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Sommario

Motivati dall’analisi di dati di marketing nelle telecomunicazioni, solita-
mente multidimensionali, longitudinali e per lo più composti da conteggi,
questo lavoro di tesi introduce nuove tecniche bayesiane nonparametriche
per la stima delle funzioni di probabilità e la modellazione dei processi sto-
castici a valori interi. Sono introdotti inoltre i fondamenti teorici per la
stima di densità congiunta con variabili su scale di misura miste (continue,
conteggio e categoriali) tramite modelli mistura nonparametrica. Sebbene
i modelli bayesiani nonparametrici per variabili continue siano ben svilup-
pati, la letteratura su approcci simili per dati di conteggio è scarsa, mentre
quella per dati su diverse scale di misura è praticamente inesistente. L’idea
principale di questo lavoro è quella di indurre distribuzioni a priori sugli
spazi astratti di interesse tramite distribuzioni a priori su appropriati spazi
latenti e funzioni di mappatura. Nello specifico, attraverso a priori sullo
spazio delle densità countinue è introdotta una nuova classe di a priori sullo
spazio delle funzioni di probabilità discrete e a scala di misura mista, men-
tre attravesto a priori sullo spazio dei processi stocastici a valori continui
è introdotta una classe di a priori sui processi stocastici di conteggio. Le
proprietà asintotiche di queste procedure sono studiate e, sotto opportune
ipotesi, vengono dimostrati risultati sull’ampiezza del supporto e sulla con-
sistenza dell’a posteriori. Vengono inoltre sviluppati efficienti algoritmi di
campionamento di Gibbs per il calcolo delle a posteriori. Le prestazioni dei
metodi proposti sono verificate tramite studi di simulazione e applicazioni a
dati reali.





Abstract

Motivated by the analysis of telecommunications marketing data, which are
multidimensional, longitudinal and mostly consisting in counts, this thesis
introduces novel Bayesian nonparametric techniques for the estimation of
probability mass functions and count stochastic processes. In addition, the
theoretical basis of nonparametric mixture models for mixed-scale density
estimation are provided. Mixed-scale data consists in joint continuous, count
and categorical variables. Although Bayesian nonparametric models for con-
tinuous variables are well developed, the literature on related approaches for
counts is limited and that for mixed-scale variables is close to none. The
leading idea of this work is to induce prior distributions on the spaces of in-
terest via priors on suitable latent spaces and mapping functions. Precisely
a class of priors on the space of the probability mass functions and of the
mixed-scale densities is induced through priors on the space of continuous
densities and another class of priors on count stochastic process is induced
through priors on the space of continuous stochastic processes. Asymp-
totic properties of these procedures are studied and results in terms of large
support and posterior consistency are obtained under suitable assumptions.
Efficient Gibbs samplers are developed for posterior computation, and the
performance of the proposed methods is assessed in simulation studies and
real data applications.
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Chapter 1

Introduction
Every day mobile phone operators collect plenty of information on the us-
age and on the behavior of their customers. This kind of data are usually
multivariate, longitudinal and collected for a very large sample. The infor-
mation contained by these data is of dramatic interest for companies and a
better understanding of the customer behavior through these data is one of
the main goal of the companies strategy. Motivated by this application we
developed this PhD thesis work.

One of the complications of this data is that the variables consist in
counts or in mixed counts and continuous variables. Since we find a lack of
theory and methods to deal with count variables, especially in the multivari-
ate and longitudinal context, we decide to develop novel methods to model
counts under a Bayesian nonparametric framework while keeping in mind
our motivating application and going back to it in testing the proposed mod-
els and procedures to fit real data. Bayesian nonparametric methods have
recently received a lot of attention in the statistical literature. Personally
we find interesting the idea of flexibility and large support induced by prior
distribution on a infinite dimensional space, while appealing the possibility
of including prior information to the data analysis.

To tackle the challenge of giving a general framework to model longi-
tudinal multidimensional count data, we started to decompose the problem
in subproblems. First we decide to drop the time dependence and to study
the theoretical and methodological basis to work with counts at one time
observation. Later we proceed reducing the dimensionality to one and intro-
ducing a flexible framework for count stochastic process estimation. A brief
review of the literature that partially deals with these problems is given in
the next section while Section 1.2 describes the main contributions of the
thesis.

1.1 Overview

Nonparametric methods are well developed in the Bayesian literature for
a vast range of applied problems with density estimation, regression and
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CHAPTER 1. INTRODUCTION

functional data analysis among others.
Density estimation, under a Bayesian setting, is usually performed us-

ing a Dirichlet process mixture of Gaussians kernels (Lo, 1984; Escobar and
West, 1995) to obtain a prior for the unknown density. A detailed descrip-
tion of the Dirichelet process (DP) of Ferguson (1973, 1974) and related
priors is given in Chapter 2. Such a prior can be chosen to have dense
support on the set of densities with respect to Lebesgue measure. Ghosal
et al. (1999) show that the posterior probability assigned to neighborhoods
of the true density converges to one exponentially fast as the sample size
increases, so that consistent estimates are obtained. Similar results can be
obtained for nonparametric mixtures of various non-Gaussian kernels using
tools developed in Wu and Ghosal (2008).

Nonparametric regression under the Bayesian paradigm can be broadly
divided in two main groups: (a) simplify the problem by considering a ba-
sis representation and assigning a prior on the basis coefficients. Splines,
wavelets and reproducing kernels fall in this category with Bayesian P-
splines (Lang and Brezger, 2004) as a standard tool; (b) assume that the
regression function is a realization of a stochastic process and use a Gaus-
sian Process prior (Rasmussen and Williams, 2006). Gaussian processes are
computationally convenient and as n increases lead to posterior consistency
(Ghosal and Roy, 2006).

Functional data consist in modeling n different subject specific trajecto-
ries varying through a domain set (usually time or space). A common ap-
proach deals with nested and hierarchical basis representation which allow
variability in the functions assuming normally distributed basis coefficients.
In the Bayesian framework Bigelow and Dunson (2007) and Thompson and
Rosen (2007) recently introduce relative approach using adaptive splines. In
the presence of prior information about the shape of the trajectories, as in
the motivating examples of telecommunications companies, recent develop-
ments under semi and nonparametric Bayes are Scarpa and Dunson (2009,
2011).

For nonparametric probability estimation, regression and functional data
analysis, there are lack of theory and methods to deal with count data.
Even more if we consider mixed-scale data consisting of binary, categorical,
continuous and count measurements the literature is close to none.

Few strategies have been proposed in the literature for nonparametric
modeling of count distributions having support on N = {0, . . . ,∞} and all
in the univariate case. One consists in mixing Poisson distributions

Pr(Y = j |P ) =

∫
Poi(j;λ)dP (λ), j ∈ N ,

with Poi(j;λ) = λj exp(−λ)/j! and P a mixture distribution. When P is
chosen to correspond to a Ga(φ, φ) distribution on the Poisson rate param-
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1.1. OVERVIEW

eter, one induces a negative-binomial distribution, which accounts for over-
dispersion. Poisson mixtures are reviewed in Karlis and Xekalaki (2005).

A more flexible nonparametric approach consists in choosing the DP
as mixing distribution letting P ∼ DP(αP0), with P0 a base probability
measure over the real line. Krnjajic et al. (2008) recently considered a related
approach motivated by a case control study. At a glance, the Dirichlet
process mixture (DPM) of Poissons seems the natural counts counterpart of
the DPM of Gaussians used for continuous density estimation. However, the
resulting prior on the count distributions is quite inflexible, as the Poisson
kernel has a single parameter ruling out both location and scale. Clearly
this model cannot consistently estimate underdispersed count distributions.

As an alternative one can use the almost sure discreteness property of
the DP and avoid the mixture specification. With this approach one can
let yi ∼ P with P ∼ DP(αP0) and P0 corresponding to parametric count
distribution, such as a Poisson. Carota and Parmigiani (2002) proposed a
generalization of this approach in which they modeled the base distribution
as dependent on covariates through a Poisson log-linear model. Although
this model is clearly flexible, there are some major disadvantages. Given iid
draws yn = (y1, . . . , yn)T, in fact, the resulting posterior distribution is

(P | yn) ∼ DP

(
(α+ n)

{
αP0 +

∑
i

δyi

})
,

with δy a degenerate distribution with all its mass at y. The posterior is
centered on a mixture with weight proportional to α on the Poisson base
P0 and weight proportional to n on the empirical probability mass function.
There is no allowance for smooth deviations from the base.

If we found some proposals for the univariate case, the literature on
multivariate methods for count data is very short and mostly relies on mul-
tivariate Poisson models (Johnson et al., 1997) which have the unpleasant
characteristic of not allowing negative correlation. Copula models are an al-
ternative approach to model the dependence among multivariate data with
the proposal of Nikoloulopoulos and Karlis (2010) that directly deals with
multivariate counts. A very flexible copula model that considers variables
having different measurement scales (counts, continuous, binary) is proposed
by Hoff (2007). Unfortunately the latter method is focused only on modeling
the association among variables with the marginals treated as a nuisance and
hence one cannot do any inference on the marginals or on any conditional dis-
tribution. Other flexible approaches include to consider mixtures of Poissons
(Meligkotsidou, 2007) and random effects model, which incorporates shared
latent factors in Poisson log-linear models for each individual count (Mous-
taki and Knott, 2000; Wedel et al., 2003). The latter models can deal also
with mixed scale variables by defining a separate generalized linear model for
each variable, with shared latent variables to induce dependence structure
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CHAPTER 1. INTRODUCTION

(Sammel et al., 1997; Dunson, 2000, 2003). This framework assumes that
the observed variables are independently drawn from distributions in the
exponential family conditionally on latent variables. In marginalizing out
the latent variables, one obtains a multivariate distribution with essentially
unknown properties and computation can be quite challenging. In certain
cases, pitfalls can arise due to the dual role of the latent factors in controlling
the dependence structure and the shape of the marginal distributions.

Given these issues, it is quite appealing to consider flexible nonparamet-
ric models to estimate joint mixed-scale distributions. Somewhat surpris-
ingly given the considerable applied interest, the literature on nonparametric
estimation for this is very small. Some frequentist proposal can be found in
the papers of Li, Racine and co-authors (Li and Racine, 2003; Hall et al.,
2004; Ouyang et al., 2006; Li and Racine, 2008) that use a kernel smoothing
approach and in the recent work of Efromovich (2011). At the moment in
which we are writing this dissertation it seems that no Bayesian nonpara-
metric literature is available on this topic.

With count regression we model a response count variable y ∈ N condi-
tionally on some explanatory variables. From a Bayesian perspective a way
of seeing regression is to assume that the regression function is a realization
of a stochastic process y = {y(s), s ∈ D}. Here y is a collection of count ran-
dom variables indexed by s ∈ D with D a domain set usually corresponding
to time or space and y(s) a random variable observed at a specific time or
location s.

The literature on stochastic processes is rich both from a frequentist and
Bayesian point of view. Common choices includes the Gaussian processes
(GP) (discussed later in Section 2.2.1) and Lévy processes, such as the Pois-
son, Wiener, beta or gamma process. GP provides a convenient and well
studied choice for real value stochastic processes.

Integer valued stochastic processes, also known as count processes, are
widely studied but mostly rely on Poisson hierarchical specifications. For ex-
ample, Frühwirth-Schnatter and Wagner (2006) consider y(s) ∼ Poisson{λ(s)}
with the Poisson mean λ(s) varying over D according to a latent process.
Rue et al. (2009) recently developed an integrated nested Laplace approx-
imation to the posterior for a broad class of latent Gaussian structured
additive regression models. The observed variables are assumed to belong
to an exponential family (Poisson for counts), with the means given an ad-
ditive model having Gaussian and Gaussian process priors on the unknown
components. Although such models have a flexible mean structure, the Pois-
son assumption is clearly restrictive, having one single parameter ruling out
both mean and variance. This leads to a pitfall in which the dependence
structure in the data is perfectly confounded with the degree of overdisper-
sion in the marginals in that both are induced through the latent Gaussian
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process. Such models unfortunately cannot accommodate correlated counts
that are under-dispersed. In addition, even if the model assumptions are ap-
proximately correct, computation is challenging for Poisson latent process
models. This is particularly the case for count functional data in which we
have yi = {yi(s), s ∈ D}, with yi the count stochastic process for subject i,
for i = 1, . . . , n.

Also here copula models are a useful approach to separate the marginal
from the dependence structure. Wilson and Ghahramani (2010) recently
proposed a Gaussian copula process model to characterize dependence be-
tween arbitrarily many random variables independently of their marginals,
and applied their framework to stochastic volatility models. However, it is
not clear how to apply their framework without using Poisson marginals,
and even in this case conceptual difficulties and substantial computational
hurdles may arise. Rodŕıguez et al. (2010) proposed a latent stick-breaking
process, which is a nonparametric Bayes approach for a stochastic pro-
cess with an unknown common marginal distribution modeled via a stick-
breaking prior. They considered a spatial count process application, with
the marginal modeled via a mixture of Poissons and the spatial dependence
characterized through a latent Gaussian process. This successfully separates
the marginal and dependence structure, but the marginal model is nonethe-
less restrictive in being characterized as a mixture of Poissons, computation
is intensive, and count functional data are not accommodated.

1.2 Main contributions of the thesis

The main contributions of this thesis can be found in Chapter 3 in which
a new class of prior distributions on the space of probability mass func-
tions is introduced, in Chapter 4 where we study the asymptotic properties
of Bayesian procedures of mixed-scale density estimation and in Chapter
5 in which the nonparametric count regression is approached treating the
regression function as a stochastic count process.

In Chapter 3 we propose the leading idea of this work, based on round-
ing continuous objects, in this case, continuous density functions. Precisely
we introduce a new class of prior distributions on the abstract space of the
probability mass functions through a prior on a latent space and suitable
mapping functions. Theoretical results on the topology on the two abstract
spaces in exam are given showing that suitable assumptions on the under-
lying prior lead to large support of the induced prior with almost all count
distributions falling within its Kullback-Leibler support. This is shown to
imply both weak and strong posterior consistency thanks to Schwartz (1965)
Theorem on one side and to the relations between the strong and weak topol-
ogy in the space in exam on the other side. A general efficient Gibbs sampler
is developed for posterior computation for the entire class of prior. Focusing
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CHAPTER 1. INTRODUCTION

on rounded Gaussian for simplicity and on rounded skew normal (Azza-
lini, 1985) for better fit asymmetric patterns in the data, particular Gibbs
samplers are developed and implemented in R and C. Simulation studies
are performed to assess performance of the methods. Generalization of the
modeling framework to account for multivariate count data are also shown.
This natural extension is of particular interest since usual parametric and
semiparametric models for multivariate count distribution are extremely in-
flexible. Part of the results of Chapter 3 are discussed in an accepted article
on the Journal of the American Statistical Association (Canale and Dunson,
2011).

In Chapter 4 we generealize the framework of Chapter 3 to jointly model
continuous, count and categorical variables under a nonparametric prior.
For the proposed class of priors, we provide sufficient conditions for large
support, strong consistency and rates of posterior contraction.

In Chapter 5, considering the longitudinal nature of our telecommunica-
tions data, we developed Bayesian nonparametric methods to model count
stochastic processes. We introduce a novel class of Bayesian nonparametric
count process models, which are constructed through rounding real-valued
stochastic processes. Theoretical results on large support and posterior con-
sistency are established under suitable assumptions on the stochastic process
and on the observation points, and suitable computational algorithms are de-
veloped modeling the underlying process as a regression function estimated
through P-splines (Jullion and Lambert, 2007). This rounded P-spline ap-
proach is then extended with a hierarchical representation in the case of n
related count processes.

Applications of the proposed methods to customer base management in
telecommunications market can be found both in Chapter 3 and Chapter 5.
Despite the particular application context, the methodology can be applied
in any other settings dealing with counts such as toxicology (number of
tumors), ecology (number of species or animals in a given area) or epidemi-
ology (number of ill patients) among others. Examples related to toxicology
are also reported in the main chapters.
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Chapter 2

Background

2.1 Customer base management and Statistics

Statistics is applied in several company sectors, ranging from production to
sales. The interest here is on marketing analysis (Lehmann et al., 1998) and
particularly on customer base management of telecommunications compa-
nies.

Telecommunications market is a high profitable market world wide. Par-
ticularly in emerging countries mobile markets has an high rate of develop-
ment and telecommunications companies still have the acquisition of new
customers as marketing goal. China for example has one of the largest mo-
bile communication network in the world with the subscriber number grown
from only 3 millions in 1990 to over 641 millions by the end of 2008 (MIIT,
2009) with a current population of 1,336 millions of people. European and
North American mobile telephone market instead have already grown from
the early 90’s and the market is now saturated. The average number of mo-
bile phone subscriptions per 100 inhabitants in Europe, for example, stood
at 122 in 2008 (Eurostat, 2011), meaning that there are more subscriptions
than people. In this context, clearly, companies paradigm has arguably
changed from an acquisition orientation to a retention orientation.

In this market context, customer base management has become one of
the main important business strategies. Customer base management is the
marketing branch that manages the company’s interactions with its cus-
tomers which overall goal is to retain and increase the value of existing
customers, while enticing former or new clients. Under this framework, it
is evident that the knowledge of the behavior and of the characteristics of
customers becomes dramatically important.

Defining homogeneous clusters of customers, for example, is a key to
perform ad hoc marketing campaigns or promotions limiting the cost of
the marketing actions only towards those customers with high potential
positive outcome. Also, customer profiling is very important in defining the
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CHAPTER 2. BACKGROUND

positioning of products and the marketing strategy. Particularly in mature
and highly competitive markets, customers exercise their right of switching
and hence the churn rate, the measure of the number of individuals quitting
the company, is one of the main marketing indicators to control. Churn,
in fact, is costly. In 2004 in the US wireless market, the retention cost of
a customer was estimated at 60$ while the one to acquire a new one at
400$ (Strouse, 2004). There are several strategies to control the churn rate
but they can be divided into two main fields. The first consists in creating
barriers which discourage customers to change company. The impossibility
of the mobile number portability, for example, was in Italy the main barrier
until 2002. The second way of contrasting churn consists in preventing
it. The identification of potential churners, in fact, leads specific retention
activities such as loyalty programs and promotions.

It becomes evident that a quantitative knowledge of these phenomena
is necessary and hence sophisticated statistical tools are needfuls. From
a concrete point of view, statisticians have to face marketing challenges
using the data available. Nowadays telecommunications companies storage
terabytes of data for each customer since every action of the customer can be
potentially recorded. In mobile phone market, for example, the daily number
of text messages, outgoing calls, services, Internet connections, downloaded
applications and so forth is recorded for each customer.

