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ABSTRACT. 

 

In the last decades, economic and environmental concerns about oil shortage and fossil-

based economy stimulated the need to shift from conventional plastics to bio-based options like 

polyhydroxyalkanoates (PHAs). PHAs are stored in many bacteria as intracellular carbon and 

energy source under limiting environmental conditions. PHAs have a great promise because of their 

material properties comparable to petrol-based plastomers. Although PHAs could have many 

applications, their replacement over the oil-based plastics is limited by their expensive production. 

Therefore, the selection of suitable resources as carbon feedstock for PHAs synthesis and 

extraction/recovery methods of PHAs are the main factors in the entire PHAs production chain, 

contributing up to 80% of the operating cost. 

Cheap and abundant biomass waste streams have been considered as renewable substrates 

for the production of polymers, fuels, enzymes and bulk chemicals. The use of industrial or 

agricultural by-products can be a strategy to decrease also PHAs price. It has been calculated that in 

the European Union (EU), the slaughterhouses produce around 500,000 tons/year of fatty discards, 

which could be used efficiently for the production of PHAs, unfortunately, no bacteria with high 

lipolytic capacity and at the same time ability to accumulate high amounts of PHAs have been 

found. 

Another bottleneck in the PHAs purification steps, is determined by the release of large 

amounts of chromosomal DNA that causes a dramatic viscosity increase and hampers the following 

filtration, centrifugation and PHAs recovery steps. High pressure homogenization (HPH) is one of 

the most widely known methods for large scale cell disruption. HPH is considered environmentally 

friendly since it does not need solvents to mediate an efficient microbial cells disintegration. After 

the HPH application, decrease of viscosity is generally achieved by the supplementation of 

hypochlorite, commercially available nucleases, or heat treatment. Although these methods may be 

applicable in small-scale fermentation systems, they are not environmentally and economically 

suitable for industrial PHAs manufacturing. 

Looking for a cost-effective solution to the lipolytic activity issue, lipolytic genes (lipH-

lipC) from Pseudomonas stutzeri BT3 have been integrated into Cupriavidus necator DSM 545, a 

well-known PHAs producer. The lipolytic enzymes have been proficiently expressed in the 

recombinant strain, greatly increasing the PHAs production from the slaughterhouses fatty wastes, 

indicating that the engineered strain can contribute to increase the economic efficiency of future 

PHAs upstream processing. 
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On the others hands, looking for a cost-effective solution to the viscosity issue, the 

staphylococcal nuclease gene nuc from Staphylococcus aureus has been integrated into the 

chromosomes of two efficient PHAs-producing bacteria, namely C. necator DSM 545 and Delftia 

acidovorans DSM 39.  The viscosity of the lysates of C. necator  recombinant cells was greatly 

reduced without affecting PHAs production, indicating that the engineered strain is expected to 

increase the economic efficiency of future PHAs downstream processing. 
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RIASSUNTO. 

 

Negli ultimi decenni, le preoccupazioni economiche e ambientali in merito alla carenza di 

petrolio e all'economia basata sui fossili, hanno stimolato la necessità di passare dalla plastica 

convenzionale a opzioni convenzionali fondate su biomassa come i poliidrossialcanoati (PHAs). I 

PHAs sono sintetizzati ed immagazzinati  intracellularmente per alcuni batteri come fonti di 

carbonio ed energia in condizioni ambientali limitanti. I PHAs, per le loro proprietà materiali 

paragonabili ai plastomeri a base di petrolio, sono promettenti per sostituire le plastiche sintetiche. 

Sebbene i PHAs possano avere molte applicazioni, la loro sostituzione sulla plastica a base di 

petrolio è limitata dalla loro costosa produzione. Pertanto, la selezione di risorse idonee come 

materia prima di carbonio per la sintesi e il metodi di estrazione/recupero dei PHAs, sono i 

principali fattori dell'intera catena di produzione che contribuiscono con l'80% ai costi operativi. 

Flussi di rifiuti di biomassa sono stati considerati come substrati rinnovabili per la 

produzione di polimeri, combustibili, enzimi e prodotti chimici. L'uso di sottoprodotti industriali o 

agricoli può essere una strategia per ridurre anche il prezzo di PHAs. È stato calcolato che 

nell'Unione europea (UE), i macelli producono circa 500.000 tonnellate/anno di scarti di materia 

grassa, che potrebbero essere utilizzati in modo efficiente per la produzione di PHAs, 

sfortunatamente, nessun batterio con elevate capacità lipolitiche e allo stesso tempo capacità per 

accumulare quantità elevate di PHAs è stato trovato. 

Un altro ostacolo nelle fasi di estrazione del PHAs è determinato dal rilascio di grandi 

quantità di DNA cromosomico che provoca un notevole aumento della viscosità e difficolta le 

seguenti fasi di recupero di filtrazione e centrifugazione. L'omogeneizzazione ad alta pressione 

(HPH) è uno dei metodi più noti per l'interruzione cellulare su larga scala. HPH è considerato 

rispettoso dell'ambiente in quanto non ha bisogno di solventi per mediare un'efficiente 

disintegrazione delle cellule microbiche. Dopo l'applicazione di HPH, la diminuzione della viscosità 

viene generalmente ottenuta mediante l'integrazione di ipoclorito, nucleasi commerciale o 

trattamento termico. Sebbene questi metodi possano essere applicabili nei sistemi di fermentazione 

su piccola scala, non sono idonei dal punto di vista ambientale ed economico per la produzione 

industriale di PHAs. 

Alla ricerca di una soluzione economicamente vantaggiosa al problema dell'attività 

lipolitica, i geni lipolitici (lipH-lipC) di Pseudomonas stutzeri BT3 sono stati integrati in 

Cupriavidus necator DSM 545, un noto produttore di PHAs. Gli enzimi lipolitici sono stati 

notevolmente espressi nel ceppo ricombinante, aumentando la produzione di PHAs dagli scarti 
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grassi dei macelli, indicando che il ceppo ingegnerizzato può contribuire ad aumentare l'efficienza 

economica della futura elaborazione dei PHAs. 

Ad ogni modo, alla ricerca di una soluzione economica al problema della viscosità, il gene 

della nucleasi (nuc) dello Staphylococcus aureus è stato integrato nei cromosomi di due batteri 

efficaci produttori di PHAs (C. necator DSM 545 e Delftia acidovorans DSM 39).  La viscosità dei 

lisati delle cellule ricombinanti di C. necator DSM 545 è stata notevolmente ridotta senza 

influenzare la produzione di PHAs, indicando che il ceppo ingegnerizzato potrebbe aumentare 

l'efficienza economica dei futuri processi di estrazione di PHAs.  
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1. INTRODUCTION. 

 

1.1. Polymers, synthetic plastics and the environment. 

 

Polymers are molecules of large size (macromolecules) and large molecular mass, composed 

by many simpler units (monomers) linked together by covalent bonds also called hydrogen bonds. 

When a polymer is composed by the same monomers, it is called homo-polymer, while the presence 

of different monomers makes it a co-polymer, resulting in different physical-chemical and 

mechanical characteristics (molecular morphologies, stereo-chemical structures, crystallinity, 

molecular weight, and others) (Cowie and Arrighi, 2007). 

Polymers can be of natural origin, namely those produced by living organisms, such as 

proteins, DNA, RNA, cellulose, or synthetic origin, such as polyethylene, polyvinyl chloride, and 

others (Azapagic et al., 2003). 

 

1.1.1. Synthetic plastics. 

 

Synthetic plastics are high molecular weight polymers that contain carbon and hydrogen as 

the main elements, created by a polymerization process of a variable number of monomers. 

In the manufacturing process, plastics are often mixed with additives as dyes, plasticizers, 

stabilizers, fillers and reinforcements resulting in different chemical, physical and mechanical 

properties. Although valuable, this can increase the production costs and produce polluting 

substances at the time of disposal (Gourmelon, 2015). 

The majority of these polymers are solid in their final state but, at some stage of 

manufacturing, they are soft enough to be melted by means of heat and/or pressure. 

Currently, the plastics industry is one of the most important and prosperous in the world, 

increasing production every year (Worm et al., 2017). Worldwide, factories produce approximately 

400 million tons per year of plastic, more than a billion Kg per day. Thousands of machines can, 

collectively, produce plastic soft-drink and water bottles at a rate of nearly 20.000 units/second. 

Economic engines are so powerful that global plastic production tonnage has been doubled in less 

than two decades. Due to the great demand,  the world’s corporations and governments encourage 

further and continuous increase of plastics production in the future (Fig. 1), much more than other 

materials such as metals (Ryan, 2015). 
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Fig. 1. Increase in the world production of plastics from 1950 

to 2010 and future projections up to 2050 (Ryan, 2015). 

 

The increase of synthetic plastics demand is consequence of their commercial versatility and 

characteristics (Selke and Culter, 2016), such as: 

a. lightness: low weight, with a low density (between the ranges of 10 as foams and 3500 

Kg/m
3
 as reinforced plastics); 

b. elasticity and resistance: support great mechanical stress without breaking and recovers its 

original shape once the force is removed; 

c. low coefficient of friction: under friction do not heat up very much, even without 

lubrication; 

d. thermal insulation: low thermal conductivity; 

e. corrosion resistance: support weak acids and salty solutions; 

f. low cost: taking into account the volume, the raw material of plastic is cheaper than metal; 
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g. low electric coefficient: can be used as electrical insulators; 

h. easy to manufacture; 

i. vibration and sound absorbents. 

 Currently, with the new technologies, plastics can be so resistant that they can be used as a 

shield, heat and UV ray resistant. 

According to their resistance to heat, synthetic plastics can be divided in: 

a. thermoplastics: polymers that become flexible above a specific temperature and solidifies 

upon cooling; 

b. thermosets or thermostables: polymers that do not undergo deformation in the presence of 

heat; 

c. elastomers: polymers that allow elongation capacity up to 30 times their normal size, these 

elastomers can be thermoplastic elastomers or thermoset elastomers. 

According to their  mechanical properties, synthetic plastics can be: 

d. rigid: polymers that break immediately in the presence of a bending force; 

e. semi-rigid: polymers that support certain bending force; 

f. flexible: polymers that bear the dubbing, these plastics after a certain time can return to its 

original form. 

According to their optical properties, synthetic plastics can be: 

g. transparent: polymers that let light through, it can be seen through these materials; 

h. translucent: polymers that let a small amount of light pass through, only shadows can be 

seen when looking through; 

i. opaque: these polymers do not let light through. 

 According to their molecular structure, they can be amorphous, semi-crystalline, crystalline, 

commodities or engineering polymers. 

The most used synthetic plastics are reported in Table 1: 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Polymer
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Abbreviation Full name 

ABS Acrylonitrile butadiene styrene 

EPS Expanded polystyrene 

E-PVC Polymerized expanded PVC 

EVA Ethylene-vinyl acetate copolymer 

HD-PE High density polyethylene = low pressure polyethylene 

LD-PE Low density polyethylene = high pressure polyethylene 

MD-PE Medium density polyethylene 

MF Resins or castings melamine-formaldehyde 

M-PVC PVC polymerized in mass 

PA Polyamide 

PB Polybutene 

PC Polycarbonate 

PE Polyethylene 

PEPT Polyethylene glycol terephthalene 

PF Resins or castings melamine-formaldehyde 

PMMA Polymethyl methacrylate 

PMP Polymethyl-pentene 

POM Polyacetal 

PP Polypropylene 

PS Polystyrene 

PSAN Styrene-acrylonitrile copolymers (= SAN) 

PTFE Poloetrafluoroethylene 

PVAC Polyvinyl acetate 

PVC Polyvinyl chloride 

PVCAC Copolymers chloride-vinyl acetate 

PVDC Polyvinylidene chloride 

PUR Polyurethanes 

SAN Styrene-acrylonitrile copolymers 

SB Copolymers styrene-butadiene-polystyrene anti-shock 

S-PVC Polymerized PVC in suspension 

UF Resins or molding compounds of urea-formaldehyde 

PET Polyethylene terephthalate 

Table 1. Most used synthetic plastics and their acronyms (Lozano Olmedo, 2018). 
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1.1.2. Synthetic plastics waste. 

 

Synthetics plastics are mainly derivatives of petroleum, a non‐renewable resource usually 

requiring much energy to obtain some polymers (W. C. Li et al., 2016). Generally, the intensive 

utilization of fossil resources contributes to environmental problems such as global warming or 

greenhouse effects. Therefore, plastics are part of the problem. Indeed, plastics are used only during 

a short time span and after that they are often incinerated, discarded and accumulated, thus 

increasing the atmospheric CO2 concentration or rising the presence of not-degradable material in 

the environment (Braunegg et al., 2004; Jambeck et al., 2015). The accumulation of plastics has 

been increasing: in the USA (5% of the world's population) 500 million of plastics water bottles are 

weekly discarded, almost three million plastic bottles thrown per hour, enough to cover eight 

football fields. The figures for the European Union (EU) are even higher.  

In 2012, 280 million tons of plastic were produced worldwide, with a prevision of an 

increase of 33 million tons by 2030 (http://elplasticomata.com/crisis-global/). In 2010 it was 

appraised that in 192 coastal countries, 275 million metric tons (MT) of plastic waste were 

produced, with around 4.8 to 12.7 million MT entering the ocean. Population volume and the 

efficiency of waste management systems mostly define which countries provide the greatest 

quantities of marine waste plastic. The amount of plastic waste potentially entering the ocean will 

increase by an order of magnitude by 2025 (Romanelli et al., 2014). 

Recycling procedures are not effective and request a high degree of purity and sorting 

accuracy. The costs are high, and recycling has a negative influence on the characteristics of the 

materials, such as an increment in brittleness (Braunegg et al., 2004). In addition to these ecological 

reflections, the value of oil is unpredictably unstable, due to miscellaneous developments in the 

global political situation. This constitutes an aspect of immense uncertainty particularly for the 

vastly petrol‐dependent polymer industry. Currently, the manufacture plastic demands around 5‐7% 

of the fossil feedstock. This fraction is estimated to increase considerably through the next years 

because of the growth of economy, the increase of the population and the improvement of the 

quality of life. Furthermore, the remaining amounts of fossil oil in the earth are changing quickly 

due to innovative systems for tracing and discharging of mineral oils. (Romanelli et al., 2014). 

Taking into account these reasons, scientists have been searching for materials that could 

substitute synthetic plastics, of renewable origin but with similar  physical, chemical and 

mechanical characteristics although not causing negative environmental impact (eco-friendly). 
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1.1.3. Biodegradable plastics. 

 

Worldwide the safe and efficient distribution of food and other products is in continuous 

growth. Moreover, the industry of packaging products and plastic materials is increasingly 

important, in the food, medical and many other areas. Therefore, taking into account the current 

environmental problems previously mentioned, the industrial sectors are more aware to promote 

novel biodegradable plastics production techniques based on renewable resources. In fact, 

sustainable production of polymers could be achieved applying the 'white biotechnology', which 

involves the use of living organisms, or their metabolites and the use of renewable resources as 

carbon source. In this case, the social benefits from common petrol-based polymers to bio-based 

plastics could be enormous, particularly if these are biodegradable and compostable. Certainly, bio-

based materials create fewer greenhouse gases, need lower energy and in their lifecycle produce 

less toxic pollutants compared to fossil products. 

The international standards that certify biodegradable polymers are: 

a. International Standard Organization (ISO) 17088:2012 

b. EN 13432:2002, EN 14995:2006 and EN 14995:2007 

c. ASTM D6400‐12 

ISO indicates that a polymer enters in the biodegradable classification when its chemical 

structure can be modified by the microorganisms action (bacteria, fungi, algae) losing some typical 

properties. Among all its components, less than 1% of non-biodegradable material should be 

present with respect to the dry mass. 

UNI EN 13432:2002 is the European standard on packaging and packaging waste. This rule 

shows how to assess the plastics material compost-ability, while UNI EN 14995:2007 rule shows 

the "schemes of testing and plastic specification", for the biodegradability estimation of material 

during biological treatment and effect on the resulting compound quality. 

UNI EN 13432:2002 says that a compostable material should have the following properties: 

a. biodegradability: the values must be greater than or equal to 90% in not more than 6 months. 

It is measured by evaluating the metabolic digestion of the compostable material into CO2. 

This characteristic is assessed with the standard test method UNI EN 14046 (also published 

as "ISO 14855: biodegradability under controlled composting conditions"). 

b. disintegration: measured by the total disintegration of the polymer in the final compost 

(absence of particles). It uses a composting test pilot scale (UNI EN 14045) that consist of 

incubating the material together with biodegraded organic waste, for three months, and 

passing the compost through a sieve of two millimeters. The particles with greater size are 



23 
 

considered as not disintegrated material and this fraction must be less than 10% of the initial 

mass. 

c. presence of metals and/or other pollutants: presence of heavy metal is very important for the 

use of biodegradable material like compost. The heavy metal level must be very low and 

should not have any adverse effects on the plant growth, quality of the cultivated land, the 

reduction of the agronomic value, pH, volatile solids, nitrogen, phosphorus, magnesium, 

potassium, salt content and others. Plants growth has to be tested by using normal compost 

as positive control (OECD test 208 modified), and compost made with biopolymers low in 

metals. (Müller, 2005). 

According to the previously mentioned principles, three biopolymers types can be considered: 

a. made from renewable raw materials (bio‐based) and biodegradable. 

b. made from renewable raw materials (bio‐based) but not biodegradable. 

c. made from fossil fuels and biodegradable. 

Although the three categories are considered biopolymers (European Bioplastics 

Association, 2008), to find solutions for most of the problems mentioned in the paragraph 1.1.2., the 

most suitable strategy is to make polymers from renewable raw materials (bio‐based) and 

biodegradables (Fig. 2). 

The bio‐based and biodegradables polymers can also be divided into three main types 

according to their origin and production (Fig. 3): 

a) From protein biomass: Polymers directly extracted/recovered from biomass (proteins such 

as casein and gluten, lipids like triglycerides and polysaccharides such as starch and 

cellulose). Thermo‐plastic starch constitutes more than 50% of the bioplastic market, being 

the most used. In the manufacturing process, in order to facilitate the thermo-plastic process, 

flexibiliser and plasticizer can be added in varying amounts so that the properties of the 

material can be tailored to specific needs. Industrially, starch based bioplastic are often 

blended with biodegradable polyesters, mainly starch/polycaprolactone or starch/Ecoflex 

(polybutylene adipate‐co‐terephthalate produced by BASF) (BASF, Germany; PHBISA, 

Brazil); these blends remain compostable. Other producers, such as Roquette, have 

developed another strategy based on starch/polyolefin blends no longer biodegradables, but 

displaying a lower carbon footprint compared to the corresponding petroleum based plastics 

(Anne, 2011). 
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Fig. 2. Bioplastics classification (European Bioplastics Association, 2008). 

 

b) from biotechnology: polymers made by classical chemical synthesis using renewable bio‐

based monomers. A good example is PolyLactic acid (PLA), a bio-polyester polymerized 

from lactic acid monomers. The monomers themselves may be produced via fermentation of 

carbohydrate feedstock. PLA is a transparent plastic usually made from corn. Corn starch is 

hydrolysed to glucose, which is transformed into lactic acid and then exposed to 

polymerization (Castro-Aguirre et al., 2016). 

c) from microorganism: bio‐based polymers produced by microorganisms consists mainly of 

polyhydroxyalkanoates (PHAs); PHAs are aliphatic polyesters formed directly by 

microorganisms through fermentation of a variety of carbon sources (eg glucose, fatty acids 

and others). 
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Fig. 3. Different classes of polymers: are bio-based and biodegradable (therefore not including biodegradable 

plastics from petrochemical resources and non-biodegradable partly or fully bio-sourced plastics) (Bugnicourt et 

al., 2014). 

 

Some oppositions arose in the public opinion on the PLA biopolymers production, mainly 

about the use of genetically modified corn as feedstock, the inclusion of potentially harmful 

compounds and the recycling problems, since PLA can contaminate the recycling of Polyethylene 

terephthalate (PET), because these materials are very similar and difficult to differentiate. Some 

biopolymer are very expensive, limiting large-scale industrial production. To maximize the global 

benefits of biopolymers, these problems need to be treated without obstructing their commercial 

practicability. This will probably need a mixture of policy motivations and regulations, private and 

public engagement and support, market advance supporting economic, environmental and social 

aims. 

Present investigations in biodegradable polymers relate principally to the production 

scaling‐up, the improvement of product properties and the production costs reduction.  

PHAs are attracting the interest of the scientific community and the industries because of 

their promising chemical, physical and mechanical properties, they are bio‐based polymers, 100% 

biodegradable, compostable, and they can be also produced from a wide range of different cheap 

by‐products. 

 

Main classes of bio-based and 
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1.2. Polyhydroxyalkanoates (PHAs). 

 

PHAs are polyoxoesters of hydroxyalkanoic acids. Their existence in bacteria was first 

reported decades ago (Lemoigne, 1923). Nowadays, it is well established that PHAs, synthesized by 

some bacteria and archaea as intracellular storage compounds under unfavourable conditions (see 

Fig. 4), serve as carbon and energy reserve (Penczek, 2018). Usually, the natural condition that 

promote the synthesis of PHAs is when an essential nutrient (nitrogen, phosphorus, oxygen, 

magnesium, among others) is limited, and there are excess of carbon sources (carbohydrates, lipids, 

alcohols or organic acids) (Lee, 1996). 

 

 

 

Fig. 4. Cupriavidus necator DSM 545. A) Cells observed by optical 

microscopy with objective 100X. B) Granules of PHAs as spherical 

cytoplasmic inclusions of variable size. 

 

 

There are microorganisms able to accumulate PHAs as much as more than 90% of their cell 

dry weight, thus taking advantage of this storage material especially in environments with 

fluctuating availability and limitation of nutrients. PHAs-producing bacteria belong to a number of 

different genera (Table 2) and have been found in both aquatic and terrestrial environments, as well 

as activated sludge or other artificial environments. 
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PHAs‐accumulating microbial genera 

Acidovorax Erwinia Oscillatoria
a
 

Acinetobacter Escherichia (wil tipe)
d
 Physarume

e
 

Actinobacillus Ferrobacillus Paucispirillum 

Actinomycetes Gamphospheria Pedomicrobium 

Aeromonas Gloeocapsa
a
 Photobacterium 

Alcaligenes
a,b

 Gloeothecea
a
 Protomonas 

Allochromatium Haemophilus Pseudomonas
a,b

 

Anabaenab
b
 Halobacterium

a,c
 Ralstonia

a,b
 

Aphanothece
a
 Haloarcula

a,b,c
 Rhizobium

a,b
 

Aquaspirillum Haloferax
a,b,c

 Rhodobacter 

Asticcaulus Halomonas
a
 Rhodococcus

b
 

Azomonas Haloquadratum
c
 Rhodopseudomonas 

Azospirillum Haloterrigena
c
 Rhodospirillum

b
 

Azotobacter
a,b

 Hydrogenophaga
a,b

 Rubrivivax 

Bacillus
a,b

 Hyphomicrobium Saccharophagus 

Beggiato
a
 Klebsiella (recombinant) Shinorhizobium 

Beijerinckia
b
 Lamprocystis Sphaerotilus

a
 

Beneckea Lampropedia Spirillum 

Brachymonas Leptothrix Spirulina
a
 

Bradyrhizobium Methanomonas Staphylococcus 

Burkholderia
a
 Methylobacterium

b
 Stella 

Caryophanon Methylosinus Streptomyces 

Caulobacter Methylocystis Synechococcus
a
 

Chloroflexus Methylomonas Syntrophomonas 

Chlorogloea
a
 Methylovibrio Thiobacillus 

Chromatium Micrococcus Thiococcus 

Chromobacterium Microcoleus Thiocystis 

Clostridium Microcystis Thiodictyon 

Comamonas
a,b

 Microlunatus
b
 Thiopedia 

Corynebacterium
b
 Moraxella Thiosphaera 

Cupriavidus
a,b

 Mycoplana
a
 Variovorax

a,b
 

Cyanobacterium
b
 Nitrobacter Vibrio 

Defluviicoccus
b
 Nitrococcus Wautersia

a,b
 (today Cupriavidus) 

Derxia
b
 Nocardia

a,b
 Xanthobacter 

Delftia
a,b

 Nostoc Zoogloea
a
 

Ectothiorhodospira Oceanospirillum  

Erwinia Paracoccous  

Escherichia (recombinant)
a
 Paucispirillum  

a
 Detailed knowledge about growth and production kinetics available; 

b
 Accumulation of copolyesters 

known; 
c
 Archaea; 

d
 PHAs found in cell membranes; 

e
 Eukaryotic genera with poly‐b‐malic acid 

(PMA) production known. 

