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Abstract

The uncovering of genes linked to human diseases is a pressing challenge in molecular

biology, towards the full achievement of precision medicine. Next-generation technologies

provide an unprecedented amount of biological information, but at the same time they

unveil enormous numbers of candidate disease genes and pose novel challenges at multiple

analytical levels. Multi-omics data integration is currently the principal strategy to prioritise

candidate disease genes. In particular, kernel-based methods are a powerful resource for

the integration of biological knowledge, but their use is often precluded by their limited

scalability.

In this thesis, we propose a novel scalable kernel-based method for gene prioritisation

which implements a novel multiple kernel learning approach, based on a semi-supervised

perspective and on the optimisation of the margin distribution in binary problems. Our

method is optimised to cope with strongly unbalanced settings where known disease genes

are few and large scale predictions are required. Importantly, it is able to efficiently deal both

with a large amount of candidate genes and with an arbitrary number of data sources. Through

the simulation of real case studies, we show that our method outperforms a wide range of

state-of-the-art methods and has enhanced scalability compared to existing kernel-based

approaches for genomic data.

We apply the proposed method to investigate the potential role for disease gene prediction

of metabolic rearrangements caused by genetic perturbations. To this end, we use constraint-

based modelling of metabolism to generate gene-specific information at a genome scale,

which is mined via machine learning. Moreover, we compare constraint-based modelling

and our kernel-based method as alternative integration strategies for omics data such as

transcriptional profiles. Experimental assessments across various cancers demonstrate that

information on metabolic rewiring reconstructed in silico can be valuable to prioritise associ-

ated genes, although accuracy strongly depends on the cancer type. Despite these fluctuations,

predictions achieved starting from metabolic modelling are largely complementary to those

from gene expression or pathway annotations, highlighting the potential of this approach to

identify novel genes involved in cancer.





Sommario

La scoperta dei geni legati alle malattie nell’uomo è una sfida pressante in biologia

molecolare, in vista del pieno raggiungimento della medicina di precisione. Le tecnologie di

nuova generazione forniscono una quantità di informazioni biologiche senza precedenti, ma

allo stesso tempo rivelano numeri enormi di geni malattia candidati e pongono nuove sfide

a molteplici livelli di analisi. L’integrazione di dati multi-omici è attualmente la strategia

principale per prioritizzare geni malattia candidati. In particolare, i metodi basati su kernel

sono una potente risorsa per l’integrazione della conoscenza biologica, tuttavia il loro utilizzo

è spesso precluso dalla loro limitata scalabilità.

In questa tesi, proponiamo un nuovo metodo kernel scalabile per la prioritizzazione di

geni, che applica un nuovo approccio di multiple kernel learning basato su una prospettiva

semi-supervisionata e sull’ottimizzazione della distribuzione dei margini in problemi binari.

Il nostro metodo è ottimizzato per fare fronte a condizioni fortemente sbilanciate in cui si

disponga di pochi geni malattia noti e siano richieste predizioni su larga scala. Significa-

tivamente, è capace di gestire sia un gran numero di candidati sia un numero arbitrario di

sorgenti di informazione. Attraverso la simulazione di casi studio reali, mostriamo che il

nostro metodo supera in prestazioni un’ampia gamma di metodi allo stato dell’arte ed è

dotato di migliore scalabilità rispetto a metodi kernel esistenti per dati genomici.

Applichiamo il metodo proposto per studiare il potenziale ruolo per la predizione di

geni malattia dei riarrangiamenti metabolici causati da perturbazioni genetiche. A questo

scopo, utilizziamo modelli del metabolismo basati su vincoli per generare informazione

sui geni a scala genomica, che viene analizzata tramite apprendimento automatico. Inoltre,

compariamo modelli basati su vincoli ed il nostro metodo basato su kernel come strategie di

integrazione alternative per dati omici come profili trascrizionali. Valutazioni sperimentali su

vari cancri dimostrano come i riarrangiamenti metabolici ricostruiti in silico possano essere

utili per prioritizzare i geni associati, nonostante l’accuratezza dipenda fortemente dalla

tipologia di cancro. Malgrado queste fluttuazioni, le predizioni basate su modelli metabolici

sono largamente complentari a quelle basate su espressione genica o annotazioni di pathway,

evidenziando il potenziale di questo approccio per identificare nuovi geni implicati nel

cancro.
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Chapter 1

Introduction

An avalanche of data is revolutionising molecular biology and has the

potential to radically innovate disease diagnosis and treatment. In order

to fully elucidate the genetic bases of human disease it is necessary to

combine a variety of biological information within a complex systems

framework. Computational methods allow aggregating knowledge and

prioritising candidate genes of interest. However, their power remains

limited as their development faces several challenges.

The identification of genes underlying human diseases is a major goal in current molecular

genetics research. Despite the dramatic progresses of the last few decades, it is progressively

emerging how little it is yet understood of the origin and evolution of genetically-based

conditions. In the 1980s, only a handful of DNA loci were known to be related to disease

phenotypes, as a result of massive investigative efforts. During the 1990s, positional cloning

allowed mapping a vast portion of known Mendelian diseases to their causative genes [1, 2].

In positional cloning, disease genes are identified from their approximate chromosomal loca-

tion, defined as tightly as possible. Most commonly, linkage studies lead to the identification

of candidate chromosomal regions, where residing genes are tested. Alternative strategies

are the use of chromosomal abnormalities and animal models. Nowadays opportunities for

the diagnosis and the design of new therapies are progressively growing, thanks to several

technological advances and the application of statistical or mathematical techniques.

However, despite the huge advances, even among Mendelian disorders much remains

to be discovered. On December 21st 2016, the Online Mendelian Inheritance in Man

database (OMIM) registered 4,908 Mendelian phenotypes of known molecular basis and

1,483 Mendelian phenotypes of unknown molecular origin [3]. Moreover, 1,677 more

phenotypes are suspected to be Mendelian. Yet it is among poligenic and multifactorial
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pathologies that the most remains to be elucidated, as the majority of them has been linked

to only a few genetic loci [1, 2]. Traditional investigative techniques can be ineffective

when complex non-additive effects arise from the action of multiple genes across different

biological levels, especially when non-genetic factors further blur the picture. Evidence

of complexity is emerging even among Mendelian disorders, stemming from a lack of

correlation between genotype and the clinical phenotype [4]. Along with other factors, it is

suggested that modifier genes may lie behind these observations, giving rise to the notion of

oligogenic disease [5–8]. Moreover, once the putative disease genes have been identified,

validating the true association may be challenging. Independent studies are often necessary to

confirm the discovery. So far, clinically useful findings have been achieved in a few complex

diseases.

In this context, the advent of high-throughput technologies radically changed the perspec-

tive towards the search for disease genes, along with the whole field of molecular biology. We

start by describing the implications of this event for our comprehension of genetic disease.

1.1 An omics data perspective on human genetic disease

After the generation of the first complete genomes, the term genomics was coined to indicate

the study of hereditary information as a whole. Following, a series of omics have born span-

ning several level of biological knowledge, most of them associated to emerging pieces of

technology. Today, most widespread high-throughput technologies include DNA sequencing

(genomics) [9], genome-wide RNA sequencing (transcriptomics) [10], methylation and his-

tone modification data (epigenomics) [11, 12], protein mass spectrometry data (proteomics)

[13] and metabolomics [14]. As technology moves forward, its cost decreases and growing

wealth of data is generated. As an example, Figure 1.1 shows the average cost per genome

since the time of first generation sequencing until the widespread commercialisation of most

recent Next-Generation Sequencing (NGS) devices.

The “omics”suffix does not merely represent the entirety of a certain biological domain,

but it has been more and more associated to a novel holistic understanding of biological

systems. Inherited from the physics of complex systems, this vision lies on the observation

that knowing the behaviour of components of a biological entity is not enough to understand

its behaviour. The data revolution allowed thoroughly observing this fact for the first time,

hence reinforcing the application of complex systems notions on the study of biological

organisms. Terms like systems biology, systems genetics and systems medicine are today

widespread, sanctioning the shift to a quantitative biology paradigm [15–20]. The underlying
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Figure 1.1 | Trend of whole-genome sequencing value. Average cost of whole-genome sequencing
since the beginning of the millennium. After some years of strong development, we are now entering a
phase of low and more stable value. The straight white line represents the theoretical cost as predicted
by Moore’s law, which is the empirical observation that the number of transistors in a dense integrated
circuit doubles approximately every two years. This law is often taken as a goal by industry.

idea is that biological systems are governed by simple laws that lead to unexpected emerging

phenomena.

On the level of human genetic disease, principal elements of complexity are:

• Gene pleiotropy: genes can have multiple functions, each of which is compromised by

specific mutations.

• Gene interactions: diseases can be caused by the joined effect of several alterations in

multiple genes.

• Interaction with epigenetic factors: epigenetic anomalies can alter or obfuscate the

effect of genetic mutations.
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• Interaction with metabolism and bio-molecular signalling: metabolic and signalling

adjustments can compensate or modify the effect of genetic alterations.

• Interaction with environmental factors: infective agents, medications and diet can

compensate or modify the effect of genetic alterations.

• Bio-molecular thresholds: genetic perturbations can have effect above determined

functional thresholds.

• System dynamics: dynamical mechanisms can alter or obfuscate the effect of genetic

alterations.

These elements ultimately manifest in the form of:

• Locus heterogeneity: same pathological phenotypes can result from different genetic

alterations.

• Symptoms heterogeneity: same mutations can have different phenotypic effects de-

pending on the context.

In order to translate the avalanche of accumulating information into knowledge, this has to be

analysed and interpreted. It is more and more evident that our understanding of human disease

remains limited because many studies have separately focused on the different biological

levels, analysing single data types. In order to comprehend complex disorders aetiology, it

is necessary to put together all pieces of the puzzle. In the following section we describe a

general classification of current approaches for the integration of heterogeneous data aimed

to the elucidation of genotype-phenotype relationships.

1.2 Data integration for unveiling interactions between geno-

type and human disorders

A single type of data offers a partial view on the complexity of the human biology and limits

our understanding of it. Large-scale data integration approaches are conceived within a range

of different mathematical and computational frameworks, traditionally divided between

meta-dimensional and multi-staged methods [21]. Moreover, a third integrative framework

has evolved in parallel, called Constraint-Based Modelling (CBM). In the next sections these

three branches are described.
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1.2.1 Multi-staged integration

As the name suggests, in multi-staged integration the data analysis is carried out through a

sequence of consecutive steps. At each step, the information is filtered or processed in such

a way to gradually let the relevant signal emerge. Multi-staged methods can be as diverse

as the combination of target data sources, though they can be broadly described in terms of

two main phases. A first phase involves the identification of relationships among the data

sources via multiple cross-analyses. In a second and final phase, associations between data

and phenotype are sought.

A common representative example of multi-staged approaches is the three-stage or

triangle method. Here, Single Nucleotide Polymorphisms (SNPs) are first associated with

the phenotype of interest and filtered on the basis of a genome-wide significance threshold.

Second, significant SNPs are associated with another omic data type such as gene expression

levels or methylation patterns to select genes harbouring those mutations. Finally, genes

obtained from the previous step are tested for correlation with the phenotype. A different

method consists in linking allele-specific expression with SNPs found in the corresponding

genes and with cis-element variations or epigenetic modifications. In this case, allele-specific

gene expression or methylation profiles are compared to identify differentially regulated

alleles. Next, resulting genes are tested for correlation with a phenotype of interest.

This type of integration can be designed around the specific involved data sources, but it

suffers from limitations both on a technical and on a biological assumptions level. Associa-

tions among data sets are in fact generally defined on arbitrary significance thresholds, which

have to take into account also multiple hypothesis corrections. A number of true associations

can thus be discarded. Furthermore, when phenotype is the result of a simultaneous complex

interaction between multiple biological levels, a multi-staged approach will fail to reliably

model it. This kind of methodology is thus indicated only for simple cases with nearly linear

relationships between genotype and phenotype.

1.2.2 Meta-dimensional integration

Meta-dimensional methods simultaneously cross multiple data sources and can cope with vari-

able inputs. They are broadly categorised into concatenation-based integration, transformation-

based integration and model-based integration, whose schemas are displayed in Figure 1.2.

Concatenation-based integration fuses multiple data types together by concatenating data

matrices into a single comprehensive matrix. Next, a model is generated starting from this

combined matrix. An advantage of these approaches is the relative ease to apply statistical

methods to any final data matrix. However, combining multiple matrices together can be
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Figure 1.2 | Work-flow of meta-dimensional data integration approaches. Meta-dimensional
integration methods can be broadly classified as: (a) concatenation-based integration, combining in-
formation at raw or processed data level; (b) transformation-based integration, combining information
after conversion into a more abstract format; (c) model-based integration, generating models from
data and next combining them to achieve the final model.

challenging, due to different scaling or inherent biases of each data type. Depending on the

data considered, there are different degrees of difficulty in this phase. Moreover, sometimes

it may be necessary a data reduction step if too many variables make analyses infeasible.

Transformation-based integration converts each dataset into an intermediate form such

as a graph or a kernel matrix. The integration is performed at the level of transformed

data, thus resulting in a integrative graph or matrix, which is used to obtain the model.

These approaches have the advantage of preserving original data properties and they are

able to combine virtually any data structure or format by converting it through appropriate

transformations. A disadvantage is the difficulty to detect interactions among the different

sources.

Model-based integration generates from each dataset an equal number of models, which

are subsequently combined into a final model. This kind of integration can have an even

larger flexibility as compared to other approaches. For instance, in patient-centred analyses
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Figure 1.3 | Work-flow of constraint-based data integration. Metabolic models are generated
from raw or processed data and available knowledge. In a successive step, additional data is mapped
on the initial model to obtain a more refined model, specific for the cell type or the physiological
condition of interest.

it is possible to combine models coming from different groups of patients. However, these

approaches can miss interaction among different data types, just like transformation-based

approaches. Furthermore, they are particularly sensitive to over-fitting, so they are indicated

when the data pool is extremely heterogeneous.

1.2.3 Constraint-based integration

In the last few years, CBM has evolved in parallel as a novel type of data integration

framework. From a formal point of view, it belongs to the field of systems modelling and

revolves around metabolism, by means of Genome-Scale Metabolic Models (GSMMs).

GSMMs include the whole set of biochemical reactions involved in cellular metabolism,

along with their stoichiometry and directionality. Through CBM, it is possible to gain insights

on cellular phenotypes in terms of reaction fluxes via a range of analyses [22].

As recently discussed, GSMMs can be the foundation for data integration [23–25]. In

this case, the work-flow starts from raw data and knowledge on cellular physiology that are

aggregated and converted into a GSMM. Later, additional omics data can be mapped onto the

model, obtaining a new refined model. Mapped data can be transcriptional, proteomic and

metabolomic profiles or information on splice isoforms or codon usage [26–28]. Depending



8 Introduction

on the information introduced in the original model, a novel tissue-specific, cell-type specific

or condition-specific model is created. General purpose models are used as scaffolds for

such model-driven data integration, as the recent human cell models Recon 2.2 and HMR 2

[29, 30].

CBM-based data integration and analysis also have their limitations [31]. First, there are

practical limitations in validating predictions, either because of technical issues in measuring

the metabolites in question or difficulty of accessing the patient materials. Second, since

GSMMs focus on metabolic enzyme-coding genes, reactions and pathways, GSMMs cannot

be used to study genes involved in signal transduction or other functional domains. Third,

GSMMs are based on the assumption of steady-state conditions and do not contain detailed

reaction kinetics, so predicted flux distributions are often approximations of real reaction

rates.

In Chapter 4 a more detailed description of approaches to integrate transcriptional data

with metabolic models is provided.

1.3 Candidate gene prioritisation

Independently of the type of disease, the search of causative genes usually concerns a large

number of suspects. It is therefore necessary to recognise the most promising candidates to

submit to additional investigations, as experimental procedures are often expensive and time

consuming. Gene prioritisation is the task of ordering genes from the most promising to the

least. In traditional genotype-phenotype mapping approaches - as well as in genome-wide

association studies - the first step is the identification of the genomic region(s) wherein the

genes of interest lie. Once the candidate region is identified, the genes there residing are

prioritised and finally analysed for the presence of possible causative mutations [1]. More

recently, in new generation sequencing studies this process is inverted as the first step is the

identification of mutations, followed by prioritisation and final validation [32].

Candidate gene prioritisation is therefore a necessary step in various sorts of investiga-

tions: from linkage analyses to genome-wide association studies and so on. This task is

strictly related to gene selection, where the output is binary acceptance/rejection of candidate

genes. Indeed, many methods can perform both prioritisation and selection. For instance, if

a method assigns a score to each gene, it is easy to sort genes based on the scores or set a

threshold to select only a fraction of them. However, prioritisation can leave more freedom

to biologists, letting them decide how deeply scan the sorted candidate list.

Prioritisation criteria are usually based on functional relationships, co-expression and

other clues linking genes together. In general, they follow the Guilt-By-Association (GBA)
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Figure 1.4 | Disease gene identification work-flow. Rationale of the procedure to identify novel
gene-disease associations in modern next generation sequencing studies in clinical settings.

principle, i.e. disease genes are sought by looking for similarities to genes already associated

to the pathology of interest [1, 33, 34]. Although GBA is the main strategy and has proven

successful in a number of cases, it has the major limitation of assuming static relationships

- a strongly simplistic assumption. In the attempt to overcome this, it has been proposed

to associate genes by focusing on the perturbations in gene networks associated to disease

states via a guilt-by-rewiring approach [35]. In another study, disease genes are correctly

identified starting from changes in protein networks controllability upon mutations [36].

It is important to remark that prioritisation strategies can be targeted to the optimisation

of virtually any kind of experimental investigation. Given the strong interest in the complete

elucidation of genetic disorders aetiology, they are commonly employed in the prioritisation

of candidate disease genes. Throughout this thesis, only this case will be considered, tacitly

implying that the same considerations can be applied to any situation where a prioritisation

is required.

The individuation of genes involved in a certain phenotype is usually not enough to fully

comprehend its molecular roots, as it depends on the specific alterations in that gene. It is

thus necessary to understand also how genomic variants can impact gene functions. Such a

task can be formulated as variant prioritisation, where large sets of variants are ranked on the

basis of various biological relationships - analogously to the gene-centred setting [37–39].

This problem shares some difficulties with gene prioritisation, namely the positive-unlabelled

and imbalanced set-up - as will be discussed in Section 2.5 - but it is out of the scope of this

thesis [38].
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1.3.1 Characteristics of disease genes

Disease genes tend to present some peculiar characteristics: statistically speaking, they have

longer genomic and amino acid sequence, span a broader phylogenetic extent and present

specific conservation and paralogy profiles as compared with all human proteins [40, 41].

Even in relation to house-keeping genes, they show different evolutionary conservation rates,

DNA coding lengths and gene functions [42]. A phylogenetic analysis has revealed that

many disease genes originated during the early evolution of metazoa, while genes specific

to the mammalian lineage are strongly under-represented [43]. Moreover, disease genes

evolve at higher synonymous substitution rates with higher nonsynonymous/synonymous

substitution rate ratios and are expressed in a narrower range of tissues [44–46]

Perhaps more influential to gene prioritisation research are observations on functional

properties in the context of biological networks. Development of graph theory enforced

a network-centred view of biological systems. Indeed, proteins with common or similar

functions are seen to cluster together in physical protein interaction networks. In this context,

disease is interpreted as disruption of these and other bio-molecular networks and genes

associated with the same disease are believed to be preferentially interconnected [47–50]. In

light of these findings, networks represent a major tool for the search of disease genes, as is

described in the next section.

1.4 Omics data for gene prioritisation

As described in the previous section, disease genes often possess specific distinctive features.

In light of these observations, several types of biological evidence can be used to recognise

them. Depending on the disorder of interest and on the available information, most appropri-

ate data sources can be chosen ad-hoc in order to orient the prioritisation. In the following

we outline the principal categories, presenting their assumptions and limitations.

Interactomes The term interactome refers to the global set of molecular interactions in

a cell such as Protein-Protein Interactions (PPIs), protein-nucleic acid interactions,

protein-metabolites interactions or interactions between post-translational modifiers

and their targets. In particular, PPIs were the first to be extensively studied. Even

considering one splice variant per coding gene, at least 20,000 proteins must exist

implying a huge amount of putative interactions [51–53]. Since 1994, the number

of identified high-confidence binary PPIs has indeed grown roughly linearly up to

∼11,000 interactions in 2013 [54]. They have been aggregated, together with other

∼14,000 newly generated ones, into the widest and most rigorously verified protein
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interactome to date [54]. More recently, large-scale efforts have allowed widening the

boundary of previous interaction maps through affinity purification–mass spectrometry

methodology, resulting in BioPlex and BioPlex 2.0 [55, 56], while novel gene editing

techniques promise to push forward interactome exploration in the future [57]. Protein

interactions can also be predicted starting from a variety of biological hints such as

sequence homology, gene co-expression, phylogenetic profiles and three-dimensional

structure [58]. Nevertheless, PPIs represent only a portion of biomolecular interactions

involved in pathological mechanisms. Since recently, first maps are available also

for interactions between messenger RNA, micro RNA and long non-coding RNA

molecules [59–62]. Finally, another kind of interactome is represented by genetic

interactions (Figure 1.5).

Interactomes are one of the most widely utilised data source to prioritise genes. How-

ever, there are still major limitations arising from experimental issues or poorly investi-

gated aspects. The main drawback is the bias toward well-characterised genes or gene

products, that make up the dominant portion of current maps [63]. This is due to the

fact that most known interactions have been identified in small-scale studies, because

of limited resources and technical challenges. Secondly, reconstructed networks do

not take into account that physical interactions are dependent on tissue, cell type and

physiological conditions [64]. Quantitative and dynamic features, such as protein

expression levels and interaction strength, are not yet incorporated [63].

Gene expression Genome-wide experimental data like gene expression quantification rep-

resent an alternative information source with coverage on the full exome or genome.

Inference on putative disease genes is usually performed in terms of differential expres-

sion between healthy and affected samples or of co-expression across different tissues

and conditions [66]. This can be done through the construction of networks where

distance among genes is weighted by their differential expression or co-expression

[67]. Alternatively, this data type is analysed by means of statistical vector correlation

measures. Gene expression can also provide information on specific tissues.

However, gene expression can be a poor indicator of the actual phenotype. In fact,

some studies show that gene expression alone fails in enhancing classification of patient

tissues [68]. Moreover, there is evidence suggesting that co-expression can often be

due to genomic proximity rather than to functional links [69].

Functional annotations Biological functions are inherently connected to disease, as the

latter arises when some function is compromised at a molecular level. Determining the

function of a gene therefore corresponds to defining its associated disorders. Several
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Figure 1.5 | Genetic network of a cell. Network among genes with similar genetic interaction
profiles in Saccharomyces cerevisiae. Clusters of functionally related genes are highlighted by
different colours (Source: Costanzo et al [65]).

types of evidence can provide information on the function of genes. The Gene Ontology

provides structured annotations on three level of knowledge: biological processes,

molecular functions and cellular localisation [70]. Other resources are the Human

Phenotype Ontology (HPO) and the Mammalian Phenotype Ontology [71, 72].

These annotations provide an abstract and hierarchical organisation of knowledge

which unifies and sorts a vast amount of experimental data. Limitations are that they

are static and often suffer from high rates of incorrect annotations.

Pathway composition Biological pathways are chains of biochemical reactions that deter-

mine the production of a certain molecule or a well-defined change in a cell. They

represent higher order biological functions, grouping together interactions and pro-

cesses among molecules. Pathways are broadly classified based on their role in

metabolism, genetic regulation and transmission of signals. Perhaps the most popular
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pathway resource is Kyoto Encyclopedia of Genes and Genomes (KEGG), followed by

Reactome [73, 74]. The most complete is Consensus Path DataBase (CPDB), which

gathers information from 32 external repositories including KEGG and Reactome [75].

Gene products that participate in a certain pathway share functional complicity and

by extension also their genes. The rationale for pathway-driven gene prioritisation is

therefore to search for genes involved in the same pathways of known disease genes. A

limitation for these methods is usually to not take into account the actual role of genes

in the pathways but merely their presence.

