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Abbreviations of protein factors 

 

SFK = Src Family Kinases 

Lyn = Yamaguchi sarcoma viral related oncogene  

APRIL = A Proliferation-Inducing Ligand 

ATM = Ataxia Teleangectasia Mutated 

BAD = Bcl-2 Associated Death promoter 

BAFF = B-cell Activating Factor 

Bcl-2 = B cell lymphoma gene 2 

BCR= Recettore a cellule B 

Bid =BH3-interacting domain death agonist 

BLNK = B-cell Linker 

BMSC = Cellule stromali midollari 

BSA = Albumina di siero bovino 

Btk = Bruton tirosina chinasi 

CARD11 = Caspase Recruitment Domain 11 

CD19 = Cluster of Differentiation 19 

CD38 = Cluster of Differentiation 38 

CD40L = Ligando di CD40 

Csk = C-terminal Src kinase 

CIP2A = Cancerous Inhibitor of PP2A 

ERK = Extracellular signal Regulated Kinase 

FADD = Fas-Associated Death Domain 

FLIP= FLIce-Inhibitory Protein 

GSK-3ß = Glycogen synthase kinase 3, ß isoform  

HEAT = Huntington Elongation factor 3/pr65 A TOR  

Hsp90 = Heat shock protein – 90 kDa 

IL = Interleukin 

ITAM = Immunoreceptor Tyrosine-based Activation Motif  
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ITIM = Immunoreceptor Tyrosine-based Motif Inhibitory Motif 

I1PP2A = Inhibitor-1 of PP2A  

I2PP2A = Inhibitor-2 of PP2A 

CLL = Chronic Lymphocytic Leukemia 

MAPK = Mitogen Activated Protein Kinase 

NF-kB = Nuclear Factor κB 

NK = Natural Killer 
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PI3K = Phosphoinositide-3-kinase 

PKC = Protein kinase C 
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ABSTRACT (English) 

Reversible  protein  phosphorylation  is  a  fundamental  post-translational  

modification  by  which  virtually all cellular events are regulated, enabling cells to 

properly respond to intra- and extracellular  cues.  Protein  kinases  and  protein  

phosphatases  are  the  principal  factors  involved  in  this  in  this  dynamic process 

and are placed at the different levels of cellular signalling, and, albeit traditionally  

considered as functionally opposed to one another, not rarely act in an interplay to 

finely orchestrate and appropriately drive signal transduction. The imbalance of 

their expression and function affects the cell life and fate, which frequently 

underlies the onset and progression of a plethora of diseases.   

B cell chronic lymphocytic leukemia (CLL), the most common leukemia in the 

Western world, is no  exception to this paradigm, many studies having highlighted 

a crucial role of kinases in the sustained signals from the signalosome downstream 

of the B cell receptor (BCR), and having led to the development of the promising 

second-line drugs, but also the blockade of a number of phosphatases underlying 

pro-survival and anti-apoptotic signals. In this regard, Protein Phosphatase 2A 

(PP2A) and the Src homology 2 domain-containing phosphatase 1 (SHP-1) exhibit 

a marked functional inhibition in this disease, which can be properly circumvented 

by a pharmacological approach, thereby inducing apoptosis of cancer cells. 

Nintedanib and MP-0766, a drug  acting as an angiokinase inhibitor and a new 

fingolimod analogue devoid of immunosuppressive  action, activating respectively 

SHP-1 and PP2A have enabled for the discovery of a signalling axis  that when 

activated provokes massive cell death, and might provide a new paradigm for the 

treatment  of CLL, which now endorses kinase inhibitors.     
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ABSTRACT (Italiano)  

La fosforilazione proteica è una fondamentale modificazione post-traduzionale che 

regola virtualmente tutti i processi cellulari, permettendo alla cellula di rispondere 

a stimoli intra- ed extracellulari. Le protein chinasi e le protein fosfatasi sono i 

fattori principali coinvolti in questo processo dinamico e si localizzano a diversi 

livelli del signaling cellulare, e, sebbene tradizionalmente considerate opposte le 

une alle altre sotto il profilo funzionale, non raramente compartecipano per 

finemente modulare e opportunamente dirigere la trasduzione del segnale.  

Uno squilibrio di espressione e/o funzione di questi fattori si riflette sulla vita e il 

destino della cellula, cosa che frequentemente è alla base dell’insorgenza nocnhé 

l’evoluzione di un gran numenro di patologie. La leucemia linfatica cronica  a 

cellule B (B Chronic Lymphocytic Leukemia, CLL), la più comune leucemia in 

occidente, non fa eccezione a tale paradigma e, sebbene la ricerca per lo più si è 

concentrata sull’anomala attività di diverse protein chinasi con lo sviluppo di 

promettenti farmaci di seconda linea, sempre più di frequente viene confermata 

l’ipotesi che la sopravvivenza e la resistenza all’apoptosis delle cellule tumorali 

dipende anche dalla ridotta espressione o funzionalità delle protein fosfatasi. A 

questo riguardo, la protein fosfatasi 2A (Protein Phosphatase 2A, PP2A) e la 

fosfatasi 1 contenente domini Src homology 2 (Src Homology 2 domain-containing 

phosphatase 1 (SHP-1) in questa patologia si dimostrano funzionalmente inibiti, 

ma che, quando opportunamente attivate farmacologicamente, inducono morte 

delle cellule tumorali. 

Nintedanib, un farmaco che agisce come inibitore “angiochinasico”, e MP-0766,  

un nuovo analogo del fingolimod privo di azione immunosoppressiva, si sono 

dimostrati in grado di attivare SHP-1 e PP2A rispettivamente, permettendo inoltre 

di individuare un asse di signaling cellulare che provoca la morte di celle cellule 

leucemiche, potenzialmente rappresentando un nuovo paradigma per il trattamento 

della CLL, che ad oggi privilegia gli inibitori chinasici.  
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CHRONIC LYMPHOCYTIC LEUKEMIA  

Etiology, Diagnosis and Staging 

It is the most common form of leukemia diagnosed in adults in Western countries, 

the median age at diagnosis being 72 years with an incidence of 4.2:100 000/year, 

which increases to >30:100 000/year in patients aged over 80 years (Eichhorst et 

al, 2015). As to the etiology of CLL, inherited genetic susceptibility for CLL seems 

to play a major role (Slager et al, 2013; Yang et al., 2015) although other possible 

caused including ionizing radiation (Linet et al., 2007) or the use of pesticides 

(Cocco et al., 2013) cannot be ruled out.  

CLL is a dynamic disease with a highly heterogeneous clinical course varying from 

the stable, long-lasting indolent form to rapidly progressive disease and 

death (Chiorazzi et al., 2005; Stevenson and Caligaris-Cappio, 2004), one third 

remaining asymptomatic for years (Hallek et al., 2008), whereas others may 

experience an aggressive clinical course with a rapid increase in diseased cells in 

the blood and require very intensive treatment (Elphee, 2008). 

The majority of CLL patients are asymptomatic, being accidentally diagnosed as a 

result of a routine blood test, which shows absolute lymphocytosis defined as more 

than 5000 cells/μL. 10% of patients present with symptoms consisting in 

unexplained fevers, unintentional body weight loss or night sweats, most of them 

having enlarged and palpable lymph nodes on examination, accompanied 20 to 

50% of the cases by hepatosplenomegaly (Nabhan and Rosen, 2014). CLL cells 

then undergo further characterization by immunophenotyping, molecular genetics 

and cytogenetics to properly establish diagnosis and prognosis (see below).  

Two clinical staging systems are used for predicting median survival, which 

classify patients on the basis of blood parameters and clinical signs such as 

hemoglobin concentration and thrombocyte count (Binet), 

lymphocyte/thrombocyte count and the presence or absence of 

lymphadenopathy/organomegaly (Rai) (Table 1) (Binet et al., 1981; Rai et al., 

1975). The Binet staging system is widely used in Europe, whereas in the United 

States, the Rai system is more commonly employed.  
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Table 1. Rai and Binet Staging Systems 

Rai    

Stage Risk Clinical Features Overall Survival, yrs 

0 Low Lymphocytosis in peripheral blood and 

bone marrow only  

>10 

I/II Intermediate Lymphadenopathy ± hepatosplenomegaly 7 

III/IV High Anemia ± thrombocytopenia  <4 

    
Binet    

Stage Risk Clinical Features Overall Survival, yrs  

A Low <3 areas of lymphadenopathy 12 

B Intermediate >3 areas of lymphadenopathy 7 

C High Anemia, thrombocytopenia, or both 2-4 

 

Cellular, molecular and functional features of CLL  

Chronic Lymphocytic Leukemia (CLL) is a clonal lymphoproliferative disorder 

characterized by the slow accumulation of small, mature B lymphocytes in the 

peripheral blood, bone marrow and in the secondary lymphoid organs (spleen and 

lymph nodes). These leukemia cells express specific surface markers (so-called 

Cluster Differentiations, CD) such as CD19, CD5 and CD20, CD23, typicaly 

lacking CD22 and CD52 (Figure 1) with weak expression of surface 

immunoglobulins compared to normal B cells as established by flow cytometry and 

immunophenotyping of the peripheral blood (Nabhan and Rosen, 2014; Matutes 

Figure 1. Typical surface markers of CLL B lymphocytes as described in 

http://www.campath.com/UnderstandingCLL/CellMarkers.html 
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and Polliack, 2000; Eichorst et al., 2015). CLL cells undergo spontaneous 

apoptosis in vitro, from which they are protected when cultured in the presence of 

dendritic or nurse-like cells (NLCs), among others, NLCs being a subset of blood 

monocytes in CLL patients (Tsukada et al., 2002). This finding supports the 

hypothesis that the resistance to apoptosis of CLL cells, in addition of intrinsic 

defects, also depends on extrinsic factors, especially in the microenviroment of 

secondary lymphoid tissues from where these cells originate and mature (Herreros 

et al., 2008). Figure 2 shows the high complexity of such interactions (ten Hacken 

and Burger, 2016).  

Figure 2. Various cellular and molecular components of the CLL microenvironment. Nurselike 

cells (NLCs); B Cell Receptor (BCR); Follicular Dendritic Cells (FDCs); Mesenchimal Stromal 

Cells (MSCs) 
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CLL cells in the blood smear are small, mature lymphocytes with a narrow border 

of cytoplasm and a dense nucleus with clumped chromatin. These cells may 

undergo partial breakdown during slide preparation because of the fragile nature of 

these cells (“Gumprecht shadows”, Figure 3). 

Among the causes of the heterogeneity of the clinical course of the disease specific 

molecular alterations have been established, and namely the mutation of the genes 

coding for the Immunoglobulin Variable region Heavy chain (IgVH) and the level 

of expression of CD38 and Zeta chain Associated Protein kinase 70 (ZAP70) 

(Hamblin et al., 2007). 

 

Mutational status of IgVH 

Signal transduction in B cell is mediated by the B Cell Receptor (BCR), a 

transmembrane protein complex formed by an immunoglobulin (Ig) placed on the 

cell’s outer surface connected to a network of kinases and phosphatases that tune 

and amplify its activation. The interaction with antigens are central to BCR’s 

controlling B-cell fate and directing cell maturation, survival, anergy as well as the 

production of antibodies in plasma B cells (Reth and Nielsen, 2014; Dal Porto et 

al, 2004). The heavy and light chains of the Ig are the products of random 

rearrangement of immunoglobulin gene segments, which results in the highly 

diverse repertoire of Igs. On the basis of the degree of somatic mutation of the 

Figure 3. This smear shows the presence of four small neoplastic lymphocytes and one 

“Gumprecht shadow” (arrowhead). 
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IgVH genes, CLL patients can be classified into the 2 subgroups, unmutated CLL 

(U-CLL) or mutated CLL (M-CLL), depending on the strong or weak sequence 

homology with the sequence of the germ-line gene. U-CLL patients statistically 

have a poor prognosis with an aggressive course and often short survival, in 

contrast with those carrying IgVH mutations, who have a slow course and much 

longer life expectancy (Hamblin et al., 1999). The mutational status affects the 

BCR responsiveness to antigen stimulation, U-CLL patients expressing 

multireactive and non-selective BCRs binding a wide range of molecules present 

in the surrounding microenvironment, resulting in a sustained activation of BCR-

dependent signals and a more aggressive disease (Burger and Chiorazzi, 2013). 

Figure 4 shows the organization of the “signalosome” on the inner leaflet of the 

plasma membrane of a CLL B cell functionally connected to the two mutational 

forms of BCR. U-CLL cells respond to a greater variety of antigens, the signals 

downstream of the BCR being reiforced by the contribution of the tyrosine kinase 

ZAP-70 and the multifunctional receptor CD38. 

