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Abstract

In literature, several tools have been proposed to make inference about a pa-

rameter of interest ψ in presence of nuisance parameters. Among these, the

integrated likelihood seems to gain popularity. Commonly used in Bayesian

inference, the integrated likelihood has been recently studied also under

the frequentist paradigm. We contribute to this analysis studying first its

properties in presence of many nuisance parameters, and in particular in sit-

uations when the number of nuisance parameters increases with the sample

size. In this setting, indeed, the usual inferential tools, based on the profile

likelihood, may perform poorly, and the use of the integrated likelihood can

be an alternative to higher order methods. In particular, we focus on the

asymptotic behaviour of the signed square root integrated likelihood ratio

statistic, studied in a two-index asymptotics setting, in which both the sam-

ple size and the dimension of the nuisance parameter increase to infinity.

As a second topic of the thesis, when there is a sufficient statistic for the

nuisance parameter, we study conditions of equivalence of integrated and

conditional likelihoods. Finally, some efforts are done to study the effect of

the presence of nuisance parameters on pairwise likelihood and on the re-

lated score function. A correction useful to reduce the profile pairwise score

bias is presented.





Sommario

In letteratura, vari strumenti sono stati introdotti per fare inferenza su un

parametro di interesse ψ in presenza di parametri di disturbo. Tra questi,

la verosimiglianza integrata sembra guadagnare popolarità. Usata comu-

nemente nell’inferenza bayesiana, la verosimiglianza integrata è stata re-

centemente oggetto di studi approfonditi anche in ambito frequentista. Il

contributo della tesi in questo ambito consiste in primo luogo nello studiare

le proprietà della verosimiglianza integrata in presenza di parametri di di-

sturbo con dimensione elevata, in particolare in situazioni in cui il numero

dei parametri di disturbo cresce all’aumentare della numerosità campiona-

ria. In questo contesto, infatti, gli strumenti inferenziali usuali, basati sulla

verosimiglianza profilo, possono fornire risultati inaccurati, e l’uso della ve-

rosimiglianza integrata risulta una valida alternativa a strumenti basati su

approssimazioni asintotiche di ordine più elevato. Particolare attenzione è

rivolta all’analisi del comportamento asintotico della statistica radice con

segno del rapporto di verosmiglianza integrata, studiata in un doppio ordine

asintotico, in cui sia la numerosità campionaria, sia la dimensione del para-

metro di disturbo, divergono. In presenza di una statistica sufficiente per

il parametro di disturbo, inoltre, sono studiati i casi di equivalenza tra la

verosimiglianza integrata e condizionata. Infine, sono presentati alcuni con-

tributi relativi allo studio degli effetti della presenza di parametri di disturbo

sulla verosimiglianza a coppie e sulla relativa funzione punteggio profilo, per

la quale è presentata una correzione utile per ridurne la distorsione.
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CHAPTER 1. INTRODUCTION

1.1 Overview

Elimination of nuisance parameters is a central issue in statistical inference.

Many approaches have been developed to face this problem based on pseudo-

likelihood functions, including marginal likelihood, conditional likelihood,

profile likelihood and its modifications; see, e.g., Pace and Salvan (1997,

Chapter 4) and Severini (2000, Chapters 8 and 9). Another type of pseudo-

likelihood is the integrated likelihood function (Kalbfleisch and Sprott, 1970;

Liseo, 1993; Berger et al., 1999; Severini, 2000, 2007, 2010), which is of the

form

LI(ψ) =

∫
Λ
L(ψ, λ)g(λ;ψ)dλ,

where ψ is the parameter of interest, λ is the nuisance parameter, Λ is the

parameter space for λ, assumed here independent of ψ, L(·) is the likelihood

function and g(λ;ψ) is a weight function for λ.

While this approach is quite common in Bayesian analysis, with g(λ;ψ)

a conditional prior density of λ given ψ, it is less used under the frequentist

paradigm. A notable exception is inference on the index parameter of a

group family where the marginal likelihood can be represented as an inte-

grated likelihood. A more general contribution to the study of integrated

likelihood in non-Bayesian inference is Severini (2007).

The integrated likelihood has the advantage that, unlike marginal and

conditional likelihoods, it is always available and, unlike pseudo-likelihoods

built on profile likelihood, it is based on averaging rather than maximiza-

tion. The problems related to the maximization approach are investigated,

for example, in Berger et al. (1999). On the other hand, the primary draw-

back of the integrated likelihood is that the weight function must be chosen

(Severini, 2007). The integrated likelihood is also related to mixture models

(Lindsay, 1980, 1985), random effects models and empirical Bayes techniques

(Robbins, 1955; Maritz, 1970; Morris, 1983).

When the number of nuisance parameters increases with the sample size

difficulties in inference procedures arise, and it is well known that the usual

maximum likelihood estimator for the parameter of interest could be incon-

sistent. Among the techniques developed to overcome this issue, known as

the incidental parameter problem, the conditional likelihood has a promi-

nent role. In many situations, the integrated likelihood shows a similar

behaviour, suggesting the existence of some common ground between the

2



1.1. OVERVIEW

two approaches (Rice, 2008). Such similarities are studied also by Lindsay

et al. (1991), Neuhaus et al. (1994) and Rice (2004). In particular, Rice

(2004, 2008) shows that, in the Rasch model and matched pairs case-control

studies, inference based on a conditional likelihood is the same as making

inference based on an integrated likelihood with a specific weight function.

Since it depends only on the parameter of interest, the integrated likeli-

hood can be also used to construct a likelihood ratio statistic. This statistic

presents some advantages with respect to the standard likelihood ratio statis-

tic. These gains are well explained in Severini (2010). We can recall that,

from a decision theory point of view, integrated likelihood functions have

the same type of optimality properties which hold for the usual likelihood in

models without a nuisance parameter (Wald, 1950, Section 5.1) and, since

the integrated likelihood is based on averaging rather than maximization,

the use of the integrated likelihood sometimes avoids some computational

problems.

The nuisance parameter problem affects also the composite likelihood,

as shown, for instance, in Pakel et al. (2011). This pseudo-likelihood, first

studied by Besag (1974) and Lindsay (1988), is an inference function derived

by multiplying a collection of component likelihoods (Varin et al., 2011), and

it is defined as

cL(ψ, λ) =
J∏
j=1

Lj(ψ, λ)wj ,

where Lj(ψ, λ), j = 1, . . . , J , is the likelihood related to a marginal or

conditional event Aj , and wj are nonnegative weights to be chosen (Lindsay,

1988; Varin et al., 2011). One of the most used composite likelihoods is the

pairwise likelihood (see, for instance, Cox and Reid, 2004), based on the

marginal distribution of two-dimensional components of a multidimensional

random variable.

In the absence of nuisance parameters the composite score function is

unbiased. This is not true when constrained estimates are plugged-in for λ.

A modification for general estimating equations is given in Severini (2002)

and this idea could be applied to composite likelihoods.

3



CHAPTER 1. INTRODUCTION

1.2 Main contributions of the thesis

The principal contribution of the thesis is the study of the properties of

inferential quantities based on integrated likelihoods in presence of many

nuisance parameters. In Chapter 3, in particular, we focus on the behaviour

of the signed square root of the integrated likelihood ratio statistic (Sev-

erini, 2010) in a two-index asymptotics framework (Barndorff-Nielsen, 1996;

Sartori, 2003), underlining how the distribution of the statistic depends on

the choice of the weight function, and specifying how to choose it in order

to obtain good asymptotic results.

Furthermore, in Chapter 4, with reference to equivalence between condi-

tional and integrated likelihood, we present a generalization of Rice (2004,

2008) results to an exponential family framework, underlining the role of the

moment generating function and the conditional moment generating func-

tion. This allows us to extend Rice’s result to the case where the sufficient

statistic could be continuous, assuming that the weight function can depend

on the data, as in, among others, Wasserman (2000) and Severini (2007).

Finally, we show how an approximation for such a weight function leads to

the modified profile likelihood (Barndorff-Nielsen, 1983).

For a discrete sufficient statistic, we also study the relationship between

conditional and integrated likelihood when the weight function related to the

latter depends on an hyperparameter. We indicate which conditions assure

the equivalence between the two likelihoods, reconsidering the results by

Lindsay et al. (1991) an Rice (2004) from a different point of view, namely

as a reparameterization problem.

Finally, in Chapter 5, we study the pairwise profile score function, in

order to find a correction that reduces its bias.
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CHAPTER 2. PRELIMINARIES AND NOTATION

2.1 Nuisance parameters and pseudo-likelihoods

Parametric statistical inference studies how to analyse data through models

where the information about the phenomena is summarized through quan-

tities called parameters. Usually, not all the parameters are of primary

interest and some are considered only to appropriately describe variability

in the population. These parameters are called nuisance parameters. The

simplest setting is when a parametric model F = {pY (y; θ), y ∈ Y, θ ∈ Θ}
is assumed, and the p-dimensional parameter θ is partitioned as θ = (ψ, λ),

with ψ a k-dimensional parameter of interest, and λ a (p − k)-dimensional

nuisance parameter. Hereafter we denote with pY (y; θ) the probability den-

sity of the random variable Y , with Y the sample space and with Θ the

parameter space.

We will also focus on a particular type of nuisance parameters, namely

the so called incidental parameters (Neyman and Scott, 1948). Consider

data y = (y1, . . . , yn), where yi, i = 1, . . . , n, is a realization of a random

variable Yi with density pYi(yi;ψ, λi). While ψ is common to all observations,

and for this reason called structural parameter, the nuisance component

λi is specific to each Yi, and leads to a nuisance parameter of the form

λ = (λ1, . . . , λn). In particular, this means that the dimension of λ depends

on the sample size n.

Unfortunately, the presence of nuisance parameters often affects inferen-

tial procedures about the parameter of interest, especially in the incidental

parameters case. In order to deal with this issue, several solutions have been

proposed. Here we focus on those based on the notion of pseudo-likelihood.

In broad generality, with pseudo-likelihood we indicate any function of the

data and the parameter which behaves, at least in some respects, as if it

were a genuine likelihood. In Section 2.4 we will discuss a particular kind of

pseudo-likelihood which is called composite likelihood. When dealing with

nuisance parameters, instead, we typically refer to pseudo-likelihoods which

depend on the data and the parameter of interest only. Obviously, the at-

tractiveness of basing inference on a pseudo-likelihood increases with the

complexity of the structure of the nuisance component (Pace and Salvan,

1997, Section 4.3).

A first way to construct a pseudo-likelihood for a parameter of interest

is based on a statistical model defined as a reduction of the original model

6



2.1. NUISANCE PARAMETERS AND PSEUDO-LIKELIHOODS

F and it is related to the notion of partial sufficiency and partial ancillarity

(Barndorff-Nielsen and Cox, 1994, Sections 2.3 and 2.5).

Suppose that y is a one-to-one function of (s, t), such that

pT,S(t, s;ψ, λ) = pT |S=s(t; s, ψ, λ)pS(s;ψ, λ). (2.1)

If s is partially sufficient for λ, then

pT |S=s(t;ψ, λ, s) = pT |S=s(t;ψ, s), (2.2)

and we can construct a likelihood based on it, obtaining the conditional

likelihood,

LC(ψ) = pT |S=s(t;ψ, s).

A somehow complementary instance is when s is partially distribution con-

stant for λ, then

pS(s;ψ, λ) = pS(s;ψ),

and inference can be based on the marginal likelihood,

LM (ψ) = pS(s;ψ).

Both conditional and marginal likelihoods are genuine likelihoods, so they

satisfy all the standard properties of a likelihood. Unfortunately, they are

not generally available outside special families of distributions. Furthermore,

besides the special situation

pT,S(t, s;ψ, λ) = pT |S=s(t|s;ψ)pS(s;λ),

when the likelihood has separable parameters and L(θ) = L1(ψ; t|s)L2(λ; s),

there could be a loss of information due to the discarded factor (see, for

instance, Severini, 2000, Section 8).

A different, and more general, idea to construct a pseudo-likelihood for

ψ is to substitute the nuisance parameter with a consistent estimate in the

original likelihood. The profile likelihood,

LP (ψ) = L(ψ, λ̂ψ),

where λ̂ψ is the maximum likelihood estimate of λ for fixed ψ, is the most

7



CHAPTER 2. PRELIMINARIES AND NOTATION

notable case. Although the profile likelihood has good properties, it is not a

genuine likelihood, since it is not deduced from a density function, and this

may have some drawbacks. In particular, the profile score, namely the first

derivative of the logarithm of the profile likelihood, is biased, and this leads

to possible inconsistency of the maximum likelihood estimator for ψ, when

dealing with incidental nuisance parameters (Neyman and Scott, 1948).

Several modifications of the profile likelihood have been proposed to

handle this issue. The idea is to correct the profile likelihood in order to

take into account the lack of information due to the presence of nuisance

parameters, and to penalize the profile likelihood in order to reduce its

score bias. We recall, among the others, the modifications proposed by

Barndorff-Nielsen (1983, 1994, 1995), Cox and Reid (1987) and McCullagh

and Tibshirani (1990). In particular, the approximate conditional likelihood

by Cox and Reid (1987) stands out due to its simple form, since it involves

only the information matrix for the nuisance parameter,

LAC(ψ) = L(ψ, λ̂ψ)| − lλλ(ψ, λ̂ψ)|−1/2. (2.3)

Here −lλλ(ψ, λ) = −∂2 logL(ψ, λ)/∂λ∂λT denotes the block of the informa-

tion matrix related to the nuisance parameter.

Unfortunately, LAC(ψ) depends on the nuisance parameterization and

requires ψ and λ to be orthogonal (see, for instance, Barndorff-Nielsen and

Cox, 1994, Section 2.7). In this case, moreover, it approximates the mod-

ified profile likelihood (Barndorff-Nielsen, 1983). The latter, based on the

p∗-formula (Barndorff-Nielsen, 1980, 1983), requires the specification of an

ancillary statistic (Barndorff-Nielsen and Cox, 1994, Section 2.5). In this

case ancillary means not only distribution constant, but it is required that

the statistic, together with the maximum likelihood estimator, constitutes

a sufficient statistic. Writing the likelihood in the form

L(ψ, λ; y) = L(ψ, λ; ψ̂, λ̂, a),

where a is the ancillary statistic and (ψ̂, λ̂) the maximum likelihood estimate,

the modified profile likelihood is

LMP (ψ) = L(ψ, λ̂ψ)
| − lλλ(ψ, λ̂ψ)|1/2

|lλ;λ̂(ψ, λ̂ψ)|
,

8



2.1. NUISANCE PARAMETERS AND PSEUDO-LIKELIHOODS

where lλ;λ̂(ψ, λ) = ∂2 logL(ψ, λ; ψ̂, λ̂, a)/(∂λ∂λ̂>) is a sample space deriva-

tive (see also Severini, 2000, Section 6.2).

The modified profile likelihood can be obtained both as an approximation

of a conditional likelihood and of a marginal likelihood for ψ, if they exist

(see, for instance, Severini, 2000, Sections 9.3.2 and 9.3.3). In both cases,

the order of the approximation is O(n−3/2) in the moderate-deviation range,

i.e. for ψ of the form ψ = ψ̂+Op(n
−1/2), and O(n−1) in the large-deviation

range, that is for ψ of the form ψ = ψ̂ +Op(1).

The main advantages of the modified profile likelihood over the ap-

proximate conditional likelihood (2.3) lie in its invariance under interest-

respecting reparameterization and in the fact that an explicit orthogonal

parameterization is not required. On the other hand, an ancillary statistic

must be available. To avoid this point, several approximations have been

proposed, for example by Barndorff-Nielsen (1994) and Severini (1998a).

The order of error of these approximations is O(n−1) (for a review, see

Severini, 2000, Section 9.5).

Here with invariance under reparameterization we denote the property

which assures that the conclusion of a statistical analysis is not changed

by different formulations of the parameter, such as θ̃ = θ̃(θ), a one-to-one

function of θ. Furthermore, when θ = (ψ, λ), we denote with interest-

respecting reparameterization the transformation θ̃(θ) = (ψ̃, λ̃), where ψ̃ is

a one-to-one function of ψ and λ̃ is a function of both ψ and λ (see, for

instance, Barndorff-Nielsen and Cox, 1994, Section 1.5).

A simpler idea to adjust the profile likelihood has been pursued by Mc-

Cullagh and Tibshirani (1990). The proposed modification, in fact, requires

to compute via simulation (parametric bootstrap) the first two moments of

the profile score function and to use them in order to centre and rescale it.

When ψ is scalar, the integral with respect to ψ of such adjusted profile

score gives the adjusted profile log-likelihood. A first order approximation

for the adjustment, which does not required simulation, is also provided.

Finally, an alternative proposal is the generalized profile likelihood (Sev-

erini, 1998b), that consists in substituting the constrained maximum likeli-

hood estimate λ̂ψ with an alternative λ̃ψ, that may be in some sense superior,

such as the empirical Bayes estimate when the dimension of λ is large (see,

e.g., Morris, 1983).

