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Abstract

Despite early developments on the foundations of quantum mechanics concern
the wave function, quantum statistics has been developed with the density
matrix formalism, leading to very important results in explaining molecular
observations. Only recently, several authors argued a new interpretation by
focusing on the wave function representing the quantum state of an isolated
system, showing how a single wave function can exhibit statistical properties
and generate the same results expected in the standard quantum statistical
framework.

Starting from these results, investigation on the foundations of quantum
statistical mechanics has gained recently a renewed interest. As a matter
of fact, the possibility of studying single molecule properties as well as the
need of a better understanding of the effect of quantum dynamics, in order to
develop new nanoscaled materials suitable to quantum computing tasks, have
opened new intriguing questions leading to quantum statistical approaches far
from being well understood and accepted. In this framework the behaviour
of a single realization of quantum systems has gained a central role in the
description of molecular systems.

Furthermore, in recent years, an increasing number of studies has been pre-
sented on quantum dynamics through the numerical solution of the Schrödinger
equation for systems of interacting components. These studies demonstrates
that Quantum Dynamics Simulations could be a practicable route. In order to
study phenomena such as dissipation, relaxation and thermalization, the focus
has to be moved from isolated molecules to modular systems made of mutual
interacting components, with model Hamiltonians possessing a sufficiently low

i



ii ABSTRACT

dimensional representation.
An important issue concerns the rules to be employed for the choice of

the initial quantum state |Ψ(0)〉 for the simulation of isolated systems. As
long as one considers molecular degrees of freedom interacting with a (model)
environment, there are no reasons to select a particular quantum state for the
overall system and, therefore, a random choice has to be performed amongst a
well defined statistical ensemble of pure states. Furthermore, one would like to
operate a choice assuring that the simulation of the system is in a well defined
thermal state with given temperature. This necessarily calls for a statistical
description like for classical systems.

A useful parametrization of the wave function will be presented in order to
highlight the most appropriate variable for the statistical analysis. In particu-
lar some of them, called phases, retain all the dynamical information whereas
the others, called populations, are the constants of motion. The latter, in par-
ticular are very important because they describe the equilibrium properties
strictly related to the thermodynamic description.

Since the dynamics of wave function does not supply any information about
populations, the definition of a probability distribution on these variables is re-
quired. Different probability distributions on populations have been proposed,
only on the bases of reasonable assumptions and they validation has been per-
formed only with a posteriori considerations. In particular Fresch and Moro
have demonstrated how the agreement with thermodynamics can be employed
to discriminate different probability distributions on pure states. This had led
the uniform ensembles to be, up to now, the most self-consistent models for
quantum pure states.

However, in this thesis I will highlight a drawback of the uniform distri-
bution ensemble that can be described as follow: if we bring into contact two
systems, even through a perturbative interaction, we are not able to describe
the equilibrium properties after the interaction within the uniform distribution
statistics, since the uniform character is lost. It represents a severe shortcom-
ing of the statistical ensemble from a methodological point of view, since closed
systems can be always considered as the result of interaction among previously
isolated systems.

On the other hand this drawback introduces a further requirement of a
different nature that can be used for the definition of a new statistical ensem-
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ble. In this work I intend to find and characterize a statistical ensemble for
populations that overcomes the drawbacks of the uniform distribution of pure
states. The invariance of the thermal state in the coupling of identical systems
will be used as a guideline in the definition af a new probability distribution
on populations.

Such an ensemble for pure states, called Thermalization Resilient Ensemble,
provides a convenient framework for treating the interactions between quantum
systems, as long as the structure of the statistical distribution is preserved and
the identification of thermodynamic properties is assured. In perspective it
should be the privileged statistical ensemble to implement Quantum Dynamics
Simulations.

Once the average properties of the Thermalization Resilient Ensemble have
been introduced, I will obtain a probability distribution on pure states with the
use of a geometrical analysis on the Hilbert space. The surface elements of an
ellipsoidal manifold will be related to the probability density on populations.
As a matter of fact the explicit form of the probability distribution is a pre-
requisite in order to perform Quantum Dynamical Simulations. However the
results obtained through the geometrical analysis cannot be easily extended
to systems with unbounded energy spectrum and an alternative strategy has
been developed.

A scaling algorithm on the basis of the uniform statistical ensemble will be
described and this allows a well defined sampling of a probability distribution
with desired averages. In this framework I demonstrate the emergence of
thermodynamic behavior in the limit of macroscopic systems.

In the last part of the thesis I consider the dynamical features of the ther-
malization experiment. Two identical systems, initially at different tempera-
ture, will be brought in interaction and the analysis of the final equilibrium
state will be performed for two different generic forms of the interaction Hamil-
tonian, highlighting how the statistical approach can be very useful in the
definition of the equilibrium in complex quantum systems.
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Sommario

Nonostante i primissimi sviluppi dei fondamenti della meccanica quantistica
riguardassero la funzione d’onda, la statistica quantistica si è sviluppata at-
traverso il formalismo della matrice densità, portando a risultati considerevoli
nella descrizione di fenomeni molecolari. Solo recentemente diversi autori
hanno suggerito una nuova interpretazione della statistica quantistica, focal-
izzandosi sulla funzione d’onda che rappresenta lo stato di un sistema quan-
tistico isolato. Essi hanno mostrando come una singola funzione d’onda possa
presentare proprietà statistiche e ricondurre agli stessi risultati attesi dalla
statistica quantistica tradizionale.

Grazie a questi contributi, lo studio dei fondamenti della meccanica sta-
tistica quantistica ha suscitato un rinnovato interesse. Infatti, la possibilità
di studiare proprietà di singola molecola, unita alla necessità di una migliore
comprensione degli effetti della dinamica quantistica per lo sviluppo di nuovi
materiali nanostrutturati adatti al quantum computing, ha sollevato nuove sti-
molanti domande che rendono la statistica quantistica lontana dall’essere pien-
amente compresa e accettata. In questo contesto, il comportamento di una
singola realizzazione di un sistema quantistico detiene un ruolo centrale nella
descrizione di sistemi molecolari.

Recentemente è stato presentato un crescente numero di studi di dinamica
quantistica che prevede la soluzione numerica dell’equazione di Schrödinger
per sistemi a componenti interagenti. Questi lavori dimostrano come le Simu-
lazioni di Dinamica Quantistica possano essere una via percorribile allo scopo
di studiare fenomeni quali la dissipazione, il rilassamento e la termalizzazione.
L’attenzione si è quindi spostata dalle molecole isolate a sistemi costituiti da
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componenti mutualmente interagenti attraverso Hamiltoniani modello carat-
terizzati da una bassa dimensionalità.

É importante a questo proposito l’individuazione di regole che possano es-
sere utilizzate nella scelta dello stato iniziale delle simulazioni per ogni sistema
isolato. Infatti, ogniqualvolta vengano considerati gradi di libertà molecolari
interagenti con un ambiente modello, non esistono ragioni per selezionare uno
stato particolare per il sistema rispetto ad altri, e quindi una scelta casuale
all’interno di un insieme statistico ben definito deve essere effettuata. Inoltre si
preferisce effettuare tale scelta in modo da assicurare al sistema un ben definito
stato termico ed una data temperatura. Tutto ciò richiede una descrizione di
tipo statistico analoga a quella condotta per i sistemi classici.

Sarà presentata un’utile parametrizzazione della funzione d’onda allo scopo
di evidenziare le variabili più adatte all’analisi statistica. Alcune di esse, dette
fasi, contengono le informazioni dinamiche, mentre le altre, dette popolazioni,
rappresentano le costanti del moto. Queste ultime, in particolare, sono molto
importanti poiché descrivono le proprietà di equilibrio strettamente legate ad
una descrizione termodinamica.

L’individuazione di una distribuzione di probabilità sulle popolazioni è nec-
essaria dato che la dinamica della funzione d’onda non fornisce nessuna infor-
mazione riguardo ad esse. Sulla base di assunzioni ragionevoli, sono state
proposte diverse distribuzioni sulle popolazioni la cui validazione può essere
effettuata solo attraverso considerazioni a posteriori. In particolare Fresch
e Moro hanno dimostrato come l’accordo con la termodinamica possa essere
utilizzato per discriminare diverse distribuzioni di probabilità sugli stati puri.
Questo ha portato gli ensamble uniformi ad essere i modelli fino ad ora formu-
lati più autoconsistenti nella descrizione di sistemi isolati.

Tuttavia, in questa tesi evidenzierò un inconveniente delle distribuzioni
uniformi che può essere riassunto come segue: quando vengono posti in con-
tatto due sistemi, anche solo attraverso un’interazione perturbativa, non è più
possibile descrivere le proprietà di equilibrio dopo l’interazione attraverso una
distribuzione statistica di tipo uniforme, poiché perde tale carattere di uni-
formità. Ciò rappresenta un grave limite del modello da un punto di vista
metodologico poiché sistemi chiusi possono sempre essere considerati come
derivanti dall’interazione tra sistemi precedentemente isolati.

D’altra parte quest’inconveniente introduce un’ulteriore proprietà di di-
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versa natura che può essere utilizzata nella definizione di un nuovo insieme
statistico. In quest’elaborato intendo trovare e caratterizzare un insieme statis-
tico per le popolazioni che superi l’incoveniente delle distribuzioni uniformi.
L’invarianza dello stato termico nell’accoppiamento di sistemi identici verrà
considerato come guida nella definizione di una nuova distribuzione di proba-
bilità sulle popolazioni.

Tale ensemble, detto Thermalization Resilient Ensemble, fornisce un con-
testo adatto al trattamento delle interazioni tra sistemi quantistici, fintanto che
la struttura della distribuzione statistica è preservata e l’identificazione delle
proprietà termodinamiche assicurata. Questo potrebbe diventare l’ensemble
statistico privilegiato per l’implementazione di Simulazioni di Dinamica Quan-
tistica.

Dopo aver introdotto le proprietà medie del Thermalization Resilent En-
semble, ricaverò una distribuzione di probabilità sugli stati puri, mediante
un’analisi geometrica sullo spazio di Hilbert. Gli elementi di superficie di un
ellissoide verranno messi in relazione alla densità di probabilità sulle popo-
lazioni. La forma esplicita della distribuzione di probabilità, infatti, è un
prerequisito indispensabile per eseguire simulazioni di Dinamica Quantistica.
Tuttavia, i risultati ottenuti mediante l’analisi geometrica non possono essere
facilmente estesi a sistemi con spettro delle energie non limitato e si è reso
necessario lo sviluppo di una strategia alternativa.

Verrà quindi descritto un algoritmo di riscalo di un ensemble statistico
uniforme che permette un campionamento ben definito di una distribuzione di
probabilità con i valori medi desiderati. In questo contesto dimostrerò come il
comportamento termodinamico emerga nel limite di sistemi macroscopici.

Nell’ultima parte di questo elaborato di tesi considererò gli aspetti dinam-
ici dell’esperimento di termalizzazione. Due sistemi identici, inizialmente a
diverse temperature, verranno messi a contatto attraverso due generiche forme
dell’Hamiltoniano di interazione. Verrà poi effettuata l’analisi dello stato di
equilibrio finale, evidenziando come l’approccio statistico possa essere molto
utile nella definizione dell’equilibrio in sistemi quantistici complessi.
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CHAPTER 1

Introduction

There is no line of argument proceeding from the laws of mi-
croscopic mechanics to macroscopic phenomena that is generally
regarded by physicist as convincing in all respect.

— E. T. Jaynes [1]

1.1 Foundation of Statistical Mechanics

A cup of coffee naturally cools and an ice-cream melts when we walk in the
park. Our every day experience is about phenomena that occurs in the macro-
scopic systems and that phenomena universally follow the laws of thermody-
namics: the heat flows from a warmer to a colder body, a gas occupies all
the available volume etc. The thermodynamic theory explains and describes
the properties of the macroscopic world and it was developed long before the
proof of the atomic structure of the matter. It was the 1842 when J. R. Mayer
wrote the first fundamental law of thermodynamic by stating the conservation
energy principle [2] and hypothesizing that mechanical work could be trans-
formed into dissipated heat, but only some years later Joule was been able
to experimentally verify the equivalence between work and heat in energetic
term, by his famous experiment. At the same time the reversibility of a process

1



2 CHAPTER 1. INTRODUCTION

was investigated in terms of entropy that takes into account different ways in
which the energy can be divided in terms of work and heat. Its large applica-
bility and its mathematical simplicity have lead thermodynamics to become a
so powerful theory that has led Einstein to state

"A theory is the more impressive the greater the simplicity of its
premises, the more different kinds of things it relates, and the more
extended its area of applicability. Therefore the deep impression
that classical thermodynamics made upon me. It is the only physi-
cal theory of universal content which I am convinced will never be
overthrown, within the framework of applicability of its basic con-
cepts" [3].

At the beginning of the 20th century, the thermodynamics was not the only
theory available to explain our sensible world, in fact the mechanical laws had
represented a different perspective on the behaviour of natural phenomena
and the mechanics of moving bodies was well formalised only some decades
before. Lagrange work on the late seventeenth, and the Hamilton’s one in 1833,
provided the general formulation we use nowadays, where the dynamical laws
are described by differential equations with respect to generalized coordinates
and momenta.

In a cultural framework where the mechanical laws were well established
and the thermodynamics was demonstrating is wide applicability, the scientists
of the 20th century tried to unify this two theories. They hypothesised that
thermodynamics should be a manifestation of the interaction between the mat-
ter constituents, which can be described by mechanical laws. The atomistic
basis of thermodynamics was firstly explored by Maxwell with the pressure
described as an effect of collisions of the molecules with the container walls [4].

The most intensive work on the unification of mechanics and thermody-
namics was made between the nineteenth and twentieth century with the de-
velopment of the statistical mechanics, with a twofold scope. On the one hand
it should explain thermodynamic observations from a purely mechanical sight
and, on the other hand, it represent an important tool for the validation of
our description of the matter at the atomistic/molecular level. If, by start-
ing from a microscopic model for the dynamics of a system, one is able to
reproduce macroscopic observables, then a valid test for the microscopic de-
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scription results. Statistical mechanics has so assumed an important role in
investigating natural phenomena. Later on with the development of the quan-
tum mechanics and its prediction capability about fundamental constituent of
matter, a quantum analogue of statistical mechanics, called quantum statisti-
cal mechanics, was developed. It has allowed the uderstanding of important
phenomena like, for example, magnetism, electronic properties of solids and
superconductivity.

The first major challenging problem faced with the foundation of statistical
mechanics was represented by the difference in the number of parameters that
mechanics and thermodynamics use to describe the same system. For defini-
tion, a macroscopic system, like a glass of water, a crystal or a cubic meter of
gas, is made by a huge number N of components, where N is of the order of
the Avogadro’s number. The thermodynamic theory describes it with few state
functions that account for the macroscopic properties of the system at equi-
librium, while a mechanical description needs the positions and the momenta
for each component of the system. In principle the mechanical description
gather much information as long as the general solution is known but it would
require the knowledge of all the initial conditions, which is practically impos-
sible. On the other hand, although the motion of a macroscopic system obeys
to the same mechanical laws as the system with a small number of particles,
the presence of a large number of degrees of freedom gives rise to a qualitative
new regularities, that determine the thermodynamics laws. It seems that the
detailed time evolution plays no role for the macroscopic properties.

By starting from the lack of knowledge about the microscopic state or mi-
crostate, that is the set of positions and momenta for the components of the
system, and from the well defined mascroscopic observations, the statistical
mechanics was developed. Gibbs, often considered as the pioneer of statisti-
cal mechanics, together with Boltzmann, suggested to consider all the possible
mechanical states of the system, compatible with the macroscopic information,
instead of selecting a specific microscopic state and observe its time evolution.
It corresponds to observe an ensemble of systems, distributed on an suitable
set of possible states [5]. More formally, the microscopic state of a system com-
posed by N particles is described as a point (q, p) = (q1, . . . , q3N , p1, . . . , p3N),
in the phase space Γ, where qi and pi represent the generalized coordinates and
momenta, respectively. A change in the system state is described by a displace-
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ment of the representative points in the phase space. The ensemble of systems
then evolves as a cloud of representative points, each of them completely in-
dependent from the others. The statistical weight for the system when it is in
the neighbourhood of a microstate (q, p) at time t is given by the probability
density ρ(q, p, t). In this condition, the probability distribution appears the
appropirate tool for taking into account all the possible states for the system,
and it can be interpreted as a manifestation of our lack of knowledge about
the initial condition.

From the probability distribution on the phase space it is possible to cal-
culate all kinds of average properties for the systems. For example, given an
observable specified as a function A(q, p) of phase space points, its ensemble
average is defined as

〈A〉 :=
∫

dp dq ρ(q, p, t)A(q, p) (1.1)

and represents the average value with respect to all the states described within
the ensemble. The most important success of the statistical mechanics derives
from the capability of ensemble average to reproduce the values of thermody-
namic observables as well as the amplitude of their fluctuations.

As just recalled, statistical mechanics start from the assumption of having
some knowledge about the system, but not enough for a complete specification
of its microscopic state, and it leads to an ensemble of systems of the same
structure, distributed on all the accessible states of phase space with equation
(1.1) providing the tools of making predictions on the average. If the prob-
ability distribution does not have an explicit time-dependence, it describes a
system in the statistical equilibrium.

Let’s consider now an isolated system, we suppose to have only partial
information about the system, for example: its volume, its number of parti-
cles and its total energy lying within the energy shell [E, E + δE]. Without
any further information we can only assume that, in equilibrium conditions, no
particular region of the energy shell in the phase space plays a special role, pro-
vided that the previously mentioned constraints are satisfied. It corresponds
to state that they should have the same statistical weight. As a consequence,
all the points in the phase-space with the system energy H(q, p) in the domain
E 6 H(q, p) 6 E + δE are equally probables. The ensemble with this prop-
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erties is called microcanonical. Then, if the energy width δE is small enough,
the associated distribution function ρMC is assumed to have the form

ρMC =


1

Ω(E)δE if E 6 H(q, p) 6 E + δE

0 otherwise
(1.2)

where the normalization constant Ω(E) depends only on the energy. The mi-
crocanonical distribution is usually employed to predict properties of isolated
systems with an energy defined within the range [E,E + δE]. Although we
can understand the reason for attributing the same probability to regions of
the phase space having the same volume, it is important to stress out that
such a priori equi-probability plays the role of a fundamental postulate, and
it is often invoked in the justification of of statistical methods for practical
purposes.

Despite its success on the predictability on macroscopic systems, the con-
ceptual bases of the statistical mechanics are still controversial. The most
accepted justification is related to the ergodic theory, formulated by G. D.
Birkhoff [6] and well summarized in the Khinchin’s book [7]. It connects the
single trajectory of a dynamical system with the averages on the phase space
proposed by Gibbs. In particular the subspace covered by a trajectory should
have specific properties in order to ensure that the infinite limits of the time
average of an observable can be replaced by phase-space average of the same
observable. A system is called ergodic if it nearly cover the subspace of the
phase space with constant energy during its evolution. However it is not pos-
sible to demonstrate that a generic system, whose time evolution is described
by classical mechanics, is ergodic. The statistical mechanics foundations are
still an open issue despite the important role of its applications in investigating
molecular phenomena.

When material systems are analysed at the molecular level, the classical
mechanics should be replaced by quantum mechanics that supplies a more
accurate and fundamental description of dynamical phenomena at this scale.
Correspondly the classical statistical mechanics should be generalized in the
form of a quantum statistical mechanics. Despite the revolutionary character
of quantum mechanics and its deep differences with respect to classical me-
chanics, the development of quantum statistical methods has a strong analogue
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with the classical counterparts and it is still structured like in the formulation
given by Gibbs. The probability distribution is replaced by the so called den-
sity matrix that takes into account both the lack of information about the
state of a system (as the classical probability distribution) and the lack of in-
formation about the outcomes of a measure, that is purely a quantum effect.
The equilibrium situation for an isolated quantum system is described by the
correspondent microcanonical ensemble in correspondence of a collection of
systems with energy in the interval [E,E + δE] and with an equal a priori
probability. For several decades this formulation has been employed and has
produced remarkable results in many fields of molecular problems, like mag-
netism, electric properties of solids etc. Despite, or perhaps thanks to, this
success the foundation of quantum statistical mechanics has not been the topic
of a scientific debate as its classical analogue [8, 9].

Only recently several authors are arguing about new interpretations of
statistical mechanics relying the basic quantum mechanical tools. Here we
want only to cite the huge effort from Gemmer, Michel and Mahler in their
book [10] where they report and develop the thermodynamics description as
emerging from a quantum mechanical perspective. Even if our approach is
slightly different we share the importance of the typicality in the emergence of
thermodynamics from a purely mechanical behaviour.

Both equilibrium and non-equilibrium quantum statistical mechanics have
attracted a significant amount of attention due to the important improvements
on the technological side that has allowed the possibility to investigate single
molecule properties as well as quantum effect, like coherences in molecular
systems.

In my opinion, the most important progress in the last years resides in the
change of perspective which attributes to the wave function a central role in the
quantum statical mechanics because it fully represents the physical behaviour
of an isolated systems.
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1.2 Pure State Quantum Statistical Mechan-
ics

Despite early developments on the foundations of quantum mechanics concern
the wave function, quantum statistics was developed within the density matrix
formalism, leading to very important results in explaining molecular observa-
tions. Unlike its classical analogue, whose foundations have been debated for
decades, the quantum statistical mechanical formalism has been largely ac-
cepted quite early. Only recently several authors argued a new interpretation
on this topic based on the wave function and, following Lloyd [11, 12] and
Gogolin [13], we refers to it as pure state quantum statistical mechanics. The
main goal is to connect the thermodynamic behavior with the quantum world
within a more self-consistent framework. The field has attracted much atten-
tion and very different contributions are present in literature nowadays.

One of the first interesting understanding is by Lloyd that has compared
the results of a measurement on many copies of the same system, all prepared
in the same state (wave function), with the results predicted by microcanonical
formulation. He discovered that most pure states for the system produce the
statistical distribution of results that differs from the ensemble averages by
only a small amount. It is a very interesting result demonstrating that, thanks
to the intrinsic statistical behavior of quantum states, a single wave function
can reproduce the same results of standard equilibrium quantum statistics.
Although his scopes were very far from ours, he gave an hint to the connection
between single wave function representation of a quantum system and the
statistical mixture of the standard statistical formulation.

Some years later, both Deutsch [14] and Srednicki [15] independently ex-
tended this result by identifying properties for the wave function that allow a
system to thermalize, in the sense that the wave function reproduce the micro-
canonical results, considered as equilibrium properties. In particular Srednicki
elaborated the so called eigenstate thermalization hypothesis (ETH) where he
suggested that a system thermalizes, for physical interesting observables, when
it has eigenstates that reproduce the behaviour described by the microcanon-
ical ensemble. This hypothesis has been largely investigated in the last years
from both points of view of supporting evidences (see ref. [16, 17, 18] and
related references) and of his breakdown conditions [19, 20]. Even though the
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large number of papers on this topic, there are no general theoretical explana-
tion supporting this hypothesis.

The work of Lloyd with the works related to ETH just mentioned can be
considered as examples of how a single wave function can exhibit statistical
properties and generate the same results expected in the standard quantum
statistical framework. In the same direction an important contribution is the
one by Goldstein and al. in ref. [21]. They have considered a system weakly
coupled with a thermal bath, demonstrating that the reduced density matrices
for the overwhelming majority of the wave functions, describing the compos-
ite system (system + bath), are canonical. It means that it is possible to
reproduce the results of standard quantum statistical mechanics without con-
sidering a statistical mixture of wave functions. The canonical ensemble seems
to be inevitable in quantum mechanics, leading to the conclusion that the mi-
crocanonical ensemble is unnecessary. This represents a very important result
because it promotes the substitution of an unprovable assumption (the equal
a priori probability) with a demonstrable principle, called canonical typicality.

Popescu et al. have pushed further the reasoning by generalizing the canon-
ical typicality in a general canonical principle [22]. The generalization resides
in the general constraints considered for the overall system state that do not
consist only in the standard energy constraint. Since the canonical state rep-
resents the state of a sufficiently small subsystem when the overall system is in
the equiprobable state, the general canonical principle, using the words of the
authors, can be interpreted as "a principle of apparently equal a priori proba-
bility so, the overwhelming majority of pure state are not distinguishable from
the microcanonical ensemble from the subsystem point of view. As Popescu
et al. have recognized, all these results are kinematic without invoking the
quantum dynamics.

An interesting intuition about that topic came from the work of Zurek in
his decoherence program [23, 24] where he puts the attention on the unitary
evolution of the wave function. In his opinion the classical experience can be
explained witha a environment-induced superselection of the quantum state
caused by the interaction with the environment. Although the topic is still
under debate, in our opinion it has touched the point: the wave function fully
characterize the state of a quantum system and the interaction between system
and environment has to be taken into account to understand both quantum
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dynamics and the emergence of the classical world.
In our opinion a deeper knowledge about thermalization processes could

give important insight on the relaxation that are largely widespread in several
fields of chemical interest.

The brief report just presented, far from being exhaustive, was intended
to introduce the new the perspective of quantum statistical mechanics. Away
from the ensemble sight, several authors have started to consider the wave
function as central object of investigation, leading interesting progresses in the
interpretation of thermodynamics as emerging from first principle as well as
relaxation to equilibrium situation from a purely quantum dynamics.

1.3 Our approach: overview of the thesis

Investigation on the foundation of quantum statistical mechanics has recently
gained a renewed interest. As a matter of fact, the possibility of studying
single molecule properties as well as the necessity of a better understanding on
quantum dynamics, in order to develop new nanoscaled materials suitable to
quantum computing tasks, have opened new intriguing questions leading the
quantum statistical mechanics far from being well understood and accepted.

The most relevant change of perspective of the last years is about the ob-
ject of interest: from the statistical density matrix describing the average over
many realizations of the same quantum system to the wave function describing
the single realization. Several authors have shown [11, 21, 22, 25] that the sta-
tistical analysis on the wave function can provide an equivalent description of
that deriving from statistical density matrix and the equal a priori probabil-
ity postulate of the standard quantum statistical mechanics can be overcome.
The main advantage of the analysis on the wave function is the possibility
to describe its quantum dynamics directly from the solution of Schrödinger
equation.

With this thesis I want to give a little contribution on the statistical descrip-
tion of quantum pure states and to show how the statistical tools can provide
new insights on the study of dynamical processes fully from a quantum per-
spective. With some effort it might produce new and interesting understanding
on relaxation at molecular level described within a self consistent theoretical
framework.
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In the following chapter I will introduce a useful parametrization of the
wave function that allows to identify the dynamical variables and the constants
of motion. In particular those constants are the only variables that describe
the equilibrium of any generic property of the quantum system and also the
most difficult to analyse, due to the absence of any a priori information about
them. Then I will briefly introduce the statistical description on the wave
function by describing the mostly accepted probability distribution on the
constants of motion, charaterized by its uniformity in the Hilbert space. It
will be explained that thermodynamic description naturally emerge from that
ensemble since different realizations of a quantum system behave essentially
in the same way, once the large size limit is considered. This will conclude the
introductory part of my thesis.

In the third chapter I will highlight the major drawback of the uniform
ensemble that emerges from the realization of the thermalization experiment.
Once two systems with different temperatures are brought in contact, the final
equilibrium state cannot be anymore described by the uniform ensemble, since
an anisotropy on the Hilbert space naturally arises. Precisely from the failure
of uniform ensembles a new guideline has been identified in order to develop a
statistical ensemble able to describe the equilibrium after the thermalization.
The invariance with respect to the thermalization shows to be a valid criterion
that leads to the Thermaliazation Resilent Ensemble whose properties are
in agreement with thermodynamics. One of the main features of the new
ensemble is that clear thermal states can be easily defined even at microscopic
level.

The fourth chapter is devoted to the development and characterization of
the probability distribution of the Thermalization Resilient Ensemble through
a geometrical analysis of a surface embedded in the Hilbert space. In particular
a surface element of an ellipsoid will be related to the probability density on
the constants of motion which, in turn, accounts for the anisotropy of the
Hilbert space. However the model parameters are hardly manageable and and
the connection between them and the thermalization resilient ensemble is not
easy to rationalise.

An alternative sampling algorithm of the Thermalization Resilient ensem-
ble will be developed in the fifth chapter, starting from the well known be-
haviour of uniform sampling through a scaling procedure. This allows for the



1.3. OUR APPROACH: OVERVIEW OF THE THESIS 11

single realizations of quantum systems with a well defined thermal state as well
as the explicit emergence of the thermodynamics in increasing the number of
components for the quantum system.

In the last chapter the thermalization experiment will be completely de-
scribed at quantum level with the tools developed in the previous chapters.
Two identical system will be brought into interaction by the use of two different
Hamiltonians. The subsystem energies will be presented in order to charac-
terize the equilibrium properties. It will be accompanied by an analytical
description.
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CHAPTER 2

Statistics of Isolated quantum systems

In this chapter a brief introduction about the standard quantum mechanical
formalism is provided in order to recall the basic principles and to introduce the
notation that will be used in the rest of the thesis. We then explore the mean-
ing of equilibrium in quantum systems from a statistical point of view. The
importance of the equilibrium resides in its connection with thermodynamics
and its emergence from the quantum description, based on the dynamics of
the wave function.

A useful parametrization of the wave function will be presented in order
to highlight which information can be deduced from its dynamics and, at the
same time, it will be clear that the constants of motion, called populations,
retain all the equilibrium information strictly related to the thermodynamic
description.

The properties of the wave function parameters will be presented providing
the needed tools to describe ensembles of wave functions. By following the
ergodic theorem, it is possible to obtain a uniform statistical distribution on
the dynamical variables from the dynamics. On the other hand, the absence
of any a priori information about populations complicates their analysis. As a
matter of fact only reasonable hypothesis can be taken into account that lead
to different possible probability distributions. The most self-consistent one and
well analysed, available in literature, is called Random Pure State Ensemble

13
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(RPSE). Its main features will be presented as well as its major drawbacks.

2.1 Quantum dynamics of isolated systems

The state of an isolated quantum systems is fully described by the wave func-
tion |Ψ(t)〉 and, whatever the wave function is, the system is said to be in a
pure state. A wave function can be defined only for completely isolated sys-
tems and formally it can be represented as a ray vector in a Hilbert vectorial
space H. All vectors that differs only by their modulus represent the same
quantum state. A unitary modulus is often chosen as representative and the
wave function is then normalized as

〈Ψ(t) |Ψ(t)〉 = 1 (2.1)

where the 〈· |·〉 represents the scalar product in the bra-ket notation. Where
not otherwise specified, the wave function will be considered normalized. For
the properties of Hilbert space, it is possible to choose a orthonormal basis set
(u1, . . . , ui, . . .) and express each vector of the space as a linear combination.

|Ψ(t)〉 =
∑
i

ci(t) |ui〉 (2.2)

where the coefficients of the expansion ci(t) = 〈ui |Ψ(t)〉 represent the pro-
jection of the wave function on the selected basis vectors or, in other words,
they are the coordinates with respect each basis vector. The set of coefficients
completely describes the dynamics of the wave function and retains all the
information about its behaviour, it can be interpreted as the analogue of the
set of coordinates and momenta in the classical phase space. In principle, the
Hilbert space has infinite dimension but, for practical purpose, the wave func-
tion is commonly considered to belong to a finite dimensional subspace of the
total Hilbert Space HN ⊆ H, where N is its dimension.

