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“Sei cambiato, Bilbo Baggins.  

Non sei lo stesso hobbit che ha lasciato la Contea.” 

J.R.R. Tolkien, Lo Hobbit 
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SUMMARY  

Kidney lesions can primarily involve the glomeruli, tubulointerstitium, or renal vessels. 

However, regardless of the initiating site of injury, all compartments often eventually become 

affected. Tubulointerstitial damage (TID) plays a central role in the progression of renal 

diseases, leading to an irreversible decline in renal function and ultimately resulting in end-

stage renal disease (ESRD). TID is characterized by loss of renal tubules, increased number 

of interstitial myofibroblasts, and accumulation of extracellular matrix (ECM) in the interstitium 

usually with chronic inflammatory cell infiltrate.  

This project aimed at investigating different aspects of the progression of chronic TID 

in canine renal diseases.  

The first part of the project consisted in a morphological study describing the 

progression of renal lesions in canine Leishmaniosis possibly representing a model of TID 

progression in infectious immune-mediated glomerulonephritis. Renal biopsies taken at the 

beginning and after a 60-day period specific leishmanicidal treatment were evaluated. 

Progression of the TID was overall mild but present in half of the dogs especially those that 

had severe TID already at the first biopsy. The results further confirmed that the progression 

of the chronic TID is independent from the persistence of the causative agent. Moreover, 

elimination of the etiological agent, by means of the leishmanicidal treatment is not 

responsible for a significant improvement of renal lesions when these are severe and include 

irreversible changes like the presence of obsolescent glomeruli andd fibrosis. In contrast the 

positive effect of the treatment seems to occur in case of mild TID and is possibly related to 

the reduction of the inflammatory component.  

The second part of the project focused on the role of tubular epithelial cells (TECs) in 

the progression of chronic TID. Morphological diagnosis, severity of inflammation, interstitial 

fibrosis, HLA-DR expression by TECs and clinicopathological variables were compared in 

renal biopsies from dogs with spontaneous kidney diseases of varying severities and 

etiologies. Fibrosis, HLA-DR expression, serum creatinine concentration (SCr), and urine 

protein-to-creatinine ratio (UPC) were all increased in dogs with primary glomerular disease 

compared with dogs with acute tubular necrosis. HLA-DR expression by TECs was positively 

correlated to fibrosis, inflammation, UPC, and SCr. The study provided evidence of the 

capacity of TECs of acting as non-professional antigen presenting cells (APCs) in chronic 
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TID, identifying a potential causative effect of the proteinuria. Moreover, this expression of 

TECs seems to precede and partially overlap with the process of epithelial-to-mesenchymal 

transition (EMT) and potentially represents a phase of the EMT process itself.  

The last part of the project investigated and described the progression of TID in a 

canine model of CKD and was conducted in partnership with the Texas A&M University 

(College Station, TX, USA). The included dogs were members of a single family affected by a 

X-linked hereditary nephropathy (XLHN) caused by a mutation in the gene encoding the α5 

chain of type IV collagen, which is a crucial component of normal glomerular basement 

membranes (GBM). The salient clinical and pathological features of the nephropathy that 

occurs in male dogs with XLHN include juvenile onset of proteinuria and renal failure rapidly 

progressive to ESRD. Aims of the study were to examine the evolution of renal injury and the 

expression of selected molecules potentially involved in the progression of chronic TID. 

Affected dogs were characterized by progressive loss of glomeruli mostly undergoing cystic 

glomerular atrophy and less commonly global glomerulosclerosis. Primary lesions into the 

glomerulus were mesangial matrix expansion and hypercellularity. The tubulointerstitial 

lesions included changes typical of chronic TID, like tubular necrosis and atrophy, interstitial 

fibrosis and inflammation. The obtained results suggested that two different phases of the 

disease can be identified. The first was classified as an “early” phase (4 months of age), 

characterized by minimal or absence of histopathological lesions but evident proteinuria that 

is characterized by TGFβ, CTGF, and PDGFRα overexpression, likely produced by podocytes 

and TECs in response to the glomerular damage and intratubular proteinuria. The second 

“advanced” phase (after 6 months of age) was characterized by prominent glomerular and 

tubulointerstitial changes associated with an upregulation of clusterin and TIMP1 by TECs. 

The obtained results significantly improved the understanding of the progression of 

chronic TID in canine renal diseases pointing out the importance of proteinuria and possibly 

other molecular changes that precede the morphological changes. More data are needed to 

further understand the mechanisms responsible for the initiation ad promotion of the 

secondary TID and the major cellular and molecular players involved in order to identify early 

and specific markers of renal damage, improve the time of the diagnosis and eventually new 

targets for therapy.  
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RIASSUNTO  

Un danno renale primario può coinvolgere uno dei comparti del tessuto renale: 

glomerulare, tubulointerstiziale o vascolare. Tuttavia, indipendentemente dalla struttura 

anatomica primariamente colpita, tutte le componenti del tessuto renale possono venire 

secondariamente coinvolte. Il danno tubulointerstiziale cronico svolge un ruolo centrale nella 

progressione del danno renale e nell’irreversibile declino della funzionalità renale risultante 

nella Malattia Renale Cronica. Morfologicamente il danno tubulointerstiziale cronico è 

caratterizzato da perdita del parenchima funzionale, in cui si osserva marcata atrofia tubulare 

ed espansione dell’interstizio dovuto ad aumento del numero di fibroblasti e accumulo di 

matrice extracellulare. Spesso in associazione si rileva infiltrato infiammatorio cronico di entità 

variabile. 

Il progetto di dottorato è stato suddiviso in tre parti e ha avuto come obiettivo lo studio 

della progressione del danno tubulo-interstiziale cronico nelle patologie renali del cane. 

In una prima fase si è analizzata l’evoluzione delle lesioni renali in soggetti con 

glomerulonefrite immunomediata associata all’infezione da Leishmania spp. Lo studio si è 

svolto su 14 cani Leishmania-positivi sottoposti ad un trattamento leishmanicida specifico 

della durata di 60 giorni e in cui si è ottenuta una duplice biopsia renale, pre-trattamento e 

post-trattamento. Complessivamente si è osservata lieve progressione delle lesioni renali in 

metà dei soggetti, particolarmente in quei pazienti caratterizzati da prominente danno tubulo-

interstiziale già alla valutazione della biopsia pretrattamento. I risultati ottenuti forniscono 

ulteriore supporto alla tesi secondo cui la progressione del danno tubulo-interstiziale cronico è 

indipendente dalla persistenza dell’agente causale. Inoltre l’eliminazione dell’agente 

eziologico, conseguente al trattamento leishmanicida, non sembra essere responsabile di un 

significativo miglioramento delle lesioni e funzionalità renale soprattutto in caso di lesioni in 

stadio avanzato e quindi croniche e di gravi come nel caso di glomerulosclerosi globale e 

fibrosi interstiziale. Al contrario un’efficacia del trattamento farmacologico si è evidenziato in 

presenza di un danno tubulo-interstiziale lieve ed è apparentemente imputabile ad una 

riduzione della componente infiammatoria. 

Nella seconda fase del progetto, lo studio è stato focalizzato ad esplorare il ruolo delle 

cellule epiteliali tubulari nella progressione del danno tubulointerstiziale cronico.  
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Lo studio è stato svolto su biopsie renali di cane affetti da patologie di diversa natura e 

gravità ricercando una correlazione tra le lesioni istopatologiche e la funzionalità renale, 

nonché la capacità delle cellule tubulari epiteliali di agire come cellule presentanti l’antigene. 

Si è potuto evidenziare che cani affetti da glomerulopatie primarie presentavano più 

comunemente un danno tubulointerstiziale cronico con fibrosi interstiziale e innalzamento dei 

parametri di creatinemia e proteinuria, così come si osservava l’espressione ex novo di HLA-

DR da parte delle cellule epiteliali tubulari. Ulteriormente si è osservata una correlazione 

positiva tra l’espressione di HLA-DR nelle cellule epiteliali, il grado di fibrosi, d’infiammazione, 

e i valori di proteinuria e creatinemia.  

Lo studio ha evidenziato la capacità delle cellule epiteliali tubulari di agire come cellule 

presentanti l’antigene nel danno tubulo-interstiziale cronico. Si è inoltre identificata nella 

proteinuria un possibile agente causale nell’indurre questa capacità. Infine questa parte dello 

studio ha messo in luce che l’espressione di HLA-DR nelle cellule epiteliali tubulari sembra 

precedere e parzialmente sovrapporsi con il fenomeno di transizione epitelio-mesenchimale 

delle cellule epiteliali e potrebbe rappresentarne una fase iniziale. 

La terza parte del progetto ha descritto la progressione del danno tubulointerstiziale 

cronico in un modello canino di Malattia Renale Cronica ed è stato svolto in collaborazione 

con la Texas A&M University (College Station, TX, USA).  

Lo studio è stato svolto su cani con nefropatia ereditaria legata al cromosoma X e 

mantenuti in condizioni sperimentali presso la Texas A&M University (College Station – Texas 

– USA). Tale nefropatia è dovuta ad una mutazione del gene codificante per la catena α5 del 

collagene di tipo IV, che rappresenta uno dei principali componenti della membrana basale 

glomerulare. Le caratteristiche cliniche e patologiche della malattia renale in cani affetti da 

nefropatia ereditaria consistono nell’insorgenza precoce di proteinuria ed insufficienza renale, 

rapidamente progressive a Malattia Renale Cronica. Obiettivi del lavoro sono stati quelli di 

esaminare l’evoluzione del danno renale da un punto di vista morfologico, clinico patologico e 

tramite lo studio dell’espressione genica e proteica di fattori potenzialmente coinvolti nella 

progressione del danno. I soggetti patologici presentavano una progressiva aumento del 

numero di glomeruli atrofici cistici o, meno frequentemente globalmente sclerotici. Le lesioni 

primarie osservate a livello glomerulare consistevano in espansione del mesangio ed 

ipercellulatià mesangiale. Il tubulointerstizio era caratterizzato da lesioni croniche ed 

aspecifiche come la necrosi ed atrofia tubulare, la fibrosi interstiziale e l’infiltrato infiammatorio 
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cronico. I risultati ottenuti suggeriscono che si possano distinguere due fasi della malattia 

renale nella nefropatia ereditaria studiata. Un fase “precoce” (4 mesi di età) in cui si sono 

osservate da lesioni morfologiche minime o assenti ma con proteinuria conclamata. Da un 

punto di vista molecolare in questa fase si è evidenziata una sovra-espressione di TGFβ, 

CTGF, and PDGFRα probabilmente prodotti da podociti e cellule epiteliali tubulari in risposta 

al danno glomerulare e alla proteinuria. Una seconda fase “avanzata” (dopo i 6 mesi di età) 

sarebbe invece caratterizzata da lesioni glomerulari e tubulointerstiziali conclamate e da una 

up-regulation di clusterina e TIMP1 ad opera delle cellule epiteliali tubulari.  

I risultati ottenuti forniscono nuove informazioni e aumentano la conoscenza dei 

meccanismi di progressione del danno tubulointerstiziale cronico nelle malattie renali del 

cane. Dal lavoro effettuato emerge che l’insorgenza di proteinuria e l’alterata espressione di 

alcune molecole sembra precedere la presenza di lesioni morfologiche. Ulteriori studi sono 

necessari per approfondire la nostra conoscenza dei meccanismi di iniziazione e promozione 

del danno tubulointerstiziale cronico, delle componenti cellulari e molecolari coinvolte con 

l’obiettivo di identificare marcatori di danno renale precoci e specifici e possibili target 

terapeutici per la gestione del paziente con insufficienza renale. 
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ABBREVIATIONS 

 

AFOG: acid fuchsine orange G 

AMYL: amyloidosis  

ANOVA: One-way analysis of variance  

ATN: acute tubular necrosis 

BM: basement membrane 

bp: base pair  

BPM7: bone morphogenic protein 7 

CDA: canonical discriminant analysis 

CGS: chronic glomerulosclerosis 

CIF: cortical interstitial fibrosis 

CKD: chronic kidney disease 

CLUST: clusterin 

CTGF: connective tissue growth factor 

DAB: diaminobenzidine 

EC: endothelial cells 

ECAD: E-cadherin 

ECM: extracellular matrix 

EGFR: epidermal growth factor receptor 

ESK: end stage kidney 

ESRD: end stage renal disease 

GBM: glomerular basement membrane 

GLM: generalized linear model 

GN: glomerulonephritis 

HCL: Hierarchical clustering 

HE: hematoxylin and eosin 

HGF: hepatocyte growth factor 

HLA: human leukocytes antigen 

IL-4: interleukin 4 

MC: mesangial cells 

MeGN: mesangioproliferative GN 

MHC: major histocompatibility complex 

MMPs: matrix metalloproteinases 

MPGN: membranoproliferative GN  

NAV: Navasota 

NCAD: N-cadherin 

P: podocytes 

PAS: periodic acid–Schiff 

PCA: principal component analysis 

PDGF: platelet-derived growth factor 

qRT-PCR = quantitative real time polymerase 

chain reaction 

RQ: Relative Quantification  

SCr: serum creatinine concentration 

TBP: TATA-binding protein 

TECs: tubular epithelial cells 

TEM: transmission electron microscopy 

TGFR2: TGF beta receptor 2 

TGFβ: transforming growth factor beta 

TID: tubulointerstitial damage 
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TIMP: tissue inhibitor of metalloproteinases 

TNFα: tumor necrosis factor alpha 

UPC: urinary protein and creatinine ratio 

VEGF: vascular endothelial growth factor 

VEGFR: VEGF receptor 

XLHN: X-linked Hereditary Nephropathy 

βCAT: βcatenin  
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INTRODUCTION 

CHRONIC KIDNEY DISEASE 

Chronic kidney disease (CKD) is the final common pathway resulting from persistent 

renal injury. Glomerular diseases are the most common causes of CKD in dogs and are 

important causes of morbidity and mortality in this species (Polzin and Cowgill, 2013). Other 

less frequent causes (e.g., renal dysplasia, pyelonephritis) have also been reported. Recently 

published data on the prevalence of different categories of pathologic diagnoses identified in 

dogs with suspected glomerular disease (Schneider et al., 2013), indicate that immune-

complex glomerulonephritides are the largest single category of canine glomerular diseases 

(about 48% of cases). However, all other diagnostic categories taken together accounted for 

about half (52%) of all cases, although no other category (e.g., primary glomerulosclerosis, 

amyloidosis, etc.) alone accounted for more than about 20% of all cases (Schneider et al., 

2013). Recently, many advances in the diagnosis of renal biopsies have been achieved in 

veterinary medicine through the greater use of diagnostic modalities such as optical 

microscopy, transmission electron microscopy (TEM) and immunofluorescence, which are 

routinely used in human nephropathology, and more detailed data are expected to be 

forthcoming (Aresu et al. 2008a; Cianciolo et al., 2013; James et al., 2013). However, in dogs 

it is well known that most chronic nephropathies share common pathogenic mechanisms that 

contribute to disease progression, regardless of the original cause of disease, and that renal 

fibrosis is an inevitable and consequential feature of all kinds of progressive CKD.  