Standard data mining tools (Hastie et al., 2001; Azzalini and Scarpa,
2012), can be used to perform general tasks such as a cluster analysis, churn
or profit predictions but sometimes these tools are used inappropriately. In
churn prediction, for example, a common data mining practice is to use the
information about the traffic of past months to predict the churn. Usual
methods (Nath and Behara, 2003, e.g.), unfortunately, do not treat the
usage observations as time dependent variables, ignoring any sort of auto-
correlation. Considering the longitudinal nature of these data can lead, for
example, to a better prediction of the churn or to the customer base profiling
based on time series clustering. In the biomedical context there are some
attempts to use this approach (Wang et al., 2000; Li et al., 2004; Bigelow
and Dunson, 2007; Dunson et al., 2008) but none of them has been applied
to churn prediction nor considered count variables.

2.1.1 A real telecommunications dataset

In this section we introduce a dataset of a European UTMS service provider
and a set of possible concrete problems that lack of statistical methods to
be solved. The company is the first UMTS based provider in the market
and it built its brand image pushing the role of the video calls.

The dataset contains informations about 29,315 randomly chosen cus-
tomers active during 18 months. It consists of both longitudinal records
of traffic and usage and static variables such as demographic informations

8



2.1. CUSTOMER BASE MANAGEMENT AND STATISTICS

of who activated the contract (sex, age, region) or information on the con-
tract itself (type, distribution channel, mobile number portability). A last
binary variable records if the contract was still active in the 19th month or
if otherwise the customer churned is also available. The total proportion of
deactivated customers is equal to 6.52%. Among the longitudinal variables
we found the monthly number of text and multimedia messages sent, the
duration and the number of the incoming, outgoing to landlines, outgoing
to numbers of other operators, outgoing to numbers of the same operator,
and video calls. These longitudinal records are hence multidimensional and
on a mixed scale of measure including count and continuous variables. The
mean trajectories for the counts, which are the object of this thesis work,
are reported in Figures 2.1–2.2. Table 2.1 reports some descriptive statistics
for each months.

For a better knowledge of the customer base it is sometimes of interest
to estimate the distribution of the number of events, e.g. outgoing phone
calls to landlines, made by customers stratified by some variable such as age,
employment or geographic area. Such a distribution is usually highly skewed,
zero inflated and fat tailed. To estimate the probability mass function of
the monthly number of outgoing phone calls for the customers divided by
geographic area, in Section 3.5.1 we use a Bayesian nonparametric mixture
of rounded skew normal kernels.

Another applied problem consists in forecasting a count variable yi1,
using data on yi2, . . . , yip. In our case, for example let yi1 the number of
outgoing calls to landlines, yi2 to mobile numbers managed by competing
operators and yi3 to mobile numbers of the same operator; yi4 and yi5 are
then the total number of multimedia and text messages sent. For the com-
pany, both the point forecast of yi1 or the estimation of the probability
that yi1 equals zero or is greater than a given threshold, is of high interest
since this kind of calls has a high cost for the service provider. In Sec-
tion 3.5.2 we jointly model the multivariate probability mass function of
y = (yi1, . . . , yi5) using a Bayesian mixture and then predicting the value of
yi1 given yi2, . . . , yi5.

A very important task, as already discussed, is the churn prediction using
the dynamic variables on traffic, e.g. the outgoing number of video calls.
Our dataset presents only 1,284 deactivations over all the 29,315 customers
which is a peculiar characteristic of this context. In Section 5.5.1 we analyze
the outgoing video calls traffic to predict churn.
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2.1. CUSTOMER BASE MANAGEMENT AND STATISTICS
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Figure 2.1: Mean trajectories over 18 consecutive months of outgoing video
calls (a), outgoing phone calls to the same operator (b) and outgoing phone
calls to competitor operators.
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Figure 2.2: Mean trajectories over 18 consecutive months of outgoing calls
to landlines (a), number of text message (b) and multimedia message (c)
sent.
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2.2. STATISTICAL TOOLS

2.2 Statistical tools

In this section we move our attention to the statistical tools used to develop
this thesis project. We are clearly not going to give a comprehensive picture
of the methods but rather some basic references.

Bayesian nonparametric methods have recently received a lot of attention
in the statistical literature. The first theoretical results go back to the 70’s
but it is in the past twenty years that the scientific literature on this topic
dramatically increases also pushed by the considerable success in a lot of
applied fields such as biostatistics or machine learning. After reviewing some
results on the Gaussian process, that will be used in Chapter 5, we give a
brief review the main Bayesian nonparametric tools used in this dissertation.
A more comprehensive review on Bayesian nonparametric methods can be
found in the book of Ghosh and Ramamoorthi (2003) and in the book edited
by Hjort, Holmes, Müller and Walker (2010).

2.2.1 The Gaussian process

A Gaussian process (GP) is a stochastic process {y(t); t ∈ T}, where T is a
domain space (usually time or space), for which for every finite set of indices
t1, . . . , tn the vector {y(ti), . . . y(tn)} is normally distributed. In particular
we write

y(t) ∼ GP(µ(t), k(t, t
′
))

where µ(t) is the mean function and k(t, t
′
) is the covariance function of the

process. Mean and covariance functions are defined such that

E[y(t)] = µ(t), E[(y(t)− µ(t))T (y(t
′
)− µ(t

′
))] = k(t, t

′
).

A common choice for the covariance function consists in the so called squared
exponential covariance function, i.e.

k(t, t
′
) = exp

(
−1

2
|t− t′ |2

)
.

The squared exponential covariance function plays an important role when
the GP is used as mean function in a regression context. It can be shown in
fact that a GP regression with such a covariance function corresponds to a
Bayesian linear regression model with an infinite number of basis functions
(Zhu et al., 1998).

In the Bayesian literature, there have been substantial theoretical and
computational advances for GP models in recent years. For example, Ghosal
and Roy (2006) show that the GP is appealing in providing a prior that can
be specified to generate functions that are within an arbitrarily small neigh-
borhood of any continuous function with positive probability and van der
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Vaart and van Zanten (2009) study asymptotic properties including poste-
rior consistency and rates of convergence. From the computational point of
view, Banerjee et al. (2008) and Murray and Adams (2010) develop improved
methods for posterior computation.

Historically the GP was introduced in the Bayesian framework in the
late 70’s as nonparametric regression priors (O’Hagan, 1978; Wahba, 1978).
Nonetheless these groundbreaking papers, GP modeling remained hidden
until the early 90’s when the machine learning community start to use the
GP for regression and classification. The standard introductory reference to
the topic is in fact the book of Rasmussen and Williams (2006).

2.2.2 The Dirichlet process and related priors

The Dirichlet process was introduced by Ferguson (1973, 1974) with the idea
of introducing a prior for nonparametric problems. Ferguson (1973) wrote

There are two desirable properties of a prior distribution for
nonparametric problems.

• The support of the prior distribution should be large – with
respect to some suitable topology on the space of probabil-
ity distributions on the sample space.

• Posterior distributions given a sample of observations from
the true probability distribution should be managed ana-
lytically

With this in mind he introduced the DP, a probability distribution on the
space of probability measures. Let for example Y a space and B the Borel
σ-algebra on Y. Let denote the base measure with P0 a finite non null
measure on (Y,B) and α ∈ R be the concentration parameter characterizing
prior precision. Then P is a Dirichlet process, namely P ∼ DP (αP0) if for
any partition (B1, . . . , Bk) of B we have

(P (B1), . . . , P (Bk)) ∼ Dirichlet(αP0(B1), . . . , αP0(Bk)).

With this characterization, one can think to P as a random probability
measure on (Y,B) and hence to the DP as a prior for the space of probability
measure on (Y,B). The DP is conjugate with the multinomial likelihood.
In a total nonparametric setting the posterior distribution of a DP given a
sample x1, . . . , xn of iid observation from P is again a DP with precision
parameters α + n and base measure P0 +

∑
δxi where δx is a point mass

of one in the points x. Some properties about moments of the DP easily
follow. Let A ⊂ Y, then the expectation E[P (A)] = P0(A) meaning that the
expected draw from a DP is the base measure. Also observe that var[P (A)] =
P0(A)(1− P0(A))/(α+ 1) meaning that the high precision parameter α let
the prior to be concentrated around its mean.
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A very important property of the DP is that if P ∼ DP (αP0), P is
almost surely discrete, even when P0 is purely non-atomic. This property
can result disappointing if we want to estimate a density, which is by defi-
nition non-atomic. Nonetheless this is not a great drawback since even the
empirical histogram, which is itself discrete, converges uniformly to any true
distribution. In addition it can be shown that the topological support of the
DP, i.e. the smallest closed set of probability one is quite big. The support
contains in fact all the probability distributions that share the same support
of the base measure P0. Practically in the univariate context, if P0 = N(0, 1)
the DP can generate any density function defined on the real line.

The almost sure discreteness of the process has, in addition, some ap-
pealing characteristics. Let X1, . . . , Xp an iid sample from P and P ∼
DP (α, P0). Blackwell and MacQueen (1973) studied a sequential represen-
tation of the DP, that is

X1|P ∼ P0

X2|P,X1 ∼ DP
(
α+ 1,

α

α+ 1
P0 +

1

α+ 1
δX1

)
that is, the second observation X2 given X1, is a new draw from P0 with
probability α/(α + 1) and is equal to X1 with probability 1/(α + 1). Gen-
eralizing this we have

Xj+1 ∼

{
δθh , with probability nh

α+j , h = 1, . . . , k

P0, with probability α
α+j

where k is the number of distinct observations θ1, . . . , θk and nh is the num-
ber of Xi equal to θh. The different θh can be considered as clusters in which
the observations fall. This representation, known as Blackwell-MacQueen
generalized Polya urn scheme, has a key role in practical application since
it can be used in Markov chain Monte-Carlo (MCMC) simulation from the
posterior. This representation also stress the role of α in determining k
and hence in characterizing the clustering structure of the DP. A colorful
metaphors of the Polya-Urns scheme is the so called Chinese restaurant pro-
cess. Consider a Chinese restaurant with an infinite number of tables, each
with infinite number of seats. In this imaginary restaurant the first cus-
tomer seats at an unoccupied table with probability 1. The general j + 1
customer seats at a new table with probability α/(α + j) or choses one of
the occupied tables with probability proportional to nh/(α+ j). Note that
even if MCMC algorithms naturally produce at each iteration a clustering
structure of the observations, the posterior interpretation of this clusters is
not trivial. In fact both the actual number of occupied clusters and their
composition varies at each iteration. This problem is typically referred to in
the literature as the label switching problem (Stephens, 2000; Jasra et al.,
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2005). If the goal of inference is cluster specific, some strategies have been
proposed to solved the label switching problem. One technique consists in
relabel the clusters at each MCMC iteration using a post-processing algo-
rithm. This approach unfortunately tends to be time-consuming. Other
approaches include to put identifiability constraints (Diebolt and Robert,
1994) and to perform a posteriori a hierarchical cluster analysis using a dis-
tance matrix depending from the MCMC output and the complete linkage
principle (Medvedovic and Sivaganesan, 2002).

The stick breaking representation of Sethuraman (1994) is another useful
representation of the DP, in which

P =
∞∑
h=1

πhδθh , θ
iid∼ P0,

and π1 = V1, πh = Vh
∏
l<h(1 − Vl) with Vh ∼ beta(1, α). The mechanism

that generates the weight πh gives the name to this representation since it
may be thought as breaking a stick of length one into infinitely many pieces
with length proportional to the sequence of weight.

A useful prior for density estimation can be constructed using the DP.
Assume that the data y1, . . . , yn are iid from f and

f =

∫
K(y; θ)dP (θ), P ∼ DP (αP0)

where K is a positive kernel that integrates to one. The DP prior on P and
the structure above induce a prior on f known as the Dirichlet process mix-
ture (DPM) prior, a tool particularly useful in Bayesian models for density
estimation. When K corresponds to the Gaussian distribution (Lo, 1984;
Escobar and West, 1995) we get mathematical tractability and nice asymp-
totic properties in terms of large support and posterior consistency. Under
a DPM of Gaussian, Ghosal et al. (1999) derive sufficient conditions on the
prior and the true distribution f0 in order to achieve strong posterior consis-
tency with Tokdar (2006) strongly relaxing their conditions assuming a DP
location-scale mixture of univariate Gaussians. Under the same modeling
framework, Ghosal and van der Vaart (2001, 2007) give the rate of conver-
gence for Bayesian univariate density estimation. Posterior consistency and
Bayesian asymptotic are discussed in the next section.

2.2.3 Asymptotic topics in Bayesian inference

Some of the theoretical results of this work are in terms of posterior consis-
tency. The notion of consistency in the Bayesian context can result inapt
since it is commonly associated with frequentist estimators theory. Let us
briefly analyze this apparent contradiction.

The aim of statistical inference under both the frequentist and the Bayesian
reasoning is to draw meaningful conclusions about unknown objects. For
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years there has been a strong division between frequentists and Bayesians
not only for a different epistemological point of view on how to acquire
knowledge, but also for a total different idea on the essence of the object to
be known. If frequentists assume that there exists a fixed truth that gener-
ates the data, historically Bayesians avoid the idea of a true data generating
process and rather rely on a subjective interpretation of the probability. For
sake of this short introduction let oversimplify the problem and assume a
parametric model indexed by the parameter θ. While frequentists assume
that there exists a fixed true parameter θ0, Bayesians assume that θ is a
random variable itself. The formers will build an estimator θ̂(X) of θ us-
ing the observed data X, being confident that if the experiment is repeated
a number of times, approximately this many realizations of the estimator
will be close to θ0 even though nothing is known about the current θ̂(X).
The latter would consider a probability distribution of θ reflecting their own
prior knowledge about θ. After the observation of the data, the prior belief
is updated through the conditional distribution of the parameter given data.
How could hence a Bayesian procedure be consistent if no θ0 exists?

One possible approach to the Bayesian reasoning consists in not deny
the existence of a fixed ground truth but rather admit the impossibility of
fully discover it. The prior distribution can be hence seen more as a quan-
tification of the uncertainty about the unobservable θ0 while the posterior
distribution reflects the remaining uncertainty about θ after observing the
data. Hopefully, as we observe more and more data, this uncertainty will
tend to decrease and our knowledge should get closer to the unobservable
θ0. Posterior consistency formalize this point of view.

Roughly speaking, posterior consistency means that the posterior dis-
tribution concentrates around θ0 as n → ∞. A more precise definition of
posterior consistency is:

Definition 2.1. Let Θ be an arbitrary topological space parameterizing a
statistical model. Let X1, . . . , Xn be a sample of size n from such a sta-
tistical model, B the Borel σ-algebra on Θ and Π a probability measure on
(Θ,B) with Π(· | X1, . . . , Xn) being the induced posterior distribution given
the data. The posterior distribution is consistent at θ0 ∈ Θ if for every
neighborhood (defined with respect to a given topology on Θ) U of θ0, said
UC its complement, we have

Π(UC | X1, . . . , Xn)→ 0

in probability under Pn0 or almost surely with respect to Pn0 , where Pn0 is a
probability measure induced by θ0.

Another view of posterior consistency is that of Bayesian robustness.
Assume that two statisticians choose two different sets of prior distributions;
as n→∞ we would like to have the same posterior inference. As formalized
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in Diaconis and Freedman (1986) two different priors will agree a posteriori
if and only if consistency holds.

In this dissertation, Θ will be an infinite-dimensional parameter space,
and hence posterior consistency results will not follow trivially. A brief
review of posterior consistency also from an historical point of view follows.

The first result in this direction is due to Doob (1949). Doob’s theorem
states that if exists a consistent estimator of θ, then the posterior distribu-
tion of θ will tend to concentrate near the true θ0 with probability 1 under
the joint distribution of the data and parameter. Even being groundbreak-
ing, this results does not give any information about consistency at a specific
θ0 of interest. Moreover in the infinite-dimensional case, the set of θ0 where
consistency holds may be topologically very small.

The celebrated posthumous paper of Schwartz (1965) gives a result that
is crucial for further posterior consistency studies in infinite dimensional
spaces. Assume henceforth that Θ is L, the space of densities with respect
to a σ-finite measure on R. Schwartz theorem gives sufficient conditions on
the true f0 ∈ L and the prior in order to get consistency of posterior distri-
butions in the case of iid random variables. We give some definition before
stating the theorem. Let Π be a prior on L, KL(f, g) the Kullback-Leibler di-
vergence

∫
f log(f/g)dµ and Kε(f) a ε size neighborhood {g : KL(f, g) < ε}.

Definition 2.2. Let f0 ∈ L. f0 is said to be in the KL support of the prior
Π, if for all ε > 0, Π(Kε(f0)) > 0.

Definition 2.3. Let U be a neighborhood of f0 ∈ L. The sequence of test
functions {Φn} is uniformly consistent for testing H0 : f = f0 versus H1 :
f ∈ UC , if for n→∞

Ef0{Φn} → 0, inf
f∈UC

Ef{1− Φn} → 0.

Theorem 2.1 (Schwartz). Let Π be a prior on L. If f0 ∈ L and U a
neighborhood around f0 satisfy

1. f0 is in the K-L support of Π,

2. there exists a uniformly consistent sequence of tests as in Definition 2.3,

then Π(U | X1, . . . Xn)→ 1 a.s P∞f0

The two conditions of Schwartz theorem can be interpreted as follow.
The first condition requires that non null prior probability is assigned to a
neighborhood of the true f0. Clearly if the prior distribution gives zero prob-
ability to a given region of the parameter space, the posterior will also give
null probability to it. The second condition is an identifiability condition.
The insight of the existence of the sequence of test is that as n increases
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we should be able to better identify the true model that lies in the infinite
dimensional parameter space.

Note that Theorem 2.1 is stated in a general form as what concern the
neighborhood U . The neighborhood must be defined with respect to a par-
ticular topology. If U is a weak neighborhood the following result holds.

Theorem 2.2 (Schwartz). Let Π be a prior on L. If f0 is in the KL support
of Π and U a weak neighborhood around f0 then Π(U | X1, . . . , Xn)→ 1 a.s
P∞f0

The above result is based on the fact that if U is a weak neighborhood
the construction of the sequence of test is an easy task. Nonetheless if U
is a L1 or Hellinger neighborhood such a sequence of test is not easy to
construct.