Text mining The compendium of scientific articles in PubMed and similar resources provide

a huge amount of knowledge that can be analysed through automatic language process-

ing techniques to search for hidden associations between genes and disease [76]. This

kind of analysis mimics the literature review usually performed by researchers, but at

rates orders of magnitude faster. In the same way, other textual resources like OMIM

can be mined [3]. Phenotypes without referenced molecular basis can be characterised

by other means and compared with each other [77]. For instance, through text mining

clustering of genes in terms of associated phenotype descriptions was found to correlate

with their functional annotations [78].

A problem for this kind of approach is represented by a lack of consistent concept

representation, as the same concepts can be formulated and phrased through various

synonyms and aliases. Controlled vocabularies were generated to contrast this issue,

providing standard references [79, 76]. Moreover, extracted information tends to be

biased toward well studied genes, as those not covered in the literature lack meaningful

information.

Sequence information Specific properties of DNA or gene product sequence can contain

useful information. First, sequence may reflect functional aspects. Moreover, disease

genes are statistically characterised by a higher length of coding region and other

peculiar features, as described in a previous section.

Integrated gene networks Some resources gather gene relationships on various levels and

merge them into an integrated gene network. These networks can be analysed through

the same principles and techniques used for physical and genetic interactomes. For

instance, STRING puts together functional associations across seven types of experi-

mental or in silico evidence [80].
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1.5 Computational gene prioritisation

In the last few years, computational techniques have been developed to aid researchers priori-

tise candidate genes, applying both statistics and machine learning [81–84]. As discussed

in Section 1.1, a huge amount of data is in fact available for this kind of investigations. In

particular, computational methods are essential for multi-omics data integration [21, 85].

Just like in related tasks, clues are often embedded in different data sources and only their

combination leads to the emergence of informative patterns. Furthermore, incompleteness

and noise of the single sources can be overcome by inference across multiple levels of

knowledge.

Gene prioritisation methods can be broadly classified on four main levels: mathematical

and computational approach, required input, type of biological evidence employed and scope

of application. In the following a general description of these aspects is provided.

Computational approach Machine learning is a field of study that intersects mathematics,

statistics and computer science and aims to the identification and analysis of patterns

in the data. During the last two decades, this field has progressively invaded genetics

and genomics as a novel investigation tool on a broad spectrum of problems [86, 87].

Machine learning can be broadly divided in supervised and unsupervised methods.

The former are typically used to discriminate between two or more sets of items,

such as genes. The latter are used to group items without any response variable.

Most computational gene prioritisation methods are grounded on a supervised or

semi-supervised machine learning approach (Chapter 2). Other methods use a purely

statistical approach.

Input Most methods require some input data about the disease of interest, typically its known

associated genes but also phenotypic or biochemical information. They are therefore

disease-centred. On the other hand, some methods provide an overall evaluation

or probability on the involvement of candidates in any disorder. This approach is

grounded on the observation that disease genes tend to have peculiar characteristics, as

described in Section 1.3.1. This second category of methods may be useful when it is

not possible to have a meaningful biological reference for disease-centred approaches.

Type of evidence As discussed in the previous Section, various information sources can be

used for prioritisation. They include physical and genetic interactions, gene expression,

pathway composition, functional annotations, text mining, phenotype relationships,

sequence data and regulatory information. Several combinations of data types can

potentially be useful, so methods have been developed focusing on different specific
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data types. Others are more comprehensive and are build to integrate virtually any

number and type of data source.

Scope of application Some methods have been developed specifically for some classes

of disorders, such as metabolic diseases or cancers. Conversely, other methods are

generic, in the sense that they can be used without limitations on the disease type.

1.5.1 Methods and tools for gene prioritisation

One of the first methods to appear was Endeavour, which uses a statistical algorithm based

on order statistics [88]. Distinct rankings are generated from multiple data sources and are

fused together into a global ranking. Still today, it is one of the most popular methods, as it

is available as web tool and it is considered a strong benchmark.

Most of other methods rely on machine learning algorithms. In particular, a class of

algorithms is based on kernels, which are mathematical transformations that permit to

estimate the similarity among items (in our case genes) taking into account complex data

relations [89]. Importantly, kernels provide a universal encoding for any kind of knowledge

representation, e.g. vectors, trees or graphs. When data integration is required, a Multiple

Kernel Learning (MKL) strategy allows a data-driven weighting/selection of meaningful

information [90]. The goal of MKL is indeed to learn optimal kernel combinations starting

from a set of predefined kernels obtained by various data sources. Through MKL the issue of

combining different data types is then solved by converting each dataset in a kernel matrix.

Given the capacity of integrating virtually any type of data and the variety of existing kernels,

this class of methods is particularly flexible and promising.

Numerous Multiple Kernel Learning (MKL) approaches have been proposed for the

integration of genomic data [91, 92] and some of them have been applied to gene prioritisation

[93–96]. De Bie et al formulated the problem as a one-class Support Vector Machine (SVM)

optimisation task [93], while Mordelet and Vert tackled it through a biased SVM in a Positive-

Unlabelled (PU) framework [95, 97]. Recently, Zakeri et al proposed an approach for learning

non-linear log-Euclidean kernel combinations, showing that it can more effectively detect

complementary biological information compared to linear combinations-based approaches

[96]. However, as highlighted in a recent work by Wang et al [91], current methods share

two limitations: high computational costs - given by a (at least) quadratic complexity in the

number of training examples - and the difficulty to predefine optimal kernel functions to be

fed to the MKL machine.

Besides kernel-based methods, a wide range of approaches have been proposed in the

last two decades. Most of them are progressively converging towards the integration of



16 Introduction

heterogeneous multi-omics data, and particularly of network data [98–101]. Moreover,

various gene prioritisation web tools are currently available [102].

1.6 Research motivations and objectives

The present thesis is framed within BioInfoGen, a strategic project of the University of

Padova started at the beginning of 2014 with the objective of developing technology and

expertise in bioinformatics applied to personal genomics. This field of research requires multi-

disciplinary expertise, provided by the joint contribution of different research groups from

the Department of Biology, the Department of Mathematics, the Department of Women’s

and Children’s Health and the Department of Medicine.

Units of the Department of Medicine and the Department of Women’s and Children’s

Health are routinely involved in the diagnosis of patients via NGS and analysis of mutations,

exploiting a sequencing facility of the Unity at the department of Biology. As in typical

diagnostic screens, they often come across long lists of candidate genes and need to prioritise

them. Upon an initial evaluation of available web tools, we decided to investigate novel

prioritisation strategies.

Given the nature and the heterogeneity of the data that need to be integrated in order to

achieve effective prioritisations, kernel methods appear as both powerful and flexible tools.

Indeed, they can detect complex patterns robustly and efficiently from a limited data sample

and at the same time facilitate the data integration through the kernel encoding. However,

their application to the gene prioritisation problem has not been extensively investigated,

consequently we decided to employ kernel methods as methodological basis.

As discussed in Section 1.5.1, a major limitation of current kernel-based methods for

gene prioritisation is the limited scalability to large sets of genes and volumes of data. The

BioInfoGen mathematics research unit has solid expertise in this field and in particular on

the development of a scalable MKL algorithm [103]. Such a tool has however never applied

to gene prioritisation nor possesses all desired scalability properties.

In light of these premises, the first objective of this work is to build a novel MKL method

for gene prioritisation. Primary desired properties are accuracy in predictions and scalability

to large lists of candidates.

We validated the proposed method on the retrieval of known gene-disease associations

relative to a broad spectrum of disorders, in two main evaluation settings. First, we bench-

marked it by means of a standard procedure called cross-validation. This analysis permits to

estimate the average prediction error by repeated train-and-test assessments. Secondly, we
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focused on a validation setting introduced specifically for gene prioritisation, where the goal

is to estimate the accuracy in real circumstances when looking for unknown gene-disease

associations. Here evaluation was restricted to predictions for associations discovered later

than the last update of the data sources.

During the first part of the project, we observed from literature and experimental analyses

that each data source has its intrinsic biases, as discussed in Section 1.4. This verification

highlights the necessity for strategies to reduce them, either by developing new computational

methods or by employing different complementary data. In particular, metabolic information

is seldom considered, also due to technological limitations that still hamper large-scale

metabolite profiling. At the same time, metabolism is emerging as a fundamental aspect

in several type of diseases, such as cancers and neurological disorders, besides strictly

metabolic pathologies. As presented in Section 1.2.3, CBM can be used to estimate genome-

wide metabolic states even integrating disorder-specific experimental data and to study the

interaction between genotype and metabolism. In this context, genetic perturbations can be

analysed in terms of their down-stream metabolic rewiring. However, value of combining

CBM and machine learning for gene prioritisation has never been tested before. As an

additional point, the BioInfoGen unit of the Department of Women’s and Children’s Health

focuses its research on metabolic disorders and has therefore strong interest in new tools for

this kind of pathologies.

For these reasons, the second objective of this work is to develop and test a novel approach

for gene prioritisation that combines CBM with MKL, assessing whether integrating in silico

metabolic flux information can result in improved predictions. Moreover, from an operational

point of view GSMMs can be used both as data sources and as data integration scaffolds,

alternative to MKL. Therefore, we also aim to compare these two frameworks on the basis of

their final prioritisation accuracy.

In order to integrate MKL and metabolic modelling, we developed a pipeline to (i)

generate in silico flux profiles estimating the impact of each prioritised gene in the disorder;

(ii) analyse obtained flux profiles via the learning algorithm developed in the first part of the

thesis. We validated this approach focusing on cancer genes, independently considering the

prioritisation of oncogenes and tumour suppressor genes. Tests were performed in the form

of cross-validation, evaluating the complementarity of predictions in comparison to those

obtained from other data sources. Finally, we performed analogous analyses to compare

effectiveness of MKL and CBM as alternative omics data integration strategies.
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1.7 Thesis outline

This thesis is divided in two parts, where we investigate two different aspects of data

integration for gene prioritisation.

In the first part, we focus on the methodology for automatic gene prioritisation. In particular,

we address the need for efficient methods that cope with the increasing volume and diversity

of biological data. The first part of Chapter 2 introduces to the mathematical formulation of

kernel methods and describes the MKL approach. The second part presents a novel scalable

MKL method for heterogeneous omics data integration and gene prioritisation. In Chapter 3,

experimental results of the proposed method are presented, along with a comparison with

existing methods and tools.

In the second part, we focus on the integration between CBM and MKL aimed to prioritise

candidate genes involved in metabolism. In Chapter 4 we first describe in detail the theory

regarding CBM that allows investigating genetic perturbations at a metabolic flux level. In the

final part, we advance a methodology for implementing these concepts in gene prioritisation.

In Chapter 5 we present the application of the proposed approach to the prioritisation of

tumour suppressor genes and oncogenes.

Finally, in Chapter 6 contributions and limitations of the present study are discussed and

future research directions are delineated.



Chapter 2

Data integration via class-unbalanced

multiple kernel learning

Kernel methods are a class of machine learning approaches that allow

modelling non-linear data relationships. Among them, multiple kernel

learning is a flexible strategy to integrate heterogeneous data, but it

usually requires strong computational effort. We present here a novel

scalable kernel-based method to effectively prioritise candidate genes on

a genome-scale.

Kernel methods are advanced machine learning techniques, known for their robustness

and stability in detecting stable patterns in the data. They are typically composed of two

main steps. Initially, data is mapped to a higher dimensional space via a shortcut called

kernel function. Due to the higher dimensionality, complex non-linear relationships in the

original space appear linear in the new space. This operation takes into account the particular

data type and domain knowledge on the patterns that one seeks to discover. Next, a pattern

analysis algorithm is used to detect hidden relationships uncovered by the kernel function.

Such an algorithm does not need to be suited for non-linear patterns - as these are already

captured by the kernel - but it can be a simple linear algorithm. From a computational

point of view, kernel methods have two important advantages. First, they allow identifying

complex non-linear patterns at low computational cost in space and time. Second, despite

the complexity that kernel functions can assume, learning algorithms are generally based on

the optimisation of convex functions and thus are not threatened by local minima.

In this Chapter, we introduce the reader to Multiple Kernel Learning (MKL), a class of

kernel methods that are particularly apt to integrating heterogeneous data. Following, we

present a novel MKL algorithm, specifically designed for candidate gene prioritisation.
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2.1 Foundations of kernel methods

Kernels can be informally seen as similarity measures between pairs of data examples.

Consider the common case where each example is described in terms of a vector of real

numbers. For instance, where examples are genes, they could be associated to a vector of

expression values in different conditions. Mathematically, a similarity between two real

vectors can be provided by their inner product. Indeed, if the vectors are parallel their inner

product has maximum value and is equal to the product of their Euclidean norm. If the

vectors are orthogonal, their inner product is null.

Kernel are similarities defined by inner products between vectors in a Hilbert space H .

A Hilbert space is an infinite-dimensional space having certain properties that guarantee

that it is isomorphic to R
n for some finite n [89]. Denoting with X the global set of data

instances, a kernel function k on X ×X is formally defined as:

k : X ×X −→ R

k(x1,x2) = ⟨φ(x1),φ(x2)⟩ , (2.1)

where x1,x2 ∈ X and φ : X −→ H is a mapping from X to a feature space H . In other

words, via kernel functions one is able to obtain the dot product among data instances in

H without calculating an infinite number of coordinates. This technique is known in the

machine learning community as the kernel trick. The application of a kernel function to data

Figure 2.1 | Mapping to a Hilbert space. Input data can be embedded into an higher dimensional
feature space via a map φ . As an effect of the higher dimensionality, non-linear patterns become
linear.
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generates a so called kernel matrix or Gram matrix K. Such matrix has entries

Ki j = ⟨φ(xi),φ(x j)⟩= k(xi,x j) . (2.2)

To be a kernel function, k needs to be:

i. symmetric, i.e. k(xi,x j) = k(x j,xi) and Ki j = K ji ;

ii. semi-definite, i.e. the kernel matrix K has all eigenvalues ≥ 0 .

Once the kernel matrix is calculated for any given dataset, the learning algorithm can extract

predictive models from it. Kernel methods thus follow a simple modular work-flow shown in

Figure 2.2. As a consequence, it is fundamental that K encodes all relevant information to

the task. In the following section, we present some important types of kernel functions that

can be useful to gene prioritisation.

Figure 2.2 | Work-flow of kernel methods. The first step is the creation of a Gram matrix containing
similarities among data instances through an appropriate kernel function; next, a predictive model is
obtained from the kernel matrix via an algorithm for linear pattern analysis.

2.2 Types of kernels

Kernels can be used to define similarities starting from various data types, like strings or

graphs. Some kernels can be analytically computed, while others need recursions or sampling

procedures. In omics data for gene prioritisation, described in Section 1.4, genes are mainly

represented in the form of real numbers vectors - e.g. gene expression profiles, annotations -

or of network nodes - e.g. interactomes. In this work, we therefore focus on kernels defined

over these kind of data.
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2.2.1 Kernels on vectors

One of the most popular kernels defined on vectors is the Gaussian kernel. Given two data

instances x1 and x2, their Gaussian kernel is defined as:

k(x1,x2) = e
− ∥x1−x2∥2

2σ2 . (2.3)

This function decreases exponentially as x1 and x2 get more distant from each other in the

input space and when x1 = x2 their similarity is maximal and equals 1. Here σ is a parameter

that controls the decay velocity of the exponential. Small values of σ make the kernel

matrix approaching the identity matrix, hence leading to data over-fitting and precluding the

identification of any meaningful pattern. Conversely, large values lead k to come close to

a constant function, making it infeasible to learn any non-trivial predictor. In other words,

data examples are projected to an infinite-dimension feature space, where the weight of the

features is controlled by σ . The higher is the parameter value and the more higher-order

features dominate over lower-order ones.

2.2.2 Kernels on network nodes

A graph G = (V,E) is a structure consisting of a vertex (or node) set V = {v1, . . . ,vN} and a

set E = {(vi,v j)|vi,v j ∈V )} where each node pair is called edge and represents a connection

between the nodes. An efficient representation for graphs is the adjacency matrix A, defined

as the N ×N matrix whose elements Ai j correspond to the number of links between two

nodes i and j. In the scope of bio-molecular networks, we can restrict to the case where

edges are undirected and weighted, i.e. they represent unordered pairs of nodes and have

associated a real scalar number representing the connection strength. Thus A is symmetric

and it contains real values as depicted in the simple example of Figure 2.3.

A graph node kernel aims at defining a similarity between any pair of nodes in a graph.

The rationale is to characterise its nodes in terms of their direct or indirect connections.

Numerous graph node kernels have been introduced, particularly in the field of recommender

systems [104]. The most popular is the exponential diffusion kernel, which is based on the

mathematical description of heat diffusion [105]. Its key idea is to assume a given amount

of heat on each node and let it diffuse through the edges. The similarity between two nodes

vi,v j is then measured as the amount of heat starting from vi and reaching v j over an infinite

time interval. Formally, we have:

KED =
∞

∑
t=0

α tAt

t!
= eαA , (2.4)
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A =













0 0 0.4 0 0
0 0 0.7 1 0

0.4 0.7 0 0.2 0
0 1 0.2 0 0.8
0 0 0 0.8 0













Figure 2.3 | Example of graph and its adjacency matrix. An undirected weighted graph is repre-
sented by a symmetrical adjacency matrix filled with real values which symbolise the magnitude of
its edges.

where α is a parameter controlling the rate of diffusion, analogously to the Gaussian kernel.

Alternatively, it is possible to define the Laplacian matrix L = D−A where D is a diagonal

matrix whose non-null elements d(i) correspond to the degree of vertex i. A variant is thus

the Laplacian Exponential Diffusion Kernel (LEDK):

KLED =
∞

∑
t=0

−α tLt

t!
= e−αL , (2.5)

In these definitions the heat flow is proportional to the number of paths connecting two

nodes, so there exist a bias that penalises peripheral nodes with respect to hubs with many

interactions. This problem is tackled by a modified version of Eq. 2.5 called Markov

Exponential Diffusion Kernel (MEDK) where a N ×N Markov matrix replaces A [106]:

KMED = eα
(N·I−D+A)

N . (2.6)

Another kernel called Markov Diffusion Kernel (MDK) exploits the model of heat diffusion,

but in a different manner [107]. The notion of similarity is based in this case on diffusion

patterns, namely on how the heat starting from two nodes vi and v j propagates in similar

amounts to the other vertices. Within the random walk interpretation, consider the probability

of ending up on any other node after a finite number of steps starting from node vi. A second

node v j is similar to vi if starting from it a random walker has similar probability to end up

on the same nodes after an equal number of steps. Let P be the transition matrix of a random

walk. The MDK is calculated as:

KMD = Z(t)ZT (t) with Z(t) =
1
t

t

∑
τ=1

Pτ , (2.7)
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where t is the number of steps of the walk. In order to apply this function to a graph, one

only needs to convert its adjacency matrix to a Markov matrix P by normalising its rows to

unitary sum, that is ∑ j Ai j = 1.

A fourth type of graph node kernel is the Regularized Laplacian Kernel (RLK), which

implements a normalised version of the random walk with restart model [108]. The node

similarity is defined on the number of paths with different lengths connecting two nodes.

KRL =
∞

∑
t=0

α t
(

−L
)t
=
(

I+αL
)−1

, (2.8)

where the exponential discounting rate is αk instead of αk/k!.

2.3 Multiple kernel learning

Determining the kernel function and its associated parameters that are optimal for a given

task can be a major issue. Especially in the case of biological data, it may not be clear what

is the best way to estimate the similarity among bio-molecular entities and the decision is

usually driven by the available comprehension of the system. Some alternative similarity

may better capture the relevant information though. In this situation, a standard procedure is

to evaluate the prediction performance of each single kernel and next select that achieving

higher performance. However, this evaluation is usually made on a finite number of candidate

kernels and the best solution could lie outside the chosen set.

A second big challenge is how to effectively combine kernels when it is necessary to

integrate data in heterogeneous formats. As presented in Section 1.4, biological data can

assume a variety of structures and formats, which need to be used in concert. Kernel functions

align all data types to the Gram matrix formalism, but again there remain various kernels

corresponding to different estimates of relatedness.

These challenges can both be tackled by MKL. Given a set of R pre-defined kernels,

MKL is a task that aims at finding an optimal kernel combination:

Kopt = ψ(K1,K2, . . . ,KR), (2.9)

where the Gram matrices K1,K2, . . . ,KR provide R feature representations of the data ex-

amples. A possible scenario is that in which the kernels correspond to different notions of

similarity: instead of selecting a unique best performing similarity, MKL aims at automati-

cally weighting the different similarities and getting a combination of them. Alternatively,

the kernels represent various data sources that are processed through appropriate kernel
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Figure 2.4 | Work-flow of multiple kernel learning. Starting from a set of input kernels, MKL
determines an optimal combination which is next used to build a predictive model.

functions. A third scenario sees the first two joined together, namely different data sources

have to be combined and for each data source multiple similarities are used (Figure 2.4).

Most often methods focus on learning a positive linear combination of the input kernels,

where the function ψ : RR → R is linear with positive coefficients. In this case the objective

is to learn the coefficients η = (η1, . . . ,ηR) of a conic sum over the Gram matrices:

Kopt =
R

∑
r=1

ηrKr, ηr ≥ 0 . (2.10)

The condition of non-negativity on coefficients has an important implication in terms of

interpretation: the final feature representation is the rescaled concatenation of the R feature

spaces associated to the input kernels. In formula:

φ opt(x) =













√
η1 φ 1(x

1)
√

η2 φ 2(x
2)

...
√

ηR φ R(x
R)













. (2.11)

This allows easily assessing the resulting optimal weights as the relative relevance of each

kernel to the task. In particular, in the case of convex sums there is an additional constraint

on the weights: ∑
R
r=1 ηr = 1. Here the weights are bounded between 0 and 1, hence they can

be read as percentage of how much each matrix contributes to the final similarity.
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2.4 Scalable multiple kernel learning

Recently, many MKL methods have been proposed [90, 91]. However, most of them require

a long computation time and a high memory consumption, especially when the number of

pre-defined kernels is high. To tackle these limitations, a scalable multiple kernel learning

named EasyMKL has been previously proposed [103]. This method focuses on learning a

linear combination of the input kernels with positive linear coefficients, like in Equation 2.10.

In a fully supervised binary task, EasyMKL computes the optimal kernel by maximising

the distance between positive and negative examples. The base learner is an approach for

a Kernel-based Optimisation of Margin Distribution (KOMD) in binary classification or

ranking [109]. In the following, we will first briefly describe the rationale of KOMD and

next present EasyMKL.

Let us first define a set of positive examples P and a disjoint set of negative examples N .

We introduce the probability distribution γ ∈ R
N
+ representing weights assigned to training

examples and living in the domain Γ = {γ ∈ R
N
+|∑i∈P γ i = 1,∑i∈N γ i = 1}. From this

definition, it follows that any element γ ∈ Γ represents a pair of points in the input space: the

first one is constrained to the convex hull of positive training examples and the second one to

the convex hull of negative training examples. Furthermore, let us define Y as a diagonal

matrix containing the vector of example labels, +1 for the positive and -1 for the negative.

KOMD uses a game-theoretic interpretation of the margin optimisation in a binary task.

The problem can be formulated as:

min
γ ∈Γ

{

(1−λ )γ⊤YKYγ +λ γ⊤γ
}

. (2.12)

Here λ is a parameter controlling the regularisation on the objective function. optimisation

of the first term alone leads to an optimal probability distribution γ opt representing the

two nearest points in the convex hulls of positive and negative examples, equally to a hard

Support Vector Machine (SVM) task using a kernel K. The second term represents a quadratic

regularisation over γ whose objective solution is the squared distance between positive and

negative centroids in the feature space. The regularisation parameter λ ∈ [0,1] permits to

tune the objective to optimise, by balancing between the two critical values λ = 0 and λ = 1.

When λ = 0 we obtain a pure hard SVM objective, while when λ = 1 we get a centroid-based

solution.

