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Abstract

This dissertation presents some novel constructions for curves and surfaces with arbitrary topol-
ogy in the context of geometric modeling. In particular, it deals mainly with three intimately
connected topics that are of interest in both theoretical and applied research: subdivision sur-
faces, non-uniform local interpolation (in both univariate and bivariate cases), and spaces of
generalized splines.
Specifically, we describe a strategy for the integration of subdivision surfaces in computer-

aided design systems and provide examples to show the effectiveness of its implementation.
Moreover, we present a construction of locally supported, non-uniform, piecewise polynomial
univariate interpolants of minimum degree with respect to other prescribed design parameters
(such as support width, order of continuity and order of approximation).
Still in the setting of non-uniform local interpolation, but in the case of surfaces, we devise a
novel parameterization strategy that, together with a suitable patching technique, allows us to
define composite surfaces that interpolate given arbitrary-topology meshes or curve networks
and satisfy both requirements of regularity and aesthetic shape quality usually needed in the
CAD modeling framework.
Finally, in the context of generalized splines, we propose an approach for the construction
of the optimal normalized totally positive (B-spline) basis, acknowledged as the best basis of
representation for design purposes, as well as a numerical procedure for checking the existence
of such a basis in a given generalized spline space.
All the constructions presented here have been devised keeping in mind also the importance

of application and implementation, and of the related requirements that numerical procedures
must satisfy, in particular in the CAD context.

Keywords: computer-aided design, subdivision surfaces, local non-uniform spline interpo-
lation, interpolating surfaces, arbitrary topology, generalized spline spaces, B-spline basis.
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Sommario

Questa tesi presenta alcune nuove costruzioni per curve e superfici a topologia arbitraria nel
contesto della modellazione geometrica. In particolare, riguarda principalmente tre argomenti
strettamente collegati tra loro che sono di interesse sia nella ricerca teorica sia in quella ap-
plicata: le superfici di suddivisione, l’interpolazione locale non-uniforme (nei casi univariato e
bivariato), e gli spazi di spline generalizzate.
Nello specifico, descriviamo una strategia per l’integrazione di superfici di suddivisione in

sistemi di progettazione assistita dal calcolatore e forniamo degli esempi per mostrare l’efficacia
della sua implementazione.
Inoltre, presentiamo un metodo per la costruzione di interpolanti univariati polinomiali a trat-
ti, non-uniformi, a supporto locale e che hanno grado minimo rispetto agli altri parametri di
progettazione prescritti (come l’ampiezza del supporto, l’ordine di continuità e l’ordine di ap-
prossimazione).
Sempre nel contesto dell’interpolazione locale non-uniforme, ma nel caso di superfici, intro-
duciamo una nuova strategia di parametrizzazione che, insieme a una opportuna tecnica di
patching, ci permette di definire superfici composite che interpolano mesh o network di curve
a topologia arbitraria e che soddisfano i requisiti di regolarità e di qualità estetica di forma
solitamente richiesti nell’ambito della modellazione CAD.
Infine, nel contesto delle spline generalizzate, proponiamo un approccio per la costruzione della
base (B-spline) ottimale, normalizzata, totalmente positiva, riconosciuta come la miglior base
di rappresentazione ai fini della progettazione. In aggiunta, forniamo una procedura numerica
per controllare l’esistenza di una tale base in un dato spazio di spline generalizzate.
Tutte le costruzioni qui presentate sono state ideate tenendo in considerazione anche l’im-

portanza delle applicazioni e dell’implementazione, e dei relativi requisiti che le procedure
numeriche devono soddisfare, in particolare nel contesto CAD.

Parole chiave: progettazione assistita dal calcolatore, superfici di suddivisione, interpola-
zione spline locale non-uniforme, superfici di interpolazione, topologia arbitraria, spazi di spline
generalizzate, base B-spline.
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Chapter 1

Introduction

The research activity that resulted in this dissertation falls within the framework of the re-
search in Numerical Analysis concerning the theory of approximation, and, more specifically,
numerical methods for multivariate data approximation and interpolation, and within the con-
text of Computer-Aided Geometric Design. It deals mainly with three intimately connected
topics that are of interest in both theoretical and applied research: subdivision schemes, non-
uniform local



Introduction

integration into the system was achieved by introducing a new type of geometric description
that exploits a heterogeneous boundary representation of a solid CAD model. In this way, the
new type of representation automatically inherits any pre-existing CAD tool, and it can interact
in a natural way with the other geometric descriptions supported by the system. Moreover, the
critical behavior of subdivision surfaces in the neighborhood of extraordinary points was over-
come by exploiting a local modification of the limit surface so as to tune the analytic properties
without affecting its geometric shape. This method was inspired by the polynomial blending
approach proposed independently by [Lev06b] and [Zor06], which we extended in some aspects
and generalized to multipatch surfaces evaluable at constant time at arbitrary parameter values.

Among the interpolatory subdivision schemes, only the version of the Catmull-Clark algo-
rithm by [HKD93], together with Stam’s technique, is capable of generating exactly evaluable
limit surfaces interpolating the initial control polyhedron (or mesh). The main drawback of this
method is that it requires the solution of a global linear system to determine the control points
of the surface and a post-processing optimization step to fair its shape. Some variations of the
Catmull-Clark interpolatory scheme (e.g., [MMN07]) propose to improve computational cost
and surface quality exploiting the so-called progressive iterative approximation or progressive
interpolation technique, which consist in constructing the interpolating surface by a sequential
approximation of its polygon control. However, these techniques are still inherently global, in
that, as soon as a vertex changes its location, the entire control polygon must be updated in
order to keep the interpolation property.
In a work by [BCR13b], non-tensor-product subdivision schemes interpolating regular grids of

control points are defined by exploiting a class of univariate C1 interpolating four-point (hence
local) subdivision schemes, in order to generate C1 limit surfaces with a better behavior than
the well-established tensor-product subdivision and spline surfaces. In particular, the method
considers a regular grid of points (i.e., with four edges incident at each vertex), where each
polygonal section is parameterized independently of the others in a non-uniform way. From this
structure, a family of nested curve networks is constructed by an iterative refinement process,
in which each successively generated network is denser and contains the previous one. In the
limit, the process converges to a C1 surface, and the curves of the initial network are immersed
in this surface and retain their original parameterization. The approach generates surfaces
of higher quality compared to the classical non-uniform tensor-product splines or subdivision
schemes. The downside is that, because the limit surface is generated by a recursive process,
it cannot be described in parametric form or exactly evaluated at arbitrary points.

1.2 Interpolatory methods

Interpolatory methods for curve and surface modeling have the property that the designed
curve or surface interpolates a given set of data points. This feature is relevant and often desir-
able in many contexts: for example, in free-form and interactive design it provides an intuitive
outline of the final shape of the object, and in engineering applications it allows to avoid the
“shrinkage” effect that is typical of approximating methods and makes it easy to enforce inter-
polation constraints. The main drawback is the possible presence of artifacts like unpredictable
ondulations in the curve/surface which may compromise the overall quality of the shape. In this
regard, it has been recently shown ([Lee89, KY06, Flo08, YSK11, BCR11a, BCR11b]) that in
spline interpolation these undesirable effects may disappear completely by adopting a suitable
non-uniform parameterization (such as the centripetal or chordal), resulting in interpolants of
much better quality than their uniform counterparts. In addition, we emphasize the fact that

2
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an interpolant should have a piecewise (spline) nature and be featured by the property of lo-
cality, i.e., built exploiting compactly supported fundamental functions, so that each piece or
patch depends only on a limited (and possibly low) number of data.
Concerning non-uniform interpolation, we started by addressing the design of interpolating

curves. In particular, we considered the constructive framework for designing families of local
non-uniform spline interpolants featured by given continuity order, polynomial reproduction
degree, and support width, which was presented and analyzed by [BCR13a]. The outcome of
extending that framework and exploiting it in order to obtain local polynomial spline inter-
polants of non-uniformly spaced data which are characterized by having minimum degree is
detailed in [ABC14a] and presented here in Chapter 3.
With regard to the construction of free-form objects from arbitrary 3D meshes, the non-

uniform parameterization principle has been a subject of interest especially in the area of
approximation ([CADS09, Cas10, Cas11, KSD13, MRF06, MFR+10, SZSS98]), with a view
to establishing high-quality models compatible and comparable with the non-uniform B-spline
standard. However, even in the context of interpolation, its potential usefulness is easily un-
derstood. In fact, it is clear that a high-quality surface must have high-quality section curves.
Therefore, intuitively, we can think of generating a good-quality surface by interpolating a set
of good-quality section curves. The benefits of this approach are outlined in [BCR13b].

Motivated by these results, our objective was to provide a method for generating an interpola-
tory parametric surface of high quality and sufficient regularity from an arbitrary quadrilateral
mesh, which can be evaluated exactly at arbitrary points in the parametric domain.
In particular, in Chapter 4 we devise an approach for the representation of a free-form object

having complex shape by exploiting surfaces that interpolate the vertices of a given control mesh
composed of quadrilateral faces and whose vertices can have arbitrary connectivity. Moreover,
by means of a suitable extension, our technique allows for interpolating data that consist of a
network of curves, in which, similarly as before, an arbitrary number of curves can meet at each
vertex. In both cases, the basic requirement is to generate models that satisfy both criteria of
analytical nature (regularity of the surface) and aesthetic concepts (shape quality).
Specifically, we propose a two-step construction that, given a quadrilateral mesh with ver-

tices of arbitrary valence (i.e., a vertex can be shared by an arbitrary number of edges), firstly
generates a network of high-quality curves interpolating the mesh vertices (and satisfying G1

or G2 compatibility conditions at the intersections), and then builds a composite surface that
interpolates the curves of the network with a 1-1 association between mesh faces and surface
patches. In addition, if a suitable network of parametric curves is given, a direct generalization
of our approach allows generating a surface that interpolates the network, regardless of the
nature of the curves (polynomial, trigonometric, etc.). Now, let us outline the salient aspects
of this technique.

During the construction of the curve network, each curve is independently parameterized
by the centripetal or chordal parameterization, in such a way to optimize its quality. The
curves are then represented by piecewise-polynomial functions and are defined in a completely
local way exploiting a class of compactly supported fundamental functions having the desired
continuity (for the construction, see [BCR13a]), which turns out to be particularly convenient
due to its property of a very limited support width. In this way, the portion of curve between
two mesh vertices depends only on few adjacent points belonging to a polygonal section of
the mesh (which does not necessarily need to be planar). In the neighborhood of valence-4
vertices, the network does not have to meet any particular requirement for compatibility. In
the neighborhood of extraordinary vertices (i.e., of valence other than 4), we construct the
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network in order to satisfy compatibility constraints of G1 and G2 type.
In the second stage, the curve network serves as a skeleton from which we build a smooth

and aesthetically pleasing surface by suitably blending the curves. To this aim, two innovative
ingredients are introduced: the first is to use as blending functions a class of non-uniform,
locally supported fundamental functions (see again [BCR13a]); the second consists in a suit-
able strategy of local parameterization. In this way the curves become the boundaries of the
patches of a composite surface, where each parametric patch corresponds to a face of the mesh
and depends on only one or two rings of vertices surrounding the face. Moreover, inspired by
the technique by [BCR13b], we introduce a novel parameterization strategy, called augmented
parameterization, which does not require that opposite boundaries of a face have the same
parameterization. As a result, the curves of the network are embedded in the surface, with-
out being approximated or altered in any way, and retain their original parameterization and
consequently their good shape quality. This is a major difference with respect to the classical
approaches based on tensor-product or Gordon surfaces, where averaging the parameterization
of parallel section curves is necessary. In particular, it is worth pointing out that the classical
tensor-product parameterization, albeit non-uniform, in many cases is not flexible enough to
generate surfaces of good quality.

Moreover, if a mesh includes isolated non-quadrilateral faces, the local nature of our method
makes it possible to patch all the quadrilateral faces. After this operation, non-quadrilateral
faces can be handled via hole-filling techniques, extrapolating the necessary information from
the adjacent patches. In this context, [VRS11, VSR12] propose a method for n-sided holes,
which takes into account the individual lengths of the sides of the hole, a reference to the
concept of non-uniform parameterization that is central to our approach. Therefore we suggest
that this technique could effectively complement our method, to patch possible isolated n-sided
faces.
Another possible approach for handling non-quadrilateral faces consists in refining the initial

mesh, either globally or adaptively, through an interpolatory subdivision scheme, so as to
split each n-sided face into n new quadrilateral faces. In this regard, as already mentioned,
interpolating subdivision schemes do not admit an analytical representation of the limit surface
or an exact evaluation algorithm. However, recently much research has been devoted to the
study of non-uniform subdivision schemes derived from spline interpolants ([BCR11a, BCR11b,
KP13]) and their bivariate generalization ([BCR13b]). By applying our patching approach
starting from the same classes of splines related to a subdivision scheme, we could therefore
approximate the limit surface, so as to provide a parametric representation. The construction
presented in Chapter 4 lays the foundation for the study of this relevant topic, which is among
our future research objectives.

1.3 Generalized splines

A further topic that we investigated concerns the theory of generalized splines, whose aim is
to extend the theory of polynomial splines in order to include also non-polynomial spaces (e.g.,
spaces of trigonometric, hyperbolic, or mixed-type functions).

In CAGD the standard representation of curves and surfaces consists in expressing them
as linear combinations of basis functions, in which the coefficients are called control points.
To be useful as a tool for design, the basis functions must form an optimal normalized totally
positive basis (ONTP), which means that they must possess some important properties: non-
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negativity, partition of unity (i.e., they sum up to 1), convex-hull property, affine invariance,
endpoint interpolation, variation diminishing property, total positivity, and the existence of
knot insertion algorithms. In fact, such properties ensure that the designer is provided with an
intuitive control on the shape of the object during interactive modeling.
In Chapter 5 we show how, considering spline spaces built upon Quasi Extended Chebyshev

spaces (QEC-spaces for short) that contain constants and such that the spaces obtained by
differentiation are QEC-spaces as well, we can formulate a novel and general approach to con-
struct the ONTP basis, if the spline space admits one. To this aim, we recall and formalize
the idea of transition function that was introduced in [BCR13a] and that, in a sense, can be
dated back to the basis functions initially used by Bézier for curve design (see, e.g., [Rab02]).
We exploit the notion of transition function to explicitly construct a basis that coincides with
the ONTP one, if it exists.
Moreover, we show that a system of weight functions can be computed in terms of transition
functions and, investigating the connection between the existence of weight functions and the
existence of the ONTP basis, we provide a criterion for determining whether an arbitrary gen-
eralized spline space admits the ONTP basis.
In addition, we provide some relevant algorithms for the computation and modeling in spaces
of generalized splines that are of interest from the point of view of applications.

Finally, Chapter 6 collects some concluding remarks.

We remind that Chapters 2 and 3 reflect work that has already been published (in [ABC+13]
and [ABC14a], respectively), while Chapters 4 and 5 contain original, unpublished material.
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Chapter 2

Subdivision surfaces integrated in a CAD
system

This chapter discusses the problem of the integration of subdivision surfaces in computer-
aided design (CAD) systems for modeling, engineering, and manufacturing purposes, and
presents an approach that has proven to be effective in achieving such an integration.
In particular, the main roadblock that has limited the usage of subdivision surfaces in CAD
systems is the lack of quality and precision that a geometric model must achieve for being
suitable for the engineering and manufacturing phases of the production process. The second
roadblock concerns the integration into the modeling workflow, which, for engineering purposes,
means providing a precise and controlled way of defining and editing models possibly composed
of different geometric representations. This chapter, together with the recent paper [ABC+13],
documents the experience in the context of a European project whose goal was the integra-
tion of subdivision surfaces in a commercial CAD software. To this aim, a new CAD system
paradigm with an extensible geometric kernel is introduced, where any new shape description
can be integrated through the two successive steps of parameterization and evaluation, and
a hybrid boundary representation is used to easily model different kinds of shapes. In this
way, the newly introduced geometric description automatically inherits any pre-existing CAD
functionality and tools, and it can interact in a natural way with the other geometric represen-
tations supported by the CAD system.
To overcome the irregular behavior of subdivision surfaces in the neighborhood of the so-called
extraordinary points, the limit surface of the subdivision scheme is locally modified so as to tune
the analytic properties without affecting its geometric shape. Such a correction is inspired by a
polynomial blending approach [Lev06b, Zor06], which generates multipatch surfaces evaluable
at constant time at arbitrary parameter values.
Some modeling examples will demonstrate the benefits of the achieved integration, and some
tests will confirm the effectiveness of the proposed local correction method.

2.1 Introduction

Subdivision surfaces have a long history, being studied for more than 30 years now. Since
the first time they were used in Pixar’s movie “Geri’s game”, they had a big success in enter-
tainment industry and they are now widely supported in nearly all modern modeling programs
for graphic applications. Their flexibility and the fact that some subdivision surfaces represent
a superset of the standard Non-Uniform Rational B-Spline (NURBS) representation (see, e.g.,
[CADS09, SZSS98]) easily suggests that they can be the future description form of all geometric
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data. However, after all these years, their use in CAD systems is still negligible. This is partly
due to the fact that subdivision surfaces do not have a closed-form representation, which means
that most subdivision schemes can not be parameterized and evaluated exactly. As pointed
out in [Ma05], the lack of closed-form evaluation restricts the class of subdivision methods
suitable for CAD to schemes that generalize the spline representation to arbitrary topology,
namely those of Catmull-Clark [CC78], Doo-Sabin [DS78], and Loop [Loo87]. Key aspects of
these schemes, such as the smoothness of the limit surface [DS78, Rei95, Pra98], the curvature
behavior [SDHI03, PR04], and the nature and kinds of surface artifacts [KPR04, SB03], have
been widely studied in the literature. The state-of-the-art also provides several proposals for al-
gorithms, mainly based on Catmull-Clark surfaces, that may be useful in various CAD-related
applications, such as surface fitting [MZ02], reverse engineering [MZ00, BFL+10] and curve
lofting [Nas01, SWZ04]. However, despite such a large amount of effort, the quality achieved
by current subdivision schemes is still far from the requirements that a geometric model must
satisfy for being suitable for the engineering and manufacturing phases of design. In particular,
subdivision surfaces manifest a critical behavior in the neighborhood of the so-called extraor-
dinary vertices, which is not a punctual deficiency; actually, it involves a whole region around
each extraordinary vertex, making it difficult to apply most of the CAD tools. This has con-
fined their application in CAD merely to the phase of conceptual design, where the precision
and quality of the shape is not extremely important.

Subdivision surfaces have already been tested in some CAD systems (CATIA, Creo), while
other softwares (Rhinoceros, SolidWorks) have introduced plug-in modules based on T-splines
[SZBN03], that show the same lack of precision and quality of subdivision methods around
extraordinary vertices. None of the existing systems treats subdivision surfaces (nor T-splines)
as a truly integrated geometric primitive. This means that a subdivision model needs to be
converted to NURBS to interact with the rest of the CAD system.

This chapter documents part of the work that has been undertaken within the European
Eurostars Project NIIT4CAD under the coordination of think3 company. One of the aims of
the project was to overcome the traditional approach to surface and solid modeling of cur-
rent 3D CAD systems by introducing new methodologies based on subdivision surfaces which,
overcoming the mentioned roadblocks, could exploit their potentialities to obtain high-quality
geometrical model suited for engineering and manufacturing purposes. A prototype of software
module for subdivision surfaces for CAD has been integrated in the geometric kernel of the
ThinkDesign commercial CAD system, together with a module for fast design and editing of
meshes for subdivisions.
The contribution of the work presented in this chapter is twofold. We describe the new

framework which guarantees a full integration of subdivision surfaces in a CAD system, and we
introduce a correction method to improve the quality issues in the subdivision representation,
so as to achieve the accuracy required by CAD applications. The overall objective is to provide
a mathematical representation based on subdivision surfaces that achieves the desired accuracy
and is integrated with the other representations present in the CAD system, e.g., NURBS
and analytical shapes. This lays the groundwork for a new CAD paradigm for hybrid modeling
with NURBS/subdivision/analytical geometries, in which all the geometric representations may
coexist and interact, and all the functionalities of the CAD system are automatically inherited.
The realized integration is focused on Catmull-Clark subdivision surfaces [CC78], which is

the most popular choice of all modern CAD systems. This is, in a way, a natural choice both
because Catmull-Clark surfaces represent a generalization of bicubic B-splines, and because
they provide an explicit parametric expression for the limit surface [Ma05]. However, the gen-
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(a) (b) (c) (d) (e)

Figure 2.1: (a) Control mesh, (b)–(d) some steps of the Catmull-Clark subdivision algorithm, and
(e) related limit surface. In (a)–(d) faces containing at least one extraordinary vertex and thus corre-
sponding to non-spline patches are highlighted in red color.

erality of the approach makes it easily extendable to all subdivision schemes based on splines.
To achieve the quality required in CAD, where necessary, we have introduced a local correction
inspired by the idea of polynomial blending proposed in [Lev06b, Zor06]. The approach con-
sists in blending, in the neighborhood of extraordinary points, the limit surface with a proper
polynomial approximant. This allows tuning the analytic properties of the surface, without af-
fecting its geometric shape. In [Lev06b, Zor06] the authors assume to work on a discretization
of the surface, obtained by applying a finite number of refinement steps to the mesh of the
initial control points. As a consequence, after the correction, the limit surface is evaluated only
at the discrete set of points generated by the process of iterative subdivision. To suit our needs,
the original blending idea is here further developed and generalized, assuming to work with a
continuous representation of the surface which is evaluable at arbitrary points of the domain.

The remainder of the chapter is organized as follows. Section 2.1.1 briefly presents some
basic notions on subdivision surfaces. Section 2.2 describes the CAD system paradigm on
which our integration approach relies. Section 2.3 presents our approach for the integration of
subdivision surface primitives into a CAD system, which is based on the B-rep representation
and a suitable parameterization method, described in Section 2.3.1. Section 2.4 is devoted to
the local correction of subdivision surfaces around extraordinary vertices. Section 2.5 discusses
the most relevant computational issues to deal with when implementing exact evaluation of
subdivision surfaces in a CAD context. Section 2.6 illustrates some modeling examples aimed
at demonstrating the potentialities of the proposed integration, and some tests which confirm
the effectiveness of the proposed local correction patching method. Concluding remarks can be
found in Section 2.7.

2.1.1 Subdivision basics

A subdivision scheme generates a smooth surface as the limit of a sequence of successive
refinements of an initial configuration of vertices, edges and faces with connectivity relations,
called control mesh. To illustrate the process, Figures 2.1(b)–2.1(d) show some refinement steps
of the Catmull-Clark scheme applied to the control mesh of Figure 2.1(a), while in Figure 2.1(e)
the associated limit surface is shown.
In the control mesh, an arbitrary number of edges can be incident at each vertex (called the
valence of the vertex), as well as an arbitrary number of edges can define a face, called an
n-sided face. In particular, a vertex is called extraordinary if its valence is different from the
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Figure 2.2: Limit surface structure around an extraordinary vertex of valence n = 5. Each of the
nested spline rings is composed by n sectors and each sector in turn of three spline patches in an
L-shaped configuration.

regular configuration, which for Catmull-Clark is 4, and it is called regular otherwise.

The potential of subdivision surfaces with respect to other forms of representation (e.g.,
NURBS) is the possibility of handling objects of arbitrary topological genus. Essentially, like
NURBS, subdivision surfaces describe a geometric model by means of control points. However,
while in a NURBS the control points form a regular rectangular grid, subdivision handles a
generic mesh with arbitrary topology. The benefit is that, when moving the points of the control
mesh, the geometric object automatically stays connected and the faces remain tangent- and
curvature-continuous to each other.
The successive refinement procedure, which characterizes the subdivision surface, provides a

representation that is inherently discrete. However, a parametric representation is admitted by
a special family of subdivision schemes that, away from extraordinary vertices (i.e., in regular
regions), reproduce a known analytic representation (which hereinafter can be assumed in spline
form). In this setting, the limit surface can be represented at a given parametric point (u, v)
belonging to regular or extraordinary regions as a finite linear combination

S(u, v) =
∑
i

pibi(u, v), (2.1)

where pi ∈ R3 are the vertices of the input control mesh and bi(u, v) are suitable compactly
supported basis functions.

If the scheme has an analytic representation underneath, then away from extraordinary ver-
tices (2.1) represents a tensor-product surface patch. In this case, for Catmull-Clark scheme
the basis functions are the bicubic tensor-product B-splines [PT95].
In proximity of extraordinary vertices the number of basis functions depends on the valence.

For Catmull-Clark scheme these functions can be evaluated by well-known algorithms, as de-
scribed in [Sta98, Yam01, LC06], and by their several variants to non-closed surface evaluation
in the vicinity of the boundary [BLZ00, SES04, LB07]. These methods are capable of evalu-
ating the surface at arbitrary parameters in the vicinity of one extraordinary vertex based on
the idea illustrated in Figure 2.2. Each patch is parameterized by a collection of quadrilateral
domains arranged in nested L-shaped groups which progressively shrink towards the extraor-
dinary vertex; on each of these domains the surface is represented as a bicubic tensor-product
B-spline.
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2.2 The CAD system paradigm

In the following we discuss the fundamental features required for a CAD system to be able
to integrate the subdivision surface representation into its geometric kernel. In particular, the
CAD system must satisfy the following requirements:

• “parameterization and evaluation” paradigm;

• B-rep representation;

• hybrid geometric descriptions.

A major challenge for the integration of a new geometric primitive within a CAD system is
represented by the problem of including the primitive in the geometric engine of the system,
the so-called geometric kernel.
In many of current commercial CAD systems the structure of the geometric kernel is quite
similar: it provides a set of geometric representations and a set of tools which operate on them.
Curves and surfaces are represented in parametric form, while for solids the boundary represen-
tation (B-rep) is mostly used. In the B-rep a geometric model is described through its boundary
surfaces, which, in case of a solid model, represent the boundary between solid and non-solid.
Such a boundary is constituted by one or more connected components, called shells. In turn,
each shell is represented as a collection of surface patches, called B-rep faces. Faces are chosen
so that the geometric form of each face can be represented as a single parametric function. To
describe each shell, a B-rep stores two types of information: topological information, namely
the connectivity relations between faces, and the geometric representation of the surface patch
corresponding to each face.
The various available CAD tools include intersections, projections, Boolean operations, offsets,
fillets, and many others. Some geometric kernels rely on the NURBS representation only, while
more advanced ones also allow different representations, such as planes, cylinders and quadrics,
which provide greater precision at lower storage cost. Since the CAD system must support dif-
ferent geometric representations, the B-rep modeling system underneath should adopt a hybrid
description of the geometry, allowing the coexistence of faces with different forms of geometric
representation.
The proposed approach is based on a CAD system paradigm with an extensible geometric ker-
nel, in which any geometric description can be integrated by simply implementing the related
evaluation algorithm that acts as an interface with the entire system. This paradigm of ex-
tensibility requires that any geometric representation be parameterizable and there must be a
known evaluation method that associates with each point in the parametric domain a surface
value and derivatives up to second order. This makes all the functionalities of the CAD sys-
tem automatically inherited by any newly introduced type of representation, which is therefore
indistinguishable from others already enclosed in the system. In this way, pre-existing oper-
ators and tools can be easily and directly applied to any hybrid representation. This defines
our concept of full integration of the geometric representations in the CAD system, although,
obviously, a suitable tuning of some algorithms may be required to optimize the output quality.
This paradigm reflects the structure of the geometric kernel of the ThinkDesign system (de-

veloped by think3), used for testing the proposed approach. Moreover, ThinkDesign supports
hybrid modeling where the B-rep has been extended to allow special, non-solid model types
called non-manifold models, which are used to represent thin-plate objects and integrate surface
modeling into a solid modeling environment. This makes the B-rep a more flexible descriptive
model and provides the CAD system with a much richer set of operations.



12 2. Subdivision surfaces integrated in a CAD system

Figure 2.3: Workflow for the creation and editing of a Subd-B-rep.

2.3 Subdivision B-rep
This section describes how a subdivision entity has been integrated in the previously described

CAD system. A subdivision surface is a single entity describing an arbitrary topology geometric
model by means of its control mesh. However, a subdivision surface can be exactly evaluated
only by associating with each quadrilateral face of the control mesh a parametric domain. Thus
the most natural way to handle this structure is to store the information on the geometric model
in a B-rep, where the control mesh is used to derive the B-rep topological information. To this
end, we introduce the following B-rep characterization for subdivision surfaces.

Definition 2.1 (Subd-B-rep). A Subd-B-rep represents a B-rep geometric model in which each
B-rep face is a patch of a subdivision surface associated with a rectangular parametric domain
and the B-rep topology is defined by the subdivision control mesh.

Figure 2.3 shows the workflow for the creation and editing of a subdivision entity. The faces
which form a Subd-B-rep are extracted from the control mesh of the subdivision surface through
a patcher function. A suitable evaluator for subdivision entities is used by the various CAD
algorithms to interrogate the Subd-B-rep and compute surface value and derivatives of its faces
at arbitrary domain parameters.
Exploiting the classical handling of B-rep, a Subd-B-rep can interact naturally with other enti-
ties in the system. For example, the result of operations of solid composition is a B-rep whose
faces can have hybrid geometric nature, e.g., they can be either NURBS, analytical, or subdi-
vision surfaces patches. Such B-rep will be editable while maintaining the hybrid nature of its
faces, and any CAD tool will operate on the hybrid form. In this case the workflow in Figure
2.3 applies to those faces of the B-rep model that are of subdivision type.

In the following we illustrate how the topological and geometric information that characterizes
a Subd-B-rep is derived by the patcher function starting from an initial control mesh. The
leading idea is that the Subd-B-rep should maintain an intuitive association (possibly 1-1)
between the control mesh faces and the B-rep faces. Since the topological information is strictly
related to the specific subdivision scheme considered, we will specialize the following description
to the particular Catmull-Clark subdivision method. In this case, if the faces of the control
mesh are quadrilateral faces, the 1-1 correspondence is obtained in a natural way as illustrated
in Figure 2.4(a).

Topology. The topology is described by adjacency relations between topological entities. In
order to generate the Subd-B-rep, such information can be inferred from the control mesh of
the subdivision surface. The control mesh is a (consistent) collection of vertices, edges and faces
with connectivity relations in which each face can be formed by an arbitrary number of edges,
and each edge is adjacent to exactly two faces. In our B-rep construction, a quadrilateral face
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(a) Mesh with all quadrilateral faces. (b) Mesh with some non-quadrilateral faces;
loop of 6 edges highlighted in the corresponding
Subd-B-rep.

Figure 2.4: Control mesh of a subdivision surface and related Subd-B-rep.

of the control mesh defines a single face of the Subd-B-rep (see, e.g., Figure 2.4(a)). Conversely,
an n-sided face in the control mesh (with n 6= 4) cannot be represented as a unique parametric
surface patch on a quadrilateral domain. Thus we apply a refinement step of the Catmull-Clark
scheme which splits the face into n quadrilateral faces, each of which becomes an independent
face in the construction of the Subd-B-rep (see Figure 2.4(b)).
Besides adjacency relations, the B-rep typically stores the loops, i.e., circular sequences of
edges that form the boundaries of a B-rep face. In particular, in the Subd-B-rep each face
contains one single loop which can be either regular when it consists of 4 edges (Figure 2.4(a)),
or extraordinary (more than 4 edges) in case of quadrilateral mesh faces adjacent to non-
quadrilateral ones. In the example shown in Figure 2.4(b), an extraordinary loop of 6 edges that
defines a quadrilateral face is highlighted in red color. This determines a T-shaped configuration
of B-rep edges, which is easily handled by any standard B-rep data structure. In the worst
case, corresponding to a quadrilateral mesh face adjacent to 4 non-quadrilateral faces, the loop
is formed by 8 edges.
We remark that the consistency of the control mesh on which the B-rep is built automatically
leads to the consistency of the resulting Subd-B-rep.

Geometry. We describe the geometry associated with each face of the Subd-B-rep as a para-
metric surface patch over the domain Q := [0, 1]2, called base domain. This patch is the limit
surface of the subdivision scheme which is parameterized and evaluated as described in the
following subsection.

The notation used from this point on is summarized in Table 2.1.

2.3.1 Subd-B-rep parameterization

In the proposed approach, the limit surface S of the subdivision scheme, associated with a
given control mesh, is represented as a parametric multipatch surface in which each patch Si
is associated either with a quadrilateral face of the control mesh or with a quadrilateral face
generated by refining an n-sided face. Each patch Si is parameterized on the base domain Q
through a parameterization function

ψSi : Q −→ Si.

In the following, we denote by q`, ` = 0, . . . , 3, the vertices of Q indexed in counterclockwise
order from (0, 0). The function ψ is the parameterization in which the limit surface is evaluated
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σh uniform scaling by a factor h
ρa counterclockwise rotation by an angle a about the origin
τv translation by a vector v
ψZ parameterization of a Catmull-Clark surface Z
Zi ith patch of the parametric multipatch surface Z
Q base domain [0, 1]2

q` vertices of Q, in counterclockwise order starting from (0, 0)
Q` sub-square of Q that cointains q`
Qh rectangular domain [0, h]2

(u, v) parameters of a surface patch, in Q
S Catmull-Clark limit parametric multipatch surface
P polynomial surface
S∗ blended surface
w blending function
K

[n]
0 sector of the characteristic map of valence n

Kn local domain parameterizing the neighborhood of an extraordinary vertex
(s, t) parameters in Kn

Dn blending region ⊂ Kn

λ[n] subdominant eigenvalue of the local subdivision matrix for valence n
pk approximation points for the construction of P

Table 2.1: The main symbols used in this chapter.

and, as recalled in Section 2.1.1, it is known in two situations, namely for regular faces and
faces that contain only one extraordinary vertex.
To fit the definition of Subd-B-rep, it is necessary that each B-rep face define a unique surface

patch parameterized over the domain Q. Thus, faces of the control mesh that contain more
than one extraordinary vertex and non-quadrilateral faces must be suitably treated so as to
satisfy this requirement. To this aim, we distinguish three different types of extraordinary
patches, each of which corresponds to a different parameterization strategy, described in the
following and illustrated in Figure 2.5.

(a) Quadrilateral face with only one extraordinary vertex (Figure 2.5(a)): it is mapped to a
surface patch parameterized over Q in such a way that

ψSi(q0) = ψSi(0, 0) = pev,

where pev is the limit point corresponding to the extraordinary vertex. Patches of type
(a) can be evaluated exploiting one of the algorithms cited in Section 2.1.1.

(b) Quadrilateral face with more than one extraordinary vertex (Figure 2.5(b)): we define a
reparameterization map over Q as follows. The patch Si is partitioned into the union of 4
sub-patches Si,`, ` = 0, . . . , 3, such that each of them contains at most one extraordinary
vertex. Each Si,` is associated with a sub-square Q` of the base domain Q, as illustrated
in Figure 2.5(b). To evaluate each sub-patch as in (a) it is necessary to apply beforehand
the reparameterization

φ` : Q` −→ Q

defined by
φ` := σ2 ◦ ρ−1

`π
2
◦ τq`−q0 , (2.2)
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where σh is a scaling by a factor h, ρ−1
a is a clockwise rotation around the origin by an

angle a, and τv is a translation of a vector v (note that all these functions are applied to
vectors).

(c) Quadrilateral face generated by the splitting of an n-sided face: the patcher function
associates with an n-sided face of the control mesh n quadrilateral patches, by refining
the face through the Catmull-Clark scheme. Each of them contains at least one n-valent
extraordinary vertex generated by the splitting of the face (Figure 2.5(c.1)), and possibly
two (Figure 2.5(c.2)). The two situations give rise to the following cases:

(c.1) if the patch contains only one extraordinary vertex, then it is treated as in (a);

(c.2) if the patch contains two extraordinary vertices, then it is treated as in (b).

In both sub-cases, since the n quadrilateral patches derive from the refinement of an n-
sided face of the control mesh, an additional scaling of their first and second derivatives
is achieved respectively by the transformations σh and σh2 with h = 2.

We observe that, after the subdivision of an n-sided face, cases (c.1) and (c.2) differ from cases
(a) and (b) only for an additional scaling of the parametric domain, which takes into account
the fact that faces of type (c.1) and (c.2) have been subdivided one more time with respect to
faces of type (a) and (b). So, actually, only the three cases (a), (b) and (c) are strictly necessary,
with the two sub-cases of (c) falling into (a) or (b). However, considering all the distinct four
cases will simplify the comprehension of the method of local correction described in Section 2.4.

The described parameterization technique allows us to isolate extraordinary points, in such a
way that each point pev belongs to a rectangular patch Si or a sub-patch Si,`, whose remaining
vertices are regular.

2.4 Surface tuning around extraordinary vertices

It is well known that Catmull-Clark surfaces exhibit a critical behavior in the neighborhood
of extraordinary points. Depending on the variant of the scheme that we consider, the curvature
at those points is either undefined [DS78] or zero [PU98]. Although some modifications were
proposed to overcome such issue [Sab91, Loo02, GU07, ADS06, SCAD07], available methods
guarantee bounded but not necessarily convergent curvature. This phenomenon is common to
the entire family of schemes whose limit surface can be represented as a collection of nested
spline rings around an extraordinary vertex, namely all parameterizable schemes. In fact, in-
tuitively, since these rings are essentially a deformation of a regular grid, using them to fill in
the n-sided hole around an n-valent vertex generates a singularity.
The main reason that prevents the use of subdivision surfaces in CAD applications is that the
erratic behavior of curvature is not confined to an isolated point; conversely, it affects a whole
area around each extraordinary vertex (see, e.g., [KPR04, SB03, PR08]). This causes many
fundamental geometric operations to produce unpredictable results or completely fail.
Another problem concerns the parameterization of the surface. Approaching an extraordinary
point, the absolute value of derivatives progressively increases (when valence n > 5) or de-
creases (when n = 3) without bound. Such an undesirable situation is very far from the ideal,
in which the parameter follows the distance on the surface, and it causes the instability of many
geometric algorithms (e.g., intersection, projection) that rely on approximation of the surface
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(c.2) Non-quadrilateral face with at least one extraordinary vertex.

Figure 2.5: Correspondence between the different types of faces of the control mesh and the para-
metric patches that form the limit surface. Left: face of the initial mesh; center: parametric base
domain Q associated with the shaded face; right: patch Si of the limit surface. Extraordinary vertices
are marked by circles, while regular vertices by squares.
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by local Taylor expansion.

To address these issues, a possible approach relies on patching methods, based on replacing
all the subdivision surface patches containing an extraordinary point by another form of repre-
sentation. Most of these techniques result in a C1 construction [Pet00] while, to our knowledge,
only [LS08] achieves G2 continuity. However, a drawback of the patching approach is that the
modification affects a wide region of the surface, and this partly disqualifies it with respect to
our aims. In fact, since the shape of Catmull-Clark surfaces is already satisfactory, we are in-
terested in maintaining their appearance and B-spline nature in the widest possible area, while
improving their analytic properties in the smallest neighborhood of the extraordinary points.
To this aim, we pursue a blending approach [Lev06b, Zor06], which consists in blending the
Catmull-Clark and another suitable surface in a small circular neighborhood of the extraordi-
nary point, called blending region. This results in C2 continuity without significantly altering
the shape and the almost-everywhere spline nature of the Catmull-Clark method. The nov-
elty of our technique is its capability of generating a parametric surface, evaluable at arbitrary
points of the domain.
In Section 2.4.1 we overview the basic blending approach, while in the subsequent sections
we present the original aspects of our proposal. We remark that, although here we focus
on Catmull-Clark surfaces, the approach is very general and straightforwardly applies to any
exactly evaluable subdivision scheme.

2.4.1 Local correction through polynomial blending

Let pev be an extraordinary point of valence n and Si, i = 0, . . . , n−1, the n surface patches
around it. Then, for each Si, we define on Q a new geometric representation, named blended
surface, as

S∗i :=

{
wSi + (1− w)P , inside the blending region,
Si, elsewhere,

(2.3)

where w is a bivariate blending function and P is a polynomial surface that approximates
an area of the Catmull-Clark surface centered at pev. The function w must be chosen so as
to guarantee that the transition between S∗i and Si is C2-continuous. Figure 2.6 illustrates
two blending functions that can be conveniently exploited in our context: the function in
Figure 2.6(a) was proposed in [Lev06b], while Figure 2.6(b) shows a function which is zero in a
circular neighborhood I of the origin and whose derivatives vanish up to the second order on
both internal and external boundaries of the blending region. It can be easily observed that
the latter blending function generates a purely polynomial surface in a neighborhood of the
extraordinary vertex, and the blending region reduces to an annulus: in fact, on I, w ≡ 0 and
thus, from (2.3), S∗i coincides with P .
The blended surface defined in (2.3) requires that locally the patches Si, i = 0, . . . , n − 1,
the polynomial P , and the function w be parameterized over a common domain, which is
introduced in the following section.

2.4.2 A star-shaped parameterization domain

The proposed construction is based on the characteristic map that defines the natural pa-
rameterization of the surface generated by the subdivision scheme in the neighborhood of an
extraordinary vertex (see, e.g., [Rei95]). This map is defined as the limit surface of the subdi-
vision scheme applied to the 2D mesh whose vertices are the entries of the two subdominant
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Figure 2.6: Blending function w.

eigenvectors of the local subdivision matrix1. The characteristic map itself can be regarded as
a parametric multipatch surface, consisting of n patches K [n]

i of type (a) that, up to proper
normalization2, have rotational symmetry with respect to the extraordinary vertex. For our
purposes, without loss of generality, we consider one of these sectors, namely K [n]

0 , which is
represented over the square domain Q by ψ

K
[n]
0

: Q −→K
[n]
0 .

In the following we describe how, starting from K
[n]
0 , it is possible to define a star-shaped

domain to parameterize the n surface patches Si, i = 0, . . . , n−1, in a suitable neighborhood of
pev that contains the blending region. To this aim we introduce the star-shaped transformation

κi := ρi 2π
n
◦ ψ

K
[n]
0
◦ σh ◦ φ,

where ψ
K

[n]
0

is applied to Qh
∣∣
Q
, with Qh := [0, h]2, σh is a scaling with factor h given by

patch type (a) (b) (c.1) (c.2)
h 4 2 2 1 , (2.4)

and

φ(u, v) :=


(u, v), if the ith patch is of type (a) or (c.1),
φ`(u, v), ` = 0, . . . , 3, (u, v) ∈ Q`, φ` in (2.2),

if the ith patch is of type (b) or (c.2).

For a patch of type (a), the star-shaped transformation is illustrated in Figure 2.7. Note that
the transformation ψ

K
[n]
0
◦ σh ◦ φ maps the parametric domain of a patch to K [n]

0 , which is a

fixed sector of the characteristic map. Finally, the rotation ρi 2π
n

maps K [n]
0 to the ith sector of

Kn, the global parameterization domain around the extraordinary point defined as follows.

Definition 2.2. For a given extraordinary vertex of valence n we define the star-shaped pa-
rameterization domain as

Kn :=
n−1⋃
i=0

{
κi (u, v)

∣∣∣ (u, v) ∈ Q and σh(φ(u, v)) ∈ Q
}
.

1The local subdivision matrix Mn is such that P (k+1) = MnP
(k), where P (k) are the vertices of the k-times

refined mesh.
2The normalization is such that K [n]

0 is located in the positive quadrant of the real plane and with one edge
having endpoints in (0, 0) and (1, 0).
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where (s, t) is obtained by applying to (u, v) ∈ Q the transformation κi = ρi 2π
n
◦ ψ

K
[n]
0

◦ σh ◦ φ. The
figure refers to a surface patch of type (a), hence h = 4. Dots represent the least squares approximation
points.

Remark 2.1. The point (0, 0) of the domain Kn is mapped to the extraordinary point shared
by the n surface patches Si.
Assuming (s, t) := κi (u, v), inside the domain Kn we define the circular blending region

Dn :=
{

(s, t) ∈ Kn

∣∣∣ ‖(s, t)‖2 6 λ[n]
}
,

centered at the origin and having radius equal to the subdominant eigenvalue λ[n] of the sub-
division matrix.
In this way, we can now characterize the blended surface in (2.3) as follows:

S∗i (u, v) =

{
w(s, t)Si(u, v) + (1− w(s, t))P (s, t), (s, t) ∈ Dn,

Si(u, v), elsewhere.
(2.5)

In the base domain Q of each patch Si the blending region is represented by

D̃n,i :=
{

(u, v) ∈ Q
∣∣∣σh(φ(u, v)) ∈ Q and ‖κi(u, v)‖2 6 λ[n]

}
.