Figure 4. Differences between M-CLL and U-CLL signaling pathways (from ten Hacken and 

Burger, 2016).  
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However, since the analysis of gene sequences underlying the status of IgVH 

mutation is laborious, reliable alternative markers are CD38 and ZAP-70, or the 

chemokines CCL3 and CCL4 . 

 

ZAP70 and CD38 

ZAP70 is a non-receptor tyrosine kinase normally expressed in T cells, Natural 

Killer (NK) cells, activated but not quiescent B cells. In fact, the majority of B 

lymphocytes expressing not this protein, but the tyrosine kinase named Syk. It is 

believed that its presence in B cells is linked to antigenic stimulation. 

This protein is associated with the CD3 receptor of T lymphocytes, and is involved 

in signals downstream of the T Cell Receptor (T Cell Receptor) following antigen 

engagement (Wang et al., 2010). ZAP70 in CLL cells seems to play a similar 

function in the signals mediated by the BCR. Because ZAP70 is expressed in U-

CLL cells, it is also used as a molecular marker to distinguish the mutational status 

of CLL cells. In fact, patients with ZAP70 being expressed in more than 20% of 

CLL cells, are more likely to experience an aggressive course of the disease. In 

addition, U-CLL cells  expressing ZAP70 are more sensitive to chemokine (C-C 

motif) Ligand 19 (CCL19),  CCL21 and chemokine (C-X-C motif) Ligand 12 

(CXCL12), which stimulate migration and cell proliferation (Burger and Chiorazzi, 

2013). 

CD38 is a glycoprotein also known as cyclic ADP ribose hydrolase, which is found 

on the surface of many immune cells (Deaglio et al., 2006). It promotes cell 

proliferation by enhancing signals mediated by the BCR upon interaction with 

CD31, which is expressed on the surface of endothelial cells, among others 

(Deaglio et al., 2006). In addition to the proliferative response, emerging evidence 

indicates that CD31/CD38 interaction is also followed by migration and homing, 

suggesting a potential role for CD38 in directing CLL cells to specific 

microenvironments (Deaglio et al., 2010). Although CD38 was the first marker 

thought to be be closely related to the mutation status of IgVH genes, it was later 

proven that instead these two biological parameters are independent prognostic 
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factors (Hamblin et al., 2002). On the other hand, CD38 is also an important 

complementary prognostic marker, generally related to a more aggressive clinical 

course (Malavasi et al., 2011). 

 

The CC chemokine family 

The chemokines named CCL3 and CCL4, also called Macrophage Inflammatory 

Protein (MIP)-1α and -1β, respectively, are chemokines of the CC family, inducible 

in adaptive immune responses of cells of hematopoietic origin such as 

macrophages, B and T lymphocytes and dendritic cells. Plasma levels of CCL3 are 

indicative of an aggressive clinical course in CLL. Previous studies conducted on 

co-cultures of CLL cells with monocytes acting as NLCs have shown that the 

activation of the BCR-depending cascades induces a marked synthesis and 

secretion of CCL3 and CCL4, and, as expected, the use of inhibitors of players 

downstream of the BCR greatly reduces the levels of CCL3 and CCL4 (Burger et 

al, 2009). As to the actual contribution of CCL3 in the pathogenesis of the disease, 

it is hypothesized that the secretion of this chemokine serves to attract additional 

cells such as T lymphocytes, NLCs and stromal cells in the microenvironment, thus 

creating a favorable environment for survival of leukemia cell clones (Burger and 

Chiorazzi, 2013; de Weerdt et al., 2013). 

 

Genetic lesions 

There are several types of genetic lesions in CLL, which also represent prognostic 

markers of CLL (Rossi et al., 2013; Hallek, 2013). Among the genetic alterations, 

there are 

• 13q14 deletion, present in more than 50% of patients, which also underlies the 

development of additional mutations in B cell clones; 

• mutation of the NOTCH1 gene, coding for a transmembrane protein that acts 

as a ligand-dependent transcription factor and is involved in the processes of 

differentiation, proliferation and apoptosis through cell transcriptional 
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activation of other genes such as MYC, TP53 and molecules of the NF-kB 

pathway;  

• mutations and deletions that cause degradation of BIRC3, gene implicated in 

the negative regulation of MAP3K14, which is the main activator of the non-

canonical NF-kB signaling pathway; 

• missense mutations of the SF3B1 gene, which is a basic component in the 

splicing process. The mutations in this gene are found in patients showing 

refractoriness to therapy (~ 15-20% of cases); 

• mutations of MYD88, a factor participating in the response of Toll-like 

receptors, which causes an increased survival due to cell to constitutively 

activated signal pathway mediated by NF-kB; 

• deletions, or somatic mutations such as missense mutations in exons 5-8 of the 

TP53 gene will cause the inactivation of the protein product, which is a nuclear 

factor involved in the regulation of apoptotic response upon DNA damage;  

• mutations of the Ataxia Telangiectasia Mutated (ATM) gene, which encodes a 

protein kinase that phosphorylates and activates p53 in response to damage to 

the DNA double helix. This injury causes the inactivation of ATM in only 30% 

of the cases. 

The lesions of the ATM and TP53 genes confer resistance to chemotherapy to 

CLL cells, since both genes are involved in the process of apoptosis. Besides, 

these deletions are associated with patients with U-CLL, who have a poor 

prognosis. 

• Trisomy 12 has been shown in 25% of U-CLL patients. This chromosome 

harbors the murine double minute 2 (MDM-2) gene, the product of which is an 

important regulator of the tumor suppressor gene TP53. Its overexpression 

leads to functional inactivation of the p53.  

• Deletions of chromosome 6, present in about 6% of cases, causing minor 

events related to intermediate prognosis. 
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Signaling in CLL cells: overview 

Reversible protein phosphorylation is a fundamental post-translational 

modification by which virtually all cellular events are regulated, enabling cells to 

properly respond to intra- and extracellular cues. The crucial players involved in 

this dynamic process are protein kinases and protein phosphatases, which are 

placed at the different levels of cellular signalling, and, albeit traditionally 

considered as functionally opposed to one another, not rarely act in an interplay to 

finely orchestrate and appropriately drive signal transduction (Johnson, 2009). The 

significance of both classes of enzymes in the cell life and fate is mirrored by the 

effects of their dysregulation, whether related to altered expression or activity, 

which frequently underlies the onset and progression of a plethora of diseases 

(Lahiry et al., 2010; Julien et al., 2011). CLL is no exception to this paradigm, a 

high level of intracellular phosphorylation being mediated by the abnormal activity 

of several kinases downstream of the B cell receptor (BCR), such as Lyn (Contri 

et al., 2005), Syk (Gobessi et al., 2009), PKC (Ringshausen et al., 2002), 

phosphoinositide 3-kinase (PI3K) (Plate, 2004), mitogen-activated protein kinase 

(MAPK) p38 (Sainz-Perez et al., 2006), resulting in a ligand-independent BCR 

signaling, also defined tonic signaling (Monroe, 2006). The peculiar structural and 

functional features of the BCR in CLL, which are related to the presence or absence 

of somatic mutations of the IgVH genes, often associated with atypical expression 

of ZAP-70, dysregulate the downstream signaling pathways, directly contributing 

to the onset and progression of the disease (Lanham et al., 2003; Rassenti et al., 

2004). Importantly, this has also led to new promising therapeutic approaches that 

interfere with aberrant kinase activities and are now employed in clinical practice 

(Figure 2, also see below). Whilst the role of dysrgulated kinase activities has been 

ascertained, accumulating evidence is consistent with the hypothesis that the 

abnormal signal transduction is also the result of the lack of a proper 

counterbalance mediated by a number of phosphatases, whose expression or 

activity is altered in CLL cells. For instance, PTEN (Zou et al., 2015), PTPROt 
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(Motiwala et al., 2007), PHLPP1 (Suljagic et al., 2010) and SHIP1 (Cui et al., 2014) 

exhibit significantly decreased expression, leaving tonic pro-survival signalling 

intact, whereas PTPN22, which acts as a positive regulator of anti-apoptotic signals 

by hampering the negative regulation of BCR-dependent signalling pathways, is 

overexpressed (Negro et al., 2012). By contrast, Protein Phosphatase 2A (PP2A) 

(Perrotti and Neviani, 2008) and the Src homology 2 domain-containing 

phosphatase 1 (SHP-1) (Tsui et al., 2006) are expressed in CLL at levels 

comparable to normal B cells, but are functionally dysregulated by a variety of 

mechanisms, which include phosphorylation, interaction with cellular partners and 

location and are chiefly mediated by the Src Family Kinase (SFK) Lyn (Zonta et 

al., 2015; Tibaldi et al., 2011). In this scenario, not only this imbalance, but also a 

direct connection between kinases and phosphatases, with vicious cycles that 

establish aberrant signalling axes (Zonta et al., 2015) might be the new perspective 

for the identification of novel drug targets.  

 

 

Figure 5. Factors taking part in aberrant BCR-dependent signaling and targeted by specific 

agents, which represent a new strategy in the treatment of CLL (from Hallek, 2013). 
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Current pharmacologic treatments 

Patients with early-stage (Binet stage A and B without active disease; Rai 0, I and 

II without active disease) do not experience a survival advantage if they undergo 

chemotherapy (Dighiero et al., 1998), the standard approach being a watch-and-

wait strategy. In contrast, treatment should only be initiated in patients with 

symptomatic, active disease (Binet stage A and B with active disease or Binet stage 

C; Rai 0 – II with active disease or Rai III – IV). Standard front-line treatment in 

physically fit patients consists of fludarabine, cyclophosphamide and rituximab 

(FCR), which has been shown to improve overall survival (Hallek et al., 2010), 

though being associated with severe infections in fit elderly patients when 

compared to bendamustine (a purine analog like fludarabine) and rituximab. Other 

purine analogs such as cladribine (Robak et al., 2010) or pentostatin (Kay et al., 

2007) have shown similar activity. In older patients with relevant co-morbidity and 

without TP53 deletion/mutation, progression-free survival has been observed by 

combining chlorambucil and an anti-CD20 antibody (rituximab, ofatumumab or 

obinutuzumab) when compared with monotherapy and is therefore the standard 

approach  (Goede et al., 2014; Hillmen et al., 2013).  

Patients with TP53 deletion/mutation should be treated with novel agents (the 

Bruton’s tyrosine kinase inhibitor ibrutinib or the combination of the PI3K inhibitor 

idelalisib with rituximab), since they have a poor prognosis even after FCR therapy 

(Hallek et al., 2010), either as a front line-therapy or an approach to treat relapses. 

An allogeneic hematopoietic stem-cell transplantation may be taken into 

consideration in fit patients responding to kinase inhibitors (Dreger et al., 2014).  

As to relapse and refractory disease, asymptomatic CLL patients should take no 

therapy for a long period of time. First-line treatment may be repeated if the relapse 

or progression occurs at least 24–26 months after chemoimmunotherapy and if 

TP53 deletion/mutation was excluded, whereas relapse occurring within 24–36 

months after chemoimmunotherapy, or the lack of responsiveness to any therapy 

requires a change in the therapeutic (Eichorst et al., 2015). Treatment options 

include: 
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 BCL2 antagonists, such as ABT-199, alone or in combination within a clinical 

study (Roberts et al., 2016) 

 Bruton’s tyrosine kinase inhibitor ibrutinib (Byrd et al., 2014) 

 PI3K inhibitor idelalisib in combination with rituximab (Furman et al., 2014). 

 

The drugs used in clinical practice as described above are only few of the potential 

agents that might be approved for CLL treatment, especially if we consider how 

complicated the network of signals generated by the many factors just beneath the 

plasma membrane of a CLL cell is (Figure 5). In this regard, as confirmed by the 

current second-line approach, the most interesting and promising molecules are the 

kinase inhibitors. 

 

Kinase inhibitors in the treatment of CLL 

As described above, there are kinase inhibitors that have been approved as second-

line therapy in CLL patients. A few of them are described below and include the 

already mentioned ibrutinib and idelalisib, which are the most effective and 

currently utilized in the treatment of this disease. (also see Figure 5, where various 

agents targeting components of the BCR signaling network are shown, although 

not yet approved for therapy or already shown scarcely efficacious if administered 

alone). 

 

Dasatinib. It is a second-line drug used for the treatment of chronic myeloid 

leukemia (CML) (Keating, 2017). It can also inhibit Src  Family Kinases (SFKs), 

such as Lyn, and Btk. Its application should be considered not as a single-agent 

therapy in CLL but in combination to sensitize tumor cells to fludarabine-mediated 

apoptosis (Aguillon et al., 2007). 

Ibrutinib. Irreversible inhibitor of Btk, it barely induces apoptosis of CLL in vitro. 

