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RIASSUNTO. 

 

Il bioetanolo di origine lignocellulosica rappresenta una delle alternative più promettenti tra i 

biocarburanti. Dal punto di vista industriale, la produzione di bioetanolo da biomassa vegetale non è 

ancora sostenibile. Una delle strategie più interessanti proposte è la costruzione di un microganismo 

CBP (Consolidated BioProcessing) capace di idrolizzare i polimeri complessi della biomassa 

cellulosica e di convertirli efficacemente in etanolo. 

In questa prospettiva, questo lavoro di tesi si è focalizzato sullo sviluppo di un microbo CBP di 

tipo industriale per la conversione di cellobiosio in alcol etilico. A tal scopo, è stato necessario 

mettere a punto un nuovo metodo per la selezione di un ceppo di lievito idoneo alla produzione di 

bioetanolo su scala industriale caratterizzato da elevate performance fermentative e da una notevole 

capacità di tollerare gli inibitori normalmente presenti negli idrolizzati lignocellulosici. La selezione 

di tale microrganismo è partita da una collezione di ceppi di lievito di origine enologica. I ceppi 

enologici saggiati, pur dimostrando elevate capacità fermentative, non si sono purtroppo rivelati 

tolleranti nei confronti di inibitori quali furfurale, acido acetico, acido formico ed acido lattico. 

È stato quindi necessario eseguire un programma di isolamento mirato ad ottenere ceppi di 

lievito altamente fermentanti e capaci di tollerare elevate concentrazioni di inibitori. L’isolamento, 

eseguito in condizioni selettive per la presenza di un cocktail di inibitori, ha consentito di ottenere 

una ampia ceppoteca di lieviti con caratteristiche promettenti per la loro futura applicazione nel 

campo del bioetanolo di seconda generazione. Tra di essi, alcuni lieviti S. cerevisiae si sono distinti 

per vigore fermentativo ad elevata temperatura e per una consistente tolleranza agli inibitori. 

In particolare, il ceppo S. cerevisiae T2 è stato selezionato come host strain per lo sviluppo di un 

ceppo ricombinante capace di secernere la betaglucosidasi BglI di Saccharomycopsis fibuligera, 

specie di lievito tra le più efficienti per l’idrolisi del cellobiosio. Per la prima volta in questo lavoro 

di tesi è stato descritto un ceppo di lievito industriale betaglucosidasico. In ogni caso, l’attività 

idrolitica del ceppo ricombinante dovrà essere necessariamente incrementata al fine di ottenere un 

efficiente microrganismo CBP cellulosolitico. 

In base ai risultati ottenuti, questo studio rappresenta un primo passo verso lo sviluppo di 

microrganismi idonei alla conversione one-step di biomassa lignocellulosica in etanolo. 
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ABSTRACT. 

 

Bioethanol produced from lignocellulosic biomass represents a promising alternative among 

biofuels. To date a cost-effective method for the industrial production of bioethanol from vegetal 

biomass has not been developed. One of the most attractive strategies is the construction of a CBP 

(Consolidated BioProcessing) microbe able both to hydrolyze the complex polymers of 

lignocellulosic biomass and to convert these into ethanol. 

  In this context, the present study focused on the development of an industrial CBP microbe for 

the conversion of cellobiose into ethanol. To this purpose, it was necessary to define a new 

screening method for the selection of a yeast strain, suitable for the industrial bioethanol production 

having high fermentative abilities and considerable tolerance to inhibitors commonly present in 

lignocellulosic hydrolysates. The selection started from a collection of oenological yeasts. These 

strains, although showing interesting fermentative abilities, did not exhibit a good tolerance to 

inhibitors such as furfural, acetic acid, formic acid and lactic acid. 

Therefore, a new isolation programme was necessarily conducted in order to select efficient 

fermenting yeast strains able to tolerate high concentrations of inhibitory compounds. The isolation 

procedure, conducted in the presence of an inhibitors cocktail, allowed to obtain a wide collection 

of yeasts with interesting features for their future applications in the field of second generation 

bioethanol. Among them, few S. cerevisiae yeasts exhibited remarkable fermenting vigour at high 

temperature and promising inhibitors tolerance.  In particular, S. cerevisiae T2 was selected as host 

for the development of a recombinant strain able to produce the BglI β-glucosidase of 

Saccharomycopsis fibuligera, one of the most efficient cellobiose hydrolyzing yeast species. For the 

first time, in this study, an industrial yeast strain secreting β-glucosidase BglI was described. 

However, the hydrolytic activity of the recombinant strain must be necessarily increased in order to 

produce an efficient cellulolytic CBP microbe. 

On the basis of the preliminary results obtained, this multi-disciplinary work represents a first 

step towards the development of microbes for the single-step conversion of lignocellulosic biomass 

to ethanol. 
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AIM OF THE WORK. 

 

The aim of this work was to develop an industrial S. cerevisiae yeast able to convert cellobiose 

into bioethanol. Such microorganism should possess great inhibitor tolerance, high-level production 

of hydrolytic enzymes, efficient utilization of glucose and proper ethanol production performances. 

To achieve this goal, two distinct strategies were defined and followed, namely:  

1. the selection of robust yeast strains, previously isolated and/or newly isolates, having 

both excellent fermenting abilities and inhibitor tolerance. 

2. the engineering of the selected yeasts for the secretion of the β-glucosidase BglI of S. 

fibuligera. 
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1. INTRODUCTION 

 

1.1 Bioethanol. 

In recent years, increasing attention has been devoted to the conversion of biomass into 

bioethanol, considered the cleanest liquid fuel, as alternative to fossil fuels. Bioethanol is a liquid 

fuel which can be produced from several different biomass feedstocks and conversion technologies. 

It is an attractive alternative fuel because it is a renewable bio-based resource and it is oxygenated 

thereby provides the potential to reduce particulate emissions in compression–ignition engines 

(Hansen et al., 2005). 

Moreover it can be blended with gasoline or used as neat alcohol in dedicated engines, taking 

advantage of the higher octane number and higher heat of vaporization (Hahn-Hägerdal et al., 

2006). In 2006, global production of bioethanol reached 13.5 billion gallons, up from 12.1 billion 

gallons in 2005. Bioethanol currently accounts for more than 94% of global biofuel production, 

with the majority coming from sugar cane. Brazil and the United States are the world leaders, which 

exploit sugar cane and corn, respectively, and they together account for about 70% of the world 

bioethanol production. The top ten bioethanol producers are presented in Table 1.1. 

 

Country  2011 2010 2009 

USA 13,900 13,231 10,938 

Brazil  5,573.24 6,921.54 6,577.89 

European Union 1,199.31 1,176.88 1,039.52 

China 554.76 541.55 541.55 

Thailand   435.20 

Canada 462.3 356.63 290.59 

India     91.67 

Colombia   83.21 

Australia 87.2 66.04 56.80 

Others   247.27 

Table 1.1.  Annual fuel ethanol production by country (2009-2011). Top 10 countries/regional blocks. (Millions of U.S. liquid 
gallons per year). 
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Nearly, all bioethanol fuel is produced by fermentation of corn glucose in the United States or 

sucrose in Brazil, but any country with a significant agronomic-based economy can use current 

technology for bioethanol fermentation. In Europe, the feedstocks used for bioethanol are 

predominately wheat, sugar beet and waste from the wine industry (Balat et al., 2008). 

Biological feedstocks that contain appreciable amounts of sugar can be fermented to produce 

bioethanol to be used in gasoline engines. Feedstocks can be conveniently classified into three 

types: sucrose-containing feedstocks (e.g. sugar beet, sweet sorghum and sugar cane), starchy 

materials (e.g. wheat, corn, and barley), and lignocellulosic biomass (e.g. wood, straw and grasses). 

Different feedstocks that can be utilized for bioethanol production and their comparative production 

potential are given in Table 1.2 (Kumar et al., 2009). 

 

 
Bioethanol production potential 

(L/ton)  

Sugarcane 70 

Sugar beet 110 

Sweet potato 125 

Potato 110 

Cassava 180 

Maize 360 

Rice 430 

Barley 250 

Wheat 340 

Sweet sorghum 60 

Bagasse and other lignocellulosic biomass 280 

Table 1.2. Different feedstocks for bioethanol production and their comparative production potential. 
 

 

 

Biomass resources for bioethanol are essentially comprised of sugarcane and sugar beet. Two-

third of world sugar production is from sugarcane and one-third is from sugar beet. These two are 

produced in geographically distinct regions. Sugarcane is grown in tropical and subtropical 

countries, while sugar beet is only grown in temperate-climate countries. Since bioethanol trade is 

mainly from the South, feedstocks may eventually impact cane sugar trade. Brazil is the largest 

single producer of sugar cane with about 27% of global production. 
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In European countries, beet molasses are the most utilized sucrose-containing feedstock 

(Cardona et al., 2007). Sugar beet crops are grown in most of the EU-25 countries, and yield 

substantially more bioethanol per hectare than wheat. The advantages with sugar beet are a lower 

cycle of crop production, higher yield, and high tolerance of a wide range of climatic variations, 

low water and fertilizer requirement. 

Sweet sorghum (Sorghum bicolor L.) is one of the most drought resistant agricultural crops as it 

has the capability to remain dormant during the driest periods. Of the many crops being investigated 

for energy and industry, sweet sorghum is one of the most promising candidates, particularly for 

bioethanol production principally in developing countries. 

Another type of feedstock, which can be used for bioethanol production, is starch-based 

materials. Starch is a biopolymer and defined as a homopolymer consisting only one monomer, D-

glucose. To produce bioethanol from starch it is necessary to break down the chains of this 

carbohydrate for obtaining glucose syrup, which can be converted into bioethanol by yeasts.  

Starch can also be converted to fermentable sugar by a method called ‘‘the hydrolysis 

technique’’. Hydrolysis is a reaction of starch with water, which is normally used to break down the 

starch into fermentable sugar. There are two types of hydrolysis: enzymatic hydrolysis and acid 

hydrolysis. The hydrolysis of starch by amylases at relatively high temperatures is a process known 

industrially as liquefaction. The factors that affect the enzymatic hydrolysis of starch include 

substrates, enzyme activity, and reaction conditions (temperature, pH, as well as other parameters) 

(Neves 2006). The starch-based bioethanol industry has been commercially viable for about 30 

years; in that time, tremendous improvements have been made in enzyme efficiency, reducing 

process costs and time, and increasing bioethanol yields. This type of feedstock is the most utilized 

for bioethanol production in North America and Europe. Corn and wheat are mainly employed with 

these purposes. The United States has a large corn-based bioethanol industry with a capacity of over 

15 billion L per year; production capacity is anticipated to continue rising to about 28 billion L per 

year by 2012 (Mabee et al., 2006). For example other starchy materials, by-products of industrial 

processes, such as wheat bran and potatos peels are interesting low-cost substrates for ethanol 

production (Favaro et al., 2012b, 2012c and 2013a). 

To make bioethanol a sustainable commodity, not in competition with food sources, it is 

necessary to move away from sugar cane or corn (first generation bioethanol) toward 

lignocellulosic biomasses such as corn stover or other agricultural wastes, wood by-products, or 

dedicated fuel crops such as Miscanthus or switchgrass (second generation bioethanol). However, to 

achieve this result, there are technical challenges that must be overcome. 
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1.2 Bioethanol from lignocellulosic biomass. 

Lignocellulosic feedstocks are renewable, largely unused, and abundantly available source of 

raw materials for the production of fuel ethanol. Lignocellulosic substrates can be obtained at low 

cost from a variety of resources, e.g. forest residues, municipal solid waste, waste paper, and crop 

residue resources. This biomass contains sugars polymerized in form of cellulose and 

hemicellulose, which can be liberated by hydrolysis and subsequently fermented to ethanol by 

microorganisms (Palmqvist and Hahn-Hägerdal, 2000).  

Lignocellulosic biomass could produce up to 442 billion L per year of bioethanol (Bohlmann et 

al., 2006). Rice straw is one of the abundant lignocellulosic waste materials in the world. It is 

annually produced about 731 million tons and can potentially produce 205 billion liters bioethanol 

per year, which is the largest amount from a single biomass feedstock (Karimi et al., 2006). 

Lignocellulosic biomass predominantly contains a mixture of carbohydrate polymers (cellulose 

and hemicellulose), lignin, extractives and ashes. Cellulose fibers provide wood’s strength and 

comprise 40-50 wt% of dry wood. Cellulose is a homopolysaccharide composed of β-D-

glucopyranose units linked together by (1-4)-glycosidic bonds. The cellulose molecules are linear; 

glucose anhydride, which is formed via the removal of water from each glucose, is polymerized into 

long cellulose chains that contain 5,000-10,000 glucose units. The basic repeating unit of the 

cellulose polymer consists of two glucose anhydride units, called a cellobiose units (Mohan et al., 

2006). The length of cellulose polymer depends on the type of plants of origin. 

A second major wood chemical constituent is hemicellulose. Hemicelluloses belong to a group 

of heterogeneous polysaccharides and its amount is usually between 11% and 37% of the 

lignocellulosic dry weight. Hemicellulose is a mixture of various polymerized monosaccharides 

such as glucose, mannose, galactose, xylose, arabinose, 4-O-methyl glucuronic acid and 

galacturonic acid residues. Xylose is the predominant pentose sugar derived from the hemicellulose 

of most hardwood feedstocks, but arabinose can constitute a significant amount of the pentose 

sugars derived from various agricultural residues and other herbaceous crops, such as switchgrass, 

which are being considered for use as dedicated energy crops. 

Lignin is a very complex molecule constructed of phenylpropane units linked in a three-

dimensional structure. Lignins are often bound to adjacent cellulose fibers to form lignocellulosic 

complexes that are extremely resistant to chemical and enzymatic degradation (Palmqvist and 

Hahn-Hägerdal 2000, Taherzadeh et al., 1999). The lignin contents on a dry basis in both softwoods 

and hardwoods generally range from 20% to 40% by weight and from 10% to 40% by weight in 
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various herbaceous species, such as bagasse, corncobs, peanut shells, rice hulls and straws (Yaman, 

2004). 

Many lignocellulosic substrates have been tested for bioethanol production. In general, 

lignocellulosic materials for bioethanol production can be divided into six mains groups: crop 

residues (cane bagasse, corn stover, corn fiber, wheat straw and bran, rice straw, rice hulls, barley 

straw, sweet sorghum bagasse, olives tone and pulp), hardwood (aspen and poplar), softwood (pine, 

spruce), cellulose wastes (newsprint, waste office paper, recycled paper sludge), herbaceous 

biomass (switchgrass, reed canary grass, coastal Bermudagrass, thimoty grass), and Municipal Solid 

Wastes (MSW). The composition of some of these materials is reported in Table 1.3 (Favaro, 

2010). 

 

Feedstock Glucan (cellulose) Xylan (hemicellulose) Lignin 

Corn stover 37.5 22.4 17.6 

Corn fiber 14.28 16.8 8.4 

Pine wood 46.4 8.8 29.4 

Poplar 49.9 17.4 18.1 

Wheat straw 38.2 21.2 23.4 

Switch grass 31.0 20.4 17.6 

Office paper 68.6 12.4 13.3 

Table 1.3: Percent dry weight of lignocellulosic feedstocks (modified from Mosier, 2005) 

 

 

There are several options for a lignocellulose-to-bioethanol process, but regardless of which is 

chosen, the following features must be assessed in comparison with established sugar- or starch-

based bioethanol production (Hahn-Hägerdal et al., 2000): 

 

• Efficient de-polymerization of cellulose and hemicelluloses to soluble sugars. 

• Efficient fermentation of a mixed-sugar hydrolysate containing six-carbon (hexoses) and 

five-carbon (pentoses) sugars as well as fermentation inhibitory compounds. 

• Advanced process integration to minimize process energy demand. 

• Lower lignin content of feedstock decreases of the cost of bioethanol. 
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Numerous studies for developing large-scale production of ethanol from lignocellulosics have 

been carried out. However, the main limiting factor is the higher degree of complexity inherent to 

the processing the feedstock. This is related to the nature and composition of lignocellulosic 

biomass. Therefore, the lignocelluloses processing to ethanol is still complicated, energy-

consuming and non-completely developed. 

1.2.1 Pretreatment of lignocellulosic biomass 

Processing of lignocellulosics to ethanol consists of four major unit operations: pretreatment, 

hydrolysis, fermentation, and product separation/purification. Pretreatment is required to alter the 

biomass macroscopic and microscopic size and structure as well as its submicroscopic chemical 

composition and structure so that hydrolysis of the carbohydrate fraction to monomeric sugars can 

be achieved more rapidly and with greater yields. The goal is to break the lignin seal and disrupt the 

crystalline structure of cellulose (Fig. 1.1). 

 

 

 

 

A successful pretreatment must meet the following requirements (Silverstein et al., 2004): (i) 

improve the formation of sugars or the ability to subsequently form sugars by hydrolysis, (ii) avoid 

the degradation or loss of carbohydrate, (iii) avoid the formation of by-products inhibitory to 

subsequent hydrolysis and fermentation processes, and (iv) be cost effective. These properties, 

along with others including low pretreatment catalyst cost or inexpensive catalyst recycle, and 

generation of higher-value lignin co-product form a basis of comparison for various pretreatment 

options. Pretreatment results must be balanced against their impact on the cost of the downstream 

Fig. 1.1. Schematic representation of goals of pretreatment on lignocellulosic 
materials (Hsu, 1980) 
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processing steps and the trade-off between operating costs, capital costs, and biomass costs (Lynd et 

al., 1996). 

 

Pretreatment categories. 

 

Pretreatment methods are either physical or chemical; some methods incorporate both effects 

(Hsu et al. 1996). Physical pretreatment methods include comminution (mechanical reduction in 

biomass particulate size), steam explosion, and hydrothermolysis. Comminution, including dry, 

wet, and vibratory ball milling (Millett et al., 1979; Rivers and Emert, 1987; Sidiras and Koukios, 

1989), and compression milling (Tassinari et al., 1980, 1982) is sometimes needed to make material 

handling easier through subsequent processing steps. 

Acids or bases promote biomass hydrolysis and improve the yield of glucose recovery from 

cellulose by removing hemicelluloses or lignin during pretreatment. The most commonly used acid 

and base are H2SO4 and NaOH, respectively. Cellulose solvents are another type of chemical 

additive. Solvents that dissolve cellulose in bagasse, cornstalks, tall fescue, and orchard grass 

resulted in 90% conversion of cellulose to glucose (Hamilton et al., 1984) and showed enzyme 

hydrolysis could be greatly enhanced when the biomass structure is disrupted before hydrolysis. 

Alkaline H2O2, ozone, organosolv (uses Lewis acids, FeCl3, (Al)2SO4 in aqueous alcohols), 

glycerol, dioxane, phenol, or ethylene glycol are among solvents known to disrupt cellulose 

structure and promote hydrolysis. Concentrated mineral acids (H2SO4, HCl), ammonia-based 

solvents (NH3, hydrazine), aprotic solvents (DMSO), metal complexes (ferric sodium tartrate, 

cadoxen, and cuoxan), and wet oxidation also reduces cellulose crystallinity and disrupt the 

association of lignin with cellulose, as well as dissolve hemicelluloses.  

The effects of various pretreatment methods are summarized in Table 1.4. Steam explosion, 

liquid hot water, dilute acid, lime, and ammonia pretreatments, have potential as cost-effective 

pretreatments and are discussed below. 
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Tab 1.4:  
Effect of various pretreatment methods on the chemical composition and chemical/physical structure of lignocellulosic biomass 

 
Increases accesible 

surface area 

Decrystalizes 

cellulose 

Removes 

hemicellulose 

Removes 

lignin 

Alters lignin 

structure 

Uncatalyzed steam 

explosion 
■  ■  □ 

Liquid hot water ■ ND ■  □ 

pH controlled hot water ■ ND ■  ND 

Flow-through liquid hot 

water 
■ ND ■ □ □ 

Dilute acid ■  ■  ■ 

Flow-through acid ■  ■ □ ■ 

AFEX ■ ■ □ ■ ■ 

ARP ■ ■ □ ■ ■ 

Lime ■ ND □ ■ ■ 

■: Major effect. 
□: Minor effect. 
ND: Not determined. 

 

Uncatalyzed steam explosion. 

 

Uncatalyzed steam explosion refers to a pretreatment technique in which lignocellulosic 

biomass is rapidly heated by high-pressure steam without addition of any chemicals. The 

biomass/steam mixture is held for a period of time to promote hemicellulose hydrolysis, and 

terminated by an explosive decompression (Brownell and Saddler, 1984). 

Hemicellulose is thought to be hydrolyzed by the acetic and other acids released during steam 

explosion pretreatment. Water, itself, also acts as an acid at high temperatures (Weil et al., 1997). 

Steam provides an effective vehicle to rapidly heat cellulosics to the target temperature without 

excessive dilution of the resulting sugars. Rapid pressure release rapidly reduces the temperature 

and quenches the reaction at the end of the pretreatment. The rapid thermal expansion used to 

terminate the reaction opens up the particulate structure of the biomass but enhancement of 

digestibility of the cellulose in the pretreated solid is only weakly correlated with this physical 

effect (Biermann et al., 1984). 

The major chemical and physical changes to lignocellulosic biomass by steam explosion are 

often attributed to the removal of hemicellulose. This improves the accessibility of the enzymes to 

the cellulose fibrils. 
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Liquid hot water pretreatment. 

 

Flow-through processes pass water maintained in the liquid state at elevated temperatures 

through cellulosics. This type of pretreatment has been termed hydrothermolysis (Bobleter et al., 

1981), aqueous or steam/aqueous fractionation (Bouchard et al., 1991), uncatalyzed solvolysis 

(Mok and Antal, 1992, 1994), and aquasolv (Allen et al., 1996). 

Solvolysis by hot compressed liquid water contacts water with biomass for up to 15 min at 

temperatures of 200–230 °C. Between 40% and 60% of the total biomass is dissolved in the 

process, with 4–22% of the cellulose, 35–60% of the lignin and all of the hemicelluloses being 

removed. Over 90% of the hemicellulose is recovered as monomeric sugars when acid was used to 

hydrolyze the resulting liquid. The variability in pretreatment results was related to the biomass 

type with high lignin solubilization impeding recovery of hemicellulose sugars.  

There are three types of liquid hot water reactor configurations: Co-current, countercurrent, and 

flow through (Fig. 1.2). 

