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0.1 Summary

This work is mainly the results of a theoretical approach to the origin and evolution

of phenotypic robustness in living systems. The work is structured as a paper col-

lection of four articles. These reflect the logic of the different methods adopted to

address the main question and they actually constitute the parts of a single argu-

ment. In particular we started from an experiment to verify theoretical predictions

on the role of phenotype robustness on adaptive dynamics (1), then we raised new

question answered by mathematical (2) and computational modelling (3), and finally

we tested the new predictions on genomic data (4).

In the Introduction we showed how the main topic of investigation is framed un-

der the umbrella of the ”extended evolutionary synthesis”. We presented the main

aspect and concepts regarding the recent advances in the understanding of pheno-

typic robustness including its modelling through the genotype networks theory. In

particular we focused on the effects of phenotypic robustness on evolvability and

innovability, remarking the lack of evolutionary experimental evidence on whole liv-

ing organisms and stressing the fact that the mechanisms and evolutionary forces by

which robustness might be established during evolution are far from clear and overall

little explored.

In Chapter I, we introduced the concept of cryptic genetic variation (CGV), that is

a direct consequence of the existence of phenotypic robustness. We experimentally

tested some theoretical expectations on the role of CGV in adaptive dynamics for

the first time in vivo on an evolving populations of whole organisms (the bacterium

E. coli). We found that according to the theoretical expectations, indeed CGV pro-

motes a faster adaptation to novel environments even in the absence of significant

phenotypic variation. This is a very counter intuitive results, since we expect the
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adaptation rate to be proportional to the phenotypic variation and actually not to

the neutral genetic variation to which selection is apparently blind.

In Chapter II we presented part of the theoretical work through the mathemati-

cal modelling. In particular we worked on the questions raised in the introduction

about the origin and evolution of phenotypic robustness. In the introduction to the

article, we highlighted the main questions under studying and illustrated the main

models used or assumed in our theoretical analysis. In particular we introduce to

the Quasi-species model, the Price equation, the Fisher infinitesimal model and the

concept of universal pleiotropy. All these broadly accepted models constitutes the

working framework of our mathematical modelling. We found that phenotypic ro-

bustness can affects the evolutionary adaptive dynamic itself. Elaborating on two

independent evolutionary models, we found that, counterintuitively, a critical level

of phenotypic robustness is a necessary condition for adaptation to occur even in

the case of positive selection coefficients and infinite population sizes. Indeed ,this

resulted in an example of how a feature of the genotype-phenotype map (robustness)

can directly influence evolutionary outcomes. We argued that this could be the ex-

planation for the widespread high levels of phenotypic robustness observed among

organisms.

The aim of Chapter III is to test for stochastic effects on the results derived from

the deterministic theoretical work of the Article 1. In the introduction to Article 3

we explained why randomness is important to be taken into account in evolutionary

modelling, and why we adopted a computational approach for this task, rather than a

mathematical stochastic model. For instance, we explained the limits of the diffusion

approximation theory in modelling our problem, and explained the appropriateness

of the simulation approach. We introduced also some few essential concepts and

overview on simulations and computational models. The work of Article 3 resulted
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in a substantial consistency with the theoretical results of the deterministic models.

Even in more realistic stochastic scenarios and with finite population sizes, pheno-

typic robustness appears to keep its role of a necessary condition for adaptation to

occur. However, we highlighted the need to explore the role of more complex envi-

ronmental effects on the minimum level of robustness required.

Finally in Chapter IV we test some theoretical expectations on real biological data

adopting a phylogenetic comparative approach (PCM). In the introduction to Arti-

cle 4 we briefly introduce to the main concepts behind the PCMs, we illustrate the

PGLS analysis and the evolutionary models adopted in our work. We tested two

main predictions on genomic data on a sample of 210 eukaryotic taxa, deriving from

the theoretical expectation that more complex organisms require higher levels of phe-

notypic robustness in order to adapt to environments. In particular since we argued

that the proportion of genomic neutral DNA and the splicing levels are likely to be

robustness proxies, we tested if they can explain at least a part of the organismal

complexity, calculated as the proteome size (number of different proteins expressed

by a particular genome). We found that, even accounting for the phylogenetic re-

lationships, the relations actually hold with a very good explanation power. We

argue that these results should be taken into account in exploring the problem of the

genome size evolution, however we also argue that more, different and more accurate

proxies of robustness and complexity are required to expand this prelaminar analysis.
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0.2 Introduction

Despite the great achievements of the Modern Evolutionary Synthesis theoretical

efforts, in recent times a growing body of opinion has suggested that the study of

heritable variation (one of the pillars of the evolutionary theory), its origin and its

structure, has been substantially neglected (Pigliucci, 2007). For nearly 150 years

after the publication of the Origin of species by Charles Darwin (Darwin, 1859),

evolutionary biology focused primarily on the role of selection, chance and inheri-

tance in the adaptation process and on the dynamics of molecular and morphological

evolution (Gould, 2002). Actually, not only evolution influences variation, but the

latter can also play an ”instructive” role, rather than merely a ”permissive” one, in

determining evolutionary outcomes (Fusco et al., 2012; Gould, 2002). This hetero-

geneous collection of studies are grouped, among other, under the umbrella term of

”extended evolutionary synthesis” (Huxley et al., 2010), which includes for instance

the interdisciplinary field of studies known as evolutionary developmental biology

(or, evo-devo). General concepts deriving from the evo-devo tradition, like the in-

fluence of the genotype-phenotype map structure on evolution, also apply to living

systems. In fact while evo-devo claims that development can bias the production

of phenotypic variation, it is not true that the structure of variation, its instruc-

tive role, must come from development exclusively. Indeed, development is only a

segment of an organisms’ life cycle (Minelli and Fusco, 2010) and there are biolog-

ical processes other than development that can be source of anisotropic phenotypic

variation. These are for example standard mutation and recombination through

the constrains imposed by standing genetic architecture (e.g.,Hansen (2006); Rajon

and Plotkin (2013)), epigenetic effects (e.g., Richards et al. (2012); Mesoudi et al.

(2013)), different forms of biased transmission (Dalton and Carroll, 2013), and not
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fully appreciated effects of several kind of stochastic events (e.g.,Lenormand et al.

(2009); Vogt (2015)). Thus in the need of a more comprehensive ”theory of varia-

tion”, moving forward from the limited concept of developmentally biased variation

(Fusco, 2015), this work is an exploration of the origin and evolution of a specific fea-

ture of the genotype-phenotype map, namely phenotypic robustness, or mutational

robustness, (also known as genetic canalization (Gibson and Wagner, 2000). Pheno-

type mutational robustness, from now simply ”phenotypic robustness”, is generally

referred to as the ability of a phenotype to resist to mutational perturbations at the

genetic level, stemming from the fact that multiple genotypes can encode the same

phenotype. This corresponds to some extent to Kimura’ s (Kimura et al., 1968) claim

that much of genotypic change in evolution is selectively neutral (mutations respon-

sible for an effect on fitness are only a small minority). Empirically, the observation

that RNA and protein structures are more conserved during evolution than their

sequences indicates that most point mutations are neutral. In other words, only a

minority of sites is conserved in sequences evolved from a single ancestor, indicating

a high level of degeneracy in genotype-phenotype maps. Such mutational robustness

has been observed in biological RNA structures (Huynen et al., 1993), simulations of

the evolution of RNA secondary structure (Huynen and Hogeweg, 1994), ribozymes

and living organisms (Rigato and Fusco, 2016).

0.2.1 Genotype networks

A phenotype may be realized by a number of different genotypes, which are said

to form a neutral network (Fontana et al., 1993; Kauffman, 1993; Schuster et al.,

1994; Grüner et al., 1996; Fontana, 2002), also called a genotype network (Wagner,

2011; Payne et al., 2014). Genotype networks resides in the genotype space. A geno-
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type space comprises all sequences of a given length L. This is astronomically large,

comprising 20L protein genotypes (for amino acid sequences) or 4L RNA or DNA

genotypes (for nucleotide sequences). Evolutionary change takes place in popula-

tions of organisms, and each member of a population is considered having a single

genotype. It is thus useful to think of a population as a collection of genotypes in

the genotype space. The members of this population ”explore” this space through

mutations. An especially important class of mutations is that of point mutations,

which transform a genotype into one of its neighbours, the set of genotypes that

differ only for one amino acid or one nucleotide from the original genotype. Typical

genotype networks i) are vast (count very many genotypes), ii) extend widely across

the genotype space (genotypes of the neutral network can differ significantly in their

sequences), but iii) occupy a vanishing small volume of the genotype space (the ratio

between the size of the genotype network and the size on the genotype space). Thus,

a network can be traversed through many small mutational steps with little or no

phenotypic change. Existence of these vast genotype networks was first suggested by

computational models of phenotypic formation (Lipman and Wilbur, 1991; Schus-

ter et al., 1994), but they had been also observed in real macromolecules (Babajide

et al., 1997). It is important to remark that the definition of neutral genotype net-

work adopted here is derived from a broader definition of neutrality (Wagner, 2012).

In most cases mutations arising in a genotype are not strictly neutral, i.e. they can

actually slightly affect the phenotype and thus fitness. For example, weakly delete-

rious mutations are more abundant than neutral mutations in most macromolecules,

but they are often accompanied by compensatory genotypic changes that allow a

preservation of the phenotype. The simultaneous occurrence of multiple mutations

can help a population ”tunnel” through a low fitness region in the genotype space,

and thus help to preserve a phenotype (Sawyer et al., 2007; Eyre-Walker et al., 2002).
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In other words, a combination of non-strictly neutral mutations can lead to an effec-

tive neutral phenotype due to their epistatic interaction. Another central feature of

the genotype space is the genotype’ s neighbourhood, that is the collection of those

genotypes that can be reached from a given genotype through one or few mutations.

Neighbourhoods are important from both a qualitative and a quantitative point of

view. This is because the set of different phenotypes in a neighbourhood is easily

accessible by mutation. The size of this set is thus a simple measure of how pheno-

typically variable a genotype is in response to mutations (Wagner, 2008). Genotype

networks allow individuals in a population to preserve their phenotypes while chang-

ing their genotypes by many small mutational steps. This could lead to an increase

in the population genetic variation even in the presence of a high selective pressure.

This neutral genetic variation is cryptic since is not manifested at the phenotypic

level, however, as neighbourhoods of different genotypes typically contain different

novel phenotypes (Wagner, 2005b), a population of different genotypes on a geno-

type network can access a more vast sets of different novel phenotypes (Espinosa-Soto

et al., 2011).

0.2.2 Phenotypic robustness and evolvability

Phenotypic robustness has the appearances of an attribute of the genotype-phenotype

map that should oppose the adaptation process of populations. This is because there

is a tension between the need of biological complex systems to evolve in a changing

environment, and the need to preserved their complex phenotypes from mutations

(Draghi et al., 2010). Consider a particular genotype of a genotype network. We

can define the mutational robustness of its associated phenotype as the proportion

of neutral genotype neighbours at one or more mutational step of distance. This
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proportion of neutral genotype neighbours can be different for different genotypes

in the neutral network. In fact, computational studies (Wilke et al., 2001; Wagner,

2005a) show that in general neutral networks in genotype space can be arranged as

”the galaxies in our universe”. This means that there are zones of high intercon-

nection (high neutrality) and zones with lower connectivity. However, if we consider

a population of individuals distributed in a neutral network, we can define a mean

phenotype robustness, which is the mean of proportion of neutral neighbours of

each genotype of a given population. This scenario highlights some very important

properties of robustness for adaptive dynamics. Adaptive dynamics (and ultimately

evolution) are population phenomena but can be influenced by phenotypic robust-

ness, an individual property, in several ways. Firstly, as saw before, highly robust

phenotypes allow populations to access greater phenotypic variability, namely the

total of neighbours with new different phenotypes. Secondly, phenotype robustness

allows the accumulation of cryptic genetic variation that could be exapted (Gould,

2002) to new mutational or environmental perturbations (Wagner, 2008; Hayden and

Wagner, 2012). Thirdly, phenotypic robustness allows a faster cryptic exploration

of the genotype space, increasing the probability to find a new superior phenotype

even in the absence of substantial phenotypic variation. All these properties, deriv-

ing from the structures of neutral network, have been highlighted computationally

or experimentally for molecules such as RNAs (Lipman and Wilbur, 1991; Grüner

et al., 1996), rybozymes (Stelling et al., 2004; Tanner et al., 1996) and proteins (Lip-

man and Wilbur, 1991; Rost, 1997), while for whole organisms some evidence are

provided in this work (see Chapter 1).
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0.2.3 Origin and evolution of phenotypic robustness

The present work is structured as a paper collection articulated in four chapters,

one for each article. Three out of four articles are in advance stage of preparation

and have not been submitted yet. Each chapter contains an introduction to the

corresponding article, to allow the reader to familiarize with the most important

concepts and theoretical or technical tools specific of the work, and to logically con-

nect one article to the others. As highlighted above, most of the preceding studies

aimed at exploring the long-term effects of phenotypic robustness on adaptation and

evolvability. However, the lack of in vivo experimental evolution evidence, lead us

to design an experiment to test the above-mentioned effects on evolvability in a real,

organism level living system (Article I). In addition, except for some few studies, the

mechanisms by which robustness might be established during evolution are far from

clear and overall little explored (Masel and Siegal, 2009; Rigato and Fusco, 2016).

Given that phenotypic robustness seems a quality that would oppose the adaptation

process, how such a feature of living systems can be maintained throughout gener-

ations without, apparently, any short-term benefits and in a continuously changing

environment? Is robustness an adaptation in historical sense, i.e. a feature that has

been shaped by natural selection? Or is it simply a by-product of evolution? Long

term beneficial effects on evolvability cannot explain why high levels of phenotypic

robustness are preserved in complex living system. A more complete treatment of

adaptation within evolutionary theory should try to include phenotypic robustness

as an evolvable parameter, rather than to treat it as a given. Accordingly, we tried

to explore the possible causes of the origin and widespread persistence of phenotypic

robustness in evolving complex living systems. We started adopting a theoretical

approach with the aim of exploring the relation between phenotypic robustness,



0.2. INTRODUCTION xiii

mutation, selection, adaptation and complexity either through deterministic mod-

els (Article II) and simulations accounting for stochasticity (Article III). Finally, we

tried to test predictions of the theoretical model and to find evidences from empirical

data supporting theoretical results (Article IV).
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0.3 Chapter I

0.3.1 Introduction to Article I

A consequence of phenotypic mutational robustness at the population level is the ac-

cumulation of neutral genetic variation (Hayden et al., 2011), also known as cryptic

genetic variation (CGV). This represents an unexpressed, bottled-up genetic po-

tential (Gibson and Reed, 2008). Although not normally observable, CGV can be

expressed under new or unusual conditions such as in a new environment or in a dif-

ferent genetic background. Phenotypic robustness allows the accumulation of cryptic

genetic variation that could be exapted (Gould, 2002) to new mutational or envi-

ronmental perturbations (Wagner, 2008; Hayden and Wagner, 2012). In a sense, the

expressed component of genetic variation is just the tip of an ”iceberg of genetic

possibilities” that are hidden below the visible surface. For example, Antennapedia

is a mutation in Drosophila melanogaster that transforms the antennae into legs.

