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Abstract

Reconstructing climatic variables in the pre-instrumental period is important to get a correct
understanding of the climatic change issues. The main aim of this research is to present a model to
reconstruct summer mean temperature and moisture on the basis of a dendrochronology, using a
Bayesian approach. As a second step, a procedure for the estimation of monthly observed climatic
variables on the basis of annual dendrochronology is illustrated, along with an application to an

Italian location.
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Sommario

Ricostruire le variabili climatiche nel periodo pre-strumentale & importante per una corretta com-
prensione delle problematiche legate al cambiamento climatico. Lo scopo principale di questa
ricerca € presentare un possibile modello per la ricostruzione della media estiva di temperatura
e umidita a partire da una dendrocronologia, utilizzando un approccio di tipo bayesiano. Viene
poi illustrata una procedura per stimare variabili climatiche osservate mensilmente sulla base di

dendrocronologie annuali, con un’applicazione a un sito italiano.
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Chapter 1

Introduction

1.1 Overview

The topic of climate change is tightly bound to the problem of climate reconstruction in the past
centuries. A better understanding of climate dynamics in fact requires studies of the period before
instrumental measurements are available. Statistics can give an important support to palaeo-
climatological studies, and this work, hopefully, would like to give a little contribution in this
direction. This introductory Chapter describes the problem, presenting the main contributions in
the literature and giving an overview of the thesis’ structure.

Let us first report the definition of climate given in the Glossary of the synthesis report published
by the Intergovernmental Panel on Climate Change (IPCC, 2014):

Climate in a narrow sense is usually defined as the average weather, or more rigorously,
as the statistical description in terms of the mean and variability of relevant quantities
over a period of time ranging from months to thousands or millions of years. The
classical period for averaging these variables is 30 years, as defined by the World Mete-
orological Organization. The relevant quantities are most often surface variables such
as temperature, precipitation and wind. Climate in a wider sense is the state, including
a statistical description, of the climate system, which is made up of the atmosphere,
the hydrosphere, the cryosphere, the lithosphere and the biosphere and the interactions

between them.

Measurements of climatic variables are available only since the mid XIX century, so in order
to evaluate climate dynamics in the proper perspective, past climatic behaviour needs to be taken
into account (Bradley, 2013).

Palaeoclimatology is the study of climate before the period of instrumental measurements.
Since no measurements are available there is the need to study other kinds of natural phenomena
that are climate-dependent and therefore provide a so-called proxy record of climate. Different
kind of proxy data can be used in palaeoclimatic reconstruction, for example ice cores, lake or
marine sediments, pollen, tree-rings and others. These types differ in several respects like their
spatial and temporal coverage, their resolution, that is the degree of detail each record can provide
(seasonal, annual, decadal, ...) and that determines the value it has for reconstruction, and the
possible temporal lag between the climate variation and its appearance in the proxy record.

To extract the paleoclimatic signal from proxy data, the record must first be interpreted or cal-

ibrated. Calibration means using modern climatic measurements and proxy materials to establish
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Proxy Climate
Past OBSERVED ?
Modern OBSERVED OBSERVED

Figure 1.1: The typical datset.

the climate-proxy relationship.

The uniformitarianism principle is assumed, which means to suppose that the modern climate-
proxy relationship has operated in the whole period of interest. The typical situation is illustrated
in Fig. 1.1: the calibration period corresponds to the bottom line, where both proxy and climate
data are available.

Palaeoclimate reconstructions can be performed globally or locally, and can be based on single
or several proxy variables.

Some contributions regard multi-proxy global reconstructions, like the paper by Mann et al.
(1998), who reconstruct Northern hemisphere mean annual temperatures back to 1400, calibrating
a multi-proxy data network by the dominant patterns of temperature variability in the instrumental
record, obtained by principal components analysis. Their approach has drawn criticism, mainly
for the method employed, as summarized in McShane and Wyner (2011).

Barboza et al. (2014) propose an approach based on hierarchical Bayesian models, obtaining
directly posterior draws of Northern Hemisphere annually averaged temperature anomalies back
to 1000 AD, starting from 25 proxy series of different type, that are combined in a weighted
averaged (called reduced proxy) in its turn modeled as a function of the latent temperature process.
Temperature is modeled as a function of the external forcings solar irradiance, volcanism and
greenhouse gases, and prior distributions are assigned to the model parameters.

Concerning local reconstruction we can cite Tolwinski-Ward et al. (2015), who propose a hierar-
chical Bayesian approach to the simultaneous reconstruction of temperature and soil moisture from
width and isotopic dendrochronologies on a Californian site, introducing a time-varying climatic
response in order to overcome the uniformitarianism principle.

Since it is climate that has influence on proxies, Bayesian inference is the natural framework
to deal with these kind of problems, because it allows to start from the distribution of proxy
conditionally on climate, and then inverting this ‘forward model’ to make inference on climate
conditionally on proxy data. Moreover, the output of a Bayesian analysis is a sample of values
from the target process, which can then be elaborated to answer several questions of interest.

A paper that gives an excursus on existing reconstruction methods is Lee et al. (2008), which
proposes also a reconstruction method based on Kalman filter algorithm, that incorporates an
estimation of the climate response to external forcings. Li et al. (2010) illustrates a Bayesian
hierarchical model to reconstruct Northern Hemisphere temperatures on a multi-proxy basis. A
paper that discusses the scientific and statistical challenges posed by reconstruction problems is
Tingley et al. (2012).
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This work founds reconstruction on tree-ring widths proxy, whose main peculiarities are illus-
trated in Chapter 2; an application to a site in Italian central Alps, studied also in Coppola et al.
(2013), is shown in Chapter 4.

The remainder of the thesis is as follows. Chapter 3 presents first a model for reconstruction,
where both climatic and proxy data have annual resolution, while Paragraph 3.2 illustrates how
calibration is performed when tree-ring widths data have annual resolution and climate is observed
monthly. Results obtained from simulations are presented for both models. Chapter 5 presents
some ideas for future developments. Appendix A explains the statistical background necessary to
understand the work done in the thesis: the main concepts about Bayesian inference, the Gibbs
sampling and the Metropolis-Hastings algorithm, the fundamentals of the theory about state-space
models and the Kalman filter algorithm. The last paragraph of Appendix A is devoted to Gibbs

sampling for state-space models, that is the algorithm used in the reconstruction procedure.

1.2 Main Contributions of the Thesis

The main contributions of the thesis can be summarized as follows:

1. development and application of a Bayesian hierarchical model for palaeoclimate reconstruc-

tion on an Italian location;

2. development of an R package based on Fortran code for the estimation of the parameters

and latent variables in the annual model.
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Chapter 2

Tree-rings and climate

This Chapter explains how tree-ring series used in palaeoclimatological studies are obtained from

raw data.

Tree-rings are the only kind of proxy which can be accurately dated to an individual year and

can provide records spanning more than a thousand years. Observing a cross-section of a tree

(Fig. 2.1) we can notice an alternation of lighter and darker bands, that are made up of large, thin

walled cells (earlywood) and thick-walled cells (latewood). Earlywood and latewood comprise an

annual-growth increment, more commonly called a tree-ring (Bradley, 2013, Chap. 13). From the

same picture we can see that several variables can be measured on a tree-ring, like the maximum

and minimum density and the earlywood or latewood width or density. In this work we use only

measurements of the whole ring width.

Wood structure
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Figure 2.1: Tree-rings’ structure. From Bradley (2013).

In dendroclimatological studies, trees are sampled in sites where their growth is limited by

stressing conditions related to the climatic factors under study. In this way the variability of the

ring-width can reflect how limiting the climate was to growth. Such trees are defined sensitive

and this is referred to as the principle of limiting factors.

When climatic factor do not vary

sufficiently to limit the growth process, there may be little difference among the rings, and such
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trees are defined complacent (Fig. 2.2). The most common types of climatic stress are moisture

and temperature stress.

Rings of uniform width provide Rings of varying width provide
little or no record of variations in  a record of variations in climate.
climate.

Figure 2.2: The difference between a complacent tree (left) and a sensitive tree (right). From Fritts
(1976).

The procedure to build-up a tree-ring series for a site, that is a dendrochronology, is made up

of the following steps:

1. Sample selection: trees are sampled by removing two or tree cores of wood from the radius

of the tree, on at least 20 trees per site.

2. Cross-dating: ring-width sequences from each core are compared, so that characteristic pat-

terns of ring-width variation are matched and the age of the sample is established (Fig. 2.3).

3. Standardization (in a climatological sense): the width of a ring depends on many variables,
like the tree species and age, in addiction to the climatic factors. In order that the different
cores can build-up a chronology, it is necessary to remove the growth function peculiar of
each tree. This procedure, named standardization, has the consequence that some of the
low frequency climatic information is removed, so that tree-rings rarely provide information
at frequencies greater than a few hundred years. Growth functions are removed by fitting a
curve (commonly a negative exponential function) to the data and dividing each measured
ring-width value by the corresponding value on the growth curve. A further step could be to
estimate an auto-regressive model of order 1, to eliminate the influence that one year has on

the following, by using the residual series.



O

Figure 2.3: Cross-dating of tree-rings. Panel (a): counting of the rings shows a lack of synchrony
in the patterns of the two cores. Panel (b): dots in the upper core show where a ring is missing
and the patterns can be matched. From Fritts (1976).

4. Chronology construction: the indexes obtained from the previous step are averaged among

specimens to produce a mean chronology for that site (Fig. 2.4).
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Figure 2.4: Chronology construction. The upper part of the figure shows three series and their
mean without standardization, when the mean is influenced by age. The bottom part shows the
series after standardization, when they can averaged among specimens differing in age, to produce
the series of mean indexes in the bottom line. From Fritts (1976).

The chronology used in this work is obtained as outlined above, and it is considered reliable,

without taking into account of the uncertainties introduced by its construction.
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Chapter 3

Model estimation

In this Chapter we present a model for the estimation of annual climatic variables from annual
tree-ring series in Section 3.1, and a model for the estimation of monthly climatic variables from
annual tree-ring series in Section 3.2. Some results from a simulation study for both the models

are illustrated in Section 3.3.

3.1 Annual model

We consider an annual model in which the climatic variables are the summer mean temperature
T(t) and the summer mean moisture M (¢) for year ¢, computed by averaging the corresponding
monthly variables of June, July and August (JJA).

It is convenient to label the years in the calibration period C from 1 to nc and the years in
the reconstruction period R from 1 to ng. Let n = ngo + ng. We replace climatic variables
with transformations suitable for the model definition, called anomalies, similar to what is done

in Tolwinski-Ward et al. (2015). Temperature anomaly x1(t) is a function of temperature T'(¢):

T(t) — pr
ar

21 (t) = ,teRUC, (3.1)

where up and op are the mean and standard deviation of the values T'(¢) in the calibration period.
Moisture anomalies xo(t) are computed from moisture values M (t):

zo(t) = F b (F (W)) , te RUC, (3.2)

where M,, = 0.001 and M, = 0.999 are the minimum and maximum allowable soil moisture values,
Fisa non-parametric estimate of the cumulative distribution function of normalized moisture in
the calibration period, F.!  is the quantile function of the standard Gaussian distribution. The

norm

relationship between tree-ring widths and climatic variables on year t is:
y(t) = Bo + ra1 (t) + Bowa(t) +€(t),  e(t) ~ N(0,9%), t e RUC, (3.3)
while the climatic variables follow a vector autoregressive model of order 1 (VAR(1)):
x(t) = ®z(t — 1) + n(t), n(t) ~ N2(0,%), teRUC, (3.4)

where z(t) = (z1(t), z2(t)) .
In the estimation procedure we retain the estimates of ® whose eigenvalues are in modulus less

than 1, to ensure the stationarity condition is satisfied (Tsay, 2005).
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In the calibration period we can estimate anomalies from climatic variables; on the other hand,
in the reconstruction procedure we first get estimates of anomalies conditionally on tree-ring widths
observations and then we retrieve temperature and moisture by inverting (3.1) and (3.2).

In the Bayesian context, prior distributions are assigned to the parameters ®, ¥, 8 = (8o, £1, 82) "
and 2.