As stated above, EasyMKL maximises the distance between positive and negative exam-

ples, optimising the margin distribution at the same time. Under this notation, the task can be
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posed as a min-max problem over variables γ and η as follows:

max
η :∥η∥2≤1

min
γ ∈Γ

{

(1−λ )γ⊤Y(∑
r

ηrKr)Yγ +λ γ⊤γ
}

. (2.13)

It can be shown that this problem has analytical solution in the η variable, so that the previous

expression can be reshaped into:

min
γ ∈Γ

{

(1−λ )γ⊤YKsumYγ +λ γ⊤γ
}

, (2.14)

where Ksum = ∑
R
r Kr is the sum of the pre-defined kernels. This minimisation can be

efficiently solved and only requires the sum of the kernels. The computation of the kernel

summation can be easily implemented incrementally and only two matrices need to be stored

in memory at a time. As shown in [103], EasyMKL can deal with an arbitrary number of

kernels using a fixed amount of memory and a linearly increasing computation time.

Once the problem in Eq. 2.14 is solved, we have an optimal distribution γ opt and we are

able to obtain the optimal kernel weights η
opt
r by using the formula:

ηopt
r =

γ optYKrYγ opt

∑
R
r=1 γ optYKrYγ opt

. (2.15)

The optimal kernel is thus evaluated as Kopt = ∑
R
r η

opt
r Kr. Finally, by replacing Ksum with

Kopt in Eq. 2.14, we can get the final probability distribution γ opt .

2.5 Class-unbalanced multiple kernel learning

In the previous section we introduced EasyMKL, a scalable, efficient kernel integration

approach. However, the gene prioritisation task has two additional issues that complicate the

work. First, our learning setting is not fully supervised: an assumption is that there are some

positive examples hidden among the negatives and we want to retrieve them. Thus, we have

the certainty about positive examples but not about negative ones. Second, the number of

known disease genes is typically much smaller than the number of candidates, making the

problem strongly unbalanced [110]. For these reasons, inspired by a previous work [111] we

propose a new MKL algorithm based on EasyMKL that not only inherits its scalability, but

also efficiently deals with an unbalanced setting.

Let us consider a set of genes G = {g1,g2, . . . ,gN} that represents either the global set

of genes in the genome or a subset of it. Given another set P = {g1,g2, . . . ,gm}, P ⊂ G

containing genes known to be associated to a genetic disease, gene prioritisation is the



28 Data integration via class-unbalanced multiple kernel learning

task that aims at ranking genes in the set of candidates U = G \P = {gm+1,gm+2, . . . ,gN}
according to their likelihood of being related to that disease. Genes in P are labelled

as positive and represent a secure source of information. In contrast, candidate genes in

U are technically unlabelled, as we expect that some of them may be associated to the

disease but we do not know which ones. Under this notation, the problem can be posed as a

Positive-Unlabelled (PU) learning task [95, 97].

In order to clearly present our method, we first need to highlight the different contributions

given by positive and unlabelled examples. Therefore, we define K+, K− and K+− the

sub-matrices of Ksum pertaining to positive-positive, unlabelled-unlabelled and positive-

unlabelled example pairs, respectively. Schematically, we have:

Ksum =

(

K+ K+−

K+−⊤ K−

)

,

In other words, K+ contains similarities among positive examples gi ∈ P, i = 1, . . .m, K−

contains similarities among unlabelled examples g j ∈ U , j = m+1, . . .N and K+− includes

similarities between positive-unlabelled example pairs. In the same way, we define γ+ and

γ− as the probability vectors associated to positive and unlabelled examples, respectively.

Under this change of variables, we reformulate the problem as:

min
γ ∈Γ

{

γ+
⊤K+γ+−2γ+

⊤K+−γ−+ γ−
⊤K−γ−+λ+γ+

⊤γ++λ−γ−
⊤γ−

}

. (2.16)

In this new formulation, the original EasyMKL problem is obtained by setting λ+ = λ− =
λ

1−λ
. However, due to the unbalanced PU nature of the problem, we are interested in using

two different regularisations among positive and unlabelled examples. In our case, we decide

to fix a priori the regularisation parameter λ− = +∞, corresponding to fixing λ = 1 over

unlabelled examples only. Then, the solution of part of the objective function is defined by

the uniform distribution γ− = (1
n
, 1

n
, . . . 1

n
)≡ u, where n = N −m is the number of unlabelled

examples.

We inject this analytic solution of part of the problem in our objective function as follows:

min
γ ∈Γ+

{

γ+
⊤K+γ+−2γ+

⊤K+−u+u⊤K−u+λ+γ+
⊤γ++λ−u⊤u

}

, (2.17)

where Γ+ = {γ ∈Rm
+|∑m

i=1 γ i = 1,γ j = 1/n ∀ j = m+1, . . .N} is the probability distribution

domain where the distributions over the unlabelled examples correspond to the uniform

distribution. It is trivial that u⊤K−u and λ−u⊤u are independent from the γ+ variable. Then,
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they can be removed from the objective function obtaining

min
γ∈Γ+

{

γ+
⊤K+γ+−2γ+

⊤K+−u+λ+γ+
⊤γ+

}

. (2.18)

In this expression, we only need to consider the entries of the kernel Ksum concerning the

positive set, avoiding all the entries with indices in the unlabelled set. The complexity

becomes quadratic in the number of positive examples m, which is always much smaller

than the number of examples to prioritise. Moreover, this algorithm still depends linearly on

the number of kernels R and the overall time complexity is then O(m2 ·R). In this way, we

greatly simplify the optimisation problem, while being able to take into account the diverse

amount of noise present in positive and unlabelled example sets. We name the approach here

described SCalable UnBAlanced gene prioritization (Scuba).

Like in the previous section, after solving the problem of Eq. 2.18 we use Eq. 2.15 to

compute the optimal kernel weights η∗
r . Next, we solve again the Scuba optimisation problem

to get the final optimal probability distribution γ opt . Test genes are evaluated by taking the

weighted sum over all rectangular test kernel matrices Kt
r, where rows and columns represent

test and training genes respectively. In formula:

Koptt =
R

∑
r=1

ηopt
r Kt

r .

The likelihood of association to the disease for any test gene gi is given by the score si defined

as

si = ∑
j

y jγ
opt
j K

opt t
i j , (2.19)

where y j and γ
opt
j are the label and optimal weight of any training example g j and K

opt t
i j is

the optimal kernel value between g j and the test gene gi. In other words, si is the weighted

sum over the similarities between the test gene gi and all genes in the training set. Once we

get the scores for test genes, they can be prioritised based on their score values.

2.5.1 Hierarchical kernel learning

Thanks to the scalability of the new algorithm, it is possible to feed it with numerous base

kernels. However, when a high number of parameters are learned, the risk for over-fitting

increases. To limit this, one could split the problem into successive optimisations. For

instance, consider the scenario where the R kernels represent different kernel functions for

various data sources. A strategy could be to learn first the optimal kernel matrix for each
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dataset and then learn their optimal combination. In the same way, it is possible to learn

the optimal matrix for each kernel function and then learn the optimal combination of the

different kernel functions.

Imagine that the set of base kernels can be split into I partitions of J matrices, such that

I ·J = R. Partitions can correspond either to different data sources or kernel functions. During

the first phase, we learn R coefficients via I separate tasks using Equation 2.15. This allows

getting I intermediate optimal Gram matrices. Next, we feed Scuba with them and obtain

the final optimal kernel Kopt . In this way, we directly use MKL to perform an automatic

selection of optimal kernel parameters. The final kernel and the disease gene set P are then

employed to train a model, which is used to generate a score list for candidate genes in U

through Eq. 2.19. The score assigned to a candidate expresses the likelihood of it being

associated to the disease.

Figure 2.5 | Work-flow of hierarchical multiple kernel learning. Starting from a set of input
kernels, hierarchical MKL determines an optimal combination via a two-step procedure. Ideally, input
matrices should be grouped according to the data source or the kernel function they represent.



Chapter 3

Predicting disease genes via

class-unbalanced multiple kernel

learning

The proposed multiple kernel learning method is evaluated by cross-

validation and by simulating real case studies. It is observed that, on

average, it can effectively prioritise candidate genes ranking on top truly

implicated ones. However, prediction improvement is not always achieved

when combining heterogeneous datasets and strong biases can exist

depending on data sources used.

In this Chapter, we present a series of experimental evaluations on the gene prioritisation

method proposed in Chapter 2, called SCalable UnBAlanced gene prioritization (Scuba). In

particular, two separate settings are considered. In the first setting, we aim at estimating

generalised performance in a standard framework known as cross-validation. In the second

setting we evaluate Scuba by means of an approach developed ad hoc for gene prioritisation

tools, conceived to limit some biases present in cross-validation. Both these assessments are

accompanied by comparisons with existing methods and web tools available to researchers,

among which we consider two kernel-based methods for gene prioritisation.

In the last Section of the Chapter, we apply Scuba on a case study carried on in collabora-

tion with the BioInfoGen project Unit of the Department of Women’s and Children’s Health.

We prioritise suspect disease genes obtained following Next-Generation Sequencing (NGS)

and variant analysis, identifying potential causative genes in the context of renal development

disorders.
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3.1 Cross-validation

As a first evaluation of Scuba, we followed the experimental protocol used by Chen et al. to

test predictive performance of gene prioritisation methods [100]. This procedure is based

on a popular analysis for the evaluation of predictive algorithms, namely cross-validation

[112]. Its rationale is to repeatedly perform training and predictions, masking a different

portion of positive genes as unlabelled on each round. The full set of genes G is randomly

split in disjoint subsets of equal size so that at each round a single subset is used for testing

and all the remaining for training. The accuracy of an algorithm is estimated on the basis of

predictions made on all rounds.

To perform the experiments, we resorted to known gene-disease associations from Online

Mendelian Inheritance in Man database (OMIM), grouped into 20 classes on the basis of

disease relatedness by Goh et al [113]. Among those classes we selected the 12 with at least

30 confirmed genes, excluding cancer (see Table 3.1). We then built a training set consisting

of a positive set P and an unlabelled set U for each of them. P contains all its disease gene

members. U is constructed by randomly picking genes from known disease genes such that

|U |= 1
2 |P|. The unlabelled genes relate to at least one disease class, but do not relate to the

considered class. We chose the genes in U from the other disease genes because we assumed

that they were less likely to be associated to the considered class. In fact, disease genes are

generally more studied and a potential association has more chances to have already been

identified.

After that, a modified version of Leave-One-Out Cross Validation (LOOCV) was used

to evaluate Scuba. Iteratively, each gene in the training set was selected to be the test gene

and the remaining genes in P and U were used to train the model. Once the model was

trained, a score list for the test gene and all genes not used in training was computed. Then,

we calculated a decision score qi for each test gene representing the percentage of candidate

genes ranked lower than it, using the following formula:

qi =
|{g j|si ≥ s j}|

N
, (3.1)

where N in this case is the number of test genes. We collected all decision scores for every

gene in any disease class to form disease-specific decision score lists. Scuba accuracy were

measured in terms of Area Under the receiver-operating-characteristic Curve (AUC) obtained

from any decision score list [114]. The AUC expresses the probability that a randomly

chosen disease gene is ranked above a randomly picked non-disease gene for any disease

class. An unitary AUC represents a ranking where all truly positive genes are positioned on

top, whereas an AUC of 0.5 corresponds to a random predictor.
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In this setting, we employed three data sets borrowed from the authors of the benchmark

work [100]:

• HPRD [115]. The Human Protein Reference Database resource provides protein

interaction data which we implement as an unweighted graph, where genes are linked

if their corresponding proteins interact.

• BioGPS [116]. It contains expression profiles for 79 human tissues, which are mea-

sured by an Affymetrix U133A array. Gene co-expression, defined in terms of pairwise

expression Pearson Correlation Coefficient (PCC) across all tissues, is used to build an

unweighted graph. Any pair of genes is linked by an edge if the PCC value is larger

than 0.5, independently of the disease class considered.

• Pathways. Pathway datasets are obtained from the database of Kyoto Encyclopedia

of Genes and Genomes (KEGG) [73], Reactome [74], PharmGKB [117] and PID

[118], which contain 280, 1469, 99 and 2679 pathways, respectively. A pathway

co-participation network is constructed by connecting genes that co-participate in any

pathway.

These datasets were obtained already preprocessed in such a way that all of them represent

exactly the same 7311 genes and were not further processed. We applied the Markov

Exponential Diffusion Kernel (MEDK) on them, analogously to the source study, generating

three kernel matrices from each network by setting α = 0.01, 0.04, 0.07.

In Table 3.1 it is possible to see the performance associated to these three datasets and

to their combinations obtained by averaging the corresponding kernels and by Scuba. As it

is known, the arithmetic kernel average can be a strong benchmark in some cases, as it is

observed here. However, Scuba reaches better AUCs in most trials.

3.2 Time-stamp validation

Although the previous evaluation is useful to compare Scuba with other methods, predictive

performance in cross-validation experiments may be inflated as compared to real applications.

Indeed, the retrieval of known disease genes can be facilitated by various means. One mean

is the crosstalk between data repositories: for example, KEGG draws its information also

from medical literature [73]. Moreover, often the discovery of the link between a gene and a

disease coincides with the discovery of a functional annotation or of a molecular interaction.

In practice, instead, researchers are interested in novel associations, which in most cases are

harder to find due to a lack of information around them.
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Disease class HPRD BioGPS Pathways
Kernels

Scuba
Average

Cardiovascular 76.9 64.4 80.3 81.9 75.6
Connective 43.7 52.6 74.0 69.2 78.3

Dermatological 85.7 86.4 80.1 86.5 88.6

Developmental 67.3 54.1 65.3 66.7 79.7

Endocrine 71.7 69.5 72.9 78.6 78.4
Hematological 79.8 76.6 62.6 73.9 89.5

Immunological 89.8 75.8 96.3 96.4 96.4

Metabolic 79.6 72.8 90.4 90.7 96.1

Muscular 66.9 74.0 72.1 75.5 90.9

Ophthalmological 70.9 62.0 62.3 72.1 84.4

Renal 78.8 76.8 75.7 81.9 84.0

Skeletal 75.3 76.8 76.3 82.8 77.0
All 76.9 71.6 78.1 81.9 87.6

Table 3.1 | AUC for different disease classes. Scuba predictive performance for 12 disease classes
in terms of AUC and using different data sources, in the validation setting of Chen et al [100]. Bold
entries correspond to best performing data sources or their combinations.

In order to achieve a thorough evaluation of Scuba, we tested it in a more realistic setting,

following the work of Börnigen et al [119]. In this study, eight gene prioritisation web tools

were benchmarked as follows. Newly discovered gene-disease associations were collected

over a timespan of six months, gathering 42 test genes associated to a range of disorders. As

soon as a new association was discovered, each web tool was queried with a disorder-specific

set of positive genes P to prioritise a set of candidates U containing the corresponding test

gene (or to prioritise the whole genome where possible). Rank positions of the 42 test genes

were ultimately used to assess the ability of the tools to successfully prioritise disease genes.

The idea behind this procedure is to anticipate the integration of the associations in the data

sources and so avoid biased predictions.

In order to test Scuba in this setting, we backdated our data to a time prior to May 15, 2010

by employing String v8.2 data [80]. We generated three kernel matrices for each of the four

functions described in Section 2.2.2, setting the parameters as follows: α = 0.01, 0.04, 0.07

for Laplacian Exponential Diffusion Kernel (LEDK) and Markov Exponential Diffusion

Kernel (MEDK), t = 2, 4, 6 for Markov Diffusion Kernel (MDK) and α = 1, 10, 100 for

Regularized Laplacian Kernel (RLK). After that, we recovered positive sets and test genes

from the original publication and we followed its experimental protocol as follows [119].

We performed prioritisations for each test gene in two distinct cases: genome-wide and

candidate set-based prioritisations. In any genome-wide prioritisation all genes in the String

dataset - except those in P - belong to U and were prioritised. In any candidate set-based
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(a) (b)

(c)

Figure 3.1 | Test genes rank distribu-

tions in simulated case studies - (1/2).

Comparison of rank distributions pre-
dicted by Scuba for the 42 test genes as
a function of the kernel applied on the
String network (see Section 2.2.2): (a)

genome-wide prioritisations; (b) candi-
date set-limited prioritisations; (c) can-
didate set-limited prioritisations when
optimising both regularisation hyper-
parameters (Eq. 2.16).

prioritisation, the set of candidates U was constructed by considering all genes with Ensembl

gene identifier within the chromosomal regions around the test gene, in order to get on

average 100 candidates [120].

Figures 3.1a, 3.1b show the rank distribution for the 42 test genes in these two scenarios,

respectively, for the different kernel functions and their simultaneous combination. Figure

3.1c shows instead the same distribution for candidate set-based prioritisations when resorting

to Scuba with two free regularisation hyper-parameters λ+ and λ−, corresponding to the

optimisation problem of Eq. 2.16. In this last case, training was performed using only disease

and candidate genes, in order to have a viable number of parameters to learn. Overall, MDK

appears the best performing kernel.

Furthermore, we tested the hierarchical Multiple Kernel Learning (MKL) strategy intro-

duced in Section 2.5.1. In this case, we limit ourselves to the case where we combine all

kernel functions together. Figure 3.2a shows that the genome-wide test gene rank distribution
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(a) (b)

Figure 3.2 | Test genes rank distributions in simulated case studies - (2/2). Comparison of rank
distributions predicted by the hierarchical version of Scuba for the 42 test genes: (a) genome-wide
prioritisations; (b) candidate set-limited prioritisations adopting an unbalanced regularisation with
λ− =+∞ or adopting a double free regularisation.

is more pushed toward the extremes as compared to classical MKL employed in Figure 3.1a:

the median is higher but the tail of the distribution is also more populated.

In this setting we also investigated a bias inherent to the String dataset. As shown in

previous studies, network-driven functional predictions are influenced by node degree, with

a tendency by highly connected genes to obscure more peripheral ones [121]. In practise,

this means that strongly linked genes tend to be ranked higher than relatively isolated ones.

Generally such hubs are deeply studied genes or multi-functional genes involved in many

biological processes, but at the same time not what a researcher may be looking for. To

verify the presence of this bias in our prioritisations, we measured to what extent the rank

of test genes is related to the number and the strength of their connections in the String

network. In other words, for each kernel function we calculated the SCC ρ between the

genome-wide rank of target genes and the sum of their edge weights. We obtained a strikingly

high correlation for all kernel functions, as it visible in Figure 3.3. The only function that

appears to contrast this behaviour to any degree is MDK, with a SCC significant to a 5%

threshold but not at a 1% threshold. This is consistent with its higher performances.

3.3 Comparison with competing methods

In this Section, we show how Scuba performs as compared to existing methods for gene pri-

oritisation. Table 3.2 illustrates the performance of different techniques in this experimental

setting reported by Chen et al presented in the previous Section [100]. In the second column
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(a) (b)

(c) (d)

(e)

Figure 3.3 | Node degree bias in test

genes rank distributions. Normalised
position of the 42 test genes obtained by
Scuba as a function of their String net-
work degree for: (a) LEDK; (b) MEDK;
(c) MDK; (d) RLK; (e) all kernel types
integrated together. The SCC ρ quanti-
fies the bias in the ranking order of test
genes in terms of their degree, where val-
ues closer to -1 indicate a stronger bias.

we show the significance of the difference between reported AUCs and Scuba AUC, assessed

by means of separate statistical tests to control the comparison-wise error rate [114, 122]. It

can be seen that Scuba performs significantly better than the other methods.

As regards the time-stamp validation, in Figure 3.4 and Table 3.3 we show results

for Scuba compared to the results obtained in the work of Börnigen et al, pertaining to

eight prioritisation systems [119]. In this case we resorted to a combination of MDK

and RLK matrices with the same parameter values as before. To realise a meaningful

comparison, we calculated median, mean and standard deviation of the normalised ranks for

test genes. We also computed the True Positive Rate (TPR) relatively to some representative
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Method AUC p-value

Scuba 0.876 -
F3PC [100] 0.830 1.39 ·10−4 *
MRF [106] 0.731 <10−6 *
DIR [123] 0.716 <10−6 *

GeneWanderer [124] 0.711 <10−6 *

Table 3.2 | AUC comparison. Performance of different techniques in the experimental setting of
Chen et al [100] expressed in terms of AUC. Except for our proposed method Scuba, these results
were taken from that work. The p-values indicate significance of the pairwise AUC differences
compared to Scuba AUC [114]. Asterisks indicate significance of the test (p-value < 0.05).

thresholds (5%, 10% and 30% of the ranking) and the AUC obtained by averaging over

the 42 prioritisations. In genome-wide predictions, Scuba dominates over the other tools.

On predictions over smaller candidate sets, it is still competitive although best results are

achieved by GeneDistiller [125], Endeavour [88] and ToppGene [126]. It is important to

underline that in this case considered tools rely on different data sources, so we are comparing

different prioritisation systems rather different algorithms. Furthermore, tools are in some

cases unable to provide an answer to a given task, depending on the underlying data sources

(for more details see the original work [119]). We report the fraction of prioritisations on

which tools are actually evaluated as response rate. This analysis has the purpose of showing

(a) (b)

Figure 3.4 | Rank distribution comparison between Scuba and web tools in simulated case

studies. Distributions of the 42 test genes for Scuba and main prioritisation web tools in: (a)

genome-wide prioritisations (b) candidate sets-limited prioritisations.
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the potentiality of Scuba relatively to what is easily accessible by non-bioinformaticians.

However, since we used the String data source Scuba is directly comparable with Pinta

[119, 127].

Along with Scuba, we evaluated in this setting also MKL1class and ProDiGe, two state-

of-the-art kernel based gene prioritisation methods described in Section 1.5.1 [94, 95]. We

ran ProDiGe using the default parameters indicated in the corresponding paper: number

of bagging iterations B = 30 and regularisation parameter C = 1. In the same way, we

set the regularisation parameter ν = 0.5 for MKL1class. In Table 3.4 it is possible to see

performances for all three methods. The significance of rank median differences between

Scuba and competing methods was assessed by separate Wilcoxon signed rank tests where

we control the comparison-wise error rate [122]. At a significance threshold of 5%, Scuba

achieves significantly higher performances in genome-wide tasks compared to both baselines.

In the candidate set-based setting, it performs significantly better than ProDiGe and better,

although not significantly, than MKL1class. These differences can be visually appreciated in

Figure 3.5, where we compare the rank distributions obtained by the three methods. Scuba

and MKL1class present moderate rank differences, particularly in the central region of the

ranks. On the other hand, differences between Scuba and ProDiGe are smaller (Pearson

r = 0.98 in both cases) and almost all in favour of Scuba.

Next, we expanded this validation by employing gene-phenotype annotations derived

from the Human Phenotype Ontology (HPO) [71]. This resource gathers information from

several databases and makes available its monthly updates, permitting to trace the annotations

history. We downloaded the HPO build 29 - dating March 2013 - and build 117 of February

2017. We compared the two annotations corresponding to these versions of HPO and

extracted the gene-phenotype associations that were added in this time gap. We concentrated

on abnormal phenotypes associated to the multi-factorial diseases covered in the previous

analysis, which could possibly have some previously undiscovered associations. We thus

analysed how the obtained genes are ranked in genome-wide prioritisations of the previous

analysis, applying the same performance measures as before. The outcome is an analogous

evaluation, but this time target genes are those extracted from HPO.

In Table 3.5 results for Scuba, MKL1class and ProDiGe are shown. We can observe a

slightly different trend compared to previous results, with Scuba and ProDiGe having very

close performance and MKL1class being significantly worse than Scuba. As a confirmation,

in Figure 3.5 it is possible to see that there is no clear difference between Scuba and ProDiGe

rank distributions. Instead, MKL1class ranks several test genes neatly lower compared to

Scuba, with the associated Pearson correlation coefficient dropping to r = 0.85.
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(a) (b) (c)

(d) (e) (f)

Figure 3.5 | Comparison of rank distributions between Scuba and competing kernel methods.