When this mutation is placed in a dozen different wild-type genetic backgrounds,

each strain will show a different phenotype, ranging from almost perfect antennae

to almost perfect legs where the antennae should be (Gibson et al., 1999). This is

the effect of cryptic genetic variation, which modifies the mutant phenotype, even

though it is unobservable in normal flies. Through CVG, phenotypic robustness has

also an intimate relationship with the phenomenon of genetic canalization. Canal-

ization refers to the evolution of phenotypic robustness that occurs under conditions

of long-term stabilizing selection. It leads to suppression of the effects of genetic

variation under normal, unperturbed circumstances (Gibson and Reed, 2008). Phe-

notypic robustness allows cryptic genetic variation to accumulate in a population,

that can be ”released” as observable phenotypic variation when the environment
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changes or a new mutation appears, or when novel genotypes are introduced as in

hybrid zones. Thus, cryptic genetic variation might have a key role in the kinetic

of adaptation. Since evolutionary adaptation by natural selection requires pheno-

typic variation, the fraction of variation emerging from cryptic genetic variation

could enhance evolvability and innovability (sensu Wagner, 2011). This property

was demonstrated computationally for biological systems at different level of organi-

zation, and experimentally for molecular systems such as RNAs (Lipman and Wilbur,

1991), rybozymes (Stelling et al., 2004; Tanner et al., 1996) and proteins (Lipman

and Wilbur, 1991; Martinez-Pastor et al., 1996; Rost, 1997). However, the effects

of phenotypic robustness on adaptation had not been investigated in more complex

evolving systems, as are whole organisms, where adaptation depends on several, gen-

erally little-known parameters of the genotype-phenotype map, such as the amount

of epistasis, pleiotropy and neutrality. We designed a first evolutionary experiment

to investigate the effects of robustness on adaptation in a biological system at the

organism level. Laboratory evolution has recently grown into a standard tool for the

study of the evolutionary process in a controlled manner in microbial communities

(Helling et al., 1987; Nakatsu et al., 1998; Lenski et al., 1998; Papadopoulos et al.,

1999; Massey et al., 1999; Cooper et al., 2001), and we choose the well-studied bac-

terium Escherichia coli to test the role of CGV on adaptive dynamics. The trait

selected for in this study is a component of fitness: the population growth rate in a

given environment, and the only environmental variables used in this experiment are

the carbon sources in constant minimal media and environment. A metabolic phe-

notype has been considered as a metabolic network that can synthesize all biomass

molecules in a given chemical medium with a given efficiency (Wagner, 2011). In

other words, a metabolic phenotype can be defined as a metabolic network that can

sustain a specific grow rate in a given environment. Adaptation consists in finding
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new genotypic variants with higher grow rate, i.e. with better efficiency in metabo-

lizing a given carbon source, the sole carbon source in a minimal medium. E. coli ’s

metabolic network has proved to be highly resistant to mutations (Rodrigues and

Wagner, 2009). Rodrigues’s computational works on E. coli ’s metabolic networks

showed how those networks supporting life in one environment can have very differ-

ent essential reactions. These capabilities to tolerate mutations without significant

loss of function, makes this bacterium an ideal candidate for studying the effect of

CGV, and ultimately phenotypic robustness, on evolvability.
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Enhancing Effect of Phenotype
Mutational Robustness on
Adaptation in Escherichia coli
EMANUELE RIGATO AND GIUSEPPE FUSCO*
Department of Biology, University of Padova, Padova, Italy

Widespread phenotype resistance to the impact of genetic

mutations, or “phenotype mutational robustness” (Kitano,

2004; Stelling et al., 2004; Wagner, 2005), is a necessary

condition for the accumulation of neutral genetic variation

(Hayden et al., 2011;Wagner, 2011). This so called “cryptic genetic

variation” (CGV) has no effect on the phenotype in a particular

genetic or environmental context, but can eventually be

expressed in the phenotype as a consequence of genetic

mutations or environmental change (Gibson and Reed, 2008).

Since evolutionary adaptation by natural selection requires

phenotypic variation, phenotype robustness may seem to be a

quality of the organism's genotype–phenotype map that would

oppose the process of adaptation. However, somewhat counter-

intuitively, robustness can effectively enhance adaptation to

novel environments by increasing the number of different

phenotypes accessible through mutation (Wagner, 2008; Draghi

et al., 2010). This effect has been demonstrated in theoretical

studies using computational models (Matias Rodrigues and

Wagner, 2009; Barve and Wagner, 2013) and with experimental

studies on ribozymes (Hayden et al., 2011), but has not been

verified through experimental evolution in more complex

evolving systems, such as whole organisms. The possibility of

extending this principle of the positive effect of robustness on

adaptation to whole organisms by theoretical reasoning is limited

by the need for specific assumptions on the features of the

organism's genotype–phenotype map. These include the level of

epistasis, pleiotropy, and neutrality, for which, despite substantial

theoretical modeling (Orr, 2000; Wagner et al., 2008; Pavlicev

et al., 2009; Wagner and Zhang, 2011), there are few

observational data (Gr€uneberg, '38; Albert et al., 2008; Rohner

et al., 2013).

We designed an experiment to investigate the role of

robustness in the adaptation of the bacterium Escherichia coli

by measuring the effects of CGV in adapting to novel
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environments, represented by minimal media with a single

carbon source, different from the original strain's native carbon

source which is glucose. The two phenotypic traits under scrutiny

were the instantaneous population growth rate in either glycerol

or lactate, which can be interpreted as measures of population

absolute fitness in these environments (Elena and Lenski, 2003).

Our results provide evidence of an enhancing effect of CGVon the

process of adaptation to a novel environment, with quantitative

differences between the two traits that match an independent

measure of trait robustness, based on the survival rate after

mutagenesis in the two environments.

MATERIALS AND METHODS

Outline of the Experiment

The experiment consisted in generating E. coli populations with

different levels of CGV starting from the same genotype and then

allowing them to grow in new environments, whereas the level of

adaptation (in terms of growth rate) was recorded through time

(Fig. 1). We treated different sub-clones of genotype BW30270 with

Ethyl-methanesulfonate (EMS), regulating the time of exposure to

themutagen in order to obtain lineswith, on average, either 12 or 24

randomly distributed mutations per genome. Control lines (0

mutations), obtained from the same BW30270 clone, were not

exposed to the mutagen. Subsequently, all lines underwent

stabilizing selection in the native carbon source, to re-establish

the original phenotype and to remove phenotypic variation, while

preserving the neutral genetic variation produced by the treatment.

Combining the level ofCGVwith the carbon source,five typeof lines

(treatment groups) were established for the following adaptation

experiments. Starting from identical population size (N¼ 107), all

lines were allowed to grow for 266 generations either in glycerol

(linesGly0, Gly12, andGly24,with 0 (control), 12 and 24mutations,

respectively) or lactate (lines Lat0 and Lat12, with 0 (control) and 12

mutations, respectively) as the sole carbon sources, with population

size varying between 107 and 1011 during the experiment. The

population growth rate wasmeasured at the start of the experiment,

after 14 generations and then at intervals of 42 generations. The

adaptation experimentwas replicated three times for each treatment

group, always starting from an independently established line.

During adaptation, mutation was the sole source of genetic

variation, as BW30270 does not conjugate.

Strain

Evolving cultures were propagated from fresh cultures of the

wild-type E. coli K12 BW30270 provided by CGSC (Yale

University, New Haven, CT, USA).

EMS Mutagenesis

We treated different sub-clones of the genotype BW30270 with

the mutagen Ethyl-methanesulfonate (EMS), performing one or

two cycles of mutagenesis in order to establish lines with, on

average, either 12 or 24 randomly distributed mutations,

respectively. The mean number of 12 mutations per genome

induced by each cycle of mutagenesis was calibrated on the basis

of previously reported mutation rates, based on the counting of

revertants (Cupples and Miller, '89).

Figure 1. Sketch of the evolution experiments. (I) After plating

the original strain, a single colony was randomly selected and sub-

cultured in glucose for the following evolution experiments. (II)

From this culture, a sub-clone (mutagenized line) was exposed to

Ethyl-methanesulfonate (EMS), whereas the control line sub-

clone was not exposed to the mutagen. (III) Subsequently, both

mutgenized and control lines underwent stabilizing selection for

56 generations in the native carbon source (glucose), to re-

establish the original phenotype and to remove phenotypic

variation. (IV) Then, sub-samples of each line were transferred to a

new nutritional environments (either, glycerol, or lactate) and

allowed to growth for 266 generations by daily serial cultures (V),

whereas the growth rate was periodically recorded. From step (II),

the experiment was replicated three times.
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The mutagenesis protocol followed that by Cupples and Miller

('89). A fresh overnight culture was sub-cultured and grown until

it reached a density of 2–3�108 cells per ml (A600¼ 0.3–0.5). The

cells were chilled on ice, spun down at 5,000g, at 4 °C, for 10min,

washed twice in M9 salts (ForMedium, UK), and then re-

suspended in half the original volume of M9 salts. EMS (Sigma–

Aldrich, USA) was added in the cold by pipetting 0.07mL of EMS

into 5mL of re-suspended cells ([EMS]¼ 1.4%) and incubated on

a roller drum at 30 rpm for 15min at 37 °C. The reaction was

stopped by adding 5mL of sterile sodium thiosulfate at 20% (w/w)

(Sigma–Aldrich, USA). After mutagenesis, the cells were spun

down, washed twice in M9 buffer, and then re-suspended in the

same volume of M9 buffer and plated for viable cells and

contaminations. Samples (1mL) were added to 100mL of

M9þ glucose broth and the cultures were grown overnight.

This process was independently carried out for each mutagenized

line, for a total of six (three Gly12 and three Lat12). Samples from

the three Gly12 mutagenized populations were mutagenized

one more in the same conditions (after stabilizing selection, see

below) to produce the three Gly24 lines. Gly0 and Lat0 lines

undergone the same treatment, but for the addition of the

mutagen.

Control of Phenotypic Variation

The interpretation of the differential grow rates in the different

lines as a consequence of CGV is conditional on the absence of

genetic variation with phenotypic effect on growth rates at the

start of the evolution experiments, possibly introduced by

mutagenesis.

In order to eliminate possible mutant phenotypes, the

mutagenized populations were subjected to a stabilizing selection

regime, cultured in M9 minimal mediumþ glucose (4 gr/l) and

sub-cultured daily (the same procedure adopted for the evolving

cultures, see below) for 4 days, for a total of 56 generations.

Selection preserved most of the neutral genetic variation

produced by the treatment, only slightly reduced by a minimal

sampling effect (N¼ 107) at the start of each daily culture.

Fifty-six generations of stabilizing selection are sufficient for

reducing variation in growth rates well below the phenotypic

effect of an average mutation in E. coli, estimated between 3%

(Trindade et al., 2010) and 10% (Lenski et al., '91). Absence of

significant phenotypic variation of growth rates in glucose after

stabilizing selection was nonetheless directly assessed through

statistical testing on observed growth rates.

Stabilizing selection in glucose was also aimed at eliminating

possible epigenetic effects induced by the mutagenesis. It

is known, in fact, that E. coli, like other bacteria, can

epigenetically change mutation rate and expression profile

under stressful condition (Rosenberg et al., 2012). However, this

effects are transient (Hastings, 2007), and 56 generations of

growth in glucose, which is a standard medium for E. coli

BW30270 strain, are expected to eliminate any possible

epigenetic effects produced by mutagenesis (Foster, 2005).

Statistical testing on observed growth rates after stabilizing

selection attested the absence of significant phenotypic variation

of epigenetic origin.

Absence of significant phenotypic variation was further

checked through repeated sampling from the starting population

of the evolving cultures. For each type of line (Gly0, Gly12,

Gly24, Lat0, and Lat12), we extracted 96 independent samples

(N¼ 50�108) from the starting populations and measured the

initial growth rate in their new medium (glycerol or lactate). For

the sampling procedure, 100mL of a fresh overnight culture (in

M9minimal mediumþ 0.4%glucose) 10�6 diluted, were plated to

isolate approximately 200 colonies. After 24 hr of incubation at

37°C, a sample of each colony was randomly picked with a sterile

stick and put on a well of a 96-well cell culture microplate, each

filled with 150mL of M9 minimal mediumþ 0.4% glucose. The

plates were incubated overnight. After that, 5mL of each well

were transferred in another well of a 96-well microplate, filled

with 150mL of test-medium (M9minimal mediumþ 0.4% lactate

or glycerol). Thefive plates were incubated in an incubator shaker

at 37°C, 280 rpm and the optical density (OD) of each well was

periodically recorded (1 hr) at 600 nm with a microplate reader.

Growth rates measures underwent statistical testing.

Evolving Cultures

Cultures were conducted in 100mL of M9 minimal medium

supplemented with 4 g/l of lactate (Sigma–Aldrich, USA) or

glycerol (Sigma–Aldrich, USA) in covered 250mL Erlenmeyer

flasks in an incubator shaker at 37°C, 180 rpm. Each day, bacteria

were grown overnight from an initial population size of 107 cells,

until reaching the stationary phase at about of 1011 cells-

(A600� 0.9–1.0), corresponding to about 14 generations. The

day after, they were sub-cultured into fresh medium, using a

biosafety cabinet and adopting standard sterile technique

practices, restabilizing the initial population size of 107 cells.

Batch growth and serial passage were conducted for 266

generations for all lactate and glycerol cultures. Lines Gly12,

Gly24, Gly0 were tested for adaptation in glycerol as sole carbon

source, whereas Lat12 and Lat0 lines were tested in lactate.

Throughout the course of evolution, samples of each evolving

population were frozen in 15% glycerol and stored at �80°C.

Growth Rate Measurements

Growth rate was measured at generations 0, 14, and then once

every 42 generations until generation 266. At each time point

examined, a sub-sample of each culture was used to inoculate

50mL of fresh preheated medium for a batch culture in the same

conditions of the evolution experiment. The growth rate was

determined by measuring the OD of 2mL growing cultures over

time using a spectrophotometer (A600) by periodic sampling

(Dt¼ 1 hr) of each batch culture, and interpolating the Log(OD)/

Log(2) time series of the exponential phase with a linear model in

J. Exp. Zool. (Mol. Dev. Evol.)
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order to obtain a growth rate estimation in terms of generations

per hour (slope of the regression line).

RESULTS

Mutagenesis and Stabilizing Selection

Starting from the same genotype, mutagenesis generated

E. coli populations with different levels of genetic variation,

with on average 0, 12, or 24 randomly distributed mutations

per genome. Then, in order to eliminate possible mutant

phenotypes, the mutagenized populations were subjected to a

stabilizing selection regime in glucose for 56 generations.

Growth rates were measured during stabilizing selection

at generations 0, 14, 28, 42, and 56, and no significant

differences were detected between mutated and non-mutated

lines staring from generation 14 (equivalence tests, 95%

confidence intervals of the differences within the measurement

error of 0.015). This result also supports the effectiveness of the

stabilizing selection at eliminating possible epigenetic effects

on the mutation rate in the mutagenized lines induced by the

mutagenesis stress.

Absence of significant phenotypic variation after stabilizing

selection, either of genetic or epigenetic origin, was further

assessed through repeated sampling (n¼ 96) from the starting

population of each type of line (Fig. 2). We found no

statistically significant differences between mutagenized and

non-mutagenized lines, either for glycerol or lactate, neither

for the means (equivalence tests, 95%CI of the differences

within the measurement error of 0.020), nor for the standard

deviations (Levene's tests, all comparisons P> 0.6).

Absence of effective phenotypic variation after stabilizing

selection is also supported by observed adaptive dynamics (see

Discussion).

Evolution Experiments

In the process of adaptation to a novel environment, all the lines

with some amount of CGVoutperformed the corresponding lines

with (almost) no CGV in the same environment (Fig. 3). In

glycerol, Gly12 lines showed average growth rates significantly

higher than Gly0 lines from generation 98 onwards (one-tailed

Student's t-tests, P< 0.05, n¼ 3, significant also after Tukey

correction for multiple comparisons). A similar result was

obtained for Gly24 lines, with average growth rates significantly

higher than Gly0 lines from generation 98 onwards (one-tailed

Student's t-tests, n¼ 3, P< 0.05, also after Tukey correction). In

both cases the largest differences were reached at generation 98,

when growth rate of Gly12 and Gly24 were 1.36 and 1.49 times

that of Gly0, respectively. Likewise, lactate, Lat12 lines showed

average growth rates significantly higher than Lat0 lines,

although differences were relatively less marked, becoming

significant from generation 140 onwards (one-tailed Student's

t-tests, n¼ 3, P< 0.05, from generation 182 after Tukey

correction), reaching the largest difference at generation 224,

when growth rate of Lat12 was 1.2 times that of Lat0. In all three

comparisons, the difference in growth rates between treated and

control lines tended to reduce toward the final part of the

experiment, mainly due to a deceleration in the growth rate

increase of the treated lines.

Considering the effects of different levels of CGV in the same

environment (Fig. 3A), Gly24 showed an average growth rate

slightly higher than Gly12 from generation 98 to 182 (one-tailed

Student's t-tests, n¼ 3, P< 0.05 at generations 98 and 182, but

not significant after Tukey correction). After that, this small gap

was rapidly filled in subsequent generations, and the two groups

of lines converged to almost identical phenotypes.

Comparing adaptation trajectories in glycerol (Fig. 3A) with

those in lactate (Fig. 3B), we observed a faster adaptation in the

Figure 2. Growth rate variation at the start of culturing experiments in glycerol (A) and in lactate (B). Each line was repeatedly sampled 96

times to estimate growth rate mean (crosses), median (thick horizontal lines), and standard deviation (boxes). There are no statistically

significant differences between mutagenized and non-mutagenized lines.
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former, for both treated and control lines. Gly12 lines exhibited

an average growth rate significantly higher than Lat12 lines from

generation 98 onwards (one-tailed Student's t-tests, n¼ 3,

P< 0.05, also after Tukey correction), when the largest difference

was reached, with growth rate of Gly12 1.40 times that of Lat12.

