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ABSTRACT 
 

Many companies still rely on the humans for carrying on the activities in the 

production system. Subsequently in recent years there is an increasing interest in the 

understanding of how human issues can influence the performance of the system and 

of how the operators can be prevented from facing injuries or a decreasing of their 

performance. All the factors related to the human characteristics are generally known 

as “human factors”, which are defined as follows: 

“the scientific discipline concerns with the understanding of interactions among 

humans and other elements of a system in order to optimize human well-being and 

overall system performance”. 

Subsequently the human factors are related to physical, cognitive and the 

psychosocial interaction with the workplace. Recent literature has put in evidence the 

need of considering more these factors because there is a bilateral influence between 

the technical and organizational design features and the human effects such as their 

health and attitudes, their physical workload and their quality of work life and safety. 

However, the influence of the factors related to humans on the production system is 

a topic which remains still uncovered by the literature because of the difficulty in 

quantifying the impact of something strictly linked to the kind of operator.  

In relation to this, this PhD thesis aims at considering the human factors related to 

the physical fatigue experienced by the operators in order to improve the assignment 

of the activities to the operators. In fact, still now little literature has focused on the 
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consideration of the physical fatigue experienced by the operators in the workers 

assignment problem (WAP). 

This thesis aims at solving this main research question by modelling the physical 

fatigue and recovery of operators performing manual material handling activities with 

the involvement of the whole body. In addition, it suggests the kind of device to be 

used for having feedbacks regarding the level of physical fatigue an operator is 

experiencing and it validates it by carrying tests firstly in a laboratory and after in a 

real industrial context. The data of these tests are the base for the proposed model 

of fatigue and recovery.  

In relation to this, the PhD thesis structure is as follows: 

1. State of the art analysis of the recognised impacts of human factors on manual 

material handling activities and of the recognised methods for monitoring the 

physical fatigue and for estimating the time the operator needs to recover according 

to level of fatigue cumulated. 

2. Proposal of the heart rate monitor as the device to be used for a real-time 

monitoring of the physical fatigue of operators performing manual material handling 

activities. In relation to this, a real application is carried on in the laboratory and in 

an industrial field and the output of such device is compared with other existing 

technologies. Moreover, it is put in evidence how the only use of such device can 

help practitioners having a first indication of the best design of the workplace and of 

how to assign activities to the operators. 

3. The influence of physiological factors relate to the operators are put in evidence 

thanks to the use of the heart rate monitor. This helped to model fatigue and recovery 

for each operator and to create a new formulation to set the time the operator has to 

recover according to his/her level of fatigue which is called “Rest Allowance”. The 

differences between the proposed model and the existing ones in relation to manual 

material handling activities are put in evidence. 
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4. The proposed formulations for modelling fatigue and recovery are further 

developed for considering the way in which physical fatigue is accumulated by the 

operator if he/she has to carried on a certain number of activities sequentially 

without having the necessary time to recover. The developed formulation allowed to 

evaluate, case by case, if an improved operators activities assignment is required, and 

to quantify the effects of physiological factors and kind of activities on the best 

activities’ assignment. 

The data used for setting the model are obtained with the collaboration of the 

physiological department of the University of Padova and with several tests 

performed in an industrial field for different kinds of operators. 
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SOMMARIO 
 

Molte aziende ancora oggi si affidano molto agli operatori per lo svolgimento delle 

attività produttive. Infatti, in questi anni c’è un crescente interesse relativo alla 

comprensione di come i fattori legati all’uso degli operatori possa influenzare le 

performance del sistema produttivo e di come si possa prevenire alla forza lavoro il 

rischio di infortuni o di un decremento delle loro capacità dovuto alle tipologie di 

attività svolte. Tutti i fattori legati alle caratteristiche proprie di ciascun individuo 

sono conosciuti come “fattori umani” e definiti come segue: 

“la disciplina scientifica che riguarda la comprensione delle interazioni tra gli umani 

e gli altri elementi di un sistema produttivo al fine di ottimizzare il benessere umano 

e le prestazioni generali del sistema” 

Si possono quindi legare i fattori umani a tutti gli aspetti che riguardano gli individui 

e la loro relazione con il luogo di lavoro, siano essi fisici, cognitivi o sociali. La 

letteratura recente ha messo in evidenza la necessità di considerare maggiormente 

questi fattori tenendo conto dell’influenza reciproca tra le caratteristiche tecniche e 

organizzative del posto di lavoro e gli effetti sugli operatori umani legati alla loro 

salute, al loro carico di lavoro fisico, alla loro sicurezza e alla qualità della vita 

lavorativa. 

Sebbene la riconosciuta influenza dei fattori umani sul sistema produttivo, questo 

tema rimane ancora un argomento non molto sviluppato dalla letteratura. Questo è 

anche dovuto alla difficoltà intrinseca nel quantificare aspetti così strettamente 

legati alle caratteristiche individuali. 
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Lo scopo di questa tesi è di considerare più attentamente i fattori umani legati alla 

fatica fisica percepita dagli operatori durante lo svolgimento delle loro attività al fine 

di migliorarne l’assegnazione delle attività stesse. Infatti, finora poca letteratura si è 

focalizzata sull’influenza della fatica fisica in quello che è definito WAP (Workers 

Assignment Problem). 

Nella presente tesi questa principale domanda di ricerca viene risolta modellando 

l’andamento della fatica fisica e del recupero per operatori che svolgono attività 

manuali che coinvolgono il movimento generale di tutto il corpo. Viene inoltre 

suggerito e validato attraverso test svolti in laboratorio e in vero contesto industriale 

lo strumento da utilizzare per avere un monitoraggio in real-time delle condizioni 

fisiche degli operatori. Sui dati raccolti si basa il modello proposto per la 

modellazione della fatica fisica e del recupero di ciascun operatore. 

La tesi si struttura quindi come segue: 

1, Stato dell’arte sull’analisi dell’impatto dei fattori umani sulle attività manuali, dei 

metodi esistenti riconosciuti per il monitoraggio della fatica fisica e per stimare il 

tempo di recupero degli operatori in base al loro livello di affaticamento 

2. Analisi dell’uso del cardiofrequenzimetro come strumento per avere un 

monitoraggio in real-time del livello di fatica fisica degli operatori che svolgono 

attività manuali.  Viene anche presentata l’applicazione di questo strumento in test 

svolti in laboratorio e in un contesto industriale. L’uso di questo strumento viene 

comparato che altre tecnologie esistenti e viene messo in evidenza come l’uso possa 

aiutare a dare una prima indicazione dell’influenza del design del posto di lavoro sugli 

operatori e di come assegnare loro le attività. 

3. Modellazione della fatica e del recupero per ciascun operatore considerando 

l’influenza dei fattori fisiologici di ciascuno, messi in evidenza dall’uso del 

cardiofrequenzimetro. Viene proposto una nuova formula per la stima del tempo di 

recupero di ciascun operatore, chiamata in letteratura “Rest Allowance”. Vengono 
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messe in evidenza le differenze tra questo modello e quelli esistenti in relazione alle 

attività manuali. 

4. Le formulazioni relative alla modellazione della fatica e del recupero sono 

sviluppate per considerare come la fatica fisica si accumuli se l’operatore deve svolgere 

più attività in sequenza senza avere la possibilità di riposarsi il tempo adeguato. 

Questo ha permesso di analizzare in quali casi sia meglio focalizzare l’attenzione sul 

miglioramento dell’assegnazione delle attività agli operatori e come i fattori 

fisiologici degli operatori e la tipologia di attività da svolgere possono influenzare 

l’assegnazione delle attività. 

I dati utilizzati per lo sviluppo del modello sono stati ottenuti con la collaborazione 

del dipartimento di fisiologia dell’Università degli Studi di Padova e attraverso diversi 

test svolti su più operatori in un contesto industriale. 
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1.1 Human factors in industrial contexts 
 

Wilson (2000) defines Human Factors (HF) as “the theoretical and fundamental 

understanding of human behaviour and performance in purposeful interacting socio-

technical systems, and the application of that understanding to the design of 

interactions in the context of real settings”. The human factor is a considerable agent 

that has a relevant impact on the productivity both in term of time and quality in 

industrial contexts, especially in those ones that require several types of manual 

activities with a different level of experience and knowledge. In recent years, experts 

and practitioners have increased their research on the impact that human factors 

could have in final productivity to improve productivity and to guarantee better 

ergonomic conditions in the workplaces. Following as define in Otto and Battaia 

(2017) workplace ergonomics depends on three main aspects: physical, cognitive and 

organizational factors. The physical aspects play the most significant role and for 

this reason, they are also those ones most used by companies to evaluate the workers’ 

ergonomic conditions. In fact, a better ergonomic workplace could guarantee a higher 

workers’ well-being and increasing performance of the global organization. On the 

contrary, a poor ergonomic design of a general workplace can generate a large number 

of sick leaves due to musculoskeletal disorders (MSDs). In addition to these aspects, 

it is necessary to take into account the presence of highly skilled elderly workers not 

easily interchangeable with robots. In Europe, the number of people aged 65 or older 

is about to grow from 85 million today to more than 151 million in 2060 (EC, 

2014). The EUROSTAT estimates that by 2060, 30% of the population of the 27 

EU countries will be over 65 years old. This means that the ratio of productive 

individuals to retired people will be 2:1, versus the current ratio of 4:1. According to 

some estimation, about 44 million workers in Europe suffer from occupational 

musculoskeletal disorders (Nunes, 2009). They represent the 38% of occupational 

diseases with a cost up to 2% of the Gross National Product in the EU. For these 

reasons, the increasing of ergonomics conditions is closely linked to a general 
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reduction of costs. Different studies have been conducted to define in which way a 

worker could be affected by MSDs. David (2005) provides an overview of the range 

of methods that have been developed for the assessment of exposure risk factors for 

MSDs. There are three main dimensions that can impact the physical work: level, 

time and frequency of different forces and shifts. Another important aspect to 

consider in the evaluation of physical work is the operator’s characteristics and for 

this reason, it is very difficult to define a general model able to evaluate the execution 

risk of a task or work (Dode et al., 2016). Different studies have been conducted to 

evaluate in a quantitative way the risk associated to a particular type of work and 

different methods have been developed to analyse the ergonomic risk for a particular 

part of the human body (NIOSH, RULA, REBA, OCRA, EAWS are the most 

important).  

Even though, companies have continuously tried to reduce the ergonomic risk of jobs 

that are manual and repetitive such as assembly activities, less attention has been paid 

to activities where the whole body is involved such as manual material handling 

activities in considering the impact of human factors on the performance of the 

production system (Grosse et al., 2015). Such performance can be related to the 

physical aspects (e.g. the posture of operators and physical fatigue), to the mental 

aspects (e.g. the competency of operators) and to the psychosocial aspects (e.g stress 

and motivation of the operators).   

1.2 Manual material handling activities 
 

Manual material handling activities are the ones related to the activities of lifting, 

lowering, pushing, pulling, carrying and holding. Any combined manual material 

handling task (MMH) is composed of a mix of the kind of activities cited (Rajesh; 

2016).  

Even though, there is an increase of the use of mechanization in industrial contexts 

the manual material handling activities are still performed by humans and they are 
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the major cause of lost work, increased cost and human suffering in the workforce 

(Waters and Putz-Anderson, 1996; Rajesh, 2016). In fact, manual material handling 

activities are the most frequent and costly category of compensable losses: they imply 

36% of the claims and the 35% of the total cost. The injuries due to these kinds of 

activities are lower back injuries, which consist of the 22% of all the work injuries, 

hip and shoulder injuries, strains and sprains. The cause of occupational injuries is 

recognised in the overexertion, which accounts for the 31% of all the injuries (Waters 

and Putz-Anderson; 1996).  

In the handling of an object the risk of injury is affected by the material characteristics 

and the task characteristics. But these are not the only factors which need to be taken 

into account. In fact, equal attention should be paid to the operator characteristics 

and the environmental conditions, in which the operator has to carried on the activity.  

The material characteristics are related to the weight and size of the object to be 

moved: higher weights increase the force requested to the operator and consequently 

the loading on muscles and joints. In addition to the characteristics of the object to 

be moved, the task characteristics have also an influence on the capability of the 

operator of carrying on manual material handling activities. In fact, tasks with high 

frequency and long duration increase the physical demand requested by the task. But 

these are not the only task variables to be considered. An increase of the risk of 

injuries and a decrease in the performance of the operator is also attributable to the 

speed at which the movement is performed, to the position of worker and to the 

range of movements required during the performance of a task. Related to this, it has 

been put in evidence that the biomechanical load increases if the operator assumes 

awkward positions during the performance of the activity and if he has to lift in 

different ranges.   

Considering the importance of humans for carrying on such kind of activities, their 

personal characteristics can have an impact on the way in which MMH activities are 



Introduction 

23 
 

performed. These characteristics are not only related to the general health conditions 

but also to the physical factors such as height, reach, flexibility, strength, body weight, 

aerobic capacity and to the psychological factors such as stress and motivation. In 

this sense, it needs to be taken into consideration also the pre-existing 

musculoskeletal problems and the way in which the specific operator interacts with 

the given equipment.  

Moreover, the environment can affect the operators’ capabilities of performing the 

task: extreme conditions of heat, cold or humidity increase the physiologic demands 

of the body, physical obstacles can increase the distance travelled and constraints to 

the movements can increase the difficulty of lifting and give disadvantages in the use 

of proper lifting techniques. Finally, there is the influence of the organizational 

characteristics which are linked to the production rates established and to the 

operating policies set by  

the organization in addition to the ones related to the operators incentives and to 

their training. 

According to this, in Table 1.1 it is summarized the factors affecting the 

biomechanical demand requested by a worker. 

Table  1.1 Factors influencing the performance of MMH activities 

TASK 
CHARACTERISTICS 

OPERATORS 
CHARACTERISTICS 

ENVIRONMENTAL 
CHARACTERISTICS 

 ORGANIZATIONAL 
CHARACTERISTICS 

 

Frequency of the 
activity 
Duration of the 
activity 
Weight of the 
object 
Size and shape of 
the object 
Location of the 
load 
Postural 
requirements 

Gender 
Body weight 
Height 
Aerobic capacity 
Preexisting 
musculoskeletal 
problems 
Physical fitness 
and training 
Medical history 
Psychosocial 
factors 

Temperature 
Humidity 
Light 
Noise 
Vibration 

 Production 
rates 
Incentives 
policies  
Training 
policies 
Operating 
policies 

 



Introduction 

24 
 

There exist several techniques for the analysis of manual material handling tasks as 

put in evidence in Ciriello and Snook (1999): biomechanical, psychophysical, 

physiological and epidemiological techniques.  

In the biomechanical techniques it is evaluated the biomechanical impact to the spine 

caused by sudden loading (Ning et al., 2014) in order to understand how the activity 

can, in case, be redesigned for reducing the average muscle activation and the spinal 

compression force and for increasing the spinal stability. According to this, there 

have been created dynamic models for modelling the segments of the body and the 

external load and in some cases the forces are estimated with validated devices such 

as electromyography (EMG). For such models it is necessary to know the trunk 

kinematics and geometry and the subject-specified moment arms and cross-sectional 

areas (Ning et al., 2014).  

Instead, in psychophysical techniques (Snook and Ciriello, 1991), it is considered 

the psychophysical methodology with the measurements of oxygen consumption, 

heart rate, and anthropometric characteristics for the setting of the tables related to 

the maximum acceptable weights and forces. In such techniques, the frequency of the 

tasks, the distance, the height and the duration, the object size and handles are 

considered as independent variables.  

On the other side, in physiological techniques such the one of Garg, Chaffin and 

Herrin (1978), a manual material handling task is evaluated by knowing its metabolic 

rate by creating a metabolic rate prediction model for a wide variety of manual 

material handling tasks. In such models all the factors except the ones related to the 

environment and the training of the work are taken into account. 

Finally, the last technique used for the assessment of MMH activities, the 

epidemiological one, try to suggest quantitative assessment of mechanical exposure 

by finding the relationship between mechanical exposures and musculoskeletal 

disorders for large population. 
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All these techniques do not consider the effect that a specific activity, with its 

duration and intensity can have on a specific operator with his/her personal 

characteristics. In addition, most of them are focused on the mechanical load and the 

musculoskeletal disorders instead of considering the changing of energy expenditure 

rate of the operator during the performance of the activity (Garg, Chaffin and Herrin, 

1978). 

1.2.1  Impact of human factors in manual material handling activities 
 

As put in evidence in the paragraph before, a lot of variables related to the 

characteristics of the task, of the operator and of the environment take part during 

the performance of manual material handling activities. Their effect has been 

analysed by existing literature in order to give suggestions related to how the activity 

should be redesigned. 

In relation to the characteristics of the task it has been evaluated the optimal positions 

of boxes in relation to their size and to the manual handling position (Jung, 2010). 

As far as lifting and lowering activity is concerned, it has been analysed for the first 

the impact of box size, frequency and horizontal reach on the maximum acceptable 

weigh (Ciriello, 2003), for the second the effect of the box size, vertical distance and 

height (Ciriello, 2001). 

Moreover, for pushing activities it has been put in evidence the effect of the height 

of the cart load on the force requested to an operator (Al-Eisawi et al., 1999).  

In addition, regarding the influence of operators’ characteristics, recent literature has 

put in evidence the influence of the gender on the maximum acceptable weight and 

forces for lifting, lowering, pushing, pulling and carrying (Ciriello et al., 2011).  

Subsequently, recent literature has tried to take into account the impact of the 

variables put in evidence in the paragraph before, also by introducing new 

technologies such as a wearable motion capture system for evaluating the physical 
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exposure in MMH tasks (Kim and Nussbaum; 2013) and by considering the load 

limit for the individual subjects performing a combination of material handling tasks 

using the oxygen consumption protocol (Dempsey et al., 2008). 

Even though, much attention has been paid by considering the effects of the tasks 

characteristics in order to redesign the activity, less attention has been paid to the 

managing of the operators’ manual material handling activities by considering the 

effect that a predetermined activity can have on the fatigue experienced by a specific 

operator. This analysis has become important because an overuse of operators’ 

capabilities can lead to musculoskeletal disorders in the long- term period in addition 

to a slowing down of the performance in the short term. 

1.3 Physical Fatigue 
 

The Fatigue is defined by Grandjean (1979) as “a loss of efficiency and disinclination 

for any kind of effort”. Generally, the fatigue experienced by operators is divided 

into physical and mental fatigue. The first one is due to physical efforts which 

reduces the maximal capacity of the operator in generating force or power output. 

On the other side the second one caused in the operators feelings of stress and 

disinclination for any kind of efforts. As put in evidence in Figure 1.1 these two 

kinds of fatigue are distinguished by different characteristics. 

A job can have both the influence of these two kinds of fatigue but normally there is 

a predominance of one of them in relation to the kind of activity to be performed. 

Generally, for a material handler the physical fatigue influences more the performance 

than the mental one (Konz, 1998a). The physical fatigue is due to static or dynamic 

exertion and its value is affected by personal characteristics of the operators such as 

sex, age, weight, level of training, health status. Its accumulation can cause an increase 

in the time necessary for the contraction of the muscles and in the performance of 

the movement to be carried on. 
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On the other side the mental fatigue is linked to the individual's ability to concentrate 

and can be evaluated only by asking the operator a subjective evaluation of his/her 

level of mental tiredness through the use of self-reported techniques. 

 

Figure 1.1 Physiological and psychological fatigue 

Considering the major impact of physical fatigue rather than the mental one and the 

possibility of evaluating it through objective ways the focus of the analysis of human 

factors in manual material handling activities will be how to monitor this kind of 

fatigue and how can be set the level of fatigue of an operator. In fact, there exists 

several recognised devices to be used for evaluating the level of physical fatigue: the 

electromyography (EMG), the maximum endurance time (MET), the heart rate, the 

blood pressure, the blood perfusion and the levels of oxygenation. Related to this, 

the physical fatigue can occur on different parts of the body causing different levels 

of reduction of the force in different parts of the body. In fact, as stated by Konz 

(1998b) there exists the general body fatigue for activities where the whole body is 

involved causing more or less the use of all the body parts, both the upper and the 

lower part of the body and the muscular fatigue that is linked to the continuous used 

of the same group of muscles during repetitive activities.  According to this, these 

two kinds of fatigue need to be monitored in different ways. The general body fatigue 

FATIGUE: 
a loss of  efficiency and disinclination for any kind of  effort (Grandjean,1979)

PHYSIOLOGICAL FATIGUE:

It can be influenced by personal characteristics.

It leads to reduce capacity on generating force, 
lower performance and an increase in the reaction
time.

It can be evaluated in an objective way with 
recognized methods.

PSYCHOLOGICAL FATIGUE:

Measured with self-reported techniques.

Negative aspects both on cognitive and physical
activities.

Lack of a mathematical model to predict it.
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normally has an effect on the cardio-vascular system and is monitored with the 

analysis of the energy expenditure rate of the specific activity taken into account. On 

the other side the muscular fatigue can be better evaluated by considering the 

condition of the group of muscles used during the performance of the physical effort 

requested to the operator. Subsequently, the most used units of measures of this kind 

of fatigue in the literature are recognised as the Maximum Voluntary Contraction 

(MVC), which is the peak force produced by a muscle when it contracts and the 

Maximum Endurance Time (MET) which is the maximum time that a muscle can 

sustain a load during an isometric contraction. 

For manual material handling activities, in addition to the predominant influence of 

the physical fatigue, it needs to be considered that the whole body is used. For 

example, in order picking activities both the upper and lower part of the body are 

used for reaching the item, picking it (normally with the two hands) and putting it 

on the pallet. Subsequently, in the analysis of fatigue of the following thesis the focus 

will be the general body fatigue caused by manual material handling activities, which 

level is stated by knowing the energy expenditure rate (Figure 1.2). 

 

Figure 1.2 General body and muscular fatigue 
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In fact, as can be seen in Figure 1.3, even if activities characterised by repetitive 

movements of the same body parts (such as assembling activities) have similarities to 

the manual material handling ones in relation to the use of human resources, of the 

impact of both physical and physiological fatigue and the consequently necessity of 

an adequate time to recover, they differ substantially one from the other. 

 

Figure 1.3 Comparison between repetitive tasks and MMH activities 

Considering the existing literature, focused on the consideration of the factors 

influencing manual material handling activities for giving information to 

practitioners regarding how to redesign the workplace and the tasks to be performed 

by the operators, there is the necessity, on the other side, of a better understanding 

of how the tasks should be assigned to operators (Figure 1.3).  

Related to this, more attention should be paid on human factors related to the 

influence of the personal characteristics of the operators and on the management of 

the sequence of activities to be given to each operator, considering also the necessity 

to have some time for recovering. 
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1.4 Methods and devices for monitoring the physical fatigue 
 

Muscle fatigue reduces the ability to exert a force in a voluntary effort. Reduction of 

forces and fatigue lead to ergonomic risks and work-related MSDs. The worker's 

fatigue level can also affect the final product quality and the production rate with a 

cost incrementation for the companies (Otto and Battaia, 2017). It is possible to 

define two main type of fatigue: general fatigue and muscle local fatigue. The general 

fatigue can be evaluated through the human energy expenditure index. In Garg et al. 

(1978) energy expenditure index for common manual tasks and body movements is 

evaluated and it is composed of two terms. The first one represents the energy 

required to maintain a body posture while the second one represents the energy 

required to perform a specific activity. A high energy expenditure is associated with 

a high risk of musculoskeletal disorders (Hoozemans et al. 1998).    

Instead, the muscular fatigue can be quantified through the Muscular Endurance 

Time (MET) models. As defined in Imbeau and Farbos (2006), MET is defined as 

the maximum time that a muscle can sustain a mechanical load during a static 

exertion.  Generally, the fatigue index is expressed as a differential equation, 

depending on the maximum voluntary contraction (MVC) and the external load or 

the forces to which the muscle is subjected. Muscular recovery is complementary to 

muscular fatigue accumulation.  

There are several aspects that impact in the local muscular fatigue. In Ma et al. (2009) 

the forces and torques applied to the human body are considered with the total load 

to carry or to move to assembly parts. Another aspect to evaluate is the repetitiveness 

of some tasks and the tasks execution scheduling. In order to reduce the local muscle 

fatigue, Michalos et al. (2010) propose a re-scheduling model that integrates 

workers’ competences, fatigue, distance travelled, costs and repetitiveness of tasks. In 

order to decrease the local muscle fatigue, special tools have been created to generate 

particular job scheduling analysis and to underline the more critical parts of the body. 
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To integrate workers’ fatigue evaluation in the work design digital human modelling 

(DHM) technique has been used more and more in the industry taking human as the 

centre of the work design system (Chaffin, 2002). 

Forceful exertions have been considered to be the most important cause of 

musculoskeletal disorders related to the upper extremity. In the literature, there are 

different methods for assessing the magnitude of physical exertions, but not all of 

them can be put into practice during the design phase of the workstation. In addition, 

these methods can be grouped into qualitative and quantitative methods. The first 

are based on the prediction of the workload basing on subjective evaluations of the 

workplace or on predictions based on the workstation layout, the second rely on the 

data that can be recorded by using validated devices. Consequently, for a practitioner, 

it is not easy to establish which is the best method to be used for making decisions. 

