 1.1.10) we can find a family {B(x`, r`) : ` ∈ N} of
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pairwise disjoint balls such that x` ∈ K, 0 < r` < min{ε1/δ, RD/4, 2αRP}, B(x`, 5r`) ⊆

U1 and

K ⊆
∞⋃

`=0

B(x`, 5r`).

Denote for shortness B` := B(x`, r`); then

λ(K) ≤
∞∑

`=0

λ(5B`) ≤
∞∑

`=0

λ(8B`) ≤ Cβ+3
D

∞∑

`=0

λ( 1
2β
B`) = Cβ+3

D λ

(
∞⋃

`=0

1
2β
B`

)
.

Hence we can choose L ∈ N such that

λ

(
L⋃

`=0

1
2β
B`

)
≥

1

2Cβ+3
D

λ(K).

Taking into account (4.2), we easily get that A1 := K ∩
⋃L

`=0
1
2β
B` satisfies

λ(A1) ≥
1

4Cβ+3
D

λ(K).

For j ∈ N and ` = 1, . . . , L set for shortness Bj
` := Bj(x`, r`). By assumption (i), there

exists J ∈ N such that for every j ≥ J , and for every ` = 0, . . . , L

1
2β
B` ⊆

1
2α
Bj

` and 1
2
Bj

` ⊆ B`. (4.3)

Hence for every j ≥ J one has

∣∣uj
(

1
2α
Bj

`

)∣∣ ≤ λ
(

1
2α
Bj

`

)−1
‖uj‖L1(U1;λ) ≤MU1

max{λ
(

1
2β
B`

)−1
: ` = 0, . . . , L} < +∞.

By Bolzano-Weierstrass Theorem we get an increasing function ν1 : N→ N such that

the sequence
(
uν1(j)

(
1
2α
B

ν1(j)
`

))
j

is convergent for every ` = 0, . . . , L. (4.4)

Then

lim sup
h,k→+∞

‖uν1(h) − uν1(k)‖Lq(A1;λ)

≤ lim sup
h,k→+∞

L∑

`=0

(∥∥∥uν1(h) − uν1(h)
(

1
2α
B

ν1(h)
`

)∥∥∥
Lq

(
1
2β

B`;λ
)

+
∥∥∥uν1(k) − uν1(k)

(
1
2α
B

ν1(k)
`

)∥∥∥
Lq

(
1
2β

B`;λ
)

+
∥∥∥uν1(h)

(
1
2α
B

ν1(h)
`

)
− uν1(k)

(
1
2α
B

ν1(k)
`

)∥∥∥
Lq

(
1
2β

B`;λ
)

)
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and, using (4.3) and (4.4),

≤ lim sup
h,k→+∞

L∑

`=0

(∥∥∥uν1(h) − uν1(h)
(

1
2α
B

ν1(h)
`

)∥∥∥
Lq

(
1
2α

B
ν1(h)
`

;λ
)

+
∥∥∥uν1(k) − uν1(k)

(
1
2α
B

ν1(k)
`

)∥∥∥
Lq

(
1
2α

B
ν1(k)
`

;λ
)

)

≤ lim sup
h,k→+∞

L∑

`=0

CP r
δ
`

(2α)δ

(
µν1(h)

(
1
2
B

ν1(h)
`

)
+ µν1(k)

(
1
2
B

ν1(k)
`

))

≤ lim sup
h,k→+∞

CP ε

(2α)δ
(
µν1(h)

(
U1

)
+ µν1(k)

(
U1

))
≤ C0ε,

where C0 depends only on U1 and thus only on K.

We proved that there exist A1 ⊆ K and a subsequence (uν1(h)) of (uj) such that

λ(K \ A1) ≤

(
1−

1

4Cβ+3
D

)
λ(K),

lim sup
h,k→+∞

‖uν(h) − uν(k)‖Lq(A1;λ)≤ C0ε.

Since the set K2 = K \ A1 is compact we can repeat the same argument on K2, with
ε
2

in place of ε, and paying attention to choose an open set U2 ⊆ U1 so that C0 can be

left unchanged. By a recursive argument, for every j ∈ N we get pairwise disjoint sets

Aj ⊆ K and subsequences (uνj(h)) such that for every j ≥ 1

(a) (uνj+1(h)) is a subsequence of (uνj(h));

(b) λ
(
K \

⋃j
i=1Ai

)
≤
(
1− 1

4Cβ+3
D

)j
λ(K);

(c) lim sup
h,k→+∞

‖uνj(h) − uνj(k)‖Lq(Aj ;λ)≤ C02
1−jε.

