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1. Riassunto 

Il sequenziamento dell’esoma (WES) rileva efficacemente varianti in cellule tumorali, 

identificando le caratteristiche molecolari coinvolte nella patogenesi e nella progressione della 

malattia, con importanti risvolti per la diagnosi e per lo sviluppo e la scelta di terapie 

personalizzate. L’analisi di dati WES di tumori presenta tuttavia varie complicazioni dovute 

all’eterogeneità tumorale, ad alterazioni della ploidia, a contaminazioni dei campioni o ad 

artefatti tecnici. 

La pipeline iWhale, basata su Docker e SCons, è stata sviluppata per analizzare dati WES di 

tumori con l’obiettivo di rilevare ed annotare mutazioni somatiche tramite l’uso di quattro 

diversi software (MuTect, MuTect2, Strelka2 e VarScan2) e l’integrazione di informazioni 

provenienti da vari database. Inoltre, ho collaborato allo sviluppo di un metodo per la 

costruzione di meta-reti di geni mutati che sono annotati in database di pathway e ho costruito 

una struttura di dati customizzata per rilevare statisticamente pathway ricorrentemente mutati 

in cellule tumorali.  

In collaborazione con diversi gruppi di ricerca, ho utilizzato ed adattato di volta in volta 

versioni progressivamente più rifinite della mia pipeline in studi riguardanti la leucemia 

linfocitica granulare a grandi cellule T (LGL-L), due tipi di linfomi follicolari pediatrici 

(PTNFL e PFLT) e Neuroblastoma ad alto rischio (HR-NB). 

LGL-L è una leucemia cronica rara caratterizzata da una persistente crescita clonale di cellule 

citotossiche T o natural killer (NK) dovuta all’attivazione del pathway JAK/STAT. Mediante 

analisi WES sono state identificate nuove mutazioni somatiche in geni ricorrentemente mutati 

in 19 pazienti con LGL-L, comprendenti casi senza mutazioni nei geni STAT. Sono state 

selezionate per validazione con sequenziamento Sanger 16 varianti in diversi geni, tra le quali 

l’oncosoppressore FAT4 e il regolatore epigenetico KMT2D. Nuove varianti Q706L e S715F 

in STAT5B sono state anche caratterizzate funzionalmente. Grazie ad analisi di reti derivate 

da pathway, sono state identificate delle componenti funzionali composte da geni mutati, 

funzionalmente o direttamente interagenti con i geni STAT, in pazienti STAT negativi. Altre 

componenti funzionali con una possibile rilevanza nella patogenesi di LGL-L in assenza di 

mutazioni nei geni STAT sono emerse dalle analisi. 

Una coorte di pazienti affetti da linfomi follicolari pediatrici è stata analizzata tramite WES. 

Sono state confermate mutazioni presenti in TNFRSF14, IRF8 e MAP2K1, geni 

precedentemente associati a PTNFL, e sono stati caratterizzati nuove mutazioni e geni con 

possibile coinvolgimento nello sviluppo di PTNFL. Undici varianti presenti in ARHGEF1, 
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MAP2K1, TNFRSF14, ATG7, GNA13, RSF1, UBAP2 e ZNF608 sono state validate e 

selezionate come possibili eventi driver in PTNFL e PFLT. I nostri risultati hanno per la prima 

volta permesso di associare il pathway GPCR ed enzimi modificatori della cromatina ai linfomi 

follicolari pediatrici.  

NB è un tumore solido che origina dalle cellule della cresta neurale primitiva ed è caratterizzato 

da un’alta eterogeneità clinica e da pochi geni ricorrentemente mutati (MYCN, ALK, ATRX). 

Per investigare sulle basi biologiche coinvolte nell’aggressività di NB, è stato effettuato WES 

di pazienti affetti da HR-NB con metastasi e divisi in base alla sopravvivenza (pazienti SS e 

LS, rispettivamente con sopravvivenza inferiore o uguale e superiore a 5 anni). Solo i geni 

SMARCA4, SMO, ZNF44 e CHD2 sono stati trovati mutati ricorrentemente in modo specifico 

in pazienti SS. HotNet2 ha rivelato che le mutazioni rilevate nei due gruppi ricadevano in 

pathway diversi. Le mutazioni dei pazienti SS si sono raggruppate in sei sotto-reti 

significativamente mutate, coinvolte nell’organizzazione della matrice extracellulare tramite 

MAPK pathway, nella motilità cellulare tramite PTK2, nell’attività delle metalloproteinasi 

della matrice, nella maturazione del centrosoma e nel rimodellamento dei cromosomi. Grazie 

all’esistenza di farmaci già approvati dalla FDA che hanno come bersaglio alcune delle 

proteine mutate o delle pathway identificate, i risultati ottenuti possono facilitare lo sviluppo 

di terapie mirate ai pazienti con le forme più aggressive di HR-NB. 
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2. Abstract 

Whole Exome Sequencing (WES) has high power to discover variants in cancer cells, allowing 

the identification of molecular features underlying diseases development and progression, with 

important outcomes for cancer diagnosis/prognostication as well as for development and 

selection of molecularly targeted therapies in personalized medicine. WES projects pose as 

well different challenges due to biological factors, such as tumour heterogeneity, altered ploidy, 

low tumor purity, and technical artifacts, that make not obvious the identification of relevant 

variants. 

IWhale, an easy-to-use and customizable pipeline based on Docker and SCons, was developed 

to analyze cancer WES data, to detect and annotate somatic mutations by a combination of four 

different callers and integration of information deriving from different databases. Moreover, a 

systems genetics approach and custom data structures were built up to construct pathway-

derived meta-networks of mutated genes depicting their direct interactions and functional 

relations, to ultimately identify key functions and pathways recurrently hit in cancer cells.  

In collaboration with different groups, increasingly refined and customized versions of the 

pipeline were applied in three WES studies regarding Large granular lymphocyte leukemia 

(LGL-L), pediatric follicular lymphomas (PTNFL and PFLT) and High-Risk Neuroblastoma 

(HR-NB). 

LGL-L is a rare chronic leukemia with persistent clonal increase of cytotoxic T cells or natural 

killer (NK) cells often associated to JAK/STAT pathway activation. By analysis of WES data 

in 19 patients, including cases without STAT mutations (STAT- patients), novel somatic 

mutations in recurrently mutated genes were identified. 16 selected variants, including those in 

the tumor suppressor gene FAT4 and in the epigenetic regulator KMT2D, were validated.  The 

new Q706L and S715F STAT5B variants has been also functionally characterized. With 

pathway-derived network analysis, functional modules composed by several STAT-interacting 

or STAT-functional connected genes mutated in STAT-negative patients were discovered. 

Additional modules with putative pathogenic relevance in LGL-L and mutated in the absence 

of STAT mutations were identified. 

In PTNFL, recently recognized as a defined clinicopathological entity, WES analysis of the 

largest cohort collected so far uncovered mutations in the few genes, TNFRSF14, IRF8 and 

MAP2K1 previously associated to PTNFL, identifying as well novel mutations and genes. 

Eleven validated variants prioritized as possible drivers hit the recurrently mutated ARHGEF1, 

MAP2K1 and TNFRSF14 genes, as well as ATG7, GNA13, RSF1, UBAP2, and ZNF608. G-
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protein coupled receptor signaling and chromatin modifying enzyme alterations was linked for 

the first time to PTNFL and PFLT according to obtained findings. 

NB, a solid cancer arising from primitive neural crest cells and accounting for 9% of pediatric 

tumors, is characterized by high clinical heterogeneity and low mutation recurrence even in 

known driver (MYCN, ALK, ATRX). To clarify the biological basis of disease aggressiveness, 

WES was used to examine the genomic landscape of HR-NB patients at metastatic stage with 

short survival (SS) and long survival (LS). A few genes, including SMARCA4, SMO, ZNF44 

and CHD2, were recurrently mutated only in the SS group and HotNet2 analysis revealed that 

in the two patient groups, mutations occurred in different pathways. Notably mutations of SS 

patients clustered into a six significantly mutated subnetworks, involved into MAPK pathway 

associated with the organization of the extracellular matrix, to cell motility through PTK2 

signaling, to matrix metalloproteinase activity, to centrosome maturation and chromosome 

remodeling, to metabolism of nucleotides and lipoproteins, and to transport of small molecules. 

Since FDA-approved compounds targeting the deregulated pathways are available these 

findings may help to improve the treatment of HR-NB patients with most aggressive disease. 
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3. Introduction 

3.1. Genetic and genomic alterations in cancer 

Cancer is a complex and heterogeneous genetic disease which develops, broadly speaking, 

when a group of cells start to uncontrollably proliferate invading an organ or tissue. Cancer 

cells can also spread from original tumor site and colonize other parts of the body in a process 

called metastasis1.  

After cardiovascular diseases, cancer is the second leading cause of death in the world. The 

incidence is rising in developed countries because of the aging of the population and to an 

increasing exposition of environmental risk factors2. About 90.5 million people had cancer in 

2015 and cancer burden worldwide is projected to redouble within the next two decades3,4. It 

is established that the 90-95% of cancer cases are caused by DNA mutations directly or 

indirectly caused by environmental factors such as tobacco, diet, obesity, infections, radiation, 

stress or lack of physical activity whereas only the 5-10% of cases are induced by hereditary 

genetic factors5,6.  

The shift from normal to cancer phenotype is mainly due to an accumulation of somatic 

mutations over time that modify essential cellular functions, with contributions from epigenetic 

and transcriptional alterations. Only a minority of somatic mutations harbored by malignant 

cells are “driver” conferring selective advantages and leading to the development of typical 

features of malignancy such as sustaining proliferative signaling, evading growth suppressors, 

avoiding immune destruction, enabling replicative immortality, promoting inflammation, 

activating metastasis, inducing angiogenesis, generating genome instability and mutation, 

resisting cell death and deregulating cellular energetics7,8. Most of the mutations carried by 

cancer cells are “passenger” having a little or no impact on cancer expansion.  

The accumulation of somatic variants over time can lead to formation of different cancer clones 

that are subject to selective pressure induced by tissue ecosystems (Figure 1) and resulting in, 

both intra-tumor and longitudinal, cancer heterogeneity. 
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normal tissues and lack of alteration in other cancer-associated pathways until somatic 

mutations impair the compensatory or activate oncogenic pathways14.  

Somatic and germline mutations that affect cancer cells can be of different types: 

● single-nucleotide variants (SNVs),  

● insertions or deletions of nucleotides (indels),  

● copy-number variations (CNVs), 

● large structural variants (SVs).  

When one of these mutations hits coding-regions, oncogenes can be activated promoting cell 

proliferation, or inhibit tumor suppressor allowing cancer cells to avoid the cellular survival 

and division control systems. In general, somatic SNV or indels in oncogenes tend to target a 

specific region of the gene, whereas, tumor suppressor genes are mutated throughout their 

entire length (Figure 2)10,15.  

 
Figure 2. Diagram depicting distribution of different types of driver variants. Bars represent exons, and red 
triangles depict an example pattern of somatic mutations across a cancer cohort. A) Activating mutations hitting 
oncogenes are confined to a specific region of amino acids; B) Inactivating mutations usually affect tumor 
suppressor genes arising throughout the gene; C) Non-coding driver mutations may target cis-regulatory 
elements, for example, removing a transcription factor binding site, or create a de novo binding motif. Figure 
adapted from Poulos RC, et al., 201815. 
 

Vogelstein et. al10 proposed the “20/20 rule” to determine which genes are oncogenic or tumor 

suppressors evaluating mutations recorded in The Catalogue of Somatic Mutations in Cancer 

(COSMIC). An oncogene must have more than 20% of somatic missense mutations in recurrent 

positions, whereas tumor suppressor genes require that more than 20% of hitting mutations 

must be inactivating (truncating or frameshift variants). Thanks to this method, IDH1 gene, 

which was considered a tumor suppressor gene, has been classified as oncogene since almost 
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the mutations hit a substrate binding site at codon 132. The oncogenic role of IDH1 was also 

supported by biochemical experiments16,17. 

Moreover, mutations in functional non-coding regions of the genome, can be associated to 

cancer development. Variants in introns can alter splicing or induce the loss of regulatory 

elements. For instance, a rare germline mutation in an intron of BRCA2 induces aberrant 

splicing and is associated to Fanconi anemia, a recessive disease linked to high cancer risk18. 

Mutations can also impact on transcription factor binding, as exemplified by the TERT gene 

promoter, mutated in more 50 cancer types19. Single-nucleotide mutations in TERT promoter 

creating new transcription factor binding sites and upregulating TERT expression were first 

reported in melanoma20,21. Mutations in non-coding RNA (ncRNA) may have a driver role, 

impacting on ncRNA fielding, interactions and functions. MALAT1, a long non-coding RNA 

that regulates expression of genes associated to metastasis, is mutated in bladder cancer22.  

Copy number alterations (CNAs) can drive cancer by duplicating oncogenes or deleting onco-

suppressors. The CNA-associated oncogenes and tumor suppressors comprise the focal 

amplification of 8q24.21 (MYC), 11q13.3 (CCND1), 7p11.2 (EGFR), 17q12 (ERRB2/HER2) 

and 7q31.2 (MET), whereas focal deletion involved 13q14.2 (RB1), 9p21.3 (CDKN2A) and 

10q23.31 (PTEN)23,24. 

Similarly, large structural mutations may lead to aberrant gene fusion events that create a new 

oncogenic protein or truncate a tumor suppressor gene25. Specific structural variants in 

leukemia and sarcoma drive to activation of oncogenes or generation of specific gene fusion, 

some of which are used in diagnosis, such as STY-SSX1 fusion in synovial sarcoma and EWS-

FLI1 fusion in Ewing sarcoma26. In prostate cancer, an aberrant fusion between 5’UTR of 

TMPRSS2 and ETS family genes (ERG and ETV1) is frequently detected27. This event causes 

an ERG overexpression, which disrupts androgen receptor (AR) signaling by inhibiting the 

expression of AR and its target genes28. 

The number of somatic mutations needed for cancer development is variable, depending on 

several factors. For instance, lung tumors and melanomas usually harbor high number of 

nonsynonymous variants per tumor (~200) because of protracted exposition to mutagens, such 

as tobacco smoke or ultraviolet radiation, and/or DNA repair defects10. Genetic alterations of 

the proofreading domain of DNA polymerases POLE or POLD1 has been also associated with 

high number of somatic mutations in cancer29–31. The number of somatic mutations in tumors 

of self-renewing tissues tends also to increase with age32. It has been showed that more than 

half of somatic mutations in these tumors emerge during the self-renewal of normal cells, for 

instance the gastrointestinal epithelium, and do not directly contribute to malignancy 



 11 

development. This observation partially explains why tumors of non-self-renewing tissues and 

pediatric cancers harbor few mutations. Indeed, pediatric cancers usually develop in non-self-

renewing tissues and when they arise in renewing tissues (leukemias) emerge from precursors 

that have not renovated themselves as often as in adults10.  

3.2. Personalized medicine for cancer treatment 

Hundreds of driver genes, such as TP53, BRAF, EGFR, PIK3CA to cite the commonest, have 

been identified and gathered in databases (Cancer Gene Census33 and IntOGen34). 

Pharmacological therapies have been developed which target some of these genes inhibiting 

cancer growth and invasion. The tyrosine-kinase inhibitor Imatinib has been successfully used 

to target cells carrying the BCR-ABL fusion gene in chronic myeloid leukemia35. The protein 

coded by EGFR hit by activating mutations can be inhibited by gefitinib in lung 

adenocarcinoma36. However, highly recurrently mutations targetable by specific drug therapy 

are unknown for the most cancer types. In addition, the clonal expansion of cancer considerably 

complicates the scenario for therapeutic treatments. Indeed, therapies induce an additional 

selective pressure where sensitive cancer cells will die, but resistant cells might survive, 

possibly acquiring new driver mutations not present in primary tumors as demonstrated in 

breast cancer37,38, and lead to tumor relapse.  

