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ABSTRACT 

Meandering channels constitute one of the fundamental components of tidal systems, as 

related tidal point bars are ubiquitous features in lagoonal or estuarine sedimentary successions. 

Nevertheless, a limited number of studies analyzed their morphodynamic evolution, together with 

their planimetric shape and morphometric characteristics. Their internal architecture and 

sedimentary facies distribution are relatively unexplored, and commonly investigated using facies 

models developed for fluvial meander bends.  

Focusing on differences, more than on similarities, between tidal and fluvial meanders, the 

present work aims at investigating the stratal architecture and sedimentary facies distribution of 

selected tidal point bars in the Venice Lagoon (Adriatic Sea, Italy). Three main issue were 

investigate by the present work: i) the role of low order tributaries in controlling the evolution of 

tidal meander bend; ii) the influence of salt marsh aggradation in shaping geometries of tidal point 

bars, iii) sedimentary process and morphodynamics changes acting on subtidal point bars. The 

morphodynamic evolution of tidal channels, and related sedimentary products, were analyzed 

using a multidisciplinary approach, which comprises the comparison of historical photos, the 

interpretation of high-resolution sub-bottom profiles, core logging analysis and 3D modelling.  

The main results stemmed out form the study sites highlight that: I) lateral tributaries can 

strongly influence the evolution of bends modifying local mechanisms of sediment and flow 

distribution; II); the migration of tidal point bars occurs under aggradational conditions both in 

intertidal and subtidal setting; III) subtidal bars evolve under the strong interaction between wave 

and tidal currents.  
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RIASSUNTO 

I canali meandriformi costituiscono una delle principali componenti dei sistemi tidali e, 

come le relative point bar, sono una caratteri ricorrenti all’interno delle successioni sedimentarie 

lagunari. Tuttavia, un numero limitato di studi hanno analizzato l’evoluzione morfodinamica e le 

caratteristiche morfometriche di canali meandriformi tidali. La loro architettura interna e la 

distribuzione delle facies sedimentarie sono relativamente inesplorate, e comunemente 

investigate utilizzando i modelli di facies sviluppati per i meandri fluviali. 

 Concentrandosi sulle differenze, più che sulle similitudini, tra i meandri tidali e fluviali, 

questo lavoro si propone di investigare le architetture stratali e la distribuzione delle facies 

sedimentarie delle point bar selezionate nella della Laguna di Venezia (Mare Adriatico, Italia). In 

questo lavoro vengono affrontate tre problematiche principali: i) il ruolo dei tributari di ordine 

inferiore nell’evoluzione dei meandri tidali; ii) l’influenza dell’aggradazione delle barene nella 

modellazione delle geometrie delle point bar tidali; iii) i processi sedimentari e le variazioni 

morfodinamiche agenti sulle point bar subtidali. L’evoluzione morfodinamica dei canali tidali, e i 

relativi prodotti sedimentari, sono stati analizzati utilizzando un approccio multidisciplinare, che 

comprende la comparazione di foto storiche, l’interpretazione di profili sub-bottom ad alta 

risoluzione, log di carote e modellazione 3D. 

 I risultati principali ottenuti dai tre siti in esame evidenziano che: I) gli affluenti laterali 

possono influenzare fortemente l’evoluzione dei meandri, modificando i meccanismi locali di 

distribuzione dei flussi e dei sedimenti; II) la migrazione delle point bar tidali avviene in contesti 

aggradazionali, sia in ambienti intertidali che subtidali; III) le barre subtidali evolvono sotto 

l’influenza della forte interazione tra correnti da onde e di marea. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 OVERVIEW 

This study deals with tidal meandering channels and related deposits and aims at 

investigate the internal architecture and morphodynamic evolution of tidal point bars in the 

Venice Lagoon (Italy). Sedimentary products deriving from the lateral migration of inter-tidal and 

sub-tidal meanders and their facies distribution were analyzed through a multidisciplinary 

approach, that couples remote sensing, sedimentological and geophysical analyses with numerical 

and 3D modeling. 

 

1.2 STATE OF THE ART 

 Branching and meandering tidal channels, constitute the circulation system of lagoons and 

estuaries. They form the pathway for tidal currents to propagate and distribute sediments and 

nutrients, acting a primary control on the sedimentation and ecology of costal environments 

(Hughes, 2012). Tidal channels cut through tidal basins forming complex dendritic networks, in 

which minor creeks usually converge into a major channel (Ashley and Zeff, 1988; Fagherazzi et al., 

1999). Sinuous channels are very common in tidal landscapes (Fig. 1.1), where they can occur 

either in the intertidal or the subtidal zone (Bartholdy, 2012), and be, therefore, either periodically 

or constantly submerged. Their morphodynamic evolution is governed by the complex interaction 

between several interconnected features, such as the tidal prism, tidal asymmetry, sediment 

texture, and vegetation (Garofalo, 1980; Gabet, 1998; Dalrymple et al., 1991; Fenies and Faugères, 
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1998; Marani et al., 2002; Lanzoni and Seminara, 2002; Solari et al., 2002; Fagherazzi et al., 2004; 

Garotta et al., 2006), which can limit or increase erosion, deposition and lateral migration. 

 

Figure 1.1: A) tidal channel network; B) meandering channels in intertidal setting; C) meandering channels in 

subtidal setting. 

Although tidal meanders are ubiquitous features of the tidal landscape, very few studies analyses 

their hydrodynamics and morphodynamic evolution, together with their planimetric shape and 

morphometric characteristics (e.g. Marani et al., 2002; Solari et al., 2002; Fagherazzi et al., 2004).  
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The internal architecture and sedimentary features of tidal point bars is relatively unexplored, and 

mainly based on studies focused on intertidal channels crossing through modern tidal-flats (Land 

and Hoyt, 1966; Howard et al., 1975; Barwis, 1978; de Mowbray, 1983; Bridges and Leeder, 1976; 

Choi et al., 2004; Choi, 2011; Hughes, 2012), where overbank areas are generally exposed during 

low tide. This settings allow the morphology of the bars to be observed and the deposits to be 

easily investigated through trenching and coring. From these studies, an overall similarity between 

tidal and fluvial point bars emerged. As a consequence, the basic architectural and facies models 

developed for fluvial meander bends (Allen 1963; McGowen and Garner, 1970; Brice, 1974; 

Jackson, 1976; Nanson, 1980) are commonly used to detect tidal point bars in the fossil record 

(Díez-Canseco et al., 2014), by assuming that the abundance of mud, higher degree of bioturbation 

and bidirectional flows represent the main differences with the fluvial realm (Allen, 1982; Thomas 

et al., 1987), as shown in figure 1.2. and 1.3. 

 

Figure 1.2: Models for the sequence of lithologies and sedimentary structures in point bars. a) Mixed mud-sand 

tidal gully. b) Sand-bed river. (Adapted from Allen, 1982). 
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Figure 1.3: Lateral accretion deposits form a series of wedge-shaped units. Each unit represents one year's 

deposition, bounded by erosion scarps produced during successive winter. The point bar base shows a gradual 

aggradation, keeping pace with the build-up of the adjacent inter-channel flats (de Mowbray, 1983). 

Nevertheless, further differences can arise from a comparison between tidal and fluvial 

meandering channels. Tidal channels generally form an intricate and complex network of 

channels, with numerous low order tributaries, which can interfere with the flow within the main 

channel, while fluvial channel networks are generally less articulated, with lower number of 

tributaries, especially near meander bends.  Tidal channels, behind experiencing a daily reversion 

of flows, are characterized by highly variable discharges on the short term (Fig. 1.4), whereas they 

show an almost constant discharge on the long term, while rivers maintain a generally constant 

discharge on the short term and display variable discharges on the long term due to flood events, 

during which high velocities can be maintained for long time. Consequently, tidal discharge 

fluctuates within a defined range, whereas fluvial discharge can be characterized by a more 

marked variability. In fluvial channels, landscape forming discharges occur when water is at 

bankfull stage, whereas in tidal channels high-water level conditions are characterized by null 

velocities (Hughes, 2012).  
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Figure 1.4: This graph shows the hysteresis observed in tidal velocity versus water depth (stage). Despite velocity is 

highly variable, two peaks are detectable in correspondence of flood (just above bankfull conditions), when the 

water level is the same of the marsh surface, and one during the ebb. In terms of symmetry around either high tide 

or the timing of bankfull conditions, the peak ebb velocities lag the flood transients, occurring later, at a lower stage 

of the tide, just below bankfull. (Adapted from Fagherazzi et al., 2008). 

Differences between fluvial and tidal meanders appear to be even more evident considering 

subtidal channels which, unlike alluvial plains that can be inundated only during exceptional 

floods, are constantly submerged as well as their related overbanks. Subtidal channels 

hydrodynamic is extremely complex, since both minimum and maximum velocities of tidal 

currents are experienced when both the channel and related overbanks are flooded, and flow 

distribution within the channel can be influenced by currents developed in overbank areas. 

Further, in subaqueous setting, water-saturation of point bar deposits decreases the intergranular 

friction, promoting collapses along the bar flanks (Bridges and Leeder, 1976; Choi et al., 2013). 
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Additionally, in wide shallow lagoons, inter-channels areas can be affected by strong wind-induced 

wave winnowing, which can influence sediment distribution along the channels. 

Such divergent features certainly produce differences in the morphodynamic evolution of fluvial 

and tidal meanders, as well as in stratal architectures, sedimentary deposits and facies distribution 

of related point bar deposits. 

 

1.3 GOALS OF THIS STUDY 

Focusing on differences, more than on similarities, between tidal and fluvial meanders, the 

present work aims at investigating the stratal architecture and sedimentary facies distribution of 

tidal point bars of the Venice Lagoon (Italy; Fig. 1.5) focusing on three main issues: 

i) Tidal networks appear much more articulated and interconnected than fluvial once. Low 

order tributaries are widespread, and generally located in correspondence of main meander bends 

formed by the main channels. Such configuration is extremely rare in fluvial settings, where the 

number of tributaries is lower. Can minor tributaries influence the morphodynamic evolution of 

tidal channel bends? 

 

ii) Vegetated, cohesive salt-marsh mud well resembles floodplain deposits and encourages 

a comparison between salt-marsh meanders and their fluvial counterparts. In fluvial setting, 

where the rate of channel migration is orders of magnitude higher than the rate of bed 

aggradation, bed aggradation do not significantly influence point bar and channel belt 

architecture. In salt marsh setting, the rate of channel migration is significantly lower than in 

fluvial setting, but aggradation rates are comparable. Can the salt-marsh aggradation rate 

influence the morphodynamics of tidal meanders? 

 



11 
 

iii) Sedimentology and stratal pattern of subtidal meanders are almost unknown. 

Hydrodynamic of these channels is extremely complex, since both minimum and maximum 

velocities of tidal currents are experienced when both the channel and related overbanks are 

flooded. Flow distribution within the channel can be influenced by currents developed in overbank 

areas, promoting a hydrodynamic configuration which can control times and modes of channel 

planform evolution. How do subtidal meanders evolve and what are sedimentary products of 

their planform evolution? 

 

Figure 1.5: Map locations of the three study sites (yellow dots). 

1.4 THESIS OUTLINE 

The present work is presented by five chapters. 

Chapter 2 analyzes the role of low order lateral tributaries in evolution of tidal meander 

bends. The internal architecture and morphodynamic evolution of an intertidal meander bend of 
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the northern Venice Lagoon has been reconstructed through high-resolution sub-bottom seismic 

data using a 3D modeling software. Results from sedimentological analyses have been also 

compared with those from numerical modeling. The main body of this chapter has been submitted 

to PNAS (PNAS-manuscript-2015-21482). 

Chapter 3 focuses on the role of bed aggradation in shaping geometry of a point bar 

developed in a salt marsh of the northern Venice Lagoon. Basin on sedimentological analyses of 

core data and 3D modeling, the geometry of a tidal point bar has been defined and analyzed. 

Particular attention was paid to reconstruct the relationship between lateral migration of the 

channel and vertical accretion of the surrounding saltmarshes. A manuscript summarizing the 

main results stemming out from this investigation will be submitted to Sedimentary Geology. 

Chapter 4 focuses on sedimentary features of a subtidal meander bend. The planform 

evolution of the study bend during the last century was obtained through the comparison 

between detailed historical maps, aerial photos and satellite images. High-resolution geophysical 

investigations along with the analysis of sedimentary cores allowed to depict the sedimentary 

facies and internal architecture of the point bar deposits and outer bank region.  

Chapter 5 summarizes the main results of this thesis. 
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 CHAPTER 2  

OBSERVATIONAL STRATAL ARCHITECTURE CHALLENGES CURRENT 

UNDERSTANDING OF TIDAL MEANDER MORPHODYNAMICS 

 

2.1 OVERVIEW 

 The present chapter is a manuscript submitted to PNAS (manuscript#2015-21482) and deal 

with the role exerted by lateral tributaries in the morphodynamics evolution of a tidal meander 

bend of the northern Venice Lagoon. This work highlights that when the sediment discharge of 

tributaries exceeds the sediment transport capability of the main channel, sedimentation can 

occur at the outlet of tributary channels, forming prograding lobate units. In such cases, flux 

funneling within the main channel can generate local erosion, also in areas where classical facies 

models predict deposition. 

 

2.2 PAPER 

LARA BRIVIO1, MASSIMILIANO GHINASSI1, ANDREA D’ALPAOS1, ALVISE FINOTELLO1, LUCA 

CARNIELLO2, MARCO MARANI2,3, ALESSANDRO CANTELLI4, NICK HOWES4 

1 Department of Geosciences, University of Padova, Padova, Italy. 

2 Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, 

Italy. 

3 Department of Civil and Environmental Engineering and Nicholas School of the Environment, 

Duke University, Durham, USA. 

4 Shell Technology Center Houston, Houston, TX, US. 
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2.2.1 Abstract  

Meandering channel network exert a fundamental control on hydrodynamic and 

morphodynamic processes within tidal landscapes. However, the planform evolution of tidal 

meanders is currently inferred via observations and models of their fluvial counterparts. The 

present study addresses in tidal landscapes, the internal architecture and morphodynamic 

evolution of a tidal meander bend in the Venice Lagoon (Italy), through an approach integrating 

three-dimensional high-resolution geophysical investigations, bathymetric field surveys, aerial 

photographs, and numerical modeling. We find that lateral tributaries influence sedimentation 

patterns within the meander bend in such a way that their effects remain imprinted in the 

sedimentary record of meander deposits. We also find that the evolution of tidal channels is 

punctuated by abrupt changes in channel dynamics, that contrast with the predictable and 

monotonous rise and fall of the tides. Meander dynamics inferred from depositional architectures 

challenge current assessments of tidal meander morphodynamics. The critical role exerted by 

lateral tributaries on tidal meander migration, emerges in response to evolving landforming 

processes operating on comparable timescales. Key differences with fluvial meanders emerge. 