Ibrutinib can counteract the protective effect of CD40L, BAFF, TNF-α, IL-6, and 

IL-4 (Herman et al., 2011), also preventing the adhesion induced by anti-IgM 
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antibodies, and the adhesion and migration of cells in response to chemokines (de 

Rooij et al., 2012). It has been to be able to induce the release of CLL cells from 

lymph nodes and bone marrow, considering the short rise in the lymphocyte count 

in the peripheral blood occurring following therapy, where they are no longer 

protected by the microenvironment, becoming prone to apoptosis (Chang et al., 

2013). Ibrutinib has been tested not only as a single agent but also in combination 

therapy (Byrd et al., 2014). 

 

Fostamatinib. It is a prodrug, its active metabolite being R406 and acting as a Syk 

inhibitors. It has also been studied for the treatment of autoimmune diseases such 

rheumatoid arthritis. In vitro fostamatinib, by inhibiting Syk, jeopardizes the 

viability of CLL cells, which cannot be rescued even when stimulated with anti-

IgM antibodies or placed in co-cultures with the NLCs. It exhibits synergy with 

fludarabine (Herman et al., 2013). 

 

Idelalisib. Also termed GS-1101 or CAL-101, it selectively inhibits the PI3Kδ 

p110δ isoform in vitro, thereby inducing apoptosis of CLL, and reducing the 

migration by blocking the signals generated by CXCL12 and CXCL13. It also 

shows fewer cytotoxic effects on NK cells when compared with non-selective 

inhibitors of PI3K (α, β, δ, γ) (de Weerdt et al., 2013). 

 

Lyn and its substrates: anti-apoptotic strategy of CLL cells 

One approach aimed at the discovery of new therapeutic targets in CLL is to 

explore the intracellular pathways responsible for modulating the proliferation 

and/or apoptotic rate of CLL cells. The extracellular cues that are sensed by the 

BCR in concert with other co-receptors need to be translated by intracellular 

switches, most of which are protein kinases, as described above. In the last ten 

years, the Src Family Kinase (SFK) Lyn has emerged as a factor central to 

sustaining the cancer phenotype of CLL cells and orchestrating the aberrant 

signaling network downstream of the BCR. In fact, it is the first protein kinase to 
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transduce the signal from BCR by phosphorylating the Immunoreceptor Tyrosine-

based Activation Motifs (ITAMs) placed on Igα / Igβ chains of the BCR, thus 

triggering the recruitment of other kinases and adapter molecules downstream, such 

as Syk, PLCγ2, PI3K, Btk, Vav and BLNK, which form the "signalosome". This 

multiprotein complex propagates the signals downstream and activates the 

signaling pathways that support proliferation, and/or survival through the 

activation of anti-apoptotic mechanisms (Contri et al., 2005; Tibaldi et al, 2011). 

In addition to a “positive” role, Lyn has also found to exert a “negative” action, by 

phosphorylating the inner tail of CLL surface marker CD5 and thus recruiting the 

tyrosine phosphatase SHP-1, which contributes to the anti-apoptotic signals by 

dephosphorylating specific targets such as Vav1 (Tibaldi et al, 2011; also see 

below). Yet, Lyn has been shown to be located not only at the plasma membrane, 

as expected, but also in the cytosol as a member of a multiprotein complex 

associated with HSP90, where it is maintained constitutively active, thus 

explaining the high level of tyrosine phosphorylation observed in this compartment 

of CLL cells (Trentin et al., 2008). The discovery illustrated above also spurred 

new research into the nature of possible Lyn’s cytosolic substrates with a view to 

extend the repertoire of new therapeutic targets of this disease, especially in the 

light of the disappointing results in managing Lyn-targeting drugs, such as 

dasatinib (McCaig et al, 2011; Kater et al., 2014). In this regard, the first evidence 

of how Lyn’s dysregulated expression, activity, and localization mediate resistance 

to apoptosis in CLL by affecting the phosphorylation status of a specific substrate 

in the cytosol emerged through the identification of procaspase-8. In fact, the 

phosphorylation at Y380 was shown to result in the dimerization of the caspase 

zymogen, blocking the so-called extrinsic pathway of apoptosis, whereas the use 

of SFK inhibitors abolished the phosphorylation of this initiator caspase, inducing 

its activity and initiating the apoptotic cascade (Zonta et al., 2014). Interestingly, 

by using both dasatinib and other SFK inhibitors, it was observed that not only 

tyrosine phosphorylation decreased, thus bringing about cell death by a caspase-

dependent mechanism, but also caused a drastic drop of the phosphorylation of 
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specific serine residues of protein kinase that are central to cell survival, such as 

Akt (Ser473) and the substrate thereof GSK-3 (Ser9). This evidence suggested that 

a yet-to-identify protein phosphatase, which reasonably might be thought to be 

downregulated by Lyn, was involved in the dephosphorylation of these proteins. 

Interestingly, SFK inhibitors also induced the dephosphorylation of the inhibitory 

site of the tyrosine phosphatase SHP-1, S591, raising the question whether SHP-1 

might be implicated in the control of apoptosis and hence might represent a 

potential pharmacological target (see below for details). Importantly, the fact that 

the dephosphorylation of these factors was counteracted by okadaic acid at 

concentrations within the nanomolar range led to the reasonable hypothesis that the 

protein phosphatase responsible for these events was Protein Phosphatase 2A 

(PP2A) (Zonta et al., 2015). This was also corroborated by the observation that two 

mechanisms of inhibition of the phosphatase itsef occurred, namely a) PP2A was 

phosphorylated at Tyr307 of its catalytic subunit (PP2Ac), an inhibitory site 

targeted by tyrosine kinase (Barisic et al., 2010), plausibly Lyn in CLL, considering 

its overactivity and that b) the oncoprotein SET/I2PP2A, which is known to act 

acts as PP2A endogenous inhibitor (Christensen et a., 2011), was tightly bound to 

PP2A, this interaction being strengthened by the phosphorylation at Tyr307 (Zonta 

et al., 2015).  

For a better understanding of the role of the inhibition of phosphatases in CLL, the 

structure, regulation and function of PP2A and SHP-1 illustrated below. 
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PROTEIN PHOSPHATASE 2A: MASTER REGULATOR OF VIRTUALLY 

ALL CELLULAR PROCESSES 

Protein Phosphatase 2A (PP2A) constitutes a major family of serine/threonine 

phosphatases, being ubiquitously expressed and highly conserved among the 

species (mostly eukariotes) (Sangodkar et al., 2016). It is also abundantly 

expressed, accounting for up to 1% of total cellular protein in some tissues (Shi, 

2009) and contributing, along with Protein Phosphatase 1, to over 90% of all 

serine/threonine phosphatase activities in most tissues and cells (Eichhorn et al., 

2009). PP2A regulates a great variety of cellular functions including metabolism, 

cell cycle, DNA replication, transcription and translation, proliferation, and 

apoptosis (Seshacharyulu et al., 2013). Its role as a tumor suppressor was first 

suggested when okadaic acid (OA), an already known carcinogen, was shown to 

selectively inhibit PP2A (Nagao et al., 1989). Additional evidence that its 

inhibition might lead to malignant transformaton emerged from studies on the 

oncogenic simian vacuolating virus 40 (SV40) small T-antigen, probably capable 

of disrupting the heterotrimeric structure of PP2A (Mumby, 1995). Furthermore, 

different components of the PP2A holoenzyme were shown to be mutated in 

various forms of cancer, e.g. CML, acute myeloid leukemia (AML) or lung cancer; 

on the other hand, the restoration of PP2A activity has been shown to induce cell 

death in cancer cells (both in vitro and in vivo) and counteract uncontrolled 

proliferation (Eichhorn, 2009; Oaks and Ogretmen, 2015). 

 

PP2A: structure 

Active PP2A holoenzyme is composed of three main subunits,  

 PP2AC, the catalytic subunit (in green in figure 6) 

 PP2AA, the structural subunit (in red) 

 PP2AB, the regulatory subunit (in blue). 

The core of the enzyme is made up of PP2AC and PP2AA, and can exist as a dimer 

(one third of the total cellular PP2A) or associated with one of the different types 

of B subunits. The numerous genes and isoforms of PP2A subunits result in a large 
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heterogeneity of PP2A holoenzymes (Ramaswamy  et al., 2015), with nearly 100 

possible PP2A holoenzymes that can be found in the cell (Haesen et al., 2014). 

 

PP2AC: the catalytic subunit 

PP2AC is responsible for the catalytic activity of the enzyme. PP2AC is a 36 kDa 

subunit, with two isoforms, Cα and Cβ, having 97% identity in their primary 

sequence (Seshacharyulu et al., 2013; Janssens and Goris, 2001). These two 

isoforms are ubiquitously expressed (with peaks in brain and the heart), being 

PP2ACα predominant at the plasma membrane and PP2ACβ in the cytoplasm and 

nucleus; their expression levels are different, since the α isoform is 10 times more 

abundant than β. (Janssens and Goris, 2001). As explained below, this subunit 

undergoes a variety of post-translational modifications and interacts with protein 

partners, which all affect the enzyme activity. 

 

 

PP2AA: the structural subunit 

PP2AA, also known as PR65 or structural subunit, is the structural docking platform 

for the subunits B and C. The structure of PP2AA is composed of 15 tandem repeats 

of 39 amino acids termed HEAT (huntingtin/elongation/A subunit/TOR) motif 

Figure 6. PP2A heterotrimer; modified from PDB ID: 2NYM. 
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(Janssens and Goris et al., 2001). As already seen for PP2AC, also PP2AA is 

encoded by two genes which lead to the production of two protein isoforms, α and 

β, which share around 87% of sequence identity and a molecular weight of 65 kDa. 

90% of PP2A holoenzymes contain the α isoform and 10% the β, likely due to 

different roles in the cell.  

 

PP2AB: the regulatory subunit 

PP2AB represent the most heterogeneous group of PP2A subunits, which totally 

lack structural similarities (Eichhorn et al., 2009; Janssens and Goris, 2001). The 

presence of this subunit is extremely important in that it is related to tissue 

expression, interaction with protein partners and substrate specificity. They can be 

classified into four distinct families. 

 

B family (PR55) 

This first family comprises four distinct subunits of 55 kDa each (called α, β, γ, δ,). 

α and δ are mostly ubiquitous in comparable amounts, β and γ are highly enriched 

in the brain. One of the most interesting features of this family is the presence of 

five degenerate Trp/Asp-40 (or WD-40) repeats, i.e. sequences composed of a 

partially conserved 40 amino acid sequence and ending with Trp-Asp. These 

portions are thought to mediate protein-protein interaction, for example the one 

with TGF- β receptors (Janssens and Goris, 2001). 

 

B’ family (PR61) 

These subunits have a molecular weight of 61 kDa and are encoded by five genes 

which, due to their splice variants, lead to the production of seven subunits. They 

show a peculiar and precise distribution in the cell: α, β, and ɛ are mostly found in 

the cytoplasm, γ1, γ2 and γ3 are mostly found in the nucleus, while B’δ is expressed 

in both compartments the nucleus and the cytoplasm (Eichhorn et al., 2009). All 

the PR61s are structurally similar in the central part (80% of sequence identity), 

differing at N- and C- termini. It has been shown that this type of subunits exposes 
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a highly acidic surface, which is believed to be responsible of further protein 

recruitment (Eichhorn et al., 2009).  

 

B’’ family (PR72) 

Little is known about this family, even as to the number of the members, though it 

is thought that there are four to five (Janssens and Goris, 2001). While PR130 is 

ubiquitous, PR72 is expressed exclusively in the heart and skeletal muscle, (with 

highest levels in heart and muscle), PR59 in testis, kidney, liver, brain, heart and 

lung; PR48 and G5PR are still matter of discussion (Seshacharyulu  et al., 2013; 

Janssens and Goris, 2001) 

 

 B’’’ family 

These subunits have been shown to share a conserved structure with WD-40 repeats 

that are typical for B family. They are involved in Ca2+-mediated signaling 

(Janssens and Goris, 2001).  

 

PP2A: function 

Considering the potential impressive number of combinations of its subunits, it is 

reasonable to assume that PP2A has a considerable number of functions. As a 

master regulator of signal transduction, PP2A directly influences cell proliferation, 

differentiation, adhesion, migration, metabolism and, most of all, survival (Haesen 

et al., 2014). Figure 7 shows only a few of the substrates regulated by PP2A 

(Ciccone et al., 2015).  
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PP2A as a tumor suppressor 

PP2A is considered a tumor suppressor. First evidence was the pro-oncogenic 

effect of okadaic acid (OA), a specific PP2A inhibitor (Bialojan and Takai, 1988). 

