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Abstract

The present PhD research investigates the removal from orbit (i.e. deorbit) of inactive
objects in high eccentricity orbits, considering as specific target Sylda, a large dual-
payload adapter used onboard Ariane 5 heavy launches to Geostationary Earth Orbit
(GEO), and released in Geostationary Transfer Orbit (GTO). The population of space
debris always increased since the start of space activities, due to the fact that deorbit
procedures were never implemented so far. The adoption of a deorbit system, onboard
payloads or other objects delivered into space in the future, is an effective solution
to significantly attenuate the otherwise exponentially increasing debris density and
consequent collision risk in space. The deorbit is performed with a dedicated system
that dissipates orbital energy, causing a gradual decrease of orbital altitude until the
object degrades while reentering the Earth’s atmosphere. Deorbit from Low Earth
Orbits (LEO) has been widely studied in literature, whereas very little is present
regarding deorbit from GTO or other high eccentricity orbits, even if such objects are
very important targets for removal since the cross continuously both highly valuable
zones of LEO and GEO. International guidelines for space debris attenuation set 25
years as maximum time for removal from orbit. The present research employs a Bare
Electrodynamic Tether (BET) as deorbit device: such tape tether creates a Lorentz
drag from the interaction between the current circulating along the tether, from the
collection of electrons from space plasma, and the geomagnetic field. Sylda is a major
threat from the collision risk standpoint, given its very large exposed area and high
mass, and therefore it is an optimal candidate for deorbit implementation, also due to
the high rate of dual-payload launches to GEO. The research covers both the numerical
simulation and analysis of deorbit and of pre-deorbit procedures. Regarding deorbit,
two main simulation campaigns are performed: the first simulates the deorbit on
the orbital plane, neglecting the out-of-plane oscillations of the system. One of the
main outcomes from this first batch of analyses is that the optimal configuration for
the tethered system is having one electrodynamic tether subdivided in two segments
deployed along opposite directions from Sylda: this is called butterfly configuration.
A second phase of deorbit analysis follows, with a different computational model,
adopting the butterfly configuration, and including also the out-of-plane dynamics of
the system. Before starting the deorbit from GTO, two procedures must be performed:
at first the detumbling of Sylda, i.e. the minimization of the residual angular velocity
of rotation of Sylda around its center of mass. This procedure is analyzed proposing
a set of magnetic torquers to accomplish this task. After detumbling is complete, the
deployment of the tethers can start. The deployment is then simulated, accounting
for three different options: deployment at apogee, at perigee, or at mid-way along the
initial orbit, the last resulting as the most favorable location. Another part of research
is dedicated to the study of the attitude detection of the two tether segments of the
butterfly configuration, during deployment, using a vision system that tracks the tip-
mass at the end of each tether. An analysis is performed to estimate the uncertainty
affecting the measure, considering two main configurations for the vision system, i.e.
a monocular system and a stereo system.
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Chapter 1

Introduction

1.1 The orbital debris problem

Since the start of space activities, in the late ’50s, default procedures for removing
satellites and other objects launched into Earth orbits, after their end of operational
life, were never implemented. The procedure of removal from orbit is called in litera-
ture, and will also be called in this thesis, as deorbit.
Among all the objects sent to space since that time, only a very little number of them
reentered by natural decay due to atmospheric drag: the rest remained orbiting in
space, causing an increase in collisions and fragmentation events. As a consequence,
the debris population constantly rose up over time, as displayed in Fig.1.1. Nowadays,
the number of expected collisions, due to the exponential increase of debris population,
is growing too large: therefore, for the sake of future space exploitation, a solution for
space debris removal is urgently needed.
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Figure 1.1: Evolution in number of artificial cataloged objects in space,
from 1956 to 2012.

Any collision in space creates hundreds to thousands of new space debris. As of now,the
majority of cataloged orbital debris is made of fragments from collisions (see Fig. 1.3).
Large objects like inactive satellites, spent upper stages, and payload adapters are the
main sources of debris propagation, due to their large cross section that makes them
statistically the most likely objects to be involved in collisions. In case of collision,
thousands of new debris can be generated, covering a broad spectrum of sizes. For
example, in February 2009, a defunct Russian communication satellite, Cosmos 2251,
collided with an operational Iridium spacecraft, leading to nearly 2000 new trackable
objects and, most likely, tens of thousands of smaller, but still very dangerous, frag-
ments.

The highest concentration of space debris is reached in the Low-Earth-Orbits (LEO)
region, but debris are also significantly present in GTO and other high eccentricity
orbits, as shown in Fig. 1.2. Debris in GEO are a lighter problem, since they do not
cross the LEO region, where most of the active payloads are located; moreover, the
solution for GEO, once a payload becomes inactive, it is generally to reboost them in
sligthly higher or lower regions of space not employed by active missions. Objects in
GTO or High-Eccentricity-Orbits (HEO), such as Molnija orbits, are instead a much
higher problem, since they cross continuously both highly valuable zones of LEO, and
GEO. Such objects are then important targets for orbit removal procedures.

16



LEO 
69% 

GEO 
9% 

HEO &  
GTO  10% 

MEO 
4% 

Outside  
GEO  8% 

Figure 1.2: All cataloged space objects, classified by orbital region, as
of January 2002. Values from Ref.[21].

Fig.1.3 displays all the man-made objects orbiting around the Earth: surprisingly,
only 6% is made of active payloads, the rest being inactive and unwanted debris. Most
of debris come from fragmentation events, i.e. 40% of the total. Inactive payloads,
mission related objects (such as dual-payload adapters), and spent rocket stages, they
amount in total to 54% of cataloged objects population: this 54% includes all the
objects whose abandonment in space can be avoided in future missions, once deorbit
systems are finally implemented onboard.
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Figure 1.3: All cataloged space objects, classified by object type, as of
January 2002. Values from Ref.[21].

The objects orbiting around the Earth can be categorized as shown in the diagram
below.
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Figure 1.4: Classification of objects in Earth orbits. The objects that
can be enabled with a deorbit system are highlighted.

As reported in Ref.[21], an effective and inexpensive measure for long-term debris mit-
igation is to act on objects launched to space in the future: this means to provide
these objects, delivered into Earth orbits in the future, with a system, activated at
their end-of-life, to lower their orbit until they degrade in atmosphere. Lowering the
orbit means to dissipate orbital energy and to increase the orbital velocity (this is the
so-called satellite paradox, see Ref. [28] for more details). Reorbiting inactive satellites
to higher storage orbits is convenient only for GEO satellites: for any other orbit, i.e.
LEO, MEO and high-eccentricity orbits, this solution is not viable.

Ref.[21] provides numerical estimates of what would happen in LEO if no deorbit mea-
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sure is taken, in a time span of 100 years from year 2000 (business-as-usual scenario):
the number of objects with diameter d larger than 1 m, in LEO orbits, would increase
fourfold. It is considered the annual trend of launches of new objects in LEO orbits,
plus a typical annual rate of fragmentation occurrences in orbit. From approximately
2000 objects with d > 1 m in year 2000, it would be reached a number of about 8000
objects with d > 1 m in year 2100. Moreover, the expected number of catastrophic
collisions in LEO orbits during the 100 years would be higher than 50. This would
determine a steep growth of massive objects and even higher increase of smaller de-
bris, leading in year 2100 to a number of about 50000 objects in LEO with d > 10 cm
(with respect to the current 10000, hence a five-fold increase), and a number of about
1.6e+06 objects with d > 1 cm (with respect to the current number of about 3e+05,
thus again an approximately five-fold increase). This study regards directly also ob-
jects in high-eccentricity orbits, that continuously cross the entire LEO region.

Ref.[21] also reports that the most effective mitigation measure is the mass removal
from orbit (deorbit), with priority for objects with mass higher than 100 kg (hence
spent rocket bodies, dual-payload adapters, and inactive satellites), especially from
orbital regions with high debris densities, such as LEO. International regulations for
debris attenuation are present, and they set 25 years as the maximum time for deorbit
(e.g. see Ref.[1]). This maximum allowed time comes from from the following facts
(see Fig.1.5):

• regardless of the specific debris mitigation scenario, even when deorbit times are
extremely long (e.g. 100 years), the number of collisions would still significantly
decrease over 100 years. Between the Business-as-Usual scenario and the 100-
years deorbit scenario, there is a difference of more than 30 collisions.

• comparing a 25-year deorbit scenario for all future inactive objects, with a direct
deorbit (0 years curve in Fig.1.5), there is only a slight difference in cumulative
number of collisions, over the 100 years span (about 3 collisions). The difference
in number of collisions grows much more significantly when going from a 25-
year deorbit scenario to a 100-year deorbit scenario. Choosing 25 years deorbit
procedures, instead of direct deorbit, allows to significantly reduce the cost of
deorbit and the dedicated system.

In summary, the cumulative number of catastrophic collisions would exponentially
increase if no deorbit measure is taken in the near future, on a 100-year time span.
However, if deorbit procedures were to be implemented, with maximum removal time of
25 years, as set by international guidelines (Ref.[1]), the problem would be consistently
healed, with less than 10 catastrophic collisions expected in 100 years instead of more
than 50 in a business-as-usual scenario[21].
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Figure 1.5: Evolution of cumulative number of catastrophic collisions
in LEO region, over 100 years starting from year 2000. Different curves
allow comparison between business-as-usual scenario, and scenarios with
mitigation measures plus deorbit of inactive payloads. Different curves
are computed, in case of debris mitigation scenario, for different deorbit
times.

As reported in Ref.[21], [1], the debris mitigation guidelines from NASA, US Govern-
ment, ESA, CNES, EDMS, and JAXA, they all set 25 years as maximum time for
re-entry of any object in orbit, after its operational life, in case it is not economically
convenient a direct retrieval or not viable the re-orbiting to higher orbits.

For more massive objects that might survive re-entry, the guidelines prescribe a con-
trolled re-entry. The NASA guideline also sets 10 years as maximum allowed time
in case of planned retrieval, i.e. in any case in which the satellite during deorbit is
traveling across valuable regions of space. Consequently, the 25 years constraint must
be interpreted as a general maximum constraint, but it is preferable to have a much
lower deorbit time, possibly lower than 10 years. In fact, the more an objects remains
in orbit, the higher is the collision risk. At the same time the deorbit solution must be
low-cost: this leads to a system that must be technologically simple, possibly passive
or with very little energy required, and with low mass. Electrodynamic tether sys-
tems have these features, and they are consequently worth of further study, especially
regarding their dynamics during all the phases of deorbit.
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1.2 Deorbit solutions

The solutions for debris mitigation explored in scientific literature are mainly the
following ones:

1. Natural Decay

2. Active systems:

• Chemical Propulsion

• Electrical Propulsion

3. Passive systems (a very low amount of energy might be required only during
the deployment of the device):

• Drag Augmentation devices : inflatable (aerodynamic drag balloons) and
non-inflatable, i.e. supported by rigid booms (aerodynamic drag sails).

• Electrodynamic Tether (EDT) systems. Electrodynamic tethers proved to
work successfully in space, e.g. in missions PMG (1993) and TSS-1R (1996),
but have never been used for deorbit so far. In particular, Bare Electrody-
namic Tethers (BETs), equipped with a hollow cathode for electron emis-
sion, have been studied and proposed in literature (e.g. in Ref.[3, 45, 13])
as an effective deorbit device for various applications.

Candidates for deorbit application are all the objects on orbits with perigee crossing
the LEO region: this includes all the LEO satellites, but also objects in high eccen-
tricity orbits.

Considering objects in LEO, the natural decay (i.e. energy dissipation due to aero-
dynamic drag) allows reentry in a time lower than 25 years only for objects orbiting
at altitude below about 500–700 km (the precise value depending on the mass and
aerodynamic drag area of the body). However, only a very low percentage of LEO
objects are orbiting below 500 km, i.e. about 10% of the total: for these bodies, deorbit
devices are not strictly necessary.

About 25% of LEO population is made of objects orbiting at altitudes between 500 km
and 700 km: for all the objects that would not naturally reenter in 25 years, a deorbit
device is needed. In this altitude range, effective solutions are either using a Chemi-
cal Propulsion system, if shortest deorbit time and lowest Area-Time-Product are top
priorities. The Area-Time-Product (ATP) is a measure of collision risk, since it is the
product of the exposed area (including deorbit device) of the object to deorbit multi-
plied by the time it takes to deorbit it. Hence, it is desirable to minimize the ATP,
but a compromise with cost of implementation must be found. In fact, Electrodynamic
Tether systems are applicable too in that altitude region, and have the potential be
the most economically convenient option since they lead to a mass considerably lower,
in some cases about half, than the mass required for a direct reentry with Chemical
Propulsion, as showed in Ref.[31].
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The most populated LEO region is the one between 700 km and 1500 km, with about
65% of all LEO satellites and spent stages. In this range, effective solutions for deorbit
are either the Electrodynamic Tether systems, or the Electrical Propulsion systems.
Chemical propulsion can be used only for lower orbits in this range, otherwise the
mass of required propellant becomes too high. Electrical Propulsion is generally not
present onboard LEO missions and the addition of it just for deorbit purposes might
be not well perceived given the generally high cost of an electrical propulsion system.
Moreover, it is an active system that requires active attitude control: it would not be
mountable on spent stages for example or dual-payload adapters. Eventually, Elec-
trodynamic Tethered (EDT) systems have the potential to be an optimal solution for
a large amount of LEO satellites, being a simple and cheap system in comparison to
other solutions.

Moreover, EDT systems, and more specifically Bare Electrodynamic Tether systems
(BET), can be used onboard objects like spent stages or dual-payload adapters orbiting
in high-eccentricity orbits, such as in Geostationary Transfer Orbit (GTO). Addition-
ally, mounting chemical propulsion or electrical propulsion systems outside the walls
of spent stages or dual-payload adapters might also be not allowed by manufacturers
due to the inherent risk of having a propulsion system lying between these components
and the fairing walls of a launch system.

Ref. [31] showed with numerical simulations that Aerodynamic Drag Augmentation
devices are generally never a good solution for deorbit since they have an Area-Time-
Product always higher than other solutions.

Among all the solutions for deorbit investigated in literature, Bare Electrodynamic
Tether systems showed, through numerical simulations (e.g. see Ref.[11]), to be capable
of complying, and with a large margin, with the time constraint of 25 years for orbit
removal. BET systems, equipped with a hollow cathode for electron emission, are
proposed in various literature references (Ref.[3, 45, 13]) as a cheap, low-mass, and
easily implementable solution for deorbiting objects from LEO.
The present research, given this application potential of electrodynamic tether systems,
aims to expand the study of deorbit, with such systems, of objects that are left in high
eccentricity orbits, at the end of their operational life.

1.3 Objects in high-eccentricity orbits

In addition to bodies in LEO over 500–700 km, there are also several objects in high
eccentricity orbits that would not reenter naturally in 25 years: these objects might
have a very low perigee, as low as 300 km, where the aerodynamic drag is consistent.
However, they spend most of the orbital time at high altitudes, where the atmospheric
drag is negligible, since the transit through the perigee region is very fast.
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A report by Fisher and David (Ref.[19]) points out that 294 mission-related objects
were left in GTO in the period between 2004 and 2012, including upper stages, fuel
tanks, and dual-payload adapters. Only 43 objects re-entered by natural decay. All
the others cross continuously both highly valuable zones of LEO and GEO, making
these inactive objects a threat to operational satellites. Among all these objects left in
GTO, dual-payload adapters are particularly massive and have a very large exposed
area: the combination of these two factors makes them the most dangerous objects in
GTO, due to the high risk of collision with other objects in space. Inter-stage adapters,
or dual-payload adapter, are structures employed onboard launches to GEO in order
to house two separate payloads inside the fairing: a first payload is stored inside the
adapter, and a second one on its top. An example of such object is Sylda-5 (Système
de Lancement Double Ariane 5 ), used onboard Ariane 5 heavy launches to GEO.

1.3.1 Sylda and dual-payload adapters

As previously stated, very interesting targets for deorbit application are the dual-
payload adapters released in Geostationary Transfer Orbit (GTO) during the last
phase of insertion of a double-payload in Geostationary Earth Orbit (GEO). A most
significant example is Sylda, given the persistent launch rate of dual-payloads to GEO
orbits with the Ariane 5 launch system. Therefore, finding an optimal deorbit device
for Sylda has a high commercial relevance.

Moreover, Sylda is a major threat for operational satellites, being a massive hollow
structure with very large exposed area: it is then a major contributor to collision risk
in space.
Every payload that is launched to GEO employs a Geostationary Transfer Orbit
(GTO), performing a transfer from a LEO parking orbit, e.g. at altitude of 300 km,
up to the GEO altitude at about 35786 km. Shortly before the apogee burn with orbit
circularization and inclination change, the dual-payload adapter is released in GTO
nearby its apogee.

Sylda has the following features, reported in the Ariane 5 User Manual (2016 version):

• It is a bell-shaped hollow structure with diameter 4.5 m and variable height,
depending on the specific configuration, from 5 m up to about 7 m.

• It is made of an Aluminum honeycomb core covered by carbon fiber sheets.

• The mass ranges from 425 kg, for the mimimum height configuration, up to 535 kg
for the maximum height configuration.

• Its orbit has a perigee at about 300 km, apogee approximately at GEO altitude,
inclination of 6◦. Precise values of these orbital parameters depend on the specific
launch configuration.
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Figure 1.6: On the left: Sylda 5 support structure being lowered over
the Planck spacecraft (27 April 2009). This view up along the Planck
spacecraft gives a look inside the SYLDA 5, with its tapered base, high
cylindrical shell and an upper truncated conical shell. Sylda 5 is used here
to carry the Herschel spacecraft on top of the Planck spacecraft during
their joint launch. Photo courtesy of ESA. On the right: exploded view
of the Ariane 5 payload module.

Sylda, and dual-payload adapters in general, they are massive but have thin walls,
i.e. they have a large area-to-mass ratio: therefore, they are expected to degrade
completely in the atmosphere during reentry, without need of a controlled reentry

25



procedure. Sylda is widely used, given the high rate of launches using the Ariane 5.
According to a study by Fisher and David (Ref.[19]), among 43 launches with Ariane
5, 43 upper stages and 40 Sylda adapters were released in GTO. Only 5 Sylda, all of
them with very low initial perigee (229–268 km), re-entered between 1 to 7 years after
launch, and none of the upper stages.

An accurate model of Sylda, whose features are used in numerical computations pre-
sented in this thesis, is created with Solidworks. The selected configuration of Sylda
used in numerical models is close to the maximum height, and has these main fea-
tures: diameter of cylindrical part of 4.5 m; height of 6.81 m; material average density
of 180 kg/m3; wall thickness of 3 cm. The resulting mass is 536 kg. The moments of
inertia, with respect to Sylda’s center of mass, about the principal axes of inertia of the
body frame, are JS,x = JS,y = 3459.44 kgm2 and JS,z = 2632.24 kgm2 where Z is the
longitudinal axis of Sylda, while X and Y are transversal axes. These axes are fixed
with Sylda, i.e. they are body-frame axis XB, YB, ZB, with respective unit vectors uξ,
uη, uζ (refer to Appendix B). The mass and inertia properties are computed, given
the geometry and the material density as inputs, using Solidworks.

Figure 1.7: Model of Sylda in Solidworks

Different solutions were attempted in the past in order to remove Sylda from orbit in
a time lower than 25 years. Mainly, either by setting a low initial perigee, penalizing
the launcher capacity (about 200 kg less for Ariane 5 ), or launching with favorable
Sun-synchronous resonance conditions, with no sure warranty to comply with the 25
years guideline, or anyhow with very high deorbit times. Hence, the research about a
faster and cheap solution for deorbit of Sylda, based on Bare Electrodynamic Tethers,
corresponds to an actual commercial need.
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Upper S/C

Figure 1.8: On the left: photo of Sylda dual-payload adapter. Courtesy
of ArianeSpace. On the right: Exploded view of upper stage of Ariane 5
launch system. Courtesy of ArianeSpace.

1.4 Bare Electrodynamic Tether (BET) system

The deorbit system studied in this PhD thesis is based on a Bare Electrodynamic
Tether, i.e. a system that exploits an electrodynamic process in order to dissipate
orbital energy and consequently lower the orbital altitude of the object, until it com-
pletely degrades in the lower layers of the atmosphere. This result is obtained by
generating a Lorentz drag force created by the relative motion of the tether, with an
electrical current running through, with respect to the Earth’s magnetic field. The
electrical current is created by collecting electrons, impacting on the tether from the
ambient plasma. The tether is traveling either in the F-Layer of the ionosphere, for
altitudes lower than about 1000 km, or in the plasmasphere for higher altitudes. The
electron density varies with several parameters, including orbital altitude, latitude,
longitude, and solar activity. For altitudes higher than 2000 km, regardless of the
other variables, the electron density becomes negligible. A profile of electron num-
ber density is extracted from the NASA IRI database, and posted below. Refer to
Appendix E for additional details.

27



100 200 300 400 500 600 700 800 900
10-16

10-14

10-12

10-10

10-8

10-6

200 400 600 800 1000 1200 1400 1600 1800 2000

Altitude, km

0

2

4

6

8

10

12

E
le

ct
ro

n
 n

u
m

b
er

 d
en

si
ty

, 
m

-3

x10
11

A
ir
 d

en
si

ty
, 

kg
/m

3

Altitude, km

Figure 1.9: Electron Number Density with respect to the orbital alti-
tude, for average solar activity.

The current is variable along the tether, and so the Lorentz force acting on every seg-
ment of it: this is a distributed pressure force which results in a resultant drag force
acting on a point along the tether called electrodynamic center of pressure.

The tether must be made of conductive material: the higher is the conductivity, the
higher is the current and the deorbit performance (i.e. lower deorbit times). Higher
lengths of tether would also improve the deorbit performance, but they would lead
to an increase in risk of tether being severed and higher mass to be carried onboard.
An optimal compromise must then be found between cost of implementation, risk and
performance. The electrodynamic tether can be deployed one-way, or be subdivided in
two segments, following the so-called butterfly configuration, that are deployed along
opposite directions.

In every BET system, a tip-mass must be attached to the free end of the tether: this
mass is needed for tether stability over time, and for deployment control. The tip-mass
can be made of components that are necessary for the functioning of the deorbit system,
such as a hollow cathode for emitting electrons, after running along the tether, back to
space. The tether is reeled and stored in a dedicated box until the start of deployment.

A great advantage of the BET system is that it is essentially passive, i.e. it requires
no added energy in order to perform the deorbit. A very low amount of energy, might
be required only in the first stages of deployment, that is performed and controlled
with the aid of a small electrical motor. In fact, at the beginning of deployment, when
a too short segment of tether is deployed, the generated current is too low: therefore,
it may be necessary to use an auxiliary source of energy, possibly provided by a small
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primary battery. Afterwards, the current flowing along the tether can be exploited, as
it reaches the deployer, for providing the necessary amount of power, a part of which
is used by the hollow cathode (refer to Sec.1.4.2 for description of cathode).

A BET system does not generally need an active attitude control during deorbit, i.e.
after the tether is completely deployed. This is an advantage over a deorbit system
based on electrical propulsion, for example. In fact, BET system must be designed in
order to reach a self-stabilized condition during deorbit: this is achieved with different
strategies, depending on the initial orbit of the object. For deorbit from LEO, the
tether tends to librate around the system’s center of mass: the highest performance
is reached by keeping the tether as vertically aligned as possible. Gravity gradient
stabilization can be used for longer tethers, also thanks to the presence of a tip-mass
at the end. Another investigated solution is the use of passive viscous oscillation
dampers applied at the tether’s end attached to the body to deorbit (Ref. [24]). The
use of an inert segment of tether, in series to the conductive segment, is another feasible
way to increase stability (Ref.[52]).
For deorbit from high eccentricity orbits, where a tethered system naturally undergoes
full rotations around its center of mass, a stable configuration can be achieved thanks
to the centrifugal force created by the rotation. The positive tension created as a
consequence along the tether keeps it straight and taut throughout deorbit, with the
whole tethered system rotating around its center of mass, and moving along the deorbit
path, approximately as a single rigid body.

1.4.1 Short historical review of tethered missions

20 sub-orbital and orbital flights have been made with tethered systems. Among all
these missions, 8 of them used an electrodynamic tether. The table below summarizes
all tethered missions, providing some essential information.
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Mission Date Orbit Tether
Length

Additional Details

Gemini 11 1967 LEO 30 m Spin Stabilized (0.15 rpm)

Gemini 12 1967 LEO 30 m
Gravity Gradient Stabilized,
local vertical, stable swing

H-9M-69 a 1980
Sub-

Orbital 500 m Partial Deployment

S-520-2 a 1981
Sub-

Orbital 500 m Partial Deployment

Charge-1 a 1983
Sub-

Orbital 500 m Full Deployment

Charge-2 a 1984
Sub-

Orbital 500 m Full Deployment

Echo-7 1988
Sub-

Orbital – Magnetic Field Alignment

Oedipus-A 1989
Sub-

Orbital 958 m
Spin Stabilized (0.7 rpm),
Magnetic Field Aligned

Charge-2B a 1992
Sub-

Orbital 500 m Full Deployment

TSS-1 a 1992 LEO
20 km, only

260 m
deployed

Partially Deployed, Retrieved

SEDS-1 1993 LEO 20 km
Downward full deployment,

swing and cut

PMG a 1993 LEO 500 m Conductive, Upward Deployment

SEDS-2 1994 LEO 20 km
Downward full deployment,
local vertical stabilized

Oedipus-C 1995
Sub-

Orbital 1 km
Spin Stabilized (0.7 rpm), magnetic

field aligned

TSS-1R a 1996 LEO 19.6 km
Close to full deployment, severed after

4 days by arcing

TiPS 1996 LEO 4 km
At 1022 km/63◦ since 1996, longest life
tether on orbit (survived 12 years)

ATEx 1999 LEO 6 km Partial deployment

ProSEDS a 2003 LEO 15 km Hardware Built but not flown

MAST 2007 LEO 1 km Did not deploy

YES2 2007 LEO 30 + km Full deployment

a Electrodynamic Tether (EDT) Mission

Table 1.1: Table reporting all tethered satellite missions to date. Data
from Ref.[40], [21].
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1.4.2 Components of BET Deorbit System

Tether

References [40] and [11] propose a tape-shaped Bare Electrodynamic Tether as effective
solution for deorbit. Typically, a tape tether would have a width of about 2–3 cm and
a thickness of approximately 50–100µm. The reason of this specific geometry is that
it minimizes the risk of the tether being severed by impacts with meteoroids or other
debris. Moreover, such typical sizes for the cross-section, that is constant along the
tether length, allow to model the electron collection, from ambient plasma, with the
Orbital Motion Limited (OML) theory (Ref.[10]).