Let
_(e(1,1) 6(1,2)
‘I’<¢<2,1> ¢<2,2>)

and A1, A2 be the eigenvalues of ®. The prior distribution for ® is

p(@) — Hij:l p(¢(laj)) lf ‘Ak| < 1 fOI‘ k = 1527
0 otherwise,

where p(¢(4,4)) = N(0,10) for ¢,j =1, 2.

As prior distribution for 3 we choose an Inverted-Wishart distribution:

1 04\ "
p(X) = IWa (o, Syt) with vy = 4,851 = ( : ) .

—-04 1
1 —04
So = (—0.4 1 ) ’

in fact we suppose that the higher the temperature the less the soil moisture. In previous studies we

In this case the mean is

made on about 20 Italian datasets, we have always observed a negative but not strong correlation
between temperature and soil moisture, deeming the value —0.4 reasonable also for this location.
The prior distribution for § is p(8) = N3(03, %) with

10 0 O
o=10 10 O
0 0 10

The prior distribution for 12 is an Inverted-Gamma distribution, p(y?) = IG(a,b), where
hyperparameters are chosen by considering the relationship with the moments. Since E(y?) =
b/(a — 1) and Var(y?) = v?/((a — 1)%(a — 2)), then

a = E*(Y?)/ Var(y?) + 2,

b= (a—1)E(W?).
We express our prior beliefs on £(1)?) on the basis of previous studies made on Italian datasets, in
which estimates 1&2 of 1) were obtained by the residual mean square after fitting a linear model
like (3.3) to the data by ordinary least squares method. We choose a quite high value for the

variance with respect to the mean, in order to get a vague distribution.
The model (3.3)—(3.4) implies that y(t) and (®,X) are conditionally independent given x(t):

y(t) L (2, X)|z(t), vt (3.5)

and that
(z(t),®,%) L (B,7?), Vt. (3.6)

We also assume that the parameters are independent to each other, so:

p(®. %, B,¢°%) = p(®)p(X)p(B)p(¥?). (3.7)
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Let X = {xz(t) : t € RUC} the process level variables and Y = {y(t) : t € RUC} the data level

variables. We are interested in the posterior distribution
p(X, @, 3,8, ¢%Y) o p(Y|X, 2,5, 8,9)p(X, @, %, 5,7). (3-8)
Let us consider the first factor on the right-hand side of (3.8):
p(Y1X,®,%,8,9) = p(Y|X, 5,4?),

because of (3.5).
The second factor on the right-hand side is:

p(X, @, 3, 8,9%) = p(X[®, X)p(@)p(2)p(B)p(v?),
because of (3.6) and (3.7). The posterior distribution can then be written:

Sl p(Y|X, 8,4*)p(X|®, %)p(®)p(X)p(8)p(¢?)
PEG® 550 = T, B, 02 p(X10, Sip@)p(Dp(9)p(0) AX B dS 430

The integral in the denominator is too difficult to be computed, so we need an approximate

solution. A good algorithm to solve this problem is the Gibbs sampler (Section A.2):

1. Set the initial values:
—1
B = (8 8) Z0 ~ 10 (4’ <—(1).4 _(1)'4> ) B0 =(0,0,0)7, v2” = 0.8.

2. For iteration it =1...,1I:

(a) sample ®) from p(®|xC—1, 361 02 Xo, Yo
(b) sample () from p(Z\CI)(i),B(i*1)7¢2(i_1),Xc, Yo);

(
(d
(e) sample Xp from p(X |0, x(® g6 wz(i),YR),

)
)

¢) sample 3@ from p(B|0®, x0 2" Xc, Yo);
) sample 4" from p(1?|0®, %0, 30, X¢, Vo)
)

with Xe ={z(t):t€C}, Yo ={y(t): t€C}, Xp={z(t): t e R}, YR ={y(t) : t € R}.

In steps (2a)—(2d) we condition on data from the calibration period to estimate ®,3, 3 and 1?2,
while in step (2e) we use the Gibbs sampler for state-space models to perform the reconstruction,
as explained in Section A.4, where X corresponds to the vector of temperature and moisture
anomalies in the reconstruction period, m = 2 and ag and Py are estimated as the mean vector
and variance-covariance matrix of the anomalies in the calibration period.

From now till the end of the Section we will compute the full conditional distributions for
steps (2a)—(2d). For simplicity we omit the subscript C' from X¢ and Y. Letting z(—1) =
(z(2),...,z(nc)), the full conditional distribution of @ is:

p(DI%, 5,47, X, Y) o p(X |, 2)p(P)
o [p(z(=1)|z(1), @, E)p(x(1)|®, X)] p(®).

From (3.4), p(z(t)|z(t—1), ®, %) = Na(Px(t—1), ), while the marginal distribution of z(1)|®, %
is No(0,Tp) with T = 322 ®'%(®%) T (Tsay, 2005). To estimate I'g we stop the summation when
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S(Tip1 —T;) = S(@HE(@H)T) < 10765(T;), with S(A) the sum of the coefficients of matrix A
in absolute value.

So we have
P(OIS, 8,42, X, V) o [[ exp {;@s(t) — @t~ 1) TS (alt) - da(t - 1))}

(er(ro) 2 exp { -5 a(1) 5 (1)

-Hﬁexp{—QW}ﬂF@/p(Fx

i=1j=1

where I is the indicator function of the set F' = {® : |\;| < 1 for k = 1,2}, Ay are the eigenvalues
of ®.
Since it is not possible to draw values directly from this distribution, we use a Metropolis algo-

rithm within the Gibbs sampler (Section A.2) where the target is the full-conditional distribution:

1. Choose a value for the variance 62 of the proposal distribution and an initial value for @,

®(M), Set a counter for the acceptance rate, a = 0.
2. For s =1,...,I (number of iterations):

(a) Generate a candidate matrix ®*) = ( T;) with ¢7 ; ~ N(qﬁgz),ﬁ), i,j=1,...,2, and

check for its stationarity. If stationarity is not reached, set ®(5+1) = @(s),

(b) Compute the acceptance ratio:

p(@™ %, 8, 9% X, Y) p(z(=1)]z(1), ®*, X)p(z(1)|2*, X)p(P*)

T @S5, XY) T pla(-Dx(1), 20, D)p(a(1)[0F), D)p(@)
This expression is an approximation that does not take into account of p(F).

(c) Generate u ~ U(0,1). If u < rg set D = &) and a = a + 1, otherwise set
B+ — o).

3. Compute the acceptance rate as a, = a/M.

We tune 62 to have 0.2 < a, < 0.5. Values not included in this interval reveal problems in the
mixing of the chain.
The full conditional distribution of 3 is

p(Z|®, 8,¢% X,Y) o p(X|®, T)p(X)
o p(z(=1)|z(1), @, X)p(x(1)[®, X)p(X)
o (o) 7o {5 o (o0 0) 1)
- (det(x))~(netrot2)/2
- exp {—; tr ((So + Sq,)E_l)} ,

with Sp = > 1% (2(t) — Px(t — 1)) (x(t) — Pzt — 1)) 7.
We can write
p(Z|®, 8,9% X,Y) o f(X)g(2),
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with f(2) = (det(I'0))"Y? exp {—3 tr (z(1)(z(1))'T; ")} and
() = (det(X)) e trotD/2 . exp {—; tr ((So + S¢)El)} :

that is proportional to a density of an Inverted-Wishart distribution with parameters vy = vy +
nc —1 and S;' = (Sp 4+ Se)~'. This suggests to use a Metropolis-Hastings algorithm, taking
IWy(v1, S71) as proposal distribution.

In this case the acceptance ratio is

T LEO®, 8,02, X,Y)  ¢(5M)

(det(T)) /2 exp { -4
1
2

(det(r)) /2 exp { -

~ p(EWD, 8,42, X,Y) (X))
(

The full conditional distribution of 3 is
p(Bl®, 3,92 X,Y) o p(Y]X, B,4%)p(B).

Letting X the ne x 3 matrix whose t—th row is (1,21 (£), z2(£)), we have:

p(YIX,8,0%) = Nue. (XB, 07 L) ox exp {—;Y —XB)T(Y - )O(B)/W} :

P(8) = N, 50) o exp { =58 = 50) %56~ o) |

We can expand the products as follows:

Y = XB) (Y = XB)/? =Y TY/? = 28T XTY/? + BT X T X B/,

and
(B=Bo) 25 (B—Bo)=B"25"8—-B"25"80 — By =o' 8+ By T Bo-

And we can write the full conditional distribution for 8 as:

o T oI
p(5|‘b72>¢27X7 Y) X €xp {_; [_2BT <X1/}2Y + E0150> +/BT <Xw2X + E01> ﬂ‘| } . (39)

If we denote with B; and ¥; the mean vector and the variance-covariance matrix of the full

conditional distribution, we should be able to recognize in (3.9) the quadratic form

(B=p1)TEH (B B1) =828 - 2878 B+ B BB
Only the first two terms depend on 8 and from the correspondence with (3.9) we get

XX

21_1 = ? + 20_1
and
_ Xy
X6 = R + X ' Bo,

so that the full conditional distribution of 5 is N3(81, %) with
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XX )
21: W-’-ZO

T
B =134 (Xw;/ + Ealﬁo> .

and

The full conditional distribution of v? is:
p(¥?|®, 3,8, X.Y) o p(Y]X, B,9%)p(¢?)

o (p?) T2 exp { H(Y - XB)T(Y - Xp) - b} /wQ} 7

that is the kernel of an Inverted-Gamma distribution of parameters

1 o 5
a1 =no/2+aand by = S(Y - XB) (Y — XB) +b.

3.2 Monthly model

In this Section we develop a model for the estimation of monthly climatic data from annual tree-ring
widths in the calibration period. To deal with monthly data, we introduce the notation z(h) for the
variable z in month h, with h = 1,...,12n¢ in the calibration period. Sometimes we need to show
that the variable refers to month j of year ¢, so we can write z(12(t — 1) 4+ j) with j = 1,...,12.
Temperature anomalies are computed according to the monthly equivalent of expression (3.1), that

is
T'(h) — pr
or

1 (h) = ,hec, (3.10)

where pr and o7 are the mean and standard deviation of the monthly values T'(h) in the calibration

period. The expression for moisture anomalies is

zo(h) = FL (F <w>> , hec, (3.11)

where M,, and M, are the same as before and F is estimated on monthly data in the calibration
period.

The monthly model relates monthly climatic variables to annual tree-ring widths:
12 2

y(t) = Bo+ > Bijwi(12(t—1)+j) +e(t),  e(t) ~N(0,4%), teC, (3.12)

j=1i=1

while the climatic variables follow a seasonal autoregressive model
x(h+1) = ®12(h) + Pgx(h — 11) + Paz(h — 12) + n(h + 1), n(h+1) ~ N2(0,%), (3.13)
where ®; = —®,®g, z(h) = (x1(h),r2(h))" and h € C.
This corresponds to the model
(I — ®1B)(Io — ®sB®)x(h + 1) = n(h + 1), n(h+ 1) ~ N2(0,%),

where B is the backward operator, so that the stationarity condition is that the eigenvalues of &

and ®g are in modulus less than 1.
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After the estimation we retrieve temperature and moisture from anomalies, by inverting equa-

tions (3.10) and (3.11).

We are interested in the posterior distribution p(X, ®1, ®g, %, 8,%?|Y), where X = {z(h) : h € C}
and Y = {y(t) : t € C}. Model (3.12)—(3.13) implies the assumptions that y(¢) is conditionally in-
dependent on @, &g and ¥ given z(12(t — 1) +1),...,z(12(t — 1) + 12):

y(t) L (01,85, D) (x(12(t — 1) + 1), ..., 2(12(t — 1) + 12)), V&

that X, ®;,®g, Y are independent on 3 and >

(‘T(h)7©17©332) 1 (571/)2)7 Vh,

and that the parameters are independent to each other, so that
p(@1, @5, 3, B, 9%) = p(@1)p(@s)p(S)p(B)p(Y°).
The posterior distribution can be written as:
p(X, @1, s, 8, 8, 9%|Y) o p(Y |X, B,4°)p(X| @1, D5, D)p(@1)p(@s)p(X)p(B)p(¥?).  (3.14)

It is not possible to sample directly from it. As in the annual case, we generate values alterna-

tively from the full conditional distributions:

1. Set the initial values:
—1
2" = o)) = (8 8) R (4’ (—(1).4 _(1)'4> > 8O = 0y, v*” =08,

2. For iterationt=1...,1I:

a) sample (1, Bs)® from p(®@y, B[R0V, BG-D 427 X0 Vo),

(a)

(b) sample £ from p(2|@(”, &%, G- 2“7V X0 Vo)
(c) sample S from p(ﬂ|<1>§i)7<1>g)7 2@ 2 Xe, Yo
(d) sample d)zm from p(w2|¢>gi),@g),Z(i),B(i),Xc,YC).