 

THE CHRONIC TUBULOINTERSTITIAL DAMAGE IN CANINE RENAL DISEASES 

The tubulointerstitial compartment of renal tissue consists of tubular and vascular 

structures that are embedded in and supported by a moderately cellular connective tissue 

matrix (interstitium). Interstitial cells are an heterogeneous population including fibroblasts, 

dendritic, inflammatory and hematopoietic progenitor cells, that are primarily involved in the 

fibrogenic process. The entire tubulointerstitial compartment accounts for more than 80% of 

the total kidney volume, and involvement of each of the cell types has been correlated to CKD 

in various ways (Eddy, 2005a). In general, the typical features of chronic tubulointerstitial 

damage (TID) are the presence of interstitial inflammation and fibrosis associated with the 
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loss of tubules and peritubular capillaries (Eddy, 2005b). Fibrosis is mostly due to an 

imbalance between the production and degradation of extracellular matrix (ECM), leading to 

excessive accumulation and deposition of collagenous ECM. Increased internal renal 

pressure and external compression by the interstitium are also possible causes of tubular 

atrophy and dilatation. Multiple phases of the fibrotic process can be distinguished and 

considered in chronologic order, but each phase is part of an overall attempt by the kidney to 

repair its injury and recover from the damage (Eddy, 2000). The first to occur is the 

inflammatory phase, wherein lymphocytes, mostly T-lymphocytes, monocytes and plasma 

cells are distributed in the interstitial compartment and accumulate progressively (Aresu et al., 

2012). Subsequently, resident kidney cells are activated, leading to the production and 

secretion of pro-inflammatory cytokines (Eddy, 2000). Interstitial inflammatory cells are found 

in all forms of canine glomerular diseases and an association between inflammatory index 

(number of inflammatory cells per optical microscopy field) and interstitial fibrosis has been 

found in multiple recent studies (Aresu et al., 2012; Benali et al., 2013). The next phase of the 

fibrotic process partially overlaps the inflammatory phase and is mainly characterized by the 

proliferation of fibroblasts and deposition and collection of ECM (Eddy, 2005b). Resident 

interstitial fibroblasts are known to be the primary source of ECM (Nahas, 2003). Fibroblasts 

become activated due to stimulation by cytokines, including Transforming Growth Factor beta 

(TGFβ) and members of the Platelet-derived Growth Factor (PDGF) family. Fibroblasts are 

able to synthesize many of the constituents of the ECM, such as fibronectin and types I, III, 

and V collagen. They are also a major source of ECM-degrading proteases such as matrix 

metalloproteinases (MMPs), underscoring their crucial role in maintaining ECM homeostasis 

via regulation of turnover (Aresu et al., 2011a). The possible bone marrow origin of some 

fibroblasts and the concept of fibroblast stem cells have raised several hypotheses and novel 

therapeutic possibilities, but their exact contribution remains to be determined (Eddy, 2005a). 

Correlated with the accumulation of ECM, an increased number of atrophic tubules are found 

in the interstitium. The morphology of the tubules is characterized by thickening or wrinkling of 

the basement membrane. Atrophy begins with loss of the brush border and basal 

interdigitating cell processes and continues with transformation of the complex proximal 

tubular epithelium into a simple flat epithelium. From a physiological perspective the tubule is 

no longer able to perform its normal secretion and reabsorption functions, one manifestation 

of which is the development of proteinuria (Roura et al., 2013).  
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Figure 1. Features of the tubulointerstitial damage secondary to a primary glomerular disease  

a) schematic view; b) Jone’s Methanamine silver stain 200x 

a 

b 
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OBJECTIVES 

Chronic TID plays a central role in the progression of different canine renal diseases, 

leading to an irreversible decline in organ function and ultimately resulting in ESRD. The main 

goal of this project is to investigate the mechanisms involved in the initiation and promotion of 

the TID in different canine renal diseases. In this contest, the project aims to define and 

classify the steps that are associated with the progression of the TID. The principal cellular 

and molecular mechanisms are studied through the use of morphological analysis, 

immunohistochemistry and molecular biology techniques. 

For this purpose the project is divided in three parts: 

- In the first part the progression of chronic TID is investigated in a canine model of 

infectious immune-mediated glomerulonephritis 

- The second part of the study is focused on the role of the tubular epithelial cells (TECs) 

and specifically explores the capacity of TECs of acting as non-professional antigen 

presenting cells (APCs) 

- In the third part of the project, the progression of TID is studied using a previously well-

established canine model of hereditary nephropathy focusing on the potential role of 

different molecules reported to be involved in the mechanisms of fibrosis.  
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PART 1 

THE PROGRESSION OF TUBULOINTERSTITIAL 

DAMAGE IN CANINE RENAL DISEASES: A MODEL OF 

IMMUNE-MEDIATED GLOMERULONEPHRITIS  
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Adapted from: Aresu L, Benali S, Ferro S, Vittone V, Gallo E, Brovida C, Castagnaro M. “Light 

and electron microscopic analysis of consecutive renal biopsy specimens from leishmania-

seropositive dogs”.  Vet Pathol. 2013 Sep;50(5):753-60. 

BACKGROUND 

Canine leishmaniasis due to Leishmania infantum is a major cause of renal disease in 

Italy (Zatelli et al., 2003). The renal damage in canine visceral leishmaniasis is thought to be a 

multifactorial process that is caused by immune complex deposition; however, a recent study 

has also highlighted the role of T lymphocytes and adhesion molecules (Costa et al., 2010). 

Immune complex deposition can be the consequence of persistent antigenemia and 

circulating immune complexes; the process typically triggers the activation of the complement 

system and causes acute injury to the glomerular capillaries and mesangium. The severity of 

the TID is probably linked to the progression of the disease (Ruggenenti and Remuzzi, 2000; 

Strutz and Neilson 2003). In dogs with nephropathy from naturally acquired visceral 

leishmaniasis, diffuse membranoproliferative and mesangioproliferative glomerulonephritis 

appear to be the most common histologic patterns (Binhazim et al., 1992; Koutinas et al., 

1994; Costa et al., 2003; Zatelli et al., 2003; Aresu et al., 2007; Poli et al., 1991). No data 

explored the progression of renal lesions in Leishmania spp. infection in dogs.  

 

AIM 

The objective of this study was to analyze the histopathological and ultrastructural 

changes in 15 symptomatic dogs that were serologically positive for Leishmania spp.; these 

dogs were biopsied at diagnosis and again at the end of treatment with a specific anti-

Leishmania pharmacological agent. Immunohistochemistry was also performed to 

characterize the interstitial inflammatory infiltrate. 
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MATERIALS AND METHODS 

Case Selection 

Fifteen dogs, seropositive for Leishmania spp., were selected from a canine shelter. 

The selected dogs had a serum titer > 1:160 by indirect fluorescent antibody test and had 

Leishmania amastigotes in fine-needle aspirate samples of sternebral bone marrow (Maia et 

al., 2008). The dogs were treated with a leishmanicidal pharmacologic compound without 

supportive therapy for chronic renal failure. The study was performed in accordance with an 

approved Institutional Animal Care and Use Committee protocol. 

Sample Collection 

A percutaneous ultrasound-guided biopsy specimen was collected from the caudal 

pole of the left kidney at diagnosis (T0) using a Tru-cut disposable biopsy needle. A second 

biopsy was performed on the caudal pole of the right kidney 60 days later (T1). All biopsy 

specimens were divided for light and electron microscopy. Blood and urine samples were also 

obtained at T0 and T1. 

Light Microscopy 

For histopathology, renal tissue was fixed in 10% neutral buffered formalin, processed 

routinely, and embedded in paraffin. Serial 3 μm sections were stained with hematoxylin and 

eosin (HE), Masson’s trichrome, periodic acid–Schiff (PAS), acid fuchsine orange G (AFOG) 

and Jones’ methenamine silver. Histologic sections were evaluated and scored (Table 1) 

independently by 2 pathologists without knowledge of the clinical data; any inter-observer 

discrepancy in grading was resolved by arbitration.  

The histologic diagnoses were categorized according to the World Health Organization 

classification of human glomerular diseases. A diagnosis of immune-mediated 

glomerulonephritis was corroborated by the finding of characteristic electron-dense deposits 

ultrastructurally. Renal lesions classified as mesangioproliferative glomerulonephritis had 

increased mesangial cells and matrix with no involvement of the capillary lumen, and immune 

deposits were found in the mesangium at electron microscopy. Chronic glomerulosclerosis 

was characterized by increased mesangial matrix with or without hypercellularity and absence 

of immune deposits. End-stage kidney was characterized by severe glomerular damage with 
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obsolescence of > 40% of the glomeruli, severe tubular atrophy and fibrosis, and few 

electron-dense deposits in the basement membrane and in the mesangium. In 

membranoproliferative glomerulonephritis, glomeruli had increased mesangial matrix and 

cellularity and thickened glomerular capillary walls with immune complexes in the basement 

membrane and mesangium, cellular interposition, and new basement membrane formation. 

Electron Microscopy 

For transmission electron microscopy (TEM), the tissue was post-fixed in osmium (2% 

in distilled water) for 1.5 hours, dehydrated in graded acetone, and embedded in Epon. 

Semithin sections were stained with azure-methylene-blue. Ultrathin sections were contrasted 

with uranyl acetate and lead citrate and examined with a Philips EM 420 transmission 

electron microscope. 

Immunohistochemistry (IHC) 

For IHC, serial paraffin sections were cut at 4 μm thickness on surface-coated slides 

(Superfrost Plus). Slides were incubated at 37°C for 30 minutes before 

immunohistochemistry, which was performed with an automatic immunostainer (Ventana 

Benchmark XT, Roche-Diagnostics, Monza, Italy). The immunostainer uses a kit with a 

secondary antibody with a horse radish peroxidase–conjugated polymer to enhance the 

signal (ultraViews Universal DAB, Ventana Medical System Inc.). All reagents are dispensed 

automatically except for the primary antibody, dispensed by hand. Antibodies against CD3 

(clone F7.2.38, Dako Italia Milano-Italy) and CD79acy (clone HM57, Dako Italia Milano-Italy) 

were used to detect T lymphocytes and B lymphocytes, respectively; incubation time was 20 

minutes at 37° C. For negative controls, the primary antibody was replaced by antibody 

diluent; sections of hyperplastic lymph node were used as positive controls. 

Clinical Chemistry 

Total urinary protein and urinary creatinine were quantified by Pyrogallol red direct 

colorimetric method (Sentinel Diagnostics, CH) and Jaffe´ enzymatic colorimetric method 

(Sentinel Diagnostics–CH, Hitachi 911, Roche), respectively. Samples with very high urinary 

protein were diluted with sterile saline (1:3 or 1:10). For measurement of urinary creatinine, all 

samples were diluted 1:10, as recommended by the manufacturer. 
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Table 1. Histologic scoring of renal biopsy specimens 

Histologic parameter and definition Severity Score 

Glomerular compartment 
  

Endocapillary hypercellularity 
 Increased numeber endothelial cells with 
luminal  effacement 

Absent to rare 0 

  1-2 capillary profiles in few glomeruli 1 

 
1-2 capillary profiles in most glomeruli 2 

 
Many capillary profiles in most glomeruli 3 

Mesangial hypercellularity 
   Increased number mesangial cells, 
including macrophages 

Absent to rare 0 

 
Segmental in few glomeruli 1 

 
Segmental to global in few glomeruli 2 

 
Segmental to global in most glomeruli 3 

Immune deposits Absent 0 

 
Rare 1 

 
In few glomeruli 2 

 
In most glomeruli 3 

Increased mesangial matrix Absent 0 

 
Segmental in few glomeruli 1 

 
Segmental to global in most glomeruli with 
obliteration of few capillary loops 

2 

 
Global in most glomeruli with obliteration of many 
capillary loops 

3 

Capillary thickening Absent 0 

 
Rare 1 

 
Mild in most capillary loops 2 

 
Moderate in most capillary loops 3 

Tubulo-interstitial compartment 
  

Interstitial fibrosis <10% of the section 0 

 
10-30% of the section 1 

 
31-50% of the section 2 

 
>50% of the section 3 

Interstitial inflammation Absent or rare scattered leukocytes 0 

 
Focal to multifocal mild inflammation 1 

 
Multifocal moderate inflammation 2 

  Multifocal severe inflammation 3 
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RESULTS 

The median age at T0 was 4.5 years (range, 2.6–7.7 years). Renal biopsy specimens 

varied from 10 to 17 mm long x 2 mm thick; each histologic section contained an average of 

19 glomeruli (range, 15–37). At T0 biopsy, a wide spectrum of glomerular lesions was 

evident. Membranoproliferative and mesangioproliferative glomerulonephritis were observed 

in 6 dogs, chronic glomerulosclerosis in 5, end-stage kidney in 3, and no lesions in 1 case. 

Biopsy specimens were evaluated by electron microscopy in all dogs; the most striking 

glomerular lesion in 9 dogs was the presence of electron-dense deposits in various sites. 

Seven dogs had a multifocal and moderate distribution of lymphocytes and plasma cells in the 

renal interstitium. The mean inflammation score for all dogs was 1.9 (range, 0–3). At T1, 

progression of the glomerular lesions was minimal in most dogs. Interstitial fibrosis was stable 

or increased; the mean interstitial inflammation score (1.8; range, 0–3) was not significantly 

different. Histological evaluation and scoring at T0 and T1 are summarized in Table 2. 

Normal Dog 

At T0, dog No. 14 was considered within normal limits, with only a few glomeruli having 

minimal and segmental increase in mesangial cellularity and matrix. At electron microscopy, 

mild and multifocal foot-process effacement was presented. Neither interstitial fibrosis nor 

inflammation (except for rare CD3 lymphocytes) was evident. At T1, glomerular and 

tubulointerstitial scores were similar to those for the T0 biopsy specimen, as were the electron 

microscopic results. 

Mesangioproliferative Glomerulonephritis 

The diagnosis for dog Nos. 1, 2, and 15 was mesangioproliferative glomerulonephritis. 

The glomeruli had a moderate increase in mesangial matrix and mesangial hypercellularity 

(Fig. 2a). Most podocytes were hypertrophied with karyomegaly and 1 or more large 

cytoplasmic vesicles. With Jones’ methenamine silver stain, multiple mesangial holes (2 mm 

in diameter) were observed. Overall, the glomerular basement membrane (GBM) had normal 

thickness. Two dogs lacked tubulointerstitial inflammation; one dog had multifocal moderate 

lymphoplasmacytic infiltrate. Fibrosis was absent in dog 15 and scored as 1 in dog Nos. 1 and 

2. Ultrastructural electron-dense deposits were in the mesangium and in the subepithelial 

surface of the GBM overlying the mesangium (paramesangium) (Fig. 2b). At T1, segmental 
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endocapillary hypercellularity (absent at T0) was observed in few glomeruli. Ultrastructurally, 

the GMB was segmentally thickened due to mesangial cell interposition, and mesangial 

immune complex deposits had a similar distribution to that at T0. Tubulointerstitial changes 

were mild, and in dog No. 1, no leukocytes were detected. At T1, mesangial and 

paramesangial deposits were still present. 

Chronic Glomerulosclerosis 

At T0, 5 dogs were diagnosed with chronic glomerulosclerosis and lacked immune 

complex deposits. Three dogs had mild glomerular lesions with diffuse, mild to moderate 

expansion of the mesangium and minimal segmental mesangial hypercellularity (6 mesangial 

cell nuclei per mesangial area) and rare obsolescent glomeruli (Fig 3a and 3b). Electron 

microscopy confirmed the histologic lesions, and no electron-dense deposits were detected at 

T0 (Fig. 3c). Multifocal foot-process effacement was also observed. No tubulointerstitial 

inflammation was evident except for rare CD3 lymphocytes, which were not associated with 

tubular damage. At T1, glomerular and tubulointerstitial scores were similar to those at T0. 

Electron-dense deposits were detected in only 1 dog, in the mesangium, so the diagnosis for 

dog No. 12 was changed to mesangioproliferative glomerulonephritis. Dog Nos. 3 and 7 had 

more severe glomerular lesions. Global and diffuse glomerular lesions, with increased 

mesangial matrix and endocapillary and mesangial hypercellularity, were scored as 2 or 3 in 

the absence of GBM thickening or immune complex deposits. Many cystic atrophic or 

obsolescent glomeruli were observed. Electron microscopy confirmed the histologic lesions 

with multifocal expansion of mesangium and mesangial hypercellularity. Electron-dense 

deposits were not detected. Multifocal foot-process effacement was observed. These results 

were similar at T1. Interstitial damage included moderate multifocal fibrosis and variable 

degree of inflammation. At T1, glomerular lesions were moderate; the tubulointerstitium had 

reduced inflammation, but the fibrosis score remained mild to moderate. 