Courtesy of Tether Applications Inc.

Figure 1.10: Image of Aluminum Tape Tether. Courtesy of Tether
Applications Inc.

The tether must be made of a conductive material. Previous studies propose Alu-
minum as base material: for example, Al 1100-H19, an Aluminum alloy made of
99% of Aluminum, plus very low percentages of other metals, including Copper (Cu).
The presence of Copper enhances the electrical conductivity of the tether. Aluminum,
used as main material, leads to higher thermal and mechanical resistance, and at the
same time has a much lower density than Copper. Keeping the material density as low
as possible is important, since the tether must have a low mass. The selected material
then comes from a trade-off between electrical, mechanical and thermal properties,
and density.

A crucial aspect is the tether being bare: there is no insulating outer layer wrapping
the tether. This feature is chosen in order to maximize the electron collection from
ambient plasma, as reported in Ref.[3]. In fact, a bare tether reaches the highest elec-
trical contact with surrounding plasma. The former solution was to have an insulated
tether, equipped with a conductive sphere, at one end, working as electron collection
anode. Conversely, with a Bare Electrodynamic Tether, the tether itself works as a
positively polarized anode attracting electrons from ambient plasma: this occurs all
along the so-called anodic segment of tether. The number of collected electrons, and
as consequence the electrical current, they are much higher with a bare tether, due
to the much larger collecting area with respect to having a small collector only at the

31



tether’s end. A higher current leads to a higher Lorentz drag force: therefore, the
deorbit time is lower. Moreover, having a bare tether allows to save mass, since only
a cathodic emitter is necessary, not also an anodic collector, given that its function
is performed by the tether itself. Only a tiny segment of tether closest to the object
to deorbit, where the tether is attached, might need insulation, in order to prevent
electrical arcing.

While the largest portion of tether is positively charged, and collects electrons from
space, there is a small segment of bare tether that is negatively charged. This segment
works then as a cathode, emitting electrons: however, since the cathodic portion of
tether is much shorter than the anodic one, a dedicated cathode is necessary to expel
all the electrons back to space. This component is described in 1.4.2.

Cathode

A dedicated cathode is placed at the end of the tether attached to the object to deorbit,
or as part of one tip-mass in case the butterfly configuration is used (refer to Sec.2.2
for description of this configuration). The cathode is a component that maximizes
the electrical contact with space plasma, enabling a regular and continuous ejection
back to space of the electrons flowing from the anodic part of the tether towards the
cathodic end. Just before the cathode, an additional load can be inserted if it is nec-
essary to use electrical current to power any active device. The cathodic emitter that
has been most largely used and tested during tethered missions, is the Xenon hollow
cathode.

This hollow cathode expels electrons through gas ionization: Xenon is widely preferred
for its low specific ionization energy. The ionization generates a high density plasma
plume, where the electron density is approximately equal to the ion density. How-
ever, the much higher electron velocities lead to electron currents much greater than
Xenon ion currents: thus, for each ion leaving the cathode an incredibly higher num-
ber of electrons is expelled. The cathode requires a voltage bias of tens of volts only,
determining a negligible contact impedance.

32



Figure 1.11: Photograph and schematic view of cathode for EDT by
Tethers UnlimitedTM . Courtesy of Tethers UnlimitedTM .

The Xenon mass flow rate, and related cathode size, depend on current intensity. This
means that the cathode is chosen accordingly to the maximum current expected during
deorbit.

New technologies for cathodic emitters that do not require ionization gas are under
study.
One of the most promising technologies, is the Field Emitter Array Cathode (FEAC):
essentially, it is a grid with millions of miniature low-biased tips that individually expel
a tiny electron current (on the order of micro-ampere). The collection of all these tips
creates a total current emission of the order of amperes. The larger is the array,
the higher is the maximum current that can be expelled. Recently, important steps
forward have been done with FEACs, ensuring compliance with requisites dictated
by the harsh space environment, such as capability of working in vacuum and strong
thermal resistance. A major issue presently under analysis is the capability of working
efficiently even after contamination of the array tips (or, as alternative, ways to prevent
contamination). In fact, contamination, e.g. due to outgassing phenomena, affects
significantly the performance of this emitter. More details about the FEAC can be
found at Ref.[29].
Another promising solution is to have a Bare Thermionic Tether (Ref. [50]), i.e. to
have the cathode embedded in the part of tether as a thermionic coating (Ref. [12]),
using low-work-function materials. One problem with this new technology, under
investigation, is the degradation in space of the thermionic coating over time, and
consequent decrease in performance.
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1.4.3 Physics of Electrodynamic Drag force generation

Considering a segment of straight bare tether, and the axis x on the direction per-
pendicular to the tether, pointing from the tether’s surface towards the surrounding
plasma. Two simultaneous phenomena are responsible for the current generation along
the tether:

1. Potential Bias : the difference of electrical potential along x direction, i.e. the
difference of electrical potential between the surrounding plasma and tether, at
every point along the tether’s length. The electrical potential shows a variation
along x only inside a thin region called sheath, that is a layer surrounding the
tether with thickness of the order of a Debye length. Outside the sheath the
plasma is globally neutral, whereas inside the sheath it is non neutral (Ref.[9]).
This difference of potential, at every point along the tether, enables the elec-
trons collection from ambient plasma to the tether. Electrons are collected by
the tether, i.e. they move from surrounding plasma to the tether, at every point
where the plasma potential is lower than the tether potential, i.e. in the anodic
part of the tether. However, in a very limited portion of tether, i.e. the cathodic
segment, the plasma potential becomes higher than the tether potential. Conse-
quently, electrons are expelled towards space instead of being collected.
The potential outside the sheath (x > xsheath) is equal to the plasma potential,
i.e. V (x > xsheath) = Vpl. At each point on the tether’s surface (x = 0) the
potential is V (x = 0) = Vt. At the generic x location between the tether and the
sheath boundary, the potential is V (x).

∆V (x) = V (x)− Vpl (1.1)
lim
x→0

∆V (x) = Vt − Vpl = ∆V (1.2)
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Figure 1.12: Sketch of plasma sheath surrounding the tether, with
electrical potential variation profile along the x direction

2. Difference of electrical potential along the tether. The relative motion of the
tether with respect to the geomagnetic field determines the generation of an
induced electrical field E pointing along each segment of tether. The velocity of
the system’s center of mass is generally much larger than the relative velocity
of tether with respect to the center of mass: consequently, it is assumed in
calculations to have a linear velocity of the tether equal to the orbital velocity
of system’s center of mass vt = vG. The geomagnetic field can be reasonably
assumed to be co-rotating with the Earth. With this assumption, the magnitude
of linear velocity of the magnetic field, vB, at a specific orbital altitude h and
orbital inclination i, can be computed as:

vB = ΩE(RE + h)sin(
π

2
− i) (1.3)

where ΩE is the spin angular velocity of the Earth.
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Figure 1.13: Sketch showing the orbital velocity vG of the system’s
center of mass (generally assumed equal to the tether’s linear velocity)
and the linear velocity of the geomagnetic field vB, at a generic point in
space.

The electrical field created along each segment of tether is computed as:

E = vrel ×B (1.4)

where vrel = vt−vB and B is the local magnetic field vector. The component of
E projected along the tether is responsible of the creation of a variable potential
Vt(s) along the tether’s length, i.e. along the parametric direction s.

The total difference of potential between the anodic and cathodic ends of the
tether, ∆Vt,TOT = Vt,A − Vt,C , is calculated as:

∆Vt,TOT =

∫ L

0

E · ûsds =

∫ L

0

Etds (1.5)
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where Et is the component of the electrical field E projected along each segment
of tether.

The combination of electron collection inside the tether from ambient plasma, and the
variation of potential along the tether, triggers the generation of an electrical current
i(s). This current has a variable intensity along the tether (typical profiles are shown
in Fig.1.14 and Fig.1.15). The electron current flows in the direction opposite to Et,
whereas the positive conventional current flows in the same direction as Et.

The local bias between plasma potential outside the sheath and the potential of the
tether, ∆V = Vt − Vpl, varies along the tether depending on the profiles of Vt and
Vpl. Representative profiles, based on the study described in Ref. [10], are posted in
Fig.1.14 and 1.15.

The plasma potential Vpl is initially lower than tether potential, and then it constantly
increases along s. It intersects the Vt profile at zero bias point B, where Vpl = Vt and
∆V = 0. At last, it becomes higher than Vt in the short cathodic portion of tether.

The electrical current profile is shown too: it increases from zero, at the anodic end
A, to a maximum value at the zero-bias point, and then it slightly decreases, due to a
small ejection of electrons in the short cathodic segment.
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Figure 1.14: Sketch of potential profiles and current profile along the
Bare Electrodynamic Tether, for prograde orbits in LEO, for which the
tether must be deployed upwards (i.e. away from the Earth’s center).
Instead, in high eccentricity orbits, the tethered system naturally rotates,
therefore the direction of deployment is not relevant. In case the butterfly
configuration is used, as described in Sec.2.2, the profile is the same but
translated, and the cathode is mounted on one of the two tip-masses, not
on the object to deorbit.
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Figure 1.15: Sketch of potential profiles and current profile along the
Bare Electrodynamic Tether, for retrograde orbits in LEO, for which the
tether must be deployed downwards (i.e. towards the Earth’s center).
Instead, in high eccentricity orbits, the tethered system naturally rotates,
therefore the direction of deployment is not relevant. In case the butterfly
configuration is used, as described in Sec.2.2, the profile is the same but
translated, and the cathode is mounted on one of the two tip-masses, not
on the object to deorbit.

Electrons naturally flow from regions of lower electrical potential to regions of higher
electrical potential. This is the reason why they are collected by the tether from am-
bient plasma only in the anodic segment of tether, where Vt > Vpl. Every infinitesimal
segment of the anodic part of the tether collects a certain amount of electrons. The
amount of electrons depends on the local value of bias ∆V , variable along s. At the
zero-bias point electrons are not collected since Vpl = Vt. Lastly, in the cathodic seg-
ment, the tether potential is lower than plasma potential, so electrons are released by
the tether towards space.

The fact that electrons flow from lower to higher electrical potential regions also ex-
plains why, after being collected by the tether, electrons move, generating a current,
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from the anodic end A to the cathodic end C, given that Vt,C > Vt,A. Some literature
references employ the conventional current, defined considering positive charges, that
move opposite to the electrons flow. Consequently, the conventional current flows from
the cathode towards the anode. The present research employs the electron current,
not the conventional current (as displayed in Fig. Fig.1.14,1.15).

The current flowing through every infinitesimal segment ds of the tether interacts with
the geomagnetic field, creating infinitesimal Lorentz forces acting on each segment ds.
The integration over the entire tether length of these infinitesimal contributions gives
the total Lorentz force acting on the system. This force is created only when the tether
orientation in space is such that the electrical field Et is positive, i.e. going from the
cathodic end towards the anodic end. This is in fact the only condition in which an
electrical current can be passively generated. It turns out, that for a passive BET
system, the resulting Lorentz force is always a drag force, i.e. pointing opposite to the
orbital motion. The Lorentz force FL is then calculated as:

FL =

∫
i(s)d~s×B(s) (1.6)

Both the current i(s) and the magnetic field B(s) vary along the tether. The variation
of geomagnetic field B is surely low on the typical length of BET tethers (on the order
of 2 km as maximum). Hence, it is generally reasonable to assume B constant along
the tether. Conversely, the current i(s) varies significantly along the tether, given that,
traveling from one end to the other, there is a continuous addition of new electrons
collected from plasma by subsequent segments of tether. In the analyses presented in
this thesis it is always assumed to have a straight tether and a value of current iav is
employed, averaged along the entire tether’s length Lt. With these considerations, the
integral in Eq.[1.4.3] can be reduced to:

FL = iavLtût ×B (1.7)

where ût is the unit vector of the tether direction. iav depends on several parameters,
such as plasma density and geometry of the tether. In metallic tethers, like the ones
considered in this research, only electrons, not ions, are collected from space plasma.
Thus, only the electron density Ne is needed for computations.

The distributed action of the Lorentz force creates a moment acting on the tether,
that is equivalent to having the total Lorentz force acting on a specific point along the
tether called Electrodynamic Center of Pressure (ECP).

Fig.1.14 and Fig.1.15 show the fact that when deorbiting from LEO, and using a
configuration with a single eletrodynamic tether, the tether must be deployed upwards
in case of prograde orbits, and downwards in case of retrograde orbits. This is due to
the fact that in LEO a tethered system naturally librates, without experiencing full
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rotations as happens in GTO or other high eccentricity orbits. It is then convenient to
deploy in the direction such that a positive electrical field is generated along the tether,
and then a drag Lorentz force is created. In case of deorbit from GTO, this is not
applicable, and what happens is that during part of the rotation when the electrical
field is negative, a current cannot flow along the tether, and a Lorentz force is then
not generated. This is accounted in the codes presented in Chapter 2.

1.4.4 ED Tether System configuration

The peak of tether’s current is reached at the zero-bias point B, i.e. the point along
the tether where the potential bias between the tether and the ambient plasma is zero.
This point generally lies very close to the cathodic end. This means that the segment
of tether in proximity of the cathode is the part where the most of the distributed
Lorentz drag force is concentrated.

Given that, as previously stated, the highest contribution of the Lorentz force is gen-
erated close to the cathode, this means that the Electrodynamic Center of Pressure
(ECP) too will be much closer to the cathode than to the anode. In order to achieve
the highest stability, and ensure resistance, of the tether, it is fundamental to have
the ECP as close as possible to the system’s center of mass G. In fact, the farther
is the ECP from the system’s center of mass, the higher is the electrodynamic force
moment, since there would be a larger moment arm. This condition would excessively
increase the rotation of the tethered system in high eccentricity orbit, as discussed in
Sec. 2.1.3, leading to higher risk of tether breaking due to an excessive tension along
the tether.

In order to have the ECP as close as possible to the system’s center of mass, two
strategies are applicable:

• In case of deorbit from LEO, where the tethered system librates without fully
rotating, or anyhow in any case of single tether deployed one-way, the cathode
must be mounted on the object to deorbit. The object to deorbit is generally
more or much more massive than the tip-mass, and the tethers are of the order
of 2 km as maximum length. As a consequence, the system’s center of mass is
generally located much closer to the object to deorbit than to the tip-mass. If
the cathode were placed at the free end, together with the tip-mass, the ECP
would then be very close to the tip-mass, and very far from the system’s center
of mass, that is instead very close to the object to deorbit. Such configuration
would then surely lead to stability problems. Consequently, improving the sta-
bility of the system is the first reason why the cathode must be attached to the
object to deorbit, as shown in Fig.1.14 and 1.15. Moreover, having the cathode
attached to the object to deorbit allows to employ the current arriving from the
tether. For example, power can be supplied to the small electrical motor used
for tether deployment, after a long enough portion of tether is already deployed
and generating enough current.
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• In case of deorbit from LEO, a proposed strategy to have the ECP as close
as possible to the system’s center of mass, it is to use an inert (non-conductive)
segment of tether attached in sequence to the conductive segment (Ref.[52]). The
inert segment will then have the tip-mass attached at its end. Such configuration,
with inert tether too, is displayed in Fig. 1.16. In fact, the addition of an inert
segment, after the conductive one, affects the location of the system’s center
of mass, moving it a farther from the object to deorbit, and then closer to the
ECP. The system’s center of mass is generally much closer to the object to deorbit
than it is the ECP. Low density materials, like Kevlar R©, could be used for the
inert tether segment (density of about 1440 kg/m3, and the length of the inert
segment would be small compared to the conductive segment. Hence, using an
inert tether would lead to only a small mass increase.

• The optimal strategy, in case of deorbit from high eccentricity orbits with fully
rotating tethered system, it is to use the so-called butterfly configuration. This
configuration is thoroughly described in Sec.2.2. The fact that this is the optimal
choice in case of deorbit from high eccentricity orbits, such as Sylda from GTO, is
demonstrated in the analysis presented in Sec. 2.1.3. Implementing the butterfly
configuration means to have a single electrodynamic tether subdivided in two
electrically connected segments, that are deployed along opposite directions from
the object to deorbit, i.e. Sylda in this case. Each segment has a tip-mass
mounted at its free end. The two segments have different lengths, and these
lengths are selected in order to minimize the gap between the ECP and the
system’s center of mass. It is important to note that the ECP always changes
over time during deorbit, oscillating inside a certain range along the tether.
Consequently, the distance with respect to the center of mass is generally never
zero, but it can be minimized. The present research investigates specifically the
use of this butterfly configuration, instead of having an additional inert segment
of tether, that does not contribute to current generation, and that would lead to
an undesirable mass increase of the system. In case of butterfly configuration,
there is a tip-mass at the free end of each of the two tether segments: thus, there
are two tip-masses in total. One tip-mass must include the cathodic emitter, and
the other tip-mass should possibly include other components that are needed by
the deorbit system, in order not to be entirely a ballast mass. These tip-masses
should be typically on the order of maximum 5 kg for an object to deorbit of
mass around 500 kg, as in case of Sylda.

1.4.5 Motion of a tethered system in space

In low eccentricity orbits, such as LEO orbits, the tether generally oscillates around
an equilibrium position, in a certain angular range: this motion is called libration,
and it takes place both on the orbital plane and out of it. In deorbit procedures
from LEO, as described in Ref.[40], the desired configuration is to have the tether as
aligned as possible with the local vertical, or anyhow librating with a small angle with
respect to the local vertical. In order to have an electrical field along the tether in
the direction such that a Lorentz drag force is generated, and at the same time the
cathode attached to the body to deorbit (for the reasons explained in Sec.1.4.4), the
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deployment must be performed with the tip-mass pointing upwards in case of prograde
orbits, and downwards in case of retrograde orbits. More precisely, as from Ref.[31],
the deployment must be pointing upwards for initial LEO orbits of inclination i from
zero to approximately 78.5◦, considering a dipole model for the geomagnetic field; for
retrograde orbits, with 101.5◦ < i < 180◦, a downwards deployment is required. For
inclinations 78.5◦ < i < 101.5◦ an analysis must be performed to estimate what is the
most favorable direction for deployment, i.e. the one that maximizes the Lorentz drag
force over the entire deorbit.

Figure 1.16 shows both the prograde and retrograde configurations. Some simplifica-
tions are present in the pictures, such as magnetic field orthogonal to both the relative
velocity vector and the tether: this is of course not true in general. The placement of
the cathode here is just representative: the cathode is surely attached to the body to
deorbit, but the exact placement is not discussed here and not shown in the pictures.

Spacecraft

Cathode + 
optional Load

Electrons ejected 
back to space

vrelB

Lorentz Drag 
Force 

Magnetic 
Field

FL

Conductive 
Segment 
of Tether Electron

Current (I)

Inert 
Segment 
of Tether

Tip-mass

Spacecraft

Cathode + 
optional Load

Tip-mass

Electrons ejected 
back to space

vrel

B
Lorentz Drag 

Force 

Magnetic 
Field

Velocity of s/c
relative to 

magnetic field

FL

Inert Segment 
of EDT Tether

Conductive Segment 
of EDT Tether

Electron 
Current (I)

Figure 1.16: BET system for deorbit from LEO. On the left: case of
prograde orbits. On the right: case of retrograde orbits.

A stable nadir alignment of the tethered system cannot be naturally achieved (i.e.
without passive or active control) along any eccentric orbit. Moreover, this nadir
pointing stability becomes increasingly challenging with increasing eccentricity.

Instead, in the case studied in this PhD research, i.e. deorbit from high eccentricity
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initial orbits, the motion of any tethered system is different than the motion of the
same system in LEO.
As reported in Ref. [44], tethered systems in orbits with eccentricity higher than about
0.355, as in case of Sylda that is left in GTO, an unconstrained tethered system would
fully rotate around its center of mass. In this case, it is not convenient to seek the
vertical alignment of the tether. The optimal stabilization strategy is different: in fact,
the centrifugal force created by the rotation of the tethered system can be exploited in
order to maintain a straight, taut and stable, configuration of the tether. However, the
rotation must be passively controlled with an optimal design of the system: in fact,
an uncontrolled rotation, if increasing too much, it would lead to an excessively high
tension along the tether, and eventually to tether breaking. Hence, the tension, and
consequently the rotational velocity, must be kept below a maximum threshold. This
limit is dictated by the mechanical properties of the tether material. These aspects
are discussed in Sec.2.1.3 of this thesis.

1.5 Objectives of PhD research

This PhD research has its general objective in expanding the knowledge about the
dynamics of a Bare-Electrodynamic-Tether (BET) system attached to an object in
high eccentricity orbit, throughout all the stages to remove it from orbit: a procedure
called deorbit. The electrodynamic tether considered in all the analyses has a tape-like
shape, and it is equipped with a hollow cathode for electron emission.
A major driver in the selection of the optimal deorbit device is its cost. Deorbit is not
regarded as a scientifically or commercially pay-back measure, even if crucial for the
safety of the space environment. Consequently, the cost of deorbit, and the mass of
the deorbit system, must be minimum.
Bare Electrodynamic Tethers have this potential, and they can also be implemented
on objects where other solutions are not applicable, such as dual-payload adapters, i.e.
bell-shaped structures used inside the fairing of a launch system in order to provide
housing for two separate payload units: a deorbit system based on chemical propel-
lant, for example, would be hardly acceptable to be mounted outside such structures,
in proximity of the fairing walls, due to the hazard that they would cause during the
launch phase. The technology of electrodynamic tethers has been tested in space,
and proved to work successfully, such as in missions PMG (1993) and TSS-1R (1996):
nonetheless, tethers have never been used for an actual deorbit application. Together
with all the positive features that tethers can bring to deorbit applications, the issue is
that tethers in space exhibit a more complex dynamics than alternative systems pro-
posed in literature, such as mounting small thrusters based on chemical or electrical
propulsion; a tethered system for deorbit requires then further research and acquisition
of new know-how, that this research aims to provide.

The dual-payload adapter used onboard Ariane 5 heavy launches to GEO, called
Sylda, is chosen as practical target, due to its large exposed area and mass, that make
it a major threat for active payloads both in LEO and GEO. In fact, Sylda is released
in GTO in the last phase of insertion of the dual payload in GEO: from this GTO
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orbit, Sylda continuously crosses both highly valuable zones of LEO and GEO. This
research focuses on deorbit from high-eccentricity initial orbits, also because there is
very little literature about it, even though it is of sure commercial interest, whereas
deorbit from LEO has been widely studied in many scientific references. This research
considers Sylda as specific target, but the results presented here are applicable with
only slight modifications to other objects to be removed from any high eccentricity
orbit: for example, inactive satellites in Molnija orbits.

A pivotal objective of this research is then the development of physical and numerical
models to simulate all the phases required to remove Sylda from orbit: this means that
not only the deorbit phase, with fully deployed tether is studied, but also the phase
of deployment of the tether and other necessary pre-deorbit procedures. A system
configuration is found from this research, that ensures compliance, by a large extent,
with deorbit international guidelines (setting 25 years as maximum time for removal),
while keeping the mass of the deorbit system as low as possible.

Another objective is to define an optimal system design, and boundary conditions, that
ensure the tether stability and the avoidance of tether breaking throughout deorbit. In
order to achieve this objective, two main configurations for the Bare Electrodynamic
Tether system are explored:

• a first configuration with single BET tether deployed one-way, discussed in
Sec.2.1

• a second configuration with a single BET tether, but subdivided in two segments,
that are electrically connected, and deployed along two opposite directions from
Sylda. This configuration, called butterfly configuration, is selected as the op-
timal one, after the results presented in Sec.2.1.3, and then used for all the
subsequent analyses.

Lastly, the research also aims to study procedures to guarantee the correct deployment
of the two tether segments in butterfly configuration, by detumbling Sylda before de-
ployment starts, and by detecting and controlling the tethers attitude. In particular,
for the attitude detection, a vision system is proposed and different configurations are
analyzed, evaluating the uncertainty in the measure of the angular position and the
distance of the tip-mass, at the end of each tether segment, from Sylda.

Based on numerical simulations of BET systems in space, a flexible deorbit architec-
ture can be developed in the near future, in which BET systems can be easily tailored
according to the specific target to remove from orbit. This PhD research is oriented
towards this scenario, in which deorbit becomes a routine procedure, for any future
object launched into Earth orbits.

The research is subdivided in three main branches, presented in separate Chapters of
this dissertation:

• Deorbit simulation from GTO. In Chapter 2 all the deorbit analyses and
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simulations are presented. This means that Chapter 2 deals with only what
happens after the tether segments are fully deployed, and the deorbit procedure
starts.

A first phase of analyses is performed with the principal aim of simulating with
a fast computational model the deorbit phase, and to estimate the conditions to
avoid tether breaking and instability. The model is created in a way such that it
is employable both to study a single tether configuration, or the butterfly config-
uration, with two tether segments deployed on opposite directions from Sylda.
This capability is given by the fact that the model is nondimensional, and receives
among the inputs directly the location of the system’s center of mass along the
tether, without need of specifying the system’s configuration. A nondimensional
model with normalized parameters and equations is used, with the tethered sys-
tem modeled as a rigid dumbbell, and including both the global orbital motion
and the simultaneous local rotation around the system’s center of mass. Only
the local rotation on the orbital plane is considered, and perturbation forces are
the Lorentz drag and atmospheric drag. The Lorentz drag, created by the BET
tether, becomes significant only when the system is orbiting below 2000 km; the
atmospheric drag only when below 1000 km. Tether stability during deorbit is
studied: in case of rotating tethered systems, as happens in GTO, the tether can
be maintained on a straight stable configuration by exploiting the centrifugal
force generated by the rotation. An analysis on the maximum tension created
along the tether is implemented too, in order to evaluate the conditions to avoid
tether breaking during deorbit. Results from this first campaign of analyses pro-
vide information about the optimal configuration to choose for the BET system,
leading to the employment of the butterfly configuration.