Table 2: PHAs‐accumulating microbial genera (Koller et al., 2010). 
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PHAs particles are deposited as intracellular water‐insoluble inclusions and become 

refractive granules visible to a light‐optical microscope (Rehm, 2007). These granules have a 

typical diameter of 0.2‐0.7 μm and consist of 97.7% PHAs, 1.8% protein (Granule Associated 

Proteins or GAPs) among which are the fasins, intracellular depolymerase, polymerases and 0.5% 

phospholipids (in grey in the diagram) (Bresan et al., 2016). Proteins and lipids form a coated 

membrane around the core region (Fig. 5). 

When in the culture medium the carbon is limited, PHAs producer bacteria activate the acyl-

CoA synthetase, enzyme responsible for depolymerization of PHAs grains. Depolymerized PHAs 

particles, then are oxidized by enzymes of β-oxidation for finally converting them into water, CO2 

and energy, thus providing the cell with an advantage for surviving during starvation periods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Schematic representation of a of PHAs granule (Martínez et al., 2009). 

 

 

1.2.1. Structure of PHAs. 

 

PHAs are molecules with a very complex structure (Fig. 6). They can be omo-polymers of 

different dimensions or co-polymers of various monomers. To date 150 different PHAs have been 

identified (He et al., 1999; Wang et al., 2014). This variety is due to the number of CH2 groups 

present in the chain and the alkyl group in the R position. 
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Fig. 6. Chemical structure of the PHAs and variability of the side chain. 

 

From PHAs principal structure, the alkyl group present in this position varies from methyl 

(CH3) to tridecyl (C13H27) and can be saturated, methylester, cyanophenoxy, cyano, aromatic, 

unsaturated, phenyl, nitrophenoxy, phenoxy, hydroxyl, halogenated, epoxidized or branched 

(Steinbüchel et al., 1992). This aspect determines the different polyesters that are naturally 

obtained; the mechanical and physical-chemical properties such as stiffness, brittleness, melting 

point, glass transition temperature and resistance to organic solvents depend on the monomeric 

composition of the polymer. 

PHAs are classified into two main types according to their monomeric structure (Fig. 7): 

short-chain PHAs (scl-PHAs) obtained from 3 to 5 carbon atoms and medium chain (mcl-PHAs) 

with 6 to 14 carbon atoms. 

Some authors speculate about long-chain PHAs (lcl-PHAs) with more than 14 carbon atoms, 

but there is not enough theoretical and research material to develop this topic. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Common PHAs monomer structures. Short-chain-length monomers: 3-hydroxybutyrate (3HB), 

3-hydroxyvalerate (3HV). Medium-chain-length monomers: 3-hydroxyhexanoate (3HHx), 3-

hydroxyoctanoate (3HO), 3-hydroxydecanoate (3HD), 3-hydroxydodecanoate (3HDD) (Chen, 2010). 
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Type and monomer structures of PHAs are normally very dependent on the strain, the 

fermentation conditions and the substrates used for cell growth (Anderson and Dawes, 1990; Chen, 

2010; Madison and Huisman, 1999). 

Few microorganisms have the ability to produce different PHAs at the same time. In some 

cases, specific chemical substances, also called precursors, are used as substrates or supplements to 

produce different monomers from a single strain. For example butyrolactone and valeric acid are 

used to produce 3-hydroxybutyarate (3HB), 4-hydroxybutyarate (4HB) and 3-hydroxyvalerate 

(3HV). Using mix of the two precursors, poly(3-hydroxybutyarate-co-4-hydroxybutyarate-co-3-

hydroxyvalerate) (3HB-co-3HV-co-4HB) was obtained using Cupriavidus sp. USMAA2-4 strain 

(Aziz et al., 2012). 

However, the physical-chemical and mechanical properties very similar or equal to synthetic 

plastics, depend in turn on the monomers of the biopolymer. For example, PHAs integrated with 

3HB plus 3HV and 4HB or the combination between them, have better physical-chemical and 

mechanical properties than single monomers (El-Hadi et al., 2002; Modi, 2010).  

Among the 150 known PHAs monomers, the most commercially important are mentioned in 

Table 3. 

 

x Type Side chain (R) PHAs Name Nomenclature 

 

x=1 
scl-PHAs 

H Poly(3-hydroxypropionate) 3HP 

CH3 Poly(3-hydroxybutyarate) 3HB 

C2H5 Poly(3-hydroxyvalerate) 3HV 

x=2 

scl-PHAs 

H Poly(4-hydroxybutyrate) 4HB 

CH3 Poly(4-hydroxyvalerate) 4HV 

x=3 H Poly(5-hydroxyvalerate) 5HV 

x=4 H Poly(6-hydroxyhexnoate) 6HHx 

Table 3: Most important PHAs monomers. 

 

1. 3-hydroxybutyrate (3HB): it is the more frequent monomer. It contains methyl group in the 

lateral chain and three atoms of carbons in the principal chain (Fig. 8). 

 

 

 

 

Fig. 8. 3-hydroxybutyrate (3HB). 
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2. 4-hydroxybutyrate (4HB): the principal chain has four carbon atoms but does not have a 

lateral chain (Fig. 9); when forming a copolymer with the 3HB and/or 3HV, this PHAs 

acquire specific mechanical and physical properties.  

 

 

Fig. 9. 4-hydroxybutyrate (4HB). 

 

3. 3-hydroxvalerate (3HV): it presents an ethyl group in the lateral chain, while the principal 

chain is formed with three carbon atoms (Fig. 10). This monomer also forms a copolymer 

with 3HB and/or 4HB. 

 

 

Fig. 10. 3-hydroxvalerate (3HV). 

 

In the present PhD work, the 3HB and 4HB monomers have been taken into consideration. 

 

1.2.2. PHAs synthesis. 

 

There are eight known metabolic pathways adopted by microorganisms to synthesize PHAs 

monomers (Fig. 11). All these pathways pass through the cycle of tricarboxylic acids (TCA), beta 

oxidation and fatty acid biosynthesis (Aldor and Keasling, 2003). 

Acetyl-CoA is the key molecule for PHAs biosynthesis but (Oeding and Schlegel, 1973). 

When the microorganism is in a nitrogen limiting condition, the NADPH/NADP ratio 

increases and as a result, the citrate synthase and isocitrate dehydrogenase enzymes in the 

tricarboxylic acid (TCA) cycle are inhibited. Consequently, the flow of acetyl-CoA towards the 
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TCA is sharply reduced and therefore becomes available for B-ketotiolase and PHAs-synthesis 

(Pathway I) enzymes that convert acetyl-CoA into PHAs (Table 4). This explains why, when 

nitrogen is in sufficient quantities for the microorganism, the synthesis of PHAs does not take 

place: the acetyl-CoA enters the TCA cycle and therefore it is not available for the enzymes that are 

used for the conversion into PHAs (Lee et al., 1995). 

The second pathway (Pathway II) is linked to the absorption of fatty acids by the 

microorganism. Following the β-oxidation of the acyl chains, acetyl-CoA can enter the PHAs 

synthesis pathway. The enzymes involved in this pathway are different: 3-ketoacyl-CoA reductase, 

epimerase, (R)-enoyl-CoA hydratase/enoyl-CoA hydratase I, acyl-CoA oxidase (putative), and 

enoyl-CoA hydratase I (putative). When this route is followed, mcl-PHAs or copolymers of R-

3PHB and PHBHHx are produced (Chen, 2010). 

Pathway III involves 3-hydroxyacyl-ACP-CoA transferase (PhaG) and malonylCoA-ACP 

transacylase (FabD), which help providing 3-hydroxyacyl-ACP to form monomer 3-hydroxyacyl-

CoA, leading to PHAs production under the reaction of PHAs synthase (Sudesh et al., 2000; 

Taguchi et al., 1999; Zheng et al., 2005) . 

Pathway IV employs NADH-dependent acetoacetyl-CoA reductase to oxidize (S)-(+)-3-

hydroxybutyryl-CoA. A high portion of NADPH to NADP+ could enhance the delivery of the 

reductant to nitrogenase in Rhizobium (Cicer) sp. strain CC 1192 (Chohan and Copeland, 1998). 

This can also help the reduction of acetoacetyl-CoA for poly[(R)-3 hydroxybutyrate] (PHB) 

synthesis. 

Pathway V uses succinic semialdehyde dehydrogenase (SucD), 4-hydroxybutyrate 

dehydrogenase (4hbD), and 4-hydroxybutyrate-CoA:CoA transferase (OrfZ) to synthesize 4-

hydroxybutyryl-CoA to form 4-hydroxybutyrate-containing PHAs. Pathway V was reported in 

Clostridium kluyveri (Valentin and Dennis, 1997). 

The pathway VI uses the lactonase with hydroxyacyl-CoA synthase to convert 4,5-

alkanolactone into 4,5-hydroxyacyl-CoA for PHAs synthesis (Valentin and Steinbüchel, 1995). 

Pathway VII is based on the putative alcohol dehydrogenase in Aeromonas hydrophila 

4AK4. In the pathway VII, 1,4-butanediol is oxidized to 4-hydroxybutyrate, then to 4-

hydroxybutyryl-CoA for 4-hydroxybutyrate containing PHAs synthesis (Xie and Chen, 2008). 

Pathway VIII turns 6-hydroxyhexanoate into 6-hydroxyhexanoate-containing PHAs under 

the actions of eight enzymes (Table 4). 
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Fig. 11. PHAs biosynthesis pathways (Chen, 2010). 
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Table 4: Enzymes involved in PHAs biosynthesis (Chen, 2010).  

N° Pathway Abbreviation Enzyme Species References 

1 
 

I 

PhaA b-Ketothiolase 

C. necator (Sudesh et al., 2000) 2 PhaB NADPH dependent acetoacetyl-CoA reductase 

3 PhaC PHAs synthase 

4 

 

Associated way 

PhaZ PHAs depolymerase A. hydrophila 4AK4 (Sudesh et al., 2000) 

5  Dimer hydrolase Pseudomonas stutzeri 1317  

6  (R)-3-Hydroxybutyrate dehydrogenase R. eutropha  

7  Acetoacetyl-CoA synthetase Pseudomonas oleovorans  

8 

 

 

II 

FabG 3-Ketoacyl-CoA reductase Pseudomonas putida KT2442, (Sudesh et al., 2000) 

9  Epimerase A. hydrophila 4AK4, (Mittendorf et al., 1998) 

10 PhaJ (R)-Enoyl-CoA hydratase/enoyl-CoA hydratase I Pseudomonas aeruginosa  

11  Acyl-CoA oxidase, putative   

12  Enoyl-CoA hydratase I, putative   

13 III 
PhaG 

FabD 

3-Hydroxyacyl-ACP-CoA transferaseMalonyl- 

CoA-ACP transacylase 

Pseudomonas mendocina, 

recombinant Escherichia coli 

(Sudesh et al., 2000; Taguchi et al., 1999; Zheng et 

al., 2005) 

14 
IV 

 NADH-dependent acetoacetyl-CoA reductase Rhizobium (Cicer) sp. CC 1192 (Chohan and Copeland, 1998) 

15 SucD Succinic semialdehyde dehydrogenase Clostridium kluyveri (Valentin and Dennis, 1997) 

16 
V 

4hbD 4-Hydroxybutyrate dehydrogenase   

17 OrfZ 4-Hydroxybutyrate-CoA:CoA transferase   

18 
VI 

 Lactonase, putative Mutans and recombinant of (Valentin and Steinbüchel, 1995) 

19  Hydroxyacyl-CoA synthase, putative Alcaligenes eutrophus  

20 VII  Alcohol dehydrogenase, putative A. hydrophila 4AK4 (Xie and Chen, 2008) 

21 

 

 

 

VIII 

ChnA Cyclohexanol dehydrogenase Acinetobacter sp. SE19, (Brzostowicz et al., 2002) 

22 ChnB Cyclohexanone monooxygenases Brevibacterium epidermidis HCU  

23 ChnC Caprolactone hydrolase   

24 ChcD 6-Hydroxyhexanoate dehydrogenase   

25 ChnE 6-Oxohexanoate dehydrogenase   

26  Semialdehyde dehydrogenase, putative   

27  6-Hydroxyhexanoate dehydrogenase, putative   

28  Hydroxyacyl-CoA synthase, putative   
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1.2.3. PHAs properties. 

 

As mentioned above, PHAs fulfil the promising physical-chemical and mechanical functions 

for the replacement of conventional plastics: PHAs are thermoplastics, biodegradable, 

biocompatible, piezoelectric, brittle to elastic, have a Mw between 20,000 to 30 million D and can 

be hydrophobic, permeable or no permeable (to gas or water). 

3HB and 4HB are the monomers of interest in this research work, since their unions form 

polymers with great interest in the medical, pharmaceutical and packaging industry (Amirul et al., 

2008; Mitomo et al., 2001; Norhafini et al., 2017; Valentin and Dennis, 1997). 

High melting temperature and relatively high tensile strength of PHAs are comparable to 

petroleum-based polymers. However, pure PHAs have had only limited use mainly because of its 

intrinsic brittleness (influenced by its slow crystallinity). In fact, the break elongation is very 

different between 3HB and polypropylene (5% and 400%, respectively) mainly affected by their 

structures and molecular weights, giving consequently slow crystallization points (El-Hadi et al., 

2002). Nevertheless, blending PHAs and in particular 3HB with other polymers or plasticizers, can 

offer a chance to improve the process by reducing the processing temperature and lowering the 

fragility of PHAs based plastics (Bugnicourt et al., 2014).  

Recent studies have shown that the combination of two or more monomers of PHAs 

exceptionally improve their characteristics. For example the copolymer, poly(3-hydroxybutyrate-

co-3-hydroxyvalerate) (3HB-co-3HV), exhibits increased temperature of crystallization as 

compared to the homopolymer 3HB. The molecular increase of the 3HV in the copolymer 3HB-co-

3HV, firstly produced a decrease in the melting temperature from 175.4 to 168.5°C, with 3HV 

concentration of 20 mol%. Increase 3HV part shows a typical isodimorphic relationship (Modi, 

2010). poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (3HB-co-4HB) (Che et al., 2018; Ye et al., 

2018) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) (3HB-co-3HV-co-

4HB) (Aziz et al., 2017; Huong et al., 2015; Kaur and Roy, 2015) present also great improvements, 

obtaining generally the physical-chemical properties shown in Table 5. 
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Property* (units) Values 

Tg (°C) 2 

Tm (°C) 160-175 

Xcr (%) 40-60 

E (GPa) 1-2 

σ (MPa) 15-40 

ε (%) 1-15 

WVTR (g
.
mm/m2

.
day) 2.36 

OTR (cc
.
mm/m2

.
day) 55.12 

Table 5: Typical properties of PHAs; *Tg: glass transition temperature, 

Tm: melting temperature, Xcr: crystallinity degree, E: Young’s modulus, σ: 

tensile strength, ε: elongation at break, WVTR: water vapour transmission 

rate; OTR: oxygen transmission rate (Bugnicourt et al., 2014). 

 

1.2.4. Biodegradation of PHAs. 

 

Stored PHAs provide carbon and energy for the organism when it cannot be obtained 

externally. PHAs granules can be hydrolysed producing energy , that allows the microorganism to 

carry metabolic reactions, including cell division (Sudesh and Abe, 2010). In the first investigations 

about the PHAs biodegradation, scientists observed that C. necator H16 (Hippe, 1967; Hippe and 

Schlegel, 1967), Rhizobium sp., Spirillum sp. and Pseudomonas sp. (Hayward et al., 1959), reached 

a maximum accumulation of PHAs after the stationary growth phase followed by a gradual decrease 

of PHAs. Later studies, showed that Legionella pneumophila (James et al., 1999), C. necator H16 

(Handrick et al., 2000) and Rhizobium tropici (Povolo and Casella, 2004) continued to grow for a 

long time after having exhausted all the exogenous carbon, using the 3HB accumulated inside the 

cell as endogenous carbon source. 

Currently, many studies have been carried out to determine the PHAs synthesis and 

biodegradation (Bugnicourt et al., 2014; Urtuvia et al., 2014). It has been shown that this hydrolysis 

can be both extracellular in bacteria and fungi (by extracellular depolymerases) and intracellular in 

bacteria (by intracellular depolymerases) (Sudesh and Abe, 2010). 

Extracellular hydrolysis indicates that some microorganisms (not necessarily PHAs 

producers) can use, as exogenous carbon source, the polymers released in the medium by PHAs 

producer microorganisms that have already finished their life cycle. The ability of extracellular 

hydrolysis is distributed among several species of bacteria and fungi, and depends on the secretion 

of specific enzymes. Poly-3HB-depolymerase hydrolyses the polymers in monomers and soluble 
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oligomers that are used by the cells as nutrients and metabolized in CO2 and water (Jendrossek, 

2005; Mergaert et al., 1994, 1993; Quinteros et al., 1999). This is a direct demonstration of the 

biodegradability of these bacterial polymers and, consequently, goods made up by PHAs. 

Intracellular hydrolysis consists in the endogenous carbon metabolism (Jendrossek, 2005) by 

the action of an intracellular depolymerase (PhaZ1), encoded by phaZ gene (Saegusa et al., 2001), 

which does not have common characteristics in extracellular depolymerases. The PhaZ1 protein is a 

47 kDa protein and is actively expressed. Its activity determines the conversions of poly-3HB in 

oligomers and in 3HB (monomer) (Povolo et al., 2015). 

In addition, PhaZ2 esterase has also been studied; this enzyme is able to hydrolyse 3HB 

linear and cyclic oligomers, but unlike PhaZ1, it is not capable of degrading crystallized poly-3HB. 

However, it has been found that because of the modifications that poly-3HB undergoes during 

industrial production processes, PhaZ2 is able to degrade it with the same intensity and efficiency as 

PhaZ1 (Povolo et al., 2015; Saegusa et al., 2001). It is noteworthy, that, in the stationary growth 

phase, with the presence of exogenous carbon, nutrients and adequate growth conditions in the 

medium, these polymerases remain inactive (Saegusa et al., 2001). 

A PHAs degradation scheme is reported in Fig. 12. Enzymes PhaZ1 and PhaZ2 hydrolyze 

the chain of the amorphous poly-3HB molecule, producing oligomers of 3HB of medium size. Due 

to their hydrophobicity, they remain attached to the granules, then PhaZ2 degrades the free ends of 

the oligomers bound to the grains resulting the total hydrolysis and releasing  H2O, CO2 and energy 

(Kobayashi et al., 2003). 

 

 

Fig. 12. Poly-3HB intracellular hydrolysis by PHAs producer bacteria 

(Reinecke and Steinbüchel, 2009). 
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1.3. Industrial production of PHAs. 

 

Many years of research have led to the improvement of PHA production on a large scale, 

reaching the manufacture of homopolymers of 3HB, copolymers of 3HB and 3HV, 3HB and 4HB, 

as well as copolymers of 3HB and 3HHx and small quantities of PHAs medium-chain-length. Some 

companies are known to be engaged in PHAs production, among them Kaneka in Japan, P&G 

Chemical, BP and Metabolix in USA, Monsanto and others. Monsanto, in its Zeneca plant , has a 

production capacity of 660000 Lb/year of PHBV that is expected to increase in the coming years. 

However, to rapidly increase the global production of PHAs , it is necessary to reduce the 

manufacturing cost. Therefore, it is very urgent to develop low-cost PHAs production technology 

(Reddy et al., 2013). 

 

1.3.1. Methods and strategies of PHAs production. 

 

There are several industrial methods of PHAs producing of one, two, three and up to four 

step as reviewed in (Burk et al., 2011), but in this work we will only focus on two methods: 

―The discontinued (batch) and continuous (fed-batch) cultivation method‖. They are very 

commonly used processes; the choice depends on the microorganism used in the process. 

Microorganisms can be in fact divided into two groups, based on the culture conditions required for 

PHAs synthesis: the first group of bacteria requires the limitation of an essential nutrient such as 

nitrogen, phosphorus, magnesium, potassium, oxygen or sulfur, and an excess carbon source (for 

example C. necator, Pseudomonas oleovorans among others). The second group of bacteria does 

not require nutrient limitation for PHAs synthesis (Alcaligenes latus, a mutant strain Azotobacter 

vinelandii and recombinant E. coli harboring the A. eutrophus PHAs biosynthesis operon) and can 

accumulate polymer during growth (Philip et al., 2007; Quillaguamán et al., 2010; Reddy et al., 

2003). 

During these production processes, pure cultures are usually used in a sterile medium to 

avoid competition for the substrate and the growth of non-PHAs producing bacteria. 

Both processes generally consist of three phases: biomass production, PHAs accumulation 

and finally the extraction/recovery of PHAs. 

For the bacteria of the first group, the two-step method is normally used; the procedure can 

be carried out in one or two different bioreactors. In the step-one (biomass production) 

microorganisms are grown in a cultural medium with optimal conditions (nutrients, pH, oxygen, 

carbon, temperature and others) in order to obtain the highest cells number to be used later on PHAs 
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production. Then, the cells undergo the step-two (PHAs accumulation) where the cells are 

transferred into a cultural medium (same or different from step-one) with limited essential nutrients 

(not optimal) but with high amount of carbon (Fig. 13a). In step-two PHAs accumulation is 

promoted, there is not cell growth, but the weight and cell density increases due to the PHAs cell 

content (Bugnicourt et al., 2014; Lee, 1996; Philip et al., 2007; Reddy et al., 2003). Both step can 

be realized in the same bioreactor but there must be optimal relationships among carbon source, 

other nutrients and fermentation time,: for example a premature limitation of nutrients will result in 

both low final cell number and PHAs quantity or if application of nutrient limitation is delayed too 

long, at the end of the process, cells will not contain high amounts of polymer, even though high 

cell concentrations is achieved (Anjum et al., 2016; Atlić et al., 2011; Kim et al., 1994). 

C. necator, the bacterium currently most employed for the commercial production of 3HB 

and P(3HB-co-3HV), accumulates a large amount of polymer (up to 80% of cell dry mass) when 

nitrogen or phosphorus is completely depleted (Atlić et al., 2011). However, many other bacteria 

belonging to the first group, such as P. extorquens and P. oleovorans, produce PHAs more 

efficiently when a nutrient is limited but not completely absent (Preusting et al., 1993; Suzuki et al., 

1986; Villano et al., 2014; Wang et al., 2012). 

In the bacteria belonging to the second group, the PHAs production is elaborated in a single 

fermentation (Fig. 13b). The nutrient feeding strategy is crucial to the success of PHAs production. 

Cell growth and PHAs accumulation need to be balanced to avoid incomplete accumulation of 

PHAs or premature termination of fermentation at low cell concentration. There is an interesting 

relationship between the residual cell concentration and PHAs content. Since PHAs are 

accumulated in the cytoplasm, the residual cell concentration will determine how much PHAs can 

potentially be produced. A high PHAs content with a low residual cell concentration will result in a 

low final PHAs concentration and productivity. A high final cell concentration with a low PHAs 

content will also reduce the final PHAs concentration, productivity and yield. A high residual cell 

concentration with a high PHAs content will give the best results (Lee, 1996; Preusting et al., 1993; 

Suzuki et al., 1986). 
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Fig. 13. PHAs production methods by: a) Bacteria of the first group (for example C. necator), 

using a two-steps PHAs production method with two bioreactors and b) bacteria of the second 

group (for example Alcaligenes latus), using a single bioreactor. 

 

 

1.3.2. PHAs extraction/recovery. 

 

After PHAs production, biopolymers must be extracted and recovered. Since PHAs is an 

intracellular product, cell pre-treatment and extraction/recovery methods are required. The 

extraction/recovery method could account for up to 40% of the overall manufacturing cost. 

Therefore, the downstream process of PHAs extraction/recovery is one of the key steps to ensure 

profitability of the system. Moreover, it must be eco-friendly and efficiently preserve material 

quality (Anis et al., 2013; Koller et al., 2013).  