Barron et al. (1999) and Ghosal et al. (1999) establish posterior consis-
tency without invoking Schwartz’s conditions. The new condition is on the
size of the parameter space measured in terms of L1-metric entropy, defined
as

Definition 2.4. Let G ⊂ L. For δ > 0 the L1-metric entropy J(δ,G)
is defined as the logarithm of the minimum of all k such that there exist
f1, . . . , fk ∈ L such that G ⊂

⋃k
j=1{f ∈ L :

∫
|f(x)− fj(x)|dx < δ}.

We report Ghosal et al. (1999) theorem below.

Theorem 2.3 (Ghosal, Ghosh and Ramamoorthi). Let Π be a prior on
L. Suppose f0 ∈ L is in the KL support of Π and let U = {f ∈ L :∫
|f(x) − f0(x)|dx < ε} for each ε > 0, U a strong neighborhood around f0

If for each ε there is a δ < ε, c1, c2 > 0, β < ε2/2, and a sequence of set
Ln ⊂ L such that, for n large,

• Π(Ln) < c1 exp(−c2n),

• J(Ln, δ) < nβ,

then the posterior is strongly consistent at f0.

Using Ghosal et al. (1999) Theorem to prove strong posterior consistency
in non-compact spaces, a critical step is to introduce a compact subset Ln
that is indexed by the sample size n and that grows to fill the entire space
as n → ∞. This sequence of subsets is typically referred to as a sieve.
The size of this sieve in terms of L1-metric entropy is required to grow
slower than linearly in n, and the prior probability assigned outside of Ln
(to LCn ) is required to decrease exponentially fast in n. Those conditions
can be used to construct an exponentially consistent sequence of tests and
then to upper bound the numerator and lower bound the denominator of
Π(UC | X1, . . . Xn) ensuring it to be exponentially small end hence achieving
strong posterior consistency.
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Chapter 3

Probability mass function
estimation

We focus now on the Bayesian probability mass function estimation. In this
chapter we introduce the principal idea of this thesis, consisting in round-
ing continuous objects, here density functions. The topology on the space
of count distributions is studied showing that under suitable assumptions
on the underlying prior we achieve weak and strong posterior consistency.
We introduce computational tools for MCMC simulation from the posterior
and apply the modeling framework both in the univariate and multivariate
case. We show how the proposed method can be used in some customer
base management problems. Part of the results presented here are already
discussed in Canale and Dunson (2011).

3.1 Rounded kernel mixture priors

3.1.1 Rounding continuous distributions

In the univariate case, letting y ∈ N denote a count random variable, our
goal is to specify a prior Π for the probability mass function p of this ran-
dom variable. Following the philosophy of Ferguson (1973), nonparametric
priors for unknown distributions should be interpretable, have large support
and lead to straightforward posterior computation. We propose a simple
approach that induces Π through first choosing a prior Π∗ for the density f
of a continuous random variable y∗ ∈ Y and then rounding y∗ ∈ Y to obtain
y ∈ N. Here, Y is either the real line R or a measurable subset.

Let y = h(y∗), where h(·) is a rounding function defined so that h(y∗) = j
if y∗ ∈ (aj , aj+1], for j = 0, 1, . . . ,∞, with a0 < a1 < . . . an infinite sequence
of pre-specified thresholds that defines a disjoint partition of Y. For example,
when Y = R one can simply choose a = {aj}∞j=0 as {−∞, 0, 1, 2, . . . ,∞}.
The probability mass function p of y is p = g(f), where g(·) is a rounding
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function having the simple form

p(j) = g(f)[j] =

∫ aj+1

aj

f(y∗)dy∗ j ∈ N . (3.1)

The thresholds aj are such that a0 = min{y∗ : y∗ ∈ Y}, a∞ = max{y∗ :
y∗ ∈ Y} and hence

∫ a∞
a0

f(y∗)dy∗ = 1. Examples of a0, . . . , a∞ include

0, 1, 2, . . . ,∞ for an f defined on Y = R+ and 0, 1/2, . . . , 1−1/2h, . . . for an
f defined on Y = [0, 1].

Relating ordered categorical data to underlying continuous variables is
quite common in the literature. For example, Albert and Chib (1993) pro-
posed a very widely used class of data augmentation Gibbs sampling algo-
rithms for probit models. In such settings, one typically lets a0 = −∞ and
a1 = 0, while estimating the remaining k − 2 thresholds, with k denoting
the number of levels of the categorical variable. A number of authors have
relaxed the assumption of the probit link function through the use of non-
parametric mixing. See for example Kottas et al. (2005), Jara et al. (2007)
and Gill and Casella (2009).

In our case we fix a priori a sequence of thresholds relying on flexibility
in nonparametric modeling of f to induce a flexible prior on p. In order to
assign a prior Π on the space of count distributions, it is sufficient under this
formulation to specify a prior Π∗ on the space L of densities with respect to
Lesbesgue measure on Y.

3.1.2 Large support and posterior consistency

The involved mapping functions are both surjective and hence the inverse
mapping g−1(·) of a point p ∈ C, where C is the space of the probability mass
functions on N will correspond to an uncountably infinite set of densities in
L. Similarly, the inverse mapping h−1(·) of a point y ∈ N will correspond to
a subset of Y containing infinitely many y∗s. The existence of at least one
element in L for every p ∈ C is ensured by the following lemma.

Lemma 3.1. For every count measure p0 ∈ C and rounding function g(·)
defined in (3.1), there exists at least one f0 ∈ L such that g(f0) = p0.

Proof. The lemma is trivially proved by defining f0 as a step function of the
form

f0(x) =
p0(0)

a1 − b
1I[b,a1)(x) +

∞∑
h=1

p0(h)

ah+1 − ah
1I[ah,ah+1)(x),

where 1IA(x) is 1 iff x ∈ A and b is an arbitrary number such that (b, a1) is
in the domain of f .

Lemma 3.2 demonstrates that the mapping g : L → C maintains Kullback-
Leibler neighborhoods. As it is formalized in Theorem 3.3, this property
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implies that the induced prior p ∼ Π assigns positive probability to all
Kullback-Leibler neighborhoods of any p0 ∈ C if at least one element of
the set g−1(p0) is in the KL support of the prior Π∗. By using conditions
of Wu and Ghosal (2008), the KL condition becomes straightforward to
demonstrate for a broad class of kernel mixture priors Π∗.

Lemma 3.2. Assume that the true density of a count random variable is p0

and choose any f0 such that p0 = g(f0). Let Kε(f0) = {f : KL(f0, f) < ε}
be a Kullback-Leibler neighbourhood of size ε around f0. Then the image
g(Kε(f0)) contains values p ∈ C in a Kullback-Leibler neighbourhood of p0

of at most size ε.

Proof. Let f a general element of Kε(f0) and denote p = g(f) its image on
C, hence

KL(f0, f) =

∫ a∞

a0

f0(x) log

(
f0(x)

f(x)

)
dx < ε. (3.2)

If we discretize the integral (3.2) in the infinite sum of integrals on disjoint
subset of the domain of f we have

∞∑
h=0

∫ ah+1

ah

f0(t) log

(
f0(t)

f(t)

)
dt < ε.

Using the condition (see Theorem 1.1 of Ghurye (1968))∫
A
g1(t)dt× log

(∫
A g1(t)dt∫
A g2(t)dt

)
≤
∫
A
g1(t) log

(
g1(t)

g2(t)

)
dt

for each A ∈ A, countable family of disjoint measurable sets of Y and
g1, g2 ∈ L, we get

p0(j) log
p0(j)

p(j)
≤
∫ aj+1

aj

f0(t) log

(
f0(t)

f(t)

)
dt

and hence

∞∑
j=0

p0(j) log
p0(j)

p(j)
≤
∫ a∞

a0

f0(x) log

(
f0(x)

f(x)

)
dx < ε,

that gives the result.

Theorem 3.3. Given a prior Π∗ on LΠ∗ ⊆ L such that all f ∈ LΠ∗ are
in the Kullback-Leibler support of Π∗, then all p ∈ CΠ = g(LΠ∗) are in the
Kullback-Leibler support of Π.

Proof of Theorem 3.3. For every f ∈ LΠ∗ by Lemma 3.2 we have

Π(Kε(p)) ≥ Π(g(Kε(f))) = Π∗(Kε(f)) > 0.
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Corollary 3.4. From Schwartz Theorem 2.2, the posterior probability of
any weak neighborhood around the true data-generating distribution p0 ∈ CΠ

converges to one exponentially fast as n→∞.

Theorem 3.5 using the fact that in C the weak and strong topology are
topological equivalent, states that weak consistency implies L1 consistency.
The Kullback-Leibler property results hence to be sufficient also for strong
consistency.

Theorem 3.5. Given a prior p ∼ Π for a probability mass function p ∈ C,
if the posterior Π(· | y1, . . . , yn) is weakly consistent, then it is also strongly
consistent in the L1 sense.

Proof. In C weak convergence of sequences implies pointwise convergence
by definition. In addition, Schur’s property holds in C and hence weak
convergence of sequences implies also strong convergence. Weak and strong
metrics are hence topologically equivalent since pn → p weakly iff pn → p in
L1. Topologically equivalent metrics generate the same topology and this
implies that the balls nest, i.e. that for any p ∈ C and radius r > 0, there
exist positive radii r1 and r2 such that

Sr1(p) ⊆Wr(p) and Wr2(p) ⊆ Sr(p)

where Sr(p) and Wr(p) are respectively strong and weak open neighborhoods
of p of radius r. It follows that for any L1 neigborhood S there exists a weak
neighborhood W such that SC ⊆ WC . Hence the posterior probability of
SC is

Π(SC | y1, . . . , yn) ≤ Π(WC | y1, . . . , yn).

Since the right hand side of the last equation goes to zero with Pp0-
probability 1, it follows that also

Π(SCr | y1, . . . , yn)→ 0

with Pp0-probability 1 and this concludes the proof.

3.1.3 Rounded mixture of Gaussian

Mixtures of Gaussians is the leading approach in Bayesian continuous den-
sity estimation. It seems hence reasonable to adopt a modification of this
approach and hence let

f(y∗;P ) =

∫
N(y∗;µ, τ−1)dP (µ, τ), P ∼ DP (αP0), (3.3)

where N(·;µ, τ−1) is a normal kernel having mean µ and precision τ and P0

chosen to be Normal-Gamma. Let Π∗ denote the prior on f induced through
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(3.3) and let Π denote the resulting prior on p induced through (3.1) with
the thresholds chosen as a0 = −∞ and aj = j − 1 for j ∈ {1, 2, . . . }. Let F
the cumulative distribution function of f .

Note that the mixture model prior described satify the condition on the
KL support requested in Wu and Ghosal (2008). Hence large support, weak
and strong posterior consistency follows under the theory of Section 3.1.2.

In the following we first state some results on how to elicit prior knowl-
edge about the random p and we then introduce a Gibbs sampling algorithm
for posterior computation.

Eliciting the thresholds

When prior informations for p are available we can center p on an arbitrary
probability mass function q simply by moving around the thresholds. The
expectation of p can in fact be easily computed. Clearly

E{p(j)} = E

{∫ aj+1

aj

f(y∗;P )dy∗

}
= E{F (aj+1)} − E{F (aj)}.

Marginalizing out prior P ∼ DP (αP0) with P0 = N(µ;µ0, κτ
−1)Ga(τ ; ν/2, ν/2),

using Fubini’s theorem we get

E
{
F (aj)} =

∫
F (aj ;P )dDP (P ;αP0) =

∫ ∫ aj

−∞
f(y∗;P )dy∗ dDP (P ;αP0).

Hence

E{F (aj)} = E

{ ∞∑
h=1

πhΦ(aj ;µh, τ
−1
h )

}

=

∫
R×R+

Φ(aj ;µ, τ
−1)N(µ;µ0, τ

−1κ)Ga(τ ; ν/2, ν/2) dµ dτ

=

∫ ∞
0

∫ ∞
−∞

∫ aj

−∞
N(y∗;µ, τ−1)N(µ;µ0, τ

−1κ)Ga(τ ; ν/2, ν/2) dµ dτ dy∗.

(3.4)

Marginalizing out µ from (3.4) we get

E {F (aj)} =

∫ aj

−∞

∫ ∞
0

N(y∗;µ0, (κ+ 1)/τ)Ga(τ ; ν/2, ν/2) dτ dy∗.

while marginalizing out τ we obtain

E {F (aj)} =

∫ aj

−∞
tν(y∗;µ0, κ+ 1)dy∗

that gives

E{p(j)} = Tν(aj+1;µ0, κ+ 1)− Tν(aj ;µ0, κ+ 1) (3.5)
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where Tν(·; ξ, ω) is the cdf of a non central Student-t distribution with ν
degrees of freedom, location ξ and scale ω. Hence, the expected probability
of y = j is simply a difference in t cdfs having ν degrees of freedom, mean
µ0, and scale κ + 1. Setting µ0 = 0 and κ = 1 for identifiability, the prior
for p can be centered to have expectation exactly equal to an arbitrary pmf
q; a simple iterative algorithm for choosing a to enforce E{p(j)} = q(j), for
j = 0, 1, . . . is:

a0 = −∞
a1 = T −1

ν (q(0); 0, 2)

. . .

aj = T −1
ν (

j−1∑
h=0

q(h); 0, 2).

Although we can conceptually define an infinite sequence of thresholds, prac-
tically it is sufficient to define E{p(j)} = q(j), for j = 0, 1, . . . , J with∑J

j=0 q(j) = 1 − ε and let the remaining aj for j = J + 1, . . . to be equis-
paced with unit step.

Given a, the prior variance of p(j) can be computed along similar lines.
Let FD(a, b) = F (b)−F (a), Φ(a; ξ, ω) the cumulative distribution function of
a normal with mean ξ and variance ω, ΦD(a, b; ξ, ω) = Φ(b; ξ, ω)−Φ(a; ξ, ω)
and TD,ν(a, b; ξ, ω) = Tν(b; ξ, ω)− Tν(a; ξ, ω),

Var{p(j)} = Var{FD(aj , aj+1)}
= E{FD(aj , aj+1)2} − E{FD(aj , aj+1)}2. (3.6)

The second moment of FD(aj , aj+1) can be derived as

E
{
FD(aj , aj+1)2

}
=E


( ∞∑
h=1

πhΦD(aj , aj+1;µh, τ
−1
h )

)2


=
∞∑
h=1

E
{(
πhΦD(aj , aj+1;µh, τ

−1
h )
)2}

+

+ 2
∑
k 6=l

E
{
πkπlΦD(aj , aj+1;µk, τ

−1
k )ΦD(aj , aj+1;µl, τ

−1
l )
}

=
∞∑
h=1

E
{
π2
h

}
E
{

ΦD(aj , aj+1;µh, τ
−1
h )2

}
+

+ 2
∑
k 6=l

E {πkπl}E
{

ΦD(aj , aj+1;µk, τ
−1
k )ΦD(aj , aj+1;µl, τ

−1
l )
}
.

Using the stick-breaking construction of the πh and the results on the vari-
ance of the beta distribution we have

E{FD(aj , aj+1)2} =
1

α+ 1
E
{

ΦD(aj , aj+1;µ, τ−1)2
}

+
α

α+ 1
E
{

ΦD(aj , aj+1;µ, τ−1)
}2
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where the expectations are with respect to (µ, τ) ∼ P0. This leads to

Var{p(j)} =
1

α+ 1

[
E
{

ΦD(aj , aj+1;µ, τ−1)2
}
− E

{
ΦD(aj , aj+1;µ, τ−1)

}2
]

=
1

α+ 1

[
E
{

ΦD(aj , aj+1;µ, τ−1)2
}
− {TD,ν(aj , aj+1;µ0, κ+ 1)}2

]
.

The expected value of the squared normal cdf is with respect to P0 and can
be computed numerically.

From empirical evidence the method is enough robust to the prior spec-
ification to make this prior elicitation more a nice algebraical result rather
than a practical used procedure. As it will be clear from the simulation study
of Section 3.4.1 the DP mixture of rounded Gaussians is flexible enough to
pragmatically let a0 = −∞ and aj = j − 1.

A Gibbs sampling algorithm

From the computational point of view we can rely on existing results adapt-
ing any existing MCMC algorithm developed for DPMs of Gaussians. We
focus here on the blocked Gibbs sampler of Ishwaran and James (2001), with
f(y∗) =

∑N
h=1 πhN(y∗;µh, τ

−1
h ) with π1 = V1, πh = Vh

∏
l<h(1− Vl), Vh in-

dependent Beta(1,α) and VN = 1. See Walker (2007) and Yau et al. (2010)
for specifications that avoid the truncation. The blocked Gibbs sampling
steps are reported in Algorithm 1. The algorithm has been implemented in
a R function with the core code written in C.

3.1.4 Rounded mixture of skew normal

Motivated by the analysis of telecommunications count data, which are often
positive skewed and concentrated near zero, we introduce in this section
another choice for the kernel: the skew normal (Azzalini, 1985). The skew
normal (SN) distribution is a flexible distribution allowing several degrees
of skewness. We aspect that using a flexible kernel within a flexible mixture
model will lead to a lower effective number of cluster components.

The SN is a family of distributions which generalize the Gaussian adding
a third parameter ruling out the shape of the distribution. In the last
two decades the skew normal distribution has been widely studied in the
statistical literature. See Azzalini (2005) for a comprehensive theoretical
and applied review. Skew normal mixture models, that we will investigate
here, are studied in Lin et al. (2007) and more recently in Frühwirth-Shnatter
and Pyne (2010). Under a Bayesian nonparametric setup the master thesis
of Cavatti Vieira (2011) gives some interesting results on continuous density
estimation using the DP mixture of skew normal.

To give some notation let X be distributed as a skew normal with loca-
tion ξ, scale ω and shape λ, written X ∼ SN(ξ, ω, λ). The density function
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Algorithm 1 Gibbs sampling algorithm: rounded mixture of Gaussians

Step 1: Generate each y∗i from the full conditional posterior

• Generate ui ∼ U
(

Φ(ayi ;µSi , τ
−1
Si

),Φ(ayi+1;µSi , τ
−1
Si

)
)

• Let y∗i = Φ−1(ui;µSi , τ
−1
Si

)

Step 2: Update Si from its multinomial conditional posterior with

Pr(Si = h|−) =
πhp(yi|µh, τ−1

h )∑N
l=1 πlp(yi|µl, τ

−1
l )

,

where p(j|µh, τ−1
h ) = Φ(aj+1|µh, τ−1

h )− Φ(aj |µh, τ−1
h ).

