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Abstract
We establish a quenched local central limit theorem for the dynamic random conduc-
tance model on Z

d only assuming ergodicity with respect to space-time shifts and a
moment condition. As a key analytic ingredient we show Hölder continuity estimates
for solutions to the heat equation for discrete finite difference operators in divergence
form with time-dependent degenerate weights. The proof is based on De Giorgi’s iter-
ation technique. In addition, we also derive a quenched local central limit theorem for
the static random conductance model on a class of random graphs with degenerate
ergodic weights.
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1 Introduction

One of the most studied models for random walks in random environments is the ran-
dom conductance model (RCM). Objectives of particular interest are homogenisation
results such as invariance principles or stronger local limit theorems for the associated
heat kernel. For instance, in [5] a local limit theorem has been proven for random
walks under general ergodic conductances satisfying a certain moment condition.

For the dynamic RCM evolving in a time-varying random environment a local
limit theorem has been stated in [1] which required uniform ellipticity, meaning that
the conductances are almost surely uniformly bounded and bounded away from zero,
as well as polynomial mixing, i.e. the polynomial decay of the correlations of the
conductances in space and time. In this paper we significantly relax these assumptions
and show a quenched local limit theorem for the dynamic RCMwith degenerate space-
time ergodic conductances that only need to satisfy a moment condition. In contrast to
many results on various models for random walks in dynamic random environments,
in the present paper the environment is not assumed to be uniformly elliptic or mixing
or Markovian in time and we also do not require any regularity with respect to the
time parameter.

The proof exploits a quenched invariance principle established under the same
assumptions in [3]. In addition and original to this paper, some Hölder continuity in
the macroscopic scale for the heat kernel is required. For the proof we extend the
De Giorgi iteration technique to discrete finite-difference divergence-form operators
with time-dependent degenerate coefficients. De Giorgi iteration is an alternative to
the well-known Moser iteration. The latter has been implemented for the discrete
graph setting in [5,24]. It turns out that the De Giorgi’s iteration method performs
far more efficiently for proving Hölder regularity of time-space harmonic functions.
On one hand, it avoids the need for a parabolic Harnack inequality in contrast to the
arguments in [5,24], and it also makes the proof significantly simpler and shorter.

1.1 Setting andmain result

Consider the Euclidean lattice, (Zd , Ed), for d ≥ 2, whose edge set, Ed , is given by
the set of all non-oriented nearest neighbour bonds, that is Ed = {{x, y} : x, y ∈
Z
d , |x − y| = 1}. The graph (Zd , Ed) is endowed with a family of time-dependent

positive weights ω ≡ {ωt (e) : e ∈ Ed , t ∈ R}. We refer to ωt (e) as the conductance
of an edge e at time t . Let � be the set of measurable functions from R to (0,∞)Ed

equipped with a σ -algebra F and let P be a probability measure on (�,F). We write
E for the expectation with respect to P. Upon � we consider the d + 1-parameter
group of translations (τt,x : (t, x) ∈ R× Z

d) given by

τt,x : � → �,
{
ωs(e) : (s, e) ∈ R× Ed

} �−→ {
ωt+s(e + x) : (s, e) ∈ R× Ed

}
.

(1.1)
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Assumption 1.1 (i) P is ergodic and stationary with respect to space-time shifts, that
is, for all x ∈ Z

d , t ∈ R, P ◦ τ−1
t,x = P , and P[A] ∈ {0, 1} for any A ∈ F such

that P[A	τt,x (A)] = 0 for all x ∈ Z
d , t ∈ R.

(ii) For every A ∈ F the mapping (ω, t, x) �→ 1A(τt,xω) is jointly measurable with
respect to the σ -algebra F ⊗ B(R)⊗ P(Zd).

(iii) E
[
ωt (e)

]
< ∞ and E

[
ωt (e)−1

]
< ∞ for any e ∈ Ed and t ∈ R.

For a given ω ∈ � and for s ∈ R and x ∈ Z
d , let Pω

s,x be the probability measure
on the space of Z

d -valued càdlàg functions on R, under which the coordinate process
X ≡ (Xt : t ∈ R) is the time-inhomogeneous Markov process on Z

d starting in x at
time s with time-dependent generator (in the L2-sense) acting on bounded functions
f : Z

d → R as

(Lω
t f

)
(x) =

∑

y:|x−y|=1

ωt ({x, y})
(
f (y) − f (x)

)
.

In other words, X is the continuous-time randomwalk with time-dependent jump rates
given by the conductances, i.e. the randomwalk X chooses its next position at random
proportionally to the conductances. Note that the total jump rate out of any lattice site
is not normalised, and the law of the sojourn time of X depends on its time-space
position. Therefore, X is often called the variable speed random walk (VSRW). It is
known that under Assumption 1.1-(iii) the process X does not explode, i.e. there are
only finitely many jumps in finite time, see [3, Lemma 4.1]. Note that the counting
measure is a time-independent invariant measure for X . For x, y ∈ Z

d and t ≥ s, we
denote pω(s, x; t, y) the heat kernel of (Xt : t ≥ s), that is

pω(s, x; t, y) := Pω
s,x

[
Xt = y

]
.

During the last decade, considerable effort has been invested in the derivation of a
quenched functional central limit theorem (QFCLT) or quenched invariance principle,
see the surveys [15,32] (and references therein), and [4,13,27] for more recent results
on the static RCM. For RCMs including long-range jumps a QFCLT has been recently
established in [16] . For the time-dynamic RCMwith ergodic degenerate conductances
the following QFCLT has been shown in [3]. We refer to [17] for a closely related
result including random walks on dynamical bond percolation.

Assumption 1.2 There exist p, q ∈ (1,∞] satisfying
1

p − 1
+ 1

(p − 1)q
+ 1

q
<

2

d

such that for any e ∈ Ed and t ∈ R,

E
[
ωt (e)

p] < ∞ and E
[
ωt (e)

−q] < ∞.
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1148 S. Andres et al.

Theorem 1.3 (QFCLT [3]) Suppose that Assumptions 1.1 and 1.2 hold. Then, for P-
a.e. ω, the process X (n) ≡ (

X (n)
t := n−1Xn2t : t ≥ 0

)
converges (under Pω

0 ) in law
towards a Brownian motion on R

d with a deterministic non-degenerate covariance
matrix �2.

As our main result we establish a quenched local limit theorem (or quenched local
CLT) for X , which states that, P-a.s., under diffusive scaling the rescaled transition
densities converge uniformlyover compact sets towards theGaussian transition density
of the Brownian motion with covariance matrix �2 appearing as the limit process in
Theorem 1.3. That Gaussian density will be denoted

kt (x) ≡ k�
t (x) := 1

√
(2π t)d det�2

exp
(
−x · (�2)−1x/2t

)
. (1.2)

Theorem 1.4 (Quenched local CLT) Suppose that Assumptions 1.1 and 1.2 hold. For
any T2 > T1 > 0 and K > 0,

lim
n→∞ sup

|x |≤K
sup

t∈[T1,T2]
∣∣nd pω(0, 0; n2t, �nx)− kt (x)

∣∣ = 0, for P -a.e. ω.

In general, a local limit theorem is a stronger statement than a FCLT. In fact, even
in the case of time independent i.i.d. conductances, where the QFCLT is known to
hold [2], the heat kernel may behave subdiffusively due to a trapping phenomenon
(see [14]), so that a local limit theorem may fail in general. Nevertheless it does hold,
for instance, in the case of uniformly elliptic conductances or for random walks on
supercritical i.i.d. percolation clusters, see [11]. We refer to [18] for sharp conditions
on the tails of i.i.d. conductances at zero for Harnack inequalities and a local limit
theorem to hold. Stronger quantitative homogenization results for heat kernels and
Green functions can be established by using techniques from quantitative stochastic
homogenization, see [8, Chapters 8–9] for details in the uniformly elliptic case. This
technique has been adapted to the VSRWon static percolation clusters in [22], and it is
expected that it also applies to other degenerate models. In the general ergodic setting
it is known that moment conditions are necessary even for the QFCLT to hold (cf.
[9]). In fact, in [5,7] quenched local limit theorems have been derived under moment
conditions that turned out to be optimal in certain cases. A corresponding result for a
class of symmetric diffusions has been obtained in [19].

Since the static RCM is naturally included in the time-dynamic model, the moment
condition in Assumption 1.2 is not optimal for both, the QFCLT and local limit the-
orem. For the static VSRW, a QFCLT holds in d = 2 already under the moment
condition with p = q = 1 (see [15]), a local limit theorem has recently been shown
in [12] under the moment condition with 1/p + 1/q < 2/(d − 1), which is a weaker
condition on p and q as the one in Assumption 1.2.

Relevant examples for dynamic RCMs include random walks in an environment
generated by some interacting particle systems like zero-range or exclusion processes,
cf. [35]. Some on-diagonal heat kernel upper bounds for a degenerate time-dependent
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conductances model are obtained in [35]. Full two-sided Gaussian estimates are
known in the uniformly elliptic case for the VSRW [25] or for constant speed walks
under effectively non-decreasing conductances [26]. However, unlike for static envi-
ronments, two-sided Gaussian heat kernel bounds are much less regular and some
pathologies may arise as they are not stable under perturbations, see [29]. Moreover,
such bounds are expected to be governed by a time-dynamic version of the intrinsic
distance whose exact form in a degenerate setting is unknown (cf. e.g. [6] for some
results on the static RCM). These facts make the derivation of Gaussian bounds for
the dynamic RCM with unbounded conductances a subtle open challenge.

Finally, let us remark that there is a link between the time dynamic RCM and
Ginzburg-Landau ∇ϕ interface models as such random walks appear in the so-called
Helffer-Sjöstrand representation of the space-time covariance in these models (cf.
[7,25]). In this context, the annealed heat kernel of such a dynamic RCM is relevant.
Although the quenched version in Theorem 1.4 does not directly imply an annealed
local limit theorem, such a result has recently been shown in [7] under a stronger
moment condition (the proof relies on the quenched version in Theorem 1.4), which is
then applied in [7, Section 5] to obtain a scaling limit for the space-time covariances
in the Ginzburg-Landau ∇ϕ model. This result also applies to interface models with
certain convex but not strictly convex potentials.

1.2 Themethod

The proof of Theorem1.4 has two non-trivialmain ingredients, the invariance principle
in Theorem 1.3 and a Hölder regularity estimate for the heat kernel. For the latter it
is common to use a purely analytic approach and to interpret the heat kernel as a
fundamental solution of the heat equation

(∂t − Lω
t )u = 0. (1.3)

Then the aim becomes a regularity estimate at large scales for solutions to the parabolic
Eq. (1.3) with weights ω which are not uniformly bounded away from zero and
infinity. As observed in (2.3) below, Lω

t f (x) = −∇∗(ωt∇ f ) is in divergence form
and thus it may be regarded as the discrete analogue to the operator (La

t f )(x) =∑d
i, j=1 ∂xi

(
ai j (t, x)∂x j f (x)

)
, acting on functions on R

d , where a = (ai j (t, x)) is
a time-dependent symmetric positive definite matrix. The question about regularity
of solutions to the continuous heat equation (∂t − La

t )u = 0 is very classical. The
first results appeared independently in the influential works by De Giorgi [23] and
Nash [36]. They showed that solutions to elliptic or parabolic problems are Hölder
continuous if the coefficient matrix a is uniformly elliptic. Later, a new and farther
reaching proof was provided byMoser [34]. In fact, nowadays the by farmost common
approach is to deduce Hölder regularity from a parabolic Harnack inequality (PHI)
derived by Moser’s iteration technique. In the continuous setting this has been imple-
mented in [31] for parabolic equations with time-dependent degenerate coefficients.
In the case of static and normalised weights on graphs, the approach has been used
in [24] for uniformly elliptic weights and in [5] for degenerate weights satisfying an
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integrability condition. However, in the present setting the approach fails. Indeed, the
most difficult step in the proof of the PHI is to link a certain 
α-norm of u with its

−α-norm (cf. [5, Section 4.2] or [24, Section 2.4]). Those arguments require max-
imal inequalities on a whole range of space-time cylinders. Unless the weights are
normalised, due to certain effects on discrete spaces such maximal inequalities can
only be derived between time-space cylinders on certain scales (manifested in the
lower bound on σ − σ ′ in the maximal inequality in Theorem 2.7 below), which is
not sufficient to derive a PHI.