Specifically, the concept that meander wavelength and radial progression stem from free 

migrating modes excited by bottom or flow instabilities is insufficient to explain tidal meander 

evolution, as evidenced by its stratigraphic record. A more complex set of forcings, including the 

influence of lateral tributaries, must be invoked. 

 

2.2.2 Significance  

Sinuous channels are ubiquitous features of tidal landscapes and contribute to the 

distribution of water, sediments and nutrients in these landscapes. However, little is known about 

their morphodynamic evolution and related sedimentary products, and these meandering 
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channels are commonly studied following theories developed for their fluvial counterparts. Here 

we show that tidal meander evolution differs from that of fluvial ones and distinctive features 

characterize deposits formed in tidal bends. Specifically, we highlight the role of minor tributaries 

that allow sediment accumulation where traditional models predict erosion. This bears important 

consequences for the management of tidal landscapes and interpretation of tidal channel deposits 

in the fossil record. 

 

Keywords: tidal meander, stratal architecture, morphodynamics, tidal landscapes, Venice Lagoon 

 

A longstanding question in geomorphology is whether the morphology of a particular 

landscape is in balance with its current environmental forcings or if it contains distinct relict 

signatures of past ones. Clear examples of these two end-member cases exist (Rinaldo et al.,1995), 

but in contexts where the rates of change of the forcings are comparable with (the inverse of) 

adaptation timescales of physical or biological processes, the identification of 

equilibrium/disequilibrium features is not straightforward. Branching and meandering tidal 

channels, the essential circulation system of lagoons and estuaries, form the pathway for tidal 

currents to propagate and distribute clastic sediments and nutrients (e.g. Hughes, 2012; Coco et 

al.,2013), thus providing a primary control on tidal landscape ecomorphodynamics (Fagherazzi et 

al., 2012). Although meandering patterns are ubiquitous features of the tidal landscape, very few 

studies have analyzed their planimetric shape, morphometric characteristics, and their 

morphodynamic evolution (Gabet, 1998; Marani et al., 2002; Solari et al., 2002; Fagherazzi et al., 

2004). The depositional architecture of tidal meander bends has received even less attention, and 

is commonly approached using facies models (Barwis, 1978; De Mowbray, 1983; Choi and Jo, 

2015) developed from the comparison with their fluvial counterparts (Jackson, 1976; Brierley, 
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1991), and by assuming that the abundance of mud and bidirectional flows represent the main 

differences with the fluvial realm (e.g. Thomas et al., 1987). 

Quantifying the sediment transport dynamics in tidal channel bends and its impact on 

meander-bend architecture is a fundamental step towards an improved understanding of the role 

of tidal channels in the ecomorphodynamic evolution of lagoonal and estuarine systems. The 

present study addresses, for the first time in tidal landscapes, the internal architecture and 

morphodynamic evolution of a tidal meander bend in the Venice Lagoon (Italy, Fig. 2.1) by 

coupling three-dimensional, high-resolution geophysical investigations with geomorphological 

information from bathymetric field surveys, aerial photographs and numerical modeling.  

Theoretical investigations (Marani et al., 2002; Solari et al., 2002; Fagherazzi et al., 2004) 

posit that locally the relevant dynamics follows from bend assessments for fluvial meanders 

(Seminara, 2006). Specifically, field evidence (Marani et al., 2002) shows that tidal meanders 

develop a characteristic spatial wavelength of about 10-15 channel widths, an observation that is 

consistent across channels of different widths, varying up to two orders of magnitude. This 

suggests that the mechanism of meander evolution is controlled by processes acting at the scale 

of a few channel widths. This observation has motivated notable attempts to interpret the above 

process on the basis of a planimetric instability theory, of the type established for fluvial 

meandering (Ikeda et al., 1981; Parker et al., 2011).  Here we show, on the contrary, that sediment 

pulses delivered to the main channel through lateral tributaries, substantially influence meander 

evolution, by promoting the formation of atypical sedimentary bodies with sediment accumulation 

along the outer bank, where erosion is expected for fluvial meanders. This results from a 

concurrent evolution of the sediment supply and landforming discharges, tied to an ever-changing 

competition for relevant tidal prisms driving channel morphologies, co-evolving with RSL changes 

and the related ecological adaptations. Typical characteristic timescales are argued to be 
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comparable, thus leading tidal landforms to a perennial transient state whose imprintings are 

long-lived. Landforms in equilibrium with the current forcing and relict features are argued to 

perennially coexist in the tidal landscape.  

 

Figure 2.1: The study site. (A) Geographic location of the study area, in northeastern portion of the Venice Lagoon, 

Italy. (B) Satellite image (2012) of the Gaggian channel showing acquisition scheme of sub bottom profiles (white 

lines). (C – E) Digitalized orthophotos of the Gaggian channel in: 1938 (C), spatial resolution of 600 dpi (1pixel = 

0.897 m); 1955 (D), resolution of 600 dpi (1pixel = 1.124 m); 1968 (E), resolution of 600 dpi (1pixel = 0.599 m). 
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2.2.3 Geomorphological Setting 

We analyzed a meander bend of the Gaggian Channel, located in the Northern, and best 

naturally preserved, part of the Venice Lagoon (Fig. 2.1A). The Venice Lagoon, which formed over 

the last 7500 years covering alluvial Late Pleistocene deposits locally known as Caranto (Zecchin et 

al., 2008), is the largest Mediterranean brackish water body, with an area of about 550 km2. It is 

connected to the Adriatic Sea through three inlets (Lido, Malamocco and Chioggia) and is 

subjected to a semidiurnal tidal regime, with an average tidal range of about 1.0 m and peak tidal 

amplitudes of about 0.75 m around Mean Sea Level (MSL). The study site is a 900 m long meander 

bend, which develops around a point bar with a mean radius of curvature of about 200 m (Fig. 

2.1B). The channel is about 100 m wide, up to 8 m deep and receives tributaries, on both  the 

inner and the outer banks. We focus specifically on the two main tributaries along the outer bank, 

named hereafter as Tw (Western Tributary) and Te (Eastern Tributary), which enter the Gaggian 

channel near the bend apex an connect it with the Palude della Centrega tidal flat to the North 

(Fig. 2.1B). Medium to coarse-grained sand is common in the deepest part of the Gaggian channel, 

whereas fine-grained silty sand occurs in shallower areas and along the thalweg of the Tw and Te 

tributaries. 

The Tw and Te tributaries, which are about 40 and 30 m wide and 3.6 and 3.0 m deep, 

respectively, branch northward into a number of minor channels which cut through the 0.55 m 

deep Palude della Centrega tidal flat. Historical aerial photos (Fig. 2.1C, D, E) show that between 

1938 and 1968 the Tw and Te tributaries were narrower than they are today and used to drain a 

salt-marsh platform, thus conveying smaller water and sediment fluxes into the Gaggian channel 

compared to modern conditions. 
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2.2.4 Results of Geophysical Investigations 

Geophysical data (Fig. 2.2) show that the basal erosive surface of the Gaggian channel 

deposits locally occurs between 7 and 12 m below MSL, and overlies alluvial Late Pleistocene 

deposits. In-channel deposits are split into three sedimentary Units (hereafter called Unit 1, 2 and 

3) by two distinctive and laterally extensive surfaces (Fig. 2.2), which show streamwise changes 

from erosive to depositional features. 

 

Figure 2.2: Interpretation of the most representative seismic sections. (A) Sections 3 and 4 in a sketch depicting the 

lobe fed by the TE tributary. (B) Longitudinal section along the landward portion of the Gaggian channel showing 

ebb-oriented inclined deposits of Unit 1. (C) Inclined deposits of Unit 1, dipping 10-20° toward the outer bank, 

overlain by deposits of Unit 3. (D) Inclined deposits of Unit 1 and 2 dipping toward the outer bank, together with  

minor erosive truncations and gravitative deformations. 

Unit 1 overlies the channel basal surface and reaches 6 m in thickness along the seaward 

side of the inner bank, whereas it becomes thinner in the landward side (Fig. 2.2B). Unit 1 consists 
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of inclined deposits dipping 10 – 20° toward the outer bank (Fig. 2.2C, D), as commonly expected 

in channel bends. Minor erosive truncations and gravitational deformations occur in the central 

and upper portion of the inclined beds (Fig. 2.2D). Unit 1 developed during the first stage of 

meander bend evolution, when sedimentation occurred along the inner bank due to the 

occurrence of a bend-apex helicoidal flow, as usually expected for fluvial patterns (Seminara, 

2006). The thickness of deposits of Unit 1 is relatively constant along the bar, although its 

asymmetric planform profile suggests dominance of ebb currents. 

Unit 2 mainly occurs in the landward side of the bend, where it erosionally overlies Unit 1 

and locally the Caranto deposits, reaching the maximum thickness of about 4 m. Inclined beds dip 

toward the outer bank at about 10 – 15° and show minor internal truncations (Fig. 2.2A, D). 

Locally, the basal surface of this Unit is characterized by 1.0 – 1.5 m deep scours, which are filled 

with cross-stratified deposits fed by seaward-directed flows. Unit 2 testifies the seaward 

propagation of a sediment wave, which mainly accreted above Unit 1 along the landward side of 

the inner bank. Cross-stratified deposits agree with dominance of ebb currents (see Fig. 2.S1 in the 

Supplementary Information). The erosive nature of the basal surface suggests an increase in the 

landscape forming water discharge, which heralded the propagation of the aforementioned 

sediment wave. 

Finally, Unit 3 which is up to 3.5 m thick, is erosively based and is distributed along the 

outer bank of the meander bend. Beds dip at about 10° toward the inner bank (see Section 3 and 4 

in Fig.  2.2A) and define two lobes at the outlet of the Tw and Te tributaries. The proximal part of 

these lobes includes channelized deposits (see Section 4 in Fig. 2.2A). The surface capping Unit 3 

defines the present-day bend morphology, which is characterized by the erosion of the inner bank, 

where deposits of Unit 1 are exposed on the channel bottom (see Section 3 in Fig. 2.2A). Unit 3 

documents the onset of accumulation at the outlets of the Tw and Te tributaries, which fed two 
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main sedimentary lobes in the Gaggian channel. Accumulation of these lobes likely promoted a 

migration of tidal currents towards the inner bank of the main channel, triggering its erosion.  

 

2.2.5 Discussion and Conclusions 

Unit 1 to 3 document the occurrence of three distinct stages of meander bend evolution, 

named as Stage 1 (older) to 3 (younger) in Fig. 2.3. These stages are characterized by a transition 

from inner to outer bank accumulation. During the first and second stages of bend evolution, 

sediments were mainly stored along the inner bank (Fig. 2.3A, B). During the third stage of bend 

evolution (Fig. 2.3C), the occurrence of sedimentation along the outer bank and erosion along the 

inner bank is the dominant morphodynamic feature. These atypical sedimentary patterns are 

associated to the development of the lobes at the outlets of the Tw and Te tributaries (Fig. 2.3C), 

which suddenly delivered to the main channel an amount of sediment that exceeded its maximum 

sediment transport capacity. This abrupt increase in sediment supply from the Tw and Te 

tributaries was triggered by increasing sediment erosion over the Palude della Centrega tidal flat, 

which is connected to the Gaggian Channel by the Tw and Te tributaries. The Venice Lagoon 

experienced a strong erosional trend over the last century (Carniello et al., 2009), which led to an 

increase in the average water depth of about 0.60 m in the Palude della Centrega tidal flat (see 

Fig. 2.S2 in the Supplementary Information). The positive feedback between tidal-flat deepening 

and wind-wave induced erosion (Fagherazzi et al., 2006) results in high values of the suspended 

sediment concentration during storm events. The sediment suspended by wind waves in the 

Palude della Centrega tidal flat was therefore routed into the Gaggian channel (Fig. 2.3F) by the 

ebb currents, which increased flow velocity and the related sediment transport capability (see Fig. 

2.S1 in the Supplementary Information) triggering erosion and bypass along the tributaries. 

Mutually evasive currents, documented in tidal bends, contribute to storing sediment along the 
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outer bank (Hughes, 2012; Li et al., 2008). The effect of these currents here is however 

overwhelmed by the sediment supply of lateral tributaries as emphasized by the development of 

lobate units at the outlet of the tributaries (Fig. 2.3C), which causes a shift of the pool scour 

toward the inner bank zone.  

 

Figure 2.3: Morphological evolution of the Gaggian channel. (A - C) Top morphologies of  Unit 1 to 3 as they emerge 

from the spatial interpolation of seismic profiles obtained through a kriging procedure. Panels A – C highlight the 

development of lobes at the tributary outlets and the related deposition patterns along the outer bank. (D – F) 

Conceptual model portraying the three stages of the Gaggian channel evolution. (D) TW and TE tributaries do not 

receive sediment from the Palude della Centrega tidal flat and the Gaggian channel bend is dominated by inner 

bank deposition. (E) Ongoing inner bank sedimentation , which is mainly concentrated along the landward side of 

the inner bank. (F) Sediments resuspend by wind waves in the Palude della Centrega are routed into the Gaggian 

channel through the TW and TE tributaries causing accumulation along the outer bank. 

The analysis of aerial photographs and the results of numerical modelling (see the Material 

and Methods for details), confirms the above scenario (Fig. 2.4). A comparison of the 1938 and 

2007 channel planforms and bathymetries (Fig. 2.4A, B) indicates that the Gaggian Channel and 

the two lateral tributaries experienced an increase in their width and depth. This was due to the 
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increase in the tidal prisms shaping their cross sections (D'Alpaos et al., 2010), triggered by the 

vertical erosion of the tidal flat surfaces drained by these channels due to wind-wave induced 

erosion processes (Carniello et al., 2009). When the model is forced with the same tidal levels and 

wind velocities and directions for both configurations (Fig. 2.4C), results show that both 

hydrodynamics and sediment transport processes experienced important changes (Fig. 2.4D-I).  