Normalised rank distributions predicted by Scuba, MKL1class and ProDiGe for test genes in (a)

genome-wide prioritisations in the time-stamp validation of Table 3.4 - (b) candidate set-based
prioritisations in the time-stamp validation of Table 3.4 - (c) genome-wide prioritisations in the
expanded time-stamp validation of Table 3.5. In all cases, each point represents a test gene and lower
values on the axes indicate better predictions. Genes lying on a diagonal have the same rank according
to both methods considered on a plot. The further a gene lies above (below) a diagonal and the better
it was ranked by Scuba (MKL1class/ProDiGe) compared to MKL1class/ProDiGe (Scuba). In each
plot we show the PCC r between the rank distributions and its associated p-value.
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Tool/Method Response Rank Rank TPR in top TPR in top TPR in top AUC

rate (%) median average 5% (%) 10% (%) 30% (%)

Genome-wide prioritisation methods

Scuba 100 10.55 20.48±23.53 33.3 47.6 78.6 0.80

Candid [128] 100 18.10 27.35±24.62 21.4 33.3 64.3 0.73
Endeavour [88] 100 15.49 21.47±22.37 28.6 38.1 71.4 0.79

Pinta [127] 100 19.03 23.52±23.58 26.2 31.0 71.4 0.77

Candidate set-based prioritisation methods

Scuba 100 12.95 23.32±25.46 28.6 45.2 73.8 0.78
Suspects [129] 88.9a 12.77a 24.64±26.42a 33.3a 33.3a 63.0a 0.76a

ToppGene [126] 97.6 16.80 34.53±35.31 35.7 42.9 52.4 0.66
GeneWanderer-RW [124] 88.1 22.10 29.55±26.28 16.7 26.2 61.9 0.71

Posmed-KS [130] 47.6 31.44 42.07±30.98 4.7 7.1 23.8 0.58
GeneDistiller [125] 97.6 11.11 15.37±13.77 26.2 47.6 78.6 0.85

Endeavour [88] 100 11.16 18.41±21.39 26.2 42.9 90.5 0.82
Pinta [127] 100 18.87 25.23±24.72 28.6 31.0 71.4 0.75

Table 3.3 | Comparison of rank distribution statistics between Scuba and web tools. Performances of Scuba and of main gene prioritisation
web tools in the time-stamp validation setting of Börnigen et al [119]. Response rate is the percentage of gene-disease associations considered by
each tool. Values for Suspects were computed on the first 27 associations only (highlighted by a).
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Tool/Method Rank Rank TPR in top TPR in top TPR in top AUC Rank difference

median average 5% (%) 10% (%) 30% (%) p-value

Genome-wide prioritisation methods

Scuba 10.55 20.48±23.53 33.3 47.6 78.6 0.80 -
MKL1class [94] 13.30 23.42±23.23 21.4 47.6 69.0 0.77 2.5 ·10−2 *

ProDiGe [95] 11.73 24.45±27.33 31.0 45.2 71.4 0.76 3.0 ·10−7 *

Candidate set-based prioritisation methods

Scuba 12.95 23.32±25.46 28.6 45.2 73.8 0.78 -
MKL1class [94] 15.07 25.63±24.73 23.8 40.5 61.9 0.76 9.7 ·10−2

ProDiGe [95] 14.41 26.39±29.09 26.2 40.5 71.4 0.75 2.7 ·10−3 *

Table 3.4 | Comparison of rank distribution statistics between Scuba and competing kernel methods - (1/2). Performances of Scuba,
MKL1class and ProDiGe in the time-stamp validation setting of Börnigen et al [119]. Values refer to predictions on all the 42 gene-disease
associations. Rank difference p-values were obtained using Wilcoxon signed rank tests comparing separately Scuba/MKL1class and Scuba/ProDiGe
ranks differences. Asterisks indicate significance of the tests at a threshold of 5%.

Method Rank Rank TPR in top TPR in top TPR in top TPR in top AUC Rank difference

median average 1% (%) 5% (%) 10% (%) 30% (%) p-value

Genome-wide prioritisations

Scuba 8.13 17.45±22.33 10.4 41.7 58.3 79.2 0.83 -
MKL1class [94] 14.28 25.79±26.96 2.1 27.1 45.8 66.7 0.74 1.2 ·10−5 *

ProDiGe [95] 7.89 18.40±23.77 10.4 43.8 54.2 79.2 0.82 9.5 ·10−2

Table 3.5 | Comparison of rank distribution statistics between Scuba and competing kernel methods - (2/2). Performances of Scuba,
MKL1class and ProDiGe in the expanded time-stamp validation setting involving seven multi-factorial diseases. Values refer to predictions on 48
gene-disease associations. Rank difference p-values were obtained using Wilcoxon signed rank tests comparing separately Scuba/MKL1class and
Scuba/ProDiGe ranks differences. Asterisks indicate significance of the tests at a threshold of 5%.
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3.4 Case study: prioritisation of candidate renal hypo/dysplasia

genes

Gene

name
Ensembl identifier

BICC1 ENSG00000122870

BMP4 ENSG00000125378

BMP7 ENSG00000101144

CHD1L ENSG00000131778

CHD7 ENSG00000171316

CHRM3 ENSG00000133019

DSTYK ENSG00000133059

FGFR1 ENSG00000077782

FRAS1 ENSG00000138759

FREM1 ENSG00000164946

FREM2 ENSG00000150893

GATA3 ENSG00000107485

GDNF ENSG00000168621

GFRA1 ENSG00000151892

GLI3 ENSG00000106571

GPC3 ENSG00000147257

HNF1B ENSG00000275410

ITGA3 ENSG00000005884

ITGA8 ENSG00000077943

JAG1 ENSG00000101384

JAG2 ENSG00000184916

KIP2 ENSG00000136425

MNX1 ENSG00000130675

NIPBL ENSG00000164190

NOTCH1 ENSG00000148400

NOTCH2 ENSG00000134250

PAX2 ENSG00000075891

PEX1 ENSG00000127980

RET ENSG00000165731

ROBO2 ENSG00000185008

SALL1 ENSG00000103449

SALL4 ENSG00000101115

SIX1 ENSG00000126778

SIX2 ENSG00000170577

SIX5 ENSG00000177045

SLIT2 ENSG00000145147

TBX3 ENSG00000135111

UPK3A ENSG00000100373

WNT4 ENSG00000162552

WT1 ENSG00000184937

Table 3.6 | Full list of seed RHD

genes used in the prioritisation.

A total of 40 genes associated to
RHD were employed as positive
set.

Renal Hypo/Dysplasia (RHD) is a defect in the number

and differentiation of nephronic units with a subsequent

impairment of kidney function. The most obvious phe-

notypic trait is a reduction of kidney size often associ-

ated with abnormally developed structures (dysplasia).

The principal cause is thought to be a perturbation of

the nephrourogenetic program, a complex process regu-

lated by a space-time-corrected sequential activation of a

cascade of genes. This congenital anomaly, isolated or as-

sociated with urinary tract anomalies, account for 20-30%

of all causes of chronic renal failure in children, that need

renal replacement therapy and kidney transplantation.

Mutations on HNF1B, PAX2, SALL1, SIX1, SIX2,

BMP4, EYA1, UMOD and RET genes were identified in

non-syndromic RHD patients but justify only a small pro-

portion of sporadic or familial cases [131]. This is deemed

due to a larger heterogeneity of locus and to a greater com-

plexity of the pathogenetic mechanisms involved in the

determination of RHD. On the other hand, single-gene mu-

tations may cause a wide phenotypic spectrum of features

that ranges from vesicoureteral reflux to renal agenesis. In

fact, the induction of mesenchyme morphogenesis by the

ureteric bud influences morphogenesis of all three tissue

groups of the excretory system: the ureterovesical junction,

the ureter, and the kidney [132]. Literature studies report

mutations in a single gene related to variable phenotypes

even within the same family, suggesting the existence of

modifier genes. Furthermore, the identification of predis-

posing genetic and environmental factors in RHD cases

points to the possibility of a multi-factorial aetiology for this developmental abnormality.

RHD belongs to the Congenital Abnormalities of Kidney and Urinary Tract (CAKUT) disor-

der class, occurring in 3-6 per 1000 live births and accounting for approximately 30% of all
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developmental anomalies. Overall CAKUT show different phenotypes, with a wide spectrum

of malformations ranging from unilateral vesico-ureteral reflux to bilateral renal agenesis.

The BioInfoGen Unit of Women’s and Children’s Health is involved in the study of RHD

with the goal of elucidating its genetic bases. NGS of exome coding regions, intron-exon

junctions and part of the untranslated regions for twenty undiagnosed patients was performed

and lead to the identification of missense or nonsense variants in 2030 genes. In order to

guide the following experimental research, we prioritised genes harbouring those mutations

via Scuba, resorting to three data sources:

• String This source is the version 10.1 of the String database used in the previous

section.

• BioPlex As briefly described in Section 1.4, the BioPlex 2.0 network is the result of

a recent large-scale affinity purification-mass spectrometry investigation embracing

previously unmapped portions of the human interactome [56].

• CPDB Consensus Path DataBase (CPDB) unifies pathway annotations from all main

repositories within a comprehensive database including 3892 biological pathways.

We transformed String and Bioplex by the MDK as before, setting t = 2, 4, 6. CPDB

was converted into three Gaussian kernel matrices using σ = 0.5, 1, 2. We first performed

prioritisations employing each data source separately, recording the average 10 fold cross-

validation AUC in the parameter selection phase. We then integrated the three datasets to

achieve the final ranking. As can be seen in Table 3.7, integration of the three datasets

improves validation performance on known RHD genes.

Top thirty genes in the final ranking are supported by a much higher score as compared

to the other candidates (Figure 3.6). In particular, all top twenty genes are strictly related to

embryonic development: they are homeobox genes, transcriptional factors, cellular adhesion

growth factors and genes regulating the Wnt signaling pathway, which is important in signal

String BioPlex CPDB AUC

X 0.87
X 0.75

X 0.66
X X X 0.89

Table 3.7 | Validation on known renal hypo/dysplasia genes. Maximal average AUC obtained by
10 fold cross-validation on known RHD genes during the selection of λ+.
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Figure 3.6 | Score distribution for candidate RHD genes. Graphical visualisation of the Scuba
score distribution for candidate genes obtained through Eq. 2.19 and normalised in such a way to be
constrained between 0 and 1. Most promising candidates have a normalised score close to 1.

transduction for cell faith control, cellular proliferation and migration. Homeobox genes

encode DNA-binding proteins, many of which are thought to be involved in early embryonic

development. Two genes, FGF20 and TNXB, are known among causative genes for renal

agenesis and vesicoureteral reflux [133, 134]. Moreover, 9 genes belong to families known

to be involved in CAKUTs. In particular, EYA2 is a EYA1 homologous, which is associated

to a syndromic form of CAKUT with a renal phenotype of RHD. Additionally, it seems to be

implicated in the regulation of important transcription factors such as SIX2, also involved

in the RHD determination also isolated, like that of analysed patients [135]. Overall, this

preliminary screening on the top candidates seems to indicate that the achieved prioritisation

is promising to identify novel causative genes, as future investigations will verify.
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Table 3.8 | Top twenty candidate genes for renal hypo/dysplasia.

Position in Position

candidates Ensembl identifier Gene name in global Description

ranking ranking

1 ENSG00000162490 DRAXIN 4 Protein coding gene involved in dorsal inhibitory axon guidance and β -catenin-dependent Wnt Signalling.

2 ENSG00000064655 EYA2 18 Functions both as protein phosphatase and as transcriptional co-activator for SIX1 and probably also for SIX2, SIX4 and SIX5.

3 ENSG00000258873 DUXA 54
Member of the DUXA homeobox gene family. Multiple, related processed pseudo-genes have been found, thought to reflect

expression of this gene in the germ line or in embryonic cells.

4 ENSG00000144355 DLX1 65

Member of a homeobox transcription factor gene family, similiar to the Drosophila distal-less gene. The encoded protein is

localised to the nucleus where it may function as a transcriptional regulator of signals from multiple TGF-β super-family mem-

bers, as well as play a role in the control of craniofacial patterning and the differentiation and survival of inhibitory neurons

in the forebrain. Alternatively spliced transcript variants encoding different isoforms have been described.

5 ENSG00000135925 WNT10A 90

The WNT gene family consists of structurally related genes which encode secreted signalling proteins. These proteins have

been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during

embryogenesis.

6 ENSG00000089225 TBX5 100

Member of a phylogenetically conserved family of genes that share the T-box DNA-binding domain and encode transcription

factors involved in the regulation of developmental processes. This gene is closely linked to related family member T-box 3

(ulnar mammary syndrome) on human chromosome 12.

7 ENSG00000152785 BMP3 102

This gene encodes a secreted ligand of the TGF-β (transforming growth factor-β ) super-family of proteins. Ligands of this

family bind various TGF-β receptors leading to recruitment and activation of SMAD family transcription factors that regulate

gene expression. The pre-proprotein is proteolytically processed to generate each subunit of the disulfide-linked homodimer.

8 ENSG00000197757 HOXC6 108
Member of the homeobox gene family, encoding a highly conserved family of transcription factors that play an important

role in morphogenesis in all multicellular organisms.

9 ENSG00000104371 DKK4 116

This gene encodes a protein that is a member of the Dickkopf family, contains two cysteine rich regions and is involved in

embryonic development through its interactions with the Wnt signalling pathway. Activity of this protein is modulated by

binding to the Wnt co-receptor and the co-factor Kremen 2.

10 ENSG00000138675 FGF5 125

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess

broad mitogenic and cell survival activities and are involved in a variety of biological processes including embryonic

development, cell growth, morphogenesis, tissue repair, tumour growth and invasion.

11 ENSG00000078579 FGF20 133

Member of the FGF family. The gene product is a secreted neurotrophic factor but lacks a typical signal peptide. It is expressed

in normal brain, particularly the cerebellum, and may regulate central nervous system development and function. Homodimeri-

sation of this protein was shown to regulate its receptor binding activity and concentration gradient in the extracellular matrix.

12 ENSG00000118257 NRP2 144

This gene encodes a member of the neuropilin family of receptor proteins, a transmembrane protein that binds to SEMA3C

protein and SEMA3F protein and interacts with vascular endothelial growth factor. It may play a role in cardiovascular

development, axon guidance, and tumorigenesis.
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13 ENSG00000107984 DKK1 164
This gene encodes a protein that is a member of the Dickkopf family, contains two cysteine rich regions and is involved in

embryonic development through its interactions with the Wnt signalling pathway.

14 ENSG00000139269 INHBE 166

This gene encodes a secreted ligand of the TGF-β (transforming growth factor-β ) super-family of proteins. The pre-proprotein

is proteolytically processed to generate an inhibin beta subunit, implicated in regulating numerous cellular processes

including cell proliferation, apoptosis, immune response and hormone secretion.

15 ENSG00000070018 LRP6 257

This gene encodes a member of the low density lipoprotein (LDL) receptor gene family, transmembrane cell surface proteins

involved in receptor-mediated endocytosis of lipoprotein and protein ligands. The protein encoded by this gene functions as

a receptor or, with Frizzled, as a co-receptor for Wnt and thereby transmits the canonical Wnt/beta-catenin signaling cascade.

Through its interaction with the Wnt/beta-catenin signalling cascade this gene plays a role in the regulation of cell differentia-

tion, proliferation, and migration and the development of many cancer types.

16 ENSG00000168477 TNXB 262

This gene encodes a member of the tenascin family of extracellular matrix glycoproteins, which have anti-adhesive effects.

It localises to the major histocompatibility complex (MHC) class III region on chromosome 6 and it is one of four genes in

this cluster which have been duplicated. The encoded protein is thought to function in matrix maturation during wound healing

and its deficiency has been associated with the connective tissue disorder Ehlers-Danlos syndrome.

17 ENSG00000256463 SALL3 270

This gene encodes a sal-like C2H2-type zinc-finger protein and belongs to a family of evolutionarily conserved genes found

in species as diverse as Drosophila, C. Elegans, and vertebrates. Mutations in some of these genes are associated with

congenital disorders in human, suggesting their importance in embryonic development. The encoded protein binds to DNA

methyltransferase-3-α (DNMT3A) and reduces DNMT3A-mediated CpG island methylation.

18 ENSG00000221818 EBF2 288

The protein encoded by this gene belongs to the COE (Collier/Olf/EBF) family of non-basic, helix-loop-helix transcription

factors that have a well conserved DNA binding domain. The COE family proteins play an important role in variety of deve-

lopmental processes.

19 ENSG00000100060 MFNG 304

This gene is a member of the fringe gene family which also includes radical and lunatic fringe genes. They all encode evo-

lutionarily conserved secreted proteins that act in the Notch receptor pathway to demarcate boundaries during embryonic

development.

20 ENSG00000119699 TGFB3 308

This gene encodes a secreted ligand of the TGF-β superfamily of proteins. Ligands of this family bind various TGF-β recep-

tors leading to recruitment and activation of SMAD family transcription factors that regulate gene expression. This protein is

involved in embryogenesis and cell differentiation, and may play a role in wound healing.





Chapter 4

Data integration via constraint-based

modelling

Constraint-based modelling offers a flexible framework for the analysis

of genotype-phenotype interactions on a systems scale and with a single

reaction resolution. In particular, it allows the full reconstruction

of the metabolic states associated to genetic perturbations. Data-

driven gene prioritisation can thus be implemented upon patterns of

metabolic rearrangements, which unify alterations at multiple omics levels.

Metabolism is one of the major biological components that co-participates with the

genotype in composing the phenotype. As mentioned in Section 1.1, metabolic adjustments

can compensate or modify genetic alterations, through complex non-intuitive routes. Incor-

porating metabolic information in the prediction of disease genes could therefore plausibly

unveil novel insights. However, in comparison to other popular omics, large-scale metabolic

data acquisition is still immature and suffers from major limitations. The main obstacles

are a high biochemical heterogeneity and concentration variations that can occur within

sub-second time scales and span several orders of magnitude [136, 137].

Genome-Scale Metabolic Models (GSMMs) are mathematical representations of all

known biochemical reactions and their associated enzymes and encoding genes that comprise

the metabolic functionality of a cell [138]. A vast range of computational methods have

been developed upon GSMMs to investigate interactions between genotype, environment

and phenotype [23, 139]. Acting as integrative platforms for multi-omics data, they can also

help identify non-intuitive phenomena in metabolism [140]. Importantly, they also permit to

evaluate the complete metabolic state of cell populations even when metabolome profiling is

infeasible.
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The mathematical framework of GSMMs is Constraint-Based Modelling (CBM) and

lies on two main assumptions. First, mass and charge conservation, as stated by classical

physics laws. This guarantees that the total mass of produced substrates equals the total mass

of consumed substrates. Second, the system must be at steady state, meaning that reaction

rates do not change over time. The steady state assumption differentiates CBM from the

modelling based on ordinary differential equations. The latter has the advantages to be very

precise and to allow studying metabolic systems in dynamical conditions. On the other hand,

it is very computationally expensive and it also requires to know in detail initial metabolic

conditions and kinetic reaction parameters. For these reasons, it is feasible only for small

systems so it cannot capture long range phenomena or general metabolic reprogramming.

Conversely, GSMMs are restricted to steady-state conditions, but can span the whole cellular

metabolism or even multi-cellular communities [141].

CBM development has been fuelled by whole-genome sequencing, as it lies on the

knowledge of genotype and on the functional or biochemical annotation of its products. The

first GSMM to be assembled was of Haemophilus influenzae Rd, which was also the first

organism having an established genomic sequence [142]. Soon after, the achievement of

the Escherichia Coli genome permitted the construction of its metabolic map and models

for several other bacterial organism were generated ever since [143]. The first global

reconstruction of human metabolism - Recon 1 - dates 2007 [144], while the most improved

versions to date are Recon 2.2 and the Human Metabolic Reconstruction 2 [29, 30]. Insights

into human disorders can be gained by means of these GSMMs, both by testing specific

hypothesis at a single reaction resolution and by analysing global cellular reprogramming

[145–147]. In particular, the combined application of CBM and machine learning techniques

has the potential to shed new light on the complexity of metabolism [148, 149].

The scope of the present Chapter is to introduce to basic concepts underlying CBM and

to describe a novel method to integrate it with SCalable UnBAlanced gene prioritization

(Scuba) to prioritise candidate genes.

4.1 Constraint-based modelling of metabolism

In full generality, a metabolic system is composed by M metabolites that interact through

chemical processes encoded in N reactions. The stoichiometric matrix S of the system is a

M×N table containing the stoichiometric coefficients of all reactions for each metabolite.

Entry Si j is positive or negative if metabolite i is produced or consumed in reaction j,

respectively. Let us indicate with v ∈ R
N the vector of reaction rates - or reaction fluxes -

of the system. The variation of metabolite concentrations c over time is described by the



4.1 Constraint-based modelling of metabolism 51

following equation in matrix notation:

Sv =
dc

dt
≡ b . (4.1)

At steady state, concentration of intermediate metabolites are constant: dc/dt = 0. Therefore,

the whole collection of reactions is represented by a set of linear equations, which can be

expressed as follows:

Sv = 0 . (4.2)

This simple equation represents constraints given by the reaction network topology and stoi-

chiometry. Since fluxes cannot assume arbitrarily large values, they are usually constrained

also by a set of reasonable upper and lower bounds:

vlb ≤ v ≤ vub . (4.3)

For instance, irreversible reactions are assigned a lower bound equal to 0, so that backwards

flow is precluded.

To model the genetic dependency of metabolic reactions, they are linked to associated

enzymes through logical rules. For reactions that require the action of enzymatic complexes

to occur, the corresponding enzymes are bound by AND relationships. If instead there

are multiple isozymes that catalyse the same reaction in parallel, they are linked by OR

v1 : A ↔ B+C

v2 : D → B

v3 : 2C+D → E

S =













−1 0 0 1 0 0 0
1 1 0 0 −1 0 0
1 0 −2 0 0 0 0
0 −1 −1 0 0 1 0
0 0 1 0 0 0 −1













Figure 4.1 | Example of a metabolic model and its stoichiometric matrix. Matrix S summarises
the stoichiometry of the system, associating each row to a metabolite and each column to a reaction.
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relationships. In this way it is possible to express the occurrence of a reaction in terms of the

presence or absence of its required enzymes.

In a typical CBM problem, fluxes are the variables and have to be determined. Since

the matrix S represents M equations for N variables and reactions are usually more than

metabolites, the problem is under-determined - meaning that multiple solutions satisfy it. In

order to determine biologically meaningful solutions, it is often necessary to further define

the model by applying additional biological, physical or chemical constraints. They may

for example account for enzyme capacity and promiscuity, spatial occupation, metabolite

sequestration and multiple levels of gene, transcript and protein regulation. Analogously,

artificial gene deletion or de-regulation can be simulated by acting on flux boundaries. For

instance, a gene deletion can be introduced forcing its corresponding reactions to carry a

null flux. This technique can be used to optimise the production of certain metabolites or to

reproduce altered disease networks [150].

Particularly useful are constraints derived by experimental data, employed to build

models reflecting directly observed biological conditions, like those in particular tissues

or pathological states. Genome-wide transcriptional profiles are one of the most used data

types to build such context-specific GSMMs. In the next section, approaches that serve this

purpose are described.

4.2 Integration with transcriptional regulation

Enzyme availability level in GSMMs is usually quantified in terms of transcript abundance.

The main motivation is the higher availability, quality and coverage of gene expression data

as compared to protein expression. The level of agreement between the two quantities is

matter of investigations and debate, given the contradicting results obtained so far [151–154].

Most recent studies show however that in human mRNA abundance is a good indicator of

protein abundance, especially when averaging across populations, although differences exist

depending on the considered genes and tissues.

Methods to integrate transcriptional regulation into metabolic models can traditionally

be divided into two main categories [26]. The first one uses transcriptional profiles to

build context-specific models, the second one integrates GSMMs with Boolean regulatory

networks. Methods in the first category are descriptive rather than predictive, namely they are

able to describe the regulation of metabolism in contexts with available omics data but they

cannot make predictions on contexts lacking this data. Furthermore, these methods allow

making predictions only on metabolic agents and reactions, as they do not explicitly use

the regulatory processes underlying expression profiles. Conversely, methods in the second
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category provide mechanistic control on gene regulation but they also require a long and

tedious work to reconstruct the underlying network. Moreover, Boolean rules are in most

of the cases simplistic compared to real regulatory processes. Only very recently, a new

third class of methods emerged trying to combine expression profiles and transcriptional

regulatory networks to create integrated metabolic-regulatory models [155].

In turn, methods belonging to the first class can be divided based on the kind of criterion

used to contextualise the metabolic model [26]. Switch-based methods utilise a gene expres-

sion threshold to turn off reactions associated to lowly expressed genes and thereby prune

the metabolic network. Valve-based methods map instead the transcriptional information on

the model in a continuous fashion. In the next Subsection we describe a recent valve-based

method used in our following study.