However, stronger evidence arose from studies on eukaryotic cells, which showed 

how the imbalance of the expression of one or more subunits caused severe 

misregulation in cell life; for instance,  

 overexpression of PP2AAα, which leads to the sequestration of the catalytic 

subunit, subsequent inefficient dephosphorylation and activation of myosin 

light chain kinase followed by inhibition of cytokinesis and the formation of bi- 

or multi-nucleated cells (Wera et al., 1995);  

 truncation of PR61 leads to radio-resistance and metastasis, PP2A being 

involved in the regulation of paxillin and Mdm2 (inhibitor of the p53 tumor 

suppressor). The decreased dephosphorylation of paxillin (adaptor molecule 

Figure 7. PP2A is involved in various cellular signals ranging from growth, survival to the 

cell cycle, to name a few. PP2A down-regulation may affect multiple pathways resulting in 

alteration of apoptosis, cell growth, proliferation, and differentiation in adult cells (from 

Ciccone et al., 2015). 
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involved in cell migration), enhances cell motility promoting metastasis (Ito et 

al., 2000); 

 mutations of PP2AA have been demonstrated to be present in a variety of human 

cancers, specially lung tumors, lung-derived tumors and colon tumors (Wang 

et al, 1998), while mutations of PPP2R1B gene are involved in the onset of 

almost all types of colorectal cancers (Takagi et al., 2000); 

 deletion of PR55 in eukaryotes leads the activation of MAPK signaling, 

responsible for cell overgrowth (Silverstein et al., 2002); the deletion of either 

PP2AA or PP2AC provokes the disappearance of all PP2A subunits; ablation of 

total PP2A by using dsRNA against either A or C subunit enhances ERK 

activation (Silverstein et al., 2002). 

 

This information indicates that a broad comprehension of the properties and the 

regulation of this enzyme could lead to a new approach in new strategies of 

cancer treatment. 

 

PP2A and apoptosis  

Apoptosis – or programmed cell death - is a crucial event for cellular turnover; lack 

or excessive apoptotic signals is a common hallmark of diseases such as 

neurodegenerative disorders, ischemia, autoimmune disorders and cancer. The 

capability of modulating cell life and death is an extremely desirable 

pharmaceutical aim because of its huge therapeutic potential (Elmore, 2007). 

For instance, β-catenin is a central component of the Wingless-type MMTV 

integration site (Wnt)/β-catenin pathway. β-catenin activates growth and anti-

apoptotic mechanisms due to the activation of c-MYC genes. PP2A inactivates this 

pathway and blocks these pro-survival signals (Perrotti and Neviani, 2013). 

PP2A is also involved in one of the main apoptosis-modulating signaling cascades: 

the phosphoinositide 3-kinase (PI3K)/Protein kinase B (AKT) pathway, which 

supports cell survival, proliferation, cell cycle progression, proliferation, 
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angiogenesis, and self-renewal of stem cells (Yoon et al., 2010). PP2A suppresses 

this pathway by directly dephosphorylating and inactivating Akt and by 

suppressing Akt-activation signals (Ciccone et al., 2015). Akt exerts an anti-

apoptotic effect by inhibiting the release of cytochrome C from mitochondria 

through phosphorylation of BAD (Bcl-2-associated death promoter) as well as pro-

caspase-9 (Perrotti and Neviani, 2013). The same pathway partly also involves the 

inactivation of Bcl-2 (B-cell lymphoma 2), an anti-apoptotic factor, and the 

activation of BAD and Bim (Bcl-2-like protein 11).  

 

PP2A: regulation 

Considering the fundamental function of PP2A, it must be strictly regulated. 

Moreover, given the many possible isoform combinations, the modes of regulation 

of PP2A are quite heterogeneous, and can be classified mainly into post-

translational modifications and interaction-mediated modulation. 

 

Post-translational modifications 

The main post-translational events that can affect PP2A activity are 

phosphorylation and methylation, both occurring on the catalytic subunit.  

The phosphorylation of Thr304 provides steric hindrance hampering the 

recruitment of other subunits, while that of Tyr307 prevents methylation of the C-

terminus, which occurs at Leu309 and is mediated by Leu-carboxyl 

methyltransferase of type I (LCMT1) (Perrotti and Neviani, 2013). The addition of 

a methyl residue to the Leu leads to the recruitment of B subunits other than than 

B’ and B’’, which instead prefer non-methylated PP2AC (Perrotti and Neviani, 

2008). 

 

Physiological modulators: cellular inhibitors 

I1PP2A  

The inhibitor-1 of PP2A (I1PP2A), also known as acidic leucine-rich nuclear 

phosphoprotein 32 A (ANP32A), is a 32-kDa sphingosine/dimethylsphingosine-

sensitive PP2A inhibitor (Habrukowich et al., 2010). It also functions as part of the 
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histone acetyltransferase regulatory INHAT complex in the nucleus, which also 

contain, as will be discussed below, another PP2A inhibitor, the oncoprotein named 

I2PP2A/SET) (Seo et al., 2001). It interacts with the catalytic subunit of PP2A 

(PP2AC) alone or when the latter is complexed with PP2AA. This binding is 

weakened by tyrosine phosphorylation of ANP32A, with consequent elevation of 

PP2A activity (Yu et al., 2004).  

 

I2PP2A (SET)  

The inhibitor-2 of PP2A (I2PP2A), also known as SET (Suvar3-9, enhancer of 

zeste, trithorax, hereafter referred to as SET) is a 28-kDa protein (Figure 8) that is 

able to interact and inhibit PP2AC. Its function is also regulated by the 

phosphorylation of a number of serine residues including Ser9, which interferes 

with the nuclear localization signal and accounts for its retention within the 

cytoplasm (Yu et al., 2013). The constitutive phosphorylation that results from the 

SET’s inhibitory action involves PP2A substrates including Akt, PTEN, ERK1/2, 

Mcl-1, c-Myc, c-jun, and pRb (Haesen et al, 2014), which can then dysregulate a 

number of signaling pathways giving rise to diseased conditions such as cancer 

above all (Ruvolo et al., 2016). 

 

 

Figure 6. Crystal structure of SET protein, monomer (modified from PDB ID 2E50). 
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CIP2A  

CIP2A  (cancerous  inhibitor  of  PP2A) is a 90-kDa oncoprotein which was found 

to be tightly bound to PP2AA rather than the catalytiuc subunit of the heterotrimer, 

in lymphocytes from leukemia patients. Scarcely expressed under physiological 

conditions, its overexpression is associated to the development of a great number 

of neoplasias, although a lack of expression alters spermatogenesis. Several 

oncogenic transcription factors including Ets, Myc and E2F increase the expression 

of CIP2A, which in turn represents a marker of cancer aggressiveness and poor 

prognosis (Khanna et al., 2013). CIP2A ultimately correlates with the 

phoosphorylation and stability of c-Myc, enhanced Akt-mediated signaling, and 

dysregulation of protein kinases implicated in the regulation of the cell cycle such 

as NEK2 and PLk1. In addition, the activation of the mTOR  pathway has been 

observed (Haesen et al,,  2014). 

 

Physiological modulators: cellular activators 

Ceramides 

Ceramides are sphingolipids composed of a fatty acid bound to the amine moiety 

of sphingosine (Figure 9). These are sphingolipid metabolite and structural 

components of the cell membrane with potent signaling properties (Janssens and 

Rebollo, 2012) as well as characteristic activators of PP2A. Ceramides has been 

shown to activate or restore the pro-apoptotic activity of PP2A, but the mechanism 

by which this occurs is poorly understood. It has been reasonably hypothesized that 

this sphingolipid binds to SET, thereby interfering with the formation of a 

SET/PP2A complex and preventing the inhibition of the phosphatase activity 

(Saddoughi et al., 2013). In this regard, ceramide can induce apoptosis in prostate-

Figure 9. Ceramide 
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cancer cells by suppressing the Akt signaling pathway, which depends on the 

reactivation of PP2A (Perrotti and Neviani, 2013). As will be discussed later, an 

analogue of spingosine, the ceramide precursor, named fingolimod (FTY720, 

Gilenya®, Figure 6), a drug approved for oral therapy in multiple sclerosis, has 

proved effective in activating PP2A by interfering with the interaction with SET 

(Saddoughi et  al., 2013).  

 

Non-physiological inhibitors 

Okadaic acid (OA) 

OA is the prototypical PP2A inhibitor, a toxin produced by dinoflagellates 

(Reguera et al., 2014), and that reversibly binds within the catalytic pocket of 

PP2AC. At concentrations within the nanomolar range, it proves highly selective 

towards PP2A, which has allowed for the exploration of PP2A as a tumor 

suppressor.  

 

Forskolin 

Forskolin is a diterpene capable of raising the intracellular levels of cAMP, but also 

to activate PP2A, especially in the form of 1,9-dideossi  forskolin, which lacks the 

ability to activate adenylyl cyclase. In CML, a marked apoptosis has been observed 

following reactivation of PP2A by forskolin (Perrotti e Neviani,  2013).  

Figure 10. Okadaic acid 
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Fingolimod (FTY720)  

As mentioned above, fingolimod (2-Amino-2-[2-(4-octylphenyl)ethyl]propane-

1,3-diol, hereafter FTY720, Figure 12) is the first oral drug approved in the 

treatment of the relapsing-remitting form of multiple sclerosis and marketed as 

Gilenya® by Novartis. First identified within a library of compounds synthesized 

in an effort to develop derivatives of myriocin, a metabolite of the fungus Isaria 

sinclairii sharing close structural similarity to sphingosine and displaying a potent 

immunosuppressive action by inhibiting serine palmitoyltransferase, a crucial 

enzyme in sphingolipid metabolism (Miyake et al., 1995), FTY720 sparked 

considerable interest in the area of organ transplantation in that a number of 

preclinical studies using animal models demonstrated the efficacy of FTY720, 

alone or in combination with cyclosporine, in prolonging solid organ allograft 

survival. (Brinkmann and Lynch, 2002; Budde et al, 2006). Importantly, FTY720 

is considered a prodrug, because it must first be phosphorylated by sphingosine 

kinase 2 (SK-2) (Pelletier and Hafler, 2012; Pitman et al., 2012; Cyster and 

Schwab, 2012), to be pharmacologically active (Figure 13). As a result, it mimics 

Figure 11. Forkolin 

Figure 12. Chemical structure of fingolimod (FTY720) 
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the action of sphingosine-1-phosphate (S1P) by interacting with the class of G 

protein-coupled receptors named S1P receptors (S1P1 and S1P3-5, but not S1P2), 

S1P1 in particular, which is highly expressed on the plasma membrane of activated 

T lymphocytes (Figure 14).  

In contrast with S1P, which modulates the diverse functions of a variety of cells 

through differential coupling of the receptor to heterotrimeric G-proteins (αI, αq or 

α12/13) and through heterogeneity in terms of the constitutive and inducible patterns 

Figure 13. Phosphorylated form of fingolimod (FTY720)  

Figure 14. The phosphorylated form of fingolimod (FTY720) is extruded from the cell, 

thereafter binding to, and bringing about the internalization of S1P receptors, S1P1 in 

particular (from Brinkmann et al., 2010). 
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of expression of the S1P receptors themselves in.immune cells (Rivera et al., 2008), 

FTY720 strongly binds to S1P1 provoking its internalization and degradation rather 

than thereby preventing egression of T lymphocytes from lymphoid organs, which 

is the basis for the immunosuppression (Lee et al., 2010). Importantly, its ability to 

activate PP2A depends on its non-phosphorylated form, as demonstrated by the 

silencing of SK-2 (Saddoughi et al., 2013), which confers antitumor activity to 

FTY720, especially against hematologic malignancies (Oaks et al., 2013). The 

structure of FTY720 has recently been used as a template to design new molecules 

devoid of immunosuppressive action (Zonta et al., 2015), a characteristic highly 

desirable for the development of compounds that might be considered for pre-

clinical studies or hopefully clinical trials including patients afflicted by any type 

of cancer. In our laboratories, new FTY720 analogues have recently been 

synthesized  with a structure that retains specific features for the interaction with 

SET (Zonta et al., 2015). The preliminary successful tests have led to the 

development of a library of compounds that are now included in a patent 

application recently filed at the national patent office.  
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SRC HOMOLOGY 2 DOMAIN-CONTAINING PHOSPHATASE 1 (SHP-1)  

Tyrosine phosphorylation, whether occurring upon engagement of Receptor 

Tyrosine Kinases (RTK) or being mediated as a result of the involvement of Non-

Receptor Tyrosine Kinases (NRTK), is a critical event that initiates and regulates 

a myriad of cellular processes including growth factor receptor signaling, cell 

adhesion, metabolism, cell cycle control, transcriptional activation, to mention but 

a few (Hunter, 2009). This flow of information, which occurs through the 

integration of the great variety of signaling pathways being activated 

simultaneously, can be interrupted by the other actors of reversible tyrosine 

phosphorylation, namely protein tyrosine phosphatases (PTPs). As in the case of 

serine/threonine phosphatases, accumulating evidence shows that these are not 

merely the off-switches of signaling pathways, but contribute to the fine tuning of 

intracellular communication, so that the diverse stimuli yield generate specific 

effects that meet the cellular needs any time (Ostman and Böhmer, 2001). This 

multifaceted function can be well exemplified by the action of two members of the 

Src Homology 2 domain-containing Phosphatase (SHP) family 1 and 2, SHP-1 and 

SHP-2 for short (Neel et al., 2003; Chong and Maiese, 2007), which, though 

sharing high sequence homology, often play opposite biologic roles. As to their 

expression, SHP-1  is  mainly present in hematopoietic and epithelial cells and is 

widely regarded as a negative regulator of signaling, whereas SHP-2 is  ubiquitous 

and shown to have a role in promoting cell activation (Neef et al., 2006; Shaker et 

al., 2011; Thabut et al., 2011; Forbes et al., 2012). As to their role in disease, 

especially in cancer development, the absence of SHP-1 expression has been 

observed in several forms of lymphomas and leukemias (Ma et al., 2003; Neel, 

1993; Wu et al.,2003), which underlines the role of SHP-1 as a tumor suppressor, 

whereas the uncontrolled activation of SHP-2 is considered an oncogenic factor 

(Irandoust et al., 2009).This chapter will focus on SHP-1, which is known as a 

negative regulator of signaling pathways downstream of several RTKs and now 

deemed a potential target for cancer therapy (Watson et al., 2016; López-Ruiz et 
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al., 2011). In CLL cells in particular, it has been recently demonstrated that SHP-1 

is segregated into two forms, one in an active form being bound to the inhibitory 

co-receptor CD5, and the other in the cytosol in an inhibited conformation due to 

its phosphorylation of an inhibitory residue, both contributing to the resistance to 

apoptosis (Tibaldi et al.,  2011).  

