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ABSTRACT 
 

During the last decades, the technological evolution has been very fast 

and has paved the way to a wide set of theoretical approaches able to support 

and stimulate the experimental component of biological sciences. From this 

standpoint, in drug discovery and design, the ability to make working hypothesis 

on how a small molecule interacts with its biological target can lead to rational 

approaches for the developing of new drug candidates.  

Nowadays is possible to model the behaviour of chemical systems up to 

the atomistic scale, allowing retrieve insights on mechanisms behinds the ligand 

binding and unbinding from a receptor. Among the computational techniques 

available, molecular dynamics is able to take in account fundamental aspects 

linked to the time evolution of a biological system, such as structural flexibility 

and the dynamic role of water molecules in the protein binding sites. 

During this Ph.D. project we employed molecular dynamics in order to 

disclose putative binding mechanisms of several ligands: more precisely, we 

applied the supervised molecular dynamics (SuMD) technique to decipher the 

binding pathways of both allosteric modulators and agonists to the adenosine 

receptors subtypes (belonging to class A of G protein-coupled receptors). 

Interestingly, findings highlights the coexistence of different potential 

recognition pathways that anticipate the formation of the orthosteric 

intermolecular complexes, as well as the crucial role of residues located at the 

extracellular portion of the protein. 
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SOMMARIO 
 

Nel corso degli ultimi decenni, l'evoluzione tecnologica è stata così rapida 

da aprire la strada a una vasta gamma di approcci teorici in grado di supportare e 

stimolare la componente sperimentale delle scienze biologiche. Da questo punto 

di vista, in drug design, la capacità di fornire ipotesi di lavoro su come una 

piccola molecola interagisce con il suo bersaglio biologico può portare ad 

approcci razionali per lo sviluppo di nuovi candidati farmaci.  

Oggigiorno è possibile modellare il comportamento di sistemi chimici 

fino alla scala atomica, consentendo di avere informazioni sul meccanismo che 

guida associazione e dissociazione da un recettore. Tra le tecniche di calcolo 

disponibili, la dinamica molecolare è in grado di prendere in considerazione 

fondamentali aspetti legati all’evoluzione temporale di un sistema biologico, quali 

la flessibilità strutturale e il ruolo dinamico delle molecole d'acqua nei siti di 

legame proteici. 

Durante questo progetto di dottorato di ricerca abbiamo impiegato la 

dinamica molecolare al fine di rivelare i possibili meccanismi di riconoscimento 

di diversi ligandi, soprattutto nei confronti dei sottotipi recettoriali dell'adenosina 

(appartenenti alla classe A dei recettori accoppiati a proteine G): più 

precisamente, abbiamo applicato tecniche di dinamica molecolare supervisionata 

(SuMD) sia a modulatori allosterici che ad agonisti. È interessante notare che i 

risultati evidenziano la co-esistenza di diversi possibili meccanismi di 

riconoscimento, che anticipano la formazione dei complessi intermolecolari 

ortosterici, oltre ad il ruolo cruciale di residui localizzati nella porzione proteica 

extracellulare.  
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1.1 BINDING AND UNBINDING: AN  OVERVIEW 
 

Binding between organic molecules has ever been the motor of life since 

its outset1. Inside biological systems, intermolecular recognitions often are the 

first step for transduction of the chemical signals required for physiological 

functionalities: gene regulation2, hormonal signal cascades3 and enzymatic 

metabolism4 are just a few examples of biological events, subjected to binding 

with endogenous or exogenous chemicals. Likewise for all the natural 

phenomena, thermodynamics laws are able to explain and describe the physics 

and the driving forces that stand behind the formation of intermolecular 

complexes, as well as the kinetics behaviour of the entire binding and unbinding 

phenomena.  

In this first section some fundamental aspects of binding, both from 

kinetics and thermodynamics point of view are shortly introduced to the reader, 

then the main forces that drive and influence binding are briefly elucidated. 

 

 

1.1.1 BINDING THERMODYNAMICS AND KINETICS: TWO 
 FACES OF THE SAME COIN 
 

Is difficult to divide the binding thermodynamics characterization 

(quantified by the equilibrium association constant KA and the dissociation 

constant KD) from its kinetic description (reflected by the rate constants kon and 

koff). Considering a single step mechanism, at the steady state the ligand (L) and 

its receptor (R) form an intermolecular complex according to the law of mass 

action: 

 

L + R ⇄ LR    (1) 
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The dynamic proprieties of the equilibrium allow to relate the 

thermodynamics dissociation constant KD (which in turn is the reciprocal of KA) 

to the binding kinetics rate constants kon and koff  (equation 2): 

 

   (2) 

 

The recognition event, which depends on the concentration of both 

ligand and receptor, is a second order reaction (kon is expressed in M-1s-1), while 

the dissociation is function only of the intermolecular complex concentration 

(koff is measured in unit of s-1). This important difference is caused by the 

intrinsic two steps nature of intermolecular recognition5: indeed, while the 

dissociation take place in one stride regulated only by the interactions between 

ligand and receptor, the association can be distinguished in two different phases. 

During the first stage (before any interaction occurs) the ligand diffuses through 

the media and the probability of a productive collision with the protein rely on 

its own concentration (we can assume a kinetics rate constant kdiff for this step, 

measured in M-1). Upon the first interactions with the receptor are established, 

recognition no more relies on concentration but only on the binding mechanism 

and its energetic progress, leading to measure a proper interaction kinetics rate 

constant (namely kint) in unit of s-1. It follows that the total binding kinetics rate 

kon can be considered the combination of the two phases (equation 3): 

 

kon = kdiff · kint    (3) 

 

Generally, for a drug−like compound, kinetics kon value is in the range of 

103 M-1s-1−109 M-1s-1 (the latter is about the rate limit of free diffusion in 

solution), while the koff can spread from around 10-7 s-1 to approximately 1 s-1 and 

usually is the main contributor to the KD value6 as expressed in equation 2. 

Interestingly, super−fast binders (characterized by kon values higher than 109 M-1 

s-1) have been evolutionary selected as effectors of physiologic processes that 

KD =
[L][R]
[LR]

=
koff
kon

= KA
−1
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need instant regulation, like in the case of acetylcholine on the enzyme 

acetylcholinesterase (AChE)7 in the central nervous system (CNS). 

During the last decade, an increasing attention has been addressed to the 

kinetics concept of residence time (tr), first introduced in 2006 8 and defined as 

the reciprocal of the koff  value (so is expressed in unity of seconds):  

 

   (4) 

 

According to experimental evidences, tr is related to the in vivo biological 

effects triggered by the ligand6,9. Usually, a high tr value is considered useful for 

the pharmacodynamics profile, especially if it is longer than the 

pharmacokinetics elimination lifetime, otherwise is the mass−balance effect, 

drove by elevated local drug concentrations, to sustain the effect of the drug10 

(Figure 1). Nevertheless, also adverse effects can be linked to tr, both off−target 

and target mediated11.  

 

 
Figure 1. Plot showing the ratio between plasma half-lives and dissociation half-lives on 

a logarithmic scale (y axis) for some commercialized drugs. Dissociation half-lives is 

defined as Dt1/2 =
ln2
koff

 .(Adapted from ref. 10). 

tr =
1
koff
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On the other hand, the kon has a crucial role in protocols for binding 

measurements12: indeed, the kinetics on−rate of ligands involved in the 

experimental procedures drive the timing needed for the achievement of 

equilibrium conditions. 

The free energy profile that characterizes binding and unbinding events is 

usually modelled as reported in Figure 2. According to the transition state theory 

(TST)13, the highest point on the pathway (LR‡) represents the transition state 

between the unbound (L + R) and the bound configuration (LR). As stated in 

Eyring’s equation (equation 4), the kinetics constants (kon/off) are proportional to 

the exponential of the energies of activation of the respective transition states 

(ΔG‡on/off), through a pre-exponential factor that combines the Boltzmann’s 

constant kB, the Planck’s constant h and the absolute temperature T:  

 

    (4) 

 

Thermodynamics constants KD and KA, instead, are related to the ΔGbinding, 

according to the equation 5: 

 

KD = e
ΔGbinding

RT = KA
−1     (5) 

 

Eyring’s theory is the elegant combination of different thermodynamics, 

statistics and kinetics mathematical approaches developed until 193514. Its power 

resides in its versatility, as is able to describe the kinetics behaviour of almost all 

the chemical systems. What allows us to apply this model (in principle developed 

for chemical reaction and two body interacting systems) to complex systems (as 

a fully solvated protein−ligand complexes can be considered) is that, along a 

single path, the dynamics of the transition depends only on the slowest steps 

involved (the one associated to the highest energy). Importantly, this assumption 

does not imply that the binding or unbinding kinetics are defined by only one 

Kon/off =
kBT
h
e
−
ΔG±on/off

RT
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transition state, but more realistically, different pathways (therefore different 

transition states) can contribute with different weights to the observable kon and 

koff values. 

 

 

 
Figure 2. Simplified binding and unbinding energy profile. The highest energy point 

(LR‡) is the transition state between the unbound (L + R) and the bound state (LR). 

The energy difference between the two states is ΔGbinding, while ΔGon and ΔGoff 

quantifies the energy variation between LR‡ and the two energy basins. 

 

Considering one of these possible energetic pathways (Figure 2), the 

definition of the reaction coordinate able to describe the free energy profile 

during the systems’ transition become tricky, passing from a two body 

interacting system (which evolution is well depicted by the distance between the 

components of the system) to a biological system, where transitions may be 

better outlined by multiple descriptors15–17 (e.g the combination of 

intermolecular distances, dihedral torsional angles, degree of solvation, angles 

formed by different centres of mass etc etc). To complicate the picture, there is 

the difficulty to determine which step, among all in the transition pathway, may 

represent the limiting one, or if two or more transition states are energetically 

degenerate, therefore equally contribute to the overall kinetics. In Figure 3, as an 

example, is reported the comparison between two reaction coordinates (runi and 
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ropt) monitored during the molecular dynamics simulation of a 47−residues 

protein16: the distribution of the conformations follows a bimodal trend (Figure 

3, panel B and E), which is better described by the reaction coordinate ropt, able, 

indeed, to avoid overlaps (Figure 3, panel B) and to highlight the protein 

conformation associated to the transition state (the conformation associated to 

the lower probability). 

 

 
Figure 3. Comparison between reaction coordinates. (A and D) Reaction coordinates 

values during the same molecular dynamics simulation; (B and E) distribution 

probability of the two reaction coordinates; (C and F) the probability of being on a 

transition path. The green horizontal lines indicate transition states. (Adapted from ref 
16). 

 

Ligand binding and unbinding events are multi steps processes, usually 

characterized by stable states that anticipate the final bound (or fully solvated 

unbound in the case oh unbinding) configuration18–21 as depicted in Figure 4 for 

the case of alprenolol on the β2 adrenoreceptor (β2 AR)20.  
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Figure 4. Alprenolol–β2 AR binding metastable states. Pins indicate successive positions 

of alprenolol (A); the molecules moves from bulk (1), to the extracellular vestibule (2 

and 3), and finally into the binding pocket (4 and 5). (Adapted from ref 20). 

 

From this standpoint, if we consider a two steps ligand−receptor 

recognition (or dissociation) event (equation 6), the formation of a metastable 

intermediate complex LR*M has to be considered thermodynamically and 

kinetically related to the unbound state (L + R) and the final bound state (LRB): 

 

L + R ⇄ LR*M ⇄  LRB   (6) 

 

Again, the free energy profile can be simplified as reported in Figure 5. In 

this model the formation of an initial drug–receptor intermediate complex 

(LR*M) anticipate the slower (because of the highest energy barrier ΔG‡B) 

formation of the final bound state (LRB). In this case, compared to the single 

step binding model (equation 2), the definition of the thermodynamics 

dissociation constant KD can be computed through a more complicate 

combination of the kinetics constants from each step (equation 7)22,23: 

 

    (7) 

 

KD =
k2

k1 +
k1 + k1k3
k4
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Figure 5. Energy profile of a two steps binding mechanism, characterized by a slower 

second step. Between the unbound state L + R and the bound state LRB the system 

experiences a stable intermediate complex LR*M. The kinetics is governed by four 

constants (k1, k2, k3 and k4), while the thermodynamics is determined by the ΔGbinding 

value. 

 

At the steady state, ΔGbinding can be quantified as the variation, from the 

initial unbound to the final bound state (and vice versa in the case of unbinding), 

of two state functions of the system: enthalpy (H) and entropy (S) (equation 8): 

 

ΔGbinding =Gbound −Gunbound = ΔHbinding −TΔSbinding   (8) 

 

A negative ΔHbinding value is considered favourable for binding24 and 

reflects a positive change in the number and/or strength of intermolecular 

interactions. In the same way, a negative value for -TΔSbinding indicates an 

increase in entropy, ascribable to favourable changes24 in translational, rotational 

or conformational entropy of the system. Studies carried out on sets of different 

intermolecular complexes highlighted the general tendency of enthalpy−entropy 

compensation: ligand binding appears to be energetically driven by either a 
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favourable enthalpy variation or a favourable entropy variation, but usually not 

by a concordant effect of the two24,25.  

An alternative point of view on binding and unbinding is offered by 

statistical mechanics26,27. According to this treatise, in equilibrium conditions, a 

system can be described as the sum of the energy of all its possible microstates, 

each one associated to a probability to exist quantified from its own energy. As a 

consequence, microstates with low energy are more populated and, if we label 

the ith microstate by its energy Ei, the probability of a specific microstate is given 

by equation 9: 

 

     (9) 

 

where -βEi is called the Boltzmann factor (β = 1/KBT ) and Z is the partition 

function, defined as the sum of all the possible microstates. Intuitively, the 

probability associated to a ligand–receptor bound configuration increase 

exponentially with the energy of stabilization generated by the intermolecular 

complex formation.  

 

pi =
1
Z
e−βEi
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1.1.2 BINDING DRIVING FORCES 
 

During an intermolecular recognition, different events occur and in a 

general view, both the ligand and the receptor respectively: i) partially desolvate; 

ii) rotationally rearrange, in order to reach the right conformation for recognition 

and iii) establish new interactions. Each step needs a certain amount of energy 

for its activation and can be more related to a change in enthalpy or in entropy. 

 

1.1.2.1 Intermolecular interactions 
 

Like protein–protein association28, also the recognition of small 

molecules is strongly affected by electrostatics interactions. In physiological pH 

conditions, molecules can be in ionized if their chemical structure includes basic 

or acidic functional groups, and when two charges of opposite signs establish a 

favourable ionic interaction, the enthalpy of the stabilization is determined by:  i) 

the charge densities present on the respective atoms; ii) the interatomic distance 

and iii) the dielectric constant ε of the microenvironment. Notably, charges 

located at the protein surface may experience a different dielectric constant than 

charges buried in the protein core, with ε values that can diverge from ≈20-80 (at 

the bulk solvent interface) to ≈ 1-4 (inside buried protein cavities)29,30. During a 

salt bridge formation, the total free energy change ΔGtot can be generalized as 

the algebraic sum of different terms31 (equation 10): 

 

ΔGtot = ΔGdslv + ΔGbrd + ΔGprt + ΔGrot   (10) 

 

More precisely, ΔGdslv takes in account the desolvation penalties that 

individual charged atoms have to overcome in their passage from the water to 

the protein environment; ii) ΔGbrd is the favourable enthalpy due to the 

interaction of oppositely charged functional groups; iii) ΔGprt represents the 
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change in interactions between the new formed salt–bridge and the rest of the 

protein. Moreover, especially if long side chain amino acid residues are involved 

(as lysine or arginine), a loss of rotational entropy ΔGrot should be considered for 

the overall ΔGtot. 

Moving to other classes of intermolecular interactions, hydrogen bonding 

probably represents the most common polar interaction in nature, being the 

intermolecular force characterizing the main constituent of the biosphere: the 

water. From a molecular point of view, at small separation distances between 

atoms involved, hydrogen bonds are governed by a balance between attractive 

and repulsive electrostatics, charge transfers and polarizations phenomena, while, 

at larger distances, are almost completely electrostatics32. In pure water, the 

strength of an hydrogen bond is about 3.7 kcal/mol33, but the stability provided 

by a single interaction depends on the degree of solvent exposure34 as well as the 

nature of the heteroatoms involved and their relative positions35. Moreover, the 

formation of a hydrogen bond, beside the enthalpy stabilization, implies also a 

minor entropy loss36. Recently, an increasing attention has been addressed to the 

understanding of how hydrogen bonds influence the binding and unbinding 

kinetics: hydrogen bonds buried inside protein cavities are generally shielded 

from water molecules and their rupture (and formation) are associated to 

energetically penalized transition states, as we can consider dehydration and 

rehydration occurring asynchronously37 (Figure 6). This scenario is well 

exemplified by the biotin–streptavidin complex, where the water entrance in the 

binding pocket (Figure 7) during the unbinding is highly unfavourable due to the 

presence of a net of hidden hydrogen bonds38,39. 

Despite huge efforts made by the scientific community, there is still lack 

of a univocal model able to describe the contribution to intermolecular 

recognition40 generated by hydrophobic interactions. From a computational 

point of view, hydrophobic interactions are estimated through the Lennard–

Jones potential41 or on the basis of the surfaces involved: the stabilization 

generated is generally quantified in the range of 25–75 cal/Å242. Unsaturated 

rings have been extensively reviewed43 and in a recent study44 Pi-Pi stacking 
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interactions, have been compared with hydrophobic interactions involving sp3 

carbon atoms rings: interestingly, has emerged that in drug-like molecules the 

replacement of phenyl groups with saturated rings seems not to negatively affect 

the affinity. 

 

 
Figure 6. Representation of the hydrogen bond exchange processes between water and 

ligand (a) with a solvent-exposed polar atom; (b) for an almost buried polar atom; (c) 

with a solvent-exposed polar atom with a bulkier ligand. (Adapted from ref 37). 
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Figure 7. Biotin binding site location in the crystal structure of streptavidin. (Adapted 

from 38). 

1.1.2.2 Role of water molecules 
 

Since the dawning of modern sciences, water has been considered a 

cornerstone of biological processes, because of its fundamental impact in protein 

plasticity, protein–protein interactions and small molecules’ binding45. 

Nowadays, the role of water during ligand association and dissociation 

represents a challenging field for medicinal chemists46, mainly due to the 

dichotomy between enthalpy and the entropy, which in water molecules 

probably finds its maximum expression within biological systems47,48. As a rule 

of thumb, water molecules in binding sites are partially restrained by irregular 

shapes of the protein surface. Moreover, cavities are frequently hydrophobic 

environments, whose solvation requires an energetic cost that can be regained 

thanks to the replacement of unfavourable water molecules with lipophilic 

moieties belonging to bound ligands49–51. From this point of view, the so-called 

“magic methyl effect”52,53 is probably the most famous manifestation, in 

medicinal chemistry, of the effect mediated by the displacement of instable water 

molecules from the receptor surface during the binding. The analysis of several 

thousands crystal structures revealed that at least a water molecules mediates 

contacts between protein and ligand in almost two–thirds of all complex 

considered54,55. As demonstrated by the rational design of non-peptide HIV 

protease inhibitors56, medicinal chemists have to take in account water and its 

importance in intermolecular recognition57. A number of different 

computational methods have been developed with the aim of predict the 

presence of water molecules in protein–ligand complexes58, including Grand 

Canonical Monte Carlo (GCMC)59 and WaterDock60. In general, MD–based 

techniques show relevant potentiality for this application, allowing to quantify 

the energetic contribution produced by water mediated interactions61, or to 

evaluate the water accessibility to binding sites during unbinding events62. One 
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of these methods is WaterMap63: it consists of an all-atom MD simulation 

carried out in explicit solvent. Output trajectory thermodynamics is statistically–

analysed to define potential hydration sites according to water clusters detected. 

WaterMap drove the development of a series of platelet-derived growth factor 

receptor β (PDGFR-β) inhibitors, thanks to the design of a structural 

modification of the ligands able to target a weakly bound water molecules, 

leading to a 25-fold improvement in IC5064 (Figure 8).  

Interestingly, by means of long classic MD simulations, water molecules 

have been indicated as responsible for early kinetic barrier during ligand 

approach to G-protein coupled receptors (GPCRs), due to the dehydration that 

takes place as the drug associates with the extracellular vestibule of the 

receptors20,65. 

 

 
Figure 8. Development of PDGFR-β inhibitors using WatertMap. The replacement of 

an indole group is able to displace an unfavourable water molecule (in red) and improve 

the overall interactions through a water bridge molecule (in green). (Adapted from 58). 

 

 

1.1.2.3 Conformational changes  
 

Almost thirty years ago a new concept was introduced in the field of 

protein biophysics66,67, the energy landscape, which is the free energy associated 

to all the possible protein conformations. Each protein conformation is, in turn, 

a function of all the degree of freedom (mainly dihedral angles of the backbone). 

In this representation, valleys are stable and favourable conformations the 

protein can explore with kinetics and probabilities that depends on the shape of 

the surface that separate two or more minimum. This scenario suggests the 
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existence of an ensemble of possible pathways, intermediate states and transition 

states connecting two stable points.  

In physiological conditions, the presence of a ligand in the surrounding 

environment of a protein can produce a shift in the protein conformational 

distribution68. Generally, two models of binding mechanism are considered 

(Figure 9): a) the “conformational selection” (equation 9), where the ligand L 

only binds one of the macromolecule conformational states R’,R’’,R’’’ (usually 

presents only in small amounts) and b) the “induced fit” mechanism (equation 

10), characterized by the ligand binding to the predominant protein 

conformation, followed by an isomerization of the complex (RL*) to yield the 

final form (RL): 

 

〈R’,R’’,R’’’,…〉 + L ⇄ LR     (9) 

  

R + L ⇄  RL* ⇄  RL    (10) 

 

Even if is well established that the mechanistic model followed is 

influenced by the protein and ligand concentrations, it has been proposed a 

major role for the conformational selection69–71.Considering the induced fit 

model, both the first and the second step can involve a conformational change 

of the target and/or the ligand, with a relative kinetics usually slower if is the 

target to experience a conformational isomerization, due to the higher number 

of degree of freedom implied72. This high number of degrees of freedom and the 

complexity of the free energy surface make difficult to estimate its overall 

thermodynamic influence on binding, especially for the entropic component73.  

Ligand and protein side chains conformational changes, instead, are 

linked to the exploration of a relatively low number of rotatable bonds and, 

therefore, are more easily addressable using a range of both experimental and 

computational techniques 74–76. Notably, can exist a substantial difference 

between the more stable ligand conformations in the bulk solvent and the 

binding conformation77,78 (bioactive in the case of an agonist) and it is important 
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to note that binding brings an unfavourable entropy contribution to the total 

free energy 79,80. 

 
Figure 9. Comparison between conformational selection (a), where the ligand 

selectively binds a single conformation (stabilizing it) and induced fit (b), where the 

ligand induces conformational rearrangements in the macromolecule to optimize the 

interaction. (Adapted from ref 69). 
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1.2 MOLECULAR DYNAMICS AS A POWERFUL TOOL FOR 
 INVESTIGATE BINDING AND UNBINDING EVENTS 
 

Structure based drug design (SBDD) has its roots in the middle of the last 

century, when the first pioneering results were obtained from X-ray 

crystallography techniques81. During the following decades the possibility to 

investigate biological macromolecules at atomistic resolution, as well as the 

constantly increasing computational performances, paved the way to molecular 

simulations in the pharmaceutical field. Docking simulations82 rapidly became a 

fundamental tool in drug discovery, due to the opportunity of efficiently 

perform virtual screenings of vast virtual libraries of compounds and rationalise 

the structure-activity relationship (SAR) able to drive the optimization of hit and 

lead compounds. Main purpose of docking is to explore possible ligands’ 

conformations in their binding site, semi-quantitatively evaluating the stability of 

intermolecular complexes generated on the basis of shape and electrostatics 

complementarity.  

More recently, other force field–based techniques have been developed: 

alchemical perturbation (AP) methods83 and molecular mechanics energies 

combined with the Poisson-Boltzmann or generalized Born and surface area 

continuum solvation (MM/PBSA and MM/PBSA) represent common tools for 

evaluate ligand binding affinities84. These approaches, whose results strongly 

depend on the chemical system considered, take advantage of short molecular 

dynamics (MD) simulations performed on both ligand and receptor 

conformations extracted from docking, quantifying the energetic stability of a 

binding mode and neglecting how the binder should reach the putative bound 

configuration.  

In the last years increasing efforts have been addressed to decipher the 

ligand-receptor binding phenomena at an atomistic scale, with the aim of 

characterize the driving forces that move a small molecule from the solvated 

unbound state toward the stable final intermolecular complex, and vice versa. 

From this standpoint, MD is a promising tool, able to take in account protein 
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and ligand flexibility as well as the dynamic role of water molecules. Disclosure 

of a more detailed picture about binding mechanisms may allow the 

development of alternative and innovative drug discovery strategies, able to 

bridge the chemical modification introduced with the experimentally–determined 

kinetics. In this scenario, beside the structure-activity relationship (SAR) 

approach, the structure–kinetic relationship (SKR) is constantly gaining 

popularity85. The introduction of the time as a variable in computational 

simulations allow consider the systems’ evolution according to how their 

components can dynamically and reciprocally interact: starting from an initial 

configuration on the energy landscape is possible to sample possible evolutions 

and pathways from a local minimum to another, passing through saddle points. 

In other words, by means of classic MD, which nowadays is already able to reach 

the millisecond time scale86,87 thanks to the recent introduction of the graphic 

processing unit (GPU) technology and dedicated MD codes, is possible to 

reconstruct the ligand transition from the unbound state to the bound 

intermolecular complex, which represents a minimum of the system energy 

landscape. From this point of view, a crucial task is to sampling ligand binding or 

unbinding events an adequate number of times, as any observable retrieved from 

MD (e.g. energy values or kinetics rate) should derive from a statistical approach 

(and may consider the systematic error introduced by using rude molecular 

mechanics force fields).  

On the other hand, the dissociation of a intermolecular complex can not 

be simulated using a classic MD approach, because of the high energy barrier of 

the transition state associated, that impose timescales still unreachable for the 

methodology. Indeed, in order to sample possible unbinding pathways and 

mechanisms, the so-called “enhanced sampling” methods are employed.  

This section introduces the applicability of classic MD to the study of 

binding events as well as some enhanced methods that have been successfully 

used to characterize unbinding mechanisms. 
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1.2.1  CLASSIC MOLECULAR DYNAMICS FOR THE 
MODELING OF BINDING EVENTS 
 

In drug design, classic MD is often combined with molecular docking 

methods with the aim of evaluate the quality of docking solutions as well as to 

their refinement and tuning88,89. However, classic MD represents a powerful 

method for disclosing the entire mechanisms of binding and has gained 

increasing visibility in the last years: in 2011 Buch et al. reconstructed for the first 

time at atomistic detail a ligand–protein recognition event18, retrieving kinetic 

and thermodynamics parameters in good accordance with experimental data. A 

pioneering study in the G protein-coupled receptors (GPCRs) field is 

represented by the work of Dror et al.20. The authors performed classic MD 

simulations on both the β2 adrenergic receptor (β2 AR) and the β1 adrenergic 

receptor (β1 AR): interestingly, the antagonist alprenolol bound to β2 AR 

exploring a predominant pathway, characterized by different metastable sites 

located between extracellular loop 2 (EL2) and 3 (ECL3). Decherchi et al.90, 

instead, combined classic MD simulations with machine learning algorithms in 

order to reconstruct the binding of an inhibitor to the purine nucleoside 

phosphorylase enzyme. After microseconds of simulation, a final intermolecular 

complex in agreement with the experimentally determined one was gained, 

highlighting three different main binding pathways to the active site and 

therefore corroborating the experimental slow kinetics measured.  

Usually, the concept of binding is associated to the initial ligand diffusion 

from the bulk solvent to the receptor surface, however it is important to 

consider that about 60% of drugs targets are located at the cell surface91 and that 

membrane proteins are immersed in a peculiar environment. It follows that 

lipophilic binders may reach their recognition sites also from the lipid bilayer, as 

described by of Stanley et al.19. In this work, the binding of the inhibitor ML056 

to the sphingosine-1-phosphate receptor 1 (S1P1R) was reconstructed using 

classic MD simulations and Markov state models (MSMs)92: the aggregate 
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sampling time of over 800 µs allowed to highlight four different stages during 

the binding pathway.  

MSMs92 are a powerful statistical approach recently introduced for the 

computation of kinetics parameters from MD simulation. Briefly, assumed that 

short simulations allow observe system transitions between states that are 

kinetically near, a number of short parallel MD simulations are performed 

starting from different initial configurations. A structural descriptor is followed 

during the simulations and when its value become stationary a new simulation is 

started with the goal of to avoid the over sampling of metastable configurations 

(therefor the quality of the data set collected is improved). After the short MD 

trajectories are collected, a set of microstates is defined performing a clustering 

based on the structural descriptor (clusters are represented by the number of 

states that are comprised) and a microstate transition matrix is constructed. 

