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Abstract (English) 

This thesis investigated, by using electroencephalography (EEG) technique, 

the deployment of attention in time and space. Specifically –through three experimental 

chapters– Attentional Blink (AB) and visual search paradigms have been employed to 

highlight the common functional characteristics of the mechanisms which drive 

attention in time and space. 

In Chapter 1, an overview of visual attention is presented. Specifically, I 

proposed a theoretical introduction regarding the two aspects of visual attention debated 

throughout the manuscript, namely, the AB phenomenon –that is an effect related to the 

temporal dynamics of visual attention– and visual spatial attention. 

Results presented in Chapter 2 show how temporal dynamics of visual 

attention are affected by the AB effect, by analyzing how detection and encoding of a 

target are influenced when salient visual information is presented in temporal proximity. 

In line with Chapter 2, the experiment presents in Chapter 3 merged together, in a single 

experimental design, the AB and the visual search paradigms. In this study, I 

investigated whether the deployment of visual spatial attention in space is prone to the 

same experimental manipulations which influence detection and encoding of targets in 

the AB paradigm. Given the results, to assess why temporal dynamics of attention are 

similar both for midline- and lateral- presented information, in Chapter 4 visual spatial 

attention has been investigated with a visual search task, by comparing the 

electrophysiological activity elicited by a lateral presented target vs. a midline presented 

target. 
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Eventually, in Chapter 5, a general discussion highlights the main findings 

presented in this thesis, by considering them collectively, and by raising future 

proposals and questions in relation to the topics debated in these Chapters.  
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Abstract (Italiano) 

Questa tesi ha investigato, attraverso la tecnica dell’elettroencefalografia 

(EEG), l’allocazione dell’attenzione nel tempo e nello spazio. Specificamente –

attraverso tre capitoli sperimentali– il paradigma di Attentional Blink (AB) e quello di 

ricerca visiva sono stati impiegati per mettere in luce le caratteristiche funzionali in 

comune tra i meccanismi che guidano l’attenzione nel tempo e nello spazio. 

Nel Capitolo 1, viene proposta una panoramica in merito all’attenzione. 

Specificamente, ho proposto un’introduzione teorica riguardo i due aspetti 

dell’attenzione visiva trattati nel manoscritto, ossia il fenomeno dell’AB –che è un 

effetto relato alle dinamiche temporali dell’attenzione visiva– e l’attenzione visuo-

spaziale. 

I risultati presentati nel Capitolo 2 hanno mostrato come le dinamiche 

temporali dell’attenzione visiva vengano modificate dall’effetto AB, analizzando come 

la detezione e il consolidamento di un target siano influenzate quando delle 

informazioni visive salienti vengono presentate in prossimità temporale. In linea con il 

Capitolo 2, l’esperimento presentato nel Capitolo 3 ha unito assieme, in un unico 

disegno sperimentale, i paradigmi di AB e di ricerca visiva. In questo studio, ho 

investigato se l’allocazione di risorse visuo-attentive nello spazio sia soggetta alle stesse 

manipolazioni che influenzano la detezione e il consolidamento dei target nell’AB. In 

relazione a quanto emerso, per valutare perché le dinamiche temporali dell’attenzione 

siano simili per informazioni visive presentate lungo la linea mediana verticale e lo 

spazio lateralizzato, nel Capitolo 4 l’attenzione visuo-spaziale è stata investigata con un 

compito di ricerca visiva, comparando l’attività elettrofisiologica elicitata da un target 

presentato lateralmente vs. un target presentato lungo la linea mediana verticale. 
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Per concludere, nel Capitolo 5, una discussione generale ha evidenziato i 

risultati principali presentati in questa tesi, considerandoli congiuntamente, e 

suggerendo proposte di studio future in relazione ai temi trattati in questi capitoli. 
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Chapter 1 – General Introduction 

One of the most enduring issues in cognitive neuroscience concerns the 

neural substrate(s) underling conscious perception. This has been a topic of intense 

investigation for several decades, and despite a definitive understanding of the neural 

underpinnings of consciousness remaining elusive, there is a general consensus that 

conscious perception is not tied to a single neural structure but rather reflects the 

interplay of distinct brain areas. For instance, Dehaene, Sergent, and Changeux (2003) 

and Baars (1993) hypothesize that conscious perception represents the engagement of a 

global neural workspace. Specifically, for a stimulus to enter consciousness, neurons 

with long-distance axons that can connect distinct brain regions must be activated, 

which then allows communication between higher-level processing areas and those that 

are involved in sensory analysis (Antonino Raffone & Pantani, 2010). Similarly, 

Lamme and colleagues (Fahrenfort, Scholte, & Lamme, 2007; Lamme & Roelfsema, 

2000) and Di Lollo, Enns, and Rensink (2000) predict that for information to be 

accessed consciously not only must it pass from sensory to higher-level structures but 

must also be fed back, and it is through these reentrant iterations that conscious 

representations are established. 

Strictly related to conscious perception there is attention: if we pay attention 

to an object, we became conscious about it, and if we shift our attention away the object 

fade from consciousness (O’Regan & Noë, 2001; Posner, 1994). Based on this view, 

attention is at least a fundamental component of conscious perception. Aspects of visual 

attention related to this whole thesis will be describe in the next sections.  
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1.1 Temporal Dynamics of Visual Attention 

1.1.1 Attentional Blink Phenomenon 

A key phenomenon for studying conscious perception is the Attentional 

Blink (AB, Raymond, Shapiro, & Arnell, 1992), participants' typically impaired ability 

to perceive the second of two targets (T2) in a rapid serial visual presentation (RSVP) if 

it appears within 200–500 ms of a first target (T1). Paradoxically, T2 is much easier to 

report when it follows T1 immediately. This effect is referred to as lag 1 sparing and it 

is thought to reflect T1 and T2 being processed together within a single attentional 

episode (Chun & Potter, 1995; Dell’Acqua, Dux, Wyble, & Jolicœur, 2012; Wyble, 

Potter, Bowman, & Nieuwenstein, 2011). To note, the lag is the serial position of T2 

from T1: for instance, if after T1 two distractors and then T2 are showed, T2 is 

presented at lag 3. 

The AB is well-known to be an attentive (and not perceptual) phenomenon, 

since when the subject is asked to report only T2 (when T1 is still presented), the 

accuracy is high and similar regardless the distance between T1 and T2 in the RSVP. 

According to this behavioral evidence, functional magnetic resonance (fMRI, Choi, 

Chang, Shibata, Sasaki, & Watanabe, 2012; Kranczioch, Debener, Schwarzbach, 

Goebel, & Engel, 2005; Marcantoni, Lepage, Beaudoin, Bourgouin, & Richer, 2003; 

Marois, Yi, & Chun, 2004; Marois & Ivanoff, 2005) and positron emission tomography 

(PET, Slagter et al., 2012) explorations have localized AB effects to a frontoparietal 

attentional network composed of core nodes in the posterior parietal and dorsolateral 

prefrontal cortex that support a variety of attention tasks (e.g., Corbetta & Shulman, 

2002; Desimone & Duncan, 1995). A set of additional areas have been shown to be 

susceptible to the AB influence, including striate (Williams, Visser, Cunnington, & 

Mattingley, 2008) and extrastriate visual areas (Dell’Acqua, Sessa, Jolicœur, & 
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Robitaille, 2006; Marois et al., 2004), and subcortical structures (i.e., basal ganglia and 

locus coeruleous), whose roles have been incorporated in neural instantiations of AB 

models (Colzato, Slagter, de Rover, & Hommel, 2011; Hommel et al., 2006; 

Nieuwenhuis, Gilzenrat, Holmes, & Cohen, 2005). 

Evidence converging with the hypothesis that the AB engages a 

frontoparietal attention circuit comes from studies employing EEG and 

magnetoencephalography (MEG) techniques that have explored the correspondence 

between AB effects and non-phase-locked (Bastiaansen, Mazaheri, & Jensen, 2012) 

neural synchronization of scalp-recorded oscillations. AB-induced decreases in long-

range phase synchronization in the beta and gamma band encompassing the 

frontoparietal attention network have been reported (Gross et al., 2004, Kranczioch, 

Debener, Maye, and Engel, 2007, Nakatani, Ito, Nikolaev, Gong, and Leeuwen, 2005. 

These modulations were consistently observed before T1 onset, a pattern akin to 

spontaneous trial-by-trial fluctuations in alpha band desynchronization which has been 

proposed to index an anticipatory mental state related to successful identification of 

RSVP targets (Hanslmayr, Gross, Klimesch, & Shapiro, 2011; MacLean & Arnell, 

2011, for a review). 

A key approach for isolating the stages of information processing that gives 

rise to the AB is the event-related potential (ERP) technique. Studies employing this 

approach have focused primarily on AB modulations of the P3b component. Typically 

observed at midparietal electrode sites, this waveform has been shown to reflect 

consolidation of visual information in short-term/working memory (Akyürek, 

Leszczyński, & Schubö, 2010). Indeed, P3b can be taken as the hallmark of a 

widespread state of activation following detection of visual target information aiding 

memory encoding (Fabiani & Donchin, 1995; Johnson, 1995; Kranczioch, Debener, & 
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Engel, 2003). Two complementary studies have demonstrated that the AB must reflect, 

at least to some extent, T2 memory consolidation being postponed when the two targets 

appear in close temporal proximity in an RSVP stream. By using standard RSVP trials 

terminating with one or more distractors following T2, Vogel, Luck, and Shapiro (1998) 

showed that T2-locked P3b is influenced by the AB, in the form of a sizable T2-locked 

P3b amplitude reduction at short relative to long lags. The neural sources of the P3b 

have been localized to posterior brain structures including posterior-parietal areas and 

the temporoparietal junction (TPJ, e.g., Johnson, 1993; Polich, 2003). 

The above AB and P3b findings fit well with behavioral studies, which 

suggest that T2 processing is delayed during the AB, which renders it more vulnerable 

to interruption from subsequent stimuli. However, what cannot be determined from 

these measurements of the P3b is whether it is the detection or the additional encoding 

of T2 that is delayed. To address this question, a different associated with the detection 

of relevant stimuli should be considered, namely, P3a. The P3a is typically observed at 

midfrontal electrodes and occurs before the P3b. Lesion studies (Knight, 1991), 

fMRI/EEG multimodal acquisition (Bledowski, Prvulovic, Hoechstetter, et al., 2004; 

Bledowski, Prvulovic, Goebel, Zanella, & Linden, 2004), and neurobiological analyses 

(Gazzaniga, Ivry, & Mangun, 2000) have pointed to a set of frontal structures 

generating P3a that include anterior cingulate and lateral prefrontal cortices (Friedman, 

Cycowicz, & Gaeta, 2001). Whereas earlier proposals have suggested that the P3a 

primarily indicates novelty and sensory deviance of cross-modal stimulation (e.g., 

Courchesne, Hillyard, & Galambos, 1975), more recent views on P3a link it to the 

deployment of attention for detection of contextually salient information presented 

among distracting stimuli (e.g., Barceló, Escera, Corral, & Periáñez, 2006; Cycowicz & 
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Friedman, 1998; Koechlin, Ody, & Kouneiher, 2003; Polich, 2007), especially in tasks 

where such classification is difficult (Polich & Comerchero, 2003). 

There are several models of AB interference but they do not all agree on the 

role that attentional engagement plays in the deficit. Chun & Potter's (1995) two-stage 

model, for example, proposes that only one target at a time can be consolidated in 

memory. Any subsequent target therefore should wait until the first target is fully 

encoded before having access to the encoding stage. Meanwhile, if a second target is too 

close in time to the previous target, the perceptual trace of the second one fades (or is 

overwritten) before it can be encoded. It is not clear, in this model, what role attention 

might play. The episodic simultaneous type, serial token model (Wyble, Bowman, & 

Nieuwenstein, 2009) holds that activation of a target is enhanced by attentional 

mechanisms. Accordingly, the AB deficit takes place because attention inhibits trailing 

distractors during the encoding of the first target. If the second target is displayed during 

this temporary inhibition, its activation cannot be enhanced and eventually encoded in 

working memory.  

 

1.1.2 Lag 1 sparing phenomenon 

As mentioned at the begin of this section, lag 1 sparing represent a peculiar 

phenomenon for which when two targets are presented in sequence, both of them are 

often reported correctly. Reeves & Sperling, (1986, see also Nakayama & Mackeben, 

1989) have shown that the time course of attention deployment to RSVP targets is well 

approximated by a gamma function, with a steeply rising rate of information 

accumulation peaking at about 100–150 ms after target onset, followed by a gradual 

return to baseline. Given that RSVP items are often presented at rates close to 10 Hz, 

this implies that attention deployment to RSVP items is likely to be at its peak when the 
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item after the first target is displayed. Indeed, a considerable number of evidence shows 

that if the item after the first target is another target, then it is often spared from the AB. 

Two computational accounts of the which have specifically addressed lag 1 

sparing phenomenon, and made explicit claims concerning ERP findings, are useful in 

the present context. These theories make predictions regarding how T1-locked P3a, 

reflecting attention deployment to target(s) and associated with neural structures 

localized frontally, should vary as a function of whether the item which follow the first 

target is a distractor or a subsequent target. Both models predict that, with minimal 

latency variations, P3a amplitude should be greater when T1 is immediately followed 

by T2 relative to when T1 is followed by a distractor. According to Olivers and Meeter 

(2008), a distractor trailing T1 curtails attention deployment by eliciting an inhibitory 

response. The attentional response would, in contrast, have time to unfold to a greater 

extent when the item after the first target is another target, that is, when the inhibitory 

response –elicited by the distractor that follow the first target– is postponed by a time 

corresponding to the second target exposure duration. This activation asymmetry 

between a weakly activated first target and a strongly activated second target has been 

raised as the cause of order reversals in consecutive target report and for the better 

report of the second target relative to the first at lag 1 (Olivers, Hilkenmeier, & 

Scharlau, 2011). Similarly, Wyble and colleagues (2011) propose that both the targets 

elicit attentional responses, but are processed in the same attentional window when 

presented sequentially, with the first target enhancing attention deployment to the 

second. Attentional enhancement would be discontinued when the item which follow 

the first target is a distractor. Thus, both Olivers and colleagues and Wyble et al. (2011) 

maintain that order reversals in target report and the increased report accuracy for the 



16 

 

second target relative to the first are determined by the resulting asymmetry in target 

activations, with the second target overtaking the first on a sizable proportion of trials. 

Despite some similarities, these two models differ substantially with 

reference to time course and localization of ERP responses following P3a. The root 

cause of the AB in Olivers and Meeter's (2008) model is a transient inhibition (so-called 

bounce response) elicited by the T1 + 1 distractor to contrast the initial attention boost to 

T1 and prevent access of trailing nontarget items to working memory. In support of this 

hypothesis, Olivers and Meeter (2008) cite ERP evidence described by Martens, 

Munneke, Smid and Johnson (2006), who explored the processing differences between 

blinkers (i.e., subjects who show average AB effects with RSVP) and nonblinkers (i.e., 

subjects who appear to be immune to the AB and tend to miss T2 in less than 10% of 

RSVP trials). Martens et al. (2006) reported that T1 elicited an initial positive 

component recorded in a 180–350 ms time range post-T1 at frontal electrode sites (F7 

and F8), dubbed frontal selection positivity (FSP; e.g., Smid, Jakob, & Heinze, 1999), 

followed by a negative component observed at these frontal electrodes. Although this 

negative component was not parametrically investigated by Martens et al. (2006), 

Olivers and Meeter (2008) noted that the time course of the post-FSP frontal negative 

component, held to be the correlate of the bounce response, had a temporal extension of 

300–500 ms after the offset of the FSP component, displaying therefore an interesting 

overlap with the time course of the AB. 

According to the model of Wyble et al. (2011), the AB is symptomatic of 

the visual system's overarching goal of generating episodically distinguishable episodes. 

As surmised above, targets in RSVP undergo attentional enhancement, which I 

proposed as indexed by an increment of frontal positivity, in order to bring their early 

sensory (and conceptual) representations beyond a certain threshold such that targets 
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can be subsequently encoded as reportable episodes and stored in working memory. 

Upon detection of a discontinuity in target presentation (e.g., upon detection of a 

distractor), attention enhancement is discontinued and tokenization encompasses all 

target information subject to attentional enhancement. Once tokenization is under way, 

no further targets can be subject to attention enhancement, with increased probability 

for unattended targets to be missed, bringing about an AB effect.  

 

1.1.3 Visual Masking and the AB 

Among the factors which have been found to influence the AB, one of 

which is the backward masking caused by the distractor following T2. Masking is 

defined as the reduction in visibility of a stimulus (target) by a spatially or temporally 

close second stimulus (mask) (Bachmann, 1984; Breitmeyer & Ogmen, 2000). 

Giesbrecht and Di Lollo (1998) found that when the RSVP in an AB paradigm ended 

with the last target instead of an additional distractor (a mask), no behavioral AB 

occurred; accuracy for the last target was at ceiling. Later works showed that an AB can 

be found even when the last target is not masked as well as when distractors are 

replaced by blank intervals, but it is invariably smaller in amplitude compared with the 

AB found with a trailing mask (cf. Arnell & Jolicœur, 1999; Nieuwenstein, Potter, & 

Theeuwes, 2009; Ptito, Arnell, Jolicœur, & MacLeod, 2008). Masking is often assumed 

to erase the visual information from the target or to interrupt its processing, although 

theories which are seeking to explain masking are more complex and more nuanced 

(Breitmeyer & Ogmen, 2000). 

As mentioned previously, Vogel et al. (1998) were among the first to study 

the impact of masking on ERP components in the AB. They found an almost completely 

suppressed P3b during the AB for masked trials at short lags. However, when T2 was 
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not-masked, the P3b component was not suppressed in terms of amplitude, but the onset 

of the P3b was delayed at lag 3 compared to lag 7 despite accuracy levels suggesting no 

AB (Vogel et al., 1998; see also Sessa, Luria, Verleger, & Dell’Acqua, 2007). These 

findings were particularly important because they suggested that the absence of an AB 

effect on accuracy of report of T2 could not be interpreted as an absence of AB 

interference on the processing of T2. The delay of the P3b provided strong evidence for 

either an interruption or a slowing of encoding of T2 resulting from concurrent 

processing of T1 (Jolicœur & Dell’Acqua, 1998). Vogel et al. (1998) argued that the 

perceptual representation of T2 could be sustained for a relatively long period of time if 

it was not followed by another item. This representation was therefore still available 

when the encoding of T1 was completed, allowing subsequent but delayed processing of 

T2. If a mask (a distractor) followed T2, however, its perceptual representation was lost 

and/or overwritten by the subsequent stimulus before encoding processes devoted to T1 

were available for T2. This made the last target unavailable for conscious report. 

Interestingly, Jolicœur and Dell’Acqua (1998) reported several experiments in which 

visual stimuli that had to be encoded for later report (at the end of each trial) were 

followed by a second stimulus that required an immediate speeded response. Response 

times increased as the delay between these two stimuli was reduced. This finding 

suggested that encoding visual stimuli for later report was sufficient to delay or slow the 

processing of trailing stimuli (see also Jolicœur, Dell’Acqua, & Crebolder, 2000). The 

delay of P3b onset at short lag in the AB is consistent with the increases in response 

time reported by Jolicœur & Dell’Acqua (1998) or Jolicœur et al. (2001; see also 

Dell’Acqua, Jolicœur, Vespignani, & Toffanin, 2005). 

Models including attention-related explanations do not all agree on the 

cause of the attentional disruption, however, a subset include distractor or masking 



19 

 

related impacts on attention. As for models of masking on the other hand, none appear 

to address possible links between the impacts of a mask on attention. One exception to 

this general statement pertains to the role of attention in the 4-dot masking phenomenon 

where this type of mask is more effective if attention is distributed among several 

targets (Dell’Acqua, Pascali, Jolicœur, & Sessa, 2003; Enns & Di Lollo, 1997). 

1.2 Visual Spatial Attention 

Visual spatial attention is the ability to search within a visual scene, and find 

the information which is necessary to our goal, and suppress the information that is 

unnecessary. Visual attention is usually assessed through a visual search task, which 

asked the subject to find a target among distractors in a visual scene. Although there are 

several models which try to explain how visual attention works, in order to be the most 

coherent as possible with the experimental evidence of the next chapters, only specific 

fundamental aspects of visual attention will be explained in this section. 

There are two main ways to explore the visual space in front of us: one is 

called “overt search”, and it is done by moving the eyes; the “covert search”, instead, is 

done with no gaze shift but with attentional shift (Posner, 1980; 2016), and it is the one 

investigated in Chapter 3 and Chapter 4. More precisely, the subject of my investigation 

in this context is how visual attention is deployed in space. 

According to Desimone and Duncan (1995), the information embedded in 

the visual field became cortical representation in visual areas. Because of the 

retinotopical structure of the visual areas, when two stimuli are presented they both 

activate them receptive field, and create competition for cortical representation 

(Desimone, 1998). This competition is controlled (and solved) by brain mechanisms: for 

instance, a stimulus which is more salient (i.e., more luminant, or more novel) than 
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another can win the representation competition through a bottom-up attentional process. 

Differently, the representation of a stimulus that is relevant for some reason (i.e., the 

experimental task) can be enhanced through a top-down process which also involved a 

strong influence of the frontal areas (i.e., Zanto, Rubens, Thangavel, & Gazzaley, 2011), 

and then win the cortical competition. This top-down mechanism is thought to actively 

maintain in visual working memory the representation of the target to-be-search, and 

match it with the candidates items presented in a visual scene (Desimone & Duncan, 

1995). In line with this hypothesis, it has been showed that neurons in inferotemporal 

cortex of monkeys (Chelazzi, Duncan, Miller, & Desimone, 1998; Chelazzi, Miller, 

Duncan, & Desimone, 1993) exhibit a higher firing rate when, during a visual search 

task, it is presented a target cued at the begin of the trial. 

According to Wolfe (1994), preattentive processes direct attention to items 

which can be good candidates to be the target. The parallel existence of bottom-up and 

top-down mechanisms allow the visual system to create a ranking of visual items based 

on their attentional priority. Attention will be directed the item with the highest priority, 

and if this will be not the target, attention will move on the next candidate. When a 

search task is simple, for instance when a subject is asked to find a blue item among 

green items, attention can be focused to the target with no particular effect of the 

distractors. In contrast, there are cases in which attentional guidance is possible, for 

instance searching for conjunction of features, there are not a single candidate to be 

target. If the target is a red circle among other red shapes and other color circles, all the 

circle and all the red items will be activated, and then attention is oriented to each of the 

possible candidates. 

