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Sommario

Nel suo famoso libro Progettazione ed Analisi degli Esperimenti [54], Mont-
gomery descrive il Design of Experiment (DOE) come un esteso approccio
ad un esperimento che parte dalla de�nizione e dall'enunciato del problema,
attraversa la progettazione della fase sperimentale e lo studio delle possibili
soluzioni, per chiudersi con le conclusioni e le raccomandazioni. In parti-
colare, il DOE è riconosciuto essere un potente strumento che si basa sulla
statistica per progettare ed analizzare gli esperimenti. Le potenzialità del
DOE sono ben conosciute ed apprezzate tra gli studiosi. In alcuni campi
le sue potenzialità sono riconosciute ed apprezzate anche dai professionisti.
Per questo motivo c'è un uso esteso del Design of Experiment nel migliora-
mento della qualità dei processi industriali. Ad esempio, il DOE è uno degli
strumenti del Six Sigma per aumentare la qualità dell'output di un processo.

Secondo la de�nizione fornita da Bisgaard [8], l'innovazione è l'intero pro-
cesso di sviluppo ed alla �ne commercializzazione di nuovi prodotti e servizi,
di nuovi metodi di produzione o approvvigionamento, di nuovi metodi di tra-
sporto o servizi di consegna, di nuovi modelli di business, nuovi mercati, o
nuove forme di organizzazione. Mentre l'uso del DOE è ben di�uso nella
sperimentazione industriale per il miglioramento della qualità e della robu-
stezza dei processi, il vantaggio dell'uso del DOE per l'innovazione è fonte di
dibattito tra gli studiosi e tra i professionisti.

L'idea di studiare l'uso del DOE per l'innovazione dei processi di pro-
duzione ha origine da questo dibattito. La ricerca è stata condotta secondo
diverse prospettive. La prima prospettiva riguarda l'e�cacia del DOE nel
supportare e potenziare la fase di innovazione di un processo produttivo. Es-
sa è evidenziata grazie ad un caso studio nel quale è stata sviluppata una
strategia per innovare il processo di termoformatura per la produzione di un
packaging funzionale. Il DOE ha favorito la capacità di innovazione permet-
tendo una riduzione degli errori sistematici e delle distorsioni, una completa
esplorazione dello spazio fattoriale, ed una riduzione del numero dei test.
L'approccio tradizionale per il controllo della produzione nei processi di ter-
moformatura è stato messo alla prova e s�dato. Il DOE ha permesso di
identi�care e superare la discrepanza tra i fattori di controllo in laboratorio
e quelli nella linea di produzione.
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Una seconda prospettiva è di taglio manageriale ed è stata quella del-
la gestione del processo di innovazione. L'impatto positivo che l'adozione
del DOE ha avuto sulla gestione del processo di innovazione viene qui mo-
strato per mezzo di un caso studio. Il DOE ha dato prova di essere utile
fornendo appropriati strumenti ed impattando su cinque dimensioni tipiche
dell'ambito manageriale. Nello speci�co: capacità decisionali, integrazione,
comunicazione, tempi e costi, e gestione della conoscenza.

Per quanto concerne l'analisi dei dati, sono stati studiati alcuni metodi di
analisi non parametrici. Attraverso uno studio di simulazione sono stati con-
frontati alcuni recenti test univariati non parametrici in un piano fattoriale
a due vie. Lo studio ha mostrato come l'e�cacia dei metodi di analisi vari a
seconda del data set da analizzare e dell'obiettivo dell'analisi. Di conseguen-
za non è emerso un unico approccio da utilizzare nella fase di progettazione
dell'esperimento, ma bensì vari aspetti devono essere tenuti in considerazione
simultaneamente. Una accurata scelta del test più adatto favorisce l'impatto
positivo che il DOE ha sull'innovazione dei processi di produzione. Inoltre
è stato sviluppato un nuovo approccio multivariato non parametrico basa-
to sulla NonParametric Combination (NPC) applicata ai test Synchronized
Permutation (SP) per i piani sperimentali a due vie e due livelli. Questo
approccio si è rivelato essere un buono strumento per la statistica inferen-
ziale quando sono violate le assunzioni della MANOVA. Un grosso vantaggio
fornito dall'adozione di questo tipo di test è che hanno ottime performances
nel caso di campioni non numerosi. Questo fatto ri�ette le frequenti neces-
sità dei professionisti in ambito industriale dove ci sono limitazioni o risorse
scarse per la campagna sperimentale. Inoltre, c'è una proprietà molto impor-
tante della NPC dei test SP che può essere sfruttato per aumentare la loro
potenza: la cosiddetta �nite sample consistency. Infatti, può essere osserva-
to un aumento della potenza sotto ipotesi alternativa H1 quando il numero
delle variabili risposta aumenta ed il numero dei campioni rimane costante.
Questo fatto può fornire un bene�cio strategico considerando che, in molti
problemi concreti, potrebbe essere più facile raccogliere più informazioni da
una singola unità statistica che aggiungerne una di nuova al piano sperimen-
tale. Le proprietà di questo test multivariato lo rendono un utile strumento
quando si intende utilizzare il DOE per l'innovazione dei processi produttivi
e si veri�cano alcune condizioni speci�che.



Abstract

In his famous book Design and Analysis of Experiments [54], Montgomery
describes Design of Experiment (DOE) as a broad approach to an experiment,
starting from the recognition of and statement of the problem, going through
the experimental design and to the possible solution, ending to conclusion and
recommendations. Speci�cally, DOE is known to be a powerful instrument
based on statistics to design and analyze experiments. Potentiality of DOE
is well known and appreciated among scholars. In some �elds its potentiality
is recognized and appreciated also by practitioners. That's why there is an
extensive use of Design of Experiment in improvement of industrial process
quality. For instance, DOE is one of the instruments of Six Sigma to improve
the quality of the output of a process.

According to the de�nition given by Bisgaard [8], innovation is the com-
plete process of development and eventual commercialization of new products
and services, new methods of production or provision, new methods of trans-
portation or service delivery, new business models, new markets, or new forms
of organization. While the use of DOE is well spread in industrial experimen-
tation to improve quality and robustness of processes, the advantage of using
DOE for innovation is debated among scholars and among practitioners.

The idea of investigating the use of DOE for production process innova-
tion arose from this debate. Di�erent perspectives have been investigated.
The e�ectiveness of DOE to support and enhance the innovation of a produc-
tion process is highlighted by means of a case study in which a strategy to in-
novate a thermoforming process for the production of a functional packaging
has been developed. DOE enhanced innovation capability allowing reduction
of systematic errors and distortions, full exploration of factorial space, and
reduction of number of tests. Traditional approach to production control in
thermoforming process was challenged. DOE allowed to identify and over-
come the mismatch between control factors in laboratory and in production
line. Another perspective was the management of the innovation process.
The positive impact on innovation process management of adoption of DOE
is shown by means of a case study. DOE proved to be helpful providing
proper instruments, and impacting on �ve dimensions typical of managerial
�eld. Namely: decision making, integration, communication, time and cost,
and knowledge management.
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Concerning the data analysis, some nonparametric methods of analysis
have been investigated. A simulation study was used to compare some ad-
vanced univariate nonparamentric tests in a crossed factorial design. The
study revealed that certain methods of analysis perform better than oth-
ers depending on the data set and on the objective of the analysis. As a
consequence, there does not emerge a unique approach in the design phase
of the experiment, but various aspects have to be taken into account si-
multaneously. A thoughtful choice of the most suitable test enhances the
positive impact that DOE has on the innovation of a production process.
Furthermore, a novel multivariate nonparametric approach based on Non-
Parametric Combination (NPC) applied to Synchronized Permutation (SP)
tests for two-way crossed factorial design was developed. It revealed to be
a good instrument for inferential statistics when assumptions of MANOVA
are violated. A great advantage given by the adoption of these tests is that
they well perform with small sample size. This re�ects the frequent needs
of practitioners in the industrial environment where there are constraints or
limited resources for the experimental design. Furthermore, there is an im-
portant property of NPC of SP tests that can be exploited to increase their
power: the �nite sample consistency. Indeed, an increase in rejection rate can
be observed under alternative hypothesis H1 when the number of response
variables increases with �xed number of observed units. This could lead to a
strategical bene�t considering that in many real problems it could be easier
to collect more information on a single experimental unit than adding a new
unit to the experimental design. Properties of this multivariate test make of
it a useful instrument when using DOE to innovate a production process and
some speci�c conditions are veri�ed.
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Chapter 1

Introduction

A production process is a series of mechanical or chemical steps used to
create an object. It is a system that has been designed for a speci�c purpose
and it is based on existing technology, scienti�c knowledge and experience of
engineers in the speci�c �eld or application. Generally speaking, to innovate
a system we have �rst to understand how it works. Then innovation, to
be achieved, requires to exit the paradigm under which people is used to
operate, requires to explore new solutions, and requires to understand how
the new system will work under the new conditions.

Observing a production process while it is in operation it's useful in order
to understand how it works. However, to fully understand what happens to
a system and to its output when a change occurs in the way the system is
organized or in some input factors, something more than simply observing is
needed. Factors have to be changed according to a design, and changes have
to be controlled and planned so that cause-and-e�ect relationships between
modi�ed input factors and output can be identi�ed. In other words, experi-
ments on the system have to be conducted. Design of Experiments (DOE) is
a powerful instrument based on statistics to design and analyze experiments.
Designed experiments can help to determine which input variables are re-
sponsible for a certain changement in the output response, and they can lead
to a model relating response and input variables. Such experimentally de-
termined models are called empirical models and can be used for production
process improvement or other decision-making.

DOE plays an important role in product realization and commercializa-
tion activities. The objective of its use in many cases may be to develop a
robust process, that is when external sources of variability have a small or
negligible impact on the process and on its output. My research is about
the use of DOE for the innovation of production processes. Speci�cally, it
concerns those companies and organizations that invest in systematic inno-

1



CHAPTER 1. INTRODUCTION 2

vation, no matter if radical or incremental innovation. In this doctoral thesis
I present the results of the research starting from the gaps of knowledge that
emerged in the systematic literature review, going through the impact of the
use of DOE on the innovation capability and on innovation management,
and ending to the bene�ts of the use of advanced techniques of analysis of
factorial designs.

The remainder of this chapter is organized as follows. Section 1.1 pro-
vides a brief background of the research. Section 1.2 illustrates the research
questions and the methodology adopted. Finally, in Section 1.3 a description
of the thesis structure and of the content of each chapter is outlined.

1.1 Background

The Figure 1.1 adapted from Jensen [39] shows where statistical engineering
is in an organization adopting statistical thinking. The organization is the
pyramid in the picture. Statistical thinking, according to the de�nition from
the American Society for Quality's (ASQ) Statistic Division (2011) "is a phi-
losophy of learning and action based on the following fundamental principles:
all work occurs in a system of interconnected processes; variation exists in
all processes; and understanding and reducing variation are keys to process
improvement". Statistical thinking is at a strategic level in an organization.
Statistical engineering is at a tactical level, just over the operational level
with methods and tools. Statistical engineering according to the de�nition
of Hoerl and Snee [35] "is the study of how to best utilize statistical con-
cepts, methods, and tools and integrate them with information technology
and other relevant sciences to generate improved results". If we add the
statistics �eld (the ellipse in Figure 1.1), Statistical engineering is like a hori-
zontal slice, connecting statistical theory with statistical practice. Statistical
engineering is the natural environment of Design of experiment. Design of
experiment is not simply a tool implemented in a software, not even a pro-
cedure. Design of experiment is a methodology that can be approached and
implemented in various ways.

In his famous book Design and Analysis of Experiments [54], Montgomery
describes Design of experiment as a broad approach to an experiment, start-
ing from the recognition of and statement of the problem, going through the
experimental design and to the possible solution, to conclusion and recom-
mendations. Montgomery writes: "To use the statistical approach in design-
ing and analyzing an experiment, it is necessary for everyone involved in the
experiment to have a clear idea in advance of exactly what is to be studied,
how the data are to be collected, and at least a qualitative understanding of
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Figure 1.1: Statistical thinking and statistical engineering within the orga-
nization.

how these data are to be analyzed. An outline of the recommended procedure
is [. . . ]:"

1. Recognition of and statement of the problem

2. Choice of factors, levels, and ranges

3. Selection of the response variable

4. Choice of experimental design

5. Performing the experiment

6. Statistical analysis of the data

7. Conclusion and recommendations

We have to note that the choice of the experimental design and the sta-
tistical analysis of data for which DOE is mostly known are just two inter-
mediate steps even if DOE is often intended or addressed to as it was made
up of only these two steps. The other steps are somehow underestimated in
the common use and interpretation of DOE.

An experiment is a test or a series of tests in which purposeful changes
are made to the input variables of a process or system so that we may ob-
serve and identify the reason for changes that may be observed in the output
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response [56]. As Box and Woodall [10] point out:"Many problems are com-
plicated and contain many variables of interest. Experimentation is usually
expensive. Statistical experimental design and, in particular, fractional facto-
rial designs can minimize cost and maximize e�ectiveness". The application
of experimental design techniques early in process development can lead to
potential bene�ts as:

� Improved process yields

� Reduced variability and closer conformance to nominal or target re-
quirements

� Reduced development time

� Reduced overall costs

Potentiality of DOE is well known and appreciated among scholars. In
some �elds its potentiality is recognized and appreciated by practitioners,
that's why for instance there is an extensive use of Design of experiment
in improvement of process quality. DOE is one of the instruments of Six
Sigma to improve the quality of the output of a process. But the use of DOE
for innovation is still debated. The idea to investigate the use of DOE for
production process innovation arose from this debate.

Innovation is one of the leverages for competitiveness that companies are
asked to use to stay in the market in the long term. Relevant scholars address
innovation capability as one of the most important features a company should
develop. Porter and Stern [67] said that the way companies can gain a
business advantage today is "to create and commercialize new products and
processes, shifting the technology frontier as fast as their rivals can catch
up". W. E. Deming [17] some years earlier wrote that: "The moral is that it
is necessary to innovate, to predict needs of the customer, and give him more.
He that innovates and is lucky will take the market". And more recently Box
and Woodall [10] said that: "Quality and e�ciency cannot compete against
the right innovation".

A de�nition of innovation is useful to better understand the purpose of
the research. One clear de�nition is given by Bisgaard [8]: innovation is
"the complete process of development and eventual commercialization of new
products and services, new methods of production or provision, new method of
transportation or service delivery, new business models, new markets, or new
forms of organization". Jensen et al. [39] de�ned innovation as "the process
of moving an initial invention or idea through research and development to
the eventual market introduction". Focus of this study is production process.
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Generally speaking, innovation involves changing the paradigm under
which we operate to improve quality, e�ciency, or the nature of a prod-
uct or process. The issue of management of innovation processes is currently
very actual, as innovations are widely recognized to be an important tool
for increasing competitiveness of companies. Indeed, within the American
Society for quality (ASQ), there has been an increasing focus on innovation
with the recent creation of the ASQ Innovation Division. And Bisgaard [8]
encouraged expanding or even rebranding quality engineering as innovation
engineering.

One of many myths concerning innovation, is that innovation is the re-
sult of an idea that pops into one's head; that is, an epiphany or eureka
moment. Rather, most innovations require a lot of work to re�ne and perfect
the initial idea and to make it reality. This study is about companies or
organizations that invest in systematic innovation, no matter if radical or
incremental innovation.

1.2 Research Questions and Methodology

A systematic literature review updated at January 2017 has been conducted
on the research topic Design of Experiment in Production Process Innovation.
The literature review started from the initial idea about the research interest
and allowed to map and assess the relevant intellectual territory leading to
the discovery of some gaps of knowledge. The initial research interest thus
evolved to the following justi�ed research questions.

1. RQ1 What is the impact of adoption of Design of Experiment to inno-
vate production processes? Does DOE support and enhance innovation
of production processes?

2. RQ2 What is the impact of adoption of Design of Experiment on inno-
vation process management?

3. RQ3 Do most recent data analysis techniques modify the impact of
DOE on innovating production processes? Do they foster innovation?

Research questions 1 and 2 were faced by means of a case study. I was
part of a team whose objective was to innovate the production system in
order to achieve mass production capability of a product (a packaging for
dishwasher detergent). My role was double. As expert in engineering and
DOE, I was providing technical consultancy on the tools to adopt and how
to use them. Namely, I was designing the fractional factorial experimental
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plans and analyzing data, furthermore I was involved in technical engineer-
ing issues. This quantitative research allowed to face research question 1 and
it is widely described in Chapter 3. The second role was the role of com-
plete participant in the adoption of DOE by the company as instrument to
enhance innovation process. This research has been conducted according to
the principles of qualitative research and is described in chapter 4. In a way
consistent to the role of complete participant described by Macri and Tagli-
aventi [52], I was involved in the team and worked with the team. I could
observe the behavior of people involved and study the impact of the adoption
of DOE on innovation process management. I was thus able to understand
the opinions of the members of the team and observe their evolution in time.
Weekly meetings were planned in teleconference in order to coordinate the
activities. Field notes and meeting reports were the most relevant instru-
ments to trace the evolution of the innovation process management and the
impact of DOE.

Research question 3 has been faced by means of two simulation studies. A
simulation study consists in generating random data set according to certain
models and distribution functions useful to evaluate the behavior of a method
of analysis under speci�c conditions. In both the simulation studies data set
were generated according to a linear additive cell mean model of a two-way
crossed factorial design (factor A and factor B), i.e.

Yijk = µ+ αi + βj + (αβ)ij + εijk. (1.1)

where i = 1, 2 is the level of factor A; j = 1, 2 is the level of factor B;
and k = 1, . . . , nij is the kth replicate for each factor level combination.
In this setup, the general mean µ = 0 and the interaction is given by the
product of e�ects of the two factors. First simulation study was conducted
to compare di�erent univariate nonparametric methods of analysis and to
assess their power (Chapter 5). Second simulation study was conducted
to evaluate the performances of a novel nonparametric approach based on
NonParametric Combination (NPC) applied to Synchronized Permutation
(SP) tests for two-way crossed factorial designs (Chapter 6).

1.3 Stucture of the Thesis

This dissertation is structured in such a way that each chapter is indepen-
dent and can be read by its own without necessarily reading other chapters.
Starting from the literature review (Chapter 2), I move to the case study that
was helpful to answer to the �rst (Chapter 3) and to the second (Chapter
4) research questions. Data set analyzed in the case study violated typical
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assumptions of parametric methods of analysis. Therefore, I had to resort
to nonparametric tests both in the univariate and multivariate case. Most
important, I had to chose appropriate tests and design the experiments ac-
cordingly. In Chapters 5 (univariate case) and 6 (multivariate case) I face
the third research question. Two simulation studies give advice on the choice
of non parametric method to be used depending on the data set and prove
the e�ectiveness of novel method for multivariate analysis. Here below, a
brief description of the content of each chapter is given.

Chapter 2 - Literature Review A systematic literature review has been
conducted on the research topic Design of Experiment in Production Pro-
cess Innovation according to the steps described by Tran�eld et al. [76].
Systematic reviews di�er from traditional narrative reviews by adopting a
replicable, scienti�c and transparent process. The initial stage is the scoping
study where de�nition, clari�cation and re�nement of topics are carried out.
Then, thanks to the identi�cation of keywords and search term in the scop-
ing study, documents in o�cial literature are searched and selected according
to speci�c criteria. The analysis and study of the documents collected al-
lows to identify gaps of knowledge that lead to the de�nition of the research
questions.

Chapter 3 - Case Study: an Experimental Strategy An experimen-
tal strategy on innovation of thermoforming for functional packaging has
been developed as result of a research whose objective was to develop a new
thermoforming process to produce a new packaging releasing detergent in
dishwasher at a well-de�ned moment during main wash.

Innovation in thermoforming is a complex challenge. Thermoforming pro-
cess is a�ected by various controlled and uncontrolled factors. De�nition of
factors, operating ranges and a deep understanding of their impact on the
�nal product is fundamental. Furthermore, innovating a process requires to
exit the paradigm under which people is used to operate, so a full under-
standing of existing process has to be achieved in order to be able to explore
new solutions. There is no evidence in scienti�c literature of use of DOE for
innovation of thermoforming production processes for active packaging.

The structured approach to the problem was based on the principle of
Design of Experiment. Design of experiment was applied starting from the
choice of raw material to the �nal test in dishwasher. Three control fac-
tors were initially chosen by a team of expert in thermoforming, that are
temperature, time and pressure. These factors are commonly used to con-
trol material sealing in production line. The experimental approach revealed
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larger impact with current common technology of other factors such as pre-
heating temperature and line pace. Final result was the development of a
procedure that could allow correlation of control factors levels to packaging
performance for each tested material, and selection of raw material and of
factors' levels combination according to the desired packaging performance
by means of an advanced DOE.

DOE enhanced innovation capability allowing reduction of systematic er-
rors and distortions, full exploration of factorial space, and reduction of num-
ber of tests. Traditional approach to production control in thermoforming
process was challenged. DOE allowed to identify and overcome the mismatch
between control factors in laboratory and in production line.

Chapter 4 - DOE and Innovation Process Management The issue of
management of innovation process is currently an important topic for many
companies. Innovation is one of the ways, and in some �elds the most im-
portant, to achieve and maintain a competitive advantage. It is a continuous
process that has to be managed according to some dimensions. Further-
more, it is a cumulative process that has to be managed creating a favorable
environment to let grow incremental innovation and to let breakthrough in-
novation be free to manifest. Innovation process is a process of recognizing
customer needs and market opportunities for innovative products, generat-
ing and elaborating innovative ideas, working with knowledge regarding in-
novation and with information, realizing innovative activities and innovative
production system to ensure a successful extension of the innovative product
or service to the customers [49].

DOE is a methodology whose adoption could impact on the innovation
process performances. Anyway, it's not DOE performing the innovation but
people. DOE can provide a very e�ective and e�cient aid that leads to in-
novation, but people are the ones that will produce results. Management
of innovation process is necessary. Nevertheless, DOE could be helpful to
improve the management of the innovation process providing proper instru-
ments for managing the process.

The qualitative research performed during the adoption of DOE for the
development of a new packaging production process allowed to highlight the
impact of DOE on innovation process management speci�c to the case an-
alyzed. In this chapter learnings are outlined and summarized along �ve
dimensions that have a general value in the managerial �eld. Namely: deci-
sion making, integration, communication, time and cost, and knowledge.
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Chapter 5 - Univariate Nonparametric Methods The two-way two-
levels crossed factorial design is a common design used in the exploratory
phase in industrial experiments. This design allows to investigate the im-
pact on response variable of each factor and of interaction between factors,
thus allowing to assess whether factors or interaction are signi�cant or not
according to the assumed model.