The erosion of the landward tidal-flat and salt-marsh surfaces led to an increase in the landscape-

forming discharges (Figs. 2.4D, E), whereas the amount of mud (Figs. 2.4F, G) and sand (Figs. 2.4H, 

I) routed towards the main channels along the two tributaries largely increased, yielding two 

lobate structures at the confluences. Interestingly, although discharges routed through the 

Gaggian Channel experienced a 60% increase between 1938 and 2007, the resulting velocities 

were not strong enough to remove these intra channel sedimentary bodies, which therefore 

represent the fingerprint of transient sediment dynamics and reflect patterns operating at a larger 

spatial scale than the single bend scale.  

The occurrence of erosively-bounded sedimentary Units emphasizes that tidal channels 

evolve under the control of significant changes in local hydrodynamics, which apparently contrast 

with the predictability of channel discharge dictated by specific ranges of tidal excursion. The 

evolution of the tributary network plays a key role in driving the above described morphodynamic 

changes. Although tidal and fluvial meanders seem to be characterized by a similar planform 

morphology (Marani et al., 2002; Solari et al., 2002), the governing mechanisms, documented by 

the Gaggian stratigraphic record, lead to the establishment of sediment patterns which differ in 

the two considered cases. Accumulation in the outer bank zone is observed in tidal bends thanks 

to mutually evasive currents (Hughes, 2012) but is locally overwhelmed by the discharge from 

lateral tributaries, that can produce confluence bars. Differently from fluvial confluence bars 
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(Biron et al., 1993), which are commonly removed during flood events, tidal confluence bars are 

much more likely preserved in the stratigraphic record. 

Our results suggest that tidal meander bends are commonly affected by abrupt variations 

in sediment and water discharge, which trigger alternation between growth and degradation of 

channel bars as a result of evolutionary timescales subsumed by variations in the tidal prism, an 

effective proxy of landscape morphology. We show that lateral tributaries exert a critical role on 

tidal meander evolution because they control the amount of water and sediment provided to the 

main channels. When the sediment discharge of tributaries at the outer bank exceeds the 

sediment transport capability of the main channel, sediment accumulation at the outlet of 

tributary channels forms prograding lobate units. This causes flux concentration against and 

erosion of the inner bank, where both fluvial and tidal classical facies models predict deposition. 

Overall, we find that current landforms in the tidal landscape bear the signatures of processes 

occurring at larger spatial scales, prompting alternating sediment production and dissipation, 

watershed capture and migration, channel advancement and retreat, saltmarsh and tidal flat 

construction and reflected in varying evolutions of tidal meanders. Our main results call for a 

paradigm shift in the theory of tidal meanders and in the interpretation of tidal geomorphology 

from theories derived from their fluvial counterparts (Barwis, 1978; De Mowbray, 1983; Choi and 

Jo, 2015) to new approaches specifically developed for tidal landscapes. 
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Figure 2.4: Results of the numerical model. (A, B) Orthophotos of the Gaggian channel configuration in 1938/2007 

over which bathymetric surveys of 1930/2012, respectively, are overlapped. (C) Observed water levels and wind 

velocities and directions used to force the sediment transport model. Water (D,E), mud (F,G), and sand (H,I) 

discharges through the TW (red line) and TE (light blue line) tributaries computed for the 1938/2007 configurations, 

respectively. 
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2.2.6 Materials and Methods  

2.2.6.1 Geophysical data 

In April 2011 two longitudinal sub-bottom profiles and 25 transverse profiles were 

collected within the Gaggian channel (Fig. 2.1B). These profiles were acquired by using a Innomar 

SES – 2000 Compact, a parametric sub-bottom profiler, equipped with a SES 2000 transducer. 

During the acquisition, low frequencies were used to investigate the subsurface architectures.  

An 8 kHz frequency was used and varied locally in the range of 5-10 kHz in order to increase the 

penetration (5 kHz) of the signal and to improve the resolution (10 kHz). 

Data processing was carried out by means of SES Innomar software, using a signal velocity 

of 1509 m/s determined on the basis of contemporary temperature and salinity measurements. 

Position data were recorded through GPS (two TOPCON GR-3 receivers – dual frequency (L1/L2) 

and dual constellation (NavStar/Glonass), with integrated Tx/Rx UHF radio were used) and 

processed through the Geo Office software (Leica). The main bounding surfaces separating 

different sedimentary units were defined on the basis of onlap, downlap, and toplap geometries. 

The Move 2013.1TM software was used to correlate interpreted seismic sections through a kriging 

procedure, with the goal of defining the paleo-morphology of the meander bend at different 

depositional stages. 

 

2.2.6.2 Mathematical modelling 

A series of aerial photographs (Fig. 2.1B, C, D, E) and bathymetric data, obtained from the 

1932 and 2013 bathymetries (see, Carniello et al., 2009 for details), were used to determine 

morphological changes of the Gaggian channel and its lateral tributaries.  

A numerical morphodynamic model was used to analyze changes in water and sediment 

fluxes occurred along the considered bend. The model describes tidal and wave hydrodynamics 



27 
 

and sediment transport processes to determine the related bed evolution in shallow tidal basins 

(Carniello et al., 2012, the reader is referred to the original paper for full derivations). A 

hydrodynamic model, which solves the 2D shallow water equations (see, D'Alpaos and Defina, 

2007) is fully coupled to a wind-wave model (Carniello et al., 2011) that solves the wave-action 

conservation equation parameterized using the zero-order moment of the wave action spectrum 

in the frequency domain. Tidal currents and wind waves determine the hydrodynamic field used to 

solve an advection-diffusion equation and the related sediment resuspension, transport, and 

deposition that control bed evolution accounting for the simultaneous presence of both cohesive 

(mud) and non-cohesive (sand) sediments (Carniello et al., 2012). Numerical simulations were 

carried out on different computational grids representing the Venice Lagoon in its 1932 and 

present configurations (see Fig. 2.S1 in the Supplementary Information). In all simulations, the 

model was forced by using 30 days (from 11/16/2005 to 12/16/2005) of hourly tidal levels 

measured at the CNR Oceanographic Platform, located in the Adriatic Sea in front of the Venice 

Lagoon, and wind velocities and directions observed at the Chioggia anemometric station (Fig. 

2.1A).  
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2.2.7 Supplementary Information 

 

Figure 2.S1: (A,B) Maximum flood and (C,D) maximum ebb velocities for the 1938 and 2007 configurations, 

respectively, when the model is forced by the observed water levels and wind velocities and directions shown in 

Fig. 2.4C. 
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Figure 2.S2: Orthophoto of the Gaggian channel in 2007 and evolution in time (inset) of the average bottom 

elevation of the Palude della Centrega tidal flat, which is drained by TW and TE tributaries. 

  



30 
 

 



31 
 

CHAPTER 3 

INTERACTION BETWEEN AGGRADATION AND LATERAL MIGRATION SHAPES 

GEOMETRY OF A TIDAL POINT BAR: AN EXAMPLE FROM SALT MARSHES OF THE 

NORTHERN VENICE LAGOON (ITALY) 

 

3.1 OVERVIEW 

 This chapter is a manuscript ready to be submitted to Sedimentary Geology and focuses on 

a tidal point bar developed in salt marshes of the northern Venice Lagoon. This work is based on 

sedimentological core data and 3D architectural modeling, and highlights that during lateral 

accretion the point bar sedimentary body is affected by a progressive thickening that is associated 

by lowering of the channel thalweg and rising of the channel banks. Lowering of the thalweg is due 

to increase in channel sinuosity and efficiency of the secondary circulation. Rising of the banks is 

induced by the continuous aggradation of salt marshes surrounding the channel. 

 

3.2 PAPER 

LARA BRIVIO1, MASSIMILIANO GHINASSI1, ANDREA D’ALPAOS1, ALVISE FINOTELLO1, ALESSANDRO 

FONTANA1, MARCELLA RONER1, NICK HOWES2 

1 Department of Geosciences, University of Padova, Padova, Italy. 

2 Shell Technology Center Houston, Houston, TX, US. 

 

3.2.1 Abstract  

 Although meanders are ubiquitous features of the tidal landscape, the architectural 

geometries of tidal point bar deposits are relatively unexplored and commonly investigated on the 
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basis of facies models developed for their fluvial counterparts. The present study aims at 

improving current understanding of tidal point bar deposits developed in salt-marsh setting, by 

investigating an abandoned intertidal meander loop, located in the Northern part of the Venice 

Lagoon (Italy). The study channel is 6 m wide and its radius of curvature is approximately 13 m. It 

was active until the 50’s when it was deactivated as consequence of a neck cut-off. A total number 

of 150 cores were recovered from the meander loop and used to define the sedimentary features 

of the bar and the geometries of its main stratal surfaces. The bar is cut on a subtidal platform of 

sand and mud and is covered by both channel fill and salt-marsh mud. It is floored by a shell-rich 

sandy lag and consists of stratified fine sand grading upward into sandy mud. The outer bank of 

the study bend is characterized by well-developed, sand-rich levee deposits. Sediment grain size 

distribution shows slight changes along the bar, suggesting that seaward and landward side of the 

point bar experience comparable changes of bed shear stress as a consequence of alternation 

between flood and ebb currents. Spatial interpolation between key stratal surfaces shows an 

overall thickening of the bar from 1.2 to 1.7 m in the direction of channel migration. This 

thickening, associated with both lowering of bar base and rising of its brink, occurs in parallel with 

an increase in channel cross-sectional area, to progressively accommodate the increasing tidal 

prism shaping the channel. Interestingly, we find that the bar top surface is characterized by a 

spoon-shaped geometry stemming out from a combination between lateral migration (8-10 cm/yr) 

and vertical aggradation (2.5-3 mm/yr). This peculiar bar top geometry is quite uncommon in 

fluvial meanders, where the high rate of lateral migration causes the cutoff to be reached before 

substantially thick deposits are accumulated on the bar top. 

 

Keywords: tidal point bar, salt marsh, neck cut-off, morphodynamics, aggradation, lateral 

migration, Venice Lagoon 
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3.2.2 Introduction  

Tidal channels play a key role in the evolution of coastal environments and constitute the 

pathway for the propagation of tides, sediments and nutrients within these environments (e.g. 

Hughes, 2012). The morphodynamic evolution of these channels is governed by the complex 

interaction between several interconnected features, such as the tidal prism, tidal asymmetry, 

sediment texture, and vegetation presence (Garofalo, 1980; Gabet, 1998; Dalrymple et al., 1991; 

Fenies and Faugères, 1998; Marani et al., 2002; Lanzoni and Seminara, 2002; Solari et al., 2002; 

Fagherazzi et al., 2004; Garotta et al., 2006). Although the sedimentary products deriving from the 

lateral migration of tidal meanders have been explored by a few works (Land and Hoyt, 1966; 

Howard et al., 1975; Barwis, 1978; de Mowbray, 1983; Bridges and Leeder, 1976, Choi et al., 2004; 

Choi, 2011), it is commonly assumed that stratal geometries of these deposits show marked 

similarities with those of their fluvial counterparts. Accordingly, the basic architectural and facies 

models developed for fluvial meander bends (e.g. Allen, 1963; McGowen and Garner, 1970; Brice, 

1974; Jackson, 1976; Nanson, 1980) are commonly used to detect tidal point bars in the fossil 

record (e.g Díez-Canseco et al., 2014), commonly considering that the latter shows evidence for 

bidirectional currents along with a higher mud content and degree of bioturbation (Allen, 1982). 

Nevertheless, a number of features highlight relevant differences between the morphodynamics 

of tidal and fluvial meanders. Rivers maintain a generally constant discharge on the short term and 

display variable discharges on the long term due to flood events, during which high velocities can 

be maintained for long time. Tidal channels, behind experiencing a daily reversion of flows, are 

characterized by highly variable discharges on the short term, whereas they show an almost 

constant discharge on the long term. Additionally, in fluvial channels landscape forming discharges 

occur when water is at bankfull stage, whereas in tidal channels high water level conditions are 

characterized by null velocities (Hughes, 2012). 
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Sedimentary facies models for tidal meanders mostly derived from modern mudflats (de 

Mowbray, 1983; Bridges and Leeder, 1976; Choi et al., 2004; Choi, 2011), while scarce attention 

was paid to meandering channels cutting through salt-marsh surfaces. Vegetated, cohesive salt-

marsh mud well resembles floodplain deposits and encourages a comparison between salt-marsh 

meanders and their fluvial counterparts. In unconfined floodplains, fluvial meanders commonly 

evolve increasing their sinuosity (“expansional planform evolution” sensu Jackson, 1976), with a 

rate of lateral migration in the order of m/yr (van de Lageweg et al., 2015). In the fluvial realm, 

bed aggradation is not expected to influence channel belt architecture, since the rate of channel 

migration is orders of magnitude higher than the rate of bed aggradation. Nevertheless, numerical 

simulations show that high bed aggradation rates (i.e. >10 mm/yr) can impact on the architecture 

of channel-belt deposits (van de Lageweg et al., 2015), as also highlighted by outcrop evidence 

(Ghinassi et al., 2014). Salt-marsh meanders are characterized by rates of migration which rarely 

exceed 0.5 m/yr (Garofalo, 1980; Gabet, 1998) therefore the rate of bed aggradation, which can 

also exceed 5-10 mm/yr, is expected to have major effects on point bar sedimentation. 

Towards the goal of providing new insight into tidal meander bend sedimentation, the 

present study investigates the morphodynamic evolution and the internal architecture of a point 

bar, developed in a salt marsh of the Northern Venice Lagoon (Adriatic Sea, Italy; Fig. 3.1). The 

study site is represented by an abandoned meander bend, consisting of sandy point bar and 

related muddy channel fill. Using closely-spaced sedimentary cores to define a high-resolution 3D 

model, the present study aims at investigating facies distribution and architecture of the point bar 

deposits. The geometry of the point bar body is analyzed here as function of the ratio between 

vertical aggradation and lateral migration, and a comparison with a fluvial bar of similar size is 

discussed. 
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Figure 3.1: Geographic location of the study site and terminology used in the present work. (A) Location of the 

Venice Lagoon in the Mediterranean Sea. (B) Position of study site in the northern part of the Venice Lagoon. (C) 

Complex network of tidal meandering channels characterizing salt marshes of the S. Felice area. (D) Satellite image 
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(from Google™ Earth) showing the study meander loop. White line indicate location of the channel in 1938 

(Modified after Rizzetto and Tosi, 2011). (E) Location of the 150 sedimentary cores recovered from the study site. 