In Figure 2.8 the blending regions around adjacent extraordinary vertices are highlighted
in red color. We observe that the radius of the blending region is chosen in such a way that
blending regions surrounding extraordinary vertices of the same face are well separated from
each other. This guarantees that the spline nature of the limit surface of the Catmull-Clark
scheme is altered in quite restricted areas. In particular, as a consequence of the scalings by σh
and possibly φ`, D̃n,i is contained inside Q

1
8 for patch types (a), (b) and Q

1
4 for (c.1), (c.2).

The first and second partial derivatives of w (s(u, v), t(u, v)) and of each component Pχ of
P (s(u, v), t(u, v)) with respect to u, v are computed by applying the chain rule. Let f be w or
Pχ functions, then: (

∂uf
∂vf

)
= J

(
∂sf
∂tf

)
, (2.6)

where
J :=

(
∂us ∂vs
∂ut ∂vt

)
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(a) (a)

(b) (b)

(c.1) (c.1)

(c.1) (c.1)

(c.2)

Figure 2.8: Blending regions around adjacent extraordinary vertices. From left to right: control
mesh, isoparametric curves corresponding to the same parameter grid for each patch, limit surface
with patches of different type (according to the classification in Section 2.3.1). Blending regions are
highlighted in red color; in the grey area the surface has a bicubic spline representation.

is the Jacobian matrix of the map (u, v) 7→ (s, t) defined by the star-shaped transformation κi,
and

(
∂uuf ∂uvf
∂vuf ∂vvf

)
= J

(
∂ssf ∂stf
∂tsf ∂ttf

)
JT +


(
∂sf
∂tf

)T (
∂uus
∂uut

) (
∂sf
∂tf

)T (
∂uvs
∂uvt

)
(
∂sf
∂tf

)T (
∂vus
∂vut

) (
∂sf
∂tf

)T (
∂vvs
∂vvt

)
 , (2.7)

where ∂vuf = ∂uvf and ∂tsf = ∂stf since we are dealing with C2 functions.

2.4.3 Computation of the approximating polynomial

In principle, the polynomial P can be computed by any suitable approximation method. As
pursued in [Lev06b, Zor06], in the following we exploit a least squares approach. Alternatively,
an energy minimization approach was explored in [Lev06a] and could be adapted to our setting
as well.
Since P is required to interpolate the extraordinary vertex, we represent it in bivariate form of
degree d:

P (s, t) = pev + Cm(s, t),

where C = (cχ,j) ∈ R3×nc , with nc := 1
2
(d + 1)(d + 2) − 1, is the matrix having as rows the

polynomial coefficients of coordinates χ, and the entries of vector m(s, t) ∈ Rnc×1 represent
the nc bivariate monomials s, t, s2, st, t2, . . . up to degree at most d.
We assume d = 3 for extraordinary vertices of valence n > 5, and d = 2 in the case n = 3.
To complete the definition of the polynomial, we compute the coefficients cχ,j by least squares
fitting exploiting np := 12n points pk obtained by evaluating the Catmull-Clark limit surface
at parameters (uk, vk) ∈ D̃n,i. In particular, for each patch Si of type (a) or (b) containing pev,
these parameters correspond to the following points in the base domain:(
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In Figure 2.7 these points and their image through the star-shaped transformation κi are
represented by solid black dots. For patches of type (c.1) or (c.2) the parameters associated
with the approximation points are those in (2.8), but additionally scaled by a factor 2, as these
types of patches derive from the subdivision of a non-quadrilateral face. The parameters in
(2.8) have been obtained by evaluating the patch on a grid of equally spaced points in the
base domain and selecting the domain coordinates whose image in Kn falls inside the blending
region Dn. The same values are used for each valence n.
In the star-shaped domain Kn, the np points (uk, vk) correspond to the points (sk, tk) :=
κi (uk, vk), i = 0, . . . , n − 1, that determine the coefficients of the Vandermonde matrix V ∈
Rnp×nc having as kth row the vector

m(sk, tk) =
(
sk, tk, s

2
k, sktk, t

2
k, . . .

)
.

By slightly abusing the notation, we can assume to work componentwise and reduce the least
squares fitting problem to the linear system

V TV c = V T (p− pev) ,

where the approximation points pk are arranged in a vector p. Since the coefficients c depend
only on the approximation points, in a preprocessing stage the inverse of the matrix V TV can
be computed and the entries of

(
V TV

)−1
V T can be stored for each valence n. Referring to the

workflow in Figure 2.3, the patcher function computes the solution of the least squares problem
as a matrix-vector product, stores the polynomial coefficients and, if necessary, updates them
after editing of the subdivision control mesh.

2.4.4 Extraordinary vertices on the boundary

The local correction method presented in the previous section can also be extended to ex-
traordinary vertices on the boundary of non-closed surfaces. Let ψ̂ be the mapping between the
base domain Q and one Catmull-Clark limit surface patch incident in a boundary extraordi-
nary vertex of valence n > 4. Thus the function ψ̂ is the evaluator for a Catmull-Clark surface
with boundary, e.g., as defined in [BLZ00, SES04, LB07]. We consider an open configuration
formed by n− 1 adjacent sectors of the mesh whose vertices are the entries of the subdominant
eigenvectors of the local subdivision matrix relative to valence 2(n− 1). If we apply ψ̂ to this
configuration, we get n − 1 patches K̂ [n]

i , i = 0, . . . , n − 2, which can be used to define the
fan-shaped domain:

K̂n :=
n−2⋃
i=0

{
ψ̂
K̂

[n]
i

(σh (φ(u, v)))
∣∣∣ (u, v) ∈ Q and σh(φ(u, v)) ∈ Q

}
,

with h given by (2.4). K̂n plays the same role as the star-shaped domain Kn in Section 2.4.2,
i.e., it is the local domain in which both the approximating polynomial and the Catmull-Clark
surface are represented in a neighborhood of the boundary extraordinary vertex. On this
domain, a semicircular blending region D̂n can be defined similarly to Dn as

D̂n :=
{

(s, t) ∈ K̂n

∣∣∣ ‖(s, t)‖2 6 λ[2(n−1)]
}
,

and the approximating polynomial can be computed as described in Section 2.4.3, thus by
sampling the Catmull-Clark limit surface at the parametric values (2.8) for each of the n − 1
patches incident in the vertex.
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2.4.5 Exact evaluation of the blended surface

This section presents the algorithm to compute the value, first and second derivatives of a
patch S∗i defined as in (2.5), containing at least one extraordinary vertex. Given the couple of
parameters (ū, v̄) in the base domain Q of the patch, we check whether (ū, v̄) lies inside the
preimage D̃n,i of a blending region. If S∗i contains more than one extraordinary vertex, then
either the image of (ū, v̄) lies outside all the related blending regions, or it belongs to exactly
one of them, since by construction the blending regions do not overlap. Thus, if the image
of (ū, v̄) in the star-shaped domain Kn through the reparameterization κi does not lie inside
the blending region Dn of any extraordinary vertex, the surface is directly evaluated in the
parameterization ψSi of the original Catmull-Clark patch Si. Alternatively, the value and the
derivatives of the weight function w and the polynomial P are computed in Kn; then the value
of the blended surface S∗i is computed through (2.5), and its derivatives w.r.t. u, v are obtained
by applying the inverse mapping κ−1

i to the derivatives of w and P w.r.t. s, t as in (2.6), (2.7),
and by composition.

The algorithm below summarizes the described evaluation procedure.

Algorithm. Evaluation of the blended surface.
Input: Si (i local index of the patch around the e.v.),

vertex valence n,
w, P ,
evaluation parameters (ū, v̄) ∈ Q.

Output: S∗i , ∂uS∗i , ∂vS∗i , ∂uuS∗i , ∂vvS∗i , ∂uvS∗i at (ū, v̄).

Evaluate Si, ∂uSi, ∂vSi, ∂uuSi, ∂vvSi, ∂uvSi at (ū, v̄);
Compute (s̄, t̄) = κi(ū, v̄);
if (s̄, t̄) ∈ Dn then

Compute the value and the derivatives of w and P w.r.t. s, t;
S∗i (ū, v̄) = w(s̄, t̄)Si(ū, v̄) + (1− w(s̄, t̄))P (s̄, t̄);
Compute the derivatives of w and P w.r.t. u, v by using (2.6) and (2.7);
Evaluate ∂uS∗i , ∂vS∗i , ∂uuS∗i , ∂vvS∗i , ∂uvS∗i at (ū, v̄);

else
S∗i (ū, v̄) = Si(ū, v̄) (and derivatives);

end if

2.5 Computational issues
The integration of subdivision surfaces in a CAD system and the application of the de-

scribed local correction method require that the limit surface be exactly evaluable at arbitrary
parametric coordinates. Although, as mentioned, there are various state-of-the-art evaluation
techniques, the implementation of these methods raises some general issues, that do not de-
pend on a particular algorithm, but on the specific requirement for application in CAD. This
section discusses such issues and how they were practically addressed in our implementation to
guarantee compatibility within a CAD environment.

Parameterization gap around an extraordinary point. The parameterization of the
limit surface through nested spline rings, which is at the basis of known evaluation methods,
covers the neighborhood of an extraordinary vertex only ad infinitum (see Figure 2.2). In
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practice, the need to truncate this infinite sequence generates a parameterization gap around
the vertex and the consequent impossibility of evaluating the surface in this area. This situation
also occurs when performing the local correction introduced in the previous section, and in
particular when evaluating the sector of characteristic map K [n]

0 .
In practice the problem can be fixed as described in the following. At the extraordinary point
it is possible to compute exactly both the limit surface value and the normal by well-known
formulas (see [HKD93, Appendix A]). Moreover, the first and second derivatives with respect
to the base domain are extrapolated (and additionally the first derivatives are projected on the
tangent plane defined by the normal) from the values they assume along the boundary of the
last ring of the truncated spline sequence, i.e., at a predefined distance δ from the extraordinary
point. Finally, linear interpolation between surface and derivative values on the boundary of
the last ring and those at the extraordinary point has been exploited to bridge the gap in
the intermediate region. Clearly, this procedure results in a small local perturbation of the
regularity of the surface in a δ-wide neighborhood of each extraordinary point. However, this
is not a major issue for application, provided that the distance δ is estimated in such a way
that the numerical algorithms available in the system are not sensitive to this perturbation.
Empirical observations suggest a suitable value δ = 10−10.

Evaluation outside the parametric domain of a patch. Some tools (such as Boolean
operations, fitting, and offset) may require to evaluate a surface patch outside its parametric
domain, which is in our case the base domain Q. The structure of a subdivision surface,
made of spline (thus polynomial) rings, suggests that this operation could be accomplished
by extrapolating a suitable spline ring. However, this approach can not generate satisfactory
results when the extrapolated value is close to an extraordinary point, since the size of the
rings reduces exponentially while approaching the point. This issue has been overcome by
extrapolating the values external to Q and at a distance smaller than 10−10 from a tangent
ribbon (i.e., a ruled surface defined by the first derivatives in the cross-boundary direction).

Corner vertices. A corner corresponds to a vertex of valence 2 of an open control mesh,
and therefore it belongs to one limit surface patch only. To evaluate this patch, we extrapolate
linearly one ring of mesh faces across the boundary. In the fictitious extrapolated mesh, the
corner vertex has valence 4, so it can be regarded as regular and the corner patch can be
evaluated as a spline one.

2.6 Modeling examples
This section presents some modeling examples provided by think3 and realized with the

ThinkDesign system.
Figure 2.9 illustrates a modeling and editing sequence of a B-rep solid with hybrid faces. In the
first row, from the left, the sequence shows a Subd-B-rep of a tap model. A blind hole is created
through Boolean intersection with a cylinder and afterwards a fillet is inserted to smooth down
the sharp joint between the two surfaces. Note that the Boolean operations already available in
ThinkDesign were used, i.e., no ad hoc implementation for subdivision surfaces was necessary.
The three rightmost figures show mean curvature, isophotes, and rendering of the model. In
the second row, the hybrid nature of the faces of the B-rep is highlighted: subdivision faces
are colored in yellow, a cylindrical face in green and a NURBS face in red. The two central
figures show the editing of the subdivision control mesh, which results in a still hybrid B-rep
represented in the last figure of the second row. In particular, after editing the control mesh,
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the hole and the fillet were automatically updated.
For this and the following examples, we recall that the radius of the blending region is chosen
as described in Section 2.4.2. Accordingly, the extension of the blending region depends on the
type of patch as illustrated in Figure 2.8.
The modeling sequence proposed in Figure 2.10 emphasizes the possibility of working with
surfaces and solids at the same time in a hybrid modeling CAD environment. An iron model is
designed by exploiting subdivision surfaces and thus represented as a Subd-B-rep with thick-
ness. Successively, a blind hole is created giving rise to a hybrid B-rep, which is further edited
by intersection with planar and quadric surfaces. The model is completed by two NURBS
surfaces representing the knob and the cable.
Figure 2.11 shows a magnification of curvature and isophotes visualization3 around an extraor-
dinary point of the two models in Figures 2.9 and 2.10, comparing them with the Catmull-Clark
limit surface without the local correction through blending: the improved numerical behavior
around extraordinary points is even visibly noticeable.

The design and development of the subdivision software prototype integrated in ThinkDe-
sign went in a feedback loop with the validation of some end-users. The Italian-based firm of
household appliances Alessi has validated the software from the computer-aided styling (CAS)
point of view. One of the major features required by Alessi and then embedded in the subdivi-
sion prototype was the integration between the conceptual design and the engineering phases
which can be only achieved by a perfect integration of the new geometric representation in the
geometric kernel. This allows us to approach subdivision as any other CAD feature in a history-
based CAD system where a model description is stored and successively redefined interactively.
Thus, a geometric model based on subdivision can be modified shortly after some features, such
as shells, fillets, chamfers, Boolean operations, parting lines, etc., have been applied to it, and
these features are automatically updated.
Figures 2.12 and 2.13 illustrate the modeling of a product manufactured by Alessi exploiting the
subdivision surface capability integrated in ThinkDesign. The illustrated model was developed
from a Subd-B-rep obtained from the conversion of a solid cube. The sequence of divisions,
extrusions, and editing of faces and vertices has allowed the user to model the desired shape in
a fast and easy way (Figure 2.12). The final model, shown in Figure 2.13(a), now needs to be
engineered in order to be produced. This engineering design phase explains why it is necessary
that the subdivision module be intimately tied around the CAD system. Assuming the model
is to be produced in plastic, we need to add thickness to it, that is to apply a shell feature,
as illustrated in Figure 2.13(b). Successively, for manufacturing reasons due to the process-
ing of molding machines, it is convenient to separate the object into several parts: within an
integrated system, this task is easily performed by existing Boolean operators or through the
cutting surfaces feature, exploiting the peculiarity of a hybrid system (Figure 2.13(c)). If we
want to make major changes in the style and/or in the dimension of the object, the integrated
module allows us to just remodel and automatically update. Conversely, if the subdivision
module were not integrated, the designer should restart working on the initial model, redoing
all the steps involving thickness and cutting features. The feedback from Alessi on the ben-
efit introduced by the integration of subdivision surfaces in the CAD system is very positive.
Alessi emphasizes the visual quality of the obtained surfaces, the ease of use, and especially the
complete integration with the rest of the CAD environment, and concludes that this makes a
real progress with respect to the standard CAD approach.

3For a description of the use of isophotes in surface interrogation and quality assessment see, e.g., [KK88,
The01].
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< −0.3611 > 0.0769

Figure 2.9: Example of a tap model. First row, from left to right: B-rep solid, creation of a filleted
blind hole, visualization of mean curvature, isophotes, and final rendering of the model. Second row:
hybrid B-rep of the model, before and after the editing performed on the vertices of a face of the
control mesh. The different colors highlight faces having different geometric representation.

< −0.2035 > 0.07465

Figure 2.10: Example of an iron model. First row, from left to right: B-rep solid, creation of
a blind hole, visualization of mean curvature and isophotes. Second row: hybrid B-rep of the model
(faces with different geometric representations are shown in different colors), hybrid modeling exploiting
surface/solid intersection tools, creation of knob and cable, and final rendering of the assembled model.
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(a) (b)

< −0.3611

> 0.0769

(c) (d)

(e) (f)

< −0.2053

> 0.07465

(g) (h)

Figure 2.11: (a), (c), (e), (g): magnification of curvature visualization and isophotes in Figures 2.9
(first row) and 2.10 (second row) around an extraordinary point with local correction; (b), (d), (f),
(h): same area of the model without local correction.

Figure 2.12: Editing of the subdivision control mesh.

(a) (b) (c)

Figure 2.13: Example of a stool designed by Alessi. (a) Subd-B-rep solid, (b) model with added
thickness, (c) division of the object in two parts.
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2.7 Conclusions
In this chapter we discussed the theoretical and practical aspects involved in the integration

of subdivision surfaces in a CAD system, exploiting a suitable parameterization method and
exact evaluation. We have proposed a solution to the regularity issues that usually prevent
the adoption of subdivision in CAD applications, by providing a local correction method that
guarantees C2 continuity also in the neighborhood of extraordinary vertices. To this end, we
have pursued a blending approach, whose effectiveness, although limited to the discrete setting,
was already emphasized in [Lev06b, Zor06]. In particular, this method provides a quite regular
curvature behavior against a negligible drawback, which is a slight violation of the convex-hull
property in situations of minor practical relevance, as discussed in [Lev06b]. The good quality
of the obtained surfaces was confirmed by the testing carried out by our industrial partners.
Using the proposed local correction, commonly used CAD tools like offset, local approximation
in Taylor expansion, intersections, and any other are performed successfully. Conversely, they
produce unpredictable results when applied to the (standard) Catmull-Clark surfaces. This is
due to the fact that these algorithms make extensive use of iterated interrogations of the surface
and its first and second derivatives at successively generated arbitrary parameter values and,
in this process, they need or assume a regular curvature behavior everywhere.
Subdivision surfaces have been fully integrated in the ThinkDesign CAD system since version
2011.1, in the sense that any existing CAD tool can be applied to them and they can interact
with other geometric entities, like NURBS, making it possible to perform Boolean operations
between hybrid representations. This allows a seamless integration of hybrid NURBS/subdi-
vision/analytical geometric models in a hybrid CAD system, which was never attained before,
either theoretically or in practical applications.
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Chapter 3

A general framework for the construction
of piecewise-polynomial local interpolants
of minimum degree

This chapter is devoted to the problem of designing piecewise polynomial local interpolants of
non-uniformly spaced data. Replicating the content of the recent paper [ABC14a], we present
a constructive approach that, for any assigned degree of polynomial reproduction, continuity
order, and support width, allows us to generate the fundamental spline functions of minimum
degree having the desired properties. Moreover, the proposed construction is extended to handle
open sets of data and to the case of multiple knots.

3.1 Introduction

In this chapter we present a general framework for the construction of locally supported
fundamental functions for spline interpolation defined on non-uniform knot partitions. As
opposed to the traditional approach, in which one imposes the interpolation constraint and
thereafter builds on it, we address here the situation in which the user may want to choose the
relevant characteristics of the interpolant depending on the context of application. A similar
idea is also at the basis of the work in [BTU03], which, however, is limited to considering the
uniform case only. In that paper, it is observed that any piecewise-polynomial interpolation
kernel can be characterized by four main design parameters : degree, support, regularity, and
order of approximation. Obviously, such a classification can be adopted also in the non-uniform
case and possibly extended to other kinds of splines (e.g., exponential or rational). Inspired by
this observation, we consider the general problem of designing polynomial spline interpolants of
given degree, support, regularity, and order of approximation on non-uniform knot partitions.
In this respect, although many results are known about the uniform setting, at present the
non-uniform case is addressed by the work in [BCR13a] only. In that paper, families of splines
with different design parameters are defined through a suitable combination of polynomial
interpolants with either polynomial or rational, compactly supported blending functions. In
this way, polynomial reproduction is guaranteed by construction, whereas the order of continuity
must be ensured by a proper choice of blending functions. To some extent, the approach can
be seen as a generalization of the well-known construction of Catmull-Rom splines [CR74].
In approximation theory the best quality, within a fixed support, corresponds to the highest

possible approximation order and continuity. Based on this idea, the work in [DGM88] proves
the existence and uniqueness of some families of optimally local interpolating splines, defined

29
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as those splines having degree h, approximation order h + 1, and order of continuity h − 1.
Thus, optimally local interpolating splines have minimum degree and highest possible continu-
ity. However, this feature is not a requirement for most applications: for instance, in image
processing one usually requires high approximation order and small support, regardless of con-
tinuity; conversely, in computer-aided design a reasonable balance between all the four design
parameters may be more effective in order to provide an interpolant with good shape quality.
Clearly, regardless of the context, the spline degree should be the lowest possible. In particular,
the minimum degree achievable in local spline interpolation is either equal to the polynomial
reproduction degree or equal to the order of continuity plus one. In this respect, it must be
observed that the aforementioned technique [BCR13a] does not allow designing optimally local
interpolating splines nor, more generally, splines having minimum degree.
The objective of this chapter (as well as of the work [ABC14a]) is to provide a complete pa-
rameterization of the class of non-uniform, minimum-degree, locally supported, interpolating
splines with respect to the considered design parameters: more precisely, we present a con-
structive approach that, for any arbitrary choice of continuity order, polynomial reproduction
degree, and support width, allows us to design the corresponding fundamental spline functions
of minimum degree. To this aim, we extend and generalize the approach in [BCR13a] relying
on the observation that, in the design of locally supported fundamental splines, increased flex-
ibility can be obtained interpolating by splines with knots t := {tj} where the interpolation
nodes x := {xj} are strictly contained in t. We can date back this idea to the well-known
Powell-Sabin interpolant [PS77], where the additional degrees of freedom are used in order to
do Hermite interpolation at the interpolation points. Successively, the paper [Woo87] intro-
duces the term B2-splines to describe a local representation for cubic spline interpolants where
t2j = xj and t2j+1 ∈ (xj, xj+1). A similar construction is also proposed in [DGM88, KFK94],
and adapted to B3-splines in [Chu90]. More generally, in this chapter we construct Br-splines,
namely splines made of r polynomial pieces between trj and trj+r. Also, unlike the previous
works, the proposed approach allows us to handle not only the case xj = trj, but also the case
xj ∈ (trj−r, trj).
We will see that the proposed method provides an effective procedure for the computation of

optimally local interpolating splines. In addition, it also allows us to generate other families of
non-uniform interpolating splines, parameterized by the considered design parameters, that, to
our knowledge, have never appeared before. Besides this, the framework includes the families
of splines investigated in [BCR13a], regarded as B1-splines.

The remainder of the chapter is organized as follows. In Section 3.2 we review the approach in
[BCR13a] and the relevant properties of the generated splines. In Section 3.3 we generalize the
interpolation framework to design Br-splines and illustrate the constructive method by means
of some significant examples. In Section 3.4 we study the family of minimum-degree splines
and show that the proposed method always allows us to design a minimum-degree spline with
assigned other design parameters. Section 3.5 extends the framework to open sets of data.
Section 3.6 discusses the role of the non-uniform knot partition, with particular emphasis on
the interesting situation in which the knots are set to coincident locations. Some final remarks
and general observations on interpolation by Br-splines are collected in Section 3.7.
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3.2 A blending-based approach to the design of non-uniform
local interpolating splines

In this section we review the approach presented in [BCR13a] for the construction of non-
uniform piecewise-polynomial local interpolants with given smoothness and approximation or-
der.
We denote by {(xj, yj)} the given interpolation data. In particular, we assume that x := {xj},
called nodes, form an increasing sequence. We also denote by pi,m ∈ Πm the degree-m polyno-
mial such that pi,m(xj) = yj, j = i, . . . , i+m.
We consider the family of splines represented by

F (x) =
∑̀
i=`−n

pi−σ,m(x)Bi,n+1(x), x ∈ I` := [τ`, τ`+1). (3.1)

In the above expression, Bi,n+1 are blending functions defined on a strictly increasing sequence
of values τ := {τj} and satisfying the general requirements of having

(i) Compact support : Bi,n+1(x) > 0, x ∈ (τi, τi+n+1), and Bi,n+1(x) = 0, x /∈ (τi, τi+n+1);

(ii) Partition of unity property :
∑
i

Bi,n+1(x) = 1,∀x ∈ R.

The reciprocal configuration of x and τ determines a first distinction among all the splines
represented by (3.1). In this respect, two relevant situations are worth considering and corre-
spond to

τ ≡ x (even configuration); (3.2a)
τ 6= x and xj < τj < xj+1,∀j (odd configuration). (3.2b)

From formula (3.1) we can understand the leading idea of the proposed approach, that
is, the sought degree of polynomial reproduction (and the related approximation order) is
automatically guaranteed by construction, whereas the order of continuity must be ensured by
a proper choice of blending functions. Although, generally speaking, the blending functions
in (3.1) may be of various types (e.g., polynomial, rational, trigonometric, hyperbolic), in this
chapter we focus on the cases in which they are either polynomial or rational. In the following,
we enumerate the relevant properties of the considered family of splines, referring to [BCR13a]
for their proof.

1) Interpolation. Since we are interested in the construction of splines that are interpolating,
we need to characterize when this is the case for the functions defined by (3.1). In this
regard, it can be proved that (3.1) represents a family of interpolating splines for fixed
degree m of the polynomials and support width n+1 of the blending functions if and only
if the integer shift σ belongs to Σ, where either Σ = {−1, . . . ,m−n} and σ 6= −1 if n = 0
in case of even configuration, or Σ = {−1, . . . ,m− n− 1} in case of odd configuration.

Moreover, the requirement that F interpolates the data provides useful necessary condi-
tions relating m and n. More precisely, F is interpolating only if

◦ m+ 1 > n, in case of even configuration;

◦ m+ 1 > n+ 1, in case of odd configuration.
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2) Support width. We call fundamental functions associated with a class of local interpolating
splines and a given set of nodes x = {xj} the functions ψi that belong to the considered
class and satisfy ψi(xj) = δi,j. The support width w of a fundamental function associated
with a family (3.1) is

w = m+ n+ 1. (3.3)

3) Smoothness. By construction, the order of continuity of F is at least equal to the order
of continuity of the blending functions that appear in (3.1).

In the even configuration, an improvement on this estimate is obtained in two cases:

3.a) The n+ 2 polynomials associated with the non-vanishing blending functions on the
interval [τ`−1, τ`+1) are all interpolating the data (x`, y`), which corresponds to having
m + 1 > n and σ 6= −1,m − n. In this case, if the blending functions are Ck at τ
and at least Ck+1 everywhere else, then F is Ck+1.

3.b) Conversely, if σ = −1,m− n, F is Ck+1 if the blending functions are Ck at τ , Ck+1

at the endpoints of their support, and at least Ck+1 everywhere else. Note that this
is always the case when m+ 1 = n because Σ = {−1}.

4) Polynomial reproduction and approximation order. By construction, F reproduces poly-
nomials of degree at least m. From this and the interpolation property of F , exploit-
ing standard estimates for polynomial approximation, it can be proved that, for any
f ∈ Cm+1(R) and interpolation data (xj, f(xj)),

‖F − f‖I` 6 γ
(
x`+dw2 e − x`−bw2 c+1

)m+1 ∥∥f (m+1)
∥∥[

x`−bw2 c+1,x`+dw2 e
] ,

where γ is independent on f , w is the support width, and ‖f‖I := max
x∈I
|f(x)|. Thus F

has approximation order m+ 1.

5) Symmetry. We say that the fundamental functions are centered if they assume the value
1 at the central node of their support in case of even support width and at the midpoint
of the central interval of their support in case of odd support width. The property of
being centered is a necessary condition for the symmetry of F and holds when

σ =

⌊
m− n− 1

2

⌋
, (3.4)

and w = m+ n+ 1 is even/odd respectively in the even/odd configuration.

Some examples of centered and non-centered fundamental functions are shown in Figure
3.1.

By the partition of unity property of the blending functions, we can reformulate (3.1) as1

F (x) = p`−n−σ,m(x) +
∑̀

i=`−n+1

(pi−σ,m(x)− pi−σ−1,m(x))
∑̀
j=i

Bj,n+1(x)

= p`−n−σ,m(x) +
∑̀

i=`−n+1

ci−σ fi(x)
i−σ+m−1∏
j=i−σ

(x− xj), x ∈ I`, (3.5)

1We refer to [BCR13a] for a detailed derivation of expression (3.5).
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(a) Even support width, centered, and symmetric. (b) Even support width, non-centered.

(c) Odd support width, centered, and symmetric. (d) Odd support width, non-centered.

Figure 3.1: Centered and non-centered fundamental functions in even (top row) and odd (bottom
row) configuration.

where (denoting by [·] the standard divided differences)

cj := [yj, . . . , yj+m−1, yj+m]− [yj, . . . , yj+m−1, yj−1],

and fi(x) =
∑̀
j=i

Bj,n+1(x), for x ∈ I`. Note that we can extend the definition of fi to R as

fi(x) :=
∑
j>i

Bj,n+1(x) =


0, x < τi,
i+n−1∑
j=i

Bj,n+1(x), x ∈ [τi, τi+n),

1, x > τi+n.

The functions fi are called transition functions. By the above formula and recalling that
supp(Bi,n+1) = [τi, τi+n+1], we have Bi,n+1 = fi − fi+1.

In the remainder of the chapter we focus only on spline interpolants that preserve possible
symmetries of the data. For this to happen, two conditions must hold true. First, the cor-
responding fundamental functions must be centered, which, according to Property 5, requires
σ as in (3.4) and the even/odd configuration in correspondence of even/odd support width.
Second, the blending functions must be symmetric (when so are the related values in τ ), which
means that the transition functions fi must be antisymmetric with respect to the midpoint of
[τi, τi+n].

3.3 Generalization of the interpolation framework
The formulation (3.5) readily suggests a method for minimizing the degree of F within the

considered framework. The idea is to design the transition functions fi, ∀i = `−n+1, . . . , `, as
piecewise rational functions whose denominator simplifies as many factors as possible among
(x−xj), j = i−σ, . . . , i−σ+m− 1. In the remainder of this section we will present a suitable
constructive method to achieve this goal.
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In the following we refer to the elements of τ as breakpoints. We introduce an increasing
sequence t := {ti}, which is a refinement of τ such that trj = τj, and trj+h ∈ [τj, τj+1], h =
1, . . . , r−1. In this way, each interval I` is subdivided into r subintervals I`,h := [tr`+h−1, tr`+h),
h = 1, . . . , r. Hence, we define each fi as a piecewise rational function on t of the form

fi(x) =


0, x < tri,
qi,j(x)

πi,j(x)
, x ∈ [tri+j−1, tri+j), j = 1, . . . , rn,

1, x > tri+rn,

(3.6)

where qi,j and πi,j are suitable polynomials. On each interval I`,h, ` = i, . . . , i + n − 1, the
denominator of fi is the product of all the factors among (x− xj), j = i− σ, . . . , i− σ +m− 1
that do not vanish in I`,h, while the numerator is determined by imposing that the resulting
spline interpolant F has continuity Ck+1. The number of continuity conditions at each point of
t is inferred from Property 3 in Section 3.2. In particular, in the even configuration we require
that fi be Ck at τ and Ck+1 at trτ (see case 3.a); moreover, if m + 1 = n, then fi must be
Ck+1 also at tri and tr(i+n) (see case 3.b). In the odd configuration fi is required to be Ck+1 at
any point of t. Let us denote by ki,h the order of continuity of fi at tri+h, h = 0, . . . , rn, and
set fi,j :=

qi,j
πi,j

, j = 1, . . . , rn. Then fi is obtained by solving the linear system

f
(s)
i,1 (t+ri) = 0, s = 0, . . . , ki,0,

f
(s)
i,j (t−ri+j) = f

(s)
i,j+1(t+ri+j), s = 0, . . . , ki,j, j = 1, . . . , rn− 1,

f
(s)
i,rn(t−ri+rn) = δs,0, s = 0, . . . , ki,rn.

If we express the polynomials qi,j, j = 1, . . . , rn, which have degree di,j := deg(qi,j) respectively,
in a basis u0, . . . , udi,j with coefficients bi,j, then the above system can be written in the form

Mb = c,

with

M :=



M1(tri)
M1(tri+1) −M2(tri+1)

M2(tri+2) −M3(tri+2)
. . . . . .

Mrn−2(tri+rn−2) −Mrn−1(tri+rn−2)
Mrn−1(tri+rn−1) −Mrn(tri+rn−1)

Mrn(tri+rn)


,

b := (bi,1, bi,2, . . . , bi,rn−1, bi,rn)T , and c := (0, . . . , 0, 1, 0, . . . , 0)T ,

and whereMj(tri+h) is a matrix of size (ki,h+1)×(di,j+1) whose sth row, for s = 1, . . . , ki,h+1,
is of the form (

D(s−1) u0(x)

πi,j(x)

∣∣∣∣
x=tri+h

, . . . , D(s−1)udi,j(x)

πi,j(x)

∣∣∣∣
x=tri+h

)
.

We observe that each set of functions{
uh
πi,j

, h = 0, . . . , di,j

}
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is an extended Chebyshev system on [tri+j−1, tri+j] (see Theorem 2.33 in [Sch07]). Consequently,
the matrix Mj(tri+h) has full rank, namely equal to the number of its rows ki,h + 1. From this
formulation we can also see that, when the degrees of the numerators qi,j are chosen so that
the total number of unknown coefficients is equal to the total number of continuity conditions,
namely

∑rn
h=0(ki,h + 1), then M is square and nonsingular. This choice turns out to be ap-

propriate in most cases (see, e.g., the examples below). The exception is represented by those
cases in which the requirement, stated at the end of Section 3.2, that the transition function be
antisymmetric (which means that the degrees of the numerators qi,j must be set accordingly)
may result in having one degree of freedom exceeding the number of continuity conditions.
However, also these cases can be handled by exploiting an additional condition of symmetry,
in such a way that fi is always uniquely determined (see, e.g., Example 3.2 below, in the case
r = 2).

To characterize the spline interpolants provided by the proposed constructive approach, we
introduce the following definition.

Definition 3.1 (Br-spline). An interpolating spline relative to breakpoints τ is called Br-spline
if it is made of r polynomial pieces inside each interval [τ`, τ`+1).

The proposed interpolation framework allows us to design several families of splines, where
each family is identified by four relevant features, namely degree, continuity, polynomial repro-
duction, and support width, that, hereinafter, are referred to as design parameters. For brevity,
we denote a certain family using the acronym Br DgC k̄PmSw, where g, k̄,m,w are integers
representing respectively degree (g), smoothness (k̄), degree of polynomial reproduction (m),
and support width (w) of the fundamental function.
Based on the proposed construction, we illustrate the design of polynomial spline interpolants

of minimum degree by considering four relevant situations that may occur in the design of fi:

• Example 3.1 represents a basic situation and also outlines the procedure for constructing
the family of optimal splines B2 DhCh−1P hS2h;

• Example 3.2 shows how we can design a spline of minimum support and degree with given
polynomial reproduction and smoothness;

• Example 3.3 illustrates the situation in which, to obtain a spline of assigned continuity,
the transition functions must have different orders of continuity at the knots.

• Example 3.4 illustrates the construction of a family of optimal splines with odd support
width.

In the first three examples, we have chosen to focus on the even configuration, being this
setting the most common in applications. However, the last example provides a glimpse of a
case with the odd configuration.

Example 3.1 (B2 D3C2P 3S6). Our aim is designing a local B2-spline interpolant of the general
form (3.1) having degree g = h, continuity order k̄ = h − 1, polynomial reproduction m = h,
and support width w = 2h. We address the particular case h = 3, although the same method
applies in general. In the considered setting, from (3.3) and (3.4) we deduce that the blending
functions have support width n+ 1 = 3 and that σ = 0. Figure 3.2(a) illustrates the reciprocal
configuration between the non-vanishing blending functions in I` := [τ`, τ`+1) and the associated
interpolating polynomials. Note that, since the support width is even, also x and τ are assumed
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(a) (b)

Figure 3.2: Interpolating polynomials and associated (a) blending and (b) transition functions in-
volved in the construction of the spline interpolant in Example 3.1 on the interval I` = [τ`, τ`+1). Being
the configuration even, τ ≡ x.

to be in even configuration. Following the procedure illustrated in the previous section, we can
write equation (3.5) on the single interval I` as

F (x) = p`−2,3(x) + f`−1(x) (p`−1,3(x)− p`−2,3(x))︸ ︷︷ ︸
c`−1(x−x`−1)(x−x`)(x−x`+1)

+f`(x) (p`,3(x)− p`−1,3(x))︸ ︷︷ ︸
c`(x−x`)(x−x`+1)(x−x`+2)

, x ∈ I`.

On the refined sequence t (such that t2j = τj, ∀j), any transition function, say f`, is made
of four rational pieces between t2` = τ` and t2(`+2) = τ`+2 (see Figure 3.2(b)). To determine
its expression we need to write f` in the form (3.6) and require that F be C2-continuous. Any
other transition function can be simply determined by index shifting. Based on Property 3.a in
Section 3.2, F is C2 if f` is C1 at t2`, t2(`+1), t2(`+2) and C2 at t2`+1, t2`+3. Overall, this gives us
12 continuity conditions, which can be satisfied supposing that the numerator q`,j of each piece
j = 1, . . . , 4 of f` on t is a quadratic polynomial. Since our aim is also minimizing the degree
of F , the denominator π`,j is the product of all factors among (x − x`), (x − x`+1), (x − x`+2)
that do not vanish in the corresponding interval [t2`+j−1, t2`+j). The detailed construction of a
transition function f` and the expression for the numerators and denominators of its pieces are
given in Section 3.3.1.
Finally, a local cubic spline interpolant is obtained from (3.5) by simplifying the denominator

of the transition functions with the factors inside the product symbol. The fundamental function
associated with the class B2 D3C2P 3S6 is shown in Figure 3.1(a).

Example 3.2 (B1 D5C2P 2S4, B2 D4C2P 2S4, B3 D3C2P 2S4). In this example, we fix the
continuity and polynomial reproduction degree to be k̄ = 2 and m = 2 respectively. From
relation (3.3), it can be easily seen that w = 4 is the smallest support width that allows (in
the even configuration) obtaining centered fundamental functions that reproduce quadratic
polynomials. From (3.3) and (3.4) we deduce that n = 1 and σ = 0. The resulting spline
interpolant (3.5) has the expression

F (x) = p`−1,2(x) + c`f`(x)(x− x`)(x− x`+1), x ∈ I`. (3.7)

We design the spline interpolant F for different refinement coefficients r = 1, 2, 3, deriving
the transition function f` in the three cases (for the sake of completeness, the corresponding
expressions are provided in Section 3.3.1). Figure 3.3 represents schematically the continuity
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(a) B1 D5C2P 2S4 (b) B2 D4C2P 2S4 (c) B3 D3C2P 2S4

Figure 3.3: Illustration of the interpolating polynomials and transition functions involved in the
design of F on I` = [τ`, τ`+1) in Example 3.2. The figures indicate the required continuity at each knot
and the degree of the numerators and denominators of the pieces of f` (in the form deg(q`,j)/ deg(π`,j),
j = 1, . . . , r). Being the configuration even, τ ≡ x.

(a) (b)

Figure 3.4: Interpolating polynomials and associated (a) blending and (b) transition functions in-
volved in the construction of the spline interpolant in Example 3.3 on the interval I` = [τ`, τ`+1). Being
the configuration even, τ ≡ x.

conditions at each knot of t and the degree of the numerators and denominators in (3.6) that
allow satisfying them. Using this information, from the formulation (3.5) we can compute the
degree of F , which turns out to be equal to 5, 4, 3 respectively for r = 1, 2, 3. This example
emphasizes the remarkable fact that, by increasing r, it is possible to get a progressive reduction
of degree, down to the minimum allowed for a local spline interpolant that is C2-continuous.

Example 3.3 (B2 D3C2P 1S4). This class illustrates the situation in which, in order for F
to be globally C2, a different order of continuity of fi must be required at some points of τ ,
according to Property 3.b in Section 3.2.
In the considered example, w = 4, m = 1 and, from (3.3) and (3.4), n = 2 and σ = −1. The

interpolating spline F has the expression

F (x) =
∑̀
i=`−2

pi+1,1(x)Bi,3(x) = p`−1,1(x) +
∑̀
i=`−1

ci+1fi(x)(x− xi+1), x ∈ I`,

and the reciprocal configuration of interpolating polynomials and related blending/transition
functions is illustrated in Figure 3.4. Thus we observe that, for any i, the data lying in the
support of Bi,3 are (xj, yj), j = i, . . . , i+ 3, but the polynomial pi+1,1 only interpolates (xj, yj),
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p`−1,3

p`,3

y`−1

y`

y`+1

y`+2 y`+3

B`−1,2 B`,2

x`−1 x` x`+1 x`+2 x`+3τ`−1 τ` τ`+1 τ`+2

t4` t4(`+1)t4`+1 t4`+2 t4`+3

(a)

p`−1,3

p`,3

y`−1

y`

y`+1

y`+2 y`+3

f`

x`−1 x` x`+1 x`+2 x`+3τ`−1 τ` τ`+1 τ`+2

t4` t4(`+1)t4`+1 t4`+2 t4`+3

(b)

Figure 3.5: Interpolating polynomials and associated (a) blending and (b) transition functions needed
for the evaluation of the spline interpolant in Example 3.4 on the interval I` = [τ`, τ`+1). Being the
configuration odd, τ 6= x.

j = i + 1, i + 2. This implies that (see Property 3.b in Section 3.2), in addition to continuity
order C1 at τ and C2 at trτ , we also have to require C2 continuity at the extremal points of
the support of Bi,3, namely fi must be C2 at t2i and t2(i+2). The complete expression of the
corresponding transition functions is given in Section 3.3.1.

Example 3.4 (B4 D3C2P 3S5). Our aim is designing an optimal spline having odd support
width. Thus, from the assumption that σ = σc and Property 5 in Section 3.2, it follows
that we need to work in the odd configuration (3.2b), that is xj ∈ (t4j−4, t4j) = (τj−1, τj), ∀j.
From relations (3.3) and (3.4), we derive the values n = 1 and σ = 0, and accordingly the
representation of F in the form (3.5):

F (x) = p`−1,3(x) + f`(x) (p`,3(x)− p`−1,3(x))︸ ︷︷ ︸
c`(x−x`)(x−x`+1)(x−x`+2)

, x ∈ I`.

Figure 3.5 illustrates the polynomials and blending/transition functions involved in our con-
struction on the interval I`.
Next, we set the proper continuity conditions needed to determine a transition function f`.

At this point, it is convenient to make the particular assumption that t4`+2 = x`+1, ∀`. In
this way, in order for F to be C2-continuous, we need to require that f` be C2 at any point
of t in [t4`, t4`+4], but just C1 at t4`+2

2. This gives us 14 continuity conditions against 14
unknown coefficients corresponding to proper degrees of the numerators in (3.6). For a detailed
computation of f` we refer again to Section 3.3.1.

The four above examples suggest a general formulation for the considered class of Br-splines.
In fact, if in equation (3.5) we substitute the expression (3.6) and simplify the denominator of
the transition functions, the spline interpolant F becomes a piecewise polynomial of the form

F (x) = p`−n−σ,m(x) +
∑̀

i=`−n+1

ci−σ Ki,r(`−i)+h(x) qi,r(`−i)+h(x), x ∈ I`,h, h = 1, . . . , r, (3.8)

2In the odd configuration, it can be proved that, whenever, for any j, one of the internal knots trj−h,
h = −r + 1, . . . , 1 coincides with xj , then F gains one order of continuity with respect to the continuity of the
transition functions at the knot. The result can be obtained straightforwardly, verifying that the left and right
derivatives of F at such knot are equal up to the order of continuity of the transition functions plus one.
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where qi,j is the numerator of the jth piece of fi. The termKi,j(x) contains the factors under the
product symbol in (3.5) that are not simplified by the denominator of the transition function.
Recalling that by construction the denominator of fi is the product of all the factors among
(x− xj), j = i− σ, . . . , i− σ + m− 1, that do not vanish in I`,h, it turns out that Ki,j(x) can
be of the following types:
if r = 1,

Ki,j(x) = κi,j


1

(x− x`)
(x− x`)(x− x`+1)

(x− x`+1)

in even configuration,

or

Ki,j(x) = κi,j

{
1

(x− x`+1)
in odd configuration;

otherwise (if r > 2),

Ki,j(x) = κi,j


1

(x− x`)
(x− x`+1)

in even configuration,

or

Ki,j(x) = κi,j

{
1

(x− x`+1)
in odd configuration.

