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ABSTRACT

Kernel-based approximation methods provide optimal recovery proce-
dures in the native Hilbert spaces in which they are reproducing. Among
other, kernels in the notable class of continuous and strictly positive def-
inite kernels on compact sets possess a series decomposition in L2 - or-
thonormal eigenfunctions of a particular integral operator.

The interest for this decomposition is twofold. On one hand, the sub-
spaces generated by eigenfunctions, or eigenbasis elements, are L2-optimal
trial spaces in the sense of widths. On the other hand, such expansion is the
fundamental tool of some of the state of the art algorithms in kernel approx-
imation. Despite these reasons motivate a great interest in the eigenbasis,
for a given kernel this decomposition is generally completely unknown.

In this view, this thesis faces the problem of approximating the eigen-
basis of general continuous and strictly positive definite kernels on general
compact sets of the Euclidean space, for any space dimension.

We will at first define a new kind of optimality that is based on a error
measurement closer to the one of standard kernel interpolation. This new
width is then analyzed, and we will determine its value and characterize
its optimal subspaces, which are spanned by the eigenbasis. Moreover,
this optimality result is suitable to be scaled to some particular subspace of
the native space, and this restriction allows us to prove new results on the
construction of computable optimal trial spaces. This situation covers the
standard case of point-based interpolation, and will provide algorithms to
approximate the eigenbasis by means of standard kernel techniques. On
the basis of the new theoretical results, asymptotic estimates on the conver-
gence of the method will be proven. These computations will be translated
into effective algorithms, and we will test their behavior in the approxima-
tion of the eigenspaces. Moreover, two applications of kernel-based meth-
ods will be analyzed.
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RIASSUNTO

I metodi kernel forniscono procedure di miglior approssimazione negli
spazi di Hilbert nativi, ovvero gli spazi in cui tali kernel sono reproducing
kernel. Nel caso notevole di kernel continui e strettamente definiti positivi
su insiemi compatti, è nota l’esistenza di una decomposizione in una se-
rie data dalle autofunzioni (ortonormali in L2) di un particolare operatore
integrale.

L’interesse per questa espansione è motivata da due ragioni. Da un
lato, i sottospazi generati dalle autofunzioni, o elementi della eigenbasis,
sono i trial space L2-ottimali nel senso delle widhts. D’altro canto, tale es-
pansione è lo strumento fondamentale alla base in alcuni degli algoritmi di
riferimento utilizzati nell’approssimazione con kernel. Nonostante queste
ragioni motivino decisamente l’interesse per le eigenbasis, la suddetta de-
composizione è generalmente sconosciuta.

Alla luce di queste motivazioni, la tesi affronta il problema dell’ap-
prossimazione delle eigenbasis per generici kernel continui e strettamente
definiti positivi su generici insiemi compatti dello spazio euclideo, per ogni
dimensione.

Inizieremo col definire un nuovo tipo di ottimalità basata sulla misura
dell’errore tipica dell’interpolazione kernel standard. Il nuovo concetto di
width sarà analizzato, ne sarà calcolato il valore e caratterizzati i rispettivi
sottospazi ottimali, che saranno generati dalla eigenbasis. Inoltre, questo
risultato di ottimalità risulterà essere adatto ad essere ristretto ad alcuni
particolari sottospazi dello spazio nativo. Questa restrizione ci permet-
terá di dimostrare nuovi risultati sulla costruzione di trial space ottimali
che siano effettivamente calcolabili. Questa situazione include anche il
caso dell’interpolazione kernel basata su valutazioni puntuali, e fornirà al-
goritmi per approssimare le autofunzioni tramite metodi kernel standard.
Forniremo inoltre stime asintotiche di convergenza del metodo basate sui
nuovi risultati teorici. I metodi presentati saranno implementati in algo-
ritmi numerici, e ne testeremo il comportamento nell’approssimazione degli
autospazi. Infine analizzeremo l’applicazioni dei metodi kernel a due di-
versi problemi di approssimazione.
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Introduction

Kernel methods are successfully employed in various fields and applica-
tions. In Machine Learning they are the basis of methods such as support
vector machines and RBF-neural networks, which are used to solve complex
classification and regression problems. In Geosciences they appear as the
method of kriging, which provides approximations of minimal expected
deviation of random fields. More generally in Statistics, kernels are strictly
related to covariance functions, and kernel-based methods are used to pro-
duce optimal estimators of stochastic processes. Moreover, kernels are used
in Optimization and Geometric Modeling.

Among the various fields of application, of notable interest is the prob-
lem of approximation of functions, where kernel-based methods are ex-
tensively applied thanks to their flexibility. Namely, through kernels it is
possible to treat scattered-data problems, problems defined in many space
dimensions and problems defined over manifolds. This feature is a clear
advantage over other methods, such as polynomial approximation. More-
over, all the approximation methods that arise from the use of kernels have
an essential functional structure in common, and, to some extent, they can
be analyzed independently from the particular situation.

Beyond the recovery from point-wise samples, in kernel-based spaces
it is also possible to consider generalized interpolation problems defined by
weak data, i.e., approximation problems where the data come from the eval-
uation of general functionals on a unknown function. The application of
these techniques to the solution of partial differential equations leads to
the construction of meshless algorithms, and to the solution of PDE prob-
lems that are hardly faced by methods such as finite elements.

Moreover, and more important, kernel-based methods constitute the
error optimal recovery strategy in the native Hilbert spaces where they are
reproducing. Such spaces are fairly general, and they can all be treated in
the same way by means of their kernel. This optimality is of particular
interest for some kernels, whose associated native spaces can be proven to
be equivalent to certain Sobolev spaces.

These methods can deal with scattered data, and they produce mean-
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ingful approximations from completely general samplings. Nevertheless,
the success of the recovering deeply depends on the choice of the structure
of the samplings, and poor data lead to a poor recovery. In this view, it is of
great interest the problem of finding, characterizing and constructing good
or even optimal trial spaces, to be used both for interpolation and general-
ized interpolation. The quality of these trial spaces is measured in different
way, and we will concentrate in this thesis on error optimal subspaces.

Moreover, it is known that the kernel approximation process is both sta-
ble and convergent (see [18]). Nevertheless, it has been observed throughout
the literature on kernel methods that a plain, or direct, application of kernel-
based interpolation methods often leads to unsatisfactory results and to an
unstable computation of the approximants. This awareness has led in the
recent year to move the attention of the research on the development of
alternative computation methods. They are designed to make stable com-
putations in kernel-based spaces, and to obtain the theoretically expected
results by removing the limitations due to the wrong use of kernel tech-
niques.

In both these contexts, it has become clear that a special role is played
by a particular decomposition of the kernel, due to J. Mercer [39]. This
decomposition comes from the spectral decomposition of an integral oper-
ator defined through the kernel, and it defines a basis of the native space,
named the eigenbasis.

In particular, the subspaces generated by the eigenbasis have been pro-
ven to provide error optimal trial spaces (see [54]), whenever the error is
measured by L2 norms. This result constitutes a theoretical foundation for
the interest in the eigenbasis, and it is deeply connected to the theory of
widths in Approximation Theory ( [46]). Furthermore, the eigenbasis is the
fundamental tool of many of the techniques developed in the recent years
(see e.g. [12, 24, 26, 28, 37]), and the new algorithms are in fact able to solve
recovering problems with extremely high precision, when the decomposi-
tion is explicitly known.

Despite these reasons motivate a great interest in the eigenbasis, for a
given kernel the Mercer decomposition is generally completely unknown.

In this view, the present thesis faces the problem of approximating the
eigenbasis of general strictly positive definite kernels on general compact sets
of the Euclidean space, for any space dimension.

We will at first define a new kind of optimality that is strictly connected
to other widths, but which is instead based on a error measurement closer
to standard kernel interpolation. This new width is then analyzed, and
we will find its value and characterize its optimal subspaces, which are
again given by the spaces spanned by the eigenbasis, in accordance to the
aforementioned results.
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Moreover, this optimality result turns out to be suitable to be scaled
to some particular subspace of the native space. This restriction, on the
contrary of the case of other widths, allows to prove new results on the
construction of actually computable optimal trial spaces.

This situation covers the standard case of point-based interpolation, and
will provide algorithms to approximate the eigenbasis by means of stan-
dard kernel techniques. On the basis of the new theoretical results, asymp-
totic estimates on the convergence of the method will be proven.

These computations will be translated into effective algorithms, and we
will test their behavior in the approximation of the eigenspaces.

This thesis is organized as follows. Chapter 1 is intended to review
some preliminary fact in the theory of kernel-based approximation and in-
troduce the notation used throughout this work. In particular, we recall the
definition of a kernel and the construction of its native space, and we discuss
the approximation process in this space. Moreover, we recall the definition
of the eigenbasis, which will play a central role in the following Chapters.
This Chapter is not intended to be an introduction to kernel-based approx-
imation but only to set the background of the forthcoming results.

Chapter 2 contains the main theoretical results of this thesis. At first
we generalize the approximation method of the first Chapter to the case of
general subspaces of the native space. Then, we state the problem of de-
termining error-optimal subspaces and discuss its framework in the field
of Approximation Theory. A new kind of width will be introduced, and we
will prove that it is minimized by the eigenbasis, in accordance to other
known results. This new result allow to consider also a constrained op-
timization problem, and in this way we are able to take into account the
usual situation of kernel-based interpolation. Moreover, some result are
proven about the approximation of the eigenbasis trough point-based tech-
niques. We conclude this Chapter by presenting two partial extension of
this work to the case of different error measurements, and to the case of the
recovery of the solution of linear functional equations.

In Chapter 3 we move our attention to the algorithmic counterpart of
these results. First, thanks to the analysis of closed subspaces of the previ-
ous Chapter, it is possible to construct optimal subspaces by Linear Algebra
techniques, and to use these subspaces as an approximation of the eigen-
basis. Second, a direct discretization of the integral equation defining the
eigenbasis leads to another algorithm, that is discussed in details. In fact,
the two algorithms have been developed separately, but we prove here that
they are closely related both from a theoretical and a computational point
of view, when a certain discretization of the L2 inner product is used.

Although these two algorithms give a first insight in the actual compu-
tation of the eigenbasis, they are not suitable for a direct use. Instead, two
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approximated version of both of them are presented in Chapter 4. They are
designed to avoid the direct computations of the previous Chapter, which
are replaced by greedy techniques and by projection methods. The two al-
gorithms of this Chapter are now ready to be implemented, and we will
test them to confirm some of the theoretical results developed so far.

Chapter 5 is devoted to present two different applications of kernel-
based approximation. The first one couples one of the algorithms devel-
oped in this thesis to a fast domain decomposition technique, and the re-
sulting method is able to solve large approximation problems in a fast and
stable way. The second application, instead, is quite independent from the
rest of the thesis, and analyses the recovery of medical images by means of
kernel techniques.

In Appendix A we set up some further detail on the relation between
different native spaces, that will be useful to derive one of the results of the
previous Chapters.

Most of the contents of this thesis is published or accepted for publica-
tion. In particular, the results of Chapter 2 are published in [52] except for
the extensions of the last Section. Chapter 3 presents some of the contents
of [16] and [52], while the connection between the two algorithms is a new
result. The algorithms of Chapter 4 are published in [52] and in [17]. Gen-
eralizations of the contents of Chapter 5 are the object of the two papers [8]
and [14], which are currently in preparation, while the present version of
the first method is published in [9].

All the algorithms introduced and tested in this thesis have been im-
plemented as Matlab programs, and they can be freely downloaded from
[49–51], except for the first algorithm of Chapter 5, which is partially still
under development.



Chapter 1

Preliminaries

In this Chapter we will give a brief introduction to the field of kernel-based
approximation.

The aim of this part of the thesis is to set up the ground floor where
the following results are rooted, and to clarify the notation used through-
out this work. In this view, we will take into account only the results that
are relevant to understand what follows, while plenty of results and ap-
proaches are not discussed. The extensive study of the theory of kernels
and of reproducing kernel Hilbert spaces partially presented in the first
two Sections dates back to the seminal paper [1]. A detailed discussion
of the theory and practice of kernel-based approximation can be retrieved
from the monographs [5, 22, 23, 60] and from the survey papers [4, 56].

We will concentrate here only on the basic facts that constitute the fun-
damental tools of kernel-based approximation. In the subsequent Chap-
ters, we will recall some more advanced results in the context where they
are needed.

The following results will be mainly presented according to the fashion
and the notation of [22] and [60].

1.1 Kernels and kernel-based spaces

We start by defining the main object of this thesis, i.e., the kernel K.

Definition 1.1. Let Ω ⊂ Rd be a nonempty set. A positive definite kernel K on Ω
is a positive definite and symmetric function K : Ω× Ω→ R.

Positive definiteness is understood in the sense that, for any natural
number N ∈ N, for any vector of coefficients c ∈ RN and for any set XN =
{x1, . . . , xN} of N pairwise distinct elements in Ω, we have

N∑
i,j=1

cicjK(xi, xj) ≥ 0. (1.1)
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6 CHAPTER 1. PRELIMINARIES

This is the same as requiring that the N ×N kernel matrix A,

Aij(XN ) = K(xi, xj), 1 ≤ i, j ≤ N,

is positive semidefinite for any N and XN ⊂ Ω.
We will consider in this thesis only strictly positive definite kernels

(hence positive definite kernel matrices), i.e., equality in (1.1) holds if and
only if c ≡ 0. For this reasons we will simply use the term kernel to mean a
strictly positive definite kernel. Moreover, even if kernels can be defined on
quite general sets, we will consider in the following only the case Ω ⊂ Rd.

In many applications, the most used kernels are translational invariant
or even radial. Namely, there exist a univariate function Φ : Rd → R such
that

K(x, y) = Φ(x− y), x, y ∈ Ω

or Φ : R≥ 0 → R such that

K(x, y) = Φ(‖x− y‖2), x, y ∈ Ω

where ‖ · ‖2 denotes the Euclidean norm on Rd. Radial kernels, which take
the name of Radial Basis Functions (RBFs), are usually defined up to a factor
ε > 0, which is called the shape parameter and is employed to control the
scale of the kernel, i.e., K(x, y) = Φ(ε ‖x− y‖2). Figure 1.1 shows the shape
of the commonly used Gaussian kernelK(x, y) = e−ε

2‖x−y‖22 on Ω = [−1, 1],
for various values of ε.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 1.1: The Gaussian kernel on [−1, 1] for different values of ε.

Associated with the kernel K there is a unique native spaceH(Ω), that is
a separable Hilbert space of functions f : Ω→ R where K is the reproducing
kernel in the following sense.

Definition 1.2. A kernelK is a reproducing kernel of the Hilbert space (H, (·, ·)H)
of real valued functions defined on Ω ⊂ Rd if the following conditions hold:
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(i) K(·, x) ∈ H for all x ∈ Ω,

(ii) (f,K(·, x))H = f(x) for all x ∈ Ω, f ∈ H .

A Hilbert space possessing a reproducing kernel is called a reproducing kernel
Hilbert space (RKHS), and any RKHS has a unique kernel.

The reproducing property (ii) is equivalent to state that, for x ∈ Ω, the
x-translate of the kernel, K(·, x), is the Riesz representer of the evaluation
functional δx, that is hence a continuous functional in H . Also the converse
holds.

Theorem 1.3. If for all x ∈ Ω the evaluation functionals {δx} are continuous in
a Hilbert space (H, (·, ·)H) of real valued functions defined on Ω ⊂ Rd, H is a
reproducing kernel Hilbert space.

We will use in the following the notation H(Ω) to denote the native
space of K, and (·, ·), without subscript, to denote the inner product of
H(Ω).

One remarkable way to construct the native space is as follows. First
one considers the space H0(Ω) = span{K(·, x), x ∈ Ω} and then equips it
with the positive definite and symmetric bilinear form∑

j

cjK(·, xj),
∑
i

diK(·, xi)

 :=
∑
j,i

cjdiK(xj , xi).

The native spaceH(Ω) then is the closure ofH0(Ω) with respect to the inner
product defined by this form.

1.2 Kernel-based interpolation and approximation

With these tools in hand, we can face the problem of recovering a function
f ∈ H(Ω) from its samples. Namely, given a set XN = {x1, . . . , xN} ⊂ Ω of
distinct points, our goal is to find a function sf,XN ∈ H(Ω) such that

sf,XN (xi) = f(xi), 1 ≤ i ≤ N. (1.2)

The way this problem is solved inH(Ω) is by considering an interpolant in
the form

sf,XN =
N∑
i=1

ciK(·, xi),

generated by the linear combination of the kernel translates on the points
XN with unknown coefficients, that need to be computed to meet the inter-
polation conditions (1.2).
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From a linear algebra point of view, finding the coefficient vector c ∈
RN is equivalent to solving a linear equation involving the kernel matrix
A(XN ), which we will denote simply asA from now on when no confusion
is possible. The equation to solve is

Ac = b,

where bi = f(xi), and it has a unique solution thanks to the positive defi-
niteness of the kernel. This means that, using kernel-based techniques, we
can always compute an interpolant function sf,XN to any set of N values
defined on any set of N pairwise distinct points in Ω.

From a functional point of view, instead, we are assigning anN - dimen-
sional trial space V (XN ) ⊂ H(Ω) spanned by the kernel translates K(·, x1),
. . . , K(·, xN ). We can then view the above interpolation process as the ac-
tion of an interpolation operator that acts from H(Ω) to the finite subspace
V (XN ). We have the following.

Proposition 1.4. The interpolation operator that maps a function f ∈ H(Ω) to
its kernel interpolant sf,XN ∈ V (XN ) is the orthogonal projector

ΠH,V (XN ) : H(Ω)→ V (XN ).

In particular, the kernel interpolant sf,XN is also the minimalH(Ω)-norm approx-
imant of f from V (XN ).

Apart from being a functional counterpart of the result on the existence
and the uniqueness of the solution of the above linear system, this result
tells us that the interpolation process is also a optimal recovery process in
H(Ω). Moreover, it will be the key to generalize the approximation pro-
cess to trial spaces in H(Ω) more general that the points based subspaces
V (XN ).

1.3 Error bounds

The usual way to study the interpolation error is to consider the Power
Function PN (x) of XN at x, that is the H(Ω)-norm of the pointwise error
functional

f 7→ f(x)− sf,XN (x)

at x. More precisely, we have the following definition.

Definition 1.5. The Power Function PN (x) of XN is defined as

PN (x) = sup
‖f‖≤1

|f(x)− sf,XN (x)| for all x ∈ Ω.
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It is immediate to conclude that the point-wise interpolation error for a
function f ∈ H(Ω) can be bounded by the Power Function as

|f(x)− sf,XN (x)| ≤ PN (x)‖f‖ ∀x ∈ Ω.

Many efforts have been devoted to the study of the behavior of PN on Ω,
in order to obtain precise estimates on the decay of the interpolation error
in terms of K, Ω and XN . Before recalling some estimates on the decay
of PN that will be used in the following, we show in the next Lemma that
the Power Function can be actually computed using linear combinations of
functions of V (XN ).

Lemma 1.6. For any set of points XN ⊂ Ω, there exists a unique cardinal basis
{lj}Nj=1 of the point based subspace V (XN ) ⊂ H(Ω), i.e., a set of functions such
that

lj(xi) = δij =

{
1, if i = j
0, if i 6= j

.

Moreover, the Power Function of XN at x ∈ Ω can be computed by the formula

PN (x)2 = K(x, x)−
N∑
j=1

lj(x)K(x, xj).

The estimate on the Power Function we recall here relates the interpo-
lation error with the smoothness of the kernel and the distribution of the
pointsXN . They apply to translational invariant kernelsK(x, y) = Φ(x−y),
where Φ has a generalized Fourier transform on Rd, which will be denoted
as Φ̂. We assume also that Ω ⊂ Rd is bounded and satisfies an interior cone
condition.

In this situation we have the following error bounds (see [53, 55]), that
relate the approximation error with the fill distance

hN = sup
x∈Ω

min
xj∈XN

‖x− xj‖.

