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Data Assimilation in Geomechanics: Characterization of Hydrocarbon Reservoirs

Claudia ZOCCARATO

The prediction of the stress field distribution induced by the pore pressure change

in deep hydrocarbon reservoirs and the consequent compaction of the porous rock for-

mation is modeled with the aid of a Finite-Element (FE) geomechanical model. Despite

the reliability of the model, which has been tested in several previous applications,

many sources of uncertainty may affect the model outcome in terms of ground surface

displacements. The uncertainty are mainly related to the mathematical model itself,

that is an approximation reproducing a real and complex system, the initial and bound-

ary conditions, the forcing terms, and the model parameters. The latter are the physical

properties of the reservoir that are usually a-priori poorly known. A proper estimation

of these parameters using a deterministic approach is discouraged as several param-

eters combinations may equally reproduce the observed data. Instead, the reservoir

characterization is here performed by establishing a stochastic approach providing also

for the quantification of the uncertainties affecting the parameter calibration. For this

purpose, an ensemble-based data assimilation algorithm, i.e., the Ensemble Smoother,

is elected among the available literature approaches. The methodology is investigated

and tested in both synthetic cases and in real case applications by assimilating the avail-

able observations from in-situ measurements of ground-surface displacements. The

characterization of the reservoir rock properties is provided for an Underground Gas

Storage (UGS) reservoir and an offshore producing gas reservoir. Different set of pa-

rameters are estimated depending on the available information on the different fields.

The parameters of a transversely isotropic model are calibrated using horizontal and
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vertical displacements from Persistent Scatterer Interferometry (PSI) measured above

the UGS field, while vertical displacements from a time-lapse bathymetry are used to

calibrate the uniaxial vertical compressibility of an isotropic constitutive law character-

izing the behaviour of the offshore gas reservoir. Generally, it is obtained a satisfactory

estimation of the geomechanical parameters with a significant spread reduction of the

prior probability distributions when synthetic measurements, i.e., the displacements

generated by an independent model run, are assimilated. However, more difficulties

are encountered using real observations. This study gives indications on the main fac-

tors influencing the geomechanical characterization when assimilating movements of

the land surface. The numerical results underline the importance of the consistency

between the forward model and the assimilated measurements with an appropriate se-

lection of data necessary to eliminate potential biases of the measurements and/or the

modeling procedure.
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Lo stato tensionale indotto dalla variazione di pressione in giacimenti profondi e la con-

seguente compattazione delle formazioni geologiche sono simulati con l’ausilio di un

modello geomeccanico agli Elementi Finiti (FEM). Nei decenni passati, il citato mod-

ello è stato utilizzato in molteplici applicazioni e, tuttavia, le incertezze introdotte nella

modellazione sono numerose e possono influire significativamente sulla risposta del

modello, in termini di spostamenti superficiali. Le incertezze sono principalmente

legate alla semplificazione intrinseca nel processo di modellazione, alle scarsamente

note condizioni iniziali e al contorno, alle forzanti esterne e ai parametri del mod-

ello, e cioè le proprietà fisiche del giacimento, solitamente non conosciute a-priori.

La stima di questi ultimi è ottenuta, in questo lavoro di tesi, attraverso lo sviluppo e

l’implementazione di metodologie di tipo probabilistico che permettono di quantificare

anche il grado di incertezza associato alla stima dei parametri del modello. Per questo

scopo viene utilizzato il cosiddetto Ensemble Smoother, un particolare algoritmo di

data assimilation basato su un approccio di tipo Monte Carlo. La metodologia pro-

posta è stata applicata e testata sia su casi sintetici che su casi reali assimilando dati di

spostamento superficiale misurati in-situ. I parametri geomeccanici sono stati stimati

in due specifici giacimenti. Nel primo caso, si tratta di un sito per lo stoccaggio di gas

metano mentre, il secondo caso, riguarda un sito offshore utilizzato per l’estrazione di

gas. Nei due casi, per descrivere il comportamento geomeccanico del giacimento, sono

state utilizzate leggi costitutive differenti, sulla base delle osservazioni disponibili nei

due campi di interesse. In un caso, i parametri di un modello trasversalmente isotropo
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sono stati stimati usando misure interferometriche satellitari di spostamento superfi-

ciale sia orizzontale che verticale disponibili sul sito di stoccaggio. Nell’altro caso, una

legge costitutiva più semplice di tipo isotropo è stata calibrata nel sito offshore dove le

osservazioni a disposizione forniscono solo la componente verticale dello spostamento,

stimata da una mappa differenziale di batimetria. Nei test sintetici, è stato dimostrato

che la metodologia permette di valutare in modo soddisfacente i parametri geomecca-

nici con una riduzione notevole dell’incertezza inizialmente ipotizzata per i parametri

in gioco. Tuttavia, la stima degli stessi è più difficile nei casi reali dove la discrepanza

tra il risultato del modello FEM e le misure assimilate può suggerire una preliminare

selezione delle misure disponibili per eliminare potenziali evidenti errori nelle misure

stesse.
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Chapter 1

Introduction

This thesis is the outcome of a three-years research project, which was the initiative of

the Department of Civil, Architectural and Environmental Engineering of the Univer-

sity of Padova (Italy), the Department of Civil and Environmental Engineering of the

Colorado State University (Colorado, USA), and the Italian multinational oil and gas

company eni S.p.A. The main objective of the ‘Data Assimilation of SAR-Based Measure-

ments for Geomechanical Characterization’(DAG) project was to develop and implement a

Data Assimilation (DA) based computational framework for characterizing the geome-

chanical parameters and the constitutive relationship of deep gas bearing formations

of the Po river Plain and the Upper Adriatic sedimentary basin, Italy.

Over the last decades, the geomechanical modeling of deep reservoirs has attracted

a continuous interest with a growing need for the development of reliable models to

forecast and prevent the possible environmental impacts due to the oil and gas ac-

tivities, e.g., anthropogenic land subsidence/heave and induced seismicity. Typically

much of uncertainty affects the geomechanical modeling of real porous media. This is

mainly related to the initial and boundary conditions prescribed to the mathematical

models, the forcing terms, the system parameters or the model itself that may be unable

to capture the full behavior of the occurrence. For this reason, the uncertainty quantifi-

cation plays an important role for a reliable assessment of the model outcome and great

efforts are therefore devoted to the implementation of stochastic approaches to adapt

the classical deterministic workflows and improve the computation of the uncertainties

of the model solutions.

Evaluating and reducing the uncertainties related to the geomechanical modeling

of deep reservoirs is the main goal of this thesis with the final target to improve the

1
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geomechanical characterization of the porous rock formations. In particular, the aim is

at reducing the uncertainty of the unknown model parameters using a DA approach.

DA consists of the combination of two main sources of information, i.e., the forecast so-

lution from the numerical model and the observations of the physical system. In other

words, this approach looks for an update of the model variables and parameters in-

ferring the response using available measurements. Although several DA algorithms

are available in literature, the investigation is here restricted to the so-called ensem-

ble based or Monte Carlo methods to stochastically simulate the model response. In

particular, the Ensemble Smoother (ES) algorithm is implemented to solve the inverse

problem by incorporating all available observations in only one analysis step.

A different approach is also preliminarily investigated thanks to the collaboration

with the Institute of Scientific Computing of the Technische Universitat Braunschweig

(Germany). In fact, due to the slow convergence of the Monte Carlo methods and the

high computational cost required for large and complex reservoir models, the gener-

alized polynomial chaos (gPCE) expansion may provide a valuable alternative. gPCE

is a non-sampling-based method to evaluate the propagation of the prior uncertainty

through the forward problem using a surrogate model based on the projection of the

outputs on a basis of stochastic polynomials. The comparison of this approach with the

ensemble-based methods will be briefly discussed.

1.1 Problem Statement and Study Objectives

Consider a deep hydrocarbon reservoir and the processes of fluid production from the

subsurface. The ensuing compaction of the porous rock formation is a well-known

consequence which in turn causes the deformation of the reservoir overburden and the

settlement of the ground surface. A mathematical model to simulate this physical sys-

tem aiming at predicting the anthropogenic land subsidence can generally be written

as:

u(x, t) = G(ψ(x, t), α) (1.1)

where u(x, t) is the model outcome, i.e., the land surface displacement, function of the

space x and time t, G is the model operator, ψ(x, t) is the model state, i.e., the pore
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fluid pressure, and, α is a vector of the model parameters which can possibly vary in

space and time. The forward problem relies on the solution of the poro-elastic partial

differential equations (PDEs) to simulate the reservoir response together with the initial

and boundary conditions and the prior knowledge of the model parameters. On the

contrary, the inverse problems seeks the best estimate of α by matching the model

predictions u(x, t) to observed data d(x, t).

This work aims at developing a probabilistic framework to account for and quan-

tify the uncertainty within the geomechanical analysis of hydrocarbon reservoirs. To

deal with this problem, the workflow of Fig. 1.1 is used. The physical process of anthro-

pogenic land subsidence/uplift is described with a mathematical model which implies

a few simplifications and assumptions. The snake arrow connecting the physical pro-

cess to the model indicates the uncertainty introduced into the problem description.

Other sources of uncertainty affect the prior knowledge of the system, e.g., the param-

eters α. The solution of the PDEs provides the forecast model solution, e.g., ground

surface displacement, which in turn are affected by the above mentioned uncertainty.

On the other hand, measurements of the surface movement are provided by ad-hoc

monitoring surveys and with the aid of technologically advanced techniques. How-

ever, although accurate as much as possible, observations are intrinsically affected by

errors. Combining information from the model forecast and the available data from the

field through a data assimilation technique, the final goal is to constrain and update the

prior knowledge of the parameters thus improving the geomechanical characterization

of the reservoir.

The investigation is primarily tested on simple test cases but the main part of the

thesis will address the more challenging task of the application to real cases. The ca-

pability of the ES to constrain the geomechanical parameters is tested with the aid of a

Finite-Element (FE) geomechanical model. Two different reservoir activities are simu-

lated. A transversely isotropic model is employed to forecast the behaviour of a UGS

field experiencing a seasonal change of the stress field. By distinction, the deformation

caused by gas extraction from a hydrocarbon reservoir is computed using an isotropic

geomechanical model. The choice of the models is motivated by the available mea-

surements in the gas fields. PSI observations of land motion are available over the
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Prior MODEL Forecast DA Analysis

Physical
Processes

DEVICE Observations

U

U

U

FIGURE 1.1: General workflow for the geomechanical modeling and pa-
rameter estimation through DA analysis. U indicates uncertainty.

UGS field and consist of both the horizontal (West-East) and the vertical components

of land surface displacement. On the other hand, for the offshore gas reservoir mea-

surements obtained with a time-lapse bathymetric survey have been provided. Thus,

the only vertical component is available and this implies the use of an isotropic model

because there is no information on the horizontal component required to calibrate a

transversely isotropic model.

Although the main focus of this thesis in on the ES, the comparison of this method-

ology with other available techniques, e.g., the gPCE-based ES, is also made to provide

a preliminary evaluation of the pros and cons of these techniques.

1.2 State of the Art

Over the last decade, the importance of uncertainties and risks quantification in reser-

voir management has been widely recognized. It has been shown that the deterministic

calibration of reservoir models does not usually suffice to forecast the future behavior

of such complex systems. Indeed, they may give a wrong impression of confidence as

several parameters combinations might be able to reproduce equally well the observed

data. On the contrary, stochastic methods provide an understanding of how much con-

fidence one should place in any particular model, although such a confidence may not
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be high due to data limitations. In this respect, ensemble-based data assimilation meth-

ods have been largely adopted to deal with reservoir history matching [Lorentzen et al.,

2003; Nævdal et al., 2003; Gu & Oliver, 2005; Skjervheim et al., 2011; Emerick & Reynolds,

2013; Iglesias et al., 2013a], i.e., to identify parameter (e.g., permeability and porosity)

distributions that make the model match satisfactorily in situ pore pressure measure-

ments. An interesting review of history matching in petroleum reservoir engineering

is given in Oliver & Chen [2011].

Data assimilation and inverse problem methods rely on conditioning the model

variables and parameters based on observed data. In Evensen [2009], ensemble-based

methods are defined as a class of so-called particle methods which use ‘a Monte Carlo

or ensemble representation for the probability distribution functions (PDFs), an ensem-

ble integration using stochastic models to model the time evolution and a scheme for

conditioning the predicted PDFs given the observations’. The Ensemble Kalman Filter

(EnKF) has been the most widely used approach. A complete review of its applications

in reservoir engineering is provided by Aanonsen et al. [2011] and references therein.

Although reservoir geomechanics for land subsidence estimate dates back to the

late 1960s [Geertsma, 1966, 1973a,b], petroleum industry only recently has started to in-

tegrate the stochastical geomechanical modeling into the general framework of reser-

voir management. For example, the aim is at predicting the compaction of the pumped

rock formation or the related drop of permeability or the displacement at the land sur-

face. Moreover, the probabilistic framework implies the assessment of the uncertainty

of the reservoir forecast which is important to estimate the reliability and the level of

confidence of the model forecast for the future prediction.

To date data assimilation in geomechanical modeling has been seldom used. Reser-

voir compaction is estimated through a Bayesian inversion scheme from land subsi-

dence observations in Muntendam-Bos & Fokker [2009]. In Wilschut et al. [2011] sub-

sidence data measured over nine leveling campaigns are used with static pressure

data to estimate fault trasmissibilities via the EnKF. In Fokker et al. [2013] an Ensem-

ble Smoother (ES) algorithm with multiple data assimilation has been developed to

constrain the reservoir parameters such as the compaction coefficient and the subsur-

face basement elastic modulus by assimilating ascending and descending Line-of-Sight
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(Los) displacement observations provided by Persistent Scatterer Interferometry (PSI).

The applicability and effectiveness of ES algorithm to constrain parameters uncertain-

ties is investigated in Baù et al. [2014, 2015]. The ES is applied for a disc-shaped reser-

voir in a semi-infinite homogeneous porous medium by jointly assimilating horizon-

tal and vertical land surface displacements. A significant improvement in the history

match by incorporating PSI surface data is also obtained in Katterbauer et al. [2014]

where an EnKF-based InSAR history matching framework is established, by integrat-

ing PSI surface displacement measurements with production data. An ES estimator

with multiphase flow and geomechanics simulator as forward models are used by Jha

et al. [2015] to assimilate pressure and PSI data. The inversion scheme is applied as-

suming a one-way coupling approach thus discarding the effect of the rock deforma-

tion on the fluid flow. By distinction, an inversion methodology is proposed in Iglesias

& McLaughlin [2012] where geodetic and production data are jointly used in the more

general framework of a fully coupling between geomechanics and subsurface flow. The

numerical tests are promising with accurate estimation of the field properties. How-

ever, it is pointed out that estimating a set of parameters increases the ill-posedness of

the problem with respect to the single-parameter case.

1.3 Summary

This introductive Chapter which gives a brief outline of the problem statement, study

objectives, and state of the art is followed by the main body of the thesis that is orga-

nized in Chapters as follows.

• Chapter 2 presents the FE geomechanical model used for the prediction of the

land displacements as a major consequence to both UGS and gas production ac-

tivities. The parametrization of the processes is described by isotropic and trans-

versely isotropic constitutive models. The uniaxial vertical compressibility law

implemented into the model is also briefly addressed.

• Chapter 3 addresses the DA method. In particular, a general outlook of the

ensemble-based algorithms is provided with a more detailed derivation of the
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ES formulation. The description of the gPCE-based ES is also given as an alter-

native to the ensemble-based methods. The pros and cons of the two approaches

are discussed.

• Chapter 4 discusses the outcome from applying the methodology to UGS test ap-

plications and a real case. The numerical results are preceded by a wide descrip-

tion of the UGS reservoir and the available measurements from satellite radar

images.

• Chapter 5 investigates the calibration of the rock compressibility characterizing a

production gas reservoir using measurements from time-lapse bathymetric sur-

veys. The experiments are run for both the test and the real applications and the

results from the ES and gPCE-based ES approaches are compared.

• Chapter 6 concludes the thesis by emphasizing the major outcomes and the ex-

pected from future developments.





Chapter 2

Reservoir Geomechanics

The prediction of the subsurface compaction in producing hydrocarbon reservoirs is

an important issue within the general reservoir management framework. Negative im-

pacts such as casing deformations and wellbore failures [Hilbert et al., 1999; Fredrich et

al., 2000; Sayers et al., 2006] must be prevented to reduce significant economical risks

and ensure the maximum safety of the drilling operations. Moreover, the forecast of

land subsidence caused by compaction of the rock formation can be of major impor-

tance. Indeed, the anthropogenic settlements can cause the platform sinking, e.g., the

Ekofisk field in the North Sea [Kristiansen & Plischke, 2010], pipeline excessive deforma-

tions, and large environmental impact especially in coastal areas [Gambolati & Teatini,

2015]. Although the predominant displacement is vertical, horizontal movements also

occur giving rise to a fully three-dimensional (3D) process. Large horizontal displace-

ments can have devastating effects on pipelines and other extensive surface structures

unless they are designed to accommodate the strain [Doornhof et al., 2006].

Geomechanical simulators are becoming more and more important to predict and

monitor the risks during the field life and after its field abandonment as well. This

thesis is concerned with two different reservoir activities that are simulated, i.e., the

seasonal ground deformations due to the UGS activity and the land subsidence due to

gas extraction from a deep hydrocarbon reservoir. Generally speaking, a reservoir is

a formation where hydrocarbons, e.g. natural gas, are trapped within a porous rock

matrix and prevented from the migrating by the top and bottom sealings. Figure 2.1

shows a sketch of a typical anticline reservoir structure with accumulation of oil and

gas. This common geological structure blocks the hydrocarbon upward movement

thus facilitating the accumulation on the top. Hydrocarbon reserves are mainly found

9
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FIGURE 2.1: Typical structure of an anticline reservoir. The hydrocar-
bons are trapped by the impervious cap rocks (Source: Tortoise Capital

Advisors).

in sedimentary rocks of clastic and chemical origin. In particular, in Italy, biogenic gas

accumulates in the Plio-Quaternary foredeep which includes both the Adriatic Sea and

the Po river Plain (Figure 2.2), where the reservoirs of the present case studies are lo-

cated. The formation of this clastic sedimentary basin was enhanced by the interaction

of the European and the African tectonic plates arising in the orogenesis of the Alpine

and Apennine chains [Encyclopaedia of Hydrocarbons, 2005; AAPG, 2008, and references

therein].

The geomechanical reservoir modeling aims at computing the stress and displace-

ments fields generated by the pore pressure changes in space and time due to the

reservoir activities, i.e., fluid extraction from or injection into the subsurface. The nu-

merical solution of the governing flow and the structural partial differential equations

(PDEs) are required to simulate the deformation up to the land surface. A Finite-

Element model developed at the Department of Civil, Architectural and Environmen-

tal Engineering, University of Padova (Italy) is employed to compute the change of

the stress/strain fields in the porous rock formations. The theory underlying the FE

code, hereafter GEPS3D, is reviewed in this Chapter with main reference to the paper

by Gambolati et al. [2001]. A detailed description of the implemented constitutive laws

is also provided.
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FIGURE 2.2: Hydrocarbon occurrences in different structural and tec-
tonic settings in Italy (after AAPG [2008]).