There are some factors influencing the choice of PHAs extraction/recovery method: type of 

microorganism (varying cell membrane fragility), type of PHAs (short, medium or long-chain-

length-PHAs), PHAs load (content) in the biomass, purity required in accordance with the polymer 

application, availability and disposability of chemicals used and impact on the PHAs molecular 

weight (Koller et al., 2013). PHAs extraction is the major operation during recovery; therefore pre-

treatment and purification steps can be added to improve the cell disruption process or to obtain 

PHAs of higher purity. 

PHAs recovery includes three steps, i.e., pre-treatment, extraction/recovery and purification 

(Fig. 14) (Abdullah, 2015). 
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HPH: high pressure homogenization. 

Fig. 14. General method of PHAs recovery (modified by Abdullah, 2015).  

 

In the scientific literature several PHAs extraction/recovery methods are reported (see Table 

6); the most important are: 

 

1. Solvent extraction. 

Usually for the extraction, halogenated solvents such as chloroform, dichloromethane and 

polychlorinated ethane are used. These solvents weaken the cell membrane and subsequently 

dissolve the PHAs (Harrison et al., 1992; Ramsay et al., 1994). In the laboratory, the PHAs-

containing solvents are concentrated by evaporation using Soxhlet apparatus and then  precipitated 

using low molecular weight alcohols, such as methanol and ethanol, at lower temperatures (Hrabak, 

1992; Kessler and Witholt, 1998). 

 

2. Chemical digestion methods. 

The chemical approach is based on the solubilisation of non-PHAs cellular mass (NPCM) 

(Furrer et al., 2007). Instead of dissolving PHAs in a solvent, the digestion method acts by 

removing the surrounding NPCM which results in releasing free-PHAs grains. This is realized 

using chemicals such as surfactants and sodium hypochlorite (NaClO) (Koller et al., 2013). 

 

3. Enzymatic digestion methods. 

The enzymatic digestion uses proteolytic and hydrolytic enzymes such as lysozymes, 

phospholipases and nucleases to digest the biomass. This digestion method doesn’t alter the PHAs 

granules in fact, unlike solvent extraction, the natural morphology of PHAs granules are 
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maintained, which is especially useful when the synthesis of strong fibres is needed (Koller et al., 

2013; Martino et al., 2014). 

 

4. Mechanical disruption method of bacterial cells by using bead mill. 

Bead mill is an equipment with a cylindrical grinding chamber and a rotor inside the 

concentric cylinder to supply agitation. The bead mill is supplemented with cooling water which 

circulates outside the grinding chamber to counteract the high temperatures generated during the 

operation. Bead mill performance is not affected by biomass concentration; therefore, it is highly 

reproducible and feasible when applied on an industrial scale (Martino et al., 2014; I M Tamer et 

al., 1998b). 

 

5. Mechanical disruption method of bacterial cells by high pressures homogenization (HPH). 

The high pressure homogenizer is essentially a positive-displacement pump that forces cell 

suspension through a valve, before impacting the stream at high velocity on an impact ring. 

Operating pressures range up to 1500 bar. This method shows its effectiveness on a large scale as 

the extra pre-treatment is not required. However, it works well over a small range of biomass 

concentrations (Jacquel et al., 2008; Nonato et al., 2001). 

 

6. Supercritical fluid (SCF). 

SCF is widely used and it mainly utilize supercritical CO2, due to its high solubility with 

other compounds, low toxicity, low reactivity and the unique properties of high densities and low 

viscosities. The effectiveness of this extraction method is highly dependent on the optimization of 

the operating parameters, such as temperature, pressure, specificity of the solvent, as well as the 

exposure times (Khosravi‐Darani et al., 2004). 

 

7. Cell fragility. 

This method relies on the fact that the accumulation of PHAs could increase the osmotic 

fragility and weakens the cell wall. Therefore, is possible to manipulate cell fragility by changing 

the composition of the medium to break cell walls and extract PHAs. This was demonstrated for the 

first time, using fish peptone into the medium, which consequently led to fragile cell walls before 

being subjected to extraction with aqueous ammonia (Koller et al., 2013; Page and Cornish, 1993; 

Quillaguamán et al., 2010). 
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8. Flotation. 

The flotation method consists of PHAs recovery by self-flotation of cell debris. It was tested 

after the extraction of various organic solvents, to obtain of 3HB from Zobellella denitrificans 

MW1. The cells were mixed with chloroform at 30°C for 72 h and later subjected to self-flotation 

of cell debris overnight at room temperature, obtaining a recovery of 85% (w/w) and purity of 98% 

of 3HB (Ibrahim and Steinbüchel, 2009). The use of green solvents together with flotation 

technique would add more advantages for the downstream processing of PHAs. Previously, 

selective dissolved-air flotation was also applied to extract mcl-PHAs from the cell debris of P. 

putida (van Hee et al., 2006). The main limitation of dissolved-air flotation is linked to the need of 

several consecutive flotation steps. 

 

9. Aqueous two phase system (ATPS). 

ATPS is formed by mixing two polymers or one polymer and an inorganic salt at low 

concentrations with mix incompatibility. As soon as two immiscible phases coexist, the PHAs 

released in the medium is solubilized in one of the liquids and can be separated (Yang et al., 2008). 

In a recent investigation, B. flexus cells were subjected to enzymatic hydrolysis, then cells were 

filtrated and re-suspended in a salt solution of Polyethylene glycol 8000/phosphate, pH 8.0 and 

28°C, to separate the PHAs of non-PHAs biomass; in this experiment, a PHAs with 97% purity was 

obtained. In addition, the used hydrolytic enzyme was recovered (Divyashree et al., 2009). 

Nevertheless, some elements have to be considered in order to choose a good ATPS recovery 

system, as polymer molecular weight, concentration of polymer-salt, pH, molecular mass, charge 

etc. This method is considered attractive because of the short processing time, low material cost and 

energy consumption, good resolution, high yield and relatively high capacity (Rito-Palomares, 

2004; Yang et al., 2008). However, ATPS is not yet used at industrial scale due to problems such as 

robustness, reproducibility, absence of commercial kits to evaluate ATPS at bench scale as well as 

poor understanding of the mechanism (Rito-Palomares, 2004). 

 

10. Gamma irradiation. 

Gamma irradiation is used on wet cells to support cell disruption and release of PHAs. 

Previous investigation with B. flexus irradiated with gamma rays (10 kGy) and subjected to 

chloroform extraction at room temperature in a short period, resulted in a 54% recovery. It was 

reported that Gamma irradiation offers advantages such as generate optimal rupture of cells at low 

dosage of irradiation, easier recovery of PHAs and low degree of cross-linking (Divyashree and 
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Shamala, 2009). Furthermore, radiation induced cell disruption is independent from chemicals, 

resulting in a relatively contamination free process. The major disadvantages are the length of 

irradiation time and the initial investment costs that hinders industrial scale applications 

(Bhattacharya, 2000). Overall, chemicals (alkaline or acidic solutions, surfactants and organic 

solvents) have been extensively proved and used in most of the recovery methods under different 

operating conditions although enzymatic digestion seems to be more eco-friendly; however, pure 

enzymes are expensive. In order to decrease the cost, some researchers have used microbial cultures 

as the source of the enzymes. For example, the use of Microbispora sp. culture instead of pure 

enzymes, to hydrolyse S. meliloti cells was found to be effective. Some methods like bead mill, 

HDH and supercritical fluid disruption are also eco-friendly since no chemicals are involved in the 

PHAs recovery process but special and costly equipments are often required. The use of gamma 

irradiation has to be fully studied to demonstrate its efficiency (Kunasundari and Sudesh, 2011). 

 

Extraction method Details Strain Results References 

Solvent extraction 

Chloroform (CHCl3) 
Bacillus cereus SPV Purity: 92%; Yield: 31% 

(Valappil et al., 

2007) 

C. necator DSM 545 Purity: 95%; Yield: 96% (Fiorese et al., 2009) 

1,2-Propylene carbonate C. necator DSM 545 Purity: 84%; Yield: 95% (Fiorese et al., 2009) 

Acetone-water process  Yield: 80-85% 
(Narasimhan et al., 

2008) 

Methyl tert-butyl ether 
Pseudomonas putida 

KT2440 
Yield: 15-17.5% 

(Wampfler et al., 

2010) 

Methylene chloride C. necator Purity: 98% (Zinn et al., 2003) 

Non halogenated solvents C. necator  
(Mantelatto and 

Durao, 2013) 

Acetone, room temperature P. putida GPo1 Yield: 94% 
(Elbahloul and 

Steinbüchel, 2009) 

Digestion method 

Surfactant 

SDS Recombinant E. coli Purity: 99%; Yield: 89% 
(Choi and Lee, 

1999) 

Palmitoyl carnitine C. necator, A. latus Purity: 56-78% (Lee et al., 1993) 

Sodium hypochlorite (NaClO) 

C. necator, recombinant E. 

coli 
Purity: 86%; Yield: 93% (Hahn et al., 1995) 

C. necator DSM 545 Purity: 98% (Berger et al., 1989) 

Surfactant- NaClO 

SDS- NaClO 
Azotobacter chroococcum 

G-3 
Purity: 98%; Yield: 87% 

(Dong and Sun, 

2000) 

Triton X-100- NaClO C. necator DSM 545 Purity: 98% 
(Ramsay et al., 

1990) 

Surfactant-chelate Triton X-100-EDTA Sinorhizobium meliloti Purity: 68% 
(Lakshman and 

Shamala, 2006) 
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Betaine-EDTA-disodium salt C. necator DSM 545 Purity:≥96%; Yield: 90% (Chen et al., 2001) 

Dispersion of CHCl3 

and NaClO 
CHCl3 - NaClO 

B. cereus SPV Purity: 95%; Yield: 30% 
(Valappil et al., 

2007) 

C. necator 

recombinant E. coli 
Purity:≥98% (Hahn et al., 1995) 

Selective dissolution 

by protons 
Sulfuric acid C. necator Purity:≥97%; Yield:≥95% (Yu and Chen, 2006) 

Enzymatic digestion 

Microbispora sp culture- CHCl3 S. meliloti Purity: 94 
(Lakshman and 

Shamala, 2006) 

Enzyme combined with SDS-

EDTA 
P. putida Purity: 93% 

(Kathiraser et al., 

2007) 

Bromelain; pancreatin C. necator Purity: 89%; Yield: 90% 
(Kapritchkoff et al., 

2006) 

Mechanical disruption 

Bead mill A. latus  (I M Tamer et al., 

1998b) 
High pressure homogenization A. latus  

SDS-high pressure 

homogenization 
Metylobacterium sp V49 Purity: 95%; Yield: 98% 

(Ghatnekar et al., 

2002) 

Sonification B. flexus Purity: 92%; Yield: 20% 
(Divyashree et al., 

2009) 

Supercritical fluid SC-CO2 C. necator Yield: 89% (Hejazi et al., 2003) 

Cell fragility 

CHCl3 B. flexus Yield: 43% 

(Divyashree and 

Shamala, 2010) 
Sodium hydrolysis B. flexus Yield: 50% 

Alkaline hydrolysis B. flexus Yield: 50% 

Self-flotation of cell 

debris 
CHCl3 Z. dinitrificans MW1 Purity: 98%; Yield: 85% 

(Ibrahim and 

Steinbüchel, 2009) 

Dissolved air flotation 
Enzymatic hydrolysis, 

sonification, flotation 
P. putida Purity: 86% 

(van Hee et al., 

2006) 

Aquerous two phase 

system 
Microbispora sp culture- ATPS B. flexus Purity: 95%; Yield: 50% 

(Divyashree et al., 

2009) 

Gamma irradiation Radiation- chloroform B. flexus Yield: 45-54% 
(Divyashree and 

Shamala, 2009) 

Air classification  
E. coli 

C. necator 

Purity: 97%; Yield: 90% 

Purity: 95%; Yield: 85% 
(Noda, 1998) 

Spontaneous liberation 

list of 
 E. coli Purity:  80% (Jung et al., 2005) 

Table 6. PHAs recovery methods, modified from (Kunasundari and Sudesh, 2011). 
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1.4. BOTTLENECKS IN THE PHAs PRODUCTION CHAIN. 

 

As already reported above, although PHAs are the most promising biopolymers for the 

substitution of the conventional plastics, their large-scale production is limited by several economic 

and manufacturing issues. 

Costs in biopolymer production are mainly determined by the price of required raw 

materials and also by the extraction/recovery technologies: both can approximately account for up 

to 90% the expenses of the entire process. 

 

1.4.1. High substrate costs. 

 

Plastics like PE and PP are produced at a price of less than US $1.3-1.9/Kg. On the other 

hand, PHAs cost about 15-17 times more. In 1995 Monsanto produced and sold the PHAs at around 

US $17/Kg (Fornasiero and Graziani, 2011). Metabolic engineering, improved fermentation 

condition, and higher production capacities were able to reduce the cost to around US $4.9-6.1/Kg 

in 2009, which was still three times higher than the price for PP (DiGregorio, 2009). Therefore, 

PHAs still have a limited market, despite their potential to substitute 33% of commercial polymers 

(Castilho et al., 2009). 

Numerous obstacles hinder cheaper PHAs production: the low petroleum prices due to shale 

gas exploitation. the increased price of glucose from corn starch and glycerol and fatty acids as 

oleic and palmitic, as feedstocks. 

In general, fermentation processes have higher process costs related to lower yields when 

compared to processes in chemical reactors (Dietrich et al., 2017). The type of substrate greatly 

affects both cost and yield of PHAs (Table 7) taking into consideration that the substrate could 

account for up to 50% of the overall manufacturing cost. Therefore, in order to contain the cost, the 

selection of cheap raw material becomes one of the key factors in the PHAs production chain. 
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Substrate 
Substrate price 

(US $ per Kg) 

3HB yield 

(Kg 3HB/Kg substrate) 

PHAs price per Kg of substrate 

[(US $ per Kg)/ (Kg 3HB/Kg substrate)] 

Glucose 
0.493

a
 0.38

b
 1.30 

(0.220
c
)  (0.58) 

Sucrose 0.290
d
 0.40

b
 0.72 

Methanol 0.180
e
 0.43

b
 0.42 

Acetic acid 0.595
e
 0.38

b
 1.56 

Ethanol 0.502
a
 0.50

b
 1.00 

Cane molasses 0.220
a
 0.42

a
 0.52 

Cheese whey 0.071
a
 0.33

a
 0.22 

Hemicellulose 

hydrolysate 

 

0.069
a
 

 

0.20
a
 

 

0.34 

a 
Data taken from Hocking and Marchessault (Griffin, 1994); 

b 
Calculated by multiplying the theoretical yield by 0.8 

(assuming 80% of polymer accumulation) (Yamane, 1993); 
c 

Estimate of the value of hydrolysed corn starch; 
d 

International market price of raw sugar; 
e 
International market price from Chem. J. (Korea). 

Table 7. Effect of substrate cost and 3HB yield on the production cost of 3HB, modified from (Dietrich et al., 2017).  

 

 

1.4.2. Downstream processing costs and hazards. 

 

After PHAs biosynthesis, microbial mass is separated from the cultural medium by well-

established techniques like sedimentation, filtration, centrifugation or, less frequently, flocculation. 

PHAs extraction/recovery from non-PHAs cell mass (NPCM) also known as ―residual biomass‖, 

mainly comprising polypeptides, (phospho)lipids, DNA, RNA, and peptidoglycans (Braunegg et al., 

1998) implies substantial and often underestimated cost aspect, particularly for large scale and 

(semi)industrial biopolymer fabrication (Choi and Lee, 1999). Industrial high usage of dangerous 

solvents and excessive requirement for energy input, are still common features in PHAs 

extraction/recovery, strongly antagonizing sustainability and economic feasibility. Hence, product 

extraction and recovery (downstream processing) displays a decisive process step of PHAs 

manufacturing. 

Extraction using chemicals solvents (chloroform, methylene chloride, propylene carbonate, 

dichloromethane, amounts other) can give very good results (Ramsay et al., 1994) although the 

removal of cell debris in the solution is difficult. Moreover this technique needs large quantities of 

toxic and volatile solvent, which not only increases the total production cost but has a significant 

environmental impact (Choi and Lee, 1999). To decrease the costs and hazardousness non-

halogenated solvents such as lactic acid esters, amides, ketones, acetic acid, acetic acid anhydride, 

tetrahydrofuran (Kurdikar et al., 2000; Nonato et al., 2001) has been also utilized together with 

cyclic carbonates such as ethylene carbonate and propylene carbonate (Baptist, 1962; Koller et al., 

2013; Lafferty and Heinzle, 1979), but unfortunately with unsatisfactory yields. 
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The direct digestion using the hypochlorite solution (Berger et al., 1989), the pre-treatment 

with surfactants followed by the hypochlorite digestion (Ramsay et al., 1990), the enzymatic 

digestion process developed by Zeneca (Holmes and Lim, 1990) or the extraction with chloroform 

and sodium hypochlorite solution (Hahn et al., 1993) seem to be promising alternative. However, 

the large reagents quantities and high costs discourage their uses. 

Mechanical methods (Divyashree and Shamala, 2009; Ghatnekar et al., 2002; I M Tamer et 

al., 1998a) and supercritical fluids (Hejazi et al., 2003) have less environmental impact and high 

performances, although they require a high initial investment. 

Other factors affecting fermentation costs have to be taken into account although less 

significative: the oxygen supply, mainly when PHAs is produced in high-cell-density culture and 

dissolved oxygen often acts as a limiting factor, the quality of water and the energy needed for 

sterilization and incubation. 

Therefore, the selection of economical feedstocks and cheap eco-friendly 

extraction/recovery methods, become the key factors in the PHAs production chain to reduce costs, 

increase production making PHAs competitive with oil-derived plastics . 

 

 

1.5. POSSIBLE SOLUTIONS FOR THE BOTTLENECKS IN THE PHAs 

PRODUCTION CHAIN. 

 

In the last 24 years, and especially from 2012 until now, there has been a huge increase of 

studies aimed at introducing bioplastics into the market at competitive prices in comparison to fossil 

fuel-based plastics (Rodriguez-Perez et al., 2018). 

During this period, scientists mostly focused on the reduction of PHAs production costs. 

Toward such an objective, different strategies have been adopted, such as genetic studies (genetic 

improvement or genetic transformation of strains), optimization of the purification extraction step to 

obtain PHAs with higher economic value and/or promising new applications, implementation of 

continuous processes to diversify the feed streams, re-use of the bacterial biomass generated from 

PHAs production, reduction of the energy consumption during the process, integration into a bio-

refinery system to improve the yield and obtain PHAs from waste streams (Rodriguez-Perez et al., 

2018). 
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1.5.1. PHAs production from wastes as alternative low cost substrates. 

 

The use of alternative substrates as organic wastes for PHAs production, which is also one 

the topics of this research work, has been taken into account as a promising alternative (Koller, 

2016; Povolo et al., 2012). Moreover , the use of industrial by-products takes the advantage of 

decreasing  disposal costs of wastes, obtaining at the same time value-added products (Casella et al., 

2016). A broad range of wastes and by-product streams associated with agricultural, urban and 

industrial sectors can be identified as suitable feedstock for the PHAs biotechnological production ( 

Casella et al., 2016; Du et al., 2012; Koller et al., 2010). Table 8 reports low cost substrates 

successfully used as carbon substrates for PHAs production. A number of interesting results are 

already available starting from these cheap substrates. For example, the use of vegetal residues, 

such as rice bran, pea-shells, chicory roots, potato peels, apple pomace, onion peels, grape pomace, 

animal farm wastes, poultry litter. In addition, the use of industrial wastes was also approached, 

including water streams as wastewater from olive oil extraction process, leguminous processing 

wastewater and fruit processing wastewater. Additionally, low and medium added value by-

products such as cheese whey and olive oil distillate, respectively, have been studied for PHAs 

production (Casella et al., 2016; Koller, 2016; Rodriguez-Perez et al., 2018). Food wastes comprise 

solid wastes, such as spent coffee grounds and food waste composite including boiled rice, cooked 

vegetables, un-cooked vegetables, cooking oil, vegetable peelings, cooked meat, boiled spices and a 

liquid waste such as used cooked oil. Other substrates of non-agro-industrial origin were also 

evaluated, like crude glycerol, oil cake hydrolysate and biodiesel fatty acid by-product from 

glycerol purification. In addition, carboxylic acids contained in glycerol anaerobic digestion 

effluent from 1,3-propanediol production were successfully studied as carbon source (Rodriguez-

Perez et al., 2018). 
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Not specified chemical;
 b 

g PHAs/g VFA; 
c
 Cmmol PHAs/Cmmol substrate; 

d
 g substrate (VFA)/g PHAs; 

e
 Cmol HB/Cmol VFA 0.142 Cmol HV/Cmol VFA; 

f
 Cmol PHAs/Cmol VFA; 

g
 

maximum modelled biomass specific PHAs production rate (Cmmol/Cmmol/h); 
h
 g PHAs per L of initial OMW 0.00758 g/g; Yield: g PHAs/g substrate; * Batch operation; 

+
 Sequential 

operation; 
&
 Continuous operation. 

Table 8. Different wastes streams reported as carbon source for PHAs production, modified from (Rodriguez-Perez et al., 2018).

Reference Culture Employed substrate Operation mode Yield PHAs % 

(Gómez Cardozo et al., 

2016) 

Bacillus megaterium, Bacillus 

sp., and Lactococcuslactis 

Cheese whey, cooking oil 

Crude glycerol 
1Phase: Growth and PHAs production

+
 0.2 87 

(Cruz et al., 2016) C. necator 
Olive oil distillate, cooking oil 

biodiesel fatty acids-by-product 
1Phase: PHAs production* 0.9 62 

(Alsafadi and Al-

Mashaqbeh, 2017)  
H mediterranei Olive mill wastewater 3Phases: Pre-treatment; Growth and PHAs production* 0.009

b
 43 

(Kourmentza et al., 2015)  Mixed culture Olive mill wastewater 
3Phases: Pretreatment; Enrichment under stress conditions and 

PHAs production* 
0.18/0.68 64.4/18.2 

(Campanari et al., 2014)  Mixed culture: activated sludge olive mil wastewater 3Phases: Pre-treatment; Enrichment and PHAs production* 0.86 30 

(Valentino et al., 2015)  Mixed culture Cheese whey 
3Phases: Pre-treatment; feast-famine regime and PHAs production*; 

3 Phases: Pre-treatment; Growth and PHAs production* 

0.28/0.3; 

0.46 

58/75; No 

data 

(Koller et al., 2012) C. necator mRePT  Cheese whey 2Phases: Growth and PHAs production 0.21-2.4
h
 21 

(Pais et al., 2016)  H mediterranei Cheese whey 2Phases: Pre-treatment and PHAs production
+
 0.78 53 

(Colombo et al., 2016)  
Mixed culture: Activated 

sludge 
Cheese whey 

3Phases: Pre-treatment, Enrichment (feast/famine) and PHAs 

production* 
0.9

c
 39 

(Cruz et al., 2015)  
Pseudomonas, C. necator DSM 

428 
used cooking oil 2Phases: Growth and PHAs production

+
 0.41

d
 63 

(Bera et al., 2015)  Halomonas hydrothermalis crude glycerol + oil cake hydrolysate 3Phases: Pretreatment, Growth and PHAs production* 0.75 73.3 

(Ray et al., 2016)  
Pannonibacter phragmitetus 

ERC8 
Crude glycerol 

3Phases: Pretreatment, Isolation and enrichment and, PHAs 

production* 
0.16 64.34 

(de Paula et al., 2017)  Pandoraea sp. Crude glycerol 2Phases: Isolation and Growth and, PHAs production* 
0.16/0.22/0.