 

 
Fig 1.2. Schematic illustration of co-current, counter-current, and flow-through pretreatment methods: (a) Co-current liquid hot water 
pretreatment, (b) counter-current reactor, (c) flow-through reactor 

 

In the co-current pretreatment, liquid slurry of biomass (16% undissolved solid) passes through 

heat exchangers, is heated to the desired temperature (140-180 °C) and then held at temperature for 
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15–20 min as the slurry passes through an insulated plug-flow, snake-coil. The slurry is cooled and 

heat recovered by countercurrent heat exchange with the incoming slurry. The resulting pretreated 

fiber is devoid of starch, and the cellulose is completely digestible. 

In a flow-through reactor, hot water (180-220 °C and about 350-400 psi pressure) passed over a 

stationary bed of lignocelluloses hydrolyzes and dissolves lignocellulose components and carries 

them out of the reactor. Flow-through technologies achieve overall sugar yields of up to 96% but 

suffer from low concentration of sugars (of about 0.6–5.8 g/L) from hemicellulose. The solids that 

are left behind have enhanced digestibility and a significant portion of the lignin is also removed. 

In countercurrent pretreatment the biomass slurry is passed in one direction while water is 

passed in another in a jacketed pretreatment reactor (Fig.1.2b). Temperatures, back pressures and 

residence times are similar to the flow-through technology. 

Liquid hot water pretreatments are both helped and hindered by the cleavage of O-acetyl and 

uronic acid substitutions from hemicellulose to generate acetic and other organic acids. The release 

of these acids helps to catalyze formation and removal of oligosaccharides. 

 

Acid pretreatment. 

 

Acid pretreatment has received considerable research attention over the years. Dilute sulfuric 

acid has been added to cellulosic materials for some years to commercially manufacture furfural 

(Zeitsch, 2000). 

In this method, the acid is mixed or contacted with the biomass and the mixture is held at 

temperatures of 160–220 °C for periods ranging from minutes to seconds. Hemicellulose is 

removed when sulfuric acid is added and this enhances digestibility of cellulose in the residual 

solids (Grous et al., 1985). The most widely used and tested approaches are based on dilute sulfuric 

acid (Kim et al., 2000). However, nitric acid (Brink, 1993, 1994), hydrochloric acid (Goldstein and 

Easter, 1992), and phosphoric acid (Israilides et al., 1978) have also been tested. 

The mixture of acid and biomass can be heated indirectly through the vessel walls or by direct 

steam injection, the latter being operated in virtually the same manner as for uncatalyzed steam 

explosion. The acid is added to the liquid percolated through a bed, sprayed onto the residue after 

which the residue is heated, or agitated with the biomass in a reactor. 

Dilute sulfuric acid has some important limitations including corrosion that mandates expensive 

materials of construction. The acid must be neutralized before the sugars proceed to fermentation. 

Formation of degradation products and release of natural biomass fermentation inhibitors are other 
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characteristics of acid pretreatment. Disposal of neutralization salts (Mes-Hartree and Saddler, 

1983), as well as a 7-day reaction time with cellulase translate into added cost (Wooley et al., 1999) 

Nitric acid reduces containment costs relative to sulfuric, but the higher acid cost counterbalances 

this benefit. 

Use of acid to remove hemicellulose has been tried on a wide range of feedstocks ranging from 

hardwoods to grasses and agricultural residues (Torget et al., 1990, 1991, 1992). Most species 

performed well, and corn cobs and stover were found to be particularly well suited to pretreatment 

by hemicellulose hydrolysis. Pretreatment of aspen wood and wheat straw were studied at higher 

solids concentrations with temperatures of 140 and 160 °C. The use of acid to hydrolyze oligomers 

released during uncatalyzed hydrolysis results in close to complete hydrolysis to monosaccharides 

but also the formation of aldehydes (Shevchenko et al., 2000). 

There are primarily two types of dilute acid pretreatment processes: low solids loading (5-10% 

[w/w]), high-temperature (T>160 °C), continuous-flow processes and high solids loading (10-40% 

[w/w], lower temperature (T<160 °C), batch processes. In general, higher pretreatment temperatures 

and shorter reactor residence times result in higher soluble xylose recovery yields and enzymatic 

cellulose digestibility. Higher-temperature dilute acid pre-treatment has been shown to increase 

cellulose digestibility of pretreated residues. Depending on the substrate and the conditions used, 

between 80 and 95% of the hemicellulosic sugars can be recovered by dilute acid pre-treatment 

from the lignocellulosic feedstock (Jeffries et al. 2000). 

 

Flow-through acid pretreatment. 

 

Addition of very dilute sulfuric acid (about 0.07% versus the 0.7–3.0% typical for the dilute acid 

technology described) in a flow-through reactor configuration is effective at acid levels lower than 

0.1%. Lower temperatures were applied to hydrolyze the more reactive hemicellulose in yellow 

poplar in a countercurrent flowthrough pretreatment. Fresh acid/water stream is first passed through 

the higher temperature zone and then the lower temperature region to reduce the exposure of sugars 

to severe conditions and improve yields. 

Despite achieving excellent hemicellulose sugar yields and highly digestible cellulose with low 

acid loadings, equipment configurations and the high ratio of water to solids employed in flow-

through systems require significant energy for pretreatment and product recovery. Practical systems 

that lend themselves to commercial applications have not been demonstrated. 
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Alkaline pretreatment. 

 

Alkali pre-treatment processes utilize lower temperatures and pressures compared to other pre-

treatment technologies. Unlike acid catalyzed pre-treatments, a limitation occurs because some of 

the alkali is converted to irrecoverable salts or incorporated as salts into the biomass by the pre-

treatment reactions. The characteristic of alkaline pretreatment is that it can remove the lignin 

without having big effects on other components. NaOH treatment causes lignocellulosic biomass to 

swell, leading to an increase in the internal surface area, a decrease in the degree of crystallinity, 

and disruption of the lignin structure. 

Alkali pretreatment reduces the lignin and hemicelluloses content in biomass, increases the 

surface area, allowing penetration of water molecules to the inner layers, and breaks the bonds 

between hemicellulose and lignin carbohydrate. Dilute NaOH is usually used for alkali pretreatment 

(Lee, 2005). Considering economic and environmental aspects, dilute NaOH treatment would be 

much more suitable than the concentrated NaOH pretreatment. Combination of dilute NaOH 

treatment and other treatments seems more efficient. For example, corn stover pretreatment of 

dilute NaOH (2%) combined with irradiation (500 kGy) caused the glucose yield to increase from 

just 20% for NaOH pre-treatment to 43%. 

 

Lime pretreatment. 

 

Recently, it was discovered that lime allow to have a good performance and great sugars 

recovery from lignocellulosic biomass. Lime (calcium hydroxide) has been used to pretreat wheat 

straw (Chang et al., 1998), poplar wood (Chang et al., 2001), switchgrass (Chang et al., 1997), and 

corn stover (Karr and Holtzapple, 1998, 2000). Playne treated sugarcane bagasse with lime at 

ambient conditions for up to 192 h to improve the enzyme digestibility of the cellulose from 20% 

before pretreatment to 72% after pretreatment. Higher temperatures and shorter reactions times 

were also shown to effectively pretreat lignocellulose with lime. Chang et al. (1998), obtained 

similar digestibility results by pretreating bagasse with lime at 120 °C for 1 h. 

Lime has the additional benefits of low reagent cost and safety and being recoverable from 

water as insoluble calcium carbonate by reaction with carbon dioxide. The addition of air/oxygen to 

the reaction mixture greatly improves the delignification of the biomass, especially highly lignified 

materials such as poplar (Chang and Holtzapple, 2000). 
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The process of lime pretreatment involves slurrying the lime with water, spraying it onto the 

biomass material, and storing the material in a pile for a period of hours to weeks. The particle size 

of the biomass is typically 10 mm or less. Elevated temperatures reduce contact time. 

In general, the major effect of the alkaline pretreatment is the removal of lignin from the 

biomass, thus improving the reactivity of the remaining polysaccharides. In addition, alkali 

pretreatments remove acetyl and the various uronic acid substitutions on hemicellulose that lower 

the accessibility of the enzyme to the hemicellulose and cellulose surface.  

 

Ammonia pretreatment. 

 

Ammonia fiber/freeze explosion (AFEX) is a physicochemical pretreatment process in which 

lignocellulosic biomass is exposed to liquid ammonia at high temperature and pressure for a period 

of time, and then the pressure is suddenly reduced. Ammonia fiber explosion pretreatment yields 

optimal hydrolysis rates for pretreated lignocellulosics with close to theoretical yields at low 

enzyme loadings (Foster et al., 2001). Herbaceous and agricultural residues are well suited for 

AFEX. However, this method works only moderately well on hardwoods, and is not attractive for 

softwoods.  

Pretreatment with aqueous ammonia in a flowthrough mode involves putting ammonia solution 

(5-15%) through a column reactor packed with biomass at elevated temperatures (160-180 °C) and 

a fluid velocity of 1 mL/cm2min with residence times of 14 min. Under these conditions, aqueous 

ammonia reacts primarily with lignin (but not cellulose) and causes depolymerization of lignin and 

cleavage of lignin-carbohydrate linkages. This method is also known as ammonia recycled 

percolation (ARP) process since ammonia is separated and recycled. 

This pretreatment simultaneously reduces lignin contents and removes some hemicelluloses 

while decrystallizing cellulose. Thus it affects both micro-and macro-accessibility of the cellulases 

to the cellulose. Modification of the process was attempted to further increase the extent of the 

delignification and to achieve fractionation of biomass (Kim et al., 2002). Since lignin is one of the 

key factors affecting the enzymatic hydrolysis (Lee and Yu, 1995), removal of lignin lowers the 

enzyme requirement.  

The cost of ammonia and especially of ammonia recovery drives the cost of this pretreatment. 

However, biomass pretreatment economics are also strongly influenced by total sugar yields 

achieved, and by the loss in yield and inhibition of downstream processes caused by sugar 
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degradation products. The moderate temperatures (<90 °C) and pH values (<12.0) of the AFEX 

treatment minimize formation of sugar degradation products while giving high yields. 

 

1.2.2 Inhibitors obtained from biomass pretreatment. 

 

The pretreatment of lignocellulosic biomass aims to separate lignin and hemicellulose, reduce 

cellulose crystallinity and increase the porosity of lignocelluloses while minimizing chemical 

destruction of fermentable sugars required for ethanol production. Pretreatment of lignocellulosic 

biomass generate a broad range of compounds (Fig. 1.3). D-glucose is mainly obtained from the 

hydrolysis of cellulose. D-glucose, D-galactose, D-mannose and D-rhamnose (hexoses), as well as 

D-xylose and L-arabinose (pentoses) are released from the hemicellulose fraction. Uronic acids, 

such as d-glucuronic and 4-O-methylglucuronic acids are also produced during hydrolysis of 

hemicellulose. Hydrolysis treatments may result in further degradation of lignin and monomeric 

sugars to three major groups of compounds that inhibit fermentation: (I) furan derivatives (2-

furaldehyde and 5-hydroxymethyl-2-furaldehyde); (II) weak acids (mainly acetic acid, formic acid 

and levulinic acid); and (III) phenolic compounds. 

During dilute acid hydrolysis pretreatment, high temperature and pressure lead the degradation 

of xylose to furfural (Dunlop, 1948). Similarly, 5-hydroxymethyl furfural (HMF) is formed from 

hexose degradation (Ulbricht et al., 1984).  

Formic acid is formed when furfural and HMF are broken down. Levulinic acid is formed by 

HMF degradation. Phenolic compounds are generated from partial breakdown of lignin and have 

also been reported to be formed during carbohydrate degradation (Suortti, 1983). 
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Fig 1.3. Average composition of lignocellulosic biomass and main derived hydrolysis products (Almeida et al., 2007) 

Hibbert’s ketones have been detected in the hydrolysate of pine (Clark and Mackie, 1984). 

Vanillic acid and vanillin, formed by the degradation of the guaiacylpropane units of lignin, have 

been detected in hydrolysates from willow, poplar (Ando et al., 1986), red oak (Tran and Chambers, 

1985), and pine. In hardwood hydrolysates, syringaldehyde and syringic acid, formed in the 

degradation of syringyl propane units, have been reported. Hydroquinone (1,4-di-hydroxybenzene) 

has been identified in a hydrolysate of spruce and catechol (1,2-di-hydroxybenzene) has been 

identified in hydrolysates of willow, birch and spruce. 4-Hydroxybenzoic acid constitutes a large 

fraction of the lignin-derived compounds in hydrolysates from the hardwoods poplar, aspen, and 

willow. Trace amounts of the extractives caproic acid, caprylic acid, pelargonic acid, and palmitic 

acid have been reported in dilute-acid hydrolysate of red oak. 

The hydrolysis temperature, time and acid concentration influence the generation of 

fermentation inhibitors. The severity of different pretreatment conditions can be compared by 

calculating a severity parameter, where the reaction temperature, T (°C), and residence time, t 

(min), are combined into a single reaction ordinate. The severity factor, logR0, is defined by R0 = 

te(T-100/14.75) (Overend and Chornet, 1987). The influence of hydrolysis pH (reflecting the amount of 

acid used), is taken into consideration by the combined severity, CS, defined as logR0 - pH (Chum 

et al., 1990). 

In Table 1.5, the major groups of inhibitory compounds that come from different biomass 

sources are listed. 
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Tab 1.5. Common inhibitory compounds present in lignocellulosic hydrolysates from spruce, willow, wheat straw, sugar cane 
bagasse and corn stover (modified from Almeida et al., 2007). 
Biomass source and pretreatment employed: 
a upper values; two-steps dilute acid spruce (Picea abies) 
b lower values; one-step dilute acid spruce  
c dilute acid willow (Salix caprea) 
d wet oxidation wheat straw (Triticum aestivum L.) 
e steam pre-treatment sugar cane bagasse  
f steam pre-treatment corn stover 
n.q.: not quantified, n.i.: not identified 
 



28 

 

Inhibitors: effects and mechanism of action. 

 

The compounds released during pretreatment and hydrolysis has been found to inhibit 

microorganism growth and ethanol production. The effect of furans, weak acids and phenolic 

compounds – as well as their synergistic effect – mainly on S. cerevisiae fermentation ability are 

represented in Figure 1.4 and summarized below. 

 

 

 
Fig 1.4. Schematic view of known inhibition mechanisms of furans, weak acids and phenolic compounds in S. cerevisiae. HMF: 
inhibition of ADH (alcohol dehydrogenase), (PDH) pyruvate dehydrogenase and ALDH (aldehyde dehydrogenase), inhibition of 
glycolysis (either enzyme and/or cofactors). Furfural: same as HMF, plus cell membrane damages. Weak acids: ATP depletion, toxic 
anion accumulation and inhibition of aromatic amino acids uptake. Phenolic compounds: uncoupling, generation of reactive O2 
species and membrane damage (Almeida et al., 2007). 

 

 

Weak acids. 

 

Acids are classified as either strong or weak, depending on their dissociation constant, Ka, the 

negative logarithm of which is denoted pKa. This value is the pH value at which the concentrations 

of the undissociated and dissociated form of the acid are equal, and the buffering capacity of the 

acid therefore is highest. The concentration of undissociated acid is a function of pH and pKa, and 

increases with decreasing pH (Henderson - Hasselbach equation). 

Dilute acid hydrolysates of spruce have a high buffering capacity up to approximately pH 5.5, 

the normal fermentation pH, due to partial dissociation of acetic, formic, and levulinic acid. The 
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concentration of undissociated acids in lignocellulosic hydrolysates is therefore very sensitive to 

small pH deviations around pH 5.5. 

The inhibitory effect of weak acids has been ascribed to uncoupling and intracellular anion 

accumulation (Russel 1992). The undissociated form of weak acids can diffuse from the 

fermentation medium across the plasma membrane and dissociate due to higher intracellular pH 

thus decreasing the cytosolic pH. The decrease in intracellular pH is compensated by the plasma 

membrane ATPase, which pumps protons out of the cell at the expense of ATP hydrolysis (Verduyn 

et al. 1992). Consequently, less ATP is available for biomass formation. 

According to the intracellular anion accumulation theory, the anionic form of the acid is 

captured inside the cell and the undissociated acid will diffuse into the cell until equilibrium is 

reached. Weak acids have also been shown to inhibit yeast growth by reducing the uptake of 

aromatic amino acids from the medium, probably as a consequence of strong inhibition of Tat2p 

amino acid permease (Bauer et al., 2003). 

A clear difference in toxicity between acetic, formic, and levulinic acid at the same 

concentration of undissociated acid has been reported (Larsson et al., 1998). This may be due to 

differences in membrane permeability or in toxicity of the anionic form of the acids once they have 

entered the cell. 

S. cerevisiae responds in different ways to weak acids and decreased intracellular pH. Growth in 

the presence of octanoic acid, sorbic acid, and low intracellular pH (Eraso and Gancedo, 1987) have 

been shown to activate the plasma membrane ATPase, and increase the proton pumping capacity of 

the cell. The production of succinic and acetic acid has been reported to decrease during cell growth 

in the presence of octanoic acid, and decrease the total acid stress experienced by the yeast (Viegas 

and Sá-Correia, 1995). The cell volume has also been shown to decrease with increasing 

concentration of octanoic acid in the medium, so that the buffering capacity of the cytoplasm 

increases due to a higher concentration of cellular compounds.  

 

Furfural and HMF. 

 

HMF and furfural decrease the volumetric ethanol yield and productivity, inhibit growth or give 

rise to a longer lag phase. These effects depend on the furan concentration and on the yeast strain 

used. Furfural is metabolised by S. cerevisiae under aerobic (Taherzadeh et al., 1998), oxygen-

limited (Navarro, 1994) and anaerobic conditions (Palmqvist et al., 1999a). During fermentation 

furfural reduction to furfuryl alcohol occurs with high yields (Villa, 1992). 
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Inhibition of aerobic growth of Pichia stipitis by furfuryl alcohol has been reported (Weigert et 

al., 1988), whereas only slight inhibition of anaerobic growth of S. cerevisiae has been detected. 

Furfural oxidation to furoic acid by S. cerevisiae occurs to some extent, primarily under aerobic 

conditions. 

Furfural has been shown to reduce the specific growth rate (Boyer et al., 1992), the cell-mass 

yield on ATP, the volumetric (Azhar et al., 1981), and specific ethanol productivities. Growth is 

more sensitive to furfural than is ethanol production. 

NADH-dependent yeast alcohol dehydrogenase (ADH) is believed to be responsible for furfural 

reduction (Diaz de Villegas et al., 1992). Under anaerobic conditions, glycerol is normally produced 

to regenerate excess NADH formed in biosynthesis. Glycerol production has been shown to be 

significantly reduced during furfural reduction, suggesting that furfural reduction regenerates 

NAD+.  

The reduction of furans by yeast may also result in NAD(P)H depletion, which was suggested 

by the fact that increased levels of acetaldehyde were excreted when furfural was added to the 

medium. Furthermore metabolic flux analyses have shown that furfural affects glycolytic and TCA 

fluxes, which are involved in energy metabolism (Sarvari et al, 2003). In S. cerevisiae furfural 

causes reactive oxygen species to accumulate, vacuole and mitochondrial membranes damage, 

chromatin and actin damage. Adaptation of S. cerevisiae to furfural has been reported in batch 

(Banerjee et al., 1981a), fed-batch, and continuous culture (Fireoved and Mutharasan, 1986), 

leading to increased growth and volumetric ethanol productivity. The adaptation might be due to the 

synthesis of new enzymes or co-enzymes for furfural reduction (Boyer et al., 1992). Supporting this 

hypothesis, the ADH activity in anaerobic fermentation has been reported to increase by 78% after 

48 h fermentation with an initial furfural concentration of 2 g/L (Banerjee et al., 1981b). HMF is 

also metabolised by S. cerevisiae. HMF has been reported to be converted at a lower rate than 

furfural, which might be due to lower membrane permeability, and cause a longer lag-phase in 

growth (Larsson et al., 1998). The main conversion product was 5-hydroxymethyl furfuryl alcohol, 

suggesting similar mechanisms for HMF and furfural inhibition. 

In general, the effects of furans can be explained by a re-direction of yeast energy to fixing the 

damage caused by furans and by reduced intracellular ATP and NAD(P)H levels, either by 

enzymatic inhibition or consumption/regeneration of cofactors. 
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Phenolic compounds. 

 

Phenolic compounds have been suggested to exert a considerable inhibitory effect in the 

fermentation of lignocellulosic hydrolysates. Phenolic compounds partition into biological 

membranes and cause loss of integrity, thereby affecting their ability to serve as selective barriers 

and enzyme matrices (Heipieper et al., 1994). The inhibitory effects of phenols have recently been 

reviewed (Klinke et al., 2004). As for furans, it was found that biomass yield, growth rate and 

ethanol productivity are generally more decreased than ethanol yields. 

Low molecular weight phenolic compounds are more inhibitory to S. cerevisiae than high 

molecular weight phenolics. Also the substituent position, para, ortho, meta, influences the toxicity 

of the compound (Larsson et al., 2000) The ortho position increases the toxicity of vanillins while 

methoxyl and hydroxyl substituents in meta and para positions or vice versa do not influence the 

toxicity. The phenolic hydrophobicity was correlated with reduced volumetric ethanol productivity 

in S. cerevisiae for a series of separate functional groups of phenol aldehydes, ketones, and acids 

(Klinke et al., 2003). Generally, aldehydes and ketones are stronger inhibitors than acids, which in 

turn are more inhibitory than alcohols for S. cerevisiae. 

Inhibition of fermentation has been shown to decrease when phenolic monomers and phenolic 

acids were specifically removed from a willow hemicelluloses hydrolysate by treatment with the 

lignin-oxidising enzyme laccase (Jönsson et al., 1998). 4-Hydroxybenzoic acid, vanillin, and 

catechol were major constituents in the untreated hydrolysate. 

Inhibition mechanisms of phenolic compounds on S. cerevisiae and other eukaryotic 

microorganisms have not yet been completely elucidated, largely due to the heterogeneity of the 

group and the lack of accurate qualitative and quantitative analyses. 

 

1.2.3 Detoxification of lignocellulosic hydrolyzates. 

 

During pretreatment and hydrolysis of lignocellulosic biomass, a great amount of compounds 

that can inhibit the subsequent fermentation are formed in addition to fermentable sugars. For this 

reason and depending on the type of employed pre-treatment, detoxification of the hydrolysates are 

required. Biological, physical, and chemical methods have been employed for detoxification of 

lignocellulosic hydrolysates (Olsson and Hahn-Hägerdal, 1996). 