Similarly, growth rates of Gly0 were significantly higher than

those of Lat0 from generation 140 onwards (one-tailed Student's

t-tests, n¼ 3, P< 0.05, from generation 224 after Tukey

correction), reaching the largest difference at generation 224,

with growth rate of Gly0 1.29 times that of Lat0.

Survival Rates After Mutagenesis

Differences between the adaptation processes in the two media

also emerge from analyzing the survival rate after mutagenesis

to about 12 mutations per genome (R12). Assuming the set of

genomes of the viable individuals in one medium belong to the

(nearly) neutral network of genotypes mapping on the same

phenotype (defined by the viability in that medium) (Matias

Rodrigues and Wagner, 2009), the proportion of survivors of the

mutagenesis can be taken as a roughmeasure of the robustness of

the ability to growth in that medium (Fig. 4). This must be taken

as a crude measure of robustness because factors other than

mutation can also contribute to observed mortality, as for

instance the direct toxicity of the treatment.

Replicating the measure of survival rate on four independently

mutagenized samples for each medium, at an average distance of

12 mutations from the original genotype the ability to grow in

glycerol resulted a more robust character (R12¼ 0.73) than the

ability to grow in lactate (R12¼ 0.56) (two-tailed Student's t-test,

n¼ 4, P< 0.005).

Figure 3. Effect of cryptic genetic variation on adaptation

performance in E. coli. Average growth rates (diamonds) and

standard errors (bars) are based on measurements on three

independently evolving lines with the same amount of cryptic

genetic variation. (A) Evolution in glycerol. Lines Gly12 and lines

Gly24 (12 and 24 neutral mutations per genome on average,

respectively) outperformed lines Gly0 (0 neutral mutations per

genome). Growth rate differences are significant starting from

generation 98. (B) Evolution in lactate. Lines Lat12 (12 neutral

mutations per genome on average) outperformed lines Lat0 (0

neutral mutations per genome). Growth rate differences are

significant starting from generation 140.

Figure 4. Phenotype robustness estimated as survival rate after

mutagenesis in E. coli. This is the proportion of viable individuals in

a given carbon source after they have undergone a mutagenizing

treatment producing on average 12 mutations per genome (R12).

The measure assumes that the genomes of the survivors belong to

the nearly-neutral genotype network mapping on the same

phenotype. Means (crosses), medians (thick horizontal lines),

interquartile ranges (boxes), and whole ranges of variation

(vertical segments) are based on four independent measures for

each substrate. The survival on lactate (Lat) is significantly lower

than the survival on glycerol, indicating a lower mutational

robustness for the ability to grow on the former substrate. R12 in

glucose (Glu) and in Luria broth (LB) are shown as reference.
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DISCUSSION
In classical models of natural selection, the population rate of

change in mean fitness is expected to be proportional to heritable

fitness variation (Orr, 2005; Frank, 2012). However, we observed a

significant difference in the increase rates ofmeanfitness between

lines that exhibited the same (almost zero) level offitness variation,

but possessed different levels of cryptic genetic variation (CGV).

The lines with sizeable CGVexhibited higher phenotype variability

(Wagner and Altenberg, '96; Willmore et al., 2007) than lines with

no CGV, despite starting with the same (almost zero) phenotypic

variation. This provide evidence in support of more recent views

which see an effective role of phenotype robustness in enhancing

adaptation, through the accumulation of significant levels of CGV

(Wagner, 2012). The two E. coli's metabolic traits under scrutiny

appear to showsomedegreeof “innovability” sensuWagner (2011),

that is, a propensity to evolve that does not necessary stem from

heritable phenotypic variation, or “evolvability” (Pigliucci, 2008).

The roughly sigmoid dynamic of adaptation observed in our

study, with the growth rate tending to a plateau, is quite similar to

that observed in other experimental evolution studies on E. coli

(Lenski et al., '91; Fong et al., 2005). Also quantitatively, both

growth rate progression and between-lines growth rate variation

ofGly0andLat0 lines are comparablewith thosemeasured inother

studies (Fong et al., 2005). However, our specific experimental

setting, including direct measurements assessing the absence of

effective phenotypic variation between the treatment groups at the

start of the evolution experiments, made it possible to expose the

counter-intuitive effect of CGV in enhancing adaptation.

There are two, non-mutually exclusive ways in which CGV is

thought to be able to promote faster adaptation (Wagner, 2012).

Firstly, among the different genotypes with the same phenotype,

some variants may be accidentally “pre-adapted” or “exapted” to

the new environments (Hayden et al., 2011). Part of the cryptic

variation is thus, “unveiled” and immediately converted to

effectively advantageous phenotypic variation. Such fortuitous

events were not expected to play a significant role in our short-

term evolutionary experiment, as genetic variation produced with

mutagenesis was relatively modest, less than 1/10 of the genetic

variation recorded inwild-type populations ofE. coli (Zhang et al.,

2006). Secondly, the scattering of genotypes through the genotype

space allows the population to access a greater number of new

phenotypes troughmutation, increasing the probability of finding

phenotypes that happen to have higher fitness (Matias Rodrigues

and Wagner, 2009). This second mechanism confers a wider-

ranging advantage to a population with significant CGV, because

it does not depend on the specific mutations accumulated.

Genotype scattering, which can be maintained even under a

selective regime (Barrick and Lenski, 2013), was expected to affect

more consistently the adaptive dynamics of our experiment.

The observed adaptation trajectories in our experiments suggest

indeed a dominance of the effects of genotype dispersal. If a

phenotype with a growth rate in the order of the value reached

toward the end of the experiments (about 1.30 gen/h for glycerol

and 1.05 gen/h for lactate) was already present at generation 0,

even in one single individual (frequency 10�7), the growth rate

would have nearly reached the observed plateau within about 40

generations for glycerol and70 for lactate (Fig. S1). But, in all lines,

after 56 generations, average growth rates are still below 0.85

gen/h and the differences between treated and control lines are all

statistically not significant (Fig. 3). The observed pattern is instead

completely compatible with the progressive emergence of novel

phenotypes with increasingly higher growth rates, in a sort of a

stepwise adaptive progression, as described in other studies on

bacterial evolution (Lenski et al., '91). This gradual increase in

growth rate also makes very unlikely that some residual,

undetected standing phenotypic variation might have remained

in the treated lines after the stabilizing selection, and thus

represents further assessment of the absence of significant

phenotypic differences between treated and control lines at the

start of the evolution experiments.

From comparing the adaptation dynamics of lines Gly24 with

linesGly12, it appears that the difference inCGVdoesnot affect the

final level of adaptation, but only the adaptation dynamics. In fact,

both groups of lines tend to level to the same growth rate plateau,

although in linesGly24 the increase in growth rate is faster and the

plateau is reached earlier (Fig. 3). This growth rate value seems to

correspond to a not uncommon high-fitness phenotype, as not

only the average adaptive paths of the two groups reached the

same final value, but also those of each of the six individual lines

(Fig. S1). In effect, across a relatively small number of generations,

as those of our experiment, consistent adaptive patterns can more

easily emerge because of some general features of genetic

variation, like the dispersal of genotypes through the genotype

space, rather than depending on the finding of rare advantageous

mutations.

The observed slower adaptation rates in lactate with respect to

glycerol can hardly be explained by simply assuming a

phenotype optimum in the lactate closer to the starting growth

rate value than in the glycerol, such that the slowing down of

adaptation rate would depend on the relative proximity of the

fitness plateau (plateau effect). Actually, longer adaptation

experiments on E. coli, conducted for up to 600 generations,

found a similar growth rate plateau for glycerol and lactate (Fong

et al., 2005), although the plateau tends to be reached later in

lactate than in glycerol. Conversely, the slower adaptation rate in

lactate is in agreement with a lower robustness of the ability to

grow in thismediumwith respect to the ability to grow in glycerol

(robustness effect), as independently emerged from the different

survival rates after mutagenesis in the two environments (Fig. 4).

Overall, this study provides experimental support on the view

that phenotype robustness, through the accumulation of cryptic

genetic variation, can promote faster adaptation at the level of a

whole organismal system, here a bacterium. It also suggests that

this can be achieved by allowing genetically more variable

J. Exp. Zool. (Mol. Dev. Evol.)
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populations to access a greater amount of phenotype variation,

and that can be effective even in short-term evolution. Further

studies, complementing measures of adaptive performances with

a genetic analysis of mutation patterns, will be necessary to

clarify the precise dynamics underlying the influence of cryptic

genetic variation on adaptation.
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0.4. CHAPTERII xxxiii

0.4 ChapterII

0.4.1 Introduction to Article II

Contrary to what presented in Article I, works from this point on, started as an

attempt to investigate the origin and evolution of phenotypic robustness in living

systems. This is a different, under-investigated aspect of phenotypic robustness. In

fact, many previous mentioned studies aimed to mark the long-term effects of phe-

notypic robustness on evolvability and innovability. Indeed, except for some few

studies, the mechanisms by which robustness might be established during evolution

are far from clear and overall little explored. Phenotypic robustness seems to be an

individual quality that should oppose the short-term adaptation process of popu-

lations per se even excluding possible fitness costs. Is robustness an adaptation in

historical sense, i.e. has it been shaped by natural selection? Or simply a by-product

of evolution? A complete treatment of adaptation within evolutionary theory should

try to ”endogenize” (Okasha, 2006)phenotypic robustness, rather than to treat it

as a given. According to this, we adopted a theoretical approach; We tried to fill

the gap of a rigorous mathematical theory that should precede any experimental

plan or hypothesis. We tried to avoid simple linear reasoning and trade-off based

hypothesis. Instead, we focused on what we could directly derive from standard

evolutionary models. In particular, we elaborated on two famous models represent-

ing two very different approaches to model construction: The Quasi-species model

(Eigen et al., 1989), originally conceived as an allele-based modellization, like the ma-

jority of evolutionary models in the history of evolutionary biology, and the Price’s

equation (Price et al., 1970), a phenotype-bases theorem that actually subsumes

gene-based theories, since alleles and genotypes can be thought of as phenotypic
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characters themselves. The Quasi-species is a multi-allele mutation-selection model

that has the form of a dynamical system describing the frequency change of a partic-

ular sequence type (i) during time. The term ”quasi-species” refers to an ensemble

of similar genomic sequences generated by a mutation-selection process. Imagine a

sufficiently large population of sequences of length L and of different type i. Denote

by xi the relative abundance of the ith sequence type, thus we have
∑

i xi = 1. The

population structure is given by the vector x⃗ = (x0, x1, ...xn). Denote by fi the fitness

(growth rate) of the ith sequence type. The fitness landscape is given by the vector

f⃗ = (f0, f 1, ..., fn). The average population fitness is ψ =
∑

i xifi. The probability

that genotype j results in genotype i by mutation is given by qji. Q = [qji], where Q

is the mutation matrix. Each element of Q represents the probability of a sequence

j to mutate in a sequence i per replication. The quasi species equation is given by:

ẋi =
n

∑

j=0

xjfjqji − xiψ (1)

This means that sequence i is obtained by replicating sequence j at rate fj times

the probability that replication of sequence j generates sequence i. This model is

no more than a deterministic mutation-selection multi-allele model describing the

frequency change of the ith sequence (ẋi).

Differently, the Price’s equation is an ”a posteriori” description of the change over

time (generations) of the population mean trait value (note that the trait described

could be the fitness itself or a variance instead of a mean, or the frequency of an

allele) not focused on the dynamic but on the different states of the system at different
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arbitrary times. The Price equation is based on a different approach, tracking the

change in the mean population value of a given phenotype, not the frequency of a

single pheno(geno)type. If a positive covariance between fitness and the phenotypic

value of a certain trait exist, we can define adaptation as the increase of the mean of

that particular character value over a definite time interval. This approach is very

useful if we have to deal with quantitative traits and continuous character values. In

addition, the Price equation contains all the evolutionary relevant factors and is a

more complete and comprehensive description of the evolutionary process. Here we

adopt the Price equation as a model to describe the effects of phenotypic robustness

on adaptation considering the following form (Okasha, 2006):

∆z = cov(wi, z
′
i) + E[∆zi] (2)

Where∆z is the change in the population mean character value, z′i is the mean of the

offspring’s character values, wi the relative fitness, and E[∆zi] is the transmission

bias, namely the change in mean character value due to other factors rather than

selection, i.e genetic or environmental mutations, drift etc...Beyond the transmission

bias, what really matters in evolution is the covariance between the parent’s fitness

wi (offspring number) and the offspring phenotype, z′i. Price equation is a theorem

rather than a theory describing what is actually going on rather than make a sim-

plified model of basic properties of the system. Indeed, almost every evolutionary

phenomenon can be find in such equation which can be properly decomposed to

describe it. Irrespective of the model, either quasi-species or Price, interpretation

of our results is based on three principal key premises, that should correspond to

situations found in the majority of the biological cases. First, we consider an in-

finitesimal model (Barton et al., 2016) perspective, where each phenotypic trait is

the result of a very high number of genetic determinants (Turelli, 2017). In other
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words, we consider that a huge number of loci can affects each trait of an organism,

although to a different degree. The infinitesimal model finds its origin in a seminal

paper R.A. Fisher, where he showed that, if many genes affect a trait, then the ran-

dom sampling of alleles at each gene produces a continuous, normally distributed

phenotype in the population (Aymler, 1918). As the number of genes grows very

large, the contribution of each gene becomes correspondingly smaller, leading in the

limit to Fisher’s famous ”infinitesimal model” (Barton et al., 2016). Despite the

revival of interest (both theoretical and empirical) in ”evolutionary quantitative ge-

netics” in recent decades, the infinitesimal model itself has received little attention.

However, recent advances in genome wide association studies (GWAS) highlight the

possibility that virtually all the genome can affect every trait, that the genetic deter-

minants are widespread through the genome and are highly interconnected such as

that even apparently non-related peripheral factors can have a tiny effect on a given

trait. This phenomenon has recently been marked as the omnigenetic model (Boyle

et al., 2017). One important consequence of this model is that the high number of

genetic determinants dramatically increase the phenotypic mutation rate of a given

trait (even if with tiny effects). In the following work, we will show how this can

affect our interpretation of the role of phenotypic robustness on adaptive dynamics.

Second, we adopted the universal pleiotropy view, which is a natural consequence

of the infinitesimal model, where each locus can affects virtually all traits (Boyle et

al., 2017). It is reasonable to think that an organism is the result of the interaction

of its interdependent parts rather than simply the resulting sum of independent fac-

tors. There are arguably millions of traits one can describe in a complex organism,

but the number of genes is generally much lower. Inevitably, exactly for the same

principle that a phenotype corresponds to multiple genotypes, there are genes that

must affect multiple traits. This phenomenon of one gene (or one mutation) affect-
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ing multiple traits is known as pleiotropy (Allen Orr, 2000; Orr, 2005). Pleiotropy is

a central topic in genetics and has broad implications for evolution (Aymler, 1918;

Allen Orr, 2000; Wagner and Zhang, 2011; Barton et al., 2016). Pleiotropy is the

cause of trade-offs among the adaptations in different traits, because a mutation that

is advantageous to one trait may be disadvantageous for another trait. The quan-

titative modeling of this idea led to the so called ”cost of complexity” hypothesis,

which posits that complex organisms are inherently less evolvable or adaptable to

changing environments with respect to simple organisms, because mutations have

more pleiotropic effects (Fisher 1930). Recent advances in GWAS highlighted the

fact that universal pleiotropy might seem the most likely scenario. Both the infinites-

imal model and the universal pleiotropy are more and more supported by empirical

evidence as suggested by recent works (Boyle et al., 2017). Third, and most impor-

tant point, in this work we elaborated on a particular aspect of the G-P map, namely

the many to one relationship between genotypes and phenotypes, which is usually

not taken into account in the standard interpretation of these evolutionary models.

Accounting for phenotypic robustness in the quasi-species and Price models lead us

to the results presented and discussed in the following article.
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Abstract

Though the ubiquity of phenotypic robustness underlying molecular, metabolic and developmen-

tal processes is not a topic of major debate, the mechanisms by which robustness might be established

during evolution are far from clear and overall little explored. With the aim of contributing to the

understanding of the origin and evolution of phenotypic robustness in living systems, we adopted a

theoretical approach, elaborating on standard deterministic population genetic models of evolution-

ary dynamics. Preliminary results showed that, under common selective regimes, a high level of

phenotypic robustness is a necessary condition (although not sufficient) for adaptation to take place.