A widespread method to investigate the deployment of visual attention is the 

EEG and the ERP technique. When a lateral target is presented among distractors, an 
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ERP called N2pc (Luck & Hillyard, 1994a; b) is elicited about 200 ms after the attended 

stimulus onset. The N2pc is a greater negativity over the hemisphere contralateral to a 

lateral target, compared to the ipsilateral response, and it has a parieto-occipital scalp 

distribution. This component is derived by subtracting the average activity ipsilateral to 

a target (i.e., left posterior scalp activity when a target is presented on left and right 

posterior activity when a target is presented on right) from the average activity 

contralateral to a target (i.e., right posterior scalp activity when a target is presented on 

left and left posterior activity when a target is presented on right). 

Of note, the items presented in the visual field must be balanced in terms of 

number and luminance. In contrast, when the competition among target and distractors 

is reduced by –for instance– a decrease of distractors’ luminance, the locus of selection 

is anticipated to the N1 time domain, eliciting a lateralized ERP called N1pc, which 

looks as an anticipated N2pc (Wascher & Beste, 2010).  

At the neural level, the N2pc reflects a circuitry which includes parietal and 

occipito-temporal areas. The activation of these areas are actually coherent with visual 

search task dynamics, since parietal lobes seems to be involved in attentional control 

(Chelazzi et al., 1993; Corbetta, Miezin, Dobmeyer, Shulman, & Petersen, 1991; Heinze 

et al., 1994; Mountcastle, Andersen, & Motter, 1981) and occipito-temporal areas are 

involved in the implementation of attentional selection (Chelazzi et al., 1993; Corbetta 

et al., 1991; Heinze et al., 1994; Moran & Desimone, 1985). According to this evidence, 

the parietal lobes could be responsible of an initial attentional shift toward the task-

relevant item (Corbetta, Shulman, Miezin, & Petersen, 1995), and the occipito-temporal 

lobes could filter the irrelevant information which surround the to-be-attend item 

(Heinze et al., 1994). 
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In the last 25 years, the N2pc has been deeply investigated to further the 

knowledge in regard of visual attention. Mazza and Caramazza (2011) found that the 

N2pc amplitude is sensitive to the number of presented target in an enumeration visual 

search task: the greater the number of target items presented, the greater the N2pc 

amplitude. Nevertheless, when the task was to detect the presence of at least one target, 

a greater number of target did not elicit a greater N2pc. This suggest that this 

component reflect a top-down mechanism strongly related to the task demand. Of note, 

a visual inspection of Figure 4 by Mazza and Caramazza (2011), suggests that when the 

number of presented target increases, the contralateral portion of the N2pc is more 

negative, although the ipsilateral one remain the same regardless the number of 

presented targets. Nevertheless, Kiss, Jolicœur, Dell’Acqua, and Eimer (2008) found 

that when a subject was searching among homogeneous distractors (circles) for a 

specific shape (square), when another shape (45° tilted square) was presented instead of 

the target, it elicited a N2pc. Differently, when the target was absent and a different 

color distractor was presented, no N2pc was found. This suggest that in some specific 

cases the N2pc reflects a bottom-up process: when a pop-out target was presented, if it 

is defined by the target dimension (i.e., the shape) but not the same feature (i.e., a 

square) it automatically produce an attentional capture. Differently, if the pop-out 

stimulus is characterized by a different characteristic it does not capture attention. 

It has been argued that the N2pc reflects two functions that orient attention 

in the visual space: target selection and distractor suppression (Eimer, 1996; Luck & 

Hillyard, 1994b). Hickey, Di Lollo, and McDonald (2009) found two sub-components 

of the N2pc, basically comparable to the contralateral and ipsilateral waves: a Target 

Negativity (Nt) and a Distractor Positivity (Pd). The authors suggested that the Nt 

(contralateral to a target) reflect the target selection mechanism, and the Pd (ipsilateral 
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to a distractor) reflect the target suppression mechanism. This view is quite in line with 

a work by Mazza, Turatto, and Caramazza (2009). In this study, the authors found an 

increased N2pc amplitude when a higher number of distractors was displayed, 

compared to a smaller number, when searching for a singleton target. By visually 

inspecting separately the contralateral and the ipsilateral ERP which subtracted create 

the N2pc, it is clear that a greater number of distractors drove a positive shift of the 

ipsilateral portion of the N2pc, while the contralateral wave has the same amplitude 

regardless of the number of distractors (Mazza, Turatto & Caramazza, 2009, Figure 

2A). 

Differently than the N2pc, when a stimulus is presented on the horizontal 

midline of the visual field, a bilateral N2 component, called N2pb, is elicited (Luck & 

Hillyard, 1994b; Simson, Vaughan, & Walter, 1976). This component has been study 

with less concern compared to the N2pc, and it is thought to reflect stimulus 

categorization processes, and it is larger for less frequent targets (Lange, Wijers, 

Mulder, & Mulder, 1998; Okita, Wijers, Mulder, & Mulder, 1985; Potts & Tucker, 

2001). N2pb is calculated as the average of both left and right posterior electrodes 

activity. Of note, a target presented aligned with the sagittal midline of a subject does 

not elicit an unbalance between the two posterior scalp hemispheres, as N2pc does.  

1.3 Merging the Dynamics of Visual Attention 

There are some studies which link the mechanisms which drive visual 

spatial attention with the temporal dynamics of attention of the AB phenomenon. 

Namely, the N2pc modulations are monitored to assess whether is there any disruption 

of the visual search ability within the AB. In general, N2pc presented a smaller 

amplitude at short relative to long lags during the AB (Akyürek et al., 2010; Dell’Acqua 
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et al., 2006; Jolicœur, Sessa, Dell’Acqua, & Robitaille, 2006). All the previous 

experiments examining the N2pc in AB paradigms, however, contained a post-T2 mask. 

In tasks other than the AB, masked targets seemed to elicit an N2pc. This was the case 

for four-dot masking (Prime, Pluchino, Eimer, Dell’Acqua, & Jolicœur, 2011), 

metacontrast masking under certain conditions (Ansorge & Heumann, 2009; Ansorge, 

Horstmann, & Worschech, 2010; Jaśkowski, van der Lubbe, Schlotterbeck, & Verleger, 

2002), and for pattern masking (Robitaille & Jolicœur, 2006). Again, however, these 

experiments did not directly compare masking to conditions where no mask was 

present. Only Robitaille and Jolicœur (2006) compared trials where a pattern mask 

(another alphanumeric character) was presented to when no mask was presented and 

found no masking effect on the N2pc. Although manipulations of masking have been 

used a number of times in the AB paradigm to study how processing of information 

unfolds over time, less is known about how masking affects the deployment of visual 

spatial attention in this paradigm. Despite that, a sizable number of masking theories 

exist but little place is given to attention in these proposed mechanisms. The re-entrant 

perceptual hypothesis (Enns & Di Lollo, 2000) suggests that less attention will 

accentuate masking but does not broach the impact of the mask itself could have on 

attention.  

If an attentional perturbation in the temporal domain (i.e., AB) exerts 

modulatory effects on the efficiency in visuo-spatial attention allocation (i.e., in visual 

search) (Akyürek et al., 2010; Dell’Acqua et al., 2006; Jolicœur, Sessa, Dell’Acqua, & 

Robitaille, 2006) then this would be ground to parsimoniously suggest that these 

hypothetically distinct limits subtended a common cause. By following this rationale, 

next studies first isolated the attentional dynamics reflected by ERP components in an 

AB task (Chapter 2). After that, another study (Chapter 3) combined an AB task with 
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visual spatial attention, in order to assess whether the same AB-related ERP 

modulations found in Chapter 2 are still present also when visual information is 

presented in a parafoveal position and visual search abilities are required to find them. 

Of note, additional ERPs which reflect the deployment of visual spatial attention have 

been also investigated to understand whether their AB-related modulation are 

comparable to the other attentional ERP modulation. In order to explore more in deep 

the link between foveal and parafoveal attention, a last experimental section (Chapter 4) 

followed a different approach. Namely, through two experiments, visual attentive ERP 

component associated to the deployment of visual attention elicited by midline and 

lateral presented targets are compared, in order to observe from another perspective 

whether there are differences between the cognitive mechanisms which driven the 

deployment of attention. Based on previous results, AB should modulate frontal and 

posterior ERP components related to attention such as P3a and P3b (Gross et al., 2004). 

This modulation should be present both when the items of the RSVP are presented in 

the same position (Chapter 1) and also when some of them are presented eccentrically 

(Chapter 2, e.g., Dell’Acqua et al., 2006). Finally, there are no previous evidence which 

gives the possibility to predict a specific outcome of Chapter 4’s experiments. 

Nevertheless, given the overlap between foveal and parafoveal visual attention found in 

past (e.g., Jolicœur et al., 2006), by comparing the bilateral posterior ERP elicited by a 

midline target with the contralateral and ipsilateral activities elicited by a lateral target it 

would be possible to infer more directly the origins of the functional and neural overlap 

between foveal and parafoveal attention.  
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Chapter 2  

Part of the content presented in this chapter has been described in the following 

published articles: 

Dell’Acqua, R., Doro, M., Dux, P. E., Losier, T., & Jolicœur, P. (2016). Enhanced 

frontal activation underlies sparing from the attentional blink: Evidence 

from human electrophysiology. Psychophysiology, 53(5). 

https://doi.org/10.1111/psyp.12618 

Dell’Acqua, R., Dux, P. E., Wyble, B., Doro, M., Sessa, P., Meconi, F., & Jolicœur, P. 

(2015). The attentional blink impairs detection and delays encoding of 

visual information: Evidence from human electrophysiology. Journal of 

Cognitive Neuroscience, 27(4). https://doi.org/10.1162/jocn_a_00752 
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2.1 Experiment 1a 

2.1.1 Introduction 

In the General Introduction evidence regarding the brain activation and 

circuitry involved in the AB phenomenon have been mentioned. Basically, the AB is 

associated to a number of connections between the frontal and parietal brain areas. 

Although these studies have helped isolate processing to specific attentional circuits 

within the brain, it is not known how these circuits interact to produce the AB. For 

example, it could be the case that the AB slows down the detection of T2, allowing it to 

be overwritten by trailing stimuli. On the other hand, it could be that T2 detection 

operates unimpaired, but that the ensuing attentional deployment is less effective at 

processing the required information. 

Using a behavioral approach, Dux, Wyble, Jolicœur, and Dell’Acqua (2014) 

recently examined whether the AB delays target detection, memory encoding or both, 

and whether the AB is a T1-locked phenomenon or a manifestation of an attentional 

perturbation induced by distracting information trailing T1 (Dux & Marois, 2009; 

Martens & Wyble, 2010). Specifically, I assessed if the encoding load within a temporal 

attention episode/window influenced report of stimuli appearing in subsequent episodes. 

In a three-target RSVP paradigm, T1 and T2 always appeared sequentially, creating lag 

1 sparing conditions, but T3 appeared at varying lags relative to T2. When T1 and T2 

were correctly reported a much larger AB was observed for T3 compared with when 

only T1 or T2 was correctly reported. Thus, target load, within an attentional window 

and independent of distractors, influenced the AB magnitude. In addition, there was no 

difference between the AB observed when either T1 or T2 was missed in three-target 

trials relative to the AB found in standard two-target trials, suggesting the missing one 
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stimulus preceding T3 had an all-or-none effect on the AB observed in three-target 

trials. 

Here, the approach of Dux et al. (2014) was combined with ERPs to 

investigate the influence of target load on the interplay between detection and encoding 

stages and the role they play in operations linked to the AB and conscious visual 

perception. Specifically, I used a variant of the three-target RSVP paradigm introduced 

by Dux et al. (2014) to explore the impact target processing load has on P3a and P3b 

components elicited by the last target in RSVP streams. The design differs from that 

employed by Dux et al. (2014) in two important aspects. First, the last target embedded 

in RSVP was not trailed by distractors so as to allow us to observe fully fledged P3b 

and P3a responses to this stimulus. As explained in the General Introduction, little or no 

behavioral AB is typically observed for unmasked targets (e.g., Giesbrecht & Di Lollo, 

1998; Jannati, Spalek, & Di Lollo, 2011; Jannati, Spalek, Lagroix, & Di Lollo, 2012; 

Ptito et al., 2008). However, under these conditions, the underlying neural process 

evoked by T1 that produces the behavioral AB for a masked T2 should still occur, and it 

is this underlying neural process that is the subject of this inquiry. This approach has the 

benefit of allowing to capture the modulatory influence of the manipulations on the 

neural correlates of target processing as quantifiable parametric changes in the latency 

and amplitude of the P3a/b components. Second, target-present trials in the conditions 

of interest were intermixed in the present experimental context with target-absent trials 

(i.e., trials in which the last target was replaced with a distractor), so as to isolate 

unequivocal P3a/b responses reflecting last target detection and encoding 

uncontaminated by activity elicited by to-be-ignored distractors and/or by phasic 

oscillations induced by the RSVP rhythm (Hanslmayr et al., 2011; Ptito et al., 2008). 
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2.1.2 Method 

Participants 

Forty students at the University of Padua (23 women) participated in the 

experiment after giving informed consent. Their mean age was 24.8 years (SD = 4.6 

years), and all had normal or corrected-to-normal visual acuity and no history of 

neurological disorders. 

 

Stimuli 

The stimuli were the 22 letters of the English alphabet remaining after 

excluding B, I, O, Z, and the digits 2–9. The stimuli were displayed in light gray (34 

cd/m2) Romantri font against a black (6 cd/m2) background. Luminance measurements 

were performed using a Minolta LS-100 chroma-meter (Ramsey, NJ). Stimuli appeared 

on a 19-in. CRT monitor running at 60 Hz, placed at a viewing distance of 

approximately 60 cm from the participant, controlled by an i686 IBM-clone computer 

running MEL 2.0 software. RSVP streams were composed of distractor digits randomly 

selected from the available set, plus two or three different target letters (T1, T2, and T3) 

presented in various positions in the stream (see Design and Procedure section). 

Identical distractor digits in the RSVP stream were always separated by a minimum of 

three different stimuli. Each stimulus was displayed for 84 ms and was immediately 

replaced by the next stimulus (ISI = 0 ms). The lag between pairs of critical targets (i.e., 

T1–T2 lag in the two-target RSVP streams or T2–T3 lag in three-target RSVP streams) 

was manipulated by varying the number of distractors between T1 and T2 or between 

T2 and T3. The number of distractors preceding T1 was varied randomly across trials 

from 6 to 11, and each RSVP stream ended with T2 in two-target RSVP streams or T3 

in three-target RSVP stream, which were replaced by a digit distractor in the same 
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position when the last target was not displayed. All stimuli were scaled to fit in a 

central, square portion of the monitor measuring 1.0° × 1.0° of visual angle. 

 

Design and Procedure 

A schematic representation of the experimental design is illustrated in the 

upper portion of Figure 2.1. In three-target RSVP streams, T1 and T2 were always 

consecutive items. The lag between T1 and T2 in two-target RSVP streams and between 

T2 and T3 in three-target RSVP streams was manipulated by presenting 2 (lag 3, SOA = 

252 ms) or 8 (lag 9, SOA = 756 ms) distractors between these targets. 
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Figure 2.1. Top: Gantt diagrams: Design of the present experiment. In target-present trials, two letters or 

three letters were embedded among digit distractors in two-target (2T) or three-target (3T) RSVP streams. 

Both RSVP streams began with the presentation of a number of centrally displayed “+” signs equal to the 

number of targets included in the RSVP streams, and each character was displayed for 84 ms, 



32 

 

immediately followed by the next character. In half of the trials, the last target letter was replaced with a 

digit distractor, generating a corresponding target-absent RSVP stream. In three-target RSVP streams, the 

first and second targets (i.e., T1 and T2) were always consecutive letters. T1 and T2 in two-target RSVP 

streams and T2 and T3 in three-target RSVP streams were separated by two distractors (i.e., at lag 3) or 

eight distractors (i.e., at lag 9). When present, the last target in both RSVP streams was never trailed by a 

digit distractor. The dotted curvilinear function trailing the last character in each RSVP stream indicates 

(the onset of) the target monitored for ERP responses in the present experiment. Bottom graph: 

Illustration of the subtraction approach used in the present context to isolate difference ERPs reflecting 

mental operations engaged for last target processing. In the graph, T2-locked ERP functions observed at 

Pz in two-target trials, at lag 9, in the T2-present (blue) and T2-absent (red) conditions. Corresponding 

colors can be seen in the Gantt diagrams above referred to the condition of interest. T1-locked P3 

responses of equal amplitude peaking at about −300 ms before T2 precede T2-locked P3 responses 

elicited in target-present (red) and target-absent (blue) trials. P3 responses to the last distractor in target-

absent trials were non-nil, had a later onset latency, and were generally of smaller amplitude than P3 

responses observed in T2-present trials. Note also that both T2-present and T2-absent trial ERPs show 

clear symptoms of stimulus-locked visual evoked potentials in the form of entrained sinusoidal activity at 

about 12 Hz, corresponding to the rate of RSVP stimulation. To derive “pure” target-related ERP activity, 

target-absent ERP responses were subtracted from target-present ERP responses in each condition of the 

experimental design (see text). The resulting difference ERP function is shown in green in the graph. 

 

Each participant performed 648 trials, organized into 18 blocks of 36 trials 

each. Each lag appeared an equal number of times in each block, but their order was 

pseudorandomized, with the constraint that no more than three consecutive trials could 

be displayed at the same lag. The last target in two-target (i.e., T2) and three-target (i.e., 

T3) RSVP streams was displayed on half of the trials (henceforth, target-present trials) 

within each block and replaced with a digit distractor in the same position on the other 

half of trials (henceforth, target-absent trials). In four trials in each block, a target was 

presented in the last stream position, with no preceding targets. These trials were not 

analyzed in this study. Half of the participants started with nine consecutive blocks of 

two-target RSVP streams, followed by nine consecutive blocks of three-target RSVP 

streams. The opposite order applied for the other half of the participants. 

Each trial began with the presentation of a number of horizontally aligned 

plus signs in the center of the monitor denoting the number of targets that would appear 

in the forthcoming RSVP stream (i.e., two or three plus signs). Pressing the spacebar 

initiated a trial, causing the plus signs to disappear, and the RSVP to start 800 ms later. 

A question was displayed 800 ms after the end of the RSVP stream, inviting report of 
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the targets by pressing the corresponding keys on the keyboard. Participants were 

instructed to report all letters in the RSVP streams, with no emphasis on their order or 

response speed. Feedback on an incorrectly reported target was provided at the end of 

each trial by replacing the plus sign in the position congruent with target order (from 

left to right, T1, T2, and T3 when present) with a minus sign. Experimental data were 

collected after exposing participants to no less than 20 RSVP streams for practice in 

each of two-target and three-target conditions. 

 

2.1.3 EEG/ERP Recordings and Preprocessing 

EEG activity was recorded continuously from 28 active electrodes (Fp1, 

Fp2, Fz, F3, F4, F7, F8, FCz, C3, C4, Cz, CP1, CP2, CP5, CP6, P3, P4, Pz, O1, O2, Oz, 

T7, T8, TP9, PO9, PO10, P7, P8 sites) placed on an elastic ActiCap (Brain Products, 

München, Germany), referenced to the left earlobe. HEOG activity was recorded 

bipolarly from electrodes positioned on the outer canthi of both eyes. VEOG activity 

was recorded bipolarly from two electrodes, above (Fp1) and below the left eye. 

Impedance at each electrode site was maintained below 5 KΩ. EEG, HEOG, and VEOG 

activities were amplified, filtered using a bandpass of 0.016–80 Hz, digitized at a 

sampling rate of 500 Hz, and referenced offline to the average of the left and right 

earlobes. Independent components analysis (ICA) was used to identify blink and 

saccade components in the continuous EEG recordings and remove them from the data 

(Delorme & Makeig, 2004; Jung et al., 2000). The corrected EEG was high-pass filtered 

at 0.1 Hz and low-pass filtered at 20 Hz and then segmented into 1100 ms epochs 

starting 100 ms before the onset of the last character in the RSVP stream and ending 

1000 ms after and baseline-corrected using the mean activity in the interval [−100, 0] 

ms. To ensure no residual artifacts remained on the EOG channels, each segment was 
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examined in the interval [−100, 1000] ms relative to the onset of the last item in the 

RSVP stream for voltage deviations greater than 80 μV in any period of 150 ms for the 

VEOG difference waveform or a deviation greater than 45 μV in any 300 ms period for 

the HEOG difference waveform. Segments with residual ocular artifacts were removed 

from the data set. EEG channels were flagged when the signal exceeded ±100 μV 

anywhere in the analysis segment. If a segment had seven or fewer flagged data 

channels, these channels were interpolated using a spherical spline interpolation 

algorithm in EEGLAB (Delorme & Makeig, 2004), for that segment. The critical 

analyses were carried out on separate ERP waveforms for each condition (two-target vs. 

three-target and lag 3 vs. lag 9) considering only trials associated with the correct report 

of all displayed targets and generated by subtracting the ERP waveforms elicited by 

distractors replacing T2 in two-target (target-absent) trials or T3 in three-target (target-

absent) trials from the ERP waveforms elicited by the corresponding target-present 

trials (i.e., T2 in two-target trials or T3 in three-target trials). These difference 

waveforms isolate the response to a target character in the final RSVP position –T2 or 

T3, in two-target and three-target trials, respectively– from the response to a nontarget 

character in the same position while reducing to nil EEG oscillations in phase with the 

rate of presentation of RSVP items (about 12 Hz; alpha band). An illustration of the 

results of the present subtractive approach is reported in the lower portion of Figure 2.1. 

The mean amplitude of the subtracted P3a and P3b components was 

quantified as the mean value in a 150 ms window centered on the peak of the waveform 

in individual grand averages computed at Fz and Pz, respectively. As noted above, these 

electrodes have previously been linked with peak amplitude of the P3a and P3b, 

respectively (e.g., Polich, 2003). The mean latency of the subtracted P3 components at 

the same recording sites was estimated using the jackknife approach (Brisson & 
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Jolicœur, 2007; Kiesel, Miller, Jolicœur, & Brisson, 2008; Ulrich & Miller, 2001) and 

deriving individual values with the solution proposed by Smulders (2010). Latency 

values were calculated as the time-point when individual jackknife waveforms reached 

75% of the peak amplitude. The Greenhouse–Geisser correction for nonsphericity was 

applied when appropriate. 