End-Stage Kidney 

Three dogs had the most severe and chronic lesions, in both the glomerular and 

tubulointerstitial compartments. The glomerular tufts were irregular in shape, and the 

Bowman’s capsules were markedly thickened. More than 40% of the glomeruli were 

obsolescent; many were cystic and atrophic (Fig 4a and Fig 4b). Synechiae and GBM 
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hyalinosis were segmentally present. The GBMs, where identifiable, were minimally to mildly 

thickened. Podocytes were diffusely hypertrophic; some contained protein resorption droplets 

and large cytoplasmic vacuoles. Ultrastructural lesions at T0 and T1 included multifocally 

increased mesangial matrix and cellularity (possibly including macrophages) with 

electrondense deposits. The deposits were predominantly in the paramesangial regions. In 

addition, multifocal mesangial cell interpositioning was observed in the GBM. Interstitial 

damage was characterized by severe, multifocal fibrosis (Fig 4c and Fig 4d). However, the 

inflammation score for these dogs was low (mean score, 1.3), whereas the mean score for 

fibrosis was 2.6. At T1, the severity 

of fibrosis had increased. 

Membranoproliferative Glomerulonephritis 

In dog Nos. 6, 9, and 13, the diagnosis was membranoproliferative glomerulonephritis, 

with severe and global hypercellularity, and a lobulated appearance of the glomerular tufts. 

The hypercellularity was mainly mesangial, with lesser contributions from hypertrophic 

podocytes and an increased number of endothelial cells (Fig. 5a). The GBMs were 

moderately and globally thickened with multifocal membrane duplication, which indicated 

mesangial cell interpositioning. The immune complex deposits in the capillary wall were 

accentuated with AFOG stain (Fig. 5b,5c). Electron-dense deposits were common in the 

mesangium and in the GBM at T0 and T1 (Fig. 5d), specifically, in the subepithelial, 

subendothelial, and intramembranous regions, often in association with interpositioned 

mesangial cells. All dogs had severe multifocal to confluent visceral epithelial cell foot-

process fusion (Fig. 5d). Tubulointerstitial lesions were mild and mainly inflammatory, with 

lymphoplasmacytic infiltration in all cases. Only dog No. 9 had interstitial fibrosis, scored as 1. 

Dog No. 13 died during the study period, so a T1 biopsy specimen could not be obtained. 

Other dogs at T1 had an increased number of immune complex deposits by light microscopy. 

Three parameters, increased mesangial matrix and mesangial and endocapillary 

hypercellularity, were scored 2 or 3 for global and diffuse glomerular involvement. The T1 

tubulointerstitial inflammation score was reduced, but fibrosis score was increased in 

comparison to that at T0. 

Immunohistochemistry  
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At both T0 and T1, the immunohistochemical analyses demonstrated that CD79a and 

CD3 cells were equally distributed in the dogs. The majority of the CD79a cells were plasma 

cells. The CD3 lymphocytes were the most numerous lymphoid cell adjacent to tubules that 

were atrophied or contained luminal protein. The predominant leukocyte in areas of interstitial 

fibrosis was also the CD3 lymphocyte. 

Clinical Chemistry 

At T0, 13 dogs (Nos. 1–7, 9–13, and 15) were proteinuric (urine protein: creatinine ratio 

> 0.3). The diagnosis for these dogs was membranoproliferative glomerulonephritis (n= 3), 

mesangioproliferative glomerulonephritis (n= 3), chronic glomerulosclerosis (n= 4), and end-

stage kidney disease (n= 3). All the dogs, except dogs Nos. 10, 12, and 14, had increased 

serum creatinine (> 88.4 mmol/L). Clinical chemistry data are summarized in Table 3. 
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Table 2: Light microscopy examination of renal biopsy of 15 Leishmaniotic dogs: scoresheet of 

parameters of glomerular and tubulo-interstitial damage and morphological diagnosis 

a: parameters considered at light microscopy semi-quantitatively scored from 0 to 3; b: morphological 

diagnosis: MeGN (mesangioproliferative glomerulonephritis), MPGN (membranoproliferative 

glomerulonephritis type I), CGS (chronic glomerulosclerosis), ESK (end stage kidney); c: at T1 

immunodeposits were evident  in the mesangium and the diagnosis changed in mesangioproliferative 

glomerulonephritis; d: dog died in the period between the two sampling thus no comparison is 

available; T0: evaluation at first biopsy; T1: evaluation at second biopsy (after 60days) 

 

 

  

Dog 

No 

GLOMERULI TUBULOINTERSTITIUM 
 

 

Endocapillary 

hypercellularitya 

Mesangial 

hypercellularitya 

Mesangial 

expansiona 

Immuno-

depositsa 

Capillary 

thickeninga 
Inflammationa Fibrosisa Diagnosisb 

 
T0 T1 T0 T1 T0 T1 T0 T1 T0 T1 T0 T1 T0 T1 T0 T1 

1 0 1 2 2 2 1 1 1 0 0 2 0 1 1 MeGN MeGN 

2 0 1 2 2 1 2 1 1 0 1 0 1 1 1 MeGN MeGN 

3 2 1 2 1 3 1 0 0 0 0 1 0 2 1 CGS CGS 

4 2 2 3 2 3 3 2 2 1 2 2 2 1 2 ESK ESK 

5 2 2 3 2 3 3 1 2 0 0 1 1 2 3 ESK ESK 

6 1 2 3 3 2 2 1 2 1 1 1 0 0 1 MPGN MPGN 

7 2 1 3 1 2 1 0 0 0 0 3 1 2 2 CGS CGS 

8 0 0 2 1 1 1 0 0 0 0 0 0 0 0 CGS CGS 

9 2 2 2 1 1 2 2 3 1 1 2 0 1 2 MPGN MPGN 

10 1 1 1 2 1 1 0 0 0 1 0 0 0 0 CGS CGS 

11 3 2 3 3 3 3 3 2 2 2 2 3 1 3 ESK ESK 

12 1 1 2 2 1 2 0 1 1 0 0 0 0 0 CGS MeGNc 

13d 2 
 

2 
 

2 
 

2 
 

1 
 

2 
 

0 
 

MPGN  

14 0 0 1 1 1 1 0 0 0 0 0 0 0 0 Normal Normal 

15 0 1 1 2 1 2 1 2 0 1 0 1 0 1 MeGN MeGN 
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Table 3. Urine protein-creatinine ratio (UPC) and serum creatinine (SCr) in 15 leishmaniotic 

dogs at time of first renal biopsy (T0) 

Diagnosisa  

(dog No.) 
UPCb SCr 

  T0d T0d 

Normal (dog 14) 0.11 46.8 

MeGN (dog 1) 0.88 140.5 

MeGN (dog 2) 0.73 115.8 

MeGN (dog 15) 0.93 131.7 

MPGN (dog 6) 1.05 111.4 

MPGN (dog 9) 1.13 110.5 

MPGN (dog 13)e 1.29 118.4 

CGS (dog 3) 1.06 118.4 

CGS (dog 7) 1.79 1.28 

CGS (dog 8) 0.06 113.1 

CGS (dog 10) 0.48 78.7 

CGS (dog 12) 0.75 55.7 

ESK (dog 11) 3.54 92.8 

ESK (dog 4) 3.25 127.3 

ESK (dog 5) 2.35 178.6 

 

a:morphological diagnosis: MeGN (mesangioproliferative glomerulonephritis), MPGN 

(membranoproliferative glomerulonephritis type I), CGN (chronic glomerulonephritis), ESK (end stage 

kidney); b: urine protein-creatinine ratio (normality range: 0-0.3).; c: serum creatinine µmol/L 

(normality range 0-176.8 µmol/L); d: T0: evaluation at first sampling; e: dog died in the period between 

the two sampling thus no comparison is available 
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Figure 2: Mesangioproliferative glomerulonephritis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) Glomerulus with moderate mesangial expansion and mesangial hypercellulatiry. PAS 400x; 

b) Renal glomerulus, paramesangial and mesangial area. Within the mesangium there are 

multiple variably sized irregular electron-dense deposits consistent with immune-complex 

deposits (red arrows). Foot processes of podocytes are swollen and fused. P: podocytes, MC: 

mesangial cells. Transmission electron microscopy (TEM).  

a 

b 
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Figure 3: Chronic glomerulosclerosis 

a-b) Glomerulus with mild-moderate mesangial expansion and mesangial hypercellularity and absence 

of immune deposits. PAS and Masson’s Trichrome 400x. c) Renal glomerulus. Within the mesangium 

there is moderate mesangial hypercellularity associate with mesangial expansion. Foot processes of 

podocytes are swollen and fused. P: podocytes, MC: mesangial cells. TEM. 

a 

b 

c 
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Figure 4 : End Stage Kidney 

a-b) Renal tissue with severe lesions, in both the glomerular and tubulointerstitial compartments. Most 

glomeruli are obsolescent or cystic and atrophic. The interstitium is severely expanded by fibrosis and 

marked lymphoplasmacytic infiltrate associated with multifocal atrophic tubules. PAS and Masson’s 

Trichrome 200x; c) Interstitium severely expanded  by collagen deposition (black arrow) and with 

increased number of fibroblasts (yellow arrow). TEM; d) Glomerulus. Severe expansion of the 

mesangium and thickening of basement membrane with partial collapse of capillary loops. The foot 

processes of podocytes are swollen and occasionally fused. P: podocytes; EC: endothelial cells; MC: 

mesangial cells. TEM  

a 

c d 

b 
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Figure 5: Membranoproliferative glomerulonephritis 

a) Glomerulus with moderate mesangial expansion and mesangial hypercellulatiry and multifocal 

thickening of the basement membrane (red arrow). Jone’s methanamine silver 400x; b) Glomerulus 

with diffuse red deposits on the subepithelial side of the basement membrane and in the mesangium. 

Acid fuchsine orange G (AFOG) 400x; c) detail of figure b) showing the capillary loop expanded by 

multiple granular deposits. AFOG; d) Renal glomerulus, capillary loop. The glomerular basement 

membrane is diffusely thickened and characterized by the presence of multiple variably sized irregular 

electron-dense deposits consistent with immune-complex deposits (red arrows). Foot processes of 

podocytes are swollen and occasionally fused. P: podocytes; EC: endothelial cells; BM: basement 

membrane. TEM 

 

  

a b 

d c 
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DISCUSSION 

Visceral leishmaniasis is a frequent cause of renal damage that evolves into 

progressive CKD in dogs (Zatelli et al., 2003). Membranoproliferative and 

mesangioproliferative glomerulonephritis are the most frequently reported lesions in affected 

dogs (Costa et al., 2003; Koutinas et al., 1994); this trend is substantiated in the present 

study.  

The pathogenesis of the renal damage in Leishmania infection is not well defined; both 

a type III hypersensitivity mechanism and the involvement of CD4+ T cells have been 

proposed. The glomerular proliferation pattern has also been attributed to an inhibition of 

mesangial cells apoptosis and the migration of inflammatory cells into the glomerular tuft 

(Costa et al., 2010). In the current study, immune complex deposits were detected within the 

GBM and in the mesangium by electron microscopy, supporting a role of type III 

hypersensitivity in the renal damage during Leishmania infection. To our knowledge, 

sequential biopsy has not been used to evaluate histologic and ultrastructural progression of 

renal lesions in Leishmania-infected dogs. The 15 dogs had various types of renal damage at 

T0, with a minimal progression of the glomerular lesions between the 2 sampling times in 

most dogs. However, in 1 dog, the finding of mesangial immune complex deposits at T1 

prompted a change in diagnosis from chronic glomerulosclerosis to mesangioproliferative 

glomerulonephritis. This change could have been the result of progression of an early lesion 

with rare and small deposits that were not detected at the first biopsy. In contrast, greater 

change was detected in the tubulointerstitial compartment between the 2 samplings, with a 

reduction of the inflammation score in most dogs at T1. This could have been the result of the 

leishmanicidal treatment, which could have eliminated most parasites, thereby reducing the 

circulating antigens and, consequently, the immune-mediated glomerular damage.  

Inflammation is part of an active process that might be reversible with the correct 

therapy. Inflammatory cells are also known to contributed to fibrosis through the secretion of 

various cytokines. Both CD4+ and CD8+ T cells are the most important inducers of 

tubulointerstitial fibrosis; these cells promote the proliferation of fibroblasts and the production 

of the ECM mainly by stimulating the production of TGFβ, IL-4, TNFα, and other fibroblast-

stimulating factors (Strutz and Neilson., 2003). Although T lymphocytes were not detected in 

glomeruli in the current study, Costa et al. demonstrated the correlation of CD4+T cells with 
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the presence of Leishmania antigens in the pathogenesis of canine glomerulonephritis (Costa 

et al., 2000; Costa et al., 2010). CD4+T cells may stimulate B cells to produce antibodies 

against circulating antigens, leading to the formation of large immune complexes that 

precipitate in the mesangium and GBM, and trigger the complement cascade (Kurtz et al., 

2007).  

In contrast to inflammation, fibrosis is considered an irreversible replacement of 

destroyed parenchyma by connective tissue (Scholondorff, 2008) and is the most common 

pathogenic mechanism in the chronic failure of parenchymal organs, such as liver, kidney, 

and lungs. In chronic glomerulosclerosis with mild glomerular lesions, fibrosis was absent at 

T0 and T1. The absence of detectable glomerular immune complex deposits and the minimal 

interstitial fibrosis could be key factors in the slow progression of the TID. Immune complex 

deposits in the glomerular capillary wall and in the mesangium promote inflammation, first in 

the glomeruli, then extending into the interstitium. The presence of the deposits alters the slit 

diaphragm with the consequent leakage of proteins into the urinary space. The resultant 

hemodynamic changes contribute to the reduction in glomerular filtration rate and expansion 

of mesangial matrix (Meyrier et al., 1998). A progression of the fibrosis was observed in dogs 

with moderate to severe glomerular damage and in which the tubulointerstitial involvement 

was already evident at T0. Previous studies have also shown that, regardless of the 

glomerular lesions, most renal diseases that progress to chronic renal failure involve the 

interstitium and the tubules (Aresu et al., 2007; Polzin et al., 2005; Ruggenenti and Remuzzi, 

2000; Strutz and Neilson, 2003). The mild progression of the TID in this study may reflect the 

short (a 60-day) interval between T0 and T1; a longer interval between biopsy samplings 

might uncover more significant changes.  

Dog Nos. 4, 5, and 11 had the most severe lesions. The main finding in these dogs 

was ischemic glomerular obsolescence (probably secondary to hypertension). In these 3 

dogs, the T0 diagnosis was end-stage kidney disease; a more specific diagnosis could not be 

made due to the severity of the lesions. At the second biopsy, the severity of the fibrosis, and 

the number of obsolescent glomeruli and cystic atrophied glomeruli, had increased. The 

prognosis in such dogs is usually poor due to the severity and presumed irreversibility of the 

renal lesions.  

In conclusion, the progression of renal lesions is described in dogs naturally infected 

by Leishmania spp. Despite the primary location of the lesions in the glomeruli, by the time 



34 
 

damage is moderate, tubulointerstitial involvement is also evident. The lesions did progress 

between the first and second biopsies; however, a longer period between biopsies might 

allow detection of more severe changes. A specific anti-Leishmania treatment could reduce 

the tubulointerstitial inflammatory response, especially in the absence of glomerular immune 

complex deposits. In contrast, anti-Leishmania treatment may be less effective for 

glomerulonephritis and renal interstitial fibrosis. Thus, supportive treatment for chronic renal 

failure is recommended for the dogs with visceral leishmaniasis. 
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PART 2 

THE PROGRESSION OF TUBULOINTERSTITIAL 

DAMAGE IN CANINE RENAL DISEASES: THE ROLE OF 

TUBULAR EPITHELIAL CELLS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from: Benali SL, Lees GE, Nabity MB, Mantovani R, Bonsembiante F, Aresu L. “De 

novo expression of human leukocyte antigen-DR (HLA-DR) and loss of beta-catenin 

expression in tubular epithelial cells: a possible event in epithelial-mesenchymal transition in 

canine renal diseases”. Vet J. 2013 Oct;198(1):229-34. 

