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Abstract 

The pressure of the global competition, continuously asking for lower costs and improved 

productivity, is forcing companies to seek global supply chains to cut production costs 

down. As a result, it is becoming more and more difficult to accurately monitor each step 

of a production process and to protect products from economically motivated fraud, 

adulterations and counterfeiting. In such context, traditional methods for product quality 

characterization, such as lab assays, are expensive, destructive, time-consuming, and for 

these reasons they have become inadequate in several applications. On the other hand, 

other approaches, such as absorption spectroscopy and computer vision, have been gaining 

much attention in the last decade, successfully contributing to speed up and automate the 

quality assessment exercise. Statistical modeling tools, particularly latent variable models 

(LVMs), are usually employed to exploit the information embedded in the large amount of 

highly correlated data (spectra and images) that absorption spectroscopy and computer 

vision generate.  

In the food and pharmaceutical sectors, product quality assessment still relies mainly on 

the judgment (of product color, odor, form, taste, etc.) of a panel of trained experts. 

Although the number of applications of LVMs as predictive tools for product quality 

monitoring is growing in these sectors, the use of LVMs for product quality assessment is 

usually tailored to each application, and general approaches to product quality assessment 

based on LVMs are lacking. The main objective of the research presented in this 

Dissertation is to overcome some of the limitations that hinder the diffusion of LVM tools 

in the food and pharmaceutical industrial practice. Three main strategies for product 

quality assessment are explored, namely the use of computer vision, the use of absorption 

spectroscopy, and the possibility of combining the information derived from different 

analytical instruments. 

With respect to the use of computer vision systems, the problem of maintaining such 

systems is discussed. Computer vision systems are deemed to be quick, accurate, objective 

and able to return reproducible results. However, likewise all other measurement systems, 

they need to be maintained. Alterations or failures (e.g. of the illuminating system or of the 

camera sensors) can dramatically affect measurement reproducibility, leading to a wrong 

product quality characterization. The problem of how to detect and manage these 

alterations or failures is discussed through a pharmaceutical engineering case study. 

General strategies are proposed to adapt a quality assessment model, which has been 

calibrated under certain environmental conditions, to new conditions. Results show that 

long downtime periods, which may be necessary to recalibrate the quality assessment 
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model after a failure of the camera or of the lighting system, can be significantly reduced. 

Additionally, it is shown how image analysis can be effectively used not only to 

characterize the quality of a product, but also to improve the understanding on the 

production process (e.g., for troubleshooting or optimization purposes). In a specific 

pharmaceutical application, image analysis is used to investigate the causes leading to the 

erosion of tablets, allowing one to evaluate the effect of different physical phenomena 

occurring in the film-coating process. Additionally, the model relating the process 

conditions to the tablets quality is shown to be useful for process monitoring purposes. 

With respect to the use of absorption spectroscopy, a novel methodology to preprocess 

and classify spectral data is proposed. Traditionally, LVMs are built after some 

preprocessing of the raw spectra, and the optimal preprocessing strategy is chosen trough a 

time consuming trial-and-error procedure. Results from three different food engineering 

case studies show that the proposed methodology performs similarly to other existing 

approaches, but it uses a sequence of totally automated preprocessing steps, with no need 

for trial-and-error searches. 

Especially in the food industry, LVMs are usually tailored on the specific product being 

analyzed. For instance, for the detection of the fresh/frozen-thawed substitution fraud in 

fish fillets, a model is calibrated for each fish species possibly subject to substitution. This 

Dissertation considers a different approach: some strategies are proposed to design a multi-

species, and possibly species-independent, classification model to detect this substitution 

fraud. The most promising strategy decomposes the information embedded in the spectral 

data using a single model, and it is shown to return the same overall accuracy of traditional 

approaches that employ one classification model for each species under investigation. 

Finally, with respect to the use of data fusion, it is shown how to effectively combine the 

information derived from different analytical instruments (such as spectrometers, digital 

cameras, texture analyzers, etc.) to enhance product quality characterization. Results on 

two food engineering case studies show that fusing the available information, rather than 

using them separately, improves the ability of assessing product quality. 
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Riassunto 

In un sistema economico globalizzato come quello in cui viviamo, garantire elevati 

standard in termini di qualità di prodotto costituisce per ogni azienda produttiva un fattore 

di successo. Monitorare in modo accurato la qualità del prodotto lungo tutti gli stadi della 

filiera produttiva, tuttavia, è divenuto progressivamente più complesso a causa della 

dimensione globale che quest’ultima ha assunto. É questo un effetto dei fenomeni di 

delocalizzazione della produzione, legati alla necessità delle aziende di non perdere quote 

di mercato a discapito di paesi emergenti caratterizzati da costi di produzione inferiori. In 

un tal sistema, aumenta anche il rischio di frodi, adulterazioni e contraffazioni del prodotto. 

Per certe categorie di prodotti, come quelli alimentari e farmaceutici, tali attività non solo 

danneggiano i consumatori dal punto di vista economico, ma possono anche causare seri 

problemi di salute. 

Nonostante la grande importanza del monitorare la qualità di prodotto, a livello industriale 

si è ancora lontani da un sistema che permetta di caratterizzarla in modo rapido, 

economico, non invasivo (e quindi utilizzabile in tempo reale), riproducibile e multivariato 

(cioè in grado di quantificare contemporaneamente più parametri di qualità). Le tecniche 

che si sono dimostrate più promettenti in tal senso sono la spettroscopia d’assorbimento 

nella regione del visibile e del vicino infrarosso e l’analisi d’immagine. Per analizzare la 

moltitudine di dati (spettri e immagini) caratterizzati da forti correlazioni che queste 

generano, è necessario ricorrere a tecniche statistiche apposite, in particolare i modelli a 

variabili latenti (LVM, latent variable models). Tali tecniche, che sono pensate per trattare 

tali tipologie di dati, nascono dall’assunto che un sistema possa essere descritto mediante 

pochi fattori (detti anche variabili latenti) esprimibili come combinazione lineare delle 

variabili originali e interpretabili sulla base dei fenomeni chimico/fisici che interessano il 

sistema. 

Il numero di applicazioni di LVM nel campo della caratterizzazione di prodotti alimentari 

e farmaceutici è cresciuto rapidamente negli ultimi anni. La maggior parte dei contributi 

pubblicati, tuttavia, offre soluzioni a specifici problemi anziché fornire approcci generali. 

L’obiettivo di questa Dissertazione è quello di superare alcune delle limitazioni esistenti al 

fine di favorire la diffusione di questi strumenti nella comune pratica industriale. La ricerca 

presentata si suddivide in tre macro aree di applicazione, che si differenziano a seconda 

della tecnica utilizzata per caratterizzare la qualità di prodotto, e cioè l’analisi d’immagine, 

la spettroscopia, e la fusione di dati (data fusion), cioè la combinazione delle informazioni 

provenienti da più strumenti analitici. Per ciascuna di queste aree, l’efficacia della 
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modellazione a variabili latenti viene dimostrata applicando i modelli in diversi casi studio 

di tipo industriale o di laboratorio. 

 

Con riferimento all’analisi d’immagine, vengono proposte applicazioni nel campo 

farmaceutico. Nel Capitolo 3, l’analisi d’immagine viene utilizzata per il miglioramento 

della comprensione di un processo industriale di rivestimento di compresse. In tale 

processo la qualità finale del prodotto, che è legata all’omogeneità del rivestimento e al 

grado di erosione superficiale, viene tradizionalmente valutata da un panel di esperti, che 

necessariamente fornisce un giudizio soggettivo e poco riproducibile. Inizialmente, il 

Capitolo discute come, a partire da immagini del prodotto finito, sia possibile valutare in 

modo quantitativo e riproducibile i parametri di qualità. Le metriche sviluppate vengono 

quindi utilizzate per il troubleshooting del processo stesso, con il fine di indagare il 

meccanismo che porta all’erosione superficiale. A tal scopo, le metriche vengono correlate 

ai parametri di processo tramite un modello a variabili latenti, e i parametri del modello 

vengono utilizzati per definire le condizioni operative ottimali da utilizzare per garantire un 

prodotto in specifica. 

Il Capitolo 4, usando ancora come pretesto un processo di rivestimento di compresse, 

discute in modo critico il problema della riproducibilità dei risultati ottenuti tramite analisi 

d’immagine. Tale riproducibilità, infatti, è garantita solamente se le condizioni 

sperimentali utilizzate per raccogliere le immagini destinate alla calibrazione del modello 

di stima della qualità vengono mantenute inalterate. Tali condizioni includono il sistema di 

illuminazione e la fotocamera stessa. Viene proposto innanzitutto un modello per il 

monitoraggio dello stato dell’apparato sperimentale, da utilizzare ogniqualvolta viene 

avviata una campagna di controllo qualità e basato semplicemente sull’acquisizione di 

un’immagine di standard colorati. In caso venga rilevato un cambiamento, viene proposta 

una strategia per adattare il modello di stima della qualità alle nuove condizioni. I risultati 

dimostrano l’efficacia della strategia proposta, che si basa su una tecnica già nota nel 

contesto della sincronizzazione vocale e dell’allineamento di traiettorie temporali in 

processi produttivi di tipo batch. 

 

Con riferimento alla spettroscopia d’assorbimento, le applicazioni presentate riguardano 

prodotti alimentari, con particolare attenzione alle tecnologie per la rilevazione rapida di 

frodi di sostituzione (di un prodotto avente un certo valore di mercato con uno a valore di 

mercato inferiore). Nel Capitolo 5, viene presentata una nuova tecnica per la 

classificazione di dati spettrali, che ha l’obiettivo di razionalizzare il pretrattamento cui i 

dati stessi sono generalmente sottoposti. I risultati dimostrano come la tecnica proposta 

garantisca di ottenere la stessa accuratezza di altri metodi, senza tuttavia ricorrere a 
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procedure di tipo trial-and-error, onerose in termini computazionali, per la scelta del 

miglior pretrattamento.  

Nel Capitolo 6, accanto a due applicazioni di autenticazione di prodotti alimentari (filetti 

pescati di branzino e formaggio Asiago d’allevo) tramite spettroscopia, viene presentata 

una tecnica multi specie per la rilevazione di una tipica frode del settore ittico, cioè la 

sostituzione di filetti freschi con filetti decongelati. Rispetto al tradizionale approccio di 

costruire un modello di rilevazione della frode per ciascuna specie, lavorare con un 

modello multi specie (e, magari, indipendentemente dalla specie) riduce notevolmente i 

tempi e i costi necessari nella fase di calibrazione. Delle tre strategie proposte, quella che 

fornisce risultati migliori lavora decomponendo l’informazione contenuta nei dati spettrali 

in due componenti, una legata alla specie e una legata allo stato fresco o decongelato. La 

tecnica, convalidata su un numero di spettri molto maggiore rispetto alla applicazioni 

riportate in letteratura, si è dimostrata efficace anche nell’autenticazione di campioni di 

specie non utilizzate nella fase di calibrazione. 

 

Infine, con riferimento alla fusione di dati, il Capitolo 7 dimostra, attraverso due 

applicazioni in campo alimentare, come unire le informazioni ottenute da più strumenti 

analitici permetta di migliorare la caratterizzazione della qualità di un prodotto. La 

combinazione dei segnali a disposizione (detta low level, per distinguerla da altre tecniche 

di fusione di dati), opportunamente pesati, permette di ottenere risultati migliori rispetto 

all’utilizzo dei singoli segnali. 
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Chapter 1 

Motivation and state of the art 

This Chapter provides an overview of the background and motivations of this Dissertation. 

First, the concept of product quality is discussed together with its relevance within the 

process industry. Then, some traditional approaches to product quality assessment are 

described. Finally, the role and the importance of latent variable modeling for product 

quality assessment is discussed. The objectives of the Dissertation and a roadmap to its 

reading conclude the Chapter. 

1.1 Product quality and its role in a global economy 

Defining product quality is not trivial. One of the first (and perhaps most comprehensive) 

definitions of quality was given by Garvin (1984), as summarized in Table 1.1. According 

to Garvin, five different approaches to the concept of product quality need to be taken into 

account, each of them representing the point of view of the discipline in which it has been 

rooted.  

Table 1.1. Product quality definitions according to Garvin (1984). 

Approach Definition 

Transcendent Innate excellence 

Product-based Quantity of a desired attribute 

User-based Satisfaction of individual consumer preferences 

Manufacturing-based Conformance to requirements 

Value-based Affordable excellence 

 

Table 1.1 clearly leads to conclude that a global definition of product quality does not 

exist; rather, different definitions of quality are appropriate under different circumstances 

(Garvin, 1984; Reeves and Bednar, 1994). Similarly, the more recent ISO 9000’s quality 

definition, i.e. the degree to which a set of inherent characteristics fulfils requirements 

(International Standards Organization, 2005), needs to be conjugated to the specificity of 

the context being analyzed. Hence, the conclusion drawn by Garvin (1984), i.e. that 

product quality is a multivariate concept requiring several different product features to be 

taken into account simultaneously, is still appropriate nowadays. 
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Notwithstanding the difficulty of properly defining quality, it is widely recognized that in 

our global economy it plays a key role in determining the success (or failure) of a given 

product, as clearly reported for example in the European Union Green Paper: “As 

globalisation spreads, products from emerging countries with low production costs are 

putting greater pressure on EU [...]. There is growing competition for both agricultural 

commodities and value-added products. Faced with these new commercial challenges, the 

[...] most potent weapon is ‘quality’” (Commission of the European Communities, 2008). 

As recently observed also by the US Food and Drug Administration (FDA, 2011b), the 

pressure of the global competition, continuously asking for lower costs and improved 

productivity, increased the flows of products around the world in the last two decades, as 

companies continue to move manufacturing activities to new and different locations, 

looking to global supply chains to reduce production costs. The market for contract 

manufacturing outsourcing in pharmaceutical production is a clear evidence of this trend: it 

grew linearly up to an estimated USD 46 billion in 2010, i.e. more than double its size in 

2001. As an example, the cost of formulation of an active pharmaceutical ingredient can 

range from 15% to 40% less to produce it in India as compared to the US (FDA, 2011b).  

Highly complex global supply chains represent nowadays the common practice for the 

majority of the existing products, even for those with a low added value. An example is 

given in Figure 1.1, which shows some of the steps fresh tuna goes before being sold as 

canned tuna in the US. 

Processed into frozen pieces Pre-canning Canning Distribution Consumption

 

Figure 1.1. Supply chain for canned tuna. The arrows indicate a possible path from the 

time the fish is caught in East Asia to the time the finished product reaches store shelves 

in the US. Adapted from FDA (2011). 

Spreading the stakeholders of product quality throughout the world by establishing global 

supply chains hinders the possibility of accurately monitoring each step of the production 
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process, due to the increased number of both processing steps and entities touching a given 

product. Additionally, in such complex networks it is becoming more and more difficult to 

prevent and detect the intentional efforts of adulteration, fraud and counterfeiting
*
. Such 

activities can not only negatively affect consumers from an economical point of view, but 

could also cause serious safety issues when the manipulation concerns some highly-

sensitive product categories such as food and pharmaceuticals (Deisingh, 2005; Jacquet 

and Pauly, 2008). For example, the International Federation of Pharmaceutical 

Manufacturers and Associations (IFPMA) has estimated that 7% of all pharmaceuticals 

worldwide are counterfeited, the value of this business being worth more than USD 30 

billion. Several examples of patients died after receiving adulterated medicines have also 

been reported (www.ifpma.org/global-health/counterfeits.html). 

In such a framework, all players of a product supply chain are strongly motivated in 

assessing product quality, with each of them representing one (or more) of the points of 

view listed in Table 1.1. Manufacturers are interested in reducing scraps and defects to cut 

costs down; consumers look for products meeting their needs, i.e. with a specific series of 

characteristics; control agencies aim at ensuring product safety, preventing intentional 

adulteration, fraud and counterfeiting.  

The problem of quantifying product quality in an unbiased and reproducible way 

represents the central idea developed throughout the Dissertation, with applications to two 

similar product categories such as foods and pharmaceuticals. Both the pharmaceutical and 

food industries have to face strict regulatory demands in terms of quality control, safety 

and traceability. Concepts like current good manufacturing practices (GMPs), quality risk 

assessment and management are enforced for food and pharmaceuticals producers (FDA, 

2004a, 2004c and 2005; ICH 2006), with the aim of ensuring that the end products meet 

the desired quality standards. In addition, food and pharmaceuticals are both highly-

sensitive products for which either poor quality or economically motivated fraud, 

adulteration and counterfeiting can easily translate into serious harms for public health.  

1.2 Product quality in the pharmaceutical industry 

A decade ago, the Quality by Design (QbD) initiative (ICH, 2004) revolutionized the 

approach of pharmaceutical practitioners towards product quality. Taking inspiration from 

the experiences of different industries (e.g. automotive, semiconductors, etc.), the new 

approach to pharmaceutical development and manufacturing had the purpose of favoring 

an efficient and flexible environment to produce reliably high quality products, without 

                                                 
* Fraud-related terms have been defined and harmonized for the global audience by one of the first working group in ISO 

Technical Committee 247, Fraud Countermeasures and Controls (International Standards Organization, 2010). 

http://www.ifpma.org/global-health/counterfeits.html
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extensive regulatory oversight (Winkle, 2007). The QbD initiative encourages companies 

to the adoption of systematic science-based tools, rather than fixed traditional procedures 

(Tomba, 2013). The ultimate objective of this approach is to promote product and process 

understanding in pharmaceutical development, in order to increase manufacturing 

flexibility and process robustness. According to the QbD philosophy, the quality of a 

product cannot be assessed at the end of the product development activity or after 

manufacturing, but must be “built into” the product and ensured since its design, through a 

thorough mechanistic understanding of the relations between the quality of the product and 

the parameters that have an impact on it. 

Building quality into products rather than testing it at the end of the manufacturing process 

implies that a comprehensive understanding of the characteristics of the drug (chemical, 

physical, pharmacological, pharmacokinetic, etc.), of the design and selection of the 

product components, and of the design of the manufacturing process and quality assurance 

is achieved. To reach this level of comprehension and develop well understood processes 

that are able to ensure consistently the predefined product quality, appropriate tools need to 

be employed, in order to measure and analyze effectively the relevant data. To this end, the 

FDA introduced the Process Analytical Technology (PAT) framework (FDA, 2004b). 

According to the agency definition, PAT is “a system for designing, analyzing and 

controlling manufacturing through timely measurements (i.e., during processing) of critical 

quality and performance attributes of raw and in-process materials and processes, with the 

goal of ensuring product quality”. It is important to note that the term analytical in PAT is 

viewed broadly to include chemical, physical, microbiological, mathematical and risk 

analysis conducted in an integrated manner (FDA, 2004b). 

Through the PAT initiative, the FDA indicates the tools to be considered for an effective 

innovation in development, manufacturing and quality assurance. In particular, the 

objective of PAT is to provide support to clarify on a scientific basis typical issues that are 

likely to be encountered in development and manufacturing studies: for example, which 

the effects of product components on quality are, what sources of variability are more 

critical for the product, or how the process is able to manage variability. 

In general, PAT includes all those tools that can provide an effective and efficient mean for 

acquiring valuable information to facilitate process understanding, continuous 

improvement through process and product monitoring and development of control and 

risk-mitigation strategies. In the PAT framework, these tools can be categorized according 

to the following (FDA, 2004b): 

 multivariate tools for design, data acquisition and analysis; 

 process analyzers; 

 process control tools; 

 continuous improvement and knowledge management tools. 
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The multivariate tools category includes all the multivariate mathematical approaches, 

such as statistical design of experiments, response surface methodologies, process 

simulation and pattern recognition tools, in conjunction with knowledge management 

systems, which allow to gain scientific understanding of the relevant multi-factorial 

relationships between formulation, process, and quality attributes. It includes also the 

means to evaluate the applicability of this knowledge to different scenarios. When used 

appropriately, these tools “enable the identification and evaluation of product and process 

variables that may be critical to product quality and performance”. They may also “identify 

potential failure modes and mechanisms and quantify their effects on product quality” 

(FDA, 2004b). 

Process analyzers include all the tools committed to the collection of data from the process. 

These measurements can be obtained at-line, i.e. by removing, isolating and analyzing the 

sample in proximity to the process stream; on-line, i.e. by diverting the sample from the 

manufacturing process and returning it to the process stream after the measurement; in-

line, i.e. by keeping the sample inside the process stream, while the measurement can be 

made invasively or not. Process analyzers generate typically large volumes of data. For this 

reason, multivariate methodologies are indicated to extract critical process knowledge that 

can be related to product and process quality and used for process monitoring, control and 

end point determination. The design and installation of the analyzers on the process 

equipment is also identified as a critical step, as it must be ensured that the collected data 

are relevant and representative of process and product attributes (FDA, 2004b). 

The process control tools include all the “process monitoring and control strategies 

intended to monitor the state of a process and actively manipulate it to maintain a desired 

state. Strategies should accommodate the attributes of input materials, the ability and 

reliability of process analyzers to measure quality attributes, and the achievement to 

process end points to ensure consistent quality of the output materials and the final 

product”. In a PAT framework, the process should be continually monitored, evaluated and 

adjusted using in-process measurements, tests and controls in order to guarantee 

continuous quality assurance. This represents a way to demonstrate process validation. 

Finally, the Agency encourages the adoption of PAT as continuous improvement tools, 

which enable a continuous learning through the data collected and analyzed over the 

lifecycle of the product. Approaches that support the acquisition of knowledge from these 

data would be valuable for manufacturing and facilitate the communication with the 

Agency on a scientific basis. 

According to the FDA guidelines, process understanding, control strategies plus on-, in- or 

at-line measurement of quality attributes provides a scientific risk-based approach to 

justify how real time quality assurance is at least equivalent to, or better than, laboratory-

based testing on collected samples (FDA, 2004b). 
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The QbD initiative is clearly intended to promote a novel approach to product quality 

within the manufacturing environment. The US FDA, however, is active also in protecting 

consumer from fraud, adulteration and counterfeiting. Drug counterfeiting is a vast global 

problem leading to deaths from untreated disease, reduced confidence in some vital drugs, 

large economic losses for the legitimate manufacturers and possible drug resistance 

(Deisingh, 2005; Feng et al., 2013). According to the World Health Organization definition 

(http://www.who.int/medicines/services/counterfeit/overview/en/) and their chemical 

nature, the counterfeit drugs may include but not limited to (i) drugs containing no active 

ingredients; (ii) drugs containing the incorrect amount of active ingredients; (iii) drugs 

containing different but structurally related active ingredients which have lower prices than 

the right one; (iv) drugs containing different active ingredients totally unrelated to the 

correct one. In developed countries, counterfeit drugs harm primarily the trademark owner 

of expensive lifestyle drugs (Viagra® and Cialis®), while in developing countries drugs to 

treat life-threatening illnesses like malaria and tubercolosis are frequently counterfeited. 

However, while in the former case the percentage of counterfeited drugs is deemed to 

represent less than 1% of the market value, in the latter one it grows up to 25 or even to 

50% (Mukhopadhyay, 2007). The Agency is currently promoting several strategies for 

securing the drug supply chain, in agreement with the US Federal Food, Drug and 

Cosmetic Act. These strategies are mainly based on improving the drug traceability 

throughout the market (FDA, 2010), also with the incorporation of physical-chemical 

identifiers in the case of solid oral dosage form drug products (FDA, 2011a). In addition, 

novel analytical techniques are being employed and developed for fast detecting of fraud, 

adulteration and counterfeiting, with the aim of replacing traditional laboratory analysis 

(see § 1.4). 

The European Medicine Agency (EMA) runs roughly parallels to the US FDA and 

attempts to harmonize (but not replace) the work of existing national medicine regulatory 

bodies. EMA and FDA strictly collaborate to exchange confidential information as part of 

their regulatory and scientific processes, including information on advance drafts of 

legislation and regulatory guidance documents, as well as non-public information related to 

ensuring the quality, safety and efficacy of medicinal products for human and veterinary 

use.  

1.3 Product quality in the food industry 

US FDA guidance and regulations for food products are similar to pharmaceutical ones. As 

a consequence, QbD and PAT concepts are penetrating also in the food industry. In fact, 

the high degree of variation in biological processes makes it difficult to meet the strict 

regulatory demands in terms of quality control, safety and traceability using production 

http://www.who.int/medicines/services/counterfeit/overview/en/
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methods and technology that are primarily recipe-driven and based on post-production 

qualification and off-site laboratory analysis. Thanks to the introduction of real-time 

monitoring tools, food industries are gradually moving towards model predictive process 

control without the need of post-process testing (van den Berg et al., 2013; Fissore et al., 

2013).  

Likewise pharmaceutical products, one of the risks gaining attention from industry, 

governments, and standards-setting organizations (such as the US FDA, or the European 

Food Safety Authority, EFSA), is the economically motivated fraud by food producers, 

manufacturers, processors, distributors, or retailers. As reported by Moore et al. (2012), 

food fraud is a collective term encompassing the deliberate substitution, addition, 

tampering, or misinterpretation of food, food ingredients, or food packaging, or false or 

misleading statements made about a product for economic gain. A food fraud can damage 

consumers from an economical point of view. For example, in the case of seafood 

products, selling farmed fish as wild fish produces an economic loss for the customer, 

since wild fish as a higher market price. However, a food fraud can also entail safety 

issues. For example, in the case of seafood products, selling frozen-thawed fish as fresh 

fish may be harmful, since frozen-thawed fish has a lower market price and a shorter shelf 

life, i.e. it is more susceptible to microbial growth with respect to fresh meat (Pavlov, 

2007). Moore et al. (2012) created recently a database of food fraud and adulterations by 

exploiting both literature and public media articles, and reported for olive oil, milk (and 

dairy products), honey and seafood the greatest number of records. Similar results were 

reported also by the Italian Ministry of Agricultural, Food and Forest Politics in its 2012 

fraud report, which shows that on a total of 8200 food samples analyzed, nearly 12% was 

found to be irregular, leading to more than 20 million of kilograms of food products  

confiscated (for an equivalent value of EUR 0.5 billion; http://www.politicheagricole.it). 

The US Food Safety and Modernization Act (FSMA) and the EU Commission Regulation 

No 1169, both enacted in 2011, recognized the importance of labeling as one of the most 

important tools to be used for fraud prevention. The EU Regulation lists the mandatory 

information for correct product labeling, which includes the ingredient list, the use by date, 

any special storage conditions, the place of the provenance, and the name and address of 

the food business operator responsible for all the information. Clearly, part of the Agencies 

activities consists of verifying whether a product is mislabeled or not. To this purpose, 

researchers are constantly seeking for fast, non-invasive and reliable techniques to be used 

for fraud screening. Some of these techniques will be discussed in Chapters 5-7 of this 

Dissertation. 

http://www.politicheagricole.it/
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1.4 Product quality assessment 

There are no instruments capable of capturing alone the complex and multivariate nature of 

product quality. Consider for example a seafood product such as the European sea bass 

(Fasolato et al., 2010), which is traditionally one of the preferred finfish species by the 

Italian consumers (Poli et al., 2001). A summary of its main quality parameters is given in 

Table 1.2, together with the indication of the analytical technique/instrument used for 

quality assessment. 

Table 1.2. Product quality attributes of European sea bass and analytical 

technique/instrument for their assessment. The list is not exhaustive. 

Parameter Analysis 

Fat content Method 920.39 (AOAC, 2002) as in Folch et al. (1957) 

Moisture content Method 934.01 (AOAC, 2002), i.e. gravimetrically oven-drying at 103°C 

Protein content Method 992.15 (AOAC, 2002), i.e. Kjeldahl method 

Ash content Method 942.05 (AOAC, 2002), i.e. gravimetrically after incineration at 550°C 

Water activity Hygrometer 

Fatty acids profile Gas chromatography of anhydrous fat transesterified according to Christie (1982) 

Color Colormeter 

Mechanical properties Texture analyzer (compression/shear stress) 

 

Some of the attributes listed in Table 1.2 are related to nutritional aspects (e.g., fatty acids 

profile), some to safety issues (e.g., water activity), and some to the consumers’ acceptance 

(e.g., color). As implicitly suggested in Table 1.2, measuring all these attributes is an 

expensive and time consuming activity, which requires several dedicated instruments and 

trained personnel. Some measurements can take many hours to be completed, preventing 

from in-/on-line use in high-throughput production chains. In addition, most of the 

techniques are destructive, and some of them require reagents, which entails environmental 

issues. Furthermore, it should be taken into account that the list proposed in Table 1.2 is 

not exhaustive. Information about freshness, geographical origin and status (i.e., whether 

wild or farmed), which are mandatory for correct product labeling (see § 1.3), are also 

highly appreciated by consumers. However, to date there are no accepted methods for the 

unequivocal determination of these quality attributes (Martinez et al., 2003; Jacquet and 

Pauly, 2008).  

A similar situation exists also for many other food and pharmaceutical products. The 

quality assessment procedures in the food and pharmaceutical industries rely often on 

inspections carried out by a panel of trained experts that is intended to reproduce the 

consumers’ perception (of odor, taste, color, etc.). Such evaluations are necessarily subject 

to human judgment, and hence barely reproducible. For instance, visual analysis can be 

used to assess tablet surface erosion (which is a key quality parameter for controlled-
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release products as it might affect the absorption of the active pharmaceutical ingredient), 

or the color of fresh and processed food (fruits, beverages, fish, meat; Pathare et al., 2013), 

or the odor and taste of both food (Lawless and Heymann, 2010) and pharmaceuticals 

(Baldwin et al., 2011).  

Despite the importance of monitoring product quality and the progresses made in the last 

decade as a result of the QbD initiative (Matero et al., 2013; Tomba et al., 2013; van den 

Berg et al., 2013), the industrial practice is still far from employing measurement systems 

that are simultaneously cost-effective, fast, non-destructive (hence suitable for in-/on-line 

applications), objective and multivariate.  

Several techniques have been proposed in the last decade to help assessing product quality, 

and two of them (absorption spectroscopy and computer vision) have been demonstrated to 

be particularly attractive since they encompass the majority of the abovementioned 

requirements. Basic information on these techniques is provided in the following. 

1.4.1 Absorption spectroscopy 

Absorption spectroscopy is the science that studies how light is absorbed when it interacts 

with matter. Given the electromagnetic spectrum, absorption spectroscopy techniques 

consider light sources covering the whole range between 1 nm and 10
9
 nm (Figure 1.2), i.e. 

X-ray, visible and ultraviolet (UV-VIS), infrared (IR), which is further divided into near- 

(NIR), mid- (MIR) and far-infrared (FIR), and radio wave. Among them, NIR is by far the 

technique with more applications, particularly in the food and pharmaceutical industries: 

for this reason its use will be explored considerably throughout this Dissertation. 

 

Figure 1.2. Electromagnetic spectrum: light sources in absorption spectroscopy. For 

NIR radiation, the main vibrational and rotational transitions are indicated. 
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The way the radiation interacts with matter is directly dependant on the energy (i.e., the 

wavelength) of the radiation. The higher energy UV-VIS wavelengths affect the energy 

levels of the outer electrons. IR radiation is absorbed by matter resulting in rotation and/or 

vibration of molecules. Radio waves are used in nuclear magnetic resonance and affect the 

spin of nuclei in a magnetic field. When the radiation is absorbed, it causes a transfer of 

energy from a lower energy state (the ground state) to a higher energy one (the excited 

state), with the amount of energy absorbed being exactly equal to the energy difference 

between the two states. Molecules can have many possible states and can absorb many 

different wavelengths, since their energy states are made up of three components, i.e. 

electronic, vibrational, and rotational. The electronic component is characterized by the 

energy states of bonding electrons (outer shell electrons). Vibrational states are associated 

with interatomic vibrations present in molecules. A molecule generally has many more 

vibrational levels than it does electronic levels and the energy difference between these 

states is generally much smaller than the differences between electronic states. There are 

also a number of rotational states for each of the vibrational states and these also have 

lower energies of transition between states.  

By employing a low energy radiation, NIR spectroscopy (NIRS) explores the vibrational 

and rotational transitions of the main functional groups (-OH, -CH, -CH2, -CH3, -C=O, 

etc.) of the molecules constituting the product of interest. Clearly, the wavelengths 

absorbed by a molecule are specific of that molecule, and hence the spectrum of a product, 

which reports the absorbance of its molecules at different wavelengths, can be used to 

investigate qualitatively and quantitatively its chemical structure and composition. 

Spectroscopic analysis are carried out using spectrophotometers. Essential elements of a 

spectrophotometer are the light source, the monochromator containing a diffraction grating 

to produce the analytical spectrum, and the light detector. The instrument can be installed 

in a laboratory, in a production line or it can be made portable (Figure 1.3a). More details 

on NIR spectroscopy can be found in dedicated literature (Chalmers and Griffiths, 2002; 

Burns and Ciurczak, 2008). 

             

(a)                   (b) 

Figure 1.3. (a) Portable NIR instrument and (b) in-house developed photographic box 

for automated inspection of product visual quality. 
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1.4.2 Computer vision 

Computer vision is the construction of explicit and meaningful descriptions of physical 

objects from images (Ballard and Brown, 1982). The term, which is synonymous with 

machine vision, embodies several processes. Images are acquired with a physical image 

sensor and dedicated computing hardware and software are used to analyze them with the 

aim of performing a predefined visual task. The technology aims to duplicate the effect of 

human vision by electronically perceiving and understanding an image (Sonka et al., 1999; 

Brosnan and Sun, 2004). Following its origin in the 1960s, computer vision has 

experienced a tremendous growth with applications expanding in very diverse fields. 

Key elements of a computer vision apparatus are the illuminating system and the camera. 

As with the human eye, vision systems are strongly affected by the level and quality of 

illumination: the adjustment of the lighting can radically change the appearance of an 

object, with the features of interest sharpened or blurred. Details of various aspects of 

illumination including location, lamp type and color quality can be found elsewhere 

(Bachelor, 1985; Jahr, 2007; Valous et al., 2009). The in-house developed photographic 

box used to collect the images of Chapter 7 is shown in Figure 1.3b. The 60×60×60 cm
3
 

box is screened from the environmental light with opaque walls and equipped with four 

fluorescent tubes (Lumilux XT, Osram GmbH, Munich, Germany) with the aim of 

controlling the illumination. 

The core of a computer vision system is represented by image processing and analysis. 

Image processing involves a series of image operations that enhance the quality of an 

image in order to remove defects. Image analysis is the process of distinguishing the 

objects (regions of interest) from the background and producing quantitative information, 

which is used in subsequent control systems for decision making. The information of 

interest is typically related to the color of the product being imaged or to its surface 

characteristics (coarseness, presence of defects, erosion, etc., i.e. surface texture). A 

thorough description of the techniques used for the extraction of this information is 

provided in Chapter 2. 

1.5 Latent variable modeling and product quality 

Latent variable models (LVMs) are statistical model purposely designed to handle large 

amount of (highly) correlated data. The idea behind LVM is that a system can be described 

by using few underlying factors (called latent variables, LVs), which can be expressed as 

linear combinations of the original variables and can be interpreted based on the 

knowledge of the physical and chemical phenomena involved. Figure 1.3 reports the 

geometrical interpretation of an LVM on a dataset of 11 samples characterized by 3 

measured variables xn (n = 1, 2, 3). As can be seen, the LVM transforms the original three-
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dimensional variable space into a two-dimensional space (the latent space) defined by the 

orthogonal directions LV1 and LV2, representing the directions of maximum variability of 

the data. The projections (called scores) of the original variables onto the latent space 

become the new variables defining the state of the system. 

LVMs are useful not only for modeling single spaces as depicted in Figure 1.3, but also for 

relating data from different datasets (Burnham et al., 1996). These models are commonly 

associated to analytical instruments to relate highly correlated input variables (e.g., 

spectroscopic variables) to response variables such as product quality. Generally, their use 

is suggested when the number of measured variables is large compared to the number of 

samples, since traditional least-squares approaches can lead to ill-conditioned problems 

(Burnham et al., 1996).  
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Figure 1.3. Geometrical interpretation of an LVM model (from Tomba et al., 2013). 

Spectroscopy and machine vision, which both generate highly correlated data, are usually 

coupled with LVM tools such as principal component analysis (PCA; Jackson, 1991) or 

projection to latent structures (PLS; Geladi and Kowalski, 1986) in order to leverage the 

information embedded in spectra and images (respectively) and relate them to the quality 

features of interest. LVMs have found wide application both in the pharmaceutical and in 

the food industries as predictive tools, as demonstrated by recently published reviews 

(Karoui and De Baerdemaeker, 2007; Huang et al., 2008; Rajalahti and Kvalheim, 2011; 

Pomerantsev and Rodionova, 2012; Matero et al., 2013).  

1.5.1 Latent variable models in the pharmaceutical industry 

Within the pharmaceutical industry, the use of latent variable models coupled to UV-VIS, 

NIR, Raman, acoustic emission, X-ray, nuclear magnetic resonance, chemical and digital 

imaging analysis has become common practice under the PAT framework. Though 

applications can be found for several dosage form (liquids, Kim et al., 2007; pellets, 

Mantanus et al., 2010; syrups, Ziémons et al., 2010), the majority of them is concentrated 

on the solid one. In fact, the preferred way of administering active pharmaceutical 



Motivation and state of the art  15 

________________________________________________________________________ 

© 2014 Matteo Ottavian, University of Padova (Italy) 

ingredients (APIs) via the oral route is in solid dosage forms, such as tablets (Matero et al., 

2013). PAT tools have been extensively used during manufacturing of solid oral dosage 

forms, with applications of real-time analyzers (especially NIR ones) in several key steps 

such as powder mixing, granulation, compaction and testing of the final preparation. 

Application range from the design of predictive model to the design of models for 

monitoring a unit operation. In particular: 

 powder mixing is of primary importance in pharmaceutical manufacturing because 

formulations seldom consist of one ingredient only. There are several particle properties 

responsible for powder organization during the mixing process, and the most important 

ones (particle size, shape and density), which change during the process, can be 

monitored using NIRS, since it is sensitive to these changes. The traditional approach for 

monitoring the API and excipient(s) distribution during powder mixing consists in an off-

line HPLC analysis of a sample taken (invasively) with a thief and dissolved in a buffer. 

With respect to this approach, LVM applications (using either PCA, PLS, or other 

models) based on NIR or Raman spectra or on hyperspectral images allow assessing in 

real-time blend uniformity (Wargo and Drennen, 1996; Ma and Anderson, 2008), 

mixture homogeneity (El-Hagrasy et al., 2006; Amigo et al., 2008) and mixing end point 

(Sekulic et al., 1998; El-Hagrasy et al., 2001; Shi et al., 2008; De Beer et al., 2008) with 

no sample representativeness problems due to segregation phenomena (El-Hagrasy et al., 

2006); 

 granulation, i.e. powder agglomeration, is carried out to ensure powder processability. 

Currently, the quality attributes of the granules are tested post-process by Karl Fischer 

tritation or weight loss on drying (moisture) and by sieving or laser diffractometry 

(particle size), while the process is controlled based on the univariate detection of 

individual process variables such as processing time, temperature, impeller tip speed and 

power and binder liquid consumption (Matero et al., 2013). Skibsted et al. (2007) 

proposed a monitoring model based on NIR spectra using the multivariate control charts 

described in Chapter 2 (Section § 2.1.3), showing its effectiveness in detecting bad 

batches with too many fine or coarse particles. Particle size estimation using either NIR 

or images was proposed by Rantanen et al. (2005), Alcala et al. (2010) and Laitinen et al. 

(2003), while Rantanen et al. (2001) used a four-wavelengths near-infrared sensor for in-

line moisture evaluation; 

 tablet formation through powder compaction requires the quality of the end product to be 

evaluated in terms of uniformity of content and mass, mechanical properties (hardness) 

and API dissolution profile. While traditional testing methods are time demanding, 

destructive and inefficient (Matero et al., 2013), several applications have been proposed 

using NIR, Raman and chemical imaging analysis (Ravn et al., 2008; Gordon and 

McGoverin, 2011; Gray et al., 2009). Additionally, García-Muñoz and Carmody (2010) 
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and García-Muñoz and Gierer (2010) showed how to employ easy-to-operate digital 

cameras to estimate some tablets quality attributes such as texture and color uniformity. 

Despite the prominent use of LVMs as PAT tools, García-Muñoz and Oksanen (2010) and 

Tomba et al. (2013) stressed on the much more valuable role these models can play in the 

practical implementation of the QbD paradigm. The effectiveness of LVMs in such 

activities as process control (Flores-Cerrillo and MacGregor, 2003, 2004 and 2005; Yu and 

Flores-Cerrillo, 2013), process design (Jaeckle and MacGregor, 1998, 2000a and 2000b), 

product design (Lakshminarayanan et al., 2000) and optimization (Yacoub and 

MacGregor, 2004) has been proved in several industrial sectors. Pharmaceutical 

applications in these areas, which are outside the aim of this Dissertation, have been 

recently revised by Tomba et al. (2013). 

LVMs as PAT tools are largely employed in the detection of counterfeited drugs 

(Deisingh, 2005; Feng et al., 2013). Simple PCA models built on NIR or Raman spectra 

have been shown to easily detect counterfeited Combiron® (ferrous sulfate), Aldomet® 

(methyldopa), Floxacin® (norfloxacin), Tylenol® (acetaminophen), and Viagra® 

(Deisingh, 2005; Moffat et al., 2010). 