05/0.05/0.04 

37/49/12/1

2/10 

(Ntaikou et al., 2014) 
Mixed culture//Pure culture: 

Pseudomonas sp. 
olive-mill wastewater 

3Phases: Pre-treatment, enrichment (acclimation) and PHAs 

production
&
 

7.58 ± 0.06
h
 25 

(Chandrasekhar et al., 

2015) 
Mixed culture: activated sludge 

boiled rice, cooked vegetables, un-cooked 

vegetables (spoiled), cooking oil, vegetable 

peelings, cooked meat, boiled spices 

3Phases: Pre-treatment, enrichment (feast/famine) and PHAs 

production
&
 

0.17 24 

(Romanelli et al., 2014) 
D. acidovorans DSM 39 

recombinant + liph-lipC gene 
slaughterhouse waste 2Phases: Culture grow and PHAs production* No data 28/15/15 

(Riedel et al., 2015) Pure culture : C. necator H16 Waste plant oil and animal fats 2Phases: Culture grow and PHAs production* No data 79-82 
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In 2010 an EU research project called EC-ANIMPOL started. The consortium was 

composed by several European Countries, including Italy (Università di Padova) and coordinated 

by Graz University of Technology (Austria). The main objective of the whole project was to study 

the biotechnological conversion of fats-containing agro-industrial wastes for the eco efficient 

production of high added value products, such as PHAs polymers. This project contemplates the use 

of slaughterhouse wastes as carbon source, taking advantage of their high fat content at the almost 

zero costs. 

In the EU, the amounts of animal lipids from the slaughtering animal process can be 

quantified with more than 500,000 ton/year, of which 450,000 ton are destined to biodiesel 

production and 50,000 ton to crude glycerol production. ANIMPOL project proposed the use of 

these animal fats or the waste from these processes as carbon sources for PHAs production  (Fig. 

15) (Koller and Braunegg, 2015; Titz et al., 2012). 

 

Fig. 15. The ANIMPOL Project: available quantities of waste lipids from the animal processing industry, and 

theoretical attainable quantities of PHAs (Koller and Braunegg, 2015). 

 

Unfortunately, few PHAs-producing strains have the ability to hydrolyse complex fats, 

moreover the microorganisms showing this property accumulate low amounts of PHA from these 

wastes (Romanelli et al., 2014). Hence, the possibility of integrating genes encoding for lipase 

enzymes into the genomes of active PHAs-producing bacteria, has been investigated in the Project. 
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1.5.2. Downstream processing, alternative methods of PHAs extraction/recovery. 

 

Low cost PHAs extraction steps, with high performance and low environmental impact is an 

important guideline to be followed in future research. The current PHAs extraction steps are indeed 

very energy and solvent intensive and cause losses in PHAs. 

Highly pure PHAs can be produced by processes that break the cell and solubilize cellular 

material other than PHAs. Therefore, a simple digestion method obtained by inexpensive chemicals 

or mechanically, could lower purification costs in an environmentally friendly way. 

Mechanical methods are apparently those with the lower environmental impact and 

economic needs (only an initial investment is in fact requested) among all the conventional methods 

that have been studied. 

HPH (high pressures homogenization ) is one of the most widely known methods for large-

scale cell disruption. HPH is considered environmentally friendly since it does not need solvents to 

obtain an efficient microbial cells disintegration (Koller et al., 2013). However, cell lysis causes the 

release of large amounts of chromosomal DNA which results in a dramatic increase in viscosity, 

hampering following filtration and centrifugation steps (Ling et al., 1998; I M Tamer et al., 1998b; 

Van Wegen et al., 1998). Since the efficiency of both filtration and centrifugation is inversely 

related to the viscosity, quick removal of the DNA is crucial (Atkinson and Mavituna, 1991). Drop 

in viscosity is generally achieved by the supplementation of hypochlorite, commercially available 

nucleases, or heat treatment. Although these methods may be applicable in small-scale fermentation 

systems, they are not environmentally and economically suitable for industrial PHAs manufacturing 

(Koller et al., 2013). As a solution to this problem, Boynton et al., 1999, integrated a nuclease-

encoding gene from Staphylococcus aureus into the genome of P. putida . Staphylococcal nuclease 

is readily expressed extracellularly in P. putida strains without affecting PHAs production or strain 

stability. During downstream processing, the viscosity of the lysate from nuclease-integrated P. 

putida strain was reduced to a level similar to that observed for the wild type strain after treatment 

with commercial nuclease (Boynton et al., 1999). 

Recent studies describes the green and sustainable partial recovery and purification of PHAs 

using insects that use the bacteria as feed and excrete PHAs granules in the form of fecal pellets 

since their digestive system is able to assimilate the bacterial cells but not the PHAs (Ong et al., 

2018). Other groups recently proposed the use of 1‐Ethyl-3-methylimidazolium Diethyl Phosphate 

(Dubey et al., 2017), Dimethyl carbonate (DMC) and switchable anionic surfactants (Samorì et al., 

2015), obtaining yields of 60%, 85% and 90%, respectively. These studies indicate the possibility to 

find new , cheaper, easy, fast and eco-friendly ways for PHAs extraction/recovery. 
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1.6. Relevant PHAs producing microorganisms. 

 

In 1923 Lemoigne identified 3-hydoxybutyric acid from B. megaterium; nowadays, we 

know that this is a products of PHB hydrolysis (Volova, 2004). 

Nowadays, more than 150 PHAs types have been identified and more than 300 

microorganisms producing PHAs. However, not all PHA-producing strains have high yields. In the 

seventies, Imperial Chemical Industry was the first company to apply methylotroph 

microorganisms, using methanol as a cheap substrate. Unfortunately, this type of microorganisms 

produced little polymers amounts with a low molecular weight. The company decided to focus on 

Azotobacter sp., but the instability of the Azotobacter sp. strains and the excessive production of 

polysaccharides were the reason of the early abandon of this path. 

Nowadays, Cupriavidus necator and Delftia acidovorans are among the most important 

PHAs producers. 

C. necator is able to accumulate up to more than 80% of PHAs/dry weight and currently it is  

one of the most used industrial species for the production of 3HB (Berezina, 2013). D. acidovorans 

is a well-known wild type bacterium that can efficiently accumulate PHAs containing high molar 

fractions of 4HB (Saito et al., 1996), a very important copolymer that, once blended with 3HV 

and/or 3HB, provides important properties to PHAs material (Romanelli et al., 2014). 

 

1.6.1. PHAs production by Cupriavidus necator. 

 

C. necator has gone through a series of name changes along its history. It was originally 

named Hydrogenomonas eutrophus, then A. eutrophus, Ralstonia eutropha, Wautersia eutropha 

and finally, after a deep characterization in terms of cell morphology, metabolism, GC content, 

phenotyping, lipid composition and 16S rRNA analysis, it was named C. necator. 

It is a non-pathogenic, rod shaped, Gram-negative bacterium, non-spore forming, with 

optimal growth temperature of 30°C. It is a facultative aerobe which can live in both aerobic and 

anaerobic environments, and it has motility due to two flagella. There are differences among strains 

of the same C. necator specie; for instance C. necator JMP 134 has multiple habitats, while C. 

necator H16 has a specialized habitat; however, both strains requires non-salty (not halophilic) 

environments (Slonczewski and Foster, 2013). 

C. necator is nowadays one of the most used in the industrial PHAs production and serves as  

model organism for genetics and control of autotrophic carbon dioxide and hydrogen fixation. It is 

able to accumulate up to 80% of high molecular weight PHAs, to degrade a large list of 
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chloroaromatic compounds, chemically related pollutants, carbohydrates and oils. C. necator is able 

to grow only with hydrogen and CO2 as its only energy and carbon source. When O2 is not present, 

it can use different metabolic pathways to growth, such as denitrification (Slonczewski and Foster, 

2013). 

This microorganism can use different pathways to produce PHAs, depending on the carbon 

sources. It can also produce 4HB and 3HV, but in this case the incorporation of precursors such as 

γ‐ butyrolactone, 1,4‐butanediol, valeric acid, 1-pentanol, among others, is needed (Aziz et al., 

2012). 

As stated earlier, it is able to grow using fatty acids as a substrate, but differently from D. 

acidovarans, C. necator is able to produce only low amounts of lipase enzyme (Koller and 

Braunegg, 2015; Riedel et al., 2015; Verlinden et al., 2011). 

 

1.6.2. PHAs production by Delftia acidovorans. 

 

Initially belonged to the Comamonadaceae family, Comamonas acidovorans was found 

genetically different from Comamonas species, based on 16SrDNA analysis. Therefore, it was re-

assigned to Delftia genus as D. acidovorans. This name refers to the city of Delft, the location 

where the strain was first isolated in 1926. 

It is a Gram‐negative, not spore‐forming bacterium, a straight to slightly curved bacillus, 

which occurs singly or in pairs. It has mobility by means of polar or bipolar flagella; the optimal 

growth temperature is 30°C and is strictly aerobic. The metabolic pathway for PHAs production is 

number II (see paragraph 1.2.2.), linked to the absorption of fatty acids for the biosynthesis mainly 

of 3HB and 4HB, the most important PHAs at industrial level for biomaterial production (Ch’ng et 

al., 2012). 

D. acidovorans can accumulate up to 20% of high molecular weight PHAs with high 

quantities of 4HB. So far, 4HB was found to be incorporated into PHAs of D. acidovorans only 

when precursors such γ‐ butyrolactone and 1,4‐butanediol are provided in the culture medium 

(Mothes and Ackermann, 2005) or when slaughterhouse fatty wastes were used as carbon sources 

(Romanelli et al., 2014). 

Although it is a microorganism that uses fatty acids as carbon sources, it does not have the 

capacity to produce the lipases. Therefore, it cannot directly utilize complex fats to produce PHAs. 

Recent studies have used genetic tools to introduce lipase encoding genes into D. acidovorans DSM 

39, thus making possible the hydrolysis of complex fats (triglycerides) by a genetically modified 

micro-organism (Romanelli et al., 2014). 
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1.7. Lipases. 

 

1.7.1. History of lipases. 

 

Pancreatic juice, extracted for the first time in 1856 by Claude Bernard, was found able to 

hydrolyze insoluble oil droplets, thus obtaining soluble products (Sangeetha et al., 2011). 

From there, mainly animal pancreatic lipolytic extracts were used as the source of lipase for 

commercial applications. Once the demand for lipases could not be met by the supply from animal 

sources, because of pancreas shortage and difficulties in collecting available material, scientists 

began to explore new sources of lipases. 

Bacterial lipases were first observed in 1901 in Serratia marcescens and Pseudomonas 

aeruginosa (Hasan et al., 2006). After their discovery within prokaryotes, microorganisms were 

used as the main source of lipolytic enzymes due to their easy growth and manipulation (Hasan et 

al., 2006). The microbial lipases are often more convenient than enzymes derived from plant and 

animals. Other than from bacteria and actinomycetes, lipases can also be produced by fungi and for 

this reason the current market for microbial lipases became very wide. 

Until now, lipases obtained from fungi are the most used, even if bacteria are constantly 

studied and improved. The manufacturing of microbial lipases needs not only the effective 

overexpression of the lipase genes, but also a detailed molecular mechanisms governing their 

folding and secretion. For this reason, lipase synthesis by several bacterial species has been 

extensively studied and reported, principally in Pseudomonas sp., Bacillus sp. and P. aeruginosa 

(Madan and Mishra, 2010). 

 

1.7.2. Mechanisms of production and secretion of lipases. 

 

Lipids represent a substantial fraction of the earth's biomass and lipolytic enzymes play an 

important role in their hydrolysis and, therefore, in natural organic matter re-cycling. Lipases 

(triacylglycerol hydrolase, EC.3.1.1.3) are water-soluble enzymes that hydrolyse ester bonds in 

mono‐, di‐ and triacylglycerol in water-soluble fat acid and alcohols. The fatty acids are transported 

into the cytosol and they are catabolized via the beta oxidation cycle. Some bacteria also synthesize 

surfactants that may increase the surface area and bioavailability of hydrophobic carbon sources, 

allowing for more efficient growth using these compounds (Rosenberg and Ron, 1999). 

Lipases are part of the superfamily of "α/β  hydrolases", one of the largest groups of 

enzymes structurally bound together (Angkawidjaja and Kanaya, 2006). The lipolytic activity is 

associated with the catalytic activity of three amino acids, a catalytic triad with a nucleophilic 
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residue, a histidine and an acid. These triads in the lipases are represented by serine, histidine and 

aspartate. 

The active conformation is taken by the lipase when it comes into contact with a substrate 

insoluble in water (for example oil) at a concentration close to the solubility limit of the substrate. 

This phenomenon is called ―interfacial activation‖ (Angkawidjaja and Kanaya, 2006). 

Lipolytic enzymes derived from bacteria are classified into eight families based on their 

sequence homology: family I is a large group and it has been classified into seven subfamilies of 

which subfamilies I.1, I.2 and I.3 are lipases produced by gram-negative bacteria. The subfamilies 

I.1 and I.2 have a comparatively high sequence similarity (around 30‐40%) and are secreted by the 

type II secretion system (T2SS), as mentioned below (Arpigny and Jaeger, 1999). 

The bacterial lipases can be intracellular, membrane‐bound or extracellular. The most 

interesting for our work are the extracellular lipases because they are the only one that can be 

produced in the presence of long chain triglycerides, while the other two do not. 

Bacteria secrete lipase into the medium through different systems: 

 Type I secretory system: is an energy driven exporter complex made up of three protein 

subunits.  

 Type II secretion system (GSP or General Secretory Pathway): comprises two steps. In the 

first step, the protein is translocated across the inner membrane of the Gram‐negative 

bacteria from a path‐dependent Sec (Angkawidjaja and Kanaya, 2006); the protein Lif. 

anchored to the inner membrane determines correct coding of lipases. After the process of 

folding and the degradation of N‐terminus, the lipase is secreted outside the cell by a 

specific protein complex (XCP machinery) (Rosenau et al., 2004). 

In general the natural conformation of lipase is determined not only by the amino acid 

sequence, but also by the presence of chaperones (specific accessory proteins or molecular 

chaperones). These chaperones facilitate the formation of the tertiary structure of some proteins, or 

protein complex, although they are not components of the final structure. 

Extracellular lipase gene of family I is located in an operon together with a second gene, that 

is necessary to the lipase activity. In fact, the proteins coded by this second gene assists the correct 

folding of the associated lipase. For this reason, they were named Lifs to indicate that they 

constitute a unique class of lipase‐specific foldases (Rosenau et al., 2004); lipase subfamilies I.1 

and I.2 fold into an enzymatically dynamic conformation in periplasm and then they are transported 

through the bacterial outer membrane by means of a complex process consisting of up to 14 

different proteins. To complete a secretion‐competent conformation, lipases need specific 
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intermolecular folding catalysts, the Lif proteins. Lifs are a unique family of proteins without any 

significant homology to other classes of proteins that specifically activate only their cognate lipases. 

A lipase gene and its foldase gene usually form an operon suggesting a 1:1 ratio for both lipase and 

foldase expression (Fig. 16). 

 

 

 

Fig. 16. Lipase secretion in Gram negative bacteria 

(Rosenau et al., 2004). 

 

1.7.3. Recombinant bacterial lipases. 

 

Genetic developments and new technologies allowed to sequence the structure of a large 

number of lipases. Thus, it has been possible to understand how they are produced and work. As a 

consequences of this knowledge, genetic technology enables to choose the right lipolytic genes and 

improve their performance or insert them into other non-lypolitic bacteria, allowing lipases 

overexpression in the host with the final objective to fulfil commercial demands. 

Many bacterial lipases have been in fact cloned, sequenced and expressed in homologous or 

heterologous hosts (Sangeetha et al., 2011). However, to obtain the competent heterologous 

expression of a lipase, it is required to clone together lipase gene and the relative lif gene. Many 
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investigations have indicated the specificity of lif‐protein to its corresponding lipase (El Khattabi et 

al., 1999; Shibata et al., 1998). These results demonstrated that lipase transposition and chaperon 

sequences, between phylogenetically close related organisms, is adequate to obtain a successful 

production of lipase (Jørgensen et al., 1991). Another study shows that, in the production of lipase, 

other 30 cellular proteins are involved (Rosenau et al., 2004). Fortunately, they are all present in 

most of the organisms phylogenetically close to the donor microorganisms.  

 

1.8. Nucleases. 

 

1.8.1. History of nuclease. 

 

The first nuclease was described in the late 1960s by Stuart Linn and Werner Arber, that 

isolated an enzyme responsible for phage growth restriction in E. coli. In this work authors noticed 

that one of these enzymes added a methyl group (CH3) to the DNA, generating methylated DNA 

(methylase enzyme), while another cleaved un-methylated DNA in a wide variety of locations along 

the length of the molecule (restriction nuclease enzyme) (Arber and Linn, 1969; Linn and Arber, 

1968). Nevertheless, these enzymes had the capacity to break the DNA and RNA chain in non-

specific places or in a random way; with the need of a tool to cut and paste the DNA in specific 

places, the scientists were encouraged to search and develop new restriction enzymes with specific 

places of action. 

In 1970 Smith and Welcox, separated and characterized the first restriction nuclease acting 

on a specific DNA nucleotide sequence. The enzyme, extracted from Haemophilus influenzae 

(Smith and Welcox, 1970) and called HindII, always cuts directly in the middle of this sequence 

(5’-GTYRAC-3’, 3’-CARYTG-5’). Nowadays, many restriction enzymes are known, nominated on 

the list of  REBASE (http://rebase.neb.com),  

The nucleases are classified into two types, depending on the place of action: the 

exonucleases that digest nucleic acids from the ends and the endonucleases that act on the central 

region of target molecules. These are subdivided into deoxy-ribonucleases that acts on DNA and 

ribonucleases that acts on RNA (Rittié and Perbal, 2008). 

Owing to the current technological development, the restriction enzymes have a great use in 

the molecular biology industry, day by day are improvements and developed  new enzymes with 

different and greater restriction specificity (Rasala and Mayfield, 2015). 

 

http://rebase.neb.com)/
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1.8.2. Staphylococcus aureus nuclease. 

 

Staphylococcus aureus is one of the types of bacteria most responsible for food poisoning 

and it has been identified as the causative agent in many food poisoning outbreaks The disease is 

due to the action of the heat-stable enterotoxins produced by the bacterium and that cannot be 

removed from the finished product by heat treatments that kills the vegetative bacterial cells but 

doesn’t inactivate the enterotoxins (Schaumburg et al., 2014). For this reason and due to the fact 

that the analyses of enterotoxins are costly and time consuming , the presence of the nuclease (that 

is thermostable too) in food is usually analysed as indicator of the possible presence of enterotoxins 

(F. Li et al., 2016). 

The staphylococcal nuclease is a relatively non-specific endo-exonuclease,  Ca2+-activated 

extracellular phosphodiesterase which degrades both DNA and RNA to 3'-nucleotides. The enzyme 

has a molecular weight of 16,807 Daltons, 149 amino acid residues with no disulphide bonds or free 

sulfhydryl groups, and is strongly inhibited by deoxythymidine-3',5'-diphosphate (pdTp) (Rosman 

et al., 2018). S. aureus nuclease production is a character associated to the pathogenicity of S. 

aureus and was associated with delayed bacterial clearance in the lung and increased mortality after 

intranasal infection and promotes resistance against NET-mediated antimicrobial activity of 

neutrophils and contributes to disease pathogenesis in vivo (Wolter et al., 2018). 

Nowadays Staphylococcus aureus nuclease is industrially produced by a recombinant E. coli 

strain and it is able to digest double-stranded, single-stranded, circular and linear nucleic acids (Hu 

et al., 2013). The enzyme is active in the pH range of 7.0 - 10.0, with optimal activity at pH 9.2 for 

both RNA and DNA substrates. 

It is suitable for the degradation and removing of nucleic acids present in protein preparation 

and to reduce viscosity of cell lysates during cell lysis preparation. Unfortunately the high costs 

limit the industrial utilization (Gamero et al., 2018).  

To reduce the cost, nuc gene from S. aureus was cloned into the PHAs producer P. putida 

strain, in order to avoid the use of commercial nuclease in the final polymer extraction process 

(Boynton et al., 1999; Chesneau and El Solh, 1992). 
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1.9. PROJECT OUTLINE. 

 

As already stated, PHAs are polymers that meet a series of promising physical-chemical, 

mechanical and biological characteristics allowing them to replace plastics from crude oil, in 

addition they are "biobased‖, "biodegradable‖ and "biocompatible‖ (Krzan et al., 2006; Miertus and 

Ren, 2002). According to a recent report, published in 2017, the global PHAs market is expected to 

increase from US$ 73.6 million within 2016 to US$ 93.5 million by 2021, characterized by a 

compound annual growth rate (CAGR) of 4.88% (Kourmentza et al., 2017), but to achieve this 

increase successfully, it is necessary to make the production processes of PHAs more efficient and 

economical. 

As an option to reduce PHAs production cost, the use of organic industrial wastes as carbon 

sources and alternative methods of PHAs recovery were evaluated.  

On the basis of previous results obtained during the EU project ANIMPOL 

(Biotechnological conversion of carbon containing wastes for eco‐efficient production of high 

added value products), the use of fatty wastes from slaughterhouses could be a strategy to decrease 

PHAs price, unfortunately strains with high PHAs production level hydrolyse complex fats 

(triglycerides) with low efficiency. 

In principle, these problems could be solved mainly by two strategies: 1) the isolation, 

selection and characterization of new natural microbial strains capable of efficiently converting the 

slaughterhouses fatty wastes into PHAs; 2) the engineering of microorganisms that exhibit high 

PHAs productions yields, so that can convert the slaughterhouses fatty wastes into PHAs.  

Although the first approach is fascinating, no wild type strain has been so far reported to 

achieve these objectives, meanwhile the other option though challenging, is considered to be the 

most suitable (Casella et al., 2016). 

In this research work, a molecular biology program started in order to obtain a microbial 

strain capable of both hydrolysing lipids and producing high levels of PHAs. Cupriavidus necator 

DSM 545, a bacterium producing high PHAs amounts but poorly able to metabolize lipids, was 

selected as host strain of lipolytic genes (lipH-lipC) from the efficient lipase producer Pseudomonas 

stutzeri BT3.  

On the other hand, to reduce the cost of downstream process of PHAs extraction, C. necator 

DSM 545 and D. acidovorans DSM 39 were selected as recipients of the staphylococcal nuclease 

gene nuc from Staphylococcus aureus, with the aim of avoiding the use of commercial nuclease 

during  the PHAs extraction/recovery phase. 
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2. MATERIALS AND METHODS. 

 

2.1. Media, strains and plasmids. 

 

The media used in this work are reported in Table 9. All chemicals, media components and 

supplements were of analytical grade (Sigma). 

The strains were grown routinely in Nutrient Broth, DSMZ 81 medium (Povolo et al., 2010) 

and Nitrogen reduced medium (Romanelli et al., 2014). 

The Nitrogen reduced medium sometime was modified with 1 g/L (NH4)2SO4. 

 

Medium Composition Reference or supplier 

DSMZ 81 medium NH4Cl 1 g/L; MgSO4·7H2O 0.5 g/L; NaHCO3 0.5 g/L; 

KH2PO4 2.3 g/L; Na2HPO4·2H2O 2.9 g/L; CaCl2·2H2O 

0.01 g/L; Ferric ammonium citrate 0.05 g/L; Standard 

vitamin solution: Riboflavin 0.0005 mg; Thiamine-

HCl·2H2O 0.0025 mg; Nicotinic acid 0.0025 mg; 

Pyridoxine-HCl 0.0025 mg; Ca-pantothenate 0.0025 mg; 

Biotin 0.000005 mg; Folic acid 0.00001 mg; Vitamin B12 

0.00005 mg 

DSMZ 

Nutrient broth (NB)  Glucose 1 g/L; peptone 15 g/L; NaCl 6 g/L; yeast extract 

3 g/L 

DIFCO 

Super optimal broth medium 

(SOC medium) 

Tryptone 20 g/L; Yeast Extract 5 g/L; MgSO4 4.8 g/L; 

dextrose 3.6 g/L; NaCl 0.5 g/L; KCl 0.2 g/L 

(Aneja et al., 2009) 

DNAse agar Tryptose 20 g/L; Deoxyribonucleic acid 2 g/L; NaCl 5 

g/L; Agar 12 g/L 

(Favaro et al., 2014) 

Nitrogen reduced medium K2HPO4 2.7 g/L; Na2HPO4·12H2O 7.2 g/L; MgSO4·7H2O 

0.3 g/L; (NH4)2SO4 0.03 g/L; microelements of 0.1 M HCl 

containing per liter: COCl2 119 mg/L; FeCl3 9.7 g/L; 

CaCl2 7.8 g/L; NiCl2·6H2O 118 mg/L; CrCl2 62.2 mg/L 

and CuSO4.5H2O 156.4 mg/L 

(Romanelli et al., 2014) 

Nitrogen rich medium Peptone from meat 10 g/L; NB 10 g/L;  Yeast extract 10 

g/L; (NH4)2SO4 5 g/L 

(Povolo et al., 2013; 

Tsuge et al., 2004) 

DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen). 

