

UNIVERSITA' DEGLI STUDI DI PADOVA

Sede Amministrativa: Università degli Studi di Padova

DIPARTIMENTO DI SCIENZE DEL FARMACO

SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE MOLECOLARI INDIRIZZO SCIENZE FARMACEUTICHE CICLO XXVI

PROGETTAZIONE, SINTESI E STUDIO DI INIBITORI MULTICHINASICI

DIRETTORE DELLA SCUOLA: CH.MO PROF. ANTONINO POLIMENO

COORDINATORE DELL'INDIRIZZO: CH.MO PROF. ALESSANDRO DOLMELLA

SUPERVISORE:

CH.MO PROF. ADRIANA CHILIN

DOTTORANDO: ALESSANDRO FERRARESE

INDICE

1.	RIAS	SSUNTOpag.1
2.	ABS	TRACTpag. 3
3.	INTF	RODUZIONE
	3.1.	LE PROTEINCHINASI
		3.1.1. TIROSINCHINASI (TK) pag. 9
		3.1.1.1. TIROSINCHINASI
		RECETTORIALI (RTK)pag. 9
		3.1.1.2. TIROSINCHINASI
		CITOPLASMATICHE (NRTK)pag. 15
		3.1.2. SERIN-TREONINCHINASI (STK) pag. 19
		3.1.3. MECCANISMO DI ATTIVAZIONE
		DEL DOMINIO CATALITICO
		NELLE PROTEINCHINASI pag. 21
	3.2.	INIBITORI TIROSINCHINASICIpag. 22
	3.3.	INIBITORI SERIN-TREONINCHINASICI
	3.4.	RESISTENZA AGLI INIBITORI
		PROTEINCHINASICI ATP-COMPETITIVIpag. 30
	3.5.	PROBLEMATICHE LEGATE
		ALL'INDIVIDUAZIONE DI NUOVI INIBITORI
		PROTEINCHINASICI ATP-COMPETITIVIpag. 32
4.	OBIE	ETTIVO

5.	RISU	LTATI E DISCUSSIONE pag. 37
	5.1.	PROGETTAZIONE DI POTENZIALI
		INIBITORI DI PROTEINCHINASI pag. 37
	5.2.	SINTESI pag. 42
		5.2.1. SINTESI DI DERIVATI
		4-ANILINO-6-FENILPIRIMIDINICI pag. 42
		5.2.2. SINTESI DI DERIVATI
		4-ANILINO-6-FENILAMMINOPIRIMIDINICI pag. 47
		5.2.3. SINTESI DI DERIVATI
		4-ANILINO-5-FENILPIRIMIDINICI pag. 52
		5.2.4. TENTATIVO DI SINTESI DI DERIVATI
		4-ANILINO-5-FENILAMMINOPIRIMIDINICI pag. 61
	5.3.	STUDI IN VITRO pag. 65
		5.3.1. SCREENING SU PROTEINCHINASI ISOLATE pag. 65
		5.3.2. SARs PRELIMINARI pag. 72
		5.3.3. RAZIONALIZZAZIONE MEDIANTE
		DOCKING MOLECOLARE
		5.3.4. SAGGI DI CITOTOSSICITA pag. 86
6.	CON	CLUSIONI pag. 91
7.	MAT	ERIALI E METODI pag. 93
	7.1.	MATERIALI pag. 93
	7.2.	STRUMENTAZIONE pag. 93
	7.3.	SINTESI DI DERIVATI 4-IDROSSIPIRIMIDINICI pag. 94
		7.3.1. SINTESI DI DERIVATI
		6-FENIL-4-IDROSSIPIRIMIDINICI pag. 94
		7.3.2. SINTESI DI DERIVATI
		5-FENIL-4-IDROSSIPIRIMIDINICI pag. 97
		7.3.3. TENTATIVO DI SINTESI DI DERIVATI
		5-FENILAMMINO-4-IDROSSIPIRIMIDINICI pag. 104
	7.4.	SINTESI DI DERIVATI 4-CLOROPIRIMIDINICI pag. 109

		7.4.1.	SINTESI DI DERIVATI
			4-CLORO-6-FENILPIRIMIDINICI E
			4-CLORO-5-FENILPIRIMIDINICI pag. 111
	7.5.	SINTE	SI DI DERIVATI 4-ANILINOPIRIMIDINICIpag. 112
		7.5.1.	SINTESI DI DERIVATI
			4-ANILINO-6-FENILPIRIMIDINICI pag. 112
		7.5.2.	SINTESI DI DERIVATI
			4-ANILINO-6-FENILAMMINOPIRIMIDINICI pag. 125
		7.5.3.	SINTESI DI DERIVATI
			4,6-DIANILINOPIRIMIDINICI pag. 138
		7.5.4.	SINTESI DI DERIVATI
			4-ANILINO-5-FENIL-2-TIOMETILPIRIMIDINICI pag. 144
		7.5.5.	SINTESI DI DERIVATI
			4-ANILINO-5-FENILPIRIMIDINICI pag. 151
	7.6.	SINTE	SI DI DERIVATI
		<i>N</i> '-[4-(PIRIMIDIN-4'-ILAMMINO)FENIL]-
		<i>N</i> "-AR	ILUREIDICIpag. 164
		7.6.1.	SINTESI DI DERIVATI
			N'-[4-(6'-FENILPIRIMIDIN-4'-ILAMMINO)FENIL]-
			N'-ARILUREIDICI pag. 164
		7.6.2.	SINTESI DI DERIVATI
			№-[4-(6'-FENILAMMINOPIRIMIDIN-4'-ILAMMINO)
			FENIL]- <i>N</i> '-ARILUREIDICI E
			<i>N</i> -[4-(5'-FENILPIRIMIDIN-4'-ILAMMINO)
			FENIL]-N'-ARILUREIDICI pag. 170
8.	APPE	ENDIC	pag. 181
	8.1.	SPET	FRI ¹ H-NMR DI DERIVATI
		4-ANIL	INO-6-FENILPIRIMIDINICIpag. 181
		8.1.1.	DERIVATI " <i>TYPE I-LIKE</i> " pag. 181
		8.1.2.	DERIVATI "TYPE II-LIKE" pag. 188
	8.2.	SPET	FRI ¹ H-NMR DI DERIVATI
		4-ANIL	INO-6-FENILAMMINOPIRIMIDINICI
		8.2.1.	DERIVATI " <i>TYPE I-LIKE</i> " pag. 191

	8.2.2. DERIVATI " <i>TYPE II-LIKE</i> " pag. 200
8.3.	SPETTRI ¹ H-NMR DI DERIVATI
	4-ANILINO-5-FENILPIRIMIDINICI pag. 203
	8.3.1. DERIVATI " <i>TYPE I-LIKE</i> " pag. 203
	8.3.2. DERIVATI " <i>TYPE II-LIKE</i> " pag. 210
8.4.	SINTESI ORGANICA ASSISTITA DA
	MICROONDE pag. 212
	8.4.1. MODALITA' DI AZIONE DELLE MICROONDE pag. 213
	8.4.2. TIPOLOGIE DI REATTORI A MICROONDEpag. 217

9.	BIBLIOGRAFIA	pag. 219
----	--------------	----------

INDICE DELLE FIGURE

Figura 1.	Struttura generale per le 4 classi di composti progettate pag. 1
Figura 2.	Albero filogenetico del chinoma umano pag. 8
Figura 3.	Rappresentazione schematica dell'attivazione
	di una RTKpag. 10
Figura 4.	Struttura schematica di EGFR in equilibrio tra
	due conformazioni. L'interazione con il fattore di
	crescita induce un cambiamento conformazionale e
	la successiva dimerizzazione pag. 11
Figura 5.	Organizzazione dei domini nelle maggiori
	famiglie di NRTK. Il gruppo ammino-terminale è a
	sinistra dello schema, mentre il carbossi-terminale
	si trova sulla destra. La lunghezza delle varie
	NRTK è solo parzialmente in scala pag. 16
Figura 6.	Rappresentazione schematica del cambiamento
	conformazionale indotto dopo la fosforilazione e
	attivazione di Src pag. 17
Figura 7.	Rappresentazione schematica del cambiamento
	conformazionale indotto dopo la fosforilazione e
	attivazione di c-Abl pag. 18
Figura 8.	Meccanismo di attivazione dell'attività
	catalitica delle proteinchinasi pag. 22
Figura 9.	Rappresentazione schematica del sito catalitico
	delle tirosinchinasi pag. 24
Figura 10.	Schematizzazione della struttura generale
	degli inibitori proteinchinasici di tipo I e di tipo II pag. 26
Figura 11.	Strutture di inibitori irreversibili in fasi cliniche:
	Canertinib, Afatinib e Neratinib pag. 27
Figura 12.	Esempi di inibitori serin-treoninchinasici pag. 30
Figura 13.	Strutture di alcuni inibitori multi-target approvati pag. 31

Figura 14.	Esempi di inibitori di proteinchinasi noti
	contenenti la struttura amminopirimidinica pag. 37
Figura 15.	Progettazione della struttura generale delle 4 classi
	di composti 4-anilinopirimidinici pag. 38
Figura 16.	Derivatizzazioni considerate per i composti "type I-like" pag. 39
Figura 17.	Progettazione della struttura generale per i derivati
	<i>"type II-like".</i> pag. 40
Figura 18.	Derivatizzazione per i composti "type II-like"
Figura 19.	Elenco delle proteinchinasi selezionate per lo
	screening e loro localizzazione sull'albero filogenetico pag. 65
Figura 20.	Schematizzazione del saggio di spiazzamento
	utilizzato per lo screening in vitro pag. 66
Figura 21.	Correlazione statistica tra POC e K_D misurata pag. 67
Figura 22.	Strutture dei composti di cui sono disponibili i
	risultati dello screening al momento della
	stesura della tesi pag. 68
Figura 23.	Rappresentazione complessiva dei valori POC ottenuti
	sull'albero filogenetico delle chinasipag. 70
Figura 24.	Rappresentazione dei valori POC ottenuti per i derivati
	<i>"type I-like" sull'albero filogenetico delle chinasi</i> pag. 71
Figura 25.	Rappresentazione dei valori POC ottenuti per i derivati
	"type II-like" sull'albero filogenetico delle chinasi pag. 72
Figura 26.	SARs preliminari individuate per l'interazione
	<i>con CSF1R</i> pag. 73
Figura 27.	SARs preliminari individuate per l'interazione con FLT3 pag. 73
Figura 28.	SARs preliminari individuate per l'interazione con c-KIT pag. 74
Figura 29.	SARs preliminari individuate per l'interazione con
	PDGFRα e PDGFRβpag. 74
Figura 30.	SARs preliminari individuate per l'interazione con EGFR pag. 75
Figura 31.	Struttura tridimensionale del complesso
	VEGFR-2/Sorafenib (in alto; PDB ID: 4ASD) e
	struttura di Sorafenib (in basso)pag. 76
Figura 32.	Strutture delle chinasi oggetto di studio mediante molecular
	modelingpag. 77

Figura 33.	Potenziali elettrostatici del sito di binding per l'ATP in
	alcune delle chinasi oggetto di studio pag. 78
Figura 34.	Binding mode predetti per il composto 29m in
	CSF1R (A) e in FLT3 (B) pag. 80
Figura 35.	Binding mode predetti per i composti 29m (A) e 29h (B)
	in CSF1R e sovrapposizione degli stessi (C) pag. 81
Figura 36.	Confronto dei binding mode predetti per i composti
	29h (A), 14d (B) e 14b (C) in CSF1R pag. 82
Figura 37.	Binding mode predetto per i derivati
	4,6-dianilinopirimidinici in EGFR pag. 83
Figura 38.	Binding mode predetti per i derivati ureidici 13n (A),
	<i>5n</i> (<i>B</i>) e <i>29n</i> (<i>C</i>) in c-KIT pag. 84
Figura 39.	Binding mode predetti per il composto 29n in CSF1R (A),
	FLT3 (B), c-KIT (C), PDGFRα (D), PDGFRβ (E)
	e VEGFR2 (F) pag. 85
Figura 40.	Rappresentazione del rapporto
	<i>IC</i> ₅₀ <i>Sunitinib/IC</i> ₅₀ <i>composto</i> pag. 89
Figura 41.	Spettro ¹ H-NMR e formula di struttura di
	4-anilino-6-fenilpirimidina cloridrato (5a) pag. 181
Figura 42.	Spettro ¹ H-NMR e formula di struttura di
	4-(2"-fluoro-5"-trifluorometil)anilino-6-fenilpirimidina
	<i>cloridrato (5b)</i> pag. 182
Figura 43.	Spettro ¹ H-NMR e formula di struttura di
	4-(3"-trifluorometil)anilino-6-fenilpirimidina cloridrato (5c) . pag. 182
Figura 44.	Spettro ¹ H-NMR e formula di struttura di
	4-(3"-metil)anilino-6-fenilpirimidina cloridrato (5d) pag. 183
Figura 45.	Spettro ¹ H-NMR e formula di struttura di
	4-(3"-metil)anilino-6-fenilpirimidina cloridrato (5e) pag. 183
Figura 46.	Spettro ¹ H-NMR e formula di struttura di
	4-(4"-cloro)anilino-6-fenilpirimidina cloridrato (5f) pag. 184
Figura 47.	Spettro ¹ H-NMR e formula di struttura di
	4-(3"-bromo)anilino-6-fenilpirimidina cloridrato (5g) pag. 184
Figura 48.	Spettro ¹ H-NMR e formula di struttura di
	4-(4"-idrossi)anilino-6-fenilpirimidina cloridrato (5h) pag. 185

Figura 49.	Spettro ¹ H-NMR e formula di struttura di
	4-(2"-idrossi)anilino-6-fenilpirimidina cloridrato (5i) pag. 185
Figura 50.	Spettro ¹ H-NMR e formula di struttura di
	4-(3"-idrossi)anilino-6-fenilpirimidina cloridrato (5j) pag. 186
Figura 51.	Spettro ¹ H-NMR e formula di struttura di
	4-(m-bifenil)ammino-6-fenilpirimidina cloridrato (5k) pag. 186
Figura 52.	Spettro ¹ H-NMR e formula di struttura di
	4-(4"-acetammido)anilino-6-fenilpirimidina cloridrato (51) pag. 187
Figura 53.	Spettro ¹ H-NMR e formula di struttura di
	4-(4"-ammino)anilino-6-fenilpirimidina (5m) pag. 187
Figura 54.	Spettro ¹ H-NMR e formula di struttura di
	N'-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N"-fenilurea (5n). pag. 188
Figura 55.	Spettro ¹ H-NMR e formula di struttura di
	N'-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-
	<i>N"-(3"'-metil)fenilurea (50)</i> pag. 188
Figura 56.	Spettro ¹ H-NMR e formula di struttura di
	N'-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-
	<i>N"-(4"'-metil)fenilurea (5p)</i> pag. 189
Figura 57.	Spettro ¹ H-NMR e formula di struttura di
	N'-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N"-(3'"-
	<i>trifluorometil)fenilurea (5q)</i> pag. 189
Figura 58.	Spettro ¹ H-NMR e formula di struttura di
	N'-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N"-(2'"-fluoro-5'"-
	<i>trifluorometil)fenilurea (5r)</i> pag. 190
Figura 59.	Spettro ¹ H-NMR e formula di struttura di
	4-anilino-6-fenilamminopirimidina (13a) pag. 191
Figura 60.	Spettro ¹ H-NMR e formula di struttura di
	4-(2"-fluoro-5"-trifluorometil)anilino-
	6-fenilamminopirimidina (13b)pag. 192
Figura 61.	Spettro ¹ H-NMR e formula di struttura di
	4-(3"-trifluorometil)anilino-6-fenilamminopirimidina (13c) pag. 192
Figura 62.	Spettro ¹ H-NMR e formula di struttura di
	4-(3"-metil)anilino-6-fenilamminopirimidina (13d) pag. 193
Figura 63.	Spettro ¹ H-NMR e formula di struttura di
	4-(4"-metil)anilino-6-fenilamminopirimidina (13e)

Figura 64.	Spettro ¹ H-NMR e formula di struttura di
	4-(4"-cloro)anilino-6-fenilamminopirimidina (13f) pag. 194
Figura 65.	Spettro ¹ H-NMR e formula di struttura di
	4-(3"-bromo)anilino-6-fenilamminopirimidina (13g) pag. 194
Figura 66.	Spettro ¹ H-NMR e formula di struttura di
	4-(4"-idrossi)anilino-6-fenilamminopirimidina (13h) pag. 195
Figura 67.	Spettro ¹ H-NMR e formula di struttura di
	4-(2"-idrossi)anilino-6-fenilamminopirimidina (13i) pag. 195
Figura 68.	Spettro ¹ H-NMR e formula di struttura di
	4-(3"-idrossi)anilino-6-fenilamminopirimidina (13j) pag. 196
Figura 69.	Spettro ¹ H-NMR e formula di struttura di
	4-(m-bifenil)ammino-6-fenilamminopirimidina (13k) pag. 196
Figura 70.	Spettro ¹ H-NMR e formula di struttura di
	4-(4"-acetammido)anilino-6-fenilamminopirimidina (131) pag. 197
Figura 71.	Spettro ¹ H-NMR e formula di struttura di
	4-(4"-ammino)anilino-6-fenilamminopirimidina (13m) pag. 197
Figura 72.	Spettro ¹ H-NMR e formula di struttura di
	N,N'-bis(3'-metilfenil)-4,6-diamminopirimidina (14a) pag. 198
Figura 73.	Spettro ¹ H-NMR e formula di struttura di
	N,N'-bis(3'-bromofenil)-4,6-diamminopirimidina (14b) pag. 198
Figura 74.	Spettro ¹ H-NMR e formula di struttura di
	N,N'-bis(4'-clorofenil)-4,6-diamminopirimidina (14c) pag. 199
Figura 75.	Spettro ¹ H-NMR e formula di struttura di
	N,N'-bis(4'idrossifenil)-4,6-diamminopirimidina (14d) pag. 199
Figura 76.	Spettro ¹ H-NMR e formula di struttura di
	N,N'-bis(3'-bifenil)-4,6-diamminopirimidina (14e) pag. 200
Figura 77.	Spettro ¹ H-NMR e formula di struttura di
	N'-[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-
	<i>N"-fenilurea (13n)</i> pag. 200
Figura 78.	Spettro ¹ H-NMR e formula di struttura di
	N'-[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N''-(3'''-
	<i>metil)fenilurea (130)</i> pag. 201
Figura 79.	Spettro ¹ H-NMR e formula di struttura di
	N'-[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N''-(4'''-
	<i>metil)fenilurea (13p)</i> pag. 201

Figura 80.	Spettro ¹ H-NMR e formula di struttura di
	N'-[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N''-(3'''-
	trifluorometil)fenilurea (13q) pag. 202
Figura 81.	Spettro ¹ H-NMR e formula di struttura di
	N'-[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N''-
	(2 ^{,,,} fluoro-5 ^{,,,} trifluorometil)fenilurea (13r) pag. 202
Figura 82.	Spettro ¹ H-NMR e formula di struttura di
	4-anilino-5-fenilpirimidina (29a)pag. 203
Figura 83.	Spettro ¹ H-NMR e formula di struttura di
	4-(2"-fluoro-5"-trifluorometil)anilino-
	<i>5-fenilpirimidina (29b)</i> pag. 204
Figura 84.	Spettro ¹ H-NMR e formula di struttura di
	4-(3"-trifluorometil)anilino-5-fenilpirimidina (29c) pag. 204
Figura 85.	Spettro ¹ H-NMR e formula di struttura di
	4-(3"-metil)anilino-5-fenilpirimidina (29d) pag. 205
Figura 86.	Spettro ¹ H-NMR e formula di struttura di
	4-(4"-metil)anilino-5-fenilpirimidina (29e) pag. 205
Figura 87.	Spettro ¹ H-NMR e formula di struttura di
	4-(4"-cloro)anilino-5-fenilpirimidina (29f)pag. 206
Figura 88.	Spettro ¹ H-NMR e formula di struttura di
	4-(3"-bromo)ammino-5-fenilpirimidina (29g) pag. 206
Figura 89.	Spettro ¹ H-NMR e formula di struttura di
	4-(4"-idrossi)ammino-5-fenilpirimidina (29h) pag. 207
Figura 90.	Spettro ¹ H-NMR e formula di struttura di
	4-(2"-idrossi)anilino-5-fenilpirimidina (29i) pag. 207
Figura 91.	Spettro ¹ H-NMR e formula di struttura di
	4-(3"-idrossi)anilino-5-fenilpirimidina (29j)pag. 208
Figura 92.	Spettro ¹ H-NMR e formula di struttura di
	4-(3"-bifenil)ammino-5-fenilpirimidina (29k) pag. 208
Figura 93.	Spettro ¹ H-NMR e formula di struttura di
	4-(4"-acetammido)anilino-5-fenilpirimidina (29I) pag. 209
Figura 94.	Spettro ¹ H-NMR e formula di struttura di
	4-(4"-ammino)anilino-5-fenilpirimidina (29m) pag. 209

Figura 95.	Spettro ¹ H-NMR e formula di struttura di
	N'-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-
	N"-fenilurea (29n) pag. 210
Figura 96.	Spettro ¹ H-NMR e formula di struttura di
	N'-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-N"-
	(3 ^{'''-} metil)fenilurea (290) pag. 210
Figura 97.	Spettro ¹ H-NMR e formula di struttura di
	N'-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-N"-
	(4'''- <i>metil)fenilurea (29p).</i> pag. 211
Figura 98.	Spettro ¹ H-NMR e formula di struttura di
	N'-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-N"-[2"'-fluoro-5"''-
	(<i>trifluorometil</i>) <i>fenil]urea</i> (29r) pag. 211
Figura 99.	Spettro elettromagnetico pag. 212
Figura 100.	Confronto fra il riscaldamento in-situ dovuto alle
	microonde (a sinistra) e il metodo di riscaldamento
	<i>classico (a destra)</i> pag. 213
Figura 101.	Schematizzazione di un onda elettromagnetica pag. 213
Figura 102.	Variazione del valore della costante dielettrica
	in funzione della temperatura per alcuni dei
	principali solventi utilizzati nella sintesi organica pag. 215
Figura 103.	Effetto del riscaldamento MW sulla costante cinetica
	di reazione. $T_i >> T_B$ pag. 216
Figura 104.	A sinistra: reattore monomodale self-tuning.
	A destra: sistema toroidale utilizzato per
	focalizzare le MW direttamente nel campione, presente
	al centro dello strumento pag. 217

INDICE DEGLI SCHEMI

Schema 1.	Analisi retrosintetica per i derivati
	4-anilino-6-fenilpirimidinci pag. 42
Schema 2.	Sintesi dei derivati 4-anilino-6-fenilpirimidinici pag. 43
Schema 3.	Meccanismo di reazione proposto per la ciclizzazione
	dell'anello 4-idrossi-6-fenil-2-tiopirimidinico pag. 44
Schema 4.	Sintesi di 4-(4"-ammino)anilino-6-fenilpirimidina pag. 46
Schema 5.	Sintesi dei derivati
	N'-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N"-arilureidici pag.46
Schema 6.	Analisi retrosintetica per i derivati
	4-anilino-6-fenilamminopirimidinci pag. 47
Schema 7.	Sintesi dei derivati 4-anilino-6-fenilamminopirimidinici pag. 48
Schema 8.	Sintesi di 4-(4"-ammino)anilino-6-fenilamminopirimidina pag. 49
Schema 9.	Sintesi dei derivati
	N'-[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-
	N"-arilureidici pag. 50
Schema 10.	Sintesi dei derivati 4,6-dianilinopirimidinici pag. 51
Schema 11.	Analisi retrosintetica per i derivati
	4-anilino-5-fenilpirimidinicipag. 52
Schema 12.	Tentativo di sintesi di 5-fenil-4-idrossipirimidina
	via ciclizzazione pag. 53
Schema 13.	Tentativo di sintesi di 6-fenil-5-idrossipirimidina
	<i>via crosscoupling.</i> pag. 54
Schema 14.	Tentativo di sintesi di 4-acetossipirimidina pag. 55
Schema 15.	Tentativo di sintesi di 5-bromo-4-cloropirimidina pag. 55
Schema 16	Seconda analisi retrosintetica per i derivati
	4-anilino-5-fenilpirimidinicipag. 56
Schema 17.	Sintesi dei derivati 4-anilino-5-fenilpirimidinici pag. 57
Schema 18.	Meccanismo di reazione proposto per la ciclizzazione
	dell'anello 5-fenil-4-idrossi-2-tiometilpirimidinico pag. 58
Schema 19.	Sintesi di 4-(4"-ammino)anilino-5-fenilpirimidina pag. 59

Schema 20.	Sintesi dei derivati
	N'-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-N"-arilureidici pag. 60
Schema 21.	Analisi retrosintetica per i derivati
	4-anilino-5-fenilamminopirimidinici pag. 61
Schema 22.	Tentativo di sintesi di
	etile 2-dimetilamminometilen-2-fenilamminoacetato pag. 62
Schema 23.	Seconda analisi retrosintetica per i derivati
	4-anilino-5-fenilamminopirimidinici pag. 62
Schema 24.	Tentativo di sintesi di derivati
	4-anilino-5-fenilamminopirimidinici pag. 63

INDICE DELLE TABELLE

Tabella 1.	Farmaci antitumorali in grado di inibire l'azione delle		
	TK fino ad oggi approvati	. pag.	29
Tabella 2.	Composti progettati e relativa numerazione.		
	n.d.= non sintetizzato	. pag.	41
Tabella 3.	Valori di POC per i composti saggiati sull'intero		
	pannello di chinasi	. pag.	69
Tabella 4.	Valori di I C_{50} per i composti saggiati sulle linee A549 e		
	BxPC3	. pag.	88
Tabella 5.	Valori di I C_{50} per i composti saggiati sulla linea HEK293		
	e relativo valore di I. S	. pag.	90
Tabella 6.	Confronto fra i valori di costante dielettrica e di		
	dielettric loss per alcuni dei principali solventi utilizzati		
	nella sintesi organica	. pag.	215

ABBREVIAZIONI

Abl	Abelson chinasi
AcOH	Acido acetico
AML	Acute Myeloid Leukemia (Leucemia Mieloide Acuta)
AR	AmphiRegulin
Ar	Aromatico
Asp	Aspartato
ATP	Adenosinatrifosfato
CE	Cicloesano
c-kit	Recettore per Stem Cell Factor
CML	Chronic Myeloid Leukemia (Leucemia Mieloide Cronica)
CMML	Chronic MyeloMonocytic Leukemia (Leucemia mielomonocitica Cronica)
CRC	Colorectal Cancer (Cancro del Colon Retto)
CSF1	Colony Stimulating Factor 1
CSF1R	Colony Stimulating Factor 1 Receptor
Cys	Cisteina
DCBZ	1,2-diclorobenzene
DCM	Diclorometano
DFG	Aspartato-fenilalanina-Glicina
DMF	N,N-dimetilformammide
DNA	Acido desossiribonucleico
DME	Dimetossietano
DMSO	Dimetilsolfossido
EC	Endotelial Cells (Cellule Endoteliali)

EGF	Epidermal Growth Factor (Fattore di crescita epidermico)
EGFR	Epidermal Growth Factor Receptor (Recettore del fattore di crescita epidermico)
ER	EpiRegulin
ESI-TOF	Electrospray Ionization-Time of Flight (Ionizzazione Elettrospray- Tempo di Volo)
EtOAc	Etile Acetato
EtOH	Etanolo
EtONa	Sodio etossido
FAK	Focal Adesion Kinase
FDA	Food and Drug Administration
FGF	Fibroblast Growth Factor (Fattore di Crescita dei Fibroblasti)
FGFR	Fibroblast Growth Factor Receptor (Recettore per FGF)
FGI	Functional Group Interconversion (Interconversione di Gruppo Funzionale)
FLT3	FMS-like Tyrosine Kinase 3
FRS2	FGFR Substrate 2
GIST	GastroIntestinal Stromal Tumor (Tuomore Stromale Gastrointestinale)
Gln	Glutammina
Glu	Glutammato
Gly	Glicina
Grb2	Growth Factor Receptor-Bound Protein 2
GTP	Guanosinatrifosfato
Hb-EGF	Heparin-Binding Growth Factor
HCOOEt	Etile formiato
HER	Human Epidermal Receptor
HGF	Hepatocyte Growth Factor
HRMS	High Resolution Mass Spectrometry (Spettrometria di Massa ad Alta Risoluzione)

IC ₅₀	Concentrazione che provoca il 50% di inibizione
IGF-1	Insulin-like Growth Factor-1
lgG	Immunoglobulina G
ⁱ PrOH	Isopropanolo
K _D	Costante di Dissociazione
Lys	Lisina
MAb	Monoclonal Antibody (Anticorpo Monoclonale)
МАРК	Mitogen-Activated Protein Kinase
MEK	Mitogen-activated protein kinase/Extracellular signal-regulated Kinase (o chinasi MAP/ERK)
M-CSFR	Macrophage-Colony Stimulating Factor Receptor
MeOH	Metanolo
Met	Metionina
mTOR	mammalian Target Of Rapamycin
MTT	3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolio bromuro
MW	Microonde
NBS	N-bromosuccinimmide
NMR	Nuclear Magnetic Resonance (Risonanza magnetica nucleare)
NGF	Nerve Growth Factor
Ni-Raney	Nickel-Raney
NR	NeuRegulin
NRTK	Non Receptor Tyrosine Kinase (Tirosinchinasi Non Recettoriali)
NSCLC	Non Small Cells Lung Cancer
PDGF	Platelet-Derived Growth Factor
PDGFR	Platelet-Derived Growth Factor Receptor (Recetore del fattore di crescita piastrinico)
Ph	Fenile
Phe	Fenilalanina

PI3K	Phosphatidylinositol-3-kinase (Fosfatidilinositolo-3-chinasi)
POC	Percent Of Control (Percentuale rispetto al Controllo)
QSAR	Quantitative Structure-Activity Relationship (Relazioni Quantitative Struttura-Attività)
qPCR	Quantitative Polymerase Chain Reaction (PCR quantitativa)
RET	REarranged during Transfection chinasi
RTK	Receptor Tyrosine Kinase (Tirosinchinasi Recetoriali)
SAR	Structure-Activity relationships (Relazioni Struttura-Attività)
SCCHN	Squamous Cell Carcinoma of the Head and Neck (Carcinoma a Cellule Squamose della Testa e del Collo)
SCF	Stem Cell Factor
SCGFR	Stem Cells Growth Factor Receptor
SH	Src Homology domain
STAT	Signal Transducers and Activators of Transcription
STK	Serine-Threonine Kinase (Serin-Treoninchinasi)
t. a.	Temperatura ambiente
TEA	Trietilammina
TFA	Acido trifluoroacetico
TGF	Transformin Growth Factor
THF	Tetraidrofurano
Thr	Treonina
TLC	Thin Layer Cromatography (Cromatografia su strato sottile)
ТК	Tyrosine Kinases (Tirosinchinasi)
ТКІ	Tyrosyne Kinase Inhibitors (Inibitori delle Tirosinchinasi)
Tyr	Tirosina
Val	valina
VEGF	Vascular Endothelial Growth Factor (Fattore di crescita dell'endotelio vascolare)

- VEGFR Vascular Endothelial Growth Factor Receptors (Recettori del fattore di crescita dell'endotelio vascolare)
- d doppietto
- dd doppietto di doppietti
- dt doppietto di tripletti
- m multipletto
- p.f. punto di fusione
- s singoletto
- s all singoletto allargato
- t tripletto
- q quartetto

1. **RIASSUNTO**

Nell'ambito della terapia antitumorale un ruolo di primaria importanza è rivestito dagli inibitori di proteinchinasi ATP-competitivi. Numerosi sono infatti i farmaci appartenenti a questa categoria attualmente in terapia o in avanzata sperimentazione clinica¹.

La ricerca scientifica in questo settore si è negli ultimi anni orientata verso l'individuazione di inibitori multichinasici a selettività controllata².

La base per una progettazione razionale di farmaci di questo tipo sta nell'individuazione di un profilo di relazioni struttura-attività efficace ed esaustivo.

In questo lavoro è discussa la progettazione e la sintesi di 4 classi di composti 4anilinopirimidinici disegnati come potenziali inibitori di proteinchinasi, con caratteristiche tali da poter portare all'individuazione di un *pattern* di relazioni struttura-attività il più possibile completo. La struttura generale dei composti progettati è riportata in Figura 1.

fenilpirimidinici

Derivati 4-anilino-6fenilamminopirimidinici

Derivati 4-anilino-5fenilpirimidinici

Derivati 4-anilino-5fenilamminopirimidinici

Figura 1. Struttura generale delle 4 classi di composti progettate.

La sintesi è stata completata per quasi tutti i composti appartenenti alle prime tre classi, mentre non è stato possibile individuare una strategia sintetica efficace per i derivati 4-anilino-5-fenilamminopirimidinici.

Alcuni dei composti sintetizzati sono stati sottoposti a saggi enzimatici di *binding* nei confronti di un pannello di 48 chinasi. I dati ottenuti sono stati elaborati e sono state ricavate preliminari relazioni struttura-attività. Sugli stessi composti sottoposti a *screening* sono stati poi eseguiti saggi di citotossicità nei confronti di due linee cellulari tumorali.

2. ABSTRACT

In the field of cancer therapy, a primary role is played by ATP-competitive protein kinase inhibitors. Indeed, several drugs belonging to this class have been approved for therapy or are in advanced clinical trials¹.

In the last years, the scientific research has been oriented towards the identification of multi-kinase inhibitors with controlled selectivity profile².

The basis of this approach leans on the identification of exhaustive and effective structure-activity relationships.

In this work the design and the synthesis of 4 classes of 4-anilinopyrimidine derivatives as potential protein kinase inhibitors is discussed. These molecules present features useful for the identification of a complete pattern of structure-activity relationships.

The general structure of the designed compounds is reported in Figure 1.

Figure 1. General structure for the 4 classes of designed compounds.

The synthesis has been accomplished for almost all the compounds of the first 3 classes, while an effective synthetic strategy for 4-anilino-5-phenylamino-pyrimidine derivatives has not been identified yet.

Some of the synthesized compounds have been assayed against a panel of 48 kinases, in order to test their binding properties. All the data have been worked out and some preliminary SARs have been drawn. The same compounds have been assayed for their cytotoxicity against two tumoral cell lines.

3. INTRODUZIONE

Nei tessuti sani, i segnali che promuovono e regolano le varie fasi del ciclo e della crescita cellulare sono strettamente controllati. Il progressivo aumento della conoscenza delle vie di trasduzione del segnale nelle cellule ha dimostrato che molti aspetti della funzionalità cellulare, incluse proliferazione e morte, sono regolati principalmente attraverso la produzione e il rilascio di fattori di crescita, ovvero messaggeri proteici che, legandosi a recettori presenti sulla superficie delle membrane cellulari, garantiscono la corretta funzionalità e conformazione del tessuto³.

Tali recettori sono a loro volta in grado di attivare secondi messaggeri intracellulari che, essendo coinvolti in numerose vie di trasduzione del segnale tra loro interconnesse e finemente controllate, regolano le diverse fasi del ciclo cellulare e la fisiologia di funzionamento.

La maggior parte dei mediatori/regolatori dei segnali cellulari è rappresentata da proteinchinasi.

La caratteristica principale delle formazioni neoplastiche, sia benigne che maligne, è la de-regolazione della crescita cellulare⁴. Le neoplasie maligne hanno, inoltre, la capacità di invadere i tessuti sani circostanti⁴. Ciò avviene perché le cellule tumorali maligne sono in grado di raggiungere, mediante il torrente sanguigno, organi e tessuti distanti dando origine a nuove masse tumorali chiamate metastasi⁵.

Hanahan e Weinberg hanno descritto le caratteristiche che contraddistinguono le cellule tumorali, riassumendole in sei punti: (1) autosufficienza nella produzione dei segnali di crescita; (2) insensibilità ai segnali che inibiscono la proliferazione; (3) evasione dall'apoptosi; (4) potenziale replicativo illimitato; (5) induzione del processo angiogenico; (6) invasione e metastasi. Almeno la metà di queste caratteristiche coinvolgono recettori tirosinchinasici (*Receptor Tyrosine Kinase*, RTK) e le proteinchinasi citoplasmatiche coinvolte nella trasmissione del relativo segnale. Mutazioni attivanti, sovra-espressioni o più in generale qualsiasi forma di de-regolazione di queste proteine possono portare, infatti, ad alterazioni nella crescita cellulare⁶.

Fino ad una decina di anni fa il trattamento delle patologie tumorali avveniva solo attraverso approcci relativamente aspecifici, mirati alla rimozione (trattamento chirurgico) o alla riduzione (trattamento radioterapico e chemioterapico convenzionale) della massa tumorale⁷.

I farmaci antitumorali utilizzati nella chemioterapia convenzionale sono diretti verso enzimi metabolici (metotressato), DNA (cisplatino, ciclofosfamide), topoisomerasi (doxorubicina, etoposide), recettori nucleari per gli ormoni (tamoxifene e flutamide), stabilizzazione dei microtubuli (paclitassolo)⁸, ma non discriminano in modo efficace tra cellule sane in rapida divisione (cellule del midollo osseo e del tratto gastrointestinale) e cellule tumorali⁹.

Di conseguenza, l'approccio terapeutico classico ha come limite principale l'elevata tossicità sistemica¹⁰. La risposta del tumore al trattamento chemioterapico è, inoltre, spesso solo parziale e non prevedibile in modo completo⁹.

Per questi motivi la ricerca si è rivolta verso lo sviluppo di farmaci in grado di sfruttare alcune delle caratteristiche peculiari delle sole cellule tumorali¹⁰.

La sopravvivenza delle cellule tumorali, infatti, è strettamente dipendente dai prodotti oncogenici. Colpire tali bersagli, scopo principale della *targeted therapy*, permette di avere un'azione farmacologica più selettiva in quanto le cellule tumorali sono più sensibili al trattamento rispetto alle cellule sane⁷.

Gli oncogeni codificano per proteine che controllano la proliferazione cellulare e l'apoptosi e comprendono fattori di trascrizione, fattori di crescita e recettori per i fattori di crescita, trasduttori del segnale e regolatori dell'apoptosi⁷.

Le nuove classi di farmaci antitumorali comprendono sia piccole molecole organiche che anticorpi monoclonali (mAb) e i progressi maggiori sono stati fatti nello sviluppo agenti atitumorali in grado di inibire l'attività enzimatica di proteinchinasi come Abl, c-KIT, EGFR e HER-2⁷. L'esempio più noto è quello di Imatinib (Gleevec®), un inibitore competitivo al sito di *binding* dell'ATP di Bcr-Abl, una proteinchinasi mutata e caratteristica della leucemia mieloide cronica¹⁰.

Un altro approccio per contrastare la crescita tumorale è rappresentato dalla terapia antiangiogenica e anche in questo caso i *target* d'azione più studiati sono le proteinchinasi (come VEGFR-2 e FGFR-1) e i loro fattori di crescita.

6

3.1. LE PROTEINCHINASI

Fosforilazione e de-fosforilazione sono le più comuni modificazioni posttraduzionali delle proteine¹¹ e sono tra i meccanismi più potenti sia per la trasmissione del segnale che per la regolazione di attività enzimatiche. Molti processi di fosforilazione regolano punti critici nella proliferazione cellulare inclusi mitosi, trascrizione di geni, progressione del ciclo cellulare e differenziazione¹².

Per ragioni storiche e pratiche, è stato più facile studiare le proteinchinasi che le proteinfosfatasi, per cui la maggior parte della ricerca si è concentrata sulle chinasi¹¹.

Le proteinchinasi costituiscono un'ampia famiglia di enzimi e rivestono notevole importanza poiché regolano la maggior parte di quei processi che controllano la crescita, la sopravvivenza e la divisione cellulare¹³.