The wave function is time dependent and evolves according to the Schrödinger
equation

i~
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (2.3)

where i is the imaginary unit, ~ the reduced Plank constant and Ĥ is the
time-independent Hamiltonian operator that represents the energy of the sys-
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tem. Equation (2.3) implies that the eigenvectors of the Hamiltonian |Ek〉 are
a privileged basis in the description of the time evolution of the wave func-
tion since they allow to obtain a direct solution of equation (2.3). Given the
eigenvalue problem of the Hamiltonian as

Ĥ |Ek〉 = Ek |Ek〉 (2.4)

where Ek is the eigenvalue associated to the eigenvector |Ek〉, and where the
eigenvectors are orthonormal, i.e.

〈Ek |Ek′〉 = δk,k′ (2.5)

the solution of Schrödinger equation leads to

ck(t) = ck(0) e− i
~Ekt (2.6)

where ck(0) = 〈Ek |Ψ(0)〉 represents the initial condition in the energy repre-
sentation. The wave function can be then expressed as

|Ψ(t)〉 =
∑
k

ck(0) e− i
~Ekt |Ek〉 (2.7)

in order to highlight the oscillating behavior of the time dependence with
respect each Hamiltonian eigenvectors.

An equivalent description of a pure state can be performed with the use of
the density matrix operator ρ̂(t) defined as

ρ̂(t) := |Ψ(t)〉 〈Ψ(t)| =
∑
k,k′

ck(t) c∗k′(t) |Ek〉 〈Ek′ | (2.8)

where in the last equivalence we explicitly used the Hamiltonian eigenvectors
as basis set. It is simple to notice that the elements of the density operator
are nothing else than the product of coefficients of the wave function

ρk,k′ = ck(t)c∗k′(t) (2.9)

In the case of pure states of isolated systems the density matrix represents
the projection operator onto the direction of the wave function and it has the
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following properties:

• unit trace Tr{ρ(t)} = 1;

• hermicity ρ(t) = ρ(t)† ;

• idempotency ρ̂(t)ρ̂(t) = ρ̂(t);

• positive definiteness 〈φ| ρ̂(t) |φ〉 > 0 for every |φ〉 ∈ H.

Its time evolution is described by the Liuville-von Neumann equation

i~
∂

∂t
ρ(t) = [Ĥ, ρ̂(t)] (2.10)

where [Ĥ, ρ̂] := Ĥρ̂− ρ̂Ĥ is the commutator of the two operators.
Thanks to these simple definitions we have introduced two different, but

equivalent, representations for the state of a quantum system, the wave func-
tion and the density matrix operator of the pure state, both equipped with their
time-evolution equations. The third important ingredient in the description
of quantum system is the definition of the properties we want to investigate.
In quantum mechanics the observables are defined as expectation values of
operators. For example, given a generic operator Â

a(t) := 〈Ψ(t)| Â |Ψ(t)〉 (2.11)

represents its expectation value and it will be, in general, time-dependent.
Equation (2.11) can be also expressed in the following way

a(t) = Tr{Âρ̂(t)} =
∑
k,k′

Ak,k′ck(0)c∗k′(0) e− i
~ (Ek−Ek′ )t (2.12)

where Ak,k′ = 〈Ek| Â |Ek〉. The first equivalence of equation (2.12) shows the
relation between the expectation value and the density matrix while the second
equivalence explicitly considers the eigenvectors coefficients. The expectation
value is nothing more than an average of all the possible measures made on the
quantum system where the wave function coefficients represent the probability
density with respect to all the possible outcomes.

From the Liouville-Von Neumann equation (2.10) we can observe that all
the operators that commute with the Hamiltonian are constant of motion be-
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cause they are diagonal in the same basis of the Hamiltonian. In the particular
case where the operator is the Hamiltonian, its expectation value is the energy
of the system and it is a conserved quantity.

E = 〈Ψ(t)| Ĥ |Ψ(t)〉 =
∑
k

|ck(t)|2Ek =
∑
k

|ck(0)|2Ek (2.13)

In addition, we could be not interested in the properties of the system
as a whole but only on a part of it, called subsystem. Such a framework
allows the investigation of the behavior of a subsystem S of the overall system,
composed by the subsystem S and a generic environment E. In particular,
since the overall system is in a pure state, its subsystem is entangled with the
environment and cannot be described as wave function. The correct tool to
specify the subsystem properties is the reduced density matrix σ̂(t), defined as
the partial trace of the pure state density matrix operator

σ̂(t) = TrE{ρ̂(t)} (2.14)

where the subscript E means that the trace is performed on the environment
degrees of freedom.

The definitions and the equations above represent the core of the necessary
tools for the description of the time evolution of an isolated quantum system
as early described, for example, by Schrödinger [26] and Von Neumann [27].
Given the initial conditions it is possible to follows the system’s dynamics as
well as the time evolution of expectation values.

2.2 Quantum Mechanical Equilibrium

Since the beginning of the 20th century, scientists have been challenged by
the derivation on the thermodynamic properties from a microscopic descrip-
tion. This issue, closely related to the foundation of statistical mechanics,
was investigated mainly by focusing on the properties of a collection of sys-
tems. Only recently this fundamental topic has gained a renewed interest,
both from the classical [28, 29]1 and from the quantum perspective. This

1The Jarzynski equality that relates equilibrium thermodynamic states with non equi-
librium processes represents an example of important recent achievement on the classical
framework.
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rejuvenated attention is due to the technological improvements concerning in-
vestigation on single molecule properties [30], as well as because of the need
of a better understanding of the mechanism underling quantum dynamics in
order to obtain nanoscale devises, this fundamental topic has gained a renewed
interest. In particular the problems related to quantum computing have de-
veloped an interesting debate on the concepts of equilibrium and equilibration
[25, 31, 32, 33, 34] in an isolated system. According to our point of view,
it is important to point out that standard quantum statistical mechanics do
not address the problem of equilibration or dynamics of a quantum isolated
system [8, 9], as a matter of fact the microcanonical or canonical formalism
are related to systems yet in equilibrium. Pure quantum mechanical predic-
tions begin now to be considered more fundamental with respect to standard
statistical quantum mechanics formalism [16, 35] and have recently attracted
a significant amount of attention.

This represents an important change of perspective with the focus shifted
from the ensemble average over a collection of systems to the predictability
of single realization of a quantum system. The pure states dynamics is now
widely investigated in order to get new insight into relaxation problems.

The foundation of quantum statistical mechanics themselves starts to be
reconsidered and nowadays the concept of equilibrium is addressed in several
ways, mainly through a comparison with the standard ensemble perspective.
An isolated system, or one of its subsystems, are considered to be in equilibrium
as soon as they reproduce the same results expected by the microcanonical
or canonical density matrices, respectively. Although the focus is either on
the overall system or in the subsystem, the argumentations are often closely
related.

Before going deeper into details of different perspectives of equilibrium
situation, it is useful to recall the standard statistical density matrix formalism
and to briefly illustrate the main features of microcanonical and canonical
density matrices.

2.2.1 Standard quantum statistical mechanics

The most important ensemble in standard quantum statistical mechanics is
represented by the microcanonical ensemble. As in classical mechanics, it is



2.2. QUANTUM MECHANICAL EQUILIBRIUM 19

used in the description of isolated systems with many degree of freedom, where
a complete characterization of the system state is impossible. The microcanon-
ical ensemble is used to make predictions about the outcomes of experiments
performed on systems where the energy is known. Its strength also depends
on the fact that the other ensembles, like canonical and gran-canonical, can
be derived from this, under some reasonable assumptions [36].

Like in the classical case, the microcanonical formalism considers that only
the eigenvalues |Ek〉 within an energy interval [E,E + δE] contributes to the
systems properties. It is expressed by the microcanonical density matrix ρmc
as

ρ̂mc = 1
Γ(E)

∑
E6Ek6E+δE

|Ek〉 〈Ek| (2.15)

where Γ(E) represents the number of states whose energy lies between E and
E + δE, while outside of the energy range the density matrix vanishes. The
energy interval selects a specific subspace of the total Hilbert space that is
often called active space. In the case of macroscopic systems, the eigenenergies
spectrum forms almost a continuum and the number of states Γ(E) can be
expressed as the integral on a selected interval as

Γ(E) =
E+δE∫
E

dE g̃(E) (2.16)

where g̃(E) is the extension to the continuum of the real density of energy
eigenstates

g(E) =
∑
k

δ(E − Ek) (2.17)

and δ(E − Ek) is the Dirac delta function. If in addition δE � E and g̃(E)
varies only slightly in that interval, it is possible to write

Γ(E) ' g̃(E)δE (2.18)

In the classical case the microcanonical probability density is well moti-
vated as the results of classical chaos that make reasonable the assumption of
ergodicity. In those conditions one is easly persuaded that every initial con-
dition for a system explores uniformly in time all the phase space compatible
with the system’s energy. If it is possible to demonstrate that the system is
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ergodic, the Kinchin theorem provides a good explanation of the agreement
between statistical mechanics predictions and experimental results. Despite
these methodological foundations, one should takes into account that classi-
cal systems are not ergodic, and in the quantum mechanical framework the
ergodicity appears even less justified.

Due to the strictly linear time evolution, the mechanics of chaos is com-
pletely absent in the quantum dynamics and it is an open question how isolated
quantum mechanical systems, prepared in an arbitrary initial state, evolve to-
ward a state that resembles the thermodynamics in its microcanonical ensem-
ble. Standard quantum statistical mechanics did not address such a problem
[8, 9].

Another important ensemble in quantum mechanics is the so called canon-
ical ensemble. It describes a systems which is not isolated but in contact with
a large thermal bath. The canonical density matrix has the form

σ̂can = exp(−β ĤS)
Z

(2.19)

where ĤS is the subsystem Hamiltonian, Z is the partition function and β =
1/kB T is the inverse temperature. The partition function Z is defined as

Z = Tr{exp(−β ĤS)} (2.20)

While the microcanonical ensemble describes isolated systems, canonical en-
semble allows the subsystem to exchange energy with the thermal bath and
the important thermodynamic parameter is represented by the temperature.
The canonical density matrix is usually obtained from the microcanonical en-
semble by assuming that the subsystem S is weakly coupled with the thermal
bath B [8]. Gibbs was the first who suggested this important ensemble in the
classical framework [5] and it is interesting to notice the assumptions he made
on the classical side are the same for obtaining its quantum equivalent.

2.2.2 Equilibrium on the wave function perspective

The new perspective places the wave function at the center of the theoretical
investigation trying both to describe the emergence of thermodynamics from
first principles and to understand why the standard formulation works so well



2.2. QUANTUM MECHANICAL EQUILIBRIUM 21

in the description of quantum systems. In this direction, the interest is focused
on the mechanism that allows the equilibration to occur or on which properties
the system should have in order to reproduce the standard thermal equilibrium.

Considering the last point the so called Eigenstate Thermalization Hypoth-
esis (ETH) is gaining a widespread interest. The ETH, as firstly proposed by
Deutsch [14] and Srednicki [15], states that a system thermalizes whenever the
expectation values for an eigenstate, or for a set of eigenstates in a narrow
energy interval, is able to reproduce the result obtained by using the micro-
canonical density matrix. The hypothesis is largely debated [37, 16, 17, 38, 39]
and proved for several systems.

Another common formulation of the equilibrium considers the system com-
posed by a small subsystem in contact with a large thermal bath. In particular,
starting from a pure state, the distance between the reduced density matrix
for the subsystem and the equilibrium canonical density matrix has been in-
vestigated, accounted as the trace of the difference between their matrix rep-
resentations. As long as the bath has a macroscopic dimension the canonical
density matrix is recovered almost always and it allows to overcome the equal
a priori probability principle. In this field I only want to cite two important
works written by Goldstein et al. [21] and Popescu et al. [22]. It is important
to point out that in these approaches the energy eigenstates of the Hamiltonian
do not play any role.

In the same direction, a different approach considers the equilibrium as the
result of quantum dynamics of the wave function. About this topic, interesting
results were obtained by Popescu and al. [25] by focusing on the equilibration
of a subsystem. They demonstrated that all the interacting large systems have
a subsystem in equilibrium, in the sense that the subsystem spends almost all
time in a state very close to the equilibrium state, defined as infinite time
average. The underlying assumption concerns the energy distribution of the
initial wave function and the dimension of the Hilbert space where the pure
state is defined.

In my opinion, hypothesizing any particular properties on the Hamiltonian
eigenstates, like in the ETH approach, could lead to the possible contradiction
of explaining a not well understood phenomenon (the thermalization) with an
hypothesis that cannot be proved, but only verified. In my opinion, the large
energy distribution of the initial state is a more reasonable assumption. In the
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case of complex quantum systems any actual Hilbert space has large dimen-
sions, and a generic state will have significant overlap with many eigenstates.

2.2.3 Equilibrium from the dynamics of the wave func-
tion

In this thesis, I fully endorse the pure state quantum approach and the equi-
librium properties will be related to evolution of the quantum system. Let’s
consider a generic time dependent observable a(t). A possible definition of the
correspondent equilibrium property a could be that associated to the infinite
time limits of a generic observable

a = lim
t→∞

a(t) (2.21)

However it is clear from equation (2.12) that the expectation value of a generic
operator in quantum closed system has an oscillating behaviour described by
the complex exponential. It means that it cannot equilibrate in the sense that
it will approach a time independent stationary state, since the time dependence
is of oscillating type. The system will reproduce any initial state after a certain
time, called Poincaré recurrence time [40, 41] and, although it is possible that
the recurrence time will be longer than the actual age of the universe, a infinite
temporal limit does not exist. The only exception is represented by a system
prepared in an Hamiltonian eigenstate, that is already a stationary state. Such
a situation cannot be easily realised, since a slightly different initial state as
well as a small perturbation in the Hamiltonian would lead to the situation of
a wave function with many contributions of different eigenstates.

An alternative meaningful definition of equilibrium is the one related to
the time average, as firstly suggested by Von Neumann [27] (a commentary
article concerning this topic is proposed by Goldstein et al. in ref. [42]). The
infinite time limit is substituted with the infinite-time average limit of a generic
observable a(t) as

a = lim
τ→∞

1
τ

τ∫
0

dt a(t) = Tr(Âρ̂) (2.22)

where

ρ̂ = lim
τ→∞

1
τ

τ∫
0

dt ρ̂(t) (2.23)
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If we only assume the so called non-degeneracy condition, such that the Hamil-
tonian eigenstates are not degenerate, the previous limit is readily performed
as limt→∞(1/t)

∫ t
0 dτe−iτ(Ek−Ek′ ) = δk,k′ . The equilibrium property of the ex-

pectation values of equation (2.12) can be expresses as

a =
∑
k

|ck|2Ak k (2.24)

This time average highlights how the square moduli of the coefficients |ck|2

represent the constants of motion of the quantum dynamical problem.

The information on the time average only partially characterizes the dy-
namical system that may fluctuate largely around the equilibrium values of the
properties. When the fluctuation amplitude is comparable with the interval of
the possible values of the property, it is meaningless to speak about equilibrium
since the system does not spend much time around its time average.

Since evaluating the amplitude of the fluctuations around the time aver-
age becomes necessary in order to fully identify an equilibrium property, we
introduce the deviation ∆a(t) of a quantity a(t) from its average a

∆a(t) = a(t)− a = Tr{Â(ρ̂(t)− ρ̂)} (2.25)

from which we can quantify the amplitude of the fluctuations as time average
of the squared deviation

|∆a(t)|2 =
∑
k 6=k′
|Ak k′ρk k′|2 (2.26)

In particular the last equality is obtained in the so called non resonance con-
dition [43, 33], that is slightly stronger with respect to the non-degenerate one
because it implies also non degenerate transition frequencies.

An equilibrium property can be identified by the analysis of the its infi-
nite time average together with its mean square deviation. Two important
contributions by Reinmann [44, 45] and by Bartsch and Gemmer [46] have
demonstrated how the fluctuations around time average, defined as (2.26), are
small for the majority of the wave functions, under the condition that the
system is spread over many Hamiltonian eigenstates. In particular, the ex-
pectation values of physical interesting observables show a narrow distribution
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with respect to all the possible wave functions [44] and moreover the expecta-
tion values at a given time will yields similar expectation values at any later
time [46]. Given those results for complex quantum systems, it is possible to
state that the dynamics of expectation values is almost always close to the av-
erage and this gives strength to the above definition of equilibrium properties
(see equation (2.22)). From now on, the overbar will denote the equilibrium
properties defined as infinite time average.

The non resonance condition, employed in obtaining equation (2.26), repre-
sent a general and mild condition. One needs only to think that the spectrum
of real systems is characterized by a partial random character, due to very
different types of interaction modulated by the interparticle distances. This
avoids the degeneracy of the energy eigenstates as well as the the resonance
condition of transition frequency.

If on the one hand the just presented constants of motion of the Schrödinger
dynamics are fundamental in the description of equilibrium properties in quan-
tum systems, on the other hand they represent a misty object and difficult to
deal with, since the complete lack of a priori information about them. In my
opinion, this lack of knowledge can be only treated in a statistical framework
that naturally leads to the definition of a statistical ensemble of pure states.

2.3 Ensemble of Pure States

Since equilibrium properties are described only by the constants of motion
|ck|2, it is useful to parametrize the wave function coefficients of equation (2.6)
in their polar form

ck(t) =
√
Pk e

−ı αk(t) (2.27)

where Pk are called populations and αk(t) phases. The phases αk are linearly
dependent on time

αk(t) = αk(0) + Ek t/~ (2.28)

while the populations represent the constants of motion. They are no more
than the square modulus of the coefficients representing the wave function
projection on each eigenstate |Ek〉

Pk := |c(t)|2 = |c(0)|2 (2.29)
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and they are normalized as ∑
k

Pk = 1 (2.30)

The summation is extended to all the Hilbert space directions, which in prin-
ciple can be infinite. If we compare the definition of population with equation
(2.9) we recognize immediately, due to the wave function, that populations are
the diagonal elements of the density matrix

Pk = ρk,k (2.31)

The polar parametrization of coefficients ck enables us to describe the wave
function according to the sets of time-dependent phases α = (α1, α2, . . . , αk, . . .)
and time independent populations P = (P1, P2, . . . , Pk, . . .). From this new
parametrization, a general equilibrium property is expressed as

a =
∑
k

Pk Ak k (2.32)

while its fluctuation
∆a =

∑
k k′

Pk Pk′|Ak k′ |2 (2.33)

In addition, a deeper look into equation (2.12), shows that any property
of a quantum pure state can be represented as a function of the phases fP (α)
parametrically dependent on the populations, where its equilibrium value is
completely defined by populations

fP = lim
τ→∞

1
τ

∫ τ

0
dt fP (α(t)) (2.34)

Taking note of the importance of the populations variables in the descrip-
tion of quantum pure states, we now have to face the problem of their char-
acterization. Since the impossibility of knowing the exact spreading on the
Hamiltonian eigenstates of a quantum system, form experimental data, in my
opinion, the only viable option is the statistical approach. It can be formalized
through the definition of an ensemble of pure states, where ensemble is meant
as probability distribution p(P ) for the populations specifying our state.

Large differences exist between this ensemble definitions and the one pro-
posed by Gibbs in its original works [5, 47, 48]. Here no real ensemble, like
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collection of systems, is ever considered, since the object of interest is the single
wave function describing the quantum isolated system.

Our need of the definition of a statistical ensemble on the wave function is
no more than the manifestation of our lack of knowledge on the system, i.e.
the typical framework of statistical mechanics.

More formally, the ensemble is described by a sample space D of the pos-
sible sets of populations P and the corresponding probability density p(P ).
In principle several choices are possible in order to describe the sample space,
each of them can lead to different probability distribution on populations. In
the following section I will briefly describe the main one, called Random Pure
State Ensemble, showing also its connection with the thermodynamics.

2.3.1 Random Pure State Ensemble

Starting from the pure state analysis Fresch and Moro have developed the
Random Pure State Ensemble (RPSE) [43, 49, 50]. Following their defini-
tions, the wave function belongs to a N -dimensional Hilbert space HN , called
active space where the set of eigenfunctions of the Hamiltonian |Ek〉 (with
1 6 k 6 N and k ∈ N) forms an orthonormal basis set for that space. The
only constraint on the sample spaceD is the normalization and the positiveness
of each population

D = {(P1, P2, . . . , PN) ∈ RN |
N∑
k

Pk = 1, Pk > 0 ∀k} (2.35)

The populations associated with directions outside the active space vanish,
such that Pk = 0 for k > N . The above sample space describes a (N − 1)-
dimensional simplex on the populations space. Since no a priori properties
can be attributed to wave function, no preferential direction in the Hilbert
space was considered and the populations of the unitary vector, representing
the wave function, are chosen according to the uniform distribution on the
simplex.

The constant probability density of RPSE statistics was derived from a
geometrical analysis on the Hilbert space by considering the N−1 independent
populations

p(P1, P2, . . . , PN−1) = (N − 1)! (2.36)
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Figure 2.1: The triangle represents the two-dimensional simplex embedded in a
three-dimensional space. In the 3-d case the equation (2.35) is written as

∑3
k=1 Pk =

1. Once the first population is selected, the domain of the second one is constrained.
As soon as the second one is chosen, the last one is determined by the normalization
condition, such the constraint to belong to the simplex.

with normalization
∫

dP1 dP2 . . . dPN−1 p(P1, P2, . . . , PN−1) = 1 (2.37)

The last population PN is given according to the normalization condition.
The explicit probability distribution, in principle, allows one to calculate the
average of every function of populations fP that will be denoted as

〈fP 〉 :=
∫

dP1 dP2 . . . dPN−1 f(P1, P2, . . . , PN−1) p(P1, P2, . . . , PN−1) (2.38)

where 〈·〉 stands for ensemble average.

It should be noted that all the populations are not statistically independent
due to their positiveness that constrains the domain of integration [50]. If we
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consider a specific order of integration, for example from N − 1 to 1, the
positiveness of the last population PN = 1 − ∑N−1

k Pk > 0 determines the
allowed region for PN−1 as function of the previous populations PN−1 6 1 −∑N−2
k Pk. The positiveness also of PN−1 determines the upper integration limit

of the previous, and so forth.
All the statistical properties of the RPSE ensemble are well characterized

[43, 50] and here I report only the most interesting results for our purposes. For
example the marginal distribution for a single population can be analytically
derived as

p(Pk) = (N − 1)(1− Pk)N−2 (2.39)

The latter equation is valid for any population thanks to the invariance of the
full distribution (eqn. (2.36)). The first two moments can be obtained by
integration from equation (2.39) as

〈Pk〉 = 1
N

〈P 2
k 〉 = 2

N(N + 1) (2.40)

Furthermore, one could be interested in the evaluation of ensemble average
equation (2.38) of an equilibrium properties of eq. (2.32). This is very useful
in order to understand how the system properties are affected by the statistical
sampling of the wave function. As a matter of fact, one could ask if there is any
particular functions that is nearly independent with respect to the choice of the
wave function. In the next paragraph, it will be shown how the overwhelming
majority of wave functions, within RPSE statistics, produces almost the same
value for properties related to thermodynamic state functions. It represents
the most important validation of the RPSE model since the thermodynamics
emerges quite naturally from the picture of the wave function under a condition
called typicality.

2.4 Emergenge of Thermodynamics Properties

How a property f in each single realization of a quantum system differs from
the ensemble average 〈f〉 is a very important ingredient in the characterization
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of the statistical ensemble. The most appropriate tool is the variance

σ2
f :=

〈
(f − 〈f〉)2

〉
= 〈f 2〉 − 〈f〉2 (2.41)

that formally quantify the typical deviation with respect to all the possible re-
alizations within a specified ensemble. About this topic, Reimann [44] demon-
strated how, for almost any quantum system, the distribution of several inter-
esting physical properties with respect to different realizations, shows a narrow
peaked behaviour. This implies that the dynamical equilibrium properties de-
viate negligibly from the ensemble average. In this situation, where a property
manifest a typical deviation σf much smaller than the range of its possible
values ∆f

σf � ∆f (2.42)

that property is said to be typical.

Under quite mild assumptions, Reimann demonstrated how several pos-
sible probability distributions on the wave function coefficients manifest the
typicality behavior, i.e. a randomly sampled wave function is very likely to
yield expectation values very close to the ensemble average simultaneously for
a large number of observables. Since the equilibrium properties, within our
formalism, are specified only by the set of populations, the previous statement
assures that several equilibrium properties are almost the same even if different
sets of populations are considered.

The typicality property can be considered as the natural connection be-
tween a single realization and the standard ensemble point of view of statistical
mechanics, where our lack of knowledge about the precise system state is not
of primarily importance since almost all quantum states behave essentially in
the same way.

Since equation (2.42) does not provide a quantitative criterion for the typ-
icality property, Fresch and Moro [50] have considered a stronger formulation
of typicality by considering the macroscopic limit. They assign an almost sure
typicality to a property when the ratio σf/∆f tends to zero in increasing the
number of components n.

lim
n→∞

σf
∆f

= 0 (2.43)

where the thermodynamic limit was considered at fixed temperature. If the
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condition (2.43) holds the ensemble average is a good estimate for the equilib-
rium properties in all the possible realizations of the quantum system. Fresch
and Moro reinforced that result by considering two particular properties with
a thermodynamic correspondence: internal energy and entropy.

In the microscopic framework, a natural choice would associate the expec-
tation value of energy E = ∑

k Ek Pk to internal energy U . At the same time
the Shannon entropy W = −kB

∑
k Pk lnPk would be the natural choice for

the description of the statistical disorder with respect to the decomposition of
wave function in the eigenvectors. However, in general, both the latter quanti-
ties depend on the specific realization of the quantum system and consequently
on the set of populations. On the contrary, the thermodynamic one should be
independent from it and univocally determined. Fresch and Moro in ref. [50]
have demonstrated that the internal energy and entropy assume typical values
in the thermodynamic limits and this assures the identification of the typical
value of this properties to the macroscopic properties, independently of the
specific realization.

In addition they have demostrated that the ensemble averaged properties
are in agreement with the thermodynamic state functions, for example entropy
is shown to be a convex increasing function of internal energy. These important
and new results connect microscopic behaviour with the macroscopic observ-
ables in a clear and self-consistent methodological framework.

The macroscopic limit as well as the typicality behaviour represent a good
test for the statistical ensemble in order to verify the agreement with the
thermodynamics. In addition the focus on the wave function can lead to new
insight in the dynamics of quantum system and possibly new approaches to
study relaxation phenomena.

2.5 Different approaches on wave function En-
semble

Since in the rest of the thesis I fully endorse the perspective of Fresch and
Moro, in the following paragraph, I briefly report some other contributions
about ensembles of pure states present in literature, mainly related to typicality
arguments.
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The association between typicality property and ensembles of wave func-
tions demonstrates how some features of quantum states are almost preserved
when different precise realizations are considered. The words probability distri-
bution or measure in the Hilbert space are alternatively used and a prevalent
notation is still not present.

Goldstein at al., in ref. [21], demonstrated how the canonical density matrix
for a subsystem is typical for the overwhelming majority of wave functions
chosen according to a particular probability distribution. Following the works
of Schrödinger [51, 52] and Block [53], the authors introduced a uniform surface
area measure on the unitary sphere in a narrow Hilbert subspace H[E,E+δ] [21].
The considered probability distribution is uniform over all the normalized wave
functions |Ψ〉 with energy in the interval [E,E + δ], where δ is small on the
macroscopic scale. Unlike Fresch and Moro approach, Goldstein et al. do
not explicitly derive the distribution function on the wave function coefficients
but a thorough inspection can show a strong similarity with RPSE statistics.
Both probability distributions can be interpreted as a uniform distribution on
the surface of a sphere of equation ∑k |ck|2 = 1 (where |ck|2 = Pk). Where
Goldstein et al. consider a narrow energy interval with two parameters E
and E + δ, that represent the lower and the upper limit, Fresch and Moro
virtually eliminate the lower bound setting it at the lowest eigenvalue. This
choice is driven principally by two reasons: first of all it is not clear why
the pure state should have components only in a narrow energy interval in
the, in principle, infinite Hilbert space, secondly only the upper bond limit
has a strong thermodynamic interpretation in the macroscopic limit. In my
opinion, a mono-parametric probability distribution should be preferred, since
it provides the same results with less arbitrariness.

While Goldstein et al. were interested in the subsystem properties, Reimann
[44, 45] focused his work on the prediction that can be performed on the iso-
lated quantum system. In ref. [44], he demonstrated how almost every wave
function sampled from a distribution function has expectation values very close
to their ensemble averages. He did not consider a specific form for the ensem-
ble average that is quite general, provided that includes many eigenstates. As
he underlined, his approach include the standard formalism of Goldstein et al.
as a special case.

I would like also to mention the work of Naudts [54] that recognized as



32 CHAPTER 2. STATISTICS OF ISOLATED QUANTUM SYSTEMS

a difficult task the characterization of the single realization of a quantum
system since no information on the constant of motions is available. However
he avoided to consider a possible ensemble of wave functions by applying the
maximum entropy principle. He was able to derive a single set of populations
bypassing the problem of several possible wave functions. It naturally implies
no more then one realization for each thermal state.

The most similar contribution to mine was suggested by Brody and Ben-
der [55, 56] and re-elaborated by Fine [57], which consider an alternative mi-
crocanonical ensemble called Fixed Expectation Energy Ensemble (FEEE) by
Fresch and Moro. The authors propose to derive a probability distribution on
the pure state with a constraint on the expectation energy. A uniform prob-
ability distribution over all the wave functions that posses exactly the same
energy show typical behaviour and can be easily interpreted as a microcanon-
ical formulation on quantum pure state. Nevertheless some predictions of this
ensemble contradict macroscopic thermodynamics [43, 58, 59]. Since there are
no a priori information on the populations variables, different statistical mod-
els can be defined. In my opinion one of the most important criterion to the
acceptability of a statistical ensemble is its agreement with the thermodynam-
ics of macroscopic systems. Thus, due to its inconsistency in the macroscopic
limit, the FEEE can not be considered as an adequate ensemble for pure states.

On the other hand it is possible to introduce different criteria in the selec-
tion of statistical ensembles and these will be the main topic of my research.
I will specifically consider an invariance property in the thermalization exper-
iment that will lead to a statistical ensemble without a uniform measure such
that different directions in the Hilbert space weight differently in the pure state
selection.