SHP-1: structure 

SHP-1 is encoded by the PTPN6 gene, the splicing of which gives rise to four 4 

gene products, 3 variants of SHP-1 with different N-termini and a long form of 

SHP-1 termed SHP-1L where the C-terminus is extended. As shown in Figure 15A, 

the SH2 domains are situated at the N-terminus of the molecule, followed by the 

catalytic domain and a C-terminal tail. This latter is displayed in more detail in 

Figure 15B, where critical residues for the regulation of the catalytic activity are 

emphasized. In the inactive conformation, the N-terminal SH2 domain is 

intramolecularly associated with the PTP domain, thereby repressing its activity, 

A 

B 

Figure 15. (A) Structural characteristics of SHP-1 variants (from Poole and Jones, 2005). (B) 

Structure of SHP-1 and sequence of the C-terminus with tyrosyl (Y, Tyr536 and Tyr564) and seryl 

(S, Ser591) residues playing a crucial role in the activation and inhibition of the phosphatase 

respectively. 
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whereas the engagement of the SH2 domains leads to the activation of the 

phosphatase. Figure 16 shows that, whether due to the binding of the SH2 domains 

to the phosphorylated tyrosyl residues of Immunoreceptor Tyrosine Inhibitory 

Motifs (ITIMs, Figure 16A) in inhibitory cell surface co-receptors such as CD22 

(Cyster and Goodnow, 1997), CD72 (Adachi et al., 1998), and CD5 (Tibaldi et al., 

2011), or to the intramolecular interaction with the phosphorylated form of Tyr536 

and Tyr 564 in the C-terminus (Figure 16B) (Zhang et al., 2003), the inhibition of 

SHP-1 is relieved. Besides the interaction of the N-terminal SH2 domain with the 

PTP domain, another mechanism of inhibition of SHP-1 is the phosphorylation of 

Ser591 by PKC or MAPK, which has not been described for SHP-2 (Jones et al., 

2004; Poole and Jones, 2005).  

 

SHP-1: function 

Basically, SHP-1 is a regulator of haematopoietic cells, downregulating the 

pathways that promote cell growth and survival (Zhang et al., 2000), among others. 

In other types of cells, it also attenuates and terminates signals involved in cell 

proliferation, differentiation, survival, and apoptosis (Duchesne et al., 2003; Wu et 

al., 2003; Valencia et al., 1997; Keilhack et al., 2001; Tenev et al., 2000). SHP-1  

also  regulates glucose  homeostasis  by modulating insulin signaling  in  liver  and  

Figure 16. Models of the activation of SHP-1 based upon the engagement of the SH2 domains 

with phosphorylated tyrosyl residues of receptors or protein partners (A) or harbored within the 

C-terminus of the phosphatase. (from Poole and Jones, 2005). 
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muscle (Dubois et al., 2006) and negatively affects bone resorption (Aoki et al., 

1999).  

SHP-1 performs these functions by either directly dephosphorylating the the 

cytosolic tails of the RTKs that become activated upon engagement with their 

respective ligands including Platelet-Derived Growth Factor Receptor (PDGFR), 

Insulin Receptor (IR), the Epidermal Growth Factor Receptor  (EGFR), and 

Vascular Endothelial Growth Factor Receptor (VEGFR) type 2 (Geraldes et al., 

2009; Dubois et al., 2006; Tenev et al., 1997; Bhattacharya et al., 2008), or 

components of the immune receptors that do not possess kinase activity such as 

from the activation of a variety of plasma membrane receptors including the B Cell 

Receptor (BCR) (Adachi et al., 2001), T Cell Receptor (TCR) (Perez-Villar et al., 

1999), and NK Activating Receptor (Matalon et al., 2016). As previously 

mentioned and exemplified in Figure 17, this latter function occurs especially when 

SHP-1 is recruited to the ITIMs of the inhibitory receptors, such as CD5, CD22, 

CD72, FcγRIIB, p70-NKB1 and KIR. (Zhang et al., 2000; Silver and Cornall, 

1. Figure 17. Role of SHP-1 in downregulating signals from plasma membrane receptors. The 

phosphorylation of the of inhibitory ITIMs of inhibitory receptors results in the recruitment of the 

cytosolic phosphatase SHP-1 with dephosphorylation of cytosolic tails of the plasma membrane 

receptors initiating signal transduction. Here, the action of SHP-1 on the signals downstream of BCR 

engagement is shown. Importantly Lyn is unique among the tyrosine kinases in immune cells, in that 

it takes part in negative feedback (from Silver and  Cornall, 2003) 
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2003), once these are uniquely phosphorylated by the SFK Lyn (Tibaldi et al., 

2011). Moreover, SHP-1 downregulates signals mediated by non-receptor tyrosine 

kinases (especially those belonging to the Src family) and downstream mediators 

that participate in signal transduction such as Erk,  JNK  STATs, Jak2,  NF-kB,  

and  PI3K-Akt  (Chong and Maiese, 2007).   

The  current  understanding  of  the highly  complex  function  of SHP-1 has posed 

the question whether it might represent a new attracting target for drug 

development, especially in diseases where its activity is suppressed, as in the case 

of several types of cancer (Sharma et al., 2016; Watson et al., 2016). Importantly, 

drugs already used in the clinical practice as multi-kinase inhibitors have recently 

proved to be direct activators of SHP-1, the molecular models showing that these 

compounds may intervene in the inhibitory mechanism mediated by the N-terminal 

SH2 domain (Tai et al., 2014a). In the following sections, more details will be 

provided as to their interaction with SHP-1 and their potential role as templates for 

the development of more selective compounds to be employed in cancer therapy. 

 

SHP-1 activators: angiokinase inhibitors doing a front flip? 

In the past few years, drugs already approved as multi-angiokinase inhibitors 

directed against RTKs such as PDGFR and VEGFR in particular, have emerged as 

agents capable of activating SHP-1, including sorafenib (Figure 18A) (Wilhelm et 

al., 2008) and nintedanib, also known as BIBF-1120 (Figure 18B) (Tai et al., 

2014a). Many derivatives of the former have been developed and tested in a number 

of cancer models, including hepatocellular carcinoma (Tai et al, 2014b) and triple 

negative breast cancer cells (Liu et al., 20117), exploiting this phosphatase-directed 

potential. As to nintedanib, it has been approved for the treatment of pulmonary 

fibrosis and second-line therapy of lung adenocarcinoma (McCormack, 2015) and 

now being evaluated in further clinical trials. Interestingly, a docking model has 

been proposed for nintedanib targeting SHP-1, based upon the interaction with 

Glu524 through hydrogen bonding (Tai et al., 2014a), residue that lies in the close 

proximity to the catalytic domain of the phosphatase and may account for a steric 
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hindrance preventing the inhibited conformation promoted by the N-terminal SH2 

domain. In our leukemia model, we also had observed that the phospho-Ser591-

dependent inhibition occurred, which , according to other authors (Tai et al., 2014a) 

can be circumvented by nintedanib itself, which operates independently of post-

translational regulatory mechanisms, possibly driving conformational changes with 

subsequent activation of the phosphatase. In Figure 19, the docking model 

describing the SHP-1/nintedanib interaction is shown. 

 

A 

B 

Figura 18. Sorafenib (A) and nintedanib (B) 

Figura 19. Model of interaction between nintedanib and SHP-1 
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Notably, these studies show that a crucial target for SHP-1 is the phosphorylated 

form of the family of Signal Transducer and Activator of Transcription (STAT) 

proteins, and STAT3 in particular, whose activity as cytoplasmic signaling protein 

and nuclear transcription factor is frequently elevated in a variety of solid tumors 

and hematological malignancies and which is abolished by the treatment with 

sorafenib, nintedanib or derivatives thereof (Yang et al., 2008; Abdulghani et ., 

2013; Su et al., 2016; Chen et al., 2012; Tai et al., 2014a).  
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This study draws upon previous observations concerning the functional status of 

critical enzymes in the signal transduction of CLL cells, which directly depends on 

the phosphorylation of specific factors at regulatory residues and in specific 

compartments as well as the interaction with protein partners that affect their 

activity. More in detail, having assessed that the inhibitory seryl residue of SHP-1 

is dephosphorylated by PP2A (Zonta et al., 2015), the aim of this work was  

 

 to assess whether he restoration of PP2A activity by the FTY720 analogue 

MP07-66 might lead to SHP-1 activation, resulting in the suppression of the 

Lyn-dependent pervasive tyrosine phosphorylation that characterizes CLL 

cells and is shown to be an anti-apoptotic factor;  

 to attempt to activate SHP-1 directly by using nintedanib, which in addition 

to acting as a triple angiokinase inhibitor, is capable of circumventing the 

phospho-S591-dependent inhibition of the phosphatase;  

 to establish whether the activation of SHP-1 affected the level of 

phosphorylation of PP2AC at Tyr307, a residue that was shown to be crucial 

for a tight interaction of PP2A with SET and the total inhibition of the 

phosphatase activity of PP2A itself, and this effect might ignite a virtuous 

cycle that could potentiate the action of both of these tumor suppressors. 

 

In addition to providing further insight into the molecular basis of CLL, the results 

achieved in this study might put forward new prospects in the development of 

alternative strategies in the treatment of CLL by mobilizing endogenous resources 

(phosphatases), which are typically inhibited in cancer cells rather than suppressing 

active players (e. g. kinases), which may be operating in normal tissues  at the same 

time, with consequent adverse undesidered effects. 
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Nintedanib directly activates SHP-1 in the cytosol of CLL cells 

We previously demonstrated that SHP-1 is present in CLL cells in two forms, one 

bound to the plasma membrane receptor CD5 in an active state, and the other in the 

cytosol in an inhibited conformation (Tibaldi et al., 2011). As shown in Figure 20A, 

the plasma membrane-enriched fraction (particulate) and the cytosol of CLL cells 

were separated from total lysates and immunoblotted with anti-pY536-SHP-1 and 

anti-pS591-SHP-1 antibodies, a positive response to which is indicative of either 

activation or inhibition of SHP-1, respectively. As expected, the distribution of 

SHP-1 in the two cellular compartments paralleled the functional status, these 

characteristics turning out to be independent of the diverse biological and clinical 

features of the single patients (Table 2). Moreover, in order to establish how the 

phosphorylation status affected SHP-1 activity, SHP-1 was pulled down from the 

cytosolic and particulate fractions and tested for the phosphatase activity by using 

32P-labeled Band 3 as a substrate (Tibaldi et al., 2014). The phosphatase activity of 

SHP-1 exhibited by the cytosolic fraction was negligible as compared to that of the 

particulate (Figure 20B), underscoring that the catalytic activity of SHP-1 can be 

profoundly affected by the phosphorylation at different residues. This finding 

raised the question whether the inhibition of the pool of SHP-1 in the cytosol was 

related to the elevated level of tyrosine phosphorylation CLL cells in this 

compartment, which was previously shown to characterize this disease and to 

promote anti-apoptotic mechanisms (Zonta et al., 2015). Therefore, we first 

performed in-vitro phosphatase activity assays on the cytosolic pool of SHP-1 in 

the presence of nintedanib (Figure 20), which in addition to acting as receptor 

tyrosine kinase inhibitor (Hilberg et al., 2008), (Roth et al., 2009) has been shown 
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to remove the pS591-dependent inhibition of SHP-1 (Tai et al., 2014). To this end, 

SHP-1 was pulled down from the cytosolic fraction of CLL cells in the absence or 

the presence of serine/threonine phosphatase inhibitors in order to assess the effect 

of increasing concentrations nintedanib on the activity of the phosphorylated and 

2 
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non-phosphorylated forms of SHP-1 (Figure 20C, inset). Figure 20C shows that 

Figure 20. In-vitro effect of nintedanib on the differently phosphorylated forms of SHP-1 pulled down from CLL cells. 