4.2.1 Gene set expression mapping

An effective way to integrate gene expression profiles on metabolic models is by means of

gene set rules and logarithmic maps, as implemented in METRADE and, more recently, in

a breast cancer study [27, 28]. The main assumption is that the original GSMM represents

in some sense an unperturbed cellular condition. The transcriptional profile mapped on it

represents the perturbation applied on the system. In this sense, the rationale is to consider

an expression fold change for the condition of interest in comparison to a reference tran-

scriptional level. Since metabolic reactions can be catalysed by multiple enzymes, gene

expression fold changes are translated into effective gene set expression fold changes. To

this end, logical OR/AND rules among genes involved in any reaction (Section 4.1), are

converted into max/min operations as follows:

single gene: f (gi) = f (gi)

enzymatic complex: f (gi ∧g j) = min{ f (gi), f (g j)} (4.4)

isozymes: f (gi ∨g j) = max{ f (gi), f (g j)} ,

where f (gi) and f (g j) represent the expression fold changes for genes gi and g j. The fold

change profile for all genes can be ideally calculated in two main ways. One possibility is

to consider the variation between case and controls conditions, for instance corresponding

to disease and healthy samples. Another possibility is to take as a reference the average

expression in multiple conditions. For example, one may build a tissue-specific model by

taking the fold change as compared to a set of tissues.

In several cases, reactions depend on the concentration of numerous gene sets, resulting

in complex nested expressions. These rules can be recursively applied until a final effective
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fold change f react
k , associated to any reaction k, is obtained. This quantity is mapped on the

flux bounds vlb and vub by multiplying them by a factor defined as follows:

h( f react
k ) =







(1+µ |log( f react
k )|)sgn( f react

k −1) if f react
k ∈ R

+ \{1}
1 if f react

k = 1 ,
(4.5)

where sgn( f react
k −1) = ( f react

k −1)/| f react
k −1|. In this equation µ is a parameter represent-

ing the magnitude with which expression affects reaction rates. The larger µ and the more

flux bounds are expanded (restricted) by a fold change larger (smaller) than 1. A variation

of this approach consists in evaluating absolute gene expression values through Eq. 4.4 and

then compute the fold change between effective reaction expressions, that can be mapped on

model bounds via Eq. 4.5.

The choice of a logarithmic map from gene expression levels to reaction rates is supported

by experimental evidence in various biological processes, both in bacteria and cancer cells

[156, 157]. Independent findings suggest that protein synthesis rate is also faster at high

mRNA concentration and slower at decreasing concentration [158]. Reasonably, this function

smooths unrealistically large expression values while translating them into flux bounds.

Moreover, around unitary values the fold change can be approximated by a linear function,

matching 13C-labelling experimental results [159].

4.3 Characterisation of the flux space

From a geometrical point of view, the set of solutions defined by any GSMM (Eq. 4.2,4.3)

forms a polyhedron in the space of reaction fluxes [160]. As a simple illustrative example

consider Figure 4.2. Red boundaries stemming from the origin represent stoichiometric

constraints, while the bases of the flux cone are given by constraints on the single reactions.

The region of space occupied by the polyhedron represents all the possible flux configurations

that the system can assume. A legitimate question is which points in the solution space are

in fact biologically meaningful. In principle, a cell might use only a limited subspace of

the feasible region. As a matter of fact, bacteria live and proliferate on the edge of a Pareto

optimality [27].

Depending on the questions one seeks to answer, there are various techniques that can be

used to gain meaningful information on the shape or subsets of the allowed flux space. In the

following Subsections, some of the main techniques are presented.
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4.3.1 Flux balance analysis

The most popular approach to obtain biologically meaningful flux solutions is Flux Balance

Analysis (FBA), which allows determining the flux vector v that yields maximal or minimal

production of one or more target metabolites [138]. It is mathematically defined as an

optimisation problem on a subset of target reaction fluxes. The formulation is the following:

min
v

/max
v

w⊤ ·v

subject to S ·v = 0

vlb ≤ v ≤ vub ,

(4.6)

where w is a real vector expressing the contribution of each reaction to the objective. Ge-

ometrically, FBA computes the extreme point coordinates along the axes of the specified

objectives, as depicted in Figure 4.3.

Being formulated as a linear problem, this technique is very computationally efficient,

however choosing a meaningful objective may be challenging. Usually, when no other

obvious cellular objective is involved, maximisation of biomass is considered reasonable for

bacteria under evolutionary pressure, but also for cancer cells under a proliferative regime

Figure 4.2 | Feasible flux space associated to a metabolic model. Graphical representation of the
solution set associated to a simple metabolic model, shaped as a polyhedron in the reaction flux space.



56 Data integration via constraint-based modelling

[139, 161]. For other types of cells identifying the true objective is still a challenge, so

biomass is commonly taken as a proxy.

4.3.2 Parsimonious enzyme usage flux balance analysis

Parsimonious enzyme usage Flux Balance Analysis (pFBA) is an extension of FBA that aims

at computing the most economic flux distribution yielding a maximal biomass production.

The underlying assumption is that, at exponential growth, cellular populations that most

efficiently manage enzyme production are selected by evolutionary pressure [162].

This analysis is formulated as a bi-level optimisation in which first the biomass production

rate is optimised via FBA and then the total sum of reaction fluxes is minimised. In order to

achieve the second step, reversible reactions are split into two separate irreversible reactions

and each irreversible reaction is constrained to carry a non-negative flux. The bi-level

optimisation is defined as follows:

min
virrev

Nirrev

∑
i=1

virrev

subject to vlb,biomass = maxvirrev
vbiomass ,

subject to Sirrev ·virrev = 0

0 ≤ virrev ≤ vub,irrev .

(4.7)

Figure 4.3 | Flux balance analysis identifies extreme points in the flux space. FBA identifies the
extreme point in the flux space that maximises or minimises a given target flux or combination of
fluxes.
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Here virrev and Nirrev represent the flux vector of the irreversible model and its length,

while Sirrev is the corresponding stoichiometric matrix. The lower bound for biomass

production in the minimisation step vlb,biomass is defined by its optimal value resulting from

the maximisation vbiomass. In this way, all fluxes are minimised except this one, guaranteeing

optimal parsimonious growth.

However, minimising a sum is a not convex problem and may have multiple local optima.

It is therefore possible to define a modified form of pFBA wherein the squared sum of

reaction fluxes is minimised, which we denote here as euclidean parsimonious enzyme usage

Flux Balance Analysis (epFBA). Analogously to before, the formulation is the following:

min
virrev

Nirrev

∑
i=1

v2
irrev

subject to vlb,biomass = maxvirrev
vbiomass ,

subject to Sirrev ·virrev = 0

0 ≤ virrev ≤ vub,irrev .

(4.8)

Except for the second step objective, the procedure remains identical to pFBA.

4.3.3 Flux distribution profiling

When less strict assumptions are made, it can be of interest to map the whole flux solution

space. In such a situation, Monte Carlo sampling can be used to determine the flux probability

distribution without prior knowledge [163, 164]. The main drawback of this method is that

uniform sampling is guaranteed only in the asymptotic limit, so time-consuming calculations

are required. Indeed, the GSMM solution space is typically much more elongated along a

few directions, fact that challenges current sampling algorithms.

A different recently proposed method allows analytically computing the flux distribution

in metabolic networks [165]. It is based on a Bayesian approach called expectation propaga-

tion algorithm and here we denote it as Metabolic Expectation Propagation (MEP). Notably,

it can efficiently profile flux distributions for all reactions even of large systems - such as the

human metabolism - under some assumptions.

In particular, MEP implements an iterative procedure to compute the multivariate flux dis-

tribution Q(v|b) by defining a quadratic energy function E(v) whose minimum(s) correspond

to the stoichiometric constraints of Eq. 4.1:

E(v) =
1
2
(Sv−b)T (Sv−b) , (4.9)
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Each iteration step includes a sequential update of the following posterior multivariate flux

distribution:

Q(i)(v|b) = 1
ZQ(i)

e−βE(v)ψi(vi)∏
j ̸=i

φ j(v j) , (4.10)

where ψi(vi) and φ j(v j) represent the priors for reactions i and j respectively. ZQ(i) is a

normalisation factor defined as follows:

ZQ(i) =
∫

dNv e−βE(v)ψi(vi)∏
j ̸=i

φ j(v j) . (4.11)

In these equations, distributions φ j(v j) pertaining to all reactions but the ith, are approximated

by normal distributions. The idea is to treat exactly only the distribution ψi(vi) at each step,

thereby making calculations tractable. The update of the posterior distribution is performed

via matching its mean and variance to those of a fully Gaussian-approximated multivariate

distribution Q:






⟨vi⟩Q(i) = ⟨vi⟩Q

⟨v2
i ⟩Q(i) = ⟨v2

i ⟩Q .
(4.12)

It was shown that for an increasing number of iterations, mean and variance of flux distribu-

tions computed through MEP converge to those obtained by sampling, but in only a fraction

of execution time.

4.4 Fluxome: an integrative omic for gene prioritisation

The integration of metabolic CBM with machine learning lies on two main key ideas. The first

is that genetic perturbations propagate in a non-linear fashion through metabolic networks and

can assume informative patterns on a metabolic level that are useful to identify disease genes.

The second is that GSMMs can be both an analytical framework to represent biological

systems and generators of information to be mined. In other words, flux solutions obtained by

a GSMM can be treated just like other numerical data and analysed via learning algorithms.

We propose a CBM-based prioritisation of candidate disease genes as follows:

i. Build a condition-specific model. Create a metabolic model relevant to the disorder of

interest, by mapping experimental gene expression profiles on a general purpose GSMM.

In particular, a possible option is creating a models specific for the interested tissue or

cell type.
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ii. Build genetic perturbation-specific models. In turn, perform in silico up/down-

regulation of each known or candidate disease gene in the condition-specific model. In

this way a different perturbed model is associated to each de-regulation.

iii. Characterise the flux space perturbation-specific models. Extract information on

the feasible flux space of each perturbed model, in order to estimate flux alterations

associated to each genetic perturbations.

iv. Prioritise via machine learning. Predict disease genes using the information acquired

in the third step, through PU learning.

In this procedure, the prioritisation approach is more similar to a guilt-by-rewiring than

to a Guilt-By-Association (GBA) (Section 1.3), mimicking functional knock-out screenings

on human cells [35, 166].

Although this pipeline is valid in full generality and different methods can be chosen

for each step, we advance a more precise proposal. To build condition-specific models, we

propose to adopt the gene set expression mapping described in Section 4.2.1. Equations 4.4

and 4.5 allow varying reaction bounds in a continuous way maintaining a constant number

of reactions, which ultimately translates in a constant amount of flux features. In order to

characterise the metabolic state of perturbation-specific models, we propose to utilise MEP,

as it is currently the most efficient technique to obtain maximal information about the entire

solution space. Finally, we propose to infer putative gene-disease associations by means of

Scuba.

As discussed in a recent paper, GSMMs provide a complementary perspective compared

to high-throughput data like Protein-Protein Interactions (PPIs) [167]. Such data is experi-

mentally generated - hence require no prior knowledge - and can in principle span the entire

genome/transcriptome/proteome, although experimental biases exist. On the other hand, it

is also prone to contain false-positive interactions and can be superficial or ambiguous on

its biological meaning. In contrast, GSMMs are often limited to metabolic networks but are

highly curated and provide mechanistic description of biological processes, linking together

genes, enzymes, metabolites and reactions. Moreover, as compared to annotations, they can

more precisely describe the functional role of genes as they provide a direct representation

of biochemical processes without an ontology or abstract semantics. Therefore, flux analy-

sis is expected to provide complementary information and hopefully support disease gene

identification.
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Figure 4.4 | Work-flow to combine constraint-based modelling and machine learning. The
condition-specific model represents the disease phenotype of interest and is build from the com-
bination of a general purpose model and disease or tissue transcriptional profiles. The characterisation
of the flux space serves the production of gene-specific information, mined via machine learning
prioritisation methods.



Chapter 5

Predicting disease genes via integrative

in silico metabolic flux profiling

Constraint-based modelling of metabolism is employed as an information

source for prioritisation of oncogenes and tumour suppressor genes. Pre-

dictions based on metabolic flux profiles are benchmarked against those

obtained starting from transcriptomics data and pathway annotations.

Despite a highly variable effectiveness across cancer types, a general

complementarity of predictions is observed.

In this Chapter we investigate the integration of mathematical modelling with experimen-

tal omics data and gene annotations, aimed at improving computational gene prioritisation.

As described in the previous Chapter, we identified Constraint-Based Modelling (CBM) as

a promising modelling methodology, due to its flexibility in integrating omics information

at a genome scale. We thus applied the method presented in Section 4.4 to investigate the

role of metabolism in propagating genetic perturbations. Given the recent breakthroughs in

understanding the metabolic nature of cancer, we assessed the benefit of integrating in silico

metabolic flux information for cross-cancer gene prioritisation [168].

5.1 Building of tumour-specific metabolic models

As a first step toward the prioritisation of candidate cancer genes, we constructed tumour-

specific metabolic models by mapping experimental transcriptional data onto a human

Genome-Scale Metabolic Model (GSMM), Recon 2.2 [29]. To this end, we used the gene

set expression mapping presented in Section 4.2.1. The strength of the logarithmic factor

in Eq. 4.5 is controlled by a parameter µ which modulates the impact of gene expression
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on reaction bounds. We therefore tuned this parameter to optimise the resulting models,

maximising the agreement with experimental data.

In the following, we present the process of building and validating tumour-specific

GSMMs via two different strategies. In the first case, we used gene expression data from a

popular cancer cell line panel. In the second case, we employed data collected directly from

cancer patients.

5.1.1 Cell lines models

In this phase, we resorted to experimental data collected from the National Cancer Institute

60 human tumour cell line (NCI60) panel [169]. We extracted from it gene expression

profiles and proliferation rates for 57 cell lines associated to nine different cancers, already

pre-processed in a previous study [170]. The proliferation rate is expressed as the inverse of

cell number doubling time.

In order to assess the reliability of the resulting models, we performed a sensitivity

analysis on parameter µ , in terms of the Pearson Correlation Coefficient (PCC) between

predicted cellular growth and measured proliferation rate of the NCI60 panel. In other

words, we mapped on Recon the expression profiles and for each cell line-specific model we

performed Flux Balance Analysis (FBA) by setting the biomass reaction as objective. By

assumption, this value should have the same trend as the proliferation rate, so we calculated

(a) (b)

Figure 5.1 | Sensitivity analysis on cell lines gene expression mapping. (a) PCC r between pre-
dicted biomass yield and measured cellular proliferation, as a function of the gene expression mapping
parameter µ . (b) Predicted biomass yield for each NCI60 cell line as compared to its corresponding
measured proliferation, at the maximal r value.
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the correlation between the proliferation and the optimal flux through the biomass reaction.

We repeated this procedure varying the value of µ over a span of different orders of magnitude.

As a result, we obtained a correlation peak around µ = 114, where the PCC is r = 0.41,

p-value= 1.56 ·10−3 (see Figure 5.1a). In Figure 5.1b it is possible to visually appreciate the

correlation between predicted biomass yield and measured proliferation over all the 57 cell

lines. These results provide us an indication of the good reliability of constructed models.

We performed this analysis also restricting to each cancer group, however we did not obtain

statistically significant correlations - except in one case. We therefore assumed µ = 114 as

the optimal mapping value for all tumours in the following analyses.

Next, we further validated the constructed models by focusing on the whole set of reaction

fluxes. We thus studied the PCC between proliferation and flux values for all reactions in the

Pathway

Number of Fraction of Supporting

correlated correlated literature

reactions reactions (%)

Aminosugar metabolism 2 6.45
Butanoate metabolism 1 33.33

Cholesterol metabolism 13 22.81 [171]
Citric acid cycle 1 5.26

Exchange/demand reaction 51 6.93 [172]
Fatty acid oxidation 8 0.99 [173–175]
Fatty acid synthesis 1 0.85 [176]
Folate metabolism 3 5.08 [177]

Glutamate metabolism 1 6.67 [178]
Glycerophospholipid metabolism 3 4.55 [179]

Glycine, serine, alanine and threonine metabolism 1 2.70 [180]
Miscellaneous 4 4.65

NAD metabolism 2 8.00 [181, 182]
Purine catabolism 2 5.56

Pyrimidine catabolism 1 2.86
Sphingolipid metabolism 3 3.61 [183]

Squalene and cholesterol synthesis 2 33.33 [171]
Starch and sucrose metabolism 1 3.13 [184, 185]

Transport, endoplasmic reticular 4 2.60
Transport, extracellular 99 6.73 [172]
Transport, lysosomal 1 0.94

Transport, mitochondrial 8 2.78 [186]
Transport, peroxisomal 1 0.85

Other 39 4.57

Table 5.1 | Overview of metabolic reactions whose predicted fluxes correlate with measured

cellular proliferation. For each pathway, number and percentage of reactions significantly correlated
to measured cellular proliferation at a 1% threshold. Several of these pathways are known to be
involved in tumour initiation or evolution, as reported in the corresponding literature.
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(a) (b)

Figure 5.2 | Sensitivity analysis on breast cancer patients gene expression mapping. (a) PCC r

between predicted biomass yield and patient survival time span, as a function of the gene expression
mapping parameter µ . (b) Predicted biomass yield for each breast cancer patient as compared to the
corresponding survival time span, at the maximal r value.

models, calculated through euclidean parsimonious enzyme usage Flux Balance Analysis

(epFBA) (Section 4.3.2). The rationale is that tumour cells need to optimise the use of

resources to proliferate in the competitive environment with normal cells. We thus expect

that epFBA better captures the flux distribution in cancer cells than normal FBA. We took

p-value≤ 0.01 as a threshold for designating correlated reactions and we considered both

positive and negative correlations. In Table 5.1 we show absolute and relative number of

correlating reactions for each pathway. Pathway information was obtained directly from

Recon, available in the subSystem field of the Matlab model [29]. The full list of 252

correlating reactions can be found in Table B.1.

We can observe that reaction rates obtained by epFBA correlate with cellular proliferation

in a number of cancer-associated pathways, supporting the reliability of our models. In

particular, our results suggest that several identified reactions are involved in extracellu-

lar transport, which is consistent with the known metabolic interactions between tumour

cells and their micro-environment [172]. Moreover, a notable portion of the cholesterol

metabolism pathways emerges as correlated to proliferation, supported by epidemiologic,

Next-Generation Sequencing (NGS) and preclinical data that suggest a dependence of patient

survival on alterations in cholesterol homeostasis [171].
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Pathway

Number of Fraction of Supporting

correlated correlated literature

reactions reactions (%)

Arginine and Proline Metabolism 2 5.13
Bile acid synthesis 8 6.40 [187, 188]

Cholesterol metabolism 11 19.30 [171]
Eicosanoid metabolism 1 0.40

Exchange/demand reaction 11 1.49 [172]
Folate metabolism 2 3.39 [177]

Fructose and mannose metabolism 1 4.00
Glycerophospholipid metabolism 1 1.52 [179]

Glycine, serine, alanine and threonine metabolism 3 8.11 [180]
Glycolysis/gluconeogenesis 7 17.50 [189]
Nucleotide interconversion 1 0.56
Pentose phosphate pathway 2 5.71

Pyrimidine synthesis 1 5.26
Pyruvate metabolism 1 3.33

Sphingolipid metabolism 3 3.61 [183, 190]
Squalene and cholesterol synthesis 1 16.67 [171]
Transport, endoplasmic reticular 4 2.60

Transport, extracellular 15 1.02 [172]
Transport, lysosomal 1 0.94

Transport, mitochondrial 3 1.04 [186]
Transport, nuclear 1 1.56

Transport, peroxisomal 1 0.85
Other 13 1.52

Table 5.2 | Pathways correlated to patient survival in breast cancer models. For each pathway,
number and percentage of reactions significantly correlated to breast cancer patients survival at a 1%
threshold. Several of these pathways are known to be involved in tumour initiation or evolution, as
reported in the corresponding literature.

5.1.2 Patient samples models

A limitation of the analysis above is that it relies on data derived from cell cultures, which

only approximate what occurs in a living human body. From this point of view, acquisition of

patient samples can be a valuable strategy for better modelling cancer metabolism. However,

even though patient specimens are beginning to be routinely collected, it is difficult to

precisely track tumour proliferation. To evaluate patient-specific GSMMs, patient survival

can be used instead as a reference. In fact, death of oncological patients is caused by cancer

invasion and metastases accumulation, so it can be assumed that average life span is inversely

proportional to tumour cells growth rate.

Under these assumptions, we repeated the analysis of the previous Section by employing

patients data gathered at a Genome Data Analysis Center (GDAC) repository [191]. To
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maintain the coherency of the analysis across different cancer types, we used Level 3

normalised gene expression and clinical data available as of January 28th, 2016 standard

data run. We filtered tumour samples in a way to leave only those possessing both RNA

sequencing and patient survival information. Survival is expressed as the number of days to

death from the acquisition of samples. In this case, setting flux constraints to cancer GSMMs

was performed on the basis of gene expression fold change between tumour and normal

samples.

We performed sensitivity analyses for various tumour types separately, but only for breast

cancer we obtained a significant PCC: r = −0.27, p-value= 5.03 ·10−3. As expected, the

correlation is lower than considering proliferation, as survival represents an indirect estimate

of cellular proliferation. Again, we scrutinised correlated reactions and identified several

pathways known to be involved in cancer evolution (Table 5.2). This time the bile acid

synthesis pathway emerges, which was found to influence growth in breast cancer cells [188].

For the complete list of correlated reactions we refer the reader to Table B.2.

5.2 Cross-cancer gene prioritisation

In this Section we focus on the prediction of metabolic oncogenes and tumour suppressor

genes. The central assumption is that we should be able to predict cancer-related genes

starting from metabolic perturbations caused by their upstream genetic de-regulation, as

explained in Section 4.4.

We performed separate prioritisations for each cancer type covered by the NCI60 panel,

with the only exclusion of central nervous system tumours because of the higher cell type

heterogeneity in corresponding lines. For each cancer type, we generated a model using the

gene expression mapping presented in Section 4.2.1. In this way we are able to simulate

different cellular configurations and embed all artificial gene de-regulations in a different

cellular context.

Moreover, we separately focused on the prioritisation of cancer genes in three different

scenarios: full deletion of tumour suppressors, knock-down of oncogenes and knock-up of

oncogenes. To simulate gene up-regulation and down-regulation at a single gene resolution,

we employed again the mapping of Equations 4.4 and 4.5. In this case, instead of multiple

experimental gene expression profiles, we consider a single artificial differential profile

representing the expression fold change. Therefore, to simulate single gene up-regulation we

take a fold change vector where the target gene is assigned a value greater than one and all

other values are unitary. Conversely, we assign a fold change smaller than one to any target

gene to be down-regulated, giving to all other genes an unitary fold change. This procedure
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(a) (b)

(c)

Figure 5.3 | AUC distributions for can-

cer genes prediction from cell line

models. AUC distributions obtained by
LOOCV for cancer types covered by
the NCI60 panel and the prioritisation
of (a) knocked-out tumour suppressor
genes; (b) knocked-down oncogenes; (c)

knocked-up oncogenes. Performances
are highly variable depending on cancer
type and de-regulation strategy. In par-
ticular, up-regulation of oncogenes fails
in most cases on average.

allows us to up-regulate a broader set of genes as compared to the COBRA toolbox functions,

which are based on logical OR/AND rules [22]. Specifically, we took as reasonable fold

change factors 0.5 to simulate down-regulation and 2 for up-regulation.

We gathered reliable collections of oncogenes and tumour suppressor genes from recent

published databases, TSgene and ONgene [192, 193]. Among them, 31 unique oncogenes

and 57 unique tumour suppressor genes are included in Recon. To obtain cancer-specific

oncogenes and tumour suppressors, we crossed these two lists with DisGeNet annotations

[194]. We took a different set of 99 random genes as controls for every combination of cancer

tissue, gene type and regulation scenario.