CHAPTER 3

Thermalization Resilient Ensemble

Since the dynamics of wave function does not supply any information about
populations, the definition of a probability distribution on these variables is a
difficult task. At the same time, populations are strictly related with equi-
librium properties on a quantum state and they represent very important
variables in the description of a quantum state. Since each realization of a
quantum state is characterized by different choices of the set of populations,
the probability distribution points us how to select the most appropriate wave
function for the system of interest. However different probability distributions
on populations have been proposed [57, 49], only on the bases of reasonable
assumptions.

The validation of these statistical ensembles can be performed only with
a posteriori considerations and in ref.s [43, 58] Fresh and Moro have demon-
strated as the agreement with thermodynamics can be an optimum criterion
to discriminate between different probability distributions on pure states.

The important role of thermodynamics in the validation of models on wave
function, combined with the need for a quantum systems to exist in differ-
ent thermal states, for example associated to different temperatures, suggests
that whatever probability distribution is defined, it should take into account
the possibility of different thermal states with a precise thermodynamic corre-
spondence in the macroscopic limit.

33
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Starting from this premise I analyze how a perturbative interaction between
different systems can be described and how it affects the thermal state of a
quantum system. This investigation reveals the major drawback of the RPSE
statistics. If we consider to bring into contact two systems, even through a
perturbative interaction, we are not able to describe the equilibrium proper-
ties after the interaction within the Random Pure State Ensemble statistics,
since the random uniform character is lost. It represents a shortcoming of the
model from a methodological point of view, since closed systems can be always
considered as the result of interaction among previously isolated systems.

On the other hand this drawback introduces a further requirement of a
different nature that can be used for the definition of a new statistical ensemble.

The invariance of the thermal state in the coupling between identical system
will be used as a guideline in the definition af a new probability distribution on
populations. In the following, I will introduce an invariance constraint on the
average populations that leads to the development of a statistical ensemble
invariant with respect to the interaction of identical systems and very well
resilient when a real thermalization experiment is considered.

I will also demonstrate that this new statistical ensemble is in agreement
with thermodynamic predictions.

3.1 Probability distribution and thermal states

In the following some general considerations on pure state probability distri-
butions will be reported, many of them were not clear at the beginning of my
research, or at least they were never expressed in literature in terms that I will
use from now on.

Whenever different realizations of quantum pure states are considered, one
deals with different sets of populations and phases, characterising the system
state, once the Hamiltonian eigenstates are provided. However, as explained
in the previous chapter, only the set of populations is truly distinctive of a
quantum state in relation to different equilibrium properties. Precisely for
this reason the set of positive and normalized populations P = (P1, P2, P3, . . .)
represents the set of statistical variables of our analysis.
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In order to formally describe the statistical ensemble [60] we need to specify
the probability density p(P ), as well as the sample space D of the variables
P . While the positivity of each population together with the normalization
condition constrains the sample space, for the probability distribution we have
no hints.

In several statistical analyses of pure states [49, 50, 21, 44] the uniform
random distribution of the populations is assumed a priori, on the premise that
there are no reasons to privilege particular directions of the Hilbert space. This
allows a precise identification of the probability density on the populations
and the characterization of ensemble averages. Distinct implementations of
this scheme derive from different rules employed for the identification of the
active space. Let us consider the particular case of the Random Pure State
Ensemble (RPSE) analyzed in detail in refs. [49, 43, 50, 61] and briefly exposed
in paragraph 2.3.1, which is based on the active space selected according to an
upper energy cutoff Emax only : |Ek〉 ∈ HN if Ek < Emax. The corresponding
probability density takes the simple form p(P ) = (N − 1)! where N is the
dimension of the active space determined by the choice of the cutoff Emax.
Then the same average 〈Pk〉 = 1/N is recovered for the populations within the
active space, since the probability density is invariant with respect to exchange
of the populations. In other words, different energy eigenvectors within the
active space play an identical role and no privileged directions are present.

In addition, the typicality behaviour shows as different realizations of a
quantum system does not produce substantial variations on the system prop-
erties. It means that different realizations from the same probability density
correspond to realizations of the same thermodynamics state, if the systems
is macroscopic, or more generally correspond to realizations of different ther-
mal states if microscopic quantum systems are considered. Then, in general,
a population distribution pζ(P ) should be identified according to a thermal
parameter ζ in order to highlight its dependence on the thermal state.

The specification of the thermal parameter has to be done on the basis
of the connection between quantum statistical ensembles and thermodynam-
ics. It is then strictly related to the emergence of thermodynamics from first
principles.

Because of the uniform distribution within the active space, in the Random
Pure State Ensemble, the thermal state can be modified only by changing the
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dimension of HN . Thus the thermal state is parametrized by the energy cutoff,
ζ = Emax, with distinct active spaces having different distributions on the
populations. Furthermore it has been shown [50] that in the thermodynamic
limit, that is for systems of increasing size, the cutoff Emax becomes equivalent
to the internal energy U . In this way, the thermal parameter gats a precise
correspondence with a thermodynamic state function.

Other statistical ensembles with an uniform random distribution on the
populations can be derived from alternative choices of the active space HN .
The active space confined by both the lower Emin and the upper Emax energy
cutoffs, like for the microcanonical density matrix, has been often considered
[21, 44].

|Ek〉 ∈ HN if Emin < Ek < Emax (3.1)

It should be evident that the same statistical tools of RPSE can be applied also
to this case by considering the non vanishing populations of energy eigenvectors
belonging to the active space HN . Now, however, a two parameter represen-
tation of the thermal state, ζ = (Emin, Emax), has to be managed, since the
population distribution depends on both energy cutoffs. In the macroscopic
limit one can show the equivalence of the upper energy cutoff with the in-
ternal energy, and that the thermodynamic parameters are independent from
the lower one[50]. The lack of a thermodynamic correspondence for one of
the parameters determining the thermal state complicates its application to
finite sized system, as long as there are no evident guidelines for the choice of
Emin. From this point of view the use of RPSE statistics appears to be more
straightforward, since one has to select only the upper energy cutoff which is
directly related to the internal energy.

It should be mentioned that some authors [55, 56] have proposed a variant
of the uniform random statistics by imposing also the constraint of a given
expectation value for the energy, but in this case the correspondence with
thermodynamic parameters is not assured in the macroscopic limit [43, 58]. In
agreement with Fresch and Moro perspective, I consider the absence of a clear
thermodynamic interpretation of such an ensemble as a reasonable objection
against its use in the statistical description of isolated quantum systems in
general conditions.

Albeit appealing from different points of view, the uniform random distri-
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Figure 3.1: Random pure state ensembles are schematically represented. On the
left, only the upper cut-off parameter Emax is taken into account. It corresponds to
thermodynamic internal energy. when the macroscopic limit is considered. On
the right a bi-parametric representation is provided. In this situation only the
Emax is related with a thermodynamic state function, while Emin has no a direct
thermodynamic meaning.

bution within the active space has a major drawback: it does not survive to the
process of thermalization. Let us consider the simpler experiment of this type:
two identical systems A and B, initially isolated and described by a statistical
ensemble of this type, which are brought to interact so leading to a new equi-
librium state for the overall system A+B. If we characterize the two systems
with the same probability distribution, i.e. with the same thermal parameter
ζ = Emax,one would expect that the thermal state of the overall system should
be the sum of the previous two thermal parameters, since they are related to
the internal energy. It means that the probability distribution should be uni-
form in the new active space determined by EAB

max = EA
max+EB

max. However, the
direct analysis of the experiment (see Section 3.4) shows that the populations
in the final equilibrium state are no more characterized by an identical average
as it was in the statistical ensemble for the initially isolated systems A and
B. The Random Pure State statistics is not able to describe the equilibrium
properties after the thermalization, even if the interaction between systems is
perturbative.

In this work we intend to find and characterize a statistical ensemble for
populations that overcomes the drawbacks of the uniform random distribution.
From the methodological point of view, the main issue concerns what a guide-
line should be assumed in order to recognize such an ensemble. Our choice
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is that of starting precisely from the failures of the random uniform distribu-
tions. We intend to identify a statistical ensemble resilient to thermalization,
or at least to its simplest realization, in the meaning that the population dis-
tribution maintains its structure after thermalization. This requirement will
be employed as the guideline for the derivation of such a statistical ensemble,
in the following called as Thermalization Resilient Ensemble (TRE).

A reasonable possibility in the development of the TRE statistics is to in-
troduce a sort of constraint in the probability distribution that assures the
property we want. However, it is not straightforward to identify such a con-
straint, since the "thermalization invariance" has not a clear formal meaning.
In order to overcome this difficulties and to formalize the thermalization in-
variance, I have studied how a system, formed by the weak interaction between
two previously separated systems, can be described. It introduces a composi-
tion rule for weakly interactive systems that allows a precise identification of
the invariance property.

3.2 Probability density on the energy domain

The previous discussion has shown as population variables are related with
the equilibrium properties of an isolated quantum system. Furthermore, when
macroscopic limit is considered and if the system properties manifest the typ-
ical behavior of equation (2.43), different realizations of a quantum system for
the same thermodynamic state are characterized by almost the same equilib-
rium value for a large number of observables. In this situations, equilibrium
properties can be completely described by their ensemble average value.

At the same time, once the probability density on populations pζ(P ) has
been defined, the ensemble average 〈h〉ζ of any function h(P ) of populations
can be calculated as

〈h〉ζ =
∫
dP h(P ) pζ(P ) (3.2)

where the integration is performed on the N−1 independent populations, with
integration domain determined by the constraints Pk ≥ 0 and ∑k Pk = 1. We
denote such an average as 〈h〉ζ to emphasize its dependence on the thermal
state ζ brought by the choice of the probability density. As an example one
could consider the ensemble average of the equilibrium value a of equation
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(2.32) for the expectation value of an operator

〈a〉ζ =
∑
k

〈Pk〉ζ Akk (3.3)

with 〈E〉ζ = ∑
k〈Pk〉ζ Ek in the case of the expectation value of the Hamilto-

nian, i.e., the energy. Then the ensemble average of a function f(E) of the
energy becomes

〈f(E)〉ζ =
∑
k

〈Pk〉ζf(Ek) (3.4)

The central role of ensemble average populations in the characterization
of quantum systems should now be clear if one considers that equations (3.3)
and (3.4) can describe many different observables of the system. Precisely
thanks to the last considerations, ensemble average populations 〈Pk〉ζ become
the main objective of our analysis.

The analysis of thermalization experiments is conveniently performed by
adopting the representation in the continuum of the system’s properties. This
correspond ti specify (3.4) as an energy integral by introducing the density of
states to take into account the multiplicity of energy eigenvalues. Furthermore
one needs to assume the existence of a smooth energy function P̃ζ(E) for a
given thermal state ζ, which represents the extension to the continuum of the
average populations such that

〈Pk〉ζ = P̃ζ(Ek) (3.5)

Then the average of f(E) can be specified as

〈f(E)〉ζ =
+∞∫
−∞

dE g(E)P̃ζ(E) f(E) (3.6)

where g(E) is the density of energy eigenstates

g(E) =
∑
k

δ(E − Ek) (3.7)

and δ(E − Ek) is the Dirac delta function. From the density of states, the
number of states Γ within a certain energy interval, for example [E,E + δE],
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can be easily obtained by integration

Γ(E) =
E+δE∫
E

dE ′ g(E ′) (3.8)

In the presence of a dense structure of energy eigenstates, the density of
states can be replaced by its continuous extension g̃(E)

〈f(E)〉ζ =
+∞∫
−∞

dE g̃(E)P̃ζ(E) f(E) =
+∞∫
−∞

dE ρ̃ζ(E) f(E) (3.9)

which allows the identification of a probability density on the energy ρ̃ζ(E)
defined as

ρ̃ζ(E) := g̃(E)P̃ζ(E) (3.10)

for the thermal state ζ.
The function ρ̃ζ(E) alone summarizes the information on the distribution

of energy states and on their average populations. It is normalized as

+∞∫
−∞

dE ρ̃ζ(E) =
+∞∫
−∞

dE g̃(E)P̃ζ(E) = 1 (3.11)

This implies that the average population P̃ζ(E) is implicitly a functional of the
density of states g̃(E). More specifically, different systems at the same thermal
state ζ cannot be described by the same energy function P̃ζ(E) for the average
populations, because in general they are characterized by different density of
states g̃(E). In order to preserve the normalization of equation (3.11) they
have to be described by different functions P̃ζ(E).

As an example we consider here the uniform distribution within the N -
dimensional Hilbert active spaceHN determined by both the lower and the up-
per energy cut-off, so that the thermal parameter is specified as ζ = (Emin, Emax).
Then the same average 〈Pk〉ζ = 1/N is recovered for the populations within
the active space, since the probability density is invariant with respect to ex-
change of the populations. In other words the different energy eigenvectors
within the active space play an identical role. On the other hand, vanishing
averages are attributed to populations for eigenstates outside the active space.
Correspondingly the function P̃ζ(E) describing population averages is constant
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within the energy range of the active space and vanishes outside

P̃ζ(E) =

 constant for Emin < E < Emax

0 otherwise
(3.12)

with the constant determined by the normalization Eq. (??). When multiplied
to g̃(E) to generate the energy probability density ρ̃ζ(E), it simply selects the
portion of the density of states belonging to the active space. Figure 3.2
illustrates this behaviour for the system sescribed by the following density of
states

g̃(E) =


A

Es

(
E

Es

)M
for E > 0

0 otherwise
(3.13)

which is often employed in the statistical mechanics of ideal systems [9]. Notice
that it is implicitly assumed that E = 0+ is the ground state. The parameter
Es represents the energy unit, while by modifying the parameter A one controls
the number of states for a given energy interval without changing the overall
profile of the density of states. In our applications we use an unitary value for
the constant A.

3.3 Composition rule for interacting systems

In this section we analyze the average populations for the composite system
(A+B) deriving from the interaction between system A and system B , which
are supposed to be initially isolated. The previously introduced formalism is
adopted to describe statistically the pure state (wave-function) of both the
isolated systems A and B.

System A is defined within its Hilbert space HA and it is characterized by
its Hamiltonian ĤA and its density of states gA(E) = ∑

kA δ(E − EA
kA) where

EA
kA denotes the corresponding eigenenergy:

ĤA |EA
kA〉 = EA

kA |EA
kA〉 with |EA

kA〉 ∈ HA (3.14)

Furthermore, we assume that isolated system A is characterized by well defined
ensemble average populations for the thermal state ζA, which are described
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Figure 3.2: Average population function P̃ζ(E) (green line) and energy probability
density ρ̃ζ(E) (red line) for the uniform statistical distribution with density of states
g̃(E) equation (3.13) (blue line) for M = 4, Emin = 10Es and Emax = 11Es. These
functions have been scaled by suitable multiplicative factors in order to allow a visual
comparison.

by the function P̃A
ζA(E). Correspondingly one can introduce the probability

density
ρ̃AζA(E) = P̃A

ζA(E) g̃A(E) (3.15)

on the energy variable E by invoking the extension to the continuum of the
density of states, g̃A(E). An analogous formal description, withB replacing the
superscript A, is adopted for the pure states of isolated system B supposed to
be in the thermal state ζB and with average populations described by function
P̃B
ζB(E).

Let us now consider the composite system deriving from system A and
system B in the presence of a weak interaction. Then independent pure states
for systems A and B do not exist any more, and a pure state description can
be employed only for the overall system in the Hilbert space

HA+B := HA ⊗HB (3.16)
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If the interaction is weak enough, the eigenenergies tend to be additive with
respect to contributions EA

kA and EB
kB of systems A and B, respectively, and

they can be evaluated as EA
kA + EB

kB . Correspondingly the density of states
gA+B(E) of the composite system can be calculated as

gA+B(E) =
∑
kA

∑
kB

δ(E − EA
kA − EB

kB)

=
+∞∫
−∞

dE ′ [
∑
kA

δ(E − E ′ − EA
kA)] [

∑
kB

δ(E ′ − EB
kB)] (3.17)

that is by the convolution of the density of states of isolated A and B systems
accounted by the two summation within the square brackets in the previous
equation:

gA+B(E) =
+∞∫
−∞

dE ′ gA(E − E ′) gB(E ′) (3.18)

By substituting the density of states of systems A and B with their extensions
to the continuum g̃A(E) and g̃B(E), we derive the density of states g̃A+B(E)
for the composite system by means of the convolution rule.

The central issue is now what a structure on the populations PA+B for
the composite system will be produced by the interaction between A and B.
It is important to remind that only interactions with a perturbative strength
are considered, such that the density of states in the overall system can be
described with equation (3.18). In this situation, the interaction contribution
on the energy is negligible with respect to the energy of the two systems and
the overall energy E in the composite system A+B can be described as the sum
of the energies of systems A and B, E = EA+EB. In addition, each system is
characterized by an independent probability density ρ̃A(E) and ρ̃B(E) where
the energy can be considered as the stochastic variable of the problem. The
most appropriate variable for the composite system, after the interaction, is the
sum of the energy contributions of the two systems. It leads to the definition
of the probability density ρ̃A+B(E) on the energy of the composite system as
the convolution of its components, according to standard probability rules [62],

ρ̃A+B(E) =
+∞∫
−∞

dE ′ ρ̃AζA(E − E ′) ρ̃BζB(E ′) (3.19)
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Moreover, the corresponding function P̃A+B(E) for the average populations of
the composite system can be evaluated as

P̃A+B(E) = ρ̃A+B(E)
g̃A+B(E) = 1

g̃A+B(E)

+∞∫
−∞

dE ′ g̃A(E−E ′) g̃B(E ′)P̃A
ζA(E−E ′)P̃B

ζB(E ′)

(3.20)
in agreement with equation (3.10).

We emphasize that such a treatment represents the simplest way to recover
the probability on the energy for the composite system under the condition
of pertubative effects of the interaction on the energy, but this does not as-
sure that the resulting population distribution has a well defined thermal state
described by parameter ζ. For this reason we do not assign a thermal param-
eter ζ to the energy probability density ρ̃A+B(E), and to average population
function P̃A+B(E) as well, in opposition to the initially isolated systems.

It is important to focus on the underlying assumption of the just presented
formulation of the problem, beyond the weakness of the interaction. Here we
state that the generic effect of the interaction in a thermalization process can
be described with the use of the convolution law on the probability density of
the energy in a quantum isolated system. Even if it appears very reasonable,
the lack of a specific analysis of the effect of interactions may represent a limit
of our procedure. In order to overcome this objection, in appendix 3.A, an
analysis of interaction effects which supports the convolution rule is presented.

Moreover, the convolution rule of probability theory, even if it does not
describe the interaction mechanisms responsible of the resulting probability
density, assures a general and self-consistent treatment of the problem. As a
matter of the effects of interactions between quantum systems are not easily
represented in a general form without reference to the specific structure of the
interaction Hamiltonian. A discussion about such an issue can be found in ref.
[63] where it is shown that the equipartition inside the energy shell centered
at E = EA + EB justifies the convolution rule.

In conclusion, given the average populations P̃A
ζA(E) and P̃B

ζB(E) of the
initially isolated systems, the convolution of the probability densities on the
energy allows a direct calculation of the average population P̃A+B(E) of the
composite system. This thermalization criterion will be used in order to derive
a Thermalization Resilient expression for the average population.
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3.4 RPSE drawback

In order to visualize in a simple case the consequences of the interaction de-
scribed by the convolution rule, we consider a model system formed by two
initially isolated identical systems, characterized by a density of states g̃A(E)
and average population P̃A

ζA(E).
In particular for the density of states we employ (3.13) and for the average

population P̃ζ(E) we choose the uniform random distribution of population
with the same thermal state specified by the boundary of the active space ζA =
ζB = (Emin, Emax). Therefore the initially isolated systems are characterized
by the same stepwise profile equation (3.12). It corresponds to describe the
behaviour of random pure state statistics in the thermalization experiment. If
Emin = E1 we recover the RPSE situation described by Fresch and Moro [49].

The specific case of identical, initially isolated, systems can be formalized
by considering the same energy density

g̃A (E) = g̃B (E) = g̃ (E) (3.21)

and the same average population function

P̃A
ζ (E) = P̃B

ζ (E) = P̃ζ (E) (3.22)

for both systems.
Now the convolution integrals of equations (3.18) and (3.20) can be easily

performed. In particular for E < 2Emin and E > 2Emax the population
vanishes as well as the system energy density ρA+B. The energy density is
positive only within the interval [2Emin , 2Emax] and two different integration
domains has to be considered.

For E ∈ [2Emin , Emax + Emin] we obtain

ρA+B (E) = A

Es

E
Es
−Emin

Es∫
Emin
Es

dE ′
(
E

Es
− E ′

Es

)M (
E ′

Es

)M
(3.23)

= A

Es

M∑
k=0

s(M,k)
(
E

Es

)M−k [( E
Es
− Emin

Es

)M+k+1
−
(
Emin
Es

)M+k+1]
(3.24)
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Figure 3.3: Schematic representation of the integration domain. The convolution
integral is non vanishing where RPSE populations are different from zero. It can be
displayed in a x-y plane, where the axes are respectively E and E′. The convolution
integral is performed in the E′ domain and the interesting plane region can be
determined through two constraints: E′min < E′ < E′max selects an horizontal
stripe while Emin < E − E′ < Emax defines the region between the two lines. The
constraint just mentioned define the integration domain highlighted in green.

while for the interval E ∈ [Emax + Emin , 2Emax]

ρA+B (E) = A

Es

Emax/Es∫
E
Es
−Emax

Es

dE ′
(
E

Es
− E ′

Es

)M (
E ′

Es

)M
(3.25)

= A

Es

M∑
k=0

s(M,k) E
Es

M−k [(Emax
Es

)M+k+1
−
(
E

Es
− Emax

Es

)M+k+1]
(3.26)

where, for both cases

s(M,k) =
(
M

k

)
(−1)k 1

M + k + 1 (3.27)

We can easily obtain the mean populations function PA+B(E), according to
equation (3.10), by dividing the previous equation for the convoluted density
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of states
gA+B (E) =

(
A

Es

)2 ( E
Es

)2M+1 M∑
k=0

s(M,k) (3.28)

Figure 3.4 shows the profiles of average populations for the RPSE statis-
tical ensemble (Emax/Es = 10 and Emin/Es = 0) in increasing number of
components, represented by different growths of density of states (values of
M parameter). At the same time, in Figure 3.5 the same type of profiles are
displayed for the active space with both the lower and upper energy cutoffs,
in particular Emin/Es = 4 and Emax/Es = 10.

The uniform random distributions has been developed under the hypothe-
sis of equivalence of each direction within the active space of the total Hilbert
space. It corresponds to a step functions in a plot like figures (3.4) (3.5)
where P̃A+B(E) vs E/Es is considered. Thermalization experiments break
this equivalence on populations leading to an average population with an ex-
plicit dependence on the energy. This, as emphasized in the introduction, is
a fundamental shortcoming of the uniform distribution considered as the sta-
tistical tool describing isolated systems, as long as isolated systems can be
produced by interaction between initially isolated parts. Once the systems are
brought into contact, equilibrium properties cannot be described anymore by
uniform statistics.

3.5 Thermalization Resilient mean populations

Thermalization by interaction can be realized in different situations depending
on the thermal state of the two initially isolated systems. Here we consider the
simplest case when two isolated systems are identical and have the same ther-
mal state. According to Thermodynamics, their thermal state is not modified
by putting them in contact and, as happen at macroscopic level, no change
of temperature would be detected. This is a peculiar case of thermalization
because of the absence of a net energy flux between the two systems. The
main effect of the interaction is that of producing an entanglement between
the two pure states of the initially isolated systems. On the other hand it
is precisely in this situation that the drawbacks of random ensembles of pure
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Figure 3.4: Average population function P̃ (E) is obtained after the interaction be-
tween two identical systems with the same thermal parameter Emax/Es = 10 for
both systems. Model density of states of equation (3.13) has been employed with
M = 4 (blue line), M = 10 (green line) and M = 15 (blue line)
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Figure 3.5: P̃ (E)/P̃ (E0) obtained through the interaction between two identical
systems. Each starting system is characterized by lower and upper limits cut-offs,
Emin/Es = 4 and Emax/Es = 10. Model density of states of equation (3.13) has
been employed with M = 4 (blue line), M = 10 (green line) and M = 15 (blue
line), with the corresponding average population scaled by suitable factors in order
to allow a visual comparison
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states clearly emerge. As shown in Figure 3.4 and 3.5, the uniform average
populations of this type of statistical ensemble does not survive to such a type
of thermalization and the uniform statistics cannot describe this experiment.

In this section we intend to recognize a new statistical ensemble that over-
comes these drawbacks, just by imposing the condition that the functional
dependence on the energy of the mean populations should be invariant in the
interaction between two identical systems characterized by the same thermal
state.

In the first place we characterize the two initially isolated systems according
to their density of states and average populations. The same density of states,
g̃A(E) = g̃B(E) = g̃(E), is employed for the two systems in order to impose
the condition of their physical equivalence. We assume also that their density
of states is a continuous function of the energy with the following behaviour

g̃(E)

=0 for E ≤ 0

>0 for E > 0
(3.29)

with E → 0+ as the energy of the ground state. Then, according to equation
(3.18), the following density of states is recovered for the overall (A + B)
system,

g̃A+B(E) =
E∫

0

dE ′ g̃(E − E ′) g̃(E ′) (3.30)

for E ≥ 0. Furthermore we assume that the two systems are in the same
thermal state ζ and they are characterized by the same energy dependent
average population: P̃A

ζ (E) = P̃B
ζ (E) = P̃ζ(E).

Let us now consider the thermalization induced by a weak perturbation as
described in the section 3.3. Of course, given the premises, the thermal state
of the overall system (A + B) is the same of the initially isolated systems.
It means that we assume that it is described by the same parameter ζ of
the systems before thermalization, so attributing to parameter ζ an intensive
character: systems in the same thermal state are described by the same value
of parameter ζ independently of their size. This legitimates us to denote the
resulting average populations as P̃A+B

ζ (E), whose functional dependence on
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the energy is evaluated according to equation (3.20), that is

P̃A+B
ζ (E) = 1

g̃A+B(E)

E∫
0

dE ′ g̃(E − E ′) g̃(E ′)P̃ζ(E − E ′)P̃ζ(E ′) (3.31)

for E > 0. Notice that because of the vanishing of the density of states for
E → 0+, the ground state population of the thermalized system is simply the
square of the ground state population of the initially isolated systems:

P̃A+B
ζ (0) = lim

E→0+
P̃A+B
ζ (E) = P̃ζ(0)2 (3.32)

where P̃ζ(0) := limE→0+ P̃ζ(E).

The condition of invariance cannot be imposed directly to energy functions
P̃ζ(E) and P̃A+B

ζ (E) for the average populations, because they have to be
considered as functional of the density of states, which are different in the two
case, i.e., g̃(E) and g̃A+B(E), respectively. We recall that such a functional
dependence is imposed by the normalization condition (3.11). For this reason
we introduce the energy functions for the scaled populations with respect to
the ground state

h̃
A(B)
ζ (E) :=

P̃
A(B)
ζ (E)
P̃
A(B)
ζ (0)

h̃A+B
ζ (E) :=

P̃A+B
ζ (E)
P̃A+B
ζ (0)

(3.33)

which are not constrained by the normalization, but only by unitary in corre-
spondence of the ground state energy: h̃A(B)

ζ (0) = 1, h̃A+B
ζ (0) = 1.

These scaled populations are independent of the density of states of the
system and that they are invariant in the thermalization process here con-
sidered, that is they should be described by the same energy function h̃ζ(E)
dependent only on the thermal state ζ:

h̃Aζ (E) = h̃Bζ (E) = h̃A+B
ζ (E) = h̃ζ(E) (3.34)

This is precisely the invariance condition which allows us to describe the desired
population distribution.

By specifying in equation (3.31) the populations according to h̃ζ(E), and
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by taking into account equation (3.32), the following expression is derived

h̃ζ(E) = 1
g̃A+B(E)

E∫
0

dE ′ g̃A(E − E ′) g̃A(E ′)h̃ζ(E − E ′)h̃ζ(E ′) (3.35)

This is a non-linear integral equation whose solution, if unique, identifies the
invariant form of population distribution. In Appendix 3.B, by using standard
methods of solution of integral equation trough discretization [64], we show
that it has only one solution of exponential form

h̃ζ(E) = e−λE (3.36)

parametrized by coefficient λ. Such a solution can be easily recognized by
replacing g̃A+B(E) in equation (3.35) in according to equation (3.30), reorga-
nizing it as

E∫
0

dE ′
[
h̃ζ(E)− h̃ζ(E ′ − E)h̃ζ(E ′)

]
g̃(E − E ′) g̃(E ′) = 0 (3.37)

A sufficient condition for a solution is that the term within the square brackets
vanishes for 0 ≤ E ′ ≤ E, that is if

h̃ζ(E ′ + E”) = h̃ζ(E ′)h̃ζ(E”) (3.38)

where we have replaced (E −E ′) with E”, and this implies that ln[h̃ζ(E)] is a
linear function of the energy and, therefore, that equation (3.36) is the solution
satisfying the constraint h̃ζ(0) = 1.

The scaled populations given by equation (3.36) together with the ground
state population, determines the distribution of average populations for the
allowed energies depending on the parameter λ. Different values of λ cor-
respond to different distributions of populations, that is to different thermal
states. The identification of λ with parameter ζ denoting the thermal state is
then compelling, so that

P̃ζ(E) = P̃ζ(0) exp(−ζE) (3.39)

Furthermore the normalization equation (3.11) supplies the value of the ground
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state population. In conclusion the following relation is recovered for the av-
erage populations having the appropriate invariance with respect the thermal-
ization here considered

P̃ζ(E) = e−ζE

+∞∫
−∞

dE ′ g̃(E ′)e−ζE′
(3.40)

for energies E exceeding the ground state. The dependence on the physical
system is brought by the density of states g̃(E ′). It can be used to evaluate
the populations P̃ζ(E) of the initially isolated systems, and of the thermalized
system P̃A+B

ζ (E), by inserting g̃(E) and g̃A+B(E), respectively. These popu-
lations share the same exponential dependence on the energy and, therefore,
they assure the required invariance, so that the same profile would be obtained
if employed for a plot like Figure 3.4 or Fig. 3.5.

In the previous derivation we have assumed, according to equation (3.29),
that the ground state is at energy E → 0+. By introducing an energy shift,
E → E − E0, the previous results can be generalized to a system with the
ground state at energy E → E+

0 . Notice, however, that equation 3.40 does
not change because the new exponential term exp(ζE0) at the numerator is
eliminated by an identical term generated by the change of variable in the
integral. Of course the population distribution has an implicit dependence on
the ground state energy deriving from the boundary of the integration domain
where the density of states is non vanishing.