The term κi,j is a multiplicative constant that depends on how we represent the denominator
of the transition functions. Using the Bernstein basis, an example for the explicit form of κi,j
is given in Section 3.3.1, at the end of Example 3.1.
Expression (3.8) provides a useful and concise evaluation algorithm for the interpolants in

the family (3.1). It also allows a direct computation of their derivatives. In particular, differ-
entiating (3.8) s times and using Leibniz’s formula, we get

F (s)(x) = p
(s)
`−n−σ,m(x) +

∑̀
i=`−n+1

ci−σ

s∑
j=0

(
s

j

)
K

(j)
i,r(`−1)+h(x) q

(s−j)
i,r(`−1)+h(x), x ∈ I`,h.

The above formula can be further simplified in the particular case n+ 1 = 2, as pointed out
in the following remark.
Remark 3.1. If n+ 1 = 2 and the blending functions (or, equivalently, the transition functions)
are Ck, then F (s)(τ`) = p

(s)
`−1−σ,m(τ`), s = 0, . . . , k.

The assertion follows from (3.5), recalling that the transition functions are such that f`(τ`) =
0 and f`(τ`+1) = 1 (only the blending function B`−1,2 is non-zero at τ`, and by partition of unity
its value is 1), and the derivatives of f` (equivalently, of B`,2) up to order k vanish at τ` and
τ`+1.
Equation (3.8) also suggests some interesting observations about the degree of F . Denoted

by d̄ := maxj=1,...,rn di,j the maximum degree of the numerators of fi, it can be seen that, if
r = 1, the lowest possible degree for F is

g =

{
max(m, d̄+ 2), in even configuration,
max(m, d̄+ 1), in odd configuration;



40 3. A general framework for the construction of piecewise-polynomial local interpolants of minimum degree

(a) (b) B1 D5C2P 2S4 (c) B2 D4C2P 2S4 (d) B3 D3C2P 2S4

Figure 3.6: Comparison between B1-, B2-, and B3-spline parametric interpolants of planar data: (a)
all interpolants superimposed, (b)–(d) interpolant and related curvature comb.

otherwise, namely if r > 2, the lowest degree turns out to be

g = max(m, d̄+ 1).

Thus, Br-splines always allow us to get interpolants with lower degree with respect to the
classical (i.e., B1) setting. Indeed we will show that any interpolating spline of minimum
degree (i.e., corresponding to arbitrarily chosen smoothness, polynomial reproduction degree,
and support width) can be obtained as a Br-spline for a suitable r.
Figure 3.6 illustrates three parametric interpolants (see Example 3.2), corresponding respec-

tively to a B1-, B2-, and B3-spline, which provide a progressive reduction of degree. The figure
emphasizes that curves featured by the same order of continuity, polynomial reproduction de-
gree, and support width are very similar. Moreover, they all generate a faithful approximation
of the original data, due to a proper choice of non-uniform parameterization (the centripetal pa-
rameterization is used in this example). In the curvature comb the different polynomial pieces
between two breakpoints are highlighted in different colors: since the curve is C2-continuous,
the curvature is only C0 at internal knots trτ . In general we observe that at internal knots
trτ , a Br-spline is C k̄, while a B1-spline is C∞-continuous.
A last consideration about the computational cost for the evaluation of a Br-spline is in

order. There are two contributions in such an estimate: the cost of determining the subinterval
I`,h of the refined sequence t and the evaluation of expression (3.8). However, since the degree
of (3.8) is generally lower in the Br setting with r > 2, the overall computational cost may
decrease with respect to the B1 case.

3.3.1 Expressions for the transition functions designed in Section 3.3

We give here the explicit expressions for the transition functions designed in Examples 3.1–3.4
of the previous section.
In the following, we express each numerator qi,j in (3.6) as a degree-di,j polynomial in the

Bernstein basis using the notation

qi,j(x) = q(x|ai,j0 , . . . , a
i,j
di,j

) :=

di,j∑
k=0

ai,jk

(
di,j
k

)
R
di,j−k
i+j−1(x)Lki+j−1(x), x ∈ [ti+j−1, ti+j),

with
Lh(x) :=

x− th
th+1 − th

and Rh(x) :=
th+1 − x
th+1 − th

.
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Example 3.1 (B2 D3C2P 3S6). Since r = 2 and n = 2, the transition functions fi are, for
any i, piecewise rational of the form (3.6) made of rn = 4 pieces between t2i and t2(i+2).
The denominator of each piece is chosen so as to simplify as many factors as possible among
(x− xj), j = i, . . . , i + 2. Thus, recalling that we are in the even configuration x ≡ τ = {t2j},
we can write:

fi(x) =



0, x < t2i,

q(x|ai,10 , a
i,1
1 , a

i,1
2 )

R2i+1(x)R2i+3(x)
, x ∈ [t2i, t2i+1),

q(x|ai,20 , a
i,2
1 , a

i,2
2 )

L2i(x)R2i+3(x)
, x ∈ [t2i+1, t2(i+1)),

q(x|ai,30 , a
i,3
1 , a

i,3
2 )

L2i(x)R2i+3(x)
, x ∈ [t2(i+1), t2i+3),

q(x|ai,40 , a
i,4
1 , a

i,4
2 )

L2i(x)L2i+2(x)
, x ∈ [t2i+3, t2(i+2)),

1, x > t2(i+2).

The coefficients ai,jh of the numerators are determined by solving the 12 × 12 linear system
obtained by imposing C1 smoothness at τ and C2 smoothness at trτ , which has the unique
solution

ai,10 = ai,11 = 0, ai,12 = ai,20 = −(t2i − t2i+1)(t2i+1 − t2i+2)η2i

3(t2i − t2i+2)γ2i

,

ai,21 = −(t2i+1 − t2i+2)η2i

2γ2i

, ai,22 = ai,30 =
(t2i − t2i+2)(t2i+2 − t2i+1)η2i

(t2i − t2i+1)γ2i

,

ai,31 =
(t2iα2i + β2i)η2i

2(t2i − t2i+1)γ2i

,

ai,32 = ai,40 =
t2i+4 − t2i+3

3(t2i − t2i+1)(t2i+2 − t2i+4)γ2i

[(
−3t32i+2 − (t2i+2 + 2t2i+3)t22i+4 + ζ2it2i+4

+t2i+1

(
6t22i+2 − 4 (t2i+3 + 2t2i+4) t2i+2 + t22i+3 + 3t22i+4 + 2t2i+3t2i+4

))
t22i

+
(
−
(
t22i+2 − 3t22i+3 + 2 (3t2i+1 − 2t2i+2) t2i+3

)
t22i+4 +

(
(t2i+1 + 3t2i+2)t22i+2

+14(t2i+1 − t2i+2)t2i+3t2i+2 − (3t2i+1 + t2i+2) t22i+3

)
t2i+4 + t2i+2

(
6t2i+3t

2
2i+2

−t2i+1ζ2i)) t2i −
(
t32i+2 − 4t2i+3t

2
2i+2 − 3 (t2i+1 − 2t2i+2) t22i+3

)
t22i+4

+t22i+2t2i+3(t2i+1(2t2i+2 + t2i+3)− 3t2i+2t2i+3) + t2i+2

(
t2i+1t

2
2i+2 − 2 (2t2i+1

+t2i+2) t2i+3t2i+2 + (8t2i+2 − 3t2i+1)t22i+3

)
t2i+4

]
,

ai,41 =
−t2iα2i+1 − β2i+1

2(t2i − t2i+1)(t2i+2 − t2i+3)
, ai,42 =

(t2i − t2i+4)(t2i+2 − t2i+4)

(t2i − t2i+1)(t2i+2 − t2i+3)
,

where

αi := −2ti+1 + ti+2 + ti+3,

βi := −2ti+2ti+3 + ti+1(ti+2 + ti+3),

γi :=(ti+3 − ti+4)
(
(ti+1 − ti+3)t2i+2 −

(
t2i+2 + (ti+1 − 2ti+2)ti+3

)
ti+4

+ti
(
t2i+2 − ti+3ti+4 + ti+1αi+1

))
,

ηi := (ti − ti+3)(ti+2 − ti+4)2,

ζi := 3t2i+2 + 4ti+3ti+2 − t2i+3.
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For completeness, we provide the expression of the terms Ki,j needed to write F in the form
(3.8) on the interval I`:

K`−1,3(x) = κ`−1,3(x− x`), K`−1,4(x) = κ`−1,4(x− x`+1),

K`,1(x) = κ`,1(x− x`), K`,2(x) = κ`,2(x− x`+1),

with constants

κ`−1,3 = −(t2`−1 − t2`−2)(t2`+2 − t2`+1), κ`−1,4 = (t2`−1 − t2`−2)(t2`+1 − t2`),
κ`,1 = (t2`+2 − t2`+1)(t2`+4 − t2`+3), κ`,2 = −(t2`+1 − t2`)(t2`+4 − t2`+3).

Example 3.2 (B1 D5C2P 2S4, B2 D4C2P 2S4, B3 D3C2P 2S4). We derive the expressions of a
generic transition function fi in (3.7), in the cases Br, r = 1, 2, 3. We refer to Figure 3.3 for the
count of degrees of the numerators and continuity conditions which is exploited in the three
cases below.

r = 1: fi is defined on t := {tj} ≡ τ . Based on (3.6), we write

fi(x) =


0, x < ti,

q(x|ai,10 , a
i,1
1 , a

i,1
2 , a

i,1
3 ), x ∈ [ti, ti+1),

1, x > ti+1.

Note that, for any i, fi is polynomial in [ti, ti+1): in fact, none of the terms (x − xi),
(x−xi+1) (which we may want to simplify, see (3.5)) can be set as a denominator without
generating a singularity.

We determine the coefficients ai,1h , h = 0, . . . , 3, by solving the linear system arising from
the C1 continuity constraint at ti and ti+1. In this way, we get

ai,10 = ai,11 = 0, ai,12 = ai,13 = 1.

r = 2: fi is piecewise rational on the sequence t := {tj}, such that t2j = τj, ∀j. In fact,
according to (3.6), we can express fi as

fi(x) =



0, x < t2i,

q(x|ai,10 , a
i,1
1 , a

i,1
2 , a

i,1
3 )

R2i+1(x)
, x ∈ [t2i, t2i+1),

q(x|ai,20 , a
i,2
1 , a

i,2
2 , a

i,2
3 )

L2i(x)
, x ∈ [t2i+1, t2(i+1)),

1, x > t2(i+1).

The denominator of fi is a multiple of (x − xi) in [t2i, t2i+1) and of (x − xi+1) in
[t2i+1, t2(i+1)), in such a way that fi is never singular on R. To determine the coeffi-
cients of the numerators in the above formula, we require C1 continuity at t2i, t2(i+1) and
C2 at t2i+1. This provides 7 constraints, against 8 unknowns. As additional constraint,
we require that fi be antisymmetric with respect to t2i+1, namely fi(t2i+1) = t2i+1−t2i

t2(i+1)−t2i .
This choice results in the coefficients

ai,10 = ai,11 = 0, ai,12 =
1

9
(t2i+1 − t2i)

(
3

t2i+2 − t2i+1

+
1

t2i+2 − t2i

)
,
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ai,13 = ai,20 =
t2i − t2i+1

t2i − t2i+2

, ai,21 =
1

9

(
t2i − t2i+1

t2i − t2i+2

+ 8

)
,

ai,22 = −−3t2i + t2i+1 + 2t2i+2

3(t2i − t2i+1)
, ai,23 =

t2i − t2i+2

t2i − t2i+1

.

r = 3: fi is piecewise rational on the sequence t := {tj}, such that t3j = τj, ∀j. In this case,
from (3.6), we have

fi(x) =



0, x < t3i,

q(x|ai,10 , a
i,1
1 , a

i,1
2 )

R3i+2(x)
, x ∈ [t3i, t3i+1),

q(x|ai,20 , a
i,2
1 , a

i,2
2 , a

i,2
3 )

L3i(x)R3i+2(x)
, x ∈ [t3i+1, t3i+2),

q(x|ai,30 , a
i,3
1 , a

i,3
2 )

L3i(x)
, x ∈ [t3i+2, t3(i+1)),

1, x > t3(i+1).

Note that, in [t3i+1, t3i+2), the denominator of fi contains both factors (x − xi) and
(x− xi+1), as none of them vanishes in that interval.

Requiring C1 continuity at t3i, t3(i+1) and C2 at t3i+1, t3i+2, we get

ai,10 = ai,11 = 0, ai,12 = ai,20 =
(t3i − t3i+1)α3i

3(t3i − t3i+2)β3i

,

ai,21 =
1

3

(
1− (t3i − t3i+2)(t3i+3 − t3i+1)

β3i

)
, ai,22 =

(t3i − t3i+2)α3i

3(t3i − t3i+1)β3i

,

ai,23 = ai,30 =
1

3

(
(t3i − t3i+2)2

(t3i − t3i+1)(t3i − t3i+3)
+
t3i + t3i+1 − 2t3i+2

t3i − t3i+1

+
t3i+1 − t3i+2

t3i+1 − t3i+3

)
,

ai,31 = −−2t3i + t3i+2 + t3i+3

2(t3i − t3i+1)
, ai,32 =

t3i − t3i+3

t3i − t3i+1

,

where

αi := t2i+3 − ti+1ti+2 + ti(ti+1 + ti+2 − 2ti+3), βi := (ti − ti+3)(ti+2 − ti+3).

Example 3.3 (B2 D3C2P 1S4). Since r = 2 and n = 2, the transition functions fi are piecewise
rational made of rn = 4 pieces between t2i and t2(i+2). In order to minimize the degree of F , the
denominator of each piece is chosen so as to simplify the factor (x−xi+1), if possible. Pursuing
this principle, (3.6) can be rewritten as

fi(x) =



0, x < t2i,

q(x|ai,10 , a
i,1
1 , a

i,1
2 , a

i,1
3 )

R2i+1(x)
, x ∈ [t2i, t2i+1),

q(x|ai,20 , a
i,2
1 , a

i,2
2 ), x ∈ [t2i+1, t2(i+1)),

q(x|ai,30 , a
i,3
1 , a

i,3
2 ), x ∈ [t2(i+1), t2i+3),

q(x|ai,40 , a
i,4
1 , a

i,4
2 , a

i,4
3 )

L2i+2(x)
, x ∈ [t2i+3, t2(i+2)),

1, x > t2(i+2).



44 3. A general framework for the construction of piecewise-polynomial local interpolants of minimum degree

The coefficients ai,jh are determined by solving the 14× 14 linear system obtained by imposing
C1 continuity at t2i, t2(i+1), t2(i+2), and C2 continuity at t2i+1, t2i+3, and, recalling Property 3.b
in Section 3.2, at t2i, t2(i+2) as well. Their computation provides

ai,10 = ai,11 = ai,12 = 0, ai,13 = ai,20 = −(t2i − t2i+1)2(t2i+1 − t2i+2)α2i

3(t2i − t2i+2)β2i

,

ai,21 = −(t2i − t2i+1)(t2i+1 − t2i+2)α2i

2β2i

, ai,22 = ai,30 =
(t2i − t2i+2)(t2i+2 − t2i+1)α2i

β2i

,

ai,31 = −((t2i+1 − t2i+2)(t2i − t2i+3) + (t2i+1 − t2i+3)(t2i − t2i+2))α2i

2β2i

,

ai,32 = ai,40 =− 1

3(t2i+2 − t2i+4)β2i

[
t2i+2

(
−(t2i+2 − 4t2i+3)t22i+4

+(t2i+2 − 4t2i+3)(3t2i+2 − t2i+3)t2i+4 + t2i+3

(
3t22i+2 + 2t2i+3t2i+2 − 2t22i+3

))
+t2i+1γ2i + t2i (γ2i + 3t2i+1(t2i+2 − t2i+4)α2i)] ,

ai,41 = −−3t2i+2 + 2t2i+3 + t2i+4

3(t2i+2 − t2i+3)
, ai,42 = −−3t2i+2 + t2i+3 + 2t2i+4

3(t2i+2 − t2i+3)
, ai,43 =

t2i+2 − t2i+4

t2i+2 − t2i+3

,

where

αi := 2ti+2 − ti+3 − ti+4,

βi := (ti+1 − ti+3)t2i+2 −
(
t2i+2 + (ti+1 − 2ti+2)ti+3

)
ti+4 + ti

(
t2i+2 − ti+3ti+4 − ti+1αi

)
,

γi := −3t3i+2 − t2i+3ti+2 + t3i+3 − (ti+2 + 2ti+3)t2i+4 + (3ti+2 − ti+3)(ti+2 + 2ti+3)ti+4.

Example 3.4 (B4 D3C2P 3S5). In the case of odd configuration, in addition to the previous
definitions of Lh(x) and Rh(x), we set

L̃h(x) := x− xh and R̃h(x) := xh+1 − x.

Since r = 4 and n = 1, the transition functions fi are piecewise rational made of rn = 4
pieces between t4i and t4i+4. Recalling the assumption that t4i+2 = xi+1, the expression (3.6)
for fi has the form

fi(x) =



0, x < t4i,

q(x|ai,10 , a
i,1
1 , a

i,1
2 , a

i,1
3 )

L̃i(x)R̃i(x)R̃i+1(x)
, x ∈ [t4i, t4i+1),

q(x|ai,20 , a
i,2
1 , a

i,2
2 )

L̃i(x)R̃i+1(x)
, x ∈ [t4i+1, t4i+2),

q(x|ai,30 , a
i,3
1 , a

i,3
2 )

L̃i(x)R̃i+1(x)
, x ∈ [t4i+2, t4i+3),

q(x|ai,40 , a
i,4
1 , a

i,4
2 , a

i,4
3 )

L̃i(x)L̃i+1(x)R̃i+1(x)
, x ∈ [t4i+3, t4(i+1)),

1, x > t4(i+1).

The formulation above provides all the degrees of freedom necessary to satisfy the constraints
for C1 continuity at t4i+2 and C2 continuity at the other points of t. The coefficients ai,jh found
as solution of the resulting 14× 14 linear system are

ai,10 = ai,11 = ai,12 = 0, ai,13 = − αiγ
2
i

3(t4i − xi+1)βi
,
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ai,20 =
(t4i − t4i+1)αiγi
3(t4i − xi+1)βi

, ai,21 =
αiγi
2βi

, ai,22 = ai,30 =
αi(t4i − xi+1)(t4i+1 − xi+1)

βi
,

ai,31 =
(t4i(2t4i+1 − t4i+3 − xi+1) + 2t4i+3xi+1 − t4i+1(t4i+3 + xi+1))αi

2βi
, ai,32 =

ωi
ηi
,

ai,40 = (t4i+3 − xi+1)
ωi
ηi
, ai,41 =

1

3

(
t24i+3(ξi − 3t4i+4) + ϑi − ρi(2t4i+3 + t4i+4)

)
,

ai,42 =
1

3

(
t24i+4(ξi − 3t4i+3) + ϑi − ρi(2t4i+4 + t4i+3)

)
,

ai,43 = −(t4i+4 − xi)(t4i+4 − xi+1)(t4i+4 − xi+2),

where

αi := x2
i+1(t4i+4 − xi)− xi+2(t4i+4xi + xi+1(xi+1 − 2xi))

+ t4i+3

(
t4i+4(xi − 2xi+1 + xi+2) + x2

i+1 − xixi+2

)
,

βi := xi+1(2t4i+3t4i+4 − (t4i+3 + t4i+4)xi+1) + t4i+1

(
x2
i+1 − t4i+3t4i+4

)
+ t4i

(
t4i+1(t4i+3 + t4i+4 − 2xi+1)− t4i+3t4i+4 + x2

i+1

)
,

γi := (t4i − t4i+1)(t4i+1 − xi+1),

ηi := 3(t4i+4 − xi+1)
(
(−t4i+1 + t4i+3 + t4i+4)x2

i+1 − 2t4i+3t4i+4xi+1 + t4i+1t4i+3t4i+4

−t4i
(
x2
i+1 − t4i+3t4i+4 + t4i+1(t4i+3 + t4i+4 − 2xi+1)

))
,

ζi :=
(
3t24i+4 − 3xi+1t4i+4 + x2

i+1 − xixi+2

)
t34i+3 +

(
2x3

i+1 + xixi+2xi+1 − 3t24i+4(xi + xi+2)

+t4i+4 ((3xi − 5xi+1)xi+1 + (2xi + 3xi+1)xi+2)) t24i+3 +
(
−3(xi + xi+2)x3

i+1

+t4i+4

(
2x2

i+1 + 3xixi+1 + 3xi+2xi+1 − 5xixi+2

)
xi+1 + t24i+4

(
x2
i+1 + 2xixi+2

))
t4i+3

− t24i+4x
3
i+1 + xixi+1

(
t24i+4 − 3xi+1t4i+4 + 3x2

i+1

)
xi+2,

ξi := xi + xi+1 + xi+2,

ϑi := 2t4i+3t4i+4ξi + 3xixi+1xi+2,

ρi := xixi+1 + (xi + xi+1)xi+2,

ωi := − t4i+1ζi + xi+1

((
6t24i+4 − 9xi+1t4i+4 + 3x2

i+1 + xixi+1 + (xi+1 − 2xi)xi+2

)
t34i+3

+
(
−3(2xi + xi+1 + 2xi+2)t24i+4 + (xi+1(7xi + 3xi+1) + (4xi + 7xi+1)xi+2)t4i+4

+2xi+1((xi − 2xi+1)xi+2 − 2xixi+1)) t24i+3 + (4t4i+4 − xi+1) (t4i+4ρi

−3xixi+1xi+2) t4i+3 + t4i+4xi+1(3xixi+1xi+2 − t4i+4ρi)) + t4i (−ζi + t4i+1 ((3t4i+4 − xi
−xi+1 − xi+2) t34i+3 + (t4i+4 − 4xi+1)(3t4i+4 − xi − xi+1 − xi+2)t24i+3

+
(
2(−2xi + xi+1 − 2xi+2)t24i+4 + (xi+1(7xi + 4xi+1) + (3xi + 7xi+1)xi+2) t4i+4

−3xi+1 (2xixi+1 + (xi + 2xi+1)xi+2)) t4i+3 + 6xix
2
i+1xi+2 − 9t4i+4xixi+1xi+2

+t24i+4 ((xi − 2xi+1)xi+1 + (3xi + xi+1)xi+2)
))
,

3.4 Minimum-degree Br-spline interpolants
Based on the previous discussion and on Properties 1–5 in Section 3.2, it can be seen that

the formulation (3.8) allows designing splines featured by any feasible quadruple of design
parameters (g, k̄,m,w). More precisely, k̄ can assume any arbitrary value, while the values
of m and w must satisfy a reciprocal relation given by the necessary interpolation condition
expressed by Property 1, which determines the bounds

⌈
w−2

2

⌉
6 m 6 w − 1 in case of even

configuration and
⌈
w−1

2

⌉
6 m 6 w − 1 in odd configuration. The degree is bounded below by
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–◦– τi, τi+n –•– τ –p– trτ

r = 1 –◦––––•––––•––––•––––◦–
{

T1 on Ii,1, Ii+n−1,1 ◦—•, •—◦, ◦—◦
T2 on I`,1, ` = i+ 1, . . . , i+ n− 2 •—•

r > 2 –◦–p–p–•–p–p–•–p–p–•–p–p–◦–

T3 on Ii,1, Ii+n−1,r ◦—p, p—◦
T4 on I`,h, h = 1, r, ` = i+ 1, . . . , i+ n− 2 •—p, p—•
T5 on I`,h, h = 2, . . . , r − 1, ` = i+ 1, . . . , i+ n− 2 p—p

fi

Figure 3.7: Classification of the types of pieces of each transition function based on the configuration
of the endpoints of the related interval of definition.

g > max
(
m, k̄ + 1

)
. In fact, intuitively, a polynomial spline interpolant has minimum degree

when there could not exist another spline with same continuity, polynomial reproduction, and
support, but lower degree. Thus its degree must be equal either to the polynomial reproduction
degree or to the order of continuity plus one (as, e.g., in the case of global spline interpolation).
More formally, we introduce the definition:

Definition 3.2 (Minimum-degree spline). We say that a polynomial spline interpolantDgC k̄PmSw

has minimum degree if g = max
(
m, k̄ + 1

)
.

In this section we show that, for any feasible choice of degree, order of continuity, degree
of polynomial reproduction, and support width, our framework always allows us to construct
a local Br-spline interpolant having the prescribed parameters. Successively, we exploit this
result to investigate in more detail the class of minimum-degree splines that belong to the
considered framework.
For the sake of conciseness we address in detail the even setting (3.2a) only, while the case of

odd configuration (3.2b) can be analyzed following the same outline. Hereinafter we suppose
n > 1; the case n = 0 is addressed separately at the end of this section. We introduce a
preliminary lemma and successively we prove the main result.

Lemma 3.1. Let F be a Br-spline interpolant of the form (3.8) belonging to the class DgC k̄PmSw

and assume the even configuration τ ≡ x. Then the numerators qi,j of the related transition
functions fi satisfy

rn∑
j=1

deg(qi,j) 6

{
n(rg − 2), if m+ 1 > n,

n(rg − 2) + 2, if m+ 1 = n.
(3.9)

Proof. We focus on a single transition function fi in the form (3.6). Equation (3.8) and the
fact that F has degree g imply that

deg(qi,j) 6 g − deg(Ki,j), j = 1, . . . , rn. (3.10)

Since πi,j is assumed to be the product of all factors (x−xh), h = i−σ, . . . , i−σ+m−1, that
do not vanish on [tri+j−1, tri+j], the degree of Ki,j represents how many factors of the product
in (3.5) remain after simplification by πi,j.
To compute deg(Ki,j) we distinguish 5 types of pieces, according to the configuration of

the endpoints of the interval of definition; they are schematically represented in Figure 3.7. A
simple count allows us to determine deg(Ki,j) and thus evaluate the right-hand side of condition
(3.10). The related upper bounds for deg(qi,j) are listed in the third and fourth columns of
Table 3.1, according to the type of piece. Note that the cases m+1 > n and m+1 = n must be
treated separately. This depends on the fact that, in the latter case, by Property 1 in Section
3.2, we always have σ = −1 and, as a consequence, it is always possible to simplify one more
factor (x− xh) with respect to the former case (see also Example 3.3 in Section 3.3).
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refinement
coefficient

type of
piece

upper bound for deg(qi,j) number of
pieces in fim+ 1 > n m+ 1 = n

r = 1
T1 g − 2 g − 1

2 if n > 2
1 if n = 1

T2 g − 2 g − 2
n− 2 if n > 2

0 if n = 1

r > 2
T3 g − 1 g 2
T4 g − 1 g − 1 2n− 2
T5 g g n(r − 2)

Table 3.1: Upper bounds for deg(qi,j) and number of different types of pieces for the transition
functions fi, based on the classification in Figure 3.7.

The refinement coefficient r indicates how many pieces of each type appear in fi (see again
Figure 3.7 and the rightmost column of Table 3.1). Now, taking into account the maximum
degree for qi,j allowed per piece and the total number of pieces of each type, relation (3.9) can
be obtained straightforwardly.

The left-hand side of (3.9) determines how many degrees of freedom are provided by the
numerators of the pieces of the transition functions in (3.6) and which can be spent to ensure
that any fi has the desired continuity. Thus, for a given degree g, the maximum number of
degrees of freedom (#DoF) is obtained from (3.9) with the equality sign and gives

#DoF =

{
n(r(g + 1)− 2), if m+ 1 > n,

n(r(g + 1)− 2) + 2, if m+ 1 = n.
(3.11)

Since this estimate depends on r, we now determine which is the smallest value r such that
#DoF is greater than or equal to the total number of continuity conditions at the points of t
involved in the definition of fi.

Proposition 3.2. Let F be a spline interpolant of the form (3.8), in even configuration τ ≡
x, with continuity k̄, polynomial reproduction m, and support w. The smallest value of r
guaranteeing that F has given degree g > max(m, k̄ + 1) is

r =

⌈
k̄ + w −m− 1

(w −m− 1)(g − k̄)

⌉
. (3.12)

Proof. In order to determine r we need to require that, for any transition function fi, the total
number of continuity conditions #CC at the points of t contained in [τi, τi+n] be smaller than
or equal to the total number of degrees of freedom #DoF inferred from (3.6) (represented by
the coefficients of the numerators qi,j).
We distinguish the two cases m+ 1 > n and m+ 1 = n.

• If m+ 1 > n, then #CC = k̄(n+ 1) + (k̄+ 1)(r− 1)n. Thus, by imposing #CC 6 #DoF,
with #DoF given by (3.11), and recalling that n = w −m− 1, we get (3.12).

• If m + 1 = n, then #CC = k̄(n + 1) + (k̄ + 1)(r − 1)n + 2 and (3.12) is obtained by
proceeding analogously to the previous case.
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Following the outline of the proofs of Lemma 3.1 and Proposition 3.2, we can derive analogous
results for the odd configuration (3.2b). In this setting, the counterpart of (3.9) turns out to
be

rn∑
j=1

deg(qi,j) 6

{
n(rg − 2), if r is even,
n(rg − 1), if r is odd,

and (3.12) is replaced by

r =

⌈
k̄ + w −m

(w −m− 1)(g − k̄)

⌉
. (3.13)

Now, since the above results hold for any degree g, by setting g = max(m, k̄+ 1) and substi-
tuting it in (3.12) or in (3.13) (according to the reciprocal configuration of x and τ ), we can
straightforwardly compute the suitable refinement coefficient r that is necessary for obtaining
a minimum-degree spline with fixed continuity, polynomial reproduction, and support. In par-
ticular, in the case of optimal splines corresponding to DhCh−1P h, (3.12) and (3.13) reduce
respectively to the simpler expressions r =

⌈
w−2

w−h−1

⌉
and r =

⌈
w−1

w−h−1

⌉
.

Tables 3.3(a), 3.3(b), and 3.3(c) show some centered, minimum-degree Br-spline interpolants
with even configuration and support width 4, 6, 8 respectively that belong to the considered
framework.
In particular, the continuity progressively increases moving across columns, up to any ar-

bitrary order. At the same time, moving across rows, the polynomial reproduction degree m
increases and n decreases according to the relation w = m+ n+ 1.
We observe that optimal splines, featured by DhCh−1P h, are located in a diagonal fashion, in

which respect the splines in the corresponding upper and lower diagonals are featured respec-
tively by sub-optimal reproducibility (DhCh−1P h−1) and sub-optimal continuity (DhCh−2P h).
Moreover, the upper and lower triangular parts of each table contain respectively minimum-
degree splines with degree equal to k̄ + 1 and m.
From the tables we notice that some splines share the same design parameters but the support

width and have the same value of r. In this case, it is common understanding that one is likely
to choose the class having smaller support. Thus the cell of the equivalent counterpart with
wider support, which is outperformed, is left blank. It is also worth observing that when two
of the listed splines have same continuity, polynomial reproduction, and degree, the one having
the smallest support width exhibits the highest r (see, e.g., B3 D3C2P 2S4 vs. B2 D3C2P 2S6).
In the case n = 0 the spline interpolant F coincides on each interval [τ`, τ`+1) with the

polynomial p`−σ,m. Therefore, F can be directly designed as a B1-spline and trivially has
minimum degree m. We also observe that, when w = 2 this family provides the only optimal
spline which can be obtained with r = 1, namely the class B1 D1C0P 1S2, which represents the
piecewise linear interpolant of the given data.
To conclude this discussion, we point out that, to our knowledge, all the listed families of

non-uniform sub-optimal splines have never appeared in the existing literature. Instead, as pre-
viously recalled, optimal splines were originally proposed in [DGM88], although only in the even
configuration. That work investigates the two classes B2 DhCh−1P hS2h and Bh DhCh−1P hSh+2

(see Theorems 3.2.1 and 4.2.1 respectively) and proves their uniqueness. Moreover, the corre-
sponding Bh case for open data sets is explicitly calculated and analyzed in [DV12, Sections
10.5 and 10.6]. The same classes of [DGM88] can be also generated by our approach, which
thus provides an effective method for their design and computation (see, e.g., Example 3.1 and
Figure 3.1(a)).
Moreover, the class Bh DhCh−1P hSh+2 deserves a more detailed discussions. In fact, when h
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m,n+ 1
k̄ 0 1 2 3 4

1, 3 B2 D2C1P 1 ∗ B2 D3C2P 1 B3 D4C3P 1 B3 D5C4P 1

2, 2 B1 D2C0P 2 � B2 D2C1P 2 + B3 D3C2P 2 ∗ B4 D4C3P 2 B5 D5C4P 2

3, 1 B1 D3C0P 3 - - - -

(a) w = 4

m,n+ 1
k̄ 0 1 2 3 4

2, 4 B2 D3C2P 2 ∗ B2 D4C3P 2 B3 D5C4P 2

3, 3 B1 D3C1P 3 � B2 D3C2P 3 + B3 D4C3P 3 ∗ B3 D5C4P 3

4, 2 B1 D4C0P 4 B1 D4C1P 4 B2 D4C2P 4 � B4 D4C3P 4 + B5 D5C4P 4 ∗
5, 1 B1 D5C0P 5 - - - -

(b) w = 6

m,n+ 1
k̄ 0 1 2 3 4 5

3, 5 B2 D4C3P 3 ∗ B2 D5C4P 3 B3 D6C5P 3

4, 4 B1 D4C2P 4 � B2 D4C3P 4 + B3 D5C4P 4 ∗ B3 D6C5P 4

5, 3 B1 D5C1P 5 B1 D5C2P 5 B2 D5C3P 5 � B3 D5C4P 5 + B4 D6C5P 5 ∗
6, 2 B1 D6C0P 6 B1 D6C1P 6 B1 D6C2P 6 B2 D6C3P 6 B3 D6C4P 6 � B6 D6C5P 6 +

7, 1 B1 D7C0P 7 - - - - -

(c) w = 8

Table 3.2: Centered, local, interpolating Br-splines of support width (a) 4, (b) 6, (c) 8, and minimum
degree. Optimal, sub-optimal reproducibility, sub-optimal continuity splines are highlighted respec-
tively in red, green, and cyan, and labeled with +, ∗, �. Blank cells correspond to classes that are
outperformed by counterparts having the same value of r and the same design parameters but a smaller
support width. (For interpretation of the references to color, the reader is referred to the web version
of this thesis.)

is odd, the even configuration assumed in [DGM88] necessarily leads to fundamental functions
that are non-centered (and thus non-symmetric, according to Property 5 in Section 3.2). Al-
though the same functions could be constructed by our method as well, our approach can do
even better. In fact, it also allows us to generate optimal fundamental functions of odd support
that are centered and thus preserve possible symmetry of the data. Based on Property 5 in
Section 3.2, these can be obtained in the odd configuration as B(h+ 1) DhCh−1P hSh+2 splines
(see Example 3.4). For instance, Figure 3.1(c) illustrates the fundamental function related to
this class for h = 3.
In addition to this, from the tables we observe that, also in the even configuration, other new

classes of optimal splines can be found in our framework, as, e.g., the class B3 D5C4P 5S8 in
Table 3.3(c).

3.5 Open spline interpolants with Hermite end conditions
In the following we extend the interpolation framework in order to design spline interpolants

of an open set of data {(xj, yj) ∈ R2, j = 0, . . . , N}. The following approach applies both to the
Br-splines addressed here and to the B1 family of locally-supported interpolants in [BCR13a].
For this reason, differently with respect to the rest of this chapter, we address here the more
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general context in which σ ∈ Σ (see Property 1 in Section 3.2) and not only the centered case
(3.4).
Since F must be defined in the whole interval [x0, xN ], we assume to know a sequence of

suitable length τ = {τj, j = −ν, . . . , N + n} where ν = n in the even configuration and
ν = n + 1 in the odd configuration, in such a way that all the blending functions Bi,n+1 that
do not vanish in [x0, xN ] be well-defined.
The leading idea is that the definition of the spline interpolant F in the vicinity of the

boundary be formally identical to (3.1) in such a way that

F (x) =
−ν+2n−1∑
i=−ν

pi−σ,m(x)Bi,n+1(x), x ∈ ĨL, (3.14a)

F (x) =
N−1∑

i=N−2n

pi−σ,m(x)Bi,n+1(x), x ∈ ĨR, (3.14b)

where ĨL is either [τ0, τn] or [τ−1, τn−1] in the even or odd configuration respectively, and ĨR :=
[τN−n, τN ].
To define the polynomials pi−σ,m that appear in the above formulas, we extrapolate from

the given set of data {(xj, yj), j = 0, . . . , N} a suitable number of fictitious data to the left
of (x0, y0) and to the right of (xN , yN). If the nodes x and the breakpoints τ are in the even
configuration τ ≡ x, the additional nodes xj, j < 0, j > N , regardless of their number, can
be spaced with the same spacing of the corresponding breakpoints. Otherwise, i.e., in the odd
configuration, the additional nodes can be chosen arbitrarily, provided that xj < τj < xj+1. As
a consequence, it only remains to establish how many fictitious data (xj, yj) need to be added
on each side of the boundary and how the corresponding yj, for j < 0 and for j > N , may be
suitably chosen. The former issue is addressed by the following proposition.

Proposition 3.3. For any open set of data, the spline interpolant F is completely defined

(a) in the interval ĨL by adding ν + σ interpolation data to the left of (x0, y0);

(b) in the interval ĨR by adding m− 1− σ data to the right of (xN , yN).

Proof.

(a) It is sufficient to work out how many fictitious data are necessary in order to define the
polynomial p−ν−σ,m associated in (3.14a) with the leftmost blending function B−ν,n+1 that
does not vanish in ĨL. By definition, pj−σ,m is the polynomial of degreem that interpolates
the data (xj−σ, yj−σ), . . . , (xj+m−σ, yj+m−σ), thus we can conclude that p−ν−σ,m is uniquely
determined by adding the ν + σ fictitious data (x−ν−σ, y−ν−σ), . . . , (x−1, y−1) to the left
of (x0, y0). Obviously these are all the supplementary data that we may need in order
to determine also the remaining polynomials p−ν+j−σ,m, j = 1, . . . , n, associated with the
other non-vanishing blending functions in ĨL.

(b) In the interval ĨR, the rightmost non-vanishing blending function BN−1,n+1 is associated
in (3.14b) with the polynomial pN−1−σ,m interpolating the data (xN−1−σ, yN−1−σ), . . . ,
(xN−1+m−σ, yN−1+m−σ). As a consequence, the set of interpolation data needs to be ex-
tended by appending them−1−σ fictitious data (xN+1, yN+1), . . . , (xN−1+m−σ, yN−1+m−σ).
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Corollary 3.4. The total number of fictitious data that need to be added is m+ ν − 1, namely
w − 2 in the even configuration and w − 1 in the odd configuration.

Corollary 3.5. In the centered case, σ =
⌊
m−n−1

2

⌋
(see (3.4)), and we need to append the same

number
⌈
m+n−1

2

⌉
of fictitious data to both ends.

In the following we discuss a strategy to derive the needed fictitious values, which is based on
imposing that F has prescribed derivatives at the endpoints τL and τR of its interval of definition.
We recall that τL = τ0 in the even configuration and τL = τ−1 in the odd configuration, and
τR = τN in both cases. The following preliminary result guarantees the feasibility of this
strategy.

Proposition 3.6. The degree of the interpolating spline F is greater than or equal to the number
of fictitious data added to each end.

Proof. From (3.8) and the subsequent formulas for Ki,j, the degree of the interpolating spline
F is

g =

{
max(m, d̄+ 2), for B1-splines in even configuration,
max(m, d̄+ 1), otherwise,

with d̄ := maxj=1,...,rn deg(qi,j), where qi,j is the numerator of the jth piece of the ith transition
function. Moreover, by Proposition 3.3, the maximum number of fictitious data that need to
be added to any end is max(ν + σ,m− 1− σ).
We denote σc :=

⌊
m−n−1

2

⌋
and distinguish three cases according to the value of the integer shift

σ ∈ Σ = {−1, . . . ,m− ν}.

• −1 6 σ 6 σc − 1. Then, max(ν + σ,m− 1− σ) = m− 1− σ and m− 1− σ 6 m 6 g.

• σ = σc. Then, max(ν + σ,m − 1 − σ) =
⌈
m+n−1

2

⌉
. Recalling the necessary condition for

interpolation (Property 1 in Section 3.2), that is m+ 1 > n in case of even configuration
and m+ 1 > n+ 1 in case of odd configuration, we obtain the bounds

⌈
m+ n− 1

2

⌉
=


m+ n− 1

2
6
m+m+ 1− 1

2
= m, for even configuration,

m+ n

2
6
m+m

2
= m, for odd configuration.

Thus,
⌈
m+n−1

2

⌉
6 m 6 g for both types of configuration.

• σc + 1 6 σ 6 m− ν. Then, max(ν + σ,m− 1− σ) = ν + σ and ν + σ 6 m 6 g.

Based on the above proposition, denoted by DL,s, DR,s the given derivatives of order s at
τL, τR respectively, we determine the ν + σ fictitious values yj, j < 0, and the m − 1 − σ
fictitious values yj, j > N , respectively as the solutions of the linear systems

F (s)(τL) = DL,s, s = 1, . . . , ν + σ, (3.15a)

F (s)(τR) = DR,s, s = 1, . . . ,m− 1− σ, (3.15b)

which can be written in the form Az = b with the following general expressions.
Let us recall that ν = n in the case of even configuration and ν = n + 1 in the case of odd

configuration.
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For simplicity, we denote the unknowns y−ν−σ+s−1 as zs, s = 1, . . . , ν + σ. In this way, at τL,
the system (3.15a) can be written in the general form Az = b, where

As,h = `
(s)
−ν−σ+h−1,m(τL) +

n∑
k=1

C−ν−σ+h−1,−ν−σ+kQ
(s)
−ν+k(τL), s, h = 1, . . . , ν + σ,

bs = DL,s −
−ν−σ+m∑
k=0

yk`
(s)
k,m(τL)−

n∑
k=1

T−ν−σ+kQ
(s)
−ν+k(τL),

with

Qi(x) = Ki(x) qi,−ri+1(x), i = −ν + 1, . . . , 1,

Ci,j =



xj+m − xj−1

j+m∏
k=j−1
k 6=i

(xi − xk)
, if i > j,

− 1
j+m−1∏
k=j

(xi − xk)
, if i = j − 1,

0, if i 6 j − 2,

Tj =
yj+m

j+m−1∏
k=j

(xj+m − xk)
+ (xj+m − xj−1)

j+m−1∑
k=0

yk
j+m∏
`=j−1
`6=k

(xk − x`)
,

and `k,m(x) the Lagrange basis polynomial of degree m relative to x−ν−σ, . . . , x−ν−σ+m, namely

`k,m(x) =
−ν−σ+m∏
j=−ν−σ
j 6=k

x− xj
xk − xj

.

Analogously, denoting yN+s as z̄s, s = 1, . . . ,m− 1− σ, the linear system (3.15b) at τR can
be written as Āz̄ = b̄, where

Ās,h =


¯̀(s)
N+h,m(τR) +

n∑
k=1

C̄N+h,N−1−n−σ+k Q̄
(s)
N−1−n+k(τR), if h 6 m− 1− σ − n,

n∑
k=1

C̄N+h,N−1−n−σ+k Q̄
(s)
N−1−n+k(τR), if h > m− 1− σ − n,

s, h = 1, . . . ,m− 1− σ,

b̄s = DR,s −
min(N,N−1−n−σ+m)∑

k=N−1−n−σ
yk ¯̀(s)

k,m(τR)−
n∑
k=1

T̄N−1−n−σ+k Q̄
(s)
N−1−n+k(τR),

with

Q̄i(x) = Ki(x) qi,r(N−i)(x), i = N − n, . . . , N − 1,
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(a) (b) B1 D3C1P 2S4 (c) B3 D3C2P 2S4 (d) B2 D3C2P 3S6 (e) B2 D4C3P 4S8

Figure 3.8: Some parametric Br-splines interpolating open sets of unevenly spaced planar data: (a)
all interpolants superimposed, (b)–(e) interpolant and related curvature comb.