The F test in the usual linear model for analysis of variance (ANOVA)
is a common instrument to compare the means of observations grouped ac-
cording to factor level combinations, but sometimes data sets do not satisfy
the assumptions of parametric tests. When assumptions like normal distri-
butions of errors and homoscedasticity are violated, nonparametric tests are
powerful instruments to support data-based decisions [36].

A variety of nonparametric methods have been developed during recent
years. In this study I focus on Constrained Synchronized Permutations (CSP)
[3], Unconstrained Synchronized Permutations (USP) [3], Wald Type Permu-
tation (WTP) [61], Aligned Rank Transform (ART) [31] and ANOVA-Type
Statistic (ATS) [11],which are designed to address the same hypotheses.

Practitioners have to convert the objective of the experiment in terms of
type I and type II error rates. According to the objective, di�erent levels of
power of the test are required. Expected power of a test should be taken into
account starting from the design phase of the experiment. Power of common
parametric tests has been widely investigated and many software implement
functions to calculate the power of a test according to the data set to be
analyzed and other parameters. It is well known that factors that impact
the power of a parametric test are: α level, variance, factor e�ect (expected
di�erence between means) and number of replicates. Number of replicates
could be a strong constraint when experiment is expensive.

In this study I compare the power of CSP, USP, ART, WTP, ATS and
F tests in a two-way two-levels balanced factorial design. I �x the level α at
0.5 and I assess the power (Pw) along three dimensions of data set: i) factor
e�ect, ii) standard deviation, and iii) number of replicates. The objective
is to assess the impact of the three dimensions on the power of the tests
and to give useful information on the choice of the test. I consider both the
homoscedastic and the heteroscedastic cases. Furthermore, in a smaller scale
simulation, I investigate the performances of the test in a two-way two-level
unbalanced design varying the factor e�ect both in the homoscedastic and
heteroscedastic case.

The simulation study allowed to assess the power of some selected non-
parametric methods by analyzing the same data set. Data have been gen-
erated using a linear additive model for a two-way two-levels design with
interaction given by the product of factor level e�ects. Such model is com-
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mon for practitioners in industrial experimentation.
The study reveals that certain methods of analysis perform better than

others depending on the dataset and on the objective of the analysis. As a
consequence, there does not emerge a unique approach in the design phase
of the experiment, but various aspects have to be taken into account simul-
taneously. The three dimensions (factor e�ect, standard deviation, number
of replicates) along which the investigation has been conducted have an im-
pact on the power of the tests, such as non-normal and heteroscedastic errors
have. Furthermore, the study allowed to point out some interesting results.

Some interesting �ndings are related to (i) the di�erent sensitivity of the
tests to the variation of the dimensions,(ii) the conditions under which some
tests can't be used, (iii) the tradeo� between power and type I error, and (iv)
the bias of the power on one main factor analysis due to presence of e�ect of
the other factor.

Chapter 6 - Multivariate Nonparametric Methods In many indus-
trial applications (and applied research �elds) it is common the need to com-
pare multivariate population obtained in advanced factorial designs. There
are manufacturing processes where treatments or control factors in produc-
tion processes impact on several relevant variables simultaneously. In these
cases an overall test is useful to determine for instance whether there is a
signi�cant di�erence on �nal product or not. Observed data are usually
analized using the multivariate analysis of variance (MANOVA) methods.
Unfortunately parametric methods rely on assumptions such as multivari-
ate normality and covariance homogeneity, but these prerequisites may be
not realistic for several real problems. How to overcome the violation of
MANOVA assumptions has been investigated and nonparametric methods
for multivariate inferential tests have been developed.

In my research I propose a novel nonparametric approach based on Non-
Parametric Combination (NPC) [62] applied to Synchronized Permutation
(SP) tests [3] for two-way crossed factorial design assuming a linear additive
model. Indeed, the linear additive model interpretation well adapts to the
industrial production environment because of the way control of production
machineries is implemented. This approach overcomes the shortcomings of
MANOVA with the only mild condition of the data set to be analyzed tak-
ing values on a multi-dimensional distribution belonging to a nonparametric
family of non-degenerate probability distributions. It well works with even
only two levels per factor and a small sample size. The case of small sample
size re�ects the frequent needs of practitioners in the industrial environment
where there are constraints or limited resources for the experimental design.



CHAPTER 1. INTRODUCTION 11

Furthermore it allows to formulate test hypotheses in more familiar terms
for practitioners such as factor e�ect size.

A simulation design with �xed factor e�ects δ and �xed variance σ of
data set distributions have been performed in order to evaluate the rejection
rate of the NPC applied to SP under alternative Hypothesis H1 in the range
of interest of signi�cance levels 0 ≤ α ≤ 0.1, and in order to compare it with
the classical MANOVA test.

The application of NonParametric Combination to Synchronized Permu-
tation to analyze a multivariate two-way factorial design reveals to be a good
instrument for inferential statistics when assumptions of MANOVA are vio-
lated. Simulation results show that NPC applied to USP and CSP gives high
values of power (rejection rate) under alternative hypothesis H1 both with
independent and dependent response variables, and both with low number
and high number of response variables compared to MANOVA. A great ad-
vantage given by the adoption of these tests is that they well perform with
small sample size. This re�ects the frequent needs of practitioners in the
industrial environment where there are constraints or limited resources for
the experimental design. Furthermore, there is an important property of
NPC of SP tests that can be exploited to increase their power: the �nite
sample consistency. Indeed, an increase in rejection rate can be observed
under alternative hypothesis H1 when the number of response variables in-
creases with �xed number of observed units. This could lead to a strategical
bene�t considering that in many real problems it could be easier to collect
more information on a single experimental unit than adding a new unit to
the experimental design.

Chapter 7 - Discussion and Conclusions The research conducted as
PhD student and results presented in this dissertation let me be on the same
side of those scholars that in recent scienti�c literature stand in general in
favour of the adoption of Design of Experiment for innovation, and in particu-
lar in favour of the adoption of DOE for production process innovation. Each
step of the research was conducted with the aim of answering to the research
questions that emerged from the systematic literature review. Nevertheless,
a �l rouge ties together the case study by means of which I answered to the
�rst and second research questions and the simulations studies by means of
which I faced the third research question. The �l rouge consists in the chal-
lenges that I had to face in the analysis of the data set of the case study. This
is typical when a research is conducted. You move on adapting step by step
to the results and discoveries that you make. Main results and conclusions
of the research are in this chapter summarized following the same structure
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of the dissertation.



Chapter 2

Literature Review

2.1 Introduction

A systematic literature review updated at January 2017 has been conducted
on the research topic Design of Experiment in Production Process Innovation
according to the steps described by Tran�eld et al. [76]. The literature review
started from the initial idea about the research interest and allowed to map
and assess the relevant intellectual territory leading to the discovery of some
gaps of knowledge. The initial research interest thus evolved to clear and
justi�ed research questions.

The research interest I started from was the impact of DOE on the R&D
performances in innovating production processes. My personal experience as
consultant suggested that there is a mismatch between the e�orts to adopt
and implement the use of DOE by a company and the needs of the company
itself because of the misinterpretation of the support and bene�ts that use
of DOE can allow. I wanted to investigate this aspect. Studying the impact
of DOE on R&D performance could have given some hint on the reason
of the mismatch. Furthermore, design of experiment is a very well known
instrument by statisticians, so why isn't its use spread as wished for the
innovation of production process? Generally speaking, the spread of the use
of DoE for innovation is wished since nineties. Box in 1990 [9] wrote: "There
are hundreds of thousands of engineers in this country, and even if the 23

factorial design was the only kind of experimental design they ever used, and
even if the only method of analysis that was employed was to eyeball the data,
this alone could have an enormous impact on the experimental e�ciency, the
rate of innovation and the competitive position of this country". Montgomery
[55] suggests that, according to his experience, the reason could be that "most
engineers have little exposure to design of experiments in their undergraduate

13
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academic training. It is typically part of another course that deal with several
broad topics in engineering statistics, and DOE is only one item in the menu".
So the poor knowledge that practitioners have of DOE could explain the lack
of adoption by many companies.

Systematic reviews di�er from traditional narrative reviews by adopting a
replicable, scienti�c and transparent process. In the remainder of the chapter
I present in details the steps of the literature review. The initial stage is the
scoping study where de�nition, clari�cation and re�nement of topics are car-
ried out. Then, thanks to the identi�cation of keywords and search term in
the scoping study, documents in o�cial literature are searched and selected
according to speci�c criteria. The analysis and study of the documents col-
lected allows to identify gaps of knowledge that lead to the de�nition of the
research questions.

2.2 Background and scoping

First step was to deepen the topics related to the research interest in order to
have a clear scope and to de�ne boundaries of the review, and to understand
the interest and the relevance of the study. Topics are Design of experiment
and Innovation.

In his famous book Design and Analysis of Experiments [54], Montgomery
describes Design of experiment as a broad approach to an experiment, start-
ing from the recognition of and statement of the problem, going through
the experimental design and getting to the possible solution, to conclusion
and recommendations. Montgomery writes: "To use the statistical approach
in designing and analyzing an experiment, it is necessary for everyone in-
volved in the experiment to have a clear idea in advance of exactly what
is to be studied, how the data are to be collected, and at least a qualita-
tive understanding of how these data are to be analyzed. An outline of the
recommended procedure is [. . . ]:"

1. Recognition of and statement of the problem

2. Choice of factors, levels, and ranges

3. Selection of the response variable

4. Choice of experimental design

5. Performing the experiment

6. Statistical analysis of the data
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7. Conclusion and recommendations

We have to note that the choice of the experimental design and the sta-
tistical analysis of data for which DOE is mostly known are just two inter-
mediate steps even if DOE is often intended or addressed to as it was made
up of only these two steps. The other steps are somehow underestimated in
the common use and interpretation of DOE.

An experiment is a test or a series of tests in which purposeful changes
are made to the input variables of a process or system so that we may ob-
serve and identify the reason for changes that may be observed in the output
response [56]. As Box and Woodall [10] point out:"Many problems are com-
plicated and contain many variables of interest. Experimentation is usually
expensive. Statistical experimental design and, in particular, fractional facto-
rial designs can minimize cost and maximize e�ectiveness". The application
of experimental design techniques early in process development can lead to
potential bene�ts as:

� Improved process yields

� Reduced variability and closer conformance to nominal or target re-
quirements

� Reduced development time

� Reduced overall costs

Potentiality of DOE is well known and appreciated among scholars. In
some �elds its potentiality is recognized and appreciated by practitioners,
that's why for instance there is an extensive use of Design of experiment in
improvement of process quality. DOE is one of the instruments of Six Sigma
to improve the quality of the output of a process. But the use of DOE for
innovation is still debated.

Innovation is one of the leverages for competitiveness that companies are
asked to use to stay in the market in the long term. Relevant scholars address
innovation capability as one of the most important features a company should
develop. Porter and Stern [67] said that the way companies can gain a
business advantage today is "to create and commercialize new products and
processes, shifting the technology frontier as fast as their rivals can catch
up". W. E. Deming [17] some years earlier wrote that: "The moral is that it
is necessary to innovate, to predict needs of the customer, and give him more.
He that innovates and is lucky will take the market". And more recently Box
and Woodall [10] said that: "Quality and e�ciency cannot compete against
the right innovation".
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A de�nition of innovation is useful to better understand the purpose of
the research and narrow down the literature review. One clear de�nition is
given by Bisgaard [8]: innovation is "the complete process of development
and eventual commercialization of new products and services, new methods
of production or provision, new method of transportation or service delivery,
new business models, new markets, or new forms of organization". Jensen et
al. [39] de�ned innovation as "the process of moving an initial invention or
idea through research and development to the eventual market introduction".
Focus of this study is production process.

Generally speaking, innovation involves changing the paradigm under
which we operate to improve quality, e�ciency, or the nature of a prod-
uct or process. The issue of management of innovation processes is currently
very actual, as innovations are widely recognized to be an important tool
for increasing competitiveness of companies. Indeed, within the American
Society for quality (ASQ), there has been an increasing focus on innovation
with the recent creation of the ASQ Innovation Division. And Bisgaard [8]
encouraged expanding or even rebranding quality engineering as innovation
engineering.

One of many myths concerning innovation, is that innovation is the re-
sult of an idea that pops into one's head; that is, an epiphany or eureka
moment. Rather, most innovations require a lot of work to re�ne and per-
fect the initial idea and to make it reality. This study is about companies
or organizations that invest in systematic innovation, no matter if radical
or incremental innovation. This distinction anyway turned out to be rele-
vant in some scholars' and practitioners' opinion about the use of Design of
experiment for innovation.

During the preliminary research and study, two di�erent positions emerged
about use of DOE for Innovation. There are no doubts that statistics allow
and facilitate decision making based on quantitative objective information,
nevertheless there still is sometimes skepticism about the use of DOE for in-
novation mainly because DOE is seen as an instrument in the framework of
quality control and improvement. Some scholars are in favor and some oth-
ers are adverse. For instance, Doganaksoy stated that "statistically designed
experimentation provides the foundation to guide large-scale innovation and
development e�orts through their multiple phases". While on the other hand
Johnson said that "innovative environments thrive on useful mistakes and
su�er when the demands of quality control overwhelm them [referring to the
use of DOE and Six Sigma, Ed.]". We here provide a list of quotes and
references that shows the two opposite positions on this theme.

Scholars and practitioners in favor of use of DOE for Innovation:
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� Doganaksoy [39]: "Statistically designed experimentation provides the
foundation to guide large-scale innovation and development e�orts through
their multiple phases".

� Anderson-Cook [39]: "Designed experiment can accelerate learning and
evaluation of new ideas, which can streamline decision making about
how to proceed, which leads to improved momentum for the innovative
process".

� Box and Woodall [39]: "Design for Six Sigma methods can be used to
develop both incremental and breakthrough innovations".

� Snee and Hoerl [39]: "A good place to start the list [of statistical tools
for innovation, Ed.] are the tools of Lean Six Sigma and Design for
Lean Six Sigma such as [. . . ] design of experiment (DOE) [. . . ]".

� O'Neill [39]: "Carefully designed experiments, with attention paid to
sources of noise, potential interactions, measurement error, and feasibil-
ity (restrictions on randomization, maintaining manageable logistics),
are the cornerstone of innovation".

� Montgomery [56]: "Design of experiment is viewed as part of a process
for enabling both breakthrough innovation and incremental innovation,
without which western society will fail to be competitive".

Scholars and practitioners adverse (or reporting adversity) to use of DOE
for Innovation:

� Johnson [41]: "Innovative environments thrive on useful mistakes and
su�er when the demands of quality control overwhelm them. [refering
to the use of DoE and Six Sigma, Ed.]"

� Snee and Hoerl [39]: "An often stated concern about the use of statis-
tical thinking and methods in any form, DOE, Lean Six Sigma, Lean
DFSS, etc., is that it sti�es creativity".

� Hargadon [27]: "Breakthrough innovations don't usually mix well with
the pursuit of six sigma quality control, nor with those customers who
just purchased your [statistical consulting companies, Ed.] last gener-
ation of products".

� Govinindarajan [33]: "The more you hardwire a company on total
quality management, (the more) it is going to hurt breakthrough inno-
vation".
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Investigating the impact of the use of DoE on innovation make sense ac-
cording to the fact that notable scholars and practitioners have opposite opin-
ions on that. As consequence of the interest and opportunities that emerged
in this preliminary work, a literature review has been conducted. Subject of
literature review are studies about the e�ects and impact of adopting DOE's
approach for innovation of production processes.

2.3 Database research and analysis of results

The database research was according to topics, keywords and logic that was
de�ned during the preliminary research.

Topics are:

� Design of Experiment

� Innovation, with the restriction to the production

Keywords are:

� Design of experiment, Optimized experimental design and Fractional
factorial design for Design of Experiment

� Process innovation and Process development for Innovation

� Production and Manufacturing for Production

In Figure 2.1 there is a sketch of the logic of the research in the database.
The research was conducted on Scopus, Web of Science and Ebsco and was in
Title, Keywords and Abstract. The result is given by the overlapping of the
three areas (the circles in the �gure) related to the mentioned topics. First
circle on the top refers to DOE and there are numbers of documents found in
Scopus, Web of Science and Ebsco. In the bottom left we have results from
Innovation and in the bottom right we have production. Result is given by
the overlapping in the center, that is 107 documents in Scopus, 21 in Web of
Science and only 5 in Ebsco.

The selection criteria used on the database research are:

� Published in scienti�c peer-reviewed journals with H Index and SCImago
Journal Rank

� No limitation of time

� Research in title, keywords and abstract
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Figure 2.1: Results of research in electronic database: Scopus, Web of Sci-
ence, Ebsco.

Table 2.1: Journals: H Index and SJR
Journal H Index SJR
International Journal of Operations and

Production Management 94 2.198
Vaccine 142 2.044
Journal of Process Control 82 1.44
Organic Process Research and Development 78 1.411
Current Pharmaceutical Biotechnology 59 0.769
Biotechnology Progress 101 0.736
Engineering in Life Sciences 35 0.726
AAPS PharmSciTech 54 0.718
Total quality management 55 0.662
IEEE Transactions on Components, Packaging,

and Manufacturing Technology 23 0.62
Advances in Biochemical Engineering and Biotechnology 69 0.527
Biotechnology and Applied Biochemistry 55 0.415
International Journal of System Assurance

Engineering and Management 10 0.291
International Journal of Pharmaceutical Sciences

Review and Research 16 0.193
BioPharm International 21 0.118
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Figure 2.2: Documents per subject area.

In table 2.1 there is the list of journals with relative H Index and CSImago
Journal Rank

An analysis along subject areas is provided in Figure 2.2. As we can
see from the graph there are various subject areas, from Engineering and
Biochemistry with the highest number of results, to Veterinary and Energy
with the lowest, showing that, as we already said, DoE is a methodology
whose features allows to apply it in very di�erent �elds of research. Number
of documents per year (Figure 2.3) shows the recent increasing interest on
the topic.

All the documents before being analyzed in detail had to pass a further
selection according to some exclusion criteria. The exclusion criteria used for
selection of documents are:

� No �ts with research topic (from abstract reading) (e.g. focus on quality
instead of innovation; e.g. machine learning)

� No English language (that means no international relevance)

� Published in conference proceedings

For the analysis of documents, it has been prepared a data extraction
form to categorize papers and to collect data according to the dimension of
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Figure 2.3: Documents per year, trend of publications.

analysis reported on Table 2.2. Some of the categories that have been used
are generic like for instance General information (author, year of publica-
tion, etc.), Research type, Research methodology, etc., while some others are
more speci�c and related to dimensions of the topics of my research, like for
instance Type of DOE techniques, Type of data analysis, etc.
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Analysis of data collected in the data extraction form highlighted some
interesting aspects. The presence in papers of analysis of impact of DOE
on innovation process according to di�erent dimensions is reported in Figure
2.4. We can observe that the percentage of papers reporting the analysis
of impact of DOE on time requested by the innovation process is slightly
more than 50%, the percentage of the ones reporting the analysis of the im-
pact on costs is 27% and on resources (from a general point of view) is 33%.
Other dimensions are accounted for only 20% of the papers. Other dimen-
sions are Robustness of process, Complexity reduction, and E�ectiveness of
methodology.

Then we have percentage of papers dealing with e�ects on organization
as consequence of adoption of DOE, that is only 13% (Figure 2.5). And
percentage of papers with short or long perspective of analysis of adoption
of DOE (when present) where both perspectives are well represented (Figure
2.6).

Something more technical and very interesting is methodology in use ante
DOE introduction. We have only 20% of documents mentioning it but not
describing it (Figure 2.7).

DOE techniques found on the papers analyzed are listed below. These
techniques are used along the various steps of DOE starting from recognition
of and statement of the problem, going through choice factors and variables,
and choice of experimental design, but not in the data analysis. Data analysis
techniques are listed separately.

Type of DOE techniques:

� Cause and e�ect analysis

� Failure mode and e�ect analysis

� Full factorial design

� Taguchy design method

� Fractional factorial design

� Ishikawa diagram

� Face-centred central composite design

� Two level full factorial including center points

� ESS (environmental stress screening)

� Box-Behnken design
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Figure 2.4: Presence in papers of analysis of impact of DoE on innovation
process according to di�erent dimensions.

Figure 2.5: Percentage of papers dealing with e�ects on organization as con-
sequence of adoption of DOE.
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Figure 2.6: Percentage of papers with short or long perspective of analysis
of adoption of DOE.

Figure 2.7: Percentage of papers reporting methodology in use ante DOE
introduction.
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� D-optimal design with center points

Type of data analysis techniques:

� t-test

� ANOVA

� Regression prediction models

� Gauge R&R

� Multivariate analysis

� ANOM (analysis of mean)

� Half normal plot

� Monte Carlo methods

� Response surface models

� Normal probability plot

� Second order polynomial �t

� Numerical optimization

� Hotelling's T 2

� Multiple linear regression

� Taguchy's quality loss function

� Contour plot

2.4 Gaps of knowledge and research questions

Evidence based analysis allowed to identify some gaps of knowledge:

1. GAP 1 In general there is lack of assessment of the impact of adoption
of DOE on performances in innovating production processes. When
present, it is mainly across three dimensions, that are time, costs and
resources. A part from `savings', evaluation across other dimension is
poor and vague. There is lack of studies on if and potentially how use
of DOE could support innovation capability and enhance innovation.



CHAPTER 2. LITERATURE REVIEW 27

2. GAP2 There is lack of assessment of impact on �rm organization.
Adoption of DOE is often related to a single project. External con-
sultancy is thus required. In these cases, there is not the adoption of
DOE as a company tool.

3. GAP3 There is lack of evaluation of the e�orts required to adopt or
implement DOE. In general the adoption of DOE is not easy and the
use is not spread as it could be.

4. GAP4 Many papers show how DOE has been used in a single case
study in order to strengthen conclusions reliability, but studies do not
show the bene�t of DOE compared to other techniques. Comparative
evaluations between techniques used before the adoption of DOE and
DOE itself were not found.

5. GAP5 DOE techniques used for de�ning the problem, factors and levels
and for designing of the experimental plan are high level and updated.
Data analysis techniques are in general basic.

This lead to the following research questions:

1. RQ1 What is the impact of adoption of Design of Experiment to inno-
vate production processes?

RQ1.a Does DOE support and enhance innovation of production
processes?

RQ1.b What are the bene�ts of DOE compared to other tech-
niques?

RQ1.c What are the e�orts required to adopt or implement DOE?

2. RQ2 What is the impact of adoption of Design of Experiment on inno-
vation process management?

3. RQ3 Do most recent data analysis techniques modify the impact of
DOE on innovating production processes? Do they foster innovation?



Chapter 3

Design of Experiment to Support

the Innovation of Thermoforming

Production Processes

3.1 Introduction

An experimental strategy on innovation of thermoforming for functional
packaging have been developed as result of a research whose objective was to
develop a new thermoforming process to produce a new packaging releasing
detergent in dishwasher at a well-de�ned moment during main wash. Key
part of the process and focus of this study is the sealing of polymeric �lm.