 

2.1.4 Results 

Behavior 

Separate ANOVAs were performed on the mean proportion of correct report 

for each target-contingent of the correct report of preceding targets –as a function of 

number of presented targets within the RSVP (two-target trials vs. three-target trials) 

and lag (3 vs. 9) as within-subject factors. Only target-present trials were considered in 

the analyses (see Table 2.1). 

 

 Trial Type  Lag 

Target  3 9 

p(T1) Two-targets .94 .95 

 Three-targets .81 .82 

p(T2|T1) Two-targets .95 .96 

 Three-targets .94 .94 

p(T3|T2^T1) Three-targets .86 .96 

 

Table 2.1. Mean probability of correct report of each target in each condition. 

Values in the table are contingent on the correct report of preceding target(s) (e.g., T2|T1 indicates the 

probability of T2 correct response when T1 is report correctly.  
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On average, T1 report was superior in two-target trials relative to three-

target trials, F(1,39) = 256.7, ηp
2 = .868, p < .001, and this effect was constant across 

lags, F < 1. An ANOVA was carried out to compare T2 report in two-target trials and 

T3 report in three-target trials, as a function of lag. There was a main effect of Number 

of targets, F(1,39) = 34.7, ηp
2 = .466, p < .001, a main effect of lag, F(1,39) = 17.3, ηp

2 

= .307, p < .001, and a significant interaction between these factors, F(1,39) = 15.9, ηp
2 

= .290, p < .001. False-discovery rate (FDR, Benjamini & Hochberg, 1995) corrected t 

tests indicated that lag effects were absent on T2 in two-target trials, t < 1, whereas T3 

report was worse at lag 3 relative to lag 9 in three-target trials, t(39) = 18.6, p < .001, 

that is, a small but reliable AB effect was detected in spite of the absence of a distractor 

trailing T3. These findings converge with prior studies reporting small but reliable AB 

effects even when the last target is not masked by trailing distractors (Giesbrecht & Di 

Lollo, 1998; Jannati et al., 2011, 2012; Ptito et al., 2008; Sessa et al., 2007). 

 

ERP 

The various automated artifact screening procedures resulted in the 

exclusion of 2.4% of the segments. For most participants, less than 1% of the data were 

excluded. Three participants had exclusion rates between 18% and 22%. Visual 

inspection of their ERPs suggested their results were comparable to those of the other 

participants, and so their data were included in the final analyses. Thus, the final sample 

included all 40 participants tested in the experiment. 
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P3b 

Difference (target-present minus target-absent; see EEG/ERP Recordings 

and Preprocessing section) P3 response waveforms for two-target and three-target trials 

at each lag are shown in Figure 2.2 for electrode Pz. Key for this study, the amplitude of 

P3b responses was largest and largely overlapping at lag 9 for two-target and three-

target trials but was delayed and attenuated at lag 3. This target-load effect on P3b was 

substantially more evident in three-target trials than in two-target trials. 
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Figure 2.2. Results of ERP analysis. Top graphs: Difference (target-present minus target-absent) ERP 

responses in two-target and three-target trials, plotted as a function of lag (3 vs. 9) observed at Pz (P3b) 

and Fz (P3a). Bottom scalp plots: Time course of voltage topographic scalp distribution in each of the 

four main conditions on the experimental design. 
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The main analyses were performed at Pz, at the peak of the scalp 

distribution of the P3b component. At lag 9, the mean amplitudes of the P3b were 7.35 

μV in two-target trials and 7.13 μV in three-target trials. At lag 3, the mean amplitudes 

of the P3b were 5.7 μV in two-target trials and 3.35 μV in three-target trials. Individual 

means for each of these measures were submitted to an ANOVA with number of 

presented targets (two-target vs. three-target) and lag (3 vs. 9) as within-subject factors. 

The ANOVA confirmed that the P3b amplitude was larger at lag 9 than at lag 3, F(1,39) 

= 27.6, ηp
2 = .411, p < .001, and larger in two-target than in three-target trials, F(1,39) = 

9.0, ηp
2 = .192, p < .005. Furthermore, lag and number of targets interacted, with a 

larger attenuation of P3b amplitude in three-target trials relative to two-target trials at 

lag 3 than at lag 9, F(1,39) = 6.6, ηp
2 = .149, p < .02. To characterize the interaction 

further, the amplitude of the P3b across two-target and three-target trials were compared 

in a separate ANOVA considering only trials at lag 9 and found no significant 

difference, F < 1, p = .72. At lag 3, in contrast, the amplitude of the P3b was larger in 

two-target trials than in three-target trials, F(1,39) = 14.1, ηp
2 = .266, p < .001. 

Individual latency values of P3b responses to the last target in the streams 

(i.e., T3 in three-target trials or T2 in two-target trials) were submitted to an ANOVA 

using the same model as for the mean amplitudes analyses reported above. At lag 9, the 

mean latencies of the P3b response were 387 ms in two-target trials and 393 ms in 

three-target trials. At lag 3, the mean latencies of the P3b response were 434 ms in two-

target trials and 483 ms in three-target trials. P3b latency was longer at lag 3 than at lag 

9, F(1,39) = 38.7, ηp
2 = .199, p < .001, and longer in three-target trials than in two-target 

trials, F(1,39) = 9.4, ηp
2 = .567, p < .004. Importantly, the difference in P3b latencies 

between two-target and three-target trials was larger at lag 3 than at lag 9, producing a 

significant interaction between number of targets and lag, F(1,39) = 4.5, ηp
2 = .102, p < 
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.05. Two-target trials and three-target trials were also compared separately at each lag 

observing no difference in P3b latencies between two-target trials and three-target trials 

at lag 9, F(1,39) = 1.6, p > .2, but a clear significant difference in P3b latencies between 

two-target trials and three-target trials at lag 3, F(1,39) = 8.7, ηp
2 = .189, p = .005. 

 

P3a 

The main analyses were performed at Fz, at the peak of the scalp 

distribution of the P3a component. At lag 9, the mean amplitudes of the P3a response 

were 4.8 μV in two-target trials and 3.9 μV in three-target trials. At lag 3, the mean 

amplitudes of the P3a response were 2.9 μV in two-target trials and 1.9 μV in three-

target trials. Individual means for each of these measures were submitted to an ANOVA 

with number of targets (two-target vs. three-target) and lag (3 vs. 9) as within-subject 

factors. The ANOVA indicated a larger P3a amplitude at lag 9 than at lag 3, F(1,39) = 

27.0, ηp
2 = .413, p < .001, and a larger P3a amplitude in two-target trials than in three-

target trials, F(1,39) = 6.4, ηp
2 = .147, p < .02. There was no interaction between 

number of targets and lag in the analysis of P3a amplitude values recorded at Fz, F < 1, 

p > .9. 

The mean P3a latency was 190 ms, and there were no significant differences 

across conditions in an ANOVA that considered number of targets and lag as factors, all 

Fs < 1, all ps > .6, confirming what can be observed in Figure 2.2, namely, that, 

contrary to P3b, P3a latency was not subject to AB-induced perturbations. 
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ICA of ERPs 

To further explore the interaction of detection and encoding processes in the 

AB, an ICA was used to decompose the ERPs into separate components using the 

algorithm implemented in EEGLAB (Delorme & Makeig, 2004). This was done to 

provide a more faithful depiction of the ERP results by decomposing P3a and P3b 

waveforms into maximally spatiotemporally independent signals available in the 

channel data and minimize to nil the influence of their potential overlap/summation on 

the interpretation of the above findings. The difference waves for the four main 

conditions in the experiment (two-target vs. three-target trials × lag 3 vs. lag 9) for each 

participant were first analyzed using singular value decomposition to determine the 

dimensionality of the signal subspace containing most of the relevant event-related 

activity. A scree plot of the singular values showed a clear break after the first three 

components, leading us to retain the first four dimensions, which accounted for 54.3% 

of the variance. The ICA analysis was thus restricted to this subspace of the signal space 

using an initial PCA. The ICA analysis isolated two components of the P3 family, 

namely, a later posterior component (Component I, P3b) and an earlier anterior 

component (Component II, P3a). The grand-averaged time courses and relative 

topographies for these two components, for the four main conditions of the present 

experimental design, are shown in Figure 2.3. The time course for the two components 

of interest was reconstructed in the ICA analysis for each participant and condition and 

submitted amplitude and latency measures to the same type of ANOVA models as were 

used for the analyses of the original ERPs. 
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Figure 2.3. Results of ICA decomposition. Top graphs: ERP functions corresponding to ICA-P3b and 

ICA-P3a isolated using ICA. Bottom scalp plots: Scalp topographic maps of ICA-P3b (left) and ICA-P3a 

(right). 
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ICA-P3b 

At lag 9, the mean amplitudes of the ICA-P3b were 4.1 μV in two-target 

trials and 3.94 μV in three-target trials. At lag 3, the mean amplitudes of the ICA-P3b 

were 3.1 μV in two-target trials and 1.7 μV in three-target trials. ICA-P3b amplitude 

was larger at lag 9 than at lag 3, F(1,39) = 32.9, ηp
2 = .466, p < .001. Furthermore, ICA-

P3b amplitude was larger in two-target trials than in the three-target trials, F(1,39) = 

13.7, ηp
2 = .269, p < .001. The difference between two-target and three-target trials was 

larger at lag 3 than at lag 9, which produced a significant interaction between number of 

targets and lag, F(1,39) = 7.9, ηp
2 = .174, p < .008. Two-target and three-target trials 

was also compared separately at each lag. At lag 9, ICA-P3b amplitudes for two-target 

and three-target trials were equivalent, F < 1, p > .7. In contrast, at lag 3, ICA-P3b 

amplitudes for two-target and three-target trials differed substantially, F(1,39) = 14.1, 

ηp
2 = .264, p < .0006. 

At lag 9, the estimated mean ICA-P3b latencies were 390 ms for two-target 

trials and 396 ms for three-target trials. At lag 3, ICA-P3b latencies were 436 ms for 

two-target trials and 480 ms for three-target trials. This pattern of latencies produced a 

significant effect of lag, F(1,39) = 57.65, ηp
2 = .674, p < .001, reflecting the general 

earlier latency of ICA-P3b components of two-target and three-target trials at lag 9 

relative to lag 3. ICA-P3b latency was prolonged in three-target trials relative to two-

target trials, F(1,39) = 16.0, ηp
2 = .295, p < .001, the more so at lag 3 compared with lag 

9, F(1,39) = 5.7, ηp
2 = .138, p < .03. Two-target and three-target trials was compared 

separately at each lag. At lag 9, ICA-P3b latencies for two-target and three-target trials 

were equivalent, F(1,39) = 2.5, p > .12. In contrast, at lag 3, ICA-P3b latencies for two-

target and three-target trials differed substantially, F(1,39) = 13.9, ηp
2 = .264, p < .001. 
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ICA-P3a 

At lag 9, the mean amplitudes of the ICA-P3a were 2.13 μV in two-target 

trials and 1.86 μV in three-target trials. At lag 3, the mean amplitudes of the ICA-P3a 

were 2.26 μV in two-target trials and 1.65 μV in three-target trials. ICA-P3a amplitude 

did not significantly differ between lags 3 and 9, F(1,39) = 1.9, p = .13. ICA-P3a 

amplitude was however larger in two-target trials than in three-target trials, F(1,39) = 

6.4, ηp
2 = .149, p = .019. The difference between two-target and three-target waveforms 

was smaller at lag 9 than at lag 3, which produced a significant interaction between 

RSVP structure and lag, F(1,39) = 3.7, ηp
2 = .128, p = .047. Separate analyses 

confirmed that ICA-P3a amplitude did not differ between two-target and three-target 

trials at lag 9, F(1,39) = 1.4, p = .31, whereas this difference was significant at lag 3, 

F(1,39) = 6.7, ηp
2 = .185, p = .019. 

The mean latency of ICA-P3a was 175 ms. There were no significant 

differences across conditions, F < 1, p > .8, for both main effects and for the interaction. 

To further ascertain the absence of any latency effects on P3a, the offset latency of the 

ICA-P3a was computed as the mean time-point when the descending portion of 

individual ICA-P3a waveforms crossed the 75% amplitude value. In both two-target 

and three-target trials, the mean ICA-P3a offset latencies were 331 ms at lag 9 and 383 

ms at lag 3, reflected in a main effect of lag, F(1,39) = 22.9, ηp
2 = .375, p < .001. 

However, as shown in Figure 2.3, the mean ICA-P3a offset latencies observed in two-

target and three-target trials did not differ significantly, F < 1, p > .6, nor was an 

interaction between number of targets and lag observed, F < 1, p > .6. 

 

 

 



45 

 

Regression of ICA Components 

A direct link between T3-locked ICA-P3a amplitude and offset and ICA-

P3b latency was explored through multiple linear mixed-effect regression analyses 

carried out on 160 ICA-P3b values –40 participants, each contributing one value in four 

cells of the number of targets by lag design– analyzed in the foregoing sections. The 

choice of both amplitude and offset to quantify ICA-P3a variations was based on the 

result of a preliminary analysis that revealed a positive correlation (r = .28; p = .038) 

between these two parameters across participants, as though greater P3a amplitude 

values were interindividually associated with slightly postponed P3a offset values. 

A first regression explored the presence of a possible latent covariation 

between ICA-P3a and ICA-P3b parameters that were independent on the experimental 

variables manipulated in this design. The regression considered T3-locked ICA-P3b 

latency as dependent variable (y), T3-locked ICA-P3a amplitude (x1), and ICA-P3a 

offset (x2) as independent variables. The resulting linear model was: 

 

Model 1: y = 313 – 18.8(x1) + 0.4(x2) 

With a R2 = .55, t(x1) = −4.6, and t(x2) = 5.8. 

 

Model 1 was compared with the result of a second regression that was 

carried out on the same data set in which the four levels of the number of targets by lag 

design were explicitly included as independent factors, setting the least attention-

demanding condition (i.e., two-target trials at lag 9; 2T-lag 9) as the baseline for 

contrasts against each of the other three conditions, that is, two-target trials at lag 3 (2T-

lag 3) and three-target trials at lags 3 and 9 (3T-lag 3 and 3T-lag 9, respectively). The 

resulting linear model was: 
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Model 2: y = 335 – 4.3(x1) + 0.2(x2) + 37.9(2T-lag3) + 10.8(3T-lag9) + 79.0(3T-lag3) 

With a R2 = .71, t(x1) = −1.5, t(x2) = 2.7, t(2T-lag 3) = 3.2, t(3T-lag 9) = 1.0, and t(3T-

lag 3) = 6.3. 

 

Models 1 and 2 were submitted to a likelihood ratio test that indicated a 

Bayesian information criterion for the model 2 that was significantly smaller than the 

corresponding Bayesian information criterion for model 1 (1781 vs. 1803; χ2(3) = 38.1, 

p < .001). The ratio between Bayes factors (Bf) corresponding to model 2 and model (1) 

was greater than 100, indicating that model 2 explained the relationship between ICA-

P3a modulations and ICA-P3b latency shifts of several order of magnitude more 

precisely than model 1 (Kass & Raftery, 1995). 

Separate linear regressions were carried out on the data from each cell of the 

number of targets by lag design to better qualify the effect of the experimental 

manipulations on the distribution of P3b latency values, which are graphed in Figure 

2.4. 
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Figure 2.4. Results of the regressions on ICA-P3b latency values. ICA-P3b latency values in each 

scatterplot are reported as a function of the two predictors included in the regression models, ICA-P3a 

amplitude and ICA-P3a offset. Each scatterplot includes the entire data set of 160 ICA-P3b latency 

values–40 participants, each providing four ICA-P3b values in the number of targets (two-target vs. three-

target trials) by lag (3 vs. 9) design–with the different conditions indicated by the different colors reported 

in the legend. All remnant gray dots in any given scatterplot correspond to ICA-P3b latency values in all 

the other three conditions. The plane intersecting the 3-D matrices in each scatterplot is a graphical 

representation of the linear model tested in each regression. Effects due to experimental manipulations are 

evident in the form of progressively increasing adherence of ICA-P3b latency values to the respective 

model (intersecting plane) from the least (2T-lag 9) to the most attention-demanding conditions (3T-lag 

3). 

 

At lag 9, in both two-target (cyan) and three-target (green) trials, the 

respective linear models –visually represented in each panel by the plane intersecting 

the 3-D distribution of ICA-P3b latency values– were not significant (both Fs < 1, ps > 

.5). At lag 3, in contrast, the regression analysis on ICA-P3b latency values in two-

target (yellow) trials considering T3-locked ICA-P3a amplitude and ICA-P3a offset as 

predictors indicated a significant impact of ICA-P3a amplitude (45.01, t(38) = 1.64, p < 

.01) and P3a offset (0.74, t(38) = 3.19, p < .003) and a marginally significant trend 

toward an interaction between ICA-P3a offset and amplitude (−0.12, t(38) = −1.83, p < 

.07), with a R2 = .23, F(3,36) = 6.6, p < .03. The regression analysis on ICA-P3b latency 
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values in three-target (red) trials considering the same predictors indicated a significant 

impact of ICA-P3a amplitude (114.0, t(38) = 1.93, p < .05) and P3a offset (1.33, t(38) = 

3.75, p < .001) and a significant interaction between ICA-P3a offset and amplitude 

(−0.34, t(38) = −2.16, p < .04), with a R2 = .35, F(3,36) = 6.6, p < .03. Note that R2 

values associated with each regression provide an estimate of the adherence of the 

cluster of ICA-P3b latency values in each experimental condition to the plane 

representing the tested model. As Figure 2.4 makes particularly clear, the adherence of 

ICA-P3b latency values increased from lag 9 to lag 3, the more so in three-target trials 

relative to two-target trials, as suggested by the increased R2 parameters and ts 

associated with the interaction between ICA-P3a offset and amplitude. 

 

2.1.5 Discussion 

To characterize how distinct information processing stages interact during 

the selection and encoding of visual information distributed across time, an RSVP 

paradigm with a manipulation of the number of consecutive initial targets to modulate 

the magnitude of the AB (Dux et al., 2014). The last target in the RSVP streams was 

unmasked to allow the temporal dynamics of AB interference in the EEG signal to be 

observed in the absence of confounds from differing levels of accuracy on the final 

target (e.g., Ptito et al., 2008; Robitaille, Jolicœur, Dell’Acqua, & Sessa, 2007; Vogel & 

Luck, 2002). Behaviorally, presenting two targets before the final target (three-target 

trials) reduced accuracy of the final target, although it was unmasked. This finding is 

generally more compatible with proposals that the AB is a target-induced phenomenon 

(Dell’Acqua, Jolicœur, Pascali, & Pluchino, 2007; Dell’Acqua, Jolicœur, Luria, & 

Pluchino, 2009; Dux et al., 2014; Nieuwenstein et al., 2009; Visser, 2007; Wyble et al., 

2009; 2011) rather than a form of attentional perturbation induced by distractors (Di 
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Lollo, Kawahara, Ghorashi, & Enns, 2005; Olivers & Meeter, 2008; Raymond et al., 

1992; Taatgen, Juvina, Schipper, Borst, & Martens, 2009). 

The electrophysiological measures showed clear anterior P3a and posterior 

P3b responses to the last target in the RSVP streams, and these were modulated 

differentially both by lag (3 vs. 9) and the number of preceding targets (1 vs. 2). The 

absolute magnitude of both ERP components was attenuated at short relative to long 

lags. However, there were key differences in these reductions with regards to latency 

and amplitude. Specifically, the P3a was reduced in amplitude, but its latency was 

unaffected by experimental manipulations. Conversely, the P3b exhibited both a 

decrease in amplitude and an increase in latency at short relative to long lags. Of import, 

this P3b latency increase for three- relative to two-target trials at the shorter lag could 

hardly be because of increased variance in the termination of pretarget(s) processing 

reflected in P3b jitter at short relative to long lags. In fact, Figure 2.2 reveals 

consistently higher amplitude values in the two-target relative to the three-target trials at 

lag 3 in the descending portion of P3b (compare orange and red functions in both 

graphs) suggesting –paradoxically– that more jitter was affecting two-target trials 

relative to three-target trials. This pattern was still present after isolating, via ICA 

analyses, the two components and fractionating the possible spatiotemporal overlap of 

P3a and P3b responses to the last target. Critically, the ICA reconstruction of P3b 

(Figure 2.3), at the shorter lag, shows a clear tendency of the P3b response in three-

target trials to onset almost 100 ms after the P3b response in two-target trials. This 

strongly suggests that P3b component jitter is unlikely to be the cause of latency 

postponement affecting P3b responses elicited by the last target in two-target versus 

three-target trials. Rather, this finding complements and extends prior proposals 

referring to P3b as a signature of postponed consolidation of last target in working 
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memory for delayed report by tying P3b amplitude and latency modulations to effects 

induced by the number of targets preceding the last target in RSVP sequences. 

Crucially, P3a responses consistently preceded P3b responses, and this has 

been hypothesized to reflect the direction and/or temporal order of activation of the 

neural structures composing a fronto-temporo-parietal circuit enabling conscious vision 

of attended objects (Daffner et al., 2003; Debener, Makeig, Delorme, & Engel, 2005; 

Friedman et al., 2001; Gazzaniga et al., 2000; Polich, 2003; Soltani & Knight, 2000). 

The results of the regression analyses revealed a parametric link between P3a amplitude 

and P3b latency. At the longer lag, processing reflected in P3a responses was largely 

independent of processing occurring later and reflected by P3b responses, as shown by 

the absence of correlation between these estimates. At the shorter lag, in contrast, the 

amplitude of P3a responses was correlated with P3b response latency, suggesting that 

the observed delay in processing of the target within posterior brain areas results from 

reduced efficacy (i.e., amplitude) of the frontally mediated detection process. In this 

vein, P3a and P3b responses would be separate but interacting manifestations of two 

functional stages of processing involved in targets' conscious access: reduced efficacy 

of attentional recruitment in frontal areas (P3a) and a consequent delay in the processing 

of the target by posterior areas (P3b). These results corroborate current thinking about 

the crucial role of the frontal lobe in the control of selective attention and the 

establishment of conscious representations during perception (e.g., Cohen, Cavanagh, 

Chun, & Nakayama, 2012; Corbetta, 1998; Desimone & Duncan, 1995; Dell’Acqua et 

al., 2006). In addition, the present findings complement fMRI results by providing an 

electrophysiological signature recorded at scalp of the involvement of frontal structures 

in the AB effect (Kranczioch et al., 2005; Marois et al., 2004).  
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Compared with the impressive corpus of studies focusing on the 

centroparietal P3b subcomponent of the P3 complex, the frontocentral P3a 

subcomponent has been the object of less investigation, and its functional connotation is 

still a matter of debate. The last decade of studies on P3a has unveiled a surprisingly 

tight connection between P3a and mental operations involved in attentional control. 