Other targeted therapeutic strategies are immune-based therapies where the aim is augmenting 

the patient immune response against cancer cells, with a general boosting of immune defenses 

(Interferon or Interleukins), or using endogenous immune cells expanded (Tumor-infiltrating 

lymphocytes) or genetically engineered. Checkpoint inhibition and cellular therapy with 

autologous chimeric antigen receptor T cells (CAR T cells) have shown efficacy as molecularly 

targeted salvage therapy in several cancer types (small cell lung cancer39, advanced 

melanoma40, renal cancer41, and acute lymphocytic leukemia42) and are promising approaches, 

especially as they will be refined, to reduce serious side effects, and will be used in combination 

with other conventional therapies43. However, it has been reported that tumor immunogenicity 

differs greatly between different types of cancers and cancers of the same type in different 

patients44. Consequently, it will be crucial to develop therapeutic strategies where the reactivity 

of T-cells is selectively enhanced against tumor-specific clonal neoantigens45.  

From above explained approaches is evident that is necessary to design therapeutic strategies 

considering the heterogeneity observed in cancer. For this reason, it is increasingly taking place 

the approach of personalized medicine where individual characteristics, including the 
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improved with various refinements such as: 1) nucleotide-specific fluorescent dyes, so that the 

chain-termination reaction for the four dideoxynucleotides to be carried out in a single DNA 

synthesis reaction53; 2) polyacrylamide gels in capillary electrophoresis, to shorten run times54; 

3) automatic laser fluorescence detection55. Thanks to these gradual improvements, the Sanger 

sequencing can sequence fragments up to 1000 bases with a per-base accuracy as high as 

99.999%56. The refinement and improvements made to the Sanger sequencing allowed its 

utilization on large scale and the realization of Human Project Genome in 200157. However, 

this method is affected by high costs and time required, as well as low throughput. One more 

limitation of Sanger sequencing is the impossibility to detect variants with low frequency, such 

as in cancer samples, due to high background levels.  

The advent of Next-Generation Sequencing (NGS) technologies on the marketplace in 2004 

was revolutionary for basic, applied and clinical research because the amount of data produced 

by each sequencing run was considerably increased with a substantial reduction in costs and 

time of execution (from hundreds to billions of pair of bases for sequencing run). The term 

NGS refers to a series of technologies that have in common the parallel and massive sequencing 

of clonally amplified and spatially separated DNA molecules on a solid support. The 

sequencing phase consists of repeated cycles of nucleotide extensions by a DNA polymerase 

or alternatively by oligonucleotide ligation cycles. A first advantage of NGS is the use of clonal 

amplification (PCR) of the fragments to sequence avoiding the cloning step into plasmids. In 

addition, different samples can be processed in a unique sequencing run through a method for 

marking the templates (barcoding), requiring informatic analysis to identify the fragments 

belonging to each sample.  

NGS technologies can accurately detect alleles at low frequency, but they have some 

limitations as well: the first is short length of produced fragments leading to major issues to 

address during alignment phase to a reference genome, and even more for de novo assembly 

of genome and transcriptome, requiring complex data analysis. In addition, error frequency in 

base calling is higher than Sanger sequencing, even if this limitation is partially solved through 

large number of sequences and utilization of highly-efficient DNA polymerase. “Paired-end 

sequencing” strategy, where both ends of the fragments are sequenced yielding two paired 

reads at a known distance, is used to even map reads over repetitive regions of genome 

improving detection of small indels. Another issue of NGS is the high computational request 

due to huge amount of data to storage and process58. Complex bioinformatics tools are essential 

to improve base calling and to perform every phase of subsequent data analysis. Each 

sequencing technology uses platform-specific parameters and scores making complex to 



 14 

compare results obtained from different sequencers. This complexity in data interpretation and 

management of a computer system requires the presence of high-specialized personnel.  

3.4. Next-generation sequencing  

The various technologies differ from each other based on the combinations of biochemical 

processes and protocols followed to perform four basic common steps: library preparation, 

sequencing, imaging or signal processing, and data analysis. Library preparation is 

accomplished by random fragmentation through sonication or nebulization (“Shotgun 

method”) into a target size (from 150 to many hundred base pairs) depending on the platform 

read length and chemistry. Specific nucleotide sequences (“adaptors”) are, then, ligated at both 

ends of each fragment to hybridize them to solid surfaces covered by adapter-complementary 

oligonucleotide anchors. Adaptors can contain sample-specific sequence (“barcode”) allowing 

simultaneous sequencing of more samples per run dividing platform throughput between the 

total number of samples. The anchored templates are amplified by “emulsion PCR” or “bridge 

PCR” generating clusters of identical fragments to obtain a detectable signal. Signal detection 

is performed on all DNA fragments cyclically and in parallel by on optical system composed 

by a microscope with a Charge-Coupled-Device (CCD) camera plus a computer and storage 

system (Illumina), or, in the case of semiconductor sequencing, by a semiconductor chip 

(IonTorrent)59.   

Illumina 

Illumina sequencing technology was first put on the market in 2006 through the production of 

Genome Analyzer by the Solexa company, which was purchased a year later by Illumina. 

Library preparation is accomplished by random fragmentation of DNA sample into segments 

of some hundreds of bases which are modified to generate 5’ phosphorylated ends. An adenine 

is added to 3’ ends of fragments for improving ligation process with adaptor sequences having 

a thymine at 3’ends (Figure 2). The adaptor sequences are perfectly complementary to the 

anchoring oligonucleotides fixed on the flow cell, a planar optically transparent surface similar 

to a microscope slide (Figure 4).  
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Figure 4. Illumina sequencing workflow. a) Library preparation. b) Clusters of templates are generated by 
bridge amplification. c) Sequencing by synthesis with reversible dye terminators60.  
 
Oligonucleotides of the flow cell are linked to the surface at its 5’ end, leaving the 3’ end free 

for the polymerase action. DNA templates are amplified by “bridge PCR” which is based on 

the folding of the arch-shaped DNA strands to hybridize to an adjacent anchoring-

oligonucleotide and complementary to the adapter present at the free end of the filament itself. 

The amplification occurs through DNA polymerase that synthesizes the complementary 

filaments to those present. The double-stranded structures are then denatured (chemically or 

thermally) giving single-stranded filaments ready for another cycle of amplification. This 

process is repeated many times to obtain, for each initial DNA template, a cluster composed of 

approximately one million of clonal amplicons (Figure 4). Bridge-PCR can produce 100-200 

million spatially separated template clusters, providing free ends to which a universal 

sequencing primer can be hybridized to initiate the sequencing reaction58. Illumina uses a 

chemistry called “Cyclic Reversible Termination” (CRT), which sequences the template strand 

one nucleotide at a time through progressive rounds of base incorporation, washing, imaging, 

and cleavage61. Each cycle involves a DNA polymerase and 4 deoxynucleotides modified with 

the incorporation of a fluorescent marker and the addition of a reversible terminator. The 

chemical terminator group (“3’-O-azidomethyl group”) plays a key role in CRT sequencing, 
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blocking the hydroxyl present in the 3’ position of the nucleotide and preventing the 

incorporation of the next nucleotide62 (Figure 4).  

In this way, only a single nucleotide is added for each filament in each cycle. The process is 

defined reversible because, after the removal of the terminator group and the restoration of the 

oxidant in the 3’ position, the polymerization continues. The 3’-O-azydomethyl nucleotides are 

incorporated based on the complementarity of the sequence of each strand, within each clonal 

cluster. The presence of blocking group allows a synchronized process and the remaining 

unincorporated bases are washed away. The Illumina technology can yield paired-end data 

sequencing both ends of fragments for each DNA clusters. After the first round of sequencing, 

the single stranded flow-cell bound DNA undergo again bridge amplification, but this time 

forward strand is washed away, leaving clusters of the reverse strand, which can be sequenced 

as before. Imaging is then performed by two lasers that interrogate the fluorescent labels of the 

attached base to get an image in which each cluster will have a different color representing the 

inserted nucleotide. The images are then processed in order to extract numerical signals for 

every base at every synthesis event from all the parallel reactions allowing the base calling. 

These raw image files represent terabytes of data and require substantial storage resources. 

After the removal of the blocking group and the fluorescent label, and the restoration of the 

OH group in 3’ position, the sequencing reaction continues with the next cycle62. The number 

of cycles, corresponding to the read lengths, is limited by multiple factors that cause signal 

decay and dephasing. The precision of base calling is affected by the increase in interference 

signals as the length of sequences increases. This is mainly due to excess or inadequate 

incorporation of nucleotides or failure in removing the terminator assembly. With subsequent 

cycles, the errors can be accumulated by producing heterogeneous populations of filaments 

with various lengths within a cluster generating an inaccuracy in base calling especially at the 

3’ end. The most common errors in Illumina are substitutions with a large percentage of them 

occurring when the previously incorporated nucleotide is a Guanine63. Furthermore, genomic 

analyzes of Illumina data have found that sequences having regions rich in AT or GC are 

underrepresented, probably due to amplification bias during library preparation63,64. Despite 

these problems, Illumina is a precise and reliable technology with an error rate lower than 

1%65,66. 

IonTorrent 

IonTorrent technology was first described in July 2011 by Rothberg, who devised an innovative 

sequencing method called ionic semiconductor sequencing67. In a short time, this technology 
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template by a polymerase determines the hydrolysis of the triphosphate group of the nucleotide 

with the release of a proton. The release of protons leads to a pH change inside the microwell 

that is detected by the underlying sensors and the variation is converted into digital information 

(Figure 6).  

During each cycle, the recorded pH variation is directly proportional to the number of bases 

incorporated in the nascent sequence. The data are represented through a graph called 

Ionogram, which shows the number of bases incorporated for each flow performed by the 

sequencer.  

The main advantages of this sequencing technology are the absence of imaging system which 

is usually expensive and for which data acquisition is time-consuming, and in the ability to use 

unmodified deoxynucleotides59. A problem of IonTorrent technology is the errors (insertions 

or deletions) during base calling in homopolymeric zones. Sequences that have more than 4 

repeated nucleotides have a high percentage of error that is to be considered during data 

analysis. Because of this problem, the percentage of error compared to Illumina is slightly 

higher and around 1,7%65.  

3.5. Whole exome sequencing 

Whole exome sequencing (WES) consists in sequencing virtually all known protein-coding 

regions (“exons”) in a genome. WES was used for the first time in 2009 to rediscover a 

previously known mutation that causes Freeman-Sheldon syndrome in a four-member family69. 

Over the last 10 years, WES has been used with success in thousands of cancer patients leading 

to new discoveries, including mutations in different forms of cancers including leukemia70–72. 

WES covers about 30 Mb scattered across 180,000 exons in the genome69. The sequencing of 

exons is both timesaving and less expensive compared to whole genome sequencing. 

Moreover, the reduction in sequencing costs led to a substantial increase of the target region 

coverage making easier and more likely to detect relevant mutations. WES can be used to detect 

mainly different point mutations (SNPs), small insertions and deletions (indels), and copy 

number variations (CNVs). 

It has been estimated that up to 85% of disease-causing mutations can be found in the exome 

regions73. To perform WES, it is essential to efficiently isolate the exons that are spread out in 

the genome. Currently, there are three companies that offer commercial kits for capturing 

exons: Agilent, Roche/Nimblegen and Febit74. They all apply the same principle to extract 

exons: randomly fragmented DNA is hybridized to oligonucleotide baits complementary to the 
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exome targets. The difference between the commercial kits is in the way hybridization is 

performed: the most commonly used methods are solid-phase and liquid-phase hybridization. 

In solid-phase hybridization, probes complementary to the sequences of interest are fixed to a 

solid support, microarray or filter, and allowed to hybridize with total DNA75. The non-selected 

genomic fragments are washed away while the target fragments remain attached via probes to 

the solid support, and are later eluted, PCR amplified and sequenced. In liquid-phase 

hybridization, the used probes are biotinylated. The probes hybridize with their target DNA 

and are then captured with magnetic streptavidin beads76. The beads are then removed, and the 

selected fragments can be amplified and sequenced. In 2009, the commercial kits have been 

setup to target the human consensus coding sequence region, covering about 83% of the RefSeq 

coding exon bases (29 Mb of the genome)77. Manufacturers are continuously improving their 

kits by adding more baits to increase the percentage of exonic regions captured. For example, 

the newest version of Agilent Sure Select Kit (v7) covers approximately 50 Mb.  

Coming to WES limitations, biases and inefficiencies introduced during the targeting capture 

process needs to be considered in the interpretation of the sequencing results. For example, the 

capture efficiency across different exons is not uniform leading to uneven read coverage of 

sequenced exons and loss of coverage regions78. In addition, since WES is a technology relying 

on previous knowledge, unknown exons are skipped by capture and potential important variant 

can be miss79. WES is often used to study cancer genomes because it overcomes difficulties 

encountered with other technologies. Cancer samples are problematic to sequence because are 

almost always a mixture of cancerous and healthy cells. Investigating the cancer genome with 

Sanger sequencing will miss most variants at low frequency80.  

3.6. Somatic variants detection by WES 

WES raw data 

WES results in a huge amount of data, which need to be analyzed with bioinformatics tools. 

This thesis focuses on methods used for WES analysis and the issues to address for detection, 

prioritization and interpretation of somatic variants from WES data of cancers. The big volume 

of information generated by NGS experiments is the first problem for the management, storage 

and data analysis.  

The information captured is encoded in images (Illumina) or in digital data (IonTorrent) that 

must be recorded, managed and processed. Next, acquired data are converted into sequences 

in a process called “Base calling” which requires intensive computation. Each platform uses 
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specific computer algorithms that evaluate several parameters, such as the detected 

fluorescence or the potential difference, the background noise, and the presence of any non-

specific signals, to generate nucleotide sequences. A quality score, related to the probability of 

error, is assigned to each called sequence bases. Base quality scores are very important for the 

subsequent steps of analysis. Although quality assessment varies according to the type of 

platform, the calculations are based on a Phred score index introduced in 1998 for sequence 

data obtained with Sanger sequencing81,82. A Q Phred quality score is an integer mapping of 

the p probability that the corresponding base call is incorrect: 

Q = -10 log10 p 

The higher the quality of the base, the higher the Phred score: for example, the chances that 

base with a Q=30 is incorrectly called are 1 in 1000 (99,9% accuracy). Base quality score 

during following analysis is considered to exclude fragments or bases having low quality and 

also to optimize the precision of alignment to the reference sequences83.  

Once finished a sequencing, millions of short sequences called reads (usually long between 

25-250 bp long) are obtained and stored in text files encoded in FASTQ format. Each read 

consists of four rows. The first row, beginning with the ‘@’ character, is a header uniquely 

identifying the corresponding read and an optional description; the second row reports the read 

sequence in FASTA format indicating with ‘A’,’T’,’G’,’C’ characters the corresponding bases, 

or ‘N’ when the base calling failed; the third row is delimited by ‘+’ character, optionally 

followed by the sequence identifier and description, indicating the end of the sequence and the 

beginning of the quality scores line; the last line contains the quality scores for each called 

base, encoded in a way such that each single character corresponds to the quality of the base in 

that position.  

An example of FASTQ read is given below: 
@K00171:147:H57LJBBXX:5:1101:32289:2123 1:N:0:AAGGACAC 
GCCTCTCTGGAGAGAATGAGCTGGTGTTCGGGGTGCAGGTGACCTGTCAGGTGAGGCCATCCCG 
+ 
AAAFAFAFFJFJJJ7AJJFJJFJJAJJJJJJJJJJFAFJAJJJJJJFFFJJJJFJJJJF<FJJJJJJFJJFJJFJJJFJJJAF 

 

Phred quality scores from 0 to 93 are encoded using ASCII 33 (‘!’) to 126 (‘∼’). Raw reads 

undergo to quality control and pre-processing which includes the removal of adapter sequences 

and sequences with low quality.  