Inequality (b) immediately implies that λ (K \
⋃∞

i=1Ai) = 0. Working on the diagonal

subsequence (uνh(h)), we can conclude that

lim sup
h,k→+∞

‖uνh(h) − uνk(k)‖Lq(K;λ) = lim sup
h,k→+∞

‖uνh(h) − uνk(k)‖Lq(
⋃∞

i=1 Ai;λ)

≤
∞∑

i=1

lim sup
h,k→+∞

‖uνh(h) − uνk(k)‖Lq(Ai;λ)≤ 2C0ε.
(4.5)

This proves (4.1).

Let us write for simplicity (uh) instead of (uνh(h)). We now prove that, for every

compact set K ⊆M , there exists a subsequence (ujh) of (uh) such that

lim
h,k→+∞

‖ujh − ujk‖Lq(K;λ)= 0. (4.6)
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By (4.5), for every i ∈ N, we can recursively build a subsequence (uνi+1(h)) of (uνi(h))

such that

lim sup
h,k→+∞

‖uνi(h) − uνi(k)‖Lq(K;λ)≤
2

i+1
C0.

Then the diagonal sequence (uνh(h)) satisfies (4.6).

Eventually, take a sequence (Kj) of compact sets such that Kj ⊆ int(Kj+1) and⋃
j∈NKj =M . By (4.6), for every i ∈ N we can recursively build a subsequence (uνi(h))

such that (uνi+1(h)) is a subsequence of (uνi(h)) and

lim
h,k→+∞

‖uνi(h) − uνi(k)‖Lq(Ki;λ)= 0.

The diagonal subsequence (uνh(h)) will then converge to some u in Lq
loc(M ;λ). This

concludes the proof.

Remark 4.1.2. The careful reader will easily notice that Theorem 4.1.1 holds also

when assumption (iii) is replaced by the following weaker one:

(iii’) For every compact set K ⊆ M there exist RP > 0, α ≥ 1 and a function

f : (0,+∞) → (0,+∞) such that limr→0 f(r) = 0 and

‖uj − uj(B
j)‖Lq(Bj)≤ f(r)µj(αB

j), ∀x ∈ K, ∀j ∈ N, ∀r ∈ (0, RP ).

4.2 An application to Carnot-Carathéodory spaces

Let (Rn, X) be a CC space, let Ω be an open set in Rn and assume that the metric

balls are bounded with respect to the Euclidean metric. This implies that the space

(Rn, X) is geodesic, as it has been shown in [75, Theorem 1.4.4].

For j ∈ N let Xj = (Xj
1 , . . . , X

j
m) be a family of linearly independent vector fields

such that, for every fixed i = 1, . . . ,m, Xj
i converges to Xi in C∞

loc(R
n) as j → +∞.

We denote by dj, j ∈ N, the CC distance associated with Xj. If h ∈ L∞([0, T ];Rm)

with ‖h‖≤ 1, T > 0 and x ∈ Rn, it is convenient to define γh,x, γ
j
h,x : [0, T ] → Rn as

the AC curves such that γh,x(0) = γjh,x(0) = x and for almost every t ∈ [0, T ]

γ̇h,x(t) =
m∑

i=1

hi(t)Xi(γh,x(t)), γ̇jh,x(t) =
m∑

i=1

hi(t)X
j
i (γ

j
h,x(t)).

With this notation, an equivalent definition of the CC distance is

d(x, y) = inf{‖h‖L∞(0,1): h ∈ L
∞([0, 1];Rm) and γh,x(1) = y}. (4.7)

The boundedness of metric balls implies that, for every T > 0 and h ∈ L∞([0, T ];Rm),

the curve γh,x is well-defined on [0, T ].