We generated a feature vector for each cancer and control gene using the Metabolic

Expectation Propagation (MEP) (Section 4.3.3) [165]. Metabolic perturbations were therefore

described in terms of means and variances of flux distributions through all reactions. From

MEP we obtained mean and variance of bounded flux distributions for all reactions in the

model, as well as mean and variance of their corresponding unbounded distributions. Due
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Figure 5.4 | AUC distributions for breast cancer genes prediction from patient models. AUC
distributions obtained by LOOCV for down-regulated tumour suppressors and oncogenes and for
up-regulated oncogenes in breast cancer patient models. In this scenario metabolic models do not
provide useful information overall.

to the large number of simulations involved in our study, we limited the maximum number

of iterations of the algorithm to 200. Ideally, allowing a more precise refinement of flux

distributions could further increase prediction performance. Other parameters were set

as suggested in the corresponding publication: β = 109, flux variance range [10−50,1050],

damping coefficient d = 0.9. We aggregated flux information for reactions belonging to the

same pathways by taking average and variance at a pathway level, in order to maintain a

contained number of features and thus limit over-fitting. Association between pathways and

reactions was taken from the subSystem field of Recon as before. We next input these pathway-

based features into the machine learning step, where we employed SCalable UnBAlanced

gene prioritization (Scuba) to rank genes on the basis of the cancer-specific metabolic

perturbations triggered by their de-regulation. A Gaussian kernel with σ = 0.5, 1, 2 was

employed to measure the similarity among flux profiles (Section 2.2.1).

We evaluated the whole pipeline by Leave-One-Out Cross Validation (LOOCV), mea-

suring prediction performance in terms of Area Under the receiver-operating-characteristic

Curve (AUC) for ranked genes. Single gene AUC distributions are visible in Figure 5.3.

Moreover, we then performed the same evaluation by resorting to breast cancer patient

models. These last results are shown in Figure 5.4.
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In Chapter 3 we saw how network-based prioritisation is strongly driven by node degree.

We thus decided to investigate whether similar biases exist in the context of CBM. In this

case, we quantified the centrality of a gene as the number of its associated reactions in the

model and we measured the Spearman Correlation Coefficient (SCC) ρ between centrality

and AUC. As it is visible in Figure 5.5, no correlation exists for tumour suppressors, whereas

a significant ρ can be detected for oncogenes. The bias is however far lower than for graph-

like data, consistently with the concept that also non-central genes can influence cellular

phenotype toward recognisable pathological states.

(a) (b)

(c)

Figure 5.5 | Correlation between can-

cer genes predictability and number

of their associated reactions. LOOCV
AUC distribution for all cancer types
as a function of reactions number con-
trolled by each gene for (a) knocked-out
tumour suppressor genes; (b) knocked-
down oncogenes; (c) knocked-up onco-
genes.
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5.3 Integration of the fluxome with other omics

Upon verifying that in silico metabolic flux profiling can correctly suggest gene-cancer rela-

tionships, we turned to evaluating its effectiveness as compared to that of some conventional

omics data. We performed LOOCV as before, using the same sets of known cancer genes

and candidates while varying the input data sources. More in detail, we separately tested

gene expression profiles from the NCI60 panel and two different pathway annotation datasets.

The first one corresponds to Recon internal subdivision, composed of 98 metabolic pathways

(excluding the “Miscellaneous ”pathway and not assigned reactions). The second dataset

is the most comprehensive pathway annotation resource to date, Consensus Path DataBase

(CPDB), which contains information from a number of orthogonal sources on all known

biological pathways [75]. All these three datasets were transformed by a Gaussian kernel

with σ = 0.5, 1, 2 as for flux data.

Comparing prioritisation performance at a single gene resolution, we can notice total

absence of correlation in all cases (Figure 5.6). Although there are differences in the average

performance of the single data types, they remain rather complementary, with AUC values

generally lying far from the diagonal. Such a distribution indicates that genes ranked at

the bottom of candidate lists can be often ranked at the top by resorting to another data

type. From this point of view, pathway-averaged metabolic flux profiles provide strikingly

complementary results as compared to information on gene involvement in the same pathways

(Figures 5.6a, 5.6b).

Next, we evaluated prediction performance for single cancer types, focussing on the

differences in data integration approaches here considered, namely Multiple Kernel Learning

(MKL) as implemented by Scuba and CBM. The latter can be employed in this case to inte-

grate transcriptional data, whereas the former can process indiscriminately both expression

and pathway annotations. Additionally, these two approaches can be combined by means of

a multi-staged integration: first, building an integrated transcriptional-metabolic model via

CBM; second, combining the information extracted from such model with other data sources

via MKL.

In Figures 5.7 - 5.10, AUC distributions relative to all data and integration framework

combinations are shown. First, it can be noticed that flux information tends to be more

informative than gene expression in tumour suppressor prediction, while for oncogenes the

contrary occurs. This is consistent with the biological model where tumour suppressor genes

need to be compromised on both alleles for tumour to progress. Differently, oncogenes

de-regulation depends from case to case and can be more difficult to pinpoint. As a matter of

fact, changes in expression levels may assume a continuous spectrum of values, while we

implemented fixed fold changes over all gene sets and tissues.



5.3 Integration of the fluxome with other omics 71

(a) (b)

(c) (d)

(e) (f)

Figure 5.6 | Correlation between can-

cer genes predictions from different

data sources. Comparison of single
gene AUCs in prioritisation of knocked-
down tumour suppressors (boxes (a), (c)

and (e)) and knocked-down oncogenes
(boxes (b), (d) and (f)).
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In contrast, metabolic pathway annotations result much informative for tumour suppres-

sors, but less for oncogenes. In fact, they are outperformed by metabolic flux data only in

predicting leukemia and ovarian carcinoma tumour suppressors, while it occurs in five cases

for oncogenes. However, considering all pathways in CPDB, AUCs sway more consistently

in favour of annotations, evidencing that taking into account all biological domains at a

coarse grain scale is more informative than only the metabolic domain at a more precise scale.

Cancer is indeed implicated also at a signalling and regulatory level besides metabolism.

As regards the integration strategies, CBM outperforms all single data sources three times

in tumour suppressor prediction and only once in oncogene prediction. Scuba achieves higher

median AUC only twice for oncogenes instead, whereas in all other cases single datasets

provide better predictions. In parallel, GSMM-based integration tends to win over Scuba

in tumour suppressor prioritisation, whereas it is less effective in oncogene prioritisation.

Again, this reflects shortcomings in our modelling approach mentioned above. In general,

integration via CBM is more successful in tasks where Recon is more informative, that is

where biological assumptions can be modelled more precisely. Conversely, where gene

expression represents the higher degree of precision, Scuba is a better choice to combine

input data.

It must be mentioned that AUC distributions shown are only rarely significantly different

as assessed by Wilcoxon rank sum tests. Due to the low number of cancer genes involved,

significance is achieved only for differences in average AUC of at least ∼0.3. The relatively

low improvement by Scuba suggests that it is often unable to weight properly the input

information.

To conclude, we can ascertain that these results promisingly show the advantage of

considering metabolic rearrangements in predicting cancer genes. Success is however

strongly dependent on the tumour type and on the assumptions made to simulate genetic

alterations, besides the quality of the metabolic model.



5.3 Integration of the fluxome with other omics 73

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.7 | Comparison between flux-based and gene expression-based prioritisation - Tumour

suppressor genes. Comparison of tumour suppressors AUC distributions among single data sources
and two alternative integrations approaches: MKL and CBM. In this case, we consider metabolic flux
and gene expression data.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.8 | Comparison between flux-based and gene expression-based prioritisation - Onco-

genes. Comparison of oncogenes AUC distributions among single data sources and two alternative
integrations approaches: MKL and CBM. In this case, we consider metabolic flux and gene expression
data.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.9 | Comparison between flux-based and pathway annotation-based prioritisation -

Tumour suppressor genes. Comparison of tumour suppressors AUC distributions among single
data sources and two alternative integrations approaches: MKL and CBM. In this case, we consider
metabolic flux and pathway annotation data.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10 | Comparison between flux-based and pathway annotation-based prioritisation -

Oncogenes. Comparison of oncogenes AUC distributions among single data sources and two alterna-
tive integrations approaches: MKL and CBM. In this case, we consider metabolic flux and pathway
annotation data.



Chapter 6

Discussion and future perspectives

6.1 Contributions

Gene prioritisation is progressively becoming essential in molecular biology studies. In

fact, we are assisting to a continuous proliferation of a variety of omic data brought by

technological advances. In the near future it is then likely that more heterogeneous knowledge

will have to be combined. Moreover, the classes of biological agents to be prioritised are

going to enlarge. For instance, we are only beginning to understand the complex regulation

machinery involving non-coding RNA and epigenetic agents. It is estimated that around

90.000 human long non coding genes exist, whose functional implications are progressively

emerging [195]. Facing these challenges, the development of novel methods is still strongly

needed in order to enhance predictive power and efficiency.

Compared to the considered benchmark kernel methods - MKL1class and ProDiGe -

Scuba has some important advantages. ProDiGe is one of the first proposed kernel-based

Positive-Unlabelled (PU) learning methods for gene prioritisation and implements a learning

strategy based on a biased Support Vector Machine (SVM), which over-weights positive

examples during training [95]. In order to reach scalability to large datasets, it leverages a

bagging procedure. Like ProDiGe, Scuba implements a learning strategy based on a binary

classification set up, but from a different perspective. In a PU problem, the information on

positive labels is assumed secure, while the information on negative labels is not. In terms of

margin optimisation, this translates in unbalanced entropy on the probability distributions

associated to the two sets of training examples. It is then required to regularise more on the

unlabelled class - having higher entropy - and in the limit of maximum uncertainty we get

the uniform distribution.

MKL1class implements another effective approach for data integration, namely single

class learning. This means that the model is obtained solely based on the distribution
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of known disease genes, disregarding unlabelled ones. Scuba has enhanced scalability

compared to MKL1class, as it involves the optimisation of the 1-norm of the margin vector

from the different kernels. In contrast, MKL1class optimises its 2-norm, which is more

computationally demanding. Importantly, another distinctive feature of Scuba is a time

complexity dependent on the number of positive examples and not on the number of total

examples. As a consequence, Scuba can exploit the information on the whole data distribution

and at the same time scale to large datasets without the need of sub-sampling the examples.

This may be of great advantage as typically disease genes are orders of magnitude less

numerous than the candidates.

Results from two different evaluation settings show that our proposed method Scuba

outperforms many existing methods, particularly in genome-wide analyses. Compared to the

two considered existing kernel-based methods, Scuba performances are always higher, and

often significantly higher. Moreover, Scuba has two main levels of scalability that make it

particularly suitable for gene prioritisation:

• Scalability on number of kernels: Scuba is able to deal with a large number of

kernels defined on different data sources. As a consequence, it can be useful to get a

more unified view of the problem and to build more powerful predicting models.

• Scalability on number of training examples: In typical gene prioritisation problems,

the number of known disease genes is much smaller than the number of candidates.

Scuba is designed to efficiently deal with unbalanced settings and at the same time

take advantage of the whole candidates distribution.

Altogether, our results show that Scuba is a valuable tool to achieve efficient prioritisa-

tions, especially in large-scale investigations. A detailed overview on the validation results

for single diseases is available in Tables 3.1, A.2 and A.3.

As it is visible in Table A.1, performance with multiple kernels might be close to

those with single kernels. Nevertheless, feeding multiple kernels into Scuba alleviates the

issue of choosing appropriate kernels for each data source, as implemented in our work.

Importantly, this strategy can also provide multiple views on the same data and possibly

increase performance. Nevertheless caution must be paid since the more kernels are combined

and the more parameters have to be learned, thus increasing the risk of over-fitting. We

advice then to moderate the number of kernel matrices generated from each data source.

From an omics data point of view, experimental profiles and annotations can be unable to

capture the roots of complex pathological states in some cases. Constraint-Based Modelling

(CBM) can help combine and contextualise this information, providing a trade-off between

modelling precision and computational cost. Here, we investigated this hypothesis by
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developing a pipeline to extract gene-specific information out of a GSMM with the goal of

prioritising cancer-associated genes.

The pipeline here introduced (Section 4.4) can in principle be modified or expanded in

several points. For instance, Metabolic Expectation Propagation (MEP) is currently the state-

of-the-art as regards flux space characterisation, but it can be replaced by a novel techniques

in the future [165]. Moreover, strong assumptions on simulating genetic perturbations may

limit informativeness of obtained data and advances in this context could enhance also

prioritisation accuracy. Despite these limitations, our results show that metabolic fluxes can

provide complementary information as compared to gene expression and pathway annotations.

However, we observe that they are able to better prioritise genes in only a minority of cases.

We hypothesise that further model fine-tuning - for instance taking into account uptake and

secretion constraints - could reflect also on prioritisation improvement.

6.2 Open questions

The present study solves some questions but creates new ones at the same. In the following,

we delineate the main future research directions.

Improving data integration within multiple kernel learning As testified by experimen-

tal results, integration of heterogeneous data is not effectively handled by Multiple

Kernel Learning (MKL) in some cases. This is observed as averaging of prediction

performance of the different data sources. The reason can be that, in MKL, information

from the different data sources interacts too weakly. It is necessary to find new strate-

gies to more strongly combine it, for instance via the definition of kernel functions

defined over multiple data sources.

Improvement of condition-specific metabolic models In this study, we employed tran-

scriptomic profiles to generate cancer-specific GSMMs, as this data type is usually

preferred in prioritisation analyses. However, protein expression could be in principle

even more effective to obtain precise models. Moreover, condition-specific GSMMs

could be enhanced by integrating information on metabolite uptake and secretion.

Integration of metabolic, signalling and regulatory networks One of the main limitations

in using GSMM is that prioritisation is restricted to genes directly involved in metabolism.

Although context-specific models take into account genetic regulation, they do not

allow us to simulate the knock-out or de-regulation of regulatory genes. Methods that

integrate GSMMs with regulatory networks are promising to this end. In particular,
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a recently proposed method permits creating an integrated model starting from tran-

scriptional profiles and the topology of the regulatory network [155]. De-regulation

strategies could be straightforwardly implemented into this framework.

Understanding the reasons behind predictions Interpretation of predictions is a widespread

issue in machine learning, as most generated models are complex and provide no ex-

planation for their predictions. Methods for prediction interpretation exist but most

of them entail a drop in prediction accuracy. Only recently, rule mining was used

applied to binary classification and it successfully identified data relationships without

accuracy loss [196].

Even in candidate gene prioritisation, understanding why a particular gene has been

ranked at the top or at the bottom can be important. As an example, it can help

generate new hypotheses and plan following experiments, further accelerating research

procedures. MKL provides information in terms of weights assigned to kernels,

indicating the level of contribution of each dataset to the final prediction. CBM also

can have advantages for explaining predictions. Indeed, a model provides mechanistic

explanations at a single reaction level. Application of automatic explanation methods

to data generated by CBM can therefore provide more detailed information. In the

present study, this issue was not investigated, but it will be priority for future research.



Conclusions

In this work, we advanced two methodological novelties for the prioritisation of candidate

disease genes based on the integration of multi-omics data.

In a first stage, we proposed a new computational kernel-based method to guide the

identification of novel disease genes, called Scuba. Our method takes advantage of com-

plementary biological knowledge by combining heterogeneous data sources. Every source

can be transformed by appropriate kernel functions in order to take full advantage of its

information. Our original algorithm is scalable relatively to the size of input data, number of

kernel transformations and number of training examples. Experimental results support the

thesis that it is effective across a large spectrum of disorders and that can be used to prioritise

even the whole genome. Scuba only requires a collection of input genes and optionally a set

of candidate genes. The simple requirements make it applicable to a wide range of laboratory

investigations. Furthermore, it can be potentially employed also in other prioritisation prob-

lems, as long as a PU approach and the integration of heterogeneous biological knowledge

are needed. A scientific paper presenting Scuba has been submitted and has very recently

been accepted for publication [197]. A Python implementation is also freely available at

https://github.com/gzampieri/Scuba.

In a second stage, we introduced a novel approach for gene prioritisation that combines

for the first time experimental omics information and CBM within a comprehensive data-

driven prediction framework. In other words, we applied Scuba to perform gene prioritisation

based on the information reconstructed by integrating transcriptomic profiles and a GSMM.

Validation on oncogenes and tumour suppressor genes prioritisation demonstrate a striking

complementarity between predictions achieved by our method and by Scuba when fed with

conventional gene expression or pathway annotation data. However, such complementarity

not always translates into improvements in prioritisation accuracy. These findings demon-

strate the potential informativeness of CBM for the identification of novel gene-disease

associations, but also highlight that further investigations are necessary in order to achieve

optimal data integration in every setting. A major limitation of the method is its limited
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applicability to the metabolic domain, however it can be potentially adapted to incorporate

emerging methods for the modelling of regulatory networks.

Altogether, these results bring novel methodological strategies to determine the genetic

basis of human disease.



Appendix A

Additional results of Chapter 3

Kernel type kernel rank rank TPR at TPR at TPR at AUC

hyper-parameter median st.dev. top 5% (%) top 10% (%) top 30% (%)

Genome-wide prioritisations

KMD 2 11.13 24.36 31.0 47.6 73.8 0.78
4 11.11 24.80 35.7 45.2 69.0 0.78
6 12.34 25.16 33.3 45.2 73.8 0.78

2,4,6 11.02 24.48 33.3 47.6 73.8 0.78
KRL 1 13.41 20.92 28.6 42.9 76.2 0.80

10 11.77 21.15 31.0 42.9 78.6 0.81
100 11.67 21.79 28.6 45.2 76.2 0.80

1,10,100 12.40 20.90 28.6 40.5 76.2 0.80

Candidate set-based prioritisations

KMD 2 13.20 26.70 23.8 45.2 69.0 0.77
4 13.20 27.21 23.8 47.6 76.2 0.77
6 14.19 27.31 23.8 42.9 73.8 0.77

2,4,6 13.73 26.88 26.2 47.6 73.8 0.77
KRL 1 11.52 22.98 23.8 42.9 73.8 0.79

10 11.45 23.25 26.2 47.6 76.2 0.80
100 11.11 23.78 26.2 45.2 76.2 0.79

1,10,100 11.60 23.15 23.8 40.5 73.8 0.79

Table A.1 | Test genes rank distribution statistics for different kernel combinations in the time-

stamp validation. Scuba results in the experimental setting of Börnigen et al [119], using String
v8.2 as data source and for different choices of kernels. From the third column to the last one: rank
median and standard deviation, TPR in the upper 5/10/30% of the ranking and average AUC. Ranks
are normalised in order to lie in the interval ]0,100].
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Disease Associated genes genome-wide candidate set

AUC AUC

Abdominal aortic aneurysm ENSG00000136848 0.77 0.84

Alcohol dependence ENSG00000148680 0.98 0.98

Arthrogryposis ENSG00000152818 0.98 1.0

Asthma ENSG00000182578 0.93 0.94

Autosomal recessive primary microcephaly ENSG00000075702 0.41 0.44

Behcet’s disease ENSG00000136634 0.98 0.97

Bipolar schizoaffective disorder ENSG00000146276 0.97 0.98
ENSG00000139618

Complex heart defect ENSG00000121068 0.98 1.0

Congenital anomalies of the kidney and the urinary tract ENSG00000164736 0.97 0.96
ENSG00000178188

Congenital diaphragmatic hernia ENSG00000004961 0.86 0.87
ENSG00000154309

Crohn’s disease ENSG00000176920 0.89 0.89
ENSG00000185651
ENSG00000069399

Dursun syndrome ENSG00000141349 0.58 0.46

Ehlers-Danlos syndrome ENSG00000169105 0.99 1.0

Esophageal squamous cell carcinoma ENSG00000138193 0.3 0.23
ENSG00000101276

Leprosy ENSG00000111537 0.96 0.9

Lung adenocarcinoma ENSG00000073282 0.89 0.84

Methylmalonic aciduria ENSG00000167775 0.9 0.93

Metopic craniosynostosis ENSG00000106571 0.98 0.98

Mitochondrial complex I deficiency ENSG00000177646 0.95 0.96

Multiple sclerosis ENSG00000120088 0.83 0.84

Myelodysplastic syndromes ENSG00000106462 0.81 0.83

Nasopharyngeal carcinoma ENSG00000085276 0.81 0.8
ENSG00000127863

Nonsyndromic cleft lip/palate ENSG00000148175 0.82 0.8

Parkinson’s disease ENSG00000175104 0.82 0.8

Periventricular heterotopia ENSG00000102103 0.54 0.45

Primary biliary cirrhosis ENSG00000142606 0.82 0.77
ENSG00000142539

Psoriasis ENSG00000056972 0.96 1.0

Retinal-renal ciliopathy ENSG00000054282 1.0 1.0

Single-suture craniosynostosis ENSG00000124813 0.98 0.98

Smooth pursuit eye movement abnormality ENSG00000099901 0.27 0.2

Testicular germ cell tumor ENSG00000137090 0.5 0.41
ENSG00000171681

Tetralogy of Fallot ENSG00000145012 0.74 0.67

Type 2 diabetes ENSG00000182247 0.21 0.19

Table A.2 | Test genes AUC for individual disorders in the time-stamp validation. Scuba perfor-
mance for single disorders considered by Börnigen et al in their evaluation of gene prioritisation tools
[119].
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Disease Associated genes genome-wide

AUC

Behcet’s disease ENSG00000162594 0.87
ENSG00000168811
ENSG00000138378
ENSG00000163823
ENSG00000136869
ENSG00000183542
ENSG00000164307
ENSG00000026103
ENSG00000206340
ENSG00000206450
ENSG00000134882

Bipolar schizoaffective disorder ENSG00000175344 0.68
ENSG00000138592
ENSG00000151702
ENSG00000124782
ENSG00000171988
ENSG00000176986

Crohn’s disease ENSG00000140368 0.90

Parkinson’s disease ENSG00000064692 0.89
ENSG00000153234
ENSG00000116675
ENSG00000159082
ENSG00000184381
ENSG00000138246

Primary biliary cirrhosis ENSG00000128604 0.76
ENSG00000181634
ENSG00000105329
ENSG00000110777
ENSG00000064419
ENSG00000016602
ENSG00000141076
ENSG00000106089
ENSG00000132912

Psoriasis ENSG00000206237 0.94
ENSG00000196126
ENSG00000179344
ENSG00000206306
ENSG00000163599
ENSG00000206240
ENSG00000077150
ENSG00000141527
ENSG00000198246

Smooth pursuit eye movement abnormality ENSG00000104133 0.73
ENSG00000171385
ENSG00000020922
ENSG00000070610
ENSG00000013503
ENSG00000167658

Table A.3 | Test genes AUC for individual multi-factorial disorders in the expanded time-stamp

validation. Scuba performance for single disorders considered in Table 3.5 in the main text. These
are the multi-factorial diseases employed by Börnigen et al [119] with at least a new gene annotation
between March 2013 and February 2017 as reported by the Human Phenotype Ontology [71].
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Table B.1 | Full list of metabolic reactions whose predicted fluxes correlate with measured proliferation. Recon reactions significantly
correlated to tumour cells proliferation obtained from the NCI60 panel [169].