These methods cannot be directly compared because they vary in the neutralization degree of 

the inhibitors. In addition, the fermenting microorganisms have different tolerances to the 
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inhibitors. Moreover, several reports on microbial adaptation to inhibiting compounds in 

lignocellulosic hydrolysates are found in literature (Amartey and Jeffries, 1996; Tran and 

Chambers, 1986; Yu et al., 1986). 

 

 

Biological detoxification methods 

 

Treatment with the enzymes peroxidase and laccase, obtained from the ligninolytic fungus 

Trametes versicolor, has been shown to increase two-fold the maximum ethanol productivity in a 

hemicellulose hydrolysate of willow (Jönsson et al., 1998). The laccase treatment led to selective 

and virtually complete removal of phenolic monomers and phenolic acids. 

 The absorbance at 280 nm, indicative of the presence of aromatic compounds, did not decrease 

during the laccase treatment, whereas an increase in absorbance for the large-sized material and a 

decrease for the small-sized material were observed for all wavelengths tested. Based on these 

observations, the detoxifying mechanism was suggested to be oxidative polymerisation of low 

molecular weight phenolic compounds. 

The filamentous soft-rot fungus Trichoderma reesei has been reported to degrade inhibitors in a 

hemicelluloses hydrolysate obtained after steam pretreatment of willow, resulting in around three 

times increased maximum ethanol productivity and four times increased ethanol yield (Palmqvist et 

al., 1997). In contrast to the treatment with laccase, treatment with T. reesei resulted in a 30% 

decrease in absorbance at 280 nm, indicating that the mechanisms of detoxification were different. 

Acetic acid, furfural and benzoic acid derivatives were removed from the hydrolysate by the 

treatment with T. reesei. 

 

Physical detoxification methods. 

 

The most volatile fraction (10% (v/v)) of a willow hemicellulose hydrolysate obtained by roto-

evaporation has been shown to only slightly decrease the ethanol productivity compared to a 

reference fermentation containing glucose and nutrients (Palmqvist et al., 1996). The non-volatile 

fraction was found to be considerably more inhibitory. 

In fermentation of an acid hydrolysate of aspen with P. stipitis the ethanol yield has been 

reported to increase from 0 to 13% of that in a reference fermentation containing no inhibitors after 

roto-evaporation almost to dryness and subsequent resuspension of the residue in fermentation 
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medium (Wilson et al., 1989). The detoxification was ascribed to a decrease in the concentration of 

acetic acid, furfural and vanillin by 54, 100 and 29%, respectively, compared with the 

concentrations in the hydrolysate. 

After continuous overnight extraction of a strongly inhibiting spruce hydrolysate with diethyl 

ether at pH 2, the ethanol yield (0.40 g/g) has been reported to be comparable to the value in a 

reference fermentation containing glucose and nutrients (Palmqvist and Hahn-Hägerdal, 2000). The 

ether extract contained acetic, formic, and levulinic acid, furfural, hydroxymethyl furfural (HMF) 

and phenolic compounds.  Resuspension of the extracted components in fermentation medium 

decreased the ethanol yield and productivity to 33 and 16%, respectively, of the values obtained in a 

reference fermentation. In agreement with this result, ethyl acetate extraction has been reported to 

increase the ethanol yield in fermentation by P. stipitis from 0 to 93% of that obtained in a reference 

fermentation (Wilson et al., 1989) due to removal of acetic acid (56%) and complete depletion of 

furfural, vanillin, and 4-hydroxybenzoic acid. Ethyl acetate extraction has also been shown to 

increase the glucose consumption rate in a hydrolysate of pine by a factor of 12 (Clark and Mackie, 

1984). The low molecular weight phenolic compounds were suggested to be the most inhibiting 

compounds in the ethyl acetate extract.  

 

Chemical detoxification methods. 

 

Detoxification of lignocellulosic hydrolysates by alkali treatment, i.e., increasing the pH to 9±10 

with Ca(OH)2 (overliming) and readjustment to 5.5 with H2SO4, has been described as early as 

1945 by Leonard and Hajny. Ca(OH)2 adjustment of pH has been reported to result in better 

fermentability than NaOH adjustment due to the precipitation of `toxic compounds' (van Zyl et al., 

1988). The detoxifying effect of overliming is due both to the precipitation of toxic components and 

to the instability of some inhibitors at high pH. This has been demonstrated by the fact that 

preadjustment to pH 10 with NaOH of a strongly inhibiting dilute-acid hydrolysate of spruce prior 

to fermentation resulted in twice as high ethanol yield (and comparable to the yield in a reference 

fermentation containing glucose and nutrients) as after only adjustment to fermentation pH (5.5) 

(Palmqvist, 1998). Preadjustment to pH 10 with NaOH and Ca(OH)2  has been reported to decrease 

the concentration of Hibbert’s ketones in a dilute acid hydrolysate of spruce from 203 to 158 (22% 

decrease) and to 143 mg/L (30% decrease), respectively, and the concentration of both furfural and 

HMF by 20%. 
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In recent studies treatment of a dilute-acid hydrolysates of spruce with sodium sulphite (Larsson 

et al., 1999), or using a large cell inoculums (Palmqvist and Hahn-Hägerdal, 1999) have been 

shown to decrease the concentrations of furfural and HMF. A combination of sulphite and 

overliming has been shown to be the most efficient method to detoxify willow hemicellulose 

hydrolysate prior to fermentation by recombinant Escherichia coli (Olsson et al., 1995). Only 24% 

of the xylose was fermented in 40 h in the untreated hydrolysate, whereas complete depletion of 

monosaccharides was obtained in the same time after overliming. The effect of the combined 

treatment was probably due to decreased concentrations of Hibbert’s ketones and aldehydes, and the 

removal of volatile compounds when a heat treatment was employed. 

 

1.2.4 Hydrolysis of cellulose. 

 

As the pre-treatment is finished, the cellulose is prepared for hydrolysis, meaning the cleaving 

of a molecule by adding a water molecule. This reaction is catalysed by dilute-acid, concentrated 

acid or enzymes (cellulase) and the latter has many advantages as the very mild conditions (pH 4.8 

and temperature 45-50 °C) give high yields and the maintenance costs are low compared to alkaline 

and acid hydrolysis due to no corrosion problems. 

Concentrated acids such H2SO4 and HCl have been used to treat cellulosic materials. Although 

they are powerful agents for cellulose hydrolysis, concentrated acids are toxic, corrosive and 

hazardous and require reactors that are resistant to corrosion. Diluite-acid hydrolysis has been 

successfully developed for cellulose hydrolysis and high temperature is favorable. Although dilute- 

acid can significantly improve the cellulose hydrolysis, its cost is usually higher than some physic-

chemical pretreatments because the neutralization of pH is necessary for the downstream enzymatic 

hydrolysis or fermentation processes. Moreover, diluite-acid hydrolysis provides a low sugar yields. 

Another basic method for the hydrolysis of cellulose is enzymatic hydrolysis and this is carried 

out by cellulase enzymes which are highly specific. Utility cost of enzymatic hydrolysis is low 

compared to acid or alkaline hydrolysis because enzyme hydrolysis is usually conducted at mild 

conditions (pH 4.8 and temperature 45–50 °C) and does not have a corrosion problem (Sun, 2002). 

Enzymatic hydrolysis is attractive because it produces better yields than acid-catalyzed hydrolysis. 

Both bacteria and fungi can produce cellulases for the hydrolysis of lignocellulosic materials. 

These microorganisms can be aerobic or anaerobic, mesophilic or thermophilic. Bacteria belonging 

to Clostridium, Cellulomonas, Bacillus, Thermomonospora, Ruminococcus, Bacteriodes, Erwinia, 

Acetovibrio, Microbispora, and Streptomyces can produce cellulases. Although many cellulolytic 
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bacteria, particularly the cellulolytic anaerobs such as Clostridum thermocellum and Bacteroides 

cellulosolvens produce cellulases with high specific activity, they do not produce high enzyme titres 

(Duff and Murray, 1996). Because the anaerobs have a very low growth rate and require an aerobic 

growth conditions, most research for commercial cellulase production has focused on fungi. 

Fungi that have been reported to produce celllulases include Sclerotium rolfsii, P. 

chrysosporium and species of Trichoderma, Aspergiullus, Schizophyllum and Penicillum. 

Trichoderma reseei releases a mixture of cellulases: two cellobiohydrolases, five endoglucanases, 

β-glucosidases and hemicellulases (Zhang and Lynd, 2004). The action of cellobiohydrolases 

causes a gradual decrease in the polymerazation degree. Endoglucanases action results in the 

rupture of cellulose in smaller chains reducing rapidly the polymerization degree. Endoglucanases 

especially act on amorphous cellulose, whereas cellobiohydrolases can act on crystalline cellulose 

as well (Lynd et al., 2002). 

Although T. reesei produces some β-glucosidases, which hydrolyse cellobiose into two 

molecules of glucose, their activities are not very high. Unfortunately, cellobiohydrolases are 

inhibited by cellobiose. For this reason, β-glucosidases from other microbial source needs to be 

added. Factorial optimization techniques have been applied for the design of cellulases mixtures 

from different sources including β-glucosidase in order to maximise the yield of produced glucose 

(Kim et al., 1998). 

Cellulases should be adsorbed on the surface of substrate particles before hydrolysis of 

insoluble cellulose take place. The three-dimensional structure of these particles in combination 

with their size and shape determines whether β-glucosidic linkages are or not are accessible to 

enzymatic attack (Zhang and Lynd, 2004). This makes cellulose hydrolysis to be slower compared 

to the enzymatic degradation of other biopolymers. 

 

1.2.5 Fermentations of biomass hydrolysates and process integration. 

 

The classic configuration employed for fermenting biomass hydrolysates involves a sequential 

process where the hydrolysis of cellulose and the fermentation are carried out in different units. 

This configuration is known as Separate Hydrolysis and Fermentation (SHF). In the alternative 

variant, the simultaneous saccharification and fermentation (SSF), the hydrolysis and fermentation 

are performed in a single vessel. However, when enzymatic hydrolysis is applied, different levels of 

process integration are possible. 
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Separate Hydrolysis and Fermentation (SHF). 

 

Enzymatic hydrolysis performed separately from fermentation step is known as SHF. In the 

SHF configuration, which is represented in Figure 1.5, the joint liquid flow from both hydrolysis 

reactors first enters the glucose fermentation reactor. The mixture is then distilled to remove the 

bioethanol leaving the unconverted xylose behind. In a second reactor, xylose is fermented to 

bioethanol, and the bioethanol is again distilled (Grethlein and Dill, 1993). 

The primary advantage of SHF is that hydrolysis and fermentation occur at optimum conditions; 

the disadvantage is that cellulolytic enzymes are end-product inhibited so that the rate of hydrolysis 

is progressively reduced when glucose and cellobiose accumulate.  

 

 
Fig. 1.5: Scheme of Separate Hydrolysis and Fermentation (SHF) process for lignocellulosic ethanol (Hemi: Hemicellulose) 

 

The most important factors to be taken into account for saccharification step are reaction time, 

temperature, pH, enzyme dosage and substrate load (Hamelinck, 2005). By testing lignocellulosic 

material from sugar cane leaves, Krishna et al. (2001) have found the best values of all these 

parameters. Cellulose conversion of about 65-70% was achieved at 50 °C and pH 4.5. Although 

enzyme doses of 100 FPU/g cellulose caused almost a 100% hydrolysis, this amount of enzymes is 

not economically justifiable. Hence, 40 FPU/g cellulose dosage was proposed obtaining only 13% 
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reduction in conversion. Regarding the substrate concentration, solid loads of 10% was defined as 

the most adequate considering arising mixing difficulties and accumulation of inhibitors in the 

medium.  

The composition of lignocellulosic material has an important influence on the enzyme dosage as 

described in Foody et al. (2000). In particular, the ratio of arabinan plus xylan to total non-starch 

polysaccharides determines its relative cellulase requirement. Therefore, the higher this ratio, the 

less enzyme is required after the pretreatment. Feedstocks with values of this ratio over about 0.39 

are particularly well suited for cellulose-to-ethanol process as certain varieties of oat hulls and corn 

cobs.  

Park et al. (2001) have studied the hydrolysis of waste paper contained in MSW (Municipal 

Solid Waste) obtaining significant sugars yield. Bioethanol production from cellulosic portion of 

MSW has been already patented (Timas, 1999). Moreover, some strategies for improving the 

fermentability of MSW acid hydrolysates has been defined. Nguyen et al. (1999) employed a mixed 

solids waste for producing ethanol by SHF using yeasts. In this process a recycling of enzymes was 

implemented through microfiltration and ultrafiltration achieving 90% cellulose hydrolysis at a net 

enzyme loading of 10 FPU/g cellulose. 

 

Simultaneous Saccharification and Fermentation (SSF). 

 

The sugars from the pre-treatment and enzymatic hydrolysis steps are fermented by bacteria, 

yeast or filamentous fungi, although the enzymatic hydrolysis and fermentation can also be 

performed in a combined step, the so-called simultaneous SSF (Figure 1.6). In SSF, cellulases and 

xylanases convert the carbohydrate polymers to fermentable sugars. These enzymes are notoriously 

susceptible to feedback inhibition by the products - glucose, xylose, cellobiose, and other 

oligosaccharides. 

SSF gives higher reported bioethanol yields and requires lower amounts of enzyme because 

end-product inhibition from cellobiose and glucose formed during enzymatic hydrolysis is relieved 

by the yeast fermentation (Dien et al. 2003). The efficiency of product formation increases with 

increasing bioethanol concentration up to about 5% on a w/w basis, so fermentation at high 

temperatures (>40 °C) and at or above 5% bioethanol are priorities for commercialization of this 

technology.  
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Major advantages of SSF as described by Sun and Cheng, include: (i) increase of hydrolysis rate 

by conversion of sugars that inhibit the cellulase activity, (ii) lower enzyme requirement, (iii) higher 

product yields, (iv) lower requirements for sterile conditions since glucose is removed immediately 

and bioethanol is produced, (v) shorter process time; and (vi) less reactor volume. SSF process has 

also some disadvantages. The main disadvantage of SSF lies in different temperature optima for 

saccharification and fermentation (Krishna et al., 2001).  

In many cases, the low pH, e.g., less than 5, and high temperature, e.g., >40 °C, may be 

favorable for enzymatic hydrolysis, whereas the low pH can surely inhibit the lactic acid production 

and the high temperature may affect adversely the fungal cell growth (Huang et al., 2005). T. reesei 

cellulases, which constitute the most active preparations, have optimal activity at pH 4.5 and 50 °C. 

For Saccharomyces cultures SSF are typically controlled at pH 4.5 and 37 °C. 

 

 

Fig. 1.6: Scheme of Simultaneous Saccharification and Fermentation (SSF) and Simultaneous Saccharification and CoFermentation 
of hexoses and pentoses sugars (SSCF) processes for lignocellulosic ethanol (Hemi: Hemicellulose). 

. 

More recently, the SSF technology has proved advantageous for the simultaneous fermentation 

of hexose and pentose which is so-called simultaneous saccharification and co-fermentation 

(SSCF). In SSCF, represented in Figure 1.6, the enzymatic hydrolysis continuously releases hexose 

sugars, which increases the rate of glycolysis such that the pentose sugars are fermented faster and 
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with higher yield. SSF and SSCF are preferred since both unit operations can be done in the same 

tank, resulting in lower costs (Mosiet et al., 2005). 

 

1.2.6 Fermentation of pentoses. 

 

Complete substrate utilization is one of the prerequisites to render lignocellulosic ethanol 

processes economically competitive (Galbe and Zacchi 2002). This means that all types of sugars in 

cellulose and hemicellulose must be converted to ethanol, and that microorganisms must be 

obtained that efficiently perform this conversion under industrial conditions.  

Baker's yeast Saccharomyces cerevisiae is well established on large scale for the ethanolic 

fermentation of glucose, mannose, and galactose. But this microorganism is not able to assimilate 

cellulose and hemicelluloses directly. In addition, pentoses obtained during hemicelluloses 

hydrolysis (mainly xylose and arabinose) cannot be assimilated by this yeast. 

Species of bacteria, yeast, and filamentous fungi naturally ferment xylose to ethanol (Jeffries 

1983; Toivola et al. 1984). In the lignocellulosic context and considering modern molecular strain 

development strategies, each group of microorganisms has its advantages and disadvantages. In 

Table 1.6, the substrate and product ranges of microorganisms most frequently considered for 

ethanolic fermentation of lignocellulosic biomass are summarized. Also, parameters relating to their 

industrial performance are indicated. 

 

 
Tab. 1.6. Prons and cons of various natural microorganisms with regard to industrial ethanol production (Hahn-Hägerdal et al., 2007) 
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Bacteria. 

 

Obligate anaerobic bacteria (Table 1.6) can ferment all lignocellulose-derived sugars, including 

their oligomers and polymers, to ethanol, other solvents, and acids (Wiegel and Ljungdahl 1986). 

Because these bacteria are more severely inhibited than other bacteria by high sugar concentrations 

and moderate concentrations of ethanol and acids, efforts are being made to isolate sugar and 

ethanol tolerant variants (Fong et al. 2006). 

So far their fermentative performance has only been investigated in dilute alkali-treated 

hydrolysate. Nevertheless, anaerobic bacteria have an established industrial record for the 

production of acetone and butanol, most recently in the former Soviet Union and in South Africa. 

However, these processes could not compete in the market economy of the 1990s. Also, the use of 

obligate anaerobic bacteria is hampered by the lack of simple and efficient molecular biology tools 

for genetic engineering; however, protocols for thermophilic anaerobes are being developed (Tyurin 

et al. 2005).  

Ethanol-producing bacteria (Table 1.6) generally display mixed acid product formation where 

ethanol is a minor product. Furthermore, their optimal pH around 6-7 makes bacterial fermentation 

susceptible to infection and their low tolerance to lignocellulose-derived inhibitors requires a 

detoxification step to be included in the fermentation process (Hahn-Hägerdal et al. 1994). 

Nevertheless, the presently most efficient microorganisms for fermentation of detoxified 

lignocellulose hydrolysates are recombinant strains of Escherichia coli (Ingram et al. 1987; Hespell 

et al. 1996; Bothast et al. 1999) 

In contrast to other bacteria, Zymomonas mobilis (Table 1.6) produces ethanol with 

stoichiometric yields. It also displays high specific ethanol productivity (Lee et al. 1979; Rogers et 

al. 1979). Despite intensive efforts over the past 20 years, the industrial exploitation of Z. mobilis 

has so far not materialized. In relation to the variety of sugars present in lignocellulosic raw 

materials, the substrate range of Z. mobilis is limited. Recombinant xylose- and arabinose-

fermenting strains, capable to ferment these sugars in detoxified lignocellulose hydrolysates, have 

been constructed (Zhang et al. 1995; Mohagheghi et al. 2002). However, Z. mobilis would also need 

pathways for the metabolism of mannose and galactose, which constitute a considerable fraction of 

some lignocellulosic raw materials.  
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Yeasts. 

 

Whereas a large number of yeast species metabolize xylose and arabinose and display 

fermentative capacity (Barnett 2000), only approximately 1% of them are capable of fermenting 

xylose to ethanol. No arabinose-fermenting yeast was found in an early screening study (McMillan 

and Boynton 1994), while a subsequent study identified four yeast species able to ferment arabinose 

to ethanol (Fig. 2b; Dien et al. 1996). The discrepancy between these studies is most likely due to 

that the latter screen used a complex (YP) medium containing yeast extract and peptone, which 

contain compounds that may act as electron acceptors and thus aid conversion of arabinose to 

ethanol.  

The requirement for electron acceptors translates to very low, carefully controlled, levels of 

oxygen required for maximum ethanol production from arabinose and xylose by these yeasts 

(Skoog and Hahn-Hägerdal 1990). However, such precise oxygenation is technically impossible to 

maintain in large-scale industrial conditions, with concomitant reduced product yield. Also, the 

naturally pentose-fermenting yeasts are generally inhibited by industrial substrates (Hahn-Hägerdal 

et al. 1994; Olsson et al. 1992; Hahn -Hägerdal and Pamment 2004; Klinke et al. 2004) and do not 

grow under anaerobic conditions even on hexose sugars (Visser et al. 1990). 

 

S. cerevisiae. 

 

S. cerevisiae has traditionally been used in large-scale ethanolic fermentation of sugar- and 

starch-based raw materials and it is therefore well adapted to the context. It produces ethanol with 

stoichiometric yields and tolerates a wide spectrum of inhibitors and elevated osmotic pressure. Its 

superiority in fermenting non-detoxified lignocellulose hydrolysates has been repeatedly 

demonstrated (Olsson et al. 1992; Hahn-Hägerdal et al. 1994, 2006; Hahn-Hägerdal and Pamment 

2004). In favour of S. cerevisiae as the microorganism for fuel ethanol production speaks also the 

advantage of integrating large-scale lignocellulosic ethanol processes into the existing sugar cane 

and starch-based ethanol plants already using this yeast. Sugar- and starch-based ethanol plants 

today exclusively operate with S. cerevisiae as a production organism. The only, but major, 

inconvenience to use S. cerevisiae for lignocellulosic fermentation is its inability to metabolize and 

ferment the pentose sugars xylose and arabinose to ethanol. 

While S. cerevisiae naturally harbors genes for xylose utilization (Kuhn et al. 1995; Toivari et al. 

2004), these are expressed at such low levels that they do not support growth on xylose. Only a 



42 

 

limited number of industrial pentose-fermenting strains have been described in literature. The 

Pichia stipitis genes XYL1 and XYL2 encoding XR and xylitol dehydrogenase (XDH), 

respectively, have been introduced in S. cerevisiae (Kötter and Ciriacy 1993), which resulted in 

growth on xylose. It was recognized that also the endogenous XKS1 gene encoding xylulokinase 

(XK) had to be overexpressed for xylose fermentation to occur (Eliasson et al. 2000). Bacterial and 

fungal XI pathways have been also established in S. cerevisiae (Walfridsson et al. 1996). Only 

recently the development of industrial arabinose-fermenting S. cerevisiae strains has been initiated 

(Karhumaa et al., 2006). Moreover, the simultaneous cofermentation of hexose and pentose sugars 

constitutes the major strain engineering challenge. 