Le proteinchinasi sono enzimi che catalizzano il trasferimento del gruppo γfosfato da ATP (o, raramente, da GTP) a residui amminoacidici di appropriate proteine substrato¹¹, e possono essere suddivise in due classi principali: le tirosinchinasi (*Tyrosine Kinases*, TK) e le serin-treoninchinasi (*Serin-Threonin Kinases*, STK). Le prime fosforilano il gruppo fenolico di residui tirosinici, mentre le seconde fosforilano il gruppo alcolico di residui di serina e/o treonina. Tutte le chinasi sono caratterizzate, nel sito catalitico, dalla presenza di una tasca di legame per l'ATP e da un sito di *binding* per il peptide substrato¹³.

Il gruppo fosfato conferisce due cariche negative al singolo amminoacido cui viene legato, portando a profonde variazioni conformazionali della proteina, con conseguente alterazione delle interazioni con altre macromolecole o substrati. Il gruppo fosfato può modulare l'attività di una proteina in tre modi diversi:

- interferenza diretta: attraverso il blocco del sito di legame per un ligando, a causa dell'ingombro sterico o della repulsione elettrostatica tra il fosfato e i substrati, se anche questi ultimi sono negativi;
- cambiamento conformazionale: un gruppo fosfato può partecipare a legami idrogeno e a interazioni elettrostatiche diverse da quelle a cui partecipa il gruppo ossidrilico di un amminoacido. In molti casi, queste interazioni di residui fosforilati cambiano la conformazione della proteina;

 creazione di siti di legame: la fosforilazione, essendo reversibile, controlla le interazioni tra proteine che richiedono un residuo fosforilato per legarsi ad un sito specifico¹¹.

Sono stati identificati 518 geni che codificano per proteinchinasi nel genoma umano (circa il 2% del genoma): 358 trascrivono per serin-treoninchinasi, 90 per tirosinchinasi e 43 per proteine tirosinchinasi simili. Tra i 90 geni che trascrivono TK, 58 sono per tirosinchinasi recettoriali e 32 per citoplasmatiche. Il rapporto tra fosfoserina:fosfotreonina:fosfotirosina è di 3000:3001:1 (Figura 2).

Figura 2. Albero filogenetico del chinoma umano.

(TK = Tyrosin Kinase; TKL = Tyrosine Kinase Like; GYC = GYC kinase family; STE = Homologs of the yeast STE7, STE11 and STE20 genes; CMGC = CDK, MAPK, GSK3 and CLK; CK1 = Cell Kinase 1; CAMK = Calmodulin/Calcium regulated kinases; AGC = Protein Kinase A, G, and C families).

3.1.1. TIROSINCHINASI (TK)

A dispetto della minor rappresentanza in confronto alle altre due famiglie, le tirosinchinasi svolgono un ruolo di maggior importanza nella trasduzione del segnale. Infatti le serin-treoninchinasi tipicamente sono associate ad un' amplificazione del segnale (una proteina fosforila molte altre proteine substrato). Le tirosinchinasi, invece, solitamente danno inizio alla cascata del segnale catalizzando la fosforilazione di pochi substrati che sono spesso serin-treoninchinasi¹⁴.

Le tirosinchinasi possono essere suddivise in due categorie: TK di membrana o recettoriali (RTK) e TK citoplasmatiche o NRTK (*Non Receptor Tyrosine Kinase*)¹⁵.

3.1.1.1. TIROSINCHINASI RECETTORIALI (RTK)

La comunicazione inter- e intra-cellulare ha un ruolo fondamentale in molte fasi della vita della cellula: la complessa rete di segnali che la regola è controllata in larga parte da fattori di crescita. Questi fattori possono influenzare la proliferazione cellulare in modo positivo o negativo e indurre una serie di risposte diversificate nelle cellule, come ad esempio la sopravvivenza, l'apoptosi e la differenziazione cellulare. L'interazione tra fattore di crescita e recettore, mediata da uno specifico *binding*, attiva una cascata di eventi biochimici intracellulari che è, in ultima analisi, responsabile della risposta osservata¹⁶.

I recettori tirosinchinasici, conosciuti anche come recettori per i fattori di crescita, sono una famiglia di proteine trans-membrana che media importanti processi fisiologici sia nelle cellule sane che in quelle tumorali¹⁷. Le RTK hanno un ruolo fondamentale nel mantenimento dell'omeostasi tissutale durante la sviluppo e la vita degli organismi multicellulari¹⁸.

I recettori tirosinchinasici sono costituiti da un dominio extracellulare deputato al riconoscimento con i fattori di crescita, un dominio trans-membrana, che ancora il recettore alla membrana¹⁶, e un dominio intracellulare con l'attività catalitica. Il *binding* con il ligando induce la dimerizzazione e l'autofosforilazione dei residui tirosinici citoplasmatici, in cui una subunità del dimero fosforila l'altra subunità (Figura 3).

Figura 3. Rappresentazione schematica dell'attivazione di una RTK.

Le funzioni tirosiniche fosforilate reclutano le proteine di trasmissione del segnale intracellulare, legandosi ai domini SH2. Inoltre, le proteine contenenti questi domini, come Grb2 (*Growth factor receptor-bound protein 2*), hanno la funzione di adattatori nel reclutamento di altre proteine per le RTK, aumentando così il repertorio di proteine del segnale attivate da queste ultime¹⁹, che trasmetteranno poi i segnali biologici per la regolazione della funzionalità cellulare¹⁷.

La cascata Ras/Raf/MAPK svolge un ruolo fondamentale nel controllo della proliferazione cellulare. Il legame tra RTK e Ras, a cui provvede Grb2, dimostra chiaramente l'importanza di questa via del segnale.

La similarità delle sequenze dei domini extracellulari delle RTK ne determina la specificità di *binding* con i ligandi⁶ e ne permette la classificazione in famiglie.

Le RTK vengono trascritte a partire da un'importante famiglia di oncogeni che è comunemente affetta da mutazioni e alterazioni nei tumori umani¹⁸. La deregolazione può avvenire attraverso vari meccanismi (ad esempio amplificazione genica, sovra-espressione di RTK, traslocazione di cromosomi) che portano alla produzione di RTK costitutivamente attive¹⁷. Quando i segnali indotti dalle RTK non sono più controllati si può avere la trasformazione cellulare.

EGFR

La famiglia dei recettori per il fattore di crescita epidermico (ErbB/HER) comprende quattro membri: EGFR (*Epidermal Growth Factor Receptor*, HER-1 o ERBB1), EGFR-2 (più conosciuto come HER-2 o ERBB2), HER-3 (o ERBB3) e HER-4 (o ERBB4). Sono glicoproteine trans-membrana contenenti un dominio extracellulare che interagisce con un ligando e un dominio intracellulare con l'attività enzimatica²⁰.

La porzione extracellulare è a sua volta composta da quattro domini (I-IV). I domini I e III si legano al fattore di crescita. I domini II e IV sono ricchi in cisteina e, in assenza dell'interazione con il fattore di crescita, stabilizzano il dominio extracellulare in una conformazione chiusa mediata da interazioni intramolecolari; in seguito al *binding* con il ligando, avviene un cambiamento conformazionale che rompe queste interazioni permettendo al "braccio" di dimerizzazione del dominio II di interagire con il dominio II di un secondo recettore²¹ (Figura 4).

Figura 4. Struttura schematica di EGFR in equilibrio tra due conformazioni. L'interazione con il fattore di crescita induce un cambiamento conformazionale e la successiva dimerizzazione (adattata da Lammerts van Bueren et al²).

Tra i membri di questa famiglia, EGFR e HER-4 vengono definiti autonomi perché, dopo il legame con il fattore di crescita, inducono una dimerizzazione del recettore e generano una cascata del segnale che porta a proliferazione, migrazione e differenziazione cellulare. HER-2 invece, non ha la capacità di interagire con il ligando, mentre HER-3 ha una minore attività enzimatica. A dispetto di questa mancanza di autonomia, HER-2 ed HER-3 sono però in grado di formare dei complessi eterodimerici con gli altri membri della famiglia ErbB consentendo l'avvio di un'ampia cascata del segnale²⁰.

Esistono molti fattori di crescita in grado di interagire con questi recettori: EGF (*Epidermal Growth Factor*), TGF-α (*Transforming Growth Factor-α*), AR (*amphiregulin*), ER (*epiregulin*), NR (*neuregulin*), hb-EGF (*heparin binding*-EGF) e betacellulina.

Sono inoltre molti i meccanismi che possono portare ad un'aumentata cascata del segnale e al reclutamento di MAPK (*Mitogen-Activated Protein Kinase*), PI3K/AKT (*Phosphatidylinositol-3-Kinase*), trasduttori del segnale e attivatori della trascrizione (STAT, *Signal Transducers and Activators of Transcription*), come per esempio sovra-espressioni e/o mutazioni dei recettori. La via delle Ras-Raf-MAPK è quella maggiormente attivata dalla famiglia ErbB/HER. A seguito dell'attivazione di EGFR, e conseguente fosforilazione dei residui tirosinici citoplasmatici, il complesso proteico adattatore GRB/Sos si lega sia direttamente che indirettamente attraverso Shc, a specifici siti di interazione intracellulari di EGFR. La regolazione del segnale è complicata poiché sono presenti meccanismi di *cross-talk* tra EGFR con altri membri della famiglia ErbB e con altri recettori tirosinchinasici come VEGFR-2 e PDGFR.

I recettori della famiglia ErbB sono espressi in vari tessuti, sia di origine epiteliale che neuronale, dove hanno un ruolo fondamentale nello sviluppo, nella proliferazione e nella differenziazione²³. Tuttavia, una de-regolazione di questi recettori, in particolare di EGFR e di HER-2, è implicata nello sviluppo di numerose patologie tumorali²³.

Tra i membri della famiglia ErbB il più indagato è sicuramente EGFR: un'aumentata attività e/o sue mutazioni sono infatti ben documentate in molti tipi di cancro con marcata tendenza ad aggressività tumorale e prognosi sfavorevole (tumore al polmone non a piccole cellule NSCLC, tumore mammario). EGFR è diventato quindi un *target* di prima scelta nella ricerca di agenti antitumorali²⁴.

VEGFR

Tra le varie molecole coinvolte nei processi di crescita e formazione della rete vascolare, i membri della famiglia del fattore di crescita dell'endotelio vascolare (VEGF, *Vascular Endothelial Growth Factor*) hanno un ruolo predominante25: gli effetti fisiologici di VEGF (VEGF-A) sono mediati dal *binding* a due recettori omologhi VEGFR-1 e VEGFR-2 che sono espressi sulle cellule endoteliali vascolari. Un terzo recettore, VEGFR-3, è coinvolto invece nella linfoangiogenesi mediata da VEGF-C e -D. Come per gli altri recettori tirosinici trans-membrana, VEGFR va incontro a dimerizzazione ligando-indotta²⁶.

Molti studi hanno dimostrato che sia VEGFR-1 che VEGFR-2 sono essenziali per il normale sviluppo embrionale e post-natale. Questi due recettori presiedono a diverse vie di trasduzione del segnale: VEGFR-2 è il maggiore mediatore degli effetti mitogeni e angiogenici e dell'aumento della permeabilità indotti da VEGF; VEGFR-1, invece, è coinvolto principalmente nella differenziazione e nell'organizzazione dell'architettura dei vasi²⁷.

Le ultime ricerche hanno dimostrato come VEGFR-2 sia il principale mediatore dei segnali indotti da VEGF all'endotelio vascolare²⁸.

PDGFRα e PDGFRβ

I recettori PDGFR α e β (Platelet Derived Growth Factor Receptor α e β) appartengono alla famiglia filogenetica conosciuta come *RTK type III subfamily*, assieme a CSF1R, c-KIT e FLT3. PDGF regola la normale crescita cellulare e la differenziazione. L'espressione di PDGFR attivato promuove i processi di trasformazione oncogenica, rendendo evidente come mutazioni o riarrangiamenti nella sequenza genica possano avere un ruolo importante nello sviluppo di patologie tumorali²⁹.

I complessi PDGFR/PDGF hanno un ruolo importante anche nel processo angiogenico, reclutando vari tipi di cellule che sono richieste per la vascolarizzazione. Il rilascio di PDGF dalle EC è essenziale per il richiamo di periciti e cellule muscolari lisce che esprimono PDGFRβ e sono fondamentali per l'integrità e la stabilizzazione della rete vascolare. Il ruolo di PDGFR nell'angiogenesi suggerisce come l'inibizione combinata di PDGFR e VEGFR sia un approccio razionale nella terapia antiangiogenica³⁰. Altri studi hanno identificato traslocazioni cromosomiali che interessano PDGFRβ nella leucemia mielomonocitica cronica (CMML)³¹.

FLT3

Fms-Like Tyrosine kinase 3 (FLT3) è una proteinchinasi recettoriale selettivamente espressa dalle cellule ematopoietiche, di cui media la differenziazione e la proliferazione³².

FLT3 è costituita da cinque domini extracellulari immunoglobulino-simili, un dominio transmembrana, un dominio iuxtamembrana ed un dominio chinasico costituito da due lobi tra loro collegati. Il gene che codifica per FLT3 è tra i geni che si ritrovano più frequentemente mutati nella leucemia mieloide acuta (AML)³³;

13

si ritiene che l'attivazione di FLT3 sia alla base della differenziazione e proliferazione delle cellule progenitrici, nella AML, e che contemporaneamente ne inibisca l'apoptosi.

Duplicazioni tandem nel dominio iuxtamembrana rappresentano inoltre il meccanismo più comune di attivazione di FLT3, e vengono riscontrate nel 30% dei casi di AML³⁴.

Altre mutazioni puntiformi si ritrovano nell' *activation loop*, e riguardano il 5-10% dei casi di AML³³.

CSF1R

Il Colony Stimulating Factor 1 Receptor (CSF1R), anche noto come Macrophage-Colony Stimulating Factor (M-CSFR), è codificato dal gene CSF1R³⁵.

Il ligando naturale per questo recettore è CSF1 (*Colony Stimulating Factor 1*), una citochina che media la produzione, la differenziazione e la funzione dei macrofagi.

Mutazioni di CSF1R sono associate alla leucemia mielomonocitica cronica e alla leucemia mieloblastica acuta di tipo M4³⁶.

CSF1 ed il suo recettore rivestono un ruolo importante nello sviluppo delle ghiandole mammarie e si ritiene che possano essere coinvolti nel processo di carcinogenesi del tessuto mammario³⁷.

c-KIT

Conosciuta anche come *Stem Cells Growth Factor Receptor* (SCGFR) c-KIT è una tirosinchinasi recettoriale codificata dal proto-oncogene *KIT*.

c-KIT è un recettore per citochine, espresso sulla superficie delle cellule staminali ematopoietiche, e si ritrova mutato in molte forme di cancro³⁸.

Il ligando naturale per c-KIT è rappresentato dal *Stem Cell Factor* (SCF) che, in seguito a legame con il proprio recettore, inizia i segnali intracellulari che portano alla differenziazione e proliferazione cellulari.

Mutazioni attivanti il gene *KIT* si ritrovano frequentemente nei tumori dello stroma gastrointestinale, nel seminoma testicolare, nel melanoma e nella leucemia mieloide acuta (AML)³⁹.
3.1.1.2. TIROSINCHINASI CITOPLASMATICHE (NRTK)

Le tirosinchinasi citoplasmatiche, o non recettoriali (NRTK) sono codificate da protooncogeni e si distinguono strutturalmente dalle RTK principalmente per la mancanza del dominio extracellulare con il sito di *binding* per il ligando. La maggior parte delle TK citoplasmatiche si trova nel citoplasma. Tuttavia, alcune NRTK sono ancorate alla membrana cellulare: questo è permesso da alcune modificazioni alla funzione amminica terminale, come la miristoilazione o la palmitoilazione⁴⁰. Presentano inoltre il dominio catalitico che contiene un sito specifico per il *binding* dell'ATP⁴¹.

Le NRTK possiedono dei domini che mediano le interazioni proteina-proteina, proteina-lipidi e proteina-DNA. I domini di interazione proteina-proteina più comuni sono denominati Src homology 2 (SH2) e 3 (SH3). Il dominio SH2 è costituito da circa 100 residui in grado di interagire con residui fosfotirosinici in modo sequenza-specifico. Il dominio SH3 è più piccolo (circa 60 residui) e riconosce sequenze ricche di prolina. Alcune NRTK contengono ulteriori domini di interazione: Abl, per esempio, oltre ai domini SH2 e SH3, possiede un dominio 5)⁴⁰. lega il DNA che lega la F-actina e uno che (Figura

Figura 5. Organizzazione dei domini nelle maggiori famiglie di NRTK. Il gruppo ammino-terminale è a sinistra dello schema, mentre il carbossiterminale si trova sulla destra. La lunghezza delle varie NRTK è solo parzialmente in scala. (adattata da Hubbard et al⁴⁰).

La regolazione delle NRTK avviene attraverso la fosforilazione di residui tirosinici che porta, normalmente, all'attivazione del *loop* di attivazione e all'aumento dell'attività enzimatica. La fosforilazione del *loop* di attivazione avviene attraverso la trans-auto-fosforilazione o la fosforilazione da parte di un'altra NRTK. La fosforilazione di altre tirosine, che non si trovino nel *loop* di attivazione, può invece regolare in modo negativo l'attività chinasica⁴⁰.

Le tirosinchinasi citoplasmatiche sono parte integrante della cascata del segnale a cui danno inizio le RTK e gli altri recettori di membrana (come i recettori accoppiati a proteine G)⁴⁰.

Le tirosinchinasi citoplasmatiche infatti, interagendo con i domini intracellulari autofosforilati delle RTK, vengono attivate e promuovono la cascata del segnale all'interno della cellula⁷.

Normalmente, l'attivazione di questi mediatori molecolari è finemente regolata⁴⁰ ma una loro de-regolazione⁷ può sovra-stimolare la crescita cellulare⁴⁰. Esempi di tirosinchinasi citoplasmatiche sono Abl (*Abelson kinase*) e Src⁴⁰.

Src

La più grande famiglia di tirosinchinasi citoplasmatiche è la famiglia Src. I membri di questa famiglia partecipano ad una grande varietà di processi, tra i quali la mitosi, la ristrutturazione del citoscheletro e sono componenti chiave nella regolazione del sistema immunitario per l'attivazione di cellule T e B. Sono stati descritti molti substrati per Src che includono, tra gli altri, PDGFR e EFGR. Src è implicata, oltre che nella regolazione di vari processi fisiologici, in molti tumori umani (mammella, polmone e colon)⁴⁰.

Src e i membri della sua famiglia contengono un ammino-gruppo terminale miristoilato, residui carichi positivamente che interagiscono con le teste dei gruppi fosfolipidici, una regione a bassa omologia di sequenza, un dominio SH3, un dominio SH2, un dominio tirosinico e una corta porzione carbossi-terminale.

L'attività di Src viene regolata attraverso la distruzione delle interazioni tra il dominio chinasico e i domini SH2 e SH3. Lo spostamento dei domini SH2 e SH3 dal C-terminale e del *linker* (Figura 6), avvengono in seguito al *binding* con un ligando, portando all'attivazione della proteina. Src può, per esempio, essere attivata attraverso il *binding* del suo dominio SH2 al recettore PDGF auto fosforilato⁴⁰.

Figura 6. Rappresentazione schematica del cambiamento conformazionale indotto dopo la fosforilazione e attivazione di Src (adattata da Guarino⁴²).

Una volta attivata, Src è coinvolta nella regolazione di molti processi, inclusi la proliferazione, la differenziazione e la sopravvivenza cellulare, la motilità e l'angiogenesi. È stato stabilito che la sola sovra-espressione di Src costituisce di per se' un debole segnale oncogenico. Inoltre, raramente si assiste a mutazioni che portino ad un'attivazione costitutiva di Src nei tumori umani.

Recenti evidenze sperimentali hanno però suggerito che la sovra-espressione della forma *wild-type* di Src è in grado di aumentare l'attività di altre molecole che controllano altre vie del segnale mediante l'interazione con molte altre proteine, inclusi i recettori tirosinchinasici (come PDGFR, VEGFR-2, EGFR, HER-2)⁴³. Src,

infatti, riveste un ruolo importante nelle risposte proliferative RTK-mediate attraverso l'attivazione delle cascate Grb2/Sos/Ras/Raf/MEK/MAPK e PI3K/Akt⁴³. Src e la sua famiglia hanno un ruolo importante nell'oncogenesi del cancro alla prostata, al colon, al seno, al polmone e in molti altri tumori⁴³. Tuttavia Src ha prevalentemente un ruolo nel mantenimento del fenotipo neoplastico e nella progressione tumorale, piuttosto che nell'iniziazione e crescita del tumore⁴².

Abl

c-Abl è localizzata in numerosi siti cellulari (nucleo, citoplasma, mitocondri, reticolo endoplasmatico) nei quali interagisce con varie proteine, come adattatori della cascata dei segnali, chinasi, fosfatasi, regolatori del ciclo cellulare e fattori di trascrizione⁴².

Strutturalmente Abl è organizzata come Src: possiede i domini SH2 e SH3 e un sito chinasico, ma la sua attività enzimatica viene regolata in modo diverso. Abl non ha il sito regolatore negativo di fosforilazione all'estremità carbossi-terminale, presente invece in Src, e, di conseguenza, questa estremità non ha alcun ruolo sul controllo dell'attività chinasica. Il dominio SH3 è invece implicato nella repressione dell'attività enzimatica: mutazioni a livello di questo dominio possono infatti portare all'attivazione costitutiva di Abl e a conseguente trasformazione cellulare (Figura 7).

Figura 7. Rappresentazione schematica del cambiamento conformazionale indotto dopo la fosforilazione e attivazione di c-Abl.

c-Abl è implicata nella regolazione di un ampio numero di processi cellulari, incluse la crescita e la sopravvivenza cellulare; il controllo dell'attività chinasica di questo enzima è quindi essenziale: è sufficiente una sola mutazione specifica che causi un'anomalia nell'attività enzimatica perché si abbia insorgenza di leucemia nell'uomo. In particolare, a causa della traslocazione di un gene tra il cromosoma 22 e il cromosoma 9 si ha la formazione del cromosoma Philadelphia, in cui la sequenza del primo esone *ABL1* viene rimpiazzata dalle sequenza del gene *BCR*, portando all'espressione della proteina di fusione Bcr-Abl⁴². Bcr-Abl è estremamente importante dal punto di vista patologico in quanto questa proteina causa un aumento della proliferazione cellulare, modifiche nella morfologia della cellula e perdita dell'inibizione da contatto. La leucemia mieloide cronica (*Chronic Myeloid Leukemia*, CML) e alcuni sottotipi della leucemia linfatica acuta sono collegati in modo causale all'espressione di questa proteina mutata⁴².

3.1.2. SERIN-TREONINCHINASI (STK)

Le seri-treoninchinasi sono proteinchinasi in grado di fosforilare residui di serina o treonina di specifici substrati proteici. Sebbene la selettività del processo catalitico riguardi il residuo amminoacidico che esse sono in grado di fosforilare, il riconoscimento del substrato dipende dalla presenza di specifiche sequenze amminoacidiche di consenso nelle vicinanze del suo sito fosfoaccettore. Dal momento che il riconoscimento con il substrato avviene mediante l'interazione di pochi amminoacidi chiave, nel sito catalitico, con le sequenze consenso dei substrati (solitamente mediante interazioni idrofobiche e ponti salini), ne risulta che una singola serin-treoninchinasi non è solitamente specifica per un unico substrato, ma per "famiglie" di substrati, che presentano sequenze consenso in comune. Queste caratteristiche conferiscono alle serin-treoninchinasi un ruolo chiave nell'amplificazione del segnale intracellulare. Il dominio catalitico delle serin-treoninchinasi è piuttosto conservato tra le diverse proteine, mentre esse si differenziano per quanto riguarda i domini di riconoscimento.

Molte serin-treoninchinasi sono inibite da "pseudo substrati", che presentano sequenze consenso che vengono riconosciute dalla chinasi, ma che mancano di un residuo amminoacidico fosforilabile.

Anche l'espressione di alcune serin-treoninchinasi si ritrova alterata in diversi tipi di tumore⁴⁴.

Negli ultimi anni le chinasi Aurora e mTOR (*mammalian Target Of Rapamycin*) sono state individuate tra le serin-treoninchinasi più interessanti per lo sviluppo di farmaci antitumorali.

Aurora

Durante il processo mitotico un ruolo fondamentale è rivestito dalle serintreoninchinasi della famiglia Aurora⁴⁵.

Tre sono le chinasi sino ad ora identificate appartenenti a questa famiglia: Aurora-A, Aurora-B e Aurora-C. Queste tre chinasi presentano simile organizzazione, dal punto di vista strutturale. Sono costituite da un dominio Nterminale (dai 39 ai 129 residui amminoacidici), un dominio catalitico ed un breve dominio C-terminale (15-20 amminoacidi). Il dominio N-terminale è poco conservato, tra le tre chinasi, conferendone diversa selettività per quanto riguarda le interazioni proteina-proteina.

Aurora-A è coinvolta nel processo di formazione del fuso mitotico e nella maturazione del centrosoma, assicurando la corretta segregazione dei cromosomi nelle cellule figlie durante il processo di replicazione⁴⁶.

Aurora-B è una sorta di "Chromosomal passenger" ed è coinvolta nel trasporto dei cromosomi lungo il fuso mitotico durante la divisione cellulare.

Essa si trova infatti associata ai centromeri durante la prometafase, ed alla zona mediana del fuso mitotico durante la metafase e la telofase⁴⁷.

La funzione di Aurora-C rimane invece ancora poco chiara. Essa si trova associata ai centrosomi, ma nei tessuti sani la sua espressione è limitata alle cellule germinali⁴⁸.

Visto il loro coinvolgimento nella regolazione del processo mitotico ed essendo stata verificata la loro sovraespressione in molte forme di tumori, queste chinasi sono diventate un interessante target per potenziali terapie antitumorali.

mTOR

mTOR è una serin-treoninchinasi di 289kDa che regola la sintesi proteica necessaria alla crescita cellulare, alla proliferazione e all'angiogenesi. mTOR viene stimolata dall'attivazione di recettori di superficie, quali VEGFR ed EGFR, e

da nutrienti che entrano nella cellula (amminoacidi e glucosio). L'attivazione di mTOR vede implicate altre due proteine fondamentali: PI3K e AKT.

mTOR funziona come subunità catalitica di due complessi molecolari denominati mTORC1 e mTORC2⁴⁹.

mTOR può essere inibita dall'antibiotico Rapamicina. La Rapamicina è in grado di legarsi alla proteina intracellulare FKBP12, originando un complesso che è in grado di legarsi stabilmente ad mTOR. Tale legame andrebbe quindi a dissociare mTOR dai complessi mTORC1 ed mTORC2, bloccandone l'attività catalitica.

La via di trasduzione del segnale PI3K/AKT/mTOR si ritrova deregolata in molte forme di tumori, tra cui il carcinoma renale⁵⁰.

3.1.3. MECCANISMO DI ATTIVAZIONE DEL DOMINIO CATALITICO NELLE PROTEINCHINASI⁵¹

La struttura generale del dominio catalitico delle chinasi consiste in due lobi principali: un lobo N-terminale, più piccolo, ed uno C-terminale, più grande. I due lobi formano una fessura che permette il *docking* dell'ATP, il cui ribosio viene allocato in una tasca formata dal cosiddetto *Glycine-rich loop*, a livello del lobo N-terminale.

Il dominio catalitico delle chinasi può esistere in due principali stati conformazionali: uno stato inattivo, non competente per il legame con l'ATP, e uno attivo, ad elevata affinità per l'ATP.

Il passaggio da uno stato all'altro è generalmente indotto dall'attivazione della chinasi stessa, che nella maggior parte dei casi avviene mediante fosforilazione dell'*activation loop*.

Importanti per la transizione da conformazione inattiva a conformazione attiva risultano essere specifici amminoacidi, in particolare un residuo di Lys del lobo N-terminale, uno di Glu dell'elica α C ed il cosiddetto *DFG motif* (Asp, Phe, Gly).

In seguito ad attivazione, il dominio catalitico della chinasi subisce infatti un drastico riarrangiamento: lo spostamento del *DFG motif* guida una serie di modificazioni conformazionali che portano all'instaurarsi di interazioni tra amminoacidi, lontani tra loro nella conformazione inattiva, che stabilizzano il complesso con l'ATP stessa.

Una delle interazioni principali che si vengono a formare in seguito ad attivazione è rappresentata dal ponte salino tra Lys (del lobo N-terminale) e Glu (dell'elica α C). Questo legame stabilizza a sua volta la posizione del Glu stesso, che si trova a contrarre interazioni idrofobiche con amminoacidi idrofobici dell'elica α C e con la Phe del *DFG motif*, formando una caratteristica struttura *spine*. Il coinvolgimento della Phe in questa conformazione "a colonna" induce a sua volta il corretto posizionamento dell'Asp; quest'ultimo si trova quindi ad interagire con i gruppi fosfato dell'ATP, formando legami deboli sia diretti che mediati dalla presenza del Mg²⁺ catalitico, stabilizzando il complesso ATP-chinasi (Figura 8).

Figura 8. Meccanismo di attivazione dell'attività catalitica delle proteinchinasi (adattata da Kornev et a^{5^1}).

3.2. INIBITORI TIROSINCHINASICI

Il grande interesse nei confronti delle chinasi come *target* per lo sviluppo di farmaci antitumorali è dovuto a diversi fattori:

- approssimativamente, ogni processo di trasduzione del segnale avviene attraverso il trasferimento di gruppi fosfato che è mediato dalle chinasi, suggerendo come l'inibizione dell'attività chinasica possa dare origine ad una risposta apprezzabile;
- II. nonostante l'alto grado di conservazione del sito di *binding* dell'ATP, esistono delle peculiari differenze che rendono possibile sviluppare molecole in grado di inibire selettivamente determinate chinasi;
- III. l'inibizione dell'attività enzimatica delle chinasi viene tollerata sorprendentemente bene dalle cellule sane; gli inibitori delle TK hanno infatti una finestra terapeutica piuttosto ampia; ad esempio, Dasatinib, recentemente approvato per la CML Gleevec®-resistente, pur inibendo

tutti e 9 i membri della famiglia di Src, presenta un profilo di sicurezza migliore rispetto ai chemioterapici classici;

IV. farmaci come il Gleevec® hanno un elevato profilo di successo, con una risposta positiva nell'80% dei casi di pazienti con CML in fase cronica⁵².

Le proteinchinasi rappresentano quindi target ottimali per lo sviluppo di nuove terapie antitumorali. Attualmente, nella pratica clinica, l'inibizione delle RTK può venir ottenuta mediante due diverse strategie: l'utilizzo degli anticorpi monoclonali o la somministrazione di piccole molecole organiche ad azione ATPmimetica. mAb e TKI (Tyrosine Kinase Inhibitors) interferiscono con l'attività delle RTK con meccanismi differenti: mAb diretti contro il dominio extra-cellulare dei recettori o contro i ligandi stessi non hanno bisogno di essere internalizzati nella cellula tumorale per esercitare la loro attività inibitoria. Al contrario, i TKI si legano al dominio chinasico intracellulare delle proteine, nel sito di binding dell'ATP, e devono quindi attraversare la membrana. A causa del diverso sito d'azione, queste due classi di farmaci mostrano anche un diverso meccanismo d'azione: mAb diretti contro il recettore possono attivare l'inibizione in modo diverso a seconda del sito bersaglio, ma hanno come effetto comune quello di portare all'internalizzazione del recettore e contribuire alla sua down-regulation, che diventa particolarmente efficace quando l'attivazione delle RTK è causata da una loro sovraespressione. Inoltre la somministrazione di mAb ha il vantaggio esclusivo di poter evocare una risposta immunitaria, anche se il contributo di questa attività è difficile da quantificare⁵³.

I TKI agiscono invece bloccando il sito di *binding* dell'ATP nel dominio catalitico, prevenendo l'autofosforilazione del recettore e l'attivazione della cascata del segnale intracellulare. I TKI competono con l'ATP, che è presente in elevata concentrazione nella cellula, e quindi vengono somministrati a dosaggi elevati. Tuttavia, nella prospettiva di un approccio multi-*target*, i TKI sono i candidati ideali per la loro capacità di legarsi a RTK diverse e a TK citoplasmatiche, poiché la struttura della tasca di *binding* dell'ATP è altamente conservata tra le varie famiglie di tirosinchinasi. Al contrario, gli anticorpi monoclonali sono, per definizione, agenti *single-target* per la specificità del riconoscimento del sito *binding* che è univoco⁵³.

ANTICORPI MONOCLONALI

L'unicità strutturale dei domini extracellulari dei recettori è stata utile nel creare specifici mAb che potessero riconoscere e inibire uno specifico *target*. Questi anticorpi possono svolgere la loro funzione in più modi: impedendo il *binding* con il ligando, inibendo la dimerizzazione del recettore o favorendo la degradazione del recettore stesso. Herceptin® è stato il primo mAb diretto contro HER-2 e viene impiegato in terapia nel trattamento del tumore al seno sovra-esprimente questa TK. Un altro mAb entrato in terapia è Cetuximab (Erbitux®) diretto contro EGFR, che agisce impedendo il *binding* del fattore di crescita al recettore; è stato approvato in combinazione con la radioterapia nel trattamento del SCCHN (*Squamous Cell Carcinoma of the Head and Neck*), ma anche nel cancro al colon metastatico⁴¹.

INIBITORI TIROSINCHINASICI ATP-MIMETICI

La risoluzione mediante cristallografia ai raggi-X dei complessi fra TK e ATP ha permesso la determinazione delle interazioni che si instaurano tra sito catalitico e substrato (Figura 9). Di conseguenza, quindi, è stato anche possibile sviluppare molecole in grado di inibire in maniera specifica proteine ad attività tirosinchinasica¹³.

Figura 9. Rappresentazione schematica del sito catalitico delle tirosinchinasi.

La porzione purinica dell'ATP instaura due legami ad idrogeno con lo scheletro della proteina (*hinge region*). Il residuo di ribosio viene alloggiato in una cavità nota come tasca per il ribosio, mentre il terminale trifosfato interagisce con due ioni magnesio e con numerosi amminoacidi. La tasca per l'ATP presenta anche diverse regioni normalmente libere, ma di notevole importanza dal punto di vista chimico-farmaceutico. Una di queste zone è nota come superficie di specificità, mentre un'altra consiste in una tasca idrofobica (opposta alla tasca per il ribosio) che l'ATP non occupa¹⁴. All'ingresso di questa tasca idrofobica è presente un importante residuo amminoacidico, chiamato *gatekeeper* che, in alcune chinasi, genera un elevato ingombro sterico, rendendo impossibile l'accesso alla tasca. Per contro, in altre chinasi, il *gatekeeper* è più piccolo e permette di accedere alla tasca stessa. Tali differenze si possono sfruttare per l'ottenimento di inibitori selettivi per le varie classi di TK¹³.

I TKI possono legarsi alle chinasi in modo reversibile o irreversibile.

L'inibizione reversibile di questi enzimi può quindi esplicarsi fondamentalmente attraverso due modalità: l'inibitore può legarsi alla tasca per l'ATP, nella conformazione attiva ("*DFG-in*"), impedendone quindi l'accesso da parte dell'ATP stessa, o nella conformazione inattiva ("*DFG-out*"), stabilizzandola, ed impedendone la transizione a conformazione attiva.

In base allo stato conformazionale verso cui dimostrano maggiore affinità, gli inibitori reversibili vengono quindi classificati in inibitori di tipo I ed inibitori di tipo II.

I primi presentano affinità per la forma attiva della chinasi, in conformazione *DFG-in*. I secondi presentano maggiore affinità per la conformazione inattiva, con dominio *DFG-out*².

Gli inibitori proteinchinasici di questa categoria rappresentano una classe di farmaci caratterizzata da un'elevata eterogeneità strutturale, correlata ad un'ampia variabilità dal punto di vista della selettività di inibizione nei confronti delle diverse chinasi⁵⁴.

La struttura di tali inibitori può comunque essere schematizzata come riportato in Figura 10:

Figura 10. Schematizzazione della struttura generale degli inibitori proteinchinasici di tipo I e di tipo II.

Entrambe le classi sono accomunate dalla presenza di un nucleo accettore/donatore di ponti a idrogeno (solitamente un eterociclo aromatico azotato); tale nucleo è indispensabile per l'interazione dell'inibitore con la regione *hinge region* della tasca catalitica, a carattere idrofobico, che si esplica mediante la formazione di ponti a idrogeno con i gruppi ammidici del *backbone*; tali interazioni solitamente rappresentano il contributo energetico maggiore alla stabilità del complesso. A tale nucleo sono quindi legati sostituenti a carattere idrofobico, la cui natura e geometria influenza la selettività di inibizione. Rispetto agli inibitori di tipo I gli inibitori di tipo II presentano un'ulteriore porzione idrofobica, legata alla prima attraverso un ponte elettrondenso, che va ad occupare la tasca idrofobica accessoria, accessibile nella sola conformazione *DFG-out*².

In generale gli inibitori di tipo I presentano minore selettività rispetto agli inibitori di tipo II; la tasca idrofobica accessoria che questi ultimi vanno ad occupare, infatti, risulta meno conservata tra le diverse chinasi, rispetto al sito di interazione dell'ATP. Le eccezioni sono tuttavia numerose⁵⁴.

Per quanto riguarda gli inibitori irreversibili, essi sono generalmente caratterizzati dalla presenza di gruppi funzionali elettrofilici (funzioni carboniliche α , β -insature e cloro/fluorometil carbonil), in grado di reagire con il residuo tiolico nucleofilico di una Cys presente nel sito attivo⁵⁵.

La maggior parte di questo tipo di composti presenta uno scaffold 4anilinochinazolinico: nei *clinical trials* sono presenti Canertinib (fase II)e Afatinib (fase III) (Figura 11). A dispetto delle difficoltà spesso associate ai farmaci che legano covalentemente il/i proprio/i *target*, come una potenziale cross-reattività con altri bersagli molecolari, questi composti sono promettenti candidati farmaci poiché spostano l'equilibrio fisiologico tra ATP e chinasi-*target* bloccando in modo permanente l'attività catalitica dell'enzima⁵⁶.

*Figura 11.*Strutture di inibitori irreversibili in fasi cliniche: Canertinib, Afatinib e Neratinib.

Per questo motivo, si comportano da inibitori ATP-non competitivi legando covalentemente e irreversibilmente la chinasi e rappresentano un vantaggio in presenza di elevate concentrazioni intracellulari di ATP. Inoltre, questi inibitori rimangono nel sito attivo della chinasi e restano attivi sulle cellule tumorali anche quando i livelli plasmatici scendono dopo la somministrazione dei composti. Un altro punto importante è la capacità di questi composti di sfruttare il gruppo sulfidrilico di una Cys particolarmente reattiva che si trova all'entrata della tasca di *binding* dell'ATP di tutti i membri della famiglia ErbB e in poche altre chinasi, rendendoli inibitori duali di EGFR e HER-2. Questo aspetto porta al loro meccanismo di azione un valore aggiunto visto che spesso il partner di

dimerizzazione di EGFR nei tumori è HER-2⁵⁶. Vari inibitori irreversibili sono attualmente in fase di valutazione clinica per il trattamento di NSCLC: Afatinib (BIBW2992) (Boehringer Ingelheim; Ingelheim, Germania) inibitore di EGFR/HER2, Canertinib (CI-1033, PD183805, Pfizer Inc, New Jersey, US) che inibisce tutti e quattro i membri della famiglia ErbB e Neratinib (Pfizer; New London, CT, US), attivo nei confronti di EGFR/HER-2⁵⁷.

Dal 2001 (anno dell'immissione in commercio del Gleevec®) ad oggi la *Food and Drug Admnistration* (FDA) ha approvato 4 mAb e 12 TKI per la cura di diverse tipologie di cancro (Tabella 1).