(F) Descriptive terminology for tidal meander bends and point-bar architecture. 

3.2.3 Geological Setting 

3.2.3.1 The Venice Lagoon 

The Venice Lagoon, located in the NE part of Italy (Fig. 3.1A), is hosted in the Venetian 

basin, a foreland basin that developed between the Apennine and South-Alpine chains since the 

Late Oligocene (Massari et al., 2009). After experiencing deep-water deposition, during the Early 

Pleistocene, the basin was filled up with ca. 750 m of shallowing-upward deposits, spanning from 

turbidites to shallow marine (Massari et al., 2004). The modern Venice Lagoon (Fig. 3.1B), forms an 

elongated body oriented NE-SW, that with a length of about 50 km and a width of 10 km, 

represents the largest Mediterranean brackish water body (total surface are of about  550 km2). 

The Lagoon  is characterized by an average depth of about 1.5 m, is connected to the Adriatic Sea 

through three inlets (Lido – San Nicolò, Malamocco and Chioggia; Fig. 3.1B), and is subjected to a 

semidiurnal tidal regime, with an average tidal range of about 1.0 m and peak tidal amplitudes of 

about 0.75 m (D’Alpaos et al., 2013) around Mean Sea Level (MSL). The Venice Lagoon formed 

during the last 7500 years as a consequence of the Holocene transgression, which promoted 

formation of lagoon – estuarine – barrier systems in the Northern epicontinental Adriatic shelf 

through the flooding of late Pleistocene alluvial-plain deposits (Zecchin et al., 2009). Salt marshes 

and tidal flats of the Venice Lagoon are drained by a dense network of sinuous channels, which 

progressively decrease in cross-sectional area as moving from the inlets towards the land. 

 

3.2.3.2 The study site 

The study site is located in the San Felice salt marsh (Fig. 3.1B, C), which is colonized by 

dense halophytic vegetation species (such as Limonium, Juncus and Salicornia) and represents one 
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of the most naturally preserved portions of the Venice Lagoon (Marani et al., 2003). During winter 

time, strong winds from NE (Bora) can generate waves which impact against salt-marsh margins 

and contribute to the flooding of salt-marsh surfaces (Carniello et al., 2011; Marani et al., 2011). 

The present study focuses on point bar deposits associated with an abandoned meander 

loop (Fig. 3.1D), that was formed by a 6 m wide channel cutting through the salt marsh. The 

analysis of historical photos reveals that the meander (neck) cut-off occurred during the 50’s 

(Rizzetto and Tosi, 2012) and caused progressive filling of the channel with muddy deposits. The 

meander loop, oriented NW-SE, shows a “simple symmetrical planform” according to the 

nomenclature proposed by Hooke (2013) and has a radius of curvature of about 13 m (Fig. 3.1E). 

In the northern sector of the meander loop, channel fill deposits are colonized by halophytic 

vegetation and locally drained by a small rill (Fig. 3.1E and 3.2A), which slightly erodes bar 

deposits. 

 

3.2.4 Methods and Terminology 

An elevation map of the site (Fig. 3.2A) was defined by measuring (GPS device: TOPCON 

GR-3 receivers – dual frequency (L1/L2) and dual constellation (NavStar/Glonass) with integrated 

Tx/Rx UHF radio) the geographic location and elevation of points forming a 1m-spaced grid.  

A number of 150 georeferenced cores were recovered (Fig. 3.1E) using a hand auger core 

sampler, which prevents sediment compaction. A total number of 91 cores were recovered within 

the abandoned channel, whereas 19 and 40 cores were recovered from the outer and inner bank 

areas, respectively. Coring depth spans from 1 to 3 m and cores are 3.5 cm in diameter. Collected 

cores were kept humid in PVC liners and successively cut longitudinally, measured and 

photographed. Core logging was carried out following the basic principles of facies analyses, 

highlighting sediment color and grain size, presence of sedimentary structures, vertical grain-size 
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trends, degree of bioturbation and presence of vegetal and/or shell remains. Sedimentary features 

and core location allowed the definition of five main types of deposits, which will be described and 

interpreted in the next section. 

The high-resolution sedimentary logs were placed in a virtual space and correlated using 

the software MoveTM 2014.2 (Midland Valley), which allows to obtain a the three-dimensional 

representation of all cores in a georeferenced space. The boundaries between different deposits 

were interpolated among cores in order to define the spatial geometry of the main sedimentary 

units. 

 

Figure 3.2: The study site. (A) Elevation model of the study area. Note the well-developed levee occurring along the 

outer bank zone of the channel. (B) Mid-rich salt marsh deposits forming the distal fringes of the levee. (C) Sand-

rich deposits forming the proximal part of the levee. (D) Cross-sectional profiles across levee deposits. 

The terminology used in the present work (Fig. 3.1F) is similar to that used for fluvial point 

bars and related deposits, although some modifications were required. Given the bidirectional 

nature of tidal currents along the meander bend, the upstream and downstream sides of the point 

bar are named here landward and seaward side, respectively (Fig. 3.1F). The point-bar brink (Fig. 

3.1F) is named here as the rim separating the top of the bar from its slope. 
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3.2.5 Results 

3.2.5.1 The study deposits 

Salt-marsh deposits 

These deposits occur just below the soil surface in overbank areas and overlay both point 

bar and subtidal platform deposits. They range in thickness between 0.2 and 1.3 m and consist of a 

horizontally-laminated, oxidized mud, with a variable amount of fine to very fine sand (Fig. 3.2B, 

C). In situ roots, wood fragments and bioturbation are common (Fig. 3.2B, C). Plant debris and 

organic matter are seldom present within dark laminae (1-2 mm thick). Sand forms 1-3 mm thick 

horizontal laminae, which are characterized by a remarkable grain-size sorting. Along the outer 

bank of the channel, where the elevation of the salt-marsh surface is higher than the surrounding 

areas (Fig. 3.2A, B), these deposits are sandier and tend to fine moving away from the channel 

bank. 

These deposits accumulated in salt marsh environments (c.f. Allen, 2000) according with 

the presence of abundant root traces and sediment oxidation. Sedimentation occurred, therefore, 

in the highest portion of the intertidal zones that is commonly affected by subaerial exposure, as 

also suggested by a widespread sediment oxidation. Mud settled down during high water slack,  at 

the transition between flood and ebb tide. Organic-rich laminae were associated with slightly 

reductive conditions, probably due to the presence of stagnant water developed in small ponds. 

Sandy laminae are interpreted to be generated during storm events in high tide conditions. In this 

setting, wind-induced waves winnow the salt marsh surface, suspending mud and remobilizing 

sand under tractional conditions. Textural sorting of sandy laminae and lack of a muddy matrix 

strongly support this hypothesis. Sediment ridges distributed along the outer bank edge are 

interpreted as levee, accumulated as consequence of the baffling of flow speeds due to vegetation 

(Bartholdy, 2012; Hugues, 2012). 
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Sub-tidal Platform deposits 

These deposits represent the substrate of the study sedimentary unit and can be 

recognized in the lower portion of almost all the cores, between a depth of 1.3 and 3 meters  (Fig. 

3.3A). They reach a maximum thickness of 1.7 m, although their basal surface was not reached by 

any core. These deposits consist of alternating dark grey sand and mud that form beds up to 20 

and 5 cm thick respectively. Sand is medium to fine in grain size and contains isolated mud clasts, 

sparse shells and shell fragments (Fig. 3.3B). Articulated bivalves locally occurs (Fig. 3.3E). Plant 

debris are very common and locally form 1-3 mm thick layers. Sand is commonly massive, due to 

the intense bioturbation, although traces of a primary plane-parallel stratification can be locally 

detected. Mud is mainly massive and contains scattered shells and wood fragments (Fig. 3.3D). 

The dark color and abundant organic matter suggest that these deposits accumulated in a 

submerged and scarcely oxidized environment, which can be labeled as a sub-tidal platform (cf. 

Marani et al., 2007). The lack of root traces strongly support this interpretation. Sandy beds were 

originated during storm events, when the lagoon floor was deprived of fine-grained deposits as 

consequence of wave winnowing (Carniello et al., 2009). Part of these sands could also have been 

emplaced as distalmost fringes of washover fans, although the abundance of plant debris could 

also suggest they were fed by riverine flood flows that entered the lagoon after main rainstorm 

events. Muddy layers accumulated during fair-weather condition, especially after storm events, 

when suspended mud settled to the bottom.  
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Figure 3.3: Sedimentary features of overbank and channel lag deposits. (A) Sedimentological log showing subtidal 

platform deposits overlain by channel-lag, point bar and salt marsh sediments. (B-E) Subtidal platform deposits. (F) 

Shell-rich, channel lag sand overlaying bioturbated subtidal platform deposits. (G) Pebble-sized, subrounded 

mudclast in the uppermost part of channel lag sand. 

Channel-lag deposits 

These deposits occur in 20 cores and are up to 0.4 m thick. They consist of massive grey-

bluish medium sand overlying an erosional surface, cut onto the sub-tidal platform deposits (Fig. 

3.3A, F). They usually contain abundant shells and shell fragments (Fig. 3.3F), wood debris and 

mud clasts (Fig. 3.3F, G), that are up to 5 cm in diameter. Vertical burrows locally cut through the 

sand and underlying subtidal platform deposits (Fig. 3.3F). 
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These deposits accumulated as channel lag in the deeper part of the channel (cf. Barwis 

and Hayes, 1979; Terwindt, 1988; Rieu et al., 2005), where water flow reaches its maximum 

velocity causing erosion and bypass. This process causes deposition of the coarser sediments, 

which are accumulated along with shell fragments. Pebble-sized mud clasts derive from 

fragmentation of blocks collapsed from the channel banks (Klein, 1977; Terwindt, 1988). Although 

transport occurs under tractional conditions, repeated scouring and intense bioturbation 

contribute to produce structureless deposits. 

 

Point bar deposits 

These deposits are up to 1.7 m thick and are found in most of the cores located within the 

meander loop. They cover the channel-lag sand and are overlain by salt marsh (Fig. 3.4A) or 

channel-fill (Fig. 3.5A) deposits. They show a clear fining-upward (FU) grain size trend, defined by 

the vertical stacking of two main intervals (Fig. 3.4A). The basal interval, 0.8 – 1 m thick, consists of 

a grey-bluish medium to fine sand. This sand is mainly massive, contains scattered shells and rare 

mud clasts (Fig. 3.4D). Local occurrence of millimetric muddy laminae highlights plane-parallel 

stratifications, that can be up to 30° inclined (Fig. 3.4C). Bioturbation is common and in some cases 

can lead to the complete obliteration of primary sedimentary structures. The upper interval, 0.5 – 

0.8m thick, consists of massive mud with millimetric laminae of well-sorted fine to very-fine sand. 

These laminae range from inclined (18°) to sub-horizontal moving upward in the interval (Fig. 

3.4B). Bioturbation is common, whereas shells or shell fragments are rare. In the uppermost part 

of the interval, close to the transition with salt marsh deposits, organic-rich mud can locally occur. 
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Figure 3.4: Sedimentary features of point-bar deposits. (A) Sedimentological log across point bar and overlaying salt 

marsh deposits. (B) Point bar brink deposits showing a decrease in depositional angle marking the establishment of 

salt marsh sedimentation. (C) Laminated sand with muddy laminae in the central part of the bar. (D) Massive sand 

with shell fragments and isolated mudclasts in the lower part of the point bar. 

The fining-upward grain size trend and location of these deposits within the meander loop 

allow to interpret them as a point bar (cf. Rieu et al., 2005; Santos and Rossetti, 2006). Dominance 

of sand in the lower interval indicates that mud, accumulated on the bar during slack water 

phases, was removed by currents during both ebb and flood tide. The presence of sporadic muddy 

laminae may reflect settling during ebb or flood slough water, possibly during exceptional 

conditions such as during spring tides. Steeply inclined laminae would suggest gravitational 

deformations or minor collapses (Bridges and Leeder, 1976). In the upper part of the bar, the 
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dominance of silt indicates that sedimentation mainly occurred at flood peak, when fine-grained 

sediments settled from high water slack conditions. Millimetric laminae of well sorted sand 

formed during storm events, when salt marshes and bar top were winnowed by waves (cf. 

Fruergaard et al., 2011). The upward decrease in inclination of sandy laminae reflects the 

flattening of the bar morphology moving from bar slope to bar top. 

 

Channel-fill deposits 

These deposits, up to 1.9 m thick, occur in all the cores distributed along the oxbow lake 

and overlay the channel lag or point bar deposits (Fig. 3.5A). They consists of dark, organic-rich, 

massive mud (Fig. 3.5B) and contain bivalves in life position (Fig. 3.5C). Close to their base, they 

are slightly richer in fine sand and contain scattered plant fragments (Fig. 3.5D), whereas their 

uppermost part is locally characterized by oxidation (Fig. 3.5E).  

Location and sedimentary features of these deposits suggest that they settled down in the 

abandoned channel after its cutoff. The presence of a sandy fraction in the lower part of the 

channel-fill succession suggests that the channel was not abruptly deactivated, and a minimum 

amount of water flowed along the bend just after the cutoff event. After the final abandonment, 

mud settled down and caused the complete infill of the channel. Local presence of oxidation in the 

uppermost part of the channel fill indicates that mud was affected by subaerial exposure, 

heralding colonization from salt marsh halophytic vegetation.  
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Figure 3.5: Sedimentary features of channel-fill deposits. (A) Sedimentological log showing the gradual transition 

from point bar sand to channel-fill mud. (B) Massive channel fill mud. (C) Bivalve in fife position in muddy deposits. 

(D) Sandy mud at the transition between point bar and channel fill deposits. (E) Oxidized uppermost channel fill 

mud. 