Presented at the annual meeting of the European Society of Veterinary Pathology, London 

(UK), September 2013. 
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BACKGROUND 

The tubular portion of the nephron is divided into several tracts: 1.the proximal tubule, 

2.the loop of Henle, 3. the distal tubule, and 4. the collecting duct. The proximal and distal 

tubules are mainly located into the cortex whether the loop of Henle and the collecting ducts 

are found in the medulla. Generally, renal biopsies submitted to the nephropathology 

diagnostic services are tru-cut samples that include only cortex (Lees et al., 2011) and for this 

reason most of the examined tubules correspond to proximal and distal tubules and we will 

referred to these portions hereafter. Tubules are lined by monolayered cubical epithelial cells 

with extensive lateral and basal interdigitations and molecular junctions on the lateral and 

basal surfaces that interconnect the neighboring cells one to the other and with the basement 

membrane. Moreover proximal TECs have another significant morphologic adaptation: the 

apical brush border which is fundamental for the reabsorption of nutrients (e.g. ions, amino 

acids, glucose, etc.) from the ultrafiltrate. On the other hand, the distal tubule is involved in 

maintaining the acid-base balance modulating the ions and urea concentrations. In addition, 

TECs are believed to actively participate in the mechanisms of renal inflammation and fibrosis 

in chronic TID. Several evidences in both human and veterinary medicine reported the 

capacity of TECs of acting as non-professional antigen presenting cells (APCs) and 

undergoing Epithelial-Mesenchymal Transition (EMT).   

 

TUBULAR EPITHELIAL CELLS AS NON PROFESSIONAL ANTIGEN PRESENTING 

CELLS (APCS) 

Class II major histocompatibility complex (MHC) molecules are heterodimeric 

transmembrane proteins that are responsible for activation of antigen-specific T helper (Th) 

lymphocytes during antigen processing by various antigen-presenting cells (APCs) (Frei et al., 

2010). The cells recognize antigens as peptide fragments that have been processed by the 

APCs, bound to MHC molecules, and transported to the surface of the APCs where they are 

available for recognition. Class II MHC are constitutively expressed on classic APCs such as 

macrophages, dendritic cells, and B cells (Kelley and Singer, 1993). Other cell types (i.e. 

intestinal epithelial cells, endothelial cells, chondrocytes, and thyroid epithelial cells) have 

been shown to function in a limited context as APCs (Wuthrich et al., 1989; German et al., 
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1998; Roda et al, 2010). Their efficiency is considered low and they are referred to as non-

professional APCs.  

The role of epithelial cells as non-professional APCs have been extensively 

investigated in intestinal epithelial cells both in human and veterinary medicine (Roda et al., 

2010; German et al., 1998). Intestinal epithelial cells within the mucosal immune system are 

able to directly process and present antigens to lymphocytes by a highly polarized system 

with apical antigen sorting, processing and exclusively basolateral presentation activating T 

lymphocytes (Roda et al. 2010). Similarly TECs show several features that strongly suggest 

that they may function as APCs. Studies on animal models of renal injury have demonstrated 

not only that TECs express MHC molecules but also costimulatory molecules, that are a 

requirement for actually activating lymphocytes. Finally in vivo and in vitro studies shown the 

actual capacity of TECs to process and present foreign antigens (Cheng et al., 1989; Wutrich 

et al., 1989; Hagerty and Allen, 1992).  

To the best of the author’s knowledge only one study described the expression of class 

II MHC in TECs in dogs (Vilafranca, 1995). In its study the author described the expression of 

class II MHC molecules by interstitial dendritic cells in normal renal tissue. In cases of 

tubulointerstitial nephritis, however, the expression was extended to other renal elements 

such as the TECs. These results suggest that also in the dog the TECs can behave as non-

professional APCs.  

 

EPITHELIAL-MESENCHYMAL TRANSITION 

Epithelial-Mesenchymal Transition (EMT) is defined as the phenotypic conversion of 

epithelial cells into cells with a mesenchymal phenotype (Kalluri and Weinberg, 2009). This 

represents a simplistic definition of a more complex process that occurs in both physiological 

and pathological biological settings. However, the key points of the transition include four 

events: (1) loss of epithelial adhesion properties; (2) de novo expression of mesenchymal 

markers; (3) disruption of basement membrane (BM); and (4) enhanced cell migration and 

invasion (Liu, 2010; Zeisberg and Duffield, 2010).  

EMT in renal fibrosis was first demonstrated by Strutz (Strutz et al., 1995) more than a 

decade ago, whether the mechanisms of EMT in canine renal fibrosis have been studied only 

recently (Yamate, et al. 2005; Aresu et al., 2007b; Benali et al., 2014). In the study of Aresu 
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and colleagues, the phenotype of TECs was studied in relation to the severity of 

tubulointerstitial lesions, and cytokeratin and vimentin were used as epithelial and 

mesenchymal markers, respectively. The study showed the progressive loss of cytokeratin 

expression by TECs in association with increasing expression of vimentin, suggesting the 

presence of a transition to a mesenchymal phenotype. Moreover this phenotypic conversion 

were positively correlated with the degree of fibrosis.  

As mentioned previously, EMT is a multistep process in which the down-regulation of 

junctional complexes is one of the key events. In dogs with different types of spontaneous 

glomerular diseases, a strong correlation between the severity of TID and the down-regulation 

of E-cadherin and βcatenin was observed. Additionally, the loss of adhesion junction 

molecules was detected in association with the acquisition of mesenchymal markers 

expression by TECs (Aresu et al., 2008b). The splitting or rupture of the tubular BM is 

considered one of the fundamental steps of EMT. Many factors seem to be involved in the 

degradation or disruption of the BM and main actors seem to be represented by MMPs 

(Cheng and Lovett, 2003; Liu, 2004; Cheng et al., 2006, Aresu et al., 2011). Supportive 

evidence was obtained by identifying MMP2 protein located within the segments of tubular 

BM splitting. Finding MMP2 in the tubular BM suggested an active role of this enzyme in the 

degradation of collagen type-IV structure, leading to basement membrane damage but 

without disruption (Aresu et al., 2011).  
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Figure 6. Epithelial Mesenchymal Transition (EMT) in tubular epithelial cells (TECs) 

 

a) schematic view of EMT. TECs: tubular epithelial cells; MMPS: matrix metalloproteinases 2; 

BM: basement membrane. b) Citokeratin positive immunostaing in TECs of normal tubules, loss of 

immunolabelling in tubules associated with fibrosis and inflammation. Immunohistochemistry 

(IHC) Meyer’s hematoxylin counterstain, 400x. c) de novo vimentin expression by TECs in 

association with interstitial fibrosis and inflammation. IHC PAS counterstain, 400x. 

a 

b c 
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AIM 

The aim of the second part of the study was two-fold: 1) to explore and describe the 

capacity of TECs to express HLA-DR in dogs with naturally-occurring renal disease due to 

various causes; 2)  to assess the relationship between βcatenin and HLA-DR expression by 

TECs as assessed by immunohistochemistry (IHC) and the severity of chronic TID. 

 

MATERIALS AND METHODS 

Case selection and clinical chemistry 

Canine renal biopsies (n= 28) were selected from routine diagnostic cases submitted to 

the Histopathology Service, Department of Comparative Biomedicine and Food Science, 

University of Padova between January 2009 and December 2011. All biopsies had a 

minimum of 12 evaluable glomeruli in 10 serial histological sections (3 μm in thickness) and 

were composed of only cortex. Five renal biopsies from dogs with no signs or history of renal 

disease were used as controls. Serum Creatinine concentration (SCr) and urine protein–

creatinine ratio (UPC) were provided by the referring clinicians at the time of renal biopsy 

submission. Proteinuria was defined as UPC > 0.5 and azotaemia by SCr > 123.8lmol/L. 

Classification of renal biopsies 

Renal biopsies were evaluated by light microscopy and electron microscopy as 

previously described. Based on biopsy findings, each case was assigned to one of five 

diagnostic categories as follows: (1) acute tubular necrosis (ATN), (2) amyloidosis (AMYL), 

(3) chronic glomerulosclerosis (CGS), (4) membranoproliferative glomerulonephritis (MPGN), 

and (5) mesangioproliferative glomerulonephritis (MeGN). ATN was characterized by primary 

damage to proximal tubules, which showed degeneration and necrosis of epithelial cells. 

Multifocally, the injured tubules contained sloughed tubular epithelial cytoplasm, pyknotic 

nuclear debris and mineralization. AMYL was characterized by glomeruli with diffuse and 

global mesangial expansion by an amorphous congophilic material consistent with amyloid. 

CGS was characterized by glomeruli with moderate to severe global mesangial matrix 

increase, with or without hypercellularity, and absence of immune deposits. MPGN was 

characterized by glomeruli that exhibited increased mesangial matrix and cellularity, 

thickening of glomerular capillary walls with endothelial hypertrophy, and immune deposits in 
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the capillary wall and mesangium. MeGN was characterized by glomeruli with mesangial 

hypercellularity and increased mesangial matrix with no involvement of the capillary lumen, 

together with immune deposits in the mesangium as demonstrated on ultrastructural 

examination.  

Histological indices of interstitial inflammation and fibrosis  

Interstitial inflammation was evaluated using HE-stained sections. The inflammation 

index was determined by counting the number of inflammatory cell nuclei (lymphocytes, 

plasma cells and neutrophils) in 10 randomly selected microscopic fields of renal cortex with a 

20x objective. The index for each case was expressed as the average number of 

inflammatory cells per field.  

Interstitial fibrosis was evaluated using Masson’s Trichrome-stained sections. 

Interstitial fibrosis was evaluated in the cortex and severity of cortical interstitial fibrosis (CIF) 

was graded by examining 20 randomly selected fields with a 20x objective. A semi-

quantitative assessment of the extent of fibrosis for each field was done as follows: grade 0: 

normal tubulointerstitium; grade 1: <25%; grade 2: 26–50%; grade 3: >51% (Aresu et al., 

2007). The final score for each biopsy was the total of the scores for each field ranging from 0 

to 60 (Nabity et al., 2012).  

Immunohistochemistry (IHC)  

For IHC, serial paraffin sections (3μm) were placed on surface-coated slides 

(Superfrost Plus). The details of the immunohistochemal performance are described in Part 1. 

A mouse monoclonal antibody against the a-chain of human HLA-DR (Clone TAL.1B5, Dako, 

dilution 1:50) was used. Human class II genes are encoded by genes in the HLA-D region, 

which includes three subregions called DQ, DP, and DR. The HLA-DR subregions are highly 

conserved in nearly all mammals, including the dog (Yuhki et al., 2007). Cross-reactivity with 

canine tissue was also confirmed by previous studies (Darbès et al., 1997; German et al., 

1998). A mouse monoclonal antibody against human βcatenin (clone 14, Transduction 

Laboratories, dilution 1:100) was used to detect βcatenin expression and cross-reactivity of 

this antibody has previously been tested (Aresu et al., 2008b). Tissues were incubated with 

the primary antibody for 32 min at room temperature for HLA-DR and for 24 min at 42°C for 

βcatenin. Slides were counterstained with Mayer’s haematoxylin. Interstitial dendritic cells and 
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epithelial cells in normal renal tissue were used as positive controls for HLA-DR and βcatenin, 

respectively. Negative controls were performed by replacing the primary antibody with 

antibody diluent. Quantification of HLA-DR and βcatenin expression was assessed by 

counting the number of positively labelled and non-stained TECs in 10 randomly selected 

fields with a 40x objective. Expression of HLA-DR and βcatenin was determined by 

calculating the percentage of positively labelled cells among the total as follows: [positive-

labeled cells/ (positive-labeled cells plus non-stained TECs) x 100].  

Double immunolabeling for HLA-DR and vimentin (V9 clone, monoclonal mouse, Dako) 

was performed on selected representative cases. Tissues were incubated with HLA-DR as 

described above, followed by incubation with vimentin (diluted 1:150 and incubated 20 min at 

RT). Peroxidase activity was demonstrated using ultraViews universal diaminobenzidine 

(DAB, Ventana Medical System, brown to black chromogen reaction) for vimentin. For HLA-

DR detection, ultraView universal alkaline phosphatase red detection kit was used (Ventana 

Medical System, red chromogen reaction). Slides were counterstained with PAS to highlight 

tubular basement membranes. 

Statistical analysis 

One-way analysis of variance (ANOVA) using the GLM procedure of the SAS Institute 

was carried out to assess relationships between renal disease diagnostic categories, 

magnitudes of azotaemia and proteinuria, and histologic indices of interstitial inflammation 

and fibrosis. Effects of different disease categories (ATN, AMYL, CGS, MPGN, MeGN, and 

NORMAL) on CIF grade, inflammation index, SCr, and UPC were examined. The degrees of 

freedom of the different disease categories were decomposed by a multiple comparisons test 

using the Bonferroni adjustment method (SAS Institute) to analyze the relative significance of 

each disease category within each analyzed variable. Correlation and linear regression 

analyses were carried out with the CORR and REG procedures of SAS, respectively (SAS 

Institute), comparing HLA-DR with CIF grade, inflammation index, SCr, UPC, and βcatenin 

expression. Correlation and linear regression analysis were also carried out for CIF grade, 

inflammation score, SCr, and UPC in relation to βcatenin expression (i.e., using βcatenin 

expression as a dependent variable). Lastly, correlation and linear regression analysis were 

also conducted for inflammation score, SCr, and UPC in relation to CIF grade (i.e., using CIF 

grade as a dependent variable). 
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RESULTS 

Dogs, diagnostic categories, and clinical chemistry findings  

A total of 33 canine renal biopsies were examined (28 affected dogs, 5 controls). The 

28 dogs with renal disease were composed of 12 females, 15 males, and 1 unspecified. 

These dogs ranged in age from 1 to 13 years with a median of 6 years, and Boxer was the 

most represented breed (6/28 dogs).  

Primary glomerular lesions were diagnosed in 21 biopsies: 9 CGS, 7 MPGN, 3 MeGN 

and 2 AMYL. In seven dogs the histological diagnosis was primary ATN. The controls dogs 

were 4 month-old Beagles, 3 males and 2 females. All but one of the affected dogs were 

azotemic (SCr > 123.8lmol/L) and all but two were proteinuric (UPC > 0.5). Clinical data are 

shown in Table 4.  

Histological indices of interstitial inflammation and fibrosis  

Inflammation was present in all dogs with renal disease. In dogs with acute tubular 

damage, the infiltrate was mild and multifocal, mainly composed of lymphocytes and rare 

neutrophils. In dogs with glomerular disease, the inflammation index was greater and mainly 

composed of lymphocytes and plasma cells (Table 4 and Fig. 7). In dogs with ATN, the 

amount of fibrosis was significantly lower compared with the other disease categories (P< 

0.01) (Fig. 7). The inflammation index, UPC and SCr were significantly and progressively 

increased in samples with moderate (grade 2) and severe grade 3) CIF grade (Fig. 6). In 

contrast no differences were detected in the aforementioned parameters between normal 

renal tissue and samples with CIF grade classified as 1 (Fig. 8). Independently of the 

histological diagnosis, the CIF grade was associated with the inflammation index (r= 0.986), 

UPC (r= 0.914), and SCr (r= 0.904) (P< 0.05) (Fig. 9).  

Expression of HLA-DR and βcatenin in TECs  

In control dogs, the expression of HLA-DR was restricted to the cytoplasm of dendritic 

cells within the renal interstitium (Fig. 10a). In all control dogs and one dog with minimal 

tubulointerstitial involvement, TECs were negative for HLA-DR staining (Fig. 10a). HLA-DR 

labelling was present in TECs in all other dogs (Fig. 10b). The intensity of immunostaining 

was moderate to strong and homogenous in the cytoplasm. Scattered lymphocytes and 

macrophages were also positive for HLA-DR. The number of HLA-DR positive TECs was 
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significantly increased in biopsies with higher severity of CIF and higher inflammation index, 

and was highly correlated with UPC (Table 5 and Fig. 11). Multifocally, TECs showed more 

intense immunoreactivity for HLA-DR when adjacent to inflammatory cells (Fig. 10c).  