12 Chapter 2. Reservoir Geomechanics

2.1 Theory Overview

The process of settlement due to a load application within a porous matrix fully satu-

rated with water is commonly referred to as soil consolidation. The generalization of the

1D consolidation theory [Terzaghi, 1923] is based upon the work by Biot [1941], who ex-

tended the theory to a 3D problem with time variable load. The aim is at describing the

stress field distribution of a rock formation containing interconnected fluid-saturated

pores by coupling the deformation of the soil matrix and the fluid flow. Two main phe-

nomena of solid-to-fluid and fluid-to-solid couplings describe the behavior of the porous

material. The change in applied stress to the material causes a change in the fluid pres-

sure and, at the same time (quasi-static approximation), its variation may produce a

change of the volume of the solid skeleton.

Let u = {ux, uy, uz} be the displacement vector in the {x, y, z} Cartesian reference

system and ε = εx+εy+εz the volume strain with εx, εy, εz the 1D strains along {x, y, z}.

The incremental pore pressure is denoted with p. Within a gas reservoir, p takes the gas

and water pressure components, namely pg and pw, into account according to Bishop

[1959]:

p = Sgpg + Swpw (2.1)

with Sg and Sw the saturation index of water and gas, respectively. The equilibrium

equation governing the phenomenon of consolidation reads

∇ · σ − α∇p = b+ ρg (2.2)

with ∇ the gradient operator, σ = {σxx, σyy, σzz, τxy, τyz, τzx}T the effective stress vec-

tor, ρ the fluid density, g the gravity acceleration, b the external body forces and α the

Biot coefficient defined as

α = 1− cbr
cbm

(2.3)

where cbm and cbr are the volumetric compressibility of the medium (the bulk) and the

solid grains, respectively.
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The water and gas dynamics in the porous material is usually described by the so-

called Black Oil Model (e.g., Peaceman [1977]):

∇ ·
(
kkr,i
Biµi

(∇pi − ρig∇z)
)

+
qi
ρS,i

=
∂

∂t

(
φSi
Bi

)
(2.4)

where the subscript i refers to the water and gas phases with pi denoting the respec-

tive pressure. k is the hydraulic conductivity tensor, φ the medium porosity, kr,i the

relative permeability, Si the saturation index, Bi is the volumetric deformation factor,

µi is the viscosity, ρi and ρS,i are the densities in the actual and standard conditions,

respectively, qi is the mass injection or production rate per unit reservoir volume, g the

gravity acceleration and t is the time. In this study, the Equation (2.4) is solved with

the aid of the commercial simulator EclipseTM developed by Schlumberger. However,

the aquifers hydraulically connected with the reservoir are not usually taken numeri-

cally into account in production forecast and the simulation extends only within the gas

field boundary. To allow for the simulation of the lateral and bottom aquifers connected

with the reservoir, a non-linear 3-D FE model is used thus numerically simulating the

pressure propagation outside the so-called analytical boundaries. The continuity of the

flow due to ground water movements is governed by the classic flow storage equation

[Verruijt, 1969]:
1

γ
∇(k∇p) = φβ

∂p

∂t
+
∂ε

∂t
+ f (2.5)

where γ and β are the specific weight and compressibility of water, respectively, φ is the

porosity, k the saturated hydraulic conductivity, f a forcing function including possible

flow sources and sinks, ∇ the gradient operator, and t the time. Equation (2.5) can be

simply generalized to the case of deformable solid grains with compressibility cbr by

[Gambolati et al., 2000]:

1

γ
∇(k∇p) = [φβ + cbr(α− φ)]

∂p

∂t
+ α

∂ε

∂t
+ f (2.6)

In this thesis, the uncoupled formulation or one-way coupling is used thus assum-

ing that the mechanics-to-fluid coupling is negligibly weak. A sketch of the general
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EclipseTM

Reservoir Multi-Phase Simulator

SAT3D

Waterdrive Single-Phase Flow Simulator

GEPS3D

Geomechanical Deformation Model

∇ ·
(
kkr,i
Biµi

(∇pi − ρig∇z)
)
+ qi

ρS,i
= ∂

∂t

(
φSi

Bi

)

1
γ∇(k∇p) = (φβ + cM )∂p∂t + f

∇ · σ − α∇p = b+ ρg

FIGURE 2.3: Sketch of the procedure used to model the Reservoir-
Geomechanical system.

procedure implemented to model the reservoir-geomechanical system is shown in Fig-

ure 2.3. The pore pressure increment in space and time is first solved for the fluid flow

dynamics and then used as an external source of strength in Equations (2.2) to solve the

equilibrium equations. This simplified approach is generally acceptable over the time

scale of practical interest [Gambolati et al., 2000] and particularly justified for gas reser-

voirs, where the solid-to-flow coupling is usually weak because gas compressibility

is much larger than rock compressibility [Wang, 2000]. For the purpose of this thesis,

cbr is assumed to be negligibly small, thus dropping cbr(α − φ) and implying α = 1

in Equation (2.6). Following the uncoupled formulation, Equation (2.2) still holds and

Equation (2.5) maybe shown to become

1

γ
∇(k∇p) = (φβ + cM )

∂p

∂t
+ f (2.7)

where cM is the uniaxial vertical compressibility representing the ratio between the

relative compaction of a rock sample and the vertical load (in oedometric conditions).

The coefficient Ss = φβ + cM is the specific elastic storage that, in the uncoupled for-

mulation, takes into account through the parameter cM the pointwise deformation and

discards the contribution from the remainder of the medium [Gambolati et al., 2000].
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2.2 Finite-Element Discretization

The equilibrium of a saturated porous volume Ω with surface Σ is prescribed by mini-

mizing the total potential energy of the system. The necessary and sufficient conditions

for equilibrium are given by the virtual work theorem, namely:

∫

Ω
δεT (σ − αip)dΩ =

∫

Ω
δuTbdΩ +

∫

Σ
δuT t̂dΣ (2.8)

where εT = {εxx, εyy, εzz, γxy, γyz, γzx}, σT = {σxx, σyy, σzz, τxy, τyz, τzx}, and uT =

{ux, uy, uz} are the strain, effective stress, and displacement vectors, p is the incremen-

tal pore pressure, α is the Biot coefficient, iT = {1, 1, 1, 0, 0, 0} is the Kronecker delta in

vectorial form, b and t̂ denotes the body forces and the total external forces acting per

unit surface. The subscripts {x, y, z} denotes the axes of a Cartesian reference system

and the symbol δ indicates the virtual variables of displacement and strain. The inte-

gral formulation (2.8) must be supplemented with appropriate Dirichlet and Neumann

boundary conditions:

u = û on Γd

σ · n = t̂ on Σ

In the FE framework, displacements and pore pressure can be written as:

u = Nuũ (2.9)

p = Npp (2.10)

where ũ and p are the nodal component vectors of displacements and pore pressure,

and

Nu =
∑

e

Nu
(e) (2.11)

Np =
∑

e

Np
(e) (2.12)

are the matrices of basis functions withNu
(e) andNp

(e) the matrices of the nodal func-

tions referred to a single element e. For example, using linear tetrahedral elements and
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denoting by i, j, k, and l the vertices of each tetrahedron e,Nu
(e) andNp

(e) are:

Nu
(e) =




ξ
(e)
i 0 0 ξ

(e)
j 0 0 ξ

(e)
k 0 0 ξ

(e)
m 0 0

0 ξ
(e)
i 0 0 ξ

(e)
j 0 0 ξ

(e)
k 0 0 ξ

(e)
m 0

0 0 ξ
(e)
i 0 0 ξ

(e)
j 0 0 ξ

(e)
k 0 0 ξ

(e)
m




(2.13)

Np
(e) =

[
ξ

(e)
i ξ

(e)
j ξ

(e)
k ξ

(e)
m

]
(2.14)

with the basis function ξ(e)
i referred to the i-node and e-element:

ξ
(e)
i =

ai + bix+ ciy + diz

6|Ve|
(2.15)

where

ai = det




xj yj zj

xk yk zk

xl yl zl



, bi = −det




1 yj zj

1 yk zk

1 yl zl




ci = det




1 xj zj

1 xk zk

1 xl zl



, di = −det




1 xj yj

1 xk yk

1 xl yl




(2.16)

and Ve is the element volume (positive or negative depending on nodal numeration):

Ve =
1

6
det




1 xi yi zi

1 xj yj zj

1 xk yk zk

1 xl yl zl




The basis functions for ξ(e)
j , ξ(e)

k , and ξ(e)
l are obtained from a proper index permutation.

The strain components are related to the displacements according to:

ε = Lu = LNuũ = Bũ (2.17)

with L an appropriate first-order linear operator. Replacing equations (2.11) through
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(2.17) into Equation (2.8), and canceling the virtual displacements, yields the FE formu-

lation of the elastic equilibrium for a saturated porous body:

(∫

Ω
BTσdΩ

)
−
(∫

Ω
αBT iNpdΩ

)
p =

∫

∂Ω
NT

u bdΩ +

∫

Σ
NT

u t̂dΣ (2.18)

which is generally valid for any stress-strain relationship. In this study, a non-linear

constitutive model is used where the incremental relation in terms of deformations

and tension is given by

dσ = Dtdε (2.19)

where Dt is the tangent constitutive matrix. The equilibrium Equation (2.18) can be

rewritten as ∫

Ω
BTσdΩ = f (2.20)

with σ depending on the solution ũ. This non-linear equation is solved using the

Newton-Raphson method where the Jacobian matrix is:

d

dũ

(∫

Ω
BTσ(ũ)dΩ

)
=

∫

Ω
BT dσ(ũ)

dũ
dΩ =

(∫

Ω
BTDtBdΩ

)
dũ (2.21)

2.3 Constitutive Models

This section provides a description of the constitutive laws implemented into the FE

discretization. The stress-strain relationship is given for a isotropic and transversely

isotropic model. In fact, depending on the data available in the field, different mod-

els are employed. The isotropic formulation is deemed more adequate when avail-

able measurements are restricted to vertical displacements. By distinction, when land

surface displacements are available for both the horizontal and vertical components,

the transversely isotropic law is employed. In this case, the geomechanical properties

vary along the two directions thus the parameter calibration is expected to enhance the

match of the horizontal and vertical component of the displacement.
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2.3.1 Isotropic Model

For an isotropic porous material, the constitutive relationship between the incremental

effective stress σ and strain ε vectors reads:

dε = Cdσ ⇒





dεxx

dεyy

dεzz

dγxy

dγyz

dγzx





=




1
E − ν

E − ν
E 0 0 0

ν
E

1
E −νv

E 0 0 0

− ν
E − ν

E
1
E 0 0 0

0 0 0 2(1+ν)
E 0 0

0 0 0 0 2(1+ν)
E 0

0 0 0 0 0 2(1+ν)
E








dσxx

dσyy

dσzz

dτxy

dτyz

dτzx





(2.22)

where C is the deformation matrix, dε and dσ are the incremental strain and stress

vectors, respectively, andD is constitutive matrix, i.e., the inverse of C:

D =
E(1− ν)

(1 + ν)(1− 2ν)




1 ν
1−ν

ν
1−ν 0 0 0

ν
1−ν 1 ν

1−ν 0 0 0

ν
1−ν

ν
1−ν 1 0 0 0

0 0 0 1−2ν
2(1−ν) 0 0

0 0 0 0 1−2ν
2(1−ν) 0

0 0 0 0 0 1−2ν
2(1−ν)




(2.23)

with E and ν the Young and Poisson moduli, respectively. The coefficient [E(1 −

ν)]/[(1 + ν)(1− 2ν)] is the inverse of cM . Medium isotropy is assumed whenever avail-

able observations for the parameter calibration consist of vertical displacements and

subsurface compaction. However, anisotropy can be easily introduced as is described

in the next section.

2.3.2 Transversely Isotropic Model

Transverse isotropy is more appropriate for the simultaneous match of both the verti-

cal and horizontal displacements. For reference, the transversely isotropic implemen-

tation is described in details in Janna et al. [2012]. The stress-strain relationship for a
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transversely isotropic medium reads:

dε = Cdσ ⇒


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(2.24)

where Eh, Ev, νh, and νv are Young moduli and Poisson ratios along the horizontal

and vertical direction, respectively, and Gv is the shear modulus along the vertical di-

rection. Thus, the constitutive law for a transversely isotropic medium depends upon

five independent parameters, i.e., Eh, Ev, νh, νv, Gv. The following definitions are

introduced:

• β = Eh/Ev, ratio of the horizontal-to-vertical Young modulus;

• γ = νv/νh, ratio of the horizontal-to-vertical Poisson ratio;

• θ = Gh/Gv, ratio of the horizontal-to-vertical shear modulus;

where Gh is the horizontal shear modulus given by

Gh =
Eh

2(1 + νh)
(2.25)

As a result, the constitutive matrixD = C−1 is a function of

D = D(Ev, β, νv, γ, θ) (2.26)

Assuming an isotropic Poisson ratio, i.e., νh=νv=ν, the parameter γ = 1 and the model

calibration reduces to four parameters:

D = D(Ev, β, ν, θ) (2.27)

The isotropy condition of ν is introduced following a sensitivity analysis on the param-

eter γ. A disc-shaped reservoir benchmark (Figure 2.4) is used for the purpose with
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FIGURE 2.4: Geometry of the benchmark used for the sensitivity analysis
of the transversely isotropic material.

TABLE 2.1: Geometric properties of the reservoir in Figure 2.4.

Radius r 3000 m
Thickness h 100 m
Depth H 1000 m

the characteristic values provided in Table 2.1 and applying a linear time-dependent

decreasing pore pressure. The effect of the γ values on the vertical and horizontal

movements of the ground-surface is shown in Figure 2.5. Clearly, the influence of γ for

the considered range of variation is not significant in terms of model response allowing

to assume ν-isotropy in the real case application.

The values on the four parameters Ev, β, ν and θ are constrained by a set of ther-

modynamic conditions, which require the matrix C in Equation (2.24) to be positive

FIGURE 2.5: Variation of the horizontal (left) and vertical (right) dis-
placements according to the variation of the parameter γ.
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FIGURE 2.6: Domain of existence for the Poisson ratio ν as a function
of the ratio β for the case in which the porous medium is considered

isotropic with respect to the Poisson ratio itself.

definite. This yields:

Eh, Ev, Gv > 0 (2.28a)

1− ν2 > 0 (2.28b)

1− ν − 2
ν2

β
> 0 (2.28c)

Equation (2.28b) leads to the constraint:

− 1 < ν < 1 (2.29)

whereas Equation (2.28c) can be rearranged to provide the interval:

(β/4)[−1−
√

1 + 8/β] < ν < (β/4)[−1 +
√

1 + 8/β] (2.30)

Figure 2.6 shows the domain of existence for the Poisson ratio as a function of β. At
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FIGURE 2.7: Convergence profiles with two input parameter sets.

TABLE 2.2: Parameter sets used to obtained the convergence profiles of
Figure 2.7.

β ν θ νmin νmax
Set #1 0.66 0.23 0.55 -0.76 0.43
Set #2 1.66 0.52 1.94 -1.00 0.58

this point, it is interesting to note the convergenge profiles of the FE model varying the

parameter input. Indeed, a slower convergence is obtained if the parameters are close

to the limiting values of Equations (2.28). As an example, Figure 2.7 shows the conver-

gence profiles of the Preconditioned Conjugate Gradient (PCG) method employed as

inner solver for the solution of Equation (2.20) and related to the parameters sets given

in Table 2.2. These are two sets in terms of β, ν, and θ selected from an ensemble of real-

izations that are generated and further used in Chapter 4. νmin and νmax correspond to

the lower and upper boundaries of the domain of existence in Figure 2.6 for the specific

value of β. The closer the value of ν to νmin or νmax, the slower the convergence to the

solution.
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2.4 Reservoir compaction and expansion

Reservoir compaction can be conventionally described using the vertical uniaxial com-

pressibility cM [van Hasselt, 1992; Baù et al., 2002; Hueckel et al., 2005]. It represents the

ratio between the relative compaction of a rock sample and the vertical load (in oedo-

metric conditions):

cM =
1

h

∆h

∆σz
(2.31)

where h represents the height of the compacting sample and ∆ stands for finite incre-

ment. Numerically, this value is obtained as an approximation of dεz
dσz

, with εz and σz

the vertical components of strain and stress, respectively. If isotropy conditions are as-

sumed, cM is related to the elastic parameters D in Equation (2.23) by the following

relationship:

cM =
1

E
· (1 + ν)(1− 2ν)

(1− ν)
(2.32)

By distinction, for transversely isotropy stress-strain relationship, cM reads:

cM =
1

Ev
·
(

1− 2ν2
v

1− νh
Ev
Eh

)
(2.33)

This can be easily derived from the computation of a sample theoretical vertical com-

paction with prevented lateral expansion under axial load. Writing Equation (2.24) in

a cylindrical reference system:

dε = Cdσ ⇒
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(2.34)

and prescribing the uniaxial oedometric test conditions (dεr = dεθ = dγγrz = 0), the

following holds:

dτγrz = 0

dσr = dσθ =
νv

1− νh
dσz (2.35)
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Substitution of Equation (2.35) into the expression of dεz in (2.34) gives dεz
dσz

= cM of

Equation (2.33).

An overview of the methodologies used to estimate cM is given in Ferronato et al.

[2004, 2013]. Currently, the geomechanical parameter cM can be evaluated from ei-

ther laboratory tests and in situ field investigations. In the former category, core sam-

ple analysis are carried out through compaction devices which hopefully replicate the

loading conditions on the reservoir specimens. However, such conditions can be hardly

reproduced in the laboratory with the major consequence of a possible lack of reliabil-

ity of the reservoir rock properties. On the other hand, in the 1990s and 2000s the

radioactive-marker technique (RMT) was developed for the estimate of the reservoir

compaction and rock properties [Cassiani & Zoccatelli, 2000; Baù et al., 2002; Kristiansen

& Plischke, 2010]. RMT evaluates the compaction by measuring the distance among a

set of weakly radioactive bullets originally placed in a vertical well at fixed positions.

Despite the promising results, the interpretation of the marker measurements is af-

fected by a number of uncertainties and some warnings on their use are provided in

Ferronato et al. [2003, 2004]. For example, the radioactive markers should be installed

in non-producing wellbores because the presence of a horizontal pressure gradient can

cause an underestimation of cM . It is also shown that the knowledge of a detailed

lithostratigraphy of the reservoir is needed to locate the radioactive markers and cor-

rectly interpret the corresponding measurements. The cM values can be also indirectly

assessed from the observation of ground movements using, for example, interferomet-

ric satellite measurements [Ferronato et al., 2013].