Configurations in the MD trajectories are, one by one, compared to microstates 

to find out to which microstate they can be assigned: the result is a translation of 

the overall MD trajectory from a series of structures over time to a series of 

microstates over time93. The aim is to count how many transitions are observed 

between each pair of microstates i and j during a lag time τ in order to estimate 

their probability in that time window93. MSMs constructions have been applied 

to chemical system of increasing complexity: recently Plattner et al. reconstructed 

the binding of benzamidine to β-Trypsin94, revealing that the enzyme can exist in 

six main conformations and that the overall mechanism exhibits features of both 

induced fit and conformational selection. Gu et al., instead, employed MSMs to 

study the choline binding to the endogenous protein ChoX95, ascribing the 

recognition mainly to the conformational selection model. Kohlhoff et al.96 carried 

out a cloud-based MSM approach to simulate a total time of 2.15 ms on the β2 

adrenergic receptor (β2 AR). During this study, the authors started from both 

inactive and active crystal structures of the receptor, in presence of two different 

ligands (the partial inverse agonist carazolol and the full agonist BI-167107): 

findings revealed that binding to both of the two isomers may take place through 

multiple pathways, that comprises metastable intermediate sites. 
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Recently we have proposed an alternative unbiased MD based method 

for the characterization of possible pathways during recognition events: the 

supervised molecular dynamics97,98 (SuMD). According to this approach, the 

timescale needed to reproduce complete intermolecular complex formations 

results in the range of nanoseconds, instead of hundreds of nanoseconds or 

microseconds usually necessary with classic MD. Sampling is gained without the 

introduction of bias, but just by applying a tabu–like algorithm (Figure 10) to 

monitor the distance between the center of masses of the ligand and the binding 

site, during short classic MD simulations.  

 

 
Figure 10. SuMD algorithm scheme. The ligand–receptor distance vector (dcmL-R) is 

collected at regular time intervals and an interpolating linear function is calculated after 

each time window. 

 

During each SuMD time window, an arbitrary number of distance points 

is collected at regular time intervals and fitted into a linear function. If the slope 

of the resulting straight line is negative, the ligand-receptor distance is likely to 

be shortened and the simulation is restarted using coordinates and velocities 

from the very last SuMD production step. Otherwise, the simulation is restored 

from the set of coordinates from the last productive step, by reassigning atoms 

velocities according to Boltzmann distribution. When the ligand–binding site 

distance reaches a predetermined value, the supervision is stopped and the 
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system can freely evolve without supervision. Some recent SuMD applications 

comprise the binding reconstructions of adenosine to its endogenous receptor 

A2A99, as well as of the positive allosteric modulator (PAM) LUF6000 on the 

adenosine receptor subtype A3100. 

 

 

1.2.2  METHODS THAT INTRODUCE A SCALAR ENERGY 
BIAS IN THE SYSTEM POTENTIAL ENERGY 
 

As already stated, dissociations of intermolecular complexes require the 

overcome of high-energy barriers in order to activate the process. This, in turn, 

affect the timescale needed to observe a spontaneous unbinding, which can 

reach up to days or weeks in the case of very slow-off ligands. In order to 

facilitate the systems’ transition to the dissociate configuration, some MD–based 

approaches have specifically developed in order to modify the energy landscape. 

More precisely, the introduction of a new scalar value in the mathematical 

function that rule the potential of the system allow to flatten the energy surface 

and therefore to increase the probability to simulate kinetically–unfavourable 

events. 

Recently, the scaled MD approach101 (Figure 11), originally introduced as 

a tool for protein folding sampling, was applied to the unbinding study of seven 

modulators of the enzyme glucokinase 1 (GK1)102,103. Biasing the electrostatic 

and the Lennard-Jones potentials, the authors were able to simulate different 

ligands’ transitions from the bound complex to the unbound state and, after 

some simplifications and by using a statistical approach, compared the computed 

residence times to the experimental values. Interestingly, even if this method 

implies a loss of details of the unbinding path, findings suggested that 

compounds characterized by a T-shaped geometry exhibits a longer residence 

time, ascribed to an induced fit binding mechanism inside the linearly shaped 

recognition cavity of the enzyme. 
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Figure 11. Schematic illustration of scaled MD. (A) Different scaling values lead to 

distinct energy surfaces: the higher the scaling factor the flatterer is the surface; (B) 

changes in probability distributions for the different scaling factors. (Adapted from ref 
101). 

 

A further enhanced sampling approach is the accelerated molecular 

dynamics (AMD)104. During an AMD simulation, the system energy potential 

V*(r) changes continually, according to a function block that defines when to 

add the bias (equation 11): 

 

   (11) 

 

V(r) represents the unbiased potential energy of the system and E is a predefined 

threshold energetic parameter. It follows that potential energy landscape minima 

that lie below E are raised, therefore reducing the neighbouring energy 

barriers105. The AMD usually bias the potential associated to the dihedral energy 

of the system, as recent employed in the GPCRs field to reconstruct the binding 

to the octopamine receptor106 and the M3 muscarinic receptor107. 

The possibility to modify the temperature in the simulation inspired the 

development of the temperature replica exchange algorithm (T–REMD), first 

applied to MD simulations by Sugita et al in 1999108. During T–REMD several 

parallel simulations are performed at different temperatures and periodically 

pairs of replicas are exchanged according to a statistical criterion: the resulting 

sampling in the temperature space increases the probability to escape from local 

V *(r) =
V (r)⇔V (r) ≥ E
V (r)+ΔV (r)⇔V (r)< E
$
%
&
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energy minima109. Differently from T–REMD, during the Hamiltonian replica 

exchange (H–REMD) are the force field parameters to be exchanged between 

parallel MD simulations. This approach allow to tune the bias only for a subset 

of the overall potential energy component of the system, instead of the total 

energy as happens in the case of T–REMD110. It follows that transitions are 

promoted thanks to a fewer number of MD replicas. In the work of Wang et 

al.111 H–REMD technique was able to enhance the sampling of putative binding 

modes of three known ligands to T4 lysozyme L99A. 
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1.2.3 METHODS THAT REQUIRE THE PRELIMINARY 
 DEFINITION OF COLLECTIVE VARIABLES 
 

In physics the degrees of freedom embody all the variables that describe 

the possible configurations of a system, allowing describe it from a mechanic 

point of view. In a chemical system, modelled by means of molecular mechanics, 

these degrees of freedom can be represented by the force field equation 

parameters. Moreover, by mathematically combine more degrees of freedom is 

possible to define order parameters, which are reduced descriptor for a subset of 

degrees of freedom. Some examples of order parameters are angles formed by 

non-bonded atoms or distances between groups of atoms, but more complex, 

experimentally-derived order parameters are normally employed112,113.  

Before to perform a MD simulation is possible to define one or more 

order parameters, usually named as collective variables (CVs), able to describe 

the system transition the user is interested in: during the simulation, if an energy 

bias is added to the system along these CVs, the probability of observe the 

transition results enhanced. Important MD techniques that employ the bias of a 

set of CVs are metadynamics, steered MD, umbrella sampling (US) and 

temperature accelerated MD (TAMD).  

After its first definition and application on simply chemical systems114 

(the dissociation of NaCl and the isomerization of the Alanine dipeptide in 

water), metadynamics soon demonstrated its potential usefulness in 

reconstructing the binding of chemical fragments on the enzyme β-Trypsine115. 

The algorithmic scheme behind metadynamics can be recapped as the seeding, at 

discrete time intervals, of a history–dependent energetic term centred along the 

predefined set of CVs (Figure 12). When the energetic bias is added at a certain 

instant, the probability that the system will revisit that specific configuration is 

decreased according to the shape of the energetic Gaussian function that is 

supplied. Thanks to this theoretical approach is possible to fill energy minimum 

on the energy surface defined by the CVs, therefore increasing the transition 
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probability from a basin to another one (e.g. the ligand bound and unbound 

states)116.  

 

 
Figure 12. Example of metadynamics simulation that bias one CV (denoted as s). The 

time t is measured by counting the number of Gaussians deposited. At the beginning of 

the simulation the system is in the minimum B, then, after 135 energy depositions, it 

experiences a transition to the minimum A, which, in turns, is filled after 810 bias 

cycles; the system is then allowed to explore minimum C. (Top) Time evolution of the 

collective variables during the simulation. (Bottom) Representation of the progressive 

filling of the potential energy minimums by means of the Gaussians deposited along the 

trajectory. (Adapted from ref 116). 

 

In general, the definition of the order parameters that well describe the 

binding or unbinding events is not trivial. Crucial aspects to consider are the 

height and the width of the Gaussian energetic term added: as a rule of thumb, 

the height of the function should be much smaller than the highest energy 

barrier characterizing the process, while the width should be small enough to 
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track FES containing many basins connected by narrow paths117. Regarding this 

latter point, Branduardi et al. proposed the adaptive Gaussians metadynamics 

approach, able to adjust the Gaussians variance on the fly, on the basis of the 

local properties of the energy surface118. Last but not least, as the error 

introduced during metadynamics is inversely proportional to the square root of 

the time deposition119, the energetic bias addition should not be too much 

frequent. 

More recently, issues related to the overfilling effect of metadynamics (an 

excessive energy seeding that may lead to the exploration of regions of the space 

that are too high in energy and therefore associated to protein unfolding) have 

inspired the development of the well-tempered metadynamics116,120 (WTmetaD): 

by tuning a new threshold parameter is possible to automatically limit the energy 

surface exploration to the physically interesting region, minimizing the bias 

added according to the energy already provided to the system. An elegant 

application of WTmetaD was the unbinding simulation of the selective COX-2 

inhibitor SC-558121. Interestingly, findings highlighted the possibility that SC-558 

engages COX-2 with two different binding poses, providing an explanation for 

the increased residence time in COX-2 for ligands structurally-related to SC-558 

(Figure 13).  

Binding of benzamidine on β-Trypsine and of SC-558 to COX-2 were 

also reconstructed implementing the so called funnel restraint potential in 

combination with WTmetaD: the core of this alternative MD methods is the 

introduction of a funnel-shaped restraint potential that limit the sampling of the 

ligand in the bulk solvent, speeding up the overall binding and unbinding 

simulation time122. 

Recently, Pratyush et al. provided a first attempt of to derivate kinetics 

rate values using WTmetaD by simulating the isomerization of the alanine 

dipeptide123,124. Salvalaglio et al. later introduced a posteriori statistical analysis 

(based on Poisson statistic) that establishes the reliability of the kinetics values 

thus generated124. In a very recent application of the former approach with a 

Markov State Model construction, the benzamidine unbinding mechanism from 
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β-Trypsin was completely disclosed125. Interestingly, beside the starting 

crystallographic binding pose, one alternative bound conformation and one 

metastable intermediate state were detected. Furthermore, the apo-form of the 

enzyme was suggested as existing in two different conformations: one 

characterized by the loop L in its crystallographic form (available for further 

binding), the other instead presenting a distorted loop L (protein is temporarily 

inactive). 

 

 
Figure 13. Dissociation energy surface of the COX-2 inhibitor SC-558. It was 

reconstructed as a function of the distance between the ligand and the protein and the 

value of a dihedral angle of the ligand. Four main energy basins A–D were found 

during the metadynamics (corresponding to the four displayed snapshots of the 

complex SC-558/COX-2): basin A, crystallographic pose; basin B, alternative pose; 

basin C, poses at gate site; basin D, external pose. (Adapted from ref 121). 

 

In general, binding and unbinding are influenced by multiple complex 

order parameters, such as the formation of intramolecular interactions, the 

rotations of entire protein domains or variations in the number of water 

molecules solvating the binding site. This complex scenario inspired Piana et al. 

to develop the so called bias–exchange metadynamics (BE-META)126: the heart 
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of this method is to exchange the CVs to bias between different parallel MD 

simulations, in order to sample a large number of different degrees of freedom 

of the system and, therefore, to explore energetic barriers orthogonal to the 

classic distance–based reaction coordinates. One of the first pharmaceutical 

application of BE-META was performed on the binding mechanism of the 

peptide substrate to HIV-1 protease127. 

Moving to further CVs–biasing methods, during a steered MD (SMD) 

simulation the transition between bound and unbound states is achieved by 

biasing the system energy with a harmonic potential, usually added on the 

protein–ligand distance. During the transition, is possible to compute the 

external work performed on the system, keeping track of energetic barriers along 

the unbinding pathway  128,129. While the first SMD application on unbinding 

simulations was performed on the dissociation of the complex biotin–

streptavidin39 by Grubmuller et al., more recent works employed this technique 

to study both binding 130and unbinding mechanisms. Among these latter fall the 

study of Favia et al., that sequentially applied SMD and metadynamics in order to 

reconstruct the dissociation mechanism of the endogenous hormone cortisone 

from the catalytic site of the enzyme 11β-HSD-1131: the authors first applied the 

SMD approach to sample different exit pathways, then tuned the selection of the 

CVs to bias on the basis of the trajectory that required the lower amount of 

work for the dissociation. SMD was also used to compare the unbinding force 

profiles of etoposide and some its analogs from the type II topoisomerase 

F14512132, as well as for discriminate active cyclin-dependent kinase 5 (CDK5) 

inhibitors from inactive ligands133.  

A SMD–related methodology is the random expulsion MD134 (REMD), 

during which the direction of the additional force is chosen randomly every time 

the ligand velocity falls below a predefined value (likely due to the encounter of 

relatively rigid parts of the protein). In a REMD application, a total of 360 short 

unbinding event of dihydroxyvitamin D3 from its receptor were reproduced135, 

highlighting different putative pathways. REMD and SMD together, indeed, 
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were employed to study binding and unbinding mechanisms of the inhibitor GS-

461203 on hepatitis C virus (HCV) non-structural protein 5B (NS5B)136.  

Umbrella sampling (US) represents the first CV–biasing method, 

developed137 with the aim of compute the free energy change implied in a 

thermodynamic transition. Chosen a CV to bias (for pharmaceutical applications 

usually is the distance between the ligand and the binding site) the ligand is 

moved in a discrete way along the CV by performing several parallel short MD 

simulations (called “windows”, Figure 14).  

 

 
Figure 14. Example of an umbrella sampling workflow. (A) During different windows 

the position of the restrained ligand is sampled along the CV (reaction coordinate); (B) 

the probability distribution for each window is computed  (using a 0.1-Å bin width in 

this case); (C) the energy surface along the CV (PMF) is calculated considering different 

resolutions of the grid elements. (Adapted from 138). 

 

During each window the ligand position x is subjected to an harmonic 

potential that allow to quantify the energy characterizing the regions along the 

pathway. The probability distribution of the ligand positions from each window 

is used to reconstruct the energy surface along the CV, by means of a post 
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processing analysis. From this point of view, the most common methods 

employed is the weighted histogram analysis method (WHAM)139, which 

integrates the probability distribution considering both the bin chosen for its 

construction and the bias applied during the simulation. It follows that the 

distance between consecutive ligand positioning from a window to the 

consecutive one, as well as the value of the force constant used, can heavily 

influence the final result of the this approach. As a rule of thumb, the force 

constant applied should be large enough to allow the system to overcome 

energetic barriers, but at the same time not too large, in order to avoid very 

narrow positional distributions140. Notably, US was applied to a number of 

biological systems in order to energetically and kinetically characterize the 

putative binding of both small molecules and peptides138,141.  

A peculiar CV–biasing technique is represented by the temperature 

accelerated molecular dynamics (TAMD)142. TAMD consists in sampling along a 

set of CVs by applying a harmonic force coupled to a fictitious particle thermally 

kept at higher temperature. The idea is to increase the Brownian motion only on 

few degrees of freedom, while the rest of the system remain distributed at the 

real temperature according to Boltzmann distribution. Dong et al. applied 

TAMD to the unbinding of the adenosine receptor inhibitor ZM24138521. The 

authors simulated 10 dissociation events and detected a set of key protein 

residues later investigated in accurate mutation studies, as well as multiple 

distinct consecutive steps along the pathways. Experimental outcomes 

highlighted the importance of the hydrogen bond network at the extracellular 

vestibula involving the ligand, His264 and Glu169, responsible of slowing down 

the dissociation rate, due to the energy required for breaking these favourable 

interactions.  
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1.3 G PROTEIN-COUPLED RECEPTORS AND ADENOSINE 
 RECEPTORS 
 

G protein–coupled receptors (GPCRs) represent the most numerous 

family of membrane proteins (encoded by more than 800 genes in the human 

genome143) and mediate cellular responses to a wide range of stimuli, which 

comprise hormones, neurotransmitters and photons144. According to the 

GRAFS 143 nomenclature system, GPCRs can be classified into five families145: 

 

•  rhodopsin-like: is the largest GPCRs family. Members’ diversity is mainly 

within the transmembrane (TMs) regions; 

• secretin-like: is a small family of GPCRs characterized by an extracellular 

hormone-binding domain. Members share between 21 and 67% of 

sequence identity; 

• adhesion: is the second largest GPCR family in humans. Members display 

a GPCR proteolytic (GPS) domain; 

• metabotropic glutammate: includes metabotropic glutamate receptors 

(GRMs), GABABRs, the calcium-sensing receptor (CASR) and taste 

receptors;  

• class F (Frizzled/Smoothened): consists of frizzled receptors, 

smoothened receptor (SMO) and teste2 receptors; 

 

GPCRs are topologically characterized by three elements (Figure 15): 1)  

the extracellular region, consisting in the N terminus and three extracellular 

loops (EL1–EL3) and responsive for ligands’ access modulation; 2) the 

transmembrane region (TM), which spams the membrane with seven α-helices 

(TM1–TM7) and shape the orthosteric binding site; 3) the intracellular C 

terminus, comprising three intracellular loops (IL1–IL3) and interfacing with the 

effector proteins. 
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Figure 15. Generic structure of GPCRs. N terminus and extracellular 

loops are different, depending on the family. TM helices are shown as green 

cartoon. Amino acids are numbered using the Ballesteros/Weinstein numbering 

system. (Adapted from ref 146).  

 

Notably, in the extracellular region a conserved disulphide bridge links 

TM3 and EL2, stabilizing the overall protein structure limiting the degree of 

conformational changes of this region during receptor activation147. Further 

significant structural convergence is the 'ionic lock' between the highly 

conserved E/DRY motif on TM3 and a glutamate residue on TM6 (Figure 16): 

these amino acids form a network of interactions that stabilize the inactive-state 

conformation148. At the end of TM7 there is another important structural 

element, which participates in conformational changes associated with GPCR 

activation: the conserved NPXXY motif149: as evinced from X-ray crystal 

structures, a proline causes a distortion in the helical structure, allowing a 

tyrosine side chain to lie into a pocket formed by TM2, TM3, TM6 and TM7. 
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Figure 16. Location of some important conserved residues, probably part of a common 

pathway for propagating conformational changes from the orthosteric pocket to the G-

protein coupling domains. Cluster of water molecules from (coloured spheres) are 

shown as spheres. Amino acids are numbered using the Ballesteros/Weinstein 

numbering system. (Adapted from ref 146). 

 

Variations in ELs, TMs helices, and side chains create a variety of 

orthosteric binding sites in the different GPCR subfamilies, reflecting the 

diversity of their corresponding ligands, as exemplified in Figure 17150. In general, 

binding sites are characterised by the presence of at least one key H-bonding or 

ionic interaction, as well as lipophilic hotspots, which are an important driving 

force of ligand interactions151. 

Experimental evidences outline that GPCRs exist in a dynamic 

equilibrium between inactive and active states (Figure 18) and the presence of 

the heterotrimeric G protein allow the receptors to reach the signaling state150. 

The energy difference between two states drives the transition probability 

between conformations (is a function of the energy barrier height between the 

two states). In absence of agonists, GPCRs have a basal activity152: energy 

changes occurring after ligand binding can modify the energy barrier between 

the two states or their stability (Figure 18). From this standpoint, inverse 

agonists shift the equilibrium toward inactive states, decreasing the level of basal 
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activity, whereas neutral antagonists do not affect the basal equilibrium. Binding 

of agonists shifts the equilibrium toward the activated states, which are 

characterized by large-scale conformational changes at the receptor's intracellular 

side153. 

 

 
Figure 17. Examples of different orthosteric binding pockets in GPCRs. Complexes are 

shown as molecular surfaces; GPCRs subtypes with similar pockets are highlighted. 

(Adapted from ref 150). 

 

 
Figure 18. Simplified GPCRs energy landscape. (a) Conformational states of an apo 

GPCR; the inactive state is more stable (therefore more populated). (b) Agonist (or 

partial agonist) binding reduce the energy barrier and/or the energy of the active 

conformation. (c) Binding of an inverse agonist increases the energy barrier and/or 

reduces the energy of the inactive state conformation. (Adapted from ref 147). 
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As shown in Figure 19, agonist–bound active conformation of the 

GPCRs can couples to heterotrimeric G proteins, which are formed by Gα, Gβ 

and Gγ subunits. Subsequently, GTP–bound Gα subunit separates from βγ and 

interacts with an effector, such as phospholipase C (PLC) or adenylyl cyclase 

(AC), initiating a second messenger cascade (usually cyclic AMP, inositol 

phosphates or Ca2+) that triggers different cellular responses. The 

phosphorylation of activated receptors, primarily by GPCR kinases, enables 

GPCRs to bind to multifunctional scaffold proteins, called β-arrestins and able 

to promote internalization of the receptor. The GPCR can then be recycled back 

to the cell surface without ligand, restarting the cycle154,155.  

From a molecular point of view, GPCRs activation driven by agonist 

binding mainly involves structural rearrangements in TM6. In the adenosine A2A 

subtype receptor (A2A AR)156 and the β2 adrenoreceptor (β2 AR)157 the 

interactions between Trp6.48 side chain and the agonist produce a shift of Trp6.48 

that stabilizes a swinging movement of helix VI (Figure 20, panel b) and allow 

the binding of the G protein (Figure 20, panel a). Moreover, at the cytoplasmic 

end of TM3, the Arg3.50 of the DRY motif directly interacts with a the C 

terminus of the G protein157.  

More recently the pharmacologic concept of biased agonism has become 

increasingly popular. After agonist binding, GPCRs manly operate by recruiting 

the G proteins, however, interaction with other proteins can influence signalling 

events158,159. Indeed, ligands can preferentially trigger some particular effects, 

influencing therapeutic signalling pathways or, on the contrary, triggering averse 

effects. A structural and mechanistic understanding of these phenomena is not 

yet well understood, as crystallographic methods are not able to probe the 

equilibrium between different conformations. From this standpoint, molecular 

modelling approaches can lead to new insights into GPCR function160 by means 

of molecular dynamics simulations, as for the observation of the β2 AR active-to-

inactive transitions161. 
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Figure 19. Activation cycle of GPCRs. Upon agonist binding, the receptor in the active 

conformation is able to bind the G protein, whose subunit Gα engage the effector 

protein triggering the second messenger cascade. β-arrestins are then responsible for 

GPCR internalization. (Adapted from ref 162). 

 

 
Figure 20. (a) Structure of β2 AR in complex with agonist BI-167107 and the G protein 

heterotrimer (PDB code 3SN6 157). (b) Conformational changes in helix VI upon β2AR 

activation. (Adapted from ref 150) 
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1.3.1 ADENOSINE RECEPTORS 
 

The importance of the adenosine receptors’ (ARs) pharmacology is daily 

experienced by million of coffee drinkers worldwide. Indeed, is well established 

that caffeine is able to non-selectively inhibit ARs subtypes163 (named A1, A2A, 

A2B and A3 respectively) leading to a range of different biological responses and 

suggesting the potential usefulness of ARs agonists or blocking agents164–166. 

Each of these four receptors plays an essential role in responding to 

adenosine in the central nervous system, regulating pain, cerebral blood flow, 

basal ganglia functions, respiration and sleep. From a structural point of view, 

the sequence similarity and identity between human ARs is relatively high and 

can be ascribed mainly to the transmembrane regions (TMs) and the orthosteric 

binding sites (Table 1), while extracellular loops characterized by an higher 

degree of variability. 

 

 
Table 1. ARs identity and similarity of sequence, comparison among subtypes. In 

general, orthosteric binding sites (lower chart) have a higher degree of conservation. 
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Extracellular sources of adenosine are mainly linked to the release 

through a membrane transporter, a cell damage or the nucleotidase–mediated 

hydrolysis of extracellular adenine nucleotide167 (Figure 21).  

Adenosine-mediated activation of the A1 AR inhibits adenylyl cyclase 

(AC) activity through Gi proteins168 and results in increased activity of 

phospholipase C (PLC)169. In cardiac muscle and neurons, A1 ARs activate 

pertussis toxin-sensitive K+ channels (responsible for bradycardic effect170), as 

well as KATP and Ca2+ channels.  

Adenosine binding to the A2A AR increases AC activity through a 

stimulatory Gs protein, which seems to be associated with A2AARs in the 

peripheral systems but not in the striatum, where A2AAR density is the highest 

but it mediate their effects mainly by activation of Golf, which also activate the 

AC171.  

A2B AR is coupled to both AC and PLC172,173, which is responsible of 

many of the important functions of A2B ARs174. Moreover, the arachidonic acid 

pathway was also demonstrated to be involved in A2B AR activation175. 

Finally, the A3AR pathway lead to the inhibition of AC176, stimulation of 

PLC177 and calcium mobilization. In cardiac cells, A3 AR induce protection 

through the activation of KATP channels178, while inhibition of proliferation was 

observed in human melanoma cells (via the ERK1/2 pathway)179.  

Among all the G-protein coupled receptors (GPCRs) superfamily 

members, A2A AR represents a fortunate starting point for structure-based drug 

design (SBDD) as, to date, despite the intrinsic difficulties in GPCRs 

crystallography180 20 X-ray structures have already been resolved: more precisely, 

A2A was disclosed in complex with both agonists156,181,182 (included a recent 

structure bound to an engineered G protein183) and antagonists184–189. 

Development of more selective compounds for adenosine receptor subtypes 

could provide a class of therapeutics for treating numerous human diseases, such 

as pain, Parkinson's disease, asthma, seizures, and many other neurological 

disorders (Figure 22).  
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Figure 21. Schematic representation of ARs activation pathways, adenosine extracellular 

formation and adenosine intracellular metabolism. (Adapted from ref 190). 

 

 
Fig. 22. Therapeutic potential applications of adenosine agonists and antagonists. A1 

AR is expressed in the brain, heart, adipose tissue, stomach, vas deferens, testis, spleen, 

kidney, aorta, liver, eye and bladder. A2AAR is highly expressed in the central nervous 

system and in the immune cells, heart, lung and blood vessels. A2BAR is located at low 

levels in almost all tissues. A3ARs have been detected in various tissues including testis, 

lung, kidney, placenta, heart, brain, spleen and liver. (Adapted from ref 166).  

 



 

 

43 	
   INTRODUCTION	
   	
  
	
   	
  

43 

ARs, likewise many other GPCRs191,192, can be selectively targeted with 

allosteric modulators. At molecular level, an allosteric modulator amplifies the 

action of agonists by stabilizing the intermolecular complex formed by 

adenosine and AR increasing the tissue specificity of the drug, that would act in 

concert with locally increased adenosine under pathological conditions, having 

little effect on sites where there are low basal adenosine levels. Recently an 

allosteric regulatory site for sodium was identified 189,193 and constant efforts are 

focused on the development of methods able to detect allosteric sites in 

ARs100,194–196. 

  



 

 

44 	
   INTRODUCTION	
   	
  
	
   	
  

44 

Bibliography 
 

(1)  Gilbert, W. Origin of Life: The RNA World. Nature 1986, 319, 618–618. 

 

(2)  Hippel, P. H. von. From “Simple” DNA-Protein Interactions to the 

Macromolecular Machines of Gene Expression. Annu Rev Biophys Biomol Struct 

2007, 36, 79–105. 

 

(3)  Gether, U. Uncovering Molecular Mechanisms Involved in Activation of G 

Protein-Coupled Receptors. Endocr Rev 2000, 21, 90–113. 

 

(4)  Garcia-Viloca, M.; Gao, J.; Karplus, M.; Truhlar, D. G. How Enzymes Work: 

Analysis by Modern Rate Theory and Computer Simulations. Science 2004, 303, 

186–195. 

 

(5)  Held, M.; Noé, F. Calculating Kinetics and Pathways of Protein-Ligand 

Association. Eur J Cell Biol 2012, 91, 357–364. 

 

(6)  Copeland, R. A. The Drug-Target Residence Time Model: A 10-Year 

Retrospective. Nat Rev Drug Discov 2016, 15, 87–95. 

 

(7)  Radić, Z.; Kirchhoff, P. D.; Quinn, D. M.; McCammon, J. A.; Taylor, P. 

Electrostatic Influence on the Kinetics of Ligand Binding to 

Acetylcholinesterase. Distinctions between Active Center Ligands and 

Fasciculin. J Biol Chem 1997, 272, 23265–23277. 

 

(8)  Copeland, R. A.; Pompliano, D. L.; Meek, T. D. Drug-Target Residence Time 

and Its Implications for Lead Optimization. Nat Rev Drug Discov 2006, 5, 730–

739. 

 

(9)  Hothersall, J. D.; Brown, A. J.; Dale, I.; Rawlins, P. Can Residence Time Offer 

a Useful Strategy to Target Agonist Drugs for Sustained GPCR Responses? 

Drug Discov Today 2016, 21, 90–96. 



 

 

45 	
   INTRODUCTION	
   	
  
	
   	
  

45 

 

(10)  Dahl, G.; Akerud, T. Pharmacokinetics and the Drug-Target Residence Time 

Concept. Drug Discov Today 2013, 18, 697–707. 

 

(11)  Vauquelin, G.; Bostoen, S.; Vanderheyden, P.; Seeman, P. Clozapine, Atypical 

Antipsychotics, and the Benefits of Fast-off D2 Dopamine Receptor 

Antagonism. Naunyn Schmiedebergs Arch Pharmacol 2012, 385, 337–372. 

 

(12)  Hulme, E. C.; Trevethick, M. A. Ligand Binding Assays at Equilibrium: 

Validation and Interpretation. Br J Pharmacol 2010, 161, 1219–1237. 

 

(13)  Eyring, H. The Activated Complex in Chemical Reactions. J. Chem. Phys. 1935, 

3, 107. 