Summing up, the main idea in profile likelihood is to eliminate the effect

9



CHAPTER 2. PRELIMINARIES AND NOTATION

of nuisance parameter through a maximization step, the computation of

the constrained maximum likelihood estimate. The various modifications

presented, moreover, try to adjust the profile likelihood taking into account

the nuisance parameter estimate uncertainty. In practice, they penalize the

values of ψ for which the information about λ is relatively large.

A different way to eliminate the nuisance parameters is to exploit averag-

ing instead of maximization. The related pseudo-likelihood is the integrated

likelihood. It is based on the idea that we can summarize the set of likeli-

hoods {L(θ) : θ ∈ Θ(ψ)}, where Θ(ψ) is the subset of the parameter space

such that ψ = ψ(θ), by its average value with respect to some weight func-

tion g(λ;ψ) over Θ(ψ) (Severini, 2007). If Θ(ψ) = {(ψ, λ) : λ ∈ Λ}, then

LI(ψ) =

∫
Λ
pY (y;ψ, λ)g(λ;ψ) dλ. (2.4)

Thanks to this averaging step, the integrated likelihood automatically in-

corporates nuisance parameter uncertainty (Berger et al., 1999).

Originally developed in the Bayesian framework, the integrated like-

lihood has been studied in the non-Bayesian field primarily by Severini

(2007). In that paper, the author shows that, when the nuisance parameter

is strongly unrelated to the parameter of interest and the weight function

does not depend on ψ, the integrated likelihood preserves several desirable

properties of a genuine likelihood, such as Bartlett’s identities, invariance

and insensitivity to the choice of weight function. If we recall that it is

always available, unlike, for example, marginal and conditional likelihood,

and that averaging permits to avoid some possible problems due to the max-

imization step of other pseudo-likelihoods (see, for instance, Berger et al.,

1999, Section 2.1), we can state that the integrated likelihood could be a

useful tool in order to make inference about the parameter of interest.

Severini (2007) provided also a special reparameterization, called zero-

score expectation parameterization, which allows to easily obtain a nui-

sance parameter strongly unrelated to ψ. The new nuisance parameter

φ = φ(ψ, λ; ψ̂) is the solution of the equation

E(ψ0,λ0)[lλ(ψ, λ)]
∣∣
(ψ0,λ0)=(ψ̂,φ)

= 0, (2.5)

where lλ(ψ, λ) is the score function component related to λ and the subscript

10



2.2. INTEGRATED LIKELIHOOD AND SIGNED SQUARE ROOT LIKELIHOOD

RATIO STATISTIC

in the operator E means that the expected value is taken when the true

parameter value is (ψ0, λ0). The main feature of φ is that it depends on the

data. While this idea can cause some problems for Bayesian inference, it

can be used safely in the non-Bayesian framework (Severini, 2007).

The integrated likelihood is also related with random effects models, mix-

ture models and empirical Bayesian techniques, especially when the weight

function depends on further parameters, called hyperparameters.

2.2 Integrated likelihood and signed square root

likelihood ratio statistic

As a pseudo-likelihood, the integrated likelihood depends only on the pa-

rameter of interest and on the data, so it can be used in the construction of

the usual inferential tools. In particular, for a scalar ψ, we will focus on the

signed square root integrated likelihood ratio statistic,

R̄ = sgn(ψ̄ − ψ)
√

2[logLI(ψ̄)− logLI(ψ)], (2.6)

where ψ̄ is the maximizer of LI(ψ).

Asymptotic properties of R̄ have been studied by Severini (2010). In

that paper, the asymptotic standard normal distribution of the statistic is

shown, and a correction is provided, through the approach developed by

Sweeting (1995, 1996). This is based on a term

Q =
g(λ̂;ψ)

g(λ̂; ψ̂)

| − lλλ(ψ̂, λ̂)|1/2

| − lλλ(ψ, λ̂ψ)|1/2
,

which assures the second order normality of the modified signed square root

integrated likelihood ratio statistic. Recalling the quantities

uI =

∣∣∣ ∂
∂ψ̂
{lP (ψ̂)− lP (ψ)}

∣∣∣
| − lPψψ(ψ̂)|

1
2

,

where lP (ψ) = logLP (ψ) and −lPψψ(ψ) = − ∂2

∂ψ2 lP (ψ), and

uP =
|lλ;λ̂(ψ, λ̂ψ)|

| − lλλ(ψ, λ̂ψ)|
1
2 | − lλλ(ψ̂, λ̂)|

1
2

,

11



CHAPTER 2. PRELIMINARIES AND NOTATION

derived by Pierce and Peters (1992), which represent the deviation from

normality due to a small amount of information in the sample and the

effect of nuisance parameters, respectively, the author defines the modified

integrated likelihood ratio statistic as

R̄∗ = R̄+ R̄−1 log

(
uP QuI
R

)
.

Severini (2010) shows that R̄∗ agrees to the second order with the modi-

fied directed likelihood ratio statistic R∗ (Barndorff-Nielsen, 1986). Since R∗

is know to be asymptotically normally distributed with error Op(n
−3/2) in

the moderate-deviation case and Op(n
−1) in the large-deviation case, second

order asymptotic normality of R̄∗ follows. Severini (2010) shows, however,

that second order asymptotic normality can be achieved also for the regu-

lar integrated likelihood ratio statistic without the need of any correction,

through a wise choice of weight function. In the orthogonal parameter case,

indeed, it is possible to drop out the bias due to the presence of nuisance

parameter forcing the bias due to the choice of the weight function to be its

opposite. The desired weight function is such that

∂

∂ψ
log g(λ;ψ) =

1

6

E(ψ,λ)[lψ(ψ, λ)3]

E(ψ,λ)[lψ(ψ, λ)2]
, (2.7)

where lψ(ψ, λ) = ∂ log l(ψ, λ)/∂ψ.

These properties of R̄ have been studied only in the ordinary asymptotic

framework. When there are stratum nuisance parameters, however, the

usual tools are not sufficient to understand the behaviour of R̄ and it is

necessary to study it in the so called two-index asymptotics (Barndorff-

Nielsen, 1996), i.e. an asymptotic scenario which allows both the within-

stratum sample size (m) and the number of strata (q), and consequently the

dimension of nuisance parameter, to diverge.

The study of asymptotic properties for stratified data in two-index asymp-

totics setting has been developed for likelihood statistics based on the mod-

ified profile likelihoods by Sartori (2003). In particular, it is shown that the

likelihood ratio, the score and the Wald statistics based on a modified profile

likelihood have, in a two-index asymptotics framework, a χ2 distribution,

if q
m3 = o(1). Differently, ordinary statistics based on profile likelihood are

guaranteed to have that distribution only if q
m = o(1). This means that

12
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there is a range of cases where likelihood statistics based on modified profile

likelihoods perform well, while the ones based on profile likelihood do not.

Results about profile likelihood based statistics confirm and extend outside

the regular exponential family case the analysis of Portnoy (1988).

Focusing on the signed square root likelihood ratio statistic, we will see

that similar results hold for the integrated likelihood based statistics. In

the two-index asymptotics setting, moreover, Sartori et al. (1999) show that

RMP , the likelihood ratio statistic based on LMP , achieves most of the gain

attained by R∗. Starting from decomposition of R∗

R∗ = R+R−1 log
uI
R

+R−1 log uP

proved in exponential families by Pierce and Peters (1992) and in general

by Barndorff-Nielsen and Cox (1994, Section 6.6.4), Sartori et al. (1999)

note that RMP is equal, to second asymptotic order, to the part of R∗

including the correction for the effect of nuisance parameter (R−1 log uP ).

Since in the two-index asymptotics setting the remaining part involving uI

is Op(1/
√
mq), this means that the distributions of RMP and of R∗ become

close to each other as both the sample size or the number of strata increases,

despite the fact that the dimension of the nuisance parameter increases with

the sample size.

2.3 Integrated versus marginal and conditional like-

lihood

The conditional and the marginal likelihoods are genuine likelihoods, but

they require the availability of a partially sufficient and partially distribu-

tion constant statistics, respectively. In practice, the use of this kind of

pseudo-likelihoods is restricted to multiparameter exponential and to com-

posite group families (Pace and Salvan, 1997, Section 5.4 and Section 7.5).

Moreover, even when model reduction is possible, it may be computation-

ally difficult to actually obtain such likelihoods. It would be interesting to

understand whether marginal and conditional likelihoods could be achieved

through an integrated likelihood.

It is well known that this is possible for marginal likelihood. As stated,

for instance, in Barndorff-Nielsen and Cox (1994, Section 2.8), the marginal

13
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likelihood agrees with an integrated likelihood where the weight function is

chosen to be the right invariant prior distribution. In a composite group

family, the marginal likelihood for the shape parameter ψ, based on the

maximal invariant, can be always represented as an integrated likelihood

with respect to the right invariant measure (Pace and Salvan, 1997, Section

7.7).

The question is unresolved for the conditional likelihood. The literature

related to this topic, indeed, focuses primarily on the equivalence between

the conditional and the integrated maximum likelihood estimators. This

equivalence is proved, for example, by Lindsay et al. (1991) for the Rasch

model, provided that a condition called PD concordance holds. A similar

result is shown by Neuhaus et al. (1994) for binary matched pairs data.

Some cue of the equivalence between the conditional and integrated ap-

proach can be instead found in Andersen and Madsen (1977) and Andersen

(1980, Chapter 6), at least with reference to the Rasch model. However, the

authors were again primarily interested in the estimation of the parameters,

and the equivalence between the entire functions was not delved into. This

aspect was investigated by Rice (2004) in the Rasch model, and by Rice

(2008) for matched pairs case-control studies. In particular, the author con-

siders the distribution of the sufficient statistic for the nuisance parameter,

obtaining some marginal probabilities that depend both on ψ and λ. Since

λ is eliminated integrating with respect to a weight function, he points out

that it is sufficient to adapt the weight function in order to drop out the

dependence of marginal probabilities on ψ.

Severini (1999) compares the pseudo-likelihoods hitherto considered with

Bayesian elimination of nuisance parameter. In particular, for multiparame-

ter exponential families, a prior which assures third order asymptotic equiv-

alence between conditional and integrated likelihoods is obtained. This is

the determinant of the Hessian with respect to λ of the cumulant generat-

ing function. Finally, in the case of orthogonal nuisance parameter, it is

shown that the profile likelihood is second order asymptotically equivalent

to an integrated likelihood with a prior built multiplying a specific factor to

an arbitrary function of λ. As noted firstly by (Sweeting, 1987), moreover,

the approximate conditional likelihood is third order asymptotically equiva-

lent to an integrated likelihood with respect to a constant prior for λ which

should be independent of ψ.

14
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2.4 Composite likelihood and nuisance parameters

A different kind of pseudo-likelihood, not related to the presence of nuisance

parameters, is the composite likelihood. This pseudo-likelihood has been

introduced in order to deal with models where complex interdependencies are

involved (for a review, see Varin et al., 2011). Although the first instance was

proposed by Besag (1974) in spatial statistics, the term composite likelihood

was successfully introduced by Lindsay (1988), with the purpose of better

describing the method of its construction. Indeed, denoting by {A1, . . . ,AJ}
a set of marginal or conditional events with associated likelihoods Lj(θ; y),

j = 1, . . . , J , where y is a realization of the random variable Y with density

pY (y; θ), the composite likelihood is constructed as a weighted product of J

components,

cL(θ) =

J∏
j=1

Lj(θ)
wj .

Here, wj are nonnegative weights to be chosen (Lindsay, 1988; Varin et al.,

2011).

As for the standard likelihood, we can compute the composite log-likeli-

hood as the logarithm of the composite likelihood, cl(θ) = log cL(θ), and its

maximum, called the maximum composite likelihood estimate. In standard

problems, this is the solution of the composite score function equal to zero,

which is a linear combination of the scores associated with each log-likelihood

term lj(θ) = logLj(θ) (Varin et al., 2011).

Since the likelihood terms forming the pseudo-likelihood are not inde-

pendent and, anyway, due to the fact that the resulting function is not

proportional to a density function, we can see the composite likelihood as

a misspecified likelihood. Denoting with clθ(θ) and −clθθ(θ) the composite

version of the score function and the observed information, respectively, we

see that the sensitivity matrix

H(θ) = Eθ[−clθθ(θ)]

differs from the variability matrix

J(θ) = Eθ[clθ(θ)clθ(θ)
T ],

or, in other words, that the second Bartlett identity does not hold. On the
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other hand, since all the score components are unbiased, the first Bartlett

identity is still valid. This, under generally mild conditions, guarantees the

consistency of the composite likelihood estimator.

Furthermore, the failure of the second Bartlett identity has some con-

sequence on the asymptotic theory. For example, given n independent and

identically distributed observations from Yi ∈ Rd, i = 1, . . . , n, with den-

sity pYi(yi; θ), as n → ∞ and d fixed, the asymptotic distribution of the

composite maximum likelihood estimator is

√
n(θ̂c − θ) d→ Np(0, (H(θ)J−1(θ)H(θ))−1).

The composite version of both Wald and score statistics have the usual

asymptotic χ2
k distribution (Molenberghs and Verbeke, 2005, Section 9.3).

Nevertheless, they suffer from the same practical limitations of their ordinary

version: the former is not invariant under reparameterization, while the

latter may be numerically unstable (Varin et al., 2011). On the other hand,

the composite likelihood ratio statistic, which is typically preferable, has the

non-standard asymptotic distribution

k∑
j=1

λjZ
2
j ,

where Z1, . . . , Zk are independent normal random variables and λ1, . . . , λk

are the eigenvalues of a matrix related to H(θ) and J(θ) (Foutz and Sri-

vastava, 1977, 1978; Kent, 1982). This makes it hard to deal with. For

this reason, several adjustments have been proposed for the likelihood ra-

tio statistic, based on first (Rotnitzky and Jewell (1990); Molenberghs and

Verbeke (2005, Section 9.3.3)), first and second (Satterthwaite, 1946; Varin,

2008) or higher (Wood, 1989; Lindsay et al., 2000) order moment matching.

Finally, in order to recover the usual asymptotic χ2
k distribution, vertical

rescaling has been exploited by Chandler and Bate (2007) and Pace et al.

(2011).

In this thesis we will focus our attention on what happens in the presence

of nuisance parameters. As for the ordinary likelihood, when θ = (ψ, λ) has a

component ψ of interest, we can consider the profile version of the composite

likelihood,

cLP (ψ) = cL(ψ, λ̂cψ),
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with λ̂cψ denoting the composite constrained estimate for λ given ψ. In gen-

eral, the first Bartlett identity does not hold anymore, i.e. the corresponding

score function is biased,

E(ψ,λ)[
∂

∂ψ
log cLP (ψ)] 6= 0.

This may cause some problems, especially when the dimension of the nui-

sance parameter is large (see, e.g., Pakel et al., 2011). The dependence

structure among the components of the composite likelihood, however, does

not allow us to use the ordinary score bias corrections.

In Chapter 5, we will consider the score bias of the profile pairwise likeli-

hood. The pairwise likelihood (Cox and Reid, 2004) is a special instance

of composite likelihood, constructed using as likelihood components the

likelihoods based on the two-dimensional marginal distribution of all pairs

(Yr, Ys), r = 1, . . . , d− 1, s = r, . . . , d, of a random vector Y = (Y1, . . . , Yd).

Denoting by pYrYs(yr, ys;ψ, λ) the two-dimensional density, the pairwise like-

lihood is defined as

pL(ψ, λ) =
d−1∏
r=1

d∏
s=r+1

pYrYs(yr, ys;ψ, λ)wrs . (2.8)

Obviously, it has all the properties and issues of a general composite likeli-

hood just described. Nevertheless, it is worth studying the pairwise likeli-

hood because it combines the simplicity of its formulation (it involves only

two-dimensional density functions) with the possibility to make inference on

parameters related to dependence.
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CHAPTER 3. INTEGRATED LIKELIHOOD RATIO STATISTIC IN MODELS

WITH STRATUM NUISANCE PARAMETERS

3.1 Introduction

Inference about ψ proceeds by treating the integrated likelihood as a genuine

likelihood function in order to form point estimates, confidence intervals and

so on. In this chapter, we focus on the properties of the integrated signed

root likelihood ratio statistic introduced in Section 2.2 (see formula (2.6)). In

models in which the dimension of the nuisance parameter is fixed, first-order

asymptotic theory shows that R̄ is asymptotically distributed according to

a standard normal distribution. In Severini (2010) it is shown that R̄ may

be modified so that the resulting statistic is asymptotically standard normal

to a higher order of approximation.

Here we study how integrated likelihood ratio statistic performs in strat-

ified models, in particular when the number of strata is large relative to the

total sample size. To this end, we will consider a two-index asymptotics set-

ting. First, in Section 3.2, we introduce the framework where we evaluate

inferential procedures. Section 3.3 shows the Laplace approximations that

we use in the following sections. In Section 3.4 we analyse the integrated

score function, while the signed square root likelihood ratio statistic is stud-

ied in Section 3.5. Some ideas about the choice of the weight function are

provided in Section 3.6. Section 3.7 contains several examples, while some

conclusions are drawn in Section 3.8.

