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Abstract 

Since the ban of antibiotics as growth promoting feed additives by the European Union in 

2006, plant extracts and plant secondary metabolites have been considered as an alternative to 

manipulate the rumen. The term ‘plant secondary metabolite’ is used to describe a vast array of 

chemical compounds in plants that are not involved in the biochemical processes of plant 

growth and reproduction. These have been studied and used in medicines and preservation of 

foods for a substantial time.  

The technology to assess methane emission in vivo is very slow, expensive, labour intensive 

and unsuitable for large-scale individual animal measurements. For this reason, a great deal of 

research has been conducted using in vitro simulation technique, which estimates the emission 

in vivo. However, the in vitro systems are often disapproved because of their short term 

duration (i.e. 24 hrs) and the lack of adaptation (they are conducted using rumen fluid which 

had not been exposed to the presence of the investigated compounds before). Based on this 

argument, this thesis aims to examine different aspects, regarding systems and procedures, 

used to investigate rumen fermentation and methane emission from ruminants, as follows: 

1) Screening of different natural additives using a batch culture system; 

2) Verify, through a batch culture system, the effect of the subministration in vivo of some 

natural additives in order to adapt the rumen fluid used as inoculum; 

3) Asses the effect of one natural extract using a long-term continuous culture system; 

4) Study the consequences on dairy products after the subministration of natural additives 

to lactating dairy cows. 

The first contribution aimed to explored effects of four pure plant extracts (allyl-sulfyde, 

cinnamaldehyde, eugenol, and limonene) and one synthetic compound (monensin), on in vitro 

rumen fermentation and methane (CH4) production of a commercial diet for dairy cows, using 
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a batch culture system, equipped with devices for automated gas venting at fixed pressure. Two 

dosages were tested: 3 or 30 mg/g of diet for the plant extracts; 0.015 or 0.030 mg/g of diet for 

Monensin. All the additives were ineffective at the low dosage. The high dosage of limonene 

caused a marked depression of neutral detergent fiber degradability (NDFd) (-68%) and true 

dry matter degradability (TDMd) (-14%) compared to the control; less marked reductions were 

noted for high dosage of eugenol (-15% and -4%, for NDFd and TDMd, respectively) and of 

monensin (-16% and -3%, for NDFd and TDMd, respectively). No effects emerged for other 

additives on NDFd and TDMd, irrespective by the dosage. Compared to the control, high 

dosage of allyl sulfide, cinnamaldheyde, eugenol, limonene and monensin significantly 

reduced gas production (ml/g DM; -16%, -12%, -9%, -38%, -12%, respectively). In vitro CH4 

production was significantly reduced only by high dosage of allyl sulfide, cinnamaldheyde, 

limonene and monensin (-32%, -12%, -43%, -18%, respectively, compared to the control). 

Only high dosage of allyl sulfide, and limonene significantly reduce CH4 proportion (-18%, -

12% respectively, compared to the control). The most promising results were observed for the 

high dosage of cinnamaldehyde, that reduced in vitro CH4 production without compromising 

degradability and VFA production.  

Based on the results of the first trial, cinnamaldehyde, limonene and allyl-sulfide have been 

selected as the most effective in the reduction of methane emission, but also preserving the 

feed degradability and rumen functionality. The three compounds have been tested following a 

different procedure, indeed, the second trial aim was to evaluate the effect of rumen fluid 

which has not been adapted (NAF) and rumen fluid that has been adapted (AF) to the presence 

of the extract in vivo, before the in vitro tests. Therefore, four dry cows were fed diets with and 

without the pure compounds, according to a 4×4 Latin Square design, and the collected rumen 

fluids were used as in vitro inocula with or without the addition of the 3 compounds during the 
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incubation. Cinnamaldehyde, limonene and allyl-sulfide have been tested for in vitro gas 

production kinetics and end products of fermentation. In general, the results confirmed the first 

additive performed, however, regarding the adaptation in vivo of the rumen fluid, the use of AF 

did not affect any fermentation parameter compared to NAF. However, adding an in vitro diet 

with allyl-sulfide, the magnitude of the effects of this pure compound tended to be greater 

when incubated with AF compared to NAF. These results suggest that the administration of 

pure compounds to the cows can affect the rumen microbial activity and the response of in 

vitro experiments. 

The third trial examined another category of plant secondary metabolites, flavonoids, which 

have recently gained interest because of their wide range of biological activities, but also 

because of their antimicrobial properties. Previously, it has been hypothesised that an extract of 

liquorice, rich in prenylated isoflavonoids and particularly glabridin, might potentially improve 

the efficiency of nitrogen utilisation  and reduce methane production in the rumen. The 

experiment was carried out using a different in vitro system, the long-term rumen simulation 

technique (RuSimTec), which maintained the vitality and functionality of the rumen 

microbiome for long time and adapt the rumen fluid to the presence of the extract. The results 

obtained showed that when liquorice extract is added at 1 g/L, ammonia production decreased 

(-51%; P<0.001) without affecting the overall fermentation process. When added at 2 g/L, 

decreases in ammonia production (-77%; P<0.001), methane (-27%; P=0.039) and total VFA 

production (-15%; P=0.003) were observed. These effects in fermentation were probably 

related to decreases in protozoa numbers, a less diverse bacteria population as well as changes 

in the structure of both the bacterial and archaeal communities. The inclusion of an 

isoflavonoid-rich extract from liquorice in the diet may potentially improve the efficiency of 

the feed utilisation by ruminants. 
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Many studies have investigated the use of the plant secondary metabolites in vitro, but very 

limited research have examined the consequences may derived from feeding dairy cows with 

the additives. In particular, the focus of the fourth contribution is the use of garlic and garlic 

second metabolite as feed additives, recently proposed as modulators to reduce the enteric 

methane emissions of ruminants. Since there is no evidence available, this study aimed to 

investigate the influence of garlic and allyl sulfide on dry matter intake (DMI), productive 

performances, milk coagulation properties, cheese yield, milk and cheese sensory profiles, and 

rheological characteristics.  

Four dairy cows were fed a total mixed ration either receiving 0 g/d (control) or 

supplemented with 100 or 400 g/d of garlic cloves or 2 g/d of Allyl sulfide in 4 consecutive 

experimental periods in a 4×4 Latin square design. Each experimental period consisted of 7 d 

of transition and 14 d of treatment. Milk samples were collected from each cow for chemical 

analysis and cheese-making. The organoleptic properties of the milk and 63 d ripened cheeses 

were assessed by a panel of 7 trained sensory evaluators. The experimental treatments had no 

effects on DMI, milk yield, feed efficiency (milk yield/DMI), milk coagulation properties, 

nutrient recovery and cheese yield. Garlic-like aroma, taste and flavour of milk and cheese 

were significantly influenced by the treatments, particularly the highest dose of garlic cloves, 

and we found close exponential relationships between milk and cheese for garlic-like aroma 

(R
2
 = 0.87) and garlic-like flavour (R

2
 =0.79). Allyl sulfide and 400 g/d of garlic cloves 

resulted in lower pH, shear force and shear work of ripened cheeses compared with the other 

treatments. Garlic cloves and Allyl sulfide had opposite effects on cheese colour indices. In 

conclusion, the addiction of 400 g/d of garlic to the feed of lactating dairy cows highly 

influences the sensory and rheological characteristics of cheese. 
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Riassunto 

A causa del divieto di utilizzo di antibiotici come additivi alimentari promotori della 

crescita, da parte dell'Unione Europea nel 2006, gli estratti vegetali e i relativi metaboliti 

secondari sono stati considerati come una valida alternativa per la manipolazione dell’ambiente 

ruminale. Il termine "metabolita secondario" viene utilizzato per descrivere una vasta gamma 

di composti chimici vegetali che non sono coinvolti nei processi biochimici di crescita e 

riproduzione vegetali, ampiamente studiati ed utilizzati in medicina e nella conservazione degli 

alimenti. 

La tecnologia disponibili per misurare l'emissione di metano in vivo è molto costosa, lenta, 

laboriosa e non applicabile su vasta scala. Per questo motivo sono state condotte numerose 

ricerche usando tecniche di simulazione in vitro, che consentono di stimare l'emissione in vivo. 

Tuttavia i sistemi in vitro sono spesso criticati a causa della breve durata (24 ore, per esempio) 

e della mancanza di adattamento dell’ambiente ruminale al composto in esame.  

Sulla base di questi argomenti, i contributi della presente tesi hanno l’obiettivo di studiare le 

fermentazioni ruminali e l'emissione di metano aplicanto differente metodologicie sperimentali 

e differenti principi attivimetodologie  per, come di seguito sintetizzato: 

1) Screening di additivi naturali utilizzando un sistema batch culture; 

2) Verificare, attraverso un sistema batch culture, l'effetto della somministrazione in vivo di 

alcuni additivi naturali allo scopo di adattare il liquido ruminale utilizzato come inoculo; 

3) Misura l'effetto di un estratto naturale utilizzando un sistema continuo a lungo termine; 

4) Studiare le conseguenze sui prodotti lattiero-caseari della somministrazione di additivi 

naturali a vacche da latte. 

Nel primo contributo si è voluto esaminare gli effetti di quattro estratti vegetali puri (sulfuro 

di allile, cinnamaldeide, eugenolo e limonene) ed un composto sintetico (monensin), sulle 
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fermentazioni ruminali e la produzione di metano enterico di una dieta standard per vacche da 

latte. Il sistema utilizzato (batch culture) è dotato di valvole per il rilascio automatica del gas di 

fermentazione a pressione fissa ed è equipaggiato con un sistema wireless di trasmissione in 

continuo dei dati misurati. I dosaggi testati sono stati 2: 3 e 30 mg/g di dieta incubata, per ogni 

estratti vegetali, e 0.015 o 0.030 mg/g di dieta nel caso del Monensin. I risultati della prova 

hanno evidenziato una generale inefficacia di tutti gli estratti a basso dosaggio. Tuttavia 

l'elevato dosaggio del limonene ha causato una marcata riduzione della degradabilità della fibra 

NDF (NDFd) (-68%) e della degradabilità della sostanza secca (TDMd) (-14%) rispetto al 

controllo. anche l'alto dosaggio di eugenolo (-15% e -4%, per NDFd e TDMd rispettivamente) 

e del monensin (-16% e -3% rispettivamente per NDFd e TDMd) hanno ridotto la degradabilità 

della dieta ma tali effetti sono stati più contenuti. Non sono emersi effetti significativi nel caso 

degli altri additivi su NDFd e TDMd, indipendentemente dal dosaggio. Rispetto al controllo, 

l'elevato dosaggio di sulfuro di allile, cinnamaldeide, eugenolo, limonene e monensin ha 

significativamente ridotto anche la produzione di gas (ml/g DM, -16%, -12%, -9 %, -38%, -

12% rispettivamente) mentre la produzione di CH4 in vitro è stata significativamente ridotta 

solo da alti dosaggi di sulfuro di allile, cinnamaldeide, limonene e monensin (-32%, -12%, -

43%, -18%, rispettivamente, confrontati con al controllo). Solo l'elevato dosaggio di sulfuro di 

allile e limonene riduce significativamente la percentuale di CH4 nei gas di fermentazione (-

18% e -12%, rispettivamente, rispetto al controllo). I risultati più promettenti sono stati 

osservati per l'alto dosaggio di cinnamaldehide, che ha ridotto la produzione di CH4 in vitro 

senza compromettere la digeribilità della dieta e la produzione di acidi grassi volatili. 

Sulla base dei risultati del primo contributo stati selezionati tre additivi considerati più 

efficaci nella riduzione dell'emissione di metano, ma preservando la degradabilità della dieta e 

la funzionalità dell’ambiente ruminale: cinnamaldeide, limonene e sulfuro di allile.  
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Nel secondo contributo gli additivi sono stati sottoposti a test in vitro (batch culture) in seguito 

ad una fase precedente di adattamento. L’obiettivo è stato di valutare l'effetto del liquido 

ruminante che non è stato adattato (NAF) e del liquido ruminale adattato (AF) alla presenza 

dell'estratto in vivo, prima di essere utilizzato come inocula microbico nel test in vitro. La 

prova ha previsto l’uso di quattro vacche in asciutta alimentate con dieta di riferimento per 

vacche da latte, addizionata dei composti puri, seguendo uno schema sperimentale a quadrato 

latino 4x4. I liquidi ruminali raccolti sono stati utilizzati come inoculo con o senza l'aggiunta 

dei 3 composti anche in sede di incubazione. Gli estratti sono stati testati per la cinetica di 

produzione di gas in vitro ed i prodotti di fermentazione. In generale, l’effetto dei diversi 

additivi sulle fermentazioni ruminali hanno confermato la prova di screeningprecedentemente 

realizzata. Per quanto riguarda l'adattamento in vivo del liquido ruminale, l'uso di AF non ha 

influenzato alcun parametro di fermentazione rispetto al NAF ma, aggiungendo il sulfuro di 

allile in sede di incubazione, la portata degli effetti di questo composto è stato maggiore 

quando incubato con AF rispetto a NAF. Questi risultati suggeriscono che la somministrazione 

di composti puri a vacche può influenzare l'attività della microflora ruminale e quindi la 

risposta di esperimenti condotti in vitro. 

Nel terzo contributo si è voluto categoria di metaboliti secondari, i flavonoidi, che sono stati 

recentemente oggetto di interesse per la loro vasta gamma di attività biologiche, ma anche per 

le loro proprietà antimicrobiche. è stato ipotizzato che un estratto di liquirizia, ricco di 

isoflavonoidi prenilati ed in particolare glabridina, potrebbe potenzialmente migliorare 

l'efficienza dell'utilizzo dell'azoto e diminuire la produzione di metano ruminale. 

L'esperimento è stato condotto utilizzando la tecnica di simulazione a lungo termine 

(RuSiTec), che consente di mantenere per lungo tempo la vitalità e la funzionalità del 

microbioma ruminale e adattare il liquido alla presenza dell'estratto, a differenza del sistema 
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batch culture. L’estratto è stato testato in due dosaggi: 1 g/L e 2 g/L. I risultati ottenuti hanno 

evidenziato che la dose di 1 g/L ha ridotto la produzione di ammoniaca (-51%, P <0,001) senza 

influenzare il processo di fermentazione complessivo. Quando invece sono stati aggiunti 2 g/L, 

non solo la produzione di ammoniaca è diminuita (-77%; P <0.001), ma anche la produzione di 

metano (-27%, P = 0.039) e la produzione totale di VFA (-15%; P = 0.003). Questi effetti in 

fermentazione sono probabilmente correlati ad una diminuzioni del numero di protozoi e ad 

una modificazione nella struttura della comunità battericha e degli arcaea con riduzione della 

biodiversità. In conclusione quindi, l'inclusione di un estratto di liquirizia, ricco di 

isoflavonoidi nella dieta, può potenzialmente migliorare l'efficienza dell'utilizzo della dieta da 

parte dei ruminanti, sulla base degli effetti verificati in vitro.  

L’utilizzo di metaboliti secondari come additivi alimentari per vacche in produzione 

comporta necessariamente il possibile passaggio nel latte di sostanze che possono modificare la 

qualità dei prodotti lattiero-caseari. A questo proposito, la letteratura risulta molto limitata, e 

dal momento che non ci sono prove disponibili, l’obiettivo del quarto contributo è stato 

verificare come l'uso di aglio e sulfuro di allile, recentemente proposti come modulatori delle 

emissioni di metano enterico, influenzino i prodotti lattiero-caseari. L’effetto è stato verificato 

sull’ingestione di sostanza secca, le prestazioni produttive, le proprietà di coagulazione del 

latte, la resa casearia del formaggio, il profilo sensoriale di latte e formaggio e le caratteristiche 

reologiche di quest’ultimo. Quattro vacche in lattazione sono state alimentate con una dieta di 

riferimento senza la presenza di additivi (controllo) o integrata con 2 dosi crescenti di aglio, 

100 o 400 g/d, o con 2 g/d di sulfuro di allile, in 4 periodi sperimentali consecutivi secondo 

uno schema a quadrato latino 4×4. Ogni periodo sperimentale era costituito da 7 d di 

transizione e 14 d di trattamento. Il latte è stato campionato per l'analisi chimica e la 

caseificazione. Le proprietà organolettiche del latte e dei formaggi, dopo stagionatura di 63 
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giorni, sono state valutate da un gruppo di 7 valutatori addestrati. I trattamenti sperimentali non 

hanno avuto effetti sull’ingestione alimentare, sulla produzione di latte, sull'efficienza 

alimentare, sulle proprietà coagulative del latte, sul recupero dei nutrienti e sulla resa casearia. 

L'aroma ed il sapore del latte e del formaggio sono stati particolarmente influenzati dai 

trattamenti sperimentali, in particolare dalla dose più alta di spicchi d'aglio. I risultati hanno 

evidenziato un’elevata correlazione tra latte e formaggio per quanto riguarda l'aroma di aglio 

(R
2
 = 0,87) ed il flavor di aglio (R

2
 = 0,79). Il sulfuro di allile e la dose più alta di spicchi 

d'aglio (400g/d) hanno provocato una riduzione del pH, dello sforzo di taglio ed il 

corrispondente lavoro di taglio dei formaggi stagionati. L’agli in spicchi ed il sulfuro di allile 

hanno mostrato effetti opposti sugli indici colorimetrici del formaggio stagionato. In 

conclusione, l’integrazione di 400 g/d di aglio in diete per vacche in lattazione influenza 

notevolmente le caratteristiche sensoriali e reologiche del formaggio.  
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1 General Introduction 

 

1.1 Greenhouse gas emission: livestock production chain 

Carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and halocarbons are greenhouse 

gases (GHG) that enhance the effect of solar and thermal radiation on surface and atmospheric 

temperatures. They are often expressed on a CO2-equivalent (CO2e) basis. The impact agriculture 

has globally is likely to increase over the next several decades because of increases in population 

growth and income-dependent dietary shifting towards more meat-based diets (Springmann et al., 

2016).  

The emissions can be expressed in different ways and this issue can lead to confusing 

communication. Methane emission from livestock supply chains can be expressed as per unit 

protein basis, allowing comparisons between species and products to be made. Also, it can be 

related to the feed intake by the livestock. Even if the proportion of GHG emission from livestock is 

confusing, it is certain that the livestock sector is a significant contributor to global human-induced 

GHG emissions (Knapp, 2014). Livestock chains emitted an estimated total of 8.1 gigatonnes CO2-

eq in 2010, with methane (CH4) accounting for about 50 percent of the total, while N2O) and CO2 

represent almost equal shares with 24 and 26 percent, respectively. By species, cattle are the main 

contributor, with about 62% of sector's emissions, with pigs, poultry, buffaloes and small ruminants 

ranged from 7 to 11% of sector's emissions (FAO, 2017), as shown in figure 1. 
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Figure 1:% Global estimates of emissions by specie. FAO (2017). 

 

However, FAO (2017) stated that, in terms of a per protein basis (Figure 2), buffalo meat is the 

commodity with highest emission intensity, followed by beef meat. Dairy cattle, chicken meat and 

eggs and pork have lower emission intensities.  

 

Figure 2:Global emission intensities by commodity, expressed as kg of CO2-equivalent per kg of protein. 

FAO (2017). 

 

Global emission by source indicates that enteric fermentation accounts for almost 44% of total 

sector's emissions (Figure 3). Feed production is the second largest source of emissions, with 41% 

of total emissions, after enteric emissions with 44.1%.  
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Figure 3:Global emission by source. FAO (2017). 

 

Since emission intensities vary greatly among agro-ecological conditions, farming practices and 

supply chains management, it is interesting to ascertain where opportunities for mitigation can be 

found (Figure 4). FAO (2017) stated that a lowering in emissions from the livestock sector can be 

achieved by reducing production and consumption, by lowering emission intensity in production, or 

by a combination of the two. 

 

Figure 4:Mitigation potential of the global livestock sector, expressed as Millitons of CO2-eq. FAO (2017). 

 

 

1.2 Methane as impacting factor of livestock sector 

The 100-year global warming potential of methane is 28 times more, which means that it traps 

28 times more heat per mass unit, than carbon dioxide and 32 times the effect when accounting for 

aerosol interactions (IPCC, 2014). Global methane levels have risen from 722 parts per billion (ppb) 

in pre-industrial times to 1800 ppb by 2011. An increase by a factor of 2.5 and the highest value in 
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at least 800,000 years. Many are the causes of the rapid raising of surface temperature of the earth, 

but all of them are because of human activities. Most come from the combustion of fossil fuels in 

cars, factories and electricity production. The gas responsible for the most warming is carbon 

dioxide, but other contributors, especially methane, released from landfills and agriculture, have 

an important impact on global warming. In 2011, Herrero et al., considering the positive trend of 

CH4 emission since before the Industrial Revolution increased, especially in the decade of 1990s 

and 2000, concluded that it is necessary to impose short-term reduction of CH4 emissions. Later, in 

2014, the IPCC reported that “it is extremely likely that human influence to have been the dominant 

cause of the observed warming since the mid-20th century”. The methane produced by agriculture, 

forest and other land use represent the 24 %, of the global emission (Figure 5).  

Figure 5: Global CH4 emission by economic sector, IPCC (2014). 

 

Moreover, the U.S. Environmental Protection Agency (EPA) in 2014, estimated that enteric 

fermentation associated with the domestic livestock sector is the main sources of CH4 emission, 

followed by natural gas system and other sources (Figure 6). Therefore, the impact of enteric 

methane emission is controversial. FAO (2006) stated that 18% of total anthropogenic greenhouse 

gases are directly or indirectly related to world’s livestock. Herrero et al. (2011) reported that, 

depending on different assessments, GHG emissions by livestock range from 8 to 51%. Conversely, 
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the majority of scientists agreed with the estimation of EPA (2015) where it has been reported that 

about 25% of GHG (Figure 6) arise from enteric fermentation in livestock.  

Figure 6: Global CH4 emission by source (1990-2015), EPA (2015).  

 

The EPA (2014) estimated that enteric fermentation was responsible for 141 MMT of CO2e 

emissions in 2012, and based on livestock type, beef and dairy cattle were responsible for the 

overwhelming majority of CH4 emissions (Figure 7) with 71% of the methane emission, followed 

by dairy sector with 25%. All other classes of livestock contributed by 4 percent of the global CH4 

emissions. 

Figure 7: Global enteric methane emissions by livestock type. EPA (2014). 
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1.3 Methanogenesis in ruminants 

Methane production by enteric fermentation is a part of the normal digestive process in animals, 

especially ruminants, such as cattle, sheep and goats. Although methane production can also occur 

in the lower gastrointestinal tract, as in non-ruminants, 89% of methane emitted from ruminants is 

produced in the rumen and exhaled into the atmosphere through the mouth and nose (Murray et al., 

1976). This results in a loss of ingested feed-derived energy of approximately 2–12% (Patra, 2016). 

Methane losses from ruminants can vary greatly. It can be based on feed quality, but also on 

geographical location, feed intake, feed composition, and the processing of the feed. Estimations 

has been made by Johnson and Ward (1996), where diet-derived energy losses from methane for 

dairy cattle, range-cattle, and feedlot cattle vary from 5.5–9.0%, 6.0–7.5%, and 3.5–6.5%, 

respectively.  

The rumen is a large anaerobic fermentation chamber in which nutritional components 

(carbohydrates, proteins and, in lesser extent, lipids) are degraded by the rumen microbial 

community (bacterial, protozoal and fungal species) and transformed mainly into volatile fatty acids 

(acetate, propionate and butyrate) (Mitsumori and Sun, 2008), but also formate, ethanol, lactate, 

succinate. In addition, and branched chain volatile fatty acids are formed, even if in a lower amount, 

with ammonia, carbon dioxide and H2 gas as end products (Hook et al., 2010). Methane arises from 

microbial activities in the rumen of the gastrointestinal tract and can be released via three routes 

(Ricci et al., 2014):  

1) CH4 from rumen and lower gut absorbed into the blood and exhaled from the lungs via 

expiration;  

2) CH4 emitted directly from the rumen by eructation;  

3) CH4 emitted from the hindgut in the flatus.  

Collectively, expiration and eructation have been encompassed by the term ‘exhaled’ gas, as the 

majority of eructated gas from the rumen is inhaled into the lungs before being exhaled (Hoerneckie 
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et al., 1965; Berends et al., 2014). The 87% of total CH4 production in ruminants is mainly involved 

the rumen, whereas 13% is produced in the lower digestive tract (Murray et al., 1976). Rectal 

emissions ranged from 2 to 11% of the total CH4 emissions in sheep and dairy cows (Muñoz et al., 

2012); while up to 89% is excreted through the breath (Murray et al., 1976). Methane emissions are 

closely related to the amount of rumen fermented organic matter (OM) or the amount of digestible 

OM. When the digestibility of energy increases by 10%, energy losses as methane increase by 0.47 

points in a roughage diet and by 0.74 points in a mixed diet (Blaxter and Clapperton, 1965). Carbon 

dioxide and hydrogen are the precursors of methane (Moss et al., 2000), which is the major way of 

H2 elimination through the following reaction:  

CO2 + 4H2 → CH4 + 2H2O, 

acetogenesis is another way to remove hydrogen, represented by the following reaction: 

2CO2 + 4H2 → CH3COOH + 2H2O, 

but also by enhancing the propionate production, while decreasing acetate and butyrate (producers 

of H2): 

C6H12O6 + 2H2 → 2C3H6O2 + 2H2O. 

CH4 is produced in anaerobic conditions by the Archaea microbes as a physiological end-product of 

microbial fermentation of carbohydrates, which are able to metabolise the hydrogen formed by 

other fermentative microbes. Many studies have been performed with the aim to understand this 

community (Henderson et al., 2015, Seedorf et al., 2015). However, the mechanism of CH4 

production in ruminants is still unclear (Danielsson et al., 2017a). About 40 species of Archaea 

were identified and Methanobrevibacter, Methanobacterium and Methanosphaera are the main 

genera (Wedlock et al., 2013). Methanobrevibacter seems to be the dominant genus of the archaeal 

domain (Leahy et al., 2013; Henderson et al., 2015). Danielsson et al. (2012, 2014) found out that 

certain groups of Methanobrevibacter species (M. smithii, M. gottschalkii, M. millerae, and M. 

thaueri), were not only correlated to individuals with higher CH4 production but also to feed 

additive. This indicating that specific substrates favour certain Methanobrevibacter species 



 

8 

 

(Danielsson et al., 2012 and 2014). Thanks to new molecular techniques, such as next-generation 

sequencing, knowledge of rumen microbiology has increased in recent years. However, the 

correlation to level of CH4 emissions is still not clear. Moreover, it is unclear whether cows 

producing comparatively lower amounts of CH4 have less efficient feed degradation, resulting in 

lower milk and meat production (Danielsson et al., 2017a). 

 

1.4 In vivo methane measurement: crucial point 

Measurements of individual methane emission were applied to assess the energy loss as a 

component of energy balance and for the estimation of heat production based on respiratory 

exchange (Reynolds, 2000). Many of the available measurement techniques, so far, are either slow, 

expensive, labour intensive and/or are unsuitable for large-scale individual animal measurements 

(Negussie et al., 2017). However, recently, the need for high throughput measurement of enteric 

methane emission has led to development of a variety of approaches, which differ in their 

application, cost, accuracy and precision (Hammond et al., 2016). Many are techniques currently 

used to directly measure enteric CH4 emission from ruminants, for instance, respiration chambers, 

sulphur hexafluoride tracer, GreenFeed, carbon dioxide as tracer, estimation based on eructated air 

and handheld laser detector (Figure 8).  

Despite the technology available, accurate and repeatable measurements of CH4 emission from 

large numbers of animals are needed for investigating possible mitigation options, screening 

animals for breeding programmes, assessment of alternative management strategies, and decreasing 

uncertainties associated with national GHG inventories (Pickering et al., 2015). The criteria of non-

invasive and non-intrusive techniques is the most important for appropriate and acceptable CH4 

measurement, measuring the animals in their environment, but also, rapid, cost effective, ideally 

automated and with the minimum error. 

 



 

9 

 

Figure 8: Schematic presentation of different CH4 measurement techniques (Patra, 2016). 

 

In addition, the analysis of the complex matrix needs an understanding of physics associated with 

airflow, air mixing, background gas concentrations and ambient conditions, as well as an 

appreciation of animal behaviour and an understanding of how applicable the data is to the 

environment under evaluation.  

CH4 emission can be accurately measured using respiration chambers. These are typically 

designed for measurements of one animal at a time, normally over the course of successive 24 h 

periods for 3–7 daily measurements. This is to account for between-day variation. Their limitations 

have been well documented, particularly, the rate of throughput (numbers of measurements over 

time), construction and operation cost, animal behaviour changes, constraints by their ‘artificial’ 

environment, limit their use for larger scale experiments (Reynolds, 2000; Hegarty, 2013). In 

addition, animals need to be acclimatised before readings can be recorded and the lack of activity 

within the chambers inevitably lowers energy expenditure compared with loose housing or grazing 
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environments (Hammond et al., 2016). Reynolds (2000), supported that, even with all the correct 

disposition, DMI and therefore CH4 emission may decrease during chamber housing, depending on 

the level of production, diet composition and feeding level. However, Hellwing et al. (2012) found 

no effects on DMI were observed in studies using transparent chambers. The rate of CH4 emission 

is variable according to the source (low when derived from the absorbed in blood) whereas 

concentration is high when you include eructated gas from the rumen. CH4 varies considerably 

throughout the day in relation to feeding pattern and rate of fermentation. In this regard, breath 

analysis techniques only consider CH4 concentrations during eructation events (Garnsworthy et al., 

2012). Also monitoring head position is crucial, it is also important to measure both absorbed and 

eructated CH4 emitted through expiration, otherwise emission may be underestimated if only 

eructation emission is measured, for instance with the laser tracer.  

The sulphur hexafluoride (SF6) tracer technique (Johnson et al., 1994) generates values for CH4 

flux that are correlated with chamber measurements, but the between-cow variability is greater than 

with chamber measurements (Pinares-Patiño et al., 2011). The method is also relatively labour 

intensive and, therefore, not suitable for comparing large number of animals (Huhtanen et al., 

2015).  