Innovation in thermoforming is a complex challenge. Thermoforming pro-
cess is a�ected by various controlled and uncontrolled factors. De�nition of
factors, operating ranges and a deep understanding of their impact on the
�nal product is fundamental. Furthermore, innovating a process requires to
exit the paradigm under which people is used to operate, so a full under-
standing of existing process has to be achieved in order to be able to explore
new solutions.

Previous studies on multilayer polymeric �lms investigated the in�uence
of production parameters on their performances [13], the heat sealing prop-
erties of packages [82], and the in�uence of processing conditions on heat
sealing behavior [37, 84]. Use of statistical approach in thermoforming is
well spread. Design of Experiment (DoE) is used for process optimization
[57, 47, 73], and for quality improvement [70], but there is no evidence in
scienti�c literature of use of DoE for innovation of thermoforming production
processes for active packaging.

The structured approach to the problem was based on the principle of

28
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Design of Experiment. In fact, "The application of experimental design tech-
niques early in process development can result in: improved process yields;
reduced variability and closer conformance to nominal or target requirements;
reduced development time; reduced overall costs" (Montgomery, D.C. 1997).
Design of experiment was applied starting from the choice of raw material to
the �nal test in dishwasher. Three control factors were initially chosen by a
team of expert in thermoforming, that are temperature, time and pressure.
These factors are commonly used to control material sealing in production
line. The experimental approach revealed larger impact with current com-
mon technology of other factors such as pre-heating temperature and line
pace. Final result was the development of a procedure that could allow se-
lection of raw material and of factors' levels combination according to the
desired packaging performance by means of an advanced DoE. There are sev-
eral contributions and examples in scienti�c literature on techniques used in
this study such as optimal design construction [59] and response surface [7].

This chapter illustrates the experimental strategy. The case study pro-
vides example of its development and help to illustrate steps and bene�ts of
a structured experimental design. At the end the experimental strategy is
formalized and a �owchart is provided.

Results presented in this chapter have been published [68].

3.2 The Product

The product under development is a single-dose bottle for detergent. It is
made out of a polymeric �lm bent, formed and sealed. The bottle consists
of two chambers. Polymeric material is sealed all around the bottle. Two
di�erent seals are required. First seal, from now on named Strong seal, is
all around the bottle a part from the upper part. Second seal, from now on
named Weak seal, is in the top of the two chambers. Strong seal is com-
monly easy to achieve and it is a common application of polymeric �lm for
packaging. Strong seal has to guarantee resistance to shock during trans-
portation, safe use for customers handling packaging, and permanent sealing
in time. Weak seal is the challenge of this research. Weak seal has to open at
a well-de�ned moment under external conditions that creates during washing
cycle in dishwasher. It has to be weaker compared to strong seal that does
not have to open under same conditions. Nevertheless, it has to resist to
transportation shocks and guarantee safety of �nal customer. This means
that a narrow window in weak seal performance has to be individuated and
respected.
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3.3 Case Study

3.3.1 Study of performances of materials at lab level

Market of polymeric �lm for thermoforming applications is huge and so is
products o�er from each supplier. Coupled PET/PE �lms in the market have
di�erent features, and selection is made according to the speci�c industrial
application. In present speci�c case, novelty is given by the fact that same
material is required to perform in two clearly di�erent ways when sealed.
How to measure �nal performance will be explained in next sections, but
this preliminary observation is fundamental for the choice of material.

Objective of characterization is the description of features of material
based on a certain response variable measured on seals obtained according
to di�erent con�gurations of production control factors. A team of expert of
R&D department chose three control factors: i) Temperature of sealing jaws,
ii) Time of sealing and iii) Force per cm2 applied to the material. Sealing
was performed controlling the three factors. Response variable is measured
by a tensile strength test giving the force needed to open the seal tearing
apart the two extremities. The idea is that the force needed to open the
seal is representative of the �nal performance required to the packaging. The
measure is obtained by a dynamometer.

Most important features of material according to the purpose of this study
are:

1. Di�erentiability between weak and strong seal.
Di�erentiability between weak and strong seal is fundamental. Re-
sponse variable cannot vary within a small interval. It has to show
enough di�erence between values observed at di�erent factors levels
combinations in order to achieve the control in production of weak and
strong seal.

2. Low variability of seal performance related to small �uctuation of pro-
duction control factors.
Industrial production is in general a�ected by variability of input fac-
tors compared to laboratory experimental environment. To gain the
control of production process, levels of control factors have to be cho-
sen among those con�gurations that shows small e�ects on response
variable as consequence of common �uctuations of input factors.

3. Low variability of seal performance related to level of control factors.
Previous experiences of the team involved in the project revealed high
variability of strength test at certain levels of control factors depending



CHAPTER 3. CASE STUDY: AN EXPERIMENTAL STRATEGY 31

on the material. In presence of such high variability, the phenomenon
under investigation is out of control. Industrial production of packaging
would be impossible at those factors levels combination that gives high
and uncontrolled variability in response.

Test of Materials

Characterization of �rst candidate material (material A) were performed. In
laboratory �at foils were sealed and tested. Sealing procedure was according
to a protocol in order to reduce variability of response: �at foil were cut in
squares 10 cm x 10 cm, randomly coupled and sealed always at the same
distance from the border; sealing bars were steel made Te�on coated in order
to avoid sticking to foil surface; temperature stabilization time of sealing bars
was 10 minutes; once sealed, an overnight curing time have been respected
in order to allow stabilization of polymeric bonds; 15 mm width stripes were
cut out from the sealed squares and prepared to be tested; external stripes
were excluded from analysis to avoid distortions given by border e�ects.
There was a protocol for tensile strength test as well: threshold force before
start = 0.1 N; displacement speed of grippers = 50 mm/min; initial gap
between grippers = 35 mm. Both sealing and testing were performed by the
same expert operator for the whole experimental design to avoid variance
introduced by di�erent operators. The result of tensile strength test is the
maximum force measured to open the seal tearing apart the two extremities,
from now on named Seal strength. Measure of seal strength value is in N/15
mm because the opening of the seal is orthogonal to the length that is 15
mm. In Figure 3.1 an example of a tensile strength test of sealed polymeric
material.

Experimental design

At the beginning a one factor at time (OFAT) experiment allowed to identify
operative ranges of factors for material A. Some ramps have been performed
for each factor with the other two factors �xed at common levels for sealing,
and ranges for factors were de�ned: Temperature 120 - 150 ◦C; Time 1
- 1,6 s; Force 20 - 60 N/cm2. Operative ranges are speci�c for material
A. Their de�nition should avoid inconsistent or inhomogeneous seal pattern
that means too weak seal. At the opposite ranges de�nition should avoid
even too strong seal that lead to material delamination that occurs when
the two layers of PET and PE detach and material breaks but seal does not
open.

Then an optimal factorial design with 3 factors and 4 levels each was
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Figure 3.1: Example of a tensile strength test of sealed polymeric material.
The test measures the force necessary to open the seal tearing apart the
extremities of the stripe.
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Table 3.1: Levels of control factors selected for the experimental design
Temperature Time Force per cm2

level code value [◦C] level code value [s] level code value [N/cm2]
1 120 1 1.0 1 20
2 130 2 1.2 2 35
3 140 3 1.4 3 45
4 150 4 1.6 4 60

used to explore the response space in an e�ective and resource saving way.
Levels of each factor have been selected in order to have almost homogenous
intervals in the ranges. Table 3.1. Reduction of number of combination
from the full factorial design (64 combinations) to the fractional factorial
design (38 combinations) were achieved according to D-optimality criteria
to minimize the variance in the regression coe�cients of the �tted design
model. The model selected includes terms up to order two, so that second
order interactions can be estimated. Sequence of factors levels combination
was random during specimens preparation. Number of replicates was 8. The
number of replicates is precautionary in order to guarantee high power of
inferential tests that could be necessary in this explorative phase and taking
into account that this test does not need long time to be performed. When
needed a sequential experiment is useful to zoom in the factors levels.

There are di�erent options to design the experiment. Central Composite
Designs are commonly used but best option for this study is Optimal Design
to avoid problems with non-cuboidal regions [1]. In fact, preliminary exper-
iments revealed that the factorial space de�ned according to selected ranges
couldn't be explored entirely without falling into meaningless data regions,
that is inconsistent seal pattern or material delamination. That's why an
optimal factorial design [18, 40] with 3 factors and 4 levels each was used to
explore the response space.

Data Analysis

The analysis of response variable aims to understand the impact of control
factors on the most important features of the material, and to describe how
response varies according to di�erent factors levels combinations. Analysis
of Variance of a full quadratic model allowed evaluating both main factors
and interactions. A full quadratic model takes into account all linear terms,
all squared terms, and all two-way interactions. A backward stepwise model
selection procedure at a signi�cance level α = 0.05 has been applied to obtain
the �nal model. Table 3.2.
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Table 3.2: ANOVA table of the �nal model for material A.
T = Temperature, t = Time, F = Force per cm2

Source of Variation DF Sum of Squares Mean Square F-Value P-Value

Model 7 588.270 84.039 188.30 0.000
T 1 351.874 351.874 788.44 0.000
t 1 39.248 39.248 87.94 0.000
F 1 4.310 4.310 9.66 0.002
T 2 1 131.648 131.648 294.98 0.000
t2 1 4.054 4.054 9.08 0.003
T*t 1 8.919 8.919 19.98 0.000
T*F 1 5.655 5.655 12.67 0.000

Residual 296 132.102 0.446
Total 303 720.372

Table 3.3: E�ects of the terms of the �nal model in coded units and Variance
In�ation Factor.
T = Temperature, t = Time, F = Force per cm2

Term E�ect VIF
T 2.9388 1.04
t 0.9818 1.03
F 0.3412 1.04
T 2 -2.9797 1.01
t2 -0.5319 1.05
T*t -0.6427 1.04
T*F -0.5334 1.07

According to P-Values the model and the three main factors are signi�cant
to explain the response variable. That is the means of the response variable
are di�erent at a con�dence level of 95% between at least two factor levels.
Only two interactions are signi�cant. Interaction between Time and Force
per cm2 has not a signi�cant impact on the seal strength. Coe�cient of
determination (R2) of model is 81,66%. Analysis of residuals for ANOVA
assumptions does not emphasize particular trends in data patterns, that is
no violation of assumptions.

The impact of the terms of �nal model can be assessed. Table 3.3. To
reduce the impact of non-orthogonal terms, the model was �tted in coded
units. The e�ect of Temperature is much bigger than e�ect of Time, which
in turn is bigger than e�ect of Force per cm2. Low level of Variance In�ation
Factor (VIF) shows absence of multicollinearity and con�rms the goodness
of the model.
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Figure 3.2: Main e�ects plot for Seal strength, �tted means: Mean of Seal
strength VS Temperature, Time, and Force per cm2

The model allows obtaining a nonlinear regression equation for Seal strength:

S = −154.60 + 2.014T + 18.96t+ 1.286F − 0.006622T 2 − 2.955t2

− 0.0714T · t− 0.00889T · F

Where: S = Seal strength; T = Temperature; t = Time; F = Force per
cm2

The equation provides `prediction' of response variable for those factors
values that have not been tested during the experiment (only in the investi-
gated ranges of factors values).

The e�ect on the response variable of each factor can be graphically ana-
lyzed, Figure 3.2. The analysis is based on the nonlinear regression equation.
Temperature has a high impact on Seal strength. The range of observed val-
ues of Seal strength mean is wide (between 0.92 and 4.35 N/15 mm) at
Temperature varying. There are steep slopes moving from a level of Tem-
perature to the next one. There is a maximum at approx. 140 ◦C, then
Seal strength decreases at 150 ◦C. Time e�ect plot has generally a positive
slope with a �at zone at higher values. Force per cm2 e�ect is the less ev-
ident. Range of observed values of Seal strength mean is between 2.93 and
3.41 N/15 mm at Force per cm2 varying. Graphical analysis of interactions
revealed general interaction between Temperature and Force per cm2, and
between the Temperature and Time only at high levels.
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Nonlinear regression equation allows graphical analysis thanks to surface
and contour plots. Surface plots show response variable in a 3D space for
each couple of factors, while contour plots show response variable in a 2D
space for each couple of factors. The remaining factor is �xed at a prede�ned
level.

Surface plot gives a clear vision of the factors levels impact on response
variable. Surface plots in Figures 3.3, 3.4 and 3.5 are just three examples of
the plots analyzed. They show Seal strength versus each couple of factors
holding the third at intermediate level. So, for instance, Figure 3.3 show
Seal strength versus Time and Temperature, while Force per cm2 is �xed at
40 N/cm2 that by the way is not one of the levels of experimental design.
This type of graphs provides interesting information about the impact of
factors. In Figure 3.3 Flat area and Steep slope area are highlighted. Flat
area individuates con�gurations of the two plotted factors levels that have a
stable impact on response given the third level �xed. In fact, small variations
of the factors don't show e�ects on response. In other terms the gradient of
Seal strength in the �at area has a very low magnitude. This information
is very important in industrial production to have full control of production
process. Small �uctuations of input factors are common and they could have
an impact on the stability of output. In case of input factors that show high
�uctuations, con�guration of factors levels should be chosen in a range giving
a response surface as �at as possible. This information must be crossed with
impact of the third factor taking into account at the same time the plots
versus the three couple of factors. On the other hand, steep slope area
reveals high impact of variation of factors. As rule of thumb, con�guration
of factors levels in the steep slope area should be chosen only when there is
a good control of input factors in industrial production.

The three plots have been analyzed varying the third factor along the
whole range. Flat area and steep slope area have been individuated and
assessed for material A.

Contour plot is similar to surface plot but it is in two dimensions. In a
contour plot two factors are in the axes, while the response variable is shown
by di�erent colored areas. The remaining factor is �xed at a prede�ned level.
Contour plots in Figures 3.6, 3.7 and 3.8 are just three examples of the plots
analyzed. They show Seal strength versus each couple of factors holding the
third at intermediate level. In Figure 3.6 there is an example of how can be
achieved di�erentiation between strong and weak seal by changing the level
of Time and Temperature. Seal strength goes from lowest values in point
A (approx. 0.5 N/15mm) to the highest in point B (approx. 4.2 N/15mm)
holding Force per cm2 at 40 N/cm2. Areas contours are not straight but
elliptical because of the combined e�ect of Temperature and Time. In Fig-



CHAPTER 3. CASE STUDY: AN EXPERIMENTAL STRATEGY 37

Figure 3.3: Surface plot of Seal strength VS Time and Temperature

Figure 3.4: Surface plot of Seal strength VS Force per cm2 and Temperature
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Figure 3.5: Surface plot of Seal strength VS Force per cm2 and Time

ure 3.7 there is a di�erent representation of the concept of �at area and steep
slope area. In fact from 120 ◦C an increase of 5 ◦C temperature produces an
increase in the Seal strength of more than 1 N/15 mm (steep slope area). At
140 ◦C same increase does not produce an increase in the Seal strength (�at
area). Areas contours are almost straight, the higher impact of Temperature
compared to Force per cm2 is evident.

The three plots have been analyzed varying the third factor along the
whole range. Di�erentiability between weak and strong seal has been indi-
viduated and assessed for material A.

Last graphical analysis according to the most relevant features of material
is the one concerning data variability at certain factors levels combinations.
Graph in Figure 3.9 show Seal strength distributions according to the 38 fac-
tors levels combinations of the experimental design. Response of material A
has large variability at certain factors levels combinations. Variability could
a�ect properties of �nal product given that a narrow window is expected for
weak seal acceptable performance.

Comments on material characterization

Material characterization is performed to select candidate materials from
market according to the most important features required for production. It
allows studying di�erentiability between weak and strong seal, variability of
seal performance related to small �uctuation of production control factors,
and variability of seal performance related to level of control factors. As
result of material characterization, a mathematical model to predict response
of tensile strength test according to factors levels is developed. Material A
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Figure 3.6: Contour plot of Seal strength VS Time and Temperature

Figure 3.7: Contour plot of Seal strength VS Force per cm2 and Temperature
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Figure 3.8: Contour plot of Seal strength VS Force per cm2 and Time

provided a good example of the steps to be followed from identi�cation of
operative ranges to the analysis of experimental data. Material A revealed
to be a good candidate for scale up to production line.

3.3.2 Study at production plant level

Production lines of packaging based on thermoforming of a polymeric �lm
have a modular structure. Each module or station is devoted to a speci�c
task, and assembly of stations is designed according to the desired pack-
aging following general and established rules of thermoforming production.
Film is in big rolls and production is continuous. Therefore, for instance, a
production line devoted to production of a generic packaging for detergents
could have this sequence of stations: loading station (feeding of line with �lm
bent and coupled), pre-heating station, sealing station, forming station (air
is blown into the packaging to give the �nal shape), �lling station (packaging
is �lled with detergent), closing station (packaging is closed), labeling station
(external label is applied to packaging), cutting station (�nal packaging is
cut out from the line). Scheme of a production line devoted to production of
a generic packaging for detergents is given in Figure 3.10.

The objective of the research is production of packaging from one ma-
terial, and the challenge is to achieve weak and strong seals. Stations that
could impact on seal performance are pre-heating station and sealing station.
Pre-heating station prepares �lm before sealing. Film goes through the sta-
tion, and two hot plates provide thermal energy. Temperature of pre-heating
station is a control factor. Sealing station is composed by two faced molds
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Figure 3.9: Boxplot of Seal strength according to factors levels combinations.
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Figure 3.10: Scheme of production line

that close cyclically and seal the �lm. Temperature, time and force per cm2

are control factors in sealing station.
Traditional approach to packaging production by thermoforming process

consider temperature, time and force per cm2 the most important factors
to control seal features, while temperature in pre-heating station is used to
control �lm performance in forming station. In fact, pre-heated material is
soft and can be easily modelled by blowing air to achieve the �nal shape, then
packaging is cooled down to �x the shape. Traditional approach make sense
for traditional packaging, but production of weak seal for the new functional
packaging challenged it.

Molds in sealing station are made of two di�erent materials, one for the
weak seal and one for the strong seal. Steel Te�on coated is used for strong
seal jaws and polyether ether ketone (PEEK) is used for weak seal jaws.
These two materials are embedded in one mold, and control of time and
force per cm2 is independent for the two materials so di�erentiation is al-
lowed according to these two factors. Temperature control is unique for the
whole mold and di�erentiation is achieved by the di�erent thermal conduc-
tivity of the two materials (PEEK: 0.25 W/mK; Steel: approx. 50 W/mK).
In static conditions a stable delta of temperatures between materials were
observed and looked to be appropriate for seal di�erentiation. This technol-
ogy in fact proved to be successful to produce packaging with di�erent seals
performance. A con�rmatory experiment based on levels of factors used in
laboratory for material A was thus performed. Control of weak seal jaws
temperature was achieved thanks to direct measurement by thermocouples.
Despite temperature, time and force per cm2 conditions for weak sealing jaws
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were the same as the ones used for the experiments in the laboratory, results
obtained in the pilot production line were completely di�erent. Weak seal
was inconsistent and material along strong seal started to burn because of
high temperature settings. Weak sealing failed. The systematic experimental
approach allowed to individuate the source of failure in thermal conductivity
of PEEK. Further investigation showed how in a steady state during pro-
duction, temperature of PEEK drops down compared to machine setting
and that thermal energy transferred to material is insu�cient for sealing.
Laboratory experiment settings on �at �lm are not transferrable to pilot
production line taking into account current production system.

As per results of lab experiments for characterization of material A, tem-
perature has the biggest impact on seal performance compared to time and
force per cm2. New factors that could allow control of transferred thermal en-
ergy were investigated. Pre-heating station gives thermal energy to the �lm.
Preliminary experiments allowed to select three main control factors for weak
seal production in pilot line: i) Pre-heating station temperature; ii) Pace of
the line; iii) Time of sealing. Pace of the line is measured in cycles per minute
and it allows control of the time the �lm spends in the preheating station.
The lower is the number of cycles per minute, the longer is the time spent by
the �lm in the preheating station. Control of thermal energy transferred to
the �lm is achieved by combination of pre-heating station temperature and
pace of the line. Note that according to material characterization results,
force per cm2 was considered negligible as control factor in production line.
Sealing was performed controlling the three factors.

The experimental response variable is measured by a burst test giving
the pressure needed to open the seal by injecting air into the bottle. The
idea is that the packaging shrinks when temperature in dishwasher raises
because of the memory form e�ect of thermoformed polymeric material. The
e�ect of shrinkage is the increase of internal pressure that at the end lead
to the packaging opening. The pressure needed to open the seal is thus
representative of the �nal performance required to the packaging.

The �nal objective is to produce a packaging releasing detergent in dish-
washer at a well-de�ned moment during main wash. Response variable anal-
ysis should allow to select samples for dishwasher test in order to �nd a corre-
lation between packaging performance in dishwasher and production factors
levels, and in case of success to �nd the best factors setting for production.
The reason of making a selection by pressure test before dishwasher test is
that the latter is highly time consuming.
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Test of product samples

Material A was used to produce batches of �nite empty bottles according to
an experimental design. In production line presence of uncontrolled factors
and of �uctuations of controlled factors is higher compared to lab environ-
ment. Production was according to a protocol in order to reduce variability
of response: production was in steady state; temperature stabilization time
of pre-heating station was 10 minutes; sealing station temperature was �xed
at 120 ◦C; force per cm2 applied to weak seal was 410 N/cm2. A curing
time of at least 1 day have been respected in order to allow stabilization of
polymeric bonds. There was a protocol for burst test as well: air is injected
in a �at area of packaging far from seals; air is blown into the bottle accord-
ing to a pressure ramp with steps of amplitude 0.02 bar; interval between
steps is 5 seconds; pressure ramp starts at 0.05 bar and upper limit is 0.5
bar. Burst test were performed by the same expert operator for the whole
experimental design to avoid variance introduced by di�erent operators. The
result of burst test is the minimum pressure needed to open the bottle. Pres-
sure test device provides the relative pressure (over atmospheric pressure) as
percentage of 1 bar.

The experiment is focused on weak seal. In fact, proven that material A
allowed di�erentiability of performance in material characterization section,
time and force per cm2 for strong seal in sealing station were tentatively
chosen in order to guarantee a minimum pressure at burst test of 0.5 bar.