Step 4: Update the stick-breaking weights using

Vh ∼ Be

(
1 + nh, α+

N∑
l=h+1

nl

)

Step 4: Update (µh, τh) from its conditional posterior

(µh, τ
−1
h ) ∼ N(µ̂h, κ̂hτ

−1
h )Ga(âτh , b̂τh)

with âτh = aτ +nh/2, b̂τh = bτ +1/2(
∑

i:Si=h
(y∗i − ȳ∗h)+nh/(1+κnh)(ȳ∗h−

µ0)2), κ̂h = (κ−1 + nh)−1 and µ̂h = κ̂h(κ−1µ0 + nhȳ
∗
h).

28



3.1. ROUNDED KERNEL MIXTURE PRIORS

of X is

SN(X; ξ, ω, λ) =
2

ω
φ

(
x− ξ
ω

)
Φ

(
λ
x− ξ
ω

)
, (3.7)

where φ(x) is the density function of a standard normal and Φ(·) is the
distribution function of a standard normal, ξ ∈ R, ω ∈ R+ and λ ∈ R. Note
that for λ = 0 the density reduces to the normal N(x; ξ, ω2).

Several extensions and alternative formulations have been proposed in
connection with the skew normal distribution. A commendable work of
unification of such proposal is carried out in Arellano-Valle and Azzalini
(2006) under the general formulation known as unified skew normal and
denoted with the acronym SUN. A SUN distribution has density

SUNd,m(X; ξ, γ, ω̄,Ω∗) = φd(y−ξ; Ω)
Φm(γ + ∆TΩ̄−1ω−1(y − ξ); Γ−∆TΩ̄−1∆)

Φm(γ; Γ)
,

(3.8)
where ω̄ = ω1d and Ω∗ can be partitioned as

Ω∗ =

(
Γ ∆T

∆ Ω̄

)
.

Among the many generation mechanisms of model (3.7), we use the
convolution Lemma of Azzalini (1986). Denoted by HN(ω2) the half normal
distribution with scale ω2 (and variance ω2(1−2/π)), we recall the following
lemma.

Lemma 3.6 (Azzalini). Let η ∼ HN(σ2), U ∼ N(0, σ2) with U independent
from η and |δ| < 1. If

X = δη +
√

1− δ2U

then X ∼ SN(0, σ, λ) with λ = δ/
√

1− δ2.

Lemma 3.6 allows us to treat a skew normal variable X ∼ SN(ξ, ω, λ)
with a hierarchical representation in which, conditionally on a realization η
from a half normal distribution, X is normal with mean ξ+ δη and variance
(1− δ2)ω2.

Going back to our rounded mixture prior we let

f(y∗;P ) =

∫
SN(y∗; ξ, ω, λ)dP (ξ, ω, λ), P ∼ DP (αP0) (3.9)

where α > 0 and

P0(ξ, ω, λ) = N(ξ; ξ0, κω
2)×Ga(ω−2; a, b)×N(λ; 0, ψ). (3.10)

Equation (3.10) follows the lines of the expression for the mixing measure
of model (3.3). In the DPM of Gaussians, in fact, P0 was a normal-inverse-
gamma following the standard convenient choice for the prior of the parame-
ters of a single Gaussian distribution. Unfortunately, such a golden standard
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for the skew normal does not exist, particularly for the prior on the shape
parameter, and several proposals have been made in this direction. An ob-
jective Bayes viewpoint is studied in Liseo and Loperfido (2006) introducing
the Jeffrey’s reference prior for the shape parameter, showing that it has
unbounded support and that it is proper. Arellano-Valle et al. (2009) pro-
pose a skew normal distribution also as prior showing conjugancy within the
SUN family of Arellano-Valle and Azzalini (2006). Even if our proposal is
similar to that of Cavatti Vieira (2011), it was developed independently. In
addition our sampling method, discussed below, is new not only concerning
the data augmentation step that relates our count observations with the
latent continuous variables. It is hence of self interest also for continuous
density estimation using skew normal mixtures.

A Gibbs sampling algorithm

For posterior computation we assume f(y∗) =
∑N

h=1 πhSN(y∗; ξh, ωh, λh)
with π1 = V1, πh = Vh

∏
l<h(1 − Vl), Vh independent Beta(1,α) and VN =

1. In addition we will use the result of Lemma 3.6 to gain conjugacy for
the location and scale parameters of each component of the mixture. The
distributions for the shape parameters are in closed form and belong to the
SUN class (3.8). The full conditional posterior distributions are specified in
Algorithm 2.

The seventh step of Algorithm 2, in particular, can be done in closed
form, using the result of the following lemma that is a particular case of the
situation described in Section 2.1 of Arellano-Valle and Azzalini (2006).

Lemma 3.7 (Arellano-Valle-Azzalini). Let V0 ∼ Nq(0, Iq(1−∆T∆)+∆∆T ),
V1 ∼ N(0, 1) with V0 independent from V1. If

Y = ∆|V0|+
√

1−∆T∆V1

then Y ∼ SUN1,q(0, 0, 1,Ω) with

Ω =

(
Inq(1−∆T∆) + ∆∆T ∆

∆T 1

)
.

Cavatti Vieira (2011) proposed similar prior distributions while not re-
lying on the stochastic representation discussed in Lemma 3.6. This leads
the full conditional posterior for ωh to be not in closed form and hence
to perform the MCMC simulation from the posterior using a Metropolis-
Hastings algorithm that is clearly computationally less efficient than our
Gibbs sampler.

3.2 Multivariate rounded kernel mixtures prior

Multivariate count data are quite common in a broad class of disciplines and
particularly in the setting introduced in Section 2.1.1.
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Algorithm 2 Gibbs sampling algorithm: rounded mixture of skew normals

Step 1: Generate each y∗i from the underline continuous distribution under
the constraints ayi < y∗i < ayi+1;
Step 2: Sample Si, the class indicator from the multinomial

Pr(Si = h|−) =
πhp(yi|ξh, ωh, λh)∑N
l=1 πlp(yi|ξl, ωl, λl)

with h = 1, . . . ,H and H the number of occupied clusters.
Step 3: Sample α using Escobar and West (1995) given n and H, the
number of occupied clusters
Step 4: Update the stick-breaking weights using

Vh ∼ Be

(
1 + nh, α+

H∑
l=h+1

nl

)

where nh is the sample size of the hth cluster.
Step 5: Update

ηi ∼ N(δSi(y
∗
i − ξSi), ω2

Si(1− δ
2
Si))

where δh is λh/
√
λ2
h + 1.

Step 6: Sample (ξh, ωh) from

N
(
µ̂h, κ̂hω

2
h

)
InvGam(a+ nh/2 + 1, b+ b̂h)

where

µ̂h =
κ
∑

Si=h
(y∗i − δhηi) + (1− δ2

h)ξ0

nh + κω2(1− δ2
h)

, κ̂h =
κ(1− δ2

h)

nhκ+ (1− δ2
h)
,

b̂h =

∑
Si=h

η2
i − 2δh

∑
Si=h

ηi(y
∗
i − ξh) +

∑
Si=h

(y∗i − ξh)2 + (1− δ2
h)(ξh − ξ0)2

2(1− δ2
h)

.

Step 7: Sample λh from

λh ∼ SUN1,nh(λh; 0, 0, φ,Ωh)

where z∗i =
√
φ(y∗i −ξh)/ωh, zh is the vector of size nh with all z∗i belonging

to cluster h, ∆h = z∗h(1 + z∗Th z∗h)−1/2 and

Ωh =

(
Inh(1−∆T

h∆h) + ∆h∆T
h ∆h

∆T
h 1

)
.
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Our approach easily generalizes in a multivariate setting. The multivari-
ate rounded kernel mixture prior introduced below can flexibly characterize
the entire joint distribution including the marginals and dependence struc-
ture, while leading to straightforward and efficient computation. For ease
of computation in the multivariate case we focus in using underlying multi-
variate Gaussian kernels.

3.2.1 Properties in the multivariate context

The rounding idea of Section 3.1.1 can be easily generalized into its mul-
tivariate counterpart. Assume that the multivariate count vector y =
(y1, . . . , yp) is the transformation through a threshold mapping function h
of a latent continuous vector y∗ = (y∗1. . . . , y

∗
p). In a general setting we have

y = h(y∗) (3.11)

y∗ ∼ f(y∗) =

∫
Kp(y

∗; θ,Ω)dP(θ,Ω), P ∼ Π̃, (3.12)

where Kp(·; θ,Ω) is a p-variate kernel with location θ and scale-association
p× p matrix Ω and Π̃ is a prior over the space of probability measures over
Rp×Mp with Mp the space of positive definite p×p matrices. The mapping
h(y∗) = y implies that the probability mass function p of y is

p(y1 = J1, . . . , yp = Jp) = p(J) = g(f)[J] =

∫
AJ

f(y∗)dy∗ J ∈ Np (3.13)

where AJ = {y∗ : a1,J1 ≤ y∗1 < a1,J1+1, . . . , ap,Jp ≤ y∗p < ap,Jp+1} defines
a disjoint partition of the sample space. Marginally this formulation is the
same of that in (3.1).

Remark 3.1. Lemma 3.2 and Theorem 3.3 demonstrate that in the univari-
ate case the mapping g : L → C maintains Kullback-Leibler neighborhoods
and hence the induced prior Π assigns positive probability to all Kullback-
Leibler neighbourhoods of any p0 ∈ C. This property holds also in the mul-
tivariate case.

The true p0 is in the KL support of our prior, and hence we obtain weak
and strong posterior consistency following the theory of Section 3.1.1, as long
as there exists at least one multivariate continuous density f0 = g−1(p0) that
falls in the KL support of the mixture prior for f described in (3.11)-(3.12).

Also in the multivariate context we could rely on existing results on
large support and posterior consistency developed for multivariate continu-
ous density estimation. Unfortunately results for multivariate density esti-
mations are scarce. The only available results on asymptotic properties of
Bayesian procedures for multivariate continuous density estimation are pre-
sented by Ghosal and co-authors (Wu and Ghosal, 2010; Shen and Ghosal,
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2011). In both papers the models considered are quite limited in scope in
focusing on DP location mixtures of Gaussian kernels while assigning an
independent prior for the covariance matrix. In the following theorem we
assume that Kp corresponds to a multivariate Gaussian kernel. It is in
terms of mixture prior for multivariate continuous density estimation and
gives sufficient condition on the true multivariate continuous f0 to ensure
that it falls within the KL support of the prior f ∼ Π∗ induced by (3.12).
It modifies Theorem 2 of Wu and Ghosal (2010).

Theorem 3.8. Let f0 be a density over Rp with respect to Lesbesgue measure
and let Π∗ denote the prior on f induced from (3.12) with Kp corresponding
to a multivariate Gaussian kernel, P ∼ Π̃ and Π̃ an arbitrary prior with
weak support over the space of probability measures over Rp ×Mp. Assume
the following

1. 0 < f(y∗) < M∗ for some constant M∗ and all y∗ ∈ Rp;

2. |
∫
f0(y∗) log f0(y∗)dy∗| <∞;

3. for some δ > 0,
∫
f0(y∗) log f0(y∗)

φδ(y∗)
dy∗ <∞, where φδ(y

∗) = inf ||y∗′−y∗||<δ f0(y∗);

4. for some η > 0,
∫
||y∗||2p(1+η)f0(y∗)dy∗ <∞.

Then f0 is in the KL support of Π∗.

Proof. The proof follows Theorem 2 of Wu and Ghosal (2010) in first bound-
ing the density of a multivariate normal density with general covariance
matrix Σ by

(
λ1(Σ)

λp(Σ)

) p−1
2

φ(y; 0, λ1(Σ)Ip) ≤ φ(y; 0,Σ) ≤
(
λd(Σ)

λ1(Σ)

) p−1
2

φ(y; 0, λp(Σ)Ip),

and then showing thanks to this that, for P belonging to an open set of the
space of probability measures over Rp ×Mp we have∫

f0(y) log
f0(y)∫

φ(y : θ,Σ)dP (θ,Σ)
dy ≤ ε.

This result will be also useful in Chapter 4 which generalizes the modeling
framework discussed in this chapter to the mixed-scale data, i.e. when we
observe a multivariate vector y containing both continuous and discrete
(counts, categorical, binary) variables.
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3.2.2 Multivariate rounded mixture of Gaussians

Continue to assume that Kp corresponds to a multivariate Gaussian ker-
nel. Let furthermore Π̃ be DP(αP0), with P0 corresponding to a normal
inverse-Wishart base measure. Under this formulation we can obtain the
following Gibbs sampler for posterior computation. Also here, we rely on
existing methods for posterior computation and in Algorithm 3 we report a
modification of the Gibbs sampler with auxiliary parameters of Neal (2000).

Algorithm 3 Gibbs sampling algorithm: multivariate rounded mixture of
Gaussians

Step 1: Generate each y∗i from the full conditional posterior
for j in 1, . . . , p do

Generate uij ∼ U
(

Φ(ayij−1; µ̃i,j , σ̃
2
i,j),Φ(ayij ; µ̃i,j , σ̃

2
i,j)
)

, where

µ̃i,j = µSi,j + ΣSi,12Σ−1
Si,22(y∗−j − µSi,−j)

σ̃2
i,j = σ2

Si,j − ΣSi,12Σ−1
Si,22ΣSi,21

are the usual conditional expectation and conditional variance of the
multivariate normal.
Let y∗ij = Φ−1(uij ; µ̃i,j , σ̃

2
i,j)

end for
Step 2:
for i in 1, . . . , n do

Let ki the number of occupied clusters
Draw (µki+1,Σki+1) ∼ P0

Update Si from

P (Si = h) =

{
nh

n−1+αp(yi;µh,Σh) for h = 1, . . . , ki
α

n−1+αp(yi;µki+1,Σki+1)

end for
Step 3: Update (µh,Σh) from their conditional posteriors.

3.3 Bayesian count curve fitting

Our modeling framework modifies the Bayesian curve fitting approach pre-
sented by Müller, Erkanli and West (1996) to accommodate count data.

Consider a standard nonparametric regression problem in which we want
to estimate s(x), a smooth trajectory for a response variable y given the
observation of one or more explanatory variables x such that it minimizes
some criterion. For example, if y is continuous one typically minimizes
E[{y− s(x)}2 | x] obtaining s(x) = E(y | x). If y is a count variable, a more
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natural loss function is the absolute deviation loss, namely E[|y − s(x)| | x]
that leads to s(x) = Median(y | x).

In both the situations if one can estimate the joint distribution of z =
(y, x), or better the conditional distribution of (y | x), then s(x) immediately
follows. For sake of explanation assume henceforth that both y and x are
univariate.

A lot of approaches deal with this problem under a nonparametric set-
tings and generalizing the idea of local linear regression (see e.g. Hastie
et al., 2001, for a general review of standard nonparametric smoothing ap-
proaches). In those settings the regression function s(x) can be written with
the form

s(x) =
∑
j

wj(x)mj(x),

where wjs are weights assigned to mjs, some precise linear functions of
x. Müller et al. (1996) proposed to view s(x) as deriving from a joint
distribution of a mixture model like

(x, y) ∼
∑
j

wjfj(x, y),

where wj are weights summing to one, fj(x, y) are probability density func-
tions having f(y | x) as conditional density function with means mj(x).
More precisely they assumed a DPM of Gaussians prior for joint distribu-
tion of (y, x) and built a Gibbs sampling scheme for posterior computation.
Under this settings and thanks to the closure under conditioning of the
Gaussian family, predictive values of y can be generated in an MCMC chain
and the predictive regression estimate can be obtained by averaging the
simulated ys.

Our rounded DPM of Gaussians modifies this framework to accommo-
date count data. Assume to model jointly y = (y, x) as described in Sec-
tion 3.2.2. Then, in Algorithm 3 it is sufficient to add a further step in which
we generate under its conditional predictive distribution yn+1 given x, i.e.

(y∗n+1 | x) ∼ w0(x)f0(y∗ | x) +
k∑
j=1

wj(x)fj(y
∗ | x), yn+1 = h(y∗n+1)

where f0 is the conditional density of y∗ given x based on the normalized base
measure P0, and fj are the conditional Gaussian densities of y given x under
the joint Gaussian distributions. The current number of occupied clusters in
the DP mixture is denoted by k and the k+1 weights wj (j = 0, 1, . . . , k) are
functions of the marginal densities of x under the base measure P0 and the
the joint Gaussians. Taking the average or the median of the Montecarlo
replicates of (yn+1 | x), for a grid of values of x we can obtain different
regression functions. This framework can be generalized in the case in which
z is a mixed scale vector, having discrete and continuous variables. Some
theoretical developments for the mixed scale case are presented in Chapter 4.
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3.4 Simulation studies

To assess the performance of the proposed approach, in this section we report
the results of some simulation studies.

3.4.1 Probability mass function estimation simulation

To test the performance of the rounded mixture of Gaussians (RMG) of Sec-
tion 3.1.3 and of the rounded mixture of skew normal (RMSN) of Section
3.1.4 in the probability mass function estimation, we compared them with
four different approaches: the empirical probability mass function (E), two
Bayesian nonparametric approaches, with the first assuming a Dirichlet pro-
cess prior with a Poisson base measure (DP) and the second using a Dirich-
let process mixture of Poisson kernels (DPM-Pois), and lastly the maximum
likelihood estimate under a Poisson model (MLE). Several simulations have
been run under different simulation settings leading to qualitatively similar
results. In what follows we report the results for the five following scenarios:

(a) y = h(y∗), y∗ ∼ 0.4N(25, 1.5)+0.15N(20, 1)+0.25N(24, 1)+0.2N(21, 2);

(b) y ∼ Poi(12);

(c) y ∼ 0.4Poi(1) + 0.25Poi(3) + 0.25Poi(5) + 0.1Poi(13);

(d) y ∼ ConPoi(30, 3), where with ConPoi(λ, ν) is the Conway-Maxwell-
Poisson distribution (Shmueli et al., 2005);

(e) y = h(y∗), y∗ ∼ 0.6Ga(2, 0.5) + 0.4Ga(4, 1.5).

A plot for each of the five true probability mass functions is reported in
Figure 3.1.