 

(14)  Laidler, K. J.; King, M. C. Development of Transition-State Theory. J Phys 

Chem 1983, 87, 2657–2664. 

 

(15)  Tiwary, P.; Berne, B. J. Spectral Gap Optimization of Order Parameters for 

Sampling Complex Molecular Systems. Proc Natl Acad Sci U S A 2016, 113, 

2839–2844. 

 

(16)  Best, R. B.; Hummer, G. Reaction Coordinates and Rates from Transition 

Paths. Proc Natl Acad Sci U S A 2005, 102, 6732–6737. 

 

(17)  Tiwary, P.; Berne, B. J. How Wet Should Be the Reaction Coordinate for 

Ligand Unbinding? J Chem Phys 2016, 145, 054113. 

 

(18)  Buch, I.; Giorgino, T.; De Fabritiis, G. Complete Reconstruction of an 

Enzyme-Inhibitor Binding Process by Molecular Dynamics Simulations. Proc 

Natl Acad Sci U S A 2011, 108, 10184–10189. 

 

(19)  Stanley, N.; Pardo, L.; Fabritiis, G. D. The Pathway of Ligand Entry from the 

Membrane Bilayer to a Lipid G Protein-Coupled Receptor. Sci Rep 2016, 6, 

22639. 



 

 

46 	
   INTRODUCTION	
   	
  
	
   	
  

46 

 

(20)  Dror, R. O.; Pan, A. C.; Arlow, D. H.; Borhani, D. W.; Maragakis, P.; Shan, Y.; 

Xu, H.; Shaw, D. E. Pathway and Mechanism of Drug Binding to G-Protein-

Coupled Receptors. Proc Natl Acad Sci U S A 2011, 108, 13118–13123. 

 

(21)  Guo, D.; Pan, A. C.; Dror, R. O.; Mocking, T.; Liu, R.; Heitman, L. H.; Shaw, 

D. E.; IJzerman, A. P. Molecular Basis of Ligand Dissociation from the 

Adenosine A2A Receptor. Mol Pharmacol 2016, 89, 485–491. 

 

(22)  Lu, H.; Tonge, P. J. Drug-Target Residence Time: Critical Information for 

Lead Optimization. Curr Opin Chem Biol 2010, 14, 467–474. 

 

(23)  Hoffmann, C.; Castro, M.; Rinken, A.; Leurs, R.; Hill, S. J.; Vischer, H. F. 

Ligand Residence Time at G-Protein-Coupled Receptors-Why We Should 

Take Our Time To Study It. Mol Pharmacol 2015, 88, 552–560. 

 

(24)  Geschwindner, S.; Ulander, J.; Johansson, P. Ligand Binding Thermodynamics 

in Drug Discovery: Still a Hot Tip? J Med Chem 2015, 58, 6321–6335. 

 

(25)  Reynolds, C. H.; Holloway, M. K. Thermodynamics of Ligand Binding and 

Efficiency. ACS Med Chem Lett 2011, 2, 433–437. 

 

(26)  Joshi, R. R. Statistical Mechanics of Antibody-Antigen Binding: Affinity 

Analysis. Physica A: Statistical Mechanics and its Applications 1995, 218, 214–228. 

 

(27)  Gilson, M. K.; Given, J. A.; Bush, B. L.; McCammon, J. A. The Statistical-

Thermodynamic Basis for Computation of Binding Affinities: A Critical 

Review. Biophys J 1997, 72, 1047–1069. 

 

(28)  Sheinerman, F. B.; Norel, R.; Honig, B. Electrostatic Aspects of Protein-

Protein Interactions. Curr Opin Struct Biol 2000, 10, 153–159. 

 

(29)  Schutz, C. N.; Warshel, A. What Are the Dielectric�?constants? Of Proteins 

and How to Validate Electrostatic Models? Proteins 2001, 44, 400–417. 



 

 

47 	
   INTRODUCTION	
   	
  
	
   	
  

47 

 

(30)  Li, L.; Li, C.; Zhang, Z.; Alexov, E. On the Dielectric “Constant” of Proteins: 

Smooth Dielectric Function for Macromolecular Modeling and Its 

Implementation in DelPhi. J Chem Theory Comput 2013, 9, 2126–2136. 

 

(31)  Kumar, S.; Nussinov, R. Close‐Range Electrostatic Interactions in Proteins. 

ChemBioChem 2002. 

 

(32)  Boobbyer, D. N.; Goodford, P. J.; McWhinnie, P. M.; Wade, R. C. New 

Hydrogen-Bond Potentials for Use in Determining Energetically Favorable 

Binding Sites on Molecules of Known Structure. J Med Chem 1989, 32, 1083–

1094. 

 

(33)  Collins, K. D. Why Continuum Electrostatics Theories Cannot Explain 

Biological Structure, Polyelectrolytes or Ionic Strength Effects in Ion-Protein 

Interactions. Biophys Chem 2012, 167, 43–59. 

 

(34)  Nilsson, L. M.; Thomas, W. E.; Sokurenko, E. V.; Vogel, V. Beyond Induced-

Fit Receptor-Ligand Interactions: Structural Changes That Can Significantly 

Extend Bond Lifetimes. Structure 2008, 16, 1047–1058. 

 

(35)  Gilli, G.; Gilli, P. Towards an Unified Hydrogen-Bond Theory. J Mol Struct 

2000, 552, 1–15. 

 

(36)  Silverstein, K. A. T.; Haymet, A. D. J.; Dill, K. A. The Strength of Hydrogen 

Bonds in Liquid Water and Around Nonpolar Solutes. J Am Chem Soc 2000, 

122, 8037–8041. 

 

(37)  Schmidtke, P.; Luque, F. J.; Murray, J. B.; Barril, X. Shielded Hydrogen Bonds 

as Structural Determinants of Binding Kinetics: Application in Drug Design. J 

Am Chem Soc 2011, 133, 18903–18910. 

 

(38)  Hyre, D. E.; Amon, L. M.; Penzotti, J. E.; Le Trong, I.; Stenkamp, R. E.; 

Lybrand, T. P.; Stayton, P. S. Early Mechanistic Events in Biotin Dissociation 



 

 

48 	
   INTRODUCTION	
   	
  
	
   	
  

48 

from Streptavidin. Nat Struct Biol 2002, 9, 582–585. 

 

(39)  Grubmüller, H.; Heymann, B.; Tavan, P. Ligand Binding: Molecular Mechanics 

Calculation of the Streptavidin-Biotin Rupture Force. Science 1996, 271, 997–

999. 

 

(40)  Meyer, E. E.; Rosenberg, K. J.; Israelachvili, J. Recent Progress in 

Understanding Hydrophobic Interactions. Proc Natl Acad Sci U S A 2006, 103, 

15739–15746. 

 

(41)  Lennard-Jones, J. E. Cohesion. Proceedings of the Physical Society 1931, 43, 461–482. 

 

(42)  Kuntz, I. D.; Chen, K.; Sharp, K. A.; Kollman, P. A. The Maximal Affinity of 

Ligands. Proc Natl Acad Sci U S A 1999, 96, 9997–10002. 

 

(43)  Salonen, L. M.; Ellermann, M.; Diederich, F. Aromatic Rings in Chemical and 

Biological Recognition: Energetics and Structures. Angew Chem Int Ed Engl 2011, 

50, 4808–4842. 

 

(44)  Gunaydin, H.; Bartberger, M. D. Stacking with No Planarity? ACS Med Chem 

Lett 2016, 7, 341–344. 

 

(45)  Ball, P. Water as an Active Constituent in Cell Biology. Chem Rev 2008, 108, 

74–108. 

 

(46)  de Beer, S. B. A.; Vermeulen, N. P. E.; Oostenbrink, C. The Role of Water 

Molecules in Computational Drug Design. Curr Top Med Chem 2010, 10, 55–66. 

 

(47)  Ladbury, J. E. Just Add Water! The Effect of Water on the Specificity of 

Protein-Ligand Binding Sites and Its Potential Application to Drug Design. 

Chem Biol 1996, 3, 973–980. 

 

(48)  Dunitz, J. D. The Entropic Cost of Bound Water in Crystals and Biomolecules. 

Science 1994, 264, 670. 



 

 

49 	
   INTRODUCTION	
   	
  
	
   	
  

49 

 

(49)  Higgs, C.; Beuming, T.; Sherman, W. Hydration Site Thermodynamics Explain 

SARs for Triazolylpurines Analogues Binding to the A2A Receptor. ACS Med 

Chem Lett 2010, 1, 160–164. 

 

(50)  Mason, J. S.; Bortolato, A.; Weiss, D. R.; Deflorian, F.; Tehan, B.; Marshall, F. 

H. High End GPCR Design: Crafted Ligand Design and Druggability Analysis 

Using Protein Structure, Lipophilic Hotspots and Explicit Water Networks. In 

silico pharmacology 2013, 1, 23. 

 

(51)  Breiten, B.; Lockett, M. R.; Sherman, W.; Fujita, S.; Sayah, M. Al-; Lange, H.; 

Bowers, C. M.; Heroux, A.; Krilov, G.; Whitesides, G. M. Water Networks 

Contribute to Enthalpy/entropy Compensation in Protein-Ligand Binding. J 

Am Chem Soc 2013, 135, 15579–15584. 

 

(52)  Schönherr, H.; Cernak, T. Profound Methyl Effects in Drug Discovery and a 

Call for New C-H Methylation Reactions. Angew Chem Int Ed Engl 2013, 52, 

12256–12267. 

 

(53)  Leung, C. S.; Leung, S. S. F.; Tirado-Rives, J.; Jorgensen, W. L. Methyl Effects 

on Protein-Ligand Binding. J Med Chem 2012, 55, 4489–4500. 

 

(54)  Klebe, G. Virtual Ligand Screening: Strategies, Perspectives and Limitations. 

Drug Discov Today 2006, 11, 580–594. 

 

(55)  Günther, J.; Bergner, A.; Hendlich, M.; Klebe, G. Utilising Structural 

Knowledge in Drug Design Strategies: Applications Using Relibase. J Mol Biol 

2003, 326, 621–636. 

 

(56)  Lam, P. Y.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C. N.; Ru, Y.; Bacheler, L. 

T.; Meek, J. L.; Otto, M. J.; Rayner, M. M.; Wong, Y. N. Rational Design of 

Potent, Bioavailable, Nonpeptide Cyclic Ureas as HIV Protease Inhibitors. 

Science 1994, 263, 380–384. 

 



 

 

50 	
   INTRODUCTION	
   	
  
	
   	
  

50 

(57)  Battistutta, R.; Mazzorana, M.; Cendron, L.; Bortolato, A.; Sarno, S.; 

Kazimierczuk, Z.; Zanotti, G.; Moro, S.; Pinna, L. A. The ATP-Binding Site of 

Protein Kinase CK2 Holds a Positive Electrostatic Area and Conserved Water 

Molecules. Chembiochem 2007, 8, 1804–1809. 

 

(58)  Bodnarchuk, M. S. Water, Water, Everywhere… It’s Time to Stop and Think. 

Drug Discov Today 2016, 21, 1139–1146. 

 

(59)  Bortolato, A.; Tehan, B. G.; Bodnarchuk, M. S.; Essex, J. W.; Mason, J. S. 

Water Network Perturbation in Ligand Binding: Adenosine A(2A) Antagonists 

as a Case Study. J Chem Inf Model 2013, 53, 1700–1713. 

 

(60)  Ross, G. A.; Morris, G. M.; Biggin, P. C. Rapid and Accurate Prediction and 

Scoring of Water Molecules in Protein Binding Sites. PLoS ONE 2012, 7, 

e32036. 

 

(61)  Limongelli, V.; Marinelli, L.; Cosconati, S.; La Motta, C.; Sartini, S.; Mugnaini, 

L.; Da Settimo, F.; Novellino, E.; Parrinello, M. Sampling Protein Motion and 

Solvent Effect during Ligand Binding. Proc Natl Acad Sci U S A 2012, 109, 

1467–1472. 

 

(62)  Bortolato, A.; Deflorian, F.; Weiss, D. R.; Mason, J. S. Decoding the Role of 

Water Dynamics in Ligand-Protein Unbinding: CRF1R as a Test Case. J Chem 

Inf Model 2015, 55, 1857–1866. 

 

(63)  Abel, R.; Young, T.; Farid, R.; Berne, B. J.; Friesner, R. A. Role of the Active-

Site Solvent in the Thermodynamics of Factor Xa Ligand Binding. J Am Chem 

Soc 2008, 130, 2817–2831. 

 

(64)  Horbert, R.; Pinchuk, B.; Johannes, E.; Schlosser, J.; Schmidt, D.; Cappel, D.; 

Totzke, F.; Schächtele, C.; Peifer, C. Optimization of Potent DFG-in 

Inhibitors of Platelet Derived Growth Factor Receptorβ (PDGF-Rβ) Guided 

by Water Thermodynamics. J Med Chem 2015, 58, 170–182. 

 



 

 

51 	
   INTRODUCTION	
   	
  
	
   	
  

51 

(65)  Pan, A. C.; Borhani, D. W.; Dror, R. O.; Shaw, D. E. Molecular Determinants 

of Drug-Receptor Binding Kinetics. Drug Discov Today 2013, 18, 667–673. 

 

(66)  Dill, K. A.; Chan, H. S. From Levinthal to Pathways to Funnels. Nat Struct Biol 

1997, 4, 10–19. 

 

(67)  Bryngelson, J. D.; Wolynes, P. G. Intermediates and Barrier Crossing in a 

Random Energy Model (with Applications to Protein Folding). J Phys Chem 

1989, 93, 6902–6915. 

 

(68)  Kumar, S.; Ma, B.; Tsai, C. J.; Sinha, N.; Nussinov, R. Folding and Binding 

Cascades: Dynamic Landscapes and Population Shifts. Protein Sci 2000, 9, 10–

19. 

 

(69)  Vogt, A. D.; Pozzi, N.; Chen, Z.; Di Cera, E. Essential Role of Conformational 

Selection in Ligand Binding. Biophys Chem 2014, 186, 13–21. 

 

(70)  Hammes, G. G.; Chang, Y.-C.; Oas, T. G. Conformational Selection or 

Induced Fit: A Flux Description of Reaction Mechanism. Proc Natl Acad Sci U 

S A 2009, 106, 13737–13741. 

 

(71)  Vogt, A. D.; Di Cera, E. Conformational Selection or Induced Fit? A Critical 

Appraisal of the Kinetic Mechanism. Biochemistry 2012, 51, 5894–5902. 

 

(72)  Pargellis, C.; Tong, L.; Churchill, L.; Cirillo, P. F.; Gilmore, T.; Graham, A. G.; 

Grob, P. M.; Hickey, E. R.; Moss, N.; Pav, S.; Regan, J. Inhibition of p38 MAP 

Kinase by Utilizing a Novel Allosteric Binding Site. Nat Struct Biol 2002, 9, 

268–272. 

 

(73)  Frederick, K. K.; Marlow, M. S.; Valentine, K. G.; Wand, A. J. Conformational 

Entropy in Molecular Recognition by Proteins. Nature 2007, 448, 325–329. 

 

(74)  Igumenova, T. I.; Frederick, K. K.; Wand, A. J. Characterization of the Fast 

Dynamics of Protein Amino Acid Side Chains Using NMR Relaxation in 



 

 

52 	
   INTRODUCTION	
   	
  
	
   	
  

52 

Solution. Chem Rev 2006, 106, 1672–1699. 

 

(75)  Karplus, M.; Kushick, J. N. Method for Estimating the Configurational 

Entropy of Macromolecules. Macromolecules 1981, 14, 325–332. 

 

(76)  DuBay, K. H.; Geissler, P. L. Calculation of Proteins’ Total Side-Chain 

Torsional Entropy and Its Influence on Protein-Ligand Interactions. J Mol Biol 

2009, 391, 484–497. 

 

(77)  Hruby, V. J. Designing Peptide Receptor Agonists and Antagonists. Nat Rev 

Drug Discov 2002, 1, 847–858. 

 

(78)  Anighoro, A.; la Vega de León, A. de; Bajorath, J. Predicting Bioactive 

Conformations and Binding Modes of Macrocycles. J Comput Aided Mol Des 

2016. 

 

(79)  Ryde, U. A Fundamental View of Enthalpy–entropy Compensation. 

Medchemcomm 2014, 5, 1324. 

 

(80)  Murray, C. W.; Verdonk, M. L. The Consequences of Translational and 

Rotational Entropy Lost by Small Molecules on Binding to Proteins. J Comput 

Aided Mol Des. 

 

(81)  Perutz, M. F.; Rossmann, M. G.; Cullis, A. F.; Muirhead, H.; Will, G.; North, A. 

C. T. Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 

5.5-Å. Resolution, Obtained by X-Ray Analysis. Nature 1960, 185, 416–422. 

 

(82)  Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Docking and Scoring in 

Virtual Screening for Drug Discovery: Methods and Applications. Nat Rev 

Drug Discov 2004, 3, 935–949. 

 

(83)  Chodera, J. D.; Mobley, D. L.; Shirts, M. R.; Dixon, R. W.; Branson, K.; Pande, 

V. S. Alchemical Free Energy Methods for Drug Discovery: Progress and 

Challenges. Curr Opin Struct Biol 2011, 21, 150–160. 



 

 

53 	
   INTRODUCTION	
   	
  
	
   	
  

53 

 

(84)  Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA Methods to Estimate 

Ligand-Binding Affinities. Expert Opin Drug Discov 2015, 10, 449–461. 

 

(85)  Tautermann, C. S. Impact, Determination and Prediction of Drug-Receptor 

Residence Times for GPCRs. Curr Opin Pharmacol 2016, 30, 22–26. 

 

(86)  Shaw, D. E.; Bowers, K. J.; Chow, E.; Eastwood, M. P.; Ierardi, D. J.; Klepeis, 

J. L.; Kuskin, J. S.; Larson, R. H.; Lindorff-Larsen, K.; Maragakis, P.; Moraes, 

M. A.; Dror, R. O.; Piana, S.; Shan, Y.; Towles, B.; Salmon, J. K.; Grossman, J. 

P.; Mackenzie, K. M.; Bank, J. A.; Young, C.; Deneroff, M. M.; Batson, B. 

Millisecond-Scale Molecular Dynamics Simulations on Anton. In Proceedings of 

the Conference on High Performance Computing Networking, Storage and Analysis - 

SC ’09; ACM Press: New York, New York, USA, 2009; p. 1. 

 

(87)  Shaw, D. E. Millisecond-Long Molecular Dynamics Simulations of Proteins 

on a Special-Purpose Machine. Biophys J 2013, 104, 45a. 

 

(88)  Sabbadin, D.; Ciancetta, A.; Moro, S. Bridging Molecular Docking to 

Membrane Molecular Dynamics to Investigate GPCR-Ligand Recognition: 

The Human AⁿA Adenosine Receptor as a Key Study. J Chem Inf Model 2014, 

54, 169–183. 

 

(89)  Alonso, H.; Bliznyuk, A. A.; Gready, J. E. Combining Docking and Molecular 

Dynamic Simulations in Drug Design. Med Res Rev 2006, 26, 531–568. 

 

(90)  Decherchi, S.; Berteotti, A.; Bottegoni, G.; Rocchia, W.; Cavalli, A. The Ligand 

Binding Mechanism to Purine Nucleoside Phosphorylase Elucidated via 

Molecular Dynamics and Machine Learning. Nat Commun 2015, 6, 6155. 

 

(91)  Overington, J. P.; Lazikani, B. Al-; Hopkins, A. L. How Many Drug Targets 

Are There? Nat Rev Drug Discov 2006, 5, 993–996. 

 

(92)  Chodera, J. D.; Noé, F. Markov State Models of Biomolecular Conformational 



 

 

54 	
   INTRODUCTION	
   	
  
	
   	
  

54 

Dynamics. Curr Opin Struct Biol 2014, 25, 135–144. 

 

(93)  Pande, V. S.; Beauchamp, K.; Bowman, G. R. Everything You Wanted to 

Know about Markov State Models but Were Afraid to Ask. Methods 2010, 52, 

99–105. 

 

(94)  Plattner, N.; Noé, F. Protein Conformational Plasticity and Complex Ligand-

Binding Kinetics Explored by Atomistic Simulations and Markov Models. Nat 

Commun 2015, 6, 7653. 

 

(95)  Gu, S.; Silva, D.-A.; Meng, L.; Yue, A.; Huang, X. Quantitatively 

Characterizing the Ligand Binding Mechanisms of Choline Binding Protein 

Using Markov State Model Analysis. PLoS Comput Biol 2014, 10, e1003767. 

 

(96)  Kohlhoff, K. J.; Shukla, D.; Lawrenz, M.; Bowman, G. R.; Konerding, D. E.; 

Belov, D.; Altman, R. B.; Pande, V. S. Cloud-Based Simulations on Google 

Exacycle Reveal Ligand Modulation of GPCR Activation Pathways. Nat Chem 

2014, 6, 15–21. 

 

(97)  Sabbadin, D.; Moro, S. Supervised Molecular Dynamics (SuMD) as a Helpful 

Tool to Depict GPCR-Ligand Recognition Pathway in a Nanosecond Time 

Scale. J Chem Inf Model 2014, 54, 372–376. 

 

(98)  Cuzzolin, A.; Sturlese, M.; Deganutti, G.; Salmaso, V.; Sabbadin, D.; Ciancetta, 

A.; Moro, S. Deciphering the Complexity of Ligand-Protein Recognition 

Pathways Using Supervised Molecular Dynamics (SuMD) Simulations. J Chem 

Inf Model 2016, 56, 687–705. 

 

(99)  Sabbadin, D.; Ciancetta, A.; Deganutti, G.; Cuzzolin, A.; Moro, S. Exploring 

the Recognition Pathway at the Human A2A Adenosine Receptor of the 

Endogenous Agonist Adenosine Using Supervised Molecular Dynamics 

Simulations. Medchemcomm 2015, 6, 1081–1085. 

 

(100)  Deganutti, G.; Cuzzolin, A.; Ciancetta, A.; Moro, S. Understanding Allosteric 



 

 

55 	
   INTRODUCTION	
   	
  
	
   	
  

55 

Interactions in G Protein-Coupled Receptors Using Supervised Molecular 

Dynamics: A Prototype Study Analysing the Human A3 Adenosine Receptor 

Positive Allosteric Modulator LUF6000. Bioorg Med Chem 2015, 23, 4065–4071. 

 

(101)  Sinko, W.; Miao, Y.; de Oliveira, C. A. F.; McCammon, J. A. Population Based 

Reweighting of Scaled Molecular Dynamics. J Phys Chem B 2013, 117, 12759–

12768. 

 

(102)  Mollica, L.; Theret, I.; Antoine, M.; Perron-Sierra, F.; Charton, Y.; Fourquez, 

J.-M.; Wierzbicki, M.; Boutin, J. A.; Ferry, G.; Decherchi, S.; Bottegoni, G.; 

Ducrot, P.; Cavalli, A. Molecular Dynamics Simulations and Kinetic 

Measurements to Estimate and Predict Protein-Ligand Residence Times. J Med 

Chem 2016, 59, 7167–7176. 

 

(103)  Mollica, L.; Decherchi, S.; Zia, S. R.; Gaspari, R.; Cavalli, A.; Rocchia, W. 

Kinetics of Protein-Ligand Unbinding via Smoothed Potential Molecular 

Dynamics Simulations. Sci Rep 2015, 5, 11539. 

 

(104)  Hamelberg, D.; Mongan, J.; McCammon, J. A. Accelerated Molecular 

Dynamics: A Promising and Efficient Simulation Method for Biomolecules. J 

Chem Phys 2004, 120, 11919–11929. 

 

(105)  Pierce, L. C. T.; Salomon-Ferrer, R.; Augusto F de Oliveira, C.; McCammon, J. 

A.; Walker, R. C. Routine Access to Millisecond Time Scale Events with 

Accelerated Molecular Dynamics. J Chem Theory Comput 2012, 8, 2997–3002. 

 

(106)  Kastner, K. W.; Izaguirre, J. A. Accelerated Molecular Dynamics Simulations 

of the Octopamine Receptor Using GPUs: Discovery of an Alternate Agonist-

Binding Position. Proteins 2016, 84, 1480–1489. 

 

(107)  Kappel, K.; Miao, Y.; McCammon, J. A. Accelerated Molecular Dynamics 

Simulations of Ligand Binding to a Muscarinic G-Protein-Coupled Receptor. 

Q Rev Biophys 2015, 48, 479–487. 

 



 

 

56 	
   INTRODUCTION	
   	
  
	
   	
  

56 

(108)  Sugita, Y.; Okamoto, Y. Replica-Exchange Molecular Dynamics Method for 

Protein Folding. Chem Phys Lett 1999, 314, 141–151. 

 

(109)  Zhang, W.; Chen, J. Efficiency of Adaptive Temperature-Based Replica 

Exchange for Sampling Large-Scale Protein Conformational Transitions. J 

Chem Theory Comput 2013, 9, 2849–2856. 

 

(110)  Fukunishi, H.; Watanabe, O.; Takada, S. On the Hamiltonian Replica 

Exchange Method for Efficient Sampling of Biomolecular Systems: 

Application to Protein Structure Prediction. J. Chem. Phys. 2002, 116, 9058. 

 

(111)  Wang, K.; Chodera, J. D.; Yang, Y.; Shirts, M. R. Identifying Ligand Binding 

Sites and Poses Using GPU-Accelerated Hamiltonian Replica Exchange 

Molecular Dynamics. J Comput Aided Mol Des 2013, 27, 989–1007. 

 

(112)  Perilla, J. R.; Woolf, T. B. Towards the Prediction of Order Parameters from 

Molecular Dynamics Simulations in Proteins. J Chem Phys 2012, 136, 164101. 

 

(113)  Trbovic, N.; Kim, B.; Friesner, R. A.; Palmer, A. G. Structural Analysis of 

Protein Dynamics by MD Simulations and NMR Spin-Relaxation. Proteins 2008, 

71, 684–694. 

 

(114)  Laio, A.; Parrinello, M. Escaping Free-Energy Minima. Proc Natl Acad Sci U S 

A 2002, 99, 12562–12566. 

 

(115)  Gervasio, F. L.; Laio, A.; Parrinello, M. Flexible Docking in Solution Using 

Metadynamics. J Am Chem Soc 2005, 127, 2600–2607. 

 

(116)  Barducci, A.; Bonomi, M.; Parrinello, M. Metadynamics. Wiley Interdisciplinary 

Reviews: Computational Molecular Science 2011, 1, 826–843. 

 

(117)  Laio, A.; Rodriguez-Fortea, A.; Gervasio, F. L.; Ceccarelli, M.; Parrinello, M. 

Assessing the Accuracy of Metadynamics. J Phys Chem B 2005, 109, 6714–6721. 

 



 

 

57 	
   INTRODUCTION	
   	
  
	
   	
  

57 

(118)  Branduardi, D.; Bussi, G.; Parrinello, M. Metadynamics with Adaptive 

Gaussians. J Chem Theory Comput 2012, 8, 2247–2254. 

 

(119)  Laio, A.; Gervasio, F. L. Metadynamics: A Method to Simulate Rare Events 

and Reconstruct the Free Energy in Biophysics, Chemistry and Material 

Science. Reports on Progress in Physics 2008, 71, 126601. 

 

(120)  Barducci, A.; Bussi, G.; Parrinello, M. Well-Tempered Metadynamics: A 

Smoothly Converging and Tunable Free-Energy Method. Phys Rev Lett 2008, 

100, 020603. 

 

(121)  Limongelli, V.; Bonomi, M.; Marinelli, L.; Gervasio, F. L.; Cavalli, A.; 

Novellino, E.; Parrinello, M. Molecular Basis of Cyclooxygenase Enzymes 

(COXs) Selective Inhibition. Proc Natl Acad Sci U S A 2010, 107, 5411–5416. 

 

(122)  Limongelli, V.; Bonomi, M.; Parrinello, M. Funnel Metadynamics as Accurate 

Binding Free-Energy Method. Proc Natl Acad Sci U S A 2013, 110, 6358–6363. 

 

(123)  Tiwary, P.; Parrinello, M. From Metadynamics to Dynamics. Phys Rev Lett 2013, 

111, 230602. 

 

(124)  Salvalaglio, M.; Tiwary, P.; Parrinello, M. Assessing the Reliability of the 

Dynamics Reconstructed from Metadynamics. J Chem Theory Comput 2014, 10, 

1420–1425. 

 

(125)  Tiwary, P.; Limongelli, V.; Salvalaglio, M.; Parrinello, M. Kinetics of Protein-

Ligand Unbinding: Predicting Pathways, Rates, and Rate-Limiting Steps. Proc 

Natl Acad Sci U S A 2015, 112, E386–E391. 

 

(126)  Piana, S.; Laio, A. A Bias-Exchange Approach to Protein Folding. J Phys Chem 

B 2007, 111, 4553–4559. 

 

(127)  Pietrucci, F.; Marinelli, F.; Carloni, P.; Laio, A. Substrate Binding Mechanism 

of HIV-1 Protease from Explicit-Solvent Atomistic Simulations. J Am Chem 



 

 

58 	
   INTRODUCTION	
   	
  
	
   	
  

58 

Soc 2009, 131, 11811–11818. 

 

(128)  Abstract. Steered Molecular Dynamics (SMD) Induces Unbinding of Ligands 

and. 

 

(129)  Isralewitz, B.; Gao, M.; Schulten, K. Steered Molecular Dynamics and 

Mechanical Functions of Proteins. Curr Opin Struct Biol 2001, 11, 224–230. 