Experimental design

At the beginning a one factor at time (OFAT) experiment allowed to identify
operative ranges of factors for material A. Table 3.4. Some ramps have been
performed for each factor with the other two factors �xed at common levels
for production, and ranges for factors were de�ned: Pre-heating temperature
120 - 130 ◦C; Pace of the line 11 - 14 cycles per minute; Sealing time 1.6 - 2.2
s. Operative ranges are speci�c for material A. De�ned ranges should avoid
inconsistent or inhomogeneous seal pattern that means too weak seal. At
the opposite ranges de�nition should avoid even too strong seal that prevent
bottle opening in dishwater. Then an optimal factorial design with 3 factors
and 4 levels each was used to explore the response space in an e�ective
and resource saving way. Levels of each factor have been selected in order
to have almost homogenous intervals in the ranges. Reduction of number of
combination from the full factorial design (64 combinations) to the fractional
factorial design (38 combinations) were achieved according to D-optimality
criteria to minimize the variance in the regression coe�cients of the �tted
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Table 3.4: Levels of control factors selected for the experimental design
Pre-heating temperature Pace of the line Sealing time
level code value [◦C] level code value [cycles/min] level code value [s]

1 120 1 11 1 1.6
2 123 2 12 2 1.8
3 127 3 13 3 2.0
4 130 4 14 4 2.2

design model. The model selected includes terms up to order two, so that
second order interactions can be estimated.

Packaging is composed of two chambers. The chambers, from now on
named left chamber and right chamber, were tested separately, that is for
each packaging only left or right chamber were tested. In fact packaging
is asymmetric and di�erent geometry between the chambers could have an
impact on weak seal performance. Number of replicates was 10, 5 to test left
chamber and 5 to test right chamber. The number of replicates is precau-
tionary in order to guarantee high power of inferential tests that could be
necessary in this explorative phase.

Data Analysis

Data analysis was based on the same approach used for material character-
ization. General steps of analysis are here brie�y summarized. For each
chamber, Analysis of Variance of a full quadratic model allowed evaluating
both main factors and interactions taking into account all linear terms, all
squared terms, and all two-way interactions. A backward stepwise model
selection procedure at a signi�cance level α = 0.05 has been applied to ob-
tain the �nal models. The impact of the terms of �nal model was assessed.
Variance In�ation Factor (VIF) was useful to exclude multicollinearity. The
models allowed obtaining a nonlinear regression equation for response vari-
able. Graphical analysis of the e�ect on the response variable of each factor
and second order interactions was performed as well as analysis of surface
and contour plots. Last but not least, graphical analysis of data variability
at di�erent factors levels combinations.

In general, an experiment performed in industrial plant presents a limit in
data analysis compared to one performed in laboratory. Surface and contour
plots graphical analysis in material characterization allowed to assess impact
of �uctuation of factors. In fact, laboratory environment enable high control
of factors, and variability observed at a certain factors levels combination is
mainly related to uncontrolled factor, as for instance homogeneity of mate-
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Figure 3.11: Overlaid contour plot of Pressure of right chamber and left
chamber VS Pace of the line and Preheating temperature. Interval of re-
sponse from 25% to 30%.

rial. In production line, control of factors is a�ected by typical variability of
industrial environment and sensors are in general less sensitive. The e�ect
of �uctuation of control factors is thus confounded with the e�ect of vari-
ability of uncontrolled factors. This limit should be taken into account when
drawing conclusion from data analysis.

Range of observed values was from 0% to 50%, meaning that choice of
factors levels allowed investigation of the whole interval of interest of response
values. The three factors pre-heating station temperature, pace of the line
and time of sealing are signi�cant in the model of both chambers. Pace of
the line is the most important factor when considering the impact on pres-
sure value required to open the weak seal of both chambers of the samples.
Pressure value increases at low levels of cycles per minute, while it decreases
at high levels of cycles per minute.

One important result was that the test revealed a non-symmetric behav-
ior of the left and right chamber of the bottle. Geometry in�uences the way
the chambers open. Di�erent distributions of response values were observed
between the two chambers for many factors levels combinations. As conse-
quence, nonlinear regression equations obtained from the models of left and
right chambers were di�erent. A well performing packaging should guarantee
that detergent is delivered from the two chambers at around the same time
during washing cycle. Therefore, those factors levels combinations that could
allow similar performance were investigated.

Response contour plots of the two chambers were compared by overlap-
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Figure 3.12: Overlaid contour plot of Pressure of right chamber and left
chamber VS Time and Pace of the line. Interval of response from 25% to
30%.

Figure 3.13: Overlaid contour plot of Pressure of right chamber and left
chamber VS Time and Preheating temperature. Interval of response from
25% to 30%.
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ping them two by two. The analysis of overlaid contour plots was performed
for each couple of factors. Analysis allowed identi�cation of areas where
predicted responses were similar. Examples of overlaid contour plots in Fig-
ures 3.11, 3.12 and 3.13 are for interval of response from 25% to 30%. Inter-
vals in the whole range of response have been investigated. Furthermore, the
three plots have been analyzed varying the third factor along the whole range.
The statistical model allowed to select those factors levels combinations that
results in a similar behavior of the two chambers.

Comments on production in pilot line

Pilot line experiments are performed on those materials that show promising
results according to material characterization. Material A provided a good
example of the steps to be followed from identi�cation of operative ranges for
the three control factors in the production line to the analysis of experimen-
tal data. As result of experimental campaign, a statistical model to predict
response of pressure test according to factors levels is developed. The ob-
jective is the selection of samples showing di�erent performances at pressure
test to perform the most signi�cant test: the test in dishwasher. Selection
must consider: i) coverage of di�erent pressure test performances, ii) similar
behavior of the two chambers, and iii) low variability of response according
to factors levels combinations. Material A allowed selection of samples to be
tested in dishwasher.

3.3.3 Study of �nal product prototypes

Performance of �nal product can be evaluated according two dimensions:
i) time of opening during washing cycle, ii) complete vs partial release of
detergents. These two dimensions are representative of the expectations of
�nal customer. In fact, packaging has to deliver detergent on or before a
de�ned threshold so that there is enough time for detergent for an e�ective
cleaning. Furthermore, complete release of detergent is given as quali�er by
marketing.

The two dimensions were investigated by a dishwasher test. Time of
opening was established by means of sensors inside the dishwasher. The
amount of delivered detergent was observed at the end of washing cycle. This
test is time consuming (a washing cycle is about 100 minutes) so packaging
samples to be tested were selected according to their response at the pressure
test.
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Figure 3.14: Observed time of opening of the two chambers [h:m:s], water
temperature [◦C], and amount of water [l] during a washing cycle.

Test of prototypes

Packaging samples were manually �lled with detergent. They were tested
individually in an intensive washing cycle (70 ◦C) without dish load, all with
the same dishwasher. Sensor measured i) time of opening of the two chambers
[h:m:s], ii) water temperature [◦C], and iii) amount of water [l]. In Figure 3.14
there is an example of measured values during an experimental run.

The exact moment in which the two chambers open was determined.
Observer can't discriminate between left and right chamber, but only between
�rst and second release. By crossing time of opening with water temperature
and amount, it can be established even in which part of washing cycle the two
chambers open. Main wash last from minute 22 to minute 80. In Figure 3.14,
for instance, �rst chamber opens during main wash, while second chamber
opens during rinse that by the way is too late.

Samples produced according 8 di�erent factors levels combinations were
tested. Factors levels combination were classi�ed according to pressure test
in three groups: pressure < 20%, pressure 20% - 30%, and pressure > 30%.
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Table 3.5: Observed opening time [minutes] and leftover liquid [%]
Classi�cation in Pressure test Opening time Leftover liquid
pressure test left right 1st 2nd left right

chamber chamber release release chamber chamber

< 20% 15.4 13.8 N/A N/A N/A N/A
20%-30% 21.4 21.4 57 91 20 10
20%-30% 22.5 22.2 56 89 20 10
20%-30% 29.0 25.8 58 90 10 10
20%-30% 29.4 23.0 56 86 10 10
20%-30% 28.2 25.0 58 90 10 10
> 30% 40.0 33.8 98 N/A 100 40
> 30% 39.4 33.8 99 N/A 100 50

Data Analysis

Analysis of data aims to individuate those factors levels combinations that
satisfy minimum criteria in the dimensions under investigation. Furthermore,
a correlation between pressure test and opening time is investigated. Mean
data observed are in Table 3.5.

In general, test reveals a basic correlation between product release and
pressure:

− Pressure test value < 20%: packaging does not satisfy minimum safety
criteria for customer; detergent leak out during manual activation be-
fore placing in dishwasher.

− Pressure test value 20 - 30%: �rst detergent release is in the main wash
at minute interval 56 - 58, second release is during rinse cycle; product
release is in the range from 80% to 90%.

− Pressure test value > 30%: only one chamber opens at the end of the
rinse cycle; there is partial detergent release.

None of the selected samples reached the minimum quality criteria.

Comments on performance of �nal product

Dishwasher test is performed on a selection of samples from pilot line pro-
duction according to pressure test results. The objective is to explore per-
formance of �nal product in order to �nd those factors levels combinations
in production that could allow respect of minimum criteria. Furthermore, a
correlation between pressure test and dishwasher test results is investigated.
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Contrary to pressure test, dishwasher test is time consuming. A careful se-
lection of samples has to be done. The key success factor is the coverage
of the whole range of pressure test results. Material A revealed unsatisfac-
tory performance in the �nal product. Only a systematic approach allowed
the investigation of the whole factorial space and the �nal evidence based
assessment of the material. Material A was rejected.

3.4 The Experimental Strategy

The experimental strategy developed thanks to principles of Design of Ex-
periment is composed of three phases:

1. Material characterization.
Objective: Material selection.
Success criteria: i) di�erentiability between weak and strong seal; ii)
low variability of seal performance related to small �uctuation of pro-
duction control factors; iii) low variability of seal performance related
to level of control factors.
Factors: i) Temperature of sealing jaws; ii) Time of sealing; iii) Force
per cm2
Response: Seal strength value.

2. Production in pilot line.
Objective: Weak seal investigation, and selection of samples for dish-
washer test.
Success criteria: i) same behavior between left and right chamber; ii)
low variability of seal performance related to levels and small �uctua-
tion of production control factors.
Factors: i) Pre-heating station temperature; ii) Pace of the line; iii)
Time of sealing.
Response: Burst pressure value.

3. Performance of �nal product.
Objective: Find successful factor level combinations, and correlation
between pressure test results and dishwasher test results.
Success criteria: i) time of opening; ii) complete release of detergent.
Response: Time of opening.

Final result is the selection of factor level combinations in production
according to the desired packaging performance taking into account peculiar
features of material, and correlation between factor level combination and
performance. The strategy is summarized in Figure 3.15.
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Figure 3.15: Scheme of the experimental strategy
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3.5 Conclusions

An experimental strategy on innovation of thermoforming production pro-
cess has been developed. Design of Experiment (DoE) techniques were used
in designing and analyzing all the phases of the strategy. DoE enhanced
innovation capability allowing reduction of systematic errors and distortions,
full exploration of factorial space, and reduction of number of tests. The
experimental strategy allows selection of material and correlation of control
factors levels to packaging performance for each tested material.

Traditional approach to production control in thermoforming process was
challenged. DoE allowed to identify and overcome the mismatch between con-
trol factors in laboratory and in production line. Anyway, mismatch suggests
development of 2 separated sealing stations: one for strong seal and one for
weak seal. In this way same control factors could be used in laboratory and in
production line. Result would be a direct correlation between performance in
dishwasher and control factors in laboratory. The experimental chain would
be shorter and a signi�cant reduction of number of tests should be allowed.



Chapter 4

Impact of DOE on Innovation

Process Management, a Case

Study

4.1 Introduction

The issue of management of innovation process is currently an important
topic for many companies. As already said, innovation is one of the ways,
and in some �elds the most important, to achieve and maintain a competi-
tive advantage. Innovation is a continuous process that has to be managed
according to some dimensions. We have to forget the myth of a disruptive
idea popping in someone's mind. Yes, it could happen, but such an unpre-
dictable situation is not what a company could invest on. Innovation is more
a cumulative process that has to be managed creating a favorable environ-
ment to let grow incremental innovation and to let breakthrough innovation
be free to manifest. Innovation process is a process of recognizing customer
needs and market opportunities for innovative products, generating and elab-
orating innovative ideas, working with knowledge regarding innovation and
with information, realizing innovative activities and innovative production
system to ensure a successful extension of the innovative product or service
to the customers [49]. Recall that focus of my research is the innovation of
production processes.

There is an increasing interest among scholars about the management of
innovation process ([49], [75], [85], [60], [78], [77], [74], [22], [53], [71]). How
to improve the innovation process in order to enhance company performances
is investigated and dimensions that could be relevant have been identi�ed.
Some of them are de�nition of scope and mission, learning, communication

54
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(within organization), knowledge building, organizational structure, team-
work.

Learning is considered a critical point in the innovation management.
The company should learn through the procedure in the innovation process,
not only about the object of the innovation, but even concerning the process
of innovation itself.

Regarding communication, an e�cient information �ow should be ensured
in the company. If not, misunderstanding could arise and di�erent opinion
among group of people could stabilize, thus creating barriers and freezing the
innovation process.

Another issue is the way information are collected and transmitted. In
many cases there is no evidence of the results achieved because the documents
and the records do not o�er all the instruments to be properly understood
and their interpretation is possible only thanks to the presence of the person
that issued them. This problem is related to the issue of knowledge building
inside the company. Insu�cient implementation of instruments devoted to
knowledge management is a problem in the �eld of innovation management.
It could happen that the knowledge created in the innovation process is
forgotten or lost. As result, part of the e�ort and resources in the research
are wasted to repeat the creation of knowledge which has already been created
previously.

The organizational structure could be a great support to the innovation
process or the cause of its failure. Managers should have su�cient informa-
tion about available resources and means when they plan innovative activ-
ities. The leadership and the people in charge for every activity should be
clear in order to well coordinate activities and prevent independent or "hid-
den" research carried out only to satisfy the ego of some of the members of
the team. This could lead to parallel research that, if not planned, could
cause waste of time and resources.

The use of DOE for innovation is debated among scholars and practition-
ers as shown in section 2.2. The two opposite positions can be summarized
quoting two important scholars: Montgomery [56] "Design of experiment is
viewed as part of a process for enabling both breakthrough innovation and
incremental innovation, without which western society will fail to be compet-
itive" and Johnson [41] "Innovative environments thrive on useful mistakes
and su�er when the demands of quality control overwhelm them. [refering to
the use of DoE and Six Sigma, Ed.]". DOE is a methodology whose adoption
could impact on the innovation process performances. Anyway, it's not DOE
performing the innovation but people. DOE can provide a very e�ective and
e�cient aid that leads to innovation, but people are the ones that will pro-
duce results. Management of innovation process is necessary. Nevertheless,
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DOE could be helpful to improve the management of the innovation process
providing proper instruments for managing the process.

Innovation in companies is mainly subject of the work carried out at the
Research and Development department. The R&D department is an inclusive
name referred to two distinct activities. The research activity is the one that
could be motivated purely by the need to improve the knowledge in a certain
�eld, it could be speculative and it is allowed to take risks and to fail. The
development activity aims to realize what has been invented, it should take
no risks but go straightforward to the achievement of the goal. The customer
of the development activity is generally manufacturing or production process.

The development activity within a R&D department is the �eld where
present research has been conducted. I had the opportunity to be member
of a team working on the project described in details in Chapter 3. The
objective was to develop a new thermoforming process to produce a new
packaging releasing detergent in dishwasher at a well-de�ned moment during
main wash.

4.2 Research Method

This research has been conducted according to the principles of qualitative
research. I was part of the team whose objective was to innovate the pro-
duction system in order to achieve mass production capability of the new
product (the packaging for dishwasher detergent). My role was double. As
expert in engineering and DOE, I was providing technical consultancy on the
tools to adopt and how to use them. Namely, I was designing the fractional
factorial experimental plans and analyzing data, furthermore I was involved
in technical engineering issues. This part is widely described in Chapter 3.
The second role was the role of complete participant in the adoption of DOE
by the company as instrument to enhance innovation process. According to
the role of complete participant described by Macri and Tagliaventi [52], I
was involved in the team and worked with the team. I could observe the
behavior of people involved and study the impact of the adoption of DOE on
innovation process management. I was thus able to understand the opinions
of the members of the team and observe their evolution in time. Weekly
meetings were planned in teleconference in order to coordinate the activities.
Field notes and meeting reports were the most relevant instruments to trace
the evolution of the innovation process management and the impact of DOE.
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4.3 Innovation Process before Adoption of DOE

The organizational structure in the innovation process was articulated in two
di�erent teams working in di�erent R&D departments of the same multina-
tional company situated in di�erent countries. Furthermore, part of the pro-
cess was performed at the plant of an external supplier, a company working
as co-packer and potential supplier of the production line.

There was lack of a clear de�nition and understanding of the problem,
and, above all, lack of coordination of activities. It was not clear which
were the roles and which tasks should have been carried out by each team.
The presence of two teams working on the same project, instead of being an
opportunity, caused competition and con�icts due to subjective opinions and
interpretation of facts. There was no agreement about the strategy to adopt
during experimentation, and what was relevant and what was not. Pressure
from marketing to achieve results put the teams in a hurry and parallel
unplanned tentatives of development of the process started. Someone tried
to push to invest e�ort on the geometry of the packaging and some others to
invest e�ort on newly developed materials direction, but none of them had
awareness of what factors had impact in production line.

The experimental strategy illustrated in Chapter 3 shows how the in-
novation process should have been organized in three di�erent phases: i)
characterization of materials in lab, ii) production of prototypes in the pilot
production line, and iii) test of performance of the prototypes in lab. But this
fact was not clear to the people involved. There were barriers due to lack of
communication and proper understanding of phenomena. In Figure 4.1 the
barriers in the innovation process. The barriers are between the steps of the
experimental strategy and between teams and places where the innovation
was carried out.
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Figure 4.1: The experimental strategy developed in Chapter 3. In red the
barriers impeding the innovation process.
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People involved had a limited vision of the innovation project (Figure 4.2).
There was not a complete understanding of the innovation process. Due to
this fact, there was no correlation between results of test and control factors
because of the mismatch between the control factors in lab experiments and
pilot line experiments. This was a critical point that emerged thanks to the
systematic experimental approach of DOE.

The production process innovation was carried out using a common the-
oretical modeling in packaging production. Based on that the experimental
strategy was of two types quite common in the industrial environment. The
�rst experimental strategy was the one-factor-at-a-time (OFAT) strategy.
This strategy was used in the characterization of materials phase. It consists
in holding constant all the factors that are supposed to have an impact on
the result a part from one that varied over its range. The main problem
of this procedure is that it doesn't detect the possible interactions between
factors. The second experimental strategy was the best-guess approach. In
this case the experimenter makes a �rst guess based on his or her experience
and engineering knowledge. Then, based on the outcome of the �rst exper-
iment, another experiment is planned. This approach is carried out until
the success is achieved, or until experimenters get discouraged by results and
abandon the e�ort. This strategy was used in the production plant and the
experimenters were stuck in a trial-and-error vicious circle.

A side e�ect of the beliefs and behavior of some members of the team was
the low level of quality during the experiments. The lack of understanding
the relevance of control of variability and the importance of repeatability
didn't allow to draw meaningful conclusion from dataset collected. Charles
Hicks, a famous professor of statistics at Purdue University, is said to be used
to teach that "...if you have 10 weeks to solve a problem, you should spend 8
weeks planning the experiment, one week running it, and one week analyzing
the data" [56]. Recall that all experiments are designed experiments, but the
way you design them makes the di�erence. A poorly planed experimental
design will usually lead to disappointing results, while a carefully planned
one will usually produce helpful results.

The project was lunched one year earlier than my team was involved.
They already had performed 20 days of experiment at the production plant.
Results collected during experiments were recorded in excel �les with poor
notes on the meaning of di�erent variables and on experimental settings. It
happened to receive some old data set to be analyzed in order to have a �rst
idea about variability of responses, but interpretation of variables meaning
was not clear even to the people that was providing the data set. Some
fundamental information were basically retrieved thanks to the memory of
some of the participants.
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The data were provided by excel �les with just some basic synthesis vari-
able without further analysis. Results interpretation was not univocal among
the people involved. Furthermore, most of the times people didn't make any
e�ort to interpret a data-sheet with a lot of columns and rows �lled by num-
bers that couldn't show any clear information just visualizing them.

Figure 4.2: Sketch of the organization according to information �ow and
vision on the process. People (the eyes) involved on the innovation process
had a limited vision of the process. The information �ow (blue arrows) was
hindered.

The most relevant observations concerning the innovation process man-
agement before the adoption of DOE are:

� Information was not structured and well codi�ed, it was shared on
demand and di�cult to interpret.

� There was lack of cooperation. Competition was due to subjective
opinions and interpretation of facts.

� The process was stuck in a trial and error approach and there was no
progress.

� The innovation project was launched one year earlier. They were al-
ready performed 20 days of experiments at the pilot line.

� A mismatch between control factors in lab experiments and pilot line
experiments was not discovered.
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4.4 The Adoption of DOE

In this section I describe some of the most relevant steps of the adoption of
DOE from the point of view of the innovation process management.

The introduction of a new support to innovation was not easy since the
beginning. This fact can be easily understood within the topic of resistance to
change that is well known in the managerial �eld. Generally speaking, people
can be reluctant to modify their behavior because they think that they are
doing a good job, that they don't need any external interference, and because
they want to defend their good reputation. Therefore, the presence of an
important sponsor was fundamental to introduce a change in an environment
skeptical towards the new methodology proposed.

First thing was to move a few steps back from the experimental phase
and start back from the scratch. DOE according to Montgomery [54] moves
�rst steps starting from i) recognition of and statement of the problem, ii)
choice of factors, levels, and ranges, iii) selection of response variables. This
was done both at lab level and at production plant level. The intent was
to clarify the purpose of the research and de�ne problems and goals clearly.
A common understanding of the objective of the experimentation, of the
strategy and of the expected results was the beginning of a new attitude and
a more deep involvement of all the members of the team. The innovation
process can be greatly catalyzed by group discussion if the group contains
people from di�erent disciplines.

Providing a holistic view and system thinking allows to see how the dif-
ferent parts of the system interact. We wanted to change the perspective
from which the problem was tackled by asking fundamental questions and
challenging basic assumptions. End to end involvement on the project was
fundamental to discover barriers between teams of experimenters and mis-
leading subjective perspectives on the problem. It was the understanding of
the complete process that allowed innovation process to be most e�ective.

At the beginning DOE was viewed as more time-consuming and di�cult
than traditional approaches. The fractional factorial design is less intuitive
compared to other methods such as OFAT. Furthermore the team was under
pressure because of the deadlines set by marketing department. This caused
a rush to �nd quick solutions to �x immediate problems. The solutions
adopted revealed to be ine�ective, and the consequence was a further delay
and waste of time and resources. The members of the teams had a weak
statistical background that inhibited their understanding and use of DOE.
Indeed, DOE was seen by some members of the team as an academic exercise
not leading to concrete and practical results.