A second campaign of deorbit analyses is then performed, with the selected but-
terfly configuration for the BET system. For this campaign, the numerical model
is expanded and made even more accurate, including also the out-of-plane dy-
namics of the system. The dumbbell model is preserved, or more precisely a
double-dumbbell model, since there are now two segments of tether deployed on
opposite directions. A hybrid numerical model is developed and used, i.e. a
model including both nondimensional and dimensional equations and variables.
This is done in order to combine the advantages and attenuate the disadvantages
of both dimensional and nondimensional approaches.

• Deployment of the two tether segments. In Chapter 3 the study of tether
deployment, adopting the butterfly configuration, is performed. The storage of
the deorbit system and mounting on Sylda is discussed too, providing a solution
of easy integration with the default design of the Ariane 5 launcher equipped
with Sylda. Three scenarios of deployment are modeled, starting at different
locations along the initial GTO orbit of Sylda, where it is released: deorbit at
apogee; deployment at perigee; deployment at mid-way, after leaving the perigee
region going back towards the apogee. In Chapter 3, the detumbling of Sylda, a
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necessary procedure to be performed before starting the deployment, is analyzed
too.

• Vision system for tether’s attitude detection. Chapter 4 presents an anal-
ysis of possible configurations of a vision system to detect the tether’s attitude,
by tracking the tip-mass at the end of each tether segment. A monocular and
a stereo vision system are both considered, and their measurement performance
is simulated numerically in order to estimate the uncertainty in the measured
output. The application of a Kalman filter is discussed too, both with correlation
and without correlation between the measures provided by two cameras used to
track the same tip-mass. Results outline optimal solutions for the vision system,
i.e. the configurations that minimize the uncertainty on the measure.

Lastly, Chapter 5 draws conclusive remarks from all the analyses performed in the
previous Chapters.

An Appendix is inserted too, in order to provide expanded insights on the nondi-
mensional model used in the analyses presented in Sec. 2.1, on the environmental
parameters computation, and on the reference frames that are employed throughout
this research.
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Chapter 2

Analysis of Deorbit

This Chapter deals with the study of the deorbit of Sylda from its initial Geostation-
ary Transfer Orbit (GTO)behavior, once the tether is completely deployed, taut and
straight due to the rotation of the system around its center of mass. All the necessary
steps to be performed before starting the deorbit, including the tether deployment, will
be discussed in Chapter 3. A dumbbell model is reasonably assumed for the tethered
system, since the tether and Sylda start, at the end of deployment, to approximately
rotate together as a single rigid body as discussed in Chapter 3.

2.1 First phase of analysis

A first campaign of deorbit simulations is performed with these main features:

• Only dynamics on the orbital plane are considered, i.e. the out-of-plane motion
of the system is neglected.

• A single tether is used and modeled as a dumbbell, i.e. the system has only
one local degree of freedom that is the rotation on the orbital plane around the
system’s center of mass. At the same time, the system moves as a whole along
the deorbit path. The dumbbell has two tip-masses, one at each end of the
tether: one tip-mass includes Sylda, the hollow cathode for electron ejection,
and other hardware of the deorbit system.

• A nondimensional model is used in order to achieve the maximum computational
efficiency and flexibility, with all the parameters and equations normalized. This
model is described in Sec. 2.1.1.

• The orbital inclination is kept constant throughout deorbit, and equal to zero.
This is reasonable given that Sylda is released on a very low inclination GTO
(about 6◦) and that the inclination changes little during deorbit, as will be
demonstrated in Sec.2.2.2 and shown in Fig. 2.13.
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2.1.1 Nondimensional Physical Model

The first computational model developed for deorbit simulation relies upon the nondi-
mensional approach, i.e. all variables and equations are made nondimensional in order
to provide a very computationally efficient and flexible solution method. However, all
the references to the dimensional form of the main equations is provided, and a ta-
ble is posted in Appendix A, with the dimensional and corresponding nondimensional
parameters used in the model, and coefficients to switch from one form to the other.

Two reference frames are used in the model:

1. Orbital frame, with unit vectors ur, us, uw.

2. Perifocal frame, with unit vectors up, uq, uw.

Refer to Appendix B for a description of these frames. The angular velocity of rotation
of the orbital frame with respect to the perifocal frame is ν̇uw.

The system is modeled as a single dumbbell with two point masses at each end, i.e.
mA as anodic tip-mass and mC as cathodic tip-mass. These two masses are connected
by a conductive bare electrodynamic tape tether of mass mt, width wt, thickness
ht, and length Lt. The tether is assumed to be rigid and inextensible. This is an
approximation, however it is realistic since with the rotation of the system, that starts
during the deployment, the tether tend to a straight configuration with the increase
of the angular velocity of rotation. Once reaching a straight configuration, since the
rotation about the center of mass does not decrease during deorbit, the tethered system
keeps rotating approximately as a single rigid body.
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Figure 2.1: BET deorbit system with angles of global and local motion.
Point A and C are the anodic and cathodic ends where the masses are
placed: Sylda is included in the mass at point C together with a hollow
cathode mounted on it. Point G is the center of mass of the entire system.
The system’s center of mass G moves along the deorbit path (dashed black
line), with position rG and velocity vG. The angles of true anomaly ν,
local tether in-plane rotation θ, and Ψ = ν + θ are displayed too.

The tether carries a current intensity i = i(x)ut, where ut is a unit vector directed
along the tether and pointing from the cathodic point C, where Sylda and the hollow
cathode are placed, towards the anodic point A. Similarly to what was done in other
works (e.g. Ref.[35]), normalized variables are introduced, and distinguished from the
corresponding dimensional variable with a bar on the top.

In this first campaign of analyses, the cathode is assumed to be mounted on Sylda,
and the tether to be deployed one-way only: consequently, the mass mC is made of
Sylda’s mass mS plus the mass of anything that is mounted on Sylda, including the
cathode. m = mA + mC + mt is the total mass of the system. The masses mA and
mC are expressed as function of the total mass m and two nondimensional variables
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mt and φ, where:

mt =
mt

m
(2.1)

is the fraction between tether mass and total mass, and φ is such that:

mA =m

(
cos2 φ− mt

2

)
(2.2)

mC =m

(
sin2 φ− mt

2

)
(2.3)

The minimum and maximum value of φ are φmin = arcsin
(√

mt/2
)

and φmax =

arccos
(√

mt/2
)
, and they correspond to mC = 0 and mA = 0, respectively (as from

Ref.[35]). The position vector of the center of mass G, with respect to point C is then:

xCG = Lt cos2 φut (2.4)

and the moment of inertia of the system JG, relative to a line orthogonal to the tether
and passing through G, is computed as:

JG =
1

12
mL2

t

(
3 sin2 2φ− 2mt

)
(2.5)

The trajectory of the system’s center of mass in the perifocal frame is defined using
the Keplerian orbital parameters: the semi-major axis a, eccentricity e and the true
anomaly ν are considered variable over time, whereas the other Keplerian parameters
are assumed constant throughout the deorbit. The inclination, as previously stated, is
assumed to be zero in all the analyses presented in Sec. 2.1: therefore, the equatorial
plane is always coincident with the orbital plane.

The out-of-plane dynamics of the tether, as previously stated, are neglected: in other
words, only the motion on the orbital plane is considered throughout the analyses
presented in this Sec. 2.1. The in-plane local motion of the system around its center
of mass is defined by the angle θ between ur and ut.

The components in the orbital frame of the unit vector ut are:

ut = cos θur + sin θus (2.6)

The normalized position vector of the center of mass rG, and its velocity vG, expressed
in orbital frame components, are defined as follows:
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rG =
rG
RE

=
a(1− e2)

1 + e cos ν
ur (2.7)

vG =

√
RE

µE
vG =

1√
a(1− e2)

[e sin ν ur + (1 + e cos ν)us] (2.8)

where the normalized velocity vG and radius vector rG of the center of mass are
introduced, as well as the normalized semi-major axis a = a/RE. RE and µE are the
Earth radius and gravitational parameter, respectively.

The deorbit path (global motion) of the center of mass and the tether attitude over
time are affected by the total perturbation force, F , and the total momentMG about
the system’s center of mass.
The global motion of the center of mass is analyzed using the Gauss planetary equations
(Ref. [7]), written in nondimensional form as follows:

ȧ =
2a3/2

√
1− e2

[
F re sin ν + F s (1 + e cos ν)

]
(2.9)

ė =
√
a(1− e2)

[
F r sin ν +

2 cos ν + e (1 + cos2 ν)

1 + e cos ν
F s

]
(2.10)

ν̇ =

√
a(1− e2)

r2
G

(2.11)

The dots over each variable denote derivatives with respect to the normalized time
τ ≡ t

√
µE
R3

E
.

The local rotation around G is studied with an equation derived from previous litera-
ture (Ref.[8, 45]), with slight modifications and normalized parameters:

Ψ̈ = − 3

2r3
sin [2 (Ψ− ν)] +MG (2.12)

where Ψ = θ + ν is introduced for convenience. After finding the profile of Ψ and
ν over time with Eqs.2.12,2.11, the profile of θ = Ψ − ν can be found. Vector F =
F rur + F sus in Eqs. 2.9-2.10 is the total vector of perturbation forces, accounting
for both aerodynamic drag and electrodynamic drag, and split in components on the
orbital frame, and normalized as F = FR2

E/(mµE). The scalar MG in Eq.2.12 is the
projection on uw, i.e. on the perpendicular to the orbital plane, of the total torque
exerted by the perturbation forces around the system’s center of mass G, MG =[
R3
E/(µEI

G)
]
MG · uw.

The dominant perturbations for a BET system in GTO are the Lorentz electrodynamic
force and the aerodynamic force. Both of them are drag forces, that dissipate orbital
energy. The total perturbation force is then calculated as:

F = iscLtiav (ut ×B)− 1

2
cdρatmSvGvG (2.13)
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where isc = Etσtwtht is the short circuit current computed from the induced electrical
field Et = ut · (vG ×B); B is the geomagnetic field; iav is the normalized average
current along the tether; cd is the aerodynamic drag coefficient; ρatm is the atmo-
spheric density; S is the total area exposed to atmospheric drag of the entire system,
projected on the plane orthogonal to the drag force. The Lorentz force is active only
when Et > 0. This is due to the fact that when the induced electrical field, during the
local rotation of the system, becomes negative, i.e. pointing from anode to cathode,
no current can be generated by the tether. Consequently, no Lorentz drag is created.
The code implements this condition by automatically zeroing the current at every in-
tegration time-step when the electrical field component along the tether is negative.

The normalized average tether current, iav in Eq. 2.13, is here computed assuming an
ideal tether, i.e. a tether with both zero cathodic impedance and zero cathodic voltage
drop. Moreover, the electron collection by the tether is assumed to take place under
the Orbital Motion Limited (OML) theory [41]. This assumption is reasonable given
the very low influence, on the overall electrodynamic behavior, of neglecting these two
parameters (Ref. [3], [37]). As reported in Refs.[3] and [40], the normalized average
current iav depends only on the normalized tether length, defined as

Lt =
Lt

h
2/3
t

1

l1/3
, (2.14)

involving the tether length Lt, the tether thickness ht, and the ambient-dependent
parameter

l ≡ 9π2

128

meσ
2
t

q3
e

Et
N2

(2.15)

where me, qe, σt, and Ne are respectively the mass and charge of a single electron,
the tether conductivity and the electron number density. The computation of iav is
performed with an algorithm partially derived from Ref.[38], and described in Sec.
2.1.1.

In this first part of analysis presented in Sec.2.1, the geomagnetic field is always com-
puted, using the dipole model, as:

B =
B0

r3
uw (2.16)

where B0 = 3.12× 10−5T . The field is always directed along the unit vector uw given
that the deorbit simulation takes place on the equatorial plane and the magnetic field
is a simple dipole. For inclinations different than zero, the geomagnetic field has other
components too.

The IRI (International Reference Ionosphere) 2007 database from NASA is employed
to extract data of ionospheric electron number density Ne (see Fig. 2.2, and Appendix
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E). This specific model computed the values of Ne on a Julian Day such that the Solar
activity was at approximately average level (F10.7 ≈ 145 s.f.u.), and it only includes
the variation with altitude (not with time, nor with latitude and longitude). For al-
titudes greater than 2000 km, Ne becomes negligible, and the Lorentz drag is then
automatically zeroed by the code.

The atmospheric density, needed for the aerodynamic drag computation in Eq. 2.13, is
extracted from the Jacchia-Bowman 2008 empirical model, for a value of average Solar
flux. The atmospheric density becomes negligible above 900 km, and the atmospheric
drag is then set to zero above this altitude. More details are provided in Appendix C.
The electron number density and atmospheric density profiles used in the simulations
are posted in Fig. 2.2.
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Figure 2.2: Left: electron number density versus altitude. Right: at-
mospheric density versus altitude.

The normalized perturbation force in Eqs. 2.9 and 2.10 is calculated as:

F = αLmt
[ut · (vG × uw)]

r6
G

iav (ut × uw)− αatm
ρatm(r)

ρp
vGvG (2.17)

where mt = ρtLtwtht is the tether mass, being ρt the tether density; ρp is the at-
mospheric density at the perigee; b = m(cdS) is the total ballistic coefficient; the
parameter αL is defined as:

αL =
σt
ρt

B2
0R

3/2
E√
µE

, αatm =
1

2b
REρp (2.18)

The ballistic coefficients of the tip-masses and the tether is here approximated as
equal; furthermore, the rotational velocity of the system about its center of mass is
much smaller than the orbital velocity, and can be then neglected. With these two
assumptions, the torque about G, created by the aerodynamic forces, vanishes. The
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torque about G is then generated only by the electrodynamic perturbations. The
torque component orthogonal to the orbital plane, MG, used in Eq. 2.12, is then
computed and normalized as:

MG = uw ·MG =uw ·
(
GA× F L +MA

)
(2.19)

=uw ·
[
−
∫ Lt

0

s i(s)dsut × (ut ×B) + (Ltut − xCG)× FL
]

(2.20)

=
B0

r3
G

iscL
2
t

[
xCG
Lt
−
(

1− MA

iav

)]
iav (2.21)

where FL and MA are the resultants of the Lorentz force and its moment about the
anodic tip A. Eq.2.21 is obtained knowing that uw · [ut × (ut × uw)] = −1. MA

depends only on the normalized tether length Lt. From Eq. 2.21, the normalized
torque appearing in Eq.2.12 is calculated as follows:

MG = βL

(
RE

Lt

)
mt

3 sin2 2φ− 2mt

ut · (vG × uw)

r6
G

(
cos2 φ− xcp

)
iav (2.22)

where

βL =12

√
RE

µE

REB
2
0σt

ρt
(2.23)

xcp =
xcp
Lt

=1− MA

iav
(2.24)

The normalized variables iav, MA and xcp, as well as the normalized maximum current
iB, at zero-bias point B, are plotted versus Lt in Fig. 2.3. xcp is the normalized
distance of the electrodynamic center of pressure from point C, i.e. the dimensional
location xcp divided by the tether length.
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Figure 2.3: Profiles of normalized maximum current iB, normalized
average current iav, normalized torque about the anodic tip MA, nor-
malized location along the tether of the electrodynamic center of pressure
xcp. All these profiles with respect to the normalized tether length Lt

The numerical integration of Eqs. 2.9–2.12 with an ODE45 returns the time evolution
of the orbital parameters. In parallel with these calculations, it is fundamental to
monitor the evolution of the maximum tension along the tether, that occurs at the
system’s center of mass G. The tension is generated by the local rotation of the system
about G, that gives the most relevant contribution, but also by the orbital motion,
and the gravity gradient. Given that the Lorentz force is acting orthogonal to the
tether, it does not contribute to tether tension. The contribution to tension from
atmospheric drag can be reasonably neglected. The tether tension at the center of
mass G, named TG, must be smaller than the breaking tension dictated by tether
material properties, accounting for a safety factor κ > 1. TG(τ) varies during the
deorbit time (or normalized time τ). The breaking tension is T∗ = (σutswtht) /κ,
where σuts is the ultimate tensile strength of the tether material and wtht the cross-
section area of the tape tether. The following equation is computed for TG(τ)/T∗,
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based on Ref. [8]:

TG(τ)

T∗
= δ

(
Lt
RE

)2
cos2φsin2φ

mt

(
1− mt

2

)[
ψ̇2 − 1

r3
G

(1− 3cos2θ)

]
(2.25)

where

δ ≡ κ µE ρt
σutsRE

(2.26)

The tether does not break, during deorbit, if the maximum tension ratio TG,max/T∗, is
always lower than 1.

Calculation of normalized average current and normalized electrodynamic
torque

The current and voltage profiles along an ideal tether with zero potential drop at the
hollow cathode are described in works by Sanmartín and Ahedo (Ref. [42], [3]). The
equations can be efficiently solved as presented by Sanjurjo et al.[38].

Assuming the electron collection to follow the Orbital Motion Limited (OML) regime,
a characteristic tether length L∗ can be defined as (Ref.[38]):

L∗ =

[
9π2

128

meσ
2
tEth

2
t

q3
eN

2
e

]1/3

(2.27)

If Lt = Lt/L∗ < 4 (i.e. in the short tether regime), the auxiliary variable υ0 is first
computed, from the nonlinear equation:

Lt =
4

3

f(υ0)

cosh1/3υ0

, f(x) ≡
∫ x

0

sinh1/3 ydy (2.28)

by using a Newton-Raphson iterative method. The maximum normalized current,
found at zero-bias point B, is iB = acosh

(
1/(1− iB)

)
. Current and voltage profiles,

in the short tether regime, are computed as follows:

ϕ(i) =(iB − i)2/3
(
2− iB − i

)2/3 (2.29)
i(υ) =1− (1− iB) cosh υ (2.30)

ξ(υ) =
4

3
(1− iB)1/3 [f(υ0)− f(υ)] (2.31)

Here ξ = s/L∗, where s is the location along tether measured from the anodic point
A, i = i(s)/isc, and ϕ = V (s)/EtL∗ is the normalized tether bias.
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Conversely, when Lt > 4, the tether operates within the long tether regime. In this
case, the maximum normalized current, at zero-bias point, is iB = 1, and

ϕ(i) =(1− i)4/3 (2.32)

ξ(i) =4
[
1− (1− i)1/3

]
(2.33)

The normalized average current is then computed as:

iav =
1

iscLt

∫ Lt

0

i(s)ds =
1

Lt

∫ Lt

0

i(ξ)dξ = 1− ϕA

Lt
(2.34)

where dϕ/dξ = i − 1 as in works by Sanmartín[42]. In the short and long tether
regimes the average normalized current is, respectively, iav = 1−

[
i
2/3

B (2− iB)2/3/Lt

]
and iav = 1− 1

Lt
.

Using again dϕ/dξ = i − 1, and performing an integration by parts, the normalized
Lorentz torque about the anodic point A is obtained:

MA =
1

iscL2
t

∫ Lt

0

s i(s)ds =
1

L2
t

∫ Lt

0

ξi(ξ)dξ =
1

2
− 1

L2
t

∫ Lt

0

ϕ(ξ)dξ (2.35)

ϕ(ξ) depends on the specific tether regime. Therefore, in the short tether regime the
normalized torque is

MA =
1

2
− 4

3L2
t

(1− iB)5/3g(υ0) (2.36)

where the function g(x) is introduced, with respect to the variable x (that in case of
Eq.2.36 is x = υ0, whereas the generic variable of integration is y = υ), and defined
as:

g(x) ≡
∫ x

0

sinh5/3 ydy (2.37)

In the long tether regime:

MA =
1

2
− 4

5

1

L2
t

(2.38)
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2.1.2 BET Deorbit mission design

Aluminum 1100 - H19 is used as base material for the conductive tether. Its prop-
erties are ρt = 2700 kg/m3, σt = 3.54e × 107 Ω−1m−1. However, the numerical model
can accept even other alternative conductive materials. In fact, instead of a pure
Aluminum tether, a tether made of a Metal Matrix Composite (MMC) material, with
Aluminum matrix reinforced with fibers, can be used. Such solution would lead to
a much higher maximum tension sustainable by the material. Given that the code
computes any Lorentz related quantity, using only the conductive material properties
(i.e. the properties of the metallic matrix not of the fibers), no changes in ρt and σt
are required in the code when using MMCs with Aluminum matrix instead of pure
Aluminum. Results from computations are still valid: the only important feature that
changes is the ratio between the maximum tension experienced by the tether and the
maximum allowed tension dictated by the specific material ultimate tensile strength.

The simulations adopted these other parameters: κ = 3, frontal area-to-mass ratio
S/m = 0.03 m2kg−1, Earth equatorial radius RE = 6378 km, initial perigee altitude
Hp0 = 300 km and atmospheric drag coefficient cd = 2.2. With these values, these
subsequent parameters are calculated and employed:

αL = 1.03× 10−2, αatm = 5.66× 10−6, βL = 0.12, δ = 2.47× 103 (2.39)

Using data extracted from the environmental models reported in Fig. 2.2, and the
electrodynamic functions iav(Lt) and xcp(Lt), shown in Fig. 2.3, it turns out that
the results given as output from this numerical model depend only on four design
parameters given set as inputs by the user. These parameters are:

mt,
Lt

h
2/3
t

, Lt, φ, (2.40)

These input parameters need to be selected to yield a short deorbit, while ensuring a
tether tension always below the maximum allowed tension.

The perturbation forces, i.e. the Lorentz drag and atmospheric drag, are proportional
to the normalized tether massmt, whereas TG/T∗ decreases with increasingmt. Conse-
quently, the higher ismt, the lower is the deorbit time and the tether tension. However,
mt should be as low as possible in order to have a low tether mass, and therefore a
competitive technology. For all simulations presented here, mt = 0.03 is used, i.e. a
tether mass about 3% of the total mass of the system. This mt value yields values of
φ in the range 0.12278 = φmin ≤ φ ≤ φmax = 1.4480.

The second and third parameters, Lt and Lt/h
2/3 involve the tether length and its

thickness. As shown in Fig. 2.3, a longer and thinner tether (large Lt) is more effi-
cient, since it leads to a higher average current. However, the tether length should not
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be too high because the tension grows quadratically with Lt (see Eq. 2.25). In the anal-
yses presented in this Section 2.1, the reasonable values Lt = 2 km and ht = 100µm
are used.

The fourth parameter, φ, controls the mass distribution at the tether tips, and it is
used to perform a parametric analysis. A particularly interesting value of φ is the one
that makes the electrodynamic torque to vanish at the initial perigee: this value is
denoted as φ0. It is important to remark that Lt is ambient related, and therefore it
changes continuously during deorbit, causing in turn a continuous change of location
of the electrodynamic center of pressure.
The value of φ0 is given by the condition:

cos2(φ0) = xcp,0 (2.41)

where xcp,0 is the normalized distance between the cathodic tip C and the electrody-
namic center of pressure, at the initial perigee. Tethered systems with φ = φ0 are
named self-balanced (Ref. [33]), and were proposed in previous literature as a solution
to mitigate the dynamic instability in librating tethers (Ref. [34]).

From the chosen initial perigee altitude (Hp = 300 km) and environmental models, the
value of φ0 = 0.92099 is computed.
The initial apogee altitude of the GTO orbit is set equal to Ha0 = 35786 km, i.e. the
GEO altitude. Having set the initial perigee and apogee radii, the initial normalized
semi-major axis and the initial orbital eccentricity are derived, a0 = 3.8320, e0 =
0.72675. The other initial conditions are ν0 = 0 and θ0 = 0, that correspond to
simulations starting from the initial perigee, and with tether initially aligned with the
local vertical. The orbital inclination, the right ascension of the ascending node and
the argument of perigee, are assumed to be zero and kept constant throughout all
simulations.

2.1.3 Numerical Simulations

Single Case Analysis

A statistical analysis is performed with the software Stela R© (courtesy of Centre Na-
tional d’Etudes Spatiales, CNES) in order to estimate the reentry time by natural decay
for an object like Sylda from GTO, with a perigee at 300 km and apogee at GEO. Re-
sults from this analysis confirm that there is about 90% probability that Sylda needs
more than 25 years, in order to naturally reenter. Consequently, the maximum allowed
time allowed for removal of any inactive object would be surpassed (maximum time
set by international guidelines such as from NASA Ref. [1]).

Subsequently, an analysis with the model presented in Sec.2.1.1 is carried out, consid-
ering a single case of deorbit, i.e. setting a single value of φ = 0.99φ0.
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The parameters presented in Sec.2.1.2 are used, and an initial positive angular velocity
of rotation about G, i.e. dθ/dt = 0.004 rad/s. When using φ < φ0, like in this case,
a positive initial angular velocity is required and its magnitude must be greater than
about 0.003–0.005 rad/s, depending on the specific value of φ. It is fundamental to
use such value at the start of simulations for two reasons: it is possible to deploy
the tether reaching a non-zero angular velocity at the end of deployment, in a highly
eccentric orbit; secondly, a high enough, yet still low, value of initial angular velocity
prevents tether slackness in the initial phase of deorbit, i.e. it prevents any change in
sign of the angular velocity. Such occurrence would lead, in fact, to instances when the
tether has no positive tension acting on it, and this would generate instabilities, since
a flexible tether cannot resist compression and would consequently bend, losing its
nominal straight configuration. Conversely, an angular velocity that always preserves
the same sign, meaning that rotation always take place in one direction, determines a
variable but always positive centrifugal force, i.e. that creates tension not compression,
and maintains the tether in a stable straight configuration.
The initial value of dθ/dt must be positive, since for φ < φ0 the Lorentz torque about
G will have positive sign during deorbit, so the local rotation will naturally take place
in the same direction as the orbital motion (same sign as dν/dt).
The simulation leads to a total deorbit time of 987 days, i.e. approximately 2.7 years.
This time is much lower than the most probable natural decay time for an object like
Sylda from GTO, being higher than 25 years, as reported earlier.
Profiles of different parameters versus time are computed for this single case of deorbit,
and shown in Fig.2.4.
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Figure 2.4: Profiles of different parameters throughout the entire
deorbit, with φ = 0.99φ0, and initial angular velocity of dθ/dt =
0.004 rad/s.