FARMACO	SPECIALITA'	CLASSE	TARGET	APPROVATI PER	
Bevacizumab	Avastin®	mAb	VEGFR2	Glioblastoma, NSCLC, metastasi del cancro alla mammella, metastasi del CRC, rene metastatico.	
Panitumumab	Vectibix ®	mAb	EGFR	Metastasi del cancro al colon.	
Cetuximab	Erbitux®	mAb	EGFR	Carcinoma a cellule squamose della testa e del collo, CRC.	
Trastuzumab	Herceptin [®]	mAb	HER2	Adenocarcinoma della giunzione gastrica o gastroesofagea, cancro alla mammella che sovraesprime HER2.	
Imatinib	Gleevec®	ткі	ABL, KIT, PDGFRβ	GIST, Leucemia, dermatofibrosarcoma, sindrome mielodisplasica/mieloproliferativa, mastocitosi sistemica.	
Gefitinib	Iressa®	ТКІ	EGFR	NSCLC.	
Erlotinib	Tarceva®	ТКІ	EGFR	NSCLC, cancro al pancreas.	
Lapatinib	Tykerb®	ткі	EGFR, HER2	Cancro metastatico alla mammella.	
Nilotinib	Tasigna®	ТКІ	Abl	CML.	
Dasatinib	Sprycell®	ткі	ABL, EPHA2, FYN, KIT, LCK, PDGFRβ, SRC, YES	CML, Leucemia linfoblastica acuta.	
Pazopanib	Votrient [®]	ткі	VEGFR-1, VEGFR-2, VEGFR-3, C-kit, PDGFRα e β	Carcinoma delle cellule renali in stadio avanzato.	
Suinitinib	Sutent®	ткі	VEGFR-1, VEGFR-2, VEGFR-3, CSF1R, FLT3, KIT, PDGFR α e β, RET	Carcinoma metastatico alle cellule renali, GIST resistente all'imatinib, tumori neuroendocrini del pancreas.	
Sorafenib	Nexavar®	ткі	PDGFRα e β, KIT, RAF1, VEGFR-2, VEGFR-3	Carcinoma delle cellule renali in stadio avanzato, carcinoma epatocellulare.	
Vandetanib	Zactima®	ткі	EGFR, VEGFR-2, RET	Carcinoma midollare della tiroide.	
Vemurafenib	Zelboraf [®]	TKI	RAF	Melanoma.	
Crizotinib	Xalkori [®]	ткі	ALK	NSCLC.	

Tabella 1. Farmaci antitumorali in grado di inibire l'azione delle TK fino ad oggi approvati.

 Tabella adattata da

 http://www.cancer.gov/cancertopics/factsheet/Therapy/targeted.

 NSCLC: Non Small Cell Lung Cancer, tumore del polmone a cellule non piccole;

 CRC: Colorectal Cancer, cancro del colon retto;

 GIST: GastroIntestinal Stromal Tumor, tumore stromale gastrointestinale;

 CML: Chronic Myelogenous Leukemia, leucemia mieloide cronica.

3.3. INIBITORI SERIN-TREONINCHINASICI

L'inibizione delle serin-treoninchinasi può avvenire mediante l'utilizzo di molecole organiche ATP-competitive, in modo simile a quanto avviene per le tirosinchinasi citoplasmatiche. Ad oggi tutti gli inibitori serin-treoninchinasici noti sono inibitori reversibili, e la maggior parte di essi esplica un'azione *multi-target*, sia nei confronti di serin-treoninchinasi che tirosinchinasi (es: VX-680, MLN-8054) (Figura 12).

Una particolare eccezione è rappresentata dall'inibitore selettivo di mTOR Temsirolimus, un lattone ciclico analogo della Rapamicina. Analogamente alla rapamicina, esso agisce legando la proteina FKBP-12.

Il complesso FKBP-12/Temsirolimus è quindi in grado di inibire l'attività enzimatica di mTOR mimando il complesso FKBP-12/Rapamicina.

Figura 12. Esempi di inibitori serin-treoninchinasici.

3.4. RESISTENZA AGLI INIBITORI PROTEINCHINASICI ATP-COMPETITIVI

A dispetto di un sorprendente successo terapeutico iniziale di Gefitinib e Erlotinib in pazienti con NSCLC (*Non Small Cell Lung Cancer*), è stato riscontrato che, dopo non molto tempo, questi inibitori vanno rapidamente incontro a problemi di resistenza dovuti ad una particolare mutazione (T790M)^{41,59}.

Allo stesso modo, anche nel trattamento della CML con il Gleevec®, si può assistere a insorgenza di resistenza. Nei pazienti con CML positivi al cromosoma Phildelphia in fase di crisi blastica è stata riscontrata un'aumentata attività di

Bcr/Abl nonostante la terapia con il Gleevec® e il trattamento di questa patologia ha cominciato ad essere problematico⁴¹.

Diventa quindi necessario conoscere i meccanismi di resistenza per mettere in atto e studiare le opportune strategie per diminuirne l'insorgenza⁶⁰. La resistenza ai farmaci può essere causata da diversi meccanismi tra i quali un'aumentata produzione del *target*, alterazioni nella struttura della proteina-bersaglio, diminuito *up-take* del farmaco e un'aumentata detossificazione⁴¹.

Nel tentativo di superare l'insorgenza di resistenza, le compagnie farmaceutiche stanno cercando combinazioni di terapie sempre più potenti e inibitori che abbiano come bersaglio più proteinchinasi. Attualmente sono in fase clinica molte combinazioni fra inibitori tirosinchinasici con mAb o con chemioterapici classici.

I tentativi di superare la resistenza al Gleevec® hanno portato alla scoperta di Nilotinib, un nuovo inibitore di Bcr/Abl, circa 30 volte più potente del Gleevec® e in grado di superare la maggior parte delle mutazioni di Bcr/Abl che portano alla resistenza verso il questo farmaco⁴¹.

Un altro tipo di approccio per superare i fenomeni di resistenza è lo sviluppo di singoli inibitori che abbiano come *target* più tirosinchinasici, obiettivo che può essere raggiunto solo con molecole ATP-mimetiche: GlaxoSmithKline ha per esempio sviluppato Lapatinib, inibitore di EGFR ed HER-2 che ha dato buoni risultati nel tumore al seno metastatico; Pfizer ha, invece, sviluppato Sunitinib che ha 4 diverse chinasi come *target*⁶¹. Vandetanib, prodotto dall'Astra Zeneca, è un inibitore duale di EGFR e VEGFR-2 (Figura 13).

Figura 13. Strutture di alcuni inibitori multi-target approvati.

31

La principale preoccupazione per quanto riguarda gli agenti multi-*target* è legata agli effetti collaterali che possono causare: "Una terapia ad ampio spettro può essere molto più efficace, ma ha come prezzo da pagare una maggiore tossicità" (D. Parkinson, capo del reparto sviluppo in clinica oncologica alla Amgen).

Nonostante le problematiche che riguardano lo sviluppo della resistenza, le piccole molecole che inibiscono le proteinchinasi potrebbero essere assunte per l'intera durata della vita del paziente, poiché non eradicano definitivamente il tumore e non hanno effetti collaterali particolarmente severi, diversamente dai farmaci della chemioterapia tradizionale. McMahon, vice-presidente del settore *drug discovery* della Sugen, pensa che la relativa sicurezza di questo tipo di molecole sia dovuta al fatto che si legano al proprio *target* in un unico modo, essendo per la maggior parte ATP-mimetiche. Sunitinib occupa parte della tasca dell'ATP, ma la maggior parte degli effetti inibitori sono dovuti a interazioni più deboli con altre regioni dei recettori. Si lega quindi ad uno specifico *subset* di chinasi e questo può spiegare i ridotti effetti collaterali sulle altre 500 chinasi, molte delle quali sono coinvolte in processi biologici cruciali⁶¹.

I risultati ottenuti con i TKI ATP-mimetici sono soddisfacenti in termini di efficacia terapeutica e bassa tossicità ma anche e soprattutto per il fatto che sono stati fatti molti passi in avanti in pochi anni. Tuttavia la ricerca in questo campo non si è fermata, anzi, è in continua evoluzione per scoprire nuove molecole che superino soprattutto i problemi di resistenza riscontrati finora.

3.5. PROBLEMATICHE LEGATE ALL'IDENTIFICAZIONE DI NUOVI INIBITORI PROTEINCHINASICI ATP-COMPETITIVI

Dopo un'iniziale fase in cui la ricerca nel campo degli inibitori chinasici ATPcompetitivi si orientava verso l'individuazione di farmaci altamente selettivi, negli ultimi anni l'attenzione si è spostata verso lo sviluppo di inibitori *multi-target*. L'utilizzo di questo tipo di strategia permette infatti di limitare l'insorgenza di resistenza farmacologica e rappresenta una valida alternativa alle terapie di combinazione. Il maggior problema relativo allo sviluppo di farmaci *multi-target* è legato allo spettro di selettività che essi devono possedere: il farmaco ideale dovrebbe infatti inibire le sole chinasi sovraespresse, o comunque alterate, nella specifica forma tumorale, senza interferire con le rimanenti.

Questo risultato può essere perseguito attraverso una progettazione razionale di tali inibitori: conoscendo i requisiti strutturali necessari all'attività ATP-competitiva e determinanti la diversa selettività d'azione, sarebbe in via teorica possibile "costruire" farmaci *ad hoc* per ciascuna forma tumorale.

Purtroppo l'eterogeneità strutturale che caratterizza questa classe di inibitori, legata a sua volta ad un'elevata variabilità nello spettro d'azione, impedisce la determinazione di un pannello di SARs (*Structure Activity Relationships*) sufficientemente completo ed esaustivo.

Tutt'oggi, infatti, l'approccio più comunemente utilizzato per la scoperta di nuovi *lead compounds* è legato a *screenings* di ampie librerie di molecole nei confronti del completo pannello di chinasi note⁶². Questo approccio, tuttavia, non fa che amplificare la diversità strutturale degli inibitori noti, senza però aiutarne la decodifica, in termini di informazioni utili ad una progettazione razionale.

4. OBIETTIVO

La selettività d'azione degli inibitori proteinchinasici è un punto cruciale della ricerca di farmaci utili nella *targeted therapy*.

Considerato l'elevatissimo numero di proteinchinasi del proteasoma umano e la varietà funzionale associata alle diverse chinasi, risulta evidente come sia fondamentale l'individuazione di inibitori selettivi verso le sole chinasi coinvolte nella patogenesi tumorale. Quest'ultima, inoltre, è spesso collegata alla contemporanea disfunzione di più chinasi. Il tipo di chinasi deregolate è inoltre solitamente correlato alla tipologia di tumore. Risulta quindi evidente come la ricerca di inibitori proteinchinasici a selettività controllata sia di primario interesse nello sviluppo di terapie antitumorali efficaci e sicure.

Con tale approccio è stato inoltre possibile individuare farmaci tutt'oggi in sperimentazione clinica per il trattamento di altre patologie che vedono coinvolta la disfunzione di proteinchinasi, come l'artrite reumatoide⁶³.

A causa dell'elevata eterogeneità strutturale degli inibitori noti, tuttavia, non sono ancora state codificate delle relazioni struttura-attività che descrivano in modo esaustivo le correlazioni tra proprietà strutturali e selettività di inibizione, e che ne permettano una progettazione razionale *ex-novo*.

L'obiettivo di questo progetto si configura quindi come un tentativo di supplire, almeno in parte, a questa mancanza di informazioni, attraverso la sintesi e la valutazione biologica di una piccola libreria di composti disegnati per poter esplorare al meglio tali SARs.

A tale scopo, il progetto si è sviluppato attraverso i seguenti punti:

- ✓ analisi delle strutture degli inibitori proteinchinasici noti;
- ✓ individuazione di uno scaffold adatto alla generazione di inibitori proteinchinasici e sufficientemente versatile da lasciare spazio ad una gamma di derivatizzazioni sufficientemente ampia;
- ✓ progettazione (sulla base di tale *scaffold*) di 4 classi di potenziali inibitori proteinchinasici strutturalmente correlate;
- ✓ individuazione di strategie sintetiche efficaci per l'ottenimento dei composti disegnati e sintesi degli stessi;

- valutazione della potenzialità inibitoria dei composti sintetizzati su un adeguato pannello di chinasi isolate e della relativa citotossicità su adeguate linee cellulari tumorali;
- ✓ razionalizzazione dei dati raccolti e derivazione di rapporti struttura-attività utili per la futura progettazione di nuovi inibitori chinasici.

Le strutture generali delle 4 classi di composti progettati sono riportate in Figura 1.

Tutti i composti sintetizzati saranno sottoposti ad uno *screening* su un vasto pannello di proteinchinasi isolate, per valutarne l'affinità con il sito catalitico. Su alcuni composti verranno programmati saggi di citotossicità, *in vitro*, su adeguate linee cellulari tumorali. I dati ottenuti verranno quindi sottoposti ad adeguata elaborazione, anche mediante l'impiego metodiche computazionali, per poter individuare e razionalizzare al meglio efficaci Relazioni Struttura Attività.

5. RISULTATI E DISCUSSIONE

5.1. PROGETTAZIONE DI POTENZIALI INIBITORI DI PROTEINCHINASI

Punto di partenza di questo progetto è stato il disegno razionale dei composti oggetto di studio.

Cruciale per la progettazione di queste molecole è risultata quindi l'individuazione di uno *scaffold* univoco, che si potesse adattare ai requisiti strutturali richiesti per l'interazione con i *target*, e che potesse essere sufficientemente versatile da permetterne derivatizzazioni utili ad esplorare il più possibile lo spazio farmacodinamico.

Dall'analisi delle strutture degli inibitori chinasici noti è possibile osservare come il motivo amminopirimidinico sia particolarmente ricorrente all'interno della categoria: esso è infatti individuabile in molti inibitori, sia di tipo I che II, come tale o fuso all'interno di un sistema eterobiciclico, sebbene con differenze per quanto riguarda la posizione relativa della funzione amminica (Figura 14).

Figura 14. Esempi di inibitori di proteinchinasi noti contenenti la struttura amminopirimidinica.

In tali molecole questo nucleo, infatti, permette un'interazione ottimale con la *hinge region* della tasca catalitica. In particolare, in alcuni inibitori a struttura

chinazolinica, la geometria relativa dei tre atomi di azoto del sistema 4amminopirimidinico risulta fondamentale per il corretto *binding mode* dell'inibitore⁶⁴.

Alla funzione amminica risulta inoltre essere quasi sempre legato un ulteriore sostituente lipofilo, spesso rappresentato da una funzione fenilica variamente sostituita. Per questo motivo il nucleo 4-anilinochinazolinico è stato scelto come *scaffold* comune a tutte le classi di composti progettati.

Quattro diverse classi di composti sono state quindi generate attraverso la differente decorazione dell'anello pirimidinico nelle diverse posizioni libere. Infatti, per esplorare al meglio lo spazio farmacodinamico della tasca idrofobica associata alla *hinge region*, si è deciso di utilizzare la funzione benzenica come "sonda molecolare": tutte le 4 classi presentano infatti un anello benzenico legato alla posizione 5 o 6 del nucleo pirimidinico, attraverso un legame diretto (sostituente fenilico) o attraverso un ulteriore ponte amminico (funzione fenilamminica). La scelta del ponte amminico come alternativa al legame diretto permette di introdurre nella molecola un potenziale centro donatore di ponti a idrogeno con caratteristiche di libera rotazione, permettendo quindi l'esplorazione di ulteriori stati conformazionali ed interazioni con il *target* (Figura 15).

Figura 15. Progettazione della struttura generale delle 4 classi di composti 4-anilinopirimidinici.

Le classi di molecole oggetto di studio possono, pertanto essere indicate come:

- ✓ derivati 4-anilino-6-fenilpirimidinici;
- ✓ derivati 4-anilino-6-fenilamminopirimidinici;
- ✓ derivati 4-anilino-5-fenilpirimidinici;

✓ derivati 4-anilino-5-fenilamminopirimidinici.

Le 4 classi di composti sono accomunate dall'insieme di gruppi funzionali e sostituenti selezionati per decorarne la funzione anilinica in posizione 4 all'anello pirimidinico. Per esplorare al meglio le possibili interazioni con la tasca catalitica sono stati scelti a tale scopo gruppi funzionali con diversa polarità e diverso ingombro sterico, ottenendo 4 serie di potenziali inibitori *"type I-like"*, ovvero strutturalmente correlati al modello degli inibitori di tipo I (Figura 16).

Figura 16. Derivatizzazioni considerate per i composti "type I-like".

E' stata considerata la possibilità di ottenere anche inibitori "*type II-like*" (aderenti al modello strutturale degli inibitori di tipo II). A tale scopo sono state progettate 4 ulteriori sottoclassi di composti, utilizzando porzioni *N*-aril-*N'*-anilinoureidiche anziché funzioni aniliniche.

Questo tipo di legame è stato scelto perché presente in molti inibitori di tipo II noti (Figura 17).

Figura 17. Progettazione della struttura generale per i derivati "type II-like".

Inoltre, considerando le caratteristiche della tasca accessoria che gli inibitori di tipo II vanno ad occupare, sono stati scelti esclusivamente gruppi funzionali di natura idrofobica come sostituenti sulla funzione benzenica terminale (Figura 18).

Figura 18. Derivatizzazione per i composti "type II-like".

Tutti i composti progettati sono riportati in Tabella 2.

	HN7 N	$\mathbf{r}_{\mathbf{H}}^{\mathbf{h}}$		
2	5a	13a	29a	n. d.
5 CF3	5b	13b	29b	n. d.
大 CF3	5c	13c	29c	n. d.
CH3	5d	13d	29d	n. d.
25 CH3	5e	13e	29e	n. d.
2, CI	5f	13f	29f	n. d.
Br	5g	13g	29g	n. d.
5 OH	5h	13h	29h	n. d.
25 OH	5i	13i	29i	n. d.
2, COH	5j	13j	29j	n. d.
2,	5k	13k	29k	n. d.
S CH3	51	131	291	n. d.
NH ₂	5m	13m	29m	n. d.
	5n	13n	29n	n. d.
	50	130	290	n. d.
3 C CH3	5р	13p	29p	n. d.
	5q	13q	29q-n. d.	n. d.
	5r	13r	29r	n. d.
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$\begin{aligned} \downarrow \downarrow$	$ \begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Tabella 2. Composti progettati e relativa numerazione. n.d.= nonsintetizzato.

5.2. SINTESI

La diversa funzionalizzazione dell'anello pirimidinico nelle posizioni 5 e 6 ha reso necessaria l'individuazione di una via sintetica diversa per ognuna delle 4 classi. Inoltre, l'analisi retrosintetica è stata condotta in modo tale da individuare vie sintetiche che permettano di ottenere i differenti derivati all'interno di ciascuna classe mediante la funzionalizzazione di un unico intermedio sintetico comune.

5.2.1. SINTESI DI DERIVATI 4-ANILINO-6-FENILPIRIMIDINICI

Per la sintesi dei derivati 4-anilino-6-fenilpirimidinici, l'analisi retrosintetica ha individuato, come intermedio chiave, il sintone 4-idrossi-6-fenilpirimidinico (Schema 1).

Schema 1. Analisi retrosintetica per i derivati 4-anilino-6-fenilpirimidinci.

Esso può essere infatti facilmente attivato nei confronti della sostituzione nucleofila aromatica con gli opportuni derivati anilinici, attraverso conversione a cloroderivato.

L'intermedio fenilidrossipirimidinico può essere a sua volta ottenuto mediante ciclizzazione dell'anello pirimidinico a partire da un sintone fenilpropenolico (elettronaccettore) ed un sintone ammidinico (elettrondonatore); gli equivalenti

sintetici per tali sintoni sono individuabili in un derivato dell'acido benzoilacetico e formammidina.

Come prodotto di partenza è stato quindi scelto l'etile benzoilacetato (1), sul quale è stata tentata la ciclizzazione dell'anello pirimidinico in presenza di formammidina acetato (Schema 2).

Schema 2. Sintesi dei derivati 4-anilino-6-fenilpirimidinici. Condizioni di reazione:

- i tiourea, EtONa/EtOH, riflusso, 24 ore, resa 88%
- ii Ni-Raney, EtOH/NH4OH 3/1, riflusso, 6 ore, resa 60%
- iii POCl₃, TEA, riflusso, 1 ora, resa 90%
- iv R-NH₂, ⁱPrOH, MW, 150°C, 20 minuti, rese da 61% a 97%

La reazione è stata condotta in ambiente alcalino, sperimentando l'utilizzo di diverse basi, a diverse temperature e sfruttando sia il riscaldamento convenzionale che l'irraggiamento a microonde. In nessun caso è stato però possibile ottenere la formazione del prodotto **2** desiderato.

E' stato ipotizzato che la causa di tale insuccesso fosse ascrivibile all'instabilità della formammidina sottoposta a riscaldamento, e che la sua decomposizione fosse più rapida della reazione con il derivato β-chetoestereo.

Per tale motivo si è pensato di sostituire la formammidina acetato con tiourea.

La ciclizzazione con tiourea porta alla formazione di un anello 2mercaptopirimidinico, la cui funzione tiolica può tuttavia essere facilmente e selettivamente eliminata in condizione riducenti, portando all'ottenimento del prodotto desiderato.

Pertanto, per trattamento dell'etile benzoilacetato (1) con tiourea, in ambiente alcalino per etossido di sodio, a riflusso in EtOH è sato ottenuto il composto **3**.

La reazione passa presumibilmente attraverso l'attacco nuclefilo di uno dei due atomi di azoto tioureidici al gruppo carbossilico del β-chetoestere, con eliminazione di etanolo. L'attacco del secondo atomo di azoto al gruppo carbonilico, e la conseguente eliminazione di H₂O, permette quindi la chiusura dell'anello e l'aromatizzazione del sistema, portando all'ottenimento del sistema idrossipirimidinico in forma deprotonata. Grazie al successivo *quenching*, per trattamento con acido cloridrico, il prodotto può quindi essere isolato in forma neutra (Schema 3).

Schema 3. Meccanismo di reazione proposto per la ciclizzazione dell'anello 4-idrossi-6-fenil-2-tiopirimidinico.

L'eliminazione della funzione tiolica del composto **3** è stata effettuata per trattamento con Ni-Raney, in una miscela di EtOH/NH₄OH 7/3. Il Ni-Raney è infatti in grado di eliminare la funzione tiolica di solfuri, sia aromatici che alifatici, mediante riduzione del legame C-S. La riduzione avviene ad opera dell'idrogeno che si trova incorporato nella matrice del catalizzatore stesso, e che si forma a seguito del particolare metodo di produzione⁶⁵.

A questo punto l'intermedio idrossifenilpirimidinico **2** è stato sottoposto a clorurazione, mediante trattamento con POCl₃ in presenza di TEA, a riflusso. Il cloroderivato **4** così ottenuto è stato quindi sottoposto a sostituzione nucleofila aromatica, per trattamento con gli opportuni derivati anilinici. La reazione è stata condotta per irraggiamento a microonde, utilizzando ⁱPrOH come solvente. In questo modo, sono stati ottenuti i seguenti composti:

- ✓ 4-anilino-6-fenilpirimidina cloridrato (**5a**)
- ✓ 4-(2"-fluoro-5"-trifluorometil)anilino-6-fenilpirimidina cloridrato (5b)
- ✓ 4-(3"-trifluorometil)anilino-6-fenilpirimidina cloridrato (5c)
- ✓ 4-(3"-metil)anilino-6-fenilpirimidina cloridrato (5d)
- ✓ 4-(3"-metil)anilino-6-fenilpirimidina cloridrato (5e)
- ✓ 4-(4"-cloro)anilino-6-fenilpirimidina cloridrato (5f)
- ✓ 4-(3"-bromo)anilino-6-fenilpirimidina cloridrato (5g)
- ✓ 4-(4"-idrossi)anilino-6-fenilpirimidina cloridrato (5h)
- ✓ 4-(2"-idrossi)anilino-6-fenilpirimidina cloridrato (5i)
- ✓ 4-(3"-idrossi)anilino-6-fenilpirimidina cloridrato (5j)
- ✓ 4-(*m*-bifenil)ammino-6-fenilpirimidina cloridrato (5k)
- ✓ 4-(4"-acetammido)anilino-6-fenilpirimidina cloridrato (5I)

E' interessante notare che tutte le molecole sono state ottenute in forma di cloridrato. Ciò ha consentito un semplice work-up della reazione: i derivati finali, infatti, sono stati precipitati per semplice raffreddamento della miscela di reazione e sono stati ottenuti con elevato grado di purezza.

Il derivato **5I** è stato quindi sottoposto ad idrolisi del gruppo acetilico per trattamento a riflusso con HCI 3M (Schema 4).

Schema 4. Sintesi di 4-(4"-ammino)anilino-6-fenilpirimidina. Condizioni di reazione: i HCl 3M, riflusso, 3 ore, resa quantitativa

Con tale metodica è stato quindi possibile ottenere il composto **5m**, che è stato utilizzato come sintone di partenza per l'ottenimento dei derivati ureidici (Scema 5).

Tali derivati sono stati ottenuti per reazione del composto **5m** con gli adeguati isocianati, prodotti *in situ*, trattando il cloridrato dell'opportuno derivato anilinico (da **6** a **10**) con trifosgene a riflusso in diclorobenzene. In tali condizioni, l'ottenimento di una soluzione limpida indica la completa conversione del

cloridrato del derivato anilinico in isocianato. Infatti, gli isocianati, a differenza dei cloridrati anilinici, sono solubili in solventi apolari come il diclorobenzene. Quindi, dopo formazione dell'isocianato, la soluzione è stata trattata con il composto **5m**, e la miscela così ottenuta è stata mantenuta in agitazione a temperatura ambiente.

Con tale metodica sono stati quindi ottenuti i seguenti composti:

- ✓ N-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N''-fenilurea (5n)
- ✓ N-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N'-(3"'-metil)fenilurea (50)
- \checkmark N-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N'-(4'''-metil)fenilurea (5p)
- ✓ N-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N'-(3'''-trifluorometil)fenilurea (5q)
- ✓ N-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N'-(2'''-fluoro-5'''trifluorometil)fenilurea (5r)

5.2.2. SINTESI DI DERIVATI 4-ANILINO-6-FENILAMMINOPIRIMIDINICI

Analogamente a quanto visto per i derivati 4-anilino-6-fenilpirimidinici, l'analisi retrosintetica per questa classe di composti ha individuato come intermedio chiave il sintone 4-idrossi-6-fenilamminopirimidinico (Schema 6).

Schema 6. Analisi retrosintetica per i derivati 4-anilino-6fenilamminopirimidinci.

Esso può essere ottenuto dalla condensazione di un sintone anilico con un sintone 4-idrossi-6-cloropirimidinico; quest'ultimo può essere ottenuto, mediante interconversione di gruppo funzionale (FGI) a partire da un derivato diidrossipirimidinico.

Essendo però tale derivato simmetrico, le posizioni 4 e 6, sostituite dai gruppi ossidrilici, presentano la stessa reattività. Per tale motivo la clorurazione selettiva di una sola delle due posizioni risulta di difficile controllo, nelle condizioni comunemente usate a tale scopo. E' tuttavia possibile ottenere la sostituzione nucleofila selettiva di una sola delle due posizioni attivate di un derivato 4,6-dicloropirimidinico. Conducendo la reazione in presenza di una base che neutralizzi l'HCI eliminato durante la sostituzione, è inoltre possibile prevenire l'idrolisi della seconda funzione clorurata, ottenendo un derivato cloropirimidinico monosostiuito.

Come prodotto di partenza si è quindi deciso di utilizzare direttamente la 4,6dicloropirimidina (**11**), commercialmente disponibile (Schema 7).

Schema 7. Sintesi dei derivati 4-anilino-6-fenilamminopirimidinici. Condizioni di reazione:

- i anilina, TEA, ⁱPrOH, MW, 150°C, 30 minuti, resa 84%
- ii R-NH₂, ⁱPrOH, MW, 150°C, 20 minuti, rese da 20% a quantitativa

Il derivato **11** è stato quindi fatto reagire con anilina, mediante irraggiamento microonde, in presenza di TEA e utilizzando ⁱPrOH come solvente. Il derivato monosostituito **12** è stato quindi isolato e sottoposto a condensazione con gli opportuni derivati anilinici, portando all'ottenimento dei seguenti derivati:

- ✓ 4-anilino-6-fenilamminopirimidina (13a)
- ✓ 4-(2"-fluoro-5"-trifluorometil)anilino-6-fenilamminopirimidina (13b)
- ✓ 4-(3"-trifluorometil)anilino-6-fenilamminopirimidina (**13c**)
- ✓ 4-(3"-metil)anilino-6-fenilamminopirimidina (13d)
- ✓ 4-(4"-metil)anilino-6-fenilamminopirimidina (**13e**)
- ✓ 4-(4"-cloro)anilino-6-fenilamminopirimidina (13f)
- ✓ 4-(3"-bromo)anilino-6-fenilamminopirimidina (13g)
- ✓ 4-(4"-idrossi)anilino-6-fenilamminopirimidina (13h)
- ✓ 4-(2"-idrossi)anilino-6-fenilamminopirimidina (13i)
- ✓ 4-(3"-idrossi)anilino-6-fenilamminopirimidina (13j)
- ✓ 4-(*m*-bifenil)ammino-6-fenilamminopirimidina (**13k**)
- ✓ 4-(4"-acetammido)anilino-6-fenilamminopirimidina (**13I**)

Il composto **13I** è stato quindi sottoposto a idrolisi del gruppo acetilico in ambiente acido per HCI 3M, a riflusso (Schema 8).

Schema 8. Sintesi di 4-(4"-ammino)anilino-6-fenilamminopirimidina. Condizioni di reazione: i HCl 3M, riflusso, 3 ore, resa 72%.

Con tale metodica è stato quindi ottenuto il composto 13m.

Anche in questo caso il derivato **13m** è stato successivamente utilizzato come sintone per l'ottenimento dei derivati ureidici (Schema 9).

13r: R₁=CF₃, R₂=H, R₃=F

Schema 9. Sintesi dei derivati N'-[4-(6'-fenilamminopirimidin-4'ilammino)fenil]-N''-arilureidici. Condizioni di reazione: i trifosgene, TEA, DCM, 0°C, riflusso, 3 ore ii R-NH₂, riflusso, 3 ore, rese da 10% a 34%

A differenza di quanto precedentemente riportato nello Schema 5, in questo caso è risultato più conveniente convertire il derivato anilinopirimidinico **13m** nel corrispondente isocianato, mediante trattamento con trifosgene in presenza di TEA come *scavanger* di HCI. L'isocianato formatosi *in situ* è stato quindi direttamente trattato con gli appropriati derivati anilinici, ottenendo i seguenti derivati:

- \checkmark N⁻[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N''-fenilurea (**13n**)
- ✓ N'-[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N'-(3'''-metil)fenilurea
 (130)
- ✓ N'-[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N''-(4'''-metil)fenilurea
 (13p)
- ✓ N⁻[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N'-(3"'trifluorometil)fenilurea (13q)
- ✓ N⁻[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N''-(2'''-fluoro-5'''trifluorometil)fenilurea (13r)
Considerata la relativa semplicità della via sintetica, e nell'ottica di allargare il più possibile il pannello di funzionalizzazioni della libreria di composti, è stato deciso di sintetizzare anche una piccola libreria di dianilinopirimidine simmetriche (Schema 10).

Schema 10. Sintesi dei derivati 4,6-dianilinopirimidinici. Condizioni di reazione: i R-NH₂, ⁱPrOH, riflusso, 24 ore, rese da 6% a 60%

La dicloropirimidina (**11**) è stata pertanto trattata con due equivalenti dell'opportuno derivato anilinico, e la miscela in ⁱPrOH è stata posta a riflusso per 24 ore, portando all'ottenimento dei seguenti derivati:

- ✓ *N*,*N*'-bis(3'-metilfenil)-4,6-diamminopirimidina (**14a**)
- ✓ *N*,*N*-bis(3'-bromofenil)-4,6-diamminopirimidina (**14b**)
- ✓ *N*,*N*'-bis(4'-clorofenil)-4,6-diamminopirimidina (**14c**)
- ✓ *N*,*N*'-bis(4'idrossifenil)-4,6-diamminopirimidina (**14d**)
- ✓ *N*,*N*'-bis(3'-bifenil)-4,6-diamminopirimidina (**14e**)

5.2.3. SINTESI DI DERIVATI 4-ANILINO-5-FENILPIRIMIDINICI

Per i derivati 4-anilino-5-fenilpirimidinici, l'analisi retrosintetica ha individuato inizialmente 2 possibili strategie sintetiche (Schema 11).

Schema 11. Analisi retrosintetica per i derivati 4-anilino-5-fenilpirimidinici.

La prima strategia prevede la ciclizzazione dell'anello pririmidinico del derivato idrossifenilpirimidinico a partire da un derivato α-formilato dell'acido fenilacetico. Quest'ultimo può essere ottenuto per formilazione dell'acido fenilacetico stesso. La seconda strategia individuata prevede invece una disconnessione a livello del legame tra fenile e anello pirimidinico dell'intermedio idrossifenilpirimidinico. Questo tipo di legame può infatti essere ottenuto tramite *coupling* Pd-catalizzato tra un derivato fenilboronico e un alogenuro idrossipirimidinico; quest'ultimo può essere a sua volta ottenuto per alogenazione diretta della idrossipirimidina.

Il primo tentativo per la sintesi dei derivati 5-fenilpirimidinici ha previsto come prodotto di partenza l'etile fenilacetato (**15**) (Schema 12).

Schema 12. Tentativo di sintesi di 5-fenil-4-idrossipirimidina via ciclizzazione.
 Condizioni di reazione:
 i HCOOEt, NaH, t. a., 30 minuti, HCl 1M, t. a., 1 ora, resa 52%

Il derivato **15** è stato sottoposto a formilazione, per trattamento con etile formiato, in ambiente alcalino per NaH, e a temperatura ambiente.

Sull'intermedio formilfenilacetico **16** così ottenuto è stata tentata la ciclizzazione dell'anello pirimidinico. La reazione è stata condotta inizialmente in presenza di formammidina acetato, nelle medesime condizioni utilizzate per l'ottenimento dei derivati 4-idrossi-6-fenilpirimidinici, nel tentativo di ottenere direttamente il derivato **17**.

Non essendo stata evidenziata alcuna conversione del materiale di partenza, ancora una volta è stata tentata la ciclizzazione dell'analogo 2mercaptopirimidinico **18**, sostituendo formammidina acetato con tiourea, nelle medesime condizioni descritte in precedenza.

Nemmeno in tali condizioni è stato potuto però ottenere il prodotto **18** desiderato, e la via sintetica è stata definitivamente abbandonata.

Si è quindi deciso di affrontare la strategia sintetica basata sul *coupling* Pdmediato. Come prodotto di partenza è stata utilizzata la 4-idrossipirimidina (**19**), che è stata sottoposta a bromurazione in posizione 5 (Schema 13).

Schema 13. Tentativo di sintesi di 6-fenil-5-idrossipirimidina via crosscoupling. Condizioni di reazione. i NBS, AcOH, riflusso, 1 ora, resa 34%

Tale reazione è stata inizialmente tentata mediante l'utilizzo di bromo elementare in ambiente alcalino per bicarbonato di sodio, senza però ottenere il composto desiderato. Il composto **20** è stato invece ottenuto mediante trattamento del prodotto di partenza con *N*-bromosuccinimmide in acido acetico. La 5-bromo-4idrossipirimidina (**20**) è stata quindi sottoposta a reazione di Suzuki⁶⁶, nel tentativo di ottenere il derivato fenilidrossipirimidinico **17**. Tale *coupling*, comunemente utilizzato per l'ottenimento di derivati bifenilici, prevede la condensazione in ambiente alcalino di un alogenuro arilico con un derivato dell'acido boronico (in questo caso l'acido fenilboronico). La reazione è inoltre catalizzata da Pd⁰, che viene normalmente utilizzato in forma di complesso trifenilfosfinico (palladio trifenilfosfino tetrakis), allo scopo di aumentare la solubilità del metallo nei solventi organici e quindi garantirne una maggior efficienza. Nonostante siano state sperimentate diverse condizioni, sfruttando sia il riscaldamento convenzionale che l'irraggiamento microonde, non si è mai ottenuta la conversione del prodotto di partenza.

Il fallimento di tale metodica è presumibilmente imputabile alla presenza della funzione ossidrilica libera del prodotto di partenza. Tale funzione, infatti, oltre a ridurre la solubilità del composto **20** nell'ambiente di reazione, può conferire proprietà chelanti, portando alla sottrazione del Pd al ciclo catalitico previsto dal meccanismo della reazione di Suzuki.

Per questi motivi si è deciso di procedere alla preventiva protezione del gruppo ossidrilico del composto di partenza **19** mediante acetilazione (Schema 14).

54

Schema 14. Tentativo di sintesi di 4-acetossipirimidina.

Il composto **19** è stato trattato con anidride acetica sia in presenza di acetato di sodio, che di piridina. In entrambi i casi, tuttavia, si è ottenuta una miscela complessa di prodotti di difficile caratterizzazione, che ha impedito la prosecuzione della via sintetica.

Una soluzione alternativa è stata individuata nella conversione della funzione ossidrilica a cloruro. In questo caso tale passaggio sintetico deve essere effettuato sul bromoderivato **20**: la clorurazione in posizione 4 del derivato **19**, infatti, disattiverebbe la molecola rendendola non suscettibile alla successiva bromurazione della posizione 5. La dialopirimidina dovrebbe essere inoltre sottoposta a reazione di Suzuki solo successivamente alla sostituzione nucleofila con gli adeguati derivati anilinici. Se condotto sull'intermedio **22**, il *coupling* metallo-catalizzato porterebbe infatti ad una miscela di prodotti di sostituzione ad entrambe le posizioni alogenate; la sostituzione nucleofila con i derivati anilinici, invece, risulta selettiva per la posizione 4, nelle condizioni comunemente utilizzate, a causa dell'attivazione di tale posizione da parte degli atomi di azoto in anello (Schema 15).

Schema 15. Tentativo di sintesi di 5-bromo-4-cloropirimidina.

Nonostante siano stati tentati diversi metodi di clorurazione sul composto **20** non è mai stato possibile ottenere il composto **22** desiderato e non è stato quindi possibile proseguire con la via sintetica progettata. E' stato necessario, a questo punto, riconsiderare l'analisi retrosintetica.

Modificando la posizione delle disconnessioni sull'anello idrossipirimidinico è stata individuata la possibilità di ottenere tale intermedio a partire da un derivato fenilacetico e da uno amminometilenammidinico (Schema 16).

Schema 16. Seconda analisi retrosintetica per i derivati 4-anilino-5fenilpirimidinici.

Considerati i precedenti insuccessi nell'utilizzo di formammidina per la ciclizzazione dell'anello pirimidinico, e considerata la relativa semplicità di eliminazione della funzione tiolica, si è deciso di utilizzare come derivato ammidinico di partenza la tiourea (**23**) (Schema 17).

Schema 17. Sintesi dei derivati 4-anilino-5-fenilpirimidinici. Condizioni di reazione:

- *i* N,N-dimetilformammide dimetilacetale, MeOH, riflusso, 4 ore, resa 70%
- *ii CH*₃*I*, *THF*, *t*. *a.*, 6 ore, resa 96%
- iii fenilacetilcloruro, TEA, DCM, 0°C, t. a., 3 ore, resa 54%
- iv POCl₃, TEA, riflusso, 1 ora, resa 87%
- v R-NH₂, ⁱPrOH, MW, 150°C, 20 minuti, rese da 42% a quantitativa
- vi Ni-Raney, EtOH, riflusso, 2 ore, rese da 18% a 94%

La reazione di amminometilazione è stata quindi condotta sul composto 23 per trattamento con *N*,*N*-dimetilformammide dimetilacetale in metanolo, a riflusso, portando all'ottenimento del prodotto 24.

Per limitare il possibile verificarsi di reazioni collaterali durante i passaggi sintetici successivi, si è deciso di metilare preventivamente la funzione tiolica dell'intermedio **24**, per annullarne il carattere nucleofilo.

Il derivato **24** è stato quindi trattato con iodometano, in THF, portando all'ottenimento del composto **25** in forma di iodidrato. Quest'ultimo è stato fatto reagire con fenilacetilcloruro, in DCM, ed in presenza di TEA, ottenendo una

miscela complessa di prodotti, dalla quale è stato comunque possibile isolare il prodotto **26** con resa soddisfacente.

La reazione di ciclizzazione dell'anello idrossitiometilpirimidinico passa presumibilmente attraverso una iniziale *N*-acilazione del derivato tioureidico (Schema 18).

Schema 18. Meccanismo di reazione proposto per la ciclizzazione dell'anello 5-fenil-4-idrossi-2-tiometilpirimidinico.