Theorem 1.7. If the kernel K has finite smoothness, we have that

Φ̂(ω) ∼ (1 + ‖ω‖)−β−d

for ‖ω‖ → ∞, and

‖f − sf,XN ‖∞ ≤ ch
β/2
N ‖f‖, for all f ∈ H(Ω), (1.3)

while for infinitely smooth kernels we have

‖f − sf,XN ‖∞ ≤ c exp(−c/hN )‖f‖, for all f ∈ H(Ω). (1.4)

Both bounds are in fact bounds on the L∞(Ω) norm of the Power Function, prop-
erly multiplied by theH(Ω)-norm of f .
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A second part of this Theorem, involving estimates in the L2(Ω) norm
of the interpolation error, is postponed to Theorem 1.7.

The results discussed so far state that functions of H(Ω) can be recov-
ered by kernel-based interpolation. Indeed, a partial converse holds, i.e.,
if a function can be recovered by kernel-based interpolation with a suffi-
ciently fast decaying L∞(Ω) error, then it must belong toH(Ω) (see [55]).

We conclude this Section by pointing out that, although theoretically
convergent, and even if it has been proven (see [18]) that the approxima-
tion process is stable in H(Ω), a straightforward application of the direct
interpolation method described in this Chapter is severely affected by sta-
bility and conditioning issues, in particular in the flat limit ε→ 0. Since this
problem is not the main topic of this thesis, we refer to the aforementioned
monographs for a detailed analysis of the stability of the interpolation pro-
cess, and to the recent papers [6, 12, 20, 24, 26–28, 37] for effective methods
to treat the situation ε→ 0.

1.4 Embedding in L2(Ω) and the eigenbasis

We conclude this introductory Chapter by analyzing the connection be-
tween the native spaceH(Ω) and the space L2(Ω).

We make the additional assumptions that Ω is a compact set in Rd and
the kernel is continuous on Ω× Ω. This ensures that the native space has a
continuous embedding into L2(Ω). Indeed, using the reproducing property
(ii) we have

‖f‖L2 ≤
(∫

Ω
K(x, x)dx

)1/2

‖f‖ for all f ∈ H(Ω)

where the integral of the kernel is finite.
This allows to define a compact and self-adjoint integral operator T :

L2(Ω)→ L2(Ω) that will play a central role in the following.

Definition 1.8. For f ∈ L2(Ω) we define

Tf(x) =

∫
Ω
K(x, y)f(y)dy, x ∈ Ω. (1.5)

It can be shown that the range T (L2(Ω)) of T is dense inH(Ω), and that
the operator is the adjoint of the embedding operator of H(Ω) into L2(Ω),
i.e.,

(f, g)L2 = (f, Tg) for all f ∈ H(Ω), g ∈ L2(Ω). (1.6)

This operator is the key tool in the next Theorem (see e.g. [47, Ch. 5]),
which applies to our situation, and provides a way to represent the kernel
as an expansion (or Hilbert - Schmidt or Mercer) kernel.
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Theorem 1.9 (Mercer). If K is a continuous and positive definite kernel on a
compact set Ω, the operator T has a countable set of positive eigenvalues λ1 ≥
λ2 ≥ · · · > 0 and eigenfunctions {ϕj}j∈N with Tϕj = λjϕj . The eigenfunctions
are orthonormal in L2(Ω) and orthogonal in H(Ω) with ‖ϕj‖2 = λ−1

j . Moreover,
the kernel can be decomposed as

K(x, y) =
∞∑
j=1

λj ϕj(x) ϕj(y) x, y ∈ Ω, (1.7)

where the sum is absolutely and uniformly convergent.

From now on we will call {
√
λjϕj}j∈N the eigenbasis, and use the nota-

tion En = span{
√
λjϕj , j = 1, . . . , n}.

Furthermore, using this decomposition the native space can be charac-
terized as

H(Ω) =

f ∈ L2(Ω) :
∑
j

(f, ϕj)L2

λj
<∞

 .

We recall that it is also possible to go the other way round and define
a positive definite and continuous kernel starting from a given sequence
of functions {ϕj}j and weights {λj}j , provided some mild conditions of
summability and linear independence. Further details on this construction
are discussed in Appendix A.

We remark that the operator T can be defined using any positive and
finite measure µ with full support on Ω (see [57]) and the same properties
still hold, but we will concentrate here on the Lebesgue measure.

Moreover, apart from the results of this thesis, note that eigenfunction
expansions play a central role in most of the papers cited in the last Section,
and especially in the RBF-QR methods.

Finally, since we can deal with L2(Ω)-norms of functions in H(Ω), we
can also state the last part of Theorem 1.7, which can also be found in [53].

Theorem 1.10. Under the hypothesis of Theorem 1.7 for kernels with finite smooth-
ness the estimate (1.3) can be improved as follows

‖f − sf,XN ‖L2 ≤ ch
(β+d)/2
N ‖f‖, for all f ∈ H(Ω). (1.8)

1.5 Generalized interpolation

This Section is devoted to the problem of generalized interpolation, where
a function f ∈ H(Ω) is recovered from weak-data. Namely, given a finite
set of linear and continuous functionals LN = {`i}Ni=1 ⊂ H(Ω)∗, we want to
find a function sf,LN ∈ H(Ω) such that

`i(sf,LN ) = `i(f), 1 ≤ i ≤ N.
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The function sf,LN , as in the case of point-wise interpolation, denotes the
generalized interpolant defined by the above weak interpolation condi-
tions.

This problem, in particular, arises from two different collocation meth-
ods for the solution of operator equations, e.g.,

L(f) = g, g ∈ H(Ω), L : H(Ω)→ H(Ω).

Once a set of collocation points XN ⊂ Ω is chosen (in some applications, a
distinction between points in int(Ω) and in ∂Ω is needed), one collects data

L(f)(xi) = g(xi), 1 ≤ i ≤ N,

or, in other words, one constructs the set of linear functionals LN = {`i}Ni=1,
`i = δxi ◦ L. Under some assumptions on L, XN and Ω, we have in fact
LN ⊂ H(Ω)∗, and we are in the situation described above.

The choice of the functional form of sf,LN characterize the method.
Namely, one has

sf,LN =
N∑
j=1

cjK(·, xj)

for unsymmetric collocation method, and

sf,LN =

N∑
j=1

cj`
y
j (K(·, y))

for symmetric collocation methods, where the superscript y, respectively x,
means that `j acts on the second variable of the kernel, respectively on the
first.

The interpolation conditions then read

N∑
j=1

cj`
x
i (K(x, xj)) = `i(f) = g(xi)

in the not symmetric case, and

N∑
j=1

cj`
x
i `
y
j (K(x, y)) = `i(f) = g(xi)

in the symmetric one. While in the second case conditions of linear inde-
pendence of LN ⊂ H(Ω)∗ ensure the existence of a unique solution sf,LN
(see [21]), the not symmetric case needs more care in the choice of the col-
location points XN (see [33]).

A thorough discussion of the theory and numerics of these methods
can be found, e.g., in [60, Chapter 16] and [22, Chapters 36-41]. We recall
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only that, even if the unsymmetric formulation, when well-posed, usually
produces better approximant (error-wise) and it is faster to implement, the
symmetric formulation is optimal in the sense of theH(Ω) norm. In partic-
ular, the optimality of symmetric collocation is related to the fact that, for
` ∈ H(Ω)∗, its Riesz representer is

`y(K(·, y)). (1.9)

These are exactly the basis elements used in symmetric collocation.





Chapter 2

Optimal subspaces and
approximation of
eigenfunctions

The present Chapter is devoted to develop the main theoretical results of
this thesis. It focuses on the problem of finding and characterizing error-
optimal n-dimensional subspaces of H(Ω), and to deduce from them some
informations on the approximation of the eigenbasis.

To this end, at first general finite dimensional subspaces of H(Ω) are
analyzed, together with their associated approximation operators and gen-
eralized Power Functions.

Then, the eigenspaces are compared with other n - dimensional sub-
spaces, and some results are proven about their optimality with respect
to the minimization of the L2(Ω) norm of the generalized Power Func-
tion. These results have strong connections to already known results on
n-widths (see e.g. [46]), which will be also briefly recalled.

Moreover, the new results are suitable to scale the theory to the case of
finite dimensional subspaces of H(Ω), and they allow to take into account
the usual situation of point-based kernel approximation as presented in
the previous Chapter. In this setting a constrained optimization problem is
solved to characterize a new kind of optimal subspaces, and we will in par-
ticular provide error bounds for the approximation of the true eigensystem
in terms of point-based techniques.

Some extensions of these results are presented in Section 2.5. They aim
at replacing L2(Ω) with a kernel-based space, and to have a first look at the
optimal subspace problem in the case of the recovery of linear functionals.

The contents of this Chapter are published in [52] and are partially
taken from this paper, except for Section 2.5, which presents unpublished
results.

15
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2.1 General subspaces of the native space

At first, we generalize here part of the construction of the previous Chap-
ter. We are interested in considering fully general subspaces Vn of H(Ω) of
dimension n, generated by any set of n basis functions, and the correspond-
ing kernel-based approximation scheme, i.e., the approximation that uses
Vn as a trial space. The following discussion includes as a particular case
the usual situation of point-based subspaces and the usual kernel-based
interpolation, as presented in Chapter 1.

2.1.1 Kernel-based approximation

Given a subspace Vn, we can define a generalized kernel-based approxima-
tion based on it. Namely, since the interpolation operator is a projector, for
f ∈ H(Ω) we can consider in this case the approximating function

ΠH,Vnf =
∑n

j=1(f, vj)vj ,

where the vj are H(Ω)- orthonormal basis functions of Vn, i.e., the H(Ω)-
projection of f ∈ H(Ω) into Vn. Observe that, given a function f ∈ H(Ω),
the approximant ΠH,Vnf can be also defined as the unique function in Vn
that satisfies the weak interpolation conditions

(ΠH,Vnf, vj) = (f, vj), 1 ≤ j ≤ n,

and these conditions reduce to the usual interpolation conditions when one
considers the usual point-based sets.

We are now interested in an error analysis of the approximation by func-
tions from these general subspaces. To this end, we generalize in the fol-
lowing the definition of the Power Function (see 1.5) to the case of a general
linear operator Π in a general Hilbert space H .

Definition 2.1. For a normed linear space H of functions on Ω and a linear op-
erator Π on H such that all the functionals δx − δx ◦ Π are continuous for some
norm ‖ · ‖H , the generalized Power Function in x ∈ Ω is the norm of the error
functional at x, i.e.,

PΠ,‖.‖H (x) := sup
‖f‖H≤1

|f(x)− (Πf)(x)|. (2.1)

The definition fits our situation, because we are free to take Π = ΠH,Vn
with ‖.‖H = ‖.‖, the normed linear space H being H(Ω). In the following,
when no confusion is possible, we will use the simplified notation PVn,H or
just PVn to denote the Power Function of ΠH,Vn with respect to ‖ · ‖.

We need now to look at the relation between the generalized Power
Function, a subspace and its bases. We start with the following Lemma,
which allows to safely deal with infinite sums of (squares of) basis func-
tions.
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Lemma 2.2. If a separable Hilbert spaceH of functions on Ω has continuous point
evaluation, then each H-orthonormal basis {vj}j satisfies∑

j

v2
j (x) <∞.

Conversely, the above condition ensures that all point evaluation functionals are
continuous.

Proof. The formula
f =

∑
j

(f, vj)Hvj

holds in the sense of limits in H . If point evaluations are continuous, we
can write

f(x) =
∑
j

(f, vj)Hvj(x) for all x ∈ Ω

in the sense of limits in R. Since the sequence {(f, vj)H}j is in `2 and can
be an arbitrary element of that space, the sequence {vj(x)}j must be in `2,
because the above expression is a continuous linear functional on `2.

For the converse, observe that for any n ∈ N, x ∈ Ω and
∑n

j=1 c
2
j ≤ 1 the

term
∑n

j=1 cjvj(x) is bounded above by
∑

j v
2
j (x), which is finite for any

x ∈ Ω. Hence, for any x ∈ Ω, sup‖f‖H≤1 |f(x)| is uniformly bounded for
f ∈ H .

Given this Lemma, it is possible to compute the generalized Power
Function in terms of an orthonormal basis of the subspace.

Proposition 2.3. For projectors ΠVn within separable Hilbert spaces H of func-
tions on some domain Ω onto finite-dimensional subspaces Vn generated by H-
orthonormal functions v1, . . . , vn that are completed, we have

P 2
ΠVn ,‖.‖H

(x) =
∑
k>n

v2
k(x)

provided that all point evaluation functionals are continuous.

Proof. The pointwise error at x is

f(x)−ΠVnf(x) =
∑
k>n

(f, vk)Hvk(x),

and, thanks to the previous Lemma, we can safely bound its norm as

|f(x)−ΠVnf(x)|2 ≤
∑
k>n

(f, vk)
2
H

∑
j>n

v2
j (x)

= ‖f −ΠVnf‖2H
∑
j>n

v2
j (x) ≤ ‖f‖2H

∑
j>n

v2
j (x),

with equality if f ∈ V ⊥n .
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This framework includes also the usual Power Function defined in Def-
inition 1.5.

Corollary 2.4. Let Xn be a set of n points in a compact domain Ω, and let V (Xn)
be spanned by the Xn-translates of K. Then the above notion of PV (Xn) coincides
with the standard notion of the interpolatory Power Function w.r.t. Xn.

Proof. The interpolation operator coincides with the projector ΠH,V (Xn),
and the Power Function is in both cases defined as the norm of the point-
wise error functional.

2.1.2 Other approximation processes

With these tools in hand, we can now study the kernel-based approxima-
tion based on a general subspace Vn ⊂ H(Ω), and the previous construction
generalizes in a natural way the usual kernel-based interpolation. Never-
theless, it is also possible to define different linear approximation processes
based on a subspace Vn. In particular, in the following we will need to con-
sider also the L2(Ω) projector

ΠL2,Vnf =
∑n

j=1(f, wj)L2wj , f ∈ H(Ω),

the wj being a L2(Ω)-orthonormal basis of Vn, which is well defined thanks
to the embedding described in Section 1.4, and it is defined also on all of
L2(Ω).

We conclude this Section by establishing a fundamental connection be-
tween the two projectors defined so far. They do not coincide in general,
but there is a special case. For the sake of clarity we present here the proof
of the following Lemma, even if it relies on a result that is proven in Section
2.3.1.

Lemma 2.5. If the projectors coincide on H(Ω) for an n-dimensional space Vn,
then Vn is spanned by n eigenfunctions. The converse also holds.

Proof. We start with the converse. For each fixed ϕj , thanks to (1.6), we
have

(f, ϕj)L2 = λj(f, ϕj) for all f ∈ H(Ω).

Then

ΠL2,Vnf =

n∑
j=1

(f, ϕj)L2ϕj =

n∑
j=1

λj(f, ϕj)ϕj

=

n∑
j=1

(f,
√
λjϕj)

√
λjϕj = ΠH,Vnf.

Assume now that the projectors coincide on H(Ω). We can choose a basis
{vj}j of Vn which is L2(Ω)-orthonormal and H(Ω)-orthogonal (see Lemma
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2.9), with ‖vj‖2 = 1/σj . Since ΠL2,Vnf = ΠH,Vnf for any f ∈ H(Ω), neces-
sarily

(f, vj)L2 = σj(f, vj) for all f ∈ H(Ω) and j = 1, . . . , n,

and in particular for f = K(·, x), x ∈ Ω. Consequently, {vj}j and {σj}j are
eigenfunctions / eigenvalues of T .

We remark that the approximation operators ΠH,Vn and ΠL2,Vn are not
the only ones that can be defined on Vn, but they are sufficient to develop
the results of this Chapter. Despite that, in Section 2.5.1 we will extend
and generalize part of the following discussion by taking into account also
other projectors.

2.2 Optimal subspaces with respect to the Power Func-
tion

In this Section we present the fundamental result of this thesis. Our goal
is to analyze the behavior of the approximation error, depending on the n-
dimensional subspace Vn. Roughly speaking, we want to characterize the
n-dimensional subspaces of minimal error, where the error is measured in
different ways.

We will at first review some known results. These results are part of
the theory of widths (see e.g. the comprehensive monograph [46], and in
particular Chapter 4 for the theory in Hilbert spaces)), and they deal with
the L2(Ω) error associated to the two approximation schemes defined in the
previous Section.

We will then prove a Theorem concerning the L2(Ω) norm of the point-
wise error. Besides providing a new point of view on optimal subspaces,
this result allows to scale the theory to the case of closed subspaces dealt
with in Section 2.3, and this scaling will be central in this thesis.

2.2.1 Review of the known results

We will concentrate first on the n-width of Kolmogorov. The Kolmogorov
n-width dn(A;H) of a subset A in an Hilbert space H is defined as

dn(A;H) := inf
Vn⊂H

dim(Vn)=n

sup
f∈A

inf
vn∈Vn

‖f − vn‖H .

It measures how n-dimensional subspaces of H can approximate a given
subset A. If the infimum is attained by a subspace, this is called an optimal
subspace. The interest is in characterizing optimal subspaces and to com-
pute or estimate the asymptotic behavior of the width, usually letting A to
be the unit ball S(H) of H .
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The first result that introduces and studies n-widths for native spaces
was presented in [54]. The authors consider the n-width dn(S(H(Ω));L2(Ω)),
simply dn from now on, and they prove the following Theorem. The proof
is presented here since analogous proofs will be repeated in this thesis. We
recall that En, as defined in Section 1.4, is the n-dimensional subspace of
H(Ω) spanned by the first n eigenfunctions.

Theorem 2.6. For any n > 0 we have

dn = inf
Vn⊂L2

dim(Vn)=n

sup
f∈S(H)

‖f −ΠL2,Vnf‖L2 =
√
λn+1, (2.2)

and En is an optimal subspace.

Proof. Let f ∈ H(Ω) be a function with ‖f‖ = 1, i.e., since {
√
λjϕj}j is an

H(Ω)-orthonormal basis ofH(Ω),

f =
∑
j

cj
√
λjϕj ,

∑
j

c2
j = 1.

In the case of Vn = En, since {ϕj}j are normalized in L2(Ω) we have

‖f −ΠL2,Enf‖2L2
=

∥∥∥∥∥∥
∑
j>n

cj
√
λjϕj

∥∥∥∥∥∥
2

L2

=
∑
j>n

c2
jλj ≤ λn+1

∑
j>n

c2
j ,

thus supf∈S(H) ‖f −ΠL2,Enf‖L2 =
√
λn+1 and dn ≤

√
λn+1.

To prove the converse inequality, consider any n-dimensional subspace
Vn ⊂ L2(Ω), and observe that the supremum supf∈S(H) ‖f − ΠL2,Vnf‖L2 is
obtained for f ∈ V ⊥n , where the orthogonal complement is taken in L2(Ω).
Since codim(V ⊥n ) = n, V ⊥n has nonempty intersection with En+1. Letting
then g ∈ V ⊥n ∩ En+1, ‖g‖ = 1, we have in particular g ∈ En+1 and

‖g‖2L2
=

∥∥∥∥∥∥
n+1∑
j=1

cj
√
λjϕj

∥∥∥∥∥∥
2

L2

=
n+1∑
j=1

c2
jλj ≥ λn+1

n+1∑
j=1

c2
j = λn+1.

Putting all together,

sup
f∈S(H)

‖f −ΠL2,Vnf‖L2 = sup
f∈S(V ⊥n )

‖f‖L2 ≥ ‖g‖L2 ≥
√
λn+1,

thus dn ≥
√
λn+1.

This result is a direct application of the general theory of width in Hilbert
spaces (see e.g. [46, Corollary 2.6]). Nevertheless, it is the first that exactly
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highlights the importance of analyzing the expansion of the operator T to
better understand the process of approximation inH(Ω).

A further step in the study of optimal subspaces in native spaces have
been made in [42]. Namely, it is possible to replace the L2(Ω) projector
ΠL2,Vn by the H(Ω) projector ΠH,Vn , while still keeping the L2(Ω) norm to
measure the error. The H(Ω) projector is the standard interpolation pro-
jector, and it differs from the L2(Ω) projector unless the space Vn is an
eigenspace, as proven in Lemma 2.5.