To circumvent those obstructions we take a different route and revisit the original
method of De Giorgi [23] and transfer it to the discrete Eq. (1.3) on a certain class of
graphs while we allow the weights ω to be unbounded. However, in a central step in
[23, Lemma II], see also [33, Equation (5.5)], the level sets of a solution are controlled
by an application of an isoperimetric inequality, which fails in our setting of a discrete
gradient associated with the non-local operator Lω

t . Instead, following an idea in [39],
we control the level sets of a solution u to (1.3) by bounding their sizes in terms of
(− ln u)+ (see Lemmas 2.12 and 2.13 below). Then, the key result is an oscillation
inequality stated in Theorem2.4 below,which directly impliesHölder regularity. Since
we do not assume any uniform upper or lower bound on the conductancesωt (x, y), the
global upper and lower bounds onωt (x, y) need to be replaced by certain integrability
conditions onωt (x, y) and 1/ωt (x, y). Although this procedure does not require a full
PHI, it still provides a weak PHI, see Theorem 2.14 below.

1.3 Randomwalks on random graphs

As an additional result we derive in Sect. 5 a local limit theorem for random walks
evolving on a random graph under static ergodic random conductances satisfying a
similar moment condition, see Theorem 5.6 below. Our assumptions cover a certain
class of random graphs including supercritical i.i.d. percolation clusters and clusters in
percolation models with long range correlations, see e.g. [28,38]. The corresponding
QFCLT has been shown in [27]. In fact, the oscillation inequality in Theorem 2.4 is
sufficiently robust so that Theorem 5.6 can be derived from it by similar arguments as
Theorem 1.4.

1.4 Structure of the paper

In Sect. 2 we implement the De Giorgi iteration and show the oscillation inequality. In
Sect. 3 we establish in Theorem 3.1 a local limit theorem for random walks on a class
of subgraphs of Z

d , provided a Hölder continuity estimate at large scales holds. Then
this is used to show Theorem 1.4 in Sect. 4. The result for random walks on random
graphs is discussed in Sect. 5. “Appendix 1” contains a technical lemma needed in the
proofs, and in “Appendix 1” we verify the forward and backward equations for the
transition semigroup of X .
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2 De Giorgi iteration on graphs

2.1 Setting and notation

In this section we will work in a more general deterministic framework. We consider
an infinite, connected, locally finite graph G = (V , E) with vertex set V and non-
oriented edge set E . We write x ∼ y if {x, y} ∈ E . We endow the graph (V , E) with
time-dependent, positive weights ω = {ωt (e) ∈ (0,∞) : e ∈ E, t ∈ R}, where for
each e ∈ E the map t �→ ωt (e) is assumed to be measurable. Next we introduce the
time-dependent finite-difference operator

Lω
t f (x) =

∑

y∼x

ωt ({x, y})
(
f (y) − f (x)

)
, t ∈ R, x ∈ V , (2.1)

acting on bounded functions f : V → R. Further, we define the measures μω
t and νω

t
on V by

μω
t (x) :=

∑

y∼x

ωt ({x, y}) and νω
t (x) :=

∑

y∼x

1

ωt ({x, y}) .

We endow (V , E) with the counting measure that assigns to any A ⊂ V the number
|A| of elements in A. Moreover, we denote by B(x, r) := {y ∈ V : d(x, y) ≤
�r} the closed ball with center x and radius r with respect to the natural graph
distance d, and for a set A ⊂ V we define its boundary by ∂A := {x ∈ A : ∃ y ∈
V \ A such that {x, y} ∈ E}. For functions f : A → R, where either A ⊂ V or
A ⊂ E , the 
p-norm ‖ f ‖


p
(A) will be taken with respect to the counting measure.

The corresponding scalar products in 
2(V ) and 
2(E) are denoted by 〈·, ·〉
2(V ) and
〈·, ·〉
2(E), respectively. For anynon-empty, finite B ⊂ V and p ∈ (0,∞),we introduce
space-averaged norms on functions f : B → R by

∥∥ f
∥∥p,B :=

(
1

|B|
∑

x∈B
| f (x)|p

)1/p
.

Moreover, for any non-empty compact interval I ⊂ R and any finite B ⊂ V and
p, p′ ∈ (0,∞), we define space-time-averaged norms on functions u : I × B → R

by

∥∥u
∥∥
p,p′,I×B :=

(
1

|I |
∫

I

∥∥ut
∥∥p′
p,B dt

)1/p′
:=

(
1

|I |
∫

I

(
1

|B|
∑

x∈B
|ut (x)|p

)p′/p
dt

)1/p′

and ‖u‖p,∞,I×B := supt∈I ‖ut‖p,B , where ut (·) := u(t, ·) for any t ∈ I .

123
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Next we need to introduce some discrete calculus. For f : V → R and F : E → R

we define the operators ∇ f : E → R and ∇∗F : V → R by

∇ f (e) := f (e+)− f (e−), and ∇∗F(x) :=
∑

e:e+= x

F(e) −
∑

e:e−= x

F(e),

where for each non-oriented edge e ∈ E we specify one of its two endpoints as its
initial vertex e+ and the other one as its terminal vertex e−. Nothing of what will
follow depends on the particular choice. Since

〈∇ f , F
〉

2(E)

= 〈
f ,∇∗F

〉

2(V )

for all

f ∈ 
2(V ) and F ∈ 
2(E), ∇∗ can be seen as the adjoint of ∇. Notice that in the
discrete setting the product rule reads

∇( f g) = av( f )∇g + av(g)∇ f , (2.2)

where av( f )(e) := 1
2 ( f (e

+) + f (e−)). We observe that the operator Lω
t defined

in (2.1) has the form

Lω
t f (x) = −∇∗(ωt∇ f )(x). (2.3)

For any t ∈ R, the time-dependent Dirichlet form associated with Lω
t is given by

Eω
t ( f , g) := 〈

f ,−Lω
t g

〉

2(V )

= 〈∇ f , ωt∇g
〉

2(E)

, (2.4)

and we set Eω
t ( f ) := Eω

t ( f , f ).
Finally, throughout the paper, we write c to denote a positive, finite constant which

may change on each appearance. Constants denoted by Ci will remain the same. In
this section we make the following assumptions on the graph (V , E).

Assumption 2.1 Let d ≥ 2. There exist constants creg,Creg,CS1 ,CP ∈ (0,∞) and
CW ∈ [1,∞) such that for all x ∈ V the following hold.

(i) Volume regularity of order d for large balls. There exists N1(x) < ∞ such that
for all n ≥ N1(x),

creg n
d ≤ |B(x, n)| ≤ Creg n

d . (2.5)

(ii) Sobolev inequality. There existd ′ ≥ d and N2(x) < ∞ such that for alln ≥ N2(x),

∥∥u
∥∥
d ′/(d ′−1),B(x,n) ≤ CS1

n

|B(x, n)|
∥∥∇u∥∥


1(E), (2.6)

for every function u : V → R with supp u ⊂ B(x, n).
(iii) Weak Poincaré inequality. There exists N3(x) < ∞ such that for all n ≥ N3(x),

∑

y∈B(x,n)

∣∣u(x)− (u)N
∣∣ ≤ CP n

(
1+ |B(x, n)|

|N |
) ∑

y,y′∈B(x,CWn)

y∼y′

|∇ut ({y, y′}|

(2.7)
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Quenched local limit theorem for randomwalks among… 1153

for every u : V → R and N ⊂ B(x, n) where (u)N := 1
|N |

∑
y∈N u(y).

Remark 2.2 (i) The Euclidean lattice, (Zd , Ed), satisfies Assumption 2.1 with d ′ = d
and N1(x) = N2(x) = N3(x) = 1.

(ii) Suppose that Assumption 2.1-(i) holds. Then the Sobolev inequality in 2.6 follows
from an isoperimetric inequality for large sets, see [27, Proposition 3.5]. The weak
Poincaré inequality in (2.7) follows from a classical local 
1-Poincaré inequality,
which in turn can be obtained from a (weak) relative isoperimetric inequality by
applying a discrete version of the co-area formula, see [37, Lemma 3.3.3].

Next we recall that Assumption 2.1 implies a weighted space-time Sobolev inequality
for functions with compact support. Noting that d ′ ≥ d ≥ 2 we set

ρ ≡ ρ(d ′, q) = d ′

d ′ − 2+ d ′/q
. (2.8)

Proposition 2.3 (Space-time Sobolev inequality) Suppose that Assumption 2.1-(i) and
(ii) hold for some d ′ ≥ d. Let I ⊂ R be a compact interval. Then, for any q ∈ [1,∞),
q ′ ∈ [1,∞] there exists CS ≡ CS(d, θ, q) < ∞ such that for any x ∈ V and
n ≥ N1(x) ∨ N2(x),

∥∥u2
∥∥

ρ,q ′/(q ′+1),I×B(x,n) ≤ C S n
2
∥∥νω

∥∥
q,q ′,I×B(x,n)

(
1

|I |
∫

I

Eω
t (ut )

|B(x, n)| dt
)

(2.9)

for every u : R × V → R with supp u ⊂ I × B(x, n). If θ > 0, then (2.9) holds for
q = ∞.

Proof See [3, Proposition 5.4]. ��

2.2 Hölder regularity estimates

Our main objective in this section is to implement De Giorgi’s iteration scheme in
the graph setting with time-dependent degenerate weights in order to derive a Hölder
regularity estimate for solutions of parabolic equations. Write

oscQ u := sup
(t,x)∈Q

u(t, x)− inf
(t,x)∈Q u(t, x)

for the oscillation a the function u over a set Q ⊂ R× V .

Theorem 2.4 (Oscillation inequality) Suppose that Assumption 2.1 holds. For t0 ∈ R,
x0 ∈ V and n ≥ N4(x0) := 28dCW max{N1(x0), N2(x0), N3(x0)}, let u > 0 be such
that ∂t u − Lω

t u = 0 on Q(n) = [t0 − n2, t0] × B(x0, n). Then, for any p, p′, q, q ′ ∈
[1,∞] satisfying

1

p
· p′

p′ − 1
· q

′ + 1

q ′
+ 1

q
<

2

d ′
, (2.10)
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1154 S. Andres et al.

and such that ‖1∨μω‖p,p′,Q(n), ‖1∨νω‖q,q ′,Q(n) < ∞, there exist ϑ ∈ (0, 1/2) and

γ ω = γ ω(x0, n) = γ
(∥∥1 ∨ μω

∥∥
p,p′,Q(n),

∥∥1 ∨ νω
∥∥
q,q ′,Q(n)

) ∈ (0, 1),

where γ : [0,∞)2 → (0, 1) is continuous and increasing in both components, such
that

oscQ(ϑn) u ≤ γ ω oscQ(n) u. (2.11)

Theorem 2.4 will be proven in Sect. 2.4 below. This oscillation inequality becomes
particularly interesting when ω is a random weight configuration on Z

d satisfying
Assumptions 1.1 and 1.2. Then, by the ergodic theorem, (2.11) holds with the same
constant γ̄ for all n ∈ N large enough.

Assumption 2.5 For any δ > 0,
√
t0/2 > δ and x0 ∈ V there exists N5(x0, t0) < ∞

such that

μ̄ := sup
n≥N5(x0,t0)

∥∥μω
∥∥
p,p′,n2[t0−δ2,t0]×B(x0,δn) < ∞,

ν̄ := sup
n≥N5(x0,t0)

∥∥νω
∥∥
p,p′,n2[t0−δ2,t0]×B(x0,δn) < ∞

are independent of δ, x0 and t0. Write γ̄ = γ (μ̄, ν̄) ∈ (0, 1).