As shown in Fig. 2.4, the orbital eccentricity and the apogee radius decrease, for most
of the deorbit, almost linearly over time, especially the apogee radius. Only in the
last part of deorbit they decrease faster due to the much higher time spent in regions
where both Lorentz and atmospheric drag are present.
Figure 2.4 shows that the angular velocity dθ/dt oscillates over time, but has a con-
stantly increasing trend with always positive values. This means that the system
rotates locally, about its center of mass, always in the same direction as the orbital
motion.
The evolution over time of tension at center of mass, Γ, shows an oscillating behavior,
with values always positive, and with constantly increasing trend. This correspond to
what is expected given the angular velocity dθ/dt profile. Γ experiences a very gradual
increase for about 70% of the total deorbit time. In the last 30% of the deorbit, Γ
steeply increases reaching its maximum value, Γmax ≈ 88 N, at the end of deorbit. A
full deorbit, without instability and without breaking the tether, is possible even with
a tether material with low mechanical properties, such as Al1100. This material has
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an ultimate tensile strength of σuts = 205 MPa. With a GTO typical total system
mass m = 500 kg, tether thickness ht = 100µm, consequent tether width wt ≈ 2.8 cm,
and safety factor κ = 3, the value of Γ∗ for Al1100 is 190 N, that is largely greater
than Γmax ≈ 88 N, found with this simulation.

Multiple case analysis

Following the first single-case analysis, a batch of additional simulations were run,
changing only the parameter φ, and keeping constant all the other values. The full
range of φ, from φmin to φmax is divided in a series of progressively increasing values.
For each value of φ, a full deorbit simulation is performed, computing the maximum
tension during deorbit, Γmax, at the system’s center of mass. Figure 2.5 shows Γmax
versus φ. The full range of possible values of φ is used for the plot, going from φmin,
corresponding to mC = 0, to φmax, corresponding to mA = 0.

0

Figure 2.5: Profile of maximum tension Γmax, during the entire deor-
bit at point G, versus different configurations of tethered system, defined
by different values of φ. The y-axis of the plot is in logarithmic scale.
27 full deorbit simulations are performed, producing the 27 points in the
figure. A spline interpolation is used to compute a curve from these 27
points.

Every value in this plot is such that no tether slackness takes place. Hence, for each
case, a nonzero initial angular velocity is considered. For φ < φ0, an initial minimum
value dθ/dt = +0.003 rad/s must be used, whereas for φ > φ0 a value of same magni-
tude but opposite sign (dθ/dt = −0.003 rad/s). In order to have the minimum tension
during deorbit, it is important to select the minimum value of initial angular velocity
that prevents slackness.
As expected, the lowest values of maximum tension at G occur for φ around φ0. This
multiple-case analysis proves the fact that it is fundamental, in order to prevent tether
breaking, to keep the Lorentz torque as small as possible during deorbit. This allows
for lower angular velocities of rotation about G, lower centrifugal force and ultimately
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lower tether tension. In order to have small Lorentz torque, the system should be
configured in a way such that its center of mass is as close as possible to the electro-
dynamic center of pressure throughout deorbit. The Lorentz torque will generally be
nonzero and variable during deorbit, given that the center of mass is fixed, whereas
the electrodynamic center of pressure location changes over time. By using a value
of φ in the proximity of φ0, the Lorentz force moment arm will be variable, yet low,
during deorbit. Therefore, also tension at G will be generally low, for φ close to φ0.
The allowed values of φ lie around φ0. This means that the center of mass of the
system must be far enough both from the anodic tip A and the cathodic tip C. This
goal can be achieved by using a butterfly configuration for the system, i.e. by having
the massive object to deorbit close to the electrodynamic center of pressure, and the
tether subdivided in two segments deployed along opposite directions from the object
to deorbit (Sylda in this case). The lengths of the two tether segments must be opti-
mized in order to minimize the distance between the system’s center of mass and the
electrodynamic center of pressure throughout deorbit.

From the curve shown in Fig. 2.5, the user, after selecting the tether material, can
derive the range of allowed φ values that enable a full deorbit, avoiding both tether
slackness and breaking.
The values computed in this analysis assume the density and electrical conductivity of
Aluminum 1100, but they are valid also for Metal Matrix Composites (MMC) where
the matrix is made of Aluminum, for the reasons already described in Sec.2.1.2. For
example, by using a tape tether made of MetPregTM Fiber Reinforced Aluminum, both
a high resistance to space thermal environment and very high mechanical properties
are achieved. This material has an ultimate tensile strength σuts = 1450 MPa (source of
data www.matweb.com). This value, together with the already presented values κ = 3,
ht = 100µm, and wt = 2.8 cm, leads to a Γ∗ = 1750 N. In this case, it is then found a
range of allowed φ between approximately 0.89 and 0.94, corresponding to a center of
mass allowed location between about 700 m to 790 m from the cathodic tip C, with a
tether of length Lt = 2 km.
In case a material different from Aluminum is used, as conductive matrix, the model
developed here can easily accommodate this, by just changing the values of ρt and σt.
In this case, the numerical output will be different, yet the shape of the curves and
the comments on the results would still apply.

For each of the 27 simulations reported in Fig. 2.5, the total deorbit time is computed
too, finding out that it is only slightly variable with the variation of φ from φmin to
φmax. The deorbit time, averaged on the full range of φ, is about 973 days, i.e. about
2.67 years.
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2.2 Second phase of analysis: deorbit with BET and
hybrid model

Results from Sec. 2.1 show that deorbit without tether instability and breaking can be
achieved by designing a system with center of mass very close to the electrodynamic
center of pressure, i.e. the point where the resultant of the Lorentz drag force is acting.
The configuration of the system plays then a pivotal role. The mass of the object to
deorbit is a constraint, thus the designer can play only with tether’s characteristics
and tip mass. The minimization of the distance between center of mass and electro-
dynamic center of pressure can be achieved more easily with a butterfly configuration
than with a single-tether configuration. Therefore, this will be the configuration for
the BET system considered in this second phase of deorbit simulations.

XB

YB

ZB

Figure 2.6: View of Sylda when deorbit starts. The two tethers in the
dumbbell model are aligned with the first axis of the body frame XB and
deployed along symmetrically opposite directions. The two tethers are
then electrically connected on Sylda and stored in separate boxes placed
axialsymmetrically. In green and yellow the anodic and cathodic tip-
masses. On the cylindrical body two magnetic torquers are mounted (refer
to Sec. 3.2) for explanation.

In all analyses presented in Sec. 2.2, these are the main features of both the global
and local motion of the BET system:

• Both dynamics on the orbital plane and out-of-plane are considered.
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• All the orbital parameters are considered variable, differently from what was
done in the previous batch of analyses. Hence, there is a variation in orbital
inclination i, argument of perigee ω, right ascension of the ascending node Ω, in
addition to semi-major axis a and eccentricity e.

• Rigid dumbbell model for the tether, but it is split into two separate rigid dumb-
bells, one for each tether when using the butterfly configuration. Therefore, there
are two degrees of freedom for each tether (i.e. the local rotations on the orbital
plane and out-of-plane, around the system’s center of mass).

• Hybrid model, combining the advantages of the dimensional model developed in
the first part of the PhD research and the nondimensional model described in
Section 2.1.

• Sylda and the two tip-masses are all modeled as point masses rotating together
with the rest of the dumbbell system.

• the variation of current along the tether is considered, and an average value
of current is computed as well as an electrodynamic center of pressure, where
the resulting Lorentz force acts in order to create the same dynamics as when
considering a distributed force.

• Only one cathode is considered, that is part of one of the two tip-masses. This
means that even is the tether is deployed two-ways, it is a single electrodynamic
tether: consequently, a current is generated only during the part of the rotation
when the inducted electrical field is positive, not all the times.

The state of the tethered system, with the model considered here, can be univocally
defined when these parameters are known:

• the length of each tether segment L1 and L2 of the butterfly system.

• the radius vector rG = rA from the center of the Earth to the center of mass of
the system (assumed coincident with Sylda as point mass A).

• the angle of true anomaly of center of mass along the orbit, ν.

• the angle of in-plane rotation θ of the tethered system about its center of mass,
on the plane of the orbit.

• the angle of out-of-plane rotation ϕ of the tethered system about its center of
mass, out of the orbital plane.

The following perturbations are considered in the code:

• Electrodynamic, or Lorentz, Drag

• Atmospheric Drag is considered since it is desired to study the behaviour of a
non-electrodynamic tether, with deorbit based only on atmospheric drag acting
on the tether.
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2.2.1 Hybrid computational model

The nondimensional approach has the great advantage of increasing the computational
efficiency and providing a more flexible code, but also the disadvantage of making the
parameters and the equations less intuitive and straight-forward. The solution adopted
in this second phase of analyses presented in Sec. 2.2 is to combine the advantages of
both methods, and attenuate the respective disadvantages. The nondimensional ap-
proach is then kept only for the computation of the electrodynamic drag and torque,
whereas the integration of orbital and local dynamics, as well as all other operations
are done with dimensional parameters and equations. This combined approach will be
called here hybrid method.

The tethered system for deorbit is modeled as a rigid dumbbell with 3 point masses: the
mass of the object to deorbit mS, the mass at anodic tip mA, and the mass at cathodic
tip mC . These masses are connected by two opposite segments of a single conductive
tether, respectively of lengths L1 and L2. The two segments are electrically connected
and homogeneous, creating a total tether of length Lt = L1+L2. In computations these
features are used for the tether: total length of 2 km, L2 = L1/4, width of 3 cm and
thickness of 100µm. The ratio between L1 and L2 is a parameter to be optimized in
order to avoid tether instability and seizure during deorbit. Previous analyses showed
that L1 and L2 should be tuned such that the center of mass G is as close as possible
to the electrodynamic center of pressure of the tether. The total mass of the tether is
mt. The total mass of the system is: m = mA +mS +mC +mt. An abscissa x along
the rigid tether is defined, starting from cathodic tip C and pointing towards A (unit
vector ut).

A

G

A: anode

C: cathode
G: center of mass of the system

S: mass to deorbit
T: tether's center of mass

S

C

T

L2

L1

Figure 2.7: Butterfly configuration

Two reference frames are used, and defined as reported in Appendix B:

• an orbital frame of unit vectors ur, us, uw.

• a body frame of unit vectors uξ, uη,uζ . The first unit vector uξ is coincident
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with ut after deployment, i.e. when the tethers and Sylda rotate together as a
single rigid body as a dumbbell. Before deployment and during deployment, as
discussed in Chapter 3, the body frame is fixed to Sylda’s body and co-moving
with it, and the tethers rotate with respect to it. In Appendix B more details
about the body frame are provided.

The code simulates a full deorbit by implementing perturbation equations anytime the
object is at an altitude lower than 2000 km, where electrodynamic drag becomes sig-
nificant. At altitudes lower than 1000 km, also the atmospheric drag is added. Other
perturbation forces, such as solar pressure, or gravitational higher harmonics are less
significant and therefore neglected in this analysis.

The deorbit simulation begins at the perigee of the initial GTO orbit, with perigee
altitude of 300 km, with tether fully deployed and with ut initially aligned with ur.

A
G

SC

deorbit starting 
at perigee

ur

Figure 2.8: Configuration at beginning of deployment simulation

The following set of dimensional equations is used for the simulation of the perturbed
orbital motion of the center of mass G, and for the local rotation motion of the dumb-
bell system around G. The orbital inclination is considered fixed and equal to zero.

The first batch of six differential equations, taken from Bate[7], employ the Gauss
formulation to compute the variation of orbital parameters due to perturbations:
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da

dt
= ȧ =

2a3/2√
µ(1− e2)

[e sin νfr + (1 + e cos ν)fs] (2.42)

de

dt
= ė =

√
a(1− e2)

µ

[
sin νfr +

2 cos ν + e(1 + cos 2ν)

1 + e cos ν
fs

]
(2.43)

dν

dt
= ν̇ =

√
µa(1− e2)

r2
G

−

√
a(1− e2)

µ

[
−cos ν

e
fr +

sin ν

e

(
1 +

1

1 + e cos ν

)
fs

]
(2.44)

dΩ

dt
=
rG fw sin (ω + ν)√
µa(1− e2) sin i

(2.45)

dω

dt
= ω̇ =

√
a(1− e2)

µ

[
−cos ν

e
fr +

sin ν

e

(
1 +

1

1 + e cos ν

)
fs −

sin (ω + ν)

tan i(1 + e cos ν)
fw

]
(2.46)

where a is the semi-major axis, e is the orbital eccentricity, i is the orbital inclination,
ω the argument of perigee, ν the true anomaly, µ the Earth’s gravitational parameter.
fr, fs, fw are the total perturbation forces per unit mass (i.e. accelerations) along the
axes of the orbital frame. The previous equations define the perturbed orbital motion
of the center of mass G of the tethered system.

In addition to these equations, other two equations are used, that describe the local
rotation about G. These equations are derived from Beletsky[8]. Both the rotation on
the orbital plane θ and the rotation out of the orbital plane ϕ are considered: this
means that the orientation of the tethered system, and the body frame fixed to it,
with respect to the orbital frame, is defined by the two angles θ and ϕ.

ψ̈ = 2ϕ̇ ψ̇ tanϕ− 3µ

2 r3
G

sin 2(ψ − ν) + αθ +
Mζ

JG cosϕ
(2.47)

ϕ̈ = −
[
ψ̇2 +

3µ

r3
G

cos2(ψ − ν)

]
sin 2ϕ

2
− αϕ −

Mη

JG
(2.48)

where ψ = θ + ν; r = a(1 − e2)/(1 + e cos ν) and αθ ≈ αϕ ≈ 10−3 ν̇2, following the
approximation at pg. 74 of Beletsky[8]. JG is the moment of inertia of the dumbbell
butterfly system relative to an axis perpendicular to the tether, and passing through
G (the system’s center of mass). It is assumed a slender rod model for the tether,
and point masses for all the bodies at C, S, A points. Sylda has the same moments
of inertia with respect to the axes of in-plane and out-of-plane rotations since it is
an axialsymmetric body. Given these assumptions, JG is the same regardless of the
specific orientation of the axis perpendicular to the tether: this means that for in-plane
and out-of-plane rotation the same JG is used. JG can be computed as:

JG = mAx
2
GA +mCx

2
CG + JS +mSx

2
GS +

1

12
mtLt +mtx

2
GT (2.49)
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being Lt the tether length; xGA the distance from point A and center of mass G; xCG
the distance from point C and center of mass G; xGT the distance from center of mass
of the tether and system’s center of mass G; xGS the distance from point S (Sylda’s
location) and center of mass G. JS = JS,x = JS,y is the moment of inertia of Sylda
with respect to the axis orthogonal to the orbital plane and passing through its center
of mass (computed with Solidworks as reported in Sec. 1.3.1).

In Eqns. 2.47 and 2.48, the force moments (in Nm) are expressed in body frame
components Mξ, Mη, Mζ .

Two perturbation forces, and respective moments, are computed in the orbital frame:
aerodynamic (Fatm, Matm) and electrodynamic (FL, ML). The torques are then
transformed in body frame coordinates.

Mη = MG · uη = (MG
ad +MG

L ) · uη (2.50)
Mζ = MG · uζ = (MG

ad +MG
L ) · uζ (2.51)

The transformation matrix from the orbital frame to the body frame is computed using
Euler angles θ and ϕ (as a 3-2 rotation):

RB
O =

cos(θ) cos(ϕ) sin(θ) cos(ϕ) − sin(ϕ)
− sin(θ) cos(θ) 0

cos(θ) sin(ϕ) sin(θ) sin(ϕ) cos(ϕ)

 (2.52)

The aerodynamic force is computed as:

Fatm = −1

2
cdSatm,avgρatmvGvG (2.53)

where vG is the orbital velocity of the center of mass of the system, cd the atmospheric
drag coefficient, Satm,avg the average surface exposed to atmospheric drag, ρatm the lo-
cal atmospheric density. The same velocity with respect to the atmosphere is assumed
for all points of the system: this means that the difference in velocity from point to
point of the system, due to the local rotational motion, is neglected (it is much lower
than the orbital velocity). Likewise, the same atmospheric density is considered for
all points of the system. The surface exposed to drag changes with the rotation of the
system. A constant value is used, obtained making the average between a condition
of maximum exposed drag area, and a minimum of zero exposed drag area (dumbbell
aligned with vG. The average value of drag area is Satm,avg = (2Satm)/π where Satm is
the maximum exposed area of the entire system.
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The moment generated by the drag force, about the center of mass G, is calculated
using an aerodynamic center of pressure defined as:

xP,atm =
−xCGSC,atm − xSGSS,atm + xAGSA,atm + xTGSt,atm

Satm
(2.54)

where SC,atm, SS,atm, SA,atm, St,atm are the maximum atmospheric drag exposed area
of (respectively) the cathodic mass, Sylda, the anodic mass, the tether. Satm =
SC,atm + SS,atm + SA,atm + St,atm. x is the location of each point along the tether
starting from the cathodic tip C (e.g. xSG = xCS − xCG).

The torque about G due to the aerodynamic drag is then obtained as:

MG
atm = xP,atmut × Fatm (2.55)

The electrodynamic Lorentz force is computed, using the nondimensional method and
the normalized average current iav, similarly as what done in Section 2.1:

FL = iscLtiav (ut ×B) (2.56)

where isc = Etσtwtht, ht tether thickness, wt tether width, σt tether electrical con-
ductivity, Et = ut · (vG ×B) is the electrical field component along the tether, B is
the geomagnetic induction field. The geomagnetic field, in all computations presented
in Sec.2.2 is obtained with the method described in Appendix D, accounting for all
higher harmonics. The moment about G created by the Lorentz force is computed by
using the center of pressure location with respect to G, i.e. xcp − xG:

MG
ed = (xcp − xG)ut × FL (2.57)

where xcp = xcpLt (being Lt the tether length). xcp is the normalized distance of the
electrodynamic center of pressure from the cathodic tip C. The normalized values of
average current iav and center of pressure location xcp are found based on the normal-
ized tether length Lt, defined as described in Sec. 2.1.

For computational efficiency a numerically computed profile of iav and xcp with respect
to lt is implemented in the code. This means that at every step of integration a new
value of lt is calculated, and then used to extract the corresponding values of iav and
xcp from the profile. Therefore, it is not necessary to fully compute iav and xcp at
each integration step. This is the advantage given by the nondimensional approach,
used hereby only for computation of iav, xcp and electron density Ne. In all other
computations, the dimensional equations and parameters are employed.
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Equations for nonzero variable inclination

da

dt
= ȧ =

2a3/2√
µ(1− e2)

[e sin νfr + (1 + e cos ν)fs] (2.58)
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(2.60)
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dt
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√
a(1− e2)

µ

cos (ω + ν)

1 + e cos ν
fw (2.61)

dΩ

dt
=
rG fw sin (ω + ν)√
µa(1− e2) sin i

(2.62)

dω

dt
= ω̇ =

√
a(1− e2)

µ

[
−cos ν

e
fr +

sin ν

e

(
1 +

1

1 + e cos ν

)
fs −

sin (ω + ν)

tan i(1 + e cos ν)
fw

]
(2.63)

Parameters a, e, i, Ω, ω in the equations above change only due to perturbation forces
acting on the system’s center of mass. Instead, the true anomaly in Eq. 2.60 is a
parameter that changes along an unperturbed orbit too: thus, here ν̇ changes both for
the features of the unperturbed orbit, and for the perturbations on the orbital plane
fr and fs. The part of change due to perturbations is:

dν

dt pert
= −dω

dt r,s
(2.64)

as reported on Ref.[7] at pg. 406.

When the inclination is not zero and variable, Eqns. 2.47 and 2.48 cannot be used
anymore with the variable ψ = θ + ν. The correct equations are:

θ̈ = −ω̇z + 2ϕ̇tanϕ(θ̇ + ωz)−
3µ

2 r3
G

sin 2θ + αθ +
Mζ

JG cosϕ
(2.65)

ϕ̈ = −
[(
θ̇ + ωz

)2

+
3µ

r3
G

cos2 θ

]
sin 2ϕ

2
− αϕ −

Mη

JG
(2.66)

where
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ωz = ν̇ cos i (2.67)

ω̇z = ν̈ cos i− ν̇ sin i
di

dt
(2.68)

ν̈ = −2eµ sin ν

r3
G

(2.69)

The system rotates about its center of mass due to the torque exerted by external
forces, but this rotation increases very slowly since the moment of inertia of the sys-
tem is very large, given the length of the tether on the order of 1–2 km.

2.2.2 Numerical simulations

A simulation is run with the tether of total length of 2 km, subdivided in two segments
in butterfly configuration of respective lengths of 1200 m and 800 m: these are found
to be optimal length values to minimize the distance between the system’s center of
mass and the electrodynamic center of pressure over the entire deorbit.

The following profiles are computed, for various orbital parameters.
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Figure 2.9: Profile of apogee altitude during the entire deorbit of Sylda
from the initial GTO orbit.
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Figure 2.10: Profile of perigee altitude of Sylda during the entire de-
orbit of Sylda from the initial GTO orbit.

The apogee altitude profile is reasonable since it shows a constant decrease during the
most of deorbit, with a steeper reduction at the end of deorbit due to the fact that
in the last part of deorbit the system is always orbiting below 2000 km where drag
perturbations are active as modeled in the codes, and is therefore constantly affected
by orbital energy dissipation. Instead in the initial part of deorbit, the decrease in
apogee altitude is created only during the time intervals of the passage of Sylda across
the perigee region, below 2000 km. This is shown in Fig.2.11, where only the first 10
days of deorbit are displayed: the decrease in apogee altitude takes place step-by-step,
non in a continuous manner. This is due to the fact that drag perturbations are active
only below 2000 km and the system, in the first part of deorbit, is spending a time
below that altitude on the order of 10–20% of the orbital period.
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Figure 2.11: Profile showing the evolution of the apogee altitude over
the first 10 days of deorbit.

The same observation can be done for the perigee altitude profile: in this case, it is also
worth to point out that the perigee altitudes decreases much slower than the apogee
altitude, until the much steeper reduction in the very last part of deorbit. All of this
is proven by the fact that the orbital eccentricity is decreasing too during deorbit, as
shown in Fig. 2.12, together with other significant orbital parameters.
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Figure 2.12: Profile of orbital eccentricity during the entire deorbit of
Sylda from the initial GTO orbit.
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Figure 2.13: Profile of orbital inclination during the entire deorbit of
Sylda from the initial GTO orbit.
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Figure 2.14: Profile of argument of perigee during the entire deorbit
of Sylda from the initial GTO orbit.
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Figure 2.15: Profile of right-ascension of the ascending node during
the entire deorbit of Sylda from the initial GTO orbit.

The system during deorbit is continuously rotating on the orbital plane, as expected
from what reported in literature (e.g. Ref.[44]), and as demonstrated by the profile of
the in-plane angle of the system, that is always increasing in magnitude over the entire
deorbit as shown in the top Fig.2.16. The final angle, in magnitude, is about 4e + 7
degrees, which means that during the entire deorbit time, the system experienced an
average of about 5–6 full rotations per hour. The bottom Fig.2.16 displays the profile
of the out-of-plane angle of the tethered system during the entire deorbit, showing
that this angle continuously oscillates but never exceeds a magnitude of 5 degrees:
this is fundamental for the stability of the system, and demonstrates the fact that the
out-of-plane dynamics is present but less relevant than the in-plane dynamics. This
is then a confirmation that the analyses presented in Sec. 2.1, that were neclecting
the out-of-plane dynamics in order to have a faster computational model to provide
a set of information necessary to implement this second more accurate campaign of
analyses, were relying on a reasonable assumption.
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Figure 2.16: Profile showing the evolution of the in-plane angle (on
the top) and out-of-plane angle (on the bottom) of the tethered system
during the entire deorbit.

Another very important profile is the angular velocity on the orbital plane: as shown in
Fig. 2.17, the angular velocity oscillates and varies in magnitude, reaching a maximum
magnitude of approximately 0.013 rad/s ≈ 0.7 deg/s. It is important to note that this
maximum angular velocity on the orbital plane is absolutely comparable with the
angular velocity reached after 818 days with the analysis presented in Sec.2.1 and
shown in Fig.2.4. In the present analysis, with respect to the previous nondimensional
analysis, the out-of-plane dynamics interferes with the in-plane dynamics making the
profile of in-plane angular velocity non-monotonically increasing, as it was in the case
portrayed in Fig.2.4. Once again, the fact that the angular velocity does not change in
sign over the entire deorbit ensures the avoidance of tether slackness and consequent
instability. The tether can be then considered as always taut due to a positive tension
created by the in-plane rotation around the system’s center of mass. The value of
maximum angular velocity is also lower than the maximum reached in the simulation
presented in Sections 2.1.3 and 2.1.3, and therefore the results regarding tether tension
presented in those Sections are still applicable. It is then possible to state that the
maximum tension along the tether, also thanks to the butterfly configuration, is always
below, and with a good safety margin, than the maximum allowed tension by tether
material, especially when using a Fiber-Reinforced Aluminum. The tether segments
are then demonstrated not to break during the entire deorbit.
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Figure 2.17: Profile showing the evolution of the angular velocity of
rotation of the tethered system around its center of mass, on the orbital
plane, during the entire deorbit.