3.2 Asymptotic framework

Let us consider a stratified model with Yij independent random variables

having density pij(yij ;ψ, λi), i = 1, . . . , q, j = 1, . . . ,m. In the asymptotic

scenario in which both m and q approach infinity, the nuisance parameter of

the model is the infinite sequence λ1, λ2, . . .. It follows that any asymptotic

properties, such as consistency or asymptotic normality, could depend on

the properties of this sequence (Portnoy, 1988). For instance, consider an

exponential family for Yij = (Xij , Zij), with ψ and λ scalar parameters,

giving log-likelihood contribution xijψ + zijλi − K(ψ, λi), where K is the

cumulant generating function of the exponential family. Then the score

function for ψ is given by lψ = m
∑q

i=1{x̄i − Kψ(ψ, λi)} where x̄i is the

sample mean of the x-values in the i-th stratum and Kψ is the derivative of
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K with respect to ψ. Then lψ/
√
mq has cumulant generating function

q∑
i=1

m{K(ψ + t/
√
mq, λi)−K(ψ, λi)− t

√
m

q
Kψ(ψ, λi)}

=
1

q

q∑
i=1

Kψψ(ψ, λi)
t2

2
+

1

q
3
2

q∑
i=1

Kψψψ(ψ, λi)
t3

6
+ · · · .

It follows that asymptotic normality of lψ requires conditions on λ1, λ2, . . .

through conditions on the sequences Kψψ(ψ, λi), Kψψψ(ψ, λi), and so on.

Although there is empirical evidence regarding the values of λi for those

strata actually observed, those λi are irrelevant for questions of convergence.

Thus, it is reasonable to proceed as if the values of λi corresponding to un-

observed strata have properties similar to those of the λi corresponding to

observed strata. One way to formalize this idea is to assume that λ1, λ2, . . .

is a sequence of realized random variables. Thus, we assume that λ1, λ2, . . .

are independent, identically distributed random variables each with an (un-

known) density function π(·;ψ); note that, in order to maintain appropriate

parameterization invariance, the density function of the nuisance parame-

ters must be allowed to depend on ψ. When we apply an interest-respecting

reparameterization, indeed, the new nuisance parameter could depend on

ψ, and so the Jacobian of the transformation, which should be included in

π(·;ψ), depends on the parameter of interest. Furthermore, in contrast to

the weight function g used to form an integrated likelihood, we require that

π be a genuine density function. This type of technical device is commonly

used in models with an increasing number of nuisance parameters; see, e.g.,

Kiefer and Wolfowitz (1956), Pfanzagl and Wefelmeyer (1982), Follmann

(1988), Skovgaard (1989), and Strasser (1996). Pfanzagl (1993) gives a de-

tailed discussion of the differences in the asymptotic theory under models

with fixed and random nuisance parameters.

In the present chapter, we will use the model parameterized by (ψ, λ1,

λ2, . . .) in developing inferential procedures for ψ. Without loss of generality,

we will consider one-dimensional incidental parameters λi. The asymptotic

properties of integrated likelihood procedures will be evaluated under the

marginal model with density

p‡(y;ψ) =

q∏
i=1

∫
Λ
pi(yi;ψ, λ)π(λ;ψ)dλ,
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where pi(y;ψ, λ) is the joint density of Yi = (Yi1, . . . , Yim). Hence, under

the marginal model, Y1, . . . , Yq are independent random vectors with joint

density p‡(y;ψ). Since the density π is unknown, an asymptotic distribution

depending on a specific value for π will not be useful for statistical inference.

Thus, our goal is to consider those asymptotic properties that hold for a wide

class of π. For instance, if a given statistic T is asymptotically standard

normal under the marginal model, for any density π, it seems reasonable to

approximate the distribution of T by a standard normal distribution.

3.3 Laplace approximation

Exact integration of the likelihood function will be possible only in excep-

tional cases; hence, we will rely on the use of Laplace approximations in

deriving the properties of procedures based on the integrated likelihood. Let

lI(ψ) = logLI(ψ). Since each λi applies only in a single stratum, a Laplace

approximation for LI can be obtained by using a Laplace approximation in

each stratum and combining the results:

lI(ψ) = lP (ψ) +

q∑
i=1

log g(λ̂iψ;ψ)−
q∑
i=1

log |jλiλi(ψ, λ̂iψ)|1/2 +

q∑
i=1

Qi(ψ, λ̂iψ).

(3.1)

Here λ̂iψ denotes the maximum likelihood estimator of λi for fixed ψ, lP (ψ)

is the profile log-likelihood function, given by
∑q

i=1 log pi(yi;ψ, λ̂iψ), and

Qi(ψ) is the O(m−1) term in the Laplace approximation in stratum i, given

by

Qi(ψ) = log

(
1− 5

24

|l̃λiλiλi |2

|l̃λiλi |3
+

1

8

|l̃λiλiλiλi |
|l̃λiλi |2

+
1

2

|l̃λiλiλi |
|l̃λiλi |2

g̃λi
g̃
− 1

2

1

|l̃λiλi |
g̃λiλi
g̃

)
+O(m−2) (3.2)

with

l̃λiλi =
∂2l(ψ, λi)

∂λ2
i

∣∣∣∣
λi=λ̂iψ

, l̃λiλiλi =
∂3l(ψ, λi)

∂λ3
i

∣∣∣∣
λi=λ̂iψ

,

and so on,

g̃λi =
∂g(λ;ψ)

∂λi

∣∣∣∣
λi=λ̂iψ
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and

g̃λiλi =
∂2g(λ;ψ)

∂λ2
i

∣∣∣∣
λi=λ̂iψ

.

The same type of approximation holds for the log-likelihood based on

the marginal model. Let l‡(ψ) = log p‡(y;ψ). Then

l‡(ψ) = lP (ψ)+log

q∏
i=1

π(λ̂iψ;ψ)− log

q∏
i=1

|jλiλi(ψ, λ̂iψ)|1/2 +

q∑
i=1

Vi(ψ), (3.3)

where Vi(ψ) has the same form as Qi(ψ), with π replacing g. By combining

Laplace approximations (3.1) and (3.3), we have that

lI(ψ) = l‡(ψ) +

q∑
i=1

log
g(λ̂iψ;ψ)

π(λ̂iψ;ψ)
+O

( q
m

)
;

hence, the score functions satisfy

lIψ(ψ) = l‡ψ(ψ) +

q∑
i=1

∂

∂ψ
log

g(λ̂iψ;ψ)

π(λ̂iψ;ψ)
+O

( q
m

)
. (3.4)

3.4 Score functions

We now consider the relationship between the score functions lIψ(ψ) and

l‡ψ(ψ). For i = 1, 2, . . . , q, let

Di(ψ) =
∂

∂ψ
log

g(λ̂iψ;ψ)

π(λ̂iψ;ψ)
.

Recalling (3.4), the score functions based on lI and l‡ satisfy

lIψ(ψ) = l‡ψ(ψ) +

q∑
i=1

Di(ψ) +Op

( q
m

)
. (3.5)

The properties ofDi(ψ) depend on the properties of g(λi;ψ) and π(λi;ψ).

In general, Di(ψ) = Op(1) and has mean of order O(1) so that

lIψ(ψ) = l‡ψ(ψ) +O(q) +Op

( q
m

)
,

and the score bias of lIψ(ψ) under the marginal model is of order O(q); this
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is the same order as the score bias of the profile likelihood (Sartori, 2003).

There are two cases in which the order of
∑q

i=1Di(ψ) is smaller than

Op(q). The first is when the ratio g(λi;ψ)/π(λi;ψ) is orthogonal to ψ, i.e.

the ratio does not depend on ψ, for each i = 1, 2, . . . , q. Then

∂

∂ψ
log

g(λ̂iψ;ψ)

π(λ̂iψ;ψ)

is of order Op(m
−1/2) and has expected value of order O(m−1). Since∑q

i=1

√
m{Di(ψ)− E[Di(ψ)]} = Op(

√
q), it follows that

lIψ(ψ) = l‡ψ(ψ) +Op

(
q√
m

)
and lI has score bias of order O( qm). Thus, for a given choice of g, there is

a class of density functions π such that lI is approximately score unbiased

under the marginal model corresponding to π. Note that the order of the

score bias in this case is the same as the order of the score bias of the

modified profile likelihood (Sartori, 2003).

For each i = 1, 2, . . . , q, let φi denote a function of (λi, ψ) such that φi

is orthogonal to ψ. The second case occurs when the weight function for φi

corresponding to g does not depend on ψ for each i = 1, 2, . . . , q; in this case

we will say that g is orthogonal to ψ. Then Di(ψ) has expected value of

order O(1/m) under the marginal model; this follows from the relationship

between lI(ψ) and the adjusted profile likelihood (Cox and Reid, 1987),

along with the fact that l‡(ψ) is exactly score unbiased under the marginal

model. It follows that
∑q

i=1Di(ψ) = Op(
√
q) so that

lIψ(ψ) = l‡ψ(ψ) +Op(
√
q) +Op

( q
m

)
and that lI(ψ) has score bias of order O( qm). Note that this result holds

for any choice of the density π. Also note that here φi can be a standard

type of orthogonal parameter based on the expected information matrix, as

discussed in Cox and Reid (1987) or the zero-score expectation parameter

used in Severini (2007), and described in Section 2.2.

Related results hold for other likelihood-based quantities. For instance,

let ψ̄ denote the maximizer of lI(ψ) and let ψ‡ denote the maximizer of

l‡(ψ). Then, using the usual expansion for the maximum-likelihood-type
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estimators (e.g., Severini, 2000, Section 5.3), together with the fact that the

marginal model is a standard one-parameter model,

√
mq(ψ̄ − ψ) =

√
mq(ψ‡ − ψ) + D̄

√
mq +Op

(
1

mq

)
+Op

(√
q

m
3
2

)
where

D̄ =
1

i‡

q∑
i=1

Di(ψ)

and i‡ denotes the expected information in the marginal model.

In general, D̄ = O(1/m) and, hence,

√
mq(ψ̄ − ψ) =

√
mq(ψ‡ − ψ) +Op

( √
q

√
m

)
+O

(
1

mq

)
+O

(√
q

m
3
2

)
.

It follows that ψ̄ has the same asymptotic distribution as ψ‡ provided that

q/m = o(1). If g(λi;ψ)/π(λi;ψ) is orthogonal to ψ, then

D̄ = O(m−2) +Op(1/{
√
m3q}).

It follows that ψ̄ has the same asymptotic distribution as ψ‡ provided that

q/m3 = o(1). Finally, if g is orthogonal to ψ, then

D̄ = O(m−2) +Op(1/(m
√
q));

it follows that ψ̄ has the same asymptotic distribution as ψ‡ provided that

q/m3 = o(1).

3.5 Signed square root integrated likelihood ratio

statistics

We now consider likelihood-ratio-type statistics based on the integrated like-

lihood with g orthogonal to ψ. The asymptotic properties of such statis-

tics under the marginal model can be obtained using the following ap-

proach. Since the marginal model is a standard one-parameter model, the

asymptotic properties of signed likelihood ratio statistic in this model are

well-understood. Using the relationship between the integrated likelihood

and the likelihood based on the marginal model, we are able to determine
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the properties of the signed integrated likelihood ratio statistics under the

marginal model.

Using the Laplace expansions in Section 3.3, it is straightforward to show

that

lI(ψ̄)− lI(ψ) ={l‡(ψ̂‡)− l‡(ψ)}+ {l‡(ψ̄)− l‡(ψ̂‡)}

+ {H(ψ̄)−H(ψ)}+ {B(ψ̄)−B(ψ)}

where

H(ψ) =

q∑
i=1

Hi(ψ) =

q∑
i=1

log
g(λ̂iψ;ψ)

π(λ̂iψ;ψ)

and B(ψ) is a remainder term that is order Op(q/m).

When g is orthogonal to ψ, we have seen that ∂Hi(ψ)/∂ψ has mean of or-

der O(1/m) so that ∂Hi(ψ)/∂ψ = O(
√
q). Moreover, ψ̄ = ψ̂‡+Op(1/

√
m2q)

provided that q/m3 = o(1). It follows that

l‡(ψ̄)− l‡(ψ̂‡) = O(m−1)

and

H(ψ̄)−H(ψ) = Op(m
− 1

2 ).

Since ψ̄ − ψ = Op(1/
√
mq),

B(ψ̄)−B(ψ) = Op

(√
q

m3

)
.

Hence,

lI(ψ̄)− lI(ψ) = {l‡(ψ̂‡)− l‡(ψ)}+Op(m
− 1

2 ) +Op

(√
q

m3

)
. (3.6)

Let R̄ denote the signed likelihood ratio statistic based on lI and let R‡

denote the signed likelihood ratio statistic based on l‡. Then

R̄ = R‡ +Op(m
− 1

2 ) +Op

(√
q

m3

)
provided that q/m3 = o(1). Since R‡ is asymptotically distributed according

to a standard normal distribution under the marginal model, it follows that

R̄ is asymptotically standard normal under the marginal model provided
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that q/m3 = o(1). Note that this result holds for any choice of the density

π(·;ψ).

Since the error in the normal approximation to the distribution of R‡ is of

order Op(1/
√
mq), the error in the normal approximation to the distribution

of R̄ has three components and is of order

Op(1/
√
mq) +Op(m

− 1
2 ) +Op

(√
q

m3

)
.

The first component is based on the overall sample size mq; this sample

size drives the asymptotic normality of likelihood-based quantities such as

the score statistic for ψ. The second component reflects the effect of the

weight function used to construct LI as it relates to the true values of the

λi, as described by the density π(λi;ψ). The third component reflects the

error in the expansion of the integrated and marginal likelihood functions

based on Laplace approximations; since the within-stratum error depends

only on the within-stratum sample size, and the errors are compounded by

summing across strata, this component depends on the relative magnitudes

of q,m. In general, we expect the error in the normal approximation to the

distribution of R̄ to be small whenever m and m3/q are relatively large.

In some cases, the error in the normal approximation to the distribution

of R̄ is of smaller order than that given above. For instance, suppose that

Hi(ψ) does not depend on ψ for each i; this occurs if π(λi;ψ) = g(λi;ψ). It

can also occur if there exists an orthogonal nuisance parameter φ such that

φ̂iψ does not depend on ψ and g(λi;ψ)/π(λi;ψ) is a function of φi. Then

R̄ = R‡ +Op(m
−1) +Op

(√
q

m3

)
provided that q/m3 = o(1).

These results can be compared to those for the usual signed likelihood ra-

tio statistic R. Using results on the properties of the profile likelihood func-

tion and the maximum likelihood estimator in this setting (Sartori, 2003),

it is straightforward to show that, if q/m = o(1), then R is asymptotically

normally distributed with error of order O(m−
1
2 ) +O(q/m). If q/m = o(1)

does not hold, then R would not likely be asymptotically normal.

An important issue is the extent to which R̄ depends on the weight func-

tion used in its construction. Let g1(λi;ψ) and g2(λi;ψ) denote two weight
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functions, each orthogonal to ψ and let R̄1, R̄2 denote the corresponding

signed integrated likelihood ratio statistics. Then

R̄1 = R̄2 +Op

(
1√
m

)
+Op

(√
q

m3

)
.

Thus, provided that q is not too large relative to m, the difference between

R̄1 and R̄2 is driven by the within-stratum sample size. For instance, if

there is a large number of strata with relatively few observations with each

stratum, then the choice of weight function may have an important effect

on the the distributional accuracy of the signed integrated likelihood ratio

statistic. On the other hand, if q/m3 = o(1), the choice of weight function

is relatively unimportant.

3.6 Weight functions

Reconsidering expression (3.6). When q is large, even if π(λi;ψ) and g(λi;ψ)

are orthogonal, or the parameter φi described in previous section is used,

there is an effect of the choice of weight function, and it appears in

B(ψ̄)−B(ψ) =
{
Q(ψ̄)−Q(ψ)

}
−
{
V (ψ̄)− V (ψ)

}
+Op

(√
q

m5

)
,

through the term
{
Q(ψ̄)−Q(ψ)

}
. Here Q(ψ) =

∑q
i=1Qi(ψ) and V (ψ) =∑q

i=1 Vi(ψ).

If we study the order of term B(ψ̄)−B(ψ), it is led by quantity

(ψ̄ − ψ)Qψ(ψ) + (ψ̄ − ψ)Vψ(ψ),

where, as usual, the subscript denotes derivative, in this case with respect

to ψ.

The quantity Vψ(ψ) depends on the unknown distribution π(λ;ψ), and

so it can not be managed. On the contrary, we can act on Qψ(ψ) and, in

both summands, on the quantity (ψ̄ − ψ). The bias of the estimator based

on the integrated likelihood, indeed, depends on the choice of the weight

function, always through the term Q(ψ).