1.5.2 Latent variable models in the food industry 

PAT tools, especially NIR spectroscopy, have been around in the food industry for more 

than 40 years. For example, Vornheder and Brabbs (1970), for instance, used NIRS for 

moisture determination in potato chips, honey and soybean oils; Begley et al. (1984) for 

the detection of sodium chloride in meat samples; and Kennedy et al. (1985) for the 

analysis of milk and dairy products. The number of applications of PCA, PLS or of other 

LVM-based techniques combined with different analytical instruments (UV-VIS, NIR, 

Raman photometers, GC-MS analyzers, digital cameras, etc.) have been steadily increasing 

in the last decade. For instance, PCA and/or PLS combined to NIR spectra have been used: 

 in the meat industry, for monitoring on-line fat, water, and protein content (Tøgersen et 

al., 2003) and proximate composition (Hildrum et al., 2004) in semi-frozen raw beef and 

pork and ground meat, and for the on-line grading of poultry carcasses (Chen et al., 

2003); 

 in the fruit and vegetables industry, for monitoring on-line the sugar content (He et al., 

2001; Miller and Zude, 2002) in apples and oranges or to replace human operators in 

sorting apples (McGlone et al., 2005) and stone fruits (Golic and Walsh, 2006); 

 in the grain and grain products industry, for monitoring on-line price-related features 

such as protein and starch content and grain hardness (Berardo et al., 2005) and for rice 

sorting (Kawamura et al., 2003a); 

 in the dairy industry, for predicting the three major milk constituents (fat, protein and 

lactose), somatic cell count and urea nitrogen (Kawamura et al., 2003b) and for process 
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control purposes during the production of traditional feta cheese (Adamopoulos et al., 

2001) and yogurt (Navrátil et al., 2004); 

 in the beverages industry, for monitoring on-line the alcohol content during wine 

fermentation (Zeaiter et al., 2006; Cozzolino et al., 2006) and for soluble solids and total 

solids/total moisture in processing apple, grape, pear juices (Singh et al., 1996). 

LVMs built on images collected from digital cameras are also common in the food 

industry. For instance, Yu and MacGregor (2003) showed how PCA-based image analysis 

can be effectively used to predict the coating content and distribution of snack food, and 

how to use the predictions in a closed loop control scheme (Yu et al., 2003). Image 

analysis has been proposed in several other applications. For example, to assess on-line the 

brightness and surface kinetics during coffee roasting (Hernández et al.; 2008), to 

determine hazelnut peeling (Pallottino et al.; 2010), to classify or grade different food 

products such as bananas (Mendoza and Aguilera, 2004), ham (Valous et al., 2009), 

salmon (Misimi et al., 2008), to monitor milling quality during rice production (Yadav and 

Jindal, 2001), etc. 

PAT tools are also widely employed as anti-fraud systems. Several reviews are available 

on this topic (Rodriguez-Saona and Allendorf, 2011; Elmasry et al., 2012; Liu et al., 

2013), and additional references are provided in Chapters 5-7. 

1.6 Objectives of the research 

Despite the continuously growing number of applications of LVMs as PAT tools for 

product quality monitoring and control both in the pharmaceutical industries and in the 

food industries, in most published contributions tailored solutions to specific problems 

have been provided. The main objective of the research presented in this Dissertation is to 

overcome some of the existing limitations that hinder the diffusion of PAT tools in 

common industrial practice. Namely, applications are presented in the following areas. 

 Machine vision systems for product quality assessment. Machine vision systems have 

been gaining much attention in the last decades for the characterization of several 

products whose quality can be related to some visual features. With respect to the visual 

inspection traditionally carried out by a panel of trained experts, machine vision systems 

are deemed to be quick, accurate, objective and able to return reproducible results. 

However, likewise all other measurement systems, they need to be maintained. 

Alterations or failures (e.g. of the illuminating system or of the camera sensors) can 

dramatically affect reproducibility, leading to a wrong product quality characterization. 

The problem of how to detect and manage these alterations or failures, which is usually 

not covered in the open literature, is discussed in details in the Dissertation, and 

strategies are provided to avoid (or at least reduce) downtime periods in case of changes 
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of the lighting conditions and/or camera replacement (due to either failure or multiple 

installations). Additionally, the Dissertation shows how image analysis can be effectively 

used not only to characterize the quality of a product, but also to gain process 

understanding of the production process (for troubleshooting or optimization purposes). 

 Absorption spectroscopy for product quality characterization. Traditionally, LVMs 

are built on spectral data after some preprocessing on the raw spectra. While the 

preprocessing is intended to reduce the variability in the regressor matrix X that is not 

related to the response matrix Y, the optimal preprocessing strategy is chosen through a 

time consuming trial-and-error procedure. In addition, models are usually tailored on the 

specific product being analyzed requiring, at least in the food industry, an unfeasibly 

large number of calibration samples. To detect the fresh/frozen-thawed substitution in 

fish fillets using UV-VIS/NIR spectra, for instance, a model is calibrated for each fish 

species. Both the abovementioned issues are discussed in the Dissertation. A novel 

approach is proposed to automate the preprocessing of the raw data, at least for 

classification applications, and several strategies are evaluated for the first time for 

calibrating multi-products models. 

 Sensor and data fusion. Data fusion approaches are oriented toward the simultaneous 

use of the information arising from data of different natures (i.e., data derived from 

different analytical instruments). The joint (i.e., multivariate) evaluation of the analytical 

results allows to better describe the investigated system and to answer different questions 

pertaining to which information it is expected (it is possible) to gain from the different 

sets/blocks of data (Van Mechelen and Smilde, 2010). Data fusion techniques can be 

classified into three main groups: i) low-level data fusion consists of the simple 

concatenation of the data of different nature; ii) mid-level data fusion is based on features 

extraction or variable selection prior to multivariate analysis; iii) high-level or 

hierarchical data fusion is based on the concatenation of the scores, extracted by means 

of multivariate projection techniques such as PCA, PLS, etc. In this Dissertation, 

examples of low-level data fusion are provided, showing how to effectively combine the 

available information to enhance the characterization of product quality. 

The effectiveness of the strategies proposed in this Dissertation is demonstrated by 

applying each of them to experimental case studies. The next section presents a roadmap to 

the Dissertation. 

1.7 Dissertation roadmap 

After a thorough description of the LVM techniques and the of the statistical background 

in Chapter 2, the following Chapters of this Dissertation, whose roadmap is sketched in 
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Figure 1.4, can be divided according to the three research areas identified in the previous 

section. 
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Figure 1.4. Dissertation roadmap. 

With respect to machine vision systems, Chapter 3 shows how image analysis can be 

employed not only in replacement of a panel of trained experts (to improve the 

characterization of the visual quality of the product), but also to troubleshoot the 

production process. The design space of an industrial tablet film-coating process is 

determined in the reduced space of a PLS model by regressing the process operating 

conditions against the quality metrics derived from the digital images of the tablets, and the 

model itself is used to investigate the root causes leading to surface erosion. In Chapter 4, 

the problem of how to standardize machine vision systems is discussed with respect to i) 

changes in lighting conditions and ii) camera replacement. Namely, given a machine vision 

system, novel approaches are presented to detect and manage changes in its conditions. 

The proposed approaches, which are based on adapting the PCA scores of the images to 

the new conditions, are shown to be effective also when transferring the quality assessment 

model across different cameras. 

With respect to modeling spectral data for product quality assessment, Chapter 5 proposes 

a novel strategy (for classification problems) to handle automatically the data 

preprocessing step. The strategy, which is based on similarity factors defined from PCA 

models, is intended to avoid the trial-and-error procedure that is usually employed to 

accomplish the preprocessing operations, and aims at classifying the samples (i.e., spectra) 

based on the similarity among their shape. In Chapter 6, the use of spectral data for fast 

fraud detection is discussed. In particular, a novel approach based on the orthogonal PLS 

algorithm developed by Trygg and Wold (2002) is presented to allow calibrating species-

independent anti-fraud systems. Stemming from the problem of detecting the fresh/frozen-
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thawed substitution fraud in fish fillets, a multi-species approach is proposed and evaluated 

over more than a thousand fish samples and using two NIR instruments. 

Eventually, Chapter 7 focuses on the problem of fusing the information derived from 

different analytical instruments (digital cameras, spectrometers, texture analyzers, etc.) to 

authenticate a product. The effectiveness of concatenating into a multiblock (Westerhuis et 

al., 1998) framework the available information is shown through two different case 

studies, considering both linear (PLS) and non-linear (kNN) models. 

A conclusive Section summarizes the major findings of the Dissertation and outlines future 

perspectives. 



________________________________________________________________________ 

© 2014 Matteo Ottavian, University of Padova (Italy) 

Chapter 2 

Latent variable modeling background
*
 

This Chapter provides a general overview of the statistical and mathematical techniques 

applied in this Dissertation. First, a background on latent variable models (LVMs) is 

presented. Techniques like PCA and PLS are discussed from both an algorithmic and a 

practical point of view. Furthermore, details on the use of LVMs for image analysis 

applications are provided. 

2.1 Latent variable modeling approaches 

Latent variable models (LVMs) are statistical models that are intended to analyze large 

amounts of (usually correlated) data. The idea behind LVM is that a system can be 

described by using few underlying factors (called latent variables, LVs), which can be 

expressed as linear combinations of the measurements taken on the system and can be 

interpreted based on the knowledge of the physical and chemical phenomena involved. 

LVMs find the driving forces acting on the system and responsible for the variability that 

can be observed in the data, under the assumption that the essential information does not 

lies in any individual variable, but in how the variables change with respect to one another, 

i.e. in how they co-vary. Hence, the objective of an LVM analysis is twofold: i) data 

compression and ii) data interpretation.  

The available data can be organized into either a matrix X [IN], in which the N variables 

have been observed per I samples (or observations). Alternatively, the observations can be 

organized in a matrix X of regressors and a matrix Y [IM] of response variables. In the 

first case, the objective of an LVM analysis is to explain the correlation structure of the N 

variables, in order to understand the relationships among them. Principal component 

analysis (PCA; Jackson, 1991) is one of the most useful techniques to this purpose. In the 

second case, the objective of an LVM analysis is to explain the cross-correlation structure 

of the variables in X and in Y, in order to study and quantify the relationships between 

regressors and response variables. Projection to latent structures (PLS, also called partial 

                                                 
* Ottavian, M., E. Tomba and M. Barolo. Advanced Process Decision Making Using Latent Variable Methods. In: 
Handbook in Process Simulation and Data Modeling in Solid Oral Drug Development and Manufacture (S. García-
Muñoz and M. Ierapetritou, Eds.). Submitted. 
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least-squares regression; Höskuldsson, 1988) can be used for this purpose. Basic theory of 

PCA and PLS is reported in the following.  

2.1.1 Principal component analysis (PCA) 

Principal component analysis (PCA; Jackson, 1991) is a multivariate statistical method that 

summarizes the information embedded in a dataset X of N correlated variables, by using a 

linear transformation to project the data onto a new coordinate system of latent orthogonal 

variables, which optimally capture the variability of the data and the correlation among the 

original variables. Each of these new coordinates identifies a latent direction in the original 

data and is called principal component (PC).  

The search for the directions of the new coordinate system can be formulated as an 

optimization problem (Burnham et al., 1996). For one PC: 
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where the superscript 
T
 indicates the transpose of a matrix, and p is the [N1] vector of the 

coefficients of the linear combination (called loadings). The loadings of a given PC 

represent the director cosines of the PC. Given the vector t [I1] of the projections (called 

scores) of the original data onto the PC direction: 
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the problem (2.1) can be reformulated as in (2.3), representing the maximization of the 

score vector length: 
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The analytical solution of problem (2.3) is given by the eigenvector decomposition of the 

covariance (or correlation, according to the preprocessing of the data, see § 2.1.1) matrix of 

the original variables (Burnham et al., 1996; López-Negrete de la Fuente et al., 2010): 

 

pXpX λT     . (2.4) 

Vector p is the eigenvector of the covariance matrix of X (X
T
X) corresponding to the 

eigenvalue , and  is a measure of the variance explained by the given PC. 
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The eigenvector problem (2.4) can be used to determine the N loadings pn of the PCA 

model, which are orthonormal (i.e., pn
T
pr = 0 if n  r, pn

T
pr = 1 if n = r, with n, r = 1,..., 

N). The scores tn, instead, are orthogonal (i.e., tn
T
tr = 0 if n  r, with n, r = 1,..., N). 

The dataset X can be represented as the sum of the N scores-loadings vectors outer 

products: 
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As a result of the eigenvector problem (2.4), the PCs are ordered according to the variance 

of the original dataset X that they capture. Usually, A << N principal components are 

sufficient to adequately describe X, because if two or more original variables are 

correlated, they identify a common direction of variability that can be described by a single 

PC. Hence, assuming that only the first A PCs are retained, and defining the score matrix T 

= [t1, t2, …, tA] and the loading matrix P = [p1, p2, …, pA], Eq. (2.5) can be rewritten as: 
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where E is the [IN] matrix of the residual generated by the (N – A) discarded PCs of the 

PCA model when X is reconstructed (i.e., approximated) by using only the first A PCs (i.e., 
Tˆ TPX  ). 

For the computation of the model scores and loadings, the singular value decomposition 

(SVD; Meyer, 2000) of the covariance matrix of X (X
T
X) or the nonlinear iterative partial 

least-squares algorithm (NIPALS; Wold, 1966) can be used. The latter should be preferred 

as it tolerates a certain amount of missing data into the dataset X and does not require the 

calculation of all the N PCs. Details of the algorithms are given in Appendix A. 

Figure 2.1 reports the geometrical interpretation of the PCA model parameters in a 

simplified case, i.e. a [72] dataset X. As it can be seen, the data follow a trend in the 

(bidimensional) space of the original variables. If a PCA model is applied, the direction of 

maximum variability of the data is identified by PC1. The model loadings (p1, p2) represent 

the director cosines of PC1. The scores represent the coordinates of the data samples of 

matrix X  in the new reference system represented by PC1. In Figure 1, the second 

principal component (PC2) is reported as a dashed line. It can be seen that PC2 is 

orthogonal to PC1, but accounts for a very limited variability in the data compared to PC1 

(in fact, it accounts for the orthogonal distance of each projection from the PC1 direction). 

In this case, it can be therefore concluded that PC1 is sufficient to adequately describe X. 
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Figure 2.1. Geometrical interpretation of the PCA scores and loadings for a dataset 

with 2 variables (x1 and x2) and 7 samples.  

A graphical representation of the PCA model scores and loadings is often used to gain 

understanding on the correlations among samples (through the scores) and variables 

(through the loadings). Additional details on the interpretation of scores and loadings plots 

are provided in Appendix B. 

2.1.1.1 PCA data pretreatment 

Before building a PCA model, the X data are usually pretreated. The appropriate 

pretreatment depends on the characteristics of the data and on the objectives of the 

analysis, and it may include filtering, denoising, transformations (e.g., logarithmic ones), 

advanced scaling and data compression (Eriksson et al., 2006).  

In general, when managing simultaneously data with heterogeneous origin and different 

measurement units (e.g., process measurements such as compositions, temperatures, 

pressures, torques, etc., formulation details, etc.), it is important that all variables are given 

the same weight. To this purpose, the data are auto-scaled, i.e. the variables are mean-

centered and scaled to unit variance (Wise et al., 1996). Mean-centering (i.e., subtracting 

to each column xn of X its mean values) avoids to detect the differences among the mean 

values of different variables as significant directions of variability; scaling to unit variance 

(i.e., diving each column xn of X by its standard deviation) makes the analysis independent 

of the measurement units, thus enabling the simultaneous analysis of variables with values 

of very different magnitudes. 
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2.1.1.2 Selection of the number of PCs 

An additional issue to be considered in building a PCA model is how to select the number 

of PCs to be used in the model, i.e. the dimensionality of the latent space. Several methods 

have been proposed in the literature to this purpose (Valle et al., 1999). 

The selection of the appropriate number of PCs should take into account different issues, 

such as the number of samples, the total variance explained, the relative size of the 

eigenvalues (i.e. the variance explained per component), and the subject-matter 

interpretations of the PCs (Johnson and Wichern, 2007). The following approaches have 

been applied in this Dissertation: 

  the scree test (Jackson, 1991); 

  the eigenvalue-greater-than-one rule (Mardia et al., 1979); 

  the cross-validation based on the prediction error sum of squares (Wold, 1978). 

The scree test is an empirical and graphical procedure, which is based on the analysis of 

the profile of an index indicating the variability of the original data captured by the PCA 

model per PC (e.g., the explained variance per PC, the eigenvalues or the residual percent 

variance). The method is based on the idea that the variance described by the model should 

reach a “steady-state”, when additional PCs begin to describe the variability due to random 

errors. When a break point is found in the curve or when the profile stabilizes, that point 

corresponds to the number of PCs to be included in the model. The implementation of the 

method is relatively easy, but if the curve decreases smoothly it can be difficult to identify 

an “elbow” on it. 

The eigenvalue-greater-than-one rule is a simple rule according to all the PCs whose 

corresponding eigenvalues are lower than one are not considered in the model. The basic 

idea behind this method is that, if data are auto-scaled, the eigenvalue corresponding to a 

PC represents roughly the number of original variables whose variability is captured by the 

PC itself. If so, a PC capturing less than one original variable should not be included in the 

model. Although this method is very easy to implement and automate, in some cases PCs 

are discarded even if their eigenvalue is very close to one and their contribution to explain 

the systematic variability is significant. In these cases, it may be reasonable to lower the 

threshold in order to include PCs whose eigenvalue may be (slightly) lower than one. 

Cross-validation (Wold, 1978) is another technique which can be employed in the 

determination of the number of PCs. The basic idea of cross-validation is that the number 

of PCs to be selected to build the model is the one for which the error in reconstructing 

new samples through the model is minimum. When no independent validation data are 

available, the data in the X matrix itself are used to evaluate the reconstruction error (or 

prediction error sum of squares, PRESS). Different cross-validation algorithms can be 

employed. The general cross-validatory scheme is the following: 

1.  divide the X dataset in S subgroups X
s
 of C samples (with s = 1,…, S); 
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2.  delete the samples in one of the X
s
 groups from the original dataset X; 

3.  build a PCA model with the reduced dataset X; 

4.  project the data in X
s
 onto the PCA model built in step 3.; 

5.  compute PRESSs for the reconstruction of X
s
 and store it: 
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being s
ncx ,

ˆ  the reconstructed element of X
s
 in the c-th row and n-th column; 

6.  go back to step 1 to select the next subset s until all the S subsets have been considered; 

7.  repeat the procedure by increasing the number of PCs used to build the PCA model. 

By summing all the partial PRESS values per subgroup, eventually a total PRESS per PC is 

obtained. The evaluation of the PRESS profile can be useful to select the number of PC to 

build the model. Namely, a PC is included if it increases the predictive power of the model. 

Therefore, the number of PCs for which the minimum value of PRESS is found or for 

which a steady state in the profile is reached, should be considered (Wold, 1978). 

2.1.1.3 PCA model diagnostics 

Given a PCA model, several diagnostics can be used to assess its performance. In general, 

model, variable and sample diagnostics can be distinguished (Eriksson et al., 2006). 

Among model diagnostics, the most common one is the coefficient of determination R
2
, 

which quantifies the amount of variability of the original data that the model explains: 
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where nix ,
ˆ  is the PCA reconstruction of the element xi,n of the original matrix X. If in (2.8) 

the summations are extended only to the I rows of the original matrix, the explained 

variance per variable is evaluated (R
2

pv). If the PRESS value as defined in (2.7) is used, 

(2.8) returns the Q
2
 statistics. Q

2
 can be used in alternative to PRESS for the selection of 

the PCs to include in the model and can be seen as a measure of the “predictive” power of 

the model. Usually Q
2
 < R

2
. 

Beside diagnostics on the model performances, when a PCA model is built, it allows to 

calculate statistics on the data used for its calibration, in order to discover potential outliers 

or data that have a strong influence on the model. Two statistics are used to this purpose: 

the squared prediction error (SPE) and the Hotelling’s 2T . 
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SPE measures how well the sample conforms to the PCA model, and is defined for the i-th 

sample as: 

 
TTT )(SPE iiiii xPPIxee     , (2.9) 

where ei is the [N1] residual vector for the reconstruction of the i-th observation xi (the i-

th row of the residual matrix E), and I the identity matrix of appropriate size [NN]. SPEi 

measures the orthogonal distance of the i-th observation from the latent space identified by 

the model, thus accounting for the model mismatch: samples with a high value of SPE  are 

characterized by a different correlation structure with respect to the one described by the 

PCA model and, as a consequence, are not represented well.  

The Hotelling’s T
2
 statistic (Hotelling, 1933) measures the overall distance of the 

projections of a sample of the X dataset from the PC latent space origin. Since each PC of 

the model explains a different percentage of variance of the data, the Mahalanobis distance 

is used to calculate it: 
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where iat ,  represents the projection of the i-th observation on the a-th PC used to build the 

model. The T
2
 statistic is used to assess the deviation of a sample from the average 

conditions (the PC space origin) represented in the dataset. A sample with a large 

Hotelling’s T
2
 has a large influence to the model (high leverage) and should be handled 

with care: if it is represented well by the model (small SPE), the information it provides 

can be useful to expand the data space and improve model robustness. 

The graphical interpretation of both the Hotelling’s T
2
 and the SPE is shown in Figure 2.2 

for a model with one PC. 
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Figure 2.2. Hotelling’s T
2
 and SPE geometric meaning in the 1 PC PCA model of 

Figure 2.1. 



28  Chapter 2 

________________________________________________________________________ 

© 2014 Matteo Ottavian, University of Padova (Italy) 

Samples moving far from the center of the model, but within the model space, increase 

their Hotelling T
2
 value, while samples moving far from the model space, independently 

from their position within the model space, increase their SPE value. 

For both the SPE and the T
2
 statistics, the contribution of each variable of a given sample 

to their values can be evaluated. These contributions can reveal which variables mainly 

determine the sample position in the score space (or outside it). A thorough discussion on 

the use of the variable contributions can be found in Conlin et al. (2000). 

2.1.2 Projection to latent structures (PLS) 

Projection to latent structures (PLS; Wold et al., 1983; Geladi and Kowalski, 1986; 

Höskuldsson, 1988; Burnham et al., 1996) is a regression modeling technique that relates a 

dataset of regressors X to a dataset of response variables Y through the projections onto 

their latent structure. PLS aims at finding a linear transformation of the X data that 

maximizes the covariance of its latent variables with the Y dataset variables. As for PCA, 

the optimization problem formalizing the search for the LVs can be converted into an 

eigenvector problem, namely the eigenvector decomposition of the joint covariance matrix 

X
T
YY

T
X: 

 

wXwYYX λTT     , (2.11) 

being w the [N1] vector of weights representing the coefficient of the linear combination 

of X-variables determining the PLS scores t: 

 

Xwt     . (2.12) 

As shown for the PCA model, assuming that A LVs have been retained, the X and Y 

datasets are decomposed and related through their latent structures: 

 

ETPX  T
 (2.13) 

FTQY  T
 (2.14) 

*
XWT     , (2.15) 

where T is the [IA] score matrix, P and Q are the [NA] and [MA] loading matrices, E 

and F are the [IN] and [IM] residual matrices, and W
*
 is the [NA] weight matrix, which 

is calculated from the weights W to allow interpretation with respect to the original X 

matrix: 
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1T* ) WW(PW    . (2.16) 

As (2.13)-(2.15) clarify, PLS modeling returns a model for the correlation structure of X, a 

model for the correlation structure of Y, and a model for their mutual relation. Therefore, 

PLS modeling is suitable to handle reduced-rank datasets including highly correlated and 

noisy measurements. The basic assumption is that the spaces identified by X and Y have a 

common latent structure, which can be employed to relate them. Note that oftentimes in 

(2.14) of the PLS model the score matrix T is substituted by the Y space score matrix U 

[IA]. 

Figure 2.3 provides a geometrical interpretation of the PLS model. As it can be seen, the X 

data arrange mainly on a plane, defined by two latent directions. The latent directions are 

identified in the X and in the Y spaces in order to best approximate the directions of 

maximum variability of the points and to provide a good correlation between their 

projections along these directions. Note that, while weights W are orthogonal, the loadings 

Q may not necessarily be (Eriksson et al., 2001). 
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Figure 2.3. Geometric interpretation of the PLS decomposition of data matrixes X and 

Y. 

More details on the algorithm used for PLS decomposition are provided in Appendix A. 

2.1.2.1 Selection of the number of LVs and PLS model diagnostics 

Similarly to PCA modeling, several strategies have been proposed in the literature for the 

selection of the number of PLS components, with cross-validation being the most popular 

one. The procedure is the same described in Section 2.1.1.2 for PCA and is repeated 

increasing at each iteration the number of LVs included in the model, obtaining a profile of 

PRESS or alternatively the root mean square error of cross-validation per LV (RMSECVa): 
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NI

PRESS
RMSECV a

a


    . (2.17) 

In the regression case, the PRESS values are calculated on the basis of the predictions of 

the response variables in Y. Accordingly, the number of LVs to consider should be the one 

for which PRESSa (or RMSECVa) is minimum. The profile of explained variance in cross 

validation (Q
2
) provides a similar information. However, it must be underlined that a PLS 

model provides a model both for the X and for the Y datasets. Hence, indices accounting 

for the variance captured for each dataset would be preferable to use (Tomba et al., 2012). 

Once a PLS model is built, the diagnostics to evaluate its performances are the same as for 

the PCA model (Eqs.(2.8)-(2.10)). In this case, they can be applied to both X and Y. 

Furthermore, for a successful calibration of the PLS model and for model interpretation, it 

may be useful to understand which are the regressor variables that most affect the 

projections and that are most appropriate to build the PLS model. This can be quantified by 

the VIP index (variable importance in the projection; Chong and Jun, 2005; Andersen and 

Bro, 2010), which is defined as: 
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where N is the total number of variables considered, 
2

,ayR  is the Y-variance explained by 

the a-th LV of the model, while anw ,  is the weight of the n-th variable on the a-th LV 

calculated from the PLS model. Since the sum of squares of all the N VIPs is equal to the 

number of terms in the model, the average VIP would be equal to 1. Variables with VIPn  

1 are therefore considered valuable predictors of the variables in Y.  

2.1.2.2 PLS discriminant analysis (PLS-DA) 

Oftentimes the data in Y are not in the form of quantitative responses; rather, they could be 

categorical variables representing the class membership of the I samples in X. In this case, 

regressing Y against X using the decomposition given by (2.8)-(2.10) means using the PLS 

model for a discriminant analysis (PLS-DA; Barker and Rayens, 2003), i.e. to classify the I 

samples or, stated differently, to determine the maximum directions of variability in X 

which are responsible for the partition of the I samples into the M classes in Y. The class 

membership of the i-th sample in X is encoded in M binary variables in Y. If the i-th 

sample belongs to the m-th class, then: 
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   . (2.19) 

Since the output of the PLS-DA model is not in the form of 0’s and 1’s, but instead a real 

number spanning a range wider than [0,1], a threshold is usually chosen to define the class 

membership. Following a Bayesian approach (with the assumption that the predictions 

within each class are approximately normally distributed), the threshold value is 

determined in such a way as to return the best possible split among classes with the least 

probability of false classification of future predictions (Fawcett, 2006). 

Binary classification results are usually expressed in terms of a confusion matrix such as 

the one reported in Figure 2.4. Considering a classification problem with i1 samples 

belonging to Class 1 and i2 samples belonging to Class 2 (i1 + i2 = I), the PLS-DA classifier 

assigns p1 samples to Class 1 and p2 samples to Class 2 (p1 + p2 = I). Given a reference 

class, the samples belonging to that class can be either correctly assigned to it (true 

positives, TP) or erroneously attributed to the other one (false negatives, FN). Similarly, 

samples not belonging to the reference class can be correctly assigned to the other class 

(true negatives, TN), or erroneously attributed to the reference class (false positives, FP). 

True
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Row total:   
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Figure 2.4. Confusion matrix for a binary classification problem (adapted from 

Fawcett, 2006). 

From the confusion matrix of Figure 2.4, three metrics are usually generated: 

 sensitivity (toward one class), i.e. the percentage of samples that belong to the reference 

class and are correctly classified, i.e. TP/i1; 

 specificity (toward one class), i.e. the percentage of samples that belong to the other class 

and correctly classified, i.e. TN/i2; 

 accuracy, i.e. the percentage of samples correctly classified, i.e. (TP + TN)/I. 
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2.1.3 Monitoring charts 

Once a PCA or a PLS(-DA) model has been calibrated on the available dataset, the model 

can be used to assess whether a new sample (x
NEW

) conforms to the data used to build it or 

not. The scores ( NEW
t̂ ) of the new sample can be calculated by projecting x

NEW
 onto the 

reduced latent space of the model:  
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   . (2.20) 

After evaluation of the scores, the reconstruction of x
NEW

 can be computed as: 

 
NEWNEW ˆˆ

T

tPx     , (2.21) 

and, in the case of the PLS model, a prediction of the response variables ( NEW
ŷ ) can be 

obtained as: 

 
NEWNEW ˆˆ

T

tQy     . (2.22) 

Given the values of NEW
t̂  and NEW

x̂ , the Hotelling’s T
2
 and the SPE statistics of the new 

sample can be evaluated in order to quantify its deviation from the average conditions of 

the data used to build the model and its deviation from the model space, respectively. 

Based on the values of the statistics for the data used in the calibration step, confidence 

limits can be set (Mardia et al., 1979).  

In particular, the scores have zero mean, variance equal to their associated eigenvalues and 

are orthogonal. Assuming that the data used to build the model are independent and 

identically distributed, the scores are normally distributed. Therefore, for the scores on the 

a-th LV, an univariate confidence limit can be calculated from the critical value of the 

Student’s t-distribution, with I – 1 degrees of freedom at significance level : 

 

    aItat λ2α,1limα1      . (2.23) 

Under this assumption, the Hotelling’s 2T  can be well-approximated as a Fisher’s F-

distribution, being it computed from the ratio of approximately normal variables. Its 

relevant confidence limit can therefore be estimated as (Mardia et al., 1979): 
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where α,, AIAF   is the critical value of the F distribution with A and AI   degrees of 

freedom at significance level . This determines an ellipsoidal confidence region in the A-

dimensional score space, whose semi-axes are: 

 

    AaIATsa aa ,,1     with ,λ 2

limα1       . (2.25) 

In particular, to allow a visual representation, confidence ellipses can be determined 

through (2.25) for the projections of the scores of data in bi-dimensional planes. 

The SPE statistic is a sum of squared errors, which can be assumed to follow a normal 

distribution (Jackson, 1991). As a consequence, SPE can be approximated as a 
2
-

distribution, and its relevant limit calculated as follows: 

 

     2

α,νμ2limα1 2χμ2νSPE     , (2.26) 

where 
2

α,ν2 2χ
m  is the critical value of the 

2
-distribution with 2µ

2
/ degrees of freedom at 

the significance level ; µ and  are respectively the mean and the variance of the SPE 

values of the data used to build the model (Nomikos and MacGregor, 1995). 

On the basis of the computed confidence limits, monitoring charts can be built for the 

scores, the Hotelling’s 2T  and SPE. In particular, when a new sample is available, the 

mentioned statistics are compared with the relevant confidence limits to judge the 

similarity and the adherence of x
NEW

 to the data used to build the model. Being 

multivariate indices, charts on 2T  and SPE are more effectively used to this purpose, by 

observing that: 
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   . (2.27) 

If conditions in (2.27) are satisfied, x
NEW

 is considered in a state of statistical control with a 

100(1 – )% probability; otherwise an occurrence of special cause variability is detected. 

This occurrence may be due to a change in the mean conditions (  
2

limα1
2
NEW TT

x
) or in the 

representativeness of the model (  limα1SPESPE NEW 
x

) compared to the common cause 

variability characterizing the data used to build the model. The procedure in (2.27) is 

equivalent to test the hypothesis that x
NEW

 complies with the calibration (i.e. historical) 

data (Johnson and Wichern, 2007).  
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2.2 Latent variable modeling for image analysis applications 

Images are three-way arrays X [NrowNcolC] whose first two dimensions are the number 

of pixel rows (Nrow) and columns (Ncol), and the third dimension (C) represents the light 

intensity of the spectral channels (i.e. wavelengths) excited by the camera. Images can be 

classified according to the value of C: 

 C = 1: grayscale images, allowing one to explore only the textural features of the product 

being imaged; 

 C = 3: RGB (red, green, blue) images, such as those collected with a common compact 

digital camera, allowing one to explore also the color characteristics of the product being 

imaged;  

 C > 3: multi- or hyperspectral images, where for each of the (NrowNcol) pixels a spectrum 

in the visible or infrared region is collected, allowing one to analyze also the chemical 

structure of the product. 

Due to the prominent use of RGB images (and of their corresponding grayscale images) in 

the Dissertation, only the case C = 3 will be discussed in the remaining. The following 

sections introduce the use of LVMs to effectively extract color- and texture-related 

information from RGB images. 

2.2.1 Color analysis 

The use of RGB images to explore the color characteristics of a product was pioneered by 

Geladi and coworkers (Geladi et al., 1989; Geladi and Esbensen, 1989; Esbensen and 

Geladi, 1989), who introduced the concept of multivariate image analysis (MIA). MIA 

relies on the PCA decomposition of an image X properly unfolded into a two-way matrix 

of size [(NrowNcol)3] prior to the factorization, as depicted in Figure 2.5 for an image of 

four color standards (red, green, blue and yellow; Edmund Optics T56-079, USA). 
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Figure 2.5. Schematic of multivariate image analysis (MIA). 

As shown in Figure 2.5, an MIA model is usually built on 2 PCs, as they account for more 

than 90% of the pixel variability of an RGB image. The scores t1 and t2 are scaled within 
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the range [0-255], which is the same range spanned by the light intensity values (Yu and 

MacGregor, 2004): 

 















)min()max(

)min(
255round

ii

ii
i

tt

tt
t    . (2.28) 

The score space is usually represented in terms of a two dimensional (2D) histogram-

scatter (or density) plot, as shown in Figure 2.6 for the image of Figure 2.5 (the color is 

proportional to the number of pixels having specified t1 and t2 coordinates; i.e. the lighter 

the color, the larger the number of pixels). Pixels having projections close to each other in 

the score space are similar in terms of color structure, regardless of their spatial 

arrangement in the original image. This can be easily seen by defining a mask (i.e. a 

geometrical shape highlighting a certain region of the t1t2 space, Figure 2.6a) and looking 

at the pixels in the original image that project within it. An example is given in Figure 2.6, 

where the mask is used to highlight the red pixels in the original image. 
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(a)                          (b) 

Figure 2.6. (a) 2D histogram-scatter plot of the score space of the MIA model built on 

the image of Figure A1, with a mask defined on it. (b) pixels (in the original image) 

whose projection lay underneath the mask defined in (a).  

In order to predict a color-related property from an image, the image itself has to be 

represented in terms of feature variables to be regressed using PCA or PLS. Yu and 

MacGregor (2003) demonstrated that the 2D histogram-scatter plot is an excellent starting 

point for features extraction, as it allows one to (partially) filter out the effect of a non-

homogeneous illumination, which can instead affect other parameters (potential regressors 

of the property of interest) such as the average color of the red, green and blue channels. 

The most effective method proposed by Yu and MacGregor (2003) is the covariance mask 

method. The aim of the method is that of lumping the histogram elements of the t1-t2 space 

(discretized into a 256256 grid as in Figure 2.6) into histogram bins that are expected to 

have the same value of the property of interest y [I1]. The method is based on the 
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covariance properties between the counts of the histogram elements in the t1-t2 space and 

two variables z1 and z2 related to y and defined as: 
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   . (2.29) 

For an image i (i = 1, 2, …, I) the relative histogram can be represented as: 

 

)]()()([ 21 Jiiii BhBhBh h    , (2.30) 

where J = 256
2
 = 65536 for a 256256 grid and hi(Bj), j = 1, 2, …, J, is the pixel count for 

element Bj divided by the total number of image pixels, i.e. an estimate of the probability 

of pixels falling into the j-th element. A matrix  can be constructed by stacking on the top 

of each other the relative histograms of all available I images: 
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where H(Bj) is the j-th column of matrix  for each bin Bj. It can be shown that H(Bj) and 

H(Bk) have the same direction if bins Bj and Bk represent the same level of the property in 

y. This property can be used to lump histogram bins with similar values of the property. 

From a general point of view, one can assume that differences in color among different 

pixels in an image can be attributed to two independent factors, i.e. the local value of the 

property of interest and the illumination. Considering two histogram elements Bj and Bk 

having similar average property value y, then for the i-th image: 
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with sj and sk representing the local average imaging conditions. Assuming that lighting 

conditions do not change, these values can be considered constant and hence: 
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i.e. for two histogram elements Bj and Bk with the same property value, H(Bj) and H(Bk) 

will have the same relationship with y, but of different magnitude. Computing the 

covariance between H(Bj) and z1 and z2: 
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allows one to cancel out the scalar sj by evaluating the phase angle of the observed point in 

the space of cov1 versus cov2: 

 

)(θ)](cov),(arg[cov)(θ 21 yBBB jjj  . (2.35) 

If (y) and y have a one-to-one mapping relationship,  can be segmented into a finite 

number of bins and each bin should represent a different level of the property of interest. 

The application of this method will be shown in Chapters 3 and 4 in the case of film-coated 

tablets. 

2.2.2 Texture analysis 

Texture is defined as a descriptor of local brightness variation from pixel-to-pixel in a 

small neighborhood (Russ, 1999). Texture analysis is intended to quantify surface 

characteristics such as coarseness, roughness, smoothness and the presence of defects. It 

requires the RGB image X to be converted into a grayscale image X using: 

 

BGRX 1140.05870.02989.0     , (2.36) 

where R, G and B are [NrowNcol] matrices representing the red, green and blue color 

channels of X.  

Several methodologies for texture analysis of grayscale images have been proposed in the 

literature, such as statistical methods (Haralick et al., 1973), model-based methods (Cross 

and Jain, 1983) and transform-based methods (Geladi, 1992). A combination of 

multivariate techniques (PCA) and transform-based methods has been proposed as well 

(Bharati et al., 2004; Liu and MacGregor, 2007). Wavelet texture analysis (WTA), which 

is based on wavelet transform (Addison, 2002), is considered to be the current state of the 

art for the extraction of textural features (Liu and Han, 2011; Duchesne et al., 2012). 

Details on wavelet transform and its use in image analysis are given in the following. 
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2.2.2.1 Wavelet transform 

Wavelet transform analysis uses little wavelike functions known as wavelets. Wavelets are 

used to transform the signal under investigation into another representation that presents 

the signal information in a more useful form. This signal transformation is known as 

wavelet transform and, mathematically speaking, is a convolution of the wavelet function 

with the signal. The wavelet can be manipulated in two ways: it can be moved to various 

location of the signal, and it can be stretched or squeezed. If the wavelet matches the shape 

of the signal well at a specific scale and location, then a large transform value is obtained 

(Mallat, 1989). 

Considering a generic time-dependent (t) continuous signal x(t), and given an analyzing 

wavelet (t) such as the Mexican hat wavelet: 

 











2
exp)1()(ψ

2
2 t

tt    , (2.37) 

and its dilated and scaled version: 
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with a and b respectively the dilation and the location parameters, the continuous wavelet 

transform T(a, b) of x is defined as: 
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where the asterisk indicates that the complex conjugate of the wavelet function is used in 

the transform. In practice, only discrete values of a and b are considered, resulting in the 

discretized wavelet: 
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where the integers m and n control the wavelet dilation and translation respectively, a0 is a 

specified fixed dilation step parameter (generally 2), and b0 is the location parameter 

(generally 1). The wavelet transform of a continuous signal x using the discrete wavelet 

(2.40) is then: 
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The values Tm,n are known as detail coefficients. Orthonormal dyadic discrete wavelets 

such as those arising from the choice a0 = 2 and b0 =1 are associated with scaling function 

m,n that are in turns associated with the smoothing of the signal. The scaling functions can 

be convolved with the signal as in (2.41) to produce the approximation coefficients Sm,n 

(Addison, 2002). The signal x(t) can be eventually represented using a combined series 

expansion as: 
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i.e the original signal can be expressed as a combination of an approximation of itself, at 

arbitrary scale index m0, added to a succession of signal details from scales m0 down to 

negative infinity. From a practical perspective, the wavelet transform is equivalent to a 

sequence of low-pass and high-pass filters that split, at each scale, the signal (or its 

approximation) into its detail (high-frequency element) and its approximation (low-

resolution element to be further decomposed). Hence, (2.42) returns a multiresolution 

representation of the original signal. 

