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ABSTRACT

The first direct detection of gravitational waves (GWs), GW150914, opened the era

of GW astronomy. Besides GW150914, other ten GW detections were reported dur-

ing the first two observing runs (O1 and O2). Nine of them are interpreted as the

merger of two black holes (BHs), while the remaining one, GW170817, is associated

to the merger between two neutron stars (NSs). In addition, GW170817 was accom-

panied by the emission of electromagnetic radiation observed over a large range of

wavelengths. Now that both double BH binaries (BHBs) and double neutron stars

(DNSs) have been detected by the LIGO-Virgo Collaboration (LVC), the coalescence

of a NS with a BH is the only missing merger event that we expect to observe in the

frequency range of ground-based GW detectors. However, preliminary analysis in

the current observing run (O3) seems to suggest that a signal might be originated

from merging BHNS systems.

Hence, GW detection confirmed that BHBs can merge within a Hubble time. More-

over, GW observations have proven the existence of heavy stellar-mass BHs, with

mass larger than & 30 M¯, and the relation between the merger of two NSs and

short gamma-ray-bursts (sGRBs).

Despite the importance of stellar-born compact objects for a plethora of astrophys-

ical processes (i.e. X-ray binary, GW emission, GRB, etc), their mass spectrum is

still matter of debate. The two most important processes affecting the formation

of compact stellar remnants are stellar winds and supernova (SN) explosions. Mas-

sive stars where stellar winds are effective can lose most of their mass during their

life and the SN explosion at the end of their life can remove most of the remaining

mass. This is expected to produce light BHs (. 20 M¯). On the other hand, stellar

winds depend on stellar metallicity. We expect that stellar winds are more efficient

in metal-rich stars than in metal-poor ones. In particular, stellar winds in metal-

poor stars (. 0.5 Z¯) can be so ineffective that stars retain enough material to di-

rectly collapse into BHs avoiding SN explosion. In this scenario, the resulting BHs

are substantially heavier. According to these predictions, massive BHs (& 30 M¯)

might be explained as remnants of metal-poor progenitors (. 0.5 Z¯).

The formation of compact-object binaries (COBs) is also matter of intense debate.

A COB can merge within a Hubble time only if its initial orbital separation is of the

order of tens of solar radii. What are the evolutionary channels that can lead to the

formation of such extremely tight COBs?

Several pathways have been proposed for the formation of COBs and the most im-

portant one is represented by the evolution of massive isolated binaries. In fact,
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the vast majority of stars, and especially massive stars, are born in binary systems.

Close binary stars undergo several complex processes, that may strongly affect the

mass of the final compact objects and their orbital separation (e.g. mass transfer

and common envelope). Some of these processes are only barely understood.

The goal of my Thesis is to study the formation of COBs through the evolution of

isolated massive binaries. My aim is to help constraining the origin of GW events

observed by the LVC and to make predictions for future detections. In oder to

study COBs, I used population-synthesis simulations. When I started this project,

most of the available population-synthesis codes did not include the most recent

stellar wind models and SN prescriptions. During my PhD, I developed MOBSE

(which stands for ’Massive Objects in Binary Stellar Evolution’), a customized and

upgraded version of the popular binary population-synthesis code BSE (Hurley et

al., 2002). With respect to the public version of BSE, MOBSE contains up-to-date

equations for metallicity-dependent stellar winds, including the dependence of

stellar winds on the electron-scattering Eddington factor. Furthermore, I have im-

plemented in MOBSE several recent prescriptions for core-collapse and electron-

capture SNe, a treatment for the (pulsational) pair instability SNe and new recipes

to calculate natal kicks. These ingredients are essential to capture the evolution of

massive stars. In particular, with MOBSE it is possible to form BHs with mass up

to ∼ 65 M¯ depending on metallicity, while with the old prescriptions we were not

able to produce the most massive BHs observed by the LVC.

I used MOBSE to simulate the evolution of large grids of massive binary stars (& 108

systems per grid). Then, I analyzed such simulations to investigate how the pro-

genitor’s metallicity (Z ), common envelope (CE) and natal kicks impact the prop-

erties of the populations of (merging) COBs. I found that the most massive BHBs

(& 100M¯) can form only at low metallicity (Z . 0.1Z¯). Such systems with total

mass & 100M¯ do not merge within a Hubble because of their large semi-major

axes. Since the merger timescale by GW emission strongly depends on compact-

object mass, metallicity also affects the merger rate of both BHBs and BHNSs. I

defined the merger efficiency (η) as the total number of mergers integrated over a

Hubble time in a coeval population divided by the total mass of that population

(η∝ Nmergers

Mtot
). I found that the merger efficiency is about four orders of magnitude

higher at low metallicity (η ∼ 10−4 M−1¯ at Z ' 0.01Z¯) than at high metallicity (η is

∼ 10−8 M−1¯ at Z 'Z¯).

From my simulations, it is also apparent that CE efficiency (measured by the pa-

rameter α) plays an important role in the formation of merging COBs. For DNSs, I

found that the easier the envelope is ejected (highα), the higher η. In particular, η is
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boosted by about an order of magnitude if I assumeα= 5 instead ofα≤ 1. For both

BHBs and BHNSs the dependence on α is more complicated. This arises from the

fact that the evolution of the radii of BH progenitors is more sensitive to metallicity

and stellar radii are crucial to determine the outcome of the CE phase.

One of the important quantities that the LVC can infer from GW detections is the

local merger rate density (Rloc). I adopted a data-driven approach to estimate Rloc

starting form my simulations. In practice, I combined η (from my simulations) with

some prescriptions for the cosmological metallicity evolution and the star forma-

tion rate (SFR) density evolution. With this formalism, I have estimated a BHNS lo-

cal merger rate density of up to few tens of mergers Gpc−3 yr−1 for all the different

combinations of α, natal kicks, cosmological metallicity evolution and SFR I have

considered, consistent with the upper limit inferred by the LVC (Rloc,BHNS . 610

Gpc−3yr−1).

On the other hand, my prediction for the BHB merger rate density (Rloc,BHB)

matches that inferred by the LVC (Rloc,BHB ' 24 − 112 Gpc−3yr−1) only for spe-

cific combinations of SFR, cosmological metallicity evolution and α. In particu-

lar, the merger rate density of BHBs is very sensitive to the cosmological metal-

licity evolution. Finally, I was able to match the LVC merger rate density for DNSs

(Rloc,DNS ' 110−3840 Gpc−3yr−1) only if I considered highα and relatively low natal

kicks.

In particular, I proposed a new prescription for the treatment of natal kicks. The

basic idea is that the strength of the natal kick is proportional to the mass ejected

during the SN explosion as suggested by recent hydrodynamical studies. With re-

spect to the other prescriptions currently adopted by population-synthesis codes,

this new approach allows to match both the natal kick distribution of young Galac-

tic pulsars and the local merger rate inferred by the LVC. Still, to match the LVC

merger rate I needed to adopt an high CE efficiency (α& 2).
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1
INTRODUCTION

On 2015 September 14, about a hundred years after the formulation of General Rel-

ativity (GR) by Albert Einstein (Einstein, 1915; Einstein, 1916a), one of the most ex-

otic and wanted predictions (Einstein, 1916b; Einstein, 1918) was confirmed. Ein-

stein himself was skeptical about the possibility of detecting gravitational radiation.

Despite this, on that day the two ground-based LIGO interferometers (Aasi et al. et

al. 2015) detected the very first gravitational wave (GW) signal, GW150914, which

was interpreted as the merger between two black holes (BHs) at redshift z ∼ 0.1 (Ab-

bott et al., 2016d). GW150914 marks the beginning of a new era for astronomy and

fundamental physics.

After GW150914, the LIGO-Virgo collaboration (LVC) has observed other ten binary

BHs and one binary neutron star (NS; Abbott et al., 2016a; Abbott et al., 2016b;

Abbott et al., 2016c; Abbott et al., 2017b; Abbott et al., 2017e; Abbott et al., 2017a).

In 2017, the Virgo interferometer in Italy joined the two LIGO detectors, leading to

a dramatic improvement in sky localization and polarization measurements. The

third observing run (O3) of the LIGO interferometers has started in April 2019 and

is currently ongoing. Several new triggers were already announced: we expect to

know several tens of binary BHs, several binary NSs and possibly even some BHNS

binaries by the end of O3.

GW detections have revolutionized our knowledge about the Universe teaching us

several crucial concepts (Abbott et al., 2016a). First, GW150914 and the other bi-

nary BH mergers Abbott et al., 2018 have confirmed the existence of double black

hole binaries (BHBs), as it has been predicted long time ago (Tutukov et al., 1973;

Thorne, 1987; Kulkarni et al., 1993; Sigurdsson and Phinney, 1993; Bethe, 1990;

Portegies Zwart and McMillan, 2000; Colpi et al., 2003; Belczynski et al., 2004), and

have also proven that BHBs can merge within a Hubble time. Moreover, some of
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CHAPTER 1. INTRODUCTION

the merging BHBs host surprisingly massive BHs (& 30M¯ see Table 3 in Abbott et

al., 2018), whose existence was predicted only by few models (Mapelli et al., 2009;

Mapelli et al., 2010; Belczynski et al., 2010; Fryer et al., 2012; Mapelli et al., 2013;

Ziosi et al., 2014; Spera et al., 2015). Before GW detections, an accurate dynami-

cal mass estimation was available only for a dozen of BHs, all of them in the very

nearby Universe (the Milky Way and other galaxies in the Local Group). The mass

of these BHs is always . 20 M¯ (Özel et al., 2010) with the possible exception of a

≈ 30 M¯ BH candidate1 in IC 10 (Prestwich et al., 2007; Silverman and Filippenko,

2008).

Before GW150914 the existence of GWs was supported only by the observation of

indirect effects. In 1974, Hulse and Taylor discovered that the decay of the orbital

period of the binary pulsar PSR 1913+16 is consistent with the energy loss by gravi-

tational radiation, according to GR (Nobel Prize 1993; Hulse and Taylor 1974; Hulse

and Taylor 1975; Taylor et al. 1979). Since the discovery of PSR 1913+16, the num-

ber of similar systems observed has increased to 19 (Tauris et al., 2017; Farrow et

al., 2019; Zhang et al., 2019 and references therein) and one of them is a double

pulsar (Burgay et al., 2003; Lyne et al., 2004). These systems are excellent astro-

physical laboratories to investigate the behaviour of matter under extreme con-

ditions and highly relativistic processes. On 2017 August 17, the interferometers

LIGO and Virgo captured the signal produced by the merger of two NSs (Abbott et

al., 2017e). An electromagnetic counterpart to this signal has been observed over

a wide range of wavelengths (Abbott et al., 2017f; Alexander et al., 2017; Chornock

et al., 2017; Coulter et al., 2017; Cowperthwaite et al., 2017; Goldstein et al., 2017;

Margutti et al., 2017; Nicholl et al., 2017; Pian et al., 2017; Soares-Santos et al., 2017;

Savchenko et al., 2017), marking a new era in multi-messenger astronomy. In par-

ticular, the observation of a short gamma-ray burst (SGRB) GRB 170817A (Abbott

et al., 2017f; Goldstein et al., 2017; Savchenko et al., 2017) in conjunction with the

event GW170817 provides a strong evidence for the hypothesis that SGRBs are as-

sociated with the merger of two NSs. These are exciting times for the study of com-

pact objects: theoretical models must meet the challenge posed by this new wealth

of GW data.

In my Thesis, I have investigated the formation channels of COBs, by means of

astrophysical modelling and population-synthesis simulations. This introductory

chapter is organized as follows. First, I briefly discuss GWs and GW emission from

1The dynamical mass measurement of IC 10 X-1 is controversial, because the features inter-
preted as orbital velocity in the spectrum of the companion, a Wolf-Rayet star, might be the signa-
ture of stellar outflows (see Laycock et al. 2015).
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1.1. GRAVITATIONAL WAVES

compact object binaries (Section 1.1). In Section 1.2, I shortly describe the forma-

tion of compact remnants and in Section 1.3 the evolution of binary systems, as

well as the main tools I have used to study them, namely population-synthesis sim-

ulations. Finally, I briefly describe the content of each Chapters in Section 1.4.

1.1 Gravitational waves

According to GR, mass distorts the geometry of space and the flow of time. It is also

possible to demonstrate that such perturbations propagate at the speed of light in

the form of waves. As shown by Einstein (1916b), the wave-like solution can be

obtained by ‘simply’ solving the vacuum field equation of general relativity. The

fundamental result (Einstein, 1918) is that gravitational radiation is of quadrupolar

or higher nature, and is directly linked to the change of the quadrupole moment of

mass distribution Q (or moment of inertia or second moment of mass). Indeed,

monopole radiation is forbidden by mass conservation (in analogy with charge

conservation in electromagnetic theory). The dipole moment of mass is propor-

tional to the linear momentum, which also is a conserved quantity. It possible to

obtain an estimate of the strength of a GW h, commonly called str ai n, as

h ' 2G

c4

Q̈

r
, (1.1)

where r is the source distance, G is the universal gravitational constant and c is the

speed of light. Let us now define the characteristic time T , as the time scale needed

for a test mass to move from one side to another of the system:

T =
p

R3/GM , (1.2)

and let us remember that the moment of inertia of a system is approximately Q '
M R2, where M is the fraction of mass that moves and R is the size of the system.

Hence, if R varies over T , equation 1.1 becomes:

h ' G M

c4

(R/T )2

r
= GM

c2

1

r

v2

c2
= 2G

r

εEkin

c4
, (1.3)

where v is the velocity of the moving parts of the system and ε (with ε ∈ [0−1]) is a

measure of the grade of asymmetry of the system. As a consequence, εEkin repre-

sents the fraction of kinetic energy of the system available to produce GWs. From

equation 1.3 it also emerges that only systems with a quadrupolar moment variable

in time are able to produce gravitational radiation. Therefore, in analogy with the

electromagnetic field, GWs are produced by an accelerated mass whose motion is

3



CHAPTER 1. INTRODUCTION

Figure 2: Schematic deformations produced on a ring of freely-falling particles by gravitational
waves that are linear polarized in the “+” (“plus”) and “⇥” (“cross”) modes. The continuous lines
and the dark filled dots show the positions of the particles at di↵erent times, while the dashed lines
and the open dots show the unperturbed positions.

Note that because these are transverse waves, they will produce a local deformation of the
spacetime only in the plane orthogonal to their direction of propagation. As a result, if the two

particles lay along the direction of propagation (i.e., if ~n k ~), then h
TT

ĵk̂
xĵ

B
(0) / h

TT

ĵk̂
ĵ

B
(0) = 0 and

no oscillation will be recorded by A [cf. equation (22)]
Let us now consider a concrete example and in particular a planar gravitational wave propa-

gating in the positive z-direction. In this case

h
TT

xx = �h
TT

yy = <{A+ exp[�i!(t � z)]} , (34)

h
TT

xy = h
TT

yx = <{A⇥ exp[�i!(t � z)]} , (35)

where A+, A⇥ represent the two independent modes of polarization, and the symbol < refers to
the real part. As in classical electromagnetism, in fact, it is possible to decompose a gravitational
wave in two linearly polarized plane waves or in two circularly polarized ones. In the first case,
and for a gravitational wave propagating in the z-direction, the polarization tensors + (“plus”)
and ⇥ (“cross”) are defined as

e+ := ~ex ⌦ ~ex � ~ey ⌦ ~ey , (36)

e⇥ := ~ex ⌦ ~ex + ~ey ⌦ ~ey . (37)

The deformations that are associated with these two modes of linear polarization are shown
in Fig. 2 where the positions of a ring of freely-falling particles are schematically represented at
di↵erent fractions of an oscillation period. Note that the two linear polarization modes are simply
rotated of ⇡/4.

In a similar way, it is possible to define two tensors describing the two states of circular polar-
ization and indicate with e

R
the circular polarization that rotates clockwise (see Fig. 3)

eR
:=

e+ + ie⇥p
2

, (38)
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Figure 1.1: Original illustrations from Bishop and Rezzolla (2016) showing the deformations
produced by the two polarized modes of GWs passing through a ring of freely-falling particles.
The solid lines with blue filled dots show the positions of the particles at different times, while
the dashed lines with open white dots represent the unperturbed positions.

not perfectly spherically symmetric (e.g. contraction or expansion of a sphere) or

rotationally symmetric (e.g. a spinning disk or sphere). Moreover, equation 1.2 pro-

vides a rough estimate of the characteristic frequency, as f = 1/T , of GWs emitted

from the system.

Since GWs are perturbations of the space-time, their passage has the important

effect of stretching and compressing space perpendicular to the direction of prop-

agation. In particular, GWs have two different polarization modes called plus (+)

and cross (×) modes. Figure 1.1 is a cartoon of the effect of the two modes passing

through a ring of test masses.

Due to the nature of the gravitational interaction, detectable levels of gravita-

tional radiation can be produced only if very massive and compact objects at rel-

ativistic speeds are involved. In equation 1.3 the first factor is approximately the

Schwarzschild radius (RS = 2GM/c2) of a black hole of mass M , while v2/c2 is a

measurement of the absolute strength of the gravity. Thus, h approaches the unity

only in the proximity of a black hole that is moving at about the speed of light. In

contrast, the strain in the vicinity of Earth is very small, of the order of 10−21 or

smaller, even for extremely violent astrophysical sources. It appears obvious that

such weak signals are extremely difficult to detect.

1.1.1 Gravitational waves from binaries

Among all the possible sources of GWs, COBs composed of two BHs, two NSs or a

NS and a BH are the most relevant for this thesis. Our way to model GW emission

4



1.1. GRAVITATIONAL WAVES

Figure 1.2: The three phases in the temporal evolution of a binary system. In the inspiral phase
the two object are orbiting and approaching each other. In the merger phase the two objects
fuse into one. In the ring-down phase the resulting object relaxes to a stationary state. Source:
adapted from Figure 2 in Antelis and Moreno (2017).

by COBs depends on whether these are in the inspiral, merger or ring-down phases

(see Figure 1.2). In the inspiral phase, the members of the binary are still orbiting

around each other and spiral in because of GW emission, while the merger phase

occurs when the two objects coalesce becoming a single object. Finally, during the

ring-down phase the new object settles down.

During the inspiral phase, the motion of the binary creates a time-varying mass

quadrupole moment, causing the emission of GWs, which carry away energy from

the system; consequently, the binary orbit decays. If PGW is the power emitted in

GWs (from GR), then the variation of the orbital energy of a COB during the inspiral

can be written as

PGW =−dE

d t
=−Gm1m2

2a

d a

d t
. (1.4)

From Peters (1964), we can write the evolution of the semi-major axis of the COB as

d a

d t
=−64

5

G3m1 m2(m1 +m2)

c5 a3(1−e)
7
2

, (1.5)

which is a first-order approximation valid for small eccentricity e. Integrating equa-

tion 1.5 from the initial separation to zero, we can obtain an estimate of the merger

timescale

tgw = 5

264

c5(1−e)
7
2

G3m1m2(m1 +m2)
a4 . (1.6)
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Figure 1.3: Gravitational radiation spectrum as a function of GW frequency in Hz. Top part:
astrophysical sources within the frequency range they are expected to emit; bottom part: op-
erating frequency range of different types of detectors. Source: adapted from https://lisa.
nasa.gov.

Equation 1.5 shows that the time for a COB to reach coalescence strongly depends

on the semi-major axis, on the orbital eccentricity and on the masses of the two

compact objects.

Moreover, if the Keplerian approximation is valid during the inspiral phase, it can

be shown that ωgw = 2ωorb, where ωgw is the frequency of GWs, while ωorb =
q

G M
a3

is the orbital frequency of the binary. Then, after some math, the strain produced

by the passage of GWs can be written as

h = 4G

c4

µω2
orba2

r
, (1.7)

where µ≡ m1 m2
m1+m2

is the reduced mass. From equation 1.7 we can estimate the mini-

mum orbital separation needed to produce an observable perturbation (h ∼ 10−21).

For example, let us consider a binary with members of 10 M¯ placed at 1 Mpc from

Earth. The minimum orbital separation needed to emit a strain of the order of

h ∼ 10−21 is ∼ 5× 10−2 R¯ and becomes ∼ 5× 10−4 R¯ if m1 = m2 = 1 M¯. The

component of such close binaries can only be compact objects like BHs and NSs.

In the next sections, we will discuss how it is possible to form such extreme COBs.

1.1.2 Gravitational wave spectrum

Gravitational radiation is expected to be produced over a wide range of frequen-

cies and by a large variety of astrophysical sources. Figure 1.3 shows the frequency

6
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spectrum of GWs together with the possible astrophysical sources expected to emit

at each frequency, plus the frequency range in which different types of detectors

operate. At very low frequencies, down to about 10−16 Hz, gravitational radiation is

produced only by quantum fluctuations in the early Universe. At these frequencies,

experiments like BICEP2 (Background Imaging of Cosmic Extragalactic Polariza-

tion) and Keck Array2 look for the imprints left by GWs on the polarization of the

cosmic microwave background (CMB) radiation.

Moving towards higher frequencies, binary compact objects become the principal

source of GWs. In particular, binary super-massive black holes (SMBHs), which

are located in galactic nuclei, emit in the frequency range between ∼ 10−10 −10−2

Hz. At those frequencies, gravitational radiation can be investigated with the Pul-

sar Timing Array (PTA) or with space-borne laser interferometers. In practice, PTA

observatories like NANOGrav3 (North American Nanohertz Observatory for Gravi-

tational Waves) or the European Pulsar Timing Array (EPTA) monitor a set of near

pulsars looking for variations in their periods due to the effect of passing-by GWs.

As shown in Figure 1.4, the future SKA4 (Square Kilometer Array) observatory might

be able to detect mergers of SMBHs of about 109 M¯.

Mergers of ’lighter’ SMBHs (104−106 M¯) will be observable with space interferom-

eters, like the LISA observatory (ESA L3 mission). LISA, whose launch is planned

for the early 2030s, will operate in the frequency range ∼ 10−4 − 10−1 Hz (Amaro-

Seoane et al. 2017). In addition, LISA might be able to observe GWs from stellar-

mass compact object binaries from a few Myr to days before their merger (Sesana,

2016; Wong et al., 2018) and extreme mass ratio inspirals of stellar-mass compact

objects around SMBHs (Bortolas and Mapelli, 2019).

From few Hz up to ∼ 103 Hz we enter in the domain of ground-based interferom-

eters, like LIGO5 and Virgo6.Figure 1.4 shows that LIGO and Virgo are sensitive to

GWs produced during the merger between stellar compact objects like BHs and NSs

(Abbott et al., 2018), which are the only sources of GWs observed so far. Moreover,

at these frequencies (∼ 10− 105 Hz) also rotating NSs and supernovae explosions

emit GWs but their typical strain is fainter. See Ciufolini and Fidecaro (1996) and

Sathyaprakash and Schutz (2009) and references therein for a more complete dis-

cussion about the possible sources.

2Their results are available at http://bicepkeck.org
3http://nanograv.org
4https://www.skatelescope.org/challenging-einstein/
5https://www.ligo.caltech.edu
6http://www.virgo-gw.eu
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Figure 1.4: Schematic representation of the characteristic strain of gravitational radiation emit-
ted by different GW sources as a function of frequency, together with the sensitivity curves of
some GW observatories: green for SKA, red for LISA, while gray and black grey are the design
sensitivity of Virgo and LIGO, respectively. Source: produced via http://gwplotter.com.

1.2 Compact remnants as the death of massive stars

Compact objects play a crucial role in a plethora of astrophysical processes, such as

GWs, radio jets and X-ray emission. Despite their importance, NSs and especially

BHs are still elusive objects: their formation and evolution are affected by a number

of barely understood physical processes.

It is believed that NSs and BHs are the remnants of massive stars (& 8 M¯). The link

between compact-object formation and the evolution of their progenitor stars is

still matter of debate. Two processes are expected to crucially affect the formation

and the final mass of a compact object evolved from an isolated star: mass loss

through stellar winds and supernova (SN) explosion mechanisms.

In the last few years, both the theory of massive star evolution (e.g. Chen et al., 2014;

Tang et al., 2014) and the models for SN explosions (see Heger et al., 2003; Smartt,

2009; Limongi, 2017 for some reviews) have been revised. In the following, I shortly

present the state-of-the-art knowledge about stellar winds and SN explosions.

8
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Figure 1.5: Mass evolution of a star with MZAMS = 90 M¯ at metallicity of Z = 1.5, 1, 0.5, 0.1,
0.05, 0.01 Z¯ computed with MOBSE. The markers identify the mass of the star at the end of
Carbon burning.

1.2.1 Stellar winds

Stellar winds are outflows of gas that escape from the upper atmosphere of a star.

The mechanisms that power these ejections are different according to the stellar

type. In cold stars (e.g. red giant and asymptotic giant branch stars) the main en-

gine that produces stellar winds is represented by radiation pressure on dust (see,

for example, van Loon et al., 2005). In contrast, stellar winds of hot massive stars,

like O- and B- main sequence (MS) stars, Wolf-Rayet (WR) and luminous blue vari-

able (LBV) stars, are caused by the coupling between the linear momentum of pho-

tons and that of metal ions in the stellar photosphere (see Bresolin and Kudritzki,

2004 for a review).

The chemical composition of a star plays an important role in the mechanism of

stellar winds. For O- and B- stars, metallicity Z is expected to modulate the mass-

loss rate Ṁ according the following relationship Ṁ ∝ Zβ, where β is assumed to
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take a value between 0.5 − 0.9 according to the considered physical models (e.g.

Abbott and Lucy, 1985; Kudritzki et al., 1987; Nieuwenhuijzen and de Jager, 1990;

Leitherer et al., 1992; Vink et al., 2001 and Kudritzki and Puls, 2000; Vink, 2011 for

reviews). Vink et al. (2001) predict that the mass-loss rate of O- and B- stars is not

only a function of Z , but depends also on the temperature. They found that around

25000 Kelvin the mass-loss rate drastically increases because of the bi-stability

jump (see Vink et al., 2010 for details). Vink (2018) suggest that the bi-stability jump

might be important even for the mass-loss of LBVs (see also Petrov et al., 2016), but

for evolved stars (beyond the MS) the uncertainties are larger (Vink and de Koter,

2005b; Meynet and Maeder, 2005). For example, Gräfener and Hamann (2008) find

that for WR stars stellar winds do not depend solely on Z but also on the electron-

scattering Eddington factor Γe =χeL/(4πc G M), where χe is the electron scattering

opacity, L the luminosity and M the mass of the star. Despite the importance of

Γe has been supported by further works (e.g Gräfener et al., 2011; Vink et al., 2011;

Gräfener et al., 2012; Vink, 2017b), only few stellar evolution models account for its

effects. Among them, it is worth mentioning PARSEC (Bressan et al., 2012), which

adopts Ṁ ∝ Zβ with β= 0.85 if Γe < 2/3 and β= 2.45−2.4Γe if 2/3 ≤ Γe ≤ 1 (Tang et

al., 2014; Chen et al., 2015). This prescription accounts for the fact that when a star

approaches the Eddington Limit, turning into a radiation dominated star, stellar

winds become almost insensitive to metallicity.

Figure 1.5 shows the mass evolution of a massive star with zero-age main sequence

(ZAMS) mass of 90 M¯ at 6 different metallicities (Z = 1.5, 1, 0.5, 0.1, 0.05, 0.01 Z¯)

as obtained with MOBSE (see Giacobbo et al., 2018 and the next chapters of this

Thesis for details). At high metallicity, the star loses most of its mass by the end of

its life, while at low Z the star retains almost all of its mass.

Stellar winds are the primary cause of mass loss during the life of single stars and

strongly impact the pre-SN mass of a star. Understanding the behavior of stellar

winds is crucial for the study of compact objects, because the pre-SN mass (both

total mass and core mass) of a star is expected to highly affect the result of the SN

explosion (e.g. Fryer, 1999; Fryer et al., 2001; Mapelli et al., 2009; Yoon et al., 2010;

Fryer et al., 2012; Langer, 2012).

1.2.2 Supernova explosions

SN explosions are extremely energetic events (the binding energy of the Fe core of

a star can reach 1053 erg) ,which involve very complex physical processes (see e.g.

Fryer 1999; Heger and Woosley 2002; Heger et al. 2003; Fryer 2006; O’Connor and

10
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Ott 2011; Fryer et al. 2012; Janka 2012; Ugliano et al. 2012; Burrows 2013; Ertl et al.

2016). The final outcomes of SN explosions are still highly uncertain.

There are several different flavours of SNe and one of them are the iron-core-

collapse SNe. An iron-core-collapse SN occurs when a sufficiently massive star

(with ZAMS mass & 10 M¯) is able to ignite oxygen burning. Subsequent nuclear

reactions proceed quickly until an inner core of iron is formed. Approaching the

Chandrasekhar limit (1.4 M¯), electron pressure becomes insufficient to counter-

act the gravitational force. In addition, protons in nuclei capture electrons pro-

ducing neutrons and neutrinos. At this point, the core collapses uncontrollably.

Protons and neutrons end up into a proto-NS (supported by neutron-degeneracy

pressure), that halts the collapse of the core abruptly, producing a bounce shock.

The shock moves outward, until the neutrinos lose their energy causing the stalling

of the shock. Hence, the SN explosion occurs only if there is a mechanism able to

revive the shock. For example, the convective engine scenario (Herant et al., 1994;

Burrows et al., 2006; Fryer, 2006; Scheck et al., 2008; Bruenn et al., 2009; Janka,

2012; Fryer et al., 2012; Janka, 2017) predicts that instabilities develop in the re-

gion between the proto-NS surface and the position of the stalling shock. These

instabilities convert the energy leaking out from the NS (in form of neutrinos) into

kinetic energy pushing outwards the convective region. Thus, if the convective en-

ergy is enough to overcome the ram pressure of the infalling outer layers of the star

the explosion takes place, otherwise the SN fails (failed SN; Bethe 1990; Janka et

al. 2007; Burrows 2013; Janka 2012). It is worth mentioning that, even if the most

commonly studied mechanism is the neutrino-driven convective engine I have

just described, other mechanisms have been proposed, like rotationally-driven SNe

and/or magnetically-driven SNe (e.g. Janka 2012; Fryer 2014; Foglizzo et al. 2015b

and references therein).

Fryer et al., 2012 propose a simple approach to estimate the mass of compact ob-

jects. They suggest that the mass of the compact remnant essentially depends on

two quantities: the mass of the carbon-oxygen core MCO and the total final mass

Mfin of the star (see also Fryer, 1999; Fryer et al., 2001; Fryer, 2006 and Appendix A).