Indeed, contrary to the original depiction of P3a as a typical response to infrequent, 

novel, and contextually deviant stimuli (e.g., Friedman et al., 2001), more recent studies 

have provided evidence of P3a responses to task-relevant information displayed in a 

variety of cognitive tasks, like feedback signals displayed at the end of trials (e.g., 

Butterfield & Mangels, 2003), no-go signals in standard go/no-go designs (e.g., 

Rushworth, Walton, Kennerley, & Bannerman, 2004), and task-relevant stimuli 

displayed on first trials (e.g., Huettel, Mack, & McCarthy, 2002). In an elegant attempt 

at providing a unitary functional account of P3a activity encompassing these diverse 

experimental contexts, Barceló and colleagues (Barceló et al., 2006; Barceló, Periáñez, 

& Knight, 2002) devised a variant of a task-switch design in which one of four cards of 

the Wisconsin Card Sorting Test had to be matched with a target card of the same set 

according to two alternating criteria, either on the basis of the color of the symbols on 

the cards or on the basis of the symbols' number. On any given trials, the criterion for 

the classification task was specified by a tonal cue before the onset of the target card, 

which indicated if the classification scheme had to be maintained for the incoming 

stimulus (repeat-cue) or changed (switch-cue). Randomly on a proportion of trials, a 

contextually deviant sound –always novel on each trial– was displayed during the 

interval between a repeat-cue and the target card. Interestingly, P3a responses of equal 

amplitude were detected in response to both deviant sounds and switch-cues, a finding 

strongly suggesting that a primary determinant of P3a activity in task-switch designs is 
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attentional control demanded to (re)configure the mental set to carry out the 

classification task appropriately. Further work led these authors to put forth the 

hypothesis that the bursts of delta power, held to give rise to P3a responses, reflect 

inhibition of the current mental set to establish a different mental set (Prada, Barceló, 

Herrmann, & Escera, 2014). 

This hypothesis is corroborated by studies on the AB that have shown a 

correlation between P3a amplitude and the probability of reporting T2 correctly in 

designs in which a task-switch was required to process T1 and T2. Sergent, Baillet, and 

Dehaene (2005; see also Marti, Sigman, & Dehaene, 2012) asked participants to 

distinguish between “XOOX/OXXO” strings displayed as T1 and to identify a T2 

number word whose onset was signaled by four surrounding dots. P3a activity was 

detected for correctly reported T2 stimuli but not for missed items, as though the cause 

of the failure to report T2 could be ascribed to a failure to switch mental set or selection 

criteria between the different tasks. Task-switching in RSVP designs is known to 

exacerbate AB effects (Kawahara, Zuvic, Enns, & Di Lollo, 2003), and this may be so 

because task-switching is controlled by frontal areas partly overlapping with those 

underpinning the deployment of top–down attention to target information (e.g., Cutini et 

al., 2008; Dove, Pollmann, Schubert, Wiggins, & Yves Von Cramon, 2000). However, 

task-switching between T1 and T2 processing in the AB has been hypothesized to draw 

on distinct capacity limitations relative to those held to constitute the root cause of the 

AB (Dale, Dux, & Arnell, 2013; Kelly & Dux, 2011; Visser, Bischof, & Di Lollo, 

1999). 

One may still argue that P3a responses detected in the present experiment 

reflect some form of attention control processes directed at visual input, as proposed by 

Barceló and colleagues. These researchers suggest that task-switching is inextricably 
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linked with multitarget RSVP designs where selection criterion and task requirements 

on targets are uniform (i.e., report letters embedded among digits). Targets in this case 

must undergo a set of mental operations optimized for successful classification whereas 

a different set of mental operations may be hypothesized to be required to inhibit 

distractors (e.g., Di Lollo et al., 2005; Olivers & Meeter, 2008; Taatgen et al., 2009). 

One critical finding that is at odds with this proposal, however, is that that P3a 

responses described by Barceló's and colleagues, though correlated with behavioral 

switch costs (Monsell, 2003), were not correlated with trailing target-locked P3b 

activity, contrary to what was observed here at the shorter intertarget lag. 

Perhaps, a better functional connotation of P3a and P3b responses in the 

present context can be attempted by resorting to psychological theory, whereby the 

present electrophysiological results appear to corroborate AB models ascribing the 

phenomenon to inhibition of top–down attention to visual input. Wyble et al. (2011) 

have proposed that the AB reflects mechanisms involved in parsing the visual 

continuum into discrete visual episodes and memory representations and provided P3b 

evidence compatible with this idea (Craston, Wyble, Chennu, & Bowman, 2009). More 

specifically, the model put forward by Wyble et al. (2009) hinges on the principle that 

top–down attention allocation to preattentive target sensory representations –or target 

types– is instrumental to bring activation of these representations suprathreshold. This 

triggers in turn an encoding mechanism that binds target types to time-coding memory 

units denoting targets' episodic arrangement-producing target tokens. These tokens are 

maintained in visual working memory and are available for subsequent conscious 

report. While target encoding is under way (e.g., for T1 in standard two-target RSVP 

streams), top–down attention is momentarily inhibited so as to segregate T1 from 

trailing visual inputs (i.e., T2 or distractors) lagging T1 for longer than 200 ms. This 
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processing dynamic is held to be at the root of the AB effect (and of the so-called lag 1 

or protracted sparing effect; Dell’Acqua, Dux, Wyble, & Jolicœur, 2012). 

This model fits naturally in the present electrophysiological picture by 

assuming that P3a amplitude is a measure of top–down attention allocation efficiency 

and that P3b amplitude and latency are a combined estimate of working memory 

encoding processes. In this augmented framework, encoding two previous targets in 

three-target trials versus one previous target in two-target trials would take up more 

processing capacity and produce stronger inhibition of top–down attention allocation to 

the last target. This is captured in the present results by the amplitude attenuation of P3a 

response to the last target observed at short lag, which was more pronounced in three-

target trials than in two-target trials. Furthermore, inhibited top–down attention to target 

types during the AB would delay encoding of the last target in the RSVP sequence at 

short relative to long lags. This increased delay would be reflected in the prolonged 

latency and sizable amplitude reduction of P3b observed at the short lag, which was 

more evident in three-target trials relative to two-target trials. 

When describing their results with reference to P3b suppression during the 

AB, Vogel et al. (1998) reported a frontal positive ERP component that preceded 

temporally the posterior P3b, which they labeled P2. The P2 component showed 

amplitude suppression under the same AB conditions as those associated with P3b 

suppression, raising thus the possibility that the P2 and the present P3a may be 

manifestations of the same underlying mechanism. Despite similarities however, the P2 

is primarily reactive when attentional selection occurs based on simple features (Luck & 

Hillyard, 1994a), whereas P3a is a multimodal component elicited by a wide variety of 

stimuli. Indeed, the P2 found by Vogel et al. was observed under conditions where T2 

had to be selected based on color (i.e., T2 was a white stimulus embedded among black 
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distractors). Similarly, a T2-elicited P2 component has been reported by Pesciarelli et 

al. (2007), who used to-be-detected red targets interspersed among white distractors. 

These researchers explored the T2-locked P2 as a function of whether T2 was missed or 

correctly reported at short lags and found no P2 amplitude/latency difference between 

these two conditions. Pesciarelli concluded, contrary to Vogel et al. (1998), that the 

visual P2 was not influenced by the AB. P2 and P3a differ in this respect, because P3a 

is demonstrably evident following a correctly reported target and absent following a 

missed target (Sergent et al., 2005). Most importantly, P2 amplitude tends to increase 

with stimulus repetition, whereas P3a amplitude behaves in the opposite manner, 

increasing when stimuli are novel and/or infrequent (Curran & Dien, 2003; Misra & 

Holcomb, 2003; Rugg, 1987). Collectively, these empirical observations reinforce the 

conclusions that the frontal subcomponent of the P3 complex evident in this study was 

really a P3a ERP component and not a P2. 

To summarize, using a multitarget RSVP design and manipulating 

intertarget lag, prior findings indicating reduced amplitude and latency postponement of 

last target-locked P3b activity at short relative to long lags was replicated. This AB 

effect on P3b was dependent on target load, as these modulations were more 

pronounced in three-target trials, in which the last target was preceded by two to-be-

encoded targets, than in two-target trials, in which the last target was preceded by just 

one to-be encoded item. An important and novel result was the clear AB effect on P3a 

responses, which were analogous in terms of amplitude modulations to P3b, but 

different in terms of latency, as no postponement was observed on the onset of this 

component. I have proposed that Wyble's et al. (2011) computational account of the AB 

offers a unitary framework where all the present results can be interpreted collectively. 

The suppression of P3a amplitude can be taken as evidence of reduced attention 
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allocation efficiency for detecting the last target during the AB window which, in turn, 

leads to a prolongation of the time taken to stabilize the sensory trace for generation of 

the conscious visual episode enabling delayed report of the last target. 
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2.2 Experiment 1b 

2.2.1 Introduction 

As explained in the General Introduction, a very peculiar aspect of the AB is 

its absence when the two targets are presented consequently (lag 1 sparing phenomenon, 

Potter, Chun, Banks, & Muckenhoupt, 1998).  

Given the richness of the EEG dataset of Experiment 1a, portions of it were 

left unexplored. In particular, P3a and P3b responses time-locked to the initial target(s), 

preceding the last one, in two-target and three-target RSVP trials were not compared. 

Experiment 1a was focused to highlight the attentional dynamics between different 

attentional episodes (the episode which encode the initial target(s), and the one which 

encode the last target). In contrast, the analysis here presented was focused on the 

neurophysiological variation within a single attentional episode. Specifically, two-

targets and three-targets trials of Experiment 1a gives the possibility to investigate the 

ERP activity elicited by a single target (that is the first target in two-targets condition; 

henceforth, TD condition, suggesting that the first target is followed by a distractor) and 

two consequent targets (which are the two first targets in the three-targets condition; 

henceforth, TT condition, suggesting that the first target is followed by a second one). 

By comparing these two conditions, it is possible to highlight attentional dynamics 

within a single attentional episode. In other terms, this data can provide evidence about 

lag 1 sparing phenomenon, and highlight the neural characteristics of this particular 

pattern of behavioral result happens.  

Based on the two main models which described AB and lag 1 sparing 

phenomena, two different sets of prediction can be hypothesized. On the one hand, a 

prediction can be derived from Olivers and Meeter's (2008) model: a T1-locked frontal 

positive response should be immediately followed by a frontal negative component 
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indexing attentional inhibition elicited by the first target-trailing distractor. The onset 

timing of this frontal negative component should therefore differ between TD and TT 

condition, because the first target-trailing distractor is displayed in the position right 

after the only target in TD condition, and after two consecutive targets in TT condition. 

Based on evidence showing a magnified AB effect following two consecutive targets in 

three-target trials relative to the magnitude of the AB elicited by a single target in two-

target trials (Dux et al., 2014), the amplitude of the frontal negative activity following 

the frontal positive response in TT condition should therefore be magnified relative to 

equivalent activity detected in TD condition. This model does not provide sufficient 

details regarding P3b activity –other than the shared assumption that P3b reflects 

target(s) consolidation in visual working memory– to make an exact prediction about 

this component. However, a cornerstone of the model is that there are no functional 

impediments to consolidate targets in visual working memory prior to the onset of the 

first target-trailing distractor. On this premise, there are no P3b modulations resulting 

from the present test that could be diagnostic of the appropriateness of the model to 

account for the AB and its ERP correlates. 

On the other hand, the model proposed by Wyble et al. (2011) explicitly 

predicts that, upon detection of T1, tokenization (i.e., consolidation) is immediately 

activated, whether T1 is trailed by a distractor or by T2, and this prediction has been 

tested in an ERP study by Craston et al. (2009) showing that two sequential targets in an 

RSVP elicit a single P3b response. Referred to the present context, a first prediction is 

therefore that, following a T1-locked frontal positive response, the onset latency of T1-

locked P3b should not vary whether T1 is trailed by a distractor or by T2, respectively. 

A second prediction arises from how the tokenization stage is characterized in the 

model, that is, as a stage where spatiotemporal information about target occurrence is 
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bound to information about target identity. This leads to the hypothesis that processing 

required to generate a single token in working memory is increased when two such 

tokens must be generated for working memory storage. To note, tokenization in this 

perspective is strongly akin to the function ascribed to the stage of memory 

consolidation proposed by Jolicœur and Dell’Acqua (1998), who characterized this 

stage as operating serially on sequential targets (see Craston et al., 2009; Kihara, 

Kawahara, & Takeda, 2008, for analogous proposal). On these premises, if tokenization 

(or consolidation) takes longer in TT condition relative to TD condition, then P3b 

should offset later in TT trials, when T1 is trailed by T2 and both targets must be 

consolidated in working memory, rather than in TD trials, when T1 is the only to-be-

consolidated target. 

 

2.2.2 Method 

The dataset here considered was from the Experiment 1a of this thesis. Only 

a brief recap of the conditions used in this analysis and differences regarding ERP 

analysis are reported in the next sections. 

 

2.2.3 EEG/ERP Recordings and Preprocessing 

As illustrated in the lower part of Figure 2.5 and 2.6, the critical analyses 

were carried out on separate T1-locked ERP waveforms generated in trials at the longer 

lag only. This was done in order to minimize the overlap between ERP waveforms 

elicited by T1 in two-target trials and by consecutive T1 and T2 in three-target trials, 

and ERP waveforms elicited by the last target in the RSVP streams. Henceforth, for 

ease of exposition, I will refer to two-target trials as TD (to indicate that T1 was 
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followed by a distractor) and to three-target trials as TT trials (to indicate that T1 was 

followed by another target, T2). T1-locked ERP waveforms in TD and TT conditions 

were estimated by averaging EEG epochs recorded on both target-present and target-

absent trials (i.e., with and without a final target ending the RSVP streams) associated 

with the correct report of T1 in TD trials, and T1 and T2 in TT trials. ERPs recorded in 

no-target trials were subtracted from these ERP waveforms to eliminate EEG 

oscillations in phase with the rate of presentation of RSVP items. 
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Figure 2.5. Lower: Gantt diagram illustrating the conditions of interest compared in the present article. In 

TT trials, T1 and T2 (highlighted as shaded letters for illustrative purposes) were always consecutive 

items, whereas T1 was trailed by a distractor in TD trials. Reported here are target-absent trials. Half of 

the trials were composed of target-present trials, namely, trials in which RSVP streams ended with a 

further target displayed after 8 distractors (SOA = 756 ms). Upper: T1-locked P3a and P3b components in 

TT (dashed lines) and TD trials (solid lines) flanked by a color-coded topographical indication of the 

originating electrode sites. The red shaded area provides information on the time window used for the 

post-P3a frontal negativity amplitude values calculation. 

 



62 

 

 

Figure 2.6. Lower: Gantt diagram illustrating the conditions of interest compared in the present article. 

Upper: Results of ICA decomposition of both T1-locked P3a and P3b components in TT (dashed lines) 

and TD trials (solid lines) flanked by the corresponding scalp plots of peak activity. The red and green 

shaded areas provide information on the time windows used for amplitude estimation of ICA-decomposed 

post-P3a frontal negativity in TD trials (red) and TT trials (green). 

 

The mean amplitude of the subtracted T1-locked P3a and P3b components 

was quantified as the mean value in a 150 ms window centered on the peak of each 
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grand-averaged ERP. Given the explicit reference of Olivers and Meeter (2008) to the 

frontal modulations of ERP activity reported by Martens et al. (2006), frontal activity in 

the P3a time range was analyzed at F7, Fz, and F8 electrodes. The P3b component, as in 

experiment 1a was analyzed at Pz (Polich, 2003). The mean latency of the subtracted 

P3a and P3b components at the same recording sites was estimated using the jackknife 

approach (Kiesel et al., 2008; Ulrich & Miller, 2001), and individual values were 

derived with the solution proposed by Brisson and Jolicœur (2007; see also Smulders, 

2010). Onset latency values were calculated as the time point when the ascending 

portion of individual jackknife time course reached 75% of the peak amplitude. Offset 

latency values were calculated as the mean time point when the descending portion of 

individual jackknife ICA time course crossed the 75% amplitude value. The 

Greenhouse-Geisser correction for nonsphericity was applied when appropriate. 

 

2.2.4 Results 

Behavior 

Separate analyses of variance (ANOVAs) were carried out to compare the 

mean proportion of correct target report in TD and TT trials. Subjects were more 

accurate in reporting T1 in TD trials (95.4%) than in TT trials (79.2%), F(1,39) = 104.5, 

ηp
2 = .732, p < .001. In TT trials, subjects were more accurate in reporting T2 (93.3%) 

than T1, F(1,39) = 100.4, ηp
2 = .724, p < .001. T1 report in TD trials was also superior to 

T2 report in TT trials, F(1,39) = 5.7, ηp
2 = .130, p = .038. Block order (i.e., whether 

subjects started the experiment with three-target or two-target trial blocks) did not exert 

any effect on behavioral performance, max F < 1. Furthermore, in 46.1% of TT trials, 

T1 and T2 were correctly reported albeit in reversed order. In short, as repeatedly 
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observed in prior investigations, under TT conditions T2 was reported more accurately 

than T1 and, on a substantial proportion of trials, was reported as the first target. 

 

ERPs 

The artifact screening procedures described above resulted in the exclusion 

of 0.74% of the segments. For most subjects, less than 1% of the data were excluded. 

Two subjects had exclusion rates of about 7%. Visual inspection of their ERPs 

suggested their results were comparable to those of the other subjects, and thus their 

data were included in the final analyses. The final sample included all 40 participants 

tested in the experiment. In all the following ERP analyses, block order (i.e., whether 

subjects started the experiment with three-target or two-target trial blocks) was included 

in the various ANOVA designs. However, given that block order was never associated 

with significant main effects or interactions with the other considered factors, max 

F < 1, min p > .43, the influence of this factor is not discussed in the forthcoming 

sections. The most important T1-locked ERP waveforms observed in the present 

experiment are reported in Figure 2.5. 

 

P3a 

The mean P3a amplitude values observed in TT versus TD trials were 2.95 

μV and 2.09 μV at Fz, 2.44 μV and 1.66 μV at F7, and 2.1 μV and 1.68 μV at F8. An 

ANOVA carried out on individual P3a amplitude values indicated that P3a was of 

greater amplitude in TT than TD trials, F(1,38) = 5.8, ηp
2 = .132, p = .02. Furthermore, 

P3a amplitude differed across electrode sites, F(2,76) = 5.2, ηp
2 = .120, p = .007. False 

discovery rate (FDR; Benjamini & Hochberg, 1995) corrected t tests indicated that P3a 

amplitude was greater at Fz relative to both F7, t(79) = 3.0, p = .008, and F8, 
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t(79) = 3.44, p < .001, which did not differ significantly, t < 1, p > .34. The mean P3a 

onset latency in TD trials (219 ms) and in TT trials (225 ms) did not differ significantly, 

F(1,38) = 1.2, p > .4. The mean P3a offset latency in TD trials (283 ms) and in TT trials 

(294 ms) also did not differ significantly, F(1,38) = 2.1, p = .22. No difference in P3a 

onset/offset latencies was found across F7, Fz, and F8 electrodes, max F < 1, min 

p > .35. 

 

Post-P3a frontal negativity 

In order to test Olivers and Meeter's (2008) prediction concerning distractor-

induced attention inhibition being indexed by a peak of negativity following the initial 

frontal activation reflected by the T1-locked P3a, ERP activity trailing P3a was 

explored at each frontal electrode considered in the P3a analyses (i.e., F7, Fz, and F8) in 

a time window starting 303 ms post-T1 (i.e., a value corresponding to the mean time 

point at which the descending portion of P3a crossed the baseline in TT and TD trials) 

and ending at 390 ms post-T1 (highlighted in red in Figure 2.5). The mean amplitude of 

this component was −.39 μV on TD trials, and .74 on TT trials. An ANOVA revealed 

that these values differed significantly, F(1,38) = 14.8, ηp
2 = .281, p < .001, and were 

comparable across electrode sites, F = 1.3, p = .21. As shown in Figure 2.5, separate 

one-tailed t tests indicated that negative ERP activity (i.e., significantly less than 0) was 

detected in TD trials, t(119) = −2.1, p = .048, but not in TT trials, where the component 

was positive. 

 

P3b 

The mean amplitude of P3b was 4.03 μV in TD trials, and 5.31 μV in TT 

trials. The ANOVA showed that these values were significantly different, 
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F(1,38) = 14.6, ηp
2 = .269, p < .001. The P3b onset latency was not different between TD 

trials (386 ms) and TT trials (393 ms), F < 1, p = .75. The P3b offset latency was, 

however, substantially postponed in TT trials (496 ms) relative to TD trials (596 ms), 

F(1,38) = 70.3, ηp
2 = .641, p < .001. 

 

ICA of ERPs 

The same EEGLAB routine of Experiment 1 was used to decompose T1-

locked ERPs through ICA (Delorme & Makeig, 2004). As in the previous experiment, 

this was done to provide a more faithful depiction of the ERP results by decomposing 

the various components explored through standard analyses into maximally 

spatiotemporally independent signals available in the channel data, and minimize the 

influence of their potential overlap/summation on the interpretation of the above 

findings. One hypothesis in particular that had to be ruled out is that the post-P3a frontal 

negativity (absent) in TT trials may have been camouflaged by spatiotemporal 

superimposition with a surge of positive activity trailing P3a, which could unpredictably 

have been more intense and/or anticipated in TT versus TD trials. 

Individual ERPs in TT and TD trials were first analyzed using singular 

value decomposition to determine the dimensionality of the signal subspace containing 

most of the relevant event-related activity. A scree plot of the singular values showed a 

clear break after the first three components, leading to retain the first four dimensions, 

which accounted for 51.8% of the variance. The ICA analysis was thus restricted to this 

subspace of the signal space using an initial principal component analysis (PCA). The 

ICA decomposition isolated two components of the P3 family, namely, an earlier 

anterior component (ICA-P3a) and a later posterior component (ICA-P3b). The grand-
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averaged time courses and relative topographies for these two components in TD and 

TT trials are illustrated in Figure 2.6. 