In order to determine the full conditional distributions we examine the factors of (3.14) separately,

omitting the subscript C of X¢ and Y¢ for simplicity. Letting X an ne X 25 matrix whose t—th
row is (1, z(12(t — 1) + 1),...,2(12(t — 1) + 12)) the first factor of (3.14) is:

p(Y|X, B,9?) = N, (XB,91,)
o (1?)7"e/? exp {—;(Y X8 (Y - XB)W} .

Let z(—(1 : 13)) = (z(14),...,2(12n¢c)) " and x(1 : 13) = (x(1),...,2(13))". The second
factor then is:
p(X|P1,Ps, %) = p(ax(—(1:13))|x(1 : 13), Dy, Pg, X)p(xz(1 : 13)|Py, Pg, X)

1:13))|z(1: 13), &y, Bs, 3)

12n5—13
2

(
~ p(x(—(
ox (det(X))™
- exp {—1 ZC (2(h) — ®1x(h — 1) — Dga(h — 12) — Bya(h — 13))

2
h=14

Y (@(h) — ®12(h — 1) — ®gx(h — 12) — Bz (h — 13)) }
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We do not know the marginal distribution of (x(1),...,2(13))T, so in this case we approximate
the required distribution with p(z(14),...,2(12n¢)|x(1),...,2(13), P71, Pg, X).
Now we start considering the bits referred to the prior distributions. We choose the same prior

distribution for both ®; and ®g, given the respect of the stationarity condition:

Let
[ Pa(1,1)  ¢a(1,2)
‘D“‘<¢a(2,1> %(2,2))’

with @ € {1, S} and A1, A2 be the eigenvalues of ®,. The prior distribution for @, is

p(@y) = { e P(0ali 1) D] < Lfor k= 1,2,
¢ 0 otherwise,

where p(¢q(4,5)) = N(0,10) for i,j =1, 2.
The prior distribution for (3 is:

P8) = Nas(o, Zo) o exp { =55 - 50) 5505 - )}

with ,60 = 025 and EO =10- 125.

The prior distributions for ¥ and 2 are the same of the annual model:

p(z) = IW(VOa S(;l)a

with vy = 4 and

SO

P() ox (det(S)) "0/ exp {—3 tr<sozl>} ,
while )
P(8?) o ()~ exp {w} .

From previous studies, we deemed reasonable to set the parameters to have E(1?) = 0.5 and
Var(?) = 8, that is a = 2.031 and b = 0.516.
The full-conditional distribution for (®;, ®g) is

p(‘bh ¢S|E7Baw27x7 Y) X p(X|(I>17 (bSa Z)p((bl)p(@S)

12n¢
o exp {—; > (a(h) = drx(h — 1) — Bgw(h — 12) — Dyz(h — 13))

h=14

Y (x(h) — ®12(h — 1) — Dgx(h — 12) — Box(h — 13)) }

HHexp{—QW}HFI(@l)

i=1j=1
Z]__[ljl_[lexp{QQSSfOJ))}]lFs(cbs)/p(Fl N Fs),

where Fy = {®1 : [A\ x| <1for k=1,2}, Fs = {®s : |Asi| <1for k=1,2}, A1 are the eigen-

values of ®;, Ag . are the eigenvalues of ®g.
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This distribution does not show a known form, so we use a Metropolis algorithm, where the

proposal distribution is Gaussian and the acceptance ratio is

r=

where, as in the annual case, we use an approximation dropping p(F; N Fg).
The full conditional distribution of ¥ is:

p(2|‘1)1, ¢s,ﬁ7¢27X, Y) X p(qu)b P, E)p(Z)

12no—13

ox det(X) 2

12n¢
- exp {—1 tr (Z (x(h) — ®1x(h — 1) — Dgx(h — 12) — Pz (h — 13))

2
h=14

(X(h) =@ X(h—1) — ®sX(h —12) — & X (h — 13)) " 2—1> }

- (det(2)) "0 +3)/2 exp {—; tr(SOE_l)} .

This is an Inverted-Wishart distribution of parameters vy + 12nc — 13 and (Sp + Sg) ™!, with

12’nc
Se = > (x(h) — dra(h — 1) — Dgx(h — 12) — Dy (h — 13))
h=14
(2(h) = ®1z(h — 1) — ®gaz(h — 12) — Box(h — 13)) .
The full conditional distribution of 3 is

p(6|®17®5327w23X3 Y) O(p(Y|Xvﬁ7w2)p(ﬂ)
o T o
x exp {—; l—zﬁT <XwQY * 25160> 57 (XWY + Ea%) ,3] } .

This expression is proportional to a Gaussian density Nas(81,%1) with mean vector 81 and

variance-covariance matrix X, where
XX -
21 = (1/)2 + Eal>

and

Xy
B1 =21 <7/)2 + 25 150) .
The full conditional distribution of ¥? is:

p(¥?®, %, 8, X,Y) o< p(Y|X, B,¢°)p(4?)

1 c o
o (@)oo tep {50 = X9 - X9) -] 02}
that is the kernel of an Inverted-Gamma distribution of parameters

1 o o
a1 =no/2+aand by = S(V - XB) (Y —XB) +b.
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3.3 Simulation study

3.3.1 Annual model

We performed a simulation study on the annual model, studying the influence on the results of

two factors:
1. the variance §2 of the proposal distribution used for the estimation of ®;

2. the direction of the series. A first idea to perform back-casting can be to reverse the series
and proceed as we were going forward; we would like to check if this can have an influence

on the results.
We chose two levels for each factor, obtaining therefore four different scenarios:
1. 4% =1/10000 and forward series;
2. 6% = 1/10000 and backward series;
3. 82 = 1/1000 and forward series;
4. §% = 1/1000 and backward series.

For each scenario we have simulated 500 datasets, using the same set of values, that in their turn
were estimated from real data:

plsim) _ ((0:386 0.039) (o) _ ((0.867  —0.242
~\o.011 0.255)° “\-0242 0562 )

Bl — (—0.016,-0.163,0.593) T, v>"" = 0.819.

The reconstruction period is 7895 years long, while the calibration lasts 85 years. For each dataset
we saved 10000 estimated series, drawn from a total number of 201000 iterations, after discarding
the first 1000 for the warm-up and taking one value each 20. The performance of the procedure
can be tested by evaluating the correlation between the estimated series and the simulated one,
but it can depend on the values used to simulate. To get a basis for comparison we first compute
a sample of 1000 correlation among the simulated series. From results in Fig. 3.1 it seems that we
cannot expect high correlations.

In Figures 3.2(a)-3.2(d) the results for the four scenarios. We computed the median of the
correlations between the 10000 estimated series and the simulated one, and we draw the boxplot
of the 500 correlations. We can see no substantial differences among the scenarios, suggesting
that the direction of the series has little influence and that the two values proposed for 62 do not
engender different performance, in fact the acceptance rate is in both cases quite high, between
0.7 and 0.9.

We report in Figure 3.3 the result of a cross-validation experiment, in which we reconstruct
the first 60 years of the calibration period on the basis of the last 25. The procedure seems able

to catch the overall pattern of the series.

3.3.2 Monthly model

We simulate a dataset with a calibration period of 200 years using the parameters below, estimated
from real data, measured on the Italian Alps (12.04°E, 46.32°N). The tree-ring widths chronology
is made available by F.H. Schweingruber on the website of the United States National Oceanic and



3.3 Simulation study

19

0.0 0.4

-0.4

0.0 0.4

-0.4

rectanom recmanom

0.4

*
‘«?

caltanom calmanom

0.4

I

Figure 3.1: Annual model: sample of the process correlations.
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Atmospheric Administration (https://www.ncdc.noaa.gov/paleo/study/4390); temperature is
retrieved from the Climatic Research Unit (CRU) Database of the University of East Anglia (Harris
et al., 2014), while moisture is computed via the leaky-bucket model implemented in the R package
VSLiteR (Tolwinski-Ward, 2015; Tolwinski-Ward et al., 2011; Huang et al., 1996).

o vee(®5i™) = (0.218,0.037, —0.009, 0.553) T ;
o vec(®3™) = (0.003, —0.015,0.041, —0.003);

e vec(X™) = (0.949, —0.105, —0.105, 0.404);

Intercept B3 = 0.002;

Coefficients of temperature anomalies:

(B5™, ..., B3 = (0.148,0.091, —0.097, —0.09,0.177,0.125,0.163, —0.037, 0.067, 0.121, —0.087, —0.136);

Coefficients of moisture anomalies:

(Bsim ... B3im) = (—0.049, 0.243,0.066, —0.08, —0.027, 0.003, —0.182,0.011,0.094, —0.194,0.11,0.091);

o 27" =0.404.

We report in Figure 3.4 the result for the first 300 months, that seems satisfactory. The
remaining periods show a similar behaviour and the corresponding graphs are reported in Appendix
B, Figg. B.1-B.7.
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Chapter 4

Data

In this Chapter we present an application of the methodology outlined in Chapter 3 to a loca-
tion in the Italian Central Alps named Val d’Avio (Fig. 4.1). We consider as climatic variables
temperature and moisture in Section 4.1. Temperature is retrieved from the Climatic Research
Unit (CRU) Database of the University of East Anglia (Harris et al., 2014) that has a resolution
of 0.5° x 0.5°. Moisture is computed via the leaky-bucket model implemented in the R package
VSLiteR (Tolwinski-Ward, 2015; Tolwinski-Ward et al., 2011; Huang et al., 1996). The tree species
is European larch.

For this site another kind of moisture measurement, the PDSI index (Dai et al., 2004), is
available. In Section 4.2 we present the application for temperature and PDSI, while in Section
4.3 we do a comparison among different methods of reconstruction.

The tree-ring widths chronology and PDSI data for this location were kindly provided by
University of Pisa.

They built the site chronology starting from raw data series ital040, ital041 , ital042
and 1tal043, available on the International Tree-Ring Data Base (https://www.ncdc.noaa.gov/
paleo/study/19875). Raw data on their hand were built in a dendro-climatic perspective, taking
into account of the altitude, the characteristics of the site and the correlation with temperature.

The series were standardized in a climatological sense, dividing them by the theoretical values
given by a negative exponential function. An auto-regressive model of order 1 was fit to the
standardized series, and residuals were used to build the mean site series, in order to eliminate the
influence between consecutive years.

Tree-ring widths indexes are positive, so we standardize the chronology to get an index that

varies on the real line, and that can be used as response variable in equation (3.3) or (3.12).

4.1 Site A - Val d’Avio: temperature and moisture

The tree-ring widths chronology in this area (Coppola et al., 2013) is related to temperature and
moisture referring to the cell 10°— 10.50°E, 46°— 46.50°N of the CRU database, and we take as
annual datum the mean temperature and moisture on June, July and August (JJA).

The observed series of tree-ring widths, summer-mean temperature and moisture in the 1901-
2008 period are in Fig. 4.2. We can notice an increase in temperature since 1980. Scatterplots for
the variables in pairs are reported along with histograms in Fig. B.8 of Appendix B. Sometimes
climatic variables on the whole calibration period do not show the best correlation with tree-ring

widths series. We compute in Tab. 4.1 the correlation on some 50-years subsets of the period, to
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Figure 4.1: Val d’Avio site.
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Figure 4.2: Site A. From top to bottom: Tree-Ring Widths index, JJA-mean moisture and JJA-
mean temperature series, observed from 1901 to 2008.
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Temp Moist

1901-1950 0.58 -0.21
1916-1965 0.56  -0.33
1931-1980 0.56  -0.43
1946-1995 0.45 -0.47
whole 0.3 -0.32

Table 4.1: Site A. Correlations between tree-ring widths series, temperature and moisture, on
different 50-years subsets of the calibration period.

check if it can be improved, and we decide to use for calibration the years from 1931 to 1980.