Pathway Reaction Reaction name Pearson r p-value

r1411_f
D-Galactosyl-N-acetyl-D-galactosaminyl-(N-acetylneuraminyl)-D-galactosyl-

D-glucosylceramide galactohydrolase EC:3.2.1.23
-0.47 2.94E-04

EX_fum(e)_f Exchange of Fumarate 0.39 2.94E-03

biomass_reaction Generic human biomass reaction 0.41 1.56E-03

biomass_protein protein component of biomass 0.41 1.56E-03

biomass_DNA DNA component of biomass 0.41 1.56E-03

biomass_RNA RNA component of biomass 0.41 1.56E-03

biomass_carbohydrate carbohydrate component of biomass 0.41 1.56E-03

biomass_lipid lipid component of biomass 0.41 1.56E-03

biomass_other other component of biomass 0.41 1.56E-03

BETBGTtc_f betaine transport by BGT 0.40 2.06E-03

FOLOATPtc_f folate transport by OATP 0.40 2.34E-03

GLNB0AT3tc glutamine transport by B0AT3 0.36 6.86E-03

H2OGLYAQPt_f water and glycerol transport by AQP 0.50 8.35E-05

INSt2_f inosine transport in via proton symport, reversible 0.37 4.58E-03

OCDCAFAPMtc octadecanoate tranport by FAT 0.38 4.10E-03

ATVACIDOATPtu_f uptake of atorvastatin by enterocytes 0.35 9.21E-03

ATVACIDtdu_f passive diffusion of atorvastatin into enterocytes 0.39 2.74E-03

LST4EXPTDhc_f uptake of Losartan-E3174 into hepatocytes via diffusion 0.38 4.12E-03

LSTNM7TDhc_f uptake of Losartan-N2-glucuronide / Losartan-M7 into hepatocytes via diffusion 0.38 4.12E-03

LSTNtd_f uptake of losartan via diffusion into enterocytes 0.38 4.12E-03

OXYPthc_f uptake of oxypurinol by hepatocytes 0.40 2.52E-03

OXYPtepv_f release of oxypurinol into portal blood 0.40 2.52E-03

PVSOATPtu_f uptake of pravastatin by enterocytes 0.37 4.65E-03

TMDOATPtsc_f uptake of torasemide into enterocytes via antiport 0.36 5.87E-03

TMDtd_f uptake of torasemide into enterocytes via diffusion 0.40 2.19E-03

r0390_b Isomaltose 6-alpha-D-glucanohydrolase Starch and sucrose metabolism EC:3.2.1.10 -0.35 8.44E-03

r0737_b 3-Ketolactose galactohydrolase Galactose metabolism EC:3.2.1.23 0.35 7.87E-03

fumt_b Fumarate transport 0.39 2.94E-03

CLCFTRte_b chloride transport by CFTR 0.38 4.12E-03

DOPAENT4tc_b dopa transport by ENT4 0.36 6.99E-03

SRTNENT4tc_b serotonin transport by ENT4 0.40 2.53E-03
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ATVACIDMCTtu_b uptake of atorvastatin by enterocytes by MCT1 0.37 4.80E-03

LST4EXPthc_b uptake of Losartan-E3174 into hepatocytes 0.38 4.12E-03

LSTNM7thc_b uptake of Losartan-N2-glucuronide / Losartan-M7 into hepatocytes 0.38 4.12E-03

LSTNRATt_b uptake of losartan via antiport into enterocytes 0.38 4.12E-03

PVSHtu_b uptake of pravastatin by enterocytes via proton coupled mechanism 0.39 3.14E-03

PVStep_b pravastatin exit into portal blood 0.41 1.91E-03

TMDOATthc_b uptake of torasemide into hepatocytes via OAT1 0.37 4.84E-03

Aminosugar metabolism CHTNASEe chitinase, extracellular -0.40 2.55E-03

Aminosugar metabolism r1374 EC:3.2.1.14 -0.40 2.55E-03

Butanoate metabolism BDHm_b (R)-3-Hydroxybutanoate:NAD+ oxidoreductase 0.36 6.40E-03

Cholesterol metabolism C14STRr C-14 sterol reductase 0.41 1.56E-03

Cholesterol metabolism C3STDH1Pr C-3 sterol dehydrogenase (4-methylzymosterol) 0.41 1.56E-03

Cholesterol metabolism C4STMO1r C-4 sterol methyl oxidase (4,4-dimethylzymosterol) 0.41 1.56E-03

Cholesterol metabolism DMATT dimethylallyltranstransferase 0.39 2.92E-03

Cholesterol metabolism EBP1r 3-beta-hydroxysteroid-delta(8),delta(7)-isomerase 0.37 5.67E-03

Cholesterol metabolism EBP2r 3-beta-hydroxysteroid-delta(8),delta(7)-isomerase 0.36 6.49E-03

Cholesterol metabolism GRTT geranyltranstransferase 0.39 2.92E-03

Cholesterol metabolism LNSTLSr lanosterol synthase 0.41 1.56E-03

Cholesterol metabolism SQLEr Squalene epoxidase, endoplasmic reticular (NADP) 0.41 1.56E-03

Cholesterol metabolism SQLSr Squalene synthase 0.41 1.56E-03

Cholesterol metabolism r0170_f
Farnesyl-diphosphate:farnesyl-diphosphate farnesyltransferase

Biosynthesis of steroids EC:2.5.1.21
0.41 1.56E-03

Cholesterol metabolism r0575_f
Presqualene diphosphate:farnesyl-diphosphate farnesyltransferase

Biosynthesis of steroids EC:2.5.1.21
0.41 1.56E-03

Cholesterol metabolism r0781_f
Lanosterol,NADPH:oxygen oxidoreductase (14-methyl cleaving)

Biosynthesis of steroids EC:1.14.13.70
0.41 1.56E-03

Citric acid cycle r0081_f
L-Alanine:2-oxoglutarate aminotransferase Glutamate metabolism / Alanine

and aspartate metabolism EC:2.6.1.2
0.46 3.49E-04

Exchange/demand reaction DM_datp_m_ dATP demand 0.35 9.17E-03

Exchange/demand reaction DM_btn Demand for biotin -0.36 6.67E-03

Exchange/demand reaction EX_5mthf(e)_f exchange reaction for 5-Methyltetrahydrofolate 0.42 1.26E-03

Exchange/demand reaction EX_ac(e)_f Acetate exchange 0.38 3.63E-03

Exchange/demand reaction EX_acgam(e)_f N-Acetyl-D-glucosamine exchange -0.40 2.55E-03

Exchange/demand reaction EX_adprbp(e)_f ADPribose 2-phosphate exchange -0.37 4.52E-03

Exchange/demand reaction EX_ak2lgchol_hs(e)_f 1-alkyl 2-lysoglycerol 3-phosphocholine exchange -0.38 4.20E-03

Exchange/demand reaction EX_bhb(e)_f (R)-3-Hydroxybutanoate transport via H+ symport 0.36 6.40E-03
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Exchange/demand reaction EX_cl(e)_f exchange reaction for Chloride -0.35 8.31E-03

Exchange/demand reaction EX_co2(e)_f CO2 exchange 0.35 7.56E-03

Exchange/demand reaction EX_elaid(e)_f elaidic acid exchange 0.39 3.21E-03

Exchange/demand reaction EX_glc(e)_f D-Glucose exchange -0.39 2.92E-03

Exchange/demand reaction EX_glyc(e)_f Glycerol exchange -0.37 5.44E-03

Exchange/demand reaction EX_h2o(e)_f H2O exchange -0.40 2.55E-03

Exchange/demand reaction EX_leuktrD4(e)_f leukotriene D4 exchange 0.37 4.90E-03

Exchange/demand reaction EX_malt(e)_f Maltose exchange -0.39 2.80E-03

Exchange/demand reaction EX_ncam(e)_f Nicotinamide exchange -0.38 4.17E-03

Exchange/demand reaction EX_Tyr_ggn(e)_f Tyr-194 of apo-glycogenin protein (primer for glycogen synthesis) exchange -0.39 2.80E-03

Exchange/demand reaction EX_uri(e)_f exchange reaction for Uridine 0.37 5.17E-03

Exchange/demand reaction EX_HC00229(e)_f Exchange of Isomaltose -0.35 8.44E-03

Exchange/demand reaction EX_HC01446(e)_f Exchange of 3-Ketolactose 0.35 7.87E-03

Exchange/demand reaction EX_HC02160(e)_f Exchange of GM2-pool -0.47 2.94E-04

Exchange/demand reaction EX_no2(e)_f Nitrite exchange -0.38 3.46E-03

Exchange/demand reaction EX_HC00822(e)_f Chitobiose exchange -0.40 2.55E-03

Exchange/demand reaction EX_3ump(e)_f 3-UMP(2-) exchange -0.38 4.24E-03

Exchange/demand reaction EX_3octdeccrn__f exchange reaction for 3-hydroxyoctadecanoyl carnitine 0.37 4.49E-03

Exchange/demand reaction EX_cysam(e)_f exchange reaction for cysam -0.41 1.89E-03

Exchange/demand reaction EX_glyc3p(e)_f exhange of glycerol 3-phosphate 0.36 5.76E-03

Exchange/demand reaction EX_acac(e)_b Acetoacetate exchange 0.45 4.79E-04

Exchange/demand reaction EX_chtn(e)_b chitin exchange -0.40 2.55E-03

Exchange/demand reaction EX_glu_L(e)_b L-Glutamate exchange 0.45 5.87E-04

Exchange/demand reaction EX_glygn4(e)_b exchange reaction for glycogen, structure 4 (glycogenin-1,6-{2[1,4-Glc], [1,4-Glc]}) -0.43 8.39E-04

Exchange/demand reaction EX_glygn5(e)_b exchange reaction for glycogen, structure 5 (glycogenin-2[1,4-Glc]) -0.40 2.07E-03

Exchange/demand reaction EX_h2o2(e)_b Hydrogen peroxide exchange 0.46 3.70E-04

Exchange/demand reaction EX_his_L(e)_b exchange reaction for L-histidine 0.41 1.56E-03

Exchange/demand reaction EX_ins(e)_b Inosine exchange 0.35 7.50E-03

Exchange/demand reaction EX_leuktrF4(e)_b leukotriene F4 exchange 0.36 6.07E-03

Exchange/demand reaction EX_lys_L(e)_b L-Lysine exchange 0.55 1.13E-05

Exchange/demand reaction EX_nad(e)_b Nicotinamide adenine dinucleotide exchange -0.37 4.54E-03

Exchange/demand reaction EX_nadp(e)_b Nicotinamide adenine dinucleotide phosphate exchange -0.37 4.52E-03

Exchange/demand reaction EX_paf_hs(e)_b 1-alkyl 2-acteylglycerol 3-phosphocholine (homo sapiens) exchange -0.38 4.20E-03

Exchange/demand reaction EX_pglyc_hs(e)_b phosphatidylglycerol (homo sapiens) exchange 0.41 1.56E-03

Exchange/demand reaction EX_thr_L(e)_b L-Threonine exchange 0.41 1.56E-03

Exchange/demand reaction EX_trp_L(e)_b L-Tryptophan exchange 0.41 1.56E-03
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Exchange/demand reaction EX_HC01440(e)_b Exchange of 3-Keto-beta-D-galactose 0.35 7.87E-03

Exchange/demand reaction EX_HC02161(e)_b Exchange of GM1-pool -0.47 2.94E-04

Exchange/demand reaction EX_CE2011(e)_b hypothiocyanite exchange -0.38 4.37E-03

Exchange/demand reaction EX_23cump(e)_b 2,3-cyclic UMP(1-) exchange -0.38 4.24E-03

Exchange/demand reaction EX_CE4881(e)_b nitryl chloride exchange -0.38 3.46E-03

Exchange/demand reaction EX_CE0074(e)_b alloxan exchange 0.40 2.53E-03

Exchange/demand reaction EX_ptth(e)_b exchange reaction for ptth -0.41 1.89E-03

Fatty acid oxidation C180CPT1 carnitine acyltransferase I 0.37 4.49E-03

Fatty acid oxidation C180CPT2 carnitine acyltransferase II 0.37 4.49E-03

Fatty acid oxidation C18OHc_f production of 3-hydroxyoctadecanoylcarnitine 0.37 4.49E-03

Fatty acid oxidation FAOXC18C18OHm fatty acid beta oxidation(C18→ C18OH)m 0.37 4.49E-03

Fatty acid oxidation C180CRNt carnitine/acylcarnitine translocase 0.37 4.49E-03

Fatty acid oxidation HOCDACBP_f transport of (S)-3-Hydroxyoctadecanoyl-CoA from mitochondria into the cytosol 0.37 4.49E-03

Fatty acid oxidation HOCTDECCRNe transport of 3-hydroxyoctadecanoyl carnitine into extra cellular space 0.37 4.49E-03

Fatty acid oxidation FACOAL1813_b fatty-acid–CoA ligase 0.39 3.21E-03

Fatty acid synthesis DESAT18_5 stearoyl-CoA desaturase (n-C18:0CoA ->n-C18:1CoA) 0.40 2.43E-03

Folate metabolism MTHFR3 5,10-methylenetetrahydrofolatereductase (NADPH) 0.39 2.92E-03

Folate metabolism MTHFD2m_b methylenetetrahydrofolate dehydrogenase (NAD), mitochondrial 0.40 2.39E-03

Folate metabolism r0792_b
5-methyltetrahydrofolate:NAD+ oxidoreductase One carbon pool by folate / Methane

metabolism EC:1.5.1.20
0.40 2.26E-03

Glutamate metabolism GLUDym_f glutamate dehydrogenase (NADP), mitochondrial 0.35 7.66E-03

Glycerophospholipid metabolism CLS_hs cardiolipin synthase (homo sapiens) 0.41 1.56E-03

Glycerophospholipid metabolism PAFHe Platelet-activating factor acetylhydrolase -0.36 5.86E-03

Glycerophospholipid metabolism G3PD1_b glycerol-3-phosphate dehydrogenase (NAD) 0.35 7.68E-03

Glycine, serine, alanine and threonine

metabolism
GHMT2r_f glycine hydroxymethyltransferase, reversible 0.34 9.46E-03

Miscellaneous RE0702E RE0702 -0.38 4.37E-03

Miscellaneous RE1860E_f RE1860 -0.38 4.24E-03

Miscellaneous RE2513E RE2513 -0.35 8.31E-03

Miscellaneous RE2514E_b RE2514 -0.38 3.46E-03

NAD metabolism NADNe NAD nucleosidase,extracellular -0.37 4.54E-03

NAD metabolism NADPNe NADP nucleosidase,extracellular -0.37 4.52E-03

Purine catabolism PUNP5_f purine-nucleoside phosphorylase (Inosine) 0.35 9.07E-03

Purine catabolism RE2888E RE2888 0.40 2.53E-03

Pyrimidine catabolism D3AIBTm_b D-3-Amino-isobutanoate:pyruvate aminotransferase, mitochondrial 0.34 9.68E-03

Sphingolipid metabolism DHCRD1 dihydroceramide desaturase 0.36 6.23E-03
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Sphingolipid metabolism DSAT dihydrosphingosine N-acyltransferase 0.41 1.56E-03

Sphingolipid metabolism SMS Sphingomyelin synthase (homo sapiens) 0.41 1.56E-03

Squalene and cholesterol synthesis HMGCOARc Hydroxymethylglutaryl CoA reductase (ir) in cytosol 0.41 1.56E-03

Squalene and cholesterol synthesis IPDDI_f isopentenyl-diphosphate D-isomerase 0.39 2.92E-03

Starch and sucrose metabolism GAMYe glucoamylase, extracellular (glygn5 ->malt) -0.39 2.80E-03

Transport, endoplasmic reticular CHSTEROLtrc_f transport of cholesterol into the cytosol 0.41 1.56E-03

Transport, endoplasmic reticular FRDPtcr_f transport of Farnesyl diphosphate into the endoplasmic reticulum 0.42 1.28E-03

Transport, endoplasmic reticular FORtr_b FOR transporter, endoplasmic reticulum 0.41 1.56E-03

Transport, endoplasmic reticular r1051_b Vesicular transport 0.41 1.56E-03

Transport, extracellular PNTEHe PNTEHe -0.41 1.89E-03

Transport, extracellular ADNt_f adenosine facilated transport in cytosol 0.37 4.81E-03

Transport, extracellular ADNt4 adenosine transport (Na/Adn cotransport) 0.40 2.08E-03

Transport, extracellular ARACHDt2_f fatty acid transport via diffusion 0.38 3.92E-03

Transport, extracellular ARACHt arachidate transport by FAT 0.40 2.05E-03

Transport, extracellular ASCBt_f L-ascorbate transport via facilitated diffusion 0.38 4.34E-03

Transport, extracellular CLHCO3tex2 chloride transport via bicarbonate countertransport (2:1) 0.35 8.22E-03

Transport, extracellular DOPAtu_f Dopamine uniport 0.40 2.14E-03

Transport, extracellular FATP3t_f fatty acid electroneutral transport 0.40 2.49E-03

Transport, extracellular FATP4t_f fatty acid electroneutral transport 0.40 2.49E-03

Transport, extracellular FATP5t_f fatty acid electroneutral transport 0.39 3.09E-03

Transport, extracellular FATP6t_f fatty acid electroneutral transport 0.36 5.90E-03

Transport, extracellular FATP9t_f fatty acid electroneutral transport 0.41 1.53E-03

Transport, extracellular INSt_f Inosine transport (diffusion) 0.42 1.40E-03

Transport, extracellular LYStiDF L-lysine transport via diffusion (extracellular to cytosol) 0.34 9.24E-03

Transport, extracellular METtec_f L-methionine transport via diffusion (extracellular to cytosol) 0.34 9.71E-03

Transport, extracellular NRPPHRtu_f Norepinephrine uniport 0.39 2.73E-03

Transport, extracellular PGLYCt_f phosphatidylglycerol transport 0.41 1.56E-03

Transport, extracellular PHEtec_f L-phenylalanine transport via diffusion (extracellular to cytosol) 0.35 8.57E-03

Transport, extracellular SRTNtu_f Serotonin uniport 0.39 2.60E-03

Transport, extracellular THYMDt1 thymd transport 0.37 4.74E-03

Transport, extracellular TRPt_f L-tryptophan transport 0.34 9.52E-03

Transport, extracellular r0839_f Postulated transport reaction 0.43 9.26E-04

Transport, extracellular r1144 Major Facilitator(MFS) TCDB:2.A.18.6.3 0.37 4.86E-03

Transport, extracellular r1551_f Amino Acid-Polyamine-Organocation (APC) TCDB:2.A.3.8.1 0.34 9.89E-03

Transport, extracellular r1557_f Amino Acid-Polyamine-Organocation (APC) TCDB:2.A.3.8.1 0.34 9.79E-03

Transport, extracellular r1571_f Amino Acid-Polyamine-Organocation (APC) TCDB:2.A.3.8.1 0.36 6.21E-03
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Transport, extracellular r1584_f Amino Acid-Polyamine-Organocation (APC) TCDB:2.A.3.8.1 0.35 8.06E-03

Transport, extracellular r1625_f Amino Acid-Polyamine-Organocation (APC) TCDB:2.A.3.8.1 0.38 3.88E-03

Transport, extracellular r1659_f Amino Acid-Polyamine-Organocation (APC) TCDB:2.A.3.8.1 0.37 5.03E-03

Transport, extracellular r1660_f Amino Acid-Polyamine-Organocation (APC) TCDB:2.A.3.8.1 0.42 1.19E-03

Transport, extracellular r1665_f Y+LAT2 Utilized transport 0.41 1.52E-03

Transport, extracellular r1666_f Y+LAT2 Utilized transport 0.42 1.44E-03

Transport, extracellular r2101_f Major Facilitator(MFS) TCDB:2.A.1.13.1 0.44 6.49E-04

Transport, extracellular r2102_f Major Facilitator(MFS) TCDB:2.A.1.13.1 0.37 4.46E-03

Transport, extracellular r2105_f Major Facilitator(MFS) TCDB:2.A.1.13.1 0.40 2.13E-03

Transport, extracellular r2106_f Major Facilitator(MFS) TCDB:2.A.1.13.1 0.35 9.04E-03

Transport, extracellular r2107_f Major Facilitator(MFS) TCDB:2.A.1.13.1 0.39 2.64E-03

Transport, extracellular r2108_f Major Facilitator(MFS) TCDB:2.A.1.13.1 0.39 3.04E-03

Transport, extracellular r2120_f Major Facilitator(MFS) TCDB:2.A.1.13.1 0.35 7.69E-03

Transport, extracellular r2125_f Major Facilitator(MFS) TCDB:2.A.1.13.1 0.44 6.59E-04

Transport, extracellular r2126_f Major Facilitator(MFS) TCDB:2.A.1.13.1 0.43 8.25E-04

Transport, extracellular r2218_f Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.5 0.39 3.00E-03

Transport, extracellular r2219_f Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.5 0.39 3.00E-03

Transport, extracellular r2220_f Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.5 0.39 3.00E-03

Transport, extracellular r2251_f Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.5 0.41 1.71E-03

Transport, extracellular r2252_f Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.5 0.41 1.71E-03

Transport, extracellular r2253_f Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.5 0.41 1.71E-03

Transport, extracellular r2284_f Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.5 0.35 8.44E-03

Transport, extracellular r2285_f Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.5 0.35 8.44E-03

Transport, extracellular r2286_f Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.5 0.35 8.44E-03

Transport, extracellular r2309_f Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.14 0.37 5.37E-03

Transport, extracellular r2312_f Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.14 0.42 1.43E-03

Transport, extracellular r2525_f Major Facilitator(MFS) TCDB:2.A.1.44.1 0.37 5.00E-03

Transport, extracellular r2532_f Major Facilitator(MFS) TCDB:2.A.1.44.1 0.35 7.50E-03

Transport, extracellular r2534_f Major Facilitator(MFS) TCDB:2.A.1.44.1 0.36 6.81E-03

Transport, extracellular r2535_f Major Facilitator(MFS) TCDB:2.A.1.44.1 0.35 9.08E-03

Transport, extracellular CYSSNAT5tc_f
transport of L-Cysteine into the cell coupled with co-transport with Sodium

and counter transport with proton by SNAT5 transporter.
0.36 6.31E-03

Transport, extracellular GLYSNAT5tc_f
transport of Glycine into the cell coupled with co-transport with Sodium and

counter transport with proton by SNAT5 transporter.
0.36 7.06E-03

Transport, extracellular 5MTHFt2_b 5-methyltetrahydrofolate transport via anion exchange 0.39 3.11E-03

Transport, extracellular BTNt2_b Biotin reversible transport via proton symport 0.38 3.61E-03
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Transport, extracellular CO2t_b CO2 transporter via diffusion 0.43 1.02E-03

Transport, extracellular DOPAt4_2_r_b Dopamine reversible transport in via sodium symport (1:2) 0.39 3.08E-03

Transport, extracellular ELAIDt_b fatty acid transport via diffusion 0.39 3.21E-03

Transport, extracellular FOLt2_b folate transport via anion exchange 0.35 7.67E-03

Transport, extracellular GLYBt4_2_r_b Betaine transport (sodium symport) (2:1) 0.43 1.06E-03

Transport, extracellular MANt4_b D-mannose transport via sodium cotransport 0.39 2.74E-03

Transport, extracellular NAIt_b Na+ / iodide cotransport 0.39 3.00E-03

Transport, extracellular NAt_b sodium transport (uniport) 0.40 2.49E-03

Transport, extracellular NRPPHRt4_2_r_b Norepinephrine reversible transport in via sodium symport (1:2) 0.39 2.78E-03

Transport, extracellular PRODt2r_b D-proline reversible transport via proton symport 0.40 2.52E-03

Transport, extracellular r0942_b Neurotransmitter:Sodium Symporter (NSS) TCDB:2.A.22.3.4 0.40 2.51E-03

Transport, extracellular r1608_b Amino Acid-Polyamine-Organocation (APC) TCDB:2.A.3.8.1 0.39 3.23E-03

Transport, extracellular r1615_b Amino Acid-Polyamine-Organocation (APC) TCDB:2.A.3.8.1 0.41 1.91E-03

Transport, extracellular r1654_b Amino Acid-Polyamine-Organocation (APC) TCDB:2.A.3.8.1 0.37 4.80E-03

Transport, extracellular r2080_b Major Facilitator(MFS) TCDB:2.A.1.13.1 0.48 1.87E-04

Transport, extracellular r2081_b Major Facilitator(MFS) TCDB:2.A.1.13.1 0.44 6.64E-04

Transport, extracellular r2082_b Major Facilitator(MFS) TCDB:2.A.1.13.1 0.51 5.72E-05

Transport, extracellular r2083_b Major Facilitator(MFS) TCDB:2.A.1.13.1 0.40 2.20E-03

Transport, extracellular r2084_b Major Facilitator(MFS) TCDB:2.A.1.13.1 0.45 4.70E-04

Transport, extracellular r2085_b Major Facilitator(MFS) TCDB:2.A.1.13.1 0.45 5.01E-04

Transport, extracellular r2087_b Major Facilitator(MFS) TCDB:2.A.1.13.1 0.41 1.67E-03

Transport, extracellular r2110_b Major Facilitator(MFS) TCDB:2.A.1.13.1 0.41 1.91E-03

Transport, extracellular r2113_b Major Facilitator(MFS) TCDB:2.A.1.13.1 0.41 1.64E-03

Transport, extracellular r2114_b Major Facilitator(MFS) TCDB:2.A.1.13.1 0.35 7.56E-03

Transport, extracellular r2233_b Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.5 0.42 1.36E-03

Transport, extracellular r2234_b Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.5 0.42 1.36E-03

Transport, extracellular r2235_b Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.5 0.42 1.36E-03

Transport, extracellular r2485_b Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.14 0.39 2.92E-03

Transport, extracellular r2486_b Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.14 0.39 2.92E-03

Transport, extracellular r2487_b Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.14 0.39 2.92E-03

Transport, extracellular r2494_b Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.14 0.44 6.55E-04

Transport, extracellular r2495_b Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.14 0.44 6.55E-04

Transport, extracellular r2496_b Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.14 0.44 6.55E-04

Transport, extracellular GLYt7_311_r_b glycine reversible transport via sodium and chloride symport (3:1:1) 0.36 6.66E-03

Transport, extracellular HCO3_NAt_b bicarbonate transport (Na/HCO3 cotransport) 0.35 7.97E-03

Transport, extracellular GLYCTDle_b difussion of glycerol accross the brush border membrane 0.46 3.58E-04
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Transport, extracellular PRO_Dtde_b D-proline transport, extracellular 0.40 2.52E-03

Transport, extracellular glyc3pte_b glycerol 3-phosphate transport 0.36 5.76E-03

Transport, lysosomal r1052 Vesicular transport 0.41 1.56E-03

Transport, mitochondrial r1146_f Biosynthesis of steroids Enzyme catalyzed 0.41 1.56E-03

Transport, mitochondrial CHSTEROLt2_f cholesterol intracellular transport 0.41 1.56E-03

Transport, mitochondrial PROtm_f L-proline transport, mitochondrial 0.38 3.99E-03

Transport, mitochondrial ACt2m_b acetate mitochondrial transport via proton symport 0.38 4.28E-03

Transport, mitochondrial BHBtm_b (R)-3-Hydroxybutanoate mitochondrial transport via H+ symport 0.36 6.40E-03

Transport, mitochondrial CHSTEROLt3_b cholesterol intracellular transport 0.41 1.56E-03

Transport, mitochondrial THFtm_b 5,6,7,8-Tetrahydrofolate transport, diffusion, mitochondrial 0.41 1.52E-03

Transport, mitochondrial r0911_b Facilitated diffusion 0.35 9.10E-03

Transport, peroxisomal FRDPtr_f lipid, flip-flop intracellular transport 0.38 3.93E-03
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Table B.2 | Full list of metabolic reactions whose predicted fluxes correlate with breast cancer patient survival. Recon reactions significantly
correlated to breast cancer patient survival obtained from the GDAC repository [191].