This appears as a threshold effect, i.e. as a minimum level of phenotypic robustness under which

evolution by natural selection cannot occur, even in the case of sizable positive selection coefficients

and in absence of any drift effects. This ongoing work represents a first attempt to formally include

phenotypic robustness in the more inclusive framework of a theory of adaptation, by providing an

explanation for the evolution of this basic feature of living organisms and showing how a key fea-

ture of the genotype-phenotype map can directly affect the role of natural selection in evolutionary

dynamics.

1 Introduction

Since evolution by natural selection requires phenotypic variation (Orr, 2005), the widespread pheno-

typic robustness to mutations may seem to be a quality of the organism’s genotype-phenotype map that

would oppose the process of adaptation (Draghi et al., 2010). Indeed, phenotypic robustness is ex-

pected to slow down the adaptation process, making the occurring of new beneficial mutations more

rare. However, somewhat counter-intuitively, theoretical and computational studies predict a positive

role for phenotypic robustness in enhancing long-term adaptation to novel environments, through the ac-

cumulation of cryptic genetic variation (Gibson and Reed, 2008; Hayden et al., 2011). This view is also
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supported by a recent experimental study, showing that phenotypic robustness can promote significantly

faster adaptation to new nutritional environments in E. coli (Rigato and Fusco, 2016). Although the

ubiquity of phenotypic robustness underlying molecular, metabolic and developmental processes is not

a topic of major debate, the mechanisms by which robustness might be established during evolution are

far from clear and overall little explored (Wagner, 2011). For example, Wagner (2011) highlighted the

role of slow environmental changes as a mechanism for the emergence of phenotypic robustness in any

one environment (Wagner, 2011). Some attempts have also been made to connect the above mentioned

long term benefits of phenotypic robustness to its origin (Wagner, 2005). However neither long-term

benefits of phenotypic robustness, nor environmental fluctuations can provide a completely satisfactory

explanation for the widespreadness of phenotypic robustness and for its origin and conservation in living

systems (Kitano, 2004). How such a feature of living systems can be maintained throughout generations

without short-term benefits and in a continuously changing environment? Indeed, phenotypic robustness

seems to be an individual quality that should oppose the short-term adaptation process of populations

per se, even excluding possible fitness costs. Are there any constraints or general principles that govern

the degree of robustness of evolving systems? Is it an adaptation in historical sense, i.e. has it been

shaped by natural selection? Is robustness a by-product of evolution or a necessary condition for life? A

complete treatment of adaptation within evolutionary theory should try to ”endogenize” (Okasha, 2006)

phenotypic robustness, rather than to treat it as a given. With the aim of contributing to an understanding

of the origin and evolution of phenotypic robustness in living systems, we adopted a theoretical approach,

elaborating on two classical mathematical models of evolutionary dynamics, the quasi-species equation

(Eigen et al., 1989) and the Price equation (Price et al., 1970). Both are deterministic models. The quasi-

species model it is a multi allele mutation-selection dynamical system, describing the frequency change

of a particular genotype i during time. Differently, the Price equation is an ”a posteriori” description

of the change over time (generations) of the population mean character value (note that the character

described could be the fitness itself) and at variance with the quasi-species model is not focused on the
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dynamic but on the different states of the system at different arbitrary times. The two models allow

to approach the problem of robustness with different perspectives. With both models, our analyses are

based on three key premises that should apply to the majority of the relevant biological cases. First, we

considered an infinitesimal model (Barton et al., 2016) perspective, where each phenotypic trait is the re-

sult of a very high number of genetic determinants (Turelli, 2017). In other words a huge number of loci

can affects each trait of an organism (although if with different magnitude effects). Second, we adopted

the ”universal pleiotropy view”, where virtually each locus can affects all traits (Wagner and Zhang,

2011). It is reasonable to think that an organism is the result of the interaction of its interdependent parts

rather than simply the resulting sum of independent factors. Both the infinitesimal model and the univer-

sal pleiotropy are supported by empirical evidence (Boyle et al., 2017). Third, and most important, we

highlighted the many to one relationship between genotypes and phenotypes which is usually not taken

into account in standard evolutionary models. In fact, phenotypic robustness is an emergent property

of the genotype-phenotype map structure deriving from the fact that many genotypes maps on the same

phenotype. Taking into account theses three key feature of the g-p map in the above-mentioned models,

here we show that, counterintuitively, a certain level of phenotypic robustness is likely to be not only a

favorable but also a necessary condition (although not sufficient) for adaptation to occur. This appears as

a threshold effect, i.e. as a minimum level of phenotypic robustness under which evolutionary adaptation

cannot occur, even in the case of sizably selection coefficients or differentials and in absence of any drift

effect.

2 Phenotypic robustness and phenotypic stability

Phenotypic robustness is a property of the genotype-phenotype map. Here, for the derivations to follow,

we will adopt a narrow, quantitative definition of phenotypic robustness (ρ), that is the probability that,

across one replication/generation, mutation of a given genotype g takes to a genotype g′ that exhibits the

same phenotype of g:
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ρ :=probability that a mutation has no phenotypic effect

From this definition of robustness, a definition of phenotypic stability (ϕpp) follows. This is the

probability that the replication of a given genotype g takes to a genotype that exhibits the same phenotype

of g. Indicating with ηg the mutation probability per genome per replication, phenotypic stability results

to be the sum of the probabilities of two mutually exclusive events, namely i) that there is no mutation

(1− ηg) and ii) that in case of mutation the mutant genotype maps of the same phenotype (ρηg), thus:

ϕpp = (1− ηg) + ρηg (1)

3 Quasi species model analysis

The quasi-species model (Eigen et al., 1977) is a single locus, multi allele, mutation-selection model

where each allele differs from the others by at least a single point mutation.

Imagine a sufficiently large population of genomes of size G and of different type i. Sufficiently large

means that we can neglect the role of drift. Denote by xi the relative abundance of the ith sequence type,

thus we have
∑

i xi = 1. The population structure is given by the vector x⃗ = (x0, x1, ...xn). Denote

by fi the fitness (growth rate) of the ith sequence type. The fitness landscape is given by the vector

f⃗ = (f0, f1, ..., fn). The average population fitness is ψ =
∑

i xifi. The probability that genotype j

results in genotype i by mutation is given by qji. Q = [qji], where Q is the mutation matrix. Each

element of Q represents the probability of a sequence j to mutate into a sequence i per replication (see

Nowak, 2006). The quasi species equation is given by:
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ẋi =
n
∑

j=1

xjfjqji − xiψ (2)

This means that sequence i is obtained by replicating sequence j at rate fj times the probability that

replication of sequence j generates sequence i.

This model is no more than a deterministic mutation-selection multi-allele model describing the fre-

quency change of the ith sequence (ẋi).

3.0.1 Introducing the genotype-phenotype dualism, a phenotypic version of the quasi species

model

Since the principle of the quasi-species dynamic holds for every mutating and reproducing entity, we

can use the quasi-species model to track phenotypic frequency changes instead of the genotypic ones.

Defining xp as the frequency of a given phenotype we can write a phenotypic version of the quasi-species

model as:

ẋp =
n
∑

p′=1

xp′fp′ϕp′p − xpψ (3)

.

Where fp′ is the fitness of the p′ phenotype, ϕp′p is the phenotypic mutation probability of p′ into

p and ψ is the population mean fitness (
∑n

p′=1 xp′fp′). We can decompose equation [3] to highlight the

two main contribution to the frequency change of p, yielding to:

ẋp = xpfpϕpp +
∑

p′ ̸=p

xp′fp′ϕp′p − xpψ (4)

.
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Equation [4] is the phenotypic version of the quasi species model assuming different sequences

mapping on the same phenotype. The first term of the right hand side of [4] is the contribution of non

mutant phenotypes, while the second one is the sum of the contribution of mutations from different

phenotypes p′. The term ϕpp, is the phenotypic stability which contains the robustness term ρ.

3.0.2 Phenotypic robustness is a necessary condition for adaptation

to occur I

Considering equation [4], adaptation occurs when for an advantageous phenotype p (fp > ψ), ẋp > 0,

i.e. when:

xpfpϕpp +
∑

p′ ̸=p

xp′fp′ϕp′p − xpψ > 0 (5)

Dividing both therms by ψ, we have:

xpwpϕpp +
∑

p′ ̸=p

xp′wp′ϕp′p − xp > 0 (6)

where wp is the relative fitness of a given phenotype p. Under the assumption that the mutational

contribution from different phenotypes is reasonably negligible (
∑

p′ ̸=p xp′wp′ϕp′p ≃ 0), we can write:

xp(wpϕpp − 1) > 0 (7)

yielding to:

wpϕpp > 1 (8)

Inequality [8] is the necessary condition to be satisfy for adaptation to occur. Since the phenotypic

stability term ϕpp contains the robustness term, we can ask what’s the minimum level of robustness

required to satisfy [8] substituting [1] into [8] we have:
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wp((1− ηg) + ρηg) > 1 (9)

Rewriting the relative fitness term as wp = (1 + sp), were sp is the selection coefficient of the

advantageous phenotype p (sp > 0), we get:

(1 + sp)((1− ηg) + ρηg) > 1 (10)

and

ρ >
(1 + sp)ηg − sp

(1 + sp)ηg
= ρc (11)

The right-hand side of inequality [11] is the minimum level of phenotypic robustness required for

adaptation to occur or to be maintained, that we indicate as the critical robustness (ρc). This depends

only on the mutation probability ηg and on the selection coefficient sp. As a rough proxy, we can see

that as the mutation rate increases, higher levels of phenotypic robustness are required for adaptation

to occur, while as the selection coefficient increases, lower levels of phenotypic robustness are required

(Fig.1). ρc can vary from −∞ to 1. When ρc < 0, no robustness is required for adaptation. This is

the case of most evolutionary models where we have great selection coefficients and very low mutation

rates, however we can show that this is a very narrow condition (see discussion). In fact, we can study

when ρc > 0, and ask if this is at least a realistic condition. As 0 < ηg < 1, the condition for ρc to be

positive is:

sp <
ηg

1− ηg
(12)

7



This means that some robustness is necessary for adaptation when sp <
ηg

1−ηg
.

It is interesting to analyze the two limit cases:

1) For ηg → 0, no robustness is necessary for adaptation. Most evolutionary models assume this

condition since they are focused on small genotypes (one locus, few loci and independent effects). In

other words, they consider few genes affecting one trait and that these gene effects are independent from

other genes affecting another trait.

2) For ηg → 1, some robustness is always necessary, independently from sp. In this particular case

ρc equals to 1
(1+sp)

Since
ηg

1−ηg
increases nearly exponentially from 0 to infinity with ηg, it is more likely that some

robustness is required for adaptation, and when ηg → 1, the condition for adaptation to occur is approx-

imately:

ρ > ρc =
1

(1 + sp)
(13)

This means that the phenotypic robustness needed for a particular advantageous phenotype to spread

throughout the population is inversely related to its selective advantage (sp) in that particular moment.

This is true indeed if we consider that almost the whole genome can affect the phenotype of each trait. In

this case the genotypic mutation probability equals to the genome mutation probability per generation.

We know that at least for eucaryotes and viruses, the mutation probability per genome per generation is

near to one in most cases (Drake et al., 1998). Inequality [13] highlights a strict condition for adaptation

to occur. Let’s remark that this condition holds even in the presence of a positive selection coefficient and
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in the absence of any drift effect, since we assumed a large population size. In other words the selection

efficiency can be heavily affected by the levels of phenotypic robustness.

Figure 1: Center: three dimensional representation of the critical robustness ρc, blue surface, for different combi-

nations of s and ηg; Left: critical robustness (transition line between white and blue areas) under different selection

coefficients, with fixed ηg = 0.5. The blue area represents the parameter space where adaptation can occur, while

the white one where adaptation cannot occur. Right: critical robustness (transition line between white and blue

areas) under different genotypic mutation probability (0 to 1) with fixed sp = 0.1.

3.0.3 A more accurate model of ϕpp

A more accurate modeling of ϕpp could be the following:

ϕpp =
G
∑

k=0

ν(k)ζ(k) (14)

where ν(k) is the proportion of neutral genotypic (i.e. with the same phenotype p) variants for each

set of mutants with k mutations, and ζ(k) is the probability to have exactly k mutations (ζ(k)), with

0 < k < G where G is the genome size. The sum
∑

k ̸=0 ζ(k) = ηg. ηg is the previously defined

probability to have a mutated genome over a generation or replication. ν(1) can be thought to be a

phenotypic robustness proxy, and is the definition of robustness adopted by Wagner (Wagner, 2011). We

can then generalize ϕpp as follow:

Since
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ϕpp =
G
∑

k=0

ν(k)ζ(k) = ν⃗ · ζ⃗ (15)

We can write ϕpp in vector notation:

ϕpp = |ν⃗||ζ⃗| cos θ (16)

where θ is the angle between the mutation probability vector and the robustness vector. Recalling

the condition for adaptation to occur, ϕppwp > 1, we can apply the new definition of ϕpp to write it as a

function of ν:

|ν⃗||ζ⃗| cos θ >
1

wp
(17)

Making explicit the selection coefficient we have:

|ν⃗| >
1

|ζ⃗| cos θ(1 + sp)
(18)

This last inequality holds for any model ν(k) and ζ(k).

More interesting are those cases in which we can assign a function to both ν(k) and ζ(k). Following

Wagner (2011), we can assign a function to ν(k). In addition we can assign two explicit functions to

ζ(k), the Binomial distribution (1) and the Poisson distribution (2). We can use the second, computation-

ally more tractable, distribution because when G → ∞, the Binomial distribution can be approximated

to an Poisson distribution. We will treat both in this paragraph.

1) Binomial distribution of mutations.

In this case we have:
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ν(k) = ν(1)k; ζ(k) =
(G
k

)

µkb (1− µb)
(G−k)

where ν(1) is the proportion of neutral variants at a distance of one point mutations (k = 1) and µb

is the mutation rate per bp per replication or generation. This model assumes that each genotype with

phenotype p has ν(1) neutral neighbors (genotypes with the same phenotype p) at a distance of one point

mutation. We can thus rewrite ϕpp as:

ϕpp =
G
∑

k=0

G!µkb (1− µb)
(G−k)ν(1)k

(G− k)!k!
(19)

Since:

∑G
k=0

G!µk
b
(1−µb)

(G−k)ν(1)k

(G−k)!k! = (µbν(1) + 1− µb)
G (Newton binomial formula), we have:

(µbν(1) + 1− µb)
G >

1

wp
(20)

ν(1) >
(1 + sp)

1/Gµb − (1 + sp)
1/G + 1

(1 + sp)1/Gµb
(21)

We managed to write the entire inequality in therms of ν(1) which is the proportion of neutral vari-

ants at one point mutation distance (local robustness). In this case we can highlight the fact that the

minimum amount of robustness required for adaptation depends not only on the selection coefficient and

the mutation rate, but also on the genome size.

2) Poisson distribution of mutations:

In this case we have:
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ν(k) = ν(1)k; η(k) =
µk
G
e−µG

k!

where µG is the mean mutation rate per genome per generation, which correspond to Gµb in the

binomial model.

Thus

ϕpp =
∑G

k=0
µk
G
e−µGν(1)k

k!

Since:

∑G
k=0

µk
G
e−µGν(1)k

k! = eµG(ν(1)−1)Γ(1+G, µGν(1))
G!

and

limG→∞
Γ(1+G, µGν(1))

G! = 1 (see Appendix)

We have:

eµG(ν(1)−1) >
1

wp
(22)

ν(1) >
µG − ln (1 + sp)

µG
(23)

In this case the minimum amount of robustness required for adaptation does not depends from the

genome size.
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4 Price equation analysis

Untill now we dealt with the minimum level of robustness required for adaptation to occur in the sense

of increasing the frequency of a particular (favourable) p phenotype. A different approach could be to

track the change in the mean population phenotype. If a positive covariance between fitness and the

phenotypic value of a certain character exist, we can define adaptation as the increase of the mean of

that particular character value over a definite time interval. This approach is very useful if we have

to deal with quantitative traits and continuous character values differently from what happens with the

quasi-species model where we have discrete values.

4.0.1 Phenotypic robustness is a necessary condition for adaptation to occur II

We explored the role of the phenotypic stability ϕpp and phenotypic robustness ρ considering the follow-

ing form of the Price’s equation (Okasha, 2006):

∆z = Cov(wi, z
′
i) + E[∆zi] (24)

where ∆z is the change in the population mean character value, z′i is the mean of the offspring’s

character values, wi the relative fitness, and E[∆zi] is the average of the difference between parents and

offspring character values, the so called ”transmission bias”.