SNPs and indels can be detected from FASTQ files by an analysis comprising three main steps: 

 Alignment: the reads must be aligned to a reference genome. 

 Post-alignment processing: the alignment of reads must be improved to limit the calling of 

false positive variants. 
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 Variant calling: Detection of sites in sequenced regions that are different respect to the 

reference genome. 

Next, usually the detected variants are annotated with information deriving from databases and 

filtered to remove low confidence variants.  

Short reads to the reference genome alignment 

Obtaining good alignments is a critical task for most NGS projects and is crucial to identify 

true somatic variants. The short-length of NGS reads, the uneven coverage of the sequenced 

genome following the Poisson distribution, the repetitive regions of the genome, indels, and 

sequencing errors making the alignment step computationally intensive and time-consuming. 

Several alignment algorithms have been developed to address these challenges. Since 

alignment can be time consuming, a good aligner must be a good compromise between 

accuracy and speed of computation. Bowtie84,85 and Burrows-Wheeler Aligner (BWA)86 exploit 

Burrows-Wheeler Transform (BWT) to efficiently store a compressed prefix tree (Trie) of the 

reference genome in memory. A Trie is a data structure which stores every prefix of a string 

such that every exactly repeated substring is only recorded once. The time required to test if a 

query string is an exact match of a reference string represented by a Trie is linear with the 

length of the query string. BWA uses the standard search algorithm of prefix trees allowing 

also mismatches and gaps in the NGS reads. For paired-end reads, BWA first aligns both reads 

of a pair separately and then joins them. If paired-end reads map to different positions in the 

reference genome, the region where the reads align close to each other is preferred. The 

alignment data are stored into a text file named SAM (“Sequence Alignment/Map”) format, that 

informs for each sequence about chromosome, alignment position, strand, and quality estimate 

of alignment. The SAM format consists of a header and an alignment section87. The header 

contains various information about sequenced sample (e.g. sequencer, reference sequence 

dictionary, program used for alignment or optional comments). Each header line begins with 

‘@’ character to distinguish them from alignment section. Alignment data are organized in 11 

mandatory fields, as well as a variable number of optional fields87.  

SAM files are usually very large, posing significant issues for storage and for manipulation in 

subsequent analysis steps. SAM files can be compressed into an indexed binary format named 

BAM, which is more efficient in term of space and speed since the data are more accessible by 

software to perform downstream analysis. 
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Column Name Type Description 
1 QNAME String Query name of the read or the read pair 
2 FLAG Integer Bitwise FLAG 
3 RNAME String Reference sequence name 
4 POS Integer 1-based leftmost position of clipped alignment 
5 MAPQ Integer Mapping quality (Phred score) 
6 CIGAR String Extended CIGAR string 
7 MRNM String Mate reference name 
8 MPOS Integer 1-based leftmost mate position 
9 ISIZE Integer Inferred insert size  
10 SEQ String Query sequence on the same strand as the reference 
11 QUAL String ASCII of Phred-scaled base quality+33 

Table 1. Description of the fields included in SAM/BAM file format. 

Post-alignment read processing 

Before variant calling, a post-alignment processing is important to enhance the quality of the 

alignment used to detect variants. Since PCR amplification introduces duplicates of reads in 

the data, influencing coverage and downstream analysis, the removal of PCR duplicates is 

fundamental to accurately represent the sequencing depth and reduce false positive variants. 

Many tools have been developed for PCR duplicates removal, such as Picard 

(http://broadinstitute.github.io/picard) or SAMtools87. Recently, random small oligonucleotide 

barcodes called Unique Molecular Identifiers (UMIs) are increasingly used in sequencing 

experiments to easily recognize PCR duplicates and correct artifacts inserted during sequencing 

or amplification step88–90. UMIs are attached to the original fragments through ligation or 

primer extension prior to PCR amplification, and then are retrieved from sequencing reads 

allowing the molecular-tracking of each reads. Sequenced fragments with the same UMI 

sequence derive from the same molecule and all except one are marked as duplicates. In 

addition, reads with identical UMI sequence can be used to reconstruct a consensus read by 

majority voting or weighted scoring at each base, in order to correct sequencing or PCR errors 

through base-call consensus and UMI counting90. This method can introduce artifacts arisen 

during the first-cycle PCR that propagate through amplification or errors hitting UMI 

sequences. Moreover, the correction of errors could lead to rare variants missing.  

Another important parameter to consider in variant calling is the base quality score. Studies 

have reported that base quality scores are not accurately assigned by sequencer-software and 

not reflecting the real error probability91. In particular, base quality scores are largely affected 

by the position within a read and the sequence context of a considered base. In addition, certain 

dinucleotides are more prone to errors on each sequencing platform, and specific platforms 
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present systematic errors (errors in rich-GC regions in Illumina or errors in repeated regions in 

IonTorrent). Since base quality score is fundamental for accurate variant calling, bioinformatics 

tools have been developed to perform base quality score recalibration. A tool of Genome 

Analysis Toolkit (GATK) recomputes base quality scores after alignment, considering 

position, dinucleotide context, and a baseline expected error rate calculated from loci without 

SNPs expected92. Post-alignment processing comprises also local realignment of reads around 

indels. The mapping of short reads including indels is difficult for aligners, resulting in many 

mismatches near the misalignment respect to the reference genome, which ultimately results 

into false SNPs. In addition, reads having an indel near their start or end are often incorrectly 

aligned with respect to the true indel. Local realignment converts sequences with indels into 

reads containing a consensus indel suitable for correct variant detection (Figure 7).  

 
Figure 7. Alignment visualization before (left) and after (right) local realignment around indels92. Reads are 
indicated by grey arrows; highlighted bases are mismatches with the reference whereas dashed lines represent a 
deletion of four bases. Local realignment around indel enhances reads alignment indicating that the two variants 
G/A and A/G (highlighted letters) are misalignment artifacts. Figure adapted from DePristo MA, et al., 2011. 

Somatic variant calling 

After alignment enhancement, the next step of analysis is variant calling. Four different types 

of variants can be detected by WES: SNPs, indels, copy number variations and structural 

variants (duplications, translocations, etc.). The calling of each type of variant is based on 

specific assumptions requiring different algorithms and few variant callers are enough versatile 

to detect more than one type of variant. The general strategy to detect SNPs and short indels is 

to search for differences between the reads that cover a considered region and the sequence of 

the reference genome. Considering that NGS reads are short, structural variants and long indels 
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are detected locating the breakpoints based on the sudden change of read depth or misalignment 

patterns by exploiting split-reads and de-novo assembly methods90. Germline and somatic 

variant (SNPs and indels) calling also requires different algorithms. Germline variants are 

expected at allele frequencies of 50 or 100% and sequencing artifacts are easily identifiable 

because are usually present at low frequency. Conversely, some real somatic variants have low 

frequencies in case of contaminated samples, circulating DNA, or tumor rare subclones, 

requiring complex statistical modeling and advanced error correction in order to disambiguate 

them from artifacts. In this thesis, only the detection and analysis of somatic SNPs and indels 

will be considered. 

As previously discussed, one of the main aims of cancer sequencing projects is to discover 

specific somatic mutations leading to tumorigenesis, whose identification may give 

information on disease mechanisms being clinically relevant, for diagnostic and prognostic 

aims, and to guide the optimization of the type and intensity of the therapy approach.  

To distinguish somatic variants from germline and loss of heterozygosity (LOH) variants, the 

genome of tumor sample is compared with the genome of normal tissue collected from the 

same patient in the so-called tumor-control matched sequencing approach (Figure 8).  
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Figure 8. Schematic diagram of tumor-control matched sequencing workflow. Library preparation, 
sequencing, and alignment of tumor (blue) and control (red) samples are performed separately. Somatic mutations 
in the tumor DNA can be detected from comparison with control DNA80.  
 
Despite the design of the analysis seems very simple, actually a mere subtraction of variants 

called in the control sample from the tumor sample is absolutely not adequate to detect somatic 

variants. This step of analysis is challenging because of complexity of cancer samples 

characterized by altered ploidy93, intra-tumor heterogeneity94, low tumor purity95, and insertion 

of false positives or artifacts during tumor tissue conservation96, library preparation, 

sequencing or alignment97. For an optimized somatic variant detection, the tumor DNA should 

be extracted from a biopsy of pure population of tumor cells and without significant necrosis 

or inflammation98. In this condition, most of the somatic mutations are expected to be 

heterozygous. Actually, the tumor samples are collection of cells, comprising both normal cells 

and different populations of malignant cells. In addition, tumor biopsies are often single 

snapshots of the whole tumor affected by a selection bias of cell populations influencing the 
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frequencies of the detected somatic variants. Therefore, the expected allele frequency of 

somatic SNPs in tumors may be substantially less than 50%, making difficult to distinguish 

true variants from errors or artifacts even with high sequence coverage (Figure 9).  

 
 
Figure 9. Variant detection in tumor samples. Reads are aligned to the reference genome (gray bar). Germline 
variants are indicated by green circles, somatic variants by red circles and sequencing errors by black diamonds. 
(a) Representation of variant detection in a pure tumor sample. Assuming that the locus is not affected by copy 
number variations, a heterozygous germline or somatic SNP is present in about half of the reads covering the 
region. (b) Representation of variant detection when tumor purity decreases. The reads deriving from tumor and 
control cells are indicated with blue and orange bars, respectively. The number of reads supporting somatic 
variants proportionally decreases with tumor purity, thus reducing the signal to detect somatic variants. In this 
example the somatic variant in the middle is not detected because not distinguishable from a sequencing error93. 
 

Several variant callers for somatic mutations have been developed to try and overcome above-

cited issues with different approaches. VarScan299 and VarDict100 exploit a heuristic approach 

to identify potential variants present in reads respecting algorithm-specific thresholds and then 

apply statistical tests or rules to call somatic variants. SAMtools101 and SomaticSniper102 make 

genotype analysis assuming diploidy in both tumor and control. They consider the probability 

of the joint genotypes with Bayes’ rule (SomaticSniper) or log-likelihood ratio (SAMtools) to 

calculate a “somatic score”. The higher is the score, the higher is the probability that tumor has 

different genotype respect to control and the site is marked as potential somatic variant subject 

to post-filters. Another caller, MuTect103, considers allele frequencies instead of genotypes not 

assuming the diploidy with the aim to also detect somatic variants at low frequencies. 

Independently for each locus, MuTect detects variants in tumor sample by a Bayesian classifier 

to evaluate if each observed non-reference base can be due to a sequencing error. The allele 

frequency for each site is estimated as the fraction of tumor reads that carry the variant and not 
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assuming it is heterozygous. Then, site-based filters are applied to eliminate false positives 

considering six type of known sequencing errors and artifacts (proximal gap, poor mapping, 

triallelic site, strand bias, clustered position, observed in control). Finally, the remaining variant 

sites undergo to another statistical evaluation by a different Bayesian classifier to sort out 

somatic and germline variants. Recently, some variant callers, such as MuTect2104 and 

Strelka2105, were developed exploiting the haplotype-based strategy because the detection of 

indels and structural variants is notably better respect to position-based strategy. These tools 

locally assemble reads in a region and generate candidate haplotypes that may be represented 

by de Brujin-like graphs90. The likelihood of each haplotype is estimated by aligning each read 

to the haplotype and counting the read support90. This approach is more reliable in regions 

dense of variants because it is not based on local alignment which is prone to errors particularly 

in difficult regions90.  

Since each variant caller has its own merits and defects, the choice of which to use strongly 

depends on what type of variants are of interest, the desired VAF and the coverage of the 

sequenced samples. Variant callers based on genotype approach are designed for low-coverage 

data and not sensitive enough to detect low frequency variants because the diploidy assumption 

in tumor implies that real variants’ allele frequency is around 0.5 or 1.090. MuTect and callers 

that estimate allele frequencies directly are the most efficient to detect somatic variants at low 

frequency, especially with high depth of coverage. Heuristic analysis-based callers are efficient 

for low-frequency variants, but the caller-specific thresholds must be chosen very 

carefully106,107. If indels and structural variants are of interest, haplotype-based variant callers 

are the most convenient. 

Variant caller Type of variant Type of core algorithm 
VarScan2 SNV, indel Heuristic threshold VarDict SNV, indel, SV 
SAMtools SNV, indel Genotype analysis SomaticSniper SNV 
MuTect SNV Allele frequency analysis 
MuTect2 SNV, indel Haplotype-based analysis Strelka2 SNV, indel 

Table 2. List of some of tumor-normal somatic variant callers grouped for type of core algorithm. 

3.7. Variant annotation and prioritization 

Somatic variants detected in each considered sample by callers are very numerous and the 

majority of them are passenger variants. Several approaches can be used to prioritize somatic 

mutations including variant effect prediction, evaluation of allele frequency in populations, 
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observation of variant or mutated gene recurrence in disease samples and functional 

prioritization of gene products by pathway or protein-protein interaction (PPI) network.  

Annotation of somatic variants and prediction of functional impact 

Many genome annotation databases have been developed and are continuously updated, such 

as Ensembl108 or UCSC Genome Browser109. There are bioinformatics tools that exploit 

information gathered in these databases in order to annotate variants in coding and non-coding 

regions genome wide. For instance, ANNOVAR110 and SnpEff111 allow functional impact 

prediction by annotating transcripts and giving information about amino acidic changes. 

Missense, nonsense, stop-loss, frameshift and splice site variants have all potential to affect 

protein function and they are prioritized over synonymous variants by these tools. In particular, 

truncating and splicing variants are of interest because of their high cellular and systemic 

impact. In addition, several algorithms and methods have been developed to predict deleterious 

and tolerated variants basing on sequence identity, sequence conservation, evolutionary 

relationship, protein primary and secondary structure, entropy-based protein stability. The most 

used are SIFT112, PolyPhen2113 and MutationAssessor114, but they lack specificity and 

sensitivity to sufficiently reduce the large number of candidate mutations from exome 

sequencing115,116. They are based on a priori assumptions that may not be enough exhaustive 

to predict an oncogenic impact of a mutation. Some epitopes of phospho-kinases and signal 

transduction proteins can be quite complex, and these approaches could not capture this 

complexity missing important oncogenic variants117. For example, MutationAssessor predicts 

as tolerated a well-known activating variant (H1047R) in PIK3CA118. In addition, predictions 

of different tools are very often in contrast each other because based on different assumptions.  

More complex methods have been developed to attempt increasing predictive precision 

combining more predictors. MetaSVM and MetaLR are based on Support Vector Machine 

(SVM) and Logistic Regression (LR), respectively, to combine 10 different predictor scores 

and the maximum frequency indicated in 1000 genomes populations in order to predict for 

deleterious variants119. These tools are not sufficient alone to exhaustively predict driver 

variants, and other approaches are needed to reduce false negatives.  