Assumption 2.5 is satisfied, for instance, on the lattice Z
d under Assumptions 1.1

and 1.2, cf. Proposition 4.1 below.

Corollary 2.6 Suppose that Assumptions 2.1 and 2.5 hold. For any δ > 0, x0 ∈ V
and

√
t0/2 > δ fixed, let γ̄ be as in Assumption 2.5. Further, let n ∈ N be such

that δn ≥ N4(x0) ∨ N5(x0, t0). Suppose that u > 0 is such that ∂t u − Lω
t u = 0 on

[0, t0] × B(x0, n). Then, for any t ∈ n2[t0 − δ2, t0] and x1, x2 ∈ B(x0, δn),

∣∣u(t, x1)− u(t, x2)
∣∣ ≤ C1

(
δ√
t0

)�

max
[3t0/4,t0]×B(x0,

√
t0/2)

u,

where � := ln γ̄ / ln ϑ and C1 only depends on γ̄ .

Proof Set δk := ϑk√t0/2, k ≥ 0 and, with a slight abuse of notation, let

Qk := n2
[
t0 − δ2k , t0

]× B
(
x0, δkn

)
, k ≥ 0.

Choose k0 ∈ N such that δk0 ≥ δ > δk0+1. In particular, for every k ≤ k0 we have
δk ∈ [δ,√t0].Now we apply Theorem 2.4 and Assumption 2.5, which gives

oscQk u ≤ γ̄ oscQk−1 u, ∀ k = 1, . . . , k0.
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We iterate the above inequality on the chain Q0 ⊃ Q1 ⊃ · · · ⊃ Qk0 to obtain

oscQk0
u ≤ γ̄ k0 max

Q0
u. (2.12)

Note that

Qk0 = n2
[
t0 − δ2k0 , t0

]× B
(
x0, δk0n

) ⊃ n2
[
t0 − δ2, t0

]× B
(
x0, δn

)
.

Hence, since γ̄ k0 ≤ c
(
δ/
√
t0

)�, the claim follows from (2.12). ��

2.3 Maximal inequality

For any x0 ∈ V , t0 ≥ 0 and n ≥ 1, denote by Q(n) ≡ Q(t0, x0, n) := [t0 − n2, t0] ×
B(x0, n) the corresponding time-space cylinder, and set

Qτ,σ (n) ≡ Qτ,σ (t0, x0, n) := [t0 − τn2, t0] × B(x0, σn), σ, τ ∈ [0, 1],

andQσ (n) ≡ Qσ,σ (n). In this subsectionwewill show the followingmaximal inequal-
ity as the main result.

Theorem 2.7 Let Assumption 2.1-(i) and (ii) be satisfied. For t0 ∈ R, x0 ∈ V and
n ≥ 2(N1(x0) ∨ N2(x0)), suppose that u is such that ∂t u − Lω

t u = 0 on Q(n). Then,
for any 0 ≤ � < 2/(d + 2) and p, p′, q, q ′ ∈ [1,∞] satisfying

1

p
· p′

p′ − 1
· q

′ + 1

q ′
+ 1

q
<

2

d ′
, (2.13)

there exist κ ≡ κ(p, p′, q, q ′, d ′) ∈ (0,∞) and C2 ≡ C2(p, p′, q, q ′, d ′) < ∞ such
that for all h ≥ 0 and 1/2 ≤ σ ′ < σ ≤ 1 with σ − σ ′ > 4n−�,

max
(t,x)∈Qσ ′ (n)

u(t, x)

≤ h + C2

(‖1 ∨ μω‖p,p′,Q(n) ‖1 ∨ νω‖q,q ′,Q(n)

(σ − σ ′)2

)κ ∥∥(u − h)+
∥∥
2p∗,2p′∗,Qσ (n).

(2.14)

The proof of Theorem 2.7 relies on the following two lemmas, an interpolation
inequality for time-space averaged norms and an energy estimate for solutions of
parabolic equation with time-dependent weights. Let Q = I × B be a time-space
cylinder, where I = [s1, s2] is an interval and B is a finite, connected subset of V .

Lemma 2.8 For any ρ > 1 and q ′ ∈ [1,∞] let γ1 ∈ (1, ρ] and γ2 ∈ [q ′/(q ′ + 1),∞)

be such that

1

γ1
+ 1

γ2

(
1− 1

ρ

)
q ′

q ′ + 1
= 1. (2.15)
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Then, for any u : I × B → R,

∥∥u
∥∥

γ1,γ2,Q ≤ ∥∥u
∥∥1,∞,Q + ∥∥u

∥∥
ρ,q ′/(q ′+1),Q . (2.16)

Proof This follows by an application of Hölder’s and Young’s inequality, as in [31,
Lemma 1.1] ��
Lemma 2.9 Consider a smooth function ζ : R → [0, 1] with ζ = 0 on (−∞, s1] and
a function η : V → [0, 1] such that

supp η ⊂ B and η ≡ 0 on ∂B.

Suppose that ∂t u − Lω
t u ≤ 0 on Q. Then, for any k ≥ 0 and p, p′ ∈ (1,∞),

1

|I |
∥∥ζη2(u − k)2+

∥∥1,∞,Q + 1

|I |
∫

I
ζ(t)

Eω
t (η(ut − k)+)

|B| dt

≤ 4
∥∥1 ∨ μω

∥∥
p,p′,Q

(∥∥∇η
∥∥2



∞

(E)
+ ‖ζ ′‖L∞(I )

) ∥∥(u − k)2+
∥∥
p∗,p′∗,Q, (2.17)

with p∗ := p/(p − 1) and p′∗ := p′/(p′ − 1).

Proof Let k ≥ 0 and consider a function u such that ∂t u ≤ Lω
t u on Q = I × B. To

lighten notation, we set v = (u − k)+. By using the discrete version of the product
rule (2.2), we obtain for any fixed t ∈ (s1, s2) that

〈∇(ηvt ), ωt∇(ηvt )
〉

2(E)

≤ 〈∇(η2vt ), ωt∇vt
〉

2(E)

+ 〈
av(vt )

2, ωt (∇η)2
〉

2(E)

,

(2.18)

where we used that av(η)2(e) ≤ av(η2)(e) by Jensen’s inequality. Further, by distin-
guishing four cases it follows that∇(η2vt )(e)(∇vt )(e) ≤ ∇(η2vt )(e)(∇ut )(e) for any
e ∈ E . Hence,

〈∇(η2vt ), ωt∇vt
〉

2(E)

≤ 〈∇(η2vt ), ωt∇ut
〉

2(E)

≤ 〈
η2vt ,−∂t ut

〉

2(V )

.

Since the map s �→ (s − k)+ is continuous on R with piecewise continuous and
bounded derivative, we get that ∂t (ut − k)2+ = 2(ut − k)+ ∂t ut . In particular,

〈∇(η2vt ), ωt∇vt
〉

2(E)

≤ −1

2
∂t

〈
η2, v2t

〉

2(V )

. (2.19)

By combining (2.18) and (2.19), we deduced that

∂t
∥∥η2v2t

∥∥1,B + Eω
t

(
ηvt

)

|B| ≤ 2
∥∥∇η

∥∥2


∞

(E)

∥∥v2t μ
ω
t

∥∥1,B . (2.20)

123



Quenched local limit theorem for randomwalks among… 1157

Moreover, since ζ(s1) = 0,

∫ s

s1
ζ(t) ∂t

∥∥η2v2t

∥∥1,B dt =
∫ s

s1

(
∂t

(
ζ(t)

∥∥η2v2t

∥∥1,B
)− ζ ′(t)

∥∥η2v2t

∥∥1,B
)
dt

≥ ζ(s)
∥∥η2v2s

∥∥1,B − ‖ζ ′‖L∞(I )

∫ s2

s1

∥∥v2t

∥∥1,B dt

for any s ∈ (s1, s2]. Thus, by multiplying both sides of (2.20) with ζ and integrating
the resulting inequality over [s1, s] for any s ∈ I , the assertion (2.17) follows by an
application of Hölder’s and Jensen’s inequality. ��

Proof of Theorem 2.7 For any p, p′ ∈ (1,∞), let p∗ := p/(p−1) and p′∗ := p′/(p′−
1) be the Hölder conjugate of p and p′, respectively, and set

α := 1

p∗
+ 1

p′∗

(
1− 1

ρ

)
q ′

q ′ + 1
, (2.21)

where ρ is defined in (2.8). Notice that for any p, p′, q, q ′ ∈ (1,∞] for which (2.13)
is satisfied, α > 1 and therefore 1/α∗ = 1 − 1/α > 0. In particular, α > 1 implies
that α p′∗ > q ′/(q ′ + 1) and α p∗ ≤ ρ so that Lemma 2.8 is applicable. Suppose that
n ≥ 2(N1(x0) ∨ N2(x0)). The remaining part of the proof comprises two steps, a
“one-step estimate” and the iteration scheme.

Step 1. Let 1/2 ≤ σ ′ < σ ≤ 1 and 0 ≤ k < l be fixed constants. We write
Iσ := [t0 − σn2, t0], Bσ := B(x0, σn) and Qσ := Iσ × Bσ to simplify notation.
Note that |Iσ |/|Iσ ′ | ≤ 2 and |Bσ |/|Bσ ′ | ≤ 2dCreg/creg. Let us stress the fact, that, due
to the discrete structure of the underlying space, the discrete balls Bσ ′ and Bσ may
coincide even if σ ′ < σ . In order to ensure that Bσ ′ � Bσ , we assume in the sequel
that (σ − σ ′)n ≥ 1. In this case, we can define a cut-off function η : V → [0, 1]
in space having the properties that supp η ⊂ Bσ , η ≡ 1 on Bσ ′ , η ≡ 0 on ∂Bσ and
‖∇η‖


∞
(E) ≤ 1/((σ − σ ′)n). Moreover, let ζ : R → [0, 1] be a smooth cut-off

function in time such that ζ ≡ 1 on Iσ ′ , ζ ≡ 0 on (−∞, t0 − σn2] and ‖ζ ′‖L∞(R) ≤
1/((σ − σ ′)n2).

The constant c ∈ (0,∞) appearing in the computations below is independent of n
but may change from line to line. First, by Hölder’s inequality, we get

∥∥(u − l)2+
∥∥
p∗,p′∗,Qσ ′

≤ ∥∥(u − k)2+
∥∥

α p∗,α p′∗,Qσ ′
∥∥1{u≥ l}

∥∥
α∗ p∗,α∗ p′∗,Qσ ′

(2.16)≤
(∥∥(u − k)2+

∥∥1,∞,Qσ ′ +
∥∥(u − k)2+

∥∥
ρ,q ′/(q ′+1),Qσ ′

) ∥∥1{u≥ l}
∥∥1/α∗
p∗,p′∗,Qσ ′

.

(2.22)

Then, the local space-time Sobolev inequality and the energy estimate yields
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1158 S. Andres et al.

∥∥(u − k)2+
∥∥

ρ,q ′/(q ′+1),Qσ ′ ≤ c
∥∥ζη2(u − k)2+

∥∥
ρ,q ′/(q ′+1),Qσ

(2.9)≤ c n2
∥∥1 ∨ νω

∥∥
q,q ′,Qσ

(
1

|Iσ |
∫

Iσ
ζ(t)

Eω
t (η(ut − k)+)

|Bσ | dt

)

(2.17)≤ c
‖1 ∨ μω‖p,p′,Qσ

‖1 ∨ νω‖q,q ′,Qσ

(σ − σ ′)2
∥∥(u − k)2+

∥∥
p∗,p′∗,Qσ

and

∥∥(u − k)2+
∥∥1,∞,Qσ ′ ≤ c

∥∥ζη2(u − k)2+
∥∥1,∞,Qσ

(2.17)≤ c
‖1 ∨ μω‖p,p′,Qσ

(σ − σ ′)2
∥∥(u − k)2+

∥∥
p∗,p′∗,Qσ

. (2.23)

By combining the estimates above and using the fact that

∥∥1{u≥ l}
∥∥
p∗,p′∗,Qσ ′ ≤ c

∥∥1{u−k ≥ l−k}
∥∥
p∗,p′∗,Qσ

≤ c

(l − k)2
∥∥(u − k)2+

∥∥
p∗,p′∗,Qσ

,

we finally obtain that

∥∥(u − l)2+
∥∥
p∗,p′∗,Qσ ′ ≤ c

‖1 ∨ μω‖p,p′,Q(n) ‖1 ∨ νω‖q,q ′,Q(n)

(l − k)2/α∗(σ − σ ′)2
∥∥(u − k)2+

∥∥1+1/α∗
p∗,p′∗,Qσ

.

