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ABSTRACT 

The Adriatic Sea is an epicontinental semi-enclosed basin 

characterized by a low axial gradient shelf in the northern and central part. In 

particular, during the post-LGM transgression, the northern Adriatic shelf was 

affected by huge drowning due to slight sea-level rise. In this context, different 

generation of barrier-lagoon systems were developed and preserved. Thus, 

these transgressive bodies, on the Adriatic seafloor, record different phases of 

the relative sea-level rise. In the last few decades, several authors focused their 

study on the last transgressive cycle to reconstruct the evolution of the last 

relative sea-level rise in order to identify and predict its impact on the present 

coastal and terrestrial environments. The aim of this PhD thesis was a detailed 

characterization of transgressive deposits sedimented and preserved during 

distinct phases of the last relative sea-level rise in the northern Adriatic shelf. 

These sedimentary bodies, indeed, are one of the more appropriate direct sea-

level indicators and their study could be the key to better constrain the paleo 

sea-level and predict possible scenarios of environmental changes. Moreover, 

these transgressive deposits are identified as an economical resource because 

their sand portion, indicative of fossil shorelines, can be exploited for beaches 

nourishment. The characterization of different deposits was carried out with a 

multidisciplinary approach through the analyses of very high resolution seismic 

profiles, cores, bathymetric maps, petrographic samples, and XRF core scanner 

analysis.  

To improve the sea-level Mediterranean curve with new data, a 

preserved transgressive deposit south of the Po River delta was studied in 

detail. This sedimentary body, formed in a portion of the shelf affected by strong 

sediment supply, recorded different environments. The high quality of the 

acquired data and the considerable preservation of this deposit allowed to 

recognize and date different peat and organic-rich layers that testify brackish 

lagoon facies representative of distinct paleo sea-level position. The new 

radiocarbon data permitted to calculate the rate of sedimentation and the rate of 

the relative sea-level rise during the deposition of the investigated body. In 

particular, these high resolution data could be used to detect centennial 

fluctuations and calibrate sea-level models.  
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Furthermore, to obtain new data on the paleogeography of the Adriatic 

shelf, eight starved and reworked transgressive deposits, northern of the 

present Po River delta, were investigated with petrographic and preliminary 

XRF core scanner analyses. The compositional results highlighted three 

sedimentary petrofacies (petrofaciesI, II, III) connected to different relative sea-

level phases. In particular, the petrofacies I, indicative of the ancient sea-level 

phase, allowed to hypothesize a northward shifting of an ancient branch of the 

Po River; the Petrofacies II, highlighted a drowned shoreline characterized by 

different fluvial supply, and the petrofacies III, indicative of the more recent sea-

level phase, and belonging to a transgressive deposit that have been already 

studied by other authors, confirmed a Tagliamento River supply. Furthermore, 

the XRF analysis, in support of the petrographic analysis, allowed to individuate 

geochemical proxies in order to distinguish marine sand portion from sorted 

sand portion. Moreover, through the XRF analysis was possible to identify 

geochemical variation related to different environments of sedimentation 

connected also to glacial-interglacial cycle.  

The applied approach to the characterization of the northern Adriatic 

transgressive deposits allowed to obtain satisfactory results in order to improve 

the Adriatic relative sea-level curve and to recognize environmental changes in 

relation to the sea-level rise. At least, the results can provide a significant 

contribution in order to identify appropriate sand suitable deposits for beaches 

nourishment.
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RIASSUNTO 

Il Mare Adriatico è un bacino epicontinentale semi-chiuso caratterizzato 

da un basso gradiente della piattaforma nella zona centro settentrionale. In 

particolare, l’ultima risalita del mare, successiva all’ultimo massimo glaciale, 

provocò l’annegamento della piattaforma nord adriatica e conseguente 

sedimentazione e preservazione di diverse generazioni di sistemi costieri, che 

hanno quindi registrato diverse fasi di risalita del livello del mare. Negli ultimi 

decenni, più autori hanno focalizzato i loro studi sull’ultimo episodio trasgressivo 

per ricostruire in dettaglio i diversi momenti dell’ultima risalita relativa del livello 

del mare, per prevedere l’impatto che un innalzamento del livello del mare 

potrebbe avere nelle aree costiere attuali. Lo scopo di questa tesi di dottorato è 

stato quello di caratterizzare con estremo dettaglio i depositi trasgressivi 

sedimentati e preservati durante ultime fasi di risalita del mare nella piattaforma 

adriatica settentrionale. Questi corpi sedimentari sono infatti ottimi indicatori 

diretti del livello del mare e il loro studio potrebbe essere la chiave per delineare 

scenari futuri. Inoltre la porzione sabbiosa di questi depositi può costituire una 

risorsa economica sfruttabile per il ripascimento delle spiagge. Questi corpi 

sedimentari sono stati studiati con un approccio multidisciplinare che ha 

previsto l’analisi di profili sismici ad alta risoluzione, di carote, di mappe 

batimetriche, analisi compositive petrografiche su campioni di sabbia e analisi 

non distruttiva tramite spettrofotometria XRF in continuo su carote. 

Un deposito a sud del Delta del Po meglio comprendere gli effetti del 

sollevamento del livello del mare in un ambiente di transizione e con questo 

fornire dati di maggior dettaglio alla curva di risalita del mare Adriatico. Questo 

corpo sedimentario, formatosi in un’area caratterizzata da apporti sedimentari 

consistenti, ha registrato lo sviluppo di diversi ambienti sedimentari. La qualità 

dei dati analizzati e la considerevole preservazione del deposito hanno 

permesso di riconoscere e datare livelli ricchi in materia organica che 

testimoniano facies lagunari e quindi sono ottimi indicatori di paleo livelli del 

mare. Inoltre, le nuove datazioni al radiocarbonio hanno permesso di calcolare 

sia il tasso di sedimentazione sia il tasso relativo di risalita del livello del mare 

durante la formazione del deposito stesso. Questo estremo dettaglio nella 
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ricostruzione delle fasi trasgressive potrebbe essere utilizzata in futuro per 

individuare fluttuazioni centenarie e calibrare i modelli di risalita del livello del 

mare.  

Inoltre, sono stati analizzati otto depositi starvati e rimaneggiati, 

presenti a nord del Delta del Po, per ottenere nuovi dati sulla paleo geografia 

del nord Adriatico. Questi depositi sono stati studiati con analisi petrografiche e 

di spettrofotometria XRF. I risultati compositivi, hanno messo in evidenza tre 

petrofacies sedimentarie in relazione a diverse fasi della risalita del livello del 

mare. In particolare, la petrofacies I, indicativa della fase di risalita più antica, ha 

permesso di ipotizzare uno spostamento verso nord di un ramo fluviale del 

paleo Po; la petrofacies II ha messo in evidenza una paleo linea di costa 

caratterizzata da diversi apporti fluviali; mentre la petrofacies III, indicativa di un 

deposito trasgressivo studiato in precedenza da altri autori, ha confermato una 

provenienza legata al fiume Tagliamento. Inoltre, l’analisi XRF ha consentito di 

individuare proxies geochimici che hanno permesso di distinguere porzioni di 

sabbie marine da porzioni di sabbie ben cernite, con variazioni geochimiche che 

riflettono i diversi ambienti di sedimentazione.  

I risultati ottenuti con lo studio di questi depositi hanno permesso di 

migliorare la curva dl livello relativo del mare Adriatico e di riconoscere 

cambiamenti ambientali legati alla risalita del livello del mare. Infine, questi 

risultati possono contribuire in modo cospicuo all’identificazione di corpi 

sabbiosi utilizzabili per il ripascimento delle spiagge.  
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CHAPTER 1 

INTRODUCTION 

In the last decades several authors have focused their attention on the 

Quaternary stratigraphic records of the Mediterranean Basin, in order to 

highlight the relative sea-level rise response which occurred during the last 

glacial-interglacial cycle. In particular, the sedimentary records of continental 

margins testify flooding transgression and subsequent regression due to 

withdrawals of the sea (Miller et al., 2011). The Mediterranean margins provide 

several examples of Quaternary high-frequency depositional cycles (Tesson et 

al., 1990; Trincardi and Field, 1991; Piper and Aksu, 1992; Skene et al., 1998) 

that are characterized by longer phases of sea-level fall, likely in response to 

the longer time required for the formation of ice caps (Hays et al., 1976). The 

resulting relative sea-level curve exhibits an asymmetric shape, reflecting low 

rates of sea-level fall (slow regressions; 125-18 kyr) and high rates of sea level 

rise (rapid transgressions;  ̴18-6 kyr). More in detail, the relative sea-level 

dropped about 120 m in the Adriatic Sea epicontinental basin during the Last 

Glacial Maximum (LGM; Trincardi et al., 1994), and the maximum shoreline 

displacement was about 250 km more southern than the nowadays. In this 

context, the present Adriatic shelf was a huge alluvial plain. Subsequently, 

between late-glacial and early-Holocene, it experienced a very rapid sea-level 

rise, causing significant basin widening which allowed the sedimentation and 

drowning of several generations of coastal wedges and barrier-lagoon systems 

(Trincardi et al., 1994; Correggiari et al., 1996a; 2011). The remnants of these 

sand barriers were recognized offshore (Trincardi et al., 1994; Fabbri et al., 

2001; Correggiari et al., 2011; Trincardi et al., 2011) as isolated depositional 

bodies generally parallel to the present coastline and characterized by a 

complex facies architecture and peculiar seismic geometries.  

This research focuses on the detailed characterization of the post-LGM 

transgressive deposits in the Northern Adriatic, aiming at the following goals: 
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1. The reconstruction of the paleogeography variation induced by the 

submersion of the coastal system affected by a rapid sea-level rise. This 

aspect is also considered as a correct approach to predict possible 

scenarios of environmental changes under rising sea-level conditions. 

Several authors (e.g. Blum and Tornqvist, 2000; Cattaneo and Steel, 2003) 

demostrated that the Quaternary deposits emplaced during the last sea-

level cycle can represent a valid archive for this purpose. 

 

2. A detailed reconstruction of the past relative position of the sea during the 

last transgression cycle. In this regard, the Adriatic basin, and in particular 

the transgressive deposits sedimented during the last glacial-interglacial 

cycle represent a good record to highlight detailed fossil sea-level positions. 

Their paralic portions, indeed, are characterized by lateral continuity peat 

and organic-rich layers, easily recognizable on high resolution seismic 

profiles, that testify brackish lagoon facies representative of paleo sea-level, 

confirmed also by a typical fauna assemblage. With this aim, high resolution 

AMS 14C dates on peat layers, together with robust stratigraphic framework, 

could be used for assessing and calibrating the geophysical models 

predicting post-LGM sea-level corrected curves. 

 

3. Identification of the exploitable deposits for the beach nourishment focusing 

on the sorted sand portions belonging to the shelf transgressive sediments. 

In the last 30 years the offshore aggregates have become an economic 

resource. Nowadays, beach erosion is a widespread problem due to the 

sea-level rise combined with reduced fluvial supply and intensified 

storminess. Moreover, the human impact related to heavy urbanization of 

the coastal areas and tourism have worsened the situation together with the 

landward retreat of the coast. In this setting, the nourishment operation 

exploiting sand belonging to the transgressive deposits offshore, can be a 

good strategy to preserve beaches from erosion. Furthermore, during this 

PhD work several sand samples were analysed in order to identify different 

sand compositions, thus, the compositional comparison between 

transgressive sand and present beach sand could be an improved 

approach useful to select exploitable areas for beach nourishment. 
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Taking as reference the points listed above, this PhD project wants to 

give a new contribution concerning the transgressive deposits characterization 

focusing on detailed architecture and composition analyses of the main 

transgressive bodies in the northern Adriatic Sea. Therefore, it focuses on the 

detailed characterization of some parasequences emplaced and partly 

preserved on the low-gradient northern Adriatic shelf, following a multi-

disciplinary approach. The study was based on a large dataset of CHIRP-sonar 

profiles, bathymetric and isopach maps and integrated stratigraphic cores, 

provided by CNR-ISMAR (Bologna Section). In particular, during this work 

seismic facies analysis, core analysis and sand analysis were combined in 

order to obtain new information about the evolution and the response of some 

deposits in relation to the last relative sea-level rise.  

Furthermore, this project allowed me to gain experience on two 

oceanographic cruises (NAD12 and AS14 on board Urania R/V organized by 

CNR-ISMAR Bologna Section) in order to acquire new data. Moreover, I took 

part in the first research campaign concerning the morphological mapping of the 

Po River delta with the ultra-high resolution multibeam bathymetry and 

backscatter data (June 2013), an activity related to the Ritmare Project, and I 

also took part in a research cruise (on board Astrea R/V organised by ISPRA) of 

a project to monitor and characterize sand marine quarries for beach 

nourishment. For the methodology I learnt to use the innovative XRF core 

scanner analyses at the NIOZ Institute (Netherlands) to acquire continuous 

geochemical composition for seven selected cores. 

In order to identify the depositional environment and the rate of 

sedimentation in a transitional environment influenced by the sea-level rise, a 

transgressive deposit 40 km south of the present Po River delta was 

investigated (-38.5 to -34 m msl; Fig. 1.1). The transitional environments are 

mainly formed by clayey and silty sediments often rich in organic matter. These 

sediments are indicative of alluvial plain and lagoon facies. In particular, the 

AMS radiocarbon data of each peat layer allowed to calculate the rate of 

sedimentation. These accurate geochronological results on coastal and lagoon 

deposits have been used to improve the reconstruction of the curve of relative 

sea-level in the Adriatic Sea. As a second area of investigation, different 

transgressive deposits north of the Po Delta were analysed (Fig. 1.1). They 
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were formed during different phases of the sea-level rise and their study 

focused on the sandy portion, through the use of petrographic analysis under 

polarizing microscope. These results were used to distinguish among different 

sedimentary petrofacies and to recognize their provenance, producing new data 

to reconstruct the paleogeography evolution of the last part of the marine 

transgression. 

XRF core scanner analyses are presented and discussed in the final 

part of the thesis. This new method, generally applied to fine or mud sediments, 

was tested in this PhD project for sandy sediments for the first time. The aim of 

this investigation through XRF analysis was to highlight different chemical 

signature in correspondence of different environment of sedimentation. In 

particular, this method was applied to distinguish continental sediments from 

transitional environments developing during the last sea-level rise. Furthermore, 

the XRF analysis of the sand portion pointed out different geochemical proxies 

in order to distinguish sediments affected by marine productivity and sediments 

influenced by a terrigenous supply. 

 

 

Fig. 1.1: Study area of this PhD project. 1: First investigated area, south of the Po River delta; 2: 
Second investigated area, north of the Po River delta. 
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OUTLINE 

The work performed in the last three years, reflecting the above reported goals, 

is presented in this thesis as follow: 

 Chapter 1) Introduction 

 Chapter 2) Geomorphological setting  

 Chapter 3) Instruments, methods and data 

 Chapter 4) Moscon, G., Correggiari, A., Stefani, C., Fontana, A., Remia, 

A. (2015), “Very-high resolution analysis of a transgressive deposit in the 

northern Adriatic Sea (Italy).” Alpine and Mediterranean Quaternary, 

28(2), 121-129.  

 Chapter 5) Sediment provenance in some Holocene transgressive 

deposits in the northern Adriatic Sea 

 Chapter 6) XRF core scanner results 

 Chapter 7) Discussions and Conclusions 
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CHAPTER 2 

GEOMORPHOLOGICAL 

SETTING 

2.1 Adriatic seafloor morphology 

The Adriatic Sea is located in the central Mediterranean, between the 

Italian peninsula and the Balkans and is characterized by a strong transversal 

and longitudinal asymmetry. It is a narrow semi-enclosed epicontinental shelf 

dominated by mud deposition and characterized by a narrow shape, with its 

major axis elongating for over 800 km in the NW-SE direction. Considering the 

shelf morphology, this basin can be divided into three different portions (Fig. 

2.1). The northern section is characterized by a very shallow and slightly 

inclined shelf (0.02° dip), with an average depth of about -35 m msl, extending 

for about 350 km from the Gulf of Venice to the Mid Adriatic Deep (MAD). This 

area shows a complex microtopography, with metric size reliefs and scours 

which reach a depth of 4-5 m. The central portion is formed by several slope 

basins, including the MAD, a small slope basin about 250 m deep, 

characterized by a NE-SW trend. This basin is bounded eastward by a small 

platform and southward by the Gallignani-Pelagosa ridge (Ridente and 

Trincardi, 2006). The southern section, south of the Pelagosa sill, is 

characterized by a wide depression more than 1200 m deep and a complex 

slope morphology (Cattaneo et al., 2003). In particular, the Adriatic environment 

and its oceanography were subjected to dramatic changes during the eustatic 

oscillations which occurred during late Quaternary in particular during the last 

relative sea-level rise. Storm et al. (2008), reconstructing the Adriatic paleo 

environment through simple models, highlighted strong tidal influence related to 

low sea-level and higher wave progradation, close to the present coastline, 

connected to the last phases of the sea-level rise. 
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Fig. 2.1: Morphology and axial depth profile of the Adriatic basin. The depth profile highlights 
three different portions: a northern gently portion; a central part characterized by different slope 
basins including the Mid Adriatic Depression (MAD); and a southern wide depression more than 
1200 m deep (from http//:www.emodnet.eu).  
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2.2 Oceanography 

The Adriatic Sea is presently characterized by a microtidal regime with 

a tidal range lower than 1 m and dominated by a clockwise circulation pattern 

which is driven by thermoaline currents (Bondesan et al., 1995; Cattaneo et al., 

2003). In particular, three water masses can be described: 1) a superficial 

temperature-mixed layer (0-30 m), 2) a Levantine Intermediate Water (30-130 

m; LIW), 3) a bottom-water region (˃130 m) with very dense waters that 

occasionally form in the northern Adriatic and sink towards the south (Northern 

Adriatic Dense Water circulation-NAdDW; Cattaneo et al., 2003; Fig. 2.2). The 

superficial water mass (1) consists of a large-scale counter clockwise baroclinic 

geostrophic structure with cyclonic gyres of thermoaline origin (Malanotte-

Rizzoli and Bergamasco, 1983; Artegiani et al., 1997a-b). As a result of this 

counter clockwise circulation, a fine-grained sediment wedge, formed by 

sediment deriving from the Po and Apennine rivers, is dispersed southward and 

deposited in a narrow band along the Italian coastline down to the Gulf of 

Manfredonia, south of the Gargano promontory (Cattaneo et al., 2003. 

Moreover, the Adriatic circulation depends on three main components: a) river 

forcing, due to 5700 m³s¯¹ fresh water input, causing heat loss and low-salinity 

water; b) wind forced at the surface, producing deep-water masses and 

seasonal changes in circulation; c) morphological forcing, due to the Otranto 

channel, controlling the effects of freshwater and salty water discharges 

(Cattaneo et al., 2003).  

In particular, the superficial cyclonic circulation forces the fresh waters 

to flow along the western side of the basin. The along shore sediment transport, 

enhanced during winter by the strong catabatic Bora wind, causes two large 

gyres that involve the whole water column to flow towards SW along the Italian 

coast (Gacic et al., 1999). The dense and salty water mass of the LIW enters 

the south Adriatic on the eastern side and flows out southward along the slope 

in intermediate depths (Manca et al., 2002). However, the deeper water mass of 

NAdWM forms in winter moving southwards across the SW Adriatic slope 

(Trincardi et al., 2007). 

http://www.sciencedirect.com/science/article/pii/S002532270200614X#BIB36
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Fig. 2.2: Marine circulation of the Adriatic Basin (from Trincardi et al., 
2011a; 2011b). NAdDW: Northern Adriatic Dense Water circulation; 
LIW: Levantine Intermediate Water; ADW: Adriatic Dense Water. 

 

2.3 Geological setting of the Adriatic Sea 

The Adriatic region is partly surrounded by mountain belts (Apennines, 

southern Alps and Dinarides-Hellenides) and corresponds to the foreland 

domain of these three orogens (Fig. 2.3; D’Argenio and Horvath, 1984; Ori et 

al., 1986; Ciabatti et al., 1987; Argnani and Frugoni, 1997). The Adriatic Sea 

represents the foredeep and foreland of the SW Apennine subduction 

(Carminati et al. 2003), the retrobelt foreland of the SE Alpine subduction 

(Doglioni and Carminati, 2002; Dal Piaz et al., 2003; Kummerow et al., 2004), 

and the foreland basin of the NE Dinaric subduction (Di Stefano et al., 2009). In 

particular, the western sector of the northern and central Adriatic represents a 

Plio-Quaternary foredeep basin, which is the last of a series of westward 

migrating foredeep basins formed during the Apennine orogenesis (Argnani and 

Ricci Lucchi., 2001; Trincardi et al., 2011; Fig. 2.4). The Plio-Quaternary 

Adriatic foredeep is characterized by two distinct depocentres separated by a 
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structural high in the area of Ancona (Ori et al., 1986; Argnani and Gamberi, 

1996). These two depocentres correspond to areas of minimum Bouguer 

anomaly where the sediment fill reaches up to 8 km. During the late Quaternary 

the sedimentation was affected by high uplift rates of the Apennines that 

favoured high sediment supply rates, thus, inducing the load subsidence of the 

adjacent Po plain-Adriatic foreland basin (Pieri and Groppi, 1981; Bally et al., 

1986). The northern Apennine front affects the Po Plain with four thrust 

systems: the Monferrato, the Emilia and the Ferrara-Romagna arcs and the 

Adriatic fold (Pieri and Groppi, 1981; Trincardi et al., 2011). Southeastward the 

external front of the Apennine accretionary prism is traced a few kilometres 

offshore, in the area between the cities of Ancona and Pescara. In this sector, 

the Adriatic Plio-Quaternary foredeep is formed by two depocentres located 

north of Ancona and offshore Pescara (Argnani and Frugoni, 1997). 