Estimated series are in Fig. B.9. The annual algorithm seems not able to catch properly the
raise in temperature in the recent years.

Let us estimate climatic variables from 1901 to 2008 with the monthly algorithm. We use the
same calibration period as before. Results for monthly series are in Fig. B.10 and B.11 (first year
is not shown because its estimate depends too much on the algorithm’s starting values), while
in Fig. B.12 and B.13 we compute the JJA average from monthly estimates, to compare it with
the results from the annual algorithm. The monthly algorithm catches the behaviour of the series

better than the annual one, and it is able also to show the raise in temperature level from 1980 on.

4.1.1 Annual algorithm diagnostics

After some trials, we set the variance of the proposal distribution for ® at 0.0125, obtaining an
acceptance rate of 0.412. The acceptance rate for ¥ is 0.943, too high. To get a proper one,
we should act on the hyperparameters of the Inverted-Wishart distribution mentioned on page
13, to raise its variance. Since the treatment of the variance is difficult and the results of the

reconstruction and diagnostics are satisfactory, we decide to keep this value anyway.

mean sd 5% 25% med % 95%
) 0.15 0.16 -0.11 0.05 0.15 0.25 0.41
) 0.05 0.11 -0.13 -0.02 0.05 0.12 0.24
) -0.06 0.22 -041 -0.20 -0.06 0.09 0.31
) -0.08 0.16 -0.34 -0.19 -0.08 0.03 0.19
)
)
)

099 020 071 08 096 110 1.37
-0.35 0.11 -0.55 -041 -0.34 -0.27 -0.18
0.51 0.11 037 044 050 0.57 0.70
-0.10 0.13 -0.30 -0.18 -0.10 -0.01 0.11
B1 0.50 0.14 026 040 050 0.59 0.73
B2 -0.34 020 -0.68 -048 -0.34 -0.21 -0.01
)? 0.81 0.17 057 069 078 090 1.11

Table 4.2: Site A: parameters’ estimation summary (temperature/moisture model, annual algo-
rithm).

We collected a final sample of size 10000 after 1000 iterations for the burn-in and thinning by
20. Some statistics on the parameters’ values are reported in Tab. 4.2. For each parameter we
investigated the plot of the chain values and the histogram, boxplot, normal quantile plot, empirical
auto-correlation function plot and running mean plot of the final sample, to detect problems in
terms of exploration of the parameter space, autocorrelation and stationarity. Results show now

particular issues, and we collected some of the graphs in Figg. B.14-B.17.
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4.1.2 Monthly algorithm diagnostics

In this case we set the variance of the proposal distribution for ® at 0.00025, obtaining an accep-

tance rate of 0.415.

We collected a final sample of size 10000 after 2000 iterations for the burn-in and thinning by
60, with no evidence of problems in terms of exploration of the parameter space, autocorrelation
and stationarity. Diagnostic pictures for some of the parameters are shown in Figg. B.18-B.22.

In Fig. B.23 there are the box-plots of the monthly coefficients of temperature anomalies, while
in Fig. B.24 the ones for moisture anomalies. We can notice the seasonality and that the effect

of temperature anomalies on tree-ring widths is substantially positive in June and August, but

negative in July.

Tab. 4.3 shows a summary of the parameters’ estimates.

mean sd 5  25% med 5% 95%

®(1,1) 020 0.05 0.3 0.17 020 0.23 0.28
®(2,1) -0.03 0.08 -0.17 -0.08 -0.03 0.03 0.11
®(1,2) 0.04 0.02 0.01 0.03 0.04 0.05 0.06
®(2,2) 0.64 0.03 059 0.62 0.64 0.66 0.69
dg(1,1)  0.89 0.02 0.86 0.88 0.89 090 0.92
®5(2,1) -0.19 0.05 -0.27 -022 -0.19 -0.15 -0.10
dg(1,2) -0.04 0.02 -0.07 -0.05 -0.04 -0.03 -0.01
dg(2,2) 0.09 0.04 0.02 0.06 0.09 012 0.16
»(1,1) 013 0.01 012 013 013 0.14 0.14
»(2,1) -0.02 0.01 -0.04 -0.03 -0.02 -0.01 -0.00
¥(2,2) 049 003 044 047 049 051 0.54
By -3.17 1.25 -519 -4.00 -3.19 -2.34 -1.06

B -0.00 044 -0.72 -0.29 -0.01 029 0.72

By 0.14 034 -042 -0.09 0.13 036 0.69

B3 -0.45 0.39 -1.10 -0.71 -0.46 -0.19 0.19

Bs -0.51 0.39 -1.16 -0.78 -0.51 -0.25 0.13

Bs  0.32 0.67 -0.77 -0.13 0.32 0.77 1.40

Bs 140 0.64 0.34 099 1.41 1.83 243

Br -1.18 0.73 -2.38 -1.66 -1.18 -0.70 0.01

Bs 229 0.60 1.30 1.90 230 270 3.26

By -1.03 0.50 -1.85 -1.35 -1.03 -0.70 -0.20

B0 051 052 -0.36 0.16 051 086 1.35

B -0.31 0.60 -1.29 -0.70 -0.31 0.09 0.68

Bz 0.07 044 -0.66 -0.22 0.07 0.36 0.79

B3 -0.17 0.16 -0.44 -0.27 -0.17 -0.06 0.09

Ba  0.28 0.20 -0.05 0.15 028 041 0.61

B15 024 021 -0.11 010 024 0.38 0.58

Bis  -0.19 0.26 -0.63 -0.37 -0.19 -0.02 0.23

Gz 030 0.37 -0.31  0.05 0.30 0.55 0.91

fis  -0.78 0.33 -1.34 -1.00 -0.78 -0.57 -0.23

B9 -0.61 025 -1.03 -0.77 -0.61 -0.44 -0.19

B0 0.21 0.23 -0.17 0.06 021 036 0.59

Bor 010 0.18 -0.19 -0.01 0.10 0.22 0.39

Bas  -0.46 0.15 -0.72 -0.57 -0.46 -0.36 -0.21

Bas 033 0.17 0.06 0.22 033 044 0.61

Boa 012 0.15 -0.12 0.02 0.12 022 0.36

¥?2 037 010 023 029 035 042 056

Table 4.3: Site A: parameters’ estimation summary (temperature/moisture model, monthly algo-

rithm).
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Figure 4.3: Site A. From top to bottom: JJA-mean temperature, JJA-mean PDSI and Tree-Ring
Widths index series, observed from 1901 to 2008.

4.2 Site A - Val d’Avio: temperature and PDSI

On site A we have also observations of the PDSI index, a variable that can be used in place of

moisture anomalies (Dai et al., 2004).

The series of tree-ring widths, summer-mean temperature and PDSI in the whole calibration
period are in Fig. 4.3. We can notice an increase in temperature from 1980. Scatterplots for the
variables in pairs are reported along with histograms in Fig. B.25. Sometimes climatic variables
on the whole calibration period do not show the best correlation with tree-ring widths series.
We compute in Tab. 4.4 the correlation on some 50-years subsets of the period, to check if the

correlation can be improved, and we decide to use for calibration the years from 1931 to 1980.

Estimated series are in Fig. B.26. The annual algorithm seems not to be able to catch properly

the raise in temperature in the recent years.
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Temp PDSI

1901-1950 0.58 -0.07
1916-1965 0.56 -0.16
1931-1980 0.56 -0.23
1946-1995 0.45 -0.17
whole 0.53 -0.09

Table 4.4: Site A. Correlations between tree-ring widths series and each of the climatic variables
on different 50-years subsets of the calibration period. (PDSI)

Let us estimate climatic variables from 1901 to 2008 with the monthly algorithm. We use the
same calibration period as before.

Results for monthly series are in Fig. B.27 and B.28, while in Fig. B.29 and B.30 we compute
the JJA average from monthly estimates, to compare it with the results from the annual algorithm.
The monthly algorithm catches the behaviour of the series better than the annual one, and it is

able also to show the raise in temperature level from 1980 on.

4.2.1 Annual algorithm diagnostics

After some trials, we set the variance of the proposal distribution for ® at 0.01, obtaining an
acceptance rate of 0.414. The acceptance rate for X is 0.94, leading to the same reasoning done in
Section 4.1.1.

mean sd 5%  25% med 5%  95%
<I>(1 1) 0.08 0.15 -0.17 -0.02 0.08 0.19 0.33
fI>(2 1) 0.44 0.28 -0.02 0.26 0.45 0.63 0.89
®(1,2) -0.10 0.08 -0.23 -0.16 -0.10 -0.05 0.03
$(2,2) 040 015 016 031 040 050 0.63
»(1,1)
$(2,1)
$(2,2)

0.96 020 069 082 094 1.07 1.32
-0.v1 027 -1.18 -0.87 -0.69 -0.52 -0.32
3.15 065 225 270 3.07 351 4.32
Bo -0.09 0.13 -0.31 -0.18 -0.09 -0.01 0.12
B1 0.61 014 037 052 061 071 0.85
B2 0.00 0.08 -0.12 -0.05 0.00 0.05 0.13
P2 085 0.18 061 073 083 095 1.17

Table 4.5: Site A: parameters’ estimation summary (temperature/PDSI model, annual algorithm).

We collected a final sample of size 10000 after 1000 iterations for the burn-in and thinning
by 20. Some statistics on the parameters’ values are reported in Tab. 4.5. For each parameter
we investigated the same plots as in the case of moisture, with no evident problems in terms of
exploration of the parameter space, autocorrelation and stationarity. Graphs for a subset of the
parameters are gathered in Figg. B.31-B.34.

4.2.2 Monthly algorithm diagnostics

In this case we set the variance of the proposal distribution for ® at 2e-04, obtaining an acceptance
rate of 0.258. We collected a final sample of size 10000 after 2000 iterations for the burn-in and
thinning by 60, with again no evidence of problems in terms of exploration of the parameter space,
autocorrelation and stationarity. Diagnostic pictures for some of the parameters are shown in Figg.
B.35-B.39.
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In Fig. B.40 there are the box-plots of the monthly coefficients of temperature anomalies,

while in Fig. B.41 the ones for PDSI anomalies. We can notice the seasonality and that the effect

of temperature anomalies on tree-ring widths is substantially positive in June and August, but

negative in July.