The discrete wavelet transform can be applied also to bi-dimensional signals such as 

images. In this case, since the decomposition of (2.41) is applied along two directions, at 

each decomposition stage an approximation (A) and three details images (horizontal D
h
, 

vertical D
v
, and diagonal D

d
) are generated. An example of wavelet decomposition is given 

in Figure 2.7, where a unique detail image D (= D
h
 + D

v
 + D

d
) is presented. The 

approximations (Figs. 2.7b and d) are blurred versions of the original image (Fig. 2.7a), 

while the details (Figs. 2.7c and e) capture distinctive features of the image (such as the 

head contour, the eyes or the mouth).  

Textural features such as the mean, standard deviation, skewness, kurtosis, energy and 

entropy of the light intensity values can be extracted from either the approximations or the 

details (Liu and MacGregor, 2007; Facco et al., 2010). The textural features of the 

available images, properly organized into a feature matrix, can be analyzed using 

correlative techniques such as PCA, PLS or PLS-DA. 
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(a) 

   

(b)              (c) 

   

(d)              (e) 

Figure 2.7. 2D discrete wavelet transform applied to the grayscale image of 

Leonardo’s Mona Lisa. (a) Original image. (b-d) approximations and (c-e) details at 

the first and second scale of decomposition. 
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Chapter 3 

Multivariate image and texture analysis 

to support pharmaceutical process 

understanding
*
 

The use of multivariate image and texture analysis is proposed in this Chapter to 

quantitatively characterize the elegance of film-coated tablets. Four unsupervised metrics 

are developed to quantify both the color uniformity of tablet faces/bands and the surface 

erosion. Latent variable modeling is used to regress the measured elegance against coating 

operating conditions to investigate the driving forces acting on the system and guide 

pharmaceutical manufacturing. 

The Chapter is organized as follows. In Section 3.1, the problem investigated is briefly 

outlined. In Section 3.2, the available data and the techniques used for their manipulation 

are described. Results are presented in Section 3.3, showing the effectiveness of image 

analysis for process understanding purposes. Section 3.4 presents the conclusions to the 

Chapter. 

3.1 Introduction 

The Quality by Design (QbD) initiative was launched a decade ago with the aim of 

introducing a novel approach to pharmaceutical development and manufacturing. One of 

the main objectives of this initiative is ensuring the desired product quality since its design, 

rather than by final inspection. Within this initiative, companies are encouraged to design 

and validate their processes within a multidimensional domain of processing conditions, 

referred to as the process design space (ICH, 2009). The proposed design space should be 

supported by the scientific understanding of the driving forces acting on the system and 

governing the complex network of interactions between materials, process and product. 

Particularly, the framework should be based on metrics that are robust and reproducible, 

and not on qualitative ones that might be easily biased by human perception (García-

Muñoz and Carmody, 2010). 

                                                 
* Ottavian, M., M. Barolo and S. García-Muñoz. Multivariate Image and Texture Analysis to Investigate the Erosion 
Mechanism of Film-Coated Tablets: An Industrial Case Study. J. Pharm. Innov., in press. 
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Film coating is a common processing step in the manufacture of tablets (Libermen and 

Lachman, 1981). Tablets are loaded inside a rotating pan and sprayed with an aqueous or 

non-aqueous solution, and air is used to evaporate the solvent. Tablet coating is carried out 

for several reasons. It can enhance the tablet stability, because the tablet core may contain 

a substance that is not compatible with light and/or subject to atmospheric oxidation. Also 

tablet mechanical integrity (i.e., higher resistance to mishandling) can be enhanced by 

coating. Furthermore, coating can cover a bitter taste or an unpleasant odor of a substance 

within the tablet core, or it can modify the drug release profile (e.g., enteric coating, 

osmotic pump, pulsatile delivery; Libermen and Lachman, 1981, Cole et al., 1995).  

The elegance of film-coated tablets have been usually related to color uniformity and 

surface finish (roughness/erosion), and several techniques have been proposed for its 

characterization (Ruotsalainen et al., 2003; Seitavuopio et al., 2006; Zeitler et al., 2006 

and 2007; Ho et al., 2007; Roggo et al., 2005; Zhang et al., 2005; Sasic, 2007). Among 

them, the use of multivariate image and multivariate wavelet texture analysis has been 

suggested by García-Muñoz and Gierer (2010) and García-Muñoz and Carmody (2010). 

The use of MIA and MWTA is attractive for practical industrial applications (Simon et al., 

2010 and 2012), where the elegance assessment is still typically performed by a trained 

panel of experts and, as such, may suffer from reproducibility issues. 

In this Chapter, it is shown how MIA and MWTA can be combined together to quantify 

the elegance of film-coated tablets through several indices with the aim of supporting 

pharmaceutical manufacturing. In order to develop robust statistics, more than 7000 tablets 

coated in nine different pilot-scale batches have been considered. Latent variable modeling 

is used to regress the measured elegance (in terms of color uniformity and surface erosion) 

against the coating operating parameters and to investigate the main driving forces 

governing the process. Namely, the model diagnostics are used to investigate the 

mechanism leading to tablets erosion, allowing to evaluate the effect of different physical 

phenomena. 

3.2 Materials and methods 

3.2.1 Imaging conditions and available data 

The in-house developed imaging station used in this study was equipped with a digital 

single-lens reflex Canon EOS 40D camera (10.1 megapixel resolution) with a Canon EF-S 

60 mm f/2.8 USM Macro lens. LED lights illuminated the subject, and the system was 

isolated from the outside and operated through a computer. The settings of both the station 

(i.e. camera and lights elevation) and the camera (i.e. shutter speed, lens aperture and ISO 
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sensibility) were selected to ensure proper exposure of the subject and to highlight the 

features of interest on the tablets surface. 

Images were collected off-line for nine different batches, indicated as Batches A-I. For 

color uniformity assessment, the tablets were withdrawn from the coater during the coating 

process, and tablet faces and bands were imaged separately. Several tablets were 

photographed per each single image; furthermore, three images of faces and three images 

of bands were taken for each pull point. For tablet erosion assessment, the tablets were 

imaged at the end of the coating process (one tablet per image), using an angle of incidence 

of the light onto the tablets surfaces that allowed to highlight the defects (if any). Details 

on the number of images collected for each batch are given in Table 3.1, together with a 

rough judgment on the surface finish. This judgment is only intended to help interpreting 

the PLS model diagnostics (see Figure 3.4). 

Table 3.1. Images collected for each batch. 

Batch 
Number of pull point  

(color uniformity) 

Number of tablets imaged 

(erosion analysis) 
Surface finish 

A 4 1308 Not eroded 

B 6 1142 Mildly eroded 

C 7 994 Mildly eroded 

D 6 765 Not eroded 

E 6 1148 Not eroded 

F 5 234 Mildly eroded 

G 7 768 Mildly eroded 

H 6 669 Eroded 

I 5 768 Eroded 

 

Batches A-H were used for PLS model calibration, while batch I for validation of the 

proposed elegance metrics. Considering the main intent of proposing an image-based 

methodology to investigate on the erosion mechanism of film-coated tablets, the PLS 

model was built on the highest number of available data in order to span the entire 

variability observed experimentally in terms not only of the elegance metrics, but also of 

processing conditions. 

The coating process was run in two phases, exploring different duration/spray rate 

combinations (the duration of the first phase was typically much lower than that of the 

second phase). A detailed list of the process operating conditions used to characterize each 

batch is given in Table 3.2. 
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Table 3.2. Film coating operating parameters. 

Name Description 

Duration 1 Phase 1 duration 

Duration 2 Phase 2 duration 

Spray 1 Phase 1 spray rate 

Spray 2 Phase 2 spray rate 

Exhaust T1 Phase 1 exhaust air temperature 

Exhaust T2 Phase 2 exhaust air temperature 

Pan load Amount of loaded tablets 

Pan speed Pan rotational speed 

Hardness Average tablets hardness 

 

Note that other variables that might have affected either the coating uniformity or the 

surface erosion (such as the gun-to-bed distance, air pressure, air flowrate, etc.; García-

Muñoz and Carmody, 2010; Cole et al., 1995) were not changed in the batches considered 

here, and hence they did not represent a source of variability to be included in the 

regression model. 

3.2.2 Multivariate image and texture analysis 

MIA and MWTA were used in the characterization of tablets elegance. In the following, 

the metrics developed to assess color uniformity and surface erosion and defects are 

presented. The color uniformity and surface erosion metrics are unsupervised ones, i.e. 

there are no explicit target values for them.  

3.2.2.1 Color uniformity assessment 

The color signature was used to characterize tablets color uniformity (Yu and MacGregor, 

2003). The color signature is an unbiased metric that evolves as long as coating material is 

applied to the tablets, until a certain cosmetic end-point is reached. For each lot of tablets, 

the following procedure was used: 

1. training of an MIA model on the composite image obtained from the concatenation of 

all the images available for the lot; 

2. background removal, by fitting a PCA model on the scores obtained from the projection 

of some background images onto the MIA model; 

3. manipulation of the 2D histogram-scatter plots according to the covariance mask 

method, using the time of each withdrawn as the dependent variable; 
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4. training of a 1-PC PCA model on the matrix obtained by stacking on the top of each the 

features vectors extracted from the 2D histogram-scatter plots, the score t1 representing 

the color signature; 

5. application of the covariance mask and of the PCA model defined in steps 3 and 4 

(respectively) to the scores resulting from the projection of the sub-images 

(approximately of the size of one tablet) extracted from each available image on the 

MIA model of step 1. 

The last step allowed to extract the color signature for both tablets faces and bands 

(separately), as shown in Figure 3.1 for one of the five available lots (batch D). 
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Figure 3.1 Color signature evolution of faces (open boxes) and bands 

(dashed boxes) for batch D. 

Color uniformity was monitored through the color signature range (interquartile range, i.e. 

the difference between the 25
th

 and 75
th

 percentiles, to avoid including outliers): at the end 

of the coating process, the lower the range, the better the color uniformity across tablets. 

3.2.2.2 Erosion assessment 

The application of MWTA for erosion quantification required several preprocessing steps 

on the images prior to the analysis, in order to perfectly align and properly cut all tablet 

images to the greatest area around the commercial logo. The preprocessing was automated: 

tablets were localized within each image by using the derivative of the summation of the 

grayscale intensities along the two spatial directions, while the cropping operation involved 

simple trigonometric calculations (García-Muñoz and Carmody, 2010). After cropping, 

images of tablets surface where converted to grayscale. An example of two tablets surfaces 

characterized by a different level of erosion is given in Figure 3.2a-b. 

With respect to the images of Figure 2, wavelet texture analysis (as potentially all texture 

analysis techniques) was complicated by the presence of the commercial logo. As 

suggested by Russ (1999) and reported by Bharati et al. (2004), texture can be defined as a 

descriptor of local brightness variation from pixel-to-pixel in a small neighborhood. Hence, 
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texture analysis was found to be biased towards the detection of the commercial logo, since 

it localizes the greatest pixel-to-pixel brightness variations. For this reason, the erosion 

quantification exercise was split into two separate problems, namely erosion quantification 

inside the logo and outside the logo. 
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                                                     (e)                                                                 (f) 

Figure 3.2 Sample images of two tablets characterized by different levels 

of erosion. (a) and (b) cropped images, (c) and (d) intensity distributions 

of the logo pixels (inside-logo erosion assessment) and (e) and (f) 4
th

 

stage wavelet details (outside-logo erosion assessment) for images (a) 

and (b), respectively. 

A template matching technique (Lewis, 1995) was used to extract the commercial logo 

from the images of the tablets surface. The template matching algorithm is based on the 
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fast normalized cross correlation, and aims at determining the position of a (small) child 

image (e.g., the commercial logo) into a (big) parent one (e.g., the surface of a tablet).  

For the case study investigated here, an image with a clearly readable commercial logo was 

manually cropped to the area around the logo, and then used as child image (to reduce the 

computational burden, the image was split into two, as the time require for the fast 

normalized cross correlation evaluation is proportional to the size of the child and parent 

images). Every time a new tablet surface image was processed, the matching algorithm 

localized exactly the position of the logo by using the child image as the template. Once 

the position was detected, a mask (i.e. a binary image of 0’s and 1’s) was used to separate 

the logo from the tablet surface. An example of the overall procedure is shown in Figure 

3.3. 

  

                 (a)                                   (b)                                                                  (c)  

Figure 3.3 Template matching for commercial logo removal. (a)-(b) child 

images of the commercial logo and (c) their superimposition on the tablet 

surface for the logo localization.  

The erosion quantification inside the logo relied on the rationale that the darker is the logo, 

the more readable it is (see Figure 3.2a and 3.2b for a comparison). Hence, the light 

intensity distribution of the logo pixels (i.e. the distribution of the values of the light 

intensity for each pixel of the logo) was used to characterize each tablet. For the two 

tablets of Figure 3.2a-b, the extracted light intensity distributions are shown in Figure 3.2c-

d. In order to develop a synthetic descriptor of the erosion inside the logo (which will be 

indicated in the following as “logo index”), the following procedure was used: 

1. for each lot, evaluation of the average light intensity distribution; 

2. training of a 1-PC PCA model on the matrix built from the average light intensity 

distributions, the score t1 being the average logo index for the batch; 

3. for each lot, projection of the light intensity distribution of each tablet onto the PCA 

model, generating a t1 distribution. 

With respect to the scores of the PCA model calibrated at step 2, it was observed that 

higher values of the logo index indicated higher (average) erosion of the logo itself. 

Erosion outside the logo was evaluated by means of the wavelet transform (using the 

Coiflets 5 wavelet; Addison, 2002). Only the details at the fourth decomposition stage (see 
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Figure 3.2e-f for the tablets of Figure 3.2a-b) were considered, since higher stages 

extracted irrelevant information. The pixels highlighted in white in Figure 3.2e-f identify 

the discontinuities in the tablets surfaces, i.e. the defects. Thus, the lighter the detail image, 

the higher its energy index (E4), the more eroded the tablet. For the computation of the 

energy index, the pixels belonging to the logo were excluded. 

3.3 Results and discussion 

3.3.1 Elegance metrics 

The unsupervised elegance metrics for Batches A-E are shown in Figure 3.4. Only five out 

of eight batches are presented for graphical reasons (conclusions drawn for batches A-E 

hold true also for batches F-H). 
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Figure 3.4. Elegance metrics for batches A-E. (a), (b) color signature 

ranges for (a) faces and (b) bands. (c), (d) erosion indices: (c) logo and 

(d) energy. 
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Figure 3.4 highlights that bands require longer coating time than faces, because the peaks 

of the distributions are shifted to higher fractions of the completion time. In fact, although 

the end-points of the distributions were found to be the same (see Figure 3.1), the color 

signature range of faces reaches its lowest value at around 75% of the total batch time, 

whereas for bands it evolves until the end of the batches. Differences between the coating 

evolution for tablets faces and bands have been reported by other authors using a camera-

equipped microscope (Wilson and Crossman, 1997), near-infrared (Pérez-Ramoz et al., 

2005) and Raman (Romero-Torres et al., 2006) spectroscopy, and discrete element method 

simulations (Freireich et al., 2011; Ketterhagen, 2011). These differences have been 

mainly ascribed to the exposed surface area during the coating operation, as well as to the 

way the tablets align themselves as they tumble and cascade in the pan (Ketterhagen, 

2011). 

The indices in Figure 3.4c-d highlight that batches B and C are characterized by a higher 

erosion level, consistently with the quality assessment carried out by a trained panel of 

experts. Furthermore, it can be observed that the indications obtained from the two indices 

are somewhat similar, though there some differences in the ranking of batches A, D and E 

with respect to the erosion inside and outside the commercial logo.  

3.3.2 Regressing tablet elegance against coating conditions 

The four elegance metrics presented in Figure 3.4 were used to build the quality matrix Y 

to be regressed against the [89] regressor matrix X of the coating operating conditions 

listed in Table 3.2. Namely, Y was defined as Y = [Yfaces Ybands Ylogo Yenergy], i.e. Y was 

obtained from the horizontal concatenation of the color signature range of faces (Yfaces 

[86]) and bands (Ybands [86]), the erosion logo index (Ylogo [813]) and the energy index 

(Yenergy [813]). Prior to the concatenation into Y, however, the matrices of the four 

metrics were further simplified: 

 Ylogo and Yenergy were both reduced to [83] matrices considering the high correlation 

among the variables (verified using a PCA model); for each distribution, only the first, 

mid and last points were retained; 

 Yfaces and Ybands were reduced to a [82] matrix and a [81] matrix respectively, retaining 

only the final points of each distributions; in fact, the appropriate color uniformity needs 

to be ensured only at the end of the coating process. 

The diagnostics of the 4-LV PLS model relating X and Y are given in Table 3.3 in terms of 

coefficient of determination per component (R
2
) and cumulated (R

2
CUM) for both the 

predictor and the response matrices. It should be noted that while 2 or 3 LVs were 

probably sufficient to explain the tablet elegance, the fourth LV was included in the model 

since it greatly contributed to the description of the X space. The importance of modeling 

the X space has been discussed by Tomba et al. (2012) in the context of PLS model 
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inversion. By inverting the PLS model that relates the processing conditions X to the tablet 

quality Y, a set x
NEW

 of processing conditions can be determined that lead to a desired 

tablet quality y
DES

. Hence, model inversion can be used to provide model-based 

recommendations on how to operate the coating process. 

Table 3.3. PLS model diagnostics. 

LV R
2
X R

2
CUMX R

2
Y R

2
CUMY 

1 34.8 34.8 49.1 49.1 

2 29.2 64.0 18.2 67.3 

3 16.3 80.3 11.1 78.4 

4 14.2 94.5 3.4 81.8 

5 4.2 98.7 6.7 88.5 

 

The PLS model scores (t) and loadings (w
*
, q) for the first two latent variables and the 

modified VIP index are shown in Figure 3.5. 
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Figure 3.5. PLS model (a) scores, (b) loading biplot (W*/Q overlay) and 

(c) modified VIP index. 
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In the score plot (Figure 3.5a), the eight batches of the calibration set are separated along 

the first latent variable. From the right to the left, one can find: batches A, D and E with 

positive t1 values; batches B and C (recall that they were characterized by unsatisfactory 

surface finish) in the center, together with batches F and H; batch G (whose elegance 

metrics are given in Figure 3.6 and exhibited the worst surface quality) is relegated at 

negative t1 values. Hence, Figure 3.5a can be used as an unsupervised elegance monitoring 

chart: when a new batch is available, it can be projected onto the PLS model and, 

according to the position of its scores, either accepted or rejected. 

The W
*
/Q loadings plot (Figure 3.5b) clarifies the main driving forces of the process and 

how they relate to the elegance metrics of the product, particularly surface erosion. 

Analysis of the plot leads to conclude that higher hardness leads to less erosion, and that 

the longer the coating process (particularly Duration 2), the more erosion the tablets will 

exhibit. Additionally, there is a positive relation between the pan load and pan speed and 

the appearance of erosion in the tablets. In fact, poor surface finish batches are located at 

negative values of the first latent variable, i.e. the same direction of the pan speed and pan 

load in the loading plot. Hence, the higher the pan speed/load, the worse the surface finish. 

These diagnostics lead us to conclude that the erosion in the tablet surface occurs mainly as 

a consequence of the physical collisions among tablets and with the baffles of the pan (and 

under the weight of the other tablets). However, other additional mechanism, such as the 

effect of water activating the disintegrant in the formulation as an effect of a too long 

residence time of the liquid water film on the tablet surface, should not be excluded. The 

loadings corresponding to the spray rate, in fact, are not negligible and, combined with the 

positive correlation between the duration of the coating operation and erosion, support the 

hypothesis that also water played a role in the surface erosion, though secondary with 

respect to the physical collisions.  

The VIP index (Figure 3.5c) agrees with the abovementioned conclusions about the 

mechanisms leading to surface erosion. Tablet hardness and the duration of the coating 

process, in fact, were found to be the most important variables of the model, while the 

spray rates were deemed as less important. 

3.3.3 Validating the elegance metrics 

The unsupervised elegance metrics were validated using the images of the tablets of batch 

I. According to the panel test, the elegance of this batch was judged to be insufficient 

(excessive humidity during the coating process caused a high erosion level). Hence, the 

erosion metrics were expected to exhibit values at best similar to those of batches B-C 

(Figure 3.5), or possibly to those of batch G. This can be clearly seen in Figure 3.6 that 

compares the logo and energy indices of batches G and I. 
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Figure 3.6. (a) Logo and (b) energy indices for batches G and I. 

It was found that color uniformity of faces and bands for batch I was similar to that of the 

other batches. However, the developed erosion metrics highlighted the significant surface 

erosion characterizing the tablets. The inside-logo metric, in fact, is almost the same of the 

one characterizing batch G (Figure 3.6a), whereas the outside-logo metric (Figure 3.6b) is 

even worse (recall the position of batch G in the PLS model space; Figure 3.5a).  

3.3.4 Surface defects detection: an alternative algorithm 

This Section presents a supervised surface defects detection algorithm and metric that is 

intended to objectively mimic the elegance assessment exercise traditionally performed by 

an expert panel by analyzing, for each tablet imaged, the area of each defect. Though it 

was not explicitly considered, it can be of practical interest for the readers.  

The algorithm consists of a sequence of morphological operations on the images, namely 

opening and closure, applied on the images preprocessed and cropped as described 

previously for surface erosion. Morphological operations are typically used to add or 

remove pixels from the boundaries of the objects within an image; for more details, the 

reader is referred to the work by Gonzales et al. (2009). The algorithm comprises the 

following steps, whose effect is shown in Figure 3.7 on a sample image: 

1. evaluation of the negative of the image and masking (i.e., removal) of the commercial 

logo (see Figure 3.7a-b); 

2. thresholding of the image, selecting only the pixels having light intensity values above a 

given threshold (see Figure 3.7c); 

3. conversion from grayscale to black and white image (see Figure 3.7d); 

4. morphological background opening (see Figure 3.7e); 

5. morphological image closure and filling of the holes (see Figure 3.7f); 
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6. evaluation of the area of each highlighted defect, generating for each tablet a defect area 

distribution. 

    

                       (a)                                                     (b)                                                       (c)  

   

                      (d)                                                     (e)                                                       (f) 
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Figure 3.7. Supervised defect detection algorithm. Image (a) negative, (b) 

after removal of the commercial logo, (c) after thresholding (d), after the 

conversion from grayscale to binary, (e) after the background opening 

and (f) after the closure and holes filling. (g)-(h) surface defects area 

distributions for batch A: (g) average and (h) tablet with the greatest 

defect. 

For steps 1-6 to be completed, the threshold for the grayscale light intensity distribution 

and the opening and closure operations need to be tuned from the user. In Figure 3.7, the 

threshold was set equal to 175, whereas the morphological operations were intended to 
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leave in the image only defects with an area of at least 50 pixels (i.e. 3.2 10
-3

 mm
2
 

according to the resolution of the images). 

The output of the algorithm can be given in the form of the average defects area 

distribution per batch (Figure 3.7g) or per tablet (Figure 3.7h). Traditionally, the defects 

area is evaluated by visual inspection from a trained panel of experts, and results are 

strongly dependent on human judgment and therefore may be affected by reproducibility 

issues. Despite this strong limitation, one of the typical acceptance criteria for a batch is 

the number of tablets exhibiting defects with an area greater than an assigned value: if this 

number exceeds a given threshold, the entire batch is rejected. Hence, the algorithm 1-6 is 

important to objectively quantify the visual quality of the tablets obtained from a batch. 

3.4 Conclusions 

The use of multivariate image (MIA) and texture analysis (MWTA) was proposed in this 

Chapter to characterize film-coated tablets elegance, which is traditionally assessed by a 

trained panel of experts. Four unsupervised metrics have been developed and validated 

using images of more than 7000 tablets coated in nine different pilot-scale batches. Two 

metrics were intended to quantify the coating uniformity of both tablets faces and bands, 

while the other two the surface erosion both inside and outside the commercial logo 

embossed on the tablets. 

A PLS model was used to regress the elegance metrics against the coating operating 

conditions in order to investigate the main driving forces of the process. Particularly, the 

analysis of the model loadings successfully allowed to investigate the mechanism leading 

to tablets erosion, concluding that the erosion in the tablet surface could be mainly ascribed 

to the physical collisions among tablets and with the baffles occurring inside the coating 

pan, though a water-related effect due to a too long residence time was also observed. 

Additionally, batches are shown to align according to the surface roughness of the tablets 

in the model space, which can be effectively used as a monitoring chart for the overall 

tablets elegance. 

This case study demonstrates the effectiveness of using of simple imaging devices (RGB 

cameras) with powerful mathematics in providing a tool that replaces human perception 

with a quantitative measure useful for process development, troubleshooting and 

continuous quality assurance efforts. 
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Chapter 4 

Standardization of machine vision 

systems for product quality assessment
*
 

In the last decades, a growing number of image analysis applications in the process and 

food industries have been reported. This is because artificial vision systems can return a 

quick, accurate and objective indication of the quality of the manufactured end product. 

However, reproducibility of the image analysis results is ensured only as long as the 

conditions, under which the images used for the calibration of the quality assessment 

model were collected, do not change during normal operation of the manufacturing 

process. These conditions include the status of the artificial vision illuminating system and 

of the camera sensor. In this Chapter, the issues related to the aging or failure of the 

illuminating system and to the replacement of the camera are addressed. 

The Chapter is organized as follows. In Section 4.1, the problem is presented with 

reference to the state of the art. In Section 4.2, the techniques used are described in details. 

Results are discussed in Section 4.3 considering a pharmaceutical engineering case study. 

In Section 4.4, some general conclusions are drawn about the standardization of machine 

vision systems. 

4.1 Introduction 

Oftentimes, the quality of a product or a process can be directly related to some visual 

features, like color or surface texture. Machine vision systems are based on image analysis 

and can return an objective and reproducible measurement of these features. Therefore, 

machine vision systems are suited for those applications where the quality assessment 

exercise is subject to human judgment (e.g., from a panel of experts). Furthermore, they 

can reduce the number of expensive and time-consuming laboratory analysis required for 

quality assessment, leading to related cost reductions. 

                                                 
* Ottavian, M., M. Barolo and S. García-Muñoz (2013). Maintenance of Machine Vision Systems for Product Quality 
Assessment. Part I: Addressing Changes in Lighting Conditions. Ind. Eng. Chem. Res., 52, 12309-12318. 

Ottavian, M., M. Barolo and S. García-Muñoz. Maintenance of Machine Vision Systems for Product Quality Assessment. 
Part II: Addressing Camera Replacement. Ind. Eng. Chem. Res., in press. DOI: 10.1021/ie402910z. 
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The reported applications of image analysis for product/process quality assessment range 

over a broad domain of industrial sectors
 
(Liu, 2004). For example, image analysis has 

been used to characterize flames from industrial boilers (Yu and MacGregor, 2004) and 

flares (Castiñeira et al., 2012), fiber diameter distribution of polymeric membranes (Tomba 

et al., 2010), erosion (García-Muñoz and Carmody, 2010) and color uniformity of tablets 

(García-Muñoz and Gierer, 2010), nucleation and crystals in a crystallization process 

(Simon et al., 2010 and 2012), lumber grades (Bharati and MacGregor, 2003), steel 

(Bharati et al., 2004) and paper quality (Reis and Bauer, 2009), foodstuff defects (Brosnan 

and Sun, 2004; Prats-Montalbán and Ferrer, 2007; Pereira et al., 2009), seasoning content 

of snack food (Yu and MacGregor, 2003), alumina content of anode cover materials 

(Tessier et al., 2008) and run-of-mine ore composition (Tessier et al., 2007). Two reviews 

on this topic (which the reader is referred to for additional examples) have been published 

recently (Prats-Montalbán et al., 2011; Duchesne et al., 2012). Machine vision applications 

outside the process industry are innumerous (Waskewitz, 2007; Mitra and Acharya, 2007; 

Zhang and Gao, 2009), and focus mainly on problems of object recognition and motion 

tracking (i.e. pattern recognition).  

Machine vision systems are made of hardware components (e.g. the illuminating system 

and the camera) and software components (the underlying image-based model for quality 

assessment). Therefore, likewise all measurement systems, also machine vision ones need 

to be maintained. In fact, if not promptly detected and corrected, failures (e.g. of the 

illuminating system or of camera sensors) can dramatically affect results reproducibility 

(Waskewitz, 2007), leading to a wrong characterization of the product quality.  

Data-driven modeling (such as image-based modeling) usually requires a significant data 

collection effort to calibrate the quality assessment model, and the resulting model itself 

can be regarded as “valid” only if the conditions, under which the calibration data were 

collected, do not change during normal use of the model. Therefore, to assess whether the 

underlying model is valid or not, the state and the performance of a machine vision system 

should be monitored as well. If a component failure is detected, either the faulty 

component has to be replaced, or the model has to be adapted to the new imaging 

conditions until enough data is collected to perform a recalibration of the monitoring 

model. Though the former solution is easier, the latter is preferable, since there are no 

guarantees that the new component (though identical to the previous one, assuming it is 

still available on the market) will have the same behavior as that used during the collection 

of the calibration images. Furthermore, a well performed model adaptation will provide a 

shorter downtime of the system until recalibration is performed. 

In this Chapter, the issue of a failure of the illuminating system is addressed first. Namely, 

after presenting a way to monitor its the status, two alternative strategies to deal with 

changes in the lighting conditions are defined. It should be noted that some techniques 
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exist to cope with changes in the illuminating conditions, but they usually refer to pattern 

recognition problems (Sigal et al., 2004; Tu, 2009; Jahr, 2007), which address issues that 

are quite different from those encountered in product quality assessment problems. 

Although monitoring the light conditions is considered of utmost importance in machine 

vision systems (Jahr, 2007), how to achieve this in practice and how to adjust the system 

accordingly is seldom (if ever) discussed. 

Then, the problem of transferring a quality assessment model between two cameras (from 

camera A to camera B) is discussed. The problem is addressed as a technology transfer 

problem, where “technology” includes both hardware components (the camera) and 

software components (the quality assessment model). Clearly, the issue under investigation 

does not refer only to the maintenance of an existing machine vision system. In fact, the 

technology transfer scenario applies not only when a camera B is bought to replace camera 

A (e.g. after a failure), but also when, based on the results obtained with a given machine 

vision system centered on camera A, camera B is installed in a different plant. Note that 

the transfer can be carried out between two cameras of the same type or of different types. 

In the latter case, camera B can be either of a better quality than camera A (e.g. when 

replacing an older camera after a failure or to improve the technology of the system) or of 

a lower quality (e.g. when moving the quality assessment system from a research 

environment to on-line manufacturing, where low resolution cameras may be employed). 

In all cases, the technology transfer is intended to avoid periods of downtime until model 

recalibration is performed. From a very general point of view, the issues addressed 

represent research areas pertaining also to the machine vision community (Porikli, 2003; 

Ilie and Welch, 2005). Within this community, several strategies have been proposed to 

cope with a somewhat similar problem, namely ensuring the color consistency of images 

collected from multiple cameras. However, the applications onto which the strategies have 

been tested are mainly related to pattern recognition problems. To the authors’ knowledge, 

the technology transfer problem addressed here has never been discussed in the open 

literature so far, despite its importance in ensuring the reproducibility of the results of a 

machine vision system subject to possible camera failures or replicated installations. 

4.2 Materials and methods 

4.2.1 Imaging station and available data 

The in-house developed imaging station used in this study was equipped with three digital 

cameras: two single-lens reflex Canon EOS 40D camera (10.1 megapixel resolution; 

camera A1 and camera A2 in the following) with a Canon EF-S 60 mm f/2.8 USM Macro 

lens and single-lens reflex Fujifilm S9100 (9 megapixel resolution; camera B in the 
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following). LED lights illuminated the subject (two racks mounting 64 LEDs each), and 

the system was isolated from the outside and operated through a computer. The user was 

allowed to set camera elevation, lights elevation (hence changing the angle of incidence of 

the light on the subject surface) and camera settings. Namely, shutter speed t (in seconds), 

lens aperture N (in f-stop) and ISO sensibility S (in ISO number) were used to ensure 

proper exposure. Unless differently specified, the settings were set as [t, N, S] = [1/13, 

f/5.6, 125] for all three cameras. 

For the light monitoring exercise, images of a set of four color standards (red, green, blue 

and yellow; Edmund Optics T56-079, USA) were used. The light correction strategies, 

instead, were tested on images of film coated tablets with different percentage of coating 

material applied (0.5, 0.75 and 1% of coating material relative to the core weight of the 

tablet), with the aim of analyzing the color progression along the coating process (García-

Muñoz and Gierer, 2010). All images were collected with camera A1. 

For all camera-to-camera transfer exercises, two datasets were collected. The first dataset 

consisted of 20 images of two subjects of four different colors, and was used to draw some 

general conclusions on the feasibility of the transfer. The subjects were either the color 

standards or pharmaceutical tablets (red, green, pink and white). The second dataset 

consisted of the images of film coated tablets with different percentage of coating material 

applied previously discussed. This dataset was used to further test the transfer strategies 

proposed Sample images of the two datasets are shown in Figure 4.1. 

    

                  (a)                                         (b)                                       (c)                                       (d) 

           

                                (e) (f)                                   (g)                                 (h) 

Figure 4.1. Example of the available datasets: (a) color standards and (b)-(d) film-

coated tablets with different percentage of coating applied (0.5%, 0.75% and 1%, 

respectively) collected with camera A1. (e)-(h) same images collected with the camera 

B. 
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4.2.2 On the scaling of the scores in MIA modeling 

The scores obtained from the PCA decomposition of an image are recommended to be 

scaled within the range [0-255] (Yu and MacGregor, 2004): 
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Once max(T) = [max(t1); max(t2)] and min(T) = [min(t1); min(t2)] are evaluated on the 

calibration images, they are used also to scale the scores of the validation images, i.e. the 

images projected onto the available MIA model. However, when the image projected has 

been collected under different lighting conditions (e.g. dimmed light) or whit a different 

camera, a problem arises, since for this image (4.1) may return meaningless score values, 

i.e. scores outside the [0-255] range. To overcome this problem, a novel scaling method for 

the scores is proposed. This novel “color scaling” will be used throughout the remaining of 

the Chapter. 

The rationale of the color scaling is fairly simple: instead of using the values of the 

observed scores for the definition of max(T) and min(T), the scores obtained from the 

projection onto the MIA model of selected pure color pixel (chosen among white [255; 

255; 255], black [0, 0; 0], red [255; 0; 0], green [0; 255; 0] and blue [0; 0; 255]) are used. 

The loadings of the MIA model drive the selection of the colors to be used. Figure 4.2 

presents the loadings of a MIA model built on the image of Figure 4.1c, showing that p1 

extracts the information related to the average color of the image (same loading signs for 

the three spectral channels, with the red one slightly prevailing the others), whereas p2 

highlights the contrast between the red channel and the green and blue ones. Accordingly, 

score t1 was scaled between the maximum and minimum scores obtained from the 

projections onto the MIA model of a pure white and a pure black pixel (as all colors lay 

between these two), whereas score t2 was scaled between the maximum and minimum 

scores obtained from the projections onto the MIA model of a pure red and a pure blue 

pixel (as these channels exhibited the greatest contrast). 
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Figure 4.2. MIA model loadings for the red (R), green (G) and blue (B) channels. 
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A comparison between score spaces obtained with and without the proposed color-scaling 

is shown in Figure 4.3. 
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Figure 4.3. 2D histogram-scatter plot for Figure 1c obtained with the score scaling 

given by Equation (5) (a) with and (b) without the application of the color scaling. 

The comparison between Figure 4.3a and 4.3b reveals that the use of the color scaling 

could cause a reduction in the resolution of the score space if the same binning resolution 

is used in producing the 2D histograms, since the cloud of points is confined in a smaller 

region within the [0-255] range. Though not reported here for the sake of conciseness, it 

was found that the results presented here are not dependent on this change in the density 

distribution and that increasing the resolution of the binning does not improve the results (a 

[256256] grid was used in producing the 2D histograms shown here). 

4.2.3 Alignment of the score spaces of different images 

The use of the dynamic time warping (DTW) was suggested by Kassidas and coworkers 

(Kassidas et al., 1998) for the synchronization (alignment) of batch trajectories through a 

series of compressions and dilations. DTW operates by solving an optimization problem to 

evaluate the warping path, which is the sequence of points that have to be matched for two 

trajectories to be aligned. For more details on the DTW algorithm, the reader is referred to 

the paper by Kassidas et al. (1998). 

The use of the DTW is proposed in this Chapter to match the 2D histogram-scatter plot of 

two images collected under different light conditions and to handle the technology transfer 

problem. The results of the DTW implementation are shown in Figure 4.4. 

The score spaces of Figure 4.4a and 4.4b are generated by projecting the images of Figure 

4.1g and 4.1c onto a MIA model calibrated on images collected with camera B (for more 

details on the analysis of the film-coated tablet images, see Section 4.3.2.1). In order to 

match the two score spaces, the DTW algorithm was applied in two steps, i.e. first by rows 

and then by columns. In the first step (Figure 4.4c), each row of the score space in Figure 
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4.4b was aligned against the corresponding row of the score space in Figure 4.4a. In the 

second step (Figure 4.4d), the synchronization was carried out by columns, considering the 

score spaces of Figures 4.4c and 4.4a. The cumulative results obtained for the score t1 are 

shown in Figures 4.4e and 4.4f. Further alignment of the score space of Figure 4.4d with 

the original score space of Figure 4.4a by re-application of the DTW algorithm was found 

not to improve the results. If necessary, the optimal number of cycles of DTW applications 

(by rows and by columns) can be determined by minimizing the difference between the t1 

and t2 score spaces (Figures 4.4e and 4.4f) after the alignment. 

In MIA applications, the shape of the clusters in the 2D histogram-scatter plot usually 

resemble those shown in this Chapter. In such situations, the DTW correction is expected 

to always return a good match. Nevertheless, the capability of the algorithm to work 

properly in all circumstances cannot be guaranteed. For example, for large differences 

between the resolution of the camera for which the quality assessment model is calibrated 

and the resolution of the new camera (i.e., the peaks in Figure 4.4e are very different), the 

DTW might fail, since stretching and compressing might not be enough to ensure a proper 

synchronization. 

4.2.4 Camera transfer by color consistency matching 

The machine vision literature has thoroughly studied the problem of ensuring color 

consistency across multiple cameras, mainly for pattern recognition (Khan and Shah, 2003; 

Javed et al., 2003; Nummiaro et al., 2003; Hu et al., 2006). One of the most common 

applications encountered is the surveillance of a given area through multiple cameras, 

which involves the problem of recognizing as identical an object (e.g., a person) 

simultaneously imaged from different cameras. In general, since the segmentation of the 

object (i.e. its identification and separation from the background) is obtained by 

thresholding the color intensity histograms, color differences among cameras can generate 

mistakes, even if the cameras are of the same type. Similarly, in the technology transfer 

problem considered in this study, if the color structures of two images of the same product 

are different because the images are taken with different cameras, then the output of the 

quality assessment model would be (erroneously) different. 
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                             (e)                         (f) 

Figure 4.4. Implementation of the DTW algorithm for the alignment of the score spaces 

of two images of the same tablets taken with different cameras. Score spaces of the 

image taken with camera B (a) and camera A1 (b) projected onto an MIA model defined 

on the camera B image. DTW application to align (b) on (a): synchronization by rows 

(c) and by columns (d). t1 scores before (e) and after (f) the DTW alignment. 

Given the similarity of the two above problems, one popular technique proposed in the 

machine vision literature to ensure color consistency was tested also in the context of the 

transfer problem addressed in this study. Namely, the approach presented by Ilie and 

Welch (2005) was considered. This approach aims at matching the RGB spaces of two 
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cameras through a transformation between the R, G and B values of selected colors, and it 

will be referred as “RGB transfer”. 

Given the two [KJ] matrices CA and CB, representing J features extracted from the RGB 

values of K different colors for camera A and B (respectively), the matching of the two 

color spaces is obtained via the [JJ] transformation matrix S defined as  

 

B

T
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1

A

T

A )( CCCCS
    , (4.2) 

assuming that camera B has to be aligned against camera A. Two alternatives were 

explored (Ilie and Welch, 2005): 

 linear RGB transfer (“RGB 1” in the following), in which the matrix C was built 

considering for each of the K colors its R, G and B values, i.e. 

 





















KKK bgr

bgr

bgr


222

111

C  (4.3) 

being rk, gk and bk respectively the R, G and B values for the k-th color; 

 quadratic RGB transfer (“RGB 2” in the following), in which the matrix C was built 

considering for each of the K colors its R, G and B values as well as their squared values, 

i.e. 
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where the last column allows for a translation. 

The use of a quadratic model as in (4.4) has been suggested recently also by Vidal et al. 

(2013) to capture cameras variability in a different context (i.e., matching of the color 

spaces of a camera and a colorimeter). 

Once the transformation matrix S has been evaluated, it can be used to correct any new 

image collected. 
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4.3 Results and discussion 

4.3.1 Monitoring the lighting conditions 

The purpose of the light monitoring exercise is defining a sequence of operations to check 

whether the conditions of the illuminating system are changed with respect to those 

existing when the MIA model was calibrated. Alterations of the camera sensor can be 

detected as well. 