Given the population distribution, one can evaluate also the probability
density ρ̃ζ(E) on the energy according to the definition equation (3.10). In
Figure 3.6 I have reported the density of states, the average populations and
the energy probability density for a particular case of the model system de-
scribed by equation (3.13) (ζ = 0.1/Es, M = 4). As expected, even if the
average population is an exponentially decreasing function of the energy, the
resulting energy probability density is a function localized in a small energy
range because of the quickly increasing density of states. It might be compared
with the energy probability density in the random pure state ensemble having
a step like behavior: in this case it has the profile of the density of states g̃(E),
but truncated at E = Emax.

The description of the system through a continuous function g̃(E) for the
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Figure 3.6: Energy density in the TRE model (red line) and its contributions. The
blue line represents th density of states of equation (3.13) (M = 4) while the green
line shows the exponential dependence on population due to equation (3.40) (ζ =
0.1/Es).

density of states allows the derivation of the invariant average population
P̃ζ(E) in the form of the continuous function equation (3.40) of the energy E.
On the other hand, any fully microscopic representation of quantum systems
should employ the discrete set (E1, E2, · · · ) of eigenenergies of its Hamiltonian.
However, equation (3.40) is easily converted to such a representation by im-
posing to the average population 〈Pk〉ζ the same exponential dependence on
its energy Ek

〈Pk〉ζ = e−ζEk∑
k′ e
−ζEk′

(3.41)

with the suitable normalization.
Hereafter the statistical ensemble with mean populations given by equa-

tion (3.41) will be denoted as Thermalization Resilient Ensemble (TRE). In
section 3.6 we will show that such a distribution tends to be preserved in the
thermalization between two systems having initially a different thermal states.
In other words such a distribution of populations displays to some degree an
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intrinsic resistance to modifications in the thermalization, in opposition to the
behaviour of statistical ensemble due to random pure states (see figures 3.4
and 3.5).

As one can observe from Figure 3.6, the energy density profile ρ̃ζ(E) shows
a bell shape that, in first approximation, can be described by a Gaussian
function N(µ,σ)(E).

ρζ(E) ∼= N(µ,σ)(E) (3.42)

with µ being the energy of the maximum and σ2 the variance. It corresponds
to perform a Taylor expansion, truncated to the second order, on the function
f(E) defined as

ρζ(E) = Pζ(E) g(E) = const · ef(E) ∼= const · e
(
f(µ)− (E−µ)2

2σ2

)
(3.43)

By using the density of states of equation (3.13) we obtain

µ = M/ζ σ =
√
M/ζ (3.44)

In particular, in the limit of infinite increasing density of states (M →∞)
we can demonstrate that the energy distribution narrows around the maximum

lim
M→∞

σ

µ
= lim

M→∞

1√
M

= 0 (3.45)

Up to now, I have obtained a thermalization resilient dependence on the
energy for the population variables, under the assumption that the thermaliza-
tion experiment between two systems can be described by using the convolu-
tion law on the energy density of the separated systems. This result has been
obtained by the use of reasonable considerations and can be validated only a
posteriori. As explained by Fresch and Moro [43, 58], the comparison with the
thermodynamics can be an optimum criterion in order to discriminate between
different probability distributions on pure states and, in our problem can also
be used to provide a physical meaning to the thermal parameter ζ.
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Figure 3.7: energy density profile for a system with M = 4 and ζ = 0.1/Es (red
line) compared to its gaussian approximation, where the maximum µ = M/ζ = 40
and variance σ = 20.

3.6 Thermodynamic properties from mean pop-
ulation

The idea of statistical distribution of pure states is relatively recent [22, 21, 44,
65, 57] and it represents an important change of perspective on the descrip-
tion of isolated quantum systems. One shift the attention from the standard
approach with the density matrix [9], representing the average on an ideal
collection of many equivalent copies of the system, to the statistical ensemble
for the probability density on stochastic variables that parametrize the wave
function.

In principle different ensembles of pure state are possible on the basis of
constraints on the wave function or on its properties but, once the distribution
probability on stochastic variables is provided, it is possible to statistically
characterize any observable, like expectation values of relevant operators, so
obtaining not only their average values but also their distribution. If the
macroscopic limit is considered for an increasing number of components, i.e.
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in increasing the density of states for fixed thermal state, some properties can
manifest typicality behaviour and therefore their distribution narrows around
the average value. In this situation the thermodynamic description is recovered
and a single value only is associated to the equilibrium property.

In the following I will discuss the emergence of thermodynamic state func-
tions from the Thermalization Resilient Statistics by elucidating what can be
considered as criteria in order to control the agreement between the micro-
scopic quantum picture and thermodynamics. W will be able to attribute a
physical meaning to the parameter ζ that accounts for the thermal state.

3.6.1 TRE and Canonical density matrix

Clearly the main feature of TRE ensemble previously derived at the level of
average populations (3.41), is the exponential dependence on the energy. This
might suggest its equivalence with the canonical statistics of ordinary quantum
statistical mechanics [9], which is described by the following canonical density
matrix

σ̂can =
∑
k

|Ek〉
e−Ek/kBT∑
k′ e
−Ek′/kBT

〈Ek| (3.46)

where kB is the Boltzmann constant. In this case, however, the exponential
dependence is specified according to the temperature. Indeed the canonical
statistics describes a quantum system in contact with a thermal bath at the
given temperature T . Implicitly one must assume a weak enough, but non
vanishing, interaction between them in order to assure the thermal equilibrium
for the overall system so that the same temperature of the thermal bath can be
attributed to the quantum system. In such a situation the quantum system is
no more isolated and it cannot be in a pure state, that is it cannot be described
by a wave function: a wave function could exist only for the overall system
including both the quantum system and the thermal bath. Thus the canonical
density matrix σ̂can should be interpreted as reduced density matrix deriving
form the partial trace on the thermal bath states of the pure state density
matrix for the overall system.

In the derivation of TRE ensemble, on the contrary, no thermal bath is
invoked and, therefore, the exponential weight of average populations in equa-
tion (3.41) has no reference to temperature, and it is specified according to a
generic parameter ζ for the thermal state of the isolated quantum system. As
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a matter of fact, the TRE statistical ensemble is developed for pure states of
the quantum system, this implying the absence of interactions with any other
system, for instance a thermal bath.

In conclusion, the canonical density matrix and TRE statistical ensemble
refers to a quantum system in completely different situations, and this ex-
cludes any a priori equivalence between them. On the other hand the shared
exponential dependence on the energy suggests that a relation between them
should exist. Such an issue calls for the identification of the temperature,
and in general of thermodynamic parameters, in the case of TRE statistical
ensemble.

3.6.2 Does thermodynamics emerge from Thermaliza-
tion Resilient Populations?

The aim of recovering thermodynamics from a quantum mechanical descrip-
tion of microscopic systems is widely discussed and several points of view are
nowadays present [10, 14, 37]. For example, a particular line of investigation,
where typicality holds a key role, has been recently developed [21, 22, 44].
Whenever a property manifests typicality in the meaning of equation (2.43), a
clear connection between microscopic and macroscopic description of equilib-
rium properties is provided. In this work I fully adopt this perspective and in
particular I have employed a similar procedure of reference [50] in order to show
the emergence of thermodynamics from Thermalization Resilient populations.

The definition of statistical rules in order to obtain a realization of a quan-
tum system, although reasonable, does not provide a direct information on
the value of an equilibrium property in an actual system. In fact, a given
probability distribution p(P ) on populations is compatible with different sets
of populations P , each of them representing a possible equilibrium state, cor-
respondingly different values can be attributed to a properties described by
a function f(P ). It means that from the probability density on populations,
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one obtains a distribution of equilibrium properties, without the possibility to
assign to them a precise value. However, the emergence of a typical value of
an equilibrium property for an isolated quantum system can be determined by
investigating the large size limit of the system’s properties.

Figure 3.8: the image is taken from Typicality in Ensembles of Quantum States:
Monte Carlo Sampling versus Analytical Approximations by Fresch and Moro, J.
Phys Chem. A 2009 113 (52), in order to show the typicality effect on system
properties. In particular the distribution of the entropy per spin S/n for different
numbers of spins is shown as obtained by numerical sampling (105 sampled points)
of the RPSE distribution of systems composed of n = 11, 13, and 15 spins. In the
inset, the standard deviation of the fitting Gaussian distributions is reported as a
function of the number of spins which constitute the system.

In order to obtain a thermodynamic description of quantum properties it
is important to identify microscopic observables that can be related to ther-
modynamic state functions. In the following, I will propose again and expand
the argumentations reported in paragraph 2.4. As already discussed by Fresch
and Moro [43, 50] in the case of uniform statistics, the internal energy of ther-
modynamics should be associated to the energy of the quantum system given
as expectation value of the Hamiltonian (2.13)

E =
∑
k

PkEk (3.47)
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In the presence of typicality behaviour, the energy in a single realization should
be very close to the ensemble average property UQ which can be considered
as representative for the system. Then, for the microscopic internal energy we
obtain

UQ(ζ) = 〈E〉ζ =
∑
k

〈Pk〉ζ Ek =
∑
k Ek e

−ζEk∑
k e−ζEk

(3.48)

where the 〈·〉ζ indicates the ensemble average with respect to the probability
density pζ(P ) depending on the thermal state ζ. In equation (3.48), I have
substituted to average populations 〈Pk〉ζ its thermalization resilient expression
of equation (3.41). It is important to point out as microscopic internal energy
should be considered as functions of parameter ζ because the ensemble average
depends on the thermal state of the system. We stress that this quantity is
defined for all isolated quantum systems independently of the size, for instance
also for a two level system. Therefore it represents the quantum microscopic
counterparts of thermodynamic properties. It should be recalled that this
microscopically defined state function needs to behave as true thermodynamic
properties, for instance in relation to the extensivity, only in the large size limit
of the system. For this reason in definitions equation (3.48) we have modified
the thermodynamics symbols U by adding the label ’Q’ in order to pinpoint
its quantum microscopic nature. The thermodynamics internal energy can be
recovered in the macroscopic limit

U = lim
n→∞

UQ(ζ) (3.49)

where n is the number of components for a fixed thermal state.

The second microscopic quantity considered by Fresch and Moro, which is
essential for a thermodynamic description, is the microscopic entropy SQ. The
Shannon entropy W is the best candidate to describe the disorder associated
to a distribution of pure states.

W = −kB
∑
k

Pk lnPk (3.50)

where kB is the Boltzmann constant. In particular, it quantifies the disorder
with respect the decomposition on the eigenvectors of a quantum system. By
the use of the typicality argument we can associate its ensemble average with



60 CHAPTER 3. THERMALIZATION RESILIENT ENSEMBLE

the microscopic entropy

SQ(ζ) = 〈W 〉ζ = −kB
∑
k

〈Pk lnPk〉ζ (3.51)

Given the formal definitions of these quantum microscopic parameters
(equations (3.48) and (3.51)), one can derive the corresponding temperature.
Indeed the function SQ = SQ(UQ) is obtained by mutually eliminating the
functional dependence of UQ(ζ) and SQ(ζ) on the thermal state parameter ζ,
and this allows the identification of the temperature according to the funda-
mental differential (at constant volume) of thermodynamics:

1
TQ

:= dSQ
dUQ

= ∂SQ(ζ)/∂ζ
∂UQ(ζ)/∂ζ (3.52)

We stress that this is the formal definition of quantum microscopic tempera-
ture, and that the correspondence with the temperature of macroscopic sys-
tems has still to be addressed.

I think that one should appreciate the capability of TRE statistical ensem-
ble to allow a formal definition of a microscopic temperature which can be
applied to any quantum system, independently of its size, even in the extreme
case of a two level system. As a matter of fact such a procedure cannot be di-
rectly transferred to random pure state ensembles. We recall that in this case
the thermal parameter ζ should be identified with the cut-off energy ζ = Emax,
or equivalently with the dimension N of the active space HN (see paragraph
3.1). Then, by using definitions equations (3.48) and (3.51), one recovers pa-
rameters UQ(ζ) and SQ(ζ) which are not continuous functions of ζ, since they
display step-like increments when the active space dimension N increases (see
Fig. 3 of ref.[50]). Therefore the function SQ = SQ(UQ) resulting from the
elimination of ζ variable is not continuous, and definition equation (3.52) is
not directly applicable. In order to define the temperature one should consider
the continuous extension of SQ = SQ(UQ) in the macroscopic limit when the
step increments of UQ and SQ are no more relevant. But this, of course, pre-
vents the identification of the microscopic temperature of small quantum with
the statics of random pure state ensembles.

The possibility to define a quantum temperature does not directly means
that it behaves according to what we expect from the thermodynamics and
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further requirements have to be considered. In particular entropy should be a
convex increasing function of internal energy, in fact only in this case one can
recover, from equation (3.52), a temperature that increases with the internal
energy.

Morover the extensivity of both internal energy and entropy has to be
assured in order recover a quantum temperature having an intensive character.

The agreement between the properties obtained with TRE populations and
the behaviour of material systems requires also that the standard canonical
form of equation (3.46) for the equilibrium reduced density matrix σ̂ of a
subsystem can be derived. Only in this case the global comparison between
the global and the local temperature become equivalent.

To summarise, several requirements have to be verified in order to assume
the agreement between the quantum properties (equations (3.48) and (3.51))
and the thermodynamic state functions U and S. This is necessary in order
to recover a physically reasonable description of quantum system from the
statistical ensemble point of view. I report here as a list the requirements we
have just considered

• typicality of internal energy UQ and entropy SQ

• SQ(UQ) as an increasing convex function

• UQ and SQ has to be extensive properties in the limit of macroscopic
systems

• canonical reduced density matrix

• equivalence between local and global temperature

3.6.3 Approximated evaluation of entropy

The explicit dependence of TRE average populations on energy, that is equa-
tion (3.41), allows the direct calculation of the microscopic internal energy UQ,
however the same direct evaluation cannot be performed on the microscopic
entropy SQ

SQ = −kB
∑
k

〈Pk lnPk〉 = −kB
∑
k

∫
dP Pk lnPk p(P ) (3.53)
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since the probability distribution on populations variables p(P ) is needed. At
the same time, the absence of the exact probability distribution for a certain
statistical problem is a common situation in statistics and it can be solved by
considering that each probability distribution derives from the constraints of
the problem that represent the information content. If we approximate these
constraints we are able to derive an approximate probability distribution D(η)
and check a posteriori the goodness of the approximation.

The methodological ingredient we introduce is based on the maximum en-
tropy principle, developed by Jaynes [1, 66] in the framework of information
theory and already used with some differences by Wooters [67], Naudts [54]
and Fresch and Moro [49] on the ensemble of wave functions. We replace the
populations parameters P = (P1, P2, . . . , Pk, . . .) with a set of random vari-
ables η = (η1, η2, . . . , ηk, . . .) each of them defined in the interval [0,∞) and
characterized by the probability density

∫ ∞
0

dη D(η) = 1 (3.54)

that allows the calculation of average values 〈f(η)〉 of any function f(η)

〈f(η)〉 =
∫ ∞

0
dη D(η) f(η) (3.55)

In addition, we require that the distribution function D(η) is such that the
average value 〈ηk〉 of each ηk reproduces the Thermalization Resilient Popula-
tions.

〈ηk〉 = 〈Pk(Ek)〉ζ = e−ζEk∑
k′ e
−ζEk′

(3.56)

We can immediately see as a single realization of η variables does not have
to satisfy the normalization condition, for this reason η set is not strictly a
set of populations. This represents the major approximation. Furthermore,
the constraint of equation (3.56) alone does not select a unique probability
distribution and no strong physical reasons are available to select one with
respect some others. In fact, there would be additional constraints if this is
the case.

The problem is now how to select an appropriate probability distribution
with a low information content represented by the set of constraints (3.54),
(3.56). Thanks to the development of information theory, Jaynes proposed the
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maximum entropy principle as a solution for this problem. He stated that the
best probability distribution to represent the state of knowledge for a given
set of data is the one that has maximum entropy [1, 66]. In particular, within
the infinite set of D(η) functions that satisfy the given constraints, we choose
the one that minimizes the information functional

I[D] =
∫

dη D(η) lnD(η) (3.57)

where I[D] is the functional that describe the information content I of the
distributionD(η). The minimization of the information functional corresponds
to the maximization of the entropy since maximun entropy is associated with
lowest information on a given situation.

The minimization of the functional (3.57) under the constraints (3.54) and
(3.56) is performed by the use of Lagrange multipliers method. By introducing
the Lagrange multipliers λk we obtain the actual functional that has to be
minimized

F [D] = I[D] +
∑
k

λk 〈ηk〉 (3.58)

=
∫

dη D(η) lnD(η) +
∫

dη D(η)
∑
k

λkηk (3.59)

=
∫

dη
[
D(η) lnD(η) +

∑
k

λk ηkD(η)
]

(3.60)

where the number of lagrange multipliers correspond to the dimension of the
Hilbert space, since each Hamiltonian eigenvector has different TRE average
population. In order to minimize the functional we evaluate its variation for
the change D(η)→ D(η) + εh(η) of the distribution

F [D + εh] =
∫

dη (D(η) + εh) ln (D(η) + εh) +
∫

dη
∑
k

λk ηk (D(η) + εh)

(3.61)
and then we expand it in series of ε up to the first order so obtaining

F [D + εh] = F [D] +
(

lnD(η) + 1 +
∑
k

λk ηk

)
ε h (3.62)

Thus we impose the first order functional derivative equal to zero in order to
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find its maximum

δF

δD
= lim

ε→0

F [D + εh]− F [D]
εh

= lnD(η) + 1 +
∑
k

λk ηk = 0 (3.63)

The resultant normalized distribution function is

D(η) = e−
∑

k
λkηk∫

dη e−
∑

k
λkηk

(3.64)

where the λk parameters are the Lagrange multipliers. Their explicit identifi-
cation can be performed through the evaluation of 〈ηk〉 leading to

1
λk

= e−ζEk∑
k e−ζEk

(3.65)

The approximate probability distribution of equation (3.64) is factorised
and all the variables result to be statistically independent.

The microscopic entropy (3.51) can be now evaluated according to the
approximated variables η as

SQ = −kB
∑
k

〈ηk ln ηk〉 = −kB
∑
k

∫
dη ηk ln ηkD(η) (3.66)

The result can be expressed in terms of Lagrange multipliers as

SQ = −kB
∑
k

1− γ − ln λk
λk

(3.67)

where γ is the constant of Eulero-Mascheroni, or by inserting equation (3.65)
for the lagrange multipliers

SQ = −kB
[
1− γ −

∑
k ζEke

−ζEk∑
k e−ζEk

− ln
∑
k

e−ζEk
]

(3.68)

In particular from the last equality it can be easily shown that the average
〈ηk ln ηk〉 corresponds to the product of the averages 〈ηk〉 ln〈ηk〉 with a constant
additive term to entropy

SQ = −kB
∑
k

〈ηk ln ηk〉 = −kB
∑
k

〈ηk〉 ln〈ηk〉 − kB(1− γ) (3.69)
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Furthermore, if we consider small enough values for the thermal parameter ζ,
we obtain average populations effectively distributed over a large number of
eigenstates and in this case the additive terms kB(1−γ) becomes negligible so
that

SQ ∼= −kB
∑
k

〈ηk〉 ln〈ηk〉 (3.70)

3.6.4 Quantum Temperature

The explicit relation for the microscopic internal energy together with the
approximate equation for the entropy allows the evaluation of the temperature
according to equation (3.52). By taking into account that ∑k d〈Pk〉ζ/dζ = 0
because of the normalization of the populations, the derivative of the entropy
can be specified as

dSQ(ζ)
dζ

∼= −kB
∑
k

[ln〈Pk〉ζ + 1]d〈Pk〉ζ
dζ

= kBζ
∑
k

Ek
d〈Pk〉ζ
dζ

(3.71)

where the logarithmic term has been evaluated according to equation (3.41).
At the same time we can evaluate the derivative of internal energy with respect
the thermal parameter

dUQ(ζ)
dζ

=
∑
k

Ek
d〈Pk〉ζ
dζ

(3.72)

Thus, the r.h.s. of equation (3.71) is proportional to the derivative of the
internal energy (3.48) through kBζ. In conclusion the direct identification of
the thermal state parameter ζ, which up to now was left unspecified, and the
inverse of the thermal factor is recovered:

ζ ∼=
1

kBTQ
(3.73)

We emphasize that this is not an equivalence since it is valid only in the limit
assuring typicality. As an alternative, which will be exploited in a subsequent
chapter, one can evaluate exactly the quantum microscopic temperature TQ(ζ)
as a function of the thermal parameter ζ according to equation (3.52). More-
over, if typicality is assumed in relation to the macroscopic limit, the very
simple and useful relation (3.73) is assured, as supposed in the following.
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Thanks to the identification of the thermal parameter with the inverse of
the quantum analogue of temperature, we can now understand why a large
number of eigenstates with non-negligible population corresponds to a small
thermal parameter. In fact, due to the inverse proportionality, lower thermal
parameter means an higher temperature and more eigenstates with significant
population.

The formal connection between the quantum systems parameter ζ and the
state function temperature represents an important result. In fact given the
Hamiltonian of the system and the correspondent energy spectrum, the ζ pa-
rameter takes into account how the eigenstates are populated on the average
in a given thermodynamic state of the microscopic system. The importance of
this result is amplified in the case of few level systems, for example the two levl
systems where TRE statistics allows for the description of all the possible ther-
mal states. In opposition, Random Pure State statistics allows the description
of only two thermal states when one or both levels have non vanishing popu-
lation. TRE statistics, instead, allows the existence of all the possible thermal
states with variable populations and uniform random statistics is recovered
as limit situations: if temperature approaches zero, only the ground state is
populated while if infinite temperature is considered equal mean populations
of both levels are obtained.

Furthermore, equation (3.73) allows us to specify the mean in the TRE
ensemble of the time averaged density matrix operator of equation (2.23)

〈 ¯̂ρ〉ζ =
∑
k

|Ek〉 〈Pk〉ζ 〈Ek| =
∑
k

|Ek〉
e−ζEk∑
k′ e
−ζEk′

〈Ek| (3.74)

Then if approximation (3.73) is inserted, the equivalence between the mean
density matrix of TRE statistical ensemble and the canonical form equation
(3.46) is recovered

〈 ¯̂ρ〉ζ ∼= ρ̂can (3.75)

Therefore all the properties of thermodynamic state functions which are deriv-
able from the canonical statistics, can be transferred to the TRE statistical
ensemble. In this way one obtains that 1) the entropy SQ = SQ(UQ) is a convex
function of the internal energy UQ so that the temperature TQ = TQ(UQ) is
an increasing function of the internal energy, that 2) both internal energy UQ
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and entropy SQ are extensive, so that the temperature TQ is an intensive state
function and that 3) if the quantum system is partitioned into a subsystem of
interest and its environment, then the subsystem is described by a canonical
reduced density matrix.

3.7 Resilience to Thermalization

In the previous paragraphs I have obtained the ensemble average populations
characterized by a thermal state ζ (see equation (3.40)). I have also demon-
strated the emergence of thermodynamic properties by considering the typi-
cality behaviour of the internal energy and of the entropy. All this results,
however arise from average population eq. (3.40) which derives from the con-
dition of thermalization invariance applied to the particular case when two
identical systems in the same thermal state are brought in contact. In this
situation, no neat energy flux can be detected, differently from the standard
thermodynamic experiment of thermalization. Then the following questions
naturally arise. What happens if the systems have different temperatures?
Are the TRE populations able to describe the equilibrium state after the equi-
libration process? These are the question I try to answer in the following. In
particular, in this paragraph I want to consider a real thermalization experi-
ment by putting in interaction systems in different thermal states. I will show
as TRE populations ere resilient to thermalization since they tends to preserve
the TRE energy dependence.

One can show that the interaction modifies the TRE energy dependence of
population averages only when the two interacting systems start from different
thermal state. As a matter of fact, the invariance condition used to derive TRE
average populations, is satisfied also in the case of two different systems, that
is systems described by different densities of states gA(E) and gB(E), but at
the same thermal state ζA = ζB = ζ. Indeed by specifying in Eq. (3.31) both
PA
ζA and PB

ζB according to Eq. (3.40) so that PA
ζA(E−E ′)P̃B

ζB(E ′) ∝ exp(−ζE),
the same energy dependence of Eq. (3.40) is recovered for the the population
averages P̃A+B(E) after the interaction.

The resilience can be estimated on the basis of the equilibrium mean popu-
lations P̃A+B(E) when two systems, A and B, with the same energy spectrum
(g̃A(E) = g̃B(E) = g̃(E)), but different quantum temperatures (ζA 6= ζB), are
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bought in contact. We assume that the initially isolated systems A and B

have TRE average of equation (3.40)

P̃A
ζA

(E) = e−ζAE

nA(ζA) P̃B
ζB

(E) = e−ζBE

nB(ζB) (3.76)

where n(ζA) and n(ζB) are the normalization factors

nA(ζA) =
+∞∫
−∞

dE g̃(E) e−ζAE nB(ζB) =
+∞∫
−∞

dE g̃(E) e−ζBE (3.77)

Furthermore, we suppose the interaction between systems is perturbative
with respect to the single system energies. In addition we use the model (3.13)
for the density of states that leads to a density of states g̃A+B(E) of equation
(3.28)

The perturbative character of the interaction allows one to describe the
overall system on the base of single system eigenstates and, in addition, to
define the energy density ρ̃A+B(E) = P̃A+B(E)g̃A+B(E) in according to equa-
tions (3.19) as a convolution of the energy density of systems A and B

ρ̃A+B(E) =
∫ E

0
dE ′ P̃A

ζA
(E − E ′)g̃(E − E ′)P̃B

ζB
(E ′)g̃(E ′) (3.78)

The energy density of the overall system from the convolution is given as

ρ̃A+B(E) =A2

E2
s

e−ζAE

nA(ζA)nB(ζB) ·

·
[
M∑
k=0

(
M

k

)
(−1)k

(ζB − ζA)M+k+1

(
E

Es

)M−k
γ(M + k + 1, (ζB − ζA)E)

]
(3.79)

where γ(M + k + 1, (ζB − ζA)E/Es) is the lower incomplete gamma function
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[68] that, for M ∈ N, has an analitic expression

γ(M + k + 1, (ζB − ζA) E
Es

) =
(ζB−ζA)E/Es∫

0

dx xM+ke−x

= (M + k)!
(

1− e−(ζB−ζA)E ·
M+k∑
r=0

(
E

Es

)r ζB − ζA
r!

)
(3.80)

In Fig. 4 we have represented the resulting energy dependence of P̃A+B(E) in
the case of thermal state parameters differing by a factor of two, ζA = 0.1/Es
and ζB = 0.2/Es, with the model density of states Eq. (3.13) with M = 4.
Even if an exponential scale has been used for populations, the deviations from
TRE behaviour, ln[P̃A+B(E)] ∝ E, are not evident. In order to quantifies these
deviations we need to characterize the thermal state of the overall system
A + B resulting from the interaction. This is naturally done according to
thermodynamics, by identifying the temperature of the A+ B system. Given
the model density of states Eq. (3.13), from the TRE average of the energy
one derives the internal energy UQ(ζ) = (M + 1)/ζ which, according to the
assignment Eq. (3.73), implies a linear dependence on the temperature of
the internal energy, i.e. a constant thermal capacity. On the other hand the
thermodynamical equilibration of two identical bodies with constant thermal
capacities initially at temperatures TAQ and TBQ , leads to the mean temperature
TA+B
Q = (TAQ +TBQ )/2 as the thermalization temperature of the final state. By

invoking again the assignment Eq. (3.73), this allows the identification of the
thermal parameter for the TRE average populations in the thermal state

ζA+B = 1
kBT

A+B
Q

= 2
kBTAQ + kBTBQ

= 2
1/ζA + 1/ζB = 2ζAζB

ζA + ζB
(3.81)

Therefore, for the sake of comparison, in Fig. 4 we have plotted also the
TRE average populations P̃A+B

ζA+B(E) for the mean temperature, that is for
ζA+B = 0.4/(3Es). In this way one clearly detects the deviations produced
by the interactions with respect to the TRE predictions at the thermalization
temperature. In the same Figure we have also represented the correspondent
probability densities, ρ̃A+B(E) and ρ̃A+B

ζA+B(E), which allow the identification of
the most probable range of energies. Then one clearly see that the two average
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populations P̃A+B(E) and P̃A+B
ζA+B(E) are nearly coincident in the most relevant

range of energies, and that the deviations appears neatly only when the energy
probability density is small. The overall effect is that, even if the interaction
does not lead exactly to TRE average population averages, the TRE profile
well reproduces the behaviour of average populations in correspondence of the
most probable energies. In this sense we consider TRE to be resilient with
respect to thermalization.
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Figure 3.9: Energy dependence of average populations P̃A+B(E) (right scale) and
energy distribution ρ̃A+B(E) (left scale) for the interaction of two systems A and
B with different thermal state, ζA = 0.1/Es and ζB = 0.2/Es, but with the same
density of states Eq. (3.13) with M = 4. Continuous red lines: average populations
P̃A+B(E) from Eq. (??). Dashed blue lines: TRE average populations P̃A+B

ζA+B (E)
for the mean temperature, ζA+B = 0.4/(3Es).

In order to quantify with an unique quantity the TRE resilience in this
kind of thermalization processes, we have employed the following parameter:

∆TRE := 1
2

+∞∫
0

dE
∣∣∣ρ̃A+B(E)− ρ̃A+B

ζA+B(E)
∣∣∣ (3.82)

that is half the energy integral of the absolute difference between the energy
probability density ρ̃A+B(E) evaluated according to the convolution rule, and
the TRE energy probability density ρ̃A+B

ζA+B(E) for the mean temperature. Of
course a vanishing value is recovered when the effects of the interaction is
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exactly reproduced by the TRE ensemble, for instance when the two systems
start from the same thermal state, ζA = ζB. The largest deviation occurs
in the absence of superposition between the two energy probability densities,
in which case ∆TRE = 1 since both probability densities are normalized. By
evaluating numerically the integral of Eq. (3.82), we have determined ∆TRE for
fixed ζA = 0.1/Es and increasing values of ζB with two values of the exponent
M of the model density of states Eq. (3.13). The results reported in Fig. 5
show as expected that deviations from TRE increase with the difference in the
thermal state of the two systems. It should be stressed, however, that these
deviations appear somehow limited, since a fourfold difference in the thermal
parameter (or, correspondingly, in the temperature) produces an effect less
than 10%. This is another evidence that confirms the resilient character of
TRE statistics. Moreover this conclusion is rather general, as long as the
results displayed in Fig. 5 are rather insensitive to the model density of states,
i.e. parameter M of Eq. (3.13). Further results not reported here have shown
also the weak dependence on the mean temperature.
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Figure 3.10: results for the resilience parameter ∆TRE obtained for ζA = 0.1/Es
and increasing values of ζB with the model density of states of Eq. (3.13) forM = 4
(black squares) and M = 10 (red circles).
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3.A Weak interaction model between systems

Let’s consider a generic quantum system characterized by its energy spectrum
(E1, E2, . . .) and described by its density of states

g(E) =
∑
k

δ(E − Ek) (3.83)

where the summation run on each k-th Hamiltonian eigenstate. In the presence
of typicality behaviour of the equilibrium properties, they are described by
ensemble average populations only (equation (3.3)). Furthermore, by following
the discussion in the main text, as long as the systems is complex enough one
can introduce the continuous representation in the energy domain both for
average populations P̃ (E) and for the density of states g̃(E). The calculation
of the equilibrium value of all functions f(E) of the energy can be easily
performed as energy integral, like in equation (3.4).