Table 9. Media used in this study.  

 

Media for recombinant strains were supplemented with kanamycin or gentamicin when 

requested. All media were autoclaved at 121°C for 20 min before utilization. When necessary, 

liquid broths were solidified adding 20 g/L agar-agar.  
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The bacterial strains and plasmids used this work are listed in Table 10. 

 

Strain and plasmid Genotype Reference or source 

E. coli DH10B 

 

 

 

 

C. necator DSM 545 

 

D. acidovorans DSM 39 

 

Pseudomonas stutzeri BT3 

 

E. coli pBBR1MCS 5-lipH-lipC 

 

C. necator DSM 545 pBBR1MCS-5-lipH-lipC 

 

E. coli pHM2-nuc 

 

C. necator DSM 545 pHM2-nuc 

 

D. acidovorans DSM 39 pHM2-nuc 

 

pDrive 

 

pBBR1MCS‐5 

 

 

 

 

pDrive‐lipH 

 

pDrive‐lipC 

 

pBBR1MCS‐5‐lipC 

 

pBBR1MCS‐5‐lipH‐lipC 

 

pGEM-T 

 

pHM2 

 

pnuc 

 

 

pGEM-T-nuc 

 

pHM2-nuc 

F‐ endA1 recA1 galE15 galK16 

nupG rpsL ΔlacX74 Φ80lacZΔM15 

araD139 Δ(ara,leu)7697 mcrA 

Δ(mrr‐hsdRMS‐mcrBC) λ‐ 
 

Wild type 

 

Wild type 

 

Wild type 

 

Gent
+
 (pBBR1MCS‐5‐lipH‐lipC) 

 

Gent
+
 (pBBR1MCS‐5‐lipH‐lipC) 

 

Km
+
 (pHM2-nuc) 

 

Km
+
 (pHM2-nuc) 

 

Km
+
 (pHM2-nuc) 

 

Amp
+ 

 

Gent
+ 

 

 

 

 

Amp
+
 lipH gene 

 

Amp
+
 lipC gene 

 

Gent
+
 lipC gene 

 

Gent
+
 lipC and lipH gene 

 

Km
+
, Amp

+
 

 

Km
+
 

 

nuc from S. aureus 

 

 

Km
+
, Amp

+
 

 

Km
+
 

(Durfee et al., 2008)  

 

 

 

 

DSMZ 

 

DSMZ 

 

(Romanelli et al., 2014) 

 

(Romanelli et al., 2014) 

 

This work 

 

This work 

 

This work 

 

This work 

 

Quiagen 

 

CBS‐KNAW Fungal 

Biodiversity Centre of Royal 

Netherland Academy of Arts 

and Sciences) 

 

(Romanelli et al., 2014) 

 

(Romanelli et al., 2014) 

 

(Romanelli et al., 2014) 

 

(Romanelli et al., 2014) 

 

Promega 

 

Addgene  

 

Technische Universität 

München 

 

This work 

 

This work 

Table 10. Strains and plasmids used in this study.  
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2.2. SCREENING FOR PHAs PRODUCTION AND RECOVERY FROM C. NECATOR 

DSM 545 AND D. ACIDOVORANS DSM 39 STRAINS. 

 

2.2.1. Evaluation of substrates and growth media. 

 

To select the optimal medium for growth and PHAs production of C. necator DSM 545 and 

D. acidovorans DSM 39, several broths and different carbon sources were tested (Table 11). Seed 

cultures of C. necator DSM 545 and D. acidovorans DSM 39 were obtained overnight in 5 mL of 

NB at 30°C under shaking at 150 rpm and were used to inoculate 100 mL of each medium 

previously sterilized, to an initial OD600 nm: 0.3 in 300 mL flasks and incubated in the same 

conditions. The optical density OD600 nm (using a Pharmacia Biotech Ultrospec 2000 UV/VIS 

Spectrophotometers) and colony forming units (CFU/mL) (obtained plating 100 µL of serially 

diluted samples on Nutrient Agar) were measured twice a day. All experiments were performed in 

triplicate and standard deviation reported. 

 

 

Medium Substrate Strain 

NB - 

C. necator DSM 545 DSMZ 81 Glucose (30 g/L) 

DSMZ 81 Glycerol (30 g/L) 

NB - 

D. acidovorans DSM 39 

NB with glucose Glucose (25 g/L) 

NB with glucose  Glucose (50 g/L) 

Nitrogen rich medium  - 

Nitrogen reduced medium with 1 g/L (NH4)2SO4 Glucose (30 g/L) 

Nitrogen reduced medium with 1 g/L (NH4)2SO4 Glycerol (30 g/L) 

Table 11. Media and substrates used for optimizing grow and PHAs production from the strain (- 

medium without addition of other carbon source). 

 

 

2.2.2. Optimization of carbon/nitrogen ratio in the biomass production. 

 

Once the media and substrate were optimized for the growth of C. necator DSM 545, further 

studies were conducted on different carbon/nitrogen ratio, using NH4Cl as nitrogen source.  

Pre-inoculum of C. necator DSM 545 was obtained as indicated in the paragraph 2.2.1., but 

using DSMZ 81 medium and glucose 30 g/L as carbon sources. Seed cultures of C. necator DSM 

545 were inoculate in 100 mL of DSMZ 81 medium (OD600 nm= 0.3 ) with increasing concentrations 
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of NH4Cl (0.5, 1, 2.5 and 5 g/L) and glucose (10, 20 and 30 g/L) in 300 mL flasks and incubated 72 

h at 30°C. The optical density OD600 nm (measured using a Pharmacia Biotech Ultrospec 2000 

UV/VIS Spectrophotometers) and colony forming units (CFU/mL) (obtained plating 100 µL of 

serially diluted samples on Nutrient Agar) were measured twice a day. All experiments were 

performed in triplicate and standard deviation reported. 

 

2.2.3. PHAs synthesis by C. necator DSM 545, D. acidovorans DSM 39 and recombinant 

strains. 

 

To evaluate the PHAs production, two different procedures were adopted: the one-step 

process was used when fats were used as carbon source for biomass production and PHAs 

accumulation, while the two-steps procedures were carried out when fats or glucose were used as 

carbon source for biomass production and glucose as carbon source for PHAs accumulation.  

In short, in the one-step process, strains were aerobically grown for 96 h at 30 or 37°C under 

shaking at 150 rpm in 1 L flasks containing 300 mL of DSMZ 81 medium for C. necator DSM 545 

and recombinants or Nitrogen reduced medium with 1 g/L (NH4)2SO4 for D. acidovorans DSM 39 

and recombinants; both media contained 30 g/L of carbon substrate. After incubation, cells were 

recovered and PHAs extracted as described in paragraphs 2.2.4. and 2.2.5. 

When the two-steps procedure was adopted, after biomass production phase (according to 

the step-one described above), cells were aseptically recovered by centrifugation at 4°C (4000 x g 

for 10 min), washed and re-suspended in the same media used above, containing 30 g/L glucose (for 

C. necator DSM 545) or glycerol (for D. acidovorans DSM 39) but with one-third of initial 

nitrogen content. Then flasks were incubated at 30 or 37°C (150 rpm) and after 72 or 96 h cells 

were recovered and PHAs extracted as described in paragraphs 2.2.4. and 2.2.5. All experiments 

were performed in triplicate and standard deviation reported. 

 

2.2.4. Biomass measurements. 

 

After PHAs accumulation process, the cells were harvested by centrifugation at 4°C (4000 x 

g for 10 min), washed twice with sterile water, frozen at -80°C for 24 h and then lyophilized 

(Freeze Dryer Modulyo, Edwards) until complete water removal. After freeze-drying, samples were 

weighed to assess cell dry biomass (CDM). 
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When incubation was performed in media containing fatty wastes as a carbon source, the 

pellets were washed with 5 mL a cold mixture of water-n-hexane (5:2) to remove residual fats 

before freezing (Riedel et al., 2015). The possible loss of PHAs and biomass due to washing with 

water-n-hexane was also evaluated as described below. All experiments were performed in 

triplicate and standard deviation reported. 

 

2.2.4.1 Evaluation of biomass and PHAs loss due to washing with water-n-hexane. 

 

To evaluate the possible loss of biomass and PHAs content due to washing with organic 

solvents, after PHAs accumulation process using fatty wastes as carbon source, cells were 

recovered by centrifugation at 4°C (4000 x g for 10 min) and the pellets washed with 5 mL a cold 

mixture of water-n-hexane (5:2) or only with water to remove residual fats (Riedel et al., 2015); 

cells were them frozen at -80°C for 24 h and finally lyophilized (Freeze Dryer Modulyo, Edwards) 

until total water removal. After freeze-drying, samples were weighed and PHAs content was 

assessed. All experiments were performed in triplicate and standard deviation reported. 

 

2.2.5. PHAs analyses. 

 

PHAs concentration was determined in cells according to (Braunegg et al., 1978; Torri et al., 

2014). In short, samples of freeze-dried cells (10 mg) were hydrolyzed in a mixture of 

dichloroethane-propanol-HCl (5:4:1) for 4 h at 100°C. The propyl esters of hydroxylalkanoic acids 

were analyzed by gas chromatography using a Thermo Finnigan Trace GC, equipped with FID 

detector and AT-WAX column (30m x 0.25mm x 0.25 µm). The gas carrier was helium at flow rate 

1.2 mL/min and the split/splitless injector with a split ratio 1:30 was set at 250°C, the FID 

temperature was 270°C and the oven was set at 150°C. Benzoic acid served as internal standard; the 

external standards, 3-hydroxybutyric acid (3HB), Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric 

acid P(3HB-co-12 mol% 3HV) and Poly(3-hydroxybutyric acid-co-4-hydroxybytyric acid) P(3HB-

co-11.2 mol% 4HB) were purchased from Sigma-Aldrich (Italy). Results were expressed as the 

percentage of PHAs on cell dry biomass (CDM) or as g of PHAs for a liter of culture. All 

experiments were performed in triplicate and standard deviation reported. 
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2.2.6. Evaluation of antibiotic resistance of C. necator DSM 545 and D. acidovorans DSM 39. 

 

Pre-inocula of C. necator DSM 545 and D. acidovorans DSM 39, were cultivated overnight 

at 30°C in NB medium as indicated in the paragraph 2.2.1. 100 µL of culture of each strain were 

plated in Petrie dishes containing Nutrient Agar supplemented with increasing amounts of 

gentamicin or kanamycin (from 5 up to 500 µg/mL). The plates were incubated for 72 h at 30°C 

and inhibition of growth recorded when present. 

 

 

2.3. STRAINS CONSTRUCTION FOR THE IMPROVED PRODUCTION OF 

PHAs FROM SLAUGHTERHOUSE FATTY WASTES.  

 

In order to reduce production costs, bovine and swine slaughterhouse fatty wastes were 

evaluated as substrates for the microbial growth and the production of PHAs. 

 

2.3.1. Fatty carbon sources used in this work. 

 

The fatty carbon sources used in this work were obtained from local slaughterhouses and are 

reported in Table 12 together with their rough analyses carried out in the Chemistry Laboratory 

(LaChi) of DAFNAE; Padua University, following official analysis described in (Nollet, 2004). 

 

Origin Source Humidity Ashes Protein Lipid pH 

 

Bovine 

Udder 69.7 0.9 14.8 14.9 6.3 

Kidney fat 10.6 0.1 3.0 86.5 6.4 

Visceral fat 30.9 0.2 5.5 62.3 6.7 

 

Swine 

 

Lard 4.1 0.04 1.5 93.1 6.4 

Jowl fat 20.9 0.3 7.7 69.6 6.0 

Membrane caul fat 10.7 0.2 1.5 87.2 5.6 

Table 12. Chemical composition (% of dry matter) of slaughterhouse by-products used in this study. 

 

2.3.2. Fatty acid composition of slaughterhouses wastes. 

 

The fatty acid analysis was performed in the Chemistry Laboratory (LaChi) of DAFNAE; 

Padua University, following official analysis Folch method (Folch et al., 1957). 
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The fatty acid composition of carbon sources used in this work is reported in Table 13. 

 

Fatty acid Udder Kidney fat Visceral fat Lard Jowl fat Membrane caul fat 

SFA 7.3 52.7 26.2 33.9 23.6 38.9 

UFA 6.9 30 33.4 55.1 42.9 44.5 

MUFA 6.4 26.4 30.9 34.1 34.2 32.2 

PUFA 0.5 3.6 2.4 21 8.7 12.3 

OMEGA3 0.05 0.2 0.1 1.5 0.6 0.9 

OMEGA6 0.4 3.1 1.6 18.7 7.4 10.7 

SFA/UFA 0.1 1.5 0.5 0.5 0.4 0.7 

MUFA/PUFA 0.02 0.06 0.04 1.4 2.6 2.2 

OMEGA3/OMEGA6 0.02 0.06 0.04 0.07 0.05 0.07 

SFA: Saturated fatty acids; UFA: Unsaturated fatty acids; MUFA: Monounsaturated fatty acids; PUFA: 

Polyunsaturated fatty acids. 

Table 13. Fatty acid composition of slaughterhouse by-products (% of dry matter). 

 

 

2.3.3. Transformation of C. necator DSM 545 strain with lipH‐lipC genes. 

 

Ad reported above, C. necator DSM 545 strain was selected as recipient for genetic 

modifications because of its high PHAs accumulation ability (up to 80% w/w of its CDM), 

moreover, the stored PHAs contains high molar fractions of 3HB (Abbondanzi et al., 2017; 

Marudkla et al., 2018). 

C. necator DSM 545 was electroporated with pBBR1MCS‐5‐lipH‐lipC (obtained from 

(Romanelli et al., 2014)) according to a procedure slightly modified from that described by Aneja 

and colleagues (Aneja et al., 2009). Seed cultures of C. necator DSM 545 were grown overnight in 

5 mL of NB (30°C, 150 rpm shaking). Two mL of pre-inoculum were used to inoculate 125 mL 

Erlenmeyer flask containing 48 mL NB. The cultures were grown for 1 h at 30°C on a rotary shaker 

set at 150 rpm. Aliquots were centrifuged at 7000 x g at 4°C for 35 min. The harvested cells, 

washed in a pre-chilled and sterile sucrose solution (0.3 M), were re-suspended in the same solution 

to an optical density at 600 nm (OD600 nm) of 5. 100 µL of the concentrated cell suspensions were 

mixed with 2-5 µg of pBBR1MCS‐5‐lipH‐lipC in an electroporation cuvette (0.1-cm gap width). 

After 5 min incubation in ice, electroporation was performed at 2.5 kV, 25 µF, and 200 Ω in a Gene 

Pulser II electroporator equipped with a Pulse Controller Plus module (Bio-Rad Gene Pulser). 

Immediately after electroporation, 0.9 mL of SOC medium were added to cell suspension in a 2 mL 

polypropylene Eppendorf. Cells were kept for 2 h at 30°C (150 rpm), centrifuged at 7000 x g for 10 

min, and re-suspended in 300 μL of NB. Gentamicin-resistant clones were selected after spreading 
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150 μL of the cell suspension on Nutrient agar supplemented with gentamicin (500 μg/mL) and 

incubate them for 48 h at 30°C. 

 

2.3.3.1. Detection of lipH‐lipC genes in recombinant strains. 

 

After C. necator DSM 545 transformation with pBBR1MCS‐5‐lipH‐lipC plasmid, 

gentamicin-resistant strains were selected for the lipH-lipC genes presence by amplification using a 

thermocycler (Bio-Rad iCycler PCR Thermal Cycler). Master mix was prepared to amplify lipase 

genes with approximately 100 ng of DNA, 25 pmol of each primer (see Table 14), 0.25 mM dNTPs, 

and 19 µL buffer amended with 1.25 mM MgCl2 and 0.5 U of Taq DNA-polymerase (Euroclone 

S.p.A., Milano, Italy).  

The reaction conditions to amplify lipH and lipG genes were: 1 cycle (95°C for 4 min), 40 

cycles (95°C for 1 min, 55.3°C for 1 min, 72°C for 1 min) and a final cycle (72°C for 5 min). 

Amplified DNA from lipH-lipC genes was separated by electrophoresis on agarose gel. A 

100 mL gel 10 g/L agarose (Sigma-Aldrich) was prepared with 1× TAE buffer, as well as the 

running buffer. After running, bands were visualized using acid stain EuroSafe (EuroClone S.p.A., 

Milano, Italy). Digital images were acquired with a GENi Gel Documentation System (Syngene). 

Liquid enzymatic assays were also performed by following the amount of pNP released 

from pNPP as described in the section 2.3.3.2.3. 

 

Plasmid  Sequences Reference 

LIPC-F ATGAACAAGAACAAAACCTTGCT 

(Romanelli et al., 2014) 
LIPC-R GTCAGAGCCCCGCGTTCTTCAATC 

LIPH-F ATGAGCAGATCCATCCTTTT 

LIPH-R TCAGCGAGTCCGATCCTCC 

Table 14. Sequences of primer used for PCR amplification. 

 

2.3.3.2. Lipolytic activity evaluation.  

 

With the aim to find the best conditions to evaluate the lipolytic activity of recombinant C. 

necator DSM 545 pBBR1MCS‐5‐lipH‐lipC, different growth media and fatty substrates were firstly 

screened for their ability to stimulate the production of lipolytic enzyme in the wild types strains C. 

necator DSM 545 and P. stutzeri BT3. 
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With this aim, pre-inocula of the C. necator DSM 545 and P. stutzeri BT3 strains were 

prepared as described in paragraph 2.2.1. and used to inoculate 100 mL of NB medium or DSMZ 81 

medium supplemented with 30 g/L olive or corn oil as carbon source (initial OD600 nm: 0.3) in 300 

mL flasks. Flasks were incubated at 30 and 37°C under shaking at 150 rpm for 96 h. At 24, 48, 72 

and 96 h samples were collected and centrifuged (7000 x g per 10 min); the supernatants were used 

to measure extracellular lipase activity. 

Once identified the fatty substrate with the best ability to stimulate the production of lipase 

of wild type strains, the identification of lipolytic recombinant strains was conducted The samples 

were prepared as described above and tested with and without gentamicin at 500 µg/mL in the 

selected growth medium. 

As positive control, a lipase from Candida rugosa (Sigma-Aldrich L8525; ≥40.000 

units/mg) was used at a dilution of 1:100000. All experiments were performed in triplicate and 

standard deviation reported. 

 

2.3.3.2.1. Lipolytic activity evaluation by plates assays. 

 

Lipase activity was evaluated using plates assays following the method of (Lomolino et al., 

2012) with slight modifications. Plates were filled with 20 g/L agarose gel (Sigma-Aldrich). 

Agarose gel was prepared with Tris-buffered saline at pH 7 by dissolving in microwave oven. The 

solution was cooled to 70°C and different lipase substrates (Table 15) at 50 mM and 0.2% v/v 

Triton X-100 (BDH Chemicals, Poole, UK) were added. The gel solution was transferred into the 

plates and cooled at room temperature. The thickness of the resulting gel was approx. 3 mm. Wells 

were obtained using a 200 µL pipette tip and were loaded with 10 µL supernatant of the bacterial 

cultures. Plates were then incubated at 30 and 37°C; the fluorescence of positive samples was 

observed using a GENi Gel Documentation System (Syngene) after 10 min. 

Rhodamine B plates were also tested, using the method described by (Clausen and 

Dabelsteen, 1969). All experiments were performed in triplicate and standard deviation reported. 
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Lipase substrates (Sigma-Aldrich)  Reference 

Rhodamine b (Sigma-Aldrich 83689) (Clausen and Dabelsteen, 1969) 

3(2-benzoxazolyl) umbelliferyl acetate (Sigma-Aldrich 12832) (Ting et al., 2016) 

Ethyl 7-acetoxycoumarin-3-carboxylate (Sigma-Aldrich 00838) (Velasco-Lozano et al., 2012) 

Fluorescein butyrate (Sigma-Aldrich 46942) (Lomolino et al., 2012) 

Fluorescein sodium (Sigma-Aldrich F6377) (Lomolino et al., 2012) 

Resorufin acetate (Sigma-Aldrich 83636) (Rodrigues et al., 2012) 

Resorufin butyrate (Sigma-Aldrich 83637) (Glogauer et al., 2011) 

Table 15. Substrates of lipases used in the experiments. 

 

2.3.3.2.2. Lipolytic activity measurements by titrimetric method. 

 

Lipase activity was also measured in liquid medium by a titrimetric assay (Pinsirodom and 

Parkin, 2001); in short  5 mL of the supernatant of the bacterial cultures were added to 50 mL of 50 

g/L corn oil emulsion in 50 mM Tris-HCl buffer (pH 8), containing 50 g/L of Arabic gum. The 

mixture was incubated at 37°C for 3 h, and every 30 min, to stop the reaction; 5 mL were sampled 

and 10 mL ethanol added. With the aim to optimize the assay conditions, the lipase activity was 

measured at both 30 and 37°C and at pH 6.5, 7.5 and 9.5. The released fatty acids were titrated with 

0.05 M NaOH using phenolphthalein as an indicator. The difference in titer values between samples 

and blank was used to calculate the quantity of released fatty acid. One unit of lipase was defined as 

the amount of enzyme that released 1 μmol of fatty acid per minute under the assay conditions. All 

experiments were performed in triplicate and standard deviation reported. 

 

2.3.3.2.3. Lipolytic activity measurements by spectrophotometric assay. 

 

Enzymatic activity was also determined as described by (Glogauer et al., 2011). Briefly, 

every 24 h, the amount of p-nitrophenol (pNP) released from p-nitrophenyl palmitate (pNPP) was 

monitored at 410 nm for at least 30 min at 37°C using the TECAN Spark 20M microplate 

spectrophotometer (TECAN, Salzburg, Austria). The substrate solution was made by mixing a stock 

solution of 20 mM of pNPP in acetonitrile/isopropanol (1/4 v/v) with an assay buffer containing 

Tris-HCl pH 7.5, CaCl2 and Triton X-100, under agitation in a water bath at 60°C until the solution 

became transparent. 180 μL of the substrate solution were pipetted into a 96-well microtiter plate 

and the reaction was initiated by addition of 20 μL of the supernatant from samples. The final 
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volume of the reaction mixture was 200 μL (Tris-HCl 50 mM, pH 7.5; 1 mM CaCl2, 0.3% v/v 

Triton X-100, 1 mM pNPP, 4% v/v isopropanol, 1% v/v acetonitrile). A commercial lipase from 

Candida rugosa (Sigma-Aldrich L8525; ≥40.000 units/mg) was used as positive control at a 

dilution of 1:100000 in the mix. 

Lipolytic activity was determined under each reaction condition and non-enzymatic 

hydrolysis of substrates was also taken into consideration. One unit of lipase activity was defined as 

1 μmol of pNP produced per minute (mU/ (min·mL)). All experiments were performed in triplicate 

and standard deviation reported. 

 

2.3.4. Slaughterhouses fatty waste pre-treatment. 

 

Slaughterhouse fatty wastes were finally crushed using a meat grinder and stored separately 

in 0.5 Kg bags under vacuum at -20°C. 

For the fermentation process, the fatty samples were processed as reported in (Riedel et al., 

2015): each fatty waste was melted in a water bath at 60°C and filtered through a standard cellulose 

coffee filter to separate solid impurities (e.g., fibers, tissues and others); the blood was also 

removed. For each 5 kg samples, 3.5 kg of fat were recovered.  

 

2.3.5. Optimization of growth conditions using slaughterhouse wastes as carbon source. 

 

To optimize growth conditions using slaughterhouse fatty wastes as carbon source, the 

following parameters have been considered: incubation temperature, the use of Tween-80 as an 

emulsifier to improve the dispersion of fats, NH4Cl concentration (needed to support both microbial 

growth and PHAs production). Moreover, the most appropriate sterilization procedure of media was 

defined. 

 

2.3.5.1. Temperature selection to PHAs production using slaughterhouse fatty wastes as 

carbon source. 

 

DSMZ 81 medium, formulated as indicated in the Table 9, was supplemented with each of 

the six fatty carbon sources reported in Table 12 at 30 g/L and incubated for 6 h at 30 and 37°C 

(150 rpm) to evaluate the melting levels of the added fatty wastes. 
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2.3.5.2. Evaluation of Tween-80 as fats emulsifier. 