On the other hand, other studies O’Connor and Ott, 2011; Ugliano et al., 2012;

Sukhbold and Woosley, 2014; Sukhbold et al., 2016; Ertl et al., 2016) claim that

the relationship between the mass of the compact remnant and the properties of

the progenitor star might be more complex and suggest that the critical parame-

ter to distinguish between a successful and a failed SN might be the compactness

of the stellar core at the onset of the SN. The compactness for a mass m is defined

as ξm = m/M¯
R/1000km , where R is the radius that encloses the mass m (usually m = 2.5

11
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Figure 1.6: Representation in the Z −MZAMS space of different SN mechanisms. Stars that end
their life through a core-collapse SN with fallback lie in the blue area. NSs formed via electron-
capture SN (ECSN) are in the yellow region (to the very left). PPISNe and PISNe occur in the
green and red region, respectively. The hatched area indicates the direct collapse (failed SN).
The vertical line is a simplified division between stars that form NSs from those collapsing into
BHs. Source: adapted from Figure 3 in Spera and Mapelli (2017).

M¯ is chosen). Limongi (2017) and Limongi and Chieffi (2018) show that there is a

strong correlation between the final carbon-oxygen mass and the compactness at

the onset of collapse (see Figure 21 in Limongi, 2017).

For massive stars (& 60 M¯), pair-instability and pulsational pair-instability are an

important possible engine for SN explosions Barkat et al., 1967; Woosley et al., 2007;

Woosley, 2017. When the Helium core grows above ∼ 30 M¯ , the core temperature

becomes & 7×108 K and collisions between atomic nuclei and gamma rays (which

produce electron-positron pairs) are so efficient that they reduce the photon pres-

sure and cause a sudden collapse, even before the formation of a iron core. The

outcome of such collapse strongly depends on the Helium mass. In particular, if the

Helium mass is > 135 M¯ the collapse cannot be stopped and the result is the direct

formation of a BH Woosley, 2017. For an Helium mass in the range 64−135 M¯, the

explosive burning of heavy elements, ignited by the collapse, completely disrupts

12
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the star leaving no remnant. In less massive Helium cores (32−64 M¯), the process

of pair production is less effective and generates a series of pulsations of the core

(pulsational pair-instability), enhancing mass loss. As a consequence of that, the

final BH will be significantly lighter than in the case of direct collapse.

Finally, another important explosion mechanism is represented by electron-capture

SNe (ECSNe, Miyaji et al., 1980; Nomoto, 1984; Nomoto, 1987; Nomoto and Kondo,

1991; Kitaura et al., 2006; Fisher et al., 2010; Jones et al., 2013; Takahashi et al., 2013;

Schwab et al., 2015a; Jones et al., 2016; Jones et al., 2019, see also Chapter 3). They

are similar to iron-core-collapse SNe, but less energetic and faster. ECSNe occur

in less massive stars, that produce a degenerate core made of oxygen, neon and

magnesium (ONeMg). When this core reaches the critical mass of about 1.37 M¯, it

collapses due to electron capture on 24Mg and/or 20Ne (Miyaji et al., 1980; Nomoto,

1984; Nomoto, 1987); otherwise it forms an ONe white dwarf. The outcome of the

electron-capture collapse is an NS of about 1.26 M¯.

Figure 1.6 shows the occurrence of different SN types in the Z −MZAMS plane (Spera

and Mapelli, 2017). The yellow region indicates where the ECSNe occur. Stars that

form compact remnants through core-collapse with fallback are in the blue area.

The green and red area indicate the region where pulsation pair-instability SNe

(PPISNe) and pair-instability SNe (PISNe) occur, respectively. Finally, the hatched

area represents the region where BHs are expected to form via direct collapse. It is

worth noticing that the lower limit for direct collapse (in term of Z − MZAMS) de-

pends on metallicity.

1.2.3 Mass spectrum of compact objects

In the previous sections, we discussed the possible dependence of compact-object

mass on both stellar winds and SN explosion mechanisms. Figure 1.7 shows the

mass of the compact remnant as a function of the ZAMS mass of the progenitor star

for different metallicities, according to the model by Spera and Mapelli, 2017. There

is an evident dependence on the metallicity for massive stars (MZAMS & 30 M¯),

which indicates the importance of stellar winds. In most cases, the lower the metal-

licity is, the higher the maximum mass of the BH (Mapelli et al., 2009; Mapelli et

al., 2010; Belczynski et al., 2010; Spera et al., 2015; Spera and Mapelli, 2017, see

also Chapter 2). Moreover, as shown in Figure 1.6, PPISNe and PISNe do not affect

metal-rich stars (Z ≥ 10−2), while they have a strong impact on metal-poor stars

(Z ≤ 10−3). For intermediate-mass stars (8 . MZAMS/M¯ < 30), the dependence
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4 Spera & Mapelli
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Figure 1. Mass of the compact remnant (Mrem) as a function of the ZAMS mass of the star (MZAMS), derived with SEVN, without
PPISNe and PISNe. From bottom to top: dash–dotted brown line: Z = 2.0⇥10�2; dotted dark orange line: Z = 1.7⇥10�2; dashed red line:

Z = 1.4 ⇥ 10�2; solid red line: Z = 1.0 ⇥ 10�2; short dash-dotted orange line: Z = 8.0 ⇥ 10�3; short dotted light orange line: Z = 6.0 ⇥ 10�3;
short dashed line: Z = 4.0 ⇥ 10�3; dash–double dotted line: Z = 2.0 ⇥ 10�3; dash–dotted light blue line: Z = 1.0 ⇥ 10�3; dotted blue line:

Z = 5.0 ⇥ 10�4; dashed violet line: Z = 2.0 ⇥ 10�4.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
0

10

20

30

40

50

120

160

200
240
280
320

  2E-4   2E-3   8E-3   1.7E-2               
  5E-4   4E-3   1E-2   2E-2
  1E-3   6E-3   1.4E-2 

M
re

m
 (M

)

MZAMS (M )

Figure 2. The same as Fig. 1 but with PPISNe and PISNe. We have inserted a y-axis break between 65 M� and 120 M� because we
have no BHs in this mass range.
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Figure 1.7: Mass of the compact remnant as function of the ZAMS mass of the progenitor for
different metallicities. Source: Figure 2 of Spera and Mapelli (2017).

on progenitor’s metallicity tends to vanish and the decisive factor becomes the SN

engine model (Fryer et al., 2012).

1.3 Stellar evolution in binaries

The formation of COBs can follow different paths. One of the most studied channels

is represented by the evolution of isolated binaries, i.e. binary systems composed

of two stars that are gravitationally bound since their birth (Tutukov et al., 1973;

Portegies Zwart and McMillan, 2000; Belczynski et al., 2002; Voss and Tauris, 2003;

Bogomazov et al., 2007; Dominik et al., 2012; Tauris et al., 2015; de Mink and Bel-

czynski, 2015; Belczynski et al., 2016b; Giacobbo and Mapelli, 2018; Tauris et al.,

2017; Kruckow et al., 2018). If we consider that the vast majority of massive stars

are thought to be born in binaries (see e.g. Sana et al., 2013), it easy to understand

the importance of this formation channel.

We have seen in Section 1.2 that single stellar evolution is far to be understood and

things become even more uncertain if we consider the evolution of stellar binaries.

Indeed, stars in binaries might undergo physical processes that strongly affect their

evolution (e.g. tides, mass transfer and mass accretion). Among them, common

envelope (CE) and natal kicks from SNe are two of the most important processes

for COB formation, and are two of the most uncertain as well. They are essential to

explain the formation of a wide variety of binary systems including: progenitors of

SNe Ia, X-ray binaries and even GW sources.
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Before describing CE and natal kicks in detail, it is worth saying that there are sev-

eral alternative evolutionary channels for COBs. In dense environments (e.g. young

star clusters, open clusters, globular clusters and nuclear star clusters), COBs might

form through dynamical processes involving single objects and/or binary systems

(e.g. Sigurdsson and Phinney, 1993; Portegies Zwart and McMillan, 2000; Colpi et

al., 2003; Mapelli et al., 2013; Ziosi et al., 2014; Rodriguez et al., 2015; Mapelli, 2016;

Askar et al., 2017; Rastello et al., 2019; Di Carlo et al., 2019). Alternatively, primordial

BHs (born from gravitational collapses in the early Universe) might pair forming

BHBs (e.g. Carr and Hawking, 1974; Carr et al., 2016; Inomata et al., 2017).

1.3.1 Common envelope

When a binary is sufficiently tight, a stellar component might overfill its Roche lobe7

starting to transfer mass through the Lagrangian point L1 to its companion. This

mechanism is called Roche lobe overflow. To understand the fate of the system it is

crucial whether this process takes place in a stable or unstable way and on which

timescale. In particular, if mass transfer is dynamically unstable, namely the star

expands (due to mass loss) faster than its Roche lobe, we expect the binary begins

a CE phase. This phase it is characterized by the fact that both the donor and its

companion are surrounded by a shared envelope (Paczynski, 1976). It is worth to

notice that a binary enters a CE phase only if the donor has a well-developed core

distinguishable from the envelope (see Ivanova and Taam, 2004). If not, the result is

the direct merger of the binary (e.g Taam and Sandquist, 2000). Also, the CE phase

can be the consequence of the simultaneous overfilling of the Roche lobes of both

stars.

At the beginning of the CE phase, the stellar cores (or in the case of a single de-

generate binary the core and the compact object) start to spiral in because of the

gas drag generated by the envelope. Indeed, when a system enters CE, the enve-

lope stops co-rotating with the cores. During the spiral-in phase, the two cores lose

orbital energy in favour of the envelope and this energy is converted into kinetic en-

ergy that tends to unbound the envelope. If the energy released during this process

is enough to completely eject the envelope the system survives and the outcome

is a binary composed of two naked stellar cores (or a compact object and a naked

core). Additionally, the new system will be characterized by a much smaller orbital

7The innermost equipotential surface which encloses both stars defines the critical Roche lobe
of each star and this equipotential surface passes through the Lagrangian point L1. Thus, the Roche
lobe represents the region around an object in a binary system where the orbiting material is gravi-
tational bound to that object.
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Figure 1.8: The key stages of the CE evolution of a system composed of an evolved star and a
compact object. Left: the evolved star fills its Roche lobe. Middle: the companion is engulfed.
the core and the compact object spiral in inside a common envelope. Right: the envelope is
ejected (bottom) or the stellar core merge with the compact object (top).

separation with respect to the orbital separation at the onset of CE phase. If the sur-

vived system forms a BHB, the orbital shrinkage will be crucial to enable the system

to merge by GW emission within a Hubble time (see Chapter 2). On the contrary, if

the transferred energy is not sufficient, the two components keep spiralling in until

they merge. Figure 1.8 shows a cartoon of the evolution of a binary system passing

through the CE phase and the possible outcomes (e.g. see Iben and Livio, 1993;

Taam and Sandquist, 2000; Podsiadlowski, 2001; Ivanova et al., 2013 for a general

review).

One of the main uncertainties in modelling the evolution of CE concerns the con-

ditions leading to the removal of the envelope. The most used formalism to predict

the outcome of the CE phase is the so-calledαλ-energy formalism (van den Heuvel,

1976; Webbink, 1984; Livio and Soker, 1988; Iben and Livio, 1993). The basic idea

is that the energy required to remove the envelope comes entirely from the dissipa-

tion of the orbital energy of the binary. The fraction of the orbital energy of the two

cores which goes into unbinding the envelope can be expressed as

α∆Eorb =α
µ−Gm1m2

2ai
+ Gm1,cm2

2af

¶
, (1.8)

where ai and af are the initial and final orbital separation, respectively, m1 and m2

are the masses at the onset and m1,c is the core mass of the donor star that has lost
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its envelope. The parameterα represents the common-envelope efficiency and indi-

cates the available fraction of orbital energy that can be used to eject the envelope.

A second free parameter λ is introduced to account for different stellar structures

in the calculation of the binding energy of the envelope Ebind = m1m1,env
λR1

(de Kool,

1990a; Dewi and Tauris, 2000). By imposing Ebind = α∆Eorb, we can derive what is

the value of the final semi-major axis a f for which the envelope is ejected. If af is

larger than the sum of the core radii (or than the sum of the Roche lobe radii), then

the system will survive and it will exit the CE with the new orbital separation af,

otherwise, the cores will merge during the CE phase.

It is well known that this simple formalism is not able to capture all the physics of

CE. It is expected that λ is not the same for all stars. Indeed, it should change a

lot from star to star and even during the evolution of CE phase (Dewi and Tauris,

2000; Tauris and Dewi, 2001; Loveridge et al., 2011; Wang et al., 2016). In literature

there are many different definitions for λ that depend on which contribution, apart

of the gravitational energy, the different authors include in their calculation of the

binding energy (e.i thermal energy, enthalpy, recombination energy). In addition,

λ is also extremely sensitive to the location of the bifurcation point that define the

boundary between the core and the envelope (Tauris and Dewi, 2001; Ivanova et al.,

2013).

Moreover, there is a number of observed systems that require α ≥ 1, but it is evi-

dent, from equation 1.8, that an α that exceeds the unit is un-physical, unless we

do consider to have other source of energy. In particular, this might mean that we

are neglecting (or underestimating) some potentially important energy sources i)

that contribute to the total internal energy (e.g. recombination energy, enthalpy

Ivanova and Chaichenets, 2011; Ivanova et al., 2015) or ii) external energy sources

(e.g. nuclear burning from accreted material during in-spiral, see Ivanova et al.,

2013 for good review).

In particular, we should expect that the value of α changes according to the differ-

ent classes of post-CE binaries, since time-scales, energy sources and sinks should

vary. For example, recent works seem to suggest a very high CE efficiency α for the

formation of merging double NSs (e.g. α' 5 Fragos et al., 2019; 2.αGiacobbo and

Mapelli, 2018; Giacobbo and Mapelli, 2019a).

Even if in the last years a lot of effort has been put on studying the CE, there are

still many open questions. For example, since the CE event consists in a number of

sub-phases that are guided by different physical processes on different time-scales,

none of the available numerical methods is able to grasp all the physics involved

(Ivanova et al., 2013). Finally, from both theoretical and observational perspective,
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the CE phase involving massive stars is less clear and much more difficult to study.

Thus, CE phase remains one of the most critical aspects to describe the evolution

of massive stars in binaries.

1.3.2 Natal kicks

Compact objects are thought to receive a kick at birth (natal kick), because of asym-

metric supernova (SN) explosions (e.g Janka and Mueller, 1994; Burrows and Hayes,

1996) or anisotropic emission of neutrinos (e.g. Woosley, 1987; Bisnovatyi-Kogan,

1993; Fryer and Kusenko, 2006; Kusenko et al., 2008; Sagert and Schaffner-Bielich,

2008; Nagakura et al., 2019). In addition, if the SN occurs in a binary star, we expect

the so-called Blaauw kick to affect the orbital properties of the binary system, even

if mass loss is completely symmetric (Blaauw, 1961).

Most observational estimates of natal kicks come from pulsar proper motions (Lyne

and Lorimer, 1994; Hansen and Phinney, 1997; Arzoumanian et al., 2002; Hobbs

et al., 2005; Faucher-Giguère and Kaspi, 2006). The kick distribution we can infer

from these data is still matter of debate. Hobbs et al. (2005) study proper motions

of 233 Galactic pulsars. Restricting their analysis to the 73 pulsars younger than

∼ 3 Myr (whose proper motions were less affected by the environment), they fit a

Maxwellian distribution to the natal kick velocity, with one dimensional root-mean

square (rms) velocity σ= 265 km s−1.

Other works suggest a bimodal velocity distribution of pulsars, with a first peak at

low velocities (e.g. ∼ 0 km s−1 according to Fryer et al., 1998 or ∼ 90 km s−1 ac-

cording to Arzoumanian et al., 2002) and a second peak at high velocities (∼ 500

km s−1 according to Arzoumanian et al., 2002, or even > 600 km s−1, Fryer et al.,

1998). Similarly, the recent work of Verbunt et al. (2017) indicates that a double

Maxwellian distribution provides a significantly better fit to the observed velocity

distribution than a single Maxwellian distribution.

Beniamini and Piran (2016) follow a different approach: they focus on double neu-

tron stars (DNSs) only and find a strong preference for small mass ejection (≤ 0.5

M¯) and small natal kicks (vkick ≤ 30 km s−1) in DNSs. Similarly, from the analysis

of r−process material in ultra-faint dwarf galaxies Beniamini and Piran (2016) find

further support for a prevalence of small natal kicks in dNSs.

A possible explanation for those results is that natal kicks strongly depends on the

NS type and on the binarity of the NS’s progenitor. Indeed, evolved stars in close

binary with a compact object might undergo an ultra-stripped SN explosion (Tauris

et al., 2013; Tauris et al., 2015; Tauris et al., 2017). An ultra-stripped SN occurs when
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an evolved star has been considerably stripped by the companion (due to mass

transfer). It is expected that ultra-stripped SNe produce slow NSs because of the

small mass ejected (. 0.2M¯) during the explosion (Suwa et al., 2015; Janka, 2017).

The situation for black hole (BH) natal kicks is even more uncertain, because data

are scanty and difficult to interpret (Brandt et al., 1995; Nelemans et al., 1999;

Mirabel et al., 2001; Mirabel et al., 2002; Mirabel and Rodrigues, 2003; Gualandris

et al., 2005; Fragos et al., 2009; Repetto et al., 2012; Repetto et al., 2017; Wong et al.,

2014). While recent studies (e.g. Repetto et al., 2017; Atri et al., 2019) suggest that

several Galactic BHs received a relatively high natal kick (∼ 100 km s−1), we are still

far from inferring a distribution of BH kicks from observations.

From a theoretical perspective, hydrodynamical simulations of SN explosion have

successfully shown that explosion asymmetries may arise from non-radial hydro-

dynamic instabilities in the collapsing core (Blondin and Mezzacappa, 2006; Scheck

et al., 2006; Foglizzo et al., 2007; Foglizzo et al., 2015a; Janka, 2012; Janka, 2013). Hy-

drodynamical simulations show that large kick magnitudes can be achieved (Wong-

wathanarat et al., 2013), similar to the ones reported by Hobbs et al. (2005). How-

ever, recently, Janka (2017), using the gravitational tug-boat mechanism in asym-

metric neutrino-driven core-collapse SNe, derived a simple scaling between the na-

tal kick, the energy of the explosion and the amount of asymmetries. Even if recent

works (Bray and Eldridge, 2016; Bray and Eldridge, 2018; Giacobbo and Mapelli,

2019a see also Chapter 5) seem to indicate that we are on the right track, natal kicks

are far from being fully understood, as well as their implications in the formation of

COBs.

1.3.3 Binary population synthesis simulations

One of the most powerful tools available for studying the formation and evolution

of isolated binaries are the so-called binary population-synthesis codes. A binary

population-synthesis code is a Monte-Carlo based code coupling single stellar evo-

lution (including the prescription for the outcomes of SN explosions) with a treat-

ment of binary-evolution processes. In principle, to study a population of binaries

we should carefully follow the evolution of each system, from the ZAMS to the stel-

lar death and the possible formation of a remnant. However, this approach is not

feasible. In fact, the physical processes that must be taken into account (tides, mass

transfer, nuclear reactions, etc) cover a large range of time-scales, making this task

too computationally expensive. On top of that, some binary evolution processes

are very difficult to model in detail, one for all the CE (see Ivanova et al., 2013 and
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also Section 1.3.1). Therefore, the implementation of binary evolution processes is

usually based on simplifying assumptions and it is not rare that such processes are

modelled by using some parameters (that encapsulate our lack of knowledge of the

phenomenon).

In general, there are essentially three different approaches to implement stellar evo-

lution in binary population-synthesis codes:

• the most common approach consists in adopting polynomial fitting formu-

las to describe the evolution of the fundamental stellar parameters (luminos-

ity, radius, mass, temperature and chemical composition) as a function of

time. The big advantage is that population-synthesis codes based on fitting

formulas are computationally very fast, while the main drawback is that fit-

ting formulas are difficult to update. Some examples of BPSs based on fit-

ting formulas are SEBA (Portegies Zwart and Verbunt, 1996a), BSE (Hurley

et al., 2002), BRUSSELS CODE(De Donder and Vanbeveren, 2004), BINARY_C

(Izzard et al., 2004), STARTRACK (Belczynski et al., 2008), COMPAS (Barrett et

al., 2017; Stevenson et al., 2017) and MOBSE (Mapelli et al., 2017; Giacobbo

et al., 2018).

• As an alternative to the fitting formulas, it is possible to perform the integra-

tion of stellar evolution on the fly, as done in BPASS (Eldridge and Stanway,

2016) and MESA (Paxton et al., 2011). This approach is far more compu-

tationally expensive than the fitting formulas, but provides a more detailed

stellar evolution impossible to achieve with the fitting formulas.

• The third possibility is to use look-up tables (Voss and Tauris, 2003). These

tables contain grids of stellar evolution models that are read and interpolated

by BPS codes on the fly (see SEVN Spera et al., 2019 and COMBINE Kruckow

et al., 2018). This approach is both computationally convenient and versatile.

Indeed, stellar models can be easily updated by simply changing the tables.

1.4 Thesis summary

The next four chapters of this Thesis contain original research works, that aim to

improve our understanding of COB formation, by means of numerical and analyti-

cal tools. The last chapter is a summary of the conclusions of this work.

In Chapter 2, we study the demography of BHBs through population-synthesis

simulations. In particular, we investigate the formation channels of BHBs and how
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different prescriptions for stellar winds might impact the properties of BHB pop-

ulations. We find that accounting for the dependence of stellar winds on the Ed-

dington factor has a strong impact on the mass spectrum of BHs. We also confirm

the importance of progenitor’s metallicity to determine the mass of the BH. In addi-

tion, we show that even the number of mergers is affected by metallicity. Finally, we

find that our most massive BHBs (with total mass > 100 M¯) do not merge within a

Hubble time, because their typical orbital separations are too large.

In Chapter 3, we focus our attention on the evolutionary pathways that lead to the

formation of merging DNSs. In particular, we analyze the impact of the electron-

capture SN mechanism. It is expected that electron-capture SNe generate slower

NSs than core-collapse SNe. We show that slow (but not zero) natal kicks velocities

increase the probability that a binary system is not disrupted and favour the for-

mation of merging DNSs. Our simulations indicate that the first SN explosion is the

most critical one for the survival of the system. We also confirm that in binary sys-

tems the incidence of electro-capture SNe is higher than in a population of single

stars.

Chapter 4 is a detailed study on the populations of BHBs, BHNSs and DNSs. In

particular, we investigate how CE and natal kicks affect the formation of COBs. We

confirm that CE is crucial to tighten binaries, facilitating the merger via GW emis-

sion. We show that also eccentricity is important to drive mergers of COBs in less

than a Hubble time and natal kicks may help producing highly eccentric systems.

We also develop a data-driven method to estimate the local merger rate starting

from our population-synthesis simulations, combined with the cosmic star forma-

tion rate density and with a simple description of metallicity evolution. With our

data-driven method, we can match the merger rate density inferred by the LVC for

several combinations of metallicity evolution, CE efficiency and natal kick prescrip-

tions. Intriguingly we can match the inferred local merger rate of DNSs only if we

assume small natal kicks.

Chapter 5 describes a new prescription for the treatment of natal kicks in

population-synthesis codes. It is based on the idea (supported by hydrodynami-

cal studies) that the strength of the kicks depends on the mass of the ejecta. With

respect to previous prescriptions, this new approach allows us to match the LVC

local merger rate density and, at the same time, to reproduce the natal kicks of the

observed young Galactic pulsars.
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MERGING BLACK HOLE BINARIES: THE

EFFECTS OF PROGENITOR’S

METALLICITY, MASS-LOSS RATE AND

EDDINGTON FACTOR

The first four gravitational wave events detected by LIGO were all interpreted as

merging black hole binaries (BHBs), opening a new perspective on the study of such

systems. Here we use our new population-synthesis code MOBSE, an upgraded ver-

sion of BSE (Hurley et al., 2002), to investigate the demography of merging BHBs.

MOBSE includes metallicity-dependent prescriptions for mass loss of massive hot

stars. It also accounts for the impact of the electron-scattering Eddington factor on

mass loss. We perform > 108 simulations of isolated massive binaries, with 12 dif-

ferent metallicities, to study the impact of mass loss, core-collapse supernovae and

common envelope on merging BHBs. Accounting for the dependence of stellar winds

on the Eddington factor leads to the formation of black holes (BHs) with mass up to

65 M¯ at metallicity Z ∼ 0.0002. However, most BHs in merging BHBs have masses

. 40 M¯. We find merging BHBs with mass ratios in the 0.1−1.0 range, even if mass

ratios > 0.6 are more likely. We predict that systems like GW150914, GW170814 and

GW170104 can form only from progenitors with metallicity Z ≤ 0.006, Z ≤ 0.008 and

Z ≤ 0.012, respectively. Most merging BHBs have gone through a common envelope

phase, but up to ∼ 17 per cent merging BHBs at low metallicity did not undergo any

common envelope phase. We find a much higher number of mergers from metal-

poor progenitors than from metal-rich ones: the number of BHB mergers per unit

mass is ∼ 10−4 M−1¯ at low metallicity (Z = 0.0002−0.002) and drops to ∼ 10−7 M−1¯
at high metallicity (Z ∼ 0.02).

Based on:

Giacobbo N., Mapelli M., Spera M., MNRAS, 2018, 474, p.2959-2974
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2.1 Introduction

The first four direct detections of gravitational waves (GWs, Abbott et al., 2016b;

Abbott et al., 2016d; Abbott et al., 2016a; Abbott et al., 2017b; Abbott et al., 2017d)

revolutionised our knowledge of black hole binaries (BHBs). Thanks to them, we

now know that coalescing BHBs exist and can host massive black holes (BHs), with

mass & 30 M¯ (as in the case of GW150914, GW170104 and GW170814).

The formation and evolution of BHBs have been investigated for a long time (e.g.

Tutukov et al., 1973; Thorne, 1987; Schutz, 1989; Kulkarni et al., 1993; Sigurdsson

and Phinney, 1993; Portegies Zwart and McMillan, 2000; Colpi et al., 2003; Belczyn-

ski et al., 2004). Already before the first LIGO detection, several theoretical studies

predicted the existence of stellar BHs with mass & 30 M¯ (e.g. Heger et al., 2003;

Mapelli et al., 2009; Mapelli et al., 2010; Belczynski et al., 2010; Fryer et al., 2012;

Mapelli et al., 2013; Spera et al., 2015). The basic idea is that if the pre-supernova

mass of a star is sufficiently large (Fryer, 1999; Fryer et al., 2001) and/or its pre-

supernova compactness sufficiently high (O’Connor and Ott, 2011), the star can

collapse to a BH directly, producing a more massive remnant than in case of a su-

pernova (SN) explosion.

Unfortunately, state-of-the-art theoretical models of BHBs still suffer from major

uncertainties. The main issues are the treatment of core-collapse supernovae, stel-

lar winds, and common envelope (CE, e.g. Dominik et al., 2012). The impact of

stellar dynamics on the formation of BHBs is also matter of debate (e.g. Ziosi et al.,

2014; Rodriguez et al., 2015; Rodriguez et al., 2016; Mapelli, 2016; Askar et al., 2016;

Antonini et al., 2017; Banerjee, 2018).

The physics of core-collapse SNe is remarkably complex and barely understood

(e.g. Fryer, 1999; Heger and Woosley, 2002; Heger et al., 2003; Fryer, 2006; O’Connor

and Ott, 2011; Fryer et al., 2012; Janka, 2012; Burrows, 2013; Pejcha and Prieto, 2015;

Woosley, 2017). The key point is to understand the connection between the final

stages of a massive star’s life and the outcome of a SN (for a review, see Limongi,

2017). In particular, it is crucial to assess what are the conditions for a star to di-

rectly collapse into a BH, without an explosion (e.g. Bethe, 1990; Fryer, 1999; Fryer

et al., 2001; Janka et al., 2007; O’Connor and Ott, 2011; Janka, 2012; Burrows, 2013;

Ertl et al., 2016).

Mass loss by stellar winds is also crucial, because it governs the final mass Mfin of a

star, i.e. the mass of a star just before the SN (see e.g. Mapelli et al., 2009; Belczynski

et al., 2010; Fryer et al., 2012; Mapelli et al., 2013). In the last decade, models of

line-driven stellar winds were profoundly revised. Current models suggest a strong
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dependence of mass loss on metallicity (Ṁ ∝ Zα, with α ∼ 0.85, Vink et al., 2001;

Vink et al., 2011; Muijres et al., 2012) not only during the main sequence (MS) but

also after, including the Wolf-Rayet (WR) stage (see e.g. Vink and de Koter, 2005a;

Meynet and Maeder, 2005; Gräfener and Hamann, 2008; Vink et al., 2011; Tang et

al., 2014; Chen et al., 2015).

In addition, there has been a debate regarding the importance of stationary versus

eruptive mass loss for massive star evolution (Vink and Gräfener, 2012). Clump-

ing of stellar winds results in a reduction of the mass-loss rate. Recent theoretical

models (e.g. Vink et al., 2001) predict lower mass-loss rates by a factor of 2 – 3 with

respect to unclumped empirical mass-loss rates, consistent with a moderate wind

clumping.

Finally, some of the most recent wind models (e.g. Gräfener and Hamann, 2008;

Gräfener et al., 2011; Vink et al., 2011; Vink, 2017a) and observations (e.g. Besten-

lehner et al., 2014) suggest that mass loss also depends on the electron-scattering

Eddington factor Γe of the star. In particular, if a star approaches the Eddington

limit (i.e. Γe . 1), stellar winds become almost insensitive to metallicity. Most stel-

lar evolution models do not include this dependence, with very few exceptions (e.g.

PARSEC, Chen et al., 2015). Population-synthesis codes, which are used to study

the demography of BHs and BHBs, should also account for these updated models

of stellar winds and massive star evolution.

Currently, only few population-synthesis codes adopt up-to-date metallicity-

dependent prescriptions for stellar winds (e.g. Belczynski et al., 2010; Toonen et

al., 2012; Mapelli et al., 2013; Spera et al., 2015; Spera and Mapelli, 2017; Baner-

jee, 2018). The dependence of stellar winds on the Eddington factor is imple-

mented only in the SEVN code (where SEVN is the acronym for ’Stellar EVolution

for N-body’ Spera et al., 2015; Spera and Mapelli, 2017). In its published version,

SEVN only evolves single stars and is currently undergoing a major upgrade to in-

clude the main binary evolution processes (Spera et al., 2019).