As already observed in Remark 1.2.2, if the Chow-Hörmander condition holds, then

for every compact setK ⊆ Rn there exists an integer s(K) such that the following holds:
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for any x ∈ K, X1, . . . , Xm and their commutators up to order s(K) computed at x

span the whole Rn. In an analogous way the following fact holds: for any compact set

K ⊆ Rn there exists J ∈ N such that, for any x ∈ K and j ≥ J , the vector fields

Xj
1 , . . . , X

j
m and their commutators up to order s(K) computed at x span the whole

Rn. The following theorem gives a sort of quantitative version of some of the celebrated

results of [78]. The proof of Theorem 4.2.1 follows fairly easily from [18, 73] (see in

particular [18, Proposition 5.8 and Claim 3.3]).

Theorem 4.2.1. For every compact set K ⊆ Rn there exist J0 ∈ N and CK > 0 such

that for every x, y ∈ K and j ≥ J0

1

CK

|x− y|≤ d(x, y) ≤ CK |x− y|
1/s(K)

1

CK

|x− y|≤ dj(x, y) ≤ CK |x− y|
1/s(K).

We aim at proving that the sequence of distances dj converges to d locally uniformly;

we need some preparatory lemmata.

Lemma 4.2.2. Let K be a compact set in Rn. Then for every T > 0, there exist J1 =

J1(K,T ) ∈ N and R = R(K,T ) > 0 such that for every x ∈ K, h ∈ L∞([0, T ];Rm)

with ‖h‖≤ 1 and any j ≥ J1 the following hold:

(a) the curve γjh,x is well defined on [0, T ];

(b) γjh,x([0, T ]) ⊆ Be(0, R).

Proof. Define first

K ′ := {γh,x(T ) : x ∈ K, h ∈ L
∞([0, T ];Rm), ‖h‖≤ 1} =

⋃

x∈K

B(x, T ).

Since metric balls are bounded, also K ′ is bounded. We can therefore find R > 0 such

that K ′ ⊆ Be(0, R) and de(K
′,Rn \ Be(0, R)) > 1. Choose J1 ∈ N such that for every

j ≥ J1

T

(
m∑

i=1

sup
Be(0,R)

|Xj
i −Xi|

)
emCT ≤

1

2
,

where C > 0 will be determined later. Let h ∈ L∞([0, T ];Rm) and j ≥ J1 be fixed;

define

tj := sup{t > 0 : γjh,x is well-defined on [0, t] and γjh,x([0, t]) ⊆ Be(0, R)}

and suppose by contradiction that tj < T . Then γjh,x(tj) ∈ ∂Be(0, R) and for every
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τ < tj one has

∣∣γjh,x(τ)− γh,x(τ)
∣∣ ≤

ˆ τ

0

m∑

i=1

∣∣hi(s)Xj
i (γ

j
h,x(s))− hi(s)Xi(γh,x(s))

∣∣ ds

≤

ˆ τ

0

m∑

i=1

∣∣Xj
i (γ

j
h,x(s))−X

j
i (γh,x(s))

∣∣ ds

+

ˆ τ

0

m∑

i=1

∣∣Xj
i (γh,x(s))−Xi(γh,x(s))

∣∣ ds.

Notice that, since Xj
i is converging to Xi locally in C1, and since γjh,x(s), γh,x(s) ∈

Be(0, R), the Lipschitz constants

c ji := sup
x,y∈Be(0,R)

|Xj
i (x)−X

j
i (y)|

|x− y|

are converging to the Lipschitz constant ci := supx,y∈Be(0,R)
|Xi(x)−Xi(y)|

|x−y|
. Therefore we

can choose C > 0 such that c ji , ci ≤ C for any j ∈ N and i = 1, . . . ,m, which gives

∣∣γjh,x(τ)− γh,x(τ)
∣∣ ≤

ˆ τ

0

(
mC

∣∣γjh,x(s)− γh,x(s)
∣∣+

m∑

i=1

sup
Be(0,R)

|Xj
i −Xi|

)
ds.

We can therefore apply Grönwall’s Lemma to get

∣∣γjh,x(tj)− γh,x(tj)
∣∣ ≤ tj

(
m∑

i=1

sup
Be(0,R)

|Xj
i −Xi|

)
emCtj ≤

1

2
.

Notice that γh,x(tj) ∈ K ′ and γjh,x(tj) ∈ ∂Be(0, R): this contradicts the definition of R,

giving tj = T . The lemma is proved.