Somatic variant filters based on population allele frequencies 

Various databases could be used to delete common polymorphisms considering allele 

frequencies both as an average across all the populations studied and for individual population 

groups, including African, Admixed American, East Asian, Finnish, Non-Finnish European, 
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South Asian, and other. NCBI dbSNP database120, established in 2001, is continuously updated 

to gather both well-known and rare variants from many organisms giving additional 

information about disease association, genotype origin, and somatic and germline variant 

information. One of the most popular databases for population allele frequencies is 1000 

Genomes Project121 which uses data from the sequencing of more than 1000 healthy people of 

five ethnicity groups. More recently, the Exome Aggregation Consortium (ExAC)122 has 

assembled and reanalyzed WES data of 60,706 unrelated individuals who are part of various 

disease-specific and population genetic studies123. In 2017, the authors of ExAC published the 

Genome Aggregation Database (gnomAD) providing allele frequencies of variants detected 

from 123,136 exomes and 15,496 genomes of unrelated individuals giving a more 

comprehensive data122. Currently, ExAC and gnomAD are the most used databases considering 

that population allele frequencies are calculated from much more individuals than 1000 

Genomes Project. Nevertheless, ExAC and gnomAD have some limitations: individuals are 

not randomly sampled from the population, some populations are not represented, some exons 

have confounded or no coverage owing to exome capture technologies, absence of individuals’ 

clinical data, some control cancer exomes obtained from blood may be contaminated by 

circulating cancer cells. In addition, the variants causing cancer are expected to show an 

incomplete penetrance and/or variable expressivity of the clinical phenotype implicating that 

there are carriers considered as healthy in these databases124. A study reported that 24% of 

5,700 asymptomatic individuals were carriers of confirmed causal alleles for at least 1 severe 

condition125. Finally, the most of cancers arises at adult age not impacting on population fitness 

and variants associated to cancer development could have population allele frequencies larger 

than usually used thresholds (1%). Thus, interpretation based on population allele frequencies 

should be done with care requiring other approaches to further prioritize variants. 

Additional criteria for variant prioritization 

The identification of candidate variants for a particular cancer or clinical features is not always 

obvious, despite the application of variant filtering protocols. The remaining variants with 

likely functional impact are much more than those can be experimentally validated. For a 

practical point of view, individuation of candidate genes carrying functional variants in the 

context of existing biomedical knowledge can be useful to obtain a set of variants for further 

functional validations or experimentations. Bioinformatics tools, such as above-cited 

ANNOVAR and SnpEff, can annotate variants with information from published cancer and 

disease databases. ClinVar126 reports association between genomic variants and diseases 
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providing clinical data. Specific for cancer studies are Cancer Gene Census33, COSMIC127, and 

The Cancer Genome Atlas (https://cancergenome.nih.gov/). Cancer Gene Census is a 

continuously updated catalogue of genes carrying mutations that have been causally implicated 

in cancer. While, COSMIC and The Cancer Genome Atlas are large databases that report 

variants detected in different types of tumor allowing for identification of relevant cancer-

related variants. 

Recurrence as indicator of importance? 

Another approach to identify possibly driver variants is to look for recurrent somatic variants 

in cohorts composed by patients with the same or similar phenotype. Recurrence analysis of 

variants is based on the concept that high number of cancer samples harboring the same 

mutation supports its involvement in unregulated cellular growth or other cancer hallmarks. 

For example, the mutation V600E in BRAF was found in more than 50% of melanoma 

patients128 or the mutation V617F in JAK2 has a frequency of about 90% polycythemia vera 

patients129. Nevertheless, the recurrence of variants in cancer studies is often very low and little 

informative leading to search recurrences at higher biological levels, such as genes. Different 

patients can be affected by different variants hitting the same gene inducing similar functional 

protein changes and, thus, phenotype. Through NGS, KRAS, TP53, and APC was found 

mutated by different variants in 112 colorectal cancer patients with frequency of 36%, 39%, 

and 30%, respectively130. Other cancer types failed to show highly recurrent genes, such as 

medulloblastoma where cBioPortal database reported CTNBB1 as the most recurrently mutated 

genes in 9% of patients.  

However, many recurrently-mutated genes in cancer studies do not seem to be associated to 

cancer development considering their biological function and/or genomic features. In some 

cases, recurrences are due to false positive variants created by technical or alignment errors. In 

other cases, the variants are artifacts inserted during sample conservation. Indeed, most cancer 

biopsies are in formalin-fixed and paraffin-embedded, but nucleic acids of these samples are 

subject to have cross-linking and degradation131.  

In addition to artifacts, it is known that the mutation rate is not constant across the human 

genome but depends on the genomic context of a nucleotide and the type of mutation. In 

addition, some genes are more prone to mutate due to their length, expression rate, and/or 

replication timing. The background mutation rate (BMR) is not constant across patients with 

same cancer, and hypermutated cases are often found. Lawrence et. al reported that pediatric 

tumors have a mutation rate much lower (0.1/Mb) than other cancers often induced by 
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environmental factors, such as lung cancer or melanoma (100/Mb)132. Finally, certain genomic 

regions display localized somatic hypermutation, called kataegis93.  

Several tools have been developed to identify driver recurrently mutated genes to solve the 

problem of extensive false positive recurrently mutated genes in cancer cohorts. Examples are 

MutSigCV132 and MuSiC133 which find recurrently-mutated genes evaluating whether the 

observed number of mutations in a considered gene is significantly higher than the number 

expected according to a BMR. The BMR is the probability of observing a mutation in a specific 

location of the genome132. The main differences between methods are in how BMR is estimated 

and how many complications are considered. These tools require very large cohorts to identify 

high-confident recurrently-mutated genes. 

Pathways and interaction networks topological analysis 

Initially, network and pathway-based methods have been largely used with expression data to 

evaluate biological functions affected by aberrant expression of genes9. Cancer development is 

well known to be characterized by alteration of key functions affected by somatic mutations8,10. 

In fact, protein-coding genes do not act in isolation, but rather interact participating to complex 

cellular reactions linked to specific biological functions. Moreover, many cancer studies 

reported that patients with similar phenotypic characteristics carried a few recurrently mutated 

genes and a long tail of rarely mutated genes10,134. These evidences lead to focus the research 

of driver events at pathway level where the frequently and rarely mutated genes can alter same 

biological functions or can concur to alter them. Pathways are small-scale systems of well-

studied processes where interactions comprise biochemical reactions and events of regulation 

and signaling between genes, proteins and other biomolecules that carry out biological 

functions135. The aim of this approach is to identify groups or combinations of genes associated 

to specific pathways recurrently mutated prioritizing also rare driver variants that are crucial 

for precision oncology (Figure 10).  
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Figure 10. Example of recurrently mutated gene network. Nodes represent genes and edges represent gene 
interactions. The three colored nodes indicate mutated genes detected in three different patients. This 
reconstruction shows a group of connected genes which is recurrently mutated suggesting that biological 
functions associated to it are altered.  

A first approach to determine if groups of genes are recurrently mutated in a cohort is to 

compare them to known pathways gathered in public databases without considering 

information about interactions. This approach consists in a gene set enrichment analysis applied 

to pre-defined lists where the overlap between mutated genes and sets of genes with known 

functional annotations (pathways) is statistically evaluated through hypergeometric test or 

Fisher’s exact test followed by a correction for multiple testing. Various public databases give 

functional information such as KEGG136, Reactome137 and Gene Ontology (GO)138. More 

complex methods, such as PathScan139, were developed to perform per-patient enrichment 

analyses and, then, combine the results of tests across all of the considered patients. These 

approaches result in a list of processes and pathways significantly enriched of mutated genes 

giving a first view on affected biological systems, but they have four main limitations. First, 

the annotated gene sets used for enrichment analyses are often large and these methods may 

not capture significant enrichment of mutations in a smaller subset belonging to the considered 

gene set. Second, these methods are based on already well-known pathways making not 

possible to detect driver mutations in less-characterized pathways and to predict novel cancer 

pathways. Third, the pathways are considered as separated gene groups not considering their 

crosstalk which is, instead, fundamental for cancer development140. Finally, the topology of 

interactions between genes is ignored and consider the contribute of each gene to a pathway 

equally.  

A second approach that can be used to infer novel cancer genes and pathways is based on gene 

or protein networks, overcoming the limitations of pathway analyses. The altered genes and 
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their “interacting genes” are extracted from public databases to reconstruct an interaction 

network. This depicts interactions between mutated genes, but also relations with non-mutated 

genes that could participate in cancer development due to their interactions. Several public 

databases can be used to reconstruct a gene or protein network. The interactions of network 

can be experimentally verified, being more reliable, or only computationally predicted. 

STRING141 gathers both types of interactions whereas HPRD142 contains only those 

experimentally validated. The above-cited KEGG136 and Reactome137 are considered the most 

reliable sources of experimentally verified reactions.  

Networks are often large and complex making their interpretation not obvious. In order to 

obtain the significantly mutated subnetworks making the interpretation of the result more 

comprehensible, methods performing quantitative analyses on biological networks integrating 

somatic mutations data have been developed. The topological features of interactions network 

can provide insights on the biological significance of participating proteins or genes. Usually, 

topological analysis considers two main aspects: centrality analysis and clustering analysis. 

Centrality analysis estimates the importance of single nodes in the connectivity of the whole 

network. Centrality analysis considers two aspects: node degree and degree of global centrality. 

Node degree is the number of edges of the considered node, but this estimation is only local 

because it estimates the centrality of the node with its surrounding proteins/genes. A global 

centrality analysis is required to estimate position of the node considering the whole network 

through the measures of closeness centrality143 and betweenness centrality144. 

In contrast, clustering analysis is aimed at identifying groups of nodes (functional modules) 

where nodes are more connected to each other than to the rest of the network reducing 

considerably the complexity of the considered network. The detection of functional modules 

from large networks is still challenging, and many algorithms have been developed to 

investigate about different biological scenarios. 

One of the most interesting clustering methods for somatic variant analysis is HotNet2145, 

which is based on an insulated heat diffusion model to detect statistically significant mutated 

subnetworks evaluating both recurrence of gene mutations and local topology of protein’s 

interactions (Figure 11). 
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Figure 11. Hot diffusion model for analyses of networks (HotNet2145). Nodes indicated genes and edges gene 
interactions. Color of nodes indicate the amount of “heat” concentrated into nodes. Hot diffusion across the 
network is used to estimate how strongly the aberrant genes are connected in the network. HotNet2 compute and 
assign to each node a score proportional to the frequency of mutations in the gene. Heat score starts to spread to 
neighboring nodes exploiting an insulated diffusion model until an equilibrium state is reached. Finally, 
subnetworks are identified in the network according to the amount of heat exchange between pairs of nodes and 
“cold” nodes are deleted. 
 
HotNet2 algorithm is divided in four steps. Initially, HotNet2 estimates the influence between 

all gene pairs of the network by an insulated heat diffusion model where the heat is transferred 

to neighbors and a fraction of heat is retained by each node, until an equilibrium is reached. 

The estimated amount of heat that is transferred from a node to another represents the influence 

estimation which is strongly dependent by topology of interactions. Second, the “heat” scores 

for each gene are calculated proportionally to frequencies of gene mutations and they are placed 

onto the network in according to influence estimation obtained in previous step. Third, the 

mutated subnetworks are identified by removing gene-gene interactions where the amount of 

“heat” exchange is below a threshold δ, which is the median of minimum δ such that all 

subnetworks detected in 100 permuted networks have a maximum size Lmax. For all sizes k 

lower than Lmax, HotNet2 computes the number of subnetworks, having a minimum size k, 

obtained by the application of δ on the considered network. Finally, HotNet2 evaluates the 

statistical significance of the number of detected subnetworks for each minimum size k (Xk) 

using a two-stage statistical test. In the first stage, a p-value is computed by a permutation test 

where the empirical distribution of Xk is estimated on permuted networks where the heat scores 

are randomly changed on genes. The second stage consists of False Discovery Rate 

computation by Benjamini-Hochberg method for each p-value calculated previously. Finally, 
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the subnetworks with minimum size k having the lower corrected p-value are selected. 

Although network analyses have high power of discovery in cancer studies and overcome 

limitations of pathway-based approach, they are limited by the quality and coverage of the 

interaction network. At the moment, high-quality interaction networks are relatively scarce. 

Most interaction networks are based on high-throughput screens to predict protein interactions, 

such as yeast-two-hybrid, mass spectrometry and computational methods, which are subject to 

high false positive rates146. In addition, the databases of interaction networks report relations 

between protein that occur in different tissues, different cellular locations, or at different 

developmental time points or cell-cycle phase93. Finally, in some cases the interpretation of the 

results is not obvious because many predicted interactions are not functionally annotated. The 

continuous improvement of network-based methods and an always more complete knowledge 

about human interactome will help understanding how somatic mutations can act to drive 

cancer progression. 
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4. Aims of the study 

This PhD project aimed at improving available bioinformatics software and developing new 

tools for WES data analysis obtained from solid or blood cancers, to identify somatic driver 

events and to associate variants to different clinical conditions or features. The project has been 

characterized by both methodological development and new experimental data analysis: 

• The development of a computational pipeline to detect and prioritize reliable somatic 

variants from WES data that could perform customizable, more complete and easier 

analyses addressing most of the challenges presented by WES studies in cancer. 

Moreover, the development of a systems genetics approaches to reconstruct pathway-

derived meta-networks that can be easier to interpret that the most used protein-protein 

interaction networks. The use of bioinformatics tools to perform quantitative analyses 

on pathway-derived networks with the aim at detecting significantly mutated 

subnetworks easily associated to altered biological functions. 

• During my PhD, different, progressively improved and updated versions of the pipeline 

and of the systems genetics methods whose final version is presented in this thesis have 

been applied in three cancer studies conducted in collaboration with different groups of 

researchers, that contributed data and biology expertise. These studies characterized by 

experimental work, including variant validation and functional study relying on the 

results from bioinformatics analysis presented in this thesis are:  

1. Discovery of putative driver variants and functional modules of mutated genes 

in Large Granular lymphocyte Leukemia (LGL-L).  

2. Genomic characterization of pediatric High-Risk Neuroblastoma (HR-NB) 

prognostic subgroups having different survival time.  

3. Detection of molecular mechanisms driving pediatric-type nodal follicular 

lymphoma (PTNFL) and primary follicular lymphoma of the testis (PFLT) 

development.  
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5. Materials and methods 

5.1. Programming languages 

Python 

Python (www.python.org) is a general-purpose, high-level programming language. Its design 

philosophy emphasizes programmer productivity and code readability. It is widely used in the 

scientific community and a library specifically developed for computational molecular biology 

is freely available (Biopython).  

R 

R (www.r-project.org/) is a high-level and an interpreted programming language and a software 

environment mainly used for statistical computing, statistical software development and data 

analysis. In addition, Bioconductor (https://www.bioconductor.org/), an open source and 

development software project for the analysis and comprehension of high-throughput genomic 

data, is based on R programming language.   

RStudio  

RStudio (https://www.rstudio.com/) is an integrated development environment (IDE) which is 

designed to facilitate programming in R language. The RStudio project provides various 

advantages including a four-panel layout with a console for interactive R session, a source-

code editor to organize a project’s files, and panels with notebooks to organize fewer central 

components. Moreover, the console and source code-editor are tightly linked to internal help 

system of R and It is possible to set up different projects and switching between them is easy. 

Finally, it provides many easy-to-use tools for managing packages, the workspace, files, and 

more.  

SCons  

SCons (http://www.scons.org) is a software tool written in Python designed to facilitate 

software development by managing the building and compilation of large software projects. 

SCons’ actions are generic and can be implemented in Python scripts that will be custom for 

the specific application.  

Docker  
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Docker (https://www.docker.com/) is the most used framework that implements operating 

system-level virtualization. It allows to develop, test and distribute informatics code in 

standardized conditions inside units isolated from the physical computer, called “containers”. 

A container can be considered as a very light virtual machine which contains everything 

necessary to make software work, such as libraries, dependencies, code, and system tools. 

Moreover, Docker facilitates code distribution making the software work with any operating 

system. 

5.2. Databases and web tools for somatic variant prioritization 

The Single Nucleotide Polymorphism Database (dbSNP) 

dbSNP120 is a free public database of genetic variations of different species, curated and 

periodically updated by National Center for Biotechnology Information (NCBI) in 

collaboration with the National Human Genome Research Institute (NHGRI). dbSNP collects 

SNPs, indels, short tandem repeats (STRs), multinucleotide polymorphisms (MNPs), 

heterozygous sequences and names variants.  