We consider the L2(Ω) norm of the error functional inH(Ω) for the pro-
jection ΠH,Vn into a subspace Vn ⊂ H(Ω), i.e.,

sup
‖f‖H≤1

‖f −ΠH,Vnf‖L2

and we look for the subspace which minimizes this quantity. In other
words, following the definition of the Kolmogorov n-width, it is possible
to define

κn := inf
Vn⊂H

dim(Vn)=n

sup
f∈S(H)

‖f −ΠH,Vnf‖L2 .

We recall in the next Theorem that κn is equivalent to dn, i.e., the best
approximation in L2(Ω) of S(H(Ω)) with respect to ‖ · ‖L2 can be achieved
usingH(Ω) itself and the projector ΠH,Vn .

Theorem 2.7. For any n > 0 we have

κn =
√
λn+1,

and En is an optimal subspace.

Proof. Since H(Ω) ⊂ L2(Ω) and since ΠL2,Vnf is the best approximation
from Vn of f ∈ H(Ω) wrt. ‖ · ‖L2 , we have

dn = inf
Vn⊂L2

dim(Vn)=n

sup
f∈S(H)

‖f −ΠL2,Vnf‖L2

6 inf
Vn⊂H

dim(Vn)=n

sup
f∈S(H)

‖f −ΠL2,Vnf‖L2

6 inf
Vn⊂H

dim(Vn)=n

sup
f∈S(H)

‖f −ΠH,Vnf‖L2 = κn.

On the other hand, since ΠL2,En = ΠH,En onH(Ω) (Lemma 2.5),

κn 6 sup
f∈S(H)

‖f −ΠH,Enf‖L2

= sup
f∈S(H)

‖f −ΠL2,Enf‖L2 = dn,

since En is optimal for dn. Hence κn = dn =
√
λn+1.
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2.2.2 Optimality with respect to the Power Function

Given these results on optimal error subspaces, we move now to another
way of studying the approximation error. Instead of directly considering
the L2(Ω) norm of approximants, we first take the norm of the pointwise
error of the ΠH,En projector and then minimize its L2(Ω) norm over Ω. This
means to find a subspace which minimizes the L2(Ω) norm ‖PVn‖L2 of the
Power Function PVn among all n-dimensional subspaces Vn ⊂ H(Ω). Us-
ing the definition of the generalized Power Function, we can rephrase the
problem in the fashion of the previous results by defining

pn := inf
Vn⊂H

dim(Vn)=n

∥∥∥∥∥ sup
f∈S(H)

|f(·)−ΠH,Vnf(·)|

∥∥∥∥∥
L2

.

This quantity is of interest for at least two reasons. First, the Power Func-
tion is the usual way to measure the approximation error and it can be
easily and directly computed also for the standard, point-based interpola-
tion process, thus it is useful to extend the previous results to this situation.
Second, as will be clear in the next Section, results on pn can be employed
when dealing with closed or even finite dimensional subspaces of the na-
tive space, despite what one can do with dn and κn.

In the following Theorem we compute and characterize the values of
pn. It is relevant that, also in this case, the optimal n-dimensional subset
is En, and pn can be expressed in terms of the eigenvalues, in a way that
involves all the indexes j > n. The proof mimics [34, Theorem 1].

Theorem 2.8. For any n > 0 we have

pn =

√∑
j>n

λj ,

and En is an optimal subspace.

Proof. For a subset Vn we can consider anH(Ω)-orthonormal basis {vk}nk=1

and complete it to an orthonormal basis {vk}k∈N of H(Ω). We can move
from the eigenbasis to this basis using a matrix A = (aij) as

vk =

∞∑
j=1

ajk
√
λjϕj , (2.3)

where
∑∞

j=1 a
2
jk =

∑∞
k=1 a

2
jk = 1. Hence, the power function of Vn is

PVn(x)2 =
∑
k>n

vk(x)2 =
∑
k>n

 ∞∑
j=1

ajk
√
λjϕj(x)

2

=

∞∑
i,j=1

√
λiϕi(x)

√
λjϕj(x)

∑
k>n

aikajk,
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and, defining qj =
∑n

k=1 a
2
jk, we can compute its norm as

‖PVn‖2L2
=

∫
Ω

∑
k>n

 ∞∑
j=1

ajk
√
λjϕj(x)

2

dx

=
∑
k>n

∞∑
j=1

a2
jkλj =

∞∑
j=1

λj −
∞∑
j=1

qjλj .

Now we need to prove that
∑∞

j=1 qjλj 6
∑n

j=1 λj .
Let m = d

∑
j qje ≤ n. We split the cumulative sum over the qj into

integer ranges

i− 1 <

ji∑
j=1

qj 6 i, 1 6 i ≤ m.

Then jm can be infinite, but jm−1 is finite, and since 0 ≤ qj ≤ 1 we get
stepwise

0 <
∑ji

j=ji−1+1 qj 6 1,

ji − ji−1 ≥ 1,
ji ≥ i,

ji ≥ ji−1 + 1 ≥ i

for 1 ≤ i ≤ m, using j0 = 0. Since the sequence of the eigenvalues is non
negative and non increasing, this implies

∞∑
j=1

qjλj ≤
m−1∑
i=1

qji−1+1λji−1+1 + λjm−1+1

jm∑
j=jm−1+1

qj

≤
m∑
i=1

λji−1+1 ≤
m∑
i=1

λi ≤
n∑
i=1

λi.

If we take Vn = En and {
√
λjϕj}nj=1 as its basis, the matrix A in (2.3) is

the infinite identity matrix. Thus equality holds in the last inequality.

2.3 Computable optimal subspaces

The previous results motivate the interest for the knowledge and study of
the eigenbasis. Nevertheless, there are some details that need to be taken
into account when dealing with actual approximation schemes.

First, the eigenbasis is not known in general, and, even if known, it
can not be used for truly scattered data approximation. In fact, by the
Mairhuber-Curtis Theorem [13, 38] (see e.g. [60, Theorem 2.3]), there ex-
ists at least a set of points Xn ⊂ Ω such that the collocation matrix of En on
Xn is singular. Thus, we need to use a trial space Vn that is close, in some
sense, to En, but that needs to be point-generated.
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Second, in many situations we are given a prescribed set of data col-
lected at fixed points XN ⊂ Ω, where N can be large. In this case we are
interested in techniques that allow to extract from the data a suitable, low
dimensional subspace to be used as a trial space or, in the language of the
previous Section, to select the width-minimizing n-dimensional subspace
in V (XN ).

To deal with both these problems, we start by considering subspaces
of H(Ω) of the form V (XN ) = span{K(·, x) : x ∈ XN}, where XN =
{x1, . . . , xN} is a possibly large but finite set of points in Ω. The basic idea
is to replace H(Ω) by V (XN ) in order to get, in the first case, a good point-
dependent approximation to the true eigenbasis with respect to H(Ω) and,
in the second case, to take into account the given data.

We will then repeat the constructions of the previous Section for a finite-
dimensional native space, i.e., the problem of finding, for n < N , an n-
dimensional subset Vn which minimizes the error, in some norm, among
all the subspaces of V (XN ) of dimension n. Observe that, despite what
happens for the true eigenbasis, any subspace in V (XN ) can now be ex-
actly constructed through the usual point-based techniques and their linear
algebra counterparts, as will be done in Chapter 3.

We remark that one could expect that the optimal subspace in V (XN )
is the projection of En into V (XN ). In fact, as we will see, this is not the
case, but the optimal subspace will still approximate the true eigenspaces
in a near-optimal sense.

2.3.1 Restriction to a closed subspace

The analysis of such finite and point-based subspaces can be carried out by
looking at general closed subspaces of the native space. Indeed, although
these subspaces have no direct interest here, in what follows there is no
need to assume the dimension of the subspace to be finite.

It can be proven (see [40, Th. 1]) that, if V is a closed subspace ofH(Ω),
it is the native space on Ω of the kernel KV (x, y) = Πx

H,V Πy
H,VK(x, y), with

inner product given by the restriction of the one ofH(Ω).
Being V itself a native space, we can repeat the same construction as

before. In particular, we have the embedding V ↪→ L2(Ω) and it is possible
to define the restricted operator TV : L2(Ω)→ L2(Ω) as

TV f(x) =

∫
Ω
KV (x, y)f(y)dy, x ∈ Ω, (2.4)

which maps L2(Ω) into V .
The Mercer Theorem 1.9 applied to this operator gives the eigenbasis

for V on Ω and the corresponding eigenvalues, which will be denoted as
{ϕj,V }j , {λj,V }j . They can be finitely or infinitely many, depending on the
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dimension of V . For n ≤ dim(V ), we will use the notation

En,V = span{
√
λj,V ϕj,V , j = 1, . . . , n}.

As an immediate result, this decomposition of TV proves the follow-
ing Lemma, which was already used in the proof of Lemma 2.5 in Sec-
tion 2.1.2. Uniqueness is understood here like stating uniqueness of the
eigenvalue expansion of the integral operator defined by the kernel, i.e.,
the eigenspaces are unique.

Lemma 2.9. Any closed subspace V of the native space has a unique basis which
isH(Ω)-orthogonal and L2(Ω)-orthonormal.

Moreover, since V is a native space itself, the results of the previous
Section hold also for V . Namely, we can define in V the analogous notions
of dn, κn and pn, say dn,V , κn,V , pn,V ,

dn,V = inf
Vn⊂L2

dim(Vn)=n

sup
f∈S(V )

‖f −ΠL2,Vnf‖L2

κn,V = inf
Vn⊂V

dim(Vn)=n

sup
f∈S(V )

‖f −ΠH,Vnf‖L2

pn,V = inf
Vn⊂V

dim(Vn)=n

∥∥∥∥∥ sup
f∈S(V )

|f(·)−ΠH,Vnf(·)|

∥∥∥∥∥
L2

,

and we immediately have the following Corollary of Theorems 2.7, 2.8.

Corollary 2.10. We have

dn,V = κn,V =
√
λn+1,V , pn,V =

√∑
j>n

λj,V

where En,V is an optimal subspace.

The previous results deal with the best approximation of the unit ball
S(V ), that is not exactly what we are looking for. Instead, we would like
to know how to choose a minimal error subspace in V to approximate any
function in H(Ω), not only in V , i.e., we want to minimize the error of ap-
proximation of S(H(Ω)) using only subspaces of V . That is, we are inter-
ested in the widths d̃n,V , κ̃n,V , p̃n,V defined as follows

d̃n,V = inf
Vn⊂L2

dim(Vn)=n

sup
f∈S(H)

‖f −ΠL2,Vnf‖L2

κ̃n,V = inf
Vn⊂V

dim(Vn)=n

sup
f∈S(H)

‖f −ΠH,Vnf‖L2

p̃n,V = inf
Vn⊂V

dim(Vn)=n

∥∥∥∥∥ sup
f∈S(H)

|f(·)−ΠH,Vnf(·)|

∥∥∥∥∥
L2

.
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The first notion is not useful, since we obviously have d̃n,V = dn due to the
fact that the subspace Vn in these definitions is chosen in L2(Ω). Instead, we
are interested in κ̃n,V and p̃n,V . Here we will compute the second one, while
nothing can be said about the first one. The fact that the Power Function-
based width scales also to this situation is one of the reasons that motivates
the interest in it.

2.3.2 The case of pn

We start by establishing a connection between the kernels and Power Func-
tions of V andH(Ω).

Lemma 2.11. If V ⊂ H(Ω) is closed,

PV,H(x)2 = K(x, x)−KV (x, x) for all x ∈ Ω. (2.5)

Moreover, if U ⊂ V ⊂ H(Ω) are closed, the Power Functions are related as

PU,H(x)2 = PU,V (x)2 + PV,H(x)2 for all x ∈ Ω.

Proof. The Power Function is the norm of the error functional. For f ∈
H(Ω), ‖f‖ ≤ 1, and x ∈ Ω we have

|f(x)−ΠH,V f(x)| = |(f,K(·, x)−KV (·, x))|

≤ ‖f‖‖K(·, x)−KV (·, x)‖ ≤
√
K(x, x)−KV (x, x),

with equality if f is the normalized difference of the kernels. This proves
(2.5), and the relation between the Power Functions easily follows.

Thanks to this Lemma, we can prove the following corollary of Theorem
2.8, that will be the base for the estimates of Section 2.4.

Corollary 2.12. Let V ⊂ H(Ω) be a closed subspace of H(Ω). For any n ≤
dim(V ) we have

p̃n,V =

√√√√ ∞∑
j=1

λj −
n∑
j=1

λj,V

and En,V is an optimal subspace. In particular

‖PV ‖L2 =

√√√√ ∞∑
j=1

λj −
dimV∑
j=1

λj,V .

Proof. Thanks to Lemma 2.11, we know that for any Vn ⊂ V and for any
x ∈ Ω, the squared power functions ofH(Ω) and of V differ by an additive
constant. This means that the minimality of En,V stated in Corollary 2.10
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does not change if we consider the standard power function on H(Ω) in-
stead of the one of V . Moreover, the value of the width can be computed
as ∫

Ω
P 2
En,H(Ω)(x)dx =

∫
Ω
P 2
En,V (x)dx+

∫
Ω
P 2
V,H(Ω)(x)dx

=
m∑
j=1

λj,V −
n∑
j=1

λj,V +
∞∑
j=1

λj −
m∑
j=1

λj,V

=

∞∑
j=1

λj −
n∑
j=1

λj,V .

This result has two consequences. At one hand, if we want to have a
small Power Function, we need to choose a subspace V which provides
a good approximation of the true eigenvalues. On the other hand, when
dealing with certain point based subspaces, we can control the decay of
the Power Function depending on the number of points we are using, and
this bound will provide a bound also on the convergence of the discrete
eigenvalues to the true one. The last fact will be discussed in more detail in
Section 2.4.

2.3.3 The case of κn

We briefly outline here why we are not able to obtain similar results when
considering the width κn. As we saw, for a closed subspace V ⊂ H(Ω) we
have κn,V =

√
λn+1,V , with optimality on the space En,V spanned by the

first n eigenfunctions. If we try to compute κ̃n,V , for a given Vn ⊂ V we
have

sup
f∈S(H)

‖f −ΠH,Vnf‖L2 = sup
f∈S(V ⊥n )

‖f‖L2 =
√
λ1,V ⊥n

,

where V ⊥n is the orthogonal complement taken inH(Ω), not in V .
On the other hand,

sup
f∈S(H)

‖f −ΠH,Vnf‖L2 ≤ sup
f∈S(H)

‖f −ΠH,V f‖L2 + sup
f∈S(H)

‖ΠH,V f −ΠH,Vnf‖L2

= sup
f∈S(H)

‖f −ΠH,V f‖L2 + sup
f∈S(V )

‖f −ΠH,Vnf‖L2

and since the first term in the right hand sides is independent of n, we have

κ̃n,V ≤ sup
f∈S(H)

‖f −ΠH,V f‖L2 + κn,V

= sup
f∈S(V ⊥)

‖f‖L2 +
√
λn+1,V =

√
λ1,V ⊥ +

√
λn+1,V .
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So the problem is how, for a given Vn, λ1,V ⊥n
splits between V and V ⊥ and,

in particular, the term depending on V ⊥ is not dependent on n. More-
over, there are different situations: if V ⊃ En+1, the optimal subspace is
En, λ1,E⊥n

= λn+1 and there is no contribution from V ⊥. Otherwise we
should have a contribution from both V and V ⊥. Thus it seems not to exist
a general pattern that allows to deduce relations between the true and the
discrete eigenvalues.

2.3.4 Approximation of the true eigenspaces

We remark that there is a relation between En and En,V : as mentioned
before, the optimal subspace En,V is not the projection of En into V , but
is near to be its optimal approximation from V . To see this, observe that
the operator TV is the projection of T into V . In fact, given KV (x, y) =∑

j λj,V ϕj,V (x)ϕj,V (y), we have for any f ∈ L2(Ω)

TV f(x) =

∫
Ω
KV (x, y)f(y)dy =

∑
j

√
λj,V ϕj,V (x)(

√
λj,V ϕj,V , f)L2

=
∑
j

√
λj,V ϕj,V (x)(

√
λj,V ϕj,V , Tf) = ΠH,V Tf(x).

This means that the couples (λj,V , ϕj,V ) are precisely the Bubnov - Galerkin
approximations (see e.g. [36, Sec. 18.4]) of the solutions (λj , ϕj) of the eigen-
value problem for the restricted operator T : H(Ω) → H(Ω) (which is still
a compact, positive and self-adjoint operator). We can then use the well
known estimates on the convergence of the Bubnov - Galerkin method to
express the distance between En and En,V .

The following Proposition collects convergence results which follow
from [36, Th. 18.5, Th. 18.6].

Proposition 2.13. Let V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ . . . be a sequence of closed
subspaces which become dense inH(Ω). For 1 6 j 6 dimVn we have

(i) λj,Vn 6 λj,Vn+1 6 λj ,

(ii) Let r ∈ N be the multiplicity of λj and
Fj,n = {f ∈ Vn : TVnf = λi,Vnf and limn→∞ λi,Vn = λj}. For n suffi-
ciently large, dimFj,n = r and there exists cj,n > 1/λj , cj,n → 1/λj as
n→∞, s.t.

‖ϕj −ΠH,Fj,nϕj‖ 6 cj,nλj‖ϕj −ΠH,Vnϕj‖. (2.6)

Inequality (2.6) proves in particular that En,V is an asymptotically opti-
mal approximation ofEn. Indeed, under the assumptions of the last Propo-
sition, we have

‖ϕj −ΠH,Vnϕj‖ ≤ ‖ϕj −ΠH,Fj,nϕj‖ 6 c‖ϕj −ΠH,Vnϕj‖, (2.7)
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with c→ 1 as n→∞.
To conclude this Section we point out that, in addition to the point based

sets, there is another remarkable way to produce closed subspaces of the
native space. Namely, if Ω1 ⊂ Ω is any Lipschitz subdomain of Ω, H(Ω1)
is a closed subset of H(Ω). Point (i) of Proposition 2.13 implies that the
eigenvalues are decreasing with respect to the inclusion of the base domain
(as can be proven also by the min/max characterization of the eigenvalues).

2.4 Convergence of the discrete eigenvalues

In Theorem 2.12 we established a relation between the approximation error
and the difference between the true and the discrete eigenvalues. This al-
lows us to use the well known bounds on the approximation error to give
corresponding bounds on the convergence of the discrete eigenvalues.

This convergence result relies on a technique developed in [54] to deal
with a very similar problem, namely the decay rate of the true eigenvalues,
which we recall here for completeness. The idea is as follows. Under the
assumptions of Theorems 1.7 and 1.10 on the kernel and on the domain,
we can consider a set of asymptotically uniformly distributed points Xn in
Ω, i.e., points such that the fill distance behaves like hn ≤ cn−1/d. We then
have the bounds (1.8) and (1.4) on the L2(Ω)-norm of the approximation
error given by the kernel interpolation onXn and we can then control, with
the same bound, the L2(Ω)-norm of the approximation error provided by
the best n-dimensional subspace, that is, we have a bound on the width
κn. Observe that inequality (1.4) is in fact a bound on the L∞(Ω) norm, but
the bound on the L2(Ω) norm easily follows by the compactness of Ω. This
reasoning leads to the following Theorem, that is a summary of [54, Th.13,
Th.15].

Theorem 2.14. Under the above assumptions of Theorem 1.7 on K and Ω, the
eigenvalues decay at least like√

λn+1 < c1n
−(β+d)/2d

for a kernel with smoothness β, and at least like√
λn+1 < c2 exp(−c3n

1/d),

for kernels with unlimited smoothness. The constants c1, c2, c3 are independent of
n, but dependent on K, Ω, and the space dimension.

It is important to notice that the asymptotics of the eigenvalues is known
for the kernels of limited smoothness, and on Rd. If the kernel is of order β,
its native space on Rd is norm equivalent to the Sobolev space H(β+d)/2. In
these spaces the n-width, and hence the eigenvalues, decay like Θ(n−

β+d
2d )
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(see [35]). This means that in Sobolev spaces one can recover (asymptoti-
cally) the best order of approximation using kernel spaces.