Lemma 4.2.3. Fix ε ∈ (0, 1) and a compact set K in Rn. Then, for every T > 0 there

exists J2 = J2(K,T, ε) ∈ N such that for every x ∈ K, j ≥ J2, h ∈ L
∞([0, T ];Rm) with

‖h‖≤ 1 and t ∈ [0, T ] one has

|γjh,x(t)− γh,x(t)|≤ ε

Proof. Let J1 = J1(K,T ) and R = R(K,T ) be given by Lemma 4.2.2 and let C > 0

be the constant appearing in its proof. We can reason as in Lemma 4.2.2 above and

use Grönwall’s Lemma to get, for any x, j, h, t as in the statement, that

∣∣γjh,x(t)− γh,x(t)
∣∣ ≤ t

(
m∑

i=1

sup
Be(0,R)

|Xj
i −Xi|

)
emCt.

The proof is then accomplished by choosing J2 ≥ J1 sufficiently large to have

T

(
m∑

i=1

sup
Be(0,R)

|Xj
i −Xi|

)
emCT < ε.
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Clearly, J2 can be chosen to be increasing in T , i.e., J2(K,T1, ε) ≤ J2(K,T2, ε)

whenever 0 < T1 ≤ T2.

Theorem 4.2.4. Let X = (X1, . . . , Xm) and Xj = (Xj
1 , . . . , X

j
m), j ∈ N, be m-

tuples of linearly independent smooth vector fields on Rn such that X satisfies the

Chow-Hörmander condition and its CC balls are bounded in Rn; assume that, for every

i = 1, . . . ,m, Xj
i → Xi in C∞

loc(R
n) as j → ∞. Then the sequence (dj) converges to d

in L∞
loc(R

n × Rn) as j → +∞.

Proof. Let K ⊆ Rn be a fixed compact set.

We first prove that for every ε ∈ (0, 1) there exists J3 = J3(K, ε) ∈ N such that for

every x, y ∈ K and j ≥ J3 one has

dj(x, y) ≤ d(x, y) + ε.

Consider x, y ∈ K; by the existence of geodesics, there exists h ∈ L∞([0, 1];Rm) such

that ‖h‖L∞= d(x, y) and γh,x(1) = y. We set yj := γjh,x(1) and consider J0 and CK > 0

as given by Theorem 4.2.1. Define J3 := max{J0, J2(K, diamdK, (ε/CK)
s(K))}. Then,

by Lemma 4.2.3, for j ≥ J3 we have

|yj − y|= |γ
j
h,x(1)− γh,x(1)|≤

(
ε

CK

)s(K)

.

By Theorem 4.2.1 we deduce that dj(yj, y) ≤ ε; in particular, for any j ≥ J3 one has

dj(x, y) ≤ dj(x, yj) + dj(yj, y) ≤ d(x, y) + ε, (4.8)

as claimed. Notice also that supj≥J3 diamdjK ≤ diamdK + 1 =: L is finite.

We now prove that for any x, y ∈ K and ε ∈ (0, 1) there exists J4 = J4(K, x, y, ε) ∈

N such that for every j ≥ J4

d(x, y) ≤ dj(x, y) + ε. (4.9)

For every j ≥ J3 let hj ∈ L∞([0, 1];Rm) be such that

γj
hj ,x

(1) = y and ‖hj‖L∞= dj(x, y) ≤ L.

The sequence (hj)j is bounded in L∞ and therefore there exists a subsequence (hj`)

and h ∈ L∞([0, 1];Rm) such that

hj`
∗
⇀ h in L∞ and lim

`→∞
‖hj`‖L∞= lim inf

j→∞
‖hj‖L∞= lim inf

j→∞
dj(x, y).

Denoting by γj` := γj`
hj` ,x

and considering R = R(K,L) > 0 as given by Lemma

4.2.2, one has γj`([0, 1]) ⊆ Be(0, R). Since Xj
i are converging to Xi uniformly in

C∞ (i = 1, . . . ,m), such vector fields are equibounded on Be(0, R). By Ascoli-Arzelà
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Theorem, up to a further subsequence, there exists a curve γ ∈ AC([0, 1],Rn) such

that γj` uniformly converges to γ in [0, 1] as `→∞. For every t ∈ [0, 1] one has

γj`(t) = x+

ˆ t

0

m∑

i=1

hj`i (s)X
j`
i (γ

j`(s)) ds

and, taking into account that Xj`
i ◦ γ

j` → Xi ◦ γ uniformly in [0, 1] and that hj
∗
⇀ h in

L∞, by letting `→∞ one gets

γ(t) = x+

ˆ t

0

m∑

i=1

hi(s)Xi(γ(s)) ds.