 

 

Fig. 2.3: Main structural features and orogens of Italy (modified 
by Scrocca et al., 2007). MA: Monferrato Arc; EA: Emilia Arc; 
FRA: Ferrara-Romagna Arc; AF: Adriatic Folds; AR: Adriatic 
Ridge; PB: Pescara Basin; TRF: Tremiti Fault; MF: Mattinata 
Fault. 
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The central Adriatic thrust front is separated by the southern Apennine 

chain by a lithospheric fault, indicative of the Tremiti-Pianosa structural high. 

This is a tectonic lineament which allowed the accommodation of different 

tectonic behaviour between the northern subsiding Adriatic margin and the 

uplifting Apulia region (Doglioni et al., 1994). Below, the Gargano area is 

characterized by a deformation induced by a N-S and a NE-SW stress field due 

to the pushing activity of the Dinaric front (Bertotti et al., 1999). 

The geological history of the Adriatic basin highlights the evolution from 

a Mesozoic carbonate passive margin to a Cenozoic foreland basin system as a 

consequence of the collision between the African and European plates 

(D’Argenio and Horvath, 1984). The deep exploration boreholes allowed to 

highlight the stratigraphic evolution from the carbonate platform of the Triassic 

and Early Jurassic, to the carbonate pelagic sedimentation of Middle Jurassic-

Late Cretaceous. This stratigraphy recorded the rifting and subsequent 

continental break up that led to the opening of the Tethys Ocean. A significant 

change in sedimentation occurred during the Tertiary, when the hemipelagic 

clastic sedimentation was characterized by a progressive increasing, recording 

the compressive deformation produced by the convergence of the African and 

European plates. In particular, the seismic and well log data collected for 

hydrocarbon exploration, allowed the reconstruction of the progressive fill of 

confined basins of tectonic origin, that recorded the foredeep deposition during 

the growth and eastward migration of the Apennine chain since the Oligocene 

(Ori et al., 1986; Ricci Lucchi, 1986). The eastward migration of the Apennine 

thrust front produced a series of piggyback basins that were filled by Late 

Pliocene to Early Pleistocene sediments (Ori and Friend, 1984). During the 

Quaternary the Adriatic basin became increasingly dominated by progradational 

deposits advancing along the major axis of the basin, from the Po Plain toward 

SE direction (Ori et al., 1986) marked by cyclical glacio-eustatic sea-level 

fluctuations (Trincardi and Correggiari, 2000; Ridente and Trincardi, 2002). 
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Fig. 2.4: Geological cross-sections from the Apennine foldbelt through the north and central 
Adriatic basin (modified by Cazzini et al., 2015, after Fantoni and Franciosi, 2010).  

 

2.4 Subsidence 

The natural subsidence is controlled by two types of process: 

sedimentation/compaction and tectonics, that act on geological time scale and 

climate processes that act on tens of thousands of years (Carminati et al., 

2003). The reconstruction of the sea-level rise curve requires the knowledge of 

the subsidence history of the study area. The northern Adriatic sea highlights 

important subsidence mainly in the Venice and Ravenna areas, related to 

geodynamic forcing due to the eastward rollback of the subduction hinge 

(Doglioni et al., 1994) and the consolidation of recent late-Holocene 

compressible low-permeable deposits (Teatini et al., 2011). In particular, the 

north Adriatic subsidence rate for the last 125 kyr is on the order of 1 mm/yr 

(Massari et al., 2004; Maselli et al., 2010). More in detail, several authors have 

pointed out that the Italian coasts are characterized by variable tectonic styles, 

the maximum subsidence rate, with 1.2 mm/yr, was calculated in the northern 

Adriatic sector (Massari et al., 2004), whereas the southern part is 

characterized by uplift rate on the order of 0.2-0.3 mm/yr (Ferranti et al., 2006; 

Lambeck et al., 2006; Maselli et al., 2010). The north Adriatic coastal and shelf 

area are affected by locally anthropogenic ground subsidence caused by fluid 

removal from subsurface reservoirs in the form of gas, and groundwater 

(Gambolati et al., 2006). Both natural and anthropogenic land subsidence, and 

eustasy in the northern Adriatic have caused 23 cm of relative land subsidence, 

with respect to the mean sea-level over the last 100 years (Fabris, et al., 2014; 

Lambeck et al., 2011).  
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2.5 Quaternary evolution of the Adriatic Basin 

During the Quaternary, cyclical changes in orbital parameters led to 

variations in solar radiation reaching the Earth surface and causing important 

climatic oscillations (Martinson et al., 1987; Ruddiman, 2006). On time-scales of 

centuries and millennia, sea-level change is mainly affected by eustatic related 

to all types of water variations, glacio-hydro-isostatic and tectonic factors. The 

Quaternary period was characterized by repeated growth and melting of large 

continental ice sheets in the northern and southern hemisphere and the sea-

level reached a maximum elevation of 5-10 m above present sea level at least 

three times and dropped to more than 100 m below the present sea level at 

least five times (Waelbroeck et al., 2002; Siddall et al., 2006; Fig. 2.5). 
 

 
 

Fig.2.5: Global sea-level changes in the last 600 kyr (modified by Siddall et 
al., 2006). The light-blue rectangle, on the right margin, highlights the last 
sea-level rise. 

 

The morphological evolution of the Adriatic basin was strongly 

influenced by the sea-level variations during the last 800,000 years. The glacio-

eustatic cycles, affected the continental margin deposition and the coastal 

dynamic, due to their amplitude (˃ 100 m) and frequency. During middle and 

late Quaternary, the duration of the glacial/interglacial cycles was about 100 kyr 

(Shackleton, 2000), and the mean time between one glacial trough and the 

succeeding interglacial marine peak was about 20 kyr. These successions of 

glacial and temperate conditions led to delineate the sea-level curve with long 

periods of sea-level falling, related to the growth of ice caps and inlandsis, 

interrupted by sea-level rises induced by the melting of ice caps and the thermal 

expansion of water (Trincardi et al., 2011a).  

The most recent glacial-interglacial cycle began with the general sea-

level fall which followed the last interglacial (MIS 5e, 132,000-116,000 years 
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BP, +6 ±3 m msl; Ferranti et al., 2006), intercalated by some periods of minor 

sea-level rise (as MIS 3, 58,000-29,000 years BP, around -60 m msl) and with a 

peak corresponding to the Last Glacial Maximum, 29,000-19,000 years BP, -

125 m msl (Martinson et al., 1987, Bard et al., 1990; Lambeck et al., 2014). The 

melting of ice caps after the end of the Last Glacial Maximum caused a rapid 

eustatic rise of ca. 125 m and the consequent drowning of continental shelves 

(Fairbanks, 1989; Bard et al., 1990; Lambeck et al., 2002; 2004; 2014; Fig. 2.6; 

Fig. 2.7). The post LGM has not been characterized by a monotonic climate, but 

was punctuated by two main steps of enhanced ice melting and by minor 

eustatic events (Fairbanks, 1989). At first, about 19,000 years cal. BP, an early 

sea-level rise of 15-20 m took place, due to a partial melting of the northern-

hemisphere ice sheets (Clark et al., 2004). Consequently, sea-level rise 

highlighted two main steps connected to two intervals of enhanced fresh water 

discharge, called Meltwater pulses 1A (MWP-1A) and 1B (MWP-1B), starting at 

14,200 years cal. BP and 11,300 years cal. BP, respectively (Fairbanks, 1989; 

Bard et al., 1996). 
 

 

Fig. 2.6: Sea-level curve for the post-LGM time interval (modified by Lambeck 
et al., 2014). The radiocarbon data obtained for paralic Adriatic samples are 
plotted in red squares. 
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The sea-level, during MWP-1A, rose about 25 m in 1500 years, 

whereas during MWP-1B sea-level rose about 15 m in 500 years. The 

Meltwater pulses were separated by a strong and short cold phase, known as 

the Younger Dryas, that brought the climate to almost LGM conditions between 

12,500 and 11,700 BP (Allen et al., 1999). The last relative sea-level rise took 

place in the Adriatic basin over the low gradient alluvial plain which originated 

during the LGM and the maximum marine ingression was reached ca. 5500 

years cal. BP when the basin reached its maximum extent. 

 

 

Fig. 2.7: Post-LGM sea-level rise phases (from Fontana et al., 2014). 
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2.6 Late Quaternary Sequence stratigraphic framework of the Adriatic 

basin 

In the Adriatic shelf the stratigraphic analysis highlighted four 

sequences of forced-regression deposits, characterized by similar internal 

organization and thickness, that respond to a dominant eustatic cyclicity 

(Trincardi and Correggiari, 2000). These sequences, named from 1 to 4 (from 

the youngest to the oldest) accumulated during the last 450 kyr and they are 

separated by unconformities (ES1-ES4). Each depositional sequence 

represents a distinct transgressive-regressive cycle, and is essentially 

composed of thicker regressive deposits and less thick transgressive units, with 

a patchy distribution on the shelf (Ridente and Trincardi, 2002). On the base of 

a dense grid of very high resolution seismic profiles and cores the Adriatic 

seafloor can be divided into two different domains: the shallower portion, 

landward, is characterized by a clinoform of late Holocene deposits, due to the 

sediment supply delivered towards the basin by the Po and Apennine rivers 

after the maximum marine ingression (Cattaneo et al., 2003; Cattaneo et al., 

2007). The offshore area of the northern Adriatic shelf is instead characterized 

by low-stand alluvial plain sediments covered by sand deposits of barrier-island 

systems, formed during the last sea-level rise (Correggiari et al., 1996b). Thus, 

the Adriatic seafloor stratigraphy can be summarized into three different 

sedimentological units bounded by stratigraphic discontinuity surfaces, strongly 

related to the last glacial-interglacial cycle (Trincardi et al., 1994; Cattaneo and 

Steel, 2003; Fig. 2.8).  

 

 The Prograding Pleistocene wedges, truncated at their top by a regional 

erosional surface [ES1, identified as Ts-Transgressive surface- in the 

Geological Map of the Italian Seafloor, Trincardi, (2011a,b)], that records 

a regressive phase from MIS 5e to the base of the Last Glacial Maximum 

(Trincardi and Correggiari, 2000; Ridente and Trincardi, 2002).  

 

 The Transgressive System Tract, that rests on ES1, highlights different 

phases of sea-level rise (Cattaneo and Trincardi, 1999) and reflects 

short-term variations of sediment supply and dispersal, likely 

accompanied by changes in the oceanographic regime of the basin 

(Asioli et al., 2001).  
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 The High stand System Tract consists of a shore-parallel prograding mud 

prism younger than 5.5 cal kyr BP, formed above a regional downlap 

surface (MFS; Correggiari et al., 2001).  

 

 

Fig. 2.8: Geological Map of the Italian Sea (from Trincardi et al., 2011c), superficial geology of 
the Adriatic basin. In green: high-stand deposits; in light-blue: transgressive deposits; in yellow: 
low-stand deposits. 
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In particular, during the LGM, the northern and central Adriatic areas 

were an alluvial plain partly characterized by a main fluvial system, referred to 

as “Mega Po” river with Alpine and Apennine rivers as tributaries, terminating in 

a low-stand delta located at the northern edge of the MAD (De Marchi, 1922; 

Correggiari et al., 1996b; Cattaneo and Steel, 2003; Ridente and Trincardi, 

2005; Amorosi et al., 2015). The sediment carried by the fluvial system 

progressively filled the western side of the MAD, forming a low-stand 

sedimentary body thicker than 200 m (Trincardi et al., 1994; 2004; Maselli et al., 

2011). After this period, during the late-glacial to early-Holocene transgression, 

the sea level rose about 120 m and caused a substantial basin widening. This 

process was accompanied by landward migration of barrier-lagoon systems, 

drowned progressively due to the gradual sea ingression. In particular, the 

deposition and preservation of these deposits is linked to several parameters 

including the morphology of the shelf and the rate of sea-level rise (Trincardi 

and Correggiari, 2000; Fabbri et al., 2001). These transgressive bodies rest on 

the transgressive surface and are topped by a wave-ravinement surface that 

often coincides with the maximum flooding surface. Successively, as a final 

phase, the maximum ingression and the HST phase resulted in a shore-parallel 

prograding prism, consisting of mud and which formed a regional downlap 

surface over the previous units (MFS; Correggiari et al., 2001).  

 

2.6.1 Adriatic Systems Tract 

2.6.1.1 Falling-stage system tract (FSST) and low-stand system tract (LST) 

The FSST is the product of a forced regression and includes all the 

regressive deposits that accumulate after the onset of a relative sea-level fall; 

this system tract is bounded at the top by a composite surface that includes the 

subaerial unconformity, its correlative conformity, and the youngest portion of 

the regressive surface of marine erosion (Catuneaneu et al., 2011).  

The LST includes deposits that accumulated after the onset of early-rise 

normal regression and it is bounded by the top of the falling-stage systems tract 

at the base, and by the maximum regressive surface at the top (Catuneaneu et 

al., 2011). Taking as reference the Italian Sea Geological Cartography (scale 

1:250000; http://www.isprambiente.gov.it/it/cartografia/carte-geologiche-e-geote 
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matiche/carta-geologica-dei-mari-italiani-alla-scala-1-a-250000; Fig. 2.8), the 

sedimentary bodies belonging to FSST and LST deposits are assimilated to the 

same body because of the not easy recognizable reflector in correspondence of 

the basal boundary. In the Adriatic basin these deposits are mainly 

characterized by yellowish-grey stiff clays with continental fauna as Planorbidae 

spp., Psidium sp., Bythinia sp.. This unit is indicative of an alluvial plain 

environment with fluvial systems and swamps, which represents the paleo 

environment of the Adriatic shelf during the LGM. The low-stand deposits of the 

LGM are mainly confined off shelf and within the MAD, where a very thick low-

stand wedge prograded from NW along the axis of the Adriatic basin on top of a 

set of acoustically transparent seismic units (Trincardi et al., 2004). The LGM 

low-stand wedge is more than 200 m in thickness and pinches out towards SE 

on the southern flank of the MAD slope basin (Trincardi et al., 2004). 

2.6.1.2 Transgressive system tract (TST) 

The TST is characterized by deposits accumulated from the onset of 

transgression until the time of maximum transgression of the coast. The TST 

lies on the maximum regressive surface, which truncates older low-stand 

deposits, formed at the end of the regression and is overlain by the maximum 

flooding surface (MFS), that formed when marine sediments reach their most 

landward position (Cattaneo et al., 2011).  

In the Adriatic basin the TST deposits are mostly formed by several 

backstepping barrier-lagoon and incised valley systems in the low gradient 

northern shelf, while mud sedimentary bodies thicker than 25 m are present in 

the western side of the central Adriatic shelf (Cattaneo and Trincardi, 1999; 

Maselli et al., 2011, Trincardi et al., 2013; Fig. 2.8). The seismic and core data 

highlighted a basal delta plain environment with distributary channel and at the 

top a paralic environment, passing through tidal regulated barrier-lagoon 

estuary systems (Correggiari et al., 1996a; Trincardi et al., 2011).  

2.6.1.3 High-stand system tract (HST) 

The HST includes the progradational deposits that form when sediment 

accumulation rates exceed the rate of increase in accommodation during the 

late stages of relative sea-level rise. The HST lies directly on the MFS formed 

when marine sediments reached their most landward position (Correggiari et 
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al., 2001; Catuneaneu et al., 2011; Fig. 2.8). The late-Quaternary HST deposits 

in the Adriatic basin are constituted by a prograding unit indicative of a prodelta 

pelitic body variably bioturbated, gradually intercalated with sandy layers that 

mark the transition toward the modern beach environment. 

 

2.6.2 Sequence stratigraphy surfaces 

2.6.2.1 Transgressive Surface (TS) 

The TS is a stratigraphic surface that marks a change in stratal stacking 

patterns from low-stand normal regression to transgression. It corresponds to 

the paleo seafloor at the end of low-stand normal regression, and its correlative 

surface within the non-marine setting (Catuneaneu et al., 2011; Fig. 2.9). 

Moreover, this surface does not always represent the boundary between 

continental and marine deposits, but may also separate continental deposits 

which are the product of distal variations of the sea-level.  

2.6.2.2 Maximum Flooding Surface (MFS) 

The maximum flooding is a stratigraphic surface that marks a change in 

stratal stacking patterns from transgression to high-stand normal regression. It 

is the paleo seafloor at the end of transgression, and its correlative surface 

within the non-marine setting (Catuneaneu et al., 2011; Fig. 2.9). The maximum 

flooding surface is often expressed as a downlap surface in seismic 

stratigraphic terms, as it is typically downlapped by the overlying high-stand 

clinoforms which record progradation (Catuneaneu et al., 2011). 

2.6.2.3 Ravinement Surface (Rs) 

The Rs is an erosive surface that gets scoured off as the “front” of the 

sea makes its way landwards. This surface is diachronous, younging towards 

the basin margin (Catuneaneu et al., 2011; Fig. 2.9). Ideally this surface 

represents the boundary between the transgressive beach deposits and the 

above transgressive shoreface deposits. Typically on the Rs a mixed deposit 

called transgressive lag can be found (Catuneanu, 2006). 
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2.6.3 Transgressive deposits and their preservation 

The transgressive deposits are indicative of sediments deposited at or 

near the coastline in response to relative sea level rising and landward 

migration of the shoreline. They can be fully marine, eustuarine/lagoonal or 

fluvial, and can include other facies such as coal and eolian deposits with a 

variability driven by changes in rate of sea-level rise, sediment supply, textural 

character of the sediments, shelf gradient or basin features (Cattaneo and 

Steell, 2003). Through high resolution seismic profiles and correlated cores they 

can be highlighted with the overall retrogradational stacking pattern (Van 

Wagoner, 1990). Moreover, they can be identified with an abrupt upward-

deepening of facies covered at the top by the MFS. Barrier or shoreface retreat 

(Swift, 1968; Sanders and Kumar, 1975) occurs when the base of the shoreface 

migrates landwards, truncating by the action of waves the pre-existing deposits 

and creating a ravinement surface (Cattaneo and Steel, 2003). Coeval 

transgressive deposits may be preserved below and above the ravinement 

surfaces (Fig. 2.10). The transgressive deposits below the Rs, on the landward 

side, are paralic deposits, while the transgressive deposits above the Rs, on the 

basinward side, are marine deposits (Nummedal and Swift, 1987). In particular, 

the ravinement surface erodes mainly upper and middle shoreface strata, 

leaving the basal shoreface to the fossil record, and disperses the eroded 

sediments both landwards to lagoon (or estuarine, whashover deposits) 

environments and offshore to deeper areas.  

In particular, the preservation of transgressive deposits, during the 

transgression is influenced by different factors, that are: 1) sea-level rise; 2) 

sediment supply; 3) gradient of the substrate and 4) morphology of the coastal 

systems (Tortora and Crowell, 2005).  
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Fig. 2.10: Sedimentation, reworking and preservation of one transgressive deposit 
in a low gradient shelf. T1: sedimentation and aggradation of one transgressive 
deposit; T2: drowning and reworking of the transgressive deposit, due to the 
relative sea-level rise; T3: preservation of the deposit below the maximum flooding 
surface (MFS). 

 

2.6.3.1 Shoreline trajectory 

The shoreline trajectory is the path taken by the shallow shelf margin 

facies as they change position when during rising and falling relative sea-level 

affect sedimentary basin (Helland-Hansen and Gjelberg, 1994). There are three 

main scenarios characterized by different shoreline trajectories: 1) the shoreline 

trajectory coincides or is at a lower angle than the older surface. This situation 

is characterized by a low sedimentation or absence of transgressive deposits 

accommodation (Cattaneo and Steel, 2003); 2) when the shoreline trajectory 

diverges upwards from the transgressed topography, transgressive sediments 

are accumulated if high sediment supply is provided behind the shoreface 

(Cattaneo and Steel, 2003); 3) the shoreline trajectory could have a zig-zag 

pattern if transgression is characterized by punctuated shoreline movement 

(Cattaneo and Steel, 2003). Thus, the preservation of transgressive deposit 

could occur in relation to a zig-zag pattern when the shoreline trajectory is 

steeper than the original topography (Cattaneo and Steel, 2003; Fig. 2.11).  
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Fig. 2.11: Three main classes of transgressive shoreline 
trajectories. The shoreline trajectory depends on changes 
in relative sea level, sediment supply and basin 
morphology (redrawn by Cattaneo and Steel, 2003).  

 

2.6.3.2 Sediment supply 

Cattaneo and Steel (2003) highlight that the thickness and the internal 

architecture of the transgressive deposits strongly depend on to the rate of 

sediment supply, rate of sediment transport, textural composition and rate of 

relative base-level rise. In particular, the rate of sediment transport is due to 

currents pattern against coastal promontories or morphological barriers, 

whereas the rate of sediment supply depends on tectonic causes or fluctuation 

in climatic changes resulting in the catchment area modification or changes in 

longshore currents (Cattaneo and Steel., 2003). Furthermore, the sediment 

characters depends on source areas and also are due to the sediment 

distribution caused by alongshore transport or basin widening.  
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2.6.3.3 Original topography 

The transgression occurs on older sediments forming the original 

substrate and the role of ancient topography is considered in terms of its 

gradient and roughness (Belknap and Kraft, 1985; Cattaneo and Steel, 2003). 

In particular, a transgression across a high-gradient platform causes a slow 

landward shifting of the coastline producing reworking sediments in the adjacent 

areas (Fig. 2.12), whereas, a transgression across a low-gradient platform 

causes a more rapid landward shifting of the shoreline and a later drowning of 

the previous transgressive deposits if the rate of relative sea-level is sufficiently 

high (Fig. 2.12; Sanders and Kumar, 1975).  

 

Fig. 2.12: Sea-level rise in relation to different gradient of the platform. 
High gradient scenario is characterized by slow landward shifting and 
reworking in adjacent areas; low gradient scenario influences rapid 
horizontal translation and drowning of transgressive deposits.  