We can now apply the same technique to Theorem 2.12. Since this Theo-
rem involves the L2(Ω) norm of the Power Function, we need in this case to
consider bound (1.3) in the case of a kernel of limited smoothness, the lat-
ter, in fact, being a bound on the Power Function. This proves the following
new Corollary of Theorem 2.12.

Corollary 2.15. Under the above assumptions on K and Ω, we have

0 ≤ λj − λj,V (Xn) < c1n
−β/d, 1 ≤ j ≤ n,

for a kernel with smoothness β, and

0 ≤ λj − λj,V (Xn) < c2 exp(−c3n
1/d), 1 ≤ j ≤ n,

for kernels with unlimited smoothness. The constants c1, c2, c3 are independent of
n, but dependent on K, Ω, and the space dimension.

This Corollary and the previous Theorem proves that, using point based
sets with properly chosen points, one can achieve at the same time a fast
decay of the true eigenvalues and a fast convergence of the discrete ones.

Both results in this section raise some (open) questions about the con-
verse implication. From Theorem 2.14 we know that the smoothness of the
kernel guarantees a fast decay of the eigenvalues. But we can also start
from a given expansion to construct a kernel. Is it possible to conclude
smoothness of the kernel from fast decay of the eigenvalues?

Corollary 2.15 tells us that uniformly distributed point based sets pro-
vide a good approximation of the eigenvalues. We will see in Chapters 3
that one can numerically construct point based sets whose eigenvalues are
close to the true ones. Is it possible to prove that these sets are necessarily
asymptotically uniformly distributed?

2.5 Extensions

We conclude this Chapter by presenting two extensions, in two different
directions, of some of the previous results. The first one aims at replacing
the L2(Ω) norm with a stronger one. The second one shows that some
results on widths can be proven also in the case of the recovery of general
linear functionals.

2.5.1 Intermediate spaces

In the previous Sections, we studied the dependence on Vn ⊂ H(Ω) of the
error

f −ΠH,Vnf
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for functions f ∈ H(Ω), and we found and characterized the minimal error
subspace Vn. The approximation operator being a projection, we could not
use theH(Ω) norm to measure the error, so we needed a weaker norm, and
we have chosen to use ‖ · ‖L2 . But we can also consider an intermediate
norm, i.e., the norm of a Hilbert space where H(Ω) is embedded in and
which is in turn embedded into L2(Ω). In this Section we consider the spe-
cial situation of a family of native spaces that satisfies these embeddings,
and we show how the previous results are consequently modified.

In particular, given a sequence of positive and non increasing weights
{µj}j ⊂ R, limj→∞ µj = 0, we consider a kernel Kµ (and its native space
Hµ(Ω) over Ω) whose Mercer decomposition (1.7) has the same eigenfunc-
tions as K, while the eigenvalues are replaced by the sequence {µj}j . Ap-
pendix A analyses in details the conditions that need to be satisfied by the
weights to give rise to a kernel in this way and to have H(Ω) ↪→ Hµ(Ω) ↪→
L2(Ω), and proves the equivalents of Lemmas 2.9 and 2.5 when L2(Ω) is
replaced byHµ(Ω), that is, Lemmas A.1 and A.2. From now on we assume
that {µj}j satisfies these conditions. Moreover, we will slightly change the
notation used so far. Namely, as in Appendix A, the kernelK and the native
space H(Ω) will be denoted as Kλ, Hλ(Ω) respectively, and to distinguish
the two norms we will use the subscripts ‖ · ‖λ, ‖ · ‖µ.

With these tools we can look at the modified optimal subspace prob-
lems, where we replace L2(Ω) withHµ(Ω). We consider

dn(µ) = inf
Vn⊂Hµ

dim(Vn)=n

sup
f∈S(Hλ)

‖f −ΠHµ,Vnf‖µ

in place of dn, and

κn(µ) = inf
Vn⊂Hλ

dim(Vn)=n

sup
f∈S(Hλ)

‖f −ΠHλ,Vnf‖µ

in place of κn.
We remark that the same problem for pn is not well defined in general,

because it is an open problem to prove if the Power Function ofHλ(Ω) is or
not in Hµ(Ω). Nevertheless, it is for sure in L2(Ω), Ω being compact, so we
can expect that it is also in some intermediate space.

In this setting, the results of (2.2) and of Theorem 2.7 read as follows.

Theorem 2.16. For any n > 0 we have

dn(µ) = κn(µ) =

√
λn+1

µn+1

and in both cases an optimal subspace is En.
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Proof. The proof is the same of the equivalent results of Section 2.2.1 (which
can be found in the cited papers), where, in this case, one needs to consider
the operator Tλ/µ defined in A.3 in place of the operator T defined in 1.5.

In principle, part of the results of the previous Sections concerning closed
subspaces of Hλ(Ω) can be extended in a similar way. But since, as ex-
plained before, we can not extend the results concerning the Power Func-
tion, and since the results on pn are the key for our results on closed sub-
spaces, we do not give further details here.

Finally, we remark that this extension can be useful in developing nu-
merical algorithms. Namely, replacing L2(Ω) with a native space means
to being able to avoid to compute integrals, and instead compute kernel-
based norms. For this approach to be applicable, one needs to consider a
fixed set of eigenfunctions and two set of weights (eigenvalues) {λj}j and
{µj}j , such that both the kernels Kλ and Kµ are known as a closed form
expression. Although this kind of expansion is not known for commonly
used kernels, this is the case for example of the Chebyshev kernels, that can be
constructed using Chebyshev polynomials as eigenfunctions (hence, by us-
ing a weightedL2 space) and with different possible choices for the weights
(with either algebraic or geometric decay rate). Further details on these ker-
nels can be found in [23, Section 3.9.2].

2.5.2 Recovery of linear functionals

Here we look at the problem of generalized interpolation, as discussed in
Section 1.5.

We look at a generalized interpolant in a subspace Vn ⊂ H(Ω), where
Vn can be either in the form Vn = V (Xn) as in unsymmetric collocation, or

Vn = span{`y1(K(·, y), . . . , `yn(K(·, y)},

as in symmetric collocation, or spanned by fully general functions inH(Ω).
For a given Vn, we want to consider the error

sup
‖f‖≤1

|`(f)− `(ΠH,Vn)|,

for certain ` ∈ H(Ω)∗, and then to consider the worst-approximable func-
tional

sup
‖`‖H∗≤1

sup
‖f‖≤1

|`(f)− `(ΠH,Vn)|.

Unfortunately, this normalization on the functionals would lead to orthog-
onality problems similar to the one already encountered in the previous
Sections, that is, the value of this quantity would be 1 for any Vn.
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A possible solution is to impose a weaker normalization on the func-
tionals, namely, instead of (see 1.9)

‖`‖2 = `x`yK(x, y) =
∞∑
j=1

λj`
2(ϕj) ≤ 1,

we impose

‖`‖22 :=

∞∑
j=1

`2(ϕj) ≤ 1,

where the norm ‖ · ‖2 is defined to resemble the L2(Ω) norm.
We have the following result, that enlightens once again the special role

of the Mercer decomposition of the kernel. In what follows, ‖ · ‖`2 , when
computed on a square-summable sequence, denotes the standard `2 norm.

Theorem 2.17. We have

inf
Vn⊂H

dimVn=n

sup
‖`‖2≤1

sup
f∈S(H)

|`(f)− `(ΠH,Vnf)| =
√
λn+1

with equality on the eigenspace En.

Proof. For ` ∈ H(Ω)∗, the squared norm of the error functional on Vn is

`x`yK(x, y)−
n∑
j=1

`2(vj) =
∑
j>n

`2(vj)

if we work on a completed orthonormal basis {vj}j of H(Ω), and we work
with the normalization by

‖`‖22 =
∞∑
j=1

`2(ϕj) ≤ 1.

We can move from the eigenbasis to this basis using a matrix A = (aij)
as

vk =
∞∑
j=1

ajk
√
λjϕj , (2.8)

where
∑∞

j=1 a
2
jk =

∑∞
k=1 a

2
jk = 1 and

∑∞
k=1 aikajk = δij .

Hence, the squared norm of the error functional on Vn is

`x`yK(x, y)−
∑n

j=1 `
2(vj)

=
∑

k>n `
2(vk)

=
∑∞

i,j=1

√
λi`(ϕi)

√
λj`(ϕj)

∑
k>n aikajk.

where we used the representation (2.8) to move from a norm to a bilinear
form.
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To play it back to Linear Algebra and sequence spaces, we define cj :=

`(ϕj), Aij := aij , (An)ij ; =

{
aij if 1 ≤ j ≤ n
0 if j > n

and Λij = λjδij so that

∞∑
i,j=1

cjci

( ∞∑
k=1

√
λi
√
λjaikajk −

n∑
k=1

√
λi
√
λjaikajk

)
=

= cT (
√

ΛAAT
√

Λ−
√

ΛAnA
T
n

√
Λ)c = ‖(AT

√
Λ−ATn

√
Λ)c‖2`2 ,

i.e., we come back from the bilinear form to the norm.
Now we want to maximize ‖(AT

√
Λ−ATn

√
Λ)c‖2`2 under the constraint∑∞

j=1 c
2
j ≤ 1 and then minimize the result over the ajk, where, more gener-

ally,
∑∞

k=1 aikajk = δij .
So we are left with the classical problem

inf
rankAn=n

sup
‖c‖`2≤1

‖(AT
√

Λ−ATn
√

Λ)c‖`2 ,

whose solution is known (see e.g. [30, Theorem 2.1]). As in the finite dimen-
sional setting, the singular value decomposition provides the best n-rank
approximation of a matrix in the 2-norm, i.e., the value of the optimization
problem is the square root of the (n + 1)-th singular value of the matrix
AT
√

Λ, and the optimal subspace is spanned by the first n singular vectors.
Since (AT

√
Λ)T (AT

√
Λ) = Λ, the singular values are precisely the kernel

eigenvalues {λk}k and the singular vectors are the elements of the coordi-
nate basis. Going back to the functional setting, these vectors correspond
to the elements of the eigenbasis.

Finally, even if to prove this result we needed to consider functionals
that are bounded with respect to ‖ · ‖2, while assuming boundedness on
H(Ω) is not enough, as in the case of standard approximation it is in fact
enough to require boundedness on a space intermediate betweenH(Ω) and
L2(Ω), i.e.,

‖`‖2µ =

∞∑
j=1

µj`
2(ϕj) ≤ 1,

with the same notation of the previous Section. In this case the value of the
width is

√
λn+1/µn+1 and the optimal subspace is still En.



Chapter 3

Algorithms

This Chapter introduces two algorithms for the construction of a suitable
approximation of the eigenbasis.

We will work in a subspace V (XN ) of H(Ω), with XN a set of points
in Ω. In this subspace it is possible to treat the kernel through Linear Al-
gebra operations, thus most of the results of the previous Chapter readily
translate to actual computational processes.

The algorithm of Section 3.2 is a direct implementation of the results of
Section 2.3, and its goal is to explicitly construct the eigenbasis of V (XN ).
The algorithm of Section 3.3 is based instead on a different strategy, that
relies on the Nyström method (see e.g. [2, Section 11.4]), and it is intended
to approximate the true eigenbasis. This algorithm is the first one that has
been developed, and it will be presented as it was intended. But it can be
reinterpreted, to some extent, as a particular instance of the first one. This
connection will be explained in Section 3.4.

To construct their approximation of the eigenbasis, the algorithms are
in fact designed to produce a suitable basis of the subspace V (XN ). We will
then start this Chapter by recalling some background facts on the general
theory of change of basis forH(Ω), as developed in [44].

Moreover, both the algorithms are at a nearly theoretical level. To be
more precise, they are useful to understand how to perform actual compu-
tations inH(Ω), but they are not completely suitable for a plain implemen-
tation. In particular, the first one can suffer of a severe instability, while
both of them are computationally too expensive when N becomes large.
To this end, in the next Chapter we will present approximated versions of
both of them. These new versions solve these problems and are the ones
which are actually used in practice.

The main part of the contents of this Chapter has been published in the
papers [16] and [52], and it is partially taken from these works. We remark
that part of the results of the first paper about the WSVD basis has been
developed in the author’s Master’s Thesis. Nevertheless, we recall here

35
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the main ideas of that work because they are the basis of one of the new
computational strategies of the next Chapter, and also because they can be
interpreted in a new way thanks to the results of the previous Chapter. This
connection, described in Section 3.4, is not present in the aforementioned
paper.

3.1 Background facts on change of basis

The general theory on change of basis for native spaces has been introduced
in [44, 45]. The first paper deals with positive definite kernels and it is
the one we will refer to, while the second one analyses the conditionally
positive definite case, and it is not connected to the following results.

Among the results discussed in details in this paper, we stress here the
connection between a change of basis and a decomposition of the kernel
matrix A, together with a characterization of such bases.

For a given basis {vj}Nj=1 of V (Xn) and x ∈ Ω, we will denote as T (x)
and V(x) the row vectors containing the evaluations of the standard basis
of kernel translates and of this basis, i.e.,

T (x) = [K(x, x1), . . . ,K(x, xN )] ∈ RN ,
V(x) = [v1(x), . . . , vN (x)] ∈ RN .

A complete characterization of all the possible bases of V (XN ) can be de-
scribed by linear algebra operations on the matrix A. Namely, since V (XN )
is a finite dimensional subspace, there exist a square, N dimensional, and
invertible matrix Cv that represents the new basis in terms of the basis of
translates. If we also define the square matrix of evaluation of the new basis
on the points XN , say Vv = [vj(xi)]

N
i,j=1, we have the following Theorem,

proven in [44].

Theorem 3.1. Any basis {vj}Nj=1 of V (XN ) arises from a factorization of the
kernel matrix A, i.e.,

A = VvCv
−1 ,

where Vv = [vj(xi)]
N
i,j=1 and V(x) = T (x) · Cv, x ∈ Ω.

Given this result, it is possible to classify, in some sense, all the bases in
terms of their corresponding factorizations. In particular, we are interested
in the following cases, that are treated in details in the cited paper.

The main class of bases we are interested in are obviously the ones that
are orthonormal inH(Ω).

Theorem 3.2. Each H(Ω) - orthonormal basis {vj}Nj=1 of V (XN ) arises from a
symmetric decomposition

A = BTB,

with Vv = BT and Cv = B−1.
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Moreover, it is possible to characterize also the bases that are orthonor-
mal with respect to the discrete inner product defined by XN , that is to say,
for u, v ∈ H(Ω),

(u, v)`2(XN ) =
N∑
i=1

u(xi)v(xi).

They can be characterized as follows.

Theorem 3.3. Each `2(XN )-orthonormal basis {vj}Nj=1 of V (XN ) arises from a
decomposition

A = QB ,

where Q is an orthonormal matrix, Vv = Q and Cv = B−1.

Finally, it is possible to construct bases that enjoy both the above or-
thogonality properties.

Theorem 3.4. Each basis {vj}Nj=1 of V (XN ) that is H(Ω) - orthonormal and
`2(XN )-orthogonal arises from a singular value decomposition

A = QΣ2Q,

where Vv = QΣ and Cv = QTΣ−1. Moreover, the `2(XN )-norms of the basis
elements correspond to the square roots of the singular values, i.e., ‖vj‖`2(XN ) =
σj .

We will keep the same notation in the following, thus a basis {vj}Nj=1

will be defined by simply exhibit its matrix Cv. We will drop the subscript
v when no confusion is possible. Moreover, we will prove that Theorem 3.4
can be generalized by taking into account any couple of inner products on
V (XN ).

3.2 Orthogonal basis with respect to two general inner
products

As a first step, we generalize here Theorem 3.4 to being able to deal with
general inner products. We have the following result.

Theorem 3.5. Let (·, ·)a and (·, ·)b be any couple of inner products on V (XN ).
There exists a basis {vj}Nj=1 of V (XN ) which is b-orthonormal and a-orthogonal
with norms {σj}Nj=1.

Proof. Consider the two Gramians of the standard basis with respect to the
two inner products, i.e.,

Ga =[(K(·, xi),K(·, xj))a]Ni,j=1,

Gb =[(K(·, xi),K(·, xj))b]Ni,j=1.
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Following Theorem 3.1, we need to construct an invertible matrix C to ex-
press this new basis with respect to the standard one. To have the right or-
thogonality properties means to prove G(V )b = I and G(V )a = Σ2, where
G(V )a, G(V )b are the Gramians of {vj}Nj=1 with respect to the two inner
products, Σ is the diagonal matrix having on the diagonal the a-norms of
the new basis, and I is the identity matrix. Since

(vi, vj)a =
N∑

h,k=1

CihCjk(K(·, xh),K(·, xk))a,

and the same holds for (·, ·)b, we have G(V )a = CTGaC and G(V )b =
CTGbC. So we are left to the problem of finding a matrix C such that
CTGaC = Σ2 and CTGbC = I , i.e., we need to compute a simultaneous
diagonalization of the matrix pencil (Ga, Gb) with the right scaling of the
diagonals.

Since the Gramians are symmetric and positive definite matrices this is
always possible, e.g. in the following way:

• Gb = LLT be a Cholesky decomposition,

• define M = L−1GaL
−T (which is symmetric and positive definite),

• let M = UΣ2UT be a SVD decomposition,

• define C = L−TU .

In fact, this C is the correct one, since we have

G(V )a = CTGaC = UTL−1GaL
−TU = UTMU = Σ2,

and

G(V )b = CTGbC = UTL−1GbL
−TU = UTL−1LLTL−TU = UTU = I.

This construction generalizes the ones of Theorem 3.4 in the following
sense. If the two inner products are the one ofH(Ω) and `2(XN ), according
to [44] we have

G`2(XN ) =[(K(·, xi),K(·, xj))`2(XN )]
N
i,j=1 = A2,

GH =[(K(·, xi),K(·, xj))H]Ni,j=1 = A.

In this particular case, the SVD of A is also a simultaneous diagonalization
of the pencil (A2, A), A being symmetric, and this implies the results of
Theorem 3.4.
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3.2.1 Direct construction of the discrete eigenbasis

The first algorithm is a particular instance of the construction of the pre-
vious Section and aims at a direct construction of the discrete eigenbasis
{ϕj,N}Nj=1 of V (XN ).

Thanks to Lemma 2.9, we know that the discrete eigenbasis is the unique
set of N functions in V (XN ) which is orthonormal in L2(Ω) and orthogo-
nal inH(Ω), where uniqueness is understood in the sense of uniqueness of
the eigendecomposition of the integral operator (2.4). This means that we
can simply apply the change of basis described above, with the two inner
products being the ones of H(Ω) and of L2(Ω). In our case Ga is the usual
kernel matrix, while

(Gb)ij = (K(·, xi),K(·, xj))L2 .

Thus, provided we know Gb, we can explicitly construct the basis. Ob-
serve that the entries of the L2(Ω)-Gramian of the kernel translates can be
expressed in terms of the eigenbasis as

(Gb)ij = (K(·, xi),K(·, xj))L2 =

∞∑
k=1

λ2
kϕk(xi)ϕk(xj), (3.1)

or, in other words, as an iterated kernel, that is in particular an instance of
the situation discussed in Section 2.5.1. Nevertheless, for a general kernel
it is not the case that we can explicitly compute the latter Gramian, so one
can use a large set of points XM ⊂ Ω, M >> N to approximate the L2(Ω)
inner product by its discrete counterpart.

Moreover, observe that, for practical use, it is more convenient to swap
the role of Ga and Gb, i.e., of H(Ω) and L2(Ω), in the algorithm. In this
way we construct the basis {

√
λj,Nϕj,N}Nj=1, which is H(Ω)-orthonormal

hence more suitable for approximation purposes, and, moreover, we obtain
directly the eigenvalues of order N as Σ = diag(λj,N , j = 1, . . . , N).