Catalogue of Somatic Mutations in Cancer (COSMIC) 

COSMIC127 is a public archive of somatic mutations detected in human cancer studies, which 

is curated from the Cancer Genome Project of the Sanger Institute. The data are collected from 

the scientific literature and large-scale resequencing studies of cancer samples undertaken by 

the Cancer Genome Project. In addition, provides a list of cancer genes already confirmed by 

experimental studies, named Cancer Gene Census33.  

ClinVar  

ClinVar126 is a free database curated by NCBI reporting variants associated to clinical 

phenotypes. It is based on dbSNP, to maintain information about the location of variation on 

human assemblies, and MedGen (http://www.ncbi.nlm.nih.gov/medgen), to give phenotypic 

descriptions. 

dbNSFP  

The dbNSFP147 is an integrated database of functional predictions from multiple algorithms 

and annotations of SNPs of the human genome. It comprises prediction scores from 20 
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prediction algorithms, 6 conservation scores, and information about population allele 

frequencies, gene expression, gene interactions and etc. 

Exome Aggregation Consortium (ExAC) 

ExAC122 is a public collection of human variants detected by WES in 60.706 unrelated 

individuals providing information about allele frequencies in various populations and 

functional data. Individuals affected by severe pediatric disease were removed from data set. 

The WES raw data of all individuals were analyzed with the same workflow and jointly variant-

called to increase consistency across projects.  

Genome Aggregation Consortium (gnomAD) 

The gnomAD122 is an improvment of ExAC in term of dataset size to compute population allele 

frequencies and type of variants reported. Indeed, it aggregates both exome data of 123,136 

and genome data of 15,496 unrelated individuals sequenced in different population genetic and 

disease-specific studies.  

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

KEGG136 includes various databases gathering information about biological pathways, 

genomes, diseases, drugs, and chemical substances. This project was started in 1995 at the 

Kyoto University with the aim to improve interpretation of genome sequencing data developing 

KEGG PATHWAY database. KEGG PATHWAY is a collection of manually drawn pathway 

maps building a network of molecular interactions and reactions representing experimental-

verified knowledge on metabolism and various cellular and organismal functions. 

Reactome  

Reactome137 is a free catalogue of biological pathways representing molecular details of signal 

transduction, transport, DNA replication, metabolism, and other cellular processes. Each 

pathway is made up of biological reactions between entities (nucleic acids, proteins, complexes 

and small molecules) forming a network. Reactome reports physical interactions where 

substrates interact, possibly facilitated by enzymes or other molecular catalysts, to result into 

products. The reported interactions are various including classical chemical interconversions 

of intermediary metabolism, binding events, complex formation, transport events that direct 

molecules between cellular compartments, and events such as the activation of a protein by 
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cleavage of one or more of its peptide bonds. Each interaction is experimentally verified and 

supported by literature citations. 

MutationMapper  

MutationMapper (http://www.cbioportal.org/mutation_mapper.jsp) is a web tool part of 

cBioPortal147 which builds lollipop plots by mapping inserted mutations on protein sequences 

of the isoforms functional annotated in Pfam database148.  

5.3. Third-party software tools  

Burrows-Wheeler Aligner (BWA) 

BWA86 is a free fast and accurate aligner of relatively short nucleotide reads against long 

reference sequence such human genome. It exploits Burrows-Wheeler transform (BWT) to 

index reference genome and accelerating alignment process. BWA aligns both single-end and 

paired-end reads.  

Picard  

Picard (https://broadinstitute.github.io/picard/) is a set of tools for manipulating NGS data and 

file formats such as BAM, SAM and VCF.  

SAMtools  

SAMtools87 is a set of utilities for post-processing alignments in the SAM and BAM formats. 

It is common used to index SAM/BAM files, view alignments, and call variants.  

Genome Analysis Toolkit (GATK) 

GATK92 is a large open source of software package that are useful to make both germline and 

somatic genome analysis.  

MuTect 

MuTect103 is a SNPs caller for reliable and accurate detection somatic variants at low 

frequencies in cancer samples.  
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Figure 12. Diagram of the detection of somatic variants using MuTect. MuTect filters tumor and normal reads 
and evaluates if each variant is more detected than expected random sequencing errors, then, candidate variants 
have to pass six filters considering variant site features; optionally, variants are filtered by using a panel of 
control samples to remove both germline events and artefacts; finally, determination if each variant is somatic or 
germline is achieved103. 
 
This method consists of four main steps (Figure 12). First, the aligned reads with too many 

mismatches or low-quality scores are removed in the tumor and control samples. Second, a 

statistical analysis to detect variants in tumor sample is performed by using a Bayesian 

classifier. Third, candidate variants must pass six filters where variants near gap, triallelic sites, 

variants observed in a single direction of reads, clustered variants, variants observed in matched 

control sample beyond a fixed number of times, and variants caused by sequence similarity in 

the genome. Optionally, artifacts and germline variants are filtered by using a panel of normal 

samples sequenced and analyzed with the same workflow of considered cohort. Finally, a 

second Bayesian classifier is used to evaluate the somatic or germline status for each candidate 

variant.  

MuTect2 

MuTect2104 is part of GATK4 and exploits original algorithm of MuTect with the assembly-

based algorithm of HaplotypeCaller, a GATK tool for germline variant calling, to detect 

somatic SNPs and indels.  
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Strelka2 

Strelka2105 is a software optimized for germline and somatic variants detection. The algorithm 

to call somatic variants is based on prior version Strelka151. Somatic calling model is based on 

a Bayesian approach accounting for any level of allele frequency variation in the tumor sample 

without requiring an estimate of tumor purity. Candidate regions with indels and read 

realignment is performed to improve accuracy for indel detection (Figure 14).  

Strelka2 is improved respect to Strelka in the somatic-variant probability model that considers 

for tumor-cell contamination in the matched-normal sample, improving somatic recall for 

liquid tumor analysis and not requiring information about normal sample contamination. The 

probability model is extended by a final empirical variant scoring (EVS) step, inspired in part 

by machine-learning-based variant classification approaches152,153. It uses a random forest 

model trained on call-quality features to improve precision by considering for errors that are 

not adequately represented in the generative variant probability model105. The EVS model for 

somatic variants is pretrained on data of curated tumor-cell lines considered as somatic truth 

sets. Finally, for each variants an aggregate score is assigned, which will be used for following 

prioritization steps. 

 
Figure 14. Strelka2 variant calling workflows. Somatic variants from matched tumor-normal sample pairs are 
detected acting several steps, including: (1) parameter estimation, (2) candidate variant discovery, (3) 
realignment and variant probability inference, and (4) empirical scoring and filtration. Figure adapted from Kim 
S., et al., 2018105. 

VarScan2 

VarScan299 algorithm applies heuristic methods and a statistical test to detect somatic and 

germline SNPs, indels, and CNVs by exome sequence data from matched tumor and control 
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samples. In order to detect SNPs and indels, it simultaneously compares reads data from tumor 

and control samples for each position. VarScan2 evaluates for each position if both samples 

have a minimum coverage and determines a genotype for each sample individually based on 

reads observed. If genotype do not match between matched tumor and control samples, their 

reads count is evaluated by one-tailed Fisher’s exact test comparing the number of reads 

supporting reference and variant between the two matched samples. If the resulting p-value is 

statistically significant, then the variant is assigned somatic status. In contrast, if p-value is not 

significant or genotypes of matched samples match, then the variant is considered as germline. 

When genotypes match, a one-tailed Fisher’s exact test is used to compare the total number of 

reads supporting variant and reference (tumor and control are combined) to the expected 

distribution for a variant position due to sequencing error.  Finally, VarScan2 categorizes 

detected variants as high confident (HC) or low confident (LC) based on allele frequencies in 

tumor and control samples, and p-value previously calculated. Positions that are homozygous 

in normal but heterozygous in tumor or where the variant allele is not the same are presumed 

to be sequencing errors or artifacts and are removed. 

Torrent Variant Caller (TVC) 

Torrent Variant Caller (https://github.com/domibel/IonTorrent-VariantCaller) is a plugin of 

Torrent Suite to call variants in optimized way for IonTorrent data attempting to address the 

high rate of false positive indels introduced by IonTorrent technology. It has an option to call 

somatic variants where, prior to any statistical calculation, a check of the variants is carried 

out. If in normal sample the same position of tumor allele is not sequenced, has a low coverage 

or has an allele frequency ranging from 0% to 10%, the variant is labelled as non-confident. 

For each residual variant is estimated the likelihood that mutated allele in tumor sample is not 

present in the control sample by building a binomial model (Poisson approximation). In case 

tumor allele is seen above error rate in control sample, the variant is marked as germline.  

SnpEff and SnpSift 

SnpEff111 is a bioinformatics tool for rapidly annotating genomic variants (SNPs, indels and 

MNPs) and predicting variant impact considering information about genomic location and 

changes induced on coded protein. The impact of variant can be defined, in order of deleterious 

effect, as HIGH, MODERATE, LOW, or MODIFIER (Table 3). 
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Impact Description Type of variant 

HIGH The variant is assumed to have 
disruptive effect in the protein 

Large structural variants, 
deletion/gain/duplication of exons, 
frameshift variants, gene fusion or 

rearrangement, protein-protein 
interaction variants, protein structural 

interaction variants, splice 
acceptor/donor site variants, stop 

lost/gained 

MODERATE A non-disruptive variant that might 
change protein functions 

Missense variants, in-frame 
insertions/deletions, gene 

duplications, variants affecting 
splicing branch point from U12 

splicing machinery, 5’ or 3’ UTR 
deletions 

LOW Assumed to be mostly harmless or 
unlikely to change protein functions 

Synonymous variants, synonymous 
starts/stops, premature start codon 
variants in 5’ UTR, splice region 

variants 

MODIFIER 
Usually non-coding variants where 

predictions are difficult or there is no 
evidence of impact 

Downstream/upstream gene variants, 
intergenic variants, intron variants, 
miRNA variants, regulatory region 

variants, 5’ or 3’ UTR variants 

Table 3. Type of variants associated to predicted impact by SnpEff. 

SnpSift154 is a toolbox to annotate variants with external databases of interest, to filter and 

manipulate annotated files.  

5.4. Bioinformatics tools for pathway-derived network construction and analysis 

Graphite 

Graphite155 is an R package of Bioconductor that allows for pathways analysis originally 

considering gene expression data from both microarray and RNA-sequencing. In addition, 

Graphite converts the complex pathway structures, including different types of direct and 

indirect gene and gene products relations – as regulatory relations, molecular complexes and 

biosynthetic pathways with compound intermediates, to cite only a few - into path-derived gene 

networks, solving complexity with appropriate biology-driven rules. There is also a web tool 

of Graphite but less updated (https://graphiteweb.bio.unipd.it/)156. 

HotNet2 

HotNet2145 is a tool written in Python which exploits an insulated heat diffusion model and 

applies a permutation test in order to detect significant mutated subnetworks in large and 

complex protein-protein interaction networks.  

Cytoscape  
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Cytoscape157 is an open source software for visualizing molecular interaction networks and 

integrating with high-throughput data. The software is extensible with plugins to perform 

additional analysis on networks, and to provide new layouts, additional file format support, 

connection with databases, and other features. The Cytoscape plugin community development 

is constantly evolving providing always more features.  

5.5. Large Granular Lymphocyte Leukemia 

WES data 

The Hematology Research Unit of the Department of Clinical Chemistry and Hematology of 

University of Helsinki directed by Prof. Satu Mustjoki provided data, expertise, and performed 

variant validation and functional studies based on results obtained by bioinformatics analysis 

presented in this thesis. 

LGL leukemia patients (n=19) (Table 4) were diagnosed based on the WHO 2008 guidelines. 

The samples were collected from Helsinki University Central Hospital (n=15), Cleveland 

Clinic (n=3) and Cologne University Hospital (n=1). All studies were conducted in accordance 

of the principles of the Helsinki declaration and were approved by the Helsinki University 

Central Hospital, Cleveland Clinic and Cologne University Hospital Ethics Committees. 

Written informed consents were obtained from all patients prior to sample collection. 
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Patien

t 
numbe

r 

T/N
K 

LGL 

Se
x 

Age at 
diagnosi

s 

Leukocytes 
(x10E9/L) 

Lymphocytes 
(x10E9/L) 

Vbeta 
expansion 

Associated disorders Treatment 

246 CD8
+ 

M 70 10.9 9.5 Vb.16: 94% Anemia, neutropenia None 

274 CD8
+ 

F 69 7.2 5.8 Vb.7.1: 28% Neutropenia Methotrexate, 
cyclosporine A, 

prednison 
1352 CD8

+ 
M 40 12.6 6.7 Vb 13.2: 

69% 
None None 

1149 CD8
+ 

M 77 10.8 9.4 Vb 20: 73% Neutropenia, anemia, 
MGUS 

None 

1147 CD8
+ 

F 72 11.8 7 Vb 22: 91% Collagenosis None 

1148 CD8
+ 

F 50 16.1 12.9 Vb 17: 94% None None 

1403 CD8
+ 

M 59 12.7 3.7 Vb.3: 89% None None 

2803 CD8
+ 

M 66 5.4 4.5 Vb.5.1: 65% Anemia, neutropenia, 
thrombocytopenia 

None 

1527 CD8
+ 

M 64 9.3 3.6 Vb 14: 31% None None 

1255 CD8
+ 

M 59 12.9 9.5 Vb. 20: 78% MGUS, anemia Cyclosporine A 

1235 CD8
+ 

M 60 9.5 7.9 Vb.17: 96% Anemia, neutropenia, 
hypergamma-
globulinemia 

Methotrexate, 
cyclosporine A 

1256 CD8
+ 

F 74 5.4 4.5 Na Anemia, neutropenia Cytoxan, 
cyclosporine A 

1265  CD8
+ 

M 69   Na None None 

1254 CD4
+CD
8+ 

M 61 15.9 8.5 Vb.13.1: 
98% 

None None 

1526 CD4
+ 

F 70 10.2 8.4 Vb.8: 86% None None 

1525 CD4
+ 

F 80 8.7 5.0 Vb 13.1:77% None None 

1272 NK F 46 7.7 6.9 Na Anemia, neutropenia, 
gamma heavy chain 

Methotrexate 

1253 NK F 58 5.0 4.3 Na Linear IgA disease, 
hypergamma-
globulinemia 

None 

1260 NK F 47 11.4 8.9 Na Neutropenia None 

Table 4. Clinical features and data of the studied LGL leukemia patients. 

Exome sequencing was performed from sorted T or NK cell fractions as tumor cells by using 

the Illumina GAII instrument as 82 base pairs paired end reads. In CD8+ T-LGL leukemias, 

polyclonal CD4+ cells were used as a germline control and in CD4+ T-LGL leukemias CD8+ 

cells were used as a germline control. For NK LGL cases germline DNA was extracted from 

CD3+ T-cells. 
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with quality less than 30 were tagged as “low quality”. Moreover, variants with a FS score 

under 60 were tagged as “Strand Bias”. Finally, if more than 3 variants where found in a 

genomic window of 10 nucleotides width, these variants were tagged as “SNP cluster”. All 

tagged variants were subsequently removed leaving only high confidence variants for further 

analyses. Variants annotation was performed by SnpSift154 and SnpEff111, in particular 

annotate command of SnpSift was used to associate dbSNP118 identifier while SnpEff eff 

command was used to add functional and putative impact annotation to variants. Then, only 

variants with MODERATE or HIGH SnpEff predicted impact were retained. Variants with a 

dbSNP id having benign or likely benign clinical significance indicated by Clinvar126 were 

discarded. Finally, variants with ExAC122 allele frequencies more than 5% were removed. 

Putative somatic variants were identified by subtracting variants found in normal sample from 

the set of variants found in the matched tumor sample.  