Images of the color standards (Figure 4.1) collected under normal illuminating conditions 

(NIC) were used to calibrate the monitoring model. A total of 13 images were taken, with 

the standards randomly positioned within the image area. An MIA model was built on a 

couple of (randomly selected) images: its loadings, together with 2D histogram-scatter plot 

obtained from the projection of the image of Figure 4.1a on it, are shown in Figure 4.5. 
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Figure 4.5. MIA model for the color standards under NIC light. (a) Model loadings and 

(b) 2D histogram-scatter plot for the image of Figure 4.1a. 

The information given by the loadings is similar to that shown in Figure 4.2, i.e. p1 extracts 

the average color (which is typical of MIA models), whereas p2 reveals a contrast between 

the red and blue channel, with no contribution on the green one. The projection of an 

image of the four color standards onto the MIA model (Figure 4.5b) shows five clearly 

separated clusters (the four colors plus the background, as indicated in the figure). The 

features extracted for each of the 13 calibration images from the 2D histogram-scatter plot 

were the number of pixel (Npix) and the scores variance-covariance (
2121

σ,σ,σ 22

tttt ) of each 

cluster after the removal of the background, and were collected into a [116]  vector: 
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The background was removed by using a predefined mask, while the masks for each color 

cluster were obtained by fitting the corresponding scores to a 2-PCs PCA model, with their 

99% joint confidence interval representing the desired (elliptical) mask. 
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The monitoring model was eventually designed by fitting a PCA model on the matrix 

obtained by stacking on the top of each other the features vectors of the calibration images. 

Details on the model (R
2
 and eigenvalues) are given in Table 4.1; the Hotelling T

2
 and SPE 

monitoring charts with their 99% confidence limits ( 2

limT and SPElim) are shown in Figure 

4.6. Note that the normality assumptions beyond the two confidence limits have been 

verified. The model was built on 3 PCs (adding the fourth PC did not change the results 

significantly). Both the Hotelling T
2
 and the SPE are measures of how well a sample is 

described by the model, representing the distance from the center of the model hyperplane 

and the distance from the model hyperplane, respectively (Jackson, 1991).  

Table 4.1. Diagnostics of the PCA model built for light monitoring. 

PC # Eigenvalues R
2
XCUM 

1 6.1 38.3 

2 4.9 68.7 

3 2.3 83.3 

4 1.2 90.7 

5 0.92 96.4 
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Figure 4.6. (a) SPE and (b) Hotelling T
2 

monitoring charts for the light monitoring 

exercise. 99% confidence limits on the two statistics are indicated. Please note that the 

scale is logarithmic after axis breaks. 

In addition to the calibration images, Figure 4.6 shows the results of the projection on the 

monitoring model of the features extracted from three different sets of validation images, 

which are described in details in Table 4.2. Figure 4.7 shows instead samples of the color 

standard images taken under different illuminating conditions. 
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                    (a)                                     (b)                                          (c)                                      (d) 

 

                   (e)                                       (f)                                      (g)                                         (h) 

Figure 4.7. Example of validation images collected (a)-(b) under NIC, (c)-(f) blocking 

part of the LEDs (respectively 6, 25, 50% on a rack and 50% on both racks) and (g)-(h) 

regulating light intensity in the machine vision system. 

The condition of the lighting system can be monitored by taking a test image of the color 

standards and carrying out the following operations: 

1. projection of the image onto the available MIA model and evaluation of the scores Ttest 

2. filtering of the background 

3. evaluation of the feature vector test 

4. projection of the feature vector test onto the monitoring PCA model 

5. evaluation of SPEtest and 2
testT , and their comparison with the confidence limits 

6. definition of the status of the lighting system (NIC vs. altered) by comparing SPEtest and 
2

testT  with their (respective) limits. 

Table 4.2. Validation data used to test the performance of the light 

monitoring model. 

Validation data Description 

Set 1 12 NIC images 

Set 2 
6 images obtained by blocking part of the LEDs (3, 

6, 12, 25 and 50% on a rack and 50% on both racks) 

Set 3 

5 images of uniformly dimmed light, obtained using 

the knob regulating lighting intensity in the machine 

vision system 

 

Figure 4.6 shows the high sensitivity of the proposed monitoring model to changes in the 

lighting conditions. All images collected under altered light were correctly classified as 

non-NIC (SPEtest much higher than the confidence limits SPElim) with the exception of 

those obtained by blocking just two (out of 128) or four (i.e. 3% and 6%, respectively, cf. 

Figure 4.7c) of the LEDs (the former being within the confidence limits and the latter with 
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a value of SPEtest just above SPElim). 11 out of the twelve validation NIC images were 

correctly recognized as such. As for this latter result, it should be reminded that some false 

positives are indeed expected when monitoring the system status against some confidence 

limits (per their definition). As with any monitoring exercise, the limits could be adjusted 

so that an acceptable level of Type I and Type II errors are obtained. 

Maintenance of the monitoring model (i.e. its update with new images of the color 

standards) can be made as an off-line exercise or through a periodic check-up, though no 

general indication can be given since the specificity of each machine vision installation 

needs to be considered. 

4.3.2 Correcting for light changes 

Once a change in the lighting conditions is detected through the proposed monitoring 

model, an action needs to be taken. Two alternative strategies are proposed to compensate 

for light alterations, either by changing the camera settings or by adapting the available 

model to the new lighting conditions. 

The strategies for light correction are presented through a case study, which is shortly 

described in the next Section. The rationale of the two proposed strategies is then 

explained in detail. 

4.3.2.1 Case study 

Images of tablets at different percentages of coating were collected under NIC (20 images 

per percentage of coating, shuffling each time all tablets). The images were manipulated 

according to the covariance mask method (Yu and MacGregor, 2003) as proposed by 

García-Muñoz and Gierer (2010) on a similar case. Shortly: an MIA model was designed 

using a composite image obtained from the concatenation of several images of tablets at 

different coating levels, and the scores obtained from the projection of all the available 

images (after filtering out the background) were manipulated according to the covariance 

mask, which extracts a feature vector for each image (by grouping the pixels in the 2D 

histogram-scatter plot having similar correlation with the property of interest). The matrix 

built from this vectors is decomposed through a one-component PCA model, the score t1 

representing an unbiased metric called color signature, whose evolution indicates the 

change in the tablets color (i.e. the change in the amount of coating applied). Namely, one 

value of the color signature was evaluated for each image, generating the open boxes of the 

box plot in Figure 4.8, where the variability shown at a specific coating level is related to 

the non homogeneous distribution of the coating solution among tablets. 

In order to mimic a reduction (dimming) in the light intensity, half of the LEDs of the 

imaging station were blocked, thus producing an even light disturbance. New images were 

collected (20 images per percentage of coating applied) and projected onto the previously 
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calibrated MIA model, hence generating a new distribution of the color signature, which is 

shown in Figure 4.8 using hashed boxes. 
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Figure 4.8. Color signature evolution during the coating process obtained under NIC 

(black) and projecting the images collected under dimmed light onto the calibrated 

model (red). 

The reduction in light intensity causes a shift of the color signature towards higher values, 

and can result in an erroneous analysis of the coating process being monitored. The effect 

of the reduction can be clearly seen also in the score space. Figure 4.9 reports the 2D 

histogram-scatter plots for an image of tablets with 0.75% coating applied collected under 

dimmed light and, for an immediate comparison, the one obtained under NIC and shown in 

Figure 4.3a. 
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                                                 (a)                                                                               (b) 

Figure 4.9. 2D histogram-scatter plot of an image of tablets (at 0.75% coating applied) 

collected under (a) NIC and (b) dimmed light. 

The score space under dimmed light appears shifted toward the background region (right 

side of the score space) and exhibits a somewhat compressed density distribution of the 

scores with respect to one under NIC. The shifting is due to the fact that the overall image 

is darker, and the changes in the density distribution are due (we believe) to the fact that 
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light is absorbed differently from different colors (Halliday et al., 2012), thus causing a 

color-dependent shift toward pure black (no light). 

The two alternative strategies that are proposed to correct the change in the lighting 

conditions will be discussed in detail in the following sections. Their rationale is as 

follows: 

 Strategy 1: definition of a new set [t, N, S] of camera settings to obtain an exposure (Hv) 

of the subject equivalent to the one under which the model was calibrated. Note that the 

exposure (i.e. the amount of light allowed to hit each area unit of a photographic medium) 

is related to the settings through: 

 











St

N
tHv 22

100
log    , (4.6) 

and is expressed in [lux×s]); 

 Strategy 2: definition of a transformation to match the score space obtained under 

changed light with the one obtained under NIC. 

Details on the implementation of the two correction strategies are given in the flowchart of 

Figure 4.10, which describes the sequence of operations to carry out when a new quality 

assessment campaign is started (using an image-based model calibrated under a given 

lighting condition). 

Figure 4.10 shows that both correction strategies require some new images to be collected 

under altered light conditions. As it will be clarified in the following Sections, only images 

of a single point of the coating progression (or, generally speaking, of a limited portion of 

the calibration samples) need to be taken. The mid-point (0.75% of coating applied) will be 

used to illustrate both correction strategies. 

4.3.2.2 Strategy 1: correcting camera settings 

Camera settings can be manipulated if the way they affect the images (or, equivalently, 

their score spaces, or the features extracted using the covariance mask method) is known. 

Therefore, in order to model the relationship between settings (inputs) and images 

(outputs), the system needs to be excited once the change in the illuminating conditions is 

detected (step 1a of Figure 4.10). 
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Start a new quality assessment campaign

Alteration

detected?

NO

YES

Proceed with the quality

assessment campaign

STRATEGY 1

Detect whether lighting is altered

Take images with altered

lighting (1a)

Take images with altered

lighting (2a)

Relate camera settings

and image features (1b)
Calibrate the dynamic

time warping (2b)

Determine the new

camera settings

compensating for the 

lighting alteration (1c)

Synchronize the score 

spaces in order to

compensate for the 

lighting alteration (2c)

Select

correction

strategy

STRATEGY 2

Proceed with the quality assessment campaign  
Figure 4.10. Operations to perform when a new quality assessment campaign is started. 

The required excitation can be provided by changing the camera settings according to a 

fractional factorial design of experiment (DoE; Montgomery and Runger, 2010). Assuming 

that the three available degrees of freedom (i.e. the three camera settings) could distribute 

on three levels each, two different cases were considered (exploring, with respect to the 

values used in calibration, the ranges of ± ½ and ± 1 stop independently) with the 

assumption that only mild corrections are required. If a marked light change is detected, 

the range can be expanded, revising the DoE experiments accordingly. For each case, a 

total of nine experiments were designed (a D-optimal approach was used). The matrix X of 

the experiments, which will be used as regressor in the modeling step, is the same for both 

cases considered, and is given by 

 



Standardization of machine vision systems for product quality assessment 71 

________________________________________________________________________ 

© 2014 Matteo Ottavian, University of Padova (Italy) 





































010100100

001010100

100001100

001100010

100010010

010001010

100100001

010010001

001001001

X    . (4.7) 

 

As already stated, for each camera setting x, the values explored in this study were step 

variations ( x and x ) of ± ½ stop and ± 1 stop around the calibration value ( x ). Namely, 

the values considered were t = (1/10, 1/13, 1/15), N = (f/5, f/5.6, f/6.3) for the ± ½ stop 

case, and t = (1/8, 1/13, 1/20), N = (f/4.5, f/5.6, f/7.1) for the ± 1 stop case, the values of S 

being in both cases S = (160, 125, 100). The columns in X reflect this order, with the 1’s 

and 0’s indicating the setting used or not (respectively) within a certain experiment. 

For each experiment, 20 images of tablets at 0.75% coating (the final results, however, are 

not dependent on the point selected) were collected under dimmed light, features were 

extracted as described previously, and their median value per experiment was used to build 

the Y matrix (to be regressed against the camera settings X). A PLS model (step 1b of 

Figure 4.10) was calibrated to relate X and Y, block-scaling the matrix of the settings in 

order to give equal weights to t, N and S. In order to ensure a proper selection of the 

number of LVs (i.e., to avoid overfitting the data), the 20 images collected for each 

experiment were split into two groups of 10 images each: one group was used to calibrate 

the model, whereas the second one was used to validate its performance. For the PLS 

model using the ± ½ stop excitation data, the diagnostics (in terms of cumulated coefficient 

of determination in calibration, R
2
, and validation, Q

2
) are given in Table 4.3. Similar 

diagnostics were obtained for the PLS model using the ± 1 stop excitation data. Both the 

two final models were built on two LVs. 

Table 4.3. Diagnostics of the PLS model relating the settings of the 

camera and the features extracted from the images, built using the ± ½ 

stop excitation data. 

LV # R
2
XCUM R

2
YCUM Q

2
YCUM 

1 14.0 84.1 86.7 

2 38.2 90.5 91.9 

3 47.3 97.8 95.1 

 

);;(  ttt );;(  NNN );;(  SSS
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The PLS models were eventually used to determine the camera settings to be used for the 

new light conditions (step 1c in Figure 4.10), by predicting the features vectors for all 

possible settings combination within the explored range of either ± ½ or ± 1 stop. The 

predicted features vector closest (i.e. with the lowest Euclidean distance) to the one 

obtained during calibration (Section 5.1) indicate the settings to be applied. For the case 

study under investigation, the new settings to be used were found to be [t, N, S] = [1/13, 

f/5, 160] for the ± ½ stop model, and [t, N, S] = [1/8, f/5.6, 125] for the ± 1 stop model.  

Images of the entire coating progression were collected (20 images per percentage of 

coating) to test the new settings, and projected onto the MIA model to extract the color 

signature (once the new settings have been determined, images of the entire coating 

distribution collected under altered light could be used to test the proposed strategy). The 

results obtained are shown in Figure 4.11, superimposed to the original data (cf. Figure 

4.8). 
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                                              (a) (b) 

Figure 4.11. Strategy 1 for light changes compensation: color signature obtained with 

the new camera settings obtained from the PLS models built on the (a) ±1/2 and (b) ± 1 

stop excitation data. 

The color signature obtained with the new camera settings are equivalent to the original 

one, hence demonstrating the effectiveness of the proposed strategy. It should be stressed 

at this point that the residual color signature discrepancies in Figure 4.11 are related to the 

variability of the color signature metric at low percentage of coating applied, an aspect that 

has been already discussed by García-Muñoz and Gierer (2010). The images collected 

using the settings suggested by the PLS models, in fact, are different from those used in the 

calibration step not only in terms of light conditions, but also in terms of tablets being 

imaged (due to shuffling between two subsequent images). 

It is worth to mention that the settings indicated by the PLS model were indeed the best 

among the 27 (= 3
3
) possible combinations, as was checked (results not shown) by 

collecting images of the tablets at 0.75% of coating applied also for the (27–9) = 18 

combinations that were not considered in the DoE matrix X. 
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The proposed strategy allows to use the available MIA model without any change or 

adaptation, but requires some preliminary images to be collected. Therefore, it may prove 

helpful to assess its suitability in advance (i.e. to test whether re-calibrating the model 

would require less images). The main limitation lays in the discrete (i.e., not continuous) 

correction ability that is provided by the manipulation of the camera settings, as potentially 

no one of the combinations considered in the DoE matrix X can return the desired 

illuminating conditions. 

4.3.2.3 Strategy 2: adapting the score space 

Figure 4.9 clearly shows the effects (i.e., shift and compression) of a light alteration on the 

score space. Since the distortion in the score distribution is beyond that of a simple shift 

(which is easily corrected with a bias term), the use of the DTW is proposed to align (or 

synchronize) the two-dimensional distribution of the scores under the new light conditions 

against that of the two-dimensional distribution observed under NIC, as described in 

Section 4.2.3. 

In the application under study, the average t1 and t2 score distributions obtained from the 

images of the mid-point of the coating progression (40 images in total, the 20 collected 

under NIC for calibration and additional 20 images collected under dimmed light, step 2a 

in Figure 4.10) were used to evaluate the t1- and t2-warping paths (step 2b in Figure 4.10), 

which were then applied to all the images collected under reduced light (step 2c in Figure 

4.10). 

The effectiveness of the correction in terms of color signature evolution is shown in Figure 

4.12. 
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Figure 4.12. Color signature obtained from the application of the DTW correction on 

the score space. 

With respect to Strategy 1, the DTW returns a correction of the light tailored on the 

specific MIA model (whereas the correction of the settings can be applied also to other 

image-based models). The main advantage is that the DTW correction requires the 

collection of a limited number of images under altered light. 
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4.3.3 Camera transfer 

4.3.3.1 On the transferability of MIA models across cameras 

This Section presents some general considerations regarding the transferability of MIA 

models across different cameras. A simple case study is illustrated, which refers to images 

of two subjects (either tablets or calibration standards) of different colors (cf. Figure 4.1a 

and 4.1e). Two different scenarios are analyzed. 

 Scenario 1: transfer between two cameras of the same type and model (camera A1 to 

camera A2), which may occur in practice when a new camera is bought to replace one of 

the same type, or when a new machine vision system is installed, replicating an existing 

one; 

 Scenario 2: transfer between different cameras (camera A1 to camera B or camera B to 

camera A1), which may occur when a new camera is bought to replace one of lower 

quality (A1 to B) or when a new machine vision system is installed, replicating an 

existing one but using a camera of lower quality (B to A1). 

Prior to the discussion of the two possible scenarios, the extraction of the features from the 

images and their subsequent manipulation is briefly discussed. 

 

Images manipulation 

For each camera used as a reference (i.e. for which the quality assessment model is 

calibrated), an MIA model was built by concatenating the 20 available images. Each image 

was then projected onto the MIA model, and for each color of the imaged subject (red, 

green, blue and yellow for the color standards, and red, green, pink and white for the 

colored tablets), a feature vector color was extracted: 

 

]σ σ σ μ μ[
212121

22

color ttttttγ   (4.8) 

collecting the mean of its t1 and t2 scores (
1t

  and 
2t , respectively), their variance (

2

1t
  

and 
2

2t ) and their covariance (
21tt ). The scores of each color were extracted from those of 

the whole image using elliptical masks as described in Section 4.3.1. The features vectors 

of each color (one per image) were averaged and stacked on the top of each other to form a 

[45] matrix . Eventually, the quality assessment model was obtained by fitting matrix  

to a 2-PC PCA model, the scores being the features of interest.  

In order to use this quality assessment model with a different camera, the features were 

extracted with the following procedure. First, the images were projected onto the MIA 

model calibrated with the reference camera. Then, the MIA model scores were 

manipulated using (4.8) to build the  matrix for the new camera. Finally, the features 

were extracted by projecting  onto the PCA model calibrated for the reference camera. 
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Scenario 1 

Let us define as A1/Wb1 the camera/white balance combination used as a reference. The 

projection of the images collected with other type-A camera/white balances onto the PCA 

model built on A1/Wb1 is shown in Figure 4.13. 
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Figure 4.13. Scenario 1 score space (PCA model built on A1/Wb1) obtained from the 

images of colored tablets. 

Clearly, a bias can be observed in Figure 4.13, i.e. for a given tablet color, the images 

collected with the second type-A camera (camera A2) are slightly different, although the 

two type-A cameras are identical (Ilie and Welch, 2005). As a general comment on the 

need of transferring the quality assessment model between the two cameras, Figure 4.13 

suggests that the specificity of each application should be considered. For example, if the 

purpose is that of recognizing objects of different colors, there is no actual need to transfer 

the model, since the scores of each color in Figure 4.13 are clearly separated, regardless of 

the camera/white balance combination considered. However, when considering a specific 

color (e.g., red), the bias indeed needs to be handled (see Section 4.3.3.2). 

 

Scenario 2 

Assuming camera B (lower resolution) as the reference one, the projection of the images 

collected with camera A1 (higher resolution) onto the PCA model built on B is shown in 

Figure 4.14. Figures 4.14a (colored standards images) and 4.14c (color tablets images) 

suggest that a strong bias between the two different cameras exists and that the bias needs 

to be tackled, independently from the application considered. To this purpose, Figures 

4.14b and 4.14d present the results that can be obtained by applying the two strategies 

previously proposed for the technology transfer problem. Namely, for the RGB transfer 

correction, the transformation matrix S was evaluated using the average RGB values of the 

four colors of the tablets and of the black background, i.e. K = 5. 
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Figures 4.14b and 4.14d highlight that the DTW correction returns better results. The 

superior performance of both the DTW and the quadratic RGB transfer over linear RGB 

can be explained considering that they both enforce a nonlinear correction. With respect to 

the quadratic RGB transfer, the DTW one has the additional advantage of being calibrated 

considering, for each tablet color, the entire color distributions and not simply the average 

R, G and B values. 

Both these features explain the different performances of the correction strategies. As a 

general comment, Figure 4.14 suggests that, for Scenario 2, even in a simple case such as 

the one considered in this Section, a correction is necessary to compensate for the 

differences between cameras. 
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Figure 4.14. (a; c) Scenario 2 score spaces, with PCA models built on B using the 

images of the colored standards (a) and of the color tablets (c). The arrows indicate the 

points the projections refer to. (b; d) Projection of the features extracted from the 

scores of the camera A1 images onto the PCA model built on B after the application of 

the DTW and RGB transfer correction, respectively for (a) and (c). Boxes are drawn to 

separate points belonging to different colors. 
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4.3.3.2 A technology transfer case study 

The transfer of an MIA model is discussed in this Section for the two scenarios previously 

defined with reference to the case study described in Section 4.3.2.1. 

 

Case study 

The box plots in Figure 4.15 reports the color signature for the reference cameras 

considered for the two scenarios (the A1/Wb1 combination for camera A1 and camera B 

respectively; each camera was calibrated independently). 
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Figure 4.15. Color signature evolution for camera A1 (hashed box) and camera B 

(open box). 

It is useful to note that the important issue is not the absolute value of the color signature, 

but the fact that it changes as more coating material is applied. Hence, Figure 4.15 shows 

that the performances of the two cameras are very different: whereas in camera A1 the 

variation of the color signature changes almost linearly with the % of coating applied, with 

the distributions at two subsequent percentages of coating applied being statistically 

different, in camera B the variation is strongly nonlinear, and the distributions at 0.5 % and 

at 0.75 % are almost indistinguishable. 

In the following, the two scenarios previously described are considered. The DTW 

correction was calibrated as proposed in Section 4.3.2.3, i.e. by evaluating the warping 

path considering images of tablets of a given percentage of coating material applied (i.e. 

0.75 %) collected with the two cameras. For the RGB transfer correction, instead, the same 

transformation matrix S described in Section 4.2.4 was used. 

 

Scenario 1 

Figure 4.16a presents the color signatures extracted by projecting onto the reference model 

the images collected with the camera/white balance combinations not used in the 
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calibration step (i.e. A1/Wb1), whereas Figure 4.16b shows the effect of applying the 

DTW correction to the score spaces. 
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                                             (a)                         (b) 

Figure 4.16. Scenario 1 color signatures extracted by projecting onto the reference 

model the images collected with the camera/white balance combinations not used in the 

calibration step (i.e. A1/Wb1) (a) without applying any correction and (b) with the DTW 

correction. 

As expected (see Figure 4.16a), the color signature extracted from camera A2 turns out to 

be shifted with respect to the one of the reference camera A1. The DTW correction (Figure 

4.16b) effectively matches the color distributions of the two cameras. Also the RGB 

transfer approaches were found to be effective (results not shown). 

 

Scenario 2 

Scenario 2 results are shown in Figure 4.17, considering both the lower resolution camera 

(camera B; Figures 4.17a-b) and the higher resolution camera (camera A1; Figures 4.17c-

d) as a reference. 

In both cases, the projection of the images collected with the other camera returnes 

anomalous color signatures (particularly in Figure 4.17c). The DTW correction does not 

return a perfect match of the statistics of interest (especially in Figure 4.17b), and the 

reason for that is the way it was applied. In fact, DTW was calibrated at a given point of 

the coating distribution (0.75 %) and then linearly applied to the entire distribution. The 

fact that the color signatures are not perfectly overlapped suggests that the model 

calibrated on the “old” camera should not be used in a quantitative way with the “new” 

one. Nevertheless, considering the purpose of the correction strategy (i.e., reducing the 

downtime until the model is recalibrated), for the case study under investigation the quality 

assessment model can be used considering that: 

 for the case of Figure 4.17a-b (i.e. transferring from a low resolution camera to a higher 

resolution one), the camera A1 warped color signature allows one to correctly rank the 
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tablets according to the percentage of coating applied (notice that this was not possible 

with the reference camera); 

 for the case of Figure 4.17c-d (i.e. transferring from a high resolution camera to a lower 

resolution one), the camera B warped color signature well resembles that of Figure 4.15, 

for which the previously mentioned limitations still hold. 
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Figure 4.17. Scenario 2. Color signature extracted by projecting the images collected 

with (a)-(b) camera A1 and (c)-(d) camera B onto the model calibrated on camera B 

and camera A1, respectively. In (a)-(c) the color signatures are extracted without 

applying any correction strategy, while in (b)-(d) the DTW correction is applied. The 

direction of the transfer is indicated in all Figures. 

With respect to the DTW correction, instead, the RGB transfer was found not be effective 

in the correction, returning anomalous color signatures, as shown in Figure 4.18 for the 

RGB 2 strategy (results for the RGB 1 strategy were found to be similar). 
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Figure 4.18. Scenario 2. Color signature extracted by projecting the images collected 

with (a) camera A1 and (b) camera B onto the model calibrated on camera B and 

camera A1 (respectively) with the RGB 2 correction applied. The direction of the 

transfer is indicated in all Figures. 

4.4. Conclusions 

Despite a change in the lighting conditions or in the camera can dramatically affect the 

results that can be obtained from an image-based product quality monitoring model, the 

problem of the automatic maintenance of machine vision systems has never been addressed 

in the open literature. To fill this gap, this Chapter proposes first a strategy to monitor the 

status of a machine vision system has been proposed. The monitoring model is built on the 

features extracted from the 2D histogram-scatter plot obtained from the projection onto an 

MIA model of the images of four color standards.  

Two strategies have then been proposed to cope with a detected light alteration, and they 

have been tested through a pharmaceutical process case study involving the multivariate 

image analysis of tablets at different percentage of coating applied. The first strategy aims 

at determining a new combination of camera settings that returns an exposure of the 

subject as close as possible to the one considered during the model calibration step, with 

the selection of the settings guided by a PLS model that relates the camera settings with 

features extracted from the images. The second strategy, instead, adapts the model to the 

new light conditions by stretching the score space through the application of a dynamic 

time warping approach. Both strategies have been shown to effectively correct the model 

diagnostics of interest (i.e. the color signature evolution as more coating is applied onto the 

tablets).  

The dynamic time warping approach has been shown to be effective also in transferring an 

advanced technology for product quality assessment across different cameras. Two case 

studies have been considered. The first one consisted in images of subjects of different 
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colors. Results showed that the effect of collecting the images with a camera, which is 

different with respect to the one used in the model calibration step, should be analyzed on a 

case-by-case basis. In fact, despite differences between cameras have been always 

observed, their importance needs to be related to the specific application under 

investigation. The second case study, involving (again) the multivariate image analysis of 

tablets at different percentage of applied coating, showed that the differences between 

cameras can be effectively handled by applying the dynamic time warping to stretch the 

images score spaces. Other correction strategies, such as linear or quadratic 

transformations between the color spaces of different images, have been shown to return 

worse results.  

Finally, it should be stressed that a novel method to scale the scores obtained from the 

images has been developed. The “color scaling” has been shown to be a more robust 

scaling with respect to the one proposed by Yu and MacGregor (2004), as it ensured all the 

scores values being bounded in the [0-255] range even when images were collected under 

different light conditions or with a different camera. 
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Chapter 5 

Multispectral data classification using 

similarity factors
*
 

In this Chapter, the use of similarity factors based on principal component analysis is 

proposed for the classification of different types of spectral datasets. The proposed 

classification technique has a very intuitive graphical interpretation and works through an 

assigned sequence of pretreatment steps on the raw signals, which avoids the trial-and-

error selection of the most appropriate preprocessing method usually necessary when 

dealing with spectral data (independently from their origin). The proposed strategy is 

successfully validated through two food engineering case studies. A third case study 

illustrates how the similarity factor-based strategy can be extended to the classification of 

multi/hyper spectral images. 

The Chapter is organized as follows. In the first section, existing classification strategies 

are briefly reviewed. The second section presents the similarity factors and their use in the 

classification of spectral data. In the third section, the dataset onto which the proposed 

classifier is tested are described. The fourth section shows how the similarity-based 

classification can achieve the same classification performance as other established 

techniques, though avoiding the trial-and-error selection for spectra preprocessing. Finally, 

conclusions and further issues are discussed. 

5.1 Introduction 

The development of innovative analytical technologies based on spectral data has been 

drawing much attention by academic and industrial researchers in diverse fields of 

application (e.g. remote sensing, food engineering, fine chemistry, quality characterization, 

process control, environment protection, archeology, etc…). Different types of spectral 

data can be (sometimes easily) collected through widespread analytical technologies, such 

as nuclear magnetic resonance, ultraviolet spectroscopy, visible spectroscopy, near-

infrared (NIR) spectroscopy, Raman and mass spectroscopy, and hyperspectral imaging. 

                                                 
*
Ottavian, M., P. Facco, L. Fasolato and M. Barolo (2012). Multispectral data classification using similarity factors. 

Chemom. Intell. Lab. Syst., 118, 13-23. 
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Commonly, spectral data are utilized for estimation and classification purposes (Martens 

and Naes, 1989). In particular, several mathematical techniques have been applied to 

classify spectral data, ranging from traditional methods, such as k-nearest neighbor (k-NN; 

Sharaf, 1986) or linear and quadratic discriminant analysis (LDA and QDA; Seber, 1984), 

to multivariate ones such as partial least-squares discriminant analysis (PLS-DA; Chapter 

2, section 2.1.2.2) or soft independent modeling of class analogy (SIMCA; Wold, 1977). 

More sophisticated classifiers, such as support vector machines discriminant analysis (Luts 

et al., 2010) or artificial neural networks (Braspenning, 1995) have been proposed to 

handle nonlinear problems. Wavelet-based algorithm have been proposed as well (Cocchi 

et al., 2001, Aujol et al., 2003) to take advantage of multi-resolution approaches (Addison, 

2002). 

Typically, the abovementioned prediction/classification methods are implemented after a 

convenient (and in most cases tailored) pretreatment of the spectral data has been carried 

out. In fact, preprocessing of the available spectra is usually necessary to remove the 

variability of the predictors that is not related to the response. Despite the existence of 

many guidelines and studies (Candolfi et al., 1999; Afseth et al.; 2006, Burger and Geladi, 

2006; de la Roza-Delgado et al., 2007), the selection of the best preprocessing strategy is 

typically a trial-and-error procedure (Broad et al., 2006). Therefore, a method that could 

achieve reliable classification results avoiding the trial-and-error selection of the optimal 

pretreatment(s) for the spectral data would be most welcome. 

The classification algorithm for spectral data that we present in this paper is based on the 

similarity factors proposed by Krazanowski (1976) and later modified by Gunther et al. 

(2009). In the proposed approach, a matrix is associated to a multi-resolution 

representation of a signal, and a principal component analysis (PCA) model is then used 

for each sample (i.e. matrix) created from the available dataset. Each PCA model identifies 

the directions of maximum variance of the data matrices, thus extracting the classification-

relevant information stored into the multiple resolutions of the available spectral data. This 

information is compared to that pertaining to the reference samples, using similarity 

indices in order to discriminate between different classes of signals for an effective 

classification. The proposed algorithm is coupled with a forward variable selection strategy 

(Jennrich, 1977) applied on window instead of single variables (Andersen and Bro, 2010), 

with the aim of both assisting in the assessment of the classification performance and 

allowing for a better separation between different classes. 

The main intent of this Chapter is not to compare the performance of different 

classification techniques. Rather, the purpose is to show that the proposed classification 

strategy can achieve the same classification performance as other established techniques, 

but avoids the use of trial-and-error procedures for spectra preprocessing. 
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The proposed method is validated through two case studies in the field of food 

authentication using NIR spectroscopy data. One additional case study shows how the 

proposed procedure can be extended to the classification of multi/hyper spectral images. 

5.2 Similarity factors for spectral data 

The proposed algorithm for the classification of spectral data based on similarity factors 

calculated from PCA models built on the available spectra is presented in this section. The 

rationale behind the proposed approach (which also serves as a limitation for its effective 

utilization) is that samples can be classified according to the shape of their spectra. 

Accordingly, it will be shown that similarity factors can quantify the similarity between 

two spectra shapes. The key issue is finding a proper representation of the spectral data in 

such a way as to emphasize the most important characteristics of the signals and to extract 

them at different scales of resolution. Wavelet decomposition (Mallat, 1989; Addison, 

2002) can be used to this purpose, providing also for a de-noising action on the available 

spectra. From a very general perspective, the proposed classification method works as 

follows: a reference sample is chosen for each class, and the similarity of each other 

sample with the references is assessed. Samples are then associated to the class for which 

they show the greatest similarity. 

In the following subsections the proposed strategy is presented in detail. The workflow will 

be as follows. First, each sample (signal) is decomposed using wavelet transform, and the 

resulting decomposition is used to create a sample matrix. Then, a PCA model is calibrated 

for each sample (i.e., matrix), and similarity factors are used to quantify how 

similar/dissimilar each sample is with respect to the reference of each class (i.e. to classify 

the samples). At the same time, the wavelengths intervals resulting most relevant to the 

classification are extracted. 

5.2.1 Building the sample matrix 

Discrete wavelet transform (DWT; Addison, 2002) is used to extract the multiresolution 

features from the available spectra. In this study, Daubachies 4 is used as a wavelet 

function. In order to extract the spectral characteristics at different scales of resolution, a 

matrix is associated to each spectrum. A multi-detail approach is employed in this study, 

i.e. the reconstructed details at different scales are used, as shown in Figure 5.1. The 

original spectrum (row vector) of dimension [1 sample × N wavelengths] is first 

decomposed via DWT into details at different scales of resolution. Then, after discarding 

the detail at the first (highest) resolution scale for denoising purposes, the details at 

different resolution scales are concatenated vertically in a sample matrix X of dimension 

[I×N], where (I+1) is the last (lowest) resolution scale retained in the DWT decomposition. 
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Figure 5.1. Schematic of the association of matrix X to a sample spectrum. 

Note that only the reconstructed details (Addison, 2002) are employed to build matrix X. 

This ensures that all signals can have the same length (N) and that the details at different 

resolution scales for a certain wavelength can be concatenated correctly.  

A PCA model is then designed on X to study the correlation between the wavelengths at 

different resolution scales, and to extract the information embedded in the data from the 

redundancy generated by the collinearity between wavelengths. Since the correlation 

structure highlighted by the PCA model is expected to be similar for samples belonging to 

the same class, the similarity factors introduced by Krzanowski (1979), and later modified 

by Gunther et al. (2009), are used to quantify how similar two PCA models (i.e. two 

samples) are. 

With respect to typical multi-resolution approaches employing the details at all resolution 

scales plus the approximation at the lowest one (Bharati et al., 2004), approximations are 

not used here because it was found that the information needed for sample classification is 

entirely stored in the details. 

5.2.2 PCA-based similarity factors 

Consider two PCA models (both using A principal components) for data matrices Xi 

[Mi×N] and Xj [Mj×N]. The similarity factor Sij between the models is defined as 

(Krzanowski, 1979): 
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, (5.1) 

where 
jiaaθ  is the angle between the ai-th loading of the first model and the aj-th loading of 

the second one, and Pi and Pj are the corresponding loadings matrices. The similarity factor 

compares the direction of maximum variability of two datasets by exploring the 

collinearity of the principal components of the two PCA models built on those datasets. An 

improvement of the similarity factors has been proposed by Gunther et al. (2009), who 

modified (1) to explicitly consider that each loading captures a different amount of the total 
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variance. In practice, the eigenvalues of the eigenvector decomposition are introduced as 

weights to obtain the modified similarity factor λ

ijS : 
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where P
w
 is the weighted loading matrix: 
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w
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with i being an [A×A] diagonal matrix of the square roots of the eigenvalues: 
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The introduction of the eigenvalues in (2) allows weighing more heavily the first PCs, 

which can lead to better classification results. Both similarity factors (1) and (2) have the 

useful property of being bounded between 0 (no similarity at all between the samples, i.e. 

orthogonal loadings between the two PCA models) and 1 (complete similarity between the 

samples, i.e. models with identical principal components because of complete collinearity 

between loadings: Pi = Pj). 

5.2.3 Sample classification 

The proposed classification algorithm is a supervised method. In fact, it requires a 

calibration dataset whose class is known a priori, in such a way as to define the references 

for all the classes. Without loss of generality, in this study binary classification problems 

only are addressed; the extension to multi-class problems is straightforward, and therefore 

will not be considered. 

When the problem is assigning sample i to either Class 1 or Class 2 (whose reference 

matrices have already been identified), the similarity factors 
λ

1i
S  and 

λ

2iS  of the sample 

with the two references can be calculated using (2), and the sample attributed to the class 

for which it shows the greatest similarity. Therefore, sample i is assigned to Class 1 if 
λ

2

λ

1 ii SS  , i.e. if the sample is more similar to the reference of Class 1 than to the reference 

of Class 2. Conversely, the sample is assigned to Class 2 if λ

2

λ

1 ii SS  . 
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In the region of the ( λ

1iS ; λ

2iS ) plane characterized by 10 λ

1  iS  and 10 λ

2  iS  (which 

will be called the ( λ

1iS ; λ

2iS ) region in the following), samples belonging to Class 1 are 

expected to be located below the main diagonal ( λ

2

λ

1 ii SS  ), i.e. close to their own reference 

(1,0). Samples belonging to Class 2 are expected to be located above the diagonal, i.e. 

close to their own reference (0,1). Samples lying on (or very close to) the diagonal are 

equally similar to both references, and their classification is uncertain or impossible using 

similarity factors. Note that the location of a point in the ( λ

1iS ; λ

2iS ) region (i.e. close to, or 

far from, the diagonal) also depends on how the two references are similar to one another, 

i.e. it depends on the value of λ

12S . 

When a dataset of several samples is available for model calibration, defining the reference 

is a matter of choice. The ideal reference for a class is the one maximizing the similarity 

with the spectra of the same class, while minimizing that with the spectra of the other class. 

To assess whether the reference selection can impact on the classification results, two 

alternative types of class reference were tested in this study: 

 an average spectrum of the class. This is a spectrum obtained by averaging all the 

available calibration samples along the wavelength direction; the reference matrix for the 

class is then built from this average spectrum; 

 the whole set of samples of the calibration dataset for the class. In this case, the reference 

matrix is obtained by simply stacking the matrices of the single calibration samples on 

top of each other. 

5.2.3.1 Wavelength selection 

When dealing with large and highly correlated X matrices (which typically result from 

spectral data), coupling the classification algorithm with a variable (i.e. wavelength) 

selection strategy can be beneficial. To this purpose, a forward variable selection strategy 

is used, and it is applied on windows of variables rather than on single variables, as 

suggested also for interval PLS by Andersen and Bro (2010). A moving window of 

assigned width W is used to span all the wavelengths (without overlapping between the 

windows). At the first iteration, similarity factors are used to classify the calibration 

spectra within each of the Nw = N/W windows, and the wavelength window ensuring the 

best classification is selected. During each of the following iterations, spectra are classified 

using the previously selected window(s) plus one of those not yet selected, scanning the 

left-out ones once at a time. Iterations stop when adding any new window to the *

wN  

windows already selected does not improve the classification result any more. 

In order to evaluate the classification performance at each iteration of the wavelength 

selection procedure, the similarity factors λ

1iS  and λ

2iS  between spectrum i and the selected 

reference for Class 1 and Class 2 are calculated using the wavelength windows selected 

until that iteration. Then, distance dtot is evaluated, where dtot is the cumulative Euclidean 
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distance in the ( λ

1iS ; λ

2iS ) region between the couple of similarity factors of sample i and 

the ideal location of the sample if it exactly matched one of the two references (i.e., either 

(1,0) if i is assumed to belong to Class 1, or (0,1) if i is assumed to belong to Class 2): 
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K is the total number of available calibration spectra, diref is the Euclidean distance of 

sample i from the reference, and C is a constant term introduced to penalize wrong 

classifications. By “classified correctly” in (6), the event is considered where point ( λ

1iS ; 
λ

2iS ) lays in the correct portion of the ( λ

1iS ; λ

2iS ) region. A schematic of the distance 

calculation strategy is shown in Figure 5.2. 

 

Figure 5.2. Evaluation of the cumulative Euclidean distance between samples and their 

own reference. 

The value taken by dtot is a quantitative measure of the ability of a given subset of 

wavelengths to improve the separation between the two class clusters in the ( λ

1iS ; λ

2iS ) 

region: small values of dtot correspond to a small distance between the cluster of points 

belonging to a class and the reference of that class, and therefore imply a better separation 

between classes. Note however that the actual value of dtot also depends on how similar the 

two class references are to each other, i.e. it depends on the value of 

12S . If the two 

references are very similar to each other ( 112 
S ), then the ( λ

1iS ; λ

2iS ) points will be located 

close to the diagonal, the cluster separation will be weak, and eventually dtot will be large. 
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The reverse is true if the two references are very different from one another ( 112 
S ). 