The total time to deorbit Sylda, with this more accurate model used for this second
campaign of analyses, turns out to be, as displayed in all the previous plots, about 818
days, i.e. about 2.24 years. This time is even lower than the deorbit time computed
in the previous campaign of analyses, presented in Sec. 2.1.
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Chapter 3

Analysis of Pre-Deorbit procedures

The present Chapter is focused on the analysis of the procedures to be performed be-
tween the release of Sylda in GTO and the actual start of deorbit, presented in Chapter
2, with fully deployed tethers. The deorbit system considered in this Chapter is the
butterfly system, presented in Chapter 2, with a single tape-like bare electrodynamic
tether (BET), divided in two segments deployed on opposite directions. Each segment
of tether has a tip-mass at its end. The pre-deorbit procedures that are investigated
here are:

1. Detumbling of Sylda: this is a procedure that must be performed before deploy-
ing the tethers, and has the aim of zeroing or minimizing the residual angular
velocities of rotation of Sylda. At the end of this procedure, Sylda is inertially
still and the subsequent phase of deployment can start.

2. Deployment of the two tether segments: deployment is performed on the orbital
plane, and different analyses are presented in this Chapter, with the objective
of finding optimal deployment parameters, such as the location along the orbit
where it is most convenient to perform it.

3.1 Tether storage and deployment hardware

At first, a brief overview at the necessary hardware for the deorbit system is presented
in this Section.

The most promising solution for the storage of the tape tether used in this research,
it is to have each segment of tether stored in a dedicated box, with the tether reeled
up around a drum wheel, similarly to what shown in Fig. 3.1. The two boxes are then
electrically connected in order to create a single electrodynamic tether, but subdivided
in two segment deployed on opposite directions.
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Figure 3.1: The tether storage box and deployer used in YES2 mission,
where a tether of length 30 km and 0.5 mm diameter was used. In the
case presented in this thesis, a tether of length on the order of 1 km is
used, and with tape-like shape (width of 3 cm and thickness of 100µm):
therefore, the spool is surely much smaller than this one. Photo courtesy
of ESA.

The two boxes, each one storing one of the two segments of bare electrodynamic tether,
are mounted on the upper tronco-conical part of Sylda, where there is the largest clear-
ance between Sylda and the walls of the fairing of the launch system where Sylda is
used. In order to minimize the displacements of the launch system’s center of mass
along the radial direction, the two storage boxes must be placed in axialsymmetrically
opposite locations, and have a mass as equal as possible. Fig. 3.2 shows the mounting
of a single storage box on Sylda, whereas the other box is mounted in the simmetrically
opposite location (hidden in the picture by Sylda’s body).
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Figure 3.2: Sylda with tetherbox mounted

Each storage box also contains the tip-mass attached to the tether end that goes to-
wards space, and a dedicated electrical motor powered by a small primary battery to
be used only for deployment. The electrical motor is used to control the rotation of
the reel and to follow a prescribed tether release velocity profile, as will be discussed
in the following Sections.

The tip-mass of one tether segment, the shorter one, is made of a hollow cathode
equipped with a small tank of ionization propellant, to be used for ejecting electrons
back to space, such as the one shown in Fig.1.11. The tip-mass of the other tether
segment is a ballast mass, possibly housing components that are needed during the
deployment or the orbit procedure.

3.2 Detumbling of Sylda

In order for the deployment to take place correctly, without risk of interference between
the tether and Sylda’s body, Sylda must be detumbled, i.e. the residual rotation of
Sylda must be zeroed or consistently attenuated. In fact, Sylda, after its release in
GTO, it rotates around its center of mass on the three body-frame axes. This is
due to the error of Sylda’s release system, before the insertion of the dual payload in
GEO, e.g. from disalignment or different separation impulses of the release springs
or pyros. An estimate of this angular velocity of rotation, along the three axes, is
±0.35 deg/s ≈ 0.006 rad/s (Ref.[5]). This can be regarded as the error rate on Sylda’s
attitude on the three axes.

The detumbling procedure consists then in decreasing to zero these angular velocities
along the three body axes. Detumbling can be implemented, in a robust manner, by
using magnetic torquers, placed on Sylda’s outer walls, in order to create a torque
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that compensates and zeroes the rotational velocity around the three body axes, i.e.
the transversal axes ûξ and ûη, and the longitudinal axis of Sylda ûζ (see Appendix
B). The detumbling is performed such that, when deployment starts, the tethers are
deployed on the orbital plane, and Sylda’s longitudinal axis is tangential to the orbit.
This attitude at which deployment can start is shown in Fig. 3.7.

Active magnetic torquers are an effective candidate for detumbling: essentially, they
are slender cylinders of small diameters (on the order of 2-3 cm and various lengths
depending on the torque that is needed. They have a very low mass with respect to
Sylda, they are simple (and relatively cheap), and require only a very low amount of
power that can be supplied by dedicated small primary batteries embedded inside.
These torquers are made of a cylindrical coil that creates a magnetic moment along its
axis: the interaction of this magnetic moment with the Earth’s magnetic field generates
a torque acting on the magnetic torquer and then transmitted to the body where the
torquer is mounted. Due to their shape, magnetic torquers can be easily integrated on
the outer walls of Sylda.
For example, the company Cayuga Astronautics manufactures torquers of various sizes,
with the largest and most powerful one being approximately 1.5 m long, very slender
(very low diameter), and requiring a power of about 6 W. Such torquer is capable of
generating, at LEO altitudes where the Earth’s B-field ranges from 0.2 to 0.5 Gauss (20
to 50 micro-Tesla) a magnetic moment of 800 Am2 and torques between approximately
0.016 to 0.040 Nm. Some torquers manufactured by Cayuga Astronautics are shown
below.

Figure 3.3: Magnetic torquers of different lengths for space applica-
tions. Photo courtesy of Cayuga Astronautics.

The active coil of the torquer is powered by a very small current, used to generate a
magnetic momentmm, that can be then controlled by regulating the current supplied
to the coil. The resulting magnetic moment is calculated as follows:

mm = icΣNn̂ (3.1)

where ic is the current circulating along the coil, N the number of turns along the coil,
Σ the area enclosed by a single turn of coil. The magnetic moment is directed along n̂
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that is the unit vector along the longitudinal axis of the cylindrical coil, i.e. orthogonal
to the plane of the single turn of coil. The mechanical torque that is generated, and
transmitted to Sylda, can be computed as (Ref.[26]):

Mm = mm ×B (3.2)

where B is the external magnetic induction in tesla (in this case, the Earth’s mag-
netic induction). This means that the torque created on Sylda is orthogonal to both
the longitudinal axis of the magnetic torquer, and to the local magnetic field vector B.

For detumbling the satellite along the XB and YB body axes (of unit vectors respec-
tively ûξ and ûη, a pair of magnetic torquers can be mounted on the outer walls of
the cylindrical part of Sylda, with axis parallel to the longitudinal axis of Sylda. This
means that the magnetic moment will be always directed along the third axis ZB of
the body frame (unit vector ûζ). Each torquer is mounted in correspondence of the
intersection of the body axes XB and YB with the cylindrical body of Sylda, as shown
in Fig.3.4. The torquers for detumbling along ZB are discussed later.

XB

YB

ZB

Figure 3.4: View of Sylda with magnetic torquers mounted with axis
along the longitudinal axis of Sylda, and in quadrature between each
other. The mounting points are taken in correspondence to the body
axes XB and YB.

Figure 3.5 represents the action of the magnetic torquer mounted in correspondence
to the body axis XB, when Sylda is at the perigee of the initial GTO orbit. For a
simpler visualization, the geomagnetic field is approximated here as a dipolar field.
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The dipolar geomagnetic field has its North pole nearby the geographic South pole, as
portrayed in Fig.D.1 in Appendix D.1, and the axis of the dipolar geomagnetic field
is tilted of about 11◦ with respect to the spin (geographical) axis of the Earth. Sylda
is released on a prograde GTO orbit of inclination about 6◦. It is then reasonable to
approximate the B vector as orthogonal to the orbital plane during the detumbling
phase. Consequently, when viewing the orbital plane from the top (i.e. from magnetic
south towards the magnetic north) the vectors would be as displayed in Fig.3.5.

ZB

YB

XB

Mm

Figure 3.5: One the left: view of Sylda at the perigee of the initial
GTO. On the right: close view showing the torque Mm along the axis
YB created by the magnetic torquer placed in correspondence of the XB

axis exiting from the plane, as well as the geomagnetic induction B. The
magnetic moment mm of this torquer is directed along ZB.

The selection of the torquer is dependent on the time of duration of the detumbling
procedure. The designer can set the time to detumble and then find out the size of
the torquer that is needed to detumble Sylda in that prescribed time. The opposite
approach can be followed too: a torquer of a certain size is chosen, and how many to
mount on Sylda. Once this is set, the time to detumble is calculated. Hereby, this
second approach is followed, using the torquer model described before, i.e. the torquer
of length 1.5 m and magnetic moment of 800 Am2.
The moment of inertia of the system is constant over time, since the tethers are not
being deployed yet. The three body axes can be treated as principal axes of inertia,
and the Euler equations can then be adopted for simulating the detumbling.
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The inertia matrix of Sylda is:

[IS] =

A 0 0
0 B 0
0 0 C

 (3.3)

and the system of Euler equations, on the body-frame axes, is:

Mm,ξ = Aα̈ξ + (C −B)α̇2
ξ (3.4)

Mm,η = Bα̈η + (A− C)α̇2
η (3.5)

Mm,ζ = Cα̈ζ (3.6)

where α̈ξ, α̈η, α̈ζ are the angular accelerations of Sylda around the three body axes,
and α̇ξ, α̇η, α̇ζ the angular velocities. Mm,ξ and Mm,η are the moments created by
the magnetic torquers on the two transversal axes. Mm,ζ is the moment about the
longitudinal axis. The initial condition on angular velocities is: α̇0,ξ = α̇0,η = α̇0,ζ =
0.006 rad/s. The moments of inertia about the transversal axes are the same, i.e.
A = B, but C is different from A and B. The first two equations are simplified by
approximating C ≈ A = B and called JS, becoming:

Mm,ξ = JSα̈ξ (3.7)
Mm,η = JSα̈η (3.8)

The torque created by the magnetic torquers is variable over time, depending on the
local geomagnetic induction B, but an average value can be used considering the
torquers to be activated on at LEO altitudes where the magnetic field is stronger.
This value is averaged over the time of passage below 1500 km, between a maximum
and minimum value of torque (data provided by the manufacturer’s brochure) in that
range. This average value is kept constant over the time spent below 1500 km and
denoted as Mm,av. The 1.5 m long torquer manufactured by Cayuga Astronautics,
reports values of torque, generated at LEO altitudes, in the range between a minimum
of 0.016 Nm and a maximum of 0.040 Nm. The average value is then estimated as
Mm,av = 0.028 Nm.
The moments of inertia are constant over time and on all axes. Therefore, with all the
assumptions that are made, only one equation needs to be solved in order to find the
time it takes for the magnetic torquer to zero the angular velocity on each axis:

α̈ =
0− α̇0

∆t
=
Mm,av

JS
(3.9)

leading to the time to detumble:

∆t =
−JSα̇0

Mm,av

(3.10)
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where Mm,av is negative (the torque by the magnetic torque must counteract the ro-
tation).

Being magnetic torquers most effective at low altitudes, the detumbling procedure is
activated during the first passage of Sylda across the perigee zone after its release in
GTO. From calculations, it turns out that the time spent by Sylda, in its initial GTO
orbit, below 1500 km of altitude is about 22 minutes. Using a single magnetic torquer
presented earlier, it turns out from calculations that a time of about 12 minutes is
needed to detumble along a transversal axis and about 9 minutes to detumble about
the longitudinal axis, about which the moment of inertia is lower. This means that
during the first passage through perigee, Sylda can be completely detumbled.

Given that the action of magnetic torquers depends on the attitude of the torquers
with respect to magnetic field lines, two 1.5 m torquers are used for detumbling about
transversal axes, as stated earlier and shown in Fig.3.4. Instead, for detumbling about
the longitudinal axis ZB, the torquers must be placed on the upper conical part of
Sylda, with their axis that is orthogonal to ZB as shown in Fig.3.6. In this case, using
a 1.5 m long torquer might pose problems due to the restricted available space for
mounting. It is then preferable, instead of a couple of 1.5 m long torquers, to have four
smaller torquers, of length 0.75 m each, that are mounted axial-symmetrically.

YB

XB

ZB

Figure 3.6: Sylda viewed from the top showing the four magnetic tor-
quers, of length 0.75 m each, used to despin Sylda around the longitudinal
axis ZB. The torquers are placed axial-symmetrically, in order to mini-
mize the displacement of center of mass of the launch system where Sylda
is mounted.

At last, it is important to note that, after detumbling with the magnetic torquers
during the first passage in the perigee zone, an additional residual detumbling, only
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along the longitudinal axis ZB could be provided by the tethers themselves with their
tip-masses at each end, in the very first stage of deployment.
In fact, the tethers projection on the plane orthogonal to the longitudinal axis creates
a yo-yo despin configuration, that is often employed in space applications (Ref.[16]).
The only difference from the usual yo-yo despin is that in this case the tethers are of
course not seized after the despinning process is complete.

As deployment starts, the two tethers are released with a certain angle with respect
to first body frame axis XB, as shown in Fig. 3.7. The projection of the two tethers
along XB is responsible of an increase the total moment of inertia of the system about
the ZB axis, determining a decrease in angular velocity of Sylda about that same
axis. The deployment of the two tethers takes place nominally on the orbital plane:
in order to achieve this the magnetic torquers that detumble Sylda about ZB must be
programmed such that the zero angular velocity about ZB is achieved when XB lies
on the orbital plane. This goal can be helped by the yo-yo despin, that zeroes any
residual angular velocity due to the possible error in the action of magnetic torquers,
leading to a robust detumbling system.

In any yo-yo despin process, the released length of the two tethers after which despin
is complete, it is independent from the initial angular velocity, as reported in Ref.[16].
From calculations, it turns out that after approximately 14.13 m of released length
of tethers projected along XB, with tip-masses of 5 kg at each end, Sylda is com-
pletely despun along the longitudinal axis. This required length for complete despin
is computed as (Ref.[16]):

Lyy = R(
√
K − 1) (3.11)

where R = 2.25 m is the radius of Sylda’s cylindrical body, and K is defined as:

K = 1 +
C

myyR2
(3.12)

where C is the moment of inertia of Sylda around the longitudinal axis ZB, and
myy = mA + mC the sum of the two masses at the end of each yo-yo segment (i.e.
the two BET tether segments, and the two masses being the anodic and cathodic
tip-mass). Accounting that tethers are generally released with an angle of 30◦–45◦

with respect to XB, the projection of the tether along XB is responsible for the yo-yo
despin, as already stated. Consequently, the actual tether length to despin is about
20 m, for each of the two tethers, when using a deployment angle of 45◦.

Any deployment simulation described in the following sections is performed as starting
after this first stage of tether release, where residual yo-yo despin an take place, i.e.
with the system completely detumbled an initial length of 20 m of both tethers. In or-
der to be conservative, an initial nonzero angular velocity for Sylda is kept only around
the axis orthogonal to the orbital plane (i.e. the body axis YB), i.e. a residual angular
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velocity of 0.0006 rad/s, that is 1/10 of the pre-detumling angular velocity of Sylda
(that is 0.006 rad/s). For the reasons described before, the out-of-plane motion can be
assumed negligible during deployment: thus, all deployment simulations account only
for the motion of the system on the orbital plane.

3.3 Deployment strategy and control

Sylda is released at the apogee of the GTO orbit and it rotates about the three body
frame axes with the angular velocity estimated as 0.006 rad/s, as reported earlier.
Then, as it approaches for the first time the perigee of the GTO, the magnetic torquers
start to work most efficiently below 1500 km, and they are used, during the time of
first passage through the perigee to detumble Sylda around the three body-frame axes,
as described in Sec.3.2.

The deployment can theoretically take place anywhere along the initial GTO orbit of
Sylda, anytime after detumbling is complete, i.e. not before the first passage through
the perigee zone. In the following sections different analyses of deployment are per-
formed in order to understand the dynamics during the deployment of the two tether
segments, and to estimate, from the results obtained, the most convenient location
along the initial GTO orbit where to start deploying.

In any case of deployment presented in this Chapter, a quasi-uniform tether release
velocity profile is used for the two tethers: this means to have a constant tether re-
lease velocity l̇ = l̇0 until a certain released length Lunif and then a decreasing release
velocity, with zero tangent (i.e. zero release acceleration) both at the beginning of the
decrease, and at the end of tether release.
The release velocity reaches zero, and with zero tangent, at the end of deployment, in
order to prevent a mechanical shock that could break the tether. The release velocity
should not be too high in order to avoid losing tether tension, with consequent insta-
bility and slackness of the tether. Generally, tether release velocities lower than 2 m/s
are used, as reported for example in Ref.[51].
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Side view Top view

XB

ZB YB

XB

ZB

Figure 3.7: Sylda during the first instants of deployment on the or-
bital plane. The longitudinal axis ZB should be possibly aligned with the
tangent to the orbit, and the tethers are deployed with a prescribed initial
angle with respect to the axis XB.

The control of the tether dynamics during deployment is implemented by regulating
the tether release velocity with the electrical motor that rotates the spool around which
the tether is reeled. It is then a rate control on tether release that ensures a positive
tension along the tethers throughout deployment, in order to avoid instability and
slackness. The electrical motor, powered with a small primary battery, is programmed
with the nominal release velocity profile, but also capable of error compensation by
using the feedback from a vision system used for tether’s attitude detection (described
in detail in Chapter 4). This vision system is designed to track each tip-mass: an
error in the position of the tip-mass is then used by the electrical motor to accordingly
modify the release velocity. The aim is to reach, at the end of deployment, or soon
after the end of deployment, a taut stable configuration for the two tethers segments.
In this configurations the tethers are straight and aligned with the first boxy axis XB,
that is also the optical axis of the vision system, and the system of Sylda and the two
tethers would eventually move as a whole, approximately as a single rigid body.
After this stabilized configuration is reached, with tethers fully deployed, the deorbit
procedure, presented in Chapter 2, can start with the system reasonably modeled as
a dumbbell, since it moves approximately as a single rigid body.
In order to achieve this condition, Sylda’s rotation angle α and velocity α̇ must respec-
tively tend towards being equal to the angle θ1 = θ2 − π and angular velocity θ̇1 = θ̇2

of the two tethers. More details will be provided in the following sections.
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3.4 Simulation of BET deployment from Sylda nearby
its apogee

In this Section, an analysis of deployment of the two tether segments is presented,
starting from the apogee of the initial GTO orbit. This means that Sylda, after its
release, is detumbled during the first passage in the perigee zone, and then travels back
to the apogee where the deployment is started. At apogee of the GTO, the altitude
is so high that electrodynamic and aerodynamic drag perturbations are absent; the
deployment can be then simulated without the contribution of drag perturbations.
The dynamics of the system is then only affected by the gravitational field, not by
other external perturbations. It is desidered to achieve, at the end of the deployment
a sufficient angular velocity of rotation of the system as a whole, in order to prevent
tether instability. At the same time, this angular velocity should not be too high in
order to avoid excessive increases in tether tension and related risk of tether breaking,
as described in Sec.2.1.

P A

h = 2000 km

h = 2000 km

Earth

Figure 3.8: Sylda in GTO orbit at apogee when deployment starts

3.4.1 Description of the model

The model simulates a double-tether deployment that takes place only on the orbital
plane. Such type of deployment was actually performed in previous missions with
tethers, such as TSS-1, TSS-1R, SEDS1, SEDS2 and YES2 [23]. Out-of-plane motion
is then neglected in this analysis as irrelevant. The deorbit system used for deployment
simulation is made of Sylda, i.e. the deorbit target, and two bare electrodynamic
tethers (BETs) as deorbit device, in butterfly configuration. The tethers are stored in
separate boxes attached to the upper conical part of Sylda, as described in Sec.3.1. In
numerical simulations, the dynamics of the two tethers is separated from the dynamics
of Sylda. There is a hollow cathode attached to Sylda for ejections of electrons captured
by the electrodynamic tethers; at the free end of each tether, there is a tip-mass of
10 kg. The two tethers used for deployment simulation are identical and have a length
of 1 km, width of 3 cm, thickness of 100µm. The material used for both tethers is
Metpreg fiber reinforced Aluminum, with density of 3320 kg/m3.

The deployment starts at the apogee of the GTO orbit, with apogee altitude equal to
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GEO altitude; perigee altitude of 300 km; resulting eccentricity of 0.727. The incli-
nation of the initial orbit is roughly 6◦. The deployment takes a time lower than the
orbital time needed for the object to arrive below 2000 km above the Earth’s surface.
At such high altitudes, the main perturbation forces, i.e. electrodynamic and aerody-
namic drag, are negligible. Other minor perturbing forces, such as solar pressure or
gravitational perturbations from higher order terms, they are neglected in this anal-
ysis. Therefore, in deployment simulations, the system’s center of mass is reasonably
assumed to move along an unperturbed GTO orbit throughout the deployment, with
Keplerian motion. Consequently, the equations used in the model do not include ex-
ternal perturbation forces. The Coriolis forces create a deflection of the tether, that is
not modeled here.

The specific configuration of Sylda used in computations has these features: diameter
of 4.5 m, height of 6.8 m, and wall thickness of 3 cm; its mass is approximately ms =
536 kg. Refer to 1.3.1 for more details about Sylda.

(a) Sylda 3D model in Solidworks

6.8 m

4.5 m

tip-mass 2

tip-mass 1

(b) Sylda with deorbit system

Figure 3.9: Views of Sylda and deorbit system

Each tether is modeled as a single dumbbell with a point mass at each end: at one end
there is Sylda point mass mS; at the other end, for the first tether the tip-mass m1,
and for the second the tip-mass m2. The tethers are considered rigid and inextensible.
Hence, the tethers in this model can have only a pendulum motion about Sylda, that
in turn can rotate with respect to the tethers.

In order to comply with requirements at the end of deployment the two tethers can have
different lengths and different deployment velocity. However, for a first analysis, the
two tethers can be assumed identical and with the same release velocity profile. With
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this assumption, the two tip-masses show the same motion profile during deployment,
with the only difference of being symmetrically opposite. Consequently, only the
profile for one tip-mass is needed to provide all the necessary information. The spatial
coordinates of the tip-mass are computed relative to the body frame fixed to Sylda,
and the vision system discussed in Chapter 4, and co-moving with it. Equations for
the numerical model are developed starting from equations reported by Ref. [8]. The
mass of Sylda is much higher than the mass of the two tether segments and of the
respective tip-masses. The system’s center of mass, in this case of symmetrical system
of identical tethers, can be then considered coincident with the center of mass of Sylda,
or with Sylda point mass mS.

3.4.2 Tether release velocity profile

Deployment simulations start with a nonzero separation between the tip mass and
Sylda, in order to prevent singularities, and with a nonzero relative velocity between
them. The tethers are both deployed with constant release velocity l̇ = l̇0 (a value of
1.8 m/s is used) until a certain time tunif , and then following a decreasing profile with
zero tangent both at tunif and at the end of deployment, terminating with zero release
velocity in order to prevent a mechanical shock. Refer to Fig.4.1.

The Matlab code builds the deployment velocity profile in two steps. The user sets
the total length of the tether, the value of l̇0, and a coefficient k that sets the ratio
between the total time of deployment ttot and time of deployment with uniform release
velocity tunif . From the beginning of deployment simulation until time tunif the tether
is deployed from the initial released length L0 = 0.1 m (a nonzero value is used to
avoid singularities) until Lunif :

k =
ttot
tunif

(3.13)

The code then computes, given k and l̇unif , the deployed length at which the release
velocity starts to be decreased, in order to finish the deployment with zero release
velocity.

After the tether surpassed this released length threshold, i.e. for l > Lunif the deploy-
ment velocity is computed as:

l̇ = l̇0
(cos(ζ) + 1)

2
(3.14)

where
ζ = π

t− tunif
ttot − tunif

(3.15)

The resulting profile of tether release velocity throughout deployment is shown in
Fig.4.1.
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Figure 3.10: Profile of tether release velocity

3.4.3 Equations of numerical model and outputs

In order to accurately simulate the deployment, the tethers rotation is separated from
the local rotation of Sylda. Both rotations of tethers and Sylda are measured with
respect to the orbital frame centered on the system’s center of mass. The unit vectors
of the orbital frame are: ûr, i.e. the radial direction pointing spaceward; ûw is the
direction orthogonal to the orbital plane and directed as the orbital angular velocity,
and ûv completes the right-hand orthonormal triad. In-plane angles are measured as
positive when following the prograde orbital motion, otherwise negative.

The two tethers, treated as rigid oscillating dumbbells, rotate about their attachment
hinge to Sylda with angles θ1 and θ2 with respect to ûr. When considering also out-
of-plane dynamics, the two tethers have also independent out-of-plane angles. Here,
the deployment is assumed to take place on the orbital plane and the tethers are
considered identical and deployed along symmetrically opposite directions: therefore,
only one tether is considered for deployment analysis, computing the profile θ1 = θ,
and then obtaining also the profile for the second tether as θ2 = θ + π. The initial
angle of the tether, θ0, is set to a very low nonzero value to prevent singularities.

The rotation of Sylda is described by the angle α, that is the angle of rotation of the
body frame moving with Sylda with respect to the orbital frame. As described in Sec.
3.3, after its release, Sylda has a nonzero angular velocity around its center of mass,
that is lower or equal to 0.006 rad/s. The deployment is simulated as taking place after
a de-tumbling procedure (discussed in Sec.3.2) that significantly attenuates the angular
velocity of Sylda on the three axes of the body frame, achieving a quasi-stabilization
on the three axes. Additionally, the deployment is designed to take place on the orbital
plane, and therefore the out-of plane motion is assumed negligible and not considered
here. In the codes the initial angular velocity of Sylda on the orbital plane, after
detumbling, is taken as α̇0 = 0.0006 rad/s, i.e. 1/10 of the pre-detumbling angular
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velocity about the axis orthogonal to the orbital plane. By starting the deployment
at apogee, right after Sylda’s release, the attitude of Sylda can be assumed as in the
picture below. At the start of deployment at apogee, right after Sylda’s release from
the dual-payload, Sylda’s projection on the orbital plane is expected to be as shown
in Fig.3.11.

tipmass

XB

ZB

Figure 3.11: Sylda with one tether and respective rotation angles.