Pathway-derived gene meta-networks construction  

Mutated genes were mapped, in parallel, to networks derived from KEGG136 and from 

Reactome137 pathways using Graphite webtool (https://graphiteweb.bio.unipd.it/)156 From 

path-derived networks obtained by Graphite including at least one mutated gene each, gene-

gene relations were extracted and merged to build-up a non-redundant KEGG-Reactome union 

network. We considered two types of interactions with different strength: direct interactions 

according to pathway-topology and participation to the same pathway. Network visualization, 

optimization, annotation and analysis were performed using Cytoscape v3.1157.   

Validations of selected somatic variants 

Selected somatic variants were validated by Sanger sequencing of both control and tumor 

samples. Based on exome sequencing results, specific primers were designed for candidate 

mutations using the Primer Blast search (http://blast.ncbi.nlm.nih.gov/, National Center for 

Biotechnology Information, Bethesda, MD, USA).  

5.6. Follicular lymphoma of the pediatric age 

WES data 

The Pediatric Onco-Hematology Research Unit of the Department Women’s and Children’s 

Health of University of Padova, directed by Prof. Lara Mussolin, provided WES data and 
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expertise, and conducted validation of variants detected by bioinformatics analysis presented 

in this thesis.  

The study population included 21 patients with lymphoproliferative disorders belonging to the 

spectrum of follicular lymphoid neoplasms of the pediatric age (2008 WHO Classification of 

Tumours of the Haematopoietic and Lymphoid Tissues and its 2016 update). In compliance 

with the Helsinki Declaration, informed written consent was obtained from parents or legal 

guardians on behalf of the children enrolled in the study. The main clinical characteristics of 

the patients are listed in Table 5. Median age at diagnosis was 14.2 years (range: 4.0-17.7 

years), with a male to female ratio of 10:1. All cases were originally diagnosed as primary 

nodal pediatric-type follicular lymphoma (18 cases) or primary testicular follicular lymphoma 

(3 cases) and all of them were centrally reviewed. The immunohistochemical profile disclosed 

positivity for pan-B cell markers, Bcl6 and CD10, with negative (19/21 cases) or weak positive 

(2/21 cases) Bcl2 in all the cases. The mean proliferation index (Ki-67 immunostaining) was 

greater than 40%. MUM1 immunostaining was negative in all tested cases (18/18). B-cell 

monoclonality was confirmed by polymerase chain reaction of the immunoglobulin genes, 

according to BIOMED-2 guidelines158. As for the clinical management, 15/21 cases were 

treated with surgical excision alone, while 6/21 cases were also treated with 2 to 4 cycles of 

chemotherapy according to the AIEOP-LNH97 protocol. A single case experienced a second 

malignancy after 4 courses of chemotherapy. At present all patients are alive and in good 

clinical condition (mean follow-up: 41.7 months, range 8.3-124.8 months).  
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Protoc
ol 

Outco
me 

W1 M 10,
9 I 

periphe
ral 

lymph 
nodes 

pos po
s 

≥ 
40
% 

neg neg neg neg 50 pos 
complet

e 
resectio
n, w&w 

alive, 
CR 

W2 M 15,
8 II 

periphe
ral 

lymph 
nodes 

pos po
s 

≥ 
40
% 

na neg na na 30-
40 pos 

LNH97 
4 

courses 
alive, 
CR 

W3 M 17,
4 I 

periphe
ral 

lymph 
nodes 

pos po
s 

≥ 
40
% 

neg neg neg neg 60-
70 neg 

complet
e 

resectio
n, w&w 

alive, 
CR 

W6 M 5,0 I testis pos po
s 

≥ 
40
% 

neg neg neg neg 30 neg 
complet

e 
resectio
n, w&w 

alive, 
CR 

W7 M 16,
7 I 

periphe
ral 

lymph 
nodes 

pos po
s 

≥ 
40
% 

neg neg neg neg 70 neg 
LNH97 

2 
courses 

alive, 
CR 

W8 M 13,
4 I 

Ear-
nose-
throat 

pos po
s 

≥ 
40
% 

neg neg neg neg 30-
40 neg 

LNH97 
4 

courses 
alive, 
CR2 

W10 M 6,7 I testis pos po
s 

≥ 
40
% 

neg neg neg neg 20-
30 neg 

complet
e 

resectio
n, w&w 

alive, 
CR 

W13 M 14,
2 I 

periphe
ral 

lymph 
nodes 

pos po
s 

≥ 
40
% 

neg neg neg neg 80 neg 
complet

e 
resectio
n, w&w 

alive, 
CR 

W14 F 14,
5 I 

periphe
ral 

lymph 
nodes 

pos po
s 

≥ 
40
% 

neg we
ak neg neg 30-

40 neg 
complet

e 
resectio
n, w&w 

alive, 
CR 

S1 M 7,8 I 
periphe

ral 
lymph 
nodes 

pos po
s 

≥ 
40
% 

neg neg neg neg 40 neg 
complet

e 
resectio
n, w&w 

alive, 
CR 

S2 M 15,
0 I 

periphe
ral 

lymph 
nodes 

pos po
s 

≥ 
40
% 

neg neg neg neg 70 pos 
complet

e 
resectio
n, w&w 

alive, 
CR 

S3 M 14,
8 II 

periphe
ral 

lymph 
nodes 

pos po
s 

≥ 
40
% 

neg neg neg neg 30-
40 neg 

LNH97 
4 

courses 
alive, 
CR 

S4 M 16,
8 I 

Ear-
nose-
throat 

pos po
s 

≥ 
40
% 

neg neg neg neg 20 pos 
complet

e 
resectio
n, w&w 

alive, 
CR 

S5 M 5,0 I testis pos po
s 

≥ 
40
% 

neg neg neg neg 10-
15 pos 

complet
e 

resectio
n, w&w 

alive, 
CR 

S6 M 15,
4 I 

Ear-
nose-
throat 

pos po
s 

≥ 
40
% 

neg neg neg neg 40-
50 neg 

complet
e 

resectio
n, w&w 

alive, 
CR 

S7 F 17,
7 I na pos po

s 
≥ 
40
% 

neg neg neg neg 70 neg 
complet

e 
resectio
n, w&w 

alive, 
CR 

S8 M 17,
1 I 

periphe
ral 

lymph 
nodes 

pos po
s 

≥ 
40
% 

neg neg neg neg 60 pos 
complet

e 
resectio
n, w&w 

alive, 
CR 
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S9 M 5,9 II 
periphe

ral 
lymph 
nodes 

pos po
s 

≥ 
40
% 

na neg na na 80 neg 
LNH97 

4 
courses 

alive, 
CR 

S10 M 10,
1 I 

periphe
ral 

lymph 
nodes 

pos po
s 

≥ 
40
% 

neg we
ak na na na neg 

complet
e 

resectio
n, w&w 

alive, 
CR 

S11 M 4,0 I 
periphe

ral 
lymph 
nodes 

pos po
s 

≥ 
40
% 

neg neg neg neg 30 pos 
complet

e 
resectio
n, w&w 

alive, 
CR 

S12 M 4,5 I 
Ear-
nose-
throat 

pos po
s 

≥ 
40
% 

na neg na na 80 pos 
LNH97 

2 
courses 

alive, 
CR 

Table 5. Clinical features of the 21 patients with follicular lymphoma of the pediatric age spectrum 
considered in the study. Abbreviations: M= male; F= female; na= not available; w&w= watch and wait; 
CR=first complete remission; CR2=second complete remission. 

Purified genomic DNA from nine paired tumor samples and peripheral blood were outsourced 

for Whole Exome Sequencing (WES) analysis (Biodiversa srl, Rovereto (TN), Italy). Samples 

were enriched in protein coding sequences using the SureSelect Human All Exon V5 (Agilent 

Technologies, Santa Clara, CA), following the manufacturer’s instructions. The resulting 

libraries were subjected to paired-end sequencing (2 x 150 bp) on an Illumina HiSeq4000 

system, with a theoretical coverage of 150X for tumor samples and 100X for paired germline 

samples. 

Somatic variants identification in PTNFL and PFLT patients 

Reads were aligned to human genome version hg19 using BWA86. Picard and GATK Genome 

Analysis Tool Kit92 were used to process the files generated during alignment to the reference 

genome and to remove reads mapping to multiple genomic positions and putative PCR 

duplicates in order to reduce the risk of false positive variant calling. RealignerTargetCreator 

and IndelRealigner commands from GATK suite were used to perform a local realignment 

around indels considering the information from all reads mapping to the region. To improve 

reads base quality scores accuracy using all reads aligned the considered region, base quality 

score recalibration was obtained using the BaseRecalibrator command from GATK. Somatic 

SNPs were detected by MuTect103 and then annotated by SnpEff111 and SnpSift154. SnpEff 

predicted functional and putative impact of detected variants. SnpSift’s annotate command 

provided the association of known variants to dbSNP (v. 150)120 and COSMIC (v. 82)127 

identifiers, clinical significance from Clinvar (updated on 05/09/2017)126. Known variants 

annotated in Clinvar as benign or likely benign were discarded and only variants with SnpEff 

predicted impact HIGH or MODERATE were further considered. Finally, variants with non-

Finnish European population allele frequency >5% according to ExAC (Exome Aggregation 

Consortium; http://exac.broadinstitute.org)122 data were discarded (Figure 16). 
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Figure 16. Bioinformatic workflow for detection of high confident somatic SNPs and reconstruction of a 
mutated pathway-derived network. Reads mapping, reads processing and variant calling followed by 
annotation were automated by using SCons software building tool. 

Mutated gene network analysis 

R Graphite Bioconductor package (v. 1.20.1)155 was used to map and convert pathway 

topologies annotated in KEGG136 and Reactome137 into pathway-derived gene networks. Only 

pathways including at least one mutated gene were converted into networks and merged in 

order to build up a unique non-redundant KEGG-Reactome meta-network of 299,387 pairwise 

interactions between 10,672 genes. Two types of interactions were considered with different 

relevance: direct connections according to pathway-topology and participation to same 

pathway. Visualization, optimization and annotation of the network were performed using 

Cytoscape v3.5.1157(Figure 16). 

Validations of somatic variants and TNFRSF14 exon1 investigation 

Selected somatic variants with variant allele frequency (VAF) >15% were validated by direct 

Sanger sequencing of both control and tumor samples. Based on exome sequencing results, 

specific primers were designed for candidate mutations by using Primer Express 3.0 (Applied 

Biosystems, Foster City, CA). PCR products of variants with VAF < 15% were cloned into 

TOPO TA cloning vector (Invitrogen, Carlsbad, CA) and at least 20 colonies were sequenced.  

Mutations on exon 1 of TNFRSF14 were evaluated in an extended series of other 12 patients 
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(11 PTNFL and one PFLT), either by direct sequencing or PCR cloning and sequencing of at 

least 20 colonies. 

5.7. High-Risk Neuroblastoma 

WES data 

This study was conducted in collaboration with Neuroblastoma Laboratory of Fondazione 

Istituto di Ricerca Pediatrica Città della Speranza di Padova conducted by Prof. Gian Paolo 

Tonini, that provided data, expertise, and performed validation of results obtained by 

bioinformatics analysis presented in this thesis. 

A cohort of stage M NB patients from the Italian Neuroblastoma Registry with complete 

clinical data and follow-up over 10 years was considered. Frozen tissue from the primary tumor 

at onset was available for each patient. Patients were stratified into two groups according to 

their overall survival: the SS group (n = 14), including patients with rapid disease progression 

and rapid fatal outcome, all with a survival time < 60 months, and the LS group (n = 15), 

including patients who are responsive to therapy and survived at least 60 months from 

diagnosis (Table 6). Five SS patients (ID2475; ID2368; ID2181; ID1995; ID2100) were also 

included in the previous NB report159. Out of the 15 LS patients, 11 were still in complete 

remission, two were alive with disease and two died of disease at last follow-up. Informed 

consent was received for the use of biological material from legal tutors, and the study was 

approved by the Institutional Board of the participating Institutions. All tumor samples were 

classified as NB Schwannian stroma-poor according to criteria established by the International 

Neuroblastoma Pathology Committee160. The presence of at least 60% of neuroblasts in tumor 

samples was verified. 
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PATIENT 
ID SEX 

AGE AT 
DIAGNOSIS 

(months) 

MYCN 
STATUS 

DNA 
INDEX 

SURVIVAL 
(months) OUTCOME GROUP 

2475 M 208 Gain No data 33 DOD 

SS 

1965 M 83 Not 
amplified 1.51 34 DOD 

1955 F 77 Not 
amplified No data 6 DOT 

2368 M 75 Not 
amplified No data 48 DOD 

3060 F 118 Unknown No data 33 DOD 

1900 M 37 Not 
amplified 1.14 24 DOD 

2181 M 47 Amplified No data 28 DOD 

2384 M 58 Gain No data 45 DOD 

1995 M 22 Amplified 2.37 23 DOD 

1920 M 14 Not 
amplified No data 9 DOT 

2100 M 27 Not 
amplified No data 12 DOD 

2513 M 52 Not 
amplified No data 20 DOD 

2852 M 50 Gain No data 43 DOD 

2578 F 23 Gain 1.07 42 DOD 

1409 F 34 Not 
amplified 1.00 159 CR 

LS 

1641 M 33 Not 
amplified 1.96 105 CR 

2121 M 61 Not 
amplified 1.88 144 CR 

2393 F 73 Gain No data 62 CR 

2140 M 55 Not 
amplified 1.00 75 CR 

1905 M 15 Not 
amplified 1.96 80 CR 

2528 M 61 Gain No data 86 CR 

2035 M 17 Not 
amplified 1.52 144 CR 

2488 M 47 Not 
amplified No data 65 AWD 

2951 M 68 Gain 1.00 64 DOD 

2251 F 12 Amplified No data 110 CR 

2576 F 32 Not 
amplified No data 71 AWD 
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2426 F 7 Not 
amplified No data 53 CR 

2613 F 12 Not 
amplified No data 39 CR 

2828 M 8 Not 
amplified 1.92 71 CR 

Table 6. NB patient cohort description. Abbreviations: M, male; F, Female; Unknown, Physician did not have 
data; No data, data was not made available; DOD, Dead of disease; DOT, Dead of toxicity of the treatment; 
AWD, Alive with disease; CR, Complete remission 

Exome sequencing for each matched tumor-control sample was performed by Ion Proton 

Sequencing.  

Identification of somatic variants from HR-NB patients 

Read mapping and variant calling were performed with Torrent Suite and Ion ReporterTM 

software, provided by the Ion ProtonTM System. The Proton Run Browser was used for quality 

control metrics (percent bead loading, usable sequences, read length, alignment metrics to hg19 

reference genome and mean raw accuracy). The samples were processed using the workflow: 

“Somatic – Proton – High Stringency Configuration”. Bam files of the tumor and blood 

samples of each patient were uploaded to Ion ReporterTM (IR) software using the available 

plug-in, IonReporterUploader_V1_2. Variant calling was done using Torrent Variant Caller (v. 

5.0–9). Next, the files were processed using a workflow AmpliSeq Exome paired sample 

(tumor/normal) to subtract variants [SNV, multiple nucleotide variant (MNV), indel and copy 

number variant (CNV)] discovered in the peripheral blood DNA against the tumor DNA. The 

annotation of somatic variants was performed by SnpSift154 and SnpEff111. SnpSift’s annotate 

command provided the association of known variants to dbSNP (v. 147)120 and COSMIC (v. 

77)127 identifiers, clinical significance from Clinvar (updated on May 02, 2016)126, as well as 

functional prediction indicated by MetaSVM and MetaLR119 from dbNSFP database (v. 