Here we present our upgraded version of BSE (acronym for ’Binary Stellar Evo-

lution’), one of the most popular population-synthesis codes (Hurley et al., 2000;

Hurley et al., 2002). In the following, we refer to our new version of BSE as

MOBSE (which stands for ’Massive Objects in Binary Stellar Evolution’). With re-

spect to BSE, MOBSE includes up-to-date equations for metal-dependent stellar

winds (based on Belczynski et al., 2010 and on Chen et al., 2015) and new prescrip-

tions for core-collapse SNe (based on Fryer et al., 2012). Moreover, MOBSE in-

cludes the dependence of stellar winds on the Eddington factor, adopting the pre-

scriptions by Chen et al. (2015).
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We use MOBSE to investigate the formation of BHBs from isolated binaries, com-

paring different models of stellar winds and SNe. We also examine the role played

by the CE phase in the formation of BHBs.

2.2 Methods

In this Section, we describe the main features of MOBSE with respect to BSE.

MOBSE adopts the following prescriptions for stellar winds. For O and B stars with

effective temperature 12500K ≤ T ≤ 25000K we adopt equation 25 of Vink et al.

(2001):

log Ṁ = −6.688+2.210 log
³

L
105 L¯

´
−1.339 log

³
M

30 M¯

´
−1.601 log

¡ V
2.0

¢
+α log

³
Z

Z¯

´
+1.07 log

¡ T
20000 K

¢
, (2.1)

where L is the stellar luminosity, M is the stellar mass, α expresses the dependence

of mass loss on metallicity and V = vi n f /vesc = 1.3 is the ratio of the wind velocity

at infinity (vinf) to escape velocity (vesc).

For O and B stars stars with 25000 K < T ≤ 50000 K we use equation 24 of Vink et al.

(2001):

log Ṁ = −6.697+2.194 log
³

L
105L¯

´
−1.313 log

³
M

30 M¯

´
−1.226 log

¡ V
2.0

¢
+α log

³
Z
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´
+0.933 log

¡ T
40000 K

¢
10.92

£
log
¡ T

40000 K

¢¤2
, (2.2)

where V = vi n f /vesc = 2.6. The above dichotomy is due to the bi-stability jump, i.e.

a sudden jump in the mass-loss rate related to the fact that the iron ions driving the

wind recombine at T ∼ 25000 K, and again below 12500 K (for more details see Vink

et al., 1999; Petrov et al., 2016).

We express the mass loss of luminous blue variable (LBV) stars as

Ṁ = 10−4 fLBV

µ
Z

Z¯

¶α
M¯ yr−1, (2.3)

where fLBV is a parameter (we choose fLBV = 1.5, in agreement with Belczynski et

al., 2010).
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Finally, for Wolf-Rayet (WR) stars we use equation 9 of Belczynski et al. (2010):

ṀWR = 10−13L1.5
µ

Z

Z¯

¶α
M¯ yr−1 . (2.4)

For the other stars, MOBSE adopts the same mass loss formalism as the original

version of BSE.

MOBSE1

Equations 2.1, 2.2, 2.3 and 2.4, contain the parameter α which expresses the de-

pendence of mass loss on metallicity. In our fiducial version of MOBSE (hereafter,

MOBSE1), we define α in the following way:

α=
0.85 if Γe < 2/3

2.45−2.4Γe if 2/3 ≤ Γe ≤ 1 ,
(2.5)

where Γe is expressed as (see equation 8 of Gräfener et al., 2011):

logΓe =−4.813+ log(1+XH)+ log(L/L¯)− log(M/M¯), (2.6)

where XH is the Hydrogen fraction.

According to this definition, the dependence of mass loss on metallicity almost

vanishes when the star is radiation pressure dominated (Γe ∼ 1). This expression

for α was derived by Tang et al. (2014) and Chen et al. (2015), based on the results

of Gräfener and Hamann, 2008. In fact, Gräfener and Hamann (2008) and Vink

et al. (2011) show that the mass-loss rate is strongly enhanced when the star ap-

proaches the electron-scattering Eddington limit Γe . This means that increasing Γe

the metallicity dependence becomes weaker.
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MOBSE2

Other population-synthesis codes (e.g. STARTRACK, Belczynski et al., 2010) do not

take into account the effect of Γe on mass loss. To quantify the importance of Γe

and to compare our results with previous work, we also introduce a second version

of our MOBSE code (which we will refer to as MOBSE2), where we do not include

the effect of Γe .

In MOBSE2, the parameter α is defined as

α=


0.85 in equations 2.1and 2.2

0 in equation 2.3

0.86 in equation 2.4.

(2.7)

The values of α defined in equation 2.7 are the same as adopted by Belczynski et al.

(2010). This implies that in MOBSE2 mass loss of O and B-type stars scales as Ṁ ∝
Z 0.85 (Vink et al., 2001). WR stars also show a similar dependence (α ∼ 0.86, Vink

and de Koter, 2005a). Finally, the mass loss of LBVs does not depend on metallicity,

as in equation 8 of Belczynski et al. (2010). This means that mass loss of LBVs is

constant, while mass loss of MS and WR stars does not depend on Γe .

2.2.1 Supernovae

The physics of core-collapse SNe is uncertain and several different models exist

(see Smartt, 2009 for a review). For this reason, we have implemented two different

prescriptions for core-collapse SNe (described in details by Fryer et al., 2012): i) the

rapid SN model and ii) the delayed SN model.

The main difference between them is that they assume a different time-scale at

which the explosion occurs: in the rapid (delayed) model the explosion takes place

t < 250 ms (t & 0.5 s) after core bounce.

Both the prescriptions depend only on the final mass of the Carbon-Oxygen (CO)

core (MCO) and on the final mass of the star (Mfin), which determines the amount

of fallback.

Other studies suggest a more complex relation between the properties of the star

at the onset of collapse and the compact remnant mass (e.g. O’Connor and Ott,

2011; Janka, 2012; Ugliano et al., 2012; Pejcha and Prieto, 2015; Ertl et al., 2016) and

provide alternative formalisms to predict the remnant mass (e.g. the compactness

criterion by O’Connor and Ott, 2011 or the two-parameter criterion by Ertl et al.,

2016). However, we cannot adopt these alternative formalisms in BSE, because
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they rely on the inner structure of the star at the onset of collapse, which is not

calculated in BSE. Figure 21 of the recent review by Limongi (2017) shows that there

is a strong correlation between the compactness parameter and the CO mass of the

progenitor star, suggesting that our formalism based on the CO mass should give

results similar to the formalism based on the compactness parameter in most cases

(see also Figures 21 and 22 of Spera et al., 2015).

Furthermore, the rapid and delayed SN models do not distinguish between neutron

stars (NSs) and BHs, because they are general prescriptions for the formation of

compact remnants. According to the Tolman-Oppenheimer-Volkoff limit (Oppen-

heimer and Volkoff, 1939), we assume that the minimum mass for a BH is 3.0M¯
and all compact SN remnants with mass < 3.0M¯ are NSs.

The details of the implementation of core-collapse SNe in MOBSE can be found in

Appendix A.

In MOBSE, we also added a formalism for pair-instability SNe (PISNe, Ober et al.,

1983; Bond et al., 1984; Heger et al., 2003; Woosley et al., 2007) and pulsational

pair-instability SNe (PPISNe, Barkat et al., 1967; Woosley et al., 2007; Chen et al.,

2014; Yoshida et al., 2016), which are not included in BSE and in most population-

synthesis codes. Our description of PISNe is based on the results by Heger et al.

(2003): if the final Helium core mass (MHe,f) of a star is 64M¯ . MHe,f . 135M¯,

we assume that the star leaves no remnant, because the ignition of Oxygen and

Silicon releases enough energy to disrupt the entire star. If MHe,f > 135 M¯, the star

is expected to avoid the PISN and to directly collapse into a BH.

Our description of PPISNe is based on the formalism presented in Spera et al. (2016)

and Spera and Mapelli (2017) (see also Belczynski et al., 2016a; Woosley, 2017). If

the final mass of the Helium core is 32M¯ . MHe,f . 64M¯, the star undergoes a

PPISN and leaves a compact remnant whose mass is described by the fitting for-

mulas in Appendix B.

We also updated the natal kick for BHs (Vkick) as follows (Fryer et al., 2012):

Vkick = (1− ffb)Wkick, (2.8)

where ffb is the fallback factor (the explicit expression can be found in Appendix A).

Wkick is randomly drawn from a Maxwellian distribution with a one dimensional

root-mean square σ = 265 km s−1. This distribution was derived by Hobbs et al.

(2005), based on the proper motions of 233 isolated Galactic pulsars.
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Figure 2.1: Radius versus mass of the CO core for five stars with zero-age main sequence
(ZAMS) mass MZAMS = 30,60,70,90,100M¯, at solar metallicity (Z = 0.02). Solid line: SEVN;
crosses: MOBSE ; circles: BSE.

2.2.2 Additional changes in MOBSE

We also added to MOBSE the fitting formulas described in Hall and Tout (2014), to

compute the core radius of evolved stars. The core radius is crucial to determine the

final fate of a CE system. Figure 2.1 shows the differences between the CO core radii

computed with BSE (triangles), MOBSE (circles) and SEVN (lines) as a function of

the core mass. The CO core radii derived with MOBSE are of the same order of

magnitude as those obtained with SEVN, while BSE predicts unphysically small

CO core radii. Our treatment of WR and LBV stars does not account for envelope

inflation, which might increase the effective photospheric radii by a factor of ∼ 10

(Gräfener et al., 2012). We will include this effect in forthcoming studies.

Another critical issue of CE is the treatment of Hertzsprung Gap (HG) donors (e.g.

de Mink and Belczynski, 2015). During the HG phase, stars do not present a steep

density gradient between the core and the envelope and for this reason their re-

sponse to the CE phase should be similar to that of MS stars (see Ivanova and Taam,
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2004). In BSE, when a MS star enters a CE phase as donor it merges with the ac-

cretor, while HG donors are allowed to survive the CE phase. On the contrary, in

MOBSE we imposed that even HG donors merge with their companions if they en-

ter a CE phase (Dominik et al., 2012).

Finally, we also extended the mass range of BSE to include stars up to 150 M¯.

Because of the fitting formulas by Hurley et al. (2000) might be inaccurate for very

massive stars (> 100 M¯) we imposed that the values of the stellar radii of single star

are consistent with PARSEC stellar evolution tracks (Chen et al., 2015), as discussed

in Mapelli (2016). We do not consider stars with zero-age main sequence (ZAMS)

mass MZAMS > 150 M¯, because the mismatch between BSE fitting formulas and

PARSEC tracks increases significantly above this mass (see e.g. Fig. 2.2).

2.2.3 Simulations and initial distributions

In this section we detail the initial conditions of our population synthesis simula-

tions. The mass of the primary star (m1) is randomly extracted from a Kroupa initial

mass function (Kroupa, 2001),

F(m1) ∝ m−2.3
1 with m1 ∈ [5−150]M¯ . (2.9)

We sampled the mass of the secondary m2 according to the distribution proposed

by Sana et al. (2012)

F(q) ∝ q−0.1 with q = m2

m1
∈ [0.1−1] m1 , (2.10)

We adopt the distributions proposed by Sana et al. (2012) also for the orbital period

P and the eccentricity e:

F(P ) ∝ (P )−0.55 with P = log10(P/day) ∈ [0.15−5.5] (2.11)

and

F(e) ∝ e−0.42 with 0 ≤ e < 1 . (2.12)

For the CE phase we adopted the same formalism used by Hurley et al. (2002) and

described in detail in Ivanova et al. (2013). This formalism depends on two free

parameters, α and λ, where, α is the fraction of orbital energy which can be used to

unbind the envelope andλ describes the geometry of the envelope. In this work, we

consider three different combinations of these parameters: α= 1.0, λ= 0.1 (which

is well motivated for massive stars, see e.g. Xu and Li, 2010; Loveridge et al., 2011),

α= 3.0, λ= 0.5 and α= 0.2, λ= 0.1.
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Table 2.1: Initial conditions.

ID Winds SN α λ

MOBSE1_D MOBSE 1 delayed 1.0 0.1
MOBSE1_R MOBSE 1 rapid 1.0 0.1
MOBSE2_D MOBSE 2 delayed 1.0 0.1
MOBSE2_R MOBSE 2 rapid 1.0 0.1

MOBSE1_D1.5 MOBSE 1 delayed 3.0 0.5
MOBSE1_D0.02 MOBSE 1 delayed 0.2 0.1
MOBSE2_D1.5 MOBSE 2 delayed 3.0 0.5

MOBSE2_D0.02 MOBSE 2 delayed 0.2 0.1

Column 1: simulation name; column 2: stellar wind model (MOBSE1 and MOBSE2); col-

umn 3: SN model (delayed and rapid from Fryer et al., 2012); column 4 and 5: values of α

and λ in the CE formalism.

We ran eight sets of simulations (see Table 2.1) in order to test different combina-

tions of stellar wind models, SN explosion mechanisms and values of α and λ.

For each set of simulations we performed 12 sub-sets with different metallicities

Z = 0.0002, 0.0004, 0.0008, 0.0012, 0.0016, 0.002, 0.004, 0.006, 0.008, 0.012, 0.016

and 0.02. The polynomial fitting formulas implemented in BSE (Hurley et al., 2000)

and the prescriptions for mass loss adopted in MOBSE have been shown to hold

in this metallicity range (e.g. Kudritzki, 2002; Bresolin and Kudritzki, 2004). In each

sub-set, we simulate 107 binary systems. Thus, each of the eight sets of simulations

is composed of 1.2×108 massive binaries.

2.3 Results

2.3.1 Mass loss by stellar winds

In this Section, we discuss the evolution of single massive stars obtained with

MOBSE1 and MOBSE2, in comparison to other open-source population synthe-

sis codes, namely BSE (Hurley et al., 2000; Hurley et al., 2002) and SEVN (Spera et

al., 2015; Spera et al., 2016; Spera and Mapelli, 2017). BSE is the original code from

which MOBSE derives, while SEVN is a more recent code. In BSE single stellar

evolution is implemented using polynomial fitting formulas (Hurley et al., 2000),

while in SEVN stellar evolution is calculated from look-up tables (the current de-

fault tables are based on the recent PARSEC stellar evolution code, Bressan et al.,

2012; Tang et al., 2014; Chen et al., 2015).
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Figure 2.2: Stellar mass evolution with time for five different MZAMS at Z = 0.0002 computed
with MOBSE, BSE and SEVN. Solid lines: MOBSE1; dashed lines: MOBSE2; dotted lines: BSE;
dash-dot lines: SEVN. The markers identify the final mass of the stars: circles for MOBSE1,
triangles for MOBSE2, squares for BSE and stars for SEVN.

Figure 2.2 shows the evolution of stellar mass at Z = 0.0002 for various ZAMS

masses. At low ZAMS masses (. 30 M¯) the behavior of the considered codes

is quite indistinguishable. The main difference is the duration of stellar life in

BSE and MOBSE with respect to the more updated SEVN code (see Fig. 2.2).

For larger ZAMS masses, there is a pronounced difference in the late evolutionary

stages, due to the different stellar wind models. These differences are highlighted

in Figure 2.3, which shows the final stellar mass (Mfin), as a function of the ZAMS

mass (MZAMS) at Z = 0.0002. MOBSE1 is in remarkable agreement with SEVN for

stars lighter than MZAMS ' 100M¯, predicting a low mass loss during the entire star’s

life. For more massive stars (MZAMS > 100M¯), SEVN follows the same trend as for

lighter stars, i.e. mass loss is extremely quenched, while the value of Mfin in model

MOBSE1 drops to ∼ 50M¯.

The evolution of the stellar mass in MOBSE2 is generally intermediate between

that of BSE and that of both SEVN and MOBSE1. This difference arises mainly
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Figure 2.3: Final mass of a star (Mfin) as a function of its ZAMS mass at Z = 0.0002. Solid
line: MOBSE1; dashed line: MOBSE2; dotted line: BSE; dash-dot line: SEVN. In all cases we
considered the delayed SN model.

from the treatment of LBV stars. In both MOBSE1 and SEVN the mass loss scales

as Ṁ ∝ Z 0.85, unless a star is radiation-pressure dominated (Γe > 2/3, see equa-

tions 2.5). In contrast, MOBSE2 assumes a strong mass loss rate for LBVs, indepen-

dent of metallicity even if Γe < 2/3 (see equation 2.7).

2.3.2 Mass spectrum of compact remnants

Figure 2.4 shows the trend of the remnant mass (Mrem) as a function of MZAMS, for

different values of the metallicity (0.0002 ≤ Z ≤ 0.02). In this Figure, we adopt the

delayed mechanism for SN explosions. The upper and the lower panel show the

results of MOBSE1 and MOBSE2, respectively. As expected, there is a relation be-

tween the maximum mass of the compact remnants and the metallicity: the lower

the metallicity is, the higher the mass of the heaviest remnant.

At high metallicity (Z = 0.02) MOBSE1 and MOBSE2 are almost indistinguishable.

In both models, the remnant mass increases monotonically with the ZAMS mass,

33



CHAPTER 2. MERGING BLACK HOLE BINARIES

0 20 40 60 80 100 120 140 160
MZAMS [M¯]

0

10

20

30

40

50

60

M
re

m
[M

¯
]

MOBSE1

Metallicities:

Z = 0.02

Z = 0.016

Z = 0.012

Z = 0.008

Z = 0.006

Z = 0.002

Z = 0.0016

Z = 0.0002

0 20 40 60 80 100 120 140 160
MZAMS [M¯]

0

10

20

30

40

50

60

M
re

m
[M

¯
]

MOBSE2

Metallicities:

Z = 0.02

Z = 0.016

Z = 0.012

Z = 0.008

Z = 0.006

Z = 0.002

Z = 0.0016

Z = 0.0002

Figure 2.4: Mass of the compact remnant (Mrem) as a function of the ZAMS mass of the pro-
genitor star, for different metallicities between Z = 0.0002 and 0.02. Top: MOBSE1. Bottom:
MOBSE2. In both cases we assume the delayed SN model.
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until it reaches Mrem ∼ 20M¯.

At lower metallicities (Z = 0.002 and Z = 0.0002), MOBSE1 and MOBSE2 dif-

fer significantly, especially for MZAMS > 30M¯. In MOBSE1 the remnant mass

rapidly increases with MZAMS untill it reaches its maximum (Mrem ∼ 50− 65 M¯)

at MZAMS ∼ 70M¯. For larger ZAMS masses, the remnant mass drops to ∼ 40 M¯.

In MOBSE2 the remnant mass has a local maximum for MZAMS ∼ 30M¯. For larger

ZAMS masses, it drops and then rises steadily to a global maximum of Mrem ∼ 40M¯
at MZAMS > 120 M¯.

Thus, the maximum BH mass predicted by MOBSE1 is 50− 65 M¯, significantly

higher than the maximum BH mass predicted by MOBSE2 (∼ 40 M¯). The main

reason for this difference is, again, the dependence of mass loss on the Eddington

factor implemented in MOBSE1 but not in MOBSE2.

Figure 2.5 compares the mass spectrum of compact remnants obtained with

MOBSE, SEVN and BSE at three different metallicities. The dependence on metal-

licity is weaker for BSE, and stronger for both MOBSE and SEVN. At solar metal-

licity, all codes predict remnant masses < 30 M¯. At metallicity Z = 0.002 and

Z = 0.0002, BSE is the only code predicting Mrem < 30 M¯, because of the stellar

wind prescriptions. Both MOBSE and SEVN predict larger masses. We note that

the BH mass spectrum obtained with MOBSE2 is in agreement with Belczynski et

al. (2016b), who adopt similar prescriptions for the stellar winds (Belczynski et al.,

2010).

At low metallicity (Z < 0.002) SEVN and MOBSE1 are in good agreement, while

the remnant masses obtained with MOBSE2 are significantly different from both

SEVN and MOBSE1. The key ingredient is again the fact that the stellar wind pre-

scriptions implemented in SEVN and MOBSE1 depend on both the metallicity and

the Eddington factor.

The good agreement between SEVN and MOBSE1 is particularly remarkable, be-

cause SEVN (Spera and Mapelli, 2017) adopts very recent stellar evolution models

(from PARSEC, Bressan et al., 2012; Chen et al., 2015), while MOBSE1 is still based

on the polynomial fitting formulas described by Hurley et al. (2000). This result

confirms the importance of accounting for the Eddington factor in mass loss mod-

els.

In Figure 2.5 we can also note the effect of PISNe and PPISNe on the most massive

metal-poor stars (see also Figure B1 in Appendix B). At metallicity Z ≤ 0.002, very

massive stars leave no remnant as an effect of PISNe in both MOBSE2 and SEVN.

PISNe do not occur in MOBSE1 and BSE, because the final Helium core mass is al-

ways below the threshold for PISNe (∼ 64 M¯). PPISNe occur in MOBSE1, MOBSE2
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Figure 2.5: Mass of the compact remnant (Mrem) as a function of the ZAMS mass of the pro-
genitor stars, for Z = 0.02 (bottom panel), Z = 0.002 (central panel) and Z = 0.0002 (top panel).
Solid lines: MOBSE1; dashed lines: MOBSE2; dash-dot lines: SEVN; dotted lines: BSE. In all
cases the delayed SN model is assumed.

and SEVN at low metallicity (Z ≤ 0.008 for MOBSE1 and SEVN and Z ≤ 0.002 for

MOBSE2) for stars with 32M¯ . MHe,f . 64M¯. Their effect is a substantial de-

crease of the remnant mass with respect to the final mass of the star (Mfin, Fig-

ure 2.3). PPISNe do not occur in BSE, because the final Helium core mass does not

reach the threshold for PPISNe in BSE.

Figure 2.6 compares the rapid and the delayed core-collapse SN models. ZAMS

masses larger than 50 M¯ are not shown, because the rapid and the delayed SN

models produce exactly the same remnant mass for MZAMS > 50 M¯, in agreement

with Fryer et al. (2012) and Spera et al. (2015).

The main difference between rapid and delayed SN model is the number of rem-

nants with mass 2 < Mrem < 5 M¯. The rapid SN model predicts a mass gap between

the lightest BHs (∼ 5M¯) and the heaviest NSs (∼ 2M¯), while the delayed model

predicts no gap. This result is consistent with previous studies (Fryer et al., 2012;

Spera et al., 2015). Dynamical mass measurements of compact objects in X-ray bi-

naries show marginal indications for the existence of a mass gap (e.g. Özel et al.,

2010; Farr et al., 2011), possibly suggesting a preference for a rapid SN explosion.
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Figure 2.6: Mass of the compact remnant (Mrem) as a function of the ZAMS mass of the progen-
itor star (MZAMS) for two different core-collapse SN models: rapid SN model (upper panel) and
delayed SN model (bottom panel). Red lines: metallicity Z = 0.02; green lines: Z = 0.002; blue
lines: Z = 0.0002. Solid lines: MOBSE1, dashed lines: MOBSE2. In the top panel the mass gap
between the heaviest NSs and the lightest BHs (∼ 2M¯ to ∼ 5M¯) is highlighted by a shaded
area.

2.3.3 Black hole binaries

In this section, we focus on the properties of BHBs derived from our binary

population-synthesis simulations with MOBSE. The left-hand panels of Figures

2.7 and 2.8 show the chirp mass1 (mchirp = (mp ms)3/5/(mp +ms)1/5, where mp and

ms are the masses of the primary and secondary BH, respectively) and the total

mass distributions of all BHBs which formed in our simulations MOBSE1_D and

MOBSE2_D, including both BHBs which merge and BHBs which do not merge in

a Hubble time. Simulations labelled as MOBSE1_D (MOBSE2_D) were run with

MOBSE1 (MOBSE2), adopting the delayed SN model and assuming α= 1, λ= 0.1

for the CE (see Table 2.1 for details on the simulations).

1The chirp mass is named that because it is this combination of mp and ms that determines
how fast the binary sweeps, or chirps, through a frequency band. In fact, it can be shown that the
amplitude and the frequency of GWs scale as m5/3

chirp and m−5/8
chirp, respectively (Maggiore, 2008).
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Figure 2.7: Chirp mass distribution of BHBs for MOBSE1_D (upper panels) and MOBSE2_D
(lower panels). Left-hand column: chirp mass distribution for all BHBs. Right-hand column:
chirp mass distribution for the merging BHBs only. Solid lines represent the chirp mass dis-
tributions at different metallicity, ranging from 0.0002 to 0.02. The vertical lines in all panels
are the chirp masses of GW151226, GW150914 (Abbott et al., 2016b), GW170104 (Abbott et al.,
2017b) and GW170814 (Abbott et al., 2017d) with the corresponding uncertainties (at the 90 per
cent credible level, shadowed regions).

At low metallicity (Z . 0.0004), MOBSE1 produces very massive BHBs, with total

mass up to Mtot ' 150M¯ and chirp mass up to Mchirp ' 55M¯, while the heavi-

est BHBs obtained with MOBSE2 have Mtot ' 90M¯ and Mchirp ' 40M¯. At so-

lar metallicity (Z = 0.02), the maximum chirp mass (total mass) is Mchirp ' 20M¯
(Mtot ' 50M¯) for both MOBSE1 and MOBSE2.

We now restrict our attention to merging BHBs. The right-hand panels of Figures

2.7 and 2.8 show the chirp mass and the total mass distributions for the sub-sample

of merging BHBs (defined as BHBs which merge within a Hubble time). It is ap-

parent that the maximum mass of merging BHBs is significantly smaller than the

maximum mass of non-merging BHBs. This difference persists at all metallicities,

and is more pronounced in MOBSE1 than in MOBSE2.

The heaviest merging BHs have MBH,max ' 45M¯ (only few systems have a primary

BH & 55 M¯, in model MOBSE1) at Z ≤ 0.0002 and MBH,max ' 20M¯ at Z = 0.02.

The maximum values of the chirp masses are Mchirp ' 40M¯ and Mchirp ' 10M¯
at Z = 0.0002 and Z = 0.02, respectively. The masses of merging BHBs predicted
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Figure 2.8: Same as Figure 2.7, but for the distribution of total masses.

by MOBSE1 are remarkably similar to those predicted by MOBSE2. This funda-

mental difference between merging BHBs and other BHBs holds for all eight sets

of simulations performed in this paper, included those which are not shown in Fig-

ures 2.7 and 2.8. This happens because the most massive BHBs in MOBSE1 come

from massive (∼ 60−80 M¯) progenitors which die as red super-giant stars. Thus, all

such BHBs form with very large semi-major axis (otherwise their progenitors merge

prematurely, due to their large radii) and cannot merge within a Hubble time.

Figures 2.7 to 2.8 also show that the number of BHBs scales inversely with the

metallicity of the progenitors. This trend is particularly strong if we consider only

merging BHBs. This result originates from several factors. At higher metallicity,

stars radii are larger, and thus a larger fraction of binaries merge before becom-

ing a BHB. Moreover, we assume stronger SN kicks for lower BH masses. Thus, SN

kicks are more efficient in unbinding light binaries, which are more common at

high metallicity.

Figure 2.9 shows the distribution of masses of the primary BH (i.e. the most massive

one) and of the secondary BH (i.e. the least massive one) for all merging BHBs in the

four runs with MOBSE1. Figure 2.10 is the same for the four runs with MOBSE2.

There are no significant differences between merging BHB masses in MOBSE1 and
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Figure 2.9: Mass distribution of primary (left-hand column) and secondary members (right-
hand column) of merging BHBs in the eight simulation sets. Line colours (from red to vio-
let) correspond to decreasing metallicity (from Z = 0.02 to Z = 0.0002). From top to bottom:
MOBSE1_D, MOBSE1_D1.5, MOBSE1_D0.02, and MOBSE1_R. See Table 2.1 for details on
each simulation. The vertical lines on the left-hand (right-hand) column are the mass of the
primary (secondary) BH in GW151226, GW150914 (Abbott et al., 2016b), GW170104 (Abbott et
al., 2017b) and GW170814 (Abbott et al., 2017d). The error bars show the uncertainties on each
mass (at the 90 per cent credible level).
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Figure 2.10: Same as Fig. 2.9 but for simulation with MOBSE2. From top to bottom:
MOBSE2_D, MOBSE2_D1.5, MOBSE2_D0.02, and MOBSE2_R.

Table 2.2: Minimum metallicity of progenitors of GW events.

MOBSE1 MOBSE2

GW event D1.5 D D0.02 R D1.5 D D0.02 R

GW150914 Z ≤ 0.002 Z ≤ 0.004 Z ≤ 0.006 Z ≤ 0.004 Z ≤ 0.002 Z ≤ 0.004 Z ≤ 0.006 Z ≤ 0.004
LVT151012 Z ≤ 0.008 Z ≤ 0.012 Z ≤ 0.016 Z ≤ 0.012 Z ≤ 0.006 Z ≤ 0.012 Z ≤ 0.016 Z ≤ 0.012
GW151226 Z ≤ 0.02 Z ≤ 0.02 Z ≤ 0.02 Z ≤ 0.02 Z ≤ 0.02 Z ≤ 0.02 Z ≤ 0.02 Z ≤ 0.02
GW170104 Z ≤ 0.006 Z ≤ 0.006 Z ≤ 0.012 Z ≤ 0.006 Z ≤ 0.004 Z ≤ 0.006 Z ≤ 0.008 Z ≤ 0.006
GW170814 Z ≤ 0.004 Z ≤ 0.006 Z ≤ 0.008 Z ≤ 0.006 Z ≤ 0.004 Z ≤ 0.004 Z ≤ 0.008 Z ≤ 0.004

Column 1: GW detection; column 2-9: maximum star metallicity at which we can obtain

merging BHBs with the same mass as the detected ones in runs MOBSE1_D1.5,

MOBSE1_D, MOBSE1_D0.02, MOBSE1_R, MOBSE2_D1.5, MOBSE2_D,

MOBSE2_D0.02, and MOBSE2_R (see Table 2.1).
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Figure 2.11: Distribution of the mass ratio q = ms/mp (where mp and ms are the mass of the
primary and of the secondary, respectively) of merging BHBs. Left-hand panel, from top to
bottom: MOBSE1_D, MOBSE1_D1.5, MOBSE1_D0.02, MOBSE1_R. Right-hand panel, from
top to bottom: MOBSE2_D, MOBSE2_D1.5, MOBSE2_D0.02, MOBSE2_R. The vertical lines
are the mass ratio of GW151226, GW150914 (Abbott et al., 2016b), GW170104 (Abbott et al.,
2017b) and GW170814 (Abbott et al., 2017d).
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MOBSE2, regardless of the SN model or CE prescription. The maximum mass of

merging BHBs does not seem to depend significantly on the assumed SN model

or on the assumed CE parameters. The minimum mass of merging BHBs does de-

pend on the assumed SN model, because the rapid SN model (MOBSE1_R and

MOBSE2_R) does not allow to form compact remnants with mass in the range of

2−5 M¯.