Uniform membranous and cytoplasmatic βcatenin staining was observed in TECs in 

control dogs. A reduction of βcatenin expression was observed in the different renal diseases 

(Table 5). The number of βcatenin positive TECs was negatively correlated with the severity 

of inflammation (r=-0.981), CIF grade (r=-0.984), and with UPC (r=-0.906) and SCr (r=-0.901). 

Moreover, HLA-DR and βcatenin expression by TECs were negatively correlated (Fig. 12).  

Evaluation of double immunostaining for HLA-DR and vimentin showed four different 

patterns: (1) tubules with a mixture of cells positive for either HLA-DR or vimentin, (2) tubules 

with onlyvimentin-positive cells, (3) tubules with only HLA-DR positive cells, and (4) tubules 

with co-localization of both markers in the same cell (Fig. 10d). In control biopsies, TECs were 

not immunolabelled by either marker. 
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Table 4. Comparison of clinical and histopathological variables according to diagnostic 

categories 

Diagnostic Categoriesa Normal ATN AMYL MPGN MeGN CGS 

Number of dogs 5 7 2 7 3 9 

sCrb 

      
Mean 0.8 1.6 11.7 7.8 9.6 5.8 

Median 0.9 1.5 11.7 8.7 11.4 7.0 

Min - Max 0.7-1.1 1.1 - 2.1 11.4 -12.1 3.4 - 10.4 5.3 - 12.6 1.5 - 8.4 

UPCc 

      
Mean 0.24 1.45 3.6 3.6 4.8 2.5 

Median 0.2 0.7 3.6 3.0 5.9 2.2 

Min – Max 0.2-0.3 0.3-1.2 3.1-4.1 1.8-6.5 1.9-6.7 1.0-4.1 

Inflammation Indexd       

Mean  0 5.41 77.1 39.4 54.1 34.3 

Median 0 5.1 77.1 35.5 65.4 33.1 

Min - Max 0 3.5-8.9 75.3-78.8 20.5-80.9 22.3-74.7 3.2-75.7 

CIF scoree 

     
Mean 5.6 11.6 50.5 32.3 40.0 31.2 

Median 5.0 11.0 50.5 30.0 46.0 34.0 

Min-Max 12-53 8-55 8-15 22-52 51-52 5-7 

a ATN: acute tubular necrosis; AMYL: amyloidosis; MPGN membranoproliferative 

glomerulonephritis, MeGN: mesangioproliferative glomerulonephritis; CGS: chronic 

glomerulosclerosis; b sCr: serum creatinine (mg/dL); c UPC: urine protein-creatinine ratio; d 

Inflammation index: average number of inflammatory cells per in 10 fields (200x); e CIF score: chronic 

interstitial fibrosis.  
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Figure 7.  Chronic tubulointerstitial damage evaluation and morphological diagnosis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AMYL: amyloidosis; ATN: acute tubular necrosis; CIF: cortical interstitial fibrosis; CGS: chronic 

glomerulosclerosis; MPGN: membranoproliferative glomerulonephritis; MeGN: mesangioproliferative 

glomerulonephritis. 
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Figure 8.  Inflammatory cell count, proteinuria and serum creatinine values according to the 

cortical interstitial fibrosis grade 

CIF: cortical interstitial fibrosis; UPC: urinary protein and creatinine ratio 
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Figure 9. Correlations between CIF grade and inflammatory cells count, proteinuria  and serum 

creatinine 

CIF: cortical interstitial fibrosis; UPC: urinary protein and creatinine ratio 
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Table 5. Comparison of immunohistochemical results according to diagnostic categories 

Diagnostic Categorya Normal ATN AMYL MPGN MeGN CGS 

Number of dogs 
5 7 2 7 3 9 

HLA-DR expression in TECs (% positive-labeled cells)b 

Mean 0 4 64 41 5 33 

Median 0 5 64 34 6 39 

Min - Max 0 0-8 64-64 4-84 28-64 0-62 

β-Catenin expression in TECs (% positive-labeled cells)b 

Mean 97 90 30 59 48 62 

Median 97 90 30 62 39 61 

Min - Max 96-99 87-92 29-31 21-74 35-68 28-92 

 

a ATN: acute tubular necrosis; AMYL: amyloidosis; MPGN membranoproliferative 

glomerulonephritis, MeGN: mesangioproliferative glomerulonephritis; CGS: chronic 

glomerulosclerosis; b TECs: tubular epithelial cells 
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Figure 10. Immunohistochemistry for Human Leukocytes Antigen (HLA) in canine renal tissue 

 

a) Dog, renal biopsy, control. Diffuse cytoplasmatic HLA-DR expression is evident in interstitial 

dendritic cells. Immunohistochemical staining for HLA-DR, haematoxylin counterstain (400x); b) Dog, 

renal biopsy, membranoproliferative glomerulonephritis. HLA-DR expression is detectable 

multifocally in the cytoplasm of proximal tubular epithelial cells. Immunohistochemical staining for 

HLA-DR, haematoxylin counterstain (200x); c) Dog, renal biopsy, membranoproliferative 

glomerulonephritis. HLA-DR expression is diffusely detectable in lymphocytes and tubules adjacent to 

inflammation. Immunohistochemical staining for HLA-DR, haematoxylin counterstain (400x); d) Dog, 

renal biopsy, chronic glomerulosclerosis. Different pattern are present. (1) HLA-DR and vimentin 

expression in a single tubule (black arrow-head). (2) HLA- DR and vimentin co-localization in the 

cytoplasm of epithelial tubular cells (black arrow). (3) Diffuse vimentin expression in a tubule (blue 

arrow). (4) Diffuse HLA-DR expression in a tubule (blue arrow-head). Double immunostaining for 

HLA-DR (red signal) and vimentin (brown signal), PAS counterstain (400x).  

a b 

c d 
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Figure 11. Correlations between HLA-DR expression grade and cortical interstitial fibrosis, 

inflammatory cells count, proteinuria and serum creatinine.  

CIF: cortical interstitial fibrosis; UPC: urinary protein and creatinine ratio; IHC HLA (%): percentage of HLA-

DR positive immunolabelled tubular epithelial cells (TECs) 
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Figure 12. Correlations between βcatenin expression and cortical interstitial fibrosis, 

inflammatory cells count, proteinuria, serum creatinine and HLA-DR expression. 

 

CIF: cortical interstitial fibrosis; UPC: urinary protein and creatinine ratio; IHC HLA (%): percentage 

of HLA-DR positive immunolabelled tubular epithelial cells (TECs); IHC beta-catenin (%):percentage 

of βcatenin positive immunolabelled TECs  

 

  



53 
 

DISCUSSION 

The present study investigated the immunohistochemical expression of HLA-DR and 

βcatenin in renal biopsies from dogs with various kidney diseases. Association of expression 

of these markers with clinicopathological data, as well as with measures of interstitial 

inflammation and fibrosis was examined. The inflammation index and CIF grade were 

significantly increased in dogs with primary glomerular diseases compared to dogs with 

primary acute tubular injury. No differences were evident for CIF grade and inflammation 

index among the CGS, MPGN, and MeGN disease categories. 

Acute tubular damage is frequently characterized by degeneration and necrosis of 

tubules with no involvement of the interstitium, while glomerular diseases are associated with 

a variable increase in ECM, fibroblasts, and inflammatory cells in the interstitium at the time of 

biopsy. One possible explanation for the lack of tubulointerstitial changes in the ATN cases 

may be the rapid clinical onset of the disease in these dogs, since all ATN dogs were biopsied 

within a few days of the initial injury.  

With primary glomerular diseases, compensatory mechanisms such as glomerular 

hypertrophy and hyperfiltration are described to maintain kidney function for some time during 

the development of the primary process; therefore, secondary tubulointerstitial lesions may 

already be chronic and advanced by the time clinical signs become evident (Finco et al., 

1999). UPC and SCr were positively correlated with the severity of CIF and inflammation. 

However, these parameters were normal or only slightly increased in dogs with mild CIF and 

inflammation, supporting their insensitivity for detecting early renal disease. This finding 

supports the need for additional more sensitive biomarkers of early damage in canine renal 

disease as pointed out in recent studies (Meyer et al., 2010; Smets et al., 2010; Slocum et al., 

2012; Nabity et al., 2012).  

The main objectives of this part of the study were to investigate the possible role of 

TECs as APCs and secondary to examine whether HLA-DR expression by TECs may be part 

of EMT. As expected, HLA-DR was expressed by interstitial dendritic cells, while TECs were 

negative in the control kidneys. In contrast, de novo expression of HLA-DR in the cytoplasm 

of TECs was found in the diseased kidneys and this expression was correlated with the CIF 

grade, UPC, and inflammation index. This result suggests a possible progressive transition of 
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TECs to APCs. Particularly interesting is the positive correlation between the magnitude of 

the proteinuria and the expression of HLA-DR by TECs. 

The role of proteinuria in the pathogenesis of CKD is still uncertain, but several studies 

in humans and experimental animal models report a direct link between the degree of 

proteinuria and the progression of the TID (Strutz, 2009; Erkan, 2013).  

Different studies have shown that proteinuria might be a cause rather than merely a 

consequence of the progression of the TID specifically interacting with TECs. As 

aforementioned, one of the functions of proximal TECs is the reuptake of nutrients and 

proteins (e.g. albumin) filtered by the glomerulus in primary glomerular diseases. The proteins 

absorbed at the luminal membrane are endocytosed and concentrated within vesicles at the 

apical border of tubular cells. Though this is a physiological function of the proximal tubule, an 

increased uptake of albumin and albumin-bound lipids by proximal tubules has been shown to 

correlate with the pathogenesis of CKD: an overload of high molecular weight proteins causes 

a toxic effect on TECs leading to apoptosis, as well as to the production of pro-inflammatory, 

pro-fibrogenic growth factors and cytokines (Abbate et al., 1998; Abbate et al., 2006; 

Christensen and Verroust, 2008; Erkan, 2013).  

Our results show a possible involvement of TECs in exposing the protein antigens with 

subsequently presentation of class II MHC, which may then exacerbate or perpetuate 

interstitial inflammation, particularly in glomerular diseases. Vilafranca and colleagues were 

the first to identify expression of the class II MHC by TECs in dogs with interstitial nephritis, 

suggesting that these cells were capable of acting as non-professional APCs. In our study, we 

analyzed a set of renal biopsies from dogs with a variety of glomerular and tubular diseases 

and found a close correlation between the expression of HLA-DR in TECs and degree of 

proteinuria. Further evidence of the actual capacity of TECs of acting as APCs is confirmed 

by the more intense immunostaining found in TECs adjacent to lymphocytes suggesting a 

direct interaction with inflammatory cells and a possible pro-inflammatory role for the TECs. 

The hypothesis supported by these observations is that tubular protein overload initiates and 

contributes to the progression of renal damage by invoking interstitial inflammatory cell 

accumulation and subsequently fibrosis in renal interstitium. Based on the results of the 

present study, canine TECs could also be considered as non-professional APCs.  
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Figure 13. Schematic view of the possible “activation” of TECs acting in response to proteinuria 

and acting as non-professional APCs with recruitment of inflammatory cells. 

 

βcatenin was found diffusely expressed within the cytoplasm and on the cellular 

membrane virtually of all TECs in control kidneys, and progressive loss of staining correlated 

with worsening of the CIF grade and higher inflammation index. βcatenin plays an essential 

role in maintaining the structural integrity and polarity of epithelial cells, and its decreased 

expression may reduce adherens junction formation and lead to epithelial transdifferentiation. 

In fact, in the early phase of EMT, the expression of protein constituents of the tight junctions 

is decreased in epithelial cells. Subsequently, epithelial cells lose their intercellular contacts 

and polarity and undergo cytoskeleton reshaping by expressing proteins specific to 

mesenchymal cells, such as vimentin. In contrast to observations in human kidneys, the EMT 

of TECs in dogs seems to be characterized by de novo expression of vimentin rather than 

smooth muscle actin (Aresu et al., 2007b). The negative correlation between expression of 

HLA-DR and βcatenin by TECs observed in this study suggests the possibility of a previously 

unrecognized phase in the EMT process.  

To further investigate this observation, a double IHC protocol for vimentin and HLA-DR 

was used. The findings showed several different patterns of expression that may be 

consistent with the following three phase hypothesis: (1) when TECs express only HLA-DR, 

they act as APCs, presumably preceding the mesenchymal phase of EMT; (2) when TECs 

express both markers, a transition from one phase to another is occurring; (3) when TECs 

express only vimentin, the complete EMT process has occurred.  
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Summarizing this part of the study confirms the progressive decrease in βcatenin 

expression in TECs during TID associated with fibrosis and inflammation. De novo expression 

of HLA-DR in TECs could contribute to the recruitment of inflammatory cells and vimentin 

expression by TECs may be considered as a step during EMT.  
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PART 3 

THE PROGRESSION OF TUBULOINTERSTITIAL 

DAMAGE IN CANINE RENAL DISEASES: A MODEL OF 

CANINE CKD 
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BACKGROUND 

CKD is the final common pathway resulting from persistent renal injury. As previously 

demonstrated though the potential causes of glomerular disease in dog are numerous, a 

uniform process of progressive TID downstream of the primary glomerular injury is common 

(Part 1 and Part 2).  

The third part of the study was performed on a spontaneously occurring canine model 

of CKD. Navasota dogs (abbreviated NAV) belong to a family of mixed-breed dogs 

developing a form of canine X-linked hereditary nephropathy (XLHN) that was described for 

the first time in 1999 (Lees et al. 1999). The XLHN occurring in NAV dogs is an inherited 

glomerular nephropathy caused by mutations in type IV collagen gene (Lees et al., 1999). In 

affected males the gene encoding for the α5 chain of collagen protein has a 10-bp deletion in 

exon 9 causing a frame-shift that results in a premature stop codon in exon 10 (Cox et al. 

2003). The inability to synthetize α5 chain of collagen prevents the formation of type IV 

collagen, a principal component of the GBM. The abnormal composition of the GBM results in 

altered ultrafiltration and juvenile onset of proteinuria typically occurring between 2 and 6 

months of age in affected males and rapidly progressive to ESRD by 6 to 15 months of age 

(Lees et al., 1999, reviewed in Kashtan 2002 and Lees 2013).  

Histopathological lesions occurring in advanced stages of XLHN are typical of chronic 

glomerular disease with secondary involvement of the tubulointerstitium and include non-

specific changes such as global glomerulosclerosis, tubular dilation, interstitial fibrosis and 

inflammation (Lees, 2013; Nabity et al 2012; Lees et al., 1999). Nevertheless, early 

microscopic changes in NAV dogs and their evolution during the course of disease have been 

partially described (Nabity et al. 2012). The first part of this study was focused on the 

description of renal morphology and function in early stages of the disease and to 

characterize the evolution of lesions over time.  

Investigating the mechanisms responsible for canine XLHN during its initial phases and 

progression can be highly beneficial in designing new strategies for the diagnosis and 

treatment of chronic nephropathies. The second part of this study, therefore, explored the 

expression of genes potentially involved in the pathogenesis of XHLN. The set of examined 

genes included molecules reported to be involved in different ways to the extent chronic renal 

damage. TGFβ and the Connective tissue growth factor (CTGF) are profibrotic molecules 
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whose expression and activity are strictly correlated. Indeed, the two molecules are reported 

to reciprocally enhance their expression in a positive feedback manner (Weier et al., 2008; 

Wang et al., 2011). Similarly members of the PDGF family and the Epidermal Growth Factor 

Receptors are reported to be increased in advanced stages of TID and increasing fibrosis in 

humans (Bonner, 2004; Zeng et al., 2009). A second group of molecules included anti-fibrotic 

factors: the Hepatocyte growth factor (HGF) and Bone morphogenetic protein-7 (BMP-7) that 

are considered nephroprotective by inhibiting the TGFβ pathway (Nishinakamura and 

Sakaguchi, 2014; Lopez-Fernandez et al., 2012; Zeisberg et al., 2006). A third group of genes 

included several MMPs and their inhibitors (tissue inhibitor of MMPs type 1 and 2 named 

TIMP1 and TIMP2 respectively). A fourth group of genes included adhesion molecules typical 

of TECs that were investigated to explore the mechanisms of EMT in XLHN. These included 

βcatenin, N-cadherin and E-cadherin (Aresu et al 2008). A last molecule investigated was 

Clusterin, a glycoprotein found upregulated in several renal diseases in humans (Jones and 

Jamary, 2002; Fuchs and Hewitt, 2011). Published data suggest that it may have an 

important role in the pathogenesis of renal injury and has become a molecule of interest as 

potential biomarker of renal damage in both human and veterinary medicine (Jones and 

Jamary, 2002; Garcia-Martinez et al., 2012).  