 

DSMZ 81 growth medium was supplemented with 30 g/L of each of the six slaughterhouse 

fatty wastes and increasing concentrations of Tween-80 (0, 2.5, 5, 7.5 and 10 g/L). Each flask was 

incubated for 6 h at 37°C (150 rpm) and the fat emulsification in the culture medium was evaluated 

observing the homogeneity state. 

 

2.3.5.3. Sterilization method. 

 

After the above described experiments, five, among the six slaughterhouse fatty wastes, 

were selected on the basis of their melting at the temperature of incubation (30°C) and the low 

Tween-80 requirement for emulsification. 

The fatty wastes, DSMZ 81 medium and Tween-80 were mixed before autoclaving or  

sterilized separately and mixed at the required concentrations after autoclaving. Media 

supplemented only with Tween-80 or only with fatty wastes were also evaluated. All media were 

inoculated at OD600 nm of 0.3 with pre-inoculum of C. necator DSM 545 and incubated at 37°C for 

96 h (150 rpm). Non inoculated samples were also prepared as negative control. 

Cells growth was monitored twice a day by determining CFU/mL on Nutrient Agar. At the 

end of incubation time, cells were recovered and final PHAs concentrations were also determined as 

described in paragraphs 2.2.4. and 2.2.5. All experiments were performed in triplicate and standard 

deviation reported. 

 

2.3.5.4. Nitrogen source (NH4Cl) optimization for biomass and PHAs production from 

slaughterhouse fatty wastes. 

 

Membrane caul fat was selected as carbon source to perform additional studies focused on 

the optimization of nitrogen concentration during growth and PHAs production. 

Seed culture of C. necator DSM 545 was obtained overnight in 5 mL of DSMZ 81 medium 

supplemented with 30 g/L corn oil at 30°C under shaking at 150 rpm and used to inoculated 100 

mL of DSMZ 81 medium in 300 mL flask, formulated as indicated in the Table 9 but with different 

NH4Cl concentrations (0.5, 1, 2.5, g/L) and supplemented with 30 g/L of membrane caul fat; flask 

were incubated at 37°C for 96 h.  
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Cells growth was monitored twice a day by determining CFU/mL on Nutrient Agar. 

Lipolytic enzymatic activity was evaluated every 24 h while PHAs concentrations and fat content of 

the spent fermentation broth were determined after 96 h. All experiments were performed in 

triplicate and standard deviation reported. 

 

2.3.6. PHAs production. 

 

Two methods for PHAs production from slaughterhouses fatty wastes were used, the one-

step and the two-steps as described below. 

 

2.3.6.1. One-step PHAs production by C. necator DSM 545 and C. necator DSM 545 

pBBR1MCS-5-lipH-lipC using membrane caul fat as carbon source. 

 

According to the results obtained in the previous experiments, the best growth conditions 

were found to be: DSMZ 81 medium amended before sterilization with 30 g/L membrane caul fat, 1 

g/L NH4Cl and without Tween-80.  

Pre-inocula of C. necator DSM 545 and C. necator DSM 545 pBBR1MCS-5-lipH-lipC  

obtained overnight in DSMZ 81 medium with 30 g/L corn oil as carbon source were used to 

inoculate 300 mL flasks containing 100 mL of medium at 0.3 initial OD600 nm. After 96 h of 

incubation at 37°C under shaking (150 rpm), the cells were harvested by centrifugation at 4°C 

(4000 x g for 10 min), washed with 5 mL water-n-hexane cold mixture (5:2) to remove residual fats 

(Riedel et al., 2015) and then frozen at -80°C. CDM and PHAs content were evaluated as described 

in paragraph 2.2.4. and 2.2.5. 

Fats content of the spent fermentation broth was also determined after 96 h, using the 

official Folch method of analysis (Folch et al., 1957). 

Recombinant strain was evaluated with or without gentamicin (500 μg/mL) addition. All 

experiments were performed in triplicate and standard deviation reported. 
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2.3.6.2. Two-steps PHAs production by C. necator DSM 545 pBBR1MCS-5-lipH-lipC using 

membrane caul fat and glucose as carbon sources. 

 

In order to increase the PHAs accumulation in the recombinant strains, a two-steps PHAs 

production procedure was developed. Membrane caul fat was used as carbon source in step-one, as 

described above, to obtain biomass. 

In step-two the biomass undergoes PHAs accumulation using glucose as carbon source. 

Glucose and nitrogen (NH4Cl) concentrations were firstly optimized to support the highest 

PHAs accumulation during the second step using the lower glucose amounts. 

C. necator DSM 545 parental strain (with limited extracellular lipase activity) was not used 

in this experiment, because of the low biomass archived using membrane caul fat as carbon source 

in the first step. 

The biomass of C. necator DSM 545 pBBR1MCS-5-lipH-lipC was obtained using the same 

conditions described in the paragraph 2.3.6.1. using membrane caul fat as carbon sources. Cells 

were recovered by centrifugation at 4°C (4000 x g for 10 min), washed with cold water and then re-

suspended in 50 or 100 mL of the same media used above but with different glucose concentrations 

(7.5, 15 and 30 g/L) and different NH4Cl concentrations (0, 0.075, 0.15 and 0.3 g/L). The 

incubation was performed at 37°C (150 rpm) for 72 h; every 24 h residual glucose concentrations 

were determined.  

Once the accumulation phase was completed, cells were then harvested by centrifugation at 

4°C (4000 x g for 10 min), washed with 5 mL water-n-hexane cold mixture (5:2) to remove fats 

residual from phase one (Riedel et al., 2015), frozen at -80°C per 24 h and lyophilized (Freeze 

Dryer Modulyo, Edwards) until total water removal. 

CDM and final PHAs concentration were them evaluated as described in paragraph 2.2.4. 

and 2.2.5. 3HB yield was determined as gram of 3HB produced during the second step per gram of 

consumed glucose. 

Gentamicin (500 μg/mL) was used to amend only the pre-inoculum medium of C. necator 

DSM 545 pBBR1MCS-5-lipH-lipC.  
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2.4. STRAINS CONSTRUCTION FOR THE NUCLEASE EXPRESSION. 

 

Industrial manufacturing of PHAs requires its purification from high-cell-density cultures. 

Cells are broken by homogenization and PHAs granules are cleansed and treated to obtain PHAs 

latexes. However, cell lysis releases large amounts of DNA, which results in an increasing viscosity 

of the medium, hampering the following downstream steps. Drop in viscosity is generally achieved 

by ―costly procedures‖, among them, the use of commercially available nucleases. 

Searching for a cost-effective solution to this issue, a nuclease gene from Staphylococcus 

aureus has been integrated into C. necator DSM 545 and D. acidovorans DSM 39 strains. These 

bacteria are currently the most used for the bioplastics production, because have high yielding of 

PHAs production (80% w/w of its cell dry mass) with high molar fractions of 3HB and/or 4HB 

(Abbondanzi et al., 2017; Marudkla et al., 2018; Romanelli et al., 2014).  

Strategies, activities and methods applied for transformation of C. necator DSM 545 and D. 

acidovorans DSM 39 with nuc gene from S. aureus are described below.  

 

2.4.1. Integrative nuc plasmid construction. 

 

The restriction enzyme digestion, electrophoresis, DNA ligation, E. coli DNA isolation and 

transformation were performed using standard methods according to Sambrook, 2001. The nuc 

gene, expressing the nuclease from S. aureus, was obtained as an amplified fragment of 700 bp 

from plasmid pnuc kindly provided by Prof. Schleifer (Technische Universität München, Germany). 

Primers nucA (5’-TTCTCTAGAATTCAGGAGGTTTTTATGGCTATCAGTAATGTTTCG-3’) 

and nucB (5’-GCCGGTACCTTATTGACCTGAATCAGCGTTG-3’) were used for PCR 

amplification using a thermocycler (Bio-Rad iCycler PCR Thermal Cycler). The thermal protocol 

was designed as follows: initial denaturation 94°C for 2 min, followed by 50 cycles of denaturation 

at 95°C (30 s), annealing at 55°C (45 s), and extension at 72°C (45 s). PCR products were purified 

and cloned into pGEM, thus yielding the vector pGEM-nuc. pGEM-nuc was then digested with 

NaeI and SacI and nuc gene was introduced in the broad host range plasmid pHM2, thus resulting in 

the final vector named pHM2-nuc. Plasmid pHM2-nuc was transformed into E. coli DH10B. 
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2.4.2. Transformation of C. necator DSM 545 and D. acidovorans DSM 39.  

 

C. necator DSM 545 and D. acidovorans DSM 39 were electroporated with pHM2-nuc 

according to a procedure slightly different from that described by Aneja and colleagues (Aneja et 

al., 2009). Seed cultures of C. necator DSM 545 and D. acidovorans DSM 39 were grown 

overnight in 5 mL of NB (30°C, 200 rpm shaking). Two mL of pre-inoculum were used to inoculate 

125 mL Erlenmeyer flask containing 48 mL NB. The cultures were grown for 1 h at 30°C on a 

rotary shaker set at 250 rpm. Aliquots were centrifuged at 7000 x g at 4°C for 35 min. The 

harvested cells, washed in a pre-chilled and sterile sucrose solution (0.3 M), were re-suspended in 

the same solution to an optical density at 600 nm (OD600 nm) of 5. 100 µL of the concentrated cell 

suspensions were mixed with 2-5 µg of pHM2-nuc in an electroporation cuvette (0.1-cm gap 

width). After 5 min incubation in ice, electroporation was performed at 2.5 kV, 25 µF, and 200 Ω in 

a Gene Pulser II electroporator equipped with a Pulse Controller Plus module (Bio-Rad Gene 

Pulser). Immediately after electroporation, 0.9 mL of SOC (Super Optimal broth with Catabolite 

repression) medium was added to cell suspension in a 2 mL polypropylene Eppendorf. Cells were 

kept for 2 h at 30°C (250 rpm), centrifuged at 7000 x g for 10 min, and re-suspended in 300 μL of 

NB. Kanamycin-resistant integrants were selected after spreading 150 μL of the cell suspension on 

NB agar supplemented with kanamycin (100 μg/mL), and incubation overnight at 30°C. The 

successful transformation of the wild type strains was confirmed by PCR using primers nucA and 

nucB as described in section 2.4.3. 

 

2.4.3. Detection of nuc gene in recombinant strains. 

 

After C. necator DSM 545 and D. acidovorans DSM 39 transformation with pHM2-nuc 

plasmid, kanamycin-resistant strains were selected for the nuc genes presence by amplification 

using a thermocycler (Bio-Rad iCycler PCR Thermal Cycler). 

Master mix was prepared to amplify nuclease genes with approximately 50 ng of DNA, 1 

µL of each nucA and nucB primer (10 mM) (see paragraph 2.4.1.), 0.5 µL dNTPs (10 mM ), 5 µL 

(5x) buffer and 0.12 µL Taq DNA-polymerase (5 U/µL) (Euroclone S.p.A., Milano, Italy).  

The reaction conditions to amplify nuc gene were: initial denaturation 94°C for 2 min, 

followed by 50 cycles of denaturation at 94°C (30 s), annealing at 55°C (45 s), and extension at 

72°C (45 s min). 
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Amplified DNA (nuc gene) fragments were separated by electrophoresis on agarose gel. 100 

mL gel 1.2% w/v agarose (Sigma-Aldrich) was prepared with 1× TAE buffer, as well as the running 

buffer. After running, bands were visualized using acid stain EuroSafe (EuroClone S.p.A., Milano, 

Italy). Digital images were acquired with a GENi Gel Documentation System (Syngene). 

 

2.4.4. Characterization of nuclease activity in the engineered strains. 

 

Nuclease activity was usually examined by a plate assay, observing the appearance of 

clearing zones around colonies grown on DNAse agar (Favaro et al., 2014). The engineered strains 

with the largest DNA hydrolysis halos were selected for further studies. To appropriately estimate 

nuclease activity, agarose gel electrophoresis with high-molecular-weight DNA (phage λ DNA, 

Sigma-Aldrich) was also used (Boynton et al., 1999). 

Engineered and parental strains were grown for 72 h at 30°C in NB medium (200 rpm). 

Then, 500 μL of cultures were centrifuged. In parallel, samples of broth were treated with 100 μL of 

chloroform to release periplasmic nuclease and then centrifuged (7000 x g for 10 min). After 

centrifugation, supernatants (17 μL) were mixed with λ DNA (1 μL) and 2 μL CaCl2 1 mM. The 

blends were incubated at 37°C for 30, 60 and 120 min. DNA was run in an agarose gel 

electrophoresis (120 V for 90 min) and nuclease activity was evaluated by determining the 

reduction in the molecular weight of phage λ DNA. 

Liquid enzymatic assays were also performed; in this case nuclease activity was based on 

the increase in absorbance at 260 nm which usually accompanies hydrolysis of nucleic acids 

(Cuatrecasas et al., 1967). C. necator DSM 545, D. acidovorans DSM 39 and recombinant strains, 

grown overnight at 30°C in 5 mL of NB, were used to inoculate 50 mL NB to an initial optical 

density at 600 nm (OD600 nm) of 0.2 and incubated at 30°C on a rotary shaker. After 72 h, 2 mL of 

cultures were periodically sampled and centrifuged (7000 x g per 10 min). The supernatants were 

used to assess nuclease activity. The assay mixture, consisting of a total volume of 300 μL of 0.025 

M Tris-HCl buffer (pH 8.8) with 15 μL of λ DNA, 15 μL of 0.2 M CaCl and 30 μL of supernatant, 

was placed at 30°C in a polymethylmethacrylate cuvette; the increase in absorbance at 260 nm was 

measured by a Spectrophotometer (Pharmacia Biotech Ultrospec 2000) until constant readings was 

achieved. Commercial nuclease from Serratia marcescens (Benzonase® Nuclease ≥250 units/μL, 

Sigma-Aldrich) at a final concentration of 0.025 units/μL was used as positive control for all 

experiment. The experiment was carried out in triplicate. 
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2.4.5. PHAs synthesis by C. necator DSM 545, C. necator DSM 545 pHM2-nuc, D. acidovorans 

DSM 39 and D. acidovorans DSM 39 pHM2-nuc. 

 

For PHAs production, a two-steps cultivation procedure was carried out. In the first step, 

targeted to produce biomass, C. necator DSM 545 and its nuc-recombinant were aerobically grown 

at 30°C under shaking at 150 rpm in 1L flasks containing 300 mL of DSMZ 81 medium with 30 g/L 

glucose. D. acidovorans DSM 39 and its nuc-recombinant were grown in Nitrogen reduced medium 

containing 1 g/L (NH4)2SO4 and 30 g/L glycerol. After 72 h, cells were aseptically recovered by 

centrifugation at 4°C (4000 x g for 10 min) and washed with sterile water. In the second step, to 

promote polyester accumulation, cells were moved to the same media used for the biomass 

production phase, but supplemented with only one third of the nitrogen content. The incubation was 

performed at 30°C (200 rpm) for 72 h. Cells were then harvested, centrifuged (4000 x g for 10 min), 

washed twice with sterile water and frozen at -80°C, before being lyophilized (Freeze Dryer 

Modulyo , Edwards). After freeze-drying, samples were weighed to assess cell dry biomass and 

PHAs analyses as indicated the paragraphs 2.2.4. and 2.2.5. All experiments were performed in 

triplicate and standard deviation reported. 

 

2.4.6. Reduction of cell lysates viscosity by recombinant C. necator DSM 545 pHM2-nuc. 

 

C. necator DSM 545 and C. necator DSM 545 pHM2-nuc strains were grown for PHAs 

accumulation as described in the section 2.4.5. Once the accumulation phase was completed, 1 mM 

CaCl2 was added and the cells disrupted using the Constant Systems Cell Disrupter One Shot at five 

different pressures (0.25, 0.5, 0.75, 1.5 and 2.25 kbar). To estimate the efficiency of cell lysis, the 

protein content was analyzed in the supernatants of intact or disrupted cells by the Bradford protein 

assay method (Boynton et al., 1999) and the cells morphology was observed at 100X objective with 

an optical microscope (Leica DM2000 Led, equipped with Leica DFC450C). The disrupted cultures 

were then incubated at 37°C for 1 h, and the viscosity of the lysates measured at room temperature 

using a Rotational Rheometer (Malvern Kinexus Pro and geometry CP2/60: PL 61 ST). Positive 

controls were obtained adding aliquots of Benzonase® to the lysates. All experiments were 

performed in triplicate and standard deviation reported. 
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3. RESULTS AND DISCUSSION. 

 

3.1. Evaluation of substrates and growth media.  

 

With the aim of optimizing growth and PHAs production by C. necator DSM 545 and D. 

acidovorans DSM 39, different microbial growth media reported in materials and methods 

(paragraph 2.2.1.) were tested. 

C. necator DSM 545 showed good growth with all media tested (Table 16), obtaining the 

lowest growth with DSMZ 81 medium supplemented with 30 g/L of glycerol as carbon sources 

(absorbance: 12.5 and CFU/mL: 5.3x10
8
). However, growing C. necator DSM 545 for 72 h at 30°C 

in DSMZ 81 medium supplemented with glucose at 30 g/L as carbon source supported the highest 

growth, with a value of 19.3 OD600 nm and 4.1x10
9 
CFU/mL. 

On the other hand, D. acidovorans DSM 39 exhibited only a slight growth in broths such as 

NB, NB supplemented with glucose (25 and 50 g/L) and Nitrogen reduced medium supplemented 

with 1 g/L (NH4)2SO4 and glucose (30 g/L) (Table 16) obtaining absorbance values between 0.2 and 

2.6 (OD600 nm) and CFU/mL of 5.6x10
7
-6.1x10

7
. Nitrogen rich medium did support better growth 

(OD600 nm = 3.8 and 7.1x10
7
 CFU/mL). This could related to the high concentration of yeast extract 

and peptone available in the broth (Table 9). Nevertheless, once grown for 96 h at 30°C in  

Nitrogen reduced medium supplemented with 1 g/L (NH4)2SO4 and 30 g/L glycerol as carbon 

sources, achieved the absorbance (OD600 nm) and CFU/mL with highest values (4.4 and 2.3x10
8
, 

respectively). As such, glycerol and not glucose, seems to be the most suitable carbon source for D. 

acidovorans DSM 39, in agreement with recently reported papers (Cavalheiro et al., 2009; Posada 

et al., 2011; Romanelli et al., 2014).  
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 Medium C. necator DSM 545 D. acidovorans DSM 39 

Absorbance 

(OD600 nm) 

NB 18.6± 0.3 1.0± 0.1 

NB with glucose (25 g/L) nt 2.6± 0.5  

NB with glucose (50 g/L)  nt 2.3± 0.2 

Nitrogen rich medium  nt 3.8± 0.1 

Nitrogen reduced medium with 1 g/L (NH4)2SO4 and 

30 g/L glucose 
nt 0.2± 0.1 

Nitrogen reduced medium with 1 g/L (NH4)2SO4 and 

30 g/L glycerol 
nt 4.4± 0.2 

DSMZ 81 with glucose (30 g/L) 19.3± 0.2 nt 

DSMZ 81 with glycerol (30 g/L) 12.5± 1.0 nt 

CFU/mL 

NB 8.2x10
8
± 8.3x10

7
 4.6x10

7
± 2.1x10

6
 

NB with glucose (25 g/L) nt 6.1x10
7
± 1.0x10

6
 

NB with glucose (50 g/L)  nt 5.2x10
7
± 5.3x10

6
 

Nitrogen rich medium  nt 7.1x10
7
± 1.6x10

6
 

Nitrogen reduced medium with 1 g/L (NH4)2SO4 and 

30 g/L glucose 
nt 5.6x10

7
± 3.0x10

6
 

Nitrogen reduced medium with 1 g/L (NH4)2SO4 and 

30 g/L glycerol 
nt 2.3x10

8
± 3.5x10

7
 

DSMZ 81 with glucose (30 g/L) 4.1x10
9
± 3.6x10

8
 nt 

DSMZ 81 with glycerol (30 g/L) 5.3x10
8
± 6.x10

6
 nt 

Table 16. Growth values of C. necator DSM 545 and D. acidovorans DSM 39 strains once grown for 72 h in different 

media (nt: no tested). Values represent the mean of three replicates and standard deviation is reported. 

 

Growth kinetics of C. necator DSM 545 and D. acidovorans DSM 39 grown in DSMZ 81 

and Nitrogen reduced medium with 1 g/L (NH4)2SO4 and 30 g/L glucose or glycerol, respectively, 

are reported in Fig. 17. C. necator DSM 545 completed the growth on glucose within 72 h (Fig. 

17a) whereas D. acidovorans DSM 39 exhibited slower growth rates (Fig. 17b), reaching the 

stationary phase later.  
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Fig. 17. Growth curves of (a): C. necator DSM 545 and (b) D. acidovorans DSM 

39, incubated for 96 h at 30°C in DSMZ 81 and Nitrogen reduced medium with 

1 g/L (NH4)2SO4 and 30 g/L glucose or glycerol, respectively. Absorbance 

(OD600 nm) and CFU/mL values are indicated on the main and secondary y-axis, 

respectively. The values represent the mean of three replicates and standard 

deviation is reported. 

 

 

According to the data reported, both in Table 16 and in Fig. 17, DSMZ 81 medium 

supplemented with 30 g/L glucose (C. necator DSM 545) and Nitrogen reduced medium with 1 g/L 

(NH4)2SO4 and 30 g/L glycerol (D. acidovorans DSM 39) were selected as optimal media for 

further research activities. 
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3.1.1. Optimization of carbon/nitrogen ratio in the biomass production. 

 

C. necator DSM 545 was selected for further studies tailored to the optimization of the 

carbon/nitrogen ratio, using different glucose concentrations (10, 20 and 30 g/L) and NH4Cl 

concentrations (0.5, 1, 2.5 and 5 g/L), as described in the paragraph 2.2.2. 

Fig. 18. shows the growth kinetics monitored for all the tested conditions. When 1 g/L of 

NH4Cl with different glucose concentrations (10, 20 and 30 g/L) was used (Fig. 18a-c, 

respectively), the values of CFU/mL oscillated between 3.5x10
9
and 7.2x10

9
, with the highest values 

achieved in the presence of NH4Cl 1 g/L and glucose 30 g/L (Fig. 18c). In the presence of glucose 

concentrations 20 and 30 g/L (Fig. 18b, c), cell growth monitored using CFU/mL seems to be 

completed within 48 h meanwhile the absorbance values continue to increase up to 72 h. This 

finding could be related to the on-going PHAs accumulation consequent to both the lack of nitrogen 

and the availability of the glucose as confirmed by HPLC analysis along with cell growth (data not 

shown). 

In the presence of NH4Cl 2.5 g/L (Fig. 18d-f), CFU/mL values ranged between 3.5x10
9
 to 

5.2x10
9
 for all tested glucose combinations, achieving the highest value in the broth supplemented 

with 2.5 g/L of NH4Cl and 30 g/L of glucose (Fig. 18f). 

When 5 g/L of NH4Cl (Fig. 18g-i) was supplemented together with 10, 20 and 30 g/L of 

glucose, C. necator DSM 545 did not exhibit  significant differences in terms of both CFU/mL and 

OD600 nm data. The maximum growth was achieved within 40 h. Then, cells viability quickly 

dropped. This could be due to a metabolic stress related to the high concentrations of NH4Cl (Ayub 

et al., 2004; Obruca et al., 2017). However, further studies and analyses are required to verify such 

hypothesis. 

Optical density (OD600 nm) in the last two cases (when 2.5 and 5 g/L of NH4Cl were used) 

were directly proportional to CFU/mL trend, i.e. in the exponential phase the absorbance (OD600 nm) 

increases with cell growth, but once exponential phase is completed, the absorbance becomes 

consistent along with the stationary phase. Considering these results, it could be said that cells do 

not accumulate PHAs once the exponential phase is completed consequent to the presence of high 

nitrogen concentration in the medium. 
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Fig. 18. C. necator DSM 545 growth, incubated at 30°C for 72 h at different concentrations of carbon and nitrogen 

(NH4Cl) sources in DSMZ 81 medium containing:  (a), (d) and (g): 10 g/L glucose; (b), (e) and (h): 20 g/L glucose; 

(c), (f) and (i): 30 g/L glucose. Values represent the mean of three replicates and standard deviation is reported. 