Tab. 4.6 shows a summary of the parameters’ estimates.

mean sd 5% 25% med 75% 95%

®,(1,1) 020 0.04 0.3 0.17 020 023 0.27
®;(2,1) -0.03 0.10 -0.20 -0.10 -0.03 0.04 0.13
®;(1,2) 0.00 0.01 -0.01 -0.00 0.00 0.01 0.02
®(2,2) 090 0.02 0.87 0.89 0.90 0.92 0.93
dg(1,1) 090 0.02 0.87 0.89 090 092 0.93
dg(2,1) -0.01 0.06 -0.11 -0.05 -0.01 0.03 0.10
®g(1,2) -0.01 0.01 -0.03 -0.02 -0.01 -0.00 0.01
$5(2,2) 0.01 0.04 -0.06 -002 0.01 004 0.08
»(1,1)  0.13 0.01 0.12 013 013 0.14 0.15
»(2,1)  -0.00 0.01 -0.03 -0.01 -0.00 0.00 0.02
»(2,2)  0.76 0.04 0.69 0.73 0.76 0.79 0.83
By -2.27 144 -4.63 -3.22 -228 -1.35 0.09

B 0.06 053 -0.81 -0.30 0.06 041 0.94

By 051 035 -0.07 028 051 073 1.08

B3 -0.77 045 -1.51 -1.07 -0.77 -0.47 -0.01

Bs 0.02 046 -0.74 -0.29 0.02 0.32 0.77

Bs 042 054 -046 0.06 042 0.78 1.31

Bs 237 063 1.34 196 237 279 3.38

Br -0.74 0.76 -1.98 -1.25 -0.75 -0.24  0.50

Bs 1.15 0.65 0.06 0.72 1.15 158 220

By -1.21 0.60 -220 -1.61 -1.21 -0.81 -0.21

B0 1.04 060 0.04 064 1.04 144 2.00

G 013 058 -0.83 -0.27 0.13 0.52 1.08

B2 -0.10 047 -0.86 -0.42 -0.11 0.21 0.68

13 -0.07 0.12 -0.27 -0.15 -0.07 0.01 0.13

s 0.02 0.18 -0.27 -0.10 0.02 0.14 0.32

Bis 043 0.27 -0.02 025 043 061 0.88

Bis  -0.09 025 -0.49 -0.25 -0.09 0.08 0.33

Bz 015 023 -0.23 -0.00 0.15 0.30 0.53

s -0.06 021 -0.40 -0.20 -0.06 0.08 0.28

B9 -0.47 023 -0.84 -0.62 -0.47 -0.32 -0.09

Bao  -0.07 025 -048 -0.24 -0.07 0.09 0.34

Bor 0.22 0.22 -0.14 0.07 022 037 058

B2e  -0.35 0.16 -0.61 -0.46 -0.35 -0.24 -0.09

Bas 022 015 -0.03 0.12 022 031 046

Bos  0.02 0.12 -0.18 -0.06 0.02 0.10 0.21

P2 047 0.13 030 0.38 045 054  0.72

Table 4.6: Site A: parameters’ estimation

rithm).

summary (temperature/PDSI model, monthly algo-

4.3 Comparison with traditional methods

In this Section we compare the results given by the Bayesian algorithms shown above, to re-

constructions obtained by more traditional methods applied in palaeoclimatology, that are based

mainly on regression. We first outline the underlining theory, thereafter comparing the results
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for temperature, moisture and PDSI. The first traditional method is linear regression, and it is
detailed in Bradley (2013), Chapter 13, in two steps:

1. response function analysis: select the climatic variables that can be more effectively recon-

structed, on the basis of their correlation with the tree-ring series.

2. regression: perform reconstruction by using a linear regression model with the climatic vari-

able as the predictand and the tree-ring series as the predictor.

Letting Y (¢) be the tree-ring width on year ¢ and K (t) a climatic variable that in our case will

be in turn temperature, moisture anomaly or PDSI, we have:

K(t) = Bro+ B Y (t) +(x(t),  Cx(t) ~N(0,0%), (4.1)

and the estimated series is:
K(t) = o+ BraY (t). (4.2)
The 100(1 — «)% prediction interval for K (t) is
(K(t) — Spredt(ne—2,0/2)s K(t) + Spredt(ne—2,0/2))

with

)

Spred = 1| 0% (1 + % L Y- Y)? ) . S (Y (5) = V)2

>S(Y(5) - Y)?

where £(,. 2 q/2) is the value of the Student’s ¢ distribution with nc — 2 degrees of freedom that

nc—2

puts «/2 probability in the upper tail, and ne is the number of observations in the calibration
period.

We can select the best calibration period from Tables 4.1 and 4.4. It turns out to be 1901-1950
for temperature, 1946-1995 for moisture and 1931-1980 for PDSI.

The output is reported in Tables 4.7, 4.8 and 4.9 for temperature, moisture and PDSI respec-

tively.
Estimate Std. Error t value p-value
(Intercept) 5.0861 0.3924 12.96  0.0000
Y 1.8711 0.3761 4.97  0.0000

Table 4.7: Site A: temperature. Parameters’ estimation using least squares in the linear model.

Estimate Std. Error t value p-value
(Intercept) 1.3705 0.3841 3.57  0.0008
Y -1.4068 0.3828 -3.67  0.0006

Table 4.8: Site A: moisture anomaly. Parameters’ estimation using least squares in the linear
model.

The value of adjusted R-squared is 0.3264 for temperature, 0.2033 for moisture anomaly and
0.03244 for PDSI, so tree-ring widths explains only part of the climate variability, and particularly
for the PDSI the relationship with the tree-ring series is poor. Diagnostic plots of the residuals are
shown in Figures B.42, B.43, B.44 of Appendix B and they do not highlight particular problems,

taking into account of the sample size.
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Estimate Std. Error t value p-value
(Intercept) 1.6923 1.1310 1.50 0.1411
Y -1.8391 1.1312 -1.63  0.1106

Table 4.9: Site A: PDSI. Parameters’ estimation using least squares in the linear model.

Let us now consider a family of methods that are named scaling methods, used for multiproxy
reconstruction in Ahmed et al. (2013). In these methods the tree-ring series is standardized in the

statistical sense, and the climatic variable is estimated as:

K(t) = px + ok Y (t), (4.3)

where p g is the mean of the climatic series in the calibration period and ok can be determined
in different ways (Lee et al., 2008):

1. Direct regression: estimating the model

K(t) = oY (t) + €(t).

2. Inverse regression: estimating the model
Y(t) = o K(t) + €(t),
in which case we compute K (t) = Y (t)/6 k.

3. Variance matching: ok is the standard deviation of the climatic series in the calibration
period, so in that period Var(K) = Var(oxY).

We compare these three variants by plotting estimated values and 50% and 90% confidence
intervals, obtained from 5000 bootstrap replications, for each variant. Results are in Appendix B
in Figures B.45, B.46 and B.47 for temperature, B.48, B.49 and B.50 for moisture and B.51, B.52
and B.53 for PDSI.

The inverse regression algorithm gives implausible estimates for the variables, overestimating
the variability. Direct regression estimates have a plausible range, while the variance matching
algorithm seems to have the best performance. In the following we compare its results to simple
linear regression estimates and our Bayesian model results. Figures B.54, B.55, B.56 refer to
temperature, B.57, B.58, B.59 to moisture and B.60, B.61, B.62 to PDSI.

The Bayesian annual algorithm and the traditional linear regression model give similar results
in the reconstruction period. During calibration, the variance matching algorithm gives better
results with more variability in the estimates, and the monthly Bayesian algorithm seems good in
following the pattern of the observations.

We also compute the correlation between the reconstructed series obtained from different meth-
ods, splitting them in observed (1901-2008) and reconstruction period (1549-1900).

In Tables 4.10 and 4.11 we give the correlations for temperature. If we consider the correlation
with the observed series, the worst method is the annual Bayesian, while others are almost equiv-
alent. Linear regression and scaling methods give perfectly positively correlated estimates, more
in agreement with the monthly than the annual Bayesian estimates.

In the reconstruction period traditional methods and the Bayesian algorithm give highly cor-

related values.
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LR DR IR VM BA BM
OBS 0.53 0.53 0.53 0.53 0.38 0.52

LR 1.00 1.00 1.00 0.21 0.29
DR 1.00 1.00 0.21 0.29
IR 1.00 0.21 0.29
VM 0.21 0.29
BA 0.95

Table 4.10: Site A: calibration temperature. Correlation among results from different methods:
OBS is the observed series, DR is direct regression, IR is inverse regression, VM is variance match-
ing, BA is annual Bayesian, BM is monthly Bayesian, LR is linear regression.

DR IR VM BA
LR 1.00 1.00 1.00 0.99

DR 1.00 1.00 0.99
IR 1.00 0.99
VM 0.99

Table 4.11: Site A: reconstruction temperature. Correlation among results from different methods:
DR is direct regression, IR is inverse regression, VM is variance matching, BA is annual Bayesian,
LR is linear regression.

In Tables 4.12 and 4.13 we give the correlations for moisture. Regarding the agreement with
the observed series, monthly Bayesian algorithm seems to have the best performance. The annual
Bayesian algorithm has very low correlation with the observations, because it underestimates the
variability of the series. Variance matching method gives negative correlation because it does not
take into account of the sign of the proxy-climate relationship, but among the scaling methods it
seems to give the best results in catching the range of the observed values. In the reconstruction
period, methods substantially agree, apart from the variance matching algorithm.

In Tables 4.14 and 4.15 we give the correlations for PDSI. Also in this case the first table
says that the monthly Bayesian algorithm is the most suitable for the estimation of the observed
series, followed by the annual Bayesian. Traditional methods are in agreement among them,
apart from variance matching, but not too much in agreement with Bayesian methods. Regarding
reconstruction there is substantial agreement among the methods, apart from variance matching

algorithm.
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LR DR IR VM BA BM
OBS 034 034 034 -033 -0.06 0.80

LR 1.00 1.00 -1.00 -0.22 0.35
DR 1.00 -1.00 -0.22 0.35
IR -1.00 -0.22  0.35
VM 0.22 -0.35
BA -0.20

Table 4.12: Site A: calibration moisture. Correlation among results from different methods: OBS
is the observed series, DR is direct regression, IR is inverse regression, VM is variance matching,
BA is annual Bayesian, BM is monthly Bayesian, LR is linear regression.

DR IR VM BA
LR 1.00 1.00 -1.00 0.98

DR 1.00 -1.00 0.98
IR -1.00  0.98
VM -0.98

Table 4.13: Site A: reconstruction moisture. Correlation among results from different methods:
DR is direct regression, IR is inverse regression, VM is variance matching, BA is annual Bayesian,
LR is linear regression.

LR DR IR VM BA BM
OBS 0.10 0.10 0.10 -0.10 0.26 0.97

LR 1.00 1.00 -1.00 -0.01 0.06
DR 1.00 -1.00 -0.01 0.06
IR -1.00 -0.01  0.06
VM 0.01 -0.06
BA 0.31

Table 4.14: Site A: calibration PDSI. Correlation among results from different methods: OBS is
the observed series, DR is direct regression, IR is inverse regression, VM is variance matching, BA
is annual Bayesian, BM is monthly Bayesian, LR is linear regression.

DR IR VM BA
LR 1.00 1.00 -1.00 0.87

DR 1.00 -1.00 0.87
IR -1.00  0.87
VM -0.87

Table 4.15: Site A: reconstruction PDSI. Correlation among results from different methods: DR
is direct regression, IR is inverse regression, VM is variance matching, BA is annual Bayesian, LR
is linear regression.
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Conclusions

The problem of palaeoclimate reconstruction is really complex and shows many facets. Traditional
approaches based on regression methods assume independence among the observations, without
taking into account of the temporal structure of the series, and consider climate as the predictand,

that is estimated using tree-ring data as predictors.

The Bayesian approach on the other hand, permits to express the climate-proxy relationship
in the proper way, with the proxy series explained on the basis of climate, and then to reverse
this relationship, determining the climate configuration that most likely has contributed to the

generation of the observed proxy.

This thesis consider a Bayesian framework as well, first showing a model for climate and proxy
data with the same (annual) resolution, and then trying to extend it to the estimation of monthly
climatic data from annual tree-ring widths observations. The use of an auto-regressive model in

the process level explicitly accounts for the temporal dimension.

We have supposed that tree-ring width in year ¢ depends linearly on summer mean temperature
and moisture of the same year in the annual model, and on monthly temperature and moisture
of the same year in the monthly model. This does not take into account of the time lag in the
growth-response of the tree to climate and of the fact that during winter the tree is quiescent, so
it could be more realistic to set the dependence of Y (t) on months from September of year (¢ — 1)

to August of year t.

Moreover we assume that the linear relationship between proxy and climate does not change
through time, and that it persists also in the past, but this could be a limit if the linear relationship
is weak, and a non-linear climate-proxy relationship could have occurred in the non-observed

period.

Estimation of the parameters in the process-level equation requires to check for the eigenvalues
of the matrix ®. We could improve this step by generating directly matrices that respect the

stationarity condition, through their spectral decomposition.

The most natural thing to be done is to complete the work performing monthly reconstruction
when only the proxy series is available; this means to extend equation (A.4) to the monthly case,
taking into account that the factorization now is more complicated, because of the dependencies

in the process level equation (3.13):
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p(XY") =p(2(1),...,2(12n),Y") /p(Y")

= p(z(12n)|Y™) - H(p(x(l?(n - +lz(12(n—-1)4+14+1),Y"))
=1

p(z(12(n — 2) + 12)[z(12(n — 1) + 1), 2(12(n — 1) + 12), Y1)

] p2(n = 2) + ) e(12(n = 2) + h + 1), 2(12(n — 2) + h + 12),2(12(n — 2) + h + 13), Y1)

h=1
n—2 12

T T @20 = 1) + j)la(2(t — 1) + 5 + 1), 2(12(t — 1) + j + 12), 2(12(t — 1) + j + 13),Y")).

t=1 j=1

If more than one chronology is available for a certain site (e.g. earlywood or latewood density
measurements) a further extension is to build-up a multivariate model, to exploit all the information
available. In this case y(t) in the observation equation would be a vector of proxy variables.