For the Po river sedimentary sequence, the constitutive relationship cM versus the

vertical effective stress σz has been developed by Baù et al. [2002] and later improved

by Ferronato et al. [2013] by using both RMT data and surface PSI measurements. For

virgin loading conditions (I cycle) the following relationship is found (Figure 2.8):

cM,Icycle = 1.0044 · 10−2σ−1.1347
z (2.36)

where σz is in MPa and cM in MPa−1. Note that compressive stress is taken with the

positive sign. The validity range of Equation (2.36) can be defined from σz = 10 MPa to
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FIGURE 2.8: Vertical uniaxial compressibility law developed for the
Northern Adriatic Basin, Italy (after [Baù et al., 2002]).

σz = 80 MPa that is, approximately for z between 900 m and 7000 m before the incep-

tion of pumping. However, UGS mainly involves operations in unloading/reloading

conditions (II cycle) because this activity is often performed at the end of the primary

production, i.e., when the vertical stress is smaller than the maximum value ever expe-

rienced by the reservoir. Since during the II cycle the reservoir rock typically exhibits

an elastic behavior, the additional parameter s is introduced to account for the ratio

between cM in I cycle and II cycle at the loading inversion:

s =
cM,I

cM,II
exp[f1(σz)− f2(σz)] (2.37)

where f1(σz) and f2(σz) come out of the integration of the one-dimensional compress-

ibility, defined as

cM =
1

1 + e

de
dσz

(2.38)

with e the void ratio of the medium. The value of s, which varies with the vertical

effective stress σz , has been evaluated by Baù et al. [2002] using RMT data and recently

confirmed by Ferronato et al. [2013] using InSAR data. It is worth noting that although
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β, ν, θ and s are constant in the geomechanical simulations presented in this thesis,

the geomechanical parameters Eh, Ev, Gh and Gv are heterogeneous and vary accord-

ing to the dependency of cM on σz . From the analysis of the in-situ expansion mea-

surements from RMT, Baù et al. [2002] obtained the following relationship for cM,II in

loading/unloading conditions (II cycle):

cM,IIcycle = 2.9087 · 10−4σ−0.4315
z (2.39)

The validity range is from σz = 37 MPa to σz = 65 MPa, that is for z in between 3200

and 6800 m in undisturbed conditions. Note that s is defined at the load inversion

point, i.e., when σz equals the largest stress σz,max ever experienced in the reservoir.

The FE implementation of the constitutive matrices (2.23) and (2.24) employies the non-

linear compressibility law of Equation (2.36) and the parameter s in Equation (2.37) to

obtain cM,II at the load inversion point, that is when σz = σz,max.
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Data Assimilation

Data Assimilation (DA) methods aim at constraining the forecast solution of a mathe-

matical model based on spatio-temporal observations collected from the response of a

dynamical system. The approximation of the true system state is achieved including

the information from the available data and using the prior knowledge of the system,

e.g, boundary and initial conditions, physical parameters constraints, etc. Figure 3.1

shows a schematic example of a DA analysis applied to the solution of a dynamical

model. The forecast, i.e., the prediction of the future state of the system, is corrected by

minimizing a penalty or misfit function at the times where observations are available.

In this framework, three main ingredients are fundamental for the analysis or update:

• a mathematical model to simulate the physical process of interest;

• a set of observation data;

• a suitable algorithm to incorporate these data into the model response.

DA was first developed for dynamic meteorology and physical oceanography in the

early 1980s. The main literature references on this topic area are provided in Daley

[1991]; Lorenc [1986]; Ghil [1989] with an interesting review by Bouttier & Courtier [1999].

Successively, DA has been adopted in other disciplines of the geosciences such as hy-

drology and geology. In petroleum engineering, DA gained attention in the early 2000s

for reservoir history matching to estimate the unknown parameters such as porosity and

permeability fields in oil and gas reservoir applications [Nævdal et al., 2003; Lorentzen et

al., 2003; Aanonsen et al., 2011].

27
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FIGURE 3.1: General analysis scheme adopted in Data Assimilation. The
forecast state is updated using the available observations and producing

a corrected forecast.

Several DA methods have been developed and are available in literature. A ma-

jor classification of these methods usually distinguishes between sequential and non-

sequential updates. The first class considers the real-time assimilation of observations

with only past and present data used to update the model state. The Kalman Filter

(KF) [Kalman, 1960] belongs to this class and the updated solution is optimal in the

mean square error (MSE) sense assuming linear dynamics and Gaussian unbiased pri-

ors [van Leeuwen & Evensen, 1996]. When non-linear dynamics are modeled the approx-

imate linearized equations are employed in the Extended version of the Kalman Filter

(EKF). Another sequential method for nonlinear applications is the ensemble Kalman

Filter (EnkF) [Evensen, 1994] where the error statistics are approximated based on an

ensemble approach.

By distinction, the complete set of available observations is assimilated within the

non-sequential DA framework. This class includes the generalized inverses or smoothers

which can be derived as variational methods. These non-sequential schemes are usually
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FIGURE 3.2: Sequential and non-sequential analysis schemes.

applied to estimate the state variables including the information from all collected ob-

servations. In addition, the estimation of parameters and boundary conditions of a

problem are more suitable pursued with the non-sequential approaches because filter

solutions are discontinuous in time at data points while smoothers have at most a dis-

continuous time derivative at data points [van Leeuwen & Evensen, 1996]. An explica-

tive example of the different approaches to obtain the filter and smoother solutions are

shown in Figure 3.2. The Model indicates the forward problem that allows to make pre-

dictions of the state of the system by solving a system of partial differential equations

(PDEs) discretized in space and time. By distinction, the Analysis solves an inverse

problem by updating the state of the system and/or jointly estimating the model pa-

rameters. In the sequential approach, the analysis equation is solved as many times as

the number of the available observations (filtering) while the non-sequential DA solves

the problem just once in space and time (smoothing). In this thesis, the focus is at solv-

ing an inverse problem in terms of parameter estimation hence the smoothing approach

is preferred.

In this chapter, the general solution of an inverse problem for parameter estimation

is first derived as a variational optimization problem, i.e, minimizing an appropriate

cost function, and showing that the solution corresponds to the Best Linear Unbiased
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Estimator (BLUE). This preliminary review is given to introduce the methodology used

in this thesis for joint parameter and state estimation following the formulation of van

Leeuwen & Evensen [1996] and Evensen [2009]. The Ensemble Smoother (ES) algorithm

is derived in a Bayesian framework assuming linear model and Gaussian statistics.

Moreover, some basics on the gPCE-based ES is provided in the last section.

3.1 Least-square analysis equations

Traditionally, the inverse problem is meant as a particular case of parameter inverse problem

where one seek the estimated model parameters that are as close as possible to the

prior values and which result in a model solution which is as close as possible to a

set of measurements [Evensen, 2009]. Thus the inverse modeling problem consists of

using a set of measurements to infer the values of the parameters that characterize the

system [Tarantola, 2005]. A general relationship between the model variables m and

the observable variables or data d can be expressed as [Oliver et al., 2008]

d = g(m) (3.1)

As stated before, the solution of the system of equations resulting from the discretiza-

tion of Equation (3.1) is called the forward problem. On the other hand, if measurements

do are available, the inverse problem seeks a solution form:

do = g(m) + εo (3.2)

where εo is the measurement error (white noise).

Assuming the case of linear inverse problems, Equation (3.1) relating the calculated

data d and the model variablesm can be written as

d = Gm (3.3)
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wherem is a M -dimensional column vector, d is a Nd-dimensional column vector, and

G is a M ×Nd matrix. Thus, the inverse problem is

do = Gm (3.4)

Some problems of this form has no solution if there exists do for which the equation has

no solution. In this case, it is reasonable to seek a least-square type solution. Therefore,

the inversion problem is solved as a variational minimization problem defining the

objective function J as

J(m) =
1

2
||(d− do)||22 =

1

2
||(Gm− do)||22 (3.5)

where || ||2 is the l2-norm or Euclidean norm. The minimization of the misfit J between

predicted and observed data is obtained applying the gradient operator:

∇mJ = ∇m
(

1

2
||Gm− do||22

)
= ∇m

(
1

2
(Gm− do)T (Gm− do)

)
(3.6)

where T is the transpose. From simple linear algebra it follows that

∇mJ = GTGm−GTdo (3.7)

To minimize J the gradient has to be imposed equal to zero thus yielding to the linear

system

∇mJ = 0→ GTGm = GTdo (3.8)

with the solution form given by the Normal Equations:

m = (GTG)−1GTdo (3.9)

However, ifGTG is singular, the least-square solution of Equation (3.9) is undefined.

In this sense, regularization is needed to improve the well-posedness of the prob-

lem and reduce the degrees of freedom of the system. This can be achieved introducing
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the available prior information on the parameters mprior and the structure of the un-

certainty distribution in terms of:

• Cd covariance matrix of the error observation vector;

• Cm covariance matrix of the prior model parameters.

We assume Gaussian distributions for the observation error εo with zero mean and stan-

dard deviation σεo . The observation are uncorrelated so that the expectation E[εo,i, εo,j ]

is equal to 0. Introducing in Equation (3.6) the covariance terms and the regularization

matrix defined as

R(m) =
1

2
(m−mprior)TCm

−1(m−mprior) (3.10)

the misfit function reads:

J(m) =
1

2
(Gm−do)TCd

−1(Gm−do) +
1

2
(m−mprior)TCm

−1(m−mprior) (3.11)

Again, the minimization of J(m) is obtained imposing the gradient equal to 0 or, equiv-

alently, solving the Newton’s method:

H(J(m))∆m = −∇J(m) (3.12)

where ∆m = (m−mprior) and∇ andH are the Gradient and Hessian operators given

by:

∇J(m) = GTCd
−1(Gm− do) +Cm

−1∆m (3.13)

H(J(m)) = GTCd
−1G+Cm

−1 (3.14)

Substituting Equations 3.13 and 3.14 in Equation 3.12 leads to:

(
GTCd

−1G+Cm
−1
)

∆m = −
(
GTCd

−1(Gmprior − do)
)

(3.15)

which is solved for the vectorm as follows:

m = mprior +
(
GTCd

−1Cm
−1
)−1

GTCd
−1(do −Gmprior)
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= mprior +CmG
T (GCmG

T +Cd)−1(do −Gmprior) (3.16)

Notice that the solution obtained as variational minimization problem is equivalent to

the Best, i.e., lower variance, Linear Unbiased Estimate (BLUE) analysis, that is, the

optimal least-squares estimator, see proof in [Bouttier & Courtier, 1999].

Defining xa and xb the analysis and background model states, respectively, y is

the observations vector, the optimal least-squares estimator is defined by the following

analysis equation:

xa = xb +K(y −H[xb]) (3.17)

where H is the observation operator and K the Kalman gain, i.e., the weight matrix,

given by:

K = BHT (HBHT +R)−1 (3.18)

where B and R are the covariance matrices of background errors and observation er-

rors. The analysis of Equation (3.17) is optimal, i.e., it is a minimum variance estimate,

if the following assumptions hold [Bouttier & Courtier, 1999]:

• linearity for the observation operatorH ;

• B andR are s.p.d. matrices;

• unbiased errors, i.e., expectation equal to zero;

• uncorrelated background and observations errors;

• linear analysis;

The covariance matrix C of the analysis errors reads:

C = (I −KH)B(I −KH)T +KRK (3.19)

3.2 Ensemble-based algorithms: the Ensemble Smoother

The smoothing approach estimates a set of state variables conditioned to the whole set

of available measurements with the updating algorithm run only once after the model

ensemble simulation. The ES algorithm founds its basis in the work of van Leeuwen &
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Evensen [1996]. In this thesis, the ES is derived following the Bayesian formalism for-

mulated by Evensen & van Leeuwen [2000] as a linear variance minimization analysis.

The Bayesian approach thus subsumes the classical approach (see Section 3.1) to inver-

sion while providing rigorous quantification of uncertainty of predictions, given clear

assumptions on the prior and noise probabilities [Iglesias et al., 2013b].

The generalized inverse problem provides an estimation of the uncertain model

state, ψ(x,t), and parameters, α(x), conditioned to a set of available measurements,

d(x,t), where x represents the coordinate position vector, and t is the time.

For the sake of brevity, in the following formulation the dependence of the variables

on x and t is omitted except where strictly necessary. All implied variables are aleatory

variables characterized by a PDF.

Consider a nonlinear dynamical model operator G defined in the spatial domain D

bounded by δD. The model equation can be written as:

δψ

δt
= G(ψ,α) + η (3.20)

with initial conditions

ψ(x, t0) = ψ0(x) + a(x) (3.21)

and boundary conditions

ψ(x,t)|δD = ψb(x,t) + b(x, t) (3.22)

where η, a and b are the random errors associated with the dynamical model (3.20), the

initial conditions (3.21), and the boundary conditions (3.22), respectively.

When observations are available, the measurement equation takes the form

d = H(ψt) + ε (3.23)

where ε is the observations error and H is the observation function relating the true

model state ψt to the observations.
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The ES equation is derived using Bayes’ rule and the concept of conditional proba-

bility:

f [(ψ,α)|d] =
f [(ψ,α)]f [d|(ψ,α)]

f(d)
(3.24)

where f [(ψ,α)|d] is the joint PDF for the model state, ψ, and parameters, α, given the

observation vector d; f [d|(ψ,α)] is the PDF of the data given the model evolution, i.e.,

likelihood function; f [(ψ,α)] is the joint probability function of the model evolution

and parameters. In practice, the denominator f(d) in Equation (3.24) serves as a nor-

malization factor in the expression. Using Bayes’ theorem again, the joint PDF f [(ψ,α)]

is

f [(ψ,α)] = f(α)f(ψ|α) (3.25)

and Equation (3.24) can be rewritten as:

f [(ψ,α)|d] ∝ f(α)f(ψ|α)f [d|(ψ,α)] (3.26)

where the symbol ∝ indicates proportionality between the two equation members.

Following the notation of Evensen [2009], the above formulation is discretized in

time with ψ(t) at time interval ti represented as ψi. Assuming that the model and the

measurement processes are first-order Markov processes, i.e., the state at the current

time depends only on the state at the previous time in the model temporal discretiza-

tion, we can define the PDFs for the model evolution in time and the observations as:

f(ψ1, ...,ψK ,α) ∝ f(α)

K∏

i=1

f(ψi|ψi−1,α) (3.27)

f [d|(ψ,α)] =

J∏

j=1

f [dj |(ψi(j), α)] (3.28)

where K is the total number of time steps in which the model state is defined and J is

the number of discrete times where measurements are available, with J a subset of K.

Thus ψi(j) represents the state variable at time ti corresponding to the time tj from the

observation subset.

Under first-order Markov process hypothesis, Equation (3.26) can be written as
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f [(ψ1, ...,ψk,α)|d] ∝ f(α)
K∏

i=1

f(ψi|ψi−1,α)
J∏

j=1

f [dj |(ψi(j),α)] (3.29)

Assuming Gaussian PDFs for the right-hand side terms of Equation (3.29), the condi-

tional PDF (3.26) can be written as

f [(ψ,α)|d] ∝ exp

(
−1

2
J [ψ,α]

)
(3.30)

where J is the penalty function as defined in Equation (3.11) with α = m, d = do and

ψ = Gm. . In this case, the maximization of the conditional joint density f [(ψ,α)|d] is

equivalent to the minimization of J [ψ, α], which gives also the maximum likelihood

solution for ψ and α [Evensen, 2009]. In this thesis, although the forward model is not

linear with respect to the model parameters, the ES approach which is based on the

Gaussian assumption is used to approximate the posterior distribution of the model

parameters. However, the weak non linearity of the forward solver and the limited

number of estimated parameters suggests that the ES may provide an accurate solution

to the inverse problem as well.

The maximum likelihood estimate is defined by the minimum of the penalty func-

tion J . Defining ua and uf the augmented state and parameter vectors of the analysis

and forecast steps, respectively, the minimizing solution for state and parameter esti-

mation can be written as

ua = uf + Cf
uuH

T
(
HCf

uuH
T + Cεε

)−1 (
d−Huf

)
(3.31)

where Cεε is the covariance of the measurement error ε and Cuu is the forecast covari-

ance of the augmented state and parameters. In this case the observation operator H is

linear. In matrix form, Equation (3.31) reads:

Aa
t = Af

t +Kt · (Dt −H ·Af
t ) (3.32)

whereAf
t andAa

t are the forecast and update ensemble matrices for the joint state and
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parameters from time t0 to t, respectively, and H is a matrix that maps the measure-

ment locations into the model grid so that the productH ·Af
t holds the ensemble of the

model results at the measurement locations. The matrix Dt holds the measurements

perturbed using an ensemble of Gaussian noises. At the right-hand side of Equation

(3.32), the residual Dt −H · Af
t defines the deviation between the forecast state and

measured state at the measurement locations. This residual forms the basis for cor-

recting the forecast ensemble [Baù et al., 2014]. The degree of correction depends upon

the uncertainty of both the forecast ensemble and the measurement data, which is con-

tained in the Kalman gain matrixKt:

Kt = CfH
T (HCfH

T +R)−1 (3.33)

where Cf is the ensemble forecast error covariance matrix and R is the measurement

error covariance matrix.

The implementation of the ES algorithm used here follows the methodology pre-

sented by Keppenne [2000]. Rearranging Equation (3.32) as:

Aa
t −Af

t = CfH
T ·B (3.34)

where the matrixB is defined as:

B = (HCfH
T +R)−1 · (Dt −H ·Af

t ) (3.35)

each column of matrix B is calculated by solving the following linear system many

times as the number of ensemble members:

(HCfH
T +R)b = (dt −H · uft ) (3.36)

where b, dt and uft are the ith columns ofB,Dt andAf
t , respectively.
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3.3 Generalized Polynomial Chaos Expansion (gPCE)

DA via Monte Carlo based simulations requires a large number of realizations to ef-

fectively reduce the sampling error leading to high time consuming methods for large

physical models [Li & Xiu, 2009]. By contrast, gPCE-based ES allows to compute the

solution of the stochastic equations by gPC expansion and afterward an ensemble of

realizations is sampled to be updated in the ES assimilation scheme of Equation (3.32).

The assimilation method is illustrated assuming the case in which the stochastic model

solution depends on a single random variable and multiple random variables.