 

(130)  Shen, L.; Shen, J.; Luo, X.; Cheng, F.; Xu, Y.; Chen, K.; Arnold, E.; Ding, J.; 

Jiang, H. Steered Molecular Dynamics Simulation on the Binding of NNRTI 

to HIV-1 RT. Biophys J 2003, 84, 3547–3563. 

 

(131)  Favia, A. D.; Masetti, M.; Recanatini, M.; Cavalli, A. Substrate Binding Process 

and Mechanistic Functioning of Type 1 11β-Hydroxysteroid Dehydrogenase 

from Enhanced Sampling Methods. PLoS ONE 2011, 6, e25375. 

 

(132)  Palermo, G.; Minniti, E.; Greco, M. L.; Riccardi, L.; Simoni, E.; Convertino, 

M.; Marchetti, C.; Rosini, M.; Sissi, C.; Minarini, A.; De Vivo, M. An 

Optimized Polyamine Moiety Boosts the Potency of Human Type II 

Topoisomerase Poisons as Quantified by Comparative Analysis Centered on 

the Clinical Candidate F14512. Chem Commun (Camb) 2015, 51, 14310–14313. 

 

(133)  Patel, J. S.; Berteotti, A.; Ronsisvalle, S.; Rocchia, W.; Cavalli, A. Steered 

Molecular Dynamics Simulations for Studying Protein-Ligand Interaction in 

Cyclin-Dependent Kinase 5. J Chem Inf Model 2014, 54, 470–480. 

 

(134)  Lüdemann, S. K.; Lounnas, V.; Wade, R. C. How Do Substrates Enter and 

Products Exit the Buried Active Site of Cytochrome P450cam? 1. Random 

Expulsion Molecular Dynamics Investigation of Ligand Access Channels and 

Mechanisms. J Mol Biol 2000, 303, 797–811. 

 

(135)  Peräkylä, M. Ligand Unbinding Pathways from the Vitamin D Receptor 

Studied by Molecular Dynamics Simulations. Eur Biophys J 2009, 38, 185–198. 

 



 

 

59 	
   INTRODUCTION	
   	
  
	
   	
  

59 

(136)  Pan, D.; Niu, Y.; Ning, L.; Zhang, Y.; Liu, H.; Yao, X. Computational Study on 

the Binding and Unbinding Mechanism of HCV NS5B with the Inhibitor GS-

461203 and Substrate Using Conventional and Steered Molecular Dynamics 

Simulations. Chemometrics and Intelligent Laboratory Systems 2016, 156, 72–80. 

 

(137)  Torrie, G. M.; Valleau, J. P. Nonphysical Sampling Distributions in Monte 

Carlo Free-Energy Estimation: Umbrella Sampling. J Comput Phys 1977, 23, 

187–199. 

 

(138)  Bui, J. M.; Henchman, R. H.; McCammon, J. A. The Dynamics of Ligand 

Barrier Crossing inside the Acetylcholinesterase Gorge. Biophys J 2003, 85, 

2267–2272. 

 

(139)  Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A. 

THE Weighted Histogram Analysis Method for Free-Energy Calculations on 

Biomolecules. I. The Method. J Comput Chem 1992, 13, 1011–1021. 

 

(140)  Kästner, J. Umbrella Sampling. Wiley Interdisciplinary Reviews: Computational 

Molecular Science 2011, 1, 932–942. 

 

(141)  Yu, R.; Tabassum, N.; Jiang, T. Investigation of α-Conotoxin Unbinding Using 

Umbrella Sampling. Bioorg Med Chem Lett 2016, 26, 1296–1300. 

 

(142)  Maragliano, L.; Vanden-Eijnden, E. A Temperature Accelerated Method for 

Sampling Free Energy and Determining Reaction Pathways in Rare Events 

Simulations. Chem Phys Lett 2006, 426, 168–175. 

 

(143)  Fredriksson, R.; Lagerström, M. C.; Lundin, L.-G.; Schiöth, H. B. The G-

Protein-Coupled Receptors in the Human Genome Form Five Main Families. 

Phylogenetic Analysis, Paralogon Groups, and Fingerprints. Mol Pharmacol 

2003, 63, 1256–1272. 

 

(144)  Rosenbaum, D. M.; Rasmussen, S. G. F.; Kobilka, B. K. The Structure and 

Function of G-Protein-Coupled Receptors. Nature 2009, 459, 356–363. 



 

 

60 	
   INTRODUCTION	
   	
  
	
   	
  

60 

 

(145)  Lagerström, M. C.; Schiöth, H. B. Structural Diversity of G Protein-Coupled 

Receptors and Significance for Drug Discovery. Nat Rev Drug Discov 2008, 7, 

339–357. 

 

(146)  Ballesteros, J. A.; Weinstein, H. [19] Integrated Methods for the Construction 

of Three-Dimensional Models and Computational Probing of Structure-

Function Relations in G Protein-Coupled Receptors. In Receptor Molecular 

Biology; Methods in Neurosciences; Elsevier, 1995; Vol. 25, pp. 366–428. 

 

(147)  Venkatakrishnan, A. J.; Deupi, X.; Lebon, G.; Tate, C. G.; Schertler, G. F.; 

Babu, M. M. Molecular Signatures of G-Protein-Coupled Receptors. Nature 

2013, 494, 185–194. 

 

(148)  Vogel, R.; Mahalingam, M.; Lüdeke, S.; Huber, T.; Siebert, F.; Sakmar, T. P. 

Functional Role of the “Ionic Lock”--an Interhelical Hydrogen-Bond Network 

in Family A Heptahelical Receptors. J Mol Biol 2008, 380, 648–655. 

 

(149)  Barak, L. S.; Ménard, L.; Ferguson, S. S.; Colapietro, A. M.; Caron, M. G. The 

Conserved Seven-Transmembrane Sequence NP(X)2,3Y of the G-Protein-

Coupled Receptor Superfamily Regulates Multiple Properties of the Beta 2-

Adrenergic Receptor. Biochemistry 1995, 34, 15407–15414. 

 

(150)  Katritch, V.; Cherezov, V.; Stevens, R. C. Structure-Function of the G Protein-

Coupled Receptor Superfamily. Annu Rev Pharmacol Toxicol 2013, 53, 531–556. 

 

(151)  Cooke, R. M.; Brown, A. J. H.; Marshall, F. H.; Mason, J. S. Structures of G 

Protein-Coupled Receptors Reveal New Opportunities for Drug Discovery. 

Drug Discov Today 2015, 20, 1355–1364. 

 

(152)  Kobilka, B. K.; Deupi, X. Conformational Complexity of G-Protein-Coupled 

Receptors. Trends Pharmacol Sci 2007, 28, 397–406. 

 

(153)  Nygaard, R.; Frimurer, T. M.; Holst, B.; Rosenkilde, M. M.; Schwartz, T. W. 



 

 

61 	
   INTRODUCTION	
   	
  
	
   	
  

61 

Ligand Binding and Micro-Switches in 7TM Receptor Structures. Trends 

Pharmacol Sci 2009, 30, 249–259. 

 

(154)  Kang, D. S.; Tian, X.; Benovic, J. L. Role of β-Arrestins and Arrestin Domain-

Containing Proteins in G Protein-Coupled Receptor Trafficking. Curr Opin Cell 

Biol 2014, 27, 63–71. 

 

(155)  Tian, X.; Kang, D. S.; Benovic, J. L. β-Arrestins and G Protein-Coupled 

Receptor Trafficking. Handb Exp Pharmacol 2014, 219, 173–186. 

 

(156)  Xu, F.; Wu, H.; Katritch, V.; Han, G. W.; Jacobson, K. A.; Gao, Z.-G.; 

Cherezov, V.; Stevens, R. C. Structure of an Agonist-Bound Human A2A 

Adenosine Receptor. Science 2011, 332, 322–327. 

 

(157)  Rasmussen, S. G. F.; DeVree, B. T.; Zou, Y.; Kruse, A. C.; Chung, K. Y.; 

Kobilka, T. S.; Thian, F. S.; Chae, P. S.; Pardon, E.; Calinski, D.; Mathiesen, J. 

M.; Shah, S. T. A.; Lyons, J. A.; Caffrey, M.; Gellman, S. H.; Steyaert, J.; 

Skiniotis, G.; Weis, W. I.; Sunahara, R. K.; Kobilka, B. K. Crystal Structure of 

the β2 Adrenergic Receptor-Gs Protein Complex. Nature 2011, 477, 549–555. 

 

(158)  Rajagopal, S.; Rajagopal, K.; Lefkowitz, R. J. Teaching Old Receptors New 

Tricks: Biasing Seven-Transmembrane Receptors. Nat Rev Drug Discov 2010, 9, 

373–386. 

 

(159)  Kenakin, T. Collateral Efficacy in Drug Discovery: Taking Advantage of the 

Good (allosteric) Nature of 7TM Receptors. Trends Pharmacol Sci 2007, 28, 407–

415. 

 

(160)  Vilar, S.; Karpiak, J.; Berk, B.; Costanzi, S. In Silico Analysis of the Binding of 

Agonists and Blockers to the β2-Adrenergic Receptor. J Mol Graph Model 2011, 

29, 809–817. 

 

(161)  Rosenbaum, D. M.; Zhang, C.; Lyons, J. A.; Holl, R.; Aragao, D.; Arlow, D. 

H.; Rasmussen, S. G. F.; Choi, H.-J.; Devree, B. T.; Sunahara, R. K.; Chae, P. 



 

 

62 	
   INTRODUCTION	
   	
  
	
   	
  

62 

S.; Gellman, S. H.; Dror, R. O.; Shaw, D. E.; Weis, W. I.; Caffrey, M.; Gmeiner, 

P.; Kobilka, B. K. Structure and Function of an Irreversible Agonist-β(2) 

Adrenoceptor Complex. Nature 2011, 469, 236–240. 

 

(162)  Hanlon, C. D.; Andrew, D. J. Outside-in Signaling--a Brief Review of GPCR 

Signaling with a Focus on the Drosophila GPCR Family. J Cell Sci 2015, 128, 

3533–3542. 

 

(163)  Rivera-Oliver, M.; Díaz-Ríos, M. Using Caffeine and Other Adenosine 

Receptor Antagonists and Agonists as Therapeutic Tools against 

Neurodegenerative Diseases: A Review. Life Sci 2014, 101, 1–9. 

 

(164)  Polosa, R.; Blackburn, M. R. Adenosine Receptors as Targets for Therapeutic 

Intervention in Asthma and Chronic Obstructive Pulmonary Disease. Trends 

Pharmacol Sci 2009, 30, 528–535. 

 

(165)  Stone, T. W.; Ceruti, S.; Abbracchio, M. P. Adenosine Receptors and 

Neurological Disease: Neuroprotection and Neurodegeneration. Handb Exp 

Pharmacol 2009, 535–587. 

 

(166)  Jacobson, K. A.; Gao, Z.-G. Adenosine Receptors as Therapeutic Targets. Nat 

Rev Drug Discov 2006, 5, 247–264. 

 

(167)  Zimmermann, H. Extracellular Metabolism of ATP and Other Nucleotides. 

Naunyn Schmiedebergs Arch Pharmacol 2000, 362, 299–309. 

 

(168)  van Calker, D.; Müller, M.; Hamprecht, B. Adenosine Regulates via Two 

Different Types of Receptors, the Accumulation of Cyclic AMP in Cultured 

Brain Cells. J Neurochem 1979, 33, 999–1005. 

 

(169)  Rogel, A.; Bromberg, Y.; Sperling, O.; Zoref-Shani, E. Phospholipase C Is 

Involved in the Adenosine-Activated Signal Transduction Pathway Conferring 

Protection against Iodoacetic Acid-Induced Injury in Primary Rat Neuronal 

Cultures. Neurosci Lett 2005, 373, 218–221. 



 

 

63 	
   INTRODUCTION	
   	
  
	
   	
  

63 

 

(170)  Belardinelli, L.; Shryock, J. C.; Song, Y.; Wang, D.; Srinivas, M. Ionic Basis of 

the Electrophysiological Actions of Adenosine on Cardiomyocytes. FASEB J 

1995, 9, 359–365. 

 

(171)  Kull, B.; Svenningsson, P.; Fredholm, B. B. Adenosine A(2A) Receptors Are 

Colocalized with and Activate G(olf) in Rat Striatum. Mol Pharmacol 2000, 58, 

771–777. 

 

(172)  Peakman, M. C.; Hill, S. J. Adenosine A2B-Receptor-Mediated Cyclic AMP 

Accumulation in Primary Rat Astrocytes. Br J Pharmacol 1994, 111, 191–198. 

 

(173)  Feoktistov, I.; Biaggioni, I. Adenosine A2b Receptors Evoke Interleukin-8 

Secretion in Human Mast Cells. An Enprofylline-Sensitive Mechanism with 

Implications for Asthma. J Clin Invest 1995, 96, 1979–1986. 

 

(174)  Linden, J.; Thai, T.; Figler, H.; Jin, X.; Robeva, A. S. Characterization of 

Human A(2B) Adenosine Receptors: Radioligand Binding, Western Blotting, 

and Coupling to G(q) in Human Embryonic Kidney 293 Cells and HMC-1 

Mast Cells. Mol Pharmacol 1999, 56, 705–713. 

 

(175)  Donoso, M. V.; López, R.; Miranda, R.; Briones, R.; Huidobro-Toro, J. P. A2B 

Adenosine Receptor Mediates Human Chorionic Vasoconstriction and Signals 

through Arachidonic Acid Cascade. Am J Physiol Heart Circ Physiol 2005, 288, 

H2439–H2449. 

 

(176)  Zhou, Q. Y.; Li, C.; Olah, M. E.; Johnson, R. A.; Stiles, G. L.; Civelli, O. 

Molecular Cloning and Characterization of an Adenosine Receptor: The A3 

Adenosine Receptor. Proc Natl Acad Sci U S A 1992, 89, 7432–7436. 

 

(177)  Abbracchio, M. P.; Brambilla, R.; Ceruti, S.; Kim, H. O.; Lubitz, D. K. von; 

Jacobson, K. A.; Cattabeni, F. G Protein-Dependent Activation of 

Phospholipase C by Adenosine A3 Receptors in Rat Brain. Mol Pharmacol 1995, 

48, 1038–1045. 



 

 

64 	
   INTRODUCTION	
   	
  
	
   	
  

64 

 

(178)  Tracey, W. R.; Magee, W.; Masamune, H.; Oleynek, J. J.; Hill, R. J. Selective 

Activation of Adenosine A3 Receptors with N6-(3-Chlorobenzyl)-5’-N-

Methylcarboxamidoadenosine (CB-MECA) Provides Cardioprotection via 

KATP Channel Activation. Cardiovasc Res 1998, 40, 138–145. 

 

(179)  Merighi, S.; Benini, A.; Mirandola, P.; Gessi, S.; Varani, K.; Leung, E.; 

Maclennan, S.; Borea, P. A. A3 Adenosine Receptor Activation Inhibits Cell 

Proliferation via Phosphatidylinositol 3-kinase/Akt-Dependent Inhibition of 

the Extracellular Signal-Regulated Kinase 1/2 Phosphorylation in A375 

Human Melanoma Cells. J Biol Chem 2005, 280, 19516–19526. 

 

(180)  Ghosh, E.; Kumari, P.; Jaiman, D.; Shukla, A. K. Methodological Advances: 

The Unsung Heroes of the GPCR Structural Revolution. Nat Rev Mol Cell Biol 

2015, 16, 69–81. 

 

(181)  Lebon, G.; Warne, T.; Edwards, P. C.; Bennett, K.; Langmead, C. J.; Leslie, A. 

G. W.; Tate, C. G. Agonist-Bound Adenosine A2A Receptor Structures Reveal 

Common Features of GPCR Activation. Nature 2011, 474, 521–525. 

 

(182)  Lebon, G.; Edwards, P. C.; Leslie, A. G. W.; Tate, C. G. Molecular 

Determinants of CGS21680 Binding to the Human Adenosine A2A Receptor. 

Mol Pharmacol 2015, 87, 907–915. 

 

(183)  Carpenter, B.; Nehmé, R.; Warne, T.; Leslie, A. G.; Tate, C. G. Structure of the 

Adenosine A2A Receptor Bound to an Engineered G Protein. Nature 2016. 

 

(184)  Doré, A. S.; Robertson, N.; Errey, J. C.; Ng, I.; Hollenstein, K.; Tehan, B.; 

Hurrell, E.; Bennett, K.; Congreve, M.; Magnani, F.; Tate, C. G.; Weir, M.; 

Marshall, F. H. Structure of the Adenosine A(2A) Receptor in Complex with 

ZM241385 and the Xanthines XAC and Caffeine. Structure 2011, 19, 1283–1293. 

 

(185)  Jaakola, V.-P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y. T.; 

Lane, J. R.; Ijzerman, A. P.; Stevens, R. C. The 2.6 Angstrom Crystal Structure 



 

 

65 	
   INTRODUCTION	
   	
  
	
   	
  

65 

of a Human A2A Adenosine Receptor Bound to an Antagonist. Science 2008, 

322, 1211–1217. 

 

(186)  Hino, T.; Arakawa, T.; Iwanari, H.; Yurugi-Kobayashi, T.; Ikeda-Suno, C.; 

Nakada-Nakura, Y.; Kusano-Arai, O.; Weyand, S.; Shimamura, T.; Nomura, 

N.; Cameron, A. D.; Kobayashi, T.; Hamakubo, T.; Iwata, S.; Murata, T. G-

Protein-Coupled Receptor Inactivation by an Allosteric Inverse-Agonist 

Antibody. Nature 2012, 482, 237–240. 

 

(187)  Congreve, M.; Andrews, S. P.; Doré, A. S.; Hollenstein, K.; Hurrell, E.; 

Langmead, C. J.; Mason, J. S.; Ng, I. W.; Tehan, B.; Zhukov, A.; Weir, M.; 

Marshall, F. H. Discovery of 1,2,4-Triazine Derivatives as Adenosine A(2A) 

Antagonists Using Structure Based Drug Design. J Med Chem 2012, 55, 1898–

1903. 

 

(188)  Segala, E.; Guo, D.; Cheng, R. K. Y.; Bortolato, A.; Deflorian, F.; Doré, A. S.; 

Errey, J. C.; Heitman, L. H.; IJzerman, A. P.; Marshall, F. H.; Cooke, R. M. 

Controlling the Dissociation of Ligands from the Adenosine A2A Receptor 

through Modulation of Salt Bridge Strength. J Med Chem 2016, 59, 6470–6479. 

 

(189)  Liu, W.; Chun, E.; Thompson, A. A.; Chubukov, P.; Xu, F.; Katritch, V.; Han, 

G. W.; Roth, C. B.; Heitman, L. H.; IJzerman, A. P.; Cherezov, V.; Stevens, R. 

C. Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions. Science 

2012, 337, 232–236. 

 

(190)  Moro, S.; Deflorian, F.; Spalluto, G.; Pastorin, G.; Cacciari, B.; Kim, S.-K.; 

Jacobson, K. A. Demystifying the Three Dimensional Structure of G Protein-

Coupled Receptors (GPCRs) with the Aid of Molecular Modeling. Chem. 

Commun. 2003, 2949. 

 

(191)  Nickols, H. H.; Conn, P. J. Development of Allosteric Modulators of GPCRs 

for Treatment of CNS Disorders. Neurobiol Dis 2014, 61, 55–71. 

 

(192)  Chatzidaki, A.; Millar, N. S. Allosteric Modulation of Nicotinic Acetylcholine 



 

 

66 	
   INTRODUCTION	
   	
  
	
   	
  

66 

Receptors. Biochem Pharmacol 2015, 97, 408–417. 

 

(193)  Katritch, V.; Cherezov, V.; Stevens, R. C. Diversity and Modularity of G 

Protein-Coupled Receptor Structures. Trends Pharmacol Sci 2012, 33, 17–27. 

 

(194)  Nguyen, A. T.; Vecchio, E. A.; Thomas, T.; Nguyen, T. D.; Aurelio, L.; 

Scammells, P. J.; White, P. J.; Sexton, P. M.; Gregory, K. J.; May, L. T.; 

Christopoulos, A. The Role of the Second Extracellular Loop of the 

Adenosine A1 Receptor on Allosteric Modulator Binding, Signaling and 

Cooperativity. Mol Pharmacol 2016. 

 

(195)  Massink, A.; Louvel, J.; Adlere, I.; van Veen, C.; Huisman, B. J. H.; Dijksteel, 

G. S.; Guo, D.; Lenselink, E. B.; Buckley, B. J.; Matthews, H.; Ranson, M.; 

Kelso, M.; IJzerman, A. P. 5’-Substituted Amiloride Derivatives as Allosteric 

Modulators Binding in the Sodium Ion Pocket of the Adenosine A2A 

Receptor. J Med Chem 2016, 59, 4769–4777. 

 

(196)  Guo, D.; Heitman, L. H.; IJzerman, A. P. Kinetic Aspects of the Interaction 

between Ligand and G Protein-Coupled Receptor: The Case of the Adenosine 

Receptors. Chem Rev 2016. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

68 	
   AIM	
  OF	
  THE	
  PROJECT	
   	
  
	
   	
  

68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2	
  AIM	
  OF	
  THE	
  PROJECT	
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

69 	
   AIM	
  OF	
  THE	
  PROJECT	
   	
  
	
   	
  

69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

70 	
   AIM	
  OF	
  THE	
  PROJECT	
   	
  
	
   	
  

70 

Computational chemists are constantly looking for new methods able to 

furnish a rationale for experimental data or to supply new hypothesis for 

applicative fields. From this standpoint, we have recently developed the 

supervised molecular dynamics (SuMD), a computational too able to gain 

insights at molecular level about ligands binding to macromolecules. Aims of this 

Ph.D project were to extensively validate the SuMD method on a wide range of 

endogenous targets, as well as to reconstruct the binding mechanisms of several 

adenosine receptor ligands. Better knowledge of the dynamic intermolecular 

recognition processes can allow propose structural modification in order to 

improve the kinetic behaviour of ligands as well as to decipher possible role of 

protein mutations in intermolecular recognitions. 
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The overall Ph.D. project was divided in different stages. A preliminary 

phase was focused on the application of the supervised molecular dynamics 

(SuMD) methodology: we tested this computational approach on a wide number 

of both cytosolic and membrane proteins with the aim of validate its ability to 

reconstruct X-ray determined intermolecular complexes as well as to elucidate 

the pathways the ligands putatively follow. This first part of the work resulted in 

the publication: 

 

• “Deciphering the Complexity of Ligand-protein Recognition Pathways 

using Supervised Molecular Dynamics (SuMD) Simulations”. 

 

Following SuMD applications concerned the binding mechanisms of the 

endogenous effector adenosine (to the receptors subtype A2A) and the A3 

positive allosteric modulator (PAM) LUF6000. Scientific publications related to 

these exertions are the following: 

 

• “Exploring the recognition pathway at the human A2A adenosine receptor 

of the endogenous agonist adenosine using supervised molecular 

dynamics simulations”; 

 

• “Understanding allosteric interactions in G protein-coupled receptors 

using Supervised Molecular Dynamics: a prototype study analysing the 

human A3 adenosine receptor positive allosteric modulator LUF6000”. 

 

In the last section of the chapter we introduce an overview on how to 

link different computational techniques, creating a complete pipeline able to 

facilitate the “hit to lead” compound optimization process. The related 

publication is: 
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• “New Trends in Inspecting GPCR-ligand Recognition Process: the 

Contribution of the Molecular Modeling Section (MMS) at the University 

of Padova”. 
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3.1 Deciphering the Complexity of Ligand-protein 
Recognition Pathways using Supervised Molecular 
Dynamics (SuMD) Simulations. 
 

Alberto Cuzzolin, Mattia Sturlese, Giuseppe Deganutti, Veronica Salmaso, 

Davide Sabbadin, Antonella Ciancetta and Stefano Moro* 

 

Abstract 

Molecular recognition is a crucial issue in interpreting the mechanism of known 

active substances as well as in the development of novel active candidates, since 

both thermodynamic and kinetic aspects greatly affect the understanding of 

ligand-mediated signal transmission in living organisms or whether a chemical 

compound can be transformed in a drug candidate. The physicochemical bases 

governing the optimization of thermodynamic aspects of ligand binding are 

relatively well understood, but they remain still poorly comprehend for binding 

kinetics. Unfortunately, simulating this binding process is still a challenging task 

because it requires classical MD experiments in a long microsecond time scale 

that is affordable only with a high-level computational capacity. In order to 

overcome this limiting factor, we have recently implemented an alternative MD 

approach, named supervised molecular dynamics (SuMD) specifically in the field 

of G protein-coupled receptors (GPCRs). SuMD enables the investigation of 

ligand-receptor binding events independently from the starting position, 

chemical structure of the ligand, and also from its receptor binding affinity.  

In this Article, we would like to present an extension of SuMD 

application domain including different types of proteins compared to GPCRs. In 

particular, we decided to deeply analyze the ligand-protein recognition pathways 

of six different case studies that we grouped into two different classes: globular 

and membrane proteins. Moreover, we would like to introduce the SuMD-

Analyzer tool that we have specifically implemented to help the user in the 

analysis of the SuMD trajectories. Finally, we will emphasize the limit of SuMD 
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applicability domain as well as its strengths in analyzing the complexity of ligand-

protein recognition pathways.  

 

Introduction  

The essential features of ligand-protein interaction are very often 

summarized under the expression "molecular recognition" incorporating both 

thermodynamic aspects (quantified by the Kd, the equilibrium dissociation 

constant) and kinetic aspects of ligand binding (reflected by the rate constants 

kon and koff). Consequently, molecular recognition is thus a crucial issue in 

interpreting the mechanism of known active substances as well as in the 

development of novel active candidates, since both thermodynamic and kinetic 

aspects greatly affect the understanding of ligand-mediated signal transmission in 

living organisms or whether a chemical compound can be transformed in a drug 

candidate1.  

The physico-chemical bases governing the optimization of 

thermodynamic aspects of ligand binding are relatively well understood but, 

unluckily, they remain still poorly comprehend for binding kinetics. In fact, the 

equilibrium dissociation constant value depends on the free energy difference 

between the ligand-protein bound and unbound states, both of which are 

chemically stable and generally experimentally observable. On the contrary, kon 

and koff rate constants depend on the height of the free energy barrier separating 

those states and, in particular, the highest free energy barrier defined as 

transition state characterized only by a fleeting existence2. Consequently, the 

major challenge in the optimization of the kinetics parameters is the complexity 

in characterizing all plausible approaching pathways of the ligand to its protein. 

In fact, different approaching pathways can be characterized by different 

metastable intermediate states (referred also as meta-binding sites)3 connected to 

each other, and to the final bound state, by different transition states. 

Understanding the molecular interactions between ligand and protein 

during the approaching pathways is thus central to the deep understanding and 

to the rational control of ligand binding kinetics. Even though experimental 
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techniques for measuring the kinetic parameters of ligand binding have existed 

for decades, all of them only provide indirect evidence about transient structures 

visited along a ligand-binding pathway2. Alternatively, computational methods, 

and in particular molecular dynamics (MD) simulations, can provide detailed 

structural information on metastable intermediate states (meta-binding sites) and 

transition states at the atomistic level of detail4. Due to increases in 

computational power, it has recently become possible to simulate the full 

process of spontaneous ligand-protein association which typically occurs on the 

microsecond timescale, providing direct access to detailed information on 

binding mechanisms that have been difficult to access experimentally4,5. 

Unfortunately, simulating this binding process is still a challenging task because 

it requires classical MD experiments in a long microsecond time scale that is 

affordable only with a high-level computational capacity. However, the 

probability of reproduce ligand- protein binding or unbinding event on an 

accessible timescale can be enhanced through the introduction of biased 

potentials that facilitate the crossing of energy barriers or the application of 

external forces on the ligand, respectively6. An alternative strategy that does not 

require the introduction of biases or external forces and enables to explore the 

ligand-protein approaching path in nanosecond simulation time scale has been 

recently proposed by us specifically in the field of G protein-coupled receptors 

(GPCRs)7,8 The “supervised molecular dynamics” (SuMD) approach exploit a 

tabu-like algorithm to monitor the distance between the center of masses of the 

ligand atoms and the protein binding site in short (600 ps) standard MD 

simulations (Figure 1, left panel). According to this strategy, an arbitrary number 

of distance points is collected “on the flight” at regular intervals and fitted into a 

linear function f(x)=mx. If the slope (m) is negative, the ligand-receptor distance 

is likely to be shortened and the simulation is restarted from the last set of 

coordinates. Otherwise, the simulation is restored from the original set of 

coordinates and started over. The supervision is repeated until the ligand-

receptor distance is less than 5 Å. The results of a SuMD simulation are 

displayed in a graph reporting the interaction energy toward the distance 
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between the ligand and the binding site (Figure 1, right panel). We have recently 

applied the SuMD approach to interpret at the molecular level: i) the binding of 

different antagonists at the human A2A adenosine receptor (hA2A AR) by 

detecting and characterizing a possible energetically stable meta-binding site7 , ii) 

the binding of the natural agonist adenosine at the hA2A AR by detecting and 

characterizing a possible energetically stable meta-binding site9, iii) the positive 

allosteric modulation mediated by LUF6000 toward the human A3 adenosine 

receptor (hA3 AR) by suggesting at least two possible mechanisms to explain the 

available experimental data10, and iv) the binding of different ligands at the 

human P2Y12 receptor by detecting and characterizing again possible 

energetically stable meta-binding site11.  

 

 
Figure 1. a) Schematic representation of Supervised Molecular Dynamics (SuMD) 

algorithm (left) and the outcoming ligand−protein interaction energy landscape. 