In relation to manual material handling activities, there still lacks the indication of 

the kind of device to be used by a practitioner for having a feedback regarding the 

fatigue an operator is experiencing. 

1.4.1 Qualitative methods 
 

Qualitative methods could consist of subjective evaluations which are based on verbal 

estimation given by the operators during the performance of the activity. The 

advantages of using such techniques are related to low costs in terms of money in 

comparison of the investment necessary for buying an instrument and in terms of 

time needed to understand how to use and how to test it in the specific industrial 

context. Moreover, as put in evidence in Borg (1998) subjective evaluations can give 

a feedback not only regarding the stress of the muscles and joints during the activity 

but also of the central nervous system. Despite these advantages, they are influenced 

by subjectivity and this leads to the difficulty of assessing the accuracy and the 

variability of the measure between different operators. In fact, the evaluation of an 

operator for the same load can be different if he performed previous physical efforts 
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and he experienced fatigue accumulation on the muscles. In addition, the precision 

of the measure is different if the operator has previous exposure to the benchmark 

(Marshall et al., 2004). The accuracy of verbal estimation of the load can increase if 

the operator performed a maximum exertion before the evaluation of the intensity of 

the force related to the load (Marshall et al., 2004). According to this, in Jakobsen 

et al. (2014) it is analysed the relation between the exertion perceived by the operator 

with Borg’s scale (Borg, 1998) and the cardiovascular and muscular workload 

assessed with the ECG (Electrocardiography) and with the EMG 

(Electromyography) for lifting tasks. Subjective evaluations can be put in practice 

not only in the existing workstations but also in the design phase if the loads to be 

lifted, pushed or pulled are available or if they can be reproduced. In addition, it can 

be considered as qualitative methods the existing tools which can predict the 

workload and the time with the information regarding the layout of the workstation 

with simple biomechanical regression models and Methods-Time Measurement 

(Greig et al., 2017). This tool, which permits to estimate the %MVC, is a kind of 

observational method and can be put into practice easily in the design phase in a 

hypothetical virtual environment where the design input parameters are known. The 

disadvantage that such a tool has is that it can be applied only on workstations where 

the operator is fixed in a workstation and there is only the movement of arms and 

shoulders for assembling the item in the workbench.  

Moreover, there is the possibility, for a practitioner, to apply digital human 

modelling simulation for estimating the load reproducing the real activity in a virtual 

environment. The simulation permits to evaluate a task months before having the 

real components available or during the designing of the workplace. But the 

simulation tool needs to be further developed to be applied in an industrial context 

because more data need to be recorded in the field for different kinds of activities 

and there is the need of matching these data with the ones recorded with validated 

devices such as a dynamometer. 
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1.4.2 Quantitative methods 
 

Quantitative methods are related to the real measurement of the load through the use 

of existing devices such as the EMG or the dynamometer. As put in evidence in Lee 

et al. (1991) the activity of pushing and pulling have an effect on the lower back. 

Generally, the pushing determines a smaller lower-back loading in comparison with 

pulling. For both the activities, there is an influence of the weight and height of the 

subject who has to perform the activity and of the handle height of the cart to be 

pushed or pulled. The body weight influences more the pulling than pushing and for 

each activity, there is a proper handle height for minimizing lower-back load (Lee et 

al., 1991). In addition, the cart characteristics can also affect the push and pull forces 

(Al-Eisawi et al., 1999).  It has been put in evidence that the minimum push and pull 

forces are proportional to the weight of the cart and inversely proportional to the 

wheel diameter. Even more recent literature (Garg et al., 2014) has put in evidence 

the important factors that should be considered by industries in the design phase: the 

friction, wheel and weight and handle height of the cart, the grade or slope of the 

floor and the trunk posture, the feet placement of the operator and the pushing and 

pulling frequency and distance. 

Consequently, for pushing and pulling activities it is necessary to carry on proper 

evaluations in each industrial field of application in order to understand the effect of 

such kind of activities for different operators with the use of different kinds of carts. 

For having these measures of load in an objective way the EMG and the 

dynamometer are the most used devices. Even though the measurement of the load 

with this kind of instruments is considered the gold standard, the reliability 

coefficient is 0.77 because different operators can perform the same activity with 

different techniques causing a difference in the actual force application (Bao et al., 

2009). For example, the same operation can be performed with one or two hands 

and, as a consequence, the final force applied to perform it is different. The EMG is 
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a tool used for detecting electrical activity in the muscles and it consists on the 

placement of electrodes on the skin surface above the muscle of which it has to be 

monitored the contraction in order to evaluate the % of MVC of the muscle during 

the performance of the activity. The disadvantages of the EMG are the influence of 

other muscles movements, of the interference of electrical supply and of mechanical 

problems on the recorded measurements of MVC. Even though a relationship has 

been found between self-reported load estimation method (such as Borg CR-10 

scale) and the grip force measured with the EMG (Buchholz et al., 2008), there could 

be lack of correlation between the two measures due to the wording of the self-

reported questions. Moreover, the questions could be not specific enough to match 

a single direct measurement. In addition, the EMG implies some problems related to 

the application because different individuals can use different groups of muscles for 

the same task and it is difficult to interpret the measure of MVC for multiple muscle 

groups. As far as the disadvantages are concerned, this technology is complex and 

costly to be applied in an industrial context.  

The dynamometer is a tool to measure the peak and average force in kilograms for 

carrying, pushing and pulling activities. It is fixed to the object to be carried, pushed 

or pulled and any kind of slipping has to be avoided. Before the use, it is important 

to understand the direction of forces that represent the movement path of the 

operator (Massolino et al., 2017).  

The application of this device is easy to be performed and from the output data, it 

can be revealed the kind of movement that the specific operator performed in 

addition to the influence of the height and weight of the item. The use of wearable 

sensors for evaluating physical fatigue in the workplace is becoming the focus of 

recent literature (Maman et al., 2017). Related to this, the combined use of heart 

rate monitor and accelerometers or inertial measurement units (IMUs) for assembly 

tasks and manual material handling tasks has been analysed (Maman et al., 2017).  
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1.5 Recovery time for alleviating fatigue 
 

As stated in Konz (1998a) there exist actions to be made for preventing and 

avoiding the accumulation of fatigue. These actions can be seen in Table 1.2.  

Table  1.2 Generic guidelines for fatigue prevention and reduction 

       FATIGUE PREVENTION    FATIGUE REDUCTION 

 Avoid the overtime and long 
shifts 

 Avoid irregular hours of work 

 Avoid too much or too little 
stimulation of the brain 

 Avoid the level of fatigue 
becomes to great to be 
overcome 

 Give to operators a rest before 
the level of fatigue increases too 
much 

 
 

 Give to the operators breaks 
to reduce their level of fatigue. 
This can be obtained by 
making the operator use a 
different part of the body 
than the one fatigued. 

 Give to the operators frequent 
short breaks to reduce the 
accumulation of fatigue 

 Maximize the recovery rate by 
guarantee to the operator the 
best working conditions 

The recovery time, defined in Swaen et al. (2003) as “the time necessary to recuperate 

from work induced fatigue”, is considered the way for reducing the level of fatigue 

of operators and it is considered as recovery also the possibility of given to the 

operator an activity which permit to stress a different group of muscles in comparison 

to the efforts made previously. As can be seen in Figure 1.4 the need of some time 

to recover can be attributed both to physical and mental fatigue and a break to the 

operator can be given at the end of the whole work content or before. The position 

of the recovery generally is predetermined by company and it is not linked to the 

kind of person who has to carried on the activity. 
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Figure 1.4 Main concepts on recovery time 

Generally, the time the operator needs to recover is taken into account for the setting 

of the standard time, which is the sum of the normal time necessary to carry on an 

activity (determined by time studies or predetermined time standards) and of 

personal, delay and fatigue allowances (Konz, 1998a). The personal allowances are 

the ones related to physiological needs of the operators. Considering these needs, 

normally it is given to operators a break of 15 minutes every two hours. Instead, the 

delay allowances vary with the task and not with the operator because they take into 

account the machine breakdowns, the interrupted material flow and the machine 

maintenance and cleaning.  

On the other side the fatigue allowances are given to the operator for compensating 

the time lost due to fatigue. If there is no fatigue, there is no need of fatigue 

allowances. The International Labor Office (1986) divided the fatigue allowances 

into there categories: physical, mental and environmental. As far as manual material 

handling activities is concerned, as stated in the paragraphs before, all these aspects 

affect the performance of the operators and should be taken into consideration. The 

physical fatigue allowances consider the whole-body load and the local muscle load 

RECOVERY TIME: 
The time necessary to recuperate from work induced fatigue

(Swaen et al., 2003)

It is caused by excessive workloads both on mental and physiological activity level. 

If not fully satisfied it contributes to exacerbate the accumulation of fatigue.

There is not a proper time to recover: the recovery can be done after each task or at the end of the 

day-shift.

In the literature different methods have tried to predict the recovery need through the definition of 

rest allowance (RA).
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(Konz, 1998a), subsequently the general body fatigue and the muscular one. The 

mental fatigue allowances consider the mental demand, the concentration requested 

by the task and the visual strain. Finally, the environmental allowances consider the 

climate, the presence of noise and vibration and the kind of illumination of the 

workplace. An overview of these existing allowances can be seen in Figure 1.5. The 

research on manual material handling activities should be better focused on the 

estimation of the allowances related to general body fatigue because, as put in 

evidence in the paragraphs before, for such kinds of activity the operators experience 

more this kind of fatigue than the mental or muscular one. 

 

Figure 1.5 Existing allowances for giving operators time to recover 

In fact, for “heavy” work such as manual material handling activities, it is fatigued 

the cardio-vascular system, which has five responses to the exercise: the heart rate, 

the stroke volume, the artery vein differential, the blood distribution and the 

anaerobic metabolism. On the other side the muscular fatigue is not due to lack of 

energy or of oxygen supply (Konz, 1998a). The kind of work that lead to muscular 

fatigue is the static one, which can lead to musculoskeletal disorders due to the 

overstress on a predetermined group of muscles. 
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There is not so much literature focused on the consideration of human factors in 

manual material handling activities through proper estimation of whole-body fatigue 

allowances. Instead more attention has been paid to local muscle ones. 

1.6 Research framework  
 

According to the topics presented in this first chapter, the following PhD thesis aims 

at developing the literature focused on the consideration of human factors in manual 

material handling activities answering to the following research question: 

RQ1: In which ways can be better considered the impact of human factors in manual 

material handling activities? 

In relation to this general research question, this thesis is strictly focused on the 

modelling of the general body fatigue experienced by the operators in order to 

develop the existing researches focused on the rest allowances for considering how 

the assignment of activities to operators can be improved. In fact, till now the 

literature has very little focused on how the activities should be assigned to operators 

in order to minimize the recovery time necessary to them and consequently the 

performance of the whole system. In relation to this, the main research question is 

the following: 

RQ4: How can be modelled the fatigue accumulation of operators for reaching the 

improvement of the system through the minimization of the total recovery time of 

operators? 

In order to reach this contribution of the literature focused on the workers 

assignment problem (WAP), it should be addressed one more research question 

related to how the fatigue level of an operator can be monitored. In fact, as far as 

manual material handling activities is concerned, there still lacks the kind of device 

to be used to have a real-time feedback of the physical conditions of the operators. 

This is useful not only for having an immediate data on the impact of the activity on 
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the operator, but also to understand, without the necessity of modelling the fatigue 

accumulation, which kinds of operators should be assigned to the activities which 

request a higher level of physical effort. Related to this, it is necessary to answer to 

the following research question: 

RQ2: How can be obtained a personal assessment of the fatigue experienced by 

operators? 

In addition, one more research question should be answered in order to be able to 

model properly the fatigue accumulation of operators requested by the research 

question 4, in relation to the development of the existing rest allowance models in 

order to consider in the estimation of the recovery time to be given to each operator 

not only the kind of activity but also the kind of operator who has to perform it. 

According to this, the following research question should be answered before 

focusing on the WAP problem considering the recovery time reduction: 

RQ3: How can parameters for the operators and for the activities be included in the 

estimation of the recovery time considering the general body fatigue? 

The explained relation between the research questions presented can be seen in Figure 

1.7. 

 

Figure 1.6 Research questions of the PhD thesis 
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According to these research questions the PhD thesis has been developed in 6 

chapters. In chapter 2 it will be presented the kind of device to be used for having a 

personal assessment of the fatigue experienced by an operator and it will be validated 

with the existing physiological literature and with tests carried on in a production 

system. The aim of the following chapter is to answer to the RQ2. In parallel with 

this chapter, in order to explain the value added of the new rest allowance model 

presented in chapter 4, in chapter 3 it will be given an overview of the existing rest 

allowance models putting in evidence the parameters considered in the estimation of 

the recovery time. Chapter 3 aims at better putting in evidence what lacks in the 

consideration of human factors in the industrial contexts according to RQ1 focusing 

on the rest allowance literature. As previously stated, in Chapter 4, after the 

explanation of what lacks in the rest allowance literature (Chapter 3) and after the 

feedback obtained by monitoring the fatigue level of operators in industrial context 

(Chapter 2), it will be presented a new rest allowance model which can consider all 

the parameters which can influence the level of fatigue of each operator.  

According to this new model, it will be developed in chapter 5 by taking into account 

the fatigue accumulation of operators during the performance of manual material 

handling activities sequentially. In this chapter the fatigue accumulation will be 

modelled for permitting the estimation of the average fatigue level in terms of energy 

expenditure rate of each operator and of the recovery time necessary to them: This 

permits to improve the literature focused on the workers assignment problem 

(WAP). Finally, in Chapter 6 the conclusion of the research carried on in this thesis 

will be drawn and the future steps of research on this topic will be put in evidence. 

The structure of the chapters with the main topics addressed is presented in Figure 

1.8. 
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Figure 1.7 Main contents of the chapters 

1.7 List of Publications 
 

1.7.1 Papers for chapter 2 
 

Abdous M-A., Finco S., Visentin V. “Workload evaluation of industrial work: 

existing methods and practical applications.” XXIII Summer School Francesco 

Turco, 12-14 September 2018. 

Calzavara M., Persona A., Sgarbossa F., Visentin V. “A device to monitor fatigue 

level in order-picking”. Industrial Management and Data systems. 

1.7.2 Papers for chapter 3 
 

Battini D., Calzavara M., Persona A., Sgarbossa F., Visentin V. “Fatigue and 

recovery: research opportunities in order picking systems”. The 20th World 

Congress of the International Federation of Automatic Control, 9-14 July 2017. 

Introduction
• Human factors and 

impact on the 
performance

• Physical fatigue and 
methods to 
monitor it

• Recovery time for 
alleviating fatigue

• Research gaps

Technologies
• Heart rate monitor 

for the analysis of  
general fatigue level

• Laboratory tests
and practical
application of  the 
device

Existing rest
allowance models

• Existing rest
allowance models

• Parameters
considered in the 
existing models and 
parameters which
can influence the 
value of  the recovery 
time.

New model for recovery 
time estimation

• Proposal of  a new model 
for RA estimation with 
the intruduction of  new 
parameters related to the 
activity and to the 
operator

• Comparison with the 
existing models

Fatigue accumulation in 
WAP

• Development of  the model 
considering fatigue
accumulation in the 
workers’ assignment
problem

• Parametrical analysis on 
the impact of  the 
introduced parameters

Chapter 1

Chapter 3

Chapter 2

Chapter 4 Chapter 5



Introduction 

42 
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2.1 Importance of monitoring the fatigue level in manual material 

handling activities 
 

Order picking is defined as the process of retrieving items from their storage 

locations in a warehouse to fulfill customers’ orders (Tompkins et al., 2010). 

Usually, this activity is carried out by operators rather than machines (Grosse et al., 

2015). In fact, in Napolitano (2012) and De Koster et al. (2007) it is confirmed 

that manual order picking warehouses are the dominant type consisting in about 80% 

of all the order picking warehouses. Order picking is not only labor-intensive, but 

also it implies more than 50% of the operating costs of a warehouse (Frazelle, 2002; 

Tompkins et al., 2010). Considering that the time taken to perform this activity can 

be high, and that it is not defined as an activity with the same added value as a usual 

production process, the aim for warehouse picking systems design is usually focused 

on improving their efficiency and their throughput (De Koster et al., 2007). Then, 

this goal often turns out on reducing the time needed to perform a picking tour 

(Battini et al., 2015). During this activity, the operator first has to have the time 

necessary to receive and understand the picking list, defined as the setup time. After 

that, during the search time and the pick time, he or she identifies the right item to 

be picked and picks the item from its storage location. Besides this, he or she needs 

sufficient time to travel from one storage location to the next one. Up to now, the 

literature has mainly focused on how to improve the overall performance of the 

system (Gunasekaran et al., 1999; Grosse et al., 2015) by reducing firstly the 

travelling time and then the setup, picking, and search times (Grosse et al., 2015). 

Travel time reduction is often related to the choice of the best warehouse design and 

on the establishment of the best storage assignment or the best routing and batching 

method (Chackelson et al., 2013; Pan et al., 2014; Yang et al., 2016). In addition, 

methods and techniques for preventing errors in picking the wrong item or the wrong 

quantity have also been analysed (Brynzér et al., 1996; Battini et al., 2015). 
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As stated in Grosse et al. (2015), considering the current increasing of product 

differentiation and the decreasing in the life cycles, the employment of operators 

rather than machines is usually preferred by firms for assuring the flexibility in 

reacting to unexpected changes, especially if these changes require a certain reasoning 

ability of the operator. Moreover, the presence of humans has an impact not only in 

the manual warehouses but also in the automatic ones because the presence of 

operators is fundamental in the picking bays. This implies the need to consider 

deeply the human factors, as also reported in some recent contributions in the 

literature (Helander., 2005; Neumann et al., 2010; Stanton et al., 2013). In Helander 

(2005) human factors and ergonomics are defined in the following way: 

“Considering environmental and organizational constraints, the use of knowledge of 

human abilities and limitations to design the system, organization, job, machine, tool 

or consumer product so that it is safe, efficient and comfortable to use”. 

Concerning manual material handling activities, operators can suffer from health 

problems due not only to bad ergonomic conditions but also to physical fatigue, 

which is generally defined as a reduction in capacity to perform physical work as a 

function of preceding physical effort (Gawron et al., 2001). These kinds of problems 

can lead to a decrease of operators’ physical capabilities over a long-term period. 

Consequently, the human factor could have a relevant impact on the performance of 

the picking system (Grosse et al., 2015). 

Accordingly, some of the recent literature has been focalized on the importance of 

taking into account human factors in each manual material handling activity, for the 

improvement of the overall system efficiency (Grosse et al., 2015; Larco et al., 2016). 

However, little attention has been paid to the kind of fatigue that operators feel 

during the execution of their daily work. This kind of fatigue is not only physical 

but also psychological, and both can affect performance (Konz,1998; Zwarts et al., 

2008; Rose et al., 2014). Physical fatigue is due to the need to travel from one 
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location to the other and the need to reach and carry items of a predetermined weight 

(positioned on a shelving or on the ground) to a certain height. These are all activities 

that imply the use of the cardio-vascular system. This kind of fatigue can be evaluated 

in an objective way and leads to a reduction in the capacity to generate force, lower 

performance, and higher reaction times. Physical fatigue can be influenced not only 

by the activity performed but also by the manner in which the activity is carried out. 

In fact, it can increase with a speed up of the operator in reaching the item, carrying 

it to the pallet, and positioning and repositioning it. On the other hand, 

psychological fatigue is due to the need to understand the location and retrieve the 

right item. 

The purpose of this chapter is to contribute to the filling of the gap in the existing 

literature related to the investigation of human factors in order picking activities. In 

particular, it is focused on the understanding of how the accumulation of the physical 

fatigue of operators can be monitored, considering that picking activities determine 

the use of the cardio-vascular system. From a managerial viewpoint, the measurement 

of the heart rate permits to have a continuous monitoring of the level of workload 

perceived by each operator. Consequently, it is possible to monitor in real time if the 

workloads are equally distributed among operators and to redefine the job scheduling 

and job rotation, not only considering the duration of the activity but also integrating 

the level of fatigue of the operator by considering the value of energy expenditure, 

that can be obtained from the heart rate of each operator. 

2.2 Methods for fatigue analysis in order-picking systems 
 

Considering the impact of human factors in order-picking activities, there is a need 

to guarantee a predetermined level of operator performance in the short- as well as 

the long-term. This can be achieved both through reducing the amount of awkward 

postures (Battini et al., 2011; Battini et al., 2014) and through minimizing the fatigue 

level (Gawron et al., 2001). The human factor in the industrial environment has been 



The heart rate monitor 

 

53 
 

analyzed for preventing musculoskeletal disorders (MSDs), one of the major causes 

of health problems in operators, especially those performing manual and repetitive 

tasks (Burgess-Limerick, 2007). With this aim, ergonomic analyses are usually 

carried out (David, 2005) to evaluate operator conditions in performing a specific 

task and, as a consequence, to understand what could be the best design of the 

workplace or the best definition of the tasks to improve not only the operator’s health 

conditions but also the general efficiency. However, in a picker-to-parts system 

ergonomic analyses can be useful to evaluate the improvement of awkward postures 

but are not sufficient to understand the effect of this kind of activity on the cardio-

vascular system of each operator. Consequently, in this industrial context there is still 

a lack of an acknowledged method for the measurement of operator physical fatigue. 

Table 2.1 shows some of the existing methods that have been identified as useful 

approaches for the monitoring of the fatigue that an operator feels during and after 

the performance, together with their advantages and disadvantages. These methods 

have been selected since they are strictly linked to the physical fatigue that the 

operators perceive. In fact, a subjective evaluation can be given by self-report 

questionnaires (Pope et al., 1998), the measurement of the muscular fatigue is 

obtained in an objective way with the use of the EMG (Cifrek et al., 2009) and 

finally, the measurement of the overall body fatigue is given by Garg et al.’s model 

(1978), PMES (Predetermined Motion Energy System) (Battini et Al., 2016) and 

the monitoring of the oxygen consumption (VO2) and of the heart rate (HR) 

(Achten et al., 2003). 

Self-report questionnaires and interviews are subjective evaluations done directly by 

operators regarding the significance of the exertion and their personal discomfort in 

the workplace. Thus, they allow to obtain personal feedback on the effort that an 

operator feels during the performance and at the end of the activity. The data 

obtained from these methods can be useful to individuate the most critical activities 

on which to focus attention. Moreover, they can be used to confirm and validate with 
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personal feedbacks the results obtained from another fatigue analysis. On the other 

hand, the use of EMG is strictly linked to the concept of Maximum Endurance Time 

(MET) (Zhang et al., 2014), which represents the maximum time for which a muscle 

can sustain a load; when an operator reaches the MET, he or she becomes unable to 

maintain the load and the level of fatigue is 100%. The MET is set from the 

Maximum Voluntary Contraction (MVC), defined as the maximum force exerted 

by a muscle when it contracts. Thus, EMG allows to gain feedbacks regarding the 

condition of the muscle at the beginning and at the end of the activity and, in contrast 

to self-reported methods, it is objective. However, it cannot determine the 

accumulation of fatigue during the performance considering the impact of the effort 

made by the cardio-vascular system as a result. Both self-report methods and EMG 

have negative aspects: the former because of its subjectivity, while the latter due to 

the requirement of high investment and the need of a proper preparation. Besides, 

neither of these two techniques takes into account personal characteristics that 

distinguish one operator from another and that have an influence on fatigue 

accumulation. The macro-studies of Garg et al. (1978) are based on the measurement 

of energy expenditure. This is one of the most well-known measurements used with 

the aim of knowing how much physical strain is required to perform a task and to 

monitor the level of fatigue felt by an operator, making it possible to ensure that the 

job demands do not exceed the worker’s capabilities (Bradfield, 1971; Payne et 

al.,1971). Garg et al. (1978) developed a model for the prediction of the energy 

expenditure of a wide variety of manual material handling activities by dividing a 

complex job into different smaller work tasks, considering not only the energy 

required for the performance of the task but also the energy required for the 

maintenance of the posture. The positive aspect of this method is that it can take 

into account the differences between one person and another in terms of age, body 

weight, and height. Garg et al. (1978)’s model has been simplified in Battini et al. 

(2016) to obtain a Predetermined Motion Energy System (PMES), which has the 

same advantages as the model of Garg et al. (1978) but can speed up the estimation 
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of the energy expenditure of a task. Garg et al. (1978)’s model and PMES cannot be 

put into practice so easily in an industrial context because they are based on the 

evaluation of every single movement of the operator performing a task. 

The approach of VO2 or HR monitoring to predict energy expenditure is different. 