Without loss of generality let us write the forward problem that solves this general

equation:

G(ψ(x, t),α(x)) = 0 (3.37)

for the displacement field,ψ. G is a nonlinear operator mapping from the pore pressure

field to the displacements field, andα is the model parameter vector. ψ depends on the

spacex and time twhileα is only a function ofx. The application is here focused on the

prediction of ψ but, for a high fidelity model, the parameter α should be inferred from

observations. Unfortunately, from a given measurement of ψ, the explicit form of α

is not straightforward. Therefore, the problem is first set in a probabilistic framework

treating the model parameter as a random variable with an a-priori PDF. Equation

(3.37) becomes:

G(ψ(x, t, ω),α(x, ω)) = 0 (3.38)

where ω is the actual realization from the stochastic space. Naturally, in this way the

fieldψ is also a random variable, depending on the actual realization of ω. Considering

a homogeneous field for the parameter α, i.e., a single random variable, and defining

a mapping, so that everything can be written as a function of a random variable ξ(ω)

with PDF fξ. With this simplification, the abstract description modifies to:

G(ψ(x, t, ξ),α(ξ)) = 0 (3.39)

To update this prior knowledge, one needs a probabilistic description of the vertical
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displacements, a prediction from the prior knowledge to be compared with the mea-

surement. Instead of sampling from α and running the deterministic solver for each

sample point (Monte Carlo approach), a surrogate model is used to approximate the

response ψ in function of ξ with an M degree general PCE:

ψ(x, t, ξ) ≈ ψ̃M (x, t, ξ) =
M−1∑

i=0

ψi(x, t)Φi(ξ), (3.40)

in which Φi are the polynomial basis functions.

The random variable ξ is uniformly distributed thus in this problem Φi are the uni-

variate Legendre polynomials, which serves as an orthogonal basis with respect to the

underlying probabilistic space defined by ξ:

E[Φj(ξ)Φk(ξ)] =

∫

<
Φj(ξ)Φk(ξ)fξdξ = hδjk

where δij is the Kroenecker delta, and h is the norm of the polynomials:

h = E[Φi(ξ)Φi(ξ)]

In reality, for the application of Chapter 5, the simplification of supposing homoge-

neousα proves to be unrealistic. Whenα is a random field, and not a random variable,

the problem is somewhat more complicated. However, with the help of the Karhunen-

Loeve Expansion (KLE), α can be written as a product of random variables and spatial

functions, so that the stochastic and the spatial domain can be separated. Using the

KLE, the computation boils down to the same problem, but with the number of the ran-

dom variables equal to L, the non-truncated (spatial) eigenfunctions, and accordingly

the gPCE, will take the same form as given in (3.40). However, the basis functions of

the gPCE are multivariate polynomials given as a function of ξ(ω) : Ω→ <L, and |i| is

the multi-index (see details in [Xiu, 2010]):

ψ(x, ξ) ≈ ψ̃M (x, ξ) =
∑

|i|<M

ψi(x)Φi(ξ), (3.41)

The coefficient of the approximating gPCE can be calculated in different ways.



40 Chapter 3. Data Assimilation

Here, we focus on non-intrusive methods, where the forward model does not have to

be changed, and can be used in a black-box fashion. Among the possible non-intrusive

methods we calculate here the coefficient with the pseudo spectral projection described

as follows.

The target here is to find a best approximation of ψ in the form of (3.40) in the L2

sense, that is, to minimize the L2 norm of the error

E
[(
ψ − ψ̃M

)2
]
.

This can be done by orthogonally projecting to the subspace spanned by the approxi-

mating polynomials Φi, which gives the coefficients:

ψi = E[ψ(x, ξ)Φi(ξ)] =

∫

<
ψ(x, ξ)Φi(ξ)fξdξ

The integral term can be approximated with a quadrature rule, which gives:

ψi ≈
Q∑

i=1

ψ(x, ξi)Φi(ξi)wi

Here ξi = ξ(ωi) is one realization of the random variable, i.e., the integration point,

and wi is the corresponding weight. ξi and wi are defined by the quadrature rule de-

termined by the weighting function fξ. In this case, the Gauss-Legendre rule is used.

When an M degree gPCE approximation of ψ is to be calculated, then the polynomials

Φi are at most of degree M , so the integrand is at most of degree 2M . Accordingly, it is

necessary to use a (Q = M + 1)-point quadrature rule. This way, determination of the

proxi model is reduced to evaluating the forward model and the polynomials Φi at the

integration points ξi, where the later is computationally very cheap. To give an exam-

ple, for a 3 degree gPCE approximation, the proxi model coefficients can be evaluated

from 4 deterministic solver calls, by evaluating ψ at α(ξi).



Chapter 4

Underground Gas Storage

Reservoirs1

4.1 Introduction

Natural gas is an importance source of energy to cope with the worldwide growing

demand. At January 2014, the worldwide reserves are of about 200.576 billion cubic

meters (bcm) as estimated and published by Cedigaz, the international association for

natural gas. Underground Gas Storage (UGS) reservoirs are crucial facilities for differ-

ent purposes. Cedigaz [2013] points out two different trends in the gas storage market.

In emerging markets, UGS projects are still developing as in the past with UGS plants

mostly dedicated to balance seasonal and peak needs. On the other hand, in mature

natural gas countries, UGS serves new functions in addition to the operational ones. In

fact, the new storage frontiers are related to trading activity and to using natural gas

as back–up of intermittent renewable energy sources in electricity generation. Natural

gas in storage serves also as strategic reserve for any occuring emergency. At the begin-

ning of 2013, 688 UGS plants were operating worldwide and 256 projects were under

construction or planned. The overall working gas capacity is of about 377 bcm with the

higher percentage of working gas volume operated in North America [Cedigaz, 2013].

Depleted natural gas and oil fields, aquifers, and salt caverns are good candidates for

storing natural gas. Worldwide, gas and oil reservoirs account for about 74% of these

storage sites. Among all the possible operational activities of UGS, the seasonal and

1The topics covered in this chapter have also been partially presented in [Zoccarato et al., 2016, under
review].
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peak demands are a major concern in this study. The natural gas is injected into the

UGS fields during low-demand seasons and delivered during high-demand seasons

or daily peaks. The overall impact on the land surface displacements may be signifi-

cant and correlated with the seasonal management. In particular, injecting a fluid into

the subsurface leads to the increase of the pore pressure and, consequently, induces,

an expansion of the porous rock formation. In turn, the reservoir expansion yields a

upheaval of the land surface, where horizontal and vertical displacements can be mea-

sured. Vice versa, the gas withdrawal leads to the contraction of the deep-gas bearing

pools causing land settlement.

The seasonal changes of the stress and displacement fields should be predicted and

monitored to avoid damages to the wells and/or the structures and infrastructures on

the land surface. The accurate prediction of the amount and areal extent of settlement

and upheaval is crucial to i) reduce the management uncertainties related to the UGS

fields and ii) mitigate the environmental impacts [Doornhof et al., 2006].

A geomechanical, transversely-isotropic, 3D finite-element (FE) model has been cal-

ibrated with a trial-and-error procedure by Teatini et al. [2011] to match both the vertical

and horizontal seasonal displacements above the Lombardia UGS field situated in the

Po River sedimentary basin (Italy). The available observations consist of vertical and

horizontal movements measured by PSI using Radarsat scenes retrieved between 2003

and 2008 over the UGS field. In this thesis, the same Lombardia case study is used to

investigate the capability and effectiveness of the ES to reduce the uncertainty on the

knowledge of the deep geomechanical parameters. Initially, synthetic observations col-

lected from a virtual observation-simulation system experiment (OSSE) are assimilated

for algorithm testing purposes. Then, the ES is used to assimilate the real vertical and

horizontal displacement measurements provided by PSI over the Lombardia UGS field.

This chapter is organized as follows. Sections 4.2 and 4.3 summarize the major

properties of the Lombardia UGS site and the measurements available from PSI. The

generation of the parameter ensemble and the Monte Carlo simulations used to gen-

erate the forecast ensemble is described in Section 4.4. The results obtained with the

assimilation of both synthetic and real measurements are presented and discussed in

Sections 4.5 and 4.6, respectively. Section 6 ends this chapter with some comments



Chapter 4. Underground Gas Storage Reservoirs 43

about the further developments.

4.2 The Lombardia gas reservoir

The Lombardia gas field is situated in the Po river basin (north of Italy). The gas reser-

voir was developed in the period 1981-1986 and was used afterward for underground

storage of methane gas imported from eastern European countries. The burial depth

is between 1050 m and 1350 m below mean sea level. In a typical gas-storage-and-

recovery (GSR) cycle, gas is injected from April to November and extracted from Novem-

ber until April (Figure 4.1). The evolution in time and space of the pressure change

has been accurately predicted using a multi-phase fluid-dynamic model accounting for

both the gas-bearing formations and the hydraulically connected aquifers [Teatini et al.,

2011]. The model has been calibrated over the primary production phase (1981-1986)

and the following 1986-2008 UGS phase using traditional history matching techniques

with pressure data from 32 wells. Due to the large amount of available information

for the history matching of the reservoir model, the uncertainty on the flow field is

assumed negligible compared with the uncertainty related to the geomechanical pa-

rameters. Thus, the pore pressure behavior in time and space is a deterministic input

to the model. By distinction, a significant variability is allowed for the geomechani-

cal model parameters, as further discussed in Section 4.4. For more details about the

reservoir characteristics and its production model, see Teatini et al. [2011]. Using an ex-

plicitly (one way) coupled approach, the pressure changes have been used as strength

sources within the geomechanical model.

The geomechanical model domain of the Lombardia gas field extends over a 60 km

× 50 km horizontal area and down to a 10 km depth below the land surface. Boundary

conditions are prescribed such that no displacement is allowed on the lateral and the

bottom boundaries. The top of the domain, which represents the land surface, is mod-

eled as a traction-free boundary. The simulation period spans from 1981 to 2008, thus

including the primary production period (1981-1986), and the following UGS cycles

(1987-2008). Figure 4.2 depicts the 3D finite element grid of the UGS reservoir adopted

in the geomechanical model.
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FIGURE 4.1: Average pore pressure versus time in Lombardia reservoir
over the period April 2003-November 2008.

4.3 PSI measurements

PSI techniques can provide accurate measurements of the land surface movements over

large areas and over long periods of time and can be effectively used to help character-

ize the development of deep oil and gas reservoirs [Tamburini et al., 2010].

Over the Lombardia gas field, satellite radar images were acquired by RADARSAT-

1 from March 2003 to October 2008 over ascending and descending orbits. These data

have been processed to determine the spatial distribution as well as the magnitude and

the timing of time-lapse land displacements both in the vertical and in the West-East

horizontal directions over periods of about 6 months, corresponding to the injection

and production phases of the reservoir. Further details on the methodology used to

acquire, process and analyze the satellite radar images are provided in Teatini et al.

[2011].

Figure 4.3 shows the displacement maps of over the Lombardia reservoir obtained by

interpolating PSI records, which are provided at the locations represented by the blue



Chapter 4. Underground Gas Storage Reservoirs 45

FIGURE 4.2: (a) Axonometric view of the 3-D FE grid used in the ge-
omechanical model, (b) axonometric view of the productive layers of the
reservoir, (c) North-South and West-East vertical cross sections of the FE
grid and (d) 2D view of the geological units and pools of the North-
South cross section. The vertical exaggeration is 5 in (a)-(c) and 10 in

(d).
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dots in Figure 4.4. The sub-panels in the left and right columns of Figure 4.3 provide

the horizontal and vertical displacements over two representative injection and pro-

duction cycles. Figure 4.3 highlights the effects of the expansion experienced by land

during warm seasons when gas is stored into the reservoir, and the effects of contrac-

tion during the cold season, when gas is in turn recovered. Vertical displacements, uv,

are assumed positive during injection cycle, i.e. land surface uplift, and negative dur-

ing the extraction cycle, i.e. subsidence. The horizontal displacement, uh, is assumed

negative if directed westward (uh,W ), and positive if directed eastward (uh,E). In this

study, the number of ensemble members is greater than the number of observations.

This choice prevents the matrix (HCfH
T +R) of Equation (3.33) from being rank de-

ficient [Keppenne, 2000]. On the other hand, because of the nature of the PSI records, the

whole set of available measurements is characterized by a certain noise so that select-

ing a subset of measurements is generally appropriate to provide a set of more reliable

data actually consistent with the simulated physical process. The selection methods

are investigated with the results discussed in Section 4.5.3.

4.4 Model Set-Up

4.4.1 Generation of Parameter Ensembles

The goal of this study is to demonstrate the ability of the proposed data assimilation

algorithm to reduce the uncertainty on the β, ν, θ, and s parameters by assimilating

vertical and horizontal displacement measurements at a number of points on the land

surface. To assess the assimilation potentiality, uniform PDFs are used to address the

parameter uncertainty. According to a uniform PDF, the only conditions prescribed are

the minimum and maximum values that a parameter can take on and each value in

between has the same probability of occurrence. These limits are chosen based upon

typical literature values or available information of the study area. Moreover, the val-

ues on these four parameters are constrained by the thermodynamic conditions given

in Equations 2.28-2.30.
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FIGURE 4.3: Maps of time-lapse displacements over the Lombardia reser-
voir obtained using the PSI technique over the period April 2003-April
2005. The subpanels a), b), c) and d) indicate horizontal displacements,
uh, at time intervals T1, T2, T3 and T4, respectively (see Table 4.1);
whereas e), f), g) and h) indicate vertical displacements, uz at same time

intervals. The trace of the UGS field is marked by the dark-red line.
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FIGURE 4.4: Map of the PSI record locations (blue dots), measurement
grid (i.e. assimilation locations) adopted in the assimilation of surface
displacement data (red dots), and the four representative locations A, B,

C and D.
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The parameters β, θ and s are stochastically independent and sampled from the

following uniform PDFs:

β =
Eh
Ev
∈ U [0.2, 5] (4.1a)

θ =
Gh
Gv
∈ U [0.5, 2] (4.1b)

s =
cM,loading

cM,unloading
∈ U [1, 10] (4.1c)

The sampling interval for ν is defined by the inequalities (2.29) and (2.30), which de-

pends on the sampling of parameter β. Figure 2.6 shows the domain of existence for

the Poisson ratio as a function of β. The chosen ensemble size, equal to 1000, is deemed

adequate to accurately reproduce the selected statistics for each parameter, leading to

linearly shaped CDFs, except for ν. Indeed, for the Poisson ratio the CDF is not linear

since Equation (2.30) implies the statistical dependence of ν on β, such that only one of

the two parameters can fit a uniform distribution. However, the CDF of ν is in essence

linear, with some slight non-linearity observed only in the upper tail of the distribution.

By selecting uniform PDFs, the Gaussian hypothesis required by the ES formula-

tion is not fulfilled. To comply with this hypothesis, an ad hoc transformation of the

prior distribution of β, ν, θ and s is performed. The Normal Score Transform (NST)

is used for this purpose. With the NST, each sampled state variable ensemble is first

transformed to a local cumulative distribution by sorting its values in ascending or-

der (x1 < x2 < ... < xnMC ) and calculating the associated sample CDF value by the

Hazen formula [Hahn & Shapiro, 1967]:

CDF (xi) =
i− 0.5

nMC
i = 1, ..., nMC (4.2)

where nMC is the number of Monte Carlo realizations of the ensemble. Then, Equation

(4.2) is transformed to a standard normal distribution using the inverse of the standard

normal CDF, φ:

zi = z(xi) = φ−1

(
i− 0.5

nMC

)
i = 1, ..., nMC (4.3)

The transformed state variable ensemble zi (i = 1, ..., nMC) is then updated using the

ES scheme and back transformed to the x state space using φ and the inverse of the
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prior sample CDF of the update ensembles of parameters.

4.4.2 Model prediction by FE geomechanical simulations

Each realization of the parameters is used as an input in the FE geomechanical model

to obtain the corresponding model forecast in terms of displacements. Note that, in

each simulation, the spatial and temporal distribution of the fluid pressure is the same.

Although the observation data are available over the period 2003-2008, the simulation

time spans the whole 27 year period (1981-2008) of the field production life, in order

to have a consistent stress state for the year 2003, i.e., the beginning of the data assimi-

lation process. The loading step of the simulation is set equal to six months according

to the time interval between injection and extraction in the UGS field. Figure 4.5 and

Figure 4.6 summarize the outcome of the model forecast simulations. The two figures

display the time series for the horizontal and vertical displacement, respectively, of the

land surface at the four representative locations A, B, C, and D given in Figure 4.4,

over time lapses T1, T2, T3, and T4, i.e., time-lapse of six months from April 2003 to

April 2005 (Table 4.1). Four time-lapse displacements were considered in the assimi-

lation of the hypothetical data: a) T1 (April 2003 - November 2003), b) T2 (November

2003 - April 2004), b) T3 (April 2004 - November 2004), and d) T4 (November 2004 -

April 2005). Each realization of the forecast ensemble, the mean, and the associated

standard deviation of the forecast ensemble are shown in the plots. Each sub-panel

provides also the values of the corresponding observed PSI component of land surface

displacement. Note that the scale of the displacements is different for each location.

For example, at time lapse T1 the forecast mean plus and minus the standard deviation

of the horizontal displacements (Figure 4.5) are equal to −5.2± 30.7 mm, +13.3± 88.4

mm, −15.8 ± 98.1 mm, and −4.7 ± 41.0 mm at locations A, B, C, and D, respectively.

It is worth mentioning that the presence of a few outliers in the forecast ensemble (not

shown in Figure 4.5) due to simulations with particular combinations of parameters

leads to large values of the standard deviation. Comparably large standard deviations

are also computed for time lapses T2, T3 and T4. Notice also that the forecast mean is

larger (approximately by a factor 3) at locations B and C with respect to A and D. These
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TABLE 4.1: Summary of the performed synthetic tests.

Test Time Intervals Assimilation Times
1 T1+T2 (April03-November03)+(November03-April04)
2 T2+T3 (November03-April04)+(April04-November04)
3 T3+T4 (April04-November04)+(November04-April05)
4 T1+T2+T3+T4 (April03-November03)+(November03-April04)+

(April04-November04)+(November04-April05)

distributions are strongly non-Gaussian, as clearly revealed by large values of skew-

ness and kurtosis, and thus the mean of these distributions are located towards the

tails of the ensemble. The same considerations hold true for the vertical displacements

(Figure 4.6) with means and standard deviations equal to 0.11± 0.67 mm, 10.50± 20.4

mm, 14.1 ± 63.1 mm, and 35.3 ± 224.9 mm at time lapse T1 above locations A, B, C,

and D, respectively. The largest average vertical displacements are computed at loca-

tion D, right above the gas pools, and the lowest at location A. Intermediate values are

calculated at locations B and C. Note that there is a direct correspondence between the

locations where the largest displacements and ensemble spreads are obtained and the

regions where the largest fluid pressure excursion occurs. At location A, the PSI obser-

vations at all time lapses T1-T4 are found at the fringes of the forecast ensemble and

particularly so for vertical displacements, meaning that in this region the model output

does not reproduce well the observed data.