Theoretically, the best choice of the weight function is obviously g(λ;ψ) =

π(λ;ψ), since in this case Q(ψ) = V (ψ) and the score bias for the integrated
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likelihood would be Op((mq)
−1). Since π(λ;ψ) is unknown, we have to find

other solutions. The most conservative one is to force the term Q(ψ) to be

independent of ψ. In this way, we are sure not to increase the bias of the

score to the score function beyond V (ψ). Reconsidering expansion (3.1) and

definition (3.2), it is easy to show that a weight function which achieves this

result is the function g∗ which solves in g the differential equation

1− 5

24

|lλλλ|2

|lλλ|3
+

1

8

|lλλλλ|
|lλλ|2

+
1

2

|lλλλ|
|lλλ|2

gλ
g
− 1

2

1

|lλλ|
gλλ
g

= h, (3.7)

being h an arbitrary function independent of ψ.

From a pratical point of view, it is sufficient to solve

− 5

24

|lλλλ|2

|lλλ|3
+

1

8

|lλλλλ|
|lλλ|2

+
1

2

|lλλλ|
|lλλ|2

gλ
g
− 1

2

1

|lλλ|
gλλ
g

= 0. (3.8)

The main issue is that the function g∗ can not depend on ψ, in order

to maintain the orthogonality, and thus it is not always available. Note

that using this weight function, the integrated log-likelihood agrees to order

O(q/m2) with the approximate conditional log-likelihood, i.e. the approx-

imate conditional likelihood can be seen as an integrated likelihood with

a weight function which makes the terms of order higher than first in the

Laplace approximation independent of ψ. Indeed, when (3.7) holds, the

Laplace expansion of lI(ψ) is

lI(ψ) = lP (ψ)−
q∑
i=1

log | − lλλ(ψ, λ̂ψ)|
1
2 +O(q/m2) = lAC(ψ) +O(q/m2).

(3.9)

A different solution, which should reduce the score bias, is to find a

weight function g which solves only the part

1

2

|lλλλ|
|lλλ|2

gλ
g
− 1

2

1

|lλλ|
gλλ
g

= h (3.10)

of equation (3.7). In this way, the term Q(ψ) remains

1− 5

24

|lλλλ|2

|lλλ|3
+

1

8

|lλλλλ|
|lλλ|2

,

which is the part in common with V (ψ). The simplest way to solve (3.10) is
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to use a uniform weight function. It is worth noting that this choice, which

seems the preferable one, provides us with a pretty easy way to proceed:

after the orthogonalization step, it is sufficient to integrate the likelihood

with respect to λ and to use it to construct the signed square root integrated

likelihood ratio statistic.

3.6.1 Weight function for the original parameterization

The orthogonalization step is necessary to reduce the score bias from O(q)

to O(q/m). From a practical point of view, this means that we have to repa-

rameterize the model before doing the integration and obtain our integrated

likelihood. A different choice can be to use a weight function which takes

into account the non-orthogonal parameterization, following the idea of Cox

and Reid (1993). The aim is to construct a weight function based on the

original parameterization that would act like a uniform one in an orthogonal

parameterization. The desired weight function is

gP (λ;ψ) =

∣∣∣∣∂ξ(ψ, λ)

∂λ

∣∣∣∣−1

, (3.11)

where ξ(ψ, λ) is the solution of the partial differential equation

∂λ(ξ, ψ)

∂ψ
= −i−1

λλ iλψ,

see Cox and Reid (1993, formula 2). It is worth noting that we do not need

to find an explicit expression for λ(ξ, ψ), because the weight function (3.11)

requires only the computation of ∂ξ/∂λ. Example 3.4 presents an instance

of this construction.

3.7 Examples

Example 3.1 (Matched gamma pairs)

Let Yij1 and Yij2, i = 1, . . . , q, j = 1, . . . ,m, be independent exponential

random variables with means ψ/λi and ψλi, respectively, as in Example 4

in Sartori (2003). The parameter of interest is ψ, while there is a nuisance

parameter, λi, for each stratum. Let yi1 =
∑

j yij1 and yi2 =
∑

j yij2, so

30



3.7. EXAMPLES

that Yi1 ∼ Gamma(m, λiψ ) and Yi2 ∼ Gamma(m, 1
λiψ

), the likelihood is

L(ψ, λ) = ψ−2mq exp

{
− 1

ψ

∑
i

(
λiyi1 +

yi2
λi

)}
,

where λ = (λ1, . . . , λq). The constrained estimate of λi is λ̂iψ =
√
yi2/yi1,

which is independent of ψ, so λ̂iψ = λ̂i for every i. The estimate for ψ

is ψ̂ =
∑

i

√
yi1yi2/(mq) and the signed root likelihood ratio statistic is

R = sgn(ψ̂ − ψ)

√
4mq

[
log(ψ/ψ̂) + (ψ̂ − ψ)/ψ

]
.

If we use a weight function g(λi;ψ) = λp−1
i , p ∈ R, we obtain the

integrated likelihood on the form

LI(ψ) = ψ(−2mq+1/2)q
q∏
i=1

Kp

(
2

ψ
√
yi1yi2

)
,

where Kp(·) is the modified Bessel function of the third kind. This explains

very well the effect of the choice of the weight function presented in Section

3.6. Besides the choice of a constant weight function, in this example we

can compute g∗(λi). Substituting the values in (3.8)

−
5
24

(
6yi2
ψλ̂4

iψ

)2

(
− 2yi2

ψλ̂3
iψ

)3 g +

1
8

(
− 24yi2

ψλ̂5
iψ

)
(
− 2yi2

ψλ̂3
iψ

)2 g +

1
2

6yi2
ψλ̂4

iψ(
− 2yi2

ψλ̂3
iψ

)2 g
′ −

1
2(

− 2yi2
ψλ̂3

iψ

)g′′ = 0

and considering a generic g = λα, we obtain

α2 + 2α+
3

4
= 0,

that is solved by α = −1 ± 1/2. Hence g∗ is of the form λ
−1±1/2
i , i.e.

p = ±1/2.

Simulation study

We perform a simulation study replicating B = 9000 times the following

procedure. Each time, we simulate, in q = 1000 strata, m = 10 pairs of

observations yij1 and yij2 from exponential random variables with means

ψ/λi and ψλi, respectively. The nuisance parameters are generated from a

χ2 with 10 degrees of freedom random variable. The true value of ψ is 2.
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Table 3.1: Matched gamma pairs: empirical coverage of signed root likeli-
hood ratio statistics based on profile likelihood (R), integrated likelihoods
with a generic weight function (R̄), uniform weight function (R̄0) and weight
function g∗ (R̄g∗).

nominal R R̄ R̄g∗ R̄0

0.01 0.885 0.001 0.010 0.009
0.025 0.946 0.004 0.024 0.024
0.05 0.973 0.009 0.047 0.046
0.1 0.987 0.022 0.093 0.093
0.5 0.999 0.237 0.478 0.478
0.9 1.000 0.712 0.897 0.897
0.95 1.000 0.826 0.951 0.951
0.975 1.000 0.895 0.976 0.975
0.99 1.000 0.951 0.991 0.991

Table 3.1 shows the empirical coverages of R, R̄, R̄g∗ , R̄0. Here we

indicate with R̄0 the integrated likelihood with a constant weight function,

while with R̄g∗ the one with the weight function which satisfies (3.7). The

integrated likelihood R̄ is computed with a weight function g(λ) = λ3.

As we expected, in this example the usual statistic R does not perform

well. Viceversa, the integrated version, R̄, provides better coverages. They

are not totally satisfactory, but neither so bad, taking into account that the

weight function used, λ3, is quite strange and extreme. Anyway, with a wise

choice of the weight function, we achieve better results, as we can see by

checking the empirical coverages of both R̄g∗ and R̄0.

Figure 3.1 shows graphically these behaviours. The distribution of R

is quite far from the standard normal, while R̄ is much closer. Finally,

the distributions of R̄g∗ and R̄0 are indistinguishable and very close to the

standard normal.

Example 3.2 (Gamma samples with common shape parameter)

Let Yij , i = 1, . . . , q, j = 1, . . . ,m, be independent gamma random vari-

ables with shape parameter ψ and scale parameter 1/λi, as in Barndorff-

Nielsen (1996, Example 5.1). Writing s = u − m
∑q

i=1 log vi, where u =∑q
i=1

∑m
j=1 log yij and vi =

∑m
j=1 yij are the components of the sufficient
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Figure 3.1: Matched gamma pairs: empirical distribution function of several
signed root likelihood ratio statistics. Continuous grey line is the standard
normal.
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statistic, the conditional and profile log-likelihoods are

lC(ψ) = ψs+ q log Γ(mψ)−mq log Γ(ψ), (3.12)

lP (ψ) = ψs+mqψ logmψ −mqψ −mq log Γ(ψ),

while, if we use as a weight function the density function of an exponential

random variable with mean 1, the integrated log-likelihood is

lI(ψ) =ψ

q∑
i=1

m∑
j=1

log yij −mψ
q∑
i=1

log(

m∑
j=1

yij + 1) + q log Γ(mψ + 1)−mqψ

−mq log Γ(ψ). (3.13)

In order to achieve orthogonality, we use the zero-score-expectation pa-

rameter, φi = ψ̂λi
ψ . This leads to the log-likelihood

l(ψ, φ1, . . . , φq) =

q∑
i=1

(ψ
m∑
j=1

log yij+mψ log
φiψ

ψ̂
− φiψ

ψ̂

m∑
j=1

yij−m log Γ(ψ)).

The integrated log-likelihood derives from it by integration, using a weight

function independent of ψ. For the generic comparison R̄ we use the weight

function g(φ) = φ2, while, as in previous example, with R̄0 we describe the

signed square root likelihood ratio statistics with integrated likelihood using

a constant weight function and with R̄g∗ the one based on a integrated

likelihood with weight function g∗(φi) = φ
(−1±
√

1/3)/2

i . The latter is the

solution of (3.8),

5

24

4m2ψ2

φ6
i

φ6
i

m3ψ3
g − 1

8

6mψ

φ4
i

φ4
i

m2ψ2
g +

1

2

2mψ

φ3
i

φ4
i

m2ψ2
g′ +

1

2

φ2
i

mψ
g′′ = 0.

In this example, the conditional likelihood and the integrated likelihood

with uniform weight function are equivalent. In fact, denoting the latter by

L̄0, we have

L̄0(ψ) =

q∏
i=1

∫
R+

e
ψ
∑m
j=1 log yij+mψ log

φiψ

ψ̂
−φiψ

ψ̂

∑q
j=1 yij−m log Γ(ψ)

dφi

=

q∏
i=1

[
eψ

∑m
j=1 log yij−m log Γ(ψ)

(
ψ

ψ̂

)mψ ∫
R+

φmψi e
−φiψ

ψ̂

∑q
j=1 yijdφi

]
.
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We recognize the kernel of a Gamma(mψ + 1, ψ
ψ̂

∑q
j=1 yij), and

L̄0(ψ) =

q∏
i=1

eψ∑m
j=1 log yij−m log Γ(ψ) ψ̂

ψ

(
1∑q

j=1 yij

)mψ+1

Γ(mψ + 1)


q∏
i=1

eψ(
∑m
j=1 log yij−m log

∑q
j=1 yij)−m log Γ(ψ)+log Γ(mψ+1)−logψ.

Since Γ(mψ + 1) = mψΓ(mψ), we obtain

L̄0(ψ) =

q∏
i=1

eψ(
∑m
j=1 log yij−m log

∑q
j=1 yij)−m log Γ(ψ)+log Γ(mψ),

and its logarithm is exactly (3.12). It is worth noting that, since the con-

ditional and marginal likelihood for inference on the shape parameter of a

Gamma distribution are equivalent, the same result can be achieved also

using as a weight function φ−1
i , the weight function related with the right

invariant measure (see Pace and Salvan, 1997, Example 7.29). As a final

remark, we note that the modified profile likelihood in this example is not

equivalent to the conditional likelihood (Sartori, 2003, Example 2).

Simulation study

Also for this example, we perform a simulation study replicating B = 8000

times the following procedure. Each time, we simulate, in q = 1000 strata,

m = 10 observations yij from gamma random variables with shape param-

eter ψ and scale parameter 1/λi. The nuisance parameters are generated

from a χ2 with 10 degrees of freedom. The true value of ψ is 2.

Table 3.2 shows the empirical coverages of several signed root likelihood

ratio statistics. The empirical coverages of R and RI are, as expected, very

poor. Here, with RI we denote the signed square root integrated likeli-

hood ratio statistic based on (3.13). Some non-negligible discrepancies are

present between the nominal and the empirical coverages for R̄, while, choos-

ing wisely the weight function, we can see how these discrepancies disappear,

leading to empirical coverages very close to the nominal ones, both using

an uniform weight function, which is equivalent to the conditional likeli-

hood, or g∗. Figure 3.2 shows the empirical distributions. The distribution

of RC and R̄0, in continuous line, is indistinguishable from the standard
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Table 3.2: Gamma with common shape parameter: empirical coverage of
signed root likelihood ratio statistics, based on profile likelihood (R), condi-
tional likelihood (RC), integrated likelihood with conjugate weight function
(RI), integrated likelihoods with orthogonalization step and generic weight
function (R̄), uniform weight function (R̄0 = RC) and weight function g∗

(R̄g∗).
nominal R RC = R̄0 RI R̄ R̄g∗

0.01 0.000 0.009 1.000 0.045 0.008
0.025 0.000 0.024 1.000 0.095 0.020
0.05 0.000 0.047 1.000 0.156 0.043
0.1 0.000 0.098 1.000 0.258 0.085
0.25 0.000 0.240 1.000 0.489 0.222
0.5 0.000 0.498 1.000 0.740 0.471
0.75 0.000 0.745 1.000 0.906 0.727
0.9 0.000 0.896 1.000 0.973 0.886
0.95 0.000 0.949 1.000 0.988 0.943
0.975 0.000 0.975 1.000 0.996 0.971
0.99 0.000 0.990 1.000 0.999 0.988

normal. Also the statistics R̄g∗ , in dotted line, is very close to standard

normal distribution. On the contrary, both R and RI are very far from

the standard normal, especially the latter, whose distribution is outside the

plotting region. Recalling the fact that also this setting is pretty extreme, it

is worth noting that the behaviour of the integrated signed root likelihood

ratio statistic with the zero-score expectation parameterization even using

the unusual weight function λ2 is better than the usual R.

We perform a simulation study also to understand the effect of the mag-

nitude of m and q on the normal approximation of the proposed statistics.

The results are provided in Table 3.3. As expected, all the empirical cover-

age are closer to the nominal one increasing m and decreasing q. However,

it is worth noting that the statistics based on integrated likelihood with

uniform or g∗ weight function perform very well also in case of small m and

large q. This may be a particularity of this example, in which there is exact

(uniform) or very close (g∗) agreement between integrated and conditional

likelihoods.

Example 3.3 (Exponential Regression)

Consider the exponential regression model with one covariate, where E[Yi] =

λi exp{−ψzi}, with
∑

j zij = 0, as in Cox and Reid (1987, Example 4.2.2),

but with a nuisance parameter for each stratum. The condition
∑

j zij = 0
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Figure 3.2: Gamma with common shape parameter: empirical distribution
function of several signed root likelihood ratio statistics.
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Table 3.3: Gamma with common shape parameter: empirical coverage prob-
abilities of the 0.95 quantile of signed square root likelihood ratio statistics
based on profile likelihood (R), conditional likelihood (RC), integrated like-
lihood with conjugate weight function (RI), integrated likelihoods with or-
thogonalization step and generic weight function, namely g(φ) = φ3 (R̄),
uniform weight function (R̄0 = RC) and weight function g∗ (R̄g∗). Simula-
tions are performed with 8000 replications each and with various values of
m and q.

q m R RC = R̄0 RI R̄ R̄g∗

5 0.069 0.949 1.000 0.999 0.944
100 10 0.295 0.952 1.000 0.985 0.950

20 0.544 0.948 1.000 0.966 0.947
5 0.003 0.949 1.000 1.000 0.943

200 10 0.083 0.950 1.000 0.993 0.950
20 0.325 0.948 1.000 0.972 0.947
5 0.000 0.953 1.000 1.000 0.933

1000 10 0.000 0.949 1.000 1.000 0.943
20 0.001 0.951 1.000 0.989 0.950

makes ψ and λ orthogonal. Here i = 1, . . . , q, j = 1, . . . ,m . The log-

likelihood is

l(ψ, λ) =

q∑
i=1

−m log λi − λ−1
i

m∑
j=1

yij exp{ψzij}

 .

It is straightforward to find λ̂iψ = m−1
∑

j yij exp{ψzij} and that ψ̂ satisfies∑
i,j yijzij exp{ψzij} = 0.

The signed square root profile likelihood ratio statistic is

R = sgn(ψ̂ − ψ)

√√√√2(−m
q∑
i=1

log

m∑
j=1

yij exp{ψ̂zij}+m

q∑
i=1

log

m∑
j=1

yij exp{ψzij})

= sgn(ψ̂ − ψ)

√√√√2

[
m

q∑
i=1

log
(
λ̂iψ/λ̂iψ̂

)]

The general form of the integrated likelihood is

LI(ψ) =

q∏
i=1

∫
λ−mi exp

{
−
∑

j yij exp{ψzij}
λi

}
g(λi;ψ)dλi.