In particular γ = γh,x, γ(1) = y and

d(x, y) ≤ ‖h‖L∞≤ lim inf
`→∞

‖hj`‖L∞= lim inf
j→∞

dj(x, y),

which proves (4.9).

By the compactness of K we can find x1, . . . , xk ∈ K such that K ⊆
⋃k

`=1B(x`, ε).

Using Theorem 4.2.1 and (4.9) we can find C̃ = C̃(K) > 0 and J5 = J5(K, ε) ∈ N such

that for j ≥ J5

B(x`, ε) ⊆ Bj(x`, C̃ε
1/s(K)) ∀ ` = 1, . . . , k

d(x`1 , x`2) ≤ dj(x`1 , x`2) + ε ∀ `1, `2 = 1, . . . , k.

For every x, y ∈ K we can find x`1 , x`2 ∈ K (with 1 ≤ `1, `2 ≤ k) such that x ∈ B(x`1 , ε)

and y ∈ B(x`2 , ε), hence for j ≥ J5 we have

d(x, y) ≤ d(x, x`1) + d(x`1 , x`2) + d(y, x`2)

≤ ε+ dj(x`1 , x`2) + ε+ ε

≤ dj(x`1 , x) + dj(x, y) + dj(y, x`2) + 3ε

= dj(x, y) + 3ε+ 2C̃ε1/s(K),

which, combined with (4.8), concludes the proof.

Theorem 4.2.5 below gives a uniform Poincaré inequality when the moving vector

fields are converging. The proof follows directly from [18, Theorem 7.2 and considera-

tions above].

Theorem 4.2.5. Let X = (X1, . . . , Xm) and Xj = (Xj
1 , . . . , X

j
m), j ∈ N, be m-tuples

of linearly independent smooth vector fields on Rn such that X satisfies the Chow-

Hörmander condition and its CC balls are bounded in Rn; assume that, for every i =

1, . . . ,m, Xj
i → Xi in C∞

loc(R
n) as j →∞. Then, for every compact set K ⊆ Rn there

exist CP > 1, α ≥ 1, RP > 0 and J ∈ N such that for every j ≥ J , u ∈ BVXj ,loc(R
n),

x ∈ K and r ∈ (0, RP ) one has
ˆ

Bj

∣∣u− u(Bj)
∣∣ dL n ≤ CP r |DXju|(αBj), (4.10)

where Bj := Bj(x, r) and u(Bj) =
ffl

Bj u dL
n.
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We can then state our main application. See [46, Section 8] for more references

about compactness results for Sobolev or BV functions in CC spaces.

Theorem 4.2.6. Let X = (X1, . . . , Xm) and Xj = (Xj
1 , . . . , X

j
m), j ∈ N, be m-

tuples of linearly independent smooth vector fields on Rn such that X satisfies the

Chow-Hörmander condition and its CC balls are bounded in Rn; assume that, for every

i = 1, . . . ,m, Xj
i → Xi in C∞

loc(R
n) as j →∞. Let uj ∈ BVXj ,loc(R

n) be a sequence of

functions that is locally uniformly bounded in BV , i.e., such that for any compact set

K ⊆ Rn there exists M > 0 such that for any j ∈ N one has

‖uj‖L1(K)+|DXjuj|(K) ≤M.

Then, there exist u ∈ BVX,loc(R
n) and a subsequence (ujh) of (uj) such that ujh → u in

L1
loc(R

n) as h → ∞. Moreover, for any bounded open set Ω ⊆ Rn, the semicontinuity

inequality

|DXu|(Ω) ≤ lim inf
j→∞

|DXjuj|(Ω)

holds.

Proof. We use Theorem 4.1.1 with X = Rn, λ = L n, δ = q = 1, µj := |DXju| and

d, dj the CC distances associated with X,Xj respectively. Assumption (i) follows from

Theorem 4.2.4, while the local doubling property (ii) of d is a well-known fact (see e.g.

[78]). The validity of (iii) (with δ = q = 1) follows from Theorem 4.2.5, while (iv) is

satisfied by assumption.