We can study how robustness affects each term of the Price equation considering that phenotypic

stability ϕpp affect the mean character value of offsprings z′i

z′i can be written as:

z′i = ϕppzi + (1− ϕpp)

∑

zj
Wi(1− ϕpp)

(25)
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z′i =
Wiϕppzi +

∑

zj
Wi

(26)

where
∑

zj is the sum of the character values of the Wi(1− ϕpp) offspring with mutant phenotypes

and Wi is the absolute fitness.

We show that there is a minimum amount of phenotypic robustness under which ∆z cannot be greater

than zero for any particular character even if a positive covariance between fitness and that character value

exist (Cov(wi, zi) > 0):

Substituting [26] into [24] leads to:

∆z = Cov(wi,
Wiϕppzi +

∑

zj
Wi

) + E[
Wiϕppzi +

∑

zj
Wi

− zi] (27)

Assuming that phenotypic stability ϕpp is approximately constant across the studying population:

∆z = ϕpp[Cov(wi, zi) + E[zi]]− E[zi] + E[

∑

zj
Wi

] + Cov(wi,

∑

zj
Wi

) (28)

For any particular character z we can ask when ∆z > 0. From [22] this happens when:

ϕpp >
E[zi]− E[

∑

zj
Wi

]− Cov(wi,
∑

zj
Wi

)

E[zi] + Cov(wi, zi)
(29)
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Given that ϕpp = (1− ηg) + ρηg we can rewrite the above inequality as:

ρ >
ηg(E[zi] + Cov(wi, zi))− Cov(wi, zi)− E[

∑

zj
Wi

]− Cov(wi,
∑

zj
Wi

)

ηg(E[zi] + Cov(wi, zi))
(30)

Inequality [30] represents the minimum level of phenotypic robustness for adaptation to occur. To

simplify the discussion we can also assume that Cov(wi,
∑

zj
wi

) = 0 and obtain:

ρ >
ηg(E[zi] + Cov(wi, zi))− (E[

∑

zj
Wi

] + Cov(wi, zi))

ηg(E[zi] + Cov(wi, zi))
(31)

Considering also that E[
∑

zj
Wi

]− > 0 if phenotypic mutations are rare, we have:

ρ >
ηg(E[zi] + Cov(wi, zi))− (Cov(wi, zi))

ηg(E[zi] + Cov(wi, zi))
(32)

We can divide both numerator and denominator by E[zi] , yielding:

ρ >
ηg(1 + Cov(wi, zir))− (Cov(wi, zir))

ηg(1 + Cov(wi, zir))
(33)
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Where zir is the value of the ith parent phenotype relative to the parent population mean phenotype

(This equals to set the population mean phenotypic value to 1). Furthermore given that Cov(wi, zir) can

be interpreted as a the selection differential S, we can rewrite the above inequality as:

ρ >
ηg(1 + S)− S

ηg(1 + S)
= ρc (34)

This inequality is analogous to [6], at least formally.

5 Comparing the two model results

S is the covariance between the relative fitness wi and the relative character values zir . In both models

some levels of phenotypic robustness is required for adaptation to occur even in the case of sizable se-

lection coefficient (sp) or differential (S) and in absence of any drift effect.

In particular the minimum levels of phenotypic robustness required are:

1) ρc =
(1+sp)ηg−sp
(1+sp)ηg

(according to the quasi-species model)

2) ρc =
(1+S)ηg−S
(1+S)ηg

(according to the Price equation)

The only difference between the these two main results is the selection coefficient sp versus the se-

lection differential S, both expressing the selection strength. This difference arises from the fact that
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the quasi-species model focuses on the change in the frequency of an advantageous phenotype p (de-

pending on its selection coefficient sp), while the Price equation focuses on the change of the population

mean phenotypic value (depending on the selection differential S). The relation between the selection

coefficient and the selection differential that can be expressed as follow:

S = Cov(1 + si, zi) (35)

which equals to

S = Cov(si, zi) (36)

Despite differences, the two analyses on different evolutionary models yield the same qualitative

result, namely that in order for adaptation to occur, a minimum level of phenotypic robustness is required.

6 Discussion

Previous studies marked the role of phenotypic robustness in enhancing evolutionary adaptation through

the effect of cryptic genetic variation (Hayden et al., 2011; Rigato and Fusco, 2016), in particular on long

term effects on evolvability or innovability (Wagner, 2008). However, in a short-term context, pheno-

typic robustness is thought to oppose the process of adaptation through its buffering effects on positive

mutations. Here we showed that, counterintuitively, not only phenotypic robustness can boost the adap-

tation process but also that it could be a necessary condition for adaptation to occur and to be maintained

during evolution. This appears as a threshold effect, i.e. as a minimum level of phenotypic robustness

under which evolutionary adaptation cannot occur, even in the case of sizably selection coefficients and

in absence of any drift effect. The phenotypic mutational threshold we observed is analogous to the

mutational threshold of the quasi-species model (Eigen et al., 1989; Wilke et al., 2001). The only dif-

ference is that here we consider genotypes and phenotypes in two distinct levels rather than only the

genotype (sequence) level. In addition we showed that this threshold emerged also from the analysis of
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the Price equation in an analogous form. The fact that different independent evolutionary models gave

the same analytical results confers consistency to our claim, however one may ask if these findings can

be applied to the majority of real biological cases. To answer this question, the key point to highlight is

that the minimum amount of robustness required is very high (or at least greater than zero) in the case

of small selection coefficients (or differentials) and relative high mutation rates. We argue that this is the

case of most living systems. First, even if selection coefficients can vary widely between taxa, popula-

tions, times, and many other factors, it is widely accepted or assumed in most evolutionary models that

actually, biological selection coefficients tend to be very small (Orr, 2005). For example, experimental

measurements of s usually span between 10−4-10−1 (Tamuri et al., 2012; Nielsen and Yang, 2003; Math-

ieson and McVean, 2013). A selection coefficient of 0.1 can be considered to be a high value, namely

a strong selection acting on that population. This is the widely accepted darwinian idea that adaptation

proceed through small evolutionary steps. Second, the universal pleiotropy view have heavy implica-

tions on the organisms’s genotype mutation rate. According to this model every mutation in the genome

can potentially affect the phenotype of every trait and eventually the organism’s fitness (Omnigenetic

model)(Boyle et al., 2017). This means that the whole genome mutation rate should be considered as

potentially affecting each trait. Accordingly we should consider the entire individual genome as a single

allele for each trait. This might seem a non-orthodox view, however it is in accordance with many empir-

ical findings also deriving from GWAS studies (Boyle et al., 2017).Thus, differently from the mutation

rate of a single gene, the genome mutation rate is inherently high, usually, at least for eucaryotes and

viruses, in the order of many mutations per generation per genome (Drake et al., 1998). In this scenario,

a minimum amount of robustness ρc, is likely to be always required to sustain adaptation. To give an

example, using representative real data on the genome mutation rates (µG) (Ridley, 2000), and a great se-

lection coefficient of s = 0.1, we can calculate ρc for different life forms using equation [11]. The result

is that ρc values are typically high, ρc = 0.85 for a virus (G = 104;µG = 1), ρc = 0.90 for an eucaryote

(G = 3.6×108;µG = 4), but is negative, ρc = −90, for a typical bacterium (G = 2×106;µG = 10−3),

18



meaning that no robustness is required in this case. However if we consider the higher mutation rate

(from three to ten-fold the basal) that bacteria experience during a stressful condition (and thus adapta-

tion) (Foster, 2007), higher and positive levels of phenotypic robustness are required as well. Also, for

lower and more common selection coefficients (s < 0.1), the ρc values are increasingly higher, tending

to 1.0 in all cases. For example for a bacterium in a stressful condition with a ten-fold mutation rate

(µG = 10−2), and a common selection coefficient of s = 10−3, the minimum level of robustness re-

quired is ρc = 0.89. We can conclude that phenotypic robustness is a necessary and favorable condition

for adaptation to occur, potentially contributing to explain its origin and the reason why we observe these

very high levels of robustness and redundancy in living systems.

7 Appendix

Here we show that:

limG→∞
Γ(1+G, µGν(1))

G! = 1

We start from the definition of the Γ function; Renaming µGν(1) = x, we have:

Γ(1+G,x)
G! =

∫

∞

x
e−ttG dt

G!

For the integral properties we can write:

∫

∞

x
e−ttG dt

G! =

∫

∞

o
e−ttG dt−

∫ x

o
e−ttG dt

G!

Using the definition of complete Γ function:
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∫

∞

o
e−ttG dt−

∫ x

o
e−ttG dt

G! = Γ(1+G)
G! +

∫ x

o
e−ttG dt

G!

and since Γ(1 +G) = G!, we have:

Γ(1+G)
G! +

∫ x

o
e−ttG dt

G! = 1−

∫ x

o
e−ttG dt

G!

Now we have to show that

limG→∞ 1−

∫ x

o
e−ttG dt

G! = 1

Considering that ∀x :

0 ≤
∫ x
o e

−ttG dt ≤
∫ x
o t

G dt = xG+1

G+1

also the following condition holds ∀x :

1− xG+1

(G+1)! ≤ 1−

∫ x

o
e−ttG dt

G! ≤ 1

Given that

limG→∞ 1− xG+1

(G+1)! = 1

necessarily imply that

limG→∞ 1−

∫ x

o
e−ttG dt

G! = 1
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∀x and then ∀ µG and ν(1), and thus:

limG→∞
Γ(1+G, µGν(1))

G! = 1
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0.5 Chapter III

0.5.1 Introduction to Article III

In Article II we showed the effects of phenotypic robustness on evolutionary dynam-

ics, in particular that there is a critical level of phenotypic robustness required for

adaptation to occur. This was shown through the analysis of deterministic models,

thus our results hold under the assumption of a non-stochastic scenario. However,

evolutionary processes are a combination of deterministic and stochastic mechanisms

and virtually every aspect of evolution is somehow affected by randomness. Account-

ing for stochasticity in evolutionary models have been shown to be crucial for a better

and more comprehensive understanding of evolutionary dynamics (Rice, 2008). This

is the case for example of the genetic drift model (Ohta, 1992), in which is shown

that the effect of random sampling can produce non-adaptive directional evolution-

ary changes. As a first attempt, we tried to consider stochastic evolutionary models

in our analysis, in particular we focused on the diffusion approximation model (Ohta,

1992), which is the most powerful method devised for combining different determin-

istic and stochastic mechanisms (Rice, 2004). However, we realized that even this

model lack of sufficient generality for two main reasons. First, the diffusion approx-

imation model is a closed system with non-changing parameters. This means that

stochasticity on parameters is non taken into account. Second, it has very narrow

boundary condition limits: in fact to be mathematically tractable the model assumes

that three main evolutionary forces, migration, selection and mutation are of similar

magnitude and sufficiently weak that allele frequencies are not likely to change by

more than the amount of 1/2N per generation (Ohta, 1992; Rice, 2004). Since our

boundary conditions are more extended, virtually to all possible parameter values,



0.5. CHAPTER III lxiii

we decided to study the evolutionary consequences of stochasticity through evolu-

tionary computer simulations. Computer simulations have become a useful tool for

the mathematical modeling of many natural systems including biological, and more

specifically, evolutionary systems. A simulationis the imitationof the operation of a

real-world process or system overtime. The act of simulating something first requires

that a model be developed; this model represents the key characteristics, behaviors

andfunctionsof the selected physical or abstract system or process. The model rep-

resents the system itself, whereas the simulation represents the operation of the

system over time. We first developed a model representing the stochastic and the

deterministic processes occurring each generation, thus it can be seen as a stochastic-

deterministic dynamical system. Model rules and functions define the relationships

between elements of the modeled system. The main elements of the model are in-

ternal variables and parameters. An internal variable is a changing variable during

time according to the internal model rules or to external inputs, while a parameter is

defined as a non-changing value of the model. When parameters can change during

time they actually become variables. In this case the dynamical system is defined

as ”non-sufficient”, meaning that is no more mathematically tractable during time

or at best only instantaneously (this is indeed why we need computer simulations).

At the beginning of each simulation, initialization parameters and variables must

be specified, corresponding to the definition of the initial conditions. At each time

point, the dynamical system can be defined by the so called state variables. A state

variable is a value describing a particular aspect of the system during time and is

usually calculated with specific rules from parameters and internal variables. Finally,

the observed behaviors are emergent properties of the dynamical system.



lxiv REFERENCES



References

Ohta, T. (1992). The nearly neutral theory of molecular evolution. Annual Review

of Ecology and Systematics, 23(1):263–286.

Rice, S. H. (2004). Evolutionary theory: mathematical and conceptual foundations.

Sinauer Associates.

Rice, S. H. (2008). A stochastic version of the price equation reveals the interplay of

deterministic and stochastic processes in evolution. BMC evolutionary biology,

8(1):262.

0.5.2 Article III

Article in preparation, to be submitted to an evolutionary biology journal

(e.g., JEB, BMC Evol. Biol, Proc. R. Soc. B)

lxv



A heuristic model on the role of robustness in adaptive evolution

Emanuele Rigato,1∗ and Giuseppe Fusco,1

1Department of Biology, University of Padova,

Via U. Bassi 58/B, Padova, Italy

Abstract

A previous study (Rigato and Fusco, in prep.) showed that including phenotypic robustness in

standard population genetic models can give us a simple explanation for the widespread resistance to

genetic and environmental perturbations, namely that, counterintuitively, a high level of phenotypic

robustness is not only a favourable but also a necessary condition for adaptation to occur. However,

these results hold under the assumptions of fixed parameters and large, nearly infinite, population

sizes. Here, we built and analyzed a simple heuristic individual-based computational model to test

for the effects of stochasticity on these deterministic results. We examined how phenotypic robust-

ness affects adaptive evolution under different population sizes, mutation rates, and different selec-

tion regimes, and then we examined how phenotypic robustness evolve under common scenarios in

constant and variable environments. Overall, our simulations confirm the consistency of the deter-

ministic model predictions, however we highlight that a deeper analysis of the population size effects

and environmental interactions should be carried on to assess their role on the origin and evolution

of phenotypic robustness.

1 Introduction

Complex living systems are inherently robust to internal and external changes. In particular, mutational

phenotypic robustness is widespread across organisms at various level of organization, from molecules

to individuals (Wagner, 2011). Phenotypic robustness is a key feature deriving from the genotype-

phenotype map structure, namely from the fact that many genotypes map on the same phenotype, leading

to a reduction of the probability that a genetic mutation produces a novel phenotype. Adaptive evolution

requires heritable phenotypic variation for selection to act upon, and the standing paradigm that emerged

from Modern Synthesis argued that random genetic mutations of fixed phenotypic effects are one of

the most important source of heritable phenotypic variation fuelling adaptive evolution (Huxley, 1942;
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Kutschera and Niklas, 2004; Pigliucci et al., 2010). Thus, phenotypic robustness may seem to act as

a buffer on mutations and consequently on phenotypic variation and adaptive evolution (Draghi et al.,

2010). So far, phenotypic robustness has received little attention in standard population genetic models,

and only recently long-term effects of robustness on evolvability and innovability have started to be stud-

ied more in depth. However, except for some few works, the mechanisms by which robustness might be

established during evolution are far from clear and overall little explored (Wagner, 2011). In a previous

study, we showed that including phenotypic robustness in standard population genetics and evolutionary

models (the Quasi-species model and the Price equation, Price et al. (1970); Eigen et al. (1989)) can

explain the widespread phenotype resistance to genetic and environmental perturbations. Specifically,

and counterintuitively, that a certain (sizable) level of phenotypic robustness is not only a favourable but

also a necessary condition (although not sufficient) for adaptation to occur. This appears as a threshold

effect, i.e. as a critical level of phenotypic robustness under which evolutionary adaptation cannot occur,

even in the case of significant positive selection coefficients and in absence of any drift effect. These

theoretical results were obtained under the assumptions of fixed evolutionary parameters (e.g., muta-

tion rates) and large, virtually infinite, population sizes. In other words, the models we used to obtain

the analytical results are deterministic, and this can potentially affect the generality of previous results.

However, evolution is certainly not a completely deterministic process and stochasticity has been shown

to play a crucial role in evolutionary dynamics, leading to the formulation of many important stochastic

models like the genetic drift model (Kimura et al., 1968) or the probabilistic version of the Price’s equa-

tion (Rice, 2008). Here we tested for the effects of stochasticity on the predictions of our deterministic

derivations, to assess their generality and soundness with respect to assumption violation. We built and

put to work a simple heuristic individual-based computational model, comparing adaptive evolution in

populations of different sizes and fixed or changing parameters (variables) such as the mutation rate,

phenotypic robustness and the selection coefficient. We examined how phenotypic robustness affects

adaptive evolution under different population sizes, mutation rates, and different selection regimes, and
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then we examine how phenotypic robustness evolve under common scenarios in constant and variable

environments.