Selected markers with significantly increased or decreased mRNA expression in 

affected dogs were further investigated at the protein level using IHC. 

 

AIM 

Aims of the study were: 1) to describe the evolution of renal lesions in dogs with XLHN; 

2) to explore the gene and protein expression of selected molecules potentially involved in the 

progression of TID in dogs and 3) to evaluate changes in their expression in different phases 

of the disease and correlated them to the renal lesions in XLHN. 
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MATERIALS AND METHODS 

Dogs 

Dogs were from a colony at Texas A&M University referred to as the Navasota kindred, 

which is on a mixed background, in which a missense mutation in the gene encoding the α5 

chain of type IV collagen causes XLHN. Affected males (n=10) were monitored to a 

standardized end point of serum creatinine (SCr) >5.0 mg/dL (upper reference limit  1.2 

mg/dL) or onset of uremic signs (anorexia and vomiting on 2 consecutive days), whereupon 

each dog was euthanized. Randomly selected unaffected males (n=5) evaluated under the 

same protocol served as age-matched controls. All studies of these dogs were approved by 

the Texas A&M University Institutional Animal Care and Use Committee.  

Tissue samples  

Samples of kidney were collected at established time-points: 4 (T0), 6 (T1) and 9 (T2) 

months of age. Most were collected using an ultrasound-guided needle biopsy technique 

(Groman et al., 2004), unless the dog reached the study end-point at or prior to the time 

points, in which case samples were obtained immediately post-euthanasia. At each time-

point, renal cortex was fixed in 10% buffered formalin and embedded in paraffin within 24 

hours. Samples were also placed in RNA-later (Applied Biosystems, Foster City, CA) , flash 

frozen, and then stored at -80°C.  

Renal histopathological evaluation 

Three-micrometer thick sections were cut from 2 levels of each biopsy 100 μm apart in 

order to represent different planes within the biopsy. Sections stained with HE, Masson’s 

trichrome, and PAS were evaluated. The interstitium, tubules, and glomeruli were evaluated 

as follows and scored according to a grading system (full scoresheet in Table 6a and 6b).  

(1) In each PAS-stained section, the number of glomeruli demonstrating obsolescence 

and cystic glomerular atrophy was counted, and other glomerular features (Table 6) 

were scored. 

(2) Twenty 400X fields of tubulointerstitium were evaluated in HE, PAS and Masson’s 

Trichrome-stained sections.  
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Clinical Chemistry 

Blood and voided, midstream urine were collected in association with the renal biopsy. 

SCr concentration was measured (Vitros 250, Ortho-Clinical Diagnostics Inc., Rochester, NY, 

USA). Urine specific gravity was measured with a refractometer. Urine was centrifuged (500 x 

g for 5 minutes) and the supernatant was removed for urine protein and creatinine 

determination (Vitros 250, Ortho-Clinical Diagnostics Inc., Rochester, NY, USA). In addition, 

urine albumin concentration was determined by ELISA as previously described (Pressler et 

al., 2002). 

Gene expression 

Total RNA was isolated using the RNeasy Mini Kit (Qiagen, Valencia, California, USA) 

according to the manufacturer’s instructions. The total RNA concentration and quality were 

evaluated with a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, 

Wilmington, Delaware, USA) and by denaturing gel electrophoresis. First-strand cDNA was 

synthesized from 2g of total RNA in a final volume of 20 l using the High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems, Foster City, California, USA) according to the 

manufacturer’s protocol and stored at -20°C until use. The cDNA was used as a template for 

the quantification of 21 genes by quantitative real-time reverse transcriptase polymerase 

chain reaction (qRT-PCR) in a Light Cycler 480 Instrument (Roche Diagnostics, Basel, 

Switzerland). The amplification protocol consisted of an initial step of 2 min at 50°C and 2 min 

at 95°C followed by 45 cycles of 10 s at 95°C and 30 s at 60°C. The qRT-PCR reaction 

consisted of 5 μl Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen, Life Technologies, 

Carlsbad, California, USA), 0.3 μl forward and reverse primers (10 μM) (the primer 

combination and final concentrations were optimized during assay setup) and 2.5 μl cDNA 

(diluted 1:100). The primers, shown in Table 7, were designed using Primer Express 2.0 

(Applied Biosystems, Life Technologies, Carlsbad, CA). Calibration curves using a 7-fold 

serial dilution (1:2) of a cDNA pool revealed PCR efficiencies near 2.0 and error values < 0.2. 

Seven candidate genes (beta-actin, GADPH, TATA-binding protein, HPRT, 1RPL32, 2RPL32) 

were selected based on existing literature (Peters et al., 2007; Brinkhof et al., 2006) and 

tested as reference genes. TATA-binding protein (TBP) was chosen as a reference gene for 

the absence of statistically significant differences in its expression profile between the healthy 

and pathologic samples. Moreover its amplification efficiency was approximately equal to 
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those of the target genes. The ΔΔCt method (Livak and Schmittgen, 2001) was used for the 

relative quantification of mRNA, ultimately expressed as Relative Quantification (RQ).  

RQ values were analyzed by using Multid-Genex software (Bergkvist et al, 2010). Hierarchical 

clustering (HCL) and principal component analysis (PCA) were performed, adopting the 

following settings: mean center scaling, Complete linkage, and Euclidean for the evaluation of 

all samples, and Ward’s algorithm and Manhattan distance for the evaluation of T0 samples.  

Immunohistochemistry (IHC) 

Protein expression of selected growth factors was investigated by 

immunohistochemistry in affected and control dogs. The details of the immunohistochemal 

performance are described in Part 1. Antibodies and protocol details are listed in Table 8. The 

immunohistochemical evaluation consisted in a qualitative assessment of cell types and 

location (cytoplasmic/membranous or nuclear) of the immunostaining. Tissues known to 

express the molecules were used as positive controls. Negative controls were performed by 

replacing the primary antibody with antibody diluent.  

Statistical Analysis  

Data were analyzed statistically using a commercially available statistical package 

(SAS 9.1, SAS Institute). Normal distribution was confirmed by Shapiro-Wilk test and the 

equality of variance by Levene’s test. A linear repeated mixed model was used to analyze 

morphological and clinicopathologic parameters and gene expression over time with the 

group (renal disease vs control dogs) as fixed effect; time and animal effects were included as 

repeated and random effect respectively. Interaction between group and time was inserted in 

the models and the Bonferroni post-hoc pair wise comparison test was used if statistically 

differences were detected. 

Stepwise forward canonical discriminant analysis (CDA) was performed time by time 

on data expressing morphological and clinicopathologic parameters, in order to characterize 

the experimental group (renal disease vs control dogs). The rank correlation by means of the 

Spearman’s Rho coefficient were used to assess the degree of association between all the 

variables included in the study and between genes expression variables. P < 0.05 was 

considered statistically significant. 
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Table 6a. Histologic scoring of renal biopsy specimens: glomerular evaluation 

Histologic parameter and definition Severity Score 

Glomerular compartment     

Endocapillary hypercellularity 
 Increased number endothelial cells with 
luminal  effacement 
  

Absent to rare 0 

1-2 capillary profiles in few glomeruli 1 

1-2 capillary profiles in most glomeruli 2 

Many capillary profiles in most glomeruli 3 

Mesangial hypercellularity 
   Increased number mesangial cells, 
including macrophages 

Absent to rare 0 

Segmental in few glomeruli 
1 

 
Segmental to global in few glomeruli 2 

 
Segmental to global in most glomeruli 3 

Immune deposits Absent 0 

 
Rare 1 

 
In few glomeruli 2 

 
In most glomeruli 3 

Increased mesangial matrix Absent 0 

 
Segmental in few glomeruli 1 

 
Segmental to global in most glomeruli with obliteration 
of few capillary loops 

2 

 
Global in most glomeruli with obliteration of manu 
capillary loops 

3 

Capillary thickening Absent 0 

 
Rare 1 

 
Mild in most capillary loops 2 

 
Moderate in most capillary loops 3 
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Table 6b. Histologic scoring of renal biopsy specimens: tubulo-interstitial evaluation 

Histologic parameter and definition Severity Score 

Tubulo-interstitial compartment     

Tubular Dilation Absent to rare 0 

 
Mild: scattered dilated tubules  (<2 tubules/field) 1 

 
Moderate: many dilated tubules 2 

 
Severe: most tubules are dilated 3 

Brush borders Absent to rare 0 

 
Mild: scattered tubules retain their brush borders (<2 
tubules/field) 

1 

 
Moderate: many tubules retain their brush borders 2 

 
Severe: most tubules retain their brush borders 3 

Epithelial cell microvacuolation Absent to rare 0 

 
 Mild: scattered  tubules  have vacuoles in the epithelial 
cells (<2 tubules/field) 

1 

 
Moderate: many tubules have vacuoles in the epithelial 
cells 

2 

 
Severe: most tubules have vacuoles in the epithelial cells 3 

Epithelial cell macrovacuolation Absent to rare 0 

 
Mild: scattered  tubules  have vacuoles in the epithelial 
cells (<2 tubules/field) 

1 

 
Moderate: many tubules have vacuoles in the epithelial 
cells 

2 

 
Severe: most tubules have vacuoles in the epithelial cells 3 

Tubular atrophy Absent to rare 0 

 
Mild: scattered  tubules  are atrophied (<2 tubules/field) 1 

 
Moderate: many tubules are atrophied 2 

 
Severe: most tubules are atrophied 3 

Tubular epithelial cell necrosis Absent to rare 0 

 
Mild: one necrotic cell in 1 tubule 1 

 
Moderate :  1 necrotic cell in > 1 tubule 2 

 
Severe : > 1 necrotic cell in > 1 tubule 3 

Fibrosis Absent to rare 0 

 
Mild: fibrosis around  tubules that does not result in 
separation of tubules 

1 

 

Moderate: fibrosis which widely separates tubules but 
does not distort the overall architecture of the 
tubulointerstitium 

2 

 

Severe: fibrosis around tubules that distorts the 
architecture of the tubulointerstitium (i.e. replaces 
tubules) 

3 

Inflammation  number of inflammatory cells  
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Table 7. Primers 

Gene Gene bank ref Forward Reverse 

BMP7 NC_006606.3 caacgtcgcagaaaacagc gctgacgtacagttcgtgct 

CLUST NC_006607.3 agaagtggctcggggcta gggagaactctggttcagga 

CTGF BQ839535.1 aaatgctgcgaggagtgg aacgtgtcttccagtcggtaa 

ECAD NM_001287125.1 tttgaaaacaactaagggcttgg cgttcaccacagtcacgtacaa 

EGFR XM_533073.4 agcgatgtgtggagctacg ataccgtcgtaaggcttgga 

HGF NM_001002964.1 caagggaacagtgtctatcactaaga gatagctcgaaggcaaaaagc 

MMP14 XM_843664.1 gatctgaatgggaatgacatctt gatggccgagggatcatt 

MMP2 XM_535300.2 gggaccacggaagactatga atagtggacatggcggtctc 

MMP9 NM_001003219.1 tgagaactaatctcactgacaagca gctcggccacttgagtgta 

NCAD XM_546371.4 gacttgatagagaaaaagtgcaaca ggtgtttgaaaggccgtatg 

PDGFB  NM_001003383.1 ccgagttggacctgaatttg gtcttgcactcagcgatcat 

PDGFD XM_536595.4 tggctaaacctggattcaaga tgactgactcccagttggtct 

PDGFRα AY525124.2 tttcccttggcggcacac gtcaggcttggccatccg 

PDGFRβ  NM_001003382.1 cacgcctctgacgagatttatg ctcgagaagcagcaccagct 

TBP AY514773.1 ctgacccaccaacagtttagc ttctgggtttgatcatcctgt 

TGFR2 XM_005634331.1 ccaatatcctggtgaagaacg catgtatcttgcagttcccactt 

TGFβ NC_006583.3 gcaagtagacattaacgggttcagt ggtcggttcatgccatgaat 

TIMP1 NM_001003182.1 cagggcctgtacctgtgc cctgatgacgatttgggagt 

TIMP2 NM_001003082.1 atgagatcaagcagataaagatgttc ggaggaaggagccgtgtag 

VEGF AF133250.1 cgtgcccactgaggagtt gccttgatgaggtttgatcc 

VEGFR2 DQ269018.1 ccttaccaaccccatttcaa cagggatttctcaccgatct 

βCAT NC_006605.3 cagcagcagtttgtggaggg tgaacatcccgagctaggatatg 
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Table 8. Antibodies details 

Antigen   Clone Code Dilution Manufacturer 

CLUSTERIN mouse monoclonal - - 1:50 Novocastra 

CTGF rabbit polyclonal H-55 sc-25440 1:50 Santa Cruz Biotechnology 

EGFR mouse monoclonal 111.6 AB-10 1:100 Neomarkers, Fremont,CA, USA 

MMP2 rabbit polyclonal AB-7 - 1:100 Neomarkers, Fremont,CA, USA 

MMP9 mouse monoclonal 56-2A4 MAB 3309 1:200 Chemicon (Millipore) 

TGFβ rabbit polyclonal H-112 sc-7892 1:50 Santa Cruz Biotechnology 

TIMP1 mouse monoclonal VT7 M7293 1:50 Dako 
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RESULTS 

Dogs and samples 

The study included 10 affected males and 5 controls. Among affected dogs, two 

subjects (2 and 5) reached their study end-point at 6 months of age; four dogs (7-10) at 7-9 

months of age; and the remaining 4 dogs (1, 3, 4 and 6) greater than 10 months of age.  

Morphological and clinicopathologic findings 

Control dogs were characterized by absence of noteworthy renal lesions and clinico-

pathological alterations throughout the course of the study. 

Morphological changes were not observed in XLHN dogs at T0. Glomeruli focally 

displayed minimal segmental hypercellularity in association with small areas of mesangial 

matrix expansion classified as mild focal and segmental glomerulosclerosis. All XLHN dogs 

were proteinuric at T0 (UPC ratio, 1.84-18.66; urine albumin, 9.8-290 mg/dlL, despite the 

presence of negligible light microscopic morphological changes. Both UPC ratio and 

albuminuria were positively correlated with mesangial matrix expansion (r=0.73 and r=0.76, 

respectively; P<0.01). 

At T1, a variable number of non-functional glomeruli (obsolescent and cystic atrophic 

glomeruli) were present (0-80%; mean, 40.1%) with equal distribution of obsolescent and 

cystic atrophic glomeruli (mean, 21% and 19.2%, respectively). The matrix expansion and 

mesangial hypercellularity were present in most glomeruli with a segmental to global 

distribution and occasional obliteration of capillaries. Additionally, the tubulointerstitium 

showed multifocal lesions mainly consisting of degeneration and occasional necrosis of TECs 

and mild interstitial fibrosis. The latter frequently consisted of small multifocal areas 

associated with non-functional glomeruli, often associated with atrophy of adjacent tubules.  