Set ϕ(l, σ ′) := ‖(u − l)2+‖p∗,p′∗,Qσ ′ and M := c ‖1∨μω‖p,p′,Q(n) ‖1∨ νω‖q,q ′,Q(n).
Then, the inequality above reads

ϕ(l, σ ′) ≤ M

(l − k)2/α∗(σ − σ ′)2
ϕ(k, σ )1+1/α∗ . (2.24)

Note that the function [0,∞) � k �→ ϕ(k, σ ) is non-increasing for any σ ∈ [1/2, 1].
Step 2. Suppose that n ≥ 2(N1(x0) ∨ N2(x0)). Let h ≥ 0 be arbitrary but fixed

and, for any � ∈ [0, 2/(d + 2)), suppose that 1/2 ≤ σ ′ < σ ≤ 1 are chosen in such
a way that σ − σ ′ > 4n−�. Further, for j ∈ N0 define

σ j := σ ′ + 2− j (σ − σ ′), k j := h + K (1− 2− j )

with K := 2(1+α∗)2(M/(σ − σ ′)2)α∗/2ϕ(h, σ )1/2. Set J := �(d ln n)/(2α∗ ln 2)�.
Obviously, J ≥ 1. Since α∗ ≥ (d + 2)/2, it follows that

(σ j−1 − σ j )n = 2− j (σ − σ ′)n > 2n1−�−d/(2α∗) ≥ 2, ∀ j = 1, . . . , J .

We claim that, by induction,

ϕ(k j , σ j ) ≤ ϕ(h, σ )

r j
∀ j ∈ {0, . . . , J } (2.25)
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Quenched local limit theorem for randomwalks among… 1159

where r = 22(1+α∗). Indeed, for j = 0 the assertion is obvious. Now suppose that
(2.25) holds for any j ∈ {0, . . . , J − 1}. Then, in view of (2.24), we obtain

ϕ(k j+1, σ j+1)
(2.24)≤ M

(
2 j+1

K

)2/α∗ (
2 j+1

σ − σ ′

)2
ϕ(k j , σ j )

1+1/α∗

≤ M

(
2 j+1

K

)2/α∗ (
2 j+1

σ − σ ′

)2 (
ϕ(h, σ )

r j

)1+1/α∗
≤ ϕ(h, σ )

r j+1 ,

which completes the proof of the claim (2.25). Moreover, since (nd22J )/r J ≤ 1 and
(σJ−1 − σJ )n ≥ 1, we obtain that

max
(t,x)∈QσJ

(u(t, x)− kJ )
2+ ≤ c nd

∥∥(u − kJ )
2+
∥∥1,∞,QσJ

(2.23)≤ c nd22J
‖1 ∨ μω‖p,p′,Q(n)

(σ − σ)2
ϕ(kJ−1, σJ−1)

(2.5)≤ c
‖1 ∨ μω‖p,p′,Q(n)

(σ − σ)2
ϕ(h, σ ).

Hence,

max
(t,x)∈Qσ ′ (n)

u(t, x) ≤ h + K + c

(‖1 ∨ μω‖p,p′,Q(n)

(σ − σ)2

)1/2 ∥∥(u − h)+
∥∥
2p∗,2p′∗,Qσ (n),

and the assertion (2.14) follows with κ := α∗/2. ��
As an application of Theorem 2.7 we derive a near-diagonal bound for the heat kernel,
which we now introduce. For s ∈ R and x ∈ V , let Pω

s,x be the probability measure
on the space of V -valued càdlàg functions on R, under which the coordinate process
(Xt : t ∈ R) is the continuous-time Markov chain on V starting at time s in x
with time-dependent generator Lω

t as defined in (2.3). Recall that, for any x, y ∈ V
and s, t ∈ R with t ≥ s we denote by pω(s, x; t, y) the transition density (or heat
kernel associated to Lω

t ), that is p
ω(s, x; t, y) = Pω

s,x [Xt = y]. Note that the Markov
property implies immediately that, for any s ∈ R and x ∈ V , the function (t, y) �→
ut (y) := pω(s, x; s + t, y) solves

∂t ut (y) = Lω
t ut (y), ∀ t > 0, y ∈ V .

Corollary 2.10 (Near-diagonal heat kernel upper bound) Suppose Assumption 2.1-(i)
and (ii) hold. Then, for any x1, x2 ∈ V , s ≥ 0 and p, p′, q, q ′ ∈ [1,∞] satisfying
(2.13), there exist κ ′ ≡ κ ′(p, p′, q, q ′, d ′) ∈ (0,∞), C3 ≡ C3(p, p′, q, q ′, d ′) < ∞
and N6(x2) < ∞ such that for all

√
t ≥ N6(x2) and y ∈ B(x2,

1
2

√
t),

pω(s, x1; s + t, y) ≤ C3

(∥∥1 ∨ μω
∥∥
p,p′,Q

∥∥1 ∨ νω
∥∥
q,q ′,Q

)κ ′
t−d/2, (2.26)

where Q = [0, t] × B(x2,
√
t).
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Proof We wish to apply the maximal inequality of Theorem 2.7 iteratively to the
function (t, y) �→ ut (y) ≡ pω(s, x1; s + t, y) on the cylinder Q(n) ≡ Q(t0, x0, n)

with t0 = t , x0 = x1 and n = √
t . We fix σ ′ := 1/2, σ := 1, and set σ j =

σ − 2− j (σ − σ ′) for any j ∈ N0. Note that σ j ↑ σ and σ0 = σ ′. By Hölder’s
inequality we have

∥∥u
∥∥
2α p∗,2α p′∗,Q(n) ≤ ∥∥u

∥∥γ

1,1,Q(n)

∥∥u
∥∥1−γ

∞,∞,Q(n),

with γ = 1/max{2α p∗, 2α p′∗} and α as defined in (2.21). Set J := �(ln n)/(4d ln 2)
and� := 1/2d < 2/(d+2). Then, for all n ≥ N4(x2) := 2(N1(x2)∨ N2(x2))∨212d

it holds that J ≥ 3 and (σ j − σ j−1) > 4n−� for all j ∈ {1, . . . , J }. Hence, an
application of the maximal inequality (2.14) yields

∥∥u
∥∥∞,∞,Qσ j−1 (n) ≤ 22κ j K

∥∥u
∥∥γ

1,1,Q(n)

∥∥u
∥∥1−γ

∞,∞,Qσ j (n) ∀ j ∈ {1, . . . , J },

where we introduced K = c
(‖1 ∨ μω‖p,p′,Q(n) ‖1 ∨ νω‖q,q ′,Q(n)

)κ to simplify the
notation. By iterating the inequality above, we get

∥∥u
∥∥∞,∞,Q1/2(n) ≤ 22κ

∑J−1
j=0 ( j+1)(1−γ ) j

(
K

∥∥u
∥∥γ

1,1,Q(n)

)∑J−1
j=0 (1−γ ) j∥∥u

∥∥γ (1−γ )J

∞,∞,QσJ (n)

≤ 22κ/γ 2
K 1/γ

∥∥u
∥∥1−(1−γ )J

1,1,Q(n)

∥∥u
∥∥(1−γ )J

∞,∞,QσJ (n).

Further, note that ut (y) = pω(s, x1; s + t, y) ≤ 1 for all t ≥ 0 and y ∈ V ,

∑

y∈B(x2,n)

ut (y) = Pω
s,x1

[
Xt ∈ B(x2, n)

] ≤ 1, ∀ t ≥ 0,

and |B(x1, n)|(1−γ )J ≤ c < ∞ uniformly in n. Hence, by using the volume regularity,
we conclude that

∥∥u
∥∥∞,∞,Q1/2(n) ≤ c K 1/γ |B(x2, n)|(1−γ )J−1 ≤ c K 1/γ n−d .

Since (t, y) ∈ Q1/2(t, x1,
√
t) for any y ∈ B(x1,

1
2

√
t), the assertion follows. ��

2.4 Proof of the oscillation bound

In this subsection we prove Theorem 2.4. Inspired by the strategy that has been used
in [39] to prove Hölder regularity for parabolic equations, we start by constructing a
continuously differentiable version of the function (0,∞) � r �→ (− ln r)+. Consider
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the function g : (0,∞) → [0,∞),

g(r) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ln r , r ∈ (0, c∗],
(r − 1)2

2c∗(1− c∗)
, r ∈ (c∗, 1],

0, r ∈ (1,∞),

(2.27)

where c∗ ∈ [1/4, 1/3] is the smallest solution of the equation 2c ln(1/c) = 1− c. By
construction, the function g is convex, non-increasing and in C1((0,∞)).

Lemma 2.11 Suppose that u > 0 satisfies ∂t u − Lω
t u ≥ 0 on Q, and let g be the

function defined in (2.27). Further, consider a cut-off function η : V → [0, 1] with

supp η ⊂ B and η ≡ 0 on ∂B.

Then,

∂t
∥∥η2g(ut )

∥∥1,B + Eω,η2

t
(
g(ut )

)

6|B| ≤ 6
∥∥1 ∨ μω

t

∥∥1,B osr(η)2
∥∥∇η

∥∥2


∞

(E)
, (2.28)

where osr(η) := max
{
η(y)/η(x) ∨ 1 | {x, y} ∈ E, η(x) != 0

}
and

Eω,η2

t ( f ) :=
∑

e∈E

(
η2(e+) ∧ η2(e−)

)
ω(e) (∇ f )(e)2.

Proof Since ∂t u − Lω
t u ≥ 0 on Q = I × B and u > 0, we have

∂t
〈
η2, g(ut )

〉

2(V )

= 〈
η2g′(ut ), ∂t ut

〉

2(V )

≤ 〈
η2g′(ut ),Lω

t ut
〉

2(V )

= −〈∇(η2g′(ut )), ωt∇ut
〉

2(E)

.

Notice that g′ is piecewise differentiable and 1/3g′(r)2 ≤ g′′(r) for a.e. r ∈ (0,∞).
In particular, −rg′(r) ≤ 4/3 for any r ∈ (0,∞). Hence, by Lemma A.1 we get

−〈∇(η2g′(ut )), ωt∇ut
〉

2(E)

≤ −1

6
Eω,η2

(
g(ut )

) + 6 osr(η)2
〈∇η, ωt∇η

〉

2(E)

.

Thus, by combining the estimates above and exploiting the fact that g ≥ 0, the assertion
(2.28) follows. ��
In the next lemma we show for a space-time harmonic function u that, if the size of its
sub-level set with respect to some k0 is bounded from below by a fraction of the size
of the time-space cylinder, then the size of the sub-level sets for fixed t and a possibly
larger constants, k j , are bounded from below by a fraction of B(n), provided that t is
close to t0. For that purpose, set for some k0 ∈ (−∞, Mn),

k j := Mn − 2− j (Mn − k0
)
, j ∈ N0, (2.29)
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where Mn := sup(t,x)∈Q(n) u(t, x). For η : V → [0, 1] with supp η ⊂ B(x0, n) we
write

∥∥u
∥∥
1,B(n),η2 := 1

〈
η2, 1

〉

2(V )

∑

x∈B(x0,n)

η2(x) |u(x)|

to denote the η2-weighted 
1-norm of a function u : V → R.