2 The Model

This model description follows the Overview, Design concepts and Details protocol for describing

individual-and agent-based models (Grimm et al., 2005, 2006; Gilbert, 2008). The model is implemented

in NETLOGO v. 5.0.3, (Tisue and Wilensky, 2004) and is designed to simulate the effects of different

levels of phenotypic robustness ρ, (0 < ρ < 1) on adaptive dynamics. As proposed by Rigato and Fusco

(in prep.) we adopted a narrow, quantitative definition of phenotypic robustness, that is the probability

that, across one replication, mutation of a given genotype g takes to a genotype g′ that exhibits the same

phenotype of g, in other words, the probability that a mutation has no phenotypic effect. The model con-

sists of a population of entities (or individuals), each assigned with initial fitness and robustness values.

Each entity produces offspring according to its fitness value. Each single offspring can exhibit a mutated

genotype with probability µ, and, conditional on the mutated genotype, a mutated phenotype with prob-

ability (1− ρ). Magnitude of the phenotypic mutation can be fixed or modeled with a random variable,

depending on the simulation. There are no fitness costs directly associated to phenotypic robustness.

2.1 Purpose

The main purpose of the model is to explore the consequences of phenotypic robustness in adaptive

evolution, testing the effects of stochasticity with respect to the deterministic predictions of Rigato and

Fusco (in prep.). This is done by simulating finite population persistence and phenotypic evolution under

constant or changing environmental conditions (according to the simulation).

2.2 Entities, state variables and timing

Entities of the model are asexual individuals. Each individual i has a genotype (not modeled) and a

phenotype that includes its absolute fitness Wi, and phenotypic robustness ρi. Different genotypes can
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map on the same phenotype. Depending on the simulation, state variables are: population average rel-

ative fitness (w), relative fitness variance (σ2w) and average robustness (ρ). Relative fitness is computed

with respect to a hypothetical maximum fitness value attainable in a given environment (Wopt), thus,

wi =Wi/Wopt. The model is time-discrete, one time step corresponding to one generation, and genera-

tions do not overlap.

2.3 Process overview

See a schematic diagram in Figure 1. Each cycle (generation) starts with a parent population of N

individuals. Parents reproduce according to their fitness and die. Offspring initially inherit their parent’s

genotype and phenotype, but immediately the genotype can mutate with probability µ, and this can have

a phenotypic effect with probability (1 − ρ). If the resulting offspring population is larger than N , this

is reduced to size N through random elimination of the exceeding entities. These are the parents of

the succeeding generation. In simulation with changing environment, fitness values are updated before

parents reproduce.
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Figure 1: Schematic diagram of the process overview (see text).

2.4 Design concepts

Evolution (changes in population mean and variance values of phenotypes) and other population dynam-

ics (e.g., stability, bottlenecks and extinction) emerge from the combined effects of heredity (mutation
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and phenotypic robustness), natural selection (differential fecundity fitness of individuals) and demo-

graphic (population size) processes. Stochasticity has effects on i) genotype and phenotype mutation

(with their magnitude), ii) survival and reproduction and iii) environmental changes.

2.5 Initialization

Initialized parameters and their initial values depend on the simulation (see below).

2.6 Input

The model does not have any external input; parameters are updated according to internal model rules.

2.7 Sub-model ”environmental-change”.

Environmental change is simulated as a periodic indiscriminate negative effect on entity’s fitness. The

magnitude of the negative effect is described as a fixed negative factor (X). To simulate the negative

environmental effect, the negative factor (X), is added to the individual absolute fitness values (Wi)

before reproduction. Changes happens with a period T , in generation time unit (Tmin = 1 generation).

2.8 Sub-model ”reproduction”.

In each generation, each individual i produces Wi offspring and die.

2.9 Sub-model ”mutation”.

The genotype can mutate with probability µ , and if a genetic mutation occurs, the phenotype can mutate

with probability (1 − ρ). Depending on the simulation, this sub-model can be activated for fitness only

or phenotypic robustness as well. In the latter case they operate independently. If the phenotype mutates,

the new phenotype value is updated according to the following rules:

For fitness values:

1) in simulations with fixed selection coefficients, s, the new mutated fitness is set to Wupdated =W (1+

s). s can be positive with probability p = 0.17 (Allen Orr, 2000), and negative with probability (1− p).
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2) in simulations with variable selection coefficients, s, the new mutated fitness value is set to a value

ranging from 0 to the maximum attainable absolute fitness Wmax, with equal probability. Accordingly,

fitness mutant gains decrease as the population approach to the optimum, as implied by the Fisher’s

geometric model.

For robustness values:

1) the new mutated robustness value is set to a value ranging from 0 to 1 with equal probability.

2.10 Sub-model ”maximum population size”

In each generation, if offspring population is larger than N , the population is reduced to size N through

random elimination of the exceeding entities. The surviving entities are going to be the parents of the

succeeding generation.

3 Simulations

The deterministic model proposed by Rigato and Fusco (in prep.) predicted a minimum level of pheno-

typic robustness for adaptation to occur, i.e. for the mean population fitness to increase. This minimum

level depends on the magnitude of the selection coefficient and on the genotypic mutation probability

according to the following equation:

ρc = ((1 + s)µ− s)/((1 + s)µ)

where ρc is the critical amount of robustness required, µ the genotype mutation probability, and s the

selection coefficient of a given mutant phenotype. To test the consistency of this prediction we run four

simulations. Simulations went on for 100-500 generations. Each simulation included several runs, each

characterized by different initialization parameters (equal for all individuals or not), and a number of

replicas for each run.
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3.1 Simulation 1

It tested the existence of a ρc, by fixing for all runs the initialization parameters of the selection coefficient

and the genotype mutation probability. Different runs were initialized with different fixed parameters

such as the population sizeN and phenotypic robustness ρ. Different combinations ofN and ρ constitute

the separate runs, each replicated three times. Individual fitness is the only changing internal variable,

and the average population relative fitness is the only state variable. This simulation allows to verify the

existence of a maximum robustness level under which the mean population fitness (state variable) does

not increase significantly during time (generations).

3.2 Simulation 2

It tested how stochasticity can affect the structure of the relation between ρc, genotypic mutation prob-

ability and the selection coefficient s, predicted by Rigato and Fusco (in prep.), in populations of nearly

constant finite size N . We initialized all runs with the same fixed population size of 500, but different

fixed values of s, and ρ, each run in three replicas. As a result of the simulation, for each combination

of s and , an observed ρc was selected as the minimum level of ρ under which adaptation did not occur

with that particular combination of s and .

3.3 Simulation 3

This simulation allowed to test the existence of a critical robustness level under which the mean popula-

tion relative fitness does not increase during time in a fixed environment, with constant population size,

mutation rate but variable selection coefficients among individuals, in a more realistic scenario that con-

siders a population adapting through phenotypic mutations of declining magnitude effect in approaching

the optimum and adapting with different (not fixed) selection coefficients. Simulation 3 tested the exis-

tence of a ρc, by fixing for all runs the initialization parameter of genotype mutation probability. Among

runs, different fixed initialization parameters are population size N and phenotypic robustness ρ. Differ-

ent combinations of N and ρ constitute the separate runs, each replicated ten times. Individual fitness
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is the only changing internal variable while the distribution of the selection coefficients is an emergent

property of the system, namely a new state variable like the average population relative fitness. The latter

derives from the random assignment of fitness to newly mutated phenotypes (see sub-model ”mutation”).

3.4 Simulation 4

To assess the evolvability of phenotypic robustness under different conditions, we simulated the fixed

initialization conditions of Simulation 3, but allowing phenotypic robustness to evolve during adaptation.

This means that, like fitness, phenotypic robustness is a changing internal variable. Population average

phenotypic robustness is the new state variable as the population average relative fitness. We simulated a

constant and a variable environment (see ”environment” sub-model). Evolution of phenotypic robustness

were compared between different initialization fixed parameter values of N and under constant and

variable environments.

4 Results

4.1 Simulation 1

• Fixed parameters (equal among runs): s = 0.1; µ = 1.0; Wopt = 30

• Fixed parameters (different among runs): N = (20, 50, 100, 250, 500, 1000);

ρ = (0.7, 0.75, 0.80, 0.85, 0.90, 0.95, 0.99)

• Internal variables: Wi (initial value=10 for all individuals)

• State variables: w

• Generations: 500

• Runs: 42

• Replicas: 3 per run
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If the relative population mean fitness significantly increases after an arbitrary time, adaptation is said

to have occurred. Note that as the environment is fixed, the population mean fitness cannot exceeds the

maximum attainable relative fitness, wmax = 1. As illustrated in Figure 2, with a large population size

of N = 1000, adaptation occurred after 500 generations only in populations with ρ > 0.85. In fact, the

mean fitness gain is larger than zero in populations with ρ > 0.9 (Student’s t test, p < 0.001), while

is significantly negative for population with ρ < 0.85 (ρ < 0.001). Thus the robustness threshold is

located between 0.85 and 0.9. This value is very close to the deterministic model expected value of 0.9.

In population of intermediate size (N = 500, 250) the same pattern is observed, as populations with ρ

between to 0.9 and 0.99 have a positive increase in relative fitness after 500 generations (p < 0.001),

otherwise the population mean fitness declines (p < 0.001). In populations with N between 1000 and

250, populations with ρ = 0.99 were always outperformed by population with 0.90 < ρ < 0.95. It

seems that the effect of robustness above the critical level is that to enhance the adaptation rate till

another critical point under which the boosting effect disappear. This could be due to a trade-off effect

between the need to have new phenotypic mutations, and the possibility for these mutations to spread

through the population, possibility guaranteed by high levels of phenotypic robustness. With ρ = 0.99,

probably there are less positive phenotypic mutations respect to the possibility for these mutations to

adapt. At N = 100 the adaptation rate slowed down dramatically and only populations with ρ > 0.95

could adapt. However, the fitness decrease appear to be inversely proportional to the level of robustness.

At N = 100 populations with ρ = 0.99 started to outperformed those with 0.90 < ρ < 0.95. This is

probably due to the fact that the efficacy of selection was weakened by the effect of random drift. This

effect become more evident for populations of sizes N = 50 and N = 20. In these cases no significant

adaptation was observed for all populations. However the rate of fitness loss was inversely proportional

to the amount of robustness. In particular it seems that populations with very high robustness levels

(ρ = 0.99) did not decrease substantially in their population mean fitness values. Population with a size

of N = 50 and N = 20 got extinguished at some point time in some replicas (not visible in the graphs),
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however a clear buffering effect against the fitness decrease appeared in populations with ρ = 0.99.

This buffering effect seems to be very strong, possibly allowing the population to traverse long periods

in small population size without significant fitness decreases due the effect of genetic drift. Overall we

noted that, as expected, phenotypic robustness boosted the adaptation rate in populations with ρ > ρc, or

buffered the population mean fitness decrease in populations with ρ < ρc.
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4.2 Simulation 2

• Fixed parameters (equal among runs): N = 500; Wopt = 30

• Fixed parameters (different among runs): µ = (0.0010, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99);

ρ = (0.0010, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99)

s = (0.0010, 0.0050, 0.01, 0.02, 0.04, 0.1)

• Internal variables: Wi (initial value=10 for all individuals)

• State variables: w

• Generations: 500

• Runs: 726

• Replicas: 3 per run

As shown in Figure 3, the ρc values obtained through simulation are very close to the corresponding

points on the surface of the expected ρc values in the parameter space defined by and s. This means

that even in the case of a finite, and relatively small population size, the minimum values of phenotypic

robustness required for adaptation to occur is comparable to those predicted by the deterministic model

through the explored parameter space.
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Figure 3: Surface (light-blue) of the expected values of ρc (Rigato and Fusco, in prep.), and observed values of ρc
(red dots) from simulation 2. µ is the mutation probability, s is the selection coefficient.

4.3 Simulation 3

• Fixed parameters (equal among runs): µ = 1.0; Wopt = 30

• Fixed parameters (different among runs): N = (20, 50, 100, 250, 500, 1000);

ρ = (0.7, 0.75, 0.80, 0.85, 0.90, 0.95, 0.99)

• Internal variables: Wi (initial value=20 for all individuals)

• State variables: w
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• Generations: 100

• Runs: 42

• Replicas: 10 per run

With a large population size of 1000, adaptation occurred after 500 generations only in populations

with a phenotypic robustness value greater than 0.85. The mean increase in fitness is different from

zero and positive in populations with robustness values of 0.9, 0.95 and 0.99, (p < 0.001), while is

significantly negative for population with ρ < 0.90 (p < 0.001). Thus, the robustness threshold is

located between 0.85 and 0.90, which is again very close to the deterministic model expected value of

0.9 in the case of fixed s. In populations of intermediate size (N = 500, 250, 100) the same pattern was

observed, as populations with ρ equals to 0.9 or 0.95 have a positive increase in relative fitness after

500 generations (p < 0.001), while the population mean fitness of the others declined (p < 0.001). At

variance with what was observed in Simulation 1, populations with a size of N = 50 still adapt within

500 generations with ρ levels of 0.95 and 0.99, while at N = 20 a very small but significant increase

in fitness was observed with ρ = 0.99 only. In addition a buffering effect of high levels of robustness

is more evident in small populations with variable selection coefficients than with fixed coefficients.

It seems that if the selection coefficients are not fixed, the positive effect of robustness on adaptation

appears to be less sensitive to the stochastic effect of a finite population size. In addition, we noted that,

as expected, phenotypic robustness boosted the adaptation rate in populations with ρ > ρc, or buffered the

population mean fitness decrease in populations with ρ < ρc. Populations with phenotypic robustness

of 0.99 always increase significantly more (p < 0.001) than populations with the minimal amount of

robustness required for adaptation to occurs, ρ = 0.9 and 0.95. This happened also for simulations with

intermediate/small population sizes. However, as can be noted graphically in Figure 3, in the very short

term (< 100 generation) populations with ρ = 0.9 or 0.95 sometimes outperformed those with ρ = 0.99.
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4.4 Simulation 4

• Fixed parameters (equal among runs): µ = 1.0; Wopt = 30

• Fixed parameters (different among runs): N = (1000);X = (0, 1, 2, 3);T = (1)

• Internal variables: Wi (initial value=10 for all individuals); ρ (initial value=0.3 for all individuals)

• State variables: w

• Generations: 100

• Runs: 4

• Replicas: 100 per run

We performed the simulation in different variable oscillating environment, with the same period but

different effect magnitude on fitness (X); specifically, the simulated environments were fixed (X=0),

moderately variable (X=1), intermediate variable (X=2), highly variable (X=3) (see Supplementary

Appendix 1 for details). The period for each environmental variation is 1 generation. In other words, in

each generation an environmental effect of size X occurred on the absolute fitness Wi. In all populations

we observed a significant increase in the average population mean fitness from the starting relative fit-

ness value of 0.3 as in the mean robustness (Fig. 4). According to an intuitive expectation, we observed

a higher speed in the increase of phenotypic robustness in less variable environments than in the more

variable ones. The effect appears to be proportional as showed in Figure 4. We observed also a higher

final mean level of phenotypic robustness in populations adapting in more stable environments. In other

words the minimum amount of robustness required for adaptation to occur is lower in case of a very

unstable, oscillating, difficult-to-adapt-to environments, while can be very high when populations are

reaching the fitness optimum in a more stable or constant environment. In addition, as a general result,

we observed that phenotypic robustness increased during adaptation and the increase in phenotypic ro-

bustness preceded the increase in the relative population mean fitness value (Fig. 5). The reason why
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addition, the critical levels predicted from the deterministic model, nearly perfectly match that ones from

the stochastic scenarios in a finite population of larger size. As the population size decreases, the ro-

bustness threshold effects tend to disappear, and also extinction events become more frequent. Also, the

theoretical relationship between ρc, µ and s appears to be robust to the stochastic effects in population of

not too small size. We didn’t explore in depth the case where the selection efficiency is outperformed by

the drift effect. This case seems to appear in simulation 1 and 3 when we experimented a selection coeffi-

cient of 0.1 with a constant population size of 50, or even more withN = 20. In this case, it is reasonable

to assume that even if the level of robustness is sufficient for adaptation to occur, the role of drift outper-

formed the selection efficiency itself because s < 1/Ne (Ohta, 1992). On the contrary when s > 1/Ne,

selection efficiency is affected by the level of phenotypic robustness. Even if s > 1/Ne, low levels of

phenotypic robustness cannot allow the adaptation process to occur. Related to this finding, in simulation

1 and 3, we observed also a boosting effect of phenotypic robustness on adaptation for levels above ρc,

or a buffering effect on fitness decline for values under ρc or above ρc but with very small population

sizes (N = 20 and 50). It is important to note that we designed the simulation intentionally without

considering possible difference in the probability of different neutral genotypes to find new phenotypes.