Theorem 4.1.1 ensures that, up to subsequences, uj converges to some u in L1
loc(R

n);

we need to show that u ∈ BVX,loc(R
n). To this aim, for any i = 1, . . . ,m, we denote

by X∗
i the formal adjoint to Xi and write

Xi(x) =
n∑

k=1

ai,k(x)∂k and Xj
i (x) =

n∑

k=1

aji,k(x)∂k,

for suitable smooth functions ai,k, a
j
i,k. Then, for any bounded open set Ω ⊆ Rn, any

test function ϕ ∈ C1
c (Ω) and any i = 1, . . . ,m, we have

ˆ

Ω

uX∗
i ϕ dL

n =

ˆ

Ω

u

n∑

k=1

∂k(ai,kϕ) dL
n = lim

j→∞

ˆ

Ω

uj

n∑

k=1

∂k(a
j
i,kϕ) dL

n

= − lim
j→∞

ˆ

Ω

ϕ dDXj
i
uj ≤ ‖ϕ‖L∞(Ω)lim inf

j→∞
|Dj

Xuj|(Ω) < +∞.

This proves that u ∈ BVX,loc(R
n) as well as the semicontinuity of the total variation.

The proof is accomplished.

Proposition 4.2.7. Let X = (X1, . . . , Xm) and Xj = (Xj
1 , . . . , X

j
m), j ∈ N, be m-

tuples of linearly independent smooth vector fields on Rn such that, for every i =
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1, . . . ,m, Xj
i → Xi in C∞

loc(R
n) as j → ∞. Let (uj) be a sequence converging in

L1
loc(R

n) to some u; then, for any open bounded set Ω ⊆ Rn one has

|DXu|(Ω) ≤ lim inf
j→∞

|DXjuj|(Ω)

Proof. For any i = 1, . . . ,m and any j ∈ N we write

Xi(x) =
n∑

k=1

ai,k(x)∂k and Xj
i (x) =

n∑

k=1

aji,k(x)∂k,

for suitable smooth functions ai,k, a
j
i,k. Then, for any test function ϕ ∈ C1

c (Ω;R
m), we

have
ˆ

Ω

udivXϕ dL
n =

ˆ

Ω

u

m∑

i=1

n∑

k=1

∂k(ai,kϕi) dL
n = lim

j→∞

ˆ

Ω

uj

m∑

i=1

n∑

k=1

∂k(a
j
i,kϕi) dL

n

= lim
j→∞

ˆ

Ω

ujdivXjϕ dL n ≤ ‖ϕ‖L∞(Ω)lim inf
j→∞

|DXjuj|(Ω).

The proof is accomplished.

Remark 4.2.8. Let X,Xj, uj, u be as in Proposition 4.2.7 and assume that |DXjuj|

are locally uniformly bounded in Rn, i.e., for any compact set K ⊆ Rn there exists

CK <∞ such that |DXjuj|(K) < CK for all j. Then DXjuj weakly∗ converges to DXu

in Rn.

Indeed, one can reason as in Proposition 4.2.7 to show that for any test function

ϕ ∈ C1
c (R

n) and any i = 1, . . . ,m

lim
j→∞

ˆ

ϕ dDXj
i
uj =

ˆ

ϕ dDXi
u

and the density of C1
c in Cc allows to conclude.

Remark 4.2.9. We conjecture that, when the CC space (Rn, X) is equiregular, the

convergence ujh → u in Theorem 4.2.6 holds in Lq
loc for any q ∈ [1, Q

Q−1
), where Q

is the Hausdorff dimension of (Rn, X). This would easily follow in case the Poincaré

inequality (4.10) could be strengthened to

‖u− u(Bj)‖Lq(Bj)≤ CP r
δ |DXju|(αBj)

for some δ > 0 (arguably, δ = Q
q
+ 1 − Q). The key point would be proving that the

constant CP can be chosen independent of j but, as far as we know, no investigation

in this direction has been attempted in the literature, so far.

Remark 4.2.10. Theorems 4.2.4, 4.2.5 and 4.2.6 hold also under a slightly weaker

assumption: it is indeed enough that, for any compact set K ⊆ Rn, the convergence

Xj
i → Xi holds in Ck(K) for a suitable k = k(K) (actually, k depends only on s(K))

that one could explicitly compute. See [18, 73] for more details.
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