Lemma 2.12 Let Assumption 2.1-(i) be satisfied and σ ∈ (0, 1) be fixed. For t0 ∈ R,
x0 ∈ V and σn ≥ N1(x0), suppose that u > 0 is such that ∂t u − Lω

t u = 0 on Q(n).
Further, let η : V → [0, 1], x �→ η(x) := [1− d(x0, x)/(σn)]+ be a cut-off function
in space and set B(n) ≡ B(x0, n). If for some k0 ∈ (−∞, Mn),

1

n2

∫ t0

t0−n2

∥∥1{ut≤k0}
∥∥
1,B(n),η2 dt ≥ 1

2
, (2.30)

then for τ = 1/4 there exists δ ∈ (0, 1/3) and i ≡ i(ω, σ ) < ∞ such that for all
j ≥ i ,

∥∥1{ut≤k j }
∥∥1,B(σn) ≥ δ, ∀ t ∈ [t0 − τn2, t0].

Proof In order to simplify the presentation, set

vt (x) := Mn − ut (x)

Mn − k0
and h j = ε j := 2− j .

Then, ∂t (v + ε j ) − Lω
t (v + ε j ) = 0 on Q(n) for all j ∈ N0 and ut (x) > k j if

and only if vt (x) < h j for any x ∈ V . Set τ̄ := 1/3. In view of (2.30) there exists
s ∈ [t0 − n2, t0 − τ̄n2] such that

∥∥1{vs<1}
∥∥
1,B(n),η2 ≤ 3

4
. (2.31)

Indeed, if we assume that the contrary is true, that is ‖1{vs<1}‖1,B(n),η2 > 3/4 for all

s ∈ [t0 − n2, t0 − τ̄n2], then we find that

1

2

(2.30)≥ 1

n2

∫ t0

t0−n2

∥∥1{vt<1}
∥∥
1,B(n),η2 dt >

1

n2

∫ t0−τ̄n2

t0−n2

3

4
dt = 1

2
,

which leeds to a contradiction. By integrating the energy estimate (2.28) over the
interval [s, t]with t ∈ [t0−τn2, t0] and using that ‖∇η‖


∞
(E) ≤ 1/(σn) and osr(η) ≤

2, we obtain

∥∥g(vt + ε j )
∥∥
1,B(n),η2 ≤ ∥∥g(vs + ε j )

∥∥
1,B(n),η2 + c

∥∥1 ∨ μω
t

∥∥1,1,Q(n),
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where c ≡ c(σ ) ∈ (0,∞) is a constant independent of n. Since, by construction, g is
non-increasing and vanishes on [1,∞) we find that

∥∥g(vs + ε j )
∥∥
1,B(n),η2 ≤ g(ε j )

∥∥1{vs<1}
∥∥
1,B(n),η2

(2.31)≤ g(ε j ) · 3
4

and

∥∥g(vt + ε j )
∥∥
1,B(n),η2 ≥ g(h j + ε j )

∥∥1{vt<h j }
∥∥
1,B(n),η2 .

This yields, for any j ≥ 2,

∥∥1{vt<h j }
∥∥
1,B(n),η2 ≤ g(ε j )

g(h j + ε j )
· 3
4
+ c

g(h j + ε j )

∥∥1 ∨ μω
t

∥∥1,1,Q(n)

≤
(
1+ 1

j − 1

)
3

4
+ c

j − 1

∥∥1 ∨ μω
t

∥∥1,1,Q(n).

Hence, there exists i(ω, σ ) ∈ N such that‖1{vt<h j }‖1,B(n),η2 ≤ 5/6 for all j ≥ i(ω, σ )

and t ∈ [t0 − τn2, t0]. Since
〈
η2, 1

〉

2(V )

≥ |B(σn/2)|/4, we obtain

∥∥1{ut≤k j }
∥∥1,B(σn) ≥ |B(σn/2)|

4|B(σn)|
∥∥1{vt≥h j }

∥∥
1,B(n),η2 ≥ creg

6 · 2d+2 Creg
,

and the assertion follows. ��
Our next step is to show that the size of the sets where a space-time harmonic function
u exceeds some level k can be made arbitrary small compared to the size of the time-
space cylinder Q(n) provided that k is sufficiently close to the maximum of u in
Q(n).

Lemma 2.13 Let Assumption 2.1-(i) and (iii) be satisfied, and set τ := 1/4 and σ :=
1/(2CW). For t0 ∈ R, x0 ∈ V and σn ≥ N1(x0)∨ N3(x0), suppose that u > 0 solves
∂u − Lω

t u = 0 on Q(n). Assume that there exists δ > 0 and i ∈ N such that

∥∥1{ut≤ki }
∥∥1,B(x0,σn) ≥ δ ∀ t ∈ [t0 − τn2, t0]. (2.32)

Then, for any ε ∈ (0, 1) there exists N � j(ε, δ, ω) ≥ i such that

∥∥1{u>k j }
∥∥1,1,Qτ,σ (n) ≤ ε ∀ j ≥ j(ε, δ, ω). (2.33)

Proof Write Iτ := [t0 − τn2, t0], Bσ := B(x0, σn) and Qτ,σ := Iτ × Bσ . Let
η : V → [0, 1] be a cut-off function with the properties that supp η ⊂ B(n), η ≡ 1 on
B1/2, η ≡ 0 on ∂B1 and linear decaying on B1 \ B1/2. Thus, ‖∇η‖


∞
(E) ≤ 2/n and

osr(η) ≤ 2. Further, define

wt (x) := Mn − ut (x)

Mn − ki
and h j = ε j := 2− j .
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1164 S. Andres et al.

Then, w ≥ 0 and ∂t (w + ε j ) − Lω
t (w + ε j ) = 0 on Q(n) for any j ∈ N. Define

Nt := {x ∈ Bσ : g(wt (x)+ ε j ) = 0} for any t ∈ [t0 − τn2, t0]. Recall that g(r) = 0
for every r ∈ (1,∞). Hence,

|Nt |
|Bσ | = ∥∥1{g(wt+ε j )=0}

∥∥1,Bσ ≥ ∥∥1{wt≥1}
∥∥1,Bσ = ∥∥1{ut≤ki }

∥∥1,Bσ

(2.32)≥ δ > 0,

and we deduce from Assumption 2.1-(iii) that

∥∥g(wt + ε j )
∥∥1,Bσ

(2.7)≤ CP n
(
1+ 1

δ

) |B1|
|Bσ |

∥∥νω
t

∥∥1/2
1,B1

(Eω,η2

t
(
g(wt + ε j )

)

|B1|
)1/2

for any t ∈ [t0 − τn2, t0]. Hence,

∥∥g(w + ε j )
∥∥2
1,1,Qτ,σ

≤ c

δ

∥∥1 ∨ νω
∥∥1,1,Q(n)

∫

Iτ

Eω,η2

t (g(wt + ε j ))

|B1| dt, (2.34)

where c ∈ (0,∞) is a constant independent of n which may change from line to
line. An upper bound on the time-averaged Dirichlet form follows from the energy
estimate. Indeed, by integrating (2.28) over the interval [t0 − τn2, t0] we obtain that

∫

Iτ

Eω,η2

t (g(wt + ε j ))

|B1| dt ≤ c

δ

(∥∥g(wt0−τn2 + ε j )
∥∥1,B1 +

∥∥1 ∨ μω
∥∥1,1,Q(n)

)
.

(2.35)

Thus, by combining (2.34) and (2.35) and using that g is non-increasing we obtain
that for any j ≥ 2,

∥∥1{w<h j }
∥∥2
1,Qτ,σ

≤ c

δ

∥∥1 ∨ νω
∥∥1,1,Q(n)

(
g(ε j )

g(h j + ε j )2
+ 1

g(h j + ε j )2

∥∥1 ∨ μω
∥∥1,1,Q(n)

)

≤ c

δ

∥∥1 ∨ νω
∥∥1,1,Q(n)

(
j

( j − 1)2
+ 1

( j + 1)2
∥∥1 ∨ μω

∥∥1,1,Q(n)

)
.

Hence, for any ε > 0 there exists N � j(ε, δ, ω) ∈ [i,∞) such that for all j ≥
j(ε, δ, ω) it holds that ‖1{u>k j }‖1,1,Qτ,σ = ‖1{w<h j−i }‖1,1,Qτ,σ ≤ ε, which completes
the proof. ��
Proof of Theorem 2.4 Obviously, if Mn = mn , where

Mn := sup(t,x)∈Q(n) u(t, x) and mn := inf(t,x)∈Q(n) u(t, x),

then (2.11) holds true for any γ ≥ 0. Therefore, we assume in what follows that Mn >

mn . Set k0 := (Mn + mn)/2 ∈ (−∞, Mn), and let k j for any j ∈ N be defined as in
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(2.29). Moreover, consider the cut-off function V � x �→ η(x) := [1−d(x0, x)/n]+.
We may assume that

1

n2

∫ t0

t0−n2

∥∥1{ut≤k0}
∥∥
1,B(n),η2 dt ≥ 1

2
.

Otherwise, we consider (Mn + mn) − u instead of u. Let τ = 1/4, σ = 1/(2CW)

and ε = 1/
(
22κ+1C2C2

W(‖1 ∨ μω‖p,p′,Q(σn)‖1 ∨ νω‖q,q ′,Q(σn))
κ
)p∗∨p′∗ . Then, by

applying Lemmas 2.12 and 2.13 we find j ≡ j(ω, ε) < ∞ such that

∥∥1{u>k j }
∥∥1,1,Qτ,σ (n) ≤ ε.

Next, set ϑ := σ/2 and apply Theorem 2.7 to obtain that

Mϑn ≤ sup
(t,x)∈Q1/2(σn)

u(t, x)

≤ k j + C2 2
2κ

(∥∥1 ∨ μω
∥∥
p,p′,Q(σn)

∥∥1 ∨ νω
∥∥
q,q ′,Q(σn)

)κ ∥∥(u − k j )+
∥∥
2p∗,2p′∗,Q(σn).

Since

∥∥(u − k j )+
∥∥
2p∗,2p′∗,Q(σn) ≤ C2

W

(
Mn − k j

) ∥∥1{u>k j }
∥∥1/p∗∧1/p′∗
1,1,Qτ,σ (n),

we find that

Mϑn ≤ k j + 1

2

(
Mn − k j

) = Mn − 1

2 j+2

(
Mn − mn

)
.

Therefore, we have

Mϑn − mϑn ≤ Mn − 1

2 j+2

(
Mn − mn

)− mϑn ≤
(
1− 1

2 j+2

) (
Mn − mn

)
,

which proves the theorem. ��

2.5 Weak Parabolic Harnack inequality

As mentioned before, one appealing aspect of the above proof of Theorem 2.4 is its
avoidance of a parabolic Harnack inequality (PHI). Nevertheless, from the maximal
inequality in Theorem 2.7 and the auxiliary estimates on the level sets of harmonic
functions in Lemmas 2.12 and 2.13 we can deduce the following weaker version of the
PHI. In the continuous setting it also possible to derive a full PHI from the conjunction
of a weak PHI and a Hölder continuity estimate, see e.g. [39, Section 5.2.3]. However,
those arguments cannot be transferred into our discrete setting.

Theorem 2.14 Suppose that Assumption 2.1 holds. For t0 ∈ R, x0 ∈ V and
σ = 1/(2CW) fixed let n ∈ N be such that σn ≥ max{N1(x0), N2(x0), N3(x0)}.
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Suppose that u > 0 is a solution of ∂t u − Lω
t u = 0 on Q(n). Further, let

η : V → [0, 1], x �→ η(x) := [1 − d(x0, x)/(σn)]+ be a cut-off function in space
and set B(n) ≡ B(x0, n). If

1

n2

∫ t0

t0−n2

∥∥1{ut≥h}
∥∥
1,B(n),η2 dt ≥ 1

2
, (2.36)

for some h > 0, then there exists j ∈ N such that

inf
Q1/2(σn)

u(t, x) ≥ h

2 j+1 . (2.37)

Proof Define v := (Mn + mn)− u, where

Mn := sup(t,x)∈Q(n) u(t, x) and mn := inf(t,x)∈Q(n) u(t, x).