Another issue related to tree-ring proxy data is that the process of constructing chronologies
from raw measurements introduces a further level of uncertainty. An idea to overcome this problem
is the direct use of raw data (Schofield et al., 2016) or the introduction of a further level, where the
tree and instrumental observations are conditioned on the corresponding error-free latent process,
as explained in Tingley et al. (2012).



Appendix A

Statistical background

Bayesian inference seems particularly suitable in the treating of palacoclimate reconstruction prob-
lems. In Section A.1 we set the general ideas underlying this framework, following mainly Gelman
et al. (2013) and Davison (2003). In Sections A.2, A.3 and A.4 we outline the algorithms employed

in the estimation and reconstruction procedure.

A.1 Bayesian inference

The context of the scientific problem under study suggests what data are needed and what kind

of probability models can be employed in the statistical analysis.

If we can express our beliefs about a set of parameters 6 using the prior probability density
p(0), and we suppose to have data y following the probability model p(y|f), we can update our
knowledge about 6 by using newly available data y, through Bayes’ theorem:

___p@)p(y|0)
p(0ly) = W (A1)

We can note that p(y|f) can be interpreted as the likelihood function, if the focus is placed on
0, so that in terms of 8 we have

p(0ly) o< p(0)p(y]0).

It is useful to note that any quantity that does not depend on 6 cancels from the denominator
and numerator of (A.1). This implies that if we can recognise which density is proportional to

(A.1), regarded solely as a function of 8, we can read off the posterior density of 6.

The marginal distribution of y is the denominator of (A.1) and does not depend on §. Gelman
et al. (2013) name it the prior predictive distribution, because it is not conditional on previous
observations and it is the distribution of an observable quantity. In addition to the posterior
distribution p(f|y), in Bayesian analysis there is also interest in the distribution of an unknown

observable variable from the same process, §. After data y have been observed, the posterior
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predictive distribution of § given y is

p(@ly) = p(9,v)/p(y)
_ [ p(ly.0)p(0)p (y|9)
S p(0)p(ylo)
[ p(ly, )p(ﬁ) (ylﬁ)
= [Py

o
- / p(3ly, O)p(Bly) o
- / p(710)p(60ly) A9

where the last step follows by assuming conditional independence of § and y given 6.

One of the central issues in Bayesian analysis is the choice of the prior distribution. Conjugate
densities are particularly useful because of their simple closed forms. Often the class of conjugate
priors is too restrictive with respect to the needs of the analysis, but since mixtures of conjugate
densities are conjugate, the number of possibilities increases. The Bayesian approach incorporates
in the analysis the information about a parameter even when the information is not precise, which
leads to a non-informative or vague prior.

Once the posterior density is available, it can be used to calculate the probability of any event
of interest. But some summary quantities may be useful. For example, if 6§ = (i, \) is a vector,

and we are interested in ), the marginal posterior density

p(Yly) = /p(wkly) dA

contains the marginal information in the model and prior concerning . It can be further summa-
rized to moments, quantiles, or the mode of p(¢|y).

The mean and mode of the posterior density are point summaries of p(f|y), but confidence
regions or intervals are often required. The Bayesian analogue of a 100(1 — «)% confidence interval
is a 100(1 — )% credible set, defined to be a set, C, of values of 6, whose posterior probability

content is at least 1 — «. When 6 is continuous this is

l—a=p@eCly = /Cp(9|y) do

When 6 is discrete, the integral is replaced by > .~ p(f|y). For scalar 6, such a set is equi-
tailed if it has form (0,60 ), where 0, and 0y are the posterior a/2 and 1 — /2 quantiles of 6,
that is, p(6 < 0r|y) = p(0 > Oyly) = a/2. Often C is chosen so that the posterior density for any
6 in C is higher than for any 6 not in C. Such a region is called a highest posterior density (HPD)
credible set.

A credible set may contain the same values of 6 as a confidence interval, but its interpretation
is different. In the Bayesian framework the data are regarded as fixed and the parameter as
random, so the endpoints of the credible set are fixed and the probability statement concerns
the parameter, regarded as a random variable. The frequentist approach treats the parameter as
an unknown constant and the confidence interval endpoints as random variables; the probability
statement concerns their behaviour in repeated sampling from the model.

The goal of Bayesian data analysis is posterior inference for quantities of interest, and this
involves integration over one or more of the parameters. Usually the integrals cannot be obtained

in closed form and numerical approximations must be used. Deterministic integration procedures



A.2 Gibbs sampler and Metropolis-Hastings algorithms 41

can sometimes be applied, but they are typically useful only for low-dimensional integrals. The
most powerful tool for approximate calculation of posterior densities is numerical integration by

Monte Carlo simulation.

A.2 Gibbs sampler and Metropolis-Hastings algorithms

Monte Carlo simulation draws values from the required distribution and approximates expectations
through sample averages. When the values are independent, laws of large numbers ensure that
the approximation can be made as accurate as desired by increasing the sample size. Sometimes
drawing values independently is not feasible, and it can be advisable to use a sample of dependent
values generated from a Markov chain. The idea of Markov chain Monte Carlo simulation is to
construct a Markov chain that will, if run for an infinitely long period, generate samples from
the required distribution. A Markov chain is a special kind of stochastic process, that is a set of

indexed random variables,
{X(t)}, t=0,1,2,...,

who has the Markov property that the next state depends only on the current state and not on
the history of the chain:

p(XOFD € Az 2®) = p(XED e Al2®).

The distribution p(-|-) is called the transition kernel of the chain. If it does not depend on ¢, the
chain is said to be time-homogeneous. Subject to regularity conditions, the chain will eventually
converge to a unique stationary or invariant distribution. A Markov chain Monte Carlo (MCMC)
method for the simulation of a distribution f is any method producing an ergodic Markov chain
(X®) whose stationary distribution is f. The ergodic theorem is the analogous of the law of large

numbers for Markov chains, and it guarantees the almost sure convergence of the empirical average

1 T
_ (t
IT_T§ h(X®)

t=1
to the quantity E;(h(X)), so that a sequence (X)) produced by a MCMC algorithm can be used
like an iid sample (Gilks et al., 1996).

A particular Markov chain algorithm that is considered useful in many problems is the Gibbs
sampler, that we outline following Gamerman and Lopes (2006). Let 6 = (61,...,0;) be a param-
eter of dimension k& whose joint density p(f|y) is unknown. Although p(f|y) itself is unknown, we
suppose that we can simulate observations from the full conditional densities p(6;|60_;,y), where
0_; = (01,...,0i-1,0;11,...,0;). Often in practice the constant normalizing p(6|y) is unknown,
but as it does not appear in the p(6;|60_;,y), this causes no difficulty. If p(f]y) is proper, then the
Hammersley-Clifford theorem (see, for example, Davison (2003)) implies that under mild conditions
p(0)y) is determined by these densities; this does not imply that any set of full conditional densities
determines a proper joint density. Gibbs sampling is successive simulation from the p(6;|0_;,y)

according to the algorithm:
1. initialize by taking arbitrary values of 9%0), ceey 9,(60).
2. Then fori=1,...,1,

(a) generate 9@ from p(61]02 = Géi_l), e, 0 = 9,(;_1), Y),
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(b) generate Héi) from p(02]6;, = 9&“, 03 = 0:(;71), R — 0,(:71), y),
(c) generate Héi) from p(03]6, = HY), 0y = 0?, 0, = 04(3_1), e 0, = 9,(5_1), Y),

(d) generate 9,(:) from p(0x|01 = 05“, coyOp1 = 0,(31, Y).

Here we update each of the 6; in turn, conditional on the value of all the others. This gives a

stream of random variables 951), cery 91(;), . ,49%1), . ,9,(61), so for the jth component of § we have

a sequence Hél), ce 95»” and the vector (951), - 7‘91(«[)) is approximately a sample from p(6).
When the full conditional distributions have a non-standard form, the Gibbs sampler cannot
be used. The Metropolis-Hastings algorithm is a useful alternative in this case, and it is based
on proposing values sampled from an instrumental distribution, which are then accepted with a
certain probability that reflects how likely it is that they are from the target distribution. We
start considering a particular case named Metropolis algorithm, that will be employed in the data

analysis. It works as follows (Hoff, 2009):

1. Set a starting point 6(%).
2. Fort=1,...,1I:

(a) sample a value 6* from a proposal distribution J(6*|¢~1)), that must be symmet-
ric, i.e. satisfying the condition J(6,|05) = J(6b|0,). In the application we will use
J(6*]00—D) = N((~1 §2), tuning 62 in such a way that proposed values goes a rea-

sonable distance in the parameter space, but are not rejected too frequently.

(b) Compute the acceptance ratio

p(0*]y) p(0")p(y|0~)

(06 D]y)  p(UD)p(ylot-1)

(c) Let
o) _ 0* with probability min(r, 1),
] 64D, otherwise.

The Metropolis-Hastings algorithm generalizes the Metropolis algorithm allowing the proposal

distribution to be not symmetric, and replacing the ratio r» with

L p(0%]y)/T(0*]00" D)
P00 Dly) /T (60=D]6)°

to correct for the asymmetry in the proposal.

The Gibbs sampler can be seen as a particular case of the Metropolis-Hastings algorithm, where
the i—th step is divided in k sub-steps, in each of which the full conditional distribution is used as
proposal density and the acceptance ratio is always 1.

It can be shown (Gelman et al., 2013) that the values generated by the Metropolis-Hastings
algorithm are a sample from a Markov chain that converges to the stationary distribution of
interest, so they can be used to make inference on it.

If some of the conditional posterior distributions can be sampled from directly and some cannot,
then the parameters can be updated one at a time, with the Gibbs sampler used where possible

and Metropolis otherwise.
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One of the main issues is to know how long the algorithm should be run to get convergence,
because if the iterations have run not enough, simulated values may be unrepresentative of the
target distribution. In practice there are some convergence diagnostics that can at best detect
non-convergence. To diminish the influence of the starting values, generally the first bit of the
simulated values is discarded, the so-called burn-in or warm-up period. To lower the correlation
among the sampled values, it can be useful to thin the sequence by keeping every k—th simulation
draw, and discarding the rest.

A first graphic tool is the plot of the sample path, that should fluctuate rapidly without showing
particular patterns. It can reveal if the chain has not reached the stationary distribution and how
the support of the target distribution has been explored, even if it is not possible to know if the
entire support has been explored. To get further ideas about the distribution of interest, one can
examine histograms, box-plot or quantile-plot of the sample values. Another tool is the cumulative
averages plot, to check if the ergodic mean can give a good approximation of the mean of the target

distribution.

A.3 State-space models and the Kalman filter

The state space form is very widely used to handling a broad range of time series models (Harvey,
1990).

The general state space form (SSF) applies to a multivariate time series, y(t), containing N
elements. These observable variables are related to an m x 1 vector, x(t), known as the state vector,

via a measurement or observation equation
y(t) = Bt)x(t) +d(t) +e(t), t=1,....n,

where ((t) is an N x m matrix, d(t) is an N x 1 vector and £(¢) is an N x 1 vector of serially

uncorrected disturbances with mean zero and covariance matrix H(¢), that is
E(e(t)) =0, Var(e(t)) = H(¢).

In general the elements of z(t) are not observable. However, they are known to be generated

by a first-order Markov process, expressed through the transition or state equation
z(t) = @)zt — 1)+ ct) + R(t)n(t), t=1,...,n,
where ®(t) is an m x m matrix, ¢(t) is an m x 1 vector, R(t) is an m X g matrix and 7n(t) is a
g % 1 vector of serially uncorrected disturbances with mean zero and covariance matrix, X(t), that
is
E(n(t)) =0, Var(n(t)) = ().

The specification of the state space system is completed by further assuming that the initial

state vector, £(0), has a mean of ag and a variance-covariance matrix Py, that is

E(2(0)) = ao, Var(z(0)) = I,

and that the disturbances (¢) and 7(¢) are uncorrelated with each other in all time periods,

and uncorrelated with the initial state, that is

E(e(t)n(s)")=0Vs,t=1,...,n
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and
Ec®)X(0)") =0, E(nt)X(0)")=0fort=1,...,n.