 

Cattaneo and Steel (2003), from Curray (1964) diagram, had described the 

transgressive processes in relation to accommodation and supply, highlighting 

that the thickness of transgressive deposits depends on the interplay of 

accommodation (A) and supply (S), and it is maximum if the A/S ratio is close to 

1. The preservation of transgressive deposits landward of the shoreline 

depends on the amount of erosion by ravinement. Thus, at the shoreface, the 

maximum preservation potential of transgressive deposits occurs where the 

trajectory of the ravinement surface is steeper, close to the transgression-to-

regression turnaround point. Moreover, for example, Belknap and Kraft (1981) 

showed that transgressive deposits are well preserved within incised valleys, 
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where an idealised valley-fill succession is characterized by fluvial deposits at 

the bottom, upper bay marsh, lower bay tidal inlet/flood-tidal delta and offshore 

marine units at the top. However, the spatial relationships between the 

sequence boundary and the overlying wave ravinement surface is indicative of 

the degree of preservation of transgressive deposits (Belknap and Kraft, 1985). 

 

2.6.4 Transgressive deposits: Classification 

In order to highlight the physical elements forming the transgressive 

deposits, Cattaneo and Steel (2003) proposed a classification that summarizes 

their main features. In particular, the authors highlighted 5 different groups of 

transgressive deposits (T-A, T-B, T-C, T-D and T-E; Fig. 2.13), emphasizing 

that the inherited physiography of the basin is a critical parameter, especially in 

relation to the transgressive deposits thickness. 

 

 T-A is indicative of transgressive deposits developed below the Rs, 

preserved in low-gradient setting where the ravinement trajectory is 

steeper than the pre-existing topography.  

 T-B (sand prone than T-A) is indicative of transgressive deposits 

developed above the tidal ravinement surface and below the wave 

ravinement surface. They are formed in tide-dominated setting and the 

local separation or slight divergence between tidal and wave 

ravinement surfaces allows estuarine sand bodies to develop. 

 T-C is indicative of transgressive deposits developed above the wave 

ravinement surface in low gradient setting. These deposits are due to 

shoreface erosional products during transgression. The T-C 

transgressive deposits group transgressive lags or shelf sand ridges 

resulting from the transgressive reworking of older sand-rich systems. 

 T-D is indicative of transgressive deposits developed above the wave 

ravinement surface in high gradient and high sediment supply setting. In 

this context, coarse-grained transgressive lithosomes can 

aggradationally developed because all the eroded and newly supplied 

sediment is redeposited locally above a high gradient wave ravinement.  
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 T-E is indicative of transgressive deposits without evidence of ravinement 

surfaces. These transgressive deposits are indicative of low-energy 

coastline and are typically developed in mud-dominated environment.  

 

 

Fig. 2.13: Classification of transgressive deposits from Cattaneo and Steel (2003). 
Summarizing of all possible combinations.  
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2.6.5 Late Pleistocene-Holocene transgressive deposits in the Adriatic 

Sea 

In the Adriatic Sea the transgressive deposits of late-Pleistocene and 

Holocene were deposited in a short time of high-amplitude and high-rate 

relative sea-level rise, recording the interval between ca. 19 and 5.5 kyr BP 

(Cattaneo and Trincardi, 1999). On the northern Adriatic shelf the transgressive 

deposits are few meters thick and are characterized by different generation of 

patchy barrier islands and incised valley system (Correggiari et al., 1996a; 

Storm et al., 2008), whereas on the central Adriatic platform, the transgressive 

deposits are formed by a sedimentary progradational body thicker than 25 m, 

divided into three portions, composed of backstepping wedges of marine 

deposits that onlap an erosional transgressive surface (Cattaneo and Trincardi, 

1999; Maselli et al.,2011). In particular, the Fig. 2.14 highlights the classification 

of the transgressive deposits, proposed by Cattaneo and Steel (2003), related 

to the transgressive deposits identified in the Adriatic shelf. 

 

 

Fig. 2.14: Adriatic Sea morphology and examples of five stratigraphic columns showing the 
variability of transgressive deposits (modified from Cattaneo and Steel, 2003). 
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2.6.5.1 TST Central Adriatic Sea 

In the central sector of the Adriatic shelf, each unit part of the 

transgressive deposit records a distinct phase of the last relative sea-level rise. 

The basal and top units record an abrupt landward shift of the shoreline, while 

the middle unit is prograding seawards and represents a regressive 

sedimentary body within the TST (Cattaneo and Trincardi, 1999). Moreover, the 

three TST units are separated by two prominent and extensively erosional 

surfaces (S1 and S2 surfaces, Cattaneo and Trincardi, 1999; Maselli et al., 

2011; Fig. 2.15). In particular, the lower unit records the early stages of relative 

sea-level rise in an over-supplied setting; this unit is a 10 m muddy thick 

prograding wedge, with aggradational component deposited between 18 and 

14.5 cal. kyr BP (Cattaneo and Trincardi, 1999). The middle unit records a 

landward shift of the coastal onlap respect to the lower unit, but also represents 

a phase of increased supply and seaward progradation in the southern area 

(Trincardi et al., 1996), it is formed by continuous unit of marine mud in the 

MAD and is characterized by two sub-units separated by an erosional surface 

(Si), that probably, records a minor sea-level fall during the Younger Dryas 

period (Maselli et al.,2011; Pellegrini et al., 2015). The upper unit, extending 

further landwards compared to the middle unit, records the last phase of sea-

level rise, following the Meltwater pulse 1B, and is characterized by marine 

muddy sediments (Trincardi et al., 1996), rich in planktonic foraminifera 

indicative of outer-shelf to upper-slope environment (Amorosi et al., 2015). 

 

Fig. 2.15: Central Adriatic stratigraphy along CSS700 seismic profile (from Maselli et al., 2011). 
In blue the Transgressive System Tract, and in green the High-stand System Tract.  
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2.6.5.2 TST Northern Adriatic Sea 

The low gradient of the northern Adriatic shelf, together with the sea-

level rise, favoured the deposition and the submersion of different generation of 

barrier-lagoon systems. These transgressive deposits, present in the shelf as 

isolated body between -45 and -10 m msl, are preserved as elongated and 

undulating elevations, almost parallel to the present coastline. These 

transgressive bodies have generally a small size and are discontinuous, due to 

the reworking action of the ravinement surface. Furthermore, some 

transgressive sandy bodies with a thickness of 3-5 m, were preserved in the 

northern Adriatic shelf representing relicts of preserved basal shoreface 

(Correggiari et al., 1996a; Trincardi et al., 2011). Moreover, at 20-24 m msl, 

some transgressive deposits are characterized by fields of asymmetric sand 

dunes with variable wave-length, up to 700 m. In this shallow part of the north 

Adriatic shelf the transgressive reworking is maximized as the result of 

decrease rate of accommodation space at the end of the sea-level rise and of 

decrease of sediment supply together with a stronger oceanographic regime in 

response to the widening of the semi-enclosed basin (Trincardi et al., 1994; 

Correggiari et al., 1996b). 

In particular, the northern Adriatic shelf is characterized by paralic and 

marine transgressive deposits. 

 The Paralic deposit are related to transitional environments connect to 

the sedimentation and the subsequent drowning of barrier-lagoon 

system. These paralic bodies rest on a TS, that is indicative of the 

incipient sea-level rise on a substrate exposed to subaerial erosion, and 

are truncated by the Rs at the top, thus, they correspond to the T-A 

transgressive deposits described by Cattaneo et al. (2003) (Fig. 2.14; 

2.16). The paralic deposits are mainly formed by clay and silty-clay, rich 

in organic matter, alternating with peat layers characterized by lateral 

continuity. The fossils association, with dominant Cerastoderma 

glaucum, Ventrosia ventrose and Hydrobia, is indicative of a brackish 

back-barrier setting. These deposits record delta plain environments with 

distributary channels, bay fill and lagoons (Correggiari et al., 2011; Fabbri 

et al., 2001; Trincardi et al., 2011). Moreover, a sandy-silty coarsening 

upward interval can be preserved above the silty-clay sediments; this 
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portion consists of very-fine to fine sorted sand representing a basal 

shoreface portion reworked by the wave action (Rs) during the sea-level 

rise. In particular, in the northern Adriatic Sea, the ravinement surface, a 

coarser layer less than 30 cm thick, characterized by marine shelly 

fragments, often coincides with the MFS (Trincardi et al., 1994). In this 

case, the transgressive deposits record only a paralic backstep wedge 

that represents partial preservation of drowned barrier-lagoon-estuary 

systems (Trincardi et al., 1994).  

 The marine deposits rest on the ravinement surface and are capped by 

the MFS; they correspond to the T-C transgressive deposits described by 

Cattaneo et al. (2003) (Fig. 2.14; 2.16). In particular, these deposits are 

present in the northern Adriatic Sea both, as prodelta facies and as 

bioclastic sand facies. The former (Fig. 2.14 schematic log 1) are marine 

wedges parallel to the present coastline, below to the high-stand deposits 

and are mainly characterized by pelitic sediments. The latter (Fig. 2.14 

schematic log 4), are generally characterized by bioclastic sand gradually 

shifting upwards to pelitic sediments. Moreover, they are confined in few 

outcrops and are preserved as the result of transgressive reworking of 

older sand-rich systems or as simple transgressive lags, commonly 

bioturbated if immediately overlain by deeper water shale, that contain 

pebbles and shell fragments (Cattaneo et al., 2003). 

 

 
 

Fig. 2.16: Schematic log of paralic and marine transgressive deposits in the northern Adriatic Sea.  
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2.6.6 Shelf sand deposits for nourishment 

To protect the coastal areas from the erosion the artificial nourishment 

is the more indicated operation. In the recent years, several studies were 

carried out focussing on the offshore sand as main source for the beaches 

nourishment. In particular, the transgressive bodies, sedimented and preserved 

in the northern Adriatic shelf during the last relative sea-level rise, are an 

economic resource because their significant amount of sorted sand. Thus, 

these deposits represent fossil coastal bodies reworked by the last 

transgression and are characterized by variable size and sand thickness. In 

order to identify a proper dragging area, several analyses are required. In 

particular, study on measurements and volumes calculation must be associated 

with grainsize and compositional analyses to obtain accurate data on amount 

and quality of sand. More in detail, the characteristics of sand have to satisfy 

some aspects, such as, low mud content (˂5%), medium-fine sand grainsize 

and same composition of the coastal area chosen for the nourishment. The 

Adriatic Regional technical offices responsible for the coastal plan protection 

since 1990 work with CNR-ISMAR in collaboration project to find sand deposits 

potentially useful to offshore borrow site for beach nourishment (Correggiari et 

al., 2011). 
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CHAPTER 3 

INSTRUMENTS, METHODS AND DATA  

The characterization of the investigated deposits was based on a large 

dataset of CHIRP-sonar profiles, bathymetric and isopach maps of the Late 

Pleistocene-Holocene deposits on the Adriatic shelf. Moreover, these data were 

validated and integrated with stratigraphic and compositional analyses from 

sediment cores, allowing a very high chronological resolution. 

 

3.1 CHIRP Sonar 

The CHIRP Sonar is a Sub Bottom Profiler that provides quantitative, 

high-resolution, low-noise subbottom data and allows to investigate the first 

meters of loose sediment of the substrate. The CHIRP Sonar used is a 

Teledyne Benthos CHIRP-III SBP, characterized by 16 low-frequency 

transducers (2-7 kHz) inserted in the keel of the Urania research vessel. This 

instrument transmits a limited bandwidth signal with a defined transmission 

length with Linear Frequency Modulation. The vertical resolution is proportional 

to the bandwidth of the signal and, thus, the longer the signal the larger the 

bandwidth, the higher is the image resolution (Correggiari et al., 2011). The 

adopted configuration of the system is characterized by a pulse length of 5 or 

10 ms and a trigger rate from 0.25 to 1.5 s depending on the seafloor depth. 

The obtained geophysical data were recorded as .XTF extension by the 

SwanPRO 1.60 software, produced by Communication Technology. This 

software is directly interfaced to the differential GPS in order to track the exact 

position of the seismic profile with a centimetric to decimetric accuracy. 

 

3.1.1 Data description and software tools applied  

The .XTF recorded data were converted in .SEGY extension with a tool 

included in SwanPRO v. 2.00 by Communication Technology 

(http://www.comm-tec.com/Prods/mfgs/CommTech/swanpro/SwanPro.html). 

The .SEGY extension is an open standard file format used for reading and 

processing seismic profiles by different software.  
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Two software were used for the visualization, interpretation and the 

processing of the data. 

 Kogeo v. 2.7 is an open software developed by the Institute for 

Biogeochemistry and Marine Chemistry of the University of Hamburg. 

This software was mainly used for the visualization (Fig. 3.1), and 

stretching of the seismic profiles. Moreover, this software allows to import 

the navigation data in order to identify the coordinate position and the 

distance (millisecond) from the instrument to the seafloor. 

 

 

Fig. 3.1: Example of one seismic profile visualization provided by Kogeo v. 2.7. 

 

 SeisPrho is an open software developed by ISMAR-CNR institute 

(Bologna Section; Stanghellini and Gasperini, 2009; 

http://software.bo.ismar.cnr.it/seisprho). This software is usefull for 

processing and interpreting high-resolution seismic reflection profiles. 

The main feature of SeisPrho is its interactive graphic interface, that 

provides the user with several tools for interpreting the data, such as 

reflector picking and map digitizing. SeisPrho was mainly used to digitize 

by picking seismic key reflectors previously identified (Fig. 3.2). In 

particular, the files obtained by the picking, showing the coordinate and 

the millisecond (ms) depth per each picked point, are text files with a .dgt 

extension. 
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Fig. 3.2: Example of one seismic profile visualization provided by SeisPrho, and 
digitalization of one key surface.  

 

3.1.2 Very High Resolution (VHR) seismic profiles interpretation 

The seismic profiles allowed to visualize with high resolution the first 

meters depth from the seafloor and, as a consequence, the seismic analysis 

allowed to describe in detail the transgressive deposits. According to Stoker et 

al. (1997), the analysed VHR seismic profiles highlight different values of 

amplitude, frequency and continuity, thus lithological boundaries will only be 

detected if the acoustic impedance changes across the boundary. In particular, 

the reflection amplitude depends on the acoustic impedance contrast between 

the layers. For example, the Quaternary successions are characterized by 

interbedded alternations of sand and clay with high amplitude, associated to 

peat layers (Stoker et al., 1997). The reflection frequency depends on layer 

thickness in relation to different breadth of the signal. The changes of the 

vertical thickness can be used to identify sequence boundaries, whereas lateral 

variation can suggest change of facies. The reflection continuity is related to the 

layer continuity and can suggest facies interpretation; in particular, high 

continuity is indicative of low-energy environments, while low continuity 

corresponds to high energy environments (Stoker et al., 1997). Moreover, the 

low continuity can be affected by the presence of gas within the sediments, that 

can absorb the signal producing noise and discontinuity reflectors.  

The VHR seismic profiles highlighted three dominant seismic facies 

(Fig. 3.3): 1) a semi-transparent unit associated to plane-convex bodies, 



48 
 

characterized by low amplitude and low continuity due to scarce penetration of 

the signal and a discontinuous base; 2) an interbedded transparent seismic 

facies with parallel and subparallel irregular and discontinuous reflectors, that 

suggest variation in amplitude and 3) regular and continuous reflectors 

indicative of high amplitude and continuity, easily traceable along the seismic 

profile. 

 

 

Fig. 3.3: Main seismic facies highlighted in the seismic profiles. Semi-transparent units, regular 
and continuous reflectors and interbedded transparent and irregular reflectors are identified.  

 

3.2 Multibeam Eco-sounder System 

The Multibeam is a sounder used for very high resolution seabed 

mapping, measuring the seafloor depth generating a short pulse of sound (ping) 

and recording the echo of the pulse produced by the bottom. The multi-beam 

sonar system can plot the bottom depth for dozens to hundreds of points in a 

line perpendicular to the direction route of the ship (swath width; SeaBeam 

Instruments Manual, 2000; Fig. 3.4A). This system is highly advantageous 

because travelling through paths close enough to keep the swath length linked, 

a detailed and complete bathymetric map can be obtained (Fig. 3.4B). The 

Multibeam must be calibrated with an accurate sound velocity profile of the 

water column (CTD). In particular, the analysed seafloor maps were recorded 

by a Kongsberg EM170 multibeam system characterized by ping transmission 

frequency ranging from 70 to 100 kHz and a swath width of 140° and maximum 

coverage up to five times the water depth. Furthermore a DGPS was connected 

to the Kongsberg Seatex Seapath 200 and to the Kongsberg Seatex MRU5 

motion sensors in order to track the vessel path more efficiently. 
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Fig. 3.4: A: Multibeam sonar footprint below the ship. B: Schematic bathymetric map obtained 
by the Multibeam allowed by the swath length overlapping. 

 

3.2.1 Multibeam data (NAD12 oceanographic cruise) 

The obtained maps highlight a detailed morphology of the seafloor in 

several areas of the Adriatic Sea. In particular, during the NAD12 

oceanographic cruise, one transgressive deposit south of the Po River delta 

was investigated with the Multibeam device. This sedimentary body, which 

extends 15 km NS and 8 km WE, was investigated through seismic profiles 

network spaced 120 m each other and maximum coverage up to five time the 

water depth that permitted to produce a detailed bathymetric map with 

resolution of 1 m. The obtained digital elevation map shows with detail 

morphological highs, depressed areas, channel systems and a dredged area 

(Fig. 3.5). 

 

 

Fig. 3.5: Detailed DEM (1 m resolution) of one investigated area south of the Po delta, acquired 
through Multibeam data NAD12 oceanographic cruise. 
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3.3 Sediment corers 

The analysed cores were collected both with gravity corer and vibro-

corer. About 140 stratigraphic cores were described and calibrated with seismic 

profiles in order to identify the main core facies, and to correlate them with the 

seismic facies. Moreover, about 100 core samples were selected for grain-size 

and petrographic analyses and 20 core samples were selected for radiocarbon 

dating. 

 

 Gravity corer 

The gravity corer was used in order to sample loose sediment bodies 

with a low resistance to penetration. This is a device formed by a head 

characterized by a cylindrical weight, a steel pipe with a removable lining 

of PVC tubing and a nose including a catcher that allows to keep the 

sediment inside the liner (Fig. 3.6). In particular the gravity corer used to 

collect the analysed cores has a 600 kg head and a 6 m long steel case 

with an inner plastic liner with a diameter of 90 mm.  

  
Fig. 3.6: Example of a gravity corer used to collect some analysed cores; 
modified from Lee and Clausner, (1979). 

 

 Vibro corer 

The vibro corer was used to sample sand sediments that generally 

canno’t be passed, by a gravity corer. This device, through vibration, 

produces a mobilization of a thin layer of sediment, allowing the 

penetration of the corer. This instrument is characterized by the same 

components of the gravity corer except for the heavy head that is 

replaced with a vibrating head (Fig. 3.7). The vibrocorer used is a 

Vibrocorer Rossfelder P5 powered by 440-460 V and 60 hertz. 
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Fig. 3.7: Example of a vibro corer used to collect some analysed cores. On the left: picture from 
http://www.rossfelder.com/buyonet-rigid.html; on the right: core collected during AS14 
oceanographic cruise (on board Urania R/V). 

 

3.3.1 Data description 

In order to identify different sedimentary facies forming the 

transgressive deposits, 140 cores were selected and described. The cores that 

highlight more than one sedimentary facies are the longer ones, and consist of 

a top layer of approximately 30 cm of silty and sandy clay that rests on a 

reworked surface mainly formed by shell fragments. The sediments below this 

peculiar and easily recognizable surface present a coarsening-upward trend 

with basal grey-clay and peat layers characterized by carbonaceous frustules, 

organic matter and shells. The dominant fossils association is characterized by 

Cerastoderma glaucum, Ventrosia ventrose and Hydrobia; and upper sand 

layers (from 1.5 to 2 m) and is formed by fine and sorted sand with low content 

of shell fragments and with rare clay hollow. Moreover, the top of the sand 

portion occasionally bioturbated at contact with the reworked surface. 

Furthermore, the longest cores reach basal sediments, deposited below clay 

and peat sediments. The latter are made of clay sediments, but stiffer and pale 

yellow in colour that allow to distinguish them (Fig. 3.8; Appendix A).  
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3.4 AMS Radiocarbon analysis 

In order to geochronologically constrain some of the studied deposits, 

wood fragments, organic-rich sediments, and peat layers were sampled from 

selected cores. 

The AMS Radiocarbon dating analysis were carried out by the Ion 

Beam Laboratory at the ETH Institute in Zurich, and the radiocarbon calibration 

was performed using CALIB14 Radiocarbon Calibration Program of Stuiver and 

Reimer (1993). The Accelerator Mass Spectrometry (AMS) is a highly sensitive 

methods of counting atoms. It is used to detect very low concentrations of 

natural isotopic abundances of both radionuclides and stable nuclides. The 

main advantages of AMS compared to conventional radiometric methods are 

the use of smaller samples (mg and even sub-mg size) and a shorter measuring 

time (less than 1 hour). Radiocarbon dating uses the amount of Carbon 14 (14C) 

available in living creatures as a measuring stick. All living things maintain a 

content of 14C in equilibrium with that available in the atmosphere, right up to 

the moment of death. When an organism dies, the amount of 14C available 

within it begins to decay at a half-life rate of 5730 years, In fact, it takes 5730 

years for ½ of the 14C available in the organism to decay. Comparing the 

amount of 14C in a dead organism to available levels in the atmosphere, 

produces an estimate of when that organism died. By measuring the 

radiocarbon age of tree rings of known or other independently dated samples it 

is possible to construct calibration datasets. The current calibration datasets 

including IntCal04, Marine04, and SHCal04 is recommended for general use 

(Stuvier and Reimer, 1993; Reimer et al., 2004). The results were corrected for 

isotopic fractionation, but no correction for oceanic reservoir was made because 

the dated samples are plant and sediments of terrestrial origin. The obtained 

data were plotted in a Depth vs. Age graph which groups Adriatic 14C age data 

from Fabbri et al. (2001), Antonioli et al. (2009) and Trincardi et al. (2011a-b). 