For practical purpose, it is also possible to introduce a discretized picture
of the energy variable in intervals of ∆E width, each centered in εi, such that
the continuous representation is recovered for ∆E → 0. In this framework, we
define the number of energy levels ωi in the i-th interval as the integral on the
density of states

ωi =
εi+∆E/2∫
εi−∆E/2

dE g̃(E) (3.84)

The system is then represented as equally spaced energy levels εi made by ωi
degenerate states and having Pi = P (εi) as average population per level. The
ground state corresponds to the level εi0 such that ωi0 6= 0 and ωi = 0 for
i < i0.

This representation is very useful in the calculation of energy integral. If
we consider the generic function of energy f(E), its ensemble average values
〈f(E)〉 can be expressed in according to equations (3.4) and (3.84), as

〈f(E)〉 =
+∞∑

k=−∞
Pif(εi)

εi+∆E/2∫
εi−∆E/2

dE g̃(E) (3.85)

that allows one to obtain a discrete counterpart of the continuum representa-



3.A. WEAK INTERACTION MODEL BETWEEN SYSTEMS 73

tion of the average 〈f(E)〉

〈f(E)〉 =
+∞∑
i=−∞

f(εi)ωi Pi (3.86)

This is nothing else than the Simpson rule for the discretization of integrals.
It’s important to point out that in the limits of infinitesimal width of energy
interval the continuous representation is perfectly recovered.

We consider now the interaction among two generic systems A and B. Each
system is characterized by its own Hamiltonian ĤA and ĤB, that determines
the energy spectrum and so the density of states g̃A(E), g̃B(E). By dividing
the energy axes of each system in intervals of the same length ∆E, we obtain
the same discrete representation for both systems, characterized by degenerate
levels ωAi and ωBi for each energy level εi. In full generality, the differences in
the density of states between the two systems are taken into account by the
values of ωAi and ωBi .

In order to describe the equilibrium situation deriving from the interaction
between these two systems, we suppose the presence of an interacting Hamilto-
nian Ĥ int in the overall Hilbert space H = HA⊗HB, such that its contribution
to the overall energy is negligible. This allows one to describe the overall sys-
tem eigenenergies EAB

k and eigenvectors |EAB
k 〉 according to populations of the

initially isolated systems

EAB
k = εAi + εBj |EAB

k 〉 = |εAi 〉 |εBj 〉 (3.87)

where k = i + j. We can also describe the deneneration in the overall system
Ωk in terms of number of levels of the separated systems ωAi and ωBi .

Ωk =
k∑
s=0

ωAk−s ω
B
s (3.88)

Although the contribution of the interaction Hamiltonian is negligible in
terms of energy, we suppose that it gives rise to the energy redistribution be-
tween the systems. In particular we suppose then an entangled state derives
such that the interaction mixes the population among levels with the same en-
ergy. The redistribution of the population within the multiplets can be seen as
a manifestation of the conservation energy principle. The mean population of
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the overall system is then derived as the cumulative population on a multiplet
over its degeneration

Pk =
∑k
s=0 P

A
k−s ω

A
k−s P

B
s ω

B
s

Ωk

(3.89)

One can immediately notice that the mean population derives from the dis-
crete convolution of the two separated system population. The role of the
convolution is discussed and generalized in the main text.

3.B Solution of the integral equation

To find the solution of Eq. (3.35), we adopt the discretization procedure of
integral equations which allows their transformation into algebraic equations
[64]. Let us partition the domain for the energy variable, E ≥ 0 into intervals
having Ej = j∆E as borders for j = 0, 1, 2, · · · with a given increment ∆E.
Then, by applying the Simpson rule, one obtains the discrete counterpart of
the integral equation (3.35)

hj =
∑j−1
j′=1 gj−j′gj′hj−j′hj′∑j−1

j′=1 gj−j′gj′
(3.90)

where g̃A+A(E) has been specified according Eq. (??) in discretized form and
hj := h̃ζ(Ej), gj := g̃A(Ej). Notice that in the discretization of convolution
integrals, the borders of the integration domain do not contribute because
g0 = g̃A(0) = 0 according to Eq. (??). The algebraic equations (3.90) allow
the calculation of the unknown hj given the lower order coefficients hj−1, hj−2,
· · · , while h0 = h̃ζ(0) = 1 because of definition Eq. (??).

Since Eq. (3.90) is missing for j = 1, the ensemble of algebraic equations
has a solution parametrically dependent of the unknown coefficient h1. More
specifically, one can demonstrate that hj = (h1)j is their solution. Indeed,
this is obviously true for j = 2, and then one can verify it with a recursive
procedure directly from Eq. (3.90). By replacing the unknown h1 with the
free parameter λ = − ln(h1/∆E), the discrete solution takes the form

h̃ζ(Ej) = hj = exp{−λj∆E} = exp{−λEj} (3.91)
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Finally the full continuous solution Eq. (3.36) is recovered by considering the
limit of a vanishing increment ∆E.
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CHAPTER 4

From sphere to ellipsoid

In the previous chapter I have illustrated about the drawbacks of uniform
statistics on pure states, suggesting the thermalization invariance as a new
guideline in the identification of a suitable probability distribution on popu-
lations. As a matter of fact, the thermalization experiment represents a very
common and interesting physical-chemical process whenever two systems are
brought in contact and allowed to exchange their energy. Starting from the
statistical invariance in the thermalization, I have obtained and characterized
the thermalization resilient average populations.

The main results of this approach are twofold: on the one hand, unlike
uniform random ensembles population, TRE average populations can describe
the equilibrium after the thermalization experiments and, on the other hand,
from TRE populations a clear equilibrium thermodynamics emerges with well
defined thermal states even in the microscopic realm.

However, this does not represent a complete statistical description of the
problem. Even if the set of average populations pinpoints a well determined
thermal quantum state, the lack of a probability distribution does not allows
the sampling of quantum pure states, which is indispensable in order to perform
quantum dynamical simulations. As a matter of fact, the unbiased random
sampling of quantum states is a necessary tool in the development of the
quantum analogue of molecular dynamics simulations.

77
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In this chapter I will obtain a probability distribution on pure states with
the use of a geometrical analysis on the Hilbert space. The surface elements of
an ellipsoidal manifold will be related to the probability density on populations.

4.1 What does geometry say about statistics?

Following the perspective of Fresch and Moro [49], I will develop and explain
how to obtain a probability distribution on population parameters through
the analysis of a surface embedded in the Hilbert space. In particular I am
going to consider how a uniform density of points in a surface of an ellipsoid is
deformed by its projection to the unitary hypersphere, representing the domain
of normalized wavefunctions.

I recall that a generic quantum mechanical state can be described as a
vector in the Hilbert space, very much like the state of a classical system can
be interpreted as a point in the phase space for the ensemble of position and
momenta. Then the properties of the system select the subspace of the total
space where the system is defined. Every additional constraint corresponds
to further restrictions of the phase space. This correspondence between con-
straints on system properties and subsets of the phase space is completely
general and valid both for classical and quantum systems. For example, when
a classical isolated system is introduced with a given value of the energy, the
appropriate subspace corresponds to all the values for positions and momenta
that are in agreement with the constraint on the energy. It selects a mani-
fold (surface) in the classical phase space such that different system’s energies
correspond to different surfaces. If in addition some other properties of the
systems are considered, like constraints on the distances between atoms, the
manifold is further limited to all the point that satisfy the energy and the
distance constraints.

In the same way, constraints on the wave function correspond to the se-
lection of a surface in the Hilbert space that can be described by the use of
geometrical tools. For example, by employing the normalization condition on
the wave function, Fresch and Moro were able to constrain the wave function
to the surface of hypersphere of unitary radius in the Hilbert space[49]. Then
from the measure of a surface element they have obtained a uniform proba-
bility density for the Random Pure State ensemble that is characterized by
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R

Ri

Rj

Figure 4.1: normalized wave functions are represented by points on the surface of
sphere in the Hilbert space. A uniform sampling from the surface of an ellipsoid,
inscribed in the sphere, is considered in order to break up the equivalence of all the
Hilbert space directions, with the final goal of obtaining TRE average populations.
The sampled vector is then normalized to restore the normalization condition.

the equivalence of all the directions in the Hilbert space where the sphere is
embedded. As we shall see in the following, the geometrical perspective is very
useful in the definition of the suitable probability distribution on populations
due to the strictly related concepts of probability and measure on a closed
manifold.

By following Fresch and Moro [49], I recognize the normalized wave function
as a vector in the surface of an unitary sphere embedded in the Hilbert space,
however I consider to uniformly sample it on the surface of an ellipsoid. The
surface element of the ellipsoid, except for the normalization constant, will be
related with the probability density on populations. Unlike RPSE statistics,
it generates a probability distribution on populations that privileges lower
energy eigestates. As far as we are able to control the anisotropy, we are able
to reproduce the TRE populations of equation (3.41) as well.

I wish to clarify here that the following chapter is not about quantum ge-
ometry, that represents a very large set of mathematical concepts developed
to describe quantum systems with the tools of mathematical geometry. As a
matter of fact I will use only few basic definitions in order to obtain a corre-
spondence between probability and volume measure. I will briefly introduce
the volume in the Hilbert space with the use of metric tensor and then I will
report the connection between volume and probability, showing how metric
tensor can be a useful tool. The paragraph 4.2 will present how to obtain the
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anisotropic probability distribution on populations starting from an ellipsoid
embedded in a unitary sphere in the Hilbert space, in order to reproduce the
TRE average populations.

4.1.1 Volume elements in the Hilbert space

In the following I will define the volume in the Hilbert space. In order to
achieve such an objective, I will confine the attention to finite dimensional
Hilbert spaces. As a matter of fact, whenever one wants to perform numer-
ical simulations, it is mandatory to restrict the Hilbert space up to have a
finite dimension N , where the vectors representing the wave function can be
described by a finite number of parameters. At the same time, recalling that
TRE populations decrease with the increasing of energy, it is acceptable to
limit the Hilbert space to those eingenstates with significant populations that
influence the properties of the systems, and to exclude the remaining direc-
tions. It should also be mentioned that the description of the infinite dimen-
sional Hilbert space is recovered by applying at the end the infinite limit on
the shosen dimension N of the calculated properties.

Let’s start by considering an orthonormal basis set u = (u1, u2, . . . , uN) in
the N dimensional Hilbert space

〈uk |uk′〉 = δk,k′ (4.1)

where 〈· |·〉 is the scalar product and δk,k′ is the Kronecker delta. A generic
vector ψ can be always expressed as a linear combination of basis vectors

ψ =
N∑
k

ck uk with ck ∈ C (4.2)

where the set c = (c1, c2, . . . , cN) ∈ CN of complex coefficients corresponds to
the coordinates with respect the basis set u. By varying the c coefficients it is
possible to describe all the vectors in the N -dimensional Hilbert space.

At the same time, an equivalent description can be obtained through a
different representation of the same space by expressing the c vector as a real
vector r

r = (Re(c), Im(c)) ∈ R2N (4.3)
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where Re(c) and Im(c) are the real and imaginary part, respectively, of the c
vector. The c or r representations of the vector ψ contain the same amount of
information and can be used to describe all the points in the Hilbert space.

In addition, if we consider two different states, ψ = ∑N
k ck uk and ψ′ =∑N

k c
′
k uk, also their scalar product can be expressed equivalently in c or in x

representations as

〈ψ |ψ′〉 =
N∑
k

c∗k c
′
k 〈ψ |ψ′〉 =

2N∑
j

rjr
′
j (4.4)

and if ψ = ψ′ the scalar product defines the square of the vector norm |ψ|

|ψ|2 = 〈ψ |ψ〉 =
2N∑
j

r2
j (4.5)

that can be interpreted as the square of its vector length. Thus, a change
on the representation of points in the space does not change the lengths of
the vectors or the angles between them, which are determined by the way to
measure elements on the space, called metric. In particular the natural metric
in the Hilbert space is the Euclidean metric [69] and the norm of equation
(4.5) is said euclidean norm.

The same metric is employed for the well known Euclidean xyz-space or
R3-space where a generic vector v1 ∈ R3 can be express as linear combination
of the vectors of the basis set ux, uy, uz

v = xux + y uy + z uz (4.6)

where (x, y, z) are the coefficients with respect the basis set. Furthermore,
the square of the norm of the vector, that is its squared length, is simply the
summation of the square of the coefficients

|v|2 = x2 + y2 + z2 (4.7)

that is clearly the scalar product of the v vector with itself 〈v |v〉 and can be
interpreted as the squared distance between the origin and the point v. In R3

the definition of the volume V of a region Σ ∈ R3 is defined as the integral of
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its differential form dV on the region Σ.

V =
∫

Σ
dV =

∫
Σ
dx dy dz (4.8)

In conclusion, the metric is the way to define distances, from which it is possible
to define volumes and the Hilbert space can be considered as an extension of
the xyz-space as far as metric is concerned. A compact and useful notation
to store all the information about the metric is the so called metric tensor
g whose elements g(r)

ij in the r representation of the Hilbert space takes the
unitary form [69]

g
(r)
ij = δij (4.9)

where δ is the Kronecker delta and can be interpreted as the scalar product
〈ri |rj〉.

The introduction of the metric tensor allows one to simplify the change
of coordinates and the calculation of distances and volumes in the Hilbert
space. As a matter of fact, whenever a change of coordinates is introduced, for
example r → w, it can be expressed as a change in the metric tensor following
the relation

g
(w)
i′j′ =

2N∑
i

2N∑
j

∂ri
∂wi′

g
(r)
ij

∂rj
∂wj′

(4.10)

that, in turn, can be used to evaluate volumes as

V =
∫

Σ
dV =

∫
Σ
| det(g(w))| dw1 dw2 . . . dw2N (4.11)

where Σ ∈ R2N is a region of the full space and | det(g(w))| is the determinant
of the metric tensor. As far as r coordinates is employed, where the metric
tensor is euclidean (see equation (4.9)), we recover the standard form dV =
dr1dr2 . . . dr2N for the volume elements, in agreement with equation (4.8).

Furthermore, since the measure of a volume element dV in the space is
invariant with respect to different representations of the space, a generic change
of coordinates r → w implies the equivalence

√
| det(g(r))| dr1 dr2 . . . dr2N =

√
| det(g(w))| dw1 dw2 . . . dw2N (4.12)
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and from (4.10) we obtain
√√√√ | det(g(w))|
| det(g(r))| =

∣∣∣∣∣det
(
∂ri
∂wj

)∣∣∣∣∣ (4.13)

which is just the Jacobian determinant for the change of variables.
In conclusion, the knowledge about the metric tensor allows the calculation

of the volume in the Hilbert space, once the integration domain is determined.
As far as our purpose is concerned, this well known result of differential ge-
ometry is important since it allows a simple method to connect probability
density and parametrization of Hilbert space, as it will be better explained in
the next section.

4.1.2 Connection between volume and probability

Since we have defined the volume on the Hilbert space, we can now clarify
the connection between probability and volume measure. Let us consider a
generic stochastic variable X whose possible outcomes belong to the sample
space Ω. Once a probability density p(X) is defined, it is possible to calculate
the probability for the variable to belong to a certain subset ∆ ⊂ Ω as

P (X ∈ ∆) =
∫
X∈∆

p(X) dX (4.14)

We have implicitly assumed that the probability density p(X) is positive and
normalized as

P (X ∈ Ω) =
∫
X∈Ω

p(X) dX = 1 (4.15)

If we now assume that the p(X) is uniform in the sample space, we are stating
that the probability for the variable to belong to the subspace ∆ is the ratio
between the sizes of the subspace and of the total space Ω. In addition, if
we consider that the region ∆ as well as the sample space Ω have infinites-
imal volumes given as dV =

√
| det(g(r))| dr1 dr2 . . . dr2N , we can specify the

probability density as

p(X)dX = dV∫
Ω dV

=

√
| det(g(r))| dr∫

Ω

√
| det(g(r))| dr

(4.16)
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In conclusion, being the probability a measure on a set, it can be connected
with the concept of volume and due to the relation between volume and metric
tensor, the probability density can be identified as

p(X) ∝
√
| det(g(χ))| (4.17)

whichever χ-representation is employed, up to a normalization factor. In par-
ticular we will choose as privileged representation the one with phases and
populations, from which we will obtain a probability distribution on the de-
sired parameters.

It is important to point out preliminarily that, instead of a generic volume,
we will use the surface of an ellipsoid in order to develop the probability density
on populations.

4.1.3 Metric induced on a surface

The capability to calculate generic volumes in Hilbert space is not enough in
order to obtain a probability distribution on populations that produces the
TRE averages. We need to define how to measure surfaces belonging to a
manifold embedded in the Hilbert space. For this reason, it is important to
notice as a K-dimensional manifold in a domain of the 2N -dimensional space
is defined by a set of (2N − K) equations, which have to be interpreted as
constraints for the points belonging to the surface.

f1(x1, x2, . . . , x2N) = 0

f2(x1, x2, . . . , x2N) = 0 (4.18)
...

f2N−k(x1, x2, . . . , x2N) = 0

At each point P = (x1, x2, . . . , x2N) belonging to the surface it is then possible
to introduce a local set of coordinates (z1, z2, . . . , zK) which parametrically
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identifies points on the manifold

x1 = z1

...

xK = zK

xK+1 = xK+1(z1, . . . , zK) (4.19)
...

x2N = x2N(z1, . . . , zK)

The metric tensor can be now used to describe the metric induced on the
manifold from the metric on the entire space. In particular the corresponding
induced metric tensor can be specified [69] as

g
(z)
kk′ =

2N∑
j

2N∑
j

∂xi
∂zk

g
(x)
ij

∂xj
∂zk′

(4.20)

where k, k′ = 1, . . . , K. As before, once the metric tensor is defined, it is
possible to determine the volume elements.

The case we are examining provides only a single constraint: the wave
function vector should belong to the surface of an ellipsoid. Thus, we deal
with a (2N−1)-dimensional manifold embedded in the 2N -dimensional Hilbert
space. The determinant of the metric tensor will be proportional to the surface
element dS (see equation (4.11)) of the ellispoid and will be related to the
probability density on populations (see equation (4.17)).

4.2 Probability distribution and ellipsoid sur-
face

In this section we outline the derivation of the probability distribution on pop-
ulations, through the use of the measure of the surface element of an ellipsoid
in the Hilbert space.

The main methodological ingredient is the connection between the proba-
bility that system wave function belongs to a certain set, and the measure that
this set has with respect to the whole ensemble of possible wave functions. By
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following and generalizing the strategy of Fresch and Moro [49], we consider
the normalized wave function as a random vector on the (2N −1)-dimensional
unitary sphere embedded in the 2N -dimensional space

S2N−1 :=
{
r ∈ R2N |

∑
k

|rk|2 = 1
}

(4.21)

but, differently from the previous approach, we consider a uniform sampling
of the wave function on an ellipsoid inscribed in the sphere

T 2N−1 : =
{
r ∈ R2N |

∑
k

|rk|2

R2
k

= 1, with Rk ∈ R ∀k
}

(4.22)

where the Rk parameters represent the ellipsoid axes. It is important to notice
that if the wave function vector is chosen on the surface of the ellipsoid, it is
not normalized

|Ψ〉 ∈ T 2N−1 ⇒
∑
k

|rk|2 < 1 (4.23)

where we have used (4.5) for the norm. By decreasing the length of ellipsoid
axes for increasing eigenvalues associated to that Hilbert space directions, the
uniform sampling on the ellipsoid surface produces an anisotropic distribution
when the corresponding unitary vector is considered through the normaliza-
tion. The vectors on the surface of the sphere, that represent the system states,
are no more uniformly distributed, and wave functions with higher population
at lower energy eigenstates are privileged, in agreement with our purposes.

In order to go deeper into details, we recall that the representation of
Hilbert space with cartesian r coordinates is characterized by a unit metric
tensor 4.9 [69]. However, a more convenient representation y of the R2N space
makes use of the polar coordinates of rays and phases, y = (ρ, α) where

Re(ck) = √ρk cosαk Im(ck) = √ρk sinαk (4.24)

The rays represent the generalization of populations variables without the
normalizations constraint and the population can be recovered as

Pk = ρk∑
k ρk

(4.25)
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The Jacobian matrix associated to the transformation r → y is

∂ Re(ck)
∂ ρk

∂ Im(ck)
∂ ρk

∂ Re(ck)
∂ αk

∂ Im(ck)
∂ αk

 =


1

2√ρk
cosαk

1
2√ρk

sinαk

−√ρk sinαk
√
ρk cosαk

 (4.26)

and the new metric tensor g(y) in the system with polar coordinates can be
obtained as

g
(y)
i′j′ =

2N∑
i

2N∑
j

∂ri
∂yi′

g
(r)
ij

∂rj
∂yj′

=
2N∑
i

∂ri
∂yi′

gii
∂ri
∂yj′

(4.27)

where we have eliminated a summation thanks to diagonal form of the metric
tensor g(r). The metric tensor in the new representation is still diagonal with
elements

g(y)
ρiρi

= 1
4ρi

g(y)
αiαi

= ρi (4.28)

In this representation the ellipsoid (4.22) is parametrized as

T 2N−1 = {(ρ, α) ∈ R2N |
∑
k

ρk
R2
k

= 1, with Rk ∈ R ∀k} (4.29)

and depends only on the rays parameters, for this reason it is easier to im-
pose the constraint by considering the last ray ρN as a function of the other
independent variables

ρN =
(

1−
N−1∑
k=1

ρk
R2
k

)
R2
N (4.30)

The (2N − 1) independent coordinates z = (ρ1, ρ2, . . . , ρN−1, α1, α2 . . . , αN)
represent a point on the ellipsoid surface and the metric induced on this man-
ifold can be described through the corresponding metric tensor g(z), to be
calculated according to equation (4.20). It can be partitioned in two diagonal
blocks having in correspondence of the phases only diagonal elements whereas
in correspondece with rays a full block.

g(z)
αi′′αi′′

= ρi g(z)
αNαN

=
(

1−
N−1∑
k=1

ρk
R2
k

)
R2
N (4.31)

g(z)
ρi′′ρj′′

= 1
4ρi′′

δi′′j′′ +
R4
N

R2
i′′R

2
j′′

1
4ρN

(4.32)
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Figure 4.2: schematic representation of the induced metric tensor g(z) on the ellip-
soidal surface. The block concerning the phases elements g(z)

αi,αj is diagonal whereas
the block on rays g(z)

ρiρj has off-diagonal elements.

The volume dS of the surface elements can now be calculated as

dS =
√
| det(g(z))| dρ1 . . . dρN−1dα1dαN (4.33)

by means of the determinant of the metric tensor g(z). Thanks to the block
structure of the latter we can factorize the determinant calculation as

det(g(z)) = det(g(z)
ρiρj

) det(g(z)
αiαj

) (4.34)

that corresponds to a product of surface elements dS = dSρ dSα. The block
for the phases is diagonal and its determinant is

det(g(z)
αiαj

) =
(

1−
N−1∑
k=1

ρk
R2
k

)
R2
N

N−1∏
k=1

ρk = ρN
N−1∏
k=1

ρk (4.35)

The block for the rays has a more complex structure and for the calculation
of its determinant we employ the following property of the matrices.

det(A+ uvT ) = (1 + vTA−1u) det(A) (4.36)

where A is a non-singular matrix and u and v two column vectors [70]. Let
us identify (A + uvT ) with the ray block of the metric tensor, with matrix A
describing only its diagonal elements g(z)

ρiρi
= 1

4ρi and the column vectors given
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as

u =



R4
N

R2
1

1
4ρN
...

R4
N

R2
i

1
4ρN
...

R4
N

R2
N−1

1
4ρN


v =



1
R2

1...
1
R2
i...

1
R2
N−1


(4.37)

The two contributions at the r.h.s of (4.36) are easly evaluated:

(1 + vTA−1u) =1 +
N−1∑
i=1

ρi
R4
i

R4
N

ρN
= R4

N

ρN

N∑
i=1

ρi
R4
i

(4.38)

det(A) =
N−1∏
i=1

1
4ρi

=
( 1

2N−1

)N−1∏
i=1

1
ρi

(4.39)

Then from their product one obtains the determinant of metric of the ray block
of the metric tensor

det(g(z)
ρiρj

) = R4
N

ρN

N∑
i=1

ρi
R4
i

·
( 1

2N−1

)2 N−1∏
i=1

1
ρi

(4.40)

The determinant of the full metric tensor is finally evaluated according to
equation (4.34)

det(g(z)) =
( 1

2N−1

)2 (N−1∑
i=1

ρi

(
RN

Ri

)4
+ ρN

)
(4.41)

Once the determinant of the matrix tensor is obtained, it is possible to
calculate the surface element, according to equation (4.33), and to obtain the
probability distribution on p(z)

p(z)dz = 1
Q(z)

√√√√(N−1∑
i=1

ρi

(
RN

Ri

)4
+ ρN

)
dρ1 . . . dρN−1dα1 . . . dαN (4.42)

where Q(z) is the normalization factor of the statistical distribution.

The representation z = (ρ, α) of the Hilbert space is particularly convenient
thanks to the statistical independence of rays and phases, leading to the pre-
viously described partitioning of the metric tensor, that allows me to factorise
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the probability density

p(ρ, α) = p(ρ) p(α) = p(ρ)/(2π)N (4.43)

In the last equality we have employed a result of Fresch and Moro [49], that
have demonstrated, under mild and realistic assumpions, how the phases vari-
ables are uniformly distributed in their domain with a probability density

p(α) = 1
(2π)N (4.44)

From the previous considerations we deduce the marginal probability dis-
tribution on rays

p(ρ)dρ = 1
Q(ρ)2πN

√√√√(N−1∑
i=1

ρi

(
RN

Ri

)4
+ ρN

)
dρ1 . . . dρN−1 (4.45)

Finally be performing the change of variables from rays ρi to populations Pi
according to (4.25)

p(P )dP = 1
Q(P )

√√√√√
∑N−1
i=1 Pi∑N−1

i=1
Pi
R2
i
− 1−

∑N−1
i=1 Pi

R2
N

1(∑N−1
i=1

Pi
R2
i
− 1−

∑N−1
i=1 Pi

R2
N

)N dP

(4.46)
where the normalization factorQ(P ) includes the Jacobian matrix determinant
of the transformation.

We started by describing a generic volume element in the R2N Hilbert
space by the use of the metric tensor. Then we noticed that the phases and
rays representation is much more manageable as soon as a constraint on the
norm of the wave function vector has to be considered, as in our case. Once
the induced metric tensor on the ellipsoid has been obtained we can describe
area elements on the surface that are directely related to the probability. As
a matter of fact the probability that the wave function belongs to a certain
set, in particular that belonging to an ellipsoidal surface element, is described
by the measure of that surface with respect whole surface (all the possible
wave functions). In this way one defines the probability distribution p(ρ, α) on
rays and phases. From that probability distribution, with a simple change of
variable (ρ, α)→ (P, α) (4.25), we are able to evaluate how populations behave



4.3. MONTECARLO SAMPLING OF PROBABILITY DISTRIBUTION 91

when sampled uniformly in an ellipsoidal surface. The probability distribution
on population is not uniform and the different Hilbert space directions are no
longer equivalent. The control on the anisotropy of the probability distribution
assumes now the central role in order to obtain the TRE average populations.
As a matter of fact, only by controlling the ellipsoid axes it is possible to
sample a wave function from a probability distribution where the thermal
state is well known, having so a unbiased sampling of a quantum state with a
well determined thermodynamic reference.

4.3 Montecarlo sampling of probability distri-
bution

In the previous paragraph we have obtained a probability distribution on pop-
ulations by considering a uniform sampling of wave function on the surface
of an ellipsoid embedded in the Hilbert space. It represents a very useful re-
sult, since it allows the evaluation of ensemble average of a property f(P ) of
populations as

〈f(P )〉 =
∫

dP p(P ) f(P ) (4.47)

and as well as its variance

σ2
f(P ) = 〈f(P )2〉 − 〈f(P )〉2 (4.48)

In particular, the last quantity is very important in order to confirm the typ-
icality when different realizations of the quantum state behave essentially in
the same way as far as the given property is concerned. I would like to stress
again as the typicality of microscopic internal energy and entropy leads to the
emergence of equilibrium thermodynamics in a self consistent framework.

At the same time, the existence of an explicit form of the probability distri-
bution on populations allows one to generate at random a single realization of
the quantum state of the system. This is of primary importance whenever one
wants to perform dynamical experiments, like in Classical Molecular Dynam-
ics Simulations where the initial state is randomly sampled from the suitable
ensemble for the considered thermodynamic state.

In this paragraph I want to characterize the statistical properties of the just
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derived probability distribution in order to evaluate the role of the lenghts Rk

of the ellipsoid axes in determining the average populations 〈Pk〉 with the final
goal of obtaining TRE average populations. Therefore we need to know how
to select the ellipsoid axes in order to obtain the desired ensemble average
properties.

The multidimensional integral of equation (4.47) which is necessary to ob-
tain average of any function of populations, has not an analytical solution and
it has to be evaluated numerically through a Montecarlo algorithm. In the
following I will briefly outline the generic features of the Metropolis-Hastings
algorithm and afterwords I will present the results of the numerical calculations
for the properties of the distribution of populations.

4.3.1 Metropolis-Hastings algorithm

Metropolis-Hastings is a computational algorithm firstly developed by Metropo-
lis et. al [71] in the field of Montecarlo-integration schemes, in order to ap-
proach statistical mechanical problems. However, it turned out to be a rather
general procedure with a large applicability in several statistical issues. The
algorithm was then generalized, some years later, by Hastings [72] and nowa-
days is very common in the evaluation of properties form complex probability
distributions.

Metropolis-Hastings algorithm is able to generate numbers, for example a
set of coordinates x = (x1, x2, . . . , xn), according to a known probability distri-
bution p(x), called target distribution. Once the statistical samples are gener-
ated, then the average of every function f(x) can be numerically computed. In
particular Metropolis-Hastings algorithm is very powerful because it requires
only the functional dependence of the probability distribution independently
of proportionality coefficient. This means that the normalization factor of the
probability distribution, often very difficult to compute, is unnecessary.