Pathway Reaction Reaction name Pearson r p-value

r0267_f
CMP-N-acetylneuraminate,ferrocytochrome-b5:oxygen oxidoreductase

(N-acetyl-hydroxylating) Aminosugars metabolism EC:1.14.18.2
-0.27 5.99E-03

r0407_f
Sedoheptulose 1,7-bisphosphate D-glyceraldehyde-3-phosphate-lyase Carbon fixation

EC:4.1.2.13
-0.29 2.44E-03

r0610_f CTP:D-Tagatose 6-phosphate 1-phosphotransferase Galactose metabolism EC:2.7.1.11 -0.26 8.13E-03

r1135_f hydroxysteroid (17-beta) dehydrogenase 7 Biosynthesis of steroids EC:1.1.1.270 -0.27 5.03E-03

biomass_reaction Generic human biomass reaction -0.27 5.03E-03

biomass_protein protein component of biomass -0.27 5.03E-03

biomass_DNA DNA component of biomass -0.27 5.03E-03

biomass_RNA RNA component of biomass -0.27 5.03E-03

biomass_carbohydrate carbohydrate component of biomass -0.27 5.03E-03

biomass_lipid lipid component of biomass -0.27 5.03E-03

biomass_other other component of biomass -0.27 5.03E-03

r0268_b cytidine monophospho-N-acetylneuraminic acid hydroxylase EC:1.14.18.2 -0.27 5.99E-03

r0611_b ITP:D-Tagatose 6-phosphate 1-phosphotransferase Galactose metabolism EC:2.7.1.11 -0.26 8.13E-03

Arginine and Proline Metabolism r0617_f
trans-4-Hydroxy-L-proline:NADP+ 5-oxidoreductase

Arginine and proline metabolism EC:1.5.1.2
-0.27 5.99E-03

Arginine and Proline Metabolism r0615_b
trans-4-Hydroxy-L-proline:NAD+ 5-oxidoreductase

Arginine and proline metabolism EC:1.5.1.2
-0.27 5.99E-03

Bile acid synthesis AKR1C41
aldo-keto reductase family 1, member C4 (chlordecone reductase;

3-alpha hydroxysteroid dehydrogenase, type I; dihydrodiol dehydrogenase 4)
-0.27 5.99E-03

Bile acid synthesis AKR1C42
aldo-keto reductase family 1, member C4 (chlordecone reductase;

3-alpha hydroxysteroid dehydrogenase, type I; dihydrodiol dehydrogenase 4)
-0.27 5.99E-03

Bile acid synthesis r0747_f

3alpha,7alpha-Dihydroxy-5beta-cholestane:NADP+ oxidoreductase (B-specific);

3alpha,7alpha-Dihydroxy-5beta-cholestane:NADP+ oxidoreductase Bile acid

biosynthesis EC:1.1.1.50

-0.27 5.99E-03

Bile acid synthesis r0750_f

3alpha,7alpha,12alpha-Trihydroxy-5beta-cholestane:NADP+ oxidoreductase (B-specific);

3alpha,7alpha,12alpha-Trihydroxy-5beta-cholestane:NADP+ oxidoreductase Bile acid

biosynthesis EC:1.1.1.50

-0.27 5.99E-03

Bile acid synthesis RE1807C_f RE1807 -0.27 5.99E-03

Bile acid synthesis RE2626C_f RE2626 -0.27 5.99E-03

Bile acid synthesis RE3346C_f RE3346 -0.27 5.99E-03
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Pathway Reaction Reaction name Pearson r p-value

Bile acid synthesis r0688_b
3alpha,7alpha-Dihydroxy-5beta-cholestan-26-al:NAD+ oxidoreductase

Bile acid biosynthesis EC:1.2.1.3
-0.27 5.99E-03

Cholesterol metabolism C14STRr C-14 sterol reductase -0.27 5.03E-03

Cholesterol metabolism C4STMO1r C-4 sterol methyl oxidase (4,4-dimethylzymosterol) -0.27 5.03E-03

Cholesterol metabolism DHCR71r 7-dehydrocholesterol reductase -0.27 5.20E-03

Cholesterol metabolism EBP1r 3-beta-hydroxysteroid-delta(8),delta(7)-isomerase -0.29 3.01E-03

Cholesterol metabolism LNSTLSr lanosterol synthase -0.27 5.03E-03

Cholesterol metabolism LSTO1r Lathosterol oxidase -0.27 5.20E-03

Cholesterol metabolism SQLEr Squalene epoxidase, endoplasmic reticular (NADP) -0.27 5.03E-03

Cholesterol metabolism SQLSr Squalene synthase -0.27 5.03E-03

Cholesterol metabolism r0170_f
Farnesyl-diphosphate:farnesyl-diphosphate farnesyltransferase

Biosynthesis of steroids EC:2.5.1.21
-0.27 5.03E-03

Cholesterol metabolism r0575_f
Presqualene diphosphate:farnesyl-diphosphate farnesyltransferase

Biosynthesis of steroids EC:2.5.1.21
-0.27 5.03E-03

Cholesterol metabolism r0781_f
Lanosterol,NADPH:oxygen oxidoreductase (14-methyl cleaving)

Biosynthesis of steroids EC:1.14.13.70
-0.27 5.03E-03

Eicosanoid metabolism RE3566C_b RE3566 -0.27 5.65E-03

Exchange/demand reaction EX_for(e)_f Formate exchange -0.27 5.03E-03

Exchange/demand reaction EX_lac_D(e)_f D-lactate exchange -0.26 7.67E-03

Exchange/demand reaction EX_HC02203(e)_f prostaglandin-a2 exchange -0.27 5.65E-03

Exchange/demand reaction EX_glyc(e)_b Glycerol exchange -0.26 7.97E-03

Exchange/demand reaction EX_his_L(e)_b exchange reaction for L-histidine -0.27 5.03E-03

Exchange/demand reaction EX_met_L(e)_b L-Methionine exchange -0.27 5.15E-03

Exchange/demand reaction EX_pglyc_hs(e)_b phosphatidylglycerol (homo sapiens) exchange -0.27 5.03E-03

Exchange/demand reaction EX_phe_L(e)_b exchange reaction for L-phenylalanine -0.27 5.36E-03

Exchange/demand reaction EX_thr_L(e)_b L-Threonine exchange -0.27 5.03E-03

Exchange/demand reaction EX_trp_L(e)_b L-Tryptophan exchange -0.27 5.03E-03

Exchange/demand reaction EX_xylt(e)_b exchange reaction for xylitol -0.30 2.15E-03

Folate metabolism MTHFC_f methenyltetrahydrofolate cyclohydrolase 0.27 4.91E-03

Folate metabolism MTHFD2_f methylenetetrahydrofolate dehydrogenase (NAD) 0.28 3.38E-03

Fructose and mannose metabolism r0191 UTP:D-fructose-6-phosphate 1-phosphotransferase EC:2.7.1.11 -0.28 3.41E-03

Glycerophospholipid metabolism CLS_hs cardiolipin synthase (homo sapiens) -0.27 5.03E-03

Glycine, serine, alanine and threonine

metabolism
r0160 L-Serine:pyruvate aminotransferase Glycine, serine and threonine metabolism EC:2.6.1.5 -0.25 9.06E-03

Glycine, serine, alanine and threonine

metabolism
r0553_f p-Cumic alcohol:NADP+ oxidoreductase Glycine, serine and threonine metabolism EC:1.2.1.8 -0.27 5.99E-03
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Pathway Reaction Reaction name Pearson r p-value

Glycine, serine, alanine and threonine

metabolism
r0552_b p-cumic alcohol:NAD+ oxidoreductase Glycine, serine and threonine metabolism EC:1.2.1.8 -0.27 5.99E-03

Glycolysis/gluconeogenesis ENO_f enolase -0.27 5.23E-03

Glycolysis/gluconeogenesis FBA_f fructose-bisphosphate aldolase -0.26 7.75E-03

Glycolysis/gluconeogenesis GAPD_f glyceraldehyde-3-phosphate dehydrogenase -0.29 2.51E-03

Glycolysis/gluconeogenesis TPI_f triose-phosphate isomerase -0.30 1.85E-03

Glycolysis/gluconeogenesis r0165 UTP:pyruvate O2-phosphotransferase EC:2.7.1.40 -0.27 6.42E-03

Glycolysis/gluconeogenesis PGK_b phosphoglycerate kinase -0.29 2.43E-03

Glycolysis/gluconeogenesis PGM_b phosphoglycerate mutase -0.26 6.77E-03

Nucleotide interconversion CYTK6_f cytidylate kinase (CMP,CTP) -0.30 2.26E-03

Pentose phosphate pathway XYLUR_b xylulose reductase -0.27 6.22E-03

Pentose phosphate pathway r0784_b
xylitol:NAD oxidoreductase Pentose and glucuronate

interconversions EC:1.1.1.15
-0.27 5.92E-03

Pyrimidine synthesis RE0453C_b RE0453 -0.26 8.24E-03

Pyruvate metabolism LDH_D_b D-lactate dehydrogenase -0.26 7.67E-03

Sphingolipid metabolism DHCRD1 dihydroceramide desaturase -0.27 5.28E-03

Sphingolipid metabolism DSAT dihydrosphingosine N-acyltransferase -0.27 5.03E-03

Sphingolipid metabolism SMS Sphingomyelin synthase (homo sapiens) -0.27 5.03E-03

Squalene and cholesterol synthesis HMGCOARc Hydroxymethylglutaryl CoA reductase (ir) in cytosol -0.27 5.03E-03

Transport, endoplasmic reticular CHSTEROLtrc_f transport of cholesterol into the cytosol -0.27 5.03E-03

Transport, endoplasmic reticular FRDPtcr_f transport of Farnesyl diphosphate into the endoplasmic reticulum -0.27 6.55E-03

Transport, endoplasmic reticular FORtr_b FOR transporter, endoplasmic reticulum -0.27 5.03E-03

Transport, endoplasmic reticular r1051_b Vesicular transport -0.27 5.03E-03

Transport, extracellular ALAGLYexR_f L-alanine/glycine reversible exchange 0.28 3.90E-03

Transport, extracellular PGLYCt_f phosphatidylglycerol transport -0.27 5.03E-03

Transport, extracellular XYLTt_f Xylitol transport via passive diffusion -0.30 2.15E-03

Transport, extracellular r1993 Amino Acid-Polyamine-Organocation (APC) TCDB:2.A.3.8.15 -0.29 3.14E-03

Transport, extracellular r1996 Amino Acid-Polyamine-Organocation (APC) TCDB:2.A.3.8.15 -0.25 9.16E-03

Transport, extracellular r1997 Amino Acid-Polyamine-Organocation (APC) TCDB:2.A.3.8.15 -0.28 4.13E-03

Transport, extracellular r2006 Amino Acid-Polyamine-Organocation (APC) TCDB:2.A.3.8.15 -0.26 6.62E-03

Transport, extracellular r2203_f Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.14 -0.25 9.52E-03

Transport, extracellular r2204_f Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.14 -0.25 9.52E-03

Transport, extracellular r2205_f Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.14 -0.25 9.52E-03

Transport, extracellular D_LACt2_b D-lactate transport via proton symport -0.26 7.67E-03

Transport, extracellular r2094_b Major Facilitator(MFS) TCDB:2.A.1.13.1 -0.29 3.20E-03

Transport, extracellular r2260_b Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.5 -0.27 5.19E-03
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Transport, extracellular r2261_b Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.5 -0.27 5.19E-03

Transport, extracellular r2262_b Resistance-Nodulation-Cell Division (RND) TCDB:2.A.60.1.5 -0.27 5.19E-03

Transport, lysosomal r1052 Vesicular transport -0.27 5.03E-03

Transport, mitochondrial r1146_f Biosynthesis of steroids Enzyme catalyzed -0.27 5.03E-03

Transport, mitochondrial CHSTEROLt2_f cholesterol intracellular transport -0.27 5.03E-03

Transport, mitochondrial CHSTEROLt3_b cholesterol intracellular transport -0.27 5.03E-03

Transport, nuclear DGTPtn_f dGTP diffusion in nucleus -0.27 5.03E-03

Transport, peroxisomal FRDPtr_f lipid, flip-flop intracellular transport -0.28 4.56E-03





Appendix C

Development of a diagnostic panel for

lysosomal storage disorders

LSDs are a group of monogenic metabolic disorders, each one leading to the accumulation

of specific substrates due to the deficit of a lysosomal hydrolase. Although individually rare,

overall incidence of

acrshortpllsd is estimated around 1:5000-1:8000 [198]. Affected children generally appear

normal at birth and the first signs and symptoms develop during the first few months of life

and progressively worsen. However LSDs can occur also as late-onset juvenile and adult

forms. The diagnosis of LSDs requires clinical expertise as most features are not specific and

could be shared by different LSDs; in some cases the diagnosis could be very difficult and

may take several years. The first diagnostic assessments are biochemical assays to evaluate

the accumulation of specific substrates and/or the enzymatic activity of one or more enzymes.

Then molecular analysis of the suspected gene is performed to reveal the disease-causing

genetic variants. This diagnostic route could be potentially reversed given the accessibility to

NGS technologies which allow the simultaneous sequencing of several genes in a short time.

An approach of targeting sequencing could be the primary screening tool in the diagnosis

of LSDs, thereby drastically shortening the time from the onset of first symptoms to the

diagnosis formulation.

In this study we evaluated a targeted sequencing panel as a potential diagnostic tool for

LSDs. In particular, bioinformatics analysis was involved in the panel design and validation.

An important novelty is the inclusion of intronic regions, which may allow identifying

novel putative regulatory regions. This feature requires hypothesising functionally relevant

sequences in non-coding regions and predicting the potentially pathogenic effect of mutations.
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C.1 Materials and methods

C.1.1 Selection of target genomic regions

Full list of genes included in
the diagnostic panel

AGA GUSB

ARSA HEXA

ARSB HEXB

ASAH1 HGSNAT

CLN3 HYAL1

CLN5 IDS

CLN6 IDUA

CLN8 LAMP2

CTNS LIPA

CTSA MAN2B1

CTSD MANBA

CTSK MCOLN1

DNAJC5 MFSD8

FUCA1 NAGA

GAA NAGLU

GALC NEU1

GALNS NPC1

GBA NPC2

GLA PPT1

GLB1 PSAP

GM2A SGSH

GNE SLC17A5

GNPTAB SMPD1

GNPTG SUMF1

GNS TPP1

Table C.1 A total of 50 genes were
included in the panel, associated to
most LSDs.

In the selection of target genes, we employed the Or-

phanet list of LSDs, the Society for the Study of Inborn

Errors of Metabolism LSD list and the list reported by

Fernandez-Marmiesse and colleagues in their panel design

[199]. Genes associated with extremely rare disorders and

those disorders presenting a very peculiar phenotype were

removed from the list.

We developed a two-step pipeline to obtain the ge-

nomic coordinates of target regions, including both exonic

and intronic sequences (Figure C.1). First, we selected

likely functionally relevant regions by means of an evolu-

tionary approach, in order to identify the CIF [200]. Base-

wise conservation estimates were calculated from a multi-

ple alignment through a Hidden Markov model. We chose

to align against the genomes of 33 placental mammalian

organisms to get reasonably relevant sequences. Obtained

regions are merged together and filtered according to their

length and distance. Next, we combined Ensembl and

RefSeq annotations to define exonic and intronic regions,

thereby obtaining all exons and CIFs within the genes of

interest [120, 201].

The values of filtering parameters were chosen in such

a way to optimise coverage and number of sequences

relatively to final costs: conservation score greater than

0.85, 20 base pairs minimum length, 2 base pairs maximum distance between two fragments.

For each gene the first 50 CIFs with highest score were included in the panel design. The Ion

AmpliSeq™ platform (Thermo Fisher Scientific) was then used to design a custom panel

including the protein-coding transcripts of selected genes. For each transcript, its exons, a 50

base pairs flanking sequence on each side and both untranslated regions were given to the

Ion Ampliseq™ Designer software as target sequence.
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Pipeline for the determination of target regions and construction of amplicons

Figure C.1 First, PhastCons conservation scores were used to establish the CIFs. Second, exonic and
intronic target regions were determined by means of multiple gene annotations. Third, the amplicons
were designed including all coding and non-coding target regions.

C.1.2 Samples selection

In order to validate the panel, a total of 80 samples were collected from different European

Clinical and Diagnostic Centers and from the Telethon cell line and DNA Biobank from

patients affected by genetic diseases [202]. 59 of them were positive controls, 12 belonged

to patients who were diagnosed only through enzymatic analysis and the remaining 9 came

from suspected LSD patients for which a diagnosis had not been formulated yet.

C.1.3 Variants analysis

We combined three different variant callers to identify reliable mutations. A first analysis

of variants was performed using QueryOR, a platform for variants prioritisation [203].

Prioritisation criteria included frequency less than 0.01, being associated to a true major

allele in the reference genome, possessing deleterious types of substitution and various in

silico pathogenicity scores.

Intronic variants located in the CIFs were filtered in the same manner and further analysed

using different tools. Variants falling in regulatory regions and predicted to have a deleterious

impact were obtained through Ensembl Variant Effect Predictor (VEP) [204]. SPANR was

used to predict both intronic and exonic SNPs affecting RNA splicing [205]. For each variant
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up to 300 nucleotides inside an intron, the tool returns a score representing how strongly the

variant is predicted to impair exon skipping.

C.2 Results

The total target sequence length was 202.59 kilo bases and included 50 LSD genes (Table

C.1) and 230 CIF with an average length of 40 base pairs. The panel design output was a

187.42 kilo bases sequence covered by 1561 amplicons, with an average amplicon length of

240 base pairs and 93% of the whole target sequence covered. Considering only exons, their

flanking sequences and untranslated regions, the target sequence coverage was 92.4%. The

less covered genes resulted DNAJC5, CLN8, IDUA, NPC2, HYAL 1, whose sequence was

covered for a percentage between 55% and 80%. Considering only the coding sequence the

most affected gene is IDUA with 8 exons being partially or totally uncovered.

Variant analysis lead to the identification of pathogenic variants in 64% of the positive

controls. Failed variant detections are caused by: (i) variants not covered by the amplicons due

to panel design; (ii) lowly-covered variants due to poor amplification of specific amplicons;

(iii) large deletions not detected by QueryOR. The analysis of CIF focused on those samples

from undiagnosed patients whose no variants had been found through the previous analysis.

345 intronic SNPs with frequency less than 0.01 or with no frequency (not annotated variants)

filtered by QueryOR were analysed by SPANR and VEP. We selected 14 variants via SPANR

as potentially deleterious, but unfortunately none of them were carried by samples from

undiagnosed patients. The same intronic variants analysed by VEP gave 61 variants mapping

in regulatory regions whose six were carried by undiagnosed samples in promoters, in

promoter flanking regions or in enhancers. A deeper analysis of these variants is ongoing to

verify through by other tools their potential pathogenicity.

The panel analysis lead to confirmation of previous enzymatic diagnoses for 6 out of 12

subjects in which we found both mutations. In two and three samples respectively we found

only one mutation or no mutations. Moreover, two new diagnoses were achieved among the

9 undiagnosed patients. Sanger validations till now performed on biochemically diagnosed

samples confirmed the panel results with exception of one case in which a poor covered

missense mutation was not revealed in the sample.
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Full list of SNPs potentially altering splicing

Variant ID Chromosome Position Reference Alternative Transcript dPSI dPSI percentile Frequency
nucleotide nucleotide

rs140673721 22 42463768 C T chr22:NAGA:-:NM_000262:Exon3 -8,42 0,3 < 0.01
rs113077439 10 73581632 C T chr10:PSAP:-:NM_002778:Exon8 -14,93 0,1 0
rs113077439 10 73581632 C T chr10:PSAP:-:NM_001042466:Exon8 -17,15 0,09 0
rs193302855 16 1412610 A G chr16:GNPTG:+:NM_032520:Exon9 -31,89 0,04 0
rs773281453 17 78079694 G C chr17:GAA:+:NM_001079803:Exon4 -22,25 0,06 0
rs773281453 17 78079694 G C chr17:GAA:+:NM_000152:Exon3 -22,25 0,06 0
rs773281453 17 78079694 G C chr17:GAA:+:NM_001079804:Exon3 -22,25 0,06 0
rs80338815 22 51065593 C T chr22:ARSA:-:NM_000487:Exon2 -22,45 0,06 0
rs80338815 22 51065593 C T chr22:ARSA:-:NM_001085428:Exon2 -17,57 0,08 0

rs121965020 4 981646 C T chr4:IDUA:+:NM_000203:Exon2 -24,96 0,05 0
rs398123224 X 100653456 G A chrX:GLA:-:NM_000169:Exon6 -11,75 0,2 0

NA 12 102179788 A G chr12:GNPTAB:-:NM_024312:Exon5 -19,16 0,08 NA
NA 1 25254063 A C chr1:RUNX3:-:NM_004350:Exon2 -13,39 0,2 NA
NA 14 73678476 G A chr14:PSEN1:+:NM_000021:Exon10 -24,55 0,05 NA
NA 14 73678476 G A chr14:PSEN1:+:NM_007318:Exon10 -24,55 0,05 NA
NA 17 27975363 C T chr17:SSH2:-:NM_001282129:Exon14 -27,93 0,05 NA
NA 17 27975363 C T chr17:SSH2:-:NM_033389:Exon13 -27,93 0,05 NA
NA 1 89585861 C G chr1:GBP2:-:NM_004120:Exon4 -11,5 0,2 NA
NA 19 7591323 A G chr19:MCOLN1:+:NM_020533:Exon3 -14,31 0,2 NA
NA 22 31654275 A C chr22:LIMK2:+:NM_016733:Exon2 -10,93 0,2 NA
NA 22 31654275 A C chr22:LIMK2:+:NM_001031801:Exon2 -10,93 0,2 NA

Table C.2 Variants predicted by SPANR as potentially damaging exon skipping. NA entries represent non-annotated variants.
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