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Preface

Why did Nature choose selenium? This apparently simple question fascinated me

since the beginning of my academic career. It concerns the reason why some

proteins contain, in place of sulfur, the biologically rare element selenium which

gives them some advantageous properties. The reason seems quite simple, as

stated, selenium is more advantageous than sulfur. But here is the catch: selenium

is extremely complicated to insert into the protein structure. Therefore, in the

end, is it worth it?

It all started during my bachelor degree, when I decided to write an essay on

nucleophilic substitution at organochalcogenides. Since then, themain focus ofmy

academic research, which culminated during my Ph.D. student years in Padova

(mostly) and Amsterdam, was always centered around this peculiar element:

selenium. I had never imagined that it would accompany me from the first time I

entered my then would-be supervisor’s office as an undergraduate, to this day

as I approach a Doctoral degree. Through the study of its chemistry I have

understood how a chemical element can be both toxic and essential, that the

most advantageous attribute of a molecule can also be its Achille’s heel and that

sometimes, also in chemistry, appearances can be deceiving and what is at a first

glance an easy matter may reveal to be much more complicated.

But chemistry was only a small (albeit essential) part of my Ph.D. I was

xv



xvi Preface

taught many other lessons during this “adventure”, some about chemistry others

about life. I had the guidance of brilliant teachers that helped me progress in

my research by giving me invaluable scientific advice as well as by boosting my

morale, whenever needed. I also learned to guide less experienced students to

achieve their first goals as young scientists. On the other hand, I also had to

overcome the natural difficulties that arise when working with people with a

completely different mindset and baggage of experience than your own. Some

might say it is not a rewarding experience: most of the times it is surely true, but

each small achievement I was able to obtain was worth the time and effort. There

were good times, there were bad times, there were “meh” times and there were

times in which I could not tell the one from the other because I was too busy to

bother. All in all it was a marvelous journey.

All these experiences may seem inconsequential, but it is thanks to them that

I am now writing this Thesis. Their presence may not transpire from the Chapters

you are going to read but I can assure you they are there, as if they all had a

little part in the writing of this Thesis, which is not just the presentation of some

scientific results but it is the condensation, the quintessence of the windy path

that made me become, let me say it, a scientist.

It might be the first stone of a brilliant career in academia or it might represent

a turning point towards another destination.

Tu ne quaesieris, scire nefas, quem mihi, quem tibi

finem di dederint...1

I’ll leave you to the interesting part.

Marco Bortoli

Padova, November 7, 2018

1

This is the beginning line of Horace’s Carpe Diemwhich translates to “Do not ask, it is forbidden

to know, what fate is reserved for me and you”



Chapter 1

Introduction

1.1 A brief historical account

S
tockholm, 1818. On a chilly morning in the Swedish Winter Jöns Jacob

Berzelius is writing a letter to his colleague, chemist Claude Louis Berthollet
1
.

[1]

“I owe you many thanks for your obliging letter of July 21. I

delayed answering it because I wanted to share with you some results

of the research done in Sweden in our favorite science. This time I

have something interesting to tell you; it is the discovery of a metallic

substance, the oxide of which is a new fixed alkali, and that of another

acidifiable metallic substance, more analogous to sulfur, than to any

other substance [...]”

Two new substances were discovered in Berzelius’ lab during the previous year.

The former the scientist refers to, is what he will name lithium. But it is in the

1

The quoted text of the letter, originally in French, has been translated by the author of this

thesis.

1
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latter that my personal interest grew over the last few years and around which

this Thesis revolves. The discovery of the new substance was, as in many other

cases, accompanied by a fair dose of serendipity:

“[...] The acidifiable metallic substance was discovered in the

following manner: In a sulfuric acid factory, where sulfur is removed

from the pyrites of the Fahlun mine, on the bottom of the large lead

chamber a reddish mass is deposited which consists mainly of sulfur.

[...] the reddish precipitate struck us. We examined it, and finding

that it gives on burning a very strong smell of horseradish (raphanus

sativus), we thought it possible to conclude that the precipitate in

question was a mixture of sulphuret of tellurium (tellurium sulfide)

with sulfur. However we could not extract any tellurium. I took

a small quantity with me in Stockholm, where I examined it more

closely. I found then that this sulfur contained a foreign substance,

very volatile, very easily reducible, but which can not be precipitated

by alkalis, and I succeeded, after a few unsuccessful attempts, in

isolating this substance. [...]”

After a description of the appearance and physical properties of the new material,

Berzelius strongly refutes the possibility that the substance contained in the red

mass is tellurium:

“[...] in contrast, if the flame of a candle is directed there, or if it

is blown with a blow-torch, it colors the flame of a beautiful azure

blue color, diffusing a smell of horseradish [...]. However, neither the

purified tellurium, nor its oxide, nor its combinations with the metals,

produce this odor. It was only when I locked a piece of tellurium in a

small ball of thin glass, and blowing on it with the blowtorch until

the gasified tellurium made a hole in the softened glass, that I could
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produce the odor in question: it was then entirely the same as that

of the new substance.”

Nonetheless, it is this strong relationship with tellurium which prompted the

scientist to choose its name:

“However, to recall the relationship of the latter with tellurium, I

named it selenium.”

The following year the first publication in a scientific journal on selenium appeared

in the Swedish Afhandlingar i Fysik, Kemi och Mineralogi (Theses in Physics,

Chemistry andMineralogy, Figure 1.1) and the chemical history of selenium began.

A history which has still many unwritten chapters and unfinished paragraphs...

1.1.1 Selenium and biology: from poison to prevention

Berzelius had already understood that selenium could be toxic, as he verified

when investigating health problems at his sulfuric acid production plant. In fact,

as he changed the ores used in the process, which contained only trace amounts of

selenium, the health of the workers greatly improved. In the following century, the

interest on selenium was very low and almost no further research was conducted

on the element. The only notable use was in the first solar cells built in New York

by Charles Fritts in the early 1880s. [2] But it was in the late 1930s that selenium

gathered the spotlight again, and for a second time it was because of its toxicity. It

was recognized as an industrial hazard [3, 4] and as a the cause of the insurgence

of various cattle and poultry diseases. [5–7] Moreover, in addition to the already

established toxicity of selenium, it was also observed that the element could have

teratogenic effects in birds [8] and possibly in human beings. [9, 10]

Only in the mid 50s, the group of Jane Pinsent discovered the first “benign”

function of selenium. [11] Studying the bacterium Escherichia Coli, Pinsent found
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(a)

(b)

Figure 1.1: Excerpt from the letter fromBerzelius to Berthollet (left) and front cover

(a) and excerpt from the first scientific publication where selenium is described

and named (b), right. These resources are freely available through the Internet

via Google Books.
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that trace amounts of selenite were necessary for the enzyme formic acid dehy-

drogenase to work properly. It was already 1957 when two groups independently

proved that seleniumwas essential also to animals. [12, 13] In particular Schwarz’s

group was working on identifying micronutrients that are essential to life. In their

studies, they fed mice a diet consisting only of sugar and yeast. The observed

effect was that most of the specimens ended up dying of liver necrosis. This

condition could be prevented if a supplement of methionine or vitamin E was

added. Moreover, if a particular kind of yeast (American brewer’s yeast) was used

in the diet these pathological effects did not occur. Therefore, Schwarz concluded

that there was another substance that could prevent the disease and called it

“Factor 3”. [14] An insightful suggestion by Dr. DeWitt Stetten, [15, 16] prompted

Schwarz to check the content of selenium in a sample of Factor 3. Indeed, not only

did the sample contain selenium, but it was also proved that it was that particular

element that prevented liver necrosis in rats. [17]

The discovery of the essential role of selenium in biology contributed to

an increased interest in the subject that resulted in the identification of some

human diseases caused by selenium deficiency. The first one to be discovered

was the so called Keshan disease, which is a cardiomyopathy. [18] Some time

later also the Kaschin-Beck disease (a disorder similar to rheumatoid arthritis)

and myxoedematous cretinism were related to selenium deficiency, although that

not being the only cause for the insurgence of these diseases. These findings

confirmed that the element was essential also to humans. Moreover, since the

discovery of the first selenium-caused disease, research was conducted also to see

if selenium supplementation could be related to the incidence of cancer. From the

very rich literature on the subject (for an exhaustive list of references see [19] and

references therein), a quite homogeneous perspective emerged, which seemed

to favor the conclusion that a low intake of selenium resulted in a higher cancer

incidence. This so called “selenium-cancer” hypothesis was further expanded by a
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large-scale study by Clark and Combs which showed that 200 µg day
−1
of selenium

resulted in a significant reduction in colon, prostate and lung cancer. [20] On

the wave of this promising result, the US National Health Institute promoted

another trial on an even larger scale. [21] Unfortunately, the results of Clark and

Combs were not confirmed in this study. In fact, no clear evidence that could

relate selenium supplementation with cancer prevention was found. [22]

The different outcomes of the two major studies on the relationship between

selenium and cancer did not contribute to establish a clear role of the element

as a protective agent. In addition, research on some selenoproteins showed how

their overexpression could help promote cancer growth. [23–25] These factors,

combined with the narrow span between the amount of selenium needed by

the organism (26 µg day
−1

to 35 µg day
−1

[26]) and the threshold above which it

becomes toxic (900 µg day
−1

[26]), make selenium a multi-faceted element which

was aptly named “the essential poison”. [27]

1.1.2 Glutathione peroxidase: the non-existing enzyme

Among the various proteins that make use of selenium in the human body, the

family of glutathione peroxidases (GPx) is one of the most studied and well-

characterized. A brief overview of the different classes of selenium compounds

found in the human body will be given in the next Section. In this sub-section

the steps that led to GPx discovery and characterization are outlined. For a more

exhaustive reading on the subject, the reader is referred to a review by L. Flohé

(which contains also funny anecdotes and experiences of the author). [16]

The first evidence for GPx is found in a paper of 1957 by Mill that states:

“Studies with hydrogen peroxide indicate that this enzyme cat-

alyzes the oxidation of reduced glutathione by hydrogen peroxide,

and thus may be termed a glutathione peroxidase.”
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At that time not only was the presence of selenium in GPx still unknown, but a

few years after Mill’s paper, part of the scientific American community deemed

the existence of GPx very unlikely. [16] Nonetheless, in Europe, research on the

subject continued, albeit in a modest way, and culminated in 1971 with the work

of Flohé. Starting from cow blood, he managed to extract, purify and characterize

a compound that was confirmed to be GPx. [28, 29] The first studies on the

activity and mechanism of GPx as a peroxidase brought about by these new

findings, although published in a review in German, [29] reached the group of

William Hoekstra in the US. They combined these discoveries with their work

on the ability of selenium to prevent oxidative damage in selenium deficient rats

[30] and managed to discover a direct relationship between selenium and GPx

activity. [31] If this evidence proved unequivocally the need for selenium in the

catalytic mechanism of GPx, it was still not clear if the element was present in

the protein itself or if it acted as a co-factor in another form. The dilemma was

conclusively resolved by Flohé who managed to detect Se in a GPx sample that

was first subjected to neutron bombardment and then was analyzed with a gamma

spectrometer. The analysis undoubtedly confirmed the presence of selenium in

GPx in the amount of 1 atom per subunit of the enzyme. [32] In the following

years, the presence of a selenium-containing GPx was discovered also in sheep,

rats, fish and humans. [33–37] With these findings, the importance of selenium in

GPx was finally recognized by the whole scientific community, which, from that

point onward, dedicated much effort to clarify the role of selenium in GPx and

other selenium-containing proteins, trying to explain the actual benefits deriving

from its presence as opposed to the more common sulfur.
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1.2 Selenocysteine: legacy or novelty?

T
he discovery of selenium in proteins was a great achievement. However, as

with all scientific discoveries, it clarified many doubts but opened many

more questions. First of all, how is selenium inserted into proteins? It took three

years to solve this issue and the first conclusive evidence on the structure of a

protein-bound amino acid containing selenium was published only in 1976. [38]

It was unambiguously showed that the moiety that contained the element was a

cysteine residue in which sulfur was substituted by selenium (hence selenocys-

teine). Another ten years had to pass before it was eventually recognized that

selenocysteine (Sec) could be rightfully called the 21
st
amino acid. [39]

The major contributions that fueled the recognition of Sec as a proteino-

genic amino acid were the discoveries that two genes, coding for two different

selenoproteins, contained an in-frame TGA termination codon. [40, 41] This led

to the novel idea that the codon UGA, which normally is read as a stop codon

during translation, could , under “particular circumstances” signal the insertion of

Sec. These “particular circumstances” were seen to be a complicated machinery

involving multiple co-factors that are needed to differentiate the meaning of the

UGA codon. [42] While all the steps building up the process of Sec insertion were

being elucidated, the prevailing ideas about the presence of selenium in biology

leaned towards the opinion that it was a legacy of the anaerobic world. [43, 44]

The complexity and costliness of the reactions involved in the process clearly

supported this view, which was corroborated by the higher than sulfur sensitivity

towards oxygen.

Later on, studies on protein homology between prokaryotes and eukaryotes

led to the abandonment of that theory in favor of a new point of view: selenium

is an evolutionary sign that differentiates mammals from lower eukaryotes and it

has a unique and specific role and a particular advantage over sulfur that enables it
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to enhance the enzymatic reactions in which it is involved. [45] This consideration

seemed to be the natural result from all the studies revolving around the mutation

of Sec to Cys in selenoenzymes or vice versa. [46–49] However there have been

a few instances in which the catalytic role of selenium was difficult to justify.

[50, 51] From these seemingly controversial results yet another possibility for

the role of selenium was proposed. If the presence of selenium was still viewed

as an evolutionary sophistication, the main advantage of selenium over sulfur

was ascribed not to its superior catalytic activity but to its more favorable redox

properties. In other terms, due to its intrinsic atomic properties, selenium is better

suited to efficiently sustain the high oxidative stress levels present in most of the

environments in which selenoenzymes work. [19, 44]

Despite the limited number of reactions in which selenium is involved, which

is a result of evolutionary pressure, some advantage over sulfur is expected, which,

in theory, could replicate the physiological role of selenium. After 200 years since

its discovery, the knowledge of the function of selenium inside the cell is still not

exhaustive. Selenocysteine shows different chemical properties when compared

to cysteine: lower pKa (5.2 vs 8.3) [52], superior electron acceptor and leaving

group ability, [44] but these differences do not clearly explain why in some cases

the choice of nature fell on selenium rather than sulfur. [53] Moreover, in some

complex eukaryotes it has been seen that the replacement of Sec with Cys causes

no appreciable activity loss, [51] suggesting that a deeper investigation on the

chemical, biochemical and biological role of selenium is still needed.

Thus, far from being completely understood, the presence of selenium in

biology with its complex insertion machinery relies on different hypotheses.

Lately, the idea of a superior redox ability and a higher resistance to overoxidation

seems to provide a convincing argument to disentangle this ongoing debate.
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1.3 Glutathione peroxidase: Not only an antioxidant

S
ince its status of an actual, real enzyme had been confirmed (see 1.1.2), glu-

tathione peroxidase has stirred a consistent interest in the scientific commu-

nity of selenophiles.
2
The term glutathione peroxidase is however somewhat

limiting because over the years a whole family of proteins with similar properties

was discovered. [54, 55]

GPx enzymes catalyze the reduction reaction of hydrogen peroxides and

organic hydroperoxides by glutathione (GSH). [56] TheGPx enzymaticmechanism

involves three steps (Figure 1.2): the oxidation of selenol (E) to selenenic acid (F),

accompanied by the reduction of the hydroperoxide; thereafter, two equivalents

of GSH are consumed in the two subsequent reductive steps to form first a

selenenylsulfide intermediate (G) and then the regenerated enzyme in its starting

selenol form together with oxidized glutathione (GSSG). [57, 58] The kinetics

of this mechanism were seen to be more complicated than a simple Michaelis-

Menten process in which an overall kinetic constant can be defined. [59] The

cycle can be divided in two parts: the first, which corresponds to step I in Figure

1.2, in which the enzyme perform its peroxidatic role reducing the hydroperoxide

and the second, which comprises steps II and III of Figure 1.2, in which GPx

is reduced by GSH to its resting state. Although the kinetic constant for the

reductive part (k2) is usually 2 to 3 orders of magnitude smaller than that of the

oxidative step (k1), the much higher concentration of GSH in vivo compared to

peroxide usually makes the overall reaction independent of the concentration of

the reducing agent.

There are at least eight types of GPx that have been characterized and they

originated from three evolutionary groups that have a common Cys-containing

2

A search in the Web of Science database for records from 2010 to 2018 containing the word

“glutathione peroxidase” returned about 18000 results.



Glutathione peroxidase: Not only an antioxidant 11

I

II

III

2H2O

E

FG

GSH

GSH

GSSG

C10H13N3O6

k1
k2

Figure 1.2: Mechanism of organic hydroperoxides reduction catalyzed by Cys/Sec-

GPx. E is the reduced enzyme with Cys/Sec in the thiol/selenol form, F represents

the oxidized intermediate, i.e. the sulfenic/selenenic acid form, G is the disul-

fide/selenosulfide form. The first (oxidative) part is highlighted in blue and the

second (reductive) part in red.



12 Introduction

Figure 1.3: Structure of human GPx4 (left) and of the tetramer of human GPx1

with the four monomers in different colors (right). Structures taken from the

RCSB PDB database (www.rcsb.org).

ancestor. [60, 61] Four of these proteins (GPx1 through GPx4) contain selenium

whereas GPx6 is a selenoprotein only in human and the others (GPx5, GPx7

and GPx8) contain sulfur. A conserved structure of the active site was found

throughout the family [62] consisting of four amino acids that form the so-called

“catalytic tetrad” (Sec, Gln, Trp and Asn) with only 3 exceptions. [60] The different

variety of GPx can be found as homotetramers (as GPx1, 2, 3, 5 and 6, Figure 1.3,

right) or as monomers (GPx4, 7 and 8, Figure 1.3 left) and this might steer the

reactivity towards different substrates [55]: tetrameric structures have a higher

affinity for small soluble peroxides whereas monomers can react also with more

complex lipid hydroperoxides.

Among the selenium containing GPxs, GPx1 (also called cytosolic GPx) is

tetrameric and can reduce a wide variety of organic hydroperoxides but is highly

specific for glutathione as a reducing substrate. [63] GPx2 (also known as gas-

trointestinal GPx) is also tetrameric and as a high chain similarity (65%) with

GPx1 and similar substrate specificity. [64] GPx3 is a glycoprotein found mainly

in human plasma. Its role as an extracellular antioxidant has been questioned due
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to the low concentration of GSH in plasma, though it seems it can function in

conjunction with thioredoxin and glutaredoxin as electron donors. [65] Finally,

GPx4 (or phospholipid hydroperoxide GPx), [58, 66] is instead monomeric and

its peculiarity is that it can be reduced by a variety of substrates other than glu-

tathione. An overview of the specific functions of all the GPx types is beyond the

scope of this work, however a brief description of the role of GPx4, which has

been used as model in this study, will be presented.

GPx4 exists in three isoforms: cytosolic (cGPx4), mitochondrial (mGPx4)

and sperm nuclear (snGPx4) and was initially recognized as a lipid peroxidation

inhibiting protein. [67] Moreover, it was seen that, in case of GSH deficiency,

other cysteine residues could be used as reducing substrates to restore the enzyme.

Further studies revealed that GPx4 might have functions other than that of an

antioxidant. It is present in spermatozoa as an inactive structural protein [54] and

has a crucial role in regulating brain development and neuronal function. [68] In

addition, it was observed that a knockout of cGPx4 is lethal in embryos and, when

induced, in adult animals. Hypotheses have been formulated on the origin of the

essentiality of GPx4. The most creditable is that the enzyme has a central role

in the regulation of the activity of 12,15-lipoxygenase. [55] 12,15-lipoxygenase

is an enzyme that catalyzes hydroperoxide formation in cellular membranes

regulating different signaling pathways, among which apoptosis.
3
GPx4 provides

the required balance in lipid peroxidation which would be completely disrupted

in its absence causing eventually cell death.

These ulterior raisons d’être greatly widen the role GPx4 has in biology. How-

ever, this Thesis will not deal with them, primarily focusing on the (historically)

classical role of the enzyme as a preventer of high oxidative stress levels through

the reduction of different peroxides.

3

Apoptosis is a form of programmed cell death that occurs in multicellular organisms.
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1.4 GPx mimics: harnessing the power of glutathione
peroxidase

T
he knowledge of the GPx structure and its reaction mechanism encouraged

the scientific community to try and replicate the antioxidant properties of

the enzyme in small easily synthesizable molecules. These compounds would

then be used to control the oxidative stress inside the cellular environment. The

study on the pharmacological effects of potential GPx mimics started inevitably

with molecules containing selenium.

The first structure that was seen to display some kind of peroxidase activity

was 2-phenyl-1,2-benzisoselenazol-3(2H)-one, more commonly knows as ebselen.

[69, 70] The confirmation of the similarity of its mechanism with that of GPx

promoted many studies on similar molecules with a high activity for the reduction

of hydroperoxides. [71] This class of compounds is classically divided into three

subgroups consisting of (i) cyclic selenenyl amides, (ii) diaryl diselenides and (iii)

aromatic or aliphatic monoselenides. [72] The steps of their catalytic mechanism

(in Figure 1.4 are shown those for classes (i) and (ii)) show a different order than

those of GPx and mimics with comparable reaction rates have not been discovered

yet. [73]

Numerous organoselenides have been synthesized and tested as potential an-

tioxidant drugs, [72, 74, 75] highlighting the prominent role of diaryl diselenides,

especially in preventing liver damage caused, for example, by a deficiency in vita-

min E. [17] Therefore, intensive focus was centered on this class of compounds

to assess the possible uses of diaryl diselenides as therapeutic agents. Evaluating

the pharmacological advantages and drawbacks of organoselenium compounds is

beyond the scope of this Thesis. However, the reader can refer to the literature

for an exhaustive view on the subject. [75–78] The key feature of these mimics

is the presence of a Se–Se bond which can be broken upon oxidation, resulting
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in the formation of two catalytic sites. Although theoretical mechanistic studies

are still fragmentary, [73, 79] evidence show that the first step in the GPx-like

cycle involves the cleavage of the Se–Se bond after reaction with a thiol and the

formation of a selenyl sulfide and selenol (Figure 1.4). [80] In this particular case,

the zwitterionic form of the selenol is stabilized. A computational study of the

direct reaction of the same compound with H2O2, showed how this pathway

is disfavored as it results in the formation of a selenolseleninate with a highly

distorted structure. [81] The product of this direct oxidation has not been com-

pletely clarified yet: experimental studies on ebselen [69, 70, 82] suggest that, after

dimerization, the reaction of its diselenide with H2O2 results in the formation of

a selenenic anhydride. [83, 84] On the other hand, in silico studies lean towards

the initial formation of a selenolseleninate. [85, 86] An isomerization could then

lead to the formation of the anhydride.

The main issue that seems to impair the catalytic activity of GPx mimics

is a scrambling reaction that occurs after the selenosulfide has formed: in fact,

to restore the active catalytic species from the state of selenosulfide a second

reaction with a thiol is needed. This process is a nucleophilic substitution with

the entering thiol as the nucleophile and the sulfur of the selenosulfide in the

catalyst as the substrate. If in the GPx enzyme the substitution is completely

directed towards the sulfur of the selenosulfide, in the small mimics the attack

at selenium has been seen to be preferred. [72, 87] In this way after reaction

with a second molecule of thiol we are not left with the regenerated catalyst,

but with the starting selenosulfide which is catalytically inactive. This results in

relative activities far lower than that of GPx, e.g. ebselen has a relative activity

of about 10−4
, [88] that is one of the reasons preventing the actual use of these

compounds as active antioxidant drugs. Moreover, the toxicity of organoselenium

compounds and their metabolites, although lower that that of inorganic ones,

[73, 77] is another concerning issue that limits the in vivo employment of these
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Figure 1.4: Mechanism for the reduction of H2O2 by an organic thiol in the catalytic

cycles of ebselen (a) and 2-(N,N-(dimethylamino)-methyl)benzenediselenide (b).
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molecules and has yet to be completely clarified. The pro-oxidant and thiol

depleting effect observed for ebselen in absence of peroxides [78] and the non-

substrate specificity of many mimics [73] are two of the main drawbacks of which

they suffer. However, the toxicology of GPx mimics has not been sufficiently

explored yet and if isolated clinical trials reported no acute toxicity, [77] the long

term effect of these molecules is still not clear.

A sibling to selenium, tellurium has no established biological role. Never-

theless, recent findings on semi-natural telluroproteins [88, 89] showed that a

high peroxidase activity is displayed when Sec is substituted with tellurocysteine

(Tec). Moreover, the possibility to use organotellurides in pharmacology has been

the subject of research in the last 20 years [78, 90] but the lack of conclusive

results on the toxicity of organotellurium compounds is still the limiting factor, as

their pro-oxidant activity could potentially outweigh their beneficial antioxidant

function. [74, 76]

This brief overview of the properties of organoselenides and tellurides out-

lines a somewhat disappointing, albeit promising, picture because, if in organic

synthesis the use of these compounds (in particular of organoselenides) is com-

mon practice, their employment in pharmacology and medicine is very limited.