Among the possible weight functions, we can choose the g(λi;ψ) which
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Table 3.4: Exponential regression: empirical coverage of signed root likeli-
hood ratio statistics, based on profile likelihood (R), integrated likelihood
with standard normal weight function (R̄), with uniform weignt function
(R̄0) and with weight function g∗ (R̄g∗).

nominal R R̄ R̄0 R̄g∗

0.01 0.014 0.031 0.007 0.015
0.025 0.033 0.054 0.027 0.032
0.05 0.061 0.089 0.047 0.064
0.1 0.110 0.137 0.099 0.111
0.25 0.245 0.273 0.234 0.249
0.5 0.511 0.503 0.511 0.511
0.75 0.760 0.734 0.767 0.757
0.9 0.910 0.879 0.921 0.905
0.95 0.949 0.923 0.957 0.946
0.975 0.971 0.957 0.981 0.971
0.99 0.989 0.972 0.993 0.988

solves (3.8),
10

3m
g − 9

4m
g +

2λ

m
g′ +

λ2

2m
g′′ = 0,

i.e. g∗ = λ
−3±
√

9−8(13/12)

2 .

Simulation study

We perform a simulation study replicating B = 9000 times the following

procedure. Each time, we simulate in q = 1000 strata, m = 10 observations

yij , while, in each stratum, zij are simulated from a standard normal and

then recentred in order to satisfy the constraint
∑

j zij = 0. The nuisance

parameters are generated from an exponential random variable with mean

1. The true value of ψ is 2.

As we can see in Table 3.4, the empirical coverages of integrated signed

root likelihood ratio statistic are very close to the nominal ones for each

choice of weight function. Here, we use a standard normal weight function

for R̄, while, as in the previous examples, R̄0 and R̄g∗ denote the signed

square root likelihood ratio statistics based on an integrated likelihoods

with uniform and g∗ weight function, respectively. In this example also

the statistic based on profile likelihood performs well: this is due to the fact

that here the profile likelihood approximates the modified profile likelihood

(see Severini, 2000, Example 9.7).
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Example 3.4 (Statistical detection of a noisy signal)

Let us consider the problem of detecting a signal in the presence of back-

ground noise. We focus on the example handled by Davison and Sartori

(2008), while to deepen the statistical issues involved in this kind of prob-

lems, we can refer to Mandelkern (2002) and to Fraser et al. (2004). The

highly idealized version that we consider is a q strata model where, in each

stratum, the observation is a realization of Yi = (Y1i, Y2i, Y3i), i = 1, . . . , q,

where the three components are independent Poisson variables with means

(γiψ + βi, βiti, γiui) respectively. Here Y1i represents the main measure-

ment, Y2i and Y3i are subsidiary background and efficiency measurements

respectively, while ti and ui are known constants.

Reparameterizing the model in terms of ψ, γi and λi = βi/γi, and condi-

tioning on Si = Y1i+Y2i+Y3i, we obtain a trinomial density for (Y1i, Y2i, Y3i)

independent of γi. Up to multiplicative constants, the corresponding likeli-

hood is

L(ψ, λi) =

q∏
i=1

(ψ + λi)
y1iλy2i

i

(ψ + λi + u+ λit)si

An orthogonal parameter is a solution of the equation

∂λi(ψ, ξi)

∂ψ
=

λi(ψ, ξi)(ψti − ui)
ψt(ψ + ui) + λi(ψ, ξi)ui(1 + ti)

,

for instance

ξi(ψ, λi) = ti log λi + log(λi + ψ)− (1 + ti) log(ψ + λ+ ui + λti),

see Davison and Sartori (2008). It is impossible to express λi explicitly as

a function of ψ and ξi, but in order to use formula (3.11) we only need to

compute
∂ξi
∂λi

=
tiuiλi + tiψ

2 + tiuiψ + uiλi
λi(λiψ)(ψ + λi + ui + tiλi)

.

This gives

LI(ψ) =

q∏
i=1

∫ ∞
0

ψ(ψ + λi)
y1iλy2i+2

i

(ψ + λi + u+ λit)si−1

1

tiuiλi + tiψ2 + tiuiψ + uiλi
d λi.
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Table 3.5: Statistical detection of a noisy signal: empirical coverage of signed
root likelihood ratio statistics based on profile likelihood (R), integrated
likelihood with a generic weight function (R̄), integrated likelihood with
zero-score expectation reparameterization and uniform weight function (R̄0)
and integrated likelihood in orginal parameterization and weight function
3.11.

nominal R R̄ R̄0 Rwf
0.01 0.056 0.012 0.011 0.010
0.025 0.074 0.029 0.026 0.026
0.05 0.100 0.057 0.054 0.054
0.1 0.150 0.113 0.106 0.108
0.25 0.297 0.274 0.260 0.276
0.5 0.531 0.523 0.509 0.538
0.75 0.760 0.767 0.756 0.778
0.9 0.896 0.909 0.902 0.917
0.95 0.943 0.953 0.950 0.960
0.975 0.967 0.978 0.975 0.980
0.99 0.982 0.992 0.990 0.992

Simulation study

We simulated B = 9000 times observations from a q = 10 strata process, set-

ting the parameters and the constants as in Davison and Sartori (2008, Ta-

ble 3): ψ = 2, β = (0.20, 0.30, 0.40, . . . , 1.10), γ = (0.20, 0.25, 0.30, . . . , 0.65),

t = (15, 17, 19, . . . , 33) and u = (50, 55, 60, . . . , 95). In Table 3.5 we report

the empirical coverage probabilities of signed root likelihood ratio statistics

based on profile likelihood (R), integrated likelihoods with uniform weight

function without the orthogonalization step (R̄) and with zero-score expec-

tation reparameterization (R̄0), and, finally, the integrated likelihood with

the weight function (3.11).

The empirical coverages of R̄0 and of Rwf are very close to each other

and to the nominal value. R̄ performs pretty well. Anyway, also in this

example in which R̄ behaves relatively well, its coverages are worse than the

ones of the signed ratio statistics based on orthogonality. In this example,

Rwf , based on the expected information matrix reparameterization through

weight function (3.11) and R̄0, based on zero-score expectation parameter-

ization, have a similar behaviour, and outperform the one based on profile

likelihood, especially in the tails. The empirical distribution of the various

statistics is reported in Figure 3.3.
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Figure 3.3: Statistical detection of a noisy signal: empirical distribution
function of several signed root likelihood ratio statistics.
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Example 3.5 (Gaussian with common variance example)

We consider an application of the canonical Neyman-Scott example (Ney-

man and Scott, 1948). Consider yij , i = 1, . . . , q, j = 1, . . . ,m, realiza-

tions of q Gaussian random variables Yi with common variance σ2 and

stratum-dependent mean λi. The variance σ2 is the parameter of inter-

est and λ = (λ1, . . . , λq) is the nuisance parameter. We consider below a

special case where λi = λi(βi;x). Here βi is three-dimensional and x repre-

sents a covariate. We consider the dataset presented in Appendix A.13 of

Pinheiro and Bates (2000) concerning the growth of Loblolly trees. It con-

tains information about q = 14 trees with different seed sources. For every

tree, the dataset reports the height with respect to m = 6 different ages,

namely x = {3, 5, 10, 15, 20, 25}. We assume that Yij = λi(βi;xj) + σεij ,

where εij are independent standard random variables and λi is

λi(βi;x) = β1i + (β2i − β1i) exp{−eβ3ix}.

Besides the usual profile maximum likelihood estimator (σ̂2) and the mod-

ified profile maximum likelihood estimator (σ̂2
MP , see Sartori (2003)), we

compute the maximum integrated likelihood estimators using as weight func-

tions both a multivariate standard normal (σ̄2) and a multivariate uniform

distribution (σ̄2
0). The values obtained are:

Estimator σ̂2 σ̂2
MP σ̄2 σ̄2

0

Value 0.245 0.490 0.489 0.490
0.95 CI (0.184;0.337) (0.329;0.777) (0.345;0.724) (0.330,0.773)

The integrated likelihood based on uniform weight function gives an estimate

very close to σ̂2
MP . Also the use of a Gaussian weight function in normal

regression model is acceptable, leading to a point estimate very close to σ̄2
0.

Figure 3.4 shows the relative log-likelihoods together with 0.95 confidence

intervals. The two integrated log-likelihoods and the modified profile log-

likelihood are quite close to each other. In particular, the integrated log-

likelihood based on uniform weight function and the modified profile log-

likelihood are almost indistinguishable in the plot and lead to pratically

identically confidence interval. In particular, a simulation study performed

by Sartori (2003) gave a coverage probability for the confidence interval
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based on the modified profile log-likelihood very close to the nominal one

(0.951 versus 0.95, with the true value σ2 = 0.5).

3.8 Discussion

In this chapter we compared the signed square root likelihood ratio statistic

based on an integrated likelihood with the standard R based on the profile

likelihood.

The simulation results show that R̄, after an orthogonalization step and

using a suitable weight function, has a good behaviour even in very ex-

treme settings with a large number of strata and few observations in each

stratum. In particular, it is worth noting that the best performances have

been obtained with a relatively easy choice for the weight function, namely

a constant. In Section 3.6 we provided a first hint to explain why this

kind of weight function seems to work so well, but further investigation is

recommended. It is worth noting that, in Example 3.2, the signed square

root likelihood ratio statistics based on integrated likelihood with constant

weight function is equivalent to the one based on the conditional likelihood.

This seems to support our choice. Anyway, we have seen that, even using

a generic weight function (for instance, the pretty uncommon g = λ3 and

g = λ2 in Example 3.1 and 3.2 respectively), R̄ outperforms the standard

R.

In literature other statistics has been studied, based on higher order

asymptotics, such as the directed modified profile likelihood ratio statistic

RMP and the modified directed profile likelihood ratio statisticR∗ (Barndorff-

Nielsen, 1986). The similarities between R̄ and R∗ was studied in the stan-

dard asymptotic setting by Severini (2010). In particular, in presence of

orthogonal parameters, with a suitable choice of weight function, they agree

to second order.

In the two-index asymptotics framework, the close relation between these

two statistics still holds, and in the orthogonal parameter case they agree to

order O(max{1/√mq; 1/
√
m;
√
q/m3}), provided that the weight function

is independent on ψ. To this end, let us consider the relation between R̄

and RMP , since in the two-index asymptotics R∗ and RMP differ from each

other by a quantity of order Op(1/
√
mq) (Sartori et al., 1999). We have
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Figure 3.4: Loblolly data: relative log-likelihoods and confidence intervals
for σ, based on profile log-likelihood (dashed line), modified profile log-
likelihood (dot-dashed line, undistinguishable from continuous line), inte-
grated log-likelihoods with Gaussian (dotted line) and uniform (continuous
line) weight function.
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already seen in Section 3.5 that

R̄ = R‡ +Op(1/
√
m) +Op(

√
q/m3),

while, for the directed modified profile ratio statistic, we can follow a similar

argument. As a first step, the Laplace expansion gives

lMP (ψ̂MP )− lMP (ψ) ={l‡(ψ̂‡)− l‡(ψ)}+ {l‡(ψ̂MP )− l‡(ψ̂‡)}+

−
q∑
i=1

log
π(λ̂‡i ; ψ̂

‡)

π(λ̂iψ;ψ)
+Op(q

1/2m−3/2).

The order of the summand
∑q

i=1 log(π(λ̂‡i ; ψ̂
‡)/π(λ̂iψ;ψ)) isOp(1/

√
m), while

the order of {l‡(ψ̂MP ) − l‡(ψ̂‡)} is Op(1/m). In the orthogonal parameter

case, indeed, since lAC(ψ) approximates lMP (ψ) to second order, we can

apply the argument seen for ψ̄ in the case of a weight function orthogonal

to ψ and we can state that (ψ̂MP − ψ̂‡) = O(1/
√
m2q). As a consequence,

RMP = R‡ +Op(1/
√
m) +Op(

√
q/m3),

and

R̄ = R∗ +Op(1/
√
mq) +Op(1/

√
m) +Op(

√
q/m3).

The above relations provide an alternative proof to the asymptotic stan-

dard normal distribution of R̄ and shows that, in the two-index asymptotic

setting, R̄ can be used to approximate R∗, especially when there is enough

information in each stratum. As RMP , the signed square root integrated

likelihood statistic is able to recover the loss of information due to the pres-

ence of nuisance parameters in a way very similar to R∗, but it fails to

consider the issues due to the lack of information. In order to do this, we

should introduce some modification, as in Severini (2010). Finally, it is

worth noting that the condition which assures the agreement between R̄

and R∗ is q/m3 = o(1), exactly the same which assures the convergence of

the distribution of R̄ to the standard normal distribution.
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LIKELIHOOD

4.1 Introduction

In this chapter we study the similarities and the possible equivalence be-

tween conditional and integrated likelihood. As stated in Rice (2008), their

behaviours are really close to each other in many situations, and some com-

mon ground between the two inferential tools seems to exist. In Section

4.2 we take into consideration integrated likelihoods with a weight function

that depends only on the parameter of interest, while in Section 4.3 we ex-

tend the range of possible weight functions allowing them to depend on an

hyperparameter.

The idea presented in Section 4.2 is simple. Focusing on the exponential

family framework, we provide a weight function which assures the equiv-

alence between conditional and integrated likelihood. In Section 4.3 we

consider cases where there is a discrete sufficient statistic for the nuisance

parameter with finite support, and we investigate the relation between con-

ditional and integrated approach focusing our attention on the hyperparam-

eter, such as in Rice (2004, 2008).

4.2 Weight function that depends on the parame-

ter of interest

Let Y be a random variable with density p(y;ψ, λ) and consider a non-

negative weight function g(λ;ψ), not necessarily a density function. In the

presence of a sufficient statistic S for the nuisance parameter λ, the inte-

grated likelihood (2.4) can be written as

LI(ψ) =

∫
Λ
p(y;ψ, λ)g(λ;ψ) dλ = pY |S=s(y;ψ, s)

∫
Λ
pS(s;ψ, λ)g(λ;ψ) dλ,

(4.1)

where Λ, independent of ψ, is the parameter space for λ. Note that the

conditional density is taken out of the integral since it does not depend on

λ.

The main idea in Rice (2004, 2008) is to force the factor∫
Λ
pS(s;ψ, λ)g(λ;ψ) dλ (4.2)

to be independent of ψ, in order to have all the information about the
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parameter of interest in the conditional density, so that LI(ψ) is equivalent

to the conditional likelihood. This result is achieved through the choice of

a suitable weight function.

Let us consider an exponential family framework, i.e. let the density

function be of the form

p(y;ψ, λ) = exp{tψ + sλ−K(ψ, λ)}h(t, s),

where K(ψ, λ) is the cumulant generating function of Y and t, s are function

of y (see, for instance, Pace and Salvan, 1997, Section 5). Denoting with

p0(s) the marginal density of S when (ψ, λ) = (0, 0) and with Ms(ψ) the

conditional moment generating function of t given S = s,

pS(s;ψ, λ) = exp{λs−K(ψ, λ)}Ms(ψ)p0(s). (4.3)

Therefore, (4.2) can be written as∫
Λ

exp{λs−K(ψ, λ)}Ms(ψ)p0(s)g(λ;ψ) dλ.

We can see that the only quantities dependent on ψ are e−K(ψ,λ) and Ms(ψ).

In order to have (4.2) independent of ψ, it is therefore sufficient to set

g(λ;ψ) =
eK(ψ,λ)

Ms(ψ)
pλ(λ) =

M(ψ, λ)

Ms(ψ)
pλ(λ), (4.4)

where M(ψ, λ) is the moment generating function of Y and pλ(λ) is a generic

function independent of ψ.

Using (4.4), indeed, the integrated likelihood becomes

LI(ψ) = pY |S=s(y;ψ, s)

∫
Λ
eλspλ(λ)dλ ∝ LC(ψ).

Example 4.1 (Log-odds ratio)

Let Y1 and Y2 be two independent Bernoulli random variables with success

probabilities p1 and p2. Here we consider ψ = log{p2(1−p1)/[p1(1−p2)]} as

the parameter of interest and λ = log{p1/(1−p1)} as the nuisance parameter.

A sufficient statistic has components s = y1 + y2 and t = y2. The density
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can be written as

pT,S(t, s;ψ, λ) ∝ exp{tψ + sλ− [log(1 + eλ) + log(1 + eψ+λ)]}.

Here

M(ψ, λ) = (1 + eλ)(1 + eψ+λ),

while with some algebra (see Pace and Salvan, 1997, example 5.12) we obtain

Ms(ψ) =

min(1,s)∑
t′=max(0,s−1)

eψt
′
.

With these quantities, it is straightforward to write the weight function (4.4)

as,

g(λ;ψ) =
(1 + eλ)(1 + eψ+λ)∑min(1,s)

t′=max(0,s−1) e
ψt′
pλ(λ).