The awareness of the relevance of control of variability and the impor-
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tance of repeatability was raised. Data collection has to be performed in the
proper way. The team had to be sure that they are sampling appropriately.
Experiments have to be reproducible, so an experimental protocol had to be
de�ned. The variability issue that experimenter have had to face before the
introduction of DOE, and whose causes where searched by analyzing data,
was caused basically by an incorrect procedure during experiments execution.

The building of a series of experiments should be adapted basing on
knowledge gained from earlier experiments and re�ned over time. How can
it be possible if previous learning are not codi�ed in such way that results
could be retrieved and reused? A fundamental aspect of use of DOE is the
sequential knowledge gain that comes from use of scienti�c method and from
a proper way of coding experiments and results.

DOE approach facilitate decision-making based on quantitative objective
information instead of subjective opinions. Indeed, DOE revealed to be use-
ful as a common language that tied together people from di�erent teams and
diverse disciplines. The results of the analysis of data collected during exper-
iments were shown to the team during meeting thanks to slide presentation
where all the information needed were included. Namely: the speci�c objec-
tive of the experiment, the variables involved, the settings, the experimental
design, graphical analysis, visual representation of the analysis (e.g. response
surface), conclusions, and open points to be further investigated.

The initial skepticism about DOE was defeated even thanks to the ca-
pability to achieve signi�cant results by means of a very reduced number of
experiments, and thanks to showing results of the analysis in a more e�ec-
tive and intuitive way by response surfaces and contour plots. Compared
to previous excel �les used to communicate results, the graphical methods
highly enhanced the communication and the understanding among the ex-
perimenters. Two examples are given in Figures 4.3 and 4.4. The response
surface in Figure 4.3 allows to understand why in certain ranges of values
of control factors the response is more stable (�at area) compared to other
ranges (steep slope area) thus allowing an higher control. Indeed, small vari-
ation in control factors has almost null e�ect on response variable in the �at
area. This graphical representation gave information whose quality and ef-
fectiveness were far above an excel data sheet. The contour plot in Figure 4.4
had a similar e�ect on participants. Indeed, it gave the direction to improve
the response setting the control factors in production. Generally speaking,
graphical representation of experimental results allows to discover patterns
and information in the data. It improves communication and the achieve-
ment of a shared opinion about a speci�c issue. Looking at the same data in
a di�erent way can lead to a better understanding of the impact that control
factors could have on the response variable, thus clarifying correlations and
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cause-and-e�ect relationships.

Figure 4.3: Example of response surface.

Figure 4.4: Example of contour plot.

An important result was achieved when it was shown the mismatch be-
tween control factors in lab and in pilot line. This fact strengthened the need



CHAPTER 4. DOE AND INNOVATION PROCESS MANAGEMENT 64

to have a common goal and to work as one team. The members of the team
felt more involved and enthusiastic. For the �rst time, a correlation among
all steps of the innovation process was achieved.

The multivariate analysis was required but never used before the adop-
tion of DOE. Presenting di�erent views of the data using overlaid contour
plots (Figure 4.5) encouraged a di�erent approach that di�ers from the con-
ventional view of the system. Again, changing the perspective from which
the problem was tackled was a key to success.

Figure 4.5: Example of overlaid contour plot.

4.5 Innovation Process after Adoption of DOE

The introduction of DOE brought a new perspective on the innovation pro-
cess. The new perspective was achieved even by asking fundamental ques-
tions and challenging basic assumptions. But, the most important thing was
that it was a common perspective among the members of the team (Figure
4.6). The vision of the process became broad and there were a clear interpre-
tation of correlation between test results and control factors. The latter was
not possible before the adoption of DOE. The common goal and the common
understanding of the objective of the experimentation lead people to work
as one team. The barriers between the teams of experimenters were removed
thanks to the end to end involvement.

DOE became a common language. It facilitated decision making by the
team avoiding con�icts due to subjective opinions. The way results of anal-
ysis are shown enhances communication. The quality and e�ectiveness of
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information were increased. This creates a fertile �eld to knowledge building,
by means even of the improved system of coding experiments and recording
results.

There is anyway one risk that I perceived. The risk is that someone
performs unnecessary tests only to seek for the "DOE blessing" in order
to not expose himself to criticism. This behavior is contrary to the reason
why DOE should be adopted and the bene�ts it can give. The experimental
design should always move �rst steps from the de�nition of the problem and
not jumping to the experimental phase just to show some data analysis.

Figure 4.6: Sketch of the organization according to information �ow (blue
arrows) and vision on the process. People involved (the eyes) on the innova-
tion process now have a broad vision of the process. The information �ow is
enhanced.

The most relevant observations concerning the innovation process man-
agement after the adoption of DOE are listed below. They can be compared
to the same observations made about the innovation process management
before the adoption of DOE.

� DOE became a common �eld and a common language for information
exchange and knowledge building.

� There is full cooperation among the members of the team based on
objective and quantitative data interpretation.

� An exploration of the whole factorial space was accomplished, thus
enabling progress in innovation.

� Team weekly meetings were scheduled from August to October. One
week of experiments in lab was performed, then 3 days at pilot line,
then one week in lab again to achieve the result.
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� The mismatch between control factors in lab experiments and pilot line
experiments was overcomed.

4.6 Suggested bene�ts of Adoption of DOE

The qualitative research performed during the adoption of DOE for the de-
velopment of a new packaging production process allowed to highlight the
impact of DOE on innovation process management described on previous sec-
tions and speci�c to the case analyzed. In this section the aim is to generalize
the learnings beyond the speci�c case along �ve dimensions that have a more
general value in the managerial �eld. Namely: decision making, integration,
communication, time and cost, and knowledge.

The bene�ts suggested by case study are listed below:

� Decision making

DOE allows decision making to be objective and quantitative in-
stead of being based on subjective opinions.

DOE forces to ask the right questions to clarify the purpose and
the issues. It helps to de�ne the goals, hypotheses and problem clearly.

DOE does not focus only on data analysis perspective, but also on
data collection perspective.

DOE helps to switch from a narrow channel of thought (best guess
approach or OFAT) to broader vision and range of information (Full
or fractional factorial space). Designed experiments accelerate learn-
ing and evaluations of control e�ects, they streamline decision making
about how to proceed.

Presenting di�erent views of the data (numerical and graphical
summaries) encourages thinking that di�ers from the conventional view
of the system. DOE helps to display and analyze processes, variation
and data in a way that cause-and-e�ect relations are clari�ed and pro-
cess understanding is enhanced.

� Integration

A broad vision of innovation process is enhanced thus allowing the
end to end involvement of all the people of the team.

� Communication

DOE can be the common language that ties together collaborators
from diverse disciplines.
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� Time and costs

DOE allows a strong reduction of time and number of experiments.

� Knowledge

DOE helps to achieve a complete understanding of the process and
knowledge of inputs and variation.

The way data are collected, organized, analyzed and recorded al-
lows data retrieval and re-usability.

Some of these bene�ts are supported by scholars in literature. Neverthe-
less, they should be further investigated through more case studies.



Chapter 5

Recent Nonparametric Methods

Compared and Contrasted: a

Simulation Investigation in

Factorial Designs

5.1 Introduction

Industrial experiments are commonly based on factorial designs. Design of
Experiment (DOE) is popular in di�erent �elds of engineering as for instance
for bio-fuel production [83], for industrial production practices [38, 79], for
machines' production process [44], for alternative raw materials experimen-
tation [43], or for the use of Coordinate Measuring Machines for quality
control [72]. The two-way two-levels crossed factorial design is a common
design used in the exploratory phase. Thanks to two-way multi-level design,
practitioners can assess the impact on response variables of two factors they
can control during the experiment and of their interaction according to the
assumed model. From here on, we designate the 2 factors as factor A and
factor B, and their corresponding levels as (A1,A2) and (B1,B2), respectively.

The F test in the usual linear model for analysis of variance (ANOVA)
is a common instrument to compare the means of observations grouped ac-
cording to factor level combinations, but sometimes data sets do not satisfy
the assumptions of parametric tests. When assumptions like normal distri-
butions of errors and homoscedasticity are violated, nonparametric tests are
powerful instruments to support data-based decisions [36].

A variety of nonparametric methods have been developed during recent
years. There are permutation tests and rank-based tests available for practi-

68
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tioners in scienti�c literature which are implemented in R software packages
or functions. Furthermore, there are robust alternatives [80] as well as ap-
proximations for parametric tests recommended in case of unequal variances
and small sample sizes [11]. In general, permutation tests are computation-
ally intensive and distribution free. In this study we focus on Constrained
Synchronized Permutations (CSP) [3], Unconstrained Synchronized Permu-
tations (USP) [3], Wald Type Permutation (WTP) [61], Aligned Rank Trans-
form (ART) [31] and ANOVA-Type Statistic (ATS) [11],which are designed
to address the same hypotheses.

Practitioners have to convert the objective of the experiment in terms of
type I and type II error rates. According to the objective, di�erent levels
of power of the test are required. Expected power of a test should be taken
into account starting from the design phase of the experiment. Power of
common parametric tests has been widely investigated and many software
implement functions to calculate the power of a test according to the data
set to be analyzed and other parameters (Faul et al. 2007: G*power 3;
pwr package in R). It is well known that factors that impact the power of
a parametric test are: α level, variance, factor e�ect (expected di�erence
between means) and number of replicates. For instance, in the design phase
of the experiment, practitioners could estimate expected variance of data
from historical data, they could de�ne factor e�ect they want to investigate
according to the objective of the experiment, and �nally they could de�ne
minimum number of replicates according to the needed power. Number of
replicates could be a strong constraint when experiment is expensive.

Performances of nonparametric methods compared in this study have
been assessed in recent publications with respect to the nominal α level. In
particular, some data are available on the performances of CSP [25, 3], USP
[25, 3], WTP [61, 25], ATS [61, 11, 25], ART [31]. While power of the test has
been investigated for CSP [25, 3], USP [25, 3], WTP [61, 25, 26], ATS [61,
11, 25], ART [31]. To the best of our knowledge, there is no comparison of
power of the aforementioned nonparametric tests under the same conditions.
In fact, simulation designs in previous studies vary signi�cantly, and a fair
comparison between the �ve methods based on existing results is not possible.
Furthermore, the possible impact that the level of a non-investigated factor
could have on the power of the test on a main factor has not been considered
for all the methods in the two-way designs.

In this study we primarily compare the power of CSP, USP, ART, WTP,
ATS and F tests in a two-way two-levels balanced factorial design. We �x the
level α at 0.5 and we assess the power (Pw) along three dimensions of data
set: i) factor e�ect, ii) standard deviation, and iii) number of replicates. The
objective is to assess the impact of the three dimensions on the power of the
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tests and to give useful information on the choice of the test. We consider
both the homoscedastic and the heteroscedastic cases. Furthermore, in a
smaller scale simulation, we investigate the performances of the test in a
two-way two-level unbalanced design varying the factor e�ect both in the
homoscedastic and heteroscedastic case.

Some interesting �ndings are related to (i) the di�erent sensitivity of the
tests to the variation of the dimensions, (ii) the conditions under which some
tests can't be used, (iii) the tradeo� between power and type I error, and (iv)
the bias of the power on one main factor analysis due to presence of e�ect of
the other factor.

5.2 The linear additive model and the test hy-

potheses

First, the notation used in the description of the investigated methods is
herein illustrated. We assume the linear additive model of a two-way crossed
factorial design:

Yijk = µ+αi+βj+(αβ)ij+εijk, i = 1, 2; j = 1, 2; k = 1, . . . , nij, (5.1)

where µ is the overall mean, αi is the e�ect of level i of factor A, βj is the
e�ect of level j of factor B, (αβ)ij is the e�ect of interaction between factor
A at level i and factor B at level j, and εijk is the error term. The mean
of error term is E(εijk) = 0 for each factor level combination, and nij is the
number of replicates. The total number of observations is N =

∑
i

∑
j nij

The side conditions are:∑
i

αi = 0;
∑
j

βj = 0;
∑
i

(αβ)ij = 0 ∀j;
∑
j

(αβ)ij = 0 ∀i. (5.2)

The null hypotheses of no-main e�ect of factor A, no-main e�ect of factor
B and no-interaction e�ect between factors A and B are:

H
(A)
0 : α1 = α2

H
(B)
0 : β1 = β2 and

H
(AB)
0 : (αβ)11 = (αβ)12 = (αβ)21 = (αβ)22,

(5.3)

respectively. In vector notation, the data can be written as
Y = (Y111, . . . , Y11n11 , Y121, . . . , Y22n22)

′
. And the null hypotheses can be writ-
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ten in terms of contrasts as:

H
(A)
0 : CAµ = 0,

H
(B)
0 : CBµ = 0 and

H
(AB)
0 : CABµ = 0,

(5.4)

where µ = (µ11, µ12, µ21, µ22)
′
, µij = E(Yijk) = µ+ αi + βj + (αβ)ij and CM

is a full row rank contrast matrix for M ∈ {A,B,AB}.

5.3 A Parametric Method

The ANOVA-type statistic (ATS) was introduced by Brunner et al. [11].
They proposed a method for approximating the distribution of quadratic
forms with the aim of improving the accuracy of testing hypotheses in linear
models with heteroscedastic error structure and small sample sizes.

Considering the null hypotheses formulated in terms of contrast matrices
CM in section ?? for M ∈ {A,B,AB}, let TM = C

′

M(CMC
′

M)−1CM be
the orthogonal projection. It can be shown that CMµ = 0 if and only if
TMµ = 0. As consequence, the null hypotheses of no-main e�ects and of
no-interaction can be written as:

H
(A)
0 : T Aµ = 0,

H
(B)
0 : TBµ = 0 and

H
(AB)
0 : T ABµ = 0.

(5.5)

The ATS is de�ned by:

F (M) =
NX

′

TMX

trace(TMS)
(5.6)

The null distribution of F (M) is approximated by F -distribution with de-
grees of freedom:

f1 =
[trace(TMS)]2

trace[(TMS)2]
and f2 =

[trace(TMS)]2

trace(D2
MS

2Λ)
, (5.7)

where DM is the diagonal matrix of the diagonal elements of TM , S =
Ndiag{σ̂2

ij/nij}i,j=1,2, σ̂ij is the empirical variance in cell (i, j), N =
∑

i

∑
j nij

and Λ = diag{(nij − 1)−1}i,j=1,2.
The ATS relies on the assumption of normally distributed error terms

and it is an approximate test. According to Brunner et al. [11], in a two-
way or higher-way design with normally distributed errors the ATS has to
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be preferred to the classical ANOVA because it maintains the nominal level
with high accuracy and it is robust under heteroscedasticity. Furthermore,
in the homoscedastic case it has the same performances in terms of size of
the test and power as classical ANOVA�F test [11].

5.4 A Rank-Based Method

The Aligned Rank Transform (ART) [32] is a rank-based nonparametric
method for factorial designs. It is a �ve step procedure in which data are
aligned, ranked and analyzed using an appropriate parametric procedure. In
the case of this study, the two-by-two design, the common ANOVA based on
F-test will be used. ART has been introduced by Higgins et al. [31] with
the aim of overcoming the limitations of rank transform procedure [14] in
detecting the interaction e�ect in a factorial analysis. The rank transform
�aw is due to the fact that the interaction structures that exist in the original
data may not anymore be present in the dataset after a non-linear transfor-
mation such as the rank transform [31]. That's why the alignement has been
introduced.

Assuming a linear additive cell mean model, the alignment procedure
consists in isolating the investigated factor e�ect in the response variable
by "removing" the non investigated factor e�ects. This procedure allows to
achieve a great improvement in performances in detecting interaction e�ect
[31]. We herein brie�y illustrate the ART steps for the two-by-two design:

Step 1 Compute residuals. Residuals are the di�erence between the observed
values and the mean of the values of the factor level combination they
belong to.

rijk = Yijk − Y ij (5.8)

for i = 1, 2; j = 1, 2 and k = 1, . . . , nij where Y ij =
∑nij

k=1 Yijk/nij.

Step 2 Compute estimated e�ect for factor A, factor B and for interaction.

α̂i = Y i − µ̂ i = 1, 2

β̂j = Y j − µ̂ j = 1, 2

ˆ(αβ)ij = Y ij − Y i − Y j + µ̂ i = 1, 2 j = 1, 2 ,

(5.9)
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where

Y i =

(
2∑
j=1

nij∑
k=1

Yijk

)
/

(
2∑
j=1

nij

)
, Y j =

(
2∑
i=1

nij∑
k=1

Yijk

)
/

(
2∑
i=1

nij

)
and

µ̂ =

(
2∑
i=1

2∑
j=1

nij∑
k=1

Yijk

)
/

(
2∑
i=1

2∑
j=1

nij

)
(5.10)

.

Step 3 Compute aligned response for factor A, factor B and for interaction.

Y
(A)
ijk = rijk + α̂i

Y
(B)
ijk = rijk + β̂i

Y
(AB)
ijk = rijk + ˆ(αβ)i

(5.11)

for i = 1, 2, j = 1, 2 and k = 1, . . . , nij. The aligned responses for each
factor take into account only the contribution of the factor of interest
and of the residuals assuming a linear additive cell mean model.

Step 4 Assign averaged ranks. Each of the three groups of aligned responses

Y (M) =
(
Y

(M)
111 , . . . , Y

(M)
11n11

, Y
(M)
121 , . . . , Y

(M)
22n22

)′

is ranked, thus obtaining

the vector of ranks R(M) whereM ∈ {A,B,AB}. In case of ties among
l values, the average rank is the sum of ranks divided by l.

Step 5 Perform full factorial ANOVA. Three separate full factorial ANOVA
(i.e. including factor A, factor B and interaction) are performed on the
three aligned ranked dataset. Only the results referred to the e�ect for
which data were aligned will be considered. That is, p-value of factor
A is computed on R(A), p-value of factor B on R(B) and p-value of
interaction on R(AB).

The ART procedure has the advantage that it does not require normally
distributed data and response may be continuous or discrete. ART shows
limitations in case of very high proportions of ties in the original data, or in
case of extremely skewed distribution as the skewness is reduced by the rank
transformation [81].
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5.5 Constrained and Unconstrained Synchro-

nized Permutation Tests

Synchronized permutation is obtained according to two basic concepts. The
�rst is that values can be permuted between two levels of a factor while
keeping the level of remaining factors in the model constant. For instance,
to test the signi�cance of main e�ect A in the two-way design, observations
can be exchanged between groups with factor A level 1 and 2 that have level
of factor B equal to 1, and separately between groups with factor A level 1
and 2 that have level of factor B equal to 2. The second basic concept in
Synchronized permutation is exchanging the same number of units within
each pair of the considered groups [3]. Synchronized permutation assume
that error terms are exchangeable that may not hold in case of heteroscedastic
error variance.

According to Basso et al. [3] the test statistics for the main factors and
the interaction e�ect in the two-way two-levels design are:

TA = (T11 + T12 − T21 − T22)2,
TB = (T11 + T21 − T12 − T22)2 and
TAB = (T11 − T12 − T21 + T22)

2,

(5.12)

where, for each permutation,

Tij =
∑
k

Yijk. (5.13)

Then p-value is calculated as the proportion of permutations for which test
statistics values of permuted data sets are greater or equal to the test statistic
value for the original data set.

There are two ways to obtain a synchronized permutation, namely Con-
strained Synchronized Permutation (CSP) [69] and Unconstrained Synchro-
nized Permutation (USP) [69].

5.5.1 Constrained Synchronized Permutation (CSP)

CSP consists of applying same permutation in all couples of groups given
the initial order of observations. For instance, in the two way design if a
permutation consists in exchanging the second observation of group A1B1

with the �rst observation of group A2B1 when testing main e�ect A, then
same permutation has to be applied to groups A1B2 and A2B2. Observations
should be randomized within each group at the beginning before performing
the permutation test.
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As a result of the use of the same permutation between all possible pairs
of groups, the number of possible ways to exchange units is correlated only to
number of replicates n in the balanced design. If n is too small, CSP could
give a minimum achieved signi�cance level higher than the desired type I
error. In particular the minimum achievable signi�cance error is αmin =
2×(Ccsp)

−1 where Ccsp is the total number of possible permutations of CSPs,
i.e.

Ccsp =

(
2n

n

)
. (5.14)

5.5.2 Unconstrained Synchronized Permutation (USP)

USP, unlike CSP, can apply di�erent permutations in the various pairs of
groups. However, the basic principle of synchronized permutations of ex-
changing the same number of observations has to be met. The algorithm
provided in Basso et al. [3] guarantees the values of the test statistic to be
equally likely. This procedure allows to overcome those cases in which the
test statistic is not uniformly distributed. However, USP is computationally
more intensive compared to CSP, and it is recommended in the case of small
number of replicates.

5.6 Permutation of Wald-Type Statistics

The Wald-Type Permutation (WTP) has been developed by Pauly et al. [61]
by applying a permutation technique to the Wald Type Statistic (WTS). The
WTS is asymptotically exact in general factorial design for N → ∞ even in
the case of heteroscedastic and nonnormal errors. The problem with WTS
is that the rate of convergence is rather slow and, for small sample size,
it does not maintain the type I error, resulting in liberal tests [25]. WTP
improves the performance of WTS in case of small sample size. WTP has
broader scope of applicability than most permutation methods (e.g.,[62, 19,
23]) which require exchangeability under the null hypothesis.

The permutation procedure is herein brie�y summarized for the two-way
two-levels factorial design. Given a random permutation of all N components
of data Y ∗ = (Y ∗111, . . . , Y

∗
11n11

, Y ∗121, . . . , Y
∗
22n22

)
′
, the vector of means under

this permutation, denoted by Y
∗

= (Y
∗
11, Y

∗
12, Y

∗
21, Y

∗
22)

′
, is calculated, where

Y
∗
ij = n−1

∑n
k=1 Y

∗
ijk. The empirical variance of permuted observations is

σ̂2∗
ij = (n − 1)−1

∑n
k=1(Y

∗
ijk − Y

∗
ij)

2, and Ŝ
∗
N = diag(σ̂2∗

11, σ̂
2∗
12, σ̂

2∗
21, σ̂

2∗
22) is a

diagonal matrix. Finally, the permuted Wald type statistic is:

W ∗
N(M) = N(Y

∗
)
′
C

′

M(CM Ŝ
∗
NC

′

M)+CMY
∗
. (5.15)
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Then p-value is calculated as the ratio between the number of test statistics
of permuted data set as or more extreme than the test statistic of the original
data set and the total number of permutations.

WTP is applicable to general factorial designs without the assumption of
homoscedasticity or normal distribution for the errors. It is not restricted
to two-way factorial designs. It is applicable in higher-way classi�cations, in
nested designs and in unbalanced designs as well. Furthermore, it is asymp-
totically exact when data are not exchangeable as in the heteroscedastic case,
in the sense that it maintains the preassigned type I error for large sample
size.