 

ICA: P3a 

The mean amplitude of ICA-P3a was significantly greater in TT trials (2.45 

μV) than in TD trials (1.89 μV), F(1,38) = 5.46, ηp
2 = .123, p = .027. The mean onset 

latency of ICA-P3a in TD trials (201 ms) and TT trials (223 ms) did not differ 

significantly, F(1,38) = 1.9, p = .36. The mean offset latency of ICA-P3a was 272 ms in 

TD trials and 289 ms in TT trials. These values were statistically different, 

F(1,38) = 4.31, ηp
2 = .101, p = .036. 

 

ICA: Post-P3a frontal negativity 

As Figure 2.6 suggests, my speculations that post-P3a negative activity may 

have been influenced by spatiotemporal overlap with contrasting positive activity that 

varied between TT and TD trials was correct. Contrary to the results observed for the 

standard ERP analyses, the ICA decomposition revealed that negative ERP activity 

trailed P3a in both TD and TT trials. 

An ANOVA carried out on latency values indicated that the onset latency of 

ICA-decomposed post-P3a frontal negativity did not differ between TD trials (322 ms) 

and TT trials (327 ms), F(1,38) = 1.6, p = .22. However, inspection of Figure 2.6 

suggests that TT and TD trials elicited T1-locked ERP time courses seemingly 

compatible with the prediction that post-P3a frontal activity in TD trials should be 

anticipated relative to equivalent activity in TT trials (i.e., in which the distractor is 

postponed by 84 ms). In a 310–510 ms time window (i.e., from the mean time point at 

which the descending portion of the P3a component in TD trials crossed the baseline to 
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the final convergence of TT and TD waveforms), the post-P3a negative deflection in TD 

trials is in fact more skewed toward an earlier peak in TD trials, and more symmetrical 

around a later peak in TT trials. The crucial test on the relative amplitude of the post-

P3a negative component in TD and TT trials –guided by assuming the postponement of 

post-P3a activity in TT trials versus TD trials, predicted on the basis of Olivers and 

Meeter's (2008) model– was performed by splitting the 310–510 ms time window in 

half, and by comparing the amplitude of post-P3a negative activity recorded in a 310–

410 ms time window for TD trials with the amplitude of post-P3a negative component 

recorded in a 410–510 ms time window for TT trials. Two preliminary one-tailed t tests 

confirmed that the recorded activity was indeed negative (i.e., significantly less than 0) 

in both TD trials, t(39) = −4.9, p < .001, and TT trials, t(39) = −2.3, p = .018. Contrary to 

the predicted magnification of the amplitude of the post-P3a negative component, a 

subsequent analysis revealed that the amplitude of post-P3a negative activity was 

greater in TD trials (−1.45 μV; 310–410 ms) than in TT trials (−.74 μV; 410–510 ms), 

F(1,38) = 5.31, ηp
2 = .144, p = .027. A final analysis was conducted to compare the 

overall amplitude of post-P3a negative activity in the entire 310–510 ms time window. 

The result of this analysis revealed that post-P3a negativity amplitude in TT trials 

(−.731 μV) was basically identical to post-P3a negativity amplitude in TD trials (−.733 

μV), F(1,38) = .05, p = .99. 

 

ICA: P3b 

The mean amplitude of the ICA-P3b was significantly greater in TT trials 

(3.29 μV) than in TD trials (2.48 μV), F(1,38) = 13.34, ηp
2 = .255, p < .001. The mean 

onset latency of ICA-P3b was not different between TD trials (382 ms) and TT trials 

(397 ms), F(1,38) = 2.0, p = .22. However, the mean offset latency of the ICA-P3b was 
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substantially longer in TT trials (492 ms) than in TD trials (600 ms), F(1,38) = 68.4, 

ηp
2 = .642, p < .001. This 108 ms difference between ICA-P3b offset latencies was 

significantly longer than the 17 ms difference between ICA-P3a offset latencies in TD 

versus TT trials, F(1,76) = 52.8, ηp
2 = .410, p < .001. 

 

2.2.5 Discussion 

This experiment was aimed at investigating attentional dynamics within a 

single attentional episode of a single target vs. two consecutive targets embedded within 

an RSVP. Standard analyses and an ICA reconstruction of the spatiotemporal T1-locked 

ERP patterns were consistent in revealing that the difference between TT and TD trials 

was reflected primarily in modulations of two subcomponents of the P3 complex. 

Specifically, both analytical approaches produced results indicating a frontocentral T1-

locked P3a waveform of larger amplitude in TT trials than in TD trials. This P3a 

amplitude increase elicited by consecutive targets was accompanied by a 17 ms 

postponement of the corresponding P3a offset latency. Hints of negative activity trailing 

P3a were found only in TD trials using a standard ERP approach, and generally more 

marked in TD versus TT trials using the ICA approach. A centroparietal P3b was also 

observed to be of greater amplitude in TT trials relative to TD trials, with a 

postponement of P3b offset latency in TT trials that was, however, one order of 

magnitude more substantial than that for P3a, amounting to 108 ms. There is reasonable 

agreement on the role of the dorso- and ventrolateral prefrontal cortices in the 

generation of P3a (e.g., Ranganath & Rainer, 2003). Indeed, these current results are in 

broad agreement with evidence indicating the involvement of the frontoparietal network 

in enabling attentional selection of task-relevant information, both when displayed 

simultaneously with arrays of spatially distributed distracting information (Corbetta, 
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1998; Todd & Marois, 2004; Xu & Chun, 2006; Yantis et al., 2002) and when 

embedded in a spatially overlapping, but temporally distributed, sequence of distracting 

events (Dell’Acqua et al., 2006; Husain, Shapiro, Martin, & Kennard, 1997; Joseph, 

Chun, & Nakayama, 1997; Lagroix, Grubert, Spalek, Di Lollo, & Eimer, 2015; 

Marcantoni et al., 2003; Marois, Chun, & Gore, 2000). There is also good agreement 

that more posterior regions, including the temporoparietal junction and inferotemporal 

cortices, are likely involved in the generation of P3b (Polich, 2003, 2007). 

Specific predictions about the possible ERP modulations in the present 

design were derived from two current neurocomputational models of temporal selective 

attention. Predictions from Olivers and Meeter (2008) and Wyble et al. (2011) 

concerning the time course of attention deployment to the first target(s) encountered in 

RSVP were confirmed by the amplitude increase of T1-locked P3a when T1 was trailed 

by another target relative to when T1 was displayed as a single target in RSVP. 

According to Olivers and Meeter (2008), attention deployment to RSVP targets is 

necessary to transfer these stimuli into visual working memory. As detailed in the 

introduction, this model predicts that attentional deployment to T1 in TD trials would be 

curtailed by the inhibitory response elicited by the distractor trailing T1, which would 

attenuate the T1-locked P3a response. This would not occur in TT trials given the 

presence of T2 trailing T1, which would provide more time for the P3a response to 

grow further, as was in fact observed. According to Wyble et al. (2011; see Figure 6, p. 

493), attention is deployed to RSVP targets to enhance their sensory traces so as to 

enable them to activate corresponding “types,” namely, nodes in conceptual short-term 

memory (Chun & Potter, 1995; Potter, 1976). Types in turn can be encoded as tokens, 

that is, reportable items, once they are bound to physical features promoting episodic 

distinctiveness. In this model, the summation of attentional responses to T1 and T2 
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would be the cause of the increased P3a amplitude in TT trials compared to TD trials. In 

line with Experiment 1a, the offset latency difference of P3a between TT and TD trials 

was minimal. This suggests that processing of two consecutive targets at stages prior to 

memory encoding overlap considerably, dovetailing with earlier reports using faster 

RSVP presentation rates than typically employed. For example, Potter et al. (2005) 

displayed two synchronous RSVP sequences of nonwords, one above and one below a 

central fixation point at 20 Hz, each embedding one target word, T1 and T2. T1 and T2 

were names of semantically related real-world concepts on half of the trials, and 

unrelated concepts on the other half of trials. Critically, at SOA ranging from 0 to 120 

ms, a semantically related T2 primed T1, thus supporting the idea that, when presented 

in close temporal proximity, type nodes were simultaneously active in conceptual short-

term memory. 

One may wonder why T2 in TT trials, whose onset coincided temporally 

with the bulk of attention accumulation indexed by P3a, was reported less correctly than 

T1 in TD trials. The AB models used to generate the predictions tested in the present 

study provide different explanations for this often-observed effect. Both accounts 

postulate that encoding two consecutive targets incurs some form of intertarget 

interference. The models differ, however, relative to the locus of this interference. 

Olivers and Meeter (2008) propose a visual working memory locus, wherein encoded 

targets compete for maintenance and recall (see also Raymond et al., 1992, for an 

analogous proposal). Wyble et al. (2011) posit mutual inhibition of concurrently active 

types, and this is reflected in slightly lower report accuracy for consecutive targets 

relative to when targets are displayed in RSVP separated by intervals outlasting the AB 

window (cf. Dell’Acqua, Dux, Wyble, & Jolicœur, 2012, for supporting evidence). 
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The P3a found in this data could corresponds to the transient enhancement 

of frontal selection positivity (FSP) found by Martens et al. (2006; see also Potts, 2004; 

Smid et al., 1999) and measured in a 180–350 ms window post-T1 onset. Martens et al. 

(2006) concluded that FSP reflected attention control over target(s) selection, which is 

germane to the present idea of the function indexed by P3a. Thus, a small difference 

aside in the topography of the FSP component, whose peak was found at F7/F8 by 

Martens et al. (2006), the overlap of temporal parameters and proposed functional 

connotations of FSP and P3a suggests that the recruitment of the frontal brain regions 

for attention-guided selection in RSVP is reflected in rapid increments of frontal 

positive activity upon detection of T1. 

Limited evidence was found for attention inhibition induced by the lag 1 

distractor as predicted by Olivers and Meeter (2008). Based on the boost and bounce 

architecture, a negative component with a time course corresponding to that of the AB 

should have been observed following P3a at frontal electrode sites. This negative 

component, reported by Martens et al. (2006) in a post-FSP/P3a T1-locked time 

window, was parametrically investigated by Niedeggen, Hesselmann, Sahraie, Milders, 

& Blakemore (2004), who proposed that this component could index the activation of 

an “attention-gating mechanism” temporarily halting processing of visual information 

trailing a leading, attention-demanding visual event. In this perspective, given the 

temporal shift in onset of the distractor trailing one single target or two consecutive 

targets in TD and TT trials, respectively, a negative component with a postponed 

latency was expected in TT trials relative to TD trials. The results produced using the 

standard and ICA approaches do not appear in line with this prediction. No latency 

variations compatible with the hypothesis that post-P3a negative activity was elicited by 

the first target(s)-trailing distractor were detected when the negative component 
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emerged following the ICA decomposition of the multivariate spatiotemporal 

distribution of the T1-locked ERP signal. Furthermore, when the overall amplitude of 

post-P3a negative component was explored in a 310–510 ms time window, the results 

indicated an equivalence between TD and TT trials, which is incongruent with 

behavioral findings reflecting a much more pronounced AB in TT versus TD trials 

when tested with the behavioral variant of the present design (i.e., by masking the last 

target and monitoring its correct report; Dux et al., 2014). So, although a precise 

functional characterization of the post-P3a negative activity is beyond the scope of the 

present investigation and certainly worth further experimental inspection, the present 

ERP results appear to generally run counter to the idea of a distractor-induced nature of 

the AB. 

The ICA-P3b results were clear-cut: The onset of the P3b did not differ in 

TD versus TT trials, and its duration was longer in TT trials than in TD trials. These 

results suggest that encoding two targets took longer than encoding one target 

(Dell’Acqua et al., 2012; Dell’Acqua et al., 2009; Dux, Asplund, & Marois, 2008; 

Jolicœur & Dell’Acqua, 1998), and converge with proposals about the target-locked 

essence of the AB effect (see Dux & Marois, 2009; Martens & Wyble, 2010, for 

extensive surveys and comparisons of models of temporal attention hinging on this 

principle). Collectively, the P3b findings appear to be congruent with predictions based 

on Wyble et al. (2011). 

Two aspects of the P3b response time course deserve particular 

consideration. The P3b responses recorded in both TT and TD trials showed comparable 

onsets but clearly different offsets, that is, the P3b offset latency was postponed in TT 

relative to TD trials. In other words, the P3b response was unimodal, much like the P3b 

response to consecutive targets reported by Craston et al. (2009). These authors 
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interpreted the unimodal P3b response elicited by two consecutive targets as evidence 

for the targets’ integration into a single attention episode (see also Kessler et al., 2005, 

for analogous evidence produced using magnetoencephalography, MEG). The present 

results complement and extend those of Craston et al. (2009) by establishing a direct 

link between the amount of information that is ultimately encoded in visual working 

memory and the temporal extension of an attention episode. 

The second aspect emerges from the comparison between P3b duration 

(difference between offset and onset latencies) across TD and TT trials. The 108 ms 

difference in P3b duration for TT trials relative to TD trials suggests it takes, on 

average, 108 ms more to encode two targets compared with one target. This may seem 

surprising given the apparently relatively long time required for the P3b to reach its 

peak amplitude. However, the peak of the P3b presumably reflects encoding as well as 

all processes taking place prior to encoding. The difference between TT and TD 

conditions presumably subtracts out some of these differences, leaving a closer estimate 

of the mean encoding duration. Interestingly, Jolicœur and Dell’Acqua (1998), using 

dual-task methods and computer simulation, arrived at an estimate of about 169 ms of 

additional time to encode two letters (suggesting an encoding cost of about 84 ms per 

item, which is not far from the present estimate of 108 ms; see their Table 2 and 

Experiment 7). Encoding into working memory, or short-term consolidation, appears to 

be a slow process with high variance but for which the cost of additional items hovers 

around 108 ms, a value that converges nicely with the estimate reported by Craston et 

al. (2009) of 100 ms estimated from the T1-locked P3b offset in lag 1 trials compared to 

that in lag 8 trials. 

To summarize, rapid visual information processing for items that appear 

within the same temporal attention window was assessed by using EEG. Contrasting 
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two prominent computational models of the AB, P3 complex could be fractionated into 

distinct components, which were affected differently by whether an attentional window 

contained two targets or a target and a distractor. Specifically, whereas only frontal P3a 

amplitude was influenced by increased target load, both amplitude and latency of the 

parietal P3b were increased by target load. The results suggest that within temporal 

attention windows there are two stages of information processing subserved by distinct 

neural substrates. Selection appears to occur close-to-concurrently for multiple targets 

and draws on frontal regions of the brain. This then leads to encoding of this 

information in a serial manner that prominently taps the temporoparietal lobes. 
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2.3. Conclusion: Chapter 2 

In the current Chapter temporal dynamics of attention in an AB task was 

highlighted. As previously reported by other studies (e.g., Gross et al., 2004), frontal 

and posterior brain modulations occur during the AB effect. Specifically, in Experiment 

1a, the P3a component (which reflects the detection of relevant information) presented a 

decreased amplitude at short relative to long lags. P3b component was both decreased in 

amplitude and postponed in latency under analogous conditions. Collectively, the 

results suggest that AB delays target encoding in working memory, although the 

detection mechanism is not slow down but only decreased in efficacy. 

Moreover, in Experiment 1b, the activity elicited by a single target or two 

consecutive targets was investigated. the P3a was increased when two targets were 

presented relative to a single target. P3b component was also increased in amplitude but 

its time course was longer when two targets compared to one were presented. These 

results provided evidence for the involvement of frontal brain region in the selection of 

information presented in close succession, and of posterior brain regions in the serial of 

targets in visual working memory. 

The evidence of Experiment 1a will be now used as the benchmark to 

compare the same activations in a quite similar task which also includes visual spatial 

deployment of attention. Indeed, in the next Chapter, the last target of RSVPs will be 

lateralized. The predicted outcome is two folded: (i) a similar pattern of Experiment 1a 

regarding P3a and P3b modulations is expected, reflecting a common mechanism of 

visual attention in the RSVP; (ii) a modulation of N2pc, which reflect the posterior 

engagement of visual attention is expected, showing that visual spatial attention is 

disrupted by the same task dynamics which affect the typical AB effect.  
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Chapter 3 

Part of the content presented in this chapter has been described in the following 

published article: 

Losier, T., Lefebvre, C., Doro, M., Dell’Acqua, R., & Jolicœur, P. (2017). Backward 

masking interrupts spatial attention, slows downstream processing, and 

limits conscious perception. Consciousness and Cognition. 

https://doi.org/10.1016/j.concog.2017.04.005 

  



78 

 

3.1 Experiment 2 

3.1.1 Introduction 

The findings of Experiment 1A showed how the processes underlying AB 

dynamics are modulated through lags and by the target(s) preceding the last one of an 

RSVP. Results show that the decreased amplitude and the offset postponement of the 

P3a within the AB time window, which reflect the detection of the target, explain the 

onset delay and the decrease amplitude of the P3b, which mirror the target encoding.  

Some studies highlighted that there is a link between temporal and spatial 

deployment of attention (i.e., Dell’Acqua et al., 2006). In order to explore more in detail 

the functional link between temporal and spatial attention, Experiments 2 combined 

together Experiment 1a with a design inspired by the study of Dell’Acqua and 

colleagues (2006). Specifically, the activity elicited by a lateralized target presented in 

the end of an RSVP was recorded. The target could be separated by a short or long lag 

of one or two target(s). Moreover, a between subjects manipulation was the absence or 

the presence of a masking after the last target (see Method for details). As anticipated in 

the General Introduction, a lateralized target elicit a lateralized activity in the N2 time 

window, called N2pc (Luck & Hillyard, 1994a). The aim of this experiment was to 

highlight whether the N2pc, which is an earlier component compared to the P3a and 

P3b, is modulated by the AB attentional dynamics or by masking. Vogel et al. (1998) 

found no effects of AB on the visual P1 component, suggesting a locus of interference 

somewhere after early sensory encoding: based on this evidence, the N2pc could be a 

good candidate as the first marker of attentional disruption. In other terms, I want to test 

whether visual spatial attention is modulated by the same AB dynamics which modulate 

the P3 complex. 
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Figure 3.1. Example of an RSVP presentation of Experiment 2. In this example, three targets were 

presented. In the RSVP on the left part of the picture no mask was presented after the last target, 

differently from the panel on right. As for Experiment 1a, the RSVP could contain two consecutive 

targets and then a third one (at a short or long lag), or two targets separated by a short or long lag. 
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As in Experiment 1a, three or two targets were presented in each RSVP. At 

the end of each RSVP the central position, previously occupied by distractors and 

target(s) were occupied by a fixation cross. At the left and right of the fixation cross a 

green and a blue stimuli appeared: subjects’ task was to report at the end of each trial 

the identity of the midline presented target(s) and of the target-colored letter (blue or 

green, counterbalanced) at the end of the RSVP. Moreover, the last target of the RSVP 

was followed by a mask for a group of subjects.  

In summary, the impact of AB and masking was studied in spatial 

deployment of attention. Moreover, attentional ERP components related to detection 

and encoding of a target are investigated to replicate the findings of Experiment 1a. 

Regarding the deployment of attention, a decreased amplitude of the N2pc 

is expected when the last target is presented at short lag compared to a long one. 

Moreover, an analogous effect related to the number of target(s) which precede the last 

one is expected. Namely, a short lag could decrease the amplitude of the N2pc. Finally, 

visual masking is expected to decrease or suppress the N2pc as well.  

 

3.1.2 Method 

Participants 

The participants were eighty-five undergraduate students at Université de 

Montréal. Fifty-one were originally assigned to the no-mask group but eleven were 

excluded from analysis for various technical reasons (see the Electrophysiological 

Recording and Data Analysis section for details). Forty participants (30 females) 

between the ages of 19 and 33 (mean age = 21.71, SD = 2.3) were therefore kept for 

further analysis. Thirty-nine participants were assigned to the mask-present group. 

Thirty-four participants were kept for analyses (see the Electrophysiological Recording 
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and Data Analysis section for details) (25 females) and they were between the ages of 

18 and 26 (mean age = 21.45, SD = 1.9). All reported normal or corrected to normal 

vision, no history of neurological disorders, and all showed normal performance on the 

Ishihara color test. They received 20 $Can for their voluntary participation in the study 

after providing written informed consent. 

 

Stimuli 

An example of the stimuli and sequence of events on each trial is illustrated 

in Figure 3.1. Filler frames in the RSVP sequence consisted of 3 identical digit 

distractors (between 2 and 9) in a triple RSVP stream. Trials could contain one, two or 

three targets that consisted of uppercase letters from the English alphabet (excluding B, 

I, O, Z, and Q, to avoid confusion with digits). The characters were light gray in Courier 

New font on a black background. Stimuli were 1° of visual angle in height, at a distance 

of 57 cm from the screen of a CRT monitor (maintained using a chin rest). In each 

frame, one stimulus was at fixation whereas the other two were displaced to the left or 

right by 3° and down by 1° of visual angle. Each item of the RSVP was presented for 

100 ms, with no inter-stimulus interval. Three-targets and two-targets condition are 

basically composed as in Experiment 1a: in the first case two consecutive target letters 

were presented in the central RSVP, in the second case only one letter was presented. 

The first target was randomly in the 6th, 7th, 8th, or 9th frame. In three-target trials, the 

second target was in the frame immediately following the first target. Finally, in order 

to elicit a deployment of attention that could be tracked by monitoring N2pc, the 

position of the last target was in the right or left visual field of the final frame; 3 or 8 

frames following the previous target. For participants in the masking group, last target 

frame was followed by a five by five blue and green checkerboard of 1° of visual angle. 
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Digits and letters were semi-randomly assigned during the sequence with no two same 

digits repeated from one frame to the next. Targets for a particular trial were always 

different letters from each other. For the last frame, participants were instructed to pay 

attention to a target color (blue or green; counterbalanced). The last target, whether a 

distractor or target, was in the target color (e.g., blue) while the middle digit was light 

gray and the digit on the other side was in the distractor color (e.g., green). Thus, the 

last frame containing characters could be a target (when a letter was printed as the target 

color) or a distractor (when a letter was printed as the distractor color). The stimulus on 

the other side of fixation was always a distractor (digit). This manipulation allowed 

participants to know when and where to deploy attention when the last frame consisted 

only of distractors. The luminance of the three colors used (blue, green, and light gray) 

was adjusted to be approximately equiluminant using a Minolta CS100 chromameter 

(3.30 cd/m2). 

 

Procedure 

Participants were seated in a dimly-lit electrically-shielded room and 

initiated each trial by pressing the space bar. A 100 ms jittered delay of 600 ms 

preceded the onset of the RSVP sequence. The task was to maintain fixation at the 

center of the screen and to encode letters presented at that location, and to encode a blue 

(for half of the subjects, green for the other half) letter in the final frame, for participants 

in the no-mask group, and in the frame just before the mask for those in the mask group. 