The integrated likelihood is therefore

LI(ψ) =

∫
R

eλs+ψy2

(1 + eλ)(1 + eλ+ψ)
g(λ;ψ)dλ

=

∫
R

eλs+ψy2

(1 + eλ)(1 + eλ+ψ)

(1 + eλ)(1 + eλ+ψ)∑min(1,s)
t′=max(0,s−1) e

ψt′
pλ(λ)dλ

∝ eψy2∑min(1,s)
t′=max(0,s−1) e

ψt′
.

Since this expression is constant both for S = 0 and S = 2, it is exactly the

conditional likelihood, for any choice of pλ(λ).

Example 4.2 (Gamma with common shape parameter)

Let Yij , i = 1, . . . , q, j = 1, . . . ,mi, be independent random variables with

Gamma(ψ, λi) distribution. For each stratum i,

pYi(yi;ψ, λi) = exp{ψ
mi∑
j=1

log yij−λi
mi∑
j=1

yij−mi log Γ(ψ)+miψ log(λi)}
mi∏
j=1

y−1
ij

If we set the natural observation
(∑mi

j=1 log yij ,
∑mi

j=1 yij

)
= (ti, si) we ob-
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tain (see Pace and Salvan, 1997, Example 5.13),

M(ψ, λi) =
Γ(ψ)mi

λmiψi

,

and

Msi(ψ) =
smiψi Γ(ψ)mi

Γ(miψ)
.

Substituting these quantities in (4.4), the weight function is

g(λi;ψ) =
Γ(ψ)mi

λmiψi

(
smiψi Γ(ψ)mi

Γ(miψ)

)−1

pλi(λi)

=
Γ(miψ)

λmiψi smiψi

pλi(λi),

and the corresponding integrated likelihood is proportional to the condi-

tional likelihood,

LI(ψ) =

q∏
i=1

∫
R+

eψtiλmiψi

Γ(ψ)mi
sλii Γ(miψ)

λmiψi smiψi

pλi(λi)dλi

∝
q∏
i=1

eψtiΓ(miψ)

smiψi Γ(ψ)mi
= LC(ψ).

4.2.1 Approximation with the modified profile likelihood

A major drawback for using (4.4) is the potential difficulty of obtaining the

conditional moment generating function. To overcome this issue, we can use

an approximation for it, as given by Pace and Salvan (1992),

M̃s(ψ) = exp{K̃s(ψ)} = exp{K(ψ, λ̂ψ)− λ̂ψs−
1

2
log |Kλλ(ψ, λ̂ψ)|}. (4.5)

If we substitute this expression for Ms(ψ) in the expression of LI(ψ), we
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obtain

LI(ψ) =

∫
Λ
L(ψ, λ)

M(ψ, λ)

M̃s(ψ)
g(λ)dλ (4.6)

=

∫
Λ
eλs+ψt−K(ψ,λ) e

K(ψ,λ)e
1
2

log |Kλλ(ψ,λ̂ψ)|

eK(ψ,λ̂ψ)e−λ̂ψs
g(λ)dλ

=

∫
Λ
eλ̂ψs+ψt−K(ψ,λ̂ψ)e

1
2

log |Kλλ(ψ,λ̂ψ)|eλsg(λ)dλ

= LP (ψ)|Kλλ(ψ, λ̂ψ)|1/2
∫

Λ
eλsg(λ)dλ

∝ LMP (ψ),

where LMP (ψ) is the modified profile likelihood (Barndorff-Nielsen, 1983),

which coincides with the double saddlepoint approximation of the condi-

tional likelihood based on the conditional model for T given S = s.

Example 4.2 (continued) (Gamma with common shape parameter)

The likelihood is

L(ψ, λ) =

q∏
i=1

λmiψi

Γ(ψ)mi

mi∏
j=1

yij

ψ−1

exp{−λi
mi∑
j=1

yij}.

While we leave unchanged the joint moment generating function, we substi-

tute Ms(ψ) with its approximation (4.5),

K̃s(ψ) = K(ψ, λ̂ψi)− λ̂ψis−
1

2
log |Kλiλi(ψ, λ̂ψi)|, (4.7)

where

λ̂ψi =
miψ∑mi
j=1 yij

.

Computing each term of (4.7),

K(ψ, λ̂ψi) = mi log Γ(ψ)−miψ log

(
miψ∑mi
j=1 yij

)

Kλiλi(ψ, λ̂ψi) =
∂2Kλiλi(ψ, λi)

∂λ2
i

∣∣∣
λi=λ̂ψi

=

∑mi
j=1 yij

miψ
,
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we obtain the expression for the approximate moment generating function,

M̃s(ψ) = exp{K̃s(ψ)} = exp

{
mi log Γ(ψ)−miψ log

(
miψ∑mi
j=1 yij

)

+
miψ∑mi
j=1 yij

mi∑
j=1

yij −
1

2
log

∣∣∣∣∣(
∑mi

j=1 yij)
2

miψ

∣∣∣∣∣


=
Γ(ψ)mi exp{miψ}(

miψ∑mi
j=1 yij

)miψ ∣∣∣∣ (∑mi
j=1 yij)

2

miψ

∣∣∣∣1/2
.

With both M(ψ, λ) and M̃s(ψ), we can compute (4.6),

LI(ψ) =

q∏
i=1

∫
Λ

λmiψi

Γ(ψ)mi

(
mi∏
j=1

yij

)ψ−1

exp{−λi
mi∑
j=1

yij}
Γ(ψ)mi

λmiψi

(
miψ∑mi
j=1 yij

)miψ ∣∣∣∣ (∑mi
j=1 yij)

2

miψ

∣∣∣∣1/2
Γ(ψ)mi exp{miψ}

g(λ)dλ

=

q∏
i=1

(miψ)miψ−
1
2 exp{−miψ}

(∏mi
j=1 yij

)ψ
Γ(ψ)mi

(∑mi
j=1 yij

)miψ ∫
Λ

exp{−λi
∑mi
j=1 yij}

∑mi
j=1 yij∏mi

j=1 yij
g(λ)dλ

∝
q∏
i=1

(miψ)miψ−
1
2 exp{−miψ}

(∏mi
j=1 yij

)ψ
Γ(ψ)mi

(∑mi
j=1 yij

)miψ = LMP (ψ),

where the expression of LMP (ψ) can also be found in Sartori (2003, Ex-

ample 2).

4.2.2 Remarks

In this section we have suggested a weight function which leads to the equiv-

alence between conditional and integrated likelihood, forcing the integral

(4.2) to be independent of ψ. We can see this equivalence directly, as done

in (4.6) with LI versus LMP . Indeed

LC(ψ) = exp{tψ −Ks(ψ)}
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corresponds to an integrated likelihood with weight function (4.4)

LI(ψ) =

∫
exp{tψ + sλ−K(ψ, λ)}g(λ;ψ)dλ

=

∫
exp{tψ + sλ−K(ψ, λ)} exp{K(ψ, λ)−Ks(ψ)}dλ

= exp{tψ −Ks(ψ)}
∫

exp{sλ}dλ

∝ exp{tψ −Ks(ψ)}.

A feature of the proposed weight function is that it depends on the

data. While this is not allowed in a fully Bayesian inference, it is already

exploited in literature in different frameworks (see, for example Wasserman,

2000; Severini, 2007).

4.3 Weight function that depends on a hyperpa-

rameter

Consider now a weight function which depends on a hyperparameter ξ. To

better appreciate the advantage of this kind of weight function, we focus

on the stratified data case. Let yi, i = 1, . . . , q be a realization of an

m−dimensional random variable Yi with density pYi(yi;ψ, λi). The param-

eter of interest ψ is common to all strata, while the nuisance parameter λi

is stratum-specific. Suppose that Y1, . . . , Yq are independent and let si be a

sufficient statistic for λi with finite support S. Denote with c the cardinality

of S, i.e. set c = |S|.
Under the same conditions which give factorization (4.1) in Section 4.2,

with the addition of the hyperparameter, and taking into consideration the

stratified nature of the data, it follows that the integrated log-likelihood is

lI(ψ, ξ) = lC(ψ) +

q∑
i=1

log

∫
Λ
pSi(si;ψ, λi)g(λi; ξ)dλi. (4.8)

It depends on both the parameter of interest and the hyperparameter. The

latter, however, summarizes the information about the nuisance parameters

contained in each stratum, and, therefore, its dimension does not increase

with the sample size. In particular, this allows us to make inference on ψ

through the traditional profile log-likelihood for ψ, without encountering the
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incidental parameters problem. To this end, we have to solve the constrained

likelihood equation

∂lI(ψ, ξ)

∂ξ
=

q∑
i=1

∫
Λ pSi(si;ψ, λi)

∂
∂ξg(λi; ξ)dλi∫

Λ pSi(si;ψ, λi)g(λi; ξ)dλi
= 0.

Plugging-in the solution, namely ξ̂ψ, into (4.8), we obtain the profile inte-

grated log-likelihood,

lIP (ψ) = lI(ψ, ξ̂ψ) = lC(ψ) +

q∑
i=1

log

∫
Λ
pSi(si;ψ, λi)g(λi; ξ̂ψ)dλi. (4.9)

We can notice that, in the random effects model framework, the profile in-

tegrated log-likelihood corresponds to the usual log-likelihood for the fixed

parameter of interest. Moreover, there is a relation between our method

and the empirical Bayes technique, since both proceed by summarizing the

uncertainty due to incidental nuisance parameters into a unique hyperpa-

rameter estimated through the data.

The idea to achieve the equivalence between profile integrated and con-

ditional likelihood is similar to the one presented in the previous section.

Indeed, the two approaches, conditioning and integration, produce equiva-

lent log-likelihoods for ψ when (4.2) does not depend on ψ, and, in this case,

when the second summand of the right hand side of (4.9) depends only on

the data.

First consider the right hand side of (4.8), and, in particular, the second

summand. All terms of the sum with the same value of the sufficient statistic

provide the same contribution to the log-likelihood. Formally,

q∑
i=1

log

∫
Λ
pSi(si;ψ, λi)g(λi; ξ)dλi =

∑
s∈S

qs log

∫
Λ
pS(s;ψ, λ)g(λ; ξ)dλ,

(4.10)

where qs is the observed frequency of a given s ∈ S.

For Rasch models Andersen and Madsen (1977) and Lindsay et al. (1991)

noted that (4.10) is the log-likelihood of a multinomial distribution with c

possible outcomes, and vector of success probabilities π = π(ψ, ξ) = [πs],

s ∈ S, where

πs = πs(ψ, ξ) =

∫
Λ
pS(s;ψ, λ)g(λ; ξ)dλ. (4.11)
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In fact, this is true for any model, provided that g(λi; ξ) is a proper density.

For (4.10) to be a multinomial log-likelihood, we must have
∑

s∈S πs = 1.

Given that∑
s∈S

∫
Λ
pS(s;ψ, λ)g(λ; ξ)dλ =

∫
Λ

∑
s∈S

pS(s;ψ, λ)g(λ; ξ)dλ

=

∫
Λ
g(λ; ξ)dλ,

since pS(s;ψ, λ) is a probability function, it is clear that
∑

s∈S πs = 1 only

if
∫

Λ g(λ; ξ)dλ = 1.

Consider now the maximization step which leads to the constrained es-

timate ξ̂ψ. It is well known that a multinomial likelihood is maximized by

π̂s =
qs
q
,

a quantity independent on ψ.

Let Ξ denote the parameter space of the hyperparameter ξ, and Π the

(c − 1)-dimensional codomain consisting of vectors π with
∑

s∈S πs = 1,

πs > 0 s ∈ S. With reference to (4.11), when, for each fixed ψ, π(ψ, ξ) is

surjective from Ξ to Π, then∫
Λ
pS(s;ψ, λ)g(λ; ξ̂ψ)dλ =

qs
q
, (4.12)

for any s ∈ S and therefore (4.10) is independent on ψ. The probabilities

π(ψ, ξ) as function of ξ is surjective when, for fixed ψ, every point of Π is

an image of at least one point of Ξ.

While from a theoretical point of view it is sufficient to consider a sur-

jective function from Ξ to Π for fixed ψ, it is worth considering π(ψ, ξ) as

a bijection. This avoids some practical issues; for example, if there are two

different points ξ′, ξ′′ ∈ Ξ such that π(ψ, ξ′) = π(ψ, ξ′′), a numerical max-

imization in ξ for fixed ψ could be troublesome. Moreover, a one-to-one

function allows us to think the condition for the equivalence as a reparam-

eterization problem; the equivalence between conditional and profile inte-

grated likelihood holds if, for fixed ψ, we can reparametrize ξ with π, the

parameter of the multinomial distribution which leads to (4.10).
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Example 4.3 (Trinomial distribution)

As a simple illustration, let yi = (yi1, yi2, yi3), i = 1, . . . , q, be a realization

of a trinomial distribution with probabilities pi1, pi2, pi3 for the three cells,

with pi1 + pi2 + pi3 = 1,

pYi(yi; pi1, pi2, pi3) = exp{yi1 log
pi1
pi3

+ yi2 log
pi2
pi3

+ log(1− pi1 − pi2)},

where yij is 1 if the observation in stratum i is in cell j and 0 otherwise,

j = 1, 2, 3.

Assume that log(pi1/pi2) is constant over strata and equal to ψ. Let ψ

be the parameter of interest and λi = log(pi2/pi3) the nuisance parameter

for stratum i. With this parameterization,

pYi(yi;ψ, λi) = exp{yi1ψ + (yi1 + yi2)λi + log(1 + eψ+λi + eλi)}.

Conditioning on the sufficient statistic si = yi1 + yi2, we obtain the

conditional log-likelihood

lC(ψ) =

q1∑
i=1

yi1ψ − q1 log(1 + eψ),

where q1 < q is the number of the strata where si = 1.

Since Si has a Bernulli distribution with success probability eλi (1 +

eψ)/(1 + eλi (1 + eψ)), relation (4.11) is

π1 =

∫
Λ

eλi (1 + eψ)

1 + eλi (1 + eψ)
g(λ; ξ)dλ. (4.13)

If, for instance, we choose as a weight function a Gaussian distribution with

unknown mean ξ and variance 1, then, for ψ = 1, (4.13) is bijective (see

Figure 4.1), and the equivalence between conditional and profile integrated

likelihoods holds. We can do the same for other ψ.

This example is useful to understand why Λ must not depend on ψ. In-

deed, with a different parameterization, some issues can occur. Specifically,

setting ψ = πi1/πi2 and λi = πi2, we have

pYi(yi;ψ, λi) = exp{yi1 logψ+(yi1+yi2) log
λi

(1− ψλi − λi)
+log(1−ψλi−λi)}.
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Figure 4.1: Trinomial distribution: function (4.13).
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In this case, 1 − ψλi − λi > 0 implies that 0 < λi < 1/(1 + ψ), i.e. the

parameter space of λ depends on ψ. Thus, for ψ > 0, the range of∫
Λψ

pSi(si;ψ, λi)g(λi; ξ)dλi

as ξ varies is not the entire interval [0, 1], and if ψ is large the range of this

integral is quite small, and could not contain qsi/q.

Example 4.4 (Matched binary pairs)

Let Yi1 and Yi2 be two independent Bernoulli random variables with suc-

cess probabilities pi1 and pi2, respectively, i = 1, . . . , q. Here we consider

ψ = log{pi2(1 − pi1)/[pi1(1 − pi2)]} as the parameter of interest and λi =

log{pi1/(1− pi1)} as the nuisance parameters, and denote by si = yi1 + yi2

the marginal totals. The statistic si is minimal sufficient for λi, for fixed ψ.

Conditionally on Si = si, Yi2 follows a Bernoulli distribution with success

probability 0 if si = 0, 1 if si = 2 and e−ψ/(1 + e−ψ) if si = 1.

If we suppose, without loss of generality, si = 1 for the first q1 ≤ q strata,

the conditional log-likelihood is

lC(ψ) = −ψ
q1∑

1=1

yi2 − q1 log(1 + e−ψ).

To construct a profile integrated log-likelihood, we usually choose as

a weight function a location and scale distribution, such as a Gaussian.

Consider therefore g(λi; ξ) = (1/τ)φ ((λi − µ)/τ), where φ(·) is the density

of a standard normal distribution, as in Andersen and Madsen (1977), and

ξ = (µ, τ). The parameter space for ξ is Ξ = R×R+.

Quantity (4.10) becomes

2∑
s=0

qs log

∫
Λ

eλs
∑min(1,s)

j=max(0,s−1) e
ψj

(1 + eλ)(1 + eλ+ψ)

1√
2πτ

exp{− 1

2τ
(λ− µ)2}dλ. (4.14)

This is the log-likelihood of a multinomial distribution with success proba-

bilities

πs =

∫
Λ

eλs
∑min(1,s)

j=max(0,s−1) e
ψj

(1 + eλ)(1 + eλ+ψ)

1√
2πτ

exp{− 1

2τ
(λ− µ)2}dλ, (4.15)

59



CHAPTER 4. EQUIVALENCE BETWEEN INTEGRATED AND CONDITIONAL

LIKELIHOOD

with s = 0, 1, 2. Straightforward algebra shows that

π0 + π1 + π2 =

∫
Λ

1 + eλ + eλ+ψ + e2λ+ψ

(1 + eλ)(1 + eλ+ψ)

1√
2πτ

exp{− 1

2τ
(λ− µ)2}dλ

=

∫
Λ

1√
2πτ

exp{− 1

2τ
(λ− µ)2}dλ = 1.