Interaction Energy values: kcal mol-1.  

 

In the present work, we would like to present an extension of SuMD 

application domain including different types of proteins compared to GPCRs. In 

particular, we decided to deeply analyzed the ligand-protein recognition 
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pathways of six different case studies that we grouped into two different classes 

of proteins: globular and membrane proteins, as summarized in Table 1. 

Moreover, we would like to introduce the SuMD-Analyzer tool that we have 

specifically implemented to help, also a non-expert user, in the analysis of the 

SuMD trajectories.  

 

Table 1 - Structural summary of the selected ligand-protein PDB ID are reported 

Globular System 

PDB Protein Ligand 
Resolutio

n [Å] 
Affinity 

Ligand 

MW 
Ref. 

2ZJ

W 
CK2 Ellagic Acid 2.40 Ki=0.04 µM 302.197 41 

13GS 
GSTP1-

1 
SASP 1.90 Ki=24 µM 398.39 44 

4K7I PRDX5 
Benzen-1,2-

diol 
2.25 Ki=1500µM 110.11 45 

2VD

B 
HSA (S)-naproxen 2.25 

Ki=1.2-

1.8µM1 
230.25 49,58 

Transmembrane Systems 

PDB 
Protei

n 
Ligand 

Resolutio

n [Å] 
Affinity 

Ligand 

MW 
Ref. 

3GW

W 
LeuT 

(S)-

dluoxetine 
2.46 

IC50=355m

M 
345.79 51 

2YDV 
hA2AA

R 
NECA 2.60 Ki=13.8nM 308.29 55 

 

Materials and Methods  

  

GGeenneerraall ..       

All computations were performed on a hybrid CPU/GPU cluster. MD 

simulations were carried out with the ACEMD engine12 on a GPU cluster 
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equipped with four NVIDIA GTX 580, two NVIDIA GTX 680, three NVIDIA 

GTX 780, and four NVIDIA GTX 980. Before running SuMD simulations, the 

following preliminary phases were carried out: i) protein-ligand system 

preparation; ii) ligand parameterization; iii) solvated system setup and 

equilibration. Two different protocols based on AMBER1213/General Amber 

Force Filed (GAFF)14 and the CHARM2715/CHARMM General Force Field 

(CGenFF), force fields combinations were adopted for globular and 

transmembrane systems, respectively16,17.  

  

SSyyss tt eemmss  PPrreeppaarraatt iioonn..     

Protein-ligand complexes were retrieved from the RCSB PDB database18. 

Proteins structures were prepared with the protein preparation tool as 

implemented in MOE19: hydrogen atoms were added to the complex and 

appropriate ionization states were assigned by means of the Protonate-3D tool20. 

Missing atoms in protein side chains were built according to either the 

AMBER1213 or the CHARM2715 force field topology. Missing loops were 

modeled by the default homology modelling protocol implemented in the MOE 

protein preparation tool. Non- natural N-terminal and C-terminal were capped 

to mimic the previous residue. For each considered system, the conformer with 

highest occupancy was selected whenever available. To avoid protein-ligand long 

range interactions in the starting geometry, the ligand was then moved at least 15 

Å from any protein atom.  

  

LLiiggaanndd  PPaarraammeett eerr iizzaatt iioonn..     

GGlloobbuullaarr  ssyyss tt eemmss..     

For the MD simulations based on the AMBER12 force field13, the ligands 

were subjected to two energy minimization steps with MOPAC201221 using 

PM6 method22 and Gaussian 0923 (basis set: HF/6-31G*). After geometry 

minimization, ligand parameters were derived with GAFF14 as implemented in 

ambertools201413  by using antechamber and parmchk tools. RESP partial 
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charges where calculated with Gaussian 0923 following the procedure suggested 

by antechamber. 

   

TTrraannssmmeemmbbrraannee  ssyyss tt eemmss..     

For the MD simulation based on the CHARMM27 force field24, initial 

parameters for the ligands were retrieved from the paramchem service and 

subsequently optimized consistently to CGenFF16,25 at the MP2/6-31G* level of 

theory26 by using Gaussian 0923 and the Force Field Toolkit27 implemented in 

the VMD engine28.   

  

SSoollvvaatteedd  SSyyss tt eemm  SSeettuupp  aanndd  EEqquuii ll iibbrraatt iioonn    

GGlloobbuullaarr  SSyyss tt eemmss..   

Protein-ligand complexes were assembled with tleap tool using 

AMBER14SB29 as force field for the protein29. The systems were explicitly 

solvated by a cubic water box with cell borders placed at least 12 Å away from 

any protein or ligand atom using TIP3P as water model30. To neutralize the total 

charge Na+/Cl- counter-ions were added to a final salt concentration of 0.150 M. 

The systems were energy minimized by 2000 step with conjugate-gradient 

method, then 50000 step of NVE (100 ps) followed by 1 ns of NPT simulation 

were carried out, both using 2 fs as time step and applying an harmonic 

positional constrain on protein and ligand atoms gradually reduced with a scaling 

factor of 0.1. Pressure was maintained at 1 atm using a Berendsen barostat31.  

The Langevin thermostat was set with a low damping constant of 1 ps-1 32. Bond 

lengths involving hydrogen atoms were constrained using the M-SHAKE 

algorithm33. The MD productive runs were conducted in a NVT ensemble. 

Long-range Coulomb interactions were handled using the particle mesh Ewald 

summation method (PME) setting the mesh spacing to 1.0 Å34. A non-bonded 

cut-off distance of 9 Å with a switching distance of 7.5 Å was used.  
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TTrraannssmmeemmbbrraannee  SSyyss tt eemmss..     

Transmembrane proteins were embedded in a 1-palmitoyl-2- oleoyl-

snglycero-3-phosphocholine (POPC) lipid bilayer according to the suggested 

orientation reported in the Orientations of Proteins in Membranes (OPM) 

database35. The systems were solvated with TIP3P30 water using the program 

Solvate 1.036 and neutralized by Na+/Cl- counterions to a final concentration of 

0.154 M.  The systems were then equilibrated through a two steps procedure: in 

the first stage, after 2000 cycles of conjugate-gradient minimization algorithm (in 

order to reduce steric clashes produced by the system manual setting), 10 ns of 

MD simulation were performed in the NPT ensemble, restraining ligand and 

protein atoms by a force constant of 1 Kcal mol-1 Å-2. The temperature was 

maintained at 298 K using a Langevin thermostat with a low damping constant 

of 1 ps-1 32 pressure was maintained at 1 atm using a Berendsen barostat31, bond 

lengths involving hydrogen atoms were constrained using the M-SHAKE 

algorithm33 with an integration timestep of 2 fs. In the second stage, once water 

molecules diffused inside the protein cavity and the lipid bilayer reached 

equilibrium, the force constant was gradually reduced to 0.1 Kcal mol-1 Å-2 for 

the next 10 ns of MD simulation.  

  

SSuuppeerrvvii sseedd  MMoollee ccuullaarr  DDyynnaammiiccss   ((SSuuMMDD))    

SuMD is a command line tool written in python, tcl, and bash that 

operates the supervision of MD trajectories according to the algorithm that has 

been previously described7. The program exploits Visual Molecular Dynamics 

(VMD) and Gnuplot functionalities28,37. In its current implementation, SuMD is 

interfaced with the ACEMD12 engine and supports AMBER and CHARMM 

force fields.  

  

SSuuMMDD  IInnppuutt   ff ii ll eess ..    

SuMD requires a configuration file (selection.dat, Figure S1) organized in 

three major sections containing information about: i) the system; ii) the 

supervision procedure; and iii) the simulation settings. In the system settings 
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section, the following details about the molecular system need to be provided: i) 

the pdb file name containing the starting coordinates; ii) the 3-letter code name 

of the ligand; and iii) the residues describing the target binding site. In the 

supervision settings section, the following values are declared: i) the slope 

threshold (default value: 0); and ii) the number of maximum consecutive failed 

steps (default value: 33) to stop the simulation. In the simulation settings section, 

the following details must be specified: i) the force field to use; ii) the parameter 

file; iii) the GPU device ID to which the calculation will be addressed. In this 

section, a Boolean operator manages the introduction of a randomization step 

that varies the position of the ligand through a 600 ps of non-supervised MD 

simulation. In the same directory where SuMD is launched, a file containing the 

cell dimension as well as a parameter file (prmtop/psf with the same name of the 

pdb) must also be provided.   

  

SSuuMMDD  MMaaiinn  CCooddee ..     

The workflow of the SuMD main code is reported in Figure 2A. As 

depicted, at the beginning of the simulation SuMD detects the atoms that 

identify the ligand and the target binding site, to define the distance between 

their mass centers dcm(L-R)  that will be monitored. Then, a series of 600 ps 

classical MD simulations are performed. After each simulation, five dcm(L-R) 

distance points are collected at regular intervals of 75ps. Using these points, the 

slope value (m) is derived by a linear fitting. As previously described, if the 

resulting slope m is negative or below the user selected threshold (i.e. the distance 

dcm(L-R) is decreasing), the next simulation step starts from the last set of 

coordinates produced, otherwise the simulation is restarted by randomly 

assigning the atomic velocities. To avoid problematic starting geometries (i.e. 

geometries prone to lead to dead-end pathway), in the first simulation step,  

SuMD supervises the distance dcm(L-R) with a maximum threshold  of 31 failed 

attempts (Preliminary Run). In the case this threshold is reached, SuMD 

callbacks a randomization process on the set of coordinates supplied by the user 

by a classical 600 ps MD simulation.   
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During the following steps, the simulations are perpetuated under the 

supervision rules. In particular, the first time a slope value below the threshold is 

recorded, the program enters the so- called “SuMD Run”. When the distance 

dcm(L-R) drops below 5 Å the supervision is disabled and the simulation proceeds 

though a classical MD simulation. At the end of the simulation, only the 

productive steps are saved, chronologically numbered and stored in a separate 

directory.  

  

SSuuMMDD  lloogg  ff ii ll ee ..     

At each SuMD simulation step, a log file (Figure 1S) is updated collecting 

information about: i) the step number; ii) the dcm(L-R) distance; iii) the slope 

value (m); iv) the electrostatic and van der Waals potential energy contributions 

of the ligand-receptor interaction energy (IE). A counter keeps trace on how 

many times each SuMD step has been attempted. Furthermore, three counters 

corresponding to the dcm(L-R) distance ranges 0-2 Å, 2-5 Å, and 5-9 Å are 

reported. These distances monitors how many times the binding site is 

approached, i.e. how often the dcm(L-R) distance lies below the long-range 

interaction cutoff. These counters determine the program termination criteria 

(see following section) and, according to the binding site definition supplied by 

the user, they might represent: the target binding site, its neighbors, and putative 

allosteric/meta-binding sites, respectively.  

 

SSuuMMDD  TTeerrmmiinnaatt iioonn  CCrrii tt eerr iiaa..     

A SuMD simulation is terminated when one of the following criteria is 

satisfied: i) no negative slope (m) values are recorded for a user-selected number 

of steps (33 consecutive steps by default); ii) one of the distance counters 

reaches a maximum value of 19 (i.e. the dcm(L-R) lies in the same region for 11.5 

nonconsecutive nanoseconds). 
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Figure 2. (A) Workflow of the SuMD main code (B) Workflow of the SuMD-Analyzer 

tool. 

  

SSuuMMDD--AAnnaallyyzzeerr   TTooooll   

  The SuMD-Analyzer is a standalone tool written in python, tcl, and bash 

to analyze the SuMD trajectories (Figure 2B). The tool is integrated with VMD28 

and UCSF Chimera38 for the graphical visualization and exploits Wordom39 and 

Gnuplot37 functionalities. The provided analyses cross over four different 

aspects: i) the ligand position, ii) the IE, iii) the per residue interactions, and iv) 

the replicas comparison.   

When the SuMD-Analyzer is launched, the trajectories produced by 

SuMD are merged and aligned to the starting reference structure using the 

RMSD tool in VMD by using alpha-carbon atoms for the superposition. The 

merged trajectory is subjected to a striding procedure picking one frame every 5 

through the VMD animate module.  
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LLiiggaanndd  PPooss ii tt iioonn..     

Two analyses follow the coordinates explored by the ligand during the 

SuMD trajectory (Figure 2B, green boxes): i) the Root Mean Square Deviation 

(RMSD); and ii) the so-called “Pollicino Analysis”. If a reference complex 

structure is available, the RMSD between the ligand and the reference 

coordinates supplied is computed along the trajectory. The calculation is 

performed on the heavy atoms of the ligand using the measure rmsd function 

implemented in VMD and the data obtained are plotted against the time using 

Gnuplot37 (Figure 2B, left green box).   

The Pollicino Analysis is a representation that graphically renders the 

recognition pathway explored by the ligand. At the end of each SuMD step, the 

coordinates of the ligand mass center are collected and clustered according to 

their dcm(L-R) using a threshold value of 2 Å. The coordinates belonging to the 

same cluster are averaged and represented by a sphere which radius depends on 

the population of the cluster. Arrows indicate the chronological order onto 

which the regions where the sphere reside are approached by the ligand mass 

center (Figure 2B, right green 22 box).  

  

IInntteerraacc tt iioonn  EEnneerrggyy ..     

The ligand-protein interaction is analyzed by means of the mdenergy 

function embedded into VMD. The electrostatic and van der Waals 

contributions to the potential energy are calculated for each frame and summed 

to obtain the total IE. With this value, two graphs are derived (Figure 2B, blue 

boxes): i) the “Interaction Energy Landscape”, and ii) the “Cumulative 

Interaction Energy”. The former chart displays the total IE profile with respect 

to the dcm(L-R)  through a colorimetric scale representing the IE value. Each 

point displayed in the chart represents the last position of the corresponding 

SuMD step (Figure 2B, left blue box). The  latter plot shows the cumulative sum 

of the total IE values for each frame against the time. Therefore, each point is 

the sum of all previous IE values. Changes in the observed trend highlight how 
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the variation of ligand conformation/position affects the IE (Figure 2B, right 

blue box).  

  

PPeerr   RReess iidduuee  IInntteerraacc tt iioonnss ..   

A further set of analyses was developed to highlight the most important 

residues involved in the ligand recognition pathway (Figure 2B, upper magenta 

boxes): i) the “Protein-ligand Contacts Count”, and the ii) “Ligand-Protein 

Recognition Map”. In the first graph (Figure 2B, upper left magenta box), the 

residues more frequently approached by the ligand during the trajectory are 

reported and for each residue the total number of established contacts is 

rendered as histograms. In this representation, at each SuMD frame only the 

residues lying within a distance of 4 Å from any ligand atoms are considered. In 

the second graph (Figure 2B, upper right magenta box), the residue approached 

by the ligand are depicted with respect to the simulation time. In particular, each 

dot in the map represents a trajectory frame colored according to the total 

number of contacts the ligand has established with a particular residue. White 

dots means that, at the considered frame, the residue atoms are farther then 4 Å 

from ligand atoms, while green dots correspond to a contact event and the sum 

of the contact is coded by the light-green to dark-green scale.   

To support the user in the topological localization of the residues mainly 

interacting with the ligand during the trajectory, molecular 3D representations of 

the protein are automatically set using USF Chimera38 (Figure 2B, lower magenta 

boxes). In particular, the number of ligand- protein contacts is normalized and 

stored into the B-factor field of the involved residue in the protein pdb file. In 

the protein 3D representation “Chimera_count” (Figure 2B, lower left magenta 

box) the ribbons are colored according the so-derived B-factor values. A similar 

representation, “Chimera_time” (Figure 2B, lower right magenta box), is 

available with the color code (blue-to-violet) reflecting the chronological order 

onto which the residues have been approached by the ligand for the first time.  
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RReeppll ii ccaass  AAnnaallyyss ii ss ..     

The “Replicas Analysis” (Figure 2B, violet box) is a manager that 

compares the molecular recognition event occurred in different SuMD replicas. 

The manager extracts from each trajectory the data regarding the ligand position 

and the IE, merges the data for each analysis in graphs colored according the 

replica number to better appreciate the differences.   

 

Results and Discussion  

  

CCaassee   SSttuuddii eess   SSee ll ee cc tt iioonn   

As already anticipated, in this work SuMD applicability domain has been 

extended using six different case studies, grouped into two major protein classes: 

i) globular systems, and ii) transmembrane systems (as summarized in Table 1). 

Specifically, considering the globular proteins we selected: a) the human Caseine 

Kinase 2 (CK2) in complex with Ellagic acid; b) the P1-1 isoform of Glutathione 

S-transferase (GSTP1-1) in complex with Sulphasalazine (2-hydroxy-(5-{[4-(2-

pyridinylamino)sulfonyl]phenyl}azo) benzoic acid, SASP); c) the human 

Peroxiredoxin 5 (PRDX5) in complex with a benzen-1,2-diol; and d) the human 

Serum Albumin (HSA) in complex with (S)-naproxen. Considering the 

membrane proteins, we selected: a) the Leucine transporter (LeuT) from Aquifex 

aeolicus in complex with (S)-fluoxetine; and b) the human Adenosine A Receptor 

(hA2A AR) in complex with the synthetic agonist 5'-N-

Ethylcarboxamidoadenosine (NECA). An overview of the structural features of 

the considered ligand-protein complex is reported in Figure 3 and briefly 

described in the following.  

CK2 is a ubiquitous and constitutively active serine/threonine kinase 

(PK) that phosphorylates more than 300 substrates. It is involved in the 

regulation of numerous cellular process such as cycle progression, apoptosis, 

transcription and viral infection40. The catalytic alpha subunit is composed by 

two lobes connected by a small loop called “hinge region”. The N- terminal lobe 

presents five β-strands and the α-helix C involved in the substrate recognition, 
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whereas the C-terminal lobe is composed of α-helices. All PKs present a glycine 

rich loop (P-loop), an activation loop, and a catalytic loop40. The X-ray complex 

highlights that the inhibitor binds to Lys49, Ser51and His160 as shown in Figure 

3A41. 

 

 
Figure 3. Overview of the X-ray protein-ligand complexes used as validation cases. On 

the top: Acid Ellagic-CK2, SASP-GSTP1-1, Benzen-1,2-diol-PDRX5; On the bottom: 

(S)-naproxen-HAS, (S)-fluoxetin-LeuT, NECA-hA2AAR. 

 

Glutathione S-transferases (GSTs) are homodimeric phase II 

detoxification enzymes, active in the bioconjugation of glutathione (GSH) to a 

wide range of both endogenous and exogenous molecules. The catalytic region 

of GSTs is topologically subdivided in two different site: i) the G-site, selective 

for GSH recognition and highly conserved crosswise GSTs isoforms, and ii) the 

H-site, less conserved and responsible for the binding of electrophilic 

molecules42. Isoform P1-1 probably represents the most studied GST and has 

been related to the development of tumors resistance towards numerous anti-

cancer drugs43. SASP, which is able to inhibit GSTs without acting as a co-
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substrate for the conjugation reaction with GSH, has been co-crystallized with 

GSTP1-1 and represents a starting point for structure-based design of new 

anticancer drugs44. The X-ray complex (Figure 3B) highlights that the inhibitor 

binds to a hydrophobic pocket formed by Phe8, Val10, Val35, Ile104 and 

Tyr108 side-chains. SASP phenyl ring and salicylic acid moiety are engaged in 

π−π stacking interactions with the aromatic side-chain of Phe8 and Tyr108, 

respectively, while the ligand carboxylate is involved in an electrostatic 

interaction with the Arg13 side chain.  

To extend the SuMD capabilities on low affinity ligand we selected the 

recently solved structure of PRDX5 in complex with a benzen-1,2-diol45. 

PRDX5 belongs to the ubiquitary peroxiredoxin family which role relies on the 

hydrogen peroxide and alkyl hydroperoxides reduction. PRDX5 plays a 

remarkable role in post-ischemic inflammations in the brain46,47. The catechol 

was identified by a fragment based screening and the dissociation constant was 

estimated in the millimolar range (Kd=1.5 +/- 0.5mM). More interestingly, the 

system was extensively characterized by NMR spectroscopy both with structure-

based experiments and ligand-based experiments, resulting in a solid model 

system for a low-affinity binding event45. In the X-ray complex (Figure 3C) the 

catechol ring is localized to the N-terminus of the second helix establishing a 

hydrogen-bond network with the backbone nitrogen of Gly46 and Cys47 

residues. The sidechain of Arg127 is oriented towards the hydroxyl moiety and 

contributes to the binding with an additional hydrogen bond. Similarly, the thiol 

group of Cys47 is faced to the catechol. The Pro40, Leu116 and Phe120 

establish hydrophobic interactions with the aromatic ring.  

The Human Serum Albumin (HSA) is a deeply investigated protein for its 

ability in bind a wide range of different molecules in human plasma. (S)-

naproxen strongly binds HSA and more interestingly in different sites depending 

on the presence of other small molecules (e.g. hormones, xenobiotic, fatty 

acids)48,49. The only structure available for this complex was obtained in presence 

of decanoic acid driving the accommodation of the naproxen molecule in  the IB 

site, a vast and hydrophobic pocket where a multitude of different ligand can be 
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hosted49.  In the IB site (S)-naproxen inserts its naphthalene scaffold within the 

hydrophobic pocket and interacts directly with the aliphatic tail of decanoic acid 

and the residues Ile142, Phe157 and Tyr161 (Figure 3D). The carboxylic group is 

partially exposed to the solvent but is surrounded by several charged residue 

forming the entrance of the pocket: Arg145, Lys 190 and in particular Arg186.  

Neurotransmitter sodium symporter (NSS) family includes the human 

serotonin transporter (SERT), norepinephrine transporter (NET) and dopamine 

transporter (DAT)50. To date, there is a lack of focused information about the 

structure of these important therapeutic targets. In recent past, the 

crystallographic structure of the LeuT from Aquifex aeolicus (a NSS family 

member) has been disclosed with the aim of better understand the basis for 

selective  serotonin re-uptake inhibitors (SSRIs) activity towards serotonin 

transporters51. LeuT-(S)-fluoxetine X-ray complex (Figure 3E) highlights 

hydrophobic contacts between the inhibitor and Leu29, Arg30, Tyr108 and 

Phe253 side chains. (S)-fluoxetine secondary amino group points towards the 

extracellular space and engage Asp401 in an electrostatic interaction, while the 

extracellular gate is locked by the salt bridge between Asp404 and Arg30.  

Moving to the last key study, adenosine receptors (ARs) belong to the G 

protein-coupled receptors (GPCRs) superfamily. The known four subtypes, 

termed adenosine A1, A2A, A2B and A3 receptors, are widely distributed in human 

body, involved in several physio-pathological processes and represent potential 

targets for the treatment of several diseases52. In the last decade, X-ray structures 

of the hA2A AR in complex with agonists and antagonists have been released 

thus offering the basis for molecular modeling investigation53 including also 

SuMD simulations7,54,10. Here we focus on the complex with NECA55 (Figure 

3F) that features a strong  polar interaction between the exocyclic amine group 

of NECA and the side chain of the conserved Asn253 residue; a hydrogen bond 

with the nitrogen atom of NECA acetamide moiety and the Thr88 side chain; 

and an aromatic π-π stacking with the conserved Phe168, located in the second 

extracellular loop (EL2), and hydrophobic contacts with, among others, the 

Leu249 side chain.  
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GGlloobbuullaarr  SSyyss tt eemmss    

AAcciidd  EEll llaagg ii cc --CCKK22  rreeccooggnnii tt iioonn  ppaatthhwwaayy..     

In the starting geometry the ligand was placed at a distance of 50 Å from 

the binding site. After the initial randomization step, the distance reduced to 43 

Å. As depicted in Figure 4A and shown in Video S1, the first interaction 

between the ligand and the protein is established after 2 ns of productive 

trajectory and is mediated Lys49 that directs the ligand to the P-loop of the 

kinase. As shown by the Pollicino analysis (Figure 4B), the ellagic acid 

approaches the region of the P-loop and mostly interacts with the Arg47, Lys49, 

Glu53 and the Lys71 (Figure 4A). These residues describe an interaction site, at 

10.5 Å where the ligand resides for about 6 ns. In facts, the ligand RMSD plot 

(Figure 4C) records stable values in the 2-8 ns time lapse. The IE with the 

protein in this site is about -20 kcal/mol (Figure 4D at dcm(L-R)= 10 Å); the Per 

Residue Contacts Count graph (Figure 4E) highlights that the above mentioned 

residues are those establishing the greatest number of contact, whereas the 

corresponding 3D models helps in identifying their location (Figure 4F) and  the 

chronological order at which they have been approached by the ligand (Figure 

5A). Approximately after 7 ns of simulation the ligand moves toward the 

orthosteric site, where Leu45 stabilizes its conformation and the side-chain of 

His160 hampers its passage. Through an interaction mediated by Arg43 the 

ligand overcomes the His160 gate and reaches new interaction site described by 

Asp120, Arg47, and Met163. The permanency in this site is about of 2 ns with 

an interaction energy of -51 kcal/mol (Figure 4C-D). Consistently, the RMSD 

plot presents another plateau in the time range 8-10 ns (Figure 4C) that 

corresponds to the swarm of dots in the IE Landscape at dcm(L-R) = 11 Å 

(Figure 4D). A further stabilizing interaction with the Asn118 induces a shift in 

the ligand position that places the ring system parallel to the β7-β8 strands 

(Video S1). 
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Figure 4. Acid Ellagic-CK2 recognition pathway. (A) Ligand-Protein Recognition Map 

(B) Pollicino Analysis (C) Ligand RMSD (D) IE Landscape (E) Ligand-Protein 

Contacts Count (F) Chimera contacts. 
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Figure 5. Acid Ellagic-CK2 recognition pathway. (A) Chimera time (B) Cumulative IE 

(C) Cumulative IE electrostatic contribution (D) Cumulative IE van der Waals 

contribution (E) Superimposition between SuMD endpoint conformation and X-ray 

binding mode. 

 

As shown in the Cumulative Ligand-Protein IE (Figure. 5B) and its 

corresponding decomposition into electrostatic and van de Waal contribution, 

(Figure 5C and D, respectively) the change in the slope indicates that new 

conformation has a lower interaction energy than the previous one.  
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In particular, as highlighted by the comparison of the graphs relative to the 

electrostatic and van der Waals contribution (Figure 5C and D, respectively), the 

stabilization can be ascribed by the establishment on an electrostatic interaction 

with Asp175. As result of the new interaction the ligand moves into the 

orthosteric site (Figure 5E) and interacts with Lys159, Val66, Val117, Val53, 

His115 and Lys68 by maintaining the same position is maintained till the end of 

the SuMD simulation. The RMSD plot shows another plateau from 10 ns to the 

end, whereas the IE Landscape indicates that in this time lapse the ligand is at a 

distance around 2.5 Å with an IE between -40 to -70 kcal/mol. 

The simulation was replicated three times and Replicas Analysis results 

are reported in Figure 6. In particular, the RMSD plot indicates that one replica 

does not reach the orthosteric site (Figure 6A, green line), whereas the others 

reach the same final RMSD value.  

 
Figure 6. Acid Ellagic-CK2 recognition pathway (A) Per Replica Ligand RMSD (B) Per 

Replica Pollicino Analysis (C) Per Replica IE Landscape (D) Per Replica cumulative IE. 
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The same conclusion arises from the investigation of the Pollicino analysis where 

the ligand pathway of the two replicas converge in proximity of the protein 

(Figure 6B, red and blue spheres).  

The Per Replica IE Landscape helps in explaining why the third replica 

does not reach the orthosteric site: as indicated by the green dots in Figure 5C 

the ligand reaches a different interaction site with an IE of -60 kcal/mol, a value 

close to the IE of the replicas that converge into in the orthosteric site (Figure 

6C, red and blue dots). This consideration is confirmed by the trend of the Per 

Replica Cumulative IE that highlights a more negative slope for the third replica 

(Figure 6D, green line), indicating a very strong interaction.  

  

SSAASSPP--GGSSTTPP11--11  rreeccooggnnii tt iioonn  ppaatthhwwaayy..     

During the SuMD simulation the SASP reaches the GSTP1-1 catalytic H 

site in less than 6 ns (Video S2). The IE landscape highlights the formation of 

the first protein-ligand stabilizing interaction when the ligand and protein H site 

distance is 15 Å (point a, Figure 7A and 7B). 

In this preliminary complex, SASP engages the Gly205 backbone oxygen 

in a hydrogen bond interaction through its sulfamide nitrogen atom and 

establishes an aromatic π-π stacking interaction between the salicylic moiety and 

Tyr108 (interactions corresponding to the first continues lines in the Protein-

Ligand Recognition Map, Figure 7C). This situation anticipates a ligand 

positional shift that allows the SASP salicylic carboxylate to approach the 

positively charged Arg13 side chain, while the benzene ring replaces the salicylic 

aromatic moiety in the π-π stacking interaction with Tyr108 (point b, Figure 7A). 

The energy stabilization of the complex increases and, after 8 ns of simulation, 

SASP proceeds toward a farther conformation, able to gain a more favourable 

electrostatic interaction geometry with Arg13 side chain, after the displacement 

of two water molecules from the solvation sphere of the positively charged 

residue. This new pose (point c, Figure 7A and Figure 7B) is retained until the 

end of SuMD simulation, with the exception of conformational changes 

occurring to thepyridylsulfamoyl moiety, able to fit in the hydrophobic pocket 
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delimited by Phe8, Val35 Trp38. During the SASP - GSTP1-1 recognition event 

GSH remain in the catalytic G site of the enzyme, not interacting with the 

inhibitor. Figure 7D highlights all the residues involved in the interaction with 

SASP during the SuMD simulations: the selective contacts towards only one 

enzymatic subunit, as well as the topologically restricted area interested, are well 

defined by the ribbon colorations. 