Regarding the sniffer methods, a sampling inlet is placed in the feed trough of an Automatic 

Milking System, and gas concentrations of exhaled air are continuously sampled (Huhtanen et al., 

2015). Garnsworthy et al. (2012) developed an on-farm method, following this principle, based on 

an index of CH4 emission that is calculated during each milking as the product of peak frequency 

and mean peak area of CH4 concentration. Studies using the sniffer method have reported emissions 

with relatively high between-animal variability (Garnsworthy et al., 2012; Lassen et al., 2012; Bell 

et al., 2014) compared with data from studies using respiration chambers (Blaxter and Clapperton, 

1965; Yan et al., 2010) or the flux method (Zimmerman et al., 2013). 

A recently patented gas-flux quantification system, the GreenFeed, uses a similar principle for 

measuring gas emissions as for respiration chambers (flux method) where an active airflow is 
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induced to capture emitted air. This system integrates measurements of air flow, gas concentrations, 

and detection of muzzle position to allow direct measurement of CH4 and CO2 fluxes to be 

measured during each animal visit to the feed trough. The sensors identify the animal and its head 

position, allowing the measurement of air flow, methane and carbon dioxide within the hood, in 

exhaust air (Hammond et al., 2015). Even though this technique is applicable on larger number of 

animals and on farm conditions, the animal head position is critical for successful measurements, as 

the animal is free to move in and out of the hood (Hammond et al., 2015). The risk of interrupted 

data is relevant. There is also a risk of bias if data are rejected on the basis of number of eructations, 

using the GreenFeed or sniffer methods (Hammond et al., 2016).  

1.5 Prediction of in vivo methane emission: in vitro technology 

A rapid and less expensive alternative to bypass the in vivo measurments, which are known to be 

expensive, laborious, time consuming and involve a large number of animal, is the use of in vitro 

fermentation techniques. The alternative in vitro techniques have important advantages:  

 they do not involve the direct use of animals;  

 they are less laborious and more suitable for a large-scale evaluation of ruminant feeds; 

 they are less time-consuming and less expensive.  

The potential of diets and modifiers of rumen fermentation have been tested across this technology 

to rapidly obtain results on their suitability for further avaluation. As reported in a recent review by 

Yáñez-Ruiz (2016) Czerkawski and Breckenridge in the 1970’s developed the first system that 

involved recording the direct displacement of a piston by gases produced during the fermentation of 

feeds by rumen fluid in a glass syringe, later improved by Menke in 1979. The syring system was 

also modified by Blümmel and Ørskov in 1993 allowing the gas production and the kinetics of 

fermentation recording at different time-point.  
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The in vitro fermentation systems are divided in two main categories: 

Continuous culture system, as described by Czerkawski and Breckenridge (1977), is design for 

maintaining a normal microbial population of the rumen under strictly controlled conditions over 

long periods of time. The apparatus (Figure 9) is simple to construct and operate. The complete 

apparatus consisted of vessels (fermentation unite, figure 10) and allow the control of temperature 

of the water bath and the movement of the feedbag. 

Figure 9: RUmen SImulation TEChnique apparatus. 

 

Figure 10: RUmen SImulation TEChnique’s vessel (Czerkawski and Breckenridge, 1977). 
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Batch culture system, as described by van Nevel and Demeyer (1981), are commonly used for 

evaluating the effects of diets and additives on enteric CH4 production. Recently, Ramin and 

Huhtanen (2012) developed an in vitro method for prediction of CH4 production in the rumen of 

cows using the kinetic parameters from an automated in vitro gas production (GP) system in a 2-

compartment rumen model. Danielsson (2017b) confirmed that this approach takes rumen dynamics 

(digestion kinetics) into account and may have advantages compared with single time point batch 

culture systems. Pressure data is recorded and then converted in terms of volume of total gas 

produced. Moreover, gas can be collected and analyzed for composition. The commercial apparatus 

Ankom
RF

 Gas Production System (Ankom Technology, NY, USA; Figure 11) consisting of a set of 

fermentetion units (Figure 12) equipped with pressure sensors and wireless connected to a 

computer. During the incubation, the headspace pressure of each bottle is recorded, and the 

electromechanical valve in each unite, allowing the control of  the release of gas (Tagliapietra et al., 

2011).  

Figure 11: Gas Production system (Ankom
RF

). 
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Figure 12: Fermentation unite of the Gas Production system (Ankom
RF

). 

 

As suggested by Calsamiglia (2007) the criticism of the batch system, compared to continuous 

system, is the difficulty to adapt the rumen microbiome, due to the very short duration of the 

experiments (i.e., 24 h) and also to the use of rumen fluid which had not been exposed to the 

presence of the investigated compounds before. The incubation of a non-adapted rumen fluid for 

short times might generate misleading effects causing  the discarding of compounds that may have 

needed a longer time to be effective on rumen fermentation, and the acceptance of a compound that 

is effective in the short term but not in the long term. Recently innovative approaches, for DNA 

sequencing and fermentation products estimation on fermentation residues, i.e. the Ion Torrent 

Personal Genome Machine and the Fourier Transform Infrared (FTIR) spectroscopy, have been 

combined to the in vitro system allowing  the analysis, at very very low cost, improving accuracy in 

quantification and estimation. 
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1.6 Use of natural compounds as rumen methane modulators 

Since the ban of antibiotics as growth promoting feed additives by the European Union in 2006, 

plant extracts and plant secondary metabolites (PSM) have been considered as an alternative to 

manipulate the rumen (Hart et al., 2008). The term ‘plant secondary metabolite’ is used to describe 

a vast array of chemical compounds in plants that are not involved in the biochemical processes of 

plant growth and reproduction. These have been studied and used in medicines and preservation of 

foods (Patra and Saxena, 2010). The mode of action (Figure 13) depends on the specific additive, 

but can include (Knapp et al., 2014):  

1) direct inhibition of methanogens or methanogenesis; 

2) suppression of ciliate protozoa; 

3) providing or stimulating a competitive pathway for H2 disposal.  

These natural plant bio-chemicals can generally be classified into five major groups: tannins, 

saponins, flavonoids, essential oils and organosulphur compounds. They have been shown to 

selectively regulate the rumen microbial populations (Patra and Saxena, 2009a) resulting in an 

improvement of rumen fermentation and nitrogen metabolism. This may leads to a decrease in 

methane production (Kamra et al., 2006; Rochfort et al., 2008). Recently, a number of reviews have 

discussed the potential of plant bioactives as modifiers of rumen microbial fermentation and 

ruminant production (Calsamiglia et al., 2007; Hart et al., 2008; Spanghero et al., 2008; Patra and 

Saxena, 2009b; Soliva, 2011) and results of these studies are very promising.  
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Figure 13: Schematic presentation of mode of action of phytochemicals on methanogenesis (Patra 

and Saxena, 2010). 

 

Tannins, as well as saponins, have been extensively studied and show the most mitigating 

potential (Hristov et al., 2014). The tannin compounds are widely distributed in many species of 

plants, seeds, bark, wood, leaves, and fruit skins. They play a role in protection from predation, 

pesticides, and might help in regulating plant growth in plants. Tannins are usually considered anti-

nutritional although they can have considerable potential to reduce intestinal parasites (Niezenet al., 

1995). On the other hand, high levels of tannins, as reported by some authors (Waghorn, 2008; 

Patra, 2010), reduced digestibility of diets. Thus they will inevitably be anti-nutritional when 

dietary crude protein concentrations are limiting production because they reduce absorption of 

amino acids (Waghorn, 2008). Beauchemin (2007) reported that tannins showed a mitigation 

potential by up to 20%. Therefore, it is important that benefits of reduced CH4 emission do not 

negatively affect the digestion and production, as observed by Grainger et al. (2009). In the same 

study, CH4 emissions were reduced by up to 30%, but milk production of the cows was also 

reduced by about 10%. In 2012, Jayanegara stated a relatively close relationship between dietary 

tannin concentration and CH4 production per unit of digestible OM. Also a decrease in feed intake 

and nutrient digestibility was observed, particularly crude protein. In a recent review, Goel and 

https://en.wikipedia.org/wiki/Predation
https://en.wikipedia.org/wiki/Pesticides
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Makkar (in 2012), concluded that the risk of impaired rumen function and animal productivity with 

tannins is greater than with saponins. For decreasing CH4 production, the concentration range for 

tannins is narrower than for saponins.  

The second group of SPM includes saponins. Their mode of action have been investigated and 

seems to decreased the number of protozoa and consequently methanogens species associated with 

them (Patra and Saxena, 2010). The effectiveness of saponins-extracts in reducing CH4 emission 

has been demonstrated both in vitro (Pen et al., 2008; Holtshausen et al., 2009) and in vivo studies 

(Holtshausen et al., 2009; Wang et al., 2012).  

However, some studies have indicated that saponins may decrease the activities of methane 

producing genes or rate of methane production in each methanogenic cell (Guo et al., 2008). 

Additionally, Guo stated that methane production may also be affected by saponins as a result of 

reduced rate of methanogenesis via diminished activity of methane producing gene without 

changing the total methanogen population. On the other hand, saponins may decrease 

methanogenesis indirectly via inhibition of protozoa (Patra and Saxena, 2010).  

Flavonoids are a large class of polyphenolic compounds and the most numerous. The flavonoids 

generally act against microorganisms through inhibition of cytoplasmic membrane function, 

inhibition of bacterial cell wall synthesis, or inhibition of nucleic acid synthesis (Cushnie and Lamb, 

2005). Also, it has been suggested that the flavonoids, directly or through new derivatives produced 

upon biotransformation or degradation, affect the rumen microbial activity (Oskoueian et al., 2013). 

Flavonoids are contained in plants such as liquorice, parsley, onions, blueberries and other berries, 

black and green tea, bananas, all citrus fruits, Ginkgo biloba, and food, such as red wine, sea-

buckthorns, buckwheat and dark chocolate (with a cocoa content of 70% or greater). Moreover, 

plant extracts rich in flavonoids have gained importance in improving animal production. Tedesco 

et al. (2004) reported the increase in milk yield and lactation performance in dairy cows upon 25 d 

administration of sylimarin (10 g/d) which mainly consist of flavonolignans. Currently, various 

flavonoids-rich feed additives, which suppress the methane production, are available in the market. 
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Furthermore, the information on the effect of flavonoids in the pure form on rumen microbial 

activity is still lacking (Gohlke et al., 2013).  

Essential oils are a group of secondary plant metabolites obtained from volatile fractions of 

plants by steam distillation process (Gershenzon and Croteau, 1991), which are used as 

antimicrobial agents and preservatives. Essential oils have diverse chemical composition, natural 

and biological properties. It has been suggested that they increase the phylogenetic distribution of 

methanogenic archaea, which may have resulted from changes in associated protozoal species 

(Ohene-Adjei et al., 2008). Many essential oils, such as chinnamaldehyde, juniper berry, limonene, 

eucalyptus, thymol, peppermint, and many others, have shown methane suppressing effects (Patra 

and Saxena, 2010). However, effects of essential oils on protozoal population vary. Some studies 

reported a lack of effect on protozoal numbers (McIntosh et al., 2003; Benchaar et al., 2007; 

Newbold et al., 2004), while others have found a stimulatory effect of essential oils on protozoa 

(Patra and Saxena, 2009b). There are also studies that indicate an anti-protozoal effect (Ando et al., 

2003; Cardozo et al., 2006; Fandiño et al., 2008) where concentrations of total, entodiniomorph and 

holotrich protozoa have been reduced. Although the mechanism of action is poorly understood. It 

may be related to the lipophilic nature of compounds such as Anethol, which facilitates permeation 

of essential oil across the protozoal membrane (Cardozo et al., 2006). 

The last big group is represented by the organosulphur compounds. They occur mainly in two 

plant families: (1) Alliaceae family e.g., Allium sativum (garlic), Allium cepa (onion) and Allium 

porrum (leek) containing alliin–alliinase system and (2) Cruciferae (Brassicacae) family e.g. 

Brassica juncea, Wasabia japonica (wasabi), Armoracia rusticana (horseradish) and Brassica 

oleracea (cauliflower) containing glucosinolate–myrosinase (Mithen, 2006). The primary sulphur-

containing constituents in Alliums pp. are S-alk(en)yl-L-cysteine sulphoxides, ranging from  0.53 to 

1.3% of fresh garlic (largest contributor), and cglutamyl-S-alk(en)yl-L-cysteins sulphoxides (Ross 

and Milner, 2007). This can be seen in figure 14. By the action of allinase, these compounds are 

converted into thiosulphinates, which are then spontaneously and enzymatically converted into a 
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large array of volatile compounds e.g. diallyl disulphide, diallyl trisulphide, allyl methyl disulphide, 

dipropyl disulphide (Mithen, 2006) mainly after the cloves’ fraction.  

 

Figure 14: Major organosulfur compounds found in Alliacae family: (a) organosulfur compounds in 

intact plants, (b) compounds. Produced from allyl cystein sulphoxide (in garlic) and (c) 1-propenyl 

cystein sulphoxide (in onion) by aliinase (Patra and Saxena, 2010). 

 

A number of studies have been conducted on garlic oils or its components for modification of 

rumen fermentation and inhibition of methane production (Busquet et al., 2005; Kamel et al., 2008; 

Chaves et al., 2008; Kongmun et al., 2010; Patra et al., 2006). The knowledge of the mode of action 

on the microbiota is still incomplete, but it has been suggested by Ohene-Adjei et al. (2008) that 

organosulphur compounds may change the associated protozoal species. Patra et al. (2010) did not 

not support the hypothesis of protozoal associated methanogenesis reduction, but because the garlic 

extracts did not appreciably affect degradability of feeds, he believed that garlic oil may specifically 

inhibit methanogenic archaea. Moreover, it has been suggested that the organosulphur compounds 

found in garlic oil may directly inhibit the rumen methanogenic archaea through an inhibition of the 

enzyme 3- hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase (Busquet et al., 2005). In 

the same study, valuating the effects of garlic oil and four of its main components (diallyl sulphide, 
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diallyl disulphide, allyl mercaptan, and allicin) in batch culture, he observed that garlic oil and 

diallyl disulphide (300 mg/l of ruminal fluid) reduced methane production by 74 and 69%, 

respectively. Furthermore, methanol and ethanol extracts prepared from fresh garlic caused an 

inhibition of methanogenesis in vitro, but not water extract of garlic (Patra et al., 2010). However, 

there has been a concern that allicin may be unstable in the rumen, resulting in loss of activity with 

time. In this regard, Kamel et al. (2008), observed that allicin and diallyl disulphide were effective 

at 6 hrs, but had no effect at 12 or 24 hrs. However, no adaptation was founded by Hart et al. (2006) 

to allicin even up to 17 days. Several authors also reported the effect on the rumen fermentation: no 

effect on degradability of organic matter (Patra et al., 2010); no effect on VFA concentration 

(McAllister and Newbold, 2008); while Busquet et al. (2005) observed a reduction of volatile fatty 

acids concentrations at high doses. In particular, garlic oil and its components increased the 

proportions of propionate and butyrate. Patra et al. (2010) observed that garlic extract from cloves 

increased total volatile fatty acid and butyrate production and decreased acetate to propionate ratio.  

A few experiments investigated the effect in vivo of garlic, or its sulphur constituents, on digestion, 

ruminal fermentation, milk production and quality in dairy cows (van Zijderveld et al., 2011; Oh et 

al., 2013; Blanch et al., 2016). In a trial with sheep, the supplementation with garlic (10 g/kg of dry 

matter intake) decreased methane formation expressed relative to organic matter digested (Patra et 

al., 2008a). Therefore, the response of organosulphur compounds on intake by ruminants is limited. 

Garlic oil or garlic cloves appear to have no effect on intake (Nolte and Provenza, 1992; Bampidis 

et al., 2005; Yang et al., 2007; Patra et al., 2008a). Thus, garlic oil seems to have great potential for 

mitigation of methanogenesis, without affecting nutrient utilisation . Even, garlic fed to sheep, led 

to an increase in digestibility (Patra et al., 2008a; Kongmun et al. (2010) that might have been due 

to increased number of fibre degrading microbial population (Patra et al., 2008b).  

Therefore, it appears that organosulphur compounds have great potential to improve rumen 

fermentation with suppression of methanogenesis. They are potentially more specifically effective 

against methanogens, which usually changes rumen fermentation characteristic to chemical anti-
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methanogenic compounds i.e. increased propionate and decreased acetate concentrations with no 

apparent change in total volatile fatty acids (Patra et al., 2010).  
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2 Aim and Objectives  

The general objective of the present thesis was to study different natural additives to reduce enteric 

CH4 emission in ruminants using in vitro techniques. A screening of four pure plant extract and one 

synthetic have been evaluated using a batch culture system (first contribute) on rumen fermentation 

and methane emission. Based on the results obtained in the first experiment, the three more 

promising compound were interesting to verify the influence of the rumen fluid adaptation before 

been used as inocula (second contribute). The third contribution was carried using a long term 

technology, a continuous culture system (RuSiTec), to test the effect of liquiorice extract on 

fermentations, methane emission and rumen microbiome at at IBERS (Aberysthwyth, Wales). After 

these in vitro studies, the interest was focused on the effect, of natural additives, on the dairy 

product. Specifically, how feeding the dairy cows with them can modify the organoleptic profile of 

dairy products, in particular garlic and sulfur compounds (fourth contribute). 
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ABSTRACT 

This study explored effects of four pure plant extracts (allyl-sulfyde, cinnamaldehyde, eugenol, 

and limonene) and one synthetic compound (monensin), on in vitro rumen fermentation and 

methane (CH4) production of a commercial diet for dairy cows. Four incubations at 24 h were 

conducted using a gas production (GP) system equipped with devices for automated gas venting at 

fixed pressure. Bottles (317 ml) were filled with 1.0±0.010 g of diet, additive (except in the control 

group), and 150 ml of buffered rumen fluid, and incubated at 39±0.4°C. Two dosages of each 

additive were tested: 3 or 30 mg/g of diet for the plant extracts; 0.015 or 0.030 mg/g of diet for the 

ionophore compound. The resulting experimental design was: 4 incubations × 11 treatments (5 

additives × 2 dosages, plus the control group) × 3 replications. Twelve bottles (3 per each run), 

containing only the buffered rumen fluid, were included as blanks. At the end of each incubation, 

gas (10 ml) was sampled from headspace of each bottle and analyzed for CH4 by GC. Fermentation 

fluids were treated with neutral detergent solution to compute degradability of NDF (NDFd, %) and 

of true DM (TDMd, %). Data were submitted to ANOVA considering effects of treatment and 

incubation as fixed and random factor, respectively. All the additives were ineffective at the low 

dosage. The high dosage of limonene caused a marked depression of NDFd (-68%) and TDMd (-

14%) compared to the control; less marked reductions were noted for high dosage of eugenol (-15% 

and -4%, for NDFd and TDMd, respectively) and of monensin (-16% and -3%, for NDFd and 

TDMd, respectively). No effects emerged for other additives on NDFd and TDMd, irrespective by 

the dosage. Compared to the control, high dosage of AL, CI, EU, LI, and MO significantly reduced 

in vitro GP (ml/g DM; -16%,  -12%, -9%, -38%, -12%, respectively). In vitro CH4 production was 

significantly reduced only by high dosage of AL, CI, LI, and MO (-32%, -12%, -43%, -18%, 

respectively, compared to the control). Only high dosage of AL and LI significantly reduce CH4 

proportion (-18%, -12% respectively, compared to the control). The most promising results were 

observed for the high dosage of cinnamaldehyde, that reduced in vitro CH4 production without 

compromising degradability and VFA production.  
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INTRODUCTION 

In the last years several in vitro studies have been performed to explore the capacity of plant 

compounds (i.e. essential oils) to improve efficiency of rumen fermentation, by increasing the 

proportion of energy channeled towards the synthesis of VFA and microbial N (Hart et al., 2008; 

Klevenhusen et al., 2012). This interest has further raised after that the use of antibiotics as feed 

additives (i.e. ionophores) has been banned in the EU (Regulation 1831/2003/EC). Although results 

were sometimes encouraging, in other cases the dietary addition of these compounds was found to 

impair in vitro rumen fermentation, by reducing degradability and VFA production (Calsamiglia et 

al., 2007; Hart et al., 2008). Magnitude and kind of effects exerted by plant extracts on in vitro 

rumen parameters are influenced by the type of extract used, supplementation level, composition of 

the basal diet used for in vitro tests, pH conditions, and possible interactions among these factors 

(Klevenhusen et al., 2012). To date, the majority of in vitro studies was aimed at evaluating effects 

of plant extracts on rumen degradability, VFA production, and N metabolism, whereas effects on 

rumen CH4 production are less documented (Hart et al., 2008). Moreover, most studies have been 

conducted using whole plant extracts or complex mixtures (i.e. blends of essential oils). Two main 

shortcomings of using whole extracts and mixtures are the unambiguous definition of effects and 

the identification of compounds actually effective on rumen fermentation. To this regard, use of 

pure products could allow to obtain more accurate results (Martínez-Fernández et al., 2013).  

Thus, this study was aimed at exploring effects of four pure products (allyl sulfide, 

cinnamaldehyde, eugenol, and limonene) on in vitro rumen fermentation of a commercial diet for 

dairy cows, with a particular focus on CH4 production. The effect of monensin, a reference 

compound with a renowned effect on rumen fermentation, was also evaluated.   
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MATERIALS AND METHODS 

The commercial diet used for in vitro tests was analyzed in duplicate for proximate composition 

(AOAC, 2012). Starch was analyzed by HPLC (Bouchard et al., 1988). Neutral detergent fibre 

(NDF), inclusive of residual ash, was determined with α-amylase using the Ankom
220

 Fibre 

Analyzer (Ankom Technology, NY, USA). Acid detergent fibre (ADF), inclusive of residual ash, 

and sulphuric acid lignin (lignin(sa)) were determined sequentially after NDF determination 

(Robertson and Van Soest, 1981).  

Incubation Procedures  

A commercial GP apparatus (Ankom
RF

 GP System, Ankom Technology
®

, NY, USA) consisting 

of 36 bottles equipped with pressure sensors (pressure range: from −69 to +3447 kPa; resolution: 

0.27 kPa; accuracy: ± 0.1% of measured value) and wireless connected to a computer was used. 

Four incubation runs were conducted in 4 successive wks. The experimental design was the 

following: 4 incubation runs×11 treatments×3replications plus twelve bottles (3 per each run) as 

blanks (bottles containing only the buffered rumen fluid), for a total of 144 bottles incubated (36 

bottles per each run). The 11 treatments were: a control group (CTR) where the bottles containing 

the diet and the buffered rumen fluid were incubated; five additives incubated in 2 different 

dosages: allyl sulfide (ALL; A35801, Sigma-Aldrich Chemical, Milan, Italy), cinnamaldehyde 

(CIN; W228613, Sigma-Aldrich Chemical, Milan, Italy), eugenol (EUG; E-51791, Sigma-Aldrich 

Chemical, Milan, Italy), limonene (LIM; 183164, Sigma-Aldrich Chemical, Milan, Italy), and 

monensin (MON; M5273, Sigma-Aldrich Chemical, Milan, Italy) that were added to the bottles 

containing the diet and the buffered rumen fluid. Before to start incubations, two solutions were 

prepared for each pure product, containing 25 ml of 96% ethanol (v/v) plus 75 (low dosage) or 750 

mg (high dosage) of additive. In the case of monensin, the two solutions contained 25 ml of 96% 

ethanol (v/v) plus 0.38 (low dosage) or 0.76 mg (high dosage) of additive. After that, the solutions 

were stored at 4°C until the incubation. The day of incubation, each bottle (317 ml) was filled with 

1.000±0.0010 g of diet, 150 ml of fermentation fluid (composed by 50 ml of rumen fluid and 100 
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ml of buffer solution), and 1 ml of the ethanol-additive solution, in order to achieve the final 

concentrations needed (3 or 30 mg of additive/g of diet, for the low and the high dosage of plant 

pure extracts; 0.015 or 0.030 mg of additive/g of diet, for the low and the high dosage of monensin). 

Such doses correspond to 20 or 200 mg/l of buffered rumen fluid, for the pure compounds, and to 

0.1 or 0.2 mg/l of buffered rumen fluid, for monensin. To standardize fermentation conditions, 1 ml 

of ethanol was added also to the 3 blanks (bottles without feed sample and additive) incubated in 

each run. Such ethanol concentration (0.7% v/v) was assumed to not impair microbial growth and 

activity (Benchaar et al., 2007). The buffer solution was prepared according to Menke and Steingass 

(1988), heated in a water bath at 39°C and purged continuously with CO2 for 30 min, to maintain 

anaerobic conditions. Rumen fluid was collected by an esophageal probe (Tagliapietra et al., 2012) 

2 h before morning feeding from 3 dry Holstein-Friesian fed hay ad libitum and 2.5 kg/d of 

concentrates (0.5 kg of dry sugar beet pulp, 1 kg of corn grain, and 1 kg of sunflower meal). Rumen 

fluid was stored into thermal flasks preheated to 39 ± 0.5°C, transferred to the laboratory, filtered 

through 3 layers of cheesecloth, to eliminate residual feed particles, and mixed with buffer solution 

in a 1 to 2 ratio (Menke and Steingass, 1988). All operations required less than 30 min and were 

conducted under anaerobic conditions, by continuous flushing with CO2. Bottles were placed in a 

ventilated oven at 39 ± 0.4°C and automatically vented at a fixed pressure (6.8 kPa), to prevent 

overpressure and alterations of gas and CH4 measures (Cattani et al., 2014).  

Sample collection and analytical procedures 

At the end of each incubation, two aliquots (5 ml) of fermentation fluid were collected from each 

bottle and stored at −20°C with 1 ml of metaphosphoric acid (25%, w/v) until be analyzed for 

ammonia N (N-NH3) and volatile fatty acids (VFA). Moreover, pH of fermentation fluid of each 

bottle was measured using appropriate electrodes equipped with temperature gauge and connected 

to a pH meter (pH-Meter Crison Instruments - BASIC 20, Barcellona, Spain). The content of N-

NH3 was measured using the Method Cassette Ammonium of the FIAstar
TM

 5000 Analyzer (FOSS 

Analytical, Hilleroed, Denmark). The VFA concentration was determined by GC with flame 
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ionization detection (7820A GC system, Agilent Technologies, Milan, Italy) using a 30-m stainless 

steel column (J&W DB-FFAP, Agilent Technologies, Milan, Italy) and hydrogen as carrier gas 

(flow rate: 30 ml/min; isothermal oven temperature: 150°C). Fermentation fluids were filtered into 

weighed crucibles (30 mL, Robu Glasfilter-Geräte GMBH
®
, Hattert, Germany) and analyzed for 

residual NDF using a Fibretech Analyzer (VELP
®
 Scientifica, Milan, Italy). At the end of each 

incubation, gas was collected with a 10-ml gas-tight syringe (Artsana S.p.A., Como, Italy) from 

headspace of bottles. At each sampling, the syringe was flushed to allow the collection of a 

homogeneous sample, which was immediately injected into a 5-ml Vacuette (Greiner Bio-One 

GmbH, Kremsmunster, Austria). From each Vacuette, an aliquot (10 µl) of gas was sampled with a 

gas-tight syringe (1701N, Hamilton, Bonaduz, Switzerland) and immediately analyzed for CH4 

concentrations by GC with flame ionization detection (7820A GC system, Agilent Technologies, 

Milan, Italy) using a 30-m stainless steel column (GS-CarbonPLOT, Agilent Technologies, Milan, 

Italy) and hydrogen as carrier gas (flow rate: 1.6 ml/min; isothermal oven temperature: 40°C). A 

six-point standard curve was obtained by mixing known volumes of CH4 (99.5 % pure, SAPIO 

s.r.l., Monza, Italy) with known volumes of air using the same graduated gas tight syringe (1701N, 

Hamilton, Bonaduz, Switzerland). The 6 gas mixtures used for calibration contained 10, 15, 20, 25, 

50, and 100 ml/l CH4. The calibration regression showed an R
2
 of 0.9999. 

Computations and Statistical Analysis 

Degradability of NDF (NDFd) and of true DM (TDMd) were calculated according to Goering and 

Van Soest (1970). Recently, Cattani et al. (2014), using vented bottles connected to tight bags for 

gas collection, calculated CH4 production (ml) as follows: [CH4 concentration in the bottle 

headspace] × [headspace volume] + [CH4 concentration in the gas bag × total GP volume]. To  

evaluate the possibility of avoiding the use of bags, to save space and increase the number of 

replicates, data from a previous unpublished experiment (where different concentrates and forages 

were incubated for 6, 24, or 48 h with the same GP equipment and the same operative conditions of 

those of the current experiment) were used. It was found that total methane production can be 
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predicted, with acceptable precision and accuracy, as: total CH4 production = - 0.0064  [CH4 

concentration in the headspace  (headspace volume + total GP volume)]
2
 + 0.9835  [CH4 

concentration in the headspace  (headspace volume + total GP volume)]. The equation had a 

residual standard deviation of only 0.1770 ml, and a R
2
 = 0.9993. Therefore, data of total CH4 

production (ml) computed with this equation were expressed as ml/g DM incubated, as ml/g TDMd, 

and as ml/100 ml GP.  

Data were analyzed using PROC MIXED of SAS Institute (2007) with a model considering the 

treatment (CTR + 5 additives × 2 dosages; 10 df) as fixed effect and incubation run (3 df) as 

random effect. Least-squares means were separated using Fisher’s test in SAS (2007). All 

parameters measured were graphically expressed as percentage variation of each additive and 

dosage compared to the CTR treatment. 

RESULTS 

The proximate composition of the commercial diet used for in vitro tests is given in Table 1. The 

diet contained 361, 158, and 33 g/kg of NDF, CP, and lipids, respectively (Table 1). 

Allyl sulfide 

Effects of allyl sulfide on in vitro rumen fermentation are shown in Table 2 and in Figure 1. 

Compared to CTR, the low dosage did not affect any of in vitro parameters considered in this study. 

As regards to the main effects, the high dosage of allyl sulfide reduced in vitro GP and CH4 

production (both expressed as ml/g TDMd) by about -15 and -32%, respectively (P<0.001). The 

total VFA production (mg/l) was decreased by about -12% (P=0.009); acetate production (mg/l) 

was markedly reduced (about -24%; P<0.001) at the favor of propionate (about +15%; P<0.001). 

No effects were observed on values of NDFd (g/kg NDF) and TDMd (g/kg DM). Similarly, 

ammonia N concentration (N-NH3) of rumen fluids at the end of incubation was unchanged. 
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Cinnamaldehyde 

Effects of cinnamaldehyde on in vitro rumen fermentation are shown in Table 2 and in Figure 2. 