 

 

As described in Fig. 18, the concentrations of nitrogen and glucose appearing the most 

suitable to support the bacteria growth was 1 g/L of NH4Cl and 30 g/L of glucose (Fig. 18c), where 

the largest amount of CFU/mL (7.2x10
9
) was achieved in a short time (48 h approximately) and 

NH4Cl level used is the lowest, thus helping to reduce the costs in a future production process. 
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3.2. PHAs synthesis by C. necator DSM 545 and D. acidovorans DSM 39. 

 

As initial experiments for PHAs production, the wild type strains C. necator DSM 545 and 

D. acidovorans DSM 39 were processed by using a two-steps cultivation procedure in their 

respective optimal cultural media and carbon sources. In the first step, the broths were 

supplemented with 30 g/L carbon and 1 g/L NH4Cl, whereas in the step two  30 g/L carbon and 1/3 

nitrogen content were used. These latter conditions are known to support PHAs accumulation. For 

each step, the incubation was under shaking at 30°C for 72 h. 

C. necator DSM 545 and D. acidovorans DSM 39 showed good growth and high PHAs 

production (Table 17) with results in agreement with those described in recently published 

manuscripts (Abbondanzi et al., 2017; Gamero et al., 2018; Marudkla et al., 2018; Romanelli et al., 

2014). C. necator DSM 545 obtained 11.6 g/L of cell dry mass (CDM) with 84.6% w/w PHAs 

content, whereas D. acidovorans DSM 39 produced 2.9 g/L of CDM with 15.4% w/w PHAs . 

 

Strain CDM (g/L) 3HB (% CDM) 

C. necator DSM 545 11.6 ± 0.3 84.6 ± 3.2 

D. acidovorans DSM 39  2.9 ± 0.1 15.4 ± 1.6 

CDM= cell dry mass. 

Table 17. PHAs production by C. necator DSM 545 and D. acidovorans DSM 39. Values 

represent the mean of three replicates and standard deviation is reported. 

 

Both strains were selected for genetic improvements in view of PHAs production at 

industrial levels, with the objective to reduce the cost and improve biopolymer extraction/recovery 

efficiency. 

 

3.3. Evaluation of antibiotic resistance of C. necator DSM 545 and D. acidovorans DSM 39. 

 

Wild type bacteria could only be transformed with vectors containing dominant selection 

markers such as gentamicin (e.g. pBBR1MCS) or kanamycin (e.g. pHM2). The resistance to these 

antibiotics were determined for C. necator DSM 545 and D. acidovorans DSM 39 (Table 18). 

The concentration of 500 and 20 μg/mL of gentamicin was chosen for the selection of the 

recombinants of C. necator DSM 545 and D. acidovorans DSM 39, respectively. Regarding 
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kanamycin, 10 µg/mL was enough to inhibit both the growth of C. necator DSM 545 and D. 

acidovorans DSM 39 strains (Table 18).  

 

Antibiotic C. necator DSM 545 D. acidovorans DSM 39 

Gentamicin (μg/ mL)   

0 ++++ ++++ 

10 ++++ ++ 

20 ++++ ng 

50 ++++ ng 

100 ++++ ng 

200 ++++ ng 

300 +++ ng 

400 ++ ng 

500 ng ng 

Kanamycin (μg/mL)   

0 ++++ ++++ 

5 ++ ++ 

10 ng ng 

Table 18. Dominant selection marker resistance of C. necator DSM 545 and D. 

acidovorans DSM 39 strains, grown on NB plate supplemented with increasing 

concentration of gentamicin and kanamycin. (++++: consistent growth; ng: no 

growth). 

 

 

3.4. STRAINS CONSTRUCTION FOR THE IMPROVED PRODUCTION OF 

PHAs FROM SLAUGHTERHOUSE FATTY WASTES.  

 

Slaughterhouse fatty wastes were selected as carbon sources for PHAs production, since 

they are highly available as by-products in EU (about 500,000 ton/year) and very cheap (Koller et 

al., 2017; Casella et al., 2016; Titz et al., 2012).  

In order to effectively utilize these substrates, C. necator DSM 545, although with a basal 

lipolytic activity (Cruz et al., 2016; Obruca et al., 2014), has been selected as host strain for the 

expression of efficient lipase genes. As such, the recombinant strains of C. necator DSM 545 

engineered for addition lipase activities would result in novel and proficient lipid-to-PHAs 

converters. 
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3.4.1. Transformation of C. necator DSM 545 strain with lipH‐lipC genes. 

 

In a previous work carried out in the microbiology laboratory of DAFNAE (University of 

Padova), twenty-six strains capable of producing lipase have been isolated from fatty wastes 

samples of the slaughterhouses (Povolo et al., 2012; Romanelli et al., 2014). The most promising 

was found to be a strain of Pseudomonas stutzeri (BT3), showing a high extracellular lipolytic 

activity. P. stutzeri, indeed, is described in the literature for such a reason (Fauré and Illanes, 2011; 

Lalucat et al., 2006; Sangeetha et al., 2011). Therefore, P. stutzeri BT3 strain was chosen as 

possible donor of the genes encoding for efficient extracellular lipases. As previously reported 

(Fauré and Illanes, 2011; Lalucat et al., 2006; Sangeetha et al., 2011) the best known and efficient 

lipase genes are called lipH and lipC. Once verified the presence of both genes into BT3 strain, they 

were cloned into an appropriate plasmid vector (pBBR1MCS-5) containing the pBBR1 Rep 

sequence, which enables the replication of plasmid in Gram negative bacteria such as D. 

acidovorans DSM 39 (Romanelli et al., 2014). Once plasmid pBBR1MCS‐5‐lipH‐lipC was 

obtained, it was cloned in E. coli DH10B and the lipolytic activity of the recombinant strain E. coli 

pBBR1MCS‐5‐lipH‐lipC verified on plates containing Rhodamine B. (Romanelli et al., 2014). 

From E. coli pBBR1MCS‐5‐lipH‐lipC, plasmid pBBR1MCS‐5‐lipH‐lipC was extracted 

using the standard methods according to Sambrook, 2001, and used for the transformation of C. 

necator DSM 545. Recombinants of C. necator DSM 545 expressing lipase were then obtained 

through chromosomal integration of plasmid pBBR1MCS‐5‐lipH‐lipC, carrying the lipH-lipC 

genes from P. stutzeri BT3. About 800 gentamicin-resistant clones, possible plasmid transporters 

pBBR1MCS‐5‐lipH‐lipC were selected and the presence of lipH-lipC genes in the recombinant 

strains were confirmed with PCR using gene-specific primers: LIPC-F (5’-

ATGAACAAGAACAAAACCTTGCT-3’); LIPC-R (5’-GTCAGAGCCCCGCGTTCTTCAATC-

3’); LIPH-F (5’-ATGAGCAGATCCATCCTTTT-3’); LIPH-R (5’-TCAGCGAGTCCGATCCTCC-

3’). As described in Fig. 19, all the newly engineered bacteria gave positive results with a PCR 

product of 1.004 and 0.935 Kb, for lipH and lipC genes, respectively. These size are consistent with 

those of the native genes of P. stutzeri BT3 (Romanelli et al., 2014). 
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Fig. 19. Gel electrophoresis of PCR amplification products obtained with primers LIPC-F, LIPC-R, LIPH-F 

and LIPH-R in P. stutzeri BT3 (lane 1a and 1b), C. necator DSM 545 pBBR1MCS‐5‐lipH‐lipC (from lane 2a 

to 12a and from 2b to 12b) and C. necator DSM 545 (lane 13a and 13b) strains. 1 Kb molecular weight 

marker (Euroclone) was used. 

 

3.4.2. Substrate identification for lipolytic activity evaluation. 

 

Before characterizing the lipolytic activity in the recombinant C. necator DSM 545 strains 

engineered for extracellular lipase production expression, different growth media and fatty 
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substrates were tested to identify the most suitable ones to stimulate the greatest production of 

lipolytic enzyme by the parental C. necator DSM 545 already reported for a basal lipolytic activity 

(Cruz et al., 2016; Obruca et al., 2014). P. stutzeri BT3 has been included as reference lipolytic 

strain (Fendri et al., 2010; Li et al., 2014; Romanelli et al., 2014) 

Plate assays, titrimetric and spectrophotometry methods were applied to determine lipolytic 

activity. The results obtained from plate assays and titrimetric method were found to be not reliable 

for inconsistency in the values obtained, whereas spectrophotometric assay showed excellent 

results, which are described below. 

Spectrophotometric assay was applied using a TECAN spark 20M microplate 

spectrophotometer (TECAN, Salzburg, Austria) to detect the amount of p-nitrophenol (pNP) 

released from p-Nitrophenyl palmitate (pNPP) at 410 nm. 

The two wild type strains, C. necator DSM 545 and P. stutzeri BT3, were grown at 30°C in 

three different media (NB and DSMZ 81 supplemented with 30 g/L of olive or corn oil) and the 

lipolytic activity of the supernatant monitored every 24 h in Tris-HCl buffers at pH 7.5 for 30 min, 

using two incubation temperatures, 30 and 37°C. The enzymatic values showed no significant 

differences between 30 and 37°C. Highest values, reported in Table 19, were obtained after 72 hour 

incubation.  

When both C. necator DSM 545 and P. stutzeri BT3 strains were grown in NB medium, an 

extremely low lipolytic activity was detected: 12 and 53 mU/(min·mL), respectively (Table 19). 

These findings could be considered expected since NB does not have any lipids useful to induce the 

lipase production by both tested strains. However, when DSMZ 81 medium was supplemented with 

olive oil, C. necator DSM 545 and P. stutzeri BT3 showed higher activity: 58 and 84 

mU/(min·mL), respectively. On the other hand, DSMZ 81 medium supplemented with corn oil, 

obtained the highest values after 72 h of growth for both strains: C. necator DSM 545 with 67 

mU/(min·mL) and P. stutzeri BT3 with 167 mU/(min·mL). 

 

Strain NB DSMZ 81 medium with olive oil DSMZ 81 medium with corn oil 

P. stutzeri BT3 53± 0.5 84± 1.3 167± 1.6 

C. necator DSM 545 12± 1 58± 0.9 67± 1.2 

Table 19. Lipolytic activity (mU/(min·mL)) of C. necator DSM 545 and P. stutzeri BT3 grown for 72 h in NB 

and DSMZ 81 medium with olive or corn oil. The enzymatic activity was measured on cell-free supernatants 

after 72 h incubation. The assays were performed at 30°C in buffer Tris-HCl at pH 7.5. Values represent the 

mean of three replicates and standard deviation is reported. 
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3.4.3. Characterization of lipolytic activity in the engineered strain. 

 

Once the integration of both lipH and lipC genes into the recombinant strains of C. necator 

DSM 545 was successfully confirmed, a representative number of clones were screened for lipolytic 

activity using a TECAN spark 20M microplate spectrophotometer (TECAN, Salzburg, Austria), as 

previously described. Determining the enzymatic activities at 30 and 37°C for 30 min was useful to 

select a cluster of 86 recombinants with great promise. Furthermore, four integrants with high 

lipolytic activities were creamed off for future studies and named DSM 545 lip3, DSM 545 lip4, 

DSM 545 lip8 and DSM 545 lip11.  

As reported in Table 20, recombinant strains exhibited the highest lipolytic activity after 72 

h of growth, DSM 545 lip3, DSM 545 lip4 and DSM 545 lip8 had lipolytic activities ranging from 

68 to 98 mU/(min·mL), values slightly higher than those reported for their parental strain (67 

mU/(min·mL)).  

 

Strain 24 h 48 h 72 h 

C. necator DSM 545 lip3 13± 0.2 61± 0.8 69± 2 

C. necator DSM 545 lip4 19± 1 34± 2.3 68± 1.6 

C. necator DSM 545 lip8 12± 1 74± 1.2 98± 0.5 

C. necator DSM 545 lip11 31± 0.4 39± 1.8 121± 0.3 

Table 20. Lipolytic activity of C. necator DSM 545 pBBR1MCS‐5‐lipH‐lipC clones after 24, 

48 and 72 h grown in DSMZ 81 broth supplemented with 30 g/L corn oil. The assays were 

performed at 30°C in buffer Tris-HCl at pH 7.5. All values are expressed in mU/(min·mL). 

Values represent the mean of three replicates and standard deviation is reported. 

 

On the other hand, C. necator DSM 545 lip11 showed superior enzymatic activity (121 

mU/(min·mL) after 72 h of growth, similar to that of the P. stutzeri BT3, donor strain of the lipase 

genes: 167 mU/(min·mL). 

The kinetics of the enzymatic activities at 24, 48 and 72 h is shown in Fig. 20 for, P. stutzeri 

BT3, C. necator DSM 545 and C. necator DSM 545 lip11 (recombinant strain with greater lipolytic 

activity), grown in DMSZ 81 broth supplemented with 30 g/L corn oil and incubated at 30°C. 

In the first 48 h of growth, P. stutzeri BT3 showed low lipolytic enzymes production. 

However, the enzymatic production increased up to 4 times within 72 h of incubation (from 39 to 

167 mU/(min·mL)). C. necator DSM 545, on the other hand, took approximately 48 h to produce 
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the lipolytic enzyme, and then the production stopped, until it reached 67 mU/(min·mL). Regarding 

C. necator DSM 545 lip11, its behavior was very similar to the donor strain of the genes, but after 

the first 48 h the enzymatic activity increased a little less, until (121 mU/(min·mL)). 

 

 

 

Fig. 20. Kinetic of lipolytic activity of P. stutzeri BT3, C. necator DSM 545 and C. 

necator DSM 545 lip11 grown in DMSZ 81 broth supplemented with 30 g/L corn oil. 

The assays were performed at 30°C in buffer Tris-HCl at pH 7.5. All values are 

expressed in mU/(min·mL) and represent the mean of three replicates with standard 

deviation reported. 

 

Considering the high enzymatic activities exhibited on pNPP (Table 20 and Fig. 20), C. 

necator DSM 545 lip11 was selected for further studies on PHAs production from slaughterhouse 

fatty wastes as carbon source. 

 

3.4.4. Optimization of growth conditions using slaughterhouse fatty wastes as carbon source. 

 

To optimize growth conditions of both parental and recombinant strains of  C. necator DSM 

545 using slaughterhouse fatty wastes as carbon source, several parameters have been considered. 

Specifically, incubation temperature, the use of Tween-80 as an emulsifier to improve the 

availability of fats, NH4Cl concentration needed to support reasonable microbial growth levels and 

production of PHAs have been considered. The most appropriate sterilization procedure for fats and 

growth media has been also defined.  
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3.4.4.1. Temperature selection to PHAs production using slaughterhouse fatty wastes as 

carbon source. 

 

Melting conditions of slaughterhouse fatty wastes have been tested in DSMZ 81 medium at 

30 g/L of each samples and incubated for 6 h at 30 and 37°C (Fig. 21). All assayed by-products 

were completely solid at 30° C. On the contrary, at 37°C good melting levels have been detected, 

except for the kidney fatty waste (Fig. 21). 

This means that incubating the feedstocks at higher temperature could be a reasonable 

option since C. necator DSM 545 and P. stutzeri BT3 were found to grow well also at 37°C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 21. Effect of temperature incubation on melting state of 30 g/L 

slaughterhouses fatty wastes in DSMZ 81 medium. 

 

3.4.4.2. Evaluation of Tween-80 as fats emulsifier. 

 

Different concentrations of Tween-80 (0, 2.5, 5, 7.5 and 10 g/L) were added to DSMZ 81 

medium with 30 g/L of each fatty waste. They were incubated at 37°C and were evaluated to assess 

the minimum quantity of Tween-80 needed to obtain a proper emulsion. Tween-80 in fact, has been 

already reported to be a good emulsifier for several lipid-rich materials such as coco nut, palm Oil 

and others (Muktar et al., 2017; Thinagaran and Sudesh, 2017). It has been used both at industrial 

and laboratory levels as stabilizer and antifoam with loadings of up to 10 g/L. For this reason, the 

maximum concentration used in this study was set to 10 g/L. 

Lard 

Visceral fat 

Kidney fat 

Membrane caul fat 

 

Jowl fat 

Udder 

     30°C                     37°C                    30°C                  37°C 
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Fig. 22 shows that the use of Tween-80 effectively improves the emulsification of all the 

tested wastes in DSMZ 81 medium. The higher concentration of Tween-80, the more homogeneous 

the emulsions becomes (Fig. 22). 

Lard, membrane caul fat and jowl fat in the presence of 5 g/L Tween-80 presented a good 

homogeneity. While visceral fat and kidney fat required 7.5 and 10 g/L of Tween-80, respectively. 

On the other hand, as reported in Fig. 22, the udder required no Tween-80 to dilute in the medium; 

this may be due to its low lipids percentage in its composition (Table 13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22. Effect of increasing concentrations of Tween-80 on the homogeneous state at 37°C of several slaughterhouses 

fatty wastes (30 g/L ) in DSMZ 81 medium. 

 

For future studies, the following Tween-80 concentrations have been selected: kidney fat 10 

g/L, visceral fat and lard 7.5 g/L, jowl and membrane caul fat 5 g/L. No addition of Tween-80 has 

been designed for udder.  

 

Lard Visceral fat Kidney fat 
Membrane 

caul fat Jowl fat Udder 

0 

2.5 

 

7.5 

 

5 

10 

 

Tween-80 

(g/L) 



93 
 

3.4.4.3. Sterilization method.  

 

With the objective to optimize the sterilization method of fatty by-products, has been 

selected the  udder, visceral fat, lard, jowl fat and membrane caul fat by their suitable melting levels 

at 37°C and their low Tween-80 requirements. 

Fatty wastes, DSMZ 81 medium and Tween-80 were mixed before sterilization or were 

sterilized separately and then mixed together. The sterilization of each substrate separately resulted 

in the formation of solid particles of tissue, probably deriving from the blood components solidified 

as a consequence of the high sterilization temperatures (Fig. 23). As such, the separation of the 

sterilized fats from the solid particles was efficient, which improved the quality of the fats added 

into the DSM81 broth. 

 

 

 

 

 

 

 

Fig. 23. Slaughterhouses fatty wastes (30 g/L) sterilized at 121°C per 20 min. 

 

 

Once prepared, the media were incubated at 37°C under shaking and, after 6 h, evaluated for 

their melting levels (Fig. 24). The media sterilized together with the fatty waste and Tween-80 

showed a degree of homogeneity greater than those formulated adding fats and Tween-80 sterilized 

separately to the Mineral medium (Fig. 24). This could indicate that the high sterilization 

temperatures supported the fats homogenization. As such, the sterilization of the mixture of DSMZ 

81 broth, fatty waste and Tween-80 was selected as procedure for future studies on PHAs 

production. Nevertheless, it is necessary to perform further investigations on the high temperatures 

effects at molecular levels on fats and the possible reactions with the DSMZ 81 medium 

components. 
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Fig. 24. Effect of sterilizing fatty wastes, DSMZ 81 medium and Tween-80 together or 

separately and then mixed. Sterilization has been performed at 121°C per 20 min. 

 

 

C. necator DSM 545 was then used to process all the selected fatty by-products into PHAs 

in a one-step configuration setting at 37°C. Tween-80 supplementation were provided according to 

the fatty waste considered (see 3.4.4.2.). Moreover, benchmark broths supplemented only with 

Tween-80 or fatty substrates have been included in the experimental design. After 72 h of growth, 

CDM and PHAs content were determined (Table 21). 

The presence in the broth of only Tween-80 was sufficient to support both growth and PHAs 

production. However, CDM and 3HB concentration were quite low, indicating that Tween-80 could 

be an unusual carbon source for C. necator DSM 545. 

Using udder as carbon source, both CDM (1.7 g/L) and PHAs production (0.02 g/L) were 

higher, confirming its good dissolubility in the medium without Tween-80 addition. Nonetheless, 

when 5 g/L Tween-80 was supplemented to lard, jowl fatty and membrane caul fatty, C. necator 

DSM 545 produced CDM and PHAs levels lower than those detected without the emulsifier 

addition. 

On the other hand, the addition of Tween-80 (7.5 g/L) to visceral fat was beneficial for 

CDM and PHAs production. 3HB content was almost 3-times higher in the presence of Tween-80, 

Udder without Tween-80  
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whose presence seemed to support the ability of C. necator DSM 545 to produce PHAs out from 

this fatty residue (Table 21). 

Overall, the effect of Tween-80 supplementation on PHAs production from slaughterhouse 

waste streams seems to be substrate-specific and needs further and deeper investigations. 

Considering now the final values of CFU/mL, it seems that the addition of Tween-80 to lard, 

jowl fat and membrane caul fat did not result in higher cell growth whereas the emulsifier did 

increase the CFU/mL in the presence of visceral fat. 

 

Carbon source CDM (g/L) 3HB (% CDM) CFU/mL 

Tween-80 (5 g/L) 0.9± 0.1 1.0± 0.3 2.1x10
7
± 1.4x10

6
 

Tween-80 (7.5 g/L) 1.1± 0.3 1.0± 0.1 3.8x10
8
± 6.3x10

7
 

Udder 1.7± 0.5 1.2± 0.1 5.3x10
7
± 5.3x10

5
 

Visceral fat 1.2± 0.3 0.6± 0.1 9.1x10
7
± 7.1x10

6
 

Visceral fat with Tween-80 (7.5 g/L) 1.7± 0.1 1.7± 0. 1 8.0x10
8
± 3.5x10

6
 

Lard 0.8± 0.02 2.2± 0.7 8.2x10
7
± 7.8x10

6
 

Lard with Tween-80 (5 g/L) 0.3± 0.01 1.7± 0.7 7.8x10
7
± 7.1x10

6
 

Jowl fat 2.1± 0.4 3.1± 0.2 2.0x10
9
± 1.4x10

7
 

Jowl fat with Tween-80 (5 g/L) 1.0± 0.03 2.5± 0.2 9.3x10
8
± 2.8x10

7
 

Membrane caul fat 2.4± 0.2 4.0± 0.8 7.4x10
8
± 1.1x10

7
 

Membrane caul fat with Tween-80 (5 g/L) 1.0± 0.4 2.7± 0.3 3.1x10
8
± 7.7x10

6
 

CDM= Cell dry mass. 

Table 21. Growth and PHAs accumulation by C. necator DSM 545 using slaughterhouse fatty wastes as carbon 

sources with or without Tween-80 supplementation. Values represent the mean of three replicates and standard 

deviation is reported. 

 

 

3.4.4.4. Nitrogen source (NH4Cl) optimization for biomass and PHAs production from 

slaughterhouse fatty wastes. 

 

Membrane caul fat waste was selected among the other fatty wastes as the most promising 

substrate for PHAs accumulation, since C. necator DSM 545 produced the highest 3HB levels 

(Table 21) without Tween-80 addition. Moreover, such substrate is quite rich in lipid (Table 13) and 

has achieved a good melting level once incubated at 37°C in the presence of 5 g/L Tween-80 (Fig. 

22). 

C. necator DSM 545 cell growth and PHAs production were evaluated in DSMZ 81 

medium, supplemented with three different concentrations of NH4Cl (0.5, 1 and 2.5 g/L) and 30 g/L 

membrane caul fat (Fig. 25 and Table 22). 
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The strain was able to grow in all three tested conditions. In the presence of 0.5 g/L NH4Cl 

lower CFU/mL levels were achieved after 48 h (up to 1.3x10
9
), whereas the other two nitrogen 

concentrations gave similar growth kinetics after 48 h of growth, with nearly 6.0x10
9 
CFU/mL (Fig. 

25). 

The lower values of biomass detected in the medium with the lowest NH4Cl content could 

be due to a shortage of nitrogen, which was limited the C. necator DSM 545 develop (Ayub et al., 

2004; Obruca et al., 2017). 

 

 

 

Fig. 25. Growth kinetics of C. necator DSM 545 in DSMZ 81 supplemented with different 

NH4Cl concentrations and 30 g/L of membrane caul fat as carbon source. Values represent 

the mean of three replicates and standard deviation is reported. 