Therefore, mechanistic studies to understand the traits that could enhance the

reactivity of these compounds have to go hand in hand with investigation on

the long and short-term toxicology of selenium and tellurium organocompounds

to provide the knowledge required to rationally design efficient and biologically

viable mimics that can display a high GPx-like activity and are biocompatible to

be used as anti-oxidant drugs in the prevention of elevated levels of oxidative

stress.
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Chapter 2

Theory and methods

T
his Thesis is a computational work that involves different methods and

calculation types. Computations that are based on quantum mechanics

(QM) as well as simulations that are treated according to the laws of classical

mechanics have been used. In this chapter a detailed, albeit concise presentation

will illustrate the features of the different methodologies employed in this work.

2.1 Quantum mechanical calculations

S
ince the studies on the nature of matter at the end of the XIX century com-

bined with those of Max Planck on the quantization of radiation, it was seen

that the best possible description for systems that are of atomic size cannot be

based on classical mechanics. Therefore, nowadays it seems natural to apply

the laws of quantum mechanics to accurately describe the behavior of atomistic

systems. But since the formulation of Schrödinger’s equation, [91] it was imme-

diately evident that the complexity of the problem was a very hard obstacle to

overcome. The impossibility of having analytical solutions for even the simplest

19
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systems limited the early application of this theory to describe structures of prac-

tical interest. The development of the first automated calculators (computers)

from the early 50s certainly expanded the boundaries of the systems that was

possible to investigate but, at the same time, the computational resources that

were progressively becoming faster and more reliable with each passing day

prompted for the development of more accurate models that were also inevitably

more computationally expensive.

The main drawback of the methods based on Schrödinger’s equation (also

called wavefunction methods, post-Hartree–Fock methods or ab initio methods)

is that they rely on the solution of a wavefunction that depends on the number

of electrons (N ) involved and has therefore 4N degrees of freedom (three spatial

coordinates and a spin coordinate for each electron) which quickly increase as

additional atoms are added to the system. Moreover, the computational cost

of these models is nowhere near linear with respect to N but it has a stronger

dependence that is usually of N5
or above for most methods. This limit of the

ab initio computations urged the development of an alternative theory which

could lead to the same results but at a reduced cost. The answer that changed the

perspective completely came in 1964with the formulation of theHohenberg–Kohn

theorems and the introduction of the density functional theory (DFT). [92]

2.1.1 Density functional theory

Although the formal description of the theory was developed by Hohenberg and

Kohn in the 60s, DFT has a much older origin. Its history begins in the 20s with

the theories of Thomas and Fermi on the behavior of an electron gas moving

in an external potential. [93–95] The idea behind the theory was to be able to

determine the energy of the ground state of a collection of electrons affected by

an external (nuclear) potential in terms of the electron density alone. This would
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reduce the number of degrees of freedom of the resulting equation from 4N to

only 4 (three spatial and one spin coordinates). This theory was further developed

by Dirac. But it is with the aforementioned Hohenberg–Kohn theorems that it

assumed a defined shape. These two theorems state that:

1. The ground state energy can be completely defined by the corresponding

electron density.

2. If a well-behaved density trial function is selected, the energy functional

yields an energy that is greater than or equal to that of the exact ground

state electron density.

Mathematically, they can be expressed by two very simple relationships:

E = E[ρ(r, s)] (2.1)

E[ρtrial] ≥ E[ρ(r, s)] (2.2)

The simplicity of Equations (2.1) and (2.2) can be deceiving. In fact, the

Hohenberg–Kohn theorems just prove the existence of a functional of the energy

but they do not provide any clue as to how this functional is structured. Therefore,

another step was required before DFT could be effectively put to work. A year

after the Hohenberg–Kohn theorems, Kohn and Sham proposed a computational

scheme based on DFT. [96] The main aspect of this scheme was that the electrons

were treated as noninteracting particles and the inter-electronic and electron-

nuclear interactions were recovered using an effective external potential (the

Kohn–Sham potential) instead of the nuclear one :

[
−1

2
∇2 + vS(r)

]
ϕi = ϵiϕi (2.3)
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The advantage of this formulation is that the exact density can be recovered

from the sum over the densities of the first N orbitals, i.e. ρ(r) =
∑

|ϕi|2, and
thus the exact energy can be calculated as E[ρ(r)]. Although the problem is now

reduced to an effective one-electron formulation, the issue to address revolves

now around vS(r). This quantity does not account only for the attractive nucleus-

electron potential and the repulsive electron-electron potential, but it also contains

all exchange and correlation contributions. Since there is no analytical formula in

term of the density for this exchange correlation term, approximations have to be

made to obtain a potential that fairly approximates the exact density. To this end,

different approaches have been developed such as the local density approximation

(LDA) or the generalized gradient approximation (GGA).

In addition to those schemes, other hybrid functionals have been developed,

in which part of the exchange energy is calculated from the exact Hartree–Fock

exchange.

2.1.2 Activation strainmodel and energy decomposition analysis

Many biological processes would not take place without the presence of enzymes.

These molecules catalyze reactions that would otherwise be kinetically inert. In

a catalytic cycle, a fundamental part is played by the different transition states

(TSs) that are present in the mechanism, and more specifically by the barriers that

must be overcome to go from one intermediate to another. Although an accurate

kinetic analysis of enzymatic cycles is out of the scope of this Thesis, tuning the

thermodynamics that characterize those reactions to obtain lower barriers an

thus, possibly, a more favorable reaction, is instead one of the main objective

of this work. To that end, an intimate understanding of the energetics of the

system is required. The activation strain model (ASM) [97, 98] and the energy

decomposition analysis (EDA) [99–101] are two tools that, in combination with
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the Kohn–Sham molecular orbital model, allow a quantitative description of the

different energy contributions that account for the different stabilization of the

stationary points in a reaction. Not only does their simple formulation give the

ability to describe a particular reaction, but it also permits to predict the necessary

actions to improve it. This section gives a brief overview of these two schemes.

The activation strain model (ASM) of chemical reactivity [97, 98] is based on

the idea that the fragment approach, generally used for stable molecules, can be

extended to reactions, in fact to any point along a potential energy surface (∆E).

Thus it constitutes a model for understanding reactivity in terms of the original

reactants involved in a chemical process. If a suitable reaction coordinate (ζ) in

this potential energy surface is selected, the resulting energy profile ∆E(ζ) can

be decomposed into two contributions:

∆E(ζ) = ∆Estrain(ζ) + ∆Eint(ζ) (2.4)

The first term on the right hand side of Eq. (2.4) refers to the energetic

contributions needed to perform the geometrical rearrangements during the

reaction mechanism. It depends on the rigidity of the fragments involved, e.g. on

the nature and strength of the bond that must break and on the flexibility of the

angles that get deformed. Due to its definition ∆Estrain is usually positive (i.e.

destabilizing) and it is the main cause for the presence of an energy barrier in

activated processes.

The second term in Eq. (2.4) is usually stabilizing and refers to the mutual

interaction that the reactants experience and depends upon their electronic struc-

ture and the orientation they have as the come together during the reaction. In

general, the first part of a reaction is dominated by ∆Estrain up to a transition

state after which∆Eint takes over leading to the formation of the products (Figure
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Figure 2.1: ASM model applied to an SN2 model reaction

2.1). Since the considered transition state represents a first order saddle point

on the whole potential energy surface (PES) of the structure, for which the first

derivative with respect to a particular reaction coordinate is zero, if we take this

derivative of Eq. (2.4) it can be easily seen that the transition state occurs when

the interaction and strain energy have identical first derivative with opposite

sign:

d∆Estrain

dζ
= −d∆Eint

dζ
(2.5)

Therefore, the fine tuning of the strain and interaction through chemical modifi-

cation of the reactants can directly affect the reaction barrier making the reaction

less or more favorable.

The interpretation of strain energy is pretty simple and it is fairly easy to

predict the effects that modification on the structure can have on the reactivity.

Interaction, on the other hand, is a bit more complicated. It accounts in fact
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for a variety of contributions that are most of the times intimately connected

and dependent on each other. To extricate this apparent tangle, the energy

decomposition analysis (EDA) scheme has been developed within the Kohn–Sham

molecular orbital framework. It quantitatively divides the total interaction energy

in three contributions:

∆Eint = ∆Velstat +∆EPauli +∆Eoi (2.6)

In this way, the total interaction energy can be decomposed into terms that are

directly related to a certain component: ∆Velstat defines the coulombic attraction

between unperturbed charge densities of the reacting fragments, ∆EPauli quanti-

fies the repulsive term arising from the overlap of filled orbitals and finally ∆Eoi

accounts for the stabilizing orbital interaction that take place between a filled and

an empty orbital. If an empirical term to calculate the dispersion contributions is

used in the calculation, it is added also in the EDA scheme to Eq. (2.6). As for the

activation strain model, energy decomposition analysis can also be performed

along a suitable reaction coordinate:

∆Eint(ζ) = ∆Velstat(ζ) + ∆EPauli(ζ) + ∆Eoi(ζ) (2.7)

making it possible to study a reaction throughout its entire path.

2.1.3 Solvent effects

A somewhat mythical view of the chemist is that of a scientist that works in a

lab trying to mix different liquids to obtain the desired product. The chemistry of

liquids, or alternatively in the liquid phase has always represented the preferred
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way to conduct reactions. Solutions have always offered a very advantageous

way to efficiently mix reactants in a cheap and relatively safe and efficient way.

However, the first quantum theoretical models were based on reactions in the

gas phase because treatment of a condensed phase was seen to be too compli-

cated. Due to the increasing computational demands upon the addition of new

molecules to the system, it was clear from the start that an explicit treatment

of the solvent (i.e. each solvent molecule with its electrons) would be, besides

difficult to theorize, extremely expensive in computational resources. Therefore,

due to the impracticability of the explicit scheme, theoretical models were devel-

oped to account for the solvent effects without explicitly considering its atomistic

structure. A solution to this problem was the introduction of the continuum

solvation models: the solvent is treated like a bulk dielectric in which the solute

is immersed. Since the electronic structure of the solvent is lost, the only effect

that it has on the solute is of electrostatic nature and the main parameters that

are relevant in these schemes are the dielectric constant of the solvent (ε) and the

surface area of the cavity formed by the solute atoms.

The two solvation models used in this Thesis are the conductor-like screening

model (COSMO) [102] and the SMD model [103]. They have been proved to have

a comparable accuracy, [103, 104] and the choice of two different models was

solely determined from the fact that they were the best methods available in the

two QM softwares employed in the computations, namely ADF and Gaussian09.

The general form of the standard-state free energy of solvation can be expressed

as:

∆G0
S = ∆GENP +GCDS +∆G0

conc (2.8)

in which ∆GENP is a term including the electronic, nuclear and polarization
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components of the free energy change, ∆GCDS accounts for the energy change

caused by solvent cavitation, dispersion and changes in solvent structure and

∆G0
conc is the correction stemming from the different gas-phase and solvent

standard states. COSMO and SMD use slightly different algorithms to calculate the

bulk electrostatic contributions in presence of the solvent (∆GENP ), namely the

eponymous scheme in the case of COSMO [102, 105] and the IEF-PCM formalism

[106–108] in the case of SMD. However, these two schemes were seen to lead to

very similar results and the main difference between these two methods resides

in how they calculate the non electrostatic terms (∆GCDS). In COSMO, this

contribution depends only on the surface area of the cavity and on a function

the dielectric constant of the medium, whereas in SMD a more complex scheme

is employed in which other macroscopic descriptors of the solvent, such as its

refractive index or macroscopic surface tension, are included.

2.2 Classical calculations

T
he distinguishing feature of the good scientist is the endless hunger for

knowledge. As soon as a problem has been solved, a new one, oftentimes

more complex, must be addressed. This loathing of idleness distinguished also

computational chemists, who, since the dawn of this discipline, wanted to address

more and more complicated problems with the new tools that the development

of the computational hardware was offering. Therefore, the need of calculations

of static properties of small structures grew rapidly into the necessity to compute

the dynamical behavior of huge molecular complexes. Since these very large

molecules were usually taken from biology (proteins, nuclear acid chains, cellular

membranes. . . ) and their study could lead to discoveries that could be beneficial

in the medical and pharmaceutical sciences, a strong impulse was imparted to

develop suitable models that could describe these systems. Quantum mechanical
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models were immediately discarded because, as mentioned in Section 2.1, their

computational cost rapidly increases with the number of electrons. Thus, the

natural choice was to neglect the electronic structure of the molecule. However,

without electrons there cannot be any quantum model. Classical mechanics was

therefore the only option to describe a molecule that was eventually defined as a

collection of (hard) spheres (the atoms) connected by an ensemble of springs (the

chemical bonds).

2.2.1 Molecular dynamics simulations

The loss of the electronic structure in classical calculations makes it impossible to

study reactive processes. The information gathered from a study of the dynamics

of e.g., a protein can however give useful information on bulk properties of the

system: transport coefficients, time-dependent responses, rheological properties

and spectra of various nature can be obtained also from a calculation relying on

the laws of classical mechanics.

The theory supporting molecular dynamics (MD) simulations is rather simple

and consists in the numerical solution of the classical equations of motion:

mir̈i = fi (2.9)

fi = − ∂

∂ri
V (2.10)

in which V represents a potential energy from which the forces acting on each

single atom are derived. The V function consists of many terms that can be

broadly divided into two categories: bonding and non-bonding potentials.

Different implementations of this model led to slightly different definitions of

the various terms of which the bonded and non-bonded interactions are them-
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selves composed. This Thesis will focus on those employed in the Assisted Model

Building with Energy Refinement (AMBER) molecular dynamics package. [109]

The AMBER potential is expressed as:

VAMBER =

n′
atoms∑
i<j

qiqj
4πε0rij

+

n′
atoms∑
i<j

4ϵij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+

nbonds∑
i

bi(ri − ri,eq)
2 +

nangles∑
i

ai(θi − θi,eq)
2

+

ndihedral∑
i

ni,max∑
i

Vi,n

2
[1 + cos(nϕi − γi,n)] (2.11)

The first line of Eq. (2.11) contains the sum of two non-bonded terms
1
, namely

the Coulomb pairwise electrostatic potential and the Lennard-Jones potential.

The second and third lines show the bonded interactions of the AMBER potential.

They are three terms corresponding to the harmonic potentials defined for bonds

and angles and to the truncated Fourier series defined for dihedral angles.

The parameters contained in Eq. (2.11) are usually derived from QM mechan-

ical calculations and as a whole they define a force field which is essentially a

collection of parameters that completely define a molecule. Different types of

force fields were developed over the years, many of them designed specifically to

accurately describe a particular class of molecules. For example, the force field

used in all the simulations presented in this Thesis is ff14SB which was specifically

1

The summation for this two terms considers n′
atoms due to its definition that considers only

atoms on different molecules or that are separated by at least 3 bonds.
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designed to run molecular dynamics of proteins. [110]

2.3 Notation convention and software

T
hroughout all the Thesis a coherent notation will be used for the definition

of the different levels of theory employed in the QM calculations
2
: modifier3

- functional / basis set (e.g. COSMO-BLYP/TZ2P). If a different level of theory

is used for geometry optimization and final energy calculation, the two will be

separated by a double slash (//), with the method of the single point preceding the

one used in the geometry optimization. For example if a molecule is optimized in

gas phase at the BLYP/TZ2P level of theory but its final energy is calculated in

water using the COSMO model with the BLYP functional using a QZ4P basis set,

the whole level of theory will be denoted as: COSMO-BLYP/QZ4P//BLYP/TZ2P.

Three software packages have been employed for most of the calculations

reported in this work. For the DFT part, the main programs used are the Ams-

terdam density functional (ADF) package [111–113] and Gaussian09. [114] All

calculations using a basis set of Slater type functions (e.g. TZ2P) were carried

out with ADF. On the other hand, calculations employing Pople basis sets (e.g.

6-311G(d,p)) or correlation-consistent basis sets (e.g. cc-pVDZ) were carried out

with Gaussian09.

For the classical molecular dynamics simulations the Amber 2016 [115] soft-

ware package comprising Amber16 and AmberTools16 programs was employed.

Usage of any other software in specific cases will be detailed in the text.

2

The level of theory of a QM calculation is the combination of functional and basis set employed.

3

The modifier can be the inclusion of relativistic effects or of a solvation model



Chapter 3

The chalcogen-π interaction

Adapted from

Bortoli, M.; Ahmad, S. M.; Hamlin, T. A.; Bickelhaupt, F. M.; Orian, L.

Nature and strength of chalcogen-π interactions

Physical Chemistry Chemical Physics, 2018, DOI: 10.1039/C8CP05922E

3.1 Introduction

"W
ith corageous simplification, one might assert hat the chemistry of the

last century was largely the chemistry of covalent bonding, whereas

that of the present century is more likely to be the chemistry of non-covalent

binding.” [116] This quote by Prof. Schneider denotes how the study of non-

covalent interactions has become the center of interest of modern chemistry.

Hydrogen bond is without any doubt the most famous and extensively studied,

[117] but many others belong to this group, e.g. dipole-dipole, ion-dipole and

31
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π-π interactions. An analogous mechanism to that of H-bond, in which an

electropositive atom (bond donor) interacts with a Lewis base (bond acceptor) to

form a weak interaction, has been found also for other classes of atoms such as

halogens, [118–120] chalcogens [121–123] and pnicogens. [124–126] Among the

siblings to hydrogen bond, chalcogen bond has lately received much attention due

to its promising features that makes it optimal to be used in many applications

such as catalysis, ion transport and material and drug design. [127–129] Moreover,

a very recent survey of the PDB database showed that many protein-ligand

complexes in which the ligand contains a chalcogen atom adopt structures that

allow the formation of chalcogen bonds. [130] In this Chapter, the discussion

will be focused on a selection of chalcogen bond acceptors, i.e. small organic

molecules having a double or triple bond. Binding energies that range between

−3.3 and −6.6 kcalmol
−1

were calculated for similar complexes and the main

energy contribution was attributed to a charge transfer from a π orbital of the

bond acceptor, which is localized around the C–C multiple bond, to a σ* of the

bond donor localized around the chalcogen. In addition to the bond acceptor,

the substituents directly attached to the chalcogen atoms were seen to affect the

strength of the chalcogen bond. [131] Therefore, a systematic study on the extent

and magnitude of this effect on the bond strength can provide useful insight into

its nature and give precious information on the possibility to fine tune these

interactions.

Density functional theory (DFT) calculations in combination with quantitative

activation strain analysis (ASA) and energy decomposition analysis (EDA) were

performed to analyze the formation of a bond between a chalcogen atom and

chalcogen-π bond in a set of complexes of general formula X2D···A in which D is

the chalcogen bond donor (O, S, Se or Te), X is a halogen and A is a small organic

molecule containing an unsaturated bond (2-butyne, ethylene and acetylene were

selected for this study) that gives rise to an electron-rich π system. All the possible
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combinations between D, A and X were systematically explored to assess the

particular effect each element has on the stabilization obtained upon formation

of the chalcogen bond.

3.2 Methods

T
he geometries of the chalcogenides, unsaturated hydrocarbons, and the com-

plexes were optimized imposing CS symmetry. The functional BLYP [132–

135] in combination with TZ2P basis was employed for all the elements. The

TZ2P basis set is a large uncontracted set of Slater-type orbitals (STOs) of triple-ζ

quality and has been augmented with two sets of polarization functions on each

atom that is, 2p and 3d on H, 3d and 4f on C, S, F and Cl, 4d and 4f on Se and

Br, and 5d and 4f on Te and I. The frozen-core approximation was adopted for

the core electrons: up to 1s for C and F, up to 2p for S and Cl, up to 3p for Se

and Br, and up to 4p for Te and I. An auxiliary set of s, p, d, f, and g STOs was

used to fit the molecular density and to represent the Coulomb and exchange

potentials accurately in each SCF cycle. Dispersion corrections were included

employing the D3 scheme with the Becke-Johnson damping (D3(BJ)) developed

by Grimme et al. [136] Scalar relativistic effects were accounted for through the

zeroth-order regular approximation (ZORA). [137] This level of theory is referred

to as ZORA-BLYP-D3(BJ)/TZ2P. Frequency calculations were employed to confirm

the nature of the stationary points.

The activation strain model [97] was employed to quantitatively decompose

the contributions to the chalcogen-π bonding energy in the complexes under

investigation. The relative energy of a molecular complex can be divided, through

activation strain analysis (ASA), as the sum of strain contribution (∆Estrain)

and an interaction contribution (∆Eint). ∆Estrain is the energy required for the

geometrical deformation of the reacting species when they are brought from
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infinity to the geometry they acquire after complex formation and ∆Eint is the

actual interaction energy between the fragments. This can be further divided,

through energy decomposition analysis (EDA), [99] into the electrostatic in-

teraction (∆Velstat), Pauli repulsion (∆EPauli), and orbital interactions (∆Eoi)

contributions. Since in the case of BLYP-D3(BJ) functional, an empirical correction

to account for dispersion interaction is added, the term ∆Edisp is also present.

For a more detailed treatment of ASA and EDA see Chapter 2, Section 2.1.2. To

perform the ASA and the EDA, single point energy calculations were run on the

previously optimized geometries with a quadruple-ζ quality basis set. This level

of theory is denoted as ZORA-BLYP-D3(BJ)/QZ4P//ZORA-BLYP-D3(BJ)/TZ2P.

The electron density distribution was analyzed using the Voronoi deformation

density (VDD) method for computing fragment charges. [138, 139] The Voronoi

deformation density method was chosen because it is basis set independent, unlike

Mulliken charges, which are heavily dependent on basis choice. [139] The VDD

method calculates the amount of electronic density that flows to or from a certain

atom due to the bond formation, by spatial integration of the deformation density

over the atomic Voronoi cell.

For selected cases, we have computed highly correlated ab initio reference

data through CCSD(T) single-point calculations performed on ZORA-BLYP-D3

(BJ)/TZ2P optimized geometries. In view of its accuracy and efficiency, [140] we

chose the domain localized pair of natural orbitals coupled cluster with singles and

double excitations treated explicitly and triple excitations treated perturbatively

(DLPNO-CCSD(T)) as implemented in the Orca 4.0.0 software package. [141–143]

Relativistic effects were accounted for through the second order scalar Douglas-

Kroll-Hess method [144] and a quintuple-ζ basis sets, designed for relativistic

calculations, was employed. For the heaviest elements (Te and I) this basis set was

not available in Orca. Therefore, for these two elements, the aug-cc-pVQZ-DK

basis set was used instead of the quintuple-ζ basis. All the benchmark data are
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reported in Appendix A. All energies were calculated with and without the coun-

terpoise correction to account for the basis set superposition error (BSSE). [145]

Comparison between DFT and DLPNO-CCSD(T)/aug-cc-pV5Z level of theory for

a selection of complexes resulted in a smaller average mean absolute error for

the DFT uncorrected energies (see Appendix A for details), likely because of a

fortuitous cancellation of the error in the uncorrected values. [146] Therefore,

unless specified, uncorrected energies are used throughout the Chapter.

3.3 Results and discussion

A
total of 48 complexes result from all the possible permutations of D, A, and

X. They were all optimized imposing CS symmetry and the relative stabiliza-

tion with respect to the free reactants was systematically investigated, employing

quantitative energy decomposition schemes (ASA and EDA). Throughout the rest

of this Section results on the structure and energetics of these complexes will

be presented. To organize the data in a clear manner, attention will be centered

sequentially on the effect the variation of the chalcogen, substrate and halogen

has on the total stability. Complexes will be grouped in series of compounds. A

series is a set of compounds through which only D, A or X is varied.

3.3.1 Geometrical parameters

The general formula of the chosen model compounds is X2D···A in which D is a

chalcogen bond donor (O, S, Se or Te), A is the chalcogen bond acceptor and X
is a halogen atom. Three small unsaturated organic molecules were selected as

bond acceptor: 2-butyne (2but), acetylene (ac) and ethylene (et). The optimized

geometries of all the complexes show a high degree of similarity (an example

is shown in Figure 3.1). Sulfur, selenium and tellurium compounds all show a
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(a) (b) (c) (d)

Figure 3.1: Examples of the optimized structures of four complexes: F2O···2but
(a), Cl2S···et (b), Br2Se···et (c) and I2Te···ac (d).

chalcogen-π bond that is collinear to one of the two chalcogen-halogen bonds.

Moreover, the two chalcogen halogen bonds are not found to be of equal length

in the complex but the one collinear to the chalcogen-π bond is calculated to be

moderately longer. On the other hand, oxygen complexes have a slightly different

geometry as they adopt a Y shaped structure with chalcogen-halogen bonds of

equal length.