Unfortunately, the transformation (4.15) is not a proper reparameteri-

zation, because there are values of the two-dimensional simplex Π, the pa-

rameter space of (π0, π1, π2), which are not images under (4.15) of any point

(µ, τ) ∈ Ξ. Therefore, the equivalence between conditional and profile inte-

grated likelihood holds only when the unconstrained estimate of (π0, π1, π2),

namely ( q0q ,
q1
q ,

q2
q ), lies in the image of Ξ under (4.15) in Π. Denote this set

with I.

Let us show this graphically. In this example, fixing ψ = 1, we apply

(4.15) to a grid of values for µ and τ , with µ ∈ (−50, 50) and τ ∈ (0.01, 100).

The results are presented in Figure 4.2. It shows the images under (4.15)

of the considered points on the space Π for π0 and π1 (area within the

dashed triangle). In particular, small values of τ correspond to the points

on the upper contour of the black region, while large values to the lower.

Small values of µ correspond to values near the origin, while as µ increases,

the corresponding points move far from (0, 0). Values of µ and σ bigger or

smaller than the ones considered would not increase in a noteworthy way the

areas reported in Figure 4.2. Hence we can state that the space identified

by the points in the plot approximates quite well I, and it allows us to

understand in broad terms when the equivalence holds and when it does

not.

For example, consider q = 1000 pairs with q0 = 248, q1 = 229 and q2 =

523. The unconstrained estimate of the multinomial parameter (π0, π1, π2),

namely (0.248, 0.229, 0.523) belongs to I, and hence lC(1) = lIP (1). When

we compute the conditional and the profile integrated log-likelihood, how-

ever, we obtain two functions which differ from each other by the constant

−1022.342. This is the maximum of the multinomial log-likelihood (4.14),

namely
∑

s∈{0,1,2} qs log qs/q. The two log-likelihoods, therefore, are com-

pletely equivalent, as shown in Figure 4.3.

On the contrary, settings with, for example, q0 = 166, q1 = 668 and q2 =

166 lead to an unconstrained estimate for (π0, π1, π2) which lies outside I.
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Figure 4.2: Matched binary pairs: images of a grid of (µ, τ) values under
(4.15) in Π, when ψ = 1.
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Figure 4.3: Matched binary pairs. Conditional (continuous line) and profile
integrated (dashed line) normalized log-likelihood. Data are q0 = 248, q1 =
229, q2 = 523 and

∑
i yi2 = 576.

Conditional and profile integrated likelihood, in this case, provide different

inferential results, as shown in Figure 4.4.

Example 4.5 (Biallelic genetic marker)

We consider an example taken from Rice (2008, Section 2). It is a case/control

study about three unordered categories of exposure, namely dd, dD and DD,

of a biallelic genetic marker. Case and control exposures are assumed to be

independent in any given pairing, and all pairs are assumed to be indepen-

dent. The parameter of interest is a genotype-disease association, assessed
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Figure 4.4: Matched binary pairs. Conditional (continuous line) and profile
integrated (dashed line) normalized log-likelihood. Data are q0 = 166, q1 =
668, q2 = 166 and

∑
i yi2 = 197.
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through the odds ratios

ψ1 =
P [case dD]

P [case dd]

P [control dd]

P [control dD]
,

ψ2 =
P [case DD]

P [case dd]

P [control dd]

P [control DD]
,

that are assumed to be constant across all matched pairs. The reference

level of exposure probability in each matched pair i, i = 1, . . . , q, is

Control exposure dd dD DD

Probability 1
1+λ1i+λ2i

λ1i
1+λ1i+λ2i

λ2i
1+λ1i+λ2i

In this example, the nuisance parameter λ = (λ1i, λ2i) has dimension

2 in each stratum, and the sufficient statistic has dimension 2 with c = 6

possible values (see Rice, 2008, formula (2)). A natural candidate for the

weight function that can lead to equivalence with the conditional likelihood

is the bivariate Gaussian distribution with parameter ξ having 5 components

(mean and variance-covariance matrix elements).

In this example the conditional likelihood has a simple form (Rice, 2008,

formula (3)),

LC(ψ1, ψ2) =

(
ψ1

1 + ψ1

)#(dd,dD)( ψ2

1 + ψ2

)#(dd,DD)( 1

1 + ψ1

)#(dD,dd)

(
ψ2

ψ1 + ψ2

)#(dD,DD)( 1

1 + ψ2

)#(DD,dd)( ψ1

ψ1 + ψ2

)#(DD,dD)

,

where, for instance, #(dd,DD) denotes the number of cases with case ex-

posure dd and control exposure DD. The integrated likelihood, instead,

is

LI(ψ1, ψ2) =

q∏
i=1

∫
Λ

(
1

wi

)(dd,dd)((1 + ψ1)λ1i

wi

)(dd,dD)((1 + ψ2)λ2i

wi

)(dd,DD)

(
ψ1λ

2
1i

wi

)(dD,dD)(
(ψ1 + ψ2)λ1iλ2i

wi

)(dD,DD)(ψ2λ2i

wi

)(DD,DD)

g(λ1i, λ2i; ξ)d(λ1i λ2i),

where wi = (1 + λ1i + λ2i)(1 + ψ1λ1i + ψ2λ2i), g(λ1i, λ2i; ξ) is the bivariate

weight function and, for instance, (dd, dd) is 1 if both case and control
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exposures are dd, 0 otherwise.

As a numerical example, consider q = 1000 pairs of variables Yi1 and

Yi2, with q equal to (61, 65, 109, 285, 122, 358). We used a bivariate Gaus-

sian (5 hyperparameters) and a bivariate Gaussian with identity as variance-

covariance matrix (2 hyperparameters) as weight functions. In both cases,

integration and optimization steps for the integrated likelihood are per-

formed numerically. In the computation of the profile integrated likelihood,

moreover, we have used for the constrained estimates of the hyperparameters

the approximation

ξ̂ψ = ξ̂ +
(
jξξ(ψ̂, ξ̂)

)−1
jξψ(ψ̂, ξ̂)

(
ψ̂ − ψ

)
, (4.16)

see Cox and Wermuth (1990). This causes some approximation errors, as

we move away from ψ̂, but this is not crucial for our purpose.

In this case, when the weight function is a bivariate Gaussian with 5

unknown parameters, we find a constant difference between the profile in-

tegrated and the conditional log-likelihood, equal to
∑

s∈{0,1,2} qs log qs/q =

−1572.02. Hence, both log-likelihoods give the same inference. On the

contrary, the use of a bivariate normal with identity as variance-covariance

matrix leads to a substantially different log-likelihood. Figure 4.5 shows a

contour plot of these log-likelihoods. The small discrepancies between the

contour lines of normalized conditional and profile integrated log-likelihoods

are likely due to the use of approximation (4.16).

Remarks

Rice (2008) shows that there is an equivalence between LC and LI if we can

find a weight function g(λ; ξ) such that
∫

Λ ps(s;ψ, λ)g(λ; ξ)dλ is indepen-

dent of ψ. He reaches this goal substituting ξ with a function ξ(ψ) which

is obtained solving a specific moment problem. We have seen that there

are cases where ξ̂ψ satisfies Rice’s condition and
∫

Λ ps(s;ψ, λ)g(λ; ξ̂ψ)dλ is

independent of ψ. In these situations, LIP and LC are equivalent. This

result shows that, at least in these cases, when we deal with matched binary

data an approach based on integration is unable to recover information from

concordant pairs.
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Figure 4.5: Biallelic genetic marker. Normalized log-likelihoods: conditional
in continuous line, profile integrated with bivariate Gaussian weight function
in dotted line, profile integrated with Gaussian with identity as variance-
covariance matrix weight function in dashed line.
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CHAPTER 5. MODIFIED PROFILE PAIRWISE SCORE FUNCTION

5.1 Introduction

The pairwise likelihood, introduced in Section 2.4, is defined as the product

of marginal likelihood contributions, based on the marginal density of two-

dimensional components of a vector Y . Let ψ be the parameter of interest

and λ the nuisance parameter and let us denote with p(yir, yis;ψ, λ), r =

1, . . . , d − 1, s = r + 1, . . . , d, i = 1, . . . , n, the marginal density of the pair

(Yir, Yis).

We are interested in making inference about ψ, and in understanding

the effect of the presence of the nuisance parameter in the related inferential

quantities. In particular, starting from pl(ψ, λ) = log pL(ψ, λ) given in (2.8),

we want to study the profile pairwise log-likelihood,

plP (ψ) = pl(ψ, λ̂pψ) =
n∑
i=1

∑
s>r

wrs log p(yir, yis;ψ, λ̂
p
ψ), (5.1)

and the bias of the corresponding score function. Here λ̂pψ is the constrained

maximum pairwise likelihood estimate of λ given ψ and wrs some positive

weights, that, in the following, we will consider equal to 1. Moreover, let

lrs(ψ, λ̂pψ) =
∑n

i=1 log p(yir, yis;ψ, λ̂
p
ψ) denotes the profile log-likelihood re-

lated to the generic pair (yr, ys) and a suitable subscript its derivative with

respect to the parameter, for example lrsψ (ψ, λ̂pψ) = ∂
∂ψ l

rs(ψ, λ̂pψ).

As for usual log-likelihood, the profile pairwise score is typically biased.

In order to quantify the order of such bias, we consider a two-index asymp-

totics setting, where we allow both the sample size, n, and the dimension d

of the vector Y , to grow to infinity. In this setting, we will see that

E[plPψ(ψ)] = E

[
∂pl(ψ, λ̂pψ)

∂ψ

]
= O(d2). (5.2)

A seminal paper that studies pairwise likelihood quantities is Cox and

Reid (2004). In that paper, the asymptotic properties of the maximum

likelihood estimator of a single parameter θ have been analysed, through

the expansion of the estimating equation plθ(θ) = 0.

Cox and Reid (2004) pointed out that, for fixed n, the variance of the

estimator is O(1) in d, i.e. the estimating equation based on pairwise like-

lihood does not usually lead to a consistent estimator. When n grows to
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infinity, instead, since the observations are independent, the usual asymp-

totic theory works. This should be true even when d is allowed to grow to

infinity.

In this chapter we report a preliminary analysis done about the profile

pairwise score bias and a possible modification to the pairwise profile es-

timating equation useful to reduce it. In Section 5.2 we study the profile

pairwise score bias in a two-index asymptotics setting, following the out-

line of the analysis done by Adimari and Ventura (2002) and by Severini

(2002) in a regular one-index asymptotic setting. Moreover, in Section 5.3,

we show that the correction proposed by the latter holds also in the pairwise

likelihood framework. A brief discussion is presented in Section 5.4.

5.2 Expansion of the pairwise score bias

Let us consider, for notational simplicity, λ scalar, although all the results

are valid also in the multidimensional case. From the expansion of the

pairwise score function around the true parameter value,

plψ(ψ, λ̂pψ) = plψ(ψ, λ) + plψλ(ψ, λ)Z +
1

2
plψλλ(ψ, λ)Z2 + . . . , (5.3)

we can find an approximation of the profile pairwise score bias,

E[plψ(ψ, λ̂ψ)] = E[plψλ(ψ, λ)Z] +
1

2
E[plψλλ(ψ, λ)Z2] +O(d2/n)

= E[νψλZ] + E[(plψλ(ψ, λ)− νψλ)Z] +
1

2
E[νψλλZ

2] +O(d2/n). (5.4)

Here we denote by Z the quantity (λ̂pψ − λ) and with ν and the suit-

able subscripts the expected values of the derivatives of the pairwise like-

lihood quantities; for example we have νψλ = E[plψλ(ψ, λ)] and νψ,ψλ =

E[plψ(ψ, λ) plψλ(ψ, λ)]. Consider now the asymptotic order of these quan-

tities. The order of quatities νψλ, νψλλ, νλλ, etc. is O(nd2), since they are

sums of d(d− 1) terms of order O(n). For example

νψλ = E[
∑
s>r

lrsψλ(ψ, λ)] =
∑
s>r

E[lrsψλ(ψ, λ)].
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Terms νψ,ψλ, νψ,λ, etc., instead, are of order O(nd4). For example,

νψ,ψλ = E[
∑
s>r

lrsψ (ψ, λ)
∑
s>r

lrsψλ(ψ, λ)]

=
d(d− 1)

2
E[lrsψ (ψ, λ)lrsψλ(ψ, λ)] + d(d− 1)(d− 2)E[lrsψ (ψ, λ)lstψλ(ψ, λ)]

+
d(d− 1)(d− 2)(d− 3)

4
E[lrsψ (ψ, λ)ltuψλ(ψ, λ)].

Going back to expansion (5.4), in order to proceed with the approach of

Severini (2002), we need an expansion for Z. Starting from the estimating

equation plλ(ψ, λ̂pψ) = 0, expanding it around the true value and inverting

the resulting expression into an asymptotic expansion for Z (as done by

Adimari and Ventura (2002) for usual likelihood, see also Pace and Salvan

(1997, Section 9.4.1)), we obtain

Z =− plλ(ψ, λ)

νλλ
− 1

2

plλ(ψ, λ)plλ(ψ, λ)

ν3λλ
νλλλ +

plλλ(ψ, λ)− νλλ
ν2λλ

plλ(ψ, λ)

+
1

6

(
νλλλλ
νλλ

− 3
ν2λλλ
ν2λλ

)
l3λ
ν3λλ

+
1

2

(
3
plλλ(ψ, λ)− νλλ

ν2λλ
νλλλ

−plλλλ(ψ, λ)− νλλλ
νλλ

)
plλplλ
ν2λλ

− (plλλ(ψ, λ)− νλλ)2

ν3λλ
plλ + . . .

In particular, the first summand is of order Op(1/
√
n), the second and the

third Op(1/n), and the following Op(1/n
3/2). Indeed, plλ(ψ, λ) has mean

0 and variance Op(nd
4) (see also Cox and Reid, 2004) and plλλ(ψ, λ) =∑

s>r l
rs
λλ(ψ, λ) = Op(nd

2). Moreover, both (plλλ − νλλ) and (plλλλ − νλλλ)

are O(
√
nd2), since they have mean 0 and variance Op(nd

4),

V ar[plλλ(ψ, λ) = E[(
∑
s>r

lrsλλ(ψ, λ))2]

=
d(d− 1)

2
E[(lrsλλ(ψ, λ))2] + d(d− 1)(d− 2)E[lrsλλ(ψ, λ)lstλλ(ψ, λ)]

+
d(d− 1)(d− 2)(d− 3)

4
E[lrsλλ(ψ, λ)ltuλλ(ψ, λ)],

with r 6= s 6= t 6= u.

We are now able to approximate the score bias (5.4) substituting Z with
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its expansion. The first term is

E[νψλZ] = νψλE[−plλ(ψ, λ)

νλλ
− 1

2

plλ(ψ, λ)plλ(ψ, λ)

ν3
λλ

νλλλ

+
plλλ(ψ, λ)− νλλ

ν2
λλ

plλ(ψ, λ) +Op(1/n
3/2)]

= νψλ

(
−1

2

E[plλ(ψ, λ)plλ(ψ, λ)]

ν3
λλ

νλλλ +
E[plλλ(ψ, λ)plλ(ψ, λ)

ν2
λλ

+O(1/n2)

)
= νψλ

(
νλλ,λ
ν2
λλ

− 1

2

νλ,λ
ν3
λλ

νλλλ

)
+O(d2/n),

the second term is

E[(plψλ(ψ, λ)− νψλ)Z] = −
E[plψλ(ψ, λ)plλ(ψ, λ)]

νλλ
−
νψλE[plλ(ψ, λ)]

νλλ

− 1

2

E[(plψλ(ψ, λ)− νψλ)plλ(ψ, λ)plλ(ψ, λ)]

ν3
λλ

νλλλ

+
E[(plλλ(ψ, λ)− νλλ)2plλ(ψ, λ)]

ν2
λλ

+ . . .

= −
νψλ,λ
νλλ

+O(d2/n),

and the third term is

E[νψλλZ
2] = νψλλ

(
E[plλ(ψ, λ)plλ(ψ, λ)]

ν2
λλ

− 1

2

E[plλ(ψ, λ)plλ(ψ, λ)plλ(ψ, λ)]

ν4
λλ

νλλλ

+
E[(plλλ(ψ, λ)− νλλ)plλ(ψ, λ)plλ(ψ, λ)]

ν3
λλ

+ . . .

)
=
νλ,λ
ν2
λλ

νψλλ +O(d2/n).