The moment of inertia of Sylda about the ûw direction orthogonal to the orbital plane,
and passing through its center of mass, is calculated using Solidworks implementing the
features provided in Sec.1.3.1. The resulting moment of inertia is JS,w = 3459.44 kg m2.

The profile of θ is obtained by doubly integrating the equation with an ODE45:

ψ̈ + ψ̇
J̇t
Jt

+
3

2

µ

r3
G

sin(2(ψ − ν)) = 0 (3.16)

where ψ = θ+ν, being ν the true anomaly; the dot represents a derivative with respect
to time; rG is the radial location of the system’s center of mass; Jt = mtipl

2 + 1
3
ρ̃tl

3

is the moment of inertia of each tether and respective tip-mass mtip with respect to
an axis orthogonal to the orbital plane and passing through the system’s center of
mass G (the distance between G and tether attachment point can be neglected in
the dynamics of the tether librations, being much lower than tether length scales); ρ̃t
is the linear density of tether material (i.e. mass per unit length of tether, that is
homogeneous along its length); l(t) is the deployed tether length that is changing over
time, according to a law of tether release velocity l̇; J̇t = ll̇(2mtip+ ρ̃t l) is the variation
of moment of inertia over time.

The tether tension at the attachment point is computed as T = u ω2Pc (based on
what reported in Ref. [8]), where ω = ν̇ is the orbital rate, and
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u = (θ̇ + 1)2 +
1

1 + e cos ν
(3 cos2 θ − 1) (3.17)

Pc = l
(mtip + 1

2
mt)(ms + 1

2
mt)

mtot

(
1− mt

2mtot

)
(3.18)

The term Pc varies over time, due to change of released tether mass mt, and of the
deployed tether length l. mtot is the total mass of the system.

The angle α of Sylda (and co-moving body frame) with respect to the radial direction
along the orbit, is then computed by doubly-integrating with an ODE45 the following
differential equation:

δ̈ +
3

2

µ

r3
sin 2(δ − ν) = 10−3ν̇2 +

M̃w

JS,w
(3.19)

where δ = α+ ν; JS,w is the moment of inertia of Sylda about the axis ûw orthogonal
to the orbital plane, and passing through its center of mass; M̃w = M̃w,1 + M̃w,2 is the
total moment about ûw, neglecting all perturbation forces other than tension exerted
by the two tethers. The main component of gravitational torque is also accounted for,
but separated from the term M̃w, and approximated as 10−3ν̇2, as from Ref.[8].

The tethers exert two separate moments at the respective attachment points to Sylda,
related to the value of tension at those points and the respective moment arms.

M̃w,1 = GA · T [cos (α + ε) sin θ − sin (α + ε) cos θ] (3.20)

M̃w,2 = GB · T [cos (α + λ) sin (θ + π)− sin (α + λ) cos (θ + π)] (3.21)

where GA and GB the moment arms, i.e. the distance from the attachment point of
the tethers with respect to Sylda’s center of mass, constant over time; ε and λ are
the angles between the moment arms and the first body-frame unit vector ûb1 = ûξ
co-rotating with Sylda, defined as

ε = tan−1(Hs/Ds) (3.22)
λ = π − ε (3.23)

being Hs the height of Sylda modeled as a hollow cylinder, and Ds its external diam-
eter. These angles are shown in Fig. 3.12.
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Figure 3.12: Sylda, here simplified to a cilinder, with one tether seg-
ment. The unit vector ût1 is parallel to the tether. This picture shows
the constant angles ε and δ, that are related to the geometry of Sylda.
These angles are measured with respect to the first axis XB of the body
frame (unit vector uξ). Other angles displayed are: the angle of Sylda’s
body with respect to the radial direction (α); the angle θ of the tether,
rotating about the attachment point on Sylda, with respect to the radial
direction ûr. The positive tension T acting along the tether, and keeping
it taut, is shown too.

Numerical computations lead to the profiles of in-plane angles of the tether and of
Sylda’s body. A useful information is the profile of motion of the tip-mass, at the
end of the tether, during deployment and with respect to the body frame. The body
frame is corotating with Sylda, with the same angle α with respect to the orbital frame
(after detumbling of Sylda, i.e. when only in-plane motion takes place). Therefore the
relative motion of the tether with respect to the body frame can be obtained from the
difference between α and θ that are both angle on the orbital plane, and measured
with respect to the radial vector. The spatial coordinates with respect to the body
frame are then computed as:

XB = Lt cos(θ − α) (3.24)
ZB = Lt sin(θ − α) (3.25)

where the horizontal displacement from Sylda is XB and the vertical displacement is
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ZB. XB is the axis directed along the first unit vector of the body frame ûξ and ZB
along the third unit vector of the body frame ûζ . The tether length Lt(t) is variable
over time since the tether is being deployed. The tip-mass profile during the entire
deployment is then plot and posted below.
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Figure 3.13: Spatial deviation ZB, throughout deployment, of the tip-
mass with respect to the optical axis of the vision system, i.e. the XB

axis of the body frame.

This profile is subsequently employed for the vision system analysis presented in Chap-
ter 4.

3.4.4 Analysis with two tethers deployed differently

A subsequent analysis is performed with the two tethers of different lengths, different
release velocities and profiles, in order to evaluate the tip-mass profiles.
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Figure 3.14: Sylda, here simplified to a cilinder, with two tether seg-
ments (butterfly configuration). The unit vectors ût1 and ût2 are parallel
respectively to the first and second tether segments. This picture shows:
the angle of Sylda’s body with respect to the radial direction (α); the
angles of the first and second tether segment (θ1 and θ2 respectively),
rotating around their respective attachment points on Sylda, with respect
to the radial direction ûr. The positive tension T acting along the two
tether segments, keeping them taut, is shown too.

For the first tether and related tip mass, the equation describing its local rotational
motion on the orbital plane is:

ψ̈1 + ψ̇1
J̇1

J1

+
3

2

µ

r3
sin(2(ψ1 − ν)) = 0 (3.26)

100



and for the second tether and related tip mass m2:

ψ̈2 + ψ̇2
J̇2

J2

+
3

2

µ

r3
sin(2(ψ2 − ν)) = 0 (3.27)

where ν is the true anomaly; ψ1 = θ1+ν and ψ2 = θ2+ν; the dot represents a derivative
with respect to time; r is the radial location of the system’s center of mass (assumed
coincident with Sylda, as point mass mS); J1 = mtipl

2
1 + 1

3
ρ̃tl

3
1 and J2 = mtipl

2
2 + 1

3
ρ̃tl

3
2

are the moments of inertia of the first and second tethers and respective tip-mass with
respect to an axis orthogonal to the orbital plane (i.e. the plane of deployment) and
passing through the point mass of Sylda. ρ̃t is the linear density of tether material
(tether is homogeneous along its length); l1(t) and l2(t) is the deployed tether length
that is changing over time, according to a law of tether release velocity set by design
(l̇1 and l̇2). With all this it is possible to compute the variation of moment of inertia
over time:

J̇1 =l1l̇1(2mtip + ρ̃t l1) (3.28)

J̇2 =l2l̇2(2mtip + ρ̃t l2) (3.29)

With all this it is possible to integrate Eqns. 3.26, 3.16 over time and obtain a profile
of θ1 and θ2 over time by subtracting the orbital rate ν̇ to the computed profiles of ψ1

and ψ2.

3.5 Simulation of BET deployment from Sylda nearby
its perigee

In this section, a deployment occurring when Sylda is nearby its perigee is simulated.
As in the previous section, deployment can be reasonably assumed to take place only
on the orbital plane. However, in this case, there are two main external perturbation
forces that are present, that were instead absent when deploying nearby the apogee:
the aerodynamic drag and electrodynamic drag due to the Lorentz force created by
the portion of electrodynamic tether already deployed.
Moreover, in this analysis, the two tethers are assumed to have different lengths and
deployment profiles: this means that the code implements separate degrees of freedom
for the two tethers. Each tether can oscillate on the orbital plane independently from
the other. In the previous section, it was instead assumed to have identical tethers,
deployed with the same profile, just on opposite directions. That assumption allowed
to consider only one tether in the simulation. In the present case, two tethers are sim-
ulated but they are considered as part of a single electrodynamic tether. This means
that there is a single tether divided in two electrically connected segments, deployed on
opposite directions. At the end of one segment there is a hollow cathode, part of the
cathodic tip-mass, and at the other end there is an anodic mass. The current increases
going from the anodic tip towards the cathode, with a maximum at the zero-bias point
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B, and a light decrease from B to the cathode C. The butterfly configuration, and the
lengths of each segment of tether, are tailored in order to maintain the electrodynamic
center of pressure as close as possible to the system’s center of mass, as already dis-
cussed in Sec. 2.2.
The tape-tether employed in this analysis has the same geometric features as previous
analyses, i.e. width of wt = 3 cm, thickness of ht = 100µm and total length when fully
deployed of Lt = 2 km. This total length is subdivided in a segment from Sylda to
the anodic tip-mass of length Lt1 = 1200 m, and another from Sylda to the cathodic
tip-mass of length Lt2 = 800 m.
During the deployment of the two tether segments, the center of mass of the system
can vary due to different tether release velocities. The distance of the system’s center
of mass from the cathodic tip C is computed as:

xCG =
(mS +mt −mt,dep)Lt2 +mA(Lt1 + Lt2) +mt,dep

Lt1+Lt2

2

mtot

(3.30)

the value of center of mass changes during deployment, with the variation of Lt1, Lt2
and mt,dep = ρ̃t(Lt1 +Lt2) that is the mass of tether already deployed. The moment of
inertia of Sylda about its center of mass, and with respect to the axis orthogonal to the
orbital plane, it is computed with a Solidworks model, resulting as JS,w = 3459 kgm2.
mtot = mA +mS +mC +mt is the total mass of the system.

In this case, since the in-plane local rotation only is considered the numerical model
is based on these dimensional equations, that are a simplification of what seen in
Section 2.2.1. The orbital inclination is considered fixed and equal to zero: this allows
to introduce the variable ψ = ν + θ, that simplifies computations. After computing
the profiles of ψ and ν over time, the profile of the in-plane angle θ can be derived.
Out-of-plane motion is neglected: consequently, the right-ascension of the ascending
node is fixed, and the argument of perigee varies only due to in-plane perturbations.
Moreover, the out-of-plane angle seen in Sec.2.2 is zero (ϕ = 0), and therefore the
equation 2.47 can be simplified to the form seen below in equation 3.35 (tanϕ = 0 and
ϕ̇ = 0).

da

dt
= ȧ =

2a3/2√
µ(1− e2)

[e sin νfr + (1 + e cos ν)fs] (3.31)

de

dt
= ė =

√
a(1− e2)

µ

[
sin νfr +

2 cos ν + e(1 + cos 2ν)

1 + e cos ν
fs

]
(3.32)

dν

dt
= ν̇ =

√
µa(1− e2)

r2
G

−

√
a(1− e2)

µ

[
−cos ν

e
fr +

sin ν

e

(
1 +

1

1 + e cos ν

)
fs

]
(3.33)

dω

dt
= ω̇ =

√
a(1− e2)

µ

[
−cos ν

e
fr +

sin ν

e

(
1 +

1

1 + e cos ν

)
fs

]
(3.34)

ψ̈ = −ψ̇ J̇t
Jt
− 3µ

2 r3
G

sin 2(ψ − ν) + 10−3 ν̇2 +
Mt,w

Jt
(3.35)
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where all the variables are defined as in Sec.2.2.1. Jt = mtipl
2 + 1

3
ρ̃tl

3 and J̇t =

ll̇(2mtip + ρ̃t l) are identical to what already defined in Sec.3.4.3, i.e. the moment of
inertia of each tether and respective tip-mass mtip, and its variation over time, with
respect to an axis orthogonal to the orbital plane and passing through the system’s
center of mass G; ρ̃t is the linear density of tether material (i.e. mass per unit length,
with tether homogeneous along its length); l(t) is the deployed tether length changing
over time, according to a prescribed law of tether release velocity l̇.

The aerodynamic drag is computed assuming a constant drag coefficient cd = 2.2
and by taking a drag area for all the components of the system averaged along a full
rotation of the system. This average drag area is computed as:

Savg =
2Smax
π

(3.36)

where Smax is the maximum drag area of each component.
The same data described in Sec. 2.1 is used for the air density, plasma electron
density and for the computation of electrodynamic quantities (average tether current,
electrodynamic center of pressure). The initial semi-major axis and eccentricity are
computed assuming a GTO orbit with altitude of perigee of 300 km. The initial true
anomaly is very low, such that the deployment simulation starts very close to the
perigee. All the other orbital parameters are initially set to zero (inclination and
right-ascension of the ascending node do not vary during the simulation).
The same initial values used in Sec.3.4 are used for the initial Sylda in-plane angular
velocity, and the tethers are assumed to be released with an initial angle of θ1 = 30◦

and θ2 = θ1 + π, and with zero initial angular velocity around the attachment points
to Sylda.
Two different profiles of tether release velocity are used for the two tether segments:
they are both released with a constant velocity in the first part of deployment, and
then the velocity decreases following the profile described in Sec.3.4.2. However, the
initial constant release velocity is different for the two tethers. As already stated, the
two tether segments rotate independently each from the other.
The entire tether length Lt1 + Lt2 is considered for the computation of the average
current and consequent Lorentz drag force acting on the system’s center of mass, with
the nondimensional method already described in Sec. 2.1. A total torque is computed
using the total Lorentz force and the moment arm between the system’s center of mass
G and the electrodynamic center of pressure CP. This total torque is then distributed
between the two tether segments depending on their respective lengths. The torques
acting on each tether generate independent in-plane rotations of the two tethers.

The tether with its respective tip-mass, in this analysis, are rotating on the orbital
plane with respect to Sylda as a rigid body, and are subjected to external pertubations
that create the torque Mt,w.
Instead, Sylda is subjected to a torque created by the tether pulling at the attach-
ment point. This torque is much greater than the torque created on Sylda by the
aerodynamic drag (since the moment arm is extremely low, differently from what hap-
pens with the tether). Moreover, the electrodynamic force acts on the tether and is
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transmitted from this one to Sylda. In conclusion, it is reasonable to approximate the
total torque exterted upon Sylda as the torque created by the two BET tethers at
the attachment points. Hence, Eq. 3.19 can be used again also here to simulate the
rotation of Sylda, defined by the angle α. Also in this analysis, as done in Sec.3.4,
the initial angular velocity of Sylda on the orbital plane, after detumbling, is taken as
α̇0 = 0.0006 rad/s.
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Figure 3.15: Profiles of Keplerian orbital parameters during deploy-
ment nearby the perigee. As shown in the plots, the presence of perturba-
tion forces below the altitude of 2000 km creates a variation in the orbital
parameters.

The first segment of tether of length 1200 m is deployed with an initial release velocity
of 1.6 m/s, and the second of length 800 m with an initial release velocity of 1.3 m/s.
The initial in-plane angle of the tethers with respect to the radial vector are θ1 =
π/4 = 45◦ and θ2 = θ1 + π. Then, as done in previous Section, the release velocity
decreases at a certain prescribed point, and goes to zero with a zero-tangent both at
the beginning and at the end of the decreasing part of the profile. The code recognizes
when one of the two tethers is completely deployed (in this case the second tether
segment is fully deployed when the first segment is still under deployment) and zeroes
the release velocity as deployment is over. The entire deployment process lasts about
17 minutes. All of this is shown in Fig. 3.16.
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Figure 3.16: Release velocity profiles for first and second segments of
tether.

The tip-mass coordinates with respect to the body frame, resulting from the simula-
tion, are reported in Figs. 3.17 and 3.18. These plots show that deploying nearby
the perigee of the initial GTO would lead to an excessive oscillation of the tethers
with respect to the body frame causing possible interference between the tether under
deployment and Sylda’s body. Therefore, it is preferable to have instead a deployment
of the two tether segments during the time spent above 2000 km, in order to avoid
perturbations that cause these intense oscillations. The following section reports the
simulation of deployment in a zone between apogee and perigee, as the satellite is
leaving the perigee towards the apogee.

105



-1000 -500 0 500
X coordinate body frame [m]

-1200

-1000

-800

-600

-400

-200

0

Y
 c

oo
rd

. 
b
od

y 
fr

am
e 

[m
]

Figure 3.17: Profile of anodic tip-mass during deployment, in the body
frame of reference.
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Figure 3.18: Profile of cathodic tip-mass during deployment, in the
body frame of reference.
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3.6 Deployment of two tether segments at mid-way
of the orbit

A third option for deployment is when the spacecraft, after detumbling during the first
passage across the perigee region, it goes back towards the apogee. The deployment
should start right after the system surpasses an altitude of about 2000 km, after leav-
ing the perigee: this means that drag perturbations become negligible, and the system
was just detumbled. These are ideal conditions to start the deployment. in the first
instants of deployment, there is a yo-yo stabilization, that zeroes the angular velocity
along the third body-frame axis, and then the deployment goes on with minimum risk
of interference between the tethers and Sylda.

The deployment takes about 14 minutes to complete and diagrams of deployment
profile for this case are posted below. Optimal values for deployment are release
velocities of 1.9 m/s in the constant part for the first tether segment and 1.7 m/s in
the constant part for the second tether segment, as shown in Fig.3.20. The initial
in-plane angle of the tethers with respect to the radial vector are θ1 = π/4 = 45◦ and
θ2 = θ1 +π. The true anomaly of the initial Sylda’s orbit corresponding to an altitude
of 2000 km is about 58.8◦: therefore, it is chosen as initial true anomaly the value of 60◦,
making sure that it starts when the system surpassed that altitude threshold. After
the tethers are deployed the system gradually stabilizes itself with all its components
rotating together as a dumbbell system. Parameters of the system and of deployment
are designed to provide the system, by the time it reaches again the perigee zone, a
sufficient in-plane angular velocity in order to prevent tether slackness and consequent
instability, and not too high to prevent tether breaking during deorbit.
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Figure 3.19: Profiles of Keplerian orbital parameters during deploy-
ment at mid-way. As shown in the plots, perturbation forces are absent
at these altitudes, so orbital parameters of semi-major axis, eccentricity,
and argument of perigee do not vary during deployment time.
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Figure 3.20: Release velocity profiles for first and second segments of
tether with deployment at mid-way.
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Figure 3.21: Profile of anodic tip-mass during deployment in the body
frame, for deployment at mid-way.
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Figure 3.22: Profile of cathodic tip-mass during deployment in the
body frame, for deployment at mid-way.
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Chapter 4

Analysis of Vision System for Tethers
Attitude Detection

As previously stated, an unconstrained tethered system in GTO, such as the butterfly
system mounted on Sylda, undergoes full rotations around its center of mass, primarily
on the orbital plane. However, this local rotation is null at the start of tether deploy-
ment after detumbling Sylda, and it increases with the increasing deployed length of
the two tether segments. Therefore, the stabilizing effect due to centrifugal force be-
comes significant only after the tether is at least partially deployed. Consequently, the
deployment is the most critical phase in terms of system’s stability.

This is the reason why a branch of this PhD research, presented in this Chapter,
focuses on the analysis of a vision system, used for tether’s attitude detection, to be
mounted on the upper part of Sylda. The vision system has the specific aim of tracking
the tip-masses during deployment in order to provide the information on the attitude
of the two tether segments. The tether segments are treated again as dumbbells, that
is reasonable since they are kept taut and straight by means of a positive tension,
created by controlling the tether release velocity. In fact, the output from the vision
system is employed by feedback control system to force the tip-mass to follow a nominal
deployment profile. This profile is properly designed in order to avoid both instabilities
(tether slackness) and interference between the tethers and Sylda during deployment.

The design of the vision system relies upon the evaluation of the uncertainty affecting
visual measurements on the position of the tip-mass, in a certain range of interest.
A representative tether’s deployment velocity profile is given as input to simulate the
measurement performance of different configurations of vision system. This profile is
similar to the profiles presented in Chapter 3, and it is shown in Fig. 4.1.
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Figure 4.1: Profile of tether deployment velocity

For the vision system analysis presented in this Chapter, only one segment of tether is
considered, with length of 1 km. The optical axis of the camera is considered coincident
with the body-frame axis XB used in previous Chapters, as described in Appendix B.
Throughout this Chapter, the distance of the tip-mass from Sylda, along the optical
axis XB, is called X, and the deviation from this axis, on the orbital plane, is called
Z (that is in the direction of the body-frame axis ZB used in previous Chapters, and
defined in Appendix B). The angle between XB and the line of sight of the tip-mass,
during deployment, is called β = θ−α, where θ is the angle of the tether with respect
to the unit vector ûr of the orbital radius, and α is the angle of Sylda’s body with
respect to ûr. These angles comply with the notation used in the previous Chapters.
All of this is depicted in Fig. 4.2.
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Figure 4.2: Sylda, projected here as a cylinder on the orbital plane, at
the start of deployment. Only one tether segment is considered and the
camera to track its tip-mass. The body frame axes are represented, and
the angle β of the tip-mass line of sight with respect to the optical axis
of the camera.

From the tether deployment velocity profile the position of the tip-mass is computed,
throughout deployment and with respect to the body-frame. The tip-mass profile is
shown in Fig. 4.3.
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Figure 4.3: Spatial deviation Z, throughout deployment, of the tip-
mass with respect to its distance from Sylda X, along the optical axis of
the vision system.

The vision system is designed with a field of view such that the tip-mass always lies
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inside it during the tether deployment. In the last part of deployment, the system
tends towards a stable configuration with Sylda and the two tether segments approx-
imately rotating together as a single rigid body, i.e. with the same angular velocity
with respect to the orbital frame. The vision system is then optimized to provide
the information on tether attitude, by detecting the location of the tip-mass, for the
deployment phase until the system reaches a stable configuration. The vision system
analysis ultimately provides a framework for selecting the optimal focal length, and
number of cameras, to efficiently track the two tip-masses during deployment, using
the butterfly configuration with two tether segments (refer to Sec. 2.2 for description
of this configuration).

4.1 Description of the measurement system

The measurement system for tracking the tip-mass during deployment is made of one
or two cameras, for each tip-mass. Using the butterfly configuration with two tether
segments and respective tip-masses, this leads to two or four cameras in total, to be
mounted on the upper part of Sylda near the storage boxes for the tether segments,
described in Sec.3.1.
The optimal selection of the vision system is performed taking into account two possible
measurement scenarios:

• A first scenario in which only the angular position, or direction, of the tip-mass
is measured, i.e. the angle on the orbital plane from the optical axis of the
camera to the line of sight of the tip-mass. Only one angle is necessary, since
the deployment takes place on the orbital plane, and the out-of-plane motion
is negligible. In this measurement scenario, no information about the distance
between Sylda and the tip-mass is provided directly by the vision system. This
measure can be obtained indirectly by combining the information of angular
position with the released length of the tether, that is controlled by an electrical
motor programmed with a prescribed tether release velocity profile.

• A second scenario in which both the angular position (i.e. direction) and the
distance of the tip-mass from Sylda are directly evaluated by the vision system.

4.1.1 First measurement scenario: only direction

In order to detect only the angular position, or direction, of the tip-mass, the mea-
surement system can be made of only one camera. The selection of the camera is
performed by selecting the intrinsic parameters, defined by the sensor resolution, sen-
sor or pixel size, and field of view or focal length of the lens. During deployment of the
tether the distance of the observed tip-mass can vary from few meters to the order of
1-1.5 km and, as shown in Fig.4.6, the angle between the line of sight of the tip-mass
and the optical axis is maximum at the beginning of deployment, and it monotonically
decrease during deployment, with a steeper decrease at the end of it.
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The camera selection is performed according to the following procedure:

1. the camera Field-of View (FOV) is defined from the maximum angle βmax of the
tip-mass line of sight from the optical axis, i.e. when the tip-mass is at the lower
limit Xmin of the desired observable distance range:

FOV = 2βmax (Xmin) (4.1)

2. in order to minimize the uncertainty on the measure of the tip-mass angular
position, the angular resolution ∆β is minimized. Hence, from a technical point
of view, the optimal resolution (number of pixels Np) is the highest one:

∆β ≈ FOV

Np

(4.2)

Np and the sensor size L are selected considering the best available commercial
sensors, at reasonable cost. The selected cameras used in this analysis have a
resolution of 2588× 1940 pixels and a sensor size of 5.70× 4.28 mm.

3. After the number of pixels Np, the sensor size L and the FOV are selected, the
other intrinsic parameter can be calculated. For example, the focal length of the
lens is computed as:

f =
L

2 tan
(
FOV

2

) (4.3)

The contribution of the angular resolution ∆β to the standard uncertainty of the
angular position of the tip-mass, is evaluated assuming a uniform Probability Density
Function (PDF) with total amplitude ∆β:

σ =
∆β

2
√

3
(4.4)

This uncertainty contribution can be reduced by employing sub-pixels approaches.
Using one camera, and taking into account only the uncertainty from angular resolu-
tion, the limiting factor that drives the camera selection is substantially the maximum
angle βmax(Xmin) of the tip-mass line of sight. A second camera can be employed
to measure the angular position of the tip-mass when it is between the distances X ′ ,
where (X

′
> Xmin), and Xmax. X

′ is an optimization parameter, and represents the
tip-mass distance along the optical axis after which a second camera is used. Given
that the maximum angular position of the tip-mass βmax(X) decreases with the dis-
tance X, the field of view FOV2 of the second camera can be reduced. Consequently,
also the angular resolution ∆β2 and its contribution to the angular uncertainty σ2

decrease:

σ2 =
βmax(X

′
)√

3Np

<
βmax(Xmin)√

3Np

= σ1 (4.5)
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In this way, the angular position of the tip-mass is measured by camera 1 (and with
standard uncertainty σ1) from Xmin to X ′ , and by camera 2 ( and with standard un-
certainty σ2) from X

′ to Xmax. Fig.4.7 shows the uncertainty versus tip-mass distance
X using camera 1 and camera 2, for three different values of X ′ .