As observed for allyl sulfide, the low dosage of cinnamaldehyde did not exert any effect on in vitro 

fermentations compared to CTR. At the high dosage the additive caused a decrease of in vitro GP, 

as ml/g DM (P<0.001) and ml/g TDMd (about -10%; P<0.001), and of CH4 production, as ml/g DM 

(P=0.004) and ml/g TDMd (about -12%; P=0.038). The high dosage of cinnamaldehyde reduced the 

acetate production (about -12%; P<0.001) and increased that of propionate (about +12%; P<0.001), 

without modifying the total VFA production (P=0.51). Similarly to allyl sulfide, cinnamaldehyde 

did not influence in vitro degradability and N-NH3 concentration of rumen fluids.  

Eugenol 

Effects of eugenol on in vitro rumen fermentation are shown in Table 2 and in Figure 3. Compared 

to CTR, no effects were observed on the various in vitro parameters when the compound was added 

at the low dosage. At the high dosage, significant effects were only observed on a slight reduction 

of NDFd (about -18%; P=0.018), TDMd (about -3%; P=0.013), and GP as ml/g DM (about -9%; 

P=0.009). All other parameters were unchanged. 

Limonene 

Effects of limonene on in vitro rumen fermentation are shown in Table 2 and in Figure 4. Compared 

to CTR, the low dosage of limonene did not exert any significant effect on in vitro fermentations. 

When added at the high dosage, the most interesting effects of limonene were the depression of in 

vitro NDFd (about -66%; P<0.001), TDMd (about -14%; P<0.001), GP (about -25%; P<0.001) and 

CH4 production as ml/g TDMd (about -34%; P<0.001). Compared to CTR, the high dosage of 

limonene reduced the total VFA, acetate, and propionate productions in the order of -22, -29, and -

11%, respectively (P<0.001 for all). Also in the case of limonene, final concentration of N-NH3 in 

rumen fluids was not modified.  
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Monensin  

Effects of monensin on in vitro rumen fermentation are shown in Table 2 and in Figure 5. As 

observed for other compounds, the low dosage of monensin did not affect in vitro fermentations 

compared with CTR. On the opposite, the high dosage reduced in vitro NDFd (about -17%; 

P=0.026) and TDMd (about -3%; P=0.028), and CH4 production, expressed as ml/g TDMd (about -

19%; P<0.001). The total VFA production was unchanged (P=0.17), as the lowering of acetate 

production (about -14%; P<0.001) was counterbalanced by a marked increase of propionate (+23%; 

P<0.001). Monensin did not influence N-NH3 concentration of rumen fluids. 

 

DISCUSSION 

Effects of plant extracts on in vitro fermentation 

From a recent meta-analysis (Klevenhusen et al., 2012) it emerged that studies exploring effects 

of bioactive compounds on in vitro rumen fermentation have tested a wide range of dosages, from 

very low (0.03 mg/g DM) to very high (500 mg/g DM). Despite these divergences, it is clear that in 

vitro studies must to be performed using higher dosages compared to in vivo conditions, to increase 

the probability that additives actually interact with the rumen microbial population, that is less 

numerous in vitro than in vivo (Chow et al., 1994).  

In this study the four pure extracts did not affect in vitro fermentation when added at the low 

dosage (3 mg/g of diet; 20 mg/l of fermentation fluid). Such results agree with other in vitro studies 

where similar dosages of cinnamaldehyde (Busquet et al., 2006), eugenol (Cardozo et al., 2005; 

Busquet et al., 2006), and limonene (Castillejos et al., 2006) were found to not influence DM 

degradability and CH4 production. The same results emerged for garlic compounds as allicin and 

allyl mercaptan (Busquet et al., 2005a,b). No data are available, to the best of our knowledge, about 

the effects of allyl sulfide. In our case, it could be hypothesized that the ineffectiveness of the low 

dosage could be partially related to the short incubation time used (24 h). To this purpose, 

Castillejos et al. (2007) affirmed that short-term incubations may not be long enough to evidence 
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effects of plant extracts on rumen fermentation. On the other hand, use of longer incubation times 

(i.e., 48 h) would led to microbial lysis into the batch culture systems, with a consequent alteration 

of in vitro results (Cattani et al., 2013). 

When added at the high dosage, the four compounds had an impact on rumen fermentation, but 

magnitude and kind of effects differed among the additives. The most pronounced effects were 

observed for limonene, which caused a marked depression of all in vitro parameters. Up to now, 

effects of limonene on rumen fermentation have been little documented. The majority of existing 

literature explored effects of mixtures containing limonene (Khiaosa-ard and Zebeli, 2013), whereas 

less information is available about effects of the pure compound. According to this study, Crane et 

al. (1957) found that limonene reduced strongly in vitro fibre degradability (from -40 to -70%) and 

in vitro GP (from –40 to -80%) and hypothesized that this compound may be toxic for fibrolytic 

bacteria. Dorman and Deans (2000) evidenced that limonene mainly impaired gram-negative 

bacteria; such a result corroborates the negative impact on fibre degradation observed in this study. 

Others (Castillejos et al., 2006) found that limonene had negative effects on in vitro fermentation, 

by decreasing the total concentration of VFA, at dosages greater than 50 mg/l of fermentation fluid. 

Magnitude and kind of effects exerted by limonene would suggest that this compound, when added 

at the high dosage, had a large negative impact on fermentation. As support of that, limonene was 

the only additive that reduced both acetate and propionate production, suggesting that fibrolytic and 

amilolytic bacteria were indiscriminately impaired. Further, the high dosage of such compound 

reduced N-NH3 concentration of rumen fluids by about 16%, even if the effect did not reach the 

statistical significance. However, magnitude of such an effect would confirm that feed degradation 

by rumen microbes could have been reduced to some extent.  

With respect to other additives, the high dosage of allyl sulfide showed intermediate effects on in 

vitro fermentation. Interestingly, the pure extract from garlic reduced the total VFA concentration 

without impairing in vitro degradability. Busquet et al. (2005a) observed the same pattern for allyl 

mercaptan, a major compound of garlic oil, and hypothesized that main effects of garlic compounds 
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might be addressed to the modification of carbohydrate metabolism but without a negative impact 

on the overall fermentation process. As regards to this study, the reduced VFA production caused 

by allyl-sulfide could suggest a decreased energy metabolism. Together with the total production, 

the high dosage of allyl-sulfide showed to influence also the proportion among the main VFA. The 

reduction of acetate concentration at the favor of that of propionate is confirmed by Busquet et al. 

(2005a,b), which used similar dosages. This change in VFA proportions is consistent with the 

reduced CH4 production. There is some evidence from literature that garlic and its compounds could 

influence in vitro methanogenesis in a dose-dependent manner. Kamel et al. (2009) found that the 

whole garlic oil caused a reduction of in vitro CH4 production by 25 and 62%, respectively, at a 

dosage of 180 and 540 mg/l. Differently from the study of Kamel et al. (2009), this experiment 

evaluated a pure compound derived from the garlic oil. However, magnitude of effect on in vitro 

methanogenesis (-32% in terms of ml CH4/g TDMd) can be considered in line with the dosage used 

(200 mg/l). Effects of garlic oil and extracts on N-NH3 concentration of rumen fluid appear to be 

quite variable (Calsamiglia et al., 2007). In the present study allyl sulfide showed some small 

effects on N-NH3 concentration, especially at the high dosage (-11% compared to control) but, 

however, they were not significant. Such a result is in accord with findings of Busquet et al. 

(2005a). Overall effects of allyl-sulfide would suggest that this compound may have potential 

benefits as a modifier of rumen fermentation, although the negative impact on total VFA 

concentration cannot be ignored.  

In this regard, it is obvious that additives with antimicrobial properties should reduce CH4 

production without impairing the overall fermentation (i.e. rumen degradability, VFA and microbial 

N production). The magnitude and kind of effects (positive or negative) exerted by plant extracts on 

in vitro fermentation seem to be strictly related to the dosage used (Calsamiglia et al., 2007). In 

some cases (i.e. thymol), the margin between the optimal and the toxic level of inclusion is very 

narrow, thus choose of the dosage could notably influence kind of in vitro effects.  

On the basis of such premises, the high dosage of cinnamaldehyde showed the most interesting 
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and promising effects, as this compound reduced the proportion of CH4 produced per g TDMd, 

without decreasing in vitro degradability and the total VFA production. Effects of cinnamaldehyde 

on in vitro rumen degradability have been scarcely explored. Busquet et al. (2005b) found that this 

compound, added at a dosage slightly greater (31.2 mg/l) than the low one used in this study, did 

not influence in vitro degradability and the total VFA concentration. Such results are in accord with 

the present study. In general, effects on VFA concentration were found to be minor at lower 

dosages (i.e. 0.3, 3, and 30 mg/l), in accord with this experiment. In contrast, cinnamaldehyde 

reduced the total VFA concentration when added to high-concentrate diets (forage:concentrate 

equal to 10:90) at a dosage greater ≥ 300 mg/l (Busquet et al., 2005b, 2006; Cardozo et al., 2005); 

however, in this regard, results are sometimes controversial. In the present study cinnamaldehyde, 

when dosed at 200 mg/l, reduced acetate concentration (-12%) at the favor of propionate (+12%). 

Such an effect was also observed by Busquet et al. (2005b), which used similar dosages. Effects of 

cinnamaldehyde on rumen methanogenesis are very little documented. Macheboeuf et al. (2008) 

found that this compound, dosed at a level slightly greater (264 mg/l) compared to the high dosage 

used in this study, decreased in vitro CH4 production by about 13%, without affecting the total VFA 

production. The extent of such reduction is similar to what observed in this experiment (about -

12%). Effects of cinnamaldehyde on in vitro N-NH3 concentration of rumen fluid and on the overall 

N metabolism are not clear, as influenced by the dosage used. Busquet et al. (2005a), using dosages 

similar to those tested in this study, did not observe any effect of cinnamaldehyde on N-NH3 

concentration. The overall effects of cinnamaldehyde would suggest that this compound had less 

marked effects on in vitro fermentation compared to limonene and allyl sulfide.  

The overall effects of eugenol on in vitro rumen fermentation were of little magnitude. The 

compound was found to reduce in vitro NDFd in the order of 18%. However, considering the 

weight of the NDF fraction on the total DM incubated (37%), the overall impact on in vitro TDMd 

was nearly irrelevant (-3%), even though significant (P=0.013). Such effects were likely insufficient 

to determine appreciable variations of other parameters (i.e. VFA production and proportions, CH4 



 

47 

 

production). Accordingly, Castillejos et al. (2006) did not evidence effects of eugenol on in vitro 

fermentations at a dosage of 50 mg/l. Other authors (Busquet et al., 2006; Lourenco et al., 2008), 

using dosages of eugenol similar to those tested in this study (from 30 to 300 mg/l of fermentation 

fluid), did not observe any effect on the total VFA production. However, in the study of Lourenco et 

al. (2008) a slight increase of acetate at the expense of propionate was found. Cardozo et al. (2004), 

using the same dosages of Busquet et al. (2006), found that effects of eugenol on the total VFA 

production was pH-dependent, with increments at pH 5.5 and decrements at pH 7.0. Effects of 

eugenol on rumen methanogenesis have been scarcely explored. Araujo et al. (2011) found that 

eugenol reduced in vitro CH4 production by about 70%, but they used a dosage much greater (667 

mg/l) than those tested in the present experiment. Chaves et al. (2008) found that eugenol was able 

to reduce in vitro CH4 production at dosages of 400 and 500 mg/l. In accord with findings of this 

study, some authors (Busquet et al., 2005c; Busquet et al., 2006) found that the addition of eugenol 

did not influence in vitro N-NH3 concentration of rumen fluid. Lack of effects observed in this 

experiment could be attributed to the overall scarce effectiveness of eugenol. This would suggest 

that the two dosages used in this study (20 and 200 mg/l of fermentation fluid) were likely not 

sufficient, with regard to in vitro conditions, to make eugenol effective against CH4 production and 

to influence the overall pattern of rumen fermentations. 

Effects of monensin on in vitro fermentation 

Literature provides evidence that effects of monensin are usually dose-dependent, both in vitro 

and in vivo. Castillejos et al. (2006) hypothesized that monensin could have a negative effect on in 

vitro rumen fermentation at dosages greater that 10 mg/l of fermentation fluid. However, others 

(Fellner et al., 1997) found that also a lower dosage of monensin (2 mg/l) can impair fermentation 

process.  

In the present study, monensin showed to have an impact on fermentation at a dosage much 

lower (0.2 mg/l) compared to those cited above. Rumen fluid used in this study was collected from 

dry cows fed a high-forage diet. As the composition of rumen fluid used for in vitro tests is 
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primarily influenced by the diet fed to donor animals (Rymer et al., 2005), it can be hypothesized 

that microbial population of rumen fluid used in this experiment was largely represented by 

fibrolytic bacteria. Some of these microorganisms (i.e. Cellulotytic ruminococci and Butyrivibrio 

fibrisolvens) are much sensitive to monensin (Schelling, 1984; Russell and Strobel, 1989), and this 

may partially explain the effectiveness of this additive at the very low dosage used.  

The decrease of in vitro NDFd and acetate production, with the concurrent increment of 

propionate, seem to confirm that fibrolytic bacteria were negatively influenced by the high dosage 

of monensin. The present study also evidenced that monensin did not reduce the total VFA 

concentration, also when it was added at the high dosage. Such a result agrees with previous in vitro 

(Russell and Strobel, 1988; Busquet et al., 2005a; Castillejos et al., 2006) and in vivo studies (Yang 

and Russell, 1993). Reduced acetate production at the favor of propionate is a renown effect of 

monensin (Schelling, 1984). Some in vitro studies (Chalupa et al., 1980; García-Lopez et al., 1996) 

support the fact that monensin is able to increase propionate concentration at the expense of that of 

acetate also when added at low dosage (0.5 mg/l of fermentation fluid). Even if this shift in VFA 

proportions is often associated with a decrease of CH4 production in the rumen (Russell, 1998), 

effects of monensin on methanogenesis are still controversial. From a literature review, Beauchemin 

et al. (2008) concluded that monensin may affect CH4 production in a dose-dependent manner. 

Russell and Strobel (1989) found that monensin can lead to notable reductions of CH4 production 

(up to -30%), but such effects seemed to be related to an inhibition of rumen bacteria producing 

CH4 precursors (i.e. formate and H2) rather than of microorganisms directly involved in CH4 

production (Archaea). In this study, the high dosage of monensin reduced in vitro CH4 production 

in the order of about 19%. Magnitude of this effect was lower compared to other in vitro studies 

(Chaves et al., 2008; Araujo et al., 2011), but such a result was likely due to the very low dosages 

used. To obtain more reliable and solid results, the two dosages of monensin tested in this study 

(0.015 and 0.030 mg/g of diet) were expressly chosen to be included within ranges recommended in 

vivo (185-660 mg/d; FDA, 2005). 
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CONCLUSIONS 

Results of the present study showed that the pure compounds influenced in vitro fermentation 

and CH4 production in a dose-dependent manner. The high dosage of limonene and allyl-sulfide 

showed to reduce notably in vitro CH4 production, but such positive effect was accompanied by an 

overall impairment of rumen fermentation, especially in the case of limonene. Most promising 

results were observed for cinnamaldehyde that, when used at the high dosage, reduced gas and CH4 

production, without compromising the rumen degradability and the VFA production. The high 

dosage of monensin determined the expected effects on rumen fermentation.  

This study allowed to better elucidate effects of pure extracts on in vitro rumen fermentation. 

However, such results should be investigated and confirmed using dosages and long-term feeding 

that are proper of in vivo conditions.  
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Table 1. Ingredient and chemical composition (g/kg DM) of the diet used for in vitro tests.  

 Basal 

Ingredients   

Corn silage 351 

Alfalfa hay 89 

Meadow hay  47 

Ryegrass hay 47 

Corn meal 205 

Barley meal  119 

Soybean meal, 48% CP  113 

Extruded flaxseed  29 

Chemical composition  

NDF 361 

ADF 192 

ADL 29 

Crude protein 158 

Ether extract  33 

Starch  273 

NSC 395 

Ash  53 

NSC = non-structural carbohydrates  



 

56 

 

Table 2. Effect of dietary treatment on final values of pH, in vitro gas production (GP), CH4 

production and proportion (CH4/GP). 

 pH GP, mL/g DM CH4, mL/g DM CH4/GP 

Treatment     

Control (CTR) 6.83 280 39.7 14.2 

L-All 6.83 277 38.8 13.9 

H-All 6.86 235 27.1 11.6 

L-Cin 6.82 283 40.2 14.2 

H-Cin 6.82 244 35.0 14.2 

L-Eug 6.83 280 39.5 14.1 

H-Eug 6.84 256 39.3 15.0 

L-Lim 6.81 272 39.6 14.5 

H-Lim 6.86 174 22.7 12.5 

L-Mon 6.81 279 39.2 13.7 

H-Mon 6.84 246 32.5 13.4 

SEM 0.018 8.4 1.31 0.29 

P value     

Treatment 0.003 <0.001 <0.001 <0.001 

Contrasts     

Ctr vs. L-All 0.99 0.99 0.99 0.99 

Ctr vs. H-All 0.33 <0.001 <0.001 <0.001 

Ctr vs. L-Cin 0.99 0.99 0.99 0.99 

Ctr vs. H-Cin 0.99 <0.001 0.004 0.99 

Ctr vs. L-Eug 0.99 0.99 0.99 0.99 

Ctr vs. H-Eug 0.98 0.009 0.99 0.99 

Ctr vs. L-Lim 0.98 0.99 0.99 0.99 

Ctr vs. H-Lim 0.43 <0.001 <0.001 0.001 

Ctr vs. L-Mon 0.97 0.99 0.99 0.99 

Ctr vs. H-Mon 0.99 <0.001 <0.001 0.99 

L-All = low dosage of allyl sulfide; H-All = high dosage of allyl sulfide; L-Cin = low dosage of 

cinnamaldehyde; H-Cin = high dosage of cinnamaldehyde; L-Eug = low dosage of eugenol; H-Eug 

= high dosage of eugenol; L-Lim = low dosage of limonene; H-Lim = high dosage of limonene; L-

Mon = low dosage of monensin; H-Mon = high dosage of monensin. For allyl sulfide, 

cinnamaldehyde, eugenol and limonene, low dosage = 3 mg/g diet (20 mg/L of fermentation fluid); 

high dosage = 30 mg/g diet (200 mg/L). For monensin, low dosage = 0.015 mg/g diet (0.1 mg/L); 

high dosage = 0.030 mg/g diet (0.2 mg/L).   
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Figure 1. Percentage effect (increase or decrease of control values) of two dosages (low or high) of 

allyl sulfide on NDF (NDFd; g/kg NDF) and true dry matter degradability (TDMd; g/kg DM), GP 

(mL/g TDMd), CH4 (mL/g TDMd) , VFA (mg/L), acetate (acet) and propionate (prop) proportions 

(both expressed as % on total VFA), and ammonia N (N-NH3) concentration of fermentation fluids 

(mg/L).  
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Figure 3. Percentage effect (increase or decrease of control values) of two dosages (low or high) of 

eugenol on NDF (NDFd; g/kg NDF) and true dry matter degradability (TDMd; g/kg DM), GP 

(mL/g TDMd), CH4 (mL/g TDMd) , VFA (mg/L), acetate (acet) and propionate (prop) proportions 

(both expressed as % on total VFA), and ammonia N (N-NH3) concentration of fermentation fluids 

(mg/L).  

 

  

 

 

Figure 4. Percentage effect (increase or decrease of control values) of two dosages (low or high) of 

limonene on NDF (NDFd; g/kg NDF) and true dry matter degradability (TDMd; g/kg DM), GP 

(mL/g TDMd), CH4 (mL/g TDMd) , VFA (mg/L), acetate (acet) and propionate (prop) proportions 

(both expressed as % on total VFA), and ammonia N (N-NH3) concentration of fermentation fluids 

(mg/L).  
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Figure 5. Percentage effect (increase or decrease of control values) of two dosages (low or high) of 

monensin on NDF (NDFd; g/kg NDF) and true dry matter degradability (TDMd; g/kg DM), GP 

(mL/g TDMd), CH4 (mL/g TDMd) , VFA (mg/L), acetate (acet) and propionate (prop) proportions 

(both expressed as % on total VFA), and ammonia N (N-NH3) concentration of fermentation fluids 

(mg/L).  
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INTERPRETIVE SUMMARY 

By Rossi et al. 

The effect of rumen fluid, used as inoculum for in vitro short-term experiments, has been 

investigated. We adapted or not the rumen fluid of dry cows to three pure compounds and the 

collected rumen fluids were used to evaluate in vitro the activity of the pure compounds. This 

experiment highlight that pure compounds, actives in the short term on in vitro fermentations, 

maintain their activity when incubated with rumen fluid adapted to the some compounds for a long 

period. However, the administration of a pure compound to the cows can affect the rumen microbial 

activity and the response of in vitro experiments. 

 

ABSTRACT 

This study evaluates the effect of rumen fluid which has not been adapted (NAF) and rumen fluid 

which has been adapted (AF) to three pure compounds (cinnamaldehyde, limonene, allyl-sulfide) on 

in vitro gas production kinetics and end products of fermentation. According to a 4x4 Latin Square 

design, four dry cows were fed diets with and without 3 pure compounds and the collected rumen 

fluids (NAF and AF, respectively) were used as in vitro inocula with or without the addition of the 

3 compounds. In general, the use of AF did not affect any fermentation parameter compared to NAF 

but, adding in vitro diet with allyl-sulfide, the magnitude of the effects of this pure compound 

tended to be greater when incubated with AF compared to NAF. These results suggest that the 

administration of pure compounds to the cows can affect the rumen microbial activity and the 

response of in vitro experiments. 

Key words: rate of gas production, methane, compound, rumen fermentation, inoculum 

 

INTRODUCTION 

In recent years in vitro gas production (GP) technique has been largely employed to evaluate the 

effects of various compounds (i.e., plant compounds with antimicrobial properties) on rumen 

fermentation (Klevenhusen, Muro-Reyes, Khiaosa-ard, Metzler-Zebeli & Zebeli, 2012). In most  
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cases, experiments were of short duration (i.e., 24 h) and were conducted using rumen fluid which 

had not been exposed to the presence of the investigated compounds before. The incubation of a 

non-adapted rumen fluid for short times might generate misleading effects on the rumen microbial 

population and the tested compounds, giving the possibility of two types of error: i) the discarding 

of compounds that may have needed a longer time to be effective on rumen fermentation; ii) the 

acceptance of a compound that is effective in the short term but not in the long term (Calsamiglia, 

Busquet, Cardozo, Castillejos & Ferret, 2007). Another aspect concerns the use of short-term batch 

culture system as a tool to evaluate the fermentative properties of rumen fluid of cows receiving 

specific compounds. Commonly, the in vitro system is used to evaluate the fermentative properties 

of feed or additives incubated in a buffered rumen fluid with a standard diet. A different approach 

could be to feed the animals with the additives and to evaluate in vitro the fermentative properties 

of rumen fluid collected from these animals (adapted rumen fluid, AF). This approach could 

combine the advantage of in vivo trials (longer adaptation time and direct evaluation of effects in 

vivo) with those of in vitro techniques (low cost, standardization of conditions, evaluation of traits 

hardly measurable in vivo, such as the kinetics of fermentation, methane production, etc.). 

Therefore, the aim of the present research is to study whether the rumen fluid adaptation to the 

presence of pure compounds might influence both the kinetics of feed fermentation in vitro and the 

response of the same compounds incubated in vitro.  

 

MATERIAL AND METHODS 

All experimental procedures involving animals were approved by the Ethical Committee for the 

Care and Use of Experimental Animals of the University of Padua. Four Holstein-Friesian cows 

were housed in single pens at the experimental farm of the University of Padova (Legnaro, Italy). 

Animal, diets and experimental design 

One week before the beginning of the experiment, cows were randomly assigned to 4 

experimental groups in a 4 × 4 Latin Square design. Each cow received the TMR without any 
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supplementation, or supplemented with 1 g d
-1

 of three pure compounds with known effects on 

rumen fermentation (Calsamiglia, Busquet, Cardozo, Castillejos & Ferret, 2007): cinnamaldehyde 

(SIGMA-ALDRICH Corporation, Milan, Italy; W228613; Purity ≥95%; CIN), limonene (SIGMA-

ALDRICH Corporation, Milan, Italy; 183164; Purity 97%; LIM), and allyl-sulfide (SIGMA-

ALDRICH Corporation, Milan, Italy; A35801; Purity 97%; ALL). The TMR was based on wheat 

silage and corn silage, 355 and 257 g kg
-1

 DM respectively (Crude protein, 154 g kg
-1

 DM; Lipids, 

33 g kg
-1

 DM; NDF, 378 g kg
-1

 DM; Starch, 238 g kg
-1

 DM). The amount of each pure compound 

supplemented (1 g d
-1

) was chosen according to the dosage commonly used in dairy cow feeding 

(Benchaar, Petit, Berthiaume, Whyte & Chouinard, 2006) and was chosen in an attempt to evaluate 

a reduction of methane production while avoiding a depression of microbial growth and activity. 

The amount of TMR fed to each cow was computed according to nutrient recommendations for 

cows (NRC, 2001), and resulted 14.1, 16.3, 16.9, and 14.6 kg DM, respectively, for the four cows. 

A portion of the TMR (about 10 kg of feed), supplemented or not with the compound, was 

distributed in the morning at 8 a.m. The remaining part of the TMR, without supplementation for 

any of the cows, was fed in the early afternoon at 1 p.m., after the complete consumption of the first 

aliquot, to be  sure that the three supplemented cows had consumed the whole dose of compound. In 

order to have a homogenous distribution throughout the TMR, the three compounds were diluted in 

150 mL of water and homogeneously sprayed over the TMR in the manger of each cow. Each 

experimental period, during which the cows received the TMR with the supplementation lasted 14 

d; followed by a transition period of 7 d during which the four cows received the TMR without 

supplementation.  

Rumen fluid collection and incubation procedures  

On the first day of each transition period, rumen fluids to be used for in vitro tests were collected 

from each cow, before morning feeding, using an esophageal probe (Tagliapietra et al., 2012). The 

four rumen fluids were separately stored into 4 thermal flasks preheated to 39 ± 0.5°C, transferred 

to the laboratory, and filtered through 3 layers of cheesecloth, to eliminate residual feed particles. 
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Before  starting incubation, a solution was prepared for each compound, containing 25 mL of 96% 

ethanol (v/v) plus 750 mg of CIN, LIM, or ALL. In vitro tests (4 incubations in total) were 

conducted on the same days as the rumen fluid collection. A commercial, fully automated wireless 

GP apparatus (Ankom
RF

 GP System, Ankom Technology
®

, NY, USA) was used, consisting of 44 

bottles equipped with pressure sensors (pressure range: from −69 to +3447 kPa; resolution: 0.27 

kPa; accuracy: ±0.1% of measured value) and a wireless connection to a computer (Tagliapietra, 

Cattani, Bailoni & Schiavon, 2010). In each incubation, ten treatments were analysed: the non-

adapted fluid (NAF), collected from the non-supplemented cow  was incubated alone or added in 

vitro with 30 mg of CIN (NAF+CIN), LIM (NAF+LIM), or ALL (NAF+ALL); the adapted fluids 

(AF), collected from the cows supplemented with CIN, LIM, or ALL,  were incubated alone 

(AFCIN, AFLIM, and AFALL) or added in vitro with CIN (AFCIN+CIN), LIM (AFLIM+LIM), or ALL 

(AFALL+ALL). Each of the 10 treatments was incubated in 4 replications. Four bottles were 

included as blanks, containing only the buffer solution and rumen fluid collected from each cow (1 

blank/rumen fluid), giving a total of 44 bottles tested in each incubation. Each bottle (317 mL) was 

filled with 1.000±0.0010 g of diet (the same TMR fed to the cows, ground to 1 mm), 50 mL of 

rumen fluid, 100 mL of buffer solution (Menke and Steingass, 1988), and 1 mL of the ethanol-

compound solution, to achieve the concentration of 30 mg g
-1

 DM of diet. To standardize 

fermentation conditions, 1 mL of ethanol was also added to the blank bottles. Such a concentration 

of ethanol (0.7% v/v) was assumed not to influence microbial growth and activity (Chaves, Fraser, 

Beauchemin, & McAllister, 2007). Bottles were placed in a ventilated oven at 39±0.4°C and 

automatically vented at a fixed pressure (6.8 kPa). Vented gas was collected into airtight plastic 

bags connected to each bottle. During the incubation the total gas production was recorded (GP24), 

and the gas production rates from 0-3 hours (GPR 0-3h) and 3-6 hours (GPR 3-6h), were 

computed. At the end of the incubation, gas samples were collected from bottle headspaces and 

from the airtight plastic bags and analysed for methane (CH4) concentration (Cattani et al., 2014). 

Fermentation fluids were filtered into weighed crucibles (30 mL, Robu Glasfilter-Geräte GMBH
®
, 
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Hattert, Germany) and analysed for residual NDF using a fibre analyser (FIWE 6; VELP
®
 

Scientifica, Milan, Italy). Degradability of NDF (NDFd) and of true DM (TDMd) were computed 

according to Goering and Van Soest (1970). The TMR was analysed in three replicates for 

proximate composition (AOAC, 2012). Neutral detergent fibre (NDF), inclusive of residual ash, 

was determined with α-amylase using the Ankom
220

 Fibre Analyser (Ankom Technology, Macedon, 

NY, USA).  

Statistical analysis 

All data (mean of 4 replications) were analysed by PROC MIXED of SAS Institute (2007) using 

a model that included the treatment (n=10) as a fixed factor, the period (n=4) and the interaction 

period×cow (n=16) as random factors. The Bonferroni adjustment was used for multiple 

comparison of the least square means of the various treatments. For each compound, contrasts were 

run to evaluate the effect on in vitro fermentations: i) of the addition of a pure compound to the 

non-adapted rumen fluid (“NAF vs NAF+pure compound”); ii) of two types of rumen fluid (non-

adapted vs adapted rumen fluid, “NAF vs AF”); iii) of the addition of a pure extract to the adapted 

rumen fluid (“AF vs AF+pure compound”). 