As an example, in Figure 3.1 we show the first four elements of this
basis. The basis is constructed using the Gaussian kernel with ε = 1, on
the unit disk in R2, with XN a regular grid of the unit square restricted to
the disk. The figures were produced with a Matlab implementation of the
present algorithm, that can be downloaded from [51]. Further computa-
tional details and numerical aspects are analyzed in the next Chapter.
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Figure 3.1: The first four basis elements of the discrete eigenbasis of V (XN )
for the Gaussian kernel with ε = 1 on the unit disk, constructed with the
algorithm of Section 3.2.1.

Finally, we remark that this algorithm could benefit from the general-
ization of Section 2.5.1. Indeed, if we know both the kernels Kλ and Kµ,
for some {µj}j , we can use this algorithm without the need of computing
L2(Ω) inner products, but using the two kernel norms, which require only
kernel evaluations.

3.3 Weighted Singular Value Decomposition basis

We present here a different algorithm, that was designed to construct a
suitable approximation of the eigenbasis, and to use this approximation to
stabilize the standard kernel-based interpolation process. We start by pre-
senting its construction as it was intended at first, while we will give in
Section 3.4 a different point of view on this algorithm, that will provide a
bridge with the first algorithm and with the contents of the previous Chap-
ter.
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3.3.1 Motivation and definition

The main idea for the construction of the new basis is the discretization of
the integral equation

λjϕj = Tϕj (3.2)

by means of the symmetric Nyström method (see e.g [2, §11.4]).
To this aim, consider on Ω a cubature rule composed by the points XN

and by a set of positive weightsWN = {wj}Nj=1, i.e., roughly speaking, a set
of points and weights such that∫

Ω
f(x) dx ≈

N∑
j=1

f(xj)wj , f ∈ H(Ω) .

We are on purpose vague on the above assumption on the exactness of
the formula. Indeed, we will see in the end that, at the stage involved
in this algorithm, any cubature rule that reproduces constant functions is
equivalent.

By means of this formula one can approximate the integral equation for
each index j > 0 using the symmetric Nyström method. First, (3.2) can be
evaluated on XN as

λjϕj(xi) =

∫
Ω
K(xi, y)ϕj(y)dy, 1 ≤ i ≤ N, j > 0,

and then discretized using the cubature rule by

λjϕj(xi) ≈
N∑
h=1

K(xi, xh)ϕj(xh)wh, 1 ≤ i, j ≤ N. (3.3)

Now, letting W = diag(wj), to find the approximation of the eigenvalues
and eigenfunctions it suffices to solve the matrix eigenvalue problem

λv = (AW )v,

where each of the N solutions (λ, v) will be an approximated eigenvalue
and a column vector containing the values of the approximated eigenfunc-
tions on the points of XN .

Unfortunately, this approach does not lead directly to the connection
between the discretized version of the eigenbasis and a basis of the sub-
space V (XN ). In fact it involves a scaled version of the kernel matrix, that
is A ·W , which is no longer symmetric and that cannot be described as a
factorization of A, as required by the theory presented in Section 3.1. A
solution is to rewrite (3.3) using the fact that the weights are positive as

λj(
√
wiϕj(xi)) =

N∑
h=1

(
√
wiK(xi, xh)

√
wh)(
√
whϕj(xh)) ∀1 ≤ i, j ≤ N,
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and then to consider the corresponding eigenvalue problem. Namely, the
weighted eigenvalue problem

λ
(√

Wv
)

=
(√

WA
√
W
)(√

Wv
)

which is equivalent to the previous one, but now involving the symmetric
and positive definite matrix AW =

√
WA
√
W . This matrix is normal, then

a singular value decomposition of AW is also a unitary diagonalization.

Motivated by this approach we can introduce the weighted SVD basis for
V (XN ), which is defined in the following in terms of the notation given
in Theorem 3.1. Observe that the condition tr(W ) = |Ω|, |Ω| being the
Lebesgue measure of Ω, is equivalent to require the exactness of the cu-
bature formula for constant functions.

Definition 3.6. The weighted SVD basis {vj}Nj=1 of V (XN ) is characterized by
the matrix

C =
√
WQΣ−1,

where

AW = QΣ2QT

is a singular value decomposition (and a unitary diagonalization) of the scaled
kernel matrix AW =

√
WA
√
W , where W is a diagonal matrix with positive

diagonal and tr(W ) = |Ω|.

Figure 3.2 shows the first 4 elements of the WSVD basis, produced with
the same setting as Figure 3.1, and with uniform weights wi = π/N . The
figures were produced with a Matlab implementation of the present algo-
rithm, that can be downloaded from [49].
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Figure 3.2: The first four WSVD basis elements for the Gaussian kernel with
ε = 1 on the unit disk, constructed with uniform weights.

3.3.2 Properties

As expected, the WSVD basis preserves some interesting properties of the
eigenbasis in a discrete version, as stated in the next Theorem. From now
on, we denote as `2,w(XN ) the `2(XN ) inner product weighted with the
weights {wj}Nj=1.

Theorem 3.7. Let {vj}Nj=1 be a WSVD basis with weights {wj}Nj=1. We have the
following

(i) vj = σ−2
j

∑N
i=1wivj(xi)K(·, xi), 1 6 j 6 N ;

(ii) the basis isH(Ω)-orthonormal;

(iii) the basis is `2,w(XN )-orthogonal;

(iv) ‖vj‖2`2,w(XN ) = σ2
j , 1 6 j 6 N ;

(v) if K is translational invariant,
∑N

j=1 σ
2
j = K(0, 0) |Ω|.
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Proof. Properties (ii), (iii) and (iv) can be proved using the expression for
the Gramians computed in [44] and observing that the entries of the `2,w(XN )-
Gramian of the standard kernel basis are given by

G`2,w(XN ) = (K(·, xi),K(·, xj))`2,w(XN ) =
N∑
h=1

whK(xh, xi)K(xh, xj) = (AWA)ij .

Indeed,

G(V )H = CTGHC = CTAC = Σ−1QT
√
WA
√
WQΣ−1 = I

and

G(V )`2,w(XN ) = CTG`2,w(XN )C = CTAWAC

= Σ−1QT
√
WA
√
W
√
WA
√
WQΣ−1

= Σ−1QTQΣ2QTQΣ2QTQΣ−1 = Σ2.

To prove Property (i) it suffices to use the definition of C and V = AC =√
WQΣ, where we used the relation between C, V and A provided by The-

orem 3.1. Indeed, denoting by a subscript j the j-th column of a matrix, we
get

V =
√
W−1QΣ =

√
W−1[Q1σ1, . . . , QNσN ],

hence Vj = (
√
W )−1Qjσj , we have

σ−1
j Qj = σ−2

j

√
WVj .

Using the last equality we can compute each component of C as

Cij = (
√
WQΣ−1)ij =

√
wi

Qij
σj

=
wi
σ2
j

vj(xi),

and then, by the definition of the WSVD basis,

vj(x) =
N∑
i=1

K(x, xi) Cij =
N∑
i=1

K(x, xi)
wi
σ2
j

vj(xi) =

=
1

σ2
j

N∑
i=1

wi K(x, xi) vj(xi) .

Finally property v is proven by another linear algebra arguments. Recalling
that √

WA
√
W = QΣ2QT ,

and the fact that the trace of a square matrix is equal to the sum of its eigen-
values, we get

N∑
j=1

σ2
j =

N∑
j=1

wj K(xj , xj) = K(0, 0)

N∑
j=1

wj = K(0, 0) |Ω| .

This concludes the proof.
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It is important to notice that, {wj}Nj=1 being cubature weights, the inner
product of `2,w(XN ) is a discretization of the L2(Ω) inner product. Indeed,
in view of this fact, property (i) is a discrete version of the eigenvalue prob-
lem (3.2). Moreover, for a translational invariant kernel property (v) tells
us that the sum of the WSVD eigenvalues equals the sum of the true eigen-
values, i.e.,

N∑
j=1

σ2
j =

∫
Ω
K(x, x) dx =

∞∑
j=1

λj .

This summation property allows to control the residual when truncating
the WSVD basis, as will be explained in the next Section.

Apart from this interpretation of Theorem 3.7 as a discrete version of
the properties of the eigenbasis, we remark once again that to construct
the basis we require just that the weights {wi}Ni=1 are positive and able to
reproduce constants. For what follows, it is possible to use weights not
related to a cubature rule, e.g. by just taking wj = |Ω|/N . In this way no
connection can be expected between the WSVD basis and the eigenbasis,
while the approximation properties analyzed below remain unchanged.

3.3.3 Weighted discrete least-squares approximation

Now we can introduce a weighted discrete least-squares operator that turns
out to be strictly related to the weighted basis just introduced. The goal is
to avoid solving a full interpolation problem, and instead to project the un-
known function f ∈ H(Ω) into a properly chosen subspace of V (XN ). This
is done in order to obtain better results in terms of stability, without seri-
ous loss of convergence speed. This kind of approximation is meaningful
when the data values are supposed to be affected by noise, or when the
kernel matrix A is seriously ill-conditioned.

For a function f ∈ H(Ω), the standard interpolation sNf is given by
the projection into V (XN ), i.e., thanks to the H(Ω)-orthonormality of the
basis, sNf =

∑N
j=1(f, vj)vj . We can instead define a weighted least-squares

approximation as follows.

Definition 3.8. Consider a set of weights WN and its associated WSVD basis
{vj}Nj=1. For f ∈ H(Ω) and n < N , the weighted discrete least-squares approxi-
mation of order n of f is the function Λnf that satisfies the condition

Λnf = arg min
g∈span{v1,...,vn}

‖f − g‖`2,w(XN ).

Thanks to the construction of the WSVD basis, it is possible to view
this approximation process in terms of the standard interpolation process
inH(Ω). We have the following.
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Lemma 3.9. The elements vj of the WSVD basis satisfy the following relation, for
1 ≤ j ≤ N :

(f, vj) =
1

σ2
j

(f, vj)`2,w(XN ) for all f ∈ H(Ω).

Proof. Using property (i) of Theorem 3.7 and by direct calculations we get:

(f, vj) =

(
f,

1

σ2
j

N∑
i=1

wivj(xi)K(·, xi)

)
=

1

σ2
j

N∑
i=1

wivj(xi) (f,K(·, xi)) ,

=
1

σ2
j

N∑
i=1

wivj(xi)f(xi) =
1

σ2
j

(f, vj)`2,w(XN ) ,

where, by property (iv) of Theorem 3.7, σ2
j = (vj , vj)`2,w(XN ).

Using this Lemma with the notation of Definition 3.8, it comes easy to
compute the weighted discrete least-squares approximation of a function
f ∈ H(Ω).

Theorem 3.10. The weighted discrete least-squares approximation of a function
f ∈ H(Ω) is given by

Λnf =
n∑
j=1

σ−2
j (f, vj)`2,w(XN )vj =

n∑
j=1

(f, vj)vj , (3.4)

that is Λnf is nothing else but a truncation to the first n terms of the interpolant
sNf .

The idea of constructing this weighted discrete least-squares approxi-
mant can be automated when dealing with very small singular values. In
this case, in order to avoid numerical instability, we can leave out the basis
corresponding to singular values less than a preassigned tolerance, skip-
ping automatically from interpolation to discrete least-squares approxima-
tion. From a linear algebra point of view, this corresponds to solving the
(weighted) linear system associated to the interpolation problem using the
total least-squares method (see e.g. [31]).

Thanks to the last Theorem, we can give error bounds and stability
bound on the approximation process through a WSVD basis. The following
results is a simple consequence of the previous Theorem and of the results
of Section 2.1, although there is no reason in general to expect such a re-
lation if we consider a different kind of least-squares approximant in an
arbitrary basis.

The following Corollary expresses the mentioned bounds in terms of
truncations of the standard Power Function, where it is clear that by re-
placing an exact interpolant with a weighted discrete least-squares approx-
imant, we can obtain better results in terms of stability.
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Corollary 3.11. Given a function f ∈ H(Ω), consider its weighted discrete least-
squares approximant of order n ≤ N . The point-wise approximation error can be
bounded in the following way

|f(x)− Λnf(x)| ≤

√√√√K(x, x)−
n∑
j=1

vj(x)2 ‖f‖ for all x ∈ Ω, (3.5)

and we have a stability bound

|Λnf(x)| ≤

√√√√ n∑
j=1

vj(x)2 ‖f‖ for all x ∈ Ω.

Finally, we can control the approximation error also in terms of the
`2,w(XN )-norm itself.

Proposition 3.12. If K is translational invariant, for n ≤ N and f ∈ H(Ω) we
have

‖f − Λnf‖`2,w(XN ) ≤

√√√√ N∑
j=n+1

σ2
j ‖f‖ (3.6)

Proof. For f ∈ H(Ω), inequality (3.5) gives

‖f − Λnf‖2`2,w(XN ) =
N∑
i=1

wi(f(xi)− Λnf(xi))
2

≤
N∑
i=1

wi

K(xi, xi)−
n∑
j=1

vj(xi)
2

 .

The rightmost term can be divided in the terms

N∑
i=1

wiK(xi, xi) =

N∑
j=1

σ2
j ,

where we used the relation between the trace and the eigenvalues of the
scaled kernel matrix, and

N∑
i=1

wi

n∑
j=1

vj(xi)
2 =

n∑
j=1

N∑
i=1

wivj(xi)
2 =

n∑
j=1

σ2
j

where we used property iv. The difference of these two terms gives the
bound of the statement.

This bound is of limited interest as it is, since an exact interpolant (i.e.,
n = N ) always gives an exact reconstruction in this norm. Nevertheless, it
is interesting for the connection it provides with the theory of the previous
Chapter, as explained in the next Section.
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3.4 Connections between the two algorithms

We conclude this Chapter by showing the relation between the WSVD basis
and the methods developed in Chapter 2 and in Section 3.2.

The first connection is at an algorithmic level, and it proves that, in a
particular case, the two algorithms of this Chapter are, in fact, the same.
Indeed, in the direct construction of the eigenbasis of V (XN ) of Section
3.2.1, we needed to consider the L2(Ω) Gramian of the basis of kernel trans-
lates. To this end, in the likely situation when we do not know explicitly
the entries of the L2(Ω)-Gramian (see (3.1)), we need to approximate them
by means of another point set XM , M >> N . If instead we decide to
use the points XN themselves, we make the approximation assumption
(·, ·)L2 ≈ (·, ·)`2(XN ). That is to say, the first algorithm becomes a particular
instance of the second one, where the weights used to construct the WSVD
basis are simply wi = |Ω|/N . In particular, as observed in Section 3.2, there
is no need to compute a simultaneous diagonalization of two Gramians to
construct the approximation of the discrete eigenbasis. In other terms, the
use of a second Gramian (the one of L2(Ω)) does not provide more infor-
mation than using simply the kernel matrixA, so we can not expect that the
WSVD basis is as good an approximation of the true eigenbasis as the dis-
crete eigenbasis {ϕj,N}Nj=1 is. Nevertheless, as we will explain in the next
Chapter, the approximated version of the WSVD basis provides a fast and
stable way of solving approximation problems inH(Ω).

The second connection is more theoretical, and it is related to the con-
tents of the previous Chapter. Namely, the space spanned by the WSVD
basis elements minimizes some widths defined as in Section 2.2 by replac-
ing L2(Ω) with `2,w(XN ).

First, observe that the discrete weighted least-squares approximation
operator Λn is a particular instance of the `2,w(XN )-projector Π`2,w(XN ),Vn ,
where for Vn ⊂ H(Ω)

Π`2,w(XN ),Vnf =

N∑
j=1

(f, uj)`2,w(XN )uj

and {uj}Nj=1 is any `2,w(XN )-orthonormal basis of Vn. Hence, we have Λn =
Π`2,w(XN ),Wn

, where Wn ⊂ V (XN ) is the subspace spanned by the first n
elements of the WSVD basis.

The following statement is a Corollary of the Theorems of Section 2.2,
and it is in accordance with these results. Notice that, due to the notation
used in the definition of the WSVD basis, the terms σj are squared in the
following equalities.
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Corollary 3.13. For n < N , we have

inf
Vn⊂H

dim(Vn)=n

sup
f∈S(H)

‖f −ΠH,Vnf‖`2,w(XN ) =
√
σ2
n+1

inf
Vn⊂H

dim(Vn)=n

∥∥∥∥∥ sup
f∈S(H)

|f(·)−ΠH,Vnf(·)|

∥∥∥∥∥
`2,w(XN )

=

√√√√ N∑
j=n+1

σ2
j

and Wn is an optimal subspace.

Proof. The proof is the same of the ones of Theorems 2.6 and 2.8, where
the L2(Ω) norm is replaced by the `2,w(XN ) norm, and the eigenbasis is
replaced by the WSVD basis. Furthermore, observe that the `2,w(XN ) norm
only considers the values of a function f on XN , so we can assume f ∈
S(V (XN )).





Chapter 4

Computational aspects and
numerical experiments

In this Chapter we present three algorithms that can be used for the numer-
ical construction of an approximation of the eigenbasis, and to effectively
solve approximation problems inH(Ω).

The three algorithms are designed to provide a computationally feasible
implementation of the two methods of the previous Chapter. To be more
precise, they approximate the computations required by the two methods
in a suitable way, so that we can obtain the same results without the com-
putational limitations of the exact algorithms.

In particular, the two methods of Section 4.1 are a greedy approxima-
tion of the algorithm of Section 3.2.1. The two algorithms are different in
the way they perform the greedy selection of a suitable point set in XN ,
which is in both cases inspired by the results of [19]. Nevertheless, both of
them are designed in order to avoid to compute a simultaneous diagonal-
ization of two possibly large and ill-conditioned Gramians, but instead to
perform the same operation on two properly chosen submatrices. This ap-
proximation allows to effectively construct the discrete eigenbasis, and we
will present some numerical experiments that support the results of Chap-
ter 2.

The one of Section 4.2, instead, is an approximation of the WSVD basis
algorithm of Section 3.3. It replaces the exact computation of the singular
value decomposition with a proper approximation given by the Lanczos
algorithm (see e.g. [32]). The properties of the exact WSVD basis are in this
way slightly modified, while the approximation capabilities of this new
version of the basis remain untouched, with moreover a computational
speed up in the approximation process. We will present some numerical
experiments that test this algorithm.

The contents of this Chapter are published in the papers [52] and [17]
and are partially taken from there. Moreover, it is possible to download a

51
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Matlab implementation of the three algorithms from [49] and [51].

4.1 Greedy construction of the discrete eigenbasis

The algorithm of Section 3.2.1 requires to compute a simultaneous diago-
nalization of two N ×N Gramians to construct the subspace En,N , and this
approach easily becomes infeasible when N becomes large. Instead, here
we first select n points in XN such that working on these points is more
stable than working with the full original matrix, and then solve the prob-
lem in V (Xn). In this case, since we first operate a selection of n points in
XN , we can use XN itself to approximate the L2(Ω) inner product instead
of choosing a different set XM , M > N .

The selection of the set Xn is performed with a greedy construction of
the Newton basis (see [41]). This basis is a particular H(Ω)-orthonormal
basis of the native space, and it has the remarkable property of being re-
cursively computable. Using this fact, we can select the points of Xn in a
greedy way, compute a basis element at a time, and check at any step if a
certain tolerance is reached or not.

Before analyzing the point selection strategies, we show how to con-
struct the eigenspaces via the Newton basis. Assume that v1, . . . , vn is an
H(Ω)-orthonormal set of functions (here, it will be the Newton basis for
V (Xn)). Then

TV (Xn)f(x) =
n∑
i=1

vi(x)
n∑
j=1

(vi, vj)L2(f, vj)

and if λj,n is an eigenvalue with eigenfunctionϕj,n then TV (Xn)ϕj,n = λj,nϕj,n
implies

λj,n(ϕj,n, vi) =
n∑
k=1

(vi, vk)L2(ϕj,n, vk).

Thus the coefficients of the eigenbasis with respect to this orthonormal ba-
sis are the eigenvectors of the L2(Ω) Gramian of the {vj}j basis.

Experimentally, the Newton basis is nearly L2(Ω) orthogonal, thus the
above procedure should have a nice Gramian matrix, provided that the
L2(Ω) inner products that are near zero can be calculated without loss of
accuracy.