Lastly, according to Pauly et al. [61], the behavior of the test depends
only on the investigated e�ect. In other words, the result of the test on
one main e�ect is not a�ected by the fact that the null hypotheses on the
remaining main e�ects and interactions are true or not. For instance, in the
two-by-two design, the test on the factor A should not be a�ected by whether
the null hypotheses on factor B and interaction AB are true or not.

5.7 The Simulations Campaign

A simulation study is performed to assess the power of the tests described in
section ??. Data set for simulations are generated according to the cell mean
model of a two-way crossed factorial design (factor A and factor B),i.e.

Yijk = µ+ αi + βj + (αβ)ij + εijk. (5.16)

where i = 1, 2 is the level of factor A; j = 1, 2 is the level of factor B; and
k = 1, . . . , n is the kth replicate for each factor level combination. In this
setup, the general mean µ = 0, the interaction is given by the product of
e�ects of the two factors, and the number of replicates n is constant for all
the factor level combinations.

Four distributions are used to generate the error term ε. Three are sym-
metric: normal, Laplace and student's t. One is skewed: lognormal. Both
homoscedastic and heteroscedastic cases are considered. Scheme of the het-
eroscedasticity for the various factor levels combinations is: 1×σ (A1B1),
1.5×σ (A1B2), 1.5×σ (A2B1), 2×σ (A2B2). Here, σ refers to the standard
deviation or to the scale parameter of the distribution used to generate the
error.

The power of the tests will be investigated along three dimensions: i)
e�ect of factors (αi and βj), ii) standard deviation (σ), and iii) number of
replicates (n). Six combinations of the three dimensions of investigations
have been considered as described in table 5.1. In each simulation study,
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only one dimension is allowed to vary at a time, while value of the remaining
two are �xed. For each of the six simulations, data set are generated from
the four distributions above in the homoscedastic as well as heteroscedastic
cases.

E�ect of factors are varied in a range from 0 to 1 in steps of 0.1. E�ect
of factor is the di�erence (δ) between the means of two di�erent levels of a
factor. As the model has two factors, all the possible combinations of e�ect
of factor A and e�ect of factor B will be considered. The parameter σ is a
measure of the variability of data in each factor level combination. Its e�ect
is investigated by varying it from 0.1 to 1 in steps of 0.1, and the investigation
is limited to the normal, Laplace and lognormal distributions. Number of
replicates is investigated in a range from 5 to 25 in steps of 5. Small number
of replicates is considered in order to accomodate the needs of practitioners
who may need to design e�ective experimental plans in situations where
there are constraints or limited resources for the experimental design. As
the factorial design is balanced, number of replicates refers to each factor
level combination. Furthermore, the behavior of tests in case of heavy-tailed
distribution will be investigated using the student's t distribution with 3
degrees of freedom to generate error terms.

All simulations are performed in R (version 3.4.0; R Development Core
Team (2017)). The number of simulations is nsim = 10000. Number of
permutations for CSP, USP and WTP is nperm = 2000. ATS test and WTP
test are performed using package GFD [20, 21], CSP and USP tests are
performed using functions provided by Basso et al. [3] and ART test is
performed using package ARTool [42].

Table 5.1: Simulations design. In each simulation (row) two dimensions are
�xed and one is investigated.

Investigated dimensions
Simulation Factor e�ect σ Number of replicates
Setting 1 0 to 1 by 0.1 1 5
Setting 2 0 to 1 by 0.1 0.5 5
Setting 3 0 to 1 by 0.1 0.25 5
Setting 4 1 0.1 to 1 by 0.1 5
Setting 5 1 1 5 to 25 by 5
Setting 6 1 0.5 5 to 25 by 5
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5.7.1 Results

In this section main results of simulations are presented along each inves-
tigated dimension. Graphs of the complete simulation results are in the
supplementary material.

Factor e�ect

Power of the tests varies according to the distribution used to generate data
and according to homoscedastic or heteroscedastic distribution of errors. One
test could perform better in certain situations while another one could per-
form better in others.

In the main factor analysis, tests show in general a monotonic increase
of power when the factor e�ect increases (Figure 5.1). Graphs plotted along
factor A and factor B are almost identical as per the way the simulation has
been conducted. The graphs show the mean power along each factor. For
instance, in the graph along factor A, each point represents the mean of the
power observed at that speci�c level of factor A and at all the levels of factor
B.
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(a) Normal distribution of errors. (b) Laplace distribution of errors.

(c) Student's t distribution of errors. (d) Lognormal distribution of errors.

Figure 5.1: Factor A: power of test at di�erent values of Factor E�ect (x
axis). Heteroscedastic case; Standard deviation = 0.5; Number of replicates
= 5.

WTP, USP and F-test show often similar power in the homoscedastic
case. ART test looks to perform well in case of lognormal and Laplace
distributions. ATS is performing worst in case of lognormal distribution,
showing a conservative behavior. Its power at factor e�ect=0 is below the
nominal α level, thus having an impact on the type I error. Furthermore,
heteroscedasticity has a clear impact on F-test's power. CSP and ATS tests
have in general lower power for Laplace and lognormal distribution. The most
challenging distribution for all the tests is the student's t distribution with
3 degrees of freedom (Figure 5.2). The power is quite low for all the tests,
with ATS test being slightly conservative. ART test is the best performing.
(See also supplementary material Figure A1, A2, A7, A8, A13, A14)

The power of the tests has been investigated along factor e�ect at three
di�erent levels of σ. An important aspect to consider is the ratio between
factor e�ect and σ. The higher the ratio, the higher will be the power of the
test. (See also supplementary material Figure A1, A2, A7, A8, A13, A14)
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Figure 5.2: Factor A: power of test at di�erent values of product of Factor
E�ect (x axis). Student's t distribution of errors with 3 d.o.f. Homoscedastic
case; Number of replicates = 5.

In the interaction analysis, tests show quite di�erent power. The power
is plotted against the interaction e�ect. Recall that interaction is given by
the product of factor e�ect. This fact explains the higher density of points
in the left part of the graphs relative to the right part (Figure 5.3). Each
point represents the mean of values observed for the same interaction e�ect.
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Figure 5.3: Interaction AB: power of test at di�erent values of product of
Factor E�ect (x axis). Lognormal distribution of errors. Heteroscedastic
case; Standard deviation = 0.25; Number of replicates = 5.

USP test shows the highest power in all the investigated cases. The
problem with USP test is that its power is far above the nominal α level at
interaction e�ect=0 (Figure 5.3), revealing a liberal behavior. There is, thus,
a tradeo� between the power and the type I error in the choice of the test.
All the tests show a monotonic increase of power when the interaction e�ect
increases. In general, ATS test is performing worse and ART is performing
better compared to other methods in detecting the interaction. The power of
WTP, CSP and F-test is similar for the interaction analysis, even though in
some cases certain tests perform better than others. (See also supplementary
material Figure A5, A6, A11, A12, A17, A18)

Now that all the possible combinations of factor e�ects have been con-
sidered, next we investigate any possible in�uence on the power of the tests
for the main e�ect of interest due to the level of the other factor e�ect. To
that end, the power has been plotted in 3D graphs (e.g. Figure 5.4) where
the surface represents the power curves of tests along factor A for each level
of factor B. The red dotted line represents the α level=0.05.
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(a) WTP. (b) CSP.

Figure 5.4: Factor A: power of WTP and ATS tests at di�erent values of
Factor E�ect at each level of factor B. Lognormal distribution of errors;
Homoscedastic case; Standard deviation = 0.5; Number of replicates = 5.

Power of all the investigated tests doesn't look to be a�ected by the level
of the not investigated factor e�ect. In fact, the surface of power of test on
main factor remains the same when the level of other factor e�ect increases.
An example is given in Figure 5.4 with the power surface of WTP test and
CSP test along factor A that keep the same level along factor B. (See also
supplementary material Figure A19-A26, A43-A50, A67-A74)

The same investigation has been performed for the interaction analysis
(Figure 5.5). The surface increases along the product of the factors and
reaches the highest value when e�ect of factor A and e�ect of factor B are
at their maximum for all the tests. Figure 5.5 con�rms the liberal behavior
of USP and the good performance of ART test for interaction.
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(a) USP. (b) ART.

Figure 5.5: Interaction AB: power of test at di�erent values of Factor E�ect.
Normal distribution of errors; Homoscedastic case; Standard deviation =
0.25; Number of replicates = 5.

Standard deviation

The variance of data has an impact on the power of the test. In the main fac-
tor analysis, power shows a monotonic decrease when the standard deviation
of errors increases. In the case of normal distribution, WTP, ART and UPS
tests show power comparable to the F-test, that is the highest achieved power
in both homoscedastic and heteroscedastic cases. CSP appears to perform
worse than others when σ increases. Non parametric tests have, in general,
superior performance compared to F-test and ATS test for heteroscedastic
lognormal distribution (Figure 5.6). (See also supplementary material Figure
B1, B2)
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Figure 5.6: Factor A: power of test at di�erent values of Standard Deviation
(x axis). Lognormal distribution of errors. Heteroscedastic case; Factor e�ect
= 1; Number of replicates = 5.

In the interaction analysis USP test shows the highest power in all cases
(e.g. Figure 5.7). All the tests show monotonic decrease in power when
σ increases. Power of WTP, CPS and ART is very similar in all cases.
Heteroscedasticity reduces the power of all the tests. (See also supplementary
material Figure B5, B6)
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Figure 5.7: Interaction AB: power of test at di�erent values of Standard
Deviation (x axis). Normal distribution of errors. Homoscedastic case; Factor
e�ect = 1; Number of replicates = 5.

Number of replicates

As one would expect, the number of replicates has a positive impact on the
power of the tests. There is a monotonic increase of power in all cases when
number of replicates increases.

In the main factor analysis, the powers of the tests are quite similar in the
normal and Laplace distributions (Figure 5.8), with ART performing best
in the latter case. F-test and ATS are the worst performing in the lognormal
heteroscedastic case (Figure 5.9). There is a clear di�erence between their
performances and the other tests. ART is again showing the steepest increase
in power. In the case of small standard deviation σ=0.5, the power of the
tests is in general high for more than 5 replicates except for student's t
distribution. (See also supplementary material Figure C1, C2, C7, C8)
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Figure 5.8: Factor A: power of test at di�erent values of Number of Replicates
(x axis). Laplace distribution of errors. Homoscedastic case; Factor e�ect =
1; Standard deviation = 1.



CHAPTER 5. UNIVARIATE NONPARAMETRIC METHODS 87

Figure 5.9: Factor A: power of test at di�erent values of Number of Replicates
(x axis). Lognormal distribution of errors. Heteroscedastic case; Factor e�ect
= 1; Standard deviation = 1.

In the interaction analysis, ART and USP have, in general, the highest
power whereas ATS often has the lowest power (Figure 5.10). (See supple-
mentary material Figure C5, C6, C11, C12)
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Figure 5.10: Interaction AB: power of test at di�erent values of Number of
Replicates (x axis). Lognormal distribution of errors. Heteroscedastic case;
Factor e�ect = 1; Standard deviation = 0.5.

5.7.2 Unbalanced two-by-two designs

A simulation study to assess the power of the various methods in case of
unbalanced design is performed both for homoscedastic and heteroscedastic
cases. Data are generated according to the same cell mean model of section
5.7 with the only di�erence that number of replicates nij is not anymore
constant among the factor level combinations. Because of the abundance
of possible combinations of number of replicates and variances in a two-
by-two factorial design, we focus the investigation to four particular settings
which represent a reasonable spectrum of parameter values also used in other
works [61] (Table 5.2). Settings 1 and 2 are unbalanced and homoscedastic.
In setting 3 increasing sample size is combined with increasing variances
(positive pairing), whereas in setting 4 increasing sample size is combined
with decreasing variances (negative pairing). Two distributions are used
to generate the error term ε, namely Laplace (symmetric) and lognormal
(skewed), and the power will be investigated along e�ect of factors (αi and
βj).

While ATS, WTP and ART tests can be performed without particular
constraints with same packages mentioned in section 5.7, for the CSP and
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Table 5.2: Simulations design for unbalanced case. In each simulation (row)
factor e�ect is varied, while σ = (σ11, σ12, σ21, σ22) and number of replicates
n = (n11, n12, n21, n22) are �xed.

Investigated dimensions
Simulation Factor e�ect σ Number of replicates
Setting 1 0 to 1 by 0.1 (0.5, 0.5, 0.5, 0.5) (5, 10, 20, 30)
Setting 2 0 to 1 by 0.1 (1, 1, 1, 1) (5, 10, 20, 30)
Setting 3 0 to 1 by 0.1 (0.5, 0.5, 1, 1) (5, 5, 10, 10)
Setting 4 0 to 1 by 0.1 (1, 1, 0.5, 0.5) (5, 5, 10, 10)

USP tests we use to the so called �xed weight constrained approach provided
by Hahn and Salmaso [26].

Synchronized permutations have some constraints and drawbacks in the
case of unbalanced design. Indeed, in each permutation the same number
of units are exchanged within each pair of the considered groups. This fact
implies that the combination of levels of factors with the smallest number
of observations limits the number of exchanges in the other combinations.
Furthermore, as the units in the same position are exchanged, some observa-
tions in the combinations with the larger sample size are never exchanged. In
order to extend the use of CSP and USP tests to unbalanced designs, a few
approaches have been proposed to address these issues by assigning di�erent
weights for each factor level combination when computing the test statistic.
A previous study [26] shows that the original weight approach proposed by
Basso et al. [3] does not control the nominal α level under the null hypoth-
esis. The same happens for the restricted weight approach a part from the
case in which n11 = n12 and n21 = n22. The �xed weight approach has been
speci�cally developed for the latter case in which n11 = n12 and n21 = n22

and when testing for main e�ect A [26]. Under the null hypothesis and the
aforementioned restrictions, this approach leads to a good adherence to the
nominal α level, which makes it suitable to be used for settings 3 and 4. This
approach cannot be used in setting 1 and 2, therefore a comparison of CSP
and USP tests with the other methods cannot be done.

In the main factor analysis in settings 1 and 2, ART and F-test perform
better than WTP and ATS, with the latter two having similar powers (Figure
5.11). Considering factor A, the two settings have an increasing number of
replicates in factor levels. That is, factor A level 1 has 5 and 10 replicates,
whereas level 2 has 20 and 30 replicates. If we consider factor B, the number
of replicates is "mixed". That is, level 1 has 5 and 20 replicates, and level
2 has 10 and 30 replicates. We observe that ART and F-test appear to be
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more sensitive to the structure of the design. Indeed, their capability to
detect the factor e�ect is greater for factor B than for factor A, whereas ATS
and WTP tests have almost the same power (Figure 5.11). Concerning ART
and F-test, the di�erent number of replicates in the factor level combinations
has an in�uence on the power of the tests for a main e�ect due to the level
of the other factor e�ect. In Figure 5.12 the surface representing the power
curves of ART tests as the e�ect of factor B varies at each level of factor A
bends down, showing a di�erent power of the test to detect the same e�ect
at di�erent levels of the not investigated factor. On the contrary, the curves
of the power of the test on factor A are parallel. In the interaction analysis in
setting 1 and 2, ART test is performing much better than the other methods.
WTP, ATS and F-test have similar powers.

In the main factor analysis in setting 3, ATS and WTP tests control the
nominal α level under the null hypothesis, but the others donot. Speci�cally,
USP and F-test show very conservative behaviors, but CSP and ART tests
are only slightly conservative. The ATS and WTP tests have consistently
the highest power, whereas ART test performs well with the Laplace distri-
bution of errors(Figure 5.13), but not with the lognormal distribution. In
the interaction analysis, USP and F-test show very conservative behaviors.
ATS and WTP tests have the highest powers which are comparable to the
ART test, with the latter being slightly conservative (Figure 5.13).

In setting 4, USP, CSP, F-test and ART tests donot control the nominal
α level neither in the main factor analysis nor in the interaction analysis.
More speci�cally, they are very liberal in both cases. The four tests show
the highest power but the problem is the trade o� between type I error and
power. WTP and ATS tests show lower power but they reveal a steady
control of the nominal α level, with WTP performing better both in the
main factor and in the interaction analysis (Figure 5.14).
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(a) Factor A. (b) Factor B.

Figure 5.11: Setting 1 unbalanced case: power of test at di�erent values of
Factor E�ect (x axis). Laplace distribution of errors.

(a) ART: Factor A. (b) ART: Factor B.

Figure 5.12: Setting 2 unbalanced case: power of ART test at di�erent values
of Factor E�ect at each level of non investigated factor. Laplace distribution
of errors.
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(a) Factor A. (b) Interaction.

Figure 5.13: Setting 3 unbalanced case: power of test at di�erent values of
Factor E�ect (x axis). Laplace distribution of errors.

(a) Factor A. (b) Interaction.

Figure 5.14: Setting 4 unbalanced case: power of test at di�erent values of
Factor E�ect (x axis). Laplace distribution of errors.

5.8 Application to an Industrial Experiment

A real data set from an industrial experiment in engineering management is
used to illustrate the application of the various analysis methods taking into
account the power of the test suggested by the objective of the experiment.

The production system of plastic thermoformed packaging is complex and
it is controlled by several factors [68]. In order to innovate the system, the
impact of two factors and of their interaction has to be assessed for values of
levels outside their usual range. One factor is the temperature of the process
(factor A) and the other factor is the pace of production line (factor B). The
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response variable is the pressure needed to break the packaging by a burst
test measure in bars. Historical data do not violate assumption of normality,
but they reveal heteroscedasticity based on the di�erent values of control
factors. Taking into account low and high levels in the usual range of the
two factors to estimate standard deviations, the scheme of heteroscedasticity
is σA1B1=1.5, σA1B2=5.5, σA2B1=5.5, σA2B2=1.5. Setting the desired level of
α=0.5 and the size of e�ect to be detected equal to 0.03 bar, a simulation
has been performed to understand how many replicates should be necessary
to achieve a power of the test Pw≥0.7 under the assumption of a linear
additive model as in equation (5.16) explaining the response. ART test
allows to achieve Pw≥0.7 for the main factor test with 9 replicates (Table
5.3). Impact of number of replications on interaction is less evident given the
remaining parameters. The power is greater than 0.7 with all the tests at 7
replicates and beyond (Table5.4). Number of replications has been �xed at
10 and the experiment was performed. Analysis of data collected con�rm the
same heteroscedasticity of historical data, but they violate the assumption
of normal distribution. Therefore, actual power of the tests is di�erent from
the expected power calculated by the simulation. In Table 5.5, p-values of
the six statistical tests performed on the observed data are displayed. All the
tests are rejecting the null hypothesis for the main factors and for interaction
at level of α=0.5 with the ART test giving the smallest p-values.

Table 5.3: Main factor: power of the test. Factor e�ect = 0.03, normal
distribution of errors, scheme of heteroscedasticity σA1B1=1.5, σA1B2=5.5,
σA2B1=5.5, σA2B2=1.5.

Tests
Number of replicates F test CSP USP WTP ATS ART
5 0.35 0.28 0.35 0.35 0.31 0.48
6 0.43 0.39 0.44 0.43 0.36 0.56
7 0.49 0.45 0.49 0.49 0.44 0.62
8 0.53 0.49 0.53 0.53 0.52 0.68
9 0.60 0.57 0.60 0.59 0.55 0.72
10 0.64 0.61 0.64 0.64 0.60 0.76

5.9 Conclusions

The simulation study allowed to assess the power of some selected nonpara-
metric methods by analyzing the same data set. Data have been generated
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Table 5.4: Interaction: power of the test. Factor e�ect = 0.03, normal
distribution of errors, scheme of heteroscedasticity σA1B1=1.5, σA1B2=5.5,
σA2B1=5.5, σA2B2=1.5.

Tests
Number of replicates F test CSP USP WTP ATS ART
5 0.65 0.69 0.76 0.65 0.58 0.63
6 0.74 0.79 0.83 0.74 0.69 0.71
7 0.81 0.86 0.88 0.81 0.77 0.77
8 0.86 0.90 0.91 0.86 0.84 0.82
9 0.91 0.94 0.95 0.91 0.88 0.86
10 0.92 0.95 0.95 0.92 0.91 0.89

Table 5.5: P-values of the tests on the experimental data.
Tests

Factor F test CSP USP WTP ATS ART
Factor A 0.003 0.001 0.001 0.001 0.004 < 0.001
Factor B < 0.001 < 0.001 0.001 < 0.001 < 0.001 < 0.001
Interaction AB 0.009 0.003 0.001 0.006 0.02 < 0.001

using a linear additive model for a two-way two-levels design with interac-
tion given by the product of factor level e�ects. Such model is common for
practitioners in industrial experimentation.

The study reveals that certain methods of analysis perform better than
others depending on the dataset and on the objective of the analysis. As a
consequence, there does not emerge a unique approach in the design phase of
the experiment, but various aspects have to be taken into account simulta-
neously as shown in the example provided in Section 5.8. The three dimen-
sions (factor e�ect, standard deviation, number of replicates) along which
the investigation has been conducted have impacts on the power of the tests.
Furthermore, the study allowed to bring out some interesting information.

Concerning the balanced case, ART test is an overall well performing
test both for the main factor and the interaction analysis. It has superior
power in almost all the settings, and it maintains the α level well. WTP test
is a good test as well both for main factor and interaction analysis. These
�ndings corroborate with previous studies ([25, 61]). ATS test's performance
is at an average level for main factor analysis, showing slightly lower power
in the heteroscedastic case and resulting conservative in some cases. In the
interaction analysis ATS is performing worse relative to the other tests. In
the main factor analysis, USP is performed well in most of the situations
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and its power is similar to that of WTP. In the interaction analysis, USP is
performed best compared to the other tests in all the cases, but it doesnot
maintain the nominal α level. The liberal behavior is a limitation of this test
because of the tradeo� between power and type I error. CSP doesnot reveal
any liberal behavior in the interaction analysis and its power is similar to
that of WTP. In agreement to results of Hahn et al. [25], in the main factor
analysis CSP has, in general, slightly lower power for Laplace and lognormal
distribution relative to the other tests. In the main factor analysis, there is
no in�uence on the power of the tests due to the other factor's level. The
results for CSP and USP are also in agreement with results of a previous
study ([3]).

In the unbalanced case, WTP and ATS tests are the only ones that appear
to be reliable tests in all the scenarios considered. Indeed, they control the α
level and maintain the power level when the number of replicates is switched
between the factor level combinations. CSP and USP tests can be used due to
the �xed weight approach only when n11 = n12 and n21 = n22, but they donot
control the α level, resulting in conservative decisions in the so-called positive
pairing heteroscedastic setting and liberal decision in the negative pairing
for the main factor analysis as well as the interaction analysis, unlike the
ART test. In the homoscedastic case, ART test performs better than WTP
and ATS, and its power varies when the number of replicates is switched
between the factor level combination. In the main factor analysis, ART test
reveals an in�uence on its power due to the level of the other factor in some
con�gurations.