The algorithm generates a sequence of statistical samples of the stochastic
variables and with the use of acceptance (or rejection) criterion produces the
desired probability distribution which allows the evaluation of averages. Its
generic implementation consists in the following steps

• choice a random initial state for the variable of interest within its sample
space;
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• generation of a subsequent point sampled according to a proposal distri-
bution h(x′|x), that is the conditional probability of obtaining x′ given
the previous state x;

• evaluation of the probability a(x′|x) of making the step from x to x′, also
called acceptance probability, as

a(x′|x) = min
(

1, p(x
′)h(x|x′)

p(x)h(x′|x)

)
(4.49)

where p(x′) and p(x) are the probability of being in the state x′ or x
evaluated from the target probability distribution;

• acceptance or rejection of the step according to the rules:
if a(x′|x) > 1 the step is automatically accepted and the new point is x′

if a(x′|x) 6 1, generation of a random uniform r variable within the
interval [0, 1]. If r < a the new state is accepted, otherwise one generates
a new state x′;

• the algorithm restarts from the second step.

The property whose average we want to compute is evaluated on each
generation of a new sample, after the acceptance or rejection step. If the
step is accepted the properties is evaluated in the new point, otherwise it is
evaluated in the previous one. It can be immediately noticed as the calculation
of a(x′|x) does not need the normalized target distribution p(x) since only the
ratio p(x′)/p(x) has to be computed. In addition, if the proposal distribution
is symmetric, such that h(x′|x) = h(x|x′) like in the situation we are going to
consider later, the acceptance probability is reduced to p(x′)/p(x), that is the
original proposal of Metropolis [71].

Our target distribution is the probability density on populations given by
equation (4.46). However, the probability distribution on rays of equation
(4.45) is simpler to compute and population can be easily recovered with equa-
tion (4.25).

We start from the uniform sampling on a sphere embedded in aN -dimensional
Hilbert space, as already performed in [49]. It has been shown [73, 74, 75]
that a set of uniformly distributed sampling of points Q = (Q1, Q2, . . . , QN)
on a hyper-sphere surface can be achieved by the use of N − 1 auxiliary
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(ε1, ε2, . . . , εN−1) variables, uniformly distributed in (0, 1], as

Q1 = 1− ε1/(N−1)
1

...

Qj = (1− ε1/(N−j)
j )

j−1∏
i=1

ε
1/(N−i)
i (4.50)

...

QN =
N−1∏
i=1

ε
(1/N−i)
i

From the latter sampling, and by considering the appropriate change of vari-
able ρi = QiR

2
i , where the set of Ri corresponds to the length of the ellipsoid

axes, it is possible to obtain a symmetric proposal distribution h(ρ′|ρ) on the
ellipsoid surface. The algorithm proceeds through the evaluation of the accep-
tance probability

a(ρ′|ρ) = min
(

1, p(ρ
′)

p(ρ)

)
(4.51)

for the acceptance or rejection step. By an additional scaling of the rays from
the surface of the sphere to the ellipsoid surface, it is possible to study the
properties of the distribution function on populations.

4.3.2 Mean populations from the uniform sampling of
the ellipsoid

The algorithm just presented is quite simple and, at the same time, very pow-
erful in the study of our target distribution. We consider a 100 dimensional
Hilbert space where the ellipsoid axes Ri are selected randomly but uniformly
in the interval [10−6, 1].

The anisotropy of statistical distribution on the Hilbert space directions can
be highlighted by marginal distributions, defined as the probability distribution
on a subset of the stochastic variables. In particular we consider the probability
distribution on a single population that can be obtained by integration on all
the remaining populations, for example, the marginal distribution p(P1) on the
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population P1 reads

p(P1) =
∫

dP2 . . . dPi . . .PN−1 p(P1, . . . , Pi, . . . , PN−1) (4.52)

Because of the impossibility to analytically evaluate such an integral, we made
use of the Montecarlo algorithm through a sampling of 106 points.

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5
P

 p ( P 1 )   R 1  = 0 . 9 9 6 8
 p ( P 3 0 )  R 3 0 = 0 . 7 3 6 8
 p ( P 5 0 )  R 5 0 = 0 . 5 2 0 7

Figure 4.3: Marginal distributions of three representative populations are shown.
The histograms refer to a Montecarlo sampling of 106 points generated by the algo-
rithm explained in the text, for a system of 100 states.

In Figure 4.3 I have reported as an example some marginal distributions
for populations of different energy eigenstates. The shape of each marginal
distribution depends on ellipsoid axis length, in particular the shorter is the
ellipsoid axis the narrower is the marginal distribution leading to lower values
of mean populations. Thus, there in no equivalence amongst the different
Hilbert space directions. In Figure 4.4 I have reported the dependence of
the mean populations on the squared lenght of the correspondent ellipsoid
axis, suggesting a proportionality between them. The rationalization of such
a relation is of fundamental importance since that the average populations are
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0 . 0 1 0

0 . 0 1 5
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>
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k

Figure 4.4: Average populations 〈Pk〉 plotted against the square length of ellipsoid
axes. The line connecting the points is only a guide to the eye.

related to the thermodynamic systems properties. Once we are able to identify
and control the parameters R2

i in order to obtain TRE average populations,
we will be also able to characterize the quantum system of interest with a well
defined thermal state ζ. Such an objective is very important in order to control
the physical situation where we want to perform dynamical simulations.

The definition of a function Rk(Ek). that relates ellipsoid axes with the
eigenvalues associated to the Hilbert space principal directions |Ek〉, allows to
sample populations with a statistical weight that reproduce, on average, the
TRE ensemble. In principle, whenever the system Hamiltonian is provided as
well as the function Rk(E), representing the energy function of axis in order
to obtain TRE averages, it is possible to perform dynamical simulation in
whichever thermal condition.

4.4 Weakness of the model

In this chapter I have obtained a probability distribution on the set of popu-
lations starting from a geometrical analysis on the Hilbert space. The surface
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element of an ellipsoid has been related to the probability density on ray param-
eters, from which the probability distribution on population has been derived.
It is important to notice that TRE average populations are defined in all the
Hilbert space directions while the geometrical analysis has to be performed on
a finite dimensional Hilbert space which has to be considered as a subspace of
the full Hilbert space of a system with an unbounded spectrum.

In this finite domain, the connection between axes of the ellipsoid and pop-
ulations through probability density (4.46) is very complex and the function

〈Pk〉 = f(Rk) (4.53)

is far from being analytically derivable but, at the same time, it represents the
most important information in order to be able to sample a well defined quan-
tum state. Even if it might be obtained through a multi-variable optimization
procedure, which has not been carried out, its limit form for an arbitrary di-
mensional Hilbert space cannot be easily performed. The absence of a clear
limit where both, the ensemble average population and its probability distri-
bution with well defined R2

k parameters, are characterized, could be considered
a weakness of the just presented model. For this reason we have preferred to
change the strategy to obtain a sampling of TRE populations with a controlled
convergence and the new strategy will be presented in the next chapter.
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CHAPTER 5

TRE populations from uniform sampling

The energy dependence of average population within the TRE ensemble has
been very useful in order to analyse several important properties of the ensem-
ble, however it is not sufficient to fully characterize it. As a matter of fact, the
knowledge of average populations alone cannot provide the identification of
the underlying distribution of populations. In other words, one can image the
existence of different distributions of populations having the the same TRE
averages. At the same time only the identification of the probability distribu-
tion on populations p(P ) would supply, for example, the information on the
typicality for the thermodynamic properties. Moreover the probability distri-
bution on populations is essential to perform directly numerical experiments
about the dynamics of the thermalization on model systems, since one needs
a statistical sampling of the set of populations on the basis of a well defined
distribution of them. In this chapter I intend to identify the most convenient
and simplest form of population distribution which can be easily implemented
in the applications.

The starting point is the RPSE (Random Pure State Ensemble) population
distribution whose statistical properties are well characterized [49, 43, 50] and
for which a simple algorithm is available to generate a statistical sample of the
set of populations [50, 74]. The aim of the following analysis is the identifica-
tion of a suitable set of coefficients that, when used to scale RPSE populations,

99
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generates TRE populations. In this way the rather complex problem of TRE
statistics is reduced to the simpler case of RPSE ensemble.

The next chapter will practically use the sampling method in order to study
the dynamics of the energy exchange between two quantum systems, initially
at different temperatures. It will be clear as many of the considerations in
the next chapter can be formulated only thanks to the possibility to obtain
a random sampling from a statistical distribution that on average guarantees
the TRE populations.

5.1 TRE populations from the uniform distri-
bution

Let us first recall the notation for the problem. By considering an isolated
system whose quantum states belong to the infinite dimensional Hilbert space
H, and whose energy eigenvalues are supposed to be rationally independent
and unbounded, the set of populations associated to Hamiltonian eigenstates
is denoted as

P := (P1, P2, . . . , Pk, . . .) (5.1)

with Pk ≥ 0 ∀k and with normalization condition

∞∑
k=1

Pk = 1 (5.2)

In order to describe the statistical distribution of populations we introduce the
probability density p(P ) on the set P of populations with normalization

∫
dP p(P ) = 1 (5.3)

where dP = dP1 dP2 . . ., and Pk ≥ 0 is the integration domain for each popu-
lation. Notice that such a probability density should include the Dirac delta
factor

δ

(
1−

∞∑
k=1

Pk

)
(5.4)

in order to constraint the integration domain in equation (5.3) to population
sets satisfying the condition (5.2). Correspondingly the average 〈f(P )〉 within
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the ensemble of a generic function f(P ) of the population set P is calculated
as

〈f(P )〉 =
∫
dP p(P ) f(P ) (5.5)

The characterization of the statistical ensemble needs a probability density
with respect to an infinite number of parameters, i.e. the infinite set of popula-
tions. It has to be defined as the limit N →∞ of the sequence of finite dimen-
sional distributions with respect to the first N populations (P1, P2, . . . , PN).
This is conveniently done by introducing the probability densities p(N)(P ),
each of them includes the Dirac delta factors

δ

(
1−

N∑
k=1

Pk

) ∞∏
k=N+1

δ(Pk) (5.6)

in order to enforce the condition that Pk = 0 for k > N but, at the same
time, to continue to employ the integration on the full set P of population
like in equation (5.4). Then the ensemble average of function f(P ) is specified
according to the following limit

〈f(P )〉 = lim
N→∞

∫
dP p(N)(P ) f(P ) (5.7)

where it is conventionally assumed that
∫
dPkF (Pk)δ(Pk) = F (0) even if the

lower boundary of integration domain is at Pk = 0.

Our objective is that of recognizing a suitable probability density p(P )
under the constraint that its mean populations are exactly the TRE average
populations given as

〈Pk〉 = e−ζ(Ek−E1)

n(ζ) (5.8)

where Ek for k = 1, 2, . . . denote the energy eigenvalues, E1 being that of the
ground state. The parameter ζ describes the thermal state of the system and,
as shown in part I, it is related to the microscopic quantum temperature TQ
as ζ ' 1/kBTQ. Equation (5.8) includes the normalization factor specified
through

n(ζ) :=
∞∑
k=1

e−ζ(Ek−E1) (5.9)

Such a quantity, considered as a function of the thermal state, in the following
analysis plays the role of control parameter and, therefore, it is important to
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recognize its physical meaning. Its definition (equation (5.9)) represents the
count of energy eigenstates weighted by the thermal factor exp{−ζ(Ek −E1)}
quantifying the contribution to statistical averages of the k-th state with re-
spect to the ground state k = 1 having an unitary weight. This is somehow
equivalent to partition the infinite set of eigenstates in groups having a cumu-
lative TRE average population nearly equal to that of the ground state, and
to count the number of these groups. For this reason parameter n(ζ) can be
identified with the effective dimensionality of thermally populated eigenstates,
and in the following we will designate it in this way. Notice that its counter-
part for the uniform distribution of populations within an active space which
includes eigenstates with the same statistical weight, would be simply the di-
mension of the active space. The behavior of such an effective dimensionality
n(ζ) by changing the thermal state is rather obvious, since it is a decreasing
function of ζ between the limits: limζ→0+ n(ζ) = ∞ and limζ→∞ n(ζ) = 1. A
more significant picture is recovered by considering the microscopic tempera-
ture TQ ∝ 1/ζ since the effective dimensionality is unitary for TQ → 0 when
only the ground state is populated, and it grows indefinitely by increasing TQ
as more and more eigenstates become significantly populated.

In order to characterize statistically TRE populations, we intend to develop
a scaling procedure applied to populations of a completely different statistical
ensemble with an uniform distribution. With this procedure one can exploit
the simple description of statistical properties with the uniform distribution,
which has been already reported in past works by Fresch and Moro [49, 43, 50].
In order to clearly recognize the populations with an uniform distribution and
to distinguish them from TRE populations P specified as in equation (5.1),
we denote them differently as

Q := (Q1, Q2, . . . , Qk, . . .) (5.10)

with the normalization condition like in Eq. (5.2). The statistical ensemble
with uniform distribution can be implemented in different forms depending
on the choice of the active space allowed to pure states. For the present
purposes, one must employ the Random Pure State Ensemble (RPSE) where
the N -dimensional active space HN is given by linear combinations of the first
N eigenstates. For a given dimensionality N of the active space, the RPSE
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ensemble is characterized by the following probability density on populations
[49]

p
(N)
RPSE(Q) = (N − 1)! δ

(
1−

N∑
k=1

Qk

) ∞∏
k=N+1

δ(Qk) (5.11)

where the Dirac delta factors enforce the normalization on these populations
and their vanishing outside the active space. It allows the calculation of RPSE
ensemble average of functions f(Q) of the populations according to the integral

〈f(Q)〉(N)
RPSE =

∫
dQp

(N)
RPSE(Q) f(Q) (5.12)

The distinctive features of RPSE statistics are the equivalence of mean popu-
lations (within the active space)

〈Qk〉(N)
RPSE

 = 1/N for k ≤ N

= 0 for k > N
(5.13)

and the identical correlation between different populations, which is induced
by the constraints on the integration domain

〈∆Qk∆Qk′〉(N)
RPSE = − 1

N2(N + 1) (5.14)

for k 6= k′ and k, k′ ≤ N , where ∆Qk := Qk − 〈Qk〉(N)
RPSE = Qk − 1/N .

For a given infinite set of real positive coefficients

x = (x1, x2, . . . , xk, . . .) (5.15)

with xk ≥ 0 ∀k and finite 1-norm ||x||1 = ∑∞
k=1 xk, one can introduce a scaling

procedure of RPSE populations according to the relation

Pk := xkQk∑∞
k′=1 xk′Qk′

, (5.16)

∀k ≥ 0, which generates an infinite set of parameters P = (P1, P2, . . . , Pk, . . .)
having the character of populations since Pk ≥ 0 and ∑∞k=1 Pk = 1 and whose
average can be calculated according to RPSE statistics

〈Pk〉(N)
RPSE =

〈
xkQk∑∞

k′=1 xk′Qk′

〉(N)

RPSE
(5.17)
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By choosing coefficients xk decreasing in magnitude with k we get average
populations Pk also decreasing in magnitude like TRE population averages of
equation (5.8). Our purpose is that of recognizing the set of coefficients x
which leads to scaled populations Pk having the same averages of TRE. Then
by random sampling RPSE populations Q followed by the scaling procedure of
equation (5.16), we get a statistical sample of populations P with TRE mean
value, and we can consider them as possible realizations of TRE populations.
However, as a preliminary condition, we must perform the infinite dimensional
limit N → ∞ on the RPSE average in equation (5.17) in order to fulfill the
equivalence with equation (5.8). Indeed, for finite dimensions N , the average
(5.17) of populations Pk for k > N vanishes while equation (5.8) leads always
to values grater than zero and, therefore, only in the limit N → ∞ we could
find the set x of coefficients assuring the equivalence on the averages.

In the asymptotic limit N →∞ of the active space, the RPSE populations
Q in a statistical sample tend to vanish as a consequence of their normaliza-
tion, ∑∞k=1Qk = 1. On the other hand, in order to perform the integration
required by equation (5.17) in such an asymptotic limit, we need integration
variables which remain finite on the average. For this reason we replace RPSE
populations Q with their unnormalized counterparts Q̂ = (Q̂1, Q̂2, . . .),

Q̂k := NQk, (5.18)

having a constant average independent of the dimension of the active space:
〈Q̂k〉(N)

RPSE = 1 for k ≤ N . Notice that the definition (5.16) of population P

for TRE ensemble can be rewritten in term of these parameters Q̂:

Pk := xkQ̂k∑∞
k′=1 xk′Q̂k′

(5.19)

Therefore, in order to evaluate Eq. (5.17) in the limit N → ∞ , we need to
perform the average of a function f(Q̂) of unnormalized RPSE populations in
the asymptotic limit:

〈f(Q̂)〉 := lim
N→∞

〈f(Q̂)〉(N)
RPSE (5.20)

where we have omitted at the l.h.s. the reference to RPSE statistics and to the
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asymptotic limit of N because in the following this is the only kind of average
which is explicitly considered. In Appendix 5.A it is shown that such an
average is simply given by the integral on these parameters with an exponential
weight function without any constraint on the integration variables:

〈f(Q̂)〉 =
∫
dQ̂ exp

{
−
∞∑
k=1

Q̂k

}
f(Q̂) (5.21)

where ∫
dQ̂ . . . :=

( ∞∏
k=1

∫ ∞
0

dQ̂k

)
. . . (5.22)

The exponential weight function can be interpreted as the probability density
for the asymptotic problem with independent contributions for each variable
corresponding to uncorrelated parameters Q̂k.

All this procedure relies on the set x of coefficients that, from unnormalized
RPSE populations Q̂ and by means of equation (5.16), allows the calculation
of populations P having TRE average values of equation (5.8). Therefore, for
a given thermal state specified by parameter ζ, one has to find the solution of
the set of equations

〈
xkQ̂k

F (x, Q̂)

〉
= 〈Pk〉 = e−ζ(Ek−E1)

n(ζ) (5.23)

for k = 1, 2, . . . , where we have introduced the function

F (x, Q̂) :=
∞∑
j=1

xjQ̂j (5.24)

Of course the solution of Eqs. (5.23) are thermal state dependent, that is
x = x(ζ).

On the other hand, if the formal solution x(ζ) is available, then the sta-
tistical properties of TRE populations is reduced to the distribution of un-
normalized RPSE populations Q̂. In particular, given a statistical sample of
unnormalized RPSE populations Q̂, by means of equation (5.16) one deter-
mines the correspondent set of TRE populations P , which can be considered
as randomly chosen possible realizations of the quantum pure state for the
given thermal state ζ of the system, and which can be used to evaluate the
average of any propery f(P ) depending on pure state populations P . In the
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following two sections we specifically address the issue of the procedures for
solving equations (5.23).

5.2 Infinite effective dimensionality

The solution in all generality of equation (5.23) is not a trivial task because
of the non linearity with respect to the unknowns x. Therefore, in the first
instance we look for a simple approximation of the solution of the problem. Let
us suppose that function F (x, Q̂) is statistically nearly constant when sampling
unnormalized RPSE populations Q̂. Then the average of the fraction at the
l.h.s. of equation (5.23) can be approximated by the ratio of the correspondent
averages, 〈

xkQ̂k

F (x, Q̂)

〉
' 〈xkQ̂k)〉
〈F (x, Q̂)〉

(5.25)

which are immediately evaluated:

〈xkQ̂k〉 = xk, 〈F (x, Q̂)〉 =
∞∑
j=1

xj〈Q̂j〉 = ||x||1 (5.26)

Then we obtain the following simple solution of Eq. (5.23)

xk = 〈Pk〉 = e−ζ(Ek−E1)

n(ζ) (5.27)

which implies that by scaling RPSE populations according to TRE mean pop-
ulations, we get from equation (5.16) populations P following the TRE statis-
tics.

The following question naturally arises: is this an exact solution in some
suitable conditions? An answer requires the quantification of the variability of
function F (x, Q̂) in the ensemble through its variance

σF := 〈∆F (x, Q̂)2〉1/2 (5.28)

where
∆F (x, Q̂) := F (x, Q̂)− 〈F (x, Q̂)〉 =

∞∑
j=1

xj∆Q̂j (5.29)

with ∆Q̂j := Q̂j − 〈Q̂j〉 = Q̂j − 1. By taking into account that according to
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the distribution in equation (5.20) the parameters ∆Q̂k are uncorrelated and
have unitary variance, the following relation is derived

σ2
F =

∞∑
j=1

x2
j = ||x||2 (5.30)

so providing the following relative measure of F (x, Q̂) variability depending
coefficients x

σF
〈F 〉

= ||x||
1/2
2

||x||1
(5.31)

In particular it can be applied to the solution Eq. (5.27):

σF
〈F 〉

= 1
n(ζ)

[ ∞∑
k=1

e−2ζ(Ek−E1)
]1/2

= n(2ζ)1/2

n(ζ) (5.32)

Since 1 < n(2ζ) < n(ζ) for ζ > 0 according to definition (5.9), we obtain
an upper bound on the basis of the effective dimensionality n(ζ) of thermally
populated eiegenstates

σF
〈F 〉

<
1

n(ζ)1/2 (5.33)

In the limit of a system with an infinite number n(ζ) of effective states, the
function F (x, Q̂) tends to be statistically constant because of the vanishing of
its relative variance

n(ζ)→∞ : σF/〈F 〉 → 0 (5.34)

and, therefore, the solution (5.27) becomes exact since this was the condition
invoked to derive it.

The naturally related issue concerns the physical conditions assuring the
infinite limit for the effective dimensionality, n(ζ) → ∞. The definition of
equation (5.9) provides an obvious answer for the infinite temperature state
of the system, ζ → 0. A second, may be more interesting, case arises if we
consider the system composed by an ensemble of identical components (say,
molecules). Under the assumption of a weak coupling between components,
the overall energy can be considered as additive with respect to the energies of
the components. Correspondingly, according to definition (5.9), the effective
dimensionality n(M)(ζ) of the composite system withM components at a given



108 CHAPTER 5. TRE POPULATIONS FROM UNIFORM SAMPLING

thermal states ζ can be specified as

n(M)(ζ) = nc(ζ)M (5.35)

where nc(ζ) is the effective dimensionality of a component in the same ther-
mal state. Then an infinite effective dimensionality n(M)(ζ)→∞ is recovered
if we consider the infinite size limit M → ∞ of the composite system at a
given thermal state, provided that nc(ζ) > 1 at a non vanishing tempera-
ture. In conclusion the simplest solution (5.27) for the scaling coefficients of
RPSE populations can be safely employed in the evaluation of thermodynamic
properties of macroscopic systems.

On the other hand it should be stressed that also for finite sized systems, or
even small ones as those amenable to quantum dynamical simulations, equa-
tion (5.27) represents an useful solution for the scaling coefficients besides the
infinite temperature limit, which is practically uninteresting. If the effective di-
mensionality is large enough, at any rate equation (5.27) can be taken, instead
of the exact solution, as a good approximation depending on the magnitude
of n(ζ). As a matter of fact it can be considered as the first order solution in
the suitable framework for the perturbational treatment of equations (5.23),
which will be presented in the next section.

5.3 Finite effective dimensionality

The objective of the following analysis is the solution of the system of equations
(5.23) by means of a perturbation expansion with respect to the case of infinite
effective dimensionality for which the analytical solution of equation (5.27) is
available. Let us rewrite the equations to be solved as

gk(x) = e−ζ(Ek−E1)

n(ζ) (5.36)

for k = 1, 2, . . . , where

gk(x) :=
〈

xkQ̂k

F (x, Q̂)

〉
(5.37)

represents a set of functions of the unknowns x. It should be stressed that the
system of Eqs. (5.36) has a multiplicity of solutions since, taking into account
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the definition (5.24) for F (x, Q̂), functions gk(x) are invariant by scaling the
unknowns by a common factor, xk → axk. In order to avoid such an ambiguity
about the solution of the problem, in the following we assume that the set x
of unknowns is normalized according to an unitary 1-norm

||x||1 =
∞∑
k=1

xk = 1 (5.38)

Correspondingly the function F (x, Q̂) has unitary average

〈F (x, Q̂)〉 =
∞∑
k=1

xk〈Q̂k〉 =
∞∑
k=1

xk = 1 (5.39)

Explicit evaluation of functions gk(x) according to their definition Eq.
(5.37) is impossible because of the non linear coupling between unnormal-
ized populations Q̂k introduced by F (x, Q̂) at the denominator. Therefore a
suitable series expansion should be performed on the function to be averaged,
in order to generates powers of unnormalized populations whose averages are
easily evaluated thanks to the independent distribution on the integration vari-
ables of Eq. (5.20). On the other hand the deviations of function F (x, Q̂) from
its average tend to vanish in the limit of an infinite effective dimensionality
and, in the spirit of a perturbative approach, we can introduce a series expan-
sion with respect to ∆F (x, Q̂) := F (x, Q̂) − 〈F (x, Q̂)〉 = F (x, Q̂) − 1. Then
functions gk(x) are recast as

gk(x) =
〈

xkQ̂k

1 + ∆F (x, Q̂)

〉
=
〈
xkQ̂k

∞∑
j=0

[−∆F (x, Q̂)]j
〉

(5.40)

where averages are now required only for the powers of unnormalized popula-
tions. In Appendix 5.B I have reported the details of the procedure for their
evaluation.

In order to generate a practical scheme of solution for equation (5.36),
one needs to recognize the perturbational parameter of the expansion with
respect to the limit of infinite effective dimensionality, n(ζ)→∞. The suitable
parameter is

ε := 1/n(ζ) (5.41)

and it should be employed to identify the contributions of different orders in
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functions gk(x) organized as

gk(x) =
∞∑
m=1

g
(m)
k (x) (5.42)

with O(g(m)
k ) = εm for ε→ 0+. By taking into account that equation (5.27) is

the solution of the problem in the limit ε→ 0+, one identifies the order of the
unknowns, O(xk) = ε and of their powers:

O(xnk) = εn (5.43)

This is the typical order of magnitude for the ensemble of these coefficients
deriving form the denominator of equation (5.27), without considering their
differences due to the energy eigenvalues Ek. To attribute an order to the
n-norm of the unknowns, on the basis of the physical meaning of effective
dimensionality n(ζ), one could consider the summation as equivalent to n(ζ) =
1/ε times the order of magnitude of xnk , that is

O(||x||n) = O
(∑

k

xnk

)
= n(ζ)O(xnk) = n(ζ)εn = εn−1 (5.44)

By means of the order assignments equations (5.43) and (5.44), from the
contributions (5.75) reported in Appendix 5.B one can recognize the lower
order contributions to equation (5.42)

g
(1)
k (x) = xk

g
(2)
k (x) = xk||x||2 − x2

k

g
(3)
k (x) = xk(3||x||22 − 2||x||3)− 3x2

k||x||2 + 2x3
k

(5.45)

Notice that ∑
k

g
(m)
k (x) = δm,1 (5.46)

because of the normalization ||x||1 = 1. Higher order contributions can be ob-
tained by integrating with these rules the computer program which produces
the linear combinations for functions G(j)

k (x) (see Appendix 5.B). One should
notice also that the expansion terms of equation (5.45) have an universal char-
acter since they are independent of the physical system and of its thermal state
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as well. This means that the ensemble of functions g(m)
k (x) can be identified

once for all.
For a given physical system, specified through the sequence of energy eigen-

values E1, E2, E3, . . ., in a given thermal state ζ, equations (5.36) have to be
solved with respect to the unknowns x by specifying functions gk(x) according
the series expansion (5.42). In practice, however, one can calculate solutions
of equations (5.36) only at a given order εM on the perturbational parameter.
This corresponds to employ in equation (5.36) the expansion truncated for
m > M , that is

M∑
m=1

g
(m)
k (x) = e−ζ(Ek−E1)

n(ζ) (5.47)

Let us denote with x(M) = (x(M)
1 , x

(M)
2 , . . .) such a solution of M -order. Since

g
(1)
k (x) = xk, the first order solution x(1) is precisely equation (5.27) that we
have already found in the limit of an infinite effective dimensionality. Higher
order results requires the solution of a system of non linear equations in the
unknowns as derived from Eq. (5.47) for M > 1. As a matter of fact they are
computationally easily accessible by solving iteratively equation (5.47) rewrit-
ten as

xk = e−ζ(Ek−E1)

n(ζ) −
M∑
m=2

g
(m)
k (x) (5.48)

By inserting at the r.h.s. an approximation to x(M), say x(1), we calculate new
values for the unknowns, which can replace the previous approximation, and
so on up to convergence. We have found that such a procedure is very efficient.
Notice also these finite order solutions x(M) preserve the normalization of the
unknown, ||x(M)||1 = 1, because of Eq. (5.46).

5.4 Convergence of the series

Once a physical system, specified by its energy spectrum, is provided in a given
thermal state ζ, TRE populations Pk can be obtained by solving equation
(5.36) with respect to the unknown x, according to the series (5.42). However
the evaluation of the entire series is obviously impossible and a description
of its convergence is necessary in order to be able to understand how many
contributions of different orders g(m)

k have to be taken into account to perform
a simulation where the average properties for the system are close to TRE
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averages.
The convergence has been evaluated for a given system through the de-

viations of the ensemble average of the system energy 〈E(ζ)〉, computed on
a sample of 106 points, from the internal energy of the TRE ensemble UQ(ζ)
from equation (3.48).

∆U

UQ(ζ) = UQ(ζ)− 〈E(ζ)〉
UQ(ζ) (5.49)

in particular the system I have considered is formed by 100 eigenstates selected
according to the computational algorithm described in the next chapter 6.2.

In Figure 5.1 the convergence is reported for different truncation of orders
m of equation (5.47), in function of the effective dimensionality n(ζ), since it
is the privileged parameter in the control of the scaling evaluation. As long

2 4 6 8

- 0 . 2

- 0 . 1

0 . 0

∆ U / 
U Q

n ( ζ )

 m = 1
 m = 2
 m = 4
 m = 8

Figure 5.1: Convergence of the series accounted as the relative difference ∆U/UQ
(5.49), computed on a system of 100 states, is reported versus the effective dimen-
sionality n(ζ). The ensemble average of energy is computed on a sampling of 106

sets of populations. Different truncation orders m are shown.

as the systems is fixed, the control parameter depends only from the quantum
temperature, so the increasing on the effective dimension corresponds to the
increase of the system quantum temperature and to a faster convergence of
the series. Such a behaviour is more evident for m = 1 (red points) where only



5.5. THERMODYNAMIC PROPERTIES 113

the first term of the series is considered. It is in agreement with the result
of paragraph 5.2 where the first term of the series si sufficient to provide the
exact solution for an infinite effective dimensionality. In Figure 5.1 a very fast
convergence can be also noticed in the increasing of the truncation order m
where m = 1, 2, 4, 8 have been reported.