 

RESULTS 

The addition in vitro of cinnamaldehyde and also the use of adapted or non-adapted rumen fluid 

did not produce any effect (P>0.05) on rumen fermentation parameters (Table 1). Notwithstanding 

the total GP after 24 h of incubation (GP24) was not affected by the treatments, a reduction of the 

GP rate during the first 3 h of incubation was observed when CIN was added in vitro both to NAF 

(NAF vs. NAF+CIN; P = 0.003) and to AF (AFCIN vs. AFCIN+CIN; P = 0.002 and, the peak of GP 

moved from 3 h to 9 h after the beginning of the incubation when the additive was added in vitro to 

both the tested rumen fluid (NAF and AF) (Fig 1.a). 

When limonene was added in vitro to NAF, values of NDFd, GP24, and CH4 production were 

reduced, respectively, by 31% (P < 0.001), 20% (P < 0.001), and 31% (P < 0.001). Similar results 



 

66 

 

were obtained when limonene was added to AFLIM. Also the proportions of the main VFAs and the 

proportion of methane on total GP24 (CH4 mL/100mL GP24) were changed (P < 0.01) and, as 

shown in fig 1.b, the kinetics of GP exhibited a similar behaviour to CIN but even stronger with a 

clear differentiation of NAF+LIM and AFLIM+LIM from NAF and AF, respectively (P < 0.001). 

The addition of allyl-sulfide to the non-adapted fluid caused a shift from acetate (-28%) to 

propionate (+12%) and butyrate (+16%), and a decrease of CH4 production (-34%; P < 0.001) and 

CH4 proportion (-28%; P < 0.001), whereas it had a weak effect on NDFd (-6%; P = 0.09) and on 

GP24 (-8%; P = 0.04). The addition of the allyl-sulfide to the adapted fluid showed the same but 

stronger effect on all the above mentioned parameters (i.e. on GP24: -15%; P < 0.001) and also 

changed the rate of gas production (Fig 1.c) during the first 3 h of incubation (-20%; P < 0.001). 

Generally, for all the additives, the use of AF instead of NAF as inoculum of in vitro 

fermentation (NAF vs AF) did not change the fermentative parameters.  

 

DISCUSSION 

The dual-flow continuous fermenter is used to simulate the rumen environment by incubating the 

rumen fluid with the tested compounds for a given period of time (i.e., 10 d), in order to evaluate 

the evolution over time the effects the compounds have on fermentation and to highlight any ability 

of rumen microorganisms to adapt to the presence of the compounds (Cardozo, Calsamiglia, Ferret 

& Kamel. 2004; Busquet, Calsamiglia, Ferret, Cardozo, & Kamel, 2005; Castillejos, Calsamiglia, 

Ferret & Losa, 2007). Differently from the above mentioned studies, the logic of the experimental 

design used in this trial was to test the effect of pure compounds, feeding the cows with the 

compound and using the adapted or non-adapted rumen fluid as inoculum of in vitro incubations. 

The hypothesis of the experiment was that rumen fluid activity, when used as inoculum for in vitro 

incubations, can be affected by the administration to the cows of the additive. Therefore, the effects 

of the compound were tested in two ways: using the conventional procedure of in vitro incubation 

(NAF vs NAF+pure compound), and using the rumen fluid adapted or non-adapted to the extracts 
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(NAF vs AF) as inoculum of incubation. Moreover,  the effects of the additive in vitro using the 

adapted fluid were tested (AF vs AF+pure compound). Only the study of Mlambo et al. (2007) used 

this methodology to compare the effects of adapted or non-adapted fluid on fermentations but they 

did not used a Latin square design model that evaluates the effect of the rumen fluid donor on in 

vitro parameters. 

Compound effect (NAF vs NAF+compound) 

Results of this study showed that three tested compounds developed differentiated effects on 

rumen fermentations when incubated with the conventional non-adapted fluid, in agreement with 

other experiments (Crane et al., 1957; Kamel et al., 2009; Cattani et al., 2016). These studies 

observed that similar doses of limonene and garlic compounds were found to reduce in vitro GP, 

and CH4 production and, as observed in previous research (Cattani et al., 2016), allyl-sulfide 

appears as an interesting additive to manipulate the rumen fermentation, changing the VFA profile, 

decreasing the acetate/propionate ratio and decreasing the methane production without evident 

inhibitory effects on fibre degradability. Such depression of rumen fermentation could be due to the 

incubation time used (24 h), that was probably too short to allow an adaptation of rumen population 

which, as a consequence, was sensitive to in vitro addition of limonene and allyl-sulfide. This 

hypothesis seems to be supported by some authors (Cardozo, Calsamiglia, Ferret & Kamel. 2004; 

Molero, Ibars, Calsamiglia, Ferret, & Losa, 2004; Castillejos et al., 2007), who observed that rumen 

bacteria are able to build up a tolerance mechanism in vitro as well, but this process requires more 

than 24 h of incubation. In the present study, in vitro addition of cinnamaldehyde to the non-adapted 

fluid produce only weak effects on fermentation, reducing the rate of gas production but without 

effects on the overall gas and methane production and feed degradation. Recently, Cattani et al. 

(2016) observed the same effects on in vitro degradability and GP but, in that case, a reduction of 

CH4 and a change in VFA production were also found. Results provided by the current literature 

highlight that effects of cinnamaldehyde on rumen fermentation are quite controversial. However, 

major effects seem to be related to the use of doses greater than those used in vitro (200 mg/L of 
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fermentation fluid) in the present study (Calsamiglia, Busquet, Cardozo, Castillejos & Ferret, 2007). 

Rumen fluid type (NAF vs AF) 

Regardless of the tested compounds fed to the cows, the fermentations were not affected by the 

use, as in vitro inoculum, of adapted or non-adapted rumen fluid. The lack of effect of rumen fluid 

type on in vitro fermentation could be due to the low dosage of additive fed to the cows (1g d
-1

). In 

any case, this amount was in line with the dosage commonly used in dairy cow diets (Benchaar, 

Petit, Berthiaume, Whyte & Chouinard, 2006) and was chosen in an attempt to evaluate a reduction 

of methane production while avoiding a depression of microbial growth and activity. Moreover, it 

cannot be excluded that the microbial population could have developed a mechanism of tolerance to 

the compounds during the period of in vivo administration, thus microorganisms may be able to 

alleviate biological activity of the same compounds. Development of a tolerance mechanism could 

be plausible as the feeding period of compounds to the cows (14 d) was probably sufficient to allow 

an adaptation of rumen bacteria, considering that they usually require a time of about 10 d to get 

accustomed to new components introduced in the ration (Warner, 1962). 

 Compound effect on adapted rumen fluid (AF vs AF+pure compound) 

 For cinnamaldehyde and limonene, the pattern of fermentation traits were comparable to those 

previously described when the compounds were added to the NAF. In this case the two rumen 

fluids, adapted and non-adapted, not only gave comparable fermentative patterns but also showed 

similar activity when the compound was added in vitro and the administration in vivo of the 

compound seems to have no effect on fermentations in vitro, at least under present conditions. 

Differently, the magnitude of the in vitro effects of allyl-sulfide tended to be greater when incubated 

with adapted compared to non-adapted rumen fluid. For instance, the use of this additive with NAF 

reduces the rate of gas production at the beginning of the fermentation by 7% while with AF the 

reduction was as much as 15%. Similarly, the use of allyl-sulfide on NAF did not change the peak 

of gas production, while the use of this additive on AF postponed the peak from 3 h to 6 h of 

incubation. Therefore, the effect of allyl-sulfide on fermentations was amplified when it was 
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incubated with rumen fluid of cows receiving the same additive (Fig 2). Under present experiment 

conditions, these observations support the hypothesis that the use of rumen fluid adapted or non-

adapted to a pure compound can influence the in vitro fermentation. In a previous experiment, 

Mlambo et al. 2007 did not observe an adaptation of rumen fluid to the presence in vitro of the same 

compound. In fact, these Authors explored the effect on in vitro fermentation of rumen fluid 

collected from donors fed or not with a pure compound combined with the use of the same 

compound in vitro, and these effects appeared to show an additive pattern.  

 

CONCLUSIONS 

This experiment highlights that pure compounds, active in the short term on in vitro fermentations, 

did not change the rumen fluid in vitro activity when fed or not to cows for a long period. It is clear 

that effectiveness of a given compound is real when it has a long-term effect on rumen 

fermentation. On this basis, in vitro experiments should be conducted using rumen fluids that were 

adapted for a given period to the presence of tested compounds, to highlight possible mechanisms 

of defence built up by microbial population against the same compounds.  

The prospective of using the in vitro batch culture technique to test the effects of specific 

compounds on rumen fermentation using the rumen fluid collected from adapted and non-adapted 

cows requires further investigation. 
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Table 1 In vitro degradability of NDF (NDFd) and true DM (TDMd), gas production rate from 0-3 hours (GPR 0-3h) and 3-6 hours (GPR 3-6h), total gas production after 24 h 

(GP 24h), VFAs, CH4 production and concentration at 24 h of incubation as affected by the type of rumen fluid (non-adapted rumen fluid NAF; adapted rumen fluid, AF) and by 

the addition in vivo and/or in vitro of cinnamaldehyde (CIN), limonene (LIM), and allyl-sulfide(ALL).   

Rumen fluid NDFd TDMd GPR 0-3h GPR 0-6h GP 24h Acetate Propionate Butyrate CH4 

g kg
-1

 

NDF 

g kg DM mL h
-1

 g
-1

 

DM 

mL h
-1

 g
-1

 

DM  

mL g
-1

 

DM 

% VFA % VFA % VFA mL g
-1

 

DM 

mL 100 mL
-1

 gas 

Not adapted fluid (NAF) 476 787 18.4 17.3 287 57.2 19.1 16.3 50.4 15.4 

Cinnamaldehyde (CIN)           

NAF+CIN
1
 452 776 14.5 16.4 274 56.9 18.8 16.7 47.3 15.0 

AFCIN
2
 461 778 16.0 15.9 259 57.9 19.8 15.2 43.4 14.5 

AFCIN+CIN
3
 435 768 12.4 14.7 260 57.1 20.4 15.3 41.0 13.7 

Limonene (LIM)           

NAF+LIM
4
 327 725 11.7 14.6 230 54.7 21.2 17.3 34.8 12.7 

AFLIM
5
 465 781 16.7 16.7 266 58.3 20.1 14.7 43.2 14.1 

AFLIM+LIM
6
 313 718 9.5 12.6 196 55.6 21.1 16.7 30.1 11.8 

Allyl-sulfide(ALL)            

NAF+ALL
7
 446 775 17.7 15.9 265 51.1 21.5 19.0 33.4 11.1 

AFALL
8
 466 781 18.3 14.5 280 57.5 20.1 15.0 52.0 16.4 

AFALL+ALL
9
 464 780 14.6 16.5 243 51.9 22.4 17.8 28.3 10.2 

SEM 2.1 0.8 2.57 0.80 14.3 0.72 0.98 0.67 4.37 1.03 

P value           

Treatment  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Contrasts            

Cinnamaldehyde            

   NAF vs. NAF+CIN 0.15 0.15 0.003 0.08 0.09 0.62 0.74 0.33 0.40 0.70 

NAF vs. AFCIN 0.59 0.59 0.51 0.20 0.17 0.51 0.60 0.27 0.25 0.52 

AFCIN vs AFCIN+CIN 0.15 0.15 0.002 0.05 0.94 0.23 0.48 0.85 0.55 0.46 

Limonene            

   NAF vs. NAF+LIM <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.004 0.05 <0.001 0.01 

NAF vs. AFLIM 0.70 0.70 0.64 0.60 0.30 0.28 0.48 0.09 0.24 0.39 

AFLIM vs AFLIM+LIM <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.19 <0.001 <0.001 0.02 

Allyl-sulfide           

   NAF vs. NAF+ALL 0.09 0.09 0.55 0.01 0.04 <0.001 0.001 <0.001 <0.001 <0.001 

NAF vs. AFALL  0.73 0.73 0.99 0.84 0.74 0.72 0.46 0.19 0.79 0.48 

AFALL vs AFALL+ALL 0.89 0.89 0.001 0.09 <0.001 <0.001 0.004 <0.001 <0.001 <0.001 
1 

non-adapted fluid added in vitro with 30 mg of cinnamaldehyde; 
2 

fluid adapted in vivo to cinnamaldehyde; 
3 

fluid adapted in vivo to cinnamaldehyde and added in vitro with 30 

mg of cinnamaldehyde; 
4 

non-dapted fluid added in vitro with 30 mg of limonene; 
5 

fluid adapted in vivo to limonene; 
6 

fluid adapted in vivo to limonene and added in vitro with 

30 mg of limonene; 
7 

non-adapted fluid added in vitro with 30 mg of allyl-sulfide; 
8 

fluid adapted in vivo to allyl-sulfide; 
9 

fluid adapted in vivo to allyl-sulfide and added in vitro 

with 30 mg of allyl-sulfide;
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Fig 1 Effect of the pure compounds (A. cinnamaldehyde, CIN; B. limonene, LIM; C. allyl-sulfide, ALL) on in vitro 

kinetics of gas production rate (mL h
-1 

g
-1

 DM): each graph shown, the kinetics obtained incubating the basal diet with 

rumen fluid as inoculum of fermentation collected from cows not fed (non-adapted, NAF) or fed (adapted, AF) with the 

pure compounds and adding (+CIN, LIM or ALL) or not adding in vitro the pure compound. 
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Fig 2. Effect of rumen fluid used as inoculum of fermentation collected from cow fed without (not adapted rumen fluid, NAF) and with allyl-sulfide (adapted rumen fluid, 

AFALL) and incubated adding (+ ALL) or not adding also in vitro the allyl-sulfide on (a) GP at 3 h (mL h
-1

 g
-1

 DM) and on (b) cumulated GP at 24 h (mL g
-1

 DM). 

 

 

 a)       b) 

 

 

AFALL + ALL 

14.6 mL 

AFALL 

18.3 mL 

 

NAF + ALL 

17.7 mL 

NAF 

18.4 mL 

P=0.55 

P=0.39 P=0.99 

P=0.001 

AFALL + ALL 

243 mL 

AFALL 

280 mL 

NAF + ALL 

265 mL 

NAF 

287 mL 

P=0.04 

P=0.26 P=0.74 

P<0.001 
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ABSTRACT 

Due to the antimicrobial activity of flavonoids it has been suggested that they may provide a 

possible alternative to antibiotics to stimulate productivity and reduce the environmental load 

of ruminant agriculture. We hypothesised that an extract of liquorice, rich in prenylated 

isoflavonoids and particularly glabridin, might potentially improve the efficiency of nitrogen 

utilization and reduce methane production in the rumen. When added to a long-term rumen 

simulating fermentor (RUSITEC) liquorice extract at 1 g L
-1

 decreased ammonia production 

(-51%; P<0.001) without affecting the overall fermentation process. When added at 2 g L
-1

, 

decreases in not only ammonia production (-77%; P<0.001) but also methane (-27%; 

P=0.039) and total VFA production (-15%; P=0.003) were observed. These effects in 

fermentation were probably related to a decrease in protozoa numbers, a less diverse bacteria 

population as well as changes in the structure of both the bacterial and archaeal communities. 

The inclusion of an isoflavonoid-rich extract from liquorice in the diet may potentially 

improve the efficiency of the feed utilization by ruminants. 

Keywords: glabridin, isoflavonoids, liquorice, methane, rumen fermentation 

 

INTRODUCTION 

Since the ban of antibiotics as growth promoting feed additives by the European Union in 

2006, plant extracts and plant secondary metabolites have been considered as alternatives to 

manipulate rumen fermentation to boost productivity and decrease the environmental burden 

of livestock production (Hart et al., 2008). Among plant secondary metabolites, flavonoids 

have recently gained interest because of their wide range of biological activities, particularly 

antimicrobial properties (Oskoueian et al. 2013).  

Flavonoids are polyphenolic compounds consisting of a fifteen-carbon skeleton in 

which two benzene rings are linked via a heterocyclic pyran ring (Kumar et al., 2013). 

According to substitution pattern variations, flavonoids can be classified into different 
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subclasses, providing an extremely diverse range of derivatives (Wang et al., 2017). 

Depending on their chemical structure, flavonoids can then have different antimicrobial 

effects (Wang et al., 2017) which ultimately determine the extent in which rumen 

fermentation can be altered (Oskoueian et al., 2013).  

The effect of flavonoids on rumen fermentation has not been extensively evaluated 

(Patra et al., 2017). In addition, and taking into account their great variability in structure 

(over 9,000 different compounds identified; Wang et al., 2017), only a small  number of 

flavonoid-rich plant extracts or pure compounds have been tested so far. Some flavonoids, or 

the derivatives produced by microbial degradation in the rumen, have been reported to affect 

rumen microbial activity causing, amongst other effects, a decrease in methane production 

(Oskoueian et al., 2013; Kim et al., 2015; Ma et al., 2017). Furthermore, flavonoids have 

been shown to be effective in attenuating the effects of excessive grain feeding on rumen pH 

(Balcells et al., 2012; Nardi et al., 2014). However, to our knowledge, a detailed 

characterization of the changes in rumen microbial communities associated with the effects of 

flavonoids on rumen fermentation has not yet been published. In this study, we tested an 

extract of liquorice, rich in prenylated isoflavonoids and particularly glabridin (Asl and 

Hosseinzadeh, 2008), for its effect in in vitro batch culture and its long-term effect on rumen 

fermentation and methanogenesis whilst also characterising its effect on bacterial and 

methanogen communities.  

  

MATERIAL AND METHODS 

Liquorice extract  

Liquorice extract was obtained from the dried roots of liquorice (Glycyrrhiza glabra; 40 g) 

after extraction with 95% ethanol (2 L for 2 h) at 45
o
C and then concentrating under reduced 

pressure to give a 95% ethanol extract (1.20 g). The extract was further purified on silica gel 

eluted with ethyl acetate–methanol gradients (19:1; 9:1; 2:1) and finally with methanol. 
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Nuclear magnetic resonance (NMR) analysis revealed that glabridin was the major flavonoid 

in the extract, with five other related flavonoids found. Fitness R Us Ltd (Kiryat Shmona, 

Israel) provided the extract as Licogen powder (Batch No: 14090023PWDR). Liquorice 

powder is sold as a natural antioxidant, flavouring powder and phytoestrogen for menopausal 

women. 

Measurement of protozoal activity 

The effect of liquorice extract on protozoal activity was measured in vitro as the breakdown 

of [
14

C]-labelled bacteria by rumen protozoa as described by Wallace and McPherson (1987). 

Isotope-labelled bacteria were obtained by growing Streptococcus bovis ES1 in Wallace and 

McPherson media (Wallace and McPherson, 1987) containing [
14

C] leucine (1.89 µCi/7.5 mL 

tube) as the sole nitrogen source, for 24 h. Cultures were centrifuged (3,000 g, 15 min), 

supernatant discarded and pellets re-suspended in 7 mL of simplex type salt solution (STS; 

Williams and Coleman, 1992) containing 
12

C-leucine (5 mM). This process was repeated 

three times to prevent re-incorporation of released [
14

C] leucine by bacteria. 

Rumen digesta was obtained from four rumen-cannulated Holstein-Frisian cows fed at 

maintenance level (composed of perennial ryegrass hay and concentrate at 67:33 on a DM 

basis). Animal procedures were carried out in accordance with the Animal Scientific 

Procedures Act 1986 and protocols were approved by the Aberystwyth University Ethical 

Committee. Rumen digesta was obtained before the morning feeding and strained through 

two layers of muslin and diluted with STS (1:1) containing 
12

C-leucine (5 mM). Diluted 

rumen fluid (7.5 mL) was then incubated with labelled bacteria prepared as described above 

(0.5 mL) in tubes containing no additive (control) or 0.25, 0.5, 1 or 2 g L
-1

 of liquorice 

extract. Incubations were carried out at 39ºC under a stream of CO2 and tubes were sampled 

at time 0 and at 1 h intervals up to 5 h using a syringe with a 19 gauge needle. Samples (0.5 

mL) were acidified (by adding 0.125 mL of 25% trichloroacetic acid (wt/vol) and centrifuged 
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(13,000 g, 5 min). Supernatant (0.200 mL), was diluted with 2 mL of OptiPhase HiSafe 2 

scintillation fluid (Perkin Elmer, Seer Green, UK) to determine the radioactivity released by 

liquid-scintillation spectrometry (Hidex 300 SL, Lablogic Systems Ltd, Broomhill, UK). 

Bacterial breakdown at each incubation time was expressed as the percentage of the acid-

soluble radioactivity released relative to the total radioactivity present in the initial labelled 

bacteria (Wallace and McPherson, 1987). 

In vitro batch cultures 

To measure the short term effect  of liquorice extract on fermentation parameters, 24 h in 

vitro incubations were carried out. The experimental design consisted of a control (no 

additive) and liquorice extract added at 0.5, 1 or 2 g L
-1

. The experiment was conducted in 

quadruplicate, using rumen fluid from the same four cannulated cows. Rumen contents were 

sampled before the morning feeding, filtered through a double layer of muslin and  diluted 

1:2 in artificial saliva solution (Menke and Steingass, 1988). Aliquots (30 mL) of the diluted 

strained rumen fluid were added anaerobically to 120 mL Wheaton bottles containing 0.3 g of 

diet composed of ryegrass hay and barley (40:60), previously ground to pass through a 1-

mm
2
 mesh screen. Bottles were sealed and incubated at 39 ºC  receiving a gentle mix before 

sampling at 24 h.  

Fermentation pattern, in terms of pH, ammonia and VFA was determined after 24 h of 

the incubation. A subsample (4 mL) was diluted with 1 mL of deproteinising solution (200 

mL L
-1

 orthophosphoric acid containing 20 mmol L
-1

 of 2-ethylbutyric acid as an internal 

standard) for the determination of VFA using gas chromatography, as described by Stewart 

and Duncan (1985). Another subsample (1 mL) was diluted with 0.250 mL of 25% 

trichloroacetic acid (wt/vol) for analysis of ammonia using a colorimetric method 

(Weatherburn, 1967).  
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Rumen Simulation Technique  

The Rumen Simulation Technique (RUSITEC; Czerkawski and Breckenridge 1977) was used 

to study the effect of a control diet alone or supplemented with liquorice extract at 1 g L
-1

 

(liquorice 1; 0.66 g d
-1

, 3.3% inclusion rate in DM) or 2 g L
-1

 (liquorice 2; 1.32 g d
-1

, 6.6% 

inclusion rate in DM), doses that were selected based on the results obtained in the  24 h 

batch culture trial described above. The experimental diet was the same one used in the batch 

culture trial (40:60, ryegrass hay and barley grounded to pass through 1 mm
2 

sieve size). 

Rumen digesta was obtained from four rumen-cannulated Aberdale x Texel sheep, fed 

at maintenance level (diet composed of perennial ryegrass hay and concentrate at 67:33 on 

DM basis). Animal procedures were carried out in accordance with the Animal Scientific 

Procedures Act 1986 and protocols were approved by the Aberystwyth University Ethical 

Committee. Rumen digesta was obtained before the morning feeding, strained through two 

layers of muslin and stored anaerobically at 39
o
C.  

The trial consisted of a single incubation period using 12 vessels which were 

considered as experimental units. Each dietary treatment was randomly allocated to the 

vessels which were inoculated with rumen fluid from four different sheep (four replicates). 

Vessels had an effective volume of 800 mL and were kept at 39
o
C under permanent vertical 

agitation.  

On day 1, vessels were inoculated with strained rumen fluid mixed with artificial 

saliva (McDougall, 1948) and demineralized water in a 1:1:1 ratio. Then artificial saliva was 

continuously infused at a rate of 660 mL d
-1

 (dilution rate of 3%/h) using a multichannel 

peristaltic pump (Watson–Marlow 200 series, Cornwall, UK). Squeezed rumen solids (20 g 

FM) were placed in nylon bags (110 × 60 mm, pore size 100 μm
2
) and incubated in each 

vessel for 1 day to provide solid-associated bacteria, while experimental feed (20 g DM) was 

supplied in a second bag. On subsequent days, the feed bag that had remained 2 days in each 
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vessel was squeezed, returning the liquid to the vessel, and discarded; a new bag, containing 

20 g DM was then inserted to the vessel.  

The trial lasted for 18 days, using the first 12 days for adaptation and the last 6 for 

sampling. Dry matter degradation, total gas and methane production and outflow of 

fermentation products were measured on days 13, 14, 15 and 16. Nylon bags were collected, 

rinsed with cold water for 20 min, and DM disappearance after 48 h incubation was 

calculated from the loss in weight. The residue was then analysed for organic matter (OM), 

nitrogen (N), Neutral-detergent (NDF) and Acid-detergent fibre (ADF) to determine nutrient 

disappearance. Fermentation gases were collected in gas-tight bags (TECOBAG 5L, 

PETP/AL/PE-12/12/75, Tesseraux container GmbH, Germany) to measure total gas and 

methane production. Daily production of ammonia and VFA were measured in the overflow 

flasks with 10 mL of saturated HgCl2 (diluted 1:5) added to stop the fermentation. 

To describe diurnal changes in the fermentation pattern, on days 17 and 18 the content 

of the vessels was sampled (25 mL) by aspiration at 0, 2, 4 and 8 h after feeding. The pH was 

immediately recorded, and five subsamples were collected as follows: for microbial 

characterization and enzymatic activity, 16 mL were collected and immediately frozen in 

liquid N prior to long term storage at -80
o
C. For VFA determination, 1.6 mL of sample was 

diluted with 0.4 mL of deproteinising solution (200 mL L
-1

 orthophosphoric acid containing 

20 mmol L
-1

 of 2-ethylbutyric acid as an internal standard). For ammonia analysis, 0.8 mL of 

sample was diluted with 0.2 mL of trichloro-acetate (25% wt:vol). For lactate determination, 

1 mL sample was collected and snapped frozen in liquid N prior to long term storage at -

80
o
C. For protozoa counts, 0.5 mL of sample were added to 0.5 mL of saline formaline 

solution (4% formaldehyde and 0.9% NaCl in distilled water) and stored at room tempreture. 
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Sample analyses 

For feed analysis, DM and OM content were determined by drying in an oven at 105ºC for 24 

h and heating at 550ºC for 6 h in a muffle furnace, respectively. Nitrogen concentration was 

measured by the Dumas combustion method (Elementar analyser, Vario MAX cube, Hanau, 

Germany). For NDF and ADF determination, the Automated Fiber Analyzer (ANKOM 2000, 

Macedon, USA) was used. Methane concentration was determined by directly injecting 0.5 

mL of gas sample into a gas chromatograph (ATI Unicam 610 Series, Cambridge, UK) fitted 

with a 40 cm Porapak N metal packed column (Agilent, Cheshire, UK) and flame ionization 

detector. Ammonia and VFA concentrations in vessels and overflows were determined as 

described by Weatherburn (1967) using an automated spectrophotometer (ChemWell 

T,Astoria Pacific, Oregon, USA) and Stewart and Duncan (1985) using gas chromatography, 

respectively. Protozoa were quantified by optical microscope following the procedure 

described by Dehority (1993) and adapted by de la Fuente et al. (2006). Concentrations of L-

lactate and D-Lactate were measured using the Enzytec D/L-Lactic Acid kit (r-biopharm, 

Darmstadt, Germany); total lactate was calculated as the sum of both. Enzymatic activities in 

vessels content were measured according to the procedure described by Giraldo et al. (2008) 

and Belanche at al. (2016). Endoglucanase (EC 3.2.1.4.), xylanase (EC 3.2.1.8.) and amylase 

activities (EC 3.2.1.1.) were measured in triplicate and expressed as mmol of sugar released 

from the corresponding substrates in 1 min per gram DM of sample (or gram of protein). 

DNA extraction and quantitative PCR 

Genomic DNA was extracted from vessel samples withdrawn at different time points. Freeze 

dried samples (25 mg DM) were bead-beaten in 4% SDS lysis buffer for 45 s and DNA was 

extracted using a CTAB/Chloroform method (adapted from Yu and Morrison 2004).  

Concentration and quality of genomic DNA was assessed by spectrophotometry 

(Nanodrop ND-100, Thermo Scientific, USA). Absolute concentrations of DNA from total 
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bacteria, methanogens and fungi were determined by qPCR and serial dilutions of their 

respective standards (10
−1

–10
−5

) as previously described (Belanche et al. 2012 and 2016). 

Quantitative PCR (qPCR) was conducted in triplicate using a LightCycler 480 System 

(Roche, Mannheim, Germany).  

Ion Torrent Next Generation Sequencing 

Rumen bacteria and methanogenic archaea communities were studied using Next Generation 

Sequencing (NGS) (de la Fuente et al. 2014). For bacterial profiling, amplification of the V1–

V2 hypervariable regions of the 16S rRNA gene was carried out using bacterial primers (27F 

and 357R) followed by Ion Torrent adaptors. For methanogens profiling, amplification of the 

V2-V3 hypervariable region of the 16S rRNA gene was performed using archaeal primers 

(86F and 519R) also followed by Ion Torrent adaptors. 

Forward primers were barcoded with 10 nucleotides to allow sample identification. 

PCR was carried out on a 25 μL reaction containing DNA template (1 μL), 0.2 µL reverse 

primer, 1 µL forward primer, 5 µL buffer (PCR Biosystems Ltd., London, UK), 0.25 µL bio 

HiFi polymerase (PCR Biosystems) and 17.6 µL molecular grade water. Amplification 

conditions for bacteria and methanogens were  95ºC for 1 min, then 22 cycles of 95ºC for 15 

s, 55ºC for 15 s and 72
o
C for 30 s. To assess quality of amplifications, resultant amplicons 

were visualized on a 1% agarose gel. PCR products were then purified using Agencourt 

AMpure XP beads (Beckman Coulter Inc., Fullerton, USA) and DNA concentration was 

determined using an Epoch Microplate Spectrophotometer fitted with a Take 3 Micro-

Volume plate (BioTek, Potton, UK) to enable equimolar pooling of samples with unique 

barcodes.  

Libraries were further purified using the EGel system with 2% agarose gel (Life 

Technologies Ltd., Paisley, UK). Purified libraries were assessed for quality and quantified 

on an Agilent 2100 Bioanalyzer with High Sensitivity DNA chip (Agilent Technologies Ltd., 
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Stockport, UK). Library preparation for NGS sequencing was carried out using the Ion Chef 

system (Life Technologies UK Ltd) and the Ion PGM HiQ Chef kit, and sequencing using the 

Ion Torrent Personal Genome Machine (PGM) system on an Ion PGM Sequencing 316 Chip 

v2 BC. Due to the lower abundance of methanogens than total bacteria, methanogens library 

was sequenced using a smaller chip (Ion PGM Sequencing 314 Chip v2). 