 

1.3 Consolidated BioProcessing for bioethanol production from lignocellulose. 

 

Lignocellulosic biomass is the only foresee able renewable feedstock for sustainable production 

of biofuels. The main technological impediment to more widespread utilization of this resource is 

the lack of low-cost technologies to overcome the recalcitrance of the cellulosic structure (Lynd et 

al., 2002). Four biological events occur during conversion of lignocellulose to ethanol via processes 

featuring enzymatic hydrolysis: production of saccharolytic enzyme (cellulases and hemicellulases), 

hydrolysis of the polysaccharides present in pretreated biomass, fermentation of hexose sugars, and 

fermentation of pentose sugars. The hydrolysis and fermentation steps have been combined in 

simultaneous saccharification and fermentation (SSF) of hexoses and simultaneous saccharification 

and cofermentation (SSCF) of both hexoses and pentoses schemes. The ultimate objective would be 

a one-step “consolidated” bioprocessing (CBP) of lignocellulose to bioethanol, where all four of 

these steps occur in one reactor and are mediated by a single microorganism or microbial 

consortium able to ferment pretreated biomass without added saccharolytic enzymes (Figure 1.7). 

 
Fig. 1.7: Scheme of Consolidated Bioprocessing (CBP) for ethanol production as integration of the other systems developed for 
ligncellulosic biomass (Hemi: Hemicellulose). 
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CBP is gaining increasing recognition as a potential breakthrough for lowcost biomass 

processing. A fourfold reduction in the cost of biological processing and a twofold reduction in the 

cost of processing overall is projected when a mature CBP process is substituted for an advanced 

SSCF process featuring cellulase costing US $0.10 per gallon ethanol (Lynd et al., 2006). 

The detailed analysis of mature biomass conversion processes by Greene et al. (2004) finds 

CBP to be responsible for the largest cost reduction of all R&D-driven improvements incorporated 

into mature technology scenarios featuring projected ethanol selling prices of less than US $0.70 

per gallon. 

Finally, a recent report entitled Breaking the Biological Barriers to Cellulosic Ethanol states: 

“CBP is widely considered to be the ultimate low-cost configuration for cellulose hydrolysis and 

fermentation.” (US DOE, 2006). 

In addition to being desirable, recent studies of naturally occurring cellulolytic microorganisms 

provide increasing indications that CBP is feasible. Lu et al. (2006) showed that cellulase-specific 

cellulose hydrolysis rates, exhibited by growing cultures of Clostridium thermocellum, exceed 

specific rates exhibited by the Trichoderma reesei cellulase system by approximately 20-fold; a 

substantial part of this difference resulted from “enzyme-microbe synergy”, involving enhanced 

effectiveness of cellulases acting as part of cellulose-enzyme-microbe complexes. 

Although no natural microorganism exhibits all the features desired for CBP, a number of 

microorganisms, both bacteria and fungi, possess some of the desirable properties. These 

microorganisms can broadly be divided into two groups: (1) native cellulolytic microorganisms that 

possess superior saccharolytic capabilities, but not necessarily product formation, and (2) 

recombinant cellulolytic microorganisms that naturally give high product yields, but lacking 

saccharolytic systems. 

Examples of native cellulolytic microorganisms under consideration include anaerobic bacteria 

with highly efficient and complex saccharolytic systems, such as mesophilic and thermophilic 

Clostridium species (Demain et al. 2005) and fungi that naturally produce a large repertoire of 

saccharolytic enzymes, such as Fusarium oxysporum (Panagiotou et al., 2006) and a Trichoderma 

species. However, the anaerobic bacteria produce a variety of fermentation products, limiting the 

ethanol yield, whereas the filamentous fungi are slow cellulose degraders and give low ethanol 

yields. Candidates considered as potential recombinant cellulolytic microorganisms into which 

saccharolytic systems have been engineered, include the bacteria Zymomonas mobilis (Lawford et 

al., 2002), Escherichia coli (Tao et al., 2001) and Klebsiella oxytoca (Dien et al., 2003), and the 
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yeasts S. cerevisiae and the xylose-fermenting Pachysolen tannophilus (Slininger et al., 1987), 

Pichia stipitis, and Candida shehatae (Prior et al., 1989). 

 

 

1.3.1 S. cerevisiae as CBP host. 

 

Significant advances related to recombinant enzyme expression support the great potential for S. 

cerevisiae as a CBP host (van Zyl et al., 2007). However, the challenge of integrating all the 

different aspects of enzymatic hydrolysis and subsequence fermentation of the released sugars to 

ethanol in a single reactor with a CBP, should not be underestimated. A pertinent question often 

asked by critics is: “Would S. cerevisiae be able to simultaneously express multiple genes, while 

producing and secreting the different cellulases, hemicellulases and pentose utilizing enzymes 

required?” (van Zyl et al., 2007). Several studies demonstrate co-expression of multiple genes in S. 

cerevisiae, for example in the case of the expression of tethered cellulolytic and xylanolytic 

enzymes (Fujita et al., 2004), xylose and arabinose utilizing enzymes (Becker and Boles, 2003), as 

well as xylose and oligosaccharides utilizing enzymes (Katahira et al., 2006). The expression and 

secretion of a variety of cellulases, amylases, and pectinase has also been demonstrated without 

adversely affecting yeast growth (Van Rensburg et al., 1998). 

However, the number of genes expressed is probably not important as the need for high-level 

expression as well as the stress responses that may accompany such high-level expression. Main 

factors that could impose unnecessary stress the host cells are: 

 

1. sequestering of transcription factors at highly expressed promoters used for heterologous 

gene expression, 

2. impact of unfavourable codon bias on the translation of heterogous protein (can be 

overcome by the use of codon-optimized synthetic genes), 

3. improper folding of foreing proteins. 

 

Therefore the proper strategy would not be the sole overexpression of all the required genes to 

ensure a functional CBP yeast with desiderable enzymatic activities. More attention should also be 

devoted to the careful manipulation of the enzyme activities and producing them at the right 

concentration. 
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Essentially all work aimed to efficient heterologous expression of saccharolytic enzymes in 

yeast has involved in laboratory strains. Much of this work has to be transferred to industrial strains 

that provide the fermentation capacity and robustness desired for industrial process. 

Different strategies have been used for the overexpression of multiple genes in industrial S. 

cerevisiae strains. High-copy number episomal YEp vectors, often using the two-micron 

Autonomous Replicating Sequence (ARS), have been very helpful in demonstrating proof of 

concept in laboratory strains of S. cerevisiae (Den Haan et al., 2006; La Grange et al., 2001, Van 

Rooyen et al., 2005). However, these constructs are usually mitotically unstable and require 

selection for the episomal plasmid, which often means using a defined medium that is not 

applicable to industrial uses (Romanos et al., 1992; Favaro et al., 2013b). 

The preferred route taken for industrial strains has been the use of integrative YIp vectors that 

facilitate direct integration of foreign expression cassettes into a target gene on the yeast genome or 

recycling dominant selectable markers for multiple integration. Although these methods provide 

stable expression from the yeast genome and are amendable to industrial strains, the major 

drawback has been low expression levels. Different approaches have been pursued in order to 

combine the advantages of overexpression from multicopy plasmid with the stability of 

chromosomal integration, which is also applicable to industrial strains when dominant selectable 

markers are used. These include the use of repetitive chromosomal DNA sequences such as rDNA 

and δ-sequences (Lee and Silva, 1997). There are approximately 140-200 copies of rDNA existing 

in the haploid yeast genome; however, rDNA is located in the nucleolus, which may affect the 

accessibility to RNA polymerase II transcription. Also, the size pf pMIRY (multiple integration into 

ribosomal DNA in yeast) vectors could determine the mitotic stability of these multiple integrations 

(Lopes et al., 1996). 

The δ-sequences are the long terminal repeats of S. cerevisiae retrotrasposon Ty. More than 400 

copies of δ-sequences can exist either Ty associated or as sole sites in the haploid yeast genome 

(Dujon, 1996). δ-Integration thus makes possible to integrate more copies of a gene into the yeast 

genome than the conventional integration system. Host strains and integrated gene size can 

significantly affect the transformation efficiency at δ-sequence; however, the transformation 

efficiency can be 10- to 100-fold those obtained when transforming with vectors that target a single 

gene on the yeast genome (Favaro et al., 2012a; Favaro et al., 2013b). 

A more strategic approach would require to design a yeast that produces the proper enzyme 

activities, yet retains the competence to still perform well under industrial conditions. Such a 

strategy will most probably start by building on a platform industrial yeast that co-metabolizes 



46 

 

hexoses and pentoses, and subsequently finding the right combination and level of expression for 

saccharolytic enzymes (van Zyl et al., 2007). 

This approach will use reiterated metabolic engineering and flux analysis, selection and 

mutagenesis strategies, and strain breeding to allow the microorganism itself to overcome rate-

limiting hurdles toward developing an efficient CBP yeasts. Examples of such approaches in the 

past have been performed to enhance xylose fermentation in laboratory and industrial strains 

(Kuyper et al., 2005). 

 

1.4 Reasons for developing a CBP microbe for cellulose conversion. 

  

Current technology for conversion of cellulose to ethanol requires chemical or enzymatic 

conversion of the substrate to fermentable sugars followed by fermentation by a microrganism such 

as Saccharomyces cerevisiae. The large amounts of enzymes required for enzymatic conversion of 

cellulose to fermentable sugars impacts severely on the cost effectiveness of this technology. One-

step CBP conversion of cellulose to ethanol with an organism capable of cellulose degradation and 

efficient fermentation would greatly enhance cost effectiveness of bioethanol production. 

The development of a yeast strain capable of producing ethanol by fermenting cellulosic 

substrates has received a great deal of interest over recent years. The advantages of yeasts include 

(i) their high ethanol productivity and tolerance, (ii) larger cells size, which simplify their separation 

from the culture broth and (ii) resistance to viral infection. 

Cellulases from bacterial and fungal sources have been transferred to S. cerevisiae, enabling the 

hydrolysis of cellulosic derivatives (Lynd et al., 2002), or growth on cellobiose (Van Rooyen et al., 

2005). Most reports regarding the expression of cellulases and hemicellulases in yeast employed 

strong glycolytic (or other constitutively expressed) promoters to drive expression of the 

heterologous gene(s). Although the choice of promoter and leader sequences will undoubtedly have 

a great influence on expression levels attained, there are not enough data in the literature to suggest 

any general trends as to what are the best promoter and leader sequences to use when expressing 

cellulases and hemicellulases. Several researchers have sought to produce cellulases in an organism 

that would not yield interfering activities so as to gain insight into the mechanism of the original 

cellulolytic enzyme (Bailey et al., 1999), whereas others have sought to enable the yeast to 

hydrolyze non-native cellulolytic substrates (Fujita et al., 2004). Although most of the cellulases 

that have been successfully produced in S. cerevisiae were of fungal origin, there are reports of 

successful bacterial cellulases production (Van Rensburg et al., 1996). 
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1.4.1 Cellulose hydrolysis. 

 

Full enzymatic hydrolysis of crystalline cellulose requires three major types of enzymatic 

activity (cellulase system): (1) endoglucanases (1,4-β-d-glucan 4-glucanohydrolases; EC 3.2.1.4); 

(2) exoglucanases, including d-cellodextrinases (1,4-β-d-glucan glucanohydrolases; EC 3.2.1.74) 

and cellobiohydrolases (1,4-β-d-glucan cellobiohydrolases; EC 3.2.1.91); and (3) β-glucosidases (β-

glucoside glucohydrolases; EC 3.2.1.21) (Figure 1.8). 

Endoglucanases randomly cut internal amorphous sites in the cellulose polysaccharide chain, 

generating oligosaccharides of various lengths and consequently new chain ends. Exoglucanases act 

in a processive manner on the reducing or nonreducing ends of cellulose polysaccharide chains, 

liberating either glucose (glucanohydrolases) or cellobiose (cellobiohydrolase) as major products. 

Exoglucanases can also act on microcrystalline cellulose, presumably peeling cellulose chains from 

the microcrystalline structure (Teeri, 1997). β-Glucosidases hydrolyze soluble cellodextrins and 

cellobiose to glucose. 

Cellulases are distinguished from other glycoside hydrolases by their ability to hydrolyze β-1,4-

glucosidic bonds between glucosyl residues. The enzymatic breakage of the β-1,4-glucosidic bonds 

in cellulose proceeds through an acid hydrolysis mechanism, using a proton donor and nucleophile 

or base. The hydrolysis products can either result in the inversion or retention (double replacement 

mechanism) of the anomeric configuration of carbon-1 at the reducing end (Withers, 2001). 
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Fig. 1.8: Schematic representation of the mechanism of degradation of cellulose. The action of the three enzymes involved 
(Endocellulase, Exocellulases and β-glucosidase) are indicated.  

 

 

A number of studies have expressed multiple cellulase enzymes in yeasts in attempts to recreate 

a fully cellulolytic, fermentative system (Katahira et al., 2006; Fujita et al., 2004; den Haan et al., 

2006). Van Rensburg et al. (1998) constructed a yeast capable of hydrolyzing numerous cellulosic 

substrates and growing on cellobiose, while Cho et al. (1999) showed that decreased loadings of 

cellulases could be used for SSF experiments with their strain expressing a BGL enzyme and an 

enzyme with dual exo/endocellulase activity. Fujita et al. (2002, 2004) reported co-expression and 

surface display of cellulases in S. cerevisiae, and a recombinant strain displaying the T. reesei 

endoglucanase II, cellobiohydrolase II, and the Aspergillus aculeatus β-glucosidase 1 was built. 

High-cell density suspensions of this strain were able to directly convert PASC to ethanol with a 

yield of approximately 3 g/L from 10 g/L within 40 h. Den Haan et al. (2006) reported growth on 

and direct conversion of PASC to ethanol by a laboratory S. cerevisiae strain co-expressing the 

endoglucanase T. reesei EG1 and the Saccharomycopsis fibuligera BGL1. 

Since cellobiose (and longer chain cellooligosaccharides) is the major soluble by-products of 

cellulose hydrolysis, its efficient utilization is of primary importance to CBP development. 

Enzymatic hydrolysis of cellobiose requires the action of β-glucosidases. This heterogeneous group 

of enzymes displays broad substrate specificity towards cellobiose, cello-oligosaccharides and 
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different aryl- and alkyl-β-d-glucosides. β-Glucosidases occur widely in animals, plants, fungi and 

bacteria and they work synergistically with endoglucanases and exoglucanases on the degradation 

of cellulose. They not only catalyze the final step in the degradation of cellulose, but also stimulate 

the extent of cellulose hydrolysis by relieving the cellobiose-mediated inhibition of exoglucanase 

and endoglucanase (Sternberg et al., 1977).  
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2. MATERIAL AND METHODS  

 

2.1 Strains and media 

The genotypes, phenotypes and sources of yeast and bacterial strains used in this work are 

summarized in Table 2.1. 

Strain Relevant genotype or phenotype Source or reference 

Candida zemplinina 
144 strains isolated from grape marcs containing 
an inhibitors cocktail 

Trento et al., 2011 

Candida glabrata 
16 strains isolated from grape marcs containing 
an inhibitors cocktail 

Trento et al., 2011 

Escherichia coli XL1-Blue  
MRF’ endA1 supE44 thi-1 recA1 gyrA96 relA1 
lac[F’proAB lacq Z∆M15 Tn10 (tet)] 

Stratagene (USA) 

Issatchenkia orientalis 
155 strains isolated from grape marcs containing 
an inhibitors cocktail 

Trento et al., 2011 

Saccharomyces cerevisiae  
21 strains isolated from grape marcs containing 
an inhibitors cocktail 

Trento et al., 2011 

of which: 
T2 

 
Strain with high fermentative vigour and inhibitor 
tolerance 

 

S. cerevisiae 27P Yeast with industrial bioethanol traits Favaro et al., 2012a 

S. cerevisiae EC1118 Industrial wine strain Padova Univ. 

S. cerevisiae Fp96 
Strain with high fermentative vigour and inhibitor 
tolerance 

Favaro et al., 2012c 

S. cerevisiae F12 
Strain with high fermentative vigour and inhibitor 
tolerance 

Favaro et al., 2012c 

S. cerevisiae MH1000 Industrial distillery strain Stellenbosch Univ. 

S. cerevisiae YI30 Industrial distillery strain Stellenbosch Univ. 

S. cerevisiae Y294 αleu2-3, 112 ura3-52 his3 trp1-289 
American Type Culture 
collection (ATCC) 

S. cerevisiae S288c 
MATα SUC2 gal2 mal mel flo I flo8-1hap1 ho bio 
1 bio6, MIP[S] 

ATCC 

Tab 2.1. Summary of the yeast and bacterial strains used in this study 
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The media used in this work are reported in Table 2.2. All chemicals, media components and 

supplements were of analytical grade standard. 

 

 

 

 

Tab 2.2. Summary of the media used in this study 

 

Yeast strains pre-cultures were grown in YPD medium (g/L: yeast extract, 10; peptone, 20 and 

glucose, 20) at 30 °C on a rotatory shaker at 130 rpm unless otherwise stated. 

 

2.2 Fermentative vigour evaluation 

Fermentative vigour of S. cerevisiae strains was tested in MNS broth (Delfini, 1995). This 

medium was selected because it well simulates industrial conditions (Favaro et al., 2012b). 

S.cerevisiae MH1000, EC1118, 27P, Y294 were used as reference strains. Fermentation tests were 

performed as described by Delfini (1995). In short, MNS medium was supplemented with different 

concentrations of glucose and/or xylose (20% glucose, 10% glucose and 5% xylose) and glass 

serum bottles were filled with 100 mL of MNS medium and then sealed with rubber stoppers. Pre-

cultures of S. cerevisiae strains were inoculated with an average cell concentration of 7.5 x 104 

cells/mL and incubated in static condition at 25 and 40 °C. The experiments were carried out in 

triplicate. The fermentation vigour was daily monitored by measuring flasks weight loss in relation 

to CO2 production. Every measure was reported as grams of glucose utilised per 100 mL of MNS 

medium, by a conversion factor of 2.118 (Delfini, 1995). Samples were withdrawn after 7 and 21 

days and analyzed for glucose, xylose, xylitol, glycerol and ethanol by HPLC, as described in 

Favaro et al. 2012b. 

 

 

 

 

Medium  Reference or supplier 

Luria-Bertani (LB) DIFCO 

Must Nutrient Synthetic (MNS) Delfini, 1995 

Yeast Nitrogen Base (YNB) DIFCO 

Yeast Peptone Dextrose (YPD) OXOID 

Yeast Peptone Dextrose Sorbitol (YPDS) Favaro et al., 2012a 
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2.3 Yeast isolation from grape marcs 

 

Grape marcs were selected as promising ecological niche since it is a wide source of yeast 

strains having interesting fermentative abilities. Marcs were collected immediately after grape 

crushing, from a winery located in Melara (Rovigo). To set up the experiment, 5-kg aliquots of non-

sulphited grape marcs were transferred into sterile plastic bags and closed with a spongy plug to 

allow excess gas release during fermentation. 

The bags, with or without a cocktail of inhibitors more frequently present in the hydrolysates 

(g/L: Furfural 1.85, Acetic acid 4.8, Formic acid 1.63, Lactic acid 4.53, as defined in the next 

chapter), were incubated at 30 and 40 °C. Similarly, stalks bags were incubated at room temperature 

with or without the inhibitors cocktail. 

For strains isolation, YPD-agar plates were prepared adding each single inhibitors at the same 

concentration of that used in the bags, and another series at half concentration (g/L: Furfural 0.92, 

Acetic acid 2.4, 0.81 g/L Formic acid 0.81, Lactic acid 2.26). YPD plates were also prepared with 

the addition of the entire inhibitors cocktail, both at the maximum and half concentration. All the 

media were supplemented with 100 µg/mL chloramphenicol in order to inhibit bacterial growth. 

Twenty grams of grape marcs were collected randomly within each bag, dispersed in 180 mL of 

sterile NaCl solution (0.9%) and, after appropriate decimal dilutions, plated on YPD agar with and 

without inhibitors. The plates were aerobically incubated at the same temperature of the original 

bag (30 or 40 °C). 

 

2.4 Yeast strains genetic identification 

In order to proceed to a reliable identification of the isolates, most of the yeast strains available 

at the end of the isolation programme were analyzed by ITS (Internal Trascribed Spacer) 

amplification as described below. 

For each isolate, a colony grown on YPD-agar plate was resuspended in 20 µL of sterile water 

and vortexed briefly. 3 µL of the suspension were used as template for PCR amplification, carried 

out in a thermalcycler gradient (BioRad Lab, Hercules, CA, USA). 

For ITS region primers ITS1 and ITS4 (Guillamon et al., 1998) were used to amplify a region of 

the rDNA repeat unit which includes two non-coding regions, designated as the internal transcribed 

spacers (ITS1 and ITS2), the 3' part of the 18S, the 5' portion of the 26S and the entire 5.8S rDNA 

genes. A 3-Μl aliquot of cell suspension, prepared as described above, was heated at 94 °C for 5 

minto allow cell lysis and then subjected to PCR amplification using 30 cycles with initial 
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denaturation at 94 °C for 30 s, annealing at 56 °C for 30 s and extension at 72 °C for 30 s. 

Amplification products were checked for purity by agarose gel electrophoresis. 

The resulting amplification product was digested with HinfI restriction endonuclease. The 

reaction was carried out in 15-µL volume and incubated at 37 °C for 4 h. Restriction fragments 

were separated by 1.8% (w/v) agarose gel electrophoresis in TBE buffer (0.5×) to obtain the relative 

restriction pattern. 

Representative isolates from each HinfI restriction pattern were then subjected to ITS region 

sequencing (BMR Genomics, University of Padova). Their species identification was completed 

after BLASTN alignment (www.ncbi.nlm.nih.gov/BLAST) of the obtained sequences with those 

present in the GenBank database. A minimum sequence similarity level of 97% was considered for 

species identification. 

 

2.5 Tolerance to inhibitors of S. cerevisiae strains 

Strains genetically identified as S. cerevisiae, were evaluated for their fermentative abilities (see 

2.2 Fermentative vigour evaluation) and for their inhibitors tolerance once grown in YNB and YPD 

broth supplemented with cocktails of inhibitory compounds commonly present in lignocellulosic 

hydrolysates (weak acids and furans). Inhibitors tolerance was also tested in YPD-agar plates. The 

concentration values of all the inhibitors comes from an extensive bibliographic research made in 

order to study the different concentrations of sugars and inhibitors that are present in the 

lignocellulosic hydrolysates. The final aim was to define a synthetic medium in order to simulate 

the industrial fermentation environments as well as the composition (i.e. sugars, nutrients, 

inhibitors) of the hydrolysates. Among a number of different cocktails tested, the following were 

adopted: 

• Cocktail B (g/L: acetic acid 3.6; formic acid 1.2; lactic acid 3.4; furfural 1.4) 

• Cocktail C (g/L: acetic acid 5.4; formic acid 1.8; lactic acid 5.2; furfural 2.1). 