3.2.5.2 Sediment distribution and stratal geometries 

The study bar and its basal lag overlay subtidal platform sediments and are covered by 

both channel-fill and salt-marsh deposits (Fig. 3.6). Thickness of the channel lag deposits reaches 

its maximum in the bend apex zone, where the coarsest sand fraction is also concentrated. The 

overall fining upward grain size trend of the bar is well-developed, although the landward side 
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appears to be slightly sandier and coarser than the seaward one. Sandy laminae that typify the 

upper part of the bar occur in different portions of the bar, with similar frequency and thicknesses, 

without showing any specific distribution. Cross sections oriented both parallel and transverse to 

the point bar axis (Fig. 3.6A) show that bar deposits thicken toward the bend apex and the 

inflection points, and that thickening of the bar occurs in parallel with thinning of the overlying salt 

marsh deposits.  

 

Figure 3.6: (A) Cross sections across the study point bar. (B) Section transverse to the point bar axis. Note that the 

bar top surface show a concave-upward geometry. (C) Section parallel to the point bar axis showing the progressive 

progressive channelward thickening of the bar deposits. 

Spatial interpolation of core data allowed us to define geometry of three key surfaces: i) 

point- bar base; ii) point-bar top and iii) channel-fill base.  

The point-bar base (Fig. 3.7A) is represented here as the erosive surface capping the sub-

tidal platform deposits and flooring the channel-lag or, where it is missing, the point-bar sand. This 

surface is relatively smooth and has a lunate plane-view shape. It dips (4 – 6°) radially toward the 

thalweg zone, and, in a section parallel to the bend axis, it lowers down of about 0.8 m. In the 
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bend apex zone, the point bar basal surface defines a localized, elongated depression that follows 

the orientation of the channel. The point bar top surface divides the point bar body from the 

overlying salt-marsh and channel-fill deposits (Fig. 3.7B). This surface shows an overall topographic 

relief of about 1.9 m and is characterized by a lunate plan-view shape. The portion of this surface 

that is covered by salt marsh deposits shows a concave-upward, spoon-shaped geometry, whose 

axis is parallel to that of the channel bend. This depression has a topographic relief of about 0.6 m, 

and its rim corresponds to the point bar brink (i.e. inner bank of the abandoned channel; Fig. 

3.7B).  

 

Figure 3.7: Point bar geometries. (A) Elevation model of the point bar basal surface showing the elongate scour 

depression formed by lateral migration of the pool zone. (B) Elevation model of the point bar morphology. Note the 

depression (yellow surrounded by red color) occurring on the bar top area. 

The channel base is defined by the surface flooring the channel-fill deposits (Fig. 3.8A). The 

topographic relief of this surface reflects the depth of the abandoned channel. It spans from 1 m, 
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in the riffle zones, to about 2 m, in correspondence of the bend apex, where an elongate pool 

depression (Fig. 3.8A) is characterized by the occurrence of two main scours, located just landward 

and seaward of the bend apex (Fig. 3.8B). The seaward and landward scours are 1.7 and 1.9 m 

deep, respectively, and their distance is about 15m (Fig. 3.8C). Basing on the morphology of this 

surface, the related channel was characterized by a width-to-depth ratio of 3 and 4 in the pool and 

riffle zone, respectively.  

 

Figure 3.8: Channel-fill geometries. (A) Plane view of the relief map showing distribution of the deeper areas of the 

channel base. (B) Elevation model of the channel basal surface. (C) Cross section along the thalweg in the pool zone. 

Note the occurrence of two main scours probably associated with activity of the ebb and flood secondary cells. 
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3.2.6 Discussion 

3.2.6.1 Sediment distribution along the bend 

The occurrence of the point bar body between sub-tidal platform and salt-marsh deposits 

(Fig. 3.6) suggests that the study channel started to develop in the lower part of the intertidal 

zone, which then evolved into a salt marsh platform and was progressively colonized by 

vegetation, as attested by the widespread diffusion of root remains in the uppermost 0.6 m of the 

overbank succession (Fig. 3.3A and 3.6). The establishment of a salt marsh environment 

corresponds to the onset of bar growth, suggesting that development of vegetation stabilized the 

channel banks, promoting lateral migration of the channel bend (cf. Peakall et al., 2007). Sediment 

distribution and geometries of point-bar body suggest a number of similarities between tidal and 

fluvial point bars, such as the “classical” fining upward grain-size trend (McGowen and Garner, 

1970; Brice, 1974; Jackson, 1976; Nanson, 1980), or the development of levees along the outer 

bank (Kolb, 1963; Cazanacli and Smith, 1996; Houdson et al., 2003). On the other hand, several 

differences can be also noted, such as the absence of crevasse-splay deposits along the outer bank 

and the uniform distribution of sediment grain size along the bar. Crevasse splay deposits 

represent a distinctive feature of overbank areas in alluvial plain settings (Smith et al., 1989; Mjos 

et al., 2009; Ielpi and Ghinassi, 2014); they commonly develop along the outer bank of open 

bends, where the flood flow impinges and break through the bank at the bankfull stage. In salt 

marsh channels, development of crevasse splay would be potentially triggered only by flood flows, 

but their formation is hindered by the absence of long-lasting, exceptionally-high discharges 

resembling fluvial floods.   

The depth-averaged flow velocity and the related bed shear stress play a key role in 

determining mean grain size distribution along channel bends. In fluvial meanders, these 

quantities reach higher values along the upstream portion of the point bar, and along the outer 
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bank at the downstream end of the bend (Dietrich and Smith, 1983; Frothingham and Rhoads 

2003; Kasvi et al., 2013). Accordingly, grain size significantly fines downstream along fluvial point 

bars (Jackson, 1976; Smith et al., 2009; Hubbard et al., 2011; Labrecque et al., 2011; Ielpi and 

Ghinassi, 2014). The overall nearly symmetric distribution of sediment grain size along the study 

bar, highlights that its seaward and landward sides behaved cyclically as upstream and 

downstream bar sectors, experiencing similar changes in the intensity of bed shear stresses. 

Although salt marsh channels are usually dominated by ebb currents (Bayliss-Smith et al., 1979; 

Fagherazzi et al., 2008; Hughes, 2012), this asymmetry was not strong enough to be significantly 

reflected in the grain-size distribution along the bar, and is possibly documented by the 

occurrence of slightly coarser sand along the landward side of the bar. A further effect of the 

current reversal is the cyclic relocation of the flow impingement point (Hughes, 2012) along the 

outer bank. This causes development of two distinct helicoids (i.e. flood and ebb helicoids) that act 

at different times and different areas of the bend apex zone. Such a flow configuration is 

responsible for the elongated shape of the pool zone (Fig. 3.8A), where the two scours are thought 

to reflect localized erosion, triggered by flood and ebb helicoids. 

 

3.2.6.2 Bed aggradation and bar geometry 

Surfaces bounding the base (Fig. 3.7A) and the top (Fig. 3.7B) of the study bar diverge 

toward the outer bank zone in correspondence of the bend apex, causing an overall thickening of 

the bar from 1.5 to about 2 m (Fig. 3.6C). The basal surface of the bar represents the trajectory 

along which the channel lag moves during the meander bend evolution. The lowering of the basal 

surface during channel migration, results from the progressive increase in sinuosity of the channel, 

that increases the erosion by the helicoidal flow, which in turn downcuts deeper in the bend apex 

zone (Willis and Tang, 2011). The bar top surface is shaped by the progressive lateral and upward 
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shift of the point bar brink. The intersection between this surface and the axial plane of the bend 

defines the brinkpoint trajectory (Fig. 3.9). In both transverse and longitudinal sections (Fig. 3.6), 

the bar top surface rises, indicating that channel migration occurred during aggradation of 

surrounding salt marshes. In equilibrium conditions, like those occurring in the S. Felice area 

(Roner et al., 2015), the rate of salt marshes aggradation keeps pace with the rate of relative sea 

level rise, through organic and inorganic sediment accumulation (Morris et al., 2002; D’Alpaos et 

al., 2007; Mudd et al., 2010). As a result, channel banks rise causing a progressive channel 

deepening, that is further enhanced by the aforementioned lowering of its basal erosional surface. 

Lateral migration of the channel is, therefore, associated with an increase in its cross-sectional 

area, which adapts to the progressively increased tidal prism (D’Alpaos et al., 2010). A similar 

process is documented in Holocene tidal channels, offshore of western Netherlands (Rieu et al., 

2005), where the increase of tidal prism is entirely accommodated by the basal scouring of the 

channel. Progressive rise of basal channel surface, as that documented by deMowbray (1983), 

would therefore suggest a subtle increase of the tidal prism, that forces the channel cross-

sectional area to remain constant through in-channel aggradation. 

 

Figure 3.9: Schematic cross section parallel to the meander bend axis. Note the rising trajectory of the bar brink 

zone and lowering of the basal point bar surface. 

Bar top aggradation contributes also to explain the absence of a scroll-bar morphology on 

top of tidal point bars. In fluvial settings scroll-bar morphology develops during large flood events  

(Nanson, 1980; Nanson and Hickin, 1983), when a large amount of sediment is pushed on the bar 

by the secondary circulation. In tidal settings, the absence of a sustained secondary circulation 
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during most of the tidal cycle along with the limited range of flowing discharge (Fagherazzi et al., 

2008; Hughes, 2012) hinders this process. Additionally, the salt marsh accretion on bar top rapidly 

smooths all the possible subtle scroll-bar morphologies. 

The mean vertical aggradation rate of the San Felice salt marsh is about 2.5-3 mm/yr 

(Bellucci et al., 2007; Rizzetto and Tosi, 2011). This suggest that the 60 cm thick salt marsh 

deposits covering the oldest part of the bar (Fig. 3.9) started accumulating around 200-240 years 

ago. The lifespan of the bar is about 135-175 years, since aerial photos show that cutoff occurred 

at the beginning of the 50’s (Rizzetto and Tosi, 2012). It follows that the average lateral migration 

rate of the study meander was about 8-10 cm/yr, being the distance covered by lateral migration 

of 14 m (Fig. 3.6 and 3.9). This rate of channel migration is consistent with other studies (Garofalo, 

1989; Gabet, 1998), and specifically with rates obtained by recent works on channels of the Venice 

Lagoon (Finotello et al., 2015). The occurrence of medium pebble-sized mud clasts in channel lag 

deposits is consistent with a slow migration rate. Their presence suggests that large blocks, 

collapsed from channel banks (c.f. Gabet, 1998; Fagherazzi et al., 2004), remained for a long time 

in the thalweg zone, where they are comminuted before to be buried the adjacent laterally 

migrating bar. This scarce mobility of the channel can be partially explained by the stabilizing 

effect of vegetation and cohesive sediments (Hooke, 2013; Marani et al., 2002), although a 

relevant contribute to hindering lateral migration is certainly provided by the absence of long-

lasting, high-discharge events, like those affecting river meanders (Moody and Meade, 2014).  

Research studies on floodplain sedimentation (e.g. Middelkoop and Asselman, 1998; 

Erkens et al., 2011; Stouthamer et al., 2011) show that the rate of fluvial overbank aggradation is 

comparable with that of the study case. The scarce documentation of geometries, like those 

highlighted in the present study, suggests that in fluvial realm the effects of overbank aggradation 

are commonly nullified by high rates of lateral migration (Hickin and Nanson, 1975; 1984; 1986; 
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Brice, 1977; Biedenham et al., 1989; Lagasse et al., 2003; 2004; Moody and Meade, 2014), which 

are known to be at least an order of magnitude higher than in tidal setting (Allen, 2000). A fluvial 

channel with the same geometry (i.e. width and radius of curvature) of the study bend, might 

migrate over the same distance within about 20-25 years (Hickin and Nanson, 1985; Hooke, 1997; 

2007; Biedenham, 1984), producing, with a bed aggradation of about 2.5-3 mm/yr, a negligible rise 

of the point bar brink trajectory (c.a. 6 cm). This suggests that outcrop examples, where the effects 

of bed aggradation on meander belt geometries is manifested (Ghinassi et al., 2014), are 

associated with floodplain aggradation rates of centimeters per year, as also demonstrated by 

numerical simulations (van de Lageweg et al., 2015).  

 

3.2.7 Conclusions 

Stratal architecture and sedimentary features of a meander bend in the northern Venice 

Lagoon provided insights to understand the morphodynamic evolution of tidal point bars, and to 

compare them with their fluvial counterparts. The highlights of the present study are graphically 

summarized by figure 3.10 and can be listed as follows: 

1) Tidal meander bends are characterized by well-developed, sand-rich levee deposits. 

Differently from fluvial setting, limited range of flowing discharge prevents levee breaching and 

formation of crevasse splays.  

2) In a symmetric tidal meander bend, during a tidal cycle, the seaward and landward sides 

of the tidal point bar act as upstream and downstream bar sectors and experience bed shear 

stresses of similar magnitude. In the studied bar, this causes an overall symmetric distribution of 

sediment grain size along the bar. 
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4) The bi-directionality of tidal currents causes secondary circulations to cut an elongated 

pool scour, that can be characterized by two minor depressions possibly associated to ebb and 

flood secondary cells. 

5) The bar migrated laterally and increased its cross-sectional area both scouring its base 

and lifting up its banks. This allowed the channel to compensate the progressive increase in the 

tidal prism.  

6) Combination between lateral migration (8-10 cm/yr) and vertical aggradation (2.5-3 

mm/yr) provided a spoon-shaped geometry to the bar top surface. Although meandering rivers 

can be affected by comparable rates of floodplain aggradation, development of similar geometries 

is hindered by their high lateral migration rate, that allows the cutoff to be reached before that a 

significant thickness of deposits is accumulated on the bar top. 

 

Figure 3.10: Block diagram summarizing the main architectural and sedimentological features of the study bar. 
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CHAPTER 4 

MORPHODYNAMICS, STRATAL PATTERNS AND SEDIMENTARY PROCESSES 

OF A SUBTIDAL POINT BAR 

 

4.1 OVERVIEW 

 This chapter represents a journal paper in preparation. It deals with sedimentary processes 

and planform evolution of a subtidal channel in the southern Venice Lagoon. This work is based on 

the interaction between remote sensing, seismic and sedimentological data. The results stemming 

out from this work show that the study channel evolves under the interaction between tidal and 

wave currents, and that lateral accretion occurs in parallel with top bar and overbanks 

aggradation. 