The main result shown in figure is that low contributions in the series ex-
pansion are sufficient to produce a good accuracy in thermodynamic properties
and so an unbiased sampling of the TRE ensemble.

5.5 Thermodynamic properties

In this section we analyze the thermodynamic behavior of the previously intro-
duced statistical ensemble in the limit of a very large effective dimensionality
n(ζ). Thus such a treatment is relevant for macroscopic systems, but it can
be employed also to finite systems independently of their size if n(ζ) is large
enough. Outside these conditions, the thermodynamic properties are accessi-
ble by numerical evaluation of the suitable averages which are introduced in
the following.

Thus we shall adopt the first order solution of equation (5.27) for the co-
efficients x scaling RPSE populations. As discussed in paragraph 3.6.2, the
quantum microscopic counterparts UQ (eqn. (3.48)) and SQ (eqn. (3.51)) of
the internal energy and of the entropy, respectively, are defined as the ensemble
averages

UQ := 〈E〉 =
〈∑

k

EkPk

〉
(5.50)

SQ := −kB
〈∑

k

Pk lnPk
〉

(5.51)

of the expectation energy and of the Shannon entropy, kB being the Boltzmann
constant. By replacing TRE populations P by scaled RPSE populations, Pk =
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xkQ̂k, one obtains

UQ =
∑
k

Ekxk
〈
Q̂k

〉
=
∑
k

Ekxk (5.52)

SQ = −kB
∑
k

xk
〈
Q̂k ln(xkQ̂k)

〉
= −kB

∑
k

xk ln xk − kB
∑
k

xk
〈
Q̂k ln Q̂k

〉
(5.53)

The average at the r.h.s. of Eq. (5.53) with an exponential distribution of Q̂k

is done analytically 〈
Q̂k ln Q̂k

〉
= 1− γ (5.54)

where γ is the Euler-Mascheroni constant, and the following explicit relation
is found for the entropy

SQ = −kB
∑
k

xk ln xk − kB(1− γ) (5.55)

It should be stressed that because of equation (5.27), the internal energy
UQ(ζ) and the entropy SQ(ζ), and coefficients xk(ζ) as well, should be consider
as functions of the thermal parameter ζ. Such a thermal dependence allows
the identification of the quantum temperature parameter TQ according to the
fundamental differential of thermodynamics

1
TQ(ζ) := dSQ

dUQ
= dSQ(ζ)/dζ
dUQ(ζ)/dζ (5.56)

The derivative of the entropy of equation (5.55), by taking into account that
coefficients X are normalized as ||x||1 = 1, can be specified as:

dSQ(ζ)
dζ

= −kB
∑
k

dxk(ζ)
dζ

(1 + ln xk) = kB
∑
k

dxk(ζ)
dζ

[ζ(Ek − E1) + lnn(ζ)]

(5.57)
where the explicit form equation (5.27) of the first order solution has been
inserted. By taking again into account that 1-norm of x is constant, one
finally obtains

dSQ(ζ)
dζ

= kBζ
∑
k

Ek
dxk(ζ)
dζ

= kBζ
dUQ(ζ)
dζ

(5.58)
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that is the proportionality between the ζ derivative of the entropy and of the
internal energy, which leads to the following identification of the quantum
temperature on the basis of the thermal parameter ζ

1
kBTQ

= ζ (5.59)

We emphasize that this is an exact result when the first order solution equa-
tion (5.27) for coefficients x can be safely employed, that is in the limit of
a very large effective dimensionality n(ζ), for instance with macroscopic sys-
tems. It should also be mentioned that such a result was anticipated in part
paragraph 3.6.3, but by invoking an approximation to quantum entropy which
was motivated by the maximum entropy methodology of Jaynes [1].

The precise identification of the quantum temperature allows the definition
other relevant thermodynamic functions, like the Helmholtz free energy

AQ : = UQ − TQSQ (5.60)

=
∑
k

xk[Ek + kBTQ ln xk + kBTQ(1− γ) (5.61)

= E1 − kBTQ lnn(ζ) + kBTQ(1− γ) (5.62)

By taking into account that for a large n(ζ) the last term at the r.h.s. is
negligible, and by considering an energy scale with the ground state as the
origin, one recovers the standard relation of statistical mechanics

AQ = −kBTQ lnn(ζ) (5.63)

which allows the interpretation of the effective dimensionality n(ζ) as the cor-
responding partition function.

The quite simple evaluation of ensemble averages, performed on the asymp-
totic limit of RPSE statistics, suggests that also typicality of internal energy
and entropy could be analytically investigated, by following the same strategy
described by Fresch and Moro in [50]. However we report here only a numeri-
cal simulation that verifies as the distributions of internal energy and entropy
narrow in the increasing of the density of states for fixed energy interval and
thermal state.

In Figure 5.2 the distributions of internal energy UQ (top-panel) and en-



116 CHAPTER 5. TRE POPULATIONS FROM UNIFORM SAMPLING

1 2 3
0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

 

 

U / < U >

 2 0 0  s t a t e s
 1 0 3 1 0  s t a t e s

0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6
0

2 5 0 0

5 0 0 0

7 5 0 0

1 0 0 0 0

 

 

S / < S >

 2 0 0  s t a t e s
 1 0 3 1 0  s t a t e s

Figure 5.2: Distributions of internal energy UQ (top-panel) and entropy SQ (bottom
panel) from a sample of 106 sets of TRE populations are reported for two different
quantum systems. TRE populations have been obtained by the scaling algorithm
explained in the main text, with a truncation term m = 4 and a fixed thermal pa-
rameter ζ. The typicality behaviour is clear by observing the two systems that differ
for the number of eigenstates whose eigenvalues belong to a fixed energy interval, in
order to mimic the increasing on the system size toward the macroscopic limit.
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tropy SQ (bottom-panel) are reported for two different density of states that
correspond to an increasing number of energy eigenstates within a fixed en-
ergy interval. The same thermal parameter ζ has been considered. It can be
noticed that when the Hilbert space dimension increase, the distribution of
the properties with a thermodynamic correspondent narrows, this suggest the
presence the typicality conditions enforcing the thermodynamic analysis.

5.A Asymptotic RPSE averages

In order to evaluate the asymptotic average described by equation (5.20) for
a given function f(Q̂) of scaled parameters (5.18) for RPSE populations, we
consider initially its K-truncated form depending only the first K variables

f (K)(Q̂1, Q̂2, . . . , Q̂K) := f(Q̂1, Q̂2, . . . , Q̂K , 0, 0, 0, . . . ) (5.64)

According to the analysis of Section III of ref. [50], its RPSE average for a
N -dimensional active space with N > K can be specified as an integral on the
arguments of f (K) only:

〈f (K)(Q̂)〉(N)
RPSE =

( K∏
k=1

∫ bk,N

0
dQk

)
f (K)

(
Q1

N
,
Q2

N
, . . . ,

QK

N

)
×

× (N − 1)!
(N −K − 1)!bK,N(Q1, Q2, . . . , QK)N−K−1 (5.65)

where the constraints on RPSE populations due to the normalization has been
taken into account by introducing the upper bounds bk,N to the integrals

bk,N(Q) := 1−
k∑
j=1

Qj (5.66)

Then by performing the change of integration variables to the scaled parame-
ters Q̂k, we get the relation

〈f (K)(Q̂)〉(N)
RPSE =

( K∏
k=1

∫ Nbk,N

0
dQ̂k

)
f (K)(Q̂1, Q̂2, . . . , Q̂K)

[ K∏
k=1

(
1− k

N

)]
×

× bK,N

(
Q̂1

N
,
Q̂2

N
, . . . ,

Q̂K

N

)N−K−1

(5.67)
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that allows a straightforward evaluation of the asymptotic limit N →∞. The
upper limits of integration can be extended to infinity because

bk,N(Q̂1/N, Q̂2/N, . . . , Q̂k/N) = 1 +O(1/N) forN →∞ (5.68)

In the same limit the square bracket term in equation (5.67) can be replaced
by the unity while the last term is conveniently evaluated in exponential form
since

(N −K − 1) ln bK,N
(
Q̂1

N
,
Q̂2

N
, . . . ,

Q̂K

N

)
= (N −K − 1) ln

(
1−

K∑
k=1

Q̂k/N
)

=

= (N −K − 1)
(
−

K∑
k=1

Q̂k/N +O(1/N)
)

= −
K∑
k=1

Q̂k +O(1/N)

(5.69)
In this way the asymptotic average of the K-truncated function is specified as

〈f (K)(Q̂)〉 = lim
N→∞

〈f (K)(Q̂)〉(N)
RPSE =

=
( K∏
k=1

∫ ∞
0

dQ̂k

)
exp

{
−

K∑
k=1

Q̂k

}
f (K)(Q̂1, Q̂2, . . . , Q̂)

(5.70)

Finally, by applying the limit K →∞ to the truncation of the function

〈f(Q̂)〉 = lim
K→∞

〈f (K)(Q̂)〉 (5.71)

we find equation (5.20) for the asymptotic average of the given function f(Q̂).

5.B Evaluation of functions gk(x)

For the evaluation of Eq. (5.40), the term ∆F (x, Q̂) is conveniently specified
as

∆F (x, Q̂) =
∞∑
k=1

xkQ̂k − 1 =
∞∑
k=1

xkQ̂k −
∞∑
k=1

xk =
∞∑
k=1

xk(Q̂k − 1) =
∞∑
k=1

xk∆Q̂k

(5.72)
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where ∆Q̂k = Q̂k − 1 = Q̂k − 〈Q̂k)〉 is the deviation of a unnormalized popu-
lation from its average. Then each contribution (5.40) can be specified as

g
(m)
k (x) := (−1)m−1xk

∑
k1

xk1

∑
k2

xk2 . . .
∑
km

xkm
〈
Q̂k∆Q̂k1∆Q̂k2 . . .∆Q̂km

〉
(5.73)

Each term in the multiple summation is easily evaluated on the basis of the
moments of an exponentially distributed variable:

〈
Q̂n
k

〉
=
∫ ∞

0
dQ̂k e

−Q̂kQ̂n
k = n! (5.74)

Furthermore, the vanishing of the average of ∆Q̂k when it is alone, reduces
considerably the number of non vanishing contributions to the multiple sum-
mation. Still the direct calculation becomes very involved by increasing the
order m, that is the number of independent summations in Eq. (5.73). We
report the result just for the first few of them:

G
(1)
k (x) = −x2

k

G
(2)
k (x) = 2x3

k + xk||x||2
G

(3)
k (x) = −6x4

k − 3x2
k||x||2 − 2xk||x||3

G
(4)
k (x) = 24x5

k + 12x3
k||x||2 + 8x2

k||x||3 + 3xk(2||x||4 + ||x||22)

. (5.75)

Each function G(j)
k (x) is then specified as a linear combination of the powers

of coefficient xk multiplied by n-norms of x coefficients or their products. As
a matter of fact, few simple rules are required to calculate iteratively the
coefficients (integer numbers) of these linear combinations, rules which can
be translated into a computer program which allows one to specify functions
G

(j)
k (x) up to large values of index j.
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CHAPTER 6

Thermalization Dynamics

The so called thermalization experiment is one of the most interesting process
to be studied at molecular lever. As a matter of fact, all the situations where
different systems are brought in contact belong to this class of experiments,
with the only requirement that the interaction is weak enough to preserve
the physical properties of the systems. In the overwhelming majority of the
situations, the previous condition is satisfied and represents a very mild as-
sumption. Furthermore, since the quantum mechanical theory is believed to
be more appropriate in the description of the behaviour at molecular level, the
development of new strategies to follows the system dynamics from a purely
quantum perspective is a very interesting task.

The tools developed in the previous chapters represent a little but impor-
tant step towards the development of quantum mechanical analogue of Molec-
ular Dynamic simulations by allowing the selection of an initial wave function
for the system dynamics within a self consistent theoretical framework. Indeed
the correspondence between microscopic thermal parameter and macroscopic
temperature has been demonstrated as well as the emergence of equilibrium
thermodynamics in the limit of large systems. Above all, unlike the more com-
mon statistical ensemble of pure states nowadays available, TRE ensemble is
able to describe the thermalization experiment due to its inherent invariance
and can be used both to characterize the systems before the switching-on of

121
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the interaction and after the realization of equilibrium condition.
In this chapter I study some generic realizations of the thermalization ex-

periment and instead of using a particular energy level structure, such as os-
cillators or spin systems that can have peculiar properties, I will consider a
discrete energy spectrum derived from a density of states through a compu-
tational procedure developed by Enrico Nale [76] in his Ph.D. research. Since
the energy eigenstate has a partial random character the results I am going to
obtain are quite general and does not depend from the specific symmetries or
other features of the problem of interest.

Whenever the considered situation is enough simple, an analytic insight is
provided to the understanding of the inherent phenomena.

We will see as only in relative simple cases a thermodynamic equilibration
is obtained by guaranteeing the equidistribution of internal energy between the
systems that are brought in interaction. Whenever more complex situation are
considered, such a definition of equilibrium is not applicable since an identical
energy for the subsystems will never be attained. The equilibrium defined by
the thermodynamics cannot be applied to the quantum mechanical description
and an equivalent definition with a statistical meaning should be identified.
This is a very important result of our analysis that is able to rationalize the
situations characterized by an apparent absence of thermalization. In fact
only by the use of statistical ensemble for wave functions a coherent picture of
equilibrium can be obtained in different realizations of quantum systems.

In conclusion, the study of quantum dynamics from the wave function point
of view can develop new interesting insights in the description of interactions
between systems at the molecular level, which in perspective could be useful
in the description of quantum phenomena like, for example, vibrational or
electronic coherence transfer.

6.1 Description of isolated quantum system

In paragraph 2.1 I have introduced the basic quantum mechanical description
of molecular systems in order to deal with dynamical processes fully at the
quantum level. Here I intend to recall some of those definitions and complete
them in order to describe the thermalization experiments we are going to
consider.
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Every time an isolated system is taken into account, it can be described
equivalently by the wave function Ψ(t)

|Ψ(t)〉 =
∑
k

√
Pk exp(−iαk(t)) |Ek〉 (6.1)

that is the state vector of the system in the Hilbert space, and by the density
matrix ρ̂(t) that expressed in the eigenvector basis is

ρ̂(t) = |Ψ(t)〉 〈Ψ(t)| =
∑
k,k′

√
PkPk′ exp(−iαk(t) + iαk′(t)) |Ek〉 〈Ek| (6.2)

and represents the instantaneous projection operator, on the wave function
direction. Furthermore the diagonal elements of the density matrix can be
easily recognized to be the populations of the system

Pk = 〈Ek| ρ̂(t) |Ek〉 (6.3)

Any expectation value a(t) of an observable A can be equivalently computed
using the wave function or density matrix description as

a(t) = 〈Ψ(t)| Â |Ψ(t)〉 (6.4)

a(t) = Tr{Âρ̂(t)} (6.5)

where a particular role can be assigned to the expectation value of the Hamil-
tonian Ĥ

E = 〈Ψ(t)| Ĥ |Ψ(t)〉 = Tr{Ĥρ̂(t)} =
∑
k

Pk Ek (6.6)

that describes the energy of the system. Such a description refers to the whole
isolated system that includes the system of interest as well as its environment.
As a matter of fact, whenever a system interact with its environment we should
consider it as a subsystem in contact with the surrounding since the wave func-
tion can be introduced for isolated systems only. The same reasoning should
be applied in the situation when afterwards we separate the two systems, es-
sentially switching off the interaction among them. In fact we cannot consider
them as completely isolated so to assign to each of them a wave function be-
couse of the entanglement that is generated whenever an interaction has taken
place [77]. In these cases, the property of the system of interest S alone can
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be described only through the reduced density matrix σ̂S(t) of the subsystem

σ̂S(t) = TrE{ρ̂(t)} (6.7)

by tracing out the environment degrees of freedom. According to the reduced
density matrix the expectation values for any observable As pertinent to the
subsystem s can be specified

a(t) = Tr((Â⊗ 1̂E)ρ̂(t)) = TrS(ÂTrE ρ̂(t)) = TrS(Aσ̂(t)) (6.8)

In particular the diagonal elements of the reduced density matrix plays an im-
portant role in the description of the subsystem since, in analogy with equation
(6.3), we can define them as reduced populations of the subsystem

P S
kS(t) = 〈eSkS | σ̂S(t) |eSkS〉 (6.9)

where |eSk 〉 are eigenvectors of the reduced density matrix σ̂S. It is important
to notice as reduced populations have different properties in comparison with
populations of the overall isolated system. First of all they are not constant
of motion and secondly, whichever the global population statistics is, they are
likely to be of canonical form when the system is small enough with respect
to the environment [21, 22, 25].

A slightly different perspective has to be considered when the two initially
isolated systems A and B that have never interacted before and at a certain
instant one introduces a coupling term that allows them to exchange energy.
We set this time instant as t = 0. Then, for t < 0 it is possible to assign a
wave function, |ΨA(t)〉 ∈ HA and |ΨB(t)〉 ∈ HB, to each isolated systems

t <0 |ΨA(t)〉 =
∑
kA

√
PA
kA exp(−iαAkA(t)) |EA

kA〉 (6.10)

t <0 |ΨB(t)〉 =
∑
kB

√
PB
kB exp(−iαBkB(t)) |EB

kB〉 (6.11)

where |EA
kA〉 and |EB

kB〉 are the eigevectors of the corresponding Hamiltonian
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ĤA and ĤS

ĤA |EA
kA〉 = EA

kA |EA
kA〉 (6.12)

ĤB |EB
kB〉 = EB

kB |EB
kB〉 (6.13)

At the same time, if we want to consider the overall system composed by
both A and B, one must consider the Hilbert product space

HA+B = HA ⊗HB (6.14)

either in presence or absence of interaction between A and B. In particular, for
t < 0, when no interaction takes place, it is possible to define the Hamiltonian
of the overall system, usually called zero-order Hamiltonian, as

ĤA+B
t<0 = ĤA ⊗ 1̂B + 1̂A ⊗ ĤB (6.15)

where the subscript t < 0 implies the absence of interaction. The eigenvalues
problem associated to this Hamiltonian is

ĤA+B
t<0 |EA

kA〉 ⊗ |EB
kB〉 = (EA

kA + EB
kB) |EA

kA〉 ⊗ |EB
kB〉 (6.16)

where as basis for the Hilbert space HA+B we have selected the product basis
of the separated systems. Moreover a generic state for this non interactive
system is simply the product of the wavefunctions |ΨA(t)〉 and |ΨB(t)〉 of the
separated systems

|Ψ(t)〉 = |ΨA(t)〉 ⊗ |ΨB(t)〉 (6.17)

In order to simulate a thermalization experiment, we need to couple the
two systems by allowing them to exchange their energy because of the presence
of an interaction Hamiltonian Ĥ int. The introduction of the coupling term
represents a singular point for the evolution of the system and for t > 0 the
overall Hamiltonian includes also the interaction Hamiltonian Ĥ int

ĤA+B
t>0 = ĤA ⊗ 1̂B + 1̂A ⊗ ĤB + λintĤ

int (6.18)

where λint is a constant that described the weight of the coupling contribution
or, in other words, the interaction strength. Such an interaction, by modifying
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the overall Hamiltonian, produces a rotation of their eigevectors with respect
to the situation at t < 0 and they are specified by

ĤA+B
t>0 |EA+B

j 〉 = EA+B
j |EA+B

j 〉 (6.19)

where EA+B
j are the energies eigenvalues for t > 0. Thus, the principal direc-

tions in the total Hilbert space cannot be described anymore as simple products
of the decoupled basis set |EA

kA〉 |EB
kB〉.

For t < 0, the evaluation of the properties of a subsystem, equivalently for
A or B, is a trivial operation. For example we can consider the energy of the
subsystem A

EA
< = 〈Ψ(t)| ĤA ⊗ 1̂B |Ψ(t)〉 = 〈ΨA(t)| ĤA |ΨA(t)〉 (6.20)

=
∑
kA

PA
kA E

A
kA (6.21)

that is equivalent to equation (6.6). At the same time, once the probability
distribution on populations is provided, it is possible to compute its ensemble
average

〈EA
<〉 =

∑
kA

〈PA
kA〉EkA (6.22)

as well as its variance as

σ2
EA<

=
〈
(EA

< − 〈EA
<〉)2

〉
= 〈(EA

<)2〉 − 〈EA
<〉2 (6.23)

Once the interaction is switched on, for t > 0, the wave function can be
expressed as linear combination of the new basis of eigenvectors of the overall
Hamiltonian ĤA+B

t>0

|ΨA+B(t)〉 =
∑
j

√
PA+B
j exp(−iαA+B

j (t)) |EA+B
j 〉 (6.24)

where linear phases with the time, αA+B
j (t) = α(0) +Ejt/~. A question about

how to connect the populations of the system after that the interaction has
taken place with the parameters of the initially isolated wave function naturally
arises. The answer can be provided from the condition of continuity on the
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wave function at t = 0,

|ΨA+B(0)〉 = |ΨA(0)〉 |ΨB(0)〉 (6.25)

that allows to write the equivalence

PA+B
j = |〈EA+B

j |Ψ(0)〉 |2 (6.26)

= |〈EA+B
j |ΨA(0)〉 |ΨB(0)〉 |2 (6.27)

=

∣∣∣∣∣∣
∑
kA

∑
kB

〈EA+B
j |

(
|EA

kA〉 |EB
kB〉

)√
PA
kAP

B
kB exp

(
−iαAkA(0)− iαBkB(0)

)∣∣∣∣∣∣
2

(6.28)

where 〈EA+B
j |

(
|EA

kA(t)〉 |EB
kB(t)〉

)
is an element of the transformation matrix

from the basis where ĤA+B
t<0 is diagonal to the one where ĤA+B

t>0 is diagonal. If
we denote this element as

T k
A,kB

j = 〈EA+B
j |

(
|EA

kA〉 |EB
kB〉

)∗
(6.29)

the previous equation can be written in a more compact form as

PA+B
j =

∣∣∣∣∣∣
∑
kA

∑
kB

(
T k

A,kB

j

)∗√
PA
kAP

B
kB exp

(
−iαAkA(0)− iαBkB(0)

)∣∣∣∣∣∣
2

(6.30)

that results to be very useful in the following.

After the introduction of the interaction it is still possible to follow the
properties of the subsystem and their variations. Particular relevance has to
be given to subsystem energies, for instance of the system A,

EA
>(t) = 〈ΨA+B(t)| ĤA ⊗ 1̂B |ΨA+B(t)〉 (6.31)

that is no longer constant in time. As a matter of fact the interaction allows
the bodies to exchange their energy, leading to a subsystem energy with an
explicit time dependence. In the following we will see as the subsystem with
an initially higher temperature tends to realise energy to the colder system in
order to equilibrate and then the energy of both systems starts to fluctuate
around the equilibrium value. From the definition of population PA+B

j of
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equation (6.30) for the system after the interaction, it is possible to evaluate
this equilibrium value of the subsystem energy, accounted by infinite time
average according to (2.32)

E
A

> = lim
τ→∞

1
τ

∫ τ

0
dt EA

>(t) =
∑
j

PA+B
j 〈EA+B

j | ĤA ⊗ 1̂B |EA+B
j 〉 (6.32)

by using the appropriate change of basis set

〈EA+B
j | ĤA ⊗ 1̂B |EA+B

j 〉 =
∑
kA

∑
kB

〈EA+B
j |

(
|EA

kA〉 |EB
kB 〉
)
EA

k

(
〈EA

k′A | 〈EB
k′B |
)
|EA+B

j 〉

(6.33)

where the matrix element of operator ĤA⊗ 1̂B is evaluated on the basis of non
interacting systems.

Once the initial wave function for both initially isolated systems is selected,
it is possible to follow the dynamics of a single realization of the overall quan-
tum system. However an other important piece of information concern the
variability between different possible realizations of the system state within
the same statistical ensemble. In order to statistically characterize the ensem-
ble it is important to describe the ensemble average of properties depending
on the populations that allows the calculation of their mean values as well as
their variance. From equation (6.30) we can write

〈PA+B
j 〉 =

∑
kAk′A

∑
kBk′B

〈EA+B
j |

(
|EA

kA〉 |EB
kB〉

) (
〈EA

k′A| 〈EB
k′B |

)
|EjA+B〉×

〈
√
PA
kAP

A
k′AP

B
kBP

B
k′B exp

(
iαAk′A(0)− iαAkA(0) + iαBk′B(0)− iαBkB(0)

)
〉

(6.34)

where the 〈·〉 means the average according to the probability densities for the
statistical ensembles of both initially isolated systems. Since phases and pop-
ulations are statistically independent it is possible to calculate separately their
averages. Moreover, phases are homogeneously distributed in their domain
and therefore, in the summation of the previous equation only the terms with
the same indexes where kA = k′A and kB = k′B survive. The resulting average
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population reads

〈PA+B
j 〉 =

∑
kA

∑
kB

| 〈EA+B
j |

(
|EA

kA〉 |EB
kB〉

)
|2〈PA

kA〉 〈PB
kB〉 (6.35)

=
∑
kA

∑
kB

(
T k

A,kB

j

)∗
〈PA

kA〉 〈PB
kB〉 (6.36)

It is now straightforward to compute the ensemble average of subsystem energy
of equation (6.32)

〈EA

>〉 =
∑
j

〈PA
j 〉 〈EA+B

j | ĤA ⊗ 1̂B |EA+B
j 〉 (6.37)

as well as its variance
σ2
EA>

= 〈(EA

> − 〈E
A

>〉)〉 (6.38)

Analogously it is possible to obtain the properties of subsystem B with the
appropriate change of the corresponding operators.

In conclusion, the dynamical simulation of the thermalization between two
quantum systems can be computed once the following ingredients are provided:

• the energy spectrum of the single systems (|EA
kA〉 and |EB

kB〉 for all kA, kB)
that defines the physical property of the systems;

• the interaction Hamiltonian Ĥ int that describes how the two systems
interact and it allows them to exchange their energy;

• the initial states of the dynamics |ΨA〉 (0) and |ΨB(0)〉of the two sepa-
rated systems which is required to evaluate the evolution of the overall
system state |ΨA+B(t)〉 under the effect of the interaction.

6.2 The model system

In order to consider a general model for a complex system with many degrees
of freedom, I employ a computational algorithm developed by Enrico Nale [76]
that provides energy spectrum with a partial random character on the basis
of a given density of states. In the following I will briefly present the main
features of his strategy as well as the main feature of the model which shall be
employed.
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Material systems are always characterized by a complex structure, often
highlighted by the lack of symmetry elements. The precise description of
these systems might be rather far from the standard Hamiltonian models such
oscillators, rotators etc. and it results to be unnecessary if we are interested
in the properties of only a subsystem, describe as an open system. As a
matter of fact, as long as we couple a small quantum system with a thermal
bath, we are not interested in reproducing a particular realization of the bath
beyond its capability to exchange energy at constant temperature. Since the
thermodynamics properties depends only on the energy eigenvalues regardless
of the precise Hamiltonian operator expression, instead of focusing on the
specification of an Hamiltonian for the system Nale has focused the attention
only on the energy eigenvalues, that formally can be represented by the density
of states

g(E) =
∞∑
k=0

δ(E − Ek) (6.39)

where δ(·) is the Dirac delta function.

At the same time statistical mechanics provides us typical models for the
density of states which are characterized by a power law dependence on the
energy

g(E) = C

Es

(
E

Es

)M
(6.40)

where C and M are positive and real parameters while Es is the scaling unit
of the energy. In particular if we consider ideal gases, the M exponent is pro-
portional to the number of molecules N according to the relationM = 3N/2.
This means that the energy levels become denser in increasing the energy.

By comparing equation (6.39) with (6.40), we realise that they are not
strictly compatible since the delta Dirac is not an ordinary function. However
the introduction of statistical tools describing the separation between consec-
utive energy levels fills the gap and provides the proper framework to connect
density of states of equation (6.39) with the models of density of states eq.
(6.40).

The separation between contiguous energy levels on quantum systems has
been studied by Wigner [78], in the framework of complex systems without
intrinsic symmetry elements. In particular he has verified, on a general ground,
as the energy difference x between two consecutive levels, considered as a
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stochastic variable, is characterized by the probability distribution

pD(x) = πx

2D2 e
− πx2

4D2 (6.41)

where D = x is the mean value of the stochastic variable, whose variance
is given as (x− x)2 = 4−π

π
D2. By introducing the difference ∆Ek = Ek −

Ek−1 between consecutive levels, it is possible to specify each allowed energy
according to the previous energy

Ek =
m=k∑
m=1

∆Em (6.42)

Then we assume that each increment ∆Em behaves has a stochastic variable
according to the Wigner distribution (6.41) and a finite spectrum, with n

levels, can be described by a joint probability density of all increments as

p
(n)
D (δE) =

m=n∏
m=1

pDm(δE) (6.43)

where ∆E = (∆E1,∆E2, . . . ,∆En) is the set of stochastic variables, while
D = (D1, D2, . . . , Dn) is the set of Dm parameters which determine all the
Wigner distributions. The probability density on equation (6.43) allows the
calculation of the mean value of any function f(∆E) of ∆E variables

f (n)(∆E) =
∫

d∆E P n
D(δE) f(∆E) (6.44)

for example the mean value of Ek is given as

Ek =
m=k∑
m=1

∆Em =
m=k∑
m=1

Dm (6.45)

If we now takes the mean value of the density of states of equation (6.39)
with respect to the distribution (6.43), we obtain

g(n)(E) =
k=n∑
k

δ(E − Ek) =
n∑
k=1

gk(E) (6.46)
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where gk(E) represents the k-th contribution to the density of states

gk(E) = δ(E − Ek) (6.47)

The mean density of states just introduced is a continuous function of energy
ans now it can be directly compared with the models for the density of states
of material systems. The second required step is the choice of D coefficients
in order to obtain an energy level sequence whose mean density of states ap-
proximates the model density of states. If the mean density of states were
analytically accessible for every set of D, the optimazed set of D coefficients
could be in principle derived. But this is not the case and only approximate
solutions are accessible by introducing appropriate constraints.

Since energy levels tend to thicken by increasing the energy, we realise that
the Dm should be a descrasing function of m since it represents the mean
separation between energy levels. At the same time, in order to deal with
unbounded spectra it is reasonable to assume as

∞∑
m=1

Dm =∞ (6.48)

From this assumptions, Enrico Nale [76] deduced a reasonable and quite gen-
eral choice for the set D as

Dm

Es
= B

1
mα

(6.49)

where B and α are real parameters. In particular if 0 < α < 1 the asymptotic
property of equation (6.48) is satisfied. With a detailed analysis and by the
proper use of a generalised form of the central limit theorem applied to each
marginal distribution pk(Ek) of the energy variable Ek defined by (6.42), Enrico
Nale has been able to demonstrate that these assumptions produce a mean
density of states approximately described as

gnα(E) ' (1− α)
α

1−α

B
1

1−α
E

α
1−α (6.50)

With a thorough comparison with equation (6.40) it is possible to relate the
exponentM with α

1−α while the coefficient C is inversely proportional to B
1

1−α .
Thus, the reasonable model of equation (6.49) for Dm parameters allows for
the identification of α and B parameters that gice rise to the desired density
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of states. In particular in the following we will use B = 1 and α = 0.6.
This allows the sampling of Wigner distribution in order to obtain the energy
spectra for our simulations.