 

The pH of the medium, after the addition of the inhibitors, was set to 4.5 with KOH (5M). Yeast 

cells were inoculated at a concentration of about 1x106 cells/mL in 0.9 mL of medium and 

incubated at 30°C (100 rpm). After 40 hours, optical density (OD600) was measured. For each strain 

the tolerance was evaluated as relative growth by comparing the growth in the medium with and 

without the inhibitors, as OD value (%). 
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2.6 Growth of S. cerevisiae strains in medium with glucose 

The S. cerevisiae strains were evaluated for their ability to grow in medium with glucose. To 

this purpose, minimal medium YNB (Yeast Nitrogen Base, 6.7 g/L) was used and 20 g/L of glucose 

and 5 g/L of NH4-sulphate were added to the medium.  

Yeast cells were inoculated at a concentration of about 1x106 cells/mL in 35 mL of medium and 

incubated at 30 °C and 40 °C (100 rpm) in aerobic conditions. Samples were withdrawn at regular 

intervals for the evaluation of the growth by optical density at 600nm. At final sampling time, 

aliquots of the YNB cultures were collected for the evaluation of dry biomass and for the analysis 

of the glucose, xylose, xylitol, glycerol and ethanol content by HPLC.  

 

2.7 Development of an efficient cellobiose hydrolyzing yeast strain for industrial 
bioethanol production. 

Among the S. cerevisiae screened, the strain exhibiting the highest fermentative vigour and 

inhibitors tolerance was selected in order to develop an engineered S. cerevisiae yeast able to 

secreting the bglI β-glucosidase obtained from Saccharomycopsis fibuligera. Four S. cerevisiae 

strains (27P, F12, Fp96, Y130) were used in the experiment as benchmark strains. 

2.7.1 Engineering S. cerevisiae yeasts by introducing the bglI β-glucosidase gene from 

Saccharomycopsis fibuligera. 

Recombinant strains and plasmids. 

The genotypes and sources of the plasmid, yeast and bacterial strains used in these experiments 

are summarised in Table2.3. 
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Plasmid/Strains Relevant genotype or phenotype Source 

pBKD1_BGL1 amp δ-sites PGKP-XYNSEC-bglI-PGKT-
KanMX-δsites 

Stellenbosch Univ. 

E. coli pBKD_BGL1 
MRF’ endA1 supE44 thi-1 recA1 gyrA96 
relA1 lac[F’proABlacq Z∆M15 Tn10 (tet)] 

Stellenbosch Univ 

S. cerevisiae 
T2 [pBKD_BGL1] 

Recombinant strain  of  T2 for bglI multi 
copy integration 

This work 

S. cerevisiae 
27P[pBKD_BGL1] 

Recombinant strain of 27P for bglI multi 
copy integration 

This work 

Table 2.3. Summary of plasmids and strains constructed for the development of an efficient recombinant S. cerevisiae strain 
able to utilize cellobiose. 

 

 

The bacterial strains were cultured at 37° C on a rotating wheel in Terrific Broth or on LB agar 

(Sambrook et al., 1989). Ampicillin was added to a final concentration of 100 µg/mL for the 

selection of resistant bacteria.   

 

DNA manipulations. 

Restriction enzyme digestion, electrophoresis, DNA preparation from E. coli were performed 

using the standard methods according to Sambrook et al. (1989). The concentration and the purity 

of the DNA extracted from E.coli were evaluated with the Nanodrop instrument (Thermo Scientific 

Instrument Inc.). Restriction enzymes and buffers were supplied by either Roche or Fermentas. 

 

Geneticin resistance tests. 

To establish their dominant marker resistance, the wild type S. cerevisiae strains T2, 27P, F12, 

Fp96 and YI30 were grown in YPD broth at 30°C for 24h. Yeast cells were serially diluted in NaCl 

(0.9%) and plated onto YPD agar supplemented with increasing amounts of geneticin (0, 10, 20, 25, 

30, 40, 50, 100 µg/mL). After 24h of incubation at 30 °C, each strain was evaluated for geneticin 

sensitivity. 
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Electrotrasformation of yeast strains with delta vectors. 

 

The wild type S. cerevisiae strains T2, 27P, F12, Fp96 and YI30 were transformed with the 

XhoI digested pBKD_BGL1 integrative plasmid for chromosomal integration (Figure 2.1). 

 

 

Fig 2.1.The δ-integrative vector, pBKD_BGL1, for the constitutive expression of S. fibuligera bglI in S. cerevisiae 

 

 

This plasmid contains DNA sequences for the resistance to antibiotic geneticin (G418 

resistance), the bglI gene from S. fibuligera for the expression the β-glucosidase enzyme, the S. 

cerevisiae PGK1 (Phosphoglycerate Kinase) promoter and terminator sequences, and the Delta 

sequences for the recombination with the Delta sequences of the retrotrasposon Ty1 in the selected 

strain. 

To obtain the chromosomal integration of bglI gene, selected strains were subjected to a 

electroporation protocol. Host cells, grown overnight in YPD broth, were harvested in Eppendorf 

tubes by centrifugation at 4000 rpm (Mikro 200, Hettic Laborzentrifugen) for 1 min, washed twice 

with distilled water and finally suspended in 1 mL of electroporation buffer containing 1 M sorbitol 

and 20 mM HEPES. After centrifugation at 4000 rpm (Mikro 200, Hettic Laborzentrifugen) for 1 

min, the pellet was resuspended in 200 µL of electroporation buffer. The resuspended cells (50 µL) 

were transferred into electroporation cuvette (0.2 cm electrode, Bio-Rad). After adding 10 µg of 

linearized plasmid, an electric pulse of 1.4 kV and 200 ohms was applied with a capacitance of 25 
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µF by using Gene-Pulser (Bio-Rad Lab., Hercules, CA.,USA). In this pulsed cuvette, 1 mL of YPD 

supplemented with 1M sorbitol was added and the cuvette was incubated for 3h at 30 °C.  

The recombinant cells were plated onto YPDS plates (containing 1 M sorbitol) supplemented 

with geneticin (25-35 µg/mL) and incubated at 30 °C for 3 days. 

Detection of β-glucosidase activity on agar plates. 

Once grown on YPDS plates, the recombinant cells were transferred onto fresh YPD with 4-

methyl-umbelliferyl-β-D-glucopyranoside (4-MUG) as substrate. 4-MUG allows to detect a β-

glucosidase activity as, once hydrolyzed, it produces fluorescence under the long-wave ultraviolet 

light. 

A stock of 148 mmol/L 4–MUG was prepared in dimethylformamide (Sigma, ≥99.8%) and 

diluted to 37 mmol/L with sterile distilled water. Fifty µL of 37 mmol/L 4-MUG was spread onto 

the surface of the YPD agar plates and cultures were point-inoculated on plate. Every plate was 

inoculated with the relative wild type strain in order to evaluate the native background β-

glucosidase activity. The plates were incubated at 30 °C and examined after 24 and 48 h under the 

long-wave ultraviolet light of a transilluminator. Strains with β-glucosidase activity hydrolyze the 

substrate giving a fluorescent halo and were further studied for their mitotic stability. 

Evaluation of mitotic stability of the transformants. 

To study mitotic stability of the obtained recombinants, the engineered strains producing an 

evident fluorescent halo were grown in sequential batch cultures as described in Favaro et al. 

(2010). In short, the integrants were cultivated in non-selective YPD broth (4 mL), at 30 °C on a 

rotary shaker set at 130 rpm, and transferred (1% v/v) to fresh YPD after glucose depletion.  

After 120 generations the recombinant strains were plated onto YPD with 4-MUG and YPD 

with geneticin (25-35 µg/mL), then incubated at 30 °C for 24h. The stable trasformants remained 

resistant to geneticin and display hydrolytic activity on 4-MUG.  
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Enzymatic assays. 

Stable mitotic trasformants were studied for their β-glucosidase activity with p-nitrophenyl-β-D-

glucopyranoside (pNPG) as substrate. The enzymatic assays were conducted also with the wild type 

S. cerevisiae T2, 27P, F12, Fp96, YI30. Yeast cells were grown at 30 °C in 20 mL YPD medium 

(1% v/v) for 72h. Two mL samples were withdrawn at 24h intervals and stored in ice until 

thebeginning of the assay. Samples of cultures (50 µL) were mixed with 50 µL of the substrate 

(4mM pNPG in 0.1M citrate-phosphate buffer, pH 5.0). The hydrolyzing reaction was carried out at 

55 °C for 20 minutes. Two-hundred µL of Na2CO3 1 M was added in order to raise the pH and stop 

the reaction. The samples were spin-down for 10 s at 13000 rpm (Mikro 200, Hettic 

Laborzentrifugen) and 50 µL of the supernatant of each sample were transferred in a 96-well flat 

transparent microplate for the evaluation of the absorbance at 405 nm. 

At final sampling time, 10 mL aliquots of the YPD cultures were collected for the evaluation of 

dry biomass. To this purpose the aliquots were centrifuged (5000 rpm for 5 min, 3K15 

Laborzentrifugen), then cell pellets were washed several times with distilled water and dried in an 

oven (80°C) to constant weight.  

All enzymatic assays were done in duplicate and β-glucosidase activity was expressed in units 

per mg dry cell weight (Meinander et al., 1996) where one unit was defined as the amount of 

enzyme required to produce 1 µmol of a p-nitrophenol or reducing sugar per minute under the assay 

conditions. 

 

2.8 Growth of the recombinants in medium with cellobiose. 

Stable recombinant strains that presented the best enzymatic activities with pNPG were selected 

and tested for their ability to grow in medium with cellobiose using two media: minimal broth 

(YNB: 6.7 g/LYeast Nitrogen Base) and rich medium (YP 10 g/L Yeast extract, 20 g/L Peptone). 

For each medium, 3 different conditions were chosen: no sugar added, 10 g/L of glucose and 10 g/L 

of cellobiose added to the medium.  

Yeast cells were inoculated at a concentration of about 1x106 cells/mL in 35 mL of medium and 

incubated at 30°C (100 rpm) in aerobic conditions. Samples were withdrawn at regular intervals for 

the evaluation of the growth by optical density at 600nm. 
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2.9 Amplification of the integrated bglI gene of S. fibuligera. 

Recombinant yeast cells were grown overnight in YPD broth at 30 °C and then the genomic 

DNA was extracted with the glass beads method as described by Sambrook et al., 1989. Three 

microliters of a 1:100 dilution of the DNA extracted were used for PCR amplification. 

Primers, listed in Table 2.4, were designed from alignments of DNA sequences of bglI gene in 

S. fibuligera. Gene sequence was obtained from Gen-Bank and aligned using the CLUSTAL W 

software (Thompson et al., 1994). Primers BGL1-1fw and BGL1-1rw were designed within the 5’ 

region of bglI gene of S. fibuligera; while primers BGL1-2fw and BGL1-2rw were derived from the 

3’ region of bglI gene.  

The amplification reaction was performed in a total volume of 25 µL into 0.2 mL tubes with the 

following reagent concentrations: 1.25 mMdNTPs, 50 mM MgCl2, 160 mM (NH4)SO4, 670 

mMTris-HCl and 0.1% Tween20,EuroTaq polymerase (Euroclone, Milano, Italy), 0.005 mM (each) 

primers (Eurofins MWG Operon, Ebersberg, Germany; HPSF purified). 

 

Name Sequence (5’-3’) Tm Position 
PCR product size 
(bp) 

BGL1-1 fw TGCATAAATTGGTCAATGCAA 52.0 °C 60-81* 1534 

BGL1-1 rw TCAAAGCTGTGTCCTCCGTA 57.3 °C 1492-1512*  

BGL1-2 fw AAATGGCGCTTTGTTTCAAG 53.2 °C 22-42* 1321 

BGL1-2 rw GCGCGCCTCAAATAGTAAAC 57.3 °C 1277-1297*  

Table 2.4. Primers used in this work (* relative to the two regionsof S. fibuligera bglI gene sequence)  

 
 
The thermal protocol was designed as follows: initial incubation 95 °C for 2 min to allow the 

DNA denaturation, followed by 35 cycles composed of denaturation at 95 °C for 30s, annealing at 

52 °C for 60 s and extension at 72 °C for 120 s. A final extension step was added at 72 °C for 5min.  

Amplified samples were run on 1.2% agarose gel and the bands were visualized after Eurosafe 

nucleic acid stain (Euroclone) staining. Digital images were acquired with an EDAS290 image 

capturing system (Kodak, Rochester, NY). 
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3. RESULTS AND DISCUSSION 

 

3.1 Evaluation of the fermentative vigour of oenological S. cerevisiae yeasts. 

Key feature in the development of an industrial yeast strain for the production of the second 

generation bioethanol is the high fermentative ability of the strain. To this purpose, fifty S. 

cerevisiae strains, previously isolated from different oenological environments, were tested for their 

fermentative ability at 25 and 40 °C in MNS broth according to the method described by Delfini 

(1995). The results, showed below in Figure 3.1 and 3.2, are reported as grams of glucose used by 

the strains when incubated at 25 and 40 °C, respectively. 

At 25 °C in MNS medium with 20% of glucose, most of yeasts consumed almost all the glucose 

available (Figure 3.1), and this result confirms that 25 °C is the optimal temperature of fermentation 

for S. cerevisiae. This is even more evident observing the fermentative kinetics obtained with the 

same strains at 40 °C (Figure 3.2). In this condition, the strains consumed about half of the glucose 

available, and the fermentative kinetics stopped after nine days of fermentation. 

The strains that presented the best fermentative vigour at 25 °C in MNS medium with 20% of 

glucose were S. cerevisiae 19, 45, 100 and 1.99, consuming 199.9, 200, 197.4 and 200 grams of 

glucose, respectively. In the same condition, the strains that presented the worst fermentative 

performances were 74, 56 and 1.42, consuming 134.1, 160.1 and 151.6 grams of glucose, 

respectively (Figure 3.1).  

At 40 °C, in MNS medium with 20 % glucose, the strains that exhibited the best fermentative 

vigour were S. cerevisiae 6, 12, 17, 32 and 1.63, consuming 113.1, 116.6, 124.4, 112.5 and 120 

grams of glucose, respectively. In the same condition, those showed the worst fermentative 

performances were strains 66, 85, 91, and 87, consuming 47.8, 40, 44.1 and 43.9 grams of glucose, 

respectively (Figure 3.2).  

In this experiment three S. cerevisiae reference strains were used, strain 27P showing promising 

industrial traits (Favaro et al. 2012a), strain MH1000, a robust industrial yeast (van Zyl et al., 2011) 

and the commercial strain EC1118 used for wine production (Lallemand Inc., Canada). At 25 °C in 

MNS medium with 20% of glucose these strains presented good fermentative performances; under 

the same conditions reference strain EC1118 presented the best fermentative vigour with 193.4 

grams of glucose consumed.  
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Fig. 3.1. Fermentative performance at 25 °C of S. cerevisiae strains in MNS medium with glucose (200 g/L) reported as cumulative 
sugar utilization. The experiment was conducted in triplicate and vertical bars represent SD. 
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Fig. 3.2. Fermentative performance of S. cerevisiae strains at 40 °C in MNS medium with glucose (200 g/L) reported as cumulative 
sugar utilization. The experiment was conducted in triplicate and vertical bars represent SD. 
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At 40 °C, the reference strains showed a fermentative vigour lower than that presented at 25 °C; 

and in this condition S. cerevisiae EC1118 presented the highest glucose consumption among the 

reference strains (86.8 grams). 

The strains that presented the best fermentative vigour in MNS with 20% glucose at 25 °C (S. 

cerevisiae 19, 45, 100 and 1.99) showed high fermentative performances comparable to that 

exhibited by the reference strains (S. cerevisiae EC1118, 27P and MH1000). At 40 °C in the same 

broth, the strains that presented the best fermentative vigour (S. cerevisiae 6, 12, 17, 32 and 1.63) 

exhibited high fermentative performances compared to that showed by the reference strains (e.g., 

124.4 grams of glucose consumed by S. cerevisiae 17 respect to the 86.8 grams consumed by the 

strain EC1118). 

The obtained results allowed to select twenty-one strains, having the best fermentative ability in 

MNS glucose 20% at 25 and 40 °C, for further fermentation trails using MNS supplemented with 

xylose 5% and glucose 10% (Figure 3.3 and 3.4). 

As reported below in Tables 3.2, the xylose content did not change, at least in the analysed 

samples. This suggested that all the strains did not ferment xylose. As shown in Figure 3.3, the 

strains 62, 1.19, 1.99 exhibited the best fermentative vigour at 25 °C by consuming the amount of 

sugar corresponding to the glucose content. As reported in Figure 3.4, S. cerevisiae strains 38, 45, 

56, 1.63 exhibited the highest fermentative performance at 40 °C (84.9, 85.4, 82.5 and 82.7 grams 

of glucose, respectively).  

Some strains showed good performance in both MNS media at 25 °C (i.e. S. cerevisiae 1.99) 

clearly consuming all the glucose available in the MNS broth. At 40 °C the strain showing the 

highest fermentative vigour both in MNS glucose 20% and in MNS glucose 10% with xylose 5% 

was S. cerevisiae 1.63. 

To highlight the evidence that the temperature influences the fermentative ability of the strains, 

S. cerevisiae 32 was selected as representative of the other yeasts once grown in both MNS broths 

(Figure 3.5 and Figure 3.6). At 25 °C the strain showed the glucose consumption slower than at 40 

°C in the first part of the fermentation (Figure 3.6 a). After 4 days at 40 °C, glucose consumption of 

the yeast stopped both in MNS and MNS with xylose. This result is in accordance with Mensonides 

et al (2002) reporting the negative metabolic response of S. cerevisiae to continuous heat stress (40-

43 °C). 
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Fig. 3.3.  Fermentative performance at 25 °C of S. cerevisiae strains in MNS medium with glucose (100 g/L) and xylose (50 g/L) 
reported as cumulative sugar utilization. The experiment was conducted in triplicate and vertical bars represent SD. 
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Fig. 3.4.  Fermentative performance at 40 °C of S. cerevisiae strains in MNS medium with glucose (100 g/L) and xylose (50 g/L) 
reported as cumulative sugar utilization. The experiment was conducted in triplicate and vertical bars represent SD. 
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Fig. 3.5. Effect of the temperature on the growth of S. cerevisiae 32 in MNS supplemented with glucose 20% after 21 days, at 25 °C 
(a) and 40 °C (b).  
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Fig. 3.6. Grams of glucose consumed by S. cerevisiae32 in MNS medium with glucose (200 g/L) (a), and glucose (100 g/L) 
with xylose (50 g/L) (b). The experiment was conducted in triplicate and vertical bars represent SD. 
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3.1.1 HPLC analysis. 

The strains that exhibited the best fermentative vigour in MNS medium supplemented with 

glucose 10% and xylose 5% were selected for HPLC analysis of glucose, xylose, xylitol, glycerol 

and ethanol content after fermentation. To this purpose, samples were withdrawn after 21 days of 

fermentation and filtered through 0.22 µm. The samples were stored at -20 °C until use. The results 

are expressed as average value of three replicates (Tables 3.1 and 3.2). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 
 

 

 



68 

 

T
ab

 3
.1

. P
ro

d
uc

t f
o

rm
a

tio
n

 b
y S

. c
e

re
vi

si
a

e s
tr

a
in

s 
th

a
t p

re
se

nt
ed

 th
e

 b
e

st
 fe

rm
e

nt
at

iv
e 

ab
ili

tie
s 

at
 2

5 
an

d
 4

0 
°C

 in
 M

N
S

 m
ed

iu
m

 w
ith

 g
lu

co
se

 (
2

0
0

 g
/L

) 
a

s 
su

b
st

ra
te

. 
 (

N
D

 N
o

t 
D

e
te

ct
e

d
) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.
99

 

 

7.
7 

5.
4 

1.
4 

86
.8

 

 

0.
45

 

88
 

 

10
7.

0 

4.
5 

1.
4 

33
.0

 

 

0.
35

 

69
 

1.
76

 

 11
 

5.
1 

1.
3 

90
.2

 

 

0.
48

 

94
 

 

96
.6

 

5.
3 

1.
3 

49
.6

 

 

0.
48

 

94
 

1.
73

 

 

15
.2

 

5 1.
3 

87
.3

 

 

0.
47

 

92
 

 

85
.7

 

4.
8 

1.
5 

45
.5

 

 

0.
40

 

78
 

1.
63

 

 

27
.4

 

4.
4 

1.
3 

79
.2

 

 

0.
46

 

90
 

 

79
.5

 

5.
4 

1.
5 

49
.8

 

 

0.
41

 

80
 

1.
19

 

 

9.
6 

4.
8 

1.
2 

90
.0

 

 

0.
47

 

92
 

 

88
.8

 

3.
9 

1.
3 

42
.1

 

 

0.
38

 

74
 

10
0  

6.
4 

5.
7 

1.
4 

92
.2

 

 

0.
48

 

94
 

 

10
6.

0 

4.
1 

1.
3 

38
.1

 

 

0.
40

 

78
 

70
 

 

23
.8

 

4.
3 

1.
1 

80
.7

 

 

0.
46

 

90
 

 

10
2.

0 

4.
5 

0.
7 

38
.3

 

 

0.
39

 

76
 

66
 

 

5.
1 

5.
0 

1.
2 

94
.5

 

 

0.
48

 

94
 

 

12
7.

0 

3.
9 

1.
3 

26
.0

 

 

0.
36

 

70
 

62
 

 

6.
9 

4.
9 

1.
3 

91
 

 

0.
47

 

92
 

 

11
9.