C̄i,j =



xj+m − xj−1

j+m∏
k=j−1
k 6=i

(xi − xk)
, if i 6 j +m− 1,

1
j+m−1∏
k=j

(xi − xk)
, if i = j +m,

0, if i > j +m+ 1,

T̄j = − yj−1

j+m−1∏
k=j

(xj−1 − xk)
+ (xj+m − xj−1)

N∑
k=j

yk
j+m∏
`=j−1
`6=k

(xk − x`)
,

and ¯̀
k,m(x) the Lagrange basis polynomial of degree m relative to xN−1−n−σ, . . . , xN−1−n−σ+m,

namely

¯̀
k,m(x) =

N−1−n−σ+m∏
j=N−1−n−σ

j 6=k

x− xj
xk − xj

.

We conclude this section by showing in Figure 3.8 some examples of open spline interpolants.

3.6 The role of internal knots in Br-spline interpolation
The illustrated construction of Br-splines provides a polynomial interpolant of the form

(3.8), whose peculiarity is being defined on the rth refinement t of the initial sequence τ . The
breakpoints tri := τi are constrained by the relation between τ and x (see (3.2a) and (3.2b))
and in particular are required to be distinct. Conversely, the values in trτ (hereinafter referred
to as internal knots) can be chosen arbitrarily, within each interval in τ . In this respect, two
situations are worth considering and are investigated in this section: the former corresponds
to the presence of highly unevenly spaced internal knots, and the latter to the case of internal
knots coinciding one another or with the endpoints of the related interval in τ .

3.6.1 Internal knots as shape parameters

In the former setting, it is interesting to study how the location of internal knots influences
the shape of the spline. We illustrate these effects on parametric interpolants (see Figure 3.9),
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(a) Distinct knots.
◦–p–p–◦–p–p–◦

(b) Moving internal knots w.r.t. (a).
◦–––p–p–}–p–p–◦

(c) Edge tension.
◦–p–––p–◦–p–––p–◦

(d) Point tension.
◦–––p–p–}–p–p–––◦

(e) Semi-sharp features.
◦–––p–p–}–p–p–––◦

(f) Sharp features.
◦–––pppp}–––◦

Figure 3.9: Internal knots as shape parameters for the class B3 D3C2P 2S4. The captions show the
configurations of knots related to the various kinds of shape effects.

so that they can be more evident. The considered interpolation data are highly non-uniform
(and thus difficult to interpolate) and the nodes x ≡ τ are computed through the centripetal
parameterization (thus the set x is the same for all the following examples).
In general, when we move an internal knot tr`+h, h = 1, . . . , r − 1, towards one of the

endpoints of the corresponding macro-interval I` := [τ`, τ`+1) = [tr`, tr(`+1)), the spline becomes
tighter to the data polygon in the region surrounding the related interpolation point. An
accumulation of internal knots around the endpoint of a macro-interval boosts the effect, as
illustrated in Figure 3.9(b). These observations suggest that internal knots can be regarded
as shape parameters. Their most effective usage consists in the generation of edge or point
tension effects. To generate tension along an edge (Figure 3.9(c)) it is sufficient to place half of
the internal knots close to one endpoint and the other half close to the other endpoint of the
macro-interval that parameterizes the edge. Tension at an interpolation point (Figure 3.9(d)) is
achieved by moving the internal knots located to the left and the right of the corresponding node
towards the node itself. In the limit this generates semi-sharp and sharp features (Figures 3.9(e)
and 3.9(f) respectively). In particular, semi-sharp features are of great interest in computer-
aided design since they represent the “effective” shape of corners of real objects, nevertheless
they are hardly achievable by most spline- and non-spline-based methods (see, e.g., [KSD13]).
For all the examples in Figure 3.9, it is worth pointing out that the location of internal knots

does not influence the overall quality of the interpolants, which is good due to the suitable
choice of the nodes through the centripetal parameterization.
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3.6.2 Multiple knots and continuity reduction

Until now we have assumed for simplicity that the values in trτ form a strictly increasing
sequence, however it turns out that this restriction is not necessary at all. In fact, the require-
ment that the nodes x be distinct implies, for any r, `, that τ` = tr` < tr(`+1) = τ`+1, whereas
the internal knots tr`+h, h = 1, . . . , r − 1, can be set to any location inside the closed interval
[τ`, τ`+1]. So, once the expression of F in (3.8) has been derived (assuming that all points in t
are distinct), we can move one or more of the internal knots to coincident locations and, ac-
cordingly, one or more polynomial pieces of F disappear. The following discussion establishes
which is the continuity of an interpolant of the form (3.8) in correspondence of multiple knots.
We start by supposing that the knots t are distinct. In this setting, any interpolant (3.8) with

design parameters DgC k̄PmSw is a piecewise polynomial, with breaks at points t, of degree g
and continuity k̄. As such, it can be represented in the B-spline basis of order g + 1 over a
suitable knot partition (see, e.g., [dB02])

t̄ := {. . . , ti−1, . . . , ti−1︸ ︷︷ ︸
g−k̄ terms

, ti, . . . , ti︸ ︷︷ ︸
g−k̄ terms

, ti+1, . . . , ti+1︸ ︷︷ ︸
g−k̄ terms

, . . . },

where each knot has the same multiplicity g − k̄. Figure 3.10(a) illustrates the fundamental
function (converted to B-spline form) corresponding to a class of local interpolating splines of
the form (3.8) and only the B-spline basis functions associated with non-zero coefficients in the
spline representation. Notice that the compact support of the fundamental function implies
that any B-spline basis function whose support does not entirely lie inside the support of the
fundamental function has related zero coefficient.
We are now in the position to make some knots in t coalesce and estimate the continuity of F

by reasoning on the behavior of the B-spline basis functions on t̄. When µ knots in t are set to
coincident locations, the corresponding blocks of knots in t̄ must be set accordingly. Therefore,
the corresponding B-spline basis functions have continuity equal to g−µ(g− k̄). Now, recalling
that the interpolants (3.8) are always at least C0-continuous by construction, we can conclude
that the least continuity of F is

max
(
C0, C k̄+1−µ(g−k̄)

)
. (3.16)

We remark that for a Br-spline the maximum multiplicity at a knot of t is 2r− 1. This bound
derives from the condition that the breakpoints need to be distinct and is obtained when we
move all the internal knots from the left and the right to the location of a breakpoint. Figures
3.10(b) and 3.10(c) illustrate the reduction of continuity for a fundamental function of the class
B3 D3C2P 2S4, respectively when one and two internal knots per macro-interval coincide with
one of its endpoints.
Usually, (3.16) is the exact continuity of the interpolant F , but, quite obviously, in some

cases the continuity order may also be higher than the least.
This is the case for all F of the form (3.8) whose related blending functions have support

n + 1 = 2. We illustrate why by means of an example. Let us recall the general relation
Bi,n+1 = fi − fi+1 and that the continuity of F depends on the continuity of the blending
functions according to Property 3 in Section 3.2. Figure 3.11 shows the transition functions
and the related blending functions of the class B2 D4C2P 4S6 in the cases of (a) distinct knots,
(b) t2i = t2i+1, and (c) t2i−1 = t2i = t2i+1. In the case (b), the continuity of fi (and hence of Bi,2

and Bi−1,2) decreases to C0 at t2i = t2i+1 (reasoning on the B-spline representation of F , we have
a knot of multiplicity 4 in t̄). In the case (c), also fi−1 becomes C0 at t2i−1 = t2i = t2i+1: this
affects the continuity of Bi−2,2, but, overall, all the non-vanishing blending functions remain
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(a) t =
{
−2,− 5

3 ,− 4
3 ,−1,− 2

3 ,− 1
3 , 0,

1
3 ,

2
3 , 1,

4
3 ,

5
3 , 2
}

(b) t =
{
−2,− 5

3 ,− 4
3 ,−1,− 2

3 ,− 1
3 , 0, 0,

2
3 , 1,

4
3 ,

5
3 , 2
}

(c) t =
{
−2,− 5

3 ,− 4
3 ,−1,− 2

3 ,− 1
3 , 0, 0, 0, 1,

4
3 ,

5
3 , 2
}

(d) t =
{
−2,− 5

3 ,− 4
3 ,−1,− 1

10 , 0, 0, 0,
1
10 , 1,

4
3 ,

5
3 , 2
}

(e) t =
{
−2,− 5

3 ,− 4
3 ,−1, 0, 0, 0, 0, 0, 1, 43 ,

5
3 , 2
}

Figure 3.10: Fundamental functions of class B3 D3C2P 2S4 with different multiplicities of knots and
having continuity (a) C2, (b) C1, (c) C0, (d) C1, (e) C0. The scale of the axes is 1:1.

(a) Distinct knots (b) t2i = t2i+1 (c) t2i−1 = t2i = t2i+1

Figure 3.11: Transition and blending functions for the class B2 D4C2P 4S6.

C0 at t2i and thus the continuity of F cannot decrease when passing from double to triple
knots in t. Clearly, the example illustrates a behavior that is common to all classes such
that n + 1 = 2: if we define the left (respectively right) multiplicity of tri as the number µL

(respectively µR) such that tri−µL+1 = tri (respectively tri = tri+µR−1), then the continuity of
F at tri is given by (3.16) with µ = max(µL, µR). This peculiarity is a consequence of the
constructive approach behind the derivation of the general expression (3.8) which characterizes
the considered family of splines. Figures 3.10(d) and 3.10(e) show two fundamental functions
of the class B3 D3C2P 2S4 with µL = µR = 2 and µL = µR = 3 that, based on the above
discussion, are C1 and C0 respectively.

3.7 Final remarks
The original idea of Br-splines, that is to interpolate with splines whose knot partition strictly

contains the interpolation nodes, came out in the late Eighties. In the seminal paper [DGM88]
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it is proved that, theoretically, the Br approach leads to local fundamental spline functions of
degree h with the optimal order of continuity and degree of polynomial reproduction, respec-
tively h−1 and h. Only for the order-3, 4, 5 members of the sub-class of B2-splines in [DGM88]
an explicit expression was found in terms of the corresponding B-spline basis functions and
used for the construction of compactly supported wavelets (see [CDV96]).
In about the same years, practical techniques to design B2- and B3-spline interpolants with

applications in computer-aided geometric design were given in [Woo87, Chu90, KFK94], which
apply to uniform knot partitions only. The resulting splines, though, showed a very poor shape
quality and noticeable interpolation artifacts. Since this erratic behavior was interpreted as an
intrinsic feature of the Br construction itself, it disqualified the approach, which for long time
was considered of minor interest and mostly forgotten.
Nowadays, it has become common understanding that most of interpolation artifacts do

arise due to a wrong choice of parameterization and do not inherently depend on a specific
interpolation method. To fix the problem, a proper parameterization is usually computed by
some automatic approach (i.e., centripetal or chordal) and results in a non-uniform distribution
of parameter values. Conversely, the uniform parameterization is known to be unsuitable, unless
the data are evenly spaced. In our view, this motivates the renewed interest in investigating
the Br approach, especially in the non-uniform setting.
Besides this, non-uniform locally supported splines of B1 and B2 type have recently shown

their importance in connection with the study of subdivision schemes that arise by sampling
fundamental spline bases [BCR11a, BCR11b, KP13], because the continuity and polynomial
reproduction properties of the schemes are related to the corresponding properties of the bases.
In the bivariate setting, these subdivision schemes can be generalized to define non-uniform
non-tensor-product interpolation methods [BCR13b], which have already proven to be effective
in some applications [BFL+10] and have significant potential to gain even more interest, due
to the limited computational cost and the high quality of interpolation.
Overall, the main contribution of the work presented in this chapter is to provide a construc-

tive method for the design of Br-spline interpolants over arbitrary non-uniform knot partitions.
In this respect, we are not aware of any alternative approach (if we except the few and individ-
ual classes of splines considered in the aforementioned work [CDV96]). Moreover, the proposed
method is comprehensive, because it comprises a large family of interpolants having among its
members all the existing uniform and non-uniform B1- and Br-splines. Other two points of
novelty of this approach are the possibility of handling in full generality multiple knots, which
were not considered in previous Br constructions, and open sets of data.
As concerns the potential for future research, we believe that the generalized blending-based ap-
proach pursued in this chapter could be successfully exploited to tackle other relevant problems
in interpolation (like the design of Hermite, shape-preserving, or variable-degree interpolants)
and effectively applied to the multivariate setting as well.

In the next chapter, the families of non-uniform, local, univariate interpolating splines in-
troduced in [BCR13a, ABC14a] (and reviewed in this chapter) will serve as one building block
in the construction of analytical interpolating surfaces of high quality and regularity starting
from input meshes of arbitrary topology.
Moreover, the idea of using transition functions to define blending functions with desired

continuity properties will be exploited also in Chapter 5 to propose a general approach for
the construction of B-spline bases for generalized splines spaces, whose elements are piecewise
functions with pieces belonging to suitable, possibly non-polynomial, function spaces.





Chapter 4

High-quality local interpolation of
arbitrary-topology meshes and curve
networks by composite parametric
surfaces

In computer-aided geometric design, generating a surface that interpolates a given arbitrary
quadrilateral mesh or curve network is an important and challenging task. The basic require-
ment is to satisfy both criteria of analytical nature (regularity of the surface) and aesthetic
concepts (shape quality). With regard to the aesthetic quality, it is well known that an in-
terpolatory surface may show an excessively oscillating behavior in the intermediate areas in
between the locations of the constraints. In the context of univariate interpolation, it is now
commonly accepted that the use of a non-uniform parameterization can solve, or at least al-
leviate, the problem. Recently, a non-uniform non-tensor-product parameterization has been
also successfully exploited to generate interpolants of regular 3D meshes by means of subdivi-
sion schemes [BCR13b]. In this context, the basic principle is to design a regular network of
high-quality curves interpolating the mesh polylines, where each curve is parameterized inde-
pendently of the others, and to construct a subdivision surface that interpolates the curves.
The work presented in this chapter originated from the same idea, but in order to design ana-
lytical surfaces of high quality and regularity starting from input meshes of arbitrary topology.
In particular, these surfaces are built upon a family of non-uniform, local, univariate interpo-
lating splines [BCR13a] by exploiting an innovative parameterization technique which allows
the parameters to smoothly vary between one mesh face and another.
As an additional benefit, we will show that the proposed approach can be easily generalized in
order to interpolate a given arbitrary network of curves.
The construction detailed in this chapter is also the topic of a recently submitted paper

[ABC14b].

4.1 Introduction
A central topic in computer-aided geometric design is the creation of free-form objects of

arbitrary topology by interpolating an initial control polyhedron (or mesh). While triangular
meshes prevail in the context of reconstructing three-dimensional models from acquired data,
for example by 3D scanning, when modeling free-form objects the control mesh is usually
composed of quadrilateral faces and, if the model has to represent a complex shape, its vertices

59
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Figure 4.1: A cubic spline interpolant of very unevenly-spaced data. The uniform parameterization
(left) fails compared to the non-uniform (here centripetal) one (right).

may have arbitrary connectivity. A second scenario of interest for applications is one where
the interpolation data consist of a network of curves in which, similarly as before, an arbitrary
number of curves can meet at each vertex. Although this chapter is focused on the first context,
namely the interpolation of meshes, we will devise an approach that allows us to address the
second situation basically at the same time, by means of a suitable extension. In both cases, the
basic requirement is to generate models that satisfy both criteria of analytical nature (regularity
of the surface) and aesthetic concepts (shape quality). With regard to the aesthetic quality,
it is well known that when a surface has to satisfy a complex set of interpolation constraints
it may show an oscillating behavior in the intermediate areas in between the locations of the
constraints, quite often giving rise to noticeable interpolation artifacts.
When the data to be interpolated are of discrete nature, the usual approaches rely on patch-

ing techniques, such as Coons-Gregory patches [Far02], or subdivision schemes [WW01].
The first family of methods generates a composite surface of smoothness class G1 or G2, where
each face of the mesh becomes a polynomial patch (usually of bidegree three or five). The
approach relies on blending suitable values and derivatives at the corners [Her96], so that the
construction is extremely local. Theoretically, the initially assigned derivative values could be
used to optimize the shape of the surface. In practice, however, since these values can be
estimated only heuristically, they can be hardly exploited to ensure a good aesthetic quality
of the interpolant. Indeed, despite the wide literature on how to prescribe initial data for
shape-preserving univariate interpolation, the surface setting is rarely addressed. Moreover, in
the latter case no known estimate for the derivatives guarantees by itself a good quality of the
resulting surfaces.
On the other hand, subdivision schemes recursively refine the control polyhedron by means
of an iterative process that in the limit generates a smooth surface. However, if we confine
ourselves to considering interpolatory schemes, only a version of the famous Catmull-Clark
algorithm is capable of generating exactly evaluable limit surfaces [HKD93, Sta98]. The main
drawback of this method is that it requires the solution of a global linear system to deter-
mine the control points of the surface and a post-processing optimization step to fair its shape.
Some variations of the Catmull-Clark interpolatory scheme [MMN07, LBW05, Lin10] propose
to improve computational cost and surface quality by exploiting the so-called progressive iter-
ative approximation or progressive interpolation technique, which consists in constructing the
interpolating surface by sequential approximation of its control polyhedron. These techniques
are still inherently global because, as soon as a vertex changes its location, the entire control
polyhedron must be updated in order to keep the interpolation property.
In the context of interpolation of 2D points, a recent trend is the study of approaches based

on a non-uniform parameterization [DFH09, BCR11b, BCR11a, BCR13a]. The interest is moti-
vated by the observation that, while the uniform parameterization may give rise to unacceptable
artifacts, these undesirable effects may disappear completely by adopting a suitable parame-
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terization (such as the centripetal or the chordal ones) [YSK11, KY06, Lee89, Flo08]. As a
demonstration, see Figure 4.1.
With regard to the construction of free-form objects from arbitrary 3D meshes, the non-uniform
parameterization principle has been a subject of interest especially in the area of approxima-
tion [CADS09, KSD13, MFR+10, MRF06, SZSS98, Cas10, Cas11], with a view to establishing
high-quality models compatible with the non-uniform B-spline standard. However, even in the
context of interpolation, its potential usefulness is easily understood. In fact, it is clear that a
high-quality surface must have high-quality section curves. Therefore, intuitively, we can think
of generating a good-quality surface by interpolating a set of good-quality section curves. The
benefits of this approach are outlined in [BCR13b]. That work considers a regular grid of points
(i.e., with four edges incident at each vertex), where each polygonal section is parameterized
independently of the others in a non-uniform way. From this structure, a family of nested curve
networks is constructed by an iterative refinement process, in which each successively generated
network is denser and contains the previous one. In the limit, the process converges to a C1

surface. The curves of the initial network are immersed in this surface and retain their original
parameterization. The approach generates surfaces of higher quality compared to the classical
non-uniform tensor-product splines or subdivision schemes. The downside is that, because the
limit surface is generated by a recursive process, it cannot be described in analytic form or
exactly evaluated at arbitrary points. Besides this, the approach [BCR13b] does not allow
handling meshes with extraordinary vertices.
Motivated by these results, our objective is to provide a method for generating an interpola-

tory surface of high quality and sufficient regularity from a quadrilateral mesh whose vertices
may have an arbitrary number of incident edges (for short, an arbitrary mesh). In general,
we are not given a suitable network of curves to interpolate, where suitable means of good
quality and satisfying G1- or G2-compatibility conditions at the intersections. For this reason,
we propose a two-step approach that, given an arbitrary quadrilateral mesh:

1. generates a network of high-quality curves interpolating the mesh vertices;
2. builds a composite surface that interpolates the curves of the network with a 1-1 associ-

ation between mesh faces and surface patches.
In addition, if a suitable network of parametric curves is given, a direct generalization of our
approach allows us to generate a surface that interpolates the network, regardless of the nature
of the curves (polynomial, trigonometric, etc.).
We can outline the two steps of our technique as follows.

First stage — During the construction of the curve network, each curve is independently param-
eterized by the centripetal or chordal parameterization, in such a way to optimize its quality.
The curves are then represented by piecewise-polynomial functions and are defined in a com-
pletely local way exploiting a class of compactly supported fundamental functions [BCR13a],
which turns out to be particularly convenient due to its property of a very limited support
width. In this way, the portion of curve between two mesh vertices depends only on few adja-
cent points belonging to a polygonal section of the mesh (which does not necessarily need to
be planar). In the neighborhood of valence-4 vertices, the network does not have to meet any
particular requirement for compatibility. In the neighborhood of extraordinary vertices (i.e.,
vertices of valence other than 4), we construct the network in order to satisfy compatibility
constraints of G1 and G2 type, according to the desired smoothness for the final surface.
Second stage — The curve network serves as a skeleton from which we build a smooth surface by
suitably blending the curves. At this stage two innovative ingredients are introduced: the first
is to use as blending functions a class of non-uniform, locally supported fundamental functions
[BCR13a]; the second consists in a suitable strategy of local parameterization. In this way, the
curves become the boundaries of the patches of a composite surface, where each patch, param-
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eterized over the domain [0, 1]2, corresponds to a face of the mesh and depends on only one or
two rings of vertices surrounding the face. Moreover, we introduce a novel parameterization
strategy, called augmented parameterization, which does not require that opposite boundaries
of a face have the same parameterization. As a result, the curves of the network are embedded
in the surface, without being approximated or altered in any way, and retain their original
parameterization and consequently their good shape quality. This is a major difference with
respect to the classical approaches based on tensor-product or Coons-Gordon surfaces, where
averaging the parameterization of parallel section curves is necessary.

As a historical note, it is interesting to remark the similarities between our augmented pa-
rameterization and a technique proposed by Geoff Hayes in 1974 [Hay74] in the context of
fitting samples of a bivariate function through bicubic splines. Hayes observed that a better
interpolation can be obtained if, instead of using the usual rectangular grid of knot intervals,
we use what he called curved knot-lines, where the knot intervals are not forced to form a grid,
but their lengths can be selected in a more flexible way. Thus, Hayes’ technique and ours share
the common idea that the classical tensor-product parameterization, albeit non-uniform, is not
flexible enough to generate surfaces of good quality.

The remainder of the chapter is organized as follows. In Section 4.2 we outline the family of
local non-uniform spline interpolants which is at the basis of the curve network construction
and of the local patching scheme. We also formulate these splines in such a way to better
exploit their local dependence on the parameterization. In Section 4.3 we describe the first
stage of our approach, which consists in the construction of a network of curves with suitable
compatibility conditions at the vertices that will serve as a skeleton for the patching scheme.
Starting from this structure, we describe in Section 4.4 how a local surface patch with augmented
parameterization can be worked out from every quadrilateral face of the mesh that does not
contain extraordinary vertices. In Section 4.5 we propose a construction which applies to faces
with an arbitrary number of extraordinary vertices. We address in particular the definition of
G1 and G2 surface patches that guarantee the interpolation of the curve network and provide
a smooth connection with the surrounding surface patches, exploiting again the augmented
parameterization. In Section 4.6 we briefly discuss the case in which the data consist in a
network of curves instead of a mesh, thus the first stage of our approach is skipped. In this
situation, a straightforward application of the proposed augmented parameterization gives rise
to an augmented Gordon-Coons scheme with the property of locality. In Section 4.7 we provide
some examples of surfaces obtained with the described method starting from regular meshes
or from meshes containing extraordinary vertices, and we conclude with some final remarks in
Section 4.8.

4.2 Locally supported, non-uniform, fundamental spline
interpolants

In the remainder of this chapter we extensively exploit some families of non-uniform local
interpolatory splines. Given a set of points {pj ∈ Rn}, associated with a knot sequence {xj ∈
R}, we focus on local spline interpolants expressed by the formula

F (x) =
∑
i

pi ψi(x), (4.1)
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where the functions ψi, called fundamental functions, satisfy the relation ψi(xj) = δi,j. We
assume that the knots {xj} are computed by a proper automatic data-dependent method, such
as the chordal or centripetal parameterization [ANW67, Lee89, FS06]. In particular,

xi+1 = xi + ‖pi+1 − pi‖α2 , (4.2)

where α = 1
2
or α = 1 respectively for the centripetal or chordal parameterization (‖·‖2 denotes

the Euclidean norm).
If the support of each function ψi is finite, then the interpolant (4.1) is local, i.e., its value at
a certain location depends on only a limited number of points among the pj’s. In particular,
we say that the function ψi(x) has support width equal to w if it is identically zero for any x
outside a compact interval of the form [xj, xj+w] for some j.
A construction for several families of polynomial fundamental functions, defined on non-

uniform knot sequences, is presented in [BCR13a] and extended in Chapter 3. Each such
family is characterized by its polynomial degree, order of continuity, approximation order (or,
equivalently, maximum degree of polynomials that are reproduced), and support width. The
constructive framework allows choosing, within some reasonable restrictions, the most con-
venient balance between these four features according to the needs of a specific application.
For brevity, we indicate a class of splines having Degree g, Continuity order k, Polynomial
reproduction degree m and Support width w by the shorthand DgCkPmSw. So, for example,
if we fix the support width to 4, we can find the classes D3C0P 3S4, D3C1P 2S4, D4C2P 1S4,
D5C2P 2S4, . . . , and, similarly, many more classes exist having support width 6 (see Tables
1 and 2 in [BCR13a], and for the generalization to Br-splines of minimum degree see Table
3.2 in the previous chapter). Conversely, if we are interested in a certain continuity or order
of approximation, the approach in [BCR13a] always allows us to construct a class of locally
supported fundamental functions, of suitable support width, having the desired property.
We will focus on fundamental splines that have even support width w and that assume the

value 1 at the central knot of the support. In fact, such condition identifies the most relevant
classes of splines, namely those which preserve symmetries in the initial data (recall Property
5 in Chapter 3). This restriction is not really necessary in what we will see in the following
sections, but we prefer slightly sacrificing generality in favor of a more streamlined notation.
In this way, it holds

ψi(x) = 0, x /∈ [xi−w
2
, xi+w

2
],

and if we set
di := xi+1 − xi, (4.3)

we can observe that each fundamental function of support width w is a piecewise polynomial
made of w pieces, one per each interval [xj, xj+1], j = i− w

2
, . . . , i+ w

2
−1, and it depends on (at

most) the w corresponding knot intervals dj, j = i−w
2
, . . . , i+w

2
−1 (see Figure 4.2(a)). However,

since in practice we evaluate each polynomial piece in (4.1) at a time, it is more convenient to
reason on a single interval. Focusing on [x`, x`+1], we observe that w different kinds of pieces
of the fundamental functions ψj, j = `− w

2
+ 1, . . . , `+ w

2
, contribute to the evaluation of (4.1)

(see Figure 4.2(b)) and, overall, the knot intervals involved are dj, j = `− w
2

+ 1, . . . , `+ w
2
− 1.

This means that not all the knot intervals which constitute the support of a single fundamental
function are involved in the evaluation of (4.1) on an interval. Based on this consideration, to
emphasize the local nature of the spline interpolant, it is convenient to reformulate the piece
of the spline interpolant (4.1) in [x`, x`+1] as

F (x)
∣∣
[x`,x`+1]

=
w∑
i=1

p̄i ψ`−w
2

+i(x; d̄), (4.4)
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ψ`−1,4

d`−1 d` d`+1
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0
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Figure 4.2: (a) Fundamental function of the class D3C1P 2S4; (b) the four pieces of the fundamental
functions of this class on a single interval [x`, x`+1], and related parameters dj in equation (4.5).

where
p̄ :=

(
p`−w

2
+1, . . . ,p`+w

2

)
,

and
d̄ :=

(
d`−w

2
+1, . . . , d`+w

2
−1

)
.

It is useful to point out that three classes of splines will be exploited as running examples
in this chapter: besides the so-called Catmull-Rom splines [CR74] (hereinafter indicated by
D3C1P 2S4), we will consider other two “unnamed” classes, D5C2P 2S4 and D4C2P 3S6, devel-
oped in [BCR13a]1. The motivation for our choice is that they represent a good tradeoff between
computational cost (represented by support width and degree) and analytical properties (order
of continuity and approximation order). To make our proposal easily reproducible, in Section
4.2.1 we provide the expressions related to the two classes with support width 4 (we do not
report the expressions for the class with support width 6 because of their excessive length).
Moreover, we remark that in the context of 3D points interpolation it may be interesting to
consider also classes of splines featuring C3 continuity. In fact, such splines can achieve torsion
continuity and we expect that this will result in fairer space curves.

Usually, the data sequence {pj} is meant to be periodic, but, for later use, it is useful to
discuss as of now the case in which it is open. In this situation, the interpolant (4.1) can be
defined in the boundary knot interval [x0, x1] and on the subsequent ones (and, equivalently,
in the last intervals) by extrapolating w

2
− 1 points across the boundary. This is equivalent to

prescribing the derivatives of F at x0 up to order w
2
− 1, as detailed more formally in Section

3.5. The resulting spline interpolates at x0 the prescribed derivatives, to which we will thus
refer as Hermite end conditions.

1According to the terminology introduced in Chapter 3 (precisely, in Definition 3.1), the spline interpolants
associated with these classes are B1-splines.
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4.2.1 Fundamental functions associated with the considered classes
of spline interpolants

We provide here the expressions of the fundamental functions associated with the two classes
having support width 4 and used as examples in this chapter.
We remark that in the following expressions ψi,j denotes the jth piece of the fundamental
function ψi.

4.2.1.1 Class D3C1P 2S4

The general expression of the fundamental function of the class D3C1P 2S4 (Catmull-Rom
splines [CR74]) on its support [−di−2 − di−1, di + di+1], which is illustrated in Figure 4.2(a), is:

ψi(x) =



(di−1+x)(di−2+di−1+x)2

di−2di−1(di−2+di−1)
, −di−2 − di−1 6 x < −di−1,

− (di−1+x)(di(x2−di−1(di−2+di−1))+x(di−2+di−1)(di−1+x))
d2i−1(di−2+di−1)di

, −di−1 6 x < 0,

(di−x)(x2(−(di−1+di+di+1))+xdi(di+di+1)+di−1di(di+di+1))
di−1d2i (di+di+1)

, 0 6 x < di,
(di−x)(di+di+1−x)2

didi+1(di+di+1)
, di 6 x 6 di + di+1.

Additionally, the expressions of the four pieces of the fundamental functions of the same class
on [x`, x`+1] are:

ψ`−1,4(x) = − x (x− d`)2

d`−1d` (d`−1 + d`)
,

ψ`,3(x) =
1

d2
`

(x− d`)
(

x2

d` + d`+1

+
x (x− d`)
d`−1

− d`
)
,

ψ`+1,2(x) =
1

d2
`

x

(
d` (d`−1 + 2x)− x2

d`−1 + d`
+
x (d` − x)

d`+1

)
,

ψ`+2,1(x) =
x2 (x− d`)

d`d`+1 (d` + d`+1)
,

(4.5)

These pieces are shown in Figure 4.2(b).

4.2.1.2 Class D5C2P 2S4

The general expression of the fundamental function of the class D5C2P 2S4 on its support
[−di−2 − di−1, di + di+1] is:

ψi(x) =



− (di−1+x)(di−2+di−1+x)3(−di−2+2di−1+2x)

d3i−2di−1(di−2+di−1)
, −di−2 − di−1 6 x < −di−1,

(di−1+x)((di−2+di−1+di)(3x3di−1+2x4)+d3i−1(di−2+di−1)(di−x))
d4i−1(di−2+di−1)di

, −di−1 6 x < 0,

(di−x)((2x4−3x3di)(di−1+di+di+1)+d3i (di+di+1)(x+di−1))
di−1d4i (di+di+1)

, 0 6 x < di,

− (x−di)(−2di+di+1+2x)(di+di+1−x)3

did3i+1(di+di+1)
, di 6 x 6 di + di+1.
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Additionally, the expressions of the four pieces of the fundamental functions of the same class
on [x`, x`+1] are:

ψ`−1,4(x) =
x (x− d`)3 (d` + 2x)

d`−1d3
` (d`−1 + d`)

,

ψ`,3(x) =
(d` − x)

(
d`−1 (−3x3d` + d4

` + d3
`d`+1 + 2x4) + x (d` + d`+1) (d` + 2x) (x− d`)2)
d`−1d4

` (d` + d`+1)
,

ψ`+1,2(x) =
1

d4
`

x

(
x2 (2x− 3d`) (x− d`)

d`+1

+
−5x3d` + 3x2d2

` + d3
` (d`−1 + x) + 2x4

d`−1 + d`

)
,

ψ`+2,1(x) = −x
3 (2x− 3d`) (x− d`)
d3
`d`+1 (d` + d`+1)

.

4.3 From an arbitrary mesh to a curve network compatible
for continuity

In this section we exploit the considered local spline interpolants to work out a network of
curves, starting from an arbitrary input mesh. As we will see, the local nature of the interpolants
makes the proposed procedure easy and effective. We recall that a network of curves is called
Gk-compatible if, in a neighborhood of each node (i.e., any point where two or more curves of
the network intersect), it can be embedded into a Ck surface.
Hereinafter we implicitly assume that the starting mesh is manifold (it has no boundary and

each edge is shared by exactly two faces), while the case of non-closed meshes will be briefly
addressed in Section 4.3.3.4. We also call an extraordinary vertex a vertex with valence other
than 4. Moreover, we call regular region a portion of the mesh in which the vertices form a
quadrilateral grid with all vertices having valence 4. To provide a more readable outline, we
split the section into three parts corresponding to the three following stages: first we associate
a non-uniform parameterization to the input mesh (Section 4.3.1), then we compute the curve
segments corresponding to regular regions of the mesh (Section 4.3.2), and finally we compute
the curve segments emanating from the extraordinary vertices (Section 4.3.3).

4.3.1 Non-uniform parameterization of the mesh

A preliminary step towards the construction of the curve network is the computation of a
proper parameterization for its curves. To this aim, we associate with each edge e of the mesh
a knot interval de. Denoted by p1 and p2 the two endpoints of e, then

de := ‖p2 − p1‖α2 , (4.6)

where α = 1
2
or α = 1 respectively for the centripetal or chordal parameterization. Note that

this definition is equivalent to (4.2)–(4.3).

4.3.2 Regular regions of the mesh

Since a regular region of the mesh has a grid-like structure, we can conveniently denote its
vertices by pi,j. In such a region, the mesh can be seen as a collection of two families of section
polylines, Ps = {pi,j}i and Pt = {pi,j}j, associated with two independent directions s and t.
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(a) (b)

Figure 4.3: Mesh containing several extraordinary vertices in various configurations: isolated, close,
on the same face, adjacent. The regular regions are highlighted in gray, for spline interpolants having
support width (a) 4 and (b) 6. Mesh edges where the regular construction is not possible are thicker.

We construct the curve network in a piecewise manner, by associating with each edge
pi,j,pi+1,j of the mesh (and likewise for edges pi,j,pi,j+1 in the other direction) a curve segment
of an interpolating spline DgCkPmSw defined locally by equation (4.4). The local sequences of
points p̄ and knot intervals d̄ involved in (4.4) are formed by the vertices and knot intervals
of a suitable number (depending on the support width w of the class) of edges of the section
polyline which contains pi,j,pi+1,j, located on both sides of the edge. Note that, as a result,
each section curve in either direction is parameterized independently of the others. Moreover,
if the class of splines has continuity order k, then the resulting network can be embedded in
a Ck surface. In fact, at each node, the derivatives up to order k are continuous in the two
independent directions s, t.

4.3.3 Mesh regions with extraordinary vertices and G1/G2-compati-
bility conditions

Due to its local nature, the construction proposed in the previous section can be applied
in all the areas of a mesh that are sufficiently far from extraordinary vertices. Thus in this
section we will only discuss how to define the curve segments whose endpoints belong to the
neighborhood of an extraordinary vertex. As will become clear in the following, the width
of the neighborhood where such a construction is necessary depends on the support of the
underlying fundamental functions. Therefore we proceed as follows: first we illustrate some
notions common to all cases, then we detail the construction for our three running examples,
namely the classes D3C1P 2S4, D5C2P 2S4, and D4C2P 3S6.
Let V be a vertex of valence n. We denote by ei, i = 1, . . . , n, the edges emanating from V

and by pi the other endpoint of ei (see Figure 4.4). Next, we associate with V and with each
edge ei a vector ∆V ,ei as follows.
Let

fi :=
pi − V
dei

,
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where dei := ‖pi − V ‖α2 is the knot interval of edge ei. Then we define

∆V ,ei = αifi + (1− αi)f̄ , (4.7)

where

αi =
d̄

dei + d̄
, d̄ = −

n∑
j=1
j 6=i

cos

(
2π(j − i)

n

)
dej , f̄ =

n∑
j=1
j 6=i

cos

(
2π(j − i)

n

)
fj.

When n = 4, equation (4.7) reduces to the well-known Bessel estimate for computing an
approximation to the first derivative of a parametric curve [Far02, Sections 9.5 and 9.8]. As a
consequence, for general valence n 6= 4, we can say that ∆V ,ei represents a heuristic estimate of
the first derivative at V of the curve segment between V and pi. In particular, we can observe
that, when n is even and the points have rotational symmetry with respect to V , then ∆V ,ei

estimated by (4.7) corresponds to the Bessel formula applied to the three points pi+n
2
,V ,pi,

which are intuitively associated with a curve passing through V .
Other reasonable estimates for ∆V ,ei could be used. For example, in case of even valence and
a rather symmetric configuration of the vertices, we may regard half of the curves that contain
the extraordinary vertex as the continuation of the other half. In case of odd valence, we may
directly complete the information needed for the definition of the curve segment by considering
one (or more) fictitious point located on the other side of the extraordinary vertex. This point
can be simply the centroid of the opposite mesh face or computed as a suitable weighted average
of neighboring vertices.
We exploit the computed vectors ∆V ,ei , i = 1, . . . , n, to generate the first and the second

derivatives, respectively δV ,ei and δ
(2)
V ,ei

, of the curve segment associated with the edge ei. These
information is generated to guarantee that the network satisfies the G1- or G2-compatibility
conditions at V . To this aim, our strategy is to construct a polynomial P that interpolates
V and approximates in a least-squares sense a suitable set of points qj, j = 1, . . . , 2n around
V and set δV ,ei and δ

(2)
V ,ei

as the derivatives of such polynomial along some proper directions.
The approximation points qj are chosen so that the polynomial will have a reasonable shape
(w.r.t. the shape suggested by the input mesh) in a small neighborhood of V . In particular,
for each i = 1, . . . , n, qi and qn+i are respectively the values at parameters di

4
and di

2
of the

cubic polynomial ρ such that ρ(0) = V , ρ′(0) = ∆V ,ei , ρ(di) = pi, ρ′(di) = ∆pi,ei . Their
expressions are given explicitly by

qi = ρ

(
di
4

)
=

1

64
(54V + 10pi + di (9∆V ,ei − 3∆pi,ei)) ,

qn+i = ρ

(
di
2

)
=

1

8
(4V + 4pi + di (∆V ,ei −∆pi,ei)) .

We use bivariate polynomials of total degree 3 or 2 respectively in the case n > 5 or n = 3.
The coefficients of P are determined componentwise by minimizing the expression

2n∑
j=1

(P (sj, tj)− qj)2 .

In the above equation, the parametric coordinates (sj, tj) associated with the point qj are given
by

(sj, tj) = rj (cos ηi, sin ηi),
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where
rj = ‖qj − V ‖α2 ,

(the value of α is the same as chosen in (4.6)) and the angles ηi, i = 1, . . . , n, are obtained by
mapping onto the (s, t)-plane the spatial configuration formed by the angles ζi := ̂∆V ,ei ,∆V ,ei+1

,
i = 1, . . . , n, namely

η1 = 0, ηi = ηi−1 + ζi
2π∑n
j=1 ζj

, i = 2, . . . , n.

Once computed the polynomial P , we can set δV ,ei and δ
(2)
V ,ei

, i = 1, . . . , n, as the first and
the second derivatives of P at V in the direction determined by ηi, i.e.

δV ,ei =
∂P

∂s
(0, 0) cos ηi +

∂P

∂t
(0, 0) sin ηi,

δ
(2)
V ,ei

=
∂2P

∂s2
(0, 0) cos2 ηi + 2

∂2P

∂s∂t
(0, 0) cos ηi sin ηi +

∂2P

∂t2
(0, 0) sin2 ηi.

(4.8)

Remark 4.1. If a vertex V has valence 3, and there are three independent tangent lines meeting
at V , then any approximation of the second directional derivatives of the mesh will be compat-
ible with G2 continuity, as any three independent curves determine a unique curvature value
at their meeting point. However, also in this case, computing the least-squares polynomial P
may be useful for providing a reasonable estimate of the sought second directional derivatives.
The derivatives obtained with the above steps serve as a starting point for the definition of

the curve segments of the network emanating from an extraordinary vertex, in the sense that
they provide the end conditions. We illustrate the construction of such curve pieces for our
three running examples (classes D3C1P 2S4, D5C2P 2S4, D4C2P 3S6). Figure 4.4 is a graphical
reference for what we will see in the following: it shows the configuration around isolated or
multiple extraordinary vertices on the same face for classes with support width 4 or 6. In this
figure, the edges which cannot be processed as regular are emphasized in bold.

4.3.3.1 Class D3C1P 2S4

This class has support width 4 and each curve piece is defined by four successive points and
three parameters (see Equation (4.5)). Thus, the curve network is defined by the regular strat-
egy, described in Section 4.3.2, everywhere except for the first ring around each extraordinary
vertex V (see Figure 4.3(a)). Note that, being the fundamental functions in the considered
class C1 continuous, it would not make much sense to require G2-compatibility at V , thus
we limit ourselves to requiring G1-compatibility. We focus on constructing the piece of curve
between V and pi, as the same reasoning holds for any i = 1, . . . , n.
We start by considering the situation in which both pi and ti are regular, depicted in Figure
4.4(a). The piece of curve bounded by pi and ti can be computed by (4.5) and belongs to the
class D3C1P 2S4. We can thus define the curve segment between V and pi as the unique cubic
polynomial ρ(s), s ∈ [0, dei ], such that ρ(0) = V , ρ′(0) = δV ,ei , ρ(dei) = pi, ρ′(dei) = δpi,ei ,
where δV ,ei is given by (4.8) and δpi,ei is the first derivative at pi of the curve segment between
pi and ti. We remark that this technique makes so that the whole curve of the network ema-
nating from V belongs to the considered class.
If either pi or ti is extraordinary (Figures 4.4(d) and 4.4(c) respectively), then the piece of
curve between V and pi is defined analogously, except that δpi,ei is given either by (4.7) with
n = 4 (i.e., it is set to be equal to the classical Bessel estimate) if ti is extraordinary and pi is
regular, or by (4.8) if also pi is extraordinary (where now the least-squares polynomial to be
considered is the one related to pi).
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(a) Isolated extraordinary vertex (support
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δti,ēi , δ
(2)
ti,ēi
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(b) Isolated extraordinary vertex (support width
6).
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(c) Extraordinary vertices separated by a regular vertex.
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(d) Adjacent extraordinary vertices.

Figure 4.4: Underlying mesh (dashed line), polylines emanating from an extraordinary vertex (solid
line), mesh edges where the regular construction is not possible (thick line) and the data (values and
derivatives) involved in the definition of the curve piece (in red) containing the extraordinary vertex,
for classes of spline interpolants having support width 4 and 6. Note that the second derivatives δ(2)

·,·
should be computed only if necessary.

4.3.3.2 Class D5C2P 2S4

This class has support width 4 and continuity C2, thus we aim to use it in order to construct
a G2 curve network. The reasoning is analogous to the previous case, except that in this setting
we will use also information regarding the second derivatives at the endpoints of each curve
segment. Recalling that the functions in the class have degree 5, we construct each piece of
curve between V and pi as the quintic polynomial ρ(s), s ∈ [0, dei ], such that ρ(0) = V ,
ρ′(0) = δV ,ei , ρ′′(0) = δ

(2)
V ,ei

, ρ(dei) = pi, ρ′(dei) = δpi,ei , ρ′′(dei) = δ
(2)
pi,ei . Same as for the

previous class, the first and the second derivatives at pi may be estimated from the adjacent
curve piece if it exists (see again Figure 4.4(a) for a graphical outline), or, in alternative, they
may be set according to (4.8).