VO2 monitoring is the most validated method in the literature, because its 

relationship with the particular activity performed has been demonstrated (Aberg et 

al., 1967). However, it cannot be applied easily in an industrial context, since the 

investment is considerable and it implies a certain level of preparation for the use of 

the instrument. Besides this, the biggest limit is the size of the instrument and the 

inconvenience of using the mask for taking the measures, which can influence the 

operator’s performance due to stress and difficulties in breathing. On the other hand, 

a HR monitoring system (Gamelin et al., 2006) is portable and thus less expensive, 

easy to use and to understand; it does not require specific knowledge, and it does not 

disturb the operator’s activity. Besides this, the measurement of the heart rate for 

activities which imply the use of the cardio-vascular system is generally correlated 

with VO2 (Astrand et al., 1954). HR, like VO2 monitoring, allows to give real-

time feedback to the operator, who can be conscious of his or her physical condition 

and, if appropriate, can speed up or slow down the rate of the activity. Another 

important aspect is that both of these methods recognize the effect that personal 

characteristics, such as age, weight, VO2 and HR at rest, and training status, can 

have on fatigue accumulation.  

The use of an HR monitor is easier than the measurement of the VO2. The HR 

monitor can be used by everyone without difficulty and the measurement of HR to 

monitor fatigue level can be done for different kinds of activities without disturbing 

the operators. Consequently, an HR monitor, thanks to all these advantages, could 

be the best device to carry out a fatigue analysis in order picking contexts. 
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Table  2.1 Methods for the estimation of physical fatigue 

METHOD ADVANTAGES DISADVANTAGES 

SELF-REPORT 
QUESTIONNARIES 

o Inexpensive 
o Little time to be compiled 
o Standard format 
o Easy to use and to understand 
o Applicable to different 

situations 

o Subjective evaluation of the 
effort 

o Personal questions’ 
interpretation 

SELF-REPORT 
INTERVIEWS 

 Inexpensive 

 Little time to be compiled 

 Standard format 

 Easy to use and to understand 

 Applicable to different 
situations 

 Face to face comparison 

 More accurate than 
questionnaires 

 Flexibility 

 Subjective evaluation of the 
effort 

 Personal questions’ 
interpretation 

 Necessity of a user trial 

 Demands characteristics to the 
situation 

 Time-consuming 

DIRECT MEASURE 
OF EMG 

o Usually put on a specific part 
of the body 

o Less time consuming 
o Recording of myoelectric 

activity of the muscle 

o High investment 
o It is necessary a certain 

preparation 
o It does not consider personal 

characteristics 
GARG ET AL. (1978) 
MODEL 
 

 Standard movements 

 Link with the energy 
expenditure 

 It considers someway personal 
characteristics 

 It requests the monitoring of 
operator’s activities 

PMES 
 

o Standard movements 
o Link with the energy 

expenditure 
o It considers someway personal 

characteristics 
o Easier to be applied than 
Garg’s model 

o It requests the monitoring of 
operator’s activities 

ENERGY 
EXPENDITURE 
BASED ON VO2 
MONITORING 

 It permits the continuous 
monitoring of an aerobic 
measure 

 It is validated 

 It is strictly related to the 
intensity of the activity 

 It considers personal 
characteristics 

 High investment 

 It is necessary a certain 
preparation 

 It can influence operator’s 
performance 

 Not easy to use in an 
industrial context 
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ENERGY 
EXPENDITURE 
BASED ON HR RATE 
MONITORING 

o It permits the continuous 
monitoring of an aerobic 
measure 

o Not so expensive 
o Easy to use and to understand 
o It considers personal 

characteristics 
o It assures a real time feedback 

to the operator 
o Suitable for all applications 

o At beginning is better to 
correlate this measure with the 
oxygen consumption 

o Stress can have a little 
influence on the heart rate at 
rest 

 

2.2.1 Use of heart rate as a measure of fatigue level 
 

The HR monitor is based on a Bluetooth HR sensor connected to a watch, where 

the trend of the heart rate and the duration of the activity are visualized. It is 

commonly used to obtain feedback regarding the training status and to improve the 

physical form of a person through accurate planning of the next training activities. 

As stated above, if the aim is to use this kind of device to monitor physical fatigue 

in picking activities, there is a need to correlate this measure with the VO2 

consumption. In fact, VO2 monitoring is the most precise way to find the energy 

expenditure on a task, because, if a task whose level of work is not light is carried out 

for a certain duration, there is a change in the quantity of oxygen transported in the 

blood. Associated with the measurement of the VO2 is the VO2 max, an important 

concept referring to the maximal oxygen intake that can be measured after prolonged 

exercise and permitting the evaluation of the physical fitness and the endurance 

capacity of an individual. This kind of measure can be obtained if the physical effort 

in terms of rate and duration is sufficient to disturb the aerobic energy system. 

Regarding the correlation between VO2 and HR, even though Astrand et al. (1954) 

demonstrate a certain linearity in the correlation between these two measures, there 

are difficulties in trusting HR monitoring directly without taking into account the 

correlation with the VO2. In fact, for activities whose level of rate is low, the slope 

of the relation between VO2 and HR is flat, so slight movements can increase HR 

while VO2 remains the same (Achten et al., 2003).  
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Besides this, it is important to know how much this device can effectively monitor 

the energy expenditure of an individual. Up to now, considerable efforts have been 

made in the attempt to determine the energy expense of physical work and the strain 

induced in the individual due to the stress of the workload. The use of the HR for 

the measure of the energy expenditure has been analysed in the past as well as in more 

recent literature. Acheson et al. (1980) present evidence that, despite the accuracy of 

the measurement of the mean, the relation between HR and energy expenditure is 

not the same for all the activities because there is a certain influence of the following 

factors: work rate, type of work and posture, temperature, emotion, food, previous 

work, time of day, and training status. Payne et al. (1971) also show that personal 

characteristics can have an influence. In fact, they demonstrate the relation between 

HR and energy expenditure by dividing the subjects of interest into groups according 

to their age, sex, and state of training. Despite this, Bradfield (1971) reaffirms the 

need to start to analyse this relation, after the regression lines between heart rate and 

oxygen consumption have been taken into account. The need for individual 

regression lines determined in the field is also shown in Strath et al. (2000). Besides 

the preferable use of individual calibration curves, it has been demonstrated that it is 

better to have different kind of activities in the calibration procedure (Li et al., 1993) 

in order to obtain the energy expenditure through minute-by-minute recording of 

the HR (Spurr et al., 1988). Consequently, it is possible to estimate the energy 

expenditure from the HR, if it is considered that the trend of the HR can be different 

for two different persons performing the same activity because of individual 

specificities (Maxfield et al., 1971), but the accuracy can be improved if some 

adjustments for age, gender, body mass, and training status are considered (Keytel at 

al., 2005). Generally, the validity, stability, and functionality of the HR monitor are 

evaluated in Léger et al. (1988), where, with the aim of assuring the validity of this 

kind of device, this is compared with the ECG, and a high coefficient of correlation 

between the two kind of measures is found. After that, its stability is considered, 

through the utilization of several geometrical devices, and it is also shown that the 
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instrument is generically functional, and the only difficulty is finding the best one to 

fit the users’ needs. The difference in the activity performed or in the personal 

characteristics has an influence not only on the prediction of the energy expenditure 

but also on the variability of the HR itself. In fact, the variability in HR, like that of 

blood pressure, differs depending on whether it is induced by static or dynamic 

activities (Gonzàlez-Camarena et al., 2000): considering similar workloads, static 

activities lead to lower heart rate, higher blood pressure, and higher perception of the 

effort. Besides this, considering the same kind of effort, the HR trend is different 

between men and women (Jensen-Urstad et al., 1997). As a consequence, for healthy 

subjects, gender has an important influence on the trend of the heart rate, but another 

physiological aspect that has to be taken into account is age. Despite this variability 

in the heart rate, Pichot et al. (2000) put in evidence why the analysis of the HR can 

be useful for the monitoring and optimization of physical performance and why the 

HR variability is better than the HR at rest for considering physical fatigue 

accumulation. The importance of the HR variability, the effects of training, the main 

applications of the instrument, and the environmental factors affecting the HR are 

studied in Achten et al. (2003), where the use of HR, despite its limitations, is 

recognized as a validated method. The practical use of this device for fatigue 

accumulation in picking systems are shown in the next section. 

2.3 Application of the heart rate monitor device 
 

This section consists in an application of the HR monitor both in a laboratory 

context and in a real industrial context for the evaluation of its effectiveness. Firstly, 

it is validated the use of the heart rate monitor in the field by correlating the 

measurements of both heart rate and the oxygen. After that, it is shown, by applying 

the heart rate monitor in an industrial context, how the trend of fatigue and recovery 

can be evaluated for the specific operator. Finally, it is compared the effect of 

different intensities on the trend of the fatigue for a specific operator and, on the 
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other side, the impact of personal characteristics by considering the intensity and the 

duration of the activity as constants but changing the kind of operator that has to 

perform it. Accordingly, the results and the utility of this device to carry out a fatigue 

analysis will be analysed. 

2.3.1 Laboratory tests for setting the correlation between VO2 and HR 
 

As a first step, the correlation between the VO2 consumption and the HR is 

investigated to validate the use of the heart rate monitor in the order picking context. 

In fact, as explained in the previous sections, this correlation can differ with the 

change in the activity performed and from one person to another. According to this, 

some laboratory tests in collaboration with the physiological department of the 

University of Padova have been carried on in order to understand if for manual 

material handling activities such as order picking there is an high coefficient of 

correlation between the two measures.  

The measurement of the VO2 is obtained with an open circuit spirometry, that 

consists of a spirometer connected to a recording device to account for the O2 

removed by the spirometer and the CO2 produced and collected by an absorbing 

material. On the other hand, the measurement of the HR is carried out with an HR 

monitor called Polar V800 (Gamelin et al., 2006), which consists of a Bluetooth 

HR sensor connected with a watch, where the duration of the activity and the HR 

can be visualized during the performance.  

The picking activity simulation was performed by three different persons in a 

laboratory. Each person had to perform the same picking activity with three different 

real intensities (4, 8, and 12 items per minute), carried out one after the other for 

the same duration. In fact, each activity is performed for 10 minutes and between 

one rate and the following one there was a resting period of two minutes. The total 

time considered is, respectively, 30 minutes of working and 6 minutes of resting 

period. It was considered a total activity duration of 30 minutes because this is 
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indicated as the duration of reference for the estimation of the correlation between 

VO2 and HR (Spurr et al., 1988). The intensities taken into account are considered 

to be realistic, since they are usually observed in real industrial contexts. In this 

laboratory test, the order-picking activity is simulated by moving a plastic bin with a 

weight of 8 kg from a lower level to a higher one and vice versa. The three different 

persons involved in the performance of the activity have to wear HR rate monitors 

and oxygen masks together. For the three individuals, the correlation coefficient 

obtained is higher than 0.7 as can be seen in Figure 2.1. Consequently, for picking 

activities of medium rate, such as those considered, and for operators with different 

ages, weights, and levels of VO2 and HR during rest and training, the monitoring 

of HR can be a good way of measuring the fatigue level.  
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Figure 2.1 Results of the laboratory tests 
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2.3.2 Monitoring of the HR of operators in a real industrial context 
 

After the setting of the correlation between HR and VO2 in the laboratory tests, the 

HR monitor was put into practice in a real industrial context without the use of an 

oxygen mask to evaluate if the trend of fatigue accumulation and recovery alleviation 

could be put in evidence using this device. During the day, the analysis was performed 

on three different operators who had to carry out their daily picking activities. They 

had to pick the items indicated by their pick-to-voice system and each operator had 

to complete two pallets, either only with high rotation items, all located on the 

ground, or only with low rotation items, placed on a shelf. The difference between 

the two types of picking is that the first one is faster, with an average picking rate of 

8 items or 12 items per minute, while the second one has a lower rate, with an average 

of 4 items per minute. The time needed by the operator comprises the setup, 

searching, picking, and travel times (Tompkins et al., 2010). In the analysis presented 

in this paper, the generic travel time includes also the time for searching and for 

setting up, in order to carry out a macro-analysis. As far as operators is concerned, 

they differ in terms of personal characteristics (age, weight, height, VO2 at rest, HR 

at rest and training level). The first operator, performing a picking intensity of 8 

items/minute is 25 years old, a weight of 70 kilograms, a height of 1.70 meters, a 

value of VO2 and HR at rest of respectively 0.6 l/min and 80 bpm. The second 

and the third operators, performing respectively a picking intensity of 4 and 3 

items/minute, have similar personal characteristics: they are 30 years old, they have 

a body weight of 80 kilograms and a height of 1.80 meters. As far as VO2 at rest 

and HR is concerned, the second one has 0.36 l/min and 60 bpm and the third one 

0.5 l/min and 70 bpm.  
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2.3.3 Results of the tests and insights on the use of data obtained with 

the heart rate monitor 
 

By matching the data of the HR monitor with the data of the video recording of the 

operators’ activities it was possible to identify the alternation of the two phases of 

picking and travel. As shown in Figure 2.2, the three different operators have 

different trends of HR, therefore, it can be concluded that they must have different 

energy expenditures from one another in performing their daily work because, as 

explained in the paragraphs above, HR is strictly linked to energy expenditure (Spurr 

et al., 1988).  
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Figure 2.2 HR trends for picking activities performed in an industrial context with 

three different operators. 

Moreover, the rate of the activity has an influence in determining the maximum heart 

rate reached, since considering a rate of 3 or 4 items/minute and 8 items/minute the 

maximum heart rate is respectively around 110 and 180 beats per minute. In addition 
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to this, for two similar intensities such as 3 and 4 items/minute the two different 

operators reached respectively 120 and 110 beats per minute as maximum heart rate: 

despite a lower rate the first operator reached a higher value of maximum heart rate. 

Consequently, the energy expenditure of an operator, which can be obtained by using 

this kind of device, can be due not only to the activity performed but also to the 

personal characteristics of the operator.  

In addition, considering the same operator who performs the same picking activity 

with three different rates consequently, it can be seen in Figure 2.3 that the maximum 

heart rate reached is different between one activity and the other. 

 

Figure 2.3 Changing of the maximum heart rate with different picking rates 

Moreover, the use of this device permits to collect important data related to the 

physical conditions of the operators. In fact, by obtaining the average heart rate of 

the activity performed, defined has 𝐻𝑅𝑒𝑥, and by knowing the heart rate at rest 

𝐻𝑅𝑟𝑒𝑠𝑡 and the maximum heart rate 𝐻𝑅𝑚𝑎𝑥 , it is possible to obtain the percentage 

of heart rate deserve, which indicates if the operator is working in aerobic or 

anaerobic condition (Borresen et al., 2009). This kind of measure can be obtained 

with the following formulation by Karvonen et al. (1988): 
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% ℎ𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 𝑑𝑒𝑠𝑒𝑟𝑣𝑒 =
(𝐻𝑅𝑒𝑥−𝐻𝑅𝑟𝑒𝑠𝑡)∗100

𝐻𝑅𝑚𝑎𝑥−𝐻𝑅𝑟𝑒𝑠𝑡
      (1) 

The threshold of % ℎ𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 𝑑𝑒𝑠𝑒𝑟𝑣𝑒 which distinguishes between the aerobic 

condition and the anaerobic one is 80%. Above this value, the operator is in an 

anaerobic condition, at which he can stay only for a limited period, since this leads 

to the accumulation of lactic acid, indicating a higher level of physical fatigue 

(Karvonen et al., 1988).  

2.4 Impact of the kind of activity and of the physiological factors on 

the heart rate trend 
 

As seen in the section above, the factors that can have an influence on the trend of 

the HR are the personal characteristics and the rate and duration of the activity. In 

order to evaluate the effect of these variables independently from one another, a 

generic picking activity has been replicated in the laboratory. The tests were carried 

out with two different persons, operators 1 and 2, respectively of 35 and 26 years 

old, with a value of VO2 at rest of 0.6 and 0.4 l/min, a weight of 80 and 60 

kilograms and a height of 1.80 and 1.70 meters. They had to wear a heart rate 

monitor and to lift the same weight of 8 kg inside a plastic picking bin from a lower 

level to a higher one and vice versa. The left side of Figure 2.4, related to the first 

test, compares the trends of the HR obtained for operator 1 changing the intensity 

and the duration. As can be seen, keeping the same rate of 8 items per minute while 

changing the duration from 10 to 30 minutes, there was a change in the mean HR 

obtained for the specific activity. On the other hand, when the duration was fixed 

and the rate varied from 8 to 12 items/minute, the maximum HR reached was 

higher. It can be derived that both rate and duration affect the fatigue level of the 

operator, but this effect can be different from one person to another. 

For evaluating whether this kind of instrument can also be used for the analysis of 

the impact of personal characteristics on the accumulation of fatigue, the right side 

of Figure 2.4, related to the second test, compares the HR trends of operators 1 and 
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2, considering the same duration of 10 minutes and changing the rate. A certain 

difference between the two trends of HR for the two operators can be seen. So, it 

can be concluded that personal characteristics also have an impact, that can be 

revealed using the HR monitor. 

 

Figure 2.4 HR trend for the same operator and different rates and durations (test 1) 

and HR trend of different operators with different rates and same duration (test 2). 

2.5 Use of the heart rate data for managing the operators 
 

2.5.1 Use of the heart rate for decision making in an industrial context 
 

In the industrial context where the heart rate monitor has been applied such data of 

the heart rate have been useful for the understanding the impact of different activities 

on the operator and for the setting of the best design of the workplace. In fact, there 

has been the presence of two different kinds of activities: the picking of high rotating 

and the picking of low rotating items (see Figure 2.5). The first one is performed by 

positioning the pallets of these high rotating items on the ground and the operator 

has to pick the item directly from the pallet. This way of picking permits to have a 



The heart rate monitor 

 

69 
 

higher picking rate. On the other side, the second one is based on the picking from 

the shelf.  

 

 

 

 

 

For the picking from the shelf the operator is lower in picking the item of interest. 

Moreover, the items positioned on the ground for the food company considered, are 

the ones with a higher value of mean weight such as stock keeping unit of water.  

Subsequently, the performance of these tests, based on the recording of the heart rate 

for different operators considering the picking on the ground, helped to understand 

which are the operators more suitable to this kind of activity. The ones, who during 

the performance of the activity reached a value of the maximum heart rate higher 

than the others are the ones which preferably should perform the picking from the 

shelf because, due to their physical characteristics such as training status, they become 

fatigued faster. In relation to this, the simple application of this device can give 

suggestions regarding where the operators should be applied. 

But, this is not the only feedback that such device can give to a practitioner. In fact, 

it can be detected the influence of the weight of the items picked. In relation to this, 

if it has been decided the zone in which the operator should work (the zones are the 

ones related to high rotating and low rotating items), it can also be performed a 

general evaluation of the order in which the items should be picked in relation to 

their weight. In fact, with the increasing of the weight, keeping the rate of the activity 

constant, there is an increase of the heart rate. Subsequently, it may be advisable 

giving to the operators an alternation between the items of higher weight and the 

Figure 2.5 Picking of high rotating items (on the left) and of low rotating items 

(on the right) 
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ones of a lower one in order to keep the heart rate below a certain established value 

and allowing them to have a partial recovery during the picking of the lower weight 

items. According to this, in the industrial context taking into account the feedback 

on the maximum heart rate reached during the performance of the items positioned 

on the ground and the feedback on the effect of items picked in term of weight on 

the heart rate helped to decide in which zone the operator should work and in which 

order is better to pick the considered items in order to avoid a too high level of 

fatigue. 

2.5.2 Use of the heart rate in combination with the dynamometer for 

workload evaluation 
 

In this experiment, it is conducted tests with a dynamometer to assess the force 

related to 3 activities: pushing, pulling carts and carrying items. The aims of this 

experiment are to assess the forces and the level of forces and to compare the 

dynamometer results to the results obtained by the heart rate monitor, Borg scale 

CR10 (Category ratio 10) (Borg 1990) and the Percent Maximum Voluntary 

Contraction %MVC. Pushing, pulling, and carrying an item are common tasks in 

several sectors in industry and services. Activity such as warehousing involves 

pushing, pulling, and carrying. The aim of this part is to introduce methods to 

evaluate the load of pushing, pulling, and carrying in order to evaluate the risks. The 

results that can be obtained with this experimental method could be used to design 

work and to compare the real load to the maximum load suggested in the literature, 

such as (Snook et al., 1991). Another way to assess the physical exertion is Borg 

scale; it is a subjective evaluation on a scale to evaluate the difficulty of the exertion 

and the work.  

• Pulling: In this experiment, it is used a dynamometer to assess the force and a 

heart rate monitor to assess the heart rate. It is executed pushing and pulling of carts 

and carrying an item for 5 m from a height of 1.5m and the activity is repeated for 
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several cycles. The subject of this experimental part is a man of 1.80 m high and a 

weight of 80 kg considered in the 50% percentile of worker population. Two 

different forces are included in each pulling (pushing) activity according to Snook et 

al. (1991). To get the cart in motion, the force is called initial force (kg) and the 

force to keep the cart in motion is called the sustained force (kg). It is reported report 

the evolution of load (kg) and the evolution of heart rate (HR) in Figure 2.6. 

 

 

 

 

 

 

 

From Figure 2.6, it can be observed a periodic pattern with a pic of force at the 

beginning of the cycle. As observed in the survey by Garg et al. (2014), pushing and 

pulling tasks require a higher initial force at the beginning of the effort. The heart 

rate monitor (HRM) shows that during the effort, the subject heart rate is high, 

however, the heart rate does not show any pattern of forces and hence, we cannot 

distinguish the pic of initial force with the HR. 

• Pushing:  The subject pulls a full cart for 5m each cycle from a 1.4 m height. 

We report the evolution of load (kg) and the evolution of heart rate (bpm) in Figure 

2.7. 
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Figure 2.6 Monitoring of HR in bpm and of the Load in kg during the pulling of 

a cart 
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The evolution of the load and the heart rate conclusions are similar to the ones of 

the pulling activity. The pic of force is higher at the beginning and the load is negative 

because of the positive sense of the dynamometer, in pushing, we get a negative value. 

The heart rate is high along the exertion and reported as bpm along the activity. 

• Carrying: For 200 s, the subject carries an item for a distance of 5 m. In 

carrying, the load is considered as static along the exertion and the load can be 

measured with the static assumption, the activity and its intensity could exceed the 

load limit of a worker. The results related to the carrying activity are shown in Figure 

2.8. 

 

 

 

 

 

 

It is important to compare the result of the load in carrying with limit such as those 

defined by Ciriello et al. (1990), this comparison is reported as %MVC in Table 

2.2. In Table 2.2 different evaluation criteria of load, with Borg scale CR10, when 

we measure the subjective evaluation of load reported by the subject that exerts the 

effort. The dynamometer value is reported as the rounded mean value, calculated 

with the data from all cycle when the force in measured. The mean value is reported 

in (kg) and for the two phases of pushing and pulling, and only one value in carrying, 

when we suppose that the effort is static along the exertion. For (%MVC) it is 
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Figure 2.7 Monitoring of HR in bpm and of the Load in kg during the pushing of a 

cart 

Figure 2.8 Monitoring of HR in bpm and of the Load in kg during the carrying of 

an item 
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compared the value obtained with the mean dynamometer value with the maximum 

acceptable forces from Ciriello et al. (1990) and express it as a percentage value, the 

maximum acceptable forces from Ciriello et al. (1990) are considered as 100% value. 

Hence, we express the mean value obtained with the dynamometer and express it in 

percentage.  

 

In Table 2.2 it is shown the mean value of heart rate (bpm) for pulling, pushing and 

carrying along the exertion. In general, from this experiment, the perceived effort 

evaluated with Borg scale corresponds to the %MVC, overall, the Borg scale 

estimation is close to the real man value measured with the dynamometer. Several 

studies from the literature showed the correlation between the perceived effort of 

Borg Scale and a measure of exerted force (Hampton et al., 2014) and some studies 

consider Borg scale with EMG to evaluate the effort. Assessing %MVC directly with 

EMG is difficult, especially in the design stage of the workstation. Using either of 

these methods such as Borg scale is a substitute for direct assessment and may be 

useful in the design stage. It is particularly interesting note that the heart rate median 

value tends to increase from pulling analysis to the carrying one even if the 

dynamometer mean value and the %MVC tend to decrease. This counterintuitive 

phenomenon could be linked to the frequency on which the activities have been done 

in the same period of time, in fact, as we can see in Figure 2.8 the frequency of the 

Table  2.2 Force exertion estimation with different criteria 

 

Borg Scale 

Mean rounded 

dynamometer value 

(kg) 

%MVC 
Mean 

HR 

(bpm) Initial 

Force 

(CR10) 

Sustained 

Force 

(CR10) 

Initial 

Force 

(kg) 

Sustained 

Force 

(kg) 

Initial 

Force 

(%) 

Sustained 

Force 

(%) 

Pulling 5 4 10 5 62 50 88 

Pushing 

Carrying 

5 4 9 5 40 38 90 

3 6 35 92 
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carrying activity is higher than the one linked to the pulling and pushing activity. 