0 

3.
7 

1.
3 

29
.4

 

 

0.
36

 

70
 

56
 

 

34
.4

 

5.
5 

1.
6 

74
.9

 

 

0.
45

 

88
 

 

93
.9

 

2.
5 

0.
7 

34
.5

 

 

0.
32

 

63
 

45
 

 

5.
6 

6.
6 

1.
5 

99
.1

 

 

0.
51

 

10
0

 

 

95
.6

 

5.
1 

1.
4 

47
.8

 

 

0.
46

 

90
 

43
 

 

5.
2 

4.
8 

1.
1 

93
.9

 

 

0.
48

 

94
 

 

86
.8

 

4.
9 

1.
3 

47
.6

 

 

0.
42

 

82
 

38
 

 

10
.2

 

5.
4 

1.
2 

90
.5

 

 

0.
48

 

94
 

 

10
6.

0 

4.
0 

1.
3 

35
.8

 

 

0.
38

 

74
 

32
 

 

10
.4

 

5.
7 

0.
6 

90
.6

 

 

0.
48

 

94
 

 

93
.5

 

5.
2 

1.
3 

43
.7

 

 

0.
41

 

80
 

19
 

 

5.
3 

6.
4 

1.
7 

97
.2

 

 

0.
50

 

98
 

 

96
.3

 

2.
6 

1.
3 

42
.2

 

 

0.
40

 

78
 

2  

11
.7

 

4.
8 

1.
3 

90
.9

 

 

0.
48

 

94
 

 

79
.6

 

5.
0 

1.
3 

47
 

 

0.
39

 

76
 

M
H

10
00

 

 

7.
7 

5.
4 

1.
4 

92
.7

 

 

0.
45

 

88
 

 

11
0.

8 

6.
8 

1.
3 

33
.8

 

 

0.
38

 

74
 

E
C

11
18

 

 

13
.3

 

6.
8 

1.
3 

84
.2

 

 

0.
4 

94
 

 

10
5.

6 

2.
6 

0.
8 

37
.6

 

 

0.
40

 

78
 

27
P

 

 

5.
8 

5.
8 

1.
3 

93
.7

 

 

0.
48

 

94
 

 

11
0.

8 

4.
6 

1.
5 

39
 

 

0.
44

 

86
 

S.
 c

er
ev

is
ae

   

M
N

S
 w

ith
 2

0%
 g

lu
co

se
 a

t 
25

 °
C 

G
lu

co
se

 (
g/

L
) 

 

G
ly

ce
ro

l (
g/

L
) 

 

A
ce

tic
 a

ci
d 

(g
/L

) 
 

E
th

a
no

l (
g/

L
) 

 

  
 E

th
a

no
l y

ie
ld

  

  
 g

/g
 o

f 
gl

uc
os

e 

  
 %

 o
f 

th
e

 t
he

or
e

tic
a

l m
a

xi
m

um
 

M
N

S
 w

ith
 2

0%
  

gl
uc

os
e

 a
t 

40
 °

C 

G
lu

co
se

 (
g/

L
) 

 

G
ly

ce
ro

l (
g/

L
) 

 

A
ce

tic
 A

ci
d 

 (
g/

L)
  

E
th

a
no

l (
g/

L
) 

 

  
 E

th
a

no
l y

ie
ld

  

  
 g

/g
 o

f 
gl

uc
os

e 

  
 %

 o
f 

th
e

 t
he

or
e

tic
a

l m
a

xi
m

um
 



69 

 

T
ab

 3
.2

 P
ro

d
uc

t f
o

rm
at

io
n

 b
y S

. 
ce

re
vi

si
a

e s
tr

a
in

s 
th

a
t p

re
se

nt
ed

 th
e

 b
e

st
 fe

rm
e

nt
at

iv
e 

ab
ili

tie
s 

at
 2

5 
an

d
 4

0 
°C

 in
 M

N
S

 m
ed

iu
m

 w
ith

 g
lu

co
se

 (
1

0
0

 g
/L

) 
a

nd
 x

yl
o

se
 (

50
 g

/L
) 

a
s 

su
b

st
ra

te
. 

(N
D

 N
o

t 
D

e
te

ct
e

d
) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.
76

 

 

5.
1 

48
.7

 

5.
7 

3.
3 

1.
2 

44
.4

 

 

0.
47

 

92
 

 

N
D

 

N
D

 

N
D

 

N
D

 

N
D

 

N
D

 

 

N
D

 

1.
73

 

 

N
D

 

N
D

 

N
D

 

N
D

 

N
D

 

N
D

 

 

N
D

 

 

26
.6

 

49
.3

 

5.
5 

3.
6 

1.
4 

32
 

 

0.
43

 

84
 

1.
63

 

 

5.
2 

49
.3

 

5.
3 

3.
9 

1.
2 

44
.0

 

 

0.
45

 

88
 

 

25
.6

 

49
.4

 

6.
3 

3.
8 

1.
4 

32
.5

 

 

0.
44

 

86
 

10
0  

5.
1 

49
.4

 

4.
6 

4.
0 

1.
3 

43
.1

 

 

0.
48

 

94
 

 

N
D

 

N
D

 

N
D

 

N
D

 

N
D

 

N
D

 

 

N
D

 

70
 

 - 

49
.6

 

5.
2 

3.
8 

1.
2 

43
.4

 

 

0.
43

 

84
 

 

37
.7

 

49
.2

 

5.
6 

3.
3 

1.
2 

25
.9

 

 

0.
41

 

80
 

66
 

 - 

49
.4

 

5.
0 

4.
0 

1.
2 

43
.0

 

 

0.
43

 

84
 

 

N
D

 

N
D

 

N
D

 

N
D

 

N
D

 

N
D

 

 

N
D

 

62
 

 

5.
1 

49
.6

 

4.
6 

3.
7 

1.
3 

43
.9

 

 

0.
46

 

90
 

 

N
D

 

N
D

 

N
D

 

N
D

 

N
D

 

N
D

 

 

N
D

 

56
 

 

5.
1 

49
.8

 

4.
6 

4.
6 

1.
6 

43
.5

 

 

0.
46

 

90
 

 

22
.6

 

49
.3

 

5.
5 

3.
8 

1.
5 

33
.3

 

 

0.
43

 

84
 

45
 

 

2.
6 

48
.9

 

5.
0 

4.
3 

1.
4 

43
.0

 

 

0.
44

 

86
 

 

16
.0

 

48
.7

 

6.
0 

4.
0 

1.
4 

36
.8

 

 

0.
44

 

86
 

43
 

 

18
.8

 

50
 

4.
3 

2.
9 

1.
1 

37
.4

 

 

0.
46

 

90
 

 

N
D

 

N
D

 

N
D

 

N
D

 

N
D

 

N
D

 

 

N
D

 

38
 

 

5.
1 

49
.1

 

5.
7 

3.
6 

1.
2 

44
.3

 

 

0.
47

 

92
 

 

23
.6

 

49
 

6.
4 

3.
3 

1.
3 

32
.6

 

 

0.
42

 

82
 

32
 

 

N
D

 

N
D

 

N
D

 

N
D

 

N
D

 

N
D

 

 

N
D

 

 

26
.6

 

49
 

5.
0 

3.
8 

1.
2 

31
.4

 

 

0.
42

 

82
 

19
 

 

2.
5 

49
.3

 

5.
1 

4.
3 

1.
6 

43
.4

 

 

0.
44

 

86
 

 

N
D

 

N
D

 

N
D

 

N
D

 

N
D

 

N
D

 

 

N
D

 

 

2  

2.
5 

49
.7

 

4.
5 

3.
6 

1.
2 

44
.2

 

 

0.
45

 

88
 

 

24
.4

 

49
.5

 

5.
5 

3.
3 

1.
3 

32
.9

 

 

0.
43

 

84
 

M
H

10
00

 

 

5.
1 

49
.7

 

4.
6 

4.
1 

1.
3 

40
.6

 

 

0.
45

 

88
 

 

49
.2

 

49
.2

 

4.
6 

2.
8 

1.
1 

12
.4

 

 

0.
32

 

63
 

E
C

11
18

 

 

5.
1 

49
.5

 

4.
8 

3.
7 

1.
2 

43
.4

 

 

0.
43

 

84
 

 

43
.4

 

49
.7

 

4.
4 

3.
5 

1.
4 

22
.1

 

 

0.
39

 

76
 

27
P

 

 

5.
1 

49
.2

 

5.
1 

3.
6 

1.
2 

43
.8

 

 

0.
46

 

90
 

 

29
.3

 

48
.2

 

5.
3 

3.
7 

1.
5 

29
 

 

0.
41

 

80
 

S.
 c

er
ev

is
ae

 

M
N

S
 1

0%
 g

lu
co

se
  

5%
  

xy
lo

se
 a

t 
25

 °
C

 

G
lu

co
se

 (
g/

L
) 

 

X
yl

os
e

 (
g/

L
) 

X
yl

ito
l (

g
/L

) 

G
ly

ce
ro

l (
g/

L
) 

 

A
ce

tic
 a

ci
d 

(g
/L

) 
 

E
th

a
no

l (
g/

L
) 

 

  
 E

th
a

no
l y

ie
ld

  

  
 g

/g
 o

f 
gl

uc
os

e 

  
 y

ie
ld

 in
 %

 o
f 

th
e

 t
he

or
e

tic
a

l m
a

xi
m

um
 

M
N

S
 1

0%
 o

f 
gl

uc
os

e
 5

%
xy

lo
se

  
a

t 
40

 °
C

 

G
lu

co
se

 (
g/

L
) 

 

X
yl

os
e

 (
g/

L
) 

 

X
yl

ito
l (

g
/L

) 

G
ly

ce
ro

l (
g/

L
) 

A
ce

tic
 A

ci
d 

 (
g/

L)
  

E
th

a
no

l (
g/

L
) 

 

  
 E

th
a

no
l y

ie
ld  

  
 g

/g
 o

f 
gl

uc
os

e 

  
 %

 o
f 

th
e

 t
he

or
e

tic
a

l m
a

xi
m

um
 



70 

 

At 25 °C, in MNS medium with 200 g/L of glucose, the isolates consumed at least 95% of the 

glucose available, with the exception of the strains 70 and 1.63. The formation of by-products, like 

glycerol and acetic acid, was very limited and variable between the different strains. In the same 

medium at 40 °C, the twenty-one strains consumed less glucose; however the ethanol yield was still 

high for all the strains tested. At this temperature in MNS medium with 20% of glucose, the strains 

that presented the best ethanol yield were S. cerevisiae 1.76, 45 and 43 with yields of 94, 90 and 

82% of the theoretical maximum, respectively. This result indicates that a higher temperature 

influences the ability of the strains to consume glucose, but does not affect in the same extent the 

alcohol yield. The formation of glycerol and acetic acid is similar between the strains at 25 and 40 

°C and this indicates that temperature does not influence the formation of these by-products. 

The alcohol productions were not significantly influenced by the presence of xylose: at 25 °C, in 

MNS medium with 10% of glucose and 5% of xylose, S. cerevisiae 100 produced the same ethanol 

yield in both media (0.48 g ethanol per gram of glucose consumed, corresponding to 94% of the 

maximum theoretical yield). At 40 °C, in MNS medium with xylose, strains 45 and 1.63 produced 

ethanol with a slightly lower yield (0.44 g ethanol per gram of glucose consumed, corresponding to 

86% of the maximum theoretical). This should indicate that the presence of this pentose in the 

fermentation medium does not influence their fermentative performance. This result is not in 

accordance with Favaro et al. 2012b, reporting that yeasts were influenced by the xylose addition. 

However, in that work the xylose concentration (100 g/L) was higher than that used here, and the 

uptake of this sugar by facilitated diffusion was favored by the greater concentration of this pentose 

in the medium. In fact, xylose in S. cerevisiae has been already described to be taken up mainly 

through non-specific hexose transporters encoded by the HXT (Hexose Transporters) gene family 

(Kruckeberg, 1996; Saloheimo et al., 2007; Sedlak and Ho, 2004). However, their affinity for 

xylose is much lower than that for glucose and the xylose uptake through the transporters is strongly 

inhibited by glucose (Matsushika et al., 2009; Saloheimo et al., 2007). 

 

3.2 Definition of a synthetic medium for the evaluation of the inhibitor tolerance in 
S. cerevisiae strains. 

In order to study the different concentrations of sugars and inhibitors that could be present in the 

lignocellulosic hydrolysates, an extensive bibliographic research of works focused on pretreatments 

and fermentation of lignocellulosic substrates was made. In particular, the papers were collected on 

the basis of biomass or substrate used (such as spruce, wheat, corn fiber, corn stover, willow, aspen, 

pine, sugarcane bagasse, poplar, birch, energy crops) and the pretreatment conducted. The final aim 
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was to define minimum and maximum levels of concentration of sugars and inhibitors in order to 

have reference values for the next tolerance tests to inhibitors on selected S. cerevisiae strains. 

For each type of lignocellulosic hydrolysate the concentration of sugars and inhibitors were 

summarized in the tables reported below (Tables 3.3-3.13). 
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Sugars            

Glucose 25.7 21.9 19.9,20.4  27.5 0-500  39.0 24.3 42.9 20.5 0.8-41.5  10-32 

Xylose 3.5 8.5 2.6,3.0    3.3 5.6 10.4 7.0 1.7-12.4  2.5-6  

Mannose 6.5 16.4 13.0,13.8  6.1  12.3 12.1 24.4 14.9 4.9-33.9  11.1-18.2 

Galactose 3.7 3.3 5.3 , 6.7  1.6   2.9 7.7 2.9  2.4-3.6  

Arabinose 0.6 1.7     1.4  1.4  1.0-1.95  

Cellobiose 0.7           

            

Inhibitors            

Furans            

HMF 5.9 2.0 2.3, 2.2   7.3 1.9 3.6 2.3 1.5-8.4 0.9-3.6 

Furfural 1.0 0.5 0.6, 0.5   2.2 0.5 2.1 1.4 0.4-1.3 0.8-4.1 

Weak acids            

Acetic Acid 2.4 3.1 2.8, 2.2  2.8 3.2 2.0 6.2 2.8 2.0-3.2  

Formic Acid 3.1 0.9       0.7   

Levulinic Acid 0.9 1.1       1.1   

Lactic acid     87.0mg/L       

Phenolic compounds           

Vanillin 0.1 0.1          

Syringaldehyde 0.1           

4-hydroxybenzoic 
acid 

5.0 39.2mg/L         

Vanillic acid 3.4mg/L 17.2 mg/L         

Cathecol 9.0mg/L 1.9mg/L          

Hydroquinone 17.0mg/L          

Coniferyl aldehyde  35.0mg/L 54.0mg/L         

Acetoguaiacone 7.0mg/L 0.1          

Cinnamic acid  1.1mg/L          

Table 3.3. Sugars and inhibitors concentrations (g/L, where not otherwise stated) obtained after the pretreatment of spruce. STEX: 

Steam Explosion 

 

 

After a first analysis of Table 3.3, it is evident that the pretreatment of softwood biomass like 

spruce, especially with dilute-acid, leads to the formation of high concentrations of inhibitory 

compounds, in particular furans (Taherzadeh et al., 1997 and 1998), and fermentable sugars like 
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glucose (Larsson et al. 2009). In particular, there is a high prevalence of HMF respect to furfural 

and this evidence is justified by the fact that HMF comes from the degradation of hexose sugars, 

which are abundant in spruce hydrolysates. 
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Sugars       
Glucose 6.4 9.9-12  12.9 7.4 1.1 30.0 
Xylose 35.4 12.4-13.4  130.0 19.6 7.4 6.0 
Mannose 0.6      
Galactose 1.1 0.7-1.3     
Arabinose  4.7-5 21.3 11.8 1.3 1.2 
Cellobiose    0.9   

       
Inhibitors       
Furans       
HMF 0.6 0.8 0.3 1.1   
Furfural 1.8 3.2-3.8  4.5 5.6   
Weak acids       
Acetic Acid 4.0 2.3-2.5  26.3 2.5 2.1 10.1 
Formic Acid     1.5 9.1 
Malic acid       5.6 
Glycolic acid      1.1 5.6 
Lactic acid     5.3   
Oxalic acid      0.7  
Maleic acid      0.2  
Phenolics compounds       
Vanillin      10 mM 
Syringaldehyde      10 mM 
Acetosyringone      10 mM 
Syringic acid       10 mM 
4-hydroxybenzoic acid      10 mM 
Vanillic acid      1.68 
Acetovanillone      10 mM 
4-Hydroxybenzaldehyde      10 mM 
4-Hydroxyacetophenone      10 mM 

Table 3.4. Sugars and inhibitors concentrations (g/L, where not otherwise stated) obtained after the pretreatment of wheat straw. 

 

Concerning the pretreatment and fermentation of wheat straw, in contrast to what was observed 

for spruce hydrolysates, there is a clear predominance in the release of pentose sugars (Table 3.4). 

Consequently, after the pretreatment, the furfural was present in a higher amount than HMF (Davis 

et al. 2005). As shown in Table 3.4, the production of acetic acid after pretreatment of wheat straw 

is higher compared to that produced after pretreatment of spruce biomass. Wheat straw contains an 

higher amount of hemicellulose, especially in acetylated form, and this, once exposed to the 

complete pretreatment, leads to high concentrations of acetic acid (Qi et al., 2005). 
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Sugars    
Glucose 41.7-52  48.5-52.3  0-7.5  
Xylose 27.6-28.5  47.6-50.6 0-5.1  
Mannose    
Galactose 4-4.3  10.4-11.4 0-1.0 
Arabinose 18.9-20.7  26.9-29.5  0-2.9  

    
Inhibitors    
HMF  0.1 0.0-0.3  
Furfural  0.5 0.2-0.9  
Acetic Acid  6.2  

Table 3.5 Sugars and inhibitors concentrations (g/L, where not otherwise stated) obtained after the pretreatment of corn fiber 

 

 

Table 3.5 and 3.6 show the data of concentrations of sugars and inhibitors collected from papers 

about the pretreatments of two different parts of the same plant, corn fiber and corn stover, 

respectively. Unlike to that observed for spruce and wheat straw hydrolysates, the pretreatments of 

this biomass lead to the formation of a lower concentration of inhibitory compounds, especially 

furans. As indicated by Saha et al (2005), this type of substrate is easily convertible to fermentable 

sugars in comparison to the hardwood materials. Therefore, the pretreatment conditions for corn are 

milder than those used for other types of lignocelluosic substrates. 
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Sugars         
Glucose 11.4, 45.4  27.6 36.1 4.2 6.6 99.5 5.9-7.2 1-13.1 
Xylose 2.5, 7.6  6.7 15.5 34.9 24.8 60.5 36.0-36.2  5.6-19.6 
Mannose         
Galactose      2.5   
Arabinose 6.4, 17.9     5.7  1.1-3-4  

          
Inhibitors         

Furans          
HMF     0.2 0.6 0-0.5  0.2 0.1-0.5  
Furfural   ND ND 1.3 0.7 0-4.7 1.3-1.5  0.2-2.7 
Weak acids         
Acetic Acid  0.3 0.2  2.6 2.0-19.0 2.1-2.2  0.7-2.4  
Formic Acid      1.0-4.2   
Lactic acid      2.0    
Phenolic compounds         
Vanillin  57.0, 74.0 mg/L       
Syringaldehyde 20.0, 38.0 mg/L       
Acetosyringone 18.0 mg/L        
Syringic acid  28.0, 42.0 mg/L       
4-hydroxybenzoic acid 51.0, 54.0 mg/L       
Vanillic acid 55.0, 57.0 mg/L       
Homovanillic acid 12.0, 28.0 mg/L       
Acetovanillone 13.0, 58.0 mg/L       
Guiacol 12.0, 13.0 mg/L       
Phenol 4.0, 6.0 mg/L        
Syringol 5.0 mg/L        
4-Hydroxybenzaldehyde 54.0, 102.0 mg/L       
4-Hydroxyacetophenone 8.0 mg/L        
p-Coumaric acid 32.0, 35.0 mg/L       
Ferulic acid 7.0, 9.0 mg/L        

Table 3.6 Sugars and inhibitors concentrations (g/L, where not otherwise stated) obtained after the pretreatment of corn stover. 