4.3.3.3 Class D4C2P 3S6

In this case, the fundamental functions of the class have support width 6. This means
that around each extraordinary vertex there will be two rings of vertices (or, equivalently,
edges) where the regular construction does not apply, as illustrated in Figures 4.3(b) and
4.4(b). We thus define the curve segment between V and pi as the quintic polynomial ρ(s),
s ∈ [0, dei ], interpolating ρ(0) = V , ρ′(0) = δV ,ei , ρ′′(0) = δ

(2)
V ,ei

, ρ(dei) = pi, ρ′(dei) = δpi,ei ,
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ρ′′(dei) = δ
(2)
pi,ei . Moreover, denoted by ēi the edge pi, ti and by dēi its knot interval, we define

the curve segment between pi and ti as the quintic polynomial ρ(s), s ∈ [0, dēi ], interpolating
ρ(0) = pi, ρ′(0) = δpi,ei , ρ′′(0) = δ

(2)
pi,ei , ρ(dēi) = ti, ρ′(dēi) = δti,ēi , ρ′′(dēi) = δ

(2)
ti,ēi

. Same as for
the previous classes, if allowed by the configuration of the neighboring vertices, δti,ēi and δ

(2)
ti,ēi

are taken as the derivatives of a piece of curve belonging to the class D4C2P 3S6. Otherwise,
they are estimated through the construction of a least-squares polynomial around ti.

4.3.3.4 Non-closed meshes

The case of non-closed meshes (i.e., meshes with boundary) is addressed in a way similar
to the extraordinary configuration described above. In fact, “regular” vertices located on the
boundary of the mesh (having valence n = 3) or that are also corners (n = 2) are treated like
extraordinary ones, and the curve segments that contain them are constructed by estimating
the derivatives across the mesh boundary and imposing such end conditions in an interpolation
problem.

4.4 Patching regular faces with augmented parameteriza-
tion

Recalling the terminology introduced at the beginning of Section 4.3, we say that a mesh
face (or a surface patch) is regular if it belongs to a region where the mesh (or the composite
surface) has a grid-like structure, whereas it is called extraordinary otherwise. Obviously, a
regular face contains no extraordinary vertices. In Figure 4.3 the regular faces are shaded in
gray, and rings of extraordinary faces clearly surround extraordinary vertices, where the number
of rings depends on the support width of the considered class of local interpolants.
We start by discussing the parameterization principle which lies underneath our construc-

tion focusing on regular faces. As a premise, useful to motivate our approach, we recall the
well-known tensor-product parameterization, which is usually adopted when designing a com-
posite spline surface on a regular mesh. It consists in associating with each mesh edge a knot
interval in such a way that the overall parameter configuration is the cartesian product of a
(possibly non-uniform) sequence of knot intervals d = {dh} in the s-direction of the domain
and an analogous sequence e = {eh} in the t-direction. Starting from any class of fundamental
functions DgCkPmSw of the form considered in Section 4.2, we can straightforwardly define a
Ck-continuous interpolating surface generalizing (4.4) as a collection of tensor-product patches.
By virtue of the local support of the underlying class of univariate fundamental functions, each
patch will depend only on a limited number of vertices and knot intervals.
Unfortunately, the tensor-product parameterization implies that the curves of a network

interpolating the vertices of the mesh share the same parameterization in each direction. Thus
it is not well suited for designing a surface which interpolates a general network of curves, where
each curve may be parameterized independently of the others. On the other hand, since the
quality of each curve depends on its particular parameterization, it is intuitive that changing the
parameterization of the curves compatibly with the tensor product, e.g., assigning to each curve
an average parameterization, would mean losing or altering information that is crucial for the
quality of the interpolant. Indeed, the fact that the strict structure of the tensor product may
compromise the quality of an interpolation method is well known (see, e.g., [FHK02, Section
7.5.1]).
In the following we will design a surface which interpolates a curve network without altering
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Figure 4.5: Configuration and labeling of vertices and knot intervals around a face (in dark gray)
surrounded by a sufficient number of regular vertices. The related surface patch S with augmented
parameterization is defined by (4.9).

the parameterization of the given curves.

We construct a composite surface, where each mesh face gives rise to one surface patch
S parameterized over the domain [0, 1]2, whose parameters are denoted by (u, v). Figure
4.5 illustrates the configuration and the labeling of vertices and knot intervals around a face
surrounded by a sufficient number of regular vertices. For any (u, v) ∈ [0, 1]2, we compute two
local sequences of knot intervals d and e, each of them being made of w − 1 elements, of the
form

d = d(v) =
(
dh(v), h = −w

2
+ 1, . . . ,

w

2
− 1
)
,

and
e = e(u) =

(
eh(u), h = −w

2
+ 1, . . . ,

w

2
− 1
)
,

and we derive a couple of coordinates (s, t) defined as

s = u d0(v), t = v e0(u),

such that s ∈ [0, d0(v)] and t ∈ [0, e0(u)].
We set the value at (u, v) of the patch S which interpolates the vertices of the considered

face to be equal to the value at (s, t) of a tensor-product patch T parameterized over d and e
as follows:

S(u, v) := T (s, t) =

w
2∑

i=−w
2

+1

w
2∑

j=−w
2

+1

pi,jΨi,j(s, t;d, e), (4.9)

where the control points pi,j represent a local grid of mesh vertices, and

Ψi,j(s, t;d, e) := ψi(s;d)ψj(t; e).

In particular, from the above expression, the bivariate fundamental function Ψi,j associated
with pi,j is defined as the product of two fundamental functions of the form (4.4), respectively
parameterized over the knot intervals sequences d and e, which are different for each couple
(u, v). We aim to choose the functions d(v) and e(u) so that:
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i) the boundary of the patch, which is described by (4.9) with either u or v equal to 0 or 1,
coincides with segments of curves of the network;

ii) Ck continuity of the surface holds.

To prescribe the functions d(v) and e(u) we have pursued the maximum locality of the con-
struction, in such a way that the surface is not affected by data that may not be representative
of the local configuration of interpolation points. In particular, condition i) can be easily
satisfied by interpolating the parameters associated with opposing edges. We will thus set
dh(v), eh(u) ∈ P2k+2 (the space of polynomials of order 2k + 2, i.e., of degree at most 2k + 1)
such that

dh(0) = d0
h, dh(1) = d1

h, d
(r)
h (0) = d

(r)
h (1) = 0, r = 1, . . . , k,

eh(0) = e0
h, eh(1) = e1

h, e
(r)
h (0) = e

(r)
h (1) = 0, r = 1, . . . , k.

(4.10)

For each surface patch, we may note that the knot intervals associated with its boundary
need no longer form a rectangle. This parameterization technique, which we call augmented
parameterization, allows the parameters to vary smoothly in between one curve and another,
while interpolating the parameterization of the curves of the network. In this way, the boundary
of each patch coincides exactly with a piece of curve of the network, which means that the curve
network is embedded in the interpolating surface, as proven below.

Proposition 4.1. The composite surface with augmented parameterization interpolates the
curves of the network.

Proof. We consider the boundary of the patch, which is described by (4.9) with either u or v
equal to 0 or 1, and prove that it coincides with segments of curves of the network.
In particular, let us suppose u = 0. Then s = 0 and, observing that ψi(0;d(v)) = 1 if i = 0

and it is zero otherwise, equation (4.9) becomes

S(0, v) = T (0, t) =

w
2∑

i=−w
2

+1

w
2∑

j=−w
2

+1

pi,j ψi(0;d(v))ψj(t; e(0))

=

w
2∑

j=−w
2

+1

p0,j ψj

(
t; e0
−w

2
+1, . . . , e

0
w
2
−1

)
,

which is exactly the curve of the network interpolating the sequence of points p0,j.
Similarly, when u = 1, then s = d0(v) and ψi(d0(v);d(v)) = 1 if i = 1 and it is zero otherwise;

thus, from (4.9),

S(1, v) = T (d0(v), t) =

w
2∑

i=−w
2

+1

w
2∑

j=−w
2

+1

pi,j ψi(d0(v);d(v))ψj(t; e(1))

=

w
2∑

j=−w
2

+1

p1,j ψj

(
t; e1
−w

2
+1, . . . , e

1
w
2
−1

)
,

which is exactly the curve of the network interpolating the sequence of points p1,j.
An analogous reasoning holds for the other patch boundaries v = 0, 1.



74 4. Local interpolation of arbitrary-topology meshes and curve networks by composite parametric surfaces

Proposition 4.2. The composite surface with augmented parameterization built upon a class
of Ck-continuous fundamental functions is Gk-continuous.

Proof. We consider two adjacent patches S and S̃ (see Figure 4.5). Without loss of gener-
ality, we can assume that their common boundary corresponds to u = 0 for S and u = 1
for S̃, thus S and S̃ share the same knot intervals sequence on the boundary e(0) = ẽ(1) =
(e0
−w

2
+1, . . . , e

0
w
2
−1), while their knot intervals sequences in the transversal direction are respec-

tively d(v) = (d−w
2

+1(v), . . . , dw
2
−1(v)) and d̃(v) = (d−w

2
(v), . . . , dw

2
−2(v)).

By Proposition 4.1, it is trivially verified that Ck continuity holds along the common boundary.
In the cross-boundary direction u, the rth-order derivative of S is given by

∂r

∂ur
S(u, v) =

w
2∑

i=−w
2

+1

w
2∑

j=−w
2

+1

pi,j

[
∂r

∂ur
ψi (ud0(v);d(v)) ψj (ve0(u); e(u))

+ψi (ud0(v);d(v))
∂r

∂ur
ψj (ve0(u); e(u))

]
.

We observe that
∂

∂u
ψj (ve0(u); e(u)) =

w
2
−1∑

h=−w
2

+1

∂ψj
∂eh

∂eh
∂u

,

and thus, recalling that e0(0) = e0
0,

∂

∂u
ψj (ve0(u); e(u))

∣∣∣∣
u=0

= 0,

since e′h(0) = 0 by construction (see (4.10)). Again from (4.10), if we iterate the differentiation
process (or, more concisely, use Faà di Bruno’s formula [FdB57, Joh02]), it can be easily verified
that the higher-order derivatives of ψj vanish at u = 0 up to order k. Thus, observing that
∂r

∂ur
ψw

2
(ud0(v);d(v))

∣∣
u=0

= 0, for r = 1, . . . , k,

∂r

∂ur
S(u, v)

∣∣∣∣
u=0

=

w
2
−1∑

i=−w
2

+1

w
2∑

j=−w
2

+1

pi,j
∂r

∂ur
ψi (ud0(v);d(v))

∣∣∣∣
u=0

ψj
(
ve0

0; e(0)
)
. (4.11a)

Analogously, considering the other patch S̃, we have

∂r

∂ur
S̃(u, v)

∣∣∣∣
u=1

=

w
2
−1∑

i=−w
2

+1

w
2∑

j=−w
2

+1

pi,j
∂r

∂ur
ψi

(
ud−1(v); d̃(v)

)∣∣∣∣
u=1

ψj
(
ve0

0; e(0)
)
, (4.11b)

since ẽ(1) = e(0) and ∂r

∂ur
ψ−w

2
(ud−1(v); d̃(v))

∣∣∣
u=1

= 0, for r = 1, . . . , k.
The derivative in the u-direction can be related to the derivative with respect to s through

∂r

∂ur
=

∂r

∂sr

(
∂s

∂u

)r
,

where s = ud0(v) for S and s = ud−1(v) for S̃.
We observe that, by construction, the knot intervals in d and d̃ are equal, except for the first

and the last element respectively of d and of d̃, which nevertheless do not influence the value
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of (4.11a) and (4.11b). Thus, being the family of fundamental functions ψi Ck-continuous with
respect to s, it holds

∂r

∂sr
ψi(s;d(v))

∣∣∣∣
s=0

=
∂r

∂sr
ψi(s; d̃(v))

∣∣∣∣
s=d−1(v)

,

which results in Ck continuity w.r.t. the variable s across the considered boundary between
patches S and S̃. Moreover,

∂r

∂ur
S(u, v)

∣∣∣∣
u=0

=

(
d0(v)

d−1(v)

)r
∂r

∂ur
S̃(u, v)

∣∣∣∣
u=1

,

which means that Gk continuity holds across the boundary w.r.t. the parameters in the (u, v)-
domain.

Remark 4.2. A surface patch defined by (4.9) is C∞ in its interior. In fact, it is obtained by
the composition of pieces of ψi (or ψj), which are C∞, with the C∞ functions dh (or eh).

4.5 Patching of faces containing extraordinary vertices
In this section we address the definition of the surface patches that are associated with faces

containing extraordinary vertices, for which the regular construction described above is not
applicable. In particular, we focus on the definition of G1 and G2 surface patches that, exploit-
ing again the augmented parameterization, guarantee the interpolation of the curve network,
preserving the original parameterization of each curve, and provide a smooth connection with
the surrounding surface patches.
We point out that the proposed construction applies to faces with an arbitrary number of
extraordinary vertices.

4.5.1 Augmented bicubically blended Coons patch with Gregory cor-
rection

We consider a modified form of the classical bicubically blended Coons patch (see, e.g.,
[Far02, Chapter 22]) that we will call augmented Coons-Gregory patch.
Figure 4.6 shows the quantities needed for the definition of such a patch. For any (u, v) ∈ [0, 1]2,
we determine d0(v) and e0(u) as described in Section 4.4 (more precisely, as in equation (4.10)).
Moreover, we consider as blending functions the cubic Hermite basis functions on [0, 1], arranged
in the vector

H(u) :=
(
−1, 2u3 − 3u2 + 1,−2u3 + 3u2, u3 − 2u2 + u, u3 − u2

)T
.

We compute the value of the augmented patch X according to

X(u, v) = −H(u)TM(u, v)H(v),

where the patch matrix is

M(u, v) :=


0 γ0(s0) γ2(s2) e0(u)χ0(s0) e0(u)χ2(s2)

γ3(t3) p0 p3 e0
0γ
′
3(0) e0

0γ
′
3(e0

0)
γ1(t1) p1 p2 e1

0γ
′
1(0) e1

0γ
′
1(e1

0)
d0(v)χ3(t3) d0

0γ
′
0(0) d1

0γ
′
2(0)

Ω1,1d0(v)χ1(t1) d0
0γ
′
0(d0

0) d1
0γ
′
2(d1

0)

 , (4.12)
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Figure 4.6: Schematic interpretation of the quantities needed for the definition of an augmented
Coons-Gregory patch (the second-order cross-boundary fields ξi are needed only for the biquintically
blended patch).

whose entries are specified as follows:

• p0,p1,p2,p3 are the patch corners, i.e., the four vertices of the mesh face;

• γ0(s0),γ1(t1),γ2(s2),γ3(t3) are the boundary curves, which are pieces of the curves of the
curve network, with “local” coordinates

s0 := ud0
0, t1 := ve1

0, s2 := ud1
0, t3 := ve0

0;

• γ ′0(0),γ ′3(0),γ ′0(d0
0),γ ′1(0),γ ′1(e1

0),γ ′2(d1
0),γ ′2(0),γ ′3(e0

0) are the first derivatives of the bound-
ary curves at the corners;

• χ0(s0),χ1(t1),χ2(s2),χ3(t3) are the cross-boundary first derivatives;

• Ω1,1 is the twist vectors matrix, possibly with Gregory correction for twist-incompatibility,
i.e.:

Ω1,1 :=

 d0
0e

0
0

uχ′3(0) + vχ′0(0)

u+ v
d1

0e
0
0

uχ′3(e0
0) + (1− v)χ′2(0)

u+ (1− v)

d0
0e

1
0

(1− u)χ′1(0) + vχ′0(d0
0)

(1− u) + v
d1

0e
1
0

(1− u)χ′1(e1
0) + (1− v)χ′2(d1

0)

(1− u) + (1− v)

 . (4.13)

To ensure that all the boundary curves and the prescribed derivatives are interpolated, a
suitable scaling factor is associated with the corresponding entries of the patch matrix M . We
observe that such a factor is different at each corner, but constant w.r.t. u, v for the derivatives
along the boundary and for the twist vectors. Conversely, the scaling factor associated with the
cross-boundary derivatives changes for each (u, v). As a consequence, in analogy to the regular
case described in Section 4.4, the definition of the augmented patch changes pointwise.
Since the curve network constructed in Section 4.3 is G1-compatible, the Coons patch defined

above ensures G1 continuity at the corners, along and across the boundaries, provided that the
cross-boundary first derivatives are chosen in a proper way, as we detail in the following.

4.5.2 Construction of the cross-boundary tangent fields

We address the problem of suitably prescribing the tangent field χi across γi. Denoted by
Si the surface patch that is adjacent to X and shares with it the curve γi, we distinguish the
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two situations in which Si is regular or not. If Si is regular, the tangent field χi for X is the
cross-boundary derivative of Si. If Si is not regular, let us suppose that t ∈ [0, `] is the variable
which describes the boundary curve γi. Then we define the cross-boundary tangent field as

χi(t) = a(t)γ ′i(t) + b(t)r(t), (4.14)

with suitable a(t), b(t), r(t) that generate a G1 surface. We observe that, if the parameterization
is uniform, in the regular case, the tangent field χi has the same degree g as the chosen class of
fundamental functions. Similarly, also in the extraordinary case we construct χi as a polynomial
of degree at most g. Since γ ′i has degree g − 1, then a(t) has to be at most linear and, in
analogy, we also choose b(t) of degree 1. As a consequence, r(t) has degree at most g − 1. In
particular, our numerical tests have shown that satisfactory results can be obtained defining
r by either linear or quadratic interpolation. For the linear case, we interpolate the vectors
r0 = γ ′i(0) × n0 and r1 = γ ′i(`) × n1, where n0 and n1 are the normal vectors to the curve
network at the endpoints of γi. In the quadratic case, an additional interpolation vector is
estimated as r 1

2
= γ ′i

(
`
2

)
×n 1

2
, where n 1

2
is the average of the normals to the two faces sharing

the edge associated with γi. To derive a and b we proceed as follows. The values of a and b
at the endpoints of γi are fixed by the requirement that χi(0) and χi(`) be equal to the first
derivatives of γi−1 and γi+1 at γi(0), γi(`). Thus a and b are uniquely determined by linear
interpolation of their values at the endpoints.

4.5.3 Augmented biquintically blended Coons patch with Gregory
correction

If G2 smoothness is sought, the degree of the blending functions used for the definition of
a Coons patch must be increased. In this case, we exploit as blending functions the quintic
Hermite basis functions, arranged in the vector

H(u) :=

(
−1,−6u5 + 15u4 − 10u3 + 1, 6u5 − 15u4 + 10u3,−3u5 + 8u4 − 6u3 + u,

−3u5 + 7u4 − 4u3,−1

2
u5 +

3

2
u4 − 3

2
u3 +

1

2
u2,

1

2
u5 − u4 +

1

2
u3

)T
.

We compute the value of the augmented patch X according to

X(u, v) = −H(u)TM̃(u, v)H(v).

The patch matrix is now

M̃(u, v) :=


M(u, v)

(e0(u))2ξ0(s0) (e0(u))2ξ2(s2)
(e0

0)2γ ′′3 (0) (e0
0)2γ ′′3 (e0

0)
(e1

0)2γ ′′1 (0) (e1
0)2γ ′′1 (e1

0)

Ω1,2

(d0(v))2ξ3(t3) (d0
0)2γ ′′0 (0) (d1

0)2γ ′′2 (0)
Ω2,1 Ω2,2(d0(v))2ξ1(t1) (d0

0)2γ ′′0 (d0
0) (d1

0)2γ ′′2 (d1
0)


,

whereM is given by (4.12) but using the definition for Ω1,1 provided below, instead of (4.13), and
the remaining entries are specified as follows (refer to Figure 4.6 for a graphical interpretation):

• γ ′′0 (0),γ ′′3 (0),γ ′′0 (d0
0),γ ′′1 (0),γ ′′1 (e1

0),γ ′′2 (d1
0),γ ′′2 (0),γ ′′3 (e0

0) are the second derivatives of the
boundary curves at the corners;
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• ξ0(s0), ξ1(t1), ξ2(s2), ξ3(t3) are the cross-boundary second derivatives;

• the mixed derivatives matrices, possibly with Gregory correction for twist-incompatibility,
are defined as follows:

Ω1,1 :=

 d0
0e

0
0

u2χ′3(0) + v2χ′0(0)

u2 + v2
d1

0e
0
0

u2χ′3(e0
0) + (1− v)2χ′2(0)

u2 + (1− v)2

d0
0e

1
0

(1− u)2χ′1(0) + v2χ′0(d0
0)

(1− u)2 + v2
d1

0e
1
0

(1− u)2χ′1(e1
0) + (1− v)2χ′2(d1

0)

(1− u)2 + (1− v)2

 ,

Ω1,2 :=

 d0
0(e0

0)2u
2χ′′3(0) + v2ξ′0(0)

u2 + v2
d1

0(e0
0)2u

2χ′′3(e0
0) + (1− v)2ξ′2(0)

u2 + (1− v)2

d0
0(e1

0)2 (1− u)2χ′′1(0) + v2ξ′0(d0
0)

(1− u)2 + v2
d1

0(e1
0)2 (1− u)2χ′′1(e1

0) + (1− v)2ξ′2(d1
0)

(1− u)2 + (1− v)2

 ,

Ω2,1 :=

 (d0
0)2e0

0

u2ξ′3(0) + v2χ′′0(0)

u2 + v2
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0)2e0
0
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0
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(1− u)2 + (1− v)2

 ,

Ω2,2 :=

 (d0
0e

0
0)2u

2ξ′′3(0) + v2ξ′′0(0)

u2 + v2
(d1

0e
0
0)2u

2ξ′′3(e0
0) + (1− v)2ξ′′2(0)
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(d0
0e

1
0)2 (1− u)2ξ′′1(0) + v2ξ′′0(d0

0)

(1− u)2 + v2
(d1

0e
1
0)2 (1− u)2ξ′′1(e1

0) + (1− v)2ξ′′2(d1
0)

(1− u)2 + (1− v)2

 .

4.5.4 Construction of the cross-boundary second-order derivative fields

Now we have to address the problem of suitably prescribing the second-order field ξi across
γi. Using the same notation as above, if Si is regular, the tangent field ξi for X is the cross-
boundary derivative of Si. If Si is not regular, assuming again t ∈ [0, `] as the variable which
describes the boundary curve γi, we define the cross-boundary second-order derivative field as

ξi(t) = a2(t)γ ′′i (t) + c(t)γ ′i(t) + d(t)r(t) + 2a(t)b(t)r′(t) + b2(t)w(t),

with a(t), b(t), r(t) being the same as in (4.14) and c(t), d(t),w(t) suitably determined as de-
scribed below. This condition ensures G2 continuity across γi (see [Her96, Theorem C]). We
observe that, if the parameterization is uniform, in the regular case, the second-order derivative
field ξi has the same degree g as the chosen class of fundamental functions. Thus, since γ ′i has
degree g − 1, then c(t) has to be at most linear. In analogy, we also choose d(t) of degree 1.
To keep the number of degrees of freedom as low as possible, we set the degree of w equal to
1. Intuitively, w represents how much the surface deviates from its tangent plane. Thus, to
complete its definition, we specify the value of w at the endpoints of γi by using the approach
suggested in [Her96, Section 8], i.e., we set

w(0) = (µ2κ1 + ν2κ2)n,

w(`) = (µ̄2κ̄1 + ν̄2κ̄2)n̄,

where n, κ1, κ2 are the surface normal and the principal curvatures at γi(0), and n̄, κ̄1, κ̄2 are
the analogous quantities at γi(`). The values for (µ, ν) and (µ̄, ν̄) are the coordinates of r(0) and
r(`) expressed in the local coordinate systems of the principal directions (k1,k2) and (k̄1, k̄2)
in the tangent planes, i.e.,

r(0) = µk1 + νk2,
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r(`) = µ̄k̄1 + ν̄k̄2.

To derive c and d we proceed as follows. The values of c and d at the endpoints of γi are fixed
by the requirement that ξi(0) and ξi(`) be equal to the second derivatives of γi−1 and γi+1 at
γi(0), γi(`). Thus c and d are uniquely determined by linear interpolation of their values at
the endpoints.

4.6 Gordon surfaces with augmented parameterization
Gordon surfaces (see, e.g., [Far02, Section 22.7]) are a generalization of Coons patches, in the

sense that they interpolate a prescribed network of curves and not just four boundary curves.
Depending on the univariate interpolation method that is exploited in a Gordon scheme, the
construction has either global or local nature. In fact, if we use blending functions without
local support, typically in the case of Lagrange polynomial or spline interpolation, the scheme
is global because all the given curves influence the surface at any point. On the contrary, if we
use locally supported blending functions, like the fundamental functions introduced in Section
4.2, we can achieve locality in the solution of the network-interpolation problem. Moreover, also
in this case the augmented parameterization strategy can be exploited to construct high-quality
Gordon surfaces, as we briefly describe below.
Let us start by considering the case in which the initial data consist in a regular curve net-

work. In this situation, two families of space curves fj(sj), gi(ti) are given and each curve has
its own parameterization (as we have stressed here by explicitly indicating the related param-
eter). We denote by pi,j := fj ∩ gi the vertices of the network, i.e., the intersections between
curves belonging to different families.
We use the same approach described in Section 4.4 and combine the curves and their inter-
sections with local fundamental functions, giving rise to an augmented Gordon scheme with
the property of locality. In particular, following the notation introduced there, we define each
patch of the composite augmented Gordon surface as (cf. (4.9))

S(u, v) =

w
2∑

j=−w
2

+1

fj(sj)ψj(ve0(u); e(u)) +

w
2∑

i=−w
2

+1

gi(ti)ψi(ud0(v);d(v))

−
w
2∑

i=−w
2

+1

w
2∑

j=−w
2

+1

pi,j ψi(ud0(v);d(v))ψj(ve0(u); e(u)).

If extraordinary vertices are present, the above formulation applies to patches in the regular
regions of the network, while regions surrounding extraordinary vertices are patched by means
of augmented Coons-Gregory patches defined as in Section 4.5.

4.7 Examples
In this section we show some examples of interpolating surfaces obtained with our approach

based on the augmented parameterization, in both regular and extraordinary configurations of
mesh vertices.
Given a mesh with a region of non-evenly spaced vertices to be interpolated, Figures 4.8 and

4.9 compare the surfaces obtained by a classical tensor-product approach and our method. In
Figure 4.8, interpolation artifacts are evident for the tensor product case in the critical region
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Figure 4.7: Schematic interpretation of a regular network-interpolation problem, where two families
of curves are given. Each curve has its own parameterization, which will be retained in the final surface
thanks to the use of the augmented parameterization strategy.

of the mesh, where the horizontal section polylines have edges of quite different lengths. On
the contrary, they are not present when the augment parameterization strategy is exploited.
In particular, the examples in the last two columns build upon two classes of local interpolants
that have support width 4 and different orders of continuity (C1 and C2 respectively), thus
giving rise to tangent-continuous and curvature-continuous surfaces. Figure 4.9 features a
mesh that is a modification of the previous one, obtained by shortening some edges also in the
other direction, so that the region becomes even more critical for the classical tensor-product
approach. Yet, the augmented surfaces still behave quite well.
Figure 4.10 shows another batch of examples of composite surfaces with augmented param-

eterization, where classes of local spline interpolants with support width 4 and 6 are used. In
the center column, the curvature of the patch boundaries is visualized by means of the so-called
curvature comb. From that, in the bottom two rows we can actually see that the boundary
curves are univariate curvature-continuous interpolants, and in the right-hand column the sur-
face curvature plots confirm that these augmented surfaces are indeed G2. As a side note, it is
not surprising that the surface obtained by using interpolants with support width 6 exhibits a
fairer distribution of curvature values.
In case of interpolation of arbitrary-topology meshes, we recall that the regular construction

described in Section 4.4 is exploited where possible, while in the regions around extraordi-
nary vertices the patching technique detailed in Section 4.5 is applied. Examples of this kind
can be found in Figures 4.11 and 4.12, where tangent-continuous and curvature-continuous
interpolating surfaces are build, respectively. In particular, for the examples in Figure 4.11,
Catmull-Rom (C1) splines are used as univariate local interpolants, and augmented bicubically
blended Coons-Gregory patches as hole-filling method around each extraordinary vertex. For
the example in Figure 4.12, we resort to a class of local interpolants with at least C2 continuity
and to augmented biquintically blended Coons-Gregory patches in order to achieve a higher
order of smoothness. In all the cases, the resulting surface quality is good.

4.8 Meshes with non-quadrilateral faces and final remarks
The proposed approach generates high-quality interpolants from meshes with quadrilateral

faces and arbitrary connectivity or analogous curve networks. Discussing the case in which the
mesh includes non-quadrilateral (extraordinary) faces, is beyond the scope of this work. How-
ever, it is worth noting that, if a mesh includes isolated extraordinary faces, the local nature of
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(a) Mesh. (b) Tensor-product sur-
face.

(c) Augmented G1 sur-
face (class D3C1P 2S4).

(d) Augmented G2 sur-
face (class D5C2P 2S4).

Figure 4.8: Comparison of the surfaces obtained by tensor-product interpolation and our method,
on a mesh with a critical region where the horizontal section polylines have edges of quite different
lengths. It is evident that, in both cases of G1 and G2 smoothness, our construction does not exhibit
any artifact. The top row shows a global view of the mesh and the surfaces, while the middle row
provides a magnification of the critical region. In the bottom row, isophotes visualization highlights
the interpolation artifacts that affect the tensor-product surface.

our method makes it possible to patch all the quadrilateral faces. After this operation, extraor-
dinary faces can be handled via hole-filling techniques, extrapolating the necessary information
from the adjacent patches.
In this context, the works [VRS11, VSR12] propose a method for patching n-sided holes, which
takes into account the individual lengths of the sides of the hole, a reference to the concept of
non-uniform parameterization that is central to our approach. Therefore we suggest that this
technique could effectively complement our method, to patch possible isolated n-sided faces.
Another possible approach for handling extraordinary faces consists in refining the initial

mesh, either globally or adaptively, through an interpolatory subdivision scheme, so as to
split each n-sided face into n new quadrilateral faces. In this regard, as already mentioned,
interpolating subdivision schemes do not admit an analytical representation of the limit surface
or an exact evaluation algorithm. However, recently much research has been devoted to the
study of non-uniform subdivision schemes derived from spline interpolants [BCR11a, BCR11b,
KP13] and their bivariate generalization [BCR13b]. By applying our patching approach starting
from the same classes of splines related to a subdivision scheme, we could therefore approximate
the limit surface, so as to provide a parametric representation. This work lays the foundation
for the study of this relevant topic, which is among our future research objectives.
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(a) Mesh. (b) Tensor-product sur-
face.

(c) Augmented G1 sur-
face (class D3C1P 2S4).

(d) Augmented G2 sur-
face (class D5C2P 2S4).

Figure 4.9: Additional comparison of the surfaces obtained by tensor-product interpolation and our
method, on a mesh with a more critical configuration of vertices. Also in this case our construction
produces surfaces with a better shape.
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(a) Mesh.

(b) Class D3C1P 2S4.

(c) Class D5C2P 2S4.

(d) Class D4C2P 3S6.

Figure 4.10: Surfaces with augmented parameterization obtained by using classes of local spline
interpolants with order of continuity 1 and 2, and support width 4 and 6. Center column: comb graph
of the curvature of the patch boundary curves; right-hand column: visualization of mean curvature
values.
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(a) Mesh. (b) Curve network interpolating
the mesh.

(c) Augmented G1 surface (class
D3C1P 2S4) and Coons-Gregory
patching.

(d) Mesh. (e) Augmented G1 surface (class
D3C1P 2S4) and Coons-Gregory
patching.

(f) Isophotes.

Figure 4.11: Interpolation of meshes with arbitrary topology representing a rocker arm and a hollow
cube. In both cases, Catmull-Rom splines are used as local interpolants, and the augmented bicubi-
cally blended Coons-Gregory patches around extraordinary vertices provides overall G1 surfaces with
augmented parameterization.

(a) Mesh. (b) Augmented G2 surface
(class D5C2P 2S4) and Coons-
Gregory patching.

(c) Mean curvature.

Figure 4.12: Interpolation of a mesh with arbitrary topology representing a double torus. Local
interpolating splines belonging to the class D5C2P 2S4 are used, and the augmented biquintically
blended Coons-Gregory patches around extraordinary vertices provides an overall G2 surface with
augmented parameterization.



Chapter 5

A constructive approach to generalized
splines

Quasi Extended Chebyshev (QEC) spaces containing constants have been recently acknowl-
edged to be the largest class of spaces suitable for design [Maz08]. In this chapter we consider
spline spaces whose sections may belong to any of these QEC-spaces, including the case in which
different sections may belong to QEC-spaces of different type (i.e., generated by functions of
polynomial, trigonometric, hyperbolic, or mixed type), and where adjacent spline pieces are
connected via parametric continuity. We propose a general approach to construct a basis for
all such spline spaces which is based on the notion of transition function (already recalled in
previous chapters). If a spline space admits an optimal normalized totally positive (ONTP)
basis, then this is precisely the basis yield by our construction. Moreover, we show that a
system of weight functions can be computed in terms of transition functions and, investigating
the connection between the existence of weight functions and the existence of the ONTP basis,
we provide a criterion for determining whether an arbitrary generalized spline space admits the
ONTP basis.
In addition, exploiting the notion of transition function, which is the key tool of the afore-
mentioned constructive approach, we formulate a set of algorithms for efficient computation
in spaces of generalized splines. We also show how the basic operations of knot insertion and
order elevation can be conveniently performed and expressed in terms of the transition func-
tions. Finally, we provide some remarkable examples to illustrate the use of generalized splines
in applications, with particular focus on geometric modeling.
The content of this chapter is also the subject of two recently submitted papers [ABCR14b,

ABCR14a].

5.1 Introduction

5.1.1 Current interests and recent trends

Generalized splines are a class of piecewisely defined functions that generalize the well-
established piecewise polynomial splines in order to contain not only polynomial sections, but
also sections of trigonometric, hyperbolic, or exponential type, as well as of more outlandish
types. Generalized splines are conveniently applied in modeling free-form curves and surfaces
since they both inherit all the desirable properties of polynomial splines and they allow for rep-
resenting much more various shapes and reproducing fundamental geometric primitives, such
as conic sections and some remarkable transcendental curves. Moreover, generalized splines

85
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are essential in obtaining shape-preserving approximations, since they offer the possibility of
modifying the tension of a curve in order to follow the shape of the underlying data as close
as possible. Finally, in recent years, the potential of generalized splines has become apparent
also in the context of isogeometric analysis. This is due to the fact that, on the one side,
they possess the capability of exactly representing conic sections, like NURBS do, and, on the
other side, they not only fulfill the appealing features of polynomial B-splines such as knot
insertion and order elevation, but also behave in the same way with respect to integration and
differentiation.

5.1.2 Historical perspectives and state of the art

B-spline bases for generalized spline spaces were first constructed by Schoenberg in [Sch64],
where a space of trigonometric splines was considered. His work motivated the subsequent study
of the more general Chebyshevian splines and of their local bases conducted by Karlin [Kar68],
Jerome and Schumaker [JS71, JS76], Lyche, Winter and Koch [LW79, KL89] in the Seventies
and Eighties. Schumaker showed that a generalized spline space, where each piece is spanned by
an Extended Complete Chebyshev system of functions, admits a locally supported normalized
basis that enjoys the property of total positivity. As a consequence, the resulting generalized
spline curves can be represented as a linear combination of B-spline basis functions and the
variation diminishing property holds. There follows that the shape of a parametrically defined
curve mimics the shape of its control polygon and such a B-spline basis can be considered
suitable for design purposes.
An important extension of Chebyshevian splines, piecewise Chebyshevian splines, can be

obtained by considering spline spaces having sections in different Extended Chebyshev spaces
(EC-spaces for short). In this case, the continuity conditions between adjacent spline pieces
are expressed in terms of connection matrices, linking the appropriate number of left and right
generalized derivatives. Depending on the choice of the generalized derivatives and on the
form of the connection matrices, piecewise Chebyshevian splines can be either geometrically
or parametrically continuous. In the latter case, generalized derivatives are simply ordinary
derivatives and the connection matrices are the identity matrix. The works by Barry [Bar96]
and Buchwald and Mühlbach [BM03] showed that also for these spaces it is possible to construct
the B-spline basis respectively when geometric and parametric continuity conditions are used
at the knots.
In the last two decades, Carnicer and Peña [CP94] proved that, among all normalized totally

positive (NTP) bases of a generalized space, there exists a unique optimal normalized totally
positive (ONTP) one, which they called B-basis, which is the one associated with the control
polygon that resembles with the highest fidelity the shape of the curve, among all the control
polygons of the same curve corresponding to NTP bases. A space that has an ONTP basis
can be considered suitable for design purposes, because any space obtained from it by knot
insertion has an ONTP basis as well. In the case of polynomials and polynomial splines, the
well-known Bernstein and B-spline bases are both ONTP bases. However, in the context of
generalized spline spaces, there may exist bases that enjoy some properties commonly ascribed
to the B-spline basis but that in fact are not ONTP bases. Therefore, in this chapter we prefer
clearly distinguishing the two situations, and thus we will lean on two different definitions for
(generalized) B-spline bases and ONTP bases. More precisely, since an ONTP basis is trivially
a B-spline basis, henceforth by ONTP basis we mean a B-spline basis which is also ONTP.
At the state of the art, much work has been devoted to the study of necessary and sufficient

conditions to guarantee that an EC-space admits the Bernstein basis [CMP03, BM12] and
therefore can be considered suitable for the design purposes. In particular, in this context
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the notion of critical length for design has been introduced to characterize the largest possible
interval on which the existence of the Bernstein basis for the considered space is guaranteed. For
spline spaces, similar conditions are hardly derivable and indeed have been established only for
particular families of spaces [MP10, BM14]. These results in the spline context are derived from
the well-known theory of systems of (piecewise) weight functions and corresponding generalized
derivatives.
Besides these studies, another avenue of research [Cos00, CM06, KS99] showed the existence

of other interesting generalized spline spaces whose segments do not belong to EC-spaces and
that result computationally more efficient in handling shape-preserving approximations.
To include also these families of splines in a comprehensive framework, the class of spaces
of sufficiently regular functions which can be considered suitable for design shall be extended
to a superset of EC-spaces, called Quasi Extended Chebyshev spaces (QEC-spaces for short),
consisting of all spaces that permit Hermite interpolation, Taylor interpolation excepted. In
particular, Mazure [Maz08] identified the largest class of spaces suitable for design as the class
of all spaces containing constants and such that the spaces obtained by differentiation are QEC-
spaces. By means of the blossoming formalism, she proved that this is the class of all spaces
that always admit the Bernstein basis.
This novelty has attracted interest in the study of quasi Chebyshevian splines and piecewise

quasi Chebyshevian splines. The former name refers to splines having all sections in the same
QEC-space; the latter one to splines whose sections belong to QEC-spaces that may differ for
the number and/or for the type of their generators.
In analogy to the aforementioned characterization of QEC-spaces, we can say that any piece-

wise quasi Chebyshevian spline space is suitable for design when it contains constants and has
the ONTP basis.
In particular, it is also significant to consider spaces featured by non-uniform knot partitions,
including multiple knots, and spline spaces where different segments may belong to different
QEC-spaces containing shape parameters.
In this regard, a recent work by Mazure [Maz11b] has characterized the existence of the ONTP
basis for spline spaces where each segment is spanned by a different QEC-system of the type
{1, x, . . . , xm−3, ui(x), vi(x)}. In that paper, for the special case of QEC-spaces where the func-
tions ui(x) and vi(x) are of polynomial, trigonometric or hyperbolic type, explicit necessary and
sufficient conditions for the existence of the ONTP basis are provided in terms of the maximum
allowable width of a certain number of consecutive knot intervals.
If we now turn to consider the constructive aspects of the ONTP basis for spaces of para-

metrically continuous piecewise (quasi) Chebyshevian splines, the first available approach of
general kind is based on a suitable generalization of the notion of divided differences [BM03,
Müh06]. A computationally more efficient strategy, which is adopted in many recent papers
[WF08, MP10, SW10, Maz11a], is based on a generalization of the well-known integral re-
currence formula used to compute the B-spline basis of polynomial spline spaces [BP97]. The
method starts from a given ONTP basis, which must therefore be known a priori, and by means
of successive integrations it allows for generating an analogous basis for a space that contains
higher-order polynomials. This approach can be generalized by introducing sequences of (non-
constant) weight functions and exploiting them in the integral procedure, in order to obtain
spaces that contain functions of types other than polynomial. However, this way is hardly fea-
sible in practice, because it requires that a proper sequence of weight functions be available so
that the integral recurrence formula produces the ONTP basis of the desired space. Besides the
aforementioned more general constructions, there are also methods tailored to specific classes of
spaces, such as the geometric approach proposed in [Cos00, CM06] for generalized cubic splines
from QEC-spaces of the form {1, x, ui(x), vi(x)}, or the construction of the so-called GB-splines
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[KS99].

5.1.3 Motivations and contributions of this work

As previously mentioned, all spaces useful for design can be characterized as QEC-spaces
containing constants and whose derivative space is also a QEC-space. Therefore, spaces of
generalized splines with sections belonging to any of these QEC-spaces are of great interest for
design provided that they admit an ONTP basis. Despite the wealth of proposals for construct-
ing ONTP bases for spaces of generalized polynomials (i.e., Bernstein bases) the problem of
deriving analogous bases for spline spaces has been addressed only in particular cases, namely
for specific classes of spaces and/or uniform knot partitions.
The main result of the present work consists in providing a general and effective approach

to construct the ONTP basis for any arbitrary space of parametrically continuous piecewise
quasi Chebyshevian splines, without limitations on the type of the underlying QEC-spaces or
on the location of knots. Moreover, we show that the same construction yields a set of weight
functions that can be conveniently exploited to assess the existence of the ONTP basis, if this
is not known a priori.
The proposed construction is based on a generalization of the notion of transition function,

which has long been known in the classical literature, even if never used in the context of the
present work.
Oversimplifying, a transition function is a piecewise function having proper continuity and that
takes respectively the values 0 and 1 at the endpoints of a certain real interval. To the best of our
knowledge, this terminology was introduced by Schumaker [Sch07, p. 141], although a similar
concept was already used by Bézier, who, precisely in terms of these types of functions, described
the curves that now bear his name (see [Rab02] or the more recent monograph on Bernstein
polynomials [Far12]). As recalled in Chapter 3, transition functions have been recently used
for the construction of local polynomial interpolants from unevenly spaced interpolation nodes
[BCR13a, ABC14a].
Given a generalized spline space, we show that there exists a unique set of transition functions

forming a basis for the space and that each of these functions can be simply determined as the
solution of a suitable system of linear equations. We also show that if a space admits an ONTP
basis, then the elements of this basis are nothing but a linear combination of the transition
functions associated to the space. Moreover, we illustrate how to construct a set of piecewise
weight functions, which can be simply formalized in terms of transition functions. Investigating
the relationship between such weight functions and the existence of the ONTP basis, we are
able to provide a criterion for determining whether a given spline space admits the ONTP basis,
and we show how this result can be translated into a general methodology for the verification
of the existence of such a basis.
For its generality and its conceptual simplicity, the approach has both a theoretical value

and a direct computational interest. The construction proposed for the transition functions
applies with full generality to spline spaces in which the QEC-spaces on each interval may be
different and contain many functions of non-polynomial type and shape parameters, and to the
case where the knot partition is non-uniform and includes multiple knots.
Moreover, since we do not construct the ONTP basis by means of an integral recurrence formula,
the presented method does not require the knowledge of a system of weight functions and a basis
to be used as a starting point for the integral formulation. In addition, the proposed approach
readily translates into numerical procedures, which is the inevitable way of proceeding in the
very general setting that allows non-uniform knot partitions and the presence of spaces that
differ in type and parameters. On the contrary, since in the literature only particular situations
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have been addressed so far, there is the reasonable doubt that the spline bases determined in
such cases have been computed symbolically and thus do not straightforwardly lend themselves
to more general settings.
Besides illustrating the theoretical aspects of the framework, namely those related to the con-

struction and study of the existence of the B-spline basis, as of now we would like to emphasize
that the intention of this work is also to provide all the tools needed to improve computation in
generalized spline spaces. In fact, the transition functions turn out to be extremely convenient
to formulate computational algorithms as well as to perform knot insertion, order elevation
and, more generally, any other essential operation in the contexts of modeling and design.