 

4.2 PAPER 

LARA BRIVIO1, MASSIMILIANO GHINASSI1, ANDREA D’ALPAOS1, ALVISE FINOTELLO1 

1 Department of Geosciences, University of Padova, Padova, Italy. 

 

4.2.1 Abstract  

 Facies models for tidal meander bends are essentially based on modern channels 

developed in the intertidal zone, whereas limited attention has been paid to sedimentary 

processes and stratal architecture characterizing subtidal channels. The present study aims at 

improving our understanding of subtidal point bars formed in a lagoon affected by microtidal 

regime, analyzing a submerged meander bend in the southern part of the Venice Lagoon (Italy). 

The study channel is 70-100 m wide, has radius of curvature of about 260 m and develops on a 
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constantly submerged subtidal platform. Water depth ranges from 1 to 5 m above the mean sea 

level on the subtidal platform and channel thalweg, respectively. The present work is based on 

coupling of remote sensing (i.e. comparison between historical maps, aerial photos and satellite 

images), sedimentological (i.e. core logging) and geophysical analyses (i.e. sub-bottom profiles). 

Differently from classical model developed for tidal point bars, sedimentation in the study bar 

stemmed out from the interaction between the in-channel secondary helical flow and wave 

winnowing of the overbank areas. The helical flow redistributed sediment from the channel 

thalweg to the bar top and contributed to development of the “classical” fining-upward grain size 

trend of point bar deposits. Wave-winnowing of the overbank areas drifted sediment into the 

channel, forming peculiar apron-like accumulations both along the outer and inner bank. Coupling 

between remote sensing data and sub-bottom profiles shows that, over the past century, 

sedimentation was not uniform in different sectors of the meander bend. Maximum values of 

channel migration rate (dm/yr), nevertheless, are still in the range of those measured for tidal 

channels.  The sector of the bar affected by major lateral shift was also affected by strong vertical 

aggradation (ca. 1 cm/yr). In this zone, the rising and flattening bar brink point trajectory indicates 

the progressive decrease in aggradation rate, which is associated with reduction of sediment 

supply affecting the lagoon over the past century.  

 

Keywords: subtidal meander, tidal currents, morphodynamics, aggradation, lateral accretion, 

Venice Lagoon 

 

4.2.2 Introduction 

Tidal channels constitute the pathway for propagation of tides and sediments and act a 

primary control on the sedimentation and ecology of lagoons and estuaries (Hughes, 2012). Tidal 
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channels cut through the tidal basin forming complex dendritic networks, in which minor creeks 

usually converge into a major channel (Ashley and Zeff, 1988; Fagherazzi et al., 1999). Meandering 

channels are very common in tidal setting, and they can be located either in the intertidal or the 

subtidal zone (Bartholdy, 2012) and, therefore, they can be either periodically or constantly 

submerged by water. Geomorphological and sedimentological models for tidal meanders entirely 

derive from modern intertidal, tidal flat channels (Land and Hoyt, 1966; Howard et al., 1975; 

Barwis, 1978; de Mowbray, 1983; Bridges and Leeder, 1976; Choi et al., 2004; Choi, 2011; Hughes, 

2012), where overbank areas are generally exposed during low tide. Such meanders usually 

develop on muddy or sandy substrates, on which the vegetation cover can range from absent to 

widespread. Point bars associated with intertidal meanders show an overall architecture which is 

comparable with their fluvial counterparts (Allen, 1963; McGowen and Garner, 1970; Brice, 1974; 

Jackson, 1976; Nanson, 1980), because channels are characterized by similar sinuosity, and 

accretional and erosional processes along the inner and outer bank respectively (e.g. Allen, 1982; 

Solari et al., 2002; Seminara et al., 2002). Beyond such affinities,  sedimentary facies distribution 

would be different in tidal and fluvial point bars since: 1) tidal channels are affected by flow 

reversal; 2) tidal discharge fluctuates within a defined range, whereas fluvial discharge can be 

characterized by a more marked variability; 3) tidal channels experience condition of slack water 

even without be abandoned; 4) expansion of tidal channels is commonly associated with an 

increase in channel width, whereas the width of fluvial channels keeps almost constant during 

planform transformations. 

The differences between fluvial and tidal meanders appear to be even more evident 

considering subtidal channels. These channels are common close to the inlets that connect 

lagoons with the open sea, and form a complex tributary system, which can connect its landward 

reaches with the intertidal channel network. Differently from alluvial plains, which can be 
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inundated only during exceptional floods, subtidal meanders and related overbank areas are 

constantly submerged. Hydrodynamic of these channels is extremely complex, since both 

minimum and maximum velocities of tidal currents are experienced when both the channel and 

related overbanks are flooded. Flow distribution within the channel can be influenced by currents 

developed in overbank areas, promoting a hydrodynamic configuration which can control times 

and modes of channel planform evolution.  In subaqueous setting, water-saturation of the point 

bar deposits decreases the intergranular friction and promotes collapses along the bar flanks 

(Bridges and Leeder, 1976; Choi et al., 2013). Moreover, where subtidal platforms hosting 

channels occur in wide and shallow lagoons, inter-channel areas can be affected by strong wind-

induced wave winnowing, which can influence sediment distribution along the channels draining 

the platforms. Although the combination of the aforementioned features can sign the stratal 

patterns and sedimentary facies distribution of subtidal point bars, specific facies models for these 

bars are missing, and documentation of these deposits in the fossil record is limited to their 

occurrence on top of coarsening-upward successions associated with tidal flood deltas. 

Towards the goal of providing new insight into the morphodynamic evolution and sedimentology 

of subtidal meander bends, the present study investigates a submerged meander, located in the 

southern Venice Lagoon (Adriatic Sea, Italy). A multidisciplinary approach was chosen in order to 

reconstruct the meander bend evolution and its internal architecture. The planform evolution of 

the study bend during the last century was obtained through the comparison between detailed 

historical maps, aerial photos and satellite images. High-resolution geophysical investigations 

along with the analysis of sedimentary cores allowed to depict the sedimentary facies and internal 

architecture of the point bar deposits and outer bank region. Integration between the 

aforementioned datasets allowed to depict a facies model for subtidal channel developed in 

lagoons affected by micro-tidal regimes. 
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4.2.3 Geological Setting 

4.2.3.1 The Venice Lagoon 

The Venice Lagoon, located in the NE sector of Italy (Fig. 4.1A), is situated in the Venetian 

foreland basin, which developed between the South-Alpine and the Apennine chains since the 

Late Oligocene (Massari et al., 2009). During the Early Pleistocene, the basin experienced deep-

water deposition; afterwards it was filled up with about 750 m of shallowing-upward deposits, 

spanning from turbidites to shallow marine (Massari et al., 2004). The Venice Lagoon formed 

during the last 7500 years as a consequence of the Holocene transgression, which promoted the 

formation of lagoon – estuarine – barrier systems in the Northern epicontinental Adriatic shelf, 

through the flooding of the Late Pleistocene alluvial-plain (Zecchin et al., 2009). The modern 

Venice Lagoon (Fig. 4.1B), forms an elongated, NE-SW oriented basin, which represents the largest 

Mediterranean brackish water body (roughly 550 km2), with a length of about 50 km and 10 km 

width. The lagoon average depth is of about 1.5-2 m. It is connected to the Adriatic Sea through 

three inlets (Lido, Malamocco and Chioggia; Fig. 4.1B) and is subjected to a semidiurnal tidal 

regime, with an average tidal range of about 1.0 m and peak tidal amplitudes of about 0.75 m 

(D’Alpaos et al., 2013) around Mean Sea Level (MSL). 

 

4.2.3.2 The study site 

This study focuses on the Portosecco channel, which is located in the southern Venice 

Lagoon, about 3 km east of the Malamocco inlet (Fig. 4.1B, C). The Portosecco subtidal channel 

ranges in width between 70 and 100 m, shows a wavelength of about 1 km and a radius of 

curvature of 260 m (Fig. 4.1D). The channel bend axis trend about EW. The channel develops on a 

subtidal platform, locally covered by widespread seagrass meadows. Average water depth on the 

subtidal platform is about 1 m below the mean sea level (MSL), whereas the channel thalweg 
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ranges between 4 and 5 m below the MSL. The width to depth ratio of the channel is around 19. In 

the southernmost reach of the study bend (Fig. 4.1D), the channel branches around a relief that is 

about 1.7 m high from the channel floor. This relief has an elongated planform shape, and is 60 m 

wide and 300 m long.  

 

Figure 4.1: Geographic location of the study site. (A) Location of the Venice Lagoon in the Mediterranean Sea. (B-C) 

Position of study site in the central part of the Venice Lagoon. (D) Satellite image (from Google™ Earth) showing the 

study meander bend and acquisition scheme of sub bottom profiles. Yellow dots show location of sedimentary 

cores. 

4.2.4 Methods 

The present work is based on coupling of remote sensing, sedimentological and 

geophysical analyses. The terms used here to define different parts of the channel bend and 

related deposits (Fig. 4.2), are similar to those used for fluvial meanders and related deposits (Ielpi 

and Ghinassi, 2014). Considered the bidirectional nature of tidal currents along the meander bend, 

the upstream and downstream sides of the point bar are named here landward and seaward side, 

respectively (Fig. 4.2). The point bar brink (Fig. 4.2) is named here as the rim separating the top of 

the bar from its slope. 
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Figure 4.2: Descriptive terminology for tidal meander bends and related point-bar architecture. 

4.2.4.1 Historical data analyses 

The historical planform evolution of the study area was recovered using georeferenced CTR 

map (1900), aerial photo (1962) and satellite image (2015), which offer a cover for an overall time-

span of about 100 years (Fig. 4.3A). The subtidal channel banks were digitized for each year using 

ArcGIS, to determine the distribution and the size of areas in which erosion and/or deposition took 

place, as consequence of channel migration. The planform evolution of the Portosecco channel 

has been defined through the comparison between maps of its boundaries: 1900 vs 1962 (Fig. 

4.3B); 1962 vs. 2015 (Fig. 4.3B) and 1900 vs. 2015 (Fig. 4.3C). These maps allow to define the 

maximum rates of bank shifts, for each study time interval.  
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Figure 4.3: Planform evolution of the study bar. A) Historical maps and aerial photos used for comparing different 

stages of channel bend evolution. B) Distribution of erosion and deposition during different stages (1900 vs. 1962 

and 1962 vs. 2015) of channel development. C) Net erosion and deposition occurred along the eastward bank of the 

study channel between 1900 and 2015. 

4.2.4.2 Sedimentary core analysis 

Using a hand auger coring sampler, which prevents sediment compaction, eight 

georeferenced cores were recovered in selected sites (Fig. 4.1D), in order to calibrate the sub-

bottom sections and define sedimentary features of point bar and overbank deposits. Coring 

depth spans from 1 to 3 m and cores are 3.5 cm in diameter. Collected cores were kept humid in 

PVC liners and successively cut longitudinally, measured and photographed. Core logging was 

carried out following the basic principles of facies analyses, highlighting sediment color and grain 

size, presence of sedimentary structures, vertical grain-size trends, degree of bioturbation and 

presence of vegetal and/or shell remains.  

 

4.2.4.3 Sub bottom profiles 

In order to analyze the point bar internal architecture, sub-bottom profiler investigations 

were carried out boating over the channel and related overbank areas. Data acquisition took place 

in ultra-shallow water conditions, with an average water level lower than 1 m deep. Seismic data 
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were acquired along 28 transects, oriented both parallel to the North (3) and perpendicular (25) to 

the channel of the meander (Fig. 4.1D). Profiles were acquired by using a sub-bottom profiler that 

during the acquisition worked with acoustic pulses in Continuous Waveform (CW) mode, using a 

3.5 kHz frequency and short pulses (0.5-3 msec). Low frequencies were used to investigate the 

subsurface architectures. Processing was carried out by means of Seisprho software, using a signal 

velocity of 1500 m/s. Position data and acquisition tracks were registered through GPS (two 

TOPCON GR-3 receivers – dual frequency (L1/L2) and dual constellation (NavStar/Glonass), with 

integrated Tx/Rx UHF radio were used) and then processed through the Geo Office software of 

Leica. The diffuse seagrass meadows, together with ultra-shallow water conditions and presence 

of gas, locally prevented acquisition of high-resolution data. 

 Three representative sections, located in the landward, central and seaward side of the 

channel bend respectively (Fig. 4.1D), were analyses integrating planform evolution of the bend 

(Fig. 4.3A) with seismic data. Specifically, by means of a 3D modelling software (Move 2014.2TM), 

the position of the inner bank of the bend in 1900 and 1962 was projected in these specific 

section, allowing detection of stratal architectures developed over the past century. 

 

4.2.5 Results 

4.2.5.1 Planform evolution 

The comparison between the historical CTR map (1900) and the aerial photo acquired in 

1962 (Fig. 4.3B) shows that the bar slightly accreted laterally, with a maximum shift of about 24 m 

along its seaward side that occurred with a rate of ca. 40 cm/yr. A slight migration rate 

characterized the landward side of the bar, whereas the bend apex remained almost stable. In 

parallel, erosion occurred north and south of the study bar along the eastern bank of the channel 
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(Fig. 4.3B). The maximum of bank retreat occurred North of the bar, where the bank shifted 109 m 

eastward, with a migration rate of ca. 175 cm/yr. 

Between 1962 and 2015, most of the eastern bank of the channel accreted, and erosion 

was limited to its northern reach (Fig. 4.3B). The maximum accretion occurred in the southern 

reach of the channel, where erosion dominated between 1900 and 1962. Here the eastern bank of 

the channel shifted westward of 23 m, with a rate of about 43 cm/yr. Erosion decreased in the 

northern areas, where the eastern bank retreated of 24 m, with a rate of 45 cm/yr. The bend apex 

remained almost stable during this stage. 

A comparison between the historical CTR map (1900) and the 2015 configuration (Fig. 4.3C) 

shows that the overall morphology of the study bar did not vary significantly over the past 115 

years. Over this time span, the bar slightly accreted laterally, with a total shift of about 50 m along 

its seaward side. The landward side shifted laterally of about 16 m, whereas the bend apex 

remained almost stable. Seaward of the study bar, where erosion was dominant, the eastern bank 

of the channel retreated of about 126 m. The final result of the alternation between erosion and 

deposition in the southern reaches of the eastern bank, was an overall bank retreat of about 35 m. 

The overall effect of these planform changes was an increase of the radius of curvature from 220 

to 280m, without any relevant shift of the bend apex. 

 

4.2.5.2 Sedimentary features 

Point bar deposits 

Point bar deposits consist of sub-horizontal beds that cover a clinostratified interval (Fig. 