Following sequencing, data were processed as previously described (de la Fuente et 

al. 2014). Briefly, sample identification numbers were assigned to multiplexed reads using 

the MOTHUR software package . Data were denoised by removing low-quality sequences, 

sequencing errors and chimeras (quality parameters: maximum 10 homopolymers, qaverage 

13, qwindow 25, for archaea the qwindow was set at 30, and erate = 1; Chimera check, both 

de novo and database driven using Uchime).  

Sequences were clustered into OTUs using the Uparse pipeline at 97% identity. Bacterial 

taxonomic information on 16S rRNA gene sequences was obtained by comparing against 

Ribosomal Database Project-II (Wang et al 2007), while the methanogens were compared 

with the RIM-DB database (Seedorf et al. 2014). The number of reads per sample were 

normalized to the sample with the lowest number of sequences. To exclude potential bacterial 

sequences from the methanogens dataset, methanogens sequences were blasted with the 

Ribosomal Database Project-II, and those annotations which matched with bacterial 

sequences were removed. Raw sequences reads from the bacterial and methanogens libraries 

were deposited at the EBI Short Read Archive of the European Nucleotide Archive 

(accession number PRJEB22945 and PRJEB22960, respectively). 

Statistical analysis 

Linear regression was conducted to model the relationship between the percentage of 

radioactivity released (relative to the 
14

C-bacterial inoculum) and the time (from 0 h to 5 h), 

as well as its correlation coefficient. The slope of this trend-line indicated the bacterial 
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degradation rate (as % h
-1

) by the rumen protozoa and ultimately their activity. Trend line 

slopes, 24 h fermentation parameters, daily productions of VFA and ammonia in the 

RUSITEC system together with nutrient disappearance and methane data were analysed 

statistically by randomized block ANOVA, with individual cows/sheep as a blocking term. 

For the rates of bacterial degradation and 24 h fermentation parameters, polynomial contrasts 

were also used to determine linear (L) and/or quadratic (Q) responses to the treatments. 

Rumen fermentation and qPCR data in the RUSITEC were analysed using a repeated-

measurements procedure (REML) including the different time-points (0, 2, 4, and 8). The 

effect of treatment, time and treatment x time interaction on the relative abundance of 

different bacteria and archaea taxa was analysed by split plot ANOVA (3 treatments x 4 time 

points). P values were adjusted for multiple testing using the method proposed by Benjamini 

and Hochberg (1995) to decrease the False Discovery Rate. When effects were detected, 

treatment means were compared by Fisher’s protected LSD-test. Findings with P<0.05, 

P<0.10 when applying Benjamini and Hochberg (1995) correction, were regarded statistically 

significant. Genstat 15th Edition (VSN International, Hemel Hempstead, UK) was used.  

Permutation multivariate analysis of variance (PERMANOVA) was used to determine 

overall significant differences in bacterial and archaea community and was performed in 

PRIMER 6 & PERMANOVA+ (versions 6.1.18 and 1.0.8 respectively; Primer-E, Ivybridge, 

UK). Abundance percentage data were subjected to square root transformation and Bray-

Curtis distance matrices calculated. PERMANOVA was carried out using default settings 

with 9999 unrestricted permutations and the Monte Carlo P value was calculated. Analysis of 

Similarity (ANOSIM) was carried out in PRIMER 6 & PERMANOVA+ using the Bray-

Curtis distance matrix calculated above. This analysis was used to provide a metric of the 

degree of divergence between communities as given by the R statistic. 
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To calculate the contribution of environmental data on bacteria and archaea communities, 

distance based linear modelling was used to calculate which environmental variables had a 

significant correlation with the community data. Significant variables were used in distance 

based redundancy analysis (dbRDA) (Legendre and Anderson, 1999) as implemented in 

PRIMER 6 & PERMANOVA+.  

 

RESULTS 

Acute antiprotozoal activity and effect on fermentation parameters (in vitro batch 

incubations) 

Bacterial degradation by protozoa increased linearly (R
2
>0.99) over the 5 h incubation with 

the control treatment. Increasing levels of liquorice extract resulted in a linear and quadratic 

decrease (P<0.001) in the breakdown of bacteria by protozoa (Supplemental Table S1). 

Whereas the rate of bacterial breakdown was not affected by the addition of 0.25 g L
-1

 of the 

flavonoid-rich extract, it was reduced by 55.6% (P<0.001) in the presence of 0.5 g L
-1

. Doses 

of 1 and 2 g L
-1

 of liquorice extract caused a dramatic reduction in protozoa activity 

(P<0.001) with no bacterial breakdown observed. 

  Based on these results, doses of 0.5, 1 and 2 g L
-1

 of the extract were tested over 24 h 

in in vitro incubations (Table 1). Liquorice extract added at 1 and 2 g L
-1

 of the incubation 

caused only a moderate  decrease in pH, albeit significant (P=0.001), compared with the 

control. No effect on the concentration of total VFA or on the molar proportion of acetate 

was observed at any of the concentrations tested (P>0.05). Doses of 1 and 2 g L
-1

 resulted in 

a decrease in ammonia concentration (P=0.010) and in an increase in the molar proportion of 

propionate (P=0.002). A reduction in the molar proportions of butyrate (P=0.013) and 

branched chain volatile fatty acids (BCVFA) (P=0.024) was only observed with the highest 

dose of liquorice. 
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Feed degradability and fermentation pattern (Rumen simulation technique) 

Because the batch culture experiment showed no effect on fermentation with liquorice added 

at 0.5 g L
-1

, only doses of 1 and 2 g L
-1

 were further tested in the RUSITEC system.  

The addition of liquorice to the diet did not have any detrimental effect on feed 

disappearance after 48 h of incubation (Table 2); although a trend (P=0.069) to decreased 

OM disappearance was observed with the highest dose of liquorice tested. When liquorice 

was added at 1 g L
-1

 no negative effects on fermentation were observed whilst  ammonia 

production decreased (-51%; P<0.001). The addition of 2 g L
-1

, however, had a strong effect 

decreasing total VFA concentration (P=0.014), shifting fermentation towards propionate 

(P=0.012) at the expense of acetate (P=0.003), as well as dramatically decreasing ammonia 

production (-77%; P<0.001).  Although total gas production was not affected by the inclusion 

of 2 gL
-1

 liquorice in the diet, methane production decreased (P<0.05) by 35% (Table 3). 

Theoretical metabolic hydrogen production based on the VFA stoichiometry (Moss et al., 

2000) was also lower (P=0.002) with 2 g L
-1

 of the flavonoid-rich extract. 

The study of the fermentation pattern in the vessel over a 24 h period (days 17 and 18; 

Supplemental Table 2) showed the same differences between treatments as those described 

when studying the daily fermentation products in the overflow. Concentrations of D-, L- and 

total lactate were unaffected by the treatments. Sampling time had a strong effect on 

fermentation parameters with decreased ammonia concentration and increased propionate and 

butyrate concentrations after feeding (P<0.01). D-, L- and total lactate concentrations 

decreased (P<0.001) in samples taken after feeding.  

Absolute and relative enzymatic activities (Table 4) increased (P<0.05) when 

liquorice was added at 2 g L
-1

. Sampling time also had an effect, with decreased xylanase and 

endoglucanase activities after feeding (P<0.01). Quantitative PCR revealed decreases in only 

the relative abundance of anaerobic fungi (P<0.001) with 2 g L
-1

 liquorice. Protozoa 
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concentration decreased (P<0.001) in vessels fed liquorice, with the highest dose having a 

stronger effect. The addition of liquorice, at all the doses tested, caused the elimination of the 

holotrich protozoa. 

Bacterial 16S rRNA gene sequencing 

Quality filtering resulted in 1,684,022 high quality sequences (320 bp long) which clustered 

in 1811 different OTUs with 6,195 reads per sample after normalization. 

Permutational analysis of variance (Table 5) showed a strong effect of both doses of 

liquorice on the structure of the bacterial community (P=0.0001). However, no effect of time 

was observed (P=0.986). Pairwise comparison showed that the structure of the bacterial 

community differed between control and liquorice treatments (P=0.0001) and between 

liquorice 1 and liquorice 2 treatments (P=0.001). This was confirmed by ANOSIM 

(P=0.001), with the greatest differences found between control and liquorice 2 and liquorice 1 

and liquorice 2 treatments. 

To detect possible correlations between the structure of the bacterial community and 

rumen fermentation parameters, a distance-based redundancy analysis (dbRDA) was 

performed. The primary axis accounted for 55.4% of the variation and a clear separation by 

treatment was observed (Fig. 1). Ammonia and BCVFA concentrations in the vessel 

(P<0.001) and bacterial richness (P=0.024) were positively and negatively correlated to the 

structure of the bacterial community of control and liquorice 2 samples, respectively.  

Regarding bacterial diversity (Table 6), the addition of liquorice decreased Shannon 

and Simpson indexes (P=0.001 and P<0.001, respectively) with the highest dose of liquorice 

having a stronger effect. Bacterial richness also decreased (P<0.001) in the presence of 

liquorice extract as compared with the control. 

No differences in bacterial abundances because of the addition of liquorice were 

observed at phylum (Table 7; P>0.1) or family level (Supplemental Table 3; P>0.1). At 
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genera level (Table 8), only changes in less abundant  genera were detected. The greatest 

change observed was the increased amount of Rikenella with liquorice as compared to the 

control treatment (P corrected value=0.186). 

Methanogens 16S rRNA gene sequencing 

Quality filtering and removal of bacterial sequences resulted in 370,221 high quality 

methanogen sequences (average length of 380 bp) that were clustered in to 33 unique OTUs 

with 3,733 sequences per sample after normalization. 

Permutational analysis of variance (Table 5) showed an effect of liquorice addition on 

the structure of the archaeal community (P=0.0001) but no effect of time was observed 

(P=0.993). Pairwise comparison showed differences in the structure of the archaea 

community between control and liquorice treatments (P=0.0001) and between liquorice 1 and 

liquorice 2 treatments (P=0.001). ANOSIM analysis also showed these differences 

(P=0.001), with the largest separation detected between the archaeal communities 

corresponding to control and liquorice 2 treatments. Distance-based redundancy analysis 

(Fig. 2) primary axes displayed 71.3% of the variation and a separation between treatments. 

Several variables (total and molar proportions of VFA, ammonia and archaea diversity and 

richness) were positively correlated (P<0.001) with the structure of the archaeal population in 

vessels corresponding to the liquorice 2 treatment.  

Contrary to the effects on bacterial community structure, methanogens richness and 

diversity was unaffected by the addition of liquorice (P>0.05). Based on the RIM-DB 

database, three families (Methanomassiliicoccaceae, Methanosarcinaceae and 

Methanobacteriaceae) made up the archaeal population in this experiment. The addition of 

liquorice extract influenced the abundance of the main methanogen groups with the highest 

dose having a stronger effect. When added at 2 g L
-1

, the flavonoid-rich extract dramatically 

decreased Methanomassiliicoccus Group 12 (P=0.035) and it also reduced Group 3a 
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(P=0.092). On the contrary, the highest dose of liquorice promoted an increased in the 

abundance of Methanomassiliicoccus Group 10 (P=0.035), Methanobrevibacter (P=0.092) 

and Methanosphaera (P=0.053).  

 

DISCUSSION 

Flavonoids have received interest as promising alternatives to antibiotics in ruminant feeding 

because of their antimicrobial activity (Cheng et al., 2014). Indeed, in vitro studies have 

shown that flavonoid-rich plant extracts reduce methane production in the rumen (Bodas et 

al., 2008; Patra and Saxena, 2010; Oskoueian et al., 2013) which has been associated with its 

effect on the methanogen (Patra and Saxena, 2010) and protozoal populations (Kim et al., 

2015). Furthermore, recent in vivo studies have reported changes in the bacteria community 

as a consequence of supplementing the diet with flavonoids (Kasparovska et al., 2016; Nardi 

et al., 2016; Zhan et al., 2017).  

Liquorice, the root of the Glycyrrhiza species, has long been used worldwide in herbal 

medicine and as a natural sweetener (Asl and Hosseinzadeh, 2008; Damle, 2014). More than 

20 triterpenoids and nearly 300 flavonoids have been isolated from liquorice (Wang et al., 

2015). Glycyrrhizin, a triterpenoid saponin, is considered as the bioactive constituent of 

liquorice (Asl and Hosseinzadeh, 2008). However, it has been shown that many biological 

activities of liquorice, including estrogenic, anti-cancer, anti-microbial, skin whitening and 

metabolic syndrome preventive, could be ascribed to its isoflavonoid constituents (Vaya et 

al., 1997).  Isoflavonoids (3-phenyl benzopyrans) differ from other classes of flavonoids due 

to their greater structural variability, their presence mainly in free form, rather than as a 

glycoside, and by the greater frequency of isoprenoid substitution (Munke et al., 2011).  

Our results showed that liquorice extract had a strong antiprotozoal effect in vitro 

when measuring protozoal activity based on the amount of released [
14

C] from labelled 

bacteria. Incubations for 24 h revealed that doses of 1 and 2 g L
-1

 decreased ammonia 
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concentration by 11 and 21% and increased propionate molar proportion by 14 and 32%, 

respectively, without impairing the overall fermentation process. The highest dose of 

liquorice tested also decreased butyrate molar proportions by 21%. Stoichiometrically, and 

based on the equation of Moss et al. (2000), the shift in the fermentation pattern observed 

with 1 and 2 g L
-1

 of liquorice extract should have resulted in a reduction in methane of 3 and 

13%, respectively. When these doses of isoflavonoid-rich extract were tested for their long-

term effects in the RUSITEC system, similar effects on fermentation, without negative effects 

on nutrient digestibility were observed. The addition of 2 g L
-1

 of the extract also caused a 

decrease in methane per gram of disappeared OM (-27%). A decrease in total VFA and a 

substantial shift in the fermentation pattern from acetate towards propionate was observed, 

leading to a decrease in the theoretical metabolic hydrogen production (-13%).  

Despite the inherent difficulty of maintaining high numbers of protozoa in the 

RUSITEC system (Hillman et al., 1991), protozoal numbers in our study were reasonable 

(3775 cells mL
-1

 for the control ), allowing the assessment of the effect of the treatments on 

the protozoal community. The effects of our liquorice extract on methane emission could 

have been associated to a decreased protozoa population (-79% and -94% for doses of 1 and 2 

g L
-1

, respectively) since protozoa provide hydrogen as a reducing substrate to methanogens 

(Newbold et al., 2015). The elimination of holotrich protozoa, which play a disproportionate 

role in supporting methanogenesis (Newbold et al., 2015), would be in line with the reduction 

in methane reported. Although 2 g L
-1

 of liquorice also caused a great reduction in anaerobic 

fungi, which together with protozoa play a significant role in the degradation of ingested 

plant cellulosic fibers, the digestibility of the fiber resulted unaffected. Possibly an increase in 

bacterial activity, as reflected in a greater xylanase activity with liquorice, might have 

compensated for the decrease in protozoal and fungal activity. The greatest effect observed in 

the presence of liquorice was the reduction in ammonia production (-51 and -77% with 1 and 
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2 g L
-1

 of liquorice, respectively) which could have also been related to the decrease in 

protozoa as they are involved in the turnover of bacterial protein due to their predatory 

activity (Newbold et al., 2015). It is also possible that the formation of isoflavonoids-protein 

complexes could have reduced the availability of nitrogen to rumen microorganisms, as has 

been previously reported for other polyphenolic compounds (Ozdal et al., 2013). 

Isoflavonoids may also have other effects on rumen fermentation and microbial activities: 

some authors have suggested that derivatives from the microbial degradation of flavonoids 

can be used as alternative carbon source for rumen microbial activities (McSweeney et al., 

2001; Smith et al., 2005; Ouskoueian et al., 2013) whilst others have proposed that flavonoids 

could act as a hydrogen sink via cleavage of ring structures and reductive dihydroxylation 

(Becker et al., 2013).  

Although the total number of bacteria were unaffected by the addition of liquorice, the 

isoflavonoid-rich extract promoted a less diverse bacterial community. ANOSIM analysis 

showed  that the bacterial community structure was highly separated between treatments. 

Only changes in the relative abundance of less abundant  genera were however observed. The 

greatest change was observed for Rikenella which are thought to be involved in structural 

carbohydrates degradation (Pitta et al., 2010). Its increase in presence of liquorice would be 

in line with the observed increase in xylanase activity. Contrary to previous studies 

(Oskoueian et al., 2013; Seradj et al., 2014), no major effects on archaea numbers were 

observed with the addition of liquorice extract. The isoflavonoid-rich extract did not 

significantly affect archaea diversity. Liquorice extract had an effect on the structure of the 

methanogen community which differed between treatments, although not to the same extent 

as that of the bacterial communities. A shift in the methanogen community towards one less 

effective in producing methane could be suggested to explain differences in methane 

emissions. Although it has been reported that methane emission can be related to the 
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concentration of archaea in rumen digesta (Wallace et al., 2014), it seems that it is the 

metabolic activity of individual species rather than the number of archaea what is essential 

for the level of methane production (Shi et al., 2014). Methanomassiliicoccus Group12 and 

Group 3a were replaced by Methanomassiliicoccus Group 10, Methanosphaera and 

Methanobrevibacter. Methanobrevibacter, theoretically less active in methane production 

(Kang et al. 2013) increased by 0.27 log units with 2 g L
-1

 of the extract, as compared to the 

control. This observation was also reported by Belanche et al. (2016) when using ivy 

saponins in RUSITEC.  

Liquorice extract added at 1 g L
-1

 decreased ammonia production without affecting 

the overall fermentation process. When added at 2 g L
-1

, decreases in not only ammonia 

production but also methane and total VFA production were observed. These effects in 

fermentation were probably related to decreases in protozoa numbers, a less diverse bacteria 

population as well as changes in the structure of both bacteria and archaea communities. The 

inclusion of an isoflavonoid-rich extract from liquorice in the diet could potentially improve 

the efficiency of the feed utilization by ruminants. While we speculate that the observed 

effects could be attributed to the high content of isoflavonoids, and particularly glabridin, the 

contribution of other phytochemical to the reported effects cannot be ruled out. 
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Table 1. Effect of liquorice extract at 0.5, 1 and 2 g/L on pH, NH3-N and VFA profile in 

ruminal digesta after 24 h of incubation. 

  Dose (g/L)       

 

0 0.5 1 2 SED P Contrast 

pH  6.44
b
 6.44

b
 6.37

a
 6.35

a
 0.017 0.001 L*** 

NH3-N (mg/L)  20.5
c
 19.5

bc
 18.2

ab
 16.2

a
 1.00 0.010 L** 

Total VFAs (mmo L
-1

)  77.5 77.7 79.4 77.9 4.10 0.965 - 

Molar proportions 

       Acetate  59.2 59.0 59.6 57.1 3.14 0.858 - 

Propionate  17.4
a
 18.0

ab
 19.8

b
 22.9

c
 1.03 0.002 L*** 

Butyrate  12.0
b
 11.8

b
 11.4

b
 9.42

a
 0.666 0.013 L** 

BCVFA 2.49
b
 2.42

b
 2.34

b
 1.95

a
 0.149 0.024 L** 

a-c
Means with different superscript differ (P<0.05); L: linear 

response;**:P<0.01;***:P<0.001. BCVFA = Branched chain volatile fatty acids. 
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Table 2. Effect of supplementing a control diet (C) with liquorice extract (L1 and L2, 1 and 2 

g/L, respectively) on feed disappearance in the RUSITEC system 

Diets C L1 L2 SED  P 

Disappearance (%) 

     DM 43.4 43.4 42.2 1.42 0.653 

OM 47.2 45.4 42.3 1.67 0.069 

N 43.2 43.3 43.3 1.77 0.998 

NDF 38.7 37.0 37.2 1.01 0.257 

ADF 44.2 43.5 43.2 0.76 0.451 
a-b

Means with different superscript differ (P<0.05). 
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Table 3. Effect of supplementing a control diet (C) with liquorice extract (L1 and L2, 1 and 2 

g/L, respectively) on fermentation products and methanogenesis in the RUSITEC system. 

Diets C L1 L2 SED  P 

Fermentation products (mmol d
-1

) 

     Total VFA 33.7
b
 34.1

b
 28.5

a
 1.056 0.003 

Acetate 17.2
b
 17.0

b
 12.8

a
 0.795 0.003 

Propionate 3.55
a
 4.06

a
 4.94

b
 0.313 0.012 

Butyrate 8.08 7.95 7.56 0.333 0.332 

BCVFA 3.51
b
 3.74

b
 0.482

a
 0.213 <0.001 

Ammonia 1.37
c
 0.674

b
 0.315

a
 0.106 <0.001 

      

Gas emissions           

Total gas (L d
-1

) 1.20 1.23 1.30 0.069 0.384 

Methane (mM) 3.92
b
 3.58

b
 2.37

a
 0.175 <0.001 

Methane (mmol d
-1

) 4.67
b
 4.35

b
 3.06

a
 0.445 0.024 

Methane (mmol gDOM
-1

) 0.510
b
 0.492

b
 0.374

a
 0.043 0.039 

2H produced (mmol d
-1

) 70.2
b
 69.8

b
 60.8

a
 1.59 0.002 

      
a-b

Means with different superscript differ (P<0.05). BCVFA = Branched chain volatile 

fatty acids. 
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Table 4. Effect of supplementing a control diet (C) with liquorice extract (L1 and L2, 1 and 2 g/L, respectively) and the sampling time (0, 2, 4 and 

8 h after feeding) on rumen enzymatic activity and microbial numbers in the RUSITEC system. 

  Diets   P-Value Time after feeding   P-Value 

  C L1 L2 SED Diet 0 h 2 h 4 h 8 h SED Time Interaction 

Absolute enzymatic activity  

(mmol of sugar  gDM
-1

 min
-1

) 

            Amylase 0.060
a
 0.069

a
 0.138

b
 0.016 0.005 0.083 0.097 0.092 0.083 0.011 0.435 0.464 

Xylanase 0.081
a
 0.086

a
 0.103

b
 0.006 0.034 0.123

b
 0.083

a
 0.083

a
 0.071

a
 0.006 <0.001 0.166 

Endoglucanase 

 

0.062 0.067 0.074 0.004 0.097 0.085
b
 0.064

a
 0.062

a
 0.060

a
 0.003 <0.001 0.031 

Relative enzymatic activity  

(mmol of sugar gProtein
-1

 min
-1

) 

            Amylase 0.306
a
 0.315

a
 0.664

b
 0.031 <0.001 0.405 0.444 0.401 0.463 0.061 0.567 0.391 

Xylanase 0.42
a
 0.396

a
 0.493

b
 0.022 0.012 0.606

b
 0.392

a
 0.357

a
 0.390

a
 0.039 <0.001 0.437 

Endoglucanase 0.326
a
 0.314

a
 0.356

b
 0.010 0.013 0.421

b
 0.304

a
 0.267

a
 0.337

a
 0.030 0.006 0.940 

 

Microbial numbers 

            Bacteria (log copies gDM
-1

) 11.4 11.4 11.4 0.033 0.093 11.3 11.4 11.4 11.4 0.029 0.068 0.135 

Methanogens (log copies gDM
-1

) 9.66
a
 9.82

b
 9.61

a
 0.051 0.016 9.83

c
 9.73

b
 9.62

a
 9.62

a
 0.032 <0.001 0.182 

Anaerobic fungi (log copies gDM
-1

) 7.99
b
 7.47

b
 4.71

a
 0.277 <0.001 7.04 6.75 6.69 6.41 0.250 0.160 0.690 

 Protozoa (log cells mL
-1

) 

                          Total 3.57
c
 2.89

b
 2.30

a
 0.114 <0.001 

                     Holotrichs 2.91
b
 0

a
 0

a
 0.062 <0.001 

                     Entodinomorphs 3.46
c
 2.89

b
 2.30

a
 0.126 <0.001               
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Table 5. Effects of the supplementation with liquorice extract (1 and 2 g/L) on the structure 

of the bacterial communities in the rumen simulating fermenter RUSITEC. 

  Bacteria   Archaea 

 

P(MC) 

(Permanova) 

R-value 

(ANOSIM)  

P(MC) 

(Permanova) 

R-value 

(ANOSIM) 

Treatment effect 0.0001 0.981   0.0001 0.744 

Pairwise comparison 

     Control vs Liquorice 1 0.0001 0.924 

 

0.0001 0.573 

Control vs Liquorice 2 0.0001 1 

 

0.0001 0.971 

Liquorice 1 vs liquorice 2 0.0001 1 

 

0.0001 0.867 

      Time effect 0.9863 -0.161   0.993 -0.194 

Pairwise comparison           

t0 vs t2 0.9179 -0.163 

 

0.943 -0.208 

t0 vs t4 0.82 -0.149 

 

0.948 -0.125 

t0 vs t8 0.4681 -0.087 

 

0.578 -0.146 

t2 vs t4 0.9986 -0.26 

 

0.999 -0.240 

t2 vs t8 0.8258 -0.167 

 

0.935 -0.212 

t4 vs t8 0.9309 -0.146   0.891 -0.222 
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Table 6. Effect of supplementing a control diet (C) with liquorice extract (L1 and L2, 1 and 2 g/L, respectively) and the sampling time (0, 2, 4 and 

8 h after feeding) on the structure of the bacteria and methanogen communities in the RUSITEC system. 

  Diets   P-Value Time after feeding   P-Value 

  C L1 L2 SED Diet 0 h 2 h 4 h 8 h SED Time Interaction 

Bacteria 

                   Richness 497
c
 387

b
 231

a
 23.8 <0.001 387 369 387 343 12.6 0.018 0.160 

       Simpson index 0.959
b
 0.944

b
 0.923

a
 0.008 0.010 0.942 0.944 0.952 0.931 0.006 0.039 0.577 

       Shannon index 4.35
c
 3.95

b
 3.48

a
 0.115 <0.001 3.98 3.94 4.04 3.76 0.067 0.012 0.454 

Archaea 

                   Richness 18.9 20.8 20.3 0.885 0.155 19.0 19.6 21.1 20.3 0.616 0.042 0.550 

       Simpson index 0.525 0.725 0.645 0.090 0.162 0.648 0.629 0.637 0.612 0.021 0.369 0.516 

       Shannon index 1.26 1.77 1.49 0.212 0.135 1.54 1.51 1.53 1.45 0.053 0.296 0.315 
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Table 7. Effect of supplementing a control diet (C) with liquorice extract (L1 and L2, 1 and 2 g/L, respectively) and the sampling time (0, 2, 4 and 

8 h after feeding) on relative abundance of bacteria phyla present at an average of more than 0.5% (false discovery rate for Benjamini-Hochberg: 

0.25) 

  

Treatment   Time   SED   Uncorrected P   Benjamini-Hochberg P-value 

 

 C  L1 L2 

 

T0 T2 T4 T8 

 

Trt T TrtxT 

 

Trt T TrtxT 

 

Trt T TrtxT 

Proteobacteria 0.181 0.218 0.179 

 

0.200 0.189 0.166 0.217 

 

0.034 0.020 0.045 

 

0.478 0.118 0.307 

 

0.598 0.393 0.512 

Bacteroidetes 0.482 0.473 0.517 

 

0.470 0.496 0.502 0.495 

 

0.032 0.029 0.054 

 

0.406 0.623 0.472 

 

0.580 0.811 0.590 

Firmicutes 0.257 0.257 0.259 

 

0.265 0.256 0.268 0.242 

 

0.043 0.025 0.057 

 

0.999 0.629 0.263 

 

0.999 0.811 0.512 

Spirochaetes 0.021 0.017 0.015 

 

0.021 0.019 0.020 0.011 

 

0.003 0.003 0.005 

 

0.213 0.029 0.213 

 

0.456 0.145 0.512 

unclassified 0.021 0.009 0.007 

 

0.013 0.011 0.014 0.012 

 

0.007 0.003 0.009 

 

0.217 0.649 0.251 

 

0.456 0.811 0.512 

Tenericutes 0.012 0.013 0.012 

 

0.013 0.013 0.013 0.010 

 

0.003 0.003 0.005 

 

0.900 0.580 0.359 

 

0.999 0.811 0.513 

Verrucomicrobia 0.012 0.001 0.000 

 

0.004 0.004 0.005 0.005 

 

0.004 0.003 0.006 

 

0.049 0.813 0.905 

 

0.430 0.813 0.905 

Fibrobacteres 0.006 0.003 0.001 

 

0.005 0.004 0.003 0.001 

 

0.002 0.001 0.002 

 

0.086 0.020 0.104 

 

0.430 0.145 0.512 

Synergistetes 0.001 0.004 0.006 

 

0.003 0.004 0.005 0.002 

 

0.002 0.001 0.003 

 

0.228 0.389 0.627 

 

0.456 0.811 0.697 

Elusimicrobia 0.006 0.003 0.001   0.004 0.003 0.003 0.003   0.003 0.002 0.004   0.356 0.746 0.047   0.580 0.813 0.470 
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Table 8. Effect of supplementing a control diet (C) with liquorice extract (L1 and L2, 1 and 2 g/L, respectively) and the sampling time (0, 2, 4 and 

8 h after feeding) on relative abundance of bacteria genera present at an average of more than 0.2% (false discovery rate for Benjamini-Hochberg: 

0.25) 

  
Treatment   Time   SED   Uncorrected P   

Benjamini-Hochberg P-

value 

 

 C  L1 L2 

 

T0 T2 T4 T8 

 

Trt T TrtxT 

 

Trt T TrtxT 

 

Trt T TrtxT 

Ruminobacter 0.054 0.055 0.035 

 

0.035 0.035 0.047 0.076 

 

0.016 0.027 0.043 

 

0.400 0.355 0.764 

 

0.777 0.880 0.882 

Prevotella 0.250 0.274 0.277 

 

0.264 0.279 0.280 0.246 

 

0.035 0.030 0.057 

 

0.721 0.606 0.343 

 

0.901 0.880 0.828 

unclassified 0.226 0.203 0.192 

 

0.216 0.198 0.219 0.195 

 

0.018 0.023 0.039 

 

0.237 0.551 0.205 

 