For each case, we generated samples of size n = 10, 25, 50, 100, 300. Each
of the five analysis approaches were applied to R=1,000 replicated data
sets under each scenario. The methods were compared based on a Monte
Carlo approximation to the mean Bhattacharyya (1943) distance (BCD) and
Kullback-Leibler divergence (KLD) calculated as

BCD =
1

R

R∑
r=1

 max(y)+B∑
j=max(0,min(y)−B)

− log
(√

p(j)p̂r(j)
) ,

KLD =
1

R

R∑
r=1

 max(y)+B∑
j=max(0,min(y)−B)

p(j) log
(
p(j)/p̂r(j)

) .

where we take the sums across the range of the observed data ± a buffer of
B = 10.
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Figure 3.1: Real probability mass functions in the simulation study: rounded
mixture of Gaussians (a), Poisson (b), mixture of Poissons (c), Conway-
Maxwell Poisson (d) and rounded mixture of gammas (e).
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The empirical coverage of 95% credible intervals for the p(j)s is also
calculated and reported in Figures 3.2–3.6. These intervals were estimated
as the 2.5th to 97.5th percentiles of the samples collected after burn-in for
each p(j), with a small buffer of ±10−8 added to accommodate numerical
approximation error.

In implementing the blocked Gibbs sampler for the rounded mixture of
Gaussians, the first 1,000 iterations were discarded as a burn-in and the next
10,000 samples were used to calculate the posterior mean of p̂(j). For the
hyperparameters, as a default empirical Bayes approach, we chose µ0 = y,
the sample mean, and κ = s2, the sample variance, and aτ = bτ = 1. The
precision parameter of the DP prior was set equal to one as a commonly
used default and the truncation level N is set to be equal to the sample size
of each sample. We also tried reasonable alternative choices of prior, such as
placing a gamma hyperprior on the DP precision (Escobar and West, 1995),
for smaller numbers of simulations and obtained similar results. The values
of p(j) for a wide variety of js were monitored to gauge rates of apparent
convergence and mixing. The trace plots showed excellent mixing, and the
Geweke (1992) diagnostic suggested very rapid convergence.

The DP approach used Poi(ȳ) as the base measure, with α = 1 or α ∼
Ga(1, 1) considered as alternatives. For fixed α, the posterior is available in
closed form, while for α ∼ Ga(1, 1) we implemented a Metropolis-Hastings
normal random walk to update logα, with the algorithm run for 10, 000
iterations with a 1, 000 iterations burn-in.

The blocked Gibbs sampler (Ishwaran and James, 2001) was used for
posterior computation in the DPM-Pois model, with the first 1,000 iterations
discarded as a burn-in and the next 10,000 samples used to calculate the
posterior mean p̂(j). A gamma base measure with hyperparameters a =
b = 1 was chosen within the DP while the precision parameter was fixed to
α = 1.

The results of the simulation are reported in Table 3.1. The proposed
method performs generally better, in terms of BCD and KLD, than the
other methods when the truth is underdispersed and clearly not Poisson, as
in the first and last scenarios.

When we simulated Poisson data the MLE under a Poisson model and
the DPM of Poissons performs slightly better than the proposed RMG and
RMSN in very small samples. However, even in modest sample sizes of
n = 25, the RMG approach was surprisingly competitive when the truth
was Poisson. Interesting, when the truth was a mixture of Poissons as in
scenario (c) we obtained much better performance for the RMG approach
than the DPM-Pois model. The ∞ recorded for the empirical estimation is
due to the presence of p(j) exactly equal to zero if we do not observe any
y = j.

The Gaussian kernel performs better than the skew normal one but such
a difference tends to decrease as n grows. This behaviour was expected and
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it is probably due to the fact that the skew normal pays its flexibility in
terms of one additional parameter to be estimated. To better understand
the differences between the RMG and the RMSN, we reported the posterior
average number of occupied clusters in the mixture in Table 3.2. Expecially
for high n and skew scenarios like (e), the average number of occupied clus-
ters is smaller when using the skew normal. In fact in approximating an
asymmetric density, a mixture of distributions that already allows different
levels of skewness will be more efficient than a mixture of symmetric dis-
tributions, which will rather require a larger number of components to fit
the asymmetric pattern. In practical applications, hence, the prior knowl-
edge of the skewness of the probability mass function to be estimated, the
available sample size and the necessity to interpret the model based cluster-
ing naturally obtained in the DPM, can help in choosing one kernel rather
than another. In absence of strong prior information on the skewness, the
Gaussian kernel is a robust and convenient choice.

The effective coverage of the credible intervals for p(j) for the RMG
and the RMSN fluctuates around the nominal value for all the scenarios
and sample sizes with a slighlty better performance of the RMG. Using the
Dirichlet process prior we get an effective coverage that is either strongly
less than the nominal levels, or much too high, due to too wide credible
intervals. For DP-Pois, we obtain coverage close to the nominal level only
at the values of j such that the true p(j) is high enough so that substantial
numbers of observations fall at that value.
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Table 3.1: Bhattacharya coefficient and Kullback-Leibler divergence from
the true distribution for samples from the five scenarios

Scenario (a) Scenario (b) Scenario (c) Scenario (d) Scenario (e)

n Method BCD KLD BCD KLD BCD KLD BCD KLD BCD KLD

10 RMG 0.04 0.16 0.04 0.17 0.03 0.11 0.04 0.12 0.04 0.14
RMSN 0.1 0.28 0.1 0.25 0.08 0.19 0.09 0.23 0.09 0.24
E 0.24 ∞ 0.35 ∞ 0.39 ∞ 0.09 ∞ 0.24 ∞
DPα=1 0.14 0.68 0.19 0.9 0.16 1.14 0.06 0.25 0.13 0.74
DPα∼Ga(1,1) 0.11 0.47 0.11 0.49 0.12 0.87 0.05 0.22 0.1 0.54

MLE 0.13 0.37 0.01 0.05 0.11 0.78 0.07 0.21 0.04 0.24
DPM-Pois 0.26 0.69 0.09 0.29 0.15 0.43 0.26 0.67 0.15 0.42

25 RMG 0.02 0.08 0.02 0.08 0.02 0.06 0.02 0.06 0.02 0.08
RMSN 0.05 0.13 0.04 0.11 0.04 0.1 0.04 0.1 0.03 0.11
E 0.09 ∞ 0.14 ∞ 0.23 ∞ 0.03 ∞ 0.13 ∞
DPα=1 0.07 0.34 0.1 0.57 0.1 0.9 0.02 0.11 0.07 0.5
DPα∼Ga(1,1) 0.06 0.24 0.06 0.29 0.08 0.68 0.02 0.1 0.06 0.35

MLE 0.13 0.36 0.01 0.02 0.11 0.76 0.06 0.2 0.03 0.18
DPM-Pois 0.18 0.5 0.02 0.06 0.02 0.1 0.21 0.55 0.11 0.33

50 RMG 0.01 0.05 0.01 0.04 0.01 0.04 0.01 0.04 0.01 0.05
RMSN 0.03 0.08 0.03 0.07 0.02 0.05 0.02 0.06 0.02 0.06
E 0.04 ∞ 0.07 ∞ 0.17 ∞ 0.02 ∞ 0.09 ∞
DPα=1 0.03 0.16 0.06 0.33 0.06 0.69 0.01 0.06 0.04 0.34
DPα∼Ga(1,1) 0.03 0.12 0.04 0.18 0.05 0.54 0.01 0.05 0.04 0.25

MLE 0.13 0.35 <0.01 0.01 0.11 0.75 0.06 0.19 0.03 0.16
DPM-Pois 0.16 0.44 0.03 0.09 0.12 0.28 0.19 0.51 0.10 0.27

100 RMG 0.01 0.03 0.01 0.02 <0.01 0.02 0.01 0.03 0.01 0.03
RMSN 0.02 0.06 0.02 0.05 0.01 0.03 0.02 0.05 0.01 0.03
E 0.02 ∞ 0.03 ∞ 0.13 ∞ 0.01 ∞ 0.07 ∞
DPα=1 0.02 0.08 0.03 0.18 0.03 0.47 0.01 0.03 0.02 0.22
DPα∼Ga(1,1) 0.02 0.07 0.02 0.11 0.03 0.37 0.01 0.03 0.02 0.17

MLE 0.13 0.35 <0.01 0.01 0.11 0.75 0.06 0.19 0.03 0.15
DPM-Pois 0.54 1.41 <0.01 0.01 0.01 0.03 0.18 0.48 0.09 0.23

300 RMG <0.01 0.01 <0.01 0.01 <0.01 0.01 <0.01 0.02 <0.01 0.01
RMSN 0.01 0.03 0.01 0.02 <0.01 0.02 0.01 0.03 <0.01 0.01
E 0.01 ∞ 0.01 ∞ 0.1 ∞ <0.01 ∞ 0.05 ∞
DPα=1 0.01 0.03 0.01 0.07 0.01 0.17 0.26 2.29 0.01 0.18
DPα∼Ga(1,1) 0.05 0.29 0.01 0.35 0.05 0.74 0.03 0.16 0.01 0.15

MLE 0.13 0.35 <0.01 <0.01 0.1 0.74 0.06 0.19 0.03 0.09
DPM-Pois 0.14 0.4 0.01 0.05 0.1 0.21 0.17 0.47 0.06 0.13

Table 3.2: Average number of occupied clusters in the RMG and RMSN
n Method Scenario (a) Scenario (b) Scenario (c) Scenario (d) Scenario (e)

10 RMSN 3.01 2.82 3.30 3.19 3.22
RMG 3.05 2.85 3.34 3.23 3.26

25 RMSN 2.90 2.46 3.84 3.38 3.86
RMG 3.20 2.72 4.24 3.73 4.26

50 RMSN 2.73 2.45 4.11 3.30 4.25
RMG 3.23 2.90 4.87 3.91 5.03

100 RMSN 2.98 2.88 4.37 3.48 4.67
RMG 3.71 3.59 5.44 4.34 5.82

300 RMSN 2.93 2.83 4.29 3.42 5.59
RMG 3.71 3.59 5.44 4.34 7.09
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Figure 3.2: Coverage of 95% credible intervals for p(j) under the four sce-
narios with n = 10. Points represent the RMG method, squares the RMSN,
cross-shaped dots the DP with α = 1, triangles the DP with α ∼ Ga(1, 1)
and x-shaped dots the DPM of Poisson.
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Figure 3.3: Coverage of 95% credible intervals for p(j) under the four sce-
narios with n = 25. Points represent the RMG method, squares the RMSN,
cross-shaped dots the DP with α = 1, triangles the DP with α ∼ Ga(1, 1)
and x-shaped dots the DPM of Poisson.



3.4. SIMULATION STUDIES

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ●

●

●

● ● ●
● ● ●

●
●

●

●
● ● ● ●

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

j

C
ov

er
ag

e

(a)

●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ●

●
●

● ● ● ● ●

0 5 10 15 20 25
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

j

C
ov

er
ag

e

(b)

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
● ● ●

●
●

●
● ● ● ● ●

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

j

C
ov

er
ag

e

(c)

●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ● ●

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

j

C
ov

er
ag

e

(d)

●

●

●

●
●

● ● ●
●

● ● ●
● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

j

C
ov

er
ag

e

(e)

Figure 3.4: Coverage of 95% credible intervals for p(j) under the four sce-
narios with n = 50. Points represent the RMG method, squares the RMSN,
cross-shaped dots the DP with α = 1, triangles the DP with α ∼ Ga(1, 1)
and x-shaped dots the DPM of Poisson.
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Figure 3.5: Coverage of 95% credible intervals for p(j) under the four scenar-
ios with n = 100. Points represent the RMG method, squares the RMSN,
cross-shaped dots the DP with α = 1, triangles the DP with α ∼ Ga(1, 1)
and x-shaped dots the DPM of Poisson.
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Figure 3.6: Coverage of 95% credible intervals for p(j) under the four scenar-
ios with n = 300. Points represent the RMG method, squares the RMSN,
cross-shaped dots the DP with α = 1, triangles the DP with α ∼ Ga(1, 1)
and x-shaped dots the DPM of Poisson.
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3.4.2 Out of sample prediction simulation

In testing the model of Section 3.2.2 if used for Bayesian regression, we
perform a simulation study. We assumed two scenarios, the first consists in
generating data from the mixture

y∗i ∼
3∑

h=1

πhN(µh,Σh),

with π = (π1, π2, π3) = (0.14, 0.40, 0.46), µ1 = (35, 82, 95), µ2 = (−2, 1, 2.5),
µ3 = (12, 29, 37) and variance-covariance matrices

Σ1 =

 3 −0.6 0.25
−0.6 3 0.7
0.25 0.7 2

 , Σ2 =

 1 0.5 0.4
0.5 1 −0.4
0.4 −0.4 0.7

 , Σ3 = 7.5 · Σ2,

with the positive observations floored and all negative values set equal to
zero leading to a multivariate zero-inflated count distribution and the sec-
ond scenario consisting in the mixture of multivariate Poisson distributions
(Johnson et al., 1997):

πPoi3(λ1, λ01) + (1− π)Poi3(λ2, λ02)

with λ1 = (1, 8, 15), λ2 = c(8, 1, 3), λ−1
01 = λ02 = 2 and π = 0.7. For each

scenario we simulate 100 dataset. The samples were then randomly and
equally split into training and test subsets, with the Gibbs sampler applied
to the training data and the results used to predict yi1 given yi2 and yi3 in
the test sample.

We used the model (3.12) with multivariate Gaussian kernel and mixing
distribution P ∼ DP(αP0) with base measure P0 = Np(µ;µ0, κ0Σ)Inv-W(Σ; ν0,S0).
The hyperparameters were specified as follows:

µ0 ∼ N3(ȳ∗, Ŝ), S0 ∼ InvWishart(4,Ψ0),

Ψ0 = I3, ν0 = 4, κ0 ∼ Gamma(0.01, 0.01), α = 1 (3.14)

with y∗ = (1 − p̂0)y+ − p̂0y+, p̂0 the proportion of zeros in the training

sample, y+ the mean of the non-zero values and Ŝ = diag(s2
1, s

2
2, s

3
3) with

sj the empirical variance of yij , i = 1, . . . , n. The Gibbs sampler was run
for 10, 000 iterations with the first 4, 000 discarded. We assessed predictive
performance using the absolute deviation loss, which is more natural than
squared error loss for count data and hence with the median of the posterior
predictive distribution of yi1.

We compare our approach with prediction under an oracle based on the
true models, Poisson log-linear regressions fit with maximum likelihood, gen-
eralized additive models (GAM) (Hastie et al., 2001) with spline smoothing
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function and generalized latent trait model (GLTM) (Moustaki and Knott,
2000; Dunson, 2003) with Poisson responses. The generalized latent trait
model assumed a single latent variable which was assigned a standard nor-
mal prior, while a vague normal prior with mean 0 and variance 20 was
assigned to the factor loadings with one of them constrained to be positive
for identifiability. The out of sample prediction was made taking the median
of a MCMC chain of length 12, 000 after a burn in of 3, 000 iterations from
the posterior predictive distribution of yi1 in the test set. The results are
reported in Table 3.3.

An additional gain of our approach is a flexible characterization of the
whole predictive distribution of yi1 given yi2, yi3 and not just the point pre-
diction ŷi1. In addition to median predictions, it is often of interest in
applications to predict subjects having zero counts or counts higher than a
given threshold q. Based on our results, we obtained much more accurate
predictions of both yi1 = 0 and yi1 > q than either the log-linear Poisson
model or the GAM approach when the true model is not a mixture of mul-
tivariate Poissons and prediction with similar degree of precision when the
truth is a mixture of multivariate Poissons. As an additional competitor for
predicting yi1 = 0 and yi1 > q, we also considered logistic regression, logis-
tic GAM and a logistic latent trait model with the same prior specification
as before fitted to the appropriate dichotomized data. Based on a 0-1 loss
function that classified yi1 = 0 if the probability (posterior for our Bayes
method and fitted estimate for the logistic GLM and GAM) exceeded 0.5,
we compute the misclassification rate out-of-sample in Table 3.4.

Table 3.3: Mean absolute deviation errors for the prediction obtained with
the RMG prior, the Oracle prediction, the linear regressions and the gener-
alized latent trait model.

Scenario 1 Scenario 2

RMG 2.44 1.42
oracle 1.36 1.28
GAM 2.72 1.55
GLM 5.34 1.98
GLTM 9.68 4.98

3.5 Applications to real data

3.5.1 Marketing segmentation

We apply now the methods earlier described to the telecommunications data
introduced in Section 2.1.1. Telecommunications companies are often inter-
ested in understanding possible different behaviors of distinct geographic
areas. To partially reach this goal, we estimate the probability mass func-

47



CHAPTER 3. PROBABILITY MASS FUNCTION ESTIMATION

Table 3.4: Misclassification rate out-of-sample based on the proposed
method, GAM, generalized linear regressions, oracle and generalized latent
trait models for samples under scenario 1 (S1) and scenario 2 (S2).

RMG GAM GLM Oracle GLTM

Mediana 0-1 Lossb Poisson Logistic Poisson Logistic - 0-1 Lossb

S1 yi1 = 0 0.02 0.08 0.42 0.14 0.42 0.20 0.00 0.44
yi1 > 20 0.02 0.10 0.02 0.40 0.08 0.30 0.00 0.50
yi1 > 25 0.04 0.02 0.04 0.06 0.06 0.08 0.02 0.56
yi1 > 35 0.06 0.06 0.06 0.08 0.06 0.14 0.06 0.48

S2 yi1 = 0 0.14 0.12 0.12 0.12 0.12 0.12 0.12 0.86
yi1 > 10 0.16 0.12 0.16 0.12 0.16 0.12 0.12 0.50

a = prediction based on posterior median, b = prediction based on 0-1 loss

tions of the number of outgoing phone calls to landlines for three different
geographic areas. We perform the analysis taking the subsample of the data
of size 2,050 introduced in Section 2.1.1, we use the rounded mixture of skew
normal described in Section 3.1.4.

We separately fit a rounded mixture of skew normals model for each of
the three geographic areas. We empirically let the hyperparameters ξ0 and
κ to be respectively the sample median and variance in the three geographic
areas, while letting α = 1, ψ = 10 and ν1 = ν2 = 1. For computational
reasons we perform the analysis taking subsamples of size 500 for each region.

Figure 3.7 (a) reports the three posterior mean cumulative mass func-
tions for the three regions. The posterior estimates for the first and the sec-
ond region are very similar. We obtained qualitatively comparable results
also considering different randomly chosen subsamples of size 500. From this
evidence we decided to merge the two regions and to fit again the model.
Figure 3.7 reports the posterior mean cumulative mass functions along with
the 95% credible bands (b), and the posterior mean probability mass func-
tions (c) for the merged geographic areas (henceforth region A) and for the
other area (region B) with panel (d) zooming for values around 10. The
difference between the two regions, in fact, is stronger for values around 10,
where also the credible bands are better separated.