The matrices 3(t), d(t) and H(t) in the measurement equation and the matrices ®(t), c(t),
R(t) and X(¢) in the transition equation will be referred to as the system matrices and in our
exposition they are non-stochastic. As a result the system is linear and for any value of ¢, y(t)
can be expressed as a linear combination of present and past £(¢)’s and 7(¢)’s and the initial state
vector, £(0). If the system matrices 8(t), d(t), H(t), ®(t), c(t), R(t) and X(¢) do not change over
time, the model is said to be time-invariant or time-homogeneous, and this will be the case in our
work.

Once a model has been put in a state space form, the Kalman filter can be applied for computing
the optimal estimator of the state vector at time ¢, based on the information available at time t.
This information consists of the observations up to and including y(¢). The system matrices
together with ag and P, are assumed to be known in all time periods.

In certain engineering applications the Kalman filter is important because of on-line estimation.
The current value of the state vector is of prime interest (for example, it may represent the co-
ordinates of a rocket in space) and the Kalman filter enables the estimate of the state vector to
be continually updated as new observations become available. At first sight, the value of such a
procedure in environmental applications would appear to be limited: in our case the emphasis is
on estimating the state vector in the past, on the basis of a given sample, using all the information
available. This problem is known as smoothing and a solution can be based on Kalman filter. The
derivation of the Kalman filter given below rests on the assumption that the disturbances and initial
state vector are normally distributed. A standard result on the multivariate normal distribution
can then be used to show how it is possible to calculate recursively the distribution of X(t),
conditional on the information set at time ¢, for all ¢ from 1 to n. These conditional distributions
are themselves normal and hence are completely specified by their means and covariance matrices.
It is these quantities which the Kalman filter computes. It can be shown that the mean of the
conditional distribution of z(t), is an optimal estimator of z(t), in the sense that it minimises
the mean square error (MSE). When the normality assumption is dropped, there is no longer any
guarantee that the Kalman filter will give the conditional mean of the state vector. However, it is
still an optimal estimator in the sense that it minimises the mean square error within the class of
all linear estimators.

Under the normality assumption, the initial state vector, 2(0), has a multivariate normal dis-
tribution with mean ag and covariance matrix Py. The disturbances 7n(t) and &(¢) also have
multivariate normal distributions for ¢ = 1,...,n and are distributed independently of each other

and of x(0). The state vector at ¢t = 1 is given by
x(1) = ©(1)z(0) + (1) + R(1)n(1).

Thus x(1) is a linear combination of two vectors of random variables, both with multivariate

normal distributions, and a vector of constants. Hence it is itself multivariate normal with a mean
of

a1|0 = @(1)0,0 + C(l)

and a variance-covariance matrix

Pip=2(1)Py®(1)" + RiS(1)R] .
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The notation a;|y indicates the mean of the distribution of (1) conditional on the information
at time t = 0.

On its hand, y(1) is multivariate Gaussian with mean

E(y(1)) = B(1)ayjo +d(1),

and variance-covariance matrix

Cov(y(1)) = B(1)PoB(1)" + H(1).
The covariance between y(1) and x(1) is:
Cov(y(1),2z(1)) = Cov(B(1)x(1) + d(1) + (1), z(1))
= 5(1)131\0-
From above it can be seen that the vector ((1)Ty(1)7)" has a multivariate normal distribution

with mean (aﬁo (B(1)aqjo+d(1))")" and variance-covariance matrix

( Pyjo Pyop(1)" >
B)Pye BA)PYBL)T +H(1))”

We now report a standard result about multivariate Gaussian conditional distribution (see for

example Anderson (2003)) that will be useful here and later on:

Lemma A.3.1 (Multivariate Gaussian distribution). Let X be distributed according to Np(p, V)

with V' nonsingular. Let us partition X = (X(—;) X(—g))—r

respectively. The density f(x)|x(2)) is a g-variate Gaussian density with mean

into g- and (p — q)-component subvectors,

E(X@lz@) = pay + ViV (2(2) = 11(2));
and covariance matriz
COV(X(1)|JJ(2)) =V — V12V251V721.
O

Applying Lemma A.3.1 we have that the distribution of x(1), conditional on a particular value

of y(1), is multivariate Gaussian with mean

a; = ayo + P1|05(1)TF1_1(?/(1) — B(1)ayo — di)
and covariance matrix
P = Pyo — PyoB(1) T Fr ' B(1) Py
where
Fy = B(1)ProB(1) " + H(1)
Repeating the previous steps for ¢ = 2,...,n yields a set of equations which are the Kalman

filter recursions:

ayjp—1 = P(t)az_1 + c(t)

Py = ®(O)P1®(1)" + ROZ(DR() 5

vp = y(t) — Bt)ay—1 — d(t)

F, = 5(t)Pt|t—1ﬁ(t)T + H(t)

Gt = Qgj¢—1 + Pt\tflﬁ(t)TFflUt

Py =Py — Pt|t—1ﬁ(t)TFt_lﬁ(t)Pt|t—1-
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Given a;—1 and P;_1, the optimal estimator of x(¢) is given by
ayp—1 = P(t)as_1 + c(t),
while the covariance matrix of the estimation error is
Pyyo1 = 2P @(t) T + ROSHRM) ", t=1,...,n.

These two equations are known as the prediction equations. Once the new observation, y(t)

becomes available, the estimator of z(t), as¢—1, can be updated. The updating equations are

ar = aye—1 + P18 T F;7 M (y(t) — B(H)age—1 — d(t)

and

Py =Pyy_y — Pyu_1 B(t) F7 ' B(t) Py

where

F, = Bt)Pp—1Bt)T +HE), t=1,...,n,

where it is assumed that F; is invertible, which is the case for the models in this work.

The derivation given previously enables us to interpret a; and P; as the mean and covariance
matrix of the conditional distribution of z(¢). In setting out the Kalman filter a; was described as
an optimal estimator of z(t¢) based on the information available at time ¢, while P, was described

as the covariance matrix of the estimation error.

A.4 Gibbs sampling for state-space models

In this Section we outline an algorithm that will be a fundamental part of the climate reconstruction
procedure.

Let us consider the time-homogeneous linear state-space model

y(t) = Bo+ B x(t) +e(t), e(t) ~ N(0,9°); (A-2)
z(t+1)=@x(t) +nt+1), nt+1) ~N(0,%), t=1,...,n, (A.3)

where y(t) is an observed scalar variable at time ¢ and x(t) is the corresponding vector of dimension
m of non-observable states. Let Y7 = {y(1),...,y(j)} the (j x 1) vector of observations from time
1 to time j and X = {z(1)7,... ,:E(n)T}T the (nm x 1) total state vector.

We are interested in doing inference on X using the whole information available, so we are
interested in the distribution p(X|Y™). According to Carter and Kohn (1994) we can write:

p(X[|Y™) = p(X,Y")/p(Y")
=p(z(1),...,2(n),Y")/p(Y")
=p(z(1)|2(2),...,2(n), Y")p((2),...,2(n),Y")/p(Y")
=p(z(D)]z(2),...,2(n),Y")p(z(2),...,2(n)[Y")
= p(z(1)|2(2),y(1)p(2(2), ..., z(n)[Y™"),

because information on x(3),...,z(n) or y(2),...,y(n) has no influence on the distribution of z(1).



A.4 Gibbs sampling for state-space models 47

Again, we can write

p(x(2),..,z(n)[Y") = p(z(2),...,2(n),Y") /p(Y")
= p(x(2)[z(3),...,x(n), Y")p(x(3),...,x(n), Y") /p(Y")
= p((2)]z3), ..., 2(n), Y")p(z(3),...,2(n)[Y")
= p(x(2)[(3), Y*)p(x(3),... . a(n)|Y"),
because knowing x(4),...,z(n) or y(3),...,y(n) has no influence on the distribution of x(2). We

need y(1) along with y(2) because it contains information about z(1), so indirectly about x(2).

Proceeding in the same way, we have

n—1

p(X[Y™) = pla(m)Y™) [ ple@)le(t +1),Y?). (A.4)

t=1
The first step is to generate a value for z(n) from P(z(n)|Y™). We assume a Gaussian distri-
bution for the initial state vector, x(0): P(x(0)) = Ny, (ag, Po), where ag and Py are considered

known. From the state equation (A.3) and using the notation of the previous Section we have:

arjo = E(z(1)) = E(x(0)) + E(n(1)) = Pag
Pyjg = Var(z(1)) = ® Var(z(0))® " + Var(n(1)) + Cov(z(0),7(1)) + Cov(n(1), z(0))
=oP®" + 3.

This distribution has to be updated conditionally on the observation y(1). From the observation

equation (A.2) and equations above, the distribution of y(1) is Gaussian, with mean

E(y(1)) = B(Bo) + BE(8"z(1)) = fo + B a0,
and variance
Var(y(1)) = Var(Bo + BT 2(1) +2(1) = 87 Prjo + 7.
The covariance between x(1) and y(1) is:
Cov(x(1),y(1)) = Cov(z(1), o + B 2(1) + (1))
= Var(z(1))8 = Pyjop.

The joint distribution of (1) and y(1) then is:

P P
@@y’ ~ N ((alo’ﬁo +87 o), (ﬂﬁl?(l)m ﬂTPuy%i ¢2>) '

The conditional distribution x(1)|y(1) is Gaussian with mean a; and variance P; computed

from Lemma A.3.1:

a1 = ayjo + PioBBT PrjoB + ¢?) T (y(1) — Bo — B ai),

Py = Pyjg— PyoB(B  ProB+4*) BT Pryo.

In order to compute the distribution of (2)|Y2, we start from P(z(2)|y(1)), that is Gaussian

with mean
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azn = E(2(2)|y(1)) = @E(z(1)[y(1)) + E(n(2)|y(1)) = ®ay,
and variance
Py = Var(z(2)[y(1)) = ® Var(z(1)|y(1))® " + Var(n(2)[y(1))
+ Cov(2(2)|y(1),n(2)[y(1)) + Cov(n(2)y(1), z(2)[y(1))
= 0P d + 3.

Let us compute the marginal distribution of y(2)|y(1):

E(y(2)ly(1)) = Bo + 8" E(x(2)|y(1)) = o + 8" ag)n.

Var(y(2)|y(1)) = 87 Var(z(2)|y(1))8 + ¢* = 87 Py B+ 97,

The covariance between x(2)|y(1) and y(2)|y(1) is:

Cov(z(2)[y(1),y(2)|y(1)) = Var(z(2)|y(1))8 = P .

So we can write the joint distribution of x(2)]y(1) and y(2)|y(1) as:

@O @) ~ N (ot 8Ten (75 eyt L))

From Lemma A.3.1 the conditional distribution of #(2)|Y? is Gaussian with mean

az = ag|; + P2|1ﬁ(ﬂTP2\1ﬁ + 1/12)71(3/(2) - 5Ta2|1)

and variance

Py =Py — Py B(BT Pop B+ )BT Pap.

Summarizing, we start from ag and Py, considered known, and we compute, for t =1,... ,n:

agi—1 = Pay_1,

Py = OP,_ @7 + %,

v =y(t) — Bo — 5Tat|t—1,

F, = BTPt|t715 + 7,

ar = ayp—1 + Py—1 B, vy,

Py = Py—q — Pt|t—1ﬂFt_15TPt\t—1-

At the end we get the distribution of x(n)|Y™, that is N(ay, P,).
Once we have generated a value from z(n)|Y™, the next step is to generate from P(z(t)|Y?, z(t+
1), for t =n —1,...,1. Let us start from P(z(n — 1)]Y""!,2(n)). From the state equation we
have
z(n) = dx(n — 1) +n(n), n(n) ~ N(0,%). (A.5)

Since we work conditionally on x(n), equation (A.5) can be considered as a set of m observation
equations, which the Kalman filter can be applied to. In order to exploit the m observations, we

apply the Cholesky decomposition to X, the covariance matrix of n(n):
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Y =LALT,
and we compute
E(n) = L7 'z(n), ® = L7'®, a(n) = L™ u(n).
Then, we can write

E(n) = dx(n — 1) + a(n).
Denoting with ®; the i—th row of ® and A; the i—th element on the diagonal of A, we have,
for i = 1,...,m, the ’observation’ equations:
Ei(n) = @) z(n — 1) + @ (n), @;(n) ~ N(0,A;).