4.5 Numerical results

4.5.1 Synthetic Tests

The assimilation of the real displacement measurements was preceded by a series of

preliminary tests aiming at assessing the ability of the ES algorithm to effectively per-

form the update of, and therefore reducing the prior uncertainty on, the geomechan-

ical transversely isotropic parameters β, ν, θ, and s. In these tests, the displacements

of the land surface were obtained from the result of a separate simulation using as

“true reference values” β=3.62, ν= 0.19, θ= 0.96 and s= 4.82. The horizontal and ver-

tical components of the displacement obtained from this simulation constitute virtual

OSSE measurements sampled over a regular grid made up by 10×10=100 locations that
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FIGURE 4.5: Ensemble of the horizontal land surface displacement at
four representative locations (A, B, C, and D) in the areas above the reser-
voirs and over the time lapses T1, T2, T3, and T4 (see Table 4.1). Each
sub-panel shows also the ensemble mean, the ensemble standard devi-
ation and the observed PSI data. Note the different value scale on the
y-axis of the various plots depending on the location point with respect
to the reservoir. Large standard deviations are due to a few outliers lo-

cated outside the y-axis ranges of the sub-panels.
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FIGURE 4.6: Ensemble of the vertical land surface displacement at four
representative locations (A, B, C, and D) in the areas above the reservoirs
and over the time lapses T1, T2, T3, and T4 (see Table 4.1). Each sub-
panel shows also the ensemble mean, the ensemble standard deviation
and the observed PSI data. Note the different value scale on the y-axis
of the various plots depending on the location point with respect to the
reservoir. Large standard deviations are due to a few outliers located

outside the y-axis ranges of the sub-panels.
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is deemed adequate to provide an accurate representation of the surface observations

(Figure 4.4).

A first set of experiments addresses the joint assimilation of horizontal and verti-

cal displacements collected during 1 year of UGS, i.e., one injection and one extraction

phase. In Tests 1, 2, and 3 time lapses (T1+T2), (T2+T3), and (T3+T4) are assimilated,

respectively. The preliminary test also aims at investigating the sensitivity of the data

assimilation performance to the number of observation periods; then, in a further test

(Test 4), two complete gas storage cycles are assimilated (T1+T2+T3+T4). Refer to Ta-

ble 4.1 for the description of the performed tests.

The results are summarized in Figure 4.7, which shows the CDFs of the parameters

β, ν, θ and s prior to and after the assimilation of the displacement data. Figure 4.7

provides evidence that a significant reduction in parameter uncertainty is achieved by

data assimilation, as the spread of the posterior CDFs is significantly decreased with

respect to the prior CDFs and the updated parameter ensembles tend to approach their

respective reference value in all four test cases. The results also indicate that the poste-

rior distributions are quite similar if measurements are extracted from either two (Tests

1, 2, 3) or four (Test 4) observation periods. This is an important finding as it shows that

many data are actually redundant in time and can be safety dropped, thus allowing for

a significant reduction of the size of the state matrices which directly affects the com-

putational cost required by the ES algorithm. In order to analyze in detail the perfor-

mance of the applied methodology and to compare the results from the four test cases,

two performance parameters are introduced. The updated model state/parameters

and the prior state/parameters are compared through the Average Absolute Error (AE)

and Average Ensemble Spread (AES) [Hendricks Franssen & Kinzelbach, 2008]:

AE =
1

nMC · n

nMC∑

j=1

n∑

i=1

|xi,j − xi,true| (4.4)

AES =
1

nMC · n

nMC∑

j=1

n∑

i=1

|xi,j − xi| (4.5)

where nMC and n are the number of Monte Carlo realizations and the total number

of measurement locations, respectively, xi,j is either the prior or the posterior value
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FIGURE 4.7: CDFs of the parameters (a) β, (b) ν, (c) θ, and (d) s prior to
and after the assimilation of displacement data. Each sub-panel shows
also the “true” parameter value for the synthetic reference system used
to simulate data collection. Updated CDFs are graphed for test cases 1

(T1+T2), 2 (T2+T3), 3 (T3+T4) and 4 (T1+T2+T3+T4).
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TABLE 4.2: Performance indexes AE and AES for parameters β, ν, θ and
s prior and posterior the assimilation of synthetic measurements. The

four tests of Table 4.1 are compared.

AEprior AESprior AEposterior AESposterior
Test1 Test2 Test3 Test4 Test1 Test2 Test3 Test4

β 1.41 1.19 0.34 0.41 0.42 0.29 0.31 0.39 0.28 0.26
ν 0.48 0.39 0.10 0.12 0.09 0.09 0.10 0.12 0.09 0.08
θ 0.43 0.37 0.14 0.16 0.12 0.12 0.11 0.16 0.11 0.08
s 2.39 2.31 0.65 0.95 0.67 0.53 0.63 0.91 0.61 0.49

at the ith measurement location of the jth ensemble realization, xi,true and xi are the

“reference true” value and the ensemble mean at the ith measurement location. A sim-

ilar formula holds for each individual parameter with n=1. The AE takes into account

every value in each ensemble model, comparing the model values to the true refer-

ence value at each location in the model domain; AES accounts for the deviation of

the model values from the ensemble mean at each location, providing an indication

of the spread of the distribution [Bailey & Baù, 2010]. Hence, posterior AE, compared

to prior AE, is a measure of the algorithm capability to predict the true values of the

state variables, i.e., the horizontal and vertical displacements, and parameters β, ν, θ

and s. AES is a measure of the confidence in the predicted values. Quite obviously,

the smaller AE and AES, the better the assimilation outcome. However, Equation (4.4)

cannot be used when applied to real observations because the true state is unknown.

Table 4.2 summarizes the AE and AES values for the geomechanical parameters β, ν,

θ, and s prior to and after the assimilation of data in test cases 1-4. Test case 4 performs

better for all parameters compared to tests 1, 2 and 3 with an AE and AES reduction of

about 80%, even though the significantly higher computational cost does not justify the

small gain. Indeed, in tests 1, 2 and 3, the updating of the parameters gains about 70%

for both AE and AES. This outcome suggests that the performance of the ES algorithm

is little influenced by the observation periods chosen in the assimilation and that the

ES algorithm is able to update effectively the parameters of the transversely isotropic

geomechanical model by assimilating vertical and horizontal displacements.
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TABLE 4.3: Three set of parameters β, ν, θ and s to obtain OSSE#1,
OSSE#2, OSSE#3, respectively.

β ν θ s

OSSE#1 3.60 0.18 0.96 4.80
OSSE#2 2.90 -0.29 1.02 9.50
OSSE#3 0.66 0.23 0.55 1.10

TABLE 4.4: Prior mean and AES of the parameters β, ν, θ and s

β ν θ s

mean 2.62 -1.77 1.26 5.6
AES 1.19 0.39 0.37 2.31

4.5.2 Convergence of the ES algorithm

In the previous section, a testing assimilation is carried out using a OSSE obtained

through the parameter set with β=3.62, ν= 0.19, θ= 0.96 and s= 4.82. However, choosing

a different set of parameters to simulate the OSSE may result in performance indices

of the assimilation (Equations (4.4) and (4.5)), which differs from those previously ob-

tained. In this section, the assimilation of three different OSSE are compared. Table

4.3 reports the parameter sets used to simulate the OSSEs in terms of horizontal and

vertical displacements uh and uv. OSSE#1 is the one used in the previous tests (Section

4.5.1).

As previously discussed (Section 4.4.1) the prior PDFs of the parameters β, ν, θ

and s are uniformly distributed with prior mean and AES provided in Table 4.4. The

prior CDFs are shown in Figure 4.7 (black dashed line). Dealing with synthetic test

cases, one expect that the ES performs quite similar when assimilating displacements

from different OSSEs. However, some discrepancies are found in these tests. Table 4.5

provides the assimilation results in term of the AES index posterior to the assimila-

tion. Comparing the three assimilations, it is evident that the spread of the updated

ensembles do not vary from case to case (except for θ in OSSE#3 that is much lower

TABLE 4.5: AES posterior to the joint assimilation of horizontal and ver-
tical displacements for the OSSE#1, OSSE#2, and OSSE#3.

β ν θ s

OSSE#1 0.34 0.07 0.10 0.35
OSSE#1 0.34 0.07 0.12 0.35
OSSE#3 0.34 0.07 0.01 0.35
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TABLE 4.6: AE prior and posterior to the joint assimilation of horizontal
and vertical displacements for the OSSE#1, OSSE#2, and OSSE#3.

AEprior AEposterior
β ν θ s β ν θ s

OSSE#1 1.00 0.36 0.30 0.82 0.06 0.05 0.11 0.15
OSSE#2 0.24 0.14 0.24 3.90 0.52 0.07 0.12 0.41
OSSE#3 1.96 0.41 0.70 4.5 1.04 0.15 0.05 0.82

than in OSSE#1 and OSSE#2). To evaluate the estimation of the parameters, i.e., if the

mean of the updated ensemble tends to approach the true reference value of Table 4.3,

the AE prior and posterior to the assimilation are reported in Table 4.6. The overall

reduction of AE from prior to posterior distributions is higher within the assimilation

of OSSE#1. For example, the AE index for β is equal to 0.52 and 1.04 in OSSE#2 and

OSSE#3 while in OSSE#1 is much lower and equal to 0.06, indicating less accurate esti-

mation in OSSE#2 and OSSE#3.

These tests suggest the possibility that the parameter space may lack in sampling

density in some regions of the domain. Note that a number of 1000 realizations are

sampled. Figure 4.8 shows the 4-dimensional parameter space with β, ν and θ plotted

in the x-axis, y-axis, and z-axis, respectively, and s by a colour scale. In the same figure,

the three parameter sets used to simulate OSSE#1, OSSE#2 and OSSE#3 are highlighted.

The effectiveness of the assimilation, differing from one to another set of parameters,

may be due to the random sampling technique where the number of samples are not

enough to describe the whole parameter domain. By distinction, assuming that the

parameter space is evenly sampled, it maybe be instructive look at the model outcome

from the forecast ensembles of uh and uv (Figures 4.9 and 4.10). The ensembles are

plotted against the parameter β for representation convenience. For values of β ap-

proaching the lower boundary of the prior uniform distribution it is seen a general

increase of variability of the model response for both uh and uv. Generally, when the

output is at the edge of the ensemble, i.e., OSSE#2 and OSSE#3, the ES algorithm pro-

vides less accurate parameter estimation. A sensitivity analysis on the role played by

the parameters and their combinations in the geomechanical model is provided in the

next section.
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with the parameter space of Figure 4.8 plotted against the parameter β.
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FIGURE 4.10: Forecast ensemble of vertical displacements uv obtained
with the parameter space of Figure 4.8 plotted against the parameter β.

4.5.3 Sensitivity analysis of the geomechanical parameters

A preliminary sensitivity analysis is performed to investigate the relative influence

of the geomechanical parameters on the model response, in particular on the rela-

tive distribution of the horizontal to the vertical components of surface displacements

(ρ = |uh|/|uv|), and ultimately to revise the prescribed prior distribution of the model

parameters.

This analysis is performed on a 3D homogeneous, linearly elastic, isotropic and axi-

symmetric subsurface system embedding a disk-shaped reservoir characterized by a

uniform pore pressure decline and depth-to-radius ratio equal to 0.34, which is com-

parable with that of Lombardia gas field. The sketch of the reservoir is shown in the

inset of Figure 4.11. In order to quantify the relative sensitivity of surface displacement

components to each of the parameters β, ν and θ, a series of simulations is carried out

by varying one parameter at a time. The effect on ρ of the parameter s can be neglected

since the horizontal and vertical components of the land displacements are scaled up

almost proportionally when varying the value of s. Hence, this investigation is not
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addressed by this sensitivity analysis.

The results of the simulations are presented in Figure 4.11. The top row of Fig-

ure 4.11 summarizes the dependence of horizontal (left sub-panel) and vertical (right

sub-panel) surface displacements on β. As β increases the horizontal displacement is

reduced, whereas the vertical displacement grows. It is worth nothing that for values

of β below 0.5, the vertical displacement is positive, i.e. uplift. Although theoretically

possible, this behavior does not seem to be realistic. The second row of Figure 4.11

presents horizontal and vertical displacement profiles obtained by varying the Poisson

ratio ν. It may be observed that increasing ν induces a decrease of either horizontal

and vertical displacements. The effect of the ν on the ratio ρ is not significant thus ρ

rather insensitive to this parameter. On the other hand, β has a significant influence

on horizontal-to-vertical surface displacement ratio, which is shown to decrease for in-

creasing values of β. Finally, the horizontal and vertical displacement profiles obtained

by varying θ within the range 0.5-2.0 are shown in the bottom panels of Figure 4.11.

These profiles indicate that the land surface displacement is not very sensitive to this

parameter.

The results of the sensitivity tests described above provide a benchmark for the fol-

lowing assumptions. First, since the shear moduli ratio does not seem to have much

influence on the surface displacement profiles, θ can be considered known determinis-

tically and equal to 1, which practically reduces the size of the inverse problem of one

degree of freedom. Another important assumption is made on the value of ν, which

is assumed to be strictly positive, a condition that is generally used in rock mechanics

[Gercek, 2007]. The lower bound of the parameter β is increased from 0.2 to 0.5 to avoid

unrealistic model output.

4.5.4 Assimilation of PSI measurements

This section presents the results from assimilating PSI measurements collected over

the Lombardia reservoir (Figure 4.3 and 4.4) into the geomechanical model response.

Figure 4.12 shows the prior distribution of the geomechanical parameters β, ν and s

(black dashed lines) based on the result of Section 4.5.3. The prior uniform distribu-

tions are transformed to Gaussian distributions (see Section 4.4.1) using the NST. The
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assimilation of two time lapse displacements (one complete UGS cycle) is used to up-

date the geomechanical parameters, based on the outcome of the synthetic case tests

(Section 4.5.1). The surface displacement data sets for the periods November 2003-

April 2004 (T2) and April 2004-November 2004 (T3) are deemed adequate for testing

the performance of the assimilation algorithm.

Preliminary tests (not shown here) reveal that the number of the locations used for

data assimilation may significantly impact on the update results; hence, three measure-

ment location grids are taken into consideration. The first grid G1 (Figure 4.4) is the

same as the one used in the synthetic case with 100 assimilation locations uniformly

distributed over the Lombardia model domain. The values of horizontal and vertical

displacements at each location are taken from the maps of Figure 4.3. One of the chal-

lenges of selecting surface displacement data for assimilation is to provide a realistic

value for the error to assign to PSI derived observations. The measurement error is here

set equal to the kriging standard deviation calculated from the variograms used to ob-

tain the displacement maps of Figure 4.3 [Teatini et al., 2011]. For time lapses T2 and

T3, the spatial average of the standard deviation of the vertical displacement, σv,meas,

is equal to 1.8 mm. The observation random error associated with each measurement is

sampled from a Gaussian distribution with zero mean and standard deviation σv,meas.

Since the horizontal component of the land displacement is generally noiser than the

vertical one, the associated measurement error is set equal to σv,meas multiplied by a

factor 1.5, i.e. σh,meas = 2.7 , according to the error analysis of the PSI measurements

discussed by Teatini et al. [2011].

The results from the assimilation for grid G1 are shown in Figure 4.12, which pro-

vides the posterior CDFs of parameters β, ν, and s. The ES update routine actually

reduces the prior uncertainty associated with the parameters by jointly assimilating

measurements of horizontal and vertical surface displacement. However, the 50th per-

centiles, i.e., the median value, of the parameters ν and s tend to approach the lower

and upper upper bound of their prior distribution, respectively. Thus, the ES seems

to suggest that a better match of the measurements might be obtained with a set of

parameters that are outside of the prior hypothesized intervals.
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The investigation of a potential bias in the measurements and/or the geomechani-

cal model is carried out by assimilating data selected from grid G2, which is obtained

by removing the 30 northernmost data points from grid G1. The choice of these nodes

is accounted for their likely low level of confidence because few PS are located in this

portion of the study area. The standard deviation of the measurement error is the same

as in grid G1 since measurements are derived from the same interpolated maps (Fig-

ure 4.3). The assimilation results are again plotted in Figure 4.12. The posterior CDF

of the parameter β is close to that obtained with grid G1. By distinction the posterior

CDF of ν and s are shifted toward the center of the investigated prior intervals. Hence,

the effect of excluding the 30 upper-north locations from the assimilation is an increase

of the median value of ν and a reduction of the median value of s. Grid G2 uses a

set of measurements yielding updated parameters more constrained within the prior

intervals. The comparison of the results produced by grids G1 and G2 suggests the

possibility of a bias in the PSI derived surface displacements and/or in the model set-

ting for the Lombardia reservoir. Indeed, a different update ensemble of parameters is

obtained when assimilating two different measurement grids due to the exclusion, the

case of grid G2, of a set of observed data that are not resembled by the forecast ensem-

ble of displacements (refer to Figure 4.6 - location A). On the other hand, the exclusion

of data points in the northern reservoir leads to updated parameters β, ν and s that in

any case could not account for the model behavior in the northern part of the domain.

Figure 4.13 shows the updated ensembles of vertical uv and horizontal uh displace-

ments at the four locations A, B, C and D of Figure 4.4, obtained by assimilation of

data from grids G1 and G2. The prior ensembles of vertical and horizontal displace-

ments are also displayed. In general, the spread of the updated ensembles of grid G1

is narrower than that of grid G2. At location A, in upper-north part of the domain, the

updated uv values are overestimated for grids G1 and G2 and the observation falls out-

side the updated ensemble. The PSI vertical measurement is well matched at location B

for both grids even though the spread of the updated ensemble of grid G1 is narrower

than that of grid G2. At location C, the PSI observation is underestimated with both

grids, but the ensemble mean obtained with grid G1 is closer to the observed value. At

location D, above the gas field, the updated ensemble of grid G2 better resembles the
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FIGURE 4.13: Updated ensemble of (a) vertical and (b) horizontal dis-
placements by assimilation of data points of grids G1 (cyan circles) and
G2 (red circles), at four locations A, B, C and D (Figure 4.4). The prior
ensembles of vertical and horizontal displacements are also displayed
(black circles). The PSI measurements are plotted with green stars at the

four locations.
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PSI, while the mean updated ensemble obtained with grid G1 slightly overestimates

the observation.

The mean values of the updated ensembles of the horizontal displacement uh are

similar in the assimilation of grids G1 and G2. The difference between the two assimila-

tion is in the spread of the updated ensembles, which are narrower with grid G1 at the

four locations. At locations A the PSI observations are outside the updated ensembles

whereas the horizontal measurement are well resembled at locations C and D.

Excluding the uppermost locations from grid G1 leads to an increase of the spread

of the posterior ensembles since less constraints are prescribed on the assimilation.

However, it appears that the method cannot significantly improve the matching of

the PSI observations, in particular at locations north of the reservoir for vertical dis-

placements and east of the reservoir for horizontal displacements. This suggests that a

possible bias in the model and/or in the observations is not be completely eliminated

by dropping the uppermost data points from the three top rows of grid G1.

To further address these aspects, a third grid G3 is investigated for the assimilation.