Companies are often interested in identifying groups of customers with
similar characteristics in terms of usage behaviour. The DPM precedure
provides, as side effect, a clustering structure of the observations. Nonethe-
less, as outlined in Section 2.2.2, the direct interpretation of this clustering
structure is difficult and we must face the label switching problem (Stephens,
2000; Jasra et al., 2005). Among the possible solutions to the problem we
focus here on the proposal of Medvedovic and Sivaganesan (2002). This
approach uses a hierarchical clustering procedure based on a dissimilarity
matrix Dh for region h ∈ {A,B} obtained from the proportion of MCMC
samples in which two units were assigned to the same mixture component.
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Figure 3.7: Posterior estimates of the probability mass functions: cumula-
tive probability mass functions in the three geographic areas (a), cumula-
tive probability mass functions and 95% credible bands(b), probability mass
functions (c)–(d) for region A and B.
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Figure 3.8: Dendrogram of region A (a) and B (b).

The i, j element di,j of Dh is

di,j =
# of MCMC samples where Si 6= Sj
# of MCMC iterations after burn in

,

and Si is the cluster indicator for subject i.

The dendrograms of a hierarchical cluster analysis with the complete
linkage are reported in Figure 3.8. The posterior average number of clusters
in the DP mixtures is respectively 11.5 for region A and of 10.8 for region
B. The boxplots of the final clusters are reported in Figure 3.9, while Ta-
ble 3.5 reports some descriptive statistics. Particularly interesting from a
marketing perspective are cluster 1 of region A and cluster 1 and 2 of region
B, corresponding to a proportion of low traffic customers and cluster 12 of
region A which instead represents a portion of high usage customers.
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Figure 3.9: Boxplot of the final clusters of region A (a) and B (b).

3.5.2 Phone traffic prediction

We focus again on the same subset of n = 2, 050 customers used in the
previous section and described in Section 2.1.1. We consider now the mul-
tivariate observation yi = (yi1, . . . , yip) representing usage in a month for
card i. Specifically, we have the number of outgoing calls to landlines (yi1),
to mobile numbers of competing operators (yi2) and to mobile numbers of
the same operator (yi3), as well as the total number of MMS (yi4) and SMS
(yi5) sent.

We focus on the forecast of yi1, using data on yi2, . . . , yi5 with the tech-
nique proposed in Section 3.3 by first estimating the joint probability dis-
tribution of the multivariate y.

The zero-inflation of the data is automatically accommodated by our
method through using thresholds that assign negative underlying y∗ij values
to yij = 0. Excess mass at zero is induced through Gaussian kernels located
at negative values.

We can model the data assuming the model in (3.12) with hyperparame-
ters specified as in (3.14) and computation implemented as in Section 3.4.2.
A training and test set of equal size are chosen randomly. Trace plots of yi1
for different individuals exhibit excellent rates of convergence and mixing,
with the Geweke (1992) diagnostic providing no evidence of lack of conver-
gence.

The method is compared with Poisson GLM and GAM and with a gen-
eralized latent trait model with prior as in Section 3.4.2. The out-of-sample
median absolute deviation (MAD) value was 8.08 for our method, which is
lower than the 8.76 obtained for the best competing method (Poisson GAM).
The generalized latent trait model turns out to have a too restrictive struc-
ture with poor performance both computationally and in terms of prediction
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CHAPTER 3. PROBABILITY MASS FUNCTION ESTIMATION

Table 3.5: Descriptive statistics of the final clusters.
Region Clus. 1st Qu. Median Mean 3rd Qu. Max. Proportion

A 1 0 0 4 1 24 0.02
2 0 5 22.74 19.5 227 0.06
3 0 3 11.79 16.5 71 0.07
4 0 0.5 4.6 4.75 23 0.03
5 0 3 15.85 13 216 0.13
6 0 2 9.92 12.5 80 0.21
7 0 2 11.29 15 59 0.10
8 0 4 9.46 13 43 0.10
9 0 3 17.33 14.5 278 0.11
10 0 2 9.24 15 64 0.11
11 0 3 10.6 15.25 63 0.05
12 9.5 20.5 18.75 29.75 32 0.01

B 1 0 1 3.67 2 21 0.02
2 1 2 4 3 22 0.02
3 0 10 15.65 26 58 0.04
4 1 5 17.93 16.5 280 0.14
5 0 2 8.3 9.75 56 0.13
6 0 4 9.86 12 92 0.14
7 0 5 11.34 14 86 0.19
8 1.75 6 15.14 22.25 113 0.09
9 0 8 15.49 15 137 0.12
10 0 6 16.18 21 83 0.04
11 0 1 9.41 10.5 59 0.07

(MAD of 10.63). These results were similar for multiple randomly chosen
training-test splits.

An important goal for the company is to predict customers with no
outgoing calls and highly profitable customers. The estimated multivari-
ate probability mass function allow us to compute the probability if these
events. We predict such customers using Bayes optimal prediction under
a 0-1 loss function. Using optimal prediction of zero-traffic customers, we
obtained lower out-of-sample misclassification rates than the Poisson GAM,
but had comparable results to logistic GAM as illustrated in the ROC curve
in Figure 3.10 (a). Our expectation is that the logistic GAM will have good
performance when the proportion of individuals in the subgroup of interest
is ≈ 50%, but will degrade relative to our approach as the proportion gets
closer to 0% or 100%. In this application, the proportion of zeros was 69%
and the sample size was not small, so logistic GAM did well. The results
for predicting highly profitable customers having more than 40 calls per
month are consistent with this. In fact, even if the proportion of customers
that make more than 40 calls were low () in the training set, out method is
able to produce a good estimate of this probability. As illustrated in Fig-
ure 3.10 (b), it is clear that our approach had dramatically better predictive
performance than the logistic GAM.
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Figure 3.10: ROC curves for predicting customers having outgoing calls to
landlines equal to zero (a) or more than 40 (b). The continuous line is
for our proposed approach and the dotted lines are for the logistic GAM.
Both classifications are based on a 0-1 loss function that classify yi1 = 0 or
yi1 > 40 if the posterior (estimated) probability is greater than 1/2.

3.5.3 Developmental toxicity study

To show that the proposed methods can be applied in any situation involving
counts, we also perform an application to a toxicity study. We consider
now data from a developmental toxicity study of ethylene glycol in mice
conducted by the National Toxicology Program (Price et al., 1985). As in
many biological applications in which there are constraints on the range of
the counts, the data are underdispersed having mean 12.54 and variance
6.78.

Pregnant mice were assigned to dose groups of 0, 750, 1,500 or 3,000
mg/kg per day, with the number of implants measured for each mouse at
the end of the experiment. Group sizes are 25, 24, 23 and 23, respectively.
The scientific interest is in studying a dose response trend in the distri-
bution of the number of implants. To address this, we first estimate the
probability mass function within each group using the RMG methodology
of Section 3.1.3. Trace plots showed rapid convergence and excellent mixing,
with the Geweke (1992) diagnostic failing to show lack of convergence.

Figure 3.11 shows the estimated and empirical cumulative distribution
functions in each group along with 95% pointwise credible intervals and the
estimates from a DPM of Poissons analysis. Clearly, the DPM of Poissons
provided a poor fit to the data and hence poor characterization of changes
with dose, while the proposed RMG method provided an excellent fit for each
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Figure 3.11: Posterior estimates for the cumulative distribution function for
(a) the control group and (b)–(d) the dose groups. Black solid line for the
empirical cumulative distribution function, dashed line for the RMG esti-
mation and dotted for the DPM of Poisson. Gray shading for 95% posterior
credible bands for the RMG
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Figure 3.12: Posterior mean for the changes in the percentiles (x-axis) be-
tween the control group and 750 mg/kg (continuous line), 1,500 mg/kg
(dash-dotted line) and 3,000 mg/kg (dotted line) dose groups.

group. To summarize changes in the distribution of the number of implants
with dose, we estimated summaries of the posterior distributions for changes
in each percentile between the control group and each of the exposed groups,
with the results shown in Figure 3.12. In each of the dose levels, the exposure
led to a stochastic decrease in the distribution of the number of implants,
with an estimated decrease in the number of implants at each percentile
(there is a minor exception at high percentiles in the 750 mg/kg group).
The estimated posterior probabilities of a negative average change across the
percentiles was 0.72, 0.99 and 0.94 in the 750, 1,500 and 3,000 mg/kg groups,
respectively. These results were consistent with Mann-Whitney pairwise
comparison tests that had p-values of 0.23, 0.04 and 0.06 for stochastic
decreases in the low, medium and high dose groups. In contrast, likelihood
ratio tests under a Poisson model failed to test any significant differences
between the control and exposed groups.
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Chapter 4

Mixed scale data

In our example, the data consist of count variables recording the number of
events made by customers and of continuous variables such as the average
duration of the phone calls or the total cost for customer. The data are
hence on a mixed scale of measure. This situation is common in a broad
class of applications.

Ideally, to estimate unknown joint distributions for mixed scale data,
one could rely on the modelling framework introduced in Chapter 3 us-
ing a straightforward modification of the mapping function h(·) defined in
(3.11). If this could be done from a modeling point of view, theoretically the
mixed-scale framework gives rise to some complications. Strong posterior
consistency, in particular, does not trivially follow given the KL condition
because the topological equivalence of the weak and strong metrics used in
Theorem 3.5 is not satisfied in the space of mixed-scale densities. For this
reason, in this chapter, we develop the theoretical basis for Bayesian non-
parametric estimation of mixed-scale density showing appealing theoretical
properties, such as large support, posterior consistency and near optimal
rates of convergence.

4.1 Preliminaries and notation

Our focus is on modeling of joint probability distributions of mixed scale
data y = (yT1 ,y

T
2 )T , where y1 = (y1,1, . . . , y1,p1) ∈ Rp1 is a p1 × 1 vector

of continuous observations and y2 = (y2,p1+1, . . . , y2,p) ∈ Q where Q =⊗p2
j=1{0, 1, . . . , qj − 1} is a p2 × 1 vector of discrete variables having q =

(q1, . . . , qp2)T as the respective number of levels and p2 = p− p1. Clearly y2

can include binary variables (qj = 2), categorical variables (qj > 2) or counts
(qj =∞). Hence, y is a p×1 vector of variables having mixed measurement
scales. A graphical representation of a mixed scale density with p1 = p2 = 1
and q1 = 6 is reported in Figure 4.1. We let y ∼ f , with f denoting the joint
density with respect to an appropriate dominating measure µ to be defined
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y1

y2

dens

Figure 4.1: Mixed scale density p1 = p2 = 1 and q1 =∞

below. The set of all possible such joint densities is denoted F . Following a
Bayesian nonparametric approach, we propose to specify a prior f ∼ Π for
the joint density having large support over F .

For the continuous variables, we let (Ω1,S1, µ1) denote the σ-finite mea-
sure space having Ω1 = Rp1 , S1 the Borel σ-algebra of subsets of Ω1, and µ1

the Lebesgue measure. Similarly for the discrete variables we let (Ω2,S2, µ2)
denote the σ-finite measure space having Ω2 ⊂ Np2 , a subset of the p2-
dimensional set of natural numbers, S2 containing all non-empty subsets of
Ω2, and µ2 the counting measure. Then, we let µ = µ1 × µ2 be the product
measure on the product space (Ω,S) = (Ω1,S1) × (Ω2,S2). To formally
define the joint density f , first let ν denote a σ-finite measure on (Ω,S) that
is absolutely continuous with respect to µ. Then, by the Radon-Nikodym
theorem there exists a function f such that ν(A) =

∫
A fdµ.

In studying properties of a prior Π for the unknown density f , such as
large support and posterior consistency, it is necessary to define notions of
distance and neighborhoods within the space of densities F . Letting f0 ∈ F
denote an arbitrary density, such as the true density that generated the
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data, the Kullback-Leibler divergence of f from f0 can be defined as

dKL(f0, f) =

∫
f0 log(f0/f)dµ =

∫
Ω1

∫
Ω2

f0 log(f0/f)dµ1 dµ2

=

∫
Rp1

∑
y2∈Q

f0(y1,y2) log

(
f0(y1,y2)

f(y1,y2)

)
dµ1(y1)

with the integrals taken in any order from Fubini’s theorem. Another topol-
ogy is induced by the L1-metric. If f and f0 are probability distributions
with respect to the product measure µ, their L1-distance is defined as

d1(f0, f) =

∫
|f0 − f |dµ =

∫
Ω1

∫
Ω2

|f0 − f |dµ1 dµ2

=

∫
Rp1

∑
y2∈Q

|f0(y1,y2)− f(y1,y2)|dµ1(y1).

4.2 Consistency in multivariate mixed-scale den-
sity estimation

In order to induce a prior f ∼ Π for the density of the mixed scale variables,
we let

y = h(y∗), y∗ ∼ f∗, f∗ ∼ Π∗, (4.1)

where h : Rp → Ω, y∗ = (y∗1, . . . , y
∗
p)
T ∈ Rp, f ∈ L, L is the set of densities

with respect to Lesbesgue measure over Rp, and Π∗ is a prior over L. In
Chapter 3 we used the notation L to denote the set of densities with respect
to Lesbesgue measure over R, while we refer here to the set of densities with
respect to Lesbesgue measure over Rp. This abuse of notation will keep the
details light without leading to misunderstanding since it is clear that the
focus of this chapter is on densities over p-dimensional spaces. To generalize
the mapping h to this settings, we let

h(y∗) =
{
h1(y∗1)T , h2(y∗2)T

}T
, (4.2)

where h1(y∗1) = y∗1 is the identity function and h2 are thresholding functions
that replace the real-valued inputs with non-negative integer outputs by

thresholding the different inputs separately. Let A(j) = {A(j)
1 , . . . , A

(j)
qj }

denote a prespecified partition of R into qj mutually exclusive subsets, for

j = 1, . . . , p2, with the subsets ordered so that A
(j)
h is placed before A

(j)
l for

all h < l. Then, letting Ay2 = {y∗2 : y∗2,j ∈ A
(j)
y2j , j = 1, . . . , p2}, the mixed

scale density f is defined as

f(y) = g(f∗) =

∫
Ay2

f∗(y∗)dy∗. (4.3)
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The function g : L → F defined in (4.3) is a mapping from the space of
densities with respect to Lesbesgue measure on Rp to the space of mixed-
scale densities F .

Clearly the properties of the induced prior f ∼ Π will be driven largely
by the properties of f∗ ∼ Π∗. Lemma 1 shows that the mapping g : L → F
maintains Kullback-Leibler neighborhoods. The proof is omitted as being a
straightforward modification of that for Lemma 3.2.

Lemma 4.1. Choose any f∗0 such that f0 = g(f∗0 ) for any fixed f0 ∈ F .
Let Kε(f∗0 ) = {f∗ : dKL(f∗0 , f

∗) < ε} be a Kullback-Leibler neighborhood of
size ε around f∗0 . Then the image g(Kε(f∗0 )) contains values f ∈ F in a
Kullback-Leibler neighborhood of f0 of at most size ε.

As discussed in Section 2.2.3, large support of the prior plays a crucial
role in posterior consistency under the theory of Schwartz (1965). Given
f0 in the KL support of the prior, in fact, it is sufficient to ensure the
existence of an exponentially consistent sequence of tests for the hypothesis
H0 : f = f0 versus H1 : f ∈ UC(f0) where U(f0) is a neighborhood of f0.
Ghosal et al. (1999) show that the existence of such a sequence of tests is
guaranteed by balancing the size of a sieve and the prior probability assigned
to its complement.

We now provide sufficient conditions for L1 posterior consistency for
priors in the class proposed in expression (4.1). Our Theorem 4.2 builds
on Theorem 8 of Ghosal et al. (1999). The main differences are that we
define the sieve Fn as g(Ln), where Ln is a sieve on L and that we require
conditions on the prior probability in terms of the underlying Π∗. The proof
relies on the same steps of Ghosal et al. (1999) which give an upper bound
for the L1-metric entropy J(δ,Ln) defined as the logarithm of the minimum
number of δ-sized L1 balls needed to cover Ln.

Theorem 4.2. Let Π be a prior on F induced by Π∗ as described in ex-
pression (4.1). Suppose f0 is in the KL support of Π and let U = {f ∈ F :
||f − f0|| < ε}. If for each ε > 0, there is a δ < ε, c1, c2 > 0, β < ε2/8 and
there exist sets Ln ⊂ L such that for n large

(i) Π∗(LCn ) ≤ c1e
−nc2;

(ii) J(δ,Ln) < nβ

then Π(U | y1, . . . ,yn)→ 1 a.s. Pf0.

Proof. The proof consists of two steps. First we need to determine the
size of the parameter space of F , measured in terms of L1-metric entropy.
Then we need to show that the conditions of an unpublished work of Barron
(Ghosh and Ramamoorthi, 2003, see Theorem 4.4.3 of ) are satisfied. We
start introducing two lemmas that are useful to determine the size of the
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parameter space of F in terms of L1-metric entropy. The first shows that
the L1 topology is maintained under the mapping g and the second bounds
the L1-metric entropy of a sieve.

Lemma 4.3. Assume that the true data generating density is f0 ∈ F .
Choose any f∗0 such that f0 = g(f∗0 ). Let U(f∗0 ) = {f∗ : ||f∗0 − f∗|| < ε} be
a L1 neighborhood of size ε around f∗0 . Then the image g(U(f∗0 )) contains
values f ∈ F in a L1 neighborhood of f0 of at most size ε.

The proof is omitted since it follows directly from the definition of L1

neighborhood and from Fubini’s theorem.

Lemma 4.4. Let Ln ⊂ L denote a compact subset of L, with J(δ,Ln) the
L1-metric entropy corresponding to the logarithm of the minimum number of
δ-sized L1 balls needed to cover Ln. Letting Fn = g(Ln), we have J(δ,Fn) ≤
J(δ,Ln).

Proof. Let k = exp{J(δ,Ln)} be the number of δ balls needed to cover Ln,
with f∗1 , . . . , f

∗
k denoting the centers of these balls so that Ln ⊂

⋃k
i=1 Ln,i,

where Ln,i = {f∗ : ||f∗ − f∗i || < δ}. From Lemma 4.3, it is clear we can

define Fn ⊂
⋃k
i=1Fn,i where Fn,i = g(Ln,i) is an L1 neighborhood around

fi = g(f∗i ) of size at most δ. This defines a covering of Fn using k δ-sized
L1 balls, but this is not necessarily the minimal covering possible and hence
J(δ,Ln) provides an upper bound on J(δ,Fn).

The rest of the proof follows along almost the same lines of Ghosal et al.
(1999) in showing that the sets Fn ∩ {f : ||f − f0|| < ε} and FCn satisfy the
conditions of an unpublished result of Barron (Ghosh and Ramamoorthi,
2003).