Hereinafter it is assumed that different spline segments are spanned by QEC-spaces having
the same dimension and join with parametric continuity. However, we would like to point out
that these restrictions are merely dictated by the attempt to maintain the theoretical frame-
work as streamlined as possible. A slight generalization of the approach allows for handling the
cases where the QEC-spaces may differ in dimension and geometric continuity conditions are
required at the knots.

The remainder of the chapter is organized as follows. After recalling some preliminary notions
in Section 5.2, in Section 5.3 we introduce the definition of transition function and we devise
a general method to construct a basis for any arbitrary space of piecewise quasi Chebyshevian
splines. Successively, in Section 5.4 we exploit the transition functions to derive a criterion
for establishing whether a given space possesses the ONTP basis. In particular, this criterion
translates into a numerical test, as detailed in Section 5.4.2. Moreover, Section 5.4.3 briefly
focuses on the particular case of an empty knot partition, in which the ONTP basis is the
Bernstein basis. Additionally, some numerical examples on the existence of the ONTP basis are
presented in Section 5.5. Section 5.6 deals with computational and modeling aspects that may
be of interest from the point of view of applications. In fact, knot insertion and order elevation
algorithms for generalized splines are provided in Sections 5.6.1 and 5.6.2 respectively, and the
explicit expressions of the ONTP bases for some spaces and stable corner cutting evaluation
algorithms are collected in Section 5.6.3. Section 5.6.4 discusses some connections between
knot insertion and subdivision schemes in generalized spline spaces. Then, in Section 5.6.5 we
summarize in an algorithmic form the main computational tools that can be drawn from the
theoretical results in the preceding sections, and finally we illustrate some application examples
in Section 5.6.6.

5.2 QEC-spaces and piecewise Chebyshevian spline spaces
Before delving into the details of our construction, we outline some basic notions on QEC-

spaces and generalized spline spaces.

5.2.1 Preliminary notions on QEC-spaces

Let us recall that an m-dimensional function space Um defined on a closed interval I ⊂ R is
a subspace of Ck(I) if every function in Um is k-times continuously differentiable. Then we can
introduce the following definitions.

Definition 5.1 (Chebyshev space). Anm-dimensional space Um contained in C0(I) is a Cheby-
shev space (C-space for short) on I if any Lagrange interpolation problem inm data has a unique
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solution in Um. In terms of zeros, this means that any nonzero element of Um vanishes at most
m− 1 times in I, not including possible multiplicities.

Definition 5.2 (Extended Chebyshev space). Anm-dimensional space Um contained in Cm−1(I)
is an Extended Chebyshev space (EC-space for short) on I if any nonzero element of Um vanishes
at most m− 1 times in I, counting multiplicities as far as possible for Cm−1 functions (that is,
up to m), or, equivalently, if any Hermite interpolation problem in m data in I has a unique
solution in Um.

A superset of EC-spaces, originally introduced by Mazure [Maz08, Maz11c], is defined as follows.

Definition 5.3 (Quasi Extended Chebyshev space). An m-dimensional space Um contained
in Cm−2(I), m > 2, is a Quasi Extended Chebyshev space (QEC-space for short) on I if any
Hermite interpolation problem in m data in I, with at least two distinct points, has a unique
solution in Um. Equivalently, for m > 2, Um is a QEC-space if any nonzero element of Um with
at least two distinct zeros vanishes at most m− 1 times in I counting multiplicities.

From the two above definitions it follows that QEC-spaces differ from EC-spaces in that they
do not permit Taylor interpolation. Moreover, if Um is a QEC-space on I, then it is a QEC-
space on any subinterval [a, b] ⊆ I, with a < b. Hereinafter we refer to the basis functions
spanning a QEC-space as a QEC-system. It is well known that spaces obtained by integrating
the functions of a QEC-system or by multiplying them by positive functions are in turn QEC-
spaces. In contrast, there is no guarantee that by differentiating a QEC-system we will get a
QEC-space. However, we recall from [Maz11c, third item of Remark 2.1] that a 2-dimensional
space U2 ⊂ C0(I) is a QEC-space on I if and only if it is a C-space on I, or, equivalently, if
and only if for any subinterval [a, b] ⊆ I, with a < b, U2 possesses a basis of Lagrange type.

Definition 5.4 (Bernstein basis). Let I ⊂ R be a closed bounded interval. Given a, b ∈ I,
with a < b, and B0,m, . . . , Bm−1,m ∈ Cm−2(I), we say that {B0,m, . . . , Bm−1,m} is a Bernstein
basis relative to [a, b] if it meets the following requirements:

i) zero property :

– B0,m, . . . , Bm−1,m are nonvanishing in (a, b);

– B0,m(a) 6= 0 and B0,m vanishes m− 1 times at b;

– Bm−1,m(b) 6= 0 and Bm−1,m vanishes m− 1 times at a;

– for 1 6 i 6 m− 2, Bi,m vanishes exactly i times at a and exactly m− 1− i times at
b;

ii) positivity property : for 0 6 i 6 m− 1, Bi,m is positive in (a, b);

iii) normalization property : {B0,m, . . . , Bm−1,m} is normalized, i.e.,
∑m−1

i=0 Bi,m(x) = 1, ∀x ∈
[a, b].

Definition 5.5 (Bernstein-like basis). If requirement iii) in Definition 5.4 is not fulfilled, then
{B0,m, . . . , Bm−1,m} is called a Bernstein-like basis.

Remark 5.1. In the particular case in which the space Um is an EC-space, then requirement i)
in Definition 5.4 can be replaced by:

i’) zero property : for 0 6 i 6 m− 1, Bi,m vanishes exactly i times at a and exactly m− 1− i
times at b, and nowhere else in (a, b).
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In this work we are interested in spaces of piecewise quasi Chebyshevian splines where each
section belongs to an m-dimensional QEC-space suitable for design and where adjacent spline
pieces are connected via the standard parametric continuity. For such spaces, a basis will be
derived in Section 5.3.

5.2.2 General notions on splines

Let [a, b] be a bounded and closed interval, and ∆ := {xi, i = 1, . . . , k} a set of points such
that a ≡ x0 < x1 < . . . < xk < xk+1 ≡ b. Let us consider the partition of [a, b] induced by the
set ∆ into the subintervals Ii := [xi, xi+1), i = 0, . . . , k − 1, and Ik := [xk, xk+1].
Moreover, let m be a positive integer, andM := (m1, . . . ,mk) a vector of positive integers such
that 1 6 mi 6 m for every i = 1, . . . , k. We denote by Um := {U0,m, . . . ,Uk,m} an ordered set
of spaces of dimension m such that every Ui,m is a QEC-space on the interval Ii for i = 0, . . . , k.

Definition 5.6 (Generalized splines). We define the set of generalized splines of order m with
knots x1, . . . , xk of multiplicities m1, . . . ,mk as

S(Um,M ,∆) :=
{
s
∣∣ there exist si ∈ Ui,m, i = 0, . . . , k, such that:

i) s(x) = si(x) for x ∈ Ii, i = 0, . . . , k;

ii) Drsi−1(xi) = Drsi(xi) for r = 0, . . . ,m−mi − 1, i = 1, . . . , k
}
.

For conciseness, in the following we only prove results that cannot be found as a generalization
of classical spline theory. As for the others, which can be obtained by following the same outline
of their classical counterpart, we confine ourselves to providing a convenient reference.

Proposition 5.1. The set S(Um,M ,∆) of generalized splines with multiple knots is a function
space of dimension m+K with

K :=
k∑
i=1

mi.

Proof. The assertion can be proved following the same outline as for [Sch07, Theorem 4.4]. In
particular, for a spline in S(Um,M ,∆), it can be observed that the block diagonal matrix
that represents the continuity conditions at the knots has full rank, because each Ui,m is a
QEC-space on Ii.

Definition 5.7 (Extended partition). The set ∆∗ := {ti, i = 1, . . . , 2m+K}, with K =∑k
i=1 mi, is called an extended partition associated with S(Um,M ,∆) if and only if:

i) t1 6 t2 6 . . . 6 t2m+K ;

ii) tm ≡ a and tm+K+1 ≡ b;

iii) {tm+1, . . . , tm+K} ≡ {x1, . . . , x1︸ ︷︷ ︸
m1 times

, . . . , xk, . . . , xk︸ ︷︷ ︸
mk times

}.

Let us denote by xi, with i 6 0 and i > k + 1, the distinct external knots, and by mi their
multiplicities, i.e.

{. . . , x−1, . . . , x−1︸ ︷︷ ︸
m−1 times

, x0, . . . , x0︸ ︷︷ ︸
m0 times

} ≡ {t1, . . . , tm},

{xk+1, . . . , xk+1︸ ︷︷ ︸
mk+1 times

, xk+2, . . . , xk+2︸ ︷︷ ︸
mk+2 times

, . . . } ≡ {tm+K+1, . . . , t2m+K}.
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For every external interval [xi, xi+1], with i 6 −1 and i > k + 1, let us assign an additional
QEC-space Ui,m of dimension m.

Definition 5.8 (B-spline basis). A sequence {Ni,m, i = 1, . . . ,m+K} of elements of S(Um,M ,∆)
is said to be a B-spline basis for S(Um,M ,∆) if it meets the following requirements:

i) support property : for each i ∈ {1, . . . ,m+K}, Ni,m(x) = 0 for x /∈ [ti, ti+m];

ii) positivity property : for each i ∈ {1, . . . ,m+K}, Ni,m(x) > 0 for x ∈ (ti, ti+m);

iii) endpoint property : for each i ∈ {1, . . . ,m+K},

Dr
+Ni,m(ti) = 0 for 0 6 r 6 m− 2−mR

i , and D
m−1−mR

i
+ Ni,m(ti) 6= 0,

Dr
−Ni,m(ti+m) = 0 for 0 6 r 6 m− 2−mL

i+m, and D
m−1−mL

i+m

− Ni,m(ti+m) 6= 0,

where mL
i := max{p > 0 such that ti−p = ti} and mR

i := max{p > 0 such that ti+p = ti};

iv) normalization property :
∑
i

Ni,m(x) = 1, ∀x ∈ [a, b].

Definition 5.9. If requirement iv) in Definition 5.8 is not fulfilled, then {Ni,m, i = 1, . . . ,m+K}
is called a B-spline-like basis for S(Um,M ,∆).

The following result on ONTP bases as been proved by Mazure (see, e.g., [Maz12, Theorem
2.4]).

Proposition 5.2. We say that a spline space S(Um,M ,∆) has the ONTP basis when it has
a B-spline basis and so does any space obtained from S(Um,M ,∆) by knot insertion.

5.3 Basis functions for generalized spline spaces
In this section we illustrate a general method, based on the concept of transition function,

to construct a basis for any arbitrary space of piecewise quasi Chebyshevian spline functions.
The proposed approach applies to spaces with non-uniform knot partition, possibly multiple
knots, and where each spline piece may belong to a different m-dimensional QEC-space. In
Section 5.4 we will prove that, if the generalized spline space admits the ONTP basis, then it
is precisely the basis yield by the proposed approach.

Working in the generalized spline space S(Um,M ,∆), the following definition restates in a
more general way the notion of transition function already introduced in Chapter 3.

Definition 5.10 (Transition functions). Let S(Um,M ,∆) be a generalized spline space of
dimension m+K with ∆ = {xi, i = 1, . . . , k} a partition of [a, b] and ∆∗ = {ti, i = 1, . . . , 2m+
K} the associated extended partition, such that each QEC-space Ui,m of Um contains constants.
We call transition functions the piecewise functions fi,m, i = 1, . . . ,m+K, having the following
properties:

a)

fi,m(x) :=

{
0, x < ti,

u(x), x > ti+m−1,

where u(x) is a positive function belonging to S(Um,M ,∆);
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b) if ti < ti+m−1, denoted by {xij , j = 1, . . . , p} the knots of ∆ such that

{xi1 , . . . , xi1︸ ︷︷ ︸
mi,i1 times

, . . . , xip , . . . , xip︸ ︷︷ ︸
mi,ip times

} ≡ {ti, . . . , ti+m−1}

and by mi,i1 , . . . ,mi,ip their multiplicities, it holds

Drf
[1]
i,m(xi1) = 0, r = 0, . . . , ki,i1 ,

Drf
[j−1]
i,m (xij) = Drf

[j]
i,m(xij), r = 0, . . . , ki,ij , j = 2, . . . , p− 1,

Drf
[p−1]
i,m (xip) = Dru(xip), r = 0, . . . , ki,ip ,

(5.1)

where ki,ij := m −mi,ij − 1 and f [j]
i,m, j = 1, . . . , p − 1, are the different pieces of fi,m on

the intervals [xij , xij+1
).

Remark 5.2. It is easy to check that, when restricted to [a, b], the transition functions {fi,m}
in Definition 5.10 are piecewise functions belonging to S(Um,M ,∆).

For any spline space identified by Definition 5.6, the following proposition guarantees that
there always exists a unique set of transition functions satisfying the properties in Definition
5.10. The proof is constructive and also illustrates how the transition functions can be simply
computed as the solution of a proper system of linear equations.

Proposition 5.3 (Existence and uniqueness of the transition functions). The transition func-
tions of Definition 5.10 exist and are uniquely determined.

Proof. If we express each piece f [j]
i,m, j = 1, . . . , p− 1, on Iij in the associated QEC-system{

uij ,1, uij ,2, . . . , uij ,m
}

with coefficients bi,j, j = 1, . . . ,m(p− 1), then the linear system of equations arising from the
continuity conditions (5.1) can be written in the form

Ab = c, (5.2)

with

A :=



A1(xi1)
A1(xi2) −A2(xi2)

A2(xi3) −A3(xi3)
. . . . . .

Ap−2(xip−1) −Ap−1(xip−1)
Ap−1(xip)


,

b := (bi,1, . . . , bi,m(p−1))
T ,

c := (0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
ki,ip times

)T ,

where Aj(xih), h = j, j + 1, is a matrix of dimensions (ki,ih + 1) × m whose rth row, r =
1, . . . , ki,ih + 1, has the form(

Dr−1uih,1(x)
∣∣
x=xih

, . . . , Dr−1uih,m(x)
∣∣
x=xih

)
.
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Therefore, the matrix Aj(xih) has full rank, and precisely equal to ki,ih + 1. In fact, since
ki,ih + 1 < m, the matrix Aj(xih) is a submatrix of the m ×m Hermite interpolation matrix
relative to the two points xij and xij+1

, which is always nonsingular in a QEC-space. From
this formulation, we can infer that the number of degrees of freedom for the definition of
the pieces f [j]

i,m, that is m(p − 1), equals the number of the required continuity conditions
given by

∑p
j=1(ki,ij + 1). In fact, recalling that by construction

∑p
j=1mi,ij = m, we have∑p

j=1(ki,ij + 1) =
∑p

j=1(m−mi,ij) = mp−m = m(p− 1). Hence, A is square and nonsingular
and thus the transition functions {fi,m} are uniquely determined.

Exploiting the properties of QEC-spaces, it is also easy to show that a spline in S(Um,M ,∆)
cannot be nonzero on m− 1 (or less) consecutive knot intervals and zero everywhere else.

Proposition 5.4. Let s ∈ S(Um,M ,∆) and ∆∗ = {ti, i = 1, . . . , 2m + K} be the extended
partition associated to the spline space. If for any i ∈ {1, . . . ,m+K}, r ∈ {1, . . . ,m− 1},

s(x) = 0, x ∈ (−∞, ti] ∪ [ti+r,+∞),

then s ≡ 0.

Proof. Suppose that we want to determine a function in the spline space by requiring that
it equals 0 together with its derivatives at ti and also at ti+r, r ∈ {1, . . . ,m − 1}. For r ∈
{1, . . . ,m−2}, this necessarily leads to the zero constant function, because for a nonzero spline
the total number of continuity conditions to be imposed at the knots would exceed the number
of degrees of freedom. Now, let r = m−1 and suppose that there exists a spline which does not
vanish in (ti, ti+m−1) = (xi1 , xip). The m(p− 1) coefficients of the spline can be determined by
solving a homogeneous linear system whose coefficients matrix is the matrix A exploited in the
proof of Proposition 5.3. Being such a matrix nonsingular, the unique solution of the system is
the zero vector.

Since our aim is to provide an approach for the construction of a B-spline basis and, ul-
timately, the ONTP basis for a spline space (if it admits one), we observe that a necessary
condition for the existence of such a basis is that each space Ui,m contains constants, so that
the normalization property iv) in Definition 5.8 is satisfied. This entails that the function u that
appears in the definition of the transition functions is chosen to be u ≡ 1. Moreover, recalling
that each Ui,m is spanned by the functions {ui,1, . . . , ui,m}, it is convenient to set ui,1 ≡ 1 for
all i.
In view of this, the transition functions introduced in Definition 5.10 can be exploited to

define a set of functions {Ni,m, i = 1, . . . ,m+K} as follows:

Ni,m := fi,m − fi+1,m, i = 1, . . . ,m+K − 1, (5.3)
Nm+K,m := fm+K,m.

Proposition 5.5. The functions {Ni,m, i = 1, . . . ,m+K} defined as above enjoy by construc-
tion the properties i), iii), and iv) of Definition 5.8.

Proof. These properties readily follow from the definition of transition functions.

i) By construction, fi,m is zero for x < ti and is equal to u ≡ 1 for x > ti+m−1. Analogously,
fi+1,m is 0 for x < ti+1 and 1 for x > ti+m. Therefore, Ni,m = fi,m − fi+1,m is zero for
x < ti and for x > ti+m, proving that the support property holds true.
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(a) (b) (c)

Figure 5.1: Transition functions (left) and B-spline basis (center) for the spline space
S(U6,M ,∆) with extended partition ∆∗ = {0, 0, 0, 0, 0, 0, 1

4 ,
1
4 ,

1
2 , 1, 1, 1, 1, 1, 1} and Ui,6 =

span{1, x, cosx, sinx, coshx, sinhx} for all i. The figure on the right shows a single B-spline basis
function and the two transition functions involved in its definition.

iii) By construction, fi,m satisfies conditions (5.1), where now u ≡ 1 implies Dru(xip) = δr,0,
r = 0, . . . , ki,ip . Since Ni,m = fi,m− fi+1,m has at ti a zero of the same multiplicity as fi,m
and at ti+m a zero of the same multiplicity as fi+1,m, it fulfills the endpoint property.

iv) We have to verify that the normalization property is satisfied, i.e., that
∑m+K

i=1 Ni,m = 1.
Substituting each Ni,m with the difference of the related transition functions, we get

m+K∑
i=1

(fi,m − fi+1,m) = f1,m − f2,m + f2,m − f3,m + . . .− fm+K,m + fm+K,m = 1,

since f1,m ≡ 1 and subsequent terms cancel each other in the sum.

Proposition 5.6. Let S(Um,M ,∆) be a spline space that has the B-spline basis. Then the
transition functions {fi,m, i = 1, . . . ,m+K} for such space, which satisfy Definition 5.10 with
u ≡ 1, form a basis for S(Um,M ,∆) and fi,m(x) ∈ [0, 1], for all x ∈ [a, b].

Proof. Let f̄i,m :=
∑m+K

j=i Nj,m, where {Ni,m, i = 1, . . . ,m + K} is the B-spline basis of
S(Um,M ,∆). It can be easily checked that f̄i,m satisfies Definition 5.10 with u ≡ 1. From
the uniqueness of the transition functions (see Proposition 5.3) follows that f̄i,m = fi,m for all
i = 1, . . . ,m + K. Moreover, from the linear independence, nonnegativity, and partition of
unity properties of the B-spline basis we obtain that the functions {fi,m, i = 1, . . . ,m+K} are
linearly independent and that 0 6 fi,m(x) 6 1, for all i = 1, . . . ,m+K, x ∈ [a, b].

Corollary 5.7. If S(Um,M ,∆) admits a B-spline basis in the sense of Definition 5.8, then
such a basis is precisely given by the functions defined in (5.3).

As an example, Figure 5.1 shows the transition functions and the related B-spline basis in
the case of a generalized spline space defined on mixed polynomial/trigonometric/hyperbolic
QEC-spaces Ui,6 = span{1, x, cosx, sinx, coshx, sinhx}.
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5.3.1 Generalized spline spaces that admit the ONTP basis

In this section, we investigate some properties that the transition functions constructed by
the proposed approach enjoy if the generalized spline space S(Um,M ,∆) admits the ONTP
basis.
Preliminarily, we point out that Mazure [Maz08, Maz11c] has recently characterized the

largest class of spaces of sufficient regularity which are suitable for design as the one of QEC-
spaces containing constants and such that the associated space of derivatives is also a QEC-
space. In fact, she proved that under these assumptions a space admits the Bernstein basis, as
we recall below together with the related definition of space of derivatives.

Definition 5.11 (Space of derivatives). Given an m-dimensional function space Um contain-
ing constants and spanned by the functions {1, u2, . . . , um}, we define DUm as the (m − 1)-
dimensional space spanned by the functions {Du2, . . . , Dum}.

Proposition 5.8. Let Um ⊂ Cm−2(I) be an m-dimensional space. Then the following properties
are equivalent:

i) Um is a QEC-space on I;

ii) Um possesses a Bernstein-like basis relative to any [a, b] ⊆ I, a < b.

Proposition 5.9. Let Um ⊂ Cm−2(I) be an m-dimensional space that contains constants. Then
the following properties are equivalent:

i) the space DUm is an (m− 1)-dimensional QEC-space on I;

ii) Um possesses a Bernstein basis relative to any [a, b] ⊆ I, a < b.

In view of the above results, we remark that a necessary condition for the existence of
the ONTP basis for a generalized spline space S(Um,M ,∆) is that each space DUi,m is a
QEC-space. In fact, if S(Um,M ,∆) has the ONTP basis, then also any space obtained from
S(Um,M ,∆) by knot insertion has the ONTP basis. This includes the space obtained when
the multiplicity of each knot is equal to m, where each piece is represented in the Bernstein
basis. For this reason, we assume hereinafter to work with QEC-spaces {Ui,m} that contain
constants and such that also {DUi,m} are QEC-spaces on the related knot interval. This means
that on the interval Ii the space Ui,m possesses the Bernstein basis.
Before proceeding to discuss some relevant properties enjoyed by the transition functions

in the case of existence of the ONTP basis, we introduce the spline space whose sections are
spanned by the derivatives of the QEC-systems associated to the spaces Ui,m.

Definition 5.12 (Spline space of derivatives). Let each DUi,m be a QEC-space on the related
interval Ii, i = 0, . . . , k, and denote DUm := {DU0,m, . . . , DUk,m}. Then the spline space of
derivatives is the spline space DS(Um,M ,∆) = S(DUm,M̄ ,∆), where the vector of multi-
plicities M̄ := (m̄1, . . . , m̄k) is such that m̄i = min(mi,m− 1), i = 1, . . . , k.

Proposition 5.10. Let S(Um,M ,∆) be a generalized spline space that has an ONTP basis.
Then, each transition function fi,m is positive and monotonically increasing in (xi1 , xip) =
(ti, ti+m−1) and the set of functions {Dfi,m, i = 2, . . . ,m + K} is a B-spline-like basis for
DS(Um,M ,∆).



5.3. Basis functions for generalized spline spaces 97

Proof. Let us denote by {Ni,m, i = 1, . . . ,m + K} the ONTP basis of S(Um,M ,∆). By (5.3)
and the proof of Proposition 5.6, we get that in this basis the transition functions have the
expression

fi,m(x) =
m+K∑
j=i

Nj,m(x), ∀x ∈ [a, b], (5.4)

for any i = 1, . . . ,m+K. Since by equation (5.4) the coefficients of fi,m w.r.t. the ONTP basis
{Ni,m} form a non-decreasing nonnegative sequence, namely 0, . . . , 0, 1, . . . , 1, from the varia-
tion diminishing property of the ONTP basis it follows that fi,m is positive and monotonically
non-decreasing, in particular monotonically increasing, in (ti, ti+m−1).
As a consequence, each Dfi,m is nonnegative, locally supported, and enjoys the endpoint prop-
erty of Definition 5.8. Hence, {Dfi,m} form a B-spline-like basis for DS(Um,M ,∆).

Proposition 5.11. Let S(Um,M ,∆) be a generalized spline space that as a B-spline basis,
and let {fi,m, i = 1, . . . ,m + K} be the transition functions. Then, fi,m has at xi1 a zero of
multiplicity exactly m−mi1 − 1 if mi1 > 1 and at least m−mi1 − 1 if mi1 = 1.

Proof. Since the spline space admits a B-spline basis, from Proposition 5.6 it follows that the
transition functions are linearly independent. In particular, the restrictions of the m transition
functions fj,m, j = i − m + 1, . . . , i, to the knot interval [ti, ti+1] = [x`, x`+1] are linearly
independent.
Recalling that the knot x` has multiplicity m`, then the transition functions fi−m`+1,m, . . . , fi,m
are constructed by imposing that at x` they have a zero of multiplicity m−m` − 1, . . . ,m− 2
respectively. We have to prove that fj,m, j = i−m`+1, . . . , i−1, has at x` a zero of multiplicity
not greater than the imposed one.
Under our assumptions, i.e., being U`,m a QEC-space on [x`, x`+1], we know that there exists a
canonical basis with origin at x`, which we denote by (u1, . . . , um). As a canonical basis, it is
such that uj has at x` a zero of multiplicity exactly j − 2 for j = 1, . . . ,m − 1, while um has
there a zero of multiplicity at least m− 2.
Proceeding by reductio ad absurdum, let us suppose that one of the functions fi−k, with i−m`+
1 6 i−k 6 i−1, has at x` a zero of multiplicity greater than the one imposed by construction.
In this way, now the functions fi−j, j = k, . . . , 0, all have at x` a zero of multiplicity greater
than m− 2− k. In terms of canonical basis functions, the functions fi−j for j = k, . . . , 0 must
be represented only by the uj with j = m−k, . . . ,m−1, because they are the only ones having
at x` a zero of multiplicity greater than m− 2− k. Now, the number of uj functions involved
in such a representation is k, while the transition functions to be represented are k + 1. From
this follows that fi−j, j = k, . . . , 0, cannot be linearly independent, which conflicts with what
stated above.

Proposition 5.12. Let ∆∗ = {ti, i = 1, . . . , 2m+K} be an extended partition. By inserting a
new knot t̂ in ∆∗, t` 6 t̂ < t`+1, we obtain a new knot partition ∆̂∗ = {t̂i, i = 1, . . . , 2m+K+1}.
If the associated spline spaces are such that S(Um,M ,∆) ⊂ Ŝ(Ûm,M̂ , ∆̂), and {Ni,m} and
{N̂i,m} are the B-spline functions on the knot partitions ∆∗ and ∆̂∗ respectively, there exist
coefficients 0 6 αi 6 1, i = 1, . . . ,m+K, such that

fi,m = αi,m f̂i,m + (1− αi,m) f̂i+1,m, i = 1, . . . ,m+K. (5.5)

Proof. In general, it holds

fi,m = αi,mf̂i,m + βi,mf̂i+1,m, i = 1, . . . ,m+K, (5.6)
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i.e., fi,m is a combination of the two functions f̂i,m and f̂i+1,m only. This follows from expressing
fi,m as a combination of the new basis functions {f̂i,m} and differentiating: since {Dfi,m} and
are {Df̂i,m} B-spline-like functions (see Proposition 5.10) and thus have compact support, the
contribution in the combination can come only from f̂i,m and f̂i+1,m.

Under the assumptions of this proposition, the transition functions are positive and take
values from 0 to 1. Thus, each fi,m is monotonically increasing in a right neighborhood of xi1
and in a left neighborhood of xip , and coefficients αi,m and βi,m are positive since they are given
by the following expressions:

αi,m =


1, i 6 `−m+ 1,

D
k∗i,i1+1

+ fi,m(xi1)

D
k∗i,i1+1

+ f̂i,m(xi1)
, `−m+ 2 6 i 6 `− r + 1,

0, i > `− r + 2,

(5.7)

and

βi,m =


0, i 6 `−m+ 1,

D
k∗i,ip+1

− fi,m(xip)

D
k∗i,ip+1

− f̂i+1,m(xip)
, `−m+ 2 6 i 6 `− r + 1,

1, i > `− r + 2,

where k∗i,ij is the smallest integer such that D
k∗i,ij+1

+/− fi,m(xij) > 0, and 1 6 r 6 m is the
multiplicity of t̂ in ∆̂∗.
Now we want to show that βi,m = 1− αi,m. Evaluating (5.6) at t̄ > ti+m−1, we get

1 = fi,m = f̂i,m = f̂i+1,m,

and it follows that 1 = αi,m + βi,m.
As a consequence of the fact that αi,m and βi,m are positive and sum to 1, we get 0 6 αi,m 6

1.

Corollary 5.13. Under the assumptions of the above proposition, by considering the B-spline
functions {Ni,m} defined as in (5.3), we can obtain the well-known knot-insertion relation with
nonnegative coefficients

Ni,m = αi,mN̂i,m + (1− αi+1,m)N̂i+1,m.

Proof. In fact,

Ni,m = fi,m − fi+1,m = αi,mf̂i,m + (1− αi,m)f̂i+1,m − αi+1,mf̂i+1,m − (1− αi+1,m)f̂i+2,m

= αi,m(f̂i,m − f̂i+1,m) + f̂i+1,m − f̂i+2,m − αi+1,m(f̂i+1,m − f̂i+2,m)

= αi,mN̂i,m + (1− αi+1,m)N̂i+1,m.

5.4 On the existence of the ONTP basis
It is well known that not all spaces of piecewise quasi Chebyshevian splines possess an ONTP

basis and thus not all such spaces are suitable for design. In particular, as we shall recall in the
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following, such a problem is closely related to the existence of a system of (piecewise) weight
functions that satisfy the properties of being positive and having prescribed continuity at the
knots.
In this section we exploit the transition functions in order to derive a system of weight

functions for any spline space that admits an ONTP basis. The main relevance of this result
lies in the fact that we do not need to know a priori whether the ONTP basis exists or not.
In particular, we show that, as soon as one of the computed functions fails to be positive, we
can conclude that there does not exist any proper system of weight functions for the considered
spline space, or, in other words, that the space is not suitable for design. This provides a
criterion to establish whether a given space possesses the ONTP basis.
Besides this, it is interesting to remark that, prior to the present work, knowing the weight

functions was the only viable way for computing the B-spline basis of an arbitrary generalized
spline space, that is, for applying the generalized integral recurrence relation [Maz11a]. In
this view, the lack of a general method for deriving the weight functions associated with the
target space made the integral approach a merely theoretical tool. Thus the weight functions
constructed in the following sections also allow us to exploit the integral recurrence relation
for practical computation of the B-spline basis. In this respect, however, it should be noted
that transition functions are easier to handle and computationally simpler than the integral
approach.
In the remainder of this section, we first recall some basic definitions and results from the

theory of weight functions and spline spaces. Successively, we illustrate the construction of a
system of weight functions for a generalized spline space by exploiting the transition functions
(Section 5.4.1), and then in Section 5.4.2 we propose and justify a numerical test to establish
whether a generalized spline space has the ONTP basis. Finally, in Section 5.4.3 we focus on
the particular case of an empty knot partition ∆ = ∅, where a single QEC-space is considered
on the whole domain and the ONTP basis is the Bernstein one.

We start with proving that all generalized spline spaces based on 2-dimensional QEC-spaces
{Ui,2} containing constants have the ONTP basis.

Proposition 5.14. All generalized spline spaces S(U2,M ,∆) (i.e., with m = 2) such that
each Ui,2 contains constants possess the ONTP basis.

Proof. The idea is to exploit the transition functions to construct a B-spline basis and prove
that it actually is the ONTP basis, which corresponds to a piecewise Langrage-type basis.
If ti 6= ti+1, the transition function fi,2 has a unique zero at ti, takes values from 0 to 1, and it
cannot vanish in (ti, ti+1) since Ui,2 is a QEC-space. Therefore, {Ni,2 = fi,2−fi+1,2} form a basis
that fulfills all the properties i)–iv) in Definition 5.8. Moreover, for any other knot partition ∆̂
obtained from ∆ by knot insertion, we can perform an analogous construction that results in
a B-spline basis. Then, in view of Proposition 5.2, S(U2,M ,∆) admits the ONTP basis.

Definition 5.13 (Piecewise weight functions). A sequence of piecewise functions {w0, . . . , wm−2}
is a system of piecewise weight functions on a partition ∆ = {xi, i = 1, . . . , k} of [a, b] if, for
any j = 0, . . . ,m− 2:

i) wj is positive on [a, b];

ii) for all i = 0, . . . , k, wj is Cm−j−mji−1 at xi, where mj
i := min(mi,m− j).
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Given a system of piecewise weight functions, we may define the associated piecewise differ-
ential operators (or generalized derivatives) on ∆ as

L0f :=
f

w0

, Ljf :=
1

wj
DLj−1f, j = 1, . . . ,m− 2,

where f ∈ S(Um,M ,∆) and D denotes ordinary differentiation.
Accordingly, we denote by LjS(Um,M ,∆) = S(LjUm,Mj,∆) the generalized spline space
having sections in the spaces Lj|IiUi,m obtained by generalized differentiation through the weight
functions wj|Ii , i = 0, . . . , k, and where Mj :=

(
mj

1, . . . ,m
j
k

)
.

Remark 5.3. From the above definitions, it straightforwardly follows that wj ∈ DLj−1S(Um,M ,∆).

Remark 5.4. Note that if dimUi,m = m, then dimLj|IiUi,m = m− j.

Proposition 5.15. Let S(Um,M ,∆) be a generalized spline space containing constants. The
space S(Um,M ,∆) admits the ONTP basis if and only if it is possible to find a system of
piecewise weight functions on ∆ and a spline space T := S(Lm−2Um,Mm−2,∆) of dimension
2 +Km−2, with Km−2 :=

∑k
i=1m

m−2
i and mj

i as in Definition 5.13, that contains constants and
such that

S(Um,M ,∆) = {s ∈ Cm−m0
i−1 at xi

∣∣Lm−2s ∈ T}.

Proof. If S(Um,M ,∆) admits the ONTP basis, which means a B-spline basis and knot in-
sertion, the proof consists in showing that the construction of a system of piecewise weight
functions is always feasible, and that the generalized spline spaces LjS(Um,M ,∆) obtained
by general differentiation are normalized and still admit the ONTP basis, up to the space
Lm−2S(Um,M ,∆) which has the ONTP basis by Proposition 5.14. We will provide a proof
of this kind later in Section 5.4.1, based on the explicit construction of a sequence of functions
{wj} that will be described there.
Conversely, if a spline space T of dimension 2+Km−2 and a system of piecewise weight functions
are given, then starting from the ONTP basis of T (which exists, as proven in Proposition 5.14)
the integration procedure generates the ONTP basis for the space S(Um,M ,∆).

Corollary 5.16. Let a generalized spline space S(Um,M ,∆) containing constants be given,
together with the sequence of piecewise weight functions {wj, j = 0, . . . ,m − 2}, with w0 = 1.
LjS(Um,M ,∆), with j ∈ {0, . . . ,m− 2}, has the ONTP basis if and only if LiS(Um,M ,∆),
for all i = 0, . . . ,m− 2, have the ONTP basis.

5.4.1 Construction of weight functions for proving the existence of
the ONTP basis

Given a generalized spline space S(Um,M ,∆) and the related transition functions, in this
section we intend to show that they can be exploited to define a particular sequence of functions
{wj} that is meaningful for two main reasons:

• if S(Um,M ,∆) admits the ONTP basis, then w0 = 1 and wj, j = 1, . . . ,m−2, represent
a system of piecewise weight functions for that spline space;

• if there is at least one r ∈ {1, . . . ,m−2} such that wr is not positive, then we can conclude
that S(Um,M ,∆) has no ONTP basis.

The two above facts are proved respectively in Proposition 5.15 and Proposition 5.17, based on
the procedure of generation of the functions {wj} given below.
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Remark 5.5. Note that, unlike the approach that is usually undertaken in the literature, the
piecewise functions {wj} that we will define in the following will trivially met the condi-
tion on the continuity at knots in Definition 5.13 because they will belong to spline spaces
DLjS(Um,M ,∆). Hence, we will only have to check their positivity in order to label them as
a system of piecewise weight functions.

In Algorithm 1, in the subsequent description, and in the proof of Proposition 5.15, we adopt
the shorthand notation S in place of S(Um,M ,∆) to denote the initial spline space, and
recalling Definition 5.13 we set Kj :=

∑k
i=1m

j
i .

Algorithm 1 (Construction of the sequence {wj, j = 0, . . . ,m− 2}). Let w0 = 1.

• Step 0:

(N) In the space L0S = S
w0
, compute fi,m, i = 1, . . . ,m+K, by solving (5.2);

(D) In the space DL0S, set Ñi,m−1 = Dfi+1,m, i = 1, . . . ,m+K − 11;

(S) Still in DL0S, compute f̃i,m−1 =
∑m+K1−1

`=i Ñ`,m−1, i = 1, . . . ,m + K1 − 1, and set
w1 := f̃1,m−1;

• Step j, j = 1, . . . ,m− 3:

(N) In the space LjS = 1
wj
DLj−1S, compute fi,m−j =

f̃i,m−j
wj

, i = 1, . . . ,m− j +Kj;

(D) In the space DLjS, set Ñi,m−j−1 = Dfi+1,m−j, i = 1, . . . ,m− j +Kj − 11;

(S) Still inDLjS, compute f̃i,m−j−1 =
∑m−j+Kj+1−1

`=i Ñ`,m−j−1, i = 1, . . . ,m−j+Kj+1−1,
and set wj+1 := f̃1,m−j−1.

Remark 5.6. Note that, if ∆ includes knots with multiplicity greater than 1, C0 functions
occur in the above construction. In this case, differentiation has to be intended as for piecewise
functions, i.e., working separately on the knot intervals.

Each step of the above procedure can be split in three successive stages, referred to as
normalization (N), differentiation (D) and summation (S) stage. At step 0, having taken
w0 = 1, the normalization stage gives back the spline space S(Um,M ,∆) and for such space
the related transition functions {fi,m} can be computed as the solution of the linear system
(5.1). Note that, since all the m-dimensional QEC-spaces Ui,m contain constants, the spline
space DL0S obtained by ordinary differentiation is spanned by (m − 1)-dimensional QEC-
spaces. Moreover, since f1,m = 1, the differentiation stage consists in computing m + K − 1
functions, namely Ñi,m−1 = Dfi+1,m, i = 1, . . . ,m + K − 1. Finally, during the summation
stage, we compute a new sequence f̃i,m−1 =

∑m+K1−1
`=i Ñ`,m−1, i = 1, . . . ,m+K1− 1. Note that

{f̃i,m−1} matches the properties of Definition 5.10, with u = f̃1,m−1. Based on this observation,
we shall choose w1 = f̃1,m−1 to proceed to the successive step.
For any subsequent step j = 1, . . . ,m − 3, during the normalization stage we generate the

space LjS by dividing the computed functions f̃i,m−j by the current function wj, which is
the one computed at the summation stage of step j − 1. In this way, we obtain a set of
transition functions for LjS by a simple update of the previous ones. Because wj is nothing
but f̃1,m−j, there follows that f1,m−j = 1 and the space LjS contains the unit function. The

1For any j = 0, . . . ,m−3, taking into account that some of the functions Dfi+1,m−j , i = 1, . . . ,m−j+Kj−1,
may be identically zero, the sequence {Ñi,m−j−1} can be re-indexed as Ñi,m−j−1, i = 1, . . . ,m− j +Kj+1 − 1,
where m− j +Kj+1 − 1 is precisely the dimension of the spline space of derivatives DLjS.
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latter property ensures that, proceeding to the differentiation stage, the space DLjS generated
by the derivatives of such transition functions has segments belonging to (m−j−1)-dimensional
QEC-spaces and accordingly the space DLj has dimension m−j+Kj+1−1. Finally, during the
summation stage, we generate a new sequence {f̃i,m−j−1}, whose first element is the function
wj+1 = f̃1,m−j−1, which we shall exploit at the successive iteration.
By means of transition functions and the construction of the sequence {wj} described above,

it is possible to verify that the spaces LjS(Um,M ,∆) have the ONTP basis. In fact, we
are now able to provide a constructive proof of the implication in Proposition 5.15 postponed
earlier. It consists in showing that the functions {wj} obtained through the procedure outlined
in Algorithm 1 are indeed piecewise weight functions.

Proof of Proposition 5.15. As already observed in Remark 5.5, the functions {wj} trivially
satisfy the continuity requirements of Definition 5.13 at the knots by construction, therefore
we shall prove that they are positive. To this aim, we proceed by induction on j.
At the 0th step the statement holds, since w0 = 1 and we are assuming that S := S(Um,M ,∆)

contains constants and has the ONTP basis.
For the inductive step, let the statement hold true at the (j − 1)th step, which means that

wj is positive and the space LjS admits a B-spline basis and knot insertion. We have to prove
that wj+1 is positive and that also the space Lj+1S admits a B-spline basis and knot insertion.
According to the construction in Algorithm 1, recalling that Kj denotes the dimension of the
space LjS, at step j we get

wj+1 =

m−j+Kj−1∑
`=1

Df`+1,m−j, (5.8)

which is a positive function because, by Proposition 5.10, the transition functions are mono-
tonically increasing and thus their derivatives are positive.
From Proposition 5.12 it follows that, in order to verify that the space Lj+1S admits knot
insertion, it is sufficient to verify that the spaces Lj+1S and Lj+1Ŝ, obtained by inserting a
node t̂ ∈ [t`, t`+1), both possess B-spline bases, respectively Ni,m−j−1 and N̂i,m−j−1. To this
aim, exploiting the relation (5.5) between functions {fi,m−j} and functions {f̂i,m−j}, formula
(5.7), and (5.8), we can write:

wj+1 =

`−m+j∑
i=1

Df̂i,m−j +
`−r+1∑

i=`−m+j+1

αi,m−jDf̂i,m−j + (1− αi,m−j)Df̂i+1,m−j +

m−j+Kj∑
i=`−r+2

Df̂i+1,m−j

=

m−j+Kj+1∑
i=1

ai,m−jDf̂i,m−j,

with

ai,m−j =



1, i = 1, . . . , l −m+ j + 1,

αi,m−j, i = `−m+ j + 2,

αi,m−j + (1− αi−1,m−j), i = `−m+ j + 3, . . . , `− r + 1,

1− αi,m−j, i = `− r + 2,

1, i = `− r + 3, . . . ,m− j +Kj + 1.

From the above expression and Proposition 5.12, the coefficients ai,m−j are positive.
This allows us to define a B-spline-like basis for DLjŜ by scaling the functions {Df̂i,m−j} by
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coefficients {ai,m−j}, more precisely:

˜̂
Ni,m−j−1 := ai+1,m−jDf̂i+1,m−j, i = 1, . . . ,m− j +Kj.

In this way, at the summation stage of step j it results that ŵj+1 ≡ wj+1, and at the successive
normalization stage of step j + 1 the two spaces Lj+1Ŝ and Lj+1S turn out to be related by
the insertion of the knot t̂. In fact, the division by wj+1 just provides the normalization, thus
proving that both spaces possess a B-spline basis.
At the last step we get the spline space Lm−2S, which by construction has dimension 2+Km−2

and has a B-spline basis. By Proposition 5.14, it admits the ONTP basis.

Proposition 5.17. If the construction outlined in Algorithm 1 does not provide a complete
sequence of functions {wj} that are all positive, then there is no sequence of piecewise weight
functions that verify Proposition 5.15. Hence, in this case the considered generalized spline
space does not admit an ONTP basis.

Proof. The proof is by reductio ad absurdum. Let us suppose that the ONTP basis {Ni,m}
for S(Um,M ,∆) exists, despite one function provided by our construction is nonpositive, say
wr. Then, we can define the transition functions fi,m :=

∑m+K
`=i N`,m and proceed with steps

j = 0, . . . , r − 1, up to generating the function wr. But from the existence of the ONTP basis
and in view of Corollary 5.16, it would follow that this function is positive, contradicting what
supposed.