In these computations, we use the fact that E[(plψλ−νψλ)plλplλ] can be

rewritten as ∑
s>r

∑
u>t

∑
w>v

E[Hrs
ψλ(ψ, λ)ltuλ (ψ, λ)lvwλ (ψ, λ)],

that is a sum of components of order O(n). The number of such components

is of order O(d6), and therefore E[(plψλ − νψλ)plλplλ] is a quantity of order

O(nd6). Here we denote by Hrs
ψλλ the quantity (lrsψλλ − νrsψλλ), where νrsψλλ =
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E[lrsψλλ]. Moreover, also E[plλplλplλ] is of order O(nd6), since it is equal to∑
s>r

∑
u>t

∑
w>v

E[lrsλ (ψ, λ)ltuλ (ψ, λ)lvwλ (ψ, λ)].

Combining these results, the profile pairwise score bias is therefore

νψλ
ν2
λλ

(
νλλ,λ −

1

2

νλ,λ
νλλ

νλλλ

)
−
νψλ,λ
νλλ

+
1

2

νλ,λνψλλ
ν2
λλ

+O(d2/n). (5.5)

where the leading term is of order O(d2).

5.3 Correction to the profile pairwise likelihood

estimating equation

Starting from a generic estimating function of the form (gψ(ψ, λ), gλ(ψ, λ)),

Severini (2002) proposed a modification to general estimating equations

which reduces the order of the bias of a general profile score gψ(ψ, λ̃ψ) from

O(1) to O(1/n) in the standard one-index asymptotic setting. Here λ̃ψ

denotes the solution of gλ(ψ, λ) = 0. This modification, namely

1

2
tr{Dgλλ(ψ, λ̃ψ)−1 ∂

∂ψ
gλλ(ψ, λ̃ψ)}− tr{DI(ψ, λ̃ψ; ψ̃, λ̃)−1 ∂

∂ψ
I(ψ, λ̃ψ; ψ̃, λ̃)},

with D = {−gλλ(ψ, λ̂ψ)}−1I(ψ, λ̃ψ; ψ̃, λ̃), is based on the quantities

gλλ(ψ, λ̃ψ) =
∂

∂λ
gλ(ψ, λ)|λ=λ̃ψ

,

and

I(ψ, λ; ψ̃, λ̃) = E(ψ0,λ0)[gλ(ψ, λ)gλ(ψ0, λ0)]|(ψ0,λ0)=(ψ̃,λ̃)

computed in λ = λ̃ψ. Here ψ̃ is the solution of gψ(ψ, λ̃ψ) = 0 and λ̃ = λ̃ψ̃.

Let us consider the corresponding quantities in the pairwise likelihood

setting, plλλ(ψ, λ̂pψ) and E(ψ̂p,λ̂p)[plλ(ψ, λ̂pψ)plλ(ψ̂p, λ̂p)] respectively. Here

(ψ̂p, λ̂p) denotes the maximum pairwise likelihood estimate for (ψ, λ). Con-

sider first

[−plλλ(ψ, λ̂ψ)p]−1
∂[−plλλ(ψ, λ̂pψ)]

∂ψ
= −

plλλψ(ψ, λ̂pψ) + plλλλ(ψ, λ̂pψ)
∂λ̂pψ
∂ψ

−plλλ(ψ, λ̂pψ)
.

72



5.3. CORRECTION TO THE PROFILE PAIRWISE LIKELIHOOD ESTIMATING

EQUATION

When ψ is the true parameter value,

plλλ(ψ, λ̂pψ) =
∑
s>r

lrsλλ(ψ, λ̂pψ) =
∑
s>r

(νrsλλ +Op(
√
n)) = νλλ +Op(d

2√n)

plλλλ(ψ, λ̂pψ) =
∑
s>r

lrsλλλ(ψ, λ̂pψ) =
∑
s>r

(νrsλλλ +Op(
√
n)) = νλλλ +Op(d

2√n),

and so on. Moreover, computing the derivative of the estimating equation

plλ(ψ, λ̂pψ) = 0 with respect to ψ, we find that

∂λ̂pψ
∂ψ

= −plλλ(ψ, λ̂p)−1plλψ(ψ, λ̂p).

Then

[−plλλ(ψ, λ̂pψ)]−1
∂[−plλλ(ψ, λ̂pψ)]

∂ψ
=
νψλλ − νλλλνψλ/νλλ

νλλ

(
1 +Op

(
1√
n

))
.

A similar argument holds for

pI(ψ, λ̂pψ; ψ̂p, λ̂p) = E(ψ̂p,λ̂p)[plλ(ψ, λ̂pψ)plλ(ψ̂p, λ̂p)].

Indeed,

[pI(ψ, λ̂pψ; ψ̂p, λ̂p)]−1
∂pI(ψ, λ̂pψ; ψ̂p, λ̂p)

∂ψ
=

=
E(ψ̂p,λ̂p)[plλψ(ψ, λ̂pψ)plλ(ψ̂p, λ̂p)] +

∂λ̂pψ
∂ψ E(ψ̂p,λ̂p)[plλλ(ψ, λ̂pψ)plλ(ψ̂p, λ̂p)]

E(ψ̂p,λ̂p)[plλ(ψ, λ̂pψ)plλ(ψ̂p, λ̂p)]
,

and

[pI(ψ, λ̂pψ; ψ̂p, λ̂p)]−1
∂pI(ψ, λ̂pψ; ψ̂p, λ̂p)

∂ψ
=

=
νλψ,λ − νλλ,λνλψ/νλλ

νλ,λ

(
1 +Op

(
1√
n

))
.

Since the term D introduced by Severini (2002) is, in our framework,

D =
pI(ψ̂p, λ̂p; ψ̂p, λ̂p)

−plλλ(ψ̂p, λ̂p)
= −

νλ,λ
νλλ

+Op(d
2/
√
n)),
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we can state that

E

[
D(−plλλ(ψ, λ̂pψ))−1

∂ − plλλ(ψ, λ̂pψ)

∂ψ

]
= −νλ,λ

νλλ

νψλλ − νλλλ νψλνλλ

νλλ
+O

(
d2

n

)
(5.6)

and

E

[
D(pI(ψ, λ̂pψ; ψ̂p, λ̂p))−1

∂pI(ψ, λ̂pψ; ψ̂p, λ̂p)

∂ψ

]
= −

νψλ,λ − νλλ,λ νψλνλλ

νλλ
+O

(
d2

n

)
,

(5.7)

where as usual the order in n drops when taking expectations. Combining

(5.6) and (5.7), we obtain the opposite of (5.5). Note that, in order to have

this result, we need to take advantage of the symmetry of the sensitivity

matrix, i.e. of the fact that plψλ = plψλ (see Severini, 2002).

Hence,

E[plψ(ψ, λ̂pψ)] + E

[
1

2
D(−plλλ(ψ, λ̂pψ))−1

∂ − plλλ(ψ, λ̂pψ)

∂ψ

+D(pI(ψ, λ̂pψ; ψ̂p, λ̂p))−1
∂pI(ψ, λ̂pψ; ψ̂p, λ̂p)

∂ψ

]
= O(d2/n).

and, therefore, the modification

1

2
tr{Dplλλ(ψ, λ̂pψ)−1 ∂

∂ψ
plλλ(ψ, λ̂pψ)}

− tr{DpI(ψ, λ̂pψ; ψ̂p, λ̂p)−1 ∂

∂ψ
pI(ψ, λ̂pψ; ψ̂p, λ̂p)}, (5.8)

obtained adapting the correction proposed by Severini (2002) to the pairwise

setting, is useful to reduce the profile pairwise score bias.

The variance of the profile and modified profile pairwise score is O(nd4).

This means that while the relative profile pairwise score bias is

E[plPψ(ψ)]√
V ar(plPψ(ψ))

= O(1/
√
n),

while the relative score bias using this modification is of order O(1/
√
n3).

It would be interesting to take advantage of this result to find a correc-

tion which acts directly on the profile pairwise log-likelihood, that would

approximately recover the first Bartlett identity. When ψ and λ are scalar,
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this is straightforward. Indeed,

∫
[
1

2
D(−plλλ(ψ, λ̂pψ))−1

∂ − plλλ(ψ, λ̂pψ)

∂ψ

+D(pI(ψ, λ̂pψ; ψ̂, λ̂p))−1
∂pI(ψ, λ̂pψ; ψ̂p, λ̂p)

∂ψ
]dψ = D log

(−plλλ(ψ, λ̂pψ))1/2

pI(ψ, λ̂pψ; ψ̂p, λ̂p))
,

and the modified profile pairwise log-likelihood becomes

plMP (ψ) = plP (ψ) +D log
(−plλλ(ψ, λ̂pψ))1/2

pI(ψ, λ̂pψ; ψ̂p, λ̂p)
. (5.9)

Unfortunately, when λ is a vector, we have not a close form for the

integral. Indeed, in this case the term D is a matrix, and it cannot be

taken out from the trace in (5.8), so that explicit integration is not possible.

When λ is a vector, therefore, we should apply the modification directly

to the estimating equations or compute the integral numerically. Moreover,

when ψ is a vector, the integral has not a unique solution.

The study hitherto performed suggests a correction which reduce the

score bias only in n. The problem is that, in general, in the pairwise setting

the asymptotic theory does not hold in d (Cox and Reid, 2004) for fixed

n. In order to recover consistency also for a single observation, Cox and

Reid (2004) introduced the condition that d−4E[plθ(θ)
2] → 0 as d → ∞.

They point out that a necessary and sufficient condition to have a consistent

estimator and to allow the use of an asymptotic theory in d for n fixed is

E[lrsθ (θ)ltuθ (θ)] = 0. (5.10)

for r 6= s 6= t 6= u. When it holds, the order of the pairwise score variance

is O(d3), and, therefore, the pairwise score function is a quantity of order

OP (d3/2). As a consequence, the constrained estimator for the nuisance

parameter is Op(1/
√
d), because

(λ̂pψ − λ) =
plλ(ψ, λ)

−plλλ(ψ, λ)
+Op(1/d).

Moreover, the profile pairwise score can be approximated as

plψ(ψ, λ̂pψ) = plψ(ψ, λ)+plψλ(ψ, λ)(λ̂pψ−λ)+
1

2
plψλλ(ψ, λ)(λ̂pψ−λ)2+Op(

√
d).
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In order to use the regular asymptotic expansions and to follow the previous

argument, however, we need more conditions. For example, the order of

(plψλ(ψ, λ) − νψλ) is equal to the order of plψλ(ψ, λ), unless the quantity

E[lrsψλ(ψ, λ)ltuψ (ψ, λ)] = 0 too. Therefore, with nuisance parameters, the

study of the modification for fixed n and increasing d requires additional

study.

Example 5.1 (First order autoregression)

Let us consider a normal autoregressive process of order one, as in Example

4.2 of Pace et al. (2011). Using the parameterization given in Davison (2003,

Example 6.24),

Yir − µ = ρ(Yir−1 − µ) + εir

where i = 1, . . . , n, r = 2, . . . , d, and εir are independent normally dis-

tributed with mean 0 and variance τ . This implies that each observation

yi is a realization of a multivariate Gaussian distribution with mean µ and

covariance between Yir and Yis equal to τρ|r−s|/(1− ρ2), r, s = 1, . . . , d.

Consider the partition of the parameter θ in ρ, the component of interest,

and λ = (µ, τ) the nuisance component and focus on a single series, that is

n = 1. Dropping out the subscript i from the notation, the likelihood is

l(θ) =− 1

2τ

[
d∑
r=1

(yr − µ)2 + ρ2
d−1∑
r=2

(yr − µ)2 − 2ρ
d∑
r=2

(yr − µ)(yr−1 − µ)

]

− d

2
log τ +

1

2
log(1− ρ2).

The pairwise log-likelihood, using only pairs of contiguous components, that

is wrs = 1 if and only if |r − s| = 1, is

pl(θ) =− 1

2τ

[
d∑
r=2

(yr − µ)2 +

d∑
r=2

(yr−1 − µ)2 − 2ρ

d∑
r=2

(yr − µ)(yr−1 − µ)

]

− (d− 1) log τ +
d− 1

2
log(1− ρ2).

In this case, the pairwise log-likelihood is in general of order O(nd) and not

O(nd2) as seen in Section 5.3. Solving the score component related to the

nuisance parameter, we get the constrained estimates

µ̂p =

∑d
r=2 yr +

∑d
r=2 yr−1

2(d− 1)
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and

τ̂pρµ =

∑d
r=2(yr −mu)2 +

∑d
r=2(yr−1 − µ)2 − 2ρ

∑d
r=2(yr − µ)(yr−1 − µ)

2(d− 1)

The information matrix block related to the nuisance parameters jλλ has
components

− plµµ(θ) =
2(1− ρ)(d− 1)

τ

− plµλ(θ) = plλµ(θ) =
(1− ρ)[

∑d
r=2(yr − µ) +

∑d
r=2(yr−1 − µ)]

τ2

− plλλ(θ) =

∑d
r=2(yr − µ)2 +

∑d
r=2(yr−1 − µ)2 − 2ρ

∑d
r=2(yr − µ)(yr−1 − µ)

τ3
− d− 1

τ2
,

while the components of pI(ρ, λ̂pρ; ρ̂p, λ̂p) are

pIµµ(θ̂pρ, θ̂
p) =

2(1− ρ)

τ̂pρ
(

d∑
r=2

d∑
s=2

(ρ̂p)|r−s| +

d∑
r=2

d∑
s=2

(ρ̂p)|r−s+1|)

pIµτ (θ̂pρ, θ̂
p) =plτµ(θ̂pρ, θ̂

p) = 0

pIττ (θ̂pρ, θ̂
p) =

1

(τ̂pρ )2(1− (ρ̂p)2)2

d∑
r=2

d∑
s=2

{
(1− (ρ̂p)2)(1− ρρ̂p) + (1 + ρρ̂p)(ρ̂p)2|r−s|

+ (ρ̂p)2|r−s+1| − (ρ+ ρ̂p)((ρ̂p)|r−s|+|r−s+1| + (ρ̂p)|r−s|+|r−s−1|)

+(ρρ̂p)(ρ̂p)|r−s+1|+|r−s−1|
}
− (d− 1)2(1− ρρ̂p)

(τ̂pρ )2(1− (ρ̂p)2)
.

Here θ̂ρ = (ρ, µ̂, τ̂pρµ̂) and τ̂pρ = τ̂pρµ̂.

Simulated data

We simulate B = 8000 times an autoregressive model of first order, with

mean µ = 0 and variance τ = 1. We compute the empirical bias for estima-

tors based on solution of the profile likelihood score (ρ̂), the profile pairwise

likelihood score (ρ̂p), the modified profile pairwise likelihood score (ρ̂pM ).

The empirical bias of the estimators are presented in Table 5.1. We can

see a small reduction of the empirical bias solving the modified profile score

instead of the profile pairwise one. Since we use only the contiguous pairs,

the estimate based on full and pairwise likelihood do not differ too much.

On the other hand, the estimator based on modified pairwise score func-

tion seems to improve, although slightly, also the full maximum likelihood

estimator.
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Table 5.1: Empirical bias of profile likelihood (ρ̂), profile pairwise likelihood
(ρ̂P ) and modified profile pairwise likelihood (ρ̂M ) estimators.

ρ = 0.25
d = 10 d = 30 d = 100

Ê[ρ̂− ρ] −0.082 −0.044 −0.020

Ê[ρ̂p − ρ] −0.092 −0.045 −0.020

Ê[ρ̂pM − ρ] −0.021 −0.021 −0.012

ρ = 0.5
d = 10 d = 30 d = 100

Ê[ρ̂− ρ] −0.214 −0.084 −0.025

Ê[ρ̂p − ρ] −0.231 −0.087 −0.025

Ê[ρ̂pM − ρ] −0.157 −0.064 −0.018

ρ = 0.75
d = 10 d = 30 d = 100

Ê[ρ̂− ρ] −0.314 −0.110 −0.032

Ê[ρ̂p − ρ] −0.343 −0.117 −0.033

Ê[ρ̂pM − ρ] −0.276 −0.100 −0.029

ρ = 0.9
d = 10 d = 30 d = 100

Ê[ρ̂− ρ] −0.384 −0.133 −0.038

Ê[ρ̂p − ρ] −0.444 −0.146 −0.040

Ê[ρ̂pM − ρ] −0.360 −0.126 −0.032

5.4 Remarks

This chapter provided only a first look on the profile pairwise score bias,

and some hints about a possible modification to the profile pairwise log-

likelihood useful to reduce it. We choose to include it in the thesis in order

to show the last efforts done during the PhD program. Anyway, at least

an example in two-index asymptotic should be included. Moreover, some

efforts should be done in understanding the asymptotic properties of the

modification (5.8) when condition (5.10) holds. The example presented, in-

deed, has been thought in order to understand the behaviour of modification

(5.8) as d increases for n fixed. The results seem promising, while additional

study is of course required. Finally, as with ordinary likelihood, integration

of the pairwise likelihood could be considered as an alternative to profiling.
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