 

Table 3.7 show the concentrations of sugars and inhibitors released after the pretreatements of 

birch. The pretreatments released variable amounts of sugars and inhibitors, although the only type 

of reported pretreatments is steam explosion coupled with dilute-acid. As observed for wheat straw, 

also birch hydrolysates have high concentrations of xylose, derived from hemicelluloses, and this 

leads to the formation of considerable amounts of acetic acid (Taherzadeh et al., 1997). 
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Sugars       
Glucose  24.5 7.6-34.4 5.7 22.4-25.2 14.5-15.2 

Xylose  15.4 2.9-37.3 39.0 11.1-28.1 20.7-21.7 

Mannose  2.5 3.3-8.2 3.5 4.1-7.9 1.7-2.0 

Galactose    3.1   

Arabinose   1.7  3.0-4.2 

Cellobiose      

       
Inhibitors      

HMF  2.4 0.2-5.8 0.2 2.6-4.5 0.0-0.2 

Furfural  5.7 0.5-3.9 0.7 2.7-3.3 2.0-2.7 
Acetic Acid  2.0-11.5  9.1-11.2  

Table 3.7 Sugars and inhibitors concentrations (g/L, where not otherwise stated) obtained after the pretreatment of birch. 
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Sugars           
Glucose 19.4-45.4  1.9-2.4  4.0-6.5  41.4 33.2 62.3 57.0-59.5  2.1, 1.9  42.6 
Xylose  4.7-36.6  14.3-17.4  17.2-23.4  22.3 25.8 16.2 27.8-29.7  10.8, 8.6  19.5 
Mannose 3.8-11.6       1.8, 1.2   
Galactose        1.0, 1.1   
Arabinose        0.5, 0.8  

           
Inhibitors          
HMF  1.3-6.8       0.1-0.2  1.3, 0.2 1.6 
Furfural 2.1-3.5      0.3 2.5, 0.9  
Acetic Acid 8.2-10.1  2.5-3.2  1.3-6.0  5.1 6.2 3.5 0.7-7.1  4.4, 2.9  
Formic Acid        0.6 , 0.5 0.4 

Table 3.8 Sugars and inhibitors concentrations (g/L, where not otherwise stated) obtained after the pretreatment of poplar. LHW 
Liquid Hot Water. AFEX Ammonia Fiber Explosion 
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Sugars        

Glucose 20.6, 22.8, 25.6 1.8-5.8  2.1 1.7 1.6 0.1-1.7 25.4-30.0 
Xylose 8.1, 10.6, 4.4 16.5-21.5  15.7 20.3 7.6 0.7-8.0  4.9-11.0 
Mannose     0.2   
Galactose     0.4   
Arabinose 0.8, 0.9, 0.4 1.8-2.9  2.3 1.6 0.4 0-0.8  
Cellobiose         

         
Inhibitors        

Furans        
HMF  0.4, 0.4, 1.4     Total Furans 

         0.9-3.4 
 0.1  Total Furans 0.7-4.5  

Furfural 1.1, 1.2, 3.1   0.3 1.7 0.0-0.3  
Weak acids        
Acetic Acid 4.2, 4.4, 4.9 3.5-6.7 3.9 2.6 1.2 Total Carboxylic acids 

1.4-3.8  
Total Aliphatic acids 

2.5-10.1 
Formic Acid 1.0, 1.1, 2.5     (Succinic, Glycolic, 

Formic and Acetic) 
(Formic, Acetic and 

Levulinic)  
Levulinic Acid 0, 0, 2.7       
Phenolic compounds       
Vanillin 50.0, 50.0, 58.0 mg/L   Total Phenolics  

         0.6-3.0 
  Total Phenolics 0.8-2.5  Total Phenolics  

1.4-2.8 
Syringaldehyde 26.0, 25.0, 35.0 mg/L      
4-hydroxybenzoic acid 11.0, 9.0, 10.0 mg/L      
Vanillic acid 20.0, 15.0, 36.0 mg/L      
Cathecol 17.0, 10.0, 14.0 mg/L      
Guiacol 4.0, 3.0, 16.0 mg/L      
Phenol 3.0, 3.0, 22.0 mg/L      
Benzoic acid 5.0, 5.0, 8.0 mg/L      
4-Hydroxybenzaldehyde 110.0, 100.0, 100.0 mg/L      
Protocatechuic acid  5.0, 3.0, 3.0 mg/L      
p-Coumaric acid 480.0, 410.0, 170.0 mg/L      
Caffeic acid 9.0, 5.0, 1.0 mg/L      
Ferulic acid 210.0, 190.0, 56.0 mg/L      

Table 3.9 Sugars and inhibitors concentrations (g/L, where not otherwise stated) obtained after the pretreatment of sugarcane bagasse 

 

 

As shown in Table 3.8 for the poplar biomass, the subsequent enzymatic saccharification of the 

material leads to a lower release of inhibitory compounds for the fermentation as compared to the 

others substrates previously reported (McMillian et al., 1999 and Wyman et al., 2009). Poplar 

biomass pretreatments allow to recover a good amount of fermentable sugars (Cho et al., 2010), 

while the pretreatments of sugarcane bagasse do not result in high sugars concentrations (Table 

3.9). Concerning the production of inhibitors, the pretreatments of sugarcane bagasse produce a 

remarkable amount of weak acids, compared to the production of furans (Martin et al., 2007). 
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Sugars        
Glucose  50.0 4.1-6.4 22.8 0.3-1.3 58.7 0.3 

Xylose   0.6-10.0 18.0 1.2-4.6 21.2 0.5 

Mannose   1.8-5.9    0.1 

Galactose    3.3   0.1 

Cellobiose     0-0.1   

        

Inhibitors        

Furans        

HMF   0.3-3.9 0.5 0.0-0.2   

Furfural   0.3-3.2 2.0 0.3-1.0 0.3-1.0  

Weak acid       

Acetic Acid   6.8 0.7-2.6 4.4-8.2 0.2 

Lactic acid        

Phenolic compounds       

Vanillin  430.0 mg/L      

Cathecol  440.0 mg/L      

Guiacol  615.0 mg/L      

Phenol  35.0 mg/L      

trans-isoeugenol 25.0 mg/L      
o-cresol  10.0 mg/L      

4-Hydroxybenzaldehyde 10.0 mg/L      
Tab 3.10 Sugars and inhibitors concentrations (g/L, where not otherwise stated) obtained after the pretreatment of willow 

 

Table 3.10 shows that the pretreatment of willow biomass allows to recover small amounts of 

fermentable sugars. For this type of biomass, dilute-acid is the only pretreatment used prior to 

fermentation.  

Concerning energy crops (Table 3.11 below), variable amounts of fermentable sugars are 

produced. In particular Sorghum (Salvi et al. 2010) and Triticale (Jasinkas et al., 2010) 

pretreatments gave high glucose value while silvergrass (Guo et al., 2008) and switchgrass (Fenske 

et al., 1998) resulted in high xylose concentrations. Regardless of the type of pretreatment used 

(dilute acid or alkaline), energy crops release a very low amount of inhibitory compounds. The 

latter two evidences make energy crops an interesting biomass for the production of second 

generation bioethanol. 
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Sugars        
Glucose  33.0 3.7 4.1-5.3  5.7-5.8  45.8-47.9  0.9-40.2  
Xylose  11.1 24.2 4.5-7.8 22.6-25.1  12.4-13.7  0.2-12.9  
Mannose       0.1-1.3  
Galactose  0.2      
Arabinose  1.6 1.2    0.2-4.6  

        
Inhibitors        
Furans        
HMF    0.0-0.2  ND 0.0-2.2  
Furfural   1.0 0.0-0.3  ND 0.6-2.5  
Weak acids        
Acetic Acid 5.0-25.2  3.5 0.5-1.7 1.7-2.3  0-1   
Formic Acid   0.5-1.5    
Glycolic acid    0.2-0.8     
Lactic acid  0.1-1.3       

     Table 3.11 Sugars and inhibitors concentrations (g/L, where not otherwise stated) obtained after the pretreatment of energy crops 
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Sugars           
Glucose 1.1 8.9-40.7 3.6 13.8-14.9 6.0 2.0 12.6-22.2 2.3-8.5 9.0-13.2 
Xylose  3.5 0.9-9.5 18.0 3.8-4.9  8.7 0.6-17.2 8.9-14.0 43.5-106.0 
Mannose 1.0 4.1-27.3  10.9-15.4   0.2-1.6  3.4-6.8 
Galactose 0.5   3.3-3.9   0.4-3.0  3.3-8.6 
Arabinose   0.6 1.5-1.8  1.0 0.8-4.8  1.6-2.9 
Cellobiose      0.8     

           
Inhibitors          
Furans           
HMF  0.9 1.7-7.9  1.2-1.6  0.2 0.4-4.8 0.1-0.7 0.3-0.5 
Furfural 3.1 0.7-1.7 0.5 0.3-0.4  0.4 0.2-6.6 0.3-3.6 0.9-4.2 
Weak acids          
Acetic Acid 5.6 1.8-3.7 2.2  0.0-0.6 25.0 0.8-7.8 1.0-2.0 11.0-27.0 
Formic Acid      3.9 1.0-2.2   
Levulinic Acid       0.4-3.0   
Pyruvic acid      0.2-2.8 mg/g     
Lactic acid      7.0-16.7 1.9    
Succinic acid      0.1-1.8 mg/g     

Tab 3.12. Sugars and inhibitors concentrations (g/L, where not otherwise stated) obtained after the pretreatment of different types of 
lignocellulosic biomasses 
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Table 3.12 describes the concentration of sugars and inhibitors obtained from different types of 

lignocellulosic biomasses. Pretreatments of pine (Taherzadeh et al., 1997) and oak (Converti et al, 

1998) released good concentrations of sugars; in particular pine processing allow to recover a good 

concentration of glucose compared to oak. Table 3.13 reported below summarizes the 

concentrations of sugars and inhibitors used to prepare synthetic media with inhibitors cocktails. 

Regarding furans, the maximum concentrations used were 6.0 g/L for HMF and 5.0 g/L furfural 

(Larsson et al., 1998). The same author has proposed the highest concentrations for weak acids 

(30.0 g/L for acetic acid or 23.0 g/L for formic acid). 
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Sugars        
Glucose 25.0 20.0 20.0 5.7 30.0   
Xylose    39.4    
Mannose    3.5    
Galactose    3.1    
Arabinose    1.7    
Total fermentable sugars     35.0 60.0 

        
Inhibitors        
Furans         
HMF 3.8  1.0, 3.0, 5.0 0.2  3.8 0.5, 1.3, 6.0 

Furfural 2.9  0.5, 1.0, 2.0  0.7 0.0-2.0 2.9 0.5, 1.2, 2.5, 4.6 
Weak acids        
Acetic Acid 4.5  5.0, 10.0, 

15.0  
10.8 0.0-10.0 4.5 3.0, 4.8, 6.0, 9.0, 12.9, 

15.0, 30.0 
Formic Acid 3.5     3.4 0.7, 5.0, 4.0, 6.9, 9.9, 

11.5, 23.0 
Levulinic Acid       0.6, 5.2, 9.3, 10.4, 

23.2, 58.0 
Phenolic compounds       
Vanillin  0.02, 0.2, 1 0.5, 1.0, 2.0    
Isovanillin  0.02, 0.2, 1     
o-Vanillin  0.02, 0.2, 1     
Syringaldehyde   0.2, 0.7, 1.5 
Cathecol  0.02, 0.2, 1   0.0-1.0  
Hydroquinone  0.02, 0.2, 1     
p-Benzoquinone  0.02, 0.2, 1     
Coniferyl aldehyde  0.2 0.02, 0.2, 1      0.2  
Coniferyl alcohol  0.02, 0.2, 1     
Cinnamic acid 0.1 0.02, 0.2, 1     
4-Methoxy-cinnamic acid 0.02, 0.2, 1     
3-Methoxy-cinnamic acid 0.02, 0.2, 1     
p-Coumaric acid  0.02, 0.2, 1     
Ferulic acid  0.02, 0.2, 1      1.0  
Isoeugenol  0.02, 0.2, 1     
Eugenol  0.02, 0.2, 1     
3-(3,4-Dimethoxy-phenyl)- 0.02, 0.2, 1     
propanoic acid        
3,4-Dimethoxy-cinnamic acid 0.02, 0.2, 1     
3-Hydroxy-4-methoxy-cinnamic 0.02, 0.2, 1     
acid        
3,5-Dimethoxy-cinnamic acid 0.02, 0.2, 1     

Tab 3.13. Sugars and inhibitors concentrations (g/L, where not otherwise stated) obtained from papers about the fermentation of 
nutrient media with the addition of different inhibitors cocktails 
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According to the tables previously discussed, dilute-acid pretreatment applied to several starting 

materials ends to the highest amount of glucose and xylose. The situation is completely opposite for 

the inhibitors released during this process. Alkaline or steam pretreatments released a lower amount 

of inhibitors (furans, weak acids and phenolic compounds) than dilute acid. This evidence may be 

due to the fact that harsh conditions involved in dilute acid pretreatment (using strong acids like 

H2SO4) easily yield inhibitory substances, as described by Balat et al. (2008). 

On the basis of the above considerations, a new cocktail of inhibitors to be used in the tolerance 

evaluation was proposed. In general, the concentrations of the inhibitors are the average values 

calculated from all the data found in literature, increasing by a 1.5 factor. The detailed compositions 

of the resulting media are reported in Material and Method section. In short, the concentration of the 

main inhibitors was assessed as following, in g/L: furfural 2.77, HMF 3.75, acetic acid 7.2, formic 

acid 2.44 and lactic acid 6.79. 

 

3.3 Fermentative abilities of the most promising oenological S. cerevisiae strains in 
the presence of inhibitors. 

The same strains, reported in Table 3.1 and 3.2 were tested in MNS (glucose 10% and xylose 

5%) supplemented with the cocktail of inhibitors defined above. No strain was able to grow and 

ferment after 21 days of incubation (data not shown). This result indicates that the cocktail of 

inhibitors, at the concentrations tested, has a lethal effect on yeast cells. It is not possible to 

determine whether lethal effect is specifically due to acids or furans or there is a synergistic effect 

between these substances on the viability of the yeasts. For these reasons a minimum inhibitory 

concentration for each component of the cocktail had to be determined.  However, as an alternative, 

a new yeast isolation programme based on an artificial selective pressure was considered to be a 

most promising strategy for the selection of a robust industrial yeast to be used for the second 

generation bioethanol. 
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3.4 Isolation of new yeast strains from grape marcs containing high inhibitors 
concentrations. 

 

To this purpose, the choice of an appropriate environment was strategic. To search for yeasts with 

interesting fermentative properties and high robustness, grape marcs were chosen as an extreme 

environment because of limited nutrients (N and/or C sources), exposure to solar radiation, 

temperature fluctuations, low pH and ethanol. In order to enrich this peculiar ecological niche of 

yeasts with high inhibitors tolerance, grape marcs, collected immediately after crushing, were 

sprayed with the inhibitors cocktail named 1X (g/L: furfural 1.85, acetic acid 4.8, formic acid 1.63 

and lactic acid 4.53). The inhibitors levels used in this experiment were specifically lower than 

those tested in the Paragraph 3.3 which resulted to be lethal for all the yeasts screened. 

As described in Materials and Methods, five-kg aliquots of grape marcs were transferred into 

sterile plastic bags, with or without the inhibitors cocktail, and incubated at 30 and 40 °C. For 

strains isolation, samples of grape marcs were collected at regular intervals, serially diluted and 

plated on YPD supplemented with each single inhibitor at concentration 1X and another series at 

concentration 0.5X (g/L: furfural 0.92, acetic acid 2.40, formic acid 0.81 and lactic acid 2.26). YPD 

plates were also prepared with the addition of the entire inhibitors cocktail, both at concentration 1X 

and 0.5X. YPD agar without inhibitors was used as reference medium. 

A number of 336 yeast isolates, considered representative of all the isolation programme, was 

stored at -80 °C.  

 

3.5 Genetic characterization of new isolates 

In order to proceed to a reliable identification, the yeasts obtained in the new isolation 

programme were analyzed by ITS amplification and subsequent sequencing, as described in the 

Paragraph 2.4 of Materials and Methods. The ITS1 and ITS4 primers were used to amplify a 

regionof the rRNA gene repeat unit, which includes two non coding regions designated as the 

internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene. As described in Figure 3.7, 

representative examples of the 336 tested yeasts, PCR products showed a high length variation in 

this region. 
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Fig 3.7. Agarose gel with amplification products of ITS region of new isolates. (Marker used 100 bp ladder, Euroclone) 

When the rRNA gene region was digested with HinfI, each species exhibited a specific 

restriction pattern (Figure 3.8), with nine major profiles.  

Representative isolates from each HinfI restriction pattern were then subjected to ITS region 

sequencing (BMR Genomics, University of Padova). Their species identification was completed 

after BLASTN alignment (www.ncbi.nlm.nih.gov/BLAST) of the obtained sequences with those 

present in the GenBank database. A minimum sequence similarity level of 97% was considered for 

taxonomic attribution. 

 

 
Fig 3.8. Restriction patterns of the amplification products of ITS after digestion with HinfI enzyme. Marker used 100 bp ladder 
(Euroclone) 
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As reported in Table 3.14, ITS sequencing indicated that the 336 isolates belong to the following 

four major species: Candida glabrata, C. zemplinina, Issatchenkia orientalis and S. cerevisiae. All 

the yeasts identified as I. orientalis were isolated from marcs incubated at 40 °C, while the other 

strains have been obtained at 30 °C. These results are consistent with Kwon et al. (2011) reporting 

that I. orientalis has good tolerance to high temperature. Since this ability is one of the most desired 

traits for the development of an industrial CBP yeast, in the next future, the 155 I. orientalis isolates 

will be screened for their fermentative vigour and inhibitor tolerance, in order to evaluate their 

potential applicability as candidates for the production of ethanol from lignocellulose. 

The high abundance of C. zemplinina isolates obtained in this study (Table 3.20) should not be 

considered surprising since such species has been already reported for good ethanol and acetic acid 

tolerance (Magyar et al., 2011). The presence of sixteen C. glabrata yeasts, among the 336 isolates, 

can be justified by the fact that this species possess high tolerance to acids, such as sulfate and 

acetate, as described by Watanabe et al. (2008) 

Twenty-one yeasts have been identified as S. cerevisiae. All these strains were isolated from 

grape marcs incubated at 30 °C in the presence of the inhibitors cocktail.  

 

Table 3.14.Species identified with ITS sequencing and their percentage on a total of 336 selected isolates (temperatures of isolation 
are also reported) 

 

Such yeasts, able to grow in the presence of high inhibitors concentrations, should be of great 

impact in the second generation bioethanol. In order to confirm this hypothesis, their fermentative 

ability and inhibitors tolerance were evaluated as described below. The S. cerevisiae were screened 

for their fermentative vigour in MNS medium with glucose and xylose, and their tolerance to 

inhibitors commonly present in lignocellulosic hydrolysates was tested. 

 

    Temperature of isolation 

Yeast species  %  30°C  40°C 

Issatchenkia orientalis  46.1  --  155 

Candida zemplinina  42.9  144  -- 

Saccharomyces cerevisiae  6.2  21  -- 

Candida glabrata  4.8  16  -- 

  100  181  155 
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3.6 Evaluation of the fermentative vigour of the newly isolated S. cerevisiae yeasts. 

 

The twenty-one strains genetically identified as S. cerevisiae were evaluated for their 

fermentative abilities according to Delfini (1995) in MNS broth with 20% glucose or 10% glucose 

and 5% of xylose. S. cerevisiae 27P (Favaro et al., 2012a) was used as reference strain.  

Figure 3.9 reports the fermentative kinetics of the newly isolated S. cerevisiae strains once 

inoculated at 25°C in MNS medium with 20% glucose. Most of the yeasts consumed about all the 

glucose available with a fermentative vigour even higher than that showed by the benchmark S. 

cerevisiae 27P. As compared to the oenological strains (Paragraph 3.1), the newly isolated S. 

cerevisiae presented higher fermentative vigour. This is a promising feature towards the selection of 

a host strain to be engineered for the lignocellulose-to-ethanol route. However, few strains (S. 

cerevisiae T1, T5, T18, T19, T20 and T21) exhibited a reduced glucose consumption. Considering 

that S. cerevisiae is an uppermost fermenting species, this behavior cannot be easily explained, but 

it will be further investigated in future studies. 
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Fig. 3.9. Fermentative performance at 25 °C of 21 S. cerevisiae strains in MNS medium with glucose (200 g/L) reported as 
cumulative sugar utilization. The experiment was conducted in triplicate and vertical bars represent SD. 
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Once inoculated at 40 °C, the strains showed much lower fermenting vigour (Figure 3.10). For 

most of the strains tested, the fermentative kinetics stopped after about 8 days of fermentation with 

the highest glucose consumption exhibited by S. cerevisiae T2 and T3. As compared to the 

fermentative abilities of oenological yeasts reported in the paragraph 3.1, the newly isolated strains 

showed lower performances. Nevertheless, their fermentative vigour was comparable to those of the 

benchmark yeasts. 
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Fig. 3.10.  Fermentative performance at 40 °C of 21 S. cerevisiae strains in MNS medium with glucose (200 g/L) reported as 
cumulative sugar utilization. The experiment was conducted in triplicate and vertical bars represent SD. 

 

 

Figures 3.11 and 3.12 show the fermentative kinetics of the S. cerevisiae strains in MNS 

medium with 10% glucose and 5% xylose at 25 and 40 °C, respectively. At 25 °C, the majority of 

the strains rapidly consumed all the glucose available within 7 days (Figure 3.11) while xylose 

content remained constant through the fermentation (data not shown). S. cerevisiae T1, T5, T18, 

T19, T20 and T21 confirmed their limited fermentative performance also in the presence of xylose. 
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Fig. 3.11.  Fermentative performance at 25 °C of 21 S. cerevisiae strains in MNS medium with glucose (100 g/L) and xylose (50 g/L) 
reported as cumulative sugar utilization. The experiment was conducted in triplicate and vertical bars represent SD. 
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Fig. 3.12.  Fermentative performance at 40 °C of 21 S. cerevisiae strains in MNS medium with glucose (100 g/L) and xylose (50 g/L) 
reported as cumulative sugar utilization. The experiment was conducted in triplicate and vertical bars represent SD. 

 

 

At 40°C, few strains, S. cerevisiae T2, T3, T12 and T16, produced the highest fermenting 

vigour while other yeasts exhibited lower glucose consumption. This finding could be explained 
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considering that this newly S. cerevisiae strains have been isolated from grape marcs incubated at 

30 °C. 

Table 3.21 shows the grams of glucose consumed by the 21 S. cerevisiae strains once grown, for 

21 days at 25 and 40 °C, in MNS with glucose 20% and in MNS with glucose 10% and xylose 5%. 

At 25 °C, in MNS with 20% glucose, the strains T10, T13, T14, and T15 consumed all the 

glucose added. At 40°C, S. cerevisiae strains T2, T3, T6, T7 and T16 utilised the highest amount of 

glucose but they were not able to metabolise all the sugar available. In MNS containing both 10% 

glucose and 5% xylose, S. cerevisiae T4, T8, T11 presented the best fermentative vigour at 25°C 

while the yeasts T3, T12 and T18 exhibited the highest performance at 40 °C (68.8, 63.1 and 62.7 

grams of glucose, respectively). 

At 25°C, the most promising yeasts in both media resulted to be S. cerevisiae T8, T9, T11 and 

T13, while, at 40° C, S. cerevisiae T2 and T3 showed interesting fermenting abilities in both MNS 

broths. 

 Grams of glucose consumed 

 

 
MNS with 20% glucose MNS with 10% glucose and 

5% xylose 

Strains      25 °C  40 °C     25 °C      40 °C 
T1 53.9 38.8 41.6 32.7 
T2 195.2 85.5 91.0 59.7 
T3 182.1 85.5 89.9 63.1 
T4 193.5 66.0 100.0 42.9 
T5 73.0 28.1 70.6 55.5 
T6 173.4 84.7 89.8 53.3 
T7 198.2 85.9 89.6 45.3 
T8 197.4 62.1 100.0 36.7 
T9 199.0 62.1 99.6 40.7 
T10 200.0 63.1 92.3 35.2 
T11 197.1 64.6 100.0 29.8 
T12 195.2 78.7 90.8 68.8 
T13 200.0 70.0 92.5 29.1 
T14 200.0 59.4 90.5 45.5 
T15 200.0 71.7 88.3 44.9 
T16 199.3 84.8 93.8 47.5 
T17 198.2 68.9 88.7 43.7 
T18 70.6 56.1 56.8 62.7 
T19 58.2 52.9 56.9 48.7 
T20 57.3 51.1 61.9 5.56 
T21 65.9 53.4 66.7 55.2 
27P 195.6 58.7 87.7 56.5 

Table 3.15: Grams of glucose consumed by S. cerevisiae strains in MNS with glucose 20% (left) and MNS with glucose 10% and 
xylose 5% (right) once grown for 21 days at 25 and 40 °C. The values are expressed as the mean of two replicates 
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After the analysis of the fermentative kinetics of the twenty-one S. cerevisiae isolates and the 

evaluation of the glucose consumption exhibited by the yeasts at 25 and 40 °C, the strains T2, T9, 

T11 and T12 were selected as the most talented fermenting yeasts. HPLC analysis of their 

fermentation broths were performed (Tables 3.16 and 3.17). 