The shortest donor-acceptor distance (d, measured as the distance between

the chalcogen atom and a carbon atom involved in the unsaturated bond) is found

in F2O···2but (2.59Å) and the longest one in I2Te···ac (3.21Å) with a span of

0.62Å.

For all the chalcogenides, Voronoi deformation densities were calculated on

the chalcogen atom (Table 3.1). Due to their definition, VDD charges do not

indicate an absolute value of charge on a particular atom but a relative depletion

or increase of charge during the formation of a molecule. This value can be

very useful to compare structures with the same chalcogen to see which one

undergoes the greater charge depletion or increase upon formation of the various
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chalcogenides that can then react with the substrates to form the π complexes.

To keep the effect of the different substrates out of the picture, VDD charges were

calculated on the isolated chalcogenides at the geometry they adopt in the final

complexes. A common trend found for VDD charges in all the series shows that a

higher charge depletion takes place as the difference in electronegativity between

the chalcogen and the halogen increases. For example deformation densities go

from 0.264 to 0.043 a.u. in the X2Se···ac series as the halogen changes from F to I

and from 0.287 to 0.108 a.u. in the F2D···ac series, ascending the group from Te

to O.

3.3.2 Bonding analysis

Activation strain analyses (Table 3.2 ) and energy decomposition analyses (Table

3.3) were employed to quantify the different contributions that determine the

stabilization derived from the formation of the chalcogen bond. The interacting

complexes were divided into two fragments, one consisting of the chalcogenide

and the other of the unsaturated substrate. The effects on the bonding stabilization

obtained with the modification of the chalcogen atom, of the accepting substrate

and of the halogen atoms were investigated, and data will be presented focusing

on one component at a time.

Effect of the chalcogen. The electropositivity of the chalcogen atom in-

creases down the group, from O to Te. The same trend is found in computed total

stabilization energies for the π bonded complexes. For example∆E goes from

−1.3 kcalmol
−1

in the case of F2O···ac to −4.3, −7.5 and −9.4 kcalmol
−1

for the

analogous compounds of S, Se and Te, respectively, in the same series. This trend

stems from the increasing interaction energy computed when going from oxygen

to tellurium, which, when decomposed through EDA, shows how all stabilizing

contributions, i.e. ∆Velstat,∆Eoi and∆Edisp, become stronger with the size of
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Table 3.1: Chalcogen-carbon distance ( in Å) and Voronoi deformation densities

(VDD, in a.u.) on chalcogen atom (D).
a

d VDD d VDD

F2O···2but 2.59 0.103 F2Se···2but 2.69 0.254

Cl2O···2but 2.78 −0.039 Cl2Se···2but 2.87 0.176

Br2O···2but 2.72 −0.089 Br2Se···2but 2.89 0.125

I2O···2but 2.83 −0.129 I2Se···2but 2.96 0.046

F2O···et 2.90 0.105 F2Se···et 2.68 0.272

Cl2O···et 2.98 −0.046 Cl2Se···et 2.94 0.181

Br2O···et 2.88 −0.098 Br2Se···et 2.97 0.128

I2O···et 2.93 −0.136 I2Se···et 3.06 0.044

F2O···ac 2.97 0.108 F2Se···ac 2.76 0.264

Cl2O···ac 3.10 −0.044 Cl2Se···ac 3.01 0.178

Br2O···ac 3.05 −0.097 Br2Se···ac 3.05 0.126

I2O···ac 3.08 −0.135 I2Se···ac 3.13 0.043

F2S···2but 2.77 0.189 F2Te···2but 2.81 0.264

Cl2S···2but 2.92 0.122 Cl2Te···2but 2.96 0.232

Br2S···2but 2.93 0.073 Br2Te···2but 3.00 0.197

I2S···2but 2.95 0.002 I2Te···2but 3.07 0.124

F2S···et 2.86 0.195 F2Te···et 2.82 0.297

Cl2S···et 3.10 0.120 Cl2Te···et 3.00 0.244

Br2S···et 3.09 0.070 Br2Te···et 3.05 0.206

I2S···et 3.16 −0.004 I2Te···et 3.14 0.127

F2S···ac 2.93 0.193 F2Te···ac 2.83 0.287

Cl2S···ac 3.15 0.120 Cl2Te···ac 3.07 0.239

Br2S···ac 3.17 0.069 Br2Te···ac 3.12 0.201

I2S···ac 3.21 −0.003 I2Te···ac 3.21 0.123

a) Computed at ZORA-BLYP-D3(BJ)/QZ4P//ZORA-BLYP-D3(BJ)/TZ2P.
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Table 3.2: Activation strain analysis (electronic energies in gas phase, in

kcalmol
−1
) of the model systems.

a

∆E ∆Estrain ∆Eint ∆E ∆Estrain ∆Eint

F2O···ac −1.3 0.2 −1.5 F2Se···ac −7.5 0.8 −8.3

Cl2O···ac −1.0 0.1 −1.1 Cl2Se···ac −5.4 0.2 −5.6

Br2O···ac −1.3 0.1 −1.4 Br2Se···ac −5.0 0.2 −5.2

I2O···ac −1.5 0.0 −1.5 I2Se···ac −4.4 0.1 −4.5

F2O···et −1.7 0.5 −2.2 F2Se···et −9.1 1.6 −10.7

Cl2O···et −1.6 0.2 −1.8 Cl2Se···et −6.7 0.5 −7.2

Br2O···et −2.2 0.2 −2.4 Br2Se···et −6.4 0.4 −6.8

I2O···et −2.4 0.1 −2.5 I2Se···et −5.7 0.2 −5.9

F2O···2but −3.9 2.6 −6.5 F2Se···2but −11.4 2.0 −13.4

Cl2O···2but −3.3 0.6 −3.9 Cl2Se···2but −9.5 1.0 −10.5

Br2O···2but −4.2 0.5 −4.7 Br2Se···2but −9.3 0.7 −10.0

I2O···2but −4.3 0.2 −4.5 I2Se···2but −8.6 0.5 −9.1

F2S···ac −4.3 0.3 −4.6 F2Te···ac −9.4 1.2 −10.6

Cl2S···ac −3.2 0.2 −3.4 Cl2Te···ac −6.8 0.4 −7.2

Br2S···ac −3.3 0.1 −3.4 Br2Te···ac −6.2 0.3 −6.5

I2S···ac −2.9 0.1 −3.0 I2Te···ac −5.4 0.2 −5.6

F2S···et −5.1 0.6 −5.7 F2Te···et −11.7 2.0 −13.7

Cl2S···et −4.0 0.3 −4.3 Cl2Te···et −8.5 0.8 −9.3

Br2S···et −4.1 0.2 −4.3 Br2Te···et −7.9 0.6 −8.5

I2S···et −3.9 0.1 −4.0 I2Te···et −7.0 0.3 −7.3

F2S···2but −7.3 1.3 −8.6 F2Te···2but −13.2 2.4 −15.6

Cl2S···2but −6.5 0.7 −7.2 Cl2Te···2but −11.2 1.2 −12.4

Br2S···2but −6.8 0.6 −7.4 Br2Te···2but −10.7 0.9 −11.6

I2S···2but −6.6 0.4 −7.0 I2Te···2but −9.8 0.6 −10.4

a) Computed at ZORA-BLYP-D3(BJ)/QZ4P//ZORA-BLYP-D3(BJ)/TZ2P.



40 The chalcogen-π interaction

T
a
b
l
e
3
.3
:
E
n
e
r
g
y
d
e
c
o
m
p
o
s
i
t
i
o
n
a
n
a
l
y
s
i
s
(
e
l
e
c
t
r
o
n
i
c
e
n
e
r
g
i
e
s
i
n
g
a
s
p
h
a
s
e
,
i
n
k
c
a
l
m
o
l
−
1
)
o
f
t
h
e
m
o
d
e
l

s
y
s
t
e
m
s
.
a

∆
E

P
a
u
li

∆
V
e
lsta

t
∆
E

o
i

∆
E

d
isp

∆
E

P
a
u
li

∆
V
e
lsta

t
∆
E

o
i

∆
E

d
isp

F
2 O

···2but
1
6
.3

−
8
.4

−
1
2
.0

−
2
.4

F
2 Se···2but

4
2
.6

−
2
6
.5

−
2
3
.8

−
5
.7

C
l2 O

···2but
1
0
.5

−
4
.7

−
5
.8

−
4
.0

C
l2 Se···2but

2
8
.1

−
1
7
.2

−
1
4
.6

−
6
.7

Br2 O
···2but

1
2
.9

−
5
.5

−
7
.2

−
4
.9

Br2 Se···2but
2
7
.3

−
1
6
.4

−
1
3
.8

−
7
.2

I2 O
···2but

1
1
.8

−
4
.9

−
5
.4

−
6
.0

I2 Se···2but
2
3
.7

−
1
3
.8

−
1
1
.1

−
7
.8

F
2 O

···et
6
.6

−
3
.4

−
4
.0

−
1
.4

F
2 Se···et

4
5
.9

−
2
5
.7

−
2
6
.4

−
4
.5

C
l2 O

···et
6
.4

−
2
.7

−
3
.0

−
2
.6

C
l2 Se···et

2
3
.7

−
1
3
.4

−
1
2
.4

−
5
.1

Br2 O
···et

8
.6

−
3
.5

−
4
.2

−
3
.2

Br2 Se···et
2
2
.6

−
1
2
.6

−
1
1
.5

−
5
.3

I2 O
···et

8
.8

−
3
.5

−
3
.8

−
3
.9

I2 Se···et
1
8
.9

−
1
0
.3

−
9
.0

−
5
.5

F
2 O

···ac
4
.5

−
2
.6

−
2
.4

−
1
.1

F
2 Se···ac

3
2
.0

−
1
8
.9

−
1
7
.8

−
3
.6

C
l2 O

···ac
3
.8

−
1
.6

−
1
.5

−
1
.9

C
l2 Se···ac

1
6
.5

−
1
0
.1

−
8
.2

−
3
.8

Br2 O
···ac

4
.7

−
1
.9

−
1
.9

−
2
.3

Br2 Se···ac
1
5
.6

−
9
.3

−
7
.5

−
4
.0

I2 O
···ac

5
.1

−
1
.9

−
1
.8

−
2
.9

I2 Se···ac
1
3
.0

−
7
.6

−
5
.7

−
4
.2

F
2 S···2but

2
7
.3

−
1
6
.3

−
1
4
.8

−
4
.8

F
2 Te···2but

4
6
.3

−
3
0
.2

−
2
5
.1

−
6
.6

C
l2 S···2but

1
9
.5

−
1
1
.1

−
9
.6

−
6
.0

C
l2 Te···2but

3
2
.4

−
2
0
.8

−
1
6
.3

−
7
.6

Br2 S···2but
1
9
.8

−
1
1
.0

−
9
.7

−
6
.5

Br2 Te···2but
3
0
.5

−
1
9
.3

−
1
4
.8

−
8
.0

I2 S···2but
2
0
.3

−
1
0
.8

−
9
.0

−
7
.4

I2 Te···2but
2
7
.0

−
1
6
.6

−
1
2
.3

−
8
.5

F
2 S···et

2
2
.3

−
1
2
.3

−
1
2
.1

−
3
.7

F
2 Te···et

5
2
.7

−
3
0
.7

−
3
0
.4

−
5
.2

C
l2 S···et

1
2
.6

−
6
.8

−
5
.9

−
4
.1

C
l2 Te···et

3
0
.9

−
1
8
.0

−
1
6
.3

−
5
.9

Br2 S···et
1
3
.5

−
7
.0

−
6
.3

−
4
.5

Br2 Te···et
2
8
.2

−
1
6
.2

−
1
4
.3

−
6
.1

I2 S···et
1
2
.2

−
6
.1

−
5
.3

−
4
.9

I2 Te···et
2
3
.4

−
1
3
.2

−
1
1
.2

−
6
.3

F
2 S···ac

1
5
.4

−
9
.2

−
8
.0

−
2
.9

F
2 Te···ac

3
9
.1

−
2
3
.7

−
2
1
.8

−
4
.2

C
l2 S···ac

9
.1

−
5
.3

−
4
.0

−
3
.2

C
l2 Te···ac

2
1
.4

−
1
3
.3

−
1
0
.8

−
4
.5

Br2 S···ac
8
.8

−
5
.0

−
3
.8

−
3
.3

Br2 Te···ac
1
9
.5

−
1
2
.0

−
9
.4

−
4
.6

I2 S···ac
8
.8

−
4
.7

−
3
.4

−
3
.7

I2 Te···ac
1
6
.0

−
9
.7

−
7
.2

−
4
.7

a
)
C
o
m
p
u
t
e
d
a
t
Z
O
R
A
-
B
L
Y
P
-
D
3
(
B
J
)
/
Q
Z
4
P
/
/
Z
O
R
A
-
B
L
Y
P
-
D
3
(
B
J
)
/
T
Z
2
P
.



Results and discussion 41

the chalcogen center. The better electrostatic interaction of structures with the

heavier chalcogens can be explained on the basis of the VDDs (Table 3.1): for

F2O···ac a deformation density of 0.108 a.u. is computed on the chalcogen atom

which increases to 0.193, 0.264 and 0.287 a.u. for sulfur, selenium and tellurium

compounds in this series. A larger overlap between the frontier molecular orbitals

of the interacting fragments, i.e. the HOMO of A and the LUMO of D, is the cause
of a higher orbital interaction as the chalcogen becomes more electropositive

(Table 3.4). The computed values of 0.06, 0.13, 0.17 and 0.20 for the F2D···ac series,
oxygen through tellurium, well reflect ∆Eoi trend: F2O···ac is the complex with

the weakest orbital interaction at −2.4 kcalmol
−1

followed by F2S···ac, F2Se···ac
and F2Te···ac whose orbital interaction energy is calculated to be −8.0, −17.8 and

−21.8 kcalmol
−1
, respectively. Finally, dispersion contributions are computed to

be higher for the heaviest chalcogens due to the harder nature of oxygen and sul-

fur, whose∆Edisp are of −1.0 and −2.8 kcalmol
−1

in the F2D···ac series, and the

increased polarizability of selenium and tellurium, whose dispersion contributions

amount to −3.6 and −4.2 kcalmol
−1

for F2Se···ac and F2Se···ac, respectively.

Effect of the bond acceptor. The second major player in the formation of

the chalcogen-π interaction is, without doubt, the bond acceptor. In this case,

2-butyne is found to be the one which forms the complexes with the highest

stabilization, followed by ethylene and acetylene, thanks to a gradual increase in

electrostatic, orbital and dispersion interactions which contribute in determining

the trend. The less favorable∆Velstat is due to a systematic increase in the donor-

acceptor distance passing from 2but to et and ac. In the case of the Cl2Se···A
series, it measures 2.87Å with 2but, 2.94Å with et and 3.01Å with ac (Table

3.1) and this directly affects the electrostatic contribution which diminishes from

−17.2 to −13.4 and 10.1 kcalmol
−1

(Table 3.3). Complexes with 2-butyne also have

the strongest orbital interaction. This is mostly due to the different energy of the

HOMOs of the three molecules (Figure 3.2): 2but has the highest lying HOMO
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Table 3.4: HOMO-LUMO energy gap (∆ϵ, in eV) and overlap (S) in selected model

systems.
a

∆ϵ S ∆ϵ S

F2O···ac 1.84 0.06 Br2O···ac 1.97 0.07

F2S···ac 3.58 0.13 Br2S···ac 2.84 0.10

F2Se···ac 3.03 0.17 Br2Se···ac 2.75 0.13

F2Te···ac 2.89 0.20 Br2Te···ac 2.99 0.14

Cl2O···ac 2.01 0.06 I2O···ac 2.14 0.07

Cl2S···ac 3.14 0.10 I2S···ac 2.74 0.08

Cl2Se···ac 2.91 0.14 I2Se···ac 2.71 0.09

Cl2Te···ac 3.11 0.18 I2Te···ac 2.92 0.12

a Computed at ZORA-BLYP-D3(BJ)/QZ4P//ZORA-BLYP-D3(BJ)/TZ2P. For data

of all model systems, see Appendix B.

among the three substrates and thus can have a more favorable energy match,

i.e. a smaller HOMO-LUMO gap, with the chalcogenide. Calculations show that

the HOMO-LUMO gap increases from 1.63 to 2.39 and 3.03 eV (Table 3.5) and this

translates into an orbital contribution of −14.6, −12.4 and −8.2 kcalmol
−1

(Table

3.3). Finally, due to the size of the molecule which makes it more sensitive to

van der Waals forces, 2-butyne gains the strongest stabilization from dispersion.

Although this variation is more modest than that of ∆Velstat or ∆Eoi, it is still

appreciable with calculated∆Edisp of, for example, −6.8, −5.1 and −3.8 kcalmol
−1

in the case of Cl2Se···2but, Cl2Se···et and Cl2Se···ac respectively (Table 3.3).
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2-butyne ethylene acetylene

Figure 3.2: HOMOs of the unsaturated substrates. Isodensity: 0.03 a.u.

Table 3.5: HOMO-LUMO energy gap (∆ϵ, in eV) and overlap (S) in selected model

systems.
a

∆ϵ S ∆ϵ S

Cl2O···ac 1.84 0.06 Cl2Se···ac 3.03 0.17

Cl2O···et 1.24 0.07 Cl2Se···et 2.39 0.19

Cl2O···2but 0.19 0.07 Cl2Se···2but 1.63 0.17

Cl2S···ac 3.58 0.13 Cl2Te···ac 2.89 0.20

Cl2S···et 3.00 0.16 Cl2Te···et 2.27 0.22

Cl2S···2but 2.09 0.14 Cl2Te···2but 1.55 0.18

a Computed at ZORA-BLYP-D3(BJ)/QZ4P//ZORA-BLYP-D3(BJ)/TZ2P. For data

of all model systems, see Appendix B.
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Effect of the halogen. Lastly, the variation of the halogen atom in the com-

plexes has the lowest impact on the strength of the chalcogen-π bond. Neverthe-

less, a decrease in bond strength is computed going from the most electronegative

(F) to the least electronegative (I) halogen. The reason behind this behavior can

be found in the in the diminution of electrostatic and orbital interactions when

going from fluorine to iodine. Taking as an example the X2Se···et series,∆Velstat

is affected by the VDD on the chalcogen and the donor-acceptor distance in the

complex: the former is reduced from 0.254 to 0.176, 0.125 and 0.046 a.u. and the

latter lengthens from 2.69 to 2.87, 2.89 and 2.96Å. Orbital analysis reveals that a

decrease in the chalcogenide’s LUMO amplitude on the chalcogen atom and thus

a decrease of the overlap with the HOMO of the substrate is the main cause for

diminished orbital interactions. Example values (reported for the X2Se···2but) go
from 0.17 (F2Se···2but) to 0.12, 0.11 and 0.08 for the analogous complexes with

chlorine, bromine and iodine, respectively. Consequently, a decrease in the total

∆Eoi is found for all the series which together with the weakening of the elec-

trostatic interaction contributes to an overall destabilization of the complexes as

the halogen bonded to the chalcogen center becomes less electronegative. For ex-

ample, in the X2Se···2but series, it is found to be −11.4 kcalmol
−1

in F2Se···2but
but it amounts to −8.6 kcalmol

−1
in I2Se···2but.

Thus, the X2D···A bond strength is governed by the difference in electronega-

tivity between chalcogen (D) and halogen (X) as this determines the atomic charge

and the amplitude of the X2D LUMO on the chalcogen atom. This fits nicely

with all main trends we compute: (i) the decreasing chalcogen bond strength as X

becomes less electronegative along F, Cl, Br and I; and (ii) the increasing chalcogen

bond strength as the chalcogen becomes more electropositive along O, S, Se and

Te. Note that the oxygen complexes X2O···A are all relatively weakly bound with

only minor and therefore less systematic variations in bond strength, i.e., within

a range of about 1 kcalmol
−1
, along the various halogen substituents X.
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Table 3.6: HOMO-LUMO energy gap∆ϵ (in eV) and overlap (S) in selected model

systems.
a

Complex ∆ϵ S

F2S···2but 2.09 0.14

Cl2S···2but 1.77 0.09

Br2S···2but 1.49 0.08

I2S···2but 1.42 0.08

F2Se···2but 1.63 0.17

Cl2Se···2but 1.55 0.12

Br2Se···2but 1.41 0.11

I2Se···2but 1.40 0.08

F2Te···2but 1.55 0.18

Cl2Te···2but 1.75 0.16

Br2Te···2but 1.66 0.12

I2Te···2but 1.62 0.09

a) Computed at ZORA-BLYP-D3(BJ)/QZ4P//ZORA-BLYP-D3(BJ)/TZ2P. For

data on all model systems, see Appendix B.
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3.4 Conclusions

In this work, a series of chalcogen-π bonded complexes was analyzed in silico to

obtain a clear picture of the contributions that determine the different interaction

strength. Moreover, since through quantitative energy decomposition analysis

these contributions can directly be related to the intrinsic properties of the frag-

ments taking part in the bond, results from this study can be employed not only

to describe the selected systems, but also to make predictions on the general

behavior of the chalcogen-π interaction that can be extended to many other com-

plexes. Our calculations showed that the stabilization of the complexes increases

with the difference in electronegativity between the chalcogen and the halogen

substituents. Therefore the complexes with the highest non covalent interaction

strength are those that contain the most electropositive chalcogen, i.e. tellurium,

and fluorine, the most electronegative halogen. In addition to that, 2-but was
seen to form the strongest chalcogen-π bond among the selected unsaturated

substrates.

Orbital analyses of the selected complexes reveal that the main cause of

this behavior is that an increase either in the chalcogen electropositivity or in

the halogen substituent electronegativity clearly enhances the amplitude of the

chalcogenide fragment’s LUMO of the chalcogen atom and thus the overlap with

the HOMO of the unsaturated substrate resulting in an overall stronger chalcogen-

π bond. Also, the different bond strengths computed for the various substrates

are explained by orbital analyses, as differences mainly stem from the smaller

HOMO–LUMO energy gap found in complexes of 2but. Consequently, stronger
orbital interactions result in complexes with shorter chalcogen–π bond distances

and thus a more favorable∆Velstat termwhich provides an additional stabilization

in complexes with high chalcogen–halogen electronegativity differences and in

those with 2-butyne.
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Results on the selected model complexes showed that chalcogen-π interaction

can be rationalized through quantitative energy decomposition and orbital analy-

ses. These outcomes can be used to predict the strength of the chalcogen bonds

in biological system based on the chemical nature of the atoms involved and may

be exploited to create powerful design tools to improve the effectiveness of novel

artificial compound based on rational and finely tuned non-covalent interactions.
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Table A.1: Chalcogen-π bond energies ∆E (in kcalmol
−1
) computed at DFT and

CC levels of theory.
a

Complex ∆E (DFT) ∆E (CC) Error (DFT-CC)

F2O···ac −1.3 0.2 −1.5

F2S···ac −4.3 −2.2 −2.1

F2Se···ac −7.5 −3.7 −3.8

F2Te···ac −9.4 −5.7 −3.7

Cl2Se···ac −5.3 −2.7 −2.6

Br2Se···ac −5.0 −2.5 −2.5

I2Se···ac −4.3 −2.1 −2.2

F2Se···et −9.1 −4.2 −4.9

F2Se···2but −11.3 −6.4 −4.9

Average Error −3.1

a) Computed with correction for basis-set superposition error. DFT = ZORA-

BLYP-D3(BJ)/QZ4Pae//ZORA-BLYP-D3(BJ)/TZ2Psc. CC = DLPNO-CCSD(T)/aug-

cc-pV5Z-DK, aug-cc-pVQZ-DK.
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Table A.2: Chalcogen-π bond energies ∆E (in kcalmol
−1
) computed at DFT and

CC levels of theory.
a

Complex ∆E (DFT) ∆E (CC) Error (DFT-CC)

F2O···ac −1.3 0.1 −1.4

F2S···ac −4.3 −2.3 −2.0

F2Se···ac −9.4 −8.4 −1.0

F2Te···ac −7.5 −4.6 −2.9

Cl2Se···ac −5.4 −3.4 −2.0

Br2Se···ac −5.1 −3.5 −1.4

I2Se···ac −4.4 −3.8 −0.6

F2Se···et −9.1 −5.6 −3.5

F2Se···2but −11.4 −7.9 −3.5

Average error −2.0

a) Computed without correction for basis-set superposition error. DFT = ZORA-

BLYP-D3(BJ)/QZ4Pae//ZORA-BLYP-D3(BJ)/TZ2Psc. CC = DLPNO-CCSD(T)/aug-

cc-pV5Z-DK, aug-cc-pVQZ-DK.
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Table B.1: HOMO-LUMO energy gap ∆ϵ (in eV) and, overlap (S) in all model

systems.
a

Complex ∆ϵ S Complex ∆ϵ S

F2O···2but 0.19 0.07 F2Se···2but 1.63 0.17

Cl2O···2but 0.58 0.06 Cl2Se···2but 1.55 0.12

Br2O···2but 0.57 0.07 Br2Se···2but 1.41 0.11

I2O···2but 0.83 0.07 I2Se···2but 1.40 0.08

F2O···et 1.24 0.07 F2Se···et 2.39 0.19

Cl2O···et 1.51 0.07 Cl2Se···et 2.40 0.15

Br2O···et 1.46 0.08 Br2Se···et 2.25 0.14

I2O···et 1.66 0.08 I2Se···et 2.22 0.13

F2O···ac 1.84 0.06 F2Se···ac 3.03 0.17

Cl2O···ac 2.01 0.06 Cl2Se···ac 2.91 0.14

Br2O···ac 1.97 0.07 Br2Se···ac 2.75 0.13

I2O···ac 2.14 0.07 I2Se···ac 2.71 0.09

F2S···2but 2.09 0.14 F2Te···2but 1.55 0.18

Cl2S···2but 1.77 0.09 Cl2Te···2but 1.75 0.16

Br2S···2but 1.49 0.08 Br2Te···2but 1.66 0.12

I2S···2but 1.42 0.08 I2Te···2but 1.62 0.09

F2S···et 3.00 0.16 F2Te···et 2.27 0.22

Cl2S···et 2.67 0.11 Cl2Te···et 2.57 0.20

Br2S···et 2.39 0.11 Br2Te···et 2.49 0.16

I2S···et 2.28 0.10 I2Te···et 2.44 0.13

F2S···ac 3.58 0.13 F2Te···ac 2.89 0.20

Cl2S···ac 3.14 0.10 Cl2Te···ac 3.11 0.18

Br2S···ac 2.84 0.10 Br2Te···ac 2.99 0.14

I2S···ac 2.74 0.08 I2Te···ac 2.92 0.12

a) Computed at ZORA-BLYP-D3(BJ)/QZ4Pae//ZORA-BLYP-D3(BJ)/TZ2Psc.