 

3.5 Grain-size analysis 

The grain-size analysis was performed in order to identify particle-size 

classes of the sand and the amount of clay. Initially the samples were treated 

with a solution H2O2 30% diluted and kept under a hood for at least three days 



54 
 

in order to disintegrate the organic matter. Then the samples were washed with 

63µm sieve to separate the sand from silt and clay. The sand portion was 

collected in a ceramic bowl and was heated in the oven at 60 ̊ C, whereas the 

clay portion was collected in a beaker and left to decant. Once the sand portion 

has been dried, it was after separated through a stack of sieves from 2000 to 63 

µm, and the sediment held within each sieve was weighted. Once the clay 

portion has been decanted at the base of the baker, the water was removed 

through syphoning, and subsequently the clay portion was heated in the oven at 

40 ̊ C and weighed.  

The statistical analysis was performed through the Gradistat software 

(Blott and Pye, 2001), written in Microsoft Virtual Basic and integrated into the 

Excel spreadsheet, that allows to calculate mean diameter, median, mode, 

sorting, skewness, kurtosis per each samples through the obtained data from 

sieve.  

 

3.6 Petrographic analysis 

About 70 sand samples, from selected cores belonging to the study 

deposits, were selected for a quantitative compositional study in order to 

delineate their composition. The sand samples selected for analysis were split 

and a small portion of sand was impregnated in an epoxy resin according to the 

methodology described by Gazzi et al. (1973), to obtain a thin section for 

microscopic analysis. All the thin sections were stained with alizarine-red 

solution to facilitate distinction of calcite and dolomite during the modal 

analyses. Sand point counts, under polarizing microscope, were performed 

following the Gazzi–Dickinson technique (Gazzi, 1966; Dickinson, 1970; 

Ingersoll et al., 1984), modified by Zuffa (1987), with the aim of minimizing the 

influence of grain size on the composition. Initially, a counting chart was 

created, consisting of four main grain classes (Quartz, Feldspar, Lithic 

fragments, Extrabasin Carbonates) highlighting a division of components 

according to composition and texture features. The point-counting method 

consists of separating coarse-grained lithic fragments (single crystals ˃0.0625 

mm) from fine grained lithic fragments (single crystal grains ˂0.0625 mm). Due 

to the lack of interstitial components, 300 points were determined for each thin 
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section using a 0.5 mm grid spacing and the percentage of main classes was 

calculated and plotted in a triangular diagram. In order to better distinguish the 

different composition of the deposits, the point-counting wass counted for a 

selected number of samples until at least 200 rock fragments (both fine and 

coarse-grained) were determined.  

 

3.7 XRF analysis 

Seven cores from different transgressive deposits were selected for the 

XRF core scanner analysis in order to track downcore changes in chemical 

composition. The XRF core scanner analysis is one of the greatest innovation 

that have been developed in the last decades in order to collect high resolution 

continuous downcore records of element distribution (Rothweel et al., 2006). 

The X-ray fluorescence is a spectrometry technique that highlights the chemical 

elements forming the analysed sample. When the sample surface is exposed to 

X-ray, the component atoms are stimulated and ionization takes place. Incident 

X-rays eject an electron from the inner shell of the atom, and the resulting 

vacancy is filled by an electron falling back from an outer shell. The electron 

releases its surplus energy in the form of electromagnetic radiation, that 

highlights characteristic energy and wavelength spectra different for each atom 

(Fig. 3.9; http://www.handheldxrf.com.au/technology_handheld_xrf.php), thus 

the intensity and the energy of the emitted X-ray are analysed and compared 

against standard in order to determine the elemental composition. 

  

 

Fig. 3.9: Physics of X-ray fluorescence in a schematic representation. 
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Moreover, for the XRF core scanner analysis the response depth of elements to 

incoming X-ray radiation must be considered for its dependence to wavelength 

of emitted radiation. In Moseley’s law, the elements with higher atomic numbers 

emit X-rays with relatively high fluorescent energy that are less susceptible to 

absorption and scatter along their path lengths to the detector. Hence emergent 

fluorescent radiation intensity and response depth are closely linked to atomic 

number, with progressively deeper response depths for heavier elements (Fig. 

3.10). Thus, the response depth ranges from 0.05 mm for Aluminium (Al, Z 13) 

to 2-4 mm for Barium (Ba, Z 56) (Wihelms-Dick et al., 2012). 

 

 

Fig. 3.10: Fluorescence critical depth, closely linked to atomic number. Lighter elements 
are characterized by shallow response depths, whereas heavier elements by deeper 
response depth.  

 

The analysis was performed with an Avaatech XRF core scanner at the Royal 

Netherlands Institute for Sea Research (NIOZ). The measurement are non-

destructive and require very limited sample preparation. The core sediment is 

covered by a thin high-purity polypropylene film (typically 1,5-6 μm thick) to 

prevent the core drying in order to avoid shrinkage and cracking. Moreover the 

XRF device needs a flat and homogeneous surface of the core to work properly. 
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In particular, the sample inhomogeneity and surface roughness are strongly 

pronounced for sediments containing abundant medium-coarse sand sediment, 

particles such as shell fragments in coastal environments or foraminifera in 

deep-sea setting (Richter et al., 2006), that produce a signal-noise increasing. 

Accordingly to these, the more appropriate cores for the XRF analysis are 

characterized by fine-grained clay sediments. The split cores were scanned at 1 

cm resolution. The elemental range determined by the instrument starts from 

Aluminium to Uranium in concentrations from 100% down to ppm levels. The X-

ray tube has variable power between 10 to 50 kV in order to measure, under 

optimal conditions, the whole range of elements (Tab. 1). The incident X-ray 

beam interacts with small sample volumes and, thus, the emitting characteristic 

X-rays contain only information from a thin superficial layer. 

 

Tube Voltage 
(kV) 

Count Time 
(s) 

Tube Current 
(uA) 

Filter Elements 

10 10 500 No Filter 
Al, Si, P, Cl, K, 

Ca, Ti, Mn, Fe 

30 10 500 Pd Thin Br, Rb, Sr, Zr 

50 40 750 Cu Rb, Sr, Zr, Ba 

Tab.1 : X-ray tube power and filter 

The geochemical data obtained are generally expressed as count per second. It 

is worth noting that, this analysis is considered to be semi-quantitative, thus its 

interpretation must be considered carefully. Therefore, in order to have a more 

precise measure, the elemental ratio rather than direct counts is preferred.  

 

3.8 Digital Elevation Map (DEM)  

DEMs are obtained by the interpolation of a discrete number of points 

representing the key surfaces belonging to two transgressive deposits. These 

DEMs highlight the areal distribution and, thus, the paleo topography of each 

key surface. In particular, the good resolution, highlighted by the Digital 

Elevation Maps, was due to a grid of parallel seismic profiles spaced 120 m 
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from each other. The dense amount of data allowed to identify and trace in each 

seismic profile several key surfaces.  

Firstly, from the .xls file obtained by digitalization, a rapid conversion 

from millisecond using a sound velocity of 1,500 m/s to convert travel times to 

depth value in m was done using the simple relation : 

 

𝑧(𝑚) =  (𝑚𝑠 ∗ (−0.75)) − 3.5 

 

Where z is the depth, in meters, from the sea-level; 0.75 m corresponds to 1 ms 

(S=Vxt/2) and -3.5 m is the position under the sea level where the hull mounted 

CHIRP sonar is located on the ship. The obtained files were converted in ASCII 

file, easily readable by GIS software. The picking points were interpolated 

through the ArcGIS software in order to achieve a morphological map for each 

key surface. This software is a geographic information system designed to work 

with map and geographic information. In particular, the ArcCatalog software 

allowed to transform the ASCII file in shape files of the picking points. These 

shape files contain all the picked points that are characterized by the longitude, 

latitude and elevation parameters, moreover, the chosen coordinate system 

was the WGS84. Then, with the Geostatistical Analyst toolbox of ArcMap, the 

shape files were converted to raster files. This tool, indeed, allows to create 

continuous surfaces or maps that can be used to visualize, analyse and 

understand spatial phenomena. 

 

3.9 Geodatabase  

This PhD work, focused on detailed VHR seismic profiles and cores 

analyses, was possible thanks to seismic profiles and sediment cores dataset 

organized in a geodatabase made available by the CNR-ISMAR (Bologna 

Section). The CNR-ISMAR geodatabase, indeed, groups all data collected in 

the Adriatic basin during oceanographic cruises organized in the last twenty 

years (Fig. 3.11). In particular, data from CM94; AR00; VE04; VE05; RV08; 

RV11; NAD12 and AS14 oceanographic cruises have been analysed. 

Moreover, the NAD12 and AS14 oceanographic cruises, on which I took part, 

played a significant role in order to collect high resolution data allowing a total 

coverage of key areas, 1 and 2 of the Fig. 1.1. 
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Fig. 3.11: Geodatabase grouping VHR seismic profiles and cores of the Adriatic basin made 
available by CNR-ISMAR (Bologna Section) for this PhD project.  
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CHAPTER 4 

VERY-HIGH-RESOLUTION ANALYSIS OF A 

TRANSGRESSIVE DEPOSIT IN THE NORTHERN 

ADRIATIC SEA (ITALY) 

4.1 Overview 

This chapter is a journal paper published in Alpine and Mediterranean 

Quaternary. The characterization of one transgressive deposit in the Northern 

Adriatic Sea (Italy), located offshore Ravenna at 34 m w.d. is presented in order 

to emphasize in detail its evolution during the last transgressive cycle focusing 

on the transitional environments response in relation to the relative sea level 

rise. 

4.2 Paper 

GIORGIA MOSCON¹, ANNAMARIA CORREGGIARI², CRISTINA 

STEFANI¹, ALESSANDRO FONTANA¹, ALESSANDRO REMIA² 

¹Dipartimento di Geoscienze, Università degli Studi di Padova, Via G. 

Gradenigo 6, 35131 Padova, Italy 

²Istituto di Scienze Marine - CNR, Via Gobetti 101, 40129 Bologna, Italy 

 

4.2.1 Abstract 

The Adriatic Sea is characterized in the northern and central shelf by 

different generation of isolated transgressive bodies formed and drowned in-

place during the last relative sea-level rise. The continental shelf is 

characterized by a low gradient and, within the transgressive deposits the 

episodic variations in sea level and sediment supply caused the formation of 

backstepping parasequences. The transgressive bodies have been studied in 

detail because they have considerable amount of sorted sand exploitable for 

beach nourishment. A transgressive deposit, located south of the Po Delta, 

offshore Ravenna at depth of 34-35 m, has been investigated with a total 

coverage of very-high resolution (VHR) seismic profiles and high number of 

cores in order to understand the stratigraphic evolution during the late 
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Quaternary sea-level rise. The transgressive body is composed of four seismic 

units separated by high-amplitude and high continuity reflectors, corresponding 

to peat and organic-rich layers indicating different depositional phases. The 

core analysis confirmed the presence of different units showing sediment 

variation from clay with peat-layer at the base to fine-grained sand at the top of 

the deposit. Furthermore, the core analysis gave information about the 

thickness of the deposit. The thickness of the transgressive body is from 3 to 5 

m and each unit varies from 1 to 2 m. In particular, the sand portion reached a 

maximum thickness of 1.5 meters. The seismic analysis and the digital 

elevation model constructed for key surfaces highlighted the channel system 

direction was towards ENE during Last Glacial Maximum and during 

sedimentation of Unit 1 and 2, while it shifted toward ESE during the formation 

of Unit 3. Moreover, to constrain the chronology of the sedimentary evolution, 

some peat and organic-rich samples, have been dated with 14C method. These 

organic horizons are evident seismic reflectors and correspond to key surfaces. 

They are characterized by brackish lagoon facies and could be a proxy indicator 

for the relative paleo sea-level. Along with the previous data, they indicated that 

the sedimentation of the studied transgressive body occurred around 10,000 

cal. a BP. 

Keywords: Quaternary, sea-level rise, sequence stratigraphy, beach 

nourishment, CHIRP-sonar. 

 

4.2.2 Introduction 

The late glacial and Holocene (Post 18,000 a) sea-level rise is well 

recorded in the Adriatic Sea due to the peculiar physiographic and sedimentary 

setting of the basin (Correggiari et al., 1996). During the last sea-level rise the 

Northern Adriatic Sea was characterized by the formation of different generation 

of barrier-lagoon systems. These bodies, drowned in-place and partly 

preserved, crop out in the northern Adriatic seafloor as elongated build-ups 

parallel to the present coastline. They are interpreted as patches of ancient 

coastal wedges which have considerable amount of sorted sand and are a 

significant resource exploitable for beaches nourishment. The sand portion of 

the transgressive deposits has been studied in detail with grain-size analysis, 

petrographic analysis, sedimentary architecture and volumes calculation in 
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order to use this resource for coastal nourishment. The detailed characterization 

of a transgressive deposit located south of the Po Delta, through very-high 

resolution seismic profiles and facies analysis can shed new lights on the 

formation and evolution of the transgressive deposits. In particular, as the 

formation of the transgressive bodies is strongly related to the changes of 

relative sea level, their multidisciplinary study can produce important data in the 

reconstruction of the past relative position of the sea level (Antonioli et al., 

2009) and detect centennial fluctuations. 

 

4.2.3 Geological Setting 

4.2.3.1 The Adriatic Sea 

The Adriatic Sea is an epicontinental semi-enclosed basin (Fig. 4.1) 

surrounded by three thrust-and-fold-belts: the NE-verging Apennines, the S-

verging Southern Alps and the SW-verging Dinarides. The basin records the 

evolution from a passive margin, during the Mesozoic, to a foreland basin 

system, during the Cenozoic (D’Argenio and Horvath, 1984; Ori et al., 1986; 

Ciabatti et al., 1987; Argnani and Frugoni, 1997). During Quaternary sea-level 

fluctuations the basin has been shaped by huge change of the oceanographic 

regime and sedimentary dynamics (Trincardi et al., 1994, 1996). 

 

 

Fig. 4.1: Location of the study area in the Adriatic Sea. Bathymetry 
and superficial geology modified from the Geological Map of Italian 
seafloor (Fabbri et al., 2001; Trincardi et al., 2011 a, Trincardi et al., 
2011 b). 
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During the Last Glacial Maximum 

(LGM, 30,000-19,000 14C a BP; 

Lambeck and Purcel, 2005; Clark 

et al., 2009) the sea-level was 

about 120-130 m lower than today 

and the northern continental shelf 

was completely in subaerial 

conditions (Fig. 4.2A). In this 

environment several river networks 

formed, consisting of by a main 

trunk river (Paleo Po River) and 

Alpine and Apennines tributaries; 

the fluvial system terminated in a 

low-stand delta located at the 

northern edge of the Meso-Adriatic-

Depression, southeast of Ancona 

(De Marchi, 1922; Correggiari et 

al., 1996; Ridente and Trincardi, 

2005). During the late-glacial to 

early-Holocene transgression, a 

glacio-eustatic, non-steady sea-

level rise of approximately 120 

meters caused substantial basin 

widening coupled by changes in 

energy regimes across the basin 

(Cattaneo and Steel, 2003) (Fig. 

4.2B). The low gradient of the 

northern Adriatic shelf, together 

with the sea-level rise 

(approximately 10-15 mm/a), 

favoured the deposition and drowning of different generations of transgressive 

barrier-lagoon system sedimentary bodies. In contrast, the steeper topographic 

gradient of the southwestern Adriatic shelf has been characterized by the 

deposition of thick transgressive progradational deposits (Cattaneo and 

Fig. 4.2: Widening of the Adriatic basin during the 
last transgressive cycle. (A) Sea-level during the 
LGM, an extensive portion of the Adriatic sea was 
in subaerial condition, while the Meso-Adriatic-
Depression (MAD) was a semi-enclosed basin 
receiving high amount of sediment (Correggiari et 
al., 1996). (B) Rapid sea-level rising after the LGM. 
(C) Maximum marine ingression reached 5500 cal. 
a BP. 
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Trincardi, 1999; Maselli et al., 2011). The maximum marine ingression was 

reached ca. 5500 cal. a BP when the basin occupied much wider area than 

during the low-stand (Fig. 4.2C). During high-stand the anticlockwise circulation 

characterizing the Adriatic caused southward transport of sediment along the 

entire western side of the basin as documented in surficial geology maps of the 

Adriatic (Fabbri et al., 2001; Trincardi et al., 2011a; Trincardi et al., 2011b; Fig. 

4.1). Our study focused on a transgressive deposit, located 50 km from 

Ravenna at 34-35 m water depth (Fig. 4.1). This transgressive deposit showed 

a dominant longshore trend parallel to the modern coastline, it extends NS for 

about 20 km and is 8 km wide. Its thickness varies from 1 m near the boundary 

areas to 4 meters in the depocenters. 

4.2.3.2 Transgressive deposits 

The late-glacial and Holocene transgressive deposits (Transgressive 

System Tract, TST) in the Adriatic basin were formed by backstepping barrier-

lagoon and incised valley systems in the low gradient northern shelf, while mud 

sedimentary bodies thicker than 25 m are present in the central Adriatic shelf 

(Cattaneo and Trincardi, 1999; Maselli et al., 2011, Trincardi et al., 2013) (Fig. 

4.1). The TST rests on an erosive surface of regional extent (transgressive 

surface, TS) that truncates older low-stand deposits (LST), and is below the 

maximum flooding surface (MFS) (Fig. 4.3). Available 14C data show that the 

time interval encompassed by the TST spans about 11,000 years, between 

16,000 and 5500 cal. a BP (Correggiari et al., 1996; Trincardi et al., 1996; 

Cattaneo and Trincardi, 1999, Correggiari et al., 2001, Maselli et al., 2011). The 

transgressive deposits in the northern Adriatic shelf are located at sea bottom 

between -45 m to -10 m water depth, and they are preserved as elongated 

undulating elevations almost parallel to the present coastline. The complex 

geometry and their preservation is probably due to a combination of different 

factors such as the rate of sea-level rise, the low gradient of the shelf and the 

coastal dynamics (Belknap and Kraft, 1981, Correggiari et al., 2011). In the 

northern Adriatic Sea, transgressive deposits are generally associated to a 

barrier-lagoon system, that is typically characterized by clayey-silty lagoon 

deposits associated with sandy beach deposits (Fabbri et al., 2001) (Fig. 4.3).  
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Fig. 4.3: Main cores facies description. (A) Simplified log of most representative cores. The TST 
deposits rest on the Transgressive Surface. The paralic deposit is characterized at the base by 
clay sediment, peat and organic-rich layers and at the top by a sand portion. This deposit ends 
with ravinement surface. (B) Example of cores facies. 1: Peat layer; 2: Interbedded clayey and 
silty layers; 3: Sand portion; 4: ravinement surface (Rs).  
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4.2.4 Methods 

The transgressive deposit has been examined with a multi-disciplinary 

approach through very high resolution (VHR) seismic profile analysis and 

vibrocorer samples, digital elevation model (DEM) of most significant surfaces 

and 14C dating. All the analysed data have been collected during 

oceanographic cruises carried out in the last 20 years by CNR-ISMAR onboard 

Urania R/V. VHR seismic profiles have been acquired with Sub Bottom Profiler 

CHIRP-Sonar with 16 low-frequency transducers. About 750 km of VHR seismic 

profiles, oriented NS and spaced 120 meters each other, covered the 

transgressive deposit (Fig. 4.4A). The seismic profiles have been processed 

and interpreted with SeisPrho (Gasperini & Stanghellini, 2009).  

 

Fig. 4.4: Study Area detail. (A) Tracks of VHR seismic profiles, acquired in 2012, covering the 
study area. (B) Seafloor bathymetry (image resolution of 10 m). Evidence of the ESE channel 
system trend. 

 

Cores have been collected by Vibrocorer Rossfelder P5, with a vibrating head 

and a steel corer 6-m long and 10-cm wide. DEMs of key seismic surfaces, 

obtained from Conversion Tools ASCII to Raster of ArcMap 10.1 software, have 

been used to map their areal distribution. Furthermore the top of the 

transgressive deposit, coinciding with the seafloor, has been analysed with the 
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Digital Elevation Model of the multibeam bathymetry (with image resolution of 

10 m) acquired during the NAD12 (in 2012) oceanographic cruise onboard 

Urania R/V (Fig. 4.4B). The device used is an EM 710 Multibeam echosounder 

with 70-100 kHz. The geochronological constrains of the geological evolution 

have been provided by the 14C dating of 3 samples of organic-rich and peat 

layers, in the core AR00_22. The AMS analysis has been done at the Ion Beam 

Laboratory at the ETH Institute in Zurich. Our data have been integrated with 

those from core CM94_107 (Fabbri et al., 2001). The radiocarbon ages from 

AR00_22 and CM94_107 cores have been calibrated using CALIB14 

Radiocarbon Calibration Program of Stuiver and Reimer (1993). The results 

have been corrected for isotopic fractionation, but no correction for oceanic 

reservoir was made because the dated layers are of terrestrial origin. 

 

4.2.5 Results 

4.2.5.1 Seismic analysis 

The seismic profiles analysed, were collected during the oceanographic 

cruises NAD12. The detailed seismic-stratigraphic analysis highlighted three 

different seismic facies: 1) a semi-transparent unit, due to scarce penetration of 

the acoustic signal, indicative of sandy sediments, characterized by an irregular, 

erosive base; 2) an interbedded transparent seismic facies with parallel and 

subparallel irregular and discontinuous reflectors related to fine-grain deposits 

with thin fine sand or silty layers; 3) regular and continuous reflectors 

interpreted as peat and organic-rich layers. In each profile five key surfaces 

have been identified and traced in order to define the geometry of deposits and 

to investigate the formation and evolution of the transgressive parasequences. 

The key surfaces, easily visible and traceable along the entire profile, 

correspond to organic rich and peat layers. The seismic reflector interpreted as 

transgressive surface marks a different response in the seismic profile and has 

been traced correlating the dated peat layers from published data (Fabbri et al., 

2001; Correggiari et al., 2011). The TS is an erosional surfaces that marks the 

first major flood of the margin. It rests on the low-stand deposit formed during 

the LGM where the top was dated at 20,000-21,000 14C a BP by radiocarbon 
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dating of peat samples southern than the investigated deposit by Trincardi et al. 