The main difference between different values of the CE parameters is the number

of merging BHBs with relatively high metallicity (0.006 ≤ Z ≤ 0.02). The two models

MOBSE1_D0.02 and MOBSE2_D0.02, which adopt αλ= 0.02, form a significantly

larger number of merging BHBs with relatively high metallicity (0.006 ≤ Z ≤ 0.02)

than models with a larger value of αλ. As already discussed in Mapelli et al. (2017),

this is likely due to the fact that a lower value of αλ makes the spiral in of the cores

much more efficient, bringing the two cores on a much smaller final orbital separa-

tion. Thus, even binaries with a very large initial orbital separation might give birth

to a merging BHB system, provided that they can enter a CE phase. Entering a CE

phase is much easier for metal-rich stars, because their radii are larger than those

of their metal-poor analogues.

On the other hand, MOBSE1_D0.02 and MOBSE2_D0.02 also form a significantly

smaller number of light merging BHBs (< 12 M¯) with relatively low metallicity (Z <
0.006) than models with a larger value of αλ. This can be explained as follows.

Assuming a lower value of αλ means that it is harder to eject the CE during the CE

phase. This implies that the minimum semi-major axis (amin) above which a binary

system survives the CE without merging is larger for a lower value of αλ.

In the case of (both metal-rich and metal-poor) massive stars, the maximum stellar

radii are always ≥ amin for the considered range of αλ. This means that changes of

αλ (and consequently of amin) do not affect the number of massive binary systems

which merge prematurely (before becoming BHBs). In contrast, for light (. 30M¯)

meta-poor stars (Z ≤ 0.006) this difference in amin is crucial, because the maxi-

mum stellar radii are < amin for αλ = 0.02 but > amin for αλ ≥ 0.1. Therefore,

the same binary will not survive the CE phase in the case with αλ = 0.02, while

it will survive without merging prematurely in the case with αλ ≥ 0.1. This ef-

fect explains the dearth of merging BHBs with M < 12M¯ in MOBSE1_D0.02 and

MOBSE2_D0.02 simulations respect to MOBSE1_D, MOBSE2_D, MOBSE1_D1.5

and MOBSE2_D1.5 simulations.

In addition, for metal-rich stars there is another effect that plays a role. Indeed, the

spiral-in during CE is more efficient for small values of αλ, so even initial larger

binaries can become close binaries and eventually evolve into merging BHBs.
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Figure 2.12: Corrected number of mergers per unit mass as a function of the metallicity for all
sets of simulations (Z¯ = 0.02). The colors identify different assumptions for the SN mechanism
and for the values of CE parameters α and λ. Solid (dashed) lines: MOBSE1 (MOBSE2).

From Figures 2.9 and 2.10 and from Table 2.2 it is apparent that our models can ac-

count for all four GW events reported so far. The most massive systems (GW150914,

GW170104 and GW170814) can be generated only by metal-poor progenitors. In

particular, GW150914-like systems are produced only for Z ≤ 0.006, GW170814-

like systems for Z ≤ 0.008, GW170104-like systems for Z ≤ 0.012, and LVT151012-

like systems for Z ≤ 0.016, while GW151226-like systems exist at all metallicities

(Z ≤ 0.02, see Table 2.2 for details). From Tabbe 2.2 it is also interesting to note that

the higher αλ is, the lower the maximum metallicity to produce the observed GW

events.

Finally, Figure 2.11 shows the mass ratio between the secondary BH and the pri-

mary BH in the merging BHBs. While nearly equal-mass systems are more common

in our models, we find merging BHBs with nearly all possible mass ratios, down to

q ∼ 0.1. This is at odds with models of BHB formation through chemically homoge-

neous evolution (Marchant et al., 2016; de Mink and Mandel, 2016; Mandel and de

Mink, 2016), which predict the formation of nearly equal mass merging BHBs, but

is consistent with the mass ratio of the four GW detections.
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2.3.4 Mergers per unit mass

For each simulation, we calculate the number of merging BHBs per unit mass as

R = Nmerger

Mtot,sim
, (2.13)

where Nmerger is the number of merging BHBs in each sub-sample and Mtot,sim is

the total mass of the corresponding sub-sample.

This number must be corrected to account for the fact that we simulate only mas-

sive (m1 > 5 M¯) binary systems (no single stars). We thus introduce the corrected

number of merging BHBs per unit mass as

Rcor = fbin fIMF R, (2.14)

where fbin is the correction factor used to take into account that we only simulate

binary systems. We put fbin = 0.5, assuming that 50 per cent of stars are in binaries

(see e.g. Sana et al., 2013). The correction factor fIMF = 0.285 accounts for the fact

that we actually simulate only systems with primary mass m1 ≥ 5M¯. The values of

Rcor are shown in Tables 2.3 and 2.4, respectively.

Figure 2.12 shows Rcor as a function of the metallicity Z for all simulations. Rcor

strongly depends on the metallicity. In particular, Rcor is & 2 orders of magnitude

higher at low metallicity (Z . 0.002) than at high metallicity (Z ∼ 0.02). This means

that we form much more merging BHBs if the progenitors are metal-poor stars (see

Tables 2.3 and 2.4).

2.3.5 Formation channels of merging BHBs

In Tables 2.5 and 2.6 we report the most common evolutionary pathways followed

by merging BHBs in simulations MOBSE1 and MOBSE2, respectively. We distin-

guish three different formation channels: systems that pass through a single CE

phase (SCE); systems which experience multi-CE phases (MCE); and systems that

merge without CE phase (ZCE).

The vast majority of progenitors of merging BHBs undergo one CE phase (> 80%),

even if, especially at low metallicity (Z < 0.004), about 10− 20% of progenitors of

merging BHBs do not experience any CE. Merging BHBs that went through multiple

CE phases are a negligible fraction.

The percentage of ZCE systems increases with decreasing metallicity in both

MOBSE1 and MOBSE2. The same trend was also noted by Dominik et al. (2012),

but our results show a stronger dependence on the metallicity than Dominik et al.

(2012).
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2.4 Conclusions

We present the MOBSE code, our upgraded version of BSE. MOBSE includes up-

to-date prescriptions for core-collapse SNe and for stellar winds. We account not

only for the metallicity dependence of mass loss, but also for the effect of the Ed-

dington factor (Vink et al., 2011; Chen et al., 2015; Vink, 2017a). We discuss two ver-

sions of MOBSE, MOBSE1 and MOBSE2. MOBSE2 implements the metallicity-

dependent prescriptions described in Belczynski et al. (2010) and does not account

for the effect of the Eddington factor, while MOBSE1 updates these prescriptions

by accounting also for the Eddington factor (following Chen et al., 2015). Both ver-

sions of MOBSEalso include recipes for PISNe and PPISNe, following Spera and

Mapelli (2017).

The most massive BHs in MOBSE1 form at low metallicity (Z ∼ 0.0002− 0.002),

reach a mass of ∼ 50 − 65 M¯ and come from progenitor stars with ZAMS mass

MZAMS ∼ 60− 80 M¯. In contrast, the most massive BHs in MOBSE2 form at low

metallicity (Z ∼ 0.0002−0.002), but reach a lower mass of ∼ 45 M¯ and come from

progenitor stars with ZAMS mass MZAMS & 120 M¯ (Figure 2.4).

The distribution of BH masses derived with MOBSE2 is in good agreement with the

one discussed by Belczynski et al. (2010) and Belczynski et al. (2016b), who adopt

similar prescriptions for stellar winds and SNe. The distribution of BH masses ob-

tained with MOBSE1 is significantly different from that produced by MOBSE2 and

is remarkably similar to the one derived with the SEVN code (Spera and Mapelli,

2017). This is not surprising, because both MOBSE1 and SEVN account for the im-

pact of the Eddington factor on mass loss, but is quite remarkable, because stellar

evolution in MOBSE is still based on the polynomial fitting formulas described in

Hurley et al. (2000), while SEVN adopts the recent PARSEC stellar evolution mod-

els (Bressan et al., 2012; Chen et al., 2015). This result also indicates that the Ed-

dington factor has a large impact on the distribution of BH masses.

We have studied the demography of BHBs, performing a large set of population-

synthesis simulations with both MOBSE1 and MOBSE2. We perform simulations

with different models of core-collapse SN (delayed versus rapid models, Fryer et al.,

2012) and changing the efficiency of CE.

The distribution of simulated BHB masses covers the entire mass spectrum of BHs

predicted by MOBSE1 and MOBSE2 from single stellar evolution (Fig. 2.4). How-

ever, if we consider only merging BHBs (defined as BHBs which are expected to

merge in a Hubble time), their maximum mass is significantly lower. Even at the

lowest metallicity, the maximum mass of merging BHBs is ∼ 55 M¯ and ∼ 45 M¯
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in MOBSE1 and in MOBSE2, respectively. This indicates that the most massive

BHBs in MOBSE1 do not merge. The most likely explanation is that these BHBs

come from massive (∼ 60−80 M¯) progenitors which die as red super-giant stars.

Thus, all such BHBs form with very large semi-major axis (otherwise their progeni-

tors merge prematurely, due to their large radii) and do not merge in a Hubble time.

This feature is nearly independent of the CE parameters and of the SN model.

The maximum mass of merging BHs formed in our simulations (≈ 45 M¯) is consis-

tent with the possible upper mass gap suggested by LIGO-Virgo detections (i.e. the

dearth of merging BHs with mass in the ∼ 50−135 M¯ range, Fishbach and Holz,

2017).

We find merging BHBs with mass ratios in the 0.1 − 1.0 range, even if mass ra-

tios > 0.6 are more likely. The masses of our merging BHBs match those of the

four observed GW events. In our MOBSE1 and MOBSE2 simulations, systems like

GW150914, LVT151012, GW151226, GW170104 and GW170814 could have formed

only from binaries with metallicity Z ≤ 0.006, ≤ 0.016, ≤ 0.02, ≤ 0.012 and ≤ 0.008,

respectively.

The vast majority of progenitors of merging BHBs undergo one CE phase (> 80%),

even if, especially at low metallicity (Z < 0.004), about 10− 20% of progenitors of

merging BHBs do not experience any CE. Merging BHBs that went through multiple

CE phases are a negligible fraction.

Merging BHBs form much more efficiently from metal-poor than from metal-rich

binaries, both in MOBSE1 and in MOBSE2. The number of BHB mergers per unit

mass is ∼ 10−4 M−1¯ at low metallicity (Z = 0.0002−0.002) and drops to ∼ 10−7 M−1¯
at high metallicity (Z ∼ 0.02, Fig. 4.15). This trend of the number of BHB mergers

per unit mass with the progenitor’s metallicity potentially has a crucial impact on

GW observations across cosmic time.
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Table 2.5: Formation channels of BHBs in MOBSE1_D.

Z N◦ of mergers Channels Fraction

ZCE 0%
0.02 157 SCE 100%

MCE 0%

ZCE 0.36%
0.016 276 SCE 98.19%

MCE 1.45%

ZCE 0.27%
0.012 365 SCE 95.89%

MCE 3.84%

ZCE 0.41%
0.008 730 SCE 95.21%

MCE 4.38%

ZCE 1.00%
0.006 1397 SCE 95.71%

MCE 3.29%

ZCE 17.52%
0.004 8356 SCE 81.08%

MCE 1.40%

ZCE 8.42%
0.002 74888 SCE 91.01%

MCE 0.57%

ZCE 7.94%
0.0016 91747 SCE 91.34%

MCE 0.72%

ZCE 8.13%
0.0012 104021 SCE 90.73%

MCE 1.14%

ZCE 8.97%
0.0008 119200 SCE 89.43%

MCE 1.60%

ZCE 9.16%
0.0004 152054 SCE 89.99%

MCE 0.86%

ZCE 12.68%
0.0002 131819 SCE 86.35%

MCE 0.97%

Column 1: metallicity; column 2: total number of BHBs that merge within an Hubble time;

column 3: formation channels, considering systems that evolve with zero CE phase (ZCE),

with single CE phase (SCE) and with multiple CE phases (MCE); column 4: percentage of

the merging BHBs which evolve through a given channel.
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Table 2.6: Formation channels of BHBs in MOBSE2_D.

Z N◦ of mergers Channels Fraction

ZCE 0.65%
0.02 153 SCE 96.73%

MCE 2.61%

ZCE 0.00%
0.016 240 SCE 96.67%

MCE 3.33%

ZCE 0.27%
0.012 369 SCE 96.75%

MCE 2.98%

ZCE 0.83%
0.008 722 SCE 94.32%

MCE 4.85%

ZCE 2.74%
0.006 1351 SCE 92.23%

MCE 5.03%

ZCE 16.69%
0.004 9472 SCE 82.19%

MCE 1.12%

ZCE 9.66%
0.002 68936 SCE 89.91%

MCE 0.43%

ZCE 9.62%
0.0016 81349 SCE 89.90%

MCE 0.48%

ZCE 10.14%
0.0012 91225 SCE 88.61%

MCE 1.25%

ZCE 11.71%
0.0008 9705 SCE 86.37%

MCE 1.93%

ZCE 13.71%
0.0004 103508 SCE 85.07%

MCE 1.22%

ZCE 17.46%
0.0002 89309 SCE 81.13%

MCE 1.41%

Same as Table 2.5 but for MOBSE2.
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3
THE IMPACT OF ELECTRON-CAPTURE

SUPERNOVAE ON MERGING DOUBLE

NEUTRON STARS

Natal kicks are one of the most debated issues about double neutron star (DNS) for-

mation. Several observational and theoretical results suggest that some DNSs have

formed with low natal kicks (. 50 km s−1), which might be attributed to electron-

capture supernovae (ECSNe). We investigate the impact of ECSNe on the formation

of DNSs by means of population synthesis simulations. In particular, we assume

a Maxwellian velocity distribution for the natal kick induced by ECSNe with one

dimensional root-mean-square σECSN = 0,7,15,26,265 km s−1. The total number

of DNSs scales inversely with σECSN and the number of DNS mergers is higher for

relatively low kicks. This effect is particularly strong if we assume low efficiency of

common-envelope ejection (described by the parameter α = 1), while it is only mild

for high efficiency of common-envelope ejection (α = 5). In most simulations, more

than 50 per cent of the progenitors of merging DNSs undergo at least one ECSN and

the ECSN is almost always the first SN occurring in the binary system. Finally, we

have considered the extreme case in which all neutron stars receive a low natal kick

(. 50 km s−1). In this case, the number of DNSs increases by a factor of ten and the

percentage of merging DNSs which went through an ECSN is significantly suppressed

(< 40 per cent).

Based on:

Giacobbo N., Mapelli M., MNRAS, 2018, 482, p.2234-2243
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3.1 Introduction

GW170817, the first detection of a merger between two neutron stars (NS; Abbott

et al., 2017e), marked the beginning of multi-messenger astronomy. For the first

time, electromagnetic emission accompanying the gravitational wave (GW) event

was observed (Abbott et al., 2017a), ranging from gamma rays (e.g. Abbott et al.,

2017a; Goldstein et al., 2017; Savchenko et al., 2017) to X-rays (e.g. Margutti et al.,

2017), to optical, near-infrared (e.g. Coulter et al., 2017; Soares-Santos et al., 2017;

Chornock et al., 2017; Cowperthwaite et al., 2017; Nicholl et al., 2017; Pian et al.,

2017) and radio wavelengths (e.g. Alexander et al., 2017).

The formation of merging double NSs (DNSs) like GW170817 is still matter of de-

bate: understanding this process would provide crucial insights for both stellar evo-

lution and GW astrophysics. Merging DNSs are expected to form either from the

evolution of isolated close binaries (e.g. Flannery and van den Heuvel, 1975; Bethe

and Brown, 1998; Belczynski et al., 2002; Voss and Tauris, 2003; Dewi and Pols, 2003;

Podsiadlowski et al., 2004; Dewi et al., 2005; Andrews et al., 2015; Tauris et al., 2017;

Chruslinska et al., 2017; Kruckow et al., 2018; Vigna-Gómez et al., 2018; Giacobbo

and Mapelli, 2018; Mapelli and Giacobbo, 2018; Mapelli et al., 2018) or through dy-

namical interactions in star clusters (e.g. Grindlay et al., 2006; East and Pretorius,

2012; Lee et al., 2010; Ziosi et al., 2014).

Many uncertainties still affect both formation channels. In particular, one of the

most debated and also one of the most important physical ingredients for the for-

mation of DNSs is the magnitude of the natal kick imparted by the supernova (SN)

explosion to the newborn NS (Janka, 2012).

From a study on the proper motion of 233 young isolated pulsars, Hobbs et al.

(2005) estimated that their velocity distribution follows a Maxwellian curve with

a one dimensional root-mean-square (1D rms) velocity σ = 265 km s−1 and an av-

erage natal kick speed of ∼ 420 km s−1. On the other hand, there is increasing evi-

dence that some NSs form with a significantly smaller natal kick.

Several studies (Cordes and Chernoff, 1998; Arzoumanian et al., 2002; Brisken et al.,

2003; Schwab et al., 2010; Verbunt et al., 2017) claim that the velocity distribution

proposed by Hobbs et al. (2005) underestimates the number of pulsars with a low

velocity and suggest that the natal kick distribution of NSs is better represented by a

bimodal velocity distribution. This bimodal distribution might result from two dif-

ferent mechanisms of NS formation. For instance, two out of nine accurate pulsar

velocities computed by Brisken et al. (2002) are smaller than 40 km s−1. Moreover,

Pfahl et al. (2002) study a new class of high-mass X-ray binaries with small eccen-
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tricities and long orbital periods, which imply a low natal kick velocity (. 50 km s−1)

for the newborn NSs. Similarly, Knigge et al. (2011) show that Be X-ray binaries

could be divided in two sub-populations: one with short (∼ 10 s) and one with long

(∼ 200 s) spin period. The two populations are characterized also by different or-

bital period and eccentricity distributions, indicative of two natal kick distributions.

Even considerations about the orbital elements of some Galactic DNSs suggest that

a low natal kick is required (van den Heuvel, 2007; Beniamini and Piran, 2016).

It has been proposed that NSs with a low natal kick come from electron-capture

SNe (ECSNe, Miyaji et al., 1980; Nomoto, 1984; Nomoto, 1987; van den Heuvel,

2007), a more rapid and less energetic process with respect to iron core-collapse

SNe (CCSNe, Dessart et al., 2006; Kitaura et al., 2006). In ECSN explosions, the

asymmetries are more difficult to develop and the newborn NS receives a lower

kick (Dessart et al., 2006; Jones et al., 2013; Schwab et al., 2015a; Gessner and Janka,

2018).

Low natal kicks might occur not only in ECSNe, but in all low-mass progenitors (.

10 M¯), because of their steep density profile at the edge of the core, which allows

for rapid acceleration of the SN shock wave. The shock is revived on a shorter time

scale than in more massive progenitors, and therefore there is less time for large-

scale asymmetries (which would result in a larger kick) to develop (see e.g. Müller,

2016).

Alternatively, the low kick of some DNSs could be explained also by the fact that

they come from ultra-stripped SNe, i.e. from the SN explosion of a naked Helium

star that was stripped by its compact companion (Tauris et al., 2013; Tauris et al.,

2015; Tauris et al., 2017). In this case, the natal kick is thought to be lower because

of the low mass of the ejecta.

In this paper, we use our new population-synthesis code MOBSE (Giacobbo et al.,

2018), to investigate the impact of ECSNe and low natal kicks on the formation of

merging DNSs. We show that ECSNe are an important channel for the formation of

DNSs, if they are associated to low natal kicks. Moreover, we discuss the extreme

case in which all NSs receive a small kick, regardless of the SN process.

3.2 Methods

MOBSEis an updated version of the BSE code (Hurley et al., 2000; Hurley et al.,

2002). Here we summarize the main characteristics of MOBSE and we describe

the new features we have added to it for this work. A more detailed discussion of

MOBSE can be found in Giacobbo et al. (2018) and in Mapelli et al., 2017. In this
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Table 3.1: Definition of the simulation sets.

ID σECSN σCCSN α

[km s−1] [km s−1]

EC0α1 0.0 265.0 1
EC7α1 7.0 265.0 1

EC15α1 15.0 265.0 1
EC26α1 26.0 265.0 1

EC265α1 265.0 265.0 1

EC0α5 0.0 265.0 5
EC7α5 7.0 265.0 5

EC15α5 15.0 265.0 5
EC26α5 26.0 265.0 5

EC265α5 265.0 265.0 5

CC15α1 15.0 15.0 1
CC15α5 15.0 15.0 5

Column 1: simulation name; column 2-3: 1D rms of the Maxwellian natal kick distribution

for ECSNe and CCSNe, respectively; column 4: values ofα in the CE formalism. Simulations

CC15α1 and CC15α5 are the same as we already presented in Giacobbo and Mapelli, 2018.

paper, we adopt the version of MOBSE described as MOBSE1 in Giacobbo et al.

(2018).

The main differences between MOBSE and BSE are the treatment of stellar winds

of massive stars and the prescriptions for SN explosions. Stellar winds of O and

B-type stars are implemented in MOBSE as described by Vink et al. (2001), while

the mass loss of Wolf-Rayet (WR) stars is implemented following Belczynski et al.

(2010). Finally, the mass loss of luminous blue variable (LBV) stars is described as

Ṁ = 10−4 fLBV

µ
Z

Z¯

¶β
M¯ yr−1, (3.1)

where fLBV = 1.5 (Belczynski et al., 2010) and Z is the metallicity.

In MOBSE, all massive hot massive stars (O, B, WR and LBV stars) lose mass ac-

cording to Ṁ ∝ Zβ, where β is defined as (Chen et al., 2015)

β=


0.85 if Γe < 2/3

2.45−2.40Γe if 2/3 ≤ Γe ≤ 1

0.05 if Γe > 1,

(3.2)
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where Γe is the electron-scattering Eddington ratio, expressed as (see eq. 8 of

Gräfener et al., 2011):

logΓe =−4.813+ log(1+XH)+ log(L/L¯)− log(M/M¯). (3.3)

In equation 3.3, XH is the Hydrogen fraction, L is the star luminosity and M is the

star mass.

The new prescriptions for core-collapse SNe (CCSNe) in MOBSE include the rapid

and the delayed SN model described by Fryer et al. (2012) (see also Spera et al.,

2015). The rapid SN model is adopted for the simulations presented in this pa-

per, because it allows us to reproduce the remnant mass gap between ∼ 2 M¯ and

∼ 5 M¯ (Özel et al., 2010; Farr et al., 2011). Pair-instability and pulsational pair-

instability SNe are also implemented in MOBSE using the fitting formulas by Spera

and Mapelli (2017).

Finally, we have also updated the prescriptions for core radii following Hall and

Tout (2014), we have extended the mass range up to 150 M¯ (Mapelli, 2016), and we

have revised the treatment of Hertzsprung-gap (HG) donors in common envelope

(CE): HG donors are assumed to always merge with their companions if they enter

a CE phase.

For this work, we have added several updates to the description of ECSNe and natal

kicks in MOBSE, as we describe in the following sections.

3.2.1 Electron-capture SNe

NSs can form via CCSN, via ECSN or through the accretion-induced collapse of

a white dwarf (WD). In MOBSE, the outcome of a CCSN is considered a NS if its

mass is less than 3.0 M¯ and a black hole (BH) otherwise. This approach is overly

simplified, but more constraints on the equation of state of a NS are required for a

better choice of the transition between NS and BH.

In the case of both an ECSN and an accretion-induced WD collapse, the NS forms

when the degenerate Oxygen-Neon (ONe) core collapses as a consequence of

electron-capture reactions, inducing a thermonuclear runaway (Miyaji et al., 1980;

Nomoto, 1984; Nomoto, 1987; Nomoto and Kondo, 1991; Kitaura et al., 2006; Fisher

et al., 2010; Jones et al., 2013; Takahashi et al., 2013; Schwab et al., 2015a; Jones et

al., 2016).

In MOBSE, we decide whether a star will undergo an ECSN by following the pro-

cedure described by Hurley et al., 2000 and Fryer et al., 2012. First, we look at
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Figure 3.1: Impact of different kick velocities for ECSNe on the number of DNSs. Left: number
of DNSs in each set of simulations (see Table 3.1) as a function of progenitor’s metallicity. Right:
number of DNSs merging in less than a Hubble time (hereafter: merging DNSs) as a function
of progenitor’s metallicity. Different runs are indicated by different lines, as explained in the
legend and in Table 3.1.

the Helium core mass at the base of the asymptotic giant branch1 (MBABG). If 1.6

M¯ ≤ MBABG < 2.25 M¯, the star forms a partially degenerate Carbon-Oxygen (CO)

core. If the CO core grows larger than ∼ 1.08 M¯, it can form a degenerate ONe

core. If this degenerate ONe core reaches the mass MECSN = 1.38 M¯, it collapses

due to the electron-capture on 24Mg and on 20Ne (Miyaji et al., 1980; Nomoto, 1984;

Nomoto, 1987), otherwise it forms an ONe WD, which can still collapse to a NS if it

will accrete sufficient mass.

The outcome of the electron-capture collapse is a NS with baryonic mass Mrem,bar =
MECSN, which becomes

Mrem,grav =
p

1+0.3Mrem,bar −1

0.15
= 1.26M¯ , (3.4)

considering the mass loss due to neutrinos and by using the formula suggested by

Timmes et al. (1996).

Even if only a few per cent of all SN events should be produced by electron-capture

reactions in single stars (Poelarends, 2007; Doherty et al., 2015), this fraction could

drastically raise if we consider binary systems (Podsiadlowski et al., 2004). In binary

systems the possibility of accreting material by a companion broadens the mass

range of progenitor stars in which the electron-capture collapse may occur, because

1Mass loss during the asymptotic giant branch and dredge-up efficiency are assumed to be the
same as in Hurley et al., 2000.
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mass transfer can significantly change the evolution of the core (Sana et al., 2012;

Dunstall et al., 2015; Poelarends et al., 2017). In appendix C, we show that the mass

range of ECSNe is crucially affected by binary evolution. In particular, we find that

mass transfer tends to widen the mass range of ECSNe.

Recently, Jones et al. (2016) have shown that an ECSN might lead to the ejection of

a portion of the degenerate core, rather than to the collapse into a NS. The collapse

and the formation of a NS takes place only if the ignition density is & 2× 1010 g

cm−3. This finding must be taken into account when interpreting the outcomes of

our simulations: our results should be regarded as upper limits to the impact of

ECSNe on the statistics of DNSs.

3.2.2 Natal kicks

The natal kick of a NS is drawn from a Maxwellian velocity distribution

f (v,σ) =
r

2

π

v2

σ3
exp

·
− v2

2σ2

¸
v ∈ [0,∞) (3.5)

where σ is the one dimensional root-mean-square (1D rms) velocity and v is the

modulus of the velocity.

Given the uncertainties on the natal kick distribution, we have implemented in

MOBSE the possibility to draw the natal kick from two Maxwellian curves with a

different value of the 1D rms: σCCSN andσECSN, for iron CCSNe and ECSNe, respec-

tively.

σ= 265 km s−1 is adopted as a default value for CCSNe in MOBSE. This value was

derived by Hobbs et al. (2005), studying the proper motion of 233 young isolated

Galactic pulsars and corresponds to an average natal kick speed of ∼ 420 km s−1.

In this paper, we consider different values of σECSN, ranging from 0 to 265 km s−1,

to investigate the impact of ECSNe on the statistics of DNSs.

Because low natal kicks might originate not only from ECSNe, but also from iron

CCSNe involving low-mass progenitors and from ultra-stripped SNe, we have run

also an extreme case (σCCSN = σECSN = 15 km s−1), in which all NSs receive a low

natal kick independently on the SN type (see Table 3.1). We will discuss this extreme

case in Section 3.3.4.
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Figure 3.2: Distribution of eccentricity (left-hand column) and semi-major axis (right-hand
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(2018).
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as a function of progenitor’s metallicity. Top: simulations with α= 1. Bottom: simulations with
α= 5.

3.2.3 Simulations and initial distributions

Here we describe the initial conditions used to perform our population-synthesis

simulations. We randomly draw the mass of the primary star (m1) from a Kroupa

initial mass function (IMF; Kroupa, 2001

F(m1) ∝ m−2.3
1 with m1 ∈ [5−150]M¯ . (3.6)

The other parameters (mass of the secondary, period and eccentricity), are sam-

pled according to the distributions proposed by Sana et al. (2012). In particular, we

obtain the mass of the secondary m2 as follows

F(q) ∝ q−0.1 with q = m2

m1
∈ [0.1−1] , (3.7)

the orbital period P and the eccentricity e from

F(P ) ∝ (P )−0.55 with P = log10(P/day) ∈ [0.15−5.5] (3.8)
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and

F(e) ∝ e−0.42 with 0 ≤ e < 1 (3.9)

respectively.

For the CE phase we have adopted theαλ formalism (see Webbink, 1984; Ivanova et

al., 2013). This formalism relies on two parameters, λ (which measures the concen-

tration of the envelope) and α (which quantifies the energy available to unbind the

envelope). To compute λ we used the prescriptions derived by Claeys et al. (2014)

(see their Appendix A for more details) which are based on Dewi and Tauris (2000).

We have run 12 sets of simulations, by changing the value of α and that of both

σECSN and σCCSN (see Table 3.1).

In the first 10 simulations reported in Table 3.1, we have fixed σCCSN = 265 km s−1

and we have variedα= 1, 5 andσECSN = 0,7,15,26,265 km s−1 (corresponding to an

average natal kick of about 0,11,23,41,420 km s−1, respectively).

In the last two simulations reported in Table 3.1 (CC15α1 and CC15α5), we have set

σCCSN = σECSN = 15 km s−1 for both α = 1,5. We will discuss simulations CC15α1

and CC15α5 in Section 3.3.4, while in the following sections we will focus on the

other 10 simulations (i.e. on the effect of σECSN on the statistics of DNSs).

Finally, for each set of simulations we considered 12 sub-sets with different metal-

licities Z = 0.0002, 0.0004, 0.0008, 0.0012, 0.0016, 0.002, 0.004, 0.006, 0.008, 0.012,

0.016 and 0.02. In each sub-set, we simulated 107 binary systems. Thus, each of sets

of simulations is composed of 1.2×108 massive binaries.

3.3 Results

3.3.1 Impact of σECSN on DNSs

The left-hand panel of Figure 3.1 shows all DNSs formed in our simulations as a

function of metallicity. It is apparent that the lower σECSN is, the higher the total

number of DNSs. This is not surprising, because a lower σECSN implies a lower

probability to unbind the system.