4.4 and 4.5A). These deposits have been cored for about 2 - 2.5 m, although seismic data show 

that they are up to 5 m thick (Fig. 4.4) and that can be followed for about 80-90 m in dip direction. 
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Figure 4.4: Clinostratified deposits. A) Sub-bottom profile along the point bar axis and relative interpretation 

coupled with core data. B) Close view of A showing correlation between cores with vertical exaggeration. C) 

Location of the study profile. 

Clinostratified deposits are made of dark-colored, 0.5-3 cm thick heterolithic beds, 

consisting of alternating mud and fine to medium sand, with abundant plant and shell debris (Fig. 

4.5A, B). The uppermost 1.8 m of these deposits show a clear fining-upward grain size trend, that 

is commonly associated with a thinning of beds. Inclined beds dip between 10° and 3°, and they 

flatten out moving upward (Fig. 4.4B). Mud is generally massive, although plane parallel 

laminations are locally preserved and highlighted by the presence of millimetric, dark, organic 
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laminae (Fig. 4.5B, D). Sandy layers are commonly normal graded (Fig. 4.5B) with a sharp, erosive 

base (Fig. 4.5E). Sand is well-sorted, mud-deprived and contains millimetric shell fragments and 

rare gastropods. Plant debris are very abundant in these sandy layers (Fig. 4.5C), and can be 

concentrated in the upper part of the normal graded beds (Fig. 4.5B, C), where a subtle plane 

parallel stratification occurs. Bioturbation is not common, and isolated, sub-vertical, cylindrical 

burrows (Fig. 4.5E) have been detected in some cores. Integration between core and seismic data 

shows that changes in grains size and dipping angle can occur in adjacent bedsets (Fig. 4.4). 

Horizontal-bedded deposits sharply overlay the clinostratified sand and mud (Fig. 4.4A and 

4.5A) and thin from 80 to 10 cm moving toward the bend apex (Fig. 4.4B). They consist of poorly-

defined, 3-5 cm thick beds of grey sandy silt to fine sand with subordinate mud. Sandy and silty 

beds are massive and contain scattered plant debris or shell fragments (Fig. 4.5G, K). The basal 

boundary of sandy beds is commonly sharp, and marked by accumulations of shell fragments (Fig. 

4.5F, H). Bivalve shells from these layers are commonly abraded (Fig. 4.5I). Muddy silt can show a 

subtle lamination, commonly marked by plant detritus. Bioturbation is diffuse and causes local 

deformation of the thinner layers (Fig. 4.5F). Horizontal-bedded deposits show an overall, 

coarsening-upward grain-size trend from silt to medium-fine sand; although correlation between 

adjacent cores shows that also lateral changes in grain size occur over distances of few tens of 

meters. 
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Figure 4.5: Core data from clinostratified and horizontally-bedded bar deposits. A) Sedimentological log from core 2 

of figure 4.4A. B) Inclined heterolithic deposits and related sedimentological log. Note the clear normal grading 

characterizing some of the sandy layers. C) Plant-debris rich, laminated sandy deposits. D) Plant-debris laminae in 

muddy layers. E) Normal-graded sandy layer abruptly overlaying a muddy interval. F) Horizontally-bedded deposits 

and related sedimentological log. G) Structureless sand with scattered shell fragments. H) Shell rich layer within 

sandy deposits. I) Detail of H showing abrasion of a Cerastoderma edule shell. J) Dispersed plant debris in muddy 

deposits. K) massive sand with dispersed plant debris. 
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Overbank deposits 

Overbank deposits are horizontally bedded and have been cored up to a depth of 3 m 

below the lagoon floor, in the bend apex zone (Fig. 4.6A). They consist of bioturbated, dark grey, 

mud, muddy silt and sand, which form beds ranging in thickness between 5 and 100 cm (Fig. 4.6B). 

In the upper portion of the core, muddy silt is massive and dark gray, and contains abundant shells 

and shell fragments (Fig. 4.6D). Irregular, organic-rich layers with abundant small gastropod shells 

can be interbedded within the muddy silt (Fig. 4.6C). Sandy deposits can occur as 1-2 cm thick 

irregular layers within the silt (Fig. 4.6F), or form 10-15 cm thick structureless beds (Fig. 4.6E). This 

sand can be slightly laminated, although it is commonly massive because of the intense 

bioturbation. Wood fragments and plant debris (Fig. 4.6E) are common.  

Overbank deposits appear to be similar to those cored in the uppermost part of the inner 

bank, although the latter are sandier and show a lower content in organic matter. These deposits 

do not show any significant vertical grain size trend, although the uppermost part of the cored 

deposits is made of shell-rich silty sand deposits. 
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Figure 4.6: Overbank deposits. A) Sub-bottom profile from the bend apex zone showing location of the sedimentary 

core shown in B. B) Sedimentological log across the horizontally-bedded outer bank deposits. C) Deformed, organic-

rich layers with abundant gastropod shells. D) Shell-rich sandy layer. F) Irregular sandy layer within massive mud. E) 

Massive sand with plant debris. 
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4.2.5.3 Stratal geometries 

Seismic sections from both point bar and overbank areas provided insights to detect 

definite architectural features, basing on the occurrence of truncations, erosive surfaces and 

changes in dip angle of beds. Seven main types of stratal geometries (SG1 - 7) were defined (Fig. 

4.7, 4.8 and 4.9) and briefly summarized in figure 4.10. The first four types of stratal geometries 

(SG1 – 4) occur within the clinostratified point bar deposits. SG5 characterizes the horizontally-

bedded sediments occurring either on point bar top and in the overbank areas. SG6 was identified 

along the outer bank zone, whereas SG7 occurs at the toe of both inner and outer bank. 

 

Figure 4.7: Clinostratified point-bar deposits. A) Location of sections shown in B and C. B-C) Mounded (B) and (C) 

sub-horizontal clinostratified deposits filling a collapse scour in the upper part of the bar. 

SG1 – Regularly-bedded clinostratified point bar deposits, consisting of conformably 

stacked beds dipping between 10° and 3° with a gently convex profile (Fig. 4.7B, 4.8B and 4.10). 

They form bedsets up to 4-5 m thick. Core data show that the upper 1.8 m of these deposits are 

characterized by a clear fining-upward grain size trend (Fig. 4.4B). 

 SG2 – Clinostratified deposits are cut by a surface dipping channelward about 3-10° and 

showing a concave-upward profile. The surface has an overall erosional relief of about 1.5 – 2 m 
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and is covered by 0.5-1 m thick deposits that merge channelward with clinoforms. These deposits 

show two main stratal patterns, which define an overall fining-upward grain size trend. The first 

pattern (SG2a) is represented by sub-horizontal beds that are locally cut by minor truncations with 

an erosional relief of about 0.3 – 0.5 m (Fig. 4.7C, 4.8C and 4.10). The second pattern (SG2b) is 

defined by beds that show an overall convex-upward profile, with minor truncations (Fig. 4.7B and 

4.10). SG2 deposits characterize the upper, mud-rich part of the clinostratified deposits, and are 

common along the seaward portion of the point bar and close to the bend apex. 

 

Figure 4.8: Clinostratified point-bar deposits. A) Location of sections shown in B and C. B-C) Different stratal 

geometries characterizing the uppermost part of the clinostratified deposits and overlying horizontally-bedded 

sediments. 

SG3 – Clinostratified deposits downlapping: i) more inclined beds (ca. 4°) without clear 

evidence of erosion (SG3a; Fig. 4.8C and 4.10) or ii) a channelward-dipping, concave-upward 

surface (SG3b; Fig. 4.8B and 4.10). Bedsets with downlapping beds show a vertical grain size trend 

that ranges from undefined to slightly coarsening upward (Fig. 4.4B).  



73 
 

SG4 – Clinostratified deposits are onlapped by less-inclined beds (ca. 4°) without any 

evidence of truncations (Fig. 4.8C). This stratal pattern marks the boundary between two adjacent 

bedsets and mainly occurs in the middle-upper part of the clinostratified interval. 

SG5 – Horizontally-bedded sediments forming either the uppermost part of the point bar 

succession or the overbank areas. They are up to 80 cm and at least 10 m thick in point bar and 

overbank areas respectively. SG5a show a laterally continuous bedding and lack any evidence of 

internal truncations (Fig. 4.8C, 4.9C and 4.10). Stratal surfaces can be followed for long distances 

without any significant change in attitude or geometry. SG5b shows local truncations (Fig. 4.8B, 

4.9B and 4.10) with an erosional relief of about 15-30 cm. These truncations define minor 

depressions, which are commonly filled with regularly bedded deposits. 

 

Figure 4.9: Outer bank deposits. A) Location of sections shown in B, C and D. B) Horizontally-bedded deposits and 

downlapping beds occurring in the outer bank zone. C-D) Collapse deposits developed at the toe of the outer (C) 

and (D) inner bank. 
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SG6 – Inclined beds dipping between 5and 10° channelward and forming sets no more than 50 cm 

thick. Commonly, these beds drape and downlap the outer bank of the channel, pinching out 

before reaching the thalweg (Fig. 4.9B and 4.10). Made exception for their location along the outer 

bank and their steeper depositional angle, these deposits are similar to those of SG3a.  

SG7 – Deformed deposits occurring in the lower part of the inner and outer bank. Internal 

stratal pattern defines mounded units, with a relief spanning from 10 to 100 cm (Fig. 4.9C, D and 

4.10). These mounds are locally separated by minor truncations. 

 

Figure 4.10: Summary of the different geometries and related grain-size trend. 
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4.2.5.4 Linking channel planform evolution with bar architecture 

The channel planform evolution of the channel bend was linked with point bar stratal 

architecture, placing the position of the inner bank (i.e. point bar brinkpoint) during 1900 and 

1962 (Fig. 4.11A) above selected seismic lines (Fig. 4.11B, C, D), which are located in the seaward 

(line V56), central (line V51) and landward (line V45) sector of the channel bend respectively (Fig. 

4.11A). 

The seaward section (V56) is located in a zone which registered the higher amount of 

lateral accretion (Fig. 4.3B, C). Specifically, along this section, the inner bank migrated laterally of 

ca. 25 m between 1900 and 1962 and 20 m between 1962 and 2015 (yellow, white and blue 

arrows in Fig. 4.11C), with an overall shift of ca. 45 m. Seismic images show that lateral migration 

occurred in parallel with a rise of the point bar brinkpoint, that climbed up for about 100 cm 

following a gently flattening rising trajectory (blue dashed line in Fig. 4.11C). The flattening of the 

brinkpoint trajectory during bank migration is even more evident considering also the deposits 

older than 1900 (Fig. 4.11C). Stratal geometries show also that ca. 100 cm of sediments 

accumulated over the bar since 1900, and that ca. 60 cm of them was deposited between 1962 

and 2015.  

The bend apex section (V51) is located in the most stable zone of the bend, since the bend 

apex seems to have occupied the same position since 1900 (Fig. 4.3B, C). Horizontal bedded 

deposits accumulated in the brink zone are about 0.5 m thick, and represent the maximum 

thickness of sediment accumulated since 1900 (Fig. 4.11B). Horizontal-bedded deposits can be 

followed downdip into the channel, where they are affected by numerous minor truncations (Fig. 

4.11B). 

The landward section (V45) crosses a zone where the inner bank retreated between 1900 

and 1962, and successively accreted from 1962 to 2015 (Fig. 4.3B, C). In this section, the location 
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of the 1962 bank (white arrow in Fig. 4.11D) corresponds with the updip termination of an erosive 

surface, that is covered by clinostratified beds accumulated between 1962 and 2015 (Fig. 4.11D). 

During accumulation of clinostratified beds, the bar brinkpoint shifted laterally and rose up of 

about 30 m and 0.4 m respectively, defining a slightly rising trajectory comparable with that of 

section V56. 

 

Figure 4.11: Evolution of the study bar over the past century. A) Location of section shown in B, C and D. B) Seismic 

section showing stratal architecture in the bend-apex zone. Note that about 1 m of sediments aggraded on the 

brink zone after the 1900, whereas no sedimentation occurred on the bar slope. C) Seismic section across the 

seaward side of the bar. Note concurrence of bar migration and aggradation, as highlighted by the rising bar brink 

point trajectory. D) Seismic section across the landward side of the bar. Bank retreat occurred between 1900 and 

1962 is documented by an erosive surface (red line). 
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4.2.6 Discussion 

4.2.6.1 Sedimentary processes 

Principles of flow and sediment distribution along curved channels has been mainly derived 

from fluvial bends (e.g., Hooke, 1975; Dietrich et al., 1979; Dietrich and Smith, 1983; Dietrich, 

1987). These models point to the occurrence of a cross-stream pressure gradient towards inner 

channel banks (Bathurst et al., 1977), which was associated to water super-elevation along outer 

channel banks, caused by centrifugal force. This pressure gradient induces the development of 

helical flow that causes the formation of asymmetric channel profiles, with erosion on the outer 

bank, and concomitant sediment transport towards the inner bank (Bluck, 1971). This basic 

mechanism of flow distribution have been widely used also to approach the study of point bar 

deposits developed in tidal (e.g. de Mowbray, 1983; Bridges and Leeder, 1976; Choi et al., 2004; 

Santos and Rossetti, 2006) and turbiditic channel bends (Peakall et al., 2000; Kneller, 2003; Kolla et 

al., 2007; Janocko et al., 2013). 

However in subtidal cases, the study bend is constantly submerged and its sedimentary 

features are expected to differ from those characterizing intertidal and supratidal channels, which 

provided the most popular facies models for tidal point bars (Bridges and Leeder, 1976; Barwis, 

1978; de Mowbray, 1983; Choi et al., 2004). Beyond tidal modulation of water discharge, the 

hydrodynamic of the study bend is influenced by the water column overlying the bend. This 

setting slightly resembles fluvial meanders during extreme floods, when considerable amount of 

water overpass the main channel (Naish and Selling, 1996; Shiono and Muto, 1998; Ishigaki et al., 

2000; Loveless et al., 2000; Wormleaton et al., 2004). Laboratory and field studies show that in 

these conditions the overbank flow interacts with the main channel flow, causing: i) a reduction in 

magnitude of the helical flow, preventing the development of the a cross-stream pressure 

gradient (Wormleaton et al., 2004); ii) sediment accumulation where the overbank flow re-enters 
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the main channel (Naish and Selling, 1996; Wormleaton et al., 2004; Ghinassi et al., 2013). A 

further relevant consequence due to the constant presence of water above the channel bend is 

associated with sediment remobilization due to wave winnowing. The elongated shape of the 

Venice Lagoon increases the wind fetch, and during winter time, strong winds from NE (Bora) can 

generate string waves. Such waves are particularly effective in the central and southern lagoon, 

where they are able to stress the lagoon bottom remobilizing a considerable amount of sediments 

(Carniello et al., 2011; Marani et al., 2011). 