Si ha, quindi, l'attacco nucleofilo da parte del carbonio benzilico al carbonio immidinico, con conseguente formazione del nucleo diidropirimidinico. La successiva perdita di una molecola di dimetilammina consente la formazione del sistema pirimidin-4(1*H*)-onico, in equilibrio tautomerico con il nucleo desiderato. E' stata a questo punto tentata l'eliminazione riduttiva della funzione tiometilica, per l'ottenimento dell'intermedio **17**. L'intermedio **26** è stato trattato con Nickel-Raney, in EtOH a riflusso; dopo *work-up* non è stato possibile però isolare una quantità di materiale sufficiente per proseguire con la via sintetica. Per tale motivo è stato deciso di eliminare la funzione tiometilica solo successivamente alla condensazione con i derivati anilinici.

Il composto **26** è stato quindi sottoposto a clorurazione per trattamento con POCl₃,in presenza di TEA, ottenendo il cloroderivato **27**. Questo è stato quindi di volta in volta irraggiato a microonde in presenza del derivato anilinico opportuno, utilizzando ⁱPrOH come solvente. Tutti i prodotti di condensazione così ottenuti (da **28a** a **28I**) sono stati sottoposti ad eliminazione riduttiva del tiometile, per trattamento con Ni-Raney, a riflusso in etanolo, portando all'ottenimento dei seguenti derivati:

- ✓ 4-anilino-5-fenilpirimidina (29a)
- ✓ 4-(2"-fluoro-5"-trifluorometil)anilino-5-fenilpirimidina (29b)
- ✓ 4-(3"-trifluorometil)anilino-5-fenilpirimidina (29c)
- ✓ 4-(3"-metil)anilino-5-fenilpirimidina (29d)
- ✓ 4-(4"-metil)anilino-5-fenilpirimidina (29e)
- ✓ 4-(4"-cloro)anilino-5-fenilpirimidina (29f)
- ✓ 4-(3"-bromo)ammino-5-fenilpirimidina (29g)
- ✓ 4-(4"-idrossi)ammino-5-fenilpirimidina (29h)
- ✓ 4-(2"-idrossi)anilino-5-fenilpirimidina (29i)
- ✓ 4-(3"-idrossi)anilino-5-fenilpirimidina (29j)
- ✓ 4-(3"-bifenil)ammino-5-fenilpirimidina (29k)
- ✓ 4-(4"-acetammido)anilino-5-fenilpirimidina (29I)

Il derivato **29m** è stato ottenuto a partire dal composto **29I** per idrolisi acida del gruppo acetilico. La reazione è stata condotta a riflusso in HCl 3M (Schema 19).

Schema 19. Sintesi di 4-(4"-ammino)anilino-5-fenilpirimidina. Condizioni di reazione: i HCl 3M, riflusso, 2 ore, resa 69%

Il composto **29m** è stato quindi utilizzato per la sintesi degli analoghi ureidici (Schema 20).

Schema 20. Sintesi dei derivati N'-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-N"-arilureidici. Condizioni di reazione:
i trifosgene, TEA, DCM, 0°C, riflusso, 3 ore
ii R-NH₂, riflusso, 3 ore, rese da 8% a 28%

Il composto **29m** è stato trattato con trifosgene in diclorometano e trietilammina, portando alla formazione di un intermedio isocianato che non è stato isolato, ma che è stato di volta in volta direttamente trattato con gli opportuni derivati anilinici. I derivati così ottenuti sono di seguito riportati:

- \checkmark *N*-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-*N*'-fenilurea (**29n**)
- ✓ N-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-N'-(3'''-metil)fenilurea (290)
- \checkmark *N*-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-*N*'-(4'''-metil)fenilurea (**29p**)
- ✓ N'-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-N'-[2'''-fluoro-5'''-(trifluorometil)fenil]urea (29r)

Con tale metodica non è però stato possibile ottenere il composto **29q** (N-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-N'-(3'''-trifluorometil)fenilurea).

5.2.4. TENTATIVO DI SINTESI DI DERIVATI 4-ANILINO-5-FENILAMMINOPIRIMIDINICI

Per la sintesi di derivati 4-anilino-5-fenilamminopirimidinici una prima analisi retrosintetica ha individuato un sintone 4-idrossipirimidinico come intermedio chiave (Schema 21).

Schema 21. Analisi retrosintetica per i derivati 4-anilino-5fenilamminopirimidinici.

A sua volta, tale intermedio può essere ottenuto da un sintone fenilamminoacetico opportunamente funzionalizzato. Questo può essere ottenuto per condensazione dell'acido bromoacetico con anilina, e successiva α -amminometilazione.

Come prodotto di partenza è stato quindi scelto l'etile 2-bromoacetato (**30**), che è stato sottoposto a condensazione con anilina. La reazione è stata inizialmente condotta mediante irraggiamento a microonde, portando però all'ottenimento di una miscela complessa di prodotti. Il derivato **31** è stato invece ottenuto conducendo la reazione a temperatura ambiente, utilizzando CHCl₃ come solvente (Schema 22).

Schema 22. Tentativo di sintesi di etile 2-dimetilamminometilen-2fenilamminoacetato. Condizioni di reazione: i anilina, CHCl₃, t. a., overnight, resa 45%

Sull'intermedio fenilamminoacetico così ottenuto è stata quindi tentata la reazione di amminometilazione, per trattamento con *N*,*N*-dimetilformammide dimetilacetale ed irraggiamento a microonde, senza però ottenere il derivato **32** desiderato. La via sintetica è stata quindi abbandonata.

Una seconda analisi retrosintetica ha successivamente individuato la possibilità di ottenere i composti desiderati passando per un intermedio 4,6-diidrossi-5-anilinopirimidinico (Schema 23).

Schema 23. Seconda analisi retrosintetica per i derivati 4-anilino-5fenilamminopirimidinici.

Questo intermedio può essere infatti attivato nei confronti della sostituzione nucleofila in posizione 4 con gli opportuni derivati anilinici, mediante conversione in cloroderivato. Tale *step* sintetico porterebbe inoltre alla contestuale clorurazione del secondo ossidrile, in posizione 6, permettendone in tal modo la successiva eliminazione in condizioni riduttive.

L'intermedio 4,6-diidrossi-5-anilinopirimidinico può essere a sua volta ottenuto attraverso ciclizzazione dell'anello pirimidinico per reazione tra un derivato ammidinico ed un derivato dell'acido malonico opportunamente funzionalizzato.

Il derivato fenilamminico dell'acido malonico può essere a sua volta ottenuto per sostituzione nucleofila di un derivato dell'acido malonico, opportunamente attivato, con anilina.

Come prodotto di partenza per tale via sintetica è stato quindi utilizzato il dietil 2bromomalonato (**33**), commercialmente disponibile (Schema 24).

Schema 24. Tentativo di sintesi di derivati 4-anilino-5-fenilamminopirimidinici. Condizioni di reazione:
i anilina, MW, 95°C, 20 min, resa 70%
ii tiourea, EtONa/EtOH, riflusso, 1 h, resa 53%.

Mediante irraggiamento a microonde del prodotto di partenza **33**, in presenza di anilina è stato possibile ottenere l'estere fenilamminomalonico **34**. Su tale intermedio è stata inizialmente tentata la ciclizzazione dell'anello pirimidinico in presenza di formammidina acetato. Tale reazione è stata condotta in EtOH ed in condizioni alcaline per EtONa, sia a temperatura ambiente che per irraggiamento con microonde. In nessun caso è stato però possibile ottenere il composto di interesse **35**.

Per tale motivo si è deciso di sostituire formammidina acetato con tiourea, tentando la ciclizzazione dell'anello mercaptopirimidinico. La reazione è stata

condotta in EtOH, in ambiente alcalino per EtONa ed a riflusso. In queste condizioni è stato possibile quindi ottenere l'intermedio **36**, sul quale è stata tentata l'eliminazione riduttiva della funzione tiolica. La reazione è stata condotta in EtOH ed in presenza di Ni-Raney. In tali condizioni è stata però ottenuta una miscela complessa di prodotti dalla quale non è stato possibile isolare il composto desiderato. L'insuccesso di tale reazione è probabilmente da ascriversi all'instabilità del sistema diidrossitiopirimidinico alle condizioni riduttive.

Per questo motivo si è quindi deciso di proseguire la via sintetica con il nucleo mercaptopirimidinico **36**, e di tentare l'eliminazione della funzione tiolica solo successivamente alla conversione delle funzioni idrossiliche.

E' risultato quindi a questo punto necessario convertire la funzione tiolica in tiometilica, in modo tale da annullarne il carattere nucleofilo: la successiva clorurazione delle posizioni 4 e 6 introdurrebbe infatti 2 centri suscettibili di attacco nucleofilo da parte della funzione tiolica, con conseguente possibile incidenza di reazioni collaterali.

La metilazione del gruppo tiolico del composto **36** è stata quindi tentata in presenza di iodometano, in DMSO come solvente ed in ambiente alcalino per TEA, a temperatura ambiente. Tale reazione non ha però portato alla formazione del composto desiderato. Per tale motivo non è stato possibile proseguire con la via sintetica e la sintesi di questa classe di composti è stata per il momento abbandonata.

Tutti i composti finali sono stati caratterizzati mediante spettroscopia NMR del protone (sezione Appendici) e spettrometria di massa ad alta risoluzione.

5.3. STUDI IN VITRO

5.3.1. SCREENING SU PROTEINCHINASI ISOLATE

Tutti i composti sintetizzati sono stati sottoposti a *screening* per valutarne la potenzialità inibitoria nei confronti di un pannello di 48 proteinchinasi isolate.

Le chinasi selezionate come *target* appartengono sia alla classe delle tirosinchinasi che a quella delle serin-treoninchinasi, e sono tutte implicate nella patogenesi di diversi tipi di tumore.

L'elenco delle proteinchinasi scelte e la loro localizzazione sull'albero filogenetico sono riportate in Figura 19.

Figura 19. Elenco delle proteinchinasi selezionate per lo screening e loro localizzazione sull'albero filogenetico.

Il saggio utilizzato per questo studio è stato sviluppato e condotto da DiscoverX Corporation, azienda specializzata in servizi di *high throughput screenings* e di *profiling* di inibitori di proteinchinasi⁶⁷. Nella fattispecie, il saggio valuta la capacità del composto oggetto di studio (*test compound*) di spiazzare il complesso della chinasi in esame con un ligando noto ad elevata affinità per il sito catalitico (*probe*).

I *probes*, in forma biotinilata, vengono inizialmente immobilizzati su una resina funzionalizzata con streptavidina; la resina così derivatizzata viene quindi trattata

con l'opportuna proteinchinasi, portando alla formazione di complessi chinasiprobe immobilizzati alla resina; le chinasi che vengono utilizzate nel saggio possono essere complete o presentare solamente il dominio catalitico, ma tutte sono derivatizzate con un *tag* di DNA; esso è indispensabile per la successiva fase di quantificazione. In seguito a lavaggio ed eliminazione delle proteine non legate alla resina, il sistema è quindi trattato con il *test compound*. In funzione dell'affinità del *test compound* per la chinasi in esame si otterrà un maggiore o minore spiazzamento della chinasi dai complessi con i *probes* immobilizzati sulla resina. La percentuale di chinasi non spiazzata dal *test compund* viene infine quantificata mediante qPCR (*quantitative PCR*) dei *DNA-tag* legati alle chinasi ancora presenti sulla resina in seguito a lavaggio (Figura 20).

Figura 20. Schematizzazione del saggio di spiazzamento utilizzato per lo screening in vitro.

Tale valore viene quindi utilizzato per definire il POC (Percent Of Control):

POC = [(segnale del *test compound* - segnale del controllo positivo)/(segnale del controllo negativo – segnale del controllo positivo)]*100

dove

controllo positivo = *probe* (POC = 0%); controllo negativo = DMSO (POC = 100%).

Il valore di POC risulta essere quindi inversamente proporzionale all'affinità dimostrata dal *test compound* per la chinasi.

Va sottolineato che nelle condizioni in cui tale saggio viene effettuato, il valore di POC risulta indipendente anche dalla K_D del *probe*.

Assumendo che la concentrazione della chinasi sia inferiore alla $K_{D(test)}$ si ha infatti:

$$K_{D(test)} = [K_{D(probe)} / (K_{D(probe)} + [probe])]^{*}[test]_{1/2}$$

dove [probe] è la concentrazione del ligando immobilizzato e [test]_{1/2} è la concentrazione del *test compound* non legato a metà della transizione.

Il saggio viene eseguito mantenendo [probe] sempre inferiore a $K_{D(probe)}$ e l'equazione può essere quindi semplificata come indicato di seguito:

$$K_{D(test)} = [test]_{1/2}$$

In queste condizioni le costanti di dissociazione dei composti testati risultano essere quindi indipendenti dalle costanti di dissociazione dei *probes*.

l composti sono stati valutati alla concentrazione di 10 μ M. Tale valore è stato scelto in modo da mettere in evidenza anche interazioni molto deboli fra i composti e le chinasi.

Esiste inoltre una correlazione statistica tra il valore di POC e l'effettivo valore di K_D. Alla concentrazione utilizzata, tale correlazione è definita come schematizzato in Figura 21.

Figura 21. Correlazione statistica tra POC e K_D misurata.

E' possibile quindi approssimare che per valori di POC inferiori ad 1% la K_D risulta mediamente compresa fra 100 e 10 nM, e comunque inferiore ad 1 μ M. Al momento della stesura di questa tesi i dati disponibili riguardano solo 28 composti dei 59 totali, che sono qui di seguito riportati (Figura 22).

Figura 22. Strutture dei composti di cui sono disponibili i risultati dello screening al momento della stesura della tesi.

I valori di POC ottenuti per tali composti sono riportati in Tabella 3.

	4-anilino-6-fenilpirimidine							4-anilino-5-fenilpirimidine							4,6-dianilinopirimidine													
	5d	5e	5k	5m	5j	5h	5n	5r	29d	29e	29k	29m	29j	29h	29n	14e	13d	13e	13k	13m	13j	13h	13n	13r	14a	14b	14c	14d
ABL1(T315I)-phosphorylated	96	100	99	86	100	86	99	84	90	91	15	89	93	100	100	87	85	95	90	81	94	77	98	79	89	80	91	51
ABL1-nonphosphorylated	100	90	100	68	70	93	82	78	80	89	8,1	82	80	72	100	100	65	89	83	34	97	43	89	30	66	82	80	27
ABL1-phosphorylated	92	94	95	78	79	77	82	96	79	93	16	93	90	82	97	93	75	81	86	40	88	46	92	75	62	79	77	30
AKT1	100	100	91	100	100	100	100	100	100	93	90	100	98	96	100	83	100	100	92	100	100	80	100	79	100	90	87	100
AKT2	100	100	97	39	88	95	100	100	97	94	94	100	93	89	100	80	88	91	100	91	97	79	100	100	91	96	100	86
ALK	75	87	70	61	60	71	78	78	79	82	74	79	65	77	81	66	81	91	63	56	67	58	97	77	70	62	75	28
AURKA	95	92	92	93	90	77	61	89	88	76	95	86	81	88	54	83	71	88	89	55	81	60	87	78	92	89	100	25
AURKB	83	70	52	82	88	64	66	71	74	68	4,7	79	84	77	38	63	80	76	78	56	68	51	65	64	79	84	82	38
AXL	96	92	70	90	64	75	100	37	86	82	58	76	89	70	67	100	41	38	60	5,7	60	5,5	40	11	49	72	74	1,4
BRAF	83	100	97	92	100	92	85	84	85	83	100	98	86	89	91	83	91	83	97	81	79	81	86	77	93	97	87	70
BRAF(V600E)	97	100	85	100	100	88	100	54	84	92	100	78	91	93	83	95	100	100	97	88	85	80	94	39	100	100	90	100
CDK2	82	85	83	91	85	74	89	76	85	94	78	89	92	92	73	83	83	82	81	76	76	64	82	69	82	85	70	47
CDR3	100	100	97	91	87	86	76	100	100	85	86	91	94	92	100	84	84	96	100	96	96	71	73	77	82	80	92	72
CSF1R	85	100	82	84	90	66	3,9	0	90	90	75	78	72	0	0,1	95	14	36	77	16	93	22	1,3	0	9,1	71	71	13
EGER/LOSOD	55	82	80	70	/5	86	8/	98	24	34	12	55	26	35	58	1/	0,6	7,6	5,4	1,4	2,1	2,1	13	19	0,3	0,3	12	1,8
ECED(L858R)	6/	/3	100	98	84	85	100	100	30	42	14	54	32	45	57	43	0,1	5,4	7,1	0,5	100	0,7	10	16	0	0,1	13	1,5
EGEN(LOSON, 1790M)	100	100	100	25	04	79 96	92	22	85	100	100	30	100	100	8/	99	100	85	89	28	100	50	100	95	100	100	100	14
EFRB2	100	100	97	35	100	80	100	82	20	62	100	100	42	100	100	100	100	100	100	20	72	42	100	45	100	76	100	21
ERK1	00	100	100	00	100	100	100	100	100	03	74	04	45	07	100	02	100	00	91	29	75	42	02	04	100	70	06	21
EAK	100	100	07	100	100	100	100	100	100	00	05	04	100	00	100	100	100	90	5% 06	90	94	70	100	50	001	90	100	75
EGEB2	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	90	100	100	76	100	100	100	100	100	50
EGEB3	91	99	73	89	90	80	87	95	89	76	81	86	85	90	98	85	91	90	75	76	82	62	86	92	84	80	84	31
ELT3	18	34	24	17	21	18	20	0.1	55	65	62	43	48	14	0.1	75	9.6	44	53	15	68	49	0.1	0.1	44	67	61	0.8
IGE1B	95	99	97	31	97	94	94	99	97	92	87	100	98	96	100	100	90	100	89	91	91	80	100	89	92	89	100	35
IKK-beta	99	100	85	80	100	88	86	87	100	84	78	86	100	76	100	83	88	89	68	78	99	65	59	68	87	92	82	56
JAK2(JH1domain-catalytic)	73	77	71	79	74	52	61	37	66	77	86	76	70	72	70	62	68	75	76	53	58	48	85	53	66	77	76	18
JAK3(JH1domain-catalytic)	75	86	78	74	75	38	86	86	85	99	81	88	100	78	93	92	89	73	75	36	84	40	82	79	75	79	86	7,1
JNK1	92	91	100	66	86	98	80	100	100	100	100	100	100	99	100	98	91	78	100	24	73	46	65	69	100	97	90	23
KIT	18	57	70	24	31	26	0	0,1	75	78	24	28	39	15	0	90	23	38	64	8	81	6,8	0	0	34	78	66	1,3
MEK1	100	94	82	100	100	82	100	100	98	94	100	98	66	83	63	100	100	92	100	91	73	81	95	100	100	90	100	37
MET	100	87	100	76	86	59	65	100	95	87	73	89	71	78	84	74	66	100	74	48	100	42	65	100	64	80	92	32
p38-alpha	100	100	100	100	100	100	100	76	100	88	96	100	93	100	100	100	87	84	100	67	80	73	93	48	78	90	97	71
PDGFRA	77	83	100	65	53	66	9,1	1,2	93	85	87	54	66	45	1,9	91	64	68	85	19	90	22	16	1,3	74	81	75	9,5
PDGFRB	57	67	65	35	38	39	0	0	55	73	58	28	45	19	0	100	20	34	77	8,6	62	11	0	0	36	81	35	3,7
PIM1	98	85	100	85	84	76	90	98	70	82	95	78	84	87	86	87	64	89	89	87	85	72	84	79	81	77	96	63
PLK1	100	100	83	100	88	85	90	100	100	81	92	88	94	96	100	81	94	84	84	87	95	79	100	100	90	100	94	46
PRKCH	100	100	100	58	100	100	100	100	91	100	94	92	26	44	93	94	100	100	17	81	100	81	90	100	93	94	98	71
RAF1	92	96	95	79	100	94	93	24	93	100	100	94	100	98	100	95	87	100	75	77	69	91	98	14	96	98	90	100
REI	95	82	85	87	70	69	79	0,4	84	77	78	63	60	62	37	86	82	66	76	63	77	37	51	0	93	83	87	25
ROCK2	100	100	100	96	100	100	89	100	100	98	88	94	57	82	28	100	82	100	67	71	96	64	95	67	84	100	92	19
SRU	100	100	100	100	96	92	100	100	76	79	83	98	85	77	99	78	48	78	74	40	74	30	79	76	32	66	64	35
SYK	100	100	97	85	68	97	100	100	100	66	86	100	97	95	98	83	76	89	72	74	93	60	73	63	76	87	92	57
TE2	100	9/	88	100	100	72	100	51	100	9/	82	94	93	100	88	100	100	100	100	96	100	90	100	3	96	96	84	100
TW(2) (H1 domain actor tic)	94	89	96	79	/8	53	48	23	85	74	82	58	73	76	74	84	84	77	95	38	72	21	58	27	66	/8	90	4
VECEDO	100	100	90	70	01	73 0E	85	18	78	/9	100	/3	100	85	19	92	/4	72	82	22	/0	44	74	26	00	07	100	23
74 D70	100	100	70	85 72	91	61 61	71	55	57	66	67	91	100	95	1,1	94 71	90	91	52	70	68	57 70	70	2,0	79	8/	74	28
24170	33	05	70	12	05	01	.00	02	57	00	57	04	09	/3	05	/1	- 57	00	JZ	00	00	70	12	00	70	/4	/4	/1
Legenda																												

Tabella 3. Valori di POC per i composti saggiati sull'intero pannello di chinasi.

Per meglio analizzare i dati ottenuti, i composti possono essere divisi per classe, sulla base della diversa funzionalizzazione dell'anello pirimidinico dello *scaffold*. Una più chiara rappresentazione può essere ottenuta trasferendo i dati sull'albero filogenetico delle chinasi (Figura 23).

Figura 23. Rappresentazione complessiva dei valori POC ottenuti sull'albero filogenetico delle chinasi.

Da questa rappresentazione risulta chiaro come l'attività di tutti i composti in esame si concentri su un'area ristretta della classe delle tirosinchinasi, costituita principalmente da tirosinchinasi recettoriali.

L'analisi risulta più semplice se si vanno a considerare separatamente i diversi composti, raggruppati per categoria strutturale. Ciascuna classe, infatti, può essere suddivisa in due gruppi: derivati *"type I-like"*, ovvero quelli che presentano in posizione 4 un sostituente anilinico semplice, e derivati *"type II-like"*, ovvero i derivati *N*-pirimidinilamminofenil-*N*'-arilureidici.

In Figura 24 sono riportati i dati per i composti "*type I-like*" suddivisi per classe di appartenenza.

Figura 24. Rappresentazione dei valori POC ottenuti per i derivati "type llike" sull'albero filogenetico delle chinasi.

Per quanto riguarda queste strutture, la classe delle 4-anilino-6-fenilpirimidine risulta essere la meno attiva, mentre si dimostrano più interessanti i derivati 4-anilino-5-fenilpirimidinici e 4,6-dianilinopirimidinici. Per entrambe queste ultime due classi, l'attività si concentra sulle proteinchinasi della famiglia di PDGFR: c-KIT, CSF1R, FLT3, PDGFRα e PDGFRβ. Nello specifico, nel passaggio dalla prima delle due classi alla seconda si riscontra una diminuzione dell'attività contro CSF1R, accompagnata da un aumento di attività nei confronti di PDGFRα e PDGFRβ. Inoltre, i derivati 4,6-dianilinopirimidinici mostrano una spiccata affinità per EGFR, chinasi che non appartiene alla *RTK type III subfamily*.

In entrambe le classi sono poi presenti degli *outlayers*, che colpiscono altre chinasi, non correlate alle prime, ma con bassa affinità.

Prendendo in considerazione, invece, le strutture ureidiche, si può notare come per tutte le diverse classi l'affinità sia notevolmente incrementata, rispetto agli analoghi "*type I-like*" (Figura 25).

Figura 25. Rappresentazione dei valori POC ottenuti per i derivati "type Illike" sull'albero filogenetico delle chinasi.

Per la classe dei derivati 6-fenilpirimidinici questo aumento di affinità è particolarmente significativo; le chinasi che vengono colpite da questa classe di composti rimangono principalmente quelle della *RTK type III subfamily*, ad eccezione di un derivato che colpisce con elevata affinità RET. Anche per la classe dei derivati 5-fenilpirimidinici il pannello di chinasi *target* rimane pressoché invariato rispetto agli analoghi anilinici. Per quanto riguarda la terza classe di derivati, invece, rispetto agli analoghi "*type I-like*" si osserva una netta perdita di affinità nei confronti di EGFR, ed un'estensione del pannello delle chinasi interessate, che va quindi ad includere RET e VEGFR.

5.3.2. SARs PRELIMINARI

Considerando le chinasi che risultano essere *target* di un numero rilevante di composti saggiati, è possibile ricavare delle SARs (*Structure-Activity Relationships*) preliminari.

Le chinasi maggiormente interessate sono quindi risultate quelle *della RTK type III subfamily* (CSF1R, FLT3, c-KIT, PDGFRα, PDGFRβ) ed EGFR.

CSF1R

La maggior parte dei composti che mostra elevata affinità per CSF1R presenta struttura ureidica. Fondamentale per l'interazione appare essere la presenza di un gruppo in grado di donare legami a idrogeno in posizione *para* al sostituente anilinico sul nucleo pirimidinico: esso è rappresentato dall'azoto ureidico nei derivati *"type II-like"* o da un ossidrile nei derivati *"type I-like"*. Meno rilevante appare essere invece la sostituzione delle posizioni 5 e 6 dell'anello pirimidinico (Figura 26).

Figura 26. SARs preliminari individuate per l'interazione con CSF1R.

FLT3

I composti che hanno come *target* FLT3 appartengono sia alla classe dei derivati ureidici che delle strutture *"type I-like"*. In entrambi i casi, la sostituzione dell'anello pirimidinico può avvenire sia in posizione 5 che 6, tuttavia la posizione 6 sembra preferita. Tutti i composti presentano poi un gruppo funzionale idrofilico in posizione *para* al sostituente anilinico che, nei derivati *"type I-like"*, è rappresentato da un ossidrile o un gruppo amminico, mentre nei derivati ureidici è rappresentato dal gruppo ammidico del ponte ureidico stesso (Figura 27).

Figura 27. SARs preliminari individuate per l'interazione con FLT3.

c-KIT

I requisiti strutturali che sembrano richiesti per il *binding* a c-KIT appaiono simili a quelli individuati per FLT3. Anche in questo caso caratteristica comune di tutti i derivati individuati è la presenza di un gruppo funzionale idrofilo in posizione *para* al sostituente anilinico. Per quanto riguarda la sostituzione delle posizioni 5 e 6 del nucleo pirimidinico, la 6 risulta ancora una volta privilegiata. Per le strutture *"type I-like"*, inoltre, sembra fondamentale la presenza, in tale posizione, del sostituente fenilamminico, o, in generale, anilinico (Figura 28).

Figura 28. SARs preliminari individuate per l'interazione con c-KIT.

PDGFRα e PDGFRβ

Anche nel caso di PDGFR, la maggior parte dei composti più interessanti è rappresentata da derivati ureidici. Nuovamente, la sostituzione all'anello pirimidinico sembra preferita in posizione 6. L'unico composto non appartenente alla categoria "*type II-like*" è il derivato **14d** che presenta struttura 4,6-dianilinica e che è sostituito simmetricamente con un ossidrile in posizione *para* ai due gruppi anilinici. La presenza di un gruppo funzionale in grado di donare ponti a idrogeno in *para* alla funzione anilinica appare ancora una volta determinante (Figura 29).

Figura 29. SARs preliminari individuate per l'interazione con PDGFR α e PDGFR β .

EGFR

Nel caso di EGFR, il pattern strutturale che accomuna i derivati che presentano maggiore affinità è molto diverso rispetto casi precedenti.

Tutti i composti individuati presentano infatti struttura "*type I-like*" e geometria 4,6-dianilinica.

Di fondamentale importanza nel determinare l'ordine di affinità per la chinasi appaiono essere, inoltre, la posizione e la natura del gruppo funzionale sul sostituente anilinico.

L'affinità più elevata si ottiene con gruppi funzionali di natura apolare in posizione *meta*.

L'affinità decresce, invece, se il gruppo funzionale è di natura idrofilica, sia esso in posizione *meta* o *para.*

I derivati che presentano affinità più bassa sono poi quelli che presentano o un sostituente ingombrante (fenile) alla funzione anilinica, o un gruppo funzionale apolare in posizione *para* (Figura 30).

Figura 30. SARs preliminari individuate per l'interazione con EGFR.

Questo tipo di comportamento è peraltro in accordo con quello degli inibitori di EGFR a struttura 4-anilinochinazolinica noti⁶⁴.

5.3.3. RAZIONALIZZAZIONE MEDIANTE DOCKING MOLECOLARE

Per meglio razionalizzare i dati ottenuti, su alcuni dei composti saggiati sono stati eseguiti degli studi di *docking* molecolare, nel tentativo di individuarne il plausibile *binding mode* con le diverse proteine e giustificarne la diversa selettività.

Negli studi di *docking* molecolare, un passaggio critico è costituito dalla scelta di un'adeguata struttura tridimensionale per il *target*. Tale scelta può essere guidata

sia da ipotesi sul *binding mode* dei ligandi (ad esempio, i complessi tra inibitori di tipo I e di tipo II con le chinasi presentano particolari e ben note caratteristiche nella posizione del dominio DFG) sia dalla similarità dei composti oggetto di studio con composti co-cristallizzati. In particolare, è risultato opportuno scegliere come *template* iniziale la struttura 4ASD, relativa al complesso VEGFR-2/Sorafenib (Figura 31).

Figura 31. Struttura tridimensionale del complesso VEGFR-2/Sorafenib (in alto; PDB ID: 4ASD) e struttura di Sorafenib (in basso).

La struttura del ligando, infatti, presenta notevoli punti di somiglianza con i derivati ureidici oggetto di questa tesi.

Quindi, fra le strutture tridimensionali a disposizione per CSF1R e per FLT3 sono state scelte quelle caratterizzate dalla massima similarità tridimensionale con la struttura 4ASD (4HW7 per CSF1R e 1T46 per FLT3). Per quanto riguarda c-KIT, nel *Protein Data Bank* è disponibile una sola struttura tridimensionale, che è risultata essere tuttavia molto distante da quelle già selezionate per le altre chinasi, in particolare per quanto riguarda la posizione del dominio DFG. Per PDGFRα e per PDGFRβ, invece, non sono disponibili ad oggi strutture

cristallizzate. Pertanto, si è deciso che per queste tre chinasi fosse più opportuno preparare dei modelli per omologia, utilizzando la struttura 4ASD come *template*. Tali modelli sono stati ottenuti mediante l'utilizzo di un apposito *software* ("Modeller"). Per quanto riguarda, infine, EGFR è stata scelta la struttura 1XKK relativa al complesso con un noto inibitore anilinochinazolinico (Lapatinib; Figura 13). In questo caso, infatti, nessuno dei derivati ureidici è risultato in grado di legarsi efficacemente ad EGFR e gli studi di *docking* si sono concentrati solamente sui derivati 4,6-dianilinopirimidinici che mostrano maggiori analogie strutturali con Lapatinib piuttosto che con Sorafenib.

Le strutture delle chinasi oggetto di studio sono riportate in Figura 32.

Figura 32. Strutture delle chinasi oggetto di studio mediante molecular modeling.

E' stata in un primo momento confrontata la superficie elettrostatica del sito di *binding* delle chinasi appartenenti alla *RTK type III subfamily* con quelle di EGFR e VEGFR-2 (Figura 33).

Figura 33. Potenziali elettrostatici del sito di binding per l'ATP in alcune delle chinasi oggetto di studio.

Il dominio DFG e il principale residuo dell'hinge region sono riportati per maggior chiarezza. Sono inoltre riportati la scala cromatica indicante il potenziale elettrostatico (in basso al centro) e una delle pose ottenute per il composto **13n** (in basso a destra), in modo da orientare il sito di binding. Si noti come il sito di binding in EGFR oltre ad avere una diversa distribuzione di carica, abbia anche caratteristiche steriche differenti rispetto agli altri.

Come illustrato in Figura 33, da tale analisi emerge che per tutte le proteine in esame, con eccezione di EGFR, tale superficie presenta una polarizzazione positiva nella zona della *hinge region*, mentre la superficie tende a diventare negativa nella regione in corrispondenza del dominio DFG; per quanto riguarda invece EGFR, sia la distribuzione del potenziale elettrostatico che delle

caratteristiche steriche sono del tutto differenti, giustificando la diversità dei requisiti strutturali richiesti per l'interazione e discussi precedentemente.

Si è a questo punto tentato di indagare il perché una stessa molecola, o stretti analoghi, presentassero significative differenze di affinità per chinasi tra loro correlate.

A tale scopo, sono pertanto stati affrontati degli studi di *docking* molecolare mediante il *software* "AutoDock". Dall'analisi del *binding mode* di Sorafenib in VEGFR-2 si è notato come la Phe1047 (appartenente al dominio DFG) risultasse posizionata vicina al ligando (in particolare alla posizione 5 del nucleo piridinico), pur non dando origine a interazioni specifiche. Si è quindi ritenuto opportuno considerare le Phe dei diversi domini DFG come flessibili durante il protocollo di *docking* molecolare. Inoltre, nel caso di FLT3, il *gatekeeper* (ovvero il residuo amminoacidico che funge da "cancello" di accesso verso la tasca idrofobica caratteristica delle TK) è costituito dalla Phe al posto della Val (in VEGFR-2) o della Thr (in tutte le altre TK). Tale residuo causa una ridotta dimensione del sito di *binding*, come si può chiaramente notare dalla Figura 33. Anche la Phe691 di FLT3, pertanto, è stata considerata flessibile negli studi di *docking* molecolare. Al contrario, nel caso di EGFR, nessuno dei residui del sito di *binding* è stato considerato come flessibile.

Vengono di seguito riportati alcuni esempi dei risultati ottenuti dagli studi di *docking*.

Il composto **29m** presenta elevata affinità per FLT3, ma ha un effetto di spiazzamento molto debole o nullo nei confronti delle altre chinasi considerate. (Tabella 3). Come mostrato in Figura 34, dagli studi di *docking* effettuati su FLT3 e CSF1R emerge che, in entrambe in casi, l'interazione con la proteina è mediata da un ponte a idrogeno tra l'N1 pirimidinico ed un residuo di cisteina dell'*hinge region*, e da un π - π stacking tra il fenile in 5 e la fenilalanina del dominio DGF.

Figura 34. Binding mode predetti per il composto **29m** in CSF1R (A) e in FLT3 (B).

Solo nell'interazione con FLT3, tuttavia, è possibile la formazione di un secondo π - π stacking, tra la porzione anilinica e la Phe69, assente in CSF1R dove il *gatekeeper* è costituito dalla Thr663.

Su CSF1R risulta, d'altro canto, attivo il composto **29h**, strutturalmente correlato al composto **29m** (da cui differisce per la sostituzione del gruppo amminico con un gruppo ossidrilico). Dall'analisi del *binding mode* ipotizzato è evidenziabile come per entrambi i composti le *pose* siano piuttosto sovrapponibili (Figura 35).

Figura 35. Binding mode predetti per i composti *29m* (A) e *29h* (B) in CSF1R e sovrapposizione degli stessi (C).

In entrambi i casi, l'atomo di azoto N1 del nucleo pirimidinico forma un ponte idrogeno con l'NH ammidico della cisteina 666 della *hinge region*, mentre l'anello benzenico in posizione 5 è coinvolto in un'interazione di tipo π - π stacking con la Phe del dominio DFG. Nel caso del composto **29h**, tuttavia, la presenza dell'ossidrile fenolico, a carattere debolmente acido, permetterebbe l'instaurarsi di un secondo ponte a idrogeno, con l'ossigeno ammidico dell'Asp796, che invece è impedito nel caso del sostituente amminico del composto **29m**, neutro a pH fisiologico.

Sempre su CSF1R risulta inoltre attivo il composto **14d** (anch'esso caratterizzato dalla presenza di una funzione ossidrilica in *para* al sostituente anilinico), anche se con minore affinità; il composto **14b** invece, sebbene correlato al composto **14d** dalla geometria dianilinopirimidinica simmetrica, risulta notevolmente meno

attivo. In questo caso la minore affinità del composto **14d** può essere spiegata dalla geometria stessa della sostituzione fenilamminica in posizione 6 che, rispetto alla sostituzione fenilica in 5, allontanerebbe il secondo arile dalla Phe797, impedendo l'instaurarsi del π - π stacking. La perdita di tale interazione è tuttavia in parte controbilanciata dall'instaurarsi di un secondo ponte a idrogeno con l'ossigeno carbammidico del residuo di Cys666 mediante il ponte amminico. Nel caso invece del composto **14b**, la geometria della sostituzione in posizione *meta* costringerebbe la molecola in una *pose* che impedirebbe la formazione di questo ponte a idrogeno, come d'altra parte la natura idrofobica dell'atomo di bromo impedisce la formazione del ponte a idrogeno con l'Asp796 (Figura 36).

Figura 36. Confronto dei binding mode predetti per i composti 29h (A), 14d
(B) e 14b (C) in CSF1R. Sia per 14d che per 14b la distanza fra la funzione anilinica in posizione 6 e la Phe del dominio DFG risulta essere troppo elevata per dare interazione di tipo π-π stacking (5.4 Å per 14d e 5.9 Å per 14b).

Il derivato **14b** presenta, al contrario, un'elevata affinità per EGFR. In questo enzima, infatti, le diverse proprietà steriche della tasca catalitica permettono probabilmente alla geometria 4,6-dianilinopirimidinica un'interazione ottimale (Figura 37). Tale interazione verrebbe mediata da tre ponti a idrogeno, che vedono coinvolti la Met793 della *hinge region* con N1 e ponte amminico, ed un ulteriore ponte a idrogeno, mediato da una molecola di H₂O, tra Thr790 e N3.

Figura 37. Binding mode predetto per i derivati 4,6-dianilinopirimidinici in EGFR. Il binding mode risulta essere coerente con quanto riportato in letteratura a proposito dei derivati 4-anilinochinazolinici, noti inibitori ATP-mimetici di EGFR⁶⁴.

E' sembrato poi interessante indagare il perché nei derivati *"type II-like"* la diversa funzionalizzazione delle posizioni 5 e 6 non risultasse critica per l'affinità con c-KIT.

Esaminando il *binding mode* proposto per i composti **13n**, **5n** e **29n** in questa chinasi, risulta evidente come i sostituenti in tali posizioni non siano coinvolti in alcun tipo di interazione rilevante. Al contrario, la *driving force* per il *binding* apparirebbe rappresentata dall'alloggiamento della porzione arilureidica nella tasca idrofobica formata da Val643, Leu644, Leu647 e Leu783, e da una rete di legami a idrogeno e interazioni arene-arene *T-shaped*, permessi dalla particolare geometria di tali molecole (Figura 38).

Figura 38. Binding mode predetti per i derivati ureidici **13n** (A), **5n** (B) e **29n** (C) in c-KIT.

Oltre a c-KIT, il derivato **29n** è in grado di interagire con elevata affinità anche con tutte le altre chinasi della *RTK type III subfamily* e con VEGFR-2.

Anche per queste chinasi la forza dell'interazione è mediata dall'occupazione di una tasca idrofobica da parte del sostituente fenilureidico e da una serie di ponti a idrogeno e interazioni arene-arene permessi dalla particolare geometria della molecola (Figura 39).

Figura 39. Binding mode predetti per il composto **29n** in CSF1R (A), FLT3 (B), c-KIT (C), PDGFRα (D), PDGFRβ (E) e VEGFR2 (F).

5.3.4. SAGGI DI CITOTOSSICITA'

Su tutti i composti sintetizzati sono altresì programmati degli studi di citotossicità, sia su diverse linee cellulari tumorali, che su cellule sane; in questo modo sarà possibile correlare i dati relativi alla potenzialità inibitoria sulle chinasi isolate con l'effettiva efficacia nel sistema cellulare, e valutarne l'indice di selettività tra tessuti tumorali e tessuti non cancerosi.