Chapter 4

The GPx oxidative phase

Adapted from

Bortoli, M.; Torsello, M.; Bickelhaupt, F. M.; Orian, L.

Role of the Chalcogen (S, Se, Te) in the Oxidation Mechanism of the Glutathione

Peroxidase Active Site.

ChemPhysChem, 2017, 18, 2990-2998

4.1 Introduction

T
his Chapter presents an in silico investigation of the first step of the human

glutathione peroxidase catalytic cycle (Figure 4.1) through a combined clas-

sical and quantum mechanical approach. The mechanistic details of the Cys-,

Sec- and Tec-GPx active sites were systematically investigated to determine the

different role of the three chalcogens in the oxidation step.

57



58 The GPx oxidative phase

I
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2H2O

E
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GSH

GSH

GSSG

C10H13N3O6

k1
k2

Figure 4.1: Mechanism of organic hydroperoxides reduction catalyzed by Cys/Sec-

GPx. E is the reduced enzyme with Cys/Sec in the thiol/selenol form, F represents

the oxidized intermediate, i.e. the sulfenic/selenenic acid form, G is the disul-

fide/selenosulfide form. The oxidative step is highlighted in blue.
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Studies on a mutant Cys-GPx showed an analogous mechanism than that of

Figure 4.1, although with a lower antioxidant activity. [147] In addition to that,

recent computational studies on an enzymatic cluster of seven residues forming

the active site of GPx supported the idea that a similar mechanism for Cys-

and Sec-GPx can be predicted on the basis of DFT calculations. The calculated

reaction profiles show that the presence of selenium results in lower energy

barrier and in an overall rate acceleration. [148] Morokuma et. al. conducted

pioneering investigation on the Sec-GPx mechanism using pure QM calculations

on a simplified model cluster based on human GPx3, [149] as well as calculations

on the entire enzyme employing hybrid quantummechanics/molecular mechanics

(QM/MM) schemes. [150] Their choice of enzymatic cluster in the pure QM

calculations is a structure containing five other residues on top of selenocysteine

(Gly50, Leu51, Tyr48, Gln83 and Trp157) plus one or two molecules of water. Two

possible mechanisms were predicted: a direct one and a two-step one, involving

first a proton transfer from the selenol to Gln83 and then the reduction of the

peroxide with concomitant formation of F. Activation energies range from 17.1 to

19.1 kcal mol
–1

depending on the mechanism, which is in good agreement with

an estimate of the experimental value, calculated from kinetic constants, of 14.9

kcal mol
–1
. [151]

If selenium is indeed rare in biological systems (known selenoproteins in ver-

tebrates amount to 40 and this limited presence is ascribed to the high reactivity of

selenium in biological environment) [75], tellurium is altogether absent. However,

incorporation of tellurocysteine (Tec) into subtilisin [89] and replacement of Ser9

of glutathione transferase from Lucilla cuprina with Tec [88] resulted in two

semi-natural proteins that displayed remarkable peroxidase activity. This rein-

forced the promising results obtained employing organotellurides as antioxidants

and opened the possibility of their usage as drugs. [78, 90] In fact, toxicologi-

cal studies on these compounds concluded that their toxicity is comparable to
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that of organoselenides, [74] which represent the canonical class of GPx mimics

and have been studied for a few decades. High GPx activity was found also in

cyclodextrin-derived tellurium compounds. [152]

To support and clarify results from experimental studies, structural and reac-

tivity investigation of selenium and tellurium enzymes can be carried out with

the combination of classical and quantum mechanical (QM) techniques. This

approach must be backed by the application of suitable protocols, i.e., in this case,

accurate force field parameters for the molecular dynamics (MD) simulations, to

arrive at a reliable relaxed structure of the whole enzyme, and a high level of

theory for the QM part, involving the choice of state-of-the-art functionals and

sufficiently large and flexible basis sets.

Standard force field databases do not contain any parameter for selenium or

tellurium and simulations are usually carried out using the parameters derived

for sulfur, with the sole modification of the atomic charges, [153–156] or, when

parameterization is carried out, it is not specific for a single form of the residue but

encompasses multiple oxidation states. [157, 158] This method can be sufficient

to perform QM/MM calculations, as those of Morokuma et. al., [150] but is

not accurate enough to discern the different behavior of the chalcogen in the

active site during MD simulations. Therefore, to obtain the results presented in

this Chapter, first an accurate parameterization of the Sec and Tec residues was

carried out and two novel sets of parameters of their AMBER force field were

obtained (for details see Appendix C). These parameters were used in the MD

simulation of GPx4 starting from its crystallographic structure, but thanks to

their flexibility they may be employed in the future for the simulation of other

seleno- and telluroproteins, both natural and artificial. From an MD snapshot,

an enzymatic cluster representing the active site was extracted and focus was

centered on the initial step of the peroxidase cycle, i.e. the oxidation of the Cys,

Sec or Tec and the reduction of a H2O2 molecule. In particular, the different
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role of the chalcogen on the energetics and mechanism will be discussed and

analyzed through density functional theory (DFT) calculations and the application

of activation strain analyses (ASAs) and energy decomposition analyses (EDAs).

4.2 Methods

I
n this chapter, a combined classical and quantum mechanical work will be

presented. In the following Sections a brief description of the methodologies

employed in the molecular MD simulations and in the DFT calculations will be

outlined. For a more exhaustive reference see Chapter 2.

4.2.1 MD simulations

The GPx4 structure was chosen as model structure for a peroxidase enzyme (pdb

entry: 2OBI). [159] To run MD simulations, we chose the Assisted Model Builder

with Energy Refinement (AMBER) Hamiltonian (Equation (2.11)) coupled with

the ff14SB set of parameters, [110] implemented in the Amber 2016 software

package, [115] due to its good performance in treating biomolecules .

Simulations were straightforward for the Cys-GPx because all the necessary

parameters were already available in ff14SB. [110] On the other hand, for Sec

and Tec based enzymes, no suitable parameters were available. Thus, we chose

to derive them for these residues, adapting a protocol and tools recently em-

ployed to derive GAFF (General AMBER Force Field) parameters for a series of

organochalcogen compounds. [160] A detailed description of this protocol is

reported in Appendix C.

The new parameters were employed in theMD simulations of the Sec-GPx and

Tec-GPx, whose initial structures, together with that of Cys-GPx, were solvated

with TIP3P water (6942 water molecules for Cys-GPx, 6946 for Sec-GPx and 7121
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for Tec-GPx). [161] Afterwards, the systems were minimized and equilibrated for

200 ps at 300 K and 1 bar. The MD simulations were carried out for 500 ns in the

same conditions of the equilibration, using the Langevin thermostat and a Monte

Carlo barostat.

4.2.2 DFT Calculations

A suitable enzymatic cluster was chosen to represent the GPx active site. Seven

residues (Cys/Sec/Tec46, Gly47, Lys48, Gln81, Trp136, Asn137 and Phe138) were

selected, in agreement with previous work. [148] The initial structures were

retrieved from a snapshot of the MD simulations (Figure 4.2 a). The extracted

residues were suitably capped using ACE (C(O)CH3) and NME (N(H)CH3) groups

at the N- and C-terminal positions, respectively, to simulate the removed protein

chain. Lys48 was substituted with a Gly residue to reproduce a peptide bond

connecting Gly47 to the non-conserved following residues (Figure 4.2 b). [148]

They were optimized keeping the backbone atoms frozen, to avoid loss of the

structural effects of the large portion of GPx excluded from QM computations.

The dispersion-corrected hybrid B3LYP-D3(BJ) [132, 162–164] functional was

used. It comprises the Becke three parameter functional [162] and the Lee, Yang,

and Parr [132–134] correlation term with an added dispersion contribution term

developed by Grimme et al. [136]

The 6-311G(d,p) basis set was used for all atoms, except selenium and tellurium,

for which Dunning’s correlation consistent basis set of triple zeta quality (cc-

pVTZ) was used; for tellurium, pseudo potentials were also included (cc-pVTZ-PP).

The level of theory employed for partially constrained geometry optimizations is

denoted B3LYP-D3(BJ)/6-311G(d,p),cc-pVTZ(-PP). Frequencies calculations were

subsequently performed to verify the absence of imaginary frequencies for minima

and the presence of a single imaginary frequency for transitions states, associated
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Cys46

Gln81
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Figure 4.2: Cluster of amino acids extracted from Cys-GPx (a) and superposition

of the optimized geometries of the Cys- (black), Sec- (red) and Tec-GPx (blue)

clusters (b); AA46= Cys46, Sec46, Tec46; level of theory: B3LYP-D3(BJ)/6-311G(d,

p), cc-pVTZ(-PP).

to the correct vibrational mode. Single point energy calculations were carried out

in gas phase at B3LYP-D3(BJ)/6-311+G(d,p),cc-pVTZ(-PP) and the correction for

the condensed phase was computed using the SMD solvation model (SMD-B3LYP-

D3(BJ)/6-311+G(d,p),cc-pVTZ(-PP)) as implemented in Gaussian09. [103, 165] A

dielectric constant of 4.0 was employed to reproduce the protein environment,

in agreement with previous studies. [166] Thermodynamic corrections resulting

from gas phase frequency calculations (same level of theory employed in the

geometry optimizations) were added; they refer to a temperature of 298.15 K

and a pressure of 1.00 atm. [167] If not differently stated, Gibbs free energies in

condensed phase are discussed in the Results section.

Activation strain analyses (ASAs) [98, 99] were employed to quantitatively

analyze the reaction potential energy surface (PES) of the oxidation of Cys-E

and Sec-E. In this model, the system is partitioned into two fragments and the

total energy, (E), is decomposed into the sum of strain energy∆Estrain and the
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interaction energy ∆Eint. ∆Eint was further analyzed in the framework of the

Kohn-Sham molecular orbital model using a quantitative energy decomposition

analysis (EDA, see Chapter 2 Section 2.1.2). In these calculations, scalar relativis-

tic effects were accounted for through the zeroth-order regular approximation

(ZORA). [137] The BLYP [132–135] functional was used, in combination with

the TZ2P basis set for all elements. The TZ2P basis set is a large uncontracted

set of Slater-type orbitals (STOs), of triple-ζ quality and augmented with two

sets of polarization functions on each atom: 2p and 3d in the case of hydrogen,

3d and 4f in the case of carbon, nitrogen, oxygen and sulfur, and 4d and 4f in

the case of selenium. Dispersion corrections were included with the D3 scheme

with inclusion of the Becke Johnson damping (D3(BJ)), developed by Grimme et

al. [136] This level of theory is denoted ZORA-BLYP-D3(BJ)/TZ2P.

4.3 Results and discussion

A
fter anMD simulation of 500 ns (Figure 4.3 a), results show that substitution

of the chalcogen atom in residue 46 has limited effects on the atoms posi-

tions. Calculated mean square deviations for the backbone of Sec- and Tec-GPx

with respect to Cys-GPx are equal to 0.99Å and 1.18Å, respectively. Analysis of

the root mean square fluctuations (Figure 4.3 b) reveals that the residues have a

similar local flexibility, with the exception of residue 79 in Tec-GPx, which is a

Gly in the proximity of the catalytic pocket. Such a high variability in a residue

that has a low conformational freedom arises from the fact that the loop in which

Gly79 is inserted in Tec-GPx rotates back and forth by almost 90° during the

whole simulation. Moreover, an important rearrangement during the dynamics is

seen in the loop 156-160 of Sec-GPx which is located far from the catalytic active

site. Furthermore, water molecules enter and exit the active site during the whole

simulation, supporting the idea that the catalytic pocket is solvent accessible and
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(a)

(b)

Figure 4.3: MD results: position of the backbone atoms of Cys-GPx (black), Sec-

GPx (red) and Tec- GPx (blue) after 500 ns (a) and root mean square fluctuation

for each residue along the 500 ns dynamics of Cys-GPx (black), Sec-GPx (red) and

Tec-GPx (blue) (b).
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the choice to add a water molecule in the enzymatic cluster extracted from the

simulation to allow the deprotonation of the selenol, also in view of the fact that

at physiological pH selenolate is the most abundant species. [148]

Seven amino acids were selected to model the active site [62] and a cluster

comprising these residues was extracted from each MD simulation (Cys-cluster,

Sec-cluster and Tec-cluster). Recently, a pure DFT study of the Cys- and Sec-GPx

mechanism was carried out employing an analogous cluster, fully optimized in

gas phase at the B3LYP/6-31G(d, p) level of theory. [148] Two additional molecules

(H2O2 and H2O) were manually inserted in the position that qualitatively pro-

vided the best interactions with the Cys/Sec/Tec residue. The resulting adducts

(E·H2O2·H2O) were then optimized
1
(Figure 4.4). Optimized structures have a

relative energy of −2.4, −8.9 and −8.2 kcalmol
−1
, respectively, compared to the

free reactants, i.e. the enzymatic cluster (E) plus hydrogen peroxide and water

(Table 4.1), which suggests that the active site is designed to favorably contain

and coordinate the substrate and water, forming a hydrogen bond network with

the surrounding residues (vide infra). A substantial difference is found between

the Tec-cluster and those with Cys or Sec. In fact, the distance of the chalcogenol

proton to the closest oxygen of H2O2 is found to be of 4.03Å in the Tec-cluster,

whereas a smaller value is found for the Cys- (2.29Å) and Sec-clusters (2.21Å).

This precludes any interaction between the tellurol and the H2O2 molecule and

has important effects on the mechanism of Tec-GPx (vide infra).

The position of H2O and H2O2 is found to be similar in the Cys- and Sec-

clusters (Figure 4.4 a and b). The latter is always found between the chalcogen

atom and the indole moiety of Trp136 but, if in the case of the Cys-cluster it has a

favorable interaction with a carbonyl oxygen of the peptide bond between Asn137

and Phe138 in the Sec-cluster the distance from these two residues precludes the

1

As mentioned in Section 4.2.2 all optimization are carried out maintaining the protein backbone

frozen.
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Figure 4.4: Geometries of the optimized adducts E·H2O2·H2O; E=Cys-E (a), Sec-E

(b) and Tec-E (c) and RMSDs (hydrogens not included) with respect to the initially

optimized clusters; level of theory: B3LYP-D3(BJ)/6-311G(d,p), cc-pVTZ(-PP).

formation of a hydrogen bond. Nevertheless, the slightly different geometry of

the Sec-cluster allows the formation of a non covalent bond between an oxygen

of H2O2 and the hydrogen atom bonded to the N atom in the indole of Trp136.

The H2O molecule is found between the hydrogen peroxide and the indole moiety

of Trp136 in both clusters. Its oxygen atom forms a hydrogen bond with an H of

H2O2 and one of its hydrogen atoms points directly to the N atom of the indole

in Trp136. This arrangement of water and H2O2 creates a network of hydrogen

bonds in both clusters suggesting the possibility of a long range proton transfer

from Cys/Sec to Trp136. In fact, computations show how the thiol/selenol proton

is transferred to H2O2 which in turn transfers one of its protons to the nitrogen in

the indole of Trp136. The water molecule is crucial in this step as it acts as a bridge

to efficiently transport a proton from H2O2 to the indole. The barrier computed

for the formation of this charge separated intermediate (E(CS)·H2O2·H2O) is
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Table 4.1: Gibbs free energies (kcalmol
−1
) of the intermediates and transition

states in gas phase and in condensed phase.
a

Cys-cluster Sec-cluster Tec-cluster

Gas phase

E 0.0 0.0 0.0

E·H2O2·H2O −0.4 −4.0 −0.8

TS1 25.3 16.6

E(CS)·H2O2·H2O 16.8 5.4

F −50.2 −73.6

Condensed phase

E 0.0 0.0 0.0

E·H2O2·H2O −2.4 −8.9 −8.2

TS1 24.7 12.7

E(CS)·H2O2·H2O 15.9 2.5

F −51.3 −77.3

a) Computed at (SMD-)B3LYP-D3(BJ)/6-311+G(d,p),cc-pVTZ(-PP)//B3LYP-

D3(BJ)/6-311G(d,p),cc-pVTZ(-PP)

lower in the Sec-cluster than in the Cys-cluster (21.6 vs 27.1 kcal mol
–1
) and the

formed structure is less destabilized in the presence of the heavier chalcogen. No

subsequent transition state could be located, so we concluded that conversion to

F proceeds with no barrier. A similar behavior was found in a recent study in

which an analogous cluster was employed. [148]

Mechanistic studies of the Tec-cluster reveal that a pathway involving a proton

transfer is not feasible. In fact, all attempts to optimize either the charge separated

intermediate or the transition state leading to it systematically failed. Tellurium

electronegativity (or lack thereof) plays an important role here: if for sulfur

and selenium the S–H and Se–H bond are definitely polarized toward the more

electronegative chalcogens, in the case of tellurium its lower electronegativity
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(slightly smaller than that of hydrogen) results in an almost pure covalent Te–H

bond in which the hydrogen atom has no tendency to move to an adjacent

oxygen. Nevertheless, an alternative mechanism for the oxidation of Tec-cluster

is possible. It involves a direct nucleophilic attack of the tellurium atom to the

hydrogen peroxide molecule. This new pathway has a much smaller activation

energy (10.5 kcal mol
–1
, Table 4.2) compared to that needed for the formation

of the charge separated intermediates in the Cys- and Sec-clusters (27.1 and

21.6 kcal mol
–1
, respectively), and results in the formation of a highly stabilized

telluroxide (E–Te(O)H, –43.6 kcal mol
–1
). An analogous behavior was found in

the case of several selenides and diselenides, which can be oxidized via a direct

mechanism. [168–171] To arrive at the same product of the oxidation of the Cys-

and Sec-clusters (F, a sulfenic/selenenic acid) an intramolecular isomerization is

needed. The transition state for this process (TSiso) is found at −11.5 kcalmol
−1

and that means that a barrier of 32.1 kcalmol
−1

has to be overcome to arrive at

the final tellurenic acid (F) at −72.0 kcalmol
−1
. However, in the few experimental

studies employing tellurium in semi-natural enzymes, [88, 89] the resting form

suggested for the Tec residue is that of a tellurinic acid (E–Te(O)OH). Since the

catalytic cycle can proceed via the telluroxide or either the tellurenic or tellurinic

acid, the formation of this latter species, which can be significant in excess of

peroxide, was investigated.

Two different mechanisms are proposed for its formation: one proceeding

in a single step to the final structure (Figure 4.5 a) and the other involving the

intermediate formation of a hydroxy perhydroxy tellurane (Figure 4.5 b). The

results show that the direct mechanism is favored over the stepwise oxidation

(Table 4.3) which is in agreement with a recent study on the oxidation of or-

ganic selenides. [171] The activation barriers computed for the two reactions are

16.7 kcalmol
−1

for the direct mechanism versus 33.1 kcalmol
−1

for the formation

of the hydroxy perhydroxy tellurane, which is found to be higher in energy than
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Table 4.2: Gibbs free energies (kcalmol
−1
) of the intermediates and transition

states for the oxidation and isomerization of the Tec-cluster in gas phase and in

condensed phase.
a

Gas phase Condensed phase

E + H2O2 0.0 0.0

E·H2O2 −4.3 −4.4

TSdirect 6.6 6.1

E–Te(O)H −41.9 −43.6

TSiso −10.4 −11.5

F −72.5 −72.0

a) Computed at (SMD-)B3LYP-D3(BJ)/6-311+G(d,p),cc-pVTZ-PP//B3LYP-D3(BJ)/6-

311G(d,p),cc-pVTZ-PP

the starting telluroxide by 6.7 kcalmol
−1
. In both cases the most stable structure

in the overall mechanism is the final tellurinic acid, lying at −52.6 kcalmol
−1

(Figure 4.6). These results suggest that either the telluroxide or the tellurinic acid

can be viable starting structures for the continuation of the catalytic cycle, via

nucleophilic attack by GSH.

The information on the energetics of the Cys- and Sec-cluster, while high-

lighting a more favorable thermodynamics in the case of the latter, does not

give any insight on the cause of the smaller barrier for selenium. Therefore to

understand why this is the case, ASA and EDA were applied, in the gas-phase,

as single point calculations on previously B3LYP- D3(BJ)/6-311G(d, p),cc-pVTZ

optimized geometries.
2
The clusters were fragmented into two parts (Figure 4.7

a): the first one composed by Cys/Sec46, Gly47 and Gly48 (f1) and the second

containing the rest of the cluster, namely Gln81, Trp136, Asn137, Phe138, the

2

See Section 4.2.2 for details on the level of theory employed in this instance and Section 2.1.2

of Chapter 2 for a general explanation of the ASA and EDA models.
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Figure 4.5: Mechanism of formation of tellurinic acid via a direct pathway (a) and

a hydroxy perhydroxy tellurane intermediate (b).

Table 4.3: Gibbs free energies (kcal mol
–1
) for the two possible mechanisms for

tellurinic acid formation shown in Figure 4.5.
a

Path

A B

F + H2O2 0.0 0.0

F·H2O2 −3.8 −3.8

TS 12.9 29.3

E–Te(OH)(OOH)H 2.9

E–Te(O)OH −52.6 −52.6

a) Computed at SMD-B3LYP-D3(BJ)/6-311+G(d, p),cc-pVTZ–PP//B3LYP-D3(BJ)/6-

311G(d, p),cc-pVTZ-PP
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Figure 4.6: Optimized Tec-cluster in the tellurinic acid form (E-Te(O)OH) and

relevant interatomic distances (Å). Level of theory: B3LYP-D3(BJ)/6-311G(d,

p),cc-pVTZ-PP.

water molecule and the hydrogen peroxide molecule (f2). Analyses were per-

formed only on adducts (E·H2O2·H2O) and TS1s as the main goal was to establish

the reason behind the different activation energy between the sulfur and the

selenium containing clusters. The chosen method was ZORA-BLYP-D3(BJ)/TZ2P

as it was proved to be reliable in the calculation of energetics of organochalcogen

compounds.
3
[172] Considering the whole Cys- and Sec- clusters (Figure 4.7 a), we

find that E·H2O2·H2O is more stabilized in the Sec-cluster (−19.2 kcalmol
−1
) than

in the Cys-cluster (−12.9 kcalmol
−1
) with respect to the free reactants. A much

smaller strain contribution of 3.0 vs 11.8 kcalmol
−1

(Table 4.4) is the main cause.