This effect is particularly strong for the simulations withα= 1, in which the number

of DNSs is ∼ 10− 25 times higher if σECSN = 0 than if σECSN = 265 km s−1. In the

simulations with α= 5, the number of DNSs is 3−6 times higher if σECSN = 0 than

if σECSN = 265 km s−1. We also note that DNSs form more efficiently if α= 5 than if

α= 1.
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ECSN as a function of progenitor’s metallicity. Left-hand (right-hand) panels: simulations with
α= 1 (α= 5).

In our simulations, the number of DNSs depends on metallicity, especially if α= 1.

In particular, the number of DNSs is minimum for Z ∼ 0.002. This trend originates

from the evolution of stellar radii of ∼ 8−20 M¯ stellar progenitors, which are sig-

nificantly larger for Z ∼ 0.002, than for the other metallicities (especially in the ter-

minal main sequence and in the HG phases). The trend is stronger for α = 1 than

for α= 5, because a low value of α corresponds to a more efficient shrinkage of the

orbit during CE: two main sequence or HG stars are more likely to merge during CE

if α is low.

The right-hand panel of Figure 3.1 shows only the DNSs which merge in less than

a Hubble time (hereafter: merging DNSs). In the simulations with α = 5, we find

again a monotonic trend with σECSN, but the differences are much less significant.

In the simulations with α= 1 the number of merging DNSs does not show a mono-

tonic trend withσECSN: runs withσECSN = 7−26 km s−1 produce a factor of ∼ 5 more

merging DNSs than simulations withσECSN = 0 and 265 km s−1. The only exception

is represented by very metal-poor stars (Z = 0.0002), for which the number of merg-

ing DNSs with σECSN = 0 is similar to the one of systems with σECSN = 7−26 km s−1.

This behavior can be easily explained by considering that the merging time (tgw)

due to GW emission depends on both the eccentricity (e) and the semi-major axis
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(a) as (Peters, 1964)

tgw = 5

256

c5

G3

a4(1−e2)7/2

m1m2(m1 +m2)
, (3.10)

where c is the speed of light, G is the gravitational constant, and m1 (m2) is the mass

of the primary (secondary) member of the binary.

Equation 3.10 implies that more eccentric binaries have a shorter merging time.

Moderate natal kicks do not unbind a binary, but increase its eccentricity, shorten-

ing its merging time. Since most binaries evolve through processes which tend to

circularize their orbits (e.g. tidal torques, mass transfer and CE phase), the natal

kicks are a fundamental ingredient to obtain highly eccentric orbits.

This behavior is shown in the left-hand column of Figure 3.2, where the initial ec-

centricity distribution of all DNSs is compared with that of the merging DNSs (here

”initial” refers to the time when the second NS is formed). A large number of DNSs

have initial eccentricity close to zero in run EC0α1 (corresponding toσECSN = 0 and

α= 1), but only very few of them merge within a Hubble time.

Many DNSs have initial eccentricity close to zero and most of them do not merge

within a Hubble time also in run EC0α5 (corresponding to σECSN = 0 and α = 5).

However, run EC0α5 is also efficient in producing DNSs with non-zero eccentric-

ity, which are able to merge within a Hubble time. In contrast, only few DNSs with

eccentricity close to zero form in the other runs, because of the SN kicks. We note

that the second NS originates from an ECSN in the vast majority of DNSs with ec-

centricity e ∼ 0.

The right-hand column of Figure 3.2 compares the distribution of the initial semi-

major axis of all DNSs with that of the merging systems. We see that increasing

σECSN the widest systems tend to disappear, because they can be disrupted more

easily by the natal kicks.

3.3.2 DNS formation channels

From our simulations we find that the most likely formation channel for merging

DNSs is consistent with the standard scenario described in Tauris et al. (2017) (see

their Figure 1): first the primary star expands and fills its Roche lobe, transfer-

ring mass to the companion; then the primary explodes leaving a NS; when the

secondary expands, the system enters CE; after CE ejection, the system is com-

posed of a NS and a naked Helium star and the NS starts stripping its compan-

ion; the stripped Helium star undergoes a SN explosion, which is most likely an

ultra-stripped SN (Tauris et al., 2013; Tauris et al., 2015; Tauris et al., 2017); the final

system is a close DNS which will merge within a Hubble time.
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Figure 3.3 shows the fraction of merging DNSs which follow the standard sce-

nario we have just described ( fstd). For α = 5, fstd is nearly independent of the

metallicity of the progenitor, while it depends on the natal kicks. At low kicks

(σECSN ≤ 26 km s−1) >> 80 per cent of merging DNSs form via the standard sce-

nario, while if σECSN = 265 km s−1 the percentage lowers to ∼ 60−70 per cent.

For α= 1, fstd depends on both the metallicity and the natal kicks. For a given kick

distribution, fstd is minimum at metallicity Z ∼ 0.0016− 0.006 (especially in run

EC0α1 and EC265α1), while for a fixed metallicity fstd is maximum (∼ 80−90 per

cent) for σECSN = 7−26 km s−1.

This behavior confirms that ECSNe are a fundamental process for the formation

of DNSs, but what is the fraction of systems undergoing an ECSN? Is ECSN more

frequently the first or the second SN of a merging system?

Figure 3.4 shows the fraction of merging DNSs in which at least one of the two SN

explosions is an ECSN. Most merging DNSs (∼ 50− 90 per cent) undergo at least

one ECSN in the vast majority of simulations (EC7α1, EC15α1, EC26α1, EC0α5,

EC7α5, EC15α5 and EC26α5). In the simulation EC0α1 (σECSN = 0 and α= 1), EC-

SNe are important at low metallicity (Z = 0.0002) and negligible for intermediate

and high metallicity. Only in the simulations with large ECSN kicks (runs EC265α1

and EC265α5), the fraction of DNSs undergoing at least one ECSN is always less

than 50 per cent.

Moreover, in simulations with α= 5 the percentage of DNSs which undergo at least

one ECSN increases with the progenitor’s metallicity.

Overall, we find that the ECSN is the first SN in the vast majority of merging DNSs.

Less than ∼ 10 per cent of merging DNSs go through an ECSN as second SN, inde-

pendently of the assumptions about natal kicks and CE efficiency. This result is in

agreement with Chruslinska et al. (2017) and Kruckow et al. (2018) (but see Tauris

et al., 2017 for a different argument).

This is likely due to the fact that the first SN explosion occurs before that other

processes (e.g. a CE phase) are able to shrink the binary; therefore the system is less

bound and it can be more easily disrupted if the natal kick of the newborn NS is too

strong. In contrast, the second SN explosion tends to occur after a CE, when the

system is usually on a very close and less eccentric orbit, hence it can survive even

stronger kicks. Moreover, the fact that the second SN explosion induces a high kick

velocity facilitates the formation of highly eccentric orbits, which are more likely to

merge via GW emission.

The fact that the ECSN is often the first SN occurring in a merging DNS might seem

awkward, because ECSN progenitors are usually less massive than iron CCSN pro-
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genitors. Indeed, this happens because most merging DNSs originate from very

close binary systems, in which the primary has lost a significant fraction of its mass

by mass transfer during Roche lobe overflow. Because of mass loss, the primary en-

ters the regime of ECSNe. In contrast, the secondary accretes part of the mass lost

by the primary and enters the regime of iron CCSNe. This explains why the first SN

is more often an ECSN in the progenitors of merging DNSs.

3.3.3 GW170817-like systems

Figure 3.5 shows the number of GW170817-like systems that form in our simu-

lations. We define as GW170817-like systems those merging DNSs with Mrem,1 ∈
[1.36,1.60]M¯ and Mrem,2 ∈ [1.17,1.36]M¯ (Mrem,1 and Mrem,2 being the mass of

the primary and of the secondary NS, assuming effective spin ≤ 0.05, Abbott et al.,

2017e). Because of its large mass (1.36−1.60M¯), the most massive component of

GW170817-like systems cannot have formed via ECSN. In other words, at least one

of the two SNe must be a CCSN, in order to form a GW170817-like system.

Figure 3.5 shows that at high metallicity (Z & 0.002 for α = 1 and Z & 0.012 for

α = 5) all simulations follow a similar trend independently of the value of σECSN,

while for lower metallicities the number of GW170817-like systems becomes sensi-

tive to the value of σECSN. In particular, the higher σECSN is, the lower the number

of GW170817-like systems. Furthermore, in the simulations with α= 5 the number

of GW170817-like systems increases with decreasing metallicity.

The reason is that at high metallicity the majority of GW170817-like systems form

from binaries which undergo two iron CCSNe (see Figure 3.6), while at low metal-

licity most of the progenitors pass through at least one ECSN. Figure 3.6 shows that

the effect of increasing the value of α is to increase the maximum metallicity at

which the majority of GW170817-like systems form through at least one ECSN from

Z ∼ 0.002 (α= 1) to Z ∼ 0.012 (α= 5).

3.3.4 Low kicks in iron core-collapse SNe

Low natal kicks might occur not only in ECSNe but also in iron CCSNe, especially

in the case of low-mass progenitors (Müller, 2016) and ultra-stripped SNe (Tauris

et al., 2017). Moreover, Giacobbo and Mapelli (2018) and Mapelli and Giacobbo
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(2018) have shown that population-synthesis simulations can reproduce the local

merger rate of DNSs inferred from GW170817 (Abbott et al., 2017e) only if low natal

kicks (. 50 km s−1) are assumed for all DNSs.

Thus, in this Section we discuss how much the main results of this paper change if

we make the extreme assumption that all NSs receive a low natal kick, i.e. σECSN =
σCCSN = 15 km s−1. To this purpose, we have considered two additional runs:

CC15α1 and CC15α5, which have been already presented in Giacobbo and Mapelli

(2018) and Mapelli and Giacobbo (2018). Simulation CC15α1 (CC15α5) differs from

simulation EC15α1 (EC15α5) only for the choice of σCCSN (see Table 3.1).

From Figure 3.1 it is apparent that the number of DNSs is about one order of magni-

tude larger in simulation CC15α1 (CC15α5) than in simulation EC15α1 (EC15α5).

This is not surprising, because a lower CCSN kick implies a lower probability to

unbind the system.

On the other hand, if we consider only the DNSs merging within a Hubble time, we

find an interesting difference. The number of merging DNSs is a factor of ten larger

in simulation CC15α1 than in simulation EC15α1, whereas the number of merging

DNSs in simulations CC15α5 and EC15α5 are comparable. Moreover, simulations

CC15α5 and EC15α5 show a significantly different trend with metallicity. As already

discussed in Giacobbo and Mapelli (2018), there is a strong interplay between the

effects of natal kicks and those of CE efficiency.

Figure 3.4 shows that the percentage of merging DNSs which underwent at least one

ECSN is dramatically affected by the choice of σCCSN: less than ∼ 40 per cent of all

merging DNSs underwent at least one ECSN if σCCSN = 15 km s−1. This difference

is particularly strong for the first SN. In fact, the binary system is still quite large at

the time of the first SN explosion and can be easily broken by the SN kick.

This result has relevant implications for the GW170817-like systems. As shown in

Fig. 3.6, no GW170817-like systems underwent an ECSN as first SN in simulations

CC15α1 and CC15α5. This comes from the trend we described above, plus the

fact that the first SN usually produces the most massive NS of the system in runs

CC15α1 and CC15α5. In our models, the mass of a NS born from ECSN is assumed

to be 1.26 M¯, insufficient to match the mass of the primary member of GW170817

(under the assumption of low spins). In contrast, the second SN is always an ECSN

in the GW170817-like systems formed in simulation CC15α1. We stress, however,

that this result critically depends on the assumption about the mass of a NS formed

via ECSN Hurley et al., 2000; Fryer et al., 2012.
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3.4 Summary

We have investigated the importance of ECSNe on the formation of DNSs. ECSNe

are thought to occur frequently in interacting binaries (Podsiadlowski et al., 2004;

Tauris et al., 2017) and to produce relatively small natal kicks (Dessart et al., 2006;

Jones et al., 2013; Schwab et al., 2015a). We assumed that natal kicks generated by

ECSNe (iron CCSNe) are distributed according to a Maxwellian function with 1D

rms σECSN (σCCSN).

First, we have assumedσCCSN = 265 km s−1 (according to Hobbs et al., 2005) and we

have explored five different values of σECSN = 0, 7, 15, 26 and 265 km s−1. Moreover,

we have also investigated the impact of CE, by considering α= 1 and α= 5.

We find that the number of simulated DNSs scales inversely with σECSN. In partic-

ular, the largest (smallest) number of DNSs form if σECSN = 0 (σECSN = 265 km s−1).

This effect is maximum for α= 1, while it is only mild for α= 5.

The number of DNSs merging within a Hubble time also depends on σECSN, but

with a rather different trend depending on the assumed value for α. For α= 5, the

number of merging systems follows the same trend as the total number of DNSs.

For α= 1 the number of DNS mergers is maximum for σECSN = 7−26 km s−1, while

it drops by a factor of ∼ 3−10 if σECSN = 0 and if σECSN = 265 km s−1.

The reason is that very large kicks (σECSN = 265 km s−1) completely break the binary,

while moderate kicks (σECSN = 7−26 km s−1) leave the binary bound but increase

its eccentricity. A larger eccentricity implies a shorter timescale for merger by GW

emission, as shown by Peters (1964). In contrast, null natal kicks produce a large

number of systems with zero initial eccentricity, which have longer merger times.

A large percentage (∼ 50−90 per cent) of merging DNSs undergo at least one ECSN

explosion in most of our simulations. This percentage drops below 40 per cent only

if σECSN = 265 km s−1, or if σCCSN = 15 km s−1, or if σECSN = 0 km s−1, α = 1 and

Z > 0.0002.

In the majority of merging DNSs, the ECSN is the first SN occurring in the binary.

This happens because, in most cases, the first SN occurs before the binary has

shrunk significantly (e.g. by CE) and is easily broken if the kick is too strong.

Moreover, we have selected the simulated DNSs whose mass matches that of

GW170817. We call these systems GW170817-like systems. At high metallicity

(Z & 0.002 for α = 1 and Z & 0.012 for α = 5) the formation of GW170817-like sys-

tems is independent of σECSN, because most GW170817-like systems form through

iron CCSNe, while for lower metallicity most GW170817-like systems undergo at

least one ECSN and their statistics depends on σECSN.
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Finally, we have considered an extreme case in which not only ECSNe but also CC-

SNe are associated to low kicks, by imposing σCCSN = σECSN = 15 km s−1. Mapelli

and Giacobbo (2018) and Giacobbo and Mapelli (2018) suggest that this extreme

assumption is necessary to match the local DNS merger rate density inferred from

GW170817 (Abbott et al., 2017e).

The number of simulated DNSs increases by a factor of ten if we assume σCCSN =
15 km s−1, because less binary systems are disrupted by the first SN explosion.

Moreover, this assumption strongly suppresses the percentage of merging DNSs

(especially GW170817-like systems) which evolved through an ECSN as first SN.

These results confirm the importance of natal kicks to understand the properties of

merging DNSs.
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4
THE PROGENITORS OF

COMPACT-OBJECT BINARIES: IMPACT OF

METALLICITY, COMMON ENVELOPE AND

NATAL KICKS

Six gravitational wave events have been reported by the LIGO-Virgo collaboration

(LVC), five of them associated with black hole binary (BHB) mergers and one with

a double neutron star (DNS) merger, while the coalescence of a black hole-neutron

star (BHNS) binary is still missing. We investigate the progenitors of double compact

object binaries with our population-synthesis code MOBSE. MOBSE includes ad-

vanced prescriptions for mass loss by stellar winds (depending on metallicity and on

the Eddington ratio) and a formalism for core-collapse, electron-capture and (pulsa-

tional) pair instability supernovae. We investigate the impact of progenitor’s metal-

licity, of the common-envelope parameter α and of the natal kicks on the properties

of DNSs, BHNSs and BHBs. We find that neutron-star (NS) masses in DNSs span

from 1.1 to 2.0 M¯, with a preference for light NSs, while NSs in merging BHNSs have

mostly large masses (1.3−2.0 M¯). BHs in merging BHNSs are preferentially low mass

(5−15 M¯). BH masses in merging BHBs strongly depend on the progenitor’s metal-

licity and span from ∼ 5 to ∼ 45 M¯. The local merger rate density of both BHNSs

and BHBs derived from our simulations is consistent with the values reported by the

LVC in all our simulations. In contrast, the local merger rate density of DNSs matches

the value inferred from the LVC only if low natal kicks are assumed. This result adds

another piece to the intricate puzzle of natal kicks and DNS formation.

Based on:

Giacobbo N., Mapelli M., MNRAS, 2018, 480, p.2011-2030
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4.1 Introduction

On August 17 2017, the LIGO-Virgo collaboration (LVC, Aasi et al. et al., 2015; Ac-

ernese et al., 2015) captured the first gravitational wave (GW) signal from a double

neutron star (DNS) merger (Abbott et al., 2016a; Abbott et al., 2017f). GW170817

was accompanied by electromagnetic radiation over a large range of wavelengths,

from radio to gamma-rays (Abbott et al., 2017c; Goldstein et al., 2017; Savchenko

et al., 2017; Margutti et al., 2017; Coulter et al., 2017; Soares-Santos et al., 2017;

Chornock et al., 2017; Cowperthwaite et al., 2017; Nicholl et al., 2017; Pian et al.,

2017; Alexander et al., 2017), marking the beginning of multi-messenger astron-

omy. Besides GW170817, five other GW detections were reported so far (GW150914,

GW151226, GW170104, GW170608, GW170814), all of them interpreted as the

merger of two black holes (BHs, Abbott et al., 2016d; Abbott et al., 2016c; Abbott

et al., 2016b; Abbott et al., 2016d; Abbott et al., 2017b; Abbott et al., 2017d; Abbott

et al., 2017e).

Unlike BH binaries (BHBs), whose very existence was revealed by direct detec-

tions of GWs (Abbott et al., 2016d), DNSs were observed well before GW170817:

PSR B1913+16 was discovered already in 1974 (Hulse and Taylor, 1975), followed

by about a dozen similar binaries Tauris et al., 2017, including a double pulsar (Bur-

gay et al., 2003; Lyne et al., 2004). Together with GW170817, these highly relativistic

systems give us a unique grasp on the behaviour of matter under extreme condi-

tions.

Now that both BHBs and DNSs have been detected by the LVC, the coalescence of

a neutron star (NS) with a BH is the only missing merger event that we expect to

observe in the frequency range of ground-based GW detectors. No BH-NS binaries

(BHNSs) have been discovered so far by radio surveys.

Previous work investigates the formation of DNSs, BHNSs and BHBs both from

isolated binaries (e.g. Tutukov et al., 1973; Flannery and van den Heuvel, 1975;

Bethe and Brown, 1998; Belczynski et al., 2002; Voss and Tauris, 2003; Dewi and

Pols, 2003; Podsiadlowski et al., 2004; Podsiadlowski et al., 2005; Dewi et al., 2005;

Tauris and van den Heuvel, 2006; Portegies Zwart and Yungelson, 1998; Portegies

Zwart and McMillan, 2000; Belczynski et al., 2007; Bogomazov et al., 2007; Dominik

et al., 2012; Dominik et al., 2013a; Dominik et al., 2015; Mennekens and Vanbev-

eren, 2014; Tauris et al., 2015; Tauris et al., 2017; de Mink and Belczynski, 2015; de

Mink and Mandel, 2016; Marchant et al., 2016; Chruslinska et al., 2018; Mapelli et

al., 2017; Giacobbo et al., 2018; Kruckow et al., 2018; Shao and Li, 2018) and from

dynamics (e.g. Kulkarni et al., 1993; Sigurdsson and Phinney, 1993; Sigurdsson and
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Hernquist, 1993; Sigurdsson and Phinney, 1995; Phinney, 1996; Colpi et al., 2003;

Mapelli et al., 2005; Grindlay et al., 2006; Ivanova et al., 2008; Clausen et al., 2013;

Mapelli and Zampieri, 2014; Ziosi et al., 2014; Rodriguez et al., 2015; Rodriguez et

al., 2016; Mapelli, 2016; Askar et al., 2016; Antonini et al., 2017; Petrovich and An-

tonini, 2017; Banerjee, 2018; Belczynski et al., 2018).

Despite this effort, the evolution of compact-object binaries is still highly uncer-

tain. The merger rate density of DNSs inferred from GW170817 is RDNS = 1540+3200
−1220

Gpc−3 yr−1, consistent with recent estimates from short gamma-ray bursts (∼ 8−
1800 Gpc−3 yr−1 according to Coward et al., 2012; ∼ 500−1500 Gpc−3 yr−1 based on

the analysis of Petrillo et al., 2013; ∼ 92− 1154 Gpc−3 yr−1 as estimated by Siellez

et al., 2014, and 270+1580
−180 Gpc−3 yr−1 according to Fong et al., 2015), but quite large

with respect to the rate predicted from kilonovae (∼ 63+63
−31 Gpc−3 yr−1, Jin et al.,

2015). Simulations of isolated and dynamically formed DNSs show that it is very dif-

ficult to match such a high rate, unless rather extreme assumptions about common

envelope (e.g. Chruslinska et al., 2018) or natal kicks (e.g. Giacobbo and Mapelli,

2018; Mapelli and Giacobbo, 2018) are made.

In this paper, we use our population-synthesis code MOBSE Giacobbo et al., 2018

to investigate the formation of DNSs, BHNSs and BHBs from isolated binaries and

to analyze the effect of natal kicks and common-envelope efficiency on the merger

rate of DNSs, BHBs and BHNSs. In its current version, MOBSE includes up-to-date

prescriptions for stellar winds (accounting for the metallicity and for the Eddington

ratio of the progenitor star), for core-collapse supernovae (SNe), electron-capture

SNe, pulsational pair-instability SNe and pair-instability SNe.

4.2 Methods

MOBSE, which stands for ”massive objects in binary stellar evolution”, is an up-

dated version of the populations synthesis code BSE Hurley et al., 2000; Hurley et

al., 2002. MOBSE is meant to improve the treatment of massive stars and stellar

remnants. We refer to Giacobbo et al., 2018 and Mapelli et al., 2017 for a detailed

description of MOBSE. Here, we just summarize the main features of MOBSE with

respect to BSE.

4.2.1 Single star evolution and SNe

MOBSEincludes a new treatment of stellar winds for hot massive stars, based on

Vink et al. (2001) for O-type and B-type stars, on Vink and de Koter (2005a) for Wolf-
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Rayet stars, and on Belczynski et al. (2010) for luminous blue variable stars. For

all types of hot massive stars, we adopt a description of the mass loss as Ṁ ∝ Zβ,

where Z is the metallicity andβ= 0.85 if the Eddington ratio Γ< 2/3, β= 2.45−2.4Γ

if 2/3 ≤ Γ< 1, and β= 0.05 if Γ≥ 1 (Chen et al., 2015).

We have also updated the prescriptions for core radii following Hall and Tout, 2014

and we have extended the mass range up to 150 M¯ (Mapelli, 2016).

The treatment of SNe was also deeply revised: we have included pulsational pair

instability and pair instability SNe as described in Spera and Mapelli (2017), and

we have added two new prescriptions for iron core-collapse SNe: the delayed and

the rapid models presented in Fryer et al. (2012) (see also Spera et al., 2015). In this

paper, we always adopt the rapid core-collapse SN mechanism, because it allows us

to reproduce the mass gap of compact objects between ∼ 2 and ∼ 5 M¯ (Özel et al.,

2010; Farr et al., 2011), as it can be seen from Figure 4.1.

We have also updated the treatment for electron-capture SNe. In the case of both an

electron-capture SN and an accretion-induced white dwarf (WD) collapse, the NS

forms when the degenerate Oxygen-Neon (ONe) core collapses as a consequence

of electron-capture reactions, inducing a thermonuclear runaway. In MOBSE, we

assume that if a growing degenerate ONe core reaches the mass MECSN = 1.38 M¯ it

collapses due to the electron-capture on 24Mg and on 20Ne (Miyaji et al., 1980;

Nomoto, 1984; Nomoto, 1987; Nomoto and Kondo, 1991; Kitaura et al., 2006; Fisher

et al., 2010; Jones et al., 2013; Takahashi et al., 2013; Schwab et al., 2015a; Jones

et al., 2016), otherwise it forms a ONe WD, which can still collapse to a NS if it will

accrete sufficient mass.

The outcome of the electron-capture collapse is a NS. We compute the final mass

of the newly-born NS by using the formula suggested by Timmes et al. (1996)

Mrem,grav =
p

1+0.3Mrem,bar −1

0.15
= 1.26M¯ , (4.1)

where Mrem,bar = MECSN is the baryonic mass of the NS including neutrinos, and

Mrem,grav is the final mass of the NS considering the mass loss due to neutrinos

emission.

The current version of MOBSE does not include any specific treatment for the ini-

tial spin of BHs and NSs. What drives the initial spin magnitude and direction of a

compact object is still poorly understood and constrained. We refer to Postnov and

Kuranov (2019), Wysocki et al. (2018), Belczynski et al. (2017) and Arca Sedda and

Benacquista (2019) for a more detailed discussion of BH spins.
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4.2.2 SN kicks

In MOBSE, the natal kick of a NS is drawn from a Maxwellian velocity distribution,

f (v,σ) =
r

2

π

v2

σ3
exp

·
− v2

2σ2

¸
v ∈ [0,∞) (4.2)

where σ is the one dimensional root-mean-square.

Here, we have implemented in MOBSE the possibility to draw the natal kick from

two Maxwellian curves with a different root-mean-square: σCCSN and σECSN, for

core-collapse and electron-capture SNe, respectively.

For electron-capture SNe, we draw the kicks from a Maxwellian with one-

dimensional root-mean square (1D rms) σECSN = 15 km s−1, corresponding to an

average velocity of ∼ 23 km s−1 (Giacobbo and Mapelli, 2018). This approach is

justified by the fact that an electron-capture collapse is a more rapid process with

respect to the iron core-collapse explosion and for that reason the asymmetries are

more difficult to develop (Kitaura et al., 2006; Dessart et al., 2006; Janka, 2012). The

consequence is that the newborn NS has a low natal kick (Dessart et al., 2006; Jones

et al., 2013; Schwab et al., 2015a).

For iron core-collapse SNe the situation is more puzzling. Hobbs et al. (2005) report

the proper motion of 233 Galactic single pulsars and describe the kick velocities us-

ing a Maxwellian with 1D rms σCCSN = 265 km s−1, corresponding to an average

velocity of ∼ 420 km s−1. Several studies (Cordes and Chernoff, 1998; Arzoumanian

et al., 2002; Brisken et al., 2003; Schwab et al., 2010; Verbunt et al., 2017) claim that

the velocity distribution proposed by Hobbs et al. (2005) underestimates the num-

ber of pulsars with a low velocity and suggest that the natal kick distribution of NSs

is better represented by a bimodal velocity distribution. For instance, two out of

nine accurate pulsar velocities computed by Brisken et al. (2002) are smaller than

40 km s−1. Moreover, Pfahl et al. (2002) study a new class of high-mass X-ray bina-

ries with small eccentricities and long orbital periods, which imply a low natal kick

velocity (. 50 km s−1) for the newborn NSs. This bimodal distribution might result

from two different mechanisms of NS formation (van den Heuvel, 2007; Beniamini

and Piran, 2016).

Finally Tauris et al. (2017) suggest that not only electron-capture SNe, but even iron

core-collapse SNe could be associated with low kicks . 50 km s−1, when the SN is

ultra-stripped (Tauris et al., 2013; Tauris et al., 2015; Bray and Eldridge, 2016). A SN

is ultra-stripped if the exploding star is member of a binary system and was heavily

stripped by its companion. In this case, the mass ejected during the SN is small

(. 0.1 M¯) and thus the kick is also small (< 50 km s−1, e.g. Suwa et al., 2015). This
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Figure 4.1: Mass spectrum of compact remnants as a function of the zero-age main sequence
(ZAMS) mass of the progenitor stars. The coloured regions (red, orange, green and blue) iden-
tify the mass ranges of different compact objects (Carbon-Oxygen WDs, Oxygen-Neon WDs,
NSs and BHs, respectively). The hashed region shows the mass gap between NSs and BHs pre-
dicted by the rapid core-collapse SN model Fryer et al., 2012. The metallicity is Z = 0.0002.

suggests that the natal kicks of single NSs could be significantly different from the

kicks of NSs born in close binary systems (see also Tauris and Bailes, 1996).

Given this uncertainty, we decided to simulate two extreme cases for the kick of

iron core-collapse SNe. In the first case (hereafter: high-velocity kicks), we draw

core-collapse SN kicks from a Maxwellian distribution with 1D rmsσCCSN = 265 km

s−1, as derived by Hobbs et al. (2005). In the second case (hereafter: low-velocity

kicks), we draw core-collapse SN kicks from a Maxwellian distribution with 1D rms

σCCSN = 15 km s−1, i.e. the same as for electron-capture SNe (see Table 4.1).

Finally, while NSs receive the full kick drawn from the Maxwellian distribution, BHs

receive a natal kick that is reduced by the amount of fallback as vBH = (1− ffb) v ,

where ffb is the fallback parameter and v is the velocity randomly sampled from

the Maxwellian curve (Fryer et al., 2012).
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Table 4.1: Initial conditions of the MOBSEsimulations.

ID σECSN σCCSN SN α

α1 15.0 km/s 265.0 km/s rapid 1.0
α3 15.0 km/s 265.0 km/s rapid 3.0
α5 15.0 km/s 265.0 km/s rapid 5.0

CC15α1 15.0 km/s 15.0 km/s rapid 1.0
CC15α3 15.0 km/s 15.0 km/s rapid 3.0
CC15α5 15.0 km/s 15.0 km/s rapid 5.0

Column 1: simulation name; columns 2 and 3: 1D rms of the Maxwellian distribution for

electron-capture SN kicks and for iron core-collapse SN kicks (see sec. 4.2.2); column 4: SN

model (Fryer et al., 2012; Giacobbo et al., 2018); column 5: values of α adopted in the CE

formalism.

4.2.3 Binary evolution

The description of binary evolution is the same as in Hurley et al. (2002), apart from

several features of the common envelope (CE) phase.

To describe the CE phase, we adopt the αλ formalism (see Webbink, 1984; Ivanova

et al., 2013), where α quantifies the energy available to unbind the envelope, and λ

measures the concentration of the envelope. In our simulations, λ depends on the

stellar type (i.e. mass and luminosity) to account for the contribution of recombi-

nations. To compute λwe used the prescriptions derived by Claeys et al. (2014) (see

their Appendix A for more details) which are based on Dewi and Tauris (2000).