Grid G3, shown in Figure 4.14, totals 70 locations, i.e., the same number as grid G2,

distributed all over the model domain, which cover also areas situated north of the

reservoir footprint. These locations are not uniformly distributed as is for grids G1 and

G2. Actually, the 70 data points are chosen directly as a subset of the available measure-

ments from the 772 PSI locations (blue dots of Figure 4.4). In this case, the interpolation

of the PSI data is avoided with the “raw” PSI displacements directly used in the assimi-

lation. Moreover, in grid G3, horizontal and vertical displacements are selected so as to

be consistent with the expected contraction/expansion sequences associated with the

pressure variations in the gas pools. The standard deviation of the measurement error

is calculated on the basis of the new available data set. Indeed, a new experimental

variogram is built and the average standard deviation of the measurements computed

from the kriging using that variogram is assumed as the standard deviation of the mea-

surement error. Over time lapses T2 and T3, the vertical standard deviation is equal to

1.5 mm, whereas the horizontal one is again increased by a factor of 1.5 with respect

to the vertical measurement error. The updated CDFs of the reservoir parameters ob-

tained with grid G3 are shown in Figure 4.12. The CDF of the parameter β is similar
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FIGURE 4.14: Map of the measurement grid G3, i.e., assimilation loca-
tions, adopted in the assimilation of surface displacement data. Note
that the assimilation locations used for assimilation of time lapses T2
and T3 are not the same. The trace of the UGS field is marked by the

dark-red line.
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FIGURE 4.15: Prior (dashed line) and posterior CDFs (solid lines) of the
parameters s with respect to varying values of error standard deviation,
i.e σv,meas and σh,meas, associated with the PSI data points of grid G3

(see Figure4.14).

to the ones from grids G1 and G2, while the CDFs of ν and s lies in between the corre-

sponding CDFs of grids G1 and G2. These results can be explained as follows. Grid G3

contains a smaller measurement bias with respect to grid G1, hence the shift of ν and s

CDF’s toward the interval bounds is clearly reduced. On the other hand, since grid G3

accounts for observations in the northern part of the domain, the CDF’s of ν and s are

shifted to the left and to the right, respectively, of those obtained with grid G2, which

instead misses these observations.

The effect of the measurement error on the smoothing performance is also investi-

gated. The results of a sensitivity analysis are shown in Figure 4.15 with reference to

grid G3. The profiles of posterior CDF are given only for the parameter s as similar

considerations hold for β and ν. Figure 4.15 points out that the posterior CDF depends

on σv,meas and σh,meas=1.5 · σv,meas. Notice that the proportionality factor between

σh,meas and σv,meas is kept equal to 1.5. The increase of σv,meas (i.e. more uncertain

observations) obviously reduces the ES performance. Conversely, the spread of the
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posterior CDF reduces when σv,meas decreases, at the expense of a CDF’s translation

toward the boundaries of the prior interval assigned to the parameter. This shift could

again be seen as the effect of a measurement and/or model biases: more accurate mea-

surements are hardly reproduced by the model using the prior forecast ensemble of

the parameters. Thus, the more constraint is given to the assimilation, the higher is the

effect of the biases on the ES update. Hence, in the present case study the most appro-

priate values of σh,meas and σv,meas are those derived from the previous error analysis

of the PSI measurements (Figure 4.12).

The outcomes of the assimilation procedure is further investigated by performing

posterior Monte Carlo geomechanical simulations using the update ensembles of the

parameters β, ν and s as obtained with the three reference grids. The measurement

error is assigned based on the results of Figure 4.12. Figure 4.16a, 4.16b and 4.16c show

horizontal displacement maps for the period April 2004-November 2004 (T3) for grids

G1, G2 and G3, respectively; Figure 4.16d, 4.16e and 4.16f show the corresponding

vertical maps. The maps show the updated ensemble mean, that is, the average of the

posterior land surface displacement ensemble. To compare the model updated mean

and the observations, PSI data are also displayed with circles. Note that the color scale

is different for the vertical and the horizontal displacements.

In general, the updated ensemble mean of vertical displacements obtained on grids

G1, G2 and G3 exhibits an overall good match of the PSI data above the UGS field,

with relatively small differences among them. The distribution of vertical displace-

ments obtained with grid G3 (Figure 4.16f) shows the smaller estimated subsidence

bowl as compared to grids G1 and G2 (Figure 4.16d and 4.16e), which better fits the PSI

observations (R2
G3 = 0.83 with R2

G1 = 0.81 and R2
G2 = 0.80, where R2 is defined as

1 −
n∑
i=1

(yi − ŷi)2/
n∑
i=1

(yi − ȳi)2 with yi and ȳi the observation values and the respective

mean, ŷi the predicted values and n the total number of observations).

Apart from the simulation of surface displacement over the gas reservoir, difficul-

ties are encountered when fitting observations over the area north of the Lombardia

field, which turn out to be generally overestimated regardless of the measurement grids

used for the assimilation. Indeed, in this part of the domain the pore pressure varia-

tions due to UGS operations are considerably lower than in the reservoir, meaning that
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the forecast ensemble of land surface displacements contains a prior information that

is less significant and the assimilation algorithm is less sensitive to data collected over

that area of the domain.

Figure 4.16a, 4.16b and 4.16c show an even better match between the simulated and

observed horizontal displacements of the land surface (R2
G1 = 0.88, R2

G2 = 0.89 and

R2
G3 = 0.89). The maps of horizontal displacements obtained with grids G1, G2, and

G3 well represents the PSI observations in the eastern part of the domain, while the

data noise is higher in the western part of the UGS field and the model response is

significantly smoother than the observations. Although the differences are relatively

small, the overall characterization obtained with grid G3 (Figure 4.16c and 4.16f) is the

most satisfactory both for horizontal and vertical displacements.

4.6 Discussion

A number of papers published over the last decade demonstrate the capability of PSI to

capture the evolution in time of vertical and horizontal displacements above produc-

ing and UGS reservoirs. PSI provides significant datasets for reservoir history match-

ing and subsurface characterization (e.g., Stancliffe & van der Kooij [2001]; Ketelaar et al.

[2007]; Klemm et al. [2010]; Tamburini et al. [2010]; Vasco et al. [2010]; Teatini et al. [2011];

Janna et al. [2012]). On the other hand, data assimilation methods have been increas-

ingly adopted for parameter estimation problems in petroleum engineering (Nævdal et

al. [2003], Gu & Oliver [2005], Skjervheim et al. [2011]; Iglesias et al. [2013a]). However,

researchers have tried to combine data assimilation algorithms and PSI to improve the

reservoir characterization only very recently. Generally speaking, it has been found

that this combination performs effectively for synthetic/realistic test cases, while a few

difficulties are still met in real field cases. Usually, a complex and specific tuning is

required, with the focus (i.e., the uncertain parameters to be constrained) of the assimi-

lation that changes from case to case. The results presented in this thesis confirm these

findings.

Wilschut et al. [2011] demonstrate that reservoir compartmentalization can be prop-

erly investigated by assimilating different sources of information, i.e., production and
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FIGURE 4.16: Maps for (a)-(c) horizontal and (d)-(f) vertical time-lapse
land-surface displacements above the Lombardia reservoir during the
time-lapse April 2004-November 2004 (T3). The updated ensemble
means of the posterior Monte Carlo simulations are displayed from top
to bottom, on the basis of the update parameters of Figure 4.12 referring
to grids G1, G2, G3, respectively. The trace of the UGS field is marked

by the dark-red line.



Chapter 4. Underground Gas Storage Reservoirs 73

subsidence data, through EnKF. However, their application to the Roswinkel field (The

Netherlands) shows that a satisfactory characterization is not easy to achieve because

the initial forecast ensemble provided by the model is not consistent with a portion

of the available measurements. Fokker et al. [2013] make use of an elastic geomechan-

ical model for the reservoir characterization of the Bergermeer gas field (The Nether-

lands). They employ an ES scheme by assimilating the ascending and descending PSI

measurements along the line-of-sight (LoS) geometry. The outcome highlights that the

measurement effectiveness in constraining the reservoir compressibility can be quite

different for the different reservoir compartments, likely depending on the pressure

change history and the influence of other surrounding reservoirs. An ES estimator

with multiphase flow and geomechanics simulator as forward models is implemented

by Jha et al. [2015] to assimilate pressure and PSI data for reducing uncertainty in the

prior distributions of rock properties of a UGS gas reservoir in northern Italy. The re-

sults indicate that the spread of the posterior displacement ensemble is significantly

reduced after assimilation of fluid pressure and surface displacement data. However,

there remains a significant discrepancy between the simulated and the observed land

displacements. This is an evidence that the uncertainty has been smoothed out, how-

ever the calibration is not entirely accurate, with the ES converging to parameter sets

that cannot clearly reproduce the observations and the posterior ensemble narrowing

significantly but far from the available measurements.

Recent works by Baù et al. [2014, 2015] investigate the capability of the ES algo-

rithm to reduce the parameter uncertainty for a transversely isotropic geomechanical

model by assimilating both vertical and horizontal ground-surface displacements. A

schematic axi-symmetric configuration is tested. It is found that the quality of the

estimation mostly depends on the number of the assimilated measurements and the

magnitude of the measurement errors. The same transversely isotropic geomechanical

model is herein used in a real case, i.e., the Lombardia reservoir. From the comparison

of the prior and posterior PDFs of the geomechanical parameters, an appreciable re-

duction of the assigned uncertainty is easily obtained when synthetic measurements,

i.e., the displacements generated by an independent model run, are assimilated. More
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difficulties are encountered with real PSI data. This is mainly due to the limited consis-

tency between the forward model and a portion of the available measurements rather

than a poor cross-correlation among the forward model and the parameters, i.e., the

capability of the model to reproduce the behaviour of the system. This result has been

detected by choosing three different grids of assimilation points. Excluding from the

assimilation a subset of low-confidence measurements in the northern part of the do-

main (grid G2), or selecting a subset of measurements strictly consistent with the ex-

pected geomechanical behavior associated with the pressure variation (grid G3) yields

an improvement in constraining the model parameters. Notice that the large variabil-

ity of the PSI displacements, in the northern part of the domain, even over a very short

distance precludes a bias in the model setting linked to a possible uncertainty in the

pressure change distribution.

The consistency between the displacement records and the physical process repre-

sented by the forward model is surely a key point for a satisfactory implementation of

the assimilation algorithms. It is worth emphasizing that, apart from its intrinsic accu-

racy, PSI provides the cumulative motion of scattered radar targets that may be subject

to different independent processes. In the majority of the applications, such processes

are characterized by variable time and space scales, e.g., tectonics, fluid withdrawal

and injection, target instability, differently contributing to the measured values [Tosi et

al., 2009]. Hence, it is preferable to use a subset of ‘reliable’ records, in the sense that

they show a displacement clearly related to the investigated process at hand, rather

than a larger dataset with a higher noise level, as is done, for example, by Jha et al.

[2015]. In the case of deep reservoirs, we have elected to assimilate movements decom-

posed along the vertical and easting directions instead of original LoS displacements

as the decomposition procedure filters out local components most likely unrelated to

hydrocarbon production and storage.

4.7 Conclusions

The Ensemble Smoother (ES) algorithm is employed to characterize the geomechanical

parameters of a UGS field situated in the Upper Adriatic sedimentary basin (Italy). A
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transversely-isotropic, 3D FE model is used to simulate the deformation field caused

by the contraction and expansion of the UGS reservoir subjected to seasonal pressure

variation due to extraction/injection of gas from/into the subsurface. The model cali-

bration is provided by jointly assimilating horizontal and vertical movements of land

surface displacements observed from space. The available measurements consist of PSI

data acquired by RADARSAT-1 from March 2003 to October 2008 over the domain of

interest.

The results show that ES is an effective inversion procedure to improve the a-priori

estimate of the parameters of transversely isotropic geomechanical models for deep

hydrocarbon reservoirs provided that horizontal and vertical PSI displacements are

used. The joint assimilation of components helps to increase significantly the reliability

associated with the prior uncertain parameters. The posterior Monte Carlo simulations

provide evidence that an overall good match of the PSI measurements may be obtained.

More detailed insights are the following. An appropriate selection of the observa-

tions is important, however, is not straightforward especially where hundreds to thou-

sands measurements provided by SAR-based algorithms are available. The updated

parameters are dependent to some extent on different data sets and this indicates the

presence of a possible bias in the measurements and/or in the model forecast. A selec-

tion of observations with the smallest data noise has yielded the updated parameters

producing the most satisfactory match.

Moreover, the error associated with the measurements also plays an appreciable

role when assimilating real observations. In synthetic test cases, the measurement error

does not affect the ES smoothing performance as the model forecast is unbiased with

respect to the virtual system of observations. On the other hand, the assimilation of

real measurements requires a more accurate estimate of the observation error that is

preferably physically-based, i.e. linked to the precision of the monitoring technique.

In geomechanical problems as the one addressed in the present study, i.e. with a

relatively weak parameter nonlinearity, the use of an ES algorithm is deemed adequate

for its low computational cost and its possible “off-line” application, that avoids the

simulation restart. Possible improvements will be investigated. The parameter esti-

mation will be addressed by assimilation approaches more appropriate for nonlinear
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problems, e.g. the Iterative Ensemble Smoother Chen & Oliver [2011]. Furthermore, the

bias effects of measurements and modeling will be properly accounted by implement-

ing the algorithm by Pauwels et al. [2013].



Chapter 5

Gas Producing Reservoirs1

5.1 Introduction

In this Chapter, the geomechanical modeling of a producing hydrocarbon reservoir is

presented. The aim is at estimating the vertical uniaxial compressibility cM by assim-

ilation of ground surface displacements. This investigation originates from the need

for properly addressing and explaining the seafloor displacements observed over an

offshore gas field, hereafter the Maja reservoir. Although dealing with a real case ap-

plication, the geographic reference of the reservoir location is omitted in this thesis for

confidentiality reasons with the oil company managing the reservoir operations.

Sections 5.2 and 5.3 are dedicated to describe the fluid pore pressure distribution in

the three main gas pools of the Maja gas field and the measurements collected above

the reservoir.

Before the presentation of the real case, some numerical tests are carried out with

the main objective of comparing and discussing two different conceptual models for

cM . In particular, the first conceptual model considers a cM variable with depth z and

effective vertical stress σz , that is, heterogeneity due to litostratigraphic variability ac-

cording to Baù et al. [2002] as discussed in Section 2.4. However, due to the strong

compartmentalization of the Maja reservoir, partitioned into various blocks by faults

and thrusts, the second scenario addresses a possible heterogeneity within the hori-

zontal plane, that is, cM is assumed to be spatially distributed within the stratigraphic

unit. To authors’ knowledge, this is the first attempt to calibrate cM based on the spatial

distribution of the parameter within a compartmentalized reservoir. The presence of

1Part of the results presented in this chapter has been published in [Zoccarato et al., 2015, submitted].

77
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sealing faults and thrusts suggests a block heterogeneous cM for the Maja field with the

number of uncertain parameters equal to the the number of reservoir blocks.

The constitutive law of cM versus σz is assumed to be a priori known and obtained

from previous basin characterizations from RMT surveys (Figure 2.8). The uncertain-

ties are introduced into the model by a multiplier fcM scaling cM . Indeed, this study

is not aimed to derive a new compressibility law, rather to establish a probabilistic

framework to infer the geomechanical property of the rock using data from seafloor

observations above a compartmentalized geological structure.

Moreover, in the test cases, two methodologies for parameter estimation are com-

pared. The ES based on Monte Carlo simulation (Section 5.4) and a gPCE-based ES

(Section 5.5) are employed to estimate both the case with one random variable, that is

fcM uniform in the reservoir domain, and the case with multiple random variable, i.e.,

spatially variable fcM in the horizontal plane.

The real observations are assimilated with the results presented in Section 5.6 where

the tests on uniform and spatially variable cM are discussed and summarized.

5.2 The Maja Gas Field

The Maja gas field is an offshore hydrocarbon reservoir that was developed over ten

years. As mentioned above, the field location cannot be disclosed for confidentiality

reasons. The gas production is obtained from the main gas pools A, B, and C which

are not hydraulically connected (Figure 5.1). The fluid pore pressure distribution is

predicted by the reservoir multiphase simulatorEclipseTM through a history matching

of the measured wellbore fluid pressures and production. The pressure change ∆P

at the end of the ten-years production life is illustrated in Figure 5.2. The reservoir

compartmentalization, namely the accumulation of gas into a number of individual

fluid/pressure compartments [Jolley et al., 2010], can be derived from the distribution

of pressure change caused by the field development. The largest ∆P is equal to -75 bar

and is experienced in the intermediate pool B at the end of the field production. The

waterdrive is compartmentalized is divided into three main blocks with ∆P ∼ -20 bar,

-45 bar, and -30 bar, respectively. Pool A shows a different compartmentalization with
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FIGURE 5.1: South-North structural cross-section through the Maja
reservoir.

∆P varying from a -45 bar to -18 bar. Negligible ∆P is found in the deeper gas pool C

except for the central block. Average reservoir porosity φ ranges from 15% to 29%. In

pools A and B, the range of the horizontal permeability k is 30-250 mD and 13-40 mD,

respectively. In pool C, k equals 13 mD.

The three-dimensional grid of Figure 5.3(b) is made up from 320,901 nodes and

1,824,768 tetrahedral elements to cover a domain of 52 km x 49 km x 5 km. The total

number of elements that undergoes pressure variation is 54,720 in the reservoir lay-

ers of Figure 5.3(a). Zero-displacements conditions are prescribed on the lateral and

bottom boundaries while the top of the domain, i.e., the seafloor, is traction-free.

5.3 Measurements from bathymetric survey

The bathymetry is the measurement of the depth of a water body and corresponds to

the topography on the sea bottom. The difference between two bathymetric profiles

recorded at different times provides a measure of the displacement of the sea bottom

within the time-lapse of the two surveys. A multi-beam echosounder system is em-

ployed to acquire the bathymetry above the Maja gas field and a large sorrounding
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FIGURE 5.2: Maps of the pressure change within Maja gas layers A, B,
C (including waterdrive). The pore pressure change ∆P is experienced

over ten years of production.
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FIGURE 5.3: (a) 3D Reservoir production model and (b) 3D Finite Ele-
ment (FE) geomechanical model of the Maja gas field with the coloured
elements corresponding to the productive units. The colours in (a) are

representative of the reservoir layers.
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FIGURE 5.4: Subsidence contour-lines derived from multi-beam bathy-
metric surveys above the Maja gas field. The measured values are nor-
malized to the value of the maximum displacement, umax. The black

dots are the assimilation data points as discussed in Section 5.6.

area. The multi-beam technique is based on a sound wave that is emitted from a ship.

The measurement of the travel time that the wave takes to bounce off the seabed and re-

turn back to the receiver is proportional to the water depth. In the area above the Maja

gas field, multi-beam acquisitions at the seafloor depth before and after the reseroir

development provides a map of the seafloor subsidence caused by gas production.