The methods of analysis compared in this study were seen to be e�ective
and reliable depending on the situation at hand. Nevertheless there are
some issues that need to be further investigated or that could pose practical
problems. Warning messages have been obtained from some of the packages
for those cases in which all the observations in a factor level combination
have the same value. In such cases, WTP and ATS tests cannot be done
because of the way the test statistics are computed, whereas CSP, USP and
ART tests do not show such limitations. Furthermore, this study is limited
to the simulation designs described in sections 5.7. Investigating di�erent
designs could generate more information and guidance to practitioners. For
example, the case of repeated measures or larger designs like three-by-three
crossed factorial design are frequently encountered designs. Speci�cally, while
CSP and USP can be implemented in designs with a higher number of levels
in the balanced case [4], it is di�cult to deal with synchronized permutation
methods in unbalanced three-by-three design and it could be direction for
further research.



Chapter 6

Multivariate Nonparametric tests:

Two-way Designs for Industrial

Experiments

6.1 Introduction

Rationale of practitioners in industrial experimentation is often based on
factorial designs. A response variable that measures the phenomenon under
investigation is observed. Practitioners assess the impact on response vari-
able of factors they can control during the experiments according to di�erent
levels. Design of Experiment (DOE) is used in current research in di�erent
�elds of engineering, as for instance for machines' production process [44],
for industrial production practices [38, 79], for bio-fuel production [83], for
alternative raw materials experimentation [43], or for the use of Coordinate
Measuring Machines for quality control [72]. The two-way crossed facto-
rial design is a common design used in the exploratory phase in industrial
experiments. This design allows to investigate the impact on response vari-
able of each factor and of interaction between factors, thus allowing to assess
whether factors or interaction are signi�cant or not according to the assumed
model.

In many industrial applications (and applied research �elds) it is common
the need to compare multivariate population obtained in advanced factorial
designs. There are manufacturing processes where treatments or control
factors in production processes impact on several relevant variables simulta-
neously [68, 51, 15]. In these cases an overall test is useful to determine for
instance whether there is a signi�cant di�erence on �nal product or not. Ob-
served data are usually analized using the multivariate analysis of variance

96
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(MANOVA) methods. Unfortunately parametric methods rely on assump-
tions such as multivariate normality and covariance homogeneity, but these
prerequisites may be not realistic for several real problems.

How to overcome the violation of MANOVA assumptions has been investi-
gated and nonparametric methods for multivariate inferential tests have been
developed. One of the approaches is based on the generalization to the multi-
variate case [58, 12] of the univariate comparison between the group-wise dis-
tribution functions Fi and the reference distribution function H = 1

N

∑
i niFi

that is the pooled distribution [45, 46]. In these cases the null hypotheses are
formulated in terms of distribution functions. Other approaches are rank-
based as for instance in [28, 5, 6, 30, 29] but they are for large number of
factor levels or for large sample size.

I propose a novel nonparametric approach based on NonParametric Com-
bination (NPC) [62] applied to Synchronized Permutation (SP) tests [3] for
two-way crossed factorial design assuming a linear additive model. Indeed,
the linear additive model interpretation well adapts to the industrial pro-
duction environment because of the way control of production machineries is
implemented. This approach overcomes the shortcomings of MANOVA with
the only mild condition of the data set to be analyzed taking values on a
multi-dimensional distribution belonging to a nonparametric family of non-
degenerate probability distributions. It well works with even only two levels
per factor and a small sample size. The case of small sample size re�ects the
frequent needs of practitioners in the industrial environment where there are
constraints or limited resources for the experimental design. Furthermore it
allows to formulate test hypotheses in more familiar terms for practitioners
such as factor e�ect size. Indeed, I agree with Lakens [48] that "E�ect sizes
are the most important outcome of empirical studies. Most articles on e�ect
sizes highlight their importance to communicate the practical signi�cance of
results".

A simulation design with �xed factor e�ects δ and �xed variance σ of
data set distributions have been performed in order to evaluate the rejection
rate of the NPC applied to SP under alternative Hypothesis H1 in the range
of interest of signi�cance levels 0 ≤ α ≤ 0.1, and in order to compare it with
the classical MANOVA test.

A real case study is useful to highlight the bene�ts of the adoption of
the herein presented nonparametric approach in industrial experiments with
a small sample size and non-normal data distribution. A two-way two-level
design is used to understand whether two control factors and their interaction
were signi�cant or not in a project of innovation of the production system of
a thermoformed packaging.

Results presented in this chapter have been published [2].
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6.2 Model, Hypotheses and Statistics of Syn-

chronized Permutations

The linear additive model is a common model in the industrial environment.
It re�ects the logic adopted by practitioners in many cases, it's easy to un-
derstand and well adapts to the most common control models of machineries.
I assume the linear additive model of a balanced two-way factorial crossed
design:

Yijk = µ+αi+βj+(αβ)ij+εijk, i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , n,
(6.1)

where µ is the overall mean, αi is the e�ect of level i of factor A, βj is the
e�ect of level j of factor B, (αβ)ij is the e�ect of interaction between factor A
at level i and factor B at level j, I and J are the number of levels of factor A
and B respectively, and εijk is the error term. The number of replicates of the
balanced design is n and the mean of error term is E(εijk) = 0 for each factor
level combination. The total number of observations isN =

∑
i

∑
j n = I·J ·n

The side conditions are:∑
i

αi = 0;
∑
j

βj = 0;
∑
i

(αβ)ij = 0 ∀j;
∑
j

(αβ)ij = 0 ∀i. (6.2)

The null hypotheses of no-main e�ect of factor A, no-main e�ect of factor
B and no-interaction e�ect between factors A and B are:

H
(A)
0 : αi = 0 ∀i,

H
(B)
0 : βj = 0 ∀j and

H
(AB)
0 : (αβ)ij = 0 ∀i, j,

(6.3)

respectively. In vector notation, the data can be written as Y = (Yijk)
′

=
(Y111, . . . , YIJn)

′
. And the null hypotheses can be written in terms of contrasts

as:
H

(A)
0 : CAµ = 0,

H
(B)
0 : CBµ = 0 and

H
(AB)
0 : CABµ = 0,

(6.4)

where µ = (µ11, . . . , µIJ)
′
, µij = E(Yijk) = µ+ αi + βj + (αβ)ij and CM is a

contrast matrix for M ∈ {A,B,AB}
The synchronized permutation methods is herein illustrated. Synchro-

nized permutation is developed along two basic concepts. The �rst is that
permutations of observations between two levels of a factor can be made only
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holding the level of remaining factors in the model constant. For instance,
consider the case of a two-way design with factor level combinations A1B1,
A1B2, A2B1 and A2B2. To test the signi�cance of main e�ect A, observations
will be exchanged between groups A1B1 and A2B1, and between A1B2 and
A2B2. That is, the level of B is kept constant when performing the test on
factor A, in the former case level is 1, in the latter it is 2. The second basic
concept in synchronized permutation is exchanging the same number of units
within each pair of the considered groups [3].

According to Basso et al. [3] the test statistics for the main factor A in
the two-way design is:

TA =
∑
i<s

[∑
j

Tis|j

]2
, where

Tis|j =
∑
k

Yijk −
∑
k

Ysjk, i, s ∈ {1, . . . , I}; j ∈ {1, . . . , J}
(6.5)

The outer sum is made over all possible pairs of levels 1 ≤ i ≤ s ≤ I and the
inner sum is squared to avoid the cancellation of any of the contributions of
e�ects of factor A.

Similarly for factor B:

TB =
∑
j<h

[∑
i

Tjh|i

]2
, where

Tjh|i =
∑
k

Yijk −
∑
k

Yihk, i ∈ {1, . . . , I}; j, h ∈ {1, . . . , J}
(6.6)

The statistics for interaction between factor A and factor B is given by the
summation of two contributions along the two factors:

TAB =a TAB +b TAB, where
aTAB =

∑
i<s

∑
j<h

[
Tis|j − Tis|h

]2
, and

bTAB =
∑
j<h

∑
i<s

[
Tjh|i − Tjh|s

]2
, i, s ∈ {1, . . . , I}; j, h ∈ {1, . . . , J}

(6.7)

The statistics for main factors and interaction are uncorrelated.
Then p-value is calculated as the proportion of permutations for which

test statistics of permuted data set are greater or equal to the test statistic
of the original data set.

There are two ways to obtain a synchronized permutation, namely Con-
strained Synchronized Permutation (CSP) [69] and Unconstrained Synchro-
nized Permutation (USP) [69].
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Constrained Synchronized Permutation (CSP)

The CSP is computationally less intensive compared to USP. In the CSP the
same permutation is applied in all couples of groups given the initial order of
observations. For instance, in the two way design if a permutation consists in
exchanging the second observation of group AiBj with the �rst observation
of group AsBj when testing main e�ect A, then same permutation has to be
applied to groups AiBh and AsBh. It is recommended to randomize observa-
tions within each group at the beginning before performing the permutation
test.

As a result of the application of the same permutation between all possible
pairs of groups, the number of possible ways to exchange units depends only
on number of replicates n in the balanced design. The total number of
possible permutations of CSPs is:

Ccsp =

(
2n

n

)
(6.8)

Thus, according to the way the p-value is calculated, the minimum achievable
signi�cance error is αmin = 2× (Ccsp)

−1. If n is too small, CSP could give a
minimum achieved signi�cance level higher than the desired type I error.

Unconstrained Synchronized Permutation (USP)

The USP is computationally more intensive compared to CSP. USP, un-
like CSP, can apply di�erent permutations in the various pairs of groups.
However, the basic principle of synchronized permutations of exchanging the
same number of observations has to be respected. The algorithm provided by
Basso et al. [3] guarantees the values of the test statistic to be equally likely.
This procedure allows to overcome those cases in which the test statistic is
not uniformly distributed.

The total number of possible permutations of USPs depends on a larger
number of parameters of dataset respect to CSP. The formula is more com-
plex and there are two cases:

Co
USP =

(n−1)/2∑
ν=0

(
n

ν

)J×I(I−1)
when n is odd,

Ce
USP =

n/2−1∑
ν=0

(
n

ν

)J×I(I−1)
+

[
1

2

(
n

n/2

)2J
]I(I−1)/2

when n is even,

(6.9)

where ν is the number of units exchanged between two groups. The car-
dinality of the permuted statistics rapidly increases with n, I and J . The
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minimum signi�cance level that can be achieved is proportional to the inverse
of the cardinality in Equation 6.9. Thus USP is not expected to su�er of a
minimum signi�cance level higher than the desired type I error. However, as
USP is computationally more intensive compared to CSP, it is recommended
in the case of small number of replicates.

6.3 Model, Hypotheses and Statistics of Non-

Parametric Combination (NPC)

The multivariate nonparametric tests are the core of this study. In previ-
ous section and in chapter 5, I illustrate the Synchronized Permutation tests
whic are a useful instrument in case of violation of assumptions of univari-
ate parametric tests such as F-test for ANOVA. In this section I introduce
the NonParametric Combination which is a natural extension of permuta-
tion testing to a variety of multivariate problems. Permutation tests are, in
general, distribution-free and non-parametric [23], and have good properties
such as exactness, unbiasedness and consistency [62, 34].

To illustrate the NPC we assume the same linear additive model and
use the same notation as in Section 6.2. The notation has to be extended
to the multivariate case introducing P observed variables that can be in-
dependent or dependent. Because of the objective of this study, we fo-
cus on continuous variables. Let us denote a P -dimensional data set by
Y = {Y i,j,k, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , n} = {Yi,j,k,p, i =
1, . . . , I, j = 1, . . . , J, k = 1, . . . , n, p = 1, . . . , P}. According to the extended
notation, the multivariate linear additive model of a balanced two-way fac-
torial crossed design is:

Y i,j,k = µ+αi +βj + (αβ)ij + εijk, i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , n,
(6.10)

where, in the multivariate case, µ is the vector of overall means, αi is the
vector of e�ects of level i of factor A, βj is the vector of e�ects of level j of
factor B, (αβ)ij is the vector of e�ects of interaction between factor A at
level i and factor B at level j, I and J are the number of levels of factor A
and B respectively, and εijk is the vector of error terms. The vector of the
means of error terms is E(εijk) = 0 for each factor level combination, and Σ
is the variance/covariance matrix of the P observed variables.

Adapted from Pesarin and Salmaso [62] to the design of interest in this
study, main assumptions regarding the data structure, hypotheses being
tested in NPC contexts, and set of partial tests are:
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� (i) The response Y takes its values on a P -dimensional distribution,
Di,j ∈ D, i = 1, . . . , I, j = 1, . . . , J , belonging to a (possibly not spec-
i�ed) nonparametric family D of non-degenerate probability distribu-
tions.

� (ii) The null hypothesis refers to equality of e�ect vectors of the P
variables in the I groups for factor A, the J groups for factor B and
the I · J groups for interaction between factor A and factor B:

H
(A)
0 : αi = 0 ∀i,

H
(B)
0 : βj = 0 ∀j and

H
(AB)
0 : (αβ)ij = 0 ∀i, j,

(6.11)

The null hypotheses H(A)
0 and H(B)

0 imply that the P -dimensional data
vectors in Y are exchangeable with respect to the I and J groups
respectively.

Considering factor A, H(A)
0 is supposed to be properly and equivalently

broken down into P sub-hypotheses H(A)
0p , p = 1, . . . , P , each appro-

priate for a partial (univariate) aspect of interest. Therefore, H(A)
0

(multivariate) is true if all the H(A)
0p are jointly true; and so it may be

written as:

H
(A)
0 :

{
P⋂
p=1

H
(A)
0p

}
(6.12)

H
(A)
0 is also called global or overall null hypothesis for factor A, and

H
(A)
0p , p = 1, . . . , P are called the partial null hypotheses. SimilarlyH(B)

0

and H(AB)
0 are supposed to be properly and equivalently broken down

into P sub-hypotheses, giving:

H
(B)
0 :

{
P⋂
p=1

H
(B)
0p

}
,

H
(AB)
0 :

{
P⋂
p=1

H
(AB)
0p

} (6.13)

� (iii) Considering factor A, the alternative hypothesis states that at
least one of the partial null hypotheses H(A)

0p is not true. Hence, the
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alternative may be represented by the union of P partial alternatives
hypotheses,

H
(A)
1 :

{
P⋃
p=1

H
(A)
1p

}
, (6.14)

stating that H(A)
1 is true when at least one partial alternative hypothe-

ses H(A)
1p is true. In this context, H(A)

1 is called the global or overall
alternative hypothesis. Based on the same rationale, we have:

H
(B)
1 :

{
P⋃
p=1

H
(B)
1p

}
,

H
(AB)
1 :

{
P⋃
p=1

H
(AB)
1p

} (6.15)

� (iv) T = T (Y ) represents a P -dimensional vector of test statistics,
P ≥ 2, in which the p-th component Tp = Tp(Y ), p = 1, . . . , P , rep-
resents the non-degenerate p-th partial univariate test appropriate for
testing sub-hypothesis H0p against H1p. In the NPC context, with-
out loss of generality, all partial tests are assumed to be marginally
unbiased, consistent and signi�cant for large values.

The above set of mild conditions should be jointly satis�ed. Concern-
ing the partial univariate test, we note that Synchronized Permutation test
respects requirements of point (iv) (for more details see [3]). Without loss
of generality, from here on we intend the partial univariate test and related
statistics to be the Synchronized Permutation test and its statistics.

When developing a multivariate hypothesis testing procedure, a global
answer including several response variables is required, and the main point
is how to combine the information related to the P variables into one global
test. The key idea in the NPC to test the global null hypoteses H(A)

0 , H(B)
0

and H
(AB)
0 is to combine through an appropriate combining function the

partial (univariate) tests which are focused on the p-th component variable.
Basically, NPC approach corresponds to a method of analysis made up of two
phases. In the �rst phase the univariate permutation tests are performed.
In the second phase the p-values obtained in the �rst phase are combined in
one second-order global (multivariate) test:

T ′′ = φ (λ1, . . . , λP ) (6.16)
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where T ′′ is the multivariate statistic, φ is the combining function and λp,
p = 1, . . . , P is the p-value of the p-th partial univariate test. The test
is performed by a continuous, non-increasing and univariate real function
φ : (0, 1)P → R1.

6.3.1 Combining Functions

Combining functions are a key of the success of this multivariate nonpara-
metric tests. Various combining functions can be suitable for this purpose,
but according to Pesarin and Salmaso [62], in order to be suitable for test
combination all combining functions φ must satisfy the following properties
(see also [63, 65, 64] and [24]):

� (i) The function φmust be non-increasing in each argument: φ (. . . , λp, . . . ) ≥
φ (. . . , λ′p, . . . ) if λp < λ′p, p ∈ {1, . . . , P}.

� (ii) The function φ must attain its supremum value φ̄, possibly not
�nite, even when only one argument attains zero: φ (. . . , λp, . . . )→ φ̄
if λp → 0, p ∈ 1, . . . , P .

� (iii) ∀α > 0, the critical value T ′′α of every φ is assumed to be �nite and
strictly smaller than φ̄ : T ′′α < φ̄.

In the simulation study we present in Sections 6.5 and 6.5.1, we selected
and compared performances of three combining functions that satisfy the
required properties, namely:

� (i) The Fisher omnibus combining function is based on the statistic:

T ′′F = −2 ·
∑

p
log(λp) (6.17)

If the P partial test statistics are independent and continuous, then in
the null hypothesis T ′′F follows a central χ2 distribution with 2P degrees
of freedom.

� (ii) The Liptak combining function is based on the statistic:

T ′′L =
∑

p
Φ−1(1− λp) (6.18)

where Φ is the standard normal cumulative distribution function (CDF).
If the P partial tests are independent and continuous, then in the null
hypothesis T ′′L is normally distributed with mean 0 and variance P (see
[50]).
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� (iii) The Tippett combining function is based on the statistic:

T ′′T = max1≤p≤P (1− λp) (6.19)

signi�cant for large values. Its null distribution, if the P tests are
independent and continuous, behaves according to the largest of P
random values from the uniform distribution in the open interval (0, 1).

6.4 A Two Phase Algorithm to Combine NPC

and SP

I herein illustrate the two phases algorithm to perform the NPC test in the
framework of the Conditional Monte Carlo Procedure (CMCP). At this stage,
once de�ned data set structure, null and alternative hypotheses, univariate
test statistic, combining functions and various assumptions and properties
required in the NPC context, the two phase algorithm allows to perform the
inferential test. I resort to CMCP because in most real problems computa-
tional di�culties arise in calculating the conditional permutation space when
the sample size is large enough, therefore it could be not possible to calcu-
late the exact p-value λp of the observed statistic T obsp in a reasonable amount
of time. It is worth noting that in the multivariate data set CMCP apply
permutations of individual data vectors, so that all underlying dependence
relations which are present in the component variables are preserved.

For the sake of clearness and simplicity, the algorithm is presented refer-
ring to a general test of hypothesis. The reader should take in mind that it
has to be repeated three times in a two-way factorial design to test the three
global null hypotheses H(A)

0 , H(B)
0 and H(AB)

0 .
The �rst phase of the algorithm to perform NPC test is devoted to the

estimation of P -variate distribution of T and the p-values of the univariate
tests:

� (i) Calculate the P -dimensional vector of the observed values of test
statistics T : T obs = T (Y ) =

[
T obsp = Tp(Y ), p = 1, . . . , P

]
.

� (ii) Consider a random permutation Y ∗ of Y and calculate the vector
of statistics T ∗ = T (Y ∗) =

[
T ∗p = Tp(Y

∗), p = 1, . . . , P
]
.

� (iii) Repeat the previous step C times independently. The set of CMC
results {T ∗

c , c = 1, . . . , C} is thus a random sampling from the permu-
tation P -variate distribution of vector of test statistics T .
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� (iv) According to Synchronized Permutation test, the p-values of the
observed values are calculated in each univariate test as the propor-
tion of permutations for which test statistics of permuted data set are
greater or equal to the test statistic of the original data set:

λ̂obsp =
C∑
c=1

I(T ∗cp ≥ T obsp )/C, p = 1, . . . , P, (6.20)

where I(·) is the indicator function. The result is {λ̂obs1 , . . . , λ̂obsP }.

� (v) The p-values of each of the C elements of the set of permutations
carried out at point (iii) are calculated in each univariate test in similar
way as point (iv). The result is {λ̂∗c1, . . . , λ̂∗cP}, c = 1, . . . , C.

The second phase of the algorithm to perform NPC test is devoted to the
combination of results of the �rst phase to compute a second-order global
(multivariate) test for the overall null hypothesis:

� (i) The combined observed value of the second-order test is calculated
by applying a combining function to the p-values of the observed values:

T ′′obs = φ(λ̂obs1 , . . . , λ̂obsP ). (6.21)

� (ii) The c-th combined value of the P -dimensional vector of p-values of
the c-th element of the set of permutations is then calculated by:

T ′′∗c = φ(λ̂∗c1, . . . , λ̂
∗
cP ), c = 1, . . . , C. (6.22)

� (iii) Hence, the p-value of the combined test T ′′ is estimated as

λ̂′′φ =
C∑
c=1

I(T ′′∗c ≥ T ′′obs)/C. (6.23)

� (iv) If λ̂′′φ ≤ α, the global null hypothesis H0 is rejected at signi�cance
level α.
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6.5 The Simulations Campaign

Simulation studies are in general the most common way to evaluate the
respect of the α level of inferential tests under the null hypothesis H0 and the
rejection rate under the alternative hypothesisH1. A Monte Carlo simulation
study is performed to evaluate the performances of the application of NPC
methods to the SP tests described in Sections 6.3 and 6.2 respectively.

Data set for simulation are generated according to the cell mean model of
a multivariate two-way balanced crossed factorial design (factor A and factor
B). Consistently with notation in Section 6.3:

Y i,j,k = µ+αi + βj + (αβ)ij + εijk, (6.24)

i = 1, . . . , I, j = 1, . . . , J , k = 1, . . . , n, p = 1, . . . , P , where I and J are
the number of levels of factor A and B respectively, n is the number of
replicates and P is the number of response variables. As the factorial design
is balanced, number of replicates refers to each factor level combination. In
this setup, the vector of overall means µ = 0 and the interaction is given by
the product of e�ect of the two factors.

Four distributions are used to generate the error term ε. Three are sym-
metric: normal, Laplace and student's t with 2 degrees of freedom (d.o.f.).
One is skewed: lognormal. We consider only homoscedastic case.

Some parameters in the model are �xed:

� The factor e�ect is δ = 1 for both factors. According to the adopted
simulation design, the maximum di�erence between the means of two
levels due to a single factor e�ect is δ. In the case of two levels of factor
A we have α1 = 0.5 and α2 = −0.5, while in the case of three levels we
set α1 = 0.5, α2 = 0 and α3 = −0.5. The same for factor B: β1 = 0.5,
β2 = −0.5, and β1 = 0.5, β2 = 0, β3 = −0.5 in the case of two and
three levels respectively.