Nevertheless, a favorable interplay in the catalytic pocket between the amino acid

3

A preliminary benchmark was conducted to compare the results among different levels of

theory that were good candidates to be used in the analyses. On top of the optimization level

that was in all the cases B3LYP-D3(BJ)/6-311G(d,p), the tested candidates used in the final energy

calculations were B3LYP-D3(BJ)/6-311+G(d,p), cc-pVTZ, ZORA-BLYP-D3(BJ)/TZ2P and ZORA-

B3LYP/TZ2P. Comparable results were found for all the three levels of theory (see Appendix

D)
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residues, the substrate and water is present since both these adducts results lower

in energy than the free reactants. Again, when looking at the relative energies

of the two transition states a very different strain amount is computed: much

smaller in the case of the Sec-cluster (59.5 vs 96.0 kcalmol
−1
). The larger strain

computed for the formation of the sulfur containing transition state is caused by

the greater variation of the S–H bond length, amounting to 0.66Å, compared to

that found for the Se–H which results to be of 0.47Å and is thus related to the

nature of the chalcogen taking part in the reaction. Moreover,∆Eint compensates

for the destabilization caused by strain only in the case of the Sec-cluster since

an interaction energy of −62.0 kcalmol
−1

makes also TS1 stabler than the free

reactants. This does not happen in the Cys-cluster, for which a computed ∆Eint

of −87.6 kcalmol
−1

is not enough to balance the strain contribution and leaves

TS1 at a relative energy of 8.4 kcalmol
−1
. This disparity in interaction magnitude

originates from a higher ∆Eoi contribution in the case of the Sec-cluster (−188.8

vs −143.8 kcalmol
−1
) and ultimately results in a lower activation barrier (16.7 vs

21.3 kcalmol
−1
) for the selenium containing enzyme.

A particular interest in the role of the amino acids that form the catalytic

pocket, in particular in Gln81, Trp136 and Asn137 which, together with Cys/Sec46

have been experimentally identified as the “catalytic tetrad”, [62] prompted for a

further analysis with a simplified f2. First, all the protein residues were removed,

leaving a new fragment comprising water and hydrogen peroxide (f2′, Figure

4.7 b), then a third structure was considered (f2′′, Figure 4.7 c) consisting only of

the oxidant molecule. No modifications were applied to f1. The activation strain

and energy decomposition analyses were then repeated on these new structures,

employing the same geometries used for the whole cluster. Calculations on the

Cys-cluster using f2′ and f2′′ show how the initial adducts are not stabler than the

free reactants as the lie at 1.9 and 3.1 kcalmol
−1

respectively. Conversely, in the

case of the Sec-cluster the stabilization of the adducts is diminished. Nevertheless,
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they result lower in energy that the free reactants at −4.0 and −2.5 kcalmol
−1
,

respectively. Activation strain analyses clarify that the stabilization found in the

Sec-cluster is due to a higher interaction contribution and a smaller strain energy.

Activation barriers are found to be much higher for the reduced fragments, with

the Sec-cluster having the lowest ones (33.3 vs 42.9 kcalmol
−1

for f2′ and 53.4 vs

63.5 for f2′′), confirming the importance of the protein residues and the water

molecule in lowering the activation energy for the proton transfer process. In

fact, transition states energies are computed to be very different. They increase

of a considerable amount for both clusters as they shift from 8.4 to 44.8 and

68.6 kcalmol
−1

for the Cys-cluster and −2.5 to 29.3 and 50.9 kcalmol
−1

for the

Sec-cluster when going from f2 to f2′ and f2′′. From ASA it can be concluded

that this much higher energy of the transition states is due to a strong diminution

of ∆Eint in both structures which weakens significantly from −87.6 to −48.4 and

−18.4 kcalmol
−1

for the Cys-clusters and from −62.0 to 34.8 and −8.5 kcalmol
−1

for the Sec-clusters. On the other hand, strain decreases only moderately when

reducing f2 both in the sulfur and the selenium enzyme, proving that most of

this energetic demand arises from the chalcogen–hydrogen bond stretch present

in f1.
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Table 4.4: Activation strain analysis and energy decomposition analysis (electronic

energies in gas phase in kcalmol
−1
) for Cys and Sec clusters.

Cys-cluster

∆E ∆Estrain ∆Eint ∆EPauli ∆Velstat ∆Eoi ∆Edisp

f2
Adduct −12.9 11.8 −24.7 36.9 −22.9 −12.8 −25.9

TS1 8.4 96.0 −87.6 246.8 −119.6 −188.8 −26.0

f2′

Adduct 1.9 5.6 −3.7 6.8 −5.2 −2.4 −2.9

TS1 44.8 93.2 −48.4 207.1 −95.7 −157.0 −2.8

f2′′

Adduct 3.1 4.8 −1.7 5.7 −3.4 −2.1 −1.9

TS1 68.6 87.0 −18.4 206.0 −84.1 −138.3 −2.0

Sec-cluster

∆E ∆Estrain ∆Eint ∆EPauli ∆Velstat ∆Eoi ∆Edisp

f2
Adduct −19.2 3.0 −22.2 35.1 −23.1 −13.7 −20.5

TS1 −2.5 59.5 −62.0 207.6 −105.2 −143.8 −20.6

f2′

Adduct −4.0 2.2 −6.2 9.4 −8.4 −4.2 −3.0

TS1 29.3 64.1 −34.8 176.5 −85.9 −121.8 −3.6

f2′′

Adduct −2.5 1.2 −3.7 10.4 −6.7 −3.2 −4.2

TS1 50.9 59.4 −8.5 173.1 −73.1 −105.2 −3.3

a) Computed at ZORA-BLYP-D3(BJ)/TZ2P//B3LYP-D3(BJ)/6-311G(d, p),cc-pVTZ.
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Figure 4.7: Different partitioning of the Cys and Sec clusters; AA46= Cys46, Sec46.

4.4 Conclusions

In the oxidation step of GPx, a similar mechanism is found in the case of the

Cys-enzyme and Sec-enzyme. It involves a long range proton transfer and the

formation of a charge separated intermediate and was computed to be more

favorable for the selenium enzyme. In contrast, all attempts to model an analogous

mechanism for the Tec-cluster systematically failed. Therefore an alternative

mechanism was modeled. It involves the direct oxidation of Tec to a telluroxide

which can be attacked directly by GSH or can isomerize to the tellurenic acid

(TeOH). An ulterior oxidation is possible and leads to the formation of to the highly

oxidized tellurinic acid, which is the resting state of both artificial telluroenzymes

characterized so far. The mechanistic differences and the favorable energetics

encountered for Tec- GPx explains the strong peroxidase activity reported for

artificial Tec enzymes and prompts for more effort in this research field.

Activation strain analyses performed on the Cys- and Sec-cluster show a more

favorable initial oxidation in the case of the selenium enzyme due to the balance

between strain and interaction energies that leads to a smaller activation barrier.
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The main reason for this is a lower strain calculated for the Sec-cluster originating

from the smaller relative and absolute elongation of the Se–H compared to that

of the S–H.
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Appendix C

Parameterization protocol

The following procedure, developed to obtain reliable parameters for the AMBER

force fields, is an adaptation/improvement of the one found in ref. [160]. The

models to which this will be applied in the current Appendix are the Sec and Tec

residues (Figure C.1), but the method is in general suitable for the derivation of

the parameters of any non standard small organic molecule.

The aim of this procedure is to derive the necessary parameters to insert into

the AMBER Hamiltonian (Equation (2.11)). The first step is to obtain an optimized

geometry of the residues, using a QM method. To simulate the peptidic bonds

present in the protein, the residues were capped at the N- and C- termini with the

ACE (C(O)CH3) and NME (N(H)CH3) groups. To cover the energetically relevant

conformations of Sec and Tec, 10 conformers were selected and optimized to

obtain a set of charges and parameters that can be applied in every occurrence of

Sec and Tec, also in proteins other than GPx. These optimizations were carried

out at the B3LYP/cc-pVTZ with the addition of a pseudo potential in the case of

the tellurium atom (B3LYP/cc-pVTZ-PP).

Atomic charges were calculated with the help of R.E.D. Server Development

81
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Figure C.1: Atom numbering scheme of the parametrized residues: Sec (a) and

Tec (b). Capping groups not shown.

Table C.1: RESP charges derived for Sec and Tec.

Se/Te HG CA HA C

Sec −0.215 132 0.135 408 0.072 191 0.092 757 0.498 517

Tec −0.090 980 0.049 881 0.234 828 0.179 239 0.483 719

O N H CB HB2=HB3

Sec −0.500 977 −0.289 441 0.180 185 −0.266 657 0.146 575

Tec −0.513 483 −0.312 666 0.179 239 −0.362 456 0.149 589

(http://upjv.q4md-forcefieldtools.org/REDServer-Development/ ), which is a web-

based interface that employs the PyRED program and R.E.D. tools. To obtain

highly reproducible charges two orientations were considered for each of the

10 conformers of Sec and Tec, using the rigid-body reorientation algorithm im-

plemented in R.E.D Tools. Calculations were carried out at the Hartree-Fock

level using the 6-31G(d) basis set for all the atoms except tellurium for which

the Stuttgart Dresden effective core potential basis set was employed. The final

charge value for each atom resulted from the simultaneous Restrained Electro-

Static Potential (RESP) fit of 18 structures (Table C.1).
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Lennard-Jones σ and ϵ parameters were set at 2.1200Å and 0.2910 kcalmol
−1

for Se, and 2.2600Å and 0.3980 kcalmol
−1

for tellurium, consistently with the

work in ref. [160]. During the simulations, they were combined according to the

Lorentz-Berthelot mixing rules.

Constrained scans (i.e. calculations where only the relevant parameter was

changed and the rest of the molecule was kept frozen) were carried out at

B3LYP/cc-pVTZ (with the addition of a pseudo potential for Tec) on the sta-

blest conformer of Sec and Tec to obtain the force constants of the harmonic

contributions (i.e. ai and bi terms in Equation (2.11)). Stretching and bending

parameters were thus computed for CB-X and X-HG bonds (X=Se, Te) using a

step of 0.02Å and 20 scan points, and for CA-CB-X, CB-X-HG and HB2-CB-X

angles using a step of 1° and 20 scan points, respectively (see Figure C.1 for the

atom labels). The obtained energies were fit with a parabolic equation to obtain

the ai and bi parameters. The equilibrium distances and amplitudes (ri,eq and

θi,eq in Equation (2.11)) were taken from the optimized conformer with the lowest

energy.

Relaxed scans for each of the ten conformers used in atomic charges derivation

were performed for the dihedrals CA-CB-X-HG and HB2-CB-X-HG, the parame-

ters of which were absent in ff14SB. Moreover, although generalized parameters

for dihedrals N-CA-CB-X and C-CA-CB-X, in which the chalcogen atom is in

terminal position, were already present in ff14SB, we decided to improve these

data refitting the coefficients. Calculations were carried out with a step of 10°

and 36 steps to complete a full rotation of the dihedral angle. The energies of

the resulting ensemble of 720 structures were simultaneously fit with Paramfit, a

tool included in AmberTools16, using six Fourier terms for each dihedral. The

results of this fitting are shown in Figure C.2. The whole sets of the newly derived

parameters for Sec and Tec are shown in Table C.2.
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Figure C.2: Fitting obtained with Paramfit of energies of the structures generated

with dihedral scans for Sec (a) and Tec (b).
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Table C.2: New force field parameters for Sec and Tec residues: equilibrium

distances (req , in Å), bond force constants (b, in kcalmol
−1
Å
−2
), equilibrium angle

amplitudes (θeq , in °), angle force constants (a in kcalmol
−1
rad

−2
) and dihedral

Fourier series terms coefficients (Vi, in kcalmol
−1
). See Figure C.1 for atom

nomenclature.

Sec

Bond req b Angle θeq a

CB-Se 2.00 85.3 CA-CB-Se 115.2 58.9

Se-HG 1.46 171.5 CB-Se-HG 95.0 50.7

HB2-CB-Se 108.3 48.6

Dihedral
a

V1/2 V2/2 V3/2 V4/2 V5/2 V6/2

CA-CB-Se-HG 7.0309 3.5059 1.0414 0.1670 0.0389 0.0389

(0.0) (180.0) (180.0) (180.0) (0.0) (180.0)

HB2-CB-Se-HG 6.7668 5.1189 0.6648 0.3342 0.0883 0.0921

(0.0) (180.0) (0.0) (180.0) (0.0) (0.0)

N-CA-CB-Se 4.2636 3.1691 9.2590 3.6892 1.5985 2.1255

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

C-CA-CB-Se 9.8947 8.8968 4.5907 2.4628 3.3382 0.1956

(180.0) (180.0) (180.0) (180.0) (180.0) (0.0)

Tec

Bond req b Angle θeq a

CB-Te 2.24 138.1 CA-CB-Te 116.2 59.9

Te-HG 1.27 260.5 CB-Te-HG 93.8 47.0

HB2-CB-Te 107.8 44.1

Dihedral
a

V1/2 V2/2 V3/2 V4/2 V5/2 V6/2

CA-CB-Te-HG 15.7894 0.1853 1.2620 0.6188 0.0168 0.0215

(0.0) (180.0) (180.0) (0.0) (180.0) (0.0)

HB2-CB-Te-HG 14.3900 1.3997 0.5583 0.1955 0.2367 0.0040

(0.0) (180.0) (0.0) (0.0) (0.0) (0.0)

N-CA-CB-Te 4.6772 8.3891 15.3909 0.9541 5.0529 5.1427

(0.0) (0.0) (180.0) (180.0) (0.0) (0.0)

C-CA-CB-Te 18.0549 12.7329 6.9290 2.5147 0.1196 0.4417

(180.0) (180.0) (180.0) (180.0) (180.0) (0.0)

a) Corresponding γ values in °, in parentheses.
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Table D.1: Activation strain analysis (electronic energies in gas phase, in

kcalmol
−1
) for Cys and Sec clusters.

a

∆Estrain ∆Eint ∆E

E–SH·H2O2·H2O 12.5 −26.8 −14.3

TS1 104.6 −97.3 7.3

E–SeH·H2O2·H2O 3.6 −24.0 −20.4

TS1 65.4 −67.2 −1.8

a) Computed at B3LYP-D3(BJ)/6-311+G(d,p),cc-pVTZ//B3LYP-D3(BJ)/6-

311G(d,p),cc-pVTZ.
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Table D.2: Activation strain analysis and energy decomposition analysis (elec-

tronic energies in gas phase, in kcalmol
−1
) for Cys and Sec clusters.

a

Cys-cluster

∆E ∆Estrain ∆Eint ∆EPauli ∆Velstat ∆Eoi

f2
Adduct 3.9 6.9 −3.0 31.4 −22.4 −12.0

TS1 30.4 101.3 −70.9 233.3 −118.3 −185.9

f2′

Adduct 3.0 4.5 −1.5 5.9 −5.2 −2.2

TS1 51.1 100.1 −49.0 199.8 −95.3 −153.5

f2′′

Adduct 3.9 4.0 −0.1 5.1 −3.4 −1.8

TS1 80.5 96.4 −15.9 199.4 −82.6 −132.7

Sec-cluster

∆E ∆Estrain ∆Eint ∆EPauli ∆Velstat ∆Eoi

f2
Adduct −2.6 2.6 −5.2 30.3 −22.6 −12.9

TS1 19.8 67.3 −47.5 198.8 −104.6 −141.7

f2′

Adduct −1.7 2.2 −3.9 8.3 −8.4 −3.8

TS1 36.1 69.8 −33.7 172.5 −86.1 −120.1

f2′′

Adduct −0.4 1.8 −2.2 7.9 −7.1 −3.0

TS1 61.4 67.6 −6.2 169.4 −72.9 −102.7

a) Computed at ZORA-B3LYP/TZ2P// B3LYP-D3(BJ)/6-311G(d,p),cc-pVTZ.
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Chapter 5

Mimicking the GPx reductive
phase

Adapted from

Bortoli, M.; Wolters, L. P.; Orian, L.; Bickelhaupt, F. M.

Addition–Elimination or Nucleophilic Substitution? Understanding the Energy

Profiles for the Reaction of Chalcogenolates with Dichalcogenides

Journal of Chemical Theory and Computation, 2016, 12, 2752-2761

5.1 Introduction

I
n recent years, much attention was directed towards organoselenium com-

pounds. They can be used in organic chemistry as efficient catalysts, e.g. in

the synthesis of alkenes via a β-elimination, [173] and were seen to be effective

91
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I

II

III

2H2O

E

FG

GSH

GSH

GSSG

C10H13N3O6

k1
k2

Figure 5.1: Mechanism of organic hydroperoxides reduction catalyzed by Cys/Sec-

GPx. E is the reduced enzyme with Cys/Sec in the thiol/selenol form, F represents

the oxidized intermediate, i.e. the sulfenic/selenenic acid form, G is the disul-

fide/selenosulfide form. The second reductive step is highlighted in red.

also in ecofriendly solvents, such as water, [174, 175]. Besides an industrial ori-

ented use, a pharmacological potential of these molecules has been recognized.

[71] Among their many applications in the medicinal field, their ability to re-

duce hydrogen peroxide and organic hydroperoxides, mimicking the activity of

glutathione peroxidase (GPx), is certainly one of the most interesting.

However, small organoselenium compounds still suffer from many limitations

that prevent their employment as efficient anti-oxidant drugs. Experimental

[176–179] and computational [73, 79] studies on these compounds and on their
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CH3X-

H3C

X' X''

CH3

X X'

H3C CH3

 CH3X''-

Figure 5.2: Model reactions scheme. X, X′
, X′′

= S, Se, Te

sulfur analogs were mainly focused on nucleophilic attack at the chalcogen by a

thiolate or a selenolate. The former reaction occurs also in the GPx mechanism

in the two reductive phases (Figure 5.1) but, since attack at selenium seems to

be favored, in the small mimics a thiol exchange reaction is expected in the last

reductive step which prevents the regeneration of the active molecule. Moreover,

the attacking thiol nature may have a dramatic effect on reactivity. [180, 181]

Siblings to organoselenium compounds, also small organotellurides possess

a high peroxidase activity. [74, 78, 182, 183] Recently some promising works

on semi-natural tellurium enzymes showed how mutated proteins containing

tellurocysteine can display GPx-like activity. [89, 88] However, since mechanistic

studies on tellurium based GPx mimics are still rare and their biological and

pharmacological effects mostly unknown, their application in pharmacology and

medicine is still under debate and more extensive studies on the subject are

needed.

In this Chapter, a quantum mechanical analysis of the mechanism and ener-

getics of the substitution reaction between a methyl chalcogenolate, acting as

nucleophile, and a dimethyl dichalcogenide, acting as substrate, using relativistic

density functional theory is presented (Figure 5.2), with the aim to elucidate: (a)

the mechanism of group (ii) GPx mimics, (b) the effect of the variation of the

substrate and/or nucleophile and the addition of solvent and (c) the fundamental

differences between sulfur, selenium and tellurium redox chemistry which can be

used to investigate more complex systems.
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5.2 Methods

C
alculations were done with scalar relativistic effects accounted for using

the zeroth-order regular approximation (ZORA). [184] The OLYP [132–134,

185] density functional was used, in combination with the TZ2P basis set for all

elements. The TZ2P basis set is a large uncontracted set of Slater-type orbitals

(STOs), is of triple-ζ quality, and has been augmented with two sets of polarization

functions on each atom: 2p and 3d in the case of H, 3d and 4f in the case of C, and

3d and 4f (S), 4d and 4f (Se), and 5d and 4f (Te) for the chalcogens. An auxiliary set

of s, p, d, f, and g STOs was used to fit the molecular density and to represent the

Coulomb and exchange potentials accurately in each SCF cycle. The frozen-core

approximation was employed: up to 1s for C, up to 2p for S, up to 3p for Se, and

up to 4p for Te. The level of theory is thus indicated as ZORA-OLYP/TZ2P.

Equilibrium and transition-state geometries were fully optimized using ana-

lytical gradient techniques. All structures were verified by frequency calculations.

For minima, all normal modes have real frequencies, whereas transition states

have one normal mode with an imaginary frequency. The character of the normal

mode associated with the imaginary frequency was analyzed to ensure that the

correct transition state was found. For a representative set of reactions, intrinsic

reaction coordinate (IRC) calculations have been performed to obtain the potential

energy surfaces (PES) along a selected reaction coordinate.

Solvent effectswere included using the conductor-like screeningmodel (COSMO).

[102] We have used a solvent-excluding surface with an effective radius for water

of 1.93 Å, derived from the macroscopic density and the molecular mass, and

a relative dielectric constant of 78.39. The empirical parameter in the scaling

function in the COSMO equation was chosen as 0.0. The radii of the atoms were

taken to be MM3 radii, [186] divided by 1.2, giving 1.350 Å for H, 1.700 Å for C,

1.792 Å for S, 1.908 Å for Se, and 2.033 Å for Te.



Results and discussion 95

Finally, the model systems were partitioned into two fragments (the nucle-

ophilic methyl chalcogenolate and the dichalcogenide) and analyzed with the aid

of the activation strain model and the energy decomposition analysis to arrive at

a better understanding on how barriers of key elementary reactions depend on

the nature of the reactants.

5.3 Results and discussion

E
ighteen model reactions, like those of Figure 5.2, were considered. A short-

hand notation was chosen to refer to different reactions in a clear manner

and will be used in the following. Each compound is denoted by the chalcogen

atom(s) it contains and its charge, omitting the methyl groups. Moreover for

the dimethyl chalcogenides the first atoms mentioned is the one who is subject

to the nucleophilic attack. For example the reaction in which a methyl thiolate

attacks a dimethyl selenosulfide would be written as S–+ SeS if the attack occurs

at selenium, whereas it will be referred as S–+ SSe if the substitution happens at

sulfur.

The general behavior in gas-phase of these processes will be studied together

with the effects the presence of the solvent (in this case water) has on the reaction

mechanism. A more detailed discussion will be concentrated on the S–+ SS, S–+
SSe and S–+ SeS reactions (Figure 5.3 ), which are the closest models to the second

reductive step of sulfur and selenium GPx (Figure 5.1) and the unwanted thiol

exchange reaction, respectively.
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RC pre-TS post-TSTC PC

RC pre-TS post-TSTC PC

Figure 5.3: Structures of the stationary points for reactions S–+ SSe (a) and S–+
SeS (b)

5.3.1 General gas-phase profiles

The energies of the stationary points of all the model reactions are reported in

Table 5.1. The general mechanism found for these reactions in the gas phase

is that of addition-elimination or single-well SN2. Similar findings have been

reported by Bachrach et al. [187] and analogous reaction schemes were found in

the case of third- and higher-period electrophiles such as silicon, phosphorus and

heavier group 14 elements. [188–191] The reactions begin with the formation of

a weakly bound reactant complex (RC) in which the chalcogenolate (nucleophile)

is coordinated to a methyl group of the dichalcogenide (substrate). These struc-

tures are found to be 6-12 kcalmol
−1

more stable than the free reactants (R). The

structure is then modified as the nucleophile moves away from the methyl group

and toward the X′
chalcogen forming a first transition state (pre-TS) in which the

distance of the chalcogenides of the nucleophile and substrate ranges from 3.75 to

4.66Å. The subsequent transition complex (TC) is lower in energy with the lowest

structure being that of S–+ TeTe with a relative energy of −28.2 kcalmol
−1

(Table
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Table 5.1: Energies relative to reactants (in kcalmol
−1
) of stationary points of the

model reactions in gas phase.
a

RC pre-TS TC post-TS PC P

S– + SS −8.5 −7.2 −10.5 −7.2 −8.5 0.0

S– + SSe −9.7 −8.1 −13.5 −11.3 −12.6 −5.5

S– + STe −10.5 −8.5 −14.8 −14.4 −15.9 −10.4

S– + SeS −10.0 −9.3 −19.5 −9.3 −10.0 0.0

S– + SeSe −10.9 −10.1 −20.9 −12.0 −12.1 −4.1

S– + TeS −11.5 −11.0 −27.8 −11.0 −11.5 0.0

S– + TeTe −28.2 −7.5

Se– + SS −7.1 −5.8 −8.0 −2.6 −4.2 5.5

Se– + SSe −8.1 −6.6 −10.9 −6.6 −8.1 0.0

Se– + STe −8.9 −7.1 −12.1 −4.8

Se– + SeS −8.0 −7.9 −16.8 −5.9 −6.8 4.1

Se– + SeSe −9.1 −8.4 −18.3 −8.4 −9.1 0.0

Se– + TeS −24.8 3.5

Se– + TeTe −25.2 −4.1

Te– + SS −5.5 −3.9 −4.4 1.9 −0.1 10.4

Te– + TeS −20.6 7.5

Te– + TeSe −21.2 4.1

Te– + TeTe −21.2 0.0

a) Computed at ZORA-OLYP/TZ2P.
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5.1). The optimized geometry shows that all the methyl groups adopt a skewed

conformation in the TCs. This can be explained looking, for example, at the S–+
SS reaction in which SS results already skewed for electronic reasons, as each

methyl group binds to a different π∗
SOMO of the triplet disulfide fragment, and

the incoming nucleophile tries to minimize steric repulsion with the substituent

of the central S.

For selected reactions, i.e. those of biological interest, namely S–+ SS, S–+
SSe and S–+ STe the stability of the complexes with coplanar methyls was stud-

ied. Minima for TCs with two coplanar trans methyl groups were located. The

differences in energy with the analogous skewed structures is small and only in

the case of S–+ SS this structure is more stable than the skewed one (see Table

5.2). Attempts to optimize also the reactant substrate with the methyl groups

in a coplanar geometry were not successful because, if in the dichalcogenide

the torsional barriers relative to the disulfide bond are found to amount to 6.5

and 12.5 kcalmol
−1

(see Appendix E) in the corresponding TCs they are found to

be much lower (0.5 and 3.5 kcalmol
−1
) due to the changes in the electronic and

steric environment caused by the presence of the additional substituent bonded to

the central chalcogenide. However, an in-depth characterization of the different

conformers is beyond the scope of the present chapter and, due to the negligible

differences between analogous structures, was not attempted.