Figure 5.4 shows the vertical displacements of the seafloor observed in the time-

lapse of ten years. For confidentiality reasons, the contour lines are normalized to the

measured peak value, umax.

5.4 Test case: Ensemble Smoother for cM estimation

Geomechanical simulations of the Maja reservoir are performed employing the same

finite-element (FE) poro-elasto-plastic numerical model used for the previous UGS field

[Gambolati et al., 2001]. In this study, an isotropic stress-strain constitutive law is used

with the vertical uniaxial compressibility cM that depends on the stress state according
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FIGURE 5.5: Two-dimensional view of the geomechanical FE grid of Fig-
ure 5.3. The enlargement view within the red rectangle refers to the area
affected by the pore pressure change. In the synthetic simulations the

area has been subdivided in 140 sub-zones.

to the hypo-plastic hysteretic model developed by Baù et al. [2002] and Ferronato et

al. [2013]. The uncertain compressibility cM is calibrated by introducing a spatially

variable multiplicative factor fcM , which allows scaling cM values in the regions where

fluid pressure changes occur. Poisson’s coefficient is assumed to be known and equal to

0.3. The complete description of the isotropic constitutive law used in these simulation

is provided in Section 2.4.

A preliminary set of simulations has been carried out with representative data to

test the proposed methodology. The simulations span one year when the reservoir

experiences fluid extraction. The pressure data are obtained from the history matching

of the real case where the reservoir production spans ten years. The pressure data are

taken as the pressure variation during the first year. The reservoir domain is shown in

Figure 5.3.

5.4.1 Prior Distribution of Uncertain Parameters

In this investigation, cM via fcM is assumed to be the only uncertain geomechanical

parameter. Because the ES relies on a Monte Carlo approach, a prior probability dis-

tribution function (PDF) is needed to sample the prior ensemble of the multiplicative
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FIGURE 5.6: Homogeneous case: (a) mean and (b) standard deviation,
σ, from the forecast ensemble of the vertical displacements, uz .

calibration factor fcM . In this section, the generation of the prior PDFs in two concep-

tual models is described: (1) fcM is uniform within the reservoir, and (2) fcM is spatially

distributed. In the latter, the heterogeneity on fcM occurs only in the area shown in the

enlargement of Figure 5.5 where the pressure changed due to gas production.

Homogeneous Compressibility - One random variable

The calibration factor fcM is assumed to be spatially uniform within the area of Figure

5.5. The values of the prior fcM ensemble are randomly sampled from a uniform PDF

spanning the interval between 1 and 10:

fcM ∼ U [1, 10] (5.1)

The selected range is based on the outcome of a sensitivity analysis carried out to in-

vestigate the possible interval of the fcM variation. Figure 5.6 shows the spatial distri-

bution of the mean and the standard deviation (σ) of the vertical displacements (uz)

from the forecast ensemble obtained by performing 100 Monte Carlo geomechanical

simulations using the prior fcM ensemble.
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Heterogeneous Compressibility - Multiple random variables

The fcM is spatially distributed within the red area of Figure 5.5. This area is 14 × 10

km2 wide and subdivided into 140 square cells. Each cell is potentially characterized

by a different value of fcM . A categorical indicator algorithm, that creates random re-

alizations of a heterogeneous fcM field according to a given covariance model, is used.

The fcM values are drawn from a discrete uniform distribution with ten prescribed cat-

egories ranging from 1 to 10. Each category has an equal unconditional probability

(1/10). To account instead for the spatial statistical dependence between fcM values on

different cells, a stationary correlation model is introduced. According to this model,

the probability of observing a fcM category in the discrete domain [1,10] at any given

cell depends on the distance from the value of fcM at surrounding cells. The correlation

between two grid cells is based on an exponential isotropic function depending on the

distance between these cells and a prescribed correlation length, λ. The λ value has a

direct influence on the degree of heterogeneity assigned to the spatial distribution of

fcM . Consistent with the size of the cells and also based on the outcome of preliminary

simulations, λ = 4000 m is assumed. Figure 5.7 shows one of the 100 realizations of

the generated prior ensemble of the fcM field. Obviously, the mean over the ensemble

in each grid block is equal to 5. Similar to the homogeneous case, the mean and the

standard deviation of the uz forecast ensemble are shown in Figure 5.8.

5.4.2 Synthetic Land Subsidence Data

Ground-surface displacements data are used to infer the model state and the geome-

chanical parameters. The observations are taken from the land subsidence map of

Figure 5.10, which is obtained from a geomechanical reference simulation with a pre-

scribed and ‘known’ compressibility distribution (see Table 5.1 and Figure 5.9). The

fcM field is assigned on the basis of a plausible reservoir partition derived from the

presence of faults and thrusts (Figure 5.10). The synthetic data locations are uniformly

distributed over the reservoir (Figure 5.10) in the area where the mean uz (Figure 5.6a

and 5.8a) is significant, i.e., |uz| greater than 0.001 m. In the same area, the standard

deviation σ is also approximately greater than 0.001 m (Figure 5.6b and 5.8b).
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FIGURE 5.7: Heterogeneous case: one realization of the 2D fcM field
ensemble. The compressibility varies in the area corresponding to the

enlargement of Figure 5.5
.

FIGURE 5.8: Heterogeneous case: (a) mean and (b) standard deviation,
σ, from the forecast ensemble of the vertical displacements, uz .
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FIGURE 5.9: Prescribed fcM distribution for the simulation of the syn-
thetic data provided in Figure 5.10

TABLE 5.1: True reference values of fcM used to simulate the spatial
distribution of the synthetic land subsidence.

Reservoir block # fcM
1 1.0
2 3.0
3 6.0
4 1.0
5 1.0
6 7.0
7 5.0
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FIGURE 5.10: Spatial distribution of the synthetic land subsidence data,
uz . Assimilation data are collected at the 60 measurements locations dis-
played in the map. The red lines represent the trace of the faults par-
titioning the reservoir into seven blocks. The prescribed reference fcM

values of the blocks are reported in Table 5.1.
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FIGURE 5.11: Homogeneous case: prior and posterior CDFs from the
fcM update ensemble.

5.4.3 Results and Discussion

Update of fcM

In case of a single random variable, a significant reduction of the uncertainty associated

with the prior fcM distribution is obtained, as shown in Figure 5.11 comparing the prior

and the posterior fcM cumulative distribution functions (CDFs). Using the definition of

the ensemble spread (AES) given in Equation (4.5), the prior AES, i.e., before the assim-

ilation of data, equals 2.41 and reduces by about 93% after assimilation. Therefore, the

posterior CDF is highly constrained compared to the prior CDF with the most probable

estimate value for fcM equal to 4.0, corresponding to the mean, or expected value, of

the updated ensemble.

If a multiple random variable is used, the ES performance is evaluated by calcu-

lating the AES index over each grid block of Figure 5.5. The prior AES index ranges

between 2.0 and 2.9 over the domain. After assimilation, the spread of the updated en-

semble significantly reduces over the area where data points are collected, while higher

AES values are found in the surrounding area (see Figure 5.12b). A sensitivity analysis

reveals that collecting data over the entire domain does not improve the assimilation

outcome. Indeed, the previous observations cannot yield enough information to infer

the model parameters because the deep reservoir experiences small pressure variation
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FIGURE 5.12: Heterogeneous case: spatial distribution of (a) the mean
and (b) the performance index AES from the update fcM ensemble after

data assimilation.

in the outer zone with a negligible influence on the land surface deformation. The aver-

age AES over all grid blocks reduces by about 33% after assimilation. Despite a lower

relative reduction of AES compared to test 1, the inverse problem outcome is much

better verified in terms of ground surface displacements as shown below. Figure 5.12a

depicts the spatial distribution of the mean of the update fcM ensemble.

Forecast of Ground Surface Displacement

The quality of the parameter estimation is validated by performing the posterior ge-

omechanical simulations for both uniform and spatially variable fcM . The fcM model

input is the mean of the updated fcM ensemble from the outcome of test cases with one

and multiple random variables. The results of these simulations are compared with the

synthetic land surface data of Figure 5.10 using the Normalized Root Mean Square Er-

ror (NRMSE), which represents the standard deviation of the differences between the

simulated values and the observations, calculated as

√∑N
i=1

(
uzi,sim − uzi,obs

)2

|
(
uzobs,max

− uzobs,min

)
| (5.2)

where uzi,sim and uzi,obs are the simulated and observed land ground displacement at

the ith assimilation location, respectively; uzobs,max
and uzobs,min

are the maximum and

minimum observation values, respectively, N and is the total number of assimilation
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FIGURE 5.13: Simulated vs. observed values of uz in the homogeneous
and heterogeneous test cases.

locations, i.e., 60 data points. Single and multiple random variables tests give NRMSE

values equal to 61% and 7%, respectively. Hence, the predicted vertical displacements

provides a far better data match in heterogeneous case as shown by comparing the

measured and observed displacements (Figure 5.13). The fitting of the model predic-

tions to the reference data is very accurate with the heterogeneous cM while under-

estimation and overestimation values are found in the homogeneous test case for the

larger and smaller measured displacements, respectively.

5.5 Test case: gPCE-based Ensemble Smoother for cM estima-

tion

In this section, the calibration of the parameter fcM is obtained using the generalized

Polynomial Chaos Expansion (gPCE) combined with the ES (Section 3.3). The aim is at

reducing the overall computational cost of the assimilation avoiding the Monte Carlo

simulations. For the homogeneous test case with only one random variable the applica-

tion of the methodology is straightforward. The uncertain parameter fcM is uniformly

distributed as in the ensemble-based approach from the PDF given in Equation (5.1).

The model output in term of vertical displacements depends on the space x and on the



92 Chapter 5. Gas Producing Reservoirs

TABLE 5.2: Integration points ni used to run the geomechanical simula-
tions with the order of the gPCE expansion k equal to 3.

n1 n2 n3 n4

fcM 1.6249 3.9701 7.0299 9.3751

random input fcM . The gPCE allows to write the model output u(x, fcM ) as

u(x, fcM ) =
M∑

α=0

uα(x) ·Ψα(fcM ) (5.3)

where Ψα(fcM ) are the basis functions of the expansion, i.e., polynomials. In this case,

the Legendre polynomials are used because a uniform PDF is elected to describe the

distribution of fcM . M is the number of the expansion coefficients uα that can be calcu-

lated by the following formula:

M =
(N + k)!

N !k!
− 1 (5.4)

with N the number of random variables and k the order of the gPCE expansion. The

univariate case impliesN = 1 and chosing, for example, k = 3 the number of expansion

coefficients M is equal to 3. To determine the number of model runs corresponding

to the number of integration points Q it is sufficient to notice that n points integrate

exactly polynomials up to order 2n− 1 in the univariate case. Thus using a gPCE order

3, the polynomial degree of uα is equal to 6 and Q is equal to 4 (see Section 3.3). It

is necessary to run four independent geomechanical simulations to get the coefficients

uα of Equation (5.3). The four points are given in Table 5.2. Then, the response in

term of vertical displacements from the geomechanical simulations is extracted at the

measurement locations highlighted in Figure 5.10. Thus the assimilation points are

the same used in the ES test case. The estimation of the parameter fcM is achieved

with a ES scheme where the forecast matrix is built from sampling the realizations

from the solution obtained with the gPCE. Table 5.3 summarizes the results of the fcM

updating providing the mean and AES (Equation 4.5) reduction prior and posterior to

the assimilation. The updating is performed for different ensemble size nMC equal to

10, 100, 1000, and 10.000 realizations. It is clear that the number of realizations do not

affect the solution of the updating scheme with a mean value for fcM equal to 4.7. The
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TABLE 5.3: Mean and AES reduction of the updating fcM with varing
number of realizations.

nMC mean fcM % AES
10 4.71 99.1%
100 4.70 99.1%
1000 4.69 99.1%

10.000 4.70 99.1%

FIGURE 5.14: Simulated vs. observed values of uz in the homogeneous
case, i.e., one random variable, obtained by ES and gPCE-based ES algo-

rithms.

reduction of the ensemble spread is very high an equal to 99.1%.

The comparison of these results with those obtained in Section 5.4.3 demonstrates

the effectiveness of the two approaches for fcM estimation assimilating measurements

of vertical displacements. However, the mean of the updating fcM slightly differs in

the two cases. In particular, the ES scheme with Monte Carlo realizations of the ge-

omechanical model converge to a mean value of about 4.0 (Figure 5.11) while with

sampling from a gPCE expansion of the model solution with order 3 gives a value of

4.7. It is interesting to observe the result in term of displacements by using fcM from

the calibration obtained with the two methodologies. Figure 5.14 shows the compari-

son between observed and simulated vertical displacements at the 60 data points used

for the assimilation. The NRMSE (Equation (5.2)) is equal to 61% and 53 % in the two

cases thus a slightly better match of the true reference is obtained with the gPCE based

approach. However, the large discrepancy between observed and simulated data is not
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entirely removed introducing this new approach for the calibration.

The gPCE-based ES is also tested in the case of heterogeneous fcM field where a

stochastic random process in space is modeled. The stochastic random field of Section

5.4 is such that 140 random variables are subjected to calibration. For application with

the gPCE method this is quite unfeasible for large-scale forward models. Recalling

Equation (5.4), the number of coefficients M of the gPCE expansion are almost equal to

106 with N = 140 and k = 3. Thus a proper dimension reduction technique is used to

reduce the number of random variables although maintaining enough approximation

accuracy.

The Karhunen-Loève (KL) expansion is a widely used technique for representation

of random processes as series expansions. It allows to write a random field r(x, ω) ∈

L2(D)⊗L2(Ω) with mean ¯r(x) and covariance function C(x, y) = covr(x, y) as a infinite

sum

r(x, ω) =

∞∑

i=0

σiri(x)ξi(ω) (5.5)

where σ0 ≥ σ1 ≥ σ2 ≥ ... is a decreasing and non-negative sequence of real num-

bers with limit point 0, ri are the shape functions defining an orthonormal system in

L2(D), and ξi are random variables in L2(Ω). D and Ω denote the spatial domain of the

stochastic process and the space of the random events. ξi(ω) are uncorrelated random

variables of unit variance:

E[ξi] = 0, E[ξi, ξj ] = δij (5.6)

which depend on the probability distribution function attributed to the stochastic pro-

cess. The first term of the expansion, i.e., i = 0, corresponds to σ0, r0(x) = r̄(x), i.e.,

the mean function of the stochastic field, and ξ0(ω) ≡ 1. The eigenfunctions ri and the

corresponding eigenvalues σ2
i are the solution to the following eigenvalue problem:

∫

D
C(x1, x2)ri(x2)dx2 = σ2

i ri(x1), x1 ∈ D (5.7)

In practice, the sum in Equation (5.5) is truncated to a fintite number of terms L provid-

ing a representation of the random field with a countable number of random variables
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FIGURE 5.15: Eigenvalues σ2
i with truncation of the KLE equal to L = 11

and L = 22.

[Zander, 2013]:

r(x, ω) =
L∑

i=0

σiri(x)ξi(ω) (5.8)

The number of terms of retain in the expansion mostly depends on the decay of the

eigenvalues σ2
i with increasing index i. The Matérn covariance function C(d) is here

employed to describe the stastical covariance between points in the domain D:

C(d) = σ2 1

Γ(ν)2ν−1

(√
2ν
d

ρ

)ν
Kν

(√
2ν
d

ρ

)
(5.9)

where Γ is the Gamma function, Kν is the Bessel function of the second kind, d is the

distance between two points, ρ and ν are function parameters. Choosing a value for ν

equal to 2 and a Gaussian process the realizations of the stochastic field would be one

time continuous differentiable. The correlation length is maintained equal to 4000 m

as in the previous test, i.e., where the stochastic field is generated with a categorical

indicator algorithm. Figure 5.15 shows the eigenvalues obtained solving the problem

of Equation (5.7) varying the truncation of the expansion series with covariance from

Equation (5.9). Obviously, the decay of the eigenvalues increases with increasing of

the number of expansion terms L. The eigenfunction corresponding with the first 11
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FIGURE 5.16: Eigenfunctions ri(x) corresponding to the eigenvalues σ2
i

of the first L = 11 terms plotted in Figure 5.15.

eigenvalues are plotted in Figure 5.16 within the reservoir domain (Figure 5.5). Notice

that if the random field has a constant variance σ2, the error in truncating the KLE can

be calculated as [Zander, 2013]:

||rL − r||2L2(D)⊗L2(Ω) = |D|σ2 −
L∑

i=1

σ2
i (5.10)

In the investigated case the error in variance is equal to 11.11%.

The KL expansion is used to discretize the compressibility random field, i.e, the

scaling factor fcM , to reduce the number of random variables. Then, the dependent

stochastic process (the displacement field) is represented via gPCE. The gPC order for

the expansion of the solution is assumed equal to 2 for these preliminary tests. Thus,

the number of integration points, i.e., the number of model runs, is equal to 23 from the

use of a sparse grid and a gPCE order 2 with the KLE truncated to L = 11 terms. The

assimilation results in terms of parameter estimation of fcM is shown in Figure 5.17

using an ensemble size of 100 realizations. The updated stochastic field gives a pre-



Chapter 5. Gas Producing Reservoirs 97

FIGURE 5.17: Spatial distribution of the updated fcM random field using
the gPCE-based ES.

liminary understanding on the effectiveness of the proposed methodology. It actually

produce an updated picture that is comparable with the true reference field prescribed

in order to obtained the reference assimilation measurements (see Figure 5.10 and Table

5.1). Indeed, in the central portion of the domain, i.e., where the pressure depletion is

actually relevant, the gPCE-based ES reduces the prior uncertainty associated with the

stochastic field. This is again evaluated through the AES performance index which is

reduced by about 35% after assimilation of data. The proposed gPCE-based ES seems

a promising methodology because the uncertainty reduction is comparable with that

obtained with the ES but at much lower computational. Indeed, neglecting the cost

of the assimilation which is much lower than the cost of the forward model runs, the

gPCE-ES allows to reduce the total number of geomechanical model runs from 100 to

23 realizations. Obviously, further investigations are necessary to investigate the effect

of the gPCE order and the KLE truncation on the paramter update.
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FIGURE 5.18: Prior sample Cumulative Didtribution Function (CDF) of
the multiplier fcM .

5.6 The Maja Case Study

5.6.1 Conceptual model 1

In the real case, the conceptual model 1 considers only one prior unknown parameter

fcM . The a priori uncertainty for fcM is modeled by randomly sampling from a uniform

PDF within the range from 1 to 10:

fcM ∼ U [1, 10] (5.11)

The use of a uniform PDF is such that each member is equally probable sampled, re-

flecting the lack of information on fcM . Preliminary sensitivity analysis has been per-

formed to select the fcM range to include the measured peak value of land subsidence

within the forecast ensemble. The cumulative distribution function (CDF) of the prior

ensemble for fcM is shown in Figure 5.18. The sample CDF is roughly uniform and

departure from uniformity is due to the finite ensemble size, nMC , of 100 members.
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FIGURE 5.19: (a) 2D view of the geomechancial grid (see Figure 5.3(b))
and (b) sketch of the faults distribution. Each reservoir block is assigned

with a different multiplier, fcM,i
.