6.3 Simple Interaction Hamiltonian

The next important information in order to perform a quantum dynamical
experiment of thermalization concerns the form of interaction Hamiltonian
Ĥ int. We are going to consider separately two different kinds of operators.
Both are characterized by a partially random character in order to maintain
as general as possible the results we are going to obtain. As a matter of fact
the equilibration due to thermal exchange happens in a large set of physical
situations and it is independent of the detailed form of the interaction.

In general the interaction between quantum systems is characterized by the
presence of non-zero off-diagonal matrix elements whose contributions on the
interaction increases with the interaction strength, controlled by the parameter
λint. The general feature of the interaction is that of mixing all the states of
the overall system deriving from the product of the energy states of initially
isolated systems. If we consider common and reasonable situations, the mixing
is likely to be proportional to the energy difference between two states such
that a larger mixing is obtained when their energies are closer. Thus, we can
analyse the limit case of the interaction with vanishing strength which results
to be effective only between first neighbours and, in the particular cases when
a two fold degeneracy is present, as in our model system, the interaction has
the only role of removing the degeneracy on the overall system. Such an
Hamiltonian can be specified in the form

Ĥ int = Ŵ =
∑
k

∑
k′>k

[
(|EA

k 〉 |EB
k′〉)wkk′ (〈EA

k′| 〈EB
k |) +

+(|EA
k′〉 |EB

k 〉)w∗kk′ (〈EA
k | 〈EB

k′ |)
]

(6.51)

where wkk′ is a generic complex element of the interaction matrix

wkk′ = 〈EA
k | 〈EB

k′ | Ĥ int |EA
k′〉 |EB

k 〉 (6.52)

and where the diagonal elements k = k′ are set to zero in order to avoid a shift
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non-degenerate level

degenerate levels

λint =0 λint ≠ 0

Figure 6.1: schematic representation of the interaction effect acting only on degener-
ate energy levels. The removal of degeneration is provided whater is the interaction
strenght λint.

on the energy scale for the global system. The resulting global Hamiltonian
matrix ĤA+B

t>0 is a block-diagonal matrix and its diagonalization can be per-
formed on each (2×2)-blocks specified by a pair of indexes k < k′ and written
as EA

k + EB
k′ wkk′

w∗k′k EA
k′ + EB

k

 (6.53)

leading to new the eigenvalues

EA+B
j = EA

k + EB
k′ − |wk,k′ | (6.54)

EA+B
j′ = EA

k + EB
k′ + |wk,k′ | (6.55)

where we have introduced the cumulative indexes j := (k, k′) and j′ := (k′, k).
Then the new eigenvalues are obtained from the unperturbed ones by including
an opposite shift determined by the strength of the interaction. Correspond-
ingly the new eigenvectors are

|EA+B
j 〉 = 1√

2

(
|EA

k 〉 |EB
k′〉 −

wk,k′

|wk,k′ |
|EA

k′〉 |EB
k 〉
)

(6.56)

|Ej′〉 = 1√
2

(
|EA

k 〉 |EB
k′〉+ wk,k′

|wk,k′ |
|EA

k′〉 |EB
k 〉
)

(6.57)

From this eigenvectors it is possible to notice as an increasing interaction
strength does not produce a change of the eigenvectors directions but only
of their eigenvalues. As a matter of fact the multiplicative factor λint would
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modify the modulus of wkk′ that, in turn, influences only the eigenvalue without
having effects on the resulting eigenvectors.

We recall that the interaction Hamiltonian (6.51) does not modify the non-
degenerate eigenvectors which are denoted as

|Ej〉 = |EA
k 〉 |EB

k 〉 (6.58)

with the cumulative index j := (k, k). From the eigenvectors and the eigen-
values of the total Hamiltonian ĤA+B

> after the interaction, it is possible to
describe both the dynamical properties and the equilibrium ones of the overall
system as well as the dynamical and equilibrium properties of its subsystems.
In the following an analytical investigation will demonstrate as the equilibrium
value for the subsystem energy coincides with the arithmetic mean energy of
the systems before they are brought into contact, independently of the strength
of the interaction Hamiltonian.

6.3.1 Subsystem equilibrium properties: an analytical
investigation

The particular form of the interaction Hamiltonian allows the analytical cal-
culation of the new eigenvectors and eigenvalues of the problem. Once the
new principal directions are provided, it is possible to compute all the system
properties as well as the properties of each subsystem. As already discussed,
one of the most interesting property in order to follow the thermalization ex-
periment is the energy of each subsystem, which can be associated with the
energy flux. Before describing its dynamical evolution, we are interested in to
its equilibrium value after that the interaction has taken place. In the follow-
ing, by the use of the population definition (6.30) and by using the results of
the previous paragraph, I will shows as the interaction, independently of its
strength, produces an equilibrium where the two subsystems have exactly the
same energy. This section is rather technical but demonstrates as the previous
definitions can be practically used in a simple case.

I start by using the definition of subsystem equilibrium energy of equation
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(6.32) as

E
A
> =

∑
k,k′

PA+B
k,k′ 〈EA+B

k,k′ | ĤA ⊗ 1B |EA+B
k,k′ 〉 (6.59)

=
∑
k

Pk,k 〈EA+B
k,k | ĤA ⊗ 1B |EA+B

k,k 〉+

+
∑
k

∑
k′>k

[
PA+B
k,k′ 〈EA+BS

k,k′ | ĤA ⊗ 1B |EA+B
k,k′ 〉+

+PA+B
k′,k 〈EA+B

k′k | ĤA ⊗ 1B |EA+B
k′,k 〉

]
(6.60)

where in the last equality we have separated the contributions of the non-
degenerate energy levels, those which are not influenced by the interaction,
from the contributions deriving from the two-fold initially degenerate levels.
If we now combine equation (6.60) with the explicit expression of eigenvectors
of equations (6.56) and (6.57), we obtain

E
A

> =
∑
k

PA+B
k,k EA

k + 1
2
∑
k

∑
k′>k

(PA+B
k,k′ + Pk′,k)(EA

k + EA
k′) (6.61)

that can be equivalently expressed as

E
A

> =
∑
k

PA+B
kk EA

k + 1
4
∑
k

∑
k′ 6=k

(PA+B
kk′ + PA+B

k′,k )(EA
k + EA

k′) (6.62)

by changing the domains of the summations indexes. The subsystem energy is
expressed in function of the global populations PA+B

j of the system in the bases
of |EA+B

j 〉 eigenvectors and in function of the eigenvalues EA
k of the subsystem

A at t < 0.

The evaluation of the PA+B
j populations allows us to easily compute the

equilibrium value for the subsystem energy after the thermalization process.
From the definition (6.26) and by the use of equations (6.56), (6.57) and (6.58)
we obtain

PA+B
k,k =

∣∣∣(〈EA
k | 〈EB

k |) |ΨA(0)〉 |ΨB(0)〉
∣∣∣2 = PA

k P
B
k (6.63)

PA+B
k,k′ =

∣∣∣∣∣(〈EA
k | 〈EB

k′ | −
wkk′

|wkk′ |
〈EA

k′| 〈EB
k |) |ΨA(0)〉 |ΨB(0)〉

∣∣∣∣∣
2

(6.64)

PA+B
k′,k =

∣∣∣∣∣(〈EA
k | 〈EB

k′ |+
wkk′

|wkk′ |
〈EA

k′ | 〈EB
k |) |ΨA(0)〉 |ΨB(0)〉

∣∣∣∣∣
2

(6.65)
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and then

PA+B
k,k′ + PA+B

k′,k =
∣∣∣(〈EA

k | 〈EB
k′ |) |ΨA(0)〉 |ΨB(0)〉

∣∣∣2 +
∣∣∣(〈EA

k′ | 〈EB
k |) |ΨA(0)〉 |ΨB(0)〉

∣∣∣2
(6.66)

= PA
k P

B
k′ + PA

k′P
B
k (6.67)

and finally the equilibrium value EA

> of the energy of the subsystem A can be
computed as

E
A

> =
∑
k

PA
k P

B
k E

A
k + 1

4
∑
k

∑
k′ 6=k

(PA
k P

B
k′ + PB

k′P
B
k )(EA

k + EA
k′) (6.68)

= 1
4
∑
k

∑
k′

(PA
k P

B
k′ + PB

k′P
B
k )(EA

k + EA
k′) (6.69)

= 1
2
∑
k

PA
k E

A
k + 1

2
∑
k

PA
k E

A
k = EA

< + EB
<

2 (6.70)

The equilibrium energy of a subsystem is the mean value of the energies at
t < 0. The energy flux from the hotter body to the colder one produces, on
the average, the same value for the energy on both subsystems.

E
A

> = E
B

> = EA
< + EB

<

2 (6.71)

This represents a very important result. As a matter of fact, in the presence
of an interaction Hamiltonian, whose effect is that of eliminating the two-fold
degeneracy, any single realization of the quantum system produces the thermal
equilibrium where the two subsystems equilibrate their energy exactly to the
same value, obtaining an equipartition on the energy. It is important to stress
that this result holds whatever the interaction strength is, provided that it has
the only effect of eliminating the degeneration.

6.3.2 The thermalization experiment

The analytic investigation has been integrated by computer simulations. The
first issue that arises in these simulations is about the dimension of the sys-
tems that are manageable in the available computer, taking into account both
the accessible memory and the requirements of computational time. I have
considered 80 eigenstates for each isolated system, that means a total Hilbert
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space HA+B = HA ⊗HB with a dimension of 6400, with operators in general
represented by matrices with 6400 × 6400 elements. This dimension is not
far from the maximum dimension computable in the workstation available for
this work with 8GB of RAM. Even if it is a moderate dimension, it is equally
able to show the most important features of the thermalization experiment
and it enables us to have a first insight on this very interesting phenomenon.
As already discussed at the end of paragraph 6.1, we need to specify the en-
ergy spectrum of the isolated system, the interaction Hamiltonian and the
initial state for the time evolution in order to perform the simulations of the
thermalization experiment.

The spectrum of the model systems is obtained by means of the algorithm
developed by Enrico Nale [76] and described in paragraph 6.2, that allows to
sample the energy spectrum of a system from a given density of states. In our
particular case the two systems have an identical energy spectrum and only
one sampling has to be performed. The simulation reported here represents a
typical case where the model parameters are B = 1 and α = 0.6. It produces
a spectrum (shown in Figure 6.2) that tighten with the increasing of energy
as expected for real molecular systems. The overall spectrum for t < 0 is
described by the eigenvalues of the product of the eigenstates |EA

k 〉 |EB
k 〉 with

a two-fold degeneration if k 6= k′.
The interaction Hamiltonian removes the degeneration with a strength fac-

tor of λint = 10−2 to guarantee that the interaction is perturbative. In partic-
ular, the perturbativity Pint has been quantified as

Pint = EA+B − EA − EB

EA + EB
= 2.22 · 10−4 (6.72)

Notice that the parameter Pint is equal to zero if the perturbation has no effect
and is equal to one when the interaction energy has the order of magnitude
the energies of the two systems.

The dynamics of the wave function is then computed as solution of Schrödinger
equation (2.3) with the use of two different Hamiltonians for the two time do-
mains

for t 60 HA+B
t<0

for t >0 HA+B
t>0
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Figure 6.2: The energy spectrum for both systems A and B is shown. The abscissa
axes counts the eigenstates with energy represented in the ordinata axes. The energy
difference between first neighbours decreases as the energy increases, as expected for
real systems.

where HA+B
t<0 and HA+B

t>0 are (6.15) and (6.18) respectively.

The initial wave function is chosen according to (6.17), that in turn derives
from equations (6.10) and (6.11). The initial phases αAk (t) and αBk (t) are ran-
domly sampled according to the uniform probability distribution p(α) (4.44),
while populations are sampled from TRE statistics by the use of the algorithm
described in the previous chapter. In particular, two different thermal param-
eters are introduced to characterize the two initial systems ζA = 0.45/Es and
ζB = 0.9/Es. I wish to point out that the selection of the inverse temperature
is constrained by the number of states used in the simulation. Indeed the
lowering of the thermal parameter implies an higher quantum temperature so
that the population is spread out on eigenvectors with higher energy. Since
the finitenese of the system is only a practical need, we want to perform simu-
lations where the excluded states do not influence the properties of the system
we observe. In order to reach such an objective we use inverse temperature
parameters such that the excluded states have negligible energy density. It
corresponds to neglet eigenstates with such a lower population that does not
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influence the overall properties of the system. The lower thermal parameter
ζA has been selected on the bases of the Gaussian approximation of the energy
density (3.43), the maximum energy eigenvalues Ekmax is set to coincide with
the maximum of the Gaussian profile incremented by three times the gaussian
variance (see equation (3.44)), leading to a thermal parameter

ζlim = M + 3
√
M

Ekmax
(6.73)

All the simulations have been performed with ζA, ζB > ζlim.
As an alternative procedure one could have performed simulations for the

identical physical state by increasing the system dimensions. Then, if the
properties are not influenced by this operation we can state that the leading
contribution for the population is already included in the lower dimensional
Hilbert space.
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Figure 6.3: The subsystems energy EA(t) (red line) and EB(t) (blue line) are shown
in function of time, different thermal parameters for the systems are selected, ζA =
0.45/Es and ζB = 0.9/Es respectively. Both energies fluctuate around the same
equilibrium value. The equilibrium energy EA and EB are presented as well.

At the beginning of the simulation, no energy exchange is detectable until
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the interaction brings the two systems in contact so that they are no longer
isolated. The evolution due the thermalization is depicted in Figure 6.3 where
it is possible to observe as the subsystem energies, EA(t) and EB(t), are con-
stant in the absence of interaction and then, for t > 0, the subsystems exchange
their energies and equilibrate to an average value, around which they start to
fluctuate. Figure 6.3 shows also the equilibrium values for the energy of the
subsystems EA and EB, computed as infinite time average. It can be noticed
as the equilibrium values of the energies are equal for both subsystems, as
the analytic investigation has demonstrated. The hotter body releases energy
to the colder one until they reach, on average, the same energy. The relax-
ation dynamics can be better observed at shorter time scales as reported in
Figure6.4.

0 5 0 1 0 0 1 5 0
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E/E
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 E A ( t )
 E A

 E B ( t )
 E B

Figure 6.4: The dynamics of relaxation is shown as a zoom of Figure 6.3. In red
is reported the energy EA(t) of the subsystem A, while the blue line represents the
energy EB(t) of the subsystem B. The markers (square and circles) refers to the two
times employed in Figure 6.5a.

The energy changes are determined by a redistribution of the reduced pop-
ulations on both systems. The reduced populations are no longer constant
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Figure 6.5: the reduced populations are reported for different times. (a) The time
instants are marked by the corresponding symbols in Figure 6.4. The black lines
are reported only to guide the eye. The two times correspond to situations before
the interaction has been considered and during the relaxation time rispectively; (b)
a generic time after the relaxation is reported, system A is in red and B in blue

of motion and they show an explicit time dependence. As one see from Fig-
ure 6.5a, where reduced populations are plotted against energy levels at two
different times, the reduced populations varies in function of time untile they
reach the equilibrium state (Figure 6.5b).

In order to simplify the visualization I have selected the typical case when
the starting populations are exactly at their average values. This can be no-
ticed in Figure 6.5a where the initial populations, denoted by red and blue
squares for systems A and B respectively, lie on a line forming a scissor-type
graph (notice the log scale of ordinate axes). During the relaxation period
the populations redistribute and the scissor starts to close. At the end of the
equilibration, the populations are gathered around a value that can be referred
to the average thermal state.

The time dependence of the reduced populations determines the fluctu-
ations of the energy of the subsystems. The equilibration is driven by the
equipartition of energy [63] reached when the two systems are in the same
thermal state.

The same type of results are obtained for any interaction strength λint due
to the specific form of the interaction Hamiltonian Ĥ int. The major effect of
the coupling strength (not reported here) is that of modifying the quantum
dynamics such that a faster relaxation is recovered when stronger interaction
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is considered.

Let us now analyse in detai the equilibrium state. As we have already dis-
cussed, the equilibrium value for the energy is the same for the two subsystems.
However this does not provide us any information about their energy distribu-
tion. In order to characterize the equilibrium values of the reduced population
within the thermalization resilient ensemble, I have compared their ensemble
average with the populations that we expect from the TRE statistical ensem-
ble, by supposing that the equilibrium is characterized by an average thermal
parameter ζA+B defined as

TA+B
Q =

TAQ + TBQ
2 = 1

2ζA + 1
2ζB = 1

ζA+B (6.74)

Such a comparison is obtained by defining a distance parameter as

DTRE =
∑
k

|〈Pk〉ζA+B − 〈PA
k 〉| (6.75)

where 〈Pk〉ζA+B is the average of the k−th population of TRE ensemble with
a thermal state ζA+B and 〈PA

k 〉 is the ensemble average of the equilibrium
reduced population computed on a sample of 5 · 103 points. Once the Hamil-
tonian is provided, from any initial state I have computed the equilibrium
values of each population, as infinite time average, and then I have calculated
its mean in the sample. Different thermal parameters have been considered
and the results are summarised in Figure 6.6, where the values of DTRE are
reported for different rates ζB/ζA is shown, for fixed value ζA = 0.45/Es.

The distance between the TRE ensemble averages for the populations and
their equilibrium value after the thermalization experiment increases for higher
ratios of the thermal parameters. This is expected for the thermalization re-
silient ensemble since it is not strictly invariant with respect the interaction
but only robust enough. The result is perfectly in agreement with that of Fig-
ure 3.10, with the important difference that here we are considering a realistic
representation of a quantum system with a discrete energy. In conclusion, the
TRE ensemble has shown once again its robustness with respect the interac-
tion between systems with very large differences in their thermal states, so
demonstrating as it can be a valid ensemble in the description of quantum
pure states.
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Figure 6.6: The distance between ensemble average of equilibrium reduced popula-
tions and the canonical populations (equation (6.75)) is reported, for different ratios
of inverse temperatures ζB/ζA and fixed ζA = 0.45/Es. The canonical populations
are computed at the mean temperature TA+B = 1

ζA+B = 1
2

(
1
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+ 1
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)

This simple model for the interaction Hamiltonian has been also very useful
in order to demonstrate the feasibility of a full quantum dynamicsal simulation
of model systems. It has also shown the robustness of TRE ensemble in a
large domain of thermal states. However more general laws of the interaction
Hamiltonian need to be considered for a realistic simulation. As a matter of
fact the interaction that only removes the degeneration is a limit situation that
can not exhaustively describe molecular systems.
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6.4 A more general interaction: Random Ma-
trix

The previous sections have been focused on the analysis of a simple realization
of the interaction between two identical systems, that allows energy exchange
between degenerate energy levels and guarantees the same equilibrium energy
for both subsystems. We are going now to consider a more general interaction
beyond the simple removal of the degeneration by allowing the energy exchange
between more than two eigenstates. Such an objective can be achieved by
the use of a random matrix where elements mix all the energy eigenstates.
We assume that he interaction Hamiltonian is lacking of the self interaction
contributions

(〈EA
k′A| 〈EB

kB |) Ĥ int (|EA
k′′A〉 |EB

kB〉) = 0

(〈EA
kA| 〈EB

k′B |) Ĥ int (|EA
kA〉 |EB

k′′B〉) = 0
∀k, k′, k′′

In fact we wanted to consider only those contributions that produce a mixing
of different states by avoiding contributions due to self interactions that have
no physical meaning. In addition, since the two systems are identical, it is
natural to assume in the interaction Hamiltonian the same type of symmetry

〈EA
kA| 〈EB

k′B | Ĥ int |EA
k′′A〉 |EB

k′′′B〉 = 〈EA
k′A| 〈EB

kB | Ĥ int |EA
k′′′A〉 |EB

k′′B〉 (6.76)

This would not be guaranteed if a generic interaction matrix with a random
character is employed. The use of a random matrix excludes analytical investi-
gation and only simulations through an exact diagonalization can be performed
in order to study the thermalization experiment on a general ground.

The simulations we are going to discuss, as in the previous paragraph, are
about two finite systems (80 eigenstates) with identical energy spectrum that
at t = 0 are brought into contact. Different Hamiltonian strengths will be
considered in the following, parametrized by λint coupling constant. The first
interesting difference with respect to the previous simple Hamiltonian can be
noticed in Figure 6.7 for a typical wave function, where the dynamics of the
subsystem energies equilibration, EA(t) and EB(t) (fluctuating profiles), as
well as their equilibrium values (straight lines), are shown in four different
coupling strength conditions. The equilibrium of a single realization does not
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Figure 6.7: Typical equilibration of the subsystems energies for different strengths
of interaction Hamiltonian, λ = 10−2 left-top panel, λint = 5 · 10−3 right-top, λint =
10−3 bottom-left ans λint = 10−4 bottom-right. In each graph the equilibrium value
of subsystem energies are reported as well. The thermal parameter for the statistical
sampling is ζA = 0.45/Es and ζB = 0.9/Es.

guarantees the equidistribution of the subsystems energies to an equal value
for both subsystems. In particular, by going from the strongest interaction
(top-left panel) to the weaker one (bottom-right panel), we can notice that, as
long as the λint parameter decreases, the equilibrium values for the subsystem
energy (straight lines) tend to get closer. The proximity can be quantified
by a mean distance parameter D

Em,(E
A
,E
B) between average energy (Em =

EAt<0+EBt<0
2 ) and both subsystem equilibrium energies EA and E

B of the two
subsystems which is defined as

D
Em,(E

A
,E
B) = |Em − E

A|+ |Em − E
B|

2 (6.77)

This parameter, is reported in Figure 6.8 for different interaction strengths.
It can be noticed that as long as the interaction decreases, the distance

D
Em,(E

A
,E
A) approaches to zero. As a matter of fact, we get closer to the limit

situation where the interaction is effective only between eigenvectors with the
same energy, the case we have analysed in the previous section.
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B), defined in the main text, is reported for

different interaction strengths λint.

If we look carefully to panel a of figure 6.7, in particular to the mean of
equilibrium energies, we can understand as that interaction cannot be consid-
ered as perturbative since one can clearly detect a variation with respect to
the same mean before the interaction. However this does not modify our con-
siderations on the thermalization experiment with this general Hamiltonian
model and it can be considered as an example where the weak coupling limit
hypothesis is no more fully satisfied. For the sake of completeness and in order
to quantify the strength of the interaction I report here the peturbativity Pint
(equation (6.72)) for all the considered cases.

λint = 10−2 λint = 5 · 10−3 λint = 2 · 10−3 λint = 10−3 λint = 10−4

Pint 2.2 · 10−3 3.65 · 10−4 3.15 · 10−4 2.43 · 10−5 4.81 · 10−6

The macroscopic interpretation of this experiment would lead naturally to
an equilibrium characterized by the same energy for both subsystems. If we
bring two identical macroscopic bodies at different temperatures to interact
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afterwards we separate them, according to the classical thermodynamics we
expect the same internal energy for both of them. However no a priori law
guarantees that microscopic complex systems behaves exactly as the macro-
scopic ones. As a matter of fact, the emergence of thermodynamic behaviour
of the TRE ensemble has been demonstrated only in the macroscopic limit of
the quantum system through the analysis of distributions within the ensem-
ble such that, once a property manifests typicality, it can be considered as
representative for every realization.

A property is said to be typical when different realizations of the quantum
systems behaves simirarly as far as the property is concerned. However our
system is not in this condition as shown in Figure 6.9 where the ensemble
average of subsystems equilibrium energies, from a sample of 5000 cases, is
reported together with some of these realizations, for two different interaction
strengths, λint = 10−2 (top panel) and λint = 10−3 (bottom panel).

The presence of large fluctuations between different realizations it is im-
mediately evident and it is reasonably caused by the limited dimensions of the
Hilbert spaces for the two initially isolated systems. Further analyses on larger
systems are needed in order to validate this conclusion.

Contrary to what expected from a macroscopic description of material sys-
tems that follows the laws of thermodynamics, single realizations of micro-
scopic quantum systems, even if described with many eigenstates, do not equi-
librate exactly to the same energy for both subsystem, but this does not mean
that equilibrium condition is not reached for the property energy. We suggest
that equilibrium condition should not be examined on the ground of the single
realizations but it should be defined in a statistical sense within the intrin-
sic variability of the ensemble of wave functions (pure states). Two systems,
after that the interaction allows them to exchange energy, equilibrate if the
equilibrium energies are within the ensemble variance, in order to guarantee
the equilibration also in the random matrix interaction models. The possibil-
ity to define a statistical equilibrium has its origin on explicit definition of a
statistical ensemble for the wave function and it represents one of the novelty
elements of the present approach. Without the knowledge of the behaviour of
different realizations of a quantum systems, the equilibrium can been studied
clearly from the comparison between subsystems energies and from the dis-
tance from the canonical subsystem density matrix. As we have shown here,
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Figure 6.9: ensemble average of equilibrium subsystem energies (〈EA〉 red lines and
〈EB〉 blue lines), before and after the introduction of the interaction term (t = 0),
are shown in two different realizations of the interaction Hamiltonian, λint = 10−2

and λint = 10−3 on the top and bottom panel, respectively. The ensemble average is
computed on a sample of 5 ·103 point. The additional dashed lines refers to energies
related to examples of single realizations of the quantum systems. The thermal
parameters for the two systems are ζA = 0.45/Es and ζB = 0.9/Es.

the equilibrium definition on the basis of the subsystem energies can be mis-
leading since only the most simple structure of interaction Hamiltonian can
lead to the same type of equilibrium of macroscopic thermodynamics. This
new perspective on quantum equilibration is rather intriguing to me and it can
provide new insights to the experiment on energy exchange, very common at
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the molecular level.
Within this model it is also possible to investigate the role of the interaction

strength λint on the dynamics of the equilibration. For instance, Figure 6.10
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Figure 6.10: The effect of different interaction strengths is shown on the equilibration
of the subsystem energy EA(t), for a single typical realization of a quantum state
where ζA = 0.45/Es and ζB = 0.9/Es

shows how the dynamics of the subsystem energy EA(t), deriving from the
same sampled wave function (ζA = 0.45/Es and ζB = 0.9/Es), in different
conditions of interaction strength. It can be noticed that the relaxation toward
the equilibrium values is faster by increasing the strength of the interaction.
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6.5 From Schrödinger evolution to entropy pro-
duction

In the so called thermalization experiment we bring in interaction two differ-
ent bodies, initially characterized by different temperatures. Our realization of
this kind of experiment considers two identical quantum systems, representing
our bodies, which initial wave function is sampled within the Thermalization
Resilient Ensemble, fully specified by the thermal parameter ζ, the quantum
analogue of the inverse of macroscopic temperature. This quantum experi-
ment, as well as its thermodynamic correspondent, generates a energy flux
from the hottest system to the colder one. Thermodynamic theory describes
such a process as an irreversible process of an isolated system with a corre-
spondingly increase of the entropy. We can observe the same behaviour from

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0

1

2

3

4
λ i n t = 1 0 - 3

S/k
B

t ω 0

 S A + B ( t )
 S A ( t )
 S B ( t )

Figure 6.11: ensemble averages of subsystem entropies SA(t) and SB(t) are reported
during a thermalization experiment. The ensemble average is computed on a sample
of 5 · 103 wave functions from distributions characterised by ζA = 0.45/Es and
ζB = 0.9/Es. THe interaction strength is λint = 10−3.
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the quantum dynamics by leading to the miscroscopic entropy defined on the
basis of ensemble average of Shannon entropy on populations

SA(t) = −kB
∑
k

〈PA
k (t) lnPA

k (t)〉 (6.78)

where the ensemble average can be obtained with a Montecarlo sampling. A
similar relation can be written for the subsystem B. In Figure 6.11 I have
reported the entropy evolution for the two subsystems as well as the entropy
of the overall system SA+B(t) accounted by the summation of the two separated
entropies

SA+B(t) = SA(t) + SB(t) (6.79)

One can clearly see that the equilibration produces an increase of the overall
entropy as expected from thermodynamics. Thus we can state that the ther-
malization experiment is characterized by an increasing on the total entropy
also at the quantum level. It represent a very interesting result that shows how
entropy production can be considered as a driving force also at the quantum
level.



CHAPTER 7

Conclusions

The dynamics of relaxation processes is a very important issue for the compre-
hension of the behavior of molecular systems at quantum level. Moreover, the
possibility to solve the Schrödinger equation and to follow the time evolution of
expectation values of some molecular observables has opened new issues on the
meaning of equilibrium properties on thermalized systems. In this framework
it is of primary importance of being able to characterize the molecular system
we want to simulate in terms of a well determined thermal state that account
for its thermodynamic behavior. In my opinion, it can be accomplished only
through a statistical description. With this thesis I want to give my contri-
bution on the development of a self consistent theoretical framework for the
statistical description of quantum pure states.

The privileged statistical ensembles of pure states, characterized by a uni-
form distribution within an active space, clearly manifest their major short-
coming when a thermalization experiment is considered. Once two initially
isolated systems, characterized by different temperatures, are brought in con-
tact, the resulting equilibrium properties can not be any more described by
the uniform distribution. This is, in my opinion a severe drawback as long
as isolated quantum systems can be always considered as deriving from the
interaction between previously isolated systems.

Starting from the just mentioned weakness I have derived a new statistical
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ensemble aimed to overcome it, by imposing the condition of the invariance
of the average populations in the thermalization experiment. It has allowed
the identification of a precise energy dependence of the average populations
and, above all, the identification of thermodynamic properties directly from
the quantum description. A well defined thermal parameter, accounted as a
quantum temperature, naturally emerges and it can be used to describe differ-
ent thermal states also in very small quantum systems, even two level systems,
a task which cannot be accomplished with uniform statistical ensembles. Fur-
thermore the robustness has been demonstrated for the Thermalisation Re-
silient Ensemble, since it tends to preserve its structure in the range of most
probable energies.

However, the knowledge of the average population alone is not sufficient
in order to perform a dynamical simulation when one must consider different
realizations of the same thermal state. With this objective I have developed a
statistical sampling strategy that allows for the control of random choices of
the initial quantum state in a self-consistent way. In particular it allows the
description of the thermalization experiment fully at a quantum level through
the solution of the Schrödinger equation.

Some dynamical experiments have been performed for different interaction
Hamiltonians with the statistics providing a clear definition of the thermal
states.

The new quantum statistical ensemble might be an useful tool in the road to
Quantum Dynamical Simulations playing the same role of classical statistical
ensemble in the Molecular Dynamics Simulations.
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