� The variance of distributions is �xed as well: σ2 = 1

Some other parameters in the model are varied:

� The number of levels of factors: I, J = 2, 3. We consider two possi-
ble settings: (I, J) ∈ {(2, 2), (3, 3)}, so the two factors have the same
number of levels in both settings.

� The number of response variables: P = 2,4,8, where the number of
active variables (under the alternative hypotesis) is 2 when P=2, is 2
when P=4 and is 4 when P=8.
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� The dependence and independence among response variables. In case
of independence, the variance/covariance matrix is the identity matrix
IP where σrc = 0, ∀r, c = 1, . . . , P , r 6= c. In case of dependence, the
variance/covariance matrix is ΣP where σrc = 0.5, ∀r, c = 1, . . . , P ,
r 6= c.

� The number of replicates: n = 3, 5

It is well known that the number of replicates a�ects positively the power
of the tests as it increases. Studying the performance in case of low num-
ber of replicates re�ects the frequent needs of practitioners in the industrial
environment where there are constraints or limited resources for the experi-
mental design. The SP tests (CSP, USP) combined with the three combining
functions (Fisher, Liptak and Tippet) of NPC methods will be investigated
in the 24 settings de�ned as combination of the varying parameters, and will
be compared with the MANOVA test along the four distribution functions
(normal, Laplace, lognormal and student's t). Furthermore, some simulations
with 100 and 50 response variables (50 and 25 active variables respectively)
are run with covariance = 0.5, number of levels = 2 and number of replicates
= 5, to investigate the behavior of NPC applied to Synchronized Permutation
tests with an high number of response variables.

All simulations are performed in R (version 3.4.0; R Development Core
Team (2017)). The number of simulations is nsim = 10000, and the number
of permutations for CSP and USP is nperm = 2000.

6.5.1 Results

Graphical representation of results allows the evaluation of performances of
the tests and their comparison in a clear and e�ective way. In this section
main results of the simulation study are presented. The graphs have been
obtained plotting the rejection rate of the test (y axis) versus the signi�cance
level (x axis). The objective is to compare the performance of the NPC
combining functions applied to the permutation tests in the range of interest
of signi�cance level 0 ≤ α ≤ 0.1. Because of the simmetry of the simulation
design, we have same results for factor A and factor B.

In Figure 6.1 it is clear that in case of non normal distribution of errors,
the MANOVA test does not respect the α level under the null hypothesis
unlike the NPC tests. The curves can be thought as the cumulative distribu-
tion functions (y axis) of the related p-values (x axis). There is a discrepancy
between the MANOVA curve and the line of no-discrimination when H(A)

0 is
true, while in general NPC tests' curves are very close to the hypothetical
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(a) Normal distribution of errors. (b) Laplace distribution of errors.

(c) Lognormal distribution of errors. (d) T (2 d.o.f) distribution of errors.

Figure 6.1: Behaviour of tests under null hypothesis. Rejection rate at dif-
ferent values of signi�cance level α (x axis). NPC function = Fisher; factor
A; number of responses = 4; number of levels = 2; covariance = 0; number
of replicates = 5.

continuous uniform distribution with every combining function for the main
factor (factor A).

The respect of the α level under the null hypothesis in the analysis of
interaction e�ect is more challenging for all the considered tests. Under non
normality MANOVA shows a clear departure from no-discrimination line.
The multivariate combination of USP test reveals to be unreliable as well.
The most performing test for the interaction e�ect in the model assumed is
the Liptak combination of CSP test (Figure 6.2).

In Section 6.2 the issue of the minimum achievable signi�cance level re-
lated to the cardinality of the univariate permutation tests is shown both for
CSP and USP. The curves of NPC of Synchronized Permutations re�ect the
same issue with an initial plateau with rejection rate = 0. A clear example
is given by the case of CSP and a data set with (I, J) = (2, 2) levels for the
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(a) Lognormal distribution of errors. (b) T (2 d.o.f) distribution of errors.

Figure 6.2: Behaviour of tests under null hypothesis. Rejection rate at di�er-
ent values of signi�cance level α (x axis). NPC function = Liptak; interaction
AB; number of responses = 4; number of levels = 2; covariance = 0; number
of replicates = 5.

factors A and B respectively and n = 3 replicates. The cardinality of the
univariate test is Ccsp =

(
2n
n

)
=
(
6
3

)
= 20 and the univariate minimum achiev-

able signi�cance error is αmin = 2× (Ccsp)
−1 = 0.1. The set of exact p-values

that can result under such conditions is a set of 10 values at step of 0.1:
Sp−values = {0.1, . . . , 1} for each univariate test. The application of a com-
bining function gives a set of 10 values for the statistic T ′′ used to compute
the p-value of the second-order test λ̂′′φ. The cumulative distribution function
of the p-values is shown in Figure 6.3 (a) where we can recognize 10 steps.
Recall that we are using a CMC procedure with a number of permutations
large enough so that the length of the steps is quite regular thanks to the
fact that the likelihood of the values of the statistic T ′′ is the same. A zoom
in Figure 6.3 (b) shows clearly the initial plateau with rejection rate = 0.
The NPC tests are a�ected by the minimum achievable signi�cance level of
the permutation test they are applied to. All the graphs in this section show
a small initial plateau. This fact reveals to be a shortcoming only in the case
of CSP and 3 replicates considering the usual signi�cance levels α = 0.01
and α = 0.05.

The capability of NPC applied to SP tests to detect the e�ect of the
main factor under H1 in the assumed model is in general good. Simulation
results show that NPC applied to USP and CSP gives high values of power
(rejection rate) both with independent and dependent response variables,
and both with low number and high number of response variables compared
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(a) Rejection rate ∈(0,1), Signif.
level ∈(0,1).

(b) Zoom of graph in (a).

Figure 6.3: E�ect of cardinality of Synchronized Permutations on minimum
signi�cance level of NPC. Rejection rate at di�erent values of signi�cance
level α (x axis). NPC function = Fisher; factor A; number of responses = 4;
distribution of errors = T (2 d.o.f) ; number of levels = 2; covariance = 0.5;
number of replicates = 3.

to MANOVA (Figures 6.4, 6.5). In general NPC applied to USP performs
better with all distribution of errors, while NPC of CSP and MANOVA have
in some cases similar performances with Laplace and student's t distribution
of errors. NPC tests show a better performance compared to MANOVA even
in case of normal distribution of errors with the power that can be even more
than double at α = 0.05 signi�cance level (Figure 6.4).

In the interaction analysis, the observed rejection rate under H1 is lower
than in the main factor analysis (Figure 6.6). This result is consistent with
the model used to generate data set for simulation study where interaction
is given by the product of the e�ects of the factors, and with the values
of the factor level e�ects. In general, the NPC of CSP performs better
than MANOVA and USP, both with independent and dependent response
variables, and both with low number and high number of response variables.
The NPC of USP shows the lower power. In some cases with two levels of
factor MANOVA and NPC applied to CSP have similar rejection rate, with
MANOVA performing better with Laplace distribution of errors.

The increase of number of levels of factors A and B from (I, J) = (2, 2)
to (I, J) = (3, 3) has a positive e�ect on the rejection rate under H1 (Figure
6.7) even if the maximum δ = 1 between factors is constant.

The three combining functions Fisher, Liptak and Tippet show in general



CHAPTER 6. MULTIVARIATE NONPARAMETRIC METHODS 112

(a) Normal distribution of errors. (b) Laplace distribution of errors.

(c) Lognormal distribution of errors. (d) T (2 d.o.f) distribution of errors.

Figure 6.4: Comparison of Non-Parametric methods and MANOVA. Rejec-
tion rate at di�erent values of signi�cance level α (x axis). NPC function =
Fisher; factor A; number of responses = 8; number of levels = 3; covariance
= 0; number of replicates = 5.
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(a) Normal distribution of errors. (b) Laplace distribution of errors.

(c) Lognormal distribution of errors. (d) T (2 d.o.f) distribution of errors.

Figure 6.5: Comparison of Non-Parametric methods and MANOVA. Rejec-
tion rate at di�erent values of signi�cance level α (x axis). NPC function =
Fisher; factor A; number of responses = 2; number of levels = 3; covariance
= 0.5; number of replicates = 5.
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(a) Normal distribution of errors. (b) Laplace distribution of errors.

(c) Lognormal distribution of errors. (d) T (2 d.o.f) distribution of errors.

Figure 6.6: Comparison of Non-Parametric methods and MANOVA. Rejec-
tion rate at di�erent values of signi�cance level α (x axis). NPC function
= Liptak; interaction AB; number of responses = 4; number of levels = 3;
covariance = 0.5; number of replicates = 5.
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Figure 6.7: Performance at di�erent number of levels, 2 and 3. Rejection
rate at di�erent values of signi�cance level α (x axis). NPC function =
Fisher; factor A; distribution of errors = T (2 d.o.f); number of responses =
4; covariance = 0.5; number of replicates = 5.

good performances. Nevertheless, Fisher and Tippet functions give higher
rejection rate compared to Liptak, with Tippet function's curve showing
small steps (Figure 6.8).

An increase in rejection rate can be observed when the number of re-
sponse variables increases with �xed number of observed units, meaning an
higher power of the test in detecting a factor e�ect under H1 (Figure 6.9,
6.10). This phenomenon is known as �nite sample consistency and refers to
a peculiar property of multivariate combination-based inferences: the power
of NPC tests for any added variable monotonically increases if the variable
makes larger noncentrality parameter of the underlying population distribu-
tion [62, 66]. The positive e�ect on the power of the test that can be obtained
adding response variables can be strategically exploited considering that in
many real problems it could be easier to collect more information on a single
experimental unit than adding a new unit to the experimental design [16].
The e�ect of the increase of response variables while keeping constant the
number of observed units couldn't be investigated for MANOVA test because
of the problem of the loss of degrees of freedom that does not allow to ap-
ply MANOVA test when the number of response variables is larger than the
sample size.
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(a) Constrained Synchronized Per-
mutation.

(b) Unconstrained Synchronized
Permutation.

Figure 6.8: Comparison of NPC functions. Rejection rate at di�erent values
of signi�cance level α (x axis). Factor A; distribution of errors = Laplace;
number of responses = 8; number of levels = 3; covariance = 0.5; number of
replicates = 5.

(a) Laplace distribution of errors. (b) Lognormal distribution of errors.

Figure 6.9: E�ect of increasing number of responses with CSP. Rejection rate
at di�erent values of signi�cance level α (x axis). NPC function = Fisher,
factor A; number of levels = 2; covariance = 0.5; number of replicates = 5.
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(a) Laplace distribution of errors. (b) Lognormal distribution of errors.

Figure 6.10: E�ect of increasing number of responses with USP. Rejection
rate at di�erent values of signi�cance level α (x axis). NPC function = Fisher,
factor A; number of levels = 2; covariance = 0.5; number of replicates = 5.

6.6 Application to Innovation of a Production

Line

A real case study is useful to highlight the bene�ts of the adoption of the
herein presented nonparametric approach in industrial experiments with a
small sample size and non-normal data distribution. An industrial experi-
ment according to a two-way two-levels design in the engineering �eld pro-
vides an example of the analysis performed using NPC combined with Syn-
chronized Permutations on a dataset with two responses.

The production system of plastic thermoformed packaging is complex,
and it is controlled by several factors [68]. In order to innovate the system,
the impact of two factors and of their interaction has to be assessed for
values of levels outside their usual range. One factor is the temperature of
the process (factor A) and the other factor is the pace of production line
(factor B). The packaging is composed by two separate and di�erent-in-
shape chambers. The evaluation of the strength of the packaging is done
observing the pressure needed to break the packaging by a burst test [bar].
Each chamber is tested separately, so there are two response variables. Five
replicates for each factor level combination and for each response variable
have been tested. Data collected violate assumption of normality (Table 6.1),
and they reveal heteroscedasticity based on the di�erent values of control
factors (Table 6.2).

MANOVA test is not reliable for the analysis of such data set. The NPC
combined with CSP and USP overcome the violation of Manova assump-
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Table 6.1: Multivariate normality tests

Shapiro-Wilk Henze-Zirkler Royston

Test statistic 0.908 1.374 11.626
p-value 0.058 0.001 0.003

Table 6.2: Box's M-test for Homogeneity of Covariance Matrices

Chi-Sq (approx.)

Test statistic 24.576
DF 9

p-value 0.003

tions. The results of the test are in Table 6.3 and 6.4. Note that interaction
e�ect has been analized only with NPC applied to CSP because USP doesn't
respect the α level under the null hypothesis. According to simulation study
results, main factor e�ect should preferably be assessed using NPC applied
to USP. The null hypothesis is rejected at a signi�cance level α = 0.05.
Both the factors and their interaction have a signi�cant impact on the �nal
product. A further investigation allowed to �nd the setting for the optimal
strength of the packaging.

6.7 Conclusions

The novel nonparametric approach in which I suggest the application of
NonParametric Combination to Synchronized Permutation to analyze a mul-
tivariate two-way factorial design reveals to be a good instrument for infer-
ential statistics when assumptions of MANOVA are violated. Simulation

Table 6.3: Constrained Synchronized Permutation (CSP): p-values of the
NPC tests

Fisher Liptak Tippet
Temperature 2.60e-02 3.50e-02 2.70e-02
Cycles per minute 1.50e-02 3.30e-02 7.00e-03
Interaction 7.00e-03 7.00e-03 7.00e-03
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Table 6.4: Unconstrained Synchronized Permutation (USP): p-values of the
NPC tests

Fisher Liptak Tippet
Temperature 6.00e-03 1.65e-02 4.00e-03
Cycles per minute 1.50e-03 1.50e-03 1.50e-03

results show that NPC applied to USP and CSP gives high values of power
(rejection rate) under alternative hypothesis H1 both with independent and
dependent response variables, and both with low number and high number of
response variables compared to MANOVA. In general NPC applied to USP
performs better for the main factor analysis with all distribution of errors
compared to NPC of CSP and MANOVA. Its power varies under the condi-
tions it has been tested in the simulation study, and it has been observed to
be higher than 75% at a signi�cance level α = 0.05 in many cases. For the
interaction analysis we recommend the adoption of NPC of CSP with the
Liptak combining function because of the higher adherence of the test to the
α nominal level. The Fisher combining function, also referred to as omnibus,
is in general preferable to the Tippet and the Liptak ones in the main factor
analysis.

A great advantage given by the adoption of these tests is that they well
perform with small sample size. This re�ects the frequent needs of practi-
tioners in the industrial environment where there are constraints or limited
resources for the experimental design. In case of n = 3 replicates we rec-
ommend the use of NPC of USP for main factor analysis because of the
shortcomings of the minimum achievable signi�cance level related to the car-
dinality of the univariate CSP test. The increase of sample size has in general
an evident positive e�ect on the power of NPC of SP tests. Futhermore the
power of the test is improved by the increase of number of factor levels with
the the factor e�ect �xed.

Last, there is an important property of NPC of SP tests that can be
exploited to increase their power: the �nite sample consistency. Indeed,
an increase in rejection rate can be observed under alternative hypothesis
H1 when the number of response variables increases with �xed number of
observed units. This could lead to a strategical bene�t considering that in
many real problems it could be easier to collect more information on a single
experimental unit than adding a new unit to the experimental design.



Chapter 7

Discussion and Conclusions

The research conducted as PhD student and results presented in previous
chapters of this dissertation let me be on the same side of those scholars
that in recent scienti�c literature stand in general in favour of the adoption
of Design of Experiment for innovation, and in particular in favour of the
adoption of DOE for production process innovation. Each step of the research
was conducted with the aim of answering to the research questions that
emerged from the systematic literature review. Nevertheless, a �l rouge ties
together the case study by means of which I answered to the �rst and second
research questions and the simulations studies by means of which I faced the
third research question. The �l rouge consists in the challenges that I had
to face in the analysis of the data set of the case study. This is typical when
a research is conducted. You move on adapting step by step to the results
and discoveries that you make, and new scenarios and opportunities for the
research show up.

Main results and conclusions of the research are herein summarized fol-
lowing the same structure of the dissertation.

An experimental strategy on innovation of thermoforming production pro-
cess has been developed. Design of Experiment (DOE) techniques were used
in designing and analyzing all the phases of the strategy. DOE enhanced
innovation capability allowing reduction of systematic errors and distortions,
full exploration of factorial space, and reduction of number of tests. The
experimental strategy allows selection of material and correlation of control
factors levels to packaging performance for each tested material. Traditional
approach to production control in thermoforming process was challenged.
DoE allowed to identify and overcome the mismatch between control factors
in laboratory and in production line.

The qualitative research performed during the adoption of DOE for the
development of a new packaging production process allowed to highlight the

120
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impact of DOE on innovation process management in the speci�c case ana-
lyzed. The introduction of DOE brought a new perspective on the innovation
process. The new perspective was achieved even by asking fundamental ques-
tions and challenging basic assumptions. But, the most important thing was
that it was a common perspective among the members of the team. The
vision of the process became broad and there were a clear interpretation
of correlation between test results and control factors. The latter was not
possible before the adoption of DOE. The common goal and the common
understanding of the objective of the experimentation lead people to work
as one team. The barriers between the teams of experimenters were removed
thanks to the end to end involvement. DOE became a common language. It
facilitated decision making by the team avoiding con�icts due to subjective
opinions. The way results of analysis are shown enhances communication.
The quality and e�ectiveness of information were increased. This creates a
fertile �eld to knowledge building, by means even of the improved system of
coding experiments and recording results. The learnings could be in some
way generalized beyond the speci�c case along �ve dimensions that have a
more general value in the managerial �eld. Namely: decision making, inte-
gration, communication, time and cost, and knowledge.

There is anyway one risk that I perceived. The risk is that someone
performs unnecessary tests only to seek for the "DOE blessing" in order
to not expose himself to criticism. This behavior is contrary to the reason
why DOE should be adopted and the bene�ts it can give. The experimental
design should always move �rst steps from the de�nition of the problem and
not jumping to the experimental phase just to show some data analysis.

A simulation study allowed to assess the power of some selected nonpara-
metric methods by analyzing the same data set. Data have been generated
using a linear additive model for a two-way two-levels design with interac-
tion given by the product of factor level e�ects. Such model is common for
practitioners in industrial experimentation. The study revealed that certain
methods of analysis perform better than others depending on the dataset and
on the objective of the analysis. As a consequence, there does not emerge a
unique approach in the design phase of the experiment, but various aspects
have to be taken into account simultaneously. The three dimensions (factor
e�ect, standard deviation, number of replicates) along which the investigation
has been conducted have impacts on the power of the tests. Furthermore,
the study allowed to bring out some interesting information.

Concerning the balanced case, Aligned Rank Transform (ART) test is
an overall well performing test both for the main factor and the interaction
analysis. It has superior power in almost all the settings, and it maintains the
α level well. Wald-Type Prmutation (WTP) test is a good test as well both
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for main factor and interaction analysis. These �ndings corroborate with
previous studies ([25, 61]). ANOVA-Type Statistic (ATS) test's performance
is at an average level for main factor analysis, showing slightly lower power
in the heteroscedastic case and resulting conservative in some cases. In the
interaction analysis ATS is performing worse relative to the other tests. In
the main factor analysis, Unconstrained Synchronized Permutation (USP) is
performing well in most of the situations and its power is similar to that of
WTP. In the interaction analysis, USP is performing best compared to the
other tests in all the cases, but it doesnot maintain the nominal α level. The
liberal behavior is a limitation of this test because of the tradeo� between
power and type I error. Constrained Synchronized Permutation (CSP) does
not reveal any liberal behavior in the interaction analysis and its power is
similar to that of WTP. In agreement to results of Hahn et al. [25], in the
main factor analysis CSP has, in general, slightly lower power for Laplace and
lognormal distribution relative to the other tests. In the main factor analysis,
there is no in�uence on the power of the tests due to the other factor's level.
The results for CSP and USP are also in agreement with results of a previous
study ([3]).

In the unbalanced case, WTP and ATS tests are the only ones that appear
to be reliable tests in all the scenarios considered. Indeed, they control the α
level and maintain the power level when the number of replicates is switched
between the factor level combinations. CSP and USP tests can be used due to
the �xed weight approach only when n11 = n12 and n21 = n22, but they do not
control the α level, resulting in conservative decisions in the so-called positive
pairing heteroscedastic setting and liberal decision in the negative pairing
for the main factor analysis as well as the interaction analysis, unlike the
ART test. In the homoscedastic case, ART test performs better than WTP
and ATS, and its power varies when the number of replicates is switched
between the factor level combination. In the main factor analysis, ART test
reveals an in�uence on its power due to the level of the other factor in some
con�gurations.

The application of NonParametric Combination (NPC) to Synchronized
Permutation (SP) to analyze a multivariate two-way factorial design re-
vealed to be a good instrument for inferential statistics when assumptions of
MANOVA are violated. Simulation results show that NPC applied to USP
and CSP gives high values of power (rejection rate) under alternative hy-
pothesis H1 both with independent and dependent response variables, and
both with low number and high number of response variables compared to
MANOVA. In general NPC applied to USP performs better for the main
factor analysis with all distribution of errors compared to NPC of CSP and
MANOVA. Its power varies under the conditions it has been tested in the
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simulation study, and it has been observed to be higher than 75% at a signi�-
cance level α = 0.05 in many cases. For the interaction analysis the adoption
of NPC of CSP with the Liptak combining function has to be recommended
because of the higher adherence of the test to the α nominal level. The
Fisher combining function, also referred to as omnibus, is in general prefer-
able to the Tippet and the Liptak ones in the main factor analysis. A great
advantage given by the adoption of these tests is that they well perform with
small sample size. This re�ects the frequent needs of practitioners in the
industrial environment where there are constraints or limited resources for
the experimental design. In case of n = 3 replicates the use of NPC of USP
for main factor analysis has to be recommended because of the shortcomings
of the minimum achievable signi�cance level related to the cardinality of the
univariate CSP test. The increase of sample size has in general an evident
positive e�ect on the power of NPC of SP tests. Futhermore the power of the
test is improved by the increase of number of factor levels with the factor ef-
fect �xed. At last, there is an important property of NPC of SP tests that can
be exploited to increase their power: the �nite sample consistency. Indeed,
an increase in rejection rate can be observed under alternative hypothesis
H1 when the number of response variables increases with �xed number of
observed units. This could lead to a strategical bene�t considering that in
many real problems it could be easier to collect more information on a single
experimental unit than adding a new unit to the experimental design. Prop-
erties of this multivariate test make of it a useful instrument when using DOE
to innovate a production process and some speci�c conditions are veri�ed.
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