(1994); Fabbri et al. (2001); Cattaneo and Steel, (2003). 

 

 

Fig. 4.5: Evidence of the key surfaces and units within the sedimentary transgressive body. 

 

The studied transgressive body rests on the TS. In addition to the TS other 

three key reflectors have been identified within the transgressive deposit (A 

surface, B surface, C surface and Seafloor surface at the top, Fig. 4.5); these 

surfaces border four different units (from Unit 1 at the base, to Unit 4 at the top) 

that mark four different depositional environments during the sedimentation of 

the transgressive deposit (Fig. 4.5). Moreover within the most recent unit an 

additional key surface has been identified at the base of the sandy portion. The 

Unit 1, 2 and 3 were delimited by the digitized key surfaces, corresponding to 

peat layers, and were characterized by interbedded transparent and 

discontinuous seismic reflectors, which were more regular within the unit 3. At 

the top of both the Unit 1 and the Unit 2 seismic profiles revealed the presence 
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of some channels bordered by levees. The Unit 4, was delimitated at the base 

by the C key surface and at the top by the seafloor. Additional key surface 

within Unit 4 divided the base with irregular and discontinuous seismic reflectors 

and at the top a semi-transparent seismic facies indicative of sandy sediments. 

4.2.5.2 Digital elevation models of key surfaces 

The digital elevation models showed the morphology of the surfaces 

highlighting the occurrence of the channel system network existing when each 

of them was exposed and active (Fig. 4.6). Thus, each DEM represents one 

step in the formation of the transgressive deposit. The TS lies higher to the west 

and lower towards east, characterized by channels with ENE direction (Fig. 

4.6A). At first, the sedimentation over the TS occurred in the north/northeast 

and western areas and shows an ENE channel progradation. This situation was 

highlighted by the DEM of the A surface (top of the Unit 1) and the DEM of the 

B surface (top of the Unit 2) (Fig. 4.6B/C), and then the sedimentation of the 

transgressive body shifted to the south/southwest. The DEM of the C surface 

(top of the Unit 3) highlighted the filling of the southern area together with the 

variation of the channel direction from ENE to ESE (Fig. 4.6D). The 

transgressive body ended at the top with Unit 4, that correspond to the basal 

clay lagoon layer resting on the C surface, filling and flattening the transgressive 

body. The seafloor bathymetry (Fig. 4.4B), that coincides with the top of the Unit 

4, maintained the same ESE channel trend as highlighted for Unit 3. 
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Fig. 4.6: DEMs with isopach of the key surfaces obtained from Conversion Tools ASCII to 
Raster of ArcMap 10.1 program. Comparison of DEM. Variation in channel system trend and 
preservation of each unit. The channels depicted in each surface have been traced in blue, 
while the dashed rivers represent the leveed channel systems elevated above the underlying 
surface.  
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4.2.5.3 Cores facies analysis and calibration of seismic units 

30 cores collected during the oceanographic cruises CM94 and AR00 

(in 1994 and 2000) onboard Urania R/V (CNR-ISMAR) have been described to 

define the depositional environment corresponding to the sedimentation of the 

transgressive body. The cores had a length spanning between 1.5-4 m and 

generally showed coarsening-upward trend with a thin fining-upward layer at the 

top. The basal portion was formed by clay with some peat layers. This unit was 

overlain by fine-sand that was capped by an erosional surface. The TST deposit 

was covered with thin layer (about 15-30 cm) of silty-clay representing a recent 

distal Po prodelta high-stand deposit (Correggiari et al., 2005; Correggiari et al., 

2011) (Fig. 4.3). The Unit 1 rests on the transgressive surface and is capped by 

the A surface (Fig. 4.5), it was found only in the northern part of the investigated 

area and it is organized in elongated river systems that are elevated above the 

TS and oriented towards ENE. These systems lie on the ancient fluvial system 

highlighted by the TS, and in the seismic profiles it was possible to recognise 

some leveed channel systems. The Unit 1 was mainly formed by clay with 

organic matter and millimetric plant debris interbedded with peat layers (Fig. 

4.7), farther few cores highlighted a fine-sand to silty layer at the top of this unit. 

The fossil content belonging to this unit was characterized by the mollusc 

association consisting of Cerastoderma glaucum, Abra segmentum and 

Lentidium. The Unit 2 was bounded at the base by the A surface and at the top 

by the B surface (Fig. 4.5), it was mainly present in the northern and western 

part of the investigated area and it filled the depressed zones formed between 

the Unit 1 channel systems. This unit was similar to the Unit 1, characterized by 

clay with organic matters and carbonaceous frustules, while the top was an 

easily recognizable layer of peat with a thickness of 10-15 cm (Fig. 4.7). The 

fossil content was the same as of the Unit 1. The Unit 3 was bounded at the 

base by the B surface if present or by the TS surface where it was not present 

and at the top by the C surface (Fig. 4.5). Unit 3 was mostly developed in the 

southern part of the area, while in the northern sector was limited to a thin layer 

below the Unit 4. The southern portion of the Unit 3 was characterized by 2-2.5 

meters of clay layers with millimetric plant debris interbedded with parallel-

laminated silty layers (Fig. 4.7). The northern portion of the Unit 3 was formed of 

a thin layer of clay that filled and smoothed the underlying depressed areas. 
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The paleontological association was characterized by Cerastoderma glaucum, 

Abra segmentum and Lentidium sp. The Unit 4 was bounded at the base by the 

C surface and at the top by the seafloor (Fig. 4.5), its geometry showing two 

convex landforms with a gentle trough in the middle of the deposit. In this unit a 

significant amount of sorted sand has been found within the two build ups 

above a thin clayey layer. The sand portion, that reached up to 1.5 m of 

thickness, ended with a bioclastic sand layer representing the ravinement 

surface (Rs) (Fig. 4.7). The analysis on the sand below the Rs showed a mean 

diameter between 0.25-0.35 mm and a very scarce content of silt and clay 

(Correggiari et al., 2011). The top of the deposit is locally characterized by a 

very thin 15-30 cm layer of clay.  

 

 

Fig. 4.7: AR00_22 core log plotted on NAD216 seismic profile, location in Fig. 4.5 . On the left, 
the picture shows the position of AR00_22 in the seismic profile, the seismic units in color 
bordered by the key surfaces. On the right, the picture shows the description of the AR00_22 
core, their core facies, highlighted by the photos, corresponding to the white panels a, b, c, d 
close to the core log.  
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4.2.6 Discussion 

The combined seismic and core analyses allow us to reconstruct the 

evolution of the transgressive deposit. The four units, forming the transgressive 

body, show different environment of sedimentation. The basal units (Unit 1, Unit 

2 and Unit 3), consisting of silty-clay sediment with organic matter and 

interbedded peat layers, are indicative of lower delta plain environments with 

distributary channels and lagoon. The paleontological content, recognized in 

clay layers belonging to Unit1, 2 and 3, is indicative of euryhaline association of 

bivalves peculiar of transitional environment from fresh to brackish water. The 

more recent unit (Unit 4) consists of basal thin layer of clays formed in a lagoon 

environment, covered by two plano-convex bodies of basal beach sand. This 

unit represents a patch of barrier-lagoon system capped by the ravinement 

surface formed by bioclastic sand. The combined study of seismic profiles and 

cores emphasizes a marked difference between the basal and the superficial 

portion of the deposit in terms of sedimentary environment and preservation 

potential. The buried units, belonging to an inner coastal environment compared 

to the Unit 4, indicate back-barrier environment. The analysis of the seismic 

profiles highlighted a local aggradation of the Unit 1, 2 and 3 that filled the 

morphological depressions inherited from of the previous topography. On the 

contrary, Unit 4, which was strongly affected by marine processes, was 

characterized by erosion and reworked sediment, as highlighted by the 

ravinement surface. The comparison among DEMs of the surfaces confirmed 

limited erosion in Units 1, 2 and 3, while marked reworking occurred at the top 

of Unit 4. The buried units were characterized by erosion due to the activity of 

washover fans or fluvial floods, while Unit 4 was subjected to shallow marine 

processes such as wave activity. Moreover, the seafloor DEM, which shows the 

present bathymetry, highlights that the path of channels is in relief. This setting 

suggests differential erosion within Unit 4 with the removal of softer or less stiff 

sediment.  

The radiocarbon data constrains the time of sedimentation of the 

transgressive deposit between 11,000 to 9800 cal. a BP, in the time interval 

following the Melt Waters Pulse 1B (Fairbanks, 1989). This was characterized 

by both the strong influx of freshwater and the increased sediment loads by 

rivers, especially the Po (Ariztegui et al., 2000). The dating samples (Tab. 2) 
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gave information about the rate of sedimentation in each unit. The Unit 1 

(thickness up to 1 meter) was deposited in about 500 years, the Unit 2 

(thickness up to 2 meters) in about 300-500 years, while the Unit 3 (thickness 

up to 1 meters) was deposited in about 200 years.  

 

 

Tab.2 : AMS and calibrated dating from CM94_107 (Fabbri et al. 2001) and AR00_22 cores. 
 

The obtained data were plotted in a Depth vs. Age plot which groups Adriatic 

14C age data from Fabbri et al. (2001), Antonioli et al. (2009) and Trincardi et al. 

(2011a-b) (Fig. 4.8). The new data coincide with the published curves showing 

in particular 1110 years gap between the base of the Unit 1 and the C Surface. 

Considering an average thickness of about 4 meters, the estimated, relative 

sea-level rise was about 0.4 cm/a. Moreover the detailed study of this 

transgressive deposit showed that the variation of the channel system trend 

from ENE to ESE, coincides with the incipient sea-level rise. 
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Fig. 4.8: Depth vs. Age Plot. In blue are represented the Adriatic 14C data from composite table 
in Antonioli et al. (2009) and from Geological Map of the Italian Sea (Fabbri et al., 2001; 
Trincardi et al., 2011 a-b). In orange are represented the Radiocarbon dating from this work. In 
grey are represented Th/U data from Fairbanks (1992) and Bard (2003). B: Simplified scheme 
of the transgressive deposit with water depth and age of each unit.  

 

4.2.7 Conclusions 

The VHR seismic profiles, acquired in the northern Adriatic shelf during the 

NAD12 oceanographic cruise, supported key information to characterize in 

detail the transgressive deposit located offshore Ravenna at depth of 34-35 m. 

The combined study of VHR seismic data and cores gave new information 

about the sedimentation, evolution and age of the deposit.  

 The transgressive deposit consists of four units, each one of them 

representing an evolutionary step. The lower units (Unit 1, Unit 2 and 

Unit 3) correspond to delta plain setting with some distributary channels 

and a lagoon, while the upper unit (Unit 4) represents a barrier-lagoon 

system with patches of ancient beach at the top.  

 The sedimentation of the transgressive deposit occurred between 11,000 

to 9800 cal. a BP. In particular the radiocarbon data allowed to estimate 

the rate of relative sea-level rise and sedimentation rate of each unit. 

Moreover, the dated layers correspond to peat or organic-rich horizons of 

brackish lagoon facies, thus, they are representative of the paleo sea-

level and mark the aggradation steps of each unit.  

 The variation of the channel system trend from ENE to ESE occurred 

during the sea-level rise and it brought to the change of the coastal 

paleogeography. At the beginning the coast was growing eastward, then 

the basin flooding (recorded by the Unit 3 at 35 m water depth) caused a 

preliminary drowning of the investigated area and a consequent variation 

of the channel system trend. The detailed study of this transgressive 

body shows not only its evolution but also the paleogeography variation 

of the surrounding areas due to both sea-level rise and the fluvial pattern. 
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CHAPTER 5  

SEDIMENT PROVENANCE IN SOME HOLOCENE 

TRANSGRESSIVE DEPOSITS IN THE 

NORTHERN ADRIATIC SEA 

5.1 Overview 

This chapter is a journal paper almost ready to be submitted to Journal 

of Sedimentary Research. In this chapter, some transgressive deposits, 

sedimented in the northern Adriatic Sea, are characterized with petrographic 

analysis in order to delineate their composition and to propose a preliminary 

reconstruction of the paleogeography of the northern Adriatic shelf during the 

last relative sea-level rise.  

5.2 Paper 

GIORGIA MOSCON¹, CRISTINA STEFANI¹, ALESSANDRO FONTANA¹, 

ANNAMARIA CORREGGIARI², ALESSANDRO REMIA² 

¹Dipartimento di Geoscienze, Università degli Studi di Padova, Via G. 

Gradenigo 6, 35131 Padova, Italy 

²Istituto di Scienze Marine - CNR, Via Gobetti 101, 40129 Bologna, Italy 

 

5.2.1 Abstract 

The low gradient Northern Adriatic shelf recorded different generation of 

partially preserved transgressive barrier-lagoon systems, sedimented and 

drowned in-place during the last relative sea-level rise. These transgressive 

deposits are isolated and elongated high grounds on the Northern Adriatic 

seafloor showing a dominant longshore trend similar to the modern high-stand 

deposits. In particular, they lay on an erosive surface of regional extent 

(transgressive surface) that truncates older low-stand deposits and are below a 

ravinement surface, often coinciding with the maximum flooding surface. 

Furthermore, they generally are formed by a basal portion of silt-clayey layers 

interbedded with peat and organic-rich layers and a top portion of fine-grained 

sorted sands. The identification and characterization of these deposits has been 
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carried out analysing a large dataset of Very High Resolution (VHR) seismic 

profiles, cores, bathymetric and isopach maps; moreover the sand portion of 

these transgressive deposit has been and is still object of detailed studies, 

because it is a significant resource for beach nourishment.  

The sand portion of eight distinct bodies, located offshore between -35 

and -10 m msl, was studied with petrographic analysis in order to delineate their 

composition. Three different petrofacies (Petrofacies I, II, III), characterized by 

distinct terrigenous supplies were recognized, linked to different phases of sea-

level rise. In particular, the petrographic analysis allowed to support a potential 

northward shifting of a branch of the paleo Po River during the deposition of the 

transgressive deposits belonging to the Petrofacies I; moreover, the 

transgressive deposits belonging to the Petrofacies II were interpreted as 

ancient coastline emphasized by mixed composition of several supplies, 

reworked by marine currents. Besides, petrographic data regarding the 

transgressive deposit belonging to the Petrofacies III , previously interpreted by 

other authors as an ancient Tagliamento River delta, highlights and confirms a 

Tagliamento River supply. The petrographic results permit a preliminary 

paleogeography reconstruction of the northern Adriatic shelf during the last 

relative sea-level rise. Furthermore, our petrographic results can be useful to 

support sand exploitations in order to identify correlation between the sand 

portion of the deposits and the sand belonging to the present coastline. 

Keywords: Transgressive deposits, northern Adriatic sea, sea-level rise, 

petrographic analysis, sand sediments. 
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5.2.2 Introduction 

In the Mediterranean basin, the continental shelf has a large extent only 

in a few selected areas (northern Adriatic Sea in Italy; Gulf of Gabes in Northern 

Tunisian coast; Fig.5.1). During the post-LGM transgression, these areas were 

characterized by huge drownings associated to slight sea-level rise. This 

process, due to the low gradient of the shelf, caused the formation of different 

generation of barrier-island systems, subsequently drowned in-place and partly 

preserved. Thus, the north Adriatic is one of the few setting in the 

Mediterranean Sea characterized by late-glacial and holocenic transgressive 

bodies. In particular, these deposits are interpreted as patches of ancient 

coastal wedges and document different phases of relative sea-level rise. Up to 

now, these offshore transgressive deposits have been studied in detail with 

grain-size analysis, sedimentary architecture and volumes calculation because 

their sand portion is a potential resource for coastal nourishment (Correggiari et 

al., 2011), but no evaluation on their sand composition has never carried out. In 

this work we consider the transgressive deposits located in the northern Adriatic 

shelf between -10 to -35 m msl, and focus on their transgressive sand portion. 

In particular, we have studied their composition and provenance variations in 

order to delineate a preliminary framework of the paleogeography and the paleo 

drainage pathways using a large dataset of vibrocores, Very High Resolution 

CHIRP sonar seismic profiles and bathymetric maps acquired in the last ten 

years by CNR-ISMAR (Bologna Section). 

 

 

Fig. 5.1: Mediterranean extent of the continental shelf exposed at the maximum sea-level 
regression (from: http://antiquity.ac.uk/projgall/sakellariou334/). 
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5.2.3 Geological setting 

The north-western sector of the Adriatic Sea represents the Cenozoic to 

Quaternary sedimentary infilling of the subsiding foreland basin related to the 

opposing thrust belt chains of the Southern Alps and the Northern Apennines 

(Doglioni 1993). In the Pliocene and early Holocene the Po Plain corresponded 

to the Apennine foredeep (Scrocca et al., 2007), characterized by deep marine 

sedimentation. Since middle Pleistocene the fluvial systems fed by the southern 

Alps experienced a strong progradation, largely supported by the erosive action 

played by the glacial in the mountain valleys (Muttoni et al., 2003). The 

Quaternary evolution of the Venetian-Friulian Plain, which is the eastern 

boundary of the Po Plain, is strongly related to the response of alluvial systems 

to climate and sea-level changes (Fontana et al., 2010; 2014). In particular, 

during the Last Glacial Maximum (LGM, 29,000-19,000 yr cal. BP; Lambeck 

and Purcell, 2005; Clark et al., 2009) the Northern Adriatic shelf has been 

exposed under continental conditions and the alluvial plain enlarged over 300 

km south of the present Venetian coast (Correggiari et al., 1996a; Fontana et 

al., 2008). In this context, it is generally accepted that the alluvial plain was 

characterized by a river network which converged in a “Mega Po” trunk river 

(Storm et al., 2008). This fluvial system terminated in a low-stand delta located 

at the northern edge of the Meso-Adriatic Depression (MAD) (Trincardi and 

Correggiari, 2000; Ridente and Trincardi, 2006; Maselli et al., 2011). At the 

same time landwards, the glaciers hosted in the main south-eastern Alpine 

valleys debouched into the plain leading to the formation of huge terminal 

moraines in the piedmont belt (Castiglioni 2004). The Alpine glaciers fed with 

their water and sediment discharge the glacio-fluvial systems of Isonzo, 

Tagliamento, Piave, Brenta and Adige leading to the formation of alluvial 

megafans (Fontana et al. 2008; Fig. 5.2). These large depositional features are 

characterized by a proximal sector, consisting of gravels and sandy gravels, 

and a fine-dominated distal sector (Fontana et al., 2008). Megafans extended 

onto the North Adriatic shelf with their distal sector, that can be recognized up to 

15-20 km from the present coast between Venice Lagoon and Friuli, while 

downstream of this belt a homogeneous alluvial plain can be described 

(Fontana et al., 2014). The stratigraphy of the LGM deposits is dominated by silt 

and clay with isolated bodies of fine-to-medium sand with a thickness of 1-2 m 
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and rather common presence of layers of peat. These have a centimetric to 

decimentric thickness and correspond to fen environments that developed in 

some sectors of the distal floodplain (Miola et al., 2006). 

At the climatic transition between LGM and Late-glacial a dramatic 

decrease in the sedimentary supply occurred and a strong phase of incision 

affected all the megafans in the Venetian–Friulian Plain (Fontana et al. 2008). 

The Alpine rivers entrenched respect the LGM megafan surface and, thus, 

fluvial activity was confined along incised river valleys, through which the 

sediments passed and deposited on the Adriatic shelf (Fontana at al., 2014). 

This resulted in a sedimentary hiatus marked by an overconsolidated calcic 

horizon, locally called caranto paleosoil (Gatto and Previatello, 1974; Tosi, 

1994; Mozzi et al. 2003; Fontana et al., 2014). 

Since the end of LGM the melting of Arctic and Antartic ice sheets 

prompted the marine transgression (Bard et al., 1996; Lambeck et al., 2014). 

The sea-level rise took place over the alluvial plain formed during the low-stand, 

characterized by a gentle topographic gradient. This setting favoured the 

deposition and the subsequent drowning of different generations of 

transgressive barrier-lagoon systems (Fig. 5.2, Trincardi et al., 1994; 

Correggiari et al., 1996 a; Cattaneo at al., 2003). 

Since about 7 kyr cal BP, the Adriatic coast was located in a position 

comparable to present (Lambeck et al., 2004; Amorosi et al., 2008), and was 

subjected to the formation of several deltas and lagoons which built a coastal 

wedge onlapping on the LGM plain.  

The post-LGM transgressive sediments present in the Adriatic Sea 

were deposited while the coastline shifted about 250 km northwards since the 

last relative sea-level rising (Trincardi et al., 1994). They are characterized by 

backstepping barrier-lagoon and incised valley systems in the low gradient 

northern shelf, while mud sedimentary bodies thicker than 25 m are present in 

the central Adriatic shelf (Cattaneo and Trincardi, 1999; Maselli et al., 2011). In 

the axial portion of Adriatic shelf, these deposits are preserved in a narrow area 

between -100 m to -10 m msl, and they consist of a lower wedge composed of a 

paralic portion and an upper wedge of marine deposits, separated by a 

ravinement surface and bordered at the base by the transgressive surface (Fig. 

5.3, Trincardi et al., 1994). They are preserved as elongated reliefs almost 
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parallel to the present Adriatic coastline and are generally a few meters thick 

and mainly formed of sorted sand. Moreover, 14C dating from peat layers 

belonging to the lower paralic portion permit to refer their sedimentation 

between 9500 to 7000 yr cal. BP time interval (Correggiari et al., 1996a, b; 

Trincardi et al., 2011; Moscon et al., 2015). 

 

Fig. 5.2: Late Quaternary depositional system of the Venetian-Friulian Plain and the Northern 
Adriatic shelf. In blue, isolated transgressive deposits examined in this work.  