5.4.2 A numerical approach for checking the existence of the ONTP
basis

In this section, we present a practical numerical test to establish whether the ONTP basis
for a given generalized spline space S(Um,M ,∆) containing constants exists. As we will see,
this procedure exploits the construction provided in Algorithm 1 and requires verifying the
positivity of each function wj generated at step j. In particular, it checks the existence of a B-
spline-like basis in spaces DLjS(Um,M ,∆) by inspecting the positivity and the monotonicity
of the transition functions.

Before detailing the numerical approach, we present some results that will be used to justify
our way of proceeding. Specifically, we show that a monotonically increasing spline function
must have a monotonically increasing sequence of coefficients when represented in the B-spline
basis, but also in any other basis obtained from it by knot insertion, and in particular in the
piecewise Bernstein basis.

Proposition 5.18. Let S(Um,M ,∆) be a generalized spline space with ONTP basis. s ∈
S(Um,M ,∆) has non-decreasing and nonnegative coefficients in the B-spline basis {Nj,m} if
and only if Ds has nonnegative coefficients in the B-spline-like basis {Ñj,m−1}.
Proof. Let s ∈ S(Um,M ,∆) such that s =

∑m+K
j=1 cjNj,m with cj > 0 and cj+1− cj > 0. Then,

recalling (5.3),

Ds = D

m+K∑
j=1

cjNj,m = D

m+K∑
j=1

cj(fj,m − fj+1,m) =
m+K∑
j=1

cj(Dfj,m −Dfj+1,m)

=
m+K∑
j=1

cjDfj,m −
m+K∑
j=1

cjDfj+1,m =
m+K∑
j=2

cjÑj−1,m−1 −
m+K−1∑
j=1

cjÑj,m−1
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=
m+K−1∑
j=1

(cj+1 − cj)Ñj,m−1 =
m+K−1∑
j=1

djÑj,m−1,

where dj := cj+1 − cj. Hence, {cj} are non-decreasing and nonnegative if and only if {dj} are
nonnegative.

Proposition 5.19. Let S(Um,M ,∆) be a generalized spline space with ONTP basis. s ∈
S(Um,M ,∆) has non-decreasing coefficients in the B-spline basis {Nj,m} if and only if s has
nonnegative coefficients in any other basis of a space Ŝ(Ûm,M̂ , ∆̂) obtained from S(Um,M ,∆)
by knot insertion.

Proof. Let s ∈ S(Um,M ,∆) ⊂ Ŝ(Ûm,M̂ , ∆̂). Since S(Um,M ,∆) possesses the ONTP
basis, then it admits a B-spline basis and knot insertion with nonnegative coefficients. For
this reason, if s has non-decreasing coefficients in the B-spline basis of S(Um,M ,∆), by knot
insertion the new coefficients are still non-decreasing because they are a convex combination of
the old ones.

Corollary 5.20. In particular, s must have non-decreasing coefficients in the B-spline basis
N̂j,m obtained by inserting each node of ∆ up to multiplicity m− 1. In such a basis, s has on
any knot interval the same coefficients that it would have in the associated Bernstein basis.

Proof. Let s ∈ S(Um,M ,∆) be expressed in the B-spline basis as s =
∑m+K

j=1 cjNj,m with
cj > 0 and cj+1 − cj > 0. Then on any knot interval, s, expressed in the Bernstein basis, has
nonnegative and non-decreasing coefficients:

s|Ii =
m∑
`=1

c
[i]
` B

[i]
`,m with c

[i]
` > 0 and c

[i]
`+1 − c

[i]
` > 0.

Now, we describe the numerical approach for checking whether a given spline space S(Um,M ,∆)
admits the ONTP basis, under the assumptions that the space satisfies the necessary condi-
tions previously mentioned in Section 5.3, namely that each Ui,m is a QEC-space containing
constants and DUi,m is a QEC-space as well.

The proposed approach consists in performing the steps of the construction outlined in Al-
gorithm 1, starting from the transition functions determined by solving (5.2). Then, at each
step j = 0, . . . ,m − 4, it must be checked that the function wj+1 is positive or, equivalently,
that the space DLjS(Um,M ,∆) admits a B-spline-like basis. Finally, by Proposition 5.14 the
procedure reaches its completion at the normalization stage of step m − 2, by verifying the
existence of the B-spline basis for the space Lm−2S(Um,M ,∆).
In particular, at each step the transition functions are computed using as QEC-systems on the

knot intervals the related generalized Bernstein bases. Basically, this means that the transition
functions are represented on a Bernstein basis on any interval.
As we have seen in Proposition 5.18 under the assumptions that the ONTP basis exists, the

transition functions must have non-decreasing and nonnegative coefficients when expressed in
the B-spline basis, and so they must do when expressed in any other basis obtained from it by
knot insertion (Proposition 5.19 and Corollary 5.20). Since transition functions are represented
in Bernstein bases for this numerical approach, their positivity and monotonicity can be checked
by performing a simple test on the coefficients in any interval.
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Ultimately, the numerical test consists in checking whether, at each step j = 0, . . . ,m − 2,
the coefficients cr, r = 1, . . . ,m − j, in the Bernstein basis representation of each transition
function fi,m−j in each knot interval I` form a non-decreasing sequence with values in [0, 1],
namely

cr+1 − cr > 0 and 0 6 cr 6 1. (5.9)

Remark 5.7. If the above test on the coefficients passes at each step of the procedure, then it
means that the transition functions are monotonically increasing, their derivatives are positive,
and their sums, i.e., the functions {wj}, are also positive and thus they form a system of
piecewise weight functions. By Proposition 5.15, we can conclude that the spline space admits
the ONTP basis.
Conversely, if the test fails at any step, that is, there exists at least one coefficient that does
not satisfy conditions (5.9), then one of the functions {wj} is not positive, and by Proposition
5.17 we can assert that the ONTP basis does not exist.

In the case of generalized spline spaces with m = 3, if the requirements for the application of
the numerical procedure are fulfilled, namely if {Ui,m} and {DUi,m} are QEC-spaces and {Ui,m}
contain constants, then the following proposition guarantees that the spline space admits the
ONTP basis and no checking is needed.

Proposition 5.21. All generalized spline spaces S(U3,M ,∆) (i.e., with m = 3), containing
constants and such that {DUi,3} are QEC-spaces, admit ONTP bases.

Proof. Each transition function fi,3 has in general a nontrivial expression on two knot intervals.
Being all the {DUj,3} QEC-spaces by assumptions, each Dfi,3 cannot have any zero in the inte-
rior of its support. Hence, fi,3 is either monotonically increasing or monotonically decreasing.
Since by construction fi,3 takes values from 0 to 1, it is increasing and Dfi,3 is positive in the
interior of its support.
Now, let us consider Ni,3 := fi,3 − fi+1,3, for any i = 1, . . . ,m + K. By construction, {Ni,3}

satisfy properties i), iii),iv) of Definition 5.8. We prove that any Ni,3 does not vanish in the
interior of its support, and that in particular it is positive, so that it enjoys also property ii). To
this aim, we show that Ni,3 can have only one extremum in its support [ti, ti+3], or equivalently,
that DNi,3 has only one zero in (ti, ti+3). In fact, if DNi,3 is nonzero on three consecutive
knot intervals, it has a zero at ti, another zero at ti+3, and, since all DUi,3 are QEC-spaces, it
can have at most one zero in (ti+1, ti+2). If DNi,3 is nonzero on one or two knot intervals, by
analogous arguments it follows that it can have at most one zero in the interior of its support.
Thus Ni,3 has only one maximum or minimum.
Positivity of Ni,3 can be proved by analyzing its behavior at the left endpoint of its support,

ti. Both transition functions involved in the definition of Ni,3 = fi,3 − fi+1,3 are monotonically
increasing and have at ti zeros of different multiplicities. For these reasons, their difference
is positive in a right neighborhood of ti, and therefore we can conclude that Ni,3 > 0 in
(ti, ti+3).

5.4.3 The particular case of an empty knot partition

In the previous sections, while addressing the problem of determining whether a given gen-
eralized spline space S(Um,M ,∆) admits the ONTP basis, we assumed that each space Ui,m
contains constants and DUi,m is a QEC-space. For known results already recalled, this means
that each Ui,m has the Bernstein (ONTP) basis on the related interval, and the numerical ap-
proach described in the previous section heavily relies on this fact. Hence, knowing the largest
interval on which a QEC-space possesses the Bernstein basis is a crucial information, and as



106 5. A constructive approach to generalized splines

we have mentioned in the historical overview at the beginning of this chapter, much work has
been devoted to the study of necessary and sufficient conditions to guarantee the existence of
the Bernstein basis.
In particular, in this context the following notions of critical length and critical length for design
have been introduced. We conveniently precede them with the definition of a W-space.

Definition 5.14 (W-space). An m-dimensional space Um contained in Cm−1(I) is a W-space
on I if the Wronskian2 of any basis of Um does not vanish on I.

Remark 5.8. Any EC-space on I is a W-space on I.

Definition 5.15 (Critical length). The critical length of a given W-space Um on R is the
supremum ` ∈ [0,+∞] of all positive h such that Um is a QEC-space on any interval [a, b],
a < b, such that b− a < h.

Definition 5.16 (Critical length for design). The critical length for design of a given W-space
Um on R which contain constants is the supremum `′ ∈ [0,+∞] of all positive h such that Um
admits the Bernstein basis on any interval [a, b], a < b, such that b− a < h.

Corollary 5.22 ([CMP03, Corollary 4.1]). Let Um be an m-dimensional subset of Cm−2([a, b])
with constants which is invariant under translations. Let ` and `′ be the critical lengths of Um
and DUm, respectively. Then:

i) `′ 6 `;

ii) the space Um is QEC with a normalized TP basis on [a, b] if and only if b− a < `′.

To our knowledge, the value of the critical length for design has been investigated, exactly
determined or estimated, for generalized polynomial spaces of the form span{1, x, . . . , xm−3,
u(x), v(x)} with suitable conditions on u(x) and v(x), and also span{1, x, . . . , xm−5, u1(x), u2(x),
u3(x), u4(x)} [CMP03, BM12]. These results provides us with the initial information required
to use and justify our approach. However, in all the other cases, the problem of determining the
critical length for design is still an open issue. For this reason, a numerical method to estimate
its value may be useful. To this aim, our approach based on the construction of transition
functions can be also exploited as a method for estimating the value of the critical length for
design of a given space, if it is not known. This particular application is motivated by the
following observation, based on the results recalled above and known in the literature.
Remark 5.9. Let Um be an m-dimensional QEC-space on [a, b] containing constants, and let
us consider a generic Bernstein-like basis {Vi,m, i = 1, . . . ,m} (which exists by Proposition
5.8). Moreover, let {Ṽi,m} be the functions obtained via scaling the basis functions {Vi,m} by
coefficients {ci} such that

∑m
i=1 ciVi,m = 1. We call such {Ṽi,m} a signed normalized Bernstein-

like basis.
If we consider the family of all bases of this type obtained as the length of the interval [a, b]
varies, we can observe that, on intervals for which the Bernstein basis exists, the {Ṽi,m} are all
positive. Instead, on intervals for which the Bernstein basis does not exist, some of the {Ṽi,m}
are positive and others are negative. Since the functions of this family vary with continuity as
the length of [a, b] varies, for at least one index i we have that Ṽi,m passes from being positive
to being negative, and Ṽi,m = 0 represents the critical situation corresponding to the critical
length for design `′. In this case, we remark that a signed normalized Bernstein-like basis does
not exist.

2The Wronskian of m functions u1, . . . , um ∈ Cm−1(I) is a function on I defined as the determinant of the
matrix constructed by placing the (r − 1)th derivative of the functions in the rth row, r = 1, . . . ,m.
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In view of the above observation, a possible approach for computing the critical length for
design `′ of a given space relies on determining the critical value for which our constructive
method does not provide a basis for the space, since at least one of the generated functions
is zero. This criterion can be reformulated in terms of the transition functions, based on the
following result.

Proposition 5.23. Let Um be an m-dimensional QEC-space on [a, b]. Um has the Bernstein
basis {Bi,m} if and only if all transition functions fi,m, i = 1, . . . ,m, are monotonically non-
decreasing in [a, b].

Proof. Let us express the transition functions in terms of the Bernstein basis functions as fi,m =∑m
j=iBj,m, for i = 1, . . . ,m. Trivially, {fi,m} take values in [0, 1] and fi,m > fi+1,m. From the

variation diminishing property of the Bernstein representation, each fi,m is monotonically non-
decreasing because its coefficients in the Bernstein basis form a monotonically non-decreasing
sequence 0, . . . , 0, 1, . . . , 1.
Conversely, let the transition functions {fi,m} be determined, and define the functions Bi,m :=
fi,m − fi+1,m, for i = 1, . . . ,m − 1, and Bm,m = fm,m. Since each fi,m is monotonically non-
decreasing and takes values from 0 to 1, then {Dfi,m} form a Bernstein-like basis of DUm.
Hence, by Proposition 5.8, DUm is a QEC-space and, by Proposition 5.9, {Bi,m} is the Bernstein
basis.

Remark 5.10. According to the above results, we can distinguish the following situation de-
pending on the length of the parametric interval.

• On [0, `′), fi,m > fi+1,m for i = 1, . . . ,m, and the transition functions are monotonically
increasing;

• on [0, `′], at least two transition functions coincide;

• on [0, `), there exists an index i such that fi,m < fi+1,m;

• on [0, `], the linear system (5.2) arising from conditions (5.1) is singular.

Ultimately, the numerical approach for estimating the value of the critical length for design of
a given m-dimensional QEC-space Um on [a, b] that contains constants consists in the following
steps:

1. Determine the transition functions {fi,m} by imposing conditions (5.1);

2. For all i = 1, . . . ,m− 1, check whether fi,m > fi+1,m:
if two consecutive transition functions coincide, then the related signed normalized Bernstein-
like (basis) function is zero, and the length of the interval [a, b] gives the value of the critical
length for design `′.

Remark 5.11. This test must be performed on each knot interval also during the numerical
procedure proposed in Section 5.4.2 for checking the existence of the ONTP basis in generalized
spline spaces, in order to verify the existence of the Bernstein basis on each knot interval.

Remark 5.12. If Um is invariant under translations and reflections, the transition functions are
symmetric with respect to the line through (a, 0) and (b, 1). For this reason, it is sufficient to
check only fi,m and fi+1,m with i > m

2
.
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Besides the results on critical lengths, also many explicit formulations of Bernstein bases for
specific generalized spaces have been proposed during the years. We can exploit this fact to
improve the performance of the proposed approach for the construction of the ONTP basis
of a generalized spline space. In fact, if the explicit expression of a Bernstein basis is already
available for a certain space, we can choose such a basis as the QEC-system for the computation
of transition functions. This entails an improvement of the numerical stability because of the
well-known properties of the Bernstein basis.

As we have recalled above, in the case of an empty knot partition, the problem of determining
the largest interval on which a given space admits the Bernstein basis has been addressed by
introducing the notion of critical length for design and devising methods for the computation
of its exact or approximated value. In this context, the approach based on the theory of weight
functions is of little use, unlike what happens in the spline case.
However, it may be interesting to see an application of the construction of weight functions
outlined in Algorithm 1 in the case of generalized polynomials, in order to explicitly derive the
expression of the canonical basis of an EC-space.

Remark 5.13. (Canonical basis) The system of weight functions constructed as in Algorithm 1
can be exploited to provide the expression of the canonical basis of a given EC-space on [a, b]
in terms of transition functions:

ψ0(x) = w0(x) = 1,

ψ1(x) = w0(x)

∫ x

a

w1(ξ1)dξ1 =
m∑
i=2

fi,m(x),

...

ψr(x) = w0(x)

∫ x

a

w1(ξ1)

∫ ξ1

a

. . .

∫ ξr−1

a

wr(ξr)dξr . . . dξ2dξ1

=
m∑

i=r+1

(
i− 2

r − 1

)
fi,m(x), r = 2, . . . ,m− 1,

where in particular ψm−1 = fm,m.

5.5 Numerical examples
This section presents some examples in which the existence of the ONTP basis is tested

through the procedure described in Section 5.4.2. We remark that, although for completeness
the figures will show also the transition functions together with the generated bases, in general
the existence of the ONTP basis cannot be proved by a simple inspection of the transition
functions. In fact, in order to produce an answer regarding the existence of the ONTP basis,
the above procedure must be performed. However, in the case in which the transition functions
are not monotonically increasing we can readily conclude that the considered space does not
admit an ONTP basis.

Example 5.1. Let us consider the generalized spline space S(U5,M ,∆) on a uniform knot
partition with intervals of length h, and where the EC-spaces have dimension m = 5 and are
Ui,5 = span{1, cos(θix) cosh(φix), cos(θix) sinh(φix), sin(θix) cosh(φix), sin(θix) sinh(φix)}, with
θi = 1 and φi = φ > 0 for all i.
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Letting h vary, the procedure presented earlier allows us to verify numerically that such a spline
space admits the ONTP basis if h < π, as illustrated in Figure 5.2. This result agrees with the
conditions presented in [BM14], where the considered space is labeled as “Case 9”.
If we consider the more general setting of a non-uniform knot partition and also allow the

parameters θi, φi to be possibly different on each interval, no closed-form conditions for the
existence of the ONTP basis of the spline space are available. This lack of theoretical results
reinforce the importance of the proposed numerical test as a way for checking whether the
ONTP basis exists for a given spline space with specific sets of parameters and interval lengths.
Figure 5.3 shows the transition functions in two cases that differ only in the lengths of two
knot intervals. In one case, the test affirms that the ONTP basis exists, while in the other the
transition functions are not monotonically increasing, the test fails to pass and allows us to
conclude that the ONTP does not exist.

Example 5.2. In this example we consider on each knot interval Ii the space Ui,6 = span{1, t,
(1 − t)n, tn, cos(θix), sin(θix)}, with x ∈ [xi, xi+1], t := x−xi

xi+1−xi ∈ [0, 1], and n > 3, which is a
QEC-space proper.
In the case of a uniform knot partition, fixing θi = 1 for all i, the pass/fail machinery of the
numerical test allows us to estimate the largest width for the intervals that, for any value of
the exponent n, guarantees the existence of the ONTP basis of the spline space. In particular,
the length of each interval must be smaller than π (see Figure 5.4).
As in the previous example, in the more general cases in which different interval lengths

and/or parameters θi are allowed, the test provides us with either a positive or a negative
answer regarding the existence of the ONTP basis in each specific situation.

Example 5.3. Recalling Definition 5.8 and Proposition 5.2, this example exhibits a peculiar
case showing that the requirements for the existence of an ONTP basis are indeed stronger
than the ones for having a B-spline basis.
In particular, in Figure 5.5 we consider a spline space that does not admit the ONTP basis, as
the numerical procedure correctly determine, although the basis constructed by our approach
(showed in Figure 5.5(a)) satisfies properties i)–iv) in Definition 5.8. On a closer inspection,
one of the functions {wj} constructed as in Algorithm 1 is in fact found to be nonpositive, as
we can see from Figure 5.5(h), thus the ONTP basis does not exist.
An illuminating way to explain this behavior is to consider knot insertion. In particular,

Figure 5.5(i) shows the situation after the insertion of a knot in one of the intervals. It is now
evident that the basis obtained in this case is no longer a B-spline basis, thus the initial basis
does not meet all the conditions of Proposition 5.2 and is not ONTP.

Example 5.4. We consider the space U3 = span{1, cosx, sinx}, x ∈ [0, h]. It is a QEC-
space on [0, 2π), and the space obtained by differentiating its generators, namely DU3 =
span{cosx, sinx}, is a QEC-space on [0, π). Therefore, by Proposition 5.9, U3 possesses the
Bernstein basis on any interval [0, h] with h < π, and, recalling the definitions in Section 5.4.3,
the values 2π and π are respectively the critical length and the critical length for design for
this space.
As we have seen, the Bernstein basis can be constructed by exploiting the proposed approach,
and it is showed in Figures 5.6(a) and 5.6(b). Moreover, if h ∈ (π, 2π), the space does not admit
the Bernstein basis and the proposed construction produces instead a Bernstein-like basis, up
to a sign inversion of the functions that are negative (Figure 5.6(c)). For h > 2π, U3 is not a
QEC-space and the generated set of functions is not even a Bernstein-like basis (Figure 5.6(d)).
In the spline setting, illustrated in Figure 5.7, on a uniform partition with intervals of length

h < π we obtain the ONTP basis, as expected. On the contrary, for larger intervals the spline
space does not possess the ONTP basis.
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(a) h = 2 (b) h = 3 (c) h = 3.2

Figure 5.2: Top row: bases generated by our approach for the spline space S(U5,M ,∆) on a
uniform partition with interval length h, where Ui,5 = span{1, cos(θix) cosh(φix), cos(θix) sinh(φix),
sin(θix) cosh(φix), sin(θix) sinh(φix)} with θi = 1, φi = 0.5 for all i. In particular, (a), (b) for h < π
the spline space admits the ONTP basis, while (c) for larger values of h the set of generated functions
has no meaningful properties. Bottom row: related transition functions.

5.6 Computation and modeling in spaces of generalized
splines

In this section we discuss some computational and modeling aspects that may be of interest
from the point of view of applications. In particular, we make some remarks about knot inser-
tion, we provide order elevation algorithms for generalized splines and corner cutting evaluation
algorithms for generalized polynomials. Moreover, we summarize in an algorithmic form the
main computational tools that can be drawn from the constructive approach, and finally we
illustrate some application examples.
In the following, we will refer to the representation of a spline s ∈ S(Um,M ,∆) in the

B-spline basis {Ni,m, i = 1, . . . ,m+K} of S(Um,M ,∆), namely

s(x) =
m+K∑
i=1

ciNi,m(x), x ∈ [a, b]. (5.10)

5.6.1 Knot insertion in generalized spline spaces

In this section we give further insights concerning knot insertion in spaces of generalized
splines. In particular, after some remarks on the knot insertion formula (5.7) presented in
Section 5.3.1, we discuss some aspects to take into account when performing knot insertion in
generalized spline spaces, and we illustrate them with the help of some examples.

Remark 5.14. In (5.7) αi,m is determined by computing the ratio of the derivatives of the



5.6. Computation and modeling in spaces of generalized splines 111

(a) Knot intervals of lengths
2, 1.5, 2, 3.

(b) Knot intervals of lengths
1, 2.5, 2, 3.

Figure 5.3: Top row: bases generated by our approach for the spline space S(U5,M ,∆) on
non-uniform knot partitions (a) ∆∗ = {0, 0, 0, 0, 0, 2, 3.5, 5.5, 8.5, 8.5, 8.5, 8.5, 8.5} and (b) ∆∗ =
{0, 0, 0, 0, 0, 1, , 3.5, 5.5, 8.5, 8.5, 8.5, 8.5, 8.5}, where for all i Ui,5 is as for Figure 5.2. In case (a) the
spline space admits the ONTP basis and it is the one showed. Conversely, in case (b) such a basis does
not exist. In particular, in this case the basis obtained by the proposed construction is a B-spline-like
basis, provided that the sign of the negative function is inverted. Bottom row: related transition
functions.
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(a) h = 2 (b) h = 3 (c) h = 3.2

Figure 5.4: Top row: bases generated by our approach for the spline space S(U6,M ,∆) on a
uniform partition with interval length h, where Ui,6 = span{1, t, (1 − t)n, tn, cos(θix), sin(θix)}, with
t := x−xi

xi+1−xi ∈ [0, 1], n = 8, and θi = 1 for all i. In particular, (a), (b) for h < π the spline space admits
the ONTP basis, while (c) for larger values of h the set of generated functions either is a B-spline-like
basis (up to signs) or has no meaningful properties. Bottom row: related transition functions.
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(a) {Ni,m} ∈ L0S = S (b) {fi,m} ∈ L0S = S (c) {Ñi,m−1} ∈ DL0S

(d) {f̃i,m−1} ∈ DL0S (e) w1 ∈ DL0S (f) {fi,m−1} ∈ L1S

(g) {Ni,m−1} ∈ L1S

. . .

(h) w3 ∈ DL2S

(i) {N̂i,m}

Figure 5.5: Example of a B-spline basis that is not ONTP. We consider the spline space
S := S(U5,M ,∆) on a periodic uniform knot partition with intervals of length 3.5, and Ui,5 =
span{1, x, x2, cosx, sinx} for all i. Referring to Algorithm 1 for the notation, (a)–(g) illustrate the
first steps of the procedure for the construction of the sequence of functions {wj}, exploited to check
the existence of the ONTP basis in the given spline space. Since one of these functions, namely w3,
is found to be nonpositive (see (h)), we can conclude that the space does not admit an ONTP basis.
Thus, the basis generated by our construction and showed in (a) is not ONTP, but only a B-spline
basis. The fact that the space does not possess an ONTP basis can be inferred also by performing
knot insertion in one interval (e.g., the central one) and observing that the basis generated on the finer
partition is not a B-spline basis (see (i)), thus violating the requirements in Proposition 5.2.
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(a) h = 2 (b) h = 3 (c) h = 4 (d) h = 7

Figure 5.6: Top row: bases generated by our approach for the space U3 = span{1, cosx, sinx}, with
x ∈ [0, h], in correspondence of different values of h. In particular, (a), (b) for h < π the construction
produces the Bernstein basis, while (c) for h ∈ (π, 2π) it generates a Bernstein-like basis, provided that
the sign of the negative function is inverted. (d) For h > 2π, the set of functions has no meaningful
properties. Bottom row: related transition functions.

(a) h = 2 (b) h = 3 (c) h = 4

Figure 5.7: Top row: bases generated by our approach for the spline space S(U3,M ,∆), with
Ui,3 = span{1, cosx, sinx} for all i, and uniform knot partition, in correspondence of different values of
the length h of the intervals. In particular, (a), (b) for h < π the spline space admits the ONTP basis,
while (c) for larger values of h the set of generated functions has no meaningful properties. Bottom
row: related transition functions.
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transition functions of the appropriate order k∗i,i1 + 1 such that they are not zero at xi1 . Note
that fi,m and f̂i,m have at xi1 the same order of continuity. The need for the right-hand derivative
is explained by the fact that the considered order of differentiation is greater than the order of
continuity of the transition functions.

Remark 5.15. Formula (5.7) provides a way for computing the coefficients αi,m for all i. Note
that, in the case of an EC-space, k∗i,i1 is equal to ki,i1 , so it can be determined easily from the
multiplicity of xi1 . On the contrary, in the case of a QEC-space proper, k∗i,i1 > ki,i1 and its
exact value depends on the specific space that is used.

Proposition 5.24. Let

s(x) =
m+K∑
i=1

ciNi,m(x) =
m+K+1∑
i=1

ĉi N̂i,m(x)

be a spline in S(Um,M ,∆) ⊂ Ŝ(Ûm,M̂ , ∆̂), being the setting the same as in Proposition 5.12.
Then, from Corollary 5.13 we easily obtain

ĉi =


ci, i 6 `−m+ 1,

αi,m ci + (1− αi,m) ci−1, `−m+ 2 6 i 6 `− r + 1,

ci−1, i > `− r + 2,

(5.11)

with αi,m, i = `−m+ 2, . . . , `− r+ 1, as in (5.7), and where r is the multiplicity of the inserted
knot in ∆̂∗.

The given definition of a generalized spline space allows for a different QEC-space Ui,m to be
present in each interval of the knot partition. Inserting a knot in a certain interval Ii entails
redefining the QEC-systems that span each of the subintervals into which the original interval
is split in such a way that the new spline space with the additional knot contains the initial
spline space. One way to guarantee this inclusion for any kind of space consists in choosing the
new QEC-systems to be equal to the parent one (i.e., the generators will be still defined on the
coarser interval).
However, we observe that there exist interesting generalized spline spaces where this choice

is not the only viable strategy for inserting a knot. This is the case of some splines in which
the underlying QEC-spaces differ for a parameter only, such as, for example, the trigonomet-
ric splines [MP10], where the QEC-space associated with an interval [xi, xi+1] is spanned by
{1, cos(θit), sin(θit)}, with t = x−xi and θi ∈

(
0, π

xi+1−xi

)
. In such cases, depending on whether

the functions in the QEC-space are invariant under scaling, two possibilities exist for choosing
the QEC-spaces on the two subintervals, while guaranteeing that the initial spline space is
contained in the new one:

1. we still use the QEC-space defined on the original interval, simply restricting it to either
subinterval;

2. we define two new QEC-spaces and related QEC-systems, each of which is associated with
a subinterval and such that they can reproduce the functions in the original QEC-system,
thus guaranteeing the inclusion between the spline spaces.

The difference between the two ways of proceeding is substantial. In fact, in the first way
the QEC-systems on the refined intervals will be equal to those of the parent coarse interval.
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On the contrary, in the second way the new QEC-systems will be peculiar to the refined knot
intervals. We remark that the latter way of proceeding is not always feasible, but when it is, it
generates the same system of transition functions obtained through the former one.
Our distinction between the two kinds of knot insertion is motivated by the usual association

of the notion of knot insertion with refinable spline spaces only. Nevertheless, this association
is not mandatory, since there exist generalized spline spaces that, although not refinable, admit
the knot insertion according to the first above strategy. Some examples of such spaces are
span{1, t, (1−t)n1 , tn2} with n1, n2 > 3, and span

{
1, t, (1−t)3

1+(µ−3)(1−t)t ,
t3

1+(ν−3)(1−t)t

}
with µ, ν > 3,

where t = x−xi
xi+1−xi ∈ [0, 1]. Conversely, examples of generalized spline spaces where refinability

holds are all those of mixed algebraic/trigonometric/hyperbolic splines.
The following example illustrates how to choose suitable QEC-spaces to perform knot inser-

tion according to equation (5.7).

Example 5.5. Given a spline space S(Um,M ,∆), we want to insert a knot t̂, xh 6 t̂ < xh+1,
to generate the space S(Ûm,M̂ , ∆̂). According to Proposition 5.12, we need that the space
S(Um,M ,∆) be included in S(Ûm,M̂ , ∆̂). This can be accomplished by suitably choosing
the spaces Ûh,m and Ûh+1,m, and setting Ûi,m = Ui,m for any i < h and Ûi,m = Ui−1,m for any
i > h+ 1.

a) We start by analyzing the case where Uh,m = span{1, t, (1−t)n1,h , tn2,h}, with n1,h, n2,h > 3,
t = x−xh

xh+1−xh and x ∈ [xh, xh+1). The only feasible way to perform knot insertion in this
situation requires to set:

• Ûh,m = span{1, t, (1− t)n1,h , tn2,h}, with x ∈ [xh, t̂), t = x−xh
xh+1−xh ,

• Ûh+1,m = span{1, t, (1− t)n1,h , tn2,h}, with x ∈ [t̂, xh+1), t = x−xh
xh+1−xh ,

and thus n1,h, n2,h are the same as for Uh,m. In fact this is the only choice that guarantees
that the generators of Uh,m can be represented by the generators of Ûh,m and Ûh+1,m on
the two intervals [xh, t̂) and [t̂, xh+1) respectively.

b) Consider now the case where Uh,m = span{1, t, cos(θht), sin(θht)}, with θh ∈ (0, π
xh+1−xh ),

t = x− xh and x ∈ [xh, xh+1). For this space we could proceed analogously as above, but
since in this case the space is invariant under translation and scaling, we can also choose:

• Ûh,m = span{1, t, cos(θht), sin(θht)}, with x ∈ [xh, t̂), t = x− xh,
• Ûh+1,m = span{1, t, cos(θht), sin(θht)}, with x ∈ [t̂, xh+1), t = x− t̂.

In particular, for a space where refinability holds, the two kinds of knot insertion lead to
the same result.

5.6.2 Order elevation in generalized spline spaces

Let S(Um,M ,∆) and S(Um+n,M̃ ,∆), n > 1, be two spline spaces such that S(Um,M ,∆)
⊂ S(Um+n,M̃ ,∆). Then we will show that there exists an order elevation algorithm in the
sense that the B-spline basis {Ni,m} of S(Um,M ,∆) can be expressed as a linear combination
of the elements of the B-spline basis {Ni,m+n} of S(Um+n,M̃ , ∆̃), where M̃ and ∆̃ are obtained
fromM and ∆ by simply increasing by n the multiplicity of each knot. In particular, the basic
steps of the order elevation algorithm are:

1. subdivide the spline into pieces expressed in terms of the Bernstein basis;
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2. apply the order elevation to each piece in the Bernstein basis;

3. remove the redundant knots.

The above steps can be applied repeatedly starting from a space of dimension m up to a space
of dimension m + n. As regards the implementation of step 1, we only need to recall that,
for any generalized spline, the Bernstein-type representation can be achieved by performing a
suitable number of knot insertions to obtain a partition with knots of multiplicity m. Thus,
in the following, we will focus on the second step of the algorithm, which requires providing a
relation between the Bernstein bases of orderm and orderm+n. In this regard, n = 1, 2 are the
essential cases to consider. In particular, several reasons motivate the need for a direct formula
to accomplish elevation by two orders at once. In fact, not only there exist Bernstein bases
of QEC-spaces of dimension m that cannot be expressed via convex combinations of elements
of Bernstein bases for QEC-spaces of dimension m + 1 [CMSR98], but also 2-order elevation
turns out to be useful when working with spaces containing trigonometric (and/or hyperbolic)
functions, because such functions are coupled as elements of the null space of differential op-
erators. In the latter spaces, besides being computationally less efficient, proceeding through
1-order elevations could also raise some issues, as illustrated by the following example.

Example 5.6. We want to order-elevate the EC-space span{1, t} to span{1, t, cos(θt), sin(θt)},
where t ∈ [0, 1] and θ has a fixed value in (0, π). We shall observe that, for values of θ > π

2
,

the strategy of performing two successive elevations by one order is not feasible if we start
by elevating span{1, t} to span{1, t, sin(θt)}, because the latter space is an EC-space in the
range θ ∈ (0, π

2
) only. Conversely, the strategy of elevating to span{1, t, cos(θt)} first, and

successively to the target space span{1, t, cos(θt), sin(θt)} is feasible. This example illustrates
that proceeding through successive elevations by one order is potentially troublesome when the
target space contains an additional couple of trigonometric functions (or hyperbolic likewise).

The following result holds in the case n = 1, where we denote by Um an m-dimensional
QEC-space.

Proposition 5.25. Let {Bi,m, i = 1, . . . ,m} and {Bi,m+1, i = 1, . . . ,m + 1} be the Bernstein
bases in [a, b] for the generalized spaces Um and Um+1 with Um ⊂ Um+1. Then there exist the
coefficients γ1, . . . , γm+1, with 0 6 γi 6 1, i = 1, . . . ,m+ 1, such that

Bi,m(x) = γiBi,m+1(x) + (1− γi+1)Bi+1,m+1(x), i = 1, . . . ,m, x ∈ [a, b]. (5.12)

In particular,

γi =


1, i = 1,
Di−1fi,m(a)

Di−1fi,m+1(a)
, i = 2, . . . ,m,

0, i = m+ 1,

(5.13)

where fi,m and fi,m+1 are the transition functions that define respectively the {Bi,m} and the
{Bi,m+1}.

Proof. From the conditions (5.1) that define the transition functions, the generalized Bernstein
basis functions Bi,m, i = 1, . . . ,m, have zeros at the endpoints a and b with multiplicities i− 1
and m− i respectively (as is well known in the polynomial case). Hence, the relation between
the bases of orders m and m+ 1 must have the form

Bi,m(x) = γiBi,m+1(x) + δi+1Bi+1,m+1(x), x ∈ [a, b].
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In fact, if Bi,m were a combination of additional basis functions, it could not have a and b as
zeros of the above-mentioned multiplicities.
By construction we know that at a B1,m and B1,m+1 are 1 while B2,m+1 is 0, thus γ1 = 1. A

similar reasoning at b leads to δm+1 = 1.
In addition, we know that the bases are positive for all x ∈ (a, b) and that Di−1Bi,m(a) > 0

for i = 2, . . . ,m, therefore γi, δi+1 > 0. Since

1 ≡
m∑
i=1

Bi,m(x) =
m∑
i=1

(γiBi,m+1(x) + δi+1 Bi+1,m+1(x)) =
m+1∑
i=1

Bi,m+1(x),

for all x ∈ [a, b], we have γ1 = δm+1 = 1 and γi + δi = 1 for i = 2, . . . ,m, proving that

γi =


1, i = 1,
Di−1Bi,m(a)

Di−1Bi,m+1(a)
, i = 2, . . . ,m,

0, i = m+ 1,

from which (5.13) immediately follows.

Corollary 5.26. Let p(x) =
m∑
i=1

ciBi,m(x) =
m+1∑
i=1

c̃iBi,m+1(x), x ∈ [a, b]. Then from equation

(5.12) we easily obtain

c̃i =


c1, i = 1,

γi ci + (1− γi) ci−1, i = 2, . . . ,m,

cm, i = m+ 1,

(5.14)

with γi, i = 2, . . . ,m, as in (5.13).

Elevation by two orders can be performed as stated in the following proposition.

Proposition 5.27. Let {Bi,m, i = 1, . . . ,m} and {Bi,m+2, i = 1, . . . ,m + 2} be the Bernstein
bases in [a, b] for the generalized spaces Um and Um+2 with Um ⊂ Um+2. Then there exist the
coefficients γ1, . . . , γm+2 and δ2, . . . , δm+2, with 0 6 γi 6 1, i = 1, . . . ,m + 2, 0 6 δi 6 1,
i = 2, . . . ,m+ 2, such that for all x ∈ [a, b]

Bi,m(x) = γiBi,m+2(x)+δi+1Bi+1,m+2(x)+(1−γi+2−δi+2)Bi+2,m+2(x), i = 1, . . . ,m. (5.15)

In particular,

γi =


1, i = 1,
Di−1fi,m(a)

Di−1fi,m+2(a)
, i = 2, . . . ,m,

0, i = m+ 1,m+ 2,

(5.16a)

δi+1 =


1− γ2, i = 1,

γi − γi+1 +
Difi,m(a)− γiDifi,m+2(a)

Difi+1,m+2(a)
, i = 2, . . . ,m,

0, i = m+ 1,

(5.16b)

where fi,m and fi,m+2 are the transition functions that define respectively the {Bi,m} and the
{Bi,m+2}.
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Proof. From the conditions that define the transition functions, the generalized Bernstein basis
functions Bi,m, i = 1, . . . ,m, are zero at the endpoints a and b with multiplicities i − 1 and
m− i respectively (as is well known in the polynomial case). Hence, the relation between the
bases of orders m and m+ 2 must have the form

Bi,m(x) = γiBi,m+2(x) + δi+1 Bi+1,m+2(x) + εi+2Bi+2,m+2(x), x ∈ [a, b].

In fact, if Bi,m were a combination of additional basis functions, it could not have a and b as
zeros of the above-mentioned multiplicities.
By construction we know that at a B1,m and B1,m+2 are 1 while B2,m+2 and B3,m+2 are 0,

thus γ1 = 1. A similar reasoning at b leads to εm+2 = 1.
In addition, we know that the bases are positive for all x ∈ (a, b) and that Di−1Bi,m(a) > 0

for i = 2, . . . ,m, therefore γi, δi+1, εi+2 > 0. Since

1 ≡
m∑
i=1

Bi,m(x) =
m∑
i=1

(γiBi,m+2(x) + δi+1Bi+1,m+2(x) + εi+2 Bi+2,m+2(x)) =
m+2∑
i=1

Bi,m+2(x),

for all x ∈ [a, b], we have γ1 = εm+2 = 1, γ2 + δ2 = 1, δm+1 + εm+1 = 1, and γi + δi + εi = 1, for
i = 3, . . . ,m, proving that

γi =


1, i = 1,
Di−1Bi,m(a)

Di−1Bi,m+2(a)
, i = 2, . . . ,m,

0, i = m+ 1,m+ 2,

δi+1 =


1− γ2, i = 1,
DiBi,m(a)− γiDiBi,m+2(a)

DiBi+1,m+2(a)
, i = 2, . . . ,m,

0, i = m+ 1,

from which (5.16a) and (5.16b) follow.

Corollary 5.28. Let p(x) =
m∑
i=1

ciBi,m(x) =
m+2∑
i=1

c̃iBi,m+2(x), x ∈ [a, b]. Then from equation

(5.15) we easily obtain

c̃i =



c1, i = 1,

γ2 c2 + (1− γ2) c1, i = 2,

γi ci + δi ci−1 + (1− γi − δi) ci−2, i = 3, . . . ,m,

δm+1 cm + (1− δm+1) cm−1, i = m+ 1,

cm, i = m+ 2,

(5.18)

with γi, i = 2, . . . ,m, as in (5.16a) and δi, i = 3, . . . ,m+ 1, as in (5.16b).

5.6.3 Explicit formulae of basis functions and corner cutting algo-
rithms

As we have already anticipated, in Section 5.6.5 we will see that our approach can be simply
translated into numerical procedures for the computation in spaces of generalized splines. As
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an alternative, it is interesting to exploit the proposed approach to work out through symbolic
computation the explicit expressions of the basis functions and corner cutting algorithms for
stable evaluation and splitting of generalized spline curves. Although our discussion is confined
here to some relevant examples, we believe that this aspect of our approach is of general interest,
because it provides a starting point for both studying many other particular cases and tackling
the wider problem of devising general formulae for whole classes of spaces.
In this section, by direct application of the constructive method presented in Section 5.3,

we will easily derive the symbolic expression of the Bernstein and B-spline (ONTP) bases for
spaces that are among the most useful for design and widely considered in the literature.
Moreover, we will investigate the existence of corner cutting algorithms via repeated knot
insertion. Such algorithms perform a finite number of iterations, where each step consists of a
convex combinations of control points. This feature guarantees stability of the algorithm and
also offers an interesting geometric interpretation. In fact, while evaluating a curve at a given
parametric value, these algorithms generate as a by-product the splitting of the curve at that
parameter, by providing the control polygons of the two parts. The most famous examples
of corner cutting algorithms are those by de Casteljau and the de Boor, which respectively
provide a stable evaluation procedure for polynomials expressed in the Bernstein basis and
polynomial B-splines. We will thus refer also to the analogous methods for generalized splines
as de Casteljau and de Boor algorithms.

5.6.3.1 Bernstein bases

Proposition 5.29. Let us consider the space U3 = span {1, cos(θt), sin(θt)} with t ∈ [0, 1] and
θ ∈ (0, π). The Bernstein basis functions for this space are:

B1,3(t) = B3,3(1− t) =
1− cos(θ(1− t))

1− cos θ
=

sin2
(
θ
2
(1− t)

)
sin2

(
θ
2

) ,

B2,3(t) = 2
cos
(
θ
2

)
sin2

(
θ
2

) sin

(
θ

2
(1− t)

)
sin

(
θ

2
t

)
,

B3,3(t) =
1− cos(θt)

1− cos θ
=

sin2
(
θ
2
t
)

sin2
(
θ
2

) ,
or, expressed in an alternative, more compact form:B1,3(t)

B2,3(t)
B3,3(t)

 =

0 1 0
1 −1 −1
0 0 1

 1
B3,3(1− t)
B3,3(t)

 .

Proposition 5.30. Let us consider the following spaces of the form U4 = span {1, t, u(t), v(t)}
with t ∈ [0, 1]:

A) u(t) = cos(θt) and v(t) = sin(θt), with θ ∈ (0, 2π);

B) u(t) = (1− t)n and v(t) = tn, with n > 3;

C) u(t) = (1−t)3
1+(h−3)(1−t)t and v(t) = t3

1+(h−3)(1−t)t , with h > 3.

The Bernstein basis functions for the considered spaces are respectively:
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A)

B1,4(t) = B4,4(1− t) =
θ(1− t)− sin(θ(1− t))

θ − sin θ

=
θ − θt− sin θ cos(θt) + cos θ sin(θt)

θ − sin θ
,

B2,4(t) = B3,4(1− t)

=
1

F (t)
(1− cos θ) (θ cos θ − sin θ + θ(1− cos θ)t+ (sin θ − θ cos θ) cos(θt)

+(1− cos θ − θ sin θ) sin(θt)) ,

B3,4(t) =
1

F (t)
(1− cos θ) (θ − sin θ − θ(1− cos θ)t− (θ − sin θ) cos(θt)

+(1− cos θ) sin(θt))

=
1

F (t)
(1− cos θ) ((θ − sin θ)(1− cos(θt))− (1− cos θ)(θt− sin(θt))) ,

B4,4(t) =
θt− sin(θt)

θ − sin θ
,

with F (t) := (θ − sin θ)(2(1− cos θ)− θ sin θ);

B)

B1,4(t) = B4,4(1− t) = (1− t)n,

B2,4(t) = B3,4(1− t) =
1

n− 2
(−1 + n(1− t)− (n− 1)(1− t)n + tn)

=
1

n− 2
((n− 1)(1− t)− t− (n− 1)(1− t)n + tn) ,

B3,4(t) =
1

n− 2
(−1 + nt+ (1− t)n − (n− 1)tn)

=
1

n− 2
(−(1− t) + (n− 1)t+ (1− t)n − (n− 1)tn) ,

B4,4(t) = tn;

C)

B1,4(t) = B4,4(1− t) =
(1− t)3

1 + (h− 3)(1− t)t ,

B2,4(t) = B3,4(1− t) =
h(1− t)2t

1 + (h− 3)(1− t)t ,

B3,4(t) =
h(1− t)t2

1 + (h− 3)(1− t)t ,

B4,4(t) =
t3

1 + (h− 3)(1− t)t .