After the end of the sequence, they were to maintain fixation on a fixation cross for 

another 1 s, after which they entered all the letter(s) they saw on a standard keyboard 

after the fixation cross disappeared and a question mark appeared. The delay between 

the end of the RSVP sequence and the response period ensured that muscle activity and 
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ocular artifacts from eye movements towards the keyboard did not overlap with ERPs of 

interest. 

The experiment included 672 experimental trials divided into 21 blocks of 

32 trials each, preceded by a practice block of 16 trials. There were four within-subject 

experimental variables (factors) each with two levels, lag between the penultimate and 

the last target (3 or 8), trial type (2 or 3 stimuli to attend in the RSVP), presence or 

absence of the last target, and side-of-presentation of the last target (left or right visual 

field), yielding 16 combinations. And, there was one between-subjects factor: presence 

or absence of a mask after the last target (Figure 3.1).  

 

3.1.3 EEG/ERP Recordings and Preprocessing 

EEG was recorded using a BioSemi Active Two system and an elastic cap 

with 64 Ag/Ag–Cl electrodes positioned according to the International 10/10 system. 

The sampling rate was 512 Hz and the signal was referenced to the average of left and 

right mastoids after the recording. A high-pass filter of 0.1 Hz and a low-pass filter of 

30 Hz were applied offline. The horizontal electro-oculogram (HEOG) was obtained 

using the subtraction of activity from a pair of electrodes situated on the left and right 

eye outer canthi, which was used to monitor eye movement. Vertical eye movements 

and blinks (VEOG) were measured by subtracting data of an electrode situated below 

the left eye from the data above the left eye (Fp1). VEOG and HEOG channels were 

filtered with a 10 Hz low-pass filter and a 0.1 Hz high-pass filter to facilitate trial-by-

trial ocular artifact rejection. An Independent Component Analysis (ICA) was 

performed to remove blink artifacts. Components related to ocular artifacts were 

selected by comparing the components identified by the ICA to the EOG signal 

waveforms and by examining the topography and time course of the components using 
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the method described by Drisdelle, Aubin, & Jolicœur (2017). Any remaining 

fluctuation higher than 50 μV within a 150 ms period of the VEOG signal was labeled 

as a blink that was missed by the ICA procedure (although it could simply be noise 

from another artifact). Trials containing such fluctuations were removed from the data 

set. Similarly, segments with an HEOG difference of more than 35 μV over a 300 ms 

period were considered eye movements and were removed. Data from any channel 

exceeding ±100 μV during a trial segment was interpolated, up to a maximum of 7 

channels in any given trial. Trials with more than 7 channels exceeding this range were 

rejected. Participants that had more than 40% of trials rejected based on these criteria 

were excluded from further analysis. This resulted in the exclusion of data from 11 

participants in the mask-absent group and 2 participants in the mask-present group. 

Additionally, three participants in the mask-present group were rejected because they 

correctly reported T3 in less than 2% of trials were it was present no matter the lag. The 

other participants correctly reported T3 67% of the time. For these participants, an 

average of 7.65% of trials were rejected. EEG was segmented based on the onset of S3, 

with a 100 ms pre-stimulus baseline and a 1000 ms post-stimulus-onset period. 

In order to isolate last target-locked P3a and P3b from the overlapping 

activity caused by the previous stimuli in the RSVP stream, trials where the last target 

was absent were used. Following the same rational employed in Experiment 1a, by 

subtracting target absent from target present conditions, it was possible to isolate the 

P3a and P3b activity related to the processing of the last target. This technique (or close 

variant) was used in previous related work (e.g., Ptito et al., 2008; Vogel & Luck, 

2002). The P3b was measured at electrode Pz and the P3a was measured at Fz. The last 

target-locked N2pc was measured at PO7/PO8 (where N2pc activity usually reaches its 

peak), and computed by subtracting electrical activity measured at an electrode 
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ipsilateral to the attended stimulus from activity measured at a corresponding 

contralateral electrode. Only the last target was in a lateral location on the screen, 

ensuring that the stimulus of interest (last target) was the only one eliciting the N2pc 

component. Since the N2pc component collapse together both the scalp hemispheres, in 

this experiment was not possible to deconstruct the ERP trough ICA as for the previous 

experiments. 

 

3.1.4 Results 

Behavior 

Based on the experimental hypothesis, only trials in which the last stimulus 

was a target were considered for analyses, and the mean proportion of correct report for 

each target was contingent on the correct report of preceding targets (see Table 3.1). 

ANOVAs were performed on the mean proportion of correct report for each target as a 

function of the trial type (two-targets and three-targets trials) and lag (3 vs. 8) as within-

subject factors and presence of the mask (mask-present trials vs. mask-absent trials) as a 

between-subject factor. 
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Mask Absent Trial Type Lag 

Target  3 8 

p(T1) Two-targets .96 .96 

 Three-targets .82 .83 

p(T2|T1) Two-targets .97 .97 

 Three-targets .88 .90 

p(T3|T1^T2) Three-targets .93 .69 

Mask Present Trial Type Lag 

Target  3 8 

p(T1) Two-targets .97 .96 

 Three-targets .84 .84 

p(T2|T1) Two-targets .66 .78 

 Three-targets .88 .87 

p(T3|T1^T2) Three-targets .48 .75 

 

Table 3.1. Mean probability of correct report of each target in each condition. 

Values in the table are contingent on the correct report of preceding target(s) (e.g., T2|T1 indicates the 

probability of T2 correct response when T1 is report correctly.  

 

On average, subjects were more accurate in reporting T2 in two-targets 

trials than in reporting T1 in three-target trials, F(1,72) = 252.64, ηp
2 = .642, p < 0.001. 

That is, report of the first target in the stream was better when there were only two 

targets shown overall than when there were three. There was no significant difference 

between lags, however, F(1,72) = 0.14, p = 0.709, or between mask-present and mask-

absent trials F(1,72) = 0.40, p = 0.531, on accuracy of report of the first target in the 

stream (T1, in T1-present trials; T2 in T1-absent trials). 

An ANOVA was carried out to compare the mean proportion of correct 

report for T3 (conditional on correct report of the preceding target(s)), as a function of 
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lag, mask presence, and trial type (two targets and three-targets trials). Last target 

accuracy was lower at lag 3 than at lag 8, F(1,72) = 113.46, ηp
2 = .764, p < 0.001. Last 

target accuracy was lower for T1-present trials than for T1-absent trials, F(1,72) = 

108.18, ηp
2 = .420, p < 0.001. T3 accuracy was lower when the last target was followed 

by a mask compared with the no-mask condition, F(1,72) = 74.99, ηp
2 = .768, p < 0.001. 

Additionally, a significant three-way interaction between these factors was found, 

F(1,72) = 30.21, ηp
2 = .245, p < 0.001. FDR (Benjamini & Hochberg, 1995) corrected t 

tests with indicated that there was no lag effect for two-targets trials when no mask was 

present, t(39) = 0.73, p = 0.471, while reliable lag effects were found for two-targets 

trials when a mask was present, t(33) = 5.89, ηp
2 = .648, p < 0.001. Lag effects, though 

of different magnitude, were detected both when the mask was present, t(33) = 10.99, p 

< 0.001, and when the mask was absent, t(33) = 3.01, p = 0.005. Results indicated that, 

when the masking is absent, an AB effect was only found for three-target trials, 

according to the results found in Experiment 1a, and converging with prior studies 

(Giesbrecht & Di Lollo, 1998; Jannati et al., 2011, 2012; Sessa et al., 2007). As 

expected, in mask-present trials the AB deficit (lower accuracy for lag 3 trials vs. lag 8) 

was more pronounced when more targets were presented (three-targets vs two-targets 

trials) t(33) = 7.37, p < 0.001. 

 

ERP 

P3b 

Figure 3.2 shows the grand average P3b difference waves (last target-

present minus last target-absent) for the various trial types at Pz, while Table 3.2 lists 

the mean amplitudes of these waveforms. Amplitudes were obtained by measuring the 

mean amplitude in a 150 ms window centered on the peak of the waveform in mean 



88 

 

grand averages for each condition. Peak amplitudes were reached at the following time 

points for mask-absent trials conditions: two-targets trials, lag 3 = 507 ms; two-targets 

trials, lag 8 = 457 ms; three-target trials, lag 3 = 566 ms; and three-targets trials, lag 8 = 

490 ms. For mask-present trials, mean peak amplitudes were reached at the following 

time points: two-targets trials, lag 3 = 537 ms; two-targets trials, lag 8 = 523 ms; three-

targets trials, lag 3 = 701 ms; and three-targets trials, lag 8 = 597 ms. The amplitudes for 

each subject were submitted to an ANOVA that considered lag (3 vs. 8) and trial type 

(two-targets trials vs. three-targets trials) as within-subject factors, and masking (mask-

present vs. mask-absent trials) as a between-subject factor. The mean amplitude of the 

P3b component was significantly smaller at lag 3 than lag 8, F(1,72) = 34.12, ηp
2 = 

.367, p < 0.001. The P3b had a smaller amplitude for mask-present then mask-absent 

trials, F(1,72) = 17.91, ηp
2 = .521, p < 0.001. However, there was no significant 

amplitude difference between two-targets and three-targets trials, F(1,72) = 0.40, p = 

0.52. There were no significant interactions in the analysis, all ps > 0.09. 

Figure 3.2. P3b waveforms. Grand average ERP difference waves (last target-present minus last target-

absent trials) showing the P3b component at Pz electrode site for lags 3 and 8, two-target and three-target 

trials, for the mask-absent group and the mask-present group. 
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Mask Absent Lag 

Trial Type 3 8 

Two-targets 5.18 5.52 

Three-targets 4.23 5.92 

Mask Present Lag 

Trial Type 3 8 

Two-targets 2.34 4.11 

Three-targets 2.32 4.14 

 

Table 3.2. P3b amplitude. Mean P3b amplitudes (μV) (last target-present minus last target-absent trials). 

 

Mean P3b latencies, estimated using a jackknife approach (Kiesel et al., 

2008; Ulrich & Miller, 2001) with individually derived values using the solution 

proposed by Brisson and Jolicœur (2007) and Smulders (2010), were also compared 

(see Table 3.3). Latency values were calculated as the time-point when individual 

jackknife waveforms reached 50% of the area under the curve (for values above 0 μV) 

in a 190–990 ms window from the onset of the last target. The same ANOVA model as 

described above was used. P3b latency was significantly delayed for lag 3 trials 

compared to lag 8 trials, F(1,72) = 47.86, ηp
2 = .427, p < 0.001. P3b latency was also 

longer for three-targets trials compared to two-targets trials, F(1,72) = 29.02, ηp
2 = .318, 

p < 0.001. Furthermore, P3b latency was longer for mask-present trials compared to 

mask-absent trials, F(1,72) = 29.64, ηp
2 = .531, p < 0.001. There were no significant 

interactions between these factors, all ps > 0.2. As expected, the P3b results converge 

with Experiment 1 results, and further them indicating that encoding of a target is less 

efficient and delayed in the presence of a mask. 
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Mask Absent Lag 

Trial Type 3 8 

Two-targets 530 486 

Three-targets 593 519 

Mask Present Lag 

Trial Type 3 8 

Two-targets 627 589 

Three-targets 667 628 

 

Table 3.3. P3b amplitude. Mean P3b latency (ms) (last target-present minus last target-absent trials). 

 

P3a 

Figure 3.3 shows the grand average P3a difference waves (last target-

present minus last target-absent) at Fz. Mean amplitudes estimated using a window 

between 270 and 320 ms are listed in Table 3.4. The amplitude was larger for lag 8 

trials compared to lag 3 trials, F(1,72) = 7.65, ηp
2 = .471, p = 0.007, the difference 

between two-targets and three-targets trials did not reach significance, F(1,72) = 2.66, p 

= 0.108. There was a marginally significant interaction between lag and trial type, 

F(1,72) = 3.61, ηp
2 = .347, p = 0.061. For lag 3, more targets (T1-present) meant a 

smaller amplitude whereas the opposite was found for lag 8. Finally, P3a amplitude was 

larger for mask-absent trials than for mask-present trials, F(1,72) = 7.11, ηp
2 = .418, p = 

0.009. There were no other significant effects in the analysis, all ps > 0.102. Results 

indicate that masking makes engagement of attention less efficient during the AB. 
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Figure 3.3. P3a waveforms Grand average ERP difference waves (last target-present minus last target-

absent trials) showing the P3a component at Fz electrode site for lags 3 and 8, two-targets and three-

targets trials, for the mask-absent group and the mask-present group. 

 

Mask Absent Lag 

Trial Type  3 8 

Two-targets  1.02 1.11 

Three-targets  0.49 1.65 

Mask Present Lag 

Trial Type 3 8 

Two-targets  0.51 0.97 

Three-targets –0.16 0.46 

 

Table 3.4. P3a amplitude. Mean P3b amplitudes (μV) (last target-present minus last target-absent trials). 
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N2pc 

Figure 3.4 displays the grand average contralateral minus ipsilateral 

waveforms for T3-present trials for two-targets and three-targets trials, for each lag, and 

each group (mask-absent vs. mask-present). N2pc onset was about the same for the two 

masking conditions, but the peak amplitude and duration of N2pc was clearly different 

across masking conditions. For this reason, the window used to estimate the mean 

amplitude of N2pc was different for the two groups (200–300 ms for the mask-absent 

group, and 170–270 ms for the mask-present group; which was a 100 ms window 

around the approximate peak in the grand average difference waves). The mean 

amplitudes for each participant for each condition were submitted to an ANOVA with 

the same model as for the P3 analyses. The overall means are shown in Table 3.5.  

 

Figure 3.4. N2pc waveforms. Grand average ERP difference waves (contralateral minus ipsilateral) 

showing the N2pc component at PO7/PO8 electrode sites for lags 3 and 8, two-targets and three-targets 

trials, for the mask-absent group and the mask-present group (for three-targets trials only). 
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Mask Absent Lag 

Trial Type  3 8 

Two-targets  –2.23 –1.88 

Three-targets  –1.94 –1.58 

Mask Present Lag 

Trial Type 3 8 

Two-targets  –1.01 –0.77 

Three-targets –0.83 –0.66 

 

Table 3.5. N2pc amplitude. Mean N2pc lateralized amplitude (μV) (contralateral minus ipsilateral) for 

lags 3 and 8, T1-absent and T1-present trials, as well as for trials with a mask compared to trials without a 

mask. 

 

Although an N2pc for T3-absent trials was found, given the presence of the 

selection in the last stimulus frame, preliminary analyses showed that N2pc was much 

smaller for T3-absent trials than for T3-present trials, presumably because attention 

could be quickly disengaged when the last stimulus contained a distractor (T3-absent) 

rather than a target (T3-present). The much-reduced N2pc for T3-absent trials made it 

difficult to examine differences in N2pc as a function of other task variables. For that 

reason, following analyses were focused on T3-present trials. N2pc amplitude did not 

vary significantly between lags, F(1,72) = 1.78, p = 0.186, or between three-targets and 

two-targets trials, F(1,72) = 1.72, p = 0.193. However, as is apparent upon inspection of 

Figure 3.4, N2pc amplitude was larger for mask-absent relative to mask-present trials, 

F(1,72) = 15.28, ηp
2 = .414, p < 0.001. The analysis of N2pc amplitudes did not detect 

other significant effects, all ps > 0.18. 

Visual inspection of Figure 3.4 also revealed marked differences in the 

offset of N2pc for mask-present and mask-absent trials. An ANOVA on jackknife 

latency estimates (see Table 3.6) confirmed this, F(1,72) = 14.81, ηp
2 = .187, p < 0.001. 
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However, N2pc offset latency did not vary between lags, F(1,72) = 0.001, p = 0.975, 

nor across two-target vs. three-target trials, F(1,72) = 0.14, p = 0.709. There were no 

significant interactions between these factors, min p > 0.20. 

 

Mask Absent Lag 

Trial Type 3 8 

Two-targets 307 304 

Three-targets 305 325 

Mask Present Lag 

Trial Type 3 8 

Two-targets 263 252 

Three-targets 243 238 

 
Table 3.6. N2pc latency. Mean N2pc latency (ms) (contralateral minus ipsilateral) for lags 3 and 8, two-

targets and three-targets trials, as well as for trials with a mask or trials without a mask. 

 

 

N2pb 

Given the absence of AB-related effects on the N2pc, I tried to assess 

whether any bilateral modulation in the N2 time range was present. In this case, the 

N2pb data was the average of the contralateral and the ipsilateral ERPs used to estimate 

the N2pc (in the latter case, the ipsilateral ERP was subtracted from the contralateral 

one). For this reason, by submitting the N2pb data to an ANOVA which consider as 

predictors the same variables of the other analysis (trial type, lag, masking). In this way, 

it was possible to investigate also the bilateral modulations of the ERP.  

The mean amplitudes for each condition are shown in Table 3.7. N2pb was 

larger (more negative) at lag 8 than at lag 3, F(1,72) = 10.06, ηp
2 = .301, p = .002. N2pb 
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was also more negative for three-targets trials than for two-targets trials, F(1,72) = 

141.65, ηp
2 = .210, p < .001. Furthermore, these factors interacted F(1,72) = 8.03, ηp

2 = 

.249, p = .006. To further understand this interaction, the amplitude of the N2pb across 

two-targets and three-targets trials was considered in separates t-tests, finding that only 

trials at lag 8 and showed a significantly larger amplitude for three-targets trials t(73) = 

8.74, p < .001. At lag 3, the amplitude was also larger in three-targets trials t(73) = 9.53, 

p < .001. Although the main effect of mask was not significant, F < 1, it interacted with 

lag, F(1,72) = 5.21, ηp
2 = .373, p = .025, and an independent sample t-test revealed that 

the decrease in N2pb amplitude from lag 3 to lag 8 was larger when the last target was 

followed by a mask than when it was not masked t(73) = 3.03, p = .003. 

 

Mask Absent Lag 

Trial Type    3 8 

Two-targets    1.70 0.89 

Three-targets   –0.69 –0.50 

Mask Present Lag 

Trial Type 3  8 

Two-targets 2.30  0.15 

Three-targets 0.46 –1.24 

 

Table 3.7. N2pb amplitude, for lags 3 and 8, two-targets and three-targets trials, for trials with and 

without a mask presented at the end of the RSVP. 
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3.1.5 Discussion 

In these two experiments, the role of masking in the spatial deployment of 

attention, attentional engagement, and encoding of representations in working memory 

during the AB were investigated. To do so, an AB paradigm containing letters (targets) 

among distractors (digits) was employed. Each RSVP could be composed by two or 

three stimuli to attend, and the lag between the last stimulus and the previous(es) could 

be 2 or 7 distractors. Finally, a between subjects experimental manipulation consisted in 

the absence or presence of a masking after the last stimulus of the RSVP. All the ERP 

analysis has been time-locked to the onset of the last stimulus. Together, these 

manipulations produced a rich set of experimental conditions, enabling an examination 

of the impact of masking and processing load on the AB, both on behavior and on ERP 

isolated from concurrent measurements of the EEG during the task. 

Behaviorally, when the last target was masked, an AB effect (i.e., a 

reduction in the accuracy of report of the last target at lag 3 vs. lag 8) was observed both 

in two-targets and three-targets trials, and this effect was larger for three-targets trials. 

When the last target was not masked, two-targets trials no longer showed a behavioral 

AB effect while traces of an AB effect were still detected in three-targets trials. The 

absence of an observable behavioral AB effect for mask-absent trials might be a 

consequence of the high accuracies, which might have led to a ceiling effect. It is 

therefore difficult to interpret the absence of AB deficit under such conditions. An 

experiment by Nieuwenstein et al. (2009) demonstrated that an AB deficit can be 

generated even when distractors are replaced by blank intervals. This suggests that 

masking might not be necessary in order to observe AB deficits. Moreover, the accuracy 

in reporting the last target was lower in three-targets trial compared to two-target trials. 

These results replicated the findings of Experiment 1a, extending the evidence in 
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relationship with a lateralized visual information. Importantly, accuracy was 

significantly impacted by the presence of a backward mask, making it harder for 

participants to report targets when a mask followed the last target, and masking 

magnified the AB effect, as expected from previous research. 

The electrophysiological measures showed a smaller P3b amplitude for 

short lag trials as was previously reported in Experiment 1a (and in other studies: Vogel 

et al., 1998; Vogel & Luck, 2002). This component was however not completely 

suppressed when the mask was present as was reported by Vogel and Luck (2002). This 

allowed us to observe a lag effect on latency of P3b in both the mask-absent and mask-

present. 

The onset of the P3b was later for a target presented at lag 3 compared to 

lag 8. As reported in the Experiment 1a, increasing the number of initial targets (T1-

present compared with T1-absent) also delayed the P3b. These finding complement 

previous research suggesting that the P3b reflects processing in a capacity-limited 

mechanism, which is either delayed, and/or slowed, under some conditions. Importantly 

for this experiment, using a backward mask, a similar pattern as in Vogel and Luck’s 

(2002) study, was observed. Namely, a significant decrease in amplitude of the P3b in 

the short lag condition. It is possible that this attenuation in amplitude was not 

pronounced as the one found by Vogel and Luck (2002) because of the use of a mask 

consisting of a small checkerboard, which perhaps approached masking by noise rather 

than by pattern. This result, however, suggests that the type of backward mask (at least 

between pattern and noise masks, at the target-mask SOA that was used) may not affect 

encoding in working memory differently, both of then making memory encoding a less 

efficient process. The backward mask delayed the P3b by 70–100 ms (depending on 

experimental conditions). It is very likely that this effect could be observed for other 
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types of masks, as long as the strength of masking did not completely suppress the P3b, 

as occurred in the Vogel and Luck (2002) study. The present findings help to clarify the 

role of masking in the AB paradigm and refine the understanding of capacity limitations 

underlying the AB. Masking causes a delay of the P3b, suggesting that processing 

masked targets is less efficient than processing targets that are not masked. Processing a 

masked stimulus, under AB load, is slowed, or perhaps even postponed, which can be 

observed in delayed latency of relevant ERP components, as well as increased response 

times when the paradigm involves speeded responses (Jolicœur & Dell’Acqua, 1998). 