Along with the increased severity of morphological changes, the impairment of renal 

function as manifested by increased albuminuria, UPC and decreased serum albumin 

concentration was more prominent at T1 in affected dogs compared with controls and with 

XLHN dogs at T0 (P<0.05). A not significant increase was also noted in the concentration of 

SCr in affected dogs. In addition, albuminuria and SCr concentration were both positively 

correlated with the percentage of non-functional, obsolescent and cystic glomeruli as well as 

with tubular atrophy and dilation, necrosis and interstitial fibrosis (0.64<r<0.92; P<0.05).  
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Glomerular and TI lesions were overall more severe at T2 compared with T1. The 

percentage of non-functional glomeruli ranged from 67.1-100% (mean, 85.2%) with a greater 

prevalence of cystic atrophic glomeruli (mean, 48%), and lesser proportion of obsolescent 

glomeruli (mean, 36.5%) (Fig. 14). Residual glomeruli had severe global expansion of 

mesangium and moderate to severe mesangial hypercellularity. Large bands of fibrotic tissue 

replaced the renal parenchyma and compressed the tubules that were either atrophic or 

ectatic. Compared with T1 samples, the inflammatory infiltrate (mostly lymphocytes, plasma 

cells and macrophages) was more severe at T2.  

Serum creatinine concentration and magnitude of proteinuria (UPC and albuminuria) 

were significantly greater at T2 (mean 3.58 mg/dl; 15.63 and 272.38 mg/dl respectively, 

P<0.01) in affected dogs compared with T1 and were positively correlated with the 

percentage of non-functional, obsolescent and cystic glomeruli as well as with tubular atrophy 

and dilation, necrosis, fibrosis and the number of inflammatory cells (0.62<r<0.96; P<0.05). 

Significant morphological and clinicopathologic findings in XLHN dogs compared with 

age-matched controls are shown in Figures 15 and 16. The percentage of obsolescent and 

cystic atrophic glomeruli was positively correlated with each other at each time-point 

(0.60<r<0.97; P<0.05). 

Considering both morphological and clinicopathologic results, a CDA was performed to 

identify the parameters that were most strongly associated with presence of renal disease at 

each time-point. Proteinuria was strongly associated with renal disease at each time-point 

and was the only parameter discriminating between affected dogs and controls at T0. At T1, 

two morphological parameters (number of non-functional glomeruli and presence of fibrosis) 

were most strongly associated with renal disease. At T2 cystic glomerular atrophy, and 

tubular atrophy were the two morphological parameters most strongly associated with renal 

disease (P<0.01).  

Gene expression 

RNA extracted from frozen tissue that was stored at -80°C but not conserved in RNA-

later was severely degraded, and the samples were excluded from the study. Therefore, gene 

expression analysis was performed in 21 samples from affected dogs (7 dogs at T0; 8 at T1 

and 6 at T2) and in all controls.  
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The gene expression analysis dataset was analyzed by HCL and PCA as a preliminary 

analysis to determine whether control and pathologic samples could be differentiated based 

on gene expression. Using gene expression data from all time points, both the HCL tree and 

PCA differentiated XHLN from control dogs (Fig. 17). Even when using gene expression data 

from only the earliest time point (T0, 4 months of age), both the HCL tree and PCA 

differentiated XHLN from controls dogs (Fig. 18). The first three components of the PCA 

analysis accounted for a substantial fraction of the total variance in both instances (85.91% 

and 82%, respectively). Using data from all time points, three cases were located borderline 

between the two groups in PCA. Of these, one was a control dog that clustered with affected 

dogs and two were affected dogs that clustered with controls in the HCL tree.  

Among 21 candidate genes, mRNA levels of 8 genes were significantly higher in XLHN 

dogs compared with controls: TGF, CTGF, PDGFD, N-CADHERIN, CLUST, MMP2, MMP9 

and TIMP1 (P<0.05). In contrast, EGFR expression was higher in controls compared with 

XLHN dogs (P<0.01). Subsequently, genes were analyzed individually according to the 

different time points: TGF, CTGF and PDGFRα were significantly overexpressed in T0 

affected dogs compared with controls. TGF, TIMP1 and CLUST were significantly 

overexpressed in affected dogs at T1 and CLUST in T2 affected dogs compared. Figure 19 

shows the trends of genes differentially expressed in XLHN dogs compared to controls. 

Significant correlations among genes at different time-points are shown in Table 9.   

Gene expression data, morphological, and clinicopathologic findings showing 

differences in XLHN dogs compared with controls were analyzed together in order to 

associate the expression of gene(s) with renal lesions and function at the different time-

points. Relevant correlations between gene expression and morphological and 

clinicopathologic findings are provided in Table 10.  

Protein expression 

The protein expression of selected molecules was investigated by 

immunohistochemistry in controls and XLHN dogs. TGF and CTGF immunostaining was 

detected diffusely in the cytoplasm of podocytes at all time-points (Fig. 20a and 20b), with no 

differences between controls and affected dogs. However, in cystic and obsolescent 

glomeruli, positive-staining podocytes were rarely seen lining the glomerular tuft but were 

commonly seen sloughed in the urinary space. In the tubular compartment, TGF and CTGF 
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were multifocally detected in the cytoplasm of TECs both in affected and control kidneys at all 

time-points.   

Protein expression was similar for CLUST and TIMP1. The two molecules were absent 

in normal dogs at all time-points and at T0 in XLHN dogs. However, at T1 and T2 affected 

dog kidneys were characterized by diffuse mild positive cytoplasmic staining in TECs (Fig 20c 

and 20d).  

MMP9 was diffusely detected in the cytoplasm of podocytes, parietal epithelium and 

TECs both in controls and in XLHN dogs. However, in XLHN dogs at T1 and T2, the atrophic 

tubules often showed less intense staining, and infiltrating plasma cells were strongly and 

diffusely positive. MMP2 was not detected in controls or XLHN dogs at T0. In contrast, 

occasional tubules in XLHN dogs showed positive MMP2 immunostaining at T1 and T2 in 

association with the thickening and splitting of the tubular basement membrane. 

EGFR was detected only in affected kidneys at T2. The protein was evident in 

podocytes, parietal epithelium and TECs both in controls and in affected dogs. The 

immunostaining was detected on the cellular membrane of the glomerular epithelium and at 

the basolateral surface of TECs. 
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Figure 14. Renal lesions in 9 months old XLHN dogs 

Severe histological lesions are evident both the glomerular and tubulointerstitial compartments. Most 

glomeruli are cystic and atrophic or obsolescent. The interstitium is severely expanded by fibrosis and 

marked lymphoplasmacytic infiltrate associated with multifocal atrophic tubules. PAS 200x 
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Figure 15. Relevant morphological and clinical parameters 

Affected dogs (dark grey), controls (light grey). Bonferroni adjusted. *: P < 0.05; **: P < 0.01 
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Figure 16. Relevant morphological and clinical parameters 

 

Affected dogs (dark grey), controls (light grey). Bonferroni adjusted. *: P < 0.05; **: P < 0.01 
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Figure 17.  Hierarchical Clustering  (HCL) and (B) Principal Component Analysis (PCA) 

 

(A) HCLand (B) PCA were performed using all gene expression data with MultiD-Genex software for 

qPCR data, using the following settings: mean center scaling, complete linkage and Euclidean. Both 

HCL tree and PCA identified, two main groups, attributable to XHLN (indicated by ▲ in PCA) and 

controls (indicated by arrows in HCL and by ■ in PCA) dogs. Three cases were located borderline 

between the groups in PCA (black circle). These three were all T0 samples one from a control and two 

from affected dogs.  
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Figure 18 Hierarchical Clustering  (HCL) and (B) Principal Component Analysis (PCA) only of 

T0 samples 

 

 

(A) HCL and (B) PCA were performed using gene expression data from T0 samples with MultiD-

Genex software for qPCR data, using the following settings: mean center scaling,  Ward’s algorithm, 

Manhattan distance. Both HCL tree and PCA separate two main groups identifying XHLN (indicated 

by ▲ in PCA) and controls (indicated by arrows in HCL and by ■ in PCA) dogs. 
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Figure 19. Gene expression analysis 
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Affected dogs (dark grey), controls (light grey). RQ: Relative Quantification Bonferroni adjusted. *: P 

< 0.05; **:  P < 0.01 

Figure 20. Immunohistochemistry for Transforming Growth Factor beta (TGFβ), Connective 

Tissue Growth Factor (CTGF), Clusterin (CLUST) and Tissue Inhibitor of Matrix 

Metalloproteinases-1 (TIMP-1) in renal tissue from XLHN affected dogs. 

Representative micrographs are presented. (a) TGFβ positive immunolabelling is diffusely present in 

the cytoplasm of podocytes and multifocally in the cytoplasm of tubular epithelial cells. 

Immunohistochemical staining for TGFβ, haematoxylin counterstain (400x);  (b) CTGF positive 

immunolabelling is diffusely present in the cytoplasm of podocytes and of tubular epithelial cells. 

Immunohistochemical staining for CTGF, haematoxylin counterstain (400x); (c) CLUST and (d) 

TIMP1 positive immunolabelling  is diffusely evident within the cytoplasm of tubular epithelial cells 

only in T2 (9 months of age) samples. Immunohistochemical staining for CLUST and TIMP1, 

haematoxylin counterstain (400x) 

  

a a b 

c d 
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Table 9. Significant correlation (P <0.05) among genes according to time-points. 

GENE T0  T1 T2 

TGFβ- CTGF r = 0.78 - r = 0.78 

TGFβ - PDGFD r = 0.77 r = 0.61 - 

TGFβ - PDGFRα r = 0.80 r = 0.82 - 

TGFβ - MMP2 r = 0.74 - - 

TGFβ - TIMP1 r = 0.77 r = 0.75 - 

CTGF -PDGFRα r = 0.76 r = 0.66 r = 0.63 

CTGF - TIMP1 r = 0.64 r = 0.61 - 

PDGFD - PDGFRα r = 0.74 - - 

PDGFD - MMP2 r = 0.86 - - 

PDGFD - TIMP1 r = 0.65 r = 0.78 - 

MMP2 - PDGFRα r = 0.67 - - 

MMP2 - TIMP1 r = 0.81 r = 0.62 r = 0.76 

TIMP1 - CLUST r = 0.66 r = 0.80 r = 0.97 

TIMP1 - MMP14 r = 0.59 r = 0.89 - 

CLUST - TGFβ - r = 0.69 - 

CLUST - CTGF - r = 0.65 - 

CLUST - PDGFRα - r = 0.64 - 

CLUST - MMP9 - r = 0.70 - 

CLUST - MMP2 - - r = 0.79 

CLUST - NCAD r = 0.73 - r = 0.76 

EGFR- TGFβ r = - 0.78 - r = 0.79 

EGFR- CTGF r = - 0.60 r = - 0.69 r = 0.81 

EGFR - TIMP1 r = -0.75 r = - 0.63 - 

EGFR - PDGFRα - - r = 0.84 

T0= 4 months of age; T1= 6 months of age; T2 = 9 months of age 
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Table 10a. Significant correlations (P < 0.05) among genes, morphological and clinical-

pathological findings at T0 (4 months of age) 

GENE 
T0 

Parameter r (range) 

CLUST 

MESANGIAL HYPERCELLULARITY 
MESANGIAL MATRIX EXPANSION 

CAPILLARY THICKENING 
TUBULAR ATROPHY 
TUBULAR NECROSIS 

INFLAMMATORY CELLS COUNT 
UPC RATIO 

URINARY ALBUMIN 

0.65 < r < 0. 88 

TIMP 1 

MESANGIAL HYPERCELLULARITY 
MESANGIAL MATRIX EXPANSION 

TUBULAR DILATION 
TUBULAR ATROPHY 

INTERSTITIAL FIBROSIS 
UPC RATIO 

URINARY ALBUMIN 

0.58 < r < 0.74 

NCAD 

MESANGIAL HYPERCELLULARITY 
MESANGIAL MATRIX EXPANSION 

TUBULAR NECROSIS 
UPC RATIO 

URINARY ALBUMIN 

0.72 < r < 0.84 

TGFB 
CTGF 

UPC RATIO 
URINARY ALBUMIN 

0.65 <  r < 0.77 
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Table 10b. Significant correlations (P < 0.05) among genes, morphological and clinical-

pathological findings  at T1 (6 months of age) 

GENE 
T1 

Parameter r (range) 

CLUST 

MESANGIAL HYPERCELLULARITY 
MESANGIAL MATRIX EXPANSION 

TUBULAR NECROSIS 
INTERSTITIAL NECROSIS 

UPC RATIO 
URINARY ALBUMIN 
SERUM CREATININE 

0.60 < r < 0.76 

TIMP 1 

% CYSTIC GLOMERULAR ATROPHY 
% NON FUNCTIONAL GLOMERULI 

TUBULAR DILATION 
TUBULAR ATROPHY 
TUBULAR NECROSIS 

INTERSTITIAL FIBROSIS 
UPC RATIO 

URINARY ALBUMIN 

0.58 < r < 0.80 

TGFβ 

% NON FUNCTIONAL GLOMERULI 
UPC RATIO 

URINARY ALBUMIN 
INTERSTITIAL FIBROSIS 

0.58 < r < 0.70 

MMP2 TUBULAR DILATION r = 0.79 

EGFR 

% OBSOLESCENT GLOMERULI 
TUBULAR NECROSIS 

INTERSTITIAL FIBROSIS 
UPC RATIO 

URINARY ALBUMIN 
SERUM CREATININE 

- 0.69 < r < - 0.62 
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Table 10c. Significant correlations (P < 0.05) among genes, morphological and clinical-

pathological findings at T2 (9 months of age) 

GENE 
T2 

Parameter r (range) 

CLUST 

% OBSOLESCENT GLOMERULI 
% CYSTIC GLOMERULAR ATROPHY 
% NON FUNCTIONAL GLOMERULI 
MESANGIAL HYPERCELLULARITY 
MESANGIAL MATRIX EXPANSION 

CAPILLARY THICKENING  
TUBULAR DILATION 
TUBULAR ATROPHY 
TUBULAR NECROSIS 

INTERSTITIAL FIBROSIS 
INFLAMMATORY CELLS COUNT 

UPC RATIO 
URINARY ALBUMIN 
SERUM CREATININE 

0.65 < r < 0.85 

TIMP 1 

% OBSOLESCENT GLOMERULI 
% CYSTIC GLOMERULAR ATROPHY 
% NON FUNCTIONAL GLOMERULI 
MESANGIAL HYPERCELLULARITY 

CAPILLARY THICKENING  
TUBULAR DILATION 
TUBULAR ATROPHY 
TUBULAR NECROSIS 

INTERSTITIAL FIBROSIS 
INFLAMMATORY CELLS COUNT 

UPC RATIO 
URINARY ALBUMIN 
SERUM CREATININE 

0.67 < r < 0.79 

NCAD 

% OBSOLESCENT GLOMERULI 
% NON FUNCTIONAL GLOMERULI 

TUBULAR DILATION 
TUBULAR ATROPHY 

INTERSTITIAL FIBROSIS 
INFLAMMATORY CELLS COUNT 

SERUM CREATINE 

0.61 < r < 0.76 
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GENE 
T2 

Parameter r (range) 

MMP2 

% OBSOLESCENT GLOMERULI 
% NON FUNCTIONAL GLOMERULI 
MESANGIAL HYPERCELLULARITY 
MESANGIAL MATRIX EXPANSION 

CAPILLARY THICKENING 
TUBULAR DILATION 
TUBULAR ATROPHY 

INTERSTITIAL FIBROSIS 
INFLAMMATORY CELLS COUNT 

UPC RATIO 
URINARY ALBUMIN 
SERUM CREATINE 

0.64 < r < 0.89 

CTGF 

% NON FUNCTIONAL GLOMERULI 
% CISTIC GLOMERULAR ATROPHY 

TUBULAR DILATION 
TUBULAR NECROSIS 

INTERSTITIAL FIBROSIS 
INFLAMMATORY CELLS COUNT 

UPC RATIO 

 - 0.76 < r < - 0.66 

EGFR 

% CYSTIC GLOMERULAR ATROPHY 
TUBULAR DILATION 
TUBULAR NECROSIS 

INTERSTITIAL FIBROSIS 
UPC RATIO 

 - 0.80 < r < - 0.61 
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DISCUSSION 

Naturally occurring inherited type IV collagen defects that cause progressive renal 

injury leading to ESRD have been described in humans and several canine families (Lees, 

2013). The Navasota dogs used in this study belong to a mixed-breed family of dogs with 

XLHN, a good model in which to study the progression of CKD in dogs (Lees 1999). In the 

present study, the availability of serial samples obtained in the early stages of the disease 

permitted the visualization of the sequence of events occurring in progressive hereditary 

nephropathy. 