5.6.2 Conceptual model 2

The conceptual model that follows is intended to better match the observed data by

accounting for the geological structure of the Maja reservoir. The multiplier fcM is

variable in space within the reservoir. This is suggested by the strong compartmen-

talization of the reservoir. Heterogeneous distribution of fcM is assumed within the

production model domain where the depletion occurs, that is, within the red rectangle

of the 2D view of the grid domain in Figure 5.19(a). This subdomain is partitioned into

seven blocks which represent a plausible compartmentalization based on the distribu-

tion of sealing faults and thrusts detected from the 3D seismic investigation (Figure

5.19b). Thus, the seven blocks are identified and each of them can assume a differ-

ent fcM value. The parameters fcM,i (i = 1, ..., 7) are assumed to be uncorrelated and

sampled from a uniform PDF within the interval between 1 and 10:

fcM,i ∼ U [1, 10] (5.12)

The CDFs of the model parameters fcM,i (i = 1, ..., 7) are similar to the one of Figure

5.18. The mean and standard deviation of the prior ensembles are of about to 5.5 and

2.6, respectively. Overburden, underburden and sideburden are modeled with a linear

elastic material. A set of 100 Monte Carlo simulations nMC are used as in the prevoius
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case.

5.6.3 Results

In this section, the forecast of the vertical displacements obtained with the Monte-Carlo

geomechanical simulations and the parameter updating via the ES algorithm are de-

scribed in detail for both conceptual models 1 and 2. Furthermore, the updating of the

seabed subsidence is carried out with the calibrated multiplier fcM as constrained in

the analysis step.

Conceptual model 1 - Homogeneous fcM

The Monte-Carlo simulations of the geomechanical model are carried out by running

the prior ensemble of fcM realizations. An overview of the forecast stochastic simula-

tions is provided in Figure 5.20(a) and Figure 5.20(b), where the mean, µv,prior, and the

coefficient of variation, Cv,prior, of the displacement field are respectively shown over

the reservoir domain at the end of the ten-years production life. Note that µv,prior is

normalized to umax. Cv,prior provides an estimate of the variability of the ensemble in

relation to the mean µv,prior. The standard deviation is often used in literature to quan-

tify the ensemble dispersion. However, in this case, the coefficent Cv,prior is preferred

beacuse it avoids the use of the data units. The comparison between the measurements

of Figure 5.4 and µv,prior as provided in Figure 5.21 shows that the peak value of the

µv,prior field is slightly shifted to the west and the computed subsidence bowl gener-

ally overestimates the areal extent of the observed settlement bowl. The maximum

µv,prior is found above the reservoir areas where the greater pressure depletion occurs.

A Cv,prior of about 24% is found over the major area of the reservoir domain with a pro-

gressively decrease as the distance from the peak of the computed µv,prior increases, i.e.,

toward the outer region of the domain. The parameter updating is performed by as-

similation of data provided by the bathymetric survey. The parameter estimation is

carried out with the subset of 30 observations shown in Figure 5.4. The data points are

chosen such that the interpolated values over the domain reproduce the measured sub-

sidence (Figure 5.4) with acceptable accuracy. Note that each data point is associated

with the nearest node of the FE grid. The ES updating algorithm requires that an error
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FIGURE 5.20: Model 1: forecast ensemble of the seabed subsidence over
the reservoir domain in terms of (a) mean, µv,prior, normalized to umax,

and (b) coefficient of variation, Cv,prior.

FIGURE 5.21: Comparison between the measured subsidence (red
contour-lines) and the mean of the forecast subsidence, µv,prior, (black

contours).
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must be assigned to each collected observation. The measurement perturbation εD is

randomly sampled from a Gaussian PDF of the measurement error with zero mean and

variance σ2
ε , that is, the so-called Gaussian white noise. Two scenarios A and B are in-

vestigated in this Section. They depend on the σε which is assigned to the measurement

error. In scenario A, all data assume the same σA = 0.0625 based on the accuracy of

the bathymetric measurements, whereas in scenario B σB changes within the domain.

σB varies depending on the distance between the location of the measurement and that

where umax occurs. In particular, σB ranges between 0.025 at the subsidence peak and

0.125 at the most far location, i.e., where the subsidence is smaller and, therefore, the

measurements more uncertain. The other data points are characterized by a σB value

as obtained by a linear interpolation between the two extremes depending on the rel-

ative distance. Consequently, in scenario A, all observations have the same weights in

the assimilation procedure while, in scenario B, measurements away from the centre

of the subsidence bowl are characterized by a lower weight than those closer to the

displacement peak. In Figure 5.22 the measurement error PDFs are plotted for three

representative data points P1, P2 and P3 which are located at the centre of the displace-

ment bowl and at growing distances from point P1, respectively, with σB increasing

from P1 (center of the bowl) to P3 (farthest point from P1).

Figure 5.23 shows the calibration outcome for the multiplier fcM in both scenario A

and B. The posterior and prior CDFs are compared and a significant reduction of the

parameter uncertainty is found by assimilating vertical displacements from the time-

lapse bathymetric map. Indeed, in both scenarios A and B, the spread of the updated

CDFs is drastically reduced with respect to the prior distribution. On the other hand,

one could observe that the two scenarios slightly differ and the updated CDF in B is

translated to the right compared to A. This result is the consequence of σA and σB

assigned to the measurement error. In scenario A, the ES assigns the same weights to

all assimilated data and, thus, produces an updated ensemble for fcM that attempts

to match and mediate between higher and lower displacement data. On the other

hand, in scenario B a higher weight is given to the larger vertical displacement and

the ES output from the updating provides a higher fcM value, which imply a larger

compressibility to match the higher subsidence observations.
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FIGURE 5.22: Measurement error PDFs at data points P1, P2 and P3: σB
grows as the point distance increases from the centre of the subsidence

bowl.

FIGURE 5.23: Model 1: prior and posterior CDFs of the updating model
parameter fcM for scenario A and B.
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FIGURE 5.24: Model 1: updated subsidence, µv,post, obtained with the
fcM median after ten-year of gas extraction from scenario A (a) and sce-

nario B (b) normalized to umax.
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The updated medians of the fcM ensemble, that is, the 50th percentile drawn from

the updated CDFs of Figure 5.23 are used to run a posterior simulation of the geome-

chanical model. The updated fcM median equals 3.6 and 4.0 in scenario A and B,

respectively. Figure 5.24(a) and 5.24(b) show the spatial distribution of the vertical

displacement of the seafloor after ten-years of gas production as computed by the up-

dated model for the two scenarios. In scenario A, the maximum underestimation and

overestimation of the time-lapse bathymetry are equal to 34% and 25%, respectively.

In scenario B, the maximum underestimation is smaller than in scenario A and equals

27%. Instead, the maximum overestimation is equal to 28%, slighlty larger than in sce-

nario A. As expected, increasing the value of the multiplier fcM from 3.6 (scenario A)

to 4.0 (scenario B) yields:

1. a reduction of the maximum subsidence underestimate;

2. an enlargement of the subsidence bowl.

These contrasting effects suggest that a better match of the observations cannot be

achieved assuming fcM as a single random variable within the whole model. These

results point to the use of a spatial variability of fcM , as previously discussed in Sec-

tion 5.6.2.

Conceptual model 2 - Heterogeneous fcM

The prior ensemble of fcM , as generated in Section 5.6.2, is run to build the forecast

ensemble of the vertical displacements. The simulation spans the ten-years of pro-

duction and the ensemble size consists of 100 realizations. Figure 5.25 provides the

mean and the coefficient of variation from the forecast ensemble obtained with the for-

ward model. The peak subsidence value from the mean forecast ensemble is equal to

1.01umax. It is found that conceptual model 1 and 2 provides a similar outcome in terms

of forecast mean of seabed subsidence (Figure 5.20(a) and Figure 5.25(a)). By contrast,

the coefficient of variation takes on higher values compared to the case of homoge-

neous fcM and is distributed over the domain with a pattern which resembles the fcM

distribution (see Figure 5.19). It is seen that higher ∆P provides greater variations of

the ensemble spread from the forecast displacements. Figure 5.25(b) shows a relative
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FIGURE 5.25: Model 2: forecast ensemble of the seabed subsidence over
the reservoir domain in terms of (a) mean and (b) coefficient of varia-
tion. The mean values are scaled to the maximum measured vertical

displacement.

TABLE 5.4: Statistics from the posterior fcM,i
ensembles.

#fcM mean µ median m std dev σ2 Cv
1 3.05 2.91 0.89 0.29
2 3.59 3.58 0.28 0.08
3 9.67 9.57 1.14 0.12
4 2.02 2.08 0.64 0.31
5 2.92 2.77 1.65 0.56
6 2.69 2.66 0.50 0.18
7 1.46 1.47 0.51 0.35

variability of the forecast ensemble of about 43% and 45% in compartments 2 and 4,

respectively, whereas in compartments 1, 5, 6 and 7 is slightly higher than 35%. The

analysis step of the ES algorithm is carried out similarly to conceptual model 1, except

that a set of seven parameters are here estimated using the information from the same

data points of Figure 5.4.

The standard deviation of the measurement error σε is uniformly distributed for

all measurements and is equal to 0.0625. The results from the updating scheme are

provided in Figure 5.26 and in Table 5.4. It appears that the posterior CDFs shrink

for all updated fcM ensembles and the prior σfcM reduces after the assimilation of the

observations. The higher σfcM is observed for parameter fcM,5 , relative to the most

eastward compartment (see Figure 5.19). The pressure variation in this reservoir block

is small and do not contribute significantly to the measured vertical displacements on

the seabed-surface. Thus, the information from the data points on the bathymetric

map is not significant to constrain the parameter in this block. The updated µfcM are
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FIGURE 5.26: Model 2: (a) Posterior CDFs of the random variables fcM,i

after assimilation of vertical displacements data and (b) updated seabed
subsidence obtained with the median after ten-year of gas production

and normalized to umax.
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FIGURE 5.27: Distribution of the percentage error δ over the measure-
ment area. Positive and negative values are representative of the model

underestimation and overestimation, respectively.
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lower than the prior mean 5.5 in the whole reservoir, except for compartment 3 where

it achieves a value equal to 9.67. This almost exceeds the upper bound of the prior

uniform PDF, namely 10. Thus, the ES analysis suggests that higher values for fcM,3 are

required to match the measured seafloor settlement. The largest spread reduction of

the prior CDF is obtained in compartment 2 with a coefficient of variation, Cv, equal to

0.08. Table 5.4 suggests that the updated parameters are simmetrically distributed as

the medians of the updated CDFs are close to the mean values.

The updated median m of Table 5.4 are used to run a posterior geomechanical sim-

ulation. The outcome of the computation after ten-years of gas production is shown

in Figure 5.26(b). The bowl of the seabed subsidence appears to be more restricted as

compared to the subsidence maps of Figure 5.24. The improved outcome of the cal-

ibration procedure with model 2 compared to model 1 is shown in Figure 5.27. The

percent error, defined as δ = 100× (umeas− usim)/|umeas|where umeas and usim are the

measured and simulated vertical displacements respectively, is plotted over the reser-

voir domain for scenario A and B (model 1), and model 2. Positive and negative values

denote the area where the models underestimate and overestimate the measurements,

respectively. Scenario A and B from model 1 show a similar distribution of δ over the

domain with an underestimation of about 34% and 27 % at the peak measured data

point. By contrast, model 2 allows to reduce the underestimation up to 23%. The av-

erage percentage error, δav, is also evaluated over the whole domain and is defined as

100 × (
∑N

i=1 |(usim − umeas)|/|umeas|)/N , where N is the total data points falling into

the grid of the contour map of Figure 5.27. Model 2 provides a δav of about 20%, while

scenarios A and B of model 1 give values of about 45% and 57%, respectively. Thus, the

parametrization of the problem in the form of model 2, i.e., seven random variables,

provides a better match of the seabed subsidence data.

5.6.4 Conclusions

The ES algorithm provides an efficient tool for reservoir geomechanical parameter esti-

mation using observations of seafloor subsidence, i.e., vertical displacements measured

through time-lapse bathymetric surveys. These data may represent an important, al-

though indirect, information on the rock formation properties. In particular, the ES
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allows for the characterization of the reservoir vertical uniaxial compressibiltiy, cM ,

namely the geomechanical parameter that mostly controls the reservoir compaction

due to the pore pressure depletion during fluid production. The method is herein

tested on a real offshore gas reservoir with a highly complex distribution of sealing

faults and thrusts that are also involved in the ES algorithm. The major conclusions

can be summarized as follows:

1. data of seafloor displacements can be helpful to estimate the mechanical proper-

ties of a gas reservoir;

2. weighting the observations according to their reliability affects the outcome of

the updating scheme;

3. using information on the actual reservoir geologic structure may improve the

reservoir characterization;

4. the ES constrains the prior PDF of the heterogeneous geomechanical parameters

where enough data are available;

5. the assumption of a heterogeneous parametrization for the compressibility, i.e., a

different value of cM , in each reservoir block may provide a better matching of

the seafloor subsidence compared to the case of a uniform cM .

Further improvements will focus on the validation of the above results using differ-

ent data sources including compaction measurements from RMT. Moreover, the com-

pressibility law could be revisited in light of the fact the only one law for the whole

reservoir may not prove fully satisfactory to address the local reservoir geomechanical

behaviour.
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Conclusions

In this thesis, a Bayesian framework is proposed for the geomechanical characteriza-

tion of deep porous rock formations. The aim is at integrating, within an automated

procedure, field observations into the response of subsurface simulation models, thus

achieving the dual goal of (i) reducing the uncertainty in model predictions and (ii)

improving the characterization of the geomechanical properties of the porous media.

Specifically, the ES (Ensemble Smoother) algorithm based on Monte Carlo simulations

is chosen to assimilate ground surface deformations and infer the model parameters of

a FE (Finite Element) geomechanical model.

The ES inversion scheme addresses the assimilation of all available measurements

in space and time within one updating step. This allows for (i) an offline update of the

model parameters avoiding the ensemble re-run at each time step as in the widely used

EnKF (Ensemble Kalman Filter), and (ii) a unique solution over time for the estimated

parameters.

The focus is on the investigation of the applicability of the proposed methodology

in real case applications where large systems are simulated with approximately one

million of degree of freedom. Obviously the computational cost of each simulation

highly affects the efficiency of the methodology based on Monte Carlo simulations.

In fact, these methods converge to the solution with an increasing number of model

realizations which requires a tradeoff between the ES convergence and a reasonable

computational cost for the whole procedure.

Preliminary numerical tests on synthetic cases are employed to evaluate the effec-

tiveness of the ES for the parameter estimation. The tests are built such that the reser-

voir model is the actual real model and the measurements used in the assimilation
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are synthetic as derived from the geomechanical model. Two reservoir activities are

modeled using a transversely isotropic model to forecast the behavior of a UGS (Un-

derground Gas Storage) field and an isotropic geomechanical model to simulate the

deformation caused by gas extraction from a hydrocarbon reservoir.

Different parameters are estimated in the two cases. The ratio of the horizontal-to-

vertical Young’s modulus, the Poisson ratio, the ratio of the horizontal-to-vertical shear

modulus, and the ratio of the cM in I cycle-to-II cycle, are estimated using a transversely

isotropic constitutive law. By distinction, in the second case, the parameter cM is esti-

mated employing an isotropic law because of lack of horizontal displacements data. It

is observed that the assimilation of the land surface motion is important to characterize

the subsurface parameters and reduce their prior uncertainty. Although the model is

slightly non linear and the ES hypothesis of Gaussian PDFs is not fulfilled, satisfactory

ES performances are obtained in terms of spread reduction of the posterior PDFs af-

ter assimilation of data with the mean values closer to the true reference simulation.

However, it is also shown that when the true reference is too far from the mean of

the forecast solution the convergence of the algorithm is more difficult to achieve. This

suggests that proper prior PDFs for the parameters must be chosen considering the fact

that enlarging the prior PDFs may help include the observations within the forecast en-

semble. However, this may lead to run a too large number of Monte Carlo realizations

to adequately sample the posterior PDFs.

Homogeneous parameters are estimated in the UGS field while, in the producing

reservoir, the case of a heterogeneous distribution of the parameter cM is also inves-

tigated. The motivation for this assumption is based on the geological structure of

the studied reservoir, with the gas field highly compartmentalized by a complex dis-

tribution of sealing faults and thrusts. As expected the highest reduction of the prior

parameters uncertainty is obtained in the areas where the forcing term, i.e., the pres-

sure variation, is maximum. Moreover, the ES provide a satisfactory estimate of the

cM field used as reference to test the updating performance. Comparing the posterior

simulations using the cM from homogenous and heterogeneous fields, the misfit be-

tween measurements and model prediction is much lower when less constraints are

prescribed on the model, i.e., in the heterogeneous case. In fact, the higher variation
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of the parameters in the model domain allows the model to better adapt to the land

surface movements.

Of more interest are the applications where real measurements of land displace-

ments are assimilated into the ES scheme. In this case, the parameter estimation is not

straightforward. In particular, in the UGS fields vertical and horizontal displacements

from PSI are used. The updated parameters are dependent to some extent on different

data sets and this indicates the presence of a possible bias in the measurements and/or

in the model forecast. Indeed, the consistency between the displacement records and

the physical process represented by the forward model is a key point for the parame-

ter estimation. An appropriate selection of observations with the smallest data noise

yields the most satisfactory match.

In the offshore gas reservoir, land subsidence data collected from a time-lapse bathy-

metric map highly impact on the cM estimation. Seven independent variables for cM

are chosen to describe the possible heterogeneous behavior of the reservoir. It is found

that the prior uncertainty reduction of the parameter in each block depends on the

magnitude of the available data. Thus the higher pressure variation in the block the

higher the influence of the parameter on the model outcome and the effectiveness of

the ES scheme. The impact of a parameter on the model solution is crucial for esti-

mation purposes. In fact, it is seen that the variation of cM in a small block does not

provide a significant coefficient of variation in terms of vertical displacements and the

reduction of the prior ensemble spread is smaller than in the other reservoir blocks.

The ongoing work on the parameter updating via gPCE (generalized Polynomial

Chaos Expansion) based ES is quite promising to reduce the overall computational

cost of the ensemble based approaches such as the one used in this thesis. Satisfactory

results are obtained with cM described by one random variable (i.e., homogeneous

case) while further numerical tests are needed to better understand the capability of

the gPCE combined with the KLE (Karhunen Loève Expansion) to address the hetero-

geneity of the compressibility and improve the match of the observed land subsidence.
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