 

5.2.4 Methods 

The transgressive deposits chosen for this study were selected from the 

Geological Map of the Italian Seafloor (Fabbri et al., 2001; Trincardi et al., 

2011a). From SW to NE they are RV_H, RV_C, RV_G, RV_A, RV_JC, RV_D, 

RV_M, RV_B (Fig. 5.2). We are processing precise radiocarbon data per 

deposits, then we took as reference the sea-level curve from Correggiari et al. 

(1996a) and Lambeck, (2004), where they fall from 9500 to 7000 yr cal. BP in 

respect to their water depth. A large dataset of CHIRP-sonar profiles, gravity 

cores and vibro-corers, bathymetric and isopach maps of the Late Pleistocene-

Holocene deposit on the Adriatic shelf collected and conceded by CNR-ISMAR 
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(Bologna-Section), allowed to characterized these deposits with a multi-

disciplinary approach. At first, these bodies were analysed with Very High 

Resolution (VHR) seismic profiles in order to highlight their sedimentary 

architectures focussing on their sand portion. The seismic profiles were 

acquired with a CHIRP Sonar profiler with 16 transducer and low frequency (2-7 

kHz). This instrument, through an emission of a modulate acoustic pulse, 

returns an image of acoustic impedance structure, that investigates only the first 

few meters of the substrate allowing high resolution comparable to a sediment 

core length. Moreover a detailed description of 140 cores collected in the last 

years was carried out during oceanographic cruises (R/V Urania, CNR-ISMAR), 

and high number of samples belonging to the transgressive paralic sand portion 

have been selected for compositional analysis. The sandy fraction selected for 

petrographic analysis has been split and impregnated in an epoxy resin 

according to the methodology described by Gazzi et al. (1973), in order to 

obtain thin sections. All thin sections were stained with alizarine-red solution to 

facilitate the distinction of calcite and dolomite during the modal analyses. Sand 

point counts were performed following the Gazzi–Dickinson technique (Gazzi, 

1966; Dickinson, 1970; Ingersoll et al., 1984), modified by Zuffa (1987), with the 

aim of minimizing the influence of grain size on composition. This point-counting 

method consists of separating coarse-grained lithic fragments (single crystal 

within grains ˃0.0625 mm) from fine grained lithic fragments (single crystal 

within grains ˂0.0625 mm). Due to the lack of interstitial components, 300 

points were determined for each thin section using a 0.5 mm grid spacing. 

Secondly, in order to obtain more information about source areas the point-

counting was continued for a selected number of samples per deposit until at 

least 200 rock fragments were determined. The data are reported in Tab.3 and 

4. In addition, assuming a similar source area to the present and no significant 

changes regarding the provenance due to diagenetic processes or important 

geological changes in source areas, our data were compared to those from 

recent literature of present-day rivers (Gazzi et al., 1973; Marchesini et al., 

2000; Monegato et al., 2010), in order to highlight the signature of the different 

sand bodies. Beside, in order to distinguish different inputs relative to distinct 

fluvial supplies the linear mixing model was tested, according to the method 

proposed by Weltje and Prins, (2003); Garzanti et al., (2005; 2007); Vezzoli and 
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Garzanti, (2009). This method is useful to compare detrital signatures with end-

member compositions in order to discriminate the main contributions belonging 

to different sand deposits. With this aim, the fluvial composition reported by 

Gazzi et al. (1973) was considered as an end-member for the Po River and for 

eastern alpine fluvial supplies. The program, written on a Microsoft Excel 

spreadsheet, through the regressive analysis, allows to compare the end-

members with the analysed sand samples, and calculates the multiple 

correlation index R. The latter is closest to 1 if it corresponds to one end-

member, but if samples are indicative of a mixed supply, the R index must be 

reconstructed as a weighted average of primary end-members (Vezzoli and 

Garzanti, 2009), and it is satisfactory for R values ≥0.8 (Vezzoli and Garzanti., 

2009). 

 

5.2.5 Results 

5.2.5.1 Seismic facies analysis 

Several VHR seismic profiles were analysed in order to evaluate the 

transgressive deposits extension and delineate their bases (Fig.5.3). Generally, 

the seismic profiles highlight semi-transparent units, characterized by low 

reflection amplitude and continuity, due to scarce signal penetration, indicative 

of sandy sediments, alternating with more continuous and high amplitude 

reflectors interpreted as peat and organic-rich layers.  

The RV_H deposit, located at 28-32 m msl., extends about 15 km EW 

and 6 km NS. The VHR seismic profiles highlight two different units. On top a 

transparent seismic unit with no internal reflectors, indicative of sandy 

sediments, reaches up to 3.5 m in thickness. This unit rests on a discontinuous 

and irregular reflector interpreted as peat layers. The scarce penetration of the 

acoustic signal, due to the thicker sand body at the top, masks the underlying 

seismic unit. However, it is possible to recognize a 1.5 m thick basal unit which 

is bordered at the base by a couple of strongly discontinuous seismic reflectors 

(Fig. 5.3). 
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Tab.4 : Abundance of rock fragments. 

 

The RV_C deposit located at 26-32 m msl extends about 14 km EW, 4 

km NS and it is approximately 6 m thick. This deposits is characterised by 

different overlapping transparent units indicative of alternate sand bodies with 

regular and continuous reflectors representing peat or organic-rich layers. 

Moreover this deposit rests on the same couple of seismic reflectors that bound 

the RV_H deposit, respectively dated by Trincardi et al., (2011a) 27,947 and 

26,926 cal. yr BP (LGM deposits; Fig. 5.3). 

The RV_G deposit located at 30-31 m msl extends about 6 km EW, 3 

km NS and it reaches up to 3 m in thickness. It is characterized by an 

acoustically transparent unit, interpreted as sand portion, bordered by a 

discontinuous seismic reflector at the base (Fig. 5.3).  

The RV_A, RV_JC, RV_D and RV_M extend parallel to the present 

coastline at 20-24 m msl. The seismic profiles show the seafloor morphology 

consisting of ridges and troughs. The former are characterized by a transparent 

seismic facies interpreted as sand bodies with thickness up to 3.5 m, that rest 

on interbedded continuous and irregular reflectors respectively indicative of 

organic rich and clayey-silty layers (Fig. 5.3). These deposits are interpreted as 

a sand-waves system with the crests oriented NW-SE, formed during the last 

relative sea-level rise, as a result of reworking sediments belonging to a coastal 

lithosome (Correggiari et al., 1996b).These sand bodies reach up to 3 m in 

thickness. 
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The RV_B deposit located at 11-16 m msl extends about 18 km WE 

and 13 km NS. The seismic profiles highlight to the top a 4 m thick transparent 

seismic facies that rests on interbedded discontinuous and irregular reflectors 

(Fig. 5.3). Moreover, the southern side of the deposit is formed by a dune field 

due to the reworking of a coastal wedge during the last relative sea-level rise. 

 

 

Fig. 5.3: Example of some analysed seismic profiles. In blue are represented the semi-
transparent sand portion of the transgressive deposits, bordered at the base by strong and 
continuous high amplitude reflectors. The red dashed line is indicative of the same reflector that 
define the RV_ and RV_C base.  

 

5.2.5.2 Core analysis 

The seismic analysis was integrated with core analysis, in order to 

correlate the identified seismic facies with core sedimentary facies. Moreover, 

the core analysis allowed to recognize the more recent sand portion related to 

the last relative sea-level rise. The analysed cores, from 0.8 to 4.2 m long, 

consist of fine and very-fine sand.  

One schematic core representing the facies succession of this bodies is 

showeded in Fig.5.4 and its description and interpretation are considered 

indicative of a common observed sediment organization. The basal portion 

(Fig.5.4; A) is made off hard pale-grey clays separated by an erosional surface 
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by dark-grey clays (Fig.5.4; B) with organic matter remains and millimetric plant 

debris. This mud portion is characterized by alternating peat layers and 

scattered small sand pockets. The fauna of this portion is scarce but 

predominated by Cerastoderma glaucum, Ventrosia ventrose and Hydrobia 

indicative of a brackish back-barrier environment. The upper sediments (Fig.5.4; 

C), from 1 to 3.5 m thick, are characterized by very fine to fine sorted sand with 

scattered content of shell fragments and sporadic clay chips, this portion is 

truncated on the top by an erosional and irregular surface with abundant shell 

fragments. Thin layers of very-fine sand and silt (Fig.5.4; D) often rest on this 

erosional surface and are capped by a mud veneer. The core is usually capped 

by a thin layer of clay sediment (Fig.5.4; E). The sediments at the base of the 

core (Fig.5.4; A) are interpreted as low-stand deposits bordered at the top by a 

transgressive surface. The coarsening upward sediments, at the top of the TS, 

are indicative of paralic sediments (Fig.5.4; B-C), and in particular, the thicker 

sand body is considered a relict form of ancient shoreline partially preserved 

and capped by a ravinement surface (Rs). The sand portion on the top of the Rs 

represents marine sand (Fig.5.4; C) and is capped by the maximum flooding 

surface (MFS). The cores are generally characterized at the top by a thin layer 

of high-stand deposits represented by mud (Fig.5.4; E).  

 

Fig. 5.4: Example of one study core.  
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5.2.5.3 Compositional results 

About fifty sandy samples examined vary from fine to very-fine grained, 

with grains ranging from poorly to well rounded. The sediments analysed are a 

mixture of monocrystalline and polycrystalline terrigenous grains supplied in 

different percentages by trunk rivers and very small quantities of carbonate 

intrabasinal grains. For this reason, only the terrigenous fraction is considered 

in analysing our results. Data of Tab. 3 were elaborated to obtain the end-

members for the ternary diagram (Fig. 5.5) Q, F, L+CE, where Q indicates the 

total quartz, F the feldspars and L+CE the fine-grained lithic fragments (L) plus 

the extrabasinal carbonates (CE). Modal composition of all samples highlighted 

by classic triangle diagrams fall in the litharenitic field. The siliciclastic fraction 

varies from 10% to 85% and is characterized by a high percentage of quartz 

and a significant contribution of feldspar and volcanic and metamorphic rock 

fragments. The terrigenous carbonate fraction, as well as the siliciclastic 

fraction, range from 10 to 85% and consists of limestone and dolostone grains. 

In the siliciclastic fractions, quartz occurs both as monocrystalline and 

polycrystalline grains and as a phaneritic component in metamorphic and 

granitic rock fragments. Feldspar grains are commonly present as single 

crystals and, in a few cases, within coarse-grained rock fragments derived from 

magmatic rocks. Metamorphic rock fragments are represented by abundant 

micaschists, quartz-micaschists and schistose serpentinites. Volcanic rock 

fragments are characterized by felsic grains with microphenocrysts of quartz or 

feldspars and acid and glassy ground mass which are usually altered with 

abundant oxides. Phyllosilicates are present in a small percentage of white 

mica, biotite and chlorite. The other mineral class comprises garnets, pyroxene, 

epidotes, and amphiboles including alkaline ones. In the carbonate terrigenous 

fraction rounded grains of micritic limestone and single and polycrystalline 

dolomitic clasts are mainly present. The intrabasinal component is largely 

represented by fragments of molluscs and echinoids. Furthermore, Fig. 5.6 

highlights the percentage of the lithic component in relation to each deposit. The 

different types of rock fragments comprise both coarse and fine-grained lithics. 

In detail, metamorphic lithic fragments (M) range from 50 to 10%, volcanic lithic 

fragments (V) are relatively constant with maximum values reaching 16% and 

minimum values reaching 4%, sedimentary lithic fragments (S) range from 35 to 
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93%, and gneissic or granitic rock fragments (G) are rare due to the fine-size of 

the studied sand. The combination of bulk composition and lithic fragments 

analyses allowed us to distinguish three distinct petrofacies (Fig. 5.5; Fig. 5.6). 

Moreover, the composition of some present-day river supplies from literature 

(Gazzi et al., 1973; Marchesini et al., 2000; Monegato et al., 2010) are reported 

in Fig. 5.5 with the aim to compare our data with fluvial supplies. 

  

 

Fig. 5.5: Ternary diagram (A), F, L+CE (Quartz, Feldspar, Fine-grained ithic Fragments + 
Extrabasinal Carbonate). Identification of three different Petrofacies (Petrofacies I, II, III) and 
comparison with literature data (B).  

 

The mean composition for each deposit is reported in Tab. 5 with their 

main sedimentological characteristics. 

Tab.5 : Summary of the main sedimentary characteristics of each deposits. 

Deposit 
Depth of 
Water (m) 

Thickness of 
sand portion 

Sand % Mean composition Sedimentary Supplies 

RV_H 28-32 Up to 3.5 m 80-97 Q 61F 9L+CE 30 Po River Valley 

RV_C 26-32 Up to 2 m 75-97 Q 61F 13L+CE 26 Po River Valley 

RV_G 30-31 Up to 3 m 57-70 Q 37F 10L+CE 53 Hybrid 

RV_A 20-24 Up to 2 m 89-97 Q 27F 6L+CE 67 Hybrid 

RV_JC 20-24 Up to 2 m 93-97 Q 31F 7L+CE 62 Hybrid 

RV_D 20-24 Up to 1 m 80-98 Q 33F 5L+CE 62 Hybrid 

RV_M 20-24 Up to 1 m 85-93 Q 37F 5L+CE 58 Hybrid 

RV_B 11-16 Up to 4 m 70-98 Q 14F 1L+CE 85 Tagliamento R. 
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Petrofacies I (Q63 F11 L+CE26). This petrofacies, including all samples 

belonging to RV_C and RV_H bodies, shows a quartzolithic composition, with a 

quartz grain predominance and subordinate amounts of feldspar. The lithic 

fraction is characterized by a considerable variety of grains both coarse and 

fine-grained as micaschists, schistose serpentinite and volcanic grains with 

microphenocrysts. The carbonate terrigenous fraction always has values lower 

than 20%, with calcite clasts prevailing on dolomite ones. Furthermore, relative 

high amounts of heavy minerals characterize this petrofacies (Appendix 1). 

Moreover, the point-counting of the rock fragments emphasizes a 

predominance of metamorphic fragments (around 50%), with subordinate 

sedimentary (35%) and volcanic (16%) fragments (Tab. 4; Fig. 5.6). 

The composition and the lithic fragments analyses of the Petrofacies I 

suggest a supply mainly linked to the Po River input due to the presence of 

schistose serpentinites, a high content other minerals and among them the 

scattered presence of alkaline amphiboles. The Po River supply is also 

highlighted by the linear mixing model with R value higher than 0.950 both for 

RV_H and RV_C deposits (Tab. 6). Moreover, the comparison of our data with 

literature data (Gazzi et al., 1973; Marchesini et al., 2000) supports this 

interpretation.  

Petrofacies II (Q33 F7 L+CE60). This petrofacies shows a litharenitic 

composition characterized by lower a percentage of quartz compared to 

Petrofacies I but higher than Petrofacies III. The carbonate terrigenous fraction 

is characterized by both carbonate and dolostone grains with predominance of 

dolostone grains, whereas other lithic fragments are characterized by felsic 

volcanic and low-grade metamorphic grains (Appendix 1). Furthermore, the 

point-counting on the lithic fraction emphasizes high values (73%), but not 

comparable with Petrofacies III, of sedimentary fraction, and low values of 

metamorphic and volcanic fractions, both around 13 % (Tab. 4; Fig. 5.6). 

Moreover a small percentage of intrabasinal grains is present. The petrofacies II 

comprises all samples belonging to RV_G, RV_A, RV_JC, RV_D, RV_M 

deposits that are geographically located between the RV_B deposit belonging 

to the Petrofacies III and RV_H and RV_C deposits belonging to the Petrofacies 

I. The composition of this petrofacies suggests a hybrid composition deriving 

from a commingling of several river supplies, even confirmed by the linear 
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mixing model, highlighting Brenta and Piave River contributions for the RV_A, 

RV_JC, RV_D and RV_M deposits and Adige, Brenta and Piave River 

components for the RV_G body (Tab. 6). The low number of available samples 

does not permit a more precise source distinction.  

Petrofacies III (Q14 F1 L+CE85). This petrofacies highlights a litharenitic 

signature with carbonate fraction ranging from 60% to 87%, with a high amount 

of both dolostone and micritic limestone grains (Appendix 1). Other lithic 

fragments are represented by felsic volcanic rocks and by low-grade 

metamorphic rocks. In particular, the lithic component is characterized by 

significant values of sedimentary fragments and negligible values of volcanic 

and metamorphic fragments, whereas, quartz and feldspar are present in low 

percentages (Tab.4; Fig. 5.6). All samples belonging to the RV_B deposit mark 

this petrofacies for which the linear mixing model empathizes R value higher 

than 0.950 in relation to a Tagliamento River supply, possibly slightly affected 

by the Isonzo River input (Tab.6). Again, the comparison of our data with 

literature data (Gazzi et al., 1973; Monegato et al., 2010) confirms this 

interpretation, suggesting a Tagliamento River supply.  

 

 

Fig. 5.6: Lithic fragments percentage in relation to the three different petrofacies. S: sedimentary 
lithic fragments; G: granitic lithic fragments; V: volcanic lithic fragments; M: metamorphic lithic 
fragments.  
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Petrofacies I I II II II II II III 

Deposit RV_H RV_C RV_G RV_A RV_JC RV_D RV_M RV_B 

R value R=0.981 R=0.968 R=0.934 R=0.917 R=0.944 R=0.872 R=0.972 R=0.986 

Po R. 1 1 0 0 0 0 0 0 
Adige R. 0 0 0.4 0 0 0 0 0 
Brenta R. 0 0 0.4 0.6 0.5 0.2 0.2 0 
Piave R. 0 0 0.2 0.4 0.5 0.8 0.8 0 

Tagliamento R. 0 0 0 0 0 0 0 0.9 

Isonzo R. 0 0 0 0 0 0 0 0.1 

Tab.6 : Comparison among composition of each deposit with the fluvial sands according to the 
R mixing model. 

 

5.2.6 Discussion 

Results of this research permit to delineate the internal organization of 

several Holocene transgressive deposits located in the northern Adriatic Sea 

and the differences of their composition contribute to delineate a 

paleogeography scenario of the northern Adriatic Sea during the last sea-level 

rise. All the considered deposits have a litharenitic composition mainly 

characterized by different quartz percentages and lithic content. Taking into 

account both bulk composition and rock fragments analyses three petrofacies 

have been recognized, and considering the very short time interval between the 

oldest (RV_H) to the younger deposits (RV_B) it is possible to relate each 

petrofacies to different supplies.  

The RV_H and RV_C, belonging to the Petrofacies I are the oldest 

transgressive deposits among those here considered (Fig. 5.7). These two 

sedimentary bodies with positive bathymetry, consist of sand lenses on top and 

fine organic matter rich sediments at the base. In particular we focus on the 

uppermost sand units formed during the last relative sea-level rise. From 

petrographic results these deposits are referred to sediments furnished by the 

Po River even if are located northern than the present delta latitude. Thus, a 

presence of a paleo branch of the Po River, flowing more northward than the 

present has been suggested. This hypothesis is supported by different 

evidence. In particular, the two deposits were sedimented over a low gradient 

platform on which a slight morphological variation could cause a significant 

drainage shift. Moreover, the deepest area of the basin, during the last relative 

sea-level rise, was close to the NE Adriatic coast (Italy, Istria and Croatia 

coasts), due to a pronounced subsidence (Antonioli et al., 2009). Thus, it is 

possible to hypothesize a northeast Po fluvial trend, already pointed out in a 

transgressive barrier lagoon system (-32 m msl) south of the actual Po Delta 
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belonging to a previous phase of sea-level rise (Moscon et al., 2015). 

Furthermore, a northern paleo branch of the Po River has been also suggested 

by results of other authors (e.g. Castiglioni, 1978; Piovan et al., 2010). 

The RV_G and RV_A, RV_JC, RV_D, RV_M deposits, belonging to the 

Petrofacies II, are isolated patches showing a longshore trend similar to the 

modern sea-level high-stand deposits (Fig. 5.2). Apart from the RV_G the other 

sedimentary bodies belonging this petrofacies are relatively small compared 

with the others. They are bounded to the base by peat layers and are 

characterized by sandy made of fine to medium sand. These deposits point out 

two different sea-level phases (subsequent to the RV_H and RV_C drowing; 

Fig. 5.7), and they record two different coastal lithosomes that mark the last 

steps of the Holocene transgression. The mixed composition, highlighted by 

petrographic results, is connected to sediment dispersion linked to long-shore 

drifting marine currents during the formation of the ancient coastlines. In 

particular, the linear mixing model highlights variation in dominant component 

moving from W to E. In a more recent coastline, represented by RV_A, RV_JC, 

RV_D and RV_M deposits, a decrease of the Brenta River component was 

observed, from W to E, associated with an increase of the Piave River 

component. Furthermore, the more recent coastal lithosome has never been 

affected by the Tagliamento sediments. These results may suggest a dominant 

clockwise marine current, with sediments moving longshore from W to E 

opposite to the present. 

The RV_B, belonging to the Petrofacies III, is a transgressive deposit at 

15 m msl in front of the modern Tagliamento mouth, and it is the younger 

sedimentary body studied in this work. This transgressive body, previously 

studied by Gordini et al. (2002), Fontana et al. (2004) and recently by Zecchin 

et al. (2015), has a top portion of sands interpreted as a delta front body and a 

basal portion of laminated silt and clay layers alternated with silt-sand layers 

interpreted as a prodelta facies (Zecchin et al., 2015). This deposit has been 

referred to as an ancient wave-dominated delta of the Tagliamento River 

developed when the sea-level was lower than the present one and probably 

drowned before 7 cal. yr BP (Zecchin et al., 2015). Our petrographic 

interpretation results support the previous interpretation focusing on a local area 

connected to its ancient coastline. 
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Fig. 5.7: Simplified section of different phase of the last relative sea-level rise in relation to the 
studied transgressive deposits. Location of the section in Fig. 5.2. 

 

5.2.7 Conclusion 

Sand petrography has been the proper approach in order to highlight 

different petrographic supplies in the transgressive deposits drowned and 

preserved in the northern Adriatic shelf. On the base of core analyses, 

geographic position and composition, a possible scenario for the northern 

Adriatic Sea, during Holocene transgression, is proposed. In detail, the 

petrographic analysis allowed to identify three petrofacies reflecting distinct 

supplies related to different phases of the last relative sea-level rise.  