0.631 0.880 0.828 

Christensenella 0.018 0.012 0.017 

 

0.014 0.011 0.016 0.023 

 

0.007 0.006 0.011 

 

0.624 0.245 0.273 

 

0.901 0.880 0.828 

Anaerovorax 0.021 0.004 0.012 

 

0.013 0.013 0.012 0.013 

 

0.009 0.011 0.018 

 

0.228 0.991 0.401 

 

0.631 0.991 0.828 

Vampirovibrio 0.002 0.009 0.003 

 

0.003 0.004 0.005 0.007 

 

0.002 0.004 0.006 

 

0.029 0.683 0.882 

 

0.186 0.880 0.882 

Selenomonas 0.010 0.017 0.014 

 

0.013 0.019 0.011 0.012 

 

0.005 0.004 0.008 

 

0.467 0.196 0.539 

 

0.830 0.880 0.828 

Roseburia 0.003 0.006 0.003 

 

0.005 0.006 0.003 0.002 

 

0.004 0.003 0.007 

 

0.731 0.600 0.401 

 

0.901 0.880 0.828 

Paraprevotella 0.042 0.044 0.039 

 

0.057 0.029 0.050 0.029 

 

0.024 0.025 0.045 

 

0.975 0.547 0.570 

 

0.975 0.880 0.828 

Treponema 0.011 0.012 0.012 

 

0.014 0.013 0.011 0.010 

 

0.003 0.003 0.005 

 

0.937 0.481 0.222 

 

0.975 0.880 0.828 

Anaeroplasma 0.007 0.010 0.011 

 

0.009 0.010 0.009 0.009 

 

0.002 0.002 0.004 

 

0.241 0.890 0.602 

 

0.631 0.949 0.828 

Subdivision5_genera

_incertae_sedis 0.009 0.002 0.001 

 

0.006 0.005 0.005 0.002 

 

0.005 0.003 0.007 

 

0.276 0.529 0.792 

 

0.631 0.880 0.882 

Fibrobacter 0.005 0.003 0.002 

 

0.006 0.004 0.003 0.002 

 

0.002 0.001 0.003 

 

0.413 0.059 0.156 

 

0.777 0.880 0.828 

Acidaminococcus 0.019 0.013 0.018 

 

0.022 0.016 0.016 0.013 

 

0.001 0.004 0.006 

 

0.008 0.163 0.799 

 

0.186 0.880 0.882 

Solobacterium 0.002 0.003 0.002 

 

0.002 0.003 0.002 0.002 

 

0.000 0.001 0.001 

 

0.259 0.604 0.864 

 

0.631 0.880 0.882 

Pyramidobacter 0.003 0.003 0.004 

 

0.003 0.005 0.003 0.003 

 

0.002 0.002 0.003 

 

0.970 0.427 0.670 

 

0.975 0.880 0.833 

Anaerovibrio 0.020 0.017 0.017 

 

0.015 0.020 0.017 0.021 

 

0.008 0.007 0.014 

 

0.919 0.690 0.198 

 

0.975 0.880 0.828 

Streptococcus 0.057 0.033 0.040 

 

0.044 0.038 0.043 0.048 

 

0.010 0.016 0.026 

 

0.111 0.887 0.433 

 

0.507 0.949 0.828 

Pseudobutyrivibrio 0.015 0.017 0.018 

 

0.017 0.018 0.015 0.016 

 

0.006 0.007 0.012 

 

0.856 0.955 0.356 

 

0.975 0.986 0.828 

Succinivibrio 0.121 0.145 0.139 

 

0.134 0.152 0.118 0.137 

 

0.027 0.026 0.048 

 

0.670 0.603 0.252 

 

0.901 0.880 0.828 

Succiniclasticum 0.021 0.025 0.024 

 

0.020 0.026 0.024 0.021 

 

0.005 0.009 0.014 

 

0.732 0.852 0.621 

 

0.901 0.949 0.828 

Coprococcus 0.003 0.005 0.006 

 

0.004 0.005 0.005 0.005 

 

0.001 0.001 0.002 

 

0.142 0.285 0.323 

 

0.568 0.880 0.828 

Phocaeicola 0.009 0.004 0.006 

 

0.007 0.005 0.006 0.008 

 

0.001 0.003 0.005 

 

0.044 0.692 0.582 

 

0.235 0.880 0.828 

Lactobacillus 0.014 0.017 0.016 

 

0.019 0.013 0.012 0.019 

 

0.003 0.005 0.008 

 

0.552 0.392 0.436 

 

0.901 0.880 0.828 

Rikenella 0.012 0.022 0.021 

 

0.013 0.019 0.019 0.022 

 

0.003 0.005 0.009 

 

0.027 0.341 0.336 

 

0.186 0.880 0.828 

Sphaerochaeta 0.004 0.004 0.006 

 

0.005 0.005 0.005 0.004 

 

0.001 0.001 0.002 

 

0.396 0.539 0.879 

 

0.777 0.880 0.882 

Asteroleplasma 0.002 0.002 0.003 

 

0.002 0.003 0.003 0.002 

 

0.001 0.001 0.002 

 

0.583 0.884 0.677 

 

0.901 0.949 0.833 

Candidatus 

Endomicrobium 0.001 0.003 0.005 

 

0.002 0.003 0.004 0.004 

 

0.002 0.002 0.004 

 

0.188 0.715 0.599 

 

0.631 0.880 0.828 

Eubacterium 0.003 0.004 0.004 

 

0.004 0.004 0.003 0.003 

 

0.000 0.001 0.001 

 

0.023 0.054 0.290 

 

0.186 0.880 0.828 

Butyricimonas 0.002 0.003 0.003 

 

0.002 0.003 0.002 0.002 

 

0.001 0.001 0.002 

 

0.631 0.488 0.573 

 

0.901 0.880 0.828 
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Mucinivorans 0.002 0.002 0.002 

 

0.002 0.002 0.002 0.003 

 

0.001 0.001 0.002 

 

0.786 0.629 0.409 

 

0.932 0.880 0.828 

Anaerocella 0.012 0.009 0.028   0.012 0.016 0.014 0.023   0.005 0.009 0.015   0.018 0.604 0.501   0.186 0.880 0.828 
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Table 9. Effect of supplementing a control diet (C) with liquorice extract (L1 and L2, 1 and 2 g/L, respectively) and the sampling time (0, 2, 4 and 

8 h after feeding) on relative abundance of archaea genera present at an average of more than 0.2% (false discovery rate for Benjamini-Hochberg: 

0.25) 

  

Treatment   Time   SED   Uncorrected P   
Benjamini-Hochberg P-

value 

 

 C  L1 L2 

 

T0 T2 T4 T8 

 

Trt T TrtxT 

 

Trt T TrtxT 

 

Trt T TrtxT 

Methanomassiliicoccus 

G12 0.588 0.171 0.009 

 

0.231 0.256 0.269 0.268 

 

0.109 0.012 0.111 

 

0.005 0.034 0.327 

 

0.035 0.170 0.483 

Methanomassiliicoccus 

G9 0.222 0.423 0.258 

 

0.260 0.310 0.299 0.335 

 

0.164 0.026 0.168 

 

0.470 0.114 0.337 

 

0.470 0.380 0.483 

Methanomassiliicoccus 

G10 0.002 0.018 0.309 

 

0.126 0.115 0.112 0.086 

 

0.068 0.011 0.070 

 

0.007 0.017 <0.001 

 

0.035 0.170 <0.011 

Methanomassiliicoccus 

G11 0.023 0.099 0.001 

 

0.042 0.043 0.041 0.038 

 

0.057 0.004 0.057 

 

0.267 0.522 0.452 

 

0.297 0.522 0.483 

Methanomassiliicoccus 

G3a 0.039 0.012 0.001 

 

0.013 0.018 0.018 0.019 

 

0.012 0.003 0.012 

 

0.042 0.252 0.140 

 

0.092 0.407 0.483 

Methanomassiliicoccus 

G3b 0.017 0.024 0.001 

 

0.020 0.011 0.013 0.012 

 

0.011 0.005 0.013 

 

0.180 0.260 0.483 

 

0.225 0.407 0.483 

Methanomassiliicoccus 

G8 0.023 0.056 0.004 

 

0.041 0.024 0.021 0.024 

 

0.017 0.013 0.026 

 

0.062 0.326 0.464 

 

0.103 0.407 0.483 

Methanimicrococcus 0.002 0.040 0.004 

 

0.023 0.014 0.014 0.011 

 

0.020 0.009 0.024 

 

0.176 0.425 0.402 

 

0.225 0.472 0.483 

Methanobrevibacter 0.083 0.151 0.354 

 

0.218 0.186 0.192 0.189 

 

0.086 0.019 0.091 

 

0.046 0.324 0.112 

 

0.092 0.398 0.466 

Methanosphaera 0.0004 0.006 0.059   0.025 0.021 0.021 0.020   0.015 0.002 0.016   0.016 0.155 0.482   0.053 0.388 0.483 
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Figure 1. Bacterial population structure based on Bray-Curtis distance matrices calculated of 

square root transformed data. 
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Figure 2. DbRDA illustrating the relationship between the structure of the bacterial 

community with the rumen fermentation pattern and microbial numbers and diversity in the 

RUSITEC system. 
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Figure 3.Archeal population structure based on Bray-Curtis distance matrices calculated of 

square root transformed data. 
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Figure 4. dbRDA illustrating the relationship between the structure of the archaeal 

community with the rumen fermentation pattern   and microbial numbers and diversity in the 

RUSITEC system. 
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Supplemental Table 1. Effect of liquorice extract, added at 0.25, 0.5, 1 or 2 g/L, on rumen protozoa activity assessed in vitro as the amount of 

14C-labelled bacteria broken down by rumen protozoa (% of the initial radioactivity released per hour) 

  Dose (g/L)       

 

0 0.25 0.5 1 2 SED P Contrast 

Bacteria breakdown rate  3.47
c
 3.17

c
 1.54

b
 0

a
 0

a
 0.162 <0.001 L***Q*** 

a-c
Means with different superscript differ (P<0.05); L: linear response; Q: quadratic response; ***:P<0.001 

 

Supplemental Table 2. Effect of supplementing a control diet (C) with liquorice extract (L1 and L2, 1 and 2 g/L, respectively) and the sampling 

time (0, 2, 4 and 8 h after feeding) on rumen fermentation parameters in the RUSITEC system. 

  Diets   P-Value Time after feeding   P-Value 

  C L1 L2 SED Diet 0 h 2 h 4 h 8 h SED Time Interaction 

pH 6.64 6.65 6.66 0.013 0.320 6.44
a
 6.74

c
 6.72

bc
 6.71

b
 0.011 <0.001 0.096 

Ammonia (mM) 2.78
c
 1.33

b
 0.749

a
 0.206 <.001 1.76

c
 1.77

c
 1.68

b
 1.27

a
 0.034 <0.001 0.017 

Total VFA (mM) 52.4 51.7 47.6 1.932 0.093 51.1 50.2 49.8 51.2 0.923 0.351 0.506 

Molar proportions 

              Acetate 51.2 50.0 48.3 1.047 0.076 50.9
b
 49.3

a
 49.8

a
 49.4

a
 0.436 0.012 0.117 

  Propionate 11.3
a
 12.5

a
 15.5

b
 0.698 0.003 12.5

a
 13.3

b
 13.4

b
 13.2

b
 0.155 0.001 0.039 

  Butyrate 23.0 23.0 25.4 1.075 0.103 23.3
a
 24.0

b
 23.7

ab
 24.2

b
 0.264 0.032 0.054 

  BCVFA 9.63
b
 9.72

b
 1.55

a
 0.477 <.001 7.04 6.97 6.77 7.10 0.129 0.102 0.358 

Lactate (mM) 

     

  

      Total  0.583 0.651 0.566 0.046 0.224 1.796
b
 0.174

a
 0.227

a
 0.201

a
 0.042 <0.001 0.103 

D-lactate 0.385 0.432 0.345 0.033 0.098 0.979
b
 0.171

a
 0.208

a
 0.191

a
 0.026 <0.001 0.157 

L-lactate 0.198 0.219 0.221 0.024 0.593 0.816
b
 0.003

a
 0.020

a
 0.011

a
 0.025 <0.001 0.199 

a-c
Means with different superscript differ (P<0.05). 
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Supplemental Table 3. Effect of supplementing a control diet (C) with liquorice extract (L1 and L2, 1 and 2 g/L, respectively) and the sampling 

time (0, 2, 4 and 8 h after feeding) on abundance relative of bacteria families present at an average of more than 0.5% (false discovery rate for 

Benjamini-Hochberg: 0.25) 

 

Treatment   Time   SED   Uncorrected P   
Benjamini-Hochberg P-

value 

 
 C  L1 L2 

 
T0 T2 T4 T8 

 
Trt T TrtxT 

 
Trt T TrtxT 

 
Trt T TrtxT 

Rikenellaceae 0.035 0.045 0.033 
 

0.045 0.035 0.038 0.033 
 

0.021 0.009 0.025 
 

0.827 0.455 0.042 
 

0.858 0.858 0.522 

unclassified 0.153 0.095 0.123 
 

0.136 0.116 0.116 0.128 
 

0.030 0.018 0.040 
 

0.238 0.502 0.112 
 

0.685 0.858 0.522 

Christensenellaceae 0.022 0.012 0.014 
 

0.017 0.013 0.015 0.019 
 

0.011 0.004 0.012 
 

0.646 0.460 0.155 
 

0.827 0.858 0.522 
Clostridiales_Incertae 
Sedis XIII 0.014 0.020 0.005 

 
0.013 0.015 0.012 0.012 

 
0.017 0.007 0.020 

 
0.717 0.831 0.184 

 
0.827 0.858 0.522 

Streptococcaceae 0.057 0.036 0.036 
 

0.041 0.045 0.047 0.040 
 

0.027 0.010 0.031 
 

0.683 0.697 0.208 
 

0.827 0.858 0.522 

Spirochaetaceae 0.021 0.016 0.015 
 

0.020 0.019 0.020 0.011 
 

0.003 0.003 0.005 
 

0.205 0.028 0.212 
 

0.685 0.420 0.522 

Ruminococcaceae 0.023 0.015 0.012 
 

0.016 0.016 0.017 0.017 
 

0.006 0.002 0.007 
 

0.237 0.858 0.249 
 

0.685 0.858 0.522 

Succinivibrionaceae 0.168 0.207 0.175 
 

0.191 0.180 0.156 0.207 
 

0.031 0.019 0.042 
 

0.461 0.102 0.284 
 

0.768 0.765 0.522 

Anaeroplasmataceae 0.011 0.012 0.012 
 

0.012 0.012 0.012 0.010 
 

0.003 0.003 0.005 
 

0.858 0.611 0.313 
 

0.858 0.858 0.522 

Lachnospiraceae 0.021 0.038 0.054 
 

0.036 0.039 0.040 0.035 
 

0.019 0.007 0.021 
 

0.274 0.746 0.415 
 

0.685 0.858 0.623 

Porphyromonadaceae 0.023 0.012 0.027 
 

0.021 0.021 0.022 0.018 
 

0.012 0.023 0.027 
 

0.235 0.757 0.466 
 

0.685 0.858 0.635 

Prevotellaceae 0.318 0.306 0.348 
 

0.284 0.341 0.344 0.328 
 

0.033 0.028 0.054 
 

0.458 0.169 0.624 
 

0.768 0.845 0.778 

Marinilabiliaceae 0.011 0.045 0.011 
 

0.023 0.018 0.024 0.024 
 

0.025 0.015 0.033 
 

0.343 0.787 0.674 
 

0.735 0.858 0.778 

Erysipelotrichaceae 0.013 0.010 0.012 
 

0.011 0.011 0.013 0.013 
 

0.002 0.002 0.004 
 

0.515 0.404 0.825 
 

0.773 0.858 0.884 

Veillonellaceae 0.018 0.034 0.044   0.033 0.034 0.033 0.027   0.013 0.007 0.017   0.184 0.664 0.897   0.685 0.858 0.897 
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INTERPRETIVE SUMMARY 

By Rossi et al. 

Garlic has been advocated as a rumen modifier to reduce enteric methane emissions from 

dairy cows, but little is known of its influence on the sensorial and rheological characteristics 

of milk and cheese. We added 100 or 400 g/d of garlic cloves or 2 g/d of diallyl sulfide to the 

feed of lactating cows in a 4 x 4 Latin square experimental design. Neither supplement 

affected production performances or cheese-making properties of milk, but diallyl sulfide 

slightly influenced cheese quality. Four-hundred g/d of garlic cloves affected milk and cheese 

aroma, and modified cheese texture by reducing its shear force.  

 

ABSTRACT 

Garlic and garlic components have recently proposed as ruminal activity modulators to reduce 

the enteric methane emissions of ruminants, but little is known of its influence on the milk 

coagulation properties, nutrient recovery, cheese yield, and sensorial and rheological 

characteristics of milk and cheese. The present study assessed the effects of garlic and diallyl 

sulfide supplements on DMI, productive performances, milk coagulation properties, cheese 

yield, milk and cheese sensory profiles, and rheological characteristics. Four dairy cows were 

fed a total mixed ration (TMR) either alone (control) or supplemented with 100 or 400 g/d of 

garlic cloves or 2 g/d of diallyl sulfide in 4 consecutive experimental periods in a 4×4 Latin 

square design. The diallyl sulfide dose was established to provide approximately the same 

amount of allyl thiosulfinate compounds as 100 g of fresh garlic cloves. The TMR was 

composed of 0.29 corn silage, 0.23 corn-barley mixture, 0.17 sunflower-soybean mixture, 

0.12 alfalfa hay, 0.12 grass hay, 0.04 sugar beet pulp and 0.02 other additives, and contained 

0.253 starch, 0.130 crude protein and 0.375 neutral detergent fiber, on a dry matter basis. 

Each experimental period consisted of 7 d of transition and 14 d of treatment. On days 18 and 
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21 of each period, milk samples (10 L) were collected from each cow for chemical analysis 

and cheese-making. The organoleptic properties of the milk and 63 d ripened cheeses were 

assessed by a panel of 7 trained sensory evaluators. The experimental treatments had no 

effects on DMI, milk yield, feed efficiency (milk yield/DMI), milk coagulation properties, 

nutrient recovery and cheese yield. Garlic-like aroma, taste and flavor of milk and cheese 

were significantly influenced by the treatments, particularly the highest dose of garlic cloves, 

and we found close exponential relationships between milk and cheese for garlic-like aroma 

(R
2
 = 0.87) and garlic-like flavor (R

2
 =0.79). Diallyl sulfide and 400 g/d of garlic cloves 

resulted in lower pH, shear force and shear work of ripened cheeses compared with the other 

treatments. Garlic cloves and diallyl sulfide had opposite effects on cheese color indices.  We 

conclude that adding 400 g/d of garlic to the feed of lactating dairy cows highly influences the 

sensory and rheological characteristics of cheese. 

Keywords: cheese yield, diallyl sulfide, garlic clove, milk coagulation properties, sensory 

analysis. 

INTRODUCTION 

Methane produced in the rumen is a potent greenhouse gas, and the FAO (Steinfeld et al., 

2006) has asserted that 18% of total anthropogenic greenhouse gases are directly or indirectly 

related to the livestock industry. Others have estimated that the contribution of ruminants to 

global warming is more likely in the order of 3% (Pitesky et al., 2009). However, as methane 

represents a 2 to 12% loss of energy in the conversion of feed to animal products, many 

strategies have been proposed to lower emissions of this gas without impairing rumen 

fermentation and animal performance (Hristov et al., 2013a, b).  

Garlic (Allium sativum), and particularly its sulfur compounds, inhibits in vitro 

methanogenesis (Blanch et al., 2016), and consistently increases the acetate:propionate ratio 

and butyrate concentration in the rumen fluid (Yang et al., 2007; Klevenhusen et al., 2011). 
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The effect is similar, but not identical, to that of the antibiotic monensin (Calsamiglia et al., 

2007), and reflects the anti-microbial and anti-protozoal properties of organosulfur garlic 

compounds (Reuter et al., 1996). Busquet et al. (2005) suggested that the anti-methanogenic 

action mechanism of garlic could be related to direct inhibition of archaea rumen bacteria 

through inhibition of the 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase of 

its organosulfur compounds. Macheboeuf et al. (2006) reported dose response effects of garlic 

oil and some sulfur garlic compounds (Diallyl sulfide, diallyl disulfide, allicin, and allyl 

mercaptan) on ruminal fermentation and in vitro methane production. Garlic in various forms 

(cloves, powder, oil or pure sulfur compounds) was found to have antiparasitic, anticancer, 

antioxidant, immunomodulatory, anti-inflammatory and hypoglycemic activities in ruminants 

(Kamra et al., 2012).  

A few experiments investigated the effect in vivo of garlic, or its sulfur constituents, on 

digestion, ruminal fermentation, milk production and quality in dairy cows (Van Zijderveld et 

al., 2011; Oh et al., 2013; Blanch et al., 2016). There is little or no evidence available of the 

effect of garlic as a feed additive on the milk coagulation properties, nutrient recovery, cheese 

yield, and sensorial and rheological characteristics of milk and cheese. In humans, volatile 

metabolites of garlic were detected in milk a few hours after ingestion of garlic cloves, and 

the sensory characteristics of the milk were consistently modified (Scheffler et al., 2016). By 

analogy, we could hypothesize that the sensory characteristics of bovine milk and cheese may 

also be influenced by adding garlic or its sulfur compounds to the cows’ feed.  

The current experiment aimed to evaluate the influence of increasing doses of garlic cloves 

and of diallyl sulfide on productive performance, the coagulation/cheese-making properties of 

milk, and the sensory and rheological characteristics of milk and cheese. 
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MATERIALS AND METHODS 

Animals, rations and experimental design 

The project was approved by the University of Padua’s “Ethical Committee for the Care 

and Use of Experimental Animals”, in accordance with Italian law on the care of research 

animals. To minimize the use of animals, we adopted a Latin square design and used only one 

cow per treatment. 

Four Holstein-Friesian, second parity, dairy cows were housed in individual pens on the 

University of Padua’s experimental farm (Legnaro, Italy). At the start of the experiment the 

cows had an average 119 ± 17 d in milk and 30.8 ± 3.4 kg/d milk yield, and an average body 

weight of 621 ± 26.1 kg and body condition score of 2.69 ± 0.32 on a 5-point scale. The cows 

were assigned to four feeding treatments in a 4 × 4 Latin square design. Each experimental 

period lasted 14 d - 7 d for adaptation and 7 d for recording and sample collection - and was 

followed by a 7 d transition period to reduce possible carryover effects. Feeds were 

distributed to each cow as a low protein total mixed ration (TMR), the ingredients and 

nutritional composition in accordance with NRC (2001) and Schiavon et al. (2015) for a milk 

yield of 30 kg/d (Table 1). The 4 experimental treatments were: a “control” diet, a supplement 

of 2 g/d of pure (0.97) diallyl sulfide (Allyl sulfide, Sigma-Aldrich Chemical, Milan, Italy), 

and 100 or 400 g/d of fresh peeled garlic cloves (cultivar Aglio Bianco Polesano). The garlic 

supplements were devised to provide approximately 4.35 or 17.39 g/kg DM intake, compared 

with the 10 g/kg DM used by Patra and Saxena (2010) for sheep. The 2 g/d of diallyl sulfide 

corresponded, in terms of total sulfur content, to approximately 100 g/d of fresh garlic cloves. 

At 8 a.m., before TMR distribution, the peeled garlic cloves were weighed and mixed with 

about 3 kg of feed in a bowl to ensure they were completely consumed. Similarly, the diallyl 

sulfide was diluted in 150 mL of water and sprayed evenly over the 3 kg of feed in the bowl, 
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then distributed to the animal. The TMR was then distributed to the cows at about 9 a.m. and 

1 p.m. every day. 

Sampling and controls 

The cows were weighed and assigned a body condition score (BCS) by the same trained 

technician at the beginning and end of each experimental period (Edmonson et al, 1989). DM 

intake (DMI) was calculated from the weight of the TMR distributed daily to each cow and 

the orts collected during the second experimental week. Samples of the base TMR and orts (1 

kg) were collected on days 12 and 14 of each experimental period, and pooled by period 

before analysis. Feed efficiency was computed as the milk yield/DMI ratio. 

Cows were milked twice a day, at 6 a.m. and 5 p.m., and daily milk yield was recorded 

during the second experimental week of each period. Milk samples (50 mL) were collected 

every day at the morning and evening milking for analysis of chemical composition, and milk 

coagulation and curd firming properties. Aliquots of milk produced by each cow (5 liters) 

were also collected in the morning and evening of days 12 and 14 of each experimental period 

for cheese making. Milk samples (1 liter) for sensory analysis were collected from each cow 

in the morning and evening of day 12 of each experimental period. The milk samples were 

immediately sent in sealed bottles to the sensory laboratory for analysis. Other milk samples 

were collected for the analysis of the milk fatty acid profile to achieve an indirect estimation 

of the in vivo enteric methane emission, but the result are not given in this paper (Negussie et 

al., 2017). 

Chemical analyses 

The TMR and garlic cloves used during the trial were analyzed in triplicate according to 

AOAC (2003) for DM (# 934.01), crude protein (CP; # 976.05), ether extract (EE; # 920.29) 

and ash (# 942.05). Neutral detergent fiber (NDF), expressed inclusive of residual ash, was 

determined with α-amylase and sodium sulfite in a neutral detergent solution (Mertens et al., 
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2002) using an Ankom220 Fiber Analyzer (Ankom Technology® Corporation, Macedon, 

NY, USA). Acid detergent fiber, expressed inclusive of residual ash (ADF), and the sulfuric 

acid lignin (ADL) content were determined sequentially after NDF analysis (Robertson and 

Van Soest, 1981). Starch content was determined after hydrolysis to glucose by liquid 

chromatography (AOAC, 2003), and non-structural carbohydrates (NSC) were calculated as 

1000 – EE – CP – NDF – Ash.  

Garlic cloves and TMR samples (0.5 g of DM) were analyzed for their S content. The 

samples were digested in a microwave (Milestone Srl, Sorisole, Bergamo, Italy) with 7 mL of 

superpure HNO3 67% and 2 mL of H2O2 30%. The operating conditions were: temperature 

increase from 25 to 200 °C in 15 min, held for 18 min, temperature decrease from 200 to 35 

°C in 25 min. After cooling down to room temperature, the dissolved sample was diluted with 

ultrapure water to a final volume of 50.0 mL. Sulfur was determined using an Arcos EOP 

inductively coupled plasma-optical emission spectrometer (Spectro Analytical Instruments 

GmbH, Kleve, Germany).  

    Individual morning and evening milk subsamples, preserved with 2-Bromo-2-nitro-1,3-

propanediol, were separately subjected to infrared analysis for fat, protein, casein, lactose and 

total solids contents using a Milko-Scan (FT2, Foss Electric A/S, Hillerød, Denmark). 

Somatic cell counts were obtained with a Fossomatic (FC automatic counter, Foss Electric 

A/S, Hillerød, Denmark) and log-transformed using the following equation: somatic cell score 

(SCS) = 3 + ln2 (Somatic Cell Count × 10
-5

), as reported by Ali and Shook (1980). Milk pH 

was measured using a Crison Basic 25 electrode (Crison, Barcelona, Spain). Milk protein 

fractions were analyzed by reverse-phase high-performance liquid chromatography, following 

Maurmayr et al. (2013). 

Milk coagulation properties 
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Traditional milk coagulation properties (MCP) were measured with a Formagraph (Foss 

Electric A/S, Hillerød, Denmark), and expressed in terms of rennet coagulation time (RCT, 

min), curd-firming time (k20, min), and curd firmness 30 min after rennet addition (a30, mm), 

according to the method proposed by McMahon and Brown (1982). As, on average, the milk 

samples coagulated very late, curd firmness was also recorded 45 and 60 min after rennet 

addition (a45, a60, mm). Given the shortcomings of traditional MCPs demonstrated by Bittante 

(2011), all the 240 Formagraph measures (one every 15 s for 60 min) taken from each milk 

sample were retrieved from the instrument and modeled using the following equation: 

CFt = CFP × [1 − e
−k

CF
× (t − RCTeq)

] 

where CFt is curd firmness at time t (mm); CFP is the asymptotical potential value of CF at an 

infinite time (mm); kCF is the curd-firming rate constant (%/min
−1

); and RCTeq is the rennet 

coagulation time estimated from all the information recorded. The parameter CFP is 

conceptually independent from test duration and is not intrinsically dependent on RCT (unlike 

a30). The parameter kCF describes the shape of the curve from milk gelation to infinity and is 

conceptually different from k20, as it is independent of CFP, but uses all the available 

information. 

Cheese making 

The morning and evening milk samples collected from each cow were pooled by day. Two 

cheese-making session were carried out in each period giving a total of 32 cheese wheels 

produced in this experiment (8 per period). Cheeses from the 4 treatments were manufactured 

(Cattani et al., 2014) simultaneously in 4 small-scale experimental vats, without any 

preliminary heat treatment and skimming of milk samples. Briefly, milk from each cow was 

poured into a 10 L vat (Pierre Guérin Technologies, Mauze, France), and heated to 35° C by 

water circulation. The starter culture Streptococcus thermophilus (CSL Starter Cultures, Lodi, 

Italy) was added to facilitate milk acidification. After 20 minutes, 2.5 mL of liquid rennet 
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(Naturen tm Standard 215, Hansen, Pacovis Amrein AG, Bern, Switzerland) diluted in 40 mL 

of distilled water was added to the milk. After milk gelation, the curd was cut in 4 consecutive 

steps (at 3, 4.15, 5.30, and 10.45 min after gelation; each step 15 sec) to obtain curd cubes of 

about 0.5 cm
3
, then cooked to 45°C. Following the syneresis phase (20 min), each individual 

curd was extracted from the vat and put into a cheese mold, pressed, and immersed in a brine 

solution (20% NaCl) for 24 h. Cheese yields and nutrient recoveries were computed for fresh 

curd according to Cipolat-Gotet et al. (2013). Finally, the cheeses were stored for 63 days at 

15°C and 85% relative humidity, then weighed.  

Sensory analysis 

Sensory analyses were carried out by a panel of 7 trained evaluators with experience of the 

products in a testing room designed in accordance with ISO 8589 (1988) and equipped with 

individual booths and standard CIE white illumination D65 (Pinho et al., 2004). The panelists 

were seven women, 37 ± 2 years old, selected on the basis of their ability to identify the four 

basic tastes of sweetness, bitterness, saltiness, and sourness, and the aroma/flavor compounds, 

including diallyl sulfide and garlic cloves. 