To select the points we use two similar greedy strategies, based on max-
imization of L∞(Ω) and L2(Ω) norms of the Power Function. The first one
has been introduced in [19], while the second one can be obtained by a
simple modification. The first point is chosen as

x1 = arg max
x∈XN

∥∥∥∥∥ K(·, x)√
K(x, x)

∥∥∥∥∥
L∞

or x1 = arg max
x∈XN

∥∥∥∥∥ K(·, x)√
K(x, x)

∥∥∥∥∥
L2

.



4.1. GREEDY CONSTRUCTION OF THE DISCRETE EIGENBASIS 53

For 1 ≤ i < n, denoting by Xi = {x1, . . . , xi} the already chosen points, the
(i+ 1)-th point is selected as

xi+1 = arg max
x∈XN\Xi

‖vi+1‖2L∞ or xi+1 = arg max
x∈XN\Xi

‖vi+1‖2L2
.

Both the selections are stopped when the relevant quantity, namely the
L∞(Ω) or L2(Ω) norm of the next Newton basis element, is below a cer-
tain tolerance.

The L2(Ω) selection method is motivated by the observation that the
eigenspaces are theL2(Ω)-maximizing orthonormal functions inH(Ω). Nev-
ertheless, numerical experiments suggest that the L∞(Ω) algorithm pro-
duces good enough points sets, and we will use the latter in the following,
since is simpler and faster.

We remark that we do not yet have a satisfactory theoretical analysis of
the convergence of this greedy algorithms to the direct solution, given by
the eigenbasis.

4.1.1 Experiments

We consider the Matérn kernels of order β = 0, 1, 2, 3, whose native spaces
on Rd are norm equivalent to the Sobolev spaces H(β+d)/2. The kernels can
be defined in radial form by the following formulas (see e.g. [22, Appendix
D]),

Φ0(r) = e−εr

Φ1(r) = e−εr(1 + εr)

Φ2(r) = e−εr(3 + 3εr + (εr)2)

Φ3(r) = e−εr(15 + 15εr + 6(εr)2 + (εr)3),

where K(x, y) = Φβ(‖x − y‖), x, y ∈ R2, for the corresponding β. For this
experiment the value of the shape parameter is set to ε = 1.

In these spaces the asymptotic behavior of the Kolmogorov width, hence
of the eigenvalues, is known as recalled in Section 2.4. We assume here that
the same bounds hold in the unit disk, and we want to compare it with the
discrete eigenvalues of V (XN ).

All experiments have been performed with the Matlab code [51].
To perform the greedy selection we start from a grid of equally spaced

points in [−1, 1]2 restricted to the unit disk, so that the number of points
inside the disk is N ≈ 104. We use this grid both for point selection and to
approximate the L2(Ω) inner products as weighted `2(XN ) product, with
weights wi = π/N .

We then select n = 200 points by the greedy L∞(Ω) maximization of
the Power Function in the unit disk. In Figure 4.1 we plot the set of the first
50 selected points for β = 3. As a comparison, we show also the first 50
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points selected by the L2(Ω) greedy algorithm, even if they are not used in
the present experiments.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

−1.5 −1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

Figure 4.1: The first 50 points selected by the two greedy algorithms for
the approximation of the eigenfunctions of the Matern kernel with β = 3.
Maximization of the power function with respect the L∞(Ω) norm (left)
and the L2(Ω) norm (right).

The eigenvalues are then computed with the use of the Newton basis, as
explained at the beginning of this Section, i.e., as eigenvalues of the L2(Ω)
Gramian of the Newton basis.

It is interesting to see (Figure 4.2) how the L2(Ω) norms of the New-
ton basis and of the approximated eigenfunctions are related, after both
the bases have been normalized with respect to the H(Ω) norm. Although
no information is known about the decay of the L2(Ω) norms of the New-
ton basis, it can be clearly observed how they are strictly connected to the
behavior of the eigenvalues.
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Figure 4.2: Comparison between the L2(Ω) norms of the discrete eigenbasis
(solid line) and the Newton basis (dotted line), both normalized in theH(Ω)
norm. From top left to bottom right: β = 0, 1, 2, 3.

Finally, we want to compare the theoretical behavior of the Kolmogorov
width with the decay of the computed eigenvalues. The results are shown
in Figure 4.3 and, as expected, for any order under consideration there ex-
ists a positive constant c such that the discrete eigenvalues decay with the
same rate of the Sobolev best approximation.

Moreover, we expect that the discrete eigenvalues converge to the true
ones with a rate that can also be controlled by β. Indeed, according to
Corollary 2.15, we have

0 ≤ λj − λj,V (Xn) < c1n
−β/d, 1 ≤ j ≤ n.

To verify this, we instead look at the decay of

∞∑
j=1

λj −
n∑
j=1

λj,V (Xn).

since we can exactly compute the first term. Indeed, since the kernels are
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radial, we have

∞∑
j=1

λj =

∫
Ω
K(x, x)dx = πK(0, 0).

Results are presented in Figure 4.4. From the experiments it seems that the
actual convergence speed is somewhat faster than what expected, and in
fact we obtain, in this particular case, a rate of order (β + d/2)/d instead of
β/d. This “gap of d/2” has been already observed in [55].
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Figure 4.3: Decay of the discrete eigenvalues of the Matern kernels (solid
line) compared with the theoretical decay rate n−(β+d)/d in the correspond-
ing Sobolev spaces (circles). The theoretical bounds are scaled with a posi-
tive coefficient. From top left to bottom right: β = 0, 1, 2, 3.
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Figure 4.4: Difference between the sum of the real eigenalues and the dis-
crete ones (solid line), for the Matern kernels, compared with the theoreti-
cal decay rate n−β/d in the corresponding Sobolev spaces (circles) and with
n−(β+d/2)/d (triangles). The theoretical bounds are scaled with a positive
coefficient. From top left to bottom right: β = 0, 1, 2, 3.

As an example, Figure 4.5 presents the first four elements of the eigen-
basis computed by the algorithm in the same setting as above, and for
β = 3.
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Figure 4.5: Contour plot of the first four approximated eigenfunctions
(sorted from top left to bottom right) of the Matern kernel with β = 3.

Finally, we consider a situation where the Mercer decomposition is ex-
plicitly known. Namely, in the case of β = 0, the exact eigenbasis of the
Matérn kernel on Ω = [−L,L] has been computed ( [58, Section 3.4.1]), and
it is given by the eigenvalues

λj =

{ 2ε
ε2+α2

j
, j even

2ε
ε2+β2

j
, j odd

and the eigenfunctions

ϕj =


√

2αj
2Lαj−sin(Lαj)

sin(αj ·), j even√
2βj

2Lβj+sin(Lβj)
cos(βj ·), j odd

,

where {αj}j , {βj}j are defined as solution of two families of nonlinear
equations (see Section 2.2 of [23, Appendix A] for further details). We con-
sider a point set XN a set of N = 104 equally spaced points in [−L,L], with
L = 2 and ε = 0.5. The values of {αj}j , {βj}j have been computed by a
numerical solver up to j = 5 · 103, which correspond to an average RMS
error on XN between the exact kernel and this truncated decomposition of
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9.61 · 10−7. To compute our approximation we start from the closed form
of the kernel, K(x, y) = e−ε‖x−y‖2 , and we employ the L∞(Ω)-greedy al-
gorithm on the points XN to compute En up to n = 100. The results for
the approximation of the eigenvalues and the eigenfunctions are shown in
Figure 4.6. As it is reasonable to expect, the approximation is good for the
first eigencouples (RMSE of the order of 10−5 for the eigenfunctions and
relative error of 10−6 for the eigenvalues), while it degrades up to 10−1 for
bigger indexes j.
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Figure 4.6: Approximation of the eigenfunctions (left, RMSE error) and
eigenvalues (right, relative error) of the Matérn kernel with β = 0.

4.2 Fast computation of the WSVD basis

We concentrate here on the construction of an approximated version of the
WSVD basis of Section 3.3. The main problem of the true WSVD basis is the
efficiency of the computation. Namely, since the basis is found by a singular
value decomposition, we have to compute all the elements vj , 1 6 j 6 N ,
and then to leave out the last N − n terms, the ones for which σ2

j < τ , with
τ a prescribed tolerance.

Here we present a way to slightly modify our basis in order to compute
only its most significant part. The connection between the two bases will
be discussed in details, but we stress in particular that the new algorithm
has some characteristic features coming from its dependence on the data.

In what follows we will often omit the dependence on the weights
{wi}Ni=1, which is equivalent to take all weights wi = |Ω|/N .

This method makes use of some tools from the theory of Krylov sub-
spaces, recalled in the next Section.
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4.2.1 The Lanczos method and the approximation of the SVD

We recall here some basic facts about the Lanczos method, as they will be
used in the following. Further details can be retrieved in [32].

Given the set of points XN ⊂ Ω, the goal is to find the solution of the
linear system Ac = b with A the kernel matrix and bi = f(xi), 1 ≤ i ≤
N the vector of the evaluations of a function f ∈ H(Ω). To this aim, for
n ≤ N let Kn(A, b) = span{b, Ab, . . . , An−1b} be the Krylov subspace of order
n generated by A and b. The Lanczos method computes an orthonormal
basis {p1, . . . , pn} ofKn(A, b) through a Gram-Schmidt orthonormalization.
Namely, if we denote by Pn ∈ RN×n the matrix having the vectors pi as
columns, we can write the algorithm in matrix form as

APn = Pn+1H̄n, H̄n =

[
Hn

h̄eTn

]
, (4.1)

where Hn is a n × n tridiagonal matrix (because of the symmetry of the
kernel), h̄ ∈ R and en ∈ Rn is the n-th unit vector.

Once these matrices have been computed, the solution c can be approx-
imated as c = Pn y, where y ∈ Rn is such that H̄ny = ‖b‖2e1. If A has a
good low-rank approximation, we expect that a good approximation of x
can be computed using n components with n� N .

This decomposition can be also used for other purposes. In particu-
lar, we want to relate the singular values of A and those of H̄n. One can
start by considering a SVD decomposition H̄n = UnΣ̄nV

T
n , where Un ∈

R(n+1)×(n+1) and Vn ∈ Rn×n are unitary matrices and

Σ̄n =

[
Σ2
n

0

]
,

Σ2
n being the diagonal matrix having the singular values as its entries, and

then use this decomposition to approximate a SVDA as
(
Pn+1Un, Σ̄n, PnVn

)
.

A detailed analysis of the relation between this approximation and the true
singular value decomposition of A can be found in [43]. We will use this
approximated decomposition to construct an approximated version of the
WSVD basis.

For notational purposes, we observe that, since the last row of Σ̄n is the
zero vector, the decomposition does not change if we remove this row and
the last column of Un. To simplify our notation, from now onward we will
denote by Un the matrix without the last column, so that the decomposition
becomes H̄n = UnΣ2

nV
T
n . Moreover, the j-th diagonal element of Σ2

n will be
denoted by σ2

j instead of σ2
j,n when no confusion arises.

4.2.2 Construction of the basis

By means of the Lanczos algorithm, we can construct a new set of functions
{v̄j}nj=1 ∈ H(Ω) that are intended as an approximation of the WSVD basis.
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The set will be orthogonal with respect to the `2,w(XN )-inner product and
near-orthonormal in H(Ω), in a way that we will specify later. Moreover,
this set can be computed iteratively, i.e., we can choose to compute just the
first n elements without computing the otherN−n basis. We stress that this
new basis does not span V (XN ) (unlike n = N , when the SVD of H̄n equals
to that of A). In this sense the term “basis” is not the most appropriate to
identify these functions, even if we will use it with an abuse of language
with the aim of avoiding a more complicated statement.

Using again the notation of Theorem 3.1, the basis can be defined as
follows. Observe that also here we will use an imprecise notation. Indeed,
the matrix C that defines the new basis is not invertible for n < N , since
it maps the N -terms standard basis into the n-terms approximated WSVD
basis. Nevertheless, the role of C is the same as in the case of a true change
of basis.

Definition 4.1. Let n ≤ N and let H̄n, Pn, Vn, Un, Σ2
n be as introduced above.

The approximated WSVD basis {v̄j}nj=1 is characterized by the matrix

Cn = PnVnΣ−1
n

or by the collocation matrix

Vn = Pn+1UnΣn.

We remark that in this case the basis strongly depends on the particu-
lar function, say f̄ ∈ H(Ω), used to construct the Krylov subspace. This
dependence influences the behavior of the approximant, as it will be more
clear from the following properties of the basis.

4.2.3 Properties

With the approximation introduced by the use of the Lanczos algorithm
to compute an SVD of A, the properties of the WSVD basis are slightly
modified. Before stating them in a precise way, we prove this technical
Lemma.

Lemma 4.2. Let n ≤ N and let Ũn be the square matrix obtained from Un remov-
ing the last row uTn . Then Ũn and Vn coincide except for the last row, namely only
the n-th row dTn of their difference is a non zero row vector.

Proof. Using the SVD of H̄n, it is immediate to see that
H2
n h̄Hnen

h̄eTnHm h̄2

 = H̄nH̄
T
n =


ŨnΣ4

nŨ
T
n ŨnΣ4

nu

uTΣ4
nŨn uTΣ4

nu

 ,
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hence H2
n = ŨnΣ4

nŨ
T
n . On the other hand

H2
n + h̄ene

T
n = H̄T

n H̄n = VnΣ4
nVn.

From these two equalities easily follows(
Vn − Ũn

)
Σ4
n

(
Vn − Ũn

)T
= h̄ene

T
n .

We can conclude that each row of the difference matrix,Dn = Vn−Ũn, is the
zero vector except for the last one, say dTn , which satisfies dTnΣ4

ndn = h̄

We are now ready to prove the following Theorem, where the properties
of the approximate WSVD basis are proven.

Theorem 4.3. The approximated WSVD basis has the following properties:

i) the basis is `2,w(XN )- orthogonal with ‖v̄j‖2`2,w(XN ) = σ2
j ;

ii) the basis is near-orthonormal on H(Ω), meaning that (v̄i, v̄j) = δij + r
(n)
ij

where (R(n))ij := r
(n)
ij is a rank one matrix for 1 ≤ n < N , and r(N)

ij = 0,
1 ≤ i, j ≤ N ;

iii) when n = N , v̄j = vj , 1 ≤ j ≤ N .

Proof. It suffices to compute the Gramian matrix of the basis with respect
to the `2,w(XN ) and H(Ω) inner products, say G(V̄n)`2,w(XN ) and G(V̄n)H,
respectively. Using the formulas for the Gramians as in Theorem 3.7 we get

G(V̄n)`2,w(XN ) = CTnAWACn = V T
n WVn = ΣnU

T
n P

T
n+1Pn+1UnΣn = Σ2

n,

and

G(V̄n)H =CTnACn = Σ−1
n V T

n P
T
n Pn+1UnΣn

=Σ−1
n V T

n [In | 0 ]UnΣn = Σ−1
n V T

n ŨnΣn.

From the above Lemma 4.2, Ũn = Vn + end
T
n , hence if vTn is the last row of

Vn,
V T
n Ũn = V T

n

(
Vn + end

T
n

)
= In + vnd

T
n .

This allows to conclude that

G(V̄n)H = Σ−1
n

(
In + vnd

T
n

)
Σn = In +Rn

with Rn = Σ−1
n vnd

T
nΣn.

The last statement easily follows from the fact that the SVD of A is ex-
actly computed by the Lanczos method when n = N .

Note that rij = (Rn)ij is in general non vanishing if n < N , but there is
strong numerical evidence that the magnitude of rij is close to the machine
precision except if both i and j are close to n. That is to say that the first
elements of the basis areH(Ω)-orthonormal from a numerical point of view.
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4.2.4 Approximation

It comes now easy to compute the approximant obtained by the approxi-
mated WSVD basis. If we consider the function f̄ ∈ H(Ω) from which the
basis is constructed, we get the approximant as a projection with respect
to the `2,w(XN ) inner product. By denoting also in this case as Λnf̄ the
`2,w(XN )-projection of f̄ on the subspace spanned by {v̄j}nj=1, we get

Λnf̄ =
n∑
j=1

σ−2
j

(
f̄ , v̄j

)
`2,w(XN )

v̄j (4.2)

since Σ−2
m V T

n is a left inverse of Vn.
What is a bit surprising is thatΛnf̄ can be expressed also in this case in

terms of theH(Ω) inner product, as in the case of the true WSVD basis.

Theorem 4.4. If the basis {v̄j}nj=1 is constructed from f̄ ∈ H(Ω), for 1 ≤ j ≤ N
we have (

f̄ , v̄j
)
`2,w(XN )

= σ2
j

(
f̄ , v̄j

)
. (4.3)

In particular, the approximant Λn is aH(Ω)-projection, or, equivalently,

Λn(f̄) =
n∑
j=1

(
f̄ , v̄j

)
v̄j . (4.4)

Proof. Observe that the coefficient (f, v̄j)`2,w(XN ), for a general f ∈ H(Ω), is
the j-th column of fTXNVn, where fXN is the column vector of the evalua-
tions of f at XN . Using again Lemma 4.2 and denoting by uTn the last row
of Un, we get

Vn = PnŨnΣn + pn+1u
T
nΣn = PnVnΣn + pnd

T
nΣn + pn+1u

T
nΣn

= CnΣ2
n + pnd

T
nΣn + pn+1u

T
nΣn.

If we take f = f̄ , since f̄XN is orthogonal to the vectors {p2, . . . , pn+1} by
construction, we have f̄TXNVn = f̄TXNCnΣ2

n, i.e., equality (4.3) holds. This
implies in particular that the formula (4.4) is equivalent to (4.2).

We point out that if we take another function f ∈ H(Ω), the equality
(4.3) holds with a residual term on the right hand side. This is due to the
fact that in the case f 6= f̄ the terms depending on p2, . . . , pn+1 are not
deleted. On the other hand, equation (4.2) depends only on the relation
between the left inverse of Vn and its transpose, not on the connection with
Cn. This means that we can compute the approximant of a function f 6= f̄
also using the basis constructed starting from f̄ . Although possible, this
seems not an interesting approach, since the construction of the basis is fast
and we can obviously expect a better result for a data-dependent basis.
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To conclude, if the WSVD basis is replaced with the new one, the esti-
mates of Corollary 3.11 still hold, with vj replaced by v̄j . In the next Sec-
tion we will show some numerical computations the quantities involved in
those estimates.

4.2.5 Experiments

In this Section we show some examples in order to test the features of our
approximation scheme. We show two examples. In the first we approxi-
mate a function from the native space of a Gaussian kernel with the aim of
understanding the behavior of the method in a known setting. In the sec-
ond example we approximate real data by an inverse multiquadric kernel.

All experiments have been performed with the Matlab code [49] on a In-
tel Celeron Dual-Core CPU T3100, 1.90GHz, with 3 Gb of RAM. The errors
are measured by the Root Mean Squared Error (RMSE), i.e., by a weighted
`2-norm computed on a grid of equally spaced points.

For the first experiment we consider the Gaussian kernel

K(x, y) = e−ε
2 ‖x−y‖22 ∀x, y ∈ Ω1,

where Ω1 is the unit disk in R2, and the shape parameter has the fixed value
ε = 1. The function f1 we want to approximate is defined for all x ∈ R2 as

f1(x) = K(x, p1) + 2 K(x, p2)− 2 K(x, p3) + 3 K(x, p4),

p1 = (0,−1.2), p2 = (−0.4, 0.5), p3 = (−0.4, 1.1), p4 = (1.2, 1.3),

which is clearly a function in the native space. The set XN is generated by
the restriction to Ω1 of a grid of equally spaced points in [−1, 1]2, with the
grid size chosen so that the number of points which are inside Ω1 is in fact
N .