Note that, by definition, v > 0 and ∂tv − Lω
t v = 0 on Q(n). In particular, we

have that sup(t,x)∈Q(n) v(t, x) = Mn and inf(t,x)∈Q(n) v(t, x) = mn . Since, for any
h ∈ (0,mn], the assertion (2.37) is trivial, we assume in the sequel that h > mn . Set
k0 := Mn + mn − h ∈ (−∞, Mn). Then, (2.36) is equivalent to

1

n2

∫ t0

t0−n2

∥∥1{vt≤k0}
∥∥
1,B(n),η2 dt ≥ 1

2
. (2.38)

Let τ = 1/4 and ε = 1/
(
22κ+1C2C2

W(‖1∨μω‖p,p′,Q(σn)‖1∨ νω‖q,q ′,Q(σn))
κ
)p∗∨p′∗ .

Then, by applying Lemmas 2.12 and 2.13 we find j ≡ j(ω, ε) < ∞ such that
∥∥1{v>k j }

∥∥1,1,Qτ,σ (n) ≤ ε,

for k j as defined in (2.29). Thus, by Theorem 2.7 we obtain

sup
(t,x)∈Q1/2(σn)

v(t, x)

≤ k j + C2 2
2κ

(∥∥1 ∨ μω
∥∥
p,p′,Q(σn)

∥∥1 ∨ νω
∥∥
q,q ′,Q(σn)

)κ ∥∥(v − k j )+
∥∥
2p∗,2p′∗,Q(σn)

≤ k j + 1

2
(Mn − k j ),

where we used that

∥∥(v − k j )+
∥∥
2p∗,2p′∗,Q(σn) ≤ C2

W

(
Mn − k j

) ∥∥1{v>k j }
∥∥1/p∗∧1/p′∗
1,1,Qτ,σ (n).

By using the definition of v, we arrive that

inf
(t,x)∈Q1/2(σn)

u(t, x) ≥ 1

2
(Mn − k j )+ mn ≥ h

2 j+1 ,

which is the claim. ��
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3 A general criterion for a local CLT

In this section we prove a local central limit theorem for suitably regular subgraphs
G ⊂ Z

d , provided that Hölder continuity on large space-time scales and a CLT hold.
The proof will mostly follow the arguments in the proof of a similar result in [11,
Section 4], from which we borrow some of the notation. For further related results we
refer to [21]. However, the arguments in the present paper require a modification of
the criteria in [11,21], which is why we state it here and also include a proof for the
reader’s convenience.

Let G ⊂ Z
d be an infinite and connected graph and let d : G × G → [0,∞) denote

the graph distance on G. We assume that 0 ∈ G. For x ∈ R
d and r > 0 we set

C(x, r) := x + [−r , r ]d , �(x, r) := C(x, r) ∩ G, �n(x, r) := �(nx, nr).

Let gn : R
d → G be a function so that gn(x) is a closest point in G to nx , in the | · |∞

norm (we can put a fixed ordering on Z
d to resolve ties). We denote by Q the law of

a time-continuous random walk (Xt : t ≥ 0) on G started at 0 ∈ G at time t = 0. We
set

q(t, x) = Q[Xt = x], t ≥ 0, x ∈ G.

We assume the following additional properties on G and Q.

(G.1) There exists CG > 0 such that for any r > 0 and x ∈ R
d ,

|�n(x, r)|
(2nr)d

−→ CG, as n →∞.

(G.2) There exist δ > 0, a constant C4 > 0 and n0 ∈ N such that, for each r > 0 and
all n ≥ n0,

d(y, z) ≤ (
C4 |y − z|∞

) ∨ n1−δ, ∀ y, z ∈ �n(x, r). (3.1)

(G.3) There exists a symmetric matrix � ∈ R
d×d such that for any x ∈ R

d , t > 0
and r > 0,

Q
[
n−1Xn2t ∈ C(x, r)

] −→
n→∞

∫

C(x,r)
k�
t (y) dy,

where k�
t , defined in (1.2), denotes the transition kernel of theBrownianmotion

with covariance �2.
(G.4) There exist C5 > 0 and � > 0 such that for any δ ∈ (0, 1),

√
t/2 ≥ δ and

x ∈ R
d ,

lim sup
n→∞

sup
x1,x2∈B(gn(x),δn)

t−δ2<s1,s2≤t

nd
∣∣q(n2s1, x1)− q(n2s2, x2)

∣∣ ≤ C5

( δ√
t

)�

t−
d
2 .
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Theorem 3.1 Assume that (G.1)-(G.4) hold. Let K ⊂ R
d and I ⊂ (0,∞) be compact

sets. Then,

lim
n→∞ sup

x∈K
sup
t∈I

∣∣nd q(n2t, gn(x))− C−1
G k�

t (x)
∣∣ = 0. (3.2)

Proof The argument is divided into two steps. First we derive (3.2) pointwise in t and
x . Subsequently, we extend the convergence to hold uniformly in t ∈ I and x ∈ K
via a covering argument.

Step 1. Fix any x ∈ R
d and t > 0. For r > 0 and n ∈ N let

J (n, r) := J (n, r , t, x) = Q
[
n−1Xn2t ∈ C(x, r)

] −
∫

C(x,r)
k�
t (y) dy. (3.3)

Now we rewrite (3.3) as J (n, r) = J1(n, r)+ J2(n, r)+ J3(n, r)+ J4(n, r), where

J1(n, r) =
∑

z∈�n(x,r)

(
q(n2t, z)− q(n2t, gn(x))

)
,

J2(n, r) = |�n(x, r)|
nd

(
nd q

(
n2t, gn(x)

) − C−1
G k�

t (x)
)
,

J3(n, r) = k�
t (x)

(
|�n(x, r)| C−1

G n−d − (2r)d
)
,

J4(n, r) =
∫

C(x,r)

(
k�
t (x) − k�

t (y)
)
dy.

By rearranging those terms we get

∣∣nd q(n2t, gn(x)) − C−1
G k�

t (x)
∣∣ ≤ nd

|�n(x, r)|
(|J | + |J1| + |J3| + |J4|

)
.

(3.4)

Thus, it suffices to show that the right hand side goes to zero when we first take the
limit n →∞ and then r → 0. First, it follows directly from (G.1) and (G.3) that

lim
n→∞

nd

|�n(x, r)|
(|J | + |J3|

) = 0. (3.5)

Moreover, by the continuity of k�
t , Lebesgue’s differentiation theorem and (G.1),

lim
r→0

lim
n→∞

nd J4
|�n(x, r)| = lim

r→0

1

CG(2r)d

∫

C(x,r)

(
k�
t (x) − k�

t (y)
)
dy = 0. (3.6)

We are left with handling the summand involving |J1|. We begin by comparing
�n(x, r) with balls in the graph distance. By (G.1) we can find n ∈ N large enough
such that |�n(x, r)| > 0 and gn(x) ∈ �n(x, r) for all n ≥ n. It follows from (G.2),
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after possibly choosing a larger n, that for all n ≥ n and all y ∈ �n(x, r),

d(y, gn(x)) ≤ (
C4 |y − gn(x)|∞

) ∨ n1−δ ≤ (2rc) n. (3.7)

Thus�n(x, r) ⊂ B
(
gn(x), (2rc)n

)
, whenever n ≥ n. Thus, for all n ≥ n (which may

depend on r ),

nd |J1(n, r)|
|�n(x, r)| ≤ max

z∈�n(x,r)
nd

∣∣q(n2t, z) − q(n2t, gn(x)
∣∣

≤ max
z∈B(gn(x),(2rc)n)

nd
∣∣q(n2t, z) − q(n2t, gn(x)

∣∣.

Now an application of (G.4) gives

lim
r→0

lim sup
n→∞

nd |J1(n, r)|
|�n(x, r)| ≤ lim

r→0
c
( r√

t

)�

t−
d
2 = 0. (3.8)

Combining (3.5), (3.6) and (3.8) in (3.4) we get for any fixed x ∈ R
d and t > 0,

lim
n→∞

∣∣nd q(n2t, gn(x)) − C−1
G k�

t (x)
∣∣ = 0. (3.9)

Step 2.We now prove the full result using a covering argument. For η ∈ (0, 1)∩Q

we define the set X := {(y, s) ∈ (K × I ) ∩ (ηZ
d × η2Z)} and for all x ∈ K , t ∈ I

we write
(
y(x), s(t)

)
for a “closest” point to (x, t) in X so that

∣∣x − y(x)
∣∣∞ ≤ η, t ∈ (

s(t)− η2, s(t)
]
. (3.10)

We know that (3.9) holds for all (y, s) ∈ X . As X is a finite set, for a given ε > 0, we
can find ñ ∈ N such that for all n ≥ ñ,

sup
(y,s)∈X

∣∣nd q(n2s, gn(y)) − C−1
G k�

s (y)
∣∣ ≤ ε, (3.11)

and from (G.4) we deduce, after taking ñ larger if necessary, that for all n ≥ ñ,

sup
(y,s)∈X

sup
x1,x2∈B(gn(y),ηn)

s−η2<s1,s2≤s

nd
∣∣q(n2s1, x1) − q(n2s2, x2)

∣∣ ≤ c
( η√

T

)�

T−
d
2 , (3.12)

where T := inf I > 0. On the other hand, for any x ∈ K , t ∈ I and n ≥ ñ,

∣∣nd q(n2t, gn(x)) − C−1
G k�

t (x)
∣∣

≤ ∣∣nd q(n2t, gn(x)) − nd q
(
n2s(t), gn(y(x)

)∣∣ (3.13)

+ ∣∣nd q
(
n2s(t), gn(y(x))

) − C−1
G k�

s(t)(y(x))
∣∣ (3.14)

+ ∣∣C−1
G k�

s(t)(y(x))− C−1
G k�

t (x)
∣∣. (3.15)
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Weestimate each term individually. Bymeans of (3.12)we can bound (3.13) by ε for
η small enough. Clearly, (3.14) is bounded by ε thanks to (3.11). Finally, the regularity
of k�

t (x) in space and time, together with (3.10) implies that (3.15) is bounded by ε

uniformly in x ∈ K and t ∈ I for η small enough. Hence, there exists ñ ∈ N such that
for all n ≥ ñ,

sup
x∈K

sup
t∈I

∣∣nd q(n2t, gn(x)) − C−1
G k�

t (x)
∣∣ ≤ 3ε,

which is the desired conclusion. ��
Remark 3.2 If in addition the on-diagonal estimate

nd q(n2t, gn(x)) ≤ c t−d/2, ∀ t > 0,

is available, then (3.2) can be extended to hold uniformly in t ∈ [s,∞) for any fixed
s > 0. In fact, in that case both ndq(n2t, gn(x)) and k�

t (x) converge to zero as t →∞.

4 Local CLT for the dynamic RCM on Z
d

In this section we will work again in the setting introduced in Sect. 1.1. We aim at
applying Theorem 3.1 to the dynamic RCM to prove Theorem 1.4. The main step will
be the verification of condition (G.4) based on the oscillation inequality in Theorem2.4
and on the fact that, for P-a.e. ω, the function u = pω(0, 0; ·, ·) satisfies ∂t u = Lω

t u,
see Proposition B.3. Another ingredient will be the following version of the ergodic
theorem.

Proposition 4.1 Let

Q := {
I × B : I ⊂ R non-empty compact interval, B closed Euclidean ball in R

d}.

Suppose that Assumption 1.1 holds. Then, for any f ∈ L1(�),

lim
n→∞ sup

I×B∈Q

∣∣∣∣
1

nd+2

∫

n2 I

∑

x∈(nB)∩Zd

f ◦ τt,x dt − |I × B| · E[
f
]
∣∣∣∣ = 0, P -a.s.

Proof For discrete multiparameter processes such a uniform ergodic theorem under
standard scaling has been shown, for instance, in [30, Theorem 1] and the correspond-
ing result for continuous parameter processes in [30, Theorem 2]. The claim, involving
different scaling in space and time, follows by the same arguments. ��
As a direct consequence from Proposition 4.1 we get the following lemma.