The panelists had previously attended 4 training sessions in which commercial fresh whole 

milk and caciotta cheese (50 d of ripening) were used to familiarize them with the products, 

and in which they discussed the vocabulary (Meilgaard et al., 1991) for the quantitative 

descriptive analysis of the milk and cheese. During these preliminary sessions, the evaluators 

and agreed upon a list of descriptors for the aroma, taste and flavor of milk and cheese, as 

suggested by Pagliarini et al. (1991). Garlic-like aroma and flavor were identified using 

crushed garlic cloves, fruit flavor was associated with almond and walnut, and grass aroma 

with green grass. The panel made their sensory assessment of milk in terms of two aromas 

(overall aroma intensity and garlic-like aroma), three tastes (sweet, salty and bitter), and two 

flavors (overall flavor intensity and garlic-like flavor). The descriptors for the cheese samples 



 

125 

 

included four aromas (aroma intensity, grass, fruit, garlic), four tastes (sweet, salty, sour, 

bitter), and two flavors (flavor intensity and garlic-like flavor). Attributes were scored on a 

scale of 1 (absence of perception) to 10 (very intense) anchored with standard food references 

(Lavanchy et al., 1999), which, in the current work, were represented by commercial milk and 

caciotta cheese. 

Four milk evaluation sessions and four cheese evaluation sessions were carried out, in 

conformity with ISO 6658 (ISO,1985). In each milk testing session, the 4 individual milk 

samples of the evening and those of the following morning were pooled by cow into 2-liter 

bottles, kept at room temperature and scored in two replications. Ripened cheese samples 

were prepared according to Bàrcenas et al. (2007), and the wheels were cut into two and 

placed under vacuum conditions. Immediately before the evaluation, cheese samples 1.5 cm 

thick × 5 cm wide × 6-8 cm long were prepared, representing the whole cheese wheel without 

the rind. The cheese evaluations were also performed in replication. 

All the milk and cheese samples, equilibrated at room temperature (21 ± 1° C), were 

identified by random three-digit codes and presented to assessors in randomized order (Suzzi 

et al., 2015). Water and breadsticks were provided to rinse the mouth after each taste.  

Rheological analysis  

The following analyses were performed on all the cheese wheels after 63 days of ripening. 

The pH was measured in triplicate with a pH meter (HACH LANGE, Crison Instruments 

Sa, Carpi, Italy) equipped with a specific electrode (cat. 5053T, Crison Instruments s.a., 

Carpi, Italy).  

Color was assessed on cheese carrots 1 cm in diameter and 1 cm long after exposure to the 

air (1 h, 21 ± 1 °C) on 5 consecutive sites from the rind to the center by a spectrophotometer 

(CM-600, Minolta Corp., Ramsey, NJ, USA) set on illuminant D65 (standard daylight), and 

with a 10° observer. Data were expressed according to the CIE L*a*b* colorimetric system 
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(CIE, 1986), where L* represents reflection (0 = black, 100 = white), and a* and b* have no 

specific numerical limits: a* ranges from green (negative values) to red (positive values) , and 

b* ranges from blue (negative values) to yellow (positive values).  

The shear force and the corresponding shear work (the work done to cut the sample from 

the starting point to maximum shear force) were measured using an LS5 dynamometer (Lloyd 

Instruments Ltd, Bognor Regis, UK) equipped with a Warner-Bratzler probe, load cell 500N, 

and crosshead speed of 2 mm/sec
-1

, as reported by Segato et al. (2007). 

Statistical analysis 

All the data were averaged by period and cow (15 d.f.) and analyzed according to a model 

of response for a classic 4 × 4 Latin square design using SAS PROC MIXED (SAS Institute, 

2007): 

yilkl= µ + Ti + Pj + Ck + eijkl, 

where: yijkl is the observed trait; µ is the overall mean; Ti is the fixed effect of the feeding 

treatment (i = 1,…,4); Pj is the random effect of period (1,…,4); Ck is the random effect of 

cow (1,…,4); eijkl is the residual error term ~ N (0, σ
2
e, 6 d.f.). The model used for statistical 

analysis of milk quality traits and milk sensory traits also included the SCS as a covariate. 

Orthogonal contrasts were run to test the significance of the treatment (control vs. treated 

samples), the kind of supplement (diallyl sulfide vs. fresh garlic), and the garlic dose (100 vs. 

400 g/d of fresh garlic cloves). Differences were considered statistically significant at P < 

0.05. 

RESULTS 

Dietary treatment had no influence on DMI (23.4 kg/d), milk yield (34.1 kg/d) and the milk 

yield/DMI ratio (1.62 kg milk/kg DMI; Table 2), and had a weak or null influence on milk 

quality traits compared with controls, with the exception of milk protein content (P = 0.011) 

and pH (P = 0.033), which were slightly lower, and ß-casein which was higher (P < 0.001). 
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The proportion of ß-casein exhibited a greater increase with diallyl sulfide than with garlic 

cloves (P = 0.002).  

Rennet coagulation time (both RCT and RCTeq) was very long, 28 min on average. The 

32.5% of milk samples coagulating after 30 min were considered non-coagulating samples 

and therefore had no a30 values. CFt modeling was not affected by these limitations and all 

parameters were obtained for all samples. However, the treatments did not influence any of 

the traditional MCP traits and curd firming equation parameters (Table 3). Similarly, dietary 

treatment had no influence on curd and solid cheese yields, retained water, recoveries of 

protein, fat, solids and energy, daily production of curd and cheese solids, and daily retained 

water. 

Sensory and rheological characteristics of milk and cheese 

The treatments increased the garlic-like aroma (P < 0.001) and the garlic-like flavor (P < 

0.001) in the milk compared with controls, but not the other sensory traits (Table 4). 

However, the kind of supplement and the dose of garlic cloves had an impact on the milk 

sensory attributes. Perception of all the aroma and flavor traits, but not the taste traits, was 

significantly lower with diallyl sulfide than with garlic. Intensity of overall aroma (P < 

0.001), garlic-like aroma (P < 0.001), saltiness (P = 0.041), and garlic-like flavor (P < 0.001) 

were notably greater with the 400 g/d dose of garlic cloves than with the lower dose. 

The treatments increased the garlic-like aroma (P < 0.001), saltiness (P = 0.004), intensity 

of overall flavor (P = 0.009) and garlic-like flavor (P < 0.001) in the cheeses, and lowered the 

pH (P = 0.007) and the shear work (P = 0.045). Diallyl sulfide increased the fruit-like aroma 

(P = 0.031), the a* (P < 0.001) and the b* (P < 0.001) color traits, but lowered the garlic-like 

aroma (P < 0.001), garlic-like flavor (P < 0.001), pH (P = 0.022), shear force (P = 0.032) and 

shear work (P < 0.001) compared with garlic cloves. The highest dose of garlic cloves 

increased the intensity of overall aroma (P < 0.001) and garlic-like aroma (P < 0.001), 
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sourness (P = 0.030), and garlic-like flavor (P < 0.001), and lowered the L* (P < 0.001), shear 

force (P < 0.001) and shear work (P = 0.003) compared with the lowest garlic dose. 

When the individual scores for garlic-like aroma (Figure 1; R
2
 = 0.874) and garlic-like 

flavor (Figure 2; R
2
 = 0.796) in milk and cheese were regressed, we found strong 

relationships with exponential coefficients less than unity. Furthermore, the garlic-like flavor 

of milk was positively correlated with the sour (r = 0.726) and bitter tastes (r = 0.685) of the 

cheese derived from it. 

DISCUSSION 

Interest in the use of bioactive plants or plant metabolites as an alternative to chemical 

substances to mitigate methane emission, has greatly increased in recent decades (Patra and 

Saxena, 2010). The use of garlic as a feed additive has been advocated due to its positive 

effects on rumen fermentation, digestive processes, and metabolic, anti-inflammatory and 

immune-stimulant activities, although the major interest is in its anti-methanogenic properties 

(Kamra et al., 2012). Additives may be in the form of fresh cloves, extracts, oil, or powder, or 

in the form of organosulfur metabolites derived from garlic cloves, such as allicin, diallyl 

sulfide, diallyl disulfide, and allyl mercaptan, either singly or in combination (Calsamiglia et 

al., 2007). These metabolites are produced from S-alk(en)yl-L-cysteine sulfoxides, allicin 

being the largest contributor, by allinase and other enzymes when the garlic cells are broken 

down. The S-alk(en)yl-L-cysteine sulfoxide content of garlic fresh weight is 0.53-1.3% (Patra 

and Saxena, 2010). 

Garlic and dry matter intake, milk yield and milk quality  

Different forms and doses of garlic have been found to have little or no influence on the 

DMI of sheep (Patra and Saxena, 2010; Klevenhusen et al., 2011), lactating cows (Oh et al., 

2013; Blanch et al., 2016; Prayitno et al., 2016), and beef cattle (Staerfl et al., 2012). Patra 

and Saxena (2010) reported that the DMI of sheep decreased after the addition of 10 g/kg DM 
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of fresh garlic cloves, but the effect was transient, and no effects were observed after 

adaptation. Nolte and Provenza (1992) observed that garlic and onions influenced the feed 

preferences of lambs, although the effect was temporary. Garlic oil or garlic extracts were 

found to have a small influence on milk yield, milk composition and feed efficiency (Yang et 

al., 2007; Oh et al., 2013; Blanch et al., 2016). In the current study, the various treatments had 

no influence on DMI, milk yield, the milk yield/DMI ratio, and milk composition. Garlic 

cloves and diallyl sulfide supplements both reduced the milk protein content (N × 6.25) by 

about 2% compared with controls, but while the various protein fractions were lowered, the 

proportion of ß-casein increased. Such alterations can be, at least partially, explained by the 

possible influences that garlic can exert on the N metabolism at ruminal level (Calsamiglia et 

al., 2007). We suggest, therefore, that the use of garlic at a dose of up to approximately 17.4 

g/kg DM would have little or no influence on nutrient utilization, milk yield and composition.  

Cheese-making quality of the milk  

The various garlic treatments had no influence on the milk coagulation properties 

evaluated by traditional procedures, although this result is of limited value due to the high 

incidence of milk samples coagulating later than 30 min after rennet addition, as is frequently 

observed with Holstein-Friesian cows (Bittante et al., 2012; Stocco et al., 2017a). CFt 

modeling equation parameters, on the other hand, are not affected by the length of RCTeq 

(Stocco et al., 2015), although also in this case dietary treatment had an almost null effect. 

The cheese yields and milk nutrient recoveries in cheese we obtained are also close to 

expectations for Holstein cows (Stocco et al., 2017b). Similarly, we found the treatments to 

have no influence on cheese yield traits nor on the recoveries of milk protein, fat, solids and 

energy in the curd. The absence of any effect of garlic cloves on these traits is consistent with 

the small variations we observed in the nutritional composition of the milk, and particularly in 

the milk protein profile. To our knowledge, this has not been previously reported in the 



 

130 

 

literature.  

Sensory characteristics of milk and cheese 

The sensory qualities of dairy products, flavor in particular, are known to have a strong 

influence on consumer acceptability and preferences, and market prices (Bittante et al., 2011a, 

b; Endrizzi et al., 2013). Flavor is a complex trait, composed principally of the sensations of 

aroma and taste (McSweeney et al., 1997). Milk and cheese flavors are influenced by a 

variety of volatile and nonvolatile substances (Drake, 2007; Bergamaschi et al., 2015), and as 

some of these are sulfur compounds (Sreekumar et al., 2009), the enrichment of milk and 

cheese with undesired flavors is of concern.  In fact, many milk and cheese factories do not 

accept milk produced from cows fed garlic because of off flavors. Surprisingly, we found no 

mention of this shortcoming in papers reporting on the addition of garlic, or garlic 

compounds, to the feed of dairy cows. However, the presence of odorous metabolites in the 

cheese is not necessarily a defect, as many traditional cheeses containing garlic are produced 

in many parts of the world (Park, 1990; Regu et al., 2016). 

A review of the scientific literature reveals a lack of information on the influence of garlic 

on the flavor of milk. In part, this is due to the difficulties of analyzing sulfur compounds, 

because of their volatility, sensitivity to oxidation and heat, and presence at very low 

concentrations (Sreekumar et al., 2009). The recent development of model cheese-making 

procedures has made it possible to carry out experiments on a large number of individual 

samples (Cipolat-Gotet et al., 2013), and offers new research opportunities in this field as it is 

now easier to study the influence of different feeding treatments on milk and cheese 

characteristics.  

In our experiment, we found that garlic, particularly at high doses, influenced olfactory 

intensity and garlic-like aromatic notes in both milk and cheese. However, the sensory 

attributes of milk and cheese from cows fed supplements of diallyl sulfide or garlic cloves at 
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the lowest dosage were often no different than those of controls. It should be borne in mind 

that sulfur compounds, including diallyl sulfide, occur naturally in milk and cheese, 

conferring garlic flavor, and their concentrations increase with the aging of the cheeses to 

impart several typical aromatic notes (McGorrin, 2011). These sulfur compounds mainly arise 

from catabolism of L-methionine by bacteria and yeasts, but L-cysteine probably has a greater 

role in the release of volatile sulfur compounds imparting garlic-like flavor in cheese 

(Sutherland et al., 2003).  

Garlic is considered to be a taste and flavor enhancer because of its high concentrations of 

organic sulfur compounds. In our research, 400 g/d of garlic cloves increased the salty taste of 

milk, the sourness of cheese, and the flavor intensity of both milk and cheese. Some garlic 

compounds, such as the ɣ-glutamyl derivatives of S-substituted cysteines found in garlic and 

in other plants of the Allium genus, may be responsible for these responses (Speranza and 

Morelli, 2012).  

The garlic-like aroma and garlic-like flavor of the milk had close exponential relationships 

to the characteristics of the cheese derived from it. The intensity of these perceptions 

apparently decreased from the milk to the cheese with an exponential coefficient less than one 

(Figures 1 and 2). Sensorial perceptions are mediated by other compounds which are present 

in milk, and also in the cheese but in much greater amounts. The greater aromatic and flavor 

complexity in cheese may mask the olfactory notes of garlic and diallyl sulfide, and therefore 

suppress the effect of the garlic-like aroma/flavor (Speranza and Morelli, 2012). It should also 

be borne in mind that olfactory and flavor responses to sulfur molecules are generally non-

linear, as perception differs at low concentrations and at higher concentrations, thereby 

altering the perception of garlic McGorrin, 2011).  
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Chemical and physical characteristics of milk and cheese 

The properties of the sulfur molecules in garlic and their effect on microbial activity during 

cheese ripening may also be responsible for the observed alterations in the pH, color, shear 

force, and shear work of the cheese. Both diallyl sulfide and garlic at the highest dose reduced 

the shear force and shear work of the cheese compared with controls. This is consistent with 

results obtained by Regu et al. (2016) on cheese matrices with added garlic, and with results 

on other protein matrices obtained by Kim et al. (2009). Garlic compounds (polyphenols, such 

as flavonoids and sulfur-containing compounds) exert a strong antioxidant action on protein 

bonds, and intermolecular disulfide bridges may play a role in the protein strength of meat via 

oxidation of protein thiol (Wu et al., 2011). Although we did not look at the redox 

thiol/disulfide formation of cheese proteins in relation to the lowering of the rheological 

parameters, we might speculate that the samples with garlic at the higher dose and diallyl 

sulfide may have limited the protein thiol oxidation and the resulting disulfide formation in 

the cheese. 

The results suggest that garlic at a high dose and diallyl sulfide affect cheese texture and 

limit the formation of disulfide bridges by reducing the cohesiveness of the protein network 

and the weakened cheese structure. The level of pH also seems to play a role in cheese 

texture. Lebecque et al. (2001) assert that “as the pH of cheese curds decreases, there is a loss 

of colloidal calcium phosphate from casein submicelles with a progressive dissociation of 

submicelles into smaller casein aggregates”. In addition, with the breakdown of casein 

micelles the protein surface is more exposed to the action of proteases, and the enzyme-

substrate interaction is enhanced leading to a greater proteolytic effect (Upreti et al., 2006). 

Therefore, the low rheological values detected in the 400 g/d of garlic cloves and diallyl 

sulfide samples may also be due to the effect of pH, since these cheeses had lower pH values 

than the other samples. 
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CONCLUSIONS 

We found that the use of garlic or diallyl sulfide has very little influence on DMI, milk 

yield and quality, cheese-making characteristics, nutrient recoveries, and cheese yields. 

However, garlic cloves in a dose of 400 g/d has a strong influence on the sensory 

characteristics of milk and cheese. Some rheological characteristics of the cheese, pH, color, 

and texture, appeared to be influenced by the administration of diallyl sulfide and garlic 

cloves. The current paper provided evidences that when garlic or garlic compounds are used 

to reduce enteric methane emissions, the sensory and rheological characteristics of milk and 

cheese are affected. However, the garlic-like aroma and the garlic-like flavor of milk and 

cheese are described by exponential relationships lower than 1.0, meaning that the increased 

sensory perception of garlic in milk is only partially reflected in cheese aroma and flavor. 
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Table 1. Ingredients and chemical composition of the total mixed ration top dressed or not with garlic cloves or diallyl sulfide
1
. 

 Total mixed ration Garlic cloves 

Ingredients, g/kg DM   

   Corn silage 291 - 

   Corn-barley based mixture 233 - 

   Sunflower-soybean based mixture 173 - 

   Alfalfa hay 123 - 

   Ryegrass hay 120 - 

   Sugar beet pulp 37 - 

   Mineral and vitamin mixture
2
 13  

   Linseed 10 - 

Chemical composition, g/kg DM   

   DM (g/kg as fed) 462 744 

   Crude protein 130 192 

   Ether extract  34 5 

   NDF 375 62 

   ADF 219 25 

   ADL 37 3 

   Starch  253 - 

   NSC
2
 401 704 

   Ash  60 37 

Total S, mg/g DM 1.27 8.45 
1
 Diallyl sulphide, (Allyl sulfide, 0.97 pure, Sigma-Aldrich Chemical, Milan, Italy) with a stoichiometric S content of 0.281 (C6H10S), was top 

dressed in dose of 0 or 2 g/d, where garlic cloves were top dressed in doses of 0, 100 or 400 g/d. 
2
 Milk H (Tecnozoo, Torreselle di Piombino Dese, Padova, Italy): 470,000 IU/kg vitamin A, 60,000 IU/kg vitamin D3, 2,000 mg/kg vitamin E, 

200 mg/kg vitamin B1, 150 mg/kg vitamin B2, 100 mg/kg vitamin B6, 0.3 mg/kg vitamin B12, 12,000 mg/kg niacin, 40 mg/kg of biotin, 60 mg 

calcium (as calcium d-pantothenate), 2,000 mg/kg betaine (as betaine hydrochloride), 2,000 mg/kg betaine (as betaine hydrochloride), 1,000 

mg/kg choline chloride, 300 mg/kg iron, 150 mg/kg iodine, 30 mg/kg cobalt, 300 mg/kg copper, 2,000 mg/kg manganese, 3,000 mg/kg zinc, 15 

mg/kg selenium.    
3
 Non-structural carbohydrates, computed as 1000 – EE – CP – NDF – ASH. 
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Table 2. Productive performance and milk quality of cows fed TMR supplemented or not with diallyl sulfide
1
 (2 g/d) or with 100 or 400 g/d of 

garlic cloves. 

 Treatments
2
 

SEM
3
 

Contrasts (P-values) 

 

Control 

Supplements Control 

vs 

supplements 

Diallyl sulfide  

vs 

garlic cloves 

100 g/d  

vs 

400 g/d 

 
Diallyl sulfide 

Garlic cloves 

 100 g/d 400 g/d 

DMI
4
, kg/d 23.1 23.8 23.6 23.0 1.17 0.78 0.72 0.70 

Milk yield, kg/d 33.8 34.5 34.0 34.1 1.20 0.66 0.65 0.94 

Milk yield/DMI 1.62 1.59 1.64 1.63 0.08 0.97 0.47 0.91 

BCS
5
 2.62 2.69 2.69 2.62 0.04 0.35 0.51 0.27 

Milk quality traits         

   DM, % 13.0 12.9 12.9 13.1 0.37 0.80 0.80 0.35 

   Fat, % 4.17 4.05 4.06 4.27 0.33 0.86 0.61 0.40 

   Protein, % 3.43 3.39 3.35 3.34 0.15 0.014 0.14 0.91 

   Casein, % 2.63 2.63 2.58 2.59 0.13 0.14 0.09 0.67 

   Casein index, % 76.7 77.5 77.0 77.3 0.92 0.18 0.43 0.56 

   Lactose, % 4.89 4.96 4.93 4.95 0.04 0.10 0.54 0.70 

   SCS
6
, units 1.74 2.76 1.93 1.64 0.74 0.54 0.13 0.70 

   pH 6.63 6.65 6.64 6.65 0.02 0.031 0.64 0.51 

Milk protein profile         

αS1-casein, % 34.0 33.6 33.7 33.8 0.41 0.47 0.71 0.86 

αS2-casein, % 7.06 6.94 6.77 7.16 0.43 0.80 0.95 0.40 

β-casein, % 28.9 30.8 30.0 29.7 1.76 <0.001 0.002 0.41 

κ-casein, % 9.28 8.62 8.95 8.74 0.48 0.26 0.62 0.67 

α-lactalbumin, % 2.16 2.14 2.06 2.19 0.05 0.68 0.78 0.08 

β-lactoglobulin, % 13.8 13.1 13.7 13.6 0.69 0.71 0.49 0.90 
1 

Diallyl sulfide, 0.97 pure (Allyl sulfide, Sigma-Aldrich Chemical, Milan, Italy). 
2 

n = 16 (4 periods × 4 cows). 
3 

Standard error of the means.
 

4 
Dry matter intake. 

5 
Body condition score (1-5 point scale). 

6 
Somatic cell score = 3 + ln2 (Somatic cell count × 10

-5
). 
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Table 3. Milk coagulation properties (MCP), curd firming model parameters (CFt), cheese yields and nutrient recoveries of cows fed TMR 

supplemented or not with diallyl sulfide
1
 (2 g/d) or with 100 (or 400 g/d of garlic cloves. 

 Treatments
2
 

SEM
3
 

Contrasts (P-values) 

 

Control 

Supplements Control 

vs 

supplements 

Diallyl sulfide  

vs 

garlic cloves 

100g/d  

vs 

400 g/d 

 Diallyl 

sulfide 

Garlic cloves 

 100 g/d 400 g/d 

MCP, traditional
4
         

   RCT, min 27.8 27.2 29.9 27.8 1.48 0.66 0.21 0.15 

   k20, min 6.82 6.75 7.27 7.54 0.57 0.43 0.20 0.63 

   a30, mm 13.7 11.5 5.82 13.6 4.88 0.39 0.67 0.11 

   a45, mm 35.9 36.3 30.4 34.9 3.46 0.47 0.23 0.19 

   a60, mm 45.9 46.3 41.6 44.2 2.66 0.39 0.14 0.33 

CFt model parameters
5
         

  RCTeq, min 28.0 27.5 30.1 28.0 2.03 0.66 0.16 0.25 

  kCF, min
-1

 7.36 7.15 6.90 6.88 0.79 0.35 0.96 0.57 

  CFP, mm 53.2 53.3 51.1 52.4 3.03 0.49 0.41 0.29 

Cheese yield, g/kg         

   CYCURD 126 127 128 133 6.5 0.61 0.53 0.64 

   CYSOLIDS 64.9 64.7 64.4 68.0 3.8 0.87 0.51 0.75 

   CYWATER 61.2 63.7 63.0 64.8 4.1 0.43 0.66 0.94 

Nutrient recovery
6
, g/kg         

   RECPROTEIN 771 769 768 774 0.8 0.94 0.68 0.83 

   RECFAT 866 870 862 869 16.2 0.95 0.73 0.82 

   RECSOLIDS 511 507 506 521 15.4 0.99 0.53 0.75 

   RECENERGY 680 682 677 691 16.9 0.88 0.92 0.56 

Production trait
7
, kg/d         

   dCYCURD 4.17 4.14 4.29 4.47 0.15 0.47 0.42 0.25 

   dCYSOLIDS 2.15 2.08 2.18 2.29 0.10 0.77 0.43 0.27 

   dCYWATER 2.03 2.08 2.10 2.17 0.10 0.36 0.58 0.61 
1
 Diallyl sulfide, 0.97 pure (Allyl sulfide, Sigma-Aldrich Chemical, Milan, Italy). 

2 
n = 16 (4 periods × 4 cows).

 

3
 Standard error of the means. 
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4
 RCT = Rennet coagulation time, k20 = curd firming time;   a30, a45, or a60  = curd firmness after 30, 45 or 60 min from rennet addition, 

respectively. 
5
 RCTeq = Rennet coagulation time, kCF = curd-firming rate constant, CFp = asymptotical potential value of CF at an infinite time (Bittante, 

2011). 
6 

REC = recovery of milk protein, fat, solids and energy in the curd.
 

7 
dCY = daily cheese yields of curd, solids and retained water (CY × daily milk yield). 
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Table 4. Sensory traits on raw milk, sensory traits and rheogical analysis on ripened cheese of 

cows fed TMR supplemented or not with diallyl sulfide
1
 (2 g/d) or with 100 or 400 g/d of 

garlic peeled cloves. 

 Treatments
2
 

SEM
3
 

Contrasts (P-values) 

 

Control 

Supplements 

Control 

vs 

supplements 

Diallyl 

sulfide  

vs 

garlic 

cloves 

100/d  

vs 

400g/d 

 
Diallyl 

sulfide 

Garlic cloves 

 
100/d 400g/d 

Milk:         

  Aroma         

    Overall intensity 2.80 2.46 2.95 4.36 0.23 0.09 <0.001 <0.001 

    Garlic-like  1.24 1.44 1.38 4.65 0.23 <0.001 <0.001 <0.001 

  Taste         

    Sweetness 5.10 4.94 4.98 4.52 0.24 0.38 0.52 0.19 

    Saltiness 2.63 2.44 2.44 2.83 0.13 0.69 0.22 0.041 

 Bitterness 1.87 1.91 1.99 2.36 0.16 0.25 0.16 0.10 

  Flavor         

    Overall intensity 4.69 4.63 5.04 5.39 0.23 0.97 0.033 0.28 

    Garlic-like  1.51 1.83 1.83 6.39 0.27 <0.001 <0.001 <0.001 

Cheese:         

  Aroma         

    Overall intensity 3.96 4.20 3.66 4.53 0.16 0.37 0.62 <0.001 

    Grass-like 3.37 3.48 3.11 3.32 0.13 0.63 0.09 0.24 

    Fruit-like 2.77 3.07 2.73 2.68 0.14 0.71 0.031 0.78 

    Garlic-like 1.27 1.12 1.50 2.89 0.14 <0.001 <0.001 <0.001 

  Taste         

    Sweetness 3.23 3.46 3.05 3.25 0.14 0.89 0.08 0.33 

    Saltiness 3.30 3.48 3.84 3.61 0.14 0.044 0.18 0.26 

 Sourness 2.45 2.48 2.57 3.11 0.17 0.17 0.09 0.030 

 Bitterness 2.14 1.89 2.09 2.52 0.19 0.91 0.09 0.12 

  Flavor         

    Overall intensity 4.23 4.80 4.61 5.12 0.20 0.009 0.80 0.07 

    Garlic-like 1.73 1.27 2.59 4.50 0.24 <0.001 <0.001 <0.001 

  pH 5.33 5.21 5.30 5.27 0.02 0.007 0.02 0.31 

  Color
4
         

    L* 66.7 66.5 67.0 64.9 2.53 0.12 0.12 <0.001 

    a* 0.25 0.39 0.16 0.18 0.11 0.81 <0.001 0.71 

    b* 25.1 25.4 24.5 24.7 2.23 0.16 <0.001 0.18 

  Shear force
5
, N 32.7 30.1 34.7 29.6 6.21 0.17 0.032 <0.001 

  Shear work
6
, J×10

-3
 140 124 145 124 0.20 0.045 <0.001 0.003 

1 
Diallyl sulfide, 0.97 pure (Allyl sulfide, Sigma-Aldrich Chemical, Milan, Italy). 

2 
n = 16 (4 periods × 4 cows).

 

3 
Standard error of the means. 

4 
CIElab = L* = reflexion index; a* green-red index; b* blue-yellow index. 

5 
Maximum force required to cut the sample. 

6 
Work done to cut the sample. 
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Figure 1. Relationship between milk and ripened cheese garlic-like aroma (P < 0.01) of cows 

fed TMR supplemented or not with 2 g/d of diallyl sulfide (Sigma-Aldrich Chemical, Milan, 

Italy) or with 100 (G100) or 400 (G400) g/d of garlic cloves. 
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Figure 2. Relationship between milk and ripened cheese garlic-like flavor of cows fed TMR 

supplemented or not with 2 g/d of diallyl sulfide (Sigma-Aldrich Chemical, Milan, Italy) or 

with 100 (G100) or 400 (G400) g/d of garlic cloves. 
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8 General conclusion 

Basing on the three years of research and on results obtained in the different experiments, 

the first screening study allowed better elucidate effects of pure extracts. The study onfirmed 

their effectiveness on in vitro fermentation and CH4 production, however, different 

compounds lead to different effect. Indeed,. the pure compounds influenced in vitro 

fermentation and CH4 production in a dose-dependent manner. The high dosage of limonene 

and allyl-sulfide showed to reduce CH4 production notably in vitro, but such positive effect 

was accompanied by an overall impairment of rumen fermentation, especially in the case of 

limonene. The high dosage of allyl sulfide reduced in vitro GP and CH4 production by about -

15 and -32%, respectively, while manteining the feed degradability, showing  an intermediate 

effect compared to limonene and cinnamaldehyde. Most promising results were observed for 

cinnamaldehyde that, when used at the high dosage, reduced gas and CH4 production, without 

compromising the rumen degradability and VFA production. The high dosage of monensin 

determined the expected effects on rumen fermentation. However, the in vitro conditions and 

procedures are crucial. It then became necessary to verify if the adaptation of the rumen fluid, 

used as inoculum, to the extracts, may affect the fermentation and CH4 production in batch 

culture system condition. In view of this, the second experiment included the active extracts 

in the short term on in vitro fermentations (allyl sulfide, cinnamaldehyde and limonene), but 

with a different procedure: the in vivo adaptation before the use of the rumen fluid as 

inoculum. It is clear that effectiveness of a given compound is real when it has a long-term 

effect on rumen fermentation, to highlight possible resistance by microbial population against 

the same compounds. In general, the use of adapted fluid did not affect any fermentation 

parameter compared to non-adapted fluid, but adding in vitro diet with allyl sulfide, the 

magnitude of the effects of this pure compound tended to be greater when incubated with 

adapted fluid compared to non-adapted fluid. These results suggest that the administration of 
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pure compounds to the cows can affect the rumen microbial activity and the response of in 

vitro short-term experiments.  