(A) Whole cell lysates, particulate and cytosol of 5 x 105 CLL cells underwent Western blot (Wb) analysis with anti-pS591-

SHP-1 and pY536-SHP-1 antibodies and reprobed with anti-SHP-1, anti-LDH (cytosolic marker) and anti-PMCA (plasma 

membrane marker) antibodies as loading  controls. #2, #17, #22, #24, #34 and #35 are patients belonging to various clinical 

and biological subtypes. (B) Tyrosine phosphatase activity of SHP-1 immunoprecipitates recovered from particulate and 

cytosol of CLL cells. (C) Tyrosine phosphatase activity of SHP-1 immunoprecipitated from the cytosol of CLL cells of 15 

patients in the absence (Ip1-SHP-1) and presence (Ip2-SHP-1 1) of serine/threonine phosphatase inhibitors and determined in 

vitro in the presence of increasing concentrations of nintedanib supplemented without (solid circles) or with 25 µM PTP I-I 

(open circles). The inset shows the level of pS591-SHP-1 determined by Wb analysis and reprobed, after stripping, with anti-

SHP-1 antibody as loading control pertaining to from the patient #34 (left-hand panel) and the pooled densitometric analysis 

(arbitrary units, right-hand panel) of the patients examined. The data are the mean ± SD of 3 experiments performed in triplicate 

(*P ≤ 0.01).  
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nintedanib was capable of activating the phosphorylated, and inhibited, form of 
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SHP-1 (Ip2-SHP-1, right-hand panel), as expected on the basis of previous data  

Figure 21. Effect of nintedanib on the activity of the differently phosphorylated forms of SHP-1 inside CLL cells (A) 

The activity of SHP-1 immunoprecipitated from cytosol (left-hand panel) and particulate (right-hand panel) of freshly 

isolated CLL cells cultured in the absence or presence of increasing concentrations of nintedanib for 1 h was measured as 

[32P]phosphate released from [32P]phospho-band 3. (B) Wb analysis of cytosol and particulate from freshly isolated CLL 

cells were cultured in the presence of 15 µM nintedanib over time performed with pS591-SHP-1 and pY536-SHP-1 

antibodies. (C) SHP-1 immunoprecipitated from the cytosol (left-hand panel) or particulate  (right-hand panel) of the CLL 

cells described in (B), was tested for the basal tyrosine phosphatase activity in vitro on [32P]phospho-band 3. (D) 

Densitometric analysis of Western blots probed with anti-pS591 or alternatively anti-pY536 antibody of all the 16 patients 

(arbitrary units, open circles, left- and right-hand panel respectively) as well as the values of the phosphatase activity reported 

as histograms in (C), normalized as percentage (solid circles, left- and right-hand panel respectively). The data are the mean 

± SD of 3 experiments performed in triplicate (*P ≤ 0.01). 
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(Tai et al., 2014), whereas the non-phosphorylated form was not influenced by the 

compound in that  the phosphatase was already active (Ip1-SHP-1, left-hand panel). 

These results appear to be in line with the hypothesis that this drug causes a change 

in the inhibited conformation of SHP-1 induced by the phosphorylation at S591. 

Similarly, we analyzed the activity of SHP-1 immunoprecipitated from the 

cytosolic and particulate fractions of CLL cells treated with increasing 

concentrations of nintedanib, considering that SHP-1 in these compartments is 

differently phosphorylated and active. As shown in Figure 21A, SHP-1 reached a 

full activation at a concentration as high as 15 µM nintedanib  (left panel), as 

determined by measuring the dephosphorylation of 32P-band 3, whereas the one 

from the particulate was unaffected (right panel). After incubating CLL cells over 

time at 15 µM nintedanib, we evaluated the phosphorylation status of SHP-1 on the 

cytosolic and particulate fractions by Western blot analysis with anti-pS591-SHP-

1 and anti-pY536-SHP-1 antibodies, respectively, and performed phosphatase 

activity assays on SHP-1 after immunoprecipitation at each time interval. 

Nintedanib affected neither the phosphorylation status (Figure 21B, right-hand 

panel), nor the catalytic activity (Figure 21C, right-hand panel) of the SHP -1 pool 

of the particulate, whereas the one in the cytosol was readily activated by 

nintedanib, reaching the maximal efficacy already at the earliest incubation times 

by circumventing the inhibitory phosphorylation at S591 (Figures 21B and 21C, 

left-hand panel). The data obtained by Western blot analysis and phosphor imaging 

were quantitated as arbitrary units and sketched in Figure 2D for clarity’s sake. 

 

Nintedanib induces activation of caspase-8 and PP2A by decreasing tyrosine 

phosphorylation in CLL cells 

We previously showed that the cytosol of CLL cells is characterized by the elevated 

level of tyrosine phosphorylation promoted by the aberrant constitutive activity of 

HSP90-bound Lyn, promoting anti-apoptotic mechanisms (Trentin et al., 2008). To 

verify whether the cytosolic tyrosine phosphorylation in CLL cells was related to 
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the inhibition of SHP-1 in this compartment, SHP-1 was silenced in freshly isolated 

leukemic B cells, which were subsequently incubated for 1 hour in the presence of 

increasing concentrations of nintedanib (0-30 μM), lysed and analyzed by Western 

blot analysis with anti-phosphotyrosine antibody. Nintedanib caused a dramatic 

reduction in tyrosine phosphorylation at a concentration of 10 µM (Figure 22A and 

22B, left panels), which was significantly high er than the nanomolar range 

reported to inhibit the receptor tyrosine kinases (RTKs) that nintedanib is known 

to target  (Hilberg et al., 2008;), (Roth et al., 2009). Importantly, its effect was 

Figure 22. Effect of nintedanib on the tyrosine phosphorylation of CLL cells. Freshly isolated CLL cells were transfected 

with either scramble RNA or SHP-1-siRNAs and incubated for 48 h in complete medium and the expression of SHP-1 was 

determined by Wb analysis (pooled densitometric analysis of all the samples tested are histogrammed in the top panel of the 

insets). The immunoblots of two samples from patients #18 (A) and #35 (B) are shown in the bottom panel in the insets. CLL 

cells were subsequently cultured in the absence or presence of increasing concentrations of nintedanib for 1 hour and whole 

cell lysates were analyzed by Wb analysis with anti-pY antibody. The Wb strips show the results concerning the patients #18 

and #35 and are representative of all the patients examined. (C, D) The global tyrosine kinase activity and the specific Src 

activity in the CLL cells cultured as in (A) and (B) was determined by using the nonspecific random polymer polyGlu4Tyr (top 

panel) or the specific peptide substrate cdc2(6-20) (bottom panel) and the pooled data are reported as histograms. The data are 

expressed as mean ± SD of 3 experiments performed in triplicate (*P ≤ 0.05).  
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abrogated by the genetic inhibition of the phosphatase itself (Figure 22A and 22B, 

right panels), and proved independent, if not to a very limited extent, to the 

inhibition of tyrosine kinases as assessed by tyrosine kinase activity assays using 

poly-Glu-Tyr or cdc2[6-20], peptide substrates used to determine the global 

(including that of RTKs) or the SFK specific activity, respectively (Gringeri et al., 

2009), (Tibaldi et al., 2011a). In fact, as histogrammed in Figure 22C and 22D, both 

types of activities were affected at most by 30% of the control only at high 

concentrations of nintedanib (over 10 µM). The hypothesis that the effect observed 

was mediated by the activation of SHP-1, rather than the inhibition of a tyrosine 

kinase, was further supported by in vitro kinase assays showing an IC50 of 12 µM 

nintedanib for Lyn at 20 µM ATP, whereas dasatinib, a SFK inhibitor, exhibited 

an IC50 of 50 nM  (data not shown). Additionally, we wanted to evaluate whether 

nintedanib could impinge upon CLL cell viability, considering that the apoptosis 

of CLL cells was already found to be related to the drug-induced decrease in 

tyrosine phosphorylation  (Contri al., 2005; Trentin et al., 2008). Therefore, fresh 

B cells isolated from CLL patients were incubated with increasing concentrations 

of nintedanib for 24 and 48 h and then subject to annexin V-PI flow cytometry. As 

shown in Figure 23A, the level of apoptosis reached 50% and 60%, at 24 hours and 

48 hours, respectively, at a nintedanib concentration as high as 10 µM (left-hand 

panel), with concomitant cleavage of PARP and caspase-3, markers of caspase-

dependent apoptosis (right-hand panel). Similar results were obtained by co-

culturing CLL cells with bone marrow mesenchymal stromal cells (data not shown) 

so as to mimic the tissue microenviroment where CLL cells proliferate (Ding et al., 

2010). 

To further investigate the contribution of SHP-1 to the nintedanib-induced 

apoptosis, we used genetic and pharmacological inhibition of the phosphatase 

itself. Figure 23B (left-hand panel) shows that the number  of apoptotic cells after 

24 hours’ treatment with nintedanib (bar 4) was dramatically reduced by the 

silencing of SHP-1 (bar 8) to levels comparable to those reached by knocking down 

the phosphatase in the absence of nintedanib (bar 6). At the molecular level, 
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nintedanib induced casp ase-dependent apoptosis, as witnessed by the cleavage of 

Figure 23. Effect of nintedanib on the viability of CLL cells. CLL cells underwent annexin V–PI flow cytometry after all 

the treatments and quadrant analysis after flow cytometry was histogrammed and expressed as mean percentage of early and 

late apoptosis ± SD from three separate experiments performed in triplicate. 5 x 105 CLL cells fro each experiment were 

lysed and analyzed by Wb analysis with anti-caspase 3 and anti-PARP antibodies to monitor caspase-dependent apoptosis, 

and anti-β-actin antibody as a loading control (right panels). (A) Apoptosis of freshly isolated CLL cells cultured in the 

absence or presence of increasing concentrations of nintedanib for 24 and 48h. Compared with the control, changes were 

statistically significant (left panel, *P ≤ 0.01). (B) After transfection of CLL cells with either scramble RNA (white bars) or 

SHP-1-siRNAs (grey bars) for 48 h in complete medium, the expression of SHP-1 was determined by Wb analysis The data 

are the mean ± SD of 3 experiments performed in duplicate. *P ≤ 0.01. CLL cells were subsequently incubated for 0 or 24 h 

in the absence (bars 1-4) or presence (bars 5-8) of 15 µM nintedanib. Compared with the control, changes were statistically 

significant (left panel, *P ≤ 0.01). (C) Freshly isolated CLL cells were incubated for 0 or 24 h in complete medium in the 

absence (bars 1-4) or presence (bars 5-8) of 25 µM PTP-I-I and supplemented without (bars 1-2 and 5-6) or with (3-4 and 7-

8) 15 µM nintedanib.  
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caspase-3 and PARP (Figure 23B, right-hand panel, lane 4), the latter event being 

negligible when silencing SHP-1, irrespective of the presence of nintedanib (lanes 

6 and 8). These findings were consistent with our previous data demonstrating that 

SHP-1 knock-down brings about caspase-independent apoptosis by targeting the 

plasma membrane pool of the phosphatase, which is catalytically active and 

orchestrates anti-apoptotic signals (Tsui et al., 2006; Tibaldi et al., 2011). The 

Figure 24: Effect of nintedanib on the 

phosphorylation state and activity of 

procaspase 8 and PP2Ac. Freshly isolated 

CLL cells were transfected with either 

scramble RNA (left-hand panels) or SHP-1-

siRNAs (right-hand panels), cultured for 48 

h in complete medium and subsequently 

cultured in the absence or presence of 

increasing concentrations of nintedanib for 

1h.  (A) After the 6 hours’ treatment 

described above, cells were lysed and 

underwent Wb analysis with anti-pY380-

procasp8 antibody. The blots were then 

stripped and reprobed with anti-procasp8 

antibody and with anti-β-actin antibody as a 

loading control. Densitometric analysis 

(arbitrary units) of the pY380-procasp8 and 

pro-casp8 bands are reported as histograms. 