Lemma 4.2 Suppose that Assumptions 1.1 and 1.2 hold. Then, P-a.s., for any x ∈ R
d ,

δ ∈ (0, 1) and t ≥ δ2,

Kμ := lim sup
n→∞

‖1 ∨ μω‖p,p,n2[t−δ2,t]×B(gn(x),δn) < ∞,
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Kν := lim sup
n→∞

‖1 ∨ νω‖q,q,n2[t−δ2,t]×B(gn(x),δn) < ∞.

Proposition 4.3 Let δ ∈ (0, 1),
√
t/2 ≥ δ and x ∈ R

d be fixed. Then, there exist
positive constants C6 and � only depending on Kμ and Kν such that

lim sup
n→∞

sup
x1,x2∈B(gn(x),δn)

t−δ2<s1,s2≤t

nd
∣∣pω(0, 0; n2s1, x1) − pω(0, 0; n2s2, x2)

∣∣

≤ C6

(
δ√
t

)�

t−
d
2 .

Proof This follows from the oscillation inequality in Theorem 2.4 similarly as Corol-
lary 2.6. To apply Theorem 2.4, choose t0 = n2t , x0 = gn(x) p = p′ and q = q ′
with p and q from Assumption 1.2, and take ϑ ∈ (0, 1/2) from Theorem 2.4. Set
δ := ϑk√t/2, k ≥ 0 and

Qk := n2
[
t − δ2k , t

]× B
(
gn(x), δkn

)
, k ≥ 0.

Choose k0 ∈ N such that δk0 ≥ δ > δk0+1. Then, δk ∈ [δ,√t] for every k ≤ k0. In
view of Lemma 4.2 we can find N7 = N7(x, t, δ) ∈ N such that for all n ≥ N7,

max
{‖1 ∨ μ‖p,p,Qk , ‖1 ∨ ν‖q,q,Qk

}
< 2(Kμ ∨ Kν), ∀ k = 0, . . . , k0.

It follows that we can apply the oscillation inequality iteratively with a common
constant γ̄ ∈ (0, 1) only depending on Kμ and Kν for all n ≥ N7, so that

oscQk p
ω(0, 0; ·, ·) ≤ γ̄ oscQk−1 p

ω(0, 0; ·, ·), ∀ k = 1, . . . , k0,

and by iteration

oscQk0
pω(0, 0; ·, ·) ≤ γ̄ k0 sup

Q0

pω(0, 0; ·, ·). (4.1)

Note that γ̄ k0 ≤ c
(
δ/
√
t
)�, for some positive constants � and c only depending on γ̄ .

Further, we can bound the right hand side of (4.1) by using the on-diagonal bound in
Corollary 2.10,

nd sup
Q0

pω(0, 0; ·, ·) ≤ c t−d/2.

Finally, since

Qk0 = n2[t − δ2k0 , t] × B
(
gn(x), δk0n

) ⊃ n2[t − r , t] × B
(
gn(x), δn

)
,

the claim follows. ��
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Proof of Theorem 1.4 We apply Theorem 3.1. Since in the present setting G = Z
d ,

conditions (G.1) and (G.2) are obviously satisfied. Condition (G.3) follows from the
invariance principle in Theorem 1.3 established in [3]. Finally, Proposition 4.3 implies
condition (G.4). ��

Finally, we remark that a local limit theorem directly implies a near-diagonal lower
heat kernel estimate, which complements the upper bounds obtained in Corollary 2.10
above.

Corollary 4.4 Suppose that Assumptions 1.1 and 1.2 hold. For P-a.e. ω, there exists
N8(ω) > 0 and C7 = C7(d) > 0 such that for all t ≥ N8(ω) and x ∈ B(0,

√
t),

pω(0, t; 0, x) ≥ C7 t
−d/2.

Proof This follows from Theorem 1.4 exactly as in [5, Lemma 5.3]. ��

5 Local CLT for the static RCM on random graphs

As a further application of the oscillation bound in Theorem 2.4 we present in this
final section a local limit theorem for the static RCM on a class of random graphs.
On (Zd , Ed) we consider the conductances ω = {ω(e), e ∈ Ed} ∈ � := [0,∞)Ed ,
which are now time-independent but possibly taking the value zero. We call an edge
e ∈ Ed open if ω(e) > 0 and denote by O(ω) the set of open edges. We write x ∼ y
if {x, y} ∈ O(ω). Again we equip � with a σ -algebra F and a probability measure P.

Assumption 5.1 (i) The law P is stationary and ergodic w.r.t. space shifts of Z
d .

(ii) For P-a.e. ω, there exists a unique infinite cluster C∞(ω) of open edges. Moreover,
P[0 ∈ C∞] > 0. Write P0[ · ] := P[ · | 0 ∈ C∞] and E0 for the expectation w.r.t.
P0.

For any realization ω ∈ � consider the variable speed random walk (VSRW) X ≡
(Xt : t ≥ 0) on C∞(ω) with generator Lω acting on bounded functions f : C∞(ω) →
R as

(Lω f )(x) =
∑

y∼x

ω({x, y}) (
f (y)− f (x)

)
.

Notice that X is reversible with respect to the counting measure. When visiting a
vertex x ∈ C∞(ω), the random walk X waits at x an exponential time with mean
1/μω(x) where μω(x) := ∑

y∼x ω({x, y}), and then it jumps to a vertex y ∼ x with
probability ω({x, y})/μω(x). We denote by Pω

x the quenched law of the process X
starting at x ∈ C∞(ω), and for x, y ∈ C∞(ω) and t ≥ 0 let pω(t, x, y) be the heat
kernel of X , i.e. pω(t, x, y) := Pω

x

[
Xt = y

]
.

In order to state the results, we need to introduce some further assumptions on
the underlying random graph (C∞(ω),O(ω)) which require some more notation.
We denote by dω the graph distance on (C∞(ω),O(ω)), i.e. for any x, y ∈ C∞(ω),
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dω(x, y) is the minimal length of a path between x and y that consists only of edges
in O(ω). For x ∈ C∞(ω) and r ≥ 0, let Bω(x, r) := {y ∈ C∞(ω) : dω(x, y) ≤ �r}
be the closed ball with center x and radius r with respect to dω. Further, for any
A ⊂ B ⊂ Z

d we define the relative boundary of A with respect to B by

∂ω
B A := {{x, y} ∈ O(ω) : x ∈ A and y ∈ B \ A

}
.

Definition 5.2 (Regular balls) Let CV ∈ (0, 1], Criso ∈ (0,∞) and CW ∈ [1,∞) be
fixed constants. For x ∈ C∞(ω) and n ≥ 1, we say a ball Bω(x, n) is regular if it
satisfies the following conditions.

(i) Volume regularity of order d, i.e.

CV nd ≤ |Bω(x, n)|.

(ii) (Weak) relative isoperimetric inequality. There exists Sω(x, n) ⊂ C∞(ω) con-
nected such that Bω(x, n) ⊂ Sω(x, n) ⊂ Bω(x,CWn) and

|∂ω
Sω(x,n)A| ≥ Criso n

−1 |A|

for every A ⊂ Sω(x, n) with |A| ≤ 1
2 |Sω(x, n)|.

Assumption 5.3 For some θ ∈ (0, 1), for P0-a.e. ω, there exists N0(ω) < ∞ such that
for all n ≥ N0(ω) the following hold.

(i) The ball Bω(0, n) is θ -very regular, that is, the ball Bω(x, r) is regular for every
x ∈ Bω(0, n) and r ≥ nθ/d .

(ii) There exist δ > 0 and C8 > 0 such that for each r > 0,

dω(y, z) ≤ (
C8 |y − z|∞

) ∨ n1−δ, ∀y, z ∈ �n(x, r).

Assumption 5.3 is satisfied, for instance, on supercritical Bernoulli percolation clus-
ters, see [10], or clusters in percolation models with long range correlations, see [38,
Proposition 4.3] and [28, Theorem 2.3]. Such random graphs have typically a local
irregular behaviour, meaning that the required properties in Definition 5.2 fail on small
scales. In a sense, Assumption 5.3 provides a uniform lower bound on the radius of
regular balls. For more details and examples we refer to [27, Examples 1.11–1.13] and
references therein.

Assumption 5.4 There exist p, q ∈ [1,∞] and θ ∈ (0, 1) satisfying

1

p
+ 1

q
<

2(1− θ)

d − θ
, (5.1)

such that for any e ∈ Ed ,

E
[
ω(e)p

]
< ∞ and E

[
ω(e)−q1{e∈O}

]
< ∞,

where we used the convention that 0/0 = 0.
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Theorem 5.5 (QFCLT [27]) Suppose there exist θ ∈ (0, 1) and p, q ∈ [1,∞] such
that Assumptions 5.1, 5.3-(i) and 5.4 hold. Then, for P0-a.e. ω, the process X (n) ≡(
X (n)
t := n−1Xn2t : t ≥ 0

)
, converges (under Pω

0 ) in law towards a Brownian motion
on R

d with a deterministic non-degenerate covariance matrix �2.

Theorem 5.6 (Quenched local CLT) Suppose there exist θ ∈ (0, 1) and p, q ∈ [1,∞]
such that Assumptions 5.1, 5.3 and 5.4 hold. Then, for any T2 > T1 > 0 and K > 0,

lim
n→∞ sup

|x |≤K
sup

t∈[T1,T2]
∣∣nd pω(n2t, 0, �nx)− P[0 ∈ C∞]−1k�

t (x)
∣∣ = 0, P0 -a.s.,

with k�
t defined as in (1.2).

Remark 5.7 It appears feasible to derive a local CLT also for a more general class of
speedmeasures for the randomwalk rather than only for the VSRWas in Theorem 5.6.
On (Zd , Ed) such a result has been shown in [7].

Proof of Theorem 5.6 The result follows from Theorem 3.1 once conditions (G.1) −
(G.4) are verified. For condition (G.1) note that for any r > 0 and x ∈ R

d by the
ergodic theorem in [30, Theorem 1],

|�n(x, r)|
(2nr)d

= 1

(2nr)d
∑

y∈C(nx,nr)

1{y∈C∞(ω)} −→
n→∞ P[0 ∈ C∞] > 0, P -a.s.

and therefore also P0-a.s. Condition (G.2) coincides with Assumption 5.3-(ii) and
(G.3) is a consequence of the invariance principle in Theorem 5.5. For condition (G.4)
we aim to apply Theorem 2.4 together with the ergodic theorem in [30, Theorem 1] (cf.
Proposition 4.1 above for the space-time version), which implies (G.4) by the same
arguments as in the proof of Proposition 4.3 above. Note that the conductances are
constant in time in the present setting, so wemay choose p′ = q ′ = ∞ in Theorem 2.4
and (2.13) reduces to (5.1).

It remains to check that the graph (C∞(ω),O(ω)) satisfies Assumption 2.1. Obvi-
ously, for every x ∈ C∞(ω) and n ≥ 1, the ball Bω(x, n) is contained in the
corresponding ball with respect to the graph distance. Thus, |Bω(x, n)| ≤ cnd , and
the volume regularity in Assumption 2.1-(i) follows from this and Assumption 5.3-
(i). Furthermore, Assumption 5.3-(i) also implies an isoperimetric inequality on large
sets (see [27, Lemma 2.10]), which in conjunction with the volume regularity implies
the Sobolev inequality in Assumption 2.1-(ii) with d ′ := (d − θ)/(1 − θ), see [27,
Proposition 3.5]. Finally, the weak Poincaré inequality in Assumption 2.1-(iii) follows
from the relative isoperimetric inequality provided by Assumption 5.3-(i) by applying
a discrete co-area formula, see [37, Lemma 3.3.3] and cf. Remark 2.2 above. ��

Similarly as in Corollary 4.4 above, one can derive near-diagonal heat kernel esti-
mates from Theorem 5.6 following the argument in [5, Lemma 5.3].
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Appendix A. A technical estimate

Lemma A.1 Let g ∈ C1((0,∞)) be a convex, non-increasing function. Assume that g′
is piecewise differentiable and that there exists γ ∈ (0, 1] such that γ g′(r)2 ≤ g′′(r)
for a.e. r ∈ (0,∞). Then, for all x, y > 0 and b, a ≥ 0,

− (
b2g′(y)− a2g′(x)

)
(y − x)

≤
⎧
⎨

⎩
−γ

2

(
a2 ∧ b2

) (
g(y)− g(x)

)2 + 2

γ

(
a2

b2
∨ b2

a2

)(
b − a

)2
, a ∧ b > 0,

(− xg′(x) ∨ −yg′(y)
)
(b − a)2, a ∧ b = 0.