Considering the SASP crystallographic conformation as geometrical 

reference, the ligand RMSD analysis (Figure 7E) reaches a minimum after 15 ns 

of simulation (Figure 7F), before level out at a value of about 5 Å. Figure S2 

reports other ligand-protein interaction energy analysis. 

The Replicas Analysis (Figure S3) depicts a recognition event with no 

meta-stable binding sites and characterized by almost a univocal pathway. 

Nevertheless, in one replica, in the final complex SASP is rotated by 180° (as 

highlighted by the higher RMSD value) and loses the electrostatic stabilization 

between its salicylic moiety and Arg13 side chain.  

 

BBeennzzeenn--11,,22--ddiioo ll−PPDDRRXX55  rreeccooggnnii tt iioonn  ppaatthhwwaayy..     

The simulation was repeated on both monomeric and dimeric form 

yielding similar results. However, here we will focus on the dimeric form 

according to solution NMR studies, in which the authors stated the protein as 

dimer56. At the beginning of randomization step the fragment was placed at 78 Å 

from PDRX5 binding site (dcm(L-R)= 78 Å). As reported in figure 8A, 8B (point 

b) and 8C, after nearly 3 ns the fragment approaches the protein in a region 

located at around 30 Å from the primary binding site (Video S3).  

This meta-binding site lies in the opposite monomeric subunit with 

respect to the primary binding site and it is defined by residues Leu62, Lys63, 

Val69, and Val70. As shown by the IE landscape and the Pollicino Analysis 

(Figure 8A and 8B, respectively), this site engages the ligand with favorable 

interactions for a couple of nanoseconds. In particular, the formation of a 

hydrogen bond between the hydroxyl groups of catechol and the carbonyl 

moiety of the backbone amide of residue Lys95 stabilizes this conformation. 
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Figure 7 – SASP-GSTP1-1 recognition pathway. (A) IE Landscape (B) Pollicino 

Analysis (C) Ligand-Protein Recognition Map (D) Chimera contacts (E)  Ligand RMSD 

(F) Superimposition between SuMD endpoint conformation and X-ray binding mode. 
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After nearly 6 ns the fragment is released by this site and fluctuates to 

finally reach the primary binding site thought a series of molecular interaction, 

including residues (chronologically sorted): Glu91, Glu16, Glu18, Phe79 

belonging to the first monomer unit (SI figure S4). Finally, the fragment accesses 

to the binding site where fluctuates experimenting different conformations in 

accordance with its affinity in the millimolar range. The fluctuations of the 

fragment in the binding site are also evident in the Protein-Ligand Energy 

profiles, in which the energy wavers around the value of -20 kcal/mol (SI figure 

S4). During the fluctuation, the catechol enters in contact with most of the 

residue forming the site, in particular (sorted by number of molecular contacts 

during the trajectory): Thr146, Thr44, Arg127, Phe120, Leu116, Gly46 and 

Cys47 (Figure 8C, 8D). The main conformation observed corresponds to the 

crystallographic one, as reported in Figure 8E and 8F where the RMSD reaches a 

minimum value 0.69 Å at 17.3 ns.  

The simulation was repeated in three times randomizing the position of 

the ligand. The Replicas Analysis is reported in Figure S5. Briefly, in each replica 

the fragment reached the primary binding site experiencing the conformation 

reported in the crystallographic data with the best RMSD respectively of 1.12 

and 1.24 Å for the replica 2 and 3.  
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Figure 8 –Benzen-1,2-diol-PDRX5 recognition pathway. (A) IE Landscape (B) 

Pollicino Analysis (C) Ligand-Protein Recognition Map (D Chimera contacts. (E) 

Ligand RMSD (F) Superimposition between SuMD endpoint conformation and X-ray 

binding mode. 
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((SS))--nnaapprrooxxeenn--HHAASS  rreeccooggnnii tt iioonn  ppaatthhwwaayy..     

SuMD simulation was performed maintaining decanoic ligand in the IB 

site according the crystallographic geometries. (S)-naproxen was separated from 

HSA-decanoid acid complex by 32 Å from IB site (point a in Figure 9A and 9B). 

In the first SuMD step the ligand fluctuate till 50 Å from the IB site. As reported 

in Figure 9C after a couple of nanosecond the ligand approaches the first protein 

site in its trajectory by engaging Lys510 and Thr564 (Video S4). Shortly after, the 

ligand establishes a network of interaction for 1 ns (from 2.3 ns to 3.2) in a site 

located at around dcm(L-R)= 20 Å (point b in Figure A), defined by residues: 

Val116, Pro118, Val122, Thr133 and Phe134. Then, the Naproxen molecule 

approach a second, where it fluctuates for about 3 ns by establishing strong 

interaction with residues Leu115, Pro118, Lys137, and Ile142 (as also evident 

from Protein-Ligand Interaction energy in figure S6 in SI).  

This meta-binding site is located in front of the principal binding site to 

which is separated by the presence of a long extended loop (residue 106 to 119) 

that acts as a gate for the IB site. Finally after 6 ns, (S)-naproxen is able to pass 

behind the extended loop and reach the IB site (residues Leu115, Ile142, Phe157, 

Tyr161) as show by Figure 9B and 9E. Within the primary site, the ligand is able 

to place the methyl ether group in the proximity of Phe152 very similarly to the 

orientation of crystal structure. On the other hand, the naphthalene core and in 

particular the carboxylic group adopt a different orientation due to the presence 

of the extended loop. This different orientation abolishes the ionic interaction 

between the carboxyl group and the Arg112 observed in the crystallographic 

structure (Figure 9F). At the end of the simulation the RMSD fluctuates around 

5 Å, reaching the lowest value of 4.76 at 12.70 ns (Figure 9E and 9F).  

Interestingly, in the other replicas (Figure S7) the ligand reaches the IB 

site by approaching the extended loop from a different position and occupies a 

slightly different location in the vast IB site. This suggests the loop might have a 

crucial role in the recognition process (Figure S7). 
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Figure 9. (S)-naproxen-HAS recognition pathway. (A) IE Landscape (B) 

Pollicino Analysis (C) Ligand-Protein Recognition Map (D Chimera contacts.  

 (E) Ligand RMSD (F) Superimposition between SuMD endpoint conformation and X-

ray binding mode. 
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TTrraannssmmeemmbbrraannee  SSyyss tt eemmss    

((SS))-- ff lluuooxxeett iinnee--LLeeuuTT  rreeccooggnnii tt iioonn  ppaatthhwwaayy..     

The (S)-fluoxetine recognition pathway highlights, after 1 ns of SuMD 

simulation, a first electrostatic interaction between Asp 158 side chain and the 

ligand charged secondary amine group (Video S5). The energetic stabilization 

characterizing this complex corresponds to the IE landscape minimum reported 

in the Figure 10A, point a and Figure 10B. This preliminary complex is able to 

favor the ligand approach towards an inner pocket of LeuT, topologically 

defined by Tyr 471 and the aliphatic chains of Lys 474 and Glu 478, reciprocally 

involved in an ionic interaction. Hydrophobic contacts stabilize this 

intermolecular complex for about 2 ns, before a conformational change allows 

(S)-fluoxetine to establish a more favorable electrostatic interaction whit Glu 402 

side chain. This scenario anticipates the ligand repositioning inside an inner 

hydrophobic site, where the ligand engages for almost 7ns Tyr471, Trp406, 

Ile475 and Phe405 side chains in lipophilic interactions through its phenyl ring 

(point b, Figure 10A and Figure 10B). During the remaining simulation time, the 

inhibitor makes contacts with Ala319 (EL4) and the side chains of the key 

residues Asp404 and Arg30 (point c, Figure 10A and Figure 10B and continuous 

lines corresponding to the last 4ns of SuMD simulation in Figure 10C), both 

located at the protein extracellular gate and involved in a ionic lock that 

10terically obstructs the SSRIs binding site disclosed by LeuT crystallographic 

structure. Figure 10D summarizes all the amino acids involved in the SFX 

recognition event during the SuMD simulation.  

The RMSD plot (Figure 10E) outlines the inhibitor difficulty in 

reproducing the experimental pose (Figure 10F). Investigation on LeuT crystal 

structure without co-crystallized inhibitor reveale an alternative conformation of 

Arg30 side chain, and the absence of the gate ionic lock (Figure S12)57 : it is 

possible to speculate that the LeuT extracellular gate, during SuMD  simulation 

timescale, is able to remain in a stable conformation, previously induced by the 

inhibitor binding and retained even after the removal of the ligand during the 

system preparation for SuMD. 
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Replicas analysis (Figure S9) highlights two alternative recognition pathways 

through the extracellular vestibule, unable to enable SFX to reproduce the 

binding mode observed in the crystallographic complex and characterized by 

accentuated energy variations in proximity of the extracellular transporter gate.  

 

 
Figure 10. (S)-fluoxetin-LeuT recognition pathway. (A) IE Landscape (B) Pollicino 

Analysis (C) Ligand-Protein Recognition Map (D Chimera contacts.  
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Figure 10 (continuation). (E) Ligand RMSD (F) Superimposition between SuMD 

endpoint conformation and X-ray binding mode. 

  

NNEECCAA−hhAA22AA  AARR  rreeccooggnnii tt iioonn  ppaatthhwwaayy..     

NECA establishes the first stabilizing contacts with hA2A AR after about 

4ns of SuMD simulation (Video S6). During this initial scenario (point a, Figure 

11A and Figure 11B) the ligand approaches the protein topological structure 

defined by ECL2 N-terminus and the residues located at top of TM5 and TM6. 

More precisely, NECA engages Phe257 (6.59) side chain in a π-π stacking 

interaction through its purine scaffold and locates the N-ethylcarboxamido 

moiety towards a pocket delimited by Trp143 (ECL2), Pro173 (ECL2), and 

Asn175 (TM5) side chains, as highlighted by the first stripes in Figure 11C and 

the yellow and violet ribbon coloration in Figure 11D.   

This complex anticipates a repositioning that allows the ligand to reach a 

meta-stabile binding site, mainly characterized by a π-π stacking interaction with 

His264 (EL3) side chain, an hydrophobic contact in the direction of Met174 

(TM5) side chain, and an hydrogen bond interaction between its C2’ hydroxide 

group and Asn253 (TM6) (point b, Figure 11A and Figure 11B).   
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Figure 11. NECA-hA2A AR recognition pathway. (A) IE Landscape (B) Pollicino 

Analysis (C) Ligand-Protein Recognition Map (D) Chimera contacts (E) Ligand RMSD 

(F) Superimposition between SuMD endpoint conformation and X-ray binding mode. 
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During the time slot rising from 14 ns to 20 ns of SuMD simulation, the 

agonist reaches a deeper position inside the orthosteric binding site and explores 

different conformations (included a temporary anti-syn transition about the 

glycoside linkage), until engages Phe168 (ECL2) side chain in a π-π stacking 

interaction and Asn253 (TM6) side chain in hydrogen bond interactions through 

its exocyclic amine and the N7 position of the purine scaffold (point c, Figures 

11A and Figures 11B). This complex orientation (associated with the minimum 

RMSD value in Figure 11E, with respect to the NECA crystallographic 

conformation) is followed by an alternative stabilized conformation (point d, 

Figure 11A and Figure 11B) which involves also hydrophobic interactions with 

Leu249 (TM6), Leu85 (TM3) and Val84 (TM3).  

During the remaining SuMD simulation time, the protein-ligand complex 

geometry remain almost unaltered, with the exception of a reorientation of the 

N-ethylcarboxamidoribose moiety, pointing toward TM4, and the loss of the 

aromatic π-π interaction due to a conformational change occurring to Phe168 

(EL2) side chain. In Figure 10S are reported other ligand-protein energy 

interaction analysis. 

At the minimum RMSD value, NECA pyrimidine scaffold coincides with 

the crystallographic orientation, while the ribose moiety is oriented in an 

alternative conformation (Figure 11F).  

Replicas Analysis (Figure 11S) highlights also a different NECA 

recognition pathway, which involves residues located at the ECL2 and 

characterized by comparable energetic stabilizations.  

 

CCoonncc lluuss iioonn  

In the present work, we have demonstrated the general applicability of 

SuMD simulations using different types of proteins, including both globular and 

membrane proteins. Moreover, we have presented the SuMD-Analyzer tool that 

helps, also a non-expert user, in the analysis of the SuMD trajectories. Even if 

various other MD methods have also been used to characterize binding 

pathways, SuMD has the great advantage of being able to explore the ligand-
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protein approaching path in nanosecond simulation time scale. Furthermore, 

SuMD simulations enable the investigation of ligand-protein binding events 

independently from the starting position, chemical structure of the ligand, and 

also from its target binding affinity. As described for each key study, SuMD 

simulations are able to characterize multiple ligand-protein binding pathways 

identifying a variety of metastable intermediate states (meta-binding sites). These 

informations may be an interesting starting point for further argumentations 

regarding the pharmacological consequences of that specific ligand-protein 

recognition process. Moreover, it is worthy to underline that, contrary to 

expectations, not all SuMD trajectories converge to the structure of the complex 

obtained crystallographically. Indeed, there are several plausible reasons that may 

be argued to describe this particular unexpected aspect: a) the crystallographic 

pose of the ligand is not the only minimum of the potential energy surface 

described by the force field during the SuMD simulations; b) the crystallographic 

conformation of the protein in its bound state is remarkably different respect its 

apo-form. This could be interpreted as the sign of an important induce-fit 

process during the ligand recognition; and c) the boundary conditions that led to 

the formation of the crystallographic ligand-protein complex (solvent and co- 

solvent, pH, ionic strength, or temperature just as a few examples) are not well 

described during the SuMD simulations. This must always be kept in mind when 

any conjecture is made starting from the analysis of SuMD trajectories. Currently, 

a major effort is underway to estimate, from SuMD simulations, binding kinetics 

properties (in particular on-rate values) in approximate agreement with 

experimental measurements.  

Hopefully, the future of drug design will involve detailed characterization 

of not only the bound state but also the whole ligand–protein network of 

recognition pathways, including all metastable intermediate states (meta-binding 

sites). With such a complete understanding we hope expand our perspectives in 

several scientific areas from molecular pharmacology to drug discovery.  
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Abbreviations   

3D  three-dimensional  

CK2  caseine kinase 2  

CPU  central processing unit  

GPCRs  G protein-coupled receptors  

GPU   graphics processor unit 

GSTP1-1  P1-1 isoform of glutathione S-transferase  

hA2AAR  human A2A adenosine receptor  

HSA   human serum albumin  

IE   interaction energy  

Kd   equilibrium dissociation constant 

Koff   dissociation rate constants 

Kon   association rate constants  

LeuT  leucine transporter 

MD   molecular dynamics 

NECA   5'-N-ethylcarboxamidoadenosine  

PDB   protein data bank 

POPC   1-palmitoyl-2-oleoyl-snglycero-3-phosphocholine 

PRDX5  eroxiredoxin 5  

RMSD   root-mean-square deviation 

SASP   sulphasalazine  

SuMD   supervised molecular dynamics  
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3.2 Exploring the recognition pathway at the human A2A 
adenosine receptor of the endogenous agonist adenosine 
using supervised molecular dynamics simulations. 
  

Davide Sabbadin, Antonella Ciancetta, Giuseppe Deganutti, Alberto Cuzzolin and 

Stefano Moro*  

 

Abstract 

Adenosine is a naturally occurring purine nucleoside that exerts a variety 

of important biological functions through the activation of four G protein-

coupled receptor (GPCR) isoforms, namely the A1, A2, A2B and A3 adenosine 

receptors (ARs). Recently, the X-ray structure of adenosine-bound hA2A AR has 

been solved, thus providing precious structural details on receptor recognition 

and activation mechanisms. To date, however, little is still known about the 

possible recognition pathway the endogenous agonist might go through while 

approaching the hA2A AR from the extracellular environment. In the present 

work, we report the adenosine-hA2A AR recognition pathway through the 

analysis of a series of Supervised Molecular Dynamics (SuMD) trajectories. 

Interestingly, a possible energetically stable meta-binding site has been detected 

and characterized.  

 

Introduction  

Adenosine is a naturally occurring purine nucleoside that forms primarily 

from the metabolism of adenosine triphosphate (ATP), both intracellularly and 

extracellularly1. Consequently, the extracellular levels of adenosine are regulated 

by its synthesis, metabolism, release and uptake1,2. Adenosine exerts pleiotropic 

functions throughout the body. In the central nervous system (CNS), the 

nucleoside plays important functions, such as modulation of neurotransmitter 

release, synaptic plasticity and neuroprotection in ischemic, hypoxic and 

oxidative stress events1,3,4. In addition, adenosine plays different roles in a large 

variety of tissues. In the cardiovascular system, adenosine produces either 
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vasoconstriction or vasodilation of veins and arteries. Moreover, adenosine 

regulates T cell proliferation and cytokine production, inhibits lipolysis and 

stimulates bronchoconstriction1,3,4.  

Adenosine mediates its biological effects by recognizing four G protein-

coupled receptor (GPCR) isoforms, namely the A1, A2A, A2B and A3 adenosine 

receptors (ARs). Each subtype has a unique pharmacological profile, tissue 

distribution and effector coupling1,4. Considering receptor sequence similarity, 

among the human ARs (hARs), the most similar are the A1 and A3 ARs (49% 

similarity), and the A2A and A2B ARs (59% similarity). Conversely, the A1, A2A 

and A3 ARs possess relatively high affinity for adenosine whereas the A2B AR 

shows relatively lower affinity for adenosine, as summarized in Table 1.  

Recently, the crystallographic structure of adenosine- bound hA2A AR has 

been solved (PDB code: 2YDO)5. Although this structural data is extremely 

precious to interpret both receptor recognition and activation mechanisms of the 

endogenous agonist, little is still known about the possible recognition pathway 

between adenosine coming from the extracellular environment and the hA2A AR 

embedded in the cytoplasmic membrane.  

 

Table 2 - Adenosine affinities at the four receptor subtypes 

 hA1 , Ki (nM) 
hA2A, Ki 

(nM) 
hA2Ba hA3 

Adnosine ccaa..   100    310 15,000 290 
a
 Data from functional studies. b ref. 4 

 

In this context, Supervised Molecular Dynamics (SuMD) has been 

recently presented as an alternative computational method that allows the 

exploration of ligand–receptor recognition pathway investigations on a 

nanosecond (ns) time scale6. In addition to speeding up the acquisition of the 

ligand–receptor recognition trajectory, this approach facilitates the identification 

and the structural characterization of multiple binding events (such as meta-

binding, allosteric, and orthosteric sites) by taking advantage of the all-atom MD 
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simulation accuracy of a GPCR–ligand com- plex embedded into an explicit 

lipid–water environment6.  

In the present study, in order to better understand how adenosine 

approaches the orthosteric binding site of the hA2A AR, its recognition pathway 

has been described through the analysis of a series of SuMD trajectories. 

Interestingly, a possible energetically stable meta-binding site has been detected 

and characterized. The meta-binding site concept was introduced several years 

ago to describe those binding events that chronologically anticipate the 

orthosteric binding event7.  

 

Results and discussion  

As anticipated, recently the crystallographic structure of adenosine-bound 

hA2A AR has been solved. The attempt to apply MD methodology to address the 

problem of ligand dissociation from its receptor is subjected to some limitations. 

First of all, ligand dissociation dynamics is usually a slow event in comparison to 

the timescales accessible to current simulation techniques and computer 

resources. This does not mean necessarily that the actual event of ligand 

dissociation takes so long, but it is clear that conformational sampling cannot be 

done effectively in a conventional MD simulation. On the other hand, the 

recognition process between a ligand and its receptor is a very rare event to 

describe at the molecular level and, even with the recent GPU-based computing 

resources, it is necessary to carry out classical molecular dynamics (MD) 

experiments on a long microsecond time scale6. For this reason, in order to 

better under- stand how adenosine approaches the orthosteric binding site of the 

hA2A AR, its recognition pathway was explored using a SuMD study (Video 1).  

In particular, following the ligand recognition pathway emerged by the analysis 

of SuMD trajectories (Fig. 1 and Video 1), the third extracellular loop (EL3) of 

hA2A AR plays an essential role in directing the agonist toward the orthosteric 

binding site. In particular, His264, Ala265, Pro266 (EL3) and Leu267 (7.32) (Fig. 

1, panel A) establish favourable hydrophobic contacts with the adenine core of 

adenosine. Such interactions orient the ribose ring towards the entrance of the 
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orthosteric binding site. The hydroxyl group in the C3' position of the ribose 

ring is engaged in a direct hydrogen bond interaction with Glu169 (EL2). Not 

surprisingly, the described extracellular site corresponds to the previously 

reported meta-binding site located in EL36,7, which enables high-potency hA2A 

AR antagonists, such as ZM 241385, 6-IJ2,6- dimethylpyridin-4-yl)-5-phenyl-

1,2,4-triazin-3-amine (T4G), and 4-IJ3-amino-5-phenyl-1,2,4-triazin-6-yl)-2-

chlorophenol (T4E), to reach the orthosteric binding cleft from the extracellular 

vestibule. As already described, once the antagonists reach the orthosteric 

binding site, they adopt binding conformations that match the geometric 

positions observed in the corresponding X-ray structures6.  

By approaching the orthosteric binding site, adenosine explores receptor-

bound states that only partially overlap – RMSD < 3.5 Å – (Fig. 1, panel B–C) 

with the crystallographic bound conformation. In such conformational states, 

the ribose moiety explores the bottom part of the binding pocket ("ribose-

down" conformation) and is in close contact with Thr88 (3.36). Glu169 (EL2) 

and Asn53 (6.55) are involved in key polar interactions with the endo and 

exocyclic nitrogen atoms of the aromatic core. Hydrophobic interactions are 

established with Met174 (5.35), Met177 (5.38), Ala59 (2.57), Ala63 (2.61), Val84 

(3.32) and Ile160 (El2). In particular, Phe168 (EL2) is involved in π-stacking 

interaction with the adenine core.  

Notably, the role of several key residues (such as Thr88 (3.36), Phe168 

(EL2) and Met177 (5.38)) herein highlighted is consistent with the available 

mutagenesis data for agonist binding, which have been recently analysed and 

clarified by means of MD/FEP calculations8.  

As reported in Fig. 1, panel D–F, once inside the orthosteric site, 

adenosine dynamically flips between two different binding modes: the one above 

reported – the so-called “ribose-down” conformation – and the “ribose-up” 

conformation (Fig. 1, panel D) where the ribose moiety is directed towards the 

extracellular space. The hydroxyl group, attached at the C2' position of the 

ribose ring, establishes a hydrogen- bond interaction with Glu169 (EL2) and the 

exocyclic nitro- gen atom of the adenine ring interacts with the Ser67 (2.65) side 
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chain. The agonist aromatic ring is involved in a π-stacking interaction with 

Phe168 (EL2). Val84 (3.32), Ala63 (2.61) and Met174 (5.35) are responsible of 

the majority of non-polar ligand–receptor contacts.  

 

 

 
Figure 1 (Panel A to D) - Overview of multiple adenosine binding conformation inside 

the hA2A AR binding pocket generated from SuMD simulation trajectories in 

comparison with X-ray crystal structure, PDB ID: 2YDO (wheat sticks). Stick 

colouring scheme is based on simulation progression (time). Hydrogen atoms are not 

displayed, whereas hydrogen bond interactions are highlighted as yellow dashed lines. 

(Panel E and G) Overview of multiple discrete binding states that occur during ligand–

receptor recognition. Arrow colouring scheme is based on simulation progression 

(time). Receptor ribbon representation is viewed from the membrane side facing 

transmembrane domain 6 (TM6) and transmembrane domain 7 (TM7). (Panel F) 

Ligand−receptor interaction energy landscape for the nonbiased adenosine-hA2A AR 

recognition process. The most energetically stable binding conformations of adenosine 

inside the hA2A AR binding pocket are highlighted by arrow. Interaction energy values 

are expressed in kcal mol-1.  

 

Therefore, although the described ligand–receptor contacts provide 

sufficient energetic protein–ligand complex stabilization to reach the global 

protein–ligand interaction energy minimum (Fig. 1, panel F), the recognition of 
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the agonist is not accompanied by subsequent stabilization of the ligand 

conformation within the orthosteric site, as adenosine dynamically flips between 

the “ribose down” and “ribose up” binding modes (Fig. 1, panel E). Therefore, 

as also elucidated by a clustering analysis of the space explored by adenosine 

during the binding pathway, the agonist recognition process does not show the 

same behaviour of potent hA2A AR antagonists. The adenosine binding profile, 

instead, is more similar to the one observed for a weak binder such as caffeine 

(Fig. 1, panel F)6. Moreover, this peculiar conformational landscape along with 

the emerged major interaction sites, which anticipate the orthosteric binding site, 

is independent from ligand placement and orientation at the beginning of the 

SuMD simulation (Fig. 1, panel G).  

 

Experimental  

 

GGeenneerraall     

The numbering of the amino acids follows the arbitrary scheme by 

Ballesteros and Weinstein: each amino acid identifier starts with a helix number, 

followed by the position relative to a reference residue among the most 

conserved amino acids in that helix, to which the number 50 is arbitrarily 

assigned9.  

Trajectory analysis and figure and video generation have been performed 

using several functionalities implemented by Visual Molecular Dynamics10, 

WORDOM11, the PyMOL Molecular Graphics System, Version 1.5.0.4 

Schrödinger, LLC (http://www.pymol.org/) and the Gnuplot graphic utility 

(http://www.gnuplot.info/). Ligand-hA2A AR interaction energies were 

calculated by extrapolating the non-bonded energy interaction term of 

CHARMM27 Force Field12 using NAMD13.  
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CCoommppuuttaatt iioonnaall   ffaacc ii ll ii tt ii eess     

All computations were performed on a hybrid CPU/GPU cluster. 

Molecular dynamics simulation has been performed with a 2 NVIDIA GTX 680 

and 3 NVIDIA GTX 780 GPU cluster engineered by Acellera14. 

  

HHuummaann  AA22AA  aaddeennooss iinnee  rreecceeppttoorr––ll iiggaanndd  ccoommpplleexx  pprreeppaarraatt iioonn    

The selected agonist-bound crystal structures (PDB IDs: 2YDO5) and the 

FASTA sequence of the hA2A AR (Uniprot ID: P29274) were retrieved from the 

RCSB PDB database15 (http://www.rcsb.org) and the UniProtKB/Swiss-

Prot16,17, respectively. The co-crystallized ligand structure was extracted from the 

orthosteric binding site and randomly placed in the space above the receptor, at 

least 40 Å away from protein atoms. Ionization states and hydrogen positions 

were assigned by using the MOE-sdwash utility (pH 7.0). The FASTA sequence 

was aligned, using BLAST (Blosum 62 matrix)18, with the template sequence. 

Backbone and conserved residue coordinates were copied from the template 

structure, whereas newly modelled regions and non-conserved residue side 

chains were modelled and energetically optimized by using CHARMM 27 force 

field12 until a r.m.s. of conjugate gradient <0.05 kcal mol-1 Å-1 was reached. 

Missing loop domains were constructed by the loop search method implemented 

in the Molecular Operating Environment (MOE, version 2012.10) program19 on 

the basis of the structure of compatible fragments found in the Protein Data 

Bank. N-terminal and C-terminal were deleted if their lengths exceeded those 

found in the crystallographic template. The “Protonate-3D” tool20 was used to 

appropriately assign ionization states and hydrogen positions to the build models. 

Then, the structures were subjected to energy minimization with CHARMM 27 

force field12 until the r.m.s. of conjugate gradient was <0.05 kcal mol-1 Å-1. 

Protein stereochemistry evaluation was then performed by employing several 

tools (Ramachandran and χ plots measure j/ψ and χ1/χ2 angles, clash contact 

reports) implemented in the MOE suite19.  
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RReecceeppttoorr   mmeemmbbrraannee  eemmbbeeddddiinngg  aanndd  ssyyss tt eemm  pprreeppaarraatt iioonn    

Receptors were embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3 

phosphocholine (POPC) lipid bilayer (85 × 85 Å wide) and placed into the 

membrane according to the suggested orientation reported in the “Orientations 

of Proteins in Membranes (OPM)” database21 for the hA2A AR in a complex 

with the antagonist T4G (PDB ID: 2YDV7). Overlapping lipids (within 0.6 Å) 

were removed upon insertion of the protein. The prepared systems were 

solvated with TIP3P water22 using the program Solvate 1.023 and neutralized 

with Na+/Cl- counterions to a final concentration of 0.154 M. The total number 

of atoms per system was approximately 75,000. Membrane MD simulations were 

carried out on a GPU cluster with the ACEMD program using the CHARMM27 

Force Field18 and periodic boundary conditions. Initial parameters for the 

ligands were derived from the CHARMM General Force Field for organic 

molecules24,25. The system was equilibrated using a stepwise procedure. In the 

first stage, to reduce steric clashes due to the manual setting up of the 

membrane–receptor system, a 500 step conjugate-gradient minimization was 

performed. Then, to allow lipids to reach equilibrium and water molecules to 

diffuse into the protein cavity and to avoid ligand–receptor interaction in the 

equilibration phase, protein and ligand atoms were restrained for the first 8 ns by 

a force constant of 1 kcal mol-1 Å-2. Then side chains were set free to move, 

while gradually reducing the force constant to 0.1 kcal mol-1 Å-2 to the ligand and 

alpha carbon atoms up to 9 ns. Temperature was maintained at 298 K using a 

Langevin thermostat with a low damping constant of 1 ps-1, and the pressure 

was maintained at 1 atm using a Berendsen barostat. Bond lengths involving 

hydrogen atoms were constrained using the M-SHAKE algorithm26 with an 

integration time step of 2 fs. Harmonical constraints were then removed and 

Supervised MD was conducted in a NVT ensemble. Long-range Coulomb 

interactions were handled using the particle mesh Ewald summation method 

(PME)27 with grid size rounded to the approximate integer value of cell wall 

dimensions. A non-bonded cutoff distance of 9 Å with a switching distance of 

7.5 Å was used. In order to assess the biophysical validity of the built systems, 
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the average area per lipid headgroup (APL) and bilayer thickness measurements 

for each built system were measured using Grid-MAT-MD28. The corresponding 

calculated averaged area per lipid headgroup of the extracellular and intracellular 

leaflet during the production phase for all simulations was in agreement with the 

experimental values measured for 1-palmitoyl-2- oleoyl-sn-glycero-3-

phosphocholine (POPC) lipid bilayers29.  