2.9.1)147. The two algorithms predict whether the variant is tolerated or deleterious, considering 

nine scores present in dbNSFP (SIFT, Polyphen – 2, GERP ++, MutationTaster, 

MutationAssessor, FATHMM, LRT, SiPhy and PhyloP) and MMAF observed in different 

populations of 1,000 genomes. SnpEff predicts the functional and putative impact of detected 

variants. Known variants annotated in Clinvar as benign or likely benign were discarded, and 

only variants with HIGH or MODERATE SnpEff predicted impact were further considered. 

After integration of exome sequencing and Exome Aggregation Consortium (ExAC, 

http://exac.broadinstitute.org)122 data, variants with a non-Finnish European population allele 

frequency > 5% were discarded (Figure 17). The interpretation of variants’ impact was also 
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obtained by mapping selected variants to protein sequences and their domain annotation using 

MutationMapper (http://www.cbioportal.org/mutation_mapper.jsp)161.  

 

 
Figure 17. Bioinformatic pipeline and study design used for somatic variants identification in HR-NB 
patients. The flowchart summarizes the workflow followed for the identification of group-exclusive somatic 
variants and mutated pathways; from these lists we chose the most promising variants for validation with Sanger 
sequencing and Roche 454. 
 

Pathway analysis 

Genes mutated in SS and in LS were separately mapped to the KEGG136 and Reactome137 

pathways. The pathways with at least three genes mutated in a group and none in the other 

group were defined as “group-specific pathways.” Significant pathway enrichment was 

calculated considering the separately mutated genes in the SS and LS patient groups. 

Significantly enriched pathways only in one group and with a number of genes mutated in the 

group by at least 1.5x the number of genes mutated in the other group were considered to be 

“group-specifically enriched pathways.” The detected pathways were organized after the 

architecture of the KEGG and Reactome databases to have a less redundant description of 

altered molecular signaling and biological functions, gathering pathways into functional 

classes. 

Gene network analysis 

The R Graphite Bioconductor package (v. 1.20.1)155 was used to convert complex pathway 

topologies into Reactome pathway-derived gene networks. Reactome networks were merged 

into a pathway-derived gene network of 186,808 pairwise interactions between 8,678 genes. 

The HotNet2 algorithm was applied to Reactome-derived gene networks to statistically identify 

group-specific subnetworks of mutated protein-coding genes, defining groups of functionally 
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related genes in which mutations significantly converge (Figure 17). Hotnet2 analysis was first 

conducted using all the somatically mutated genes in the whole cohort of patients, and then the 

two patient groups were considered separately. Due to the cardinality of our cohort and the 

considerable dimension of the considered network, multiple testing correction applied in this 

analysis, considerably increases the p-value. 

Ultra-deep sequencing for variants validation 

Validation of tumor variants was performed by ultra-deep sequencing on Amplicon libraries 

(from 200 to 400 bp) using the 454 Junior Titanium sequencer (Roche). Target regions of the 

genome reference sequences corresponding to the amplicons were obtained from the human 

reference genome (GRCh37/hg19) using the getfasta command of BEDTools162. Reads were 

mapped to these sequences through the bwa-sw command of Burrows-Wheeler Aligner163 and 

variants were called using GATK – Genome Analysis Tool Kit92. Variants were also confirmed 

using IGV – Integrated Genome Viewer164. 

Independent cohort of HR-NB  

To confirm results, we analyzed the largest available group of stage M NB with survival data 

profiled by WES (Pugh cohort)165. The 4,120 genes with non-silent somatic mutations reported 

in the Pugh cohort were analyzed, separating the 240 patients into SS (221; with overall 

survival ≤ 5 years) and LS (19; with overall survival >5 years) according to survival 

classification.  
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6. Results 

6.1. iWhale: a computational pipeline for cancer exome sequencing analyses  

A computational pipeline for the automatic analyses of cancer whole-exome sequencing data 

has been developed (Figure 18). It starts from the pairs of cancer and control samples 

sequencing data and produces VCFs with annotated cancer mutations of high impact. The 

pipeline is built using Docker and SCons that glue together all bioinformatic tools used by the 

analyses. Docker allows to easily download and install the pipeline in any computer (Linux, 

Windows, macOS) and run the analysis independently from the used computer. SCons allows 

to split the analyses by steps that once they have run, any stop, like killing by error the process, 

or even shutting down the computer will automatically recover from the last run point. 

At the moment four variant calling software are used by the pipeline: Mutect103, Mutect2104, 

VarScan299, and Strelka2105, but in the future more ones will be added. The user can choose 

which programs to use and change the default settings. 

From the biologically point of view, the pipeline uses publicly available databases to filter out 

mutations with no effects or mark as important other ones in the final VCFs produced.  dbSNP 

database120, gnomeAD genome aggregation database122, Cosmic database127, Clinvar126 and 

Cancer Gene Census (CGC)33 databases. 

Once published, the computational pipeline will be made publicly available in Github 

(github.com) for free download. The data needed by the pipeline to run, will be automatically 

downloaded and installed by using Ansible; a radically simple IT automation platform that 

makes your systems easier to deploy and use. 
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Figure 18. Diagram of iWhale. The pipeline automatically recognizes paired-end FASTQ files for each sample 
to start analysis with alignment phase. Once alignment for each sample is completed, iWhale automatically 
recognizes BAM files of tumor-control matched samples to perform variant calling by using four different tools. 
Finally, called variants are annotated by exploiting information of different databases. 
 

Other pipelines have been developed for WES analysis, such as SeqMule166, Fastq2vcf167, or 

IMPACT168. At the moment, all the pipelines for WES data are developed with programming 

languages that require solid computer skills making the analysis non-user-friendly. Other 

pipelines are more user-friendly but are based on web platforms, such as Galaxy169, where there 

are space and time limitations. Thanks to Docker, iWhale is more user-friendly and can be used 

in any operating system not constraining the use of Linux ambient. In addition, iWhale requires 

only one text file organized in two columns and containing tumor-control matched samples. 

Through a one more optional text file including all parameters to change, iWhale allows for 

custom WES analysis, considering that cancer studies often require specific precautions to 

obtain optimal results. Overall, iWhale makes easy a complex and articulated analysis of WES 

data from cancer samples. 

6.2. Pathway-derived meta-network of mutated genes 

A systems genetics approach has been developed to construct pathway-derived meta-network 

depicting direct and functional interactions between mutated genes (Figure 19). The tool 

exploits Graphite R package155 to map in parallel a list of mutated genes on KEGG136 and 

Reactome137 pathways, and only pathways carrying at least one mutated gene are converted 

into gene networks. Finally, all mutated pathway-derived networks are merged into a unique 
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non-redundant meta-network. The tool generates a tab-separated text file containing for each 

line the symbols of genes participating to interaction and functional annotation about 

interaction, such as direction, type of interaction and pathways where is involved. The text file 

is loaded into Cytoscape to obtain a visualization of the generated meta-network. 

  

 
Figure 19. Diagram of construction of pathway-derived meta-network. The analysis starts in parallel for 
KEGG (orange) and Reactome (green) pathways. Mutated pathways are transformed into gene networks that, 
finally, are overlapped to obtain a meta-network composed by unique gene-gene interactions. 
 

This method is a gene network-based approach which allows to obtain topological information 

about mutated gene verified interactions. Qualitative evaluation can be performed on the 

network to identify altered biological functions and infer how they can interact leading to 

malignant transformation. Moreover, the identification of mutated pathways and aberrant 

biological functions are simplified respect to protein-protein interactions network where 

interactions are not functional annotated. The last concept is an advantage of this approach but 

also a limitation. Indeed, pathway-derived network analysis are strongly based on prior 

knowledge and suffer of well-studied pathways bias. Many mutated genes detected by WES 

are not gathered in pathway databases leading to a limited power discovery.  

Another complication is that often the resulting networks from cancer studies are very large 

and complex making challenging or impossible to infer any evaluation. For this reason, 

quantitative analysis is fundamental to interpret a large gene network.  
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as TP53, spreads to the direct neighbors and to the rest of the network (Figure 21). Diminishing 

β, there was an inflection point at which the amount of heat on neighbors decreased, as more 

and more heat diffused towards the rest of the network. The smallest β before this inflection 

point was chosen as the best value.  

 

 
Figure 21. Examples of the distributions used to set β value for Reactome-derived network. Figures in 
different rows represent distributions of the influence across Reactome network with different β values for TP53 
gene. The x-axis indicates a cut off of influence. The y-axis represents the number of nodes in the network with 
influence larger than the cut off of influence. Red and blue dotted circles represent the number of all nodes and 
neighbor nodes, respectively. The vertical red line indicates the location of inflection point in neighbors while the 
blue line indicates the point where the heat starts to spread across all network from neighbors.  
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The best β for Reactome-derived network is equal to 0.5 for two reasons. First, the smallest β 

before inflection point is equal to 0.45, but the heat spreads across network more than 0.5. 

Second, the amount of heat concentrated on neighbors are equal between 0.5 and 0.45.  

Concluding, I setup a data structure for optimized HotNet2 analysis on Reactome-derived 

network including a heat diffusion matrix with β equal to 0.5, two text files containing the 

index of nodes, and all the edges of the network. 

6.3. Genomic characterization of LGL-L patients 

Detected somatic variants 

LGL-L is a rare clonal disease with persistent increase of CD 8+ cytotoxic T cells or, in a small 

percentage of cases, CD4+ phenotype or CD16/56+ natural killer (NK) cells. LGL-L affects 

especially elderly patients with a median age of 60 years. Despite, the progression is indolent 

and asymptomatic for a long time after diagnosis, about 60% of the patients become 

symptomatic during the course of the disease. The most common complications are cytopenia, 

recurrent infections, splenomegaly, and autoimmune disorders such as rheumatoid arthritis. A 

fundamental pathogenic role for LGL-L is played by JAK/STAT pathway activation due to 

gain-of-function mutations in STAT3170–173 or STAT5B174,175 genes. JAK/STAT activation was 

found activated in LGL-L patients also through non-mutational mechanisms, such as an 

increased interleukin-6 secretion by normal mononuclear cells supported by the frequent 

epigenetic inactivation of SOCS3, which is an inhibitor of JAK/STAT pathway176. 

Nevertheless, in some cases LGL-L patients develop disease not carrying JAK/STAT 

alterations. In order to investigate about other mutational mechanisms that could be involved 

in LGL-L or inducing a persistent JAK/STAT activation, I analyzed matched tumor-control 

WES data of 19 LGL-L patients including 11 STAT-mutation-negative patients. 

The average sequencing coverage in the tumor samples was 32x (Figure 22). 
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Figure 22. Coverage profile per patient in LGLL tumor samples. Each bar on the x-axis represents a patient; 
on the y-axis the percentage of targeted bases coverage is shown. Different colors represent different coverage 
ranges. 
 
After selecting high confidence variants and filtering out variants already described in human 

populations single nucleotide polymorphism database and/or with allele frequency higher than 

5% in ExAC, 28,508 somatic variants in 16,518 genes were identified in the whole cohort. 

Next, among high confidence and rare variants, 370 variants in 347 genes with a strong 

predicted functional impact were selected. The observed differences in numbers of somatic 

mutations (range 5–40, average 20) and genes involved (range 4–41, 19) per patient were not 

because of coverage differences (Figure 23). 
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Figure 23. Somatic variants detected versus tumor mean coverage. Number of high confident, rare and high 
impact somatic variants identified in each sample in relation with the mean coverage in the sample (no correlation 
is observed, rho: -0.17, p-value: 0.49). 
 

A slight tendency toward more mutated genes per patient in STAT-mutation-positive (22.9 in 

average) versus negative patients (18.4 in average) was noticed.  

Beyond the mutated STAT genes 

STAT3 (all in CD8+ T-LGL) and STAT5B (CD4+ and CD8+ cases) were the most recurrently 

mutated genes in the cohort (in 8/19 patients, 42%).  

In addition to STAT3 (all in CD8+ T-LGL) and STAT5B (CD4+ and CD8+ cases) mutations 

(in 8/19 patients, 42%), 14 other genes had recurrent mutations including 

transcriptional/epigenetic regulator, tumor suppressor and cell proliferation genes (Figure 

24A-B). 
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Figure 24. Recurrent somatic mutations in LGL leukemia patients. (A) The table indicates the genes that 
carry somatic variants in more than one patient, with a color code showing STAT3 and STAT5B status and 
classification of patients. (B) Recurrently mutated gene sets found only in STAT-mutation-negative patients (STAT 
−), only in STAT-mutation-positive patients (STAT+) or in both groups.  
 

Novel mutated functional modules in STAT-negative patients 

The custom knowledge-based systems genetics approach (Figure 19) provided the functional 

prioritization of mutated genes. We identified 119 KEGG and 426 Reactome pathway-derived 

networks, each including at least one of the 347 previously prioritized mutated genes associated 

to high confidence, rare and high-impact variants. The union of all path- derived networks 

generated a meta-network with 118 (34%) mutated genes, giving a non-redundant 

representation of functional relations, based on direct interactions between somatically mutated 

genes. Remarkably, 47 mutated genes were directly connected to at least another mutated gene 

in 18 multigene components (groups of genes whose products directly interact, that is, encode 

proteins taking part in the same molecular complex or regulating each other). Considering co-

participation of mutated genes in pathways including STAT genes as additional functional link, 

seven multigene components connected by direct relations and three isolated genes converged 

into a component of 26 genes. In this reconstructed LGL leukemia network (Figure 25) 61 

somatically mutated genes (occurring in many cases only in one sample) preferentially fall into 

a limited number of highly connected pathways, and in this manner collectively form a 

functional module hit by somatic mutations in LGL leukemia. The largest network component 
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and to the IL-15, all known to be deregulated in LGL leukemia177. Other relevant variants 

confirmed in STAT-mutation-negative patients and connected to the STAT pathway were 

KRAS and the kinase KDR/VEGFR2. 

Other components (and pathways) not directly linked to the main lesions were also of interest. 

Nine genes were linked to cell cycle regulation, and include the CDC25B gene and ATM, which 

is involved in apoptosis and P53 signaling (Figure 25). Furthermore, the epigenetic nodule 

included the recurrently mutated KMT2D, which is connected to ASH1L. Both are histone 

methyltransferases involved in epigenetic regulation of gene expression programs and are part 

of the ASCOM complex, involved in transcriptional co-activation. 

Confirmed somatic variants  

Sanger sequencing validations of somatic variants were obtained in 14 genes (Table 7 and 

Figure 26) being recurrent or prioritized according to functional criteria and/ or connections 

emerged by integrated pathway-derived networks. Allele frequencies of variants detected in a 

same patient were very similar suggesting their co-occurrence in the same tumor clone.  
Gene Description Variant Variant 

Allele 
Frequenc

y 

Patient Class STAT3 
STAT5B 
mutatio
n state 

STAT3 
STAT5B 
Variant 
Allele 

Frequency 
PCLO Piccolo Presynaptic 

Cytomatrix Protein 
M1182I 0.36 1147 CD8+ STAT5B 0.42 

ANGPT2 Angiopoietin 2 K436E 0.33 1352 CD8+ NEG  

FAT4 FAT Atypical 
Cadherin 4 

-2501 0.38 1403 CD8+ NEG  

NRP1 Neuropilin 1 V391M 0.36 

FAT4 FAT Atypical 
Cadherin 4 

D1485N 0.45 1526 CD4+ STAT5B 0.48 

PCLO Piccolo Presynaptic 
Cytomatrix Protein 

-1205 0.48 

FLT3 Fms Related Tyrosine 
Kinase 3 

D228G 0.51 2803 CD8+ NEG  

KDR Kinase Insert Domain 
Receptor 

R176G 0.41 

CD40LG CD40 Ligand V216G 0.29 1525 CD4+ NEG  

KMT2D/MLL2 Lysine 
Methyltransferase 2D 

E226G 0.25 

PLA2G4C Phospholipase A2 
Group IVC 

-281 0.28 

CDC25B Cell Division Cycle 
25B 

R526H 0.33 1253 NK NEG  

KRAS Kirsten Rat Sarcoma 
Viral Oncogene 

Homolog 

A59G 0.21 
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Figure 27. Mutational comparison between T-LGLL subgroups. (A) Number of mutations per patient in each 
class. Normal distribution of values was confirmed with the Shapiro–Wilk test (P = 0.099). Both analysis of 
variance (P = 0.009) and pairwise Tukey s.d. post hoc tests (P-values 0.010 and 0.019 in the comparisons of 
CD4+/CD4+CD8+ with NK and CD8+, respectively) confirmed the statistical significance of the observed 
difference. (B) Recurrently mutated genes that are found only in one or are shared among patient classes (CD8+, 
CD4+/CD4+CD8+ and NK+). 
 