The impact of masking on the frontal engagement of selective attention in 

the AB was investigated as well. The effects on the P3a found in the Experiment 1 were 

replicated successfully. Namely, P3a elicited in longer lag trials is larger in amplitude 

compared to shorter lag. Importantly, both for mask-present and mask-absent trials, lag 

effect on the P3a amplitude elicited by the last target was more pronounced in three-

targets trials compared to two-targets trials). In three-targets masked trials, when the last 

target is presented at lag 3, there was a particularly large lag effect leading to a complete 

suppression of the P3a. Total encoding load, therefore, does affect selective engagement 

of attention on a subsequent target by exacerbating the lag effects during the AB. Of 

particular interest was the significant effect of the presence of the mask in suppressing 

the amplitude of the P3a response. As suggested in previous literature, the P3a 

represents attentional engagement (Barceló et al., 2006), and these results would be 

consistent with models suggesting that AB reflects greater selection difficulty under 

some conditions. In the episodic simultaneous type, serial token model (Wyble et al., 

2009) for instance, during encoding of the first target, attention is inhibited so as to 

avoid distractor interference. This inhibition would impede the selection of the blinked 

target (see also Wyble et al., 2011). 
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The effect of masking on the N2pc during the AB was investigated. In 

contrast with several earlier studies, a lag effect on N2pc amplitude was absent in these 

two experiments. There was also no effect of the number targets presented in the RSVP 

(i.e., no difference in the N2pc elicited by the last target in two-targets vs. three-targets 

trials), despite clear effects of this manipulation on accuracy, and on P3b latency as well 

as a trend, that did not quite reach significance, towards a trial type effect for P3a 

amplitude, reproducing patterns found in the Experiment 1a. These results were 

unexpected, and there is no clear-cut explanation for the apparent discrepancies with 

previous works (Akyürek et al., 2010; Jolicœur et al., 2006; Pomerleau, Fortier-

Gauthier, Corriveau, McDonald, et al., 2014). Although many aspects of these 

experiments were similar to previous ones, one difference that was possibly responsible 

for this is the fact that the present experiment used three RSVP streams in order to mask 

the last lateralized target. The literature on the AB shows that dividing attention by 

adding an irrelevant task could reduce the AB (Olivers & Nieuwenhuis, 2005). Perhaps 

the three RSVP design created a divided attention situation since the side RSVP streams 

required attention but where irrelevant until the very end. This possibly reduced the AB 

impact on attentional deployment. Given the speed of presentation of the stimuli in the 

RSVP streams, it is possible that participants adopted a strategy of initially attempting 

to encode the stimuli on both side, before zeroing in on the target side (based on the 

color cue). Perhaps the most striking result regarding the N2pc was the impressively 

large effects of masking on N2pc amplitude and duration. The trailing mask appeared to 

limits the duration of useful processing of the target, reflected in a shorter N2pc 

duration and lower overall amplitude, compared to the no-mask condition. The 

attenuation and early termination of the N2pc is consistent with the hypothesis that 

masking curtailed the attentional deployment on the last target, slowing and attenuating 
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downstream processing (reflected in poor performance and attenuated and delayed P3 

responses). Considering this, processing of a masked last target would produce a 

representation that may be more vulnerable to interference and it is therefore not 

surprising that the accuracy in reporting such target is lower during the AB. 

Of paramount importance, an examination of the N2pb component showed 

that, differently from what was expected, bilateral posterior modulations in the N2 time 

domain was associated to the trial type (two-targets vs three-targets trials), the lag, and 

the presence or absence of a masking as well. Since these modulations were bilateral 

(i.e., identical both for the contralateral and the ipsilateral portion of the subtracted 

ERP) they were covered in the subtracted N2pc. 

N2pb has been involved in previous work examining visual-spatial 

processing (e.g., Schubö, Schröger, & Meinecke, 2004). This result showed for the first 

time that reducing the lag to previous targets to be encoded in the AB paradigm 

decreases the N2pb amplitude. This modulation is in line with the decrease in amplitude 

of both P3a and P3b component. In other words, temporal dynamics of visual spatial 

attention suffer from a limited capacity mechanism as the frontal detection and the 

encoding. Interestingly, while reducing lag decreased N2pb (making it less negative, or, 

more positive), the amplitude of P3a and P3b was reduced with a shorter lag (i.e., P3b 

became less positive). This is an important finding because it suggests the reduced 

N2pb cannot be explained by volume conduction of the effects on P3a and P3b. 

The effects of lag on N2pb likely reflect some impairment of processing, 

maybe stimulus categorization, during the AB. To my knowledge, no other AB study 

investigated the N2pb, and the present results suggest that further studies examining the 

N2pb are likely to be useful. Interestingly, N2pb locked to the last target was 

significantly larger (more negative) when there were more leading targets (three-targets 
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condition). This finding suggests that N2pb reflects total processing load, and increasing 

the amount of information to be processed increases N2pb. As for the lag effect, the 

N2pb modulations seems to be not related to the volume conduction of the other 

components. 

Importantly, although the early attentional component of processing was 

apparently shortened by the mask, later downstream processing was probably 

lengthened, assuming the representation of the masked target was not completely 

eliminated. It is interesting to consider these results in relation to the role of the 

distractor following the first target plays in the AB. Raymond et al. (1992) found a 

larger AB when T1 (they only had two-target trials) was followed by an immediate 

distractor, suggesting a lengthening of capacity-demanding processing of T1 (e.g., 

Jolicœur, 1999b). Brisson et al. (2010) found that masking T1 reduced the amplitude of 

the P3b, as it did for masking T2 (their last target). According to the authors these 

findings show that masking T1 could reduce processing efficiency, leading to greater 

cost for the last target. Maybe the N2pc and P3a results obtained by masking the last 

target would also be similar to that for a masked first target. As seen in the present 

work, masking the last target had a big impact on its processing but perhaps masking 

the first target also does and this effect might carry-over to the last target and accentuate 

downstream masking effects. While some authors give a central role to masking in the 

AB, some suggest that masking might not be necessary in order to observe AB deficits. 

This would explain how an AB can be measured when distractors are replaced by blank 

intervals (Nieuwenstein et al., 2009). It is however undeniable that masking played an 

important role in behavioral deficits in this experiment. It has been suggested in several 

studies (e.g., Ouimet & Jolicœur, 2007; Vogel & Luck, 2002) that the AB is a 

consequence of limited-capacity of the underlying mechanisms leading to the AB.   
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3.2. Conclusion: Chapter 3 

In the experiment presented in this Chapter the influence of the AB on 

visual spatial attention was investigated. As previously reported (e.g., Dell’Acqua et al., 

2006), it was already known that there is a suppression of the N2pc –a component 

which reflect the deployment of attention in space– when a lateral target is presented in 

a critical position within an RSVP. As hypothesized, the same pattern of Experiment 1a 

of the P3a and P3b elicited by the last target of an RSVP emerged. Specifically, the P3a 

component (detection) was decreased in amplitude and the P3b (encoding) was both 

decreased and postponed in latency at short relative to long lags. This suggests that, 

regardless the position of a target, mechanisms which drive temporal dynamics of 

attention are the same for both foveal and parafoveal information.  

Differently from what expected, no N2pc modulations related to the AB 

experimental manipulations were found. Of interest, visual spatial attention is disrupted 

by the AB over both the brain hemispheres. Indeed, N2pb component modulates related 

to number of target presented within the RSVP and also the lag between the last target 

and the previous(es). This means that the cognitive disruption due to the AB exert a 

general effect on the visual spatial function domain, and not a specific effect related to 

the contralateral (that is supposed to be related to target processing, e.g., Eimer, 1996) 

or ipsilateral (that could be a marker of distractor suppression, e.g., Hickey et al., 2009) 

portion of the N2pc. 

Overall, this evidence highlighted a common base between foveal and 

parafoveal attention. A limit of this argument is that this common base is presently 

supported someway indirectly, namely, through an AB task. This point raises the 

necessity to understand the origin of this evidence: the two experiments presented in the 

next Chapter try to answer to this question by using a visual search task. Differently 
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from usual visual search tasks, here a target could appear also on the midline (and not 

only in lateral positions). The reason of this manipulation is to compare contralateral 

and ipsilateral activity of the N2pc (elicited by lateral targets) with the bilateral activity 

of the N2pb (elicited by a target presented on the midline). In this last case, no 

differences between the two scalp hemispheres emerge, and this activity (that as for the 

N2pc is the average between two parieto-occipital electrodes such as P7 and P8, or PO7 

and PO8) can be compared to the contralateral and ipsilateral portion of the N2pc. In 

other words, N2pb activity is now used as a baseline for the contralateral and ipsilateral 

portion of the N2pc; so, the foveal attention served as a baseline for parafoveal 

attention. Based on my knowledge on this topic, there are no previous evidence which 

yield to make a prediction regarding the comparison of N2pb and contralateral and 

ipsilateral portion of the N2pc. Nevertheless, data could provide important evidence 

related to this issue.  



104 

 

Chapter 4 

4.1 Experiment 3a 

4.1.1 Introduction 

Experiment 2 showed that visual attention, when measured separately over 

the bilateral parieto-occipital scalp portion, is prone to AB-related modulations which 

are similar to the ERP components previously studied using a standard RSVP (when the 

stimuli are all presented in the center of the screen). This is in line with a hypothesis 

tested in my thesis, namely, foveal and parafoveal visual attention are guided by the 

same mechanisms. 

As explained in the General Introduction, a lateral stimulus presented 

among distractors elicit a lateralized component called N2pc, namely a posterior N2 

component which is more negative over the parieto-occipital portion of the scalp 

contralateral to the target presentation (Luck & Hillyard, 1994a; b). More than two 

decades of literature suggested that the contralateral portion of this component reflect 

the selection of the target (i.e., Eimer, 1996; Mazza & Caramazza, 2011) and the 

ipsilateral portion reflect the suppression of the irrelevant information (i.e., Hickey et 

al., 2009). 

The aim of the experiments presented in this chapter is an investigation of 

the lateralization of posterior ERP in the N2 time range by following a different 

strategy, namely, to compare the difference between the ERP activation of a lateral 

target and a target presented on the midline. As mentioned previously, a target presented 

in the midline elicit a bilateral N2 component called N2pb (Luck & Hillyard, 1994a; 

Simson, Vaughan, & Walter, 1976). This component can be considered as the average 



105 

 

of the ERP elicited by two lateralized electrodes, namely, the same two electrodes 

considered to compute the N2pc (P7 and P8 or PO7 and PO8). The contralateral and 

ipsilateral portion of the N2pc are also an average of two electrical signals: the average 

activity of a left electrode (when a target is presented on the right visual hemifield) and 

a right electrode (when a target is presented on the left visual hemifield) is a 

contralateral signal. By following the same rationale, the same average of electrodes’ 

activity can be also an ipsilateral signal. By comparing the activity of N2pb (when the 

target is on the midline), and the contralateral and ipsilateral portion of the N2pc (when 

the target is presented on the lateral portions of the visual field) it will be possible to test 

further what there is in common between lateralized and non-lateralized deployment of 

attention. 

To my knowledge, it is hard to do predict a precise outcome. One could 

hypothesize that, compare to a midline presented target, a lateral one should elicit both a 

more negative contralateral activity and a more positive ipsilateral activity. This would 

be in line with the Nt (target negativity) and Pd (distractor positivity) components 

proposed by Hickey and colleagues (2009): the more negative contralateral activity 

would reflect the lateral target selection, and the most pronounced ipsilateral activity 

would reflect the distractor suppression. This scenario cannot be priory excluded, 

although it would be a result that hardly converge with the fact that parafoveal attention 

are prone to the same AB behavioral failure and ERP patterns of foveal RSVP 

presentations. In other terms, since the ERP modulations found in Experiment 2 are 

bilateral, and since a single RSVP does not present distractors at the same time of T2 

(when T2 is within the AB time window), the attentional disruption related to the AB 

for lateral target is only related to target and not distractors. If the commonality between 

foveal and parafoveal AB effect is only related to the target processing, it is more 
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probable that the outcome of the experiments that follow will show similar ERPs for 

midline target (N2pb) and target-related activity of a lateralized to-be-detected target 

(contralateral portion of the N2pc). 

 

4.1.2 Methods 

Subjects 

Eighteen students at the University of Padua (14 females) participated in the 

experiments after giving informed consent. Their mean age was 23.1 years (SD = 3.2) 

and all subjects had normal or corrected-to-normal visual acuity. Three subjects were 

removed from the final sample because of low overall accuracy (less than 50%, one 

subject) or high percentage of EEG epochs discarded due to eyes blinks and EEG 

artifacts (more than 40%, two subjects). 

 

Stimuli and procedure 

Equiluminant stimuli (8.9 cd/m2) were presented on a 19-inch CRT monitor 

at a viewing distance of 57 cm on a black background. Twelve circles (.5° radius) were 

presented spaced around an imaginary circle (3.5° radius) centered on a fixation cross, 

eleven of them were grey (RGB = 140,140,140) and the remain one was blue (RGB = 

0,110,255) or green (RGB = 52,137,0; counterbalanced). A bar was presented inside 

each circle; it was .8° long and was tilted 45° clockwise (“slash”) or counterclockwise 

(“backslash”) relative to vertical. Each trial began with a grey fixation cross (RGB = 

140,140,140) displayed during the whole trial, and after a random time interval between 

900 and 1100 ms the visual search array was presented for 150 ms. The task was to 

report, as fast as possible while keeping errors to a minimum, whether the bar inside the 

target circle was a slash or a backslash by pressing the C key or the M key 
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(counterbalanced) with the index fingers, on a keyboard placed in front of them. After 

the response, the fixation cross disappeared and accuracy feedback (“OK” or 

“WRONG”) was presented in the center of the screen. After 20 trials of practice, each 

subject performed 600 experimental trials, in which the target presence was equally 

distributed on left, midline, or right side of the visual search array. An example of a trial 

is illustrated in Figure 4.1. 

 

Figure 4.1. Example stimulus in Experiment 3a. After a random jittered interval of 900 – 1100 ms, the 

visual search array appears for 150 ms.  
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4.1.3 EEG Recordings and Analysis 

EEG activity was recorded continuously from 28 active electrodes 

positioned according to the International 10/10 system (Fp1, Fp2, Fz, F3, F4, F7, F8, 

FCz, C3, C4, Cz, CP1, CP2, CP5, CP6, P3, P4, Pz, O1, O2, Oz, T7, T8, TP9, PO9, 

PO10, P7, and P8 sites) placed on an elastic ActiCap (Brain Products, München, 

Germany), referenced to the left earlobe. An electrode was also used to record activity 

at the right earlobe. HEOG activity was recorded from electrodes positioned on the 

outer canthi of both eyes. VEOG activity was recorded from two electrodes, above 

(Fp1) and below the left eye. Impedance at each electrode site was maintained below 10 

KΩ. EEG, HEOG, and VEOG activities were amplified, filtered using a band-pass of 

0.016–80 Hz, digitized at a sampling rate of 500 Hz, and referenced offline to the 

average of the left and right earlobes. Independent components analysis (ICA, Delorme 

& Makeig, 2004; Jung et al., 2000) was used to identify blink and saccade components 

in the continuous EEG recordings and remove them from the data (Drisdelle et al., 

2017). The corrected EEG was high-pass filtered at 0.1 Hz and low-pass filtered at 20 

Hz and then segmented into 700 ms epochs starting 100 ms before the onset of the last 

character in the RSVP stream and ending 600 ms after and baseline-corrected using the 

mean activity in the interval [−100, 0] ms. To ensure no residual artifacts remained on 

the EOG channels, each segment was examined in the interval [−100, 600] ms relative 

to the onset of the visual search array for voltage deviations greater than 80 μV in any 

period of 150 ms for the VEOG difference waveform or a deviation greater than 45 μV 

in any 300 ms period for the HEOG difference waveform. Segments with residual 

ocular artifacts were removed from the data set. EEG channels were flagged when the 

signal exceeded ±100 μV anywhere in the analysis segment. If a segment had seven or 

fewer flagged data channels, these channels were interpolated using a spherical spline 



109 

 

interpolation algorithm in EEGLAB (Delorme & Makeig, 2004), for that segment, 

otherwise the segment was rejected. 

The ERPs of P7 and P8 electrodes were split across conditions (lateral target 

vs. midline target) and averaged to produce three ERPs: the contralateral and ipsilateral 

responses for lateral targets and the average response for midline targets. These ERPs 

will henceforth be referred as levels of the ‘target position’ variable. The mean 

amplitude of these three N2 ERP components were quantified as the mean value in a 

200–300 ms time window from the onset of the search array.  

 

4.1.4 Results 

Behavior 

An ANOVA was performed on the mean proportions of correct response for 

each presentation side (left = .85, midline = .89, and right = .86) showing a significant 

difference among the three performances, F(2,28) = 7.11, p = .003, ηp
2 = .337. Post-hoc 

FDR (Benjamini & Hochberg, 1995) corrected t-tests showed that the only significant 

differences were between the accuracy in reporting a target presented on the midline 

against one in the left visual hemifield (t(14) = 3.5, p = .001) or in the right (t(14) = 3.0, 

p = .007). No significant difference was found between the accuracy in reporting a 

target in left compared to one in the right (t(14) = .5, p = .88). 

The same analysis was conducted on the mean reaction times (RT; left = 

615 ms, midline = 607 ms, and right = 645 ms), finding no significant differences 

among them, F(2,28) = .53, p = .6. 
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ERPs 

Figure 4.2 shows the ERP waveforms for the three main conditions 

(ipsilateral, contralateral, midline). Statistical analysis shown that the averaged P7/P8 

activity was different across the target position levels (F(2,28) = 23.12, ηp2 = .623, p < 

.001), which has been examined in greater detail with pairwise FDR (Benjamini & 

Hochberg, 1995) corrected t-tests: no significant difference was found between 

Contralateral (.21 µV) versus Midline (.15 µV) activity: p = .98. However, the 

Contralateral (.21 µV) voltage was more negative compared with the Ipsilateral (1.29 

µV) voltage: t(12) = –6,18, p < .001; and the Midline (.15 µV) voltage was also more 

negative than the Ipsilateral (1.29 µV) voltage: t(12) = –5.55, p < .001. significant 

differences emerged, as suggested in Figure 4.2.  

 

  

Figure 4.2. Results from Experiment 3a. Grand average waveforms for the three levels of target position 

(ipsilateral, contralateral, midline ERP). 
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4.1.5 Discussion 

To further investigate how visual attention is deployed within the visual 

space, this experiment compared the parieto-occipital scalp activity in the N2 time range 

during a visual search task. The average of bilateral electrical activity elicited by a 

midline presented target and the contralateral and ipsilateral activity elicited by a lateral 

target were compared. Results show a complete similarity between the contralateral 

activity elicited by a lateral target and the bilateral activity elicited by a midline target. 

This could mean that while we attend to an object presented in front of us, activity in 

both the hemispheres shifts negatively, compared to cases in which the relevant 

information is lateral, in which case only the contralateral hemisphere shows a negative 

shift, suggesting a dominance of contralateral processing. The bilateral processing 

related to a midline target could explain the higher accuracy for midline targets 

compared with lateral targets found in the behavioral data.  

The electrophysiological data, moreover, seems to be in contrast with the 

hypothesis for which the ipsilateral component of the N2pc is a marker of distractor 

suppression (Hickey et al. 2009), because of its absence when the target is presented on 

the midline. If the distractor-related activity in this condition would be covered by other 

signal (namely, the target-related bilateral ERP), there should be a difference between 

the contralateral and the midline signal, because –differently from the former– the latter 

should reflect bilaterally both distractors- and target- related activity. 

Luck & Hillyard (1994a) reported an interesting result regarding N2pb and 

N2pc: namely, the authors found that the N2pb amplitude is sensitive to target 

presentation probability whereas N2pc is not. This is probably one of the first evidence 

which suggested that the attentional mechanisms reflected by these components are 

different. Probably due to this, also the opinion for which foveal and parafoveal visual 
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attention is mediated by difference cognitive functions raised. Nevertheless, there is an 

important caveat regarding the results by Luck & Hillyard (1994a), namely, the authors 

consider the N2pc as a unique subtracted value. As in Experiment 2 (Chapter 3) of these 

thesis, the subtraction of the contralateral and ipsilateral subcomponent of the N2pc 

could have hidden a bilateral modulation related to the target presentation probability. 

Although the reason for which many studies considered the subtracted N2pc instead of 

separate contralateral and ipsilateral subcomponent is probably related to convenience: 

indeed, by using two separates component would double the ERP plotted and also add 

an additional independent variable in statistics (namely, contralateral vs. ipsilateral). On 

the one hand one could argue that the subtracted N2pc is sufficient to detect when the 

difference between the contralateral and ipsilateral changes among conditions. On the 

other hand, this solution prevents to assess whether the condition-related ERP 

modulation is associate to the contralateral or ipsilateral subcomponent and, if they 

reflect two different brain mechanisms, it prevents to understand which brain 

mechanism change in relation to an experimental manipulation.  

By considering the midline-related activity as a baseline for the parafoveal 

deployment of visual attention, it seems that only the ipsilateral portion of the N2pc 

contributes to unbalance the posterior hemispherical electrical activities. Nevertheless, 

this experiment does not give the possibility to compare the bilateral activity elicited by 

a target presented on the midline with any kind of baseline condition, in which there is 

no shifts of attention or focusing on the salient information. 

To investigate this issue, the current experimental design was modified in 

order to obtain conditions in which there is no focusing of a target, although there is a 

visual search activity of a comparable difficulty to a target present condition.   
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4.2 Experiment 3b 

4.2.1 Introduction 

The second experiment of this chapter was implemented to further the 

results of Experiment 3a. Namely, the experimental design was modified in order to 

obtain a control condition of the previous study. The changes allowed to create three 

control conditions, with three different level of difficulty. Differently from Experiment 

3a, due to the greater number of conditions, a multiple frame procedure (MFP, Aubin & 

Jolicœur, 2016; Drisdelle et al., 2017; Pomerleau, Fortier-Gauthier, Corriveau, 

Dell’Acqua, & Jolicœur, 2014) was employed. By using the MFP, instead of a single 

visual search array per each trial, six consecutive visual search arrays (also called 

frames or subtrials) are presented. At the end of the six frames, participants are asked to 

report in how many visual search arrays the target was present. Since the number of 

responses decrease (namely, a single response instead of six), through the MFP is 

possible to increase the number of trials in the same amount of experimental session’s 

time, and afford a greater number of experimental conditions. 

Although the presence of twelve placeholder as in Experiment 3a, another 

critical manipulation was the use of a heterogeneous visual search. Namely, when a 

target was presented, other three distractor circles were printed in three different colors. 

This was done because, when the target color was absent, four different distractor colors 

were presented, and subjects still had to search in the visual array. Moreover, another 

target absent condition consist in the presence of four same color distractors, which 

suggests a weaker activation of visual search mechanisms due to the ease of the task. 