However, additional tests could be useful to confirm this aspect.   

2.6 Conclusions on the results obtained 
 

An HR monitor, as shown in the reported experimental application, can be the right 

instrument for the analysis of fatigue in order-picking systems. In fact, since for 

picking activities of medium rate there is a high coefficient of correlation between 

VO2 and HR, HR is a reliable measure. Besides this, the use of the HR monitor 

allows to consider the personal characteristics of the operators, an important factor 

for the beginning of a fatigue analysis, as well as being easy to use and to understand 

and not requiring a high investment. Consequently, this device puts in evidence the 

personalization of a proper fatigue analysis. In fact, it has been demonstrated that 

changes in rate and duration of the activity or in the kind of operator performing the 

activity lead to different values of HR and thus different energy expenditures and 

fatigue levels, which have an impact on the physical capabilities of operators and, 

thus, lead to decrease in performance. Accordingly, the heart rate is useful to be put 

in practice in an industrial context because it permits to obtain customized 

information on the operator in real-time and to understand when the operator is 

overfatigued. In fact, the data of the heart rate monitor can be utilized, first of all, to 

have a feedback of a person’s well-being since it is possible to understand in real-time 

if the operator is in the phase of recovery alleviation or fatigue accumulation.  In this 

second case, by using Karvonen et al.’ formulation (Karvonen et al., 1988) it is 

possible to know if the operator is in an anaerobic condition, implying an 

accumulation of lactic acid on the muscles. Furthermore, the values of heart rate can 

be used to obtain the value of the mean energy expenditure of the activity performed 

(Li et al., 1993). Consequently, it is possible to improve the scheduling of the 

activities to be given to each operator for the reduction of the recovery time and the 

improvement of the performance of the manual order picking warehouse. 
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3.1 Introduction 
 

Fatigue is not so easy to be estimated, since it can affect the cardio-vascular system 

by manual material handling tasks, the skeletal-muscular system by awkward postures 

and the brain by information overload. As stated by Konz (1998a, 1998b), there is 

the necessity to consider how to prevent fatigue and the different ways to reduce it.  

The different ways for the reduction of fatigue level can be the improvement of the 

scheduling of the tasks assigned to the operators, the reduction of information 

overload of the operators or the promotion of dynamic muscular work instead of 

static muscular work. On the other side, fatigue can be reduced by trying to use 

frequent short breaks rather than few long breaks, alternating the body part used 

during the task and increasing the recovery/work ratio (Konz, 1998a). Once the 

level of cumulated fatigue is established, it can be used to evaluate how much recovery 

is necessary to the operator for reaching the physical condition at rest. 

Regarding this, allowance is defined as any extra time that has to be added to the 

time necessary to perform the activity, in order to take into account the operator 

physical needs and any other industrial necessity. In particular, relaxation allowances 

(RA) are the time added to basic time in order to give the worker the possibility to 

recover from psychological and physiological fatigue.  Related to this, generally in 

the setting of the value of rest allowance the variable fatigue of each operator is not 

considered (Figure 3.1). 

 

Figure 3.1 Rest allowances for the setting of the standard time 

TOTAL ALLOWANCES
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ALLOWANCES

SPECIAL 
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The only way to reduce fatigue effects is to assure rest breaks for the complete 

recovery of the body parts. A smaller reduction can be recognised also by the 

decreasing of the working rate or by giving the worker the possibility to walk while 

performing the task.  

Relaxation allowances can be divided into two categories (Price, 1990): fixed and 

variable allowances. Constant allowance consists of the time given to satisfy personal 

needs of the worker, such as drinking or washing (normally 5% of basic time for 

men and 7% for women) and the time given for the need to recover from fatigue and 

to remove monotony (4% of basic time for operators whose work is light with 

normal movements and good working conditions). Special allowances are added to 

fixed allowances considering additional physical or mental work for adverse working 

conditions. The concept of rest allowance has a certain importance in manual 

material handling activities, because it can be used to estimate how much time it has 

to be given to an operator for the full recovery and it influences the performance.  

3.2 Importance of the concept of rest allowance 
 

As put in evidence in Neumann and Dul (2010) and in Figure 3.2, the way in which 

production is managed has effects on the system and on the humans. But, on the 

other side, the impact on the operators in terms of health, physical workload, quality 

of life and safety can decrease the performance of the system if they are not correctly 

managed. In fact, the operator and system effects contribute to the direct and indirect 

costs (Figure 3.2). 
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Figure 3.2 Connection of operator and system effects 

According to the impact of the operator’s fatigue on the production system, the 

attempt to model the trend of the recovery time in a dual-resource constrained system 
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analysis it has been demonstrated that the system performs best if there is a partial 

recover after each task and if there is the possibility to alternate different tasks. In 

addition, it needs to be taken into account that the fatigue experienced by an operator 

can be also mental in addition to the physical one.  

While the analysis of Jaber and Neumann (2010) is focused on the physical aspects 

of the fatigue theme, the psychological aspect has been explored in Jaber, Givi and 

Neumann (2013). In fact, the necessity of having flexible workers capable of doing 

different tasks can be useful to deal with changes in product or machine breakdowns 

and to prevent the workers from having musculoskeletal disorders. On the other side, 

it increases the probability of a worker to forget how to do a specific task. In Jaber, 

Givi and Neumann (2013) the fatigue-recovery model is integrated with the 

learning-forgetting curve in order to analyse the trade-off between the recovery time 

and the probability of forgetting. It was shown that having fatigued workers has 

impacts on the system performance, such as the loss of the experience on the job of 
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the workers: therefore, investing in training programs can improve the overall 

efficiency.  

Considering the impact of the human factors on the overall system, the new trend is 

to develop new approaches for predicting injury risks immediately in the design stage, 

integrating both fatigue-recovery model and human learning-forgetting curve 

through simulation (Dode et al., 2016). In fact, it has been demonstrated that the 

system performance is influenced by the accumulation of muscular fatigue, by the 

time necessary for the partial or full recovery and by the learning curve of the worker 

taken into account. These factors can not only have an effect on the output of the 

system but also on its quality. Consequently, it has become even more important to 

develop a model able to consider human factor in the design stage, taking into 

account the human and his interaction with the instruments of the workplace and 

generally with the layout of the working area. Up to now, most of the existing 

literature has focused on the concept of RA relying on MVC for static fatigue 

analysis, while in picking systems there is the need to consider dynamic fatigue. This 

can be achieved by integrating the energy expenditure of the activity performed with 

the necessary RA. 

3.3 Rest allowance in time and methods theory 
 

As defined by the International Labour Organisation (ILO) (1986) in the time and 

methods theory for setting the standard time of an activity each task is divided into 

work elements, for each work element is assigned a normal time in relation to the 

standard performance of a worker and finally it is applied an allowance to the normal 

time to compute the standard time of a task. 

Even if the kind of activity can have different effects on the level of fatigue reached 

depending on the kind of operator who has to carry on the activity, generally the 

setting of the fatigue level linked to each activity and consequently of the allowance 

depends on the analyst who has to judge the activity in order to give to it a standard 
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time. Subsequently, in the estimation of the time required to carry on an activity or 

every kind of operation, it is considered a fully qualified, trained operator who works 

at standard pace and exerting average effort. As can be seen in Figure 3.3, in addition 

to the standard value of allowance given to consider the physiological needs and the 

basic level of fatigue, generally it is considered a predetermined value of allowance 

also for the use of force in lifting, pulling and pushing activities. This value of 

allowance is strictly linked to the weight lifted and no attention is paid to the 

influence of this weight to the specific operator or how the intensity of activity, 

intended as the frequency at which the task of pulling, pushing or carrying is repeated 

in the considered timing, can affect the fatigue of the operator. The influence of 

atmospheric conditions and of the mental effort requested by the task or the 

influence of the tediousness of the task are considered as added allowances to the 

ones related the use of force.  

Even though, the conditions of the workplace in terms of environmental conditions 

such temperature, humidity or design of the workplace can influence the level of 

physical fatigue experienced by the operator. For example, in relation to the heart 

rate, which can be a measure to monitor the general body fatigue, there can be a 

higher value of heart rate considering the same activity but a higher temperature of 

the workplace in which the operator performs the activity. In addition, the evaluation 

of the level of effort linked to the activity is given by the analysis who has to evaluate 

the activity, no personal evaluation is given by the operator neither is someway 

monitored his/her level of fatigue to have a feedback regarding their personal 

conditions during the performance.  

Consequently, all the workers are treated in the same way, without considering their 

specificities and the impact on the predetermined activity is set by an observer which 

is the analyst.  
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Figure 3.3 Standard allowances considered in ILO tables 

3.4 Existing rest allowances models 
 

The existing rest allowance models are focused on the muscular fatigue and on the 

general body one, by taking into account respectively the condition of the muscle 

after a certain effort and the effect on the energy expenditure of a certain activity. 

These formulations try to consider more the objective impact of the activity on the 

operator in the respect to the standard allowances considered in the ILO tables, even 

if the effect of the personal characteristics of the operator is still not considered. 



Existing rest allowance models 

90 
 

3.4.1 Muscular fatigue  
 

Relying on the concept of rest allowance, expressed as a percentage of holding time, 

different models in the literature have been validated (El ahrache and Imbeau, 2009) 

as can be seen in Table 3.1.  

Table  3.1 Existing RA formulations for muscular fatigue 

MODEL                  FORMULATIONS FOR RA 

 
Rohmert 
(1973) 
 
Milner (1986) 
 
Rose (1992) 
 
Bystrom and 
Fransson-Hall 
(1994) 
 

 

𝑅𝐴 = 18 ∗ (𝑓𝑀𝐸𝑇)1.4 ∗ (𝑓𝑀𝑉𝐶 − 0.15)0.5 ∗ 100 
 

𝑅𝐴 = 0.164 ∗ [4.61 + 𝑙𝑛 (
1

100 − (𝑓𝑀𝐸𝑇)−1
)]

−1

∗ 100 

 

𝑅𝐴 = 3 ∗ 𝑀𝐸𝑇−1.52 ∗ 100 
 

𝑅𝐴 = [
(%𝑀𝑉𝐶)

15
− 1] ∗ 100 

In all these formulations the terms used are the MET and the MVC expressed also 

by indicating a percentage of MET or of MVC: fMET or fMVC. The Maximum 

Endurance Time (MET) is considered as the maximum time that a muscle can 

sustain a load during an isometric contraction and generally it is evaluated as a 

percentage of the Maximum Voluntary Contraction (MVC). It is considered that 

the operator reaches the value of MET when the level of fatigue is 100% and he/she 

becomes unable to sustain the load. 

In Rohmert’s formulation (1973) the two main terms used for the definition of rest 

allowance are the MET, expressed as a percentage of MET (fMET), and the 

intensity of the activity, expressed as a percentage of MVC (there is no fatigue if the 

%MVC is below the 15%). In the models of Milner (1986) and Rose et al. (1992), 

the only determinant term for the specification of the RA is for the first one the 

fMET and for the second one the MET. Neither of them considers the intensity of 
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the exertion. On the contrary, in Bystrom and Fransson Hall (1994) the RA is 

calculated with the %MVC, without the term %MHT.  

In relation to these models, a comparison between these different rest allowances 

models for muscular fatigue has been carried on in El ahrache and Imbeau (2009) 

and it has been shown a considerable difference between the models if they are 

applied on a sample of real-world workstations. In addition, there exists several 

models for the estimation of the MET as shown in Table 3.2. 

Table  3.2 Existing MET formulations 

MODEL                  FORMULATIONS FOR MET 

 
Rohmert 
(1960) 
 
Sato et al. 
(1984) 
 
Manenica 
(1986) 
 
Sjogaard 
(1986) 
 
Rose (1992) 
 
Ma et al. 
(2009) 
 
 

 

𝑀𝐸𝑇 = −1.5 +
2.1

𝑓𝑀𝑉𝐶
−

0.6

𝑓𝑀𝑉𝐶2
+

0.1

𝑓𝑀𝑉𝐶2
 

 

𝑀𝐸𝑇 = 0.382 ∗ (𝑓𝑀𝑉𝐶 − 0.04)−1.44 
 
 

𝑀𝐸𝑇 = 14.88 ∗ 𝑒−4.48 𝑓𝑀𝑉𝐶  
 
 

𝑀𝐸𝑇 = 0.2997 ∗ 𝑓𝑀𝑉𝐶−2.14 
 

𝑀𝐸𝑇 = 7.96 ∗ 𝑒−4.16𝑓𝑀𝑉𝐶  
 

𝑀𝐸𝑇 = −
ln (𝑓𝑀𝑉𝐶)

𝑘𝑓𝑀𝑉𝐶
 

All these formulations are based on the value of MVC, but the estimation of the 

MET value can be different and subsequently the value of RA which is derived by 

the MET is different. 

In addition, although these rest allowances models are useful to evaluate the time 

necessary to the operator for his full recovery in case of muscular fatigue, they do not 

analyse the trend of the recovery time during this calculated rest allowance. This 
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analysis can be useful because, in an industrial context, often there is not the 

possibility to give the operator all the time he needs to return to the physical 

condition at rest.  

Moreover, as said in Rose et al. (2014) the recovery time is not so easy to be taken 

into account in a proper way, because it can be influenced by different variables such 

as loading time, time given for the recovery and variability of the tasks performed. In 

Rose et al.’s analysis (2014) it has been demonstrated that fatigue exists, since after 

a predefined loading time the maximum force is lower.  

Moreover, when the operator restarts his work after a certain recovery time (not all 

the time necessary for the full recovery), it can be noticed not only a decreased 

endurance time, but also an increase in the recovery time necessary and in the fatigue 

level during the second phase of loading. Besides this, a certain relationship between 

the recovery time and the load level has been found. In addition, in the formulations 

of MET of the general models put in evidence in Table 3.2 it is not considered the 

external variables which can influence the individual.  

3.4.2 General body fatigue  
 

According to the literature the only existing model for the determination of rest 

allowance estimation basing on the energy expenditure rate of the activity is the one 

of Price (1990).  

Here, the energy expenditure rate of the working period and of the rest period, 

defined respectively as mean working rate (MWR) and resting rate (RR), are related 

to the acceptable work level (AWL). This last term is set at 300 W considering the 

maximum oxygen intake, as indicated by Astrand and Ryhming (1954).  

The equation developed by Price (1990) has been adapted by Battini et al. (2017) 

for manual material handling activities, by transforming the terms expressed in Watt 
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into kcal/min, where �̇�𝑊 is the working energy expenditure rate and �̇�𝑅 is the resting 

energy expenditure rate: 

𝑅𝐴 =
𝑀𝑊𝑅−300

300−𝑅𝑅
=

�̇�𝑊−4.3

4.3−�̇�𝑅
        (1) 

By multiplying the value of rest allowance (RA) by the working time 𝑡𝑊 it can be 

obtained the duration of the recovery.  

In this formulation it is associated to the activity a mean value of energy expenditure 

without considering the impact that the activity can have on the specific individual. 

In fact, it can be that different individuals reached different values of mean energy 

expenditure rate during the performance. 

3.5 Factors which can impact on the value of rest allowance 
 

In the models put in evidence in the paragraphs 3.3 and 3.4 the parameters 

considered for the setting of the value of rest allowance do not include the 

physiological factors related to the individual and the environmental factors related 

to the workplace which can influence the physical fatigue of the individual. In fact, 

for the muscular fatigue it is taken into account the Maximum Endurance Time and 

the Maximum Voluntary Contraction and for the general body fatigue the Mean 

Energy Expenditure of the activity and the energy expenditure at rest. The influence 

of the physiological or environmental factors and their impact on the value of rest 

allowance is not considered. 

3.5.1 Environmental factors 
 

Considering the link between the energy expenditure rate and the heart rate of the 

individual (Achten and Jeukendrup, 2003) it has been put in evidence the 

environmental variables which influences more the heart rate and consequently the 

value of energy expenditure rate.  
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The influence of hot and cold environment on evaluation of the exercise bout has 

been studied for long in the literature demonstrating that there is an increase in the 

heart rate in case of hot conditions. In fact, it has been identified that one of the 

possible factor which can increase the value of the heart rate is the core temperature, 

which cannot be decrease with the several ways the body put in practice for losing 

heat (conduction, convection, evaporation, radiation). Moreover, it has been put in 

evidence a direct linear relationship with the mixed venous blood temperature and 

with the activation of muscle thermo-reflexes. 

Another environmental factor which can influence is the altitude. According to 

Achten and Jeukendrup (2003) the increase of the altitude causes an increase in the 

heart rate.  

3.5.2 Physiological factors 
 

Some of the physiological factors put in evidence are the age and gender of an 

operator. Their effect on the heart rate has been studied by the literature. In Jensen 

et al. (1997) it is measured the effect of age and gender on heart rate variability basing 

on ECG recordings.  The results show that in healthy subjects the age is an important 

determinant of heart rate variability and a lesser degree is attributed to the gender.  

Moreover, in Keytel et al. (2005) it is analysed the effect of body composition and 

training on the relationship between heart rate and the energy expenditure rate and 

it is put in evidence that there is an influence of the weight of the individual and of 

the training status and it has shown that this influence should be taken into account. 

In addition, in Achten and Jeukendrup (2003) it is explained that a rise in the value 

of heart rate can be explained to the rise of the body temperature, to the body water 

loss and to the peripheral vasodilatation. Consequently, it is put in evidence that the 

HR is positively correlated to the level of dehydration.  
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In relation to the importance of such physiological factors in the value of energy 

expenditure rate of an activity, there exists also less recent literature (Bradfield et al., 

1971) which affirms the need of considering these variables in the consideration of 

the value of heart rate which is obtained by monitoring an individual which performs 

an activity with a medium-high level of intensity. Subsequently, there is the need of 

having individual regression lines for each individual in order to estimate the personal 

level of fatigue of each operator. 

3.6 Conclusion on the development of the RA literature 
 

Considering the tables generally used for the setting of the time needed to the 

operators for recovery and the existing models based both on muscular and general 

body fatigue, there is the need of better taking into account the factors which can 

increase or decrease the time necessary to each operator. In case of manual material 

handling activities, the focus is on the general body fatigue that as stated in the 

previous chapters can be monitored with the heart rate. According to this, as put in 

evidence in Figure 3.4, the consideration of the impact of the physiological and 

environmental factors on the value of heart rate and consequently on the value of 

energy expenditure rate, can helped to have an estimation of rest allowance nearer to 

the reality in terms of physical fatigue effectively experienced by the operator. The 

consideration of these factors can enhance to consider the variable fatigue in the 

setting of rest allowance value and consequently of the standard time. This lacks in 

the existing literature as put in evidence in Figure 3.1. Related to this, this need is 

more important for manual material handling activities. Till now only few models 

have tried to estimate the value of the recovery basing on the value of the energy 

expenditure rate (Eliezer, 1982; Price, 1990). In the next chapters it will be 

considered the value of RA set by Price (Price, 1990) which is a little bit different 

from the one set by Eliezer (Eliezer, 1982).  



Existing rest allowance models 

96 
 

 

Figure 3.4 How to consider physiological and environmental factors on the 

estimation of rest allowance value 
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4.1 Introduction  
 

According to the chapters before it has become important to integrate the conditions 

of operators such as fatigue and stress, discomfort, safety, job satisfaction and errors, 

into traditional decision support models when designing and managing production 

systems (Wogalter, Hancock and Dempsey, 1998; Karwowski, 2005; Lodree, Geiger 

and Jiang, 2009; Grosse, Glock and Neumann, 2017). 

In this chapter, the operators’ wellbeing and their productivity have been evaluated 

by the analysis of their fatigue and recovery levels. This analysis permits to improve 

the traditional time study theory. In fact, as explained in Konz (1998a, 1998b), the 

standard time of an activity is calculated by summing the normal time obtained from 

time studies and the rest allowances. 

Fatigue is defined in Grandjean (1979) as the loss of efficiency and disinclination 

for any kind of effort and it is divided into mental and physical fatigue. They are 

respectively related to the overstimulation of the brain or to a reduction in the 

capacity to perform physical work as a function of preceding physical effort. The 

physical fatigue can be related to the general body fatigue or to the fatigue of a 

specific muscle an operator experiences during the execution of a task. Its 

accumulation is due to the activities performed, in terms of actual force required for 

the task and duration (Gawron, French and Funke, 2001; Rose et al., 2014). 

Moreover, there could be the influence of ergonomic conditions in terms of awkward 

postures of the part of the body used or of the fatigue accumulated from previous 

efforts (Rashedi and Nussbaum, 2017; Sonne and Potvin, 2015; Ma et al., 2009). 

In addition to this, the physical fatigue can lead both to a higher reaction time and a 

lower capacity of generating force (Konz, 1998a; Konz, 1998b) and normally it is 

not evaluated with real time monitoring systems (Ma et al., 2009; Jaber, Givi and 

Neumann, 2013). 
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The physical fatigue can be assessed using direct measurement systems of the muscles’ 

activities (Zhang et al., 2014) or, for the general body fatigue, it can be correlated to 

the heart rate or to the energy expenditure rate (Li, Deurenberg and Hautvast, 1993). 

However, the assessment methods using these two rates are easier to apply in an 

industrial environment compared to the measurement of muscles’ activities.  

Consequently, it has become necessary to integrate the analysis of the awkward 

postures with the fatigue accumulation analysis and to include both these aspects into 

traditional decision support models in production systems, such as the scheduling of 

activities for the different operators. This can be obtained by assigning the activities 

to the operators, without causing excessive fatigue accumulation, taking into 

consideration the workers’ physiological factors. These evaluations can help the 

practitioners, which despite their efforts to reduce ergonomic risks, are generally still 

focused on reaching the maximum efficiency of the used resources and the immediate 

profitability, without considering the influence of physical fatigue (Grosse et al., 

2015; Dode et al., 2016). 

According to the need of considering the fatigue of operators in production systems, 

some literature has defined how the fatigue can be alleviated by giving the operator a 

certain time for recovery. Different analytical models have been developed to estimate 

the time necessary to have an adequate recovery from accumulated fatigue, called 

‘Rest Allowance’ (RA) (Price, 1990; El Ahrache and Imbeau, 2009).  

Next section will show that, since these models consider the general body fatigue 

experienced by an operator performing manual activities constant over time, they did 

not include the actual exponential fatigue accumulation and recovery alleviation into 

the rest allowance estimation. As already stated, this exponential trend of fatigue and 

recovery is due to the physiological factors of each operator, which are, as indicated 

in Achten and Jeukendrup (2003): level of training, age, body weight, and hydration 

status. 
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The aim of this chapter is to develop an analytical formulation to calculate the rest 

allowance considering the actual exponential behaviour of the fatigue and the 

recovery functions. Moreover, differing from the literature, the general body fatigue 

is modelled based on an energy expenditure rate estimated by heart rate monitoring. 

The fatigue and the recovery functions can be adapted to each operator thanks to the 

introduction of two parameters, which include the impact of the physiological 

factors. The use of the heart rate monitoring system permits to estimate these two 

parameters a priori for each operator and, then, to derive the actual energy 

expenditure rates for the analysed activities. Therefore, the rest allowance 

formulation can be personalized for each operator in a more accurate way. 

Such a model allows practitioners to have an accurate assessment of the task 

execution total time, including also the rest allowance. In this way, it is possible not 

only to prevent the operator becoming overfatigued, but also to improve the 

performance of the overall system, through a more proper assignment of activities to 

the operators. 

4.2 Importance of this new model in an industrial context 
 

The performance of a production system with many manual activities, is strongly 

related to the execution time of the jobs of the operators. In the well-known time 

study theory (Macey, 2010), the analysts assess the workers’ actual pace and their 

fatigue level to estimate a more accurate total execution time, as sum of standard time 

and rest allowance. Even though the time study theory has tried to consider the 

differences between individuals by giving a rate to the speed at which each operator 

works (Macey, 2010), the estimation of the rest allowance remains qualitative, since 

the influence of physiological factors of operators is not taken into account through 

proper mathematical formulations. 

Most of the existing rest allowance models are based on the estimation of the 

recovery time of the operator based on the MVC (Maximum Voluntary 
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Contraction) or MET (Maximum Endurance Time), which are related, respectively, 

to the relative effort of the muscle contraction and to the time a muscle can sustain 

a load or a specific posture before reaching its maximum capability as explained in 

the chapter before.  

Related to muscular fatigue, some recent literature has tried to consider the influence 

of external load, workload history (Xia and Law, 2008) and individual differences 

in predicting the value of MET (Ma et al., 2009). Ma et al. (2015) has integrated 

the time-related task parameters and individual attributes in the recovery model. 

They have identified, as factors influencing the recovery, the ones they called inter-

individual factors, such as age, gender, training, fatiguing operation and recovery 

mode and the inter-muscle group factors, such as the composition and coordination 

of muscle fibers and the anatomical structure of the individual.  

Despite the several existing models related to muscular fatigue, in a production 

system it is not easy to continuously monitor muscles; therefore, it would be better 

to find an easier way to evaluate the operator’s level of fatigue.  