 

Conclusions  

 

In the present work, we have carried out SuMD experiments to elucidate 

the recognition pathway of the naturally occurring purine nucleoside adenosine 

by the hA2A AR. The analysis of the SuMD trajectories revealed that residues 

located in the third extracellular loop play an essential role in orienting the ribose 

ring of agonist toward the entrance of the orthosteric site, thus representing a 

possible energetically stable meta-binding site.  

Our analysis has also revealed that, once the orthosteric site is reached, 

adenosine experiences a dynamic flip between two different binding modes: the 

"ribose-down" and the “ribose-up” conformation, with the ribose moiety 

pointing towards the intracellular and extracellular space, respectively. 

Consequently, the adenosine binding profile resulting from our analysis 

resembles that of a weak binder rather than the one previously observed for 

potent hA2A AR antagonists.  

Further work is underway in our lab to better elucidate the role of the 

meta-binding site that has been detected and characterized in this study. In 

particular, SuMD simulations with adenosine-hA2A AR 2:1 stoichiometry are 

currently under evaluation. Moreover, we are carrying out a comprehensive 

SuMD exploration of the recognition pathway of adenosine against all other 

adenosine receptor subtypes to clarify the experimental selectivity profile 

provided by the natural agonist.  

  



 130 	
   SCIENTIFIC	
  PUBLICATIONS	
   	
  
	
   	
  

	
   Published	
   -­‐	
   Cuzzolin	
   A,	
   Sturlese	
  M,	
   Deganutti	
   G,	
   Salmaso	
   V,	
   Sabbadin	
   D,	
   Ciancetta	
  

A 	
  Moro	
  S 	
  J	
  Chem	
  Inf	
  Model	
  56 	
  687-­‐705	
  (2016)	
  

	
  
	
  

	
  

	
   	
  
 

 
Bibliography 

1. Jacobson, K. A. & Gao, Z.-G. Adenosine receptors as therapeutic targets. 

Nat. Rev. Drug Discov. 5, 247–264 (2006). 

 

2. Latini, S. & Pedata, F. Adenosine in the central nervous system: release 

mechanisms and extracellular concentrations. J. Neurochem. 79, 463–484 (2001). 

 

3. Sebastião, A. M. & Ribeiro, J. A. Fine-tuning neuromodulation by 

adenosine. Trends Pharmacol. Sci. 21, 341–346 (2000). 

 

4. Fredholm, B. B., IJzerman, A. P., Jacobson, K. A., Linden, J. & Müller, C. 

E. International Union of Basic and Clinical Pharmacology. LXXXI. 

Nomenclature and classification of adenosine receptors--an update. Pharmacol. 

Rev. 63, 1–34 (2011). 

 

5. Lebon, G. et al. Agonist-bound adenosine A2A receptor structures reveal 

common features of GPCR activation. Nature 474, 521–525 (2011). 

 

6. Sabbadin, D. & Moro, S. Supervised molecular dynamics (SuMD) as a 

helpful tool to depict GPCR-ligand recognition pathway in a nanosecond time 

scale. J. Chem. Inf. Model. 54, 372–376 (2014). 

 

7. Moro, S., Hoffmann, C. & Jacobson, K. A. Role of the extracellular loops 

of G protein-coupled receptors in ligand recognition: a molecular modeling 

study of the human P2Y1 receptor. Biochemistry (Mosc.) 1, 3498–3507. 

 

8. Keränen, H., Gutiérrez-de-Terán, H. & Åqvist, J. Structural and Energetic 

Effects of A2A Adenosine Receptor Mutations on Agonist and Antagonist 

Binding. PLoS ONE 9, e108492 (2014). 



 131 	
   SCIENTIFIC	
  PUBLICATIONS	
   	
  
	
   	
  

	
   Published	
   -­‐	
   Cuzzolin	
   A,	
   Sturlese	
  M,	
   Deganutti	
   G,	
   Salmaso	
   V,	
   Sabbadin	
   D,	
   Ciancetta	
  

A 	
  Moro	
  S 	
  J	
  Chem	
  Inf	
  Model	
  56 	
  687-­‐705	
  (2016)	
  

	
  
	
  

	
  

	
   	
  
 

9. Juan A. Ballesteros, H. W. Integrated Methods for the Construction of 

Three-Dimensional Models and Computational Probing of Structure-Function 

Relations in G-Protein-Coupled Receptors. Methods Neurosci. 25, 366–428 (1995). 

 

10. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular 

dynamics. J. Mol. Graph. 14, 33–38, 27–28 (1996). 

 

11. Seeber, M. et al. Wordom: A user-friendly program for the analysis of 

molecular structures, trajectories, and free energy surfaces. J. Comput. Chem. 32, 

1183–1194 (2011). 

 

12. MacKerell, A. D., Banavali, N. & Foloppe, N. Development and current 

status of the CHARMM force field for nucleic acids. Biopolymers 56, 257–265 

(2000). 

 

13. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. 

Chem. 26, 1781–1802 (2005). 

 

14. Acellera. Acellera at <https://www.acellera.com/> 

 

15. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–

242 (2000). 

 

16. UniProt Consortium. The Universal Protein Resource (UniProt) in 2010. 

Nucleic Acids Res. 38, D142–148 (2010). 

 

17. Jain, E. et al. Infrastructure for the life sciences: design and 

implementation of the UniProt website. BMC Bioinformatics 10, 136 (2009). 

 

18. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of 

protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997). 



 132 	
   SCIENTIFIC	
  PUBLICATIONS	
   	
  
	
   	
  

	
   Published	
   -­‐	
   Cuzzolin	
   A,	
   Sturlese	
  M,	
   Deganutti	
   G,	
   Salmaso	
   V,	
   Sabbadin	
   D,	
   Ciancetta	
  

A 	
  Moro	
  S 	
  J	
  Chem	
  Inf	
  Model	
  56 	
  687-­‐705	
  (2016)	
  

	
  
	
  

	
  

	
   	
  
 

19. Chemical Computing Group. at <http://www.chemcomp.com/> 

 

20. Labute, P. Protonate3D: Assignment of ionization states and hydrogen 

coordinates to macromolecular structures. Proteins Struct. Funct. Bioinforma. 75, 

187–205 (2009). 

 

21. Lomize, M. A., Lomize, A. L., Pogozheva, I. D. & Mosberg, H. I. OPM: 

orientations of proteins in membranes database. Bioinforma. Oxf. Engl. 22, 623–

625 (2006). 

 

22. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, 

M. L. Comparison of simple potential functions for simulating liquid water. J. 

Chem. Phys. 79, 926–935 (1983). 

 

23. Grubmuller, H. & Groll, V. Solvate. (1996). at 

<http://www.mpibpc.mpg.de/grubmueller/solvate> 

 

24. Vanommeslaeghe, K. & MacKerell, A. D. Automation of the CHARMM 

General Force Field (CGenFF) I: Bond Perception and Atom Typing. J. Chem. 

Inf. Model. 52, 3144–3154 (2012). 

 

25. Vanommeslaeghe, K., Raman, E. P. & MacKerell, A. D. Automation of 

the CHARMM General Force Field (CGenFF) II: assignment of bonded 

parameters and partial atomic charges. J. Chem. Inf. Model. 52, 3155–3168 (2012). 

 

26. Kräutler, V., van Gunsteren, W. F. & Hünenberger, P. H. A fast SHAKE 

algorithm to solve distance constraint equations for small molecules in molecular 

dynamics simulations. J. Comput. Chem. 22, 501–508 (2001). 

 

27. Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 

103, 8577–8593 (1995). 



 133 	
   SCIENTIFIC	
  PUBLICATIONS	
   	
  
	
   	
  

	
   Published	
   -­‐	
   Cuzzolin	
   A,	
   Sturlese	
  M,	
   Deganutti	
   G,	
   Salmaso	
   V,	
   Sabbadin	
   D,	
   Ciancetta	
  

A 	
  Moro	
  S 	
  J	
  Chem	
  Inf	
  Model	
  56 	
  687-­‐705	
  (2016)	
  

	
  
	
  

	
  

	
   	
  
 

28. Allen, W. J., Lemkul, J. A. & Bevan, D. R. GridMAT-MD: a grid-based 

membrane analysis tool for use with molecular dynamics. J. Comput. Chem. 30, 

1952–1958 (2009). 

 

29. Kucerka, N., Tristram-Nagle, S. & Nagle, J. F. Structure of fully hydrated 

fluid phase lipid bilayers with monounsaturated chains. J. Membr. Biol. 208, 193–

202 (2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 134 	
   SCIENTIFIC	
  PUBLICATIONS	
   	
  
	
   	
  

	
   Published	
   -­‐	
   Cuzzolin	
   A,	
   Sturlese	
  M,	
   Deganutti	
   G,	
   Salmaso	
   V,	
   Sabbadin	
   D,	
   Ciancetta	
  

A 	
  Moro	
  S 	
  J	
  Chem	
  Inf	
  Model	
  56 	
  687-­‐705	
  (2016)	
  

	
  
	
  

	
  

	
   	
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 135 	
   SCIENTIFIC	
  PUBLICATIONS	
   	
  
	
   	
  

	
   Published	
  -­‐	
  Deganutti	
  G,	
  Cuzzolin	
  A,	
  Ciancetta	
  A,	
  Moro	
  S.	
  Biorg	
  Med	
  Chem.	
  23,	
  4065-­‐

4071	
  (2015)	
  	
  

	
  
	
  

	
  

	
   	
  
 

 

3.3 Understanding allosteric interactions in G protein-
coupled receptors using Supervised Molecular Dynamics: a 
prototype study analysing the human A3 adenosine receptor 
positive allosteric modulator LUF6000. 
 

Giuseppe Deganutti, Alberto Cuzzolin, Antonella Ciancetta, Stefano Moro*  

 

Abstract  

The search for G protein-coupled receptors (GPCRs) allosteric 

modulators represents an active research field in medicinal chemistry. Allosteric 

modulators usually exert their activity only in the presence of the orthosteric 

ligand by binding to protein sites topographically different from the orthosteric 

cleft. They therefore offer potentially therapeutic advantages by selectively 

influencing tissue responses only when the endogenous agonist is present. The 

prediction of putative allosteric site location, however, is a challenging task. In 

facts, they are usually located in regions showing more structural variation 

among the family members. In the present work, we applied the recently 

developed Supervised Molecular Dynamics (SuMD) methodology to interpret at 

the molecular level the positive allosteric modulation mediated by LUF6000 

toward the human adenosine A3 receptor (hA3 AR). Our data suggest at least 

two possible mechanisms to explain the experimental data available. This study 

represent, to the best of our knowledge, the first case reported of an allosteric 

recognition mechanism depicted by means of molecular dynamics simulations.  

 

Introduction  

Besides the orthosteric site, which conventionally recognizes endogenous 

ligands, most G protein-coupled receptors (GPCRs) possess topographically 

distinct allosteric sites that can be recognized by small molecules and accessory 

cellular proteins. Pharmacologically speaking, an allosteric modulator does not 

have any activity by itself, thus needing the orthosteric binder to exhibit its 

action. Although the modulatory character of allosteric binders is not always 
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clear-cut, true allosteric modulators increase or decrease the action of an agonist 

or an antagonist recognising the allosteric site(s) on the receptor. In facts, ligand 

binding to allosteric sites promotes a conformational reorganization in the 

GPCR that can alter orthosteric ligand affinity and/or efficacy. Although an 

allosteric modulator may not possess efficacy by itself, it can provide a powerful 

therapeutic advantage over orthosteric ligands, as they selectively influence tissue 

responses only when the endogenous agonist is present. Consequently, allosteric 

modulation of GPCRs has stimulated an intensive identification campaign for 

new classes of hit-candidates different from conventional agonists and 

antagonists. This has been the subject of several recent reviews1–3. 

However, natural allosteric sites are very difficult to identify because they 

are usually located far from the orthosteric sites. Moreover, allosteric sites resides 

in regions of the receptor that show more structural variation among family 

members and, consequently, this implies a general lack of success in predicting 

the locations of potential binding regions. Albeit the crystallographic structure of 

the M2 receptor simultaneously bound to the orthosteric agonist iperoxo and the 

positive allosteric modulator LY2119620 has been recently reported4, little is 

known about the possible allosteric control regarding the activation mechanism 

of other GPCRs.  

Within this framework, we have recently reported on an alternative 

computational method – the Supervised Molecular Dynamics (SuMD) – that 

allows to investigate the ligand– receptor recognition pathway in a nanosecond 

(ns) time scale5. In addition to speeding up the acquisition of the ligand–receptor 

recognition trajectory, this approach facilitates the identification and the 

structural characterization of multiple binding events (such as meta-binding, 

allosteric, and orthosteric sites) by taking advantage of the all-atom MD 

simulations accuracy of GPCR– ligand complexes embedded into explicit lipid–

water environment5.  

Interestingly, adenosine receptors (ARs) were among the first GPCRs 

discovered to be allosterically regulated and, in particular, allosteric enhancers for 

A1 and A3 ARs have been widely investigated1,2,6. Among the most interesting 
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allosteric enhancers for the A3 AR, N-(3,4-dichlorophenyl)-2-cyclohexyl- 1H-

imidazo[4,5-c]quinolin-4-amine (LUF6000, see Fig. 1) has been deeply 

characterized7,8. LUF6000 potentiates the maximum efficacy of the agonist Cl-

IB-MECA by 45–50%, enhances agonist efficacy in functional assays and 

decreases the agonist dissociation rate without influencing agonist potency. 

Moreover, LUF6000 has been reported to act as allosteric enhancer of the 

maximal effect exerted by structurally diverse agonists at the A3 AR, being more 

effective for low-efficacy than for high-efficacy agonists.  

Very recently, in vivo studies have reported the ability of LUF6000 to act 

as allosteric modulator of rat and mice A3 ARs by allowing the endogenous 

ligand adenosine to bind to the receptor with higher affinity9.  

With the aim to interpret at the molecular level the positive allosterism 

mediated by LUF6000 toward the human A3 AR (hA3 AR), possible recognition 

pathways have been explored by performing SuMD simulations in the absence 

and in presence of the natural agonist adenosine (Fig. 1). Interestingly, our 

results suggest two possible mechanisms by which LUF6000 might exert its 

positive allosteric modulator effects: according to the outcomes of our 

simulations, the ligand might either induce a loop rearrangement that stabilizes 

agonist placement into the orthosteric site, or form a ternary complex with the 

agonist bound receptor state, thus acting as orthosteric pocket cap.  

 

 
Figure 1- Structures of the endogenous hA3 AR agonist adenosine (left) and the positive 

allosteric modulator LUF6000 (right). 
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SuMD Simulations 

  

LLUUFF66000000--hhAA33  AARR  rreeccooggnnii tt iioonn  mmeecchhaanniissmm..     

The imidazoquinolinamine allosteric modulator LUF6000 enhances 

agonist efficacy in functional assays and decreases agonist dissociation rate 

without influencing agonist potency7,8. Besides, LUF6000 presents a weak 

antagonist activity (ca. 45% inhibition at 10 µM)7. To explore LUF6000 attitude 

to recognize the orthosteric binding site of the hA3 AR, we analysed its 

recognition pathway by performing SuMD experiments.  

During the SuMD simulations, LUF6000 reached the orthosteric binding 

site in less than 20 ns. The corresponding energy landscape (Fig. 2A) highlights 

two major interaction sites (a and b). Prior reaching the orthosteric site, 

LUF6000 interacts with residues located in a region between the second and 

third extracellular loops (EL2 and EL3, respectively). Met151 (EL3), Thr154 

(EL2), Met174 (5.35) side chains and the aliphatic portion of Arg173 (EL2) 

establish hydrophobic contacts with the imidazoloquinoline core of LUF6000, 

whereas the ligand exocyclic nitrogen atom is involved in a hydrogen bond 

interaction with the backbone of Lys152 (EL2) (a in Fig. 2A, Fig. 2B, Video S1). 

While reaching the orthosteric site, the Val169 (EL2) side chain facilitates ligand 

reorientation providing favourable hydrophobic contacts. The most stable 

conformation observed (b Fig. 2A, Fig. 2C, Video S1) is characterized by 

hydrophobic contacts with Phe168 (EL2), Met174 (5.35), Leu246 (6.51), Leu264 

(7.35), Leu268 (7.39) and Trp243 (6.48), whereas Asn250 (6.55) is engaged in a 

hydrogen bond with the exocyclic nitrogen of the ligand. At the maximum 

energetic stabilization, the formed complex is characterized by energetic values 

of about -50 kcal/mol, a value previously observed for weak ARs binders. This 

is consistent with the LUF6000 antagonist activity observed through functional 

assays at the hA3 AR8. 
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Figure 2. (A) Interaction Energy landscape for the recognition pattern of LUF6000 by 

the hA3 AR.(B) LUF6000 binding mode in the meta-binding site.(C) LUF6000 binding 

mode in the orthosteric binding site. Ligand is displayed as orange stick, side chains of 

residues interacting through hydrogen bond or π-π stacking are depicted as grey stick, 

whereas side chains of residues interacting through hydrophobic contacts are rendered 

as coloured surfaces. 
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AAddeennooss iinnee--hhAA33  AARR  rreeccooggnnii tt iioonn  mmeecchhaanniissmm   

Recently, the crystallographic structure of adenosine in complex with the 

hA2A AR has been solved10. This structural piece of information aid elucidating 

both the recognition and activation mechanisms of the ARs by their endogenous 

agonist adenosine. Although in principle the interaction pattern of the 

adenosine-hA2A AR complex can be transferred to the other ARs subtypes, in 

order to better understand how adenosine approaches the orthosteric binding 

site of the hA3 AR, its recognition pathway as described by the obtained SuMD 

trajectories has been analyzed.  

In our SuMD experiments, adenosine reached the orthosteric binding site 

in less than 20 ns. The corresponding energy landscape is reported in Fig. 3A. 

During the recognition pathway (Video S2), EL3 engages the ligand ribose 

moiety in favourable hydrogen bonds mainly through Val259 (EL3) and Gln261 

(EL2) backbone atoms (b in Fig. 3A, Fig. 3B). This situation anticipates a change 

of adenosine orientation, triggered by hydrophobic contacts between the ligand 

purine core and Leu264 (7.35), Ile268 (7.39), Ile253 (6.58), and Ile249 (6.54) side 

chains. Once the orthosteric pocket is reached, adenosine interacts with the side 

chain of Trp185 (5.46), Leu246 (6.51) and conserved residues Asn250 (6.55), 

Phe168 (EL2), Trp243 (6.48), Ile268 (7.39) (Fig. 3C, Video S2). As already 

observed for adenosine recognition pathway by the hA2A AR11, the agonist 

explores different conformational states once inside the pocket. In particular, 

adenosine experiences a dynamic flip between two different binding modes: the 

above described "ribose-down" and the "ribose-up" conformation, with the 

ribose moiety pointing towards the intracellular and extracellular space, 

respectively. The ribose down conformation (b in Fig. 3A, Fig. S1) is 

characterized by additional electrostatic interactions with Glu19 (1.39) and Ser73 

(2.65) and represents the most energetically stable ligand-receptor complex 

observed in the analysed trajectories.  
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LLUUFF66000000--hhAA33  AARR  (( iinn  ccoommpplleexx  wwii tthh  aaddeennooss iinnee))   rree ccooggnnii tt iioonn  mmeecchhaanniissmm   

With the aim to reproduce the experimental conditions that allow to 

measure LUF6000 PAM activity, SuMD simulations were performed considering 

the hA3 AR receptor in complex with adenosine. LUF6000 was randomly placed 

60 Å at least away from the barycentre of the orthosteric binding site. The 

starting adenosine-hA3 AR complex was extracted from the previously described 

SuMD trajectory, and selected on the basis of its similarity with the X-Ray 

crystallographic conformation observed for the complex with the hA2A AR10.  

The LUF6000 recognition energy landscape is reported in Fig. 4A. The 

pathway described by the SuMD trajectories highlights three main situations: i) 

LUF6000 not interacting with the adenosine-hA3 AR complex (point a in 

Fig.4A); ii) LUF6000 interacting with a meta-binding site (b in Fig. 4A); and iii) 

LUF6000 interacting with the orthosteric pocket (c in Fig. 4A). 

Moreover, during the SuMD simulations, the interaction energy between 

adenosine and the hA3 AR has been computed (Fig. 4B). The endogenous 

agonist reaches a stability maximum approximately after 10 ns of simulation 

(point B in Fig. 4B), which correspond to LUF6000-hA3 AR meta binding site 

complex formation. The ligand approaches EL2 (Fig. 5A) by recruiting Tyr157 

(EL2) and His158 (EL2) side chains, and establishing contacts with Arg173 

(EL2), Met174 (5.35), Ile253 (6.58), Tyr254 (6.59) (Fig. 4B, Video S3). This loop 

rearrangement is accompanied by conformational changes in residues located 

farther in EL2, included Phe168 (EL2), that loses the capability of stabilizing 

adenosine through π-π stacking interactions. As a consequence, adenosine 

moves deeper in the orthosteric pocket (Fig. S2) and establishes favourable 

interactions with Leu246 (6.51), Trp243 (6.48), Ser247 (6.52), and Thr94 (3.36). 

The overall protein conformational and adenosine positional changes that occur 

after the interaction between LUF6000 and the hA3 AR EL2 (i.e. system 

evolution from point a to point b) are reported in Fig. S3.  
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Figure 3. (A) Interaction Energy landscape for the recognition pattern of adenosine by 

the hA3 AR.(B) Adenosine binding mode in the meta-binding site.(C) Adenosine 

binding mode in the orhtosteric binding site. Ligand is displayed as tan stick, side 

chains of residues interacting through hydrogen bond or π-π stacking are depicted as 

grey stick, whereas side chains of residues interacting through hydrophobic contacts are 

rendered as coloured surfaces 
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Figure 4. (A) Interaction Energy landscape for the recognition pattern of LUF6000 by 

the hA3 AR-adenosine complex. (B) hA3 AR-adenosine interaction energy. 

 

 



 144 	
   SCIENTIFIC	
  PUBLICATIONS	
   	
  
	
   	
  

	
   Published	
  -­‐	
  Deganutti	
  G,	
  Cuzzolin	
  A,	
  Ciancetta	
  A,	
  Moro	
  S.	
  Biorg	
  Med	
  Chem.	
  23,	
  4065-­‐

4071	
  (2015)	
  	
  

	
  
	
  

	
  

	
   	
  
 

Once the complex with the meta binding site is formed, approximately 

after 14 ns of simulations, LUF6000 moves to establish hydrophobic interactions 

with Tyr254 (6.59), Met174 (5.35), Val169 (EL2) and Ile253 (6.58), located at the 

top of orthosteric binding site. This allows the ligand to directly interact with 

adenosine. Simultaneously, the previously evidenced π-π stacking interaction 

between adenosine and Phe168 (EL2) is restored. In the tertiary complex just 

formed, the energy interaction between adenosine and the hA3 AR is stabilized 

at values slightly lower than the starting complex, with the exception of a 

transitory stabilization after 21 ns (C in Fig. 4B, Fig. 5B). LUF6000 is therefore 

able to stabilize the interaction energy between adenosine and the hA3 AR and to 

lock the agonist inside the orthosteric pocket for the remaining simulation time. 

A similar behaviour has been observed also for the tertiary complex formed with 

a LUF6000 close analogue LUF6069 (See Supplementary Information, Fig. S4-

S5 and Video S4). 

 

Conclusion  

In the present work, we have utilized SuMD5, a computational approach 

we have recently developed, with the aim to characterize and rationalize the 

activity of LUF6000, a hA3 AR PAM, at a molecular level. We have analysed the 

ligand-receptor recognition pattern, both for LUF6000 and the endogenous 

agonist adenosine separately and also considering the recognition pathway of the 

PAM by the hA3 AR in complex with adenosine. This represents, to date, the 

first case reported of an allosteric mechanism investigated by means of MD 

simulations.  

Our results have highlighted that LUF6000 is able to establish favourable 

interactions with conserved residues located in the orthosteric binding site of the 

hA3 AR, consistently with the experimentally observed weak inhibitor activity at 

this receptor subtype. The analysis of the interaction pathway of the endogenous 

agonist adenosine suggests a key role played by residues located in the EL2 in 

engaging the agonist and energetically promoting its approach to the orthosteric 

pocket.  
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The inspection of the interaction pathway obtained by simulating 

LUF6000 approaching the hA3 AR in complex with the endogenous agonist 

adenosine suggests two possible mechanisms to explain the experimentally 

observed positive allosteric modulation7,8. According to our analysis, the ligand 

could: i) trigger conformational changes in the EL2 that would enable the 

agonist to form more energetically favourable interactions with residues located 

deeper in the orthosteric binding site; ii) establish a ternary complex with the 

agonist and the receptor, thus acting as orthosteric pocket cap.  

 
Figure 5. (A) LUF6000 binding mode in the hA3 AR meta-binding site.(B) LUF6000 

binding mode in the hA3 AR orthosteric binding site occupied by adenosine. LUF6000 

and adenosine are displayed as orange and tan stick, respectively. Side chains of 

residues interacting through hydrogen bond or π-π stacking are depicted as grey stick, 

whereas side chains of residues interacting through hydrophobic contacts are rendered 

as coloured surfaces. 
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The mutagenesis data available to date12 apparently confute the first hypothesis, 

as it has been reported that the mutation of some residues located in the upper 

region of the receptor does not affect the allosteric activity of the 

imidazoquinoline compound DU124183 and the pyridinylisoquinoline 

compound VUF545510. However, it is well accepted that a PAM activity is 

strictly depending on the structure of the agonist considered to perform the 

experiments. 

 

Experimental Section  

  

GGeenneerraall     

All computations were performed on a hybrid CPU/GPU cluster. 

Molecular dynamics simulations have been performed with GPU cluster 

equipped with 3 NVIDIA GTX 780 and 3 NVIDIA GTX 980. 

Trajectory analysis, Figures and videos generation have been performed 

using several functionalities implemented by Visual Molecular Dynamics13, 

WORDOM14, the PyMOL Molecular Graphics System, Version 1.5.0.4 

Schrödinger, LLC (http://www.pymol.org/) and the Gnuplot graphic utility 

(http://www.gnuplot.info/). Ligand-hA3 AR interaction energies were calculated 

extrapolating the non-bonded energy interaction term of CHARMM27 Force 

Field15 using NAMD16. All molecular dynamics simulations have been carried 

out using ACEMD engine (http://www.acellera.com/).  

The numbering of the amino acids follows the arbitrary scheme proposed 

by Ballesteros and Weinstein17: each amino acid identifier starts with the helix 

number (1-7), followed by a dot and the position relative to a reference residue 

among the most conserved amino acids in that helix, to which the number 50 is 

arbitrarily assigned.  

 

HHoommoollooggyy  MMooddee ll   oo ff   hhAA33  AARR   

As, to date, no crystallographic information about the hA3 AR is available, 

we used a previously build homology model deposited in our web platform 
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dedicated to ARs, Adenosiland18,19. In particular, among all the currently 

available crystallographic structures of the hA2A AR we selected the model built 

upon the complex with the endogenous agonist adenosine (PDB code: 2YDO, 

3.00 Å resolution)10.  

 

RReecceeppttoorr   mmeemmbbrraannee  eemmbbeeddddiinngg  aanndd  ssyyss tt eemm  pprreeppaarraatt iioonn..    

Receptors were embedded in a 1-palmitoyl-2-oleoyl-sn- glycero-3-

phosphocholine (POPC) lipid bilayer (85x95 Å wide) and placed into the 

membrane according to the suggested orientation reported in the “Orientations 

of Proteins in Membranes (OPM)” database20 for the hA2A AR in complex with 

the endogenous agonist adenosine (PDB ID: 2YDO )10. Overlapping lipids 

(within 0.6 Å) were removed upon insertion of the protein. The prepared 

systems were solvated with TIP3P water21 using the program Solvate 1.022 and 

neutralized by Na+/Cl- counter-ions to a final concentration of 0.154 M. The 

total number of atoms per system was approximately 110000. Membrane MD 

simulations were carried out on a GPU cluster with the ACEMD program using 

the CHARMM27 Force Field15 and periodic boundaries conditions. Initial 

parameters for the ligands were derived from the CHARMM General Force 

Field for organic molecules. The system was equilibrated using a stepwise 

procedure. In the first stage, to reduce steric clashes due to the manual setting up 

of the membrane-receptor system, a 2500 steps conjugate-gradient minimization 

was performed. Then, to allow lipids to reach equilibrium, water molecules to 

diffuse into the protein cavity and to avoid ligand-receptor interaction in the 

equilibration phase, protein and ligand atoms were restrained for the first 8 ns by 

a force constant of 1 kcal/mol•Å2. Then, force constant was gradually reduced 

to 0.1 kcal/mol•Å2 for the next 9 ns. Temperature was maintained at 298 K 

using a Langevin thermostat with a low damping constant of 1 ps-1 and the 

pressure was maintained at 1 atm using a Berendensen barostat. Bond lengths 

involving hydrogen atoms were constrained using the M-SHAKE algorithm23 

with an integration timestep of 2 fs.  
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SSuuMMDD  ss iimmuullaatt iioonnss   

After the equilibration procedure, harmonical constraints were removed 

and SuMD simulations were conducted in a NVT ensemble. As previously 

described, the supervision of the trajectory is perpetuated until ligand-receptor 

distance is lower than 5 Å without introducing bias to the simulations. Long-

range Coulomb interactions were handled using the particle mesh Ewald 

summation method (PME)24 with grid size rounded to the approximate integer 

value of cell wall dimensions. A non-bonded cut-off distance of 9 Å with a 

switching distance of 7.5 Å was used. Ligand parametrization procedure and 

methodological insights on the quantitative estimate of the electrostatic and 

hydrophobic occurring ligand-protein interaction maps have been reported 

previously5.  