Therefore, dtot serves as a measure of cluster separation only during the wavelength 

selection procedure: the most appropriate subset of wavelengths is the one providing the 

smaller value of dtot. However, larger values of dtot (obtained for example by specifying 

different references for the classes or using different alternatives to scale matrix X) do not 

necessarily imply a larger number of misclassified samples. 

To clarify this issue, Figure 5.3 presents two examples of very good classification results 

(namely, zero misclassifications) for the European sea bass calibration dataset that will be 

considered later in more detail. These results refer to two different ways to scale the X 

matrix. In one case (Figure 3a), the two class references result quite dissimilar 

( 68.012 
S ), and the wavelength selection procedure returns dtot = 14.7; in the other case 

(Figure 3b), the two references are much more similar to each other ( 98.012 
S ), and a 

larger cumulative Euclidean distance (dtot = 36.7) is obtained. However, in both cases the 

classification performance of the model in terms of number of misclassifications is exactly 

the same. 
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Figure 5.3 Calibration classification results for the European sea bass dataset 

(farmed/wild) for two different sets of X scalings, resulting in (a) dtot = 14.7 (model #11 

of Table 3) and (b) dtot = 36.7 (model #1 of Table 3). In (b) the x and y axis scales have 

been magnified to improve readability. Closed symbols: farmed samples (Class 1); open 

symbols: wild samples (Class 2).  

5.2.4 Interpretation of the similarity factors and discussion on the 
scaling of the X matrix 

Before analyzing the results of the proposed classification procedure, it is worth providing 

some additional comments on the meaning of the similarity factors in the context of 

spectral data classification. Let us consider the case where the DWT decomposition is 

carried out up to resolution scale s = I+1, and let (W *

wN ) be the total number of 

wavelengths eventually selected for the design of the PCA model, *

wN  being the number of 
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wavelength windows retained according to Section 2.3.1. Therefore, an X matrix of 

dimension [I×(W *

wN )] is associated to each spectrum. The main diagonal of the 

covariance matrix X
T
X contains the variance between details at different resolution scales 

for a certain wavelength, whereas the (i, n) off-diagonal element (i  n) is the covariance 

between details at different scales for wavelengths i and n. Therefore, the PCA model built 

on X explains how scale patterns (i.e., the multi-resolution representation of a certain 

wavelength) correlate among different wavelengths. This can be thought as an indirect way 

to compare spectra shapes, because it is reasonable to expect that different resolution scales 

correlate in a likewise manner for a given set of wavelengths only if at those wavelengths 

the underlying signals (hence samples) are similar. Stated differently, looking for the 

similarity between PCA models is the same as looking for the similarity between spectra 

shapes. 

The calibration of a PCA model requires X to be properly scaled, and the selection of the 

most appropriate scaling is a matter of choice. With reference to the monitoring of batch 

chemical processes, Gunther et al. (2009) recommend that data matrices be internally 

autoscaled (i.e., data should be first mean-centered and then divided by their own standard 

deviation) when similarity factors are evaluated. Due to the very different application 

considered in this study with respect to that considered by Gunther et al. (2009), three 

different scaling strategies for the X matrix were tested to understand the impact of X 

scaling on the classification performance. Namely, the following alternatives were 

considered: i) no scaling at all, ii) internal autoscaling, and iii) external autoscaling, i.e. 

autoscaling of X with respect to the mean and standard deviation of the reference matrix 

against which the similarity is assessed (an approach that could potentially magnify 

similarities and dissimilarities with respect to the reference). 

5.2.5 Selection of parameters for the proposed classification strategy 

The implementation of the proposed classification strategy requires the values of several 

parameters to be assigned. The following guidelines for parameter selection, which avoid 

trial-and-error procedures, can be used: 

 (I+1) can be selected as the scale at which the correlation between the original spectrum 

(i.e., the raw signal) and its approximations at different resolution scales drops below an 

assigned threshold (e.g. 0.97). A similar procedure was suggested by Facco et al. (2010) 

for a different application. It was found that typically 4 to 6 resolution scales are 

sufficient when dealing with spectral data; 

 the number A of PCs to be retained in the PCA models of each sample and reference 

matrix can be set as: 
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 1,2max  IA , (5.8) 

which ensures that at least 2 PCs are available for the calculation of the similarity factors. 

Note that the data stored in the sample matrix are typically highly correlated, which 

results in a reduction of the actual matrix rank; for this reason, values of A from 2 to 4 are 

reasonable considering the typical matrix dimension encountered; 

 when applying the forward variable selection strategy, a value of 15 can be used for W, 

this being a reasonable trade-off in terms of window size to avoid using windows that are 

too large or too small (Andersen and Bro, 2010). As for the penalty parameter C, a small 

value (C = 3) is sufficient to ensure good classification, since misclassification are 

already penalized by higher values of the distance from the reference (see Section 5.2.3). 

With reference to the selection of the number A of PCs to be retained in each PCA model, 

it should be stressed that similarity factors cannot be calculated if, given any two samples i 

and j, Ai  Aj. This is the reason why the number of PCs must be the same for all samples 

and should be assigned a priori. It was found that using Eq. (8) as a guideline, the PCA 

models are able to extract almost the entire variance of the sample matrices. Note that 

commonly used criteria, such as maximization of explained variance or minimization of 

residuals in cross-validation (Jackson, 1991), are not used in this study to determine the 

appropriate number of PCs. This is reasonable, both because the models need to have the 

same structure for all samples and because the models are not used for additional sample 

projections. Finally, note that the way similarity factors are defined assigns smaller weights 

to the higher PCs, thus making the selection of the number of PCs less critical than in other 

applications. 

5.3 Available spectral dataset 

In this section, the datasets available for this study are described. Two datasets include NIR 

spectra for the authentication of foodstuff (fish and cheese), while one dataset is concerned 

with multispectral images of fruits and vegetables. 

5.3.1 NIR spectra 

NIR spectra were collected in reflectance mode (and then saved as absorbances, i.e. the 

logarithm of the reciprocal value of the reflectance) with a FOSS NIRSystem model 5000 

scanning NIR spectrometer (FOSS NIRSystem, Silver Spring, MD, USA). Data were 

recorded in a range of wavelengths between 1100 and 2500 nm with at 2 nm interval. Two 

datasets of NIR spectra were analyzed: 

1. European sea bass (Dicentrarchus labrax). A typical fraud in seafood is the 

substitution of wild samples (which can be marketed at a higher price) with farmed 
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ones; therefore, quick sample classification using NIR spectra is highly desirable (see 

Chapter 6, Section 6.1.1.2). The available calibration dataset consists of 38 spectra (19 

farmed and 19 wild samples), whereas the validation one consists of 66 spectra (32 

declared wild and 34 declared farmed samples); 

2.  Asiago d’allevo cheese. The authentication of the production area (alpine farms vs. 

lowland factories) for the Asiago cheese is of paramount importance for correct 

product labeling (see Chapter 6, Section 6.1.2.2). The available dataset consists of 121 

spectra, of which 107 from alpine farms (AF) and 14 from lowland factories (LF). 

Spectra were randomly split into a calibration set (47 AF and 12 LF) and a validation 

set (60 AF and 2 LF). 

The mean spectra for the two investigated datasets are shown in Figure 5.4. 
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Figure 5.4. Mean NIR spectra for the two datasets analyzed: (a) European sea bass and 

(b) Asiago d’allevo cheese.  

5.3.2 Multispectral images 

The multispectral images used in this study refer to authentic and fake fruits and 

vegetables, and have been studied also by Yasuma et al. (2008); the problem is 

discriminating between fake and real products. Each multispectral image of a set of 

strawberries or peppers has the dimension of [512×512] pixels, and each pixel is 

characterized by 31 spectral channels corresponding to wavelengths ranging from 400 to 

700 nm with a 10 nm interval, giving a total actual size of [512×512×31] per image. The 

corresponding RGB versions (3 spectral channels per pixel) of the available two image sets 

are shown in Figure 5. 

For both images, 6 sub-matrices were obtained manually by framing a single strawberry or 

pepper into one matrix. Then, for each image obtained in this way, a subset of 100 

randomly selected pixels (hence, a [100×31] sub-image) was used as a calibration dataset, 

while the remaining pixels were used as an independent validation set. 
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 (a) (b) 

Figure 5.5. Multispectral images analyzed in this study: (a) real and fake strawberries 

(strawberries on the right-hand side are real), and (b) real and fake peppers (upper red, 

upper yellow and lower green peppers are real). 

5.4 Results and discussion 

In the following subsections, the results for the proposed strategy are presented for each 

dataset. As a primary index of the classification performance, the number of 

misclassifications is used.  

For all datasets considered in this study, the resolution scale selection procedure described 

earlier showed that four DWT decomposition scales (I = 3) were sufficient to extract the 

spectral features of interest from the available spectra. Note that, as mentioned earlier, the 

details at the first scale (s = 1) were not used, in order to denoise the available signals. 

Following Eq. (8), all PCA models were built on A = 2 PCs; they extracted more than 90% 

of the variance from each X matrix. Note that in the case of images, wavelength selection 

was not performed due to the limited number of wavelengths available. 

For the European sea bass and Asiago d’allevo cheese datasets, classification results are 

also compared to those from traditional classification algorithms such as k-NN, LDA and 

QDA. Traditional classifiers were applied using two alternative input matrices: 

 the matrix of the (preprocessed) spectra; 

 the matrix obtained by stacking on the top of each other the vector obtained for each 

spectrum by concatenating the approximation at the lowest resolution scale plus all the 

detail coefficients derived from a DWT decomposition (details at the highest resolution 

scale were not considered, for consistency with the method proposed in this paper). The 

use of this input matrix allows for a comparison with the typical implementation of DWT 

in spectra classification problems.  

Furthermore, for the matrix of the (preprocessed) spectra, an additional comparison with 

PLS-DA is provided. k-NN, LDA, QDA and PLS-DA were all coupled to a forward 
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wavelength selection strategy applied on 30 nm windows, thus allowing for a better 

comparison with the proposed classification strategy. 

5.4.1 European sea bass dataset 

5.4.1.1 Performance of traditional classification methods 

When using k-NN (with three values of k, namely k = 1, 3 and 5), LDA and QDA to 

classify the sea bass dataset, the very high correlation characterizing the data matrix 

prevented its direct use as an input to the classification algorithms. Therefore, a PCA 

model was built on the spectra matrix (with the number of PCs to be retained determined 

by cross-validation; Chen et al., 2009; Balabin et al., 2010) and the scores were then used 

as inputs to the classifiers. For all methods used as a reference (k-NN, LDA, QDA and 

PLS-DA), the wavelength windows to be used were selected by optimizing the 

classification performance in cross-validation.  

The impact of the spectra preprocessing method on the classification results was 

investigated for four typical spectra preprocessing operations: no preprocessing at all, 

standard normal variate (SNV) preprocessing, and standard normal variate in combination 

with first- (SNV-1) or second-order (SNV-2) derivatives. Classification results are reported 

in Tables 1 and 2, respectively for the (preprocessed) spectra matrix and the matrix derived 

from the traditional application of DWT. For the calibration dataset, the number of 

classification errors is reported; for the validation dataset, results are reported as follows. 

The 66 validation samples are divided into two groups, namely samples declared wild and 

samples declared farmed; the number of classification errors for each group is determined 

using the classification reported by Fasolato et al. (2010) (who used using chemical 

variables and morphometric traits for classification) as a reference. Their study showed 

that, due to 21 substitution frauds, only 11 out of 32 declared wild samples should be 

actually considered as wild, whereas no declared farmed samples should be classified as 

wild. For further details, see Chapter 6, Section 6.1.1.3. 

Table 5.1 shows that the classification results are highly dependent on the spectra 

pretreatment. However, whether SNV, SNV-1 or SNV-2 are the most effective 

preprocessing methods depends on the classification model. Therefore, as expected, the 

most effective spectra preprocessing method should be determined by trial-and-error. The 

same considerations hold true also when a standard DWT approach is used to build the 

input data matrix (Table 5.2), although in this case SNV-1 seems to provide overall better 

results. 
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Table 5.1. European sea bass dataset: effect of different spectra 

preprocessing on the classification results of k-NN, LDA, QDA and PLS-

DA applied on the (preprocessed) spectra matrix. 

Classifier 
Spectra preprocessing 

method 

Errors 

(calibration) 

Errors (validation) 

Declared 

wild 

Declared 

farmed 

k-NN 

no preprocessing 1 0 11 

SNV 1 2 2 

SNV-1 0 1 1 

SNV-2 0 1 1 

LDA 

no preprocessing 0 1 0 

SNV 1 1 1 

SNV-1 0 2 1 

SNV-2 1 2 0 

QDA 

no preprocessing 1 2 0 

SNV 0 8 9 

SNV-1 0 2 0 

SNV-2 0 2 1 

PLS-DA 

no preprocessing 2 1 3 

SNV 0 1 1 

SNV-1 0 1 3 

SNV-2 2 1 4 

Table 5.2. European sea bass dataset: effect of different spectra 

preprocessing on the classification results of k-NN, LDA and QDA 

applied on the matrix derived from DWT. 

Classifier 
Spectra preprocessing 

method 

Errors 

(calibration) 

Errors (validation) 

Declared 

wild 

Declared 

farmed 

k-NN 

no preprocessing 5 6 5 

SNV 0 1 3 

SNV-1 1 1 2 

SNV-2 4 1 5 

LDA 

no preprocessing 7 1 4 

SNV 3 1 6 

SNV-1 1 0 2 

SNV-2 8 4 5 

QDA 

no preprocessing 1 0 1 

SNV 3 1 5 

SNV-1 0 1 0 

SNV-2 9 11 6 
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5.4.1.2 Classification using similarity factors 

Table 5.3 reports the classification results in calibration obtained using the proposed 

similarity factor-based method. The impact of the spectra preprocessing method (SNV, 

derivatives or their combinations) on the classification results was assessed considering the 

same four preprocessing methods as in Tables 5.1 and 5.2; however, note that these 

preprocessing options were explored with the only aim to show that there is actually no 

need to assign one of them for similarity factor-based sample classification. Only the 

results obtained for the best preprocessing and with no preprocessing at all are reported in 

Table 5.3 for the sake of conciseness. Furthermore, since in principle the classification 

results might depend on the way matrix X is scaled (see Section 5.2.4), three X matrix 

scaling procedures were compared: no autoscaling at all, internal autoscaling, and external 

autoscaling. Additionally, two different class references (indicated as “mean spectrum” and 

“whole class” in Table 5.3) were tested to assess whether the way the reference is defined 

may affect the capability to separate the classes.  

Table 5.3. European sea bass calibration dataset: effect of different 

spectra preprocessing, input matrix scaling and class references on the 

classification results obtained with the similarity factors. 

Spectra preprocessing X scaling  Class reference dtot S
12 

Errors 

(calibration) 

Errors (validation) 
Model  

# Declared 

Wild 

Declared 

Farmed 

no preprocessing 

no autoscaling 

mean spectrum 36.7 0.98 0 0 1 1 

whole class 36.7 0.98 0 0 1 2 

best preprocessing 

(SNV-2) 

mean spectrum 26.9 0.77 0 0 2 3 

whole class 23.3 0.64 0 0 2 4 

no preprocessing 

internal autoscaling 

mean spectrum 30.6 0.80 1 0 2 5 

whole class 30.3 0.88 1 0 0 6 

best preprocessing 

(SNV-2) 

mean spectrum 17.1 0.58 0 1 3 7 

whole class 18.6 0.60 0 0 2 8 

no preprocessing 

external autoscaling 

mean spectrum 27.6 0.87 1 0 2 9 

whole class 21.2 0.73 1 0 2 10 

best preprocessing 

(SNV-2) 

mean spectrum 14.7 0.68 0 0 2 11 

whole class 14.7 0.61 0 0 2 12 

 

Several considerations can be drawn from the analysis of Table 5.3. First, very good 

classification results are always obtained in calibration, regardless of the spectra 

preprocessing method. Therefore, spectra preprocessing impacts mainly on the value of 

dtot, rather than on the number of misclassifications. Secondly, the use of autoscaled data 

improves the separation between the two classes (smaller dtot values), with autoscaling 

with respect to the mean and standard deviation of the class reference (external 

autoscaling) slightly outperforming internal autoscaling. This result (i.e., that performing 
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sample autoscaling before PCA decomposition returns better separation) holds also for the 

other NIR dataset considered (cf. Table 5.7), leading to the conclusion that data should be 

autoscaled and the recommendation given by Gunther et al. (2009) in an entirely different 

context is valid also for the application of the similarity factors proposed in this study. 

Whether the mean spectrum or the whole class should be used to define the reference 

seems unimportant for class separation. 

For graphical analysis, the results for models #11 and #1 of Table 5.3 have been reported 

in Figure 5.3. The two farmed samples that are close to the diagonal ( λ

,

λ

, farmediwildi SS  ) in 

Figure 5.3a are difficult to classify. This was not unexpected, because both samples refer to 

sea bass reared in semi-intensive farms, and their flesh composition was indeed close to the 

wild fish one. As a confirmation of this, note that a correct classification for one of these 

calibration samples was hard even when chemical variables instead of NIR spectra were 

used (Fasolato et al., 2010). 

Validation results are shown in Figure 5.6 for model #11 of Table 5.3. Among the samples 

declared wild (Figure 5.6a), 11 out of 32 are correctly recognized as such 

( λ

,

λ

, farmediwildi SS  ), thus highlighting all the 21 expected substitution frauds. Among the 

samples declared farmed (Figure 5.6b), two are completely misclassified (samples #22 and 

#27). On the other hand, the six samples in the lower-left corner of Figure 5.6b (samples 

from #29 to #34) are very close to the diagonal and, as such, of uncertain attribution. As a 

confirmation, their projections onto a PCA model calibrated on the 38 known samples 

exhibit very high model residuals; this indicates that these samples are anomalous with 

respect to the calibration data, and hence conclusions drawn about them should be taken 

with caution. 

1
2

34
5

6

7

8

9 10

11 12

13
14

15
16

17

18
19

20

21

2223

24

25

26

27

28

29

3031

32

7

811 12

17

21

24

25
27

29

32

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S


i,
w

ild

S


i,farmed     






 






 






































0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S


i,
w

ild

S


i,farmed  

 (a) (b) 

Figure 5.6. Validation classification results for the European sea bass dataset (model 

#11 of Table 5.3): (a) declared wild fishes and (b) declared farmed fishes. True wild 

samples are reported in red; true farmed samples are reported in black. 

Although the algorithm for wavelength selection highlights different wavelength 

combinations for the 12 models of Table 5.3, there are spectral regions which are 
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consistently selected throughout all models. These regions comprise the wavelengths 

between 1640 and 1760 nm and the wavelengths between 2122 and 2270 nm. Since the 

absorbance of groups -CH, -CH2 and -CH3 is typical of these regions (McClure and 

Stanfield, 2002), this result indicates that fat and fatty acids are mainly responsible for 

discriminating between wild and farmed samples, which agrees with previous independent 

findings (Bell et al., 2007; Ottavian et al., 2012a). 

5.4.1.3 Robustness of the similarity factor-based classification 

To examine the robustness of the proposed similarity factor-based classification method to 

the quality of the available signals, some spectra were artificially altered in such a way as 

to mimic situations that may be encountered in practice when dealing with near-infrared 

spectroscopy. It is well know that spectra can be subject to baseline offsets, for example 

resulting from difficulties in the analysis of solid samples (e.g. due to particle size and non-

homogeneity), or from aging of the NIR apparatus (e.g. aging of the light source). Spectra 

can be also affected by noise, particularly in spectral regions characterized by higher 

absorbance or for which the integration time of the instrument is not optimized (for 

example, when the visible and near-infrared regions are scanned simultaneously, the 

spectra collected may be more noisy within one of the regions). 

Two spectra alterations were generated artificially on the sea bass database, corresponding 

to two different scenarios to be tested, and a classification model based on similarity 

factors was designed for each scenario: 

 Scenario 1: 10 (out of the available 38) randomly selected calibration spectra were shifted 

of 0.4 absorbance units, resulting in a calibration dataset with the two classes completely 

overlapped; 

 Scenario 2: all the available 106 spectra were corrupted with white noise, where the noise 

sequence (one for each spectrum) was randomly generated from a normal distribution 

with zero mean and standard deviation equal to 0.01 absorbance units. 

As for Scenario 1, note that a derivative operation in spectra preprocessing could 

effectively remove by itself the effect of baseline shift. However, to test the robustness of 

the proposed similarity factor-based classification procedure, spectra were not 

preprocessed at all. Matrix X was subject to external autoscaling, but it was verified that 

the results obtained with internal autoscaling were basically the same. Validation results 

for Scenario 1 are shown in Figure 5.7a-b. 

Also in Scenario 2 spectra were not preprocessed. However, to avoid amplifying noise, 

autoscaling of X was not performed, and this is recommended any time the available 

spectra are corrupted by high-level noise. Note a denoising action is always obtained 

thanks to the removal of the details at the first resolution scale in the DWT of the spectral 

signals. Validation results for Scenario 2 are shown in Figure 5.7c-d. 
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Figure 5.7. Validation classification results for the European sea bass dataset when 

spectra are artificially altered with (a) and (b) shift, and (c) and (d) noise. (a) and (c) 

refer to declared wild fishes, and (b) and (d) refer to declared farmed fishes. True wild 

samples are reported in red; true farmed samples are reported in black. Note that axis 

scales are modified to improve readability. 

In all cases presented in Figure 5.7, the results are consistent to those found when the 

spectra were not altered (Figure 5.6), confirming that the proposed classification method is 

robust to spectra shift and noise, even without preliminary preprocessing of the available 

spectra with standard operations. The only major impact of the absence of spectra 

preprocessing is a shift of the clusters toward the (1,1) point of the ( λ

1iS ; λ

2iS ) region, which 

makes the separation between classes somewhat less marked. In Figure 5.7a-c (declared 

wild samples) all the expected 21 substitution frauds are detected, with the 11 samples 

classified as wild being exactly the same as in Figure 5.6a. As for the declared farmed 

(Figure 5.7b-d), samples #22 and #27 are misclassified in both the scenarios considered, 

whereas for samples numbered from #29 to #34 the consideration drawn earlier still holds. 

For comparison, Table 5.4 presents the classification results obtained for the noisy dataset 

with k-NN, LDA, QDA and PLS-DA. Savitzky-Golay smoothing and differentiation (with 

a gap of 15 and a 2
nd

-order fitting curve; Saviztky and Golay, 1964) were used to smoothen 

the effect of noise on the spectra before the classification model was designed. 
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Table 5.4. European sea bass noisy dataset: effect of different spectra 

preprocessing on the classification results of k-NN, LDA, QDA and PLS-

DA. 

Classifier Spectra preprocessing 
Errors 

(calibration) 

Errors (validation) 

Declared 

wild 

Declared 

farmed 

k-NN 

only smoothing 0 7 12 

1
st
 order derivative 0 7 12 

2
nd

 order derivative 1 4 11 

LDA 

only smoothing 0 4 13 

1
st
 order derivative 1 6 12 

2
nd

 order derivative 0 4 11 

QDA 

only smoothing 0 6 13 

1
st
 order derivative 0 8 12 

2
nd

 order derivative 0 4 6 

PLS-DA 

only smoothing 0 8 12 

1
st
 order derivative 1 6 2 

2
nd

 order derivative 0 3 12 

5.4.2 Asiago d’allevo cheese dataset 

5.4.2.1 Performance of traditional classification methods 

Classification results obtained with k-NN, LDA,QDA and PLS-DA are given in Tables 5.5 

and 5.6, respectively for the (preprocessed) spectra matrix and the matrix derived from the 

traditional application of DWT. Similarly to the European sea bass case study, four 

different alternatives were tested for spectra preprocessing (i.e.: no preprocessing, SNV, 

SNV-1 and SNV-2). Since in this dataset the classes are unbalanced, validation results 

have been expressed also in terms of sensitivity and specificity of the LF class. It can be 

seen that, as for the sea bass dataset, the classification performance is generally good (with 

the exception of QDA that returns poor specificity values), but the most appropriate 

preprocessing method cannot be set a priori. 
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Table 5.5. Asiago d’allevo cheese dataset: effect of different spectra 

preprocessing on the classification results of k-NN, LDA, QDA and PLS-

DA classifiers applied on the (preprocessed) spectra matrix. 

Classifier Spectra preprocessing 
Errors 

(calibration) 

Errors 

(validation) 
Sensitivity Specificity 

k-NN 

no preprocessing 0 2 0.97 1.0 

SNV 0 2 0.98 0.50 

SNV-1 0 9 0.85 1.0 

SNV-2 1 4 0.93 1.0 

LDA 

no preprocessing 0 4 0.93 1.0 

SNV 0 7 0.88 1.0 

SNV-1 1 5 0.92 1.0 

SNV-2 0 3 0.95 1.0 

QDA 

no preprocessing 0 3 0.97 0.50 

SNV 1 3 0.97 0.50 

SNV-1 0 2 0.98 0.50 

SNV-2 0 7 0.88 1.0 

PLS-DA 

no preprocessing 2 6 0.90 1.0 

SNV 1 6 0.90 0.50 

SNV-1 0 3 0.95 1.0 

SNV-2 1 2 0.97 1.0 

Table 5.6. Asiago d’allevo cheese dataset: effect of different spectra 

preprocessing on the classification results of k-NN, LDA and QDA 

applied on matrix derived from DWT.  

Classifier Spectra preprocessing 
Errors 

(calibration) 

Errors 

(validation) 
Sensitivity Specificity 

k-NN 

no preprocessing 2 0 1.0 1.0 

SNV 0 2 0.98 0.50 

SNV-1 1 1 0.98 1.0 

SNV-2 2 1 0.98 1.0 

LDA 

no preprocessing 0 5 0.92 1.0 

SNV 0 7 0.88 1.0 

SNV-1 0 2 0.97 1.0 

SNV-2 1 3 0.95 1.0 

QDA 

no preprocessing 0 2 0.98 0.50 

SNV 1 5 0.92 1.0 

SNV-1 2 11 0.85 0.0 

SNV-2 1 2 0.97 1.0 

5.4.2.2 Classification through similarity factors 

Table 5.7 presents the classification results for the calibration dataset using similarity 

factors. 
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Table 5.7. Asiago d’Allevo cheese calibration dataset: effect of different 

spectra preprocessing, input matrix scaling and class references on the 

classification results obtained with the similarity factors. 

 

As a general comment to Table 5.7, note that the similarity factor 

12S  is close to 1 for any 

combination of the explored preprocessing techniques, which indicates that the two classes 

under discrimination (AF vs. LF) are much more similar to each other than those 

considered in the European sea bass case study. Therefore, generally speaking, sample 

classification using similarity factors is harder in this case than in the previous one. 

Table 5.7 confirms that autoscaling the X matrix improves the classification results, with 

external autoscaling being marginally better than internal autoscaling. Remarkably, in none 

of the combinations considered in Table 5.7 does preliminary spectra preprocessing 

improve the classification results. 

For calibration model #9 of Table 5.7, results are presented in Figure 5.8. Only 3 out of 62 

samples of the validation set (Figure 5.8b, closed symbols) are misclassified. The overall 

classification performance of the similarity-factor based method is not inferior to that of 

the traditional methods. 

 

Spectra preprocessing X scaling  Class reference dtot S
12 

Errors 

(calibration) 

Errors 

(validation) 
Sensitiv. Specif. 

Model  

# 

no preprocessing 

no autoscaling 

mean spectrum 67.8 0.98 3 7 0.88 1.0 1 

whole class 82.6 0.99 9 14 0.77 1.0 2 

best preprocessing  

(SNV & 1st order derivative) 

mean spectrum 66.5 0.97 3 4 0.93 1.0 3 

whole class 92.5 0.99 12 11 0.82 1.0 4 

no preprocessing 

internal autoscaling 

mean spectrum 53.7 0.98 0 3 0.95 1.0 5 

whole class 57.5 0.99 0 4 0.93 1.0 6 

best preprocessing  

(SNV) 

mean spectrum 53.7 0.99 0 2 0.97 1.0 7 

whole class 58.3 0.99 0 3 0.95 1.0 8 

no preprocessing 

external autoscaling 

mean spectrum 52.8 0.97 0 3 0.95 1.0 9 

whole class 56.7 0.98 1 1 1.0 0.50 10 

best preprocessing  

(SNV) 

mean spectrum 49.1 0.97 0 2 0.98 0.50 11 

whole class 57.2 0.99 3 2 0.97 1.0 12 
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Figure 5.8. Classification results for the Asiago d’allevo cheese dataset (model #9 of 

Table 5.7). (a) Calibration and (b) validation spectra. The closed green circles in (b) 

indicate the three misclassified validation samples. 

The proposed wavelength selection procedure returns spectral regions related to the 

absorbances of -CH, -CH2 and -CH3 groups (wavelengths between 1622 and 1680 nm, and 

2152 and 2362 nm; McClure and Stanfield, 2002), indicating that the amount of fat and 

fatty acids discriminates between the two types of production. Furthermore, the 

wavelength regions between 1502 nm (N-H stretch; Lucas et al., 2008) and 1530 nm were 

consistently selected throughout all the models. This agrees with the fact that some 

chemical properties (like protein content and amount of water-soluble nitrogenous 

compounds) that are related to the selected wavelengths can be shown to be statistically 

different between the two classes, most likely due to a different effect of proteolysis in the 

two cheese production systems. 

5.4.3 Multispectral images 

In this section, the proposed similarity factor-based method is extended to the classification 

of images. The objective is showing that the proposed approach can be easily adapted to 

also tackle the problem of multispectral (and possibly hyperspectral) data classification. 

Using the available sets of strawberry/pepper multispectral benchmark images, four 

classification models were designed: one model was intended to separate fake strawberries 

from real ones, while the other three models were designed for the same classification 

exercise for each pepper color. No spectra pretreatment was carried out in any of the 

models developed, and the sample matrix X was autoscaled externally. For any given 

model, the fake and real reference matrices were obtained by averaging the calibration 

spectra along the wavelength direction. The similarity between a validation sample and the 

reference of each class (fake or real) was checked on a pixel-by-pixel basis; for example, a 

pixel was deemed to be fake if 
λ

,

λ

, realifakei SS   resulted, i.e. if it showed a greater similarity 

toward the fake reference than toward the real one. By repeating this operation for all the 
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image pixels, the total fraction of pixels that is deemed fake was determined: if this 

fraction largely exceeded 0.50 (say, more than 70% of the pixels are deemed fake), the 

product (fruit of vegetable) was classified as fake, otherwise it was classified as real. 

The results obtained for each product are summarized in Table 5.8. The proposed approach 

does an excellent classifications job: although limited pixel areas may be misclassified, all 

the strawberry and pepper validation images are classified correctly. Figure 5.9 clarifies 

that, in the RGB version of the images, pixel misclassifications are mostly concentrated in 

the image areas where strong reflection is present (see Figure 5 for further comparison). 

Table 5.8. Classification results for the multispectral image validation 

dataset. 

Product Actual class 

% of pixels 

classified as 

“fake” 

Classification  

Strawberry 

Fake 1 94.6 correct 

Fake 2 90.9 correct 

Fake 3 88.9 correct 

Real 1 2.3 correct 

Real 2 4.5 correct 

Real 3 4.6 correct 

Pepper 

Fake red 99.1 correct 

Fake green 98.2 correct 

Fake yellow 100.0 correct 

Real red 6.1 correct 

Real green 0.6 correct 

Real yellow 0.0 correct 
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                                                                 (a)                                    (b) 

   

                                                               (c)                                      (d) 

Figure 5.9. Location of the misclassified pixels for the green pepper case study 

(magnified RGB sub-images). (a) and (c) fake and real pepper. (b) and (d) fake and real 

pepper with misclassified pixels colored in magenta. 

5.5 Conclusions 

In this Chapter, a novel algorithm for classification of spectral data based on similarity 

factors derived from PCA models has been presented. A multi-resolution approach based 

on discrete wavelet transform was used to associate a matrix (to be summarized with PCA) 

to each spectrum. In particular, the reconstructed details were employed to build the 

sample matrix, neglecting those at the first resolution scale in order to accomplish a 

simultaneous signal denoising action. The classification of a sample was obtained by 

measuring the similarity of its PCA model to the PCA model of each class reference, and 

by then assigning the sample to the class for which it shows the greatest similarity. Since 

the way similarity factors were used intends to quantify the similarity of spectra shapes, the 

proposed approach is effective if the classes that need to be separated are mainly 

characterized by spectra of different shapes. 

Besides from the graphical interpretation of the classification results, which is very 

intuitive, the main advantage of the proposed strategy lays in the fact that the design of the 

classification model can be made automatic, with no need of trial-and-error steps to select 

the most effective pretreatment to be applied to the raw spectral data. The parameters used 

in the classification strategy, in fact, can be assigned a priori through a series of simple 
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guidelines. Coupling the proposed classification strategy to a forward-based wavelength 

selection procedure can return automatically the subset of wavelengths that result most 

meaningful for sample classification, which facilitates the interpretation of results. 

The effectiveness of the proposed approach was demonstrated by means of three case 

studies. Two of them relate to the use of NIR spectral data for food authentication, the 

problems having been the discrimination between farmed and wild European sea bass, and 

the discrimination between Asiago d’allevo cheese produced in alpine farms or lowland 

factories. The third case study relates to the extension of the proposed method to the 

classification of multispectral images. In all cases, the classification performance was 

shown to be very satisfactory, and not inferior to that obtained with conventional methods 

(k-NN, LDA, QDA and PLS-DA). 
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Chapter 6 

Fast fraud detection using spectral data
*
 

In this Chapter, the use of near-infrared spectroscopy coupled with LVM as a fast, non 

destructive, reliable and cost-effective tool to assist product quality characterization is 

discussed, with particular attention to the fraud detection problem in the food sector. 

The Chapter is made by three Sections. In Section 1, two applications are presented. In the 

first one, NIRS is used to detect a common commercial fraud for European sea bass, i.e. 

the substitution of wild fish with farmed fish. This is a fraud that damages the consumers 

from an economical point of view. In the second application, NIRS is used to assist the 

authentication and correct labeling of Asiago d’allevo, a typical Italian cheese. In Section 2 

of the Chapter, a strategy is proposed to overcome an issue frequently encountered in the 

food technology literature, i.e. the need of tailoring an anti-fraud system on the specific 

case investigated. Stemming from the problem of detecting the fraud of substitution of 

fresh fish with frozen-thawed one, several LVM-based strategies are tested and critically 

compared with the aim of developing a multi-species/species-independent authentication 

model. In Section 3 of the Chapter some general conclusions are drawn. 

6.1 NIRS for product quality characterization 

6.1.1 Problem 1: authentication of wild European sea bass 

6.1.1.1 Problem statement 

Assessment of seafood origin is a security measure to protect consumers and avoid fraud. 

Mandatory information required for a full characterization of the marketed fish (species 

membership, whether wild or farmed, geographic origin) are regulated by stringent laws in 

the European Union (Commission Regulation No. 2065/2001). Regulatory interventions 

                                                 
*
Ottavian, M., P. Facco, L. Fasolato, E. Novelli, M. Mirisola, M. Perini and M. Barolo (2012). Use of Near-Infrared 

Spectroscopy for Fast Fraud Detection in Seafood: Application to the Authentication of Wild European Sea Bass 
(Dicentrarchus labrax). J. Agric. Food Chem., 60, 639-648. 

Ottavian, M., P. Facco, M. Barolo, P. Berzaghi, S. Segato, E. Novelli and S. Balzan (2012). Near-Infrared Spectroscopy 
to Assist Authentication and Labeling of Asiago d’Allevo Cheese. J. Food Eng., 113, 289-298. 

Ottavian, M., L. Fasolato, P. Facco and M. Barolo (2013). Foodstuff Authentication from Spectral Data: Toward a 
Species-Independent Discrimination Between Fresh and Frozen-Thawed Fish Samples. J. Food Eng., 119, 765-775. 
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aim at avoiding mislabeling or substituting wild fish with farmed fish, and mitigating risks 

for the consumers’ confidence and health. Therefore, the development of novel analytical 

technologies, as well as the improvement of the existing ones, can be very helpful to detect 

fraud in the seafood industry. In particular, the discrimination between wild seafood and 

farmed seafood is of paramount importance in order to achieve satisfactory quality 

standards. 

Several techniques have been proposed in the last decade to detect the wild/farmed 

substitution fraud in seafood (Martinez et al., 2009). A macroscopic examination of fish is 

of limited value due to the lack of specific targets in terms of body integrity and loss of 

morphologic traits at sale time. Other types of analysis, such as genomics and proteomics 

patterns, present limited application because the selection of reliable markers is very 

difficult for different populations. Currently, the most informative methodology for 

discriminating between wild and farmed fish is the determination of fatty acids (FAs) 

fingerprinting and the ratios isotopes of carbon C and nitrogen N (
13

C/
12

C and 
15

N/
14

N, 

expressed as δ
13

C and δ
15

N) (Martinez, 2006; Bell et al., 2007; Morrison et al., 2007). 

Both fingerprints vary in the muscles according to the season, the feeding status and the 

species, but some specific target could be adopted as markers of the production system 

(Bell et al., 2007). For example, Alasalvar and coworkers (Alasalvar et al., 2002) 

suggested that a high arachidonic amount could be a marker for wild fish. In farmed fish, 

the plant oil intake leads to an increase in C18 FA in muscle lipids, particularly 18:2n-6 

(linoleic acid), 18:3n-3 (α-linolenic acid), and 18:1n-9 (oleic acid), with the flesh of marine 

fish retaining these FAs even after a re-feeding period with fish oil (Montero et al., 2005). 

However, all the methods used to characterize FAs require sample preparation for lipid 

extraction and gas chromatography analysis, which are expensive and time-consuming 

compared to the shelf-life of the fish product. 

Several emerging technologies have been proposed for the rapid and non-destructive 

analysis of fish traceability and authentication (Xiccato et al., 2004; Arvanitoyannis et al., 

2005; Masoum et al., 2007; Rezzi et al., 2007), such as nuclear magnetic resonance 

(NMR), front-face fluorescence spectroscopy, and near-infrared spectroscopy (NIRS). 

Among the most promising techniques, high resolution nuclear magnetic resonance (HR-

NMR) was successfully applied to obtain spectral information on the classification of 

wild/farmed case especially on fish lipids (Masoum et al., 2007; Rezzi et al., 2007). This 

technique provides a fingerprint of FA profiles linked to other characteristics, such as the 

positional distribution of polyunsaturated FA on triglycerides (Aursand et al., 1995). HR-

NMR spectra combined with different chemometric strategies were used for classification 

purposes on different species, but this technique is not widely utilized for seafood 

authentication due to problems in the standardization of the procedures (Martinez et al., 

2009; Rezzi et al., 2007; Forshed et al., 2003). 
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NIRS is particularly favorable because it is simpler, more economical, environmentally 

safer and faster than many other techniques. Recent studies have highlighted the potential 

of NIRS to differentiate sea bass (Dicentrarchus labrax) from different rearing systems 

(Xiccato et al., 2004; Majolini et al., 2009; Costa et al., 2010). In these applications, the 

classification ability among rearing systems seems to decrease according to the storage 

time, and typically some additional treatments such as freeze-drying are required to 

improve the accuracy of origin prediction. 

In this Section, the possibility to use NIRS to discriminate between wild and farmed sea 

bass samples was investigated. Three different chemometric approaches were developed to 

process the available NIR spectra. In the first approach, a cascaded arrangement was 

proposed where chemical information was first estimated from spectra using latent 

variables regression, and this estimated information was then used to build the 

discrimination model in a latent variable space. The second approach used spectral 

information to directly build the discrimination model in a latent variable space. The third 

approach first used wavelets to transform the spectral information, and subsequently 

developed the discrimination model using the transformed spectra. The classification 

results were compared to a reference classification obtained using only chemical and 

morphometric information. 

6.1.1.2 Materials and methods 

European sea bass collection 

Farmed and wild fish was collected in different sales centers and different cities in 2008 

(Fasolato et al., 2010). Samples were transported to the laboratory within 24 h from the 

collection time at refrigerated temperature (4  1 °C, constantly monitored by a data logger 

Testo 174-T, Testo AG, Germany), and were immediately processed for the analysis upon 

their arrival at the laboratory. The dataset comprised 38 calibration samples with 

determined attribution of production method and 66 validation samples with declared 

methods of production (32 declared wild and 34 declared farmed). Compared to the dataset 

presented by Fasolato and coworkers (Fasolato et al., 2010), two samples were removed 

since the corresponding spectra had not been collected. The same study (which was used as 

a classification reference in the present work) showed that the number of samples 

classified as farmed among those declared wild was 22 (corresponding to 69% of 

substitution fraud) and, at the same time, 6 samples among those declared farmed were 

formally ascribed to the wild group (i.e. misclassified). 

A total of 35 chemical properties (fatty acids, bromatological and isotopes) and 

morphometric traits were measured for each available sample. These variables are listed in 

Table 6.1, and will be collectively identified as “chemistry” variables in the remaining. 



112 Chapter 6 

________________________________________________________________________ 

© 2014 Matteo Ottavian, University of Padova (Italy) 

Table 6.1. List of measured chemical properties and morphometric traits. 