The first problem is to choose how to stop the Lanczos iteration. For
sure this is a key point of this approximation and only few sophisticated
stopping criteria are known. On the other hand, we would like to use a
stopping rule which tells us something on the approximation process from
a functional point of view. A reasonably good choice for stopping the Lanc-
zos iteration is when, for a certain tolerance τ > 0, we have∣∣∣∣∣∣ 1

N

n∑
j=1

(Hn)jj − 1

∣∣∣∣∣∣ < τ , (4.5)

which is motivated by the Property (v) of Theorem 3.7. This is a rough
criterion, but it seems good enough to control the iterations in the case of
functions lying in the native space of the kernel. This behavior is shown in
Figure 4.7 in the case of τ = 10−15. Observe that, in this example, the con-
trol on the residual (4.5) is in fact effective. Indeed, the RMSE decreases as
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long as the residual decreases, while, shortly after the residual reaches the
level τ , the RMSE rapidly increases. This is due to the numerical instability
that emerges in the Lanczos algorithm if it is not stopped properly.
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Figure 4.7: Decay of the residual described in (4.5) compared with the cor-
responding RMSE for the first example of this Section.

In Figure 4.8 we show the plots of the basis elements v̄1, v̄11, v̄21, v̄31. No-
tice, as we expect by an approximation of the eigenbasis, that the number
of oscillations of the sign of the basis increases, while its maximum value
decreases.
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Figure 4.8: Basis functions computed in the first example of Section 4.2.5.
From top left to bottom right v̄1, v̄11, v̄21, v̄31.

To analyze the computational time required to solve the approximation
problem, we compared it with that required by the WSVD basis. The sets
XN of equally spaced points in Ω1 are generated to have at least cardinality
N = 152, 232, 312, 392 (since they are generated by restriction to Ω1 of a
grid in [−1, 1]2, the actual values are N = 253, 529, 1009, 1576). The use of
a quite small number of data is due to the slowness of the computation of
the WSVD basis. For each N we compute the optimal n using the present
algorithm with tolerance τ = 10−14. Then we use this value to select the
corresponding number of WSVD basis elements to be used. In Table 4.1 we
display this comparison, only for some values of N , in order to show the
performance of the method. It is worth to mention that the computational
times of Table 4.1 are those required by the truncated SVD, which are, in
this case, computed from a full SVD. We can also see that for all choices
of N the method takes less than 7 seconds to construct the approximant.
Moreover, despite the approximation introduced by the new truncated ba-
sis, the computed errors are comparable to or even better than the one of
the original basis. This behavior is due to the function-dependent construc-
tion of the basis.
Using these observations we can construct the approximation on the full
data set. In this case, choosing τ = 1 · 10−14 we obtain n = 115 basis el-
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N 253 529 1009 1576

n 110 114 115 116
RMSE 3.4 · 10−10 6.7 · 10−11 5.5 · 10−11 3.4 · 10−11

new
RMSE 3.3 · 10−9 1.1 · 10−9 8.3 · 10−10 7.9 · 10−10

WSVD
Time 3.4 · 10−1 1.0 · 100 2.6 · 100 6.5 · 100
new
Time 7.2 · 10−1 4.2 · 100 2.5 · 101 1.1 · 102
WSVD

Table 4.1: Comparison of the WSVD basis and the new basis. Computa-
tional time in seconds and corresponding RMSE for the first example in
Section 4.2.5, with roughly N = 152, 232, 312, 392 equally spaced points.

ements out of 3600 = 602 points with RMSE = 1.03 · 10−10. The overall
computation takes 45 seconds, with the first 40 seconds used to construct
the basis, and the remaining 5 seconds required to compute the approxi-
mant.

The approximated Power Function computed through the approximated
WSVD basis for this experiment is depicted in Figure 4.9. It is clear that this
quantity is quite uniform in the domain Ω1. Moreover, the maximum value
of the approximated Power Function on the grid is of order 10−13.
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Figure 4.9: Logarithmic plot of the approximated Power Function associ-
ated to the first example of this Section

To conclude this experiment, we test the effect of the shape parameter
ε. In particular, we use the example of this section, with roughly N =
252 (indeed, N = 648), to show how the number n of selected bases, and
thus the RMSE, changes as ε → 0. First, we show in Table 4.2 the results
obtained by approximating the function f1. It is clear that the number of
selected bases decreases with ε, affecting also the corresponding RMS error.
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By forcing instead the method to select a bigger number of bases, hence
by prescribing a smaller tolerance, the error rapidly increases in the same
way as presented in Figure 4.7 and this phenomenon is clearly affected by
ε. Second, Table 4.3 presents the results obtained in the same setting, but
modifying f1 accordingly to the shape parameter, so that f1 ∈ H(Ω) for
each choice of ε. The reduction of the number of selected basis elements as
ε→ 0 is analogous to the previous one but, in contrast, the fact that the test
function is in the native space of the kernel allows the method to reach an
error close to the machine precision.

ε 2 2−2 2−4 2−6 2−7

RMSE 1.0 · 10−8 2.1 · 10−6 1.7 · 10−3 6.5 · 10−2 3.75 · 10−1

n 249 64 26 16 12

Table 4.2: Number n of selected bases and the corresponding RMSE by de-
creasing ε for roughly N = 252 equally spaced points and fixed test func-
tion.

ε 2 2−2 2−4 2−6 2−7

RMSE 4.9 · 10−8 1.4 · 10−12 9.9 · 10−14 1.6 · 10−14 8.7 · 10−14

n 272 39 20 11 11

Table 4.3: Number n of selected bases and the corresponding RMSE by
decreasing ε for roughly N = 252 equally spaced points and ε-dependent
test functions.

The second experiment uses the inverse multiquadric kernel (IMQ)

K(x, y) =
(√

1 + ε2‖x− y‖2
)−1

∀x, y ∈ Ω2,

where ε = 2 and Ω2 is a lune, namely, the set in R2 defined by the difference
of two disks of radius 0.5 with centers in (0, 0) and (0.5, 0.5).

We approximate the exponential Franke’s test function (see [29]), say f2,
plotted in Figure 4.10, top left. To make the test as general as possible, for
XN we use a set of randomly distributed data sites with N = 602 .

The results of the test are depicted in Figure 4.10. The method used n =
176 basis elements, giving RMSE = 1.38 ·10−6, and a pointwise error as in
Figure 4.10 (bottom right). The whole computation required one minute of
CPU.

In this case the tolerance of the stopping rule was set to τ = 10−10, since
a smaller value led to an increase of the RMS error. The weakness of the
stopping rule in this case is probably due to the fact that the function f2

does not belong to the native space of the kernel.
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Figure 4.10: Exponential Franke’s function (top left); approximation ob-
tained with a IMQ kernel with ε = 2 (top right) using 602 randomly dis-
tributed data points (bottom left); pointwise error computed on a grid of
60× 60 equally spaced points (bottom right, logarithmic scale).





Chapter 5

Applications

In this Chapter we present two applications of kernel-based methods to the
solution of two different problems.

The first Section considers the solution of large interpolation problems,
i.e., problems where the number N of points and function samples can be
large. To face this kind of application, we couple the algorithms of Sec-
tions 3.3 and 4.2 with a domain decomposition technique. In this way we
can preserve the stabilization properties of the mentioned method, with an
enhanced computational efficiency. The method presented here is a start-
ing point to test this coupling, where we use a standard implementation
of the domain decomposition technique, based on kd-trees (see e.g. [3]). It
is intended as the basis for a more efficient algorithm which will be pub-
lished in [8], which uses instead the algorithms of [10, 11], but is perfectly
equivalent to the present one from the side of the theory.

The second Section is devoted to the reconstruction of medical images
from CT scans (see e.g. [25]). We will develop a method that employs
kernel-based approximation for the solution of this reconstruction prob-
lem, and that allows to implement in the image recovery some techniques
related to the extraction of optimal subspaces in H(Ω). We present here
only a preliminary analysis of this method, with application only to the
Gaussian kernel. A detailed theoretical foundation for more general ker-
nels will be published in the paper [14].

The content of Section 5.1 is published in [9], and it is partially taken
from there. Moreover, it is possible to download a Matlab implementation
of the method of Section 5.2 from [50].

5.1 Partition of unity with local stabilization

We present here an algorithm to approximate large datasets by kernel tech-
niques. The method couples a fast domain decomposition procedure with
a localized stabilization method. We will see in Section 5.1.1 how to deal

71
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with large data sets by splitting the problem in smaller subproblems, and
in Section 5.1.2 how to locally employ the change of basis to control the
instability. We will work here with RBF kernels K(x, y) = Φ(ε‖x− y‖).

5.1.1 Background facts on the PUM

We want to avoid to solve a global problem involving a large and possibly
dense matrix. To do so, we focus on the partition of unity (PU) method
(see [59]). The idea is to decompose the problem, solve (many) small local
approximation subproblems, and then blend together the results in a global
approximant. We give here a general review of this method, while further
implementation details are provided in Section 5.1.3.

We work with a setXN ofN points in the bounded set Ω ⊂ Rd and with
a function f ∈ H(Ω). For a fixed natural number L we consider an open
and finite covering {Ω(k)}Lk=1 of the bounded set Ω, that is

Ω ⊂
L⋃
k=1

Ω(k),

where we require mild overlapping of the patches. Associated to the cov-
ering one considers a partition of unity, i.e., a set of nonnegative and con-
tinuous real valued functions {P (k)}Lk=1 with

supp(P (k)) ⊂ Ω(k),
L∑
k=1

P (k)(x) = 1 for all x ∈ Ω.

Since the kernelK is still positive definite when restricted to each Ω(k), it
is possible to uniquely solve the interpolation problem restricted to the each
local domain. Namely, for each Ω(k), 1 ≤ k ≤ L, we consider the restricted
set of N (k) data locations defined as X(k)

N = XN ∩ Ω(k), N (k) = card(X
(k)
N ),

and the corresponding values of f on X
(k)
N . The local approximant s(k)

X
(k)
N

f

is then computed as

s
(k)

X
(k)
N

f =

N(k)∑
i=1

c
(k)
i K(·, x(k)

i ),

where now it suffices to solve a much smaller linear system to determine
the coefficients in the above expansion. To simplify the notation we drop
the subscript X(k)

N from s
(k)

X
(k)
N

f , which will be denoted as s(k)f .

We can now blend together the local approximants by means of the
partition of unity {P (k)}Lk=1, i.e., we recover a global approximant sf on Ω
as

sf(x) =
L∑
k=1

P (k)(x)s(k)f(x), x ∈ Ω.
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The latter satisfies the global interpolation conditions since
∑L

k=1 P
(k) = 1

on Ω.
It is important to recall that, under further assumptions on the covering

and on the partition of unity, it is possible to prove that the global approx-
imant keeps the same approximation order of the local ones (see [59]), so
the method is an efficient and accurate way of constructing a kernel-based
interpolant, even if different from the standard one.

We remark also that, besides the theoretical framework, the success of
the PU method relies on a good point searching technique. Nevertheless,
we stress that a change in the point-searching technique does not affect
the present theoretical analysis. In this view, the numerical experiments
presented in Section 5.1.3 should be indicative, as regards the error, of the
behavior of the enhanced method of [8].

5.1.2 The algorithm

The partition of unity method allows to deal with large datasets in an ef-
ficient way, and partially reduces the ill-conditioning found in many cases
when dealing with RBF problems, since at least it reduces the size of matri-
ces involved. Nevertheless, using a domain decomposition technique can
be not enough. To this end, we want to employ locally the algorithm of
Section 4.2.

Before using the WSVD method, observe that for any subdomain Ω(k)

there is an associated space of functions H(Ω(k)) given by the restriction
of H(Ω) to Ω(k). As in the global setting, the interpolation operator is the
projection into the finite subspace V (X

(k)
N ) spanned by the kernel translates

on X(k)
N . To this subspace we apply the change of basis to obtain the WSVD

basis {v(k)
j }N

(k)

j=1 , where for any k we compute the local coefficient matrix
C(k), coming from the local kernel matrix A(k).

Through the approximated version of the WSVD basis, we can select a
truncation index n(k) ≤ N (k), and build up the local least-squares approx-
imant (or truncated interpolant) that will be used to construct the global
approximant through the technique of the previous Section.

Observe that this algorithm has some further advantage over the global
(approximated) WSVD method. Namely, in the case of severe ill-conditioning
the truncation approach may be over regularizing. Indeed, it has been ob-
served that the WSVD method, when applied globally, is capable to deal
with only a limited instability. In fact, when ε → 0 or when the kernel is
too smooth, the original algorithm needs to leave out too much elements
of the basis, and the resulting approximant may be meaningless. Instead,
when repeatedly applied to the small subdomains Ω(k), the regularizing
effect simply improves the approximation, as shown in the next Section.
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5.1.3 Experiments

We present here two experiments to test our algorithm on two illustrative
problems in dimension d = 2. For both examples we compare the behavior
of two different RBF kernels with different smoothness, namely the Gaus-
sian (which is a C∞ kernel) and the C2 Matérn kernel. In both examples
the test function is the bivariate exponential Franke’s test function, approx-
imated on the unit square Ω = [0, 1]2. The shape parameter ε varies on a
log-spaced grid in [10−4, 102]. The error is measured by means of the root
mean squared error (RMSE) on a equally spaced grid of 40d points in Ω.

In both examples the PU method uses a covering of Ω based on balls
{Ω(k)}Lk=1, where the centers {y(k)}Lk=1 of the balls lie on an equally spaced
grid in Ω and the radii are the same for any k = 1, . . . , L. The points are
organized through a kd-tree, as in [7]. We use N Halton points, where N =
65d, 129d, 257d, which correspond respectively to L = 16d, 32d, 64d. The
common radius of the balls is chosen to be 1/

√
L, so that the boundary of

every patch intersects the centers of the nearby patches.
As a partition of unity we use a superposition of C2 Wendland’s func-

tions, P (k)(x) = ψ(ν‖x− y(k)‖),

ψ(r) = (1− νr)4
+(4νr + 1),

where the shape parameter ν > 0 is scaled to control the support of the
partition. We remark that these choices of Ω(k) and P (k) fulfill the require-
ments on the covering and the partition in order to preserve globally the
order of the local approximation. We use a tolerance τ = 10−14 for the
Lanczos algorithm.

The first example compares the approximation obtained with the new
method with the one obtained with a global application of the approxi-
mated WSVD basis described in Section 4.2. Since we use here a global
approach, the experiment is limited to N = 65d. The results are shown in
Figure 5.1. For a not too small shape parameter, for both kernels, the global
method and the new algorithm behaves in the same way. As ε → 0 the
global method loses accuracy, while the local one is still able to compute an
accurate and stable approximant.

In the second example we compare the behavior of the PU method with-
out local regularization with the new algorithm. Figure 5.2 presents the re-
sults for this test. As expected, there is a first phase where no instability is
present and the two methods behave exactly in the same way. Instead, in
the flat limit case the standard PU method starts to become unstable, while
the stabilized method retains its accuracy and it is able to effectively com-
pute the approximants. The effect is much more evident for the Gaussian
(which is smoother) than for the Matérn kernel.
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Figure 5.1: Comparison between the global approximant computed with
the approximated WSVD basis (dotted lines) and the new method (solid
lines), for the C2 Matérn kernel (left) and the Gaussian kernel (right).
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Figure 5.2: Comparison between the standard PU approximant (dotted
lines) and the new method (solid lines), for the C2 Matérn kernel (left) and
the Gaussian kernel (right).

5.2 Reconstruction of medical images from CT scans

This Section is devoted to present an application of kernel-based gener-
alized interpolation to the problem of medical image reconstruction from
CT scans (see [25]). From a mathematical point of view, this problem can
be translated into the problem of recovering a function, which represents
the unknown image, from the evaluation of a linear transform on certain
points. This operator, which is called the Radon transform, represents the
measurements collected by the medical machine. In our context, this prob-
lem can be interpreted as a standard generalized interpolation problem,
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where the data are provided by the Radon transform itself. The use of ker-
nel methods in this context has been proposed in [15], where radial kernels
are used, and we present here a partial extension of this work.

Although different methods are known and used to solve this problem,
the use of kernel based methods presents some advantage. Namely, while
in standard algorithm one needs to consider a fixed geometry of the data
(called the parallel beam geometry), this new approach allows to recover im-
ages from unorganized samples. This fact can be a starting point in the
research of optimal geometries, which hopefully require less scans to re-
cover a medical image. The content of this Section is a preliminary analysis
of this application, and so far applies only to the Gaussian kernel.

5.2.1 Background facts on the Radon transform

Our goal is the recovery of a medical image, which is represented by an
unknown function f : R2 → R with compact support Ω ⊂ R2. The compact
set is usually assumed to be Ω = [0, 1]2, but this hypothesis is not restrictive.

To recover f , we will consider data coming from its Radon transform,
which is defined, for any t ∈ R, θ ∈ [0, π), as the line integral of f through
the line

xt,θ(s) = (t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)), s ∈ R.

In other words, we have the following definition.

Definition 5.1. For a function f : R2 → R of compact support Ω ⊂ R2, and
f ∈ L1(Ω), the Radon transform R(f)(t, θ), (t, θ) ∈ R× [0, π) can be computed
as

R(f)(t, θ) =

∫ ∞
−∞

f(xt,θ(s))ds,

where
xt,θ(s) = (t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)), s ∈ R.

It is known that the Radon transform possesses an inverse transform,
called the filtered back projection. In other words, the original function f can
be exactly recovered if one knows the full set of samples {R(f)(t, θ)} for
(t, θ) ∈ R× [0, π).

In real-world applications, instead, one collects a set of discrete data
{(Rf)(ti, θj)}, 1 ≤ i ≤ M , 1 ≤ j ≤ N , where {ti}Mi=1 ∈ R and {θj}Nj=1 ∈
[0, π) are a set of discretization points. By the compactness of the support
of f , we have R(f)(t, θ) 6= 0 only for some t, and we are not interested in
collecting a set of vanishing samples. In particular, when Ω = [0, 1]2, it is
customary to assume {ti}Mi=1 ∈ [−

√
2,
√

2].
The numerical implementation of the filtered back-projection leads to

the so called Fourier methods, which are very effective but require the use of
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samples organized in a grid of equally spaced samples. We will consider
instead fully general samples {(ti, θi)}Ni=1 ⊂ [−

√
2,
√

2] × [0, π), which we
denote again as XN , where xi = (ti, θi)i.

5.2.2 Kernel-based reconstruction

The symmetric collocation method of Section 1.5 applied to this problem
has been analyzed in [15]. We recall here this approach.

We look for a function g ∈ H(Ω),

g =
N∑
j=1

cjRyj (K(·, y)), (5.1)

whereRj = δxj ◦ R, that meets the interpolation conditions

Ri(g) =
N∑
j=1

cjRxiR
y
j (K(x, y)) = Ri(f). (5.2)

The coefficients {cj}Nj=1 in the above expansion are determined by the so-
lution of the linear system involving the matrix

(AR)ij = RxiR
y
j (K(x, y)), 1 ≤ i, j ≤ N.

Unfortunately, a direct application of this method leads to a singular prob-
lem.

Proposition 5.2. For each radial kernel K, the matrix AR is singular along the
diagonal.

The Authors propose to overcome the problem by using a kernel de-
pendent weight function w : Ω → R, used as a regularization term in the
second Radon transform. By means of w, they define a regularized Radon
transform

Rw(f)(t, θ) = R(fw)(t, θ) =

∫
R
f(xt,θ(s))w(xt,θ(s))ds,

and consider the problem where the interpolation conditions imposed as

(Rw)i(g) =
n∑
j=1

cj(Rw)xiR
y
j (K(x, y)) = Ri(f).

Moreover, they prove that this reconstruction problem is well posed for a
proper choice of w.
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In the case of the Gaussian kernel, in particular, the idea works as fol-
lows. The weight they considered is in the form

wν(x) = e−ν‖x‖
2
2 , x ∈ R2,

for a shape parameter ν > 0. The entries of the regularized reconstruction
matrix are given by

(Rw)xiR
y
j (K(x, y)) =

π

ε
√
ε2 sin(θi − θj)2 + ν2

exp

[
−ν2

(
t2k +

ε2(tj − ti cos(θi − θj))2

ε2 sin(θi − θj)2 + ν2

)]
. (5.3)

Observe that, in this way, the problem becomes well posed, but we lose
some properties of the standard generalized interpolation approach. In
particular, the kernel matrix is non symmetric, and it is hard to provide
error bounds on the reconstruction error.