Data are expressed as mean ± SD from 4 

experiments performed in triplicate. (B) 

After the 6 hours’ treatment described 

above, cell lysates were assayed for in vitro 

casp8. Compared with the effect of 

nintedanib, changes due to PTP I-I were 

statistically significant (*P ≤ 0.01). (C) 

After the 1 hours’ treatment described 

above, cells were lysed and analyzed by Wb 

analysis with anti-pY307-PP2Ac antibody. 

The blots were then stripped and reprobed 

with anti-PP2Ac antibody and with anti-β-

actin antibodies as a loading control.  

  Densitometric analysis (arbitrary units) of the pY307-PP2Ac and anti-PP2Ac bands are histogrammed. Data  are expressed as  

mean ± SD from 4 experiments performed in triplicate. (D) After the 6 hours’ treatment    described    above,   cell   lysates  

wereassayed for in vitro PP2A activity by using a specific phosphopeptide as a substrate. Compared with the effect of 

nintedanib, changes due to PTP I-I were statistically significant (*P ≤ 0.01). The data in the figure show the results concerning 

the patient #31 and are representative of all the patients examined. 
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pharmacological inhibition of SHP-1, achieved by the use of PTP-I-I, provided 

results overlapping those obtained by using SHP-1 siRNAs (Figure 22C). These 

observations led us to hypothesize that the dephosphorylation of specific SHP-1 

substrates underlay the induction of apoptosis following treatment with nintedanib 

in CLL cells. Therefore, we focused our attention on two factors that we had 

previously explored and the activity of which we found to be inhibited in CLL via 

phosphorylation by the aberrant cytosolic form of Lyn, namely the caspase-8 

zymogen (procaspase-8) (Zonta et al., 2014) and the serine/threonine Protein 

Phosphatase 2A (PP2A) (Zonta et al., 2015). After incubating freshly isolated CLL 

cells with increasing concentrations of nintedanib, we performed Western blot 

analysis with antibodies directed against the phosphorylated form of specific 

inhibitory residues of these two proteins, Y380 of procaspase-8 and Y307 of the 

catalytic subunit of PP2A (PP2Ac), respectively. Both tyrosines were 

phosphorylated when SHP-1 was not silenced nintedanib was not added, (Figure 

24A and 24C, left-hand panels, 0 μM), the level of phosphorylation gradually 

declining as nintedanib concentration increased (1-20 μM). Moreover, total lysates 

from the same samples were assayed for the activity of the two enzymes in vitro 

by using commercial kits (see Materials and Methods for details), which allowed 

us to conclude that the dephosphorylation induced by nintedanib paralleled the 

level of activation of both  enzymes (Figure 24B and 24D, left-hand panels). 

Importantly, dephosphorylation and activation were blocked, albeit in the presence 

of nintedanib, by subjecting CLL cells to SHP-1 knock-down, (Figure 24, right-

hand panels), indicating that procaspase-8 and PP2Ac are substrates for SHP-1 and 

effectors of a SHP-1- dependent pro-apoptotic pathway.  

 

Apoptosis of the CLL cells can be induced by indirect activators of SHP-1 

The data collected thus far confirmed that nintedanib could trigger SHP-1 by 

circumventing the phosphorylation at the inhibitory residue S591. Interestingly, we 

recently demonstrated that pS591 could be dephosphorylated by PP2A, the activity 

of which was impaired by the phosphorylation at Y307 as well as the interaction 
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with its endogenous inhibitor SET and restored by a fingolimod analogue devoid 

of immunosuppressive action, the so-called MP07-66 (2,2-diethoxyethyl{[4-

(hexyloxy)phenyl]methyl})amine) (Zonta et al., 2015). This latter event was shown 

to underlie the activation of apoptotic cascades based on the dephosphorylation of 

PP2A substrates (Zonta et al., 2015). These findings led us to conjecture that 

MP07-66 could be used as an indirect activator of SHP-1 via PP2A, and exploited 

to potentiate the action of nintedanib on SHP-1 itself in order to reinforce the 

apoptotic response of CLL cells. As shown in Figure 25A (left-hand panel), 

incubation with increasing concentrations of MP07-66 (0-15 µM) brought about 

apoptosis in 50% and 80% of CLL cells, at 24 hours and 48 hours, respectively, as 

determined by annexin V–PI flow cytometry. Of note, a time-course analysis of the 

cleavage of PARP indicated that apoptosis was dependent on caspase activation 

(right-hand panel). To evaluate whether SHP-1 was implicated in these events, 

aliquots from the cytosol for each time interval were immunoblotted with anti-

pS591 SHP-1 antibody and tested for phosphatase activity in the presence of 32P-

labeled Band 3, showing that the dephosphorylation of SHP-1 was concomitant 

with the elevation of the activity thereof as the concentration of MP07-66 increased 

(Figure 25B and 25C). Further evidence for the role of SHP-1 in mediating 

apoptosis of CLL cells upon treatment with MP07-66 was provided by Western 

blot analysis with antibodies against pY380-procaspase8 and pY307-PP2Ac, 

revealing the dephosphorylation of the inhibitory residues (Figure 25D, lane 6) at 

6 h. As expected, this event was blocked by the specific SHP-1 inhibitor PTP-I-I 

(Figure 25D, lane 8) as well as by okadaic acid (lane 7), which confirmed that the 

activation of PP2A drives the dephosphorylation of SHP-1 S591, in turn promoting 

global tyrosine dephosphorylation and cell demise. This latter observation is 

consistent with the hypothesis that SHP-1 and PP2A form a signalling axis wherein 

the single phosphatases, when stimulated, can activate one another, and even more 

so that such process can be amplified by using a combination of molecules 

activating both at the same time. 
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MP07-66 potentiates the pro-apoptotic effect of nintedanib 

Since our data suggest that the activation of either PP2A or SHP-1 triggered by 

specific small molecules results in stimulating each other’s activity and igniting a 

positive feed-back signalling loop that promotes apoptosis, we wondered whether 

the combination of nintedanib and MP07-66 could result in a more robust apoptotic 

response of CLL cells. Therefore, freshly isolated CLL were incubated with 15 µM 

nintedanib and 8 µM MP07-66 at different  times  and  apoptosis  was  monitored 

 

 

 

 

 

 

Figure 25: Effect of MP 07-

66 on the CLL cell survival. 

(A) Freshly isolated CLL cells 

were cultured in the absence 

or presence of increasing 

concentrations of MP07-66 

for 24 h and 48 h. After such 

treatment, cell apoptosis was 

analyzed by annexin V–PI 

flow cytometry. Quadrant 

analysis after flow cytometry 

was histogrammed and 

expressed as mean percentage 

of early and late apoptosis ± 

SD from three separate 

experiments performed in 

triplicate. Compared with the 

control, changes due to 

MP07-66 were statistically 

significant (*P ≤ 0.01). 5 x 105 

CLL cells were lysed and 

analyzed by Wb analysis with 

anti-caspase 3 and anti-PARP 

antibodies to monitor caspase-

dependent apoptosis, and anti-

β-actin antibody as a loading 

control (right panels). (B) 

Freshly isolated CLL cells 

were cultured as described in  

(A) and, cell lysates underwent Wb analysis with pS591-SHP-1 antibody. The blots were then stripped and reprobed with anti-

SHP-1 antibody. (C) Freshly isolated CLL cells were cultured as described in (A). After such treatment, SHP-1 was 

immunoprecipitated from the cytosol and tested for the basal tyrosine  phosphatase phosphatase activity in vitro on [32P]phospho-

band 3. Data are expressed as mean ± SD from 4 experiments performed in triplicate. Compared with the control, changes due 

to MP07-66 were statistically significant (*P ≤ 0.01). (D) Freshly isolated CLL cells were cultured in the absence (lanes 1 and 

5) or presence (lanes 2-4 and 6-8) of 8 µM MP07-66 supplemented without (lanes 1-2 and 5-6) or with 5 nM OA (lanes 3 and 

7) or 25 µM PTP I-I (lanes 4 and 8) for 0 and 6 h. Cells were then lysed and analyzed by Wb analysis with anti-pY380-procasp8 

and anti- pY307-PP2Ac antibodies. The blots were then stripped and reprobed with antibodies anti-procasp8 and anti-PP2Ac 

antibodies, respectively. The response to the antibodies and the enzyme activities of the samples shown in (B), (C) and (D) 

concerns the patient #28 as shown in the left-hand panel and are representative of all samples, whereas the results of pooled 

densitometric analysis (arbitrary units) of 16 patients from three independent experiments are histogrammed in the right-hand 
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by annexin V–PI flow cytometry (Figure 26A). Nintedanib proved moderately 

effective at inducing apoptosis of CLL cells at 6 to 12 h, its efficacy being largely 

improved by the concomitant presence of MP07-66, which itself exhibited a pro-

apoptotic activity overlapping that of nintedanib when used as single agent. 

Similarly, co-

cultures of CLL 

cells with bone 

marrow 

mesenchymal 

stromal cells were 

treated as above 

with overlapping 

results (data not 

shown). 

Moreover, to 

explore how PP2A 

activation took part 

in the apoptotic 

process induced by 

MP07-66, CLL 

cells were treated 

with 15 µM 

nintedanib for 6 h 

in the absence or 

presence of okadaic acid (OA), a phosphatase inhibitor that is highly selective 

toward PP2A in the low nanomolar range (Fernandez et al., 2002). As expected, 5 

nM OA drastically reduced the apoptotic rate of CLL cells treated with MP07-66 

or the combination with nintedanib, but only to a lower extent with nintedanib 

Figure 26: Effect of the combined action of nintedanib and MP07-66 on CLL cell 

survival. The experiments described below were followed annexin V–PI flow cytometry to 

assess the effect of the treatments on the vitality of CLL cells. Quadrant analysis after flow 

cytometry was histogrammed and expressed as mean percentage of early and late apoptosis 

± SD from three separate experiments performed in triplicate. (A) Freshly isolated CLL 

cells were cultured in the absence or presence of either 15 µM nintedanib, 8 µM MP07-66, 

or a combination of 15 µM nintedanib and 8 µM MP07-66 at different time intervals. 

Compared with the effect of the compounds alone, changes due to the combination of the 

compounds were statistically significant (*P ≤ 0.01). (B) Freshly isolated CLL cells were 

cultured as described in (A) supplemented without or with 5 nM OA (rigth panels) for 6 h. 

Compared with the effect of the compounds alone or in combination, changes in the 

apoptotic rate due to OA were statistically significant (*P ≤ 0.01). The PP2A phosphatase 

activity performed on the same lysates is shown on the right-hand panel and reported as 

arbitrary units. Compared with the control, changes of the phosphatase activity due to OA 

were statistically significant (*P ≤ 0.01).  
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alone (Figure 26B, left-hand panel). Moreover, the PP2A activity assay performed 

by using a commercial PP2A assay kit on cell lysates of CLL cells treated as above 

showed a trend similar to that observed for the apoptotic rate (Figure 26B, right-

hand panel). Overall, these data corroborate the hypothesis that the inhibition of 

PP2A is central to CLL cell viability and that its activation is facilitated by the 

supportive action of SHP-1, as demonstrated by the effect generated by the 

simultaneous use of the respective activators.  
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Discussion 

In the present study, we show that nintedanib induces caspase-dependent apoptosis 

in CLL cells by directly activating the cytosolic pool of the tyrosine phosphatase 

SHP-1, which in turn dephosphorylates, and thus activates, pro-apoptotic key 

players such as procaspase 8 (procasp8) and PP2A.  

SHP-1 is a tyrosine phosphatase known to negatively regulate signalling in cells of 

hematopoietic lineage and in B cells modulating the response to antigens and 

contributing to the development of tolerance to self-antigens. In CLL, SHP-1 

undergoes multiple regulatory mechanisms leading to spatial and functional 

segregation, which is likely to play a relevant role in maintaining the cancer 

phenotype (Tibaldi et al., 2011). Phosphorylation of different residues in particular, 

especially at the C-terminus, significantly changes the activation status and 

localization of SHP-1, phospho-Y536 being typical of the activated pool bound to 

the plasma membrane co-receptor CD5, and phospho-S591 characterizing the 

inhibited pool of SHP-1 in the cytosol. This latter form appears to be one of the 

factors that sustains the aberrant Lyn-dependent tyrosine phosphorylation of 

countless proteins in the cytosol of CLL cells, which ultimately is key to the anti-

apoptotic signalling network of this disease (Contri et al., 2005; Zonta et al., 2014; 

Zonta et al., 2015). Here, we demonstrate that nintedanib, a small molecule known 

to act as triple angiokinase inhibitor within the low-nanomolar range (Hilberg et 

al., 2008), (Roth et al., 2009) and introduced into clinical practice for the 

management of pulmonary fibrosis and lung adenocarcinoma (McCormack, 2015), 

activates the cytosolic fraction of SHP-1 by circumventing pS591-dependent 

inhibition, as recently described in another cancer model (Tai et al., 2014). 