The final stages of the reaction in Figure 5.2 involve the formation of a second

transition state (post-TS) and a PC that leads, eventually, to the elimination of

the methyl thiolate group. These last two structures resemble the pre-TS and RC

of the inverse reaction, respectively. Therefore the main focus will be set on the

reactions up until the TC because the second part is already considered among

the studied mechanisms, although in reverse sense.

Energetics of these systems in the gas phase reveal two possible mechanisms:

triple- or single-well energy profiles. Most of the reactions proceed via a triple
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well energy profile (wells correspond to RCs, TCs and PCs) with some having

TCs that are moderately stabilized with respect to their pre-TS, such as S–+ SS
in which the two structures have a relative energy of −7.5 and −10.5 kcalmol

−1
,

and other that more closely resemble a single well reaction due to the larger

span of the energies of the stationary points that for, e.g., S–+ TeS are found

between −11.0 and –27.8 kcalmol
−1
. A few reactions display a true single well

energy profile instead. They all involve attack at tellurium and since no RC, PC

or TS could be optimized, free reactants are expected to form TC without any

energetic barrier.

Table 5.2: Selected interatomic distances (in Å), activation strain analysis and

energy decomposition analysis (electronic energies in gas phase, in kcalmol
−1

for

all model reactions).
a,b

dXX′ dX′X′′ ∆E ∆Estrain ∆Eint ∆EPauli ∆Velstat ∆Eoi

S– + SS
RC 4.78 2.08 −8.5 0.9 −9.4 12.2 −9.8 −11.8

pre-TS 3.75 2.10 −7.2 0.6 −7.8 12.2 −7.6 −12.4

TC 2.46 2.48 −10.5 17.3 −27.9 109.3 −61.9 −75.3

TC
c 2.54 2.38 −10.8 14.6 −25.5 96.1 −53.9 −67.7

S– + SSe
RC 5.00 2.26 −9.7 1.2 −10.9 12.2 −9.2 −13.9

pre-TS 3.97 2.24 −8.1 0.3 −8.4 11.2 −7.3 −12.3

TC 2.39 2.70 −13.5 22.3 −35.8 142.2 −79.2 −98.8

TC
c 2.50 2.57 −13.5 14.9 −28.5 107.2 −58.9 −76.8

post-TS 2.09 3.98 −11.3 69.8 −81.1 295.4 −166.7 −209.8

PC 2.08 5.00 −12.6 69.3 −81.8 308.6 −172.6 −217.9

S– + STe
RC 4.69 2.47 −10.5 1.7 −12.1 12.7 −9.0 −15.8

pre-TS 4.07 2.46 −8.5 0.8 −9.3 8.6 −5.3 −12.5

continued overleaf
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Table 5.2: Selected interatomic distances (in Å), activation strain analyses and

energy decomposition analyses (electronic energies in gas phase, in kcalmol
−1

for all model reactions).
a,b

(continued)

dXX′ dX′X′′ ∆E ∆Estrain ∆Eint ∆EPauli ∆Velstat ∆Eoi

TC 2.28 3.11 −14.8 30.2 −45.0 187.0 −102.2 −129.8

TC
c 2.47 2.81 −14.7 15.7 −30.5 116.6 −62.2 −84.8

S– + SeS
RC 4.74 2.27 −10.0 1.2 −11.2 12.3 −9.9 −13.7

pre-TS 4.31 2.24 −9.3 0.4 −9.7 11.1 −9.5 −11.3

TC 2.56 2.57 −19.5 13.7 −33.2 108.5 −70.8 −70.9

post-TS 2.24 4.31 −9.3 72.2 −81.5 246.8 −158.0 −170.3

PC 2.27 4.74 −10.0 67.0 −77.0 233.0 −149.2 −161.0

S– + SeSe
RC 4.83 2.42 −10.9 1.3 −12.2 12.2 −9.4 −14.9

pre-TS 4.46 2.38 −10.1 0.2 −10.3 10.0 −8.5 −11.8

TC 2.54 2.72 −20.9 14.3 −35.2 115.5 −73.6 −77.1

S– + TeS
RC 4.73 2.49 −11.5 1.8 −13.4 15.1 −11.4 −17.1

pre-TS 4.66 2.46 −11.0 0.8 −11.9 10.3 −10.0 −12.2

TC 2.71 2.71 −27.8 10.1 −37.9 106.4 −78.2 −66.0

S– + TeTe
TC 2.69 3.09 −28.2 10.7 −38.9 114.9 −80.6 −73.2

Se– + SS
RC 5.00 2.08 −7.1 0.7 −7.7 9.8 −8.2 −9.3

pre-TS 3.98 2.09 −5.8 0.5 −6.2 10.9 −7.0 −10.2

TC 2.70 2.39 −8.0 13.9 −21.8 86.4 −49.5 −58.7

Se– + SSe
RC 5.07 2.20 −8.1 0.8 −8.8 8.9 −7.3 −10.4

pre-TS 4.05 2.25 −6.6 0.4 −7.0 10.5 −6.5 −11.0

TC 2.60 2.62 −10.9 15.5 −26.4 103.8 −58.4 −71.7

continued overleaf
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Table 5.2: Selected interatomic distances (in Å), activation strain analyses and

energy decomposition analyses (electronic energies in gas phase, in kcalmol
−1

for all model reactions).
a,b

(continued)

dXX′ dX′X′′ ∆E ∆Estrain ∆Eint ∆EPauli ∆Velstat ∆Eoi

post-TS 2.25 4.05 −6.6 70.4 −77.0 247.0 −142.2 −181.7

PC 2.20 5.07 −8.1 68.8 −76.9 247.6 −141.5 −182.9

Se– + STe
RC 4.93 2.47 −8.9 1.4 −10.3 9.8 −7.4 −12.7

pre-TS 4.32 2.18 −7.1 0.6 −7.8 7.1 −4.5 −10.5

TC 2.55 2.91 −12.1 20.4 −32.5 123.6 −67.6 −88.5

Se– + SeS
RC 5.11 2.24 −8.0 0.5 −8.5 10.4 −8.9 −10.1

pre-TS 4.56 2.24 −7.9 0.1 −8.0 9.7 −8.4 −9.3

TC 2.72 2.54 −16.8 12.5 −29.4 99.0 −65.3 −63.1

post-TS 2.38 4.46 −5.9 71.2 −77.2 221.7 −143.7 −155.3

PC 2.42 4.83 −6.8 67.3 −74.1 204.7 −133.4 −145.4

Se– + SeSe
RC 5.22 2.41 −9.1 0.9 −9.9 7.9 −6.9 −10.9

pre-TS 4.62 2.39 −8.4 0.2 −8.6 8.5 −7.3 −9.8

TC 2.70 2.71 −18.3 12.2 −30.5 103.4 −66.8 −67.0

Se– + TeS
TC 2.85 2.71 −24.8 10.2 −35.1 99.5 −73.4 −61.2

Se– + TeTe
TC 2.83 3.08 −25.2 10.6 −35.8 108.8 −76.9 −67.6

Te– + SS
RC 5.45 2.06 −5.5 0.4 −5.8 5.5 −5.7 −5.6

pre-TS 4.20 2.09 −3.9 0.6 −4.5 9.3 −5.7 −8.1

TC 3.11 2.28 −4.4 8.0 −12.4 51.4 −28.8 −35.1

Te– + TeS
TC 3.09 2.69 −20.6 9.0 −29.6 90.4 −66.2 −53.8

continued overleaf
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Table 5.2: Selected interatomic distances (in Å), activation strain analyses and

energy decomposition analyses (electronic energies in gas phase, in kcalmol
−1

for all model reactions).
a,b

(continued)

dXX′ dX′X′′ ∆E ∆Estrain ∆Eint ∆EPauli ∆Velstat ∆Eoi

Te– + TeSe
TC 3.08 2.83 −21.2 8.4 −29.6 91.4 −65.6 −55.3

Te– + TeTe
TC 3.07 3.06 −21.2 8.3 −30.5 94.6 −66.4 −58.6

a) For reactions with a true single-well energy profile, only TC is reported.

b) Computed at ZORA-OLYP/TZ2P. c) Values in italics refer to geometries with two

adjacent coplanar methyl groups; if not differently specified, the methyl groups in plane

belong to the nucleophile and to the substrate, supposing that the skewed conformation of

the substrate is maintained.

5.3.2 Trends in gas-phase reactivity

Although different kinds of energy profiles (single, double or triple-well) are

found, general considerations on the behavior of these molecules can still be

drawn and trends can be observed within the set of our model reactions. They

will be discussed in this subsection.

A variation in the chalcogenide of the nucleophile causes a destabilization

of the stationary points as we move from S– to Se– and Te–. Taking as an ex-

ample the attack at a disulfide (X–+ SS) this tendency is clearly seen in RCs,

which have a relative energy of −8.5, −7.1 and −5.5 kcalmol
−1

for the three chalco-

genides respectively, pre-TSs, that are found at −7.2 kcalmol
−1

in the case of S–

at −5.8 kcalmol
−1

in the case of Se– and −3.9 kcalmol
−1

in the case of Te–, and
TCs, which go from −10.5 to −8.8 and −4.4 kcalmol

−1
when X–

= S–, Se– or Te–.
Activation strain analyses showed that the main contribution to∆Eint in the TCs
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originates form a mixture of the lone pair orbital onX–
and the σ∗

X′X′′ antibonding

orbital on the substrate. The charge donation from the nucleophile to a σ∗
orbital

has a fundamental role in all these processes. The variation of the nucleophile

down in the periodic table group results in a weakening of this interaction due to

the donating orbitals becoming lower in energy (1.9, 1.7 and 1.3 eV for S–, Se–and
Te– respectively). [190, 192] At the same time, ∆Velstat becomes smaller because

the negative charge becomes more diffuse on the bigger chalcogens. From the ac-

tivation strain analyses, it can be concluded that the decreased stability is mainly

caused by a weaker interaction term, although a less destabilizing ∆Estrain is

computed. The latter originates primarily from the stretching of the S−S bond

in the SS substrate, which amounts to 0.44, 0.35 and 0.24Å along this series of

model reactions.

A comparison of a set of three reactions involving the attack of S– at SS, SeS
and TeS shows that the stationary points become lower in energy as the atom that

receives the nucleophilic attack in the substrate becomes more electropositive.

For RC and pre-TS, in which the nucleophile is still well separated from the

substrate, the energy differences are modest. The RCs have relative energies of

−8.5, −10.0 and −11.5 kcalmol
−1
, respectively, and the pre-TSs are at −7.2, −9.3 and

−11.0 kcalmol
−1
, respectively. For the TC, in which the fragments are strongly

interacting, the trend is more evident; the relative energies decrease in steps of

almost 10 kcalmol
−1

from −10.5 to −19.5 and −27.8 kcalmol
−1

when the substrate

is varied from SS to SeS and TeS. An analogous effect is found also when Se– is
the nucleophile, although of a lesser magnitude. This nicely confirms that the

validity of the principles observed for SN2 reactions at carbon and heavier group

14 atoms, as well as for hydrogen- and halogen-bonded complexes, are rather

general. [189, 193]

Finally the effect of the change of the leaving group is addressed. As an

example the reaction of S– with either SS, SSe or STe will be considered. Again,
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similar conclusions could be drawn if Se– is considered as nucleophile. Computed

energies (Table 5.2) show how the stationary points along the reaction become

slightly more stable as the leaving group contains a heavier chalcogen. This

trend is most evident in the TCs which have a relative energy of −10.5, −13.5

and −14.8 kcalmol
−1
. Decomposition of the total energy of these structures into

strain and interaction terms indicates that this increased stabilization comes from

a stronger ∆Eint. On the basis of extensive activation strain analyses in this and

others works, [190, 193] it is fairly safe to say that the increased stability is a

consequence of the weaker sulfur-chalcogen bond found in the three different

substrates. AsX′′
becomes heavier, lower bond dissociation energies are computed

for the substrates (60.0, 54.3 and 51.1 kcalmol
−1
for SS, SSe and STe respectively1).

This allows for a further stretch in the X′
–X′′

bond that is accompanied by a

less destabilizing ∆Estrain. In turn, the higher distance with the leaving group

grants the central atom the possibility to build a stronger interaction with the

nucleophile in the formation of the TC, which is computed to be of −27.9, −35.8

and −45.0 kcalmol
−1
for SS, SSe or STe respectively (Table 5.2).

5.3.3 Effects of solvation

The energy profiles of the reactions in Table 5.3 were studied in the presence of a

polar solvent, i.e. water, described as a continuum dielectric using the COSMO

model. [102] In reactions where charged species are present, the addition of

a solvation medium stabilizes more the separated reactants than the formed

complexes because in the former the charge is more localized. [194] The overall

effect is that the central region around the TC is destabilized, with respect to the

free reactants. [195] Results of the computations on the model reactions confirm

this; if in the gas phase the transition complexes were found to be strongly

1

Pure electronic bond dissociation energies at ZORA-OLYP/TZ2P.
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Figure 5.4: Solvent effect on reaction energy profiles (relative to free reactants) in

the gas-phase (blue line) and in water (red line) for nucleophilic attack at tellurium

(a), selenium (b), and sulfur (c).

stabilized with respect to the reactants, this is no longer true when solvation is

taken into account.

For reactions that in the gas phase showed deep potential wells, such as S–+
TeTe, the TCs remain stable structures but pass from −28.2 kcalmol

−1
of the gas

phase to 0.6 kcalmol
−1

in the continuum medium, denoting how the destabiliza-

tion of the central part of the PES can lead to the appearance of reaction barriers

between the central TC and the isolated reactants. A pictorial representation of

this situation can be seen in Figure 5.4 (a).

On the other hand, a completely different scenario is found in the case of S–+
SS (schematically depicted in Figure 5.4 (c)). The relative destabilization of the

polar solvent is strong enough to completely change the energy profile, making

the modest gas phase barriers disappear and creating a unique central barrier

of 11.4 kcalmol
−1
. In this way, the mechanism has been shifted from addition-

elimination in the gas phase to a concerted SN2 in solution (Figure 5.5). This

change in mechanism, which was also reported for the reaction of a thiol with
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Table 5.3: Selected interatomic distances (in Å) and energies relative to free

reactants (in kcalmol
−1
) of stationary points of the model reactions in water.

a

dXX′ dX′X′′ R TS
SN2 b

TC P

S– + SS 2.47 2.45 0.0 11.4 0.0

2.72 2.30 0.0 10.9 0.0
S– + SSe 2.47 2.60 0.0 10.5 −0.2

2.31 2.84 0.0 10.0 −0.2
S– + SeS 2.40 2.80 0.0 3.7 0.0

S– + SeSe 2.55 2.71 0.0 4.0 1.0

S– + TeTe 2.79 3.00 0.0 0.6 4.6

S– + STe 2.44 2.85 0.0 12.2 2.8

2.31 3.06 0.0 12.0 2.8
2.43 2.87 0.0 11.8

c
2.8

S– + TeS 2.71 2.71 0.0 −2.6 0.0

Se– + SS 2.60 2.47 0.0 10.7 0.2

2.84 2.31 0.0 10.2 d 0.2
Se– + SSe 2.60 2.63 0.0 9.7 0.0

2.45 2.87 0.0 9.4 0.0
Se– + SeS 2.71 2.55 0.0 3.1 −1.0

Se– + SeSe 2.53 2.96 0.0 3.1 0.0

Se– + TeTe 2.91 3.01 0.0 −0.1 3.2

Se– + STe 2.59 2.85 0.0 11.2 3.0

2.71 2.74 0.0 11.1 3.0
2.44 3.12 0.0 10.8

e
3.0

Se– + TeS 2.83 2.73 0.0 −3.1 −1.4

Te– + SS 2.85 2.44 0.0 9.4 −2.8

3.06 2.31 0.0 9.2 f −2.8
2.87 2.43 0.0 9.0

c
−2.8

Te– + TeS 3.00 2.79 0.0 −4.1 −4.6

Te– + TeSe 3.01 2.91 0.0 −3.3 −3.2

Te– + TeTe 3.07 3.07 0.0 −1.2 0.0

a) Computed at COSMO-ZORA-OLYP/TZ2P.

b) Values in italics refer to geometries with two adjacent coplanar methyl groups; if not

differently specified, the methyl groups in plane belong to the nucleophile and to the

substrate, supposing that the skewed conformation of the substrate is maintained.

c) This TS
SN2

has all methyl groups in the same plane.

d) This TS
SN2

has the conformation of the TS
SN2

of S– + SSe.
e) In this TS

SN2
, the methyl groups bonded to S and Te are coplanar.

f) This TS has the conformation of the TS
SN2

of S– + STe.
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a disulfide, [196–198] occurs also for the reactions S–+ SSe, S–+ STe, Se–+ SS,
Se–+ SSe and Se–+ STe. Some authors investigated the effect of microsolvation,

i.e. solvation with a number of explicit water molecules, or bulk solvation on the

mechanism on nucleophilic substitution at sulfur in disulfides and found that the

mechanism depends on the substituent of the atom under attack. [197, 199, 200]

These studies report that when the substituent is small (hydrogen) the mechanism

is always addition-elimination, in gas phase as well as in solution. When a methyl

group is bonded to the atom under attack, the mechanism is sensitive to the

computational approach and was always found to be addition-elimination, in gas

phase, also with addition of the microsolvation solvent molecules, and SN2 in

bulk solvent, with and without the explicit microsolvated structures. The results

reported in Table 5.3, obtained with the COSMO model, nicely agree with these

findings since attack occurs at the central sulfur bearing in all cases a methyl.

In all the concerted SN2 TSs (TS
SN2

), the methyl groups are skewed. As for the

gas phase, also in this case there is the possibility to have structures with coplanar

methyls (Table 5.3). They are slightly more stable than the skewed counterparts

and for S–+ STe a transition state with all three methyl groups coplanar is the

most stable.

In addition to the two extreme situations portrayed in Figure 5.4 (a) and (c)

there is a number of reactions for which the presence of the solvent leads to results

that are less clear. Inclusion of the continuum medium creates a rather broad tran-

sition plateau in the central PES region. On this plateau, probably caused by the

flexibility of the chalcogen-chalcogen bond with respect to stretching, [160, 172]

various local minima and transition states might be present. For example, if the

reaction Te–+ TeTe is taken as reference for the addition-elimination mechanism,

inspection of the different structures show how the Te–Te bond lengths in the TC

are equal in gas phase and in solvent, whereas for a reaction like Se–+ SeSe, which
shows Se–Se bonds of equal length in the gas phase TC, the optimized minima in
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Figure 5.5: Gas-phase energy profiles for the reactions S–+ SS (red) and S–+
SSe (blue) and energy profiles in water for the reactions S–+ SS (red dash) and

S–+ SSe (blue dash); d0X′X′′ refers to the interchalcogen distance in the isolated

dichalcogenide.

solvent display quite different Se–Se distances (2.53 and 2.96Å). This suggests

that at least two stable, symmetric minima must exist, which are separated by a

TS with equal Se–Se bond lengths. Study of all the structures appearing on this

plateau is computationally challenging and it was considered not useful to provide

novel insight on the topic. However, the important result of this investigation

is the recognition of the mechanism sketched in Figure 5.4 which represents a

transitional regime that links the addition-elimination and the SN2 mechanisms.
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5.3.4 Consequences for undesirable thiol exchange reactions

In this last subsection, the focus is shifted to the reactions that have a biological

importance, i.e. they resemble the last reductive step in the mechanism of GPx4.

Namely, they are S–+ SSe which is the reaction naturally occurring that leads

to the regeneration of the enzyme and S–+ SeS which represents instead an

unwanted scramble reaction. From the results previously obtained, S–+ SeS
results energetically favored, having lower transition states and arriving at a

more stabilized TC (−19.5 vs −13.5 kcalmol
−1
). Since in the formation of these

intermediates the same nucleophile is involved and the bond that has to be broken

is always a S–Se bond, the difference in stability can be ascribed to the stronger

interaction of the nucleophile with the more electropositive selenium center.

Conversely, as the reaction proceeds from TC to PC and then final products

S–+ SSe is seen to be thermodynamically favored as it has to overcome a lower

barrier (post-TSs are at −11.3 vs −9.3 kcalmol
−1
) and results in the formation of a

stabler PC (−12.6 vs −10.0 kcalmol
−1
) and stabler products (−5.5 vs 0.0 kcalmol

−1
)

(in Figure 5.5 the profile for S–+ SSe is shown in blue). When solvent is added,

S–+ SSe proceeds via a SN2 mechanism with a barrier of 10.5 kcalmol
−1

and

the resulting products are found at −0.2 kcalmol
−1
, whereas for the unwanted

scrambling reaction a minimum on the PES was located at 3.7 kcalmol
−1
. To

compare these results obtained for small models with the mechanistic features

of GPx some aspects have to be taken into account: (i) there is no conclusive

evidence that scrambling occurs in the enzyme and if this is the case it is of

minor importance and (ii) a three-center transition state was never observed in

the catalytic pocket, i.e. the last reductive step does not occur via an addition-

elimination mechanism. Therefore, in the G intermediate (Figure 5.1), selenium

is protected by the surrounding residues that prevent the attack of the second

molecule of GSH by precluding the formation of a bulky TC with selenium as a
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Figure 5.6: Molecular structures of (a) ebselen and (b) selenenyl sulfide as it

appears in the ebselen catalytic cycle.

central atom.

Furthermore, a brief exploration of the well-known GPxmimic ebselen (Figure

5.6 (a)) was conducted. We tried to find three-center intermediates, similar to those

of the model reactions, using ebselen as a model substrate. In this case, the methyl

group bonded to selenium has been extended to resemble the selenenyl sulfide

as it appears after ring opening (Figure 5.6 (b)). In the catalytic cycle of Figure

5.1 this corresponds to the last reductive step. Results in gas phase show that no

stable intermediate is found for the attack of the nucleophile at the sulfur side,

in agreement with previous results, [176] whereas the reaction at the selenium

center leads to a highly stabilized minimum at −30.9 kcalmol
−1
. Optimization of

this structure in water leads to another stable geometry which resembles more

a reactant complex, since S–Se bonds measure 2.34 and 2.96Å, respectively. A

favorable hydrogen bond between the NH moiety and the nucleophile seems to

further stabilize this molecule. However, this minimum is slightly destabilized

with respect to the free reactants, with an energy of 2.8 kcalmol
−1
, suggesting

that in solvent this reaction is shifted towards an SN2 mechanism. Therefore,

also in ebselen the unwanted scrambling reaction is not prevented and only the

presence of an enzymatic pocket can hamper this process.
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5.4 Conclusions

The study here presented discloses that in gas phase all the model reaction pro-

ceed via an addition-elimination mechanism characterized by a triple-well energy

profile. Exceptions are found when the substrate is a ditelluride or when the nu-

cleophilic attack of a methyl tellenolate occurs at a tellurium atom of the substrate.

In these cases a single-well PES is found for the reactions in the gas-phase. If a

continuum polar solvent, such as water, is added three different situations arise,

caused by the destabilization of the central region of the energy profile. An SN2

mechanism is computed when the attack of a methyl chalcogenolate occurs at a

sulfur atom. On the other hand, a single-well energy profile without any barrier

is found for attack at a tellurium atom. For the attack at a selenium atom, our

calculation predict a transitional regime characterized by an almost flat central

plateau at positive energy values, where at least two minima and a transition state

are located. However the very small energy differences between the structures on

this region of the PES make the exploration of this area very lengthy and difficult.

More importantly, some reactions were designed to replicate the last step

of the enzymatic cycle in Se- (S–+ SSe) and S-containing GPx (S–+ SS). Only
through the addition of the solvent, a reasonable agreement with the experimental

mechanism is achieved. In fact, in gas phase this two reactions proceed via an

addition-elimination reaction that involves the formation of a stable three-center

TC that was never observed experimentally in the enzyme. Calculations in the

condensed phase show a change of the mechanism to SN2 which is in agreement

with the proposed mechanism for GPx. Comparing reaction barriers for the two

reactions shows how S–+ SSe has a lower activation energy than S–+ SS making

selenium more advantageous in the last reductive step.

Analysis on the S–+ SeS reaction shows how its mechanism remains addition-

elimination also with the addition of the solvent. Moreover, this reaction, which
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represents the unwanted thiol scrambling, remains always thermodynamically

favored over the desired substitution reaction, S–+ SSe. This is a clue that in

the enzymatic pocket there must exist specific intermolecular interactions that

prevent the attack at selenium in the last reductive step of the catalytic cycle.

Concerning the GPx mimics, we have found that, in the mechanism of the

well-known ebselen, a three-center intermediate forms neither in gas phase nor

in water. This is in perfect agreement with previous studies dedicated to the

antioxidant mechanism of ebselen.