As far as manual activities are concerned, such as order picking, loading or unloading 

of machines and every manual carrying of material from one location to another, the 

whole body is involved.  It has been shown that, if the activity involves the overall 

body and influences the cardiovascular system, the fatigue level can be evaluated by 

using the energy expenditure rate and, consequently, the value of rest allowance can 

be determined (Price, 1990). 

The model developed by Price (1990) sets the value of RA for manual activities 

based on the energy expenditure rate function of the operator’s general body fatigue. 

Price (1990) considers that the operators immediately reach the maximum energy 

expenditure rate �̇�𝑊 at the beginning of the activity. Then, at the end of the task 

execution, they immediately have the typical resting energy expenditure rate �̇�𝑅 (see 

Figure 4.1).  
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A possible way to obtain the value of energy expenditure rate expressed in kcal/min 

can be through the measurement of the oxygen consumption, which has a high 

coefficient of correlation with the heart rate (Christensen et al., 1983). Consequently, 

the measurement of the energy expenditure rate in a production system could be done 

by using a heart rate monitor rather than by measuring the fatigue accumulation on 

the muscle based on MVC, MET or similar (Maxfield, 1971; Li, Deurenberg and 

Hautvast, 1993; Achten and Jeukendrup, 2003; Rusko et al., 2003). 

Moreover, the Excess Post-Exercise Oxygen Consumption (EPOC) is one of the 

most comprehensive methods for monitoring fatigue accumulation after a 

predetermined exercise. Analyzing the trend of fatigue and recovery, a more accurate 

model is exponential (Rusko et al., 2003; Rusko, 2004; Seppanen, 2005). This 

exponential trend of fatigue accumulation has been shown also in Ma et al. (2009), 

in Jaber and Neumann (2010), in Zhang et al. (2014) and in Givi, Jaber and 

Neumann (2015) in relation to the muscular fatigue.  

As shown in Ye and Pan (2015), the complete recovery time for high intensity 

activities is strictly correlated with the body mass index, the perceived functional 

ability, the physical activity rating and the maximum heart rate reached by the 

individual during the activity. 

Summarizing, the literature analysis shows the need of mathematical models based 

on the energy expenditure rate which include the exponential trend of fatigue and 

recovery. Moreover, the models have to consider the kind of activity and the 

operator’s physiological factors. Accordingly, these models can support the 

estimation of the task execution times, with a more accurate rest allowance 

assessment. 

In the next sections, analytical models are introduced based on the exponential trend 

of fatigue and recovery in terms of energy expenditure rate. Then, these models are 

included in the rest allowance estimation. Moreover, the physiological factors of the 
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operators are considered through the introduction of two parameters; some simple 

laboratory tests show how to determine them. 

4.3 Models for recovery time estimation based on energy expenditure 

rate 
 

The physical fatigue and the performance of the operators are strictly related to the 

effort they have to achieve during their working time. Different activities have 

different effects on the specific operator, depending on the rate and on the duration 

of the task to perform.  

In addition, the actual exponential behaviour of the fatigue and the recovery 

functions could be different for each operator because of the physiological factors, 

which are specific of each individual. Consequently, the recovery time may differ 

from operator to operator. As explained in Konz (1998a; 1998b) it is important for 

operators to rest before the level of fatigue becomes too high.  

This aspect has a direct effect on the performance of a production system featuring 

manual activities, such as order picking, loading and unloading of a work station, 

manual assembly tasks, carrying and moving loads. An example related to the 

consideration of rest allowance in production systems design and management 

concerns the assignment of activities to operators. In defining the total execution 

time to perform an activity, it should be considered how long the operators must rest 

in relation to the intensity and duration of the activity performed. 

As discussed in the previous section, several analytical models have been developed 

based on different fatigue and recovery assessment methods. In the following, the 

proposed model is focused on the energy expenditure rate. First, the model developed 

by Price (1990) is briefly presented, then a new rest allowance formulation based on 

exponential fatigue and recovery models is introduced, in which the strong 

assumptions made by Price (1990) are relaxed. 
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4.3.1 Exponential fatigue and recovery trend based on energy expenditure 

rate 
 

Price’s assumptions consider a fixed value of the energy expenditure rate �̇�𝑊 during 

the execution of the analysed activity for 𝑡𝑊, and, after the operator has completed 

the task, the energy expenditure rate immediately reaches the resting value �̇�𝑅 as can 

be seen in Equation (1) and in Figure 4.1: 

𝑅𝐴 =
𝑀𝑊𝑅−300

300−𝑅𝑅
=

�̇�𝑊−4.3

4.3−�̇�𝑅
        (1) 

 

 

Even though, many studies demonstrated that the energy expenditure rate during 

job execution is not constant and that an additional time to reach the resting energy 

expenditure rate is needed (Ye and Pan, 2015). 

As far as physical fatigue is concerned, Konz (1998a, 1998b) gives evidence of how 

general body fatigue can affect the cardiovascular system and how different jobs can 

have different combinations of fatigue, with an exponential increasing function over 

time. 

Figure 4.1 Trend of the Energy expenditure rate E ̇ [kcal/min] as a function of 

time, according to Price’s model (1990). 
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In addition, he considers how the recovery function depends on the accumulation of 

fatigue in the muscle and how this decreases exponentially with time, considering the 

conditions of the muscle at rest. These aspects have been put into evidence also by 

more recent literature (Rusko et al., 2003; Rusko, 2004; Seppänen, 2005; Dode et 

al., 2016). 

Jaber and Neumann (2010) and Jaber, Givi and Neumann (2013) developed an 

equation to show the exponential function of fatigue and recovery level based on the 

Maximum Endurance Time (MET). 

As already explained, since in a production system it could be easier to have a 

feedback regarding the cardiovascular system, here fatigue and recovery functions 

based on energy expenditure rate are introduced. In fact, by using the heart rate 

monitoring (Calzavara et al., 2017; Calzavara et al., 2018), the energy expenditure 

rate can be estimated using the equation introduced by Spurr et al. (1988). However, 

it has to be assumed that the intensity is sufficiently high to disturb the cardio-

vascular system, such as in manual activities in order picking systems, workplaces, 

internal material handling operations as loading or unloading of work centers (Garg, 

Chaffin and Herrin, 1978). Knowing the value of the maximum working energy 

expenditure rate �̇�𝑊 and the energy expenditure rate set at rest �̇�𝑅 , which can differ 

from one operator to another, it is possible to model fatigue  𝐹(t) and recovery 𝑅(𝜏) 

as follows:  

𝐹(t) = �̇�𝑊 + (�̇�𝑅 − �̇�𝑊) ∙ 𝑒−𝜆t      (2) 

𝑅(𝜏) = 𝐹(𝑡𝑊) ∙ 𝑒−µ𝜏        (3) 

where t is the duration of the working activity and 𝜏 is the recovery time necessary 

for the operator to recuperate from the accumulated fatigue. The value of t ranges 

between 0 and 𝑡𝑊 which is the total duration of the activity. In these equations 

physiological factors, are considered by including the parameters λ and µ, already 

introduced in Jaber, Givi and Neumann (2013), that are, respectively, the factor of 
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fatigue accumulation and the one of recovery alleviation. Moreover, in equation (2) 

as in equation (3) the energy expenditure rate of the activity is considered. 

As far as fatigue is concerned, as it can be seen in Equation (2) and in Figure 4.2, the 

operator does not start the fatigue accumulation from 0, but from the energy 

expenditure rate at rest �̇�𝑅 . Moreover, there is an exponential trend till the reaching 

of the maximum energy expenditure rate �̇�𝑊 during the task execution time t . This 

maximum limit of �̇� is strictly linked to the intensity of the activity performed and 

to the physiological factors of the operator. The equation (1) proposed is different 

from the one of Jaber, Givi and Neumann (2013). In Jaber, Givi and Neumann 

(2013), the fatigue function is 0 in case of negligible fatigue and 1 when the operator 

reaches the maximum allowance value of fatigue. In equation (1) the fatigue function 

is equal to �̇�𝑅 in case of negligible fatigue and is equal to the maximum energy 

expenditure rate when the operator reaches the maximum allowance value of fatigue. 

As far as recovery is concerned, at the end of the activity, when the operator is at �̇�𝑊, 

the recovery starts and the energy expenditure rate decreases exponentially till the 

reaching of �̇�𝑅 . The time needed to reach �̇�𝑅 is 𝜏𝑟  (Figure 4.2). Subsequently the 

value of 𝜏 in equation (3) ranges between 𝑡𝑊 and 𝑡𝑊 plus 𝜏𝑟 .  

 

Figure 4.2 Trend of the Energy expenditure rate E ̇ [kcal/min] as a function of 

time, considering an exponential trend during fatigue and recovery. 
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In the following formulations, it is considered �̇�𝑅=1.86 kcal/min, which is an 

average value also indicated in Price (1990) and Battini et al. (2017) as a good 

estimation for energy expenditure at rest. However, since the value of �̇�𝑅 can slightly 

differ according to the individual, it would be possible to set a different value for it.  

By setting 𝑅(𝜏)=1.86 kcal/min in Equation (3), it is possible to obtain 𝜏𝑟 , the time 

in which the recovery function 𝑅(𝜏) reaches the average energy expenditure rate at 

rest 1.86 kcal/min: 

𝜏𝑟 =
ln 𝐹(𝑡𝑊)−ln �̇�𝑅

µ
          (4) 

The exponential behaviour of these functions (Equations 2 and 3) has been already 

demonstrated in previous researches (Konz, 1998a, 1998b; Rusko et al., 2003; 

Rusko, 2004; Seppänen, 2005); however, it becomes important to understand how 

to estimate the parameters λ and µ directly from data collected in real cases, as shown 

in the following.  

4.3.1.1 Estimation of λ and μ parameters using and heart rate 

monitoring system 
 

Simple laboratory tests have been carried out to show how to estimate the values of 

λ and µ. These parameters have been already introduced by previous researches 

(Jaber, Givi and Neumann, 2013; Givi, Jaber and Neumann, 2015); however, these 

studies are based on muscular fatigue and they do not give any specification on how 

to practically obtain λ and µ.  

Based on these tests, it is explained how to set the parameters λ and µ starting from 

the measured heart rate, showing that they are affected by physiological factors and 

performed activities. 

Since the approximation of λ and µ is not so easy because the trend of the heart rate 

has a certain variability, the aim of this section is not to find an exact model but to 
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have a good estimation of the real trend of the heart rate, and consequently, of the 

energy expenditure rate, by using λ and µ.  

To estimate the values of these two parameters similar tests can be replicated also in 

a production system, through the following step by step procedure: 

1) As a first step, it is necessary to record data in the field for the specific activity 

(e.g. a picking activity) by making the operator wearing the heart rate monitor during 

the activity and during the rest. It can be used only the heart rate monitor if the 

correlation coefficient with the heart rate for the specific operator is known; 

otherwise, a further test for its estimation, through oxygen consumption 

measurement, is needed (Åstrand and Ryhming, 1954; Li, Deurenberg and Hautvast, 

1993; Calzavara et al., 2018). 

2) For having a specific estimation of λ and μ it can be used the mean squared error 

(MSE) to measure the average of the squares of the differences between the estimator 

and what is estimated. By setting the minimization of the MSE between the data 

recorded with the heart rate monitor and the trend of fatigue and recovery of the 

model it is possible to obtain the values of λ and μ which can better represent the 

real data  

3) After the setting of the values of λ and μ for the specific activity it is possible to 

consider the same values also if the intensity of the activity changes (e.g. the operator 

changes from a picking activity of 8 items/minute to a picking activity of 12 

items/minute). 

4) If the kind of activity differs (e.g. the activity does not regard picking but 

assembly) it is necessary to perform another real test with the heart rate monitor and, 

hence, repeat steps 1, 2 and 3. 

According to this procedure, in the performed tests picking activities of different 

intensities have been repeated by two operators, who were wearing a heart rate 
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monitoring system and an oxygen mask during the performance of their working 

activity and during their resting period.  

This allowed the setting of the correlation index between the heart rate (HR) and 

the oxygen consumption (VO2) for the specific operator, which permits to validate 

the use of the heart rate monitor for manual activities (Christensen et al, 1983; 

Calzavara et al., 2018). The value of this index, together with the values obtained 

from the heart rate, are used to estimate the value of energy expenditure rate (�̇�) 

using the equation of Spurr et al. (1988); by multiplying the conversion factor 0.239 

it is obtained the value in kcal/min instead of kJ/min: 

�̇� = (𝑚 ∙ 𝑓𝐻 + 𝑏) ∙ 20.48 ∙ 0.239      (5) 

where 𝑚 is the slope, 𝑏 is the intercept of the correlation line between the oxygen 

consumption and the HR and 𝑓𝐻 is the value of the measured heart rate. 

According to step 2 of the presented procedure, for the setting of the parameters λ 

and µ the real trends for fatigue and recovery, obtained in a laboratory test for two 

operators performing a picking activity with an intensity of 12 items per minute, 

have been matched to the fatigue and recovery trends obtained by using the model 

(Equations 2 and 3) with different hypothetical values of λ and µ. In this laboratory 

test, each operator had to pick an 8-kilograms item positioned on a 1-metre-high 

shelf and place it on a pallet positioned on the ground at the established rate of 12 

items per minute for 30 minutes. The item weight, the height of the shelf and the 

picking rate have been replicated in the test environment according to what has been 

detected in a production system. By matching the real trends for fatigue and recovery 

obtained in this laboratory test (the test values of Figure 4.3) with the different trends 

which can be obtained by using the model (Equations 2 and 3) assigning different 

values of λ and µ, it is possible to understand which are the values of λ and µ that 

best fit the characteristics of the two operators at the predetermined rate. Figure 4.3 

shows the trend of �̇� during activity performance and during rest for two different 
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operators (operator 1 and 2) performing the test. It is reported the comparison of 

the test values and of the mathematical model ones, as well as the derived values   of 

λ and µ. As it has been underlined before, the value of the two parameters λ and µ 

could change from one operator to another; however, the values indicated in Figure 

4.3 can be used for reference.  

As explained in the step 3 of the procedure, once the values of λ and µ for the 

operator performing the specific activity are known, they can be used even if the 

intensity of the monitored activity changes. 

 

 

Figure 4.3 Setting of the values of λ and µ by applying the model to the data 

recorded in the field (indicated as test values) for a picking activity of 12 

items/minute for two different operators. 

As can be seen in Figure 4.3, a possible value of λ for the operators 1 and 2 could 

be, respectively, 4 and 10. As far as µ is concerned, the reference value is 0.5 for both 

operators. The value of these two parameters changes depending on the operator 

performing the activity and influences the energy expenditure rate increase during 
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fatigue and its decrease during recovery, as can be seen in Figure 4.4. A higher value 

of λ means a fast fatigue accumulation, whereas a higher value of µ means a slow 

recovery. Consequently, to carry on an estimation of the 𝑅𝐴𝜆,µ value it is essential 

to evaluate the λ and µ values for a specific operator for the considered activity.  

 

Figure 4.4 4 Influence of the parameters λ and µ on the trends of fatigue and 
recovery stated by the model. 

4.4 Rest allowance based on exponential fatigue and recovery function 
 

In this section, a new equation for rest allowance estimation is introduced, extending 

Equation (1) and considering the exponential fatigue and recovery functions. 

Figure 4.5 shows the fatigue and recovery trends for the rest allowance according to 

Price’s model 𝑅𝐴𝑃 on the left and the new model 𝑅𝐴𝜆,µ on the right.  
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Figure 4.5 Comparison of Price’s model (left) and the new model (right) for the 

estimation of RA, considering different values of mean energy expenditure rate and 

of recovery time. 

 

𝑅𝐴𝑃 is calculated considering a fixed energy expenditure rate �̇�𝑊 during the task 

execution and an instantaneous �̇�𝑅 after that (as can be seen also in Figure 4.5): 

𝑅𝐴𝑃 =
𝑡𝑅

𝑡𝑊
=

𝑡𝑅𝐴

𝑡𝑊
          (6) 

in which, 𝑡𝑅 , time needed for the operator to recover, is equal to 𝑡𝑅𝐴 since the 

operator reaches immediately �̇�𝑅 .  

The new rest allowance is called 𝑅𝐴𝜆,µ, since it depends on the parameters λ and µ 

of the exponential fatigue and recovery functions and is defined as: 

𝑅𝐴𝜆,µ =
𝑡𝑅
′

𝑡𝑊
           (7) 

where 𝑡𝑅
′  is the real time necessary for a full recovery, obtained by summing two 

different terms: 

𝑡𝑅
′ = 𝜏𝑟 + 𝑡𝑅𝐴 = 𝜏𝑟 + 𝑅𝐴 ∙ (𝑡𝑊 + 𝜏𝑟)      (8) 

The first term, 𝜏𝑟 , is related to the exponential recovery function applying Equation 

(4), while the second term 𝑡𝑅𝐴 is related to the rest allowance RA, as defined by 
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Equation (1) and considering a mean value of energy expenditure rate calculated on 

the total time 𝑡𝑊 + 𝜏𝑟 , �̇�′𝑊 (Figure 4.5): 

𝑅𝐴 = {
�̇�′𝑊−4.3

4.3−�̇�𝑅
 𝑖𝑓 �̇�′𝑊   > 4.3

 0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (9) 

The value of �̇�′𝑊 is obtained by integrating 𝐹(𝑡𝑊) and 𝑅(𝜏): 

�̇�′𝑊 =
∫ 𝐹(𝑡𝑊)+∫ 𝑅(𝜏)

𝑡𝑊+𝜏𝑟
𝑡𝑊

𝑡𝑊
0

𝑡𝑊+𝜏𝑟
       (10) 

where  

∫ 𝐹(𝑡𝑊)
𝑡𝑊

0
= �̇�𝑊 ∙ 𝑡𝑊 + (�̇�𝑅 − �̇�𝑊) ∙

𝑒−𝜆𝑡𝑊

−𝜆
+

(�̇�𝑅−�̇�𝑊)

𝜆
   (11) 

∫ 𝑅(𝜏)
𝑡𝑊+𝜏𝑟

𝑡𝑊
=

𝐹(𝑡𝑊)

−µ
∙ 𝑒−µ𝑡𝑊 ∙ (𝑒(− ln 𝐹(𝑡𝑊)+ln (�̇�𝑅) − 1)   (12) 

This new value of 𝑅𝐴𝜆,µ could be different from the 𝑅𝐴𝑃 value. In fact, 𝑅𝐴𝜆,µ 

considers the real time necessary for a full recovery 𝑡𝑅
′  instead of 𝑡𝑅 . 

In the next section, a comparison between the two values 𝑅𝐴𝜆,µ and 𝑅𝐴𝑃 is carried 

out to understand the influence of λ, µ, �̇�𝑊 and 𝑡𝑊 on 𝑅𝐴𝜆,µ,  and in which cases 

this value cannot approximate the 𝑅𝐴𝑃. In this analysis, the value of 𝑅𝐴𝜆,µ is 

calculated through the application of the model for different values of λ and µ and 

for activities with different intensity. After that, this value is compared to 𝑅𝐴𝑃 to 

understand when these two models differ more. 

4.5 Comparison between 𝑹𝑨𝝀,𝝁 and  𝑹𝑨𝑷 
 

The comparison between the two rest allowance models is based on the different 

values of λ and µ, which are related to the physiological factors of the operator, and 

to the kind of activity. In the following analysis, the considered values λ and µ have 

been obtained by real operators, performing picking activities at different intensities. 
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The energy expenditure rate estimated by using the heart rate monitoring have been 

equal to 4.5, 5.5 and 6.5 kcal/min. These values are similar to the ones obtained in 

previous researches (Garg, Chaffin and Herrin, 1978; Calzavara et al., 2017; 

Calzavara et al., 2018). 

The following analysis aims to demonstrate in which cases  𝑅𝐴𝜆,µ differs from the 

one resulting from the application of Equation (6) (Price, 1990). Different values of 

λ and µ, and of �̇�𝑊 and 𝑡𝑊 have been assumed. The results of the analysis are shown 

in Figures 4.6 and 4.7.  

Figure 4.6 shows the value of 𝑅𝐴𝜆,µ: it can be noted that it increases with the increase 

of λ and the decrease of µ, because the slope of the fatigue function increases and the 

slope of the recovery function decreases. In addition, both �̇�𝑊 and 𝑡𝑊 influence the 

value of 𝑅𝐴𝜆,µ: the increase in both �̇�𝑊 and 𝑡𝑊 implies an increase in the value of 

the 𝑅𝐴𝜆,µ. 

On the other hand, the value of 𝑅𝐴𝑃 for 4.5, 5.5 and 6.5 kcal/min, is 10%, 50% 

and 90% of the time of the activity performed, respectively, and this value does not 

change if the time of the activity decreases or increases. 

It can also be seen that, for the chosen values of λ and µ, the parameter which most 

influences the value of 𝑅𝐴𝜆,µ is µ, because the change from one value of µ to another 

causes a major increase in the value of 𝑅𝐴𝜆,µ rather than the change in the value of 

λ. 
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Figure 4.6 Evaluation of 𝑹𝑨𝝀,µ and of 𝑹𝑨𝑷 changing the duration of the activity 

(5, 10, 20 min), the maximum energy expenditure rate of the activity (5.5, 6.5 

kcal/min), λ (2, 4, 6, 8, 10) and µ (0.5, 1, 1.5, 2). 

As far as Figure 4.7 is concerned, the ratio between 𝑅𝐴𝜆,µ and 𝑅𝐴𝑃 provides 

evidence of the cases in which the value of 𝑅𝐴𝜆,µ is similar to 𝑅𝐴𝑃, which is 

calculated without considering 𝑡𝑊, λ and µ. As can be seen in Figure 4.7, the value 

of 𝑅𝐴𝜆,µ can be approximated to 𝑅𝐴𝑃 by increasing both �̇�𝑊 and 𝑡𝑊. 

The main difference between the 𝑅𝐴𝜆,µ and 𝑅𝐴𝑃 is for a value of �̇�𝑊 of 4.5 

kcal/min and of 𝑡𝑊 of 5 minutes. In this case, the value of 𝑅𝐴𝑃 is 0 because of a 

value of �̇�′𝑊 below 4.3 kcal/min, but, on the other hand, the influence of 𝜏𝑟 

determines a value of 𝑅𝐴𝜆,µ that is considerably higher than 𝑅𝐴𝑃 . 

In addition to this, with a fixed low value of �̇�𝑊 such as 5.5 kcal/min, it can be 

noticed that the difference increases with the decrease in the time of the activity: if 
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the activity is carried on for a short time, the influence of the �̇�𝑊 on the value of the 

�̇�′𝑊 is lower. Consequently, it is more probable to have a value of 𝑅𝐴𝜆,µ  different 

from 𝑅𝐴𝑃, not only if the �̇�𝑊 is low, but also if the duration of the activity is short. 

 

Figure 4.7 Comparison of  𝑹𝑨𝝀,µ and  𝑹𝑨𝑷 by considering the value of 

𝑹𝑨𝝀,µ/𝑹𝑨𝑷, changing the duration of the activity (5, 10, 20 min), the maximum 

energy expenditure rate of the activity (4.5, 5.5, 6.5 kcal/min), λ (2, 4, 6, 8, 10) 

and µ (0.5, 1, 1.5) 

4.6 Application of the model 
 

This section presents an application of the model explained previously. The model 

is applied in a picking context where it is necessary to determine which activities have 

to be given to each operator. Twenty activities are taken into account, which need to 

be assigned to 3 different operators.  
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As far as operators are concerned, there are three different values of λ and µ. The 

values taken into account for λ and µ are the following: for the first operator, 10 and 

0.5; for the second, 2 and 2; and for the third, 6 and 1, respectively. It is assumed 

that the intensity of each activity (in terms of energy expenditure rate and duration) 

is known. In addition, knowing the kind of activity to be performed, the value of the 

rest allowance can be obtained by using the model, if each operator has to carry out 

that particular activity. These initial data regarding activities and operators can be 

seen in Table 4.1. In this table it is considered that the operators reach the same value 

of energy expenditure rate for the activity considered and that they differ only for 

their values of λ and µ, also if as stated before, they can reach different values of 

energy expenditure rates according to their physical characteristics. In this case it is 

considered λ and µ as variables because the aim is to understand if, also in this case, 

can be obtained an improvement in term of time reduction through the scheduling. 

The scheduling of activities is performed by considering the three operators working 

in parallel, and McNaughton’s algorithm is used to schedule activities for different 

operators in order to minimize schedule length (McNaughton, 1959), considering 

that each operator has to rest after the performance of each activity.  