Significantly, in addition to leaving SHP-1 at the plasma membrane unaffected, as 

expected, nintedanib only marginally modifies tyrosine kinase activities even at 

micromolar concentrations in CLL cells. On the other hand, a dramatic drop in 

tyrosine phosphorylation occurs as a result of SHP-1 activation in the cytosol, and 

caspase-dependent apoptosis ensues, suggesting that the massive tyrosine 
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phosphorylation in CLL cells directly impinges on the function of factors that   

counteract the oncogenic machinery. Notably, although genetic ablation or 

pharmacologic inhibition of SHP-1 prevent the caspase-dependent apoptosis 

evoked by nintedanib, again supporting the hypothesis that the action of this drug 

is mediated by SHP-1, caspase-independent apoptosis was previously observed, 

which is in line with the role of the CD5-bound form of SHP-1 as a pro-survival 

agent in CLL (Tibaldi et al., 2011). Our findings clearly indicate that the 

partitioning of the two forms of SHP-1 is central to their differentiated function, at 

Figure 27. Working model of the positive feed-back signalling loop triggered by the combination of nintedanib and MP07-

66 resulting in CLL cell apoptosis. Phosphorylation-dependent inhibition of PP2A by the aberrant form of HSP90-bound Lyn 

is one of the key mechanisms that take part in the maintenance of the leukemic status of CLL cells. Under these conditions, 

the inability of PP2A to dephosphorylate and activate the tyrosine phosphatase SHP-1 supports the Lyn-mediated high level 

of cytosolic tyrosine phosphorylation, which ultimately sustains the oncogenic machinery in CLL cells. By directly activating 

SHP-1 and PP2A respectively, nintedanib and MP07-66 bring about the dephosphorylation of crucial players in the deranged 

signalling network of CLL, thus switching off pro-survivals and anti-apoptotic signals. Solid lines with arrows: 

phosphorylation; dotted lines with arrows: dephosphorylation. 
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the plasma membrane in an active form taking part in a signalosome that 

orchestrates survival signals, and in the cytosol remaining constrained in an 

inhibited conformation. We have shown that this condition prevents 

dephosphorylation of cytosolic Lyn targets with pro-apoptotic potential, as is the 

case of procasp8 and PP2A, the precursor of an effector caspase and a major 

serine/threonine phosphatase acting as a tumor suppressor respectively, 

substantially contributing to the suppression of their activity and ultimately to the 

survival of CLL cells. Procasp8 occurs as an inactive homodimer in CLL cells, the 

trigger for dimerization being the phosphorylation of Y380 due to the anomalous 

cytosolic activity of Lyn (Zonta et al., 2014). Here, nintedanib, via direct activation 

of cSHP-1, induces dephosphorylation, autocatalysis and activation of procasp8, 

which explains the caspase-dependent apoptosis observed. As to PP2A, Lyn-

mediated phosphorylation at Y307 of the catalytic subunit stabilizes its interaction 

with its physiologic inhibitor SET, thereby hampering the activity of the 

phosphatase. This in turn results in the persistent serine/threonine phosphorylation 

of PP2A substrates, including cSHP-1, and propagates pro-survival and anti-

apoptotic signals (Zonta et al., 2015). Conversely, nintedanib-activated cSHP-1 

dephosphorylates PP2A, facilitating the disruption of the PP2A/SET complex, with 

activation of PP2A itself and dephosphorylation of SHP-1 (Figure 26D), triggering 

the apoptotic response. This latter event is magnified by the combination of 

nintedanib with MP07-66 in that this latter compound directly interferes with the 

interaction between PP2A and SET (Zonta et al., 2015), further aiding in the 

reactivation of PP2A. In this scenario, nintedanib and the FTY720 analogue MP07-

66, direct activators of SHP-1 and PP2A respectively, appear to initiate a positive 

feedback signalling loop which opposes Lyn-mediated oncogenic signalling, thus 

promoting the dephosphorylation of crucial players in the deranged signalling 

architecture of CLL, switching off anti-apoptotic signals and unleashing cell death. 

In conclusion, our findings indicate that phosphatase activators may represent a 

new weapon in the armoury against this form of leukemia, especially in the light 

of the heterogeneity and the unavoidable progression of the disease as well as the 
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resistance to the front-line drugs currently in use, not to mention the adverse effects 

recently reported for the most promising second-line drugs (Brown, 2015; Barr et 

al 2016). 
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MATERIALS 

PARP polyclonal antibody was from Roche Applied Science (Mannheim, 

Germany). Anti-PP2A- C /ß, anti-p-PP2A-C /ß (Tyr307), anti-I2PP2A/SET 

and anti-caspase 3 antibodies, protein G PLUS-Agarose was from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA). Anti-pS591-SHP1 and anti-pY536 

SHP-1 were from ECM Biosciences (Versailles, KY, USA). Anti-procasp8, 

anti- phosphotyrosine (pY) and anti-SHP-1 antibodies, SHP-1 Inhibitor-I (PTP-

I-I), and Ser/Thr Phosphatase Assay Kit 1 (K-R-pT-I-R-R) were from Millipore-

Merck (Billerica, MA, USA). Anti- phospho-Tyr380 procasp8 (anti-p-casp8) 

antibody was from Abcam (Cambridge, UK). Anti-ß-actin antibody and okadaic 

acid were from Sigma-Aldrich (St Louis, MO, USA). Pierce ECL Western 

Blotting Substrate,  Protease inhibitor cocktail  were  from  Thermo  Fisher 

Scientific   (Strasbourg, 

France). The SHP-1 siRNA and negative control siRNA were provided by Santa 

Cruz Biotechnology (Santa Cruz, CA, catalog number sc-29478). [γ32P]ATP 

was from Perkin Elmer (Milan, Italy). Nintedanib was from Selleckchem 

(Houston, TX, USA). Caspase-8 Colorimetric Assay Kit was from Alexis 

Corporation, (Lausen, CH). 

 

METHODS 

Ethics Statement 

Written informed consents were obtained from all patients, prior to sample 

collection, according to the Declaration of Helsinki. The ethical approval for our 

study was obtained from the local ethical committee of “Regione Veneto on 

Chronic Lymphocytic Leukemia”. 

 

Patients, cell separation and culture conditions 

B cells from 37 CLL untreated patients were purified and cultured as previously 

described by our group, and subjected to the treatments described throughout the 

text. The patients’ relevant features are reported in Table 1. 
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Cell lysis and subcellular fractionation 

For total lysates, normal and CLL cells (5 × 105 for each assay) were rapidly lysed 

in a buffer containing 62 mM Tris/HCl buffer, pH 6.8, containing 5% glycerol, 

0.5% SDS, and 0.5% β-mercaptoethanol. ; Trentin et al., 2008). For subcellular 

fractionation, CLL cells (15×106 for each assay) were disrupted and homogenized 

in isotonic buffer containing 50 mM Tris/HCl, pH 7.5, 0.25 M saccharose, 1 mM 

orthovanadate, and protease inhibitor cocktail (Boehringer) and centrifuged 10 min 

at 10,000g in order to separate the particulate fraction containing cell debris, nuclei, 

and other cellular particles. The supernatant was then subjected to 

ultracentrifugation for 1 h, performed at 105,000g, to separate cytosol from 

microsomes (particulate fraction) (Tibaldi et al., 2011). Protein concentration was 

determined by the Bradford method. 

 

Immunoprecipitation of SHP-1 

Cells were disrupted on ice by sonication (three cycles of 5 s at 22 Hz intervalled 

by 15 s) in isotonic buffer containing 1% NP-40, 20 mM Tris–HCl, pH 7.4, 250 

mM Sucrose, 2 mM EGTA, 150 mM NaCl, phosphatase and protease inhibitor 

cocktails. The lysates were centrifuged at 15 000 g for 10 min at 4 °C. The 

supernatants were immunoprecipitated for 2 h at 4 °C with the anti-SHP-1 antibody 

and immune complexes were recovered by incubation for 1 h with protein A-

Sepharose previously saturated with bovine serum albumine. The 

immunocomplexes were washed three times in 50 mMTris/HCl (pH 7.5), 0.05% 

NP-40, protease inhibitor cocktail and submitted to SHP-1 activity assays. 

 

SHP-1 activity assay 

SHP-1 activity was tested in SHP-1 immunoprecipitates in the presence of 0.3 μg 

of [32P]phospho-band 3 as a substrate as described in (Tibaldi et al., 2014). After 

10-min incubation at 30°C, the assays were stopped and subjected to SDS-PAGE. 

The extent of [32P]phospho-band 3 dephosphorylation was evaluated either by 
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analysis on a Packard Cyclone or by autoradiography and, after excision of the 

band 3, by liquid scintillation counting. 

 

[32P]-phospho band 3 preparation 

Band 3 was phosphorylated by incubating erythrocyte ghosts (15 μg) at 30°C 

with the tyrosine kinases Syk and Lyn in the presence of [γ32P]ATP as elsewhere 

described1. After 10-min incubation, the sample was centrifuged at 14,000 g and 

the pellet washed 3 times with 25 mM Tris, pH 8.0, 1 mM EDTA, 0.02% NaN3, 

10% glycerol, 10 mM β-mercaptoethanol, 10 mg/ml leupeptin, and 50 mM 

phenylmethylsulphonyl fluoride and then resuspended in the same buffer for the 

phosphatase activity assay. 

 

PP2A activity assays 

PP2A activity assays from samples undergoing the various treatments utilized 

throughout the study was measured by using the Malachite Green-based 

Phosphatase Assay Kit 1(K-R-pT-I-R-R) following the manufacturer’s 

instructions. 

 

Casp8 activity assay 

Casp8 activity from samples undergoing the various treatments utilized 

throughout the study was measured using a Caspase-8 Colorimetric Assay Kit 

according to the manufacturer’s instructions. 

 

Apoptosis assays 

CLL cells subjected to the various treatments applied throughout the study were 

collected forflow cytometric analysis. Ten thousand cells per sample were 

acquired with the use of BD FACS Diva software (version 7.0), and data were 

analyzed by plottingon an annexin V–PI logarithmic scattergram. 
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Western blotting 

Whole cell lysates and different cell fractions were run in 10% SDS-PAGE 

and transferred to nitrocellulose membranes. After 1 hour of treatment with 3% 

bovine serum albumine at room temperature, membranes were incubated with the 

appropriate antibodies overnight. Immunodetection was carried out with the ECL 

Western Blotting Substrate on the Kodak Image Station 4000mm Pro Digital 

System (Eastman Kodak, Rochester, NY, USA). Membranes, when required, 

were reprobed with other primary antibodies after stripping with 0.1 M glycine (pH   

2.5), 0.5 M NaCl, 0.1% Tween 20, 1% β-mercaptoethanol and 0.1% NaN3 for 2 x 

10 minutes. 

 

Cell transfection 

SiRNA transfection into CLL cells was performed using the AMAXA 

nucleofection system (AMAXA, Cologne, Germany). Briefly, cells (5x106) were 

resuspended in 100 μl of Nuclefector Solution, mixed with 300 nM of siRNA 

duplex (control or against SHP-1), and electroporated using program U-015 on 

AMAXA nucleofector device. Cells were then transferred to 37°C preheated 

medium and incubated for 48 h at 37°C, 5% CO2. 

 

In vitro tyrosine kinase assays 

To analyze cellular tyrosine kinase activity, CLL cells (4 × 105 for each assay) 

were lysed by adding 0.5% Triton X-100 and phosphatase and protease inhibitor 

cocktails in a 25-μl volume for 15 minutes. The tyrosine kinase activity was then 

tested in 50 μl of phosphorylation medium containing 50 mM Tris/HCl, pH 7.5, 

10 mM MnCl2, 30 μM [γ32P]ATP (Amersham Pharmacia Biotech) (specific 

activity 1,000 cpm/pmol), 200 μM sodium orthovanadate, and either 1 mg/ml 

random polymer polyGlu4Tyr (Sigma-Aldrich) or 200 μM cdc2(6–20) peptide 

used as exogenous substrates. After 10 minutes of incubation at 30°C, the reactions 

were stopped and the samples were loaded on SDS/P AGE . Substrate 32 P-

phosphorylation was quantified on a Packard Instant Imager. 
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Statistical analysis 

The data presented as mean ± SD were compared using one-way analysis of 

variance followed by Bonferroni post hoc test or Student’s t-test. A P-value ≤ 0.01 

was considered as statistically significant. All statistics were performed using 

GraphPad Prism (version 5) statistical software (GraphPad Software; San Diego, 

CA, USA).   
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