Al momento della stesura di questa tesi, i composti di cui sono disponibili i dati di affinità per le chinasi isolate sono stati valutati per la loro citotossicità su due linee cellulari tumorali e su una linea cellulare non tumorale.

Le linee cellulari tumorali sono rappresentate dalle A549 e dalle BxPC3, mentre la linea HEK293 è costituita da cellule embrionali renali.

La linea cellulare A549 (ATCC) corrisponde ad una linea cellulare umana di carcinoma polmonare non a piccole cellule, avente tempo di duplicazione di circa 22 ore. Queste cellule crescono in adesione e vengono mantenute in coltura con terreno F-12 Ham's addizionato di antibiotici (penicillina 50 U ml⁻¹, streptomicina 50 μ g ml⁻¹) e del 10% di siero fetale bovino scomplementato, cioè mantenuto per mezz'ora a 57 °C, allo scopo di denaturare le proteine del complemento.

La linea cellulare BxPC3 (American Type Colture Collection) corrisponde ad una linea cellulare umana di adenocarcinoma del pancreas avente tempo di duplicazione di circa 21 ore. Queste cellule crescono in adesione al substrato e vengono mantenute in coltura con terreno RPMI-1640 addizionato di antibiotici (penicillina 50 U ml⁻¹, streptomicina 50 µg ml⁻¹) e del 10% di siero fetale bovino scomplementato.

Le cellule HEK293 (Human Embryonic Kidney, ATCC) sono cellule embrionali renali che presentano un ciclo replicativo di circa 24 ore. Crescono in adesione e vengono mantenute in terreno di coltura con terreno DMEM, addizionato di antibiotici (penicillina 50 U ml⁻¹, streptomicina 50 μ g ml⁻¹) e del 10% di siero fetale bovino scomplementato.

Le colture sono preparate in fiasche da 25 cm² e mantenute in fase logaritmica a 37 °C in stufa termostatica a flusso continuo di aria arricchita con il 5% di CO_2 e
in ambiente fortemente umidificato. Per l'allestimento delle subcolture e per il conteggio delle popolazioni cellulari, i monostrati vengono staccati a 37° C con tripsina 0.25% cui segue la neutralizzazione dell'enzima con terreno addizionato di siero al 10%.

La citotossicità dei composti in esame è stata valutata indirettamente mediante un saggio di vitalità cellulare (MTT test), ed espressa in termini di IC₅₀.

Il test dell'MTT è ampiamente utilizzato per la valutazione della vitalità cellulare nei protocolli di *drug screening*⁶⁸. Questo test si basa sulla capacità delle cellule di ridurre un sale di tetrazolio, 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolio bromuro (MTT), ad opera di un enzima respiratorio mitocondriale, la succinato tetrazolio reduttasi⁶⁹: tale riduzione avviene solo nelle cellule vive e non in quelle morte o danneggiate, nelle quali risulta compromessa la funzione mitocondriale, determinante per la trasformazione dell'indicatore. La riduzione dell'MTT comporta, oltre che una modifica strutturale, anche un cambiamento di colore dell'indicatore, da giallo a blu-viola. Le cellule (5·10³ per pozzetto) vengono seminate in micropiastre da 96 pozzetti in 90 µl di terreno ed incubate a 37°C in atmosfera controllata. Dopo 24 ore, le cellule sono trattate in triplo con concentrazioni crescenti del complesso da testare e nuovamente incubate. Trascorso il tempo di contatto previsto, a ciascun pozzetto vengono aggiunti 10 µL di una soluzione salina 5 mg/ml di MTT in PBS. Dopo 5 ore di incubazione, ogni pozzetto è trattato con 100 µl di una soluzione al 10% di SDS in HCl 0.01M. Si lascia quindi incubare overnight. Il giorno seguente, la piastra viene letta mediante lettore BioRad 680 a 570 nm.

Come *standard* per il confronto dei dati ottenuti è stato utilizzato Sunitinib malato (Figura 13), noto inibitore multitarget che presenta un profilo di selettività piuttosto vasto e che include le stesse chinasi colpite dai composti in esame⁵⁴. I valori di IC₅₀ ottenuti sulle linee tumorali sono riportati in Tabella 4.

COMPOSTI	$IC_{50}(\mu M) \pm D.S.$	
	A549	BxPC3
5d	8.12±1.98	12.35±3.29
5e	8.25±3.08	11.24±2.17
5k	7.19±0.97	8.25±1.88
5m	13.13±2.02	15.43±3.33
5j	5.99±2.78	3.89±1.04
5h	5.40±1.64	2.64±0.55
5n	3.16±1.12	0.77±0.21
5r	2.17±0.79	0.61±0.13
29d	12.19±4.27	10.04±2.54
29e	12.15±2.39	14.44±2.97
29k	8.15±1.94	10.19±3.37
29m	12.08±1.99	16.43±4.22
29j	>25	>25
29h	>25	>25
29n	>25	>25
14e	>25	>25
13d	8.94±2.18	6.43±1.78
13e	14.17±2.75	23.25±4.29
13k	>25	17.90±2.46
13m	>25	16.13±4.85
13j	>25	8.19±2.18
13h	16.32±4.24	6.51±1.07
13n	5.13±0.94	4.60±0.85
13r	12.54±2.79	9.69±3.39
14a	>25	>25
14b	>25	>25
14c	>25	>25
14d	>25	>25
Sunitinib malato	6.22±1.84	5.05±1.34

Tabella 4. Valori di IC_{50} per i composti saggiati sulle linee A549 e BxPC3.
Le cellule $(5 \cdot 10^4 ml^1)$ sono state trattate per 72 h con concentrazioni
crescenti dei composti in esame. La citotossicità è stata valutata mediante
MTT test. I valori di IC_{50} sono stati determinati mediante regressione non
lineare logistica a quattro parametri (P < 0.05). D.S. rappresenta la
deviazione standard.

Da questo studio i composti **5**j, **5**h, **5**n, **5**r e **13n** risultano particolarmente interessanti, in quanto presentano un valore di IC_{50} inferiore a quello dello *standard*.

Una migliore rappresentazione dei dati può essere ottenuta definendo il rapporto tra IC_{50} dello *standard* e IC_{50} dei composti saggiati, come riportato in Figura 40.

Figura 40. Rappresentazione del rapporto IC₅₀Sunitinib/IC₅₀composto.

Da questa rappresentazione appare evidente come, ancora una volta, i composti più potenti risultano essere i derivati **5n** e **5r**, ovvero i derivati "*type II-like*" appartenenti alla classe dei derivati 6-fenilpirimidinici; essi, infatti, presentano una citotossicità dalle 6 alle 8 volte superiore a quella di Sunitinib sulle cellule tumorali pancreatiche e dalle 2 alle 3 volte superiore sulle cellule tumorali polmonari.

Su alcuni dei composti con valori di IC_{50} più interessanti è stata altresì valutata la citotossicità sulla linea cellulare HEK293 (cellule non tumorali), per definirne l'indice di selettività (I.S.). Tale indice è dato dal rapporto tra l' IC_{50} misurata sulle cellule sane e quella misurata sulle cellule tumorali, e da indicazioni sulla potenziale selettività del composto nel causare mortalità sulle sole cellule malate: maggiore è il valore di tale indice maggiore la selettività (Tabella 5).

COMPOSTI	HEK293	16
COMPOSIT	$IC_{50}(\mu M)\pm D.S.$	1.5.
5j	10.89±3.34	2.2
5h	14.13±4.02	3.5
5n	7.33±1.75	3.7
5r	3.14±0.57	2.3
Sunitinib malato	12.19±2.83	2.1

Tabella 5. Valori di IC₅₀ per i composti saggiati sulla linea HEK293 e relativo valore di I. S.

Le cellule $(5 \cdot 10^4 ml^1)$ sono state trattate per 72 h con concentrazioni crescenti dei composti in esame. La citotossicità è stata valutata mediante MTT test. I valori di IC₅₀ sono stati determinati mediante regressione non lineare logistica a quattro parametri (P < 0.05). D.S. rappresenta la deviazione standard. I.S. = Indice di Selettività (rapporto tra le IC₅₀ calcolate per le cellule non trasformate e le IC₅₀ sulle tumorali).

E' interessante notare come per tutti i composti risultati più attivi di Sunitinib, l'indice di selettività risulti confrontabile se non persino migliore rispetto a quello dello *standard*.

Questi dati incoraggianti andranno comunque meglio contestualizzati e razionalizzati una volta che il *profiling* sarà completato per tutte le molecole della libreria e su un più ampio pannello di linee cellulari. Sarà quindi anche possibile in questo modo capire se la diversa selettività, in termini di affinità per le chinasi isolate, si può tradurre in citotossicità differenziale verso diversi tipi di cancro che esprimono in maniera diversa tali sistemi enzimatici.

6. CONCLUSIONI

In questo lavoro è stata realizzata una piccola libreria di composti a potenziale attività inibitoria nei confronti di proteinchinasi. Lo scopo del progetto è la determinazione di SARs utili ad un approccio razionale alla progettazione di inbitori proteinchinasici ATP-competitivi, sia ad elevata selettività che *multi target*. Come *scaffold* comune a tutti i composti disegnati e sintetizzati è stato scelto il nucleo 4-anilinopirimidinico. Dalla diversa funzionalizzazione, alternativamente, delle posizioni 5 e 6 con un gruppo fenilico o fenilamminico, sono state generate 4 diverse classi di composti. Tutte e 4 le classi presentano un comune pannello di sostituenti alla funzione anilinica in 4 all'anello pirimidinico. Tali sostituenti si differenziano per natura e posizione: l'utilizzo di semplici gruppi funzionali, quali sostituenti, ha permesso di generare strutture "*type I-like*", mentre l'impiego di sostituenti *N*-fenilureidici ha portato all'ottenimento di derivati "*type II-like*".

Per l'ottenimento di ciascuna classe di derivati è stato necessario individuare e mettere a punto una diversa strategia sintetica. La sintesi è stata completata per tutti i derivati 4-anilino-6-fenilpirimidinici e 4-anilino-6-fenilamminopirimidinici. Per i derivati 4-anilino-5-fenilpirimidinici la sintesi è stata completata per tutti i composti, ad eccezione del derivato **29q**, per il quale si renderanno necessari ulteriori tentativi. Non è stato, invece, ancora possibile individuare una strategia sintetica efficace per l'ottenimento dei derivati 4-anilino-5-fenilamminopirimidinici; ulteriori studi e tentativi verranno effettuati per il completamento di tale serie.

Tutti i composti sintetizzati sono stati sottoposti ad uno *screening* per valutarne l'affinità all'*ATP-binding site* di 48 proteinchinasi, appartenenti sia alla famiglia delle tirosinchinasi che a quella delle serin-treoninchinasi, e selezionate tra quelle note perché coinvolte nella patogenesi tumorale.

Al momento della stesura di questa tesi sono disponibili i risultati relativi a solo 28 composti dei 58 sottoposti a *screening*.

Dai risultati preliminari emerge che tali strutture, in generale, risultano idonee principalmente all'interazione con tirosinchinasi. La gran parte dei composti saggiati è in grado di legare con elevata affinità almeno una delle proteinchinasi appartenenti alla *RTK type III subfamily* (filogeneticamente tra loro correlate). Dall'analisi di tale strutture sono state ricavate delle SARs preliminari, che

dimostrano come i requisiti strutturali necessari all'interazione con tali chinasi siano abbastanza simili tra i membri dello stesso gruppo filogenetico.

Un altro gruppo di composti è stato individuato come interessante per l'interazione con EGFR. Anche in questo caso è stato possibile individuare delle SARs preliminari che hanno dimostrato come i requisiti strutturali necessari all'interazione con tale chinasi siano molto diversi rispetto a quelli individuati per le chinasi precedenti, in accordo con la distanza filogenetica tra i due gruppi.

Il *binding mode* di alcuni di questi composti è stato quindi indagato mediante metodi di *docking* molecolare.

Sugli stessi composti sottoposti a *screening* sono stati inoltre eseguiti dei saggi preliminari di citotossicità, sia su cellule tumorali che su cellule sane. Da tali studi emerge che alcuni di questi composti risultano potenzialmente interessanti sia in termini di IC₅₀ che di indice di selettività rispetto alle cellule non tumorali.

Una volta disponibili i dati completi degli studi *in vitro* sarà possibile completarne l'analisi ed ottenere informazioni più dettagliate, anche mediante l'impiego di metodi computazionali.

Sarà in questo modo possibile valutare l'effettiva validità di tali strutture come *scaffolds* per la progettazione di inibitori di proteinchinasi a selettività controllata.

7. MATERIALI E METODI

7.1. MATERIALI

I prodotti ed i reagenti impiegati (*Acros* ed *Aldrich*) sono stati utilizzati come tali, senza purificazioni.

La purezza dei solventi organici (Carlo Erba e Lab Scan) è di grado analitico.

I solventi deuterati utilizzati per NMR (*Isotec*) presentano grado di purezza isotopica minimo 99.5%.

La cromatografia su strato sottile è stata effettuata su lastre al gel di silice 60 F_{254} (0.2 mm, *Merck*), eluendo come indicato volta per volta.

La cromatografia su colonna è stata eseguita utilizzando gel di silice 60 (0.063-0.100 mm, *Merck*), eluendo con i solventi di volta in volta indicati.

7.2. STRUMENTAZIONE

I punti di fusione sono stati determinati in capillare aperto, utilizzando un apparecchio per punto di fusione Gallenkamp MFB-595-010M.

Gli spettri ¹H-NMR sono stati eseguiti con spettrometro Bruker 300-AMX, utilizzando TMS come standard interno ($\delta = 0$) ed i solventi deuterati di volta in volta indicati; i valori di assorbimento sono espressi in δ e le costanti in Hz.

Gli spettri di massa sono stati realizzati su spettrometro Applied Biosystem Mariner System 5220 per iniezione diretta del campione.

7.3. SINTESI DI DERIVATI 4-IDROSSIPIRIMIDINICI

7.3.1. SINTESI DI DERIVATI 6-FENIL-4-IDROSSIPIRIMIDINICI

Sintesi di 6-fenil-4-idrossi-2-mercaptopirimidina

Una soluzione di etile benzoilacetato (8.6 ml, 50.0 mmoli) in EtOH (30 ml) è stata aggiunta di una soluzione di EtONa/EtOH 20% (20 ml) e lasciata in agitazione a t. a. per 20 minuti. Alla soluzione è stata quindi aggiunta tiourea (4.6 g, 60.0 mmoli) e la miscela così ottenuta posta a riflusso per 24 ore (TLC: CHCl₃/MeOH 9/1).

La miscela di reazione è stata quindi raffreddata e concentrata a secchezza. Il residuo ottenuto è stato ripreso con H_2O (100 ml) e la miscela ottenuta acidificata con HCl conc. fino a pH=2. Il precipitato formatosi è stato quindi raccolto per filtrazione e lavato con H_2O , portando all'ottenimento di **6-fenil-4-idrossi-2-mercaptopirimidina** (9.0 g, resa 88%), con p. f. 265°C.

¹**H-NMR** (DMSO-*d*₆): 12.52 (s all, 1 H, S<u>H</u> o O<u>H</u>); 12.49 (s all, 1 H, S<u>H</u> o O<u>H</u>); 7.73-7.67 (m, 2 H, 2'-H e 6'-H); 7.59-7.45 (m, 3 H, 5'-H e 3'-H e 4'-H); 6.08 (d, J=0.1, 1 H, 5-H).

Sintesi di 6-fenil-4-idrossipirimidina

METODO A

Una soluzione di etile benzoilacetato (1.7 ml, 1.0 mmoli) in EtOH (2 ml) è stata aggiunta di una soluzione di EtONa/EtOH 20% (0.5 ml) e lasciata in agitazione a t. a. per 20 minuti. Alla soluzione è stata quindi aggiunta formammidina acetato (0.1 g, 1.2 mmoli) e la miscela così ottenuta posta a riflusso per 4 ore (TLC: CHCl₃/MeOH 9/1).

Essendo stata ottenuta una miscela di prodotti troppo complessa per essere caratterizzata il metodo è stato abbandonato.

METODO B

Una soluzione di etile benzoilacetato (1.7 ml, 1.0 mmoli) in EtOH (2 ml) è stata aggiunta di K_2CO_3 (170.0 mg, 1.2 mmoli) e lasciata in agitazione a t. a. per 20 minuti. Alla soluzione è stata quindi aggiunta formammidina acetato (0.1 g, 1.2 mmoli) e la miscela così ottenuta posta a riflusso per 4 ore (TLC: CHCl₃/MeOH 9/1).

Essendo stata ottenuta una miscela di prodotti troppo complessa per essere caratterizzata il metodo è stato abbandonato.

METODO C

Una soluzione di etile benzoilacetato (1.7 ml, 1.0 mmoli) in EtOH (2 ml) è stata aggiunta di una soluzione di EtONa/EtOH 20% (0.5 ml) e lasciata in agitazione a t. a. per 20 minuti. Alla soluzione è stata quindi aggiunta formammidina acetato (0.1 g, 1.2 mmoli) e la miscela così ottenuta è stata lasciata in agitazione a t. a. per 4 ore (TLC: CHCl₃/MeOH 9/1).

Non essendo stata rilevata la formazione di alcun prodotto diverso da quello di partenza il metodo è stato abbandonato.

METODO D

Ad una soluzione di 6-fenil-4-idrossi-2-mercaptopirimidina (4.1 g, 20.0 mmoli) in EtOH/NH₄OH 3/1 (300 ml) è stata aggiunta una sospensione acquosa di Nickel-Raney (8 ml). La miscela così ottenuta è stata posta a riflusso per 6 ore (TLC: CHCl₃/MeOH 9/1). La miscela di reazione è stata quindi concentrata a secchezza. Il residuo ottenuto è stato ripreso con 100 ml di H₂O e la miscela ottenuta acidificata con HCl conc. fino a pH=2. Il precipitato formatosi è stato quindi raccolto per filtrazione e lavato con H₂O, ottenendo la **6-fenil-4-idrossipirimidina** (2.1 g, resa 60%), con p. f. 274°C.

¹**H-NMR** (DMSO-*d*₆): 12.53 (s all, 1 H, O<u>H</u>); 8.27 (s, 1 H, 2-H); 8.04-8.02 (m, 2 H, 2'-H e 6'-H); 7.51-7.46 (m, 3 H, 5'-H e 3'-H e 4'-H); 6.88 (s, 1 H, 5-H).

7.3.2. SINTESI DI DERIVATI 5-FENIL-4-IDROSSIPIRIMIDINICI

Sintesi di etile 2-fenil-2-formilacetato

Una soluzione di etile 2-fenilacetato (0.5 ml, 3.0 mmoli) in HCOOEt (3 ml) è stata posta sotto agitazione in flusso di N₂ a temperatura ambiente. Alla miscela di reazione è stato aggiunto NaH (0.3 g, 12.0 mmoli) in 3 porzioni a distanza di 30 minuti ciascuna (TLC: CHCl₃/TEA, 95:5). La miscela di reazione è stata cautamente neutralizzata con una soluzione di HCl 1M e lasciata in agitazione per 1 ora. La miscela di reazione è stata estratta in EtOAc (3 x 20 ml). La fase organica risultante è stata anidrificata con Na₂SO₄, filtrata e concentrata a secchezza, ottenendo l' **etile 2-fenil-2-formilacetato** (0.3 g, resa 52%), di consistenza oleosa.

¹**H-NMR** (DMSO-*d₆*): 10.94 (s all, 1 H, O<u>H</u>); 7.87 (s, 1 H, H_{enol}); 7.30-7.24 (m, 5 H, Ar-H); 4.06 (q, J= 7.1, 2 H, COOC<u>H</u>₂CH₃); 1.19 (t, J= 7.1, 3 H, COOCH₂C<u>H</u>₃).

Tentativo di sintesi di 5-fenil-4-idrossipirimidina

Ad una soluzione di etile 2-fenil-2-formilacetato (0.2 g, 1.0 mmoli) in EtOH assoluto (1 ml) è stata aggiunta formamidina acetato (0.1 g, 1.1 mmoli) ed una soluzione di EtONa/EtOH 20% (0.7 ml). La miscela di reazione è stata posta a riflusso sotto agitazione per 1 ora (TLC: CHCl₃/MeOH, 9:1). poiché non è stata riscontrata la formazione di alcun prodotto diverso da quello di partenza, il metodo è stato abbandonato.

Tentativo di sintesi di 5-fenil-4-idrossi-2-mercaptopirimidina

Ad una soluzione di etile 2-fenil-2-formilacetato (0.2 g, 1.0 mmoli) in EtOH assoluto (1 ml) sono state aggiunte tiourea (0.1 g, 1.1 mmoli) ed una soluzione di EtONa 20% in EtOH (0.7 ml). La miscela di reazione è stata posta a riflusso sotto agitazione per 24 ore (TLC: CHCl₃/MeOH, 9:1). Dopo raffreddamento, la miscela è stata concentrata a secchezza, ripresa con una soluzione di HCl 1M (5 ml) ed estratta con EtOAc (3 x 20 ml). La fase organica risultante è stata anidrificata con Na₂SO₄, filtrata e concentrata a secchezza. Poiché il residuo solido ottenuto non è risultato costituito dal prodotto desiderato il metodo è stato abbandonato.

Sintesi di 5-bromo-4-idrossipirimidina

METODO A

Ad una sospensione di 4-idrossipirimidina (0.1 g, 1.0 mmoli) in NaHCO₃ 2M (2 ml) è stata aggiunta goccia a goccia una soluzione di bromo (0.1 ml, 2.3 mmoli) in MeOH (2 ml). La miscela è stata lasciata in agitazione per 16 ore (TLC: CHCl₃/MeOH/HCOOH, 90/9/1). Poiché è stata ottenuta una miscela complessa di prodotti, la via sintetica è stata abbandonata.

METODO B

Ad una soluzione di 4-idrossipirimidina (1.0 g, 10.0 mmoli) in acido acetico (2 ml) è stata aggiunta *N*-bromosuccinimmide (1.9 g, 11.0 mmoli). La miscela così ottenuta è stata posta a riflusso sotto agitazione per 1 ora (TLC: CHCl₃/MeOH/HCOOH, 90/9/1). Dopo raffreddamento, la miscela di reazione è stata diluita con acqua (20 ml) ed estratta a fondo con CHCl₃ (3 x 10 ml). La fase organica risultante è stata anidrificata con Na₂SO₄, filtrata e concentrata a secchezza. Il residuo solido ottenuto è stato cristallizzato da EtOAc, ottenendo la **5-bromo-4-idrossipirimidina** (0.6 g, resa 34%), con p.f.158 °C.

1H-NMR (DMSO-*d*₆): 13.08 (s, 1H, O<u>H</u>); 8.33 (s, 1H, 2-H); 8.23 (s, 1H, 6-H).

Tentativi di sintesi di 4-idrossi-5-fenilpirimidina

METODO A

Ad una sospensione di 5-bromo-4-idrossipirimidina (0.1 g, 0.8 mmoli) in dimetossietano (15 ml) e NaHCO₃ 3.6 M (1 ml) sono stati aggiunti nell'ordine acido fenilboronico (0.1 g, 1.0 mmoli) e palladio trifenilfosfino tetrakis (47.0 mg, 0.1 mmoli). La miscela così ottenuta è stata posta a riflusso sotto agitazione (TLC: CHCl₃/MeOH/HCOOH, 90/9/1). Non essendo stato ottenuto alcun prodotto diverso da quello di partenza, la via sintetica è stata abbandonata.

METODO B

Ad una sospensione di 5-bromo-4-idrossipirimidina (0.1 g, 0.8 mmoli) in dimetossietano (15 ml) e NaHCO₃ 3.6 M (1 ml) sono stati aggiunti nell'ordine acido fenilboronico (0.1 g, 1.0 mmoli) e palladio trifenilfosfino tetrakis (47.0 mg, 0.1 mmoli). La miscela così ottenuta è stata irraddiata con MW a 100 Watt raggiungendo la temperatura di 150 °C. Tale temperatura è stata mantenuta costante per 5 minuti, mediante regolazione automatica della temperatura e della potenza (TLC: CHCl₃/MeOH/HCOOH, 90/9/1). Non essendo stato ottenuto alcun prodotto diverso da quello di partenza, la via sintetica è stata abbandonata.

METODO C

Ad una sospensione di 5-bromo-4-idrossipirimidina (0.1 g, 0.8 mmoli) in dimetossietano (15 ml) e NaHCO₃ 3.6 M (1 ml) sono stati aggiunti nell'ordine acido fenilboronico (0.1 g, 1.0 mmoli), palladio trifenilfosfino tetrakis (47.0 mg, 0.1 mmoli) e litio cloruro (42.0 mg, 1.0 mmoli). La miscela così ottenuta è stata posta a riflusso (TLC: CHCl₃/MeOH/HCOOH, 90/9/1). Non essendo stato ottenuto alcun prodotto diverso da quello di partenza, la via sintetica è stata abbandonata.

Tentativo di sintesi di 4-acetossipirimidina

METODO A

Ad una sospensione di 4-idrossipirimidina (0.1 g, 1.0 mmoli) in anidride acetica (1 ml) è stato aggiunto sodio acetato (0.4 g, 5.0 mmoli). La miscela così ottenuta è stata posta a riflusso sotto agitazione per 16 ore (TLC: CHCl₃/MeOH/HCOOH, 90/9/1). Poiché è stata ottenuta una miscela troppo complessa di prodotti, la via sintetica è stata abbandonata.

METODO B

Una soluzione di 4-idrossipirimidina (0.1 g, 1.0 mmoli) in piridina (3 ml) è stata posta in bagno di ghiaccio e aggiunta di anidride acetica (94.0 μ l, 1.0 mmoli). La miscela è stata quindi lentamente portata a temperatura ambiente e lasciata in agitazione per 16 ore (TLC: CHCl₃/MeOH/HCOOH, 90/9/1). La miscela è stata quindi ripresa con una soluzione acquosa satura di ammonio cloruro (30 ml) estratta con EtOAc (3 x 10 ml). La fase organica risultante è stata anidrificata con Na₂SO₄, filtrata e concentrata a secchezza. Poiché è stato ottenuto un prodotto diverso da quello desiderato, la via sintetica è stata abbandonata.

Sintesi di N,N-dimetilamminometilentiourea

Una soluzione di tiourea (3.8 g, 50.0 mmoli) e *N,N*-dimetilformammide dimetilacetale (7.2 g, 60.0 mmoli) in MeOH (100 ml) è stata posta a riflusso sotto agitazione per 4 ore. Per raffreddamento della soluzione così ottenuta, è stato ottenuto un precipitato che è stato raccolto per filtrazione, ottenendo la *N,N*-dimetilamminometilentiourea (4.6 g, resa 70%), con p.f.163 °C.

¹**H-NMR** (DMSO-*d*₆): 8.20 (s, 1H, N<u>H</u>); 7.93 (s, 1H, N<u>H</u>); 3.33 (s, 1H, C<u>H</u>); 3.13 (s, 3H, C<u>H</u>₃); 2.98 (s, 3H, C<u>H</u>₃).

Sintesi di 1-dimetilamminometilene-2-metilisotiourea iodidrato

Ad una sospensione di *N*,*N*-dimetilamminometilentiourea (4.6 g, 35.0 mmoli) in THF (62 ml) è stato aggiunto iodometano (2.3 ml, 37.0 mmoli). La miscela di reazione è stata lasciata in agitazione a temperatura ambiente per 6 ore e concentrata a secchezza, ottenendo l' **1-dimetilamminometilene-2-metilisotiourea iodidrato** (7.2 g, resa 96%), con p.f. 156 °C.

¹**H-NMR** (DMSO-*d*₆): 9.57 (s, 2H, N<u>H</u> e HI); 8.39 (s, 1H, C<u>H</u>); 3.27 (s, 3H, N-C<u>H</u>₃); 3.13 (s, 3H, N-C<u>H</u>₃) ; 2.56 (s, 3H, S-C<u>H</u>₃).

Sintesi di 4-idrossi-5-fenil-2-tiometilpirimidina

Una sospensione di 1-dimetilamminometilene-2-metilisotiourea iodidrato (12.0 g, 44.0 mmoli) in diclorometano (133 ml) è stata posta in bagno di ghiaccio e quindi aggiunta di TEA (25.0 ml, 177.0 mmoli) e fenilacetilcloruro (7.0 ml, 53.0 mmoli). La miscela ottenuta è stata lentamente portata a temperatura ambiente e lasciata in agitazione per 3 ore (TLC: CHCl₃/MeOH, 9/1). La miscela è stata quindi estratta con una soluzione di NaOH 3M (3 x 100 ml). La fase acquosa è stata quindi raffreddata in bagno di ghiaccio e portata a pH 4 con HCl 5M. Il precipitato così formatosi è stato raccolto per filtrazione e lavato con acqua, ottenendo la **4-idrossi-5-fenil-2-tiometilpirimidina** (5.2 g, resa 54%), con p.f. 250 °C.

¹**H-NMR** (DMSO-*d*₆): 13.02 (s, 1H, O<u>H</u>); 8.07 (s, 1H, 6-H); 7.65 (m, 2H, 2'-H e 6'-H); 7.36 (m, 3H, 3'-H, 4'-H e 5'-H); 2.53 (s, 3H, C<u>H</u>₃).

Tentativo di sintesi di 4-idrossi-5-fenilpirimidina

Ad una soluzione di 4-idrossi-5-fenil-2-tiometilpirimidina (0.2 g, 1.0 mmoli) in una miscela di EtOH/NH₄OH 3/1 (10 ml) è stata aggiunta una sospensione acquosa di Nickel-Raney (1.5 ml). La miscela ottenuta è stata posta a riflusso per 4 ore (TLC: CHCl₃/MeOH 8/2). Dopo raffreddamento la miscela di reazione è stata filtrata e la soluzione limpida è stata concentrata a secchezza. Il residuo ottenuto è stato ripreso con acqua e acidificato con HCl conc. fino a pH=2. La fase acquosa è stata quindi estratta a fondo con EtOAc, anidrificata con Na₂SO₄, filtrata e concentrata a secchezza. Non essendo stato possibile ottenere una quantità di residuo sufficiente ad eseguirne una caratterizzazione ottimale, il metodo è stato abbandonato.

7.3.3. TENTATIVO DI SINTESI DI DERIVATI 5-FENILAMMINO-4-IDROSSIPIRIMIDINICI

Sintesi di etile 2-fenilamminoacetato

METODO A

Ad una miscela di anilina (0.3 ml, 3.0 mmoli) in acqua (1 ml) è stato aggiunto etile 2-bromoacetato (0.7 ml, 6.0 mmoli) e la miscela risultante è stata irradiata con MW a 250 W raggiungendo la temperatura di 150°C. Tale temperatura è stata mantenuta per 20 minuti (TLC: CHCl₃/MeOH, 9/1). Dopo raffreddamento la miscela è stata estratta con EtOAc (3 x 10 ml), la fase organica è stata anidrificata con Na₂SO₄, filtrata e concentrata a secchezza. Poiché è stato ottenuto un prodotto diverso da quello desiderato la via sintetica è stata abbandonata.

METODO B

Ad una soluzione di anilina (0.5 ml, 4.9 mmoli) in CHCl₃ è stato aggiunto etile 2bromoacetato (0.3 ml, 2.5 mmoli) e la miscela risultante è stata lasciata in agitazione a temperatura ambiente per una notte (TLC: CHCl₃/MeOH, 9/1). Il precipitato formatosi è stato allontanato per filtrazione e la soluzione limpida è stata concentrata a secchezza portando all'ottenimento dell' **etile 2fenilamminoacetato** (0.4 g, resa 45%) con p.f. 74 °C.

¹**H-NMR** (DMSO-*d*₆): 7.34 (t, J=8.0, 1H, 4-H); 7.15-7.03 (m, 2H, Ar-H x2); 6.60-6.49 (m, 2H, Ar-H x2); 4.11 (q, J=7.2, 2H, C<u>H</u>₂); 3.87 (s, 2H, C<u>H</u>₂); 1.18 (t, J=7.2, 3H, CH₃).

Tentativo di sintesi di etile 2-dimetilamminometilen-2-fenilamminoacetato

Una soluzione di etile 2-fenilamminoacetato (0.2 g, 1.0 mmoli) in *N*,*N*dimetilformammide deimetilacetale (0.3 ml, 2.0 mmoli) è stata irradiata con MW a 150 W, raggiungendo la temperatura di 200°C. Tale temperatura è stata mantenuta per 4 minuti (TLC CHCl₃/MeOH, 9/1). Dopo raffreddamento la miscela è stata concentrata a secchezza. Poiché è stato ottenuto un prodotto diverso da quello desiderato la via sintetica è stata abbandonata.

Sintesi di dietil 2-fenilamminomalonato

Ad una soluzione di dietil bromomalonato (3.4 ml, 20.0 mmoli) in ⁱ PrOH (4 ml) è stata aggiunta anilina (4.0 ml, 40.0 mmoli) e la miscela risultante è stata irradiata a MW a 100 W raggiungendo la temperatura di 95 °C. Tale temperatura è stata mantenuta per 20 minuti (TLC: n-esano/EtOAc, 8/2).

Dopo raffreddamento la miscela è stata concentrata a secchezza. Il residuo è stato ripreso con abbondante EtOAc, eliminando il residuo insolubile mediante filtrazione. La fase organica limpida è stata lavata con HCl 1M, anidrificata con Na₂SO₄ filtrata e concentrata a secchezza ottenendo il **dietil 2-fenilamminomalonato** (3.5 g, resa 70%) di consistenza oleosa.

¹**H-NMR** (DMSO-*d*₆): 7.10 (dt J=8.0, J=1.2, 2H, 3-H e 5-H); 6.71 (dd, J=8.0, J=1.5, 2H, 2-H e 6-H); 6.63 (tt, J=8.0, J=1.5, 1H, 4-H); 6.17 (s, 1H, N<u>H</u>); 5.0 (s, 1H, C<u>H</u>); 4.19 (q, J=7.0, 4H, 2xC<u>H</u>₂); 1.20 (t, J=7.0, 6H, 2xC<u>H</u>₃).

Sintesi di 4,6-diidrossi-5-fenilammino-2-mercaptopirimidina

Una soluzione di NaOEt in EtOH preparata di fresco dissolvendo Na metallico (165.0 mg, 7.2 mmoli), in EtOH (10 ml), è stata aggiunta di una soluzione di dietil 2-fenilamminomalonato (4.1 g, 16.3 mmoli), e tiourea (1.5 g, 20.0 mmoli) in EtOH (30 ml). La miscela ottenuta è stata posta a riflusso e sotto agitazione per 1 ora (TLC: n-esano/EtOAc, 8/2). Dopo raffreddamento la miscela di reazione è stata concentrata a secchezza.

Il residuo ottenuto è stato ripreso con acqua e acidificato con HCl 5M ed il precipitato formatosi è stato raccolto per filtrazione ottenendo la **4,6-diidrossi-5-fenilammino-2-mercaptopirimidina** (2.0 g, resa 53%).

¹**H-NMR** (DMSO-*d*₆): 7.08 (d, J=7.8, 2H, 2'-H e 6'-H); 6.65 (t, J=7.8, 1H, 4'-H); 6.58 (t, J=7.8, 2H, 6'-H, 2'-H).

Tentativo di sintesi di 4,6-diirdossi-5-fenilamminopirimidina

METODO A

Una soluzione di NaOEt in EtOH preparata di fresco dissolvendo Na metallico (0.4 g, 17.5 mmoli) in EtOH (10 ml), è stata aggiunta di formamidina acetato (0.6 g, 5.5 mmoli) a 0°C. La miscela ottenuta è stata lasciata in agitazione per 30 minuti, aggiunta di una soluzione di dietil 2-fenilamminomalonato (1.2 g, 5.0 mmoli) in EtOH (2 ml) e lasciata in agitazione a temperatura ambiente per una notte (TLC: n-esano/EtOAc, 8/2). La miscela è stata quindi concentrata a secchezza, il residuo è stato ripreso con acqua (150 ml) e la miscela ottenuta à stata quindi estratta con EtOAc (3 x 50 ml), la risultante fase organica anidrificata con Na₂SO₄, filtrata e concentrata a secchezza. Poiché è stato ottenuto un prodotto diverso da quello desiderato la via sintetica è stata abbandonata.

METODO B

Una soluzione di NaOEt in EtOH preparata di fresco dissolvendo Na metallico (165.0 mg, 7.2 mmoli), in EtOH (10 ml), è stata aggiunta di dietil 2-fenilamminomalonato (0.7 g, 3.0 mmoli) e formamidina acetato (374.0 mg, 3.6 mmoli) e la miscela risultante è stata sottoposta a due cicli di irraggiamento con MW a 150 W raggiungendo ogni volta la temperatura di 120 °C. Tale temperatura è stata mantenuta ad ogni ciclo per 10 minuti (TLC: CHCl₃/MeOH, 9/1). Dopo raffreddamento la miscela risultante è stata concentrata a secchezza ed il residuo è stato ripreso con acqua ed acidificato a pH=3 con HCl 5M. Il precipitato così ottenuto è stato raccolto per filtrazione. Poiché è stato ottenuto un prodotto diverso da quello desiderato la via sintetica è stata abbandonata.

METODO C

Ad una sospensione di 4,6-diidrossi-5-fenilammino-2-mercaptopirimidina (0.2 g, 1.0 mmoli) in EtOH (25 ml) è stata aggiunta una sospensione acquosa di Nickel-Raney (1.5 ml). La miscela ottenuta è stata posta a riflusso per 4 ore (TLC: CHCl₃/MeOH/HCOOH, 90/10/1). Dopo raffreddamento la miscela di reazione è stata filtrata e la soluzione limpida è stata concentrata a secchezza. Poiché è stato ottenuto un prodotto diverso da quello desiderato la via sintetica è stata abbandonata.

Tentativo di sintesi di 4,6-diidrossi-5-fenilammino-2-tiometilpirimidina

Ad una soluzione di 4,6-diidrossi-5-fenilammino-2-mercaptopirimidina (0.2 g, 1.0 mmoli) e TEA (0.2 ml, 2.5 mmoli) in DMSO (5 ml), è stato aggiunto CH₃I (124.5 μ I, 2.0 mmoli). La miscela ottenuta è stata lasciata in agitazione a temperatura ambiente per 4 ore (TLC: CHCl₃/MeOH/HCOOH, 90/10/1). La soluzione è stata ripresa con acqua (60 ml) ed il precipitato formatosi è stato raccolto per filtrazione. Poiché è stato ottenuto un prodotto diverso da quello desiderato la via sintetica è stata abbandonata.

7.4. SINTESI DI DERIVATI 4-CLOROPIRIMIDINICI

Sintesi di 4-cloro-6-fenilamminopirimidina

Ad una soluzione di 4,6-dicloropirimidina (1.3 g, 9.0 mmoli) in ⁱPrOH sono state aggiunte anilina (1.0 ml, 9.9 mmoli) e TEA (1.4 ml, 18.0 mmoli) e la miscela risultante è stata irradiata con MW a 100 Watt raggiungendo la temperatura di 150 °C. Tale temperatura è stata mantenuta per 30 minuti (TLC: CE/EtOAc 8/2). Dopo raffreddamento la miscela risultante è stata concentrata a secchezza ed il residuo è stato ripreso con acqua. Il precipitato formatosi è stato raccolto per filtrazione, ottenendo la **4-cloro-6-fenilamminopirimidina** (1.6 g, resa 84%), con p. f. 156°C.

¹H-NMR (DMSO-*d*₆): 9.88 (s all, 1 H, N<u>H</u>); 8.47 (s, 1 H, 2-H); 7.61 (d, J=8.3, 2 H, 1'-H e 6'-H); 7.37 (dd, J=7.8,J=7.4, 2 H, 2'-H e 4'-H); 7.08 (t, J=7.4, 1 H, 3'-H); 6.79 (s, 1 H, 5-H).