Wave- and tide-generated currents acting on the inter-channel areas are, therefore, taken 

in account analyzing the study deposit. Wave signature in the horizontally-bedded bar top and 

overbank deposits (SG5) is represented by the shell-floored sandy beds, which developed during 

storm events, when waves suspended fine sediments concentrating shells and sandy deposits. 

Inter-storm, fair-weather conditions allowed settling of fine sediments and promoted 

bioturbation, which obliterated the primary sedimentary structures, possibly developed during 

storm events. The lack of root traces or oxidations is consistent with this interpretation model. 

Minor erosive surfaces, characterizing horizontal-bedded deposits (SG5b), developed where wave 

action, possibly modulated by tidal currents, scoured the bottom. From the hydrodynamic point of 

view this configuration resembles the offshore transition zone of open coasts (cf. Clifton, 1976; 

Reading and Collinson, 1996; Clifton, 2006), where mud background sedimentation is interrupted 

by seafloor winnowing during storm events.  

The occurrence of clinostratified deposits indicates that in-channel sedimentation was 

mainly controlled by a secondary circulation, which causes across-stream sediment transport and 

accumulation of fine-grained deposits in the upper part of the bar (Leopold and Wolman, 1960; 

Nanson, 1980). The occurrence of a clear fining-upward grain size trend in SG1 deposits supports 

this interpretation. Onlap SG4 geometries, commonly develop in this setting as consequence of 
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channel bend reorientation, as demonstrated by architectural studies from fluvial point bars (Ielpi 

and Ghinassi, 2014; Durkin et al., 2015). Maximum efficiency of the secondary circulation occurred 

during ebb stages, when most of the water occupying the interchannel areas was conveyed into 

the channel, causing a considerable increase in water discharge and efficiency of the helicoidal 

flow. 

Nevertheless, several features highlight that the study bar differs from the classical tidal 

point bars. A first relevant difference is represented by the numerous channelward-dipping 

truncations, cutting in the upper part of the clinostratified deposits (SG2a, b and SG3b). These 

truncations formed as detachment surfaces for sediment collapses, induced by wave loading on 

the brink zone of the bar, which was effortlessly destabilized due to water-saturation of sediments 

that decreased the intergranular friction (cf. Bridges and Leeder, 1976; Choi et al., 2013). Once 

these collapse scours were generated, different modes of infill gave rise to different stratal 

geometries. Where cross-stream circulation was effective, infill of the collapse scours was driven 

by a flux of sediment from the channel. In this case, SG2a and SG2b stratal geometries developed. 

Specifically, SG2b deposits formed where the secondary circulation pushed upbar a considerable 

amount of sediments, which filled up the collapse scour forming mounded accumulations. Where 

the amount of sediment transported from the channel was limited, the scour was filled up with 

sub-horizontal beds, forming SG2a geometries. Downlap geometries of SG3b deposits indicate 

that deposits filling the scour were sourced from the bar top zone, where the sediment was 

remobilized by wave action and drifted to the bar brink by tidal currents. Sediment, remobilized by 

the interaction between wave and tidal currents, were delivered to the channel also in the outer 

bank and bar brink zones, where generated downlap geometries of SG6 and SG3a deposits, 

respectively. The coarsening-upward grain size trend of these deposits is consistent with these 

geometries. 
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Location of mounded deposits of SG7 at the toe of the banks, suggest they represent 

deposits collapsed both from the outer bank and from the bar top. The lack of collapse scour 

surfaces along the outer bank deposits is due to their progressive dismantling caused by lateral 

channel migration. The preservation of collapsed blocks at the toe of the channel margins is 

consistent with scarce erosive power of tidal currents due to the minimal tidal excursion affecting 

the Venice Lagoon. 

 

4.2.6.2 Planform evolution and bar aggradation 

The occurrence of channelward-dipping beds below the inner bank zone demonstrates that 

the, all in all, the study bar progressively increased its sinuosity, as commonly occur in most tidal 

(e.g. Bridges and Leeder, 1976; Choi et al., 2004; Santos and Rossetti 2006; McClennen and 

Housley, 2006) or fluvial (e.g. Edwards et al., 1983; Willis, 1993; Ielpi and Ghinassi, 2014; Durkin et 

al., 2015) channel bends. Migration rates and morphodynamics for the whole lifespan of the bend 

are unknown, although its planform evolution and related stratigraphic architectures have been 

recognized for the last century. The main points arising from the analyses of historical maps and 

aerial photos, and from their comparison with the stratigraphic record are: i) the bend apex 

remained almost stable; ii) maximum migration rates of the channel were of the order of dm/yr; 

iii) during channel migration, bar top surface locally aggraded up to 1 m (aggradation rate ca. 

1cm/yr). 

i) Planform evolution of the study bar is associated with changes from erosion to 

deposition in different bar sectors (Fig. 4.11). Alternation between erosion and deposition along 

channel bends follows changes in flow dynamics and variation in sediment supply (Seminara, 

2006). In the present case, an overall accretion along the seaward side of the bar (Fig. 4.3C) would 

be linked with dominance of ebb flows (Hughes, 2012), which promoted bypass-erosion along the 
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landward and central part of the bar (e.g. 1900-1962). Nevertheless, planform stability of the bend 

apex zone indicated a decrease in efficiency of the secondary helical flow, which, in turn, induced 

a reduction of outer bank retreat. A decrease of secondary circulation is consistent with a 

progressive increase of water depth over the subtidal platforms, of the Venice Lagoon, during the 

past century (Carniello et al., 2009). The increase of water thickness above the meander bend 

caused a reduction in magnitude of the cross-stream pressure gradient and related helical flow 

(Wormleaton et al., 2004), which was not able to induce outer bank retreat. 

ii) Maximum migration rates of the order of dm/yr are consistent with other studies 

(Garofalo, 1989; Gabet, 1998), and specifically with rates obtained from channels of the Venice 

Lagoon (McClennen and Housley, 2006; Finotello et al., 2015), but are almost an order of 

magnitude lower than values characterizing fluvial meanders (e.g. Moody and Meade, 2014; van 

de Lageweg et al., 2015). Among the features which can contribute to slow the lateral shift of the 

study subtidal channel can be listed: i) muddy composition of the deposits forming the outer bank 

(cf. Marani et al., 2002); ii) presence of seagrass cover in the outer bank zone; ii) occurrence of 

large collapsed blocks that armor at the toe of the outer bank (cf. Gabet, 1998); iv) lack of long-

lasting, extreme events characterized by high water discharge; v) location of the channel in 

subtidal realm, that prevents funneling of ebb waters within the channel, contributing to decrease 

its erosive power; vi) reduction in magnitude of the cross-stream pressure gradient and related 

helical flow due to the presence of a constant volume of water above the bend (Wormleaton et 

al., 2004). The slight increase of the radius of curvature occurred over the past century, highlights 

that the channel is increasing its efficiency, possibly in order to drain a large volume of water 

associate with a local increase in tidal prism. The occurrence of different values of migration rates 

along the channel bend remarks the importance of local constrains in controlling planform 

evolution. For example, the high-migration rate affecting the northern reach of the study bend 
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(Fig. 4.3C) would be consistent with the occurrence of an erodible bank, made of non-cohesive 

sediments (e.g. older sandy bar). Similar changes are demonstrated to play a key role in controlling 

local planform evolution of fluvial point bars (Smith et al., 2009; 2011; Ghinassi and Ielpi, 2015).  

iii) Beyond establishment of depositional or erosional conditions along the bar, a common process 

that affected landward, central and seaward sectors of the bar was represented by accumulation 

of horizontal-bedded bar top deposits. This process was less effective in the landward sector, but 

allowed accumulation of about 1 m of deposits along the seaward side of the bar, where 

sedimentation was continuous since 1900. The sharp basal surface of the horizontal-bedded, bar 

top deposits corresponds to a wave-generated truncation, and its rising trajectory indicates a 

progressive upward shift of the point bar brink zone during lateral migration of the channel. The 

steepness of the brink zone trajectory (Fig. 4.11C) defines the amount of aggradation, affecting the 

bar top area during channel migration. In this case, the progressive flattening of the brink point 

trajectory is consistent with the progressive decline in sediment supplied to the lagoon over the 

past century (Carniello et al., 2009). 

 

4.2.7 Conclusions 

Planform evolution, stratal architecture and sedimentary features of a subtidal meander 

bend in the central Venice Lagoon provided new insights to understand the sedimentology of tidal 

point bars. The main results from the present study can be listed as follows: 

1) Sedimentation in the study subtidal point bar stemmed out from the interaction 

between the in-channel secondary helical flow and wave winnowing occurring in overbank areas. 

The secondary circulation controlled sediment redistribution from the channel thalweg to the bar 

top, and contributed to form the “classical” fining-upward grain size trend of point bar deposits. 

Wave-winnowing of the overbank areas caused development of an abrupt truncation between 
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clinostratified bar core deposits and overlying horizontally-bedded sediments. Sediment 

remobilized from overbank areas by wave winnowing was drifted into the channel, forming 

peculiar apron-like accumulations both along the outer and inner bank. 

2) Wave loading caused frequent collapses of the channel bank deposits. Along the inner 

bank, collapse scours are well preserved and show different patterns of infill, which vary if the 

sediment is sourced from the channel (i.e. helical flow) or from bar top (i.e. wave winnowing).  

3) Progressive increase in water depth, affecting the Venice Lagoon over the past century, 

reduced the effect of helical flow developed in the bend apex zone, with consequent reduction of 

lateral migration rate of the channel bend. Values of migration rate (dm/yr), nevertheless, are still 

in the range of those measured for tidal channels. 

4) Although sedimentation was not uniform in different sectors of the meander bend, the 

bar slightly grew increasing its radius of curvature, contributing to a subtle decrease in channel 

sinuosity. The sectors of the bar affected by a greater lateral shift were also interested by vertical 

aggradation (ca. 1 cm/yr), that occurred through sediment storage on the bar top area. In this 

zone, the rising and flattening bar brink point trajectory reflects the progressive decrease in 

aggradation rate, which is associated with reduction of sediment supply affecting the lagoon over 

the past century.  
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CHAPTER 5 

CONCLUSIONS 

 

Using a multidisciplinary approach, that couples remote sensing, sedimentological and 

geophysical analyses with numerical and 3D modeling, the present study focused on three main 

topics: i) the role of low order tributaries in controlling the evolution of tidal meander bend; ii) the 

influence of salt marsh aggradation in shaping geometries of tidal point bars, iii) sedimentary 

process and morphodynamics changes acting on subtidal point bars. 

The main results stemmed out from this research can be summarized as follow: 

 i) Minor lateral tributaries exert a critical role on tidal meander evolution, controlling the 

amount of water and sediment provided to the main channels. When the sediment discharge of 

tributaries, in correspondence of the outer bank, exceeds the sediment transport capability of the 

main channel, sedimentation can occur at the outlet of tributary channels, forming prograding 

lobate units. In such cases, flux concentration against the inner bank can generate erosion, where 

both fluvial and tidal classical facies models predict deposition.  

ii) Tidal meanders draining salt-marshes, are characterized by well-developed, sand-rich 

levee deposits that, develop thanks to limited range of flowing discharge, which prevents levee 

breaching and formation of crevasse splays.  

In symmetric tidal meander bend the seaward and landward sides of the tidal point bar act 

as upstream and downstream bar sectors, experiencing bed shear stresses of similar magnitude 

during a tidal cycle. In the study case, this causes an overall symmetric distribution of sediment 

grain size along the bar. Bi-directionality of tidal currents causes secondary circulations to cut an 

elongated pool scour, which can be characterized by two minor depressions possibly associated to 

flood and ebb secondary cells. 
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Lateral migration occurs in parallel with an increase in cross-sectional area, that stems out 

from both lifting up of the banks and scouring of the channel base. The combination between 

lateral migration (8-10 cm/yr) and vertical aggradation (2.5-3 mm/yr) provided a spoon-shaped 

geometry to the bar top surface. Although meandering rivers can be affected by comparable rates 

of floodplain aggradation, development of similar geometries is hindered by their high lateral 

migration rate, that allows the cutoff to be reached before that a significant thickness of deposits 

is accumulated on the bar top. 

iii)  Sedimentation in the subtidal point bars stemmed out from the interaction between 

the in-channel secondary helical flow and wave winnowing, occurring in overbank areas. The 

“classical” fining-upward grain size trend of point bar deposits is due to the secondary circulation, 

which controlled sediment redistribution from the channel thalweg to the bar top, while wave-

winnowing of the overbank areas caused development of an abrupt truncation between 

clinostratified bar core deposits and overlying horizontally-bedded sediments. Sediment 

remobilized from overbank areas by wave winnowing was drifted into the channel, forming 

peculiar apron-like accumulations both along the outer and inner bank. Wave loading caused 

frequent collapses of the channel bank deposits that generated collapse scours, well preserved 

along the inner bank, where they show different patterns of infill that vary if the sediment is 

sourced from the channel (i.e. helical flow) or from bar top (i.e. wave winnowing). 

Values of migration rate (dm/yr) of the study bend are in the range of those measured for 

other tidal channels, even though progressive increase in water depth, affecting the Venice 

Lagoon over the past century, reduced the effect of helical flow developed in the bend apex zone, 

with consequent reduction of lateral migration rate of the channel bend. Over the last century, the 

study bar slightly grew increasing its radius of curvature, contributing to a subtle decrease in 

channel sinuosity, even though sedimentation was not uniform in different sectors of the bend. 
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Overall, the sectors affected by a greater lateral shift were also interested by vertical aggradation 

(ca. 1 cm/yr), which occurred through sediment storage on the bar top area. In this zone, the rising 

and flattening bar brink point trajectory reflects the progressive decrease in aggradation rate, 

associated with reduction of sediment supply affecting the lagoon over the past century.  
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