The duration of in vitro incubation is very important to assess the real potential of the 

compounds. The long-term system aids in avoiding the discarding of compounds that may 

have needed a longer time to be effective on rumen fermentation. The RuSiTec is a 

continuous culture system, which maintain the rumen fluid vitality for several days. 1 and 2 

g/L doses of isoflavonoid-rich extract were tested for their long-term effectiveness, a strong 

antiprotozoal effect, a decreased in ammonia concentration and increased propionate molar 

proportion have been found, without impairing the overall fermentation process. Liquorice 

extract added at 1 g/L decreased ammonia production without affecting the overall 

fermentation process. When added at 2 g/L, decreases in ammonia production, methane and 

total VFA production were observed. These effects in fermentation were probably related to 

decreases in protozoa numbers, a less diverse bacteria population, as well as changes in the 

structure of both bacteria and archaea communities. The inclusion of an isoflavonoid-rich 

extract from liquorice in the diet could potentially improve the efficiency of the feed 

utilisation by ruminants. While we speculate that the observed effects could be attributed to 

the high content of isoflavonoids, and particularly glabridin, the contribution of other 

phytochemical to the reported effects cannot be ruled out.  

The use of plant secondary metabolites as a feed additive on rumen fermentation and 

methane emission is largely studied, however, the influence of this compounds on the 

production is very little, especially on the organoleptic profile and technology traits. Garlic 

(Allium sativum), and particularly its sulfur compounds, inhibits methanogenesis in vitro, and 

consistently increases the acetate: propionate ratio and butyrate concentration in the rumen 

fluid. The effect is similar, but not identical, to that of the antibiotic monensin, and reflects the 

anti-microbial and anti-protozoal properties of organosulfur garlic compounds. The last 
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experiment reveiled that the use of garlic or allyl sulfide has very little influence on DMI, 

milk yield and quality, cheese-making characteristics, nutrient recoveries, and cheese yields. 

However, garlic cloves in a dose of 400 g/d has a strong influence on the sensory 

characteristics of milk and cheese. Some rheological characteristics of the cheese, pH, colour, 

and texture, appeared to be influenced by the administration of allyl sulfide and garlic cloves. 

These results suggest that when garlic or garlic compounds are used to reduce enteric methane 

emissions, we can expect the sensory and rheological characteristics of milk and cheese to be 

affected. However, the garlic-like aroma and the garlic-like flavour of milk and cheese are 

described by exponential relationships lower than 1.0, meaning that the increased sensory 

perception of garlic in milk is only partially reflected in cheese aroma and flavour. 

To date, no feed additives have demonstrated sustained reduction in CH4 emissions without a 

negative effect on milk production or on the organoleptic profile of the dairy product in 

lactating dairy cattle. However, research should continue in identifying and developing rumen 

modifiers because of its value in elucidating rumen microbial interactions and increasing our 

knowledge of rumen function.  
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ABSTRACT 

The aim of this study was to investigate the rumen bacteria in terms of genetic biodiversity 

and variation due to different physical form of corn in cow diet. A total of twenty dry cows 

were fed for 3 months with the same diet, only differed for corn physical form, ten received 

corn grains, white the other ones received corn flour. To investigate the biodiversity of the 

bacterial 16S rRNA gene clone library analysis has been built up and then the sequencing has 

been carried out using Ion Torrent PGM™ System. Bacterial population was tested using R 

statistical software. The Kruskal-Wallis one-way analysis of variance (Kruskal-Wallis, 1952) 

confirmed that the bacterial populations were different when the animals were fed with grain 

compared with flour corn. Both the OUT’s abundance (Operational Taxonomic Unit) and the 

biodiversity indexes presented a significant difference among the two samples groups, 
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underlining the large changes that take place even with small diet modifications in ruminal 

environment. There is still the need to deepen how exactly the diet changes the rumen 

phylogenetic structure and the consequences on bacteria’s activity. 

Key words: rumen bacterial biodiversity, diet composition, physical form, OTUs. 

 

INTRODUCTION 

Dietary component and variation cause shifts in rumen bacterial ecology than can play a role 

in animal health and productivity. Because of this complexity further investigations are 

required. For several years the rumen has been studied for its role in nutrient digestion and to 

manipulate its microbial ecosystem to increase animal performance and efficiency.  

Microbial population is not stable and changes according to ruminal environmental 

characteristics and diet (Biavati and Mattarelli, 1991; Tajima et al., 2000). Feeding large 

proportions of starch to ruminants increase rumen microbial activity and the animal 

productivity but on the other hand, can negatively affect the rumen environment and its 

functionality, the fibre digestibility, and the animal health (Theurer, 1985).  

The use of grain instead of cereal flour in ruminant nutrition can affect the site of starch 

utilization leading to a shift from the rumen to the intestine with positive effect on efficiency 

of energy utilization and on rumen environment. For this reason there is a great interest to 

investigate the impact of the physical form of cereals on the rumen microbial population 

diversity. New technologies of DNA sequencing ("ultra-high throughput" Ion Torrent 

Personal Genome Machine, PGM) allow the simultaneous analysis of huge amounts of 

sequences at very low cost, improving accuracy in quantification, enabling the identification 

even of minor species. The PGM™ System has been used by Patel et al (2014) to described 

rumen microbiome of Indian cattle (Kankrej breed) under different dietary treatments, where 

cattle were gradually adapted to a high-forage diets. The study revealed significant differences 
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between all the diet treatments. The aim of this study was to investigate the rumen bacteria in 

terms of genetic biodiversity and its variation feeding finishing dry cows with corn grain and 

flour. 

MATERIAL AND METHODS 

A total of twenty dry cows of three different breeds (Holstein, Brown Swiss, and Simmental) 

reared in L. Toniolo experimental farm (Legnaro, PD, Italy) were fed for 3 months with a 

finishing diet composed by corn silage 44.6%, corn 34.2%, sunflower 8.3%, straw 5.8%, 

sugar beet pulp 3.7%, others additives 3.4% of DM (chemical composition: starch 38.8%, 

NDF (Neutral Detergent Fiber) 37.4%, crude protein 10.9%). The cows were divided in 2 

homogeneous groups fed with the same diet that differed only for the corn physical form, ten 

received corn grains, while the other ones received corn flour. Rumen fluid samples were 

collected from each one using rumen probe and stored at -80°C. Subsequently, the DNA has 

been obtained using a method based on guanidine hydrochloride buffer and common DNA 

extraction columns (Yaffe et al., 2012) and then purified with silica and DNAse (Rohland and 

Hofreiter, 2007). After the isolation the bacterial 16S rRNA gene clone library analyse has 

been built up and then the sequencing of V1-V2 region has been carried out using Ion Torrent 

PGM™ System. After sequencing, data were combined and sample identification numbers 

assigned to multiplexed reads using the MOTHUR software environment (De La Fuente et al. 

2014). Data were denoised, low quality sequences, pyrosequencing errors and chimeras were 

removed, then sequences were clustered into OTU’s at 97% identity using the pipeline 

available from http://www.brmicrobiome.org/#!16s-profiling-ion-torrent/cpdg (Pylro et al., 

2014). OTU’s containing fewer than 5 reads were excluded due to the likelihood of them 

being a sequencing artifact. Samples were normalised by randomly resampling to the lowest 

number of sequences per sample using Daisychopper (De La Fuente et al., 2014). The OTUs’ 

study was made using R software. A principal component analysis (PCA), and subsequently, 
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a k-mean cluster analysis, were performed to test the whole dataset without any prior 

information. The cluster analysis has shown that the cow breed did not affected the separation 

of samples in different groups so this factor has been removed from analysis. After this 

preliminary step the Kruskal-Wallis one-way analysis of variance (Kruskal-Wallis, 1952) has 

been applied to verify the difference between the two diets treatments. The number of 

sequences of each normalised sample was 14,289 sequences/sample and the number of 

sequences per each OTU was log transformed. Three indexes had been used to study the 

bacterial biodiversity. The Simpson’s Index was computed as D = ∑(n / N)2, the Shannon's 

diversity index as H = − ∑ pjlnpj
%
j=1  and Richness as mean of the number of OTUs of each 

sample. 

RESULTS AND DISCUSSION 

The 16S rRNA gene clone library analyses and the sequencing of V1-V2 region allowed to 

obtain 4.108 operational taxonomic units (OTUs) as sum of all samples analysed. As shown 

in Fig. 1 for grain and flour groups has been globally identified 3622 and 3089 different 

OUTs, respectively. The log transformation of the sequence number evidenced a different 

distribution of OTUs abundances among diet treatments. In almost all the OTUs, the grain 

group had an higher abundance of sequence, compared to flour group, with the exception of 

only 7 OTUs where flour groups showed a much higher abundance. 

The k-means cluster analysis graphically and clearly explained the differences among the 

groups and allowed to identify two clusters. As shown in figure 2, the two ellipses divided the 

twenty animals in two clusters that clearly identify the diet treatments even if there is an 

intersection area where some samples were not assigned and there is also an error of 

attribution in corn flour ellipse. The Kruskal test, used to statistically analyse the biodiversity 

indexes, identified an outlier within the corn grain group, that behaviours differently from the 
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other and was excluded from the statistical analysis. As reported in table 1, the diversity 

indexes were significantly different for flour and grain groups. 

The Shannon index increases as both the richness and the evenness of the community 

increase, and evidenced that animal fed with corn grain instead of corn flour were 

characterized for a more biodiverse rumen microbial population. The richness index suggest 

that the grain group has a much higher diversity in term of OTUs number compared to the 

flour (1692 vs. 1261 OUTs, respectively). Finally, also the Simpson index, that measure the 

microbial dominance, suggest also a slightly higher evenness of microbial population of grain 

group compared to flour group. 
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To our knowledge, there are no studies that investigate the specific effect of diet physical 

form on rumen bacterial dynamics, however, some Authors, who have worked on different 

levels of forages and concentrates, reported important variations in the rumen bacterial 

biodiversity. In particular, Fernando et al. (2010) found a reduction of biodiversity increasing 

the proportion of concentrates in the diet. This result suggests that manipulation of diet have 

an important role on rumen bacterial selection. In the present study these sensible effects of 

diet treatments on rumen diversity can be related to the different fermentative properties of 

corn fed to the animal as whole grains or after milling. The reduction of grain particle size is 

commonly associate to an increase of rumen fermentation rate and to a reduction of starch 

passage rate (Theurer, 1985). The rumen degradation of starch stimulate the microbial activity 

and the production of high proportions of VFA but, at the sometime, the increase of starch 

fermentation in the rumen is commonly related to a reduction of cellulolytic bacteria activity 

and fibre digestion (Russell, 2002). Indeed, when the rate of VFA production overcome the 

buffering and absorption capacity of rumen, their accumulation lead to fluctuation of rumen 

pH and may have a selective effect on microbial population (Tajima et al., 2001). The 

reduction of bacteria biodiversity can impair the fermentative activity of the rumen microbial 

consortium (Wang and McAllister, 2002). Indeed, rumen bacteria adhere and colonize feed 

particles in the rumen, however, not all bacteria are equipped with a complete array of 

digestive enzymes. Co-culture of different microbial species demonstrated the importance of 

cross-feeding among bacterial species in attaining greatest bacterial growth rates and 

complete digestion of feed (Huntington, 1997).  

 

 

 

 



 

161 

 

CONCLUSIONS 

The present study confirmed the significant difference between rumen bacterial populations in 

cows fed corn with different physical form within the same diet. Thus underline the extreme 

dynamism of the bacteria and the susceptibility to even small changes in diet composition. 

There is a different rumen environmental equilibrium for the two theses that proved the 

variation in terms of bacterial diversity. The technology applied in this research does not 

allow to investigate the rumen bacterial activity. Anyway, this work represents a preliminary 

study that requires further investigations to understand the relation between the physical form 

of diet and the phylogenetic structure of the rumen population. 
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Figure 1. OTUs and Sequences graphical distribution for both groups (Flour and Grain corn). 

 

Figure 2. OTUs Cluster Analysis regarding principal component 1 (PC1) and principal 

component 2    (PC2). 

 

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.5 1 1.5 2 2.5 3 3.5

O
TU

, n
. 

Sequences, Log n. 

Corn flour

Corn grain



 

165 

 

Table 1. Χ
2
, mean of  corn flour group (flour) and corn grain group (grain) and P-value of 

Simpson, Shannon and Richness diversity indexes. 

  

Corn treatment 

 Biodiversity Index Χ
2
 Flour Grain P-value 

Shannon 5.85 4.29 4.9 0.015 

Richness 7.4 1261 1692 0.006 

Simpson 3.72 0.91 0.89 0.053 
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ABSTRACT 

The aim of present study was to develop a FTIR method to quantify amounts and proportions 

of volatile fatty acids (VFA) and ammonia nitrogen (N-NH3) in fermentation fluids collected 

in vitro using innovative Bayesian models as chemometric technique. A set of 170 

fermentation fluids, collected before and after 4 in vitro incubations of 8 diets in 5 replication 

plus 5 blanks, were analysed for VFA, N-NH3 and scanned using the MilcoScan FT2 (Foss 

Electric, Hillerød, Denmark) in the spectral range between 5,000 and 900 cm-1. A Bayes B 

model was used to calibrate equations for each of the fermentative traits. The calibration 

equation predict well VFA and ammonia amounts in calibration and also in validation 

(R2VAL ranged from 0.93 to 0.83 for iso-valeric and n-butyric acid respectively). Whereas, 

the prediction of VFA expressed as proportions of total amount was much less accurate 

(R2VAL ranged from 0.81 to 0.52 for iso-valeric and N-butyric acid respectively). In 
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conclusion, the FTIR and Bayesian models can be used as simple, economic and rapid tool to 

accurately predict VFA amounts in vitro. 

Key-words: mid infrared spectroscopy; in vitro rumen fermentation; Bayesian regression 

model 

 

INTRODUCTION 

Volatile fatty acids (VFAs) and ammonia nitrogen (N-NH3) are the mean product of microbial 

fermentation and their production reflect the diet degradation in the rumen and the production 

of energy and nutrients for the animal (Tagliapietra et al., 2011). The Fourier Transform 

Infrared (FTIR) spectroscopy has been apply in many different fields because it is simple, 

rapid, economic and don’t require sample pre-treatments. For these reasons, FTIR can be a 

useful tool to evaluate fermentative parameters of samples collected both in in vitro and in 

vivo study (Udén and Sjaunja, 2009; Bhagwat et al, 2012). In our knowledge, in literature, 

few attempt has been done to predict VFAs expressed as proportions of total VFA amount 

with FTIR. Different statistical approaches were used to calibrate FTIR equipment like the 

Partial Least Square Regression (PLS) that is a popular multivariate calibration technique 

used to analyse spectra data. Recently, Ferragina et al. (2005) compared the traditional PLS 

approach with diverse Bayesian regression models, commonly used for genomic selection, 

founding the “Bayes B” model as a powerful predictor of milk properties. Therefore, the 

present work aims to develop a FTIR method to quantity amounts and proportions of VFA 

and N-NH3 in fermentation fluids collected in vitro using the Bayes B regression model. 

 

MATERIAL AND METHODS 

Data of 4 in vitro incubations were used to calibrate the FTIR equipment. Two incubations 

were stopped at 24 h, whereas the other two lasted 48 h. In each incubation were tested 8 diets 

in 5 replication plus 5 blanks, where the buffered rumen fluid (RF) was incubated without any 
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substrate. At the beginning of incubation were also collected 3 samples of RF, of buffer and 

of their mix. A total number of 54 samples per incubation were collected and stored for 

chemical and FTIR analysis. The tested diets were formulated for lactating cows and were 

differing for fibre, crude protein, lipids and starch content to be representative of Italian 

intensive dairy system (Dal Maso et al., 2009). Of each test diet, 1 g of sample was incubated 

with 100 ml of buffer (Menke and Steingass, 1988) and 50 ml of RF collected from 3 dry 

cows as described by Tagliapietra et al. (2012). The fermentations were monitored using a 

fully automatic gas production system described by Tagliapietra et al. (2010). RF, buffer and 

buffered RF at the beginning of incubation and fermentation fluid at the end of incubation 

were sampled for the immediate infrared (IR) analysis and others two aliquots were stored at 

−20°C with metaphosphoric acid (25%, w/v) until chemical analysis. The N-NH3 content was 

measured using a FIAstar 5000 analyzer FOSS according a colorimetric method (Cataldo et 

al., 1975). The VFA profile was determined by GC with flame ionization detection (7820A 

GC system, Agilent Technologies, Milan, Italy) using a 30-m stainless steel column (J&W 

DB-FFAP, Agilent Technologies, Milan, Italy) and H2 as carrier gas (flow rate: 30 mL/min; 

isothermal oven temperature: 150°C). The Fourier transform equipment, designed for milk 

analysis (MilcoScan FT2, Foss Electic A/S, Hillerod, Denmark), was used for scanning the 

fresh samples within 3 h from collection over the spectral range of 5000 to 900 waves × cm
-1

. 

Two spectral acquisitions were carried out for each sample, and the results were averaged 

before data analysis. For technical reasons, for 1 incubation, 3 of 5 sample replications and 

also the samples collected at the beginning of incubation were not scanned. The Mahalanobis 

distances were used for the detection of outliers, and the spectra showing a distance higher 

than three times the standard deviation were discarded. Data editing was done in R 

environment (R Core Team, 2013). Finally 170 spectra were available for the study. A 

Bayesian model (Bayes B), implemented in the open-source R-software BGLR (Pérez and De 
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Los Campos, 2014), was used to calibrate equations for each of the fermentative traits as 

recently described by Ferragina et al. (2015). The calibration was performed on a random 

dataset of 80% of data values available using as index of prediction accuracy the 

determination coefficient calculated as square of the correlation between observed and 

predicted values in the calibration dataset (R
2

CAL). The remained 20% of data values were 

used in validation, calculating the R
2 

as square of the correlation between observed and 

predicted values in validation dataset (R
2

VAL); The calibration-validation procedure was 

repeated 20 times for each trait, this procedure guarantees that all the records are in either, the 

calibration and the validation set but never contemporarily.  

 

RESULTS AND DISCUSSION 

The mean values and the standard deviation of the fermentative parameters used in the study 

are given in table 1. On average the concentration of total VFA in fermentation fluid was 

about 3.06 g/L with a large variability (SD ±1.06 g/L) that reflect the different degradability 

of diets incubated but also the inclusion in the calibration set of RF (on average 3.77 g/L of 

total VFA), buffer (without VFA) and buffered RF (1.39 g/L of total VFA) collected at the 

beginning of incubation. The variability of VFA parameters expressed as proportion of total 

VFA was much lower. The SD of VFA proportions expressed as percentage of mean values 

ranged from 6.2% to 22.3% respectively for acetic acid and N-valeric acid. Also the N-NH3 

concentration in the calibration set showed a large variability both for different CP content of 

fermented diets and the inclusion in the data set of RF (74 mg/L), buffer (172 mg/L) and 

buffered RF (132 mg/L). Finally, the pH was on average close to 6.8 and rather stable among 

samples for the high concentration of bicarbonate in the medium used to buffer acids and 

ammonia produced throughout the fermentations. Therefore, except for pH, the variability of 

measurements was comparable to that reported by previous studies (Udén and Sjaunja, 2009) 
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and allows the development of robust calibrations. The sample spectra were homogeneous but 

some outliers were identified probably for the presence of small particles in suspension that 

could interfere with the instrument sensors design for milk analysis. 

 

 

The determination coefficients between the measured and predicted values obtained in 

calibration (R
2

CAL) and validation (R
2

VAL) datasets are given in Table 1. The amounts of 

VFAs were accurately predicted as shown by the R
2
 that on average ranged between 0.97 to 

0.93 of respectively acetic acid and N-butyric acid. Moreover, the individual calibration, 

repeated 20 times, always exceed
 
0.90 R

2
CAL. In validation the performance of prediction 

remain high with mean R
2

VAL  values always greater than 0.90 with the only exception of n-

butyric acid (R
2
=0.84) with a higher variability among individual validation runs. Also the 

values of RMSEVAL, suggest an expected error analysing an external sample of about 0.15, 

0.08 and 0.06 g/L for acetic acid, propionic acid and n-butyric acid respectively. Udén and 

Sjaunja (2009) reported comparable performance of calibration working with semi artificial 

rumen fluids, obtained removing the VFA naturally present in the samples by acidification 

and adding defined amounts of acetic, propionic, n-butyric acid and bicarbonate. 

The prediction accuracy of VFA values, expressed as proportion of total amounts, was 

acceptable in calibration with R
2
 that ranged between 0.92 to 0.69 for valeric acid and n-

butyric acid respectively. Whereas the correlation between measured and predicted values 

decreased in validation but with large differences among VFAs. The ability of the model to 

predict the N-NH3 in fermentation fluids was slightly lower compare to VFA amounts as 

evidenced by the lower R
2

VAL and the higher RMSEVAL. 

In Figure 1 the correlation coefficients between the trait and each wavelength absorbance, and 

the estimated coefficients of the Bayes B equations for the prediction of acetic acid are 

shown. For the prediction of the quantity of acetic acid (Figure 1a), it could be seen that the 
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absorbance recorded at several wavelength is correlated with the measured VFA, but only in 

two cases the correlation coefficient approached 0.50. 

In both cases the spectral areas more correlated were close to the spectral regions 

characterized by the large variability of absorbance due to water bonds (SWIR-MWIR and 

MWIR2 regions as classify by Bittante and Cecchinato, 2013): the first, negative, in the 

SWIR region, and the second, positive, in the area between the MWIR1 and MWIR2 regions. 

The Bayesian method B selected one wavelength in this last area (1721 cm
-1

) as the most 

important one for predicting acetate quantity. This specific wavelength correspond to the 

absorption peak of C=O bond of the carboxylic group (Bittante and Cecchinato, 2013). This 

result clearly evidences a direct relation between the prediction model and the chemical-

physical properties of acetic acid. A similar condition was observed for the others VFAs and 

for N-NH3. A different behaviour has been observed when VFA were expressed as proportion 

of their total amount. The pattern of correlations between absorbance at individual 

wavelengths and the acetate proportion is similar in shape, lower in extension and often 

opposite in sign than when acetate is expressed in g/L (Figure 1b). To predict the acetic acid 

proportion, the Bayes B model attributed a high coefficient to the wavelengths 4356, 3989 

and especially 1644 waves × cm
-1

 with a negative, positive and negative sign respectively. 

These wavelengths are not directly linked to the absorbance properties of acetic acid and the 

prediction depend to the correlation between acetic acid proportion and other chemical 

compounds in the fermentation fluid. In vitro experiments aimed to evaluate the effects of 

different feed combination or additives (Cattani et al, 2012)  would take benefits from 

contemporary measurements of FTIR predicting changes in VFA composition.  
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CONCLUSION 

The FTIR technique, calibrated using a Bayesian regression approach, was able to predict 

accurately the VFA and ammonia amounts in fermentation fluids. Whereas, the prediction of 

VFA expressed as proportions of their total amount was much less accurate. This is due to the 

fact that FTIR absorbances are mainly related to the concentration of specific chemical bonds 

in the fluid and not to their proportions that seems to be predicted only in an indirect way on 

the bases of correlations with the amount of some compound present in the sample. For these 

parameters a greater number of samples in calibration set could be needed for a good 

prediction accuracy. 

 

ACKNOWLEDGEMENTS 

This research was supported by MURST ex 60%. 

 

  



 

173 

 

REFERENCES 

Bhagwat, A.M., De Baets, B., Steen, A., Vlaeminck, B., Fievez, V., (2012). Prediction of 

ruminal volatile fatty acid proportions of lactating dairy cows based on milk odd- 

branched-chain fatty acid profiles: New models, better predictions. J. Dairy, Sci, 95:3926-

3937.  

Bittante, G., Cecchinato, A. (2013): Genetic analysis of the Fourier-transform infrared spectra 

of bovine milk with emphasis on individual wavelengths related to specific chemical 

bonds. J Dairy Sci, 96: 5991-6006. 

Cataldo, D.A., Haroon, M., Schrader, L.E., Youngs, V. L. (1975): Rapid colorimetric 

determination of nitrate in plant tissue by nitration of salicylic acid. Comm Soil Sci Plant 

Anal, 6: 71-80. 

Cattani, M., Tagliapietra, F., Bailoni, L., Schiavon, S. (2012): Synthetic and natural 

polyphenols with antioxidatnts properties stimulate rumen growth in vitro. Anim Prod Sci, 

52:44-50. 

Dal Maso, M., Tagliapietra, F., Cattani, M., Fracasso, A., Miotello, S., Schiavon, S. (2009): 

Characteristics of dairy farms in the North-Eastern part of Italy: Rations, milk yield and 

nutrients excretion. Ital J Anim Sci, 8: 295-297. 

Ferragina, A., de los Campos, G., Vazquez, A., Cecchinato, A., Bittante G. (2015): Bayesian 

regression models outperform partial least squares methods for predicting milk 

components and technological properties using infrared spectra data. J Dairy Sci, in press. 

Menke, K.H., Steingass, H., (1988): Estimation of the energetic feed value obtained from 

chemical analysis and gas production using rumen fluid. Anim Res Dev, 28: 7–55. 

Pérez, P., De los Campos, G., (2014): Genome-wide regression and prediction with the BGLR 

statistical package. Genetics, 198:483.495. 



 

174 

 

Tagliapietra, F., Cattani, M., Bailoni, L., Schiavon, S. (2010): In vitro rumen fermentation: 

Effect of headspace pressure on the gas production kinetics of corn meal and meadow hay. 

Anim Feed Sci Technol, 158: 197–201. 

Tagliapietra, F., Cattani, M., Hansen, H.H., Hindrichsen, I. K., Bailoni, L., Schiavon, S. 

(2011): Metabolizable energy content of feeds based on 24 or 48 h in situ NDF 

digestibility and on in vitro 24 h gas production methods. Anim Feed Sci Technol, 

170:182-191. 

Tagliapietra, F., Cattani, M., Hindrichsen, I.K., Hansen, H.H., Colombini, S., Bailoni, L., 

Schiavon, S. (2012): True dry matter digestibility of feeds evaluated in situ with different 

bags and in vitro using rumen fluid collected from intact donor cows. Anim Prod Sci, 52: 

338–346. 

Udén, P., Sjaunja, L.-O. (2009): Estimating volatile fatty acid concentrations in rumen 

samples by Fourier transform mid-IR transmission spectroscopy. Anim Feed Sci Technol, 

152: 133-140. 

  



 

175 

 

Table 1. Statistics of samples used for the calibration, and prediction R-squared in calibration 

(R
2

CAL) and validation (R
2

VAL) and root mean square error in validation (RMSEVAL). 

 
Mean SD R

2
CAL  R

2
VAL  RMSEVAL 

  Mean Max Min  Mean Max Min  Mean 

VFA amounts, g/L            

- Acetic acid 1.76 0.60 0.97 0.98 0.95  0.92 0.97 0.83  0.15 

- Propionic acid 0.71 0.26 0.96 0.96 0.95  0.90 0.96 0.76  0.08 

- Iso-butyric acid 0.04 0.01 0.96 0.97 0.95  0.91 0.97 0.83  0.00 

- N-butyric acid 0.43 0.17 0.93 0.94 0.91  0.84 0.91 0.65  0.06 

- Iso- valeric acid 0.07 0.03 0.97 0.98 0.97  0.93 0.98 0.87  0.01 

- N-valeric acid 0.06 0.02 0.96 0.97 0.95  0.91 0.96 0.81  0.01 

Total VFA 3.06 1.06 0.97 0.98 0.97  0.93 0.97 0.85  0.26 

VFA proportion, 

g/100 g 

  

   

 

   

 

 

- Acetic acid 58.1 3.60 0.87 0.91 0.85  0.64 0.80 0.43  2.1 

- Propionic acid 22.9 2.27 0.81 0.87 0.76  0.55 0.82 0.36  1.5 

- Iso-butyric acid 1.2 0.19 0.87 0.89 0.84  0.72 0.84 0.55  0.1 

- N-butyric acid 13.7 1.92 0.69 0.75 0.65  0.52 0.75 0.36  1.4 

- Iso- valeric acid 2.4 0.51 0.92 0.93 0.90  0.81 0.92 0.70  0.2 

- N-valeric acid 1.8 0.39 0.92 0.95 0.90  0.77 0.89 0.55  0.2 

Ammonia nitrogen, 

mg/L 176 47.3 0.86 0.89 0.84 

 

0.73 0.86 0.50 

 

23 

pH 6.85 0.16 0.54 0.59 0.47  0.39 0.50 0.30  0.12 

R
2

CAL= coefficient of determination calculated as the square of the correlation between 

observed and predicted values in calibration (80% of entire data set); Mean= mean of the R
2
 

of 20 replicas; Min= minimum value of R
2
 obtained in 20 replicas; Max= maximum value of 

R
2
 obtained in 20 replicas; 

R
2

VAL= coefficient of determination calculated as the square of the correlation between 

observed and predicted values in validation (20% of entire data set); Mean= mean of the R
2
 of 

20 replicas; Min= minimum value of R
2
 obtained in 20 replicas; Max= maximum value of R

2
 

obtained in 20 replicas; 

RMSEVAL= mean of the root mean square errors in validation of 20 replicas. 
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Figure 1. Graphs of correlation coefficients (r) between in vitro chemical compounds (A: 

acetic acid mg/L; B: acetic acid, % VFA) and NIR spectrum wavenumber absorbance (dot 

line), and prediction equation coefficients of each spectrum wavenumber (solid line) between 

5000 and 900 waves × cm
-1

. 
 

A) Acetic acid, g/L 

 

B) Acetic acid, g/100 g VFA 
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