For the implementation of this algorithm four different measures are considered for 

ordering the activities: task time, workload, task time plus 𝑅𝐴𝑃, and task time plus 

𝑅𝐴𝜆,µ for each activity. The final aim of the case study is to provide evidence that if 

the 𝑅𝐴𝜆,µ is used in the early stage of the assignment of the activities to the operators 

then the makespan decreases. In this situation, the makespan is intended to be the 

maximum time necessary to carry out all the picking orders with three operators 

working in parallel. 
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4.6.1 Scheduling of the activities and results 
 

The data necessary to put McNaughton’s algorithm (1959) into practice are the 

characteristics of the activity: the energy expenditure rate and the execution time. In 

fact, when there is the need to give to different operators a certain amount of 

activities, it is important to know how the minimization of the makespan in the first 

Activity �̇�𝑊 (kcal/min) 𝑡𝑊 (min) 𝑅𝐴𝑂𝑃1 𝑅𝐴𝑂𝑃2 𝑅𝐴𝑂𝑃3 𝑅𝐴𝑃 

1 3.0 5 0.191 0.048 0.096 0 

2 3.5 5 0.253 0.063 0.126 0 

3 4.0 5 0.306 0.077 0.153 0 

4 4.5 5 0.353 0.088 0.177 0.082 

5 5.0 5 0.453 0.191 0.330 0.287 

6 5.5 5 0.705 0.386 0.552 0.492 

7 6.0 5 0.959 0.583 0.776 0.697 

8 3.0 10 0.096 0.024 0.048 0 

9 3.5 10 0.126 0.032 0.063 0 

10 4.0 10 0.153 0.038 0.077 0 

11 4.5 10 0.177 0.044 0.095 0.082 

12 5.0 10 0.370 0.239 0.308 0.287 

13 5.5 10 0.598 0.439 0.522 0.492 

14 6.0 10 0.828 0.640 0.736 0.697 

15 3.0 20 0.048 0.012 0.024 0 

16 3.5 20 0.063 0.016 0.032 0 

17 4.0 20 0.077 0.019 0.038 0 

18 4.5 20 0.113 0.060 0.089 0.082 

19 5.0 20 0.329 0.263 0.298 0.287 

20 5.5 20 0.545 0.465 0.507 0.492 

 Table  4.1 List of the considered activities, with �̇�𝑾, 𝒕𝑾  and respective Rest 

Allowances. 
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phase of assignment can be reached. First of all, in this case study, the time of each 

activity for scheduling the operators’ activities is considered, without taking into 

account the energy expenditure rate. After that, activities are ordered in the following 

way. First, the three activities with a higher time value are considered. These three 

activities are assigned one by one to each of the three operators. Then, the next 

activity is given to the operator who has the lowest value of time for the first activity 

assigned, and if the time is the same, the activity is assigned to the operator who 

performs better, because he has a lower value of λ and a higher value of µ. Then the 

procedure is continued using the same reasoning, by considering the time of each 

activity in descending order and looking at the time the operators accumulate with 

the assignment of activities. In this way, it is possible to have a scheduling solution 

for the 20 picking activities, and by summing up the time for all the activities assigned 

to an operator, the total time necessary for the operator to carry out all the activities 

assigned can be calculated. For each activity assigned to an operator it is necessary to 

consider the time of the activity and the time that is needed for the operator’s 

recovery after the performance of the activity. Consequently, the comprehensive time 

of the activity is calculated by summing up the duration of the activity and the time 

necessary for the operator’s recovery, obtained by multiplying the activity duration 

by the 𝑅𝐴𝜆,µ for an operator with predetermined values of λ and µ. Consequently, 

the time for the activity is calculated after the scheduling has been established because 

it is known which operator will perform each activity.  

Figure 4.8 presents the four different scheduling solutions, called respectively 

“Scheduling with time”, “Scheduling with workload”, “Scheduling with time and 

𝑅𝐴𝑃”, “Scheduling with time and 𝑅𝐴λ,µ”. 

For each solution, in the upper part (called A) there are the activities assigned to each 

operator. Then, in the bottom part (indicated with B), the time of each activity is 

reported, with the recovery time if needed. Moreover, the comprehensive time 
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(summing up the time of the activity and 𝑅𝐴λ,µ) and subsequently the makespan are 

shown. 

 

Figure 4.8 Makespan comparison of different scheduling strategies (time, 

workload, time and 𝑹𝑨𝑷, time and 𝑹𝑨𝝀,µ) for the assignment of 20 activities to 3 
operators, reporting the activity numbers assigned to the operators (A) and the 

respective times (B). 

The makespan, which is the higher value of total time among the operators, has been 

calculated for each scheduling solution. In all solutions, the physiological factors of 

each operator, in terms of λ and µ, are considered to calculate the total execution 

time (𝑡𝑊 + 𝑡𝑅
′ ) after the scheduling has been established. 

In the case of scheduling based on descending time for the activity (Scheduling with 

time), the makespan is 99.97 minutes.  

The same logic is used by considering, to order the activities, the workload of each 

activity (Scheduling with workload). The workload of each activity is obtained by 

multiplying the duration of the activity by its energy expenditure rate. Also in this 

case, the activities are ordered in descending order, but the term of reference is the 

workload. In this case, as it is shown in Figure 4.8, the value of the makespan is 

115.83 minutes, higher than the previous case.  
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If the execution time plus 𝑅𝐴𝑃  is considered for each activity (Scheduling with time 

and 𝑅𝐴𝑃), the makespan is 97.84 minutes. 

In the last scenario (Scheduling with time and 𝑅𝐴𝜆,µ) the operators’ physiological 

factors are considered in the first stage of activity assignment. First, the activities are 

ordered considering the duration of the activity plus the 𝑅𝐴𝜆,µ. Then, the first three 

activities are assigned to the operators. As a second step, the time of the first activity 

is calculated by summing up the duration of the activity with the recovery time 

obtained knowing the value of 𝑅𝐴𝜆,µ. After that, the next activity is given to the 

operator who first finishes the first activity assigned in terms of time, and the new 

value of time plus 𝑅𝐴𝜆,µ is calculated after this second assignment to the operator. 

This procedure is followed for all the 20 activities. In this scheduling solution, the 

makespan obtained is 91.88 minutes, even lower than the one calculated using only 

the duration, only work, or with duration plus 𝑅𝐴𝑃. 

Looking at these results, in the case of an operator who recovers after every activity, 

it is better to consider the time plus the 𝑅𝐴𝜆,µ in the early stage of activity assignment 

because, in this way, the makespan is minimized and it reaches the best schedule in 

terms of time. In fact, if only the time of the activity is considered, no attention is 

given to the energy expenditure rate requested by the activity in kcal/min, nor to the 

kind of operator who has to perform the activity. On the other hand, if, in addition 

to the duration, the 𝑅𝐴𝑃 is considered, the makespan is reduced because 𝑅𝐴𝑃 is set 

by knowing the energy expenditure rate of the activity, so the first attempt should 

also consider the requested energy expenditure rate as well as the duration of the 

activity. Finally, by looking at the 𝑅𝐴𝜆,µ at the early stage of assignment, not only 

are the duration and energy expenditure rate of the activity considered, but also the 

physiological factors of the operators in terms of fatigue accumulation and recovery. 
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4.6.2 Applicability and limitations of the model 
 

The model presented then applied to an example in the previous section can be used 

for all the activities that can be classified as manual activities, and that require the use 

of the whole body. This can be easily applied because the value of the energy 

expenditure rate can be obtained without difficulty by making the operator wear a 

heart rate monitor. In addition, once the values of λ and µ are set for the specific 

operator, they are valid for every kind of activity that the operator performs with the 

same energy expenditure rate.  

As far as the limitations are concerned, the model cannot be applied for activities 

where there could be, during the performance of repetitive activities, the continuous 

use of the same groups of muscles causing muscular fatigue. In these cases, the use of 

this model based on energy expenditure rate can lead to erroneous conclusions in 

relation to the assignment of activities to operators. In fact, the operators can be given 

a certain number of activities that will not be considered risky because of low values 

of energy expenditure rate but, that, on the other side, can cause musculoskeletal 

disorders due to the continuous use of the same group of muscles.  To enlarge the 

use of this model to activities where there can be high values of muscular fatigue, it 

is necessary to analyze in depth the relation between the energy expenditure rate and 

the parameters MVC and MET, introducing some additional terms in the model. 

4.7 Conclusions on the results obtained 
 

In this chapter, a model for fatigue evaluation and rest allowance estimation is 

developed and analysed, also by putting it into practice using a numerical example. 

The contribution of this model is to consider how the rate, the duration of the 

activity and the physiological factors of the operator can affect the accumulation of 

fatigue and the recovery time, for activities where the whole body is used and where 

there is an influence on the cardiovascular system because there is a modification in 
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the operator’s heart rate. Through the developed mathematical model, it is possible 

to estimate the recovery time of each specific operator, by considering the influence 

of the parameters of fatigue accumulation and recovery alleviation, respectively λ and 

µ. Moreover, it is considered the kind of activity performed which determine the 

value of the maximum energy expenditure rate reached by the operator. In relation 

to this, the existing models based on muscular fatigue (Jaber and Neumann, 2010; 

Givi, Jaber and Neumann, 2015) are based on the MVC, which is a measure difficult 

to be obtained easily in an industrial context and to be applied by a practitioner, and 

they do not give information about how to estimate the value of λ and µ and how to 

apply these values for the analysis of fatigue and recovery of each operator. The 

estimation of RA considering human factors and energy expenditure rate for manual 

material handling activities lacks in the existing literature. In fact, in this chapter it is 

shown how this model differs from the existing model of Price (1990) modified by 

Battini et al. (2017). In addition, through a numerical example, it is put in evidence 

how the application of this model in the early stages of activities assignment to 

operators working in parallel permits to improve the performance of the system by 

reducing the makespan.   
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5.1 Introduction 
 

One of the main problems with which companies have to face in the management of 

human resources is the workers assignment problem (Ammar, Pierreval and 

Elkosentini; 2013). In fact, for the companies where the use of human resources is 

fundamental for performing production activities, the allocation of different kinds 

of activities to operators can influence the performance of the overall production 

system. Normally this is preferably considered for assembling or production activities 

rather than material handling activities such as carrying, picking, loading or unloading 

of machines or pushing or pulling activities. As far as assembling or production 

activities is concerned, the assignment of activities to operators it is evaluated for, 

first of all, matching their capabilities to ease the respect of the requested cycle time. 

In addition, for such repetitive tasks, it is considered the ergonomic risk factors in 

the assignment for reducing the probability of facing injuries or a reduction of 

workers’ physical capabilities. Less attention is paid in the workers assignment 

problem for the physical fatigue perceived by the operators. In fact, most of the 

existing literature related to the consideration of human factors on the workers 

assignment problem has been focused on the proposals of algorithms for minimizing 

the risk of musculoskeletal disorders in the workplace and the accumulated work 

load for body parts (Song et al., 2016) instead of minimizing the level of fatigue. 

The physical fatigue an operator experiences is the muscular and general body one. 

The first is related to the continuous stress of the same group of muscles during 

repetitive activities and the second one is related to the movement of all the body 

during the performance of the activity. For the reduction of the fatigue level of 

operators the literature has been focused on the estimation on the time necessary to 

the operator for recovering after the efforts performed previously. This recovery time 

is called rest allowance. Its value is evaluated by considering respectively, for the 

muscular fatigue, the value of the Maximum Voluntary Contraction (MVC) and of 

Maximum Endurance Time (MET) and for the general body fatigue the value of 
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energy expenditure. Even though several models existed for the estimation of RA by 

considering muscular fatigue, for general body fatigue there exists very few. The only 

one existed (Price, 1990), has been developed in chapter 4 by considering the real 

trend of fatigue and recovery of operators performing material handling activities 

(Calzavara et al., 2018a; Calzavara et al., 2018b). The fatigue has been considered in 

existing heuristics for the assignment of multi-skilled workers subjected to fatigue to 

different kinds of machines only for the reduction of the mean flowtime avoiding 

congestion, not for the reduction of the overall recovery time of the operators 

(Ferjani et al, 2017). The recovery time has been taken into account in Othman, 

Gouw and Bhuiyan (2012) through a multi-objective integer programming model 

which takes into account the muscular fatigue of operators. Subsequently, the aim of 

this chapter is to develop a model which can consider how fatigue accumulates for 

operators performing a predetermined number of activities and can give information 

regarding in which order these activities should be assigned for minimizing the total 

recovery time. This model aims to be applied to operators who carry on manual 

material handling activities involving the whole body and causing general body 

fatigue on them. 

5.2 Existing models for considering fatigue into the workers’ 

assignment problem 
 

The literature focused on the workers assignment problem has faced in addition to 

the problems of the workers flexibility, the evaluation of their movements and 

possibilities of collaboration and of the impact of the static or dynamic assignment 

and of the operators’ training level (Ammar, Pierreval and Elkosentini; 2013). In 

fact, the human resources together with the machines are the constraints of a 

production system. For such dual resource constrained systems, the scheduling of the 

operators’ activities is important because they need to move across different machines 

or workstations in according to their capabilities (Xu, Xu and Xie, 2011; Givi, Jaber 
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and Neumann, 2015a). The presence of human resources is still considerable, but 

the existing literature remains focused on maximising the use of these resources 

through the reduction of the travelled distances and the minimization of the make-

span of each machine without considering the human factors and the physical fatigue 

of each operator (Suer and Dagli, 2005). In fact, generally, the aim is to maximise 

the output rate of the production system without considering the impact on the 

human resources. The workforce planning and allocation is considered in the 

decisions model for minimizing the whole labour costs given a certain production 

rate (Gronalt and Hartl, 2003).  

Even though, in the literature review of Neumann and Dul (2010) it has been put in 

evidence the relation between the human factors and the system performance and 

how the management of human factors leads to improve labour efficiency and 

consequently to the reduction of labour costs. Related to this, some recent literature, 

has tried to consider the work overload in the managing of the production activities 

to be given to the operators (Aroui, Alpan and Frein, 2017) by taking into account 

the sequencing of activities for minimizing the work overload. In addition, some 

papers have been focused on the balancing of assembly lines by considering not only 

the duration of the tasks but also their relative energy expenditure rate, which is 

representative of the physical fatigue of an operator (Battini et al., 2016).  

During the performance of a predetermined activity an operator perceive fatigue 

which can be physical or mental and with different intensities (Gawron, French and 

Funke, 2001). The physical one can be muscular or general body fatigue. The 

muscular fatigue is related to the continuous stress of the same group of muscle and 

it is measured with MVC and MET. In the literature exists different models which 

aim at estimating the value of MET in relation to the group of muscles and of their 

position in the body (El ahrache, Imbeau and Farbos, 2005). Basing on the value of 

MVC several static and dynamic models have been developed during years for 

describing the fatigue accumulation on muscles and some of these have also included 
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the influence of the external load, of the workload history and of the individual 

differences (Xia and Law, 2008; Ma et al., 2009; Perez et al., 2014) showing an 

increase of fatigue during loading and its decreasing during recovery (Rose et al., 

2014). They have also been put into practice for male and female operators (Zhang 

et al, 2014). This increasing trend of fatigue during the performance of the activity 

and the decreasing one during recovery has been put in evidence also for general body 

fatigue related to the energy expenditure rate of the operators (Calzavara et al., 

2018a; Calzavara et al, 2018b). Moreover, these exponential fatigue and recovery 

trend are influenced by parameters linked to the operator (Jaber, Givi and Neumann, 

2013). In addition to the exponential trend of fatigue during the performance of a 

task it has been put in evidence that the fatigue accumulates if it is not given to the 

operator time for recovery (Perez et al., 2014). This fatigue accumulation can lead 

to fatigue-related quality effects and productivity changes (Dode et al., 2016).  

As put in evidence in Rashedi and Nussbaum (2017) the analysis of fatigue 

accumulation in relation to muscular fatigue is not easy because it can be affected by 

many factors. There could be a dependency of muscle recovery with the history of 

fatiguing muscle contractions, the cycle time or the exertion level. The analysis of 

such factors can help the prediction of the localized muscle fatigue. On the other 

side, for general body fatigue the influence of the physiological factors of operators, 

of the intensity of the activity and of the duration of the activity is considered in 

Calzavara et al. (2018b). As explained in Carroll, Taylor and Gandevia (2016) the 

mechanism of recovery after a certain number of activities which cause fatigue 

accumulation is strictly related to the characteristics of the exercise bout, if it is 

disturbed the central or peripheral neuromuscular fatigue. Even though it is 

recognised in the literature that the only way to permit to the operator to return to 

the physical condition at rest is to give to him/her the time to recovery from the 

efforts performed. There exist different ways for making the operator recovering such 

as work breaks, the maximization of the recovery rate or the increasing of the 
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recovery/work ratio (Konz, 1998a;1998b). In addition to this, there could be the 

influence of environmental factors such as the climate, the noise and the illumination 

of the workplace. In El Ahrache and Imbeau (2009) it is put in evidence different 

rest allowance models related to static muscular work which aim at estimating the 

value of recovery knowing different parameters of muscle condition such as the 

MVC or the MHT, which is the maximum time a muscle can sustain a load. For 

general body fatigue it has been proposed a model for estimating the recovery time 

considering the energy expenditure rate from heart rate (HR) (Calzavara et al., 

2018b). The validity of the model is also confirmed by existing literature focused on 

the complete recovery time prediction model taking into account the body mass 

index, the perceived functional ability and the physical activity rating (Ye and Pan, 

2015). The use of rest allowance model based on energy expenditure rate for 

estimating the standard time of manual task taking into account the overall 

assignment of working tasks to a workstation has been considered by recent literature 

and companies (Caragnano and Lavatelli, 2012).  

As far as workers’ assignment problem with fatigue accumulation is concerned, the 

effect of task variation is evaluated in Luger et al. (2014) and positive effects were 

put in evidence only for tasks of high muscular demand, but it is also explained the 

need for the focusing of future researches on this topic. In fact, there is the need of 

considering more in the assignment of activities to operators the way in which fatigue 

accumulates and how a predetermined assignment can influence the time the operator 

has to recover. The existing literature have analysed the influence of the force time-

history for tasks with the same duty cycle and average forces (Sonne and Potvin, 

2015), have put in evidence that the preceding efforts play a role in fatigue 

accumulation (Sonne et al., 2015) and have proposed algorithms for solving multi-

tasking scheduling problems with a rate-modifying activity (Lodree and Geiger, 

2010; Zhu, Zheng and Chu, 2015). Even though, they have focused on muscular 

fatigue not on general body one. In Ma et al. (2015) a recovery model based on local 
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muscle fatigue is proposed for determining the work-rest cycle of an operator 

knowing his/her recovery rate. In Othman, Gouw and Bhuiyan it has been proposed 

a multi objective integer linear programming model considering in the workforce 

scheduling also the minimization of the recovery time and of the average fatigue level 

of operators but without considering the worker heterogeneity as far as physiological 

factors in concerned. The attention of fatigue in the assignment of activities to multi-

skilled workers is paid also in Ferjani et al. (2017) where a dynamic assignment 

heuristic is proposed. Here, it is evaluated an increasing of the processing time of an 

activity due to the fatigue which has been accumulated but the attention is focused 

on muscular fatigue and there lacks the consideration of the differences between 

individuals such as in Jaber and Neumann (2010). In relation to the best assignment 

of activities to operators is concerned, in Givi, Jaber and Neumann (2015b) an 

experimental analysis is carried on for showing the scheduling which leads to a lowest 

value of worker fatigue and the effect of an additional break on the optimal schedule. 

Considering the existing literature presented in this Section there lacks the analysis 

of the worker assignment problem for material handling activities causing general 

body fatigue (measured with the energy expenditure rate) on operators taking into 

account the differences between individuals, the influence of the kind of activity and 

the effect of giving to operators additional breaks before the end of the workload. 

Subsequently the aim of the following chapter will be the filling of this gap of the 

literature focused on the scheduling of operators’ activities considering human 

factors.  

5.3 New model for estimating the RA value considering fatigue 

accumulation 
 

The mathematical model that will be proposed in this Section is based on manual 

material handling activities where the value of energy expenditure rate can be 

obtained with the monitoring of the heart rate. The aim of this model is to evaluate 

the fatigue accumulation and its impact on the recovery time of an operator 
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considering the physiological factors which differ one operator from the other and 

the maximum energy expenditure rate and the duration of each activity. The final 

aim is to give a mathematical model to practitioners which want to define the 

activities to be given to operators minimizing the recovery time necessary to each of 

these. 

5.3.1 Data considered in the model: energy expenditure from the heart 

rate 
 

Existing physiological literature assessed the link between the heart rate and the 

energy expenditure rate of the individual. In Spurr et al. (1988) the total daily energy 

expenditure and the energy expenditure in activity is estimated with the heart rate 

and these results are compared with the ones obtained with the whole-body indirect 

calorimetry. There it is demonstrated that the two methods do not differ much 

between them. In addition, it is given a formulation for the estimation of the energy 

expenditure rate in kj/min knowing the value of heart rate recorded during the 

performance of the activity. A further development of the estimation of energy 

expenditure rate from heart rate in Li et al. (1993) demonstrates that physiological 

factors such as body weight, training status and age in addition to environmental 

factors such as temperature and humidity and to the kind and intensity of the activity 

can affect the relationship between heart rate and energy expenditure. The effects of 

these factors have been taken into account in the prediction equation for energy 

expenditure rate of Keytel et al. (2005). In this study it is shown that the value of 

energy expenditure rate can be obtained for individuals different between each other 

in terms of age and fitness without the necessity of having an individual calibration 

for activities of high and moderate intensity. The accuracy of the estimation can be 

improved using, in addition of a heart rate monitor, an accelerometer (Kuo et al, 

2018). Even though, in the proposed model so much precision is not required, and 

the energy expenditure rate of reference is the one derived from the formulation of 

Spurr et al. (1988). As far as the monitoring of the heart rate during material 
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handling activities is concerned, a recent research (Calzavara et al., 2018a) shown 

that for that kind of activities there is a high coefficient of correlation of HR (heart 

rate) and VO2 (oxygen consumption) and that the HR can revealed the changes of 

the kind of activity performed and of its intensity in real time. Subsequently from 

the data recording in an industrial context, for operators performing these kinds of 

activities, the heart rate and the subsequently the value of energy expenditure rate can 

be obtained easily, and these data can be representative of the fatigue the operator is 

experiencing taking into account how an activity can impact differently on different 

individuals. The model that will be presented in this section has been developed 

basing on the values of HR recorded in the field (Calzavara et al., 2018a) where the 

value of energy expenditure rate is calculated with the formulation of Spurr et al. 

(1988).  

5.3.2 Data considered in the model: rest allowance estimation with the 

physiological factors 
 

The model presented in the next Section aims at being a further development of the 

one presented by Calzavara et al. (2018b) and in the chapter before considering how 

the fatigue accumulates if a proper rest to the operator after each activity is not given 

(Calzavara et al., 2018b). As explained in Calzavara et al. (2018b), the existing 

literature focused on the reduction of operator’s fatigue try to estimate the value of 

RA (Rest Allowance) to be given to each operator to recover after the performance 

of a specific activity. This recovery time can be estimated basing on the value of 

MVC (Maximum Voluntary Contraction) for muscular fatigue or of energy 

expenditure rate for general body fatigue. Considering that material handling 

activities involved the whole body the energy expenditure rate (which can be obtained 

with the HR) is the best way of evaluating the time the operator has to recover 

(Calzavara et al., 2018b). Through that model it is possible to consider the 

physiological factors of each operator and how these values of fatigue accumulation 

and recovery alleviation affect the changing of the value of RA in comparison to 
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existing models where the values of these parameters are not considered such as the 

one of Price (1990). As put in evidence in the chapter before (Calzavara et al., 

2018b) the value of RA estimated taking into account these parameters differ more 

from the existing ones if the duration and the energy expenditure rate of the activity 

decreases. In addition, the value of the parameter of recovery alleviation affects more 

this difference in comparison to the parameter of fatigue accumulation. In the next 

Section the model will be further developed in order to consider how the value of 

rest allowance can be estimated if an operator need to perform a certain number of 

consecutive activities of different energy expenditure rate, which is expressed in 

kcal/min. 

5.3.3 Mathematical model 
 

The proposed model aims at considering how fatigue accumulates for each kind of 

operator, which performs a certain number of activities, each of these with a certain 

energy expenditure rate and duration. As explained in Calzavara et al. (2017, 2018b) 

the fatigue accumulation during an activity can be modelled as follows: 

𝐹(𝑡𝑊)𝑖 = �̇�𝑊𝑖
+ (�̇�𝑅 − �̇�𝑊𝑖

) ∙ 𝑒−𝜆𝑡𝑊𝑖            (1) 

In fact, the fatigue of activity 𝑖 increases exponentially till the reaching of the 

maximum energy expenditure  �̇�𝑊𝑖
, which is the maximum value of energy 

expenditure rate obtained during the performance of the activity by the specific 

operator. It needs to be considered that this value can change between one operator 

and the other because an activity can cause different levels of fatigue depending on 

the operators’ characteristics. In fact, during the performance of an activity different 

operators reach different values of maximum heart rate rate and consequently of 

energy expenditure rate.  