Property # Property Name 

1 fat 

2 protein 

3 ash 

4 moisture 

5 C14:0 

6 C16:0 

7 C18: 0 

8 saturated 

9
*
 C16:1 n-7 

10 C18:1 n-9 

11 C18:1 n-7 

12 C20:1 n-9 

13
*
 C22:1 n-11 

14
*
 C22:1 n-9 

15 monounsaturated 

16 C18:2 n-6 

17
*
 C18:3 n-6 

18 C18:3 n-3 

19 C20:2 n-6 

20
*
 C20:3 n-6 

21 C20:3 n-3 

22 C20:4 n-6 

23 C20:5 n-3 

24 C22:5 n-3 

25 C22:6 n-3 

26
*
 polyunsaturated 

27 n-3 

28 n-6 

29 n-3/n-6 

30 EPA + DHA 

31
†
 

13
C 

32 
15

N 

33
¥
 KI 

34
¥
 HSI 

35
¥
 CFI 

* = not significant according to the VIP index (VIP < 0.5) 

† = measured from fat-free extract 

¥ = morphometric traits (KI = condition index, HSI = hepatosomatic 

index and CFI = celomatic fat index, cf. Fasolato et al., 2010) 

NIR analysis 

After dissection, the epiaxial white muscle portion of the fillet was ground with a Retsch 

Grindomix (Retsch GmbH, Hann, Germany) at 4000 rpm for 10 s. Two aliquots per 

sample (approximately 10 g each) were placed in a 50 mm diameter ring cup and scanned 

in reflectance mode at 2 nm intervals from 1100 to 2500 nm using a scanning 

monochromator NIRSystem 5000 (FOSS, Silver Spring, MD, USA). 
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Spectra pretreatment 

For each aliquot of a sample, a mean spectrum was obtained by averaging from 32 multiple 

scans; then, the spectrum of the sample was obtained by averaging those of the two 

aliquots. Reflectance (R) values were converted into absorbance (A) values through A = 

log(1/R). Mathematical pretreatment reduced the light scattering caused by the sample 

particles and removed the additional variation in baseline shift typically present in diffused 

reflectance spectra. Standard normal variate and first- and second-order derivates were 

used to this purpose.  

 

Data analysis 

PCA was applied as a preliminary exploratory tool to reveal the internal structure of the 

available data and to check whether the validation samples could be described by the 

model developed for the calibration samples. After this preliminary analysis, four different 

strategies for sea bass classification were developed and tested. These strategies are 

sketched in Figure 6.1, where the acronyms used to identify the proposed models are also 

indicated. Figure 6.1 clarifies that the strategies differed for the input information as well 

as for the type of classification model. 

 

Figure 6.1. Schematic of the classification strategies considered in this study. 

As far as the model inputs are concerned, either chemistry variables or NIR spectra were 

used. Note that, with respect to the chemistry inputs, not only the measured properties, but 

also the properties estimated from NIRS were used as inputs to the classification model. 

When NIR spectra were used as inputs directly, two alternative modeling approaches were 

investigated: PLS-DA (Chapter 2, Section 2.1.2.2) and the wavelet-based WPTER method 

(wavelet packet transform for efficient pattern recognition; Cocchi et al., 2001). 

6.1.1.3 Results and discussion 

Exploratory PCA model 

The scores plot of the first 2 PCs (principal components) of a 4-PC model on the full set of 

measured chemistry variables of the calibration dataset (Figure 6.2) clearly identified two 

Measured 
chemistry NIRS

PLS-DA_mc PLS-DA_ec PLS-DA_NIR

Input information

Classification model WPTER

NIRS

PLS-estimated 
chemistry

NIRS
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clusters (open triangles vs. closed triangles), which include the farmed and wild sea bass 

samples, respectively. The separation between the clusters occurred along PC1 (PC1 > 0 

for wild samples). When projected onto the PCA model, the validation samples (circles) 

separated into the same clusters. However, quite a number of declared wild samples 

(closed circles) fell within the farmed sea bass cluster (open symbols), i.e. a number of 

substitution frauds were highlighted in the scores plot. Although not reported here, it was 

verified that all validation samples fell well below the 95% confidence limit of the Q 

statistic, which indicated that, from the point of view of the chemistry variables, the 

validation dataset completely conformed to the calibration one. 

 

Figure 6.2. Exploratory PCA analysis on the measured chemistry properties of Table 

6.1. The validation samples (circles) are projected onto the model defined by the 

calibration samples (triangles). 

Although not included here, the combined analysis of the scores and loadings of the PCA 

model revealed that the farmed samples were characterized by higher levels of fat, protein, 

ash, celomatic fat index (CFI), hepatosomatic index (HIS) and, among the fatty acids listed 

in Table 1, C18:3 n-6, C18:2 n-6, C18:1 n-9, n-6, C20:3 n-3, monosaturated, C20:2 n-6 

and C14:0. The wild samples, instead, were characterized by higher level of moisture, 
13

C 

and 
15

N and, among fatty acids, saturated, C16:0, C18:1 n-7, C18:0, C20:4 n-6, EPA+ 

DHA, n-3 and C22:5 n-3. These results were in agreement with other studies on sea bass 

(Bell et al., 2007; Alasalvar et al., 2002). 

A similar exploratory analysis was carried out on NIR spectra. The average spectra for the 

farmed and wild classes of the calibration dataset have been shown in Chapter 5, Figure 

5.4a. The scores plot and SPE values for the exploratory PCA model (using 5 PCs) built on 

the NIR spectra of the calibration dataset are shown in Figure 6.3. Figure 6.3a indicated 

that the first PC is not able to separate the two classes, although it explains a much higher 

fraction (72% vs. 43%) of the data variability than in the PCA model derived on the 

measured chemistry data.  
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                                          (a)                                                                            (b) 

Figure 6.3. Exploratory PCA analysis on NIR spectra: (a) scores plot and (b) SPE 

values. The validation samples (circles) are projected onto the model defined by the 

calibration samples (triangles). 

Furthermore, some of the declared farmed samples exhibited very high model residuals 

(rightmost open circles in Figure 6.3b), indicating that the corresponding NIR spectra did 

not conform to those of the calibration dataset. These samples were assigned the IDs #29 to 

#34. Although a detailed discussion on these samples is beyond the purpose of this work, it 

was worth noticing that the high model residuals indicate that these samples explored a 

variability on NIR spectra that is different from that described by the calibration dataset. 

 

Authentication using measured chemistry variables (PLS-DA_mc) 

A PLS-DA model using one latent variable was built using the full measured chemistry 

calibration dataset to discriminate between farmed and wild sea bass samples. The VIP 

index is plotted for the most influential (VIP > 1) inputs of this model in Figure 6.4.  
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Figure 6.4. Most influential (VIP > 1) chemistry variables for the PLS-DA_mc 

classification model according to the VIP index. 

The input variables were classified as belonging to the farmed class or to the wild one 

according to the indications provided by the exploratory PCA model loadings. In terms of 

meaningfulness of the input variables for each class, the results of Figure 6.4 agreed with 

those obtained using a nonparametric permutation test to analyze the same dataset 

(Fasolato et al., 2010). Furthermore, the variables deemed as totally not significant by the 

VIP index (VIP < 0.5, see Table 6.1) were the same as those discarded by the 

nonparametric test. 

As mentioned earlier, a more parsimonious model can be developed by using a subset of 

the chemistry variables having VIP > 1 as inputs to the model. To this purpose, a subset 

including only 3 (namely: fat, moisture and 
13

C) out of the 17 the variables shown in 

Figure 6.4 was selected. The rationale for this selection was as follows. First, according to 

VIP, the selected variables were among the most discriminating ones of the two classes; 

secondly, these variables could be estimated with sufficient accuracy from NIR spectra (to 

be discussed later). A PLS-DA model (1 latent variable) using only these 3 measured 

chemistry variables as inputs was therefore developed for sea bass authentication; this 

model was denoted as PLS-DA_mc. Although this model had the same classification 

ability of a PLS-DA model using the full dataset of measured chemistry, reducing the 

number of inputs from 35 to 3 significantly reduced the distance between the clusters in the 

scores plot of the PCA exploratory model. This means that the observable variability 

among samples was reduced when the number of model inputs was reduced. However, the 

variability described by the PCA model still allowed the two classes to be separated. 

A comparison between the reference classification results provided by Fasolato and 

coworkers (Fasolato et al., 2010) and those obtained using the PLS-DA_mc model is 

shown in Table 6.2 for declared wild samples and in Table 6.3 for declared farmed 

samples. The two approaches detected the same total number of substitution frauds (Table 
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6.2), although with one sample classification shift (samples #6 and #12). On the other 

hand, the PLS-DA_mc model did not misclassify any of the declared farmed samples 

(Table 6.3). 

 

Authentication using estimated chemistry variables (PLS-DA_ec) 

Fat, moisture and 
13

C (i.e., the inputs to the PLS-DA_mc model) were estimated from 

NIR spectra using three distinct PLS models. The estimation results are shown graphically 

in Figure 6.5, while the estimation model characteristics and performance metrics are 

reported in Table 6.4. The models developed for fat and moisture returned accurate 

estimations even when extrapolated outside the calibration range, whereas the model for 

stable carbon isotope estimation was less accurate. 



 

 

Table 6.2. Declared wild samples (validation dataset): comparison between the reference classification results (indicated as Ref.; Fasolato et al., 

2010) and the performance of the classification methods considered in this study. For each classification method, symbol  indicates a sample 

classified as wild. No symbol is used if a sample is declared wild but is classified as farmed (substitution fraud). 

Sample ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

Ref.                                 

PLS-DA_mc                                 

PLS-DA_ec                                 

PLS-DA_NIR                                 

WPTER                                 

Table 3. Declared farmed samples (validation dataset): comparison between the reference classification results (Fasolato et al., 2010) and the 

performance of the methods considered in this study. For each classification method, symbol X indicates a misclassified sample. No symbol is 

used if a sample is declared farmed and is classified as farmed. 

Sample ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

Ref.        X         X            X  X  X X 

PLS-DA_mc                                   

PLS-DA_ec                     X      X        

PLS-DA_NIR                           X  X
†
 X

†
     

WPTER                             X
†
 X

†
  X

†
   

† 
= sample with high PCA residual

1
1

8
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                                          (a)                                                                            (b) 

 

                                     (c) 

Figure 6.5. Estimated versus measured values of the three chemistry variables used as 

inputs to the PLS-DA_ec classification model: (a) fat, (b) moisture and (c) 13
C. The 

standard deviation (std dev) on the measured values is also indicated. 

A PLS-DA model (PLS-DA_ec) with 1 latent variable was built using the estimated 

chemistry variables as inputs. Although the estimated value of 
13

C was not very accurate, 

it was used as an input to the PLS-DA_ec model because the other chemistry variables 

with VIP greater than that of the 
13

C (namely, C18:3 n-3, saturated and C16:0, cf. Figure 

6.4) were estimated even worse (with RPDs of 1.07, 1.20 and 1.05, respectively). The 

classification results are reported in Table 6.2 and Table 6.3. Despite the fact that one of 

the model inputs was not estimated as accurately as the other two by the NIR spectra, for 

the declared wild samples the classification results obtained using the PLS-DA_ec model 

totally agreed with those obtained using the PLS-DA_mc model, whereas for declared 

farmed samples only two misclassifications were obtained. 
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Table 6.4. Number of latent variables (LVs) retained in each PLS model for the 

estimation of fat, moisture and 13
C, and mean performance of the estimation 

models. R
2

p indicates the coefficient of determination in the estimation (i.e. when the 

samples belongs to the independent validation group). 

 no. of LV R
2
 Q

2
 R

2
p RPD 

fat 7 0.98 0.97 0.97 5.69 

moisture 9 0.99 0.98 0.98 6.66 
13

C 9 0.67 0.42 0.45 1.25 

 

Authentication with direct use of spectral data (PLS-DA_NIR and WPTER) 

NIR spectra were used directly as inputs to a PLS-DA discrimination model (PLD-

DA_NIR). Table 6.2 shows that the ability of this model to identify the substitution fraud 

was very good. Three misclassified farmed samples were present (Table 6.3); however, 

note that two of them (samples #29 and #30) did not conform to the calibration dataset due 

to high SPE values, and therefore the use of spectral information for these samples was 

questionable. 

As was noted earlier, the dimension of the calibration input dataset may be extremely large 

when spectra are used as model inputs. For this reason, an attempt to reduce this dimension 

by extending the use of the VIP index to spectra was first attempted (Figure 6.6), but this 

approach did not lead to satisfactory results in term of discrimination ability of the 

resulting PLS-DA model. We conjecture that this can be ascribed to the much higher 

correlation existing between the model inputs (i.e. wavelengths) than in the measured 

chemistry variables case. 

 

Figure 6.6. VIP index for the PLS-DA_NIR model. 

As an alternative approach for selective pruning of the input dataset and sample 

classification, the WPTER algorithm was used (Cocchi et al., 2001). Figure 6.7, which was 

obtained with a WPTER model with Daubechies-2 wavelets, shows the mean reconstructed 
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signals for both the farmed class and the wild class. WPTER unambiguously showed that 

the only influential spectral regions for sample classification were those within the range ~ 

1600-1750 nm. These regions were somewhat overlapped to those with a VIP index much 

larger than 1 in Figure 6.6. However note that, due to the reconstruction operation, the 

actual input signal used by WPTER for sample classification was different from that used 

by a PLS-DA model using the same intervals of wavelengths as inputs. 

The classification results of WPTER were in very good agreement with those provided by 

the other methods considered in this work. Three misclassified farmed samples were 

present (Table 6.3), but they referred to validation samples not conforming to the 

calibration dataset of spectral signals (IDs #29, #30 and #32). 

 

Figure 6.7. Mean reconstructed signals (in the wavelet domain) according to the 

WPTER algorithm. Non zero signals indicate the wavelengths selected by the WPTER 

algorithm. 

A thorough analysis on the meaning of the wavelengths selected as the most informative is 

beyond the purpose of this Chapter. 

6.1.2 Problem 2: authentication of Asiago d’allevo cheese 

6.1.2.1 Problem statement 

Asiago is a Protected Designation of Origin (PDO) semi-hard cheese of a well-defined 

geographical area located in the north-eastern regions of Italy, and is manufactured with 

partially skimmed raw bovine milk according to the Regulation of the European 

Community as specified in the Official Journal of European Union (1996). It is commonly 

sold in two forms: “pressato”, a pressed cheese with a minimum ripening of 20 days, and 

“allevo”, the non-pressed variety whose maturation takes from 6 to 18 months or more 

(with a minimum ripening of 60 days). The height and diameter of allevo cheese blocks 

vary from 9 to 12 cm and from 30 to 36 cm respectively; the weight typically ranges from 
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8 to 12 kg at the minimum ripening age. In 2010, 245751 blocks of Asiago were produced 

from 66 different plants (www.asiagocheese.it). According to the official Italian protocol 

(Gazzetta Ufficiale, 2006), Asiago d’allevo cheese produced above 600 m a.s.l. is defined 

and labeled as “Mountain product” and as such has a higher economical value. 

The cheese inherent quality and perceived characteristics are affected by several 

parameters, among which the geographical area of manufacturing, milk composition, 

production environment, and cheese ripening (McSweeney, 2004). It is well known that 

milk fat from highlands is important from the nutritional point of view, because grazing 

increases the proportion of healthy compounds in milk (Collomb et al., 2003). Moreover, 

when the cheese is made from raw milk without starter cultures, the contribution of 

autochthonous fermenting microflora to the flavour is significant and helps to identify a 

mountain product from a lowland one. The healthiness and the sensory traits of cheese 

from alpine zones are well appreciated by the consumers, and the higher qualitative 

characteristics of the mountain cheese determine a higher price of the final marketable 

product. From this perspective, correct labeling of the product is very important. 

A rapid and reliable authentication of the cheese product, including the determination of its 

geographical origin, its ripening traits as well as the estimation of its chemical properties, 

would be highly desirable both for the manufacturers and for those involved in the 

protection of the mark (Consortium) and of consumers’ interests (Public Institutions). Note 

that the possibility of reliably estimating the ripening parameters is of paramount 

importance both for real-time monitoring of the cheesemaking process and for correct 

product labeling and traceability. Traditional approaches require sampling and chemical 

analysis, which are expensive and time consuming. Reducing the cost of the analysis 

would be important to reduce the overall production costs, that is very stringent specially 

for smaller manufacturers. 

NIRS is a well known analytical technology that satisfies these requirements (Fagan et al., 

2007). Although NIRS has already been applied successfully to the characterization of 

different varieties of cheese (Karoui et al., 2006; Lucas et al., 2008; Gonzáles-Martín et 

al., 2011), few studies have been focused on the Asiago d’allevo cheese, and only one 

(Cozzi et al., 2009) specifically dealt with the use of NIRS. Marchesini et al. (2009) used 

color traits to evaluate the Asiago ripening time. For the authentication of the production 

chain, Schievano et al. (2008) and Cozzi et al. (2009) used nuclear magnetic resonance and 

NIRS, respectively, as an alternative to chemical and color analysis. However, the problem 

of complete authentication of Asiago d’allevo cheese (i.e., the estimation of chemical 

composition, ripening age and traits, and production site) using NIRS was not addressed in 

the above studies. 

The aim of the present study was the implementation of NIRS as a nondestructive, fast and 

relatively low expensive technique for the authentication of Asiago d’allevo cheese. The 

http://www.asiagocheese.it/
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performance of the classification models built on spectral data was compared to that of 

classification models built on chemical composition, which were used as a reference for 

authentication. 

6.1.2.2 Materials and methods 

Sampling and cheese analysis 

This study considered 121 Asiago d’allevo samples produced in 9 plants of the Vicenza 

territory (north-eastern Italy). Three plants were industrial factories located in the lowland 

(60-200 m a.s.l.), whereas the remaining farms were located in the mountain area (> 800 m 

a.s.l.). The cheese made in the lowland dairies was produced with milk from animals 

reared intensively and always fed with total mixed ration. For the other cases, as already 

described by Lignitto et al. (2010), at the beginning of the trial cows were kept in barn 

(May, indoor period) and fed a total mixed ration based on hay and concentrate (maize and 

soybean). During the second part of the trial, cows were moved to alpine grazing ground 

(from June to September, outdoor period), kept on the site of the farm and fed on pasture 

plus a concentrate supplement. During the indoor period, cheese was manufactured in an 

industrial dairy plant close to the farms, whereas during the outdoor period the 

cheesemaking activity was carried out in situ in an artisanal dairy plant belonging to the 

alpine farm. 

The sampling campaign and the respective analyses were performed during the ripening 

time. Asiago d’allevo samples were monitored over a period of 36 months (at 6, 12, 18 and 

36 months of ripening) using different whole blocks each time. In addition, three different 

cheese production periods were monitored, May (indoor period), July (middle of the alpine 

grazing period) and September (proximity of the end of the summer alpine grazing). 

Samples (about 2 kg each) were segregated as a quarter of a whole block and taken to the 

laboratory under refrigeration (4 °C). Each sample portion was cut across the whole block 

(height) in order to take into account concentration gradients (Karoui et al., 2006). The 

first 2 cm starting from the rind were discarded while the rest was grated and stored at –80 

°C. An exhaustive list of the measured chemical properties is given in Table 6.5. 

Table 6.6 shows the sampling schedule adopted for the 107 alpine samples, highlighting 

three out of the four classification criteria (i.e. production period, ripening age and 

production height) that will be discussed in Section 6.1.2.3. Production height in Table 6.6 

refers to the height of the grazing. Low height ranges between 1100 and 1300 m a.s.l., 

medium height around 1400 m a.s.l., medium-high height between 1500 and 1750 m a.s.l., 

and high height between 1700 and 2000 m a.s.l. 
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Table 6.5. List of the measured chemical properties. 

Property # Property Name  Property # Property Name 

1 water activity  28 C14:0 

2 pH  29 C14:1 

3 dry matter  30 C16:0 

4 ash,% (d.m.
§
)  31 C16:1 

5 protein,% (d.m.)  32 C17:1 

6 fat, % (d.m.)  33 C18:0 

7 moisture, %  34 C18:1 n-9  

8 ash, % (w.w.
¥
)  35 C18:1 n-7 

9 protein, % (w.w.)  36 C18:2 n-6  

10 fat, % (w.w.)  37 C18:3 n-6 

11 NaCl, %   38 C18:3 n-3 

12 proteolysis index  39 C18:2 c9-t11 

13 proteolysis TCA
þ
  40 C18:2 t10-c12 

14 Vitamin A (ca
†
)  41 C20:0 

15 Vitamin E (ca)  42 C20:1 n-9 

16 Cholesterol (ca)  43 C20:2 

17 Vitamin A (ed
#
)  44 C20:3 n-6 

18 Vitamin E (ed)  45 C20:4 n-6 

19 Cholesterol (ed)  46 C20:3 n-3 

20 Vitamin A (fat

)  47 EPA 

21 Vitamin E (fat)  48 tot id fame % 

22 Cholesterol (fat)  49 saturated 

23 C4:0  50 monounsaturated 

24 C6:0  51 polyunsaturated 

25 C8:0  52 n-3 

26 C10:0  53 n-6 

27 C12:0  54 n-3/n-6 

 

§
d.m. = dry matter; 

¥
w.w. = wet weight; 

þ
TCA = trichloro acetic acid 12%; 

†
ca = 

per g/sample; 
#
ed = per 100 g/sample; 


fat = per g/fat 

 

NIR analysis 

A FOSS Nirsystem 5000 (FOSS Nirsystems, Inc., Laurel MD, USA) instrument was used. 

The absorbance data in the IR zone 1100-2500 nm were recorded at 2-nm intervals. To 

minimize the sampling error, all samples were analyzed in duplicate. Thirty-two scans 

were performed for both the reference and the samples. All of the duplicated spectra were 

averaged prior to statistical analysis. 
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Table 6.6. Sampling schedule for the 107 alpine samples in terms of 

number of samples collected for three out of the four classification 

problems considered (production period, ripening age, and production 

height). 

 Production period May  July  September   

 Ripening age 6 12 18 36  6 12 18 36  6 12 18 36  Total 

                   

Height 

Low 2 2 2 2  4 6 4 2  4 6 4 2  40 

Medium 1 1 1 1  2 3 2 1  2 3 2 2  21 

Medium-high - - - -  2 3 2 -  2 3 2 -  14 

High - - - -  4 6 4 2  4 6 4 2  32 

 
Total 

3 3 3 3  12 18 12 5  12 18 12 6  
107 

 12  47  48  

 

Data analysis 

Two PCA models, one on the measured chemical properties and one on the spectral data, 

were developed to assess the performance of PCA as an unsupervised classification 

technique. Standard Normal Variate (SNV) and first- and second-order derivatives were 

used to preprocess the spectral data. 

The chemical properties listed in Table 6.5 were estimated from NIR spectra using PLS 

regression. To design each PLS model, a calibration dataset (Xcal, Ycal) containing only 

75% of the data available in the original matrices of spectral data (X) and chemical 

properties (Y) was used. The samples to be included in the calibration dataset were 

selected randomly; the number of latent variables (LVs) to be retained in the model was 

determined by minimizing the root-mean squared error in cross-validation (Wold, 1978). 

The model estimates were then validated using the remaining 25% of data, which were 

organized as an independent validation dataset (Xval, Yval). Since the number of available 

samples for each class was not large, depending on the random sample selection the 

validation dataset might have included only few samples per class (cf. Table 6.6). 

Therefore, to allow using all the available samples as independent validation data, the 

procedure described above was repeated in four steps. At each step, the random selection 

of the calibration samples was made among those samples that had not been selected as 

calibration ones in the previous steps. The prediction model performance was eventually 

evaluated by averaging the model performance obtained at each step. The procedure was 

intended to ensure model robustness. 

PLS-DA using either the measured chemical properties or the NIR spectra was used to 

classify the cheese samples. The classification was carried out to discriminate alternatively 

the farm management (lowland vs. mountain), the ripening age, the period of production, 

and the height of milk and cheese production. A procedure similar to the one of the PLS 
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estimation models was used to design and validate the PLS-DA models. To create an 

independent validation dataset, the same percentage of samples (25%) was removed from 

each class in order to take into account that the number of samples varied from class to 

class. The number of LVs to retain within each model was determined by maximizing the 

sensitivity (Se) and specificity (Sp) indices in cross-validation.  

6.1.2.3 Results and discussion 

Exploratory PCA models 

Although it appeared that for this study PCA was not an effective unsupervised 

classification technique, the PCA models were nevertheless useful to investigate the 

correlation structure within the available datasets (measured chemical properties and 

spectra). For both models, results related to only two (ripening age and production period) 

out of the four possible classifications are presented for the sake of conciseness. 

Figure 6.8a-b presents the score plot of the first two PCs for a twelve-PC model calibrated 

on the measured chemical data for the 107 alpine-farmed samples (the 14 lowland samples 

were not used for model building). The model explains ~85% of the total variance; the 

high number of PCs retained in the model was a consequence of the low correlation 

existing among the measured chemical variables. This aspect was highlighted also by the 

loading plot of Figure 6.8c, where few clusters of variables were detected (note that 

variables with both PC1 and PC2 smaller, in absolute value, than 0.1 were not included to 

improve readability). 

Although PC1 and PC2 explained a limited amount of the total variability (38%), the score 

plot revealed a certain degree of separation among classes. For instance, the ripening age 

tended to increase along PC1 (Figure 6.8a), whereas samples produced in the first period 

(May) clustered in the lower-right part of the score plot (Figure 6.8b). With respect to the 

classification by the height of the production site (not shown in Figure 6.8), it was found 

that the production height increased along PC2, with samples belonging to the low and 

medium-height classes having PC2 < 0. Projecting the 14 samples produced in lowland 

factories onto the PCA model of Figure 6.8, very high SPE values were observed, i.e. these 

samples represented a clearly distinct class, spanning a different range of variability. 

Some additional considerations arose from the combined analysis of model scores and 

loadings of Figure 6.8. The increase of ripening age, for instance, was highly correlated to 

lower values of water activity, moisture, monounsaturated and polyunsaturated and to 

higher percentages of C6:0, C8:0, C10:0, C12:0, C14:0 and saturated (Malacarne et al., 

2006). Samples produced in May (first period) were characterized by a higher amount of 

C16:0 (and in general of saturated fatty acids) and by lower contents of C18:1 n-7 and 

vitamin E. On the other hand, the discrimination between samples produced in July and 
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September (second and third period) was more difficult to analyze, as suggested also by 

Figure 6.8b. 

   

                                          (a)                                                                            (b) 

 

                                     (c) 

Figure 6.8. Exploratory PCA analysis on the measured chemical properties. (a) and (b) 

Model scores: samples have been separated by (a) ripening age and (b) production 

period. (c) Model loadings. 

Figure 6.9 presents the score plot of a three-PCs model (explaining ~93% of the total 

variance) calibrated on the spectral data for the same samples as in the previous subsection. 

To enhance class separation, spectra were pretreated with SNV and first-order derivative. 
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                                              (a)                                                                            (b) 

Figure 6.9. Exploratory PCA analysis on the NIR spectra pretreated with SNV and 

first-order derivative. Model scores: samples are separated by (a) ripening age and (b) 

production period. 

The score plot highlighted quite clearly the separation by ripening age, which occurred 

along the minor diagonal. Due to the very large number of variables, the simultaneous 

analysis of model scores and loadings was not carried out for the spectral data.  

 

NIR estimation of chemical properties 

Table 6.7 presents the estimation results obtained for a subset of the properties reported in 

Table 6.5, together with those related to the estimation of the atherogenic (AI) and 

thrombogenic (TI) indices, which were calculated on the basis of the acidic composition 

using the equations proposed by Ulbricht and Southgate (1991). Both AI and TI are dietary 

factors related to the incidence of coronary heart disease. Results have been expressed in 

terms of the coefficients of determination in calibration (R
2
), and cross (Q

2
) and 

independent validation (R
2

p), together with the RPD (ratio of prediction to deviation).  

Table 6.7 highlights that NIRS can return a quick and accurate estimation of several 

chemical properties, which generally are expensive and time consuming to analyze with 

traditional methods. As an example, water activity and proteolysis parameters (variables # 

1, 12 and 13) could be used to assess the ripening age, while fatty acids profile (variables # 

24 to 51) could assist in the traceability of the Asiago d’allevo (Cozzi et al., 2009). 

Eventually, TI and AI (which are calculated from fatty acids) could be related to the 

nutritional characteristics of the cheese.  

It was interesting to note that NIRS can return an accurate estimation of the sodium 

chloride content of the cheese (variable # 11). A similar result was obtained by Lucas et al. 

(2008), and was justified by claiming that, although no absorbance occurs in the NIR 

region, sodium chloride can change the spectrum of water in the infrared overtone region 
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and consequently can be indirectly estimated by NIRS. The VIP index for the NaCl PLS 

model supported this explanation. 

Table 6.7. Number of latent variables (LVs) retained in each PLS model 

for the estimation of a subset of the chemical properties, and mean 

performance of the estimation models. The chemical properties have been 

indicated with their corresponding number (see Table 6.7). 

Estimated 

property # 
1 3 4 5 6 7 8 9 10 11 12 13 TI AI 

LV 9 8 11 9 4 6 10 10 3 9 3 5 12 13 

R
2
 0.96 0.98 0.95 0.95 0.73 0.97 0.95 0.97 0.81 0.90 0.81 0.85 0.94 0.99 

Q
2
 0.93 0.96 0.87 0.89 0.58 0.96 0.89 0.94 0.76 0.73 0.79 0.80 0.80 0.92 

R
2
p 0.92 0.96 0.87 0.90 0.56 0.96 0.89 0.93 0.77 0.76 0.78 0.79 0.82 0.92 

RPD 3.8 5.2 2.7 3.0 1.6 5.1 3.1 4.0 2.1 2.0 2.2 2.3 2.2 3.6 

Estimated 

property # 
24 25 26 27 28 30 33 34 35 36 39 49 50 51 

LV 10 9 11 10 9 7 8 9 13 10 11 10 10 7 

R
2
 0.89 0.95 0.95 0.97 0.93 0.88 0.89 0.94 0.96 0.9 0.94 0.95 0.97 0.85 

Q
2
 0.78 0.81 0.85 0.88 0.85 0.77 0.70 0.85 0.65 0.71 0.65 0.88 0.88 0.61 

R
2
p 0.72 0.78 0.82 0.88 0.82 0.75 0.73 0.85 0.66 0.68 0.66 0.87 0.88 0.6 

RPD 2.1 2.3 2.7 2.9 2.7 2.7 1.8 2.6 1.6 1.8 1.7 3.0 3.0 1.6 

 

Classification results 

PLS-DA classification results obtained employing the chemical measures were used as a 

reference to assess the results output from cheese classification based on the use of NIR 

spectra. Results (for the independent validation set) are summarized in Tables 6.8 and 6.9. 

Table 6.8. PLS-DA classification performance using the measured 

chemical properties listed in Table 6.5 (independent validation dataset). 

Classification Class sensitivity and specificity 

  Lowland Alpine   

Lowland/alpine 
Se (%) 100 100   

Sp (%) 100 100   

  6 months 12 months 24 months 36 months 

Ripening age 
Se (%) 88.9 92.3 96.3 100 

Sp (%) 98.7 97.1 95.0 100 

  May July September  

Production period 
Se (%) 100 87.2 87.5  

Sp (%) 100 90.0 89.8  

  Low  Medium Medium-high High 

Production height 
Se (%) 75.0 57.1 100 100 

Sp (%) 86.6 91.9 98.9 97.3 
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Table 6.9. PLS-DA classification performance using the NIR spectra 

(independent validation dataset). 

Classification Class sensitivity and specificity 

  Lowland Alpine   

Lowland/alpine 
Se (%) 100 99.1   

Sp (%) 99.1 100   

  6 months 12 months 24 months 36 months 

Ripening age 
Se (%) 100 100 100 100 

Sp (%) 100 100 100 100 

  May July September  

Production period 
Se (%) 91.7 87.2 87.5  

Sp (%) 98.9 91.7 88.1  

  Low  Medium Medium-high High 

Production height 
Se (%) 82.5 57.1 92.9 87.5 

Sp (%) 88.1 95.3 98.9 89.3 

6.2 Seafood authentication: toward a species-independent 

discrimination between fresh and frozen-thawed samples 

6.2.1 Problem statement 

The substitution of fresh fish with frozen-thawed fish is a typical fraud that not only 

damages consumers from an economical point of view, but can also cause safety issues
 

(Pavlov, 2007). In fact, although freezing is one of the most widely used methods to extend 

the shelf life of seafood, it can affect the overall organoleptic properties of the product, and 

thawed meat is characterized by a higher susceptibility to microbial growth. Furthermore, 

fish authentication is important for correct product labeling (Martinez et al., 2003), as 

promoted by recent regulatory actions (Uddin, 2010; European Parliament Legislative 

Resolution, 2011).  

Several methods have been proposed for the identification of the fresh/frozen-thawed 

substitution fraud (e.g., eye lens evaluation, measurements of dielectric properties, 

erythrocytes lysis, hematocrit evaluation, muscles histology, enzymatic methods, etc.; 

Uddin, 2010). The classification ability of the majority of these systems is strongly 

affected by the species under investigation, the integrity of the product (whole fish or fillet) 

or by its shelf life (Uddin, 2010). For example, the use of methods based on changes in 

dielectric properties, while being accurate on intact fish, provides poor results when 

applied on fillets (Duflos et al., 2002). Enzymatic assays were found to be useful in fillets, 

but not applicable to all species (Duflos et al., 2002). Recently, Bozzetta et al. (2012) 

proposed muscles histology as a simple method for the evaluation of the fresh/frozen-
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thawed status. Despite the good classification results obtained on a wide range of species 

(more than 35 different species), the method requires time for sample processing (e.g., 

fixation, coloration) and the use of several reagents. 

As an alternative to abovementioned techniques, more rapid analytical technologies have 

been developed. Among them (Nott et al., 1999; Karoui et al., 2006; Vidaček et al., 2008; 

Fernández-Segovia et al., 2012; Leduc et al., 2012; see also Chapter 7, Section 7.1), near-

infrared spectroscopy (NIRS) has been suggested by the promising results obtained on 

some species (Uddin, 2010; Sivertsen et al., 2011; Fasolato et al., 2012; Zhu et al., 2012; 

Kimiya et al., 2013; Chapter 7, Section 7.1). NIRS is a well consolidated analytical 

technology and plenty of applications can be found in the field of seafood authentication 

(Cozzolino and Murray, 2012). To the author’s knowledge, there are currently no NIRS 

application to multi-species databases, i.e. so far the fresh/frozen-thawed authentication 

problem has been solved only analyzing single species separately. 

In this section, three alternative strategies based on LVM techniques are proposed and 

compared in order to develop a multi-species classifier of the fresh/frozen-thawed status of 

fish samples. While the first two strategies model the information on the species and on the 

fish fresh/frozen-thawed status together (either jointly or sequentially), the third strategy 

aims at explicitly separating them to improve the classification performance. A thorough 

validation of the proposed strategies is carried out using two NIR instruments exploring 

different spectral regions, on a total of more than 1200 samples. 

6.2.2. Materials and methods 

6.2.2.1 Available dataset 

The number of samples available for model calibration and model validation (per species, 

class and instrument; see also section 6.2.2.2) is given in Table 6.10 and Table 6.11. The 

fresh/frozen-thawed classification models were built considering only the samples of the 

four species indicated in Table 6.10 (independently on the strategy used; see section 

6.2.2.3). For model validation, instead, two datasets were considered, namely V1 and V2 

(Table 6.11). The V1 spectra were collected at the same time of the calibration samples, 

whereas the V2 spectra were collected at a different time. 

For each species, the I spectra considered were collected into an Xsub [IN] matrix, where 

N is the number of wavelengths (N = 401 for FOSS spectra and 421 for UNITY spectra) 

and subscript sub refers to the initial letter of the species Latin name. As an example, 

swordfish (Xiphias gladius L) FOSS samples were collected into Xxg [260401]. 

Superscript 
*
 is used to identify the species which were used only for model validation 

(Table 6.11). 
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Table 6.10. Available dataset in terms of number of samples per species, 

per class and per NIR instrument: calibration samples. 

Species Symbol Number of samples FOSS UNITY 

Gilthead sea bream (Sparus aurata) 

(Fasolato et al., 2010b) 
Xsa 

Fresh 53 
   

Frozen-thawed 53 
 

Red mullet (Mullus barbatus) 

(Fasolato et al., 2010a) 
Xmb 

Fresh 53 
   

Frozen-thawed 53 
 

Sole (Solea vulgaris)  

(Fasolato et al., 2008) 
Xsv 

Fresh 71 
  X 

Frozen-thawed 17 
 

Swordfish (Xiphias gladius L) 

(Fasolato et al., 2012) 
Xxg 

Fresh 101 
  

*
 

Frozen-thawed 74 
 

*
 only 53 fresh and 53 frozen-thawed samples were available 

 

Table 6.11. Available dataset in terms of number of samples per species, 

per class and per NIR instrument: validation sets V1 and V2 samples. 

Validation set Species Symbol Number of samples FOSS UNITY 

V1 

Gilthead sea bream (Sparus aurata) 

(Fasolato et al., 2010b) 
Xsa 

Fresh 27 
   

Frozen-thawed 27 
 

Red mullet (Mullus barbatus) 

(Fasolato et al., 2010a) 
Xmb 

Fresh 27 
   

Frozen-thawed 27 
 

Sole (Solea vulgaris)  

(Fasolato et al., 2008) 
Xsv 

Fresh 35 
  X 

Frozen-thawed 8 
 

Swordfish (Xiphias gladius L) 

(Fasolato et al., 2012) 
Xxg 

Fresh 50 
  

*
 

Frozen-thawed 35 
 

V2 

Gilthead sea bream (Sparus aurata) 

(Fasolato et al., 2010b) 
Xsa 

Fresh 71 
   

Frozen-thawed 71 
 

Red mullet (Mullus barbatus)  

(Fasolato et al., 2010a) 
Xmb 

Fresh 71 
   

Frozen-thawed 71 
 

Swordfish (Xiphias gladius L)  

(Fasolato et al., 2012) 
Xxg 

Fresh 71 
   

Frozen-thawed 71 
 

European sea bass (Dicentrarchus 

labrax) (Chapter 6, Section 6.1.1) 
X

*
dl 

Fresh - 
  X 

Frozen-thawed 38 
 

Different species
‡
 X

*
mix 

Fresh - 
  X 

Frozen-thawed 66 
 

Carp/tench (Cyprinus carpio/Tinca 

tinca) 
X

*
cctt 

Fresh 15 
 X  

Frozen-thawed  
 

*
 only 27 fresh and 27 frozen-thawed samples were available 

‡
 among the species included in Xmix: Sarda sarda, Pollachius virens, Scorpaena scrofa, 

Pangasius spp., Scomber scombrus, Gadus macrocephalus, Hippoglossus hippoglossus, 

etc. 
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6.2.2.2 NIR analysis 

For details about the origin, freezing, thawing and storage of the samples, the reader is 

referred to the references wherein they were originally presented (Fasolato et al., 2008, 

2010a, 2010b, 2012; Chapter 6, Section 6.1.1). As for the NIR analysis, the epiaxial white 

muscles of fresh and frozen-thawed samples were minced using a Retsch Grindomix 

(Retsch GmbH, Hann, Germany) at 4000 rpm for 10 s. Two aliquots per sample were 

scanned in small ring cups in reflectance mode with two different instruments: a FOSS 

NIRSystem 5000 (FOSS NIRSystem Inc., Silver Spring, MD, USA) at 2 nm intervals from 

1100 to 2500 nm; and a UNITY Scientific SpectraStar 2500TW (Unity Scientific, 

Columbia, MD, USA) at 1 nm intervals from 680 to 2500 nm. For each aliquot, a mean 

spectrum was obtained by averaging multiple scans. Then, the spectrum of the sample was 

obtained by averaging those of the two aliquots. Reflectance (R) values were converted 

into absorbance (A) values through A = log(1/R). The analysis of the UNITY spectra was 

limited to the region between 680 and 1100 nm due to the noise characterizing the 

wavelength region above 1900 nm and considering that the NIR regions explored by the 

two instruments partially overlap. This was done in order to explore two different spectral 

regions with the available instruments. 

6.2.2.3 Data analysis 

PCA was applied as an exploratory tool to reveal the internal correlation structure of the 

available datasets. This preliminary analysis was intended to identify the major sources of 

variability of the data (sample species, sample status, etc.). 

After the preliminary analysis, three LVM-based alternative strategies were developed for 

sample classification, with the aim of developing a classifier for the fresh/frozen-thawed 

status of the samples independently from their species. A schematic of the three strategies 

is given in Figure 6.10. 
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Figure 6.10. Schematic of three strategies considered to build a species-independent 

fresh/frozen-thawed classification model. The sample status is either “fresh” or 

“frozen-thawed”. 

In the first strategy, a PLS-DA model to classify the fresh/frozen-thawed status of each 

sample was built considering the species altogether, i.e. calibrating the model on the matrix 

X obtained by stacking on the top of each other the matrices Xsa, Xmb, Xsv and Xxg of the 

calibration set (Table 6.10). 