In contrast, α is a free parameter. In this paper, we assume α = 1, 3 and 5 (see

Table 4.1).

With respect to Hurley et al. (2002), we have revised the treatment of Hertzsprung-

gap (HG) donors in CE: HG donors are assumed to always merge with their com-

panions if they enter a CE phase. This is justified by the fact that HG stars have not

yet developed a steep density gradient between core and envelope, and allows us

to match the merger rate of BHBs (Mapelli et al., 2017) inferred from LIGO-Virgo

observations (Abbott et al., 2016d).

4.2.4 Simulations and initial distributions

Here we describe the initial conditions used to perform our population-synthesis

simulations. We randomly draw the mass of the primary star (m1) from a Kroupa

initial mass function (IMF; Kroupa, 2001)

F(m1) ∝ m−2.3
1 with m1 ∈ [5−150]M¯ . (4.3)
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Figure 4.2: Distribution of total masses of DNSs in simulations α5 (top panels) and CC15α5
(bottom panels). Left-hand panels: all DNSs that formed in our simulations are shown. Right-
hand panels: only DNSs merging in less than a Hubble time are shown. The vertical lines are
the total mass of the GW event GW170817 (Abbott et al., 2016a). The bin width is 0.05 M¯.

The mass ratio between the secondary and the primary member of the binary q =
m2/m1 is derived as Sana et al. (2012)

F(q) ∝ q−0.1 with q = m2

m1
∈ [0.1−1] . (4.4)

The orbital period P and the eccentricity e are also extracted according to Sana et

al., 2012:

F(P ) ∝ (P )−0.55 with P = log10(P/day) ∈ [0.15−5.5] (4.5)

and

F(e) ∝ e−0.42 with 0 ≤ e < 1. (4.6)

We ran six sets of simulations (see Tab. 4.1), in order to test the effect of natal

kicks and CE efficiency on the formation of double compact-object binaries (DNSs,

BHNSs and BHBs). In particular, we assume three different values of the parame-

ter of CE efficiency α = 1, 3 and 5, and we draw iron core-collapse SN kicks from a

Maxwellian distribution with 1D rms σCCSN = 15 and 265 km s−1.

For each set of simulations we considered 12 sub-sets with different metallicities

Z = 0.0002, 0.0004, 0.0008, 0.0012, 0.0016, 0.002, 0.004, 0.006, 0.008, 0.012, 0.016
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Figure 4.3: Primary masses (m1, left-hand panels) and secondary masses (m2, right-hand pan-
els) of DNSs merging within a Hubble time in all simulations presented in this paper. Vio-
let histogram: merging DNSs with metallicity 0.0002 ≤ Z ≤ 0.0012; green histogram: merg-
ing DNSs with metallicity 0.0016 ≤ Z ≤ 0.006; red histogram: merging DNSs with metallicity
0.008 ≤ Z ≤ 0.02. The bin width for both m1 and m2 is 0.02 M¯.
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Violet histogram: merging DCOs with metallicity 0.0002 ≤ Z ≤ 0.0012; green histogram: merg-
ing DCOs with metallicity 0.0016 ≤ Z ≤ 0.006; red histogram: merging DCOs with metallicity
0.008 ≤ Z ≤ 0.02. The bin width is 0.05.

and 0.02. In each sub-set, we simulated 107 binary systems. Thus, each set of sim-

ulations is composed of 1.2×108 massive binaries.

4.3 Results

4.3.1 Masses and orbital properties of double neutron stars

Figure 4.2 shows the total mass of DNSs (mtot = m1 +m2, where m1 and m2 are

the masses of the primary and of the secondary NS, respectively) in simulations α5

(with large core-collapse SN kicks) and CC15α5 (with low SN kicks). In particular,

the left-hand panels show the mass distribution of all DNSs formed in our simu-

lations α5 (top) and CC15α5 (bottom), while the right-hand panels show the mass

distribution of DNSs merging within a Hubble time.

In simulation α5, most (∼ 83−96 per cent) DNSs merge within a Hubble time. The

mass distribution of merging DNSs is not significantly different from the mass dis-

tribution of all DNSs. DNSs have a total mass ranging from 2.2 to ∼ 4 M¯, but lower
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masses (mtot . 2.75 M¯) are more common than large masses. The distributions

have two peaks at mtot ∼ 2.2 and 2.4 M¯, corresponding to the mergers of two NSs

with mass m1 ∼ m2 ∼ 1.1 M¯ and m1 ∼ 1.3, m2 ∼ 1.1 M¯, respectively. These two

favoured masses come from the adopted SN model. In particular, 1.1 M¯ is the

minimum mass of a NS formed from a core-collapse SN according to the rapid SN

model of Fryer et al. (2012), while ∼ 1.26 M¯ is the minimum mass of a NS formed

from an electron-capture SN according to Fryer et al. (2012). Larger masses are

indicative of some amount of fallback, while mass accretion from a companion is

mostly negligible (in agreement with e.g. Tauris et al., 2017). In simulation α5, the

mass distribution of both merging and all DNSs slightly depends on the metallic-

ity of the progenitor star: lower metallicities tend to produce more massive NSs,

because fallback is slightly more efficient.

In simulation CC15α5 (representative of the simulations assuming a low natal kick

for core-collapse SNe), the number of merging DNSs is significantly lower than the

number of all DNSs: only 15−50 per cent of DNSs merge within a Hubble time. This

happens because most systems survive the explosion of a core-collapse SN with

such a low kick, including DNSs with large orbital separations, while in simulation

α5 only the closest systems (which are more likely to merge within a Hubble time)

remain bound after the core-collapse SN explosion.

In simulation CC15α5 there is also a clear difference between the mass range of all

DNSs and the mass range of DNSs merging within a Hubble time: the former span

from 2.2 to 4 M¯, while the latter range from 2.2 to 3.75 M¯ and very few merging

DNSs have mtot > 3.2 M¯. Similar to α5, low mass systems (mtot . 2.75 M¯) are

more common and there are two peaks corresponding to mtot ∼ 2.2 and 2.4 M¯.

There is only a slight trend with the metallicity of the progenitor stars.

The total mass of GW170817 is also shown in Figure 4.2 (Abbott et al., 2016a). In

our simulations we form a large number of systems with mass consistent with

GW170817. The number of systems in the mass bin consistent with the total mass

of GW170817 is (∼ 2−10) ∼ 5−20 per cent the number of (merging) systems in the

peak of the distribution.

Figure 4.3 shows the mass of the primary and the mass of the secondary member

of DNSs which merge within a Hubble time, for all simulations considered in this

paper. For primary (secondary) we mean the most (least) massive member of the

binary. This is independent of which NS forms first.

For each simulation, we gather different metallicities into three groups: 0.0002 ≤
Z ≤ 0.0012, 0.0016 ≤ Z ≤ 0.006, 0.008 ≤ Z ≤ 0.02. In all cases we clearly see the

two peaks at ∼ 1.1 M¯ (minimum mass of NSs formed from iron core-collapse SNe
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in the rapid model) and ∼ 1.26 M¯ (minimum mass of NSs formed from electron-

capture SNe) for both the primary and the secondary NS. There is a weak trend

with metallicity in simulations with large α (α3, α5, CC15α3 and CC15α5), while

simulations with α= 1 (α1 and CC15α1) show a more uncertain behavior.

Primary masses span from ∼ 1.1 to ∼ 2.0 M¯ in all simulations. As for the secondary

masses, there is a clear difference between simulations with large core-collapse SN

kicks (α1, α3 and α5) and simulations with low core-collapse SN kicks (CC15α1,

CC15α3 and CC15α5). In the latter simulations, the secondary NSs have gener-

ally lower mass than in the former ones. The main reason is that lower mass NSs

in our simulations form mostly from iron core-collapse SNe, while high mass NSs

form mainly from electron-capture SNe. If the core-collapse SN kicks are lower, the

majority of merging secondary NSs forms through core-collapse SNe.

Figure 4.4 shows the ratio of the secondary to the primary NS mass (dashed lines)

for merging DNSs in our simulations. The mass ratio of merging DNSs is always

> 0.5.

Figure 4.5 shows the eccentricity (e) and the semi-major axis (a) of DNSs after the

second SN has taken place, i.e. as soon as the simulated system has become a DNS.

While these quantities are hardly comparable to any observations, they are useful,

on a theoretical ground, to understand the formation pathways of double compact

objects. From Figure 4.5 we see that DNSs form with relatively large initial eccen-

tricities (with respect to BHNSs and BHBs), as an effect of the natal kick. As we could

expect, most merging DNSs have small (< 103 R¯) semi-major axis after the second

SN explosion. There is a clear difference between the runs with low SN kicks and

those with high SN kicks: in the former a high number of NSs have very large semi-

major axes (102 −108 R¯) and do not merge unless they have extreme eccentricity.

This explains why much less than 50 per cent of all DNSs merge in the simulations

with low core-collapse SN kicks.

Finally, Figure 4.6 shows the distribution of the delay time tdelay (i.e. the time

elapsed from the formation of the progenitor binary to the merger of the two com-

pact objects). Previous studies (Belczynski et al., 2016b; Lamberts et al., 2016;

Mapelli et al., 2017) indicate that the distribution of delay times should approxi-

mately scale as t−1. Overall, this trend d N /d t ∝ t−1 is confirmed in our simula-

tions, but we notice also a slight dependence of tdelay distribution on α and on the

natal kicks.
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Figure 4.9: Same as Figure 4.5 but for BHNS systems.
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4.3.2 Masses and orbital properties of BHNSs

Figure 4.7 shows the total mass distribution of BHNSs in simulations α5 and

CC15α5. If we consider all BHNSs formed in our simulations (left-hand panels),

the total masses of BHNSs span from ∼ 6 to ∼ 66 M¯ in both α5 and CC15α5, al-

though the distributions peak at relatively low masses (∼ 6 − 14 M¯). There is a

clear trend with metallicity for both α5 and CC15α5, which is essentially due to the

dependence of BH masses on stellar winds (see e.g. Giacobbo et al., 2018).

If we consider only those BHNSs which merge within a Hubble time (right-hand

panels), we find that low-mass BHNSs are more likely to merge than high-mass

BHNSs. In the case α5, the maximum total mass of merging BHNSs is . 40 M¯ and

the most common systems have mass ∼ 6−12 M¯. In the case CC15α5 the situation

is even more extreme: almost all merging BHNSs have mass ∼ 6−12 M¯ and only

few systems have larger mass (up to ∼ 60 M¯). The behaviour of BHNS total mass

distributions in the other simulations is intermediate between that of α5 and that

of CC15α5.

Figure 4.8 shows the mass distribution of the BH (left-hand panels) and of the NS

(right-hand panels) for BHNSs merging within a Hubble time. From this Figure, we
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Figure 4.11: Same as Figure 4.2 but for BHBs. The vertical lines are the median values of the to-
tal masses of the GW events and their 90 per cent credible intervals: GW150914, GW151226 (Ab-
bott et al., 2016d), GW170104 (Abbott et al., 2017b), GW170608 (Abbott et al., 2017e) and
GW170814 (Abbott et al., 2017d). The bin width is 2 M¯. Note that the distribution of the
observed masses will favor higher value of the mass because of observation selection effects.

see that the simulations CC15α3 and CC15α5 are the most extreme cases: most of

the BHs in merging BHNSs have mass < 15 M¯ and most of the NSs have mass& 1.3

M¯.

Even in the other simulations (α1, α3, α5 and CC15α1), the NS mass distribution

in the case of BHNSs is skewed toward significantly higher values than in the case

of merging DNSs. In all simulations we see a trend with metallicity: more merging

BHNSs form from metal-poor progenitors than from metal-rich ones.

Figure 4.4 shows that the ratio between the NS mass and the BH mass in merging

BHNSs is always q . 0.4 (q = 0.4 is the maximum possible value by construction,

because the maximum possible mass of a NS is ∼ 2 M¯ and the minimum possible

mass of a BH is ∼ 5 M¯, according to the rapid core-collapse SN model by Fryer

et al. (2012)), while the most likely value is ≈ 0.2.

Finally, Figure 4.9 shows the eccentricity and the semi-major axis of the simulated

BHNSs just after both compact objects have formed (hereafter: initial eccentricity

and initial semi-major axis). The initial semi-major axes of merging BHNSs are .

103 R¯, as in the case of DNSs. We also note that in the three simulations with

low core-collapse SN kicks (CC15α1, CC15α3 and CC15α5) merging BHNSs have
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significantly smaller initial semi-major axes (. 102 R¯) than in the other runs. This

can be explained if we look also at the distribution of initial eccentricities.

The initial eccentricities of merging BHNSs in the simulations with low core-

collapse SN kicks have two main peaks: a sharp peak at e ∼ 0 and a broad peak

at e ∼ 0.5.

The sharp peak with e = 0 is produced by BHNSs in which the BH forms after the NS

and is born by direct collapse. In this case the BH is assigned low or no natal kick

(Fryer et al., 2012) and the binary, which has circularized during previous evolution,

remains circular.

In contrast, the broad peak at e ∼ 0.5 is populated mostly by BHNSs in which the BH

forms before the NS. This peak originates from the combination of two effects. First,

there are very few BHNSs with semi-major axis. 103 R¯ and eccentricity e À 0.5 (as

we can see from Figure 4.10), because the SN kick is not strong enough to produce

large eccentricities in close BHNSs. If we had a number of such highly eccentric

systems with small semi-major axis, they would merge within a Hubble time, but

we do not have them because of the low kicks.

Second, we have several systems with semi-major axis . 103 R¯ and eccentricity

e ¿ 0.5, but they are expected to merge in a timescale longer than the Hubble time.

In fact, we can estimate the merger timescale by GW decay as (Peters, 1964)

tGW = 5

256

c5

G3

a4 (1−e2)7/2

m1 m2 (m1 +m2)
, (4.7)

where c is the light speed, G the gravity constant, a the binary semi-major axis, e the

orbital eccentricity, m1 the mass of the primary and m2 the mass of the secondary. If

we substitute m1 = 7 M¯, m2 = 1.5 M¯ (which are typical values for our BHNSs, see

e.g. Fig. 4.8) and a = 10 R¯ (which is a very close semi-major axis) into equation 4.7,

we obtain tGW ∼ 6.2, 17 Gyr for e = 0.5 and 0.0, respectively.

The combination of these two effects produces the broad peak centred at e ∼ 0.5.

In simulations α1, α3 and α5 we see no peak at e ∼ 0.5, but rather the eccentricities

are skewed toward higher values, because the second compact object forms with a

higher natal kick, which can unbind the binary or make it very eccentric.

4.3.3 Masses and orbital properties of BHBs

Figure 4.11 shows the total mass distribution of BHBs in simulations α5 (top) and

CC15α5 (bottom) for all simulated BHBs (left) and only for BHBs merging within

a Hubble time (right). This is analogous to Figure 8 of Giacobbo et al. (2018) but

here we consider a significantly different model of core-collapse SN, different kick
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distributions, and a different value of α. The main results of Giacobbo et al. (2018)

still hold also for this model: if we consider all BHBs formed in our simulations

(left-hand panels of Figure 4.11), the maximum total mass1 is ∼ 130 M¯.

In contrast, if we look at the total mass of BHBs merging within a Hubble time

(right-hand panels of Figure 4.11), we find that the most massive merging BHBs

have mtot ∼ 80− 90 M¯. The reason why our most massive BHB systems do not

merge in a Hubble time is that they come from the evolution of stars which de-

velop large radii during their super-giant phase: if the initial orbital separation of

these massive progenitors is large (& 103 R¯), they evolve into very massive BHBs

which do not merge in a Hubble time. In contrast, if their initial orbital separation

is relatively small, the massive progenitors either merge before becoming BHs, or

undergo non-conservative mass transfer episodes leading to strong mass loss and

to the formation of two smaller BHs. On the other hand, dynamical evolution in

star clusters might accelerate the merger of the most massive BHBs which form in

our simulations, by means of three-body encounters and exchanges Mapelli, 2016.

As in Giacobbo et al. (2018), we confirm that there is a strong dependence on metal-

licity. Not only does the maximum mass of BHBs strongly depend on the progeni-

tor’s metallicity, but also the number of BHBs, especially if we look at systems merg-

ing in less than a Hubble time. This strong dependence is an effect of stellar evo-

lution: (i) metal-poor stars tend to produce more massive BHs because they lose

less mass by stellar winds (Mapelli et al., 2009; Mapelli et al., 2010; Belczynski et al.,

2010; Mapelli et al., 2013; Spera et al., 2015), while (ii) metal-rich stars tend to de-

velop larger radii than metal-poor ones and thus are more likely to merge before

becoming BHBs; hence, the number of BHBs formed from metal-poor progenitors

is larger than that of BHBs formed from metal-rich ones.

We find no significant differences between the simulationα5 and CC15α5, because

most BHBs get a low natal kick in all our models, given our assumption that the kick

is modulated by the amount of fallback (see e.g. Giacobbo et al., 2018).

Figure 4.12 shows the mass of the primary (i.e. the more massive) and the sec-

ondary (i.e. the less massive) BH in BHBs merging within a Hubble time for all

simulations discussed in this paper. In all cases, we see a clear trend with metallic-

ity, in terms of both maximum BH mass and number of merging BHBs. Especially

at low metallicity (0.0002 ≤ Z ≤ 0.0012), the mass distribution is broadly consistent

1There is a typo in the x−axis label of Figure 8 of Giacobbo et al. (2018). The most massive BHBs
in this figure have mtot ∼ 130 M¯, although from the labels of this Figure it may seem that they have
mtot ∼ 150 M¯.
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with a power law with slope ≈ 2.3, in good agreement with the one inferred from

GW events (Abbott et al., 2016d).

Figure 4.4 confirms that merging BHBs in our simulations have preferentially a

large mass ratio, but systems with any possible mass ratio down to m2/m1 ∼ 0.1

can form, consistent with Giacobbo et al. (2018).

Finally, Figure 4.13 shows the initial eccentricity distribution of BHBs. Most BHBs

have relatively low eccentricity, because SN kicks are assumed to be low, depending

on the fallback. The initial semi-major axis of merging BHs is generally . 102 R¯,

with a tail of eccentric systems merging with initial semi-major axis up to ∼ 104 R¯.

Another interesting feature of merging BHBs is the dependence of tdelay on the

value of α (Figure 4.6): the number of systems with short delay time increases sig-

nificantly for a smaller value of α. Small values of α correspond to a more efficient

shrinking of the binary system during CE, resulting in a faster merger. This effect

appears to be particularly important for BHBs.

4.3.4 Mergers per unit stellar mass

For each set of simulations, we compute the number of merging double compact

objects (DCOs) per unit mass Ncor in the same way as described in our previous

work (see Mapelli et al., 2017; Giacobbo et al., 2018):

Ncor,i = fbin fIMF
Nmerger,i

Mtot,sim
i ∈ [DNS,BHNS,BHB], (4.8)

where Nmerger,i is the number of merging DCOs (DNS, BHNS or BHBs); Mtot,sim is

the total initial mass of the simulated stellar population; fbin is the correction factor

used to take into account the fact that we only simulate binary systems (we assume

that 50 per cent of the stars are in binaries fbin = 0.5 Sana et al., 2013); fIMF = 0.285

corrects for the fact that we have simulated only systems which have the primary

component more massive than 5M¯.

Figure 4.14 shows Ncor as a function of the metallicity Z for all the simulations and

separately for each type of DCO: DNSs, BHNSs and BHBs. In Giacobbo et al. (2018)

we have already shown a similar figure for BHBs, but here we consider different SN

prescriptions, CE parameters and SN kicks.

The number of mergers per unit mass spans a large range of values for both DNSs,

BHNSs and BHBs, depending on natal kicks, on CE efficiency and on progenitor’s

metallicity.
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Figure 4.13: Same as Figure 4.5 but for BHBs.
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Figure 4.14: Number of merging DCOs per unit mass (Ncor) as a function of progenitor’s metal-
licity for all our simulations (see Table 4.1). Top-left panel: merging DNSs; bottom-left panel:
BHNS; bottom-right panel: BHBs.

Ncor strongly depends on progenitor’s metallicity for both BHBs and BHNSs. In par-

ticular, Ncor,BHB (Ncor,BHNS) is & 3 (& 2) orders of magnitude higher at low metallic-

ity than at high metallicity.

In contrast, the number of DNS mergers per unit mass Ncor,DNS is almost insen-

sitive to progenitor’s metallicity in runs α3 and α5. In the other simulations (α1,

CC15α1, CC15α3 and CC15α5) Ncor,DNS is significantly lower for progenitor metal-

licity Z ∼ 0.002 than for progenitors with higher or lower metallicity. This hap-

pens because stellar radii in the HG and giant phase tend to reach larger values at

Z ∼ 0.002 than at other metallicities in MOBSE. When SN kicks are low or inspiral

by CE is particularly efficient (i.e. α≤ 1), a larger number of binaries merge before

forming a DNS if the stellar radii are larger. For the same reason, Ncor,DNS is larger

if α is larger (i.e. if CE is less efficient in merging binaries prematurely).
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Table 4.2: Local merger rate density.

ID Method Rloc,DNS Rloc,BHNS Rloc,BHB

(Gpc−3 yr−1) (Gpc−3 yr−1) (Gpc−3 yr−1)

Z = 0.02 1.3×101 5.7×100 3.6×100

Z = 0.002 6.0×100 5.5×101 1.8×103

α1 Z = 0.0002 1.5×101 9.5×101 1.4×103

Model 1 1.0×101 5.3×101 1.0×103

Model 2 1.4×101 1.3×101 4.3×101

Z = 0.02 8.6×101 2.5×100 9.4×10−1

Z = 0.002 9.1×101 5.5×101 1.2×103

α3 Z = 0.0002 7.7×101 9.1×101 3.7×103

Model 1 8.1×101 4.3×101 1.1×103

Model 2 8.7×101 7.0×100 7.4×101

Z = 0.02 1.3×102 9.9×10−1 2.6×10−1

Z = 0.002 1.9×102 5.7×101 6.1×102

α5 Z = 0.0002 1.8×102 9.5×101 3.6×103

Model 1 1.8×102 4.2×101 6.4×102

Model 2 1.3×102 5.0×100 5.0×101

Z = 0.02 1.4×102 4.2×100 1.5×100

Z = 0.002 7.8×101 2.0×102 2.3×103

CC15α1 Z = 0.0002 2.2×102 3.7×102 1.5×103

Model 1 9.1×101 2.5×102 1.2×103

Model 2 1.1×102 4.7×101 4.5×101

Z = 0.02 2.4×102 3.3×10−2 1.3×10−1

Z = 0.002 5.9×101 6.7×102 1.7×103

CC15α3 Z = 0.0002 1.3×103 3.3×102 4.3×103

Model 1 9.4×101 4.5×102 1.5×103

Model 2 2.7×102 1.6×101 8.6×101

Z = 0.02 5.5×102 3.9×10−3 1.8×10−1

Z = 0.002 1.4×102 1.0×103 6.0×102

CC15α5 Z = 0.0002 1.2×103 8.6×102 4.1×103

Model 1 1.5×102 7.8×102 7.2×102

Model 2 5.1×102 3.5×101 5.6×101

Column 1: simulation’s name; column 2: method (single metallicity, Z , or evolution of

metallicity: model 1 and model 2); columns 3, 4 and 5: local merger rate density of DNSs,

BHNSs and BHBs.
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Figure 4.15: Local merger rate density Rloc calculated from equation 4.10 for each simulation.
Top-left: local merger rate density for DNSs. Bottom-left: local merger rate density for BHNSs.
Bottom-right: local merger rate density for BHBs. The error bars show the maximum difference
between estimates of Rloc for different metallicities. Open circles (open triangles) are Rloc ob-
tained assuming model 1 (model 2) for the cosmic evolution of metallicity. Green shaded ar-
eas: local merger rate density inferred from LIGO-Virgo observations (from Abbott et al., 2016a,
Abbott et al., 2016e and Abbott et al., 2017b for DNSs, BHNSs and BHBs, respectively).

4.3.5 Merger rate density

We developed a simple procedure to estimate the merger rate per unit volume and

unit time in the local Universe, based on the number of mergers per unit mass.

First, we consider the cosmic star formation rate (SFR) density adopting the fit by

Madau and Dickinson (2014),

SFR(z) = 0.015
(1+ z)2.7

1+ [(1+ z)/2.9]5.6
M¯Mpc−3yr−1. (4.9)

We use equation 4.9 to compute the SFR at different redshifts, from z = 15 to z = 0.0

with a step ∆z = 0.1.

Then, we calculate the total mass of stars formed within a specific redshift bin, as-

suming that the SFR is constant in each bin of redshift. The total mass of stars

formed in the bin is multiplied by Ncor,BHB, Ncor,BHNS and Ncor,DNS in order to obtain

the total number of merging BHBs, BHNSs and DNSs formed in each redshift bin
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per unit volume. We repeat these operations for all bins of redshift and for each bin

we take only the fraction of merging systems which have a delay time (Figure 4.6)

such that they merge in the local Universe (namely, z ∈ [0,0.1]). By summing them

up, we obtain the total number of mergers occurring at z ≤ 0.1 per unit volume2.

Finally, we divide the result by the look-back time corresponding to z = 0.1. The

following formula summarizes the aforementioned procedure:

Rloc,i =
1

tlb(z = 0.1)

0.1X
z=15

floc(z) SFR(z) [tlb(z +∆z)− tlb(z)] , (4.10)

where Rloc,i is the local merger rate per unit volume and unit time, i can be ei-

ther BHB, BHNS or DNS, tlb(z) is the look-back time and floc(z) is the fraction of

merging systems formed at a given redshift z which merge in the local Universe

(z ≤ 0.1) per unit mass. We calculate floc(z) = Ncor,i(zform = z, zmerg ≤ 0.1), where

Ncor,i(zform = z, zmerg ≤ 0.1) is the number of compact objects per unit mass which

form at redshift zform = z and merge at redshift zmerg ≤ 0.1. For our calculations we

assume the cosmological parameters from Planck 2015 (Planck Collaboration et al.,

2016).

In equation 4.10, the dependence of the merger rate on metallicity is contained in

the term floc(z). Our knowledge of the stellar metallicity evolution in the Universe

is quite more uncertain than our knowledge of the SFR density evolution (see e.g. ;

Mannucci et al., 2009; Madau and Dickinson, 2014 and references therein). Thus,

we decided to make minimal assumptions on the metallicity evolution.

In the simplest case, we assume that all stars in the Universe form with the same

metallicity Z and we calculate equation 4.10 for each of the 12 metallicities con-

sidered in our simulations. Hence, we estimate that the uncertainty of the local

merger rate density is the maximum difference between values of Rloc,i calculated

with all considered metallicities (error bars in Figure 4.15). This procedure results

in relatively small error bars for the DNSs, which do not depend much on progen-

itor’s metallicity (see Figure 4.14), while the uncertainty on the merger rate density

of both BHBs and BHNSs spans several orders of magnitude.

Then, we adopt two different models for the evolution of metallicity. In model 1,

we assume that all stars formed in a given redshift bin ∆z have the same metal-

2In this work, we estimate the local merger rate within z ≤ 0.1. This redshift interval is actually
smaller than the current instrumental horizon of LIGO and Virgo for BHBs, which depends on BHB
mass. On the other hand, the merger rate density in the comoving frame is expected to grow mildly
with redshift, as shown by Mapelli et al. (2017). We decided not to account for this effect in the
current paper, because the uncertainty is dominated by other approximations in the calculation
described here (e.g. the assumption about the metallicity). A more accurate study of the merger rate
as a function of redshift is provided in the companion paper Mapelli and Giacobbo (2018).
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licity and we calculate this metallicity as log Z (z)/Z¯ =−0.19 z −0.74 if z ≤ 1.5 and

log Z (z)/Z¯ =−0.22 z−0.66 if z > 1.5. This relation between metallicity and redshift

was derived by Rafelski et al. (2012) based on the chemical abundance of a sample

of damped Lyα systems up to redshift ∼ 5.

In model 2 we assume that all stars formed in a given redshift bin ∆z have the

same metallicity, but we calculate this metallicity as log Z (z)/Z¯ =−0.19 z if z ≤ 1.5

and log Z (z)/Z¯ =−0.22 z if z > 1.5, which corresponds to rescaling the formula by

Rafelski et al. (2012), to obtain Z (z = 0) = Z¯. In fact, the absolute metallicity cali-

bration of the damped Lyα sample is quite uncertain, while the average metallicity

of galaxies in the nearby Universe obtained from the Sloan Digital Sky Survey is

consistent with the solar value (Gallazzi et al., 2008; Madau and Dickinson, 2014).

In Table 4.2, we report our estimate of Rloc,i for all simulations and for these two

models.

Figure 4.15 shows the local merger rate density of DNSs, BHNSs and BHBs for all

simulations. The error bars account for the maximum difference between Ncor,i

calculated for all metallicities. The uncertainty is relatively small (up to one order

of magnitude) for DNSs, while it is very large (up to five orders of magnitude) for

both BHNSs and BHBs, because the number of BHNS and BHB mergers strongly

depends on the progenitor’s metallicity, while the number of DNS mergers is only

mildly sensitive to progenitor’s metallicity (Figure 4.14).

Our estimate of Rloc,DNS spans from ∼ 5 Gpc−3 yr−1 (for α1) to ∼ 103 Gpc−3 yr−1 (for

CC15α3 and CC15α5). The local merger rate density of BHNSs Rloc,BHNS spans from

∼ 10−2 to ∼ 103 Gpc−3 yr−1, while the local merger rate density of BHBs Rloc,BHB

spans from ∼ 10−1 to ∼ 4×103 Gpc−3 yr−1.

The simulations with high core-collapse SN kicks (α1, α3 and α5) are not consis-

tent with the local merger rate density of DNSs inferred from GW170817 (Abbott et

al., 2016a). In contrast, the simulations with low core-collapse SN kicks and α ≥ 3

(CC15α3 and CC15α3) are fairly consistent with the local merger rate of DNSs in-

ferred from GW170817. Model 2 applied to CC15α5 gives an estimate of the local

merger rate density of DNSs which is in good agreement with the value inferred

from GW170817.

All simulations are consistent with the upper limit to the local merger rate density

of BHNSs inferred from O1 data (Abbott et al., 2016e). Model 1 produces systemat-

ically larger rates than model 2, because it includes more metal-poor stars by con-

struction.