The parameter λ is the parameter of fatigue accumulation, which considers the 

differences between individuals in reaching the maximum energy expenditure rate 
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(Calzavara et al., 2018b). On the other side, the recovery function (equation 2) for 

the activity 𝑖 is 𝑅(𝜏)𝑖. It starts at the maximum energy expenditure rate and decreases 

according to the parameter of recovery alleviation µ during Ʈ, which is the time 

necessary to the operator for reaching the energy expenditure rate at rest, which as 

indicated by Price (1990) is equal to 1.86 kcal/min.  

𝑅(𝜏)𝑖 = 𝐹(𝑡𝑊)𝑖 ∙ 𝑒−µ𝜏               (2) 

Basing on equation 1 it can be evaluated how fatigue accumulates if it is not given to 

the operator a recovery.  

As can be seen in equation 3 if the activity which follows activity 𝑖, which is called 

𝑖 + 1 , has a value of energy expenditure rate higher than the one reached at the end 

of activity 𝑖 (as can be seen in Figure 5.1, A) than the fatigue function of activity 𝑖 +

1 starts at the maximum energy expenditure rate of activity 𝑖 and increases with λ till 

the reaching of the maximum energy expenditure rate of activity 𝑖 + 1 which is 

�̇�𝑊𝑖+1
.  
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Figure 5.1 Accumulation of fatigue changing the order of 3 different activities. 

Instead, if the activity 𝑖 + 1 has a value of maximum energy expenditure rate lower 

than the one of activity 𝑖, for the operator there is a kind of recovery so the fatigue 

function 𝐹(𝑡𝑊)𝑖+1 starts at the maximum energy expenditure rate of activity 𝑖 and 

decreases till the reaching of the �̇�𝑊𝑖+1
 according to the parameter µ (Figure 5.1, B 

and C). 

𝐹(𝑡𝑊)𝑖+1 =

{
 
 

 
 

�̇�𝑊𝑖+1
+ (𝐹(𝑡𝑊)𝑖 − �̇�𝑊𝑖+1

) ∙ 𝑒−𝜆𝑡𝑊𝑖+1  

                                      𝑖𝑓  �̇�𝑊𝑖+1
≥ 𝐹(𝑡𝑊)𝑖

�̇�𝑊𝑖+1
+ (𝐹(𝑡𝑊)𝑖 − �̇�𝑊𝑖+1) ∙ 𝑒−µ𝑡𝑊𝑖+1

                                     𝑖𝑓  �̇�𝑊𝑖+1
< 𝐹(𝑡𝑊)𝑖

        (3) 

As far as the recovery function is concerned, it does not change with the fatigue 

accumulation, but it should be considered when the recovery is given to the operator 

in order to put inside equation 2 the respective value of maximum energy expenditure 
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rate of the considered activity. Once the trend of fatigue and recovery are modelled 

with respectively equation (3) and (2) there is the need of setting the recovery time 

for the specific operator. According to Battini et al. (2017) the rest allowance can be 

defined as in equation 4. Subsequently the percentage of the working time the 

operator has to recover is strictly linked to energy expenditure rate of the activity. If 

the energy expenditure rate is below 4.3 kcal/min the operator does not need to 

recover. 

𝑅𝐴 = {
�̇�𝑊 −4.3

4.3−�̇�𝑅
 𝑖𝑓 �̇�𝑊 > 4.3

 0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
              (4) 

 

For using equation (4) it is necessary to set the mean energy expenditure rate 

considering a certain number of activities carried on sequentially as can be seen in 

Figure 5.2. 

 

Figure 5.2 Setting of 𝑬′̇ 𝑾 considering the exponential trend of fatigue and 
recovery. 

The value of the mean energy expenditure can be obtained, as shown in equation 5, 

by integrating the fatigue and recovery function and by dividing this value to the sum 

of working time and of the time for reaching the energy expenditure rate at rest Ʈ𝑟 . 

In equation 5 it should be considered whether the rest is given after every activity or 

only after the 𝑘𝑡ℎ activity. It needs to be put into evidence that the operator is 

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45 50 55

�̇�𝑅

Time [min]

𝐸
 ̇  
 
 
 
  
 
  
 

𝐸′̇ 𝑊



Fatigue accumulation in the WAP 

148 
 

considered at rest only when he reaches the value of energy expenditure rate at rest. 

Subsequently also during Ʈ the operator is not recovering as considered in equation 

5. 

𝐸′̇ 𝑊 =

{
 
 
 

 
 
 

∑ ∫ 𝐹(𝑡𝑊)𝑖+∫ 𝑅(𝜏)𝑖
𝑡𝑊𝑖+𝜏𝑟𝑖
𝑡𝑊𝑖

𝑡𝑊𝑖
0

𝑛
𝑖=1

∑ 𝑡𝑊𝑖
𝑛
𝑖=1 +𝜏𝑟𝑖

 

       𝑖𝑓 𝑟𝑒𝑠𝑡 𝑎𝑓𝑡𝑒𝑟 𝑒𝑣𝑒𝑟𝑦 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

∑ ∫ 𝐹(𝑡𝑊)𝑖+∑ ∫ 𝑅(𝜏)𝑘
𝑡𝑊𝑘+𝜏𝑟𝑘
𝑡𝑊𝑘

𝑘
𝑡𝑊𝑖
0

𝑛
𝑖=1

∑ 𝑡𝑊𝑖
𝑛
𝑖=1 +∑ 𝜏𝑟𝑘𝑘

       𝑖𝑓  𝑟𝑒𝑠𝑡 𝑎𝑓𝑡𝑒𝑟 𝑘𝑡ℎ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

               (5) 

The fatigue accumulation is obtained by integrating the fatigue function during 𝑡𝑊 . 

For the first activity it can be expressed as in equation 6 because the operator starts 

at the energy expenditure at rest and accumulates fatigue till the reaching of the 

maximum energy expenditure rate of the activity. Subsequently, for the first activity 

the only physiological factor taken into account is λ. 

∫ 𝐹(𝑡𝑊)1
𝑡𝑊1

0
= �̇�𝑊1

∙ 𝑡𝑊1
+ (�̇�𝑅 − �̇�𝑊1

) ∙
𝑒−𝜆𝑡𝑊1

−𝜆
+

(�̇�𝑅−�̇�𝑊1)

𝜆
     (6) 

For the activities which follows, the physiological factor of reference for the 

evaluation of the fatigue accumulation can be whether λ or µ depending on the value 

of the maximum energy expenditure rate of the considered activity in relation to the 

previous one. As can be seen in equation 7 if this value is lower than the previous 

activity the physiological factor considered is µ, otherwise is λ. 

∫ 𝐹(𝑡𝑊)𝑖
𝑡𝑊𝑖

0
=

{
 
 
 

 
 
 �̇�𝑊𝑖

∙ 𝑡𝑊𝑖
+ (𝐹(𝑡𝑊)𝑖−1 − �̇�𝑊i) ∙

𝑒−𝜆𝑡𝑊𝑖

−𝜆
+

(𝐹(𝑡𝑊)𝑖−1−�̇�𝑊𝑖)

𝜆
 

                                                            𝑖𝑓  �̇�𝑊𝑖
 ≥ 𝐹(𝑡𝑊)𝑖−1

�̇�𝑊𝑖
∙ 𝑡𝑊𝑖

+ (𝐹(𝑡𝑊)𝑖−1 − �̇�𝑊𝑖) ∙
𝑒−µ𝑡𝑊𝑖

−µ
+

(𝐹(𝑡𝑊)𝑖−1−�̇�𝑊𝑖)

µ

                                                           𝑖𝑓  �̇�𝑊𝑖
< 𝐹(𝑡𝑊)𝑖−1

             

           (7) 
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Considering that the operator recovers only when he reaches the energy expenditure 

at rest, it needs to be considered also the fatigue accumulation during Ʈ𝑅 . The fatigue 

accumulation during the time necessary for reaching 1.86 kcal/min should be 

evaluated not for all the activities but only for the activities 𝑘 after which the recovery 

is given to operator (equation 8). 

∫ 𝑅(𝜏)𝑘
𝑡𝑊𝑘+𝜏𝑟𝑘

𝑡𝑊𝑘
=

𝐹(𝑡𝑊)𝑘

−µ
∙ 𝑒−µ𝑡𝑊𝑘 ∙ (𝑒(− ln 𝐹(𝑡𝑊)𝑘)+ln (�̇�𝑅) − 1)   (8) 

As put in evidence in equation 9 the value of 𝜏𝑟𝑘
, which is the time necessary for 

reaching 1.86 kcal/min, is strictly related to the maximum energy expenditure rate 

reached during the performance of the activity 𝑘 and to the parameter of recovery 

alleviation µ. 

𝜏𝑟𝑘
=

− ln 1.86+ln 𝐹(𝑡𝑊)𝑘

µ
                (9) 

Subsequently, knowing the sequence of activities and the ones after which a recovery 

is given to the operators it is possible to evaluate the total time necessary for carrying 

on the activities and for recovering by considering the working time, the time for 

reaching the energy expenditure rate at rest and the time necessary for recovering 

(equation 10) 

𝑡𝑡𝑜𝑡 = ∑ 𝑡𝑊𝑖
𝑛
𝑖=1 + ∑ 𝜏𝑟𝑘𝑘 + 𝑅𝐴 ∙ (∑ 𝑡𝑊𝑖

𝑛
𝑖=1 + ∑ 𝜏𝑟𝑘𝑘 )         (10) 

The following model permits to estimate the total time necessary to the operator for 

performing a certain number of activities in sequence. In addition, it permits to 

analyse how to assign the activities to operator for reducing the total recovery time. 

As far as this is concerned in the following section it will be put in evidence how the 

physiological factors and the kind of activities to be performed can influence on the 

recovery time reduction through the optimal assignment of activities to the operators. 
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5.4 Impact of the parameters on the best allocation of activities 
 

In the following Section it will be evaluated how the physiological factors and the 

kind of the considered activities can impact on the improvement obtained with the 

job sequencing in order to give to a practitioner information of how it can be 

convenient to focus the attention on job sequencing for obtaining a considerable 

value of recovery time reduction. The influence of these parameters is carried on for 

different options of recovery considering that it is possible to give to the operator an 

additional rest in respect to the one given to him at the end of the overall work 

content. As far as the best sequencing of activities is concerned, the results obtained 

shown that if the recovery is given only at the end of the whole work content it is 

better to perform the activities of higher intensity as last. On the other side, if it is 

possible to give to the operator ad additional rest, these kinds of activities should be 

performed immediately before this additional rest. This result makes sense because, 

the additional rest, given after the activities of higher intensities, help reducing the 

influence of the fatigue accumulated during the performance of these activities on 

the activities which should be performed after. The best job sequencing changes if 

the value of energy expenditure of most of the activities is below 4.3 Kcal/min. In 

this case, to reduce the recovery time it is better to perform the activities with a higher 

value of energy expenditure rate at the beginning. In fact, during the following 

activities with a value of energy expenditure rate below 4.3 kcal/min the operator 

recovers partially reducing the need of recovery at the end of all the activities. 

5.4.1 Influence of the physiological factors 
 

The model presented has been put into practice considering a certain number of 

activities with an overall work content of two hours. In fact, normally, in an industrial 

context a break is given to the operators after every two hours of work so, during 

these two hours the operator has not the possibility of recovering and the fatigue 

accumulates. The activities considered are related to order picking activities, where 
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the average duration for completing an order is equal to 15 minutes. The different 

possibilities of allocating the activities to operator are simulated in MS excel 

considering different options of recovery. These different options are related of when 

the recovery is given to operator. If fact, it should be given only at the end of the 8 

activities (each of these with a duration of 15 minutes) or in addition to the recovery 

at the end an additional recovery can be given to the operator before the end of the 

whole work content. This additional recovery can be given after one of the activities 

performed before the last activity. As far as the kind of operators considered the value 

of λ and µ considered for the application of the model are the ones indicated in 

Calzavara et al. (2018b). These values are respectively 2, 4, 6, 8, 10 for λ and 0.5, 1, 

1.5, 2 for µ. 

The first aim of this application is to understand for which kind of operators the 

improvement of the allocation of activities can determine a higher percentage of 

improvement in terms of recovery time reduction. Considering activities of different 

intensities in the range of 3.5 and 7 kcal/min (these are the energy expenditure rate 

obtained in a real industrial context) each of a duration of 15 minutes and fixing the 

value of λ the influence of µ can be detected. On the top and on the bottom of Figure 

5.3 can be seen respectively, the influence of the value of µ and of λ on the percentage 

of improvement of the scheduling for each recovery option.  

 
 

 

FIXED DATA: 
Energy expenditure 
rate of each 
activity=3.5-7 
kcal/min 

Duration of each 
activity=15 min 

λ =6 

VARIABLE 
DATA: 
µ= 0.5;1;1.5 
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Figure 5.3 Influence of λ and µ on the allocation of the activities 

The percentage of improvement of the scheduling is the improvement in terms of 

time which can be obtained in comparison to the worst scenario if the best allocation 

of activities to operators is chosen. This percentage of time reduction is considered 

for each option of recovery as can be seen on the right side of Figure 5.3.  

As far as the parameter of fatigue accumulation λ is concerned, its value influences 

less than µ the improvement which can be obtained by improving the assignment of 

activities to the operators as can be seen on the bottom of Figure 5.3. Subsequently, 

considering the values of λ and µ of reference (Calzavara et al., 2018b), there may 

be more advantages in the reduction of the total recovery time of operators if the 

value of their parameter of recovery alleviation in low, which means a lighter slope 

of the curve of recovery causing a longer time in reaching the energy expenditure at 

rest. A lower value of µ can be characteristic of operators with low level of training.  

5.4.2 Influence of the duration of the activities 
 

The percentage of improvement in terms of recovery time reduction by evaluating 

the best assignment of activities to the operators can be influenced not only by the 

physiological factors as explained by the paragraph before but also by the kind of 

activity performed in terms of duration and energy expenditure rate. By considering 

8 activities in the range of energy expenditure rate between 3.5 and 7 kcal/min and 

fixing the value of λ and µ, it can be evaluated with the presented model how the 

FIXED DATA: 
Energy 
expenditure rate 
of each  
activity =3.5-7 
kcal/min 

Duration of each 
activity=15 min 

µ=1.5 

VARIABLE 
DATA: 

λ= 2;6;10 
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change of the duration of each activity (considering the same duration for each 

activity) can influenced the improvement obtained with the best allocation of 

activities to the operators. The duration of the activities considered are 7.5, 15 and 

20 minutes. These values were chosen because they have been detected in an 

industrial context: for the completion of a picking order it is not spend less than 5 

minutes and no more of 20 minutes. By changing the duration of the activities also 

the overall work content changes. It is no more of 120 minutes, but it is respectively 

for 7.5 and 20 minutes of duration, equal to 60 and 160 minutes. 

As can be seen in Figure 5.4, with the increasing of the duration of each activity, the 

improvement which can be obtained by optimising the allocation of activities 

decreases for each recovery option. Subsequently a higher reduction of the recovery 

time can be reached if the duration of the considered activities is short. 

  

Figure 5.4 Influence of the duration of each activity 

In an industrial context, as far as picking orders in concerned, most of the time not 

all the order to be completed, which correspond to the considered activities, have the 

same duration, consequently it is necessary to evaluate how the change between one 

activity and the other can affect the improvement of the assignment of the activities. 

In Table 5.1 can be seen the energy expenditure rate considered for each activity and 

the respective duration. For the three scenarios considered the work content is the 

same and it is equal to 120 minutes but what changes in the scenario B and C is the 

duration of the two activities with the lowest and with the highest energy expenditure 

FIXED DATA: 
Energy 
expenditure rate of 
each  
activity =3.5-7 
kcal/min 

λ =6 

µ =1.5 

VARIABLE 
DATA: 
Duration of each 
activity = 7.5; 15; 
20 minutes 
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rate in order to understand how the decreasing or decreasing of their value of 

duration can affect the improvement which can be obtained during the assignment 

of the activities. In the scenario B, activities 1 and 2, the ones which do not imply 

recovery because the energy expenditure rate is below 4.3 kcal/min have a value of 

duration which is half the one considered for activities 7 and 8, which are the ones 

with the higher values of energy expenditure rate, respectively 6.5 and 7 kcal/min. 

Whereas, the contrary is considered in scenario C. In Figure 5.5 the results of the 

application of the model for the 8 activities of Table 5.1 are presented. 

Table  5.1 Data of each scenario related to the changing of activities’ duration 

  Duration [min] 

ACTIVITY 𝐸�̇� [kcal/min] A B C 

1 3.5 15 10 20 

2 4 15 10 20 

3 4.5 15 15 15 

4 5 15 15 15 

5 5.5 15 15 15 

6 6 15 15 15 

7 6.5 15 20 10 

8 7 15 20 10 

  

Figure 5.5 Impact of the changing of duration between the activities 

FIXED DATA: 
Energy expenditure 
rate of each activity 
: 3.5-7 kcal/min 

λ =6 

µ =1.5 

Total work 
content= 120 
minutes 
VARIABLE 
DATA: 
Duration of each 
activity (see Table 
1)  
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In Figure 5.5 it is put in evidence the how the assignment of activities for each option 

of recovery can be improved in terms of recovery time reduction between the best 

assignment and the worst one. As can be seen in Figure 5.5 the improvement reduces 

if the impact of the activities of higher energy expenditure rate increases in terms of 

duration. In fact, the scenario B has in all the options of recovery the lower percentage 

of improvement due to the longer duration of activities 7 and 8, each of these of 20 

minutes. On the other side, there are more possibilities to have a higher improvement 

with the optimal assignment of the activities to the operators if the influence in terms 

of the duration of the activities with lower values of energy expenditure rate increases, 

such as scenario C. According to this, scenario A, where all the activities have the 

same duration of 15 minutes, is positioned in the middle. 

5.4.3 Influence of the range of the energy expenditure rate of the activities 
 

Considering the impact of the kind of activity, there is the need to consider not only 

the duration but also the energy expenditure rate of the activity in kcal/min. In fact, 

considering the range of energy expenditure rate between 3.5 and 7 kcal/min and 

fixing the duration of 15 minutes of each activity, it can be detected how the number 

of activities below 4.3 kcal/min can affect the improvement obtained with the best 

assignment of activities to operators. The scenario of 100% activities below 4.3 

kcal/min is not considered because in that case the duration of the recovery to be 

given to each operator is equal to 0.  
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Table  5.2 Data of each scenario related to the changing of activities’ energy 
expenditure rate 

 

 
 

% of activities with the energy expenditure rate below 4.3 
kcal/min 

Activity 
Duration 

[min] 
0% 12.5% 25% 37.5% 50% 62.5% 75% 87.5% 

1 15 4.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 

2 15 4.85 4.5 4 3.7 3.7 3.7 3.7 3.7 

3 15 5.2 4.7 4.5 4.2 3.9 3.9 3.9 3.9 

4 15 5.55 5 5 5 4.2 4 4 4 

5 15 5.9 5.5 5.5 5.5 5.5 4.2 4.2 4.1 

6 15 6.25 6 6 6 6 6 4.3 4.2 

7 15 6.6 6.5 6.5 6.5 6.5 6.5 6.5 4.3 

8 15 7 7 7 7 7 7 7 7 

 

As can be seen in Table 5.2 there has been considered 8 activities as in previous cases 

of the paragraph before and all the activities have the same duration of 15 minutes. 

The aim is to understand how the mix of activities in terms of difference of energy 

expenditure rate between them can affect the improvement obtained with the best 

allocation of activities. In Figure 5.6 can be seen the results obtained by applying the 

model presented to the scenarios put in evidence in Table 5.2.  

As shown in Figure 5.6, if all the activities have a value of energy expenditure rate 

above 4.3 kcal/min the percentage of improvement of recovery time is low and it is 

pretty much the same for all the recovery options. Subsequently, if all the activities 

have a value of energy expenditure rate above 4.3 kcal/min and more they are near 

in terms of energy expenditure rate between one and the other, less recovery time 
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reduction can be obtained with the job sequencing optimization. The improvement 

of the recovery time reduction increases with the increase of the percentage of 

activities with a value of energy expenditure rate below 4.3 kcal/min. 

 

Figure 5.6 Impact of the percentage of activities below 4.3 kcal/min 

 

5.5 Evaluation of giving to the operator an additional rest 

5.5.1 Analysis of the percentage of scenarios in which an additional 

recovery is convenient 
 

The proposed model is this Section is applied to a numerical example. The aim is to 

understand the best scheduling of operators’ activities to reach the minimization of 

the total time, taking into account also the time the operator needs to recover.  

In this sense, 1,000 different scenarios have been created in Ms Office Excel for three 

different ranges of intensity: between 2 and 4.5 kcal/min, between 3 and 6 kcal/min 
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and between 4 and 8 kcal/min. Each scenario corresponds to a set of activities. The 

value of the energy expenditure rate of each activity is representative of the reality 

and the scenarios are generated randomly. 

In fact, for each scenario there are 8 activities, which are carried out one after the 

other. For each activity, the duration is a random value between 5 and 20 minutes 

and the intensity is a random value in the range of intensity considered. For each 

scenario is calculated the total recovery time if a rest is given after every activity, only 

at the end of the 8 activities or if, in addition to the rest at the end, a rest is given 

between the 8 activities. Considering the case of giving to the operator a rest only at 

the end, it is calculated the value of the recovery time if the scheduling is optimised 

(by selecting the lower value of RA for 40320 scheduling combinations of each 

scenario).   

 In addition to this, fixing the range of intensity considered, the 1000 scenarios and 

the 40320 scheduling combinations of each scenario are replicated by changing the 

characteristics of the operator who has to perform the activities. This has been taken 

into account by assigning three different values to the parameters of fatigue 

accumulation λ and recovery alleviation µ: λ=4, 6, or 8 and µ=0.5, 1.5 or 2.5.  

These values were obtained using a heart rate monitor in an industrial context. Each 

activity, characterized by a certain value of intensity and duration, can potentially be 

assigned to one of the different kinds of operator, who is described by his specific 

combination of parameters λ and µ.  

The mathematical model was applied to reach the final aim of calculating the total 

recovery time comprehensive of the time for reaching the energy expenditure rate at 

rest (the term ∑ 𝜏𝑟𝑘𝑘  of  (10))  plus the time the operator needs to recover obtained 

by calculating the value of the RA (the term 𝑅𝐴 ∙ (∑ 𝑡𝑊𝑖
𝑛
𝑖=1 + ∑ 𝜏𝑟𝑘𝑘 )of (10)). 

The terms of reference introduced for the analysis and indicated in Table 1 are: 
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 𝑡𝑒𝑡 : total recovery time if a rest is given after every activity 

 𝑡𝑚 : total recovery time if a rest is given between the activities and at the end 

of all 8 activities 

 𝑡𝑒𝑛𝑑 : total recovery time if the rest is given only at the end of all 8 activities 

 𝑡𝑒𝑛𝑑 𝑜𝑝𝑡 : total recovery time if the rest is given at the end of all 8 activities 

but with the optimization in the sequencing of the activities 

 % 𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛: percentage of improvement of 𝑡𝑒𝑛𝑑 𝑜𝑝𝑡 in comparison to 

𝑡𝑒𝑛𝑑 in terms of total recovery time reduction 

Table 5.3 reports a summary comparison of the results obtained from all the 

generated scenarios. There can be seen the percentage of the 1000 scenarios evaluated 

for which are valid the options indicated at the top of the Table 5.3. In particular, 

for each possible combination of the values of �̇�, 𝜆 and µ it shows the percentage of 

scenarios that have a higher value of the total times 𝑡𝑒𝑡 , 𝑡𝑚 , 𝑡𝑒𝑛𝑑 , 𝑡𝑒𝑛𝑑 𝑜𝑝𝑡 , 

comparing them two at a time. It is then possible to understand the total number of 

scenarios for which one solution is more convenient than another in terms of time 

reduction. Moreover, in the last column it is indicated the percentage of time 

reduction obtained by optimizing the sequencing of the activities. 

For the sets of activities and operators considered in this numerical example, it can 

be seen that for the activities of low intensity (included in the range 2-4.5 kcal/min), 

it is preferable to give to the operators the rest at the end of all the activities than 

giving a rest after every activity or after a set of activities, for all the scenarios. 

Moreover, it can be obtained a time reduction of around 53% if it is considered to 

assign the activities in the best order. In this case, the personal characteristics of the 

operators in terms of λ and µ have little influence. The optimization of the 

scheduling of activities gives more advantages in terms of time reduction for activities 

of low intensity rather than activities of medium (range of 3-6 kcal/min) or high 
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intensity (range of 4-8 kcal/min). In fact, the mean percentage of time improvement 

for activities of low, medium and high intensity is respectively around 53%, 15% 

and 1.5%. If for activities of low intensity it is better to give the recovery to the 

operators at the end of all the activities (𝑡𝑒𝑡>𝑡𝑒𝑛𝑑 and 𝑡𝑒𝑡>𝑡𝑚 for all scenarios), for 

activities of medium intensity (3-6 kcal/min) it is better to give to the operators a 

rest between the activities besides the rest at the end of all the activities (𝑡𝑒𝑛𝑑>𝑡𝑚) 

for more than the 70% of the scenarios. Such a convenience is confirmed for the 

100% of the scenarios if the intensity of the considered activities increases (4-8 

kcal/min). In addition, there is also an influence of the parameters λ and µ for the 

activities of medium and high intensity: the increasing of λ and the decreasing of µ 

implies an increase in the percentage of scenarios where the rest at the end or between 

the activities (𝑡𝑒𝑛𝑑 and 𝑡𝑚) is advantageous in comparison to the rest after every 

activity (𝑡𝑒𝑡).  