 

Abbreviations 

 ARs   adenosine receptors 

 ATP   adenosine triphosphate 

 hA3AR   human A3 adenosine receptor 

 EL2  second extracellular loop 

 EL3   third extracellular loop 

 LUF6000  N-(3,4-dichlorophenyl)-2-cyclohexyl-1H-imidazo[4,5-c]quinolin-4-

amine 

 LUF6096  N-{2-[(3,4- dichlorophenyl)amino]quinolin-4-

yl}cyclohexanecarboxamide 

GPCRs   G protein-coupled receptors 

GPU   graphics processing unit 

PAM   positive allosteric modulator 

RMSD   root mean square deviation 

SAR   structure-affinity relationship; 

TM   transmembrane; ZM 241385, 4-[2- [7-amino-2-(2-furyl)-1,2,4-

triazolo[1,5-a][1,3,5]triazin-5-yl-amino]ethylphenol.  
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3.4 New Trends in Inspecting GPCR-ligand Recognition 
Process: the Contribution of the Molecular Modeling Section 
(MMS) at the University of Padova. 
 

Antonella Ciancetta, Alberto Cuzzolin, Giuseppe Deganutti, Mattia Sturlese, Veronica 

Salmaso, Andrea Cristiani, Davide Sabbadin and Stefano Moro*[a] 

 

Abstract  

In this review, we present a survey of the recent advances carried out by 

our research groups in the field of ligand-GPCRs recognition process 

simulations recently implemented at the Molecular Modeling Section (MMS) of 

the University of Padova. We briefly describe a platform of tools we have tuned 

to aid the identification of novel GPCRs binders and the better understanding of 

their binding mechanisms, based on two extensively used computational 

techniques such as molecular docking and MD simulations. The developed 

methodologies encompass: (i) the selection of suitable protocols for docking 

studies, (ii) the exploration of the dynamical evolution of ligand-protein 

interaction networks, (iii) the detailed investigation of the role of water 

molecules upon ligand binding, and (iv) a glance at the way the ligand might go 

through prior reaching the binding site. 

 

Introduction 

Today, it is largely recognized that G protein-coupled receptors (GPCRs) 

represent the largest family of surface receptors with more than 800 members in 

humans.1 They respond to different extracellular stimuli ranging from small 

molecules to lipids, peptides, proteins, and even light.2 

The binding event triggers the activation of cytoplasmic heterotrimeric 

GTP binding proteins (G proteins) and mediates the signal transduction through 

the modulation of several downstream effectors. The participation of GPCRs in 

numerous physio-pathological processes entails a potential role for their 

modulation by agonist, antagonists and inverse agonists in the treatment of 
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several diseases, including cardiovascular and mental disorders,3 cancer,4 and 

viral infections.5 Nowadays, about more than 50% of the drugs in clinical use 

targets a GPCR.6 

According to the GRAFS classification,7 human GPCRs are commonly 

grouped into five main classes: Glutamate (Class C), Rhodopsin (Class A), 

Adhesion (Class B), Secretin (Class B), and Frizzled/Taste2 (Class F). From a 

structural point of view, all members share a common architecture represented 

by seven membrane-spanning helices connected by three intracellular and three 

extracellular loops with the N-Term domain exposed toward the extracellular 

side.  

The insertion into the cell membrane along with receptors dynamism 

have hampered for long time the structural determination of GPCRs by X-ray 

crystallography. To overcome these limitations, several techniques have been 

developed: the use of fusion proteins such as T4 lysozyme or apocytochrome,8,9 

complexation with antibody fragments,10 and the receptor thermostabilization 

through systematic scanning mutagenesis.11 The advances in protein engineering 

and crystallography have represented a breakthrough for the research focused on 

GPCRs and yielded numerous X-ray structures.12 The availability of ligand-

bound three-dimensional structures provides invaluable insights to understand 

GPCRs function and pharmacology and enables the application of structure-

based drug design approaches to aid the discovery of novel candidates with 

improved pharmacological profiles.13 In particular, molecular dynamics (MD) 

simulations have become a helpful complement for the study of GPCRs 

biophysics and molecular pharmacology, by enriching our understanding of, 

among other aspects, ligand-receptor interaction and ligand-subtype 

selectivity.14,15 In addition, the recent exploitation of the commodity, graphics 

processing units (GPUs), a technology firstly designed to improve video game 

performances, in the molecular modeling field represents an important step 

forward for the simulation of GPCRs in explicit lipid-water environments within 

a reasonable computation time.16 In this paper, we briefly survey the recent 

advances carried out by our research groups in the field of ligand-GPCRs 
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recognition process simulations.17 Following the description of the tools we have 

developed to aid the identification of novel binders of GPCRs binders and the 

better understanding of their binding mechanisms, we will discuss their use in 

a case study: the comparison between ZM 241385 (4-(2-(7-Amino-2-(furan-2-yl)-

[1,2,4]triazolo[2,3-a][1,5-a][1,3,5]triazin-5-yl-amino)ethyl) phenol) and caffeine, a 

strong and weak human Adenosine 2A Receptor (hA2A AR) antagonists, 

respectively. 

 

Methods 

  

DDoocckkiinngg  PPrroottooccoo ll ss   VVaall iiddaatt iioonn::   tthhee  ““QQuuaall ii ttyy   DDeessccrr iippttoorrss””    

The availability of ligand-bound crystal structures enables to perform 

docking simulations to rationalize structure-activity relationships of known 

binders or to conduct virtual screening campaigns to identify novel candidates. It 

is highly recommended to assess the performances of a docking protocol in 

reproducing the available experimental data prior to applying it. This procedure 

is best known as benchmark study. We have recently developed a pipeline that 

allows a fast graphical evaluation of different docking protocols, based on two 

newly defined quality descriptors: the “Protocol Score” and the “Interaction 

Energy Map” (IEM).18,19 

The “Protocol Score” is a RMSD based descriptor that assigns a 0–3 

score to each docking protocol according to the following criteria: (i) if the 

protocol returns either a RMSDave value lower than the crystal structure 

resolution (R) or generates at least 10 (out of 20) conformations having 

RMSD<R, a score 1 is assigned; (ii) if a protocol satisfies both the above 

mentioned requirements, a score 2 is assigned; (iii) if a protocol satisfies none of 

the above mentioned requirements, a score 0 is assigned. Moreover, a score 3 is 

conferred to the best protocols, i.e. those returning at the same time the lowest 

RMSDave value and the highest number of conformers with a RMSD<R. The 

scores are then converted in a color code and the data visualized as a colored 

map (Figure 1A): protocols corresponding to white and light green spots are not 
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suitable for the system under consideration, dark green spots highlight good 

protocols, whereas blue spots identify the best among the tested ones. 

The IEMs are based on the analysis of ligand-protein interactions and are 

derived as follows. Firstly, per residue electrostatic and hydrophobic 

contributions to the interaction energy (denoted IEele and IEhyd, respectively) 

are computed for residues surrounding the binding site or known to play a role 

in the binding. The analysis is performed for both the crystallographic binding 

modes and the docking poses. These pieces of information are then graphically 

transferred into heat-like maps reporting the key residues involved in the binding 

with the considered ligands along with a color code reflecting the quantitative 

estimate of the occurring interactions (the more intense the color, the stronger 

the interaction). The comparison is therefore based on the quality of the 

interactions in terms of number of established interactions and their relative 

strength among the X-Ray binding mode and the generated docking poses 

(Figure 1B).  

The main advantage of the proposed pipeline resides in the full 

automation of the benchmark procedure: the user is provided with pre-compiled 

input files for several docking programs, thus minimizing the required expertise 

to carry out the benchmark study. To this aim, the results are presented as easy 

to interpret colored maps enabling a fast graphical inspection of large amount of 

data. The results are analyzed on the basis of the above described quality 

descriptors. 

 

BBiinnddiinngg  MMooddeess   IInnssppeecc tt iioonn::   tthhee  DDyynnaammiicc   SSccoorr iinngg  FFuunncc tt iioonn  ((DDSSFF))   

The docking approach suffers from several limitations.20 Although is a 

valuable method to get insights on the final stage of ligand-protein recognition, it 

lacks the description of two fundamental aspects that might play a significant 

role in ligand binding: water molecules mediated interactions and protein 

flexibility. To complete the description provided by the docking method with 

such contributions, we have recently developed the “dynamic scoring 

function”(DSF), an approach that enables to follow the dynamical evolution of a 
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docking pose in a realistic environment, i.e.the solvated membrane embedded 

ligand-protein complex.[21] The DSF provides a dynamic estimate of both the 

ligand position and the strength of the interaction network while accounting for 

the interplay of water molecules and protein side-chains flexibility. The 

procedure envisages the dynamic selection of residues within a range of 4.5 Å 

from the ligand during the MD simulation, starting from a previously obtained 

docking pose. The DSF is the cumulative sum of electrostatic and hydrophobic 

contributions to ligand-protein interaction (DSFele and DSFhyd, respectively) and 

is calculated at frames extracted every 100 ps as follows:  

 

DSFele = IEelet=0

n
∑          (1) 

DSFhyd = IEhydt=0

n
∑          (2) 

 

The DSF value corrected for the ligand fluctuation (RMSD) with respect to the 

starting position yields the weighted DSF (wDSF), a number that highlights 

differences between stable and unstable poses. The corresponding weighted 

electrostatic and hydrophobic DSFs (denoted as wDSFele and DSFhyd, 

respectively) are therefore obtained as reported below: 

 

wDSFele =
IEelet=0

n
∑
RMSD

         (3) 

wDSFhyd =
IEhydt=0

n
∑
RMSD

         (4) 
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Figure 1. Schematic representation of the developed tools: A) Protocol Score; B) 

Interaction Energy Maps (IEMs); C) RMSD weighted Dynamic Scoring Function 

(wDSF); D) Water Fluid Dynamics (WFD) maps; E) Differential WFD maps; F) 

Ligand-receptor interaction energy landscape from supervised MD (SuMD) simulations. 

The figures were adapted from the original papers.18,21,27,35  
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The DSFs can be computed during the MD simulations or performed as 

a post-processing procedure, so that in principle any trajectory that has been 

previously produced can be re-analyzed with this approach. It can be regarded as 

an alternative to conventional scoring functions, as it is able to take into account 

both the complex flexibility in the membrane environment as well as water-

driven interactions. The resulting graphs (Figure 1C) obtained by plotting the 

DSFs against the simulation time enable a graphical comparison of the relative 

stability of docking poses. This representation can help in detecting and 

validating the feasibility of alternative binding conformations proposed by the 

docking algorithm. We have recently exploited this feature to support an 

apparently less plausible binding mode of a series of 5-alkylaminopyrazolo[4,3-

e]1,2,4-triazolo[1,5-c]pyrimidine at the hA3 AR.22 Moreover, we tested the 

applicability of our approach by taking part in the community- wide 2013 GPCR 

Dock Assessment.23 Among the proposed targets, we focused on the 

5HT2B/ergotamine complex, whose X-Ray structure has been released after the 

predictions were submitted. Therefore we tested the applicability of our tool to 

homology models of a system on which our laboratory did not hold expertise. 

We submitted several alternative ligand-protein complexes suggested by the 

docking protocol to membrane MD simulations and selected the best final poses 

according to the outcomes of the DSFs analysis. Our predictions ranked 8th 

among 254, suggesting the portability of our approach to homology models as 

well as to other GPCRs.23 

 

AA  CClloosseerr   LLooookk  aatt   WWaatteerr   MMoollee ccuull eess ::   WWaatteerr   FFlluuiidd  DDyynnaammiiccss   ((WWFFDD))  MMaappss  

It is generally recognized that water molecules contribute to protein-

ligand binding in at least two ways: they either stabilize the complex by forming 

hydrogen bond networks,24 or are replaced by the ligand once the complex is 

formed.25,26 It is therefore crucial in a drug design process to be able to 

distinguish between water molecules that mediate protein-ligand interactions and 

those that can be targeted for being displaced. To this aim, we have very recently 

tuned a tool that inspects the time-dependent variation of fluid dynamics 
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properties of water molecules as a consequence of the binding event by means 

of MD simulations.27 Our approach detects structural water molecules inside the 

orthosteric binding site of the receptor and collects these pieces of information 

in a bi-dimensional graph, that we called water fluid dynamics (WFD) map. 

Unlike other existing MD based methodologies,28,29 our approach is aimed at 

localizing protein “hot-spots” – i.e. regions where water molecules playing a key 

role in ligand binding mostly reside – rather than estimating their binding affinity. 

The WFD maps have been therefore mainly conceived as qualitative tool to 

drive ligand design to avoid substituents disrupting key water molecules’ 

networks.  

The WFD maps are derived as follows: residues within a range of 5 Å 

from the ligand are selected and a box surrounding the binding site is created 

and split into a threedimensional grid. During the MD simulations the diffusion 

of water molecules in each grid cell is followed. The data are acquired by saving 

the MD trajectories at regular intervals (every 10 ps) and by projecting the 

averaged position of water molecules showing a RMSF value below 1.4 Å into a 

bi-dimensional grid. The overlap of these grids yields a map (Figure 1D) with cell 

colored according to the residence time of water molecules on a 0–100% scale. 

White zones (0%) are occupied by water molecules with a residence time 

equivalent to bulk, whereas blue regions (100%) are occupied by trapped water 

molecules showing the maximum residence time of the considered trajectory. 

The maps allow a fast graphical identification of water distribution inside the 

orthosteric binding pocket. Moreover, “differential” WFD maps representing by 

a color code the enrichment or displacement of water molecules as a 

consequence of ligand binding (Figure 1E) are derived by comparing the WFD 

maps of the receptor in the apo and bound states. 

 

EExxpplloorr iinngg  tthhee  LLiiggaanndd--RReecceeppttoorr   RReeccooggnnii tt iioonn  PPrroocceessss ::   tthhee   

SSuuppeerrvvii sseedd  MMoollee ccuullaarr  DDyynnaammiiccss   ((SSuuMMDD))  AApppprrooaacchh  

One of the most challenging tasks for ligand-GPCRs modeling is the 

prediction of the recognition pathway, an event which knowledge would ease the 
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development of drug candidates with better pharmacodynamic profiles. 

Unfortunately, the recognition of a ligand by a receptor is a process hard to 

simulate as it requires classical MD experiments in a long microsecond time 

scale.14,30,31. To overcome this technical limitation, enhanced sampling methods 

that facilitate the crossing of energy barriers through the introduction of biased 

potentials have been developed.23,33. Another approach,34 induces ligand 

unbinding by applying external forces to the system, thus requiring knowledge of 

the ligand-receptor complex final state. Within this framework, we have recently 

proposed an alternative strategy – the “supervised molecular dynamics” 

(SuMD)35 – that enables to follow the ligand-GPCR approaching path by 

considerably reducing the simulation time scale and without introducing bias. 

SuMD performs standard simulations in which the distance between the center 

of masses of the ligand atoms and the receptor binding site is monitored by a 

tabu-like algorithm. If the location of the binding site is unknown, several 

simulations are run by setting the centers of previously detected cavities. An 

arbitrary number of distance points is collected “on the flight” and fitted into a 

linear function f(x)=mx. The tabu-like algorithm is applied to increase the 

probability to produce ligand-receptor binding events as follows: If the slope (m) 

is negative, the ligand-receptor distance is likely to be shortened and a classic 

MD simulation is restarted from the last set of coordinates. Otherwise, the 

simulation is restored from the original set of coordinates and random velocities 

are reassigned to each atom. The supervision is repeated until the ligand-receptor 

distance is less than 5 Å. 

The results of a SuMD simulation are displayed in a graph reporting the 

interaction energy toward the distance between the ligand and the binding site 

(Figure 1F). This approach can be exploited to analyze binding events to both 

orthosteric and allosteric sites and to assist the design of site-directed 

mutagenesis experiments in order to infer the role of specific residues on the 

molecular recognition process. 
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Application to Drug Design 

To explain the applicability of the described tools, we discuss here as case 

study the comparison between ZM 241385 and caffeine, a strong and a weak 

hA2A AR binder with pKD values 9.18.0.23 and 5.31.0.44, respectively.36 

Among the hA2A AR available crystal structures we have selected the two co-

crystallized with the ligands of interest identified by the following PDB IDs: 

3EML and 3RFM.36,37. The starting point of the study is the evaluation of the 

reproducibility of the X-Ray binding modes through docking calculations. To 

accomplish this task we compare the IEMs computed for the best performing 

docking protocols. We then proceed by evaluating the dynamic evolution of 

alternative binding modes proposed by the docking algorithm, thus imaging the 

common case where X-Ray structures are not available for comparison. As 

anticipated, MD simulations allow taking into account the flexibility of the 

receptor and the role of water molecules in the binding. A more careful 

inspection of water dynamics is then performed by deriving differential WFD 

maps from the computed trajectories of a selected docking pose for each 

structure. Finally, we move outside the receptor and try to reproduce the binding 

pathways from the extracellular side through SuMD experiments. 

 

AAsssseessss iinngg  tthhee  RReepprroodduucc iibbii ll ii ttyy   oo ff   aa  BBiinnddiinngg  MMooddee ::   IIEEMMss  CCoommppaarr ii ssoonn  

We start our case study by assessing the performance of a previously 

selected docking algorithm through IEMs inspection.18 Figure 2 displays the 

comparison between the computed IEMs for the two considered structures. As 

shown, the binding mode of ZM 241385 (3EML, Figure 2A) encompasses a 

tight interaction network that is correctly reproduced by the majority of the 20 

generated poses. On the other hand, the caffeine binding mode (3RFM, 

Figure2B) is more challenging to be reproduced and implies a lower number of 

less intense interactions with the binding site residues. The comparison of IEMs 

therefore helps evaluating in a fast graphical fashion both the docking protocol 

performances and the reproducibility of X-Ray observed binding modes. 

Interaction patterns without interruptions are clue of binding modes easy to 
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reproduce and indicate good protocol performances, whereas discontinuous 

patterns suggest binding modes challenging to be predicted and unsatisfactory 

protocol performances. 

 

FFooll lloowwiinngg  tthhee  DDyynnaammiiccss   oo ff   LLiiggaanndd--rreecceeppttoorr   IInntteerraacc tt iioonnss ::wwDDSSFFss  PPrrooff ii ll eess   

When the X-ray structures of the ligand-protein complex of interest are 

not available, usually a modeler is asked to select among several feasible binding 

modes suggested by the docking protocol slightly differing for the assigned 

scores. How to recognize the solution best approaching the “real” binding 

mode? Figure 3 displays the exercise we have conducted to address this issue: in 

order to identify as many different as possible binding modes, we forced the 

docking protocol to return ten poses that differed in terms of RMSD for at least 

1.75 Å.27 Nevertheless, the protocol assigned to the generated conformations 

scores differing at most for ten units. We subjected each docking pose to MD 

simulation and evaluated the wDSFs. Figure 3A–B displays the results for the 

two considered structures: the different values of both the cumulative 

electrostatic and the hydrophobic contributions reflect the different affinities of 

the two binders. In particular, ZM 241385 exhibits higher absolute values for 

both contribution types consistently with its higher affinity for the receptor. 

Moreover, for both structures, the wDSFs trends enable to graphically recognize 

the pose that best reproduces the X-ray observed binding mode, i.e. the one 

showing the slope with the highest absolute value. 

 

WWhhaatt   AAbboouutt   tthhee  RRooll ee   oo ff   WWaatteerr   MMoolleeccuull eess??  WWFFDD  MMaappss  IInnssppeecc tt iioonn  

A detailed inspection of the WFD maps of the two considered 

compounds further contributes to explain their different binding affinities to the 

hA2A AR. The WFD map for the ZM 241385 complex (Figure 4A) highlights 

the presence of water molecules bridging the aromatic scaffold to key residues in 

the binding site, namely Tyr9, Glu13, His278, Asn253, and Glu169.27 The 

interactions with some of those residues were already detected from the docking 

pose, whereas other ones arose from MD simulations. The differential WFD 
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map (Figure 4B) highlights that the ligand displaces water molecules close to 

Thr88 while binding. The WFD map corresponding to the caffeine complex 

(Figure 4C), instead, shows a high propensity of bulk water molecules to solvate 

the fragment-like compound.27 This is a direct consequence of the lack of strong 

interactions with the residues of the binding site detected during the MD 

simulation and aid explaining the lower affinity of the compound. 

 

 
Figure 2. Comparison of IEMs for two hA2A AR ligands: ZM 241385 (A) and caffeine 

(B). While ZM 241385 establishes a strong interaction network conserved among the 

20 generated poses, caffeine finds lower number and less intense interactions. IEele 

values: kcal Å-1 mol-1, IEhyd values: arbitrary units. The figures were adapted from the 

original papers.18 
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OOnn  tthhee  EExxttrraaccee ll lluullaarr  SSiiddee  oo ff   hhAA22AA  AARR::  tthhee  SSuuMMDD  AApppprrooaacchh  

On its way to the orthosteric binding site, the ligand might interact with 

the so-called meta-binding sites,38 which in some cases, may coincide with 

possible allosteric sites. The SuMD path we have computed for ZM 241385 

highlights two major interaction sites: the second and third extracellular loop 

(EL2 and EL3, respectively, Figure 5A).35 As depicted in the diagram in Figure 

5B, although a higher interaction (less favorable) energy is associated to these 

metabinding sites, they seem to play a role in tuning the correct orientation of 

the ligand scaffold while approaching the orthosteric site. The EL3 also takes 

part in the caffeine recognition pathway (Figure 5C),35 which, however, lacks 

strong interactions with the orthosteric site (Figure 5D). The SuMD simulations 

thus recognize the critical role of the hA2A AR extracellular loops in the ligand 

recognition process, role that has been postulated in the past by using site-

directed mutagenesis.39,40 We have recently applied the SuMD approach to 

interpret the binding of two challenging ligands: (i) the natural agonist and a (ii) 

imidazoquinolinamine derivative acting as positive modulator (LUF6000). The 

binding of the natural agonist adenosine at the hA2 AR revealed a possible 

energetically stable meta-binding site.41 The SuMD simulations suggested at least 

two possible mechanisms to explain the available experimental data for the 

positive allosteric modulation mediated by LUF6000 toward the hA3 AR.42 

 

Summary and Outlook 

Through this paper, we have surveyed the recent advances carried out by 

our research groups in modeling the ligand- GPCRs recognition process. The 

crystallographic revolution of the last decade, on one side, and the advent of 

graphics processing units (GPUs) in the molecular modeling field, on the other 

side, allowed us to tune several tools to assist the drug design procedure. 

The proposed approaches enrich the pool of molecular modeling 

techniques currently available to disclose the factors influencing the ligand-

GPCRs recognition process and exploit two computational methodologies 

extensively used by modelers such as molecular docking and membrane MD 
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simulations. The majority of the methods herein presented are conceived as 

post-processing procedures, so that in principle any docking output or MD 

trajectory previously obtained can be rapidly re-analyzed using these tools. 

Moreover, the full automation of the procedures as well as the presentation of 

the results as easy to interpret colored maps are aimed at broadening their 

applicability within the scientific community encouraging non-expert users to 

approach them. A different philosophy is instead at the basis of the SuMD 

approach, which introduces a supervision of the MD trajectory through a tabu-

like algorithm to speed up the computation time required to inspect the ligand- 

GPCRs recognition event. The comparison between ZM 241385 and caffeine, a 

strong and a weak hA2A AR antagonists, has been presented as case study to 

explain the usefulness and potentiality of our approaches. 

As a future perspective we foresee to extend and improve the 

applicability of these computational tools to address other fascinating open 

questions in GPCRs field. We would like to summarize some of the hottest 

topics in the area: a) clarify at the molecular level the orthosteric and the 

allosteric control mediated by different binders on GPCR functionality; b) 

elucidate the implication of phosphorylation and glycosylation in both ligand 

binding and receptor activation; c) understanding the physio-pathological 

meaning of monomer-oligomer (homo and/or hetero) receptor equilibrium; d) 

identification of novel second messengers involved in G protein-alternative 

signaling path- ways; e) explore the possibility to perform high-throughput 

SuMD (HTSuMD) simulations for virtual screening applications as well as for 

real-time interpretations of mutagenesis data. 

Concluding, we hope that these computational approaches carefully 

integrated with all other experimental GPCRs competencies will broaden our 

perspectives in several scientific areas from molecular pharmacology to drug 

discovery.  
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Figure 3. wDSFs comparison: A) ZM 241385 wDSFhyd (top) and wDSFele (down); B) 

caffeine wDSFhyd (top) and wDSFele (down). IEele values: kcal Å-1
 mol-1. IEhyd values: 

arbitrary units. For both ligands the boundle of poses subjected to MD are rendered 

coloring pose number 1 in red. The same color scheme is used in the plots to identify 

pose 1 among the others. The figures were adapted from the original paper.21 

 
Figure 4. WFD maps comparison: A) position of water molecules experimentally 

determined for ZM 241385 complex structure; B) differential WFD for ZM 241385 in 

comparison to the apo-state of hA2A AR; C) differential WFD for caffeine in 

comparison to the apo-state of hA2A AR. Receptors are viewed from the membrane side 

facing TM6 and TM7. Side chains of key residues are displayed as gray sticks. Hydrogen 

atoms are not displayed. The figures were adapted from the original paper.27 
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Figure 5. SuMD experiments on hA2A AR. Top: electrostatic and hydrophobic 

contributions to the interaction energy of each receptor residue involved in the binding 

with A) ZM 241385 and B) caffeine. Down: SuMD ligand-receptor interaction energy 

landscape for C) ZM 241385 and D) caffeine. Interaction Energy values: kcalmolÅë1. 

The figures were adapted from the original paper.35 
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The power of molecular dynamics simulation to tackle complicate SBDD 

aspects linked to the intrinsic dynamicity of macromolecular targets, ligands and 

environment at molecular level has been demonstrated in this Ph.D. thesis.  

The SuMD technique showed a broad applicability being able to 

reproduce final bound configurations in good agreement with the experimental 

X-ray crystallographic complexes for both cytosolic and membrane proteins. 

First innovative aspect of this method is the time needed for simulate the 

stochastic event represented by the ligand - protein binding: it falls in the 

nanosecond timescale, while it usually needs microseconds of non-supervised 

molecular dynamics simulation. Moreover, SuMD has the value to allow simulate 

multiple binding events, therefore to sample different putative recognition 

pathway and multiple metastable binding sites that can act as modulators of the 

overall kinetics of the binding, whose quantitative estimation should be the next 

issue addressed by means of the method.  

The importance of the metastable sites, encountered on its way to the 

orthosteric site of the A2A AR, was highlighted for the endogenous effector 

adenosine. More precisely, various protein residues locate on the EL3 and EL2 

participate to the ligand transition from the bulk solvent to the final bound state 

(in accordance with mutagenesis studies). An interesting topic outlined by the 

simulations is the adenosine difficulty to gain a stable orthosteric conformation, 

preferring to experience an ensemble of different orientations. Further 

investigations on this peculiar behaviour are ongoing, considering a recently 

disclosed X-ray crystal structure of the A2A AR bound to an engineered G 

protein[1]: the aim is to determine if an almost completely active receptor 

conformation is able to better stabilize the agonist. 

SuMD outcomes for the PAM LUF6000 on A3 AR, to the better of our 

knowledge, for the first time addresses the allosterically-enhanced agonist affinity 

with the formation of a ternary intermolecular complex, that involves protein, 

agonist and allosteric modulator. This mechanism, if further confirmed, should 

                                            
1 Carpenter B, Nehmé R, Warne T, Leslie AG, Tate CG. Structure of the adenosine 
A2A receptor bound to an engineered G protein. Nature, 536, 104–107. 
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be considered as an alternative way to mediate allosterism, beside the well 

established model that consider protein conformational changes occurring upon 

PAM binding. 

Moving to the last paper presented, the molecular dynamics’ utility in an 

integrated drug design strategy was described. Indeed, it is a useful tool for the 

quality evaluation of molecular docking results as well as a reliable method for 

discriminate strong binders from weak binders, as demonstrated by the example 

of caffeine and ZM241385 on the A2A AR. In our opinion, high throughput 

SuMD simulations should become an important part of SBDD programs. 

Finally, a SuMD-like approach combined to metadynamics is currently 

under development[2], with the aim of sampling unbinding events and to obtain 

useful insights also from ligand- receptor dissociation mechanisms. 
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Adenosine A2A Ligand Binding Kinetics Bottlenecks Explain Their Transition State 
Thermodynamics Properties. Manuscript in preparation.  
 