Finally, the uncertainty on the simulated BHB merger rate density is very large,

much larger than the 90 per cent credible levels inferred from O1 data plus
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GW170104 (Abbott et al., 2017b). Model 1 predicts Rloc,BHB & 1000 Gpc−3 yr−1,

which is substantially larger than the 90 per cent credible levels inferred from cur-

rent LIGO-Virgo results, whereas model 2 predicts Rloc,BHB ∼ 40− 90 Gpc−3 yr−1,

which is perfectly within the LIGO-Virgo 90 per cent credible interval.

In a companion paper (Mapelli and Giacobbo, 2018) we model the metallicity evo-

lution of the Universe by taking this information from a cosmological simulation.

The local merger rate densities estimated by Mapelli and Giacobbo (2018) are con-

sistent with the ones derived in this paper, within the uncertainties.

Overall, we confirm the results of previous papers (e.g. Chruslinska et al., 2018;

Kruckow et al., 2018; Belczynski et al., 2018): it is quite hard to match the local

merger rate density of DNSs inferred from GW170817. Unlike Chruslinska et al.

(2018), who need to assume a different physics for CE evolution of DNS and BHB

progenitors3, we are able to match both the DNS and the BHB merger rates with the

same physics, provided that low natal kicks are assumed for iron core-collapse SNe

in binary systems. Natal kicks of core-collapse SNe are still matter of debate and

addressing this open question is beyond the aims of this paper. Here, we simply

show that assuming low kicks for iron core-collapse SNe in binary systems allows

us to match the local merger rate of DNSs, BHNSs and BHBs all together.

4.4 Conclusions

We have investigated the formation of DNSs, BHNSs, BHBs from isolated binaries

by means of our population-synthesis code MOBSE. MOBSEincludes an updated

formalism for mass loss by stellar winds, which depends on metallicity and Edding-

ton ratio (Giacobbo et al., 2018), and incorporates several prescriptions for core-

collapse SNe, electron-capture SNe, pulsational pair instability SNe and pair insta-

bility SNe. Here, we investigate the importance of CE ejection efficiency (assuming

α = 1, 3 and 5) and the impact of natal kicks of iron core-collapse SNe. In fact,

the distribution of natal kicks is still matter of debate, and it might be that kicks in

close binaries are lower than kicks in single stars (e.g. Beniamini and Piran, 2016;

Bray and Eldridge, 2016; Tauris et al., 2017). Overall, we consider six sets of simula-

tions: three with high core-collapse SN kicks (modeled through a Maxwellian curve

with 1D rms 265 km s−1, Hobbs et al., 2005) and with CE parameter α = 1, 3 and

5 (simulations α1, α3 and α5, see Table 4.1) and three with low core-collapse SN

3Chruslinska et al., 2018 show that they can reproduce the merger rate of DNSs only if they allow
some HG donors to survive a CE phase, but this assumption leads to a significant overestimate of
the local BHB merger rate.
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kicks (modeled through a Maxwellian curve with 1D rms 15 km s−1) and with CE

parameter α= 1, 3 and 5 (simulations CC15α1, CC15α3 and CC15α5).

We first look at the masses of DNSs, BHNSs and BHBs. The masses of NSs in

DNSs span from ∼ 1.1 to ∼ 2 M¯, although low masses are more common than

high masses, especially in merging DNSs formed with low natal kicks (simulations

CC15α1, CC15α3 and CC15α5, Figs 4.2 and 4.3). In contrast, the masses of NSs

in merging BHNSs tend to be preferentially high (1.3−2.0 M¯), while the masses of

BHs in merging BHNSs tend to be preferentially low (∼ 5−15 M¯), especially in sim-

ulations with low natal kicks (simulations CC15α1, CC15α3 and CC15α5, Figs 4.7

and 4.8).

The masses of BHs in BHBs strongly depend on the progenitor’s metallicity, more

massive BHs being produced by metal-poor stars. Also, the number of BHBs de-

pends on the progenitor’s metallicity: metal-poor binaries tend to produce more

BHBs than metal-rich ones. The maximum mass of BHs in simulated BHBs is ∼ 65

M¯, but the most massive BHBs do not merge within a Hubble time because their

semi-major axes are too large. We find that the maximum mass of BHs in merg-

ing BHBs is ∼ 45 M¯ (Figs 4.11 and 4.12). This is consistent with the possible up-

per mass cut-off inferred from LIGO-Virgo data by Fishbach and Holz (2017) and

Wysocki et al. (2018).

On the other hand, our binaries are evolved in isolation. If they were evolved in a

dynamically active environment, such as a star cluster, some of the most massive

BHs (with mass 45− 65 M¯) might still merge within a Hubble time, as a conse-

quence of dynamical hardening or dynamical exchanges (e.g. Mapelli, 2016).

We estimate the number of mergers per unit mass of the initial stellar population

(Fig. 4.14). If core-collapse SN kicks are high (low), a DNS merger occurs every ∼
105 −107 M¯ (∼ 104 −106 M¯) of stellar population. Thus, low SN kicks boost the

number of DNS mergers by at least a factor of 10. The number of DNS mergers per

unit mass is weakly sensitive to progenitor’s metallicity.

In contrast, the number of both BHNS and BHB mergers per unit mass of stellar

population depends on the progenitor’s metallicity dramatically. A BHNS merger

occurs every ∼ 104 −105 M¯ of stellar population if Z ≤ 0.01 and every & 107 M¯ of

stellar population if Z > 0.01. The number of BHNS mergers per unit mass depends

mildly on both the assumed CE parameters and natal kicks. In particular, low kicks

tend to produce more BHNS mergers at low metallicity and less at high metallicity.

Similarly, a BHB merger occurs every ∼ 104 M¯ of stellar population if Z ≤ 0.002 and

every ∼ 107 −108 M¯ of stellar population if Z ≥ 0.02. The number of BHB mergers

per unit mass depends only mildly on the CE parameters. There is no dependence
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of BHBs on the assumed natal kicks, but only because we assume that the kick is

inversely proportional to the amount of fallback (Fryer et al., 2012). Thus, massive

BHs receive always low kicks.

Finally, we estimate the local merger rate density by convolving the number of

mergers per unit stellar mass with the cosmic star formation rate density (equa-

tion 4.10). Given the large uncertainties on the metallicity evolution of the Uni-

verse, we include the metallicity of the progenitor in our calculations to estimate

the maximum uncertainty of our predicted merger rates. In all our simulations, the

local merger rate density of BHNSs and BHBs is consistent with the values inferred

from O1 LIGO-Virgo data, for reasonable assumptions about metallicity evolution.

There is no significant dependence of the local merger rate of BHNSs and BHBs on

CE parameters and on core-collapse SN kicks (Fig. 4.15).

In contrast, the local merger rate density of DNSs strongly depends on both CE

parameters and SN kicks (Fig. 4.15). Only simulations with low SN kicks and high

values ofα (CC15α3 and CC15α5) match the local merger rate density inferred from

GW170817 (Rloc,DNS = 1540+3200
−1220 Gpc−3 yr−1, Abbott et al., 2016a). This result adds

another piece to the intricate puzzle of natal kicks and DNS formation.
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5
REVISING NATAL KICK PRESCRIPTIONS

IN POPULATION SYNTHESIS

SIMULATIONS

Natal kicks are matter of debate and significantly affect the merger rate density of

compact objects. Here, we present a new simple formalism for natal kicks of neutron

stars (NSs) and black holes (BHs). We describe the magnitude of the kick as vkick ∝
fH05 mej m−1

rem, where fH05 is a normalization factor, drawn from a Maxwellian dis-

tribution with one-dimensional root-mean-square velocity σ = 265 km s−1, mej is

the mass of the supernova (SN) ejecta and mrem is the mass of the compact object.

This formalism matches the proper motions of young Galactic pulsars and can nat-

urally account for the differences between core-collapse SNe of single stars, electron-

capture SNe and ultra-stripped SNe occurring in interacting binaries. Finally, we

use our new kick formalism to estimate the local merger rate density of binary NSs

(RBNS), BH–NS binaries (RBHNS) and binary BHs (RBBH), based on the cosmic star

formation rate density and metallicity evolution. In our fiducial model, we find

RBNS ∼ 600 Gpc−3 yr−1, RBHNS ∼ 10 Gpc−3 yr−1 and RBBH ∼ 50 Gpc−3 yr−1, fairly con-

sistent with the numbers inferred from the LIGO-Virgo collaboration.

Based on:

Giacobbo N., Mapelli M., to be submitted to Apj
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5.1 Introduction

State-of-the-art population-synthesis simulations build on the results of obser-

vational constraints and of hydrodynamical models of SN explosion. Most

population-synthesis codes (e.g. BSE, Hurley et al., 2000; Hurley et al., 2002; SEBA,

Portegies Zwart and Verbunt, 1996b; STARTRACK, Belczynski et al., 2008; MOBSE,

Mapelli et al., 2017; Giacobbo et al., 2018; SEVN Spera et al., 2019) implement neu-

tron star (NS) kicks through the Maxwellian distribution derived by Hobbs et al.

(2005). The same distribution is used even to model BH kicks, after correcting for

linear momentum conservation (e.g. Mapelli et al., 2013; Ziosi et al., 2014) or after

including the effect of fallback and failed SN explosions (Fryer et al., 2012). Finally,

if massive BHs are allowed to form by direct collapse, no kick is usually assumed

apart from the Blaauw mechanism (Fryer et al., 2012).

Several recent studies suggest that this approach is not sufficient to capture the

complexity of natal kicks. In particular, Bray and Eldridge (2016) and Bray and El-

dridge (2018) propose a new linear relation between the mass of the ejecta (to ac-

count for the effect of asymmetries), divided by the mass of the compact object

(to conserve linear momentum), and the natal kick. Moreover, natal kicks from

electron-capture SNe (ECSNe), which are less energetic than CCSNe, are expected

to be significantly low (Dessart et al., 2006; Schwab et al., 2015b; Gessner and Janka,

2018; Giacobbo and Mapelli, 2019b). Furthermore, stars in close binary systems

might undergo ultra-stripped SNe, i.e. SN explosions of naked helium stars that

were stripped by their compact companion (Tauris et al., 2013; Tauris et al., 2015).

In this case, the natal kick is thought to be low, because of the low mass of the ejecta

(Tauris et al., 2017; Kruckow et al., 2018). Finally, recent population-synthesis stud-

ies (Mapelli and Giacobbo, 2018; Giacobbo and Mapelli, 2018; Chruslinska et al.,

2018) suggest that very low kicks (≤ 50 km s−1) are crucial to match the high local

merger rate density of BNSs inferred from LIGO-Virgo data (110–3840 Gpc−3 yr−1,

Abbott et al., 2018).

Here, we propose a new simple prescription for natal kicks which is able to account

for both large velocities in young isolated pulsars and small kicks in ultra-stripped

SNe, ECSNe and failed SNe. Building upon Bray and Eldridge (2016), we start from

the idea that the effect of asymmetries scales with the mass of the ejecta (mej). From

linear momentum conservation, we include the dependence of the kick on com-

pact object mass (mrem). As a normalization, we take the Maxwellian distribution

by Hobbs et al. (2005).

Hence, our new prescription can be written in the form vkick ∝ fH05 mej m−1
rem,
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where fH05 is the kick extracted from a Maxwellian with one-dimensional rms

σ = 265 km s−1. For NSs formed from single stars, our formula is basically indis-

tinguishable from Hobbs et al. (2005). For NSs that form in close binaries (going

through ECSNe or ultra-stripped SNe), this formalism automatically produces very

low kicks, consistent with Beniamini and Piran (2016) and Mapelli and Giacobbo

(2018). Finally, low-mass BHs (which form through fallback) tend to have signifi-

cantly larger kicks than massive BHs, formed via direct collapse.

This paper is organized as follows. In Section 5.2, we describe our new prescrip-

tions for natal kicks, as implemented in MOBSE. Then, we show the effect of our

new prescriptions on the distribution of natal kicks (Section 5.3) and we discuss

their impact on the merger rate (Section 5.4). Finally, we summarize our results in

Section 5.5.

5.2 Numerical method

We implement the new prescriptions for natal kicks in our population synthesis

code MOBSE, which is an updated and customized version of BSE (Hurley et al.,

2000; Hurley et al., 2002) . Here we briefly summarize the main differences between

MOBSE and BSE and we refer to previous papers for more details Giacobbo et al.

(2018) and Giacobbo and Mapelli (2018).

5.2.1 MOBSE

Mass loss by stellar winds of massive hot stars is described in MOBSE as Ṁ ∝ Zβ,

where β = 0.85,2.45−2.4Γe , and 0.05 for electron-scattering Eddington ratio Γe ≤
2/3, 2/3 < Γe ≤ 1, and Γe > 1, respectively (see Giacobbo et al., 2018 and references

therein).

Electron-capture SNe (ECSNe) are modeled as described in Giacobbo and Mapelli

(2019b). Core-collapse SNe (CCSNe) are described as in Fryer et al. (2012), includ-

ing both the rapid and the delayed model: the mass of the compact object formed

via a CCSN is determined by the final mass of the carbon-oxygen core and by the

amount of fallback.

In this work, we introduce a small but crucial difference with respect to the previ-

ous versions of MOBSE: the mass of the proto-NS in the rapid model is mproto = 1.1

M¯, while in Fryer et al., 2012 and in the previous versions of MOBSE we adopted

mproto = 1.0 M¯. This change is fundamental to match the mass of observed NSs

(Tauris et al., 2017), because with mproto = 1.0 M¯ we drastically overestimated the
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fraction of NSs with mass < 1.2 M¯ (see e.g. Giacobbo and Mapelli, 2018). Finally,

MOBSE includes a treatment for pair instability and pulsational pair instability

taken from Spera and Mapelli (2017).

Other changes with respect to BSE include the modeling of core radii (according

to Hall and Tout, 2014), the treatment of common envelope (CE, we assume that

all Hertzsprung-gap donors merge during CE) and the maximum stellar mass (we

extend the mass range up to 150 M¯, Mapelli, 2016). Apart from the changes sum-

marized in this section, single and binary evolution in MOBSE is the same as de-

scribed in Hurley et al. (2000) and Hurley et al. (2002).

5.2.2 Natal kick prescriptions

To develop the new kick prescriptions, we start from assuming that the Maxwellian

distribution derived by Hobbs et al. (2005) is a good description of NS kicks from

single star evolution. If new results about proper motions of young single pulsars

become available and suggest a significantly different fitting function, we can easily

update our prescriptions to include the new fitting function.

Furthermore, we include in our prescriptions the mass of the ejecta mej, because it

is reasonable to assume that the magnitude of the kick depends on the total mass

ejected during the SN explosion. Finally, to satisfy linear momentum conservation,

we also include a term depending on the mass of the compact object mrem.

Hence, the new prescription we adopt for SN kicks can be expressed as

vkick = fH05
mej

〈mej〉
〈mNS〉
mrem

, (5.1)

where fH05 is a random number extracted from a Maxwellian distribution with one-

dimensional rms σ= 265 km s−1 (Hobbs et al., 2005), 〈mNS〉 is the average NS mass

(in our calculations 〈mNS〉 = 1.2 M¯) and 〈mej〉 is the average mass of the ejecta

associated with the formation of a NS of mass 〈mNS〉 from single stellar evolution.

To check the impact of compact-object mass on the final kicks, we also run some

tests with a second prescription, independent of mrem:

vkick = fH05
mej

〈mej〉
. (5.2)

These prescriptions have several advantages. Firstly, they are simple to implement

in population-synthesis codes. Secondly, they are quite universal: they can be used

for both NSs and BHs, for both single and binary star evolution, for both ECSNe and

CCSNe (or other flavors of SN, including ultra-stripped SNe).

104



5.2. NUMERICAL METHOD

Table 5.1: Models.

ID Natal kicks
Ej1 σ = 265 km s−1, eq. 5.1
Ej2 σ = 265 km s−1, eq. 5.2
H05 σ = 265 km s−1, eq 5.3
σ15 σ = 15 km s−1, eq 5.3

Column 1: name of the simulation; column 2: Natal-kick prescription.

5.2.3 Simulation setup

We used MOBSE to simulate a large set of both single stars and binary systems. For

single stars, and for the primary star in binary systems, we randomly draw the initial

mass (m1) from a Kroupa initial mass function (Kroupa, 2001) F(m1) ∝ m−2.3
1 with

m1 ∈ [5− 150]M¯. The mass of the stellar companion in binaries is derived from

the mass ratio as F(q) ∝ q−0.1 with q = m2/m1 ∈ [0.1− 1] (following Sana et al.,

2012). Finally, the eccentricity e and the orbital period P are also drawn from the

distributions proposed by Sana et al. (2012): F(e) ∝ e−0.42 (with 0 ≤ e < 1) and

F(P ) ∝ (P )−0.55 (with P = log10(P/day) ∈ [0.15−5.5]).

We assume the rapid model for CCSNe (Fryer et al., 2012). We assume CE efficiency

α = 5 (unless otherwise stated) and we derive λ from the formulas in Claeys et al.

(2014). In appendix 7, we discuss the impact of different choices of α on our main

results.

We have run the following four sets of simulations (see Table 5.1).

Ej1: natal kicks are implemented as in equation 5.1;

Ej2: natal kicks are drawn from equation 5.2;

H05: natal kicks are generated from a Maxwellian with σ = 265 km s−1 for both

CCSNe and ECSNe (see model EC265α5 in Giacobbo and Mapelli, 2019b),

plus a correction for the amount of fallback following Fryer et al. (2012) (see

below equation 5.3);

σ15: natal kicks are drawn from a single Maxwellian with rms= 15 km s−1 for both

ECSNe and CCSNe (see model CC15α5 in Giacobbo and Mapelli, 2018), plus

a correction for the amount of fallback as in Fryer et al. (2012).
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Table 5.2: Median values of natal kicks.

Model NS/BH Progenitor star ṽkick (km s−1)
Ej1 NS single 322
Ej1 NS binary 188
Ej2 NS single 351
Ej2 NS binary 218
H05 NS single 392
H05 NS binary 375
σ15 NS single 22
σ15 NS binary 21

Ej1 BH single 30
Ej1 BH binary 30
Ej2 BH single 164
Ej2 BH binary 165
H05 BH single 127
H05 BH binary 129
σ15 BH single 7
σ15 BH binary 7

Column 1: model; column 2: compact-object type (NS or BH); column 3: whether the pro-

genitor star was born as a single or a binary star; column 4: median value of natal kicks.

The correction for the amount of fallback in models H05 and σ15 is implemented

as follows. We draw the natal kick as

vkick = (1− ffb) fH05, (5.3)

where fH05 is a random number drawn from the Maxwellian distribution, while ffb

is the fallback fraction, defined as ffb = mfb/(mfin −mproto), where mfin is the mass

of the star at the onset of core collapse and mfb is the mass that falls back and is

accreted by the proto-NS (Fryer et al., 2012). The main difference between our new

prescriptions and equation 5.3 is that the latter does not depend significantly on

the mass of the ejecta (in equation 5.3 vkick ∝ mej/mfin, i.e. mfin compensates the

impact of mej).

For each set of simulations we consider 12 different metallicities: Z = 0.0002,

0.0004, 0.0008, 0.0012, 0.0016, 0.002, 0.004, 0.006, 0.008, 0.012, 0.016 and 0.02. For

each metallicity, we simulated 107 binary systems and 5×105 single stars. Thus, for

each model we simulate 1.2×108 massive binaries and 6×106 single stars.
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5.3 Results

5.3.1 Natal kicks in single stars

The top panels of Figure 5.1 show the natal kick distribution of NSs born from single

stars with solar metallicity (Z = 0.02). NS kicks from simulations Ej1 and Ej2 are

extremely similar to each other. They both show two different peaks, one centered

at ∼ 400− 450 km s−1 and produced by CCSNe, the other centered at ∼ 6− 8 km

s−1 and produced by ECSNe. This happens because mej of ECSNe is significantly

smaller than that of CCSNe, leading to smaller kicks. Thus, our new prescriptions

are able to distinguish between CCSN kicks and ECSN kicks, without the need for a

separate treatment.

The distribution of NS kicks from CCSNe in simulation H05 (drawn from a single

Maxwellian with σ = 265 km s−1) is remarkably similar to the peak produced by

CCSNe in simulations Ej1 and Ej2. This confirms that simulations Ej1 and Ej2 are a

good match to the fit by Hobbs et al. (2005) for large NS kicks. On the other hand,

runs Ej1 and Ej2 can also naturally reproduce the low kicks of ECSNe. Finally, simu-

lation σ15 produces single NS kicks that are significantly lower than the other runs,

unable to explain a large fraction of the sample by Hobbs et al. (2005).

The top panels of Figure 5.2 show the natal kick distribution of BHs born from sin-

gle stars with solar metallicity (Z = 0.02). All the four models predict that ∼ 60 %

of BHs receive approximately no kick, because their progenitors collapse to a BH

directly, without SN explosions. The remaining BHs receive a kick. Models H05 and

Ej2 predict the largest maximum kicks, up to ∼ 450 and ∼ 550 km s−1, respectively.

In fact, the kick prescriptions in H05 and Ej2 do not depend on compact-object

mass. Model σ15 predicts the lowest BH kicks (up to ∼ 30 km s−1), while model Ej1

(vkick ≤ 100 km s−1) is intermediate between the considered models, thanks to the

dependence on mrem.

5.3.2 Natal kicks in binary stars

The bottom panels of Figure 5.1 (Figure 5.2) show the natal kicks of NSs (BHs)

formed from the evolution of binary stars with Z = 0.02. Binary evolution signif-

icantly affects the distribution of NS natal kicks in all models and especially in run

Ej1 and Ej2. The Kolmogorov-Smirnov (KS) test confirms that the probability that

natal kicks of NSs formed from single stars and from binary evolution are drawn

from the same distribution is nearly zero (< 10−20). Table 5.2 shows that the me-

dian value of NS kicks is significantly lower for binary stars than for single stars in
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Figure 5.1: Left-hand panels: probability distribution function (PDF) of natal kicks for all NSs
formed from single stars (top) and for those formed from binary systems (bottom) at Z = 0.02.
Orange line: model Ej1; green: Ej2; red: H05; blue: σ15. The filled histograms represent the
subset of NSs formed via ECSNe (top) and the subset of NSs that are still gravitationally bound
to their companion after the SN (bottom). Right-hand panels: cumulative distribution function
(CDF) of natal kicks for all NSs.
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Figure 5.2: Same as Figure 5.1, but for BHs formed from single star evolution (top) and from
binary star evolution (bottom) at Z = 0.02. The break on the x-axis allows to show BHs with
zero natal kick (formed from direct collapse).
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models Ej1 and Ej2. In general, binary evolution tends to increase the number of

NSs with small kicks, because dissipative mass transfer tends to reduce mej. On the

other hand, binary evolution also triggers the formation of few NSs with even larger

kicks than in the case of single star evolution. Binary evolution has a smaller impact

on NS kicks in models H05 andσ15 by construction (see Table 5.2), because they do

not depend significantly on mej. The only effect of binary evolution on models H05

and σ15 is that mass transfer can change mrem and the amount of fallback, hence

affecting natal kicks. This affects mostly BHs, while it has negligible impact on NSs.

The distribution of NS kicks in simulations Ej1 and Ej2 are very similar to each

other, even when we account for binary evolution. As expected, NSs that remain

members of a binary system after the kick (filled histograms) have significantly

smaller kicks than single NSs in runs Ej1, Ej2 and H05. In model Ej1 (Ej2), the maxi-

mum kick undergone by NSs that remain in binaries is vkick ∼ 400 km s−1(∼ 600 km

s−1), while the maximum possible NS kick is vkick ∼ 4500 km s−1(∼ 4500 km s−1).

Finally, binary evolution has a different effect on BH kicks. In the case of BHs, dis-

sipative mass transfer affects mrem, producing smaller BHs. This explains why the

percentage of BHs that undergo no kick decreases (of about 5 per cent) in all mod-

els. Table 5.2 shows that the median value of BH kicks is not affected by the binarity

of progenitors.

5.3.3 Merger efficiency

For each set of binary simulations we compute the merger efficiency, that is the

number of compact-object mergers occurring in a given stellar population, inte-

grated over the Hubble time, divided by the total initial stellar mass. As already

described in Mapelli et al. (2017), the merger efficiency η is given by

η= fbin fIMF
Nmerg

Mtot,sim
, (5.4)

where Nmerg is the number of mergers of binary BHs (BBHs), or BH – NS binaries

(BHNSs), or binary NSs (BNSs), and Mtot,sim is the initial total mass of the simulated

binary population. Since we simulated only massive binaries, we introduce two

corrections factors: fbin = 0.5 (to correct for the fact that ∼ 50 per cent of stars are

single, Sana et al., 2013) and fIMF = 0.285 (to account for the total mass of stars

below the minimum mass we simulate).

Figure 5.3 shows η as a function of metallicity for all runs (see Table 5.1). The merger

efficiency of both BBHs and BHNSs strongly depends on metallicity: BH mergers

are at least two orders of magnitude more common in a metal-poor population
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Figure 5.3: Merger efficiency (η from eq. 5.4) as a function of the progenitor’s metallicity for all
sets of simulations (see Table 5.1). Top-left: BNSs; bottom-left: BHNSs; bottom-right: BBHs.

than in a metal-rich one. This result is well known and is consistent with previous

works (Dominik et al., 2013b; Klencki et al., 2018; Giacobbo et al., 2018; Giacobbo

and Mapelli, 2018). The merger efficiency of BNSs depends only mildly on metallic-

ity. The decrease of η at intermediate metallicity (0.0004 . Z . 0.04) in the models

with relatively low kicks (Ej1, Ej2 and σ15) is caused by premature mergers of the

progenitor stars, because stellar radii during the Hertzsprung gap and the red giant

phase are larger at intermediate metallicity (see Giacobbo and Mapelli, 2018; Spera

et al., 2019). In model H05, η decreases with increasing metallicity, because the

ability of CE to shrink the binary becomes decisive when SN kicks are high: at high

metallicity stars lose their envelope quite effectively, reducing the impact of CE.

More importantly, Figure 5.3 shows that our new kick prescriptions (models Ej1,

Ej2) produce approximately the same BNS merger efficiency as model σ15, which

assumes unrealistically small kicks. For BHNSs, the new kick prescriptions give a
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Figure 5.4: Local merger rate density R from eq. 5.5. Top, middle and bottom panel: local
merger rate density of BNSs (RBNS), BHNSs (RBHNS) and BBHs (RBBH), respectively. Triangles
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regions represent the 90 per cent confident interval of the merger rate density inferred by Ab-
bott et al. (2019) for BBHs and Abbott et al. (2018) for BNSs and BHNSs.
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merger rate efficiency more similar to H05 than to σ15. Finally, the merger effi-

ciency of BBHs is not significantly affected by the new kick prescriptions, because

most merging BBHs receive no kick (or very small kick) in all considered models.

5.3.4 Local merger rate

Following Giacobbo and Mapelli (2018) and Spera et al. (2019), we compute the

local merger rate density R as

R = 1

H0 tlb(z = 0.1)

Z zmin

zmax

floc(z, Z ) SFR(z)

(1+ z)E (z)
d z, (5.5)

where SFR(z) is the star formation rate density (for which we adopt the fitting for-

mula proposed by Madau and Fragos, 2017), E (z) = £ΩM (1+ z)3 +ΩΛ
¤1/2

, tlb(z =
0.1) is the look-back time at redshiftVink2001 z = 0.1, and floc(z, Z ) is the fraction

of merging systems that formed at a given redshift z and merge in the local Uni-

verse (z ≤ 0.1) per unit solar mass. We assume zmax = 15 and zmin = 0. Finally,

H0,ΩM andΩΛ are the cosmological parameters for which we take the values from

Planck Collaboration et al. (2016).

The term floc(z, Z ) clearly depends not only on redshift but also on metallic-

ity (which is important especially for BBHs and BHNSs, see Fig. 5.3). We derive

floc(z, Z ) directly from the merger efficiency η (equation 5.4), by assuming that all

stars formed at a given redshift have the same metallicity. We describe the evo-

lution of metallicity across cosmic time with two different models. In model D18,

the metallicity evolves with redshift as log Z (z)/Z¯ =−0.24 z −0.18. This formula is

the fit to the metallicity evolution of a large sample of damped Lyman-α absorbers

(with redshift between 0 and 5) presented in De Cia et al. (2018) (see their figure 4

and Table 1). With respect to previous work (e.g. Rafelski et al., 2012, whose re-

sults we used in Giacobbo and Mapelli, 2018), De Cia et al. (2018) consider a larger

sample of damped Lyman-α absorbers and make a new correction for dust. This

allows them to recover a present-day average metallicity Z (z = 0) ∼ 0.66 Z¯ (where

we assume Z¯ = 0.02), much closer to the solar metallicity than previous work.

In the second model we adopt (D18Z¯), the metallicity evolves with redshift as

log Z (z)/Z¯ = −0.24 z. This model is obtained by re-scaling model D18 to obtain

Z (z = 0) = Z¯. The reason for this re-scaling is that metallicity measurements from

galaxies in the Sloan Digital Sky Survey indicate that the average local metallicity is

Z (z = 0) ∼ Z¯ (Gallazzi et al., 2008).
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Figure 5.4 shows the local merger rate RBNS, RBHNS and RBBH for BNSs, BHNSs and

BBHs, respectively, considering both models of metallicity evolution, namely D18

and D18Z¯ .

The new kick prescriptions Ej1 and Ej2 produce a BNS merger rate RBNS ∼
600 Gpc−3 yr−1, consistent with the local merger rate inferred from GW170817

(RGW170817 = 110− 3840 Gpc−3 yr−1, Abbott et al., 2017e; Abbott et al., 2018). The

rate from Ej1 and Ej2 is very similar to the rate we obtain with the low-kick model

σ15 and about one order of magnitude higher than the rate we obtain with model

H05.

All our models are consistent with the upper limit on BHNSs by Abbott et al. (2018).

Models Ej1 and Ej2 produce rates that are significantly smaller thanσ15 and slightly

higher than H05. Finally, the merger rate density of BBHs is extremely sensitive to

metallicity. Model D18 results in a factor of ∼ 2 higher BBH merger rate than model

D18Z¯ , but still within the 90 per cent credible interval inferred by the LIGO-Virgo

collaboration (LVC, RBBH ∼ 24−112 Gpc−3 yr−1, Abbott et al., 2019). The four kick

prescriptions produce approximately the same BBH merger rate density, because

all of them suppress natal kicks in massive BHs by approximately the same amount.