Alternatively, these Bernstein basis functions can be expressed in the following compact form:
B1,4(t)
B2,4(t)
B3,4(t)
B4,4(t)

 =
1

σ + τ


0 0 σ + τ 0
σ τ −σ −τ
τ σ −τ −σ
0 0 0 σ + τ




1− t
t

B4,4(1− t)
B4,4(t)

 ,
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where σ, τ , and B4,4 are given by:

A) σ = θ cos θ − sin θ, τ = θ − sin θ, and B4,4(t) = θt−sin(θt)
θ−sin θ

;

B) σ = n− 1, τ = −1, and B4,4(t) = tn;

C) σ = h− 1, τ = −1, and B4,4(t) = t3

1+(h−3)(1−t)t .

Proposition 5.31. Let us consider the space U5 = span {1, t, t2, cos(θt), sin(θt)} with t ∈ [0, 1]
and θ ∈ (0, 2π). The Bernstein basis functions for this space are:

B1,5(t) = B5,5(1− t),
B2,5(t) = B4,5(1− t),

B3,5(t) =
θ (− sin θ − θ(1− t)t(1− cos θ) + sin(θt) + sin(θ(1− t)))(

θ cos
(
θ
2

)
− 2 sin

(
θ
2

))2 ,

B4,5(t) =
(1− cos θ) (2− θ2t2) + 2(θ(θt− sin(θt)− t sin θ) + cos(θ(1− t))− cos(θt))

2
(
θ cos

(
θ
2

)
− 2 sin

(
θ
2

))2 +B5,5(t),

B5,5(t) =
2(1− cos(θt))− θ2t2

2(1− cos θ)− θ2
,

or, expressed in a more compact form:
B1,5(t)
B2,5(t)
B3,5(t)
B4,5(t)
B5,5(t)

 = C


(1− t)2

2(1− t)t
t2

B5,5(1− t)
B5,5(t)

 ,

where, setting λ := θ(θ−sin θ)
2(cos θ−1)+θ sin θ

, σ :=
(θ−sin θ)((2−θ2) cos θ+2θ sin θ−2)

2 sin θ(θ cos( θ2)−2 sin( θ2))
2 , τ := σ+λ, and υ :=

tan θ
2

θ
λ,

the matrix C is

C :=


0 0 0 1 0
σ υ τ −σ −τ

τ
(

1
υ
− 2
)

1− 2υ τ
(

1
υ
− 2
)
−τ
(

1
υ
− 2
)
−τ
(

1
υ
− 2
)

τ υ σ −τ −σ
0 0 0 0 1

 .

5.6.3.2 De Casteljau algorithms

For any given Bernstein basis of an m-dimensional QEC-space Um we can provide a de
Casteljau algorithm for the stable evaluation of the associated Bézier representation. This
algorithm can be sketched in the following form, where ci, i = 1, . . . ,m, denote the coefficients
of the Bézier representation in the Bernstein basis of Um, and t̄ ∈ [0, 1] is the evaluation
parameter. The additional quantities ω`j, ` = 1, . . . ,m− 1, j = 1, . . . ,m− `, that appear in the
expressions depend on the value t̄ and are obtained by considering suitable ratios of transition
functions defined on the different knot partitions that underlie each step of the algorithm:

ω`j =
D
k∗j,j1+1

+ fj,m(xj1)

D
k∗j,j1+1

+ f̂j,m(xj1)
,
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where {f̂j,m} are the transition functions defined on the extended partition obtained after the
`th insertion of t̄, and k∗i,i1 is determined as for (5.7).

Algorithm 2 (de Casteljau algorithm).
Input: t̄ ∈ [0, 1];

c0
i := ci, i = 1, . . . ,m;
ω`j, ` = 1, . . . ,m− 1, j = 1, . . . ,m− `;

for ` = 1, . . . ,m− 1
for j = 1, . . . ,m− `
c`j = (1− ω`j) c`−1

j + ω`j c
`−1
j+1;

Output: cm−1
1 , the value of the Bézier representation at t̄.

Let us observe that the above algorithm can be compactly expressed in the following matrix
form:

Ωm−1 Ωm−2 · · · Ω1


c1

c2
...
cm

 ,

where

Ω` :=


1− ω`1 ω`1

1− ω`2 ω`2
. . . . . .

1− ω`m−` ω`m−`

 ∈ R(m−`)×(m−`+1).

In the following, we provide the explicit expressions of the coefficients ω`j for some QEC-
spaces:

• span {1, cos(θt), sin(θt)} with θ ∈ (0, π);

• span {1, t, u(t), v(t)}, where either u(t) = cos(θt), v(t) = sin(θt) with θ ∈ (0, 2π), or u, v
as in [Cos00] or as in [DG85].

In all cases, we will denote by {Bi,m} the Bernstein basis of the considered space and deal with
functions p(t) =

∑m
i=1 ciBi,m(t) expressed in such a basis with coefficients {ci, i = 1, . . . ,m}.

Figure 5.8 shows some examples of the application of de Casteljau algorithms for the evalua-
tion of generalized Bézier curves built on the above-mentioned spaces and in space span{1, t, t2,
cos(θt), sin(θt)} with θ ∈ (0, 2π).

Proposition 5.32. Let us consider the space span {1, cos(θt), sin(θt)} with θ ∈ (0, π) and
t ∈ [0, 1]. Then, for any t̄ ∈ [0, 1],

p(t̄) =
(
1− ω2

1 ω2
1

)(1− ω1
1 ω1

1 0
0 1− ω1

2 ω1
2

)c1

c2

c3

 ,

where

ω1
1 =

cos θ
2

sin
(
θ
2
t̄
)

sin θ
2

cos
(
θ
2
t̄
) = 1− 2 sin

(
θ
2
(1− t̄)

)
sin θ cos

(
θ
2
(1− t̄)

)
+ (1− cos θ) sin

(
θ
2
(1− t̄)

) ,
ω1

2 =
2 sin

(
θ
2
t̄
)

sin θ cos
(
θ
2
t̄
)

+ (1− cos θ) sin
(
θ
2
t̄
) ,
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ω2
1 =

sin
(
θ
2
t̄
)

cos
(
θ
2
(1− t̄)

)
sin θ

2

= sin

(
θ

2
t̄

)(
sin

(
θ

2
t̄

)
+

cos θ
2

sin θ
2

cos

(
θ

2
t̄

))
.

Proposition 5.33. Let us consider the space span{1, t, cos(θt), sin(θt)} with θ ∈ (0, 2π) and
t ∈ [0, 1]. Then, for any t̄ ∈ [0, 1],

p(t̄) =
(
1− ω3

1 ω3
1

)(1− ω2
1 ω2

1 0
0 1− ω2

2 ω2
2

)1− ω1
1 ω1

1 0 0
0 1− ω1

2 ω1
2 0

0 0 1− ω1
3 ω1

3



c1

c2

c3

c4

 ,

where

ω1
1 =

θt̄− sin(θt̄)

(θ − sin θ)σ2

, ω1
2 =

θ(σ2 − t̄) + σ0

θ(σ2 − σ1 − 1) + 2σ0

, ω1
3 =

θ(σ1 + (1− t̄))− σ0

(θ − sin θ)σ1

,

ω2
1 =

θ(σ1 + σ2 − 1)t̄+ 2σ0

θ(σ2 − t̄) + σ0

, ω2
2 =

θ(σ1t̄− σ2(1− t̄)) + σ0

θ(σ1 + (1− t̄))− σ0

,

ω3
1 =

(θt̄− sin(θt̄))σ1

θ(σ1t̄− σ2(1− t̄)) + σ0

,

with

σ0 :=
sin(θ(1− t̄)) + sin(θt̄)− sin θ

1− cos θ
, σ1 := −1− cos(θ(1− t̄))

1− cos θ
, σ2 :=

1− cos(θt̄)

1− cos θ
.

Proposition 5.34. Let us consider the space span {1, t, (1− t)n, tn} with n > 3 and t ∈ [0, 1].
Then, for any t̄ ∈ [0, 1],

p(t̄) =
(
1− ω3

1 ω3
1

)(1− ω2
1 ω2

1 0
0 1− ω2

2 ω2
2

)1− ω1
1 ω1

1 0 0
0 1− ω1

2 ω1
2 0

0 0 1− ω1
3 ω1

3



c1

c2

c3

c4

 ,

where

ω1
1 = 1− (n− 2)(1− t̄)n−2t̄

1− (1− t̄)n−2
, ω1

2 = t̄, ω1
3 =

(n− 2)t̄n−2(1− t̄)
1− t̄n−2

,

ω2
1 = 1− (1− (1− t̄)n−2) (1− t̄)

(n− 2)t̄
, ω2

2 =
(1− t̄n−2) t̄

(n− 2)(1− t̄) ,

ω3
1 = t̄.

Proposition 5.35. Let us consider the space span
{

1, t, (1−t)3
1+(h−3)(1−t)t ,

t3

1+(h−3)(1−t)t

}
with h > 3

and t ∈ [0, 1]. Then, for any t̄ ∈ [0, 1],

p(t̄) =
(
1− ω3

1 ω3
1

)(1− ω2
1 ω2

1 0
0 1− ω2

2 ω2
2

)1− ω1
1 ω1

1 0 0
0 1− ω1

2 ω1
2 0

0 0 1− ω1
3 ω1

3



c1

c2

c3

c4

 ,

where

ω1
1 =

ht̄

3(1− t̄) + ht̄
= 1− 3(1− t̄)

3(1− t̄) + ht̄
, ω1

2 = t̄, ω1
3 =

3t̄

3t̄+ h(1− t̄) ,
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ω2
1 =

ht̄

h− (h− 3)(1− t̄)2
= 1− (3(1− t̄) + ht̄) (1− t̄)

3(1− t̄)2 + h(1− (1− t̄)2)
,

ω2
2 = 1− h(1− t̄)

h− (h− 3)t̄2
=

(3t̄+ h(1− t̄)) t̄
3t̄2 + h(1− t̄2)

,

ω3
1 =

t̄ (h− (h− 3)t̄2)

3 (1 + (h− 3)(1− t̄)t̄) .

In addition to these explicit formulae, the quantities {ω`j} can be evaluated in a recursive and
efficient way by applying the following procedure.

Algorithm 3 (Coefficients for de Casteljau algorithm in span
{

1, t, (1−t)3
1+(h−3)(1−t)t ,

t3

1+(h−3)(1−t)t

}
).

Input: t̄ ∈ [0, 1];
Initialize: d0

1 = 3, d0
2 = h, d0

3 = h, d0
4 = 3;

for ` = 1, . . . , 3
for j = 1, . . . , 4− `
d`j = d`−1

j (1− t̄) + d`−1
j+1t̄;

ω`j = 1− d`−1
j

d`j
(1− t̄) =

d`−1
j+1

d`j
t̄;

Output: coefficients ω`j.

It is interesting to remark that this algorithm has a form similar to Algorithm 5.1 in [MP99].

Figure 5.8 shows examples of the application of the de Casteljau algorithms in some gener-
alized spaces.

Remark 5.16. In particular, Figures 5.8(a), 5.8(b), 5.8(c) illustrate the comparison between
the corner cutting algorithms in Propositions 5.33, 5.34, 5.35, and the de Casteljau algorithm
proposed in [CM06]. In fact, these algorithms are in general different, though they produce
of course the same final value. The algorithm obtained by means of our approach is a proper
corner cutting procedure in the sense that the points computed in the intermediate steps are
all obtained by convex combinations of the points of the previous step, thus they are all placed
on the control polygon of the curve. On the contrary, the first step of the algorithm in [CM06]
proceeds in a substantially different way, which entails that the first and last points are not
computed as convex combinations of the initial ones. However, for the space considered in
Proposition 5.34, we observe that the points computed at the first step lie on the edges of the
control polygon computed at the first step by the algorithm proposed here (see Figure 5.8(b)),
and in the successive steps both algorithms produce the same points.

Remark 5.17. Referring to Figure 5.8(d) for an illustrative example, if we consider the space
span {1, cos(θt), sin(θt), cos(2θt), sin(2θt)} with θ ∈ (0, 2

3
π) and t ∈ [0, 1], then the de Casteljau

algorithm that derives from our procedure of knot insertion coincides at each step with the
so-called B-algorithm proposed in [MP99].

Remark 5.18. If we consider the space span {1, t, cos(θt), sin(θt), cos(2θt), sin(2θt)} with θ ∈
(0, 2

3
π) and t ∈ [0, 1], then the de Casteljau algorithm that derives from our procedure of

knot insertion is an alternative to the algorithm proposed in [RSA14] (we do not report the
expressions for the quantities {ω`j} because of their excessive length). In particular, we observe
that both proposals are corner cutting algorithms in the proper sense and at each step both
place the points on the control polygon of the previous iteration, but in different locations (see
Figure 5.8(e)). However, since our procedure is based on the (unique) ONTP basis and knot
insertion, it provides at each step control points that are naturally associated with the ONTP
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(a) (b) (c)

(d) (e)

Figure 5.8: Examples of generalized Bézier curves and corner cutting algorithms in some QEC-
spaces: (a) span {1, t, cos(θt), sin(θt)} with θ = π

2 , (b) span {1, t, (1− t)n, tn} with n = 4, (c)

span
{

1, t, (1−t)3
1+(h−3)(1−t)t ,

t3

1+(h−3)(1−t)t

}
with h = 6, (d) span

{
1, t, t2, cos(θt), sin(θt)

}
with θ = π

2 ,
(e) span {1, t, cos(θt), sin(θt), cos(2θt), sin(2θt)} with θ = π

2 . In all cases, the evaluation parameter
is t̄ = 1

3 . (a)–(c) Comparisons between the corner cutting algorithm that derives from our proce-
dure of knot insertion (dots, solid line) and the algorithm proposed in [CM06] for spaces of the form
span{1, t, u(t), v(t)} (small circles, dashed line). (d) Steps of the corner cutting algorithm that derives
from our procedure of knot insertion. (e) Comparison between the corner cutting algorithm that de-
rives from our procedure of knot insertion (dots, solid line) and the algorithm proposed in [RSA14]
(small circles, dashed line).

basis of the spline space obtained at any intermediate step, and this representation enjoys the
variation diminishing property.

We conclude this section by emphasizing that a de Casteljau algorithm in the proper sense
provides as a by-product a splitting of the given curve, as the points computed during the steps
of the algorithm form the control polygons of the two segments in which the curve is split.

5.6.3.3 B-spline bases

In this section, we give the explicit expressions of the ONTP basis functions for some spaces
S(Um,M ,∆) built on either a uniform or a non-uniform knot partition and such that all spaces
{Ui,m} are equal to the one specified in each case.
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Uniform knot partition. We start by considering the case of the uniform knot partition
∆ = {xi = i}.

Proposition 5.36. Let us consider 4-dimensional QEC-spaces of the form Ui,4 = span{1, t,
u(t), v(t)} with t ∈ [0, 1] for all i, where u(t) and v(t) are as follows:

A) u(t) = cos(θt) and v(t) = sin(θt), with θ ∈ (0, 2π);

B) u(t) = (1− t)n and v(t) = tn, with n > 3;

C) u(t) = (1−t)3
1+(h−3)(1−t)t and v(t) = t3

1+(h−3)(1−t)t , with h > 3.

The B-spline basis functions of the associated spline spaces on uniform knots are respectively:

A)

Ni,4(x) =



θ(x−i)−sin(θ(x−i))
2θ(1−cos θ)

, i 6 x < i+ 1,
θ(i+2−x)−sin(θ(i+2−x))−2θ(x−(i+1)) cos θ+2 sin(θ(x−(i+1)))

2θ(1−cos θ)
, i+ 1 6 x < i+ 2,

θ(x−(i+2))−sin(θ(x−(i+2)))−2θ(i+3−x) cos θ+2 sin(θ(i+3−x))
2θ(1−cos θ)

, i+ 2 6 x < i+ 3,
θ(i+4−x)−sin(θ(i+4−x))

2θ(1−cos θ)
, i+ 3 6 x < i+ 4,

0, otherwise;

B)

Ni,4(x) =



(x−i)n
2n

, i 6 x < i+ 1,
(i+2−x)n−2(x−(i+1))n

2n
+ x− (i+ 1), i+ 1 6 x < i+ 2,

(x−(i+2))n−2(i+3−x)n

2n
+ i+ 3− x, i+ 2 6 x < i+ 3,

(i+4−x)n

2n
, i+ 3 6 x < i+ 4,

0, otherwise;

C)

Ni,4(x) =



(x−i)3
2h(1+(h−3)(i+1−x)(x−i)) , i 6 x < i+ 1,

(i+2−x)3−2(x−(i+1))3

2h(1+(h−3)(i+2−x)(x−(i+1)))
+ x− (i+ 1), i+ 1 6 x < i+ 2,

(x−(i+2))3−2(i+3−x)3

2h(1+(h−3)(i+3−x)(x−(i+2)))
+ i+ 3− x, i+ 2 6 x < i+ 3,

(i+4−x)3

2h(1+(h−3)(i+4−x)(x−(i+3)))
, i+ 3 6 x < i+ 4,

0, otherwise.

Non-uniform knot partition. Now we consider the same QEC-spaces as above, but we give
the explicit expressions of the B-spline basis functions for spline spaces on non-uniform knot
partitions.

Proposition 5.37. Being the setting as in Proposition 5.36, each B-spline basis function Ni,4
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has support [ti, ti+4] and is of the form:

Ni,4(x) =



1

Hi

d2
i

di + di+1

F (τi), ti 6 x < ti+1,

−
(

1

Hi

+
1

Hi+1

)
d2
i+1

di+1 + di+2

F (τi+1)

− 1

Hi

(
Gi+1(x)− d2

i+1

di + di+1

F (1− τi+1)

)
,

ti+1 6 x < ti+2,

1−
(

1

Hi

+
1

Hi+1

)
d2
i+2

di+1 + di+2

F (1− τi+2)

− 1

Hi+1

(
Gi+2(x)− d2

i+2

di+2 + di+3

F (τi+2)

)
,

ti+2 6 x < ti+3,

1

Hi+1

d2
i+3

di+2 + di+3

F (1− τi+3), ti+3 6 x < ti+4,

0, otherwise;

where di := ti+1−ti, τi := x−ti
ti+1−ti , and in the considered cases the other quantities are respectively

defined as follows:

A)

F (t) = θt− sin(θt),

Gi(x) = (θ − sin θ)(di − di−1)− θ(1− cos θ) (x− ti) ,
Hi = (θ − sin θ) (di + di+1 + di+2) + (3 sin θ − θ(2 + cos θ))di+1;

B)

F (t) = tn,

Gi(x) = (di − di−1)− n (x− ti) ,
Hi = (di + di+1 + di+2) + (n− 3)di+1;

C)

F (t) =
t3

1 + (h− 3)(1− t)t ,

Gi(x) = (di − di−1)− h (x− ti) ,
Hi = (di + di+1 + di+2) + (h− 3)di+1.

5.6.4 Subdivision schemes in generalized spline spaces

In this section we discuss some connections between knot insertion in generalized spline spaces
and subdivision schemes. In particular, performing repeated knot insertion in a given spline
space and thus passing from a coarser knot partition to a refined one, we work out the mask of
a related subdivision scheme.
Based on the observations in Section 5.6.1, if the spline space admits refinability, then the
subdivision scheme provides limit functions that belong to the same space. Conversely, if re-
finability does not hold, the limit functions of the scheme do not belong to the considered space.
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Given a generalized spline space on a (bi-infinite) knot partition ∆ = {xi} with distinct
knots, let {Ni,m} be the related B-spline basis, and let {N̂2i+j,m} be the B-spline basis on a
knot partition ∆̂ = {x̂i} such that x̂2i = xi, x̂2i+1 = 1

2
(xi + xi+1). If the associated spline

spaces are such that the inclusion holds true, we can express one basis function on the coarser
partition as a linear combination of the basis functions on the refined partition as

Ni,m(x) =
m∑
j=0

χj,i N̂2i+j,m(x), x ∈ R, (5.19)

where the coefficients χj,i are given by

χ0,i = fi,m(x̂2i+1), χ1,i = 1, χ2,i = 1− fi+1,m(x̂2i+3),

if m = 2, and for m > 2 they can be determined explicitly by the recurrence relation

χ0,i =
fi,m(x̂2i+1)

f̂2i,m(x̂2i+1)
, (5.20)

χj,i =
1

f̂2i+j,m(x̂2i+j+1)

[
fi,m(x̂2i+j+1)− fi+1,m(x̂2i+j+1)

−
j−1∑

k=j−m+2

χk,i

(
f̂2i+k,m(x̂2i+j+1)− f̂2i+k+1,m(x̂2i+j+1)

)]

= χj−1,i +
1

f̂2i+j,m(x̂2i+j+1)

[
fi,m(x̂2i+j+1)− fi+1,m(x̂2i+j+1)− χj−m+2,i

+

j−1∑
k=j−m+3

(χk−1,i − χk,i)f̂2i+k,m(x̂2i+j+1)

]
,

for j = 1, . . . ,m, where we set χj,i = 0 if j < 0 or j > m.
To work out relation (5.20), we write the m ×m linear system which arises by requiring that
(5.19) holds at each knot x̂k, k = 2i+ 1, . . . , 2i+m+ 1. The system matrix is a banded matrix
with bandwidth m − 1. From this property, and recalling the definition (5.3) of the B-spline
basis functions in terms of the transition functions, (5.20) can be easily determined.
Remark 5.19. In general, expression (5.20) can provide the coefficients of a non-uniform non-
stationary subdivision scheme.
As an application, we exploit the above relations to work out the refinement masks associated

with some subdivision schemes, either in the situation where refinability holds or in the opposite
one. In all cases, we shall consider a uniform knot partition ∆.
Remark 5.20. In the context of spline bases that admit nonstationary refinement, the knot in-
sertion procedure gives rise to nonstationary subdivision schemes, as we see in the two examples
below, which involve trigonometric functions.

Example 5.7. Let us consider the mixed algebraic/trigonometric space span{1, t, cos(θt),
sin(θt)}, with t ∈ [0, 1] and θ ∈ (0, π). In this space refinability holds, and the refinement
by repeated knot insertion (i.e., placing a new knot at the midpoint of each knot interval)
produces a nonstationary subdivision scheme (see [WW01, Section 4.4.3]) whose mask is[

1

4(1 + σk)
,
1

2
, 1− 1

2(1 + σk)
,
1

2
,

1

4(1 + σk)

]
, σk := cos

(
θ

2k

)
,
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where the “tension” parameters satisfy the recurrence σk =
√

1+σk−1

2
starting with σ0 ∈ (−1, 1),

which is determined by the value of θ.
As showed in [WW01], this formula is valid also in the purely polynomial case span{1, t, t2, t3)}

(corresponding to the limit θ = 0, thus σk = 1 ∀k), and in the algebraic/hyperbolic (exponen-
tial) case span{1, t, cosh(θt), sinh(θt)} with θ > 0 (where now σk := cosh

(
θ
2k

)
> 1).

In all three cases, the resulting limit curve is a C2 spline.

Example 5.8. Now we consider the mixed algebraic/trigonometric space span{1, t, t2, cos(θt),
sin(θt)}, with t ∈ [0, 1] and θ ∈ (0, 2π). Also this space admits refinability, and the refinement
produces a nonstationary subdivision scheme whose mask is[

1

8(1 + σk)
,
1

4
+

1

8(1 + σk)
,
3

4
− 1

4(1 + σk)
,
3

4
− 1

4(1 + σk)
,
1

4
+

1

8(1 + σk)
,

1

8(1 + σk)

]
,

σk := cos

(
θ

2k

)
,

where the “tension” parameters satisfy the recurrence σk =
√

1+σk−1

2
starting with σ0 ∈ (−1, 1),

which is determined by the value of θ.
Similarly to the previous example, this formula is valid also in the purely polynomial case

span{1, t, t2, t3, t4)} if θ = 0, and in the algebraic/hyperbolic case span{1, t, t2, cosh(θt), sinh(θt)}
with θ > 0.
The resulting limit curve is a C3 spline.

Example 5.9. Let us focus on the space of variable-degree polynomial splines [Cos00] span{1, t,
(1 − t)n1 , tn2} with t ∈ [0, 1] and degrees n1 = n2 = h > 3. This space does not possess the
refinability property. However, we can still perform knot insertion according to the first strategy
described in Section 5.6.1, and after one step of refinement the coefficients that we obtain turn
out to be the coefficients that form the mask of the stationary subdivision scheme studied in
[GP00]: [

1

2h
,
1

2
, 1− 1

2h−1
,
1

2
,

1

2h

]
, h > 3.

By the eigenanalysis of the local subdivision matrix, it can be proved that this scheme converges
to a C1 spline.

Example 5.10. Also the rational space span
{

1, t, (1−t)3
1+(µ−3)(1−t)t ,

t3

1+(ν−3)(1−t)t

}
with t ∈ [0, 1] and

“tension” parameters µ = ν = h > 3, studied in [DG85], does not admit refinability. However,
proceeding by the same knot insertion strategy recalled in the previous example, we obtain the
mask: [

3

2h(h+ 1)
,
1

2
, 1− 3

h(h+ 1)
,
1

2
,

3

2h(h+ 1)

]
, h > 3.

To our knowledge, this scheme has never appeared in the literature, and, by the eigenanalysis
of the local subdivision matrix, the convergence to a C1 spline can be proved.

5.6.5 Computational methods

One of the main arguments in support of generalized splines is that, in some applications,
they may be more powerful than the well-established polynomial and rational splines. In this
view, their effective use requires that simple and efficient tools for computation be available.
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An advantage of the proposed constructive approach is that it straightforwardly translates into
procedures for computing with generalized splines. Based on this observation, the following
list of algorithms outlines the main computational tools that can be drawn from the previous
sections, including methods for evaluating a generalized B-spline with non-uniform and also
multiple knots (and, analogously, its derivatives and integral), and for computing the spline
coefficients of the representations associated either with a refined knot partition or with a raised
order.

Algorithm 4 (Construction of transition functions). Let S(Um,M ,∆) be a given generalized
spline space and ∆∗ an extended partition. To determine the coefficients of the transition
functions fi,m, i = 2, . . . ,m+K, w.r.t. the QEC-systems {1, uj,2, . . . , uj,m}, j = 0, . . . , k:

1. solve the linear system (5.2) for each fi,m, i = 2, . . . ,m+K;

2. assemble the matrix B = (bi,j) of dimensions (m + K) × m(m − 1) that in each row i
stores the solution of the ith linear system, i.e., the coefficients that define the transition
function fi,m w.r.t. to the QEC-systems {1, uij ,2, . . . , uij ,m}, j = 1, . . . , p− 1.

Remark 5.21. Since f1,m = 1, the first row of the matrix B above is given by (1, 0, . . . , 0, . . . , 1, 0,
. . . , 0). However, note that they are not needed in the following algorithms.

Algorithm 5 (Evaluation of transition functions). To evaluate at x̄ ∈ [t`, t`+1] = [xh, xh+1] the
(nontrivial) transition functions f`−m+2,m, . . . , f`,m:

1. r ← m(m− 1);

2. for i = `−m+ 2, . . . , `

i. r ← r −m;

ii. fi,m(x̄) ←
m∑
j=1

bi,r+j uh,j(x̄), where the {bi,j} are the entries of the matrix B con-

structed by Algorithm 4.

Algorithm 6 (Evaluation of a generalized spline). Given x̄ ∈ [a, b], to evaluate the spline
(5.10) at x̄:

1. determine ` such that x̄ ∈ [t`, t`+1);

2. use Algorithm 5 to evaluate the transition functions f`−m+2,m, . . . , f`,m at x̄;

3. N`−m+1,m(x̄)← 1− f`−m+2,m(x̄);
Ni,m(x̄)← fi,m(x̄)− fi+1,m(x̄) for i = `−m+ 2, . . . , `− 1;
N`,m(x̄)← f`,m(x̄).

4. compute s(x̄) as the linear combination (5.10).

Remark 5.22 (Derivatives and integral of a generalized spline). By linearity, evaluating the
derivatives and integral amounts to differentiating and integrating the transition functions and
ultimately the functions {ui,j} of the QEC-systems. Thus this computation follows the same
outline of Algorithms 5 and 6.

Algorithm 7 (Knot insertion). Let S(Um,M ,∆) be a given generalized spline space, ∆∗ an
extended partition, and s a spline function of the form (5.10). Given t̂ ∈ [a, b], to determine
the coefficients ĉi, i = 1, . . . ,m+K + 1, obtained by inserting t̂ in ∆∗ once:



132 5. A constructive approach to generalized splines

1. determine ` such that t̂ ∈ [t`, t`+1);

2. compute the coefficients αi, i = `−m+ 2, . . . , `− r + 1 through (5.7);

3. use (5.11) to compute the coefficients ĉi, i = 1, . . . ,m+K + 1.

Algorithm 8 (Order elevation). Let S(Um,M ,∆) be a given generalized spline space, ∆∗
an extended partition, and s a spline function of the form (5.10). To represent s in the space
S(Um+n,M̃ ,∆) of order elevated by n = 1, 2:

1. repeatedly apply Algorithm 7 to the space S(Um,M ,∆) until all the knots have multi-
plicity m− 1;

2. on each non-degenerate knot interval [t`, t`+1], determine the m transition functions fi,m
related to the generalized Bernstein basis for U`,m, and evaluate at t` the derivative of
order i− 1 if n = 1, and also of order i if n = 2;

3. on each non-degenerate knot interval [t`, t`+1], determine the m + n transition functions
fi,m+n related to the generalized Bernstein basis for U`,m+n, and evaluate at t` the deriva-
tive of order i− 1 if n = 1, and also of order i if n = 2;

4. if n = 1, determine the coefficients γi, i = 2, . . . ,m, through (5.13), or, if n = 2, determine
the coefficients γi, i = 2, . . . ,m, through (5.16a) and the coefficients δi, i = 2, . . . ,m+ 1,
through (5.16b);

5. determine the coefficients c̃i, i = 1, . . . ,m + n, either through (5.14) if n = 1 or through
(5.18) if n = 2;

6. apply a knot removal algorithm to the spline space S(Um+n,M̂ ,∆), in which all the
knots have multiplicity m, until multiplicity mi + n, where mi is the initial multiplicity
of each knot in S(Um,M ,∆).

5.6.6 Application examples

This section presents an instructive example on the proposed constructive approach and some
numerical examples requiring the combined use of several algorithms proposed above.

Example 5.11 (Construction of a B-spline basis function). In this example we will show the
construction of a single B-spline basis function, defined on a given sequence of QEC-spaces. In
particular, we consider the three spaces

Ui,3 = span{1, t, t2}, t = t(x) := x− xi, x ∈ Ii,
Ui+1,3 = span{1, cos(θt), sin(θt)}, t = t(x) := x− xi+1, x ∈ Ii+1,

Ui+2,3 = span{1, cosh(φt), sinh(φt)}, t = t(x) := x− xi+2, x ∈ Ii+2,

and, assuming for simplicity an extended partition ∆∗ = {tj} with distinct knots tj < tj+1,
we derive the expression of the B-spline basis function Ni+3,3 = fi+3 − fi+4 whose support is
[ti+3, ti+6] = [xi, xi+3].
We observe that, while DUi,3 and DUi+2,3 are EC-spaces on R, for DUi+1,3 to be an EC-space
on the related interval Ii+1 we need to require that di+1 := xi+2 − xi+1 ∈ (0, π) and θ ∈ (0, 1).
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We can now express each piece of the transition functions fj,3, j = i+ 3, i+ 4, in the QEC-
system {uh,1, uh,2, uh,3} that generates the corresponding Uh,3, h = i, i+ 1, i+ 2, on the related
knot interval as

fj,3(x) =



0, x < tj,
3∑

k=1

bj,kuj−3,k(t(x)), tj 6 x < tj+1,

3∑
k=1

bj,k+3uj−2,k(t(x)), tj+1 6 x < tj+2,

1, x > tj+2,

and compute the coefficients {bj,k} of the transition function fj,3, j = i + 3, i + 4, by solving
the 6× 6 linear system of the form (5.2) that arises from the continuity conditions

f
[1]
j,3(xj−3) = 0, Df

[1]
j,3(xj−3) = 0,

f
[1]
j,3(xj−2) = f

[2]
j,3(xj−2), Df

[1]
j,3(xj−2) = Df

[2]
j,3(xj−2),

f
[2]
j,3(xj−1) = 1, Df

[2]
j,3(xj−1) = 0.

For fi+3,3, this gives

bi+3,1 = bi+3,2 = 0, bi+3,3 =
1

d2
i + 2di

θ
tan
(
θ
2
di+1

) ,
bi+3,4 = 1 +

1

cos(θdi+1)− θ
2
di sin(θdi+1)− 1

, bi+3,5 = (1− bi+3,4) cos(θdi+1),

bi+3,6 =
1

θ
2
di + tan

(
θ
2
di+1

) ,
while, for fi+4,3,

bi+4,1 = −bi+4,2 =
1

1− cos(θdi+1) + θ
φ

sin(θdi+1) tanh
(
φ
2
di+2

) , bi+4,3 = 0,

bi+4,4 = 1 +
1

cosh(φdi+2) + φ
θ

tan
(
θ
2
di+1

)
sinh(φdi+2)− 1

,

bi+4,5 = (1− bi+4,4) cosh(φdi+2), bi+4,6 =
1

φ
θ

tan
(
θ
2
di+1

)
+ tanh

(
φ
2
di+2

) .
Recalling Proposition 5.21, when the dimension of the QEC-spaces is 3, like in this case, the

spline space always admits the ONTP basis. For this reason, it turns out that the transition
functions are always positive and monotonically increasing and that the difference between two
of them is always positive as well. Based on all the results in the previous sections, we can thus
conclude that the function Ni+3,3 = fi+3,3 − fi+4,3 is a member of the B-spline (ONTP) basis.

Example 5.12 (Explicit formulae for B-spline bases in the case m = 3). If we consider spaces
with a relatively simple structure (i.e., with low dimension m and basic expressions for the
generators of QEC-systems), the theoretical framework presented in Section 5.3 also allows
for computing symbolically explicit expressions of the basis functions. As an example, we
have computed the generic expression of a transition function in a generalized spline space
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S(U3,M ,∆) with Ui,3 = span{1, ui(x), vi(x)} for all i:

fi,3(x) =



0, x < ti,

− Gi(x)

Hi(ti+2)
, ti 6 x < ti+1,

Hi(x)

Hi(ti+2)
, ti+1 6 x < ti+2,

1, x > ti+2,

where

Ci := u′i(ti+1)v′i(ti)− u′i(ti)v′i(ti+1),

Fi(x, y) := (vi(ti)− vi(x))u′i(y)− (ui(ti)− ui(x))v′i(y),

Gi(x) := Ci+1Fi(x, ti), Hi(x) := CiFi+1(x, ti+2)− Ci+1Fi(ti+1, ti),

and the B-spline basis functions are defined as Ni,3(x) := fi,3(x)− fi+1,3(x).

Example 5.13 (Tools for Isogeometric Analysis). In this example we discuss how the B-
spline basis functions defined by our approach can be conveniently exploited in the context of
Isogeometric Analysis.
A first advantageous aspect is related to the fact that the fundamental operations of dif-

ferentiation and integration can be performed straightforwardly, by following the outline of
Algorithms 5 and 6, which only require to know the derivatives and primitive functions of the
functions {ui,j}. These, in turn, take a simple form since for spaces of generalized splines use-
ful for design the QEC-systems consist of basic trigonometric, polynomial, or simple rational
functions.
Moreover, the tools of knot insertion and order elevation provided in Sections 5.6.1 and 5.6.2

can be combined to perform the so-called k-refinement [HCB05, Section 2.6]. Such a refinement
approach results in a lower number of basis functions and higher continuity with respect to the
h-p-refinement, as illustrated by Figure 5.9, which is the counterpart of Figure 10 in [HCB05],
exploiting a space of generalized splines instead of polynomial splines.

Example 5.14 (2-order elevation). As discussed in Section 5.6.2, when the target space con-
tains an additional couple of trigonometric or hyperbolic functions, it has to be reached by
elevating by two orders at once. Figure 5.10 shows two examples of 2-order elevations for both
generalized Bézier and B-spline curves built on spaces of mixed type.

Example 5.15 (Modeling with generalized B-splines). This example illustrates two essential
tools for geometric modeling and design. The first is the progressive refinement of a parametric
curve, which is shown in Figures 5.11(a) and 5.11(b). The second is the procedure of conversion
into standard representation (i.e., with clamped knot partition) of a closed generalized spline
curve with a periodic non-uniform knot partition. It has been obtained by exploiting the knot
insertion formula (5.7) at the left and the right endpoint of the knot partition. The standard
representation is shown in Figure 5.11(c).

5.7 Concluding remarks
To summarize, in this chapter we proposed a general approach that allows us to construct

the optimal normalized totally positive basis for a generalized spline space, if it admits one.
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{0, 0, 0, 1, 1, 1}, m = 3

(a)
Knot insertion

↓

{
0, 0, 0, 1

2 , 1, 1, 1
}
, m = 3

Order elevation
↓

{
0, 0, 0, 0, 1

2 ,
1
2 , 1, 1, 1, 1

}
, m = 4

(b)

Order elevation
↓

{0, 0, 0, 0, 1, 1, 1, 1}, m = 4

Knot insertion
↓

{
0, 0, 0, 0, 1

2 , 1, 1, 1, 1
}
, m = 4

(c)

Figure 5.9: k-refinement takes advantage of the fact that knot insertion and order elevation do not
commute. (a) Base case of one element in the EC-space span {1, cos(θt), sin(θt)} with θ = 2 and the
specified extended partition. The EC-space is to be order-elevated to span {1, t, cos(θt), sin(θt)}. (b)
h-p-refinement: knot insertion followed by order elevation results in six basis functions that are C1

at internal knots. (c) k-refinement: order elevation followed by knot insertion results in five basis
functions that are C2 at internal knots.
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Figure 5.10: Elevation by two orders on generalized Bézier (top) and B-spline (bottom) curves
for different spaces: from span {1, cos(θit), sin(θit)} to span {1, cos(θit), sin(θit), cosh(φit), sinh(φit)}
with t ∈ [0, 3.14] and θi = 0.5, φi = 1, ∀i (left), and from span {1, t, cos(θit), sin(θit)} to span {1, t,
cos(θit), sin(θit), t cos(θit), t sin(θit)} with t ∈ [0, 6.28] and θi = 0.5, ∀i (right). For the B-spline
curves in the bottom left and right figures, the knot partitions are {0, 0, 0, 3.14, 6.28, 9.42, 9.42, 9.42}
and {0, 0, 0, 0, 3.14, 6.28, 9.42, 12.56, 12.56, 12.56, 12.56} respectively.

(a) (b) (c)

Figure 5.11: Example of a closed spline curve with periodic non-uniform knot partition. All the
underlying QEC-spaces are span

{
1, t, (1−t)3

1+(hi−3)(1−t)t ,
t3

1+(hi−3)(1−t)t

}
, where the tension parameter hi is

8 for one space and 4 for all others. Left: curve and control polygon corresponding to the knot par-
tition {−0.55,−0.45,−0.35, 0, 0.35, 0.45, 0.55, 0.65, 1, 1.35, 1.45, 1.55}; center: one step of refinement,
obtained by inserting the midpoint of each knot interval; right: standard representation.
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Moreover, based on this method, we provided a practical criterion for determining whether a
given spline space possesses the ONTP basis, and we showed how this result can be translated
into a general numerical methodology for the verification of the existence of such a basis. In
addition, the idea of transition functions, which is the key ingredient of the proposed construc-
tion, proved to be extremely convenient also to formulate computational algorithms and express
essential operations which are commonly used in the context of geometric modeling.
Although we presented the framework in the setting of QEC-spaces all having the same di-

mension and parametric continuity conditions at the knots, the approach lends itself to the
generalization to the cases where the QEC-spaces may differ in dimension and geometric con-
tinuity conditions are required.





Chapter 6

Conclusion

In this dissertation we have addressed several problems that are of interest in the context
of geometric modeling, both theoretical and practical. In particular, the contributions of our
work cover some intimately connected topics, namely subdivision schemes, non-uniform local
interpolation with curves and surfaces, and generalized splines.
In Chapter 2 we have presented an effective way of integrating subdivision surfaces in CAD

systems, making them available as a very intuitive modeling tool that at the same time meets the
requirements needed in a CAD framework. We remark that the proposed strategy for such an
integration was acknowledged as innovative at the time of its realization. The implementation
was heavily tested on real-world cases and then included as a stable part of a CAD software on
the market. According to the users that have exploited it in industrial design projects, it has
produced very good results.
Besides Chapter 2, also all the other constructions proposed throughout the dissertation bear

in mind the importance of application and implementation. In fact, alongside discussing the
theoretical aspects of the undertaken work, a relevant amount of space has been committed to
providing algorithms drawn from the presented methods that can be translated into numerical
procedures and successfully implemented.
In Chapter 3 we have considered the definition of locally supported piecewise polynomial

interpolants on non-uniform knot partitions that feature prescribed design properties (support
width, degree, orders of continuity and approximation). The proposed approach represents an
advancement with respect to the existing literature in that it extends a preceding construction
by allowing us to both increasing the flexibility of the considered spline interpolants and re-
ducing their computational cost by minimizing their degree. Moreover, pursuing the intent of
providing the reader with as many tools as possible from a design viewpoint, in Chapter 3 we
have devoted sections to addressing the often neglected issue of endpoint corrections for open
data sets, as well as to offering examples of how to exploit the increased flexibility in order to
achieve particular shape effects.
Local spline interpolants of the above kind have been exploited in Chapter 4 to work out a

network of curves interpolating a given mesh of points, which is one of the main ingredients of
the framework introduced there for the construction of smooth composite interpolation surfaces
with a good shape quality. The other point of novelty in the approach presented in Chapter 4 is
the use of a peculiar parameterization strategy for the surface that at the same time guarantees
the interpolation of the curves of the network (each of which with its own parameterization)
and allows the surface to achieve good aesthetic properties.
Moreover, the idea behind the definition of the blending functions exploited in Chapter 3

is the concept of transition function. The same notion has been transferred to the more gen-
eral setting of generalized spline spaces suitable for design purposes as the key tool for the

139
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construction of optimal normalized totally positive bases, as discussed in detail in Chapter 5.
Additionally, a large variety of the algorithms presented for computation and modeling with
generalized splines take advantage of the formulation by means of transition functions.

In view of the results presented in this dissertation, a natural development consists in the
actual integration of methods for generalized splines in CAD systems. In fact, such classes
of splines would generously enrich the batch of representable entities, since they would allow
users to achieve particular tension effects or an exact representation of relevant shapes. As
an example, we may be interested in reproducing conics and quadrics, which are essential for
modeling mechanical parts and objects with rotational symmetry, as well as surfaces of revo-
lution. Working with the suitable trigonometric (or mixed polynomial/trigonometric) spaces,
we would be able to obtain this kind of shapes without resorting to NURBS and their inherent
rational nature.
Furthermore, motivated by the positive experience reported in Chapter 2, another interesting

advancement would be the integration in CAD systems of univariate and bivariate subdivision
schemes based on generalized splines, for the same reasons as above.
Also the proposed construction of local interpolating surfaces with augmented parameteriza-

tion described in Chapter 4 would provide benefits in the context of arbitrary-topology CAD
modeling, and compete with (if not outclass) the existing interpolatory methods in terms of
shape quality.
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