5.2.3 Symmetric formulation

Here instead we consider a symmetric weighting of the Radon transform,
that is, both the transforms involved in the definition of the reconstruction
matrix will be regularized by the same weight function. This is equiva-
lent to apply the unweighted Radon transform to a modified version of the
kernel K, i.e.,

RxwRyw(K(x, y)) = RxRy(w(x)K(x, y)w(y)).

This operation on the kernel is well understood, as the following Theorem
shows (see e.g. Corollary 3 in [48, Chapter 2]).

Theorem 5.3. If w : Ω→ R is a non vanishing function,

Kw(x, y) = w(x)w(y)K(x, y)

is a kernel on Ω × Ω. If fw is a function in its native space Hw(Ω), there exist a
function f ∈ H(Ω) such that

fw(x) = w(x)f(x), x ∈ Ω.

Moreover, for fw, gw ∈ Hw(Ω), the inner product (·, ·)Hw ofHw(Ω) is defined as

(fw, gw)Hw =

(
fw
w
,
gw
w

)
.

This means that, by a proper modification of a RBF kernel, we can deal
with the present reconstruction problem. Observe that we remove the ra-
dial symmetry by the kernel, but this is in general not enough to guarantee
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that the functionals Ri are continuous in the native space of the new ker-
nel. A complete analysis of this fact is the object of the paper [14], which is
currently in preparation. Here we show only, through direct computations,
how to treat the Gaussian kernel.

Before computing the Radon transforms of the modified Gaussian ker-
nel, observe that the last Theorem allows us to understand this symmetric
weighted method in the setting of standard kernel-based reconstruction. In
particular, the construction of the Newton basis with a greedy selection of
n ≤ N points is possible here, and we will use it in the following exper-
iments. We use a plain Newton basis here, and not the algorithms devel-
oped in this Thesis, since the evaluations of the following formulas for the
Radon transforms are computationally expensive, and the construction of
our bases slows down too much the computations.

For the Gaussian kernel, we consider the same weight function wν(x) =
exp(−(ν‖x‖)2), ν > 0, for a positive parameter ν > 0. The symmetrically
scaled kernel is defined by the formula:

Kw(x, y) = e−(ε‖x−y‖)2e−(ν‖x‖)2e−(ν‖y‖)2 .

To compute the Radon transform ofKw, we will use the following lemma.

Lemma 5.4. Let c0, c1, c2 be constants, and let c2 < 0. We have∫ ∞
−∞

ec2s+c1s+c0ds =

√
− π
c2
e
c0−

c21
4c2 .

In the following we will denote as nθ the unit vector in R2 defined by
the angle θ ∈ [0, π), i.e., nθ = (cos(θ), sin(θ)), and its orthogonal vector as
n⊥θ = (− sin(θ), cos(θ)). For any point x = (x1, x2) in R2 we have

(x · nθ)2 + (x · nθ)2 = ‖x‖2. (5.4)

The first Radon transform can be computed as follows.

Proposition 5.5. The Radon transformRy[Kε,ν(x, ·)](t, θ) is given by

Ry[Kε,ν(x, ·)](t, θ) =

√
π

ε2 + ν2
eαε,ν(x1,x2;t,θ)

where

αε,ν(x1, x2; t, θ) = −(ε2 + ν2)(‖x‖2 + t2) + 2ε2tx · nθ +
ε4

ε2 + ν2
(x · n⊥θ )2

(5.5)

or, in a more compact form,

αε,ν(x1, x2; t, θ) = − 1

ε2 + ν2

(
ν2(ν2 + 2ε2)‖x‖2 +

ε4

ε2 + ν2

(
ν2 + ε2

ε2
t− x · nθ

)2
)
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Proof. We want to compute the integral∫ ∞
−∞

Kε,ν(x, yt,θ(s))ds.

Since ‖yt,θ(s)‖2 = t2 + s2, the argument of the exponential in the integrand
can be rewritten as follows:

− ν2(‖x‖2 + ‖yt,θ(s)‖2)− ε2‖x− yt,θ(s)‖2

= −(ν2 + ε2)(‖x‖2 + ‖yt,θ(s)‖2) + 2ε2x · yt,θ(s)
= −(ν2 + ε2)(‖x‖2 + t2 + s2) + 2ε2(s(−x1 sin(θ) + x2 cos(θ))

+ t(x1 cos(θ) + x2 sin(θ)))

= −(ν2 + ε2)(‖x‖2 + t2 + s2) + 2ε2(sx · n⊥θ + tx · nθ).

To go back to the situation of Lemma 5.4, we define the coefficients

c2 = −(ν2 + ε2)

c1 = 2ε2x · n⊥θ
c0 = −(ν2 + ε2)(‖x‖2 + t2) + 2ε2tx · nθ

and, since c2 < 0, we can conclude that

Ry[Kε,ν(x, ·)](t, θ) =

√
− π
c2
e
c0−

c21
4c2 .

In particular, √
− π
c2

=

√
π

ε2 + ν2

and

c0 −
c2

1

4c2
= −(ν2 + ε2)(‖x‖2 + t2) + 2ε2tx · nθ +

ε4(x · n⊥θ )2

ν2 + ε2
.

This term can be rewritten using (5.4) to eliminate n⊥θ and obtain the second
formula of the statement:

c0 −
c2

1

4c2
=

= −(ν2 + ε2)(‖x‖2 + t2) + 2ε2tx · nθ +
ε4

ν2 + ε2
(‖x‖2 − (x · nθ)2)

= −
(
ν2 + ε2 − ε4

ε2 + ν2

)
‖x‖2 − (ν2 + ε2)t2 + x · nθ

(
2ε2t− ε4

ν2 + ε2
x · nθ

)
= −ν

2(ν2 + 2ε2)

ε2 + ν2
‖x‖2 −

(√
ν2 + ε2t− ε2

√
ν2 + ε2

(x · nθ)
)2

= − 1

ε2 + ν2

(
ν2(ν2 + 2ε2)‖x‖2 +

ε4

ε2 + ν2

(
ν2 + ε2

ε2
t− x · nθ

)2
)
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We can now apply a second Radon transform to the previous result, and
we obtain the final kernel as follows.

Proposition 5.6. The Radon transformRx[Ry[Kε,ν(·, ·)](t, θ)](r, φ) is given by

Rx[Ry[Kε,ν(·, ·)](t, θ)](r, φ) =
π√

γε,ν(θ − φ)
eβεν(t,r,θ−φ)

where

βεν(t, r, η) = −ν
2(2ε2 + ν2)

γε,ν(η)

(
(ε2 + ν2)(r2 + t2)− 2ε2rt cos(η)

)
γε,ν(η) = (ε2 + ν2)2 − ε4 cos2(η).

Proof. We want to compute the integral∫ ∞
−∞
Ry[Kε,ν(xr,φ(s), ·)](t, θ)ds,

and we will use the formula (5.5). First, observe that

xr,φ(s) · nθ = cos(θ)(r cos(φ)− s sin(φ)) + sin(θ)(r sin(φ) + s cos(φ))

= r cos(θ − φ) + s sin(θ − φ),

and similarly xr,φ(s) · n⊥θ = s cos(θ − φ)− r sin(θ − φ). Thus, the argument
of the exponential in the integral is

− (ν2 + ε2)(‖xr,φ(s)‖2 + t2) + 2ε2txr,φ(s) · nθ +
ε4(xr,φ(s) · n⊥θ )2

ν2 + ε2

= −(ν2 + ε2)(s2 + r2 + t2) + 2ε2t(r cos(θ − φ) + s sin(θ − φ))+

+
ε4

ε2 + ν2
(s cos(θ − φ)− r sin(θ − φ))2.

Now we can repeat the same computation as in the previous Lemma and
define

c2 = −(ε2 + ν2) +
ε4

ε2 + ν2
cos(θ − φ)2

c1 = 2ε2 sin(θ − φ)

(
t− ε2

ε2 + ν2
r cos(θ − φ)

)
c0 = −(ε2 + ν2)(r2 + t2) + 2ε2rt cos(θ − φ) +

ε4

ε2 + ν2
r2 sin(θ − φ)2,

with

c2 ≤ −(ε2 + ν2) +
ε4

ε2 + ν2
= −ν

2(ν2 + 2ε2)

ε2 + ν2
< 0.
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Thanks to Lemma 5.4 and Lemma 5.5 we have

Rx[Ry[Kε,ν(·, ·)](t, θ)](r, φ) =

√
π

ε2 + ν2

√
− π
c2
e
c0−

c21
4c2 .

The coefficient can be rewritten as√
π

ε2 + ν2

√
π

−c2
=

π√
(ε2 + ν2)4 − ε4 cos(θ − φ)2

=
π√

γε,ν(θ − φ)
,

while the argument of the above exponential is

c0 −
c2

1

4c2
= −(ε2 + ν2)(r2 + t2) + 2ε2rt cos(θ − φ) +

ε4

ε2 + ν2
r2 sin(θ − φ)2

+
ε4 sin(θ − φ)2

(
t− ε2

ε2+ν2
r cos(θ − φ)

)2

(ε2 + ν2)− ε4

ε2+ν2
cos(θ − φ)2

,

i.e.,

γε,ν(θ − φ)

(
c0 −

c2
1

4c2

)
=

= γε,ν(θ − φ)

(
−(ε2 + ν2)(r2 + t2) + 2ε2rt cos(θ − φ) +

ε4

ε2 + ν2
r2 sin(θ − φ)2

)
+ ε4(ε2 + ν2) sin(θ − φ)2

(
t− ε2

ε2 + ν2
r cos(θ − φ)

)2

= γε,ν(θ − φ)

(
−(ε2 + ν2)(r2 + t2) + 2ε2rt cos(θ − φ) +

ε4

ε2 + ν2
r2 sin(θ − φ)2

)
+ ε4(ε2 + ν2) sin(θ − φ)2

(
t2 − 2

ε2

ε2 + ν2
rt cos(θ − φ) +

ε4

(ε2 + ν2)2
r2 cos(θ − φ)2

)
.

Now c0 −
c21
4c2

can be written in compact form by collecting the coefficients
of the terms corresponding to r2, t2 and rt, say cr, ct and crt, respectively.
Their values are

cr = −ν
2(ε2 + ν2)(2ε2 + ν2)

γε,ν(θ − φ)

ct = cr

crt =
2ε2ν2(2ε2 + ν2) cos(θ − φ)

γε,ν(θ − φ)
,

and they give the symmetric formula of the statement.
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Indeed,

γε,ν(θ − φ)cr

= γε,ν(θ − φ)

(
−(ε2 + ν2) +

ε4

ε2 + ν2
sin(θ − φ)2

)
+

ε8

(ε2 + ν2)
sin(θ − φ)2 cos(θ − φ)2

= ((ε2 + ν2)2 − ε4 cos2(θ − φ))

(
−(ε2 + ν2) +

ε4

ε2 + ν2
sin(θ − φ)2

)
+

ε8

(ε2 + ν2)
sin(θ − φ)2 cos(θ − φ)2

= −(ε2 + ν2)3 + ε4(ε2 + ν2) cos2(θ − φ) + ε4(ε2 + ν2)2 sin(θ − φ)2

− ε8

ε2 + ν2
sin(θ − φ)2 cos(θ − φ)2 +

ε8

(ε2 + ν2)
sin(θ − φ)2 cos(θ − φ)2

= −(ε2 + ν2)3 + ε4(ε2 + ν2)

= (ε2 + ν2)(ε4 − ε4 − ν4 − 2ε2ν2)

= −ν2(ε2 + ν2)(ν2 − 2ε2),

and

γε,ν(θ − φ)ct

= −γε,ν(θ − φ)(ε2 + ν2) + ε4(ε2 + ν2) sin(θ − φ)2

= −((ε2 + ν2)2 − ε4 cos2(θ − φ))(ε2 + ν2) + ε4(ε2 + ν2) sin(θ − φ)2

= −(ε2 + ν2)3 + ε4(ε2 + ν2)

= −ν2(ε2 + ν2)(ν2 − 2ε2),

and

γε,ν(θ − φ)crt

= γε,ν(θ − φ)2ε2 cos(θ − φ)− 2ε6 sin(θ − φ)2 cos(θ − φ)

= 2ε2 cos(θ − φ)
(
(ε2 + ν2)2 − ε4 cos2(θ − φ)− ε4 sin(θ − φ)2

)
= 2ε2 cos(θ − φ)

(
ν2(2ε2 + ν2)

)
.

5.2.4 Experiments

As an example, we use here our method to reconstruct some phantom, i.e.,
some reference images that are often used to test image reconstruction al-
gorithms. At this point, these experiments are intended only to show exam-
ples of reconstructions in a fixed setting, while further and more accurate
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tests are still under development. The three phantoms are depicted in the
left of Figure 5.3, and they are called the bulls-eye, crescent-shape and Shepp-
Logan (see [25]). We consider phantoms defined over a grid of K2 pixels,
K = 256, and we reconstruct them with our method with N = M = 64
samples in the parallel-beam geometry, and n = 1500. The shape parame-
ters are kept fixed, with values ε = 26 and ν = 0.3. The reconstruction is
shown on the right column of Figure 5.3.
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Figure 5.3: Examples of reconstruction from Radon data (left: true phan-
toms, right: reconstructed phantoms). From top to bottom: bull-eye phan-
tom, crescent-shape phantom, Sheep-Logan phantom.
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Appendix A

Construction of native spaces
from sequences

This Appendix is devoted to present a different way of constructing the
native spaceH(Ω).

We will at first review some result first presented in [54]. Namely, in-
stead of starting from a kernel K to build up a Hilbert space as in Chapter
1, we will consider first a sequence of functions in L2(Ω) and a sequence
of weights, such that they satisfy a summability assumption that will be
introduced. This decomposition will then give rise to a kernel through a
Mercer series, and to its native space.

This construction allows us to analyze to some extent the relation be-
tween the native spaces coming from the same set of eigenfunctions, but
with different weights, or eigenvalues. Under certain assumptions that will
be precisely stated, the two native spaces satisfy an embedding condition,
and relations between the corresponding norms are derived.

Once two different native spaces are constructed, it is possible to re-
trieve some of the results of Section 2.1 by replacing L2(Ω) with a kernel-
based space. In particular, the relation between projectors and subspaces is
analyzed.

With these tools, it comes easy to partially extend the results of Section
2.2, as is explained in Section 2.5.

We will slightly change the notation used so far in order to take into
account the dependence of a kernel on its expansion.

A.1 Native space from sequences

We present here the construction introduced in [54] to build up a kernel
from a particular expansion.

Given a compact set Ω ⊂ Rd, we consider an orthonormal system {ϕj}j
in L2(Ω) and a set of positive and non increasing weights {λj}j . The se-

89
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quence of the weights is said to be admissible with respect to the orthonor-
mal system if they satisfy∑

j

λjϕ
2
j (x) <∞, for all x ∈ Ω. (A.1)

For admissible weights, it is well defined on Ω the kernel

Kλ(x, y) =
∑
j

λjϕj(x)ϕj(y).

Moreover, if the space spanned by {ϕj}j separates points in Ω, the kernel
is strictly positive definite (see [54]). We denote by Hλ(Ω) and (·, ·)λ the
corresponding native space and inner product.

With such a kernel we can repeat the construction of Chapter 1. Namely,
for any admissible sequence {λj}j , since {ϕj}j ⊂ L2(Ω) the native space
Hλ(Ω) is continuously embedded into L2(Ω) (see [54, Theorem 7]) and the
kernel Kλ defines the integral operator

Tλ : L2(Ω)→ L2(Ω)
Tλf(x) =

∫
ΩKλ(x, y)f(y)dy,

having eigenfunctions {ϕj}j and eigenvalues {λj}j .
The operator Tλ is the adjoint of the embedding ofHλ(Ω) in L2(Ω), i.e.,

(Tλf, g)Hλ = (f, g)L2 for all f ∈ L2(Ω), g ∈ Hλ(Ω),

and in particular it is injective (i.e., Tλf = 0 if and only if f = 0 a.e. in Ω).
The sequence of functions {

√
λjϕj}j is an orthonormal basis ofHλ(Ω), and

the native spaces is

Hλ(Ω) =

f ∈ L2(Ω) :
∑
j

(f, ϕj)L2

λj
<∞

 . (A.2)

A.2 Relation between different native spaces

Given another sequence {µk}k that satisfies the summability condition (A.1)
with the same orthonormal system, we can define also the kernel Kµ.

Moreover, under further assumptions on the weights sequences, some
relation between the corresponding native spaces can be established.

First, if there is an index j̄ such that λj ≤ µj for all j > j̄, by (A.2) we
have Hλ(Ω) ⊂ Hµ(Ω), and the embedding is continuous. A particular case
is when λj ≤ µj for all j, and from now on we will assume to be in this
situation for simplicity of exposition.
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Second, the embedding can be compact. Namely, from the two weights
sequences we can define the further sequence {νj}j := {λj/µj}j . If also this
new sequence is admissible with respect to {ϕj}j , the kernel Kλ/µ is well
defined and we can consider the operator Tλ/µ having eigenvalues given
by {νj}j and the same eigenfunctions as before. Under this condition we
have

Tλ/µ[Kµ(·, y)](x) = Kλ(x, y). (A.3)

To simplify the discussion we make the further assumption that

λj+1

µj+1
≤ λj
µj

for all j, (A.4)

so that the eigenfunctions of the operator Tλ/µ are sorted as {λj}j and {µj}j .
If this condition is not satisfied, it suffices to sort {νj}j , without changing
the order of {λj}j and {µj}j .

As before, the operator Tλ/µ is the adjoint of the embedding of Hλ(Ω)
intoHµ(Ω), i.e.,

(f, g)µ = (Tλ/µf, g)λ for all f ∈ Hµ(Ω), g ∈ Hλ(Ω),

and in particular the norms satisfy

‖f‖µ ≤
λ1

µ1
‖f‖λ for all f ∈ Hλ(Ω).

with equality for f = ϕ1.
Observe that the space L2(Ω) is the limiting case corresponding to unit

weights, which are not admissible since
∑

j ϕ
2
j (x) is not bounded on Ω (oth-

erwise L2(Ω) itself would be a reproducing kernel space, see Lemma 2.2).
But the last inequality can be understood in this case as the standard em-
bedding inequality, in the sense that

‖f‖L2 ≤
√
λ1 ‖f‖λ, for all f ∈ Hλ(Ω),

again with equality for f = ϕ1.

A.3 Projectors and subspaces

Under the above conditions on {λj}j , {µj}j and {λj/µj}j , we can prove
some of the results of the paper, with Hµ(Ω) playing the role of the L2(Ω)
space.

First, we have the following version of Lemma 2.9.

Lemma A.1. Any closed subspace V ⊂ Hλ(Ω) has a unique basis that isHµ(Ω)-
orthonormal andHλ(Ω)-orthogonal.
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Proof. The proof is the same of the one of Lemma 2.9, and works by restric-
tion of Tλ/µ on V .

Moreover, for any n dimensional subspace Vn ⊂ Hλ we can define on
Hλ(Ω) the projectors

ΠL2,Vnf =
∑n

j=1(f, wj)L2wj , f ∈ Hλ(Ω),

ΠHµ,Vnf =
∑n

j=1(f, uj)µuj , f ∈ Hλ(Ω),

ΠHλ,Vnf =
∑n

j=1(f, vj)λvj , f ∈ Hλ(Ω),

where the wj , uj and vj are L2(Ω)-, Hµ(Ω)- and Hλ(Ω)- orthonormal basis
functions of Vn, respectively. As in Lemma 2.5, a subspace for which two
of the above projectors coincide is necessarily an eigenspace.

Lemma A.2. If two of the projectors coincide on Vn, then Vn is spanned by n
eigenfunctions, and the three projectors coincide on Hλ(Ω) if Vn is spanned by n
eigenfunctions.

Proof. The proof is the same of the the one of Lemma 2.5, and it works
by proving that the double orthogonal (in Hµ(Ω) and Hλ(Ω)) basis of Vn
can be extended to be a basis of all of Hλ(Ω) with the same orthogonality
properties if and only if Vn is spanned by eigenfunctions of Tλ/µ.
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