We now state a theorem on the rate of convergence (contraction) of the
posterior distribution. The theorem gives conditions on the prior Π∗ similar
to those directly required by Theorem 2.1 of Ghosal et al. (2000). This
theorem implies that if an optimal rate exists for a prior Π∗ the rate of the
induced Π is not bigger than that.

Theorem 4.5. Let Π be the prior on F induced by Π∗ as described in
expression (4.1) and U = {f : d(f, f0) ≤ Mεn} with d the L1 or Hellinger
distance. Suppose that for a sequence εn, with εn → 0 and nε2n → ∞,
a constant C > 0, sets Ln ⊂ L and B∗n = {f∗ :

∫
f∗0 log(f∗0 /f

∗)dµ ≤
ε2n,
∫
f∗0 (log(f∗0 /f

∗))2dµ ≤ ε2n} defined for a given f∗0 ∈ g−1(f0), we have

(iii) J(εn,Ln) < Cnε2n;

(iv) Π∗(LCn ) ≤ exp{−nε2n(C + 4)};

(v) Π∗(B∗n) ≥ exp{−Cnε2n}
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then for sufficently large M , we have that Π(UC | y1, . . . ,yn) → 0 in Pf0-
probability.

Proof. Let Fn = g(Ln). From Lemma 4.4 we have J(δ,Fn) ≤ J(δ,Ln). Let
D(ε,F) the ε-packing number of F , i.e. is the maximal number of points in
F such that the distance between every pair is at least ε. For every ε > εn,
using (iii) we have

logD(ε/2,F) < logD(εn,F) < Cnε2n.

Therefore applying Theorem 7.1 of Ghosal et al. (2000) with j = 1, D(ε) =
exp(nε2n) and ε = Mεn with M > 2 there exist a sequence of tests {Φn} that
satisfies

Ef0{Φn} ≤ exp{−(KM2−1)nε2n}, sup
f∈UC∩Fn

Ef{1−Φn} ≤ C exp{−KnM2ε2n}.

(4.4)
The posterior probability assigned to UC can be written as

Π
{
UC | y1, . . . ,yn

}
=

∫
UC∩Fn

∏n
i=1

f(yi)
f0(yi)

dΠ(f) +
∫
UC∩FCn

∏n
i=1

f(yi)
f0(yi)

dΠ(f)∫ ∏n
i=1

f(yi)
f0(yi)

dΠ(f)

≤ Φn +
(1− Φn)

∫
UC∩Fn

∏n
i=1

f(yi)
f0(yi)

dΠ(f) +
∫
UC∩FCn

∏n
i=1

f(yi)
f0(yi)

dΠ(f)∫ ∏n
i=1

f(yi)
f0(yi)

dΠ(f)
.

Taking KM2 > K + 1 the first summand Ef0{Φn} ≤ 2 exp{−Knε2n} by
(4.4). The rest of the proof consists in proving that the remaining equation
goes to zero in Pf0-probability. By Fubini’s theorem and (4.4) we have

Ef0

{
(1− Φn)

∫
UC∩Fn

n∏
i=1

f(yi)

f0(yi)
dΠ(f)

}
≤ sup

f∈UC∩Fn
Ef{1−Φn} ≤ exp{−KnM2ε2n},

while by (iv) we have

Ef0

{∫
UC∩FCn

n∏
i=1

f(yi)

f0(yi)
dΠ(f)

}
≤ Π(FCn ) = Π∗(LCn ) ≤ exp{−nε2n(C + 4)}.

The numerator of the second summand is hence exponentially small for M >√
(C + 4)/K. Finally we need to lower bound the denumerator. Clearly

g(B∗n) ⊆ Bn =

{
f :

∫
f0 log(f0/f)dµ ≤ ε2n,

∫
f0(log(f0/f))2dµ ≤ ε2n

}
and then Π(Bn) ≥ Π(g(B∗n)) = Π∗(B∗n) and using condition (v) on Π∗(B∗n)
we have ∫

Bn

∫
f0 log(f0/f)dµdΠ(f) ≤

∫
Bn
ε2ndΠ(f)∫

Bn

∫
f0 (log(f0/f))2 dµdΠ(f) ≤

∫
Bn
ε2ndΠ(f).
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Then using Lemma 8.1 of Ghosal et al. (2000) we obtain

EP0

∫ n∏
i=1

f(yi)

f0(yi)
dΠ(f) ≥ exp{−nε2n(C + 4)}

that concludes the proof.

Clearly, the properties of the induced prior f = g(f∗) ∼ Π depend heav-
ily on the choice of prior f∗ ∼ Π∗. Our hope is to leverage the literature on
models and theory for continuous density estimation in developing associ-
ated models and theory for the mixed scale case.

As already discussed, Dirichlet process mixtures are the most widely ap-
plied class of models for Bayesian density estimation, with a rich theoretical
literature available in the univariate continuous case on posterior consistency
(Ghosal et al., 1999; Barron et al., 1999; Tokdar, 2006; Wu and Ghosal, 2008)
and rates of posterior contraction (Ghosal et al., 2000; Ghosal and van der
Vaart, 2001, 2007; Walker et al., 2007; Scricciolo, 2011). DPMs of Gaus-
sian kernels have proven successful for multivariate density estimation in
challenging cases involving high-dimensional data (Chen et al., 2010).

However the only available results on asymptotic properties of Bayesian
procedures for multivariate continuous density estimation are presented by
Ghosal and co-authors (Wu and Ghosal, 2010; Shen and Ghosal, 2011). In
both papers the models considered are quite limited in scope in focusing on
DP location mixtures of Gaussian kernels. Posterior consistency is studied
in Wu and Ghosal (2010) assuming a truncated inverse-Wishart prior for the
Gaussian covariance. In Shen and Ghosal (2011) near minimax optimal rates
of posterior contraction are shown under some conditions on the true density
assuming a diagonal covariance in the Gaussian kernel with independent
truncated inverse-gamma priors on the diagonal elements. In practice, it
is well known that using a diagonal covariance may lead to less efficient
results in small to moderate samples. In addition, it is preferable to avoid
arbitrary truncations and allow broader priors than inverse gammas and
inverse Wisharts. For example, for high-dimensional data it is well known
that inverse Wisharts provide a poor choice and alternatives based on factor
analytic and other factorizations are commonly used.

The generalization of Wu and Ghosal (2010) and Shen and Ghosal (2011)
to more flexible mixtures that enable scaling to higher dimensions deserve
further studies both from the pure continuous multivariate density estima-
tion point of view and since it is the starting point of the procedure discussed
in this chapter.
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Chapter 5

Count stochastic processes
modeling

In this chapter we focus again only in count observations. Motivated by the
need of modeling count customer specific mobile phone traffic, we discuss
a class of count stochastic process models that rely on mapping a real-
valued stochastic process y∗ : D → R. Under some regularity conditions
we show that the introduced methodology leads to L1 posterior consistency.
In a functional data analysis context we analyze the data introduced in
Section 2.1.1 with the goal of predicting outgoing churners.

5.1 Model formulation

Let y ∈ C denote a count-valued stochastic process, with D ⊂ Rp compact
and C the set of all D → N functions. In Chapter 3 we used the notation C
to denote the set of probability mass functions over N, while we refer here to
the set of step functions from a domain space D with values in N. Also, in
Chapter 3, y was a real scalar while here y is a function from D to N. Since
in this chapter we do not use any result of Chapter 3 we are confortable that
this abuse of notation will be free of any misunderstanding.

We choose a prior y ∼ Π, where Π is a probability measure over (C,B),
with B(C) the Borel σ-algebra of subsets of C. The measure Π induces the
marginal probability mass functions

pr{y(s) = j} = Π{y : y(s) = j} = πj(s), j ∈ N , s ∈ D, (5.1)

and the joint probability mass functions

pr{y(s1) = j1, . . . , y(sk) = jk} = Π{y : y(s1) = j1, . . . , y(sk) = jk}
= πj1...jk(s1, . . . , sk), (5.2)

for jh ∈ N and sh ∈ D, h = 1, . . . , k, and any k ≥ 1.
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We specify a prior Π with large support using the rounding idea described
in Chapter 3. To our knowledge, there is no previously defined stochastic
process that satisfies a large support condition. In the absence of prior
knowledge that allows one to assume y belongs to a pre-specified subset of
C with probability one, priors must satisfy the large support property to be
coherently Bayesian.

We propose to induce a prior y ∼ Π through

y = h(y∗), y∗ ∼ Π∗, (5.3)

where with similar notation as before y∗ : D → R is a real-valued stochastic
process, h is a rounding operator, Π∗ is a probability measure over (Y,B), Y
is the set of all D → R continuous functions and B(Y) are the corresponding
Borel sets. Unlike count-valued stochastic processes, there is a rich literature
on real-valued stochastic processes. For example, Π∗ could be chosen to
correspond to a GP or could be induced through various basis or kernel
expansions of y∗.

Also here there are various ways in which the rounding operator h can be
defined. We will focus for simplicity on the case in which y(s) = h{y∗(s)} =
j if y∗(s) ∈ Aj = [aj , aj+1) for j ∈ N , with {Aj}∞j=1 and pre-specify the
thresholds a0 < · · · < a∞ as in Chapter 3.

Under this setting πj(s) and πj1...jk(s1, . . . , sk) of equations (5.1) – (5.2)
become

πj(s) = g{fs(y)}[j] =

∫
Aj

fs(y
∗)dy∗ (5.4)

πj1...jk(s1, . . . , sk) = g(fs1,...,sk)[J ]

=

∫
Aj1×···×Ajk

fs1,...,sk(y∗1, . . . , y
∗
k)dy

∗
1 . . . dy∗k(5.5)

where fs{y∗(s)} and fs1,...,sk(y∗1, . . . , y
∗
k) are the marginal and joint density

functions of the underlying process.
Figure 5.1 illustrates the prior through showing realizations of the un-

derlying stochastic process (a) and resulting count processes after applying
the rounding operator (b). The thick lines represents the mean functions of
the real valued process and of the induced process. The latter is

E{y(s)} =

∞∑
j=0

j{Fs(aj+1)− Fs(aj)},

where Fs(x) =
∫ x
−∞ fs(y

∗)dy∗.

5.2 Asymptotic properties

We first introduce a regularity condition on y useful later to prove some
asymptotic property. Assumption 5.1 rules out infinitely many jumps in y
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Figure 5.1: Panel (a) represents samples from a Gaussian process with mean
function µ(s) = 2+sin(s)+s (bold line) and squared exponential covariance
function. Panel (b) shows how the mapping function (5.3) works with a0 =
−∞ and aj = j for j = 1, 2, . . . . Dotted and dashed lines are the rounded
version of panel (a) realizations while the bold line is the induced mean
function.

across the compact domain.

Assumption 5.1. y is a piecewise constant function such that the domain D
can be expressed as a countable union of mutually disjoint sets D =

⋃
lDl(y),

with y(s) constant within the interior of each set Dl(y) and with unit incre-
ments at the boundaries B(y). As a convention, the points s ∈ B(y) at the
boundaries are defined to fall within the set having the higher y(s) value.

The mapping function h(·) in (5.3) is surjective and hence the inverse
mapping h−1(y) will correspond to an uncountable set of infinitely many
continuous stochastic processes y∗ such that y = h(y∗). As an important
step in characterizing the support of the induced prior y ∼ Π, Lemma 5.1
ensures the existence of at least one continuous stochastic process for each
count process.

Lemma 5.1. For every count stochastic process y0 ∈ C, there exists at least
one continuous y∗ : D → R such that y0 = h(y∗).

Proof. For any count stochastic process y0 satisfying Assumption 5.1, we
can partition the domain D into mutually disjoint sets Dl(y0), with y0(s)
constant within the interior of each Dl(y0) and with unit increments at the
boundaries. There are clearly infinitely many continuous functions y∗ : D →
R satisfying the constraints (i) y∗(s) ∈ [ay0(s), ay0(s)+1) for all s ∈ D and (ii)
y∗(s) = ay0(s) for s ∈ B(y0). For all such y∗, we have y0 = h(y∗).
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It is also important, in the flavor of Lemma 3.2, to assess how neighbor-
hoods are maintained in applying the mapping. An L∞ neighborhood of y0

of size ε is defined as

ηε,∞(y0) =
{
y : d∞(y0, y) = sup

s∈D
|y0(s)− y(s)| < ε

}
,

while an L1 neighborhood is

ηε(y0) =

{
y : d1(y0, y) =

∫
|y0(s)− y(s)|ds < ε

}
.

Lemma 5.2. Suppose y∗ and y∗0 are continuous and bounded by M ∈ R such
that d1(y∗, y∗0) = ε∗, y = h(y∗) , y0 = h(y∗0). Then, y ∈ ηε(y0) for all ε >
ζ(ε∗; y∗0), where ζ(ε∗; y∗0) is non decreasing in ε∗ having limε∗→0 ζ(ε∗; y∗0) = 0.

Proof. Take D = [0, 1]p without loss of generality. Let {Dl(y0, y)}ml=1 the
partition ofD induced by {Dl(y0)}m0

l=1 and {Dl(y)}m1
l=1 such that y(s) = jl and

y0(s) = kl for all s ∈ Dl(y0, y) and some jl, kl ∈ N . Let δl(y0, y) = |jl − kl|,
for l = 1, . . . ,m and λ(·) be the Lebesgue measure. Define

ζ(ε∗; y∗0) = sup
y∗∈ηε∗ (y∗0)

 max
l=1,2,...

[δl{y0, h(y∗)}]
∑
l:δl 6=0

λ[Dl{y0, h(y∗)}]

 .

Clearly y ∈ ηε(y0) for all ε > ζ(ε∗; y∗0) since

d1(y0, y) =

m∑
l=1

δl(y0, y)λ{Dl(y0, y)} ≤ ζ(ε∗; y∗0).

We show first that limε∗→0 ζ(ε∗; y0) = 0. What follows holds for all y∗ ∈
ηε∗(y

∗
0). Consider the general y∗ ∈ ηε∗(y

∗
0). Since

∑
l:δl 6=0 λ[Dl{y0, h(y∗)}]

is finite, ζ(ε∗; y0) goes to zero if max δl{y0, h(y∗)} goes to zero. Define
Mε∗ = max |y∗(s)− y∗0(s)| and let sM = arg max |y∗(s)− y∗0(s)| with sM
belonging to a given Dl where y∗(s) ≤ ajl+1 and y∗0(s) ≤ akl+1. For
construction |all+1 − akl+1| ≤ Mε∗ and so for Mε∗ → 0 we have all+1 =
akl+1. Considering that max |y∗(s)− y∗0(s)| → 0 then |y∗(s)− y∗0(s)| → 0
for all s ∈ D leading also to max δl → 0. Whereas the absolute value
of the difference |y∗(s)− y∗0(s)| is bounded and continuous we have that if∫
D |y

∗(s)− y∗0(s)|ds goes to zero, also lim supD |y∗0(s) − y∗(s)| goes to zero
and hence also Mε∗ .

The fact that ζ(·; y0) is non decreasing follows directly from its definition.

Lemma 5.2 ensures that the mapping h maintains L1 neighborhoods,
immediately implying that a prior Π∗ that assigns positive probability to
arbitrarily small L1 neighborhoods of y∗0 will assign positive probability to
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arbitrarily small neighborhoods of y0 = h(y∗0). Theorem 5.3, which is critical
to showing large support for the prior Π, is an immediate consequence of
the first two lemmas.

Theorem 5.3. Assuming the prior Π∗ assigns positive probability to L1

neighborhoods of any continuous function y∗0 : D → R, the prior Π induced
through (5.3) assigns positive probability to L1 neighborhoods of any y0 ∈ C.

Proof. By Lemma 5.2 with suitable ε∗ we have

Π{ηε(y)} = Π[h{ηε∗(y∗)}] = Π∗{ηε∗(y∗)} > 0.

In addition to showing large support of the prior, it is important to verify
that the posterior distribution for y concentrates increasingly around the
true process y0 as the sample size increases. Theorem 5.4 provides sufficient
conditions under which L1 posterior consistency is obtained.

Assumption 5.2. Let D = [0, 1]p and assume the n values of si arise with
an in-fill design such that we can cover D with n L∞ balls centered around
s1, . . . , sn of size δ with 2δ ∈

(
n−1/p, bn1/pc−1

)
.

Theorem 5.4. Let y ∈ C be a count stochastic process with yi = y(si),
for i = 1, . . . , n and (s1, . . . , sn) following Assumption 5.2. Letting y0 ∈ C
denote the true stochastic process and y ∼ Π, then if Π{ηε(y0)} > 0 for any
ε and there exist sets {Cn}∞n=1 with Cn ∈ C and CCn the complement of Cn,
where Π{CCn } < c1e

−c2n, and c1, c2 positive constants, then

Π
{
ηCε (y0) | y1, . . . , yn

}
→ 0. (5.6)

Proof. Since y0(si) is equal to the observed yi for all i, we can rewrite the
posterior (5.6) as

Π
{
y ∈ ηCε (y0) | y1, . . . , yn

}
=

=

∫
ηCε (y0)∩Cn

∏n
i=1 δyi(yi)dΠ(y) +

∫
ηCε (y0)∩CCn

∏n
i=1 δyi(yi)dΠ(y)∫

C
∏n
i=1 δyi(yi)dΠ(y)

≤ Φn +
(1− Φn)

∫
ηCε (y0)∩Cn

∏n
i=1 δyi(yi)dΠ(y) +

∫
ηCε (y0)∩CCn

∏n
i=1 δyi(yi)dΠ(y)∫

C
∏n
i=1 δyi(yi)dΠ(y)

= Φn +
I1,n(y1, . . . , yn) + I2,n(y1, . . . , yn)

I3,n(y1, . . . , yn)
,
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where δa is a delta mass at a, Φn is a test function and Cn is a sieve that
grows eventually to the whole space C. It suffices to show that

Φn → 0 (5.7)

eβ1nI1,n(y1, . . . , yn) → 0 (5.8)

eβ2nI2,n(y1, . . . , yn) → 0 (5.9)

eβnI3,n(y1, . . . , yn) → ∞ (5.10)

with β < min{β1, β2}.
Denote bac the integer part of a and let D =

⋃bn1/pcp
j=1 Gj with Gj an

L∞ ball of size 0.5(bn1/pc)−1 and center s′j , where the centers are chosen

on a grid so that bn1/pcp balls cover D and each Gj contains at least one
element of (s1, . . . , sn)T under Assumption 5.2. Define Xi = 1{y(si) =
y0(s′j)} with s′j being the centroid of the Gj in which si is contained. Let
Φn = 1{

∑n
i=1Xi < n} the test on the set

Cn =
{
y : y is constant in Gj , for all j = 1, . . . , bn1/pcp, ||y||∞ < Mn

}
(5.11)

with Mn = O(nα) and 1/2 < α < 1. The first condition on the sieve governs
the regularity of the process while the second gives an upper bound for the
infinity norm as in Choi and Schervish (2007). The true y0 belongs to Cn for
a given n and hence for n sufficiently large the test functions have exactly
zero type I and type II probability. From this (5.7) is directly verified. We
continue to prove (5.8). By Fubini’s theorem we have

Ey0{I1,n(y1, . . . , yn)} = Ey0

{
(1− Φn)

∫
ηCε (y0)∩CCn

n∏
i=1

δyi(yi)dΠ(y)

}

=

∫
ηCε (y0)∩CCn

Ey{(1− Φn)} = 0

where the final equality is directly verified by the test construction. Next
we prove (5.9). Again by Fubini’s theorem we have

Ey0{I2,n(y1, . . . , yn)} = Ey0

{∫
ηCε (y0)∩CCn

n∏
i=1

δyi(yi)dΠ(y)

}
≤ Π(CCn )

≤ c1e
−c2n.