5.4 Discussion

Recent studies (Giacobbo and Mapelli, 2018; Giacobbo and Mapelli, 2019b; Mapelli

and Giacobbo, 2018; Chruslinska et al., 2018; Belczynski et al., 2018; Kruckow et al.,

2018; Chruslinska et al., 2019) have shown that it is quite difficult to match the BNS

merger rate inferred from GW170817 (RGW170817) with state-of-the-art population-

synthesis models. Models describing natal kicks as in Hobbs et al. (2005) produce

a merger rate density lower than the range inferred from GW170817. In order to

match RGW170817, Giacobbo and Mapelli (2018) had to introduce model σ15 with

very low natal kicks. On the other hand, model σ15 does not match the observed

proper motions of young single pulsars (Hobbs et al., 2005; Verbunt et al., 2017).

Our new kick prescriptions (models Ej1 and Ej2) solve this tension with data, be-

cause they match RGW170817 and at the same time they reproduce the natal kicks of

young pulsars. Moreover, Ej1 and Ej2 naturally account for the difference between

kicks produced by CCSNe of single stars, ECSNe and ultra-stripped SNe in binary

stars (Tauris et al., 2017).

The only parameter we need to set to a rather unusual value in order to match

RGW170817 is the α parameter of CE. Our models Ej1 and Ej2 require α≥ 3 to match

RGW170817 (see Appendix D) and we assume α = 5 as a fiducial value. According to
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the α formalism (Webbink, 1984; Webbink, 1985; de Kool, 1990b), values of α > 1

require that additional sources of energy assist the orbital energy of the system in

ejecting the envelope (see Ivanova et al., 2013 for a review). Recently, Fragos et al.

(2019) have presented one-dimensional hydrodynamic simulations of a neutron-

star binary evolving through CE. Their results support very large values of α ≈ 5,

consistent with our work. Once more, this highlights the need for a better physi-

cal model of the CE process. Another possibility is that GW170817 was a very lucky

event, leading to an overestimate of the local merger rate. A more accurate estimate

of the observed merger rate will be available in the next few months, because the

third observing run of LVC is currently ongoing.

The key ingredient in our prescriptions is the dependence of vkick on the mass of

the ejecta (vkick ∝ mej). Models adopting the fallback formalism (Fryer et al., 2012)

predict significantly larger kicks for NSs even if they come from ultra-stripped SNe,

because in this formalism vkick ∝ mej/mfin (i.e. the contribution of mej to the kick

is compensated by the stellar mass mfin at the onset of the SN). The only models

that predict a similar behavior to our prescriptions are those presented in Bray and

Eldridge (2016) and Bray and Eldridge (2018). Bray and Eldridge (2018) derive a

BNS merger rate density RBNS ∼ 3860 Gpc−3 yr−1. The difference with respect to

our results might arise from the calculation of the local merger rate (Bray and El-

dridge, 2018 consider only the local SFR, without taking into account the evolution

of metallicity across cosmic time) and from different population-synthesis codes.

5.5 Summary

We have proposed a new simple formalism to implement NS and BH kicks

in population-synthesis simulations. We describe kick velocities as vkick ∝
fH05 mej m−1

rem, where fH05 is a random number drawn from a Maxwellian distri-

bution with one-dimensional rms σ = 265 km s−1 (Hobbs et al., 2005), mej is the

mass of the ejecta and mrem the mass of the compact object. We have included this

formalism in our population-synthesis code MOBSE.

This formalism can naturally account for the differences between core-collapse

SNe (CCSNe) of single stars and electron-capture SNe (ECSNe) or ultra-stripped

SNe occurring in binary systems. In fact, CCSNe of single stars have larger values

of mej than ECSNe, ultra-stripped SNe and other SNe occurring in interacting bi-

naries. Hence, the kicks of NSs in interacting binary systems are significantly lower

than the kicks of single NSs (Fig. 5.1 and Table 5.2).

114



5.5. SUMMARY

The kicks of BHs are generally lower than the kicks of NSs (Fig. 5.2 and Table 5.2),

because mrem is significantly larger and mej is generally lower than for NSs (in the

case of direct collapse mej = 0, thus the kick is zero).

We estimate the local merger rate density of BNSs (RBNS), BHNSs (RBHNS) and BBHs

(RBBH) with the new kick formalism. The merger rate density of BBHs and BHNSs

is extremely sensitive to metallicity evolution. With the new kick prescriptions, we

find RBBH ∼ 40−50 Gpc−3 yr−1 and RBHNS ∼ 5−10 Gpc−3 yr−1, when adopting model

D18Z¯ for the cosmic evolution of metallicity. These results are consistent with es-

timates from the LVC (Abbott et al., 2018; Abbott et al., 2019).

The BNS merger rate density depends very mildly on metallicity evolution. With

the new kick formalism, we estimate RBNS ∼ 600−700 Gpc−3 yr−1, consistent with

the rate inferred from GW170817 (Abbott et al., 2018). Interestingly, the BNS merger

rate density we find with the new kick prescriptions is extremely close to the one we

derived with our previous model σ15 (Giacobbo and Mapelli, 2018), that assumes

extremely low NS kicks (drawn from a Maxwellian with one-dimensional rmsσ= 15

km s−1). Model σ15 matches RGW170817 but is in tension with the proper motions of

several young Galactic pulsars, while the new kick formalism overcomes this issue.

In conclusion, our new kick formalism is consistent with both observations of

proper motions from young Galactic pulsars (Hobbs et al., 2005) and with the

merger rate density of BBHs, BHNSs and BNSs inferred from the LVC (Abbott et

al., 2018; Abbott et al., 2019). These results, together with its intrinsic simplicity,

make our new kick formalism an interesting prescription for population synthesis

simulations.
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CONCLUSIONS

In this thesis, I have adopted numerical techniques to investigate the formation

and evolution of compact-object binaries (COBs). Specifically, I have explored the

effects of natal kicks and common envelope (CE) on the evolution of massive stellar

binaries, as well as the impact of the progenitor’s metallicity on the properties of

compact objects.

To study the formation and evolution of COBs, I used population-synthesis simu-

lations. In particular, I have developed MOBSE, an upgraded and customized ver-

sion of BSE (one of the most widely used binary population-synthesis codes Hurley

et al., 2002). With respect to standard BSE, I have included in MOBSE an up-to-

date formalism for the evolution of massive stars, including i) a description of mass

loss by stellar winds depending on both metallicity and the electron-scattering Ed-

dington factor; ii) several recent prescriptions for core-collapse, electron-capture,

pulsational pair-instability and pair-instability supernovae (SNe), and iii) a new

treatment for natal kicks.

First of all, my study confirms that the mass of BHs in BHBs strongly depends on

the progenitor’s metallicity: metal-poor stars produce heavier BHs (Giacobbo et al.,

2018; Giacobbo and Mapelli, 2018). Moreover, even the number of BHBs depends

on the progenitor’s metallicity. I found that metal-poor binaries tend to produce

more BHBs than metal-rich ones. In my simulations, the most massive BHBs have

a total mass of about 130M¯ but they do not merge within a Hubble time because

their semi-major axes are too large (Giacobbo et al., 2018; Giacobbo and Mapelli,

2018). In addition, the maximum mass of BHs in merging BHBs is∼ 45M¯, in agree-

ment with the possible upper mass cut-off proposed by Fishbach and Holz (2017)

and Wysocki et al. (2018) and consistent with O1 and O2 LIGO-Virgo data (Abbott

et al., 2019. On the other hand, this upper limit holds only for isolated binary evolu-

tion. In the case of dynamical evolution, some of the most massive BHs (with mass

45−65M¯) might have the chance to merge within a Hubble time as a consequence

of dynamical interactions (e.g. Mapelli, 2016; Di Carlo et al., 2019).

With respect to BHBs, DNSs are less sensitive to metallicity, while SN mechanisms

have a stronger impact on their evolution. In particular, I studied the effect of the

electron-capture SNe (ECSNe) on the formation of (merging) DNSs (Giacobbo and

Mapelli, 2019b). ECSNe are expected to be less energetic and to produce slow NSs.

I find that slow (but not zero) natal kicks favour the formation of merging DNSs,
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especially if the slow NS is the first one to be produced (see Chruslinska et al., 2017;

Kruckow et al., 2018 and Tauris et al., 2017 for different arguments). Indeed, when

the first SN happens, it is likely that no other processes (e.g. a CE phase) able to

shrink the binary have occurred yet. Thus, the system can be easily unbound. In

contrast, when the second SN occurs, the system has already passed through a CE,

that reduced its semi-larger axis. Thus, a large kick by the second SN facilitates the

formation of highly eccentric orbits (if it does not unbind the binary), which are

more likely to merge via GW emission.

My simulations also show that the CE phase is crucial for the formation of merging

COBs (Giacobbo and Mapelli, 2018). CE can help shrinking the semi-major axis of

a binary system enough to allow it to merge in less than a Hubble time.

In order to quantify how many mergers we could expect in a coeval stellar popu-

lation within a Hubble time, I have defined the merger efficiency (η) as the total

number of mergers integrated over a Hubble time divided by the total mass of that

population. I found that natal kicks, CE efficiency (α) and metallicity (Z ) strongly

affect η, but in different way according with the COB type (i.e. BHBs, DNSs, BHNSs).

In particular, η for BHBs is significantly higher at low Z (up to four orders of mag-

nitude) than at high Z . I found a similar dependence for BHNSs. In contrast, η for

DNSs depends mildly on the metallicity. On the other hand, I found that merging

DNSs form more efficiently if we assume low natal kicks. Moreover, I have shown

that the easier CE ejection is (high α), the higher η for DNSs. For example, η is

boosted by an order of magnitude assuming α= 5 instead of α= 1. For both BHBs

and BHNSs the dependence on α is complicated by the fact that the evolution of

the radii of BH progenitors is more sensitive to metallicity.

Finally, I have estimated the local merger rate density (R) (see Giacobbo and

Mapelli, 2018; Spera et al., 2019). To do that, I have coupled η from my simulations

with some prescriptions for the cosmological metallicity evolution and the star for-

mation rate (SFR) density evolution. My estimates of the BHNS local merger-rate

density (RBHNS) are always in agreement with that inferred by the LIGO-Virgo col-

laboration (LVC,RBHNS < 610 Gpc−3 yr−1, Abbott et al. 2018). On the other hand, my

predictions for the local merger rate density of BHBs (RBHB) match that of the LVC

(∼ 24− 112 Gpc−3 yr−1 Abbott et al., 2019) only for specific combinations of SFR,

cosmological metallicity evolution and α. In particular, metallicity evolution mod-

els where the average metallicity of the Universe reaches higher values (& 0.02) at

redshift ∼ 0 produce the best agreement with the BHB merger rate density inferred

by the LVC. The estimated merger rate density of DNSs (RDNS) is consistent with the

value inferred from GW data only if I consider α& 2 and relatively low natal kicks.
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In the last chapter of my Thesis, I have proposed a new prescription for the treat-

ment of natal kicks in population-synthesis simulations, based on the idea that the

mass of the ejecta modulates the strength of the natal kicks (see Bray and Eldridge,

2016; Tauris et al., 2017). Adopting this new approach, I have both reproduced the

natal kick distribution of observed young Galactic pulsars and I have obtained a

RDNS in agreement with the local merger rate inferred by the LVC.

During my PhD I mainly compared my simulations with the LIGO-Virgo observa-

tions but the merger between two compact objects represents only the final stage

of the evolution of a massive binary. Indeed, during its life a binary system passes

through many different phases. In follow-up studies, I will apply my population-

synthesis code MOBSE to study also other observed binaries along the formation

path of massive binaries. In particular, I will compare my simulations with the

properties of high-mass X-ray binaries and Galactic DNS systems. This will help

me to improve and calibrate my models and to better understand the formation

channel of COBs.
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RIASSUNTO

La prima rilevazione diretta delle onde gravitazionali (GW), GW150914, ha aperto

l’era dell’astronomia GW. Oltre a GW150914, durante le prime due sessioni osser-

vative (O1 e O2) sono state segnalate altre dieci detezioni. Nove di esse sono inter-

pretate come la fusione di due buchi neri (BH), mentre la rimanente, GW170817,

è associata alla fusione di due stelle di neutroni (NS). Inoltre, l’evento GW170817

è stato accompagnato dall’emissione di radiazioni elettromagnetiche osservate su

una vasta gamma di lunghezze d’onda. Ora che sia le binarie di BH (BHBs) che le

doppie stelle di neutroni (DNS) sono stati rilevati dalla LIGO-Virgo Collaboration

(LVC), la coalescenza di un NS con un BH è l’unico evento di fusione mancante che

ci aspettiamo di osservare nella gamma di frequenza dei rivelatori GW a terra. Tut-

tavia, l’analisi preliminare dell’attuale ciclo di osservazione (O3) sembra suggerire

che alcuni segnali potrebbero essere originati dalla fusione di sistemi BHNS.

Pertanto, il rilevamento GW ha confermato che i BHB possono fondersi entro un

tempo di Hubble. Inoltre, le osservazioni di GW hanno dimostrato l’esistenza di

BH massicci, con massa superiore a & 30M¯, e la relazione tra la fusione di due NS

e i lampi gamma brevi (sGRB).

Nonostante l’importanza degli oggetti compatti di origine stellare per una gran va-

rietà di processi astrofisici (es. binarie a raggi X, emissione di GW, GRB, ecc), il

loro spettro di massa è ancora oggetto di dibattito. I due processi più importanti

che influenzano la formazione di residui stellari compatti sono i venti stellari e le

esplosioni di supernova (SN). Stelle massicce dove i venti stellari sono efficaci pos-

sono perdere la maggior parte della loro massa durante la loro vita e l’esplosione di

SN alla fine della loro vita può rimuovere la maggior parte della massa rimanente.

Questo dovrebbe produrre BH leggeri (. 20M¯). D’altra parte, i venti stellari dipen-

dono dalla metallicità stellare. Ci aspettiamo, infatti, che i venti stellari siano più ef-

ficienti nelle stelle ricche di metallo che in quelle povere di metallo. In particolare,

i venti stellari nelle stelle povere di metallo (. 0.5Z¯) possono essere così ineffi-

caci che le stelle trattengono abbastanza materiale da collassare direttamente nei

BH evitando l’esplosione di SN. In questo scenario, i BH risultanti sono sostanzial-

mente più pesanti. Secondo queste previsioni, i BH massicci (& 30 M¯) potrebbero

essere spiegati come residui di progenitori poveri di metallo (. 0.5ZZ¯).

Anche la formazione di binarie di oggetti compatti (COB) è oggetto di un intenso

dibattito. Una COB può fondersi in un tempo di Hubble solo se la sua separazione
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orbitale iniziale è dell’ordine di decine di raggi solari. Quali sono i canali evolutivi

che possono portare alla formazione di COB così stretti?

Sono stati proposti diversi scenari per la formazione di COBs e uno dei più impor-

tanti è rappresentato dall’evoluzione di sistemi binari massicci e isolati. Infatti, la

stragrande maggioranza delle stelle, e soprattutto le stelle massicce, nascono in sis-

temi binari. Le stelle in binarie strette subiscono diversi processi complessi, che

possono influenzare fortemente la massa degli oggetti compatti finali e la loro sep-

arazione orbitale (es. trasferimento di massa e inviluppo comune), comunque al-

cuni di questi processi sono ancora poco compresi.

Lo scopo della mia tesi è quello di studiare la formazione di COB attraverso

l’evoluzione di binarie isolate di stelle massicce. Il mio obiettivo è quello di con-

tribuire a capire l’origine degli eventi GW osservati dall’LVC e di fare previsioni per

future rilevazioni. Per studiare le COB, ho utilizzato simulazioni di sintesi di popo-

lazione. Quando ho iniziato questo progetto, la maggior parte dei codici di sintesi

di popolazione disponibili non includeva i più recenti modelli di venti stellare e

le prescrizioni delle SN. Durante il mio dottorato, ho sviluppato MOBSE (che sta

per ’Massive Objects in Binary Stellar Evolution’), una versione personalizzata e ag-

giornata del popolare codice BSE (Hurley et al., 2002). Per quanto riguarda la ver-

sione pubblica di BSE, MOBSE contiene equazioni aggiornate per i venti stellari

dipendenti dalla metallicità, compresa la dipendenza dei venti stellari dal fattore

di Eddington. Inoltre, ho implementato in MOBSE diverse recenti prescrizioni per

SNe, un trattamento per le SNe per instabilità di coppia e nuove ricette per calco-

lare i kick iniziali. Questi ingredienti sono essenziali per catturare l’evoluzione delle

stelle massicce. In particolare, con MOBSE è possibile formare BH con massa fino

a ∼ 65 M¯ a seconda della metallicità, mentre con le vecchie prescrizioni non siamo

stati in grado di produrre i BH più massicci osservati dall’LVC.

Ho usato MOBSE per simulare l’evoluzione di grandi griglie di stelle binarie mas-

sicce (& 108 sistemi per griglia). Poi, ho analizzato tali simulazioni per studiare

come la metallicità dei progenitori (Z ), l’inviluppo comune (CE) e i kick iniziali in-

fluenzano le proprietà delle popolazioni di COB. Ho trovato che i BHB più mass-

icci (& 100M¯) possono formarsi solo a bassa metallicità (Z . 0.1Z¯). Tali sistemi

con massa totale & 100M¯ non si fondono in un Hubble a causa dei loro grandi

semi-assi maggiori. Poiché il tempo scala di fusione per emissione di GW dipende

fortemente dalla massa degli oggetti compatti, la metallicità incide anche sul tasso

di fusione sia dei BHB che dei BHNS. Ho definito l’efficienza di fusione (η) come

il numero totale di fusioni integrate in un periodo di Hubble in una popolazione

coeva diviso per la massa totale di quella popolazione (η∝ Nmergers

Mtot
). Ho trovato che
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η è di circa quattro ordini di grandezza superiore a basse metallicità (η∼ 10−4 M−1¯
a Z ' 0.01Z¯) che ad alte metallicità (η è ∼ 10−8 M−1¯ a Z 'Z¯).

Dalle mie simulazioni, è anche evidente che l’efficienza del CE (misurata dal

parametroα) gioca un ruolo importante nella formazione di COB stretti. Per i DNS,

ho trovato che più l’inviluppo è facile da espellere (alto α), più alto è η. In partico-

lare, η viene incrementato di circa un ordine di grandezza se assumo α = 5 invece

di α ≤ 1. Sia per i BHB che per i BHNS la dipendenza da α è più complicata. Ciò

deriva dal fatto che l’evoluzione dei raggi dei progenitori dei BH è più sensibile alla

metallicità e i raggi stellari sono cruciali per determinare il risultato della fase CE.

Una delle quantità importanti che l’LVC può dedurre dai rilevamenti di GW è la

densità locale del tasso di fusione (Rloc). Ho adottato un approccio basato sui

dati per stimare Rloc a partire dalle mie simulazioni. In pratica, ho combinato η

(dalle mie simulazioni) con alcune prescrizioni per l’evoluzione della metallicità

cosmologica e l’evoluzione della densità di formazione stellare (SFR). Con questo

formalismo, ho stimato un Rloc per le BHNS fino a poche decine di fusioni Gpc−3

yr−1 per tutte le diverse combinazioni di α, kick iniziali, evoluzione cosmologica

della metallicità e SFR che ho considerato, coerente con il limite superiore dedotto

dall’LVC (Rloc,BHNS . 610 Gpc−3yr−1).

D’altra parte, la mia previsione per Rloc dei BHB corrisponde a quella dedotta

dalla LVC (Rloc,BHB ' 24−112 Gpc−3yr−1) solo per specifiche combinazioni di SFR,

evoluzione cosmologica della metallicità e α. In particolare, la densità del tasso di

fusione dei BHB è molto sensibile all’evoluzione della metallicità. Infine, sono stato

in grado di eguagliare Rloc della LVC per i DNS (Rloc,DNS ' 110−3840 Gpc−3yr−1) solo

considerando alti α e relativamente bassi kick iniziali.

In particolare, ho proposto una nuova prescrizione per il trattamento dei kick in-

iziali. L’idea di base è che la forza del kick iniziali è proporzionale alla massa

espulsa durante l’esplosione di SN come suggerito da recenti studi idrodinamici.

Rispetto alle altre prescrizioni attualmente adottate dai codici di sintesi di popo-

lazioni, questo nuovo approccio permette di ottenere sia la distribuzione dei kick

iniziali delle pulsar galattiche giovani sia Rloc desumibile dalla LVC. Tuttavia, per

eguagliare Rloc della LVC ho dovuto adottare un’alta efficienza CE (α& 2).
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BH : black hole

BHB : black hole binary

BHNS : black hole-neutron star

CCSN : core-collapse supernova

CE : common envelope

CMB : cosmic microwave background

COB : compact-object binary

DNS : double neutron star

ECSN : electron-capture supernova

GR : general relativity

GRB : gamma-ray burst

GW : gravitational wave

IMF : initial mass function

LBV : luminous blue variable

MS : main sequance

NS : neutron star

PISN : pair-instability supernova

PPISN : pulsational pair-instability supernova

PTA : pulsar timing array

SFR : star formation rate

SMBH : supermassive black hole

SN : supernova

WR : Wolf-Rayet

ZAMS : zero age main sequence
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APPENDIX A: CORE-COLLAPSE SNE

In the following we summarize the main features of the rapid and delayed core-

collapse SN mechanisms proposed by Fryer et al. (2012).

In both cases, compact objects form from a proto-compact object Mpro that ac-

cretes mass from the fallback material Mfb which can follow the SN explosion,

Mfb = ffb(Mfin −Mpro) , (7.1)

where Mfin is the final mass of the star and ffb is the fallback factor. Starting from the

baryonic mass of the compact object, Mrem,bar = Mpro + Mfb, and considering the

mass loss due to neutrinos it possible to compute the gravitational mass Mrem,grav.

We use the formula suggested by Timmes et al. (1996) for the NSs

Mrem,grav =
p

1+0.3Mrem,bar −1

0.15
, (7.2)

and the same approach described in Fryer et al. (2012) for BHs,

Mrem,grav = 0.9Mrem,bar . (7.3)

Rapid

For the rapid mechanisms, it is assumed a fixed mass of the proto-object, Mpro = 1.0

M¯. The value of the fallback factor depends on the mass of the CO core MCO and

is given by

ffb =



0.2
Mfin−Mpro

if MCO/M¯ < 2.5

0.286MCO−0.514M¯
Mfin−Mpro

if 2.5 ≤ MCO/M¯ < 6.0

1.0 if 6.0 ≤ MCO/M¯ < 7.0

αRMCO +βR if 7.0 ≤ MCO/M¯ < 11.0

1.0 if 11.0 ≤ MCO/M¯,

(7.4)

where

αR ≡ 0.25− 1.275

Mfin −Mpro
βR ≡ 1−11αR . (7.5)

The direct collapse of a star into a BH occurs when ffb = 1.0 and for the rapid model

it is verified in two intervals of core masses, 6.0M¯ ≤ MCO < 7.0M¯ and 11.0M¯ ≤
MCO

147



CHAPTER 7. APPENDIX A: CORE-COLLAPSE SNE

Delayed

For the delayed model, even the mass of the proto-compact object depends on MCO

and it is given by,

Mpro =



1.2M¯ if Mcore/M¯ < 2.5

1.3M¯ if 3.5 ≤ MCO/M¯ < 6.0

1.4M¯ if 6.0 ≤ MCO/M¯ < 11.0

1.6M¯ if 11.0 ≤ MCO/M¯.

(7.6)

The fallback factor is computed by using the following expressions

ffb =



0.2
Mfin−Mpro

if MCO/M¯ < 2.5

0.5MCO−1.05M¯
Mfin−Mpro

if 2.5 ≤ MCO/M¯ < 3.5

αDMCO +βD if 3.5 ≤ MCO/M¯ < 11.0

1.0 if 11.0 ≤ MCO/M¯,

(7.7)

where

αD ≡ 0.133− 0.093

Mfin −Mpro
βD ≡ 1−11αD . (7.8)

Thus, for the delayed model the direct collapse of a star into a BH occurs only if

11.0M¯ ≤ MCO.
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APPENDIX B: PPISN & PISN
In the following we detail the formulas implemented in MOBSE to describe PPISNe

and PISNe, following the the prescriptions described in Spera et al. (2016) and Spera

and Mapelli (2017).

To compute the mass of the compact remnant we adopted the formula

Mrem = fpMrem,nop, (7.1)

where Mrem,nop is the mass of the compact remnant we would obtain without

PPISNe and PISNe and fp is a factor depending on the final Helium core mass of

the star. In particular, fp = 1 means that remnants will form via direct collapse and

fp = 0 means that remnants will completely destroy due to PISNe. In Fig. ?? we

show the mass spectrum with/without PPISNe and PISNe for both MOBSE1 and

MOBSE2 at Z = 0.0002.

We use the following expressions to compute fp distinguishing between H-rich

stars and WR stars.

Figure B1: Effect of the PISNe and PPISNe on the mass spectrum of the remnants as a func-
tion of the MZAMS at Z = 0.0002. Solid-blue line: MOBSE1 with PISNe and PPISNe; dash-dot-
green line: MOBSE1 without PISNe and PPISNe; dashed-yellow line: MOBSE2 with PISNe and
PPISNe; dotted-red line: MOBSE2 without PISNe and PPISNe.
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Normal stars

fp =



1.0 if MHe/M¯ ≤ 32
(αn−1.0)

5.0 MHe + (37.0−32.0αn)
5.0 if 32 < MHe/M¯ ≤ 37

αn if 37 < MHe/M¯ ≤ 60

−αn
4.0 MHe +16.0αn if 60 < MHe/M¯ < 64

0.0 if 64 ≤ MHe/M¯ < 135

1.0 if 135 ≤ MHe/M¯,

(7.2)

where αn is given by

αn = 0.67
MHe

Mtot
+0.1. (7.3)

WR stars

fp =



1.0

if MHe/M¯ ≤ 32

(MHe −32.0)(0.5226 MHe
Mtot

−0.52974)+1.0

if 32 < MHe/M¯ ≤ 37

β

if 37 < MHe/M¯ ≤ 56 and β< 0.82916

(−0.1381 MHe
Mtot

+0.1309)(MHe −56)+0.82916

if 37 < MHe/M¯ ≤ 56 and β≥ 0.82916

−0.103645MHe +6.63328

if 56 < MHe/M¯ < 64

0.0

if 64 ≤ MHe/M¯ < 135

1.0

if 135 ≤ MHe/M¯.

(7.4)

where β is given by

β= (0.5226∗MHe/M¯−0.52974)∗5+1. (7.5)
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APPENDIX C: ECSN IN BINARY

EVOLUTION

We describe the impact of binary evolution on the mass range of stars which un-

dergo an ECSN. We consider only the case with σECSN = 15 km s−1 and σCCSN = 265

km s−1, because different assumptions on natal kicks do not affect the mass range.

Thus, we analyze a sub-sample of runs EC15α1 and EC15α5 with metallicity Z =
0.02,0.002,0.0002 (we randomly select 105 binaries for each metallicity).

In Fig. C1, we compare the zero-age main sequence (ZAMS) mass range of single

stars which undergo an ECSN (gray regions) with the ZAMS mass distribution of

stars which undergo an ECSN as a consequence of binary evolution (green his-

tograms). In agreement with previous studies (e.g. Podsiadlowski et al., 2004; Sana

et al., 2012; Dunstall et al., 2015; Poelarends et al., 2017), we find that binary evolu-

tion broadens the mass range of stars undergoing an ECSN.

This happens because non-conservative mass transfer changes the mass of close

binary members significantly. For instance, it can happen that a primary star with

MZAMS up to ∼ 25 M¯ loses most of its mass and enters the ECSN regime. On the

other hand, if a secondary star with MZAMS & 2.5 M¯ accretes enough matter from

the companion it can even undergo an ECSN.

The ZAMS mass range of stars undergoing ECSNe seems to be almost insensitive

on the efficiency of CE, especially at high metallicity. Furthermore, the mass range

mildly depends on metallicity: the lower the metallicity is, the lower the maximum

mass for a star to undergo an ECSN as a consequence of mass transfer (this is likely

an effect of stellar winds).

Finally, we estimate that ∼ 16 per cent of NSs undergo an ECSN if α = 1 and

Z = 0.02, when we account for binary evolution. This percentage increases with

decreasing metallicity. In particular, we find that ∼ 13 per cent of SNe are ECSNe

if α = 1 and Z = 0.002, and ∼ 8 per cent if α = 1 and Z = 0.0002). If α = 5, we find

a slightly lower number of ECSNe: ∼ 13,10,7 per cent at Z = 0.02,0.002,0.0002, re-

spectively.
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Figure C1: Green hatched histograms: distribution of the zero-age main sequence mass
(MZAMS) of binary stars undergoing an ECSN. From left to right: Z = 0.0002,0.002, and 0.02,
respectively. For each metallicity, we consider 105 binary systems randomly selected from runs
EC15α1 (top) and EC15α5 (bottom). Grey shadowed regions (with arbitrary normalization):
mass range of single stars undergoing an ECSN.
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APPENDIX D: EFFECTS OF CE

EFFICIENCY ON THE LOCAL MERGER

RATE DENSITY

In the main text we have assumed a fixed value for the efficiency of CE (α = 5). In

this section, we discuss the impact ofα on the merger rate density. To this purpose,

we have run eight additional models varying the CE efficiency: Ej1α1, Ej1α2, Ej1α3

and Ej1α4 are the same as Ej1, but forα= 1, 2, 3 and 4, respectively. Similarly, Ej2α1,

Ej2α2, Ej2α3 and Ej2α4 are the same as Ej2, but for α = 1, 2, 3 and 4, respectively.

For each model, we have run the same set of simulations as for the ones reported in

Table 5.1. We find that the merger rate density of BNSs strongly correlates with the

value of α. Only values of α significantly larger than 2 are consistent with the BNS

merger rate density inferred from the LVC. The merger rate density of BHNSs shows

basically the opposite trend, with the larger value of RBHNS being achieved for the

smaller values of α. Finally, the merger rate density of BBHs seems to indicate a

bell-shaped dependence on α, with the larger values of RBBH obtained for α∼ 2−3.

In a follow-up paper, we will discuss the physical motivations of this behavior.
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Figure D1: Local merger rate density R from eq. 5.5. Same as Figure 5.4, but here we consider
only models Ej1 and Ej2 and we investigate the effect of different values of CE efficiency α=1,
2, 3, 4 and 5 (corresponding to models Ej1α1/Ej2α1, Ej1α2/Ej2α2, Ej1α3/Ej2α3, Ej1α4/Ej2α4
and Ej1α5/Ej2α5). Models labeled as Ej1α5 and Ej2α5 are the same as our models Ej1 and Ej2
in the rest of the paper (hence α= 5).
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