Considering the literature data focusing on present fluvial sand 

composition and that of the present northern Adriatic Italian beaches, a clear 

correlation, with fluvial supplies is delineated. Although the lack of radiocarbon 

dating didn’t allow us to accurately constrain these transgressive deposits, it is 

possible to assume that the paleo drainage during the sedimentation of the 

studied transgressive deposits was similar to the present. Moreover, the 

petrographic analysis allowed to highlight some remarks: 

 RV_H and RV_C transgressive deposits (Petrofacies I) record two 

wrecks of coastal lithosome indicative of two close sea-level rising 

phases; furthermore, considering that their sand composition suggests a 

Po River supply, they testify a potential northward shifting of a paleo Po 

trunk River when the sea level was 30 m below the present one. 

 RV_G and RV_A, RV_JC, RV_D, RV_M deposits (Petrofacies II) are 

indicative of two coastal lithosomes, thus recording two different phases 

of the sea level rise. Their hybrid composition reveals different river 

supplies from Eastern Alpine rivers, moreover, the linear mixing model 
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analysis emphasizes variations in the Brenta and Piave Rivers 

contributions for the younger lithosome, and predominant Adige and 

Brenta River contributions for the ancient fossil lithosome.  

 RV_B deposit (Petrofacies III), located in front of the present 

Tagliamento River mouth, and previously interpreted as a fossil 

Tagliamento delta (Gordini et al., 2002; Fontana et al., 2005 and Zecchin 

et al., 2015) points out an Eastern Alpine supplies mainly referable to 

Tagliamento River and in a small amount with a signature Isonzo River. 

In particular, our new petrographic results confirm the previous 

interpretation.    

 

Finally, the results of this study can be useful in order to better identify 

the exploitable offshore sand deposits, for beach nourishment, in relation to 

different characterization of beache affected by erosion and sediment removal.  
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 Appendix 1: Petrographic features of the analysed sand. Petrofacies I (1, 2, 3, 4 photos) has a 
quartzolithic composition, note the presence of heavy minerals. Petrofacies II (5,6 photos) 
shows a litharenitic composition. Petrofacies III (7, 8 photos) shows a litharenitic composition 
with carbonate fraction dominant.  
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CHAPTER 6 

XRF CORE ANALYSIS 

6.1 Overview 

This chapter is a journal paper in preparation. In this chapter, XRF core 

scanner analysis is carried out in mixed sediments cores in order to identify 

peculiar geochemical proxies that can support environmental interpretation, 

geochemical characterization of the sediments and eventually climatic changes.  

 

6.2 Literature 

Since 1970 the X-Ray Fluorescence analysis has been a technique for 

analysing marine sediments. In particular, the XRF Core Scanner is a device 

built for high resolution and non-destructive determination of the chemical 

composition of sediment core samples, split in length. With this tool it is possible 

to obtain a continuous record along the sediment section in order to highlight 

the variation of the sediment’s property during time. 

In the last 20 years, XRF core scanner has been used in paleo 

environmental research worldwide. High resolution studies on continuous 

sedimentary archives are crucial for understanding climate change on seasonal 

to millennial scales (Rothwell and Croudace, 2015). A major application of XRF 

scanning of marine corers has been to determine changes in sediment 

composition, largely relating to climatic changes and glacial-interglacial cycles 

(Moreno et al., 2002; Lebreiro et al., 2009).  

In particular, as the XRF analysis supplies a continuous data range 

along the split cores, its use has been applied in a wide variety of 

marine/lacustrine science applications summarized by Rothwell and Croudace, 

(2015). 

This technique allows:  

 description and characterization of cores; 

 evaluation of climatic changes that are reflected in CaCO3 or Fe 

fluctuations; 
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 sedimentological applications, as identification of ash layers, turbidites, 

ice-rafted debris and earliest stages of marine influences; 

 studies of sediment provenances based on chemical differences in 

source areas; 

 diagenetic studies; 

 environmental impact studies. 

 

Rothwell and Croudace, (2015) have reported that as the XRF core 

scanner provides rapid acquisition of high-resolution elemental dataset it has 

often been the first analytical tool used after opening and splitting cores. But the 

lack of standardised protocol for parameters setting, may reduce data quality 

compared to what might be achieved with chemical analyses of a smaller 

number of samples. Accordingly with this observation, it is fundamental to 

identify geochemical proxy to obtain meaningful paleoclimate data. As, Ca, Fe, 

Sr, K and Ti are commonly occurring elements in marine sediments, they are 

extensively used as tracers in environmental reconstructions (Gebhardt et al., 

2008). Fe, Ti, Si, K and Al occur mainly in terrigenous silicates and oxides, they 

are indicative of detrital load derived from the erosion of continental rocks and 

they are indicative of sediment transport from land to sea. Si and Ca may be 

supplied by surface water productivity and are volumetrically substantial 

(Rothwell and Croudace, 2015). The two main parameters measured are Fe, as 

a proxy for terrigenous input (Vidal et al., 2002; Grutzner et al., 2005), and Ca, 

as measure of biogenic production (Solignac et al., 2011). Moreover, Rotweel et 

al. (2006) pointed out that high values in Si, Al, K and Ti correspond to glacial-

fluvial sandy mud, whereas a decrease in Si, AL, K, Ti and an increase in S 

correspond to peat development. Furthermore, fluctuations of Ca and S suggest 

an oscillating coastline position. The authors conclude that transgressive 

sediment characteristics are most precisely highlighted by XRF core scanning 

results, through increase of K, Ti, Si. Furthermore, a number of factors related 

to the sediment matrix, such as water content, organic matter, grain size, 

mineral crystallinity and porosity may have a significant impact on the 

production and the detection of fluorescent photons (Weltje and Tjallingii, 2008). 

Results are usually presented as spectral peak areas or counts per second 

(cps) and can be calibrated to concentration. But the use of element ratios and 
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the plotting of XRF curves (in cps), together with discrete sample analyses 

obtained using destructive techniques, such as inductively-coupled plasma or 

other conventional techniques are two ways to improve the results (Francus et 

al., 2009). The importance of using the element ratios was verified by several 

authors in the various applications. 

 

Major elemental proxies and some relative elemental ratio grouped and 

described by Rothwell and Croudace, (2015) are listed below: 

 

Calcium 

Ca/Fe, Ca/Ti, Ca/Al 

May be biogenic or detrital, although biogenic sources have a 

volumetrically greater importance. Calcium content is a recognised proxy for 

oceanic productivity, and its variation typically reflects CaCO3 stratigraphy in 

pelagic cores. This component is generally lower during glacials and higher 

during interglacials (Arz et al., 2003; Rooij van et al., 2007; Gebhardt et al. 

2008). Thus, Ca is commonly an effective indicator for climate and efficient tool 

for establishing stratigraphic frameworks. However, Ca variation, particularly in 

marginal environments, may reflect dilution by terrigenous material rather than 

productivity changes.  

Ca/Fe and Ca/Ti are useful proxies for assessing relative changes in 

biogenic versus lithogenic sedimentation, in particular Ca reflects marine 

production while Fe and Ti reflect terrigenous input.  

Ca/Al represents the biogenic/detrital ratio so is a potential proxy for 

measuring changes in terrigenous sediment contribution too.  

 

Strontium 

Sr/Ca 

Sr is an alkaline earth metal fixed by calcifying organisms at same time 

as Ca. Hence Sr is a marker for biogenic origin. As Ca can be supplied from 

terrigenous sources (e.g. feldspars and clays) co-variation of Ca and Sr 

suggests Ca mainly sourced from biogenic CaCO3. 
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Sr/Ca is used as proxy for aragonite, thus enhanced Sr may indicate 

presence of high-Sr aragonite which requires a shallow-water source (Rotweel 

et al., 2006).  

 

Iron 

Fe/Al 

Is the most common element on Earth, and the fourth most abundant 

element in the crust, after O, Si and Al. In marine sediments, Fe commonly 

highlights changes in carbonate/clay ratios. Fe variation is generally related to 

sediment’s terrigenous fraction and or dilution of CaCO3.  

Fe, like Ti, has been widely used to document variations in terrigenous 

sediment delivery. As redox-sensitive element, Fe can identify secondary 

diagenetic features. Considering that Fe and Ti are closely related in 

terrigenous fractions, but Fe is partly prone to diagenetic remobilisation in pore 

waters and Ti is inert, good correlation of Fe to Ti suggests little diagenetic 

influence. Elevated Fe/Al, with high S, is indicative of anoxic bottom water 

(Spofforth et al., 2008). 

 

Aluminium 

Al/Si 

Al is the most abundant metal in the Earth’s crust and third most 

abundant element, after O and Si, but too reactive to be found pure, and is 

instead found as oxides and silicates. Aluminosilicates are a major component 

of kaolin (one of the most common clay minerals), other clay minerals and 

zeolites. Other aluminosilicate minerals include andalusite, kyanite, sillimanite, 

beryl, garnet, spinel, and turquoise.  

Al/Si has been used as a proxy for chemical weathering, in particular, 

decreases in Al/Si is indicative of less chemical weathering. 

 

Silicon 

Si/Sr 

Measured by mass, Si makes up 27.7 % of Earth’s crust and is the 

second most abundant element, only O having greater abundance. Si may be 

detrital, derived from mechanical weathering of crustal rocks, or biogenic, 

derived from siliceous phytoplankton (diatoms, silicoflagellates), protozoans and 
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protists (radiolarians and ebridians) and sponge spicules. Moreover, quartz 

(SiO2) is a major component of sand and silt derived through physical 

weathering of continental crust. Si may be detrital, derived from mechanical 

weathering of crustal rocks, or biogenic, derived from siliceous phytoplankton 

(diatoms, silicoflagellates), protozoans and protists (radiolarians and ebridians), 

plant phytoliths, some scolecodonts (polychaete worm jaws) and sponge 

spicules. 

Like Fe and Ti, Si used as a proxy for terrigenous sediment delivery 

(Blanchet et al. 2007; Kleiven et al. 2007). Si/Sr used to identify layers poor in 

biogenic carbonate and relatively rich in detrital silicates (quartz, feldspar etc.; 

Hodell et al., 2008). 

 

Titanium 

Ti/Ca 

Ti is conservative element that generally varies directly with the coarse-

grained terrigenous fraction. A common constituent of rocks, such as gneisses 

or schists, it primarily indicates a terrigenous continental source. Moreover Ti 

occurs in all minerals commonly associated with sand and silt fractions. Ti is 

widely used to record terrigenous sediment delivery, it commonly co-varies with 

Fe, but is arguably a better proxy for terrigenous sediment delivery than Fe as it 

is redox-insensitive (Calvert and Pedersen 2007; Yarincik et al. 2000). 

Ti/Ca records relative variation of terrigenous input and marine 

carbonate (e.g. Bahr et al. 2005, 2008; Hoang et al. 2010). It has been used to 

record changes from fluvial to marine deposits, for example, in incised-valley-fill 

sediments (Tjallingii et al. 2010). 

 

Potassium 

K/Ti 

Is generally associated with terrestrial siliciclastics and potassium 

feldspar.  

K/Ti has been used to emphasize provenance differences of detrital 

material tracing the relative importance of both terrigenous sources (Diekmann 

et al. 2008; Richter et al. 2006), with the proxy being useful with sediment 

supplied largely by weathering of schists and slates. 
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Barium 

Ba/Al 

Ba is important proxy for export paleo productivity. Its relationship to 

productivity is well established. Relatively high concentrations of tiny Ba-rich 

particles (< 2 μm in diameter) occur in near-surface waters (Dehairs et al. 1980 

and others) especially in areas of high productivity (Dehairs et al. 1992; 

Cardinal et al. 2005). This Ba is commonly associated with biogenic aggregates 

and constitutes most of the suspended Ba in water column. 

Ba/Al is used to determine the productivity. Productivity often strongly 

modulated by climate. For example, Jaccard et al. (2005) interpreted low 

biogenic Ba at glacial maxima at ODP Site 882 (N Pacific Ocean) as reflecting 

decreased nutrient supply. 

 

Sulphur 

Fe/S 

S is closely linked to organic matter with S residing in biomass of 

marine plants and mineralised S in their dead remains. Within sediments 

organic S may be oxidised to sulphate and returned to seawater, or buried as 

organic S, sulphate or sulphide, through bacterial reduction (Ivanov 1981). S, 

thus serves as proxy for oxygen depletion in bottom water (Harff et al. 2011). 

High S contents, together with high Fe/S ratio, indicate reducing conditions.  

 

Bromine 

Br does not occur naturally but occurs as bromide compounds in diffuse 

amounts in crustal rocks. Terrestrial organic matter is comparatively poor in Br, 

then Br is widely used to quantify marine organic matter and related productivity 

(e.g. Caley et al. 2011; Ren et al. 2009; Ziegler et al. 2008, 2009), in order to 

discriminate marine and freshwater conditions. 
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6.3 XRF Avaatech core scanner analysis  

The main goal of this study expected to investigate cores collected in 

the northern Adriatic Sea in some deposits that have been already 

characterized with different methods, such as petrographic analysis and seismic 

facies analysis. Being a previous knowledge of the sedimentary bodies under 

examination, an interpretative approach has been attempted, even if the 

analysed cores mainly consist of fine-sand sediments that generally cause a 

signal-noise increasing. This innovative methodology, tested in mixed 

sediments, was applied to assess whether the obtained data could be used for 

supporting the environmental interpretation, geochemical characterization of the 

sediments and eventually the recognition of climatic changes.  

The selected cores, are RV08_B138, RV08_A80, RV11_G96, 

RV11_H113 and RV11_C34 (Fig. 6.1), in particular, these cores were collected 

during two oceanographic cruise in 2008 and in 2011 in order to identify the 

quality and the amount of sand per transgressive studied deposit north of the 

Po River delta. The cores have been collected with a vibrocorer, having a length 

from 2 to 4 m, and are characterized by up to 1 m of fine to very fine sand. 

Furthermore, two cores, AR00_C15 and AS14_14, belonging to a transgressive 

deposit south of the Po delta (described in Moscon et al., 2015) were selected 

for the XRF analysis. The AR00_C15, collected in 2000, is characterized by 100 

cm of sand and 230 cm of organic-rich clay and peat layers. The AS14_14, 

collected in 2014, is characterized by 30 cm of sand at the top and 430 cm of 

clay and peat layers. Thus these two cores were investigated as one composite 

core with at the top AR00_C15, in order to highlight elements and ratios 

response in correspondence of a transitional environment.  

Taking as references the elemental proxies, described above, some 

considerations were highlighted and in particular, where possible; elemental 

ratios with Al and Ti as denominators, were used rather than the direct counts 

(other elements and geochemical ratios are present in the Appendix B). 
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Fig. 6.1: Cores location and related seismic profiles of the analysed cores with the XRF core 
scanner. In correspondence of the AR00_C15 and AS14_14 are traced the key surfaces 
highlighted in Moscon et al., 2015; (zoomed image at the end of the thesis ).  
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RV08_B138 

The RV08_B138 was cored in the RV_B area up to the depth of 420 cm 

and it is characterized by fine and very-fine sand, with presence of shell 

fragments in the first 50 cm, and significant amount of silt in the basal portion. 

The RV_B deposit, previously studied by different authors (Gordini et al., 2002; 

Fontana et al., 2006; and recently by Zecchin et al., 2014), was interpreted as a 

delta front body in the top portion, shifting towards prodelta facies in the basal 

portion. The XRF analysis highlights three different units, marked by variation in 

ratio of selected elements established and used as geochemical proxies. (Fig. 

6.2). The most recent unit, from 0 to 40 cm, is characterized by a noise signal 

with higher values of Ca/Ti, Ca/Fe and Ba/Al compared to the lower unit (middle 

unit). The middle unit, from 40 to 320 cm, in characterized by a stable pattern, 

whereas the deeper unit, from 320 to 420 cm, is characterized by a significant 

variation in chemical values response. Ba/Al, Br/Al and Ca/Al ratios, used as 

proxies for the paleo productivity, show high values corresponding to the upper 

and the basal unit. Si/Ti, Ca/Ti, Ca/Fe ratios, used as indicator of terrestrial 

influence, highlight constant values in the middle unit and low values in the 

deeper unit. Moreover the deeper unit is characterized by an increase in Fe/Al 

and S, probably related to reduce condition and high values in the ratio Sr/Ca 

may be indicative of shallow water environment (cf. Rothwell and Croudace, 

2015; Fig. 6.2). Considering the known environment of sedimentation and the 

results obtained by the XRF analysis, the RV08_B138 core records three 

different sand units belonging to marine environment. In particular, the basal 

unit records a marine sand unit, indicative of shallow water environment 

highlighted by high values of Sr/Ca ratio, with high values relating to the 

productivity proxies and low values relating to terrestrial influence proxies. 

Moreover, the increasing Fe/Al values suggest a suboxic environment. The 

middle sand unit highlights a deepening of the system, and it is characterized by 

significant values associated to terrigenous supply proxies. Thus, this sand unit 

records the system response to the relative sea-level rise, due to a significant 

terrigenous supply allowing the deposit aggradation. The upper sand unit 

records the more recent marine units strongly influenced by marine processes, 

as documented by very low values associated to terrigenous supply proxy and 

high values related to the productivity proxies. 
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RV08_A80 

The RV08_A80, belonging to the RV_A area, is a 300 cm long core and 

it is characterized by a top portion (0-200 cm) of fine transgressive sand with 

about 14% of medium sand, that rests on 100 cm of stiff clay and peat layers. In 

particular, the transgressive deposit of RV_A records asymmetric sand waves, 

with a westward steep side. This is elongated NNW-SSE due to reworking of 

coastal lithosome during the last phase of the Holocene sea-level rise 

(Correggiari et al., 1992; 1996b). In this core two units were identified according 

to the significant variation in the signal response which corresponds to the 

lithological change (Fig. 6.3). Regarding the upper sand portion, the XRF 

analysis did not show evident variation, however, some consideration, taking as 

reference the productivity and terrigenous proxies, were carried out. The Ba/Al 

highlights values comparable to the marine sand portion of the RV11_G96 and 

RV11_H113 cores. Moreover, the terrigenous indicators, show constant values 

but no evidence in variation of sediment supply was recorded. The signal 

homogeneity, both in Ba/Al, K/Ti ratio and in Al/Ti, probably is due to the strong 

reworking of the sediment in a starved area. Only Ca/Fe records a circa-

sinusoidal trend that could be associate to different accretion phases during the 

development of the sand waves (Fig. 6.3). Concerning the basal portion, it is 

characterized by 30 cm of bioturbated organic silty-clay with bioclasts, that rests 

on a peat layer of 20 cm on top a stiff ochraceous clayey layer until the end of 

the sampled section. The lithological change between sand and clay show a 

significant decreasing in Ca, Ca/Fe, Ca/Al, this abrupt anti-correlate change is 

associated to glacial-interglacial transitions (Rothweel et al., 2006), moreover 

the peat layer emphasizes the negative peak, highlighting values close to 0 

(Fig. 6.3). Therefore, the XRF analysis on RV08_A80 highlighted a sand portion 

with constant values both in productivity and terrigenous supply proxies due to 

deep reworking. A basal portion, that marks conspicuous changes in lithology 

and elemental response, is indicative of a continental environment formed 

during the LGM. 
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RV11_G96 

The RV11_G96, belonging to the RV_G area, is 248 cm long and is 

characterized by a coarsening upward trend from very-fine to fine sand. 

Moreover, the upper portion is characterized by shell fragments, whereas the 

basal portion, about 2 meters below the sand deposit, is characterized by thin 

organic-rich layers alternating with sandy layers. Integrating the study of 

different proxies, three sand units seems to be recorded (Fig. 6.4). In particular, 

Ba/Al, Br/Al and Ca/Al were chosen as productivity proxy, whereas K/Ti, Al/Ti 

and Si/Ti as proxy indicative of terrigenous supply and variation in terrigenous 

material. The productivity proxies recorded high values at the top, from 0 to 10 

cm. This thin layer is associated to marine sand, whereas, considering the 

terrigenous proxies, they heavily increase from 85 cm to the base of the core 

and this basal unit is characterized by sorted sand with high values of K and Si. 

The middle unit, from 10 to 85 cm, shows high values in Ba/Al, but not high 

enough to compare it with the upper unit, while K and Si values are lower than 

in the basal unit. However, this unit is associated to marine sand because its 

Ba/Al values are comparable with Ba/Al values displayed by core RV11_H113. 

Thus, the middle unit, can be merged with the upper unit even if it could record 

an increasing in terrigenous supply.  

RV11_C34 

The RV11_C34, belonging to the RV_C area, is 210 cm long and is 

characterized by a top portion (0-139 cm) of fine sand, that rests on 70 cm of 

clay and organic-rich layers. Considering that the RV11_C34 is characterized 

by different sediment grainsize, obviously, the XRF analysis highlights two 

easily recognizable units related to the sand portion and the clay and organic-

rich layers portion, respectively at the top and at the base of the core (Fig. 6.5). 

Regarding the sand portion, especially Br/Al, used as proxy for the productivity, 

allowed to distinguish two different units (Fig. 6.5). The upper one, from 0 to 13 

cm, with high values of Ba/Al, is indicative of marine sand, therefore affected by 

marine processes; while the basal unit, from 13 to 139 cm, with relatively high 

K/Ti and Al/Ti highlighting the terrestrial influence, is indicative of sorted sand 

with bioclastic fragments. Concerning the basal portion, it is characterized by 10 

cm of silty-clay sediment, 6 cm of pale-clay layer and about 50 cm of alternating 

organic rich and peat layers. A significant peak, with high values of Ca, Ca/Fe 
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and Ca/Ti is observed in correspondence of the pale-clay layer (Fig. 6.5). 