Tentativo di sintesi di 5-bromo-4-cloropirimidina

METODO A

Ad una sospensione di 5-bromo-4-idrossipirimidina (174.0 mg, 1.0 mmoli) in tionile cloruro (1 ml) è stata aggiunta *N*,*N*-dimetilformammide (10.0 μ l). La miscela così ottenuta è stata posta a riflusso sotto agitazione per 2 ore (TLC: CHCl₃/MeOH/HCOOH, 90/9/1). Dopo raffreddamento, la miscela è stata concentrata a secchezza ed il residuo solido è stato ripreso con CHCl₃ (30 ml) e lavato con una soluzione acquosa di NaHCO₃ (3 x 10 ml). La fase organica è stata anidrificata con Na₂SO₄ e concentrata a secchezza. Poiché è stato ottenuto un prodotto diverso da quello desiderato, tale via sintetica è stata abbandonata.

METODO B

Ad una sospensione di 5-bromo-4-idrossipirimidina (174.0 mg, 1.0 mmoli) in fosforo ossicloruro (0.5 ml, 5.0 mmoli) è stata aggiunta, nell'arco di un'ora, in piccole porzioni e sotto agitazione, TEA (0.3 ml, 2.0 mmoli). Al termine dell'aggiunta (TLC: CHCl₃/MeOH/HCOOH, 90/9/1), la miscela di reazione è stata concentrata a secchezza mediante flusso di azoto. Il residuo così ottenuto è stato diluito con acqua (30 ml) ed estratto con CHCl₃ (3 x 10 ml). La fase organica risultante è stata anidrificata con Na₂SO₄ e concentrata a secchezza, ottenendo una miscela molto complessa di prodotti, di difficile caratterizzazione. Per tale motivo il metodo è stato abbandonato.

7.4.1. SINTESI DI DERIVATI 4-CLORO-6-FENILPIRIMIDINICI E 4-CLORO-5-FENILPIRIMIDINICI

METODICA GENERALE

Ad una sospensione dell'adeguato derivato 4-idrossipirimidinico (1.0 mmoli) in fosforo ossicloruro (0.5 ml, 5.0 mmoli) è stata aggiunta TEA (0.3 ml, 2.0 mmoli), nell'arco di un'ora ed in piccole porzioni, a t. a. e sotto agitazione. Al termine dell'aggiunta la miscela risultante è stata posta a riflusso per un'ora (TLC: CHCl₃/MeOH, 9/1). Il solvente è stato quindi allontanato mediante flusso di azoto ed il risultante residuo è stato ripreso con acqua. Il precipitato formatosi è stato quindi raccolto per filtrazione, ottenendo il cloroderivato di volta in volta indicato.

Sintesi di 4-cloro-6-fenilpirimidina

Con la metodica generale, a partire da 6-fenil-4-idrossipirimidina (172.0 mg) è stata ottenuta la **4-cloro-6-fenilpirimidina** (171.0 mg, resa 90%), con p.f. 156°C.

¹**H-NMR** (DMSO-*d*₆): 9.10 (s, 1 H, 2-H); 8.33 (s, 1 H, 5-H); 8.28-8.23 (m, 2 H, 2'-H e 6'-H); 7.63-7.53 (m, 3 H, 3'-H e 4'-H e 5'-H).

Sintesi di 4-cloro-5-fenil2-tiometilpirimidina

Con la metodica generale, a partire da 5-fenil-4-idrossipirimidina (218.0 mg) è stata ottenuta la **4-cloro-5-fenil-2-tiometilpirimidina** (205.0 mg, resa 87%), con p.f. 94°C.

¹**H-NMR** (DMSO-*d*₆): 8.67 (s, 1H, 6-H); 7.53 (m, 5H, Ar-H x5); 2.58 (s, 1H, SC<u>H</u>₃).

7.5. SINTESI DI DERIVATI 4-ANILINOPIRIMIDINICI

7.5.1. SINTESI DI DERIVATI 4-ANILINO-6-FENILPIRIMIDINICI

METODICA GENERALE

Ad una sospensione di 4-cloro-6-fenilpirimidina (0.2 g, 1.0 mmoli) in ⁱPrOH (3 ml) è stata aggiunto l'adeguato derivato anilinico (1.0 mmoli) e la miscela risultante è stata irradiata con MW a 200 W raggiungendo la temperatura di 150 °C. Tale temperatura è stata mantenuta per 20 minuti (TLC: CHCl₃/MeOH 9/1). Dopo raffreddamento il precipitato formatosi è stato raccolto per filtrazione, ottenendo il derivato di volta in volta indicato, in forma di cloridrato.

Sintesi di 4-anilino-6-fenilpirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilpirimidina e anilina (93.0 mg), è stata ottenuta la **4-anilino-6-fenilpirimidina cloridrato** (0.2 g, resa 67%) con p. f. 262°C.

¹**H-NMR** (DMSO-*d*₆): 10.32 (s all., 1 H, N<u>H</u>); 8.81 (s, 1 H, 2-H); 8.02-7.93 (m, 2 H, 2"-H e 6"-H); 7.71 (d, J=7.7, 2 H, 2'-H e 6'-H); 7.62-7.55 (m, 3 H, 3'-H, 4'-H e 5'-H); 7.44-7.35 (m, 2 H, 3"-H e 5"-H); 7.26 (s, 1 H, 5-H); 7.13 (t, J=7.3, 1 H, 4"-H).

HRMS (ESI-TOF) per $C_{16}H_{14}N_3^+$ Calcolato Trovato 248.1182 248.1126 (M⁺ +H)

Sintesi di 4-(2"-fluoro-5"-trifluorometil)anilino-6-fenilpirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilpirimidina e 2-fluoro-5trifluorometilanilina (179.0 mg), è stata ottenuta la **4-(2''-fluoro-5''trifluorometil)anilino-6-fenilpirimidina cloridrato** (225.0 mg, resa 61%) con p. f. 247°C.

¹**H-NMR** (DMSO-*d*₆): 9.89 (s all, 1 H, N<u>H</u>); 8.82 (s, 1 H, 2-H); 8.74-8.63 (m, 1 H, 6"-H); 8.10-7.97 (m, 2 H, 3"-H e 4"-H);7.62-7.49 (m, 6 H, Ar-H x5 e 5-H).

 HRMS (ESI-TOF) per $C_{17}H_{12}F_4N_3^+$

 Calcolato
 Trovato

 334.0962
 334.0950
 (M⁺ +H)

Sintesi di 4-(3"-trifluorometil)anilino-6-fenilpirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilpirimidina e 3trifluorometilanilina (161.0 mg), è stata ottenuta la **4-(3''-trifluorometil)anilino-6fenilpirimidina cloridrato** (0.3 g, resa 86%) con p. f. 259°C.

¹**H-NMR** (DMSO-*d*₆): 10.33 (s all, 1 H, N<u>H</u>); 8.85 (s, 1 H, 2-H); 8.28 (s all, 1 H, 2"-H), 8.07-7.99 (m, 2 H, 2'-H e 6'-H); 7.99-7.90 (m, 1 H, 4"-H); 7.65-7.54 (m, 4 H, 3'-H e 4'-H e 5'-H e 5"-H); 7.44-7.36 (m, 1 H, 6"-H); 7.31 (s, 1 H, 5-H).

HRMS (ESI-TOF) per $C_{17}H_{13}F_3N_3^+$

Calcolato	Trovato	
316.1056	316.1017	(M ⁺ +H)

Sintesi di 4-(3"-metil)anilino-6-fenilpirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilpirimidina e *m*-toluidina (107.0 mg), è stata ottenuta la **4-(3''-metil)anilino-6-fenilpirimidina cloridrato** (211.0 mg, resa 71%) con p. f. 272°C.

¹**H-NMR** (DMSO-*d*₆): 10.61 (s all, 1 H, N<u>H</u>); 8.86 (s, 1 H, 2-H); 8.00-7.91 (m, 2 H, 2'-H e 6'-H); 7.66-7.56 (m, 3 H, 3'-H e 4'-H e 5'-H); 7.55-7.46 (m, 2 H, 2"-H e 6"-H); 7.35-7.25 (m, 2 H, 5-H e 5"-H); 6.99 (d, J= 7.19, 1 H, 4"-H); 2.34 (s, 3 H, C<u>H</u>₃).

 HRMS (ESI-TOF) per $C_{17}H_{16}N_3^+$

 Calcolato
 Trovato

 262.1339
 262.1324
 (M⁺ +H)

Sintesi di 4-(4"-metil)anilino-6-fenilpirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilpirimidina e *p*-toluidina (107.0 mg), è stata ottenuta la **4-(3''-metil)anilino-6-fenilpirimidina cloridrato** (250.0 mg, resa 84%) con p. f. 276°C.

¹**H-NMR** (DMSO-*d*₆): 10.32 (s all, 1 H, N<u>H</u>); 8.80 (s, 1 H, 2-H); 7.99-7.89 (m, 2 H 2'-H e 6'-H); 7.63-7.52 (m, 5 H, Ar-H x5); 7.26-7.16 (m, 3 H, Ar-H x2 e 5-H); 2.30 (s, 3 H, C<u>H</u>₃).

HRMS (ESI-TOF) per $C_{17}H_{16}N_{3}^{+}$

Calcolato	Trovato	
262.1339	262.1304	(M ⁺ +H)

Sintesi di 4-(4"-cloro)anilino-6-fenilpirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilpirimidina e 4-cloroanilina (127.0 mg), è stata ottenuta la **4-(4''-cloro)anilino-6-fenilpirimidina cloridrato** (245.0 mg, resa 77%) con p. f. 272°C.

¹**H-NMR** (DMSO-*d*₆): 10.34 (s all, 1 H, N<u>H</u>); 8.82 (s, 1 H, 2-H); 8.05-7.93 (m, 2 H, 2'-H e 6'-H); 7.77 (d, J=8.9, 2 H, 2"-H e 6"-H o 3"-H e 5"-H); 7.63-7.53 (m, 3 H, 3'-H e 4'-H e 5'-H); 7.44 (d, J=8.9, 2 H, 2"-H e 6"-H o 3"-H e 5"-H), 7.27 (s, 1 H, 5-H).

HRMS (ESI-TOF) per C₁₆H₁₃CIN₃⁺

Calcolato	Trovato	
282.0798	282.0750	$(M^+ + H)$
284.0769	284.0780	(M ⁺ +2 +H)

Sintesi di 4-(3"-bromo)anilino-6-fenilpirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilpirimidina e 3-bromoanilina (172.0 mg), è stata ottenuta la **4-(3''-bromo)anilino-6-fenilpirimidina cloridrato** (326.0 mg, resa 90%) con p. f. 267°C.

¹**H-NMR** (DMSO-*d*₆): 10.48 (s all, 1 H, N<u>H</u>); 8.87 (s, 1 H, 2-H); 8.16 (t, J=1.9, 1 H, 2"-H); 8.05-7.94 (m, 2 H, 2'-H e 6'-H); 7.67-7.54 (m, 4 H, Ar-H x4); 7.40-7.24 (m, 3 H, Ar-H x3).

HRMS (ESI-TOF) per $C_{16}H_{13}BrN_{3^{+}}$

Calcolato	Trovato	
326.0293	326.0289	$(M^+ + H)$
328.0272	328.0230	(M ⁺ +2 +H)

Sintesi di 4-(4"-idrossi)anilino-6-fenilpirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilpirimidina e 4-amminofenolo (109.0 mg), è stata ottenuta la **4-(4''-idrossi)anilino-6-fenilpirimidina cloridrato** (269.0 mg, resa 90%) con p. f. 270°C.

¹**H-NMR** (DMSO-*d*₆):10.62 (s all, 1 H, O<u>H</u>); 9.53 (s all, 1 H, N<u>H</u>); 8.79 (s, 1 H, 2-H); 7.97-7.85 (m, 2 H, 2'-H e 6'-H); 7.66-7.56 (m, 3 H, 3'-H, 4'-H e 5'-H); 7.41 (d, J=8.7, 2 H, 2''-H e 6''-H); 7.12 (s, 1 H, 5-H); 6.82 (d, J=8.7, 2 H, 3''-H e 5''-H).

HRMS (ESI-TOF) per $C_{16}H_{14}N_3O^+$

Calcolato	Trovato	
264.1131	264.1048	(M ⁺ +H)

Sintesi di 4-(2"-idrossi)anilino-6-fenilpirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilpirimidina e 2-amminofenolo (109.0 mg), è stata ottenuta la **4-(2''-idrossi)anilino-6-fenilpirimidina cloridrato** (230.0 mg, resa 77%) con p. f. 271°C.

¹**H-NMR** (DMSO-*d*₆): 10.09 (s all, 1 H, N<u>H</u>); 8.80 (s, 1 H, 2-H); 7.96-7.87 (2 H, 2'-H e 6'-H); 7.74-7.56 (m, 4 H, 3'-H e 4'-H e 5'-H e 5-H); 7.37-6.80 (m, 4 H, Ar-H x4).

HRMS (ESI-TOF) per $C_{16}H_{14}N_3O^+$

Calcolato	Trovato	
264.1131	264.1063	(M ⁺ +H)

Sintesi di 4-(3"-idrossi)anilino-6-fenilpirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilpirimidina e 3-amminofenolo (109.0 mg), è stata ottenuta la **4-(3''-idrossi)anilino-6-fenilpirimidina cloridrato** (230.0 mg, resa 77%) con p. f. 273°C.

¹**H-NMR** (DMSO-*d*₆): 10.53 (s all, 1 H, N<u>H</u>); 8.85 (s, 1 H, 2-H); 8.01-7.87 (m, 2 H, 2'-H e 6'-H); 7.66-7.55 (m, 3 H, 3'-H e 4'-H e 5'-H); 7.28 (s, 1 H, 5-H); 6.96-7.06 (m, 3 H, 2''-H e 5''-H e 6''-H); 6.61-6.53 (m, 1 H, 4''-H).

HRMS (ESI-TOF) per $C_{16}H_{14}N_3O^+$

Calcolato	Trovato	
264.1131	264.1086	(M ⁺ +H)

Sintesi di 4-(m-bifenil)ammino-6-fenilpirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilpirimidina e *m*-amminobifenile (169.0 mg), è stata ottenuta la **4-(***m***-bifenil)ammino-6-fenilpirimidina cloridrato** (0.254 mg, resa 71%) con p. f. 242°C.

¹**H-NMR** (DMSO-*d*₆): 10.40 (s all, 1 H, N<u>H</u>); 8.84 (s, 1 H, 2-H); 8.05-7.93 (m, 3 H, Ar-H x3); 7.56-7.33 (m, 11 H, Ar-H x11); 7.30 (s, 1 H, 5-H).

HRMS (ESI-TOF) per $C_{22}H_{18}N_3^+$

Calcolato	Trovato	
324.1495	324.1484	(M ⁺ +H)
Sintesi di 4-(4"-acetammido)anilino-6-fenilpirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilpirimidina e 4amminoacetanilide (150.0 mg), è stata ottenuta la **4-(4''-acetammido)anilino-6fenilpirimidina cloridrato** (0.329 mg, resa 97%) con p. f. 276°C.

¹**H-NMR** (DMSO-*d*₆): 10.61 (s all, 1 H, N<u>H</u>); 10.03 (s, 1 H, N<u>H</u>); 8.82 (s, 1 H, 2-H); 7.99-7.88 (m, 2 H, 2'-H e 6'-H); 7.67-7.54 (m, 7 H, 3'-H e 4'-h e 5'-H e 2''-H e 3''-H e 5''-H e 6''-H); 7.21 (s, 1 H, 5-H); 2.04 (s, 3 H, C<u>H</u>₃).

HRMS (ESI-TOF) per $C_{18}H_{17}N_4O^+$

Calcolato	Trovato	
305.1397	305.1319	(M ⁺ +H)

Sintesi di 4-(4"-ammino)anilino-6-fenilpirimidina

Una sospensione di 4-(4"-acetammido)anilino-6-fenilpirimidina cloridrato (0.3 g, 1.0 mmoli) in una soluzione di HCl 3M (5 ml) è stata posta a riflusso per 3 ore (TLC: CHCl₃/MeOH 9/1). Dopo raffreddamento, la miscela è stata alcalinizzata con una soluzione di NaOH 3M ed il precipitato formatosi è stato raccolto per filtrazione, ottenendo la **4-(4"-ammino)anilino-6-fenilpirimidina** (262.0 mg, resa quantitativa), con p. f. 210°C.

¹**H-NMR** (DMSO-*d*₆): 9.18 (s all, 1 H, N<u>H</u>); 8.56 (s, 1 H, 2-H); 8.02-7.89 (m, 2 H, 2'-H e 6'-H); 7.55-7.45 (m, 3 H, 3'-H, 4'-H e 5'-H); 7.21 (d, J=8.4, 2 H, 2"-H e 6"-H); 7.00 (s, 1 H, 5-H); 6.57 (d, J=8.4, 2 H, 3"-H e 5"-H); 4.95 (s all, 2 H, N<u>H</u>₂).

 HRMS (ESI-TOF) per C₁₆H₁₅N₄⁺

 Calcolato
 Trovato

 263.1291
 263.1301
 (M⁺ +H)

7.5.2. SINTESI DI DERIVATI 4-ANILINO-6-FENILAMMINOPIRIMIDINICI

METODICA GENERALE

Ad una sospensione di 4-cloro-6-fenilamminopirimidina (102.5 mg, 0.5 mmoli) in ⁱPrOH (2 ml) è stata aggiunto l'adeguato derivato anilinico (0.5 mmoli) e la miscela risultante è stata irradiata con MW a 200 W raggiungendo la temperatura di 150 °C. Tale temperatura è stata mantenuta per 20 minuti (TLC: nesano/EtOAc 8/2). Dopo raffreddamento la miscela di reazione è stata versata in una soluzione acquosa satura di NaHCO₃ ed il precipitato formatosi è stato raccolto per filtrazione. Il materiale crudo così ottenuto è stato purificato per cristallizzazione dal solvente di volta in volta indicato.

Sintesi di 4-anilino-6-fenilamminopirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilamminopirimidina e anilina (46.5 mg), e senza ulteriori purificazioni, è stata ottenuta la **4-anilino-6-fenilamminopirimidina** (112.0 mg, resa 86%), con p. f. 114°C.

¹**H-NMR** (DMSO-*d*₆): 10.06 (s, 2 H, N'<u>H</u> e N''<u>H</u>); 8.41 (s, 1 H, 2-H); 7.52-7.33 (m, 8 H, Ar-H x8); 7.24-7.11 (m, 2 H, 4'-H e 4''-H); 6.17 (s, 1 H, 2-H).

 HRMS (ESI-TOF) per $C_{16}H_{15}N_4^+$

 Calcolato
 Trovato

 263.1291
 263.1268
 $(M^+ + H)$

Sintesi di 4-(2"-fluoro-5"-trifluorometil)anilino-6-fenilamminopirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilamminopirimidina e 2-fluoro-5-trifluorometilanilina (89.5 mg), e per cristallizzazione da CHCl₃/n-esano, è stata ottenuta la **4-(2''-fluoro-5''-trifluorometil)anilino-6-fenilamminopirimidina** (97.0 mg, resa 56%), con p. f. 201°C.

¹**H-NMR** (DMSO- d_6): 9.27 (s, 1 H, N<u>H</u>); 9.23 (s, 1 H, N<u>H</u>); 8.58 (dd, J=7.42, J=1.95, 1 H, 6"-H); 8.31 (s, 1 H, 2-H); 7.56-7.51 (m, 2 H, 2'-H e 6'-H); 7.51-7.45 (m, 1 H, 4"-H); 7.43-7.38 (m, 1 H, 3"-H); 7.34-7.28 (m, 2 H, 3'-H e 5'-H); 6.99 (t, J=7.41, 1 H, 6'-H); 6.37 (s, 1 H, 5-H).

HRMS (ESI-TOF) per $C_{17}H_{13}F_4N_4^+$

Calcolato	Trovato	
349.1071	349.1012	(M ⁺ +H)

Sintesi di 4-(3"-trifluorometil)anilino-6-fenilamminopirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilamminopirimidina e 3trifluorometilanilina (80.5 mg), e per cristallizzazione da EtOAc/n-esano, è stata ottenuta la **4-(3''-trifluorometil)anilino-6-fenilamminopirimidina** (89.0 mg, resa 54%), con p. f. 237°C.

¹**H-NMR** (DMSO-*d*₆): 9.52 (s, 1 H, N<u>H</u>); 9.24 (s, 1 H, N<u>H</u>); 8.34 (s, 1 H. 2-H); 8.13 (s, 1 H, 2"-H); 7.86-7.80 (m, 1 H, 4"-H); 7.59-7.46 (m, 3 H, 2'-H e6'-H e 5"-H); 7.36-7.23 (m, 3 H, 3'-H e 5'-H e 6"-H); 6.99 (t, J=7.25, 1 H, 4'-H); 6.19 (s, 1 H, 5-H).

 HRMS (ESI-TOF) per $C_{17}H_{14}F_3N_4^+$

 Calcolato
 Trovato

 331.1165
 331.1080
 (M⁺ +H)

Sintesi di 4-(3"-metil)anilino-6-fenilamminopirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilamminopirimidina e *m*-toluidina (53.5 mg), e per cristallizzazione da CHCl₃, è stata ottenuta la **4-(3''-metil)anilino-6-fenilamminopirimidina** (27.0 mg, resa 20%), con p. f. 254°C.

¹**H-NMR** (DMSO-*d*₆): 9.13 (s, 1 H, N<u>H</u>); 9.04 (s, 1 H, N<u>H</u>); 8.26 (s, 1 H, 2-H); 7.57-7.52 (m, 2 H, Ar-H x2); 7.37-7.26 (m, 4 H, Ar-H x4); 7.17 (t, J=7.6, 1 H, 5"-H); 6.96-6.94 (m, 1 H, Ar-H); 6.79 (d, J=7.6, 1 H, 4"-H); 6.17 (s, 1 H, 5-H); 2.28 (s, 3 H, C<u>H</u>₃).

HRMS (ESI-TOF) per $C_{17}H_{17}N_4^+$

Calcolato	Trovato	
277.1448	277.1510	(M ⁺ +H)

Sintesi di 4-(4"-metil)anilino-6-fenilamminopirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilamminopirimidina e *p*-toluidina (53.5 mg), e per cristallizzazione da EtOAc, è stata ottenuta la **4-(4''-metil)anilino-6-fenilamminopirimidina** (88.0 mg, resa 64%), con p. f. 265°C.

¹**H-NMR** (DMSO-*d*₆): 9.10 (s, 1 H, N<u>H</u>); 9.02 (s, 1 H, N<u>H</u>); 8.24 (s, 1 H, 2-H); 7.57-7.51 (m, 2 H, 2'-H e 6'-H); 7.40 (d, J=8.4, 2 H, 2''-H e 6''-H); 7.32-7.24 (m, 2 H, 3'-H e 5'-H); 7.10 (d, J= 8.4, 2 H, 3''-H e 5''-H); 6.96 (t, J=7.4, 1 H, 4'-H); 6.12 (s, 1 H, 5-H); 2.26 (s, 3 H, C<u>H</u>₃).

HRMS (ESI-TOF) per $C_{17}H_{17}N_4^+$

Calcolato	Trovato	
277.1448	277.1401	(M ⁺ +H)

Sintesi di 4-(4"-cloro)anilino-6-fenilamminopirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilamminopirimidina e 4cloroanilina (63.5 mg), e per cristallizzazione da EtOAc, è stata ottenuta la **4-(4''cloro)anilino-6-fenilamminopirimidina** (118.0 mg, resa 80%), con p. f. 288°C.

¹**H-NMR** (DMSO-*d*₆): 9.31 (s, 1 H, N<u>H</u>); 9.20 (s, 1 H, N<u>H</u>); 8.29 (s, 1 H, 2-H); 7.68-7.59 (m, 2 H, 2"-H e 6"-H o 3"-H e 5"-H); 7.58-7.50 (m, 2 H, 2"-H e 6"-H o 3"-H e 5"-H); 7.38-7.24 (m, 4 H, 2'-H e 3'-H e 5'-H e 6'-H); 6.98 (t, J=7.25, 1 H, 4'-H); 6.16 (s, 1 H, 5-H).

HRMS (ESI-TOF) per $C_{16}H_{14}CIN_4^+$

Calcolato	Trovato	
297.0907	297.0917	(M ⁺ +H)
299.0877	299.0887	(M ⁺ +2 +H)

Sintesi di 4-(3"-bromo)anilino-6-fenilamminopirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilamminopirimidina e 3bromoanilina (85.5 mg), e senza ulteriori purificazioni, è stata ottenuta la **4-(3''bromo)anilino-6-fenilamminopirimidina** (42.0 mg, resa 25%), con p. f. 257°C.

¹**H-NMR** (DMSO-*d*₆): 9.38 (s, 1 H, N<u>H</u>); 9.25 (s, 1 H, N<u>H</u>); 8.33 (s, 1 H, 2-H); 8.01 (t, J=1.95, 1 H, 2"-H); 7.56-7.52 (m, 2 H, 2'-H e 6'-H); 7.51-7.47 (m, 1 H, 4"-H o 6"-H); 7.34-7.29 (m, 2 H, 3'-H e 5'-H); 7.24 (t, J=8.00, 1 H, 5"-H); 7.14-7.10 (m, 1 H, 4"-H o 6"-H); 7.03-6.98 (m, 1 H, 4'-H); 6.18 (s, 1 H, 5-H).

HRMS (ESI-TOF) per $C_{16}H_{14}BrN_{4}^{+}$

Calcolato	Trovato	
341.0402	341.0484	(M ⁺ +H)
343.0381	343.0357	(M ⁺ +2 +H)

Sintesi di 4-(4"-idrossi)anilino-6-fenilamminopirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilamminopirimidina e 4amminofenolo (54.5 mg), e per cristallizzazione da MeOH/DCM, è stata ottenuta la **4-(4''-idrossi)anilino-6-fenilamminopirimidina** (0.1 g, resa 78%), con p. f. 286°C.

¹**H-NMR** (DMSO-*d*₆): 9.02 (s, 1 H, N<u>H</u>); 8.71 (s, 1 H, N<u>H</u>); 8.17 (s, 1 H, 2-H); 7.54 (d, J=8.00, 2 H, 2"-H e 6"-H); 7.30-7.16 (m, 4 H, 2'-H e 3'H e 5'-H e 6'-H); 6.93 (t, J=7.42, 1 H, 6'-H); 6.71 (d, J=8.00, 2 H, 3"-H e 5"-H); 5.97 (s, 1 H, 5-H).

HRMS (ESI-TOF) per $C_{16}H_{15}N_4O^+$

Calcolato	Trovato	
279.1240	279.1189	(M ⁺ +H)

Sintesi di 4-(2"-idrossi)anilino-6-fenilamminopirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilamminopirimidina e 2amminofenolo (54.5 mg), e per cristallizzazione da EtOAc/CE, è stata ottenuta la **4-(2''-idrossi)anilino-6-fenilamminopirimidina** (77.0 mg, resa 56%), con p. f. 233°C.

¹**H-NMR** (DMSO-*d*₆): 10.06 (s all, 1 H, OH); 9.11 (s, 1 H, N<u>H</u>); 8.40 (s, 1 H, N<u>H</u>); 8.20 (s, 1 H, 2-H); 7.56-7.50 (m, 2 H, 2'-H e 6'-H); 7.46 (dd, J=7.8, J=1.6, 1 H; 6"-H); 7.31-7.24 (m, 2 H, 3'-H e 5'-H); 6.98-6.91 (m, 2 H, 4'-H e 4"-H o 5"-H); 6.88 (dd, J=8.0, J=1.6, 1 H, 3"-H); 6.81-6.75 (m, 1 H, 4"-H o 5"-H); 6.09 (s, 1 H, 5-H).

HRMS (ESI-TOF) per $C_{16}H_{15}N_4O^+$

Calcolato	Trovato	
279.1240	279.1113	(M⁺ +H)

Sintesi di 4-(3"-idrossi)anilino-6-fenilamminopirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilamminopirimidina e 3amminofenolo (54.5 mg), e per cristallizzazione da EtOAc/n-esano, è stata ottenuta la **4-(3''-idrossi)anilino-6-fenilamminopirimidina** (33.0 mg, resa 24%), con p. f. 253°C.

¹**H-NMR** (DMSO-*d*₆): 9.31 (s all, 1 H, O<u>H</u>); 9.12 (s, 1 H, N<u>H</u>); 9.01 (s, 1 H, N<u>H</u>); 8.25 (s, 1 H, 2-H); 7.57-7.52 (m, 2 H, 2'-H e 6'-H); 7.32-7.26 (m, 2 H, 3'-H e 5'-H); 7.10-7.03 (m, 2 H, 2"-H e 5"-H); 6.99-6.94 (m, 1 H, 4'-H); 6.93-6.88 (m, 1 H, 4"-H o 6"-H); 6.40-6.36 (m, 1 H, 4"-H o 6"-H); 6.18 (s, 1 H, 5-H).

HRMS (ESI-TOF) per $C_{16}H_{15}N_4O^+$

Calcolato	Trovato	
279.1240	279.1224	(M⁺ +H)

Sintesi di 4-(m-bifenil)ammino-6-fenilamminopirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilamminopirimidina e *m*-amminobifenile (84.5 mg), e per cristallizzazione da EtOAc, è stata ottenuta la **4-**(*m*-bifenil)ammino-6-fenilamminopirimidina (128.0 mg, resa 76%), con p. f. 267°C.

¹**H-NMR** (DMSO-*d*₆): 9.25 (s, 1 H, N<u>H</u>); 9.17 (s, 1 H, N<u>H</u>); 8.29 (s, 1 H, 2-H); 7.84-7.81 (m, 1 H, 2"-H); 766-7.61 (m, 2 H, Ar-H x2); 7.59-7.53 (m, 3 H, Ar-H x3); 7.51-7.45 (m, 2 H, Ar-H x2); 7.42-7.35 (m, 2 H, Ar-H x2); 7.32-7.23 (m, 3 H, Ar-H x3); 7.00-6.94 (m, 1 H, Ar-H); 6.23 (s, 1 H, 5-H).

HRMS (ESI-TOF) per $C_{22}H_{19}N_4^+$

Calcolato	Trovato	
339.1604	339.1589	(M⁺ +H)

Sintesi di 4-(4"-acetammido)anilino-6-fenilamminopirimidina

Con la metodica generale, a partire da 4-cloro-6-fenilamminopirimidina e 4amminoacetanilide (75.0 mg), e senza ulteriori purificazioni, è stata ottenuta la **4-**(4"-acetammido)anilino-6-fenilamminopirimidina (159.0 mg, resa quantitativa), con p. f.> 300°C.

¹**H-NMR** (DMSO-*d*₆): 9.85 (s, 1 H, N<u>H</u>COCH₃); 9.09 (s, 1 H, N<u>H</u>); 9.03 (s, 1 H, N<u>H</u>); 8.23 (s, 1 H, 2-H); 7.57-7.52 (m, 2 H, 2'-H e 6'-H); 7.52-7.47 (m, 2 H, 2"-H e 6"-H o 3"-H e 5"-H); 7.45-7.40 (m, 2 H, , 2"-H e 6"-H o 3"-H e 5"-H); 7.31-7.25 (m, 2 H, 3'-H e 5'-H); 6.98-6.92 (m, 1 H, 4'-H); 6.11 (s, 1 H, 5-H); 2.02 (s, 3 H, C<u>H</u>₃).

HRMS (ESI-TOF) per C₁₈H₁₈N₅O⁺

Calcolato	Trovato	
320.1506	320.1524	$(M^+ + H)$

Sintesi di 4-(4"-ammino)anilino-6-fenilamminopirimidina

Una sospensione di 4-(4"-acetammido)anilino-6-fenilamminopirimidina (319.0 mg, 1.0 mmoli) in una soluzione di HCl 3M (5 ml) è stata posta a riflusso per 3 ore (TLC: CHCl₃/MeOH 9/1). Dopo raffreddamento, la miscela è stata alcalinizzata con una soluzione di NaOH 3M ed il precipitato formatosi è stato raccolto per filtrazione, ottenendo la **4-(4"-ammino)anilino-6-fenilamminopirimidina** (0.2 g, resa 72%), con p. f. 253°C.

¹**H-NMR** (DMSO-*d*₆): 8.97 (s, 1 H, N<u>H</u>); 8.53 (s, 1 H, N<u>H</u>); 8.13 (s, 1 H, 2-H); 7.56-7.51 (m, 2 H, 2'-H e 6'-H); 7.27-7.22 (m, 2 H, 3'-H e 5'-H); 7.02 (d, J=8.58, 2 H 2"-H e 6"-H); 6.94-6.89 (m, 1 H, 6'-H); 6.55 (d, J=8.58, 2 H, 3"-H e 5"-H); 5.90 (s, 1 H, 5-H); 4.92 (s, 2 H, N<u>H</u>₂).

HRMS (ESI-TOF) per $C_{16}H_{16}N_5^+$

Calcolato	Trovato	
278.1400	278.1406	(M ⁺ +H)

7.5.3. SINTESI DI DERIVATI 4,6-DIANILINOPIRIMIDINICI

METODO A

Ad una soluzione di 4,6-dicloropirimidina (0.1 g, 0.7 mmoli) in ⁱPrOH (3 ml) è stato aggiunto l'opportuno derivato anilinico (1.4 mmoli) e la miscela ottenuta è stata posta a riflusso per 24 ore (TLC: CE/EtOAc, 7/3).

La miscela di reazione è stata versata in H_2O (30 ml) ed il precipitato formatosi è stato raccolto mediante filtrazione. Il prodotto desiderato è stato quindi purificato mediante ricristallizzazione da ⁱPrOH.

METODO B

Ad una soluzione di 4,6-dicloropirimidina (0.1 g, 0.7 mmoli) in ⁱPrOH (3 ml) è stato aggiunto l'opportuno derivato anilinico (1.4 mmoli) e la miscela ottenuta è stata posta a riflusso per 24 ore (TLC: CE/EtOAc, 7/3).

La miscela di reazione è stata diluita in H_2O (30 ml) ed estratta con CHCl₃. La fase organica risultante è stata anidrificata con Na_2SO_4 e concentrata a secchezza.

Il prodotto desiderato è stato quindi purificato con la metodica di volta in volta indicata.

Sintesi di N,N'-bis(3'-metilfenil)-4,6-diamminopirimidina

Con il metodo A, a partire da *m*-toluidina (149.0 mg), è stata ottenuta la *N,N***bis(3'-metilfenil)-4,6-diamminopirimidina** (0.1 g, resa 51%), con p.f. non determinabile (decomposizione a 190°C).

¹**H-NMR** (DMSO-*d*₆): 9.05 (s, 2 H, NH); 8.25 (s, 1 H, 2-H); 7.38-7.30 (m, 4 H, 2'-H x 2, 4'-H x 2 o 6'-H x 2); 7.17 (t, J= 7.3, 2 H, 5'-H x 2); 6.79 (d, J=7.3, 2 H, 4'-H x 2 o 6'-H x 2); 6.16 (s, 1 H, 5-H); 2.28 (s, 6 H, CH₃ x 2).

HRMS (ESI-TOF) per $C_{18}H_{19}N_4^+$

Calcolato	Trovato	
291.1604	291.1567	(M ⁺ +H)

Sintesi di N,N'-bis(3'-bromofenil)-4,6-diamminopirimidina

Con il metodo A, a partire da 3-bromoanilina (240.0 mg), è stata ottenuta la *N,N*bis(3'-bromofenil)-4,6-diamminopirimidina (176.0 mg, resa 60%), con p.f. 243 °C.

¹**H-NMR** (DMSO-*d*₆): 9.42 (s, 2 H, NH x 2); 8.38 (s, 1 H, 2-H); 8.00 (t, J= 2.0, 2 H, 2'-H x 2); 7.50 (dt, J= 8.1, J= 2.0, 2 H, 4'-H x 2 o 6'-H x 2); 7.25 (t, J= 8.1, 2 H, 4'-H x 2), 7.13 (dt, J= 8.1, J= 2.0, 2 H, 4'-H x 2 o 6'-H x 2); 6.18 (s, 1 H, 5-H).

HRMS (ESI-TOF) per $C_{16}H_{13}Br_2N_4^+$

Calcolato	Trovato	
418.9507	418.9455	$(M^+ + H)$
420.9487	420.9396	(M ⁺ +2 +H)
422.9466	422.9368	(M ⁺ +4 +H)

Sintesi di N,N'-bis(4'-clorofenil)-4,6-diamminopirimidina

Con il metodo A, a partire da 4-cloroanilina (177.0 mg), è stata ottenuta la *N,N'*bis(4'-clorofenil)-4,6-diamminopirimidina (132.0 mg, resa 57%), con p.f. 296 °C.

¹**H-NMR** (DMSO-*d*₆): 9.33 (s, 2 H, NH x 2); 8.31 (s, 1 H, 2-H); 7.62 (d, J= 8.9, 4 H, 3'-H x 2 e 5'-H x 2); 7.33 (d, J= 8.9, 4 H, 2'-H x 2 e 6'-H x 2); 6.15 (s, 1 H, 5-H).

HRMS (ESI-TOF) per $C_{16}H_{13}CI_2N_4{}^+$

Calcolato	Trovato	
331.0517	331.0484	(M ⁺ +H)
333.0488	333.0457	(M ⁺ +2 +H)

Sintesi di N,N'-bis(4'-idrossifenil)-4,6-diamminopirimidina

Con il metodo B, a partire da 4-amminofenolo (152.0 mg) e per cristallizzazione da dicloroetano, è stata ottenuta la *N,N'-bis(4'idrossifenil)-4,6-diamminopirimidina* (28.0 mg, resa 14%), con p.f. non determinabile (decomposizione a 255 °C).

¹**H-NMR** (DMSO-*d*₆): 9.22 (s, 2 H, NH x 2); 8.87 (s all, 2 H, OH x 2); 8.12 (s, 1 H, 2-H); 7.19 (d, J= 7.0, 4 H, 3'-H x 2 e 5'-H x 2); 6.71 (d, J= 7.0, 4 H, 2'-H x 2 e 6'-H x 2); 5.79 (s, 1 H, 5-H).

HRMS (ESI-TOF) per $C_{16}H_{15}N_4O_2^+$

Calcolato	Trovato	
295.1190	295.1167	(M ⁺ +H)

Sintesi di N,N'-bis(3'-bifenil)-4,6-diamminopirimidina

Con il metodo B, a partire da *m*-amminobifenile (236.0 mg) e per cristallizzazione da ⁱPrOH, è stata ottenuta la *N,N'-bis(3'-bifenil)-4,6-diamminopirimidina* (17.0 mg, resa 6%), con p.f. 273 °C.

¹**H-NMR** (DMSO-*d*₆): 9.28 (s, 2 H, NH x 2); 8.31 (s, 1 H, 2-H); 7.82 (t, J= 3.4, 2 H, Ar-H); 7.68-7.22 (m, 16 H, Ar-H); 6.27 (s, 1 H, 5-H).

HRMS (ESI-TOF) per $C_{28}H_{23}N_4^+$

Calcolato	Trovato	
415.1917	415.1890	(M ⁺ +H)

7.5.4. SINTESI DI DERIVATI 4-ANILINO-5-FENIL-2-TIOMETILPIRIMIDINICI

METODICA GENERALE

Ad una sospensione di 4-cloro-5-fenil-2-tiometilpirimidina (236.0 mg, 1.0 mmoli) in ⁱPrOH è stata aggiunto l'adeguato derivato anilinico (1.0 mmoli) e la miscela risultante è stata irradiata con MW a 150 W raggiungendo la temperatura di 150 °C. Tale temperatura è stata mantenuta per 20 minuti (TLC: CHCl₃/MeOH, 9/1). Dopo raffreddamento la miscela di reazione è stata versata in una soluzione acquosa satura di NaHCO₃ (20 ml). Il prodotto desiderato è stato quindi isolato con la metodica di volta in volta indicata.

Sintesi di 4-anilino-5-fenil-2-metiltiopirimidina

Con la metodica generale, a partire da 4-cloro-5-fenil-2-metiltiopirimidina e anilina (93.0 mg), il precipitato formatosi nella soluzione acquosa di NaHCO₃ è stato raccolto per filtrazione, ottenendo la **4-anilino-5-fenil-2-tiometilpirimidina** (254.0 mg, resa 87%), con p. f. 129°C.