S. cerevisiae T2 T9 T11 T12 

MNS 20% glucose at 25 °C     

Glucose (g/L) 0.79 1.25 1.52 2.44 

Glycerol (g/L) 4.64 5.53 5.37 4.81 

Acetic acid (g/L) 0.53 0.73 0.87 0.63 

Ethanol (g/L) 95.11 94.74 93.07 87.94 

   Ethanol yield      

   g/g of glucose 0.48 0.48 0.47 0.44 

   % of the theoretical maximum 94 94 92 86 

MNS 20% glucose at 40 °C     

Glucose (g/L) 51.52 58.13 57.95 53.92 

Glycerol (g/L) 3.72 3.93 4.15 3.79 

Acetic acid (g/L) 0.49 0.79 0.82 0.50 

Ethanol (g/L) 37.77 28.64 29.94 36.94 

   Ethanol yield     

   g/g of glucose 0.25 0.20 0.21 0.25 

   % of the theoretical maximum 49 39 41 49 

Tab. 3.16. Product formation by S. cerevisiae T2, T9, T11, T12 strains after 21 days fermentation, at 25 and 40 °C, in MNS with  
glucose (200 g/L) as substrate. 
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S. cerevisiae T2 T9 T11 T12 

MNS 10% glucose 5% xylose at 25 °C     

Glucose (g/L) 0.68 0.69 0.60 0.69 

Xylose (g/L) 35.13 34.7 34.35 34.48 

Xylitol (g/L) 3.95 3.3 3.15 2.89 

Glycerol (g/L) 2.85 3.4 3.38 3.03 

Acetic acid (g/L) 0.32 0.56 0.55 0.46 

Ethanol (g/L) 47.37 45.66 44.69 45.29 

  Ethanol yield      

  g/g of glucose 0.48 0.46 0.45 0.46 

  % of the theoretical maximum 94 90 88 90 

MNS 10% glucose 5% xylose at 40 °C     

Glucose (g/L) 29.06 37.97 37.32 14.5 

Xylose (g/L) 36.8 37.29 36.77 35.05 

Xylitol (g/L) 2.5 1.27 1.36 3.32 

Glycerol (g/L) 2.52 2.45 2.61 3.5 

Acetic acid (g/L) 0.48 0.49 0.57 0.52 

Ethanol (g/L) 27.6 14.53 14.51 35.87 

  Ethanol yield      

  g/g of glucose 0.38 0.23 0.23 0.42 

  % of the theoretical maximum 74 45 45 82 

Tab. 3.17. Product formation by S. cerevisiae T2, T9, T11, T12 strains after 21 days fermentation, at 25 and 40 °C, in MNS with 
glucose (100 g/L) with xylose (50 g/L) as substrates. 

 

The HPLC analysis confirmed the good fermentative performances exhibited by the strains in 

MNS medium with 20% glucose at 25 °C. Their fermenting abilities revealed to be comparable to 

those of the oenological strains reported in the Paragraph 3.1 (see Table 3.1 and 3.2).  

At 40 °C, S. cerevisiae T2 and T12 exhibited promising ethanol yields in both media. Their 

glucose to ethanol conversion efficiency was about 49% of the theoretical maximum in MNS with 

20% glucose and 74% and 82% of the theoretical, respectively, in MNS broth supplemented with 

10 % glucose and 5% xylose.  
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3.7 Evaluation of the inhibitors tolerance of the newly isolated S. cerevisiae yeasts 

 

The newly isolated S. cerevisiae strains were studied also for their inhibitor tolerance once grown in 

YNB and YPD broths supplemented with several inhibitors cocktails as described in Materials and 

Methods. The pH of the medium, after the addition of the inhibitors, was set to 4.5. Among a 

number of different cocktails tested, the following were adopted: Cocktail B (g/L: furfural 1.4, 

acetic acid 3.6; formic acid 1.2; lactic acid 3.4) and Cocktail C (g/L: furfural 2.1, acetic acid 5.4; 

formic acid 1.8; lactic acid 5.2). 

For each strain the tolerance was evaluated by comparing the growth in the medium with and 

without the inhibitors, as OD value (%). The results are reported in Figure 3.13. 

 

 

 

Fig .3.13. Growth of 21 S. cerevisiae strains in (a) YPD and (b) YNB with increasing concentration of inhibitors (cocktails B and C). 

a) 

b) 
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In both media (YPD and YNB), none of the 21 strains showed any growth in the presence of 

cocktail C and this indicates that the highest concentration of inhibitors had a lethal effect on the 

yeasts. In general, YPD medium (Fig 3.13 a) seemed to support cell growth better than YNB (Fig. 

3.13 b). This evidence can be explained by the fact that YPD medium provides a greater supply of 

nutrients to the yeasts than YNB. 

In YPD broth, a group of strains (S. cerevisiae T2, T8, T9, T10, T11, T12, T13) showed good 

tolerance to the inhibitors cocktail B. Among these strains, S. cerevisiae T11 exhibited also one of 

the highest inhibitors tolerance in YNB broth (Fig. 3.13b) 

Interestingly, S. cerevisiae T2, T9, T11 and T12, selected as the most promising fermenting 

yeasts (Table 3.22), were among the strains having the best inhibitors tolerance in YPD medium 

(Figure 3.13a). This evidence indicates that such S. cerevisiae strains could be very attractive as 

yeasts to be used in the second generation bioethanol production and/or as host strains for the 

development of a CBP microbe. 

 

 

3.8 Evaluation of growth at 40 °C of the selected strains in YNB medium 

 

The four selected S. cerevisiae strains T2, T9, T11 and T12 were evaluated for their ability to 

grow aerobically in YNB medium at 40 °C. The incubation temperature of 30 °C was assessed as 

control. Yeast growth was evaluated at regular intervals monitoring optical density at 600nm 

(Figure 3.14). 
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Fig. 3.14. Growth of the four S. cerevisiae strains obtained in YNB medium with 20 g/L of glucose at 30 (a) and 40 °C (b). 

 

a) b) 
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As expected, all the strains grew very well at 30 °C (Fig. 3.14a). At 40 °C, the yeast growth was 

affected and the highest OD value was reached by S. cerevisiae T2 after 28 hours while the strains 

T9 and T11 achieved lower OD values after a longer incubation time. 

At final sampling time, aliquots of the YNB cultures were collected for the evaluation of dry 

biomass. Table 3.18 shows, for each strain, the value of dry biomass obtained at 40°C as percentage 

of that obtained at 30 °C. High values will be considered a good ability of the yeasts to grow at 40 

°C.  

 

 

 

 

 

Table 3.18. Relative dry biomass of S. cerevisiae strains T2, T9, T11, T12 expressed as percent value of dry biomass obtained at 40 
°C with respect to the value obtained at 30 °C. 

 

S. cerevisiae T2 exhibited the highest relative growth. Moreover, according to the HPLC 

analysis conducted in the spent YNB samples of each strain, such yeast produced the best ethanol 

yields at both temperatures (data not shown). As a result, S. cerevisiae T2, having also high 

inhibitors tolerance (Figure 3.13), was selected in order to start a molecular biology programme for 

the development of an efficient cellulolytic yeast.  

 

3.9 Engeneering S. cerevisiae strains for the expression of bglI β-glucosidase gene 
from Saccharomycopsis fibuligera. 

 

To this aim, within a bilateral project with Stellenbosch University, the β-glucosidase gene 

sequence from S. fibuligera has been selected to be integrated into S. cerevisiae T2. S. cerevisiae 

yeasts 27P, F12, Fp96 and Y130 were also included in this research programme as reference strains. 

S. cerevisiae 27P has promising industrial traits (Favaro et al. 2012a), S. cerevisiae F12 is 

characterized by high thermo-tolerance (Favaro et al. 2012c) while S. cerevisiae Fp96 possess high 

thermo-tolerance and inhibitors tolerance (Favaro et al., 2012c) and YI30 has high furans tolerance 

(Favaro L., personal communication).  

The wild type S. cerevisiae strains were transformed with the XhoI digested pBKD1_BGL1 

Strain % of dry biomass 40/30 °C 

T2 56 

T9 44 

T11 30 

T12 39 
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integrative plasmid for chromosomal integration (see paragraph 2.7.1). pBKD1_BGL1 plasmid 

contains DNA sequences for the resistance to antibiotic geneticin (G418 resistance) and the bglI 

gene from S. fibuligera for the expression of the β-glucosidase enzyme (Figure 2.1). 

 

3.9.1 Evaluation of the resistance to geneticin of the selected S. cerevisiae strains 

Unlike laboratory haploid strains of S. cerevisiae, wild type isolates lack selective genetic markers 

and thus could only be transformed with vectors containing dominant selection markers such as 

zeocin and geneticin genes. Prior to proceed with the yeast engineering, each S. cerevisiae strain 

was evaluated for resistance to geneticin (Table 3.19). 

 

 

S. cerevisiae strains T2 27P F12 Fp96 YI30 

Geneticin (µg/mL)      

0 ++++ ++++ ++++ ++++ ++++ 

10 + ++++ ++++ ++++ + 

20 ng ++ ng ng ng 

30 ng ng ng ng ng 

40 ng ng ng ng ng 

50 ng ng ng ng ng 

100 ng ng ng ng ng 

Tab 3.19. Geneticin resistance of S. cerevisiae strains T2, 27P, F12, Fp96 and YI30 grown on YPD plates supplemented with 
increasing concentrations of antibiotic (++++ remarkable growth; ng: no growth) 

 

The tested S. cerevisiae strains were very sensitive to the antibiotic. S. cerevisiae T2 and YI30 

were not able to produce a remarkable growth already at 10 µg/mL of geneticin. At 20 µg/mL, only 

S. cerevisiae 27P produced a moderate growth on YPD agar plates. The following concentrations of 

geneticin were adopted for the experiment, µg/mL: 30 for strains T2, F12, Fp96, 35 for strain 27P 

and 25 for strain YI30. 
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3.9.2 Cellobiose-hydrolyzing yeast strain generation. 

pBKD1_BGL1 plasmid extraction was performed following the protocol of Sambrook et al. 

(1989). The concentration and purity of plasmid was evaluated by Nanodrop instrument. The 

integrative plasmid pBKD1_BGL1 contains a unique XhoI site in the δ-sequence for an efficient 

homologous recombination into yeast chromosomes. As a result, pBKD1_BGL1 was digested with 

XhoI and used to transform S. cerevisiae T2, 27P, F12, Fp96 and YI30.  

At the end of digestion, samples of the reaction were run into an agarose gel (Figure 3.15).  

 

 

Fig. 3.15. Plasmid pBKD1_BGL1 digested overnight at 37 °C with XhoI enzyme (Marker used 1kb ladder, Euroclone) 

 

To obtain the chromosomal integration of bglI gene S. cerevisiae strains were subjected to 

electroporation protocol (Favaro et al., 2012a). Recombinant cells were plated onto YPDS plates 

supplemented with geneticin and incubated at 30 °C for 3 days in order to select the positive 

transformed yeasts. Once grown on YPDS plates (Figure 3.16), the yeast colonies of greater size 

were selected for further tests of β-glucosidase activity. At the end of the integration phase, more 

than 170 recombinant strains (obtained from the selected five S. cerevisiae strains) were available 

and stored at – 80 °C.  
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Fig 3.16. Recombinant colonies of S. cerevisiae T2 grown for 72 h on YPDS plates at 30 °C. 

 

3.10 Evaluation of β-glucosidase activity by recombinant strains 

 

3.10.1 Detection of enzymatic activity on MUG plates and evaluation of the mitotic 

stability of engineered yeasts 

To evaluate their β-glucosidase, recombinant strains were transferred onto fresh YPD plates 

formulated with 4-methyl-umbelliferyl-β-D-glucopyranoside (4-MUG) as substrate. This substrate 

allows to detect a β-glucosidase activity as, once hydrolyzed, it produces fluorescence under the 

long-wave ultraviolet light. 

The plates were incubated at 30 °C and examined after 24 and 48 h under the long-wave ultraviolet 

light. Many recombinant yeasts showed variable β-glucosidase activity giving a fluorescent halo, 

while the relative wild type strains did not hydrolyze MUG (data not shown). In particular, two 

engineered yeasts, T2[pBKD1_BGL1] (Figure 3.17) and 27P[pBKD1_BGL1], obtained 

respectively from their parental S. cerevisaie T2 and 27P, exhibited the largest hydrolysis halos and 

were maintained for further analysis. 
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Fig. 3.17. β-glucosidase activity of the recombinant strain S. cerevisiae T2[pBKD1_BGL1], highlighted by green round. The parental 
S. cerevisiae T2 was spotted on the plate (blue round) as negative control. 
 

To study their mitotic stability, the recombinants were grown in sequential batch cultures using 

non-selective YPD broth, as described in Favaro et al. (2012a). After 120 generations, both yeasts 

were found to be mitotically stable, since they displayed both resistance to geneticin and hydrolytic 

ability on 4-MUG.  

Genomic DNA isolated from the engineered strains served as template for PCR to confirm the 

presence of the recombinant gene. As shown in Figure 3.18, the presence of the bglI gene from S. 

fibuligera was confirmed in both recombinants. 

 
                                
Fig. 3.18. PCR amplification products of the two different primers BGL1-1 (left part) and BGL1-2 (right part) using, as template, 
genomic DNA isolated from S. cerevisiae T2 [pBKD1_BGL1], 27P[pBKD1_BGL1] and their parental yeasts. pBKD1-BGL1 
plasmid was used as positive control. 1 kb ladder was used (Euroclone). 
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3.10.2 Enzymatic assays of the recombinant strains 

 

The enzymatic activity of engineered yeasts was then detected in liquid assays, using p-

nitrophenyl-β-D-glucopyranoside (pNPG) as substrate. The enzymatic assays were conducted also 

with the wild type S. cerevisiae T2 and 27P. β-glucosidase enzyme hydrolyzes pNPG and release p-

nitrophenol which can be detected at 405 nm with spectrophotometric techniques. 

In short, yeasts were grown in YPD medium and, at regular intervals, samples of cultures were 

mixed with the substrate (4mM pNPG in 0.1M citrate-phosphate buffer, pH 5.0) and incubated at 55 

°C for 20 minutes, assay conditions previously described as optimal for BglI β-glucosidase of S. 

fibuligera by den Haan et al. (2005). Each sample, once inactivated, was transferred in a 96-well 

flat transparent microplate for the evaluation of the absorbance at 405 nm. 

At final sampling time, aliquots of the YPD cultures were collected for the evaluation of dry 

biomass. β-glucosidase activity was expressed as units per mg dry cell weight (Meinander et al., 

1996) where one unit was defined as the amount of enzyme required to produce 1 µmol of a p-

nitrophenol or reducing sugar per minute under the assay conditions. 

In Figure 3.19, the β-glucosidase activity of the recombinant strains T2[pBKD1_BGL1] and 

27P[pBKD1_BGL1] is reported.  

 

 

Fig. 3.19: β-glucosidase activity of the recombinant strains T2[pBKD1_BGL1] and 27P[pBKD1_BGL1] expressed as µmol of pNP 
released per mg of dry cell weight (DCW) per minute of reaction. S. cerevisiae T2 and 27P were assayed as negative control. 

 

Their parental yeasts, S. cerevisiae T2 and 27P, did not produce any detectable activity while 

the engineered strains exhibited hydrolytic abilities. However, their enzymatic activity was found to 
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be lower than that previously described by den Hann et al. (2005) for the laboratory strain S. 

cerevisiae Y294 engineered with episomal plasmid for the production of BglI of S. fibuligera (0.7 

µmol pNP/mg DCW/min). The higher β-glucosidase activity described by den Hann et al. could be 

explained considering that the laboratory strain would have produced high copy numbers of the 

episomal plasmid harboring the bglI gene sequence, resulting in higher β- glucosidase expression. 

Nevertheless, this is the first work reporting such hydrolytic ability in an industrial S. cerevisiae 

strain.  

 

 

3.10 Growth of the recombinants in medium with cellobiose 

 

To assess if this enzymatic activity produced in vitro by the recombinant strains would be 

enough to ensure a significant cell growth directly on cellobiose, the engineered strains were 

evaluated for their growth in liquid media supplemented with cellobiose, as only carbon source. 

Both recombinant strains were tested for their ability to grow in medium with cellobiose using two 

broths: minimal (YNB) and rich medium (YP Yeast extract, Peptone). For each medium, three 

different conditions were evaluated: no sugar addition, 10 g/L glucose addition or 10 g/L cellobiose 

supplementation. Yeast cell growth was monitored measuring the optical density at 600 nm at 

regular intervals. The behavior of the recombinant strains was similar in minimal and rich medium 

(data not shown). In YNB, the integration does not affect the ability of the strains to metabolize 

glucose and the two recombinants grew rapidly on glucose as their parental yeasts (Figure 3.20a). In 

YNB supplemented with cellobiose, the engineered strains were able to grow while the relative wild 

type strains did not exhibit any growth (Figure 3.20 b). However, their OD values in the YNB with 

cellobiose were much lower than those obtained in the glucose medium. This result can be 

explained by the fact that recombinant strains are able to hydrolyze only a little amount of 

cellobiose.  
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Fig. 3.20. Growth curves of the recombinant strains T2[pBKD1_BGL1] and 27P[pBKD1_BGL1] and the relative wild type strains in 
YNB medium with 10 g/L glucose (a) and cellobiose (b) 

 

As a result, surprisingly, recombinant strains selected in this study showed reduced ability to 

hydrolyze the dimer and to utilize the released glucose. Considering that both strains were found to 

be mitotically stable, this finding may be due to a low number of the bglI gene integrations occurred 

throughout the dispersed delta sequences into the S. cerevisiae 27P and T2 genomes. Alternatively, 

the integration of bglI gene could have been in a region of the genome with low transcription level. 

However, further genetic studies are required to confirm both hypothesis. 

The low number of integration events could be ascribed to different reasons. For example 

electroporation parameters would have been not optimal. Alternatively, the starting concentration of 

plasmid DNA should be higher or the concentration of dominant marker used in the plates to select 

for the positive recombinant strains should be increased to ensure the selection of transformed 

yeasts with higher bglI copy numbers. In the next future, the optimization of all these parameters 

will be useful to obtain a higher efficiency of the bglI gene integration into the selected strains. 
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4. CONCLUSIONS 

 

Recently increasing attention has been devoted to bioethanol, considered the cleanest liquid fuel 

alternative to fossil fuels. It can be produced using different conversion technologies and from 

several biomass feedstocks. Between these, lignocellulosic biomasses like wood from forestry 

activities, agro-industrial residues and energy crops represent interesting resources for second 

generation bioethanol production. 

The main obstacle hampering the utilization of biomass is the lack of low-cost technology. In 

this respect, the Consolidated Bioprocessing (CBP) is gaining increasing recognition as a potential 

breakthrough for cost-effective biomass conversion relying on a single microbial step. In this 

context the development of a Saccharomyces cerevisiae yeast strain, able both to hydrolyze and 

ferment the cellulose present in this type of biomasses, could be a promising strategy to obtain a 

sustainable process for the production of second generation bioethanol. The full enzymatic 

hydrolysis of cellulose requires three major types of enzymatic activity: (1) endoglucanases, (2) 

exoglucanases and (3) β-glucosidases. In this work, peculiar attention has been focused on β-

glucosidase, since cellobiose (the main substrate of β-glucosidase) is the major soluble by-products 

of cellulose hydrolysis and its efficient utilization is of primary importance for the high efficiency 

of the overall lignocellulose-to-ethanol process. As a result, a CBP S. cerevisiae yeast producing 

satisfactory levels of β-glucosidase enzyme would be a promising starting point for the engineering 

of a CBP microbe that completely hydrolyzes and efficiently ferments cellulose. 

In this study, the development of such microorganism was started with a strategy that comprises 

two big phases: (1) selection of a host strain with promising fermenting vigour and resistance to 

inhibitors commonly presents in lignocellulosic substrates, (2) the construction of an engineered 

yeast strain able to convert cellobiose into ethanol. 

Fundamental prerequisite for the production of CBP microbe is that the selected microorganism 

possesses industrial traits such as high fermentative vigour and tolerance to inhibitors present in 

lignocellulosic hydrolysates. In the first phase of this study, a new method for screening 

fermentative abilities, at 25 and 40 °C, and inhibitor tolerance in yeasts strains has been developed. 

The S. cerevisiae strains tested came from a collection available in the DAFNAE department while 

a new isolation programme of yeast strain was conducted in order to obtain yeasts that present 

interesting tolerance to inhibitors. This new method allowed to select a cluster of promising yeast 

strains for the development of CBP microbe to be used for second generation bioethanol. S. 
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cerevisiae strain T2 was selected as the most promising strain for the construction of a cellobiose 

hydrolyzing engineered yeast. 

In the second phase of this study, the selected strain T2 was transformed with a DNA sequence 

encoding β-glucosidase bglI from Saccharomycopsis fibuligera. The bglI sequence was successfully 

integrated into S. cerevisiae and the recombinant T2[pBKD_BGL1] strain, found to be mitotically 

stable, was selected as the most interesting cellobiose hydrolyzing engineered strain. The 

recombinant strain T2[pBKD_BGL1] showed low but improvable abilities to both hydrolyze and 

grow on cellobiose.  

In conclusion, in this work a new method for the selection of microorganisms suitable for the 

production of second generation bioethanol has been developed. The method involved the screening 

of the fermentative abilities, at 25 and 40 °C, and inhibitor tolerance for the yeast strains candidates 

for the development of a CBP microbe. In particular, for the first time, the fermenting vigour of 

yeast strains at 40 °C has been evaluated, and this procedure provided interesting results. Moreover, 

a new industrial recombinant yeast strain able to produce β-glucosidase enzyme has been obtained. 

Further studies are required to obtain a full cellulolytic CBP microorganism for a single-step 

process for the production of second generation bioethanol from lignocellulose. However, this 

multidisciplinary work seems to be a promising platform to achieve the one step bioconversion of 

lignocellulosic biomass to ethanol. 
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