In the second approach, a two-level cascade arrangement of PLS-DA models was 

proposed: in the first level, a PLS-DA model classified the samples according to their 

species; in the second level, different PLS-DA models (one for each species considered in 

the calibration set) discriminated between fresh and frozen-thawed samples. 

In the third strategy, orthogonal PLS-DA (OPLS-DA; Trygg and Wold, 2002; Bylesjö et 

al., 2006; see also Appendix A) was used to remove the information in the spectral data 

which is not related to the fresh/frozen-thawed status of the samples. OPLS-DA 

decomposed matrix X into matrices X and X//, containing respectively the orthogonal (i.e. 

not correlated) and parallel (i.e. correlated) information concerned with the fresh/frozen-

thawed status of the fish. Therefore, the information related to the species difference is 

removed from the spectra matrix before the fresh/frozen-thawed status classification is 

carried out. This enables the calibration of a species-independent fresh/frozen-thawed 

classifier. 

It should be stressed that both Strategy 1 and Strategy 2 represent a multi-species 

fresh/frozen-thawed classifier, with the variability related to the species modeled together 
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with the variability of the status (fresh vs. frozen-thawed). However, especially for 

Strategy 2, when a sample of a new species (i.e. a species not included in the calibration 

dataset) is analyzed, the classification results are not reliable, since the PLS-DA model in 

the outer layer cannot correctly assess the sample species. Conversely, when Strategy 3 is 

applied, only the variability strictly related to the sample status is retained, whereas the 

variability related to the species is not modeled at all, facilitating a species-independent 

classification. 

In the calibration of the PLS-DA models of Strategy 1 and Strategy 2, four different 

spectra preprocessing techniques were considered combining standard normal variate 

(SNV; Barnes et al., 1989) and first and second order derivatives (D-1 and D-2; Savitzky 

and Golay, 1964), namely: (i) no preprocessing at all; (ii) SNV; (iii) SNV and D-1 and (iv) 

SNV and D-2. For Strategy 3, since the OPLS itself can be considered a preprocessing 

step, no preprocessing techniques were applied. 

6.2.3 Results and discussion 

6.2.3.1 Preliminary analysis 

A 2-PC PCA model was calibrated on the matrix X obtained by stacking on the top of each 

other the matrices Xsa, Xmb, Xsv and Xxg of the calibration set (Table 6.10 and Figure 6.10). 

No preprocessing was applied on the spectral data
†
. The PCA model extracted more than 

97% of the total variability (89.3 % on PC1 and 8.1 % on PC2). Model scores are shown in 

Figure 6.11, which shows that the greatest source of variability of the data is given by the 

difference between species. Samples of the same species, in fact, cluster in the same zone 

of the score space: sea bream samples are in the upper left region, whereas swordfish, 

mullet and sole samples are aligned along PC1 from the left to the right. Also the 

discrimination of interest (i.e. the fresh/frozen-thawed status) seems to insist mainly along 

PC1, with fresh and frozen-thawed samples partially overlapping. The overlap for samples 

of a given species can be attributed to the instrument used for spectra collection (FOSS, see 

Section 3.5), whereas the overlap for samples of different species is related to the 

collinearity between the information on the status and on the species. Another way of 

looking at the partial collinearity highlighted in Figure 6.11 consists in the analysis of the 

PLS-DA models that classify the X samples according to their fresh/frozen-thawed status 

(Strategy 1) and to the species they belong to (Strategy 2). The angle between the first 

                                                 
†
 Calibrating the PCA model on pretreated spectra did not change the conclusions drawn on Figure 1. 

Increasing the number of preprocessing steps, in fact, only affected the distance among clusters, suggesting 

that pretreating the spectra does not improve the classification results. 
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loadings of each model, in fact, was found to be 4°, i.e. the two models almost share the 

first latent variable (result not shown for the sake of conciseness). This means that there is 

a high collinearity between the major source of variability (first latent variable) of the two 

PLS-DA models, which are intended to capture the differences among samples due either 

to the status or to the species, but are built in such a way as to model the two sources of 

information jointly. 

 

Figure 2. Scores t1 and t2 of the preliminary PCA model. Closed symbols: frozen-

thawed samples. Open symbols: fresh samples. 

Generally speaking, Figure 6.11 suggests that it is possible to classify the samples 

according both to their species and to their status, but model complexity (in terms of 

number of retained LVs) would be high, due to the multiple sources of variability within 

the data. 

6.2.3.2 Strategy 1 

Model calibration 

Details on the classification model obtained with Strategy 1 are given in Table 6.12 for all 

the spectra preprocessing strategies explored. For each preprocessing, the number of LVs, 

the explained variance on the response matrix Y (varY, %), and the sensitivity and 

specificity (in cross-validation, Secv and Spcv) towards the fresh fish class are presented for 

the best classification model. 

Table 6.12. Strategy 1 PLS-DA model statistics for different 

preprocessing techniques (calibration data).  

Spectra pretreatment LVs varY (%) Secv (%) Spcv(%) 

No preprocessing 22 30.3 82.7 86.7 

SNV 22 32.0 82.1 85.7 

SNV and D-1 24 36.0 80.6 80.6 

SNV and D-2 23 34.7 79.1 80.6 
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Although the data in Table 6.12 show that the performance of the models obtained with no 

pretreatments and with SNV alone are similar, the former was preferred. The large number 

of LVs retained can be justified from the considerations drawn in the previous section, as 

only a (small) fraction of the overall variability can be attributed to the fresh/frozen-thawed 

classification. The VIP index for the classification model highlighted mainly wavelengths 

related to the absorbance of water and lipids (i.e. wavelengths around 1150, 1400, 1700, 

1850-1900 and 2250-2400 nm). 

 

Model validation 

The classification results for the validation datasets (Table 6.11) are presented in Table 

6.13 in terms of misclassifications per class and overall accuracy (i.e., the percentage of 

correctly classified samples) for each species. 

The classification results on samples of species used in the calibration dataset were similar 

in validation sets V1 and V2, with an overall accuracy comparable with that shown in 

Table 6.12. An exception was represented by the Xsa (Sparus aurata) samples of the V2 

dataset, whose sensitivity towards the fresh class was found to be poor (36.6%). It should 

be noted that similar results were obtained also with other classification strategies (see 

Tables 6.16, 6.18 and also Fasolato et al., 2012b). The fact that different rearing conditions 

(with respect to those of the calibration samples) may have induced a change in the 

proximate composition (in terms of fat and water content) is a possible explanation for the 

poor classification result obtained with Strategy 1. In fact, the fat and water contents can 

affect the spectral response. Unfortunately though, it was not possible to test this 

assumption, since proximate composition data were not available. 

Table 6.13. Strategy 1 classification results for the validation datasets. 

Validation 

dataset 
Species 

Fresh samples 

misclassified 

Frozen-thawed 

samples misclassified 

Classification 

accuracy 

V1 

Xsa 4 5 84.2 

Xmb 7 11 68.4 

Xsv 2 3 88.4 

Xxg 6 9 82.6 

V2 

Xsa 45 5 64.8 

Xmb 15 17 77.5 

Xxg 9 9 87.3 

X
*

dl - 0 100 

X
*

mix - 22 66.7 

 

Although the PLS-DA model was calibrated on Xsa, Xmb, Xsv and Xxg samples, it was used 

to classify the X
*
dl and X

*
mix samples of validation set V2. First of all, the capability of the 
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model to describe these samples was checked by means of the square prediction error 

(SPE) and the Hotelling’s T
2
 statistics, where SPE is a measure of the representativeness of 

the model and T
2
 is a measure of the difference between the sample condition and the 

average spectrum. Both the SPE and the Hotelling T
2
 of each new sample were checked 

against the reference 95% confidence limits (SPElim and 2
limT ) obtained from the calibration 

data. It was found that both the X
*
dl and the X

*
mix samples showed an SPE value below the 

reference limits, but the X
*
dl samples had an Hotelling T

2
 value much higher than 2

limT . 

Hence, despite the model was found to be extrapolating (within the model plane), the 

classification accuracy for sea bass samples was 100%. 

6.2.3.3 Strategy 2 

Model calibration 

Details on the models calibrated for Strategy 2 (Figure 6.10) are given in Tables 6.14 and 

6.15, respectively for the classification of the samples according to the species and 

according to the status (one model for each species). For the PLS-DA model discriminating 

among species (Table 6.14), average sensitivities and specificities for the four species of 

the calibration dataset are reported. 

With respect to the model discriminating among species (Table 6.14), spectra 

preprocessing only affected the number of the LVs to retain, whereas the explained 

variance on Y and the sensitivities and specificities did not change across preprocessing. 

With the aim of minimizing the preprocessing operations, the model obtained with no 

preprocessing at all was selected. The VIP index of the model pointed to the water and 

lipid contents as the major factors causing differences among the species. Note that the 

possibility of classifying fish (as well as meat) samples according to their species using 

VIS-NIR spectra has already been discussed in the literature (Cozzolino et al., 2002; 

Mamani-Linares et al., 2012). 

Table 6.14. Strategy 2 model statistics for the PLS-DA model 

discriminating among species for different preprocessing techniques 

(calibration data). Average sensitivities and specificities values are 

reported. 

Spectra pretreatment LVs varY (%) Secv (%) Spcv(%) 

No preprocessing 22 70.0 100 100 

SNV 22 70.7 99.9 99.8 

SNV and D-1 20 71.0 100 99.8 

SNV and D-2 16 70.9 100 100 
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Table 6.15. Strategy 2 models statistics for the PLS-DA discriminating 

among status for different preprocessing techniques (calibration data). 

Species Spectra pretreatment LVs varY (%) Secv (%) Spcv(%) 

Xsa 

No preprocessing 9 35.3 86.8 84.9 

SNV 11 41.3 92.5 92.5 

SNV and D-1 5 35.4 86.8 86.8 

SNV and D-2 5 40.4 83.0 79.2 

Xmb 

No preprocessing 13 41.6 88.7 90.6 

SNV 5 39.6 81.1 83.0 

SNV and D-1 8 43.4 86.8 92.5 

SNV and D-2 3 39.22 86.8 86.8 

Xsv 

No preprocessing 10 30.6 88.2 98.6 

SNV 8 25.5 88.2 97.2 

SNV and D-1 3 22.3 88.2 91.5 

SNV and D-2 4 25.9 82.4 93.0 

Xxg 

No preprocessing 15 38.9 89.0 91.1 

SNV 11 34.5 89.0 89.1 

SNV and D-1 8 37.2 86.3 89.1 

SNV and D-2 4 28.4 79.2 78.1 

 

As for the species-tailored PLS-DA models that discriminate for the fish status, no 

preprocessing was used for all species except for Xsa, for which SNV was preferred.
‡
 A 

comparison between Table 6.15 and Table 6.12 shows that, as expected, the sensitivities 

and specificities towards the fresh class are higher than those obtained with Strategy 1. 

 

Model validation 

The accuracy of the PLS-DA model discriminating for the fish species (outer layer) was 

found to be almost 100% on the validation sets V1 and V2, with only four 

misclassifications on the Xsa, Xmb, Xsv and Xxg samples. The fish status classification 

results for the same validation datasets (inner layer) are presented in Table 6.16. 

  

                                                 
‡ Again, it was noticed that derivatives did not improve the classification accuracy, as they just affected the model 

structure. 
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Table 6.16. Strategy 2 fish status classification results for the validation 

datasets. 

Validation 

dataset 
Species 

Fresh samples 

misclassified 

Frozen-thawed 

samples misclassified 

Classification 

accuracy 

V1 

Xsa 5 2 87.0 

Xmb 3 6 83.3 

Xsv 1 0 97.7 

Xxg 5 15 76.7 

V2 

Xsa 24 4 80.3 

Xmb 26 7 76.8 

Xxg 9 5 90.1 

X
*

dl - 2 94.7 

X
*

mix - 40 39.4 

 

The effect of having a PLS-DA model tailored on each species can be clearly appreciated 

from Table 6.16, since for the species used also in the calibration step the classification 

accuracy is greater with respect to that shown in Table 6.13 for Strategy 1, with the 

exception of Xmb for V2 (only one misclassification). As for the X
*
dl and X

*
mix samples, the 

species attribution obtained from the species PLS-DA model was necessarily erroneous, as 

these species were not included in the calibration dataset. The capability of the model to 

adequately describe the samples was poor, i.e. SPE was higher than the reference limits. 

Nevertheless, in order to define which fresh/frozen-thawed classification model use, 

samples were assigned to the class towards which they showed the highest probability of 

attribution. For several samples, however, the class membership was not clear, since the 

probability of assigning the sample to a specific class was below 5% for all classes (i.e., 

species). The majority of the samples for which a class was clearly defined was assigned 

mainly to the sea bream and swordfish classes. 

6.2.3.4 Strategy 3 

Model calibration 

As mentioned in section 6.2.2.3, the selection of the number of orthogonal components to 

remove should be derived from the comparison of the results of multiple criteria (Trygg & 

Wold, 2002). Figure 6.12 presents the effect of the number of OLVs removed on the 

number of LVs retained for the PLS-DA model, as chosen by cross-validation. 
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Figure 6.12. Effect of the number of orthogonal latent variables removed on the final 

PLS-DA model structure (in terms of number of latent variables retained). 

Figure 6.12 clearly shows the effect of the pretreating the spectra prior to the OPLS 

analysis: spectra preprocessing removes an undesired variability and therefore reduces the 

number of OLV to be removed in order to obtain an 1-LV classification model. A model 

obtained with no preprocessing on the spectra was used
§
. According to Figure 6.12, 22 

OLVs need to be removed to obtain a model with 1 LV (note the consistency of this results 

with the number of LV retained in the PLS-DA model of Strategy 1). The final model was 

eventually built by removing 28 OLVs, since an improvement in the sensitivity and 

specificity (in cross-validation) was observed when slightly more than 22 OLVs were 

removed. Details on the models with 22 and 28 OLVs are given in Table 6.17. 

Table 6.17. Strategy 3 OPLS-DA model details (calibration data). 

Spectra pretreatment OLVs OvarX (%) varY (%) Secv (%) Spcv(%) 

No preprocessing 22 84.1 29.8 90.0 92.1 

No preprocessing 28 92.1 31.8 93.9 94.2 

 

OvarX in Table 6.17 represents the percentage of the variability of X removed by the 

OPLS algorithm. It can be concluded that only a very small fraction of the original 

variability was retained (and was therefore useful) for the fresh/frozen-thawed 

classification, as anticipated from the preliminary analysis. A comparison between the 

sensitivities and specificities towards the fresh class (in cross-validation) of the three 

                                                 
§ The variability removed by SNV and/or D1 and D2 was deemed as “uneffective”, since the classification accuracy of 

the final model was similar with and without preprocessing. 
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strategies (Tables 6.12, 6.14 and 6.15, and 6.17) shows that the accuracy of Strategy 3 is 

greater than that of Strategy 1 and 2. 

An additional advantage of the OPLS algorithm is the possibility of analyzing separately 

X and X//. The VIP index obtained from the PLS-DA model calibrated on X to separate 

the samples according to their species (not shown) clearly resembles the one obtained for 

the outer PLS-DA model of Strategy 2. This is reasonable, because the PLS-DA model 

calibrated on X (no preprocessing, 17 LVs, 64.0% of explained variance on Y; Table 

6.14) resembles the outer one calibrated for Strategy 2, i.e. the variability removed from 

the OPLS algorithm contains information related to the species. As a further confirmation, 

by calibrating a PLS-DA model on X//, it was verified that little information about the 

samples species was retained in X//: the model was found to explain only 3% of the 

variability on Y, hence having poor discriminating capability.  

A drawback of pretreating the spectra with the OPLS algorithm was observed in the VIP 

index of the OPLS-DA model. Since the portion of the original X variance retained for the 

fresh/frozen-thawed classification is small, all wavelengths showed VIP values very close 

to one. Thus, it was not possible to identify specific spectral regions responsible for the 

discrimination, since the information retained in X// for the classification of interest is 

related to the correlation among all the wavelengths of the spectra. 

 

Model validation 

The classification results for the validation datasets are presented in Table 6.18. 

Classification results of Strategy 3 are generally good (Tables 6.13 and 6.16). As happened 

for Strategy 1 and 2, for the V2 dataset the X
*
dl samples were found to be far from the 

center of the model plane (large value of the Hotelling T
2
 statistic), and hence the results 

should be taken with caution. 
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Table 6.18. Strategy 3 classification results for the validation datasets. 

Validation 

dataset 
Species 

Fresh samples 

misclassified 

Frozen-thawed 

samples misclassified 

Classification 

accuracy 

V1 

Xsa 0 4 92.6 

Xmb 3 7 81.5 

Xsv 0 1 97.7 

Xxg 1 2 96.5 

V2 

Xsa 31 2 76.8 

Xmb 15 15 78.9 

Xxg 6 6 91.5 

X
*

dl - 1 97.4 

X
*

mix - 12 81.8 

6.2.3.5 Comparison among the proposed strategies 

Table 6.19 provides a compact summary of the classification accuracy in validation for the 

three proposed strategies.  

Table 6.19. Classification accuracy in validation for the three proposed 

strategies. 

Strategy 

V1 V2 Total 

Misclassified 
Classification 

accuracy 
Misclassified 

Classification 

accuracy 
Misclassified 

Classification 

accuracy 

1 47 80.2 122 77.0 169 77.8 

2 37 84.4 117 77.9 154 79.9 

3 18 92.4 89 83.2 107 86.0 

 

Clearly, Strategy 3 outperforms Strategy 1 and 2. As reported by some authors (Trygg and 

Wold, 2002; Svensson et al., 2002), the introduction of the OPLS algorithm is expected to 

be beneficial in terms of interpretation of the results, but it should not affect the overall 

accuracy. Stated differently, the performance of Strategy 1 and 3 are expected to be 

similar. The difference in terms of classification accuracy observed in Table 6.19 may be 

related to the fact that the greatest part of the variability within the calibration data X is not 

related to the classification of interest (i.e. the fresh/frozen-thawed status). 

All the proposed strategies represent a fairly accurate (within the limitation of the FOSS 

spectral range) multi-species classification approach, and these results can open the route 

to the development of a species-independent approach to fresh/frozen-thawed fish 

classification. We stress the fact that all strategies were tested on samples of species not 

included within the calibration datasets and, although the models were found to be 

somewhat extrapolating (within the model plane), classification accuracies were generally 

good. 
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6.2.3.6 Results for UNITY spectra 

All the results presented so far were obtained using a FOSS instrument to obtain NIR 

spectra. Results for UNITY spectra are not reported for the sake of concisness. With 

respect to results of FOSS spectra, classification accuracies were found to be higher 

(82.1% for Strategy 1, 91.0% for Strategy 2 and 88.4% for Strategy 3), thus confirming the 

conclusion drawn in section 6.2.3.5. 

The main difference with the spectral region considered previously is the possibility of 

highlighting some wavelengths that are responsible for the fresh/frozen-thawed 

classification, i.e. some markers of the fish status. It was found that the region above 950 

nm provided the greatest contribution within the classification model of Strategy 3 

(particularly the regions 970-1030 nm and 1060 -1088 nm). The region 950-1100 nm was 

reported as informative for frozen-thawed status on pork meat (Park et al., 2001), and it is 

mainly related to the modification of the water content and NH2 compounds. Additionally, 

changes on the absorbance at 970 nm (second overtone of O-H stretching) were observed 

also in Psetta maxima fillets using NIR imaging (Sivertsen et al., 2011). 

6.2.3.7 Comparison with other studies 

Since several applications of fish sample classification according to their fresh/frozen-

thawed status can be found in the literature, this section compares the classification 

accuracies obtained using the methods proposed in this study compared to those achieved 

with other methods reported in the literature. 

Spectroscopic techniques have been applied to fish muscles, exuded juice or dry meat 

extract (Uddin et al., 2005; Karoui et al., 2006; Karoui et al., 2007; Vidaček et al., 2008; 

Uddin, 2010; Sivertsen et al., 2011; Fernández-Segovia et al., 2012; Leduc et al., 2012; 

Fasolato et al., 2012; Zhu et al., 2012; Chapter 7, Section 7.1; Kimiya et al., 2013). The 

reported classification accuracy ranges between 85% and 96-100%, according not only to 

the instrument considered, but also to the classification strategy employed. The results 

presented in Table 6.19 for the FOSS instrument are generally worse than those reported 

by other authors, but the reason for the difference observed lays mainly in the spectral 

region used for the discrimination (NIR region above 1100 nm vs. VIS/NIR region below 

1100 nm), as the results of the UNITY spectra seem to confirm. Additionaly, many of the 

investigations cited above were meant to be feasibility studies, namely the results were 

obtained using a limited number of samples (generally less than one hundred) having 

relatively limited variability, and only cross-validation statistics are reported. The overall 

classification accuracy obtained in the present study with UNITY spectra (680-1100 nm) is 

comparable with that of other studies (88.5% and 91.0%, respectively for Strategy 2 and 3, 

with values up to 97.0% for some species), but a much larger validation dataset was used 

in the present study. 
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An interesting comparison can be made with the histology-based classification proposed 

by Bozzetta et al. (2012), both because they used part of the same dataset and because it is 

one of the very few examples of a multi-species approach reported in the open literature. 

Generally, the histology-based method achieved higher classification accuracies than those 

presented here, but it must be emphasized that it relied on the operator’s experience and 

required reagents and sample preparation. Additionally, when new (i.e. different from 

those used in the calibration step) species were introduced, the resulting classification 

accuracy was reduced. 

6.3 Conclusions 

The effectiveness of NIR spectroscopy coupled to LVM was shown in this Chapter to be 

an effective tool for food product characterization and fraud detection. 

With respect to the examples presented in Section 1, it was shown that NIRS can be very 

effective for the assessment of the authenticity of wild European sea bass and Asiago 

d’allevo cheese. In both cases, the results obtained were found to be strongly consistent 

with those derived from chemical analysis, which were used as references to check the 

reliability of those based on NIRS. NIRS, however, allows a significant reduction in the 

time and cost of the analysis. 

With respect to the problem of developing a multi-species fresh/frozen-thawed 

classification model from NIR data for fish samples presented in Section 2, three different 

strategies based on LVM have been proposed. In the first strategy, a PLS-DA model was 

built by concatenating vertically the spectra of samples of different species. In the second 

strategy, a cascade arrangement was proposed, where first (outer layer) a PLS-DA model 

separated the samples according to their species, and then (inner layer) a PLS-DA model 

tailored for each species classified the samples according to their status. In the third 

strategy, OPLS-DA was used to remove the variability in the data that is not related to the 

fresh/frozen-thawed status of the samples. The three strategies were tested on a very large 

database of spectra of two NIR instruments exploring different spectral regions, 

respectively from 680 to 1100 nm and from 1100 to 2500 nm, and using also samples of 

species not included in the calibration data. Strategy 2 and 3 returned the best validation 

classification accuracies, with values of 91% and 88.4%, and of 80% and 86%, 

respectively. 
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Chapter 7 

Data fusion to enhance product quality 

characterization
*
 

In this Chapter, the problem of how to combine the information derived from different 

analytical instruments in order to enhance the characterization of product quality is 

discussed through two food authentication case studies. In the first case study, which is 

described in Section 1, the purpose is that of discriminating between fresh and frozen-

thawed fish samples using spectral data and RGB images. In the second case study, which 

is described in Section 2 of the Chapter, the purpose is that of classifying rainbow trout 

fillets according to their rearing farm and genetic strain using spectral, mechanical and 

colorimetric data. The last Section of the Chapter provides some general conclusions. 

7.1 Data fusion for the authentication of fresh goatfish fillets 

7.1.1 Problem statement 

The problem of authenticating fresh West African goatfish fillets (Pseudupeneus 

prayensis) using different analytical technologies, namely a portable visible/near infrared 

(VIS/NIR) spectrometer, a compact digital RGB camera (red, green, blue color space) and 

a texture analyzer (whose use in fish characterization has already been reported, though not 

specifically to identify the fresh/frozen-thawed substitution fraud; Montero et al., 2004; 

Costa et al., 2011), is discussed in this Section. Pseudupeneus prayensis fillets are 

commonly marketed in Italy and often subject to fraud since the commercialization area is 

far from the fishing area.  

To capture as much as possible the variability that can be encountered in the case of an on-

line/at-line application, a large number of samples (more than 200) were collected along 

                                                 
*
Ottavian, M., L. Fasolato, L. Serva, P. Facco and M. Barolo. Data Fusion for Food Authentication: Fresh/Frozen-

Thawed Discrimination in West African Goatfish (Pseudupeneus prayensis) Fillets. Food Bio. Tech., DOI: 
10.1007/s11947-013-1157-x. 

Dalle Zotte, A., M. Ottavian, A. Concollato, L. Serva, R. Martelli and G. Parisi. Authentication of Raw and Cooked 
Freeze-Dried Rainbow Trout (Onchorhyncus mykiss) by Means of Near-Infrared Spectroscopy and Data Fusion. Food 
Res. Int., DOI: 10.1016/jfoodres.2013.10.033. 
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almost one year. All the analytical technologies tested are fast and can work in an on-

line/at-line fashion in the production chain. However, while both the VIS/NIR 

spectrometer and the digital camera have the additional advantage of being non-invasive 

(requiring no sample preparation at all), sample texture measurement through the texture 

analyzer is destructive and requires one to remove samples from the production chain. 

Additionally to the comparison among the abovementioned techniques, information from 

different sensors were also combined into a unique model through the fusion of different 

analytical technologies. Data fusion was intended to enhance the classification accuracy 

(Bruwer et al., 2007; Cozzi et al., 2009; Casale et al., 2010). 

7.1.2 Materials and methods 

7.1.2.1 Sampling  

The N = 222 samples of West African goatfish (Pseudupeneus prayensis) were collected in 

the middle-eastern Atlantic Ocean (Senegal, FAO 34). 

Samples were immediately filleted (manually) by qualified personnel (in Senegalese 

facilities certified by the European Union). Freezing was carried out at –35 °C soon after 

filleting, and frozen fillets were then stored at –18 °C for 48 h prior to the analysis. All 

samples arrived to the laboratory covered in a plastic bag (to avoid drying) within 2 days 

after fishing: frozen samples were transported at –18 °C, and fresh samples at 2 °C. The 

fillets to be used as fresh standards were analyzed upon arrival to the laboratory, whereas 

the fillets to be used as frozen-thawed standards were analyzed after thawing the samples 

at 4 °C overnight (standardized, 18 ± 2 h) and after additional 30 min of exposure to the air 

at room temperature. Before the analysis, all samples were weighed. Samples were all 

characterized by the same initial quality. In fact, a sensory analysis carried out by a trained 

panel of experts assigned all samples to the same freshness category (“2 = very good” on a 

“1 = excellent” to “4 = poor” scale, according to the internal standard of the industrial 

partner that provided the samples).  

Table 7.1. Number of samples considered in the study. 

Sampling period Fresh Thawed 

Dataset 1 (June) 53 50 

Dataset 2 (November) 51 - 

Dataset 3 (January)
†
 35 33 

Total 139 83 

†
 10 samples (5 for each class) were analyzed 24 hours after the other samples. 

 

As reported in Table 7.1, for Dataset 3 ten samples (five per class) were analyzed with a 24 

h delay with respect to the other samples (during the 24 h, they were kept at 4 °C and 
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covered with a plastic bag). These samples were considered only for the purpose of testing 

the classification model performance. The reason beyond the choice of the 24 h delay is 

that in Italian legal practices the recommended shelf life of frozen-thawed fish is 24 h. An 

example of the data collected (NIR spectra, RGB images and shear stress profile, collected 

on the spine side) is given in Figure 7.1. 
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 (a)                                                 (b)                                                       (c)  
Figure 7.1. Example of the available data: (a) NIR spectra, (b) RGB images and (c) 

shear stress force. In (b) the sampling site for the NIR spectra is indicated. 

7.1.2.2 NIR spectroscopy data 

VIS/NIR spectra were collected without sample pretreatment using a portable instrument 

(VIS/NIR diode array, Hamamatsu S3904) scanning wavelength from 300 to 1100 nm in 

transflection mode at 2 nm intervals. Spectra were collected from the cranial muscle 

portion of the fillets avoiding regions with evident residual blood: the area, which is 

indicated in Figure 7.1b, was approximately one fifth of the whole fillet area (see Figure 

7.6 for more details on the fillets area). Spectra were collected in triplicate and then 

averaged. No preprocessing on the spectral data was applied prior to the statistical 

analysis
†
. An example of the available data is given in Figure 7.1a. In the following, the 

VIS/NIR spectra matrix will be identified as XNIR = [N×M1], where M1=401 is the number 

of wavelengths considered. 

7.1.2.3 RGB images  

Images were collected using a compact digital camera Kodak EasyShare M530 (RGB 

images of size [4000×3000] pixels saved in .jpg format) within the photographic box 

described in Chapter 1. Figure 7.1b gives an example of the available images. The camera 

was kept at 60 cm above the fish fillets with a resulting resolution of 1 pixel = 1.8·10
-5

 

cm
2
, and images were taken in the automatic mode with a fixed exposure compensation (-

                                                 
† It was verified that pretreating the data does not improve the classification results, and can even worsen them if 

derivatives are applied. 
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2, according to the camera user manual). All images were collected using a black 

background, a white ceramic standard and a ruler (to roughly check resolution).  

After conversion to grayscale, images were segmented using two thresholds (a lower one 

and an upper one to filter out the background and the white ceramic standard, 

respectively). An example of the mask identified from the thresholding procedure is given 

in Figure 7.2. Two series of features (namely, color and textural features) were then 

extracted from the segmented images. 

 

                          (a)                           (b)                            (c)                             (d)                     (e) 
Figure 7.2. Schematic of the procedure to extract the sub-image used in the texture 

analysis. (a) Original image, (b) mask obtained from thresholding, (c) detection of the 

major axes, (d) example of rectangles including mask pixel and (e) example of a sub-

image. 

Color-related information within each image was summarized into M2=12 features, namely 

the mean, standard deviation, skewness and kurtosis of the light intensity distribution of 

the red, green and blue channels. Hence, a matrix [N×M2] was created that will be 

indicated as Xcolor in the following. 

Texture-related information was extracted from the grayscale images by means of the 

wavelet transform (see Chapter 2, Section 2.2.2). For the available dataset, six resolution 

scales were found to be sufficient (Facco et al., 2010). At each scale, six textural 

descriptors were extracted from each approximation: mean, standard deviation, skewness, 

kurtosis, entropy and energy of the light intensity distribution. This procedure generates an 

[N×M3] matrix that will be indicated as Xtexture
‡
, where M3=36 derives by the extraction of 

6 textural indices from the 6 relevant resolution scales of the wavelet decomposition. Since 

                                                 
‡ Xtexture will be used throughout the paper to indicate the texture measurement obtained from the images. The texture-

related information obtained from the texture analyzer through the analysis of the shear stress profiles, instead, will be 

indicated as Xshear. 
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wavelet transform can be applied only to matrices (i.e. images of regular shape), texture 

analysis using wavelets requires an additional preprocessing step on the images after 

segmentation, with the aim of framing the greatest possible area of the fillet within a 

rectangular region. This sub-image extraction was carried out through the automated 

process shown in Figure 7.2. The procedure goes through the following steps: after 

extracting the fillet from the background, the image is converted into a binary black-and-

white image (where black is background and white the goatfish fillet) and the major axes 

of the fillet are identified (Pratt, 1991); after rotation around the fillet centroid, the area of 

all the rectangles including fillet pixels is evaluated, and the biggest one containing only 

fillet pixels is selected as the relevant sub-image. 

7.1.2.4 Shear stress analysis  

The shear stress profiles of each sample were evaluated using a TA-HDi texture analyzer 

(TA.xT2i Stable Micro System, Survey, UK) with a 100 kg load cell, 2 g of resolution, 

speed between 0.01 and 10 mm/s, equipped with a multiple blade probe (Kramer 10 blade 

– HDP/KS 10) that allows one to test the entire fillet surface. For each sample, a profile of 

the force versus time was obtained: positive forces were recorded at the beginning of the 

trial and until the sample was completely destroyed, whereas negative forces were 

recorded while the probe was returning to its initial position, the force being negative as a 

result of the cohesion between the fish meat and the probe itself. The information stored 

within the force profiles was summarized into six features, namely: the maximum force, 

the standard deviation of the positive part of the shear profile, the ratio between maximum 

and mean force (for the positive part of the signal), the work required to destroy the 

sample, the minimum force and the work of the probe during its way back. The M4=6 

features were normalized on the sample weight with the aim of accounting for size effects, 

and stored into an [N×M4] matrix that will be indicated as Xshear. A similar technique, with 

analogous descriptors of the force profile, was used also by Bruwer et al. (2007) for the 

analysis of snack food. 

7.1.2.5 Data analysis 

PCA was used as an exploratory tool of the available data, while PLS-DA was used for 

sample classification. In order to combine and fuse the information derived from different 

analytical techniques, data were arranged in a multiblock fashion (Westerhuis et al., 1998). 

Namely, matrices were concatenated horizontally (as sketched in Figure 7.3) and block-

scaled, i.e., each variable was scaled according to: 

 

km

mmn

mn
M

xx
x

k

kk

k σ

.

.


  (7.1) 



152  Chapter 7 

________________________________________________________________________ 

© 2014 Matteo Ottavian, University of Padova (Italy) 

where 
kmx  and 

kmσ  represent the mean and standard deviation of each variable. The 

division by the square root of the number of columns (variables) of the block ensured the 

same representativeness of each block.  

XNIR Xcolor XshearX = 

N

M1

Xtexture

M2 M3 M4

 
Figure 7.3. Horizontal concatenation of the matrices of data obtained from different 

sensors within a multiblock framework. 

The samples to be used for calibration and validation were selected using a 2/3 – 1/3 split 

of the data and a D-optimal approach (de Aguiar et al., 1995) applied to the score obtained 

from a multiblock PCA model. 

7.1.3 Results and discussion 

7.1.3.1 Preliminary considerations 

The purpose of this section is to explore the sources of variability within the data. Namely, 

since the samples were collected in three different periods of the year (Table 7.1) and the 

sample sizes were different, it was important to assess whether seasonality and size effects 

were present and, if so, whether they could be recovered from each of the three analytical 

technologies used throughout the study. This preliminary investigation is a key step to 

calibrate a robust classification model
§
. 

First, PCA was used to assess whether or not the samples showed a seasonality effect. A 

PCA model was calibrated on Dataset 1 for each of the three analytical technologies, and 

Dataset 2 and 3 samples were projected onto each model. As an example, model residuals 

are shown in Figure 7.4a for the spectral dataset (XNIR). It can be observed that both 

Dataset 2 and Dataset 3 samples display different variability with respect to the calibration 

samples. In fact, a fraction much larger than 1 % of the projected samples have a SPE 

value that exceeds the 99% confidence limit SPElim. A similar behavior was obtained by 

calibrating the PCA model on Dataset 2 (or 3) and projecting the samples belonging to the 

left-out datasets onto it. Overall, this means that the three datasets are different according 

to their VIS/NIR spectra, i.e. that VIS/NIR spectra can indeed display the seasonality effect 

across samples. 

                                                 
§ Please note that the term robustness is used here referring to the sources of variability (such as seasonality and sample 

size) the available data explicitly account for. Other sources of variability, whose effect on the fresh/frozen-thawed 

discrimination capability has been demonstrated by other studies to be limited, were not considered. 
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                                            (a)                                                                                  (b) 
Figure 7.4. Preliminary PCA analysis on the NIR spectra: (a) model residuals; (b) 

contributions plot for a sample whose residual SPE exceeds the confidence limit SPElim. 

The dash-dotted lines in (a) and (b) represent the 99% confidence limits. 

Similar results were obtained when images were used to build the PCA model; however, 

when shear stress profiles were employed all samples conformed to the PCA model. This 

leads to the conclusion that the seasonality effect can be detected from the PCA analysis of 

the NIR spectra and of the images, but not from the shear stress profiles. To further 

investigate this issue, the contributions plot for one of the Figure 7.4a samples exceeding 

the SPElim confidence limit is reported in Figure 7.4b. This figure suggests that the region 

around 700 nm, which exceeds the confidence limits defined for the contributions (dashed 

line), is responsible for the anomalous SPE value of the sample. Similar results were 

obtained also for other samples exceeding the confidence limits in the SPE plot (whether 

they belonged to Dataset 2 or Dataset 3); the region around 700 nm always provided the 

greatest contribution to the difference in the variability between Dataset 1 and Datasets 2 

and 3. This region is characterized by the absorbance of the red color. The existence of a 

difference between samples related to the absorbance of the red color was confirmed also 

by the analysis of the contributions plot obtained with the color features in image analysis 

(not shown), where anomalous values for Dataset 2 and 3 were observed for the average 

value of the red channel. Hence, seasonality seemed to produce a color difference across 

the year. A detailed analysis of the loading plots (not shown) revealed that Dataset 1 

samples exhibit the highest redness, and that the redness level decreased across the 

datasets, with Dataset 3 samples having the lowest redness values. Although there exist 

several muscles factors (e.g., anatomic location of the samples, fibers density/diameter, 

blood residual, proximate composition) or environmental or animal conditions (e.g, sexual 

maturity, feeding, methods of slaughtering) affecting the fillets color (Johnston, 2001; 

Schubring, 2010), some authors reported changes of fillet redness throughout the year both 

in reared and caught fish (Waters, 1982; Roth et al., 2005; Herland et al., 2010). It should 

be noted that the conclusion drawn about the seasonality effect are not dependent on the 
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fresh/frozen-thawed status of the samples; hence, at this point of the analysis, it is not 

relevant that for Dataset 2 there were no frozen-thawed samples available. 

The seasonality highlighted by the PCA analysis must be taken into account in order to 

calibrate a robust fresh/frozen-thawed classification model. Namely, to compensate for the 

observed seasonality effect, the samples used for the calibration of the classification model 

must be chosen from all three datasets. Furthermore, for the comparison of the 

classification performance using different instruments to be fair, the same samples should 

be used for model calibration, independently from the analytical technology considered. To 

this purpose, first a multiblock PCA model was built on the matrix X obtained from the 

horizontal concatenation of XNIR, Xcolor and Xshear, i.e. X = [XNIR Xcolor Xshear]. Four PCs 

were retained, explaining 75% of the total variance, with 32% on PC1, 19% on PC2 and 

13% on PC3. Then, a D-optimal sample selection was carried out on the these scores: in 

this way, the samples that better described the entire variability were selected, and this 

selection (which will be used in all classification exercises discussed later) was consistent 

for the three analytical technologies. Note that the Xtexture data were excluded from the final 

multiblock PCA model because, as it will be clarified in the next Section, they were not 

predictive of the fresh/frozen-thawed status of the fish fillets. 

Details on the partitioning of the samples into the calibration and validation sets are given 

in Table 7.2. The scores of the resulting multiblock model are shown in Figure 7.5 with 

two alternative ways of sample highlighting: by dataset (Figure 7.5a) and by size (Figure 

7.5b). 

Table 7.2. Number of calibration samples per class and per season according to the D-

optimal selection approach. 

Sampling period Fresh Thawed 

Dataset 1 (June) 25 40 

Dataset 2 (November) 35 - 

Dataset 3 (January) 25 17 

Total 85 57 

 

Figure 7.5a indicates that samples from different datasets tend to separate, confirming the 

existence of a seasonality effect. Figure 7.5b suggests that an additional source of 

variability within the available data is given by the sample size. Although this source of 

variability was observed also on the PCA models calibrated on XNIR, Xcolor and Xshear 

separately, the D-optimal selection of the calibration samples through the multiblock 

approach allowed its inclusion within the classification model, thus ensuring robustness. 
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Figure 7.5. PC1 and PC2 scores of a multiblock PCA model built on the matrix 

obtained from the concatenation of XNIR, Xcolor and Xshear (calibration data). Samples 

are highlighted by (a) season and (b) size. 

The weight and the exposed surface area of all samples are given in Figure 7.6; note that 

the area was measured from the images, knowing the number of the fillet pixels (Figure 

7.2) and the image resolution. Both weight and area were scaled with respect to their own 

average value (28.1 cm
2
 and 22.0 g, respectively) in order to highlight the observed high 

correlation (the correlation coefficient was found to be equal to 0.96); incidentally, this 

suggested also the possibility of measuring the sample weight directly from the image 

(Gümüs and Balaban, 2010). The size effect was mainly explained by PC1 of the 

multiblock PCA, as clearly shown in Figure 7.5b. An arbitrary cut-off of 20 cm
2
 was 

defined on the area in order to discriminate between “small” and “big” samples. The 

choice of an arbitrary cut-off is justified from the fact that few data are available on the 

biology of this species (Azzouz et al., 2010). 
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Figure 7.6. Scaled area (solid line) and weight (dashed line) of the entire set of 

available samples. 
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7.1.3.2 Fresh/frozen-thawed classification from single analytical technologies 

The results of the fresh/frozen-thawed classification obtained from each of the available 

analytical technologies are given in Table 7.3. 

Table 3. Fresh versus frozen-thawed PLS-DA classification results expressed in terms 

of sensitivity (Se) and specificity (Sp) towards the fresh class. 