Kalman filter with no correlation

In the rangeX ′
< X < Xmax, a further reduction in the uncertainty can be achieved by

employing a Kalman filter to optimally fuse the measurements from the two cameras.
These static system and measurement equations are considered:

{
xk = xk−1

zk = xk + νk
(4.6)

where x is the angle that locates the line of sight of the tip-mass; z1 is the angular
measure from the first camera, affected by a random noise with variance σ2

1 ; z2 is the
angular measure from the first camera, affected by a random noise with variance σ2

2

. The static system model assumes that the two measurements are performed by the
two cameras at the same instant of time, such that the position of the tip-mass does
not change. Before the two measurements are performed, the angle x0 is unknown and
its uncertainty σ0 is large (σ0 → ∞). By implementing the Kalman filter described
in Ref.[20], after two iterations (k = 1 for the measurement of the first camera and
k = 2 for the measurement of the second one), the following fused angular position x
and related variance (or standard uncertainty) are obtained:

{
x =

σ2
2

σ2
1+σ2

2
z1 +

σ2
1

σ2
1+σ2

2
z2

σ2 =
σ2
1 ·σ2

2

σ2
1+σ2

2

(4.7)

The fundamental assumption in the implementation of this Kalman filter is that the
covariance between the random noise υ1 of camera 1 and υ2 of camera 2 is zero or near
zero.

The computed standard uncertainty σ is lower or equal to σ2. Fig.4.7 shows with
dashed lines, the improvement in uncertainty obtained in the range X ′

< X < Xmax,
when the measurements of the two cameras are fused by the Kalman filter. In Sec.4.2,
two cases are analyzed: a first case in which only the measure from camera 2 is used
in the range X ′

< X < Xmax; a second case in which the measures from camera 1 and
2 are both used, and fused together, in the same range X ′

< X < Xmax.

For the second camera, the resolution Np and the sensor size L are chosen equal to
the first camera. The field of view of the second camera (FOV2) depends on the
angle β(X

′
) corresponding to the tip-mass distance (X

′
). Consequently, in order to

characterize the second camera the optimal distance X ′ must be selected. The value of
X

′ is selected by minimizing the standard uncertainty averaged in the range between
X2,min and Xmax, with X2,min > Xmin. Xmin and X2,min are the minimum tip-mass
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distances from Sylda at which respectively camera 1, and camera 2, start to measure.
In this analysis, Xmin = 0.08 m, and X2,min = 350 m. In this way, a monodimensional
and non-linear optimization is obtained, since both β(X

′
) and σ2 depend on X ′ .

Kalman filter with correlation

The diagram in Fig. 4.8 was created assuming no correlation between the two cam-
eras when implementing the Kalman filter (black line). This diagram has the aim of
providing the optimal X ′ , i.e. the value of X ′ at which there is the minimum average
uncertainty. However, the lower is the value of X ′ , the less accurate is the assump-
tion of no correlation. In fact, for the limit case of X ′

= 0, the measures would be
completely correlated. This is the reason why a subsequent analysis with correlation
is performed.

In this case, instead of Eq.4.6, the following system is used:


xk = xk−1

zk =

[
z1,k

z2,k

]
=

[
1

1

]
xk +

[
υ1,k

υ2,k

]
= H xk + υk

(4.8)

Where x is the angle of the tip-mass line of sight from the optical axis, z1 is the
angular measurement of the first camera affected by random error υ1 with variance
σ2

1, z2 is the angular measurement of the second camera affected by random error
υ2 with variance σ2

2. In the previous analysis, the Kalman filter is applied using a
monodimensional measurement equation, while in the present analysis, in order to
account for the correlation between the two measurements, the measurement equation
is bidimensional. In this case the covariance σ12 between the measurements of the two
cameras is not zero and, consequently, the covariance matrix of the vector υk becomes:

R =

[
σ2

1 σ12

σ12 σ2
2

]
(4.9)

As in Sec.4.1.1, the model assumes that the two measurement are performed by the
two cameras at the same instant of time, such that the position of the tip-mass does
not change. By applying the Kalman filter as described in Ref.[20], the prediction step
becomes:

x̂k(−) = x̂k−1(+) (4.10)
Pk(−) = Pk−1(+) (4.11)

Where x̂k(−) is the estimated angular value and Pk(−) its variance at step k before
the measurements of the two cameras are performed, while x̂k−1(+) and Pk−1(+) de-
note the same quantities at the previous step k − 1 after the two measurements are
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considered.

The Kalman gain Kk and update step are:

Kk = Pk(−) ·HT ·
[
H · Pk(−) ·HT +R

]−1 (4.12)
x̂k(+) = x̂k(−) +Kk · [zk −H · x̂k(−)] (4.13)
Pk(+) = [1−Kk ·H ] · Pk(−) (4.14)

Where x̂k(+) is the estimated angular value and Pk(+) its variance at step k after the
two measurement are considered.

In this application of the Kalman filter, since there is only one iteration (k = 0, 1) and
the system is static (see Eq. 4.8), the expressions in Eq.4.10 become:

x̂1(−) = x0 (4.15)
P1(−) = P0 = σ2

0 (4.16)

Where x0 is the initial angular value, that is considered unknown before the two
measurements are performed, and σ2

0 is its variance. The Kalman gain becomes:

K1 =
σ2

0

σ2
1 · σ2

2 − σ2
12 + σ2

0 · (σ2
1 + σ2

2 − 2σ12)
·
[
σ2

2 − σ12

σ2
1 − σ12

]T
(4.17)

Considering that the variance σ2
0 is very large (σ2

2), the Kalman gain can be simplified
as:

K1 =
1

σ2
1 + σ2

2 − 2σ12

·
[
σ2

2 − σ12

σ2
1 − σ12

]T
(4.18)

With the same hypotheses and considering Eq. 4.9, the update step of Eq. 4.12
becomes:

x̂1(+) = x = x0 +
1

σ2
1 + σ2

2 − 2σ12

·
[
σ2

2 − σ12

σ2
1 − σ12

]T
·
[
z1 − x0

z2 − x0

]
= (4.19)

=
(σ2

2 − σ12) · z1 + (σ2
1 − σ12) · z2

σ2
1 + σ2

2 − 2σ12

= (4.20)

=
σ2

2 − ccorrσ1σ2

σ2
1 + σ2

2 − 2ccorrσ1σ2

z1 +
σ2

1 − ccorrσ1σ2

σ2
1 + σ2

2 − 2ccorrσ1σ2

z2 (4.21)
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Where z1,1 = z1 and z2,1 = z2 are the measurements from the two cameras, x is the
evaluated angle after the two measurements are considered, and ccorr is the correlation
coefficient defined by:

ccorr =
σ12

σ1σ2

(4.22)

The estimated variance becomes:

P1(+) = σ2 =
σ2

1σ
2
2 − σ2

12

σ2
1 + σ2

2 − 2σ12 +
σ2
1σ

2
2−σ2

12

σ2
0

= (4.23)

=
σ2

1σ
2
2 − σ2

12

σ2
1 + σ2

2 − 2σ12

= (4.24)

=
σ2

1σ
2
2(1− c2

corr)

σ2
1 + σ2

2 − 2ccorrσ1σ2

(4.25)

If the correlation coefficient ccorr between the measurements of the two cameras is
equal to zero, then the Equations 4.19 and 4.23, can be simplified to the form showed
in Sec.4.1.1, which ignores the correlation:

{
x =

σ2
2

σ2
1+σ2

2
z1 +

σ2
1

σ2
1+σ2

2
z2

σ2 =
σ2
1σ

2
2

σ2
1+σ2

2

(4.26)

When using the general equations 4.19 and 4.23, the correlation coefficient ccorr is
needed. The two cameras are assumed perfectly aligned (or any offset is assumed
compensated). The coefficient ccorr depends on the angular resolutions ∆β1 and ∆β2

of the two cameras, and on the position of the observed tip-mass on the image plane.
The deployment profile of the tip-mass is known, as depicted in Fig.4.3. Therefore,
for each distance X the corresponding angle β of the tip-mass line of sight from the
optical axis is known and can be used in the evaluation of the correlation coefficient
ccorr. The angular resolution ∆β1 is constant, while ∆β2 of camera 2 depends on X ′ .
Thus, for each value of the parameter X ′ the angular resolutions ∆β1 and ∆β2 are
constant, but the correlation coefficient varies with the distance X, since it depends
on the observed position on the image plane.
In order to evaluate ccorr, a uniform PDF of amplitude equal to the camera 1 resolu-
tion ∆β1 is centered on the observed tip-mass position at distance X, and a Monte
Carlo simulation is employed to evaluate the errors υ1 and υ2 (see Eq.4.8), and then
their correlation coefficient. The following Figures 4.4 and 4.5 show the correlation
coefficient ccorr versus the distance X, for the cases of X ′

= 200 m and X ′
= 600 m.
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Figure 4.4: Profile of correlation coefficient ccorr with respect to the
tip-mass distance X along the optical axis, when using the parameter
X

′
= 200 m.
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Figure 4.5: Profile of correlation coefficient ccorr with respect to the
tip-mass distance X along the optical axis, when using the parameter
X

′
= 600 m.

4.1.2 Second measurement scenario: direction and distance

In this second scenario, the measure of the tip-mass distance X along the optical axis
is studied, combined with the measure of the angle β, already discussed in the previous
scenario. In fact, the angular position β is measured here as described in Section 4.1.1.
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Each camera is assumed with the intrinsic parameters of the first camera of Subsec-
tion 4.1.1 and the focal length is chosen such that the tip-mass always lies inside the
camera’s FOV throughout deployment.

This second analysis then focuses on the evaluation of the uncertainties obtained with
two different methods of distance measurement. The two approaches, and related
configurations, are:

1. A stereo vision system, with two cameras used to evaluate the tip-mass distance
using triangulation.

2. A monocular vision system, measuring the tip-mass distance by means of fiducial
markers placed on its surface.

Stereo system

The tip-mass distance can be measured by a stereo system relying on two cameras,
mounted on Sylda, with parallel optical axes pointing towards the nominal direction
of the tether at the end of deployment, i.e. the first body-frame axis XB. Taking into
account the geometry of Sylda, the baseline is considered as b = 4 m. In this case of
analysis, the tip-mass is modeled as a zero-dimensional point moving in the 3D space.
The tip-mass is assumed to be always detectable by the stereo system.

The distance of the tip-mass along the optical axis of the stereo system can be com-
puted as:

X =
bf

d
(4.27)

where b is the stereo baseline, f is the focal length of the cameras and d is the disparity
(i.e. distance in image coordinates between the projection of the tip-mass in left and
right camera).
The standard uncertainty σf of the focal length f is evaluated considering an uniform
PDF with amplitude 0.01 f (type B); the standard uncertainty σb of the baseline b
comes from a uniform PDF of amplitude 5 mm (Type B, considering thermal expansion
of materials); the standard uncertainty σr of the feature positions on the image plane
comes from the sensor resolution. A uniform PDF is assumed for all the contribution
to the uncertainty: consequently, the standard uncertainty of each contribution can
be evaluated by means of Eq.4.4.

The overall uncertainty on the measured distance X is determined by means of the
Kline-McClintock propagation formula:

σX =

√(
∂X

∂f
σf

)2

+

(
∂X

∂b
σb

)2

+

(
∂X

∂r
σr

)2

(4.28)
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Monocular system

In case of a monocular system used to measure the tip-mass distance, a single camera
is used for each tip-mass, and mounted on Sylda. The optical axis is taken once again
parallel to the XB axis, that is the nominal direction of the tether when the deploy-
ment is finished.
In this measurement case, the tip-mass must be equipped with a planar pattern that
consists of four features always detectable by the camera: three features are placed
on a circumference of radius ρ = 0.5 m to form an equilateral triangle, while a fourth
is placed at the orthocenter. The coordinates of the feature points are known with
respect to the tip-mass reference frame. In order to estimate the distance X from
the detection of these features over time, the P3P solver proposed by Kneip et al. is
employed (Ref. [22]). The uncertainty on the measured distance takes into account
only the contribution of the sensor resolution σr. The Kline-McKlintock propagation
formula is used to estimate the overall uncertainty on the measure: the partial deriva-
tives of the distance with respect to the projections of the feature points on the image
plane are computed.

Although the main objective is to estimate the tip-mass distance, the P3P solver
returns an estimation of both the distance and the attitude of the tip-mass with respect
to the body frame of the camera and Sylda, where it is mounted. Since the distance
estimation accuracy is dependent on the attitude of the tip-mass, a parametric analysis
is performed to evaluate the extent at which the attitude of the tip-mass affects the
measurement performance of the vision system. The tip-mass attitude is assumed to
be constant throughout deployment: this is reasonable assuming that the tether is
connected to the tip-mass at its center of mass, and given that the deployment takes
place above 2000 km, as described in Sec.3.6, where major perturbations are negligible.

4.2 Results from the vision system analysis

4.2.1 First measurement scenario: only direction

From the tip-mass nominal path during tether deployment, shown in Fig. 4.3, the
profile of the angle β(X) of the tip-mass during deployment can be computed. This
profile is shown in Fig.4.6.
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Figure 4.6: Angular position β versus tip-mass distance X

For Xmin < X < X
′ only camera 1 measures the tip-mass angular position β, while

for X ′
< X < Xmax both cameras 1 and 2 can perform the measure. The final

measurement can be obtained in two ways:

• considering the measure of only camera 2 for X ′
< X < Xmax (continuous lines

in Fig.4.7).

• considering both measures from cameras 1 and 2, and fusing them with the
Kalman filter previously described (dashed lines in Fig.4.7).

The FOV of camera 1 is fixed by selecting Xmin, and its measurement uncertainty is
constant since it does not depend on Z ′ (see Fig. 4.7). Instead, the FOV of camera 2
and its measurement uncertainty, for X > X

′ , depends on the distance X ′ .
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Figure 4.7: Uncertainty in the measure of angle β (with level of con-
fidence 99.7%), by camera 1 and camera 2, as function of the tip-mass
distance X, and for different values of the optimization parameter X ′

(400 m, 600 m, 800 m); with dashed lines, it is shown the uncertainty,
for X > X

′, when the measures from camera 1 and 2 are fused by using
a Kalman filter.

As shown in Fig. 4.7, by increasing X ′ , both the uncertainty of camera 2 and that
obtained from the fused measurements decrease, for X > X

′ . However, at the same
time, there is an increase in the measurement range where only camera 1 is used, i.e.
for Xmin < X < X

′ . Camera 1 has a higher uncertainty than camera 2, and even
higher than camera 1 and 2 fused together.
Therefore, the effect of changing X ′ must be evaluated considering the mean uncer-
tainty, averaged in the entire distance range between Xmin and Xmax. The numerical
results are illustrated in Fig.4.9, as a function of the optimization parameter X ′ .
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Figure 4.8: Mean angular uncertainty (with level of confidence 99.7%),
averaged on the tip-mass distance range between Xmin and Xmax, as
function of the optimization parameter X ′. Two curves are plot: the red
curve shows the case of camera 1 used for Xmin < X < X

′, and camera
2 only for X ′

< X < Xmax; the black curve shows the case of camera 1
used for Xmin < X < X

′ , and both measures from camera 1 and 2, fused
by a Kalman filter, for X ′

< X < Xmax.

Following the procedure described in Sec.4.1.1, the intrinsic parameters of camera 1
and 2 are computed, as well as the optimal values of X ′ , and the optimal uncertainties.
These data are summarized in Table 4.1.
Comparing the results in the last column of Table 4.1, it is clear that the employment
of a second camera improves the measurement performance by decreasing the mean
uncertainty; additionally, there is a further improvement by using the Kalman filter
to fuse the measurements from the two cameras, for X > X

′ , and by selecting the
optimal X ′ .

Case Intrinsic parameters and uncertainties
f1 f2 X ′ σ1 σ2 σmean

X-range - - - Xmin, X
′ X ′, Xmax -

Cam 1 4.9 - - 0.020 - 0.020

Cam 2 4.9 8.0 482 0.020 0.013 0.015

Cam 1-2 4.9 7.0 350 0.020 0.012 0.012fused
Unit mm mm m deg deg deg

Table 4.1: Optimization results
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When the correlation coefficient ccorr is taken into account, the angular uncertain-
ties showed in the following figures are obtained. Two particular cases are depicted,
corresponding to X ′

= 200 m (Fig.4.9) and X ′
= 600 m (Fig.4.10).
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Figure 4.9: Uncertainty in the measure of angular position with respect
to distance X, when fusing the measures from the two cameras by means
of a Kalman filter, after the distance X ′

= 200 m.
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Figure 4.10: Uncertainty in the measure of angular position with re-
spect to distance X, when fusing the measures from the two cameras by
means of a Kalman filter, after the distance X ′

= 600 m.

Performing the same analysis for all the values of X ′ , and evaluating the mean angular
uncertainty averaged on the entire range of X between Xmin and Xmax, the result
showed in Fig.4.11 is obtained.

126



0 100 200 300 400 500 600 700 800 900 1000
X' [m]

0.012

0.014

0.016

0.018

0.02

0.022
M

ea
n
 u

n
ce

rt
ai

n
ty

 [
d
eg

]
camera 1 - 2
camera 1 - Kalman
camera 1 - Kalman corr12 var

Figure 4.11: Mean uncertainty on the measure of angle β with re-
spect to the parameter X ′ . The black and red curves are the same as in
Fig.4.8. The magenta-colored curve is the one accounting for the corre-
lation between the two measures.

Figure 4.11 shows only a marginal difference in mean uncertainty between the Kalman
filter curve without correlation (ccorr = 0, black curve), and the curve accounting for
correlation (in magenta). This means that considering the correlation coefficient ccorr
yields only a little improvement with respect to the Kalman solution with ccorr always
equal to zero. The optimization results of the parameter X ′ are similar too.

4.2.2 Second measurement scenario: direction and distance

All the results regarding the measure of the angle β of the tip-mass line of sight, de-
scribed in Sec.4.2.1, are applicable to this case too.

This section focuses then on the uncertainty in the measurement of tip-mass distance
X. Figure 4.12 shows the standard uncertainty σX on this measure, with respect to the
actual tip-mass distance X. The black lines refer to the uncertainty associated with
the stereo system: more specifically, the solid black line includes all the contributions
to the standard uncertainty, while the dashed black line includes only the uncertainty
σr due to the sensor resolution.
The red, green and blue lines refer to the uncertainty in distance measurements by the
monocular vision system. The three curves refer to different, but constant, orientations
of the tip-mass with respect to the camera frame (i.e. body frame): the roll angle Φ
and yaw angle Ψ are both set to zero, while the pitch angle (Θ), that defines the
rotation around the normal to the orbital plane, is switched between values of 0◦, 30◦

and 60◦.
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Figure 4.12: Standard uncertainty on the measure of tip-mass distance
X from Sylda. The solid black line corresponds to the stereo system
taking into account all contributions to uncertainty; the dashed black line
corresponds to the stereo system, considering only the contribution given
by the sensor resolution. The colored lines show the uncertainties when
using the monocular system, at various tip-mass orientations around the
normal to the orbital plane: Θ = 0◦ (red), Θ = 30◦ (green) and Θ = 60◦

(blue).

The uncertainty associated with the stereo system increases with the distance, while
the uncertainty associated with the monocular system reveals to be highly dependent
on the actual pose of the tip-mass. This behavior is summarized in Tab.4.2 where the
peak values of uncertainty are reported for different values of roll and pitch angles of
the tip-mass: the results also highlight that the uncertainty increases with the increase
of the roll angle.

σmax(Φ,Θ) [ m] Θ = 0 deg Θ = 30 deg Θ = 60 deg

Φ = 0 deg 242.96 194.57 183.95
Φ = 15 deg 248.09 230.51 213.97
Φ = 30 deg 247.83 250.00 238.40
Φ = 45 deg 256.39 265.25 259.58

Table 4.2: Peak values of uncertainty on the measured tip-mass dis-
tance X, for different roll and pitch angles of the tip-mass, with respect
to the camera-fixed reference frame (coincident with Sylda’s body-frame).
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Figure 4.12 shows that the stereo system always outperforms the monocular system,
i.e. it provides a lower uncertainty in the measure of all distances over the entire X
range. Therefore, the stereo system results to be the optimal candidate, in the measure
of the tip-mass distance X. Using the butterfly configuration on Sylda leads to using
two stereo vision systems, one for each tip-mass at the end of each tether segment.
Consequently, the total number of cameras mounted on Sylda is four cameras, with a
baseline of about 4 m between the two cameras of each couple. The cameras can be
mounted on the upper truncated-conical part of Sylda, in quadrature with respect to
the two storage boxes for the tether segments, as shown in Fig. 4.13.

FOV

Cameras

Figure 4.13: View showing the two tether segments, and respective tip-
masses, of the butterfly configuration being deployed on the orbital plane,
released from their storage boxes. A stereo couple of camera is mounted,
one for each tip-mass, on the upper part of Sylda, in quadrature with
respect to the tether boxes, and with optical axis on the orbital plane.
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Chapter 5

Conclusions

The research is focused on the removal from orbit (i.e. deorbit), with a Bare Electro-
dynamic Tether (BET) system, of Sylda, a large dual-payload adapter that is released
in Geostationary Transfer Orbit, during the launches of double-payloads to GEO with
the Ariane 5. Deorbit is performed by dissipating the orbital energy of the object
to remove, in this case Sylda, and consequently lowering the orbit until the object
naturally degrades in the atmosphere during reentry. The dissipation is obtained with
two drag forces: the Lorentz force, of electrodynamic origin, created by the interaction
between the current running along the tether, made of electrons collected from the
space plasma, and the geomagnetic field, thanks to the relative motion of the tether
with respect to this field; the other drag contribution is the atmospheric drag, that
is significantly increased by the presence of the tether due to its large exposed area.
The tether that is considered in all the analyses presented in this research is 2 km
long, 3 cm wide, and 100µm thick. The tether material must be conductive in order
to enable the generation of an electrical current. Two materials are considered: pure
Aluminum, or a Fiber-Reinforced Aluminum. The electrons collected by the tether
from ambient plasma are ejected back to space, once arriving at the cathodic end, by
using a hollow cathode, i.e. a small cylindrical device that only needs a very low mass
of ionization propellant to work. Other technologies for the cathode, without need of
ionization propellant, are under study, but they are not mature yet, and therefore they
are not considered in this research.

The research is essentially subdivided into three main branches, that are: the analysis
of deorbit with fully deployed tether, presented in Chapter 2; the analysis of pre-
deorbit procedures, including tether deployment, presented in Chapter 3; the analysis
of tether attitude detection with a vision system, presented in Chapter 4.

The deorbit is simulated using a dumbbell model where the tether and the body to
which it is attached are co-moving together as a single rigid body, with tether straight
and taut. This assumption is justified by the fact that the dynamics of a tethered
system in a high eccentricity orbit, such as the Geostationary Transfer Orbit where
Sylda is placed, is characterized by a local rotation of the system (tether plus Sylda)
around its center of mass. This rotation increases over time during the deployment
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of the two tether segments of the butterfly configuration, and then further increases
during the following deorbit phase. This rotational motion creates, under certain ini-
tial conditions and design of the system, a positive tension that maintains the tether,
subdivided in two segments, on a taut and straight configuration. The dynamics of
the tethers tends to gradually force Sylda, that is detumbled before starting the de-
ployment, to move together with the tether segments towards the end of deployment.
This leads to a system made of Sylda plus the two tether segments that, at the start
of deorbit, is already approximately rotating as a single rigid body. This fact allows
the reasonable assumption of dumbbell model for all the deorbit simulations.

More in detail, the conclusive remarks that can be outlined from the analyses of deorbit,
with fully deployed tether, are described below:

• a first campaign of deorbit analyses is performed with a nondimensional model,
considering only the dynamics on the orbital plane, given their prominence with
respect to the out-of-plane dynamics, and zero orbital inclination, given that
Sylda is left on a GTO with very low inclination. The magnetic field is modeled
as a dipole, and two perturbation forces are considered: the atmospheric drag,
below 900 km, and the electrodynamic Lorentz drag created by the tether, below
2000 km, where the electron density of ambient plasma becomes significant. The
aim of this first campaign of analyses is to get first information about the deorbit
with a fast model, under reasonable assumptions. In particular, a focus is cast
on the analysis of the tension created along the tether during deorbit, in order
to evaluate the optimal design of the system, and optimal initial conditions to
perform deorbit. The analyses highlighted that it is fundamental to start deorbit
with a minimum angular velocity of the system of about 0.004 rad/s, in order
to prevent tether slackness and instability during deorbit; at the same time, the
initial angular velocity must not be too high, in order to avoid excessive tension
and consequent tether breaking during deorbit. In order to minimize the risk of
tether breaking, it is crucial to design the system with a butterfly configuration,
i.e. to have the single electrodynamic tether subdivided in two segments that are
deployed along opposite directions from Sylda. The lengths of each segment are
calculated in order to minimize the displacement between the system’s center of
mass, and the electrodynamic center of pressure, during the entire deorbit. The
electrodynamic center of pressure is the point where the resultant Lorentz force
created by the electrodynamic tether acts. The employment of Fiber-Reinforced
Aluminum, instead of pure Aluminum, is preferable inasmuch as it provides
a larger safety margin against tether breaking, due to its higher mechanical
properties, while still ensuring a high electrical conductivity.
Furthermore, during this first batch of analyses, the profiles of various orbital
parameters and the total deorbit time are computed: the orbital parameters
evolve as expected, with an orbital eccentricity, apogee altitude, and perigee
altitude always decreasing during deorbit, with a steep decrease in the last part
of deorbit when the system is always orbiting below 2000 km, where dissipation
forces are active. The total time to deorbit Sylda from its initial GTO results to
be about 2.6–2.7 years, that is a time much lower than the 25 years prescribed
by the main international guidelines as maximum time for removal of inactive
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objects in Earth orbits.