In fact, other studies showed that phenotypic robustness could lead to the accumulation of cryptic genetic

variation eventually boosting the adaptation process through this mechanism (Hayden et al., 2011; Rigato

and Fusco, 2016). Note that the boosting effect of phenotypic robustness we observed does not derive

from the above-mentioned mechanism, but actually derives from the fact that a positive mutant pheno-

type needs a minimum level of phenotypic robustness to spread through the population. Higher levels of

phenotypic robustness allow more and more small positive mutations to persist and spread through the

population. In other words, higher phenotypic robustness levels allow a wider range of small sized pos-

itive mutant phenotypes to increase their frequency in population. Given a fixed phenotypic robustness,

positive phenotypic mutants under a critical selection coefficient (sc), cannot persist. This is clear if we

allow entities to have different selection coefficients as performed in Simulation 3. In this case, as the
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size of positive selection coefficients decreases when approaching the optimum, populations with lower

levels of phenotypic robustness not only adapt slower, but they also reach a sub-optimal mean population

fitness. This is because approaching the fitness optimum, the low levels of phenotypic robustness do not

allow positive phenotypes with shrinking selection coefficient sizes to spread through the populations.

Finally, we showed that phenotypic robustness, if allowed to be evolvable itself, can increase during

adaptation, in particular its increase precedes the population mean fitness increase. This is because as

the population approach to the fitness optimum, phenotypic robustness is a necessary condition to allow

positive phenotypes with shrinking selection coefficient sizes to spread through the populations. Thus,

approaching the fitness optimum, increasingly higher levels of phenotypic robustness are required for

adaptation to occur. In an unchanging environment we expect phenotypic robustness to reach a value

near to 1, however organisms live in an ever-changing world. Periodic changes contribute to lower the

mean levels of phenotypic robustness in populations as shown in Simulation 4. These results suggest

that the levels of phenotypic robustness we observed in real populations could be a resulting equilib-

rium between the effects of the ρc and the changing environment. Overall, our simulations confirm the

consistency of the deterministic model predictions. However, a deeper analysis of the environmental

interactions should be carried on to assess their precise role on the origin and evolution of phenotypic

robustness.
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0.6 Chapter IV

0.6.1 Introduction to Article IV

Although both empirical and theoretical approaches to scientific research are essen-

tial to scientific progress, the interactions between the two practices seems to be

problematic in the biological scientific community (Fusco, 2015). In an apology for

”non-mathematical biology,” E.O. Wilson (2013) went so far as to asses that ”The

annals of theoretical biology are clogged with mathematical models that either can

be safely ignored or, when tested, fail.” Not subscribing to Wilson’s point of view

and in an attempt to put a bridge between our theoretical and empirical studies in

evolutionary biology, we tried to formulate some risky theoretical predictions to test

on real biological data. The problem in the genomic era is the difficulty to extract

full value from the large amounts of data becoming available. It seems easier to keep

doing what we are doing on a larger and larger scale than to try and think critically

and ask deeper questions. Given the already available huge amount of genomic data

for a vast array of taxa representing a broad spectrum of the biological diversity,

to test our predictions, we adopted a comparative approach based on phylogeny

(Garland Jr et al., 1993; Blomberg and Garland, 2002; Blomberg et al., 2003). The

Phylogenetic comparative methods (PCMs) use information on the species historical

relationships (phylogenies) to test evolutionary hypotheses on adaptation. The com-

parative method has deep roots in evolutionary biology; For example, in ”The Origin

of Species” Charles Darwin used differences and similarities between lineages as a

major evidence of the process of descent with modification. In fact, closely related

lineages share many traits and trait combinations meaning that they are not in-

dependent. Thus, the development of explicitly phylogenetic comparative methods
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are needed (Felsenstein, 1988).These statistical methods were primarily developed

to control for phylogenetic history when testing for adaptation (Pagel and Lutzoni,

2002). Although most studies that employ PCMs focus on extant organisms, many

methods can also be applied to extinct taxa and can incorporate information from

thefossil record (Fusco et al., 2012). Phylogenetic comparative approaches can com-

plement other ways of studying adaptation, such as studying natural populations, ex-

perimental studies, and mathematical models as used in this particular case. Making

interspecific comparisons allow to assess the generality of evolutionary phenomena

by considering independent evolutionary events. Such an approach is particularly

useful when there is little or no variation within species. Felsenstein (Felsenstein

(1988))proposed the first general statistical method in 1985 for incorporating phy-

logenetic information, i.e., the first that could use any arbitrary topology(branching

order) and a specified set of branch lengths. The logic of the method is to use phylo-

genetic information (and an assumed Brownian motionlike model of trait evolution)

to transform the original tip data (mean values for a set of species) into values that

are statistically independent and identically distributed. Successively other methods

were developed such as the Phlylogenetic Generalized least-squaresmodel (PGLS),

used in this work, which is now probably the most commonly used PCM (Grafen,

1989).This approach is used to test whether there is a relationship between two (or

more) variables while accounting for the fact that lineage are not independent. The

method includes the generalized least squares (GLS or OLS) as a special case, and as

such the PGLS estimator is also unbiased, consistent, efficient, and asymptotically

normal. The PGLS consider the V matrix of expected variance and covariance of the

residuals given an evolutionary model and a phylogenetic tree. Therefore, it is the

structure of residuals and not the variables themselves that show phylogenetic signal.

A number of models have been proposed for the structure of V such as Brownian
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motion (Felsenstein, 1988) Ornstein-Uhlenbeck, (Hansen, 1997) and Pagel’s lambda

model. (Pagel and Lutzoni, 2002)(see article IV for detailed descriptions).When a

Brownian motion model is used, PGLS is identical to the independent contrasts esti-

mator (Grafen, 1989). It is important to mark that also the GLS is a specific PGLS

assuming a Brownian motion and a star phylogeny. In this case the phylogenetic

signal is absent and the PGLS is a normal GLS (OLS). In PGLS, the parameters

of the evolutionary model are typically co-estimated with the regression parameters.

PGLS can only be applied to questions where the dependent variable is continuously

distributed. In the following article we used evolutionary models to fit our data

and detect the phylogenetic signal. Successively we adopted the PGLS method to

verify our theoretical predictions on the relationships between couples of continuous

variables on a genomic dataset.
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Abstract

Previous theoretical results predicted a positive and permissive role of phenotypic robustness on

adaptive evolution, namely that a minimum level of phenotypic robustness is required for adaptation

to occur, correlating with organismal complexity. Phenotypic robustness can be achieved by various

mechanisms but is not very clear how phenotypic robustness is expressed among organisms. Since

genome evolution is one of the major topic under debate in the evolutionary biology research pro-

gram, here we proposed two possible genomic candidate mechanisms of robustness, that are also

genomic features: the amount of non-coding neutral DNA, and the alternative splicing level. We

tested if the genomic proportion of neutral DNA and the alternative splicing level are positively

correlated with the amount of organismal complexity defined as the proteome size. We adopted a

phylogenetic comparative approach, based on the phylogenetic relationship of 210 eukaryotic taxa

and showed that according to the theoretical expectations, the two genomic robustness proxies can

explain part of complexity evolution.

1 Introduction

Previous theoretical studies predicted a positive and permissive role of phenotypic robustness in adap-

tive evolution, specifically that a minimum level of phenotypic robustness is required for adaptation to

occur (Rigato and Fusco, in prep). This minimum level increases with the genome mutation proba-

bility, and decreases with the magnitude of the selection coefficients. Genome mutation probability is

positively correlated to genome size, whereas the magnitude of the selection coefficients is expected to

decrease with organismal complexity. In fact, complexity is generally associated to adaptation processes

with small selection coefficients, because complex organisms are supposed to pay a so called ”cost of

complexity” (Allen Orr, 2000). Thus, theoretically, we should expect that higher levels of phenotypic
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robustness are required for adaptation to occur in more complex organisms due to the expected smaller

positive selection coefficients. Here we tried to test these predictions using available genomic data.

Phenotypic robustness can be achieved by various mechanisms and an exact understanding of the phe-

nomenon in biological organisms is still lacking (de Visser et al., 2003; Kitano, 2004; Masel and Siegal,

2009; Siegal and Leu, 2014). We focused on two possible candidate mechanisms that affect two very

debated genomic features: the amount of neutral DNA (as the proportion of non-coding and non-selected

DNA), and the splicing index (expressed as the proteins/genes ratio). To test for the goodness of the two

candidate mechanisms, according to the theoretical expectations, we tested if organismal complexity,

defined as the proteome size (Schad et al., 2011), can be explained by the amount of neutral DNA and

the splicing level. Specifically, the three main predictions are:

i) The splicing index should be higher in organisms with larger genomes. In fact, it has been pro-

posed that alternative splicing was a very important step towards higher efficiency in eukaryote evolution,

because information can be stored much more parsimoniously. This is also known as the ”economic

hypothesis” (Black, 2003). Several proteins can be encoded by a single gene, rather than requiring a

separate gene for each, thus allowing a more rich proteome from a genome of limited size. Indepen-

dently from complexity, if the genome sizes are constrained, we should expect a higher splicing index in

organisms with larger genomes. Note that larger genomes do not automatically imply higher complexity

levels, because of the neutral DNA and the alternative splicing phenomenon itself. In other words, we

should expect a higher selective pressure for higher level of alternative splicing in organisms with larger

genomes because of the constrains in the genome size.

ii) Alternative splicing should explain part of organismal complexity. Independent from the muta-

tional model assumed, we should expect this since a reduction of the proportion of the selected genome

sites should decrease the probability to have a phenotypic mutation. In other words, maintaining the
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same genome and proteome sizes, higher splicing levels should increase the proportion of neutral sites

and thus the probability that a mutation gives the same phenotype.

iii) The proportion of neutral DNA should explain part of organismal complexity. The hypothesis

that the neutral DNA could act as a mutational buffer at the phenotypic level is a very old and still debated

d hypothesis (Yunis and Yasmineh, 1971; Hsu, 1975; Patrushev and Minkevich, 2008; Gregory, 2005).

In this scenario, the neutral DNA reduces the probability that a genetic mutation leads to a phenotypic

mutation. Thus, neutral DNA should contribute to the total robustness level, representing a good proxy

that is expected to explain, at least in part, the organismal complexity (proteome size).

To test these three predictions, we adopted a phylogenetic comparative approach based on the ge-

nomic data of 210 eukaryotic taxa, spanning the main unicellular and pluricellular lineages of the group.

2 Materials and Methods

2.1 Source dataset

Genomic data were mined from the genomic database Genome (NCBI, https://www.ncbi.nlm.nih.gov/ge

nome/). In particular, we mined all genomes sequenced at the level of complete genome, and those for

which an estimation of the gene number and the protein number was provided, either derived from man-

ual or automatic annotations. In case of more than one genome per taxon, the best annotated genome was

chosen manually. Raw data of interest were: Taxon name, Genome size (bp), Gene number estimation,

Proteome size (protein number estimation). We selected 210 eukaryotic taxa for which with a com-

plete genome and full genome data were available, spanning from unicellular eukaryotes, to pluricellular

plants, animals and fungi.
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2.2 Neutral DNA estimation

Since no general annotations of the non-conserved (neutral) portion of the genomes are available, and in

consideration of the major debate on the so called garbage DNA in recent years (Graur et al., 2015), we

derived a rough figure of the proportion of the neutral sites in each genome on the basis of the estimated

gene number. Considering that the average protein size for eukaryotes is 300-400 AA (Brocchieri and

Karlin, 2005), this means that the mean size of the totality of the exons of a given gene is roughly

900-1200 bp (each AA corresponding to a single codon). Thus, considering the degeneracy of the third

codon position, we arrived at 1000 bp as the mean number of potentially selected sites per eukaryotic

gene. Multiplying the estimated gene number of a given taxon times 1000 bp, we obtained the estimated

number of the sites potentially under selection in its genome. Subtracting this number from the total

genome size and dividing by the genome size, we obtained an estimate of the proportion of potentially

neutral sites. This gross calculation has obviously several limitations, however, since regression analyses

span several orders of magnitude, we expect that errors in these estimates do not significantly affect the

results.

2.3 Splicing index definition and estimation

For each taxon, we defined a splicing index simply as the protein-number/gene-number ratio. This is a

measure of how many polypeptides can be encoded on average by a single gene.

2.4 Proteome size

We defined the proteome size as the estimated number of different protein types annotated for each

genome, derived both from different genes and from alternative splicing of the same gene. In most cases,

the estimation was obtained by automatic bioinformatics methods.
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2.5 Phylogenetic tree topology and dating

The phylogenetic tree representing the phylogenetic relationships among the 210 eukaryote taxa, was ob-

tained by using the automatic tree builder of the taxonomic database Taxonomy (NCBI, https://www.ncbi.

nlm.nih.gov/taxonomy/). The function Taxonomy Common Tree generates a tree topology for a selected

group of organisms, but without node dating. For each node of the tree we assigned a dating in million

years (Ma), provided by the Time Tree project (http://www.timetree.org/), using the Evolutionary Time-

line function (Hedges et al., 2006). According to the nodes dating, the length of the tree branches was

adjusted manually using Mesquite v. 5.0.3 tree handling functions (Maddison and Maddison, 2001).The

resulted phylogeny is illustrated in Figure 1.

2.6 Phylogenetic signal

Fitting data with ordinary latest square model (OLS) tacitly assumes evolutionary independence among

taxa. This equals to assume a star phylogeny. Since taxa are evolutionary related, assuming a star

phylogeny can be more or less appropriate, according to the amount of phylogenetic signal exhibited by

a given character. In the absence of any phylogenetic signal, the OLS regression is a more appropriate

assessment of directional change in trait evolution. Phylogenetic signal is the measure of the tendency for

related organisms to resemble each other, and this has implications for understanding how traits evolve,

and how data are best analyzed in the context of a phylogeny (Blomberg and Garland, 2002; Revell

et al., 2008). Phylogenetic signal was ascertained for all analyzed characters using the Lambda model.

The model and the parameter were fit via maximum likelihood using the function fitContinuous in the

R package geiger (Harmon et al., 2009). This function fits various likelihood models for continuous

character evolution. The function returns parameter estimates, (approximate) confidence intervals based

on the Hessian of the likelihood function, likelihoods and AICc values. We set the model argument to

”lambda”. Model ”lambda”, also known as Pagel’s lambda, multiplies all internal branches of the tree

by lambda, leaving tip branches as their original length. As the parameter lambda approaches zero, the
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model becomes speciational (star phylogeny, BMStar). For this reason, we used the model lambda with

fixed parameter of λ = 0 to fit the BMStar model. AICc values for the two models were compared to

assess the significance of the phylogenetic signal.

2.7 Evolutionary model fitting

In a phylogenetic context, regression analyses have to be adjusted on the basis of the evolutionary dy-

namics of characters. Hence, for each character, we fit five evolutionary models, corresponding to as

many distinct evolutionary dynamics: i) Brownian motion (BM), ii) accelerating-decelerating (ACDC),

iii) single stationary peak (OU), iv) constant trend (Trend), and v) white (BMStar).

i) Under BM, evolutionary changes are independent, non-directional, and occur at a constant instanta-

neous rate, β, throughout the phylogeny. Character evolution is modelled as a Brownian motion.

ii) The accelerating-decelerating (ACDC) model (Blomberg et al. (2003); also known as early-burst

model (EB), Harmon et al. (2010)) is similar to BM, except that the Brownian rate parameter decreases

or increases exponentially over time as β(t) = βert, where t is time, β0 is the rate at the root of the

tree, and r modulates the change in the BM rate. When r is negative, traits evolve rapidly at first, but

slowdown over time, as designed in some models of adaptive radiation (Harmon et al., 2010). Positive r

values indicate accelerating evolutionary rates, as might occur after key evolutionary innovations or mass

extinctions (Blomberg et al., 2003).

iii) The single stationary peak model is an Ornstein-Uhlenbeck (OU) process in which a trait value acts

as an evolutionary attractor. In macro-evolutionary studies, this attractor has been interpreted as the phe-

notypic center of an adaptive zone (Felsenstein, 1988; Garland Jr et al., 1993; Hansen, 1997; Butler and

King, 2004). In addition to a rate parameter, this model has a parameter α that measures the strength of

attraction to the optimum. When attraction to the optimum is absent (α = 0), this process reduces to BM.