Finally reactions S–+ STe and S–+ TeS can be used to model the last step and

the unwanted scrambling process of a semi-natural Te-containing GPx catalytic cy-

cle. In water, S–+ STe proceeds via an SN2 mechanism whereas S–+ TeS proceeds

through the formation and dissociation of a slightly stabilized TC. Interestingly,

comparing S–+ STe with the corresponding model reaction of Se-containing GPx

(S–+ SSe), reveals a higher barrier for the former, which is not a promising result

for the design of Te-based antioxidants. However, a rigorous investigation of

semi-natural enzymes and mimics based on tellurium is necessary, considering

also more complex systems, and possibly the whole peroxidase mechanism.



Appendices

113





115



116 Torsional barriers

Appendix E

Torsional barriers
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Figure E.1: Dihedral scans of CH3SSCH3, CH3SeSeCH3 and CH3TeTeCH3 in vacuo
at the scalar ZORA-OLYP/TZ2P level of theory; 72 points and a 5° step were used

for each scan. The energies are relative to the global minimum for each molecule

(skewed conformation).
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Figure E.2: Dihedral scan of the TC of the S–+ SS reaction in vacuo at the scalar
ZORA-OLYP/TZ2P level of theory; 72 points and a 5° step were used for each

scan. The energies are relative to the global minimum. Both torsions involving

the two S–S bonds were scanned: CXX′C (top) and CX′X′′C (bottom)
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Chapter 6

Oxidation of organoselenides
mimics of GPx by H2O2

Adapted from

Bortoli, M.; Zaccaria, F.; Dalla Tiezza, M.; Bruschi, M.; Fonseca Guerra, C.;

Bickelhaupt, F.M.; Orian, L.

Oxidation of organic diselenides and ditellurides by H 2O2 for bioinspired catalyst

design

Physical Chemistry Chemical Physics, 2018, 20, 20874-20885

6.1 Introduction

T
he design of efficient antioxidant GPx-like molecular mimics is possible only

through the investigation of key elementary biological reactions involving

chalcogen centers. Moreover, insights from the study of these reactions can help

119
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better understand the catalytic activity of the enzyme and can also be used in

organic chemistry where Se-based compounds are actively used as catalysts.

The brief overview of the properties of organoselenides and tellurides of

Section 1.4 outlines a somewhat dissatisfying picture, because the employment of

diselenides and ditellurides in pharmacology and medicine is very limited. There-

fore systematic studies on the behavior of these molecules and their catalytic

activity, which are still scarce in literature, could greatly help improving our

knowledge of these systems. To this goal, state-of-the-art computational method-

ologies provide an optimal method to study their reactivity toward oxidation.

Density functional theory (DFT) based quantum mechanical (QM) calculations

were seen to be suitable to accurately describe the energetics of organochalcogens

[172] and have been used in multiple instances to study these molecules. [148,

149, 201, 202] This Chapter presents an investigation on the mechanism and

energetics of the oxidation of model diselenides and tellurides. These compounds

show a high antioxidant activity making them very promising GPx mimics (Figure

6.1). Computational study of the oxidation of model dichalcogenides of general

formula RXXR (R=H, CH3, Ph; X=S, Se, Te) by H2O2 is carried out through the

application of the activation strain model along the reaction coordinate; disulfides

are added for completeness.

6.2 Methods

T
he reaction of H2O2 with nine different diselenides and ditellurides of gen-

eral formula RXXR has been investigated in silico; the structures and the

naming scheme of the chosen compounds can be seen in Table 6.1. For the sim-

plest compounds (i.e. those with R=H, CH3 and Ph) the sulfur variants were also

investigated for completeness.

The OLYP [132–134, 185] functional was employed in conjunction with the
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Figure 6.1: Oxidation of 2-(N,N-(dimethylamino)-methyl)benzenediselenide by

H2O2 followed by product isomerization to anhydride; the reaction mechanism

with a thiol (RSH), which is energetically favored, is also shown.
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Table 6.1: Structure and naming scheme of the studied disulfides, diselenides and

ditellurides.

S S

R R

Se Se

R R

Te Te

R R

R S Se Te

H (HS)2 (HSe)2 (HTe)2
CH3 (CH3S)2 (CH3Se)2 (CH3Te)2
Ph (PhS)2 (PhSe)2 (PhTe)2
p-CH3Ph (CH3PhSe)2 (CH3PhTe)2
p-CH3OPh (CH3OPhSe)2 (CH3OPhTe)2
p-ClPh (ClPhSe)2 (ClPhTe)2
p-NH2Ph (NH2PhSe)2 (NH2PhTe)2
p-CNPh (CNPhSe)2 (CNPhTe)2
p-NO2Ph (NO2PhSe)2 (NO2PhTe)2

TZ2P basis set, which is a large and uncontracted set of Slater-type orbitals

(STOs) of triple-ζ quality, augmented with two sets of polarizations functions

for each atom: 2p and 3d for hydrogen, 3d and 4f in the case of carbon, nitrogen,

oxygen and chlorine, 4d and 4f for selenium and 5d and 4f for tellurium. The

frozen core approximation was employed: up to 1s for carbon, nitrogen and

oxygen, up to 2p for chlorine, up to 3p for selenium and up to 4p for tellurium.

Relativistic effects were included in the calculations using the scalar relativistic

zeroth-order regular approximation (ZORA). [184] We will refer to this level of

theory as ZORA-OLYP/TZ2P. For a selected number of cases, dispersion correc-

tions were added to the calculation. In these computations, the BLYP [132–135]

functional in combination with the TZ2P basis set was employed. Dispersion

corrections were taken into account with the D3 scheme with inclusion of the

Becke Johnson damping (D3(BJ)), developed by Grimme et al. [136] This level of
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theory is denoted ZORA-BLYP-D3(BJ)/TZ2P. The performance of DFT methods

in describing nucleophilic substitutions involving organochalcogen compounds

has been assessed in early studies in benchmarks including HF, MP2 and MP4

methods. [200, 203–206] In presence of phenyl groups, there is also the possibility

of π-stacking and other weak interactions that critically depend on dispersion

forces, but more recent extensive benchmarks show that DFT-D performs very

well as compared to highly correlated ab initio methods such as CCSD(T). [207,

208] Stationary points were fully optimized and frequency calculations were used

to verify the results. For all energy minima, only real frequencies associated with

the vibrational normal modes were found. In the case of the transition states,

only one imaginary frequency resulted from the computation, corresponding to

the normal mode associated with the reaction under investigation. To obtain a

better picture regarding the contributions that account for the differences in the

energy barriers, activation strain analyses (ASAs) were carried out. In our case,

the fragments are the dichalcogenide substrate and H2O2. In this scheme, the total

bonding energy (E) is decomposed into two contributions∆Estrain and∆Eint.

This latter term can be further decomposed, in the framework of Kohn-Sham

molecular orbital theory, into electrostatic attraction (∆Velst) between the un-

perturbed fragments, Pauli repulsion (∆EPauli), that is the repulsive interaction

between occupied orbitals) and orbital interaction (∆Eoi) using a quantitative

energy decomposition analysis (EDA).
1

In the case of the oxidation of the smaller compounds (i.e. (HX)2, (CH3X)2
and (PhX)2), we performed ASAs along the reaction coordinate from the reac-

tant complex (RCox) until the oxidation transition state (TSox) to evaluate the

different contributions to the activation barrier. All the geometries of the non-

stationary points, employed in ASA end EDA calculations, were obtained from an

intrinsic reaction coordinate (IRC) computation, starting from the transition state

1

For a more detailed treatment of the ASA and EDA schemes see Chapter 2 Section 2.1.2.
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Figure 6.2: Reaction mechanism for the direct oxidation and subsequent possible

redox isomerization of diphenyl diselenides and ditellurides; the definitions of R

and X are given in Table 6.1

following the path along the normal mode associated with the negative frequency

with a steepest descent algorithm. ASA and EDA values were then calculated

from the IRC geometries using the program PyFrag. [209] For the remaining

compounds, the analysis was restricted to the stationary points (i.e. RCox and

TSox).

6.3 Results and discussion

T
he oxidation ofmodel dichalcogenideswas investigated at the ZORA-OLYP/TZ2P

level of theory according to the reaction depicted in Figure 6.2.

6.3.1 Oxidation of diselenides and ditellurides by H2O2

The first part of the discussion will focus on the smaller compounds, i.e. (HX)2 ,
(CH3X)2 and (PhX)2. The optimized geometries for the reactants show a high

similarity upon varying the different chalcogen and the substituents, with a

dihedral angle ψ (Figure 6.3) ranging from 91° to 83° for (HSe)2 and (PhTe)2
respectively, in agreement with some recent calculations [160, 172] and completely

adhering to the bonding mechanism established for chalcogens, [210, 211] which

predicts a skewed conformation to be stabler than a structure in which the R
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ψ
ϕ

Figure 6.3: (PhSe)2 optimized structure; φ and ψ dihedral angles are shown.

group are eclipsed (ψ angle close to 0°) even when the substituents are phenyl

groups. Inclusion of an empirical term to account for dispersion forces in the

functional shows a stabilization of the structures with stacked R groups that are

nevertheless never found to be energy minima since molecules with a ψ angle

close to 90° are always found to be the most stable. Therefore, dispersion forces,

although having a stabilizing effect on all the structures, do not play a crucial

part in defining the mechanism of the observed reactions.

The oxidation starts with the formation of a reactant complex (RCox) which
has a lower energy than the free reactants (Table 6.2). The subsequent transition

state (TSox) shows an elongation of the O–O bond in H2O2 which takes one of the

oxygens closer to the chalcogen and an increase of theψ dihedrals which measure

from 161° to 168°, positioning the two R groups in a trans arrangement with respect

to the interchalcogen bond (Figure 6.4). The resulting product complexes (PCoxs)
are found to lie lower in energy than the starting reactant complexes: they keep

the trans geometry in all the cases with a chalcogen-oxygen bond length of 1.49,

1.65 and 1.82 Å in the case of sulfur, selenium and tellurium, respectively and a

very small variation (0.01Å at most) of this bond length among structures with the

same chalcogen but different substituents. For (PhX)2 complexes, an alternative

pathway was explored, in which both TSox and PCox display a ψ dihedral

smaller than 90°. However, the energies of these new structures were found to be
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different from the previous ones by an amount lower than the chemical accuracy

of the method employed in the calculation (see Appendix F). Therefore, no further

investigation was conducted on this alternative mechanism.

The stabilization of the reactant complexes ismodest: it ranges from−0.5 kcalmol
−1

of (HS)2 to a maximum of −2.7 kcalmol
−1

in the case of (CH3Se)2. Moreover,

among the molecules with the same chalcogen, this difference additionally thins

to become about 1 kcalmol
−1

(Table 6.2). On the other hand, the transition states

and the product complexes display a broader distribution of energies. The former

ones are computed to be lower in energy for tellurium, effectively making those

compounds the easiest to oxidize, whereas the latter show that the reactions with

the disulfides are the most exothermic, having the lowest lying PCoxs.
Substituents effects on the energy of the dichalcogenides are limited in most

of the optimized structures. (HX)2 complexes show the least stable RCoxs, but
differences fall in a 1 kcalmol

−1
range. A similar behavior is found also in the

case of TSoxs, whose energy is only slightly affected by the presence of the

different substituents. Consequently, reaction barriers are almost not affected

by the change of substituents. A more relevant effect is found in the product

complexes, instead: for all three chalcogens (CH3X)2 and (PhX)2 show a PCox
that is approximately 5 kcalmol

−1
lower in energy than that of (HX)2.

6.3.2 Activation strain analysis for the oxidation of RXXR (R=H,
CH3, Ph) by H2O2

The description of the energetics of these processes can explain how dichalco-

genides react with H2O2, but it is not enough to clarify why they do so. Thus,

ASA and EDA were applied to our model reactions along the reaction path until

the formation of TSox. The choice to stop at the transition state was dictated

by the fact that focus was centered on the formation of the oxidation barrier
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Table 6.2: Relative energies (kcalmol
−1
) of stationary points for the oxidation of

RXXR (X=S,Se,Te; R=H, CH3,Ph) by H2O2.
a

R

X H CH3 Ph

S

RCox −0.5 −4.4 b
−1.7 −1.7

TSox 25.2 16.5 23.8 24.1

PCox −48.4 −49.7 −53.4 −52.9

Se

RCox −1.5 −5.9 −2.7 −2.0

TSox 20.2 10.3 17.5 19.1

PCox −36.1 −40.2 −42.3 −42.4

Te

RCox −1.5 −5.4 −2.3 −1.9

TSox 14.0 4.0 12.4 12.4

PCox −38.5 −43.9 −43.1 −44.7

a) Computed at ZORA-OLYP/TZ2P.

b) Values in italics are computed at ZORA-BLYP-D3(BJ)/TZ2P.

RCox TSox PCox

Figure 6.4: Reactant complex (RCox), transition state (TSox) and product complex

(PCox) structures for the oxidation of (PhSe)2.
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which is not affected by the second half of the reaction. As a suitable reaction

coordinate the O–O bond length in H2O2 was chosen since it is independent from

the chalcogen and at the same time it is a good indicator of the progress of the

reaction. IRC calculations were performed starting at TSox and arriving at RCox
and on each intermediate point activation strain analysis was carried out (Figures

6.5 and 6.6). In addition to that for the stationary points (RCox and TSox) a
further quantitative energy decomposition analysis was conducted partitioning

the interaction energy into the electrostatic interactions, orbital interactions and

Pauli repulsion (see Chapter 2 Section 2.1.2).

6.3.2.1 Effect of the chalcogen

First the effect of the chalcogen atom will be discussed. A preliminary benchmark

was conducted on the simplest compounds (HX)2 to evaluate the effects of the

inclusion of dispersion contributions to the functional. Calculations at ZORA-

BLYP-D3(BJ) level of theory showed a quite homogeneous lowering of the energies

of all the structures along the reaction coordinate by about 5 kcalmol
−1

when

compared to the ones without dispersion. This effect is registered for all the three

chalcogens and even if it results in a more favorable oxidation process, it does

not alter the trends found with no dispersion contributions as the energy shift is

constant in all the cases (Figure 6.5).

Comparing the curves in Figure 6.5 left and Figure 6.6 left, it is evident how

the strain profile are similar to each other. This can be ascribed to the fact that

most of the deformation occurs in the elongation of the O–O bond which is almost

not affected by the presence of the different chalcogen. Phenyl compounds (Figure

6.6 right) show a more complex behavior as the profiles are quite different when

we go from (PhS)2 to (PhSe)2 and (PhTe)2, particularly in the late stages of the

oxidation. Interestingly the ordering does not follow chalcogen size: (PhSe)2 is
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the structure with the highest strain followed by (PhS)2 and (PhTe)2.
A peculiar feature is spotted if we look at the ∆Eint curves. In fact, they

do not decrease monotonously but there is an interval, at the beginning of the

reaction, in which they increase. This means that computed interaction energies

are positive (i.e. destabilizing) which is not usually the case. This feature is present

in all the model reactions: it is evident in those without dispersion (Figure 6.5

left and Figure 6.6) and it is only modest (albeit still appreciable) in the cases for

which dispersion is included. It can be ascribed to an initial rotation of the H2O2

molecule which results in the breaking of a hydrogen bond and the formation of a

structure in which an electron rich oxygen points toward an equally electron rich

chalcogen atom. This causes a high∆EPauli that makes the overall interaction

positive until when the two fragments arrive to an orientation and distance where

favorable orbital interactions come into play determining a lowering in ∆Eoi,

which becomes the dominant term, and an overall negative interaction. Moreover,

it is clearly seen that for the hydrogen and methyl substituted compounds the

total interaction energy decreases (i.e. becomes more stabilizing) with the size of

the chalcogen. This is mostly due to the different energy of the frontier orbitals

of the various molecules. As the chalcogen gets bigger, HOMO energy is seen

to increase, translating into a more favorable energy match with the LUMO of

H2O2. For the phenyl substituted structures the story is a little bit different: an

analogous behavior to the hydrogen and methyl substituted compounds is found

only at the beginning of the reaction. In fact, an inversion is seen at a very early

point in the reaction that results in (PhSe)2 gaining a lower ∆Eint than (PhTe)2
for most of the oxidation.

Although slightly different trends are found in the strain and interaction

contributions, their combination into the total energy along the reaction path pro-

duces always the same order in energy profiles and activation barriers: ditellurides

are the most easily oxidized complexes followed by diselenides and disulfides.
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Figure 6.5: Activation strain analysis along the reaction path for the oxidation

of (HX)2, without (left) and with (right) empirical correction for dispersion.

Pure electronic energies are relative to the free reactants. Computed at ZORA-

OLYP/TZ2P (left) and ZORA-BLYP-D3(BJ)/TZ2P (right).
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Figure 6.6: Activation strain analysis along the reaction path for the oxidation

of (CH3X)2 (left) and (PhX)2 (right). Pure electronic energies are relative to the

free reactants. Computed at: ZORA-OLYP/TZ2P.
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6.3.2.2 Effect of the substituent

The role of the R substituent on the oxidation energetics is found to be more mod-

est than that of the chalcogen. Methyl and phenyl substituted compounds have

very close energies (spanning a range of about 1 kcalmol
−1
, Table 6.2) whereas

HXXH complexes display a lower stabilization in RCoxs and a higher energy

in TSoxs making them the most difficult to oxidize. However, the largest differ-

ence between two oxidation barriers is of 1.5 kcalmol
−1

in the case of (HSe)2 and
(CH3Se)2.

Phenyl substituted selenium and tellurium compounds were selected to con-

duct a more extensive investigation on the role of the substituent and its ability

to affect the reaction energetics through the modification of the electronic envi-

ronment around the chalcogen atoms. Therefore, a broader selection of phenyl

substituted diselenides and ditellurides was employed to study how the presence

of different para moieties on the ring can modify the oxidation barriers (see Table

6.1 for a list of all the para groups). Sulfur compounds were not included because

the focus of this study centers on the activity of organoselenides and tellurides.

Optimizations of the para-phenyl substituted selenides and tellurides show

a φ angle close to 90°, with the two phenyls lying in almost parallel planes. If

compared to saloon doors, the aromatic rings can be viewed as in an “open” con-

formation (Figure 6.7, right). A few structures, such as (CNPhSe)2 and (NO2X)2,
showed a different geometry with a φ angle close to 0° which can be compared

to “closed” saloon doors (Figure 6.7, left). The same mechanistic features of the

previously discussed hydrogen and methyl compounds are present also in these

new structures which, along the reaction, have geometries similar to those of

Figure 6.4.

Computed oxidation barriers for diselenides show an increase in activation en-

ergy going from 20.3 kcalmol
−1
of (NH2PhSe)2 to 24.1 kcalmol

−1
of (NO2PhSe)2
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Figure 6.7: Examples of the “closed” (left) and “open” (right) structures found in

aryl dichalcogenides.
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Table 6.3: Relative energies (kcalmol
−1
) of the stationary points for the oxidation

of substituted diselenides and ditellurides by H2O2.
a

R

X NH2Ph CH3OPh CH3Ph ClPh CNPh NO2Ph

Se

RCox −2.7 −2.2 −2.9 −1.8 −1.0 −1.6

TSox 17.6 18.1 17.8 19.9 21.7 22.5

PCox −43.4 −43.1 −43.4 −41.9 −40.6 −39.7

Te

RCox −2.5 −2.8 −2.1 −1.7 −1.5 −0.6

TSox 11.9 12.5 12.8 13.9 15.0 15.9

PCox −45.6 −45.5 −44.9 −44.2 −43.5 −42.5

a) Computed at ZORA-OLYP/TZ2P.

(Table 6.3 ). All the other structures fall between these two extreme values, in a se-

ries that follows the electron donor character of the moiety bonded to the phenyl

ring with an increasing barrier in the order NH2<CH3O<CH3<Cl<CN<NO2. A

large stabilization is computed for the final PCoxs which lie at −40 kcalmol
−1

ca., making the process energetically favored. Ditellurides display an analogous

behavior with activation energies following the same trend but with values lower

by approximately 5 kcalmol
−1

(Table 6.3). These results confirm the nucleophilic

nature of the chalcogen, since oxidation is favored with electron donating sub-

stituents, but at the same time highlight the weak sensitivity of these reactions

to a change in the electronic density due to the fact that the highest and lowest

barriers differ only by a small amount: 3.8 kcalmol
−1

in the case of diselenides

and 2.1 kcalmol
−1

in the case of ditellurides, respectively.

Activation strain analyses were conducted on RCoxs and TSoxs (Table 6.4)
and the results show a different behavior for the two chalcogens. In the case

of the diselenides a slight destabilization of the RCoxs with the most electron

withdrawing substituents is computed (Table 6.3). Nevertheless, this cannot
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overcome the increase of∆Estrain in TSoxs from 41.3 kcalmol
−1

of (NH2PhSe)2
to 46.7 kcalmol

−1
of (NO2PhSe)2 (Table 6.4), which is the main cause behind the

higher activation barrier, since the stabilization gain between the two extreme

cases is only of 0.5 kcalmol
−1
. On the other hand, in the case of ditellurides, a

more significant variation of∆Eint is found when comparing the different TSoxs.
However the enhanced interaction cannot overcome the increased strain which

determines an overall higher activation barrier for the most electron withdrawing

substituents (Table 6.4).

Orbital analysis can help understand the trend found in the oxidation barriers

magnitude. Upon inspection of the frontier orbitals, a systematic decrease in

the HOMO energy of the diselenide/telluride is found going from (NH2PhX)2 to
(NO2PhX)2 . This behavior correlates well with the total activation energy as

dichalcogenides with a higher HOMO (and thus a smaller HOMO-LUMO gap)

are more reactive towards H2O2.

Results from activation strain analysis for the series of substituted aromatic

diselenides and ditellurides here considered confirm what found for the simpler

aliphatic compounds, i.e. that these reactions are not much affected by the changes

in electronic density around the chalcogen but, since the chalcogen atom acts

as nucleophile, substituents which contribute to increase the electron density

around it help to lower the required activation energy for the oxidation process

through a destabilization of the HOMO of the dichalcogenide.