Finally, a condition in which only twelve grey placeholders were presented was the 

easiest target absent condition. The rationale behind these manipulations is to obtain 

different brain activations strictly related to the simple visual search (and not to the 
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target attentional capture). In this way, different conditions can be used as the reference 

of the bilateral activation elicited by midline targets, that is the main aim of the current 

experiment.  

 

4.2.2 Methods 

Subjects 

Nineteen students at Université de Montréal (11 females) participated in the 

experiments after giving informed consent. Their mean age was 24.4 years (SD = 3.6) 

and all subjects had normal or corrected-to-normal visual acuity. Four subjects were 

removed from the final sample because of low overall accuracy (less than 50%, one 

subject) or a high percentage of EEG epochs discarded due to eyes blinks and EEG 

artifacts (more than 40%, three subjects). 

 

Stimuli and procedure 

Equiluminant stimuli (9.2 cd/m2) were presented on a 17-inch CRT monitor 

at a viewing distance of 57 cm on a black background. Twelve circles (.5° radius) were 

presented spaced around an imaginary circle (3.5° radius) centered on a fixation cross, 

and their color could change among the conditions. When presented, the target could 

appear only in one of four possible positions (randomly chosen among 12 or 6 o’ clock, 

midline positions, and 3 or 9 o’ clock, lateral positions). The other eight circles were 

grey (RGB = 140,140,140).  

The target was defined at the beginning of the session as the color of a circle 

(blue, RGB = 0,110,255; green, RGB = 53,134,0; fuchsia, RGB = 245,0,110; violet, 

RGB = 195,59,239; dark orange, RGB = 206,104,0) and the orientation of a bar (a slash 

or backslash as in the Experiment 1) presented inside of it. When the target color was 
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absent, the stimuli at the four positions (i.e., 12, 3, 6, 9 o’clock) could be in four 

different non-target colors (i.e., heterogeneous condition), or all in the same non-target 

color (i.e., homogeneous condition), or all grey (i.e., all-distractors condition). Another 

possible case consisted in the presence of a circle in the target color, but the bar inside 

was not oriented as a target. Every trial started with a fixation cross presented in the 

center of the screen and remained visible during the whole trial, which was followed by 

six displays (each lasting 150 ms) and separated from each other by 900 to 1100 ms 

(randomly jittered interval in which only the fixation cross was visible). Each of these 

six displays was a search array, which is also called “frame” in the context of the 

Multiple Frame Procedure (MFP, see Aubin & Jolicœur, 2016; Drisdelle et al., 2017; 

Pomerleau, Fortier-Gauthier, Corriveau, Dell’Acqua, & Jolicœur, 2014). Overall, 238 

trials were presented (1428 frames): 204 frames for each distractor condition, as well for 

the homogeneous and heterogeneous ones. When the target circle was presented, it was 

in one of the four possible positions 204 times each, and in half of them the bar inside 

had the target orientation. The task was to count the total number of targets presented in 

the six frames of each trial and to report this number at the end of the trial, without 

speed pressure. To do this, they used the left and right arrow keys of a keyboard placed 

in front of them, respectively decreasing and increasing a number from 0 to 6, 

representing their response, which was confirmed and entered by pressing the down 

arrow key. After the response, accuracy feedback was provided by presenting two digits 

separated by a slash: the digit on left was the subjects’ response, and the one on right 

was the correct response.  
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Figure 4.3. Display sequence (6 frames) in one trial of Experiment 3b. After a time interval random 

jittered between 900 and 1100 ms, the trial started. Each visual search array lasted for 150 ms, and each 

of them were separated by another 900 – 1100 ms jittered time interval. 
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4.2.3 EEG/ERP Recordings and Analysis 

EEG was recorded using a BioSemi Active Two system and an elastic cap 

with 64 Ag/Ag–Cl electrodes positioned according to the International 10/10 system 

(Fp1, Fpz, Fp2, AF7, AF3, AFz, AF4, AF8, F7, F5, F4, F1, Fz, F2, F4, F6, F8, FT7, 

FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, 

CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, P9, P7, P5, P3, P1, Pz, P2, P4, P6, P8, P10, 

PO7, PO3, POz, PO4, PO8, O1, Oz, O2, Iz). The sampling rate was 512 Hz and the 

signal was referenced to the average of left and right mastoids after the recording. All 

the other preprocessing and analysis procedures are the same used for the Experiment 

3a. The ERP activity of the three additional conditions (heterogeneous, homogeneous, 

distractors) were also the average of P7 and P8 electrodes. This choice was due to the 

lack of lateral shift of attention in these cases. Additionally, due to an unexpected result 

in the N1 time range, the mean amplitude of this component was estimated in a 135-175 

ms time window. 

 

4.2.4 Results 

Behavioral 

Differently from Experiment 3a, since the use of an MFP paradigm, it was 

not possible to isolate the accuracy or the reaction time of every single condition. 

Nevertheless, the overall mean proportion of correct responses was .91, comparable 

with the mean accuracy of the previous experiment. 

 

 

 

 



118 

 

ERP 

N2 component 

An analysis of the averaged activity of P7 and P8 electrodes was conducted 

in line with the Experiment 1, when possible. Namely, since the design was not 

completely balanced, an ANOVA 2 x 2 x 2 (side x target color presence x target bar 

presence) has been conducted only for a part of data, which excluded the distractors, 

homogeneous, and heterogeneous conditions. No effect related to the bar orientation 

(target vs. non-target) was found (F = .19, p = .67). For this reason, measurements 

related to the bar orientation was collapsed for each of the four possible target positions 

for further analysis and graphs. A main effect of the target position was found (F(2,28) 

= 8.66, ηp
2 = .382, p = .001. Separated pairwise FDR (Benjamini & Hochberg, 1995) 

corrected t tests replicate the results of Experiment 3a, namely, there was no significant 

difference between Contralateral (–.93 µV) and Midline (–1.02 µV) conditions for mean 

amplitudes across target positions (t(15) = –.29, p = .95); however the differences 

between Contralateral (–.93 µV) and Ipsilateral (–.02 µV) (t(14) = –3.44, p = .001) and 

between Midline (–1.02 µV) and Ipsilateral (–.02 µV) t(14) = –3.74, p = .001, 

conditions were significant. 

In order to test differences among the other three conditions 

(Heterogeneous, Homogeneous, Distractors) a second one-way ANOVA revealed a 

difference between the amplitudes in the N2 time range, F(2,28) = 6.15, ηp
2 = .305, p = 

.006. Pairwise Tukey-corrected t-tests showed that a significant difference was present 

between Distractors (.36 µV) and Heterogeneous (–.43 µV) condition: t(14) = 3.42, p = 

.002, and between Distractors (.36 µV) and Homogeneous (–.19 µV) condition, t(14) = 

2.37, p = .04. No significant difference was found between the Homogeneous (–.19 µV) 

and Heterogeneous (–.43 µV) conditions (p = .54). 
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Finally, a series of t-tests assessed all the other possible differences that 

were not investigated before because of the lack of orthogonality, only the significant 

comparisons are reported in detail. Mean amplitude in the N2 time window in the 

Heterogeneous condition was significantly different only from the Midline target 

position (t(14) = 2.36, p = .03). The Homogeneous condition was significantly different 

from the Midline target position (t(14) = 2.42, p = .03). Finally, the Distractors 

condition differed from both the Midline target position (t(14) = 3.73, p = .002) and the 

Contralateral target position (t(14) = 3.12, p = .007). 

 

Figure 4.4. Grand average waveforms for the principal conditions from Experiment 2 at P7/P8 electrode 

sites.  

 

N1 component 

As can be seen in Figure 4.4, the grand average waveforms suggested 

possible differences among conditions within the N1 time range. These differences were 

analyzed using similar analyses to those performed for the N2 time range. An ANOVA 
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that considered all the conditions but the Distractors, Homogeneous, and Heterogeneous 

conditions showed that there were no differences in the averaged P7/P8 amplitudes 

related to the target position (p = .3) nor the presence of the target (p = .49). 

Nevertheless, a second ANOVA revealed a difference between the Heterogeneous, 

Homogeneous, and Distractor conditions, F(2,28) = 15.15, ηp
2 = .520, p < .001. FDR 

(Benjamini & Hochberg, 1995) corrected t tests showed that a significant difference was 

present between Distractor (–3.69 µV) and Heterogeneous (–2.58 µV) conditions: t(14) 

= –5.48, p < .001, and between Homogeneous (–3.21 µV) and Heterogeneous (–2.58 

µV) conditions: t(14) = –3.16, p = .004. A marginally significant difference was found 

between Homogeneous (–3.21 µV) and Distractor (–3.69 µV) conditions: t(14) = 2.32, p 

= .053. 

 

Relationship between N1 and N2 modulations 

The results in the N1 time range found in the distractors and heterogeneous 

conditions could reflect differential effects of discrimination processes (Vogel & Luck, 

2000) associated with these conditions. However, this differences within this time range 

was not expected.  

Since the aim of this study was to search for condition-related differences in 

the N2 time range, the possibility that the effects in the N1 time range carry forward to 

the N2 time range need to be ruled out. To do this, N1 and N2 activities elicited by the 

conditions which show an unexpected pattern of modulation were (namely, 

homogeneous, heterogeneous, and all-distractor conditions). The presence of a 

correlation between the amplitudes in the two time ranges would be a marker of a N2 

biased by the N1 processes. Differently, in none of these three conditions a significant 

and/or reliable correlation was found (homogeneous: r = .21, p = .44; heterogeneous: r 
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= .22, p = .42; all-distractors: r = .18, p = .52). This suggests that, in this task, there is 

no functional relation between the N1 and N2 time-range cognitive mechanisms. 

Reasonably, it seems that the presence or the absence of a target color (contralateral, 

ipsilateral, midline conditions) compared to the conditions in which the target color is 

absent (distractors, heterogeneous, homogeneous conditions) elicit a different 

discrimination process in the N1 time range. 

 

4.2.5 Discussion 

This experiment was done both as a control of Experiment 3a and to extend 

its result. In general, the aim of this chapter was to compare the activity elicited by a 

lateral target to a target presented on the midline. Experiment 3a showed that the 

contralateral portion of the N2pc is equal to the bilateral N2 elicited by a target 

presented on the midline. Conversely, the ipsilateral portion of the N2pc is positively 

shifted. These results are confirmed in the present experiment, although the differences 

on the experimental design between the two experiments. Namely, in Experiment 3a 

subjects were asked to search for a target circle (defined by a color), and then to 

discriminate whether the bar inside the target circle was vertical or tilted. In the current 

experiment, subject had to detect the presence of a specific circle (still defined by color 

as in Experiment 3a) and then the presence of a specific bar inside (i.e., oriented in a 

specific way). Additional conditions showed that, although the absence of a target, a 

bilateral negative shift still occur when the participant search within the visual array. 

Interestingly, the harder the search, the greater the negativity. As mentioned in previous 

sections, 200 ms after the presentation of a target occipital areas increase their firing 

rate and the activation of high-level structures allow the conscious access to the visual 

representation (Fahrenfort et al., 2007; Lamme & Roelfsema, 2000). The results of the 
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current experiment strongly suggest that the visual areas increase their activity also 

when no target is presented, but relative to the simple search mechanisms. Of interest, 

the lack of significant difference between homogeneous and heterogeneous condition, 

which suggests that the parieto-occipital attentional processes enrolled while searching 

are similar regardless the difficulty of the distractor color(s) discrimination. Compared 

to the distractors condition, heterogeneous and homogeneous ones are significantly 

different. This indicates that the complete absence of salient information (i.e., color(s)), 

requires less amount cognitive resources. Of note, there is no significant differences 

between distractors condition and the ipsilateral portion of the N2pc elicited by a lateral 

target. Since a bilateral positive shift was not expectable in distractors condition, the N2 

waveform pattern of the component ipsilateral to a lateral target cannot be interpreted as 

a positive shift, as proposed by (Hickey et al., 2009). 

In general, the findings of this chapter strongly suggest that visual search 

elicits a negativity in the N2 time range, regardless the presence or the absence of a 

target. Moreover, the reason for which humans are better in foveal compared to 

parafoveal visual attention could be related to the bilateral posterior brain activity 

involved in the first compared to the mostly contralateral activity engage in the second. 

Overall, this evidence raise a more general question regarding what N2pc reflects, since 

the evidence here presented seems to be in contrast with a view which postulate two 

separate mechanisms for the contralateral and ipsilateral portion of the N2pc, as well 

two separate mechanisms for foveal and parafoveal attention. 
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4.3. Conclusion: Chapter 4 

The two experiments presented in this Chapter showed that the contralateral 

activity elicited by a lateral target is exactly the same of the bilateral activity elicited by 

a target presented on the midline. This suggests that a lateral target is mostly processed 

by the contralateral parieto-occipital brain hemisphere. Still, when a target was 

presented laterally, the ipsilateral activity was more positive compared to the 

contralateral, as already showed in literature (e.g., Luck & Hillyard, 1994a). In 

Experiment 3b three additional conditions serves as a baseline for the bilateral activity 

elicited by a midline presented target. First, results of Experiment 3b confirm the results 

of Experiment 3a. Moreover, regardless the presence or the absence of a target, the 

simple presentation of a visual search array elicits an N2 ERP response. Of interest, a 

fine-grained modulation of target-absent conditions elicited a bilateral N2 component 

which is more negative in relation to the difficulty of the search. Nevertheless, because 

of the high degree of similarity between the target present conditions, the best control 

condition for the midline presented target was the heterogeneous condition, where four 

distractors were printed in four different non-target colors. The activity elicited in this 

condition was significantly different (more positive) from the activity of the midline 

condition (which was actually the condition for which a baseline was necessary), 

suggesting that a target presented on the midline exert a bilateral negative shift. 

Moreover, the absence of significant difference between the ipsilateral activity elicited 

by a lateral target and the distractor (control) condition can suggest that the ipsilateral 

portion of the N2pc could reflect a simple absence (or partial absence) of search activity 

in the hemifield opposite to the target presentation, which lead to an unbalancing 

between the two posterior hemispheres.  
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Chapter 5 – General Discussion 

The aim of this thesis was to explore which mechanisms are in common 

between the deployment of attention in time and space. 

This has been investigated by using the EEG in two ways: first (Chapter 2 

and 3), the temporal attentional dynamics of  the AB (Raymond et al., 1992) was study 

for both foveal and parafoveal presented information; second (Chapter 4), dynamics 

related to the deployment of attention in space were studied through a visual search 

task. 

More specifically, a first investigation (Chapter 2) regarded the AB 

phenomenon, an impairment in reporting the second of two targets embedded among 

distractors when it appeared in close temporal succession by the first target. As 

suggested by previous researches, AB effect interest mainly a fronto-parietal brain 

network (Choi et al., 2012; Kranczioch et al., 2005; Marcantoni et al., 2003; Marois et 

al., 2004; Marois & Ivanoff, 2005; Slagter et al., 2012). At the electrophysiological 

level, the P3b –an ERP usually localized at midparietal scalp sites– has been shown to 

be the marker of consolidation of information in short-term memory (Akyürek et al., 

2010). Additionally to this component, the P3a –a midfrontal component peaking before 

the P3b– could be considered as a marker of detection of salient information (e.g., 

Barceló, Escera, Corral, & Periáñez, 2006; Cycowicz & Friedman, 1998; Koechlin, 

Ody, & Kouneiher, 2003; Polich, 2007). Most of literature regarding the AB showed 

that consolidation of targets in this paradigm is influenced, although less is known about 

their detection. 

Moreover, AB decreases in long-range phase synchronization in the beta 

and gamma band, encompassing the frontoparietal attention network have been reported 
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by Gross et al. (2004; see also Kranczioch, Debener, Maye, and Engel, 2007, Nakatani, 

Ito, Nikolaev, Gong, and Leeuwen, 2005). In line with this evidence, ERP presented in 

Experiment 1a showed a frontal (P3a) and a posterior (P3b) activations locked to the 

last target of RSVP streams. More precisely, the detection mechanism (P3a) presented a 

decreased amplitude at short relative to long lags, and a slight offset latency 

postponement. Similarly, the consolidation mechanism (P3b) still present a decrease 

amplitude at short relative to long lags, and also an onset latency postponement. Of 

interest, P3a modulations (amplitude and offset latency) are good predictors of the P3b 

onset latency: this evidence highlights the relevance of the fronto-parietal brain 

network, showing that the harder the AB task, the more decreased in amplitude and 

offset-postponed the P3a, and the more postponed the onset of the P3b. These data 

further the knowledge regarding the deployment of attention in time, by showing that 

there is a link between the reduction of the detection of information reflected by the P3a 

and the postponement of the time necessary to start the consolidation, as previously 

hypothesized by Nieuwenhuis and colleagues (2005).  

Once isolated two attentional markers of the AB (Chapter 2), in Chapter 3 a 

combination of the AB task of Chapter 2 and an AB task with lateral targets (e.g., 

Dell’Acqua et al., 2006) was employed. In this case, the last target of the RSVP could 

only appear in a lateral position. As for Experiment 1a (Chapter 2), P3a and P3b 

components showed AB-related modulations in amplitude and latency, suggesting that 

the attentional perturbation caused by the AB exert its effect regardless the spatial 

position of the target, confirming what already suggested by Jolicoeur et al. (2006). 

Moreover, differently from the paradigm of Chapter 2, in this case the last target also 

elicited –as expected– an N2pc, that is a negativity over the posterior scalp sites which 

is greater over the scalp hemisphere contralateral to the target compared to the 
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ipsilateral. Contrary to what expected, no AB-related modulations were found on the 

N2pc. Nevertheless, by analyzing the bilateral (i.e., N2pb, average of contralateral and 

ipsilateral activity) waveforms in the N2 time range, AB-related amplitude modulations 

were found. This finding indicates that the AB exert an influence not only in general 

mechanism of attention (i.e., fronto-parietal network). Indeed, also in the specific visual 

spatial domain, N2 modulations strongly suggest that –bilaterally– the parieto-occipital 

areas of the brain are prone to the AB effect. At the methodological level, this means 

that, at least in the AB case, to consider just the voltage difference between hemisphere 

(i.e., the N2pc) is not necessarily the best way to investigate the deployment of visual 

spatial attention. 

Because of the evidence presented in Chapter 3 regarding the deployment of 

visual spatial attention and its relationship with the N2 ERP component, two visual 

search experiments were conducted. By comparing N2 time range activity elicited by a 

target presented on the midline and on lateral portion of the visual field, it has been 

possible to show that dynamics underlying foveal and parafoveal attention are more 

similar than what thought until now. Specifically, the N2 activation contralateral to a 

lateral target is exactly the same of the bilateral activation elicited by a midline target. 

Moreover, the presence of trials with no target presented (Experiment 3b) highlighted a 

fine-grained bilateral N2 component modulation related to the difficulty of the visual 

search task.  

Collectively, all this evidence emphasizes a clear functional overlap of the 

mechanisms which drive human attention in the visual space. This overlap is 

highlighted both indirectly –through an investigation of the AB dynamics in foveal and 

parafoveal attention– and directly –through a comparison of foveal and parafoveal 

marker of attention–. To my knowledge, only a theoretical model attempted to provide 
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an opinion regarding the interplay of attention in visual search and attentional blink 

(Raffone, Srinivasan, & van Leeuwen, 2014; but see Wyble, Bowman, & Nieuwenstein, 

2015), although what suggested by the authors did not help in making any prediction at 

the brain or behavioral level.  

A different way to further test the evidence reported in Chapter 4, regarding 

the comparison between activity elicited by midline and activity elicited by lateral 

targets, would be to employ the paradigm proposed by Eimer and Grubert (2014). In 

that study, subjects were presented with two consecutive visual search arrays each with 

two stimuli (one of the left and one of the right of the fixation). The target was defined 

by its color, and the task was to report whether the targets of the two visual arrays 

belonged to the same category (both digits, or both letters) at the end of the trial. When 

the target of the second presentation was on the opposite side compared with the target 

of the first presentation, the authors found two identical N2pc components both for the 

first and the second target with opposite polarities, suggesting that it is possible to 

quickly shift attention to new visual objects. In a successive experiment (Grubert, 

Fahrenfort, Olivers, & Eimer, 2017) with a similar design, task-relevant item was still 

identified by color. Subjects’ task was to report the identities of the task-relevant items, 

when they are letters, at the end of the trial. When the task-relevant item in the second 

visual array was a digit, no N2pc was elicited. This result shows that the second of two 

consecutive visual search arrays does not automatically capture attention (differently 

from what was previously found with the presentation of a single visual search array, 

Kiss et al., 2008). Based on this evidence, a future study could verify the results of 

Experiment 3b (Chapter 4). Indeed, Experiment 3b employed target absent conditions in 

which I assumed that no shift of attention was expected, and so –in my view– those 

would be proper cases to compare the activity elicited by a target presented on the 
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midline. In this future proposal, by presenting three items (at left, right, and midline 

positions) it will be possible to observe activity elicited by a lateral or midline 

unattended target (i.e., when it appears in the second visual search array and contains a 

digit, which is not a task-relevant item). An example of the design is represented in 

figure 5.1. 

 

Figure 5.1. Example of a trial of a future experiment. Subjects are asked to report the identity of blue 

letters. When the blue item is not a letter (like in the second array), no target must be detected. The 

activity locked to the second array will show activity associated with an unattended target presented at the 

midline, which will be the control condition for the midline attended condition presented in the first array. 

 

As for Chapter 4 experiments, a midline task-relevant target should elicit 

bilateral activity similar to the contralateral activity elicited by a lateral target. In task-

irrelevant midline target conditions, the bilateral activity should be more similar to the 

ipsilateral activity elicited by lateral target conditions. 
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All the evidence presented in this thesis raises other issues. First, why a 

lateral target elicits an electrical unbalancing between the contralateral and ipsilateral 

scalp hemisphere? If foveal and parafoveal attention share the same attentional 

mechanism, and since the processes reflected by the N2 ERP component are attention-

related (and not perceptual), the N2pc should be a simple accidental consequence of an 

experimental design with lateral information. This perspective needs to be tested in 

future. 

Moreover, it would be necessary to investigate if other attentional dynamics 

(and not only temporal dynamics investigated by the AB) exist both in foveal and 

parafoveal attention. In other terms, by using a paradigm which can be employed both 

with midline and lateral presented information, and finding different modulations of 

behavioral or electrophysiological data related to the experimental manipulations, the 

debate for which foveal and parafoveal attention shares the same attentional 

mechanisms would remain open. 
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