¹**H-NMR** (DMSO-*d*₆): 8.45 (s all, 1 H, N<u>H</u>); 8.03 (s, 1 H, 6-H); 7.59-7.54 (m, 2 H, 2"-H e 6"-H); 7.53-7.48 (m, 4 H, 2'-H e 3'-H e 5'-H e 6'-H); 7.47-7.41 (m, 1 H, 4'-H); 7.32-7.26 (m, 2 H, 3"-H e 5"-H); 7.07-7.01 (m, 1 H, 4"-H); 2.44 (s, 3 H, C<u>H</u>₃).

Sintesi di 4-(2"-fluoro-5"-trifluorometil)anilino-5-fenil-2-metiltiopirimidina

Con la metodica generale, a partire da 4-cloro-5-fenil-2-metiltiopirimidina e 2fluoro-5-trifluorometilanilina (179.0 mg), la soluzione acquosa di NaHCO₃ è stata estratta con EtOAC (3 x 20 ml), la fase organica è stata anidrificata con Na₂SO₄, filtrata e concentrata a secchezza, ottenendo la **4-(2''-fluoro-5''trifluorometil)anilino-5-feniltiometilpirimidina** (159.0 mg, resa 42%), con p. f. 163°C.

¹**H-NMR** (DMSO-*d*₆): 8.58 (s, 1H, N<u>H</u>); 8.11 (s, 1H, 6-H); 8.07 (dd, J=7.0, J=2.0, 1H, 4'-H); 7.60-7.41 (m, 7H, Ar-H x5, 3'-H e 6'-H); 2.34 (s, 3H, SC<u>H</u>₃).

Sintesi di 4-(3"-trifluorometil)anilino-5-fenil-2-metiltiopirimidina

Con la metodica generale, a partire da 4-cloro-5-fenil-2-metiltiopirimidina e 3trifluorometilanilina (161.0 mg), la soluzione acquosa di NaHCO₃ è stata estratta con EtOAC (3 x 20 ml), la fase organica è stata anidrificata con Na₂SO₄, filtrata e concentrata a secchezza, ottenendo la **4-(3''-trifluorometil)anilino-5-fenil-2metiltiopirimidina** (288.0 mg, resa 80%), con p. f. 96°C.

¹H-NMR (DMSO-*d*₆): 8.98 (s, 1H, N<u>H</u>); 8.11 (s, 1H, 6-H); 8.10 (s, 1H, 2'-H); 7.86 (d, J=8.0, 1H, 4'-H); 7.56-7.44 (m, 6H, 5'-H e Ar-H x 5); 7.39 (d, J=8.0, 1H, 6'-H); 2.46 (s, 3H, C<u>H</u>₃).

Sintesi di 4-(3"-metil)anilino-5-fenil-2-metiltiopirimidina

Con la metodica generale, a partire da 4-cloro-5-fenil-2-metiltiopirimidina e *m*toluidina (107.0 mg), la soluzione acquosa di NaHCO₃ è stata estratta con EtOAC (3 x 20 ml), la fase organica è stata anidrificata con Na₂SO₄, filtrata e concentrata a secchezza, ottenendo la **4-(3''-metil)anilino-5-fenil-2metiltiopirimidina** (288.0 mg, resa 94%), con p. f. 114°C.

¹**H-NMR** (DMSO-*d*₆): 8.98 (s, 1H, N<u>H</u>); 8.11 (s, 1H, 6-H); 8.10 (s, 1H, 2'-H); 7.86 (d, J=8.0, 1H, 4'-H); 7.56-7.44 (m, 6H, 5'-H e Ar-H x 5); 7.39 (d, J=8.0, 1H, 6'-H); 2.46 (s, 3H, C<u>H</u>₃).

Sintesi di 4-(4"-metil)anilino-5-fenil-2-metiltiopirimidina

Con la metodica generale, a partire da 4-cloro-5-fenil-2-metiltiopirimidina e p-toluidina (107.0 mg), la soluzione acquosa di NaHCO₃ è stata estratta con EtOAC (3 x 20 ml), la fase organica è stata anidrificata con Na₂SO₄, filtrata e concentrata a secchezza, ottenendo la **4-(4''-metil)anilino-5-fenil-2-metiltiopirimidina** (248.0 mg, resa 81%), con p. f. 84°C.

¹**H-NMR** (DMSO-*d*₆): 8.35 (s, 1H, N<u>H</u>); 7.99 (s, 1H, 6-H); 7.60-7.45 (m, 5H, Ar-H x5); 7.44 (d, J=8.3, 2 H, 2'-H e 6'-H); 7.10 (d, J=8.4, 2H, 3'-H e 5'-H); 2.43 (s, 3H, SC<u>H₃</u>); 2.26 (s, 3H, C<u>H₃</u>).

Sintesi di 4-(4"-cloro)anilino-5-fenil-2-metiltiopirimidina

Con la metodica generale, a partire da 4-cloro-5-fenil-2-metiltiopirimidina e 4cloroanilina (127.0 mg), la soluzione acquosa di NaHCO₃ è stata estratta con EtOAC (3 x 20 ml), la fase organica è stata anidrificata con Na₂SO₄, filtrata e concentrata a secchezza, ottenendo la **4-(4"-cloro)anilino-5-fenil-2metiltiopirimidina** (278.0 mg, resa 85%), con p. f. 102°C.

¹**H-NMR** (DMSO-*d*₆): 8.62 (s, 1H, N<u>H</u>); 8.05 (s, 1H, 6-H); 7.60 (d, J=8.9, 2H, 3'-H e 5'-H o 2'-H e 6'-H); 7.52-7.48 (m, 5H, Ar-H x5); 7.34 (d, J=8.7, 2H, 3'-H e 5'-H o 2'-H e 6'-H); 2.44 (s, 3H, SC<u>H</u>₃).

Sintesi di 4-(3"-bromo)anilino-5-fenil-2-metiltiopirimidina

Con la metodica generale, a partire da 4-cloro-5-fenil-2-metiltiopirimidina e 3bromoanilina (172.0 mg), la soluzione acquosa di NaHCO₃ è stata estratta con EtOAC (3 x 20 ml), la fase organica è stata anidrificata con Na₂SO₄, filtrata e concentrata a secchezza, ottenendo la **4-(3''-bromo)anilino-5-fenil-2metiltiopirimidina** (360.0 mg, resa 97%), con p. f. 118°C.

¹**H-NMR** (DMSO-*d*₆): 8.69 (s, 1H, N<u>H</u>); 8.07 (s, 1H, 6-H); 7.96 (t, J=2.0, 1H, 2'-H); 7.59 (dt, J=7.6, J=2.0, 1H, 4'-H); 7.52-7.42 (m, 5H, Ar-H x 5); 7.25 (t, J=7.6, 1H, 5'-H); 7.20 (dt, J=7.6, J=2.0, 1H, 6'-H); 2.48 (s, 3H, C<u>H</u>₃).

Sintesi di 4-(4"-idrossi)anilino-5-fenil-2-metiltiopirimidina

Con la metodica generale, a partire da 4-cloro-5-fenil-2-metiltiopirimidina e 4amminofenolo (109.0 mg), il precipitato formatosi nella soluzione acquosa di NaHCO₃ è stato raccolto per filtrazione, ottenendo la **4-(4''-idrossi)anilino-5feniltiometilpirimidina** (309.0 mg, resa quantitativa), con p. f. 107°C.

¹**H-NMR** (DMSO-*d*₆): 9.22 (s all, 1 H, O<u>H</u>); 8.21 (s, 1 H, N<u>H</u>); 7.93 (s, 1 H, 6-H); 7.54-7.39 (m, 5 H, Ar-H x5); 7.30-7.24 (m, 2 H, 2"-H e 6"-H), 6.71-6.66 (m, 2 H, 3"-H e 5"-H); 2.39 (s, 3 H, C<u>H</u>₃).

Sintesi di 4-(2"-idrossi)anilino-5-fenil-2-metiltiopirimidina

Con la metodica generale, a partire da 4-cloro-5-fenil-2-metiltiopirimidina e 2amminofenolo (109.0 mg), il precipitato formatosi nella soluzione acquosa di NaHCO₃ è stato raccolto per filtrazione, ottenendo la **4-(2''-idrossi)anilino-5feniltiometilpirimidina** (278.0 mg, resa 90%), con p. f. 215°C.

¹**H-NMR** (DMSO-*d*₆): 8.30 (d, J=8.0, 1, O<u>H</u>); 8.03 (s, 1H, N<u>H</u>); 7.58-7.45 (m, 7H, Ar-H x5, 2-H e 6-H); 6.85-6.55 (m, 4H, 3'-H, 4'-H, 5'-H, 6'-H); 1.90 (s, 3H, SC<u>H</u>₃).

Sintesi di 4-(3"-idrossi)anilino-5-fenil-2-metiltiopirimidina

Con la metodica generale, a partire da 4-cloro-5-fenil-2-metiltiopirimidina e 3amminofenolo (109.0 mg), il precipitato formatosi nella soluzione acquosa di NaHCO₃ è stato raccolto per filtrazione, ottenendo la **4-(3''-idrossi)anilino-5feniltiometilpirimidina** (309.0 mg, resa quantitativa), con p. f. 159°C.

¹**H-NMR** (CDCl₃-*d*): 8.04 (s, 1 H, 6-H); 7.57-7.39 (m, 5 H, Ar-H x5); 7.37-7.33 (m, 1 H, 2"-H); 7.14 (t, J=8.0, 1 H, 5"-H); 6.96-6.90 (m, 1 H, 6"-H); 6.79 (s all, 1 H, N<u>H</u> o O<u>H</u>); 6.58-6.52 (m, 1 H, 4"-H); 5.15 (s all, 1 H, N<u>H</u> o O<u>H</u>); 2.59 (s, 3 H, C<u>H₃</u>).

Sintesi di 4-(3"-bifenil)ammino-5-fenil-2-metiltiopirimidina

Con la metodica generale, a partire da 4-cloro-5-fenil-2-metiltiopirimidina e 3amminobifenile (169.0 mg), la soluzione acquosa di NaHCO₃ è stata estratta con EtOAC (3 x 20 ml), la fase organica è stata anidrificata con Na₂SO₄, filtrata e concentrata a secchezza, ottenendo la **4-(3''-bifenil)ammino-5-fenil-2metiltiopirimidina** (350.0 mg, resa 95%), con p. f. 102°C.

¹**H-NMR** (DMSO-*d*₆): 8.29 (s, 1H, N<u>H</u>); 8.10 (s, 1H, 6-H); 7.88 (s, 1H, 2'-H); 7.56-7.44 (m, 13H, Ar-H x 13).

Sintesi di 4-(4"-acetammido)anilino-5-fenil-2-metiltiopirimidina

Con la metodica generale, a partire da 4-cloro-5-fenil-2-metiltiopirimidina e 4amminoecetanilide (150.0 mg), il precipitato formatosi nella soluzione acquosa di NaHCO₃ è stato raccolto per filtrazione, ottenendo la **4-(4''-acetammido)anilino-5-feniltiometilpirimidina** (332.0 mg, resa 95%), con p. f. 173°C.

¹**H-NMR** (DMSO-*d*₆): 9.88 (s, 1H, N<u>H</u>); 8.4 (s, 1H, N<u>H</u>); 7.98 (s, 1H, 6-H); 7.52-7.41 (m, 9H, Ar-H x5, 2'-H, 3'-H, 5'-H, 6'-H); 2.42 (s, 3H, S-C<u>H</u>₃); 2.02 (s, 3H, C<u>H</u>₃).

7.5.5. SINTESI DI DERIVATI 4-ANILINO-5-FENILPIRIMIDINICI

METODICA GENERALE

Ad una soluzione di derivato 4-anilino-2-tiometilpirimidinico (1.0 mmoli) in EtOH (20 ml) è stata aggiunta una sospensione di Nickel-Raney in acqua (1.5 ml). La miscela ottenuta è stata posta a riflusso sotto agitazione per 2 ore (TLC: CHCl₃/MeOH, 9/1). Dopo raffreddamento la miscela di reazione è stata filtrata e la soluzione limpida è stata concentrata a secchezza. Il residuo ottenuto è stato purificato con la metodica di volta in volta indicata.

Sintesi di 4-anilino-5-fenilpirimidina

Con la metodica generale, da 4-anilino-5-fenil-2-tiometilpirimidina (293.0 mg) e per cristallizzazione da MeOH/n-esano è stata ottenuta la **4-anilino-5-fenilpirimidina** (121.0 mg, resa 49%) con p. f. 117°C.

¹**H-NMR** (DMSO-*d*₆): 8.56 (s, 1 H, N<u>H</u>); 8.39 (s, 1 H, 2-H); 8.18 (s, 1 H, 6-H); 7.64-7.41 (m, 7 H, Ar-H x7); 7.34-7.23 (m, 2 H, 3"-H e 5"-H); 7.07-7.00 (m, 1 H, 4"-H).

 HRMS (ESI-TOF) per $C_{16}H_{14}N_3^+$

 Calcolato
 Trovato

 248.1182
 248.0989
 (M⁺ +H)

Sintesi di 4-(2"-fluoro-5"-trifluorometil)anilino-5-fenilpirimidina

Con la metodica generale, da 4-(2"-fluoro-5"-trifluorometil)anilino-5-fenil-2tiometilpirimidina (379.0 mg) e per cristallizzazione da n-esano è stata ottenuta la **4-(2"-fluoro-5"-trifluorometil)anilino-5-fenilpirimidina** (90.0 mg, resa 27%) con p.f. 117°C.

¹**H-NMR** (DMSO-*d*₆): 8.57 (s, 1H, N<u>H</u>); 8.28 (s, 1H, 6-H); 7.97 (dd, J=7.0, J=2.1, 1H, 4'-H); 7.62-7.44 (m, 7H, Ar-H x5, 3'-H, 6'-H).

 HRMS (ESI-TOF) per $C_{17}H_{12}F_4N_3^+$

 Calcolato
 Trovato

 334.0962
 334.0961
 (M⁺ +H)

Sintesi di 4-(3"-trifluorometil)anilino-5-fenilpirimidina

Con la metodica generale, da 4-(3"-trifluorometil)anilino-5-fenil-2tiometilpirimidina (361.0 mg) e senza ulteriori purificazioni è stata ottenuta la 4-(3"-trifluorometil)anilino-5-fenilpirimidina (296.0 mg, resa 94%) con p.f. 97°C.

¹**H-NMR** (DMSO-*d*₆): 8.78 (s, 1H, N<u>H</u>); 8.64 (s, 1H, 6-H); 8.25 (s, 1H, 2-H); 7.99-7.97 (m, 2H, 2'-H e 4'-H); 7.57-7.42 (m, 6H, 5'-H e Ar-H x 5); 7.36 (d, J=8.2, 1H, 6'-H).

 HRMS (ESI-TOF) per $C_{17}H_{13}F_3N_3^+$

 Calcolato
 Trovato

 316.1056
 316.0991
 (M⁺ +H)

Sintesi di 4-(3"-metil)anilino-5-fenilpirimidina

Con la metodica generale, da 4-(3"-metil)anilino-5-fenil-2-tiometilpirimidina (307.0 mg) e mediante purificazione con flash cromatografia (eluente: CE/EtOAc, 7/3) è stata ottenuta la **4-(3"-metil)anilino-5-fenilpirimidina** (125.0 mg, resa 48%) di consistenza oleosa.

1H-NMR (DMSO-*d*₆): 8.56 (s, 1H, 6-H); 8.28 (s, 1H, NH); 8.17 (s, 1H 2-H); 7.53-7.45 (m, 5H, Ar-H x 5); 7.41 (d, J=8.0, 1H, 6'-H); 7.35 (s, 1H, 2'-H); 7.16 (t, J=8.0, 1H, 5'-H); 6.86 (d, J=8.0, 1H, 4'-H); 2.26 (s, 3H, CH₃).

HRMS (ESI-TOF) per $C_{17}H_{16}N_3^+$

Calcolato	Trovato	
262.1339	262.1356	(M ⁺ +H)

Sintesi di 4-(4"-metil)anilino-5-fenilpirimidina

Con la metodica generale, da 4-(4"-metil)anilino-5-fenil-2-tiometilpirimidina (307.0 mg) e mediante cristallizzazione da In-esano è stata ottenuta la 4-(4"-metil)anilino-5-fenilpirimidina (78.0 mg, resa 30%) con p. f. 138°C.

¹**H-NMR** (DMSO-*d*₆): 8.53 (s, 1H, 2-H); 8.29 (s, 1H, N<u>H</u>); 8.14 (s, 1H, 6-H); 7.55-7.45 (m, 5H, Ar-H x5); 7.43 (d, J=8.4, 2H, 2'-H e 6'-H o 3'-H e 5'-H); 7.09 (d, J=8.2, 2H, 2'-H e 6'-H o 3'-H e 5'-H); 2.26 (s, 3H, C<u>H</u>₃).

HRMS (ESI-TOF) per $C_{17}H_{16}N_3^+$

Calcolato	Trovato	
262.1339	262.1386	(M ⁺ +H)

Sintesi di 4-(4"-cloro)anilino-5-fenilpirimidina

Con la metodica generale, da 4-(4"-cloro)anilino-5-fenil-2-tiometilpirimidina (327.0 mg) e mediante cristallizzazione da n-esano è stata ottenuta la **4-(4"-cloro)anilino-5-fenilpirimidina** (106.0 mg, resa 38%) con p. f. 147°C.

¹**H-NMR** (DMSO-*d*₆): 8.59 (s, 2H, 2-H e 6-H); 8.20 (s, 1H, N<u>H</u>); 7.63 (d, J=8.9, 2H, 3'-H e 5'-H); 7.56-7.44 (m, 5H, Ar-H x5); 7.33 (d, J=8.7, 2H, 2'-H e 6'-H).

HRMS (ESI-TOF) per $C_{16}H_{13}CIN_{3}^{+}$

Calcolato	Trovato	
282.0798	282.0744	$(M^+ + H)$
284.0769	284.0756	(M ⁺ +2 +H)

Sintesi di 4-(3"-bromo)anilino-5-fenilpirimidina

Con la metodica generale, da 4-(3"-bromo)anilino-5-fenil-2-tiometilpirimidina (372.0 mg) e mediante purificazione con flash cromatografia (eluente: CE/EtOAc, 7/3) è stata ottenuta la **4-(3"-bromo)ammino-5-fenilpirimidina** (58.0 mg, resa 18%), con p.f. 111 °C.

¹**H-NMR** (DMSO-*d*₆): 8.57 (s, 1H, 6-H); 8.40 (s, 1H, N<u>H</u>); 8.20 (s, 1H, 2-H); 7.59-7.44 (m, 6-H, 2'-H e Ar-H x 5); 7.31-7.26 (m, 2H, 4'-H e 6'-H); 7.04 (t, J=7.4, 1H, 5'-H).

HRMS (ESI-TOF) per $C_{16}H_{13}BrN_{3^+}$

Calcolato	Trovato	
326.0293	326.0201	$(M^+ + H)$
328.0272	328.0207	(M ⁺ +2 +H)

Sintesi di 4-(4"-idrossi)anilino-5-fenilpirimidina

Con la metodica generale, da 4-(4"-idrossi)anilino-5-fenil-2-tiometilpirimidina (309.0 mg) e per cristallizzazione da ⁱPrOH/n-esano è stata ottenuta la **4-(4"idrossi)ammino-5-fenilpirimidina** (50.0 mg, resa 19%), con p. f. 118°C.

¹**H-NMR** (DMSO-*d*₆): 9.22 (s all, 1 H, O<u>H</u>); 8.45 (s, 1 H, N<u>H</u>); 8.14 (s, 1 H, 2-H); 8.07 (s, 1 H, 6-H); 7.54-7.40 (m, 5 H, Ar-H x 5); 7.29-7.22 (m, 2 H, 2"-H e 6"-H); 6.71-6.65 (m, 2 H, 3"-H e 5"-H).

HRMS (ESI-TOF) per $C_{16}H_{14}N_3O^+$

Calcolato	Trovato	
264.1131	264.1154	(M ⁺ +H)
Sintesi di 4-(2"-idrossi)anilino-5-fenipirimidina

Con la metodica generale, da 4-(2"-idrossi)anilino-5-fenil-2-tiometilpirimidina (309.0 mg), e per cristallizzazione da n-esano, è stata ottenuta la **4-(2"-idrossi)anilino-5-fenilpirimidina** (184.0 mg, resa 70%) con p.f. 210 °C.

¹**H-NMR** (DMSO-*d*₆): 8.30 (d, J=8.0, 1, O<u>H</u>); 8.03 (s, 1H, N<u>H</u>); 7.58-7.45 (m, 7H, Ar-H x5, 2-H e 6-H); 6.85-6.55 (m, 4H, 3'-H, 4'-H, 5'-H, 6'-H).

HRMS (ESI-TOF) per $C_{16}H_{14}N_3O^+$

Calcolato	Trovato	
264.1131	264.1105	(M ⁺ +H)

Sintesi di 4-(3"-idrossi)anilino-5-fenilpirimidina

Con la metodica generale, da 4-(3"-idrossi)anilino-5-fenil-2-tiometilpirimidina (309.0 mg), e per cristallizzazione da MeOH, è stata ottenuta la **4-(3"-idrossi)anilino-5-fenilpirimidina** (84.0 mg, resa 32%), con p. f. 219°C.

¹**H-NMR** (DMSO-*d*₆): 9.31 (s all, 1 H, O<u>H</u>); 8.58 (s, 1 H, N<u>H</u>); 8.21 (s, 1 H, 2-H); 8.17 (s, 1 H, 6-H); 7.55-7.43 (m, 5 H, Ar-H x5); 7.14-7.10 (m, 1 H, 2"-H); 7.04 (t, J=8.0, 1 H, 5"-H); 6.97-6.93 (m, 1 H, 6"-H); 6.47-6.42 (m, 1 H, 4"-H).

HRMS (ESI-TOF) per $C_{16}H_{14}N_3O^+$

Calcolato	Trovato	
264.1131	264.1086	(M⁺ +H)

Sintesi di 4-(3"-bifenil)ammino-5-fenilpirimidina

Con la metodica generale, da 4-(3"-bifenil)ammino-5-fenil-2-tiometilpirimidina (369.0 mg) e per purificazione con flash cromatografia (eluente: CHCl₃/MeOH, 99/1) è stata ottenuta la **4-(3"-bifenil)ammino-5-fenilpirimidina** (106.0 mg, resa 33%), con p.f. 59 °C.

¹**H-NMR** (DMSO-*d*₆): 8.59 (s, 1H, 6-H); 8.50 (s, 1H, N<u>H</u>); 8.20 (s, 1H, 2-H); 7.83 (t, J=1.8, 1H, 2'-H); 7.70 (d, J=8.2, 1H, Ar-H); 7.64-7.61 (m, 2H, Ar-H x 2); 7.58-7.52 (m, 4H, Ar-H x 4); 7.49-7.44 (m, 3H, Ar-H x 3); 7.41-7.32 (m, 3H, Ar-H x3).

HRMS (ESI-TOF) per $C_{22}H_{18}N_3^+$

Calcolato	Trovato	
324.1495	324.1484	(M ⁺ +H)

Sintesi di 4-(4"-acetammido)anilino-5-fenilpirimidina

Con la metodica generale da 4-(4'-acetammido)anilino-5-feni-2-tiometilpirimidina (350 mg) e per cristallizzazione da n-esano è stata ottenuta la **4-(4''-acetammide)anilino-5-fenilpirimidina** (198.0 mg, resa 65%) con p.f.212 °C.

¹**H-NMR** (DMSO-*d*₆): 9.88 (s, 1H, N<u>H</u>); 8.51 (s, 1H, N<u>H</u>); 8.33 (s, 1H, 2-H); 8.13 (s, 1H, 6-H); 7.55-7.42 (m, 9H, Ar-H x5, 2'-H, 3'-H, 5'-H e 6'-H); 2.02 (s, 3H, C<u>H</u>₃).

HRMS (ESI-TOF) per $C_{18}H_{17}N_4O^+$

Calcolato	Trovato	
305.1397	305.1328	(M ⁺ +H)

Sintesi di 4-(4"-ammino)anilino-5-fenilpirimidina

Una sospensione di 4-(4"-acetammido)anilino-5-fenilpirimidina (304.0 mg, 1.0 mmoli) in HCl 3M (5 ml) è stata posta a riflusso sotto agitazione per 2 ore (TLC: CHCl₃/MeOH, 9/1). Dopo raffreddamento la miscela è stata posta in bagno di ghiaccio e aggiunta di NaOH 3M fino a pH=9. Il precipitato formatosi è stato raccolto per filtrazione ottenendo la **4-(4"-ammino)anilino-5-fenilpirimidina** (180.0 mg, resa 69%), con p.f. 86 °C.

¹**H-NMR** (DMSO-*d*₆): 8.42 (s, 1H, 2-H); 8.03 (s, 1H, 6-H); 7.97 (s, 1H, N<u>H</u>); 7.58-7.40 (m, 5H, Ar-H x5); 7.09 (d, J=8.7, 2H, 2'-H e 6'-H o 3'-H e 5'-H); 6.50 (d, J=8.7, 2H, 2'-H e 6'-H o 3'-H e 5'-H); 4.91 (s, 2H, N<u>H</u>₂).

HRMS (ESI-TOF) per $C_{16}H_{15}N_4^+$

Calcolato	Trovato	
263.1291	263.1237	(M⁺ +H)

7.6. SINTESI DI DERIVATI *N*°-[4-(PIRIMIDIN-4'-ILAMMINO)FENIL]-*N*°-ARILUREIDICI

7.6.1. SINTESI DI DERIVATI N°-[4-(6'-FENILPIRIMIDIN-4'-ILAMMINO)FENIL]-N°-ARILUREIDICI

METODICA GENERALE

Ad una soluzione del cloridrato dell'adeguato derivato anilinico (0.6 mmoli) in DCBZ (2 ml) è stato aggiunto trifosgene (59.2 mg, 0.2 mmoli) a porzioni, sotto agitazione e a temperatura ambiente. Terminata l'aggiunta la miscela è stata posta a riflusso fino ad ottenimento di una soluzione perfettamente limpida. La miscela di reazione è stata quindi raffreddata ed aggiunta di una soluzione di 4- (4"-ammino)anilino-6-fenilpirimidina (131.0 mg, 0.5 mmoli) in DCM (5 ml), goccia a goccia e sotto agitazione. La miscela è stata quindi lasciata in agitazione a temperatura ambiente per 8 ore (TLC: CHCl₃/MeOH, 9/1). Il precipitato formatosi è stato quindi raccolto per filtrazione e purificato con la metodica di volta in volta indicata.

Sintesi di N'-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N''-fenilurea

Con la metodica generale, a partire da anilina cloridrato (77.4 mg), e per cristallizzazione da MeOH è stata ottenuta la **N'-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N''-fenilurea** (55.0 mg, resa 29%), con p. f. 295°C.

¹**H-NMR** (DMSO-*d*₆): 10.96 (s all, 1 H, N<u>H</u>); 9.10 (s, 1 H, N<u>H</u>); 9.00 (s, 1 H, N<u>H</u>); 8.87 (s, 1 H, 2'-H); 7.95-7.89 (m, 2 H, 2"-H e 6"-H); 7.68-7.55 (m, 5 H, Ar-H x5); 7.52 (d, J= 9.0, 2 H, 2-H e 6-H o 3-H e 5-H); 7.46 (d, J=9.0, 2 H, 2-H e 6-H o 3-H e 5-H); 7.31-7.25 (m, 2 H, 3"'-H e 5"'-H); 7.23 (s, 1 H, 5'-H); 6.96 (t, J=7.2, 1 H, 4"'-H).

 HRMS (ESI-TOF) per $C_{23}H_{20}N_5O^+$

 Calcolato
 Trovato

 382.1662
 382.1684
 (M⁺ +H)

Sintesi di N'-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N''-(3'''-metil)fenilurea

Con la metodica generale, a partire da *m*-toluidina cloridrato (86.0 mg), e per cristallizzazione da ⁱPrOH è stata ottenuta la **N**-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-**N**'-(3'''-metil)fenilurea (83.0 mg, resa 42%), con p. f. 286°C.

¹**H-NMR** (DMSO-*d*₆): 10.17 (s, all, 1 H. N<u>H</u>); 8.80-8.72 (m, 2 H, 2'-H e N<u>H</u>); 8.85 (s, 1 H, N<u>H</u>); 8.022-7.89 (m, 2 H, 2"-H e 6"-H); 7.65-7.42 (m, 7 H, Ar-H x7); 7.22-7.08 (m, 4 H, Ar-H x4); 6.79 (d, J=7.2, 1 H, 4"'-H); 2.28 (s, 3 H, C<u>H</u>₃).

HRMS (ESI-TOF) per $C_{24}H_{22}N_5O^+$

Calcolato	Trovato	
396.1819	396.1805	(M ⁺ +H)

$H_{3}C$ (H_{1}) $(H_{1$

Sintesi di N'-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N''-(4'''-metil)fenilurea

Con la metodica generale, a partire da *p*-toluidina cloridrato (86.0 mg), e per cristallizzazione da ⁱPrOH/H₂O è stata ottenuta la **N'-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N''-(4'''-metil)fenilurea** (75.0 mg, resa 38%), con p. f. 286°C.

¹**H-NMR** (DMSO-*d*₆): 10.36 (s all, 1 H, N<u>H</u>); 8.79 (s, 1 H, 2'-H); 8.76 (s, 1 H, N<u>H</u>); 8.64 (s, 1 H, N<u>H</u>); 8.011-7.89 (m, 2 H, 2"-H e 6"-H); 7.65-7.44 (m, 7 H, Ar-H x7); 7.34 (d, J=8.5, 2 H, 2"'-H e 6"'-H); 7.17 (s, 1 H; 5'-H); 7.08 (d, J=8.5, 2 H, 3"'-H e 5"'-H); 2.24 (s, 3 H, C<u>H</u>₃).

HRMS (ESI-TOF) per C₂₄H₂₂N₅O⁺ Calcolato Trovato 396.1819 396.1839 (M⁺ +H)

Sintesi di N'-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N''-(3'''trifluorometil)fenilurea

Con la metodica generale, a partire da 3-trifluorometilanilina cloridrato (118.0 mg), e per cristallizzazione da ⁱPrOH è stata ottenuta la **N'-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N''-(3'''-trifluorometil)fenilurea** (90.0 mg, resa 40%), con p. f.> 300°C.

¹**H-NMR** (DMSO-*d*₆): 10.32 (s all, 1 H, N<u>H</u>); 9.18 (s, 1 H, N<u>H</u>); 8.96 (s, 1 H, N<u>H</u>); 8.79 (s, 1 H, 2'-H); 8.02 (s, 1 H, 2'''-H); 7.99-7.92 (m, 2 H, 2''-H e 6''-H); 7.63-7.55 (m, 6 H, Ar-H x6); 7.55-7.47 (m, 3 H, Ar-H x3); 7.31 (d, J=7.6, 1 H, 6'''-H); 7.19 (s, 1 H, 5'-H).

 HRMS (ESI-TOF) per $C_{24}H_{19}F_3N_5O^+$

 Calcolato
 Trovato

 450.1536
 450.1484
 (M⁺ +H)

Sintesi di N'-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N''-(2'''-fluoro-5'''trifluorometil)fenilurea

Con la metodica generale, a partire da 2-fluoro-5-trifluorometilanilina cloridrato (129.0 mg), e per cristallizzazione da ⁱPrOH è stata ottenuta la **N**-[4-(6'-fenilpirimidin-4'-ilammino)fenil]-N''-(2'''-fluoro-5'''-trifluorometil)fenilurea (60.0 mg, resa 26%), con p. f. 265°C.

¹**H-NMR** (DMSO-*d*₆): 10.14 (s all, 1 H, N<u>H</u>); 9.26 (s, 1 H, N<u>H</u>); 8.91 (s, 1 H, N<u>H</u>); 8.77 (s, 1 H, 2'-H); 8.65-8.61 (m, 1 H, 4'-H); 8.01-7.30 (m, 2 H, 2"-H e 6"-H); 7.66-7.54 (m, 5 H, Ar-H x5); 7.54-7.46 (m, 3 H, Ar-H x3); 7.42-7.36 (m, 1 H, 4"'-H); 7.19 (s, 1 H, 5'-H).

HRMS (ESI-TOF) per $C_{24}H_{18}F_4N_5O^+$ Calcolato Trovato 468.1442 468.1375 (M⁺ +H)

7.6.2. SINTESI DI DERIVATI N°-[4-(6'-FENILAMMINOPIRIMIDIN-4'-ILAMMINO)FENIL]-N°-ARILUREIDICI E N°-[4-(5'-FENILPIRIMIDIN-4'-ILAMMINO)FENIL]-N°-ARILUREIDICI

METODICA GENERALE

Ad una soluzione dell'appropriato derivato 4-(4"-ammino)anilinopirimidinico (0.6 mmoli) in DCM (5 ml) è stata aggiunta una soluzione di trifosgene (65.0 mg, 0.2 mmoli) in DCM (5 ml), goccia a goccia, a 0°C e sotto agitazione. La miscela è stata quindi aggiunta di TEA (83.5 µl, 0.6 mmoli) e posta a riflusso sotto agitazione per 3 ore (TLC: CHCl₃/MeOH, 9/1). Dopo raffreddamento la miscela è stata quindi aggiunta dell'adeguato derivato anilinico (0.5 mmoli) e posta a riflusso per 3 ore (TLC: CHCl₃/MeOH, 9/1). Dopo raffreddamento la miscela di reazione è stata concentrata a secchezza ed il residuo ottenuto è stato purificato mediante flash cromatografia (eluente: CHCl₃/MeOH, 9/1) portando all'ottenimento del composto desiderato.

Sintesi di N'-[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N''-fenilurea

Con la metodica generale, a partire da 4-(4''-ammino)anilino-6fenilamminopirimidina (166.0 mg) e anilina (46.5 mg), è stata ottenuta la **N-[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N''-fenilurea** (67.0 mg, resa 34%), con p. f.> 300°C.

¹**H-NMR** (DMSO-*d*₆): 9.08 (s, 1 H, N<u>H</u>); 8.98 (s, 1 H, N<u>H</u>); 8.69 (s all, 1 H, N<u>H</u>); 8.66 (s all, 1 H, N<u>H</u>); 8.23 (s, 1 H, 2-H); 7.57-7.51 (m, 2 H, Ar-H); 7.47-7.36 (m, 6 H, Ar-H x6); 7.32-7.23 (m, 4 H, Ar-H x4); 6.98-6.92 (m, 2 H, Ar-H x2); 8.10 (s, 1 H, 5'-H).

 HRMS (ESI-TOF) per C₂₃H₂₁N₆O⁺

 Calcolato
 Trovato

 397.1771
 397.1721
 (M⁺ +H)

Sintesi di N'-[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N''-(3'''metil)fenilurea

Con la metodica generale, a partire da 4-(4"-ammino)anilino-6fenilamminopirimidina (166.0 mg) e *m*-toluidina (53.5 mg), è stata ottenuta la **N**-**[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N''-(3"'-metil)fenilurea** (20.5 mg, resa 10%), con p. f.> 300°C.

¹**H-NMR** (DMSO-*d*₆): 9.38 (s all, 1 H, N<u>H</u>); 9.28 (s all, 1 H, N<u>H</u>); 8.68 (s, 1 H, N<u>H</u>); 8.61 (s, 1 H, N<u>H</u>); 8.27 (s, 1 H, 2'-H); 7.54-7.47 (m, 2 H, 2"-H e 6"-H); 7.45-7.35 (m, 4 H, 2-H e 3-H e 5-H e 6-H); 7.35-7.27 (m, 3 H, 3"-H e 5"-H e 2"'-H); 7.25-7.20 (m, 1 H, 6"'-H); 7.15 (t, J=7.6, 1 H, 4"-H); 7.06-7.00 (m, 1 H, 5"'-H); 6.80-6.76 (m, 1 H, 4"'-H); 6.08 (s, 1 H, 5'-H); 2.28 (s, 3 H, C<u>H</u>₃).

HRMS (ESI-TOF) per $C_{24}H_{23}N_6O^+$

Calcolato	Trovato	
411.1928	411.1902	$(M^+ + H)$

Sintesi di N'-[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N''-(4'''metil)fenilurea

Con la metodica generale, a partire da 4-(4"-ammino)anilino-6fenilamminopirimidina (166.0 mg) e *p*-toluidina (53.5 mg), è stata ottenuta la **N**-**[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N''-(4'''-metil)fenilurea** (29.0 mg, resa 14%), con p. f.> 300°C.

¹**H-NMR** (DMSO-*d*₆): 9.08 (s, 1 H, N<u>H</u>); 8.97 (s, 1 H, N<u>H</u>); 8.55 (s all, 1 H, N<u>H</u>); 8.53 (s all, 1 H, N<u>H</u>); 8.22 (s, 1 H, 2'-H); 7.57-7.52 (m. 2 H, 2'''-H e 6'''-H); 7.42-7.35 (m, 4 H, 2-H e 3-H e 5-H e 6-H); 7.35-7.25 (m, 4 H, 2''-H e 3''-H e 5''-H e 6''-H); 7.01-7.05 (m, 2 H, 3'''-H e 5'''-H); 6.98-6.92 (m, 1 H, 4''-H); 6.09 (s, 1 H, 5'-H); 2.24 (s, 3 H, CH₃).

 HRMS (ESI-TOF) per $C_{24}H_{23}N_6O^+$

 Calcolato
 Trovato

 411.1928
 411.1944
 (M⁺ +H)

Sintesi di N'-[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N''-(3'''trifluorometil)fenilurea

Con la metodica generale, a partire da 4-(4"-ammino)anilino-6fenilamminopirimidina (166.0 mg), e *m*-trifluorometilanilina (80.5 mg), è stata ottenuta la **N'-[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N''-(3"'trifluorometil)fenilurea** (51.0 mg, resa 22%), con p. f.> 300°C.

¹**H-NMR** (DMSO-*d*₆): 9.09 (s, 1 H, N<u>H</u>); 9.01 (s, 1 H, N<u>H</u>); 8.99 (s, 1 H, N<u>H</u>); 8.90 (s, 1 H, N<u>H</u>); 8.23 (s, 1 H, 2'-H); 8.02 (s, 1 H, 2''-H); 7.61-7.35 (m, 8 H, Ar-H x8); 7.32-7.25 (m, 3 H, Ar-H x3); 6.98-6.93 (m, 1 H, 4''-H); 6.11 (s, 1 H, 5'-H).

 HRMS (ESI-TOF) per $C_{24}H_{20}F_3N_6O^+$

 Calcolato
 Trovato

 465.1645
 465.1581
 $(M^+ +H)$

Sintesi di N'-[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-N''-(2'''-fluoro-5'''-trifluorometil)fenilurea

Con la metodica generale, a partire da 4-(4"-ammino)anilino-6fenilamminopirimidina (166.0 mg) e 2-fluoro-5-trifluorometilanilina (89.5 mg), è stata ottenuta la *N*-[4-(6'-fenilamminopirimidin-4'-ilammino)fenil]-*N*''-(2"'fluoro-5"''trifluorometil)fenilurea (24.0 mg, resa 10%), con p. f.> 300°C.

¹**H-NMR** (DMSO-*d*₆): 9.11-9.08 (m, 2 H, N<u>H</u> x2); 9.04 (s, 1 H, N<u>H</u>); 8.87-8.83 (m, 1 H, 6^{'''}-H), 8.63 (dd, J=7.4, J=2.3, 1 H, 3^{'''}-H o 4^{'''}-H); 8.24 (s, 1 H, 2'-H); 7.61-7.33 (m, 7 H, Ar-H x7); 7.32-7.25 (m, 2 H, 3^{''}-H e 5^{''}-H); 6.99-6.92 (m, 1 H, 4^{''}-H); 6.11 (s, 1 H, 5'-H).

HRMS (ESI-TOF) per $C_{24}H_{19}F_4N_6O^+$

 Calcolato
 Trovato

 483.1551
 483.1483
 (M⁺ +H)

Sintesi di N'-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-N"-fenilurea

Con la metodica generale, a partire da 4-(4"-ammino)anilino-5-fenilpirimidina (157.0 mg) e anilina (46.5 mg) è stata ottenuta la **N**-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-**N**'-fenilurea (53.0 mg, resa 28%) con p.f. 210 °C.