This simple numerical example has shown how this model can help in comparing 

different scheduling alternatives and, therefore, in understanding which is the best 

one for each operator, also considering whether and when it is better to give him a 

rest to reduce the total time. 
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Table  5.3 Comparison of the scenarios with different ranges of intensity, duration 
of the activities and operators 

�̇� λ µ 𝑡𝑒𝑡 > 𝑡𝑒𝑛𝑑 𝑡𝑒𝑡 > 𝑡𝑚 𝑡𝑒𝑛𝑑> 𝑡𝑚 
𝑡𝑒𝑛𝑑> 

𝑡𝑒𝑛𝑑 𝑜𝑝𝑡 
% 𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

2-4.5 2 0.5 100.00% 100.00% 0.00% 100.00% 53.61% 
2-4.5 2 1.5 100.00% 100.00% 0.00% 97.90% 53.53% 
2-4.5 2 2.5 100.00% 100.00% 0.00% 90.00% 53.53% 
2-4.5 4 0.5 100.00% 100.00% 0.00% 100.00% 53.61% 
2-4.5 4 1.5 100.00% 100.00% 0.00% 97.90% 53.53% 
2-4.5 4 2.5 100.00% 100.00% 0.00% 90.00% 53.53% 

2-4.5 6 0.5 100.00% 100.00% 0.00% 100.00% 53.61% 
2-4.5 6 1.5 100.00% 100.00% 0.00% 97.90% 53.53% 
2-4.5 6 2.5 100.00% 100.00% 0.00% 90.00% 53.53% 
3-6 2 0.5 84.00% 100.00% 72.50% 100.00% 19.03% 
3-6 2 1.5 36.80% 37.40% 70.90% 99.10% 10.71% 

3-6 2 2.5 33.60% 34.00% 70.60% 97.40% 9.78% 
3-6 4 0.5 98.30% 100.00% 73.50% 100.00% 20.00% 
3-6 4 1.5 36.20% 87.50% 72.40% 99.10% 12.46% 
3-6 4 2.5 32.40% 32.80% 72.20% 97.40% 10.12% 
3-6 6 0.5 99.10% 100.00% 74.00% 100.00% 20.24% 
3-6 6 1.5 72.50% 100.00% 72.70% 99.10% 13.02% 

3-6 6 2.5 31.80% 36.50% 72.60% 97.40% 10.81% 
4-8 2 0.5 98.70% 100.00% 100.00% 100.00% 2.84% 
4-8 2 1.5 0.00% 0.10% 100.00% 100.00% 0.45% 
4-8 2 2.5 0.00% 0.10% 100.00% 100.00% 0.22% 
4-8 4 0.5 100.00% 100.00% 100.00% 100.00% 3.20% 

4-8 4 1.5 53.80% 100.00% 100.00% 100.00% 0.85% 
4-8 4 2.5 0.00% 0.10% 100.00% 100.00% 0.35% 
4-8 6 0.5 100.00% 100.00% 100.00% 100.00% 3.31% 
4-8 6 1.5 98.70% 100.00% 100.00% 100.00% 0.98% 

4-8 6 2.5 21.20% 97.80% 100.00% 100.00% 0.49% 

 

5.5.2 Analysis of the improvement obtained with an additional rest 
 

The Section before has evaluated the percentage of improvement that can be reached 

for each recovery scenario if the best scheduling option is chosen. In addition, the 

influence of the kind of operator and activity has been put in evidence. Even though, 

it could be useful for a practitioner the understanding of when an additional rest 

before the end of the whole work content can be used with the aim of reducing the 

total recovery time. Subsequently in this Section the presented model has been 

applied to the kind of activities considered in the Section before. Here, it is carried 
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on the comparison in terms of recovery time reduction between the best scheduling 

option of the scenario of recovery only at the end of all the activities and the one 

where an additional rest is given to the operator after one of the activities carried on 

before the end. Related to this, the percentage of recovery time reduction indicated 

in Figure 5.7 is intended to be percentage of recovery time reduction if the option of 

an additional recovery is chosen in respect to the recovery only at the end.  Regarding 

the influence of the physiological factor λ and µ, it can be seen in on the graphs 1 

and 2 of Figure 5.7 that an additional rest does not permit to improve the recovery 

time reduction in comparison the best scheduling considering the rest at the end. As 

far as activities’ characteristics is concerned, it can be evaluated on the graphs 3 and 

4, that respectively the duration of the activities and the percentage of activities with 

an energy expenditure rate below 4.3 kcal/min has not so much influence as the 

physiological factors.  

In the graph 4 of Figure 5.7 it is considered the influence of the changing of the 

duration of same of the activities taking into account the scenarios presented in Table 

5.1. Also, in this case, the changing of scenario does not affect much the improvement 

that can be achieved with an additional rest. It can be concluded that the additional 

rest does not improve so much the recovery time reduction and that most of the 

reduction can be achieved by optimising the assignment of activities to operators 

considering fixed the position of the recovery. It needs to be taken into account that 

in the examined case, if the percentage of percentage of activities with an energy 

expenditure rate below 4.3 is more than the 80% there it is advantageous giving to 

the operator the rest only at the end of the all the activities. 
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Figure 5.7 Impact of the parameters on the advantage of having an additional rest 
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5.6 Practical grids to be used for managing the activities and the 

operator in an industrial context 
 

According to the model presented in this chapter, the results which can be used in 

an industrial context to improve the assignment of activities to the operators are 

summarized in Table 5.4 and in Table 5.5. Table 5.4 gives a rough indication of the 

best position of the recovery and of the percentage of time reduction if the best 

assignment of activities is chosen. The activities considered can have a random value 

between 5 and 20 minutes in the range of energy expenditure rate indicated in the 

first column. As indicated in this table, the additional recovery should be taken into 

account if the rates of the considered activities increase. On the other side there can 

be more advantage in the optimisation of the assignment if the energy expenditure 

rate of the activities decreases. Consequently, a practitioner, knowing the value of the 

energy expenditure rate of the activities can understand if the focus on the assignment 

of operators’ activities can give benefits to the performance of the system in terms of 

recovery time reduction. 
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Table  5.4 General indications for managing operators 

�̇� λ μ 
DURATION 

[min] 
POSITION OF 

THE REST 

% TIME 
REDUCTION 

WITH 
ASSIGNMENT 

OPTIMIZATION 
2-4.5 2 0.5 5-20 END 53.6% 
2-4.5 2 1.5 5-20 END 53.5% 
2-4.5 2 2.5 5-20 END 53.5% 
2-4.5 4 0.5 5-20 END 53.6% 
2-4.5 4 1.5 5-20 END 53.5% 
2-4.5 4 2.5 5-20 END 53.5% 
2-4.5 6 0.5 5-20 END 53.6% 
2-4.5 6 1.5 5-20 END 53.5% 
2-4.5 6 2.5 5-20 END 53.5% 
3-6 2 0.5 5-20  

 
 

RESULT LINKED 
TO THE 

SCENARIO 
CONSIDERED 

19% 
3-6 2 1.5 5-20 17.7% 
3-6 2 2.5 5-20 9.8% 
3-6 4 0.5 5-20 20% 
3-6 4 1.5 5-20 12.5% 
3-6 4 2.5 5-20 10% 
3-6 6 0.5 5-20 20.2% 
3-6 6 1.5 5-20 13% 
3-6 6 2.5 5-20 10.8% 
4-8 2 0.5 5-20 ADDITIONAL 

REST 
2.84% 

4-8 2 1.5 5-20 EVERY ACTIVITY 0.45% 
4-8 2 2.5 5-20 EVERY ACTIVITY 0.22% 
4-8 4 0.5 5-20 ADDITIONAL 

REST 
3.20% 

4-8 4 1.5 5-20 ADDITIONAL 
REST 

0.85% 

4-8 4 2.5 5-20 EVERY ACTIVITY 0.35% 
4-8 6 0.5 5-20 ADDITIONAL 

REST 
3.31% 

4-8 6 1.5 5-20 ADDITIONAL 
REST 

0.98% 

4-8 6 2.5 5-20 ADDITIONAL 
REST 

0.49% 

 

Even though Table 5.4, it can be harder to understand the improvement which can 

be obtained with the best assignment of activities and the position of the recovery if 

the considered activities have an energy expenditure rate which is included in a wider 

range such as 3.5-7 kcal/min. In such a range there are both activities of high and of 

low energy expenditure rate. In Table 5.5 can be seen, how the percentage of recovery 
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time reduction changes with the change of �̇�, of λ and μ, of the duration of the 

activities and of the percentage of activities with a value of energy expenditure rate 

below 4.3 kcal/min. 

Table  5.5 Specific indications related to the changing of the variables 

Additional rest in the middle DURATION [min]  
This % of time reduction increases if the 

duration of the activities with a low value of 

�̇� increases in respect to the ones with a 

high value of �̇� 
7.5 15 20 

�̇� λ μ % of 
activities 
below 

4.3 
kcal/min 

% time 
reduction 

with 
assignment 

optimization 

% time 
reduction 

with 
assignment 

optimization 

% time 
reduction 

with 
assignment 

optimization 

BEST 
ASSIGNMENT 

OF  
ACTIVITIES 

3.5-7 2 0.5 0% 4.75% 3.5% 3.25%  
Activities with a higher  

�̇� should be 
performed 

immediately before the 
two rests 

 

3.5-7 2 1.5 0% 2% 0.75% 0.5% 
3.5-7 2 2.5 0% 2% 0.75% 0.5% 
3.5-7 4 0.5 0% 4.75% 3.5% 3.25% 
3.5-7 4 1.5 0% 2% 0.75% 0.5% 
3.5-7 4 2.5 0% 2% 0.75% 0.5% 
3.5-7 6 0.5 0% 5% 3.75% 3.5% 
3.5-7 6 1.5 0% 2.25% 1% 0.75% 
3.5-7 6 2.5 0% 2.25% 1% 0.75% 
3.5-7 2 0.5 12.5% 5% 3.75% 3.5%  

Activities with a higher  

�̇� should be 
performed 

immediately before the 
two rests 

3.5-7 2 1.5 12.5% 2.25% 1% 0.75% 
3.5-7 2 2.5 12.5% 2.25% 1% 0.75% 
3.5-7 4 0.5 12.5% 5% 3.75% 3.5% 
3.5-7 4 1.5 12.5% 2.25% 1% 0.75% 
3.5-7 4 2.5 12.5% 2.25% 1% 0.75% 
3.5-7 6 0.5 12.5% 5.25% 4% 3.75% 
3.5-7 6 1.5 12.5% 2.5% 1.25% 1% 
3.5-7 6 2.5 12.5% 2.5% 1.25% 1% 
3.5-7 2 0.5 25% 5.5% 4.25% 4%  

Activities with a higher  

�̇� should be 
performed 

immediately before the 
two rests 

 

3.5-7 2 1.5 25% 2.75% 1.5% 1.25% 
3.5-7 2 2.5 25% 2.75% 1.5% 1.25% 
3.5-7 4 0.5 25% 5.5% 4.25% 4% 
3.5-7 4 1.5 25% 2.75% 1.5% 1.25% 
3.5-7 4 2.5 25% 2.75% 1.5% 1.25% 
3.5-7 6 0.5 25% 5.75% 4.5% 4.25% 
3.5-7 6 1.5 25% 3% 1.75% 1.5% 
3.5-7 6 2.5 25% 3% 1.75% 1.5% 
3.5-7 2 0.5 37.5% 7.75% 6.5% 6.25%  

Activities with a higher  

�̇� should be 
performed 

immediately before the 
two rests 

3.5-7 2 1.5 37.5% 5% 3.75% 3.5% 
3.5-7 2 2.5 37.5% 5% 3.75% 3.5% 
3.5-7 4 0.5 37.5% 7.75% 6.5% 6.25% 
3.5-7 4 1.5 37.5% 5% 3.75% 3.5% 
3.5-7 4 2.5 37.5% 5% 3.75% 3.5% 



Fatigue accumulation in the WAP 

167 
 

3.5-7 6 0.5 37.5% 8% 6.75% 6.5%  
3.5-7 6 1.5 37.5% 5.25% 4% 3.75% 
3.5-7 6 2.5 37.5% 5.25% 4% 3.75% 
3.5-7 2 0.5 50% 11.25% 10% 9.75%  

Activities with a higher  

�̇� should be 
performed 

immediately before the 
two rests 

 

3.5-7 2 1.5 50% 8.5% 7.25% 7% 
3.5-7 2 2.5 50% 8.5% 7.25% 7% 
3.5-7 4 0.5 50% 11.25% 10% 9.75% 
3.5-7 4 1.5 50% 8.5% 7.25% 7% 
3.5-7 4 2.5 50% 8.5% 7.25% 7% 
3.5-7 6 0.5 50% 11.5% 10.25% 10% 
3.5-7 6 1.5 50% 8.75% 7.5% 7.25% 
3.5-7 6 2.5 50% 8.75% 7.5% 7.25% 
3.5-7 2 0.5 62.5% 13% 11.75% 11.5%  

Activities with a higher  

�̇� should be 
performed 

immediately before the 
two rests 

 

3.5-7 2 1.5 62.5% 10.25% 9% 8.75% 
3.5-7 2 2.5 62.5% 10.25% 9% 8.75% 
3.5-7 4 0.5 62.5% 13% 11.75% 11.5% 
3.5-7 4 1.5 62.5% 10.25% 9% 8.75% 
3.5-7 4 2.5 62.5% 10.25% 9% 8.75% 
3.5-7 6 0.5 62.5% 13.25% 12% 11.75% 
3.5-7 6 1.5 62.5% 10.5% 9.25% 9% 
3.5-7 6 2.5 62.5% 10.5% 9.25% 9% 
3.5-7 2 0.5 75% 14% 12.75% 12.5%  

Activities with a higher  

�̇� should be 
performed 

immediately before the 
two rests 

 

3.5-7 2 1.5 75% 11.25% 10% 9.75% 
3.5-7 2 2.5 75% 11.25% 10% 9.75% 
3.5-7 4 0.5 75% 14% 12.75% 12.5% 
3.5-7 4 1.5 75% 11.25% 10% 9.75% 
3.5-7 4 2.5 75% 11.25% 10% 9.75% 
3.5-7 6 0.5 75% 14.25% 13% 12.75% 
3.5-7 6 1.5 75% 11.5% 10.25% 10% 
3.5-7 6 2.5 75% 11.5% 10.25% 10% 
3.5-7 2 0.5 87.5% 11.25% 10% 9.75% Activities with a higher  

�̇� should be 
performed at the very 
beginning and at the 

end of the all the 
activities 

3.5-7 2 1.5 87.5% 8.5% 7.25% 7% 
3.5-7 2 2.5 87.5% 8.5% 7.25% 7% 
3.5-7 4 0.5 87.5% 11.25% 10% 9.75% 
3.5-7 4 1.5 87.5% 8.5% 7.25% 7% 
3.5-7 4 2.5 87.5% 8.5% 7.25% 7% 
3.5-7 6 0.5 87.5% 11.5% 10.25% 10% 
3.5-7 6 1.5 87.5% 8.75% 7.5% 7.25% 
3.5-7 6 2.5 87.5% 8.75% 7.5% 7.25% 
3.5-7 2 0.5 100% 0% 0% 0%  

 
The assignment of 
activities does not 
affect because no 

recovery is required 

3.5-7 2 1.5 100% 0% 0% 0% 
3.5-7 2 2.5 100% 0% 0% 0% 
3.5-7 4 0.5 100% 0% 0% 0% 
3.5-7 4 1.5 100% 0% 0% 0% 
3.5-7 4 2.5 100% 0% 0% 0% 
3.5-7 6 0.5 100% 0% 0% 0% 
3.5-7 6 1.5 100% 0% 0% 0% 
3.5-7 6 2.5 100% 0% 0% 0% 
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5.7 Conclusions on the results obtained 
 

The following chapter proposes a model for setting the value of recovery time 

considering how fatigue accumulates and the kind of operator. The application of 

this model has helped to understand the influence of the parameters representing the 

kind of activity and the kind of operator. Moreover, this model helps to understand 

the best assignment of activities to operators and how and additional rest, given to 

the operator before the end of the whole workload, can improve the reduction of the 

total recovery time. This paper continues the research carried on in chapter 4 

regarding the estimation of the recovery time of operators performing material 

handling activities with the involvement of the whole body. This paper fills the gap 

in the literature related to the workers’ assignment problem considering fatigue and 

how it can be alleviated through the recovery (Figure 5.8). In addition, it gives to 

practitioners a model which help them managing human resources in production 

systems without causing them excessive fatigue levels which can lead on long terms 

to musculoskeletal disorders. 

 

Figure 5.8 Output of the research on the fatigue accumulation 

 

WORKERS’ ASSIGNMENT PROBLEM IN MATERIAL HANDLING ACTIVITIES

GENERAL BODY FATIGUE

ACTIVITY CHARACTERISTICS AND INDIVIDUAL PARAMETERS 

FATIGUE ACCUMULATION

RECOVERY TIME

RESULTS FOR A PRACTIONER:
The possibility of  considering, in case of  activities carried sequentially, the 

recovery time necessary to the operator and in which cases it is more convenient

to focus on the improvement of  assignment of  activities to operators.

OUTCAME:
A mathematical model for evaluating fatigue accumulation focused on:

- The energy expenditure rate (obtainable with the monitoring of  the heart rate)

- The duration of  the activities

- The personal characteristics of  the operators
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6.1 Results of the research 
 

According to the main topics presented in the Abstract of the thesis and to the 

outlines but in evidence at the end of each chapter the main concepts addressed are 

the ones presented in Figure 6.1. 

 

 

Figure 6.1 PhD Thesis outline 

The analysis of the state of the art  regarding the existing devices used for monitoring 

the level of fatigue in Chapter 2 and of the existing formulations for setting the value 

of the rest allowance considering different parameters in Chapter 3 has helped to 

understand what lacks in the analysis of human factors related to manual material 

handling activities. 

According to this, in Chapter 2 it is presented and validated a new device to monitor 

the general body fatigue level for manual material handling activities with its 

advantages in respect to the existing technologies. Moreover it is put in practice in a 
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real industrial context explaining how its feedbacks has been used to take decisions 

regarding the managing of the operators.  

In addition, the data of the energy expenditure rate obtained thought the real-time 

monitoring of the heart rate has been used to create a new formulation for the setting 

of the value of rest allowance in Chapter 4. This formulation can take into account 

the parameters describing both the activities and the operators in order to take into 

account more the human factors in manual material handling activities.  

Finally, this new rest allowance model and the monitoring of the fatigue level with 

the use of the heart rate monitor have been used in Chapter 5 for improving the 

assignment of the activities to the operators considering the minimization of their 

general body fatigue level and consequently of the time necessary to them to recover 

from the efforts made. The formulations presented in Chapter 5 are a development 

of the ones presented in Chapter 4 considering how fatigue is accumulated on the 

specific operator if a rest after every activity cannot be given.  

The modelling of fatigue and recovery carried on in this thesis can give to a 

practitioner suggestion on the improvement which can be obtained if the assignment 

is optimised considering different kind of activities and of operators. 

 In addition, it is given the kind of device to be used to have information regarding 

the value of energy expenditure rate related to each activity and to value of the 

personal parameters linked to the operators in order to be able to apply the suggested 

new formulations. The only use of this device can give a rough indication of how to 

manage the operators. This assignment in terms of recovery time minimisation can 

be optimised with the application of the proposed model. 

As explained in the Introduction, the proposed formulations can fill the gap of 

existing literature related to the considerations of the human factors in the workers 

assignment problem in relation of manual material handling activities where the 

whole body is used causing the general body fatigue. 
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6.2 Final considerations on the future developments 
 

As far as future developments of the research presented in this PhD thesis is 

concerned, as put in evidence in Battini et al. (2018) the monitoring of the general 

body fatigue level by using a heart rate monitor can be useful also in the design phase 

of the workplace. In fact, by integrating it with the immersive reality and a motion 

capture system it can be carried on a complete analysis on the ergonomic and fatigue 

aspects of the operator. 

 The system called VR-Ergo Log system (see Figure 6.2) could lead to interesting 

advantages from a concurrent engineering perspective. The practical use of the system 

consists in creating a virtual environment, in which the operator is expected to work. 

Such environment, developed in typical simulation software and integrated with the 

VIVE™ system, should reflect one or even more possible configurations of the 

workstation under study. The human operator, by wearing the motion capture suite 

and the VR headset, is immersed in that virtual reality. Therefore, he can virtually 

perform all the activities that he normally would do during his job, but without 

needing a physical prototype of the workstation. 

The data collected by the system during the virtual execution of the tasks are useful 

to evaluate the goodness and the effectiveness of a certain configuration of a 

workplace under study. This can be done through the determination of a set of 

specific indicators (KPIs), referring to time, ergonomics and fatigue performance. 

This would allow to have a real-time feedback inherent to possible changes that have 

to be done for improving the performance of the operator in the workstation (e.g. 

moving objects and relocating products). In fact, as already pointed out in previous 

researches, during the workplace design phase it is necessary to include not only the 

technological variables related to the market demand, to the product and to the 

assembly process but also the environmental variables. These variables are linked to 
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the physiological and psychological wellbeing of the workforce and can be revealed 

by using a heart rate monitor. 

In the following, it is proposed a tentative list of time, ergonomics and fatigue based 

indices which can be obtained through the employ of the VR-Ergo Log system. Of 

course, this is not a comprehensive list of all the possible indicators which can be 

calculated from the output data and that could be considered for the redesign of a 

workstation. Furthermore, they could also differ according to the working 

environment and/or to the problem under study. 

For example, some KPIs regarding time-performance could be: the total time 

necessary for performing a specific task; the percentage of time the operator requires 

for the performance of the value-added activities rather than the non-value-added 

activities (i.e. picking activities); the percentage of time the operator spends in the 

golden zone, defined as the area closest to the worker’s body, between the waist and 

the shoulders: more time the operator is in the golden zone more time it is avoided 

the need of stretching or bending, which can imply serious ergonomic problems. 

Other ones are: the percentage of time the operator stays in an upright position, 

indicating how much the operator is employed, during the performance of the task, 

for kneeling or lowering; the time the operator needs for moving into the 

workstation, obtained from the horizontal movements of the hips; the percentage of 

picking errors related to a specific workplace design. 

On the other side, for the ergonomic evaluation it could be interesting to estimate in 

real time the value of RULA, OCRA, OWAS and Lifting Index thanks to the tools 

developed in Battini et al. (2014). By recording this data, it is also possible to estimate 

the percentage of time the operator spends at a high value of these indices, then with 

a negative impact on ergonomics. 

Furthermore, through the integration of a heart rate monitor in the system, some 

indices regarding fatigue level and performance can be evaluated: average HR, useful 



Conclusions  

180 
 

to indicate the mean energy expenditure rate of an activity for the specific operator 

(Ceesay et al., 1989); the influence of each task on the fatigue accumulation of the 

operator, measured through an HR increase (for example due to a high weight to be 

lifted); the influence of erroneous postures on the fatigue perceived by the operator, 

measured through an HR increase (awkward postures can increase HR, and a 

fatigued operator could perform the activity in a wrong way); the needed recovery 

time, estimated by monitoring the fatigue level; the impact of fatigue on tasks 

duration, so an increase of the fatigue level can affect the time necessary for 

performing a task. 

The possibility of having an overall view of the impact of a certain workplace setting 

on the operators using these KPIs, can be of help for defining the priorities of 

intervention and to understand when (and how) the workstation is ready to be 

realized in practice. Therefore, the virtual workplace can be modified according to 

these criticalities and immediately verify with the use of the system. The comparison 

of the indices permits to estimate the best workplace configuration before it has really 

built. 

The use of such an integrated system such be better developed by future researches 

with the real application of an industrial context. 

 

Figure 6.2 Integration of the heart rate monitor in the design phase of the 
workplace 
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Moreover, as stated in the chapters of this PhD thesis the estimation of the fatigue 

level and consequently of the value of the rest allowance, by basing on the energy 

expenditure rate estimated with a heart rate monitor can be effectively used for 

manual material handling activities.  Even though, more research should be 

performed for the repetitive activities which influence more the muscular fatigue. In 

fact, future researches should focus on the validity of the model proposed in this 

PhD thesis in comparison to the existing models based on MET and MVC for 

repetitive activities such as the assembly ones which stressed continuously the same 

part of the body. This can be of utility in order to understand if this method can be 

used for applications different from manual material handling activities such as in 

the balancing and sequencing of assembly lines considering human factors (Battini et 

al., 2016). 
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