• a second campaign of analyses is then performed, with a different model, called
hybrid, since it combines part of the previous nondimensional model with parts
of the former dimensional model. This new model includes the out-of-plane dy-
namics of the system, in order to have a more accurate analysis, and employs the
butterfly configuration for the tethered system, as suggested from the previous
campaign of analyses. An analysis is performed in order to estimate the lengths
of the two tether segments to minimize the distance between the center of mass
of the orbit and the electrodynamic center of pressure, resulting in about 1200 m
for the first segment, and 800 m for the second. All the orbital parameters,
including orbital inclination, are considered variable over time, and a more ac-
curate model of geomagnetic field is used, with higher harmonics. The dumbbell
model is kept, but given that the tether is subdivided in two segments deployed
along opposite directions, it is a double-dumbbell model. This second analysis
campaign provided more accurate profiles of all the variable orbital parameters
during deorbit, and a more accurate estimate of the total time to deorbit Sylda,
that results to be approximately 818 days, i.e. about 2.24 years. Once again, a
time much lower than the 25 years prescribed by the main international guide-
lines for debris removal.

Another part of research is dedicated to the study of the storage and mounting on
Sylda of the deorbit system, and to all the procedures to be performed before starting
the deorbit. In summary, this analysis returned the following conclusions:

• The storage of the two tether segments of the butterfly system is discussed,
opting for a storage on separate spools for the two segments, but electrically
connected on Sylda. Each tether segment is deployed independently from the
other, with a dedicated small electrical motor mounted inside the spool. The
two tether reels are stored in protective boxes and are mounted symmetrically
with respect to Sylda’s longitudinal axis, in order to minimize the displacement
of the center of mass with respect to the default configuration of Sylda mounted
inside the Ariane 5 without a deorbit system.

• In order to achieve a correct deployment, without risk of interference between
the tethers and the body of Sylda, the residual angular velocity of Sylda, must be
minimized. Sylda, after its release in GTO, rotates around the three axes of the
body frame, with an angular velocity that is reported to be around 0.006 rad/s.
This angular velocity is due to the unavoidable error in the release system that
separates Sylda from the dual-payload. In order to zero this angular velocity, a
set of magnetic torquers is proposed as devices to be mounted on Sylda, in order
to completely detumble it around the three axes. Magnetic torquers attached
to Sylda are slender cylinders of diameter of 2-3 cm and length of 0.75-1.5 m,
with very low mass with respect to Sylda, and requiring only few watts of power,
that could be provided by a small primary battery. These torquers create a
magnetic moment by exploiting the current running on the cylindrical coil; this
magnetic moment interacts with the geomagnetic field and creates a torque that
counteracts the rotational motion of Sylda. Computations return that a complete
detumbling can be achieved already during the first passage of Sylda across the
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perigee region, after its release at the apogee of the GTO; in fact, magnetic
torquers are most effective at low altitudes, where the geomagnetic induction is
stronger.

• The deployment of the two tether segments is then studied, considering it to
take place only on the orbital plane. The tethers are deployed with an angle
of about 30–45◦ with respect to the first axis of the body frame, coincident by
assumption with the optical axis of the vision system to track the tip-mass at
the end of each tether. This angle is selected in order to have, at the end of
deployment, the tethers aligned as much as possible to the first axis of the body
frame, and co-rotating together with Sylda. The deployment is simulated con-
sidering the rotation of Sylda as related to, but not coincident, to the rotation
of the two tether segments. Moreover, the two tether segments can rotate with
different angles around their attachment point on Sylda, with respect to the ra-
dial direction taken as reference. Three different simulations are run for three
cases of deployment along the initial GTO orbit of Sylda: deployment at apogee;
deployment at perigee; deployment at mid-way between perigee and apogee, at
altitudes such that drag forces are negligible. In all cases, the tether release
velocity profile is a quasi-uniform profile, i.e. the tether is released at a constant
velocity until a point at which the velocity gradually decreases until reaching
zero at the end of deployment, with zero acceleration too, in order to prevent a
mechanical shock on the tether that could break it.
Deployment at perigee turns out to be the worst case, due to the presence of
perturbations that cause an excessive oscillation between the tethers and Sylda’s
body, with the risk of the tether to wrap around Sylda instead of being deployed
correctly. Deployment at apogee and at mid-way are both viable, since Sylda and
the tethers do not interfere, and tend to align the end of deployment. Afterwards,
they gradually start to co-rotate together approximately as a single rigid body,
which is the optimal condition at which to start deorbiting. At last, the optimal
location where to start the deployment, that only takes a few minutes to com-
plete (the tether release velocities are around 1.2-1.8 m/s), is at mid-way along
the orbit, i.e. after first crossing the perigee zone (where complete detumbling
takes place) and while going back towards the apogee, at altitudes always above
2000 km. In this way, perturbations forces of atmospheric and Lorentz drag dur-
ing deployment are negligible, and at the same time Sylda is more stable at the
start of deployment, having just been detumbled.

Lastly, a study is performed regarding the tether’s attitude detection and control, with
two tether segments in butterfly configuration. In fact, during deployment, the attitude
of the tethers is not fully stable yet, so it is fundamental to provide the deorbit system
with a sufficient detection and control capability. These are the conclusions that this
analysis returned:

• The control of tethers attitude can be accomplished by regulating the tether
release velocity with a small electrical motor that rotates the spool around which
each tether segment is reeled. The control of tether attitude is also improved by
the feedback coming from a vision system that detects the attitude of the tether
by tracking the tip-mass. From the error in tether’s attitude with respect to a
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nominal profile, the electrical motor can act upon the tether release velocity in
order to compensate this error.

• The attitude detection of the tether segments can be achieved with a vision sys-
tem, that measures the angular position on the orbital plane, and the distance
from Sylda along the optical axis, of the tip-mass at the end of each tether seg-
ment, modeled again as a dumbbell. In fact, the tether segments can be kept
straight and taut, during deployment, with an accurate control of their release
velocity; thus, the dumbbell model is applicable. The deployment, as previously
stated, is performed on the orbital plane.
A typical deployment profile is employed as input for the uncertainty analysis of
the measure provided by two possible configurations of vision system: a monoc-
ular system, and a stereo system.
Two scenarios are analyzed: a first one, where only the angular position of the
tip-mass is evaluated; a second one, that investigates the uncertainty in the mea-
sure of both tip-mass angular position and distance along the optical axis.
The main outcome from the analysis of the first scenario is that the minimum
uncertainty in the measure, and then the maximum accuracy, is achieved by us-
ing two cameras for each tip-mass, with zero baseline (i.e. not a stereo system)
and by fusing the measures from the two cameras with a Kalman filter, starting
at a certain tip-mass minimum distance until the end of deployment.
In the second scenario, a stereo and a monocular vision systems are analyzed
and compared in the tip-mass distance measurement: the main result is that the
stereo system outperforms the monocular system, providing a lower uncertainty
in the measure, throughout deployment.
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Appendix A

Dimensional vs. normalized
parameters used in the
nondimensional model for deorbit
simulations

The table posted below shows all the parameters used in Sec.2.1.1 in their dimensional
and corresponding normalized form. The generic dimensional parameter x has its
normalized correspondent in x, i.e. with a bar over the letter. The only exceptions
to this notations are the parameters Λt and φ, that are nondimensional by definition.
Using a dimensional coefficient C, it is possible to restore the dimensional variable, as
follows:

x = Cx (A.1)
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Dimensional
Parameter Unit Normalized

parameter Coefficient C

Tether length Lt m Lt Characteristic length L∗

Tether mass mt kg mt
Total mass of the system
m = mA +mt +mC

Anodic tip mass mA kg cos2φ− Λt

2

Total mass of the system
m

Cathodic tip mass mC kg sin2φ− Λt

2

Total mass of the system
m

Radial location of center
of mass rG

m rG Earth radius RE

Orbital velocity of center
of mass vG

m
s

vG

√
µE
RE

Semimajor axis of orbit a m a Earth radius RE

Time t s τ
√

R3
E

µE

Force F N F m µE
R2

E

Torque about point P:
MP

Nm MP
IPµE
R3

E

Table A.1: Parameters used in the nondimensional model presented
in Sec.2.1.1.

where µE is the Earth gravitational parameter; RE is the Earth radius; IP is the
moment of inertia of the system about the axis orthogonal to the orbital plane and
passing through the generic point P; L∗ is the characteristic length of the tether that
is defined, under the assumption of Orbital Motion Limited (OML) current collection,
as:

L∗ =

[
9π2
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meσ
2
tEth

2
t

q3
eN

2
e

]1/3

(A.2)

where me and qe are electron mass and charge; Ne is the electron number density from
ionospheric plasma; ht is the thickness of tether; σt is the electrical conductivity of the
tether; Et is the electrical field component along the tether.
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Appendix B

Reference frames

A list is presented below with all the reference systems employed throughout this PhD
thesis:

1. Spherical Geocentric Equatorial Rotating (SGER) system. Unit vectors
(ur, uδ, uφ). ur is pointing from the Earth’s center to the system’s center of
mass; uδ is pointing towards the co-latitude direction, tangential at the system’s
center of mass location, where the co-latitude angle is measured from the North
Pole towards the South Pole; uφ is the longitude direction at the generic location
of the system’s center of mass, pointing Eastward from the Greenwich meridian.
This is the reference system in which the coordinates of the geomagnetic induc-
tion vector B are computed from the IGRF database, as described in Appendix
D.2.

2. Perifocal frame (PQW) with unit vectors up, uq, uw. up is directed along
the periapse of the orbit and pointing such that it goes from focus to periapse.
uw is directed along the normal to the orbital plane and pointing such that it
creates a right-hand triad following the direction of orbital motion. uq is such
that up × uq = uw.

3. Orbital frame (RSW), with unit vectors ur, us, uw. ur is pointing from the
Earth’s center towards the system’s center of mass along the orbital path; us

is rotated of 90◦ with respect to ur, on the orbital plane, and pointing in the
direction of increasing true anomaly; uw = w is directed along the normal to
the orbital plane and pointing such that it follows the right-hand rule with the
other two unit vectors, i.e. ur × us = uw.

4. Body frame (B), with unit vectors uξ, uη, uζ . uζ is aligned with the longitu-
dinal axis of Sylda; uξ is aligned with the optical axis of the vision system, that
lies on the orbital plane after detumbling of Sylda, and throughout the deploy-
ment of the two tether segments of the butterfly configuration; uη completes the
orthonormal right-hand triad.
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Appendix C

Atmospheric drag computation

The atmospheric drag is a force opposite to the vector of relative velocity vrel be-
tween the orbiting body and the atmosphere. It can be reasonably assumed that the
atmosphere is co-rotating with the Earth. Therefore:

vrel = v − vatm, (C.1)
vatm = r ×ΩE (C.2)

where v is the orbital velocity of the object to deorbit; r is the local radial posi-
tion vector from the Earth’s center; vatm is the linear local velocity of the terrestrial
atmosphere; ΩE is the spin rotational velocity of the Earth.

The atmospheric drag force Fatm, opposite to the relative velocity vector, can be then
computed as:

Fatm = −1

2
ρatmcd (At + Asc) vrelvrel (C.3)

being ρatm the local atmospheric density; At the frontal area of the tether (if more than
one tether segment is used, this is the sum of frontal areas of each tether segment); Asc
is the frontal area of the deorbited body (Sylda in the specific case of this research).
As frontal area, it is considered the aerodynamic drag exposed area, i.e. the surface of
the object projected on the plane orthogonal to the drag force vector. It is important
to point out that the system during deorbit is continuously rotating around its center
of mass. Consequently, the area exposed to atmospheric drag continuously changes
too. In the codes, it is decided to use a constant drag area, but averaged accounting
for its variation during one full rotation of the system.

The atmospheric drag is considered to be present only for altitudes lower than 900 km.
Above 900 km, the atmospheric density becomes so low that the perturbation due to
atmospheric drag is negligible. At the altitudes at which deorbit takes place, before
the objects reenters in the atmosphere, i.e. always above 150 km, a free molecular flow
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takes place: this means that particles of the atmosphere interact one by one with the
orbiting body, and therefore the incident flow of particles is not disturbed by the body
itself. In such conditions, the aerodynamic drag coefficient can be chosen in the range
between 2.0 and 2.4. In all the codes developed for this research, a mean value of
cd = 2.2 is used.

The profile of atmospheric density is imported using the Jacchia-Bowman 2008 (JB-
2008) empirical model (Ref. [2]). Only the variation with orbital altitude is considered.
Values are taken from Ref. [2], for altitude steps between 100 and 900 km. From this
set values, shown in TableC.1, a much higher number of values is obtained using an
interpolation algorithm, and imported in the codes, in the condition of moderate Solar
and geomagnetic activity. The resulting atmospheric density profile is shown in Fig.
2.2.
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COSPAR INTERNATIONAL REFERENCE 
ATMOSPHERE (CIRA-2012) 

Version:  1.0 

Date: July 31, 2012 

36 

Table 7 — Altitude profiles of total density for low, moderate, and high long-and 
short-term solar and geomagnetic activity 

H (km) 
Low 

activity 
Moderate 
activity 

High activity 
(long term) 

High activity 
(short term) 

100 5.31E-07 5.47E-07 5.44E-07 5.43E-07 
120 2.18E-08 2.40E-08 2.45E-08 2.46E-08 
140 3.12E-09 3.98E-09 4.32E-09 4.45E-09 
160 9.17E-10 1.36E-09 1.54E-09 1.60E-09 
180 3.45E-10 6.15E-10 7.40E-10 7.77E-10 
200 1.47E-10 3.17E-10 4.10E-10 4.38E-10 
220 6.96E-11 1.77E-10 2.46E-10 2.70E-10 
240 3.54E-11 1.05E-10 1.56E-10 1.77E-10 
260 1.88E-11 6.47E-11 1.04E-10 1.21E-10 
280 1.03E-11 4.12E-11 7.12E-11 8.57E-11 
300 5.86E-12 2.69E-11 5.00E-11 6.22E-11 
320 3.40E-12 1.80E-11 3.59E-11 4.60E-11 
340 2.02E-12 1.23E-11 2.61E-11 3.45E-11 
360 1.22E-12 8.48E-12 1.93E-11 2.63E-11 
380 7.46E-13 5.95E-12 1.44E-11 2.02E-11 
400 4.63E-13 4.22E-12 1.09E-11 1.57E-11 
420 2.92E-13 3.02E-12 8.32E-12 1.23E-11 
440 1.87E-13 2.18E-12 6.40E-12 9.69E-12 
460 1.21E-13 1.59E-12 4.96E-12 7.70E-12 
480 8.04E-14 1.17E-12 3.87E-12 6.16E-12 
500 5.44E-14 8.60E-13 3.04E-12 4.95E-12 
520 3.77E-14 6.39E-13 2.40E-12 4.01E-12 
540 2.68E-14 4.77E-13 1.91E-12 3.25E-12 
560 1.96E-14 3.58E-13 1.52E-12 2.66E-12 
580 1.47E-14 2.71E-13 1.22E-12 2.18E-12 
600 1.14E-14 2.06E-13 9.82E-13 1.79E-12 
620 9.10E-15 1.57E-13 7.93E-13 1.48E-12 
640 7.41E-15 1.20E-13 6.43E-13 1.23E-12 
660 6.16E-15 9.28E-14 5.22E-13 1.02E-12 
680 5.22E-15 7.19E-14 4.25E-13 8.49E-13 
700 4.50E-15 5.60E-14 3.47E-13 7.09E-13 
720 3.93E-15 4.40E-14 2.84E-13 5.94E-13 
740 3.48E-15 3.48E-14 2.34E-13 4.98E-13 
760 3.10E-15 2.79E-14 1.92E-13 4.19E-13 
780 2.79E-15 2.26E-14 1.59E-13 3.54E-13 
800 2.53E-15 1.85E-14 1.32E-13 2.99E-13 
820 2.30E-15 1.53E-14 1.10E-13 2.54E-13 
840 2.11E-15 1.28E-14 9.21E-14 2.16E-13 
860 1.94E-15 1.08E-14 7.72E-14 1.84E-13 
880 1.78E-15 9.27E-15 6.50E-14 1.57E-13 
900 1.65E-15 8.01E-15 5.49E-14 1.35E-13 

3.1.10.  Useful Internet References for Indices 
a) Indices glossary: http://www.sec.noaa.gov/info/glossary.html

b) F10.7 daily values at DRAO website: http://hia-iha.nrc-cnrc.gc.ca/drao/icarus_e.html

Figure C.1: Atmospheric density in kg m−3 with respect to orbital
altitude in km. Three columns are posted, each one respectively refer-
ring to low, moderate, and high (long term and short term) Solar and
geomagnetic activity.
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Appendix D

Earth’s Magnetic Field

The three components of the geomagnetic induction B are derived, for all compu-
tations presented in Sec.2.2 and 3.5, from data in the IGRF-11 reference model. A
code is written to compute the geomagnetic field vector components Br, Bδ, Bφ in the
SGER reference frame (r, δ, φ) (see Appendix B for a description of this coordinate
system). Br is the component along the local radial direction (positive if pointing
outwards from the Earth’s center); Bδ is the component in the co-latitude direction
(positive if pointing southward); Bφ is the component in the longitude direction (pos-
itive if pointing eastward from the reference Greenwich meridian). A major reference
regarding the geomagnetic field computation is Wertz (Ref. [48]).

These are the inputs used for the computation of the geomagnetic induction vector:

• the instantaneous radial distance r of the system’s center of mass from the
Earth’s center

• the co-latitude δ, i.e. the angle from the Earth’s spin axis to the vector r. This
means that the unit vector uδ is positive in southward direction

• the longitude angle φ measured eastward from the Greenwich reference meridian.

• the time (in decimal days) starting from January 1st, 2010.

D.1 Dipole Model

The simplest model for the geomagnetic field is the dipole model, with dipole axis
tilted of an angle δm u 11.5◦ with respect to the Earth’s spin axis; the dipole model
corresponds to considering only the contributions of spherical harmonics of degree 1,
and orders 0 and 1, in the analytic calculation of magnetic field. It is important to
remember, in order to assign the correct direction to magnetic field vectors, that the
polarity of the magnetic dipole is opposite to the geographic polarity, i.e. the geomag-
netic South Pole is near to the geographic North Pole, and the geomagnetic North
Pole is near to the geographic South Pole. The geomagnetic field lines are oriented
such that they exit from the North magnetic pole (close to the South geographic pole)
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and go towards the South magnetic pole (close to the North geographic pole). Hence,
the local magnetic induction vector B points as shown in Fig.D.1.

m

m

Geographic 
North Pole Geomagnetic 

Dipole Axis

Earth's 
spin axis

S

N

Figure D.1: Geomagnetic dipole model

The dipole model of geomagnetic field is used in the model presented in Sec.2.1.

D.2 Higher Harmonics model

In the analyses presented in Sec.2.2 and 3.5, a full analytical model is employed for
the computation of geomagnetic induction, with all the higher harmonics available in
the IGRF-11 database.
The geomagnetic induction vector is computed as the gradient of a potential function
that, in turn, is derived from a series of spherical harmonics. An infinite number
of these harmonics would be required to achieve the exact value of the magnetic field
components, at every location in space. The notation system from Ref. [48] is adopted
for the equations presented in this section.

The magnetic field vector B is computed as:

B = −∇V (D.1)
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i.e. B is the negative of the spatial gradient of a scalar potential function V , that can
be in turn computed as:

V =
∞∑
n=1

n∑
m=0

V n,m (D.2)

where

V n,m = a
(a
r

)n+1

[gn,mcos(mφ) + hn,msin(mφ)]P n,m (D.3)

and

• a = 6371.2 km is the mean radius of the Earth

• r is the magnitude of r, i.e. the position vector from the center of the Earth to
the generic point in space, where the magnetic field vector is computed.

• φ is the geographic longitude measured Eastward from the Greenwich meridian.

• n is the degree of the specific spherical harmonic under consideration

• m is the order of the specific spherical harmonic under consideration

• gn,m and hn,m are Gauss-normalized coefficients of degree n and order m

• P n,m are Gauss-normalized functions, derived from Legendre polynomials. They
are functions of δ, namely the co-latitude (or co-elevation) of generic point in
space (i.e. 90◦ − latitude)

It is defined as spherical harmonic of degree n and order m, the single contribution to
B, i.e.:

Bn,m = −∇V n,m (D.4)

Therefore:

B =
∞∑
n=1

n∑
m=0

Bn,m (D.5)

Gauss-normalized coefficients are obtained from Schmidt Quasi-Normalized (or Semi-
Normalized) coefficients, extracted from the International Geomagnetic Reference Field
(IGRF) database. It is used the 11th Generation IGRF, with values of coefficients com-
puted at January 1st, 2010. This data was released by the International Association of
Geomagnetism and Aeronomy (IAGA) in December 2009. The values of all coefficients
reported in the IGRF model are determined experimentally.

Schmidt Quasi-Normalized, (or Semi-Normalized), coefficients up to the 13th degree
and order (nmax = 13 and mmax = 13) are used in the codes, in units of nT (nano-
tesla). Schmidt quasi-normalized coefficients are converted to Gauss-normalized coef-
ficients. The Schmidt quasi-normalized coefficients are denoted with a tilde sign on
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the top and by placing only m as superscript, and n as subscript (g̃mn and h̃mn ), in order
to distinguish them from the Gauss-normalized coefficients (gn,m and hn,m). The con-
version from Schmidt quasi-normalized to Gauss-normalized coefficients is performed
using the following equations:

gn,m = Sn,mg̃mn (D.6)

hn,m = Sn,mh̃mn (D.7)

where factors Sn,m are independent of local spherical coordinates r, δ, φ of the generic
point where the magnetic field is computed. The same is true also for the Schimdt
quasi-normalized coefficients and, consequently, for the Gauss-normalized coefficients.
Therefore, the code has to perform these operations, described up to now, only once
in an entire simulation, i.e. not for every single location covered by the system during
deorbit. This is an advantage granted by the employment of these coefficients, that
enable a more efficient computational method.

Sn,m factors are calculated using the following recursive equations:

S0,0 = 1 (D.8)

Sn,0 = Sn−1,0

[
2n− 1

n

]
n ≥ 1 (D.9)

Sn,m = Sn,m−1

√
(n−m+ 1)(δ1

m + 1)

n+m
m ≥ 1 (D.10)

where δ1
m is the Kronecker delta defined as δji = 1 if i = j and δji = 0 otherwise. In

this equation j = 1; therefore, only when m = 1 the delta is δ1
1 = 1. In all other cases

δ1
m6=1 = 0.

The Gauss functions P n,m can be recursively obtained too, with a similar procedure:

P 0,0 = 1 (D.11)
P n,n = sin(δ)P n−1,n−1 (D.12)
P n,m = cos(δ)P n−1,m −Kn,mP n−2,m (D.13)

where

Kn,m = 0 n = 1 (D.14)

Kn,m =
(n− 1)2 −m2

(2n− 1)(2n− 3)
n > 1 (D.15)
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It is set the maximum degree of contributing spherical harmonics, to be considered
in the analysis, as nmax. In the IGRF datasheet the maximum degree is n = 13, but
nmax can be even lower than 13. It is used nmax = 13, i.e. the maximum degree of
spherical harmonics available. For each degree value n, there is a set of values of order
m ranging from 0 to n, for g coefficients; from 1 to n for h coefficients. The maximum
value of order m equals the maximum value of n considered in the calculation, i.e.
mmax = nmax = 13.

By implementing the gradient in spherical coordinates, the magnetic field components
can be eventually calculated with the following equations:

Br = −∂V
∂r

=
nmax∑
n=1

(a
r

)n+2

(n+ 1)
n∑

m=0

[gn,mcos(mφ) + hn,msin(mφ)]P n,m (D.16)

Bδ = −1

r

∂V

∂δ
= −

nmax∑
n=1

(a
r

)n+2
n∑

m=0

[gn,mcos(mφ) + hn,msin(mφ)]
∂P n,m

∂δ
(D.17)

Bφ = − 1

rsinδ

∂V

∂φ
= − 1

sinδ

nmax∑
n=1

(a
r

)n+2
n∑

m=0

m [−gn,msin(mφ) + hn,mcos(mφ)]P n,m

(D.18)

The computation is performed using a recursive method in order to improve code
efficiency, and the expressions are such that singularity is avoided when the magnetic
field is evaluated at points that lie on the polar axis. The components Br, Bδ and Bφ

are computed, using the equations described above, in the SGER system (see Appendix
B).
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Appendix E

Ionosphere model and electron density

For the computation of the current generated along the electrodynamic tether, it is
necessary to know the value of electron density Ne at every location along the deorbit
path. Values of Ne are extracted from the International Reference Ionosphere (IRI)
2007 database. The electron density is variable over time, even on the same specific
location. The major influencing factor is the solar flux. A higher solar flux leads to
higher electron densities. The main input requested by the code to extract the electron
density profile, is the precise Julian Day (JD) at which to compute the electron density
data set.

A Julian Day is then chosen such that the solar flux on that day is as close as possible
to an average value over one complete solar cycle. Since deorbit times, with the teth-
ered system considered in this thesis, range between approximately 2.2 to 2.7 years, it
can be reasonably assumed that the average solar flux during deorbit is equal to the
mean solar flux over an entire solar cycle (lasting about 11 years).

An average value of F10.7 index is found from literature, i.e. F10.7 ≈ 145s.f.u..
The F10.7 index gives the measure of the solar radio flux per unit frequency at a
wavelength of 10.7 cm, near the peak of the observed solar radio emission. Using this
average F10.7, the Julian Day when the F10.7 was as close as possible to this mean
value is determined. Once the JD is given in input, the values of electron density
Ne for different altitudes, longitudes, and latitudes are computed. From this file, it
is chosen to use, for all the analyses presented in this thesis, a profile averaged over
latitude and longitude, i.e. keeping the variation only with the orbital altitude. In
fact, the orbital altitude is the parameter that has, by far, the highest influence on the
electron density. This profile of electron density versus altitude is shown in Fig.2.2.
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