We use as initial distribution for the state x(n — 1), p(z(n — 1)|Y™71), that from previous
computation has mean a,,_1 and covariance matrix P,_1. It is convenient to set 2(n—1|n—1,0) =

ap—1 and S(n—1n—1,0)=PF,_1. Fori=1,...,m, let

z(n—1n —1,i) = E(z(n — 1)|Y"" 1 21(n),...,2;(n)),
S(n—1|n —1,i) = Var(z(n — D)|[Y""  z1(n), ..., z:(n)).

First we update the initial distribution of 2(n — 1) conditioning on the value of x1(n) or Z;(n),

if ¥ is not diagonal. From equations above we have:

E(#E(n)|Y" 1) =] E(x(n—1)|Y" ™) + E(fj1(n)) = & 2(n — 1|n — 1,0),

Var(#1(n)|]Y" ™) = @] Var(z(n — 1)|]Y" 1)@, 4 Var(ji(n)) + 2 Cov(®] z(n — 1)[Y" "L, 71 (n))
=®/ S(n—1n—1,000; + Ay,

Cov(z(n —1),Z1(n)|Y" 1) = Cov(z(n — 1), 8] z(n — 1) + ui(n))
= Var(&,(n)|]Y" 1),
=S(n—1n—1,0)9;.

Let us define

e(n —1,1) = #1(n) — E(E (n)[Y"Y) = Z1(n) — ®] z(n — 1|n — 1,0)
and

R(n—1,1) = Var(Z;(n)|Y" 1) = ] S(n — 1|n — 1,0)®; + A;.

From Lemma A.3.1 the conditional distribution P(x(n—1)|Y"~! #;(n)) is Gaussian with mean

z(n—1n—-1,1)=z(n—1n—1,0)+ S(n — 1jn — 1,0)®] e(n — 1,1)/R(n — 1,1),

and variance
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S(n—1n—1,1)=S(n—1n—1,0) — S(n —1jn —1,0)®,®; S(n — 1jn — 1,0)/R(n — 1,1).

For i = 2,...,m we repeat the reasoning by updating the distribution of the state with &;(n).

We compute:

e(n—1,i) = &(n) —® z(n —1jn —1,i — 1),

R(n—1,i) = ®] S(n —1|n — 1,1)®; + A,

tn—1n—-1i)=z(n—-1n—-1,i—1)+Sn—1n—1,i — 1)®, e(n — 1,7)/R(n — 1,7),

Stn—1n-1,9) =Sn—1n—1,i—1)=Sn—1n—-1,i—1)&;®] S(n—1|jn—1,i—1)/R(n—1,1).

At the end we have obtained

z(n—1jn —1,m) = E(z(n — 1)|[Y"" !, 2(n)), and
S(n —1|n —1,m) = Var(z(n — 1)[Y"" 1 2(n)).

By repeating the procedure for ¢ from n — 2 to 1, we can extract values from P(X|Y™).
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Graphics

This Appendix collects graphics mentioned in other parts of the thesis, to keep the text fluid. Fig-
ures B.1-B.7 refer to the simulation study in Section 3.3.2; figures 4.2— B.24 illustrate temperature
and moisture data analysed in Section 4.1; figures 4.3-B.41 illustrate temperature and PDSI data

analysed in Section 4.2; figures B.42 — B.62 illustrate model comparisons done in Section 4.3.
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Figure B.1: Simulated series in the calibration period, months from 301 to 600. Colored lines are
simulated anomalies (red for temperature and blue for moisture), black lines are 90% and 50%
credible sets.
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Figure B.8: Site A. Histograms and scatter-plots for tree-ring widths index, moisture and temper-
ature in the period 1901-2008.
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Figure B.9: Site A: estimated summer series (temperature/moisture model).
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Figure B.10: Site A: monthly temperature series in 1902 — 2008. In red the observed series, in
black 90% credibility interval (temperature/moisture model).
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Figure B.11: Site A: monthly moisture series in 1902 — 2008. In blue the observed series, in black
90% credibility interval (temperature/moisture model).
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Figure B.12: Site A: comparison between temperature in the observation period: in red the result
from the monthly algorithm, in black from the annual one. Brown series is the observed one. From
top to bottom: mean, 90% interval, 50% interval (temperature/moisture model).
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Figure B.14:

Site A: diagnostic

on the estimation of ®(1,1) (temperature/moisture model).
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Figure B.15: Site A: diagnostic on the estimation of 3(1,1) (temperature/moisture model, annual
algorithm).
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Figure B.19: Site A: diagnostic on the estimation of ®g(1,1) (temperature/moisture model).
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Figure B.20: Site A: diagnostic on the estimation of (1, 1) (temperature/moisture model, monthly
algorithm).
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Figure B.21: Site A: diagnostic on the estimation of 3y (temperature/moisture model, monthly
algorithm).
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algorithm).
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algorithm).
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Figure B.33: Site A: diagnostic on the estimation of fy (temperature/PDSI model, annual algo-
rithm).
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Figure B.34: Site A: diagnostic on the estimation of 12 (temperature/PDSI model, annual algo-
rithm).
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Figure B.35: Site A: diagnostic on the estimation of ®;(1,1) (temperature/PDSI model).
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Figure B.36: Site A: diagnostic on the estimation of ®g(1,1) (temperature/PDSI model).
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Figure B.37: Site A: diagnostic on the estimation of X(1,1) (temperature/PDSI model, monthly
algorithm).
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gorithm).
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Figure B.41: Site A: PDSI anomalies’ coefficients (temperature/PDSI model, monthly algorithm).
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Figure B.45:

Site A: temperature series. Estimates obtained by the direct regression algorithm in

terms of mean (top panel) 90% interval (middle panel) 50% interval (bottom panel). The observed
series is plotted in brown while the intervals’ boundaries are in different shades of purple. The
vertical lines delimit the calibration period.
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Figure B.46: Site A: temperature series. Estimates obtained by the inverse regression algorithm in
terms of mean (top panel) 90% interval (middle panel) 50% interval (bottom panel). The observed

series is plotted in brown while the intervals’ boundaries are in different shades of purple.

vertical lines delimit the calibration period.
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Figure B.47: Site A: temperature series. Estimates obtained by the variance matching algorithm in
terms of mean (top panel) 90% interval (middle panel) 50% interval (bottom panel). The observed
series is plotted in brown while the intervals’ boundaries are in different shades of purple.
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The



98 Graphics
O. — 1 1
- 1 1
1 1
1 1
c). — 1 1
° | o 1 ! 5'
o | fe £ | 7 .'%*" .
o lM.!_f“M t ¥ A | | “ \
\ I
~ o ] lt ‘h YIRS b
o
! &
© 1 1
g - B
1 1
o. — 1 1
A 1 1
1 1
1 1
<J->. — 1 1
= °© ' , | : ﬁ. * , :P
B | T Kl 5 13
= o _| £l L LR ey, ? Ax ] ?
g © \,n «\'(r ,"-l‘,{;l‘m‘::f\w?'n,‘ﬁ, ;'\A'P qn"“,"ﬁ,"q"'\u\u\r,\n@\ﬁ\\ ‘N‘{' “ ’N y’k\ \ v:; f,"\"’llwv/ r\‘i"l“vlf\; “J"K'M*ﬁ,"‘;" y ‘?‘F@ 1,'
E’ o 1“ ! l' ‘h ] 1’ Vot "I : 1 T ¥ " P f ‘ll
S~ | } ' 1o g se 1o 4y
= o | ® al. :*
1 1
© 1 1
o. — 1 1
: :
o. — 1 1
A 1 1
1 1
1 1
[T 1 1
) AR
i ) \ f [ it : ® e
°© V Y v /" V»ﬂ.‘.""\u“'k ’N. it
i L ' 7 no " B I 0 % N Ul |
. ' ! ! | ‘ * Iy |
5 ' o ’
1 1
© : :
" — 1 1
© 1 1
1 1
T T T T ' T
1600 1700 1800 1900 2000
years

Figure B.48: Site A: moisture series.

Estimates obtained by the direct regression algorithm in

terms of mean (top panel) 90% interval (middle panel) 50% interval (bottom panel). The observed
series is plotted in brown while the intervals’ boundaries are in different shades of blue. The vertical

lines delimit the calibration period.
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Figure B.50: Site A: moisture series. Estimates obtained by the variance matching algorithm in
terms of mean (top panel) 90% interval (middle panel) 50% interval (bottom panel). The observed
series is plotted in brown while the intervals’ boundaries are in different shades of blue. The vertical

lines delimit the calibration period.
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Figure B.51: Site A: PDSI series. Estimates obtained by the direct regression algorithm in terms
of mean (top panel) 90% interval (middle panel) 50% interval (bottom panel). The observed series
is plotted in brown while the intervals’ boundaries are in different shades of cyan. The vertical

lines delimit the calibration period.
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Figure B.52:

Site A: PDSI series. Estimates obtained by the inverse regression algorithm in terms

of mean (top panel) 90% interval (middle panel) 50% interval (bottom panel). The observed series
is plotted in brown while the intervals’ boundaries are in different shades of cyan. The vertical

lines delimit the calibration period.
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Figure B.53: Site A: PDSI series. Estimates obtained by the variance matching algorithm in terms
of mean (top panel) 90% interval (middle panel) 50% interval (bottom panel). The observed series
is plotted in brown while the intervals’ boundaries are in different shades of cyan. The vertical
lines delimit the calibration period.



104 Graphics

10

—— annual Bayesian monthly Bayesian

10

Temperature (deg C)

10

1600 1700 1800 1900 2000
years

Figure B.54: Site A: temperature series. Comparison between the estimates obtained by the
variance matching algorithm (top panel), the Bayesian algorithms (middle panel) and by linear
regression (bottom panel). The observed series is plotted in brown and the vertical lines delimit
the calibration period.
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Figure B.55: Site A: temperature series. Comparison between the 90% intervals obtained by the
variance matching algorithm (top panel), the Bayesian algorithms (middle panel) and by linear
regression (bottom panel). The observed series is plotted in brown and the vertical lines delimit
the calibration period.
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Figure B.56: Site A: temperature series. Comparison between the 50% intervals obtained by the
variance matching algorithm (top panel), the Bayesian algorithms (middle panel) and by linear
regression (bottom panel). The observed series is plotted in brown and the vertical lines delimit
the calibration period.
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Figure B.57: Site A: moisture series. Comparison between the estimates obtained by the variance
matching algorithm (top panel), the Bayesian algorithms (middle panel) and by linear regression
(bottom panel). The observed series is plotted in brown and the vertical lines delimit the calibration
period.
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Figure B.58: Site A: moisture series. Comparison between the 90% intervals obtained by the
variance matching algorithm (top panel), the Bayesian algorithms (middle panel) and by linear
regression (bottom panel). The observed series is plotted in brown and the vertical lines delimit
the calibration period.
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Figure B.59: Site A: moisture series. Comparison between the 50% intervals obtained by the
variance matching algorithm (top panel), the Bayesian algorithms (middle panel) and by linear
regression (bottom panel). The observed series is plotted in brown and the vertical lines delimit
the calibration period.
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Figure B.60: Site A: PDSI series. Comparison between the estimates obtained by the variance
matching algorithm (top panel), the Bayesian algorithms (middle panel) and by linear regression
(bottom panel). The observed series is plotted in brown and the vertical lines delimit the calibration
period.
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Figure B.61: Site A: PDSI series. Comparison between the 90% intervals obtained by the variance
matching algorithm (top panel), the Bayesian algorithms (middle panel) and by linear regression
(bottom panel). The observed series is plotted in brown and the vertical lines delimit the calibration
period.
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Figure B.62: Site A: PDSI series. Comparison between the 50% intervals obtained by the variance
matching algorithm (top panel), the Bayesian algorithms (middle panel) and by linear regression
(bottom panel). The observed series is plotted in brown and the vertical lines delimit the calibration
period.
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