(A.1)

Proof Since g is non-increasing, the case a = 0 or b = 0 is immediate. In the sequel,
we assume that a ∧ b > 0. First, notice that an application of the Cauchy-Schwarz
inequality yields for any x, y > 0,

γ

(∫ y

x
g′(t) dt

)2
≤ γ

(∫ y

x
g′(t)2 dt

)(∫ y

x
1 dt

)
≤

( ∫ y

x
g′′(t) dt

)( ∫ y

x
1 dt

)
,

where we used in the second step that γ g′(t)2 ≤ g′′(t) for a.e. t ∈ (0,∞). Hence,

γ
(
g(y)− g(x)

)2 ≤ (
g′(y)− g′(x)

)
(y − x). (A.2)

Without loss of generality, assume that y > x . Since g is convex and non-increasing,
it follows that 0 ≤ −g′(y)(y − x) ≤ g(x)− g(y). Hence,

− (
b2g′(y)− a2g′(x)

)
(y − x)

= −a2(g′(y)− g′(x)
)
(y − x) − g′(y)(y − x)(a + b)(b − a)

≤ −γ
(
a2 ∧ b2

) (
g(y)− g(x)

)2 + 2
(
g(x)− g(y)

)
(a ∨ b)|b − a|.

Thus, by applying the Young inequality, that reads |αβ| ≤ 1
2 (ε α2 + β2/ε) for any

ε > 0, we obtain
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− (
b2g′(y)− a2g′(x)

)
(y − x)

≤ −
(
γ
(
a2 ∧ b2

)− ε(a2 ∨ b2)
) (

g(y)− g(x)
)2 + 1

ε
(b − a)2.

By choosing ε = γ
2 (a2 ∧ b2)/(a2 ∨ b2), the estimate (A.1) follows. ��

Appendix B. Forward and backward equations for the semigroup

In this section we aim to verify that also in the case of dynamic unbounded conduc-
tances the heat kernel of the random walk satisfies the forward equation. We will
work in the setting outlined in Sect. 1.1. In particular we will suppose throughout that
Assumption 1.1 holds, which implies that,P-a.s., the conductances are local integrable
in time, that is

P

[ ∫

I
ωs(x, y) ds < ∞

]
= 1, for every finite interval I ⊂ R. (B.1)

For any s ≥ 0, we write (Pω
s,t : t ≥ s) for the Markov semigroup associated with the

randomwalk X , i.e. (Pω
s,t f )(x) = Eω

s,x [ f (Xt )] for any bounded function f : Z
d → R,

0 ≤ s < t and x ∈ Z
d . Further, we write (Pω

s,t )
∗ for the adjoint of Pω

s,t in 
2(Zd). The
associated heat kernel is still denoted pω(s, x; t, y) := Pω

s,x

[
Xt = y

]
for x, y ∈ Z

d

and 0 ≤ s < t . As a consequence of (1.1) we have

pτh,zω(s, x; t, y) = pω(s + h, x + z; t + h, y + z). (B.2)

Next we briefly recall the construction of the time-inhomogeneous Markov pro-
cess X starting at time s ≥ 0 in x ∈ Z

d , cf. [3, Section 4]. Let (En : n ∈ N)

be a sequence of independent Exp(1)-distributed random variables. Further, set
πω
t (x, y) := ωt (x, y)/μω

t (x)1{(x,y)∈Ed }, where μω
t (x) := ∑

y:(x,y)∈Ed
ωt (x, y) for

any t ∈ R, x ∈ Z
d . We specify both the sequence of jump times, (Jn : n ∈ N0) and

positions, (Yn : n ∈ N0), inductively. For this purpose, set J0 = s and Y0 = x .
Suppose that, for any n ≥ 1, we have already constructed the random variables
(J0,Y0, . . . , Jn−1,Yn−1). Then, Jn is given by

Jn = Jn−1 + inf

{
t ≥ 0 :

∫ Jn−1+t

Jn−1

μω
u (Yn−1) du ≥ En

}
,

and at the jump time Jn the distribution of Yn is given by πω
Jn

(Yn−1, ·). Since, under
Assumption 1.1, supn∈N0

Jn = ∞, P-a.s., the Markov process X is given by

Xt = Yn on [Jn, Jn+1) ∀ n ∈ N0.

Note that, under Pω
s,x , we have J0 = s and Y0 = x almost surely, the conditional

law of Jn given (J0,Y0, . . . , Jn−1,Yn−1) (also called survival distribution with time-
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dependent hazard rate μω
t (Yn−1)) is

μω
t (Yn−1) e

− ∫ t
Jn−1

μω
u (Yn−1) du 1{t>Jn−1} dt,

and the conditional law of Yn given (J0,Y0, . . . , Jn−1,Yn−1, Jn) is πω
Jn

(Yn−1, ·).
Further, for the Markov process X as constructed above the strong Markov prop-

erty holds, an application of which yields that (Pω
s,t : t ≥ s) satisfies the integrated

backward equation, that is, for P-a.e. ω,

(Pω
s,t f )(x) = e−

∫ t
s μω

u (x) du f (x) +
∫ t

s
e−

∫ r
s μω

u (x) du
∑

y:(x,y)∈Ed

ωr (x, y) (Pω
r ,t f )(y) dr

(B.3)

for any f ∈ 
∞(Zd), 0 ≤ s < t < ∞ and x ∈ Z
d .

Proposition B.1 For P-a.e. ω, every x, y ∈ Z
d and f ∈ 
∞(Zd) the following hold.

(i) For every t > 0, the map s �→ pω(s, x; t, y) is differentiable at almost every
s ∈ (0, t). In particular, lims↑t pω(s, x; t, y) = pω(t, x; t, y) = 1y(x).

(ii) For every t > 0,

−∂s(P
ω
s,t f )(x) = (Lω

s (Pω
s,t f )

)
(x), for a.e. s ∈ (0, t).

Proof (i) We will show that for every t > 0, x, y ∈ Z
d and P-a.e. ω the mapping

[0, t) � s �→ pω(s, x; t, y) is absolute continuous, which implies (i). For that purpose,
fix some f ∈ 
∞(Zd) and t > 0. Since, for every x ∈ Z

d , themap t �→ μω
t (x) isP-a.s.

locally integrable by (B.1), the absolute continuity of the Lebesgue integral implies
that, for every ε > 0, there exists δ ≡ δ(x) > 0 such that

∫

D
μω
u (x) du ≤ ε

2‖ f ‖∞ ∀ D ∈ B(R) with Lebesgue measure less than δ.

Then, by using the integrated backward equation (B.3) and the Cauchy-Schwarz
inequality,

n∑

i=1

∣∣(Pω
si ,t f )(x)− (Pω

ri ,t f )(x)
∣∣

≤ 2‖ f ‖∞
n∑

i=1

(
1− e

− ∫ si
ri

μω
u (x) du

)
≤ 2‖ f ‖∞

(∫

D
μω
u (x) du

)
< ε

for any union D = ⋃n
i=1(ri , si ) of pairwise disjoint intervals (ri , si ) ⊂ [0, t] of total

length less than δ.
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(ii) We rewrite the right-hand side of (B.3) as

e−
∫ t
s μω

u (x) du f (x) + e
∫ s
0 μω

u (x) du
∫ t

s
e−

∫ r
0 μω

u (x) du
∑

y:(x,y)∈Ed

ωr (x, y)(P
ω
r ,t f )(y) dr .

Since t �→ μω
t (x) is locally integrable, the differential form of the backward equation

in weak sense follows from [20, Theorem 6.3.6] together with an application of the
chain and product rule. ��
Lemma B.2 Define ω̃t (e) := ω−t (e) for any t ∈ R and e ∈ Ed. Then,

pω(0, x; t, y) = pω̃(−t, y; 0, x), ∀ x, y ∈ Z
d , t ≥ 0. (B.4)

Proof Write Bn := B(0, n) and τBn := inf{t ≥ 0 : Xt ∈ Bc
n} with inf ∅ := ∞. We

denote by pω,n(s, x; t, y) := Pω
s,x

[
Xt = y, t < τBn

]
the heat kernel associated with

the process X killed upon exiting Bn , and we write (Pω,n
s,t : t ≥ s) for the transition

semigroup. Recall that the associated time-dependent generator, still denoted by Lω
t ,

is acting on functions with Dirichlet boundary condition. By similar arguments as in
Proposition B.1 one can establish a backward equation for (Pω,n

s,t : t ≥ s), which gives

∂s
〈
P ω̃,n
−s,0g, P

ω,n
s,t f

〉

2(Bn)

= 〈Lω̃−s P
ω̃,n
−s,0g, P

ω,n
s,t f

〉

2(Bn)

− 〈
P ω̃,n
−s,0g,Lω

s P
ω,n
s,t f

〉

2(Bn)

= 0,

where we used in the last step that Lω̃−s = Lω
s . By integration over [0, t] we get

〈
P ω̃,n
−t,0g, f

〉

2(Bn)

− 〈
g, Pω,n

0,t f
〉

2(Bn)

= 0,

and by choosing f = 1{y} and g = 1{x} we obtain pω̃,n(−t, y; 0, x) =
pω,n(0, x; t, y). Finally, since limn→∞ pω,n(s, x; t, y) = pω(s, x; t, y) for all x, y ∈
Z
d , t ≥ s and ω ∈ �, the result follows by taking the limit n →∞. ��

Proposition B.3 For P-a.e. ω, every x ∈ Z
d and finitely supported f : Z

d → R, the
map t �→ (Pω

0,t f )(x) is differentiable at almost every t ∈ (0,∞) and

∂t (P
ω
0,t f )(x) = (Lω

t (Pω
0,t f )

)
(x), for a.e. t ∈ (0,∞). (B.5)

In particular, for P-a.e. ω, the function (t, x) �→ u(t, x) = pω(0, 0; t, x) solves

∂t u(t, x) = (Lω
t u(t, ·))(x), ∀ x ∈ Z

d and a.e. t ∈ (0,∞).

Proof This follows from the backward equation in Proposition B.1 and Lemma B.2.
Indeed, let ω̃ be defined as in Lemma B.2, then we have for any f , g ∈ 
2(Zd),

〈
Pω
0,t f , g

〉

2(Zd )

= 〈
f , (Pω

0,t )
∗g

〉

2(Zd )

(B.4)= 〈
f , P ω̃−t,0g

〉

2(Zd )

.
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Thus, for any finitely supported f : Z
d → R and g = 1x , we obtain

∂t (P
ω
0,t f )(x) = lim

h→0

1

h

〈
Pω
0,t+h f − Pω

0,t f , g
〉

2(Zd )

= lim
h→0

1

h

〈
f , P ω̃

−(t+h),0g − P ω̃−t,0g
〉

2(Zd )

= 〈
f , ∂t P

ω̃−t,0g
〉

2(Zd )

.

Hence, by using the differential backward equation, we get

∂t (P
ω
0,t f )(x) = 〈

f ,Lω̃−t (P
ω̃−t,0g)

〉

2(Zd )

= 〈
f ,Lω

t ((Pω
0,t )

∗g)
〉

2(Zd )

= Pω
0,t (Lω

t f )(x),

which yields (B.5). Finally, consider the function u(t, x) := pω(0, 0; t, x). Then, by
applying (B.5), we find that

∂t u(t, x) = ∂t (P
ω
0,t1x )(0) = Pω

0,t (Lω
t 1x )(0)

= 〈
u(t, ·),Lω

t 1x
〉

2(Zd )

= (Lω
t u(t, ·))(x),

which concludes the proof. ��
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