Considering that abrupt anti-correlate changes in Ca, Fe and Ti are indicative of 

glacial-interglacial transitions (Rotweel et al., 2006), the recorded peak, 

associated to change in lithology and sediment lightness, could suggest 

continental sediments formed during the LGM.  

RV11_H113 

The RV11_H113, belonging to the RV_H area, is 320 cm long and it is 

characterized by very-fine sand with shell fragments in the upper portion and by 

fine sand in the basal portion. The XRF analysis emphasizes two different sand 

units (Fig. 6.6), that were not highlighted by previous analyses (core description, 

grain-size analysis, petrographic analysis, seismic facies analysis). The Ba/Al, 

used as proxy to determine the productivity, together with Br/ Al, point out two 

different units, the upper one from, 0 to 120 cm, and the basal one, from 120 to 

320 cm. In particular, this strong variation highlights a marine sand unit at the 

top and a sorted sand with bioclastic unit at the base that records a different 

environment of sedimentation. Moreover, other elemental ratios highlight the 

same two units. Si/Ti, K/Ti and Al/Ti, that are proxy for terrigenous sediment 

delivery and are used to emphasize provenance differences of detrital material, 

highlight low values in correspondence of the marine unit and higher values in 

correspondence of the sorted sand unit (Fig. 6.6). Furthermore, Si/Ti ratio, in 

core RV11_H113, increasing in correspondence of the sorted sand unit, 

supports the previous results of petrographic analysis of the entire transgressive 

deposit, highlighting a strong terrigenous input controlled by high amount of 

quartzolithic supply. 

  



113 
 

 

F
ig

. 
6

.4
: 

S
ta

n
d
a
rd

 g
e

o
c
h
e

m
ic

a
l 
ra

ti
o
s
 h

ig
h

lig
h
te

d
 b

y
 t

h
e
 X

R
F

 c
o
re

 s
c
a
n
n

e
r 

in
 o

rd
e
r 

to
 d

e
s
c
ri
b
e
 t

h
e
 R

V
1

1
_
G

9
6
 c

o
re

. 
B

a
/A

l 
a
n

d
 B

r/
A

l 
a
re

 u
s
e
d
 a

s
 p

ro
d

u
c
ti
v
it
y
 

p
ro

x
ie

s
, 
w

h
ile

 S
i/
T

i,
 A

l/
T

i 
a

n
d
 K

/T
i 
a
re

 u
s
e
d

 a
s
 t
e
rr

ig
e

n
o
u
s
 s

e
d

im
e
n
t 
s
u

p
p
ly

 p
ro

x
ie

s
. 
T

w
o
 d

if
fe

re
n
t 

u
n
it
s
 a

re
 d

is
ti
n
g
u

is
h
e
d

: 
a
t 

th
e
 t

o
p
 a

 m
a
ri
n

e
 u

n
it
 w

it
h
 a

 s
tr

o
n
g
 

p
e
a
k
 i
n
 t
h

e
 f

ir
s
t 
c
e
n
ti
m

e
te

rs
 o

f 
th

e
 c

o
re

, 
a
n
d
 a

t 
th

e
 b

a
s
e
 a

 s
o
rt

e
d
 s

a
n

d
 u

n
it
. 



114 
 

 

F
ig

. 
6

.5
: 

S
ta

n
d
a
rd

 g
e

o
c
h
e

m
ic

a
l 
ra

ti
o
s
 h

ig
h

lig
h
te

d
 b

y
 t

h
e
 X

R
F

 c
o
re

 s
c
a
n
n

e
r 

in
 o

rd
e
r 

to
 d

e
s
c
ri
b
e
 t

h
e
 R

V
1

1
_
C

3
4
 c

o
re

. 
B

a
/A

l 
is

 u
s
e

d
 a

s
 p

ro
d
u
c
ti
v
it
y
 p

ro
x
y
, 
w

h
ile

 

A
l/
T

i 
a

n
d
 K

/T
i 
a
re

 u
s
e

d
 a

s
 t

e
rr

ig
e
n

o
u
s
 s

e
d

im
e
n
t 
s
u

p
p
ly

 p
ro

x
ie

s
. 

M
o
re

o
v
e
r,

 C
a
, 
C

a
/F

e
 a

n
d

 C
a
/T

i 
e

m
p
h

a
s
iz

e
 a

 s
tr

o
n
g
 p

e
a
k
 r

e
la

te
d

 t
o
 a

 p
a

le
-c

la
y
 l
a
y
e
r.

 I
n
 

p
a
rt

ic
u

la
r,

 t
h
re

e
 d

if
fe

re
n
t 

u
n

it
s
 a

re
 i
d
e

n
ti
fi
e

d
: 
a

 m
a
ri

n
e
 u

n
it
 a

t 
th

e
 t

o
p
, 

a
 s

o
rt

e
d

 s
a
n

d
 u

n
it
 i
n
 t

h
e
 m

id
d
le

, 
a

n
d
 a

 c
o
n
ti
n
e
n

ta
l 
(L

G
M

 d
e
p
o
s
it
) 

u
n
it
 a

t 
th

e
 b

a
s
e
. 

 



115 
 

 

F
ig

. 
6

.6
: 

S
ta

n
d
a
rd

 g
e

o
c
h
e

m
ic

a
l 
ra

ti
o
s
 h

ig
h

lig
h
te

d
 b

y
 t

h
e
 X

R
F

 c
o
re

 s
c
a
n
n

e
r 

in
 o

rd
e
r 

to
 d

e
s
c
ri
b
e
 t

h
e
 R

V
1

1
_
H

1
1
3
 c

o
re

. 
B

a
/A

l 
a

n
d
 B

r/
A

l 
a

re
 u

s
e
d
 a

s
 p

ro
d
u
c
ti
v
it
y
 

p
ro

x
ie

s
, 
w

h
ile

 S
i/
T

i,
 A

l/
T

i 
a

n
d
 K

/T
i 
a
re

 u
s
e
d

 a
s
 t
e
rr

ig
e

n
o
u
s
 s

e
d

im
e
n
t 
s
u

p
p
ly

 p
ro

x
ie

s
. 
T

w
o
 d

if
fe

re
n
t 

u
n
it
s
 a

re
 r

e
c
o
g
n

iz
e
d
: 

a
t 

th
e
 t
o

p
 a

 m
a
ri

n
e
 u

n
it
, 
a

t 
th

e
 b

a
s
e

 a
 

s
o
rt

e
d
 s

a
n
d

 u
n

it
. 

 



116 
 

The transgressive deposit south of the Po delta was investigated with 

the cores AR00_C15 and AS14_14, that can be composed together in order to 

identify the geochemical behaviour related to a transitional environment. This 

deposit, considered in detail in Moscon et al. (2015), is formed by a paralic unit 

at the top, and three transitional units at the base. The top unit corresponds to a 

barrier lagoon environment, characterized by a sorted sand portion and basal 

mud and organic-rich layers. The lower units are indicative of lagoon and delta 

plain environments, mainly characterized by clay sediments and bordered by 

peat and organic-rich layers. Moreover, this transgressive deposit is delimited at 

the base by the transgressive surface which marks a strong variation in 

depositional environments. In this case, the XRF analysis mainly focus on the 

transitional sediments recorded below to the sand portion, in order to identify a 

possible correlation between transgressive units.  

AR00_C15 

The AR00_C15 is 330 cm long and it is characterized at the top by a 

thin layer of clay sediment that rests on 90 cm of fine sand, and a 220 cm long 

basal portion of clay and peat layers. The thin layer of clay sediment at the top 

is indicative of high-stand deposit and, below this unit, the XRF analysis 

highlights two main units forming the sand portion and four main units forming 

the basal clay and the peat layers portion (Fig. 6.7). Considering the sand 

portion, Ba/Al and Ca/Fe productivity proxies record higher values at the top, 

from 10 to 40 cm, that are indicative of marine sand. The terrigenous proxies, 

Si/Ti Al/Ti and K/Ti, have high values in correspondence of the basal sand unit, 

even if the ratio decrease downward due to the episodic deposition of organic 

matter. This unit is representative of paralic sand affected in the basal portion 

by the variation in lithology. Regarding the four units identified below to the sand 

body, they are bounded by peat layers, that record low values of Ca/Ti and 

Ca/Fe and high values of Fe/Al, S and Sr/Ca (Fig. 6.7). The Ca/Fe, in this case, 

was the more suitable proxies showing relatively high values in correspondence 

of the clay layers and low values in correspondence of the underlying peat 

layers.  
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 AS14_14 

The AS14_14, belonging to the same transgressive deposit of 

AR00_C15, has a length of 455 cm and it is characterized by 30 cm of fine 

sands that rest on alternating peat and clay layers. This core was collected in a 

dragging area, about 2 km south of the AR00_C15 core, in order to reach the 

base of the transgressive deposit. The core AS14_14 is characterized by a 

record similar to AR00_C15, but reaches deeper sediments. In order to 

compare AS14_14 with AR00_C15, Ca/Fe, Sr/Ca and Fe/Al were analysed 

(Fig. 6.8). Fe/Al and Sr/Ca, as in AS14_14, highlight significant peak in 

correspondence of the peat layers, and Ca/Fe allowed an optimal correlation 

with AR00_C15 insofar as records relatively high values at clay layers and low 

values at peat layers. Moreover, at the basal portion of the core, abrupt and 

anti-correlated peak, related to stiff clay sediment, was observed. This 

significant peak highlights a different environment of sedimentation connected 

to the transition from glacial to interglacial conditions. The basal stiff clay is 

indicative of a continental environment formed during the LGM, whereas the 

whole AS14_14, except the basal portion, and the AR00_C15 are indicative on 

a transitional environment formed during the last transgressive cycle.  
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The XRF analysis, on AR00_C15 and AS14_14, allowed to clearly 

identify the geochemical variation connected with different environment of 

sedimentation related to the transition from glacial to interglacial conditions. 

Moreover, as described in Moscon et al., (2015), this method allowed to 

recognize the four units forming the deposit on the base of the geochemical 

variations. In particular, this transgressive deposit is characterized by a marine 

sand unit at the top that rests on paralic sediments formed by a sand unit 

indicative of beach environment and basal clay and peat layers unit indicative of 

lagoon environment. Below the paralic portion three different units were 

distinguished. These units, recording transitional environment of alluvial plain 

and lagoons, are characterized by clay sediments bordered at the top by peat 

and organic rich layers.  

Thus, this innovative method, together with core facies analysis, 

allowed to identify the appropriate proxies in order to highlight transitional 

environments formed during the last relative sea-level rise and discriminate 

them by continental deposits. Moreover, Ca/Fe, Fe/Al and Sr/Ca emphasized 

different transitional units, whereas Ca/Fe proxy was utilized to identify strong 

geochemical variation in relation to the transition from glacial to interglacial 

conditions. 

 

6.4 Geochemical proxies in the northern Adriatic Sea 

The XRF core scanner analysis gave new interesting results in order to 

identify the proper proxies for the geochemical characterization of transgressive 

environments in the northern Adriatic Sea. The more significant elements and 

ratios were highlighted, both to describe the upper sand portion and the basal 

clay and organic rich layers portion. In particular for the sand portion, the most 

important results were emphasized by the productivity proxy that allow to 

distinguish marine sand from sorted sand. Ba/Al points out the best response, 

recording high and similar values per each sand portion analysed, in 

correspondence to the marine sand. Especially, Ba/Al ratio highlights the sand 

portions affected by marine processes, accordingly, the higher values are 

related to water/sediment interface. Concerning the terrigenous proxy, Al/Ti, 
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K/Ti and Si/Ti highlighted significant results. They generally mark increasing 

values in correspondence of the sorted sand portions, moreover their values 

varies in relation to the changes in terrigenous supply. Below the sand portion, 

the sediments were mainly described by Ca/Fe and Fe/Al ratios. Significant 

peaks of Fe/Al and S were identified in correspondence of peat or organic-rich 

layers that are indicative of suboxic-anoxic environment, which allows to 

preserve the organic matter. Whereas, the Ca/Fe proxy was used to distinguish 

different units forming the transitional environment, but, above all, was essential 

in order to identify continental sediments related to climatic change. Moreover, 

Sr/Ca ratios recorded strong pecks related to peat layers in transitional 

environments. Besides this result, in the sandy portion significant values of 

Sr/Ca ratio are indicative of shallow water environment.  

Summarizing the obtained results, the marine sand that belong to the 

transgressive deposits highlight comparable values of Ba/Al in the northern 

Adriatic Sea; the terrigenous proxies show varying values in response of the 

terrigenous supply, but an increase connected with the sorted sand portions 

was documented in all the considered cores. Whereas, the Ca/Fe and Ca/Al 

proxies, allowed to distinguish different transitional units related to relative sea-

level rise and allowed to identify LGM continental sediments, showing abrupt 

and anti-correlate peaks. 
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CHAPTER 7 

DISCUSSIONS AND 

CONCLUSIONS 

In the last decades several authors have focused their study on the 

stratigraphic evolution of the Adriatic basin in order to investigate and 

understand the impact of the late Quaternary fluctuations (Trincardi et al., 1994; 

Correggiari et al., 1996a; Ridente and Trincardi, 2008). The sea-level rise is a 

currently urgent and outstanding issue due to its potential impacts as coastal 

erosion, salinization of surface and ground waters, and drowning of coastal land 

and increasing flooding frequency. Thus, the past sea-level reconstruction could 

be a proper approach in order to predict more confidently what is going on in 

the near future. The relative sea-level variations have a significant impact on the 

continental margin architecture, and in particular, on the barrier-lagoon and 

delta coastal systems (Penland et al., 1988). The northern Adriatic shelf has 

been identified as a favourable geological laboratory to study in detail different 

generation of drowned transgressive deposits, that represent fossil record of 

different sea-level phases during the last transgression cycle. The low gradient 

of the northern Adriatic shelf, indeed, favoured the preservation of paleo 

shorelines, as few meters of sea-level rise caused the rapid landward shift of 

the shoreline for several tens of kilometres. The characterization of these 

preserved fossil deposits, that are the results of strong reworking and 

subsequent drowning and testify the last relative sea-level rise can highlight 

different environments response in relation to the relative sea-level rise. 

Moreover, they can evidence a more detailed knowledge of the last 

transgressive cycle. 

 

In this research several transgressive deposits in the northern Adriatic 

Sea were considered.  

A key area, previously identified by Correggiari et al., (2011), was 

analysed through a huge dataset of VHR seismic profiles and cores. This 

deposit, located south of the present Po River delta (Fig. 1.1), was sedimented 

in a portion of the shelf affected by strong sediment supply fed by an ancient 
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channel belt of the Po River, that allowed an early aggradation phase of the 

system. In particular, the extraordinary preservation of this sedimentary body 

was related to several factors such as its position (close to the Po River delta), 

the low gradient of the shelf, and the rapid drowning of the system. Therefore, 

the study of this transgressive deposit allowed to reconstruct and 

chronologically constrain its evolution in relation to the last relative sea-level 

rise. This transgressive deposit recorded initially an aggradation phase testified 

by the transitional units dating, from 10,950 to 9,800 yr cal. BP. Moreover, the 

organic-rich and peat layers radiocarbon data allowed to calculate the rate of 

sedimentation per unit. In particular, Unit 1, up to 1 m thick, was deposited in 

500 yr, Unit 2, up to 2 m thick, was deposited in 300-500 yr and Unit 3, up to 1 

m thick, was deposited in 200 yr. Afterwards, when the sea-level reached the 

transgressive deposit position, a barrier-lagoon system took place, 

corresponding to by the paralic unit. The rapid relative sea-level rise, estimated 

about 0.4 cm/yr, drowned the investigated transgressive deposit causing 

erosion and sediment removal in the top paralic body. The accurate 

reconstruction of a drowned coastal system response, emplaced in a low 

gradient shelf highlighting the rate of sea-level rise, the rate of aggradation and 

the environment evolution, was carried out with the aim to reconstruct the past 

relative position during the last transgression and predict a possible scenario of 

environmental changes under rising sea-level conditions.  

The second phase of the research considered other transgressive 

deposits that are located north of the Po River delta and hve been sedimented 

and reworked during more recent sea-level rise phases (Fig. 1.1). These 

deposits, sedimented in a dynamic environment characterized by different 

fluvial input, recorded distinct paleo shorelines that testify the last phases of the 

transgression. Their sand portions were analysed with petrographic analysis in 

order to highlight their provenance and clarify fluvial supplies. The 

compositional results, stressed by the rock fragments determination, allowed to 

define three petrofacies reflecting distinct fluvial provenances in relation to 

different sea-level phases. On the base of the previous ground-truth and 

accurate seismic and compositional analysis, allowed a preliminary 

paleogeography reconstruction of the northern Adriatic shelf during the last 

relative sea-level rise. In particular, 1) through composition analysis a potential 
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northward shifting of a paleo Po trunk river was detected when the sea-level 

was -30 m msl. 2) Different fluvial contributions were distinguished along a fossil 

shoreline (between -20 and -24 m msl) that had been affected by possible 

clockwise long-shore drifting currents. 3) An ancient Tagliamento deltaic 

lithosome at -11 m msl was identified. Also in this case, the preliminary 

paleogeography reconstruction was carried out in order to trace environmental 

changes and evolution which occurred in the past.  

The characterization of relict transgressive deposits in a low-gradient 

shelf is also important to identify the exploitable sand deposits for beaches 

nourishment by volumes calculation, grain-size and composition analysis. 

Nowadays, beach erosion is an existing problem as much as the sea-level rise, 

and the exploitation of the sand portion of the transgressive deposits is a 

reasonable method to reduce coastal erosion, prevent flooding and maintain a 

wide recreational beach. With the purpose of evaluating the sand portion 

geochemical characteristics, the XRF core scanner was tested on 5 selected 

cores. This innovative method highlighted interesting results in order to 

differentiate sand portion belonging to different sedimentary process, that was 

not possible to distinguish with other methods. Moreover, some geochemical 

proxies, related to marine sand and sorted sand were detected. In particular, 

Ba/Al ratio, indicative of the productivity proxy, recorded the best response in 

correspondence to the marine sand. On the contrary, Al/Ti, K/Ti and Si/Ti, 

indicative of terrigenous supply proxies, recorded the best response in relation 

to the changes in terrigenous supply. Furthermore, the investigations carried out 

through XRF core scanner on the cores collected in the southern deposits 

allowed to recognize the proper proxies for the geochemical characterization of 

transitional environments (Ca/Fe and Sr/Ca) in the northern Adriatic Sea. 

Moreover, these analyses evidenced the proxies to identify the geochemical 

variation connected with different environments of sedimentation related to 

glacial-interglacial cycle (Ca/Fe and Ca/Al). 

The results obtained from this thesis could be the starting point for 

future improvements. Focussing on the transgressive sand portion as an 

economical resource, the construction and implementation of a georeferenced 

database related to the sand characterisation in terms of composition, 

petrographic signature and colour properties could be an efficient tool to identify 
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the best areas for exploitation of relict offshore sand bodies, managing the 

information related to grainsize, petrographic and geochemical composition. 

Furthermore, a detailed sand characterization and an accurate comparison 

between present beach sand with offshore transgressive sand could improve 

the geodatabase. This information could improve the existing geodatabase suite 

(in_Sand and env_Sand) recently implemented to exploit offshore sand 

deposits by CNR-ISMAR and regional Adriatic administrations (Correggiari et 

al., 2011; Correggiari et al., 2015; Grande et al., 2016). At the same time, a 

detailed characterization of other transgressive deposits could improve the 

Adriatic sea-level curve and the reconstruction of paleo environmental variation 

that occurred during the last sea-level rise.  

 

 

This PhD thesis contributes to increase the knowledge of the 

transgressive deposits in northern Adriatic, which represent an important data 

source to reconstruct the environmental changes that occurred in a low-gradient 

shelf. Transgressive deposits are an interesting and exploitable economic 

resource for nourishing the present beaches, in order to reduce the coastal 

erosion and at the same time maintain the touristic resource available.  

 

Summarising, the main results are:  

 Detailed characterization of one transgressive deposit sedimented on a 

portion of the shelf favourable to the preservation. In particular, three 

aggradational transitional units were identified at the base of the deposit, 

each of them capped by organic-rich layers, whereas a paralic unit was 

present at the top. The radiocarbon data of the organic-rich layers 

allowed to temporally constrain the deposit and permitted to calculate the 

rate of sedimentation of each unit and to estimate the rate of the relative 

sea-level riseduring their deposition. Thus, this study allows to 

reconstruct with a high detail tract of the relative sea-level curve, that 

was not well-defined in the pre-existing literature of all Mediterranean 

Sea. 

 Petrographic analysis on eight transgressive deposits was carried out in 

order to highlight their composition and obtain a preliminary 
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paleogeography reconstruction in relation to three different sea-level 

phases. Fluvial drainage and provenance variation were highlighted in a 

low-gradient shelf fed by Alpine rivers characterized by low sediment 

supply. In particular, the composition of the transgressive deposits 

belonging to the ancient sea-level phase allowed to suggest a northward 

shifting of a paleo Po trunk River; the transgressive deposits belonging to 

the second sea-level phase recorded a fossil shoreline characterized by 

different fluvial contributions; while the composition of the transgressive 

deposit belonging to the more recent sea-level phase confirms a 

Tagliamento River supply. Moreover the petrographic results can be 

processed in order to identify the exploitable sand deposits in relation to 

different coastal areas affected by erosion and sediment removal. 

 The sand portion of the transgressive and transitional deposits was also 

investigated through XRF core scanner to acquire geochemical proxies. 

The study tested this innovative method to support environmental 

interpretation related to climatic changes which occurred in the past. 

Ba/Al ratio recorded the best response in relation to marine sand units, 

Al/Ti, K/Ti and Si/Ti recorded the best response in relation to sorted sand 

units. Furthermore, Ca/Fe allowed to highlighted different transitional 

units related to sea-level rise and permitted to distinguish LGM 

continental sediments. 

 The results of this thesis are reported in a paper that has been selected 

for the “AIQUA Nagoya Award” (Moscon et al., 2015), a second paper 

will be submitted shortly and a third regarding the XRF data is in 

progress.  
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