With increasing values of α, the influence of the optimum is more pervasive; at very high values, taxa

are pulled so strongly to the optimum that the phylogenetic signal is erased (Felsenstein, 1988; Hansen,
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1997).

iv) The constant trend (Trend) model considers BM with a uniform trend in character values over time

resulting from a constant bias in the direction of evolutionary change (Pagel and Lutzoni, 2002), analo-

gous to a phylogenetic regression that includes time since the root as a predictor of character values. In

addition to the BM rate, this model also has a parameter, µ, indicating the directional bias in evolution,

equivalent to the slope of trait values with respect to time.

v) Finally, ”white” (or BMStar) model can be thought of as an extreme version of an OU process in which

the strength of attraction to the optimum is infinitely strong. The resulting trait will be independently

distributed among species, equivalent to BM on an unstructured (star) phylogeny (BMStar). Because

species values are independent, this model predicts that traits in sister taxa will be no more similar than

in distant relatives, and thus bear no phylogenetic signal. For this reason, this model was used as a null

model for comparison with the lambda model in phylogenetic signal analysis. Models were fit via max-

imum likelihood using the function fitContinuous in the R package geiger (Harmon et al., 2009) with

the model argument set to ”BM,” ”EB,” ”OU,” ”trend,” and ”white” respectively. BM is the simplest

of the candidate models, with only one additional parameter. Each of the remaining models has three

parameters. Akaike information criterion scores (AICc) were used to balance log-likelihoods and model

complexity, and for convenience these were converted to Akaike weights that represent the proportional

support received by candidate models (Burnham et al., 2011).

2.8 OLS and PGLS analyses

Focal analyses of this work are the regression analyses among the selected characters to test the three

predictions on the effects of phenotypic robustness on genome evolution. We performed phylogenetic

generalized least squares (PGLS) and ordinary least squares (OLS) regressions of the three trait compar-

isons: i) Splicing index vs. Genome size, ii) Proteome size vs. Splicing index, and iii) Proteome size vs.

Neutral DNA. In the absence of phylogenetic signal, the OLS regression is a more appropriate assess-
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ment of directional change in trait evolution. Both PGLS and OLS regressions were computed using the

Generalized least square function (”gls”), fit by REML in the R package ape (Paradis et al. 2004). In this

case, we fit the PGLS with six different correlation structures expected under different evolutionary mod-

els. The six correlation structures are: CorMartins, CorPagel, CorBlomberg, CorGrafen, CorBrownian,

CorPagel with fixed λ = 0. CorMartins is the correlation structure expected under the OU model (see

above, Evolutionary model fitting), CorPagel under the lambda model, CorBlomberg under the ACDC

model and CorGrafen is a particular correlation structure under a model that appropriately modify the

tree branch lengths. CorBrownian is expected under the Brownian model and CorPagel with fixed =0,

is expected under the speciational model (BMStar). For each PGLS model we obtained the Akaike in-

formation criterion scores (AICc) to find the best model with the best correlation structure. We used the

best fitting PGLS models for comparison with the OLS models. Note that the PGLS under the BMstar

(CorPagel (fixed λ = 0)) correlation structure, correspond to the OLS.

3 Results

Genomic traits vary considerably across the selected taxa, and can vary significantly even between strictly

related taxa. Mean, range and standard deviation of the traits under study are listed in Table 1.

Table 1: Summary statistics for the mean, range and standard deviation of the analyzed trait values for 210

eukaryotic taxa.

Trait N Mean Range SD

Genome size (Mb) 210 6.46E+02 2.188-3598.000 9.85E+02

Gene number 210 1.98E+04 1883-97830 1.60E+04

Protein number 210 2.43E+04 1831-114100 2.15E+04

Splicing index 210 1.137 0.6021-2.1190 0.283

ncDNA proportion 210 0.763 0.09288-0.99660 0.214
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3.1 Phylogenetic signal of traits

We tested all the trait values for the phylogenetic signal to assess the appropriateness of the OLS anal-

ysis. Results are summarized in Table 2. We allowed the lambda model to find the best parameter and

compared the fitted lambda model with the null model of a star phylogeny (BMstar). We found high val-

ues of phylogenetic signals for all traits and they all resulted statistically significant over the null model

with AICc weight values of 1.0 for all traits, and evidence ratio of nearly infinite for all traits (in favor of

lambda). The best estimation for the trait Genome size was =1 (LogLik -1584.4), this mean a very high

phylogenetic signal, corresponding to a full Brownian motion model. Also, the other traits obtained high

values of and thus high phylogenetic signals ranging from 0.63 to 0.95 (see Table 2). However, the corre-

lation is lower than that expected under a full Brownian motion model, entailing that a component of the

evolutionary change can be explained by other factors rather than a simple Brownian motion. Overall,

the strict dependency of the character values on phylogeny suggests that the OLS analysis might be not

fully appropriate to test for correlations among these traits.
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Figure 1: Phylogenetic tree of 210 eukaryotic taxa. In red the animals, in blue the fungi, in green the green algae

and plants, other taxa are in turquoise. Branch lengths are in Ma (data from TimeTree, see materials and methods

for details.
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Table 2: Statistics of significant tests for phylogenetic signal in five traits as calculated with the fitContinuous

function of the R package Geiger (Harmon et al. 2009). The phylogenetic tree is shown in Figure 2. Significant

results for the AICc comparison between the Lambda (Lambda) model and a Brownian motion model under a star

like phylogeny (BMStar) indicate the presence of phylogenetic signal for all analyzed traits. λ-statistics indicate

the amount of phylogenetic signal relative to a star-like phylogeny expectation of 0.00 (Pagel et al. 2003).

Trait lambda estimation LogLik lambda AICc lambda AICc Star Probaility lambda Probability BMStar Evidence Ratio

Genome size (Mb) 1 -1584.3682 3176.9315 3495.9995 1 0 ∞
Gene number 0.642914 -2227.7304 4463.6559 4691.5717 1 0 ∞
Protein number 0.64442 -2289.8959 4587.9870 4791.5717 1 0 ∞
Splicing index 0.627412 40.7148 -73.2344 70.1664 1 2.66454E-15 3.753E+14

Neutral DNA proportion 0.947444 252.0901 -495.9850 -46.7461 1 0 ∞

3.2 Evolutionary model fitting of traits

As phylogenetic signal analysis showed that trait evolution is not fully comparable to Brownian motion

model, we fitted other evolutionary models to find the best fitting model that can explain the departure

from a pure Brownian model. AICc values of the fitting models for each trait are provided in Table

3. The lowest AICc values are those of the OU model for all traits with an evidence ration of 1 in

all cases (Table 4). The Genome size and the neutral DNA proportion have α estimates of 0.0028 and

0.0016 respectively. These values can be considered the results of a weak attraction to the optimum.

Gene number, Protein number and the Splicing index have α estimates differing from the preceding for

an order of magnitude. This means that for these traits, the attraction to the optimum, or the influence

of selection is roughly ten times greater than that expected for the Genome size and the neutral DNA

traits. These results are in agreement with the phylogenetic signal estimation, in particular showing that

traits with high values (Genome size =1, Neutral DNA =0.94) have low α values and traits with lower

values (Gene number =0.64, Protein number =0.64, Splicing index =0.63) have higher α values. Thus

the evolution of these traits seems to be influenced by a weak evolutionary attractor, meaning that their

evolution is not totally neutral, but they might be influenced by selection in some way. This supports the

significance of a search for adaptive correlations between these traits.
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Table 3: Model fitting results for the five analyzed trait values. Best models are those with lower AICc values. See

text for parameter explanation. See Table 4 for comparisons of model fit statistics.

Trait BMStar AICc BM AICc ACDC AICc OU AICc Trend AICc Trend parameter(m) ACDC parameter(r) OU parameter (a)

Genome size (Mb) 3495.9995 3241.4431 3243.5232 3187.2927 3230.7197 99.99 0.0001 0.00276

Gene number 4691.5717 4705.9924 4708.0768 4566.7136 4693.0107 98.8 0.0003 0.00923

Protein number 4791.5717 4867.6925 4869.7774 4716.3670 4854.4265 99.99 0.0004 0.01131

Splicing index 70.1664 129.6058 131.6893 13.9356 117.0566 97.62 0.0010 0.01118

Neutral DNA proportion -46.7461 -343.0086 -340.9304 -372.0943 -351.9285 99.31 0.0011 0.00165

Table 4: Comparing the fit among models presented in Table 3. The five columns are Akaike weights computed

from AICc scores. Among evolutionary models the OU model is the only supported for al traits. An Akaike weight

of 1.0, means an evidence ratio equal to ∞ .

Trait BMStar Akaike wheights BM Akaike wheights ACDC Akaike wheights OU Akaike wheights Trend Akaike wheights

Genome size (Mb) 0 0 0 1 0

Gene number 0 0 0 1 0

Protein number 0 0 0 1 0

Splicing index 0 0 0 1 0

Neutral DNA proportion 0 0 0 1 0

3.3 OLS and PGLS analyses

We first tested the three predicted relationships by fitting each comparison with OLS (see OLS in Table

6). We found a statistically significant relationship between the Splicing index and the Genome size

(R2 = 0.30, p < 0.0001) (Table 6, Fig. 2a). Thus, Genome size account for 30% of the total Splicing

index variance assuming a star phylogeny as the phylogenetic model. A statistically significant relation

was also found for the other two comparisons, Proteome size vs. Splicing index and Proteome size vs.

Neutral DNA, with an R2 = 0.41 (p < 0.0001) and R2 = 0.49 (p < 0.0001) respectively (Table 6,

Fig. 2b,c). This means that both the amount of splicing and the proportion of neutral DNA explain a

sizable percentage of the proteome size variance. Moreover, if we consider a linear combination of the

two predictor factors together, these explain 50% of the total variance in proteome size (R2 = 0.56,

p < 0.0001). For each relationship, we fitted six different PGLS models differing for the correlation

structure imposed. Model fitting results for the three trait comparisons are presented in Table 5. For the

trait pair Splicing index and the Genome size, we found the CorPagel to be the best correlation structure

with an evidence ratio of 6.85 1015 over the CorGrafen which is the second-best correlation structure.

The same hold for the Proteome size vs. Splicing index trait with CorPagel as the best correlation struc-
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ture with an evidence ratio of 1.0 over the second best CorGrafen. On the opposite, an evidence ratio

of 1.0 was obtained for the CorGrafen over the corPagel for the trait pair Proteome size vs. Neutral

DNA. Overall, these results suggest that the relationships analyzed evolved somehow in between a pure

Brownian model (BM) and a speciational model (BMStar). This means that it is necessary to take into

account the phylogeny when studying relations between these trait pairs. For each relationship, the best

fitted PGLS was chosen for the comparison with OLS (Table 6). After the PGLS analysis for the Splicing

index and the Genome size relationship, the positive relation found with OLS disappeared (Fig. 2a). A

simple AICc comparison gave the best support to the PGLS (CorPagel) model. This means that is very

likely that the genome size is not a predictor of the splicing index level and that the relation we found

in OLS was due to the effect of their common ancestry. On the contrary, for the other two relationships

PGLS analysis resulted in a lower but still significant regression slope (Fig. 2b,c). In both cases the

PGLS model with the relative best correlation structure (CorPagel, CorGrafen) have a higher significant

support over the corresponding OLS (evidence ratios=1). These results suggest that the splicing index

and the neutral DNA proportion are significant predictors of the proteome size and consequently of the

organismal complexity level.

Table 5: Model fitting results for the three trait comparisons analyzed (PGLS) with six different correlation struc-

tures. The best model have the lowest AICc value and was chosen for comparison with the OLS analysis.Note that

the PGLS with the BMStar correlation structure equals to an OLS. See Table 6 for result comparisons of OLS and

PGLS analysis.

Trait BMStar AICc BM AICc ACDC AICc OU AICc corGrafen AICc corPagel AICc

Splicing index vs. Genome size -5.99 129.87 139.84 -3.00 -72.93 -73.59

Proteome size vs. Splicing index 4679.91 4807.90 4818.17 4681.91 4548.30 4546.82

Proteome size vs. Neutral DNA 4648.06 4868.93 4879.30 4681.91 4579.83 4584.19
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Table 6: Statistics for phylogenetic generalized least squares (PGLS) regression and ordinary least squares (OLS)

of the three trait comparisons. The chosen PGLS is that with the best correlation structure (specified). The phylo-

genetic tree is shown in Figure 1.

Trait Linear model AICc Slope R2 P values

Splicing index vs. Genome size OLS -5.99 0.0002 0.30 0

PGLS (corPagel) -73.59 0.0000 0.6507

Proteome size vs. Splicing index OLS 4679.91 48930.7100 0.41 0

PGLS (corPagel) 4546.82 27866.1200 0

Proteome size vs. Neutral DNA OLS 4648.05 70829.5600 0.49 0

PGLS (corGrafen) 4579.83 298847.7600 0.0009
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4 Discussion

Genome evolution is one of the main debated topics in evolutionary biology, and here we tested for three

evolutionary adaptive relationships among some genomic features predicted by previous theoretical work

(Rigato and Fusco, in prep). Simple OLS analyses provided strong significant support for all the three

predictions. This means that under the OLS assumptions, the neutral DNA and the splicing index appears

to be a predictor of the organismal complexity (proteome size). However, in this scenario, the relation

between the splicing index and the proteome size could be due only to the relation between the genome

size and the splicing index itself, conferring support to the economic hypothesis for the origin of splicing.

However, an analysis of the data under a phylogenetic framework, resulted in high levels of phylogenetic

signal (lambda) for all traits and the evolutionary model fitting resulted in the fact that evolution of all

traits is likely to be characterized by some levels of selective pressure (OU model). In other words, this

means that adaptive relations may exist in these genomic features but, due to the phylogenetic signal,

they might be distorted if phylogeny is not taken into account. In fact the PGLS analysis under the best

found correlation structures, supported only two relations out of three, in particular the relation between

the genome size and the splicing index disappeared under the PGLS analysis (Fig. 3a). This means that is

very likely that the genome size is not a predictor of the splicing index level and that the relation we found

in the preceding OLS was due to the effect of common ancestry. The PGLS resulted as the best fitted

model in all comparisons conferring a stronger support to the fact that the splicing index and the neutral

DNA proportion are good candidate mechanisms for the phenotypic robustness since they are positively

related with complexity. In addition, if neutral DNA and the splicing index are robustness components,

they should precede the escalation of complexity in evolution, since their increase allow to access higher

levels of phenotypic robustness and thus higher levels of complexity. This is also the reason why we

regressed the proteome size as the response variable, while we adopted the neutral DNA and the splicing

index as predictor variables. Comparative studies already indicated that alternative splicing preceded

16



multicellularity in evolution, and suggested that this mechanism might have been co-opted to assist in

the development of multicellular organisms (Irimia et al., 2007). Similarly, we suggest that the neutral

DNA proportion increases should preceded any increases in organismal complexity because higher levels

of robustness allows to explore higher levels of complexity. Surely the neutral DNA proportion and the

splicing index are not the only source of robustness and other robustness candidate sources have been

shown to be positively related with complexity proxies (like proteome size), as for instance the mean

level of protein disorder (Schad et al., 2011). Possibly even more factor contributing to robustness could

be tested in the future. The neutral DNA proportion and the splicing index evolution can also partly

contribute to explain the puzzle of the genome size evolution. This is because in most eukaryotes a

great proportion of the genome is composed by neutral DNA (the mean of our eukaryotic dataset is

76%), and because the splicing index influence how much information can be stored in the encoding

genome. Simple linear explanations of the genome size problem without a phylogenetic framework have

been proposed since long, the last and most famous being that provided by Lynch (Lynch and Conery,

2003), showing that nearly 60% of variance in genome size can be explained by the variance in the

effective population size (with a taxon sampling of N=21). However, these results has been subsequently

confuted by a phylogenetic analysis provided on the same dataset by Whitney and Garland (Whitney

and Garland Jr, 2010). Genome size is a complex trait that is unlikely to be explained by univariate

analyses (Charlesworth and Barton, 2004; Gregory, 2005). Phylogenetic comparative methods should

be combined with multivariate models that are capable of distinguishing the contributions of highly

correlated predictor variables. We suggest that the relation between the neutral DNA proportion, the

splicing index and the complexity should be taken into account in such analysis aiming to explore the

problem of the genome size evolution. These first results could be improved in a near future by using

better proxies of complexity, such as the complexity dimensions (n) of a Fisher geometric model, which

in principle can be derived from genetic population data (i.e. dN/dS estimantion) (Orr, 2006), or the

organismal cell type number. Here we found strong support for our two main predictions even accounting
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for the effect of phylogeny, however a wider and a deeper analysis should be provided in the future

considering a multivariate phylogenetic analysis and different robustness and complexity proxies.
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