6.3.3 Redox isomerization to anhydride

The possible isomerization reaction to a selenenic or tellurenic anhydride (com-

pound (3) in Figure 6.2) of the oxidized dichalcogenides (compound (2) in Figure

6.2) is investigated. The product of this reaction is a structure which represents an

intermediate to highly oxidized compounds which play an important role, at least
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Table 6.4: Relative energies and activation strain analysis (electronic energies in

gas phase, in kcalmol
−1
) for the first oxidation of substituted diphenyl diselenides

and diphenyl ditellurides by H2O2.
a

Se Te

R ∆Estrain ∆Eint ∆E ∆E‡ ∆Estrain ∆Eint ∆E ∆E‡

NH2 RCox 0.1 −2.8 −2.7 0.1 −2.6 −2.5

TSox 41.3 −23.7 17.6 20.4 32.3 −20.4 11.9 14.4

CH3O RCox 0.1 −2.3 −2.2 0.2 −3.0 −2.8

TSox 41.9 −23.8 18.1 20.3 30.5 −18.0 12.5 15.3

CH3PhRCox −0.7 −2.2 −2.9 0.1 −2.2 −2.1

TSox 42.0 −24.2 17.8 20.7 31.4 −18.4 12.8 14.9

Cl RCox 0.1 −1.9 −1.8 0.1 −1.8 −1.7

TSox 44.0 −24.1 19.9 21.7 36.5 −22.6 13.9 15.6

CN RCox 0.5 −1.5 −1.0 0.1 −1.6 −1.5

TSox 45.9 −24.2 21.7 22.7 40.2 −25.2 15.0 16.5

NO2 RCox 0.3 −1.9 −1.6 0.9 −1.3 −0.6

TSox 46.7 −24.2 22.5 24.1 41.7 −25.8 15.9 16.5

a) Computed at ZORA-OLYP/TZ2P.
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(2) (3)TSiso

Figure 6.8: Stationary points and transition state structures for the isomerization

of (PhSe)2.

in the case of selenium, in the catalysis of organic reactions. [212] The isomer-

ization was studied for diselenides and ditellurides with all the R combinations

(also H and CH3) and the water molecule formed after the first oxidation was not

included. For all the dichalcogenides transition states showing similar structures

were fully optimized. The reaction begins with a closing of the O–X–X angle that

progressively inserts the oxygen atom between the two chalcogens. At the same

time, one of the two R groups rotates by almost 90° so that at TSiso a ψ dihedral

of almost 90° is measured (Figure 6.8). In the last part of the reaction leading to

the formation of the final anhydride, the R group rotates back, widening the ψ

dihedral again and taking a position very similar to that of (2).
The energetics of this process show that it is always disfavored if compared

to the initial oxidation with computed barriers more than 20 kcalmol
−1

higher

(Table 6.5). A broader energy span is calculated for the diselenides going from

41.1 kcalmol
−1

of (NH2PhSe)2 to 45.5 kcalmol
−1

of (HSe)2 , whereas the ditel-
lurides have a more limited range that goes from 26.9 to 29.5 kcalmol

−1
in the case

of (NO2PhTe )2 and (HTe)2, respectively. In general, ditellurides show lower

activation energies compared to diselenides, in analogy to what found for the first

oxidation. Moreover, isomerization is calculated to be always unfavorable since
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Table 6.5: Relative energies (with respect to (1) + H2O2, in kcalmol
−1
) for the

isomerization of the selenoxides and telluroxides.
a

R

X H CH3 NH2Ph CH3OPh CH3Ph

Se

(2) −32.6 −37.8 −38.6 −38.5 −39.0

TSiso 12.9 6.6 2.5 3.2 3.1

(3) −23.0 −28.5 −29.9 −29.5 −29.7

Te

(2) −34.0 −37.8 −39.9 −39.8 −39.6

TSiso −4.5 −9.1 −11.9 −11.6 −11.3

(3) −29.0 −32.8 −35.1 −34.7 −34.0

R

Ph ClPh CNPh NO2Ph

Se

(2) −38.1 −37.7 −36.6 −35.8

TSiso 4.1 4.1 4.7 5.3

(3) −28.7 −28.7 −29.0 −29.0

Te

(2) −38.6 −38.4 −38.4 −37.5

TSiso −11.2 −11.2 −11.4 −10.6

(3) −33.7 −33.8 −34.4 −34.3

a) Computed at ZORA-OLYP/TZ2P.

the anhydrides are less stable than the initial oxides. Finally, no systematic trend

that could correlate the electron withdrawing or electron donating nature of the

substituent with the isomerization barrier height is seen: the structures with the

highest activation energy are HXXH for both chalcogens, and, even among the

phenyl substituted complexes, a behavior similar to that found for the oxidation

was not registered. This is a strong indication that this process is not influenced

by the electronic environment around the chalcogen center, but might be more

sensitive towards steric effects, that might be present, for example in the case of

the diphenyl dichalcogenides, when adding a substituent to the ring closer to the

chalcogen atom, in ortho or meta position.
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6.4 Conclusions

The results presented in this Chapter about the oxidation of organodichalco-

genides by H2O2 show an increased reactivity towards hydrogen peroxide mainly

caused by a stronger interaction energy calculated in the presence of the heavier

chalcogens. HOMO-LUMO interactions with H2O2 are favored in selenium and

especially in tellurium compounds because of the higher energy of their HOMOs

which can more favorably interact with the LUMO of hydrogen peroxide resulting

in a lower activation energy. A noteworthy result obtained from ASA along the

reaction coordinate is that dimethyl and diphenyl dichalcogenides show a very

similar oxidation energy profile. They react in a perfectly analogous manner

despite the very different nature of the R group suggesting that in the design of

novel antioxidant drugs these two classes of compounds could be interchange-

able and the only factor that would go in favor of one or the other could be the

toxicity of its metabolites. Therefore, studies on diphenyl diselenides could be

prioritized over the analogous methyl compounds which have a higher toxicity.

Toxicological studies on ditellurides are still fragmentary, but their enhanced

activity with respect to diselenides has prompted a more intense effort to extend

the knowledge on the behavior of these compounds.

Finally, the investigation of a series of differently para-substituted diphenyl

diselenides and ditellurides pointed out that the initial oxidation leads to a se-

lenoxide/telluroxide without any difference in mechanism for all the complexes

and that this oxidation is easier for ditellurides and only slightly affected by the

nature of the phenyl substituents. Moreover, the subsequent isomerization of the

selenoxide/telluroxide to the corresponding selenenic/tellurenic anhydride, while

being possible, is found to be thermodynamically unfavored and requires a high

activation energy. These findings could explain the difficulty in detecting these

species with an experimental setup.
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Appendix F

Alternative mechanism

Table F.1: Energies (in kcalmol
−1
) and ψ dihedral amplitude (°) of stationary

points for the oxidation of (PhSe)2 and (PhTe)2 in two proposed mechanisms.
a

cis trans

ψ ∆E ψ ∆E

(PhSe)2
RCox 82 −2.0 82 −2.0

TSox 70 21.0 −169 19.1

PCox 51 −41.1 −163 −42.3

(PhTe)2
RCox 83 −1.9 83 −1.9

TSox 72 12.4 −162 13.2

PCox 41 −43.6 −167 −44.7

a) Computed at ZORA-OLYP/TZ2P.
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Appendix G

Energy decomposition analysis

Table G.1: Energy decomposition analysis (electronic energies in gas phase, in

kcalmol
−1
) for the first oxidation of model diphenyl disulfides.

a

R ∆EPauli ∆Velstat ∆Eoi

H

RCox 2.4 −2.4 −1.7

TSox 186.5 −81.4 −125.2

CH3

RCox 4.0 −3.9 −2.7

TSox 169.5 −75.4 −112.6

Ph

RCox 3.3 −3.3 −2.4

TSox 165.1 −72.2 −110.0

a) Computed at ZORA-OLYP/TZ2P.
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Table G.2: Energy decomposition analysis (electronic energies in gas phase, in

kcalmol
−1
) for the first oxidation of model diphenyl diselenides.

a

R ∆EPauli ∆Velstat ∆Eoi

H

RCox 2.5 −2.3 −1.7

TSox 159.1 −73.1 −112.7

CH3

RCox 4.5 −4.0 −2.9

TSox 151.2 −70.1 −106.7

Ph

RCox 2.9 −2.8 −2.2

TSox 146.6 −67.0 −103.9

NH2

RCox 3.8 −3.8 −2.8

TSox 136.0 −61.9 −97.9

CH3O

RCox 3.5 −3.2 −2.5

TSox 138.8 −63.1 −99.4

CH3Ph

RCox 3.1 −3.0 −2.3

TSox 143.5 −65.5 −102.2

Cl

RCox 2.9 −2.6 −2.1

TSox 149.4 −68.2 −105.3

CN

RCox 2.3 −2.0 −1.7

TSox 156.7 −71.9 −109.0

NO2

RCox 0.5 −1.9 −0.5

TSox 158.2 −72.6 −109.8

a) Computed at ZORA-OLYP/TZ2P.
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Table G.3: Energy decomposition analysis (electronic energies in gas phase, in

kcalmol
−1
) for the first oxidation of model diphenyl ditellurides.

a

R ∆EPauli ∆Velstat ∆Eoi

H

RCox 2.4 −2.1 −1.9

TSox 147.6 −72.0 −105.3

CH3

RCox 4.2 −3.7 −2.9

TSox 128.1 −62.7 −89.9

Ph

RCox 2.9 −2.6 −2.3

TSox 117.8 −57.2 −80.8

NH2

RCox 3.3 −3.3 −2.6

TSox 110.4 −53.2 −77.6

CH3O

RCox 4.1 −4.1 −2.9

TSox 106.4 −51.5 −72.9

CH3Ph

RCox 2.9 −2.7 −2.4

TSox 110.3 −53.6 −75.3

Cl

RCox 2.8 −2.4 −2.2

TSox 127.5 −62.0 −88.1

CN

RCox 2.5 −2.1 −2.0

TSox 139.8 −68.2 −96.8

NO2

RCox 2.5 −1.9 −1.9

TSox 142.2 −69.3 −98.5

a) Computed at ZORA-OLYP/TZ2P.
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Chapter 7

Conclusions

7.1 Summary

The role of selenium as an antioxidant, in particular as a key component in the

enzymatic activity of glutathione peroxidase, was described and analyzed with

a computational methodology, employing state-of-the art quantum mechanical

techniques combined with classic calculations. Density functional theory methods

were the main approach employed to obtain structural, energetic and mechanistic

information on model systems. To include the effect of part of the systems that

were left out of the QM calculations, classic molecular dynamics simulations were

carried out using a recently developed force field tailored to effectively model

protein structures. Finally, the application of quantitative models for energy de-

composition (activation strain model and energy decomposition analysis) allowed

an in-depth analysis of the formation of the reaction barriers and their underlying

causes. These in silico techniques made the study of the intrinsic properties of

selenium and of the other chalcogens possible.

Three scenarios were selected and tested: the ability of chalcogenides to form
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weak non-covalent bonds (Chapter 3), their thermodynamics and reactivity in

SN2 substitution processes (Chapter 5) and their reactivity toward H2O2 in redox

reactions (Chapters 4 and 6).

Non covalent chalcogen bonds have stirred a lot of interest lately for their

importance in protein interaction and their possible application to catalysis, ion

transport and rational drug design. A series of halogen substituted chalcogenides

were chosen as model systems. Three small unsaturated organic molecules were

selected as Lewis bases for the formation of the weak interaction. The resulting

chalcogen-π bond increases in strength as the chalcogen-halogen electronegativ-

ity difference becomes larger. This is due to a combination of electrostatic and

orbital effects. The bond acceptor can also modify the strength of the interaction

based on the energy of its HOMO: substrates with a high energy HOMO interact

more favorably with the chalcogenides resulting in stronger bonds. These consid-

erations can be applied to a broad range of chalcogen-π complexes and will help

understand their behavior and direct any rational design attempts towards the

most favorable scenario.

Maximizing the efficiency of each step in a catalytic cycle is the keystone of

the rational design of any catalyst and while the noncovalent interactions are

predominant in the initial formation reactant complexes, the redox reactions in

which selenium is involved, when acting as an antioxidant, require the breaking

and formation of covalent bonds. The catalytic cycle of human glutathione

peroxidase 4 was chosen as a model to determine which factors contribute to

the enzymatic activity in order to establish the required features in an efficient

artificial GPx mimic and to unravel the fundamental traits of the three chalcogens

(S, Se and Te) which could be exploited to rationally design the most befitting

molecule for a targeted application. Two steps of the whole GPx4 mechanism

were thoroughly analyzed: the first oxidative reaction and the last reductive

phase.
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The oxidative part was studied with a combined classical/QM method in

which the MD simulations served as a starting point for the subsequent DFT

calculations. Results on an enzymatic cluster representing the active site show

that selenium is thermodynamically favored over sulfur due to the weaker Se–H

bond present in the initial structure that can more easily undergo the proton

transfer needed to begin the reaction. Moreover, tellurium displays a different

mechanism and can act differently from the other chalcogens as the catalytic cycle

of the semi-natural tellurium-GPx4 enzyme could pass through highly oxidized

tellurium states.

The final reductive step was modeled as a nucleophilic substitution of a

methyl chalcogenolate on a dimethyl dichalcogenide. The choice of such a small

system allows the focus to be centered on the intrinsic properties of the differ-

ent chalcogens employed (S, Se and Te) to evaluate their particular behavior.

Results in the gas phase show how nucleophilic substitutions have always an

addition-elimination mechanism with the formation of a three-center transition

complex, but those at tellurium show a single-well profile, whereas those at the

other chalcogens have a triple-well profile. The inclusion of the solvent in the

calculations as a dielectric continuum, aims to simulate an environment closer to

that of the in vivo enzyme. In the condensed phase mechanistic features of this

reactions depend upon the chalcogen that undergoes nucleophilic attack: in the

case of sulfur the reaction is seen to be an SN2, in the case of tellurium it retains

the single-well profile of the gas-phase, albeit with a less stabilized transition

complex, and in the case of selenium a transitional mechanism is proposed which

shows an energy profile with an almost flat central region inside which multiple

intermediates and transition states are located. This mechanistic difference could

be one of the key reasons why selenium is present in the active site of GPx, as

the formation of the three-center complex seems to be unlikely in the enzyme

due to the steric hindrance caused by the surrounding residues. Otherwise, the
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regeneration of the enzyme in the last reductive step would be greatly hampered

since the nucleophilic attack at selenium, which would result in an unwanted

thiol scrambling reaction, is thermodynamically favored over that at sulfur.

The modeling of enzymatic cycles can offer great insights on the “secrets”

of the efficiency and effectiveness of these catalysts. However, transferring of

the information obtained for an enzyme to a smaller and easily synthesizable

molecules that should reproduce the catalytic activity is never straightforward. A

complete understanding of the processes in which these small mimics are involved

is key to correctly translate and apply the results obtained for larger systems.

Therefore in the final part of this Thesis an in-depth study of the reactivity

of a very promising class of GPx mimics towards H2O2 is detailed. Organic

diselenides are extensively employed in synthesis as catalysts and show promising

features to be employed as efficient antioxidant compounds in pharmacology

and medicine. Recently, organic tellurides were also studied for their antioxidant

properties, although the lack of a complete picture of the toxicology of these

compounds limits their employment as therapeutic agents. The oxidation reaction

of selected diselenides and ditellurides by hydrogen peroxide was investigated

with DFT techniques. For the simplest compounds activation strain analyses were

performed along the reaction coordinate from the starting reactant complex to the

transition state. Results show an increased reactivity towards H2O2 going from

sulfur to tellurium leading to the formation of a sulfoxide/selenoxide/telluroxide

and a very similar reaction profile for dimethyl and diphenyl chalcogenides.

Further investigations on para substituted diphenyl diselenides and ditellurides

show that, although the ring substituent has a modest effect on the oxidation

barrier, electron donating moieties favor the oxidation process, decreasing the

activation energy. Finally, the isomerization of the chalcogenoxide obtained after

oxidation was investigated in light of the fact that the resulting anhydride seems

to be an important intermediate to reach highly oxidized states that play a key role
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in the catalysis of redox reactions, at least in the case of diselenides. Computed

barriers are always larger than those for the initial oxidation, with ditellurides

having smaller isomerization barriers compared to diselenides. Moreover, the

resulting anhydrides lie at a higher energy than the starting oxide making the

reaction thermodynamically unfavorable.

7.2 Sommario

Il ruolo del selenio come antiossidante, in particolare come componente chiave

dell’attività enzimatica della glutatione perossidasi, è stato descritto e analizzato

attraverso una metologia computazionale che utilizza tecniche quantomeccani-

che allo stato dell’arte combinate a calcoli di meccanica classica. Il principale

approccio utilizzato per ottenere informazioni di tipo strutturale, energetico e

meccanicistico sfrutta metodi basati sulla teoria del funzionale di densità (DFT).

Per includere l’effetto della parte del sistema che è stata esclusa dai calcoli quan-

tomeccanici, simulazioni di dinamica molecolare classica sono state condotte

utilizzando un campo di forza sviluppato di recente e progettato per riprodurre

efficacemente le strutture proteiche. Infine, l’applicazione di modelli quantitativi

per la decomposizione dell’energia (il modello dell’activation strain e l’energy de-

composition analysis) ha permesso un’analisi approfondita delle cause sottostanti

alla formazione delle barriere di reazione. Queste tecniche in silico hanno reso

possibile lo studio delle proprietà intrinseche del selenio e degli altri calcogeni.

Tre scenari sono stati selezionati ed esaminati: l’abilità dei calcogenuri di

formare interazioni deboli di tipo non covalente (Capitolo 3), la loro termodina-

mica e reattività in sostituzioni SN2 (Capitolo 5) e la loro reattività verso H2O2 in

reazioni di ossidoriduzione (Capitoli 4 e 6).

Legami calcogeno di tipo non covalente hanno suscitato un grande interesse

negli ultimi tempi per la loro importanza nelle interazioni proteiche e la loro
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possibile applicazione nella catalisi, nel trasporto di ioni e nel design razionale

di farmaci. Un gruppo di calcogenuri con alogeni come sostituenti sono stati

selezionati come sistemi modello. Tre piccole molecole organiche insature sono

state scelte come basi di Lewis per la formazione del legame debole. Il legame

chalcogeno-π che ne risulta si rafforza con l’aumento della differenza in elettrone-

gatitvità tra alogeno e chalcogeno. Questo deriva da una combinazione di effetti

elettrostatici e orbitalici. Anche l’accettore del legame può modificare la forza del

legame attraverso l’energia del suo orbitale occupato a più alta energia (HOMO):

substrati con un HOMO ad alta energia hanno un interazione più favorevole con

i calcogenuri e formano perciò leagmi più forti. Queste considerazioni posso-

no essere applicate ad un ampio spettro di complessi calcogeno-π e aiuteranno

nella comprensione del loro comportamento, direzionando verso lo scenario più

favorevole le proposte di design razionale.

Massimizzare l’efficienza di ogni passaggio in un ciclo catalitico è la chiave di

volta del design razionale di qualsiasi catalizzatore e, sebbene le interazioni non

covalenti siano predominanti nella formazione dei complessi reagente iniziali, le

reazioni di ossidoriduzione nelle quali il selenio è coinvolto, nella sua azione di

antiossidante, richiedono la formazione e la rottura di legami covalenti. Il ciclo

catalitico della glutatione perossidasi 4 umana è stato scelto come modello per

determinare quali fattori contribuiscano all’attività enzimatica al fine di stabilire

le proprietà necessarie per un efficiente mimetico artificiale della GPx e per far

luce sulle caratteristiche intime dei tre calcogeni (S, Se e Te) che potrebbero essere

sfruttate, attraverso il design razionale, per ottenere molecole che esprimano la

massima efficacia per le applicazioni per le quali sono state progettate. Due fasi

dell’intero meccanismo della GPx4 sono state analizzate in dettaglio: la prima

reazione di ossidazione e l’ultima fase riduttiva.

La parte ossdidativa è stata studiata con un metodo combinato che prevede

l’utilizzo di calcoli quantomeccanici e classici in cui le simulazioni di dinamica
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molecolare sono servite come punto di partenza per i successivi calcoli DFT. I

risultati ottenuti su un cluster enzimatico che rappresenta il sito attivo dell’enzima

mostrano che il selenio è termodinamicamente favorito rispetto allo zolfo a causa

del più debole legame Se–H presente nella struttura iniziale che rende più facile

il trasferimento di un protone necessario per iniziare le reazione. Inoltre, il

tellurio agisce secondo un meccanismo differente e può funzionare in maniera

diversa dagli altri calcogeni in quanto il ciclo catalitico dell’enzima semi-naturale

tellurio-GPx4 potrebbe passare attraverso alti stati di ossidazione del il tellurio.

Il processo riduttivo finale è statomodellato come una sostituzione nucleofilica

di un metil calcogenolato su un dimetil dicalcogenuro. La scelta di un sistema così

piccolo permette di centrare l’attenzione sulle proprietà intrinseche dei differenti

calcogeni utilizzati (S, Se, Te) per valutare il loro individuale comportamento. I

risultati ottenuti in fase gas mostrano che le sostituzioni nucleofile hanno sempre

un meccanismo di tipo addizione-eliminazione che prevede la formazione di un

complesso di transizione a tre centri, ma le reazioni al tellurio rivelano un profilo

a singolo minimo, mentre quelle che avvengono agli altri calcogeni risultano

avere un profilo a tre minimi. L’inclusione del solvente nei calcoli, come un mezzo

dielettrico continuo, vuole simulare un ambiente più simile a quello dell’enzima

in vivo. In fase condensata gli aspetti meccanicistici di queste reazioni dipendono

dal calcogeno che subisce l’attaco nucleofilo: nel caso dello zolfo la reazione

si vede essere del tipo SN2, nel caso del tellurio mantiene il profilo a singolo

minimo della fase gas, sebbene con un complesso di transizione meno stabilizzato,

e nel caso del selenio viene proposto un meccanismo intermedio che mostra

un profilo energetico che presenta una regione centrale quasi piatta all’interno

della quale si trovano più intermedi e stati di transizione. Questa differenza

nel meccanismo potrebbe essere una delle ragioni principali per cui il selenio

è presente nel sito attivo della GPx, poiché la formazione del complesso a tre

centri sembra poco probabile nell’enzima a causa dell’ingombro sterico causato
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dai residui circostanti. In caso contrario, la rigenerazione dell’enzima nella fase

riduttiva finale sarebbe fortemente impedita dal momento che l’attacco nucleofilo

al selenio, che risulterebbe in una reazione non voluta di scambio di tioli, è favorito

termodinamicamente rispetto a quello allo zolfo.

Modellizzare i cicli enzimatici può offrire la possibilità di comprendere i “se-

greti” dell’efficienza ed efficacia di questi catalizzatori. Putroppo, trasferire le

informazioni ottenute per un enzima a una piccola molecola facilmente sintetiz-

zabile, che dovrebbe riprodurre l’attività catalitica, non è mai un processo lineare.

Una completa comprensione delle reazioni in cui questi piccoli mimetici sono

coinvolti è fondamentale per tradurre e applicare correttamente i risultati ottenuti

per sistemi più estesi. Perciò, nella parte finale di questa Tesi viene esposto in det-

taglio lo studio della reattività verso H2O2 di una promettente classe di mimetici

della GPx. I diseleniuri organici sono impiegati estensivamente in sintesi come

catalizzatori e possiedono delle caratteristiche promettenti per essere utilizzati

come efficienti antiossidanti in farmacologia e medicina. Recentemente, anche i

ditellururi organici sono stati studiati per le loro proprietà antiossidanti, sebbene

la mancanza di un quadro completo sulla loro tossicità limiti il loro impiego come

agenti terapeutici. La reazione di ossidazione di alcuni diseleniuri e ditellururi a

carico del perossido di idrogeno è stata studiata con tecniche di tipo DFT. Per i

composti più semplici le analisi di activation strain sono state condotte lungo la

coordinata di reazione dal complesso reagente iniziale allo stato di transizione. I

risultati mostrano un aumento della reattività verso H2O2 passando da zolfo a

tellurio che porta alla formazione di un solfossido/selenossido/tellurossido e un

profilo di reazione molto simile per i dimetil e i difenil dicalcogenuri. Ulteriori

studi su difenil diseleniuri e ditellururi sostituiti in posizione para mostrano che,

sebbene il sostituente sull’anello abbia un effetto modesto sulla barriera di ossida-

zione, gruppi elettron donatori favoriscono il processo di ossidazione, diminuendo

l’energia di attivazione. Infine, l’isomerizzazione del calcogenossido ottenuto
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dopo l’ossidazione è stata studiata dal momento che l’anidride risultante sembra

essere un intermedio importante per raggiungere alti stati di ossidazione che

giocano un ruolo chiave nella catalisi di reazioni di ossidoriduzione, almeno nel

caso dei diseleniuri. Le barriere calcolate sono sistematicamente più alte di quelle

delle ossidazioni iniziali, più basse per i ditellururi rispetto ai diseleniuri. Inoltre,

le anidridi prodotte risultano ad una energia più alta dell’ossido iniziale rendendo

la reazione termodinamicamente sfavorita.

7.3 Concluding remarks

S
ince its dawn, computational chemistry tried to provide an alternative way

to obtain results on systems that could hardly (and sometimes they simply

could not) be studied by traditional chemistry. The intricacies of the biological

world have always been one of the preferred subject of computational chemists:

having the possibility to actually “see” what happens during many of the processes

that permit the existence of life and owning the tools to determine how each

slight modification of the various components directly affects the properties of

the system is very appealing. And yet, the possibility to accurately describe

even the most basic biological processes that exceed the elementary chemical

reactions realm, is still beyond our grasp. Nevertheless, the continuous research

and development of new methods, joined by the ever growing possibilities offered

by new computational technologies represent a very promising future which will

see problems that seem now completely out of reach become routine work.

This Thesis uses different computational methodologies to provide useful

insights on the properties and characteristics of the antioxidant (bio)chemistry of

selenium, aimed at rational catalyst design. The plethora of different components

involved in the efficiency of biological catalytic cycles makes the understanding of

these processes a very complex matter. Moreover, the finesse acquired by Nature
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in millions of years of evolution led to the creation of molecules whose structure

and properties are difficult to replicate artificially. The complete understanding

of the ruling principles underlying a process and the ability to transfer them to

suitable structures that can be readily available are two key concepts in rational

catalyst design. In the particular case of GPx mimics, not only should the results

explain the characters that make selenium “special” among the chalcogens but

they should also grant the ability to design chalcogen-based structures that could

reproduce the function of enzymes. This is a very ambitious and challenging task

and, although the perfect mimic has not been discovered yet, this work presents

some useful insights that can be used as a good starting point for the successful

design of a catalyst.

Why did Nature choose selenium? A simple answer to such an ambitious

question is not possible but joining together the work of many, piece by piece,

each one of them adding something to get the complete picture, will eventually

provide us with a satisfying response. This Thesis wants to be one of these small

pieces that can help complete this still unfinished puzzle.

Considerate la vostra semenza:
fatti non foste a viver come bruti
ma per seguir virtute e canoscenza

Dante Alighieri, Divine Comedy 1

1

This is a stanza from the dialogue between Dante and Ulysses in the XXVI Canto of the Inferno

of the Divine Comedy. The lines report part of a speech given by Ulysses to his companions to

convince them to go beyond the Pillar of Hercules (Strait of Gibraltar), anciently thought to be the

end of the world and has been translated by Henry Wadsworth Longfellow as: "Consider ye the

seed from which ye sprang / Ye were not made to live like unto brutes, / But for pursuit of virtue

and of knowledge."
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