An implication of the first Borel-Cantelli Lemma yields to

ecnI2,n(y1, . . . , yn)→ 0.

Finally the prior positivity of Π makes I3,n(y1, . . . , yn) to be positive. This
proves also (5.10) and concludes the proof.
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From Theorems 5.3 and 5.4, it follows that the prior proposed in equa-
tion (5.3) will lead to L1 posterior consistency under Assumption 5.2 as
long as Π∗ assigns positive probability to L1 neighborhoods of any contin-
uous function and negligible probability to YCn = h−1(CCn ) for n increasing.
Choi and Schervish (2007) shown that this condition holds, if YCn has a
particular form, for Π∗ corresponding to suitably chosen Gaussian process
and orthogonal basis expansion priors. Gaussian process priors and infi-
nite basis expansions lead to well known computational bottlenecks, so as a
practical alternative we instead rely on finite basis expansions using Bayesian
P-splines (Eilers and Marx, 1996; Lang and Brezger, 2004).

5.3 Posterior computation

Suppose we observe a count process y at n different locations si ∈ D, for
i = 1, . . . , n and yi = y(si). We estimate the whole process y given the
realizations at the observed locations using the model proposed in Section
5.1. Defining the thresholds as a0 = −∞ and aj = j for j = 1, 2, . . . our
rounded Bayesian P-splines model has y∗i ∼ N{b(si)Tθ, τ−1} where b(x) is
the B-spline basis at x with priors p(τ) ∝ τ−1, p(θ | λ) ∝ exp(−1/2λθTPθ),
where P = DTD is a penalty matrix with D the rth order difference matrix,
e.g. for r = 2

D =


1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . 1 −2 1

 ,

and Gamma priors for λ and ρ, precisely λ ∼ Ga(ν/2, ρν/2) and ρ ∼
Ga(a, b). The prior for the basis coefficients induces a penalty on finite
differences of the coeffients of adjacent B-splines. The parameter λ is a
roughness penalty. The hyperparameter ρ controls dispersion of the prior.
By choosing a hyperprior with small a, b values, one induces a prior with
heavy tails and good performance in a variety of settings (Jullion and Lam-
bert, 2007).

Under these settings the Gibbs sampler in Algorithm 4 trivially follows
from Lang & Brezger (2004).

Algorithm 4 Gibbs sampling algorithm: rounded P-spline

Step 1: Generate each y∗i from N{b(si)Tθ, τ−1} under the constraints
ayi ≤ y∗i < ayi+1

Step 2: Sample θ, τ and λ from their full conditional posterior distribu-
tions
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5.4 Simulation study

A simulation study is performed to assess the performance of the proposed
approach. Two different approaches for estimating the trajectory of the
stochastic process were compared with our rounded P-splines. The first is a
Poisson regression with mean parameter λ(s) estimated nonparametrically
with a frequentist spline smoother. The second is a simple interpolating
step function defined as

f(s) = y11Is<s2(s) +
n∑
j=2

yj1Isj≤s<sj+1(s).

For our method, we considered both the posterior median of y(s) and the
median of the posterior predictive distribution.

Several simulations have been run under different simulation settings
leading to qualitatively similar results. We report the results for four sce-
narios. The first scenario generates count stochastic processes from a Poisson
distribution with domain varying mean parameter equal to 2 + s/5 + sin(s)
while in the second the stochastic process is generated rounding the realiza-
tion of a Gaussian process plus an error term,

y = h(y∗), y∗ ∼ GP(µ, k) + ε

with mean function µ(s) = 2 + exp(s/5), covariance function k(s, s
′
) taken

to be squared exponential and ε(s) independent draws from N(0, 2). Under
the third scenario we generate from a Poisson count process with rate pa-
rameter 1/2 and in the fourth from the same Gaussian process of the second
scenario without adding the error term. For each case, we generated data
on a equispaced grid of 200 points between 0 and 20. Taking equispaced
subsamples for different level of sparsity, namely of sizes n = 10, n = 25
and n = 50 we estimate the trajectory on a fine grid for 1 000 replicates for
each scenario and each method. Methods are compared based on averag-
ing the mean absolute deviation between the estimate and the true process
across the replicates and grid points. Table 5.1 summarizes the results. Our
rounded P-splines methodology always lead to a lower mean absolute de-
viation. Note that the first two scenarios do not satisfy Assumption 5.1
since in both cases for each point of the domain we are generating indepen-
dent random variables that can lead to infinitely many discontinuity points.
Nonetheless in these two cases we do not achieve the asymptotic proper-
ties studied in Section 5.2, in finite samples the methods still have good
performance.

In implementing the blocked Gibbs sampler for the rounded P-splines,
the first 3,000 iterations were discarded as a burn-in and the next 5,000
samples were used to calculate the posterior median of y(s). For the hy-
perparameters we chose a = b = 1/2, ν = 1 and D to be the second order
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Table 5.1: Mean absolute deviation in simulation study of Section 5.3. RPS,
rounded P-splines; PRPS, predictive rounded P-splines; NPP, nonparamet-
ric Poisson model, E empirical interpolating step function

Scenario 1 Scenario 2

n = 10 n = 25 n = 50 n = 10 n = 25 n = 50
RPS 1.79 1.53 1.27 2.05 1.63 1.32
PRPS 1.85 1.72 1.67 2.08 1.81 1.70
NPP 2.25 2.08 1.94 14.21 13.74 12.85
E 2.26 2.20 2.19 3.58 2.62 2.35

Scenario 3 Scenario 4

RPS 0.22 0.12 0.07 0.51 0.27 0.18
PRPS 0.22 0.13 0.08 0.51 0.28 0.22
NPP 3.14 3.01 2.82 14.06 13.57 12.68
E 0.44 0.20 0.11 2.53 1.22 0.70

difference matrix. The number of knots is prespecified to be equal to 20
leading to a coarse equispaced grid of the domain. Similar results were
obtained increasing the number of knots. The trace plots of the parame-
ters showed excellent mixing and the Geweke (1992) diagnostic indicated
rapid convergence. Figure 5.2 shows the posterior predictive median, of the
process along with 95% credible bands for representative simulations under
n = 25.

5.5 Count functional data

We have focused on the case in which there is a single count process y
that is observed at different locations s = (s1, . . . , sn)T . However, in many
applications, there are count processes {yi, i = 1, . . . , n} independently ob-
served from n individuals, with the ith process observed at locations si =
(si1, . . . , sini)

T . We refer to such data as count functional data. As in other
functional data settings, it is of interest to borrow information across the
individual functions through use of a hierarchical model. This can be ac-
complished easily within our rounded stochastic processes framework by first
defining a functional data model for a collection of underlying continuous
functions {y∗i , i = 1, . . . , n}, and then letting yi = h(y∗i ), for i = 1, . . . , n.
There is a rich literature on appropriate models for {y∗i , i = 1, . . . , n} such as
hierarchical Gaussian processes (Behseta et al., 2005), wavelet-based func-
tional mixed models (Morris and Carroll, 2006) and multivariate kernel par-
tition process mixtures (Dunson, 2010).
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(a) Fitted model under scenario 1
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(b) Fitted model under scenario 2
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(d) Fitted model under scenario 4

Figure 5.2: Posterior medians and 95% credible intervals for one represen-
tative simulation under each scenario for n = 25.
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5.5.1 Outgoing churn prevision

As motivated in Section 2.1, churn prevision is one of the main goal of
telecommunications companies. We tackle here a simplified problem in
which we use the dataset introduced in Section 2.1.1 and we want to predict
churn as a function of outgoing video calls traffic which, as mentioned be-
fore, is relevant variables for the company. To perform this analysis we use
the proposed rounded P-spline methodology to estimate the traffic count
trajectories of deactivated and active customers.

Let yi(s) denote the number of outgoing video calls for customer i at
time s, yit = yi(sit) denote the number at the tth observation time, and
gi ∈ {0, 1} index if the customer deactiveted his/her contract in the 19th
month or not. Then, we assume that

yit = ξi + b(sit)
T θgi + εit, ξi ∼ Q, εit ∼ N(0, τ−1), (5.12)

where b(x) is the B-spline basis at x, θg represents the basis coefficients
specific to group g, ξi is a customer-specific random effect, and εit is an error
term. To allow the random effect distribution to be unknown, we choose a
DP prior, with Q ∼ DP(αQ0), α = 1 and Q0 = N(0, ψ). This hierarchical
structure allows different mean traffic trajectories within each group, while
allowing certain customers to have greater or lower usage behaviour.

As prior distributions we let p(θ |λ) ∝ exp(−1/2λθTPθ) with P = DTD,
and λ ∼ Ga(ν/2, ρν/2) as in Section 5.3. We additionally choose hyperpriors
p(τ) ∝ τ−1, ρ ∼ Ga(aρ, bρ), and ψ ∼ Ga(aψ, bψ).

The full conditional posterior distributions are

θj | λ, τ ∼ N
{
τSjV

−1
j , Vj

}
,

τ | y, θ ∼ Ga (nt/2, R/2) ,

λ | ν, ρ ∼ Ga (ν/2 +Krank{P}/2, 1/2ρν + U/2) ,

ρ | aρ, bρ, ν, λ ∼ Ga(aρ + ν/2, bρ + νλ/2),

where Sj =
∑

i:gi=j
{BT(yi − ξi)}, Vj = (τnjB

TB + λP )−1, R =
∑n

i=1(yi −
Bθi − ξi)T(yi − Bθi − ξi) and U =

∑K
g=1 θ

T
gPθg. Updating of {ξi} and ψ

follows along standard lines for Dirichlet process mixture models and hence
details are excluded. In this applications we use the blocked Gibbs sampler
of Ishwaran and James (2001).

To evaluate the accuracy of the model we split the dataset into two
parts, performing the analysis on one subset (training set), and validating
the analysis on the other subset (test set). As described in Section 2.1.1,
the proportion of deactivations is very low (4.07%) as usual in this kind
of applications. A common approach, when the event we want to predict
is rare, is to balance the training set in order to have the response variable
outcomes equally represented. With this in mind we fit the model (5.12) to a
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Figure 5.3: Estimated posterior mean trajectory of outgoing video calls
(lines) and montly sample means (points) for active customers (solid line
and circles) and deacticated customers (dashed line and crosses).

subsample of 2,000 observations equally representing active and deactivated
customers. The posterior mean trajectories µ̂0, µ̂1 of the number of video
calls for the two groups are reported in Figure 5.3.

We predict the deactivations for the test subset of 6,500 customers con-
taining a proportion between active and deactivates equal to that of the
original sample. To do so, for each customer-specific observation, we com-
pute the distance dhi , with h = {0, 1} from the two estimated curves as

dhi =
∑
s

(yi(s)− µ̂h(s))2 . (5.13)

We compute the distances in (5.13) and for each of them, based on a
0-1 loss function that classified a trajectory with respect to the minimum
distance from the estimated mean trajectories, we compute the classifica-
tion error rate for the test set. We compared our result with two logistic
regressions, the first with only the last month as explanatory variable and
the second considering all the 18 months and a logistic generalized addi-
tive model with splines smoothing function. The results are reported in
Table 5.2.

5.5.2 Transgenic mouse bioassay

To show other scientific contexts in which we can applyed the proposed
methodology, in this section we analyze data from a Tg.AC mouse bioas-
say study of pentaerythritol triacrylate, a chemical used in many industrial
processes. Animals are randomized to a control or one of five dose groups
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Table 5.2: Classification error rates for churn prediction; RPS, rounded P-
splines classification; Logistic, logistic model with one explanatory variable;
Logistic (18 var), logistic model with 18 explanatory variables; Logistic GAM
(18 var), logistic generalized additive model with 18 explanatory variables

Model Global error False positive False negative

RPS 0.43 0.45 0.39
Logistic 0.76 0.92 0.02
Logistic (18 var) 0.54 0.63 0.15
Logistic GAM (18 var) 0.45 0.50 0.23

each of size 30. The five dose groups are 0.75, 1.5, 3, 6, or 12 mg/kg. The
number of skin papillomas on the back of each mouse is counted weekly
for 26 weeks and it is of interest to compare the groups to see if there is
a significant increase in tumorigenicity relative to control, while trying to
find the lowest dose at which there is a significant increase in tumorigenicity
and looking for a dose response trend. Dunson and Herring (2005) jointly
studied the latency time prior to the first tumor, the increase of papilloma
burden and occurrence of internal tumors at the end of the study accommo-
dating dependencies among the outcomes through a Poisson-gamma frailty
model. As motivated in Section 5.1-5.2, Poisson hierarchical models are
quite restrictive and our focus here is on using the proposed rounded hierar-
chical P-spline model to improve robustness in estimating the tumor count
trajectories for each dose group and assessing dose response trends.

Let yi(s) denote the number of tumors on mouse i at time s, yit = yi(sit)
denote the number at the tth observation time, and gi ∈ {1, . . . , G} index
the treatment group for mouse i. Then, we assume the same model of
(5.12) where ξi is a subject-specific random effect. As before the hierarchical
structure allows different mean tumor trajectories within each dose group,
while allowing certain mice to have greater susceptibility to tumors. Given
data sparsity, we avoid allowing the shape of the tumor trajectory to vary
across mice within groups.

As a global measure of toxicity of the chemical we consider the aver-
age papilloma burden per group. Both the two lower dose groups showed
no significant difference from the control group with the posterior mean of
the average tumor burden <0.001 and the 95% credible intervals concen-
trated near zero. In the higher groups the average tumor burden grows
with the dose level. Mean tumor burden and 95% credible intervals are 0.18
[0.06,0.39], 9.51 [9.21,9.80] and 12.33 [11.90,12.72] for the 3, 6 and 12 mg/kg
dose group respectively. Cumulative tumor burdens along with the dose
group-specific empirical means for each week are reported in Figure 5.4.

As a measure of time varying increase in papilloma burden, we computed
the mean burden per dose group per week substracting the average number
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Figure 5.4: Estimated cumulative mean tumor burden (lines) and weekly
sample means (points) for the control group, 0.75 mg/kg and 1.5 mg/kg
(solid line and circles), 3 mg/kg (dashed line and triangles), 6 mg/kg (dotted
line and crosses) and 12 mg/kg (dash-dotted line and squares) dose groups.

for the control group. Posterior means and 95% credible bands are reported
in Figure 5.5. The two lower dose groups are indistinguishable from control
while the 3, 6 and 12 mg/kg dose groups exhibit clear increases relative to
control starting from the 17th, 9th and 8th week, respectively.

Higher dosages lead to higher numbers of skin papillomas, and earlier
onset of the first tumor. Our modeling approach allows us to estimate the
average time of onset of first tumor, which occurs on the 27th, 14th and
11th week, for the three higher dose groups. In other groups, the typical
mouse did not develop tumors prior to the end of the study.

Our overall conclusions agree with those of Dunson and Herring (2005)
in terms of differences between groups in latency time and tumor burden,
though the estimates differed somewhat. The group comparison results
were also consistent with results from a simple frequentist generalized linear
model analysis. Similar results are obtained considering the time of devel-
opment of the first tumor as a summary of the tumor trajectory. As partly
illustrated in Figure 5.4, which shows the empirical and estimated mean
tumor burdens in each group, the model has a good fit to the data.
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Figure 5.5: Time varying chemical exposure posterior mean effect on tu-
morigenicity (continuous line) with 95% credible bands (dashed lines) for
(a) 0.75 mg/kg, (b) 1.5 mg/kg, (c) 3 mg/kg, (d) 6 mg/kg and (e) 12 mg/kg
dose groups. Dotted line at zero corresponds to no effect of the chemical.
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Conclusions

Usual parametric models for count data lack flexibility in several key ways,
and nonparametric alternatives are scarce or have clear disadvantages. In
this work, we introduced and studied a general framework that relates theory
and methods developed for continuous data to the count context.

The main contribution of this thesis consists in introducing the idea
of rounding continuous objects to induce probability measures on spaces
related to count data. This idea has been applied in several contexts and for
each case it has been widely studied showing several advantages and ease of
implementation in a broad variety of applications.

To give a convincing and comprehensive presentation of the methodology
we followed Ferguson (1973) showing that his three desiderata for a Bayesian
nonparametric procedure are satisfied. First for each new prior distribution
we showed its easy interpretation. Then, we described the size of the prior
support while also studying Bayesian asymptotic properties such as posterior
consistency. Finally we showed that practical implementation is easy and
reliable, supporting every method with simulation studies and applications
to real data.

From the applied point of view, we showed that the methodology can
be used in usual customer base management problems such as prediction
of traffic variables, or churn forecast. For this latter setting the idea of
having a model that take in consideration the longitudinal nature of the
measurements of traffic usage is relatively new. As an extension of the model
proposed in Chapter 5, one could jointly model the traffic variables and the
probability of churn, for example with logit or probit models with count
functional predictors. Similar ideas are used in biostatistics but deal with
continuous functional predictors (Dunson et al., 2008; Bigelow and Dunson,
2009). A further extension consists in jointly consider multivariate mixed
scale functional data. Even if our methodology could be directly applied
in those settings, the computational cost will be heavy and hence future
research in this direction could focus on fast and approximate methods for
posterior computation.

In addition to the customer base management setting we showed that the
methods can be applied in other scientific contexts, focusing in toxicity and
developmental toxicity. Particularly when usual parametric assumptions are
not satisfied our methodology has clear advantages.
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