Based on our findings proteinuria is the earliest detectable change in XLHN and it is 

the only parameter discriminating affected dogs from controls at 4 months of age. In contrast, 

compare with proteinuria, the development of evident histological lesions seems to be 

delayed. XLHN dogs develop during their lifetime a mesangioproliferative glomerulopathy 

characterized by progressive loss of glomeruli, mostly undergoing cystic glomerular atrophy. 

The primary and persistent glomerular injury is associated with a secondary and progressive 

tubular loss, interstitial fibrosis and inflammation. With respect to the clinicopathologic data, 

the UPC as well as the urinary albumin and SCr concentrations increased in parallel with 

severity of tissue injury, confirming their utility in monitoring changes in renal structure and 

function in this disease.  

Cystic glomerular atrophy is frequently observed in canine juvenile nephropathies 

(Lavuè et al., 2010; Wakamatsu et al., 2007; Chandler et al., 2007; Hood et al. 2002) and 

emerged as a peculiar feature of XLHN in this study. The cystic dilation of glomeruli is the 

consequence of tubular obstruction followed by increased intratubular and intraglomerular 

pressure, and progressive compression of the glomerular tuft. However which factor is 

primarily responsible for the tubular obstruction in XLHN is not presently understood. The 

interstitial fibrosis surely represents a potential main actor contributing to this phenomenon, 

but the cystic glomerular atrophy is not seen exclusively in association with renal fibrosis. 

Recent studies have demonstrated that many renal disorders are characterized by the 

formation of atubular glomeruli (Gallareta et al., 2013; Forbes et al., 2011). According to these 

studies, the formation of atubular glomeruli would be a consequence of damage occurring at 

the glomerulo-tubular junction and might represent an essential step in the progression of 

pediatric nephropathies (Chevalier et al, 2014; Gallareta et al., 2013; Forbes et al., 2011). It 
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was beyond the purposes of this study to examine the possible role of atubular glomeruli in 

canine XHLN, but the large number of cystic and atrophic glomeruli could indicate the 

presence of atubular glomeruli and thus identify a potential key feature in the pathogenesis of 

hereditary nephropathies in general that should be further investigated. 

The expression of a number of molecules potentially involved in the pathogenesis and 

progression of XLHN was investigated in this study. The entire dataset obtained by gene 

expression analysis was used for preliminary HCL and PCA procedures that identified two 

separate well-defined groups: controls and affected dogs.  

In three instances, both involving biopsies obtained at T0, the PCA procedure resulted 

in incorrect grouping, albeit adjacent to the borderline between the two groups in both 

instances. One control dog clustered with affected dogs, and two affected dogs clustered with 

controls. In an attempt to explain the “incorrect clustering” of the two samples, we reviewed 

the histopathology of the two cases: the first one, although from a control animal, was 

characterized by mild multifocal tubulointerstitial changes including epithelial cells 

degeneration, fibrosis and inflammatory cell infiltration. In the other two cases tubulointerstitial  

lesions were absent resembling normal renal tissue. Moreover, those same dogs 

subsequently exhibited relatively slow progression of their renal disease reaching the study 

endpoint at 10 months of age. 

Progression of renal disease in NAV dogs is variable, with the standardized study end-

point occurring between 6 and 15 months of age. It would be of great interest to identify 

factors predisposing to or predicting faster progression of XLHN. The number of dogs 

examined in the present study was too small to statistically explore an association between 

the mRNA expression profile and progression rate of XLHN; however no difference was 

observed upon cursory examination of the gene expression data related to dog survival. 

Interestingly by the examination only of sample at T0 by PCA and HCL, controls and affected 

dogs were separated into two well-defined groups. This observation illustrates and 

emphasizes that, well before renal lesions become evident by light microscopy.  

In the gene expression analysis, an unexpected observation was the variable 

expression in control dogs of some genes that were initially expected to be constant over 

time. However post-natal renal maturation must be considered, especially in as much as 

many of the studied molecules (i.e. TGF, CTGF, EGFR) are reported to be involved in renal 
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development in several animal species (Ito et al.,2010; Hammerman, 1995; Hyink and 

Abrahamson, 1995; Goodyer et al., 1993).  

In the present study, increased expression of TGF and CTGF was detected by 4 

months of age in dogs affected with XLHN and preceded evident light microscopic damage. 

TGF and CTGF protein expression was detected in podocytes and parietal epithelium of 

their kidney as well as in TECs. Recently podocytes have been reported as the first cellular 

elements that detect altered ultrafiltration and react with conformational changes and produce 

pro-inflammatory factors with autocrine and paracrine effects (Fuchshofer et al., 2011). A 

previous study in a mouse model of Alport syndrome, have described an increased 

expression of TGFβ in podocytes of affected kidneys (Sayers et al., 1999). In their study 

Sayers and colleagues hypothesized an effect of TGFβ in the development of glomerular 

changes by stimulating mesangial cell proliferation and matrix deposition. In the present study 

the overexpression of TGFβ possibly by podocytes and the presence of proliferation of 

mesangial cells and matrix expansion occurring in initial stages of XLHN, gives support to this 

hypothesis. Both TGFβ and CTGF are known as pro-fibrotic factors and, surprisingly the 

present study showed a decrease of their expression in parallel with increasing fibrosis, 

although the lack of significant overexpression of TGFβ in late stages of XHLN is consistent 

with previous data of Greer et al. (2006). In late stages of XLHN the marked loss of glomeruli 

and prominent tubular atrophy are responsible for an overall reduction in the number of viable 

cells (ie, glomerular visceral and parietal epithelial cells and TECs present in the kidney). This 

great reduction in the number of viable cells might explain the reduction in TGFβ and CTGF 

expression observed in this study.  

MMP2 and MMP9 expression was increased in XLHN dogs compared with controls, in 

this study. This finding is consistent with previous studies that explored the possible role of 

MMP2 and MMP9 in dogs with XLHN and in chronic TID (Rao et al. 2003; Aresu et al., 2011). 

The activity of MMPs and their inhibitors is essential in the remodeling and turnover of the 

extracellular matrix and an imbalance in MMPs and TIMPs expression was demonstrated in 

several fibrotic diseases (Cheng and Lovett, 2003; Guo and Friedman, 2007). MMP2 

especially was reported to be involved in renal injury at both the glomerular and the 

tubulointerstitial level: in glomeruli it represents a pro-inflammatory factor produced by 

mesangial cells in response to injury; in the tubulointerstitium its increased activity is 

associated with a progression of renal fibrosis (Martin et al., 2001; Rao et al., 2003; Aresu et 
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al., 2011). Furthermore several lines of evidence support a role for MMP2 in promoting the 

process of EMT of TECs (Cheng et al., 2004; Cheng et al., 2006; Aresu et al., 2011). In the 

present study the identification of a positive correlation between MMP2 gene expression and 

the degree of fibrosis in T2 samples is consistent with a pro-fibrotic role of the enzyme. MMP9 

expression showed a peculiar trend in XLHN: it was increased at 6 months of age but showed 

a decreased at 9 months. At the protein level MMP9 was diffusely expressed by tubular and 

glomerular epithelial cells in both control and affected dogs. A similar trend for MMP9 

expression has been described in a study on nephrectomized mice reporting an initial 

increase of MMP9 followed by moderate decreased (Johnson et al., 2002). The peak of MMP-

9 expression in 6-months samples can be attributed to the expression of the enzyme also by 

the inflammatory cell population (e.g. plasmacells). The reduction in 9 months samples could 

reflect the reduction of the number of viable cells as previously hypothesized for CTGF and 

TGF. 

An up-regulation of TIMP1 was observed in the present work in XLHN dogs and its 

expression was positively correlated with the progression of glomerular and tubulointerstitial 

changes. A pro-fibrotic activity has been proposed in the progression of renal fibrosis, since 

inhibitory activity on MMPs, would lead to the accumulation of ECM (Ahmed et al., 2007). In 

this study the positive correlation of TIMP1 expression at all time-points with the degree of 

fibrosis (0.66<r<0.74) and with MMP2 expression (0.62<r<0.81), is consistent with a pro-

fibrotic role of this enzyme in the progression of chronic TID. Similarly, studies in humans and 

dogs liver chronic disease, associated TIMP1 overexpression with strong exacerbation of 

fibrosis (Wang et al. 2013; Kanemoto et al 2011). According to the study of Wang and 

colleagues the pro-fibrotic activity of TIMP-1 is not limited to MMPs inhibition but TIMP1 would 

promote extracellular matrix accumulation through an anti-apoptotic activity on hepatic stellate 

cells (Wang et al 2013). Translating that information into renal pathology, the mechanisms 

through which TIMP1 could enhance the fibrosis might include (i) inhibition of MMPs activity; 

and (ii) reduction of the apoptosis of interstitial (myo)fibroblasts.  

In the present study, clusterin expression was higher in canine XLHN compared with 

controls in agreement with the results reported by Greer and colleagues (2006). The 

increased expression of clusterin in affected dogs was progressive (Fig. 6) and positively 

correlated with the worsening of renal damage. Clusterin is a glycoprotein constitutively 

expressed in almost all mammalian organs and capable of interacting with a wide range of 
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molecules (Jones and Jamari, 2002). Increased expression of clusterin was found in several 

renal disease models, suggesting that it might have an important role in the pathogenesis of 

renal injury. For this reason, several studies investigated and proposed clusterin as potential 

biomarker of renal injury (García-Martínez et al., 2012; Fuchs and Hewitt, 2011). The role of 

clusterin in the development and progression of renal fibrosis is still unclear. Some author’s 

hypothesized a nephroprotective activity of clusterin since its absence is associated with a 

faster progression of chronic TID (Jung et al. 2012). According to Jung and colleagues, 

clusterin would attenuate the development of fibrosis through the inhibition of TGF signalling.  

Among the examined PDGF and PDGFR isoforms, PDGFD and PDGFRα were found 

significantly overexpressed in renal tissue of XLHN dogs compared with controls. To the best 

of the authors’ knowledge, there are no reports examining PDGFs and PDGFRs expression in 

canine renal diseases, but in human medicine their role in renal fibrosis have been recently 

reviewed by Ostendorf and colleagues (2011). In the glomeruli, PDGFB and PDGFD 

autocrine and paracrine effects, through PDGFR activation lead to mesangial cell 

proliferation and the development of glomerulosclerosis. In the present study, PDGFD was 

found overexpressed in XHLN compared with controls dogs. This possibly reflects its action 

on mesangial cells inducing cell proliferation and mesangium expansion (van Roeyen et al., 

2005). On the other hand, no difference emerged in comparisons of PDGF expression in the 

two groups at the different time-points. This could be a consequence of the high variability in 

PDGFD expression among the subjects. Higher PDGFRα expression was detected in XLHN 

dogs compared with controls only at 4 months at age and a subsequent decrease gene 

expression was associated with time-progression. Furthermore, the positive correlation 

between PDGFRα and the pro-fibrotic CTGF (0.63<r<0.76), suggests cross-talk between the 

two molecules in the progression of interstitial fibrosis. Based on these findings we can 

speculate that the PDGFRα expression and activation have a prominent role in the very 

beginning of the fibrotic process recruiting fibrocytes as seen in pulmonary and hepatic 

fibrosis (Aono et al., 2014; Hayes et al., 2014), but more data are needed to explain the role 

of this receptor in renal fibrosis.  

XLHN dogs showed reduced EGFR expression compared with controls. EGFR is a 

tyrosine kinase receptor located on the basolateral surface of epithelial cells and is an 

important mediator of cell proliferation in renal tissue. EGFR is particularly involved in 

proliferation of the TECs occurring in post-natal renal development and maturation (Stuart et 
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al., 2001) giving reason for the high expression detected in normal dogs. On the contrary in 

renal injury, the role of EGFR is controversial and two apparently discordant actions have 

been described: in acute injury it is associated with faster recovery; whereas in chronic 

lesions EGFR appears to promote renal disease progression (Tang et al., 2013). The reason 

for this dual role of the molecule might be due to different consequences of its proliferative 

activity in different renal structures: in tubules the epithelial cell proliferation might help the 

recovery from degenerative changes, whereas in the glomeruli its proliferative activity on 

mesangial cells and podocytes might promote progression of glomerular dysfunction and 

indirectly promote chronic renal injury. Taking into consideration the different possible 

consequences on renal tissue of EGFR activation it would be necessary to determine the 

expression and activity of this molecule in the different renal cell types to better understand 

the action of this receptor in XLHN. 

Summarizing we characterized morphological and clinicopathologic changes occurring 

in XLHN of NAV dogs.  

A number of molecules (TGFβ, CTGF and PDGFRα) were identified as potential key 

players in initial events of XLHN. Clusterin and TIMP1, in contrast, appear more involved in 

the progression of the chronic TID. Further studies are needed to explore if these results are 

attributable to the specific hereditary disease here studied or can be regarded as common 

events occurring in the progression of TID secondary to a primary glomerular disease.  

A limitation in this study is that gene expression was performed on homogenized 

cortical renal tissue and thus including several cell types. The immunohistochemical staining 

was helpful in identifying the cells expressing the different genes but further investigations are 

needed to better clarify the role of these molecules in the pathogenesis of XLHN.  

On the other hand the opportunity to study an established and reproducible animal 

model offers certain important advantages. One of these is the availability of samples from 

the early stages of the disease that are not possible to collect in routine diagnostic settings 

because patients with renal disease are biopsied only when they develop evident disease. 

Furthermore, the examination of serial samples permits analysis of the evolution of the renal 

disease over time.  

 

  



90 
 

CONCLUSIONS 

 

In summary, this project examined different aspects of the progression of TID in 

various canine renal diseases. 

The first study confirmed that the primary glomerular diseases are associated with a 

secondary involvement of the tubulointerstitium. The progression of TID appears to be 

independent of the persistence of the causative agent if the tubulointerstitial involvement is 

already present and severe. On the other hand, the elimination of the causative agent (i.e. the 

use of leishmanicidal drug) seems to be associated with an improvement of the renal function 

and damage if the tubulointerstitium is mild or not affected.  

The second part of the study explored the role of TECs in the progression of TID. 

TECs appear to be capable of acting as non-professional antigen presenting cells in canine 

renal tissue and actively interacting with inflammatory cells. The study offered further 

evidences that proteinuria is co-responsible for the activation of this function. Moreover, the 

phase in which the TECs act as APCs precedes and partially overlaps with the phenomenon 

of EMT of TECs possible representing a specific phase in this transition. The active role of 

TECs in the progression of TID is further supported by the expression of several growth 

factors and others molecules in progressive renal failure as shown in the third part of the 

project.  

The last part of the study describes the evolution of the renal damage and progressive 

impairment of renal function in a naturally occurring model of hereditary nephropathy. 

Moreover, some molecules (TGFβ, CTGF and PDGFRα) were identified as potential key 

players in initial events of renal damage whether others (Clusterin and TIMP1) seemed more 

involved in the progression of the chronic TID. 

The obtained results significantly improved the understanding of the progression of 

chronic TID in canine renal diseases pointing out the importance of proteinuria and other 

molecular changes that precede the morphological changes. More data are needed to further 

understand the mechanisms responsible for the initiation ad promotion of the secondary TID, 

the role of TECs and other major cellular players as well as important molecules and factors 

involved. The ultimate goal is the identification of early and specific markers of renal damage, 
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improving the time of the diagnosis. Also, this new research will define new targets for therapy 

and approaches for the management of dog with renal diseases.  
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