 

 

Strain 
Carbon 

source 

NH4Cl 

(g/L) 

CDM 

(g/L) 

3HB (% 

CDM) 

3HB 

(g/L) 

Lipolytic activity 

(mU/ (min·mL)) 
% fat consumption 

C. necator 

DSM 545 
Membrane 

caul fat 

0.5  1.3± 0.4 12.4±0.1 0.2 30.2± 1.8 13.0± 0.3 

1  1.6± 0.1 9.8±0.2 0.2 69.4± 3.1 17.2± 1.1 

2.5  1.4± 0.2 2.2±0.1 0.03 60.1± 2.3 15.1± 0.8 

CDM= Cell dry mass. 

Table 22. PHAs production of C. necator DSM 545 in DSMZ 81 medium supplemented with different NH4Cl 

concentrations (0.5, 1 and 2.5 g/L) and 30 g/L membrane caul fat as carbon source at 37°C for 96 h of incubation. 

Values represent the mean of three replicates and standard deviation is reported. 
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CDM and PHAs content were also affected by NH4Cl availability in the broth (Table 22). 

The use of 0.5 g/L NH4Cl was suboptimal in terms of CDM (1.3 g/L) but had a beneficial PHAs 

accumulation (12.4% CDM). This is a consequence of the carbon/nitrogen ratio imbalance, since C. 

necator DSM 545 when being in the presence of carbon excess and low nitrogen concentration, 

activates the metabolism of PHAs accumulation in advance (Wen et al., 2010). On the other hand, 

supplementing the broth with 2.5 g/L of NH4Cl resulted in a CDM similar to that of 1 g/L of 

NH4Cl, but with lower PHAs levels.  

Considering now the lipolytic activity detected in the supernatant of the broths after 96 h of 

incubation, the medium supplemented with 0.5 g/L of NH4Cl supported significantly lower 

enzymatic capabilities. This finding could be related to the fast depletion of nitrogen, which reduces 

the expression of lipolytic enzymes (Fickers et al., 2004; Gupta et al., 2004). Such limited lipase 

activity could also explain the lower consumption of membrane caul fat by C. necator DSM 545 

once grown in the presence of the lowest NH4Cl concentrations. At higher nitrogen availability, 

both lipolytic activities and fat consumption were more evident (Table 22). 

Overall, the results reported in Fig. 25 and Table 22 seem to indicate that the best 

concentrations for both biomass production and PHAs accumulation process using slaughterhouse 

fatty waste were 1 g/L of NH4Cl and 30 g/L of carbon source. 

 

3.4.5. PHAs production from slaughterhouse residues 

 

The optimization of nitrogen and carbon source concentration was crucial for the setting of 

experiments focused to process fatty by-products into PHAs by using both the parental C. necator 

DSM 545 and the most efficient recombinant C. necator DSM 545 lip11. One-step and two-steps 

procedures have been applied as described below. 

 

3.4.5.1. One-step PHAs production by C. necator DSM 545 and C. necator DSM 545 lip11 

using membrane caul fat as carbon source. 

 

Parental and recombinant strains were grown for 96 h in a one-step cultivation procedure as 

described in 2.3.6.1. DSMZ 81 medium was formulated with 1 g/L NH4Cl and 30 g/L of membrane 

caul fat (Table 23). Noteworthy, the recombinant strain C. necator DSM 545 lip11 produced high 

levels of CDM (2.8 g/L) and PHAs content (0.8 g/L). On the other hand, the parental strain did 

confirm the ability to process membrane caul fat into biomass and 3HB, although at a much lower 
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rate. 3HB concentration (g/L) in the presence of the recombinant microbe was found to be more 

than 5-fold that detected in the broth inoculated with the parental C. necator DSM 545. 

The production of lipolytic enzyme by C. necator DSM 545 lip11 recombinant strain was 

almost 1.6-fold that of the wild type strain. The higher availability of lipase resulted in higher 

biomass production (3.1x10
10 

instead of 5.3x10
9 

CFU/mL) and greater consumption of membrane 

caul fat, 26.7 instead of 16.8% measured in the spent broth of the parental C. necator DSM 545. 

 

 

Strain CDM (g/L) 
3HB (% 

CDM) 

3HB 

(g/L) 
CFU/mL 

Lipolytic activity (mU/ 

(min·mL)) 
% fat consumption 

C. necator 

DSM 545 
1.5± 0.1 9.8± 0.02 0.15 5.3x109± 2.8x108 69.1± 3.1 16.8± 1.1 

C. necator 

DSM 545 lip11 
2.8±0.3 28.5±0.03 0.80 3.1x1010± 3.4x109 117.0± 2.8 26.7± 0.04 

CDM= Cell dry mass 

Table 23. Growth and PHAs production of C. necator DSM 545 and C. necator DSM 545 lip11 in DSMZ 81 medium 

supplemented with 1 g/L NH4Cl and 30 g/L membrane caul fat as carbon sources after 96 h of incubation at 37°C. 

Values represent the mean of three replicates and standard deviation is reported.  

 

3.4.5.2. Two-steps PHAs production by C. necator DSM 545 lip11 using membrane caul fat 

and glucose as carbon sources. 

 

In order to both increase the productivity of PHAs and lower their cost, a novel two-steps 

PHAs production procedure has been defined using membrane caul fat and glucose, both at 30 g/L, 

as carbon source in the first and second phase, respectively. Since the parental strain did not 

produce significant levels of PHAs and biomass from the membrane caul fat (Table 23), only the 

engineered microbe C. necator DSM 545 lip11 has been considered in this experiment. 

To further optimize the glucose-to-3HB yield of the second step, bacterial cells grown in the 

first phase into 100 mL of DSMZ 81 with membrane caul fat have been transferred into 100 or 50 

mL of DSMZ 81 broth supplemented with increasing concentrations of glucose (7.5, 15 and 30 g/L) 

and NH4Cl, 0, 0.075, 0.15 and 0.3 g/L (Table 24). The incubation was performed at 37°C (150 rpm) 

for 72 h, and at 24 h intervals glucose concentrations were determined. 

The rational supporting such experimental plan is threefold. Firstly, the use of a cheap 

carbon source to produce cell biomass in the first phase would result in lower production cost. 

Secondly, the use of different glucose concentration and volumes of broth in the second phase is 
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focused on optimizing the yield of PHAs from consumed glucose. Finally, nitrogen availability was 

considered as variable to assess the ability of the strain to differentially consume glucose and 

produce PHAs. 

Nitrogen occurrence in all the tested conditions seems to have promoted the glucose 

consumption. The higher starting glucose concentrations the more sugar depletion has been detected 

in the presence of NH4Cl. (Fig. 26). Overall, a general trend of glucose utilization can be 

highlighted: after approximately 48 h of growth, the glucose consumption stopped. Moreover, the 

results indicated that the use of high glucose concentration (30 g/L) could be non-beneficial for 

PHAs production as the majority of the sugar remained unused over a long incubation period. 

 

       

 

Fig. 26. Kinetics of glucose consumption by C. necator DSM 545 lip11 in a) 100 mL 

or b) 50 mL of DSMZ 81 medium supplemented with different carbon/nitrogen ratios 

in step two and incubated at 37°C. Values represent the mean of three replicates and 

standard deviation is reported. 
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As reported in Table 24, nitrogen did support also higher cell biomass in all the kinetics 

accomplished with the exception of those performed in 50 mL volumes and 15 or 7.5 g/L glucose, 

which showed similar amount of cell biomass. PHAs production, both in terms of 3HB (g/L) and % 

CDM, was generally higher in the presence of nitrogen, too. Only, the experiment conducted with 

50 mL broth having 7.5 g/L glucose reached low PHAs accumulation values. 

 

CDM= Cell dry mass. 

Table 24. Two-steps PHAs production by C. necator DSM 545 lip11 in DSMZ 81 medium supplemented with different 

carbon/nitrogen concentrations (g/L glucose/ g/L NH4Cl) and different volumes of step-two (100 and 50 mL). 3HB 

yield was determined as gram of 3HB produced during the second step per gram of consumed glucose. Values represent 

the mean of three replicates and standard deviation is reported. 

 

 

In  order to better compare the PHAs performances contents and yields achieved by C. 

necator DSM 545 lip11 in this two-steps method, 3HB concentrations and yields have been plotted 

in Fig. 27. 

The highest biopolymer accumulation value has been detected in the 50 mL broth 

supplemented with 15 g/L glucose and 0.15 g/L NH4Cl (4.4 g/L PHAs). Slightly lower 

concentrations were reached by the same recombinant strain once grown in the presence of 30 g/L 

glucose with 0.3 g/L NH4Cl in both volumes, 100 and 50 mL, of DSMZ81 medium. At lower 

glucose levels available at the beginning of the second step (7.5 g/L), 3HB productions and yields 

decreased suggesting that such sugar levels were too low in both tested volumes. 

     Glucose (g/L)  

Step-two  
Carbon/Nitrogen 

ratios (g/L) 
CDM (g/L) 

3HB (% 

CDM) 
3HB (g/L) Initial Final Consumed 

3HB 

Yield  

100 mL 

30/0.3 5.5± 0.2 77.2± 6.4 4.0 
30 

18.2± 4.3 11.8 0.34 

30/0 3.3± 0.1 53.3± 4.7 1.5 22.9± 3.0 7.1 0.21 

15/0.15 4.3± 0.1 59.9± 2.8 2.4 
15 

5.0± 0.6 10.0 0.24 

15/0 2.5± 0.2 52.8± 1.4 1.1 7.3± 3.6 7.7 0.14 

7.5/0.075 3.2± 0.6 63.5± 2.5 1.8 
7.5 

1.9± 0.5 5.6 0.32 

7.5/0 2.7± 0.1 52.9± 1.7 1.2 2.4± 4.1 5.1 0.24 

50 mL 

30/0.3 6.6± 0.6 67.5± 4.1 4.1 
30 

15.7± 2.2 14.3 0.28 

30/0 4.3± 0.7 38.3± 6.7 1.2 22.2± 4.1 7.8 0.16 

15/0.15 6.4± 0.6 75.5± 2.4 4.4 
15 

5.7± 1.3 9.3 0.47 

15/0 6.6± 0.9 57.0± 3.5 3.3 1.1± 0.2 13.9 0.24 

7.5/0.075 5.1± 0.8 40.9± 0.3 1.6 
7.5 

0 7.5 0.22 

7.5/0 4.9± 0.4 55.8± 2.7 2.3 0 7.5 0.30 
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The highest 3HB yield (0.47 g of 3HB per g of consumed glucose) was obtained in 50 mL 

supplementing the strain with 15 g/L glucose and 0.15 g/L NH4Cl. This indicates that C. necator 

DSM 545 lip11 was able, in a medium with high cellular concentration, to produce a high quantity 

of PHAs using a lower amount of glucose. 

 

 

Fig. 27. 3HB g/L production by C. necator DSM 545 lip11 in 100 mL or 50 mL of DSMZ 81 medium 

supplemented with different carbon/nitrogen concentrations (g/L glucose/ g/L NH4Cl) after 72 h of 

incubation at 37°C. 3HB yield was determined as gram of 3HB produced during the second step per 

gram of consumed glucose. Values represent the mean of three replicates and standard deviation is 

reported.  

 

3.5. STRAINS CONSTRUCTION FOR THE NUCLEASE EXPRESSION. 

 

As mentioned before, the high pressure homogenization (HPH) is one of the most widely 

known method for large scale cell disruption, it is considered environmentally friendly and does not 

need solvents to mediate an efficient microbial cells disintegration (Koller et al., 2013). However, 

cell lysis causes the release of large amounts of chromosomal DNA which results in a dramatic 

increase in viscosity, hampering following filtration and centrifugation steps (Atkinson and 

Mavituna, 1991; Ling et al., 1998; I M Tamer et al., 1998a; I M Tamer et al., 1998b; Van Wegen et 

al., 1998). Drop in viscosity is generally achieved by the supplementation of commercially 

nucleases, which increasing the production costs in the downstream step (Koller et al., 2013). 
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In order look a cost-effective solution to the viscosity issue, two selected strains (C. necator 

DSM 545 and D. acidovorans DSM 39) have been genetically modified and tested as following. 

 

3.5.1. Integration of nuclease into C. necator DSM 545 and D. acidovorans DSM 39. 

 

C. necator DSM 545 and D. acidovorans DSM 39 expressing a staphylococcal nuclease 

were constructed through random integration of plasmid pMH2-nuc, carrying the nuc gene from S. 

aureus. About 1000 kanamycin-resistant clones were screened for nuclease activity by plating on 

DNase agar and a cluster of engineered strains with the highest levels of nuclease expression was 

selected, obtaining 181 and 186 clone of C. necator DSM 545 pHM2-nuc and D. acidovorans DSM 

39 pHM2-nuc, respectively. Furthermore, two integrands with the largest hydrolysis halos were 

creamed off and named C. necator DSM 545 pHM2-nuc and D. acidovorans DSM 39 pHM2-nuc. 

Both whole cell culture and cell-free supernatant clearly demonstrated the ability to cleave DNA in 

the recombinant strains (Fig. 28 a-d). On the contrary, the two wild type bacteria displayed no 

nuclease activity (Fig. 28 e, f). 

 

 

Fig. 28. The DNase activities of wild type and recombinant strains were 

examined on DNase agar. The plates were incubated at 30°C for 72 h. Halos 

around colonies indicate DNA digestion of cell broths (a, c, e, f) or cell-free 

supernatants (b,d) of microbial cultures. The following strains were tested: C. 

necator DSM 545 pMH2-nuc (a, b), D. acidovorans DSM 39 pMH2-nuc 

(c,d), C. necator DSM 545 (e) and D. acidovorans DSM 39 (f). 
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The presence of nuc gene in the recombinant strains was confirmed with PCR using gene 

specific primers. As described in Fig. 29, only the newly engineered bacteria gave positive results 

producing a fragment of 0.7 Kb, consistent with that of nuc gene of S. aureus (Brakstad et al., 1992; 

Kim et al., 2001). 

 

Fig. 29. Gel electrophoresis of primers nucA and nucB PCR amplification 

product in C. necator DSM 545 (lane 1), C. necator DSM 545 pHM2-nuc 

(lanes 2 and 3), D. acidovorans DSM 39 (lane 4) and D. acidovorans DSM 39 

pHM2-nuc (lanes 5 and 6) strains. 1 Kb molecular weight marker (Euroclone) 

was used.  

 

 

3.5.2. Characterization of nuclease activity in the engineered strains. 

 

The nuclease activity was assessed in both the extracellular broth (using the cell free 

supernatants) and in the periplasm (using CHCl3 as permeabilization agent) of parental and 

recombinant cells. Bacterial strains were grown in NB for 72 h and cell free supernatant or whole 

cell culture treated with CHCl3 were used to assess hydrolytic activity on phage λ DNA increasing 

residence times. The highest extent of DNA hydrolysis by both engineered strains was obtained 

after 1 h incubation whereas, as expected, parental bacteria did not show any nuclease ability (Fig. 

30). Cell free supernatant samples of both recombinants readily hydrolysed DNA (lanes 3, 7, 11, 

15) and cell fractions permeabilized by chloroform, representing the periplasm (lanes 4, 8, 12, 16), 

did not demonstrate higher enzymatic activity as no further reduction in molecular weight of λ 
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DNA occurred (Fig. 30). As a result, the nuclease seems to be primarily secreted into the medium 

through the periplasm by both recombinant strains. This finding is consistent with Boynton and 

colleagues reporting that recombinant nuclease of S. aureus was mainly secreted by an engineered 

Pseudomonas putida strain (Boynton et al., 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30. Nuclease activity in D. acidovorans DSM 39, C. necator DSM 545 and relative 

recombinant strains after incubation at 30°C for 30 and 60 min. Growth medium and 

chloroform-permeabilized cell fractions (indicated by *) were incubated with phage λ DNA 

in the case of D. acidovorans DSM 39 (lanes 1, 2, 9 and 10), D. acidovorans DSM 39 

pHM2-nuc (lanes 3, 4, 11 and 12), C. necator DSM 545 (lanes 5, 6, 13 and 14) and C. 

necator DSM 545 pHM2-nuc (lanes 7, 8, 15 and 16). 

 

 

Nuclease activity of both recombinants was confirmed in liquid assays. Bacterial strains 

were grown in NB for 96 h and, at regular intervals, the supernatant was used to determine phage λ 

DNA hydrolysis by spectrophotometrically, measuring the absorbance of acid soluble 

polynucleotides at 260 nm. Both strains exhibited the highest nuclease activity after 72 h of growth, 

accounting for 67 and 17 mU/(min∙mL) for C. necator DSM 545 pHM2-nuc and D. acidovorans 

DSM 39 pHM2-nuc, respectively. This outcome is in agreement with the greater extent of DNA 

hydrolysis for C. necator DSM 545 pHM2-nuc (Fig. 30). 

 

  1kb   1    2*   3   4*   5    6*    7    8*   9   10* 11  12*  13  14* 15  16* 

                            30 min                                           60 min  
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3.5.3. PHAs synthesis by C. necator DSM 545, C. necator DSM 545 pHM2-nuc, D. acidovorans 

DSM 39 and D. acidovorans DSM 39 pHM2-nuc. 

 

In order to successfully replace parental strains as PHAs producers, the recombinant 

microbes should maintain the same strain stability and PHAs productivity as the wild type bacteria. 

Parental and recombinant strains were grown, using a two-steps cultivation procedure. Their 

respective media were formulated with high carbon and low nitrogen content, conditions known to 

support PHAs accumulation. Noteworthy, the nuclease-expressing microbes produced cell biomass 

similar to that of their parental strains, with C. necator DSM 545 strains achieving the highest 

levels (Table 25). Moreover, PHAs granules, composed exclusively of 3HB monomers, 

accumulated in the recombinant cells at concentrations comparable to those of the relative wild type 

strain. Both findings indicated that genetic transformation and nuclease production do not cause any 

evident metabolic burden to the recombinants, which could be efficiently used as PHAs producers.  

 

 

Strain CDM (g/L) 3HB (% CDM) 

C. necator DSM 545 11.6 ± 0.3 84.6 ± 3.2 

C. necator DSM 545-pHM2-nuc 11.9 ± 0.3 83.6 ± 4.3 

D. acidovorans DSM 39   2.9 ± 0.1 15.4 ± 1.6 

D. acidovorans DSM 39-pHM2-nuc   2.7 ± 0.1 16.7 ± 1.2 

CDM= Cell dry mass. 

Table 25. PHAs production by C. necator DSM 545, D. acidovorans DSM 39 and their 

recombinant strains expressing nuc of S. aureus. Values represent the mean of three replicates 

and standard deviation is reported. 

 

 

3.5.4. Reduction of cell lysates viscosity by recombinant C. necator DSM 545 pHM2-nuc.  

 

C. necator DSM 545 pHM2-nuc exhibiting relatively high levels of nuclease activity and 

confirming the innate aptitude to accumulate extraordinary levels of PHAs (Table 25) was selected 

as promising microbe for further studies. In particular, both recombinant and parental strains were 

then grown in batch experiments using the above described two-steps method. After PHAs 

accumulation phase, the cells were homogenized at 0.25, 0.5, 0.75, 1.5 and 2.5 kbar, to release the 

PHAs. For the wild type strain, homogenization took place with or without Benzonase® addition. 

The viscosities of the lysates are reported in Fig. 31a, as a function of the pressure applied during 
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homogenization. Protein content of lysate samples was also measured using the Bradford protein 

assay method, in order to relate the efficacy of cell lysis to each homogenization pressure (Fig. 

31b). 

 

 

 

Fig. 31. Viscosities of cell lysates (a) and protein content for cell lysates (b) 

of C. necator DSM 545 and C. necator DSM 545 pHM2-nuc. Values are 

the mean of three replicates and error bars represent the standard deviation. 

 

Cell disruption was assessed microscopically for both strains, confirming that the higher 

pressure the more cell debris was evident (Fig. 32). 

 

 

 

 

 

 

(○) C. necator DSM 545; (■) C. necator DSM 545 pHM2-nuc; (▲): C. necator DSM 545 with added Benzonase. 

0    0.25    0.5   0.75     1     1.25    1.5   1.75     2     2.25    
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Fig. 32. C. necator DSM 545 and C. necator DSM 545 pHM2-nuc cells exposed to increasing pressures, under optical-

microscope at 100X objective.  

 

 

Protein concentrations increases with pressure until 1.5 kbar, reaching a maximum of 417.4 

µg/mL. However, at 2.25 kbar the protein content decreased, presumably because stronger 

pressures may begin to denature measurable proteins. 

In terms of viscosity, already at the lowest homogenization pressure (0.25 kbar), the 

recombinant strain C. necator DSM 545 pHM2-nuc was able to reduce viscosity levels of the lysate 

at similar values to C. necator DSM 545 with Benzonase® (positive control), maintaining the same 

tendency to all homogenization pressures. 

This result indicates that recombinant nuclease was functionally produced in high-cell-

density fermentations and that the use of such microbe eliminates the need for expensive 

commercial nuclease to reduce the viscosity of the cell lysate.  

C. necator DSM 545 

C. necator DSM 545 pHM2-nuc 

           0 kbar                                0.25 kbar                            0.75 kbar                             1.5 kbar                           2.25 kbar 

           0 kbar                                0.25 kba                            0.75 kbar                             1.5 kbar                           2.25 kbar 
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4. CONCLUSIONS. 
 

The main obstacle of the PHAs production on a large scale is its high production cost, 

mainly influenced by both the expensive raw material and extraction/recovery technologies. 

Therefore, the use of agricultural and industrial by-products as PHAs feedstocks and the 

development  of simple methods for the extraction of PHAs could represent a low cost sustainable 

alternative. 

Wastes from slaughterhouses could represent an important carbon source for the PHAs 

production, because they are very cheap and largely available in EU. Unfortunately, these wastes 

are rich in fats and the scientific community has not found yet microorganisms with both high 

lipolytic activity and the ability to produce high PHAs quantities. 

Furthermore, in this research study, the high pressure homogenization (HPH) was selected 

for the PHAs extraction, because is an economic method and is considered environmentally 

friendly. However, cell lysis causes the release of large amounts of chromosomal DNA which 

results in a dramatic increase in viscosity, hampering the following filtration and centrifugation 

steps. Drop in viscosity is generally achieved by the supplementation of commercial nucleases, 

being this extremely expensive. 

Looking for a solution to these problems, the strategy here followed focused on two pillars. 

First, the genetic engineering of microorganisms with high PHAs production potential to obtain 

recombinants with high lipolytic activities. C. necator DSM 545 has been selected as host strain, 

because of being one of the most popular strains used in the PHAs production industry. The 

lipolytic genes lipH-lipC from P. stutzeri BT3 were used to develop the plasmid pBBR1MCS-5-

lipH-lipC which then has been integrated into C. necator DSM 545 by the electroporation method. 

One promising recombinant with the highest lipolytic activity, namely C. necator DSM 545 lip11, 

was selected and efficiently used to process slaughterhouse waste streams into PHAs. 

The recombinant strain showed interesting results, accumulating 3HB up to 29% CDM. 

With the aim of further reducing the production cost, a two-steps procedure for PHAs production 

has been developed, using membrane caul fat and glucose in the first and second phase, 

respectively. In the second step, glucose and nitrogen concentrations have been optimized and two 

different volumes tested. The results so far obtained seem to indicate that the recombinant strain C. 

necator DSM 545 lip11 could have great potential as PHAs producer from fatty waste materials. 

In a second research pillar, the staphylococcal nuclease gene nuc from S. aureus has been 

used to develop the plasmid pHM2-nuc which then has been integrated into two well-known PHAs 

producing strains C. necator DSM 545 and D. acidovorans DSM 39. The C. necator DSM 545 
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pHM2-nuc recombinant with the highest nuclease activity has been selected for future experiments. 

Finally, the recombinant strain was used for the viscosity reduction test, homogenizing the cells by 

HPH after the PHAs accumulation step. The viscosities of the lysates of C. necator recombinant 

cells were greatly reduced without the need of expensive commercial nucleases. As such, this is an 

interesting novelty on the reduction of viscosity of cell lysates by an engineered C. necator strain 

producing high 3HB levels. 

Overall, this research work showed important preliminary results that could be improved in 

the future by using more up-to-date fermentation equipments. Furthermore, it has been 

demonstrated that downstream and upstream processes of PHA production can be further improved 

and optimized in order to increase the production of PHAs at lower costs, to finally facilitate their 

introduction in the market and replace the synthetic polymers. 
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