¹**H-NMR** (DMSO- d_6): 8.67 (s, 1H, N<u>H</u>); 8.64 (s, 1H, N<u>H</u>); 8.55 (s, 1H, 2'-H); 8.30 (s, 1H, N<u>H</u>); 3.13 (s, 1H, 6'-H); 7.55-7.51 (m, 4H, Ar-H x4); 7.49-7.42 (m, 5H, Ar-H x5); 7.37 (d, J=8.9, 2H, Ar-H x2); 7.27 (td, J=7.4, J=3.9, 2H, Ar-H x2); 6.39 (td, J=7.4, J= 2.1, 1H, Ar-H).

HRMS (ESI-TOF) per $C_{23}H_{20}N_5O^+$

Calcolato	Trovato	
382,1662	382.1646	(M ⁺ +H)

Sintesi di N'-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-N''-(3'''-metil)fenilurea

Con la metodica generale, a partire da 4-(4''-ammino)anilino-5-fenilpirimidina (157.0 mg) e *m*-toluidina (53.5 mg) è stata ottenuta la **N'-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-N''-(3'''-metil)fenilurea** (27.6 mg, resa 14%) con p.f. 112 °C.

¹**H-NMR** (DMSO-*d*₆): 8.58 (s, 1H, N<u>H</u>); 8.54 (s, 1H, N<u>H</u>); 8.52 (s, 1H, 2'-H); 8.29 (s, 1H, N<u>H</u>); 8.13 (s, 1H, 6'-H); 7.55-7.41 (m, 7H, 2-H e 6-H o 3-H e 5-H, Ar-H x5); 7.36 (d, J=8.9, 2H, 2-H e 6-H o 3-H e 5-H); 7.30 (s, 1H, 2'''-H); 7.22 (d, J=8.9, 1H, 6'''-H); 7.14 (t, J=7.6, 1H, 5'''-H); 6.77 (d, J=7.1, 1H, 4'''-H); 2.27 (s, 3H, C<u>H</u>₃).

HRMS (ESI-TOF) per C₂₄H₂₂N₅O⁺

Calcolato	Trovato	
396,1819	396.1902	(M⁺ +H)

Sintesi di N'-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-N''-(4'''-metil)fenilurea

Con la metodica generale, a partire da 4-(4"-ammino)anilino-5-fenilpirimidina (157.0 mg) e *p*-toluidina (53.5 mg) è stata ottenuta la **N**-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-**N**'-(4"-metil)fenilurea (20.0 mg, resa 10%) con p.f. 119 °C.

¹**H-NMR** (DMSO-*d*₆): 8.54 (s, 1H, N<u>H</u>); 8.51 (s, 2H, N<u>H</u> e 2'-H); 8.28 (s, 1H, N<u>H</u>); 8.12 (s, 1H, 6'-H); 7.56-7.40 (m, 7H, 2-H e 6-H o 3-H e 5-H e Ar-H x5); 7.39-7.29 (m, 4H, 2-H e 6-H o 3-H e 5-H, 2'''-H e 6'''-H); 7.07 (d, J=8.3, 2H, 3'''-H e 5'''-H); 2.24 (s, 3H, C<u>H</u>₃).

HRMS (ESI-TOF) per $C_{24}H_{22}N_5O+$

Calcolato	Trovato	
396,1819	396.1880	(M ⁺ +H)

Tentativo di sintesi di N'-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-N''-(3'''trifluorometil)fenilurea

Con la metodica generale, a partire da 4-(4"-ammino)anilino-5-fenilpirimidina (157.0 mg) e 3-trifluorometilanilina (80.5 mg), mediante purificazione con flash cromatografia (eluente: CHCl₃/MeOH, 9/1), non è stato possibile isolare il composto desiderato.

Sintesi di N'-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-N''-[2'''-fluoro-5'''-(trifluorometil)fenil]urea

Con la metodica generale, a partire da 4-(4"-ammino)anilino-5-fenilpirimidina (157.0 mg) e 2-fluoro-5-trifluorometilanilina (89.5 mg) è stata ottenuta la **N**-[4-(5'-fenilpirimidin-4'-ilammino)fenil]-N'-[2"'-fluoro-5"'-(trifluorometil)fenil]urea (19.0 mg, resa 8%), con p.f. 120 °C.

¹**H-NMR** (DMSO-*d*₆): 9.72 (s, 1H, N<u>H</u>); 9.11 (s, 1H, N<u>H</u>); 8.86 (d, J_{H-F}=3.3, 1H, 6^{'''}-H); 8.62 (dd, J=7.3, J_{H-F}=3.3, 1H, 3^{'''}-H); 8.53 (s, 1H, 2'-H); 8.34 (s, 1H, N<u>H</u>); 8.16-811 (m, 2H, 4^{'''}-H e 6'-H); 7.55-7.45 (m, 7H, Ar-H x5, 2-H e 6-H o 3-H e 5-H); 7.39 (d, J=9.0, 2H, 2-H e 6-H o 3-H e 5-H).

HRMS (ESI-TOF) per $C_{24}H_{18}F_4N_5O^+$

 Calcolato
 Trovato

 468,1442
 468.1471
 $(M^+ +H)$

8. APPENDICI

8.1. SPETTRI ¹H-NMR DI DERIVATI 4-ANILINO-6-FENILPIRIMIDINICI

8.1.1. DERIVATI "TYPE I-LIKE"

Figura 41. Spettro ¹H-NMR e formula di struttura di 4-anilino-6fenilpirimidina cloridrato (**5a**).

Figura 42. Spettro ¹*H*-NMR e formula di struttura di 4-(2"-fluoro-5"trifluorometil)anilino-6-fenilpirimidina cloridrato (*5b*).

Figura 43. Spettro ¹*H*-NMR e formula di struttura di 4-(3"trifluorometil)anilino-6-fenilpirimidina cloridrato (*5c*).

Figura 44. Spettro ¹*H*-NMR e formula di struttura di 4-(3"-metil)anilino-6-fenilpirimidina cloridrato (*5d*).

Figura 45. Spettro ¹*H*-NMR e formula di struttura di 4-(3"-metil)anilino-6-fenilpirimidina cloridrato (*5e*).

Figura 46. Spettro ¹*H*-NMR e formula di struttura di 4-(4"-cloro)anilino-6-fenilpirimidina cloridrato (*5f*).

Figura 47. Spettro ¹*H-NMR e formula di struttura di 4-(3"-bromo)anilino-6-fenilpirimidina cloridrato (5g).*

Figura 48. Spettro ¹*H*-NMR e formula di struttura di 4-(4"-idrossi)anilino-6-fenilpirimidina cloridrato (*5h*).

Figura 49. Spettro ¹*H*-NMR e formula di struttura di 4-(2"-idrossi)anilino-6-fenilpirimidina cloridrato (*5i*).

Figura 50. Spettro ¹*H*-NMR e formula di struttura di 4-(3"-idrossi)anilino-6-fenilpirimidina cloridrato (*5j*).

Figura 51. Spettro ¹*H-NMR e formula di struttura di 4-(m-bifenil)ammino-6-fenilpirimidina cloridrato (5k).*

Figura 52. Spettro ¹*H*-NMR e formula di struttura di 4-(4"acetammido)anilino-6-fenilpirimidina cloridrato (*51*).

Figura 53. Spettro ¹*H*-NMR e formula di struttura di 4-(4"-ammino)anilino-6fenilpirimidina (*5m*).

8.1.2. DERIVATI "TYPE II-LIKE"

Figura 54. Spettro ¹*H*-NMR e formula di struttura di N'-[4-(6'-fenilpirimidin-4'ilammino)fenil]-N''-fenilurea (*5n*).

Figura 55. Spettro ¹*H*-NMR e formula di struttura di N'-[4-(6'-fenilpirimidin-4'ilammino)fenil]-N''-(3'''-metil)fenilurea (*50*).

Figura 56. Spettro ¹*H*-NMR e formula di struttura di N'-[4-(6'-fenilpirimidin-4'ilammino)fenil]-N''-(4'''-metil)fenilurea (*5p*).

Figura 57. Spettro ¹H-NMR e formula di struttura di N'-[4-(6'-fenilpirimidin-4'ilammino)fenil]-N''-(3'''-trifluorometil)fenilurea (**5q**).

Figura 58. Spettro ¹H-NMR e formula di struttura di N'-[4-(6'-fenilpirimidin-4'ilammino)fenil]-N"-(2"'-fluoro-5"'-trifluorometil)fenilurea (**5r**).

8.2. SPETTRI ¹H-NMR DI DERIVATI 4-ANILINO-6-FENILAMMINOPIRIMIDINICI

8.2.1. DERIVATI "TYPE I-LIKE"

Figura 59. Spettro ¹*H*-NMR e formula di struttura di 4-anilino-6fenilamminopirimidina (**13a**).

Figura 60. Spettro ¹*H*-NMR e formula di struttura di 4-(2"-fluoro-5"trifluorometil)anilino-6-fenilamminopirimidina (**13b**).

Figura 61. Spettro ¹*H*-NMR e formula di struttura di 4-(3"trifluorometil)anilino-6-fenilamminopirimidina (**13c**).

Figura 62. Spettro ¹*H*-NMR e formula di struttura di 4-(3"-metil)anilino-6-fenilamminopirimidina (**13d**).

Figura 63. Spettro ¹H-NMR e formula di struttura di 4-(4"-metil)anilino-6fenilamminopirimidina (**13e**).

Figura 64. Spettro ¹H-NMR e formula di struttura di 4-(4''-cloro)anilino-6fenilamminopirimidina (**13f**).

Figura 65. Spettro ¹*H-NMR e formula di struttura di 4-(3"-bromo)anilino-6-fenilamminopirimidina (13g).*

Figura 66. Spettro ¹*H*-NMR e formula di struttura di 4-(4"-idrossi)anilino-6-fenilamminopirimidina (**13h**).

Figura 67. Spettro ¹*H*-NMR e formula di struttura di 4-(2"-idrossi)anilino-6-fenilamminopirimidina (**13i**).

Figura 68. Spettro ¹*H*-NMR e formula di struttura di 4-(3"-idrossi)anilino-6fenilamminopirimidina (**13j**).

Figura 69. Spettro ¹*H*-NMR e formula di struttura di 4-(*m*-bifenil)ammino-6-fenilamminopirimidina (**13k**).

Figura 70. Spettro ¹*H*-NMR e formula di struttura di 4-(4"acetammido)anilino-6-fenilamminopirimidina (**13I**).

Figura 71. Spettro ¹H-NMR e formula di struttura di 4-(4"-ammino)anilino-6fenilamminopirimidina (**13m**).

Figura 72. Spettro ¹*H*-NMR e formula di struttura di N,N'-bis(3'-metilfenil)-4,6-diamminopirimidina (**14a**).

Figura 73. Spettro ¹H-NMR e formula di struttura di N,N'-bis(3'-bromofenil)-4,6-diamminopirimidina (**14b**).

Figura 74. Spettro ¹*H*-NMR e formula di struttura di N,N'-bis(4'-clorofenil)-4,6-diamminopirimidina (**14c**).

Figura 75. Spettro ¹*H*-NMR e formula di struttura di N,N'-bis(4'idrossifenil)-4,6-diamminopirimidina (**14d**).

Figura 76. Spettro ¹*H*-NMR e formula di struttura di N,N'-bis(3'-bifenil)-4,6diamminopirimidina (**14e**).

8.2.2. DERIVATI "TYPE II-LIKE"

Figura 77. Spettro ¹H-NMR e formula di struttura di N'-[4-(6'fenilamminopirimidin-4'-ilammino)fenil]-N''-fenilurea (**13n**).

Figura 78. Spettro ¹H-NMR e formula di struttura di N'-[4-(6'fenilamminopirimidin-4'-ilammino)fenil]-N"-(3"'-metil)fenilurea (**130**).

Figura 79. Spettro ¹H-NMR e formula di struttura di N'-[4-(6'fenilamminopirimidin-4'-ilammino)fenil]-N''-(4'''-metil)fenilurea (**13p**).

Figura 80. Spettro ¹*H*-NMR e formula di struttura di N'-[4-(6'fenilamminopirimidin-4'-ilammino)fenil]-N''-(3'''-trifluorometil)fenilurea (**13q**).

Figura 81. Spettro ¹H-NMR e formula di struttura di N'-[4-(6'fenilamminopirimidin-4'-ilammino)fenil]-N''-(2'''-fluoro-5'''trifluorometil)fenilurea (**13r**).

8.3. SPETTRI ¹H-NMR DI DERIVATI 4-ANILINO-5-FENILPIRIMIDINICI

8.3.1. DERIVATI "TYPE I-LIKE"

Figura 82. Spettro ¹*H*-NMR e formula di struttura di 4-anilino-5fenilpirimidina (*29a*).

Figura 83. Spettro ¹*H*-NMR e formula di struttura di 4-(2"-fluoro-5"trifluorometil)anilino-5-fenilpirimidina (**29b**).

Figura 84. Spettro ¹*H*-NMR e formula di struttura di 4-(3"trifluorometil)anilino-5-fenilpirimidina (**29c**).

Figura 85. Spettro ¹H-NMR e formula di struttura di 4-(3"-metil)anilino-5fenilpirimidina (**29d**).

Figura 86. Spettro ¹*H*-NMR e formula di struttura di 4-(4"-metil)anilino-5fenilpirimidina (**29e**).

Figura 87. Spettro ¹H-NMR e formula di struttura di 4-(4"-cloro)anilino-5fenilpirimidina (**29f**).

Figura 88. Spettro ¹H-NMR e formula di struttura di 4-(3"-bromo)ammino-5fenilpirimidina (**29g**).

Figura 89. Spettro ¹*H*-NMR e formula di struttura di 4-(4"-idrossi)ammino-5fenilpirimidina (*29h*).

Figura 90. Spettro ¹*H*-NMR e formula di struttura di 4-(2"idrossi)anilino-5-fenilpirimidina (**29i**).

Figura 91. Spettro ¹*H*-NMR e formula di struttura di 4-(3"-idrossi)anilino-5fenilpirimidina (**29j**).

Figura 92. Spettro ¹H-NMR e formula di struttura di 4-(3"-bifenil)ammino-5-fenilpirimidina (**29k**).

Figura 93. Spettro ¹*H*-NMR e formula di struttura di 4-(4"acetammido)anilino-5-fenilpirimidina (**29I**).

Figura 94. Spettro ¹*H-NMR e formula di struttura di 4-(4"-ammino)anilino-5fenilpirimidina (29m).*

8.3.2. DERIVATI "TYPE II-LIKE"

Figura 95. Spettro ¹*H*-NMR e formula di struttura di N'-[4-(5'-fenilpirimidin-4'ilammino)fenil]-N"-fenilurea (**29n**).

Figura 96. Spettro ¹*H*-NMR e formula di struttura di N'-[4-(5'-fenilpirimidin-4'ilammino)fenil]-N"-(3"'-metil)fenilurea (**290**).

Figura 97. Spettro ¹*H*-NMR e formula di struttura di N'-[4-(5'-fenilpirimidin-4'ilammino)fenil]-N"-(4"'-metil)fenilurea (**29p**).

Figura 98. Spettro ¹H-NMR e formula di struttura di N'-[4-(5'-fenilpirimidin-4'ilammino)fenil]-N"-[2"'-fluoro-5'''-(trifluorometil)fenil]urea (**29r**).

8.4. SINTESI ORGANICA ASSISTITA DA MICROONDE

L'uso delle microonde (MicroWaves, MW) per condurre sintesi orgaiche è iniziato a metà degli anni '80. Le prime sperimentazioni furono effettuate con forni a microonde domestici, che si dimostrarono inadeguati a sostenere le condizioni di reazione. I continui miglioramenti apportati hanno quindi permesso la realizzazione degli attuali reattori per uso scientifico. Attualmente si ritiene che tutte le reazioni chimiche condotte con l'ausilio del calore possano essere accelerate dall'utilizzo delle MW.

Le microonde sono onde elettromagnetiche localizzate tra la radiazione IR e le onde radio, tra i 0.3 e i 300 GHz (lunghezza d'onda = 1 mm - 1 m) (Figura 89). Per evitare interferenze con i sistemi di telecomunicazione ed i radar, la frequenza degli apparati a microonde domestici ed industriali è regolata a 2450 MHz (lunghezza d'onda = 12.2 cm).

Figura 99. Spettro elettromagnetico.

Ad ogni forma di energia è associata una risposta molecolare: le microonde inducono solo movimenti di rotazione circolare delle molecole, mantenendo intatti i legami interatomici e la loro lunghezza. Infatti l'energia per rompere un legame covalente è stimata tra le 80 e le 120 Kcal/mol, mentre l'energia del fotone delle MW è di 0.037 Kcal/mol, evidentemente non sufficiente per indurre la rottura di un legame chimico.

La tecnica MW si è dimostrata utilissima nei casi in cui il riscaldamento tradizionale abbia bassa efficienza per effetto di trasmissione inefficiente del calore. Infatti la sintesi convenzionale avviene attraverso il trasferimento lento e

graduale di calore da una sorgente esterna alla miscela di reazione attraverso il contenitore. Nel caso delle MW il transfer di energia è rapido e senza inerzia, ha potere di penetrazione dell'ordine della lunghezza d'onda usata (quindi 10 cm) e interessa il prodotto ed il solvente ma non il recipiente (Figura 90).

Figura 100. Confronto fra il riscaldamento in-situ dovuto alle microonde (a sinistra) e il metodo di riscaldamento classico (a destra).

Il riscaldamento che si ottiene è quindi rapido e localizzato e non dipende dalla conducibilità termica del contenitore in quanto trasparente alle microonde.

8.4.1. MODALITA' DI AZIONE DELLE MICROONDE

Come tutte le onde elettromagnetiche, le MW sono caratterizzate da un campo elettrico (E) e da un campo magnetico (H) perpendicolari (Figura 91), ma solo quello elettrico è coinvolto nel trasferimento di energia.

Figura 101. Schematizzazione di un onda elettromagnetica.

Le microonde provocano particolari oscillazioni in molecole che possiedono momento dipolare non nullo; i movimenti generati a seguito dell'assorbimento determinano un riscaldamento elevato e istantaneo delle molecole attraverso due meccanismi: la *rotazione dipolare* e la *conduzione ionica*. Nel primo caso, molecole dipolari sottoposte ad una radiazione elettromagnetica tendono ad

allinearsi con il campo elettrico assumendo movimenti oscillatori. Tali movimenti dipendono dalla viscosità del mezzo e dalla frequenza del campo applicato: se le frequenze sono troppo elevate, le molecole non hanno tempo sufficiente per rispondere alla variazione del campo elettrico e, non riuscendo a ruotare, non si ha transferimento di energia né riscaldamento; se le frequenze sono troppo basse, le molecole ruotano perfettamente in fase con il campo elettrico, sviluppando troppa poca energia e quindi non producendo calore. Tuttavia, se la frequenza applicata è dell'ordine delle MW, le molecole riescono a ruotare ad una velocità tale per cui permane costantemente una differenza di fase (δ) tra l'orientazione del campo elettrico e quella del dipolo. Ciò genera una perdita di energia da parte del dipolo attraverso frizionamento e collisioni, che si traduce in riscaldamento.

Nel fenomeno di conduzione ionica, particelle cariche in soluzione si muovono sotto l'influenza del campo elettrico con aumento delle collisioni tra le molecole, con conversione dell'energia cinetica in riscaldamento. Liquidi contenenti ioni, pertanto, assorbiranno le MW maggiormente di liquidi deionizzati.

Se è vero che esiste una correlazione diretta tra costante dielettrica (ϵ ') di una molecola e la sua capacità di assorbire le microonde, non altrettanto si può dire riguardo alla velocità con cui una molecola aumenta di temperatura. Ad esempio, nonostante l'acqua possegga una costante dielettrica circa 4 volte superiore a quella dell'etanolo, quest'ultimo si riscalda ad una velocità doppia. La capacità di convertire l'assorbimento in calore è quindi il parametro fondamentale che caratterizza i solventi nella sintesi assistita da microonde, e viene espresso da un parametro chiamato dielettric loss (ϵ "), legato sia alla costante dielettrica che alla differenza di fase fra campo elettrico applicato e dipolo molecolare dall'equazione: tan $\delta = \epsilon$ " / ϵ ' (Tabella 4).

Solvente	ε'	tanδ	٤"
Acqua	80.4	0.123	9.889
CH₃CN	37.5	0.062	2.325
CH₃OH	24.3	0.941	22.866
CHCl₃	4.8	0.091	0.437
Toluene	2.4	0.04	0.096

Tabella 6. Confronto fra i valori di costante dielettrica e di dielettric loss per alcuni dei principali solventi utilizzati nella sintesi organica.

Sulla base del valore di dielettric loss, i solventi vengono classificati in:

- solventi ad alto assorbimento: hanno ε" elevato. DMSO, alcoli, nitrobenzene, acido formico, glicoli;
- ✓ solventi a medio assorbimento: Acqua, DMF, chetoni, AcOH, TFA;
- solventi a basso assorbimento: hanno ε" basso. CHCl₃, eteri, piridina, TEA, toluene.

È inoltre interessante ricordare che per alcuni solventi le proprietà dielettriche sono fortemente influenzate dalla temperatura (Figura 92), causando una progressiva diminuzione dell'entità del dipolo molecolare.

Figura 102. Variazione del valore della costante dielettrica in funzione della temperatura per alcuni dei principali solventi utilizzati nella sintesi organica.

Attualmente sempre più pubblicazioni scientifiche riguardano, ad esempio, la possibilità di utilizzare l'acqua a temperature comprese fra 150 e 250°C (Near Critical Water) se non addirittura maggiori di 300°C (Critical Water) come solvente per reazioni assistite da microonde. A queste temperature e sotto pressione l'acqua ha una ε ' paragonabile a quella di solventi organici quali acetone, metanolo e nitrobenzene, e può quindi venir considerata come un solvente pseudo-organico.

L'effetto in generale delle microonde sulla sintesi organica è quello di aumentare velocità e resa di reazione, in quanto l'energia trasferita è molto maggiore rispetto alla quota necessaria per raggiungere l'energia d'attivazione. Mentre nel metodo di riscaldamento convenzionale la temperatura a cui si esegue la reazione non può essere superiore a quella complessiva del sistema (temperatura di bulk, T_B), l'utilizzo dell MW consente alle molecole, in grado di assorbire, il raggiungimento di temperature molto più elevate (temperatura istantanea, T_i). Sulla base di queste considerazioni, se nell'equazione di Arrhenius, che descrive la dipendenza della cinetica di reazione dalla temperatura, si sostituisce il termine T_B con T_i si intuisce immediatamente la ragione per cui le MW inducono una notevole riduzione dei tempi di reazione (Figura 93).

Figura 103. Effetto del riscaldamento MW sulla costante cinetica di reazione. $T_i >> T_B$.

Il miglior raggiungimento dell'energia di attivazione necessaria è uno dei motivi per cui spesso, oltre alla riduzione dei tempi di reazione, si ha anche una notevole riduzione della quantità di catalizzatori necessari.

L'irraggiamento con microonde, garantendo inoltre un più rapido raggiungimento delle condizioni di temperatura ottimali, è in grado di aiutare ad ottenere miscele di reazione meno complesse: è stato infatti dimostrato che la maggior parte dei prodotti secondari delle reazioni si formano nella fase di riscaldamento.

8.4.2. TIPOLOGIE DI REATTORI A MICROONDE

Esistono due tipi di reattori a microonde: *multimodali* e *monomodali*. Nel primo caso rientrano, ad esempio, i forni a microonde domestici o strumenti industriali dotati di una cavità ampia con una conseguente dispersione di energia e una distribuzione energetica non uniforme. Nei sistemi monomodali invece si ha la focalizzazione delle onde elettromagnetiche sul campione, con un conseguente notevole aumento di densità e uniformità di energia. Il reattore che è stato utilizzato in questo lavoro di tesi di dottorato è di tipo monomodale self-tuning (Figura 94), in cui si ha un'automatica regolazione della potenza delle microonde in base alle condizioni operative impostate.

Figura 104. A sinistra: reattore monomodale self-tuning. A destra: sistema toroidale utilizzato per focalizzare le MW direttamente nel campione, presente al centro dello strumento.

Nel sistema utilizzato è presente, inoltre, un flusso di gas di raffreddamento attivabile secondo le esigenze operative ed un controllo a feedback della temperatura che permette di massimizzare l'input delle microonde (Enhanced Microwave Synthesis, EMS). In questo modo è possibile fornire energia senza aumentare proporzionalmente la temperatura di bulk, migliorando la cinetica di reazione e riducendo i fenomeni di termodegradazione.

9. **BIBLIOGRAFIA**

- 1 J. D.; Fatih, M.U. Protein kinase inhibitors against malignant lymphoma. *Expert Opin. Pharmacother.* **2013**, 14(6), 707-721.
- 2 Zuccotto, F.; Ardini, E.; Casale, E.; Angiolini, M. Through the "Gatekeeper Door": Exploiting the Active kinase Conformation. *J. Med. Chem.* **2010**, *53*(7), 2681-2694.
- 3 Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: the next generation. *Cell* **2011**, 144, 646-74.
- Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. *Nature* 2001, 411, 355-65.
- 5 Mareel, M.; Leroy, A. Clinical, cellular, and molecular aspects of cancer invasion. *Physiol. Rev.* **2003**, 83, 337-76.
- 6 Bennasroune, A.; Gardin, A.; Aunis, D.; Cremel, G.; Hubert, P. Tyrosine kinase receptors as attractive targets of cancer therapy. *Crit. Rev. Oncol. Hematol.* 2004, 50, 23-38.
- 7 Croce, C. M. Oncogenes and cancer. *N. Engl. J. Med.* **2008**, 358, 502-11.
- 8 Johnson, L. N. Protein kinase inhibitors: contributions from structure to clinical compounds. *Q. Rev. Biophys.* **2009**, 42, 1-40.
- 9 Arora, A.; Scholar, E. M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther. 2005, 315, 971-9.
- 10 Tannock, I. F.; Hill, R. P.; Bristow, R. G.; Harrington, L. The Basic Science of Oncology. In Fourth Edition ed.; The McGraw-Hill Companies: 2005.
- Pollard, T. D.; Earnshaw, W. C. Biologia Cellulare 2nd Edition. In Masson,E., Ed. 2008.

- 12 Fry, D. W. Site-directed irreversible inhibitors of the erbB family of receptor tyrosine kinases as novel chemotherapeutic agents for cancer. *Anticancer Drug Des.* **2000**, 15, 3-16.
- Patrick, G. L. An Introduction to Medicinal Chemistry Fourth Edition. Oxford University Press: 2009; 551-563.
- 14 Roskoski, R., Jr. The ErbB/HER receptor protein-tyrosine kinases and cancer. *Biochem. Biophys. Res. Commun.* **2004**, 319, 1-11.
- 15 Saito, Y. D.; Jensen, A. R.; Salgia, R.; Posadas, E. M. Fyn: a novel molecular target in prostate cancer. *Cancer* **2010**, 116, 1629-37.
- 16 Mendelsohn, J.; Howley, P.; Israel, M. The Molecular Basis of Cancer (Third Edition). Elsevier: 2008.
- 17 Elferink, L. A.; Resto, V. A. Receptor-tyrosine-kinase-targeted therapies for head and neck cancer. *J. Signal. Transduct.* **2011**, 982879.
- 18 Wesche, J.; Haglund, K.; Haugsten, E. M. Fibroblast growth factors and their receptors in cancer. *Biochem. J.* **2011**, 437, 199-213.
- 19 Porter, A. C.; Vaillancourt, R. R. Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. *Oncogene* **1998**, 17, 1343-52.
- Lurje, G.; Lenz, H. J. EGFR signaling and drug discovery. *Oncology* 2009, 77, 400-10.
- 21 Lemmon, M. A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. *Cell* 2010, 141, 1117-34.
- 22 Lammerts van Bueren, J. J.; Bleeker, W. K.; Brannstrom, A.; von Euler, A.; Jansson, M.; Peipp, M.; Schneider-Merck, T.; Valerius, T.; van de Winkel, J. G.; Parren, P. W. The antibody zalutumumab inhibits epidermal growth factor receptor signaling by limiting intra- and intermolecular flexibility. *Proc. Natl. Acad. Sci .U. S. A.* **2008**, 105, 6109-14.

- 23 Olayioye, M. A.; Neve, R. M.; Lane, H. A.; Hynes, N. E. The ErbB signaling network: receptor heterodimerization in development and cancer. *Embo. J.* **2000**, 19, 3159-67.
- 24 Zandi, R.; Larsen, A. B.; Andersen, P.; Stockhausen, M. T.; Poulsen, H. S. Mechanisms for oncogenic activation of the epidermal growth factor receptor. *Cell Signal* **2007**, 19, 2013-23.
- 25 Carmeliet, P.; Jain, R. K. Angiogenesis in cancer and other diseases. *Nature* **2000**, 407, 249-57.
- 26 Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology **2005**, 69 Suppl 3, 4-10.
- 27 Bremnes, R. M.; Camps, C.; Sirera, R. Angiogenesis in non-small cell lung cancer: the prognostic impact of neoangiogenesis and the cytokines VEGF and bFGF in tumours and blood. *Lung Cancer* **2006**, 51, 143-58.
- 28 Holmes, K.; Roberts, O. L.; Thomas, A. M.; Cross, M. J. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. *Cell Signal* **2007**, 19, 2003-12.
- McDermott, U.; Ames, R. Y.; lafrate, A. J.; Maheswaran, S.; Stubbs, H.; Greninger, P.; McCutcheon, K.; Milano, R.; Tam, A.; Lee, D. Y.; Lucien, L.; Brannigan, B. W.; Ulkus, L. E.; Ma, X. J.; Erlander, M. G.; Haber, D. A.; Sharma, S. V.; Settleman, J. Ligand-dependent platelet-derived growth factor receptor (PDGFR)-alpha activation sensitizes rare lung cancer and sarcoma cells to PDGFR kinase inhibitors. *Cancer Res.* **2009**, 69, 3937-46.
- Socinski, M. A. Multitargeted receptor tyrosine kinase inhibition: an antiangiogenic strategy in non-small cell lung cancer. *Cancer Treat. Rev.* 2011, 37, 611-7.
- 31 Golub, T. R.; Barker, G. F.; Lovett, M.; Gilliland, D. G. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. *Cell* **1994**, 77, 307-316.

- Rosnet, O; Buhring, H. J.; Marchetto, S.; Rappold, I.; Lavagna, C.; Sainty,
 D.; Arnoulet, C.; Chabannon, C.; Kanz, L.; Hannum, C.; Birnbaum, D.
 Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells, *Leukemia* 1996, 10, 238-248
- Yamamoto, Y.; Kiyoi, H.; Nakano, Y.; Suzuki, R.; Kodera, Y.; Miyawaki, S.; Asou, N.; Kuriyama, K.; Yagasaki, F.; Shimazaki, C.; Akiyama, H.; Saito, K.; Nishimura, M.; Motoji, T.; Shinagawa, K.; Takeshita, A.; Saito, H.; Ueda, R.; Ohno, R.; Naoe, T. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. *Blood* 2001, 97(8), 2434–2439.
- 34 Nakao, M.; Yokota, S.; Iwai, T.; Kaneko, H.; Horiike, S.; Kashima, K.; Sonoda, Y.; Fujimoto, T.; Misawa, S. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. *Leukemia* **1996**, 10, 1911-1918.
- 35 Galland, F.; Stefanova, M.; Lafage, M.; Birnbaum, D. Localization of the 5' end of the MCF2 oncogene to human chromosome 15q15→q23. *Cytogenet. Cell Genet.* **1992**, 60 (2), 114–116.
- 36 Ridge, S. A.; Worwood, M.; Oscier, D.; Jacobs, A.; Padua, R. A. FMS mutations in myelodysplastic, leukemic, and normal subjects. *Proc. Natl. Acad. Sci. U.S.A.* **1990**, 87(4), 1377–1380.
- 37 Tamimi, R. M.; Brugge, J. S.; Freedman, M. L.; Miron, A.; Iglehart, J. D.; Colditz, G. A.; Hankinson, S. E. Circulating colony stimulating factor-1 and breast cancer risk. *Cancer Res.* **2008**, 68(1), 18–21.
- 38 Edling, C. E.; Hallberg, B. c-Kit-A hematopoietic cell essential receptor tyrosine kinase. *Int. J. Biochem. Cell Biol.* **2007**, 39(11), 1995–1998.
- 39 McIntyre, A.; Summersgill, B.; Grygalewicz, B.; Gillis, A. J.; Stoop, J.; van Gurp, R. J.; Dennis, N.; Fisher, C.; Huddart, R.; Cooper, C.; Clark, J.; Oosterhuis, J. W.; Looijenga, L. H.; Shipley, J. Amplification and overexpression of the KIT gene is associated with progression in the seminoma subtype of testicular germ cell tumors of adolescents and adults. *Cancer Res.* 2005, 65(18), 8085–8089.

- 40 Hubbard, S. R.; Till, J. H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. **2000**, 69, 373-98.
- 41 Pytel, D.; Sliwinski, T.; Poplawski, T.; Ferriola, D.; Majsterek, I. Tyrosine kinase blockers: new hope for successful cancer therapy. *Anticancer Agents Med. Chem.* **2009**, 9, 66-76.
- 42 Guarino, M. Src signaling in cancer invasion. *J. Cell Physiol.* **2010**, 223, 14-26.
- 43 Wheeler, D. L.; lida, M.; Dunn, E. F. The role of Src in solid tumors. Oncologist **2009**, 14, 667-78.
- Capra, M.; Nuciforo, P. G.; Confalonieri, S.; Quarto, M.; Bianchi, M., Nebuloni, M.; Boldorini, R.; Pallotti, F.; Viale, G.; Gishizky, M. L.; Draetta, G. F.; Di Fiore, P. P. Frequent Alterations in the Expression of Serine/Threonine Kinases in Human Cancers. *Cancer Research* 2006, 66(16), 8147-8154.
- 45 Carmena, M.; Earnshaw, W. C. The cellular geography of Aurora kinases. *Nat. Rev. Mol. Biol.* **2003**, 4, 842–854.
- 46 Dutertre, S.; Descamps, S.; Prigent, P. On the role of aurora-A in centrosome function. *Oncogene* **2002**, 21, 6175–6183.
- 47 Adams, R. R.; Carmena, M.; Earnshaw, W. C.; Chromosomal passengers and the (aurora) ABCs of mitosis. *Trends Cell Biol.* **2001**, 11, 49–54.
- 48 Kimura, M.; Matsuda, Y.; Yoshioka, T.; Okano, Y. Cell cycle-dependent expression and centrosomal localization of a third human Aurora/IpI1related protein kinase, AIK3. *J. Biol. Chem.* **1999**, 274, 7334–7340.
- 49 AlQuarashi, N.; Hashimi, S. M.; Wei, M. Q. Chemical Inhibitors and microRNAs (miRNA) Targeting the Mammalian Target of Rapamycin (mTOR) Pathway: Potential for Novel Anticancer Therapeutics. *Int. J. Mol. Sci.* 2013, 14(2), 3874-3900.
- 50 Pal, S. K., Quinn, D. I. Differentiating mTOR inhibitors in renal cell carcinoma. *Cancer Treat. Rev.* **2013**, 39, 709-719.

- 51 Kornev, A. P.; Haste, N. M.; Taylor, S. S.; Ten Eyck, L. F. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. *P. N. A. S.* **2006**, 103(47), 17783-17788.
- 52 Zhang, J.; Yang, P. L.; Gray, N. S. Targeting cancer with small molecule kinase inhibitors. *Nat. Rev. Cancer* **2009**, 9, 28-39.
- 53 Petrelli, A.; Giordano, S. From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. *Curr. Med. Chem.*2008, 15, 422-432.
- 54 Davis, M. I.; Hunt, J. P.; Herrgard, S.; Ciceri, P.; Wodicka, L. M.; Pallares,
 G.; Hocker, M.; Treiber, D. K.; Zarrinkar, P. P. Comprehensive analysis of
 kinase inhibitor selectivity. *Nat. Biotechnol.* 2011, 29(11), 1046-1052.
- Zhou, W.; Hur, W.; McDermott, U.; Dutt, A.; Xian, W.; Ficarro, S. B.;
 Zhang, J.; Sharma, S. V.; Brugge, J.; Meyerson, M.; Settleman, J.; Gray,
 N. S. A structure-guided approach to creating covalent FGFR inhibitors. *Chem Biol* 2010, 17, 285-295.
- Kluter, S.; Simard, J. R.; Rode, H. B.; Grutter, C.; Pawar, V.; Raaijmakers,
 H. C.; Barf, T. A.; Rabiller, M.; van Otterlo, W. A.; Rauh, D.
 Characterization of irreversible kinase inhibitors by directly detecting covalent bond formation: a tool for dissecting kinase drug resistance. *ChemBioChem* 2010, 11, 2557-2566.
- 57 Giaccone, G.; Wang, Y. Strategies for overcoming resistance to EGFR family tyrosine kinase inhibitors. *Cancer Treat. Rev.* **2011**, 37, 456-464.
- 59 Riely, G. J. Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. *J. Thorac. Oncol.* **2008**, 3, 146-149.
- 60 Takeuchi, K.; Ito, F. EGF receptor in relation to tumor development: molecular basis of responsiveness of cancer cells to EGFR-targeting tyrosine kinase inhibitors. *Febs. J.* **2009**, 277, 316-326.
- 61 Garber, K. The second wave in kinase cancer drugs. *Nat. Biotechnol.* **2006**, 24, 127-130.

- 62 Sawyers, C. L. Opportunities and challenges in the development of kinase inhibitor therapy for cancer. *Genes Dev.* **2003**, 17, 2998-3010.
- 63 Opar a. Kinase inhibitors attract attention as oral rheumatoid arthritis drugs. *Nat. Rev. Drug Discov.* **2010**, 9, 257-258.
- Li, D. D.; Hou, Y. P.; Wang, W.; Zhu, H. L. Exploration of Chemical Space
 Based on 4-Anilinoquinazoline. *Curr. Med. Chem.* 2012, 19(6), 871-892.
- Billica, H. R.; Adkins, H. Organic Syntheses, Coll. Vol. 3, p.176 (1955);
 Vol. 29, p.24 (1949).
- 66 Miyaura, N.; Yamada, K., Suzuki, A, *Tetrahedron L.* **1979**, 20(36), 3437-3440.
- Fabian, M. A.; Biggs III, W. H.; Treiber, D. K.; Atteridge, C. E.; Azimioara, M. D.; Benedetti, M. G.; carter, T. A.; Ciceri, P.; Edeen, P. T.; Floyd, M.; Ford, J. M.; Galvin, M.; Gerlach, J. L.; Grotzfeld, R. M.; Herrgard, S.; Insko, D. E.; Insko, M. A.; Lai, A. G.; Lélias, J-M.; Mehta, S. A.; Milanov, Z. V.; Velasco, A. M.; Wodicka, L. M.; Patel, H. K.; Zarrinkar, P. P.; Lockhart, D. J. A quantitative analysis of kinase inhibitor selectivity. *Nat. Biotechnol.* 2008, 26, 127-132.
- Vistica, D. T.; Skehan, P.; Scudiero, D.; Monks, A.; Pittman, A.; Boyd, M.
 R. Tetrazolium-based assays for cellular viability: A critical examination of selected parameters affecting formazan production. *Cancer Res.* 1991, 51(10), 2515-2520.
- 69 Alley, M. C.; Scudiero, D. A.; Monks, A.; Hursey, M. L.; Czerwinski, M. J.; Fine, D. L.; Abbott, B. J.; Mayo, J. G.; Shoemaker, R. H.; Boyd, M. R. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. *Cancer Res.* **1988**, 48, 589–601.

RINGRAZIAMENTI

Desidero ringraziare la Prof.ssa Adriana Chilin, il Dott. Giovanni Marzaro, la Dott.ssa Francesca Tonus, il Prof. Adriano Guiotto, il Prof. Paolo Manzini e tutto il mio gruppo di ricerca per l'aiuto, il sostegno e la collaborazione.

Ringrazio inoltre la Dott.ssa Valentina Gandin per aver eseguito i saggi di citotossicità dei derivati studiati e per la grande disponibilità dimostratami.