 
Calibration  Validation  Validation after 24h 

 
Se Sp  Se Sp  Se Sp 

XNIR 100 100  100 100  60 100 

Xcolor 100 98  98 100  80 80 

Xtexture 57 60  44 44  60 60 

Xshear 95 79  96 31  80 20 

 

As anticipated in the preliminary data analysis, image texture (Xtexture) is not informative 

on the status of the fish, returning a poor classification performance. For the results shown 

in Table 7.3, the percentage of variance explained by the Xtexture model in calibration and 

cross-validation was very poor, i.e. below 1%. Information on shear stress Xshear, instead, is 

more informative, though characterized by low specificity values especially in the 

validation datasets. The results of Table 7.3 contrast with those reported by Zhu et al. 

(2013), who found image texture to be predictive of the fish status. The discrepancy could 

be due to the much higher variability considered in the present study (as discussed in the 

previous Section), the different classifier employed (linear versus non-linear), the type of 

images and their resolution (RGB versus hyperspectral) and the species considered in the 

analysis (goatfish versus halibut). Furthermore, the selection of a limited portion of the 

whole fillet (Figure 7.2) clearly introduces an approximation that can negatively affect the 

classification results (Sivertsen et al., 2011). This approximation, together with the quality 

of the images, could also explain the discrepancy between the performances of the models 

centered on Xtexture and Xshear.  

Excellent classification performances were obtained from the VIS/NIR spectra (XNIR) and 

the color features (Xcolor), though some errors were still observed in the validation set of 

the 10 samples analyzed 24 hours later (Table 7.1). The VIP index for the two PLS-DA 

models is shown in Figure 7.7. 
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 (a) (b) 
Figure 7.7. VIP index for the PLS-DA classification models obtained from (a) NIR 

spectra and (b) color features. The dashed red line indicates the threshold value (VIP = 

1). 

For the VIS/NIR spectra, the VIP index (Figure 7.7a) indicated the wavelength regions 

around 470, 560, 610, 930 and 970 nm as the most predictive of the fish status. These 

results were consistent with those reported from other researchers on different species. The 

wavelengths around 470 nm could be associated to the metmyoglobin (metMb). Liu and 

Chen (2001), though referring to chicken samples, suggested that the variation in the 

absorbance of this region is related to an early enzymatic degradation of metMb during 

thawing. Additionally, Fasolato et al. (2012) related the region between 450 and 520 nm to 

deoxymyoglobin. 

The peak centered around 560 nm (corresponding to the heme-pigments) was associated 

with various forms of myoglobin or hemoglobin, while the shift observed around 610 nm 

(reported also by Sivertsen et al., 2011, in samples of Gadus morhua) was linked to a 

different amount of the oxy-hemoglobin. The wavelength at 930 nm was related to the 

third overtone C–H stretch in lipid and protein, as observed in Psetta maxima samples 

(Zhu et al., 2012). The region around 970 nm (the second overtone band of O–H stretch) 

was highlighted also by Uddin et al. (2005) and Zhu et al. (2013). Particularly, Uddin et al. 

(2005) reported that the higher absorbance showed by fresh samples could be ascribed to 

the different scattering effect on the intact tissue of fresh flesh. Hence, the region around 

970 nm can be linked to the exudates released, a conclusion supported by the drip loss 

analysis.  

For the color features extracted from the RGB images, the VIP index (Figure 7.7b) 

indicated the descriptors of the light intensity distribution of the green and blue channels 

(G and B skewness and kurtosis) as the most informative. It was difficult to relate the 

outcomes of the VIP index with the appearance of the fillets: looking at the images, it 

seemed that frozen-thawed fillets appeared to be more opaque than the fresh ones. 

Generally speaking, several authors reported color changes that fish fillets may undergo 
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due to several factors such as storage, slaughtering, muscle pH, etc. (Ruff et al., 2002; 

Guillerm-Regost et al., 2006; Roth et al., 2007; Roth et al., 2009), and these changes are 

typically species-dependent. Considering frozen products, the oxidation of the heme 

pigments (from myoglobin to met-myoglobin) has been usually linked to changes in the 

meat appearance (e.g. tuna, swordfish). Addis et al. (2012) related recently the effect of the 

freezing treatment to the red and blue RGB channels on bluefin tuna (Thunnus thynnus). 

Commonly a yellowish discoloration and an opaque appearance were described in lean fish 

(Connell, 1995). A change from translucent to opaque was reported also during the frozen 

storage of trout fillets, and linked to protein denaturation (Ozbay et al., 2006).  

It should be stressed that both for the spectra and for the images the information related to 

the redness of the sample (wavelength around 700 nm and features of the red channel R) 

were not relevant within the classification model, consistently with the results of the 

seasonality analysis (which was not explicitly taken into account in Addis et al., 2012). 

The classification results on the analyses carried out with a 24-hour delay were found to be 

poor for all the analytical technologies considered (at least two misclassifications; see 

Table 7.3), though the analysis of the model residuals revealed that the samples could be 

adequately described by the model. The misclassifications may be related to the 

physicochemical changes occurring in both fresh and frozen-thawed fillets during the early 

time of storage. Though such changes (such as the heme-pigment oxidations, the change in 

fillets hardness and appearance due to the release of liquids, etc.) are not detected from the 

models, they can negatively contribute to their performance. 

An effect of the variability within the data was observed within the model structure. Both 

the PLS-DA models on XNIR and on Xcolor were built on a relatively high number of LVs 

(13 and 5, condensating the 401 variables of XNIR and the 12 variables of Xcolor, 

respectively), as a confirmation that the information about the status of the fish fillets was 

somehow hidden within the data. 

As discussed earlier, two major sources of variability were shown to characterize the 

available data, namely sample seasonality and size. When a fresh/frozen-thawed 

discrimination model is built, it is very important to explicitly take these factors into 

account, although this has been seldom (if ever) done so far (Zhu et al., 2013). Other 

factors may in principle affect the fresh/frozen-thawed classification model performance, 

such as the storage and freezing conditions (both temperature and time) and the product 

shelf life. However, with respect to the former factors, Fasolato et al. (2012) and Zhu et al. 

(2013) have shown that these conditions have limited  impact on the possibility of correctly 

discriminating between fresh and frozen-thawed samples using either VIS/NIR spectra or 

NIR imaging. With respect to the product shelf life, Sivertsen et al. (2013) have drawn 

similar conclusions using VIS/NIR spectra and imaging: though the wavelengths related to 
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the sample freshness partially overlapped to those responsible for the fresh/frozen-thawed 

classification, the authors reported a classification accuracy close to 90%. 

7.1.3.3 Data fusion for fresh/frozen-thawed classification 

Information from different analytical technologies were fused using a multiblock 

framework with the aim of improving the classification performance of the second 

validation dataset (i.e., the 24 h validation data). Image texture data Xtexture were excluded 

because of the limited content of information retained for classification purposes. All 

possible combinations of the three data matrices were fused to evaluate the classification 

performance. The classification results are shown in Table 7.4. 

Table 7.4. Multiblock PLS-DA classification results expressed in terms of sensitivity 

(Se) and specificity (Sp) towards the fresh class for all the fusion combinations 

explored. 

Fused data 

combination 

Calibration Validation Validation after 24h 

Se Sp Se Sp Se Sp 

XNIR, Xcolor 100 100 98 100 100 100 

XNIR, Xshear 99 100 98 100 80 100 

Xcolor, Xshear 100 100 98 100 100 100 

XNIR, Xcolor, Xshear 100 100 98 100 100 100 

 

As can be clearly seen from Table 7.4, the fusion of different information significantly 

improved the classification results, particularly for the 24 h validation data. Note that 

Xshear, which returned poor specificity values if considered alone (Table 7.3), turned out to 

be informative when coupled with other data. Among the possible combinations of Table 

7.4, the the first one is of utmost importance for two reasons: the camera and the VIS/NIR 

spectrometer avoid to destroy the sample, and the measurements are very fast. Hence, the 

fusion of digital camera and VIS/NIR spectrometer would be preferable for potential in-

line/at-line inspections. Figure 8 presents the VIP index for the multiblock PLS-DA fusing 

spectra and color features. 

It is shown that the color features have an higher impact within the multiblock 

classification model than the spectra. As for the color features, the profile of the VIP index 

resembles that of Figure 7.7b, though the importance of the features of the red channel (in 

terms of mean and kurtosis) was found to be different. This can be explained considering 

that the multiblock approach (and, as a consequence, the VIP index) describes also the 

correlation between the variables of different blocks (e.g., the mean of the red channel and 

the region of the spectra around 700 nm). 
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Figure 7.8. VIP index for the multiblock PLS-DA classification model fusing NIR 

spectra and color features. 

7.2 Data fusion for the authentication of rainbow trout fillets 

7.2.1 Problem statement 

Rainbow trout (Oncorhinchus mykiss) is a North American salmonid which typically lives 

in oxygenated and clear waters. Thanks to its resistance to temperatures up to 20 °C, 

however, it proves capable of adaptation to many areas. The top ten countries in the 

farming of freshwater trout (O. mykiss and S. trutta above all) are Turkey, Iran, France, 

Italy, USA, Denmark, Spain, Germany, Poland, and China. In 2006, these countries 

produced about 75% of all farmed freshwater trout, for an overall value of about 1.3 billion 

USD. 

The purpose of this study was to evaluate the performance of NIRS as a fast, cost-effective 

and non-destructive method for the assessment of both raw and cooked rainbow trout 

(Oncorhynchus mykiss) fillet quality. Samples of five different genetic strains from three 

different rearing farms were considered. Following Gjerde and Martens (1987), who 

showed that water absorption bands might interfere with important spectral bands of other 

analytes, fillets were freeze-dried before NIR analysis. Since NIR spectra classification 

was found to be less accurate in regard to genetic strain, a data fusion approach was 

adopted to improve the results. Spectral information was fused with mechanical properties 

and colorimetric data within a multiblock framework resulting in higher classification 
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accuracy. To the author knowledge, this is the first study that attempts to classify samples 

by genetic strain using NIR spectra. 

7.2.2 Materials and methods 

7.2.2.1 Sampling 

A total of N =150 farmed rainbow trout (Oncorhynchus mykiss) fillet samples was used in 

this study. Samples of five different genetic strains (indicated as IT1, IT2, IT3, USA and 

UK, according to origin) and three different rearing farms (in Trentino Alto Adige region 

in northeast Italy, indicated as farms A, B and C) were considered, for a total of ten 

samples per farm per genetic strain, i.e. N = 10 (samples)  3 (farms)  5 (genetic strains). 

Farm characteristics were as follows: farm A - indoor rearing tanks supplied with well 

water at a constant temperature (range: 11-14 °C) throughout the year; farm B - outdoor 

rearing (temperature range: 9-11 °C); and farm C - outdoor rearing (temperature range: 3-

14 °C). 

Fish were collected after reaching average weight greater than 600 g (i.e., their commercial 

size). Twenty-four hours post mortem, fish were filleted and fillets were transported in 

refrigerated condition to the laboratory and immediately processed. Left and right fillets of 

each specimen were both weighed and analyzed: the former were used to evaluate raw 

fillet properties; the latter were used to evaluate cooked fillet properties. As regards the 

latter, prior to physiochemical analyses, each sample was wrapped in aluminum foil and 

boiled in a steamer for 10 minutes, then cooled at room temperature and weighed after 

broth removal. Cooking loss was then calculated and expressed as percentage of weight 

decrease. 

7.2.2.2 NIR spectroscopy data 

After the freeze-drying process, fillets were ground twice with a Retsch Grindomix GM 

200 (Retsch GmbH, Hann,Germany) at 4000 rpm and then at 8000 rpm per 10s. Two 

aliquots per sample were placed in a 50 mm diameter ring cup and scanned in reflectance 

mode at 2 nm intervals from 1100 nm to 2500 nm using a scanning monochromator 

NIRSystem 5000 (FOSS NIRSystem, Silver Spring, MD, USA). For each sample aliquot, a 

mean spectrum was obtained by averaging from 32 multiple scans; the spectrum of the 

sample was then obtained by averaging those of the two aliquots. 

7.2.2.3 Chemical analysis 

For each sample, the chemical properties analyzed were moisture (method 934.01; AOAC, 

2002), protein (method 992.15; AOAC, 1993), total lipid content (method 920.39; AOAC, 

2002), and ash (942.05; AOAC, 2002). Fatty acid profiles of freeze-dried samples were 
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analyzed by gas chromatography (Morrison and Smith, 1964) after Folch extraction (Folch 

et al., 1957). 

7.2.2.4 Physical analysis 

Texture and color information were collected using a Zwick-Roell® texture analyzer 

(Zwick-Roell, Ulm, Germany) and a Spectro-color® meter (Dr. Lange, Düsseldorf, 

Germany), respectively. 

The compression test was repeated three times in three different fillet positions (epaxial, 

ventral and caudal) using a cylindrical probe, a 200 N load cell, and at 20 mm/min 

(constant) speed. The shear stress test was carried out in the middle of the fillet using a 

linear blade, a 200 N load cell, and at 30 mm/min (constant) speed. Data were collected in 

terms of compression force or shear stress at different percentage of deformation (with 

respect to the original dimension) and at different absolute deformation (in mm). 

CIELAB L, a and b (i.e. the three color indexes obtained from the colorimeter; CIE, 1974) 

were obtained by averaging from three replicates for each measurement point. Hue angle 

and chroma values were derived from a and b. 

7.2.2.5 Data analysis 

Several chemometric tools were used to analyze the available data: PCA for preliminary 

data analysis, PLS for estimating chemical properties from NIR spectra, and PLS-DA, 

LDA, QDA and kNN for their classification. Furthermore, in order to improve 

classification accuracy, data from different instruments (spectra, mechanical properties, 

color information, etc.) were fused within a multiblock framework as described in Section 

7.1.2.5. Please note that while PLS-DA models are calibrated directly on the available data, 

LDA, QDA and kNN models are calibrated on the scores obtained from their PCA 

decomposition. In the latter case, cross-validation is used to optimize the number of PCA 

factors (and, for kNN, the number k of neighbors to consider; Balabin et al., 2010). 

In order to validate the proposed models, the data were split into two groups: 120 samples 

were used in the calibration step, while the remaining 30 (2 samples per farm per genetic 

strain) were used for model validation. Model parameters were selected in cross-validation 

(Wold, 1978) of the calibration data using a venetian blind algorithm. 

Please note that except for the PCA models used in the preliminary data analysis, all 

models were built on raw and cooked freeze-dried fillets separately. 
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7.2.3 Results and discussion 

7.2.3.1 Preliminary considerations 

The average NIR spectra for both raw and cooked fillets are shown in Figure 7.9. 
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Figure 7.9. Average raw and cooked freeze-dried rainbow trout samples. 

The main result of the cooking process is a downshift of the spectra. Figure 7.9 reveals the 

existence of two regions (around 1400 nm and around 1900 nm) in which the difference is 

minimal, and this is consistent with the freeze-drying treatment of the samples because 

water absorbance is usually reported for these regions (Murray, 1986). 

The score plots of a 3 PCs PCA model calibrated on the [300700] matrix of the spectra 

(raw and cooked fillets, with no spectra pretreatments applied) are shown in Figure 7.10.  

PC1, explaining 95% of the total variance, mainly accounts for the difference between raw 

and cooked samples (see Figure 7.10a). The loading values on PC1, in fact, are almost the 

same for the entire spectral range considered, indicating that the difference between raw 

and cooked samples can be mainly related to average absorbance clearly observed in 

Figure 7.9. 

In Figure 7.10b-c, the scores of the raw samples are highlighted by their respective farm 

(Figure 7.10b) and genetic strain (Figure 7.10c). The plots suggest that at least in the PC1-

PC2 plane, samples of different farms or genetic strains are not linearly separable, and that 

non-linear classifiers (such as QDA and kNN) might be necessary. Similar behavior was 

observed also for cooked samples. 
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Figure 7.10. PC1-PC2 score plot of the preliminary PCA model built on the spectra 

matrix. In (a) raw and cooked samples are highlighted differently. In (b) and (c) raw 

samples belonging to different farms and genetic strains (respectively) are highlighted 

differently. 

7.2.3.2 Classification 

Results of the four classification strategies are given in the following for the raw freeze-

dried fillets. Results for the cooked freeze-dried fillets are not reported here for the sake of 

conciseness. The accuracy of the models was approximately the same in the two cases, i.e. 

the cooking process did not alter the discriminating capabilities previously observed. 

For each classification strategy, model parameters (LVs of the PLS-DA models, PCs of the 

PCA models for LDA, QDA and kNN, and k for kNN), spectra pretreatment (no 

pretreatment, SNV and/or its combinations with derivatives D1 and D2, i.e. the four 

combinations tested), and calibration, cross-validation and validation accuracies are 

presented. 

Results for classification by farm using NIR spectra are given in Table 7.5. With the 

exception of the PLS-DA model, classification accuracies were found to be fairly similar 

among models. It is interesting to note that  NIR permitted not only discrimination between 
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farm A (indoor rearing, hence with more uniform and controlled fish farming conditions) 

and farms B and C (outdoor rearing), but also between farms B and C, which differed in 

terms of water temperature, altitude (400 and 700 m a.s.l., respectively), and dissolved 

oxygen (8.25 and 10.35 ppm, respectively). 

Table 7.5. Classification by farm from NIR spectra of raw samples: results. 

Model 
Model 

parameters 

Spectra 

pretreatment 

Calibration 

accuracy (%) 

Cross-validation 

accuracy (%) 

Validation 

accuracy (%) 

PLS-DA 5 LV SNV & D2 85.8 69.2 86.7 

LDA 16 PC No preprocessing 100 100 100 

QDA 12 PC No preprocessing 100 100 100 

kNN k = 5, 16 PC No preprocessing 98.3 98.3 96.7 

 

In confirmation of the conclusions drawn from the preliminary analysis (see Section 

7.2.3.1), a high number of PCs were retained for classification (with the difference 

between the PLS-DA model and the other models consisting mainly of the pretreatment on 

the spectra). 

Results for classification of raw samples by genetic strain are given in Table 7.6 for NIR 

spectra and in Table 7.7 for proximate composition, color and mechanical properties. 

Table 7.6. Classification by genetic strain from NIR spectra of raw samples: results. 

Model 
Model 

parameters 

Spectra 

pretreatment 

Calibration 

accuracy (%) 

Cross-validation 

accuracy (%) 

Validation 

accuracy (%) 

PLS-DA 17 LV SNV & D2 62.5 44.2 36.7 

LDA 21 PC No preprocessing 92.5 66.7 60.0 

QDA 9 PC No preprocessing 85.8 62.5 53.3 

kNN k = 5, 14PC No preprocessing 90.8 90.8 60.0 

 
Table 7.7. Classification by genetic strain from proximate composition and color and 

mechanical properties of raw samples: results. 

Data Model 
Model 

parameters 

Calibration 

accuracy (%) 

Cross-validation 

accuracy (%) 

Validation 

accuracy (%) 

Proximate 

composition 

PLS-DA 4 LV 40.8 33.3 26.7 

LDA 4 PC 38.3 33.3 23.3 

QDA 3 PC 35.0 30.0 30.0 

kNN k = 3, 1 PC 89.2 89.2 26.7 

Color 

PLS-DA 15 LV 65.0 53.3 60.0 

LDA 14 PC 70.0 54.2 53.3 

QDA 10 PC 76.7 49.2 56.7 

kNN k = 1, 12 PC 81.7 81.7 63.3 

Mechanical 

properties 

PLS-DA 20 LV 64.2 41.7 43.3 

LDA 11 PC 55.8 45.8 53.3 

QDA 11 PC 82.5 47.5 46.7 

kNN k = 3, 4 PC 82.5 82.5 43.3 
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Cross-validation and validation accuracies (which more closely resemble the practical use 

of the models on unknown samples) were found to be unsatisfactory, with values generally 

below 60% (with few exceptions). Please note that as suggested by PCA analysis, non-

linear classifiers (kNN in particular) provided better performance. 

In order to improve the results, the available information (proximate composition, NIR 

spectra, color and mechanical information) were fused together. Since kNN returned the 

highest classification accuracy (see Tables 7.6 and 7.7), it was used also to classify the 

combined information. Results are given in Table 7.8 for three different data combinations. 

It should be noted that higher classification accuracies were obtained when fusing the 

available information (compared to accuracies obtained using each piece of information 

separately). 

Table 7.8. Multi-block kNN classification by genetic strain from all available 

information: results for raw samples. 

Fused data 
Model 

parameters 

Calibration 

accuracy (%) 

Cross-validation 

accuracy (%) 

Validation 

accuracy (%) 

Color, NIR k = 3, 8 PC 84.2 84.2 66.7 

Color, NIR, Mechanical 

properties 
k = 3, 7 PC 91.7 91.7 83.3 

Color, NIR, Mechanical 

properties, Proximate 

composition 

k = 1, 13 PC 91.7 91.7 73.3 

 

The combination of NIR spectra, color and mechanical information represented the best 

choice, given that proximate composition analyses (whose addition to the fused 

information did not improve the cross-validation accuracy on which the selection of the 

best model was based) are much more time consuming. The fact that the addition of the 

proximate composition did not improve classification accuracy was somewhat expected, as 

the information on the genetic strain carried by the compositional data was found to be 

very poor. 

The confusion matrix for the validation data for the best model of Table 7.8 is given in 

Table 7.9.  

Table 7.9. Confusion matrix for the best multi-block kNN classifier (raw samples). 

 IT1 IT2 IT3 UK USA 

IT1 5 0 0 1 0 

IT2 0 3 1 1 1 

IT3 0 0 5 0 1 

UK 0 0 0 6 0 

USA 0 0 0 0 6 
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Five out of thirty samples were misclassified, and the majority of errors involved samples 

of the genetic strain IT2. Please also note that the use of the kNN classifier limits the 

interpretability of the results obtained, given that no statistics, such as the VIP index are 

available. 

7.3 Conclusions 

The problem of authenticating fresh West African goatfish (Pseudupeneus prayensis) 

fillets and raw and cooked freeze-dried rainbow trout (Oncorhynchus mykiss) fillets was 

addressed in this Chapter. Fusing the information derived from different analytical 

instruments (a portable VIS/NIR spectrometer, a digital camera, a texture analyzer and a 

colorimeter) through a multiblock approach was shown to return higher classification 

accuracies with respect to those obtained considering each analytical instrument separately. 

In the first case study, the combination of the spectral data and the color features extracted 

from the images allowed to obtain a 100% accuracy on both the calibration and validation 

datasets. Robustness of the classification models to the multiple sources of variability 

within the data (due to the seasonality effect, size) was ensured thanks to a D-optimal 

selection of the training samples. In the second case study, the combination of spectral, 

colorimetric and mechanical data increased the classification accuracies from 90.8 and 

60%, respectively in calibration and validation, to 91.7 and 73.3%. 
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Conclusions and future perspectives 

The possibility of relying on fast, cost-effective, non-invasive, reproducible and 

multivariate tools for the assessment of product quality is crucial in our global economical 

system, where the capability of delivering high quality products and protecting them from 

fraud, adulteration and counterfeiting is a key competitive factor. However, the industrial 

practice is still far from such ideal measurement systems. For instance, in the food and 

pharmaceutical industries the assessment of product quality still relies on the judgment of a 

panel of trained experts. 

Machine vision systems and absorption spectroscopy have been demonstrated to 

encompass the majority of the abovementioned requirements of an ideal product quality 

assessment system. In order to exploit the information embedded in digital images and 

spectra, however, appropriate statistical tools are needed. Latent variable models (LVMs) 

are specifically intended to analyze these types of data, which are characterized by strong 

correlations (between wavelengths in a spectrum and between pixels in a digital image). 

The use of such modeling tools has been continuously growing in the last decades, but in 

most published contributions tailored solutions are provided. Under this perspective, this 

Dissertation has proposed some techniques to overcome some of the limitations that 

currently hinder the diffusion of these tools in the common industrial practice. Table 1 

summarizes the main achievements, with the indication of the application considered, 

origin of the data and reference to related papers that have been published or are in press. 

 

 

With respect to the use of computer vision systems, Chapter 3 demonstrated through an 

industrial case study the effectiveness of image analysis not only for the assessment of 

product quality, but also for process understanding purposes. Multivariate image (MIA) 

and wavelet texture analysis (MWTA) were used to quantify the elegance of film-coated 

tablets in terms of color uniformity and surface erosion. The metrics developed were then 

regressed against the coating operating conditions. Given the PLS regression model, the 

score plot was shown to be useful for monitoring the quality of the end product, while the 

analysis of the loadings allowed one to evaluate the effect of different physical phenomena 

on surface erosion. 

In Chapter 4, a strategy to ensure the reproducibility of the results derived from image 

analysis applications was presented. Computer vision systems are usually deemed to be 

quick, accurate, objective and able to return reproducible results. 

 



 

 

Table 1. Summary of the main achievements of this Dissertation, with the indication of the considered application, of the data origin 

and of the relevant references. 

Chapter Main achievement Application Data origin Reference 

Chapter 3 Use of image analysis for 

process understanding and 

troubleshooting 

Tablet film-

coating process 

Industrial Ottavian, M., M. Barolo and S. García-Muñoz. Multivariate Image and Texture Analysis to 

Investigate the Erosion Mechanism of Film-Coated Tablets. J. Pharm. Innov., in press. 

Chapter 4 Standardization of machine 

vision systems 

Tablet film-

coating process 

Laboratory Ottavian, M., M. Barolo and S. García-Muñoz (2013). Maintenance of Machine Vision 

Systems for Product Quality Assessment. Part I: Addressing Changes in Lighting Conditions. 

Ind. Eng. Chem. Res., 52, 12309-12318. 

Ottavian, M., M. Barolo and S. García-Muñoz. Maintenance of Machine Vision Systems for 

Product Quality Assessment. Part II: Addressing Camera Replacement. Ind. Eng. Chem. Res., 

in press. DOI: 10.1021/ie402910z. 

Chapter 5 Multispectral data 

classification strategy that 

avoids trial-and-error data 

preprocessing  

Fraud detection Laboratory Ottavian, M., P. Facco, L. Fasolato and M. Barolo (2012). Multispectral Data Classification 

Using Similarity Factors. Chemom. Intell. Lab. Syst., 118, 13-23. 

Chapter 6 Foodstuff authentication from 

NIR spectral data 

Multispecies approach for 

fraud detection 

Fraud detection Laboratory Ottavian, M., L. Fasolato, P. Facco and M. Barolo (2013). Foodstuff Authentication From 

Spectral Data: Toward a Species-Independent Discrimination Between Fresh and Frozen-

Thawed Fish Samples. J. Food Eng., 119, 765-775. 

Ottavian, M., P. Facco, M. Barolo, P. Berzaghi, S. Segato, E. Novelli and S. Balzan (2012). 

Near-Infrared Spectroscopy to Assist Authentication and Labeling of Asiago d’Allevo Cheese. 

J. Food Eng., 113, 289-298. 

Ottavian, M., P. Facco, L. Fasolato, E. Novelli, M. Mirisola, M. Perini and M. Barolo (2012). 

Use of Near-Infrared Spectroscopy for Fast Fraud Detection in Seafood: Application to the 

Authentication of Wild European Sea Bass (Dicentrarchus labrax). J. Agric. Food Chem., 60, 

639-648. 

Chapter 7 Multi-block approach for low-

level data fusion 

Fraud detection Laboratory Ottavian, M., L. Fasolato, L. Serva, P. Facco and M. Barolo. Data Fusion for Food 

Authentication: Fresh/Frozen-Thawed Discrimination in West African Goatfish (Pseudupeneus 

prayensis) Fillets. Food Bio. Tech., in press. DOI: 10.1007/s11947-013-1157-x. 

Dalle Zotte, A., M. Ottavian, A. Concollato, L. Serva, R. Martelli and G. Parisi. Authentication 

of Raw and Cooked Freeze-Dried Rainbow Trout (Onchorynchus mykiss) by Means of Near-

Infrared Spectroscopy and Data Fusion. Food Res. Int., in press. DOI: 

10.1016/jfoodres.2013.10.033. 
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This latter advantage, however, is true only as long as the conditions, under which the 

quality assessment model has been calibrated, remain unchanged. These conditions include 

both the lighting system and the camera itself. A strategy to monitor the status of the 

computer vision system was proposed. The strategy is based on a MIA model built on 

images of four color standards. Every time one needs to operate the computer vision 

system to interrogate an existing quality assessment model, an image of the color standards 

needs to be collected, and projected onto the MIA model. If it conforms to it, the status of 

the system is deemed to be unchanged (within a given statistical confidence). If it does not 

conform to it, the use of the dynamic time warping (DTW) was proposed to align the 

images collected under the new conditions. The effectiveness of the DTW correction was 

demonstrated both in case of changes in lighting conditions and in the camera. 

 

With respect to the use of absorption spectroscopy, in Chapter 5 a novel strategy for 

multispectral data classification was proposed. The strategy, which is based on similarity 

factors defined from PCA models built on the spectra, works through an assigned sequence 

of pretreatments of the spectral data involving the use of the discrete wavelet transform. 

The main advantage of the proposed strategy, which has been tested on three food 

engineering case studies, is the possibility of avoiding the time consuming trial-and-error 

procedure usually employed for the selection of the best preprocessing strategy. 

The main contribution presented in Chapter 6 is a multi-species (and, possibly, species-

independent) fraud detection approach. Considering the specific problem of detecting the 

fresh/frozen-thawed substitution fraud in sea food, published approaches typically tailor 

the classification model on the specific species being analyzed. The use of the orthogonal 

PLS decomposition was shown in Chapter 6 to be effective in calibrating a multi-species 

classification model, returning a very good classification accuracy also when applied to 

samples of species not used in the calibration step. 

 

Eventually, with respect to the use of data fusion for product quality characterization, in 

Chapter 7 two food engineering applications were presented. In both cases, the use of a 

multiblock approach for coupling the available information (spectral data, digital images, 

mechanical properties, etc.) was shown to return better classification accuracies than those 

obtained by using each piece of information separately. 

 

 

In summary, it has been shown how LVMs can be employed for the analysis of the signals 

derived from different analytical instruments for product quality characterization purposes. 

They demonstrated to be able to efficiently extract the information embedded in the 

signals, compress it and facilitate its interpretation. In addition, they have shown to be 
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versatile, with a broad range of applicability, i.e. from simple predictive tools to tools to 

support process understanding and troubleshooting. 

The studies carried out in this Dissertation have opened further perspectives and issues, 

that could be considered in future research. One of the most interesting areas open to 

further investigation is the standardization of computer vision systems. The strategy 

presented in the Dissertation to transfer a quality assessment model to new illuminating 

conditions or to new cameras can be applied when the quality features of interest are 

related to product color. The possibility of transferring the quality assessment model when 

looking at surface texture (roughness, presence of defects, etc.) remains an open issue. 

Though MIA-based texture analysis techniques have been developed (Bharati and 

MacGregor, 2004), the state of the art is represented by wavelet texture analysis, which 

operates through the extraction of features from the images. When applying wavelet 

texture analysis, since the MIA decomposition is avoided, the use of the dynamic time 

warping correction proposed in Chapter 4 of the Dissertation is limited. 

Further research is needed in the promising field of data fusion. Combining the available 

information in all possible ways to find (by trial-and-error) the one returning the best 

quality characterization is the standard approach usually adopted. A systematic way to 

select i) how and ii) which information should be combined would be highly welcomed 

because, as shown also in Chapter 7, the data fusion approach can enhance the 

characterization of the quality of the product being analyzed. 
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Appendix A 

Algorithmic notes 

In this Appendix some notes are provided on the main algorithms implemented to estimate 

the parameters of the latent variable models used in this Dissertation and described in 

Chapter 2. 

A.1 Principal component analysis (PCA) 

As shown in Chapter 2 (Section 2.1.1), given a dataset X [IN] of I samples and N 

variables, the parameters of a PCA model can be found through the eigenvector 

decomposition of matrix X
T
X. In this Dissertation, this has mostly been done using 

singular value decomposition (SVD; Meyer, 2000) or the nonlinear iterative partial least 

squares algorithm (NIPALS; Wold, 1966). 

The first method requires the estimation of covariance (or correlation) matrix and then 

would compute all the PCs of the system (as many as the variables in X, i.e. N) at once:  

 
TT

USVXX     . (A.1) 

In (A.1), V = U and they include the eigenvectors of X
T
X, namely the PCA loading matrix 

P. S is the [NN] diagonal matrix of the singular values, which coincides with the 

eigenvalues of X
T
X. The calculation of the X

T
X matrix requires however that there are no 

missing data in the X dataset. Given that real datasets are usually characterized by the 

presence of missing data, the NIPALS algorithm is usually preferred. 

The algorithm computes the scores and loadings of each PC in an iterative way, starting 

from PC1 and extracting each PC one at a time. As with SVD, PCs are found and ordered 

according to the amount of variance of the original dataset they capture. Starting from PC1, 

for each PC the algorithm calculates the scores and loadings vectors t and p from the X 

matrix. The outer product tp is then subtracted from X to give the residual matrix E: 

 
T

tpXE     . (A.2) 

E is then used at the next iteration to extract the scores and loadings vectors for PC2. The 

algorithm can be summarized in the following steps (Geladi and Kowalski, 1986): 
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1. Consider a row vector xi from X and set t = xi; 

2. calculate p
T
: 

 

tt

Xt
p

T

T

T     ; (A.3) 

3. normalize p
T
 to unit length; 

4. calculate t: 

 

pp

Xp
t

T
    ; (A.4) 

5. compare t used in step 2. with t calculated in step 4. If they differ less than an assigned 

tolerance, then stop (the method has converged), otherwise restart from step 2. with the 

last calculated t; 

6. if converged, calculate E according to (A.2), and go back to step 1, by setting X = E to 

calculate the next PC. 

The algorithm iterates until the A PCs selected to build the PCA model have been 

determined. It is demonstrated that the parameters provided by the NIPALS algorithm are 

the same as the eigenvector solution problem of (2.4) (Chapter 2, Section 2.1.1) (Geladi 

and Kowalski, 1986). Furthermore, it can feasibly handle datasets with missing data. 

Other approaches have been used to calculate the PCA loadings and scores based on 

optimization frameworks for parameter estimation. In these cases, the PCA loadings are 

found in order to minimize the sum of squared errors between the data matrix X (López-

Negrete de la Fuente et al., 2010). 

A.2 Projection to latent structures (PLS) 

Projection to latent structures (PLS) includes a class of algorithms that attempts to 

summarize the variation in a regressor matrix X that is in some way predictive of a 

corresponding matrix Y of response variables (Chapter 2, Section 2.1.2) (MacGregor et al., 

1994). One of the most common algorithms to estimate the PLS model parameters is 

NIPALS (Wold, 1966; Wold et al., 1983), whose steps are summarized below and 

illustrated in Figure A.1 (MacGregor et al., 1994). 

1. Set u equal to any column of Y; 

2. regress columns of X on u to get weights w:  

 

uu

Xu
w

T

T
T     ; (A.5) 
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3. normalize w to unit length; 

4. calculate the scores t: 

 

ww

Xw
t

T
    ; (A.6) 

5. regress the columns of Y on t: 

 

tt

Yt
q

T

T
T     ; (A.7) 

6. calculate the new score vector for Y: 

 

qq

Yq
u

T
    ; (A.8) 

7. check convergence of u: if yes go to step 8; if no go to step 2.; 

8. calculate X matrix loadings, by regressing columns of X on t: 

 

tt

Xt
p

T

T
T     ; (A.9) 

9. calculate residual matrices E and F: 

 
T

tpXE     , (A.10) 

T
tqYF     ; (A.11) 

10. to calculate the next set of latent vectors, restart from step 1, replacing X and Y by E 

and F, respectively. 

(A.5) and (A.7) allow each dataset latent space to get information about the other one. 

Various interpretation of the PLS algorithm and its properties are discussed by 

Höskuldsson (1988). 
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Figure A.1. Schematic of a PLS algorithm iteration (adapted from MacGregor et al., 

1994). 

A.3 Orthogonal PLS (OPLS) 

The OPLS algorithm for a single column Y response matrix (i.e. I = 1) and a predictor 

matrix X (each of them properly scaled) is a modification of the NIPALS algorithm 

described in section A.2. Once the loading vector p has been calculated (step 8., (A.9)), the 

orthogonal components w, t and p are evaluated as follows (Trygg and Wold, 2002). 

9. Calculate the orthogonal weigths w from p: 

 

w
ww

pw
pw 








 T

T

   ; (A.12) 

10.  normalize w to unit length; 

11.  calculate the scores t: 

 

  Xwt    ; (A.13) 

12. calculate the orthogonal X loadings p: 

 




 

tt

Xt
p

T

T
T

   ; (A.14) 

13. calculate the residual matrix EOPLS: 

 
T

OPLS  ptXE    . (A.15) 
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EOPLS represents the residual after a portion of orthogonal variability has been removed. 

For additional orthogonal components w, p, t, the algorithm needs to be repeated by 

setting X = EOPLS. 
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Appendix B 

Interpretation of LVM models 

parameters 

This Appendix reports some details on the interpretation of the parameters of a latent 

variable model (LVM). In particular, some indications are provided on how to interpret the 

loading and score diagrams in order to get information from the data.  

B.1 Interpretation of the score and loading plots 

PCA and PLS models (Chapter 2) are usually built on multivariate datasets to gain 

understanding on the system the data have been generated from. This can be achieved by 

analyzing the correlation between variables and the similarities between samples. The 

advantage in using LVMs to this purpose is due to the fact that the model structure is 

transparent and allows to interpret the correlation structure in a straightforward way. From 

the analysis of the model parameters, an interpretation on the mechanisms acting on the 

system can be drawn. 

For the purpose of a practical application of PCA and PLS, the analysis of the scores and 

of the loadings of the model is crucial. In general, this is done by considering plots of the 

scores and of the loadings, which can be reported in several ways. According to common 

practice, the scores are reported as scatter plots, in which the scores on a PC (or on a LV, 

indifferently) are reported versus the scores on another PC. This is usually done for the 

scores on the first LVs found by the model, because they explain most part of the 

variability in the data. Bi-dimensional plots are usually used as they are easier to visualize 

than three-dimensional ones. Figure B.1b reports an example of a score plot. 

Loadings are usually reported as bar plots or as scatter plots. In the first case a bar plot of 

the loadings of the original variables on each PC is reported, as in Figure B.1a. In the 

second case, as in score plots, the loadings of the variables on a PC are plotted versus the 

loadings of the same variables on a different PC. This is a useful way to summarize in a 

single plot more exhaustive information on variable correlation. In general, loading plots 

are useful for two important reasons: i) understanding which are the variables related to the 

data variability and which are not; ii) understanding if there are correlations among the 

variables. Recalling the meaning of loadings in PCA and weights in PLS (Chapter 2, 
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Section 2.1.1 and Section 2.1.2), a measured variable which shows a high loading or 

weight has a significant importance on the related PC/LV, thus being responsible of a 

significant part of the variability in the data. Therefore, loadings in PCA and weights in 

PLS help in identifying the “most important” variables for the system, and to rank them by 

importance order. If this information is combined with physical knowledge on the system, 

one can obtain additional physical insights on the system under investigation, by 

understanding which are the driving forces linked to the physical and/or chemical 

phenomena that drive the system. When two variables have similar loadings on a PC, they 

are said to be correlated. If the loading absolute values are similar but the values are 

opposite, they are said to be inversely related (or anti-correlated). This means that it is 

expected that, considering the data used to build the model, an increase in one variable 

results in a decrease of the other variable. Figure B.1 gives an example of this occurrence. 

For example, in the top bar plot it can be clearly seen that variable x1 and variable x3 are 

the most significant variables on this direction, and they are inversely related as their 

loadings are opposite. Differently, on the second bar plot (which refers to PC2), x3 has the 

highest loading and looks inversely related to x1 and x2, which have a lower importance. 

Note that the PCA loadings and the PLS weights on each PC/LV are independent. 

Therefore, the information obtained from the analysis of one latent component is not 

contrasting with the other ones, but it simply provides a different type of information 

(namely, it identifies a different driving force for the process). 
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Figure A.1. Example of (a) loading bar plots and (b) score plot for a model with 2 PCs. 
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Score plots as the one reported in Figure B.1b are useful to identify similarities between 

samples. This means that samples with similar characteristics fall in the same region of the 

score plot. Moreover, the pattern observed in a score plot reflects the correlation structure 

identified by the variable loadings. For example, in Figure B.1b three main clusters can be 

observed along PC1. Samples are therefore grouped according to their similarities or 

differences in the variables that have the highest loading on PC1. By analyzing the loading 

plot, one can identify which these variables are (x1 and x3 in this case). Therefore, samples 

having a high positive score on PC1 will have higher x3 values and lower x1 values on 

average, because x3 has a positive loading on PC1 whereas x1 has a negative one. The 

situation is opposite in the case of samples with negative PC1 scores. A similar analysis 

can be done also for the other PCs. 

Finally, note that in the PLS case it is more useful to analyze jointly the model weights 

with the loadings of Y (Q loadings). This analysis allows to identify cross-correlations 

among variables (i.e., how the regressors are related with the responses), which is of 

particular interest considering that PLS is a regression model built to predict the responses 

from the inputs. The following scaling is usually applied prior to build the scatter plot: 
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