In CD8+ T-LGL leukemias, 227 genes presented somatic mutations (17.8 per patient on 

average). Genes recurrently mutated in the CD8+ class were largely overlapping with those 

recurrent in the whole cohort since more than 2/3 of the cohort was comprised of CD8+ cases 

(Figure 27B). Four patients were STAT3 and 2 were STAT5B mutated. IGFN1, MUC4, TTN, 

AKIRIN2, ARL13B, SVEP1, and ATN1 were mutated each in 2 CD8+ patients. Of these, IGFN1 

and MUC4 were mutated only in STAT mutation negative patients, only in the CD8+ class and 

not in other classes.  

In CD4+ and CD4+CD8+ LGL patients 108 genes showed somatic mutations. In addition to 

STAT5B, also HRNR (hornerin) was recurrently mutated in CD4+ patients (Figure 27B).  

In NK LGL leukemia cases (all STAT mutation negative), 31 genes with somatic mutations 

with 10.3 hits per patient on average were identified. In addition to KRAS, PTK2, NOTCH2, 

and CDC25B, other genes known to be recurrently mutated in cancer were mutated only in NK 

patients, i.e. HRASLS (HRAS-like suppressor), RAB12 (RAB12, member RAS oncogene 

family), PTPRT (Protein tyrosine phosphatase, receptor type, T), and LRBA (LPS-Responsive 

Vesicle Trafficking, Beach and Anchor Containing). 

Mutations in the network for each LGL-L subgroup 

The networks of genes mutated in individual CD8+ and CD4+ or NK LGL leukemia patients 

and in each subgroup are presented in Figure 28. 
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NK LGL leukemia patients carry a mutation in the STAT-related genes ADCY3 and CFTR. 

They also carry somatic mutations in the connected KRAS, PTK2, which are involved in 

MAPK-Ras-ERK signaling, and CDC25B (involved in cell cycle pathway).  

Discussion 

JAK-STAT pathway activation is the hallmark of LGL leukemia. It can be triggered by 

activating mutations in the STAT3 and STAT5B genes and also by non-mutational 

mechanisms178, such as by increased interleukin-6 (IL-6) secretion and epigenetic inactivation 

of JAK-STAT pathway inhibitors176.  

These WES data obtained from the largest cohort of LGL leukemia patients thus far revealed 

novel mutated genes connected to STAT signaling, further supporting the central role of the 

JAK-STAT pathway in LGL leukemia. Of note, JAK-mutations were not seen in this LGL-

leukemia cohort, although prevalent in another mature T-cell malignancies179.  

Somatic variants in 347 genes in LGL leukemia patients were detected and the variant number 

per patient was significantly higher (more than doubled) in CD4+ LGL leukemia patients than 

in the other two phenotypic classes (CD8+, NK). The clinical characteristics of these 

immunophenotypically segregated patient groups did not differ markedly. As reads coverage 

across patients was of low variability, and the number of somatic variants did not correlate with 

the coverage per patient, the observed differences are likely to reflect a different natural history 

of the LGL phenotypes. Cytomegalovirus-derived stimulation and restricted usage of TCR Vβ 

has been associated with CD4+ T-LGL cases180, and this could relate to the higher variant rate.  

Focusing on recurrently mutated genes, 16 genes were found to be recurrently mutated (Figure 

24), including STAT3 and STAT5B genes. STAT5B was found recurrently mutated in two out 

of three CD4+ patients. The two mutations Q706L and S715F detected in CD4+ patients hit a 

serine phosphorylation site in the transactivation domain of STAT5B. Functional validations 

were conducted on these two new detected variants showing that the S175F variant has an 

activating effect on STAT5B significantly increasing its phosphorylation respect to wild-type 

STAT5B. In contrast, the Q706L showed no increased phosphorylation. In addition, mutations 

in transactivation domain of STAT5B were reported in 55% of CD4+ LGLL patients analyzed 

by deep amplicon sequencing or WES181. 

One of the other recurrently mutated genes with confirmed somatic variants was FAT4, which 

is a member of the protocadherin family that regulates cell polarity and is an upstream regulator 

of stem cell genes both during development and cancer. Furthermore, FAT4 acts as a tumor 

growth suppressor via activation of Hippo signaling. It has been found recurrently mutated in 
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several types of human cancer, and also previously described as an age-related hit in chronic 

myelomonocytic leukemia182, acute lymphoblastic leukemia183, other myeloproliferative 

neoplasms184, and in extranodal natural killer/T cell lymphoma185. Not only FAT4, but also the 

recurrently mutated ARL13B (ADP-ribosylation factor-like 13B) is linked to Hippo signaling. 

ARL13B encodes a small GTPase found in the ciliary membrane. Primary cilia are both chemo- 

and mechano-sensors whose role in cell cycle control was recently recognized and whose 

importance in cancer cells is gradually understood as they crosstalk with several signaling 

pathways including Hippo. The Hippo signaling-linked ARL13B and FAT4 genes were mutated 

in a mutually exclusive way and 2 out of 4 patients with ARL13B or FAT4 mutations were 

STAT-mutation negative. Notably, both Hippo and JAK/STAT are among the pathways 

implicated in cell competition processes, in which cells with different relative fitness compete 

locally for tissue development, which are active also in tumorigenesis186. Hippo signaling 

activation can be due to loss-of-function mutations of its inhibitors, as FAT4, but also 

constitutive activity of the Ras pathway confers proliferative advantage through inhibition of 

the Hippo pathway187. In addition to FAT4 and ARL13B, KMT2D was recurrently mutated. It 

is a transcriptional and epigenetic regulator which is frequently mutated in a variety of 

cancers188 and whose disruption has been recently linked to lymphomagenesis suggesting that 

it acts as a tumor suppressor controlling the epigenetic landscape of cancer precursor cells189.  

Interestingly, HRNR was found recurrently mutated specifically in CD4+ patients. HRNR is a 

calcium-binding protein involved in hematopoietic progenitor cell differentiation that has been 

reported as mutated, amplified, or overexpressed in cancer and was previously connected with 

acute myeloid leukemia transformed from myelodysplastic syndrome with t(1;2)(q21;q37)190. 

 

The second part of the study focused on functional prioritization of mutated genes by a custom 

knowledge-based “systems genetic” approach. The reconstructed LGL leukemia network 

(Figure 25) includes 61 somatically mutated and functionally related genes that were found to 

be affected in the cohort. Apparently, mutated genes preferentially fall into a limited number 

of highly connected pathways. Among the discovered modules, the STAT-related network 

component is especially significant. It should be noted that in several cases STAT-mutation 

negative patients carried a somatic mutation in a gene functionally connected to STAT3 and/or 

to STAT5B (such as FLT3, KRAS, ADCY3, ANGPT2, and PTK2). These genes also connect the 

STAT component to the MAPK-Ras-ERK (Figure 25) pathway and to the IL-15, all 

deregulated in LGL leukemia177. For example, PTK2 (focal adhesion kinase 1, FAK1) is a non-

receptor protein-tyrosine kinase which is highly expressed in T-cells and it regulates several 
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processes, including cell cycle progression, cell proliferation, and apoptosis, activating 

numerous pathways as PI3K/AKT signaling MAPK/ERK, and MAP kinase signaling cascades. 

Also, the mutated ANGPT2 (Angiopoietin 2) gene is linked to PI3K-AKT and RAS signaling 

pathways that it antagonizes. ANGPT2 is expressed in lymphocytes and controls T-cell 

proliferation191,192 and several studies reported the involvement of ANGPT2 and other 

angiogenic factors in chronic lymphocytic leukemia where they exert pro-survival effects193,194.  

Some of the STAT-connected genes are receptors. CD40LG is expressed on the T-cell surface 

that regulates B-cell function by engaging CD40, regulating immune systems and participating 

in STAT3 as well as in IL and NFAT signaling pathways. Interestingly, CD40LG was 

annotated in the same KEGG pathways as TNFAIP3 (Figure 25), which is a negative regulator 

of NF-κB signaling and known tumor suppressor gene and was recently found to be mutated 

in 8% of T-LGL leukemia patients195. FLT3 (fms-related tyrosine kinase 3) is a class III 

receptor tyrosine kinase that, promoting the phosphorylation of various proteins and kinases in 

the PI3K/AKT/mTOR, RAS, and JAK/STAT signaling pathways, regulates differentiation, 

proliferation, and survival of hematopoietic cells and is causally implicated in acute myeloid 

leukemia.  

In addition to the STAT-related and the previously discussed “epigenetic” components of the 

LGL leukemia network, the cell cycle regulation module includes the validated CDC25B gene, 

and other genes mutated in STAT negative patients such as ATM, that connects the P53 and 

apoptosis pathways with the cell cycle pathway genes. The functional and pathogenic relevance 

of genes in these modules remains to be determined by future studies.  

With the systems genetic approach, individual mutations found in LGL leukemia patients were 

mapped in novel functional modules. The central role of JAK-STAT network was further 

highlighted, and these data provide important new insights of the activation of this pathway in 

those LGL leukemias that do not carry STAT mutations. In addition, new insights about 

molecular features characterizing the three different LGLL subtypes were provided. 

6.4. New genes and pathways mutated in follicular lymphoma of the pediatric age 

patients 

Recurrent somatically mutated genes in pediatric FLs 

Peripheral B-cell lymphomas of the pediatric age are a well-defined group of B-cell neoplasms, 

encompassing both aggressive and indolent tumors. Biologically, indolent B-cell lymphomas 

of the pediatric age derive from either germinal center (GC) (follicular lymphoma [FL]) or 
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extra-GC (marginal B-cell lymphoma) B-cells196. Classic FL is very rare in children and 

adolescents, whereas specific FL variants are more frequent than in adults and include the 

“pediatric-type nodal follicular lymphoma” (PTNFL) and the primary FL of the testis 

(PFLT)196. PTNFL has long been considered a localized variant of follicular lymphoma (FL) 

with high grade morphology and a benign clinical course197, distinguished from typical adult 

FL by the absence of the t(14;18)(q32;q21) translocation and the lack of Bcl2 expression198. In 

the revised World Health Organization 2016 classification of lymphoid neoplasms, PTNFL has 

been recognized as a definite clinico-pathological entity, not restricted to the pediatric age but 

presenting, albeit rarely, also in adults196. Although the mutational landscape of adult FL has 

been extensively investigated199,200, only few genetic alterations involved in the pathogenesis 

of PTNFL has been reported so far by two independent studies201,202. Among genes recurrently 

mutated in adult FL, only TNFRSF14 alterations were detected in PTNFL. Both mutations in 

IRF8 DNA binding domain203 and mutations activating MAP2K1201,204 have been recently 

proposed as potential drivers of PTNFL pathogenesis. Even if these studies provided the first 

insights on mutations subtending PTNFL development, the biological mechanisms and 

signaling pathways involved in this malignancy remain to be fully elucidated and very little is 

known about the molecular features of FL histological variants in children. 

In order to investigate about biological mechanisms and signaling pathways involved in FL of 

the pediatric age development, I analyzed matched tumor-control WES data of 7 PTNFL and 

2 PFLT patients. 

After WES sequence read quality selection and alignment to the reference genome, average 

sequence coverage of 216x for tumor samples and 87x for paired peripheral blood was 

obtained. Sequence coverage, considering both tumor and control samples, was homogeneous 

(Figure 29). 
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Exon 1 of TNFRSF14 is a mutational hotspot in PTNFL 

Screening by Sanger sequencing of TNFRSF14 exon 1 in 12 additional PTNFL and PFLT cases 

disclosed mutations in six of them, thus overall 8/21 (38%) of the cases had TNFRSF14 exon 

1 mutations (Figure 31). 

 

 
Figure 31. Mutations detected in exon 1 of TNFRSF14. (A) Schematic diagram of TNFRSF14 8 mutations 
detected in exon 1 positioning detected in 21 cases of PTNFL and PFLT. (B) Validation by Sanger sequencing of 
the two variants, both hitting TNFRSF14 exon 1, detected by WES.  
 
The p.Met1Thr variant in W1 patient is a start loss variant while p.Trp12* is a stop gain variant 

and both are predicted to be inactivating mutations.  

Pathways recurrently altered in FL of the pediatric age 

A meta-network (Figure 32A) was reconstructed from KEGG and Reactome pathways 

depicting direct interactions and functional relationships between 66 genes somatically mutated 

in pediatric FLs, mostly carrying previously undescribed variants.  
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Figure 32. KEGG and Reactome pathways derived meta-network of genes somatically mutated in FL of 
the pediatric age. A) Net nodes indicate genes somatically mutated in the cohort, with node size proportional to 
recurrence in the cohort analyzed by WES; genes involved in the negative regulation of MAPK, G-protein coupled 
receptor pathways and chromatin modifying enzymes are indicated in different colors, using panel B as color 
legend; direct functional links between mutated genes are depicted, and small grey nodes indicate pairs of mutated 
genes connected through a single non mutated gene in the network; isolated nodes located close to the connected 
components are associated to them according to annotated function and pathway participation; red node labels 
indicate the genes for which new mutations were identified. B) Mutation table showing which patient carries 
mutations in the genes of the main identified pathways. Patients are grouped according to the primary site of the 
tumor. Patients W7 and W8, negative for mutations connected with those represented in the figure, are not shown.  
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Six connected components of multiple mutated genes each were identified in the net: a large 

group of 51 genes (“main component”), a group of six genes, and four smaller groups. Notably, 

the net included nine genes recurrently mutated in the cohort, most of them in the main 

component, comprising ARHGEF1, RHPN2, CYP2A6, and PAPBC1 in addition to the already 

known in PTNFL TNFRSF14, IRF8 and MAP2K1. Almost half of the somatic mutations 

observed in the main component targeted genes belonging to two highly interlaced signaling 

pathways: “negative regulation of MAPK” and “G-protein coupled receptor” (Figure 32A). 

MAPK pathway component was made up of 14 mutated genes including the recurrently 

mutated MAP2K1. New variants in 12 additional genes of the MAPK pathway (APP, ATG7, 

DUSP2, DAPK1, EGFR, EPHA10, KDR, MAPK1, NOS2, PRKD2 and TIAM1) were 

uncovered. Overall, 6/9 patients carried one or more mutations in genes directly involved in 

MAPK signaling (Figure 32B).  

The “G-protein coupled receptor” signaling pathway was mutated in 5 cases of PTNFL (5/7, 

71,4%) and was preserved in the examined PFLT cases, comprising the recurrently mutated 

ARHGEF1 and RHPN2 and other 3 mutated genes (GNA13, ARHGAP29 and ADRA2C) 

(Figure 32B). This signaling is comprised in the large component and it is linked to MAPK 

pathway.  

Moreover, the “chromatin modifying enzymes” pathway was hit in both PTNFL and PFLT: 

RSF1 and NSD1 genes were mutated in PTNFL cases, while mutations on EZH2 and KMT2D 

genes were found in PFLT (Figure 32B). 

Five mutated genes are involved in germinal center B-cell development (Figure 32A) 

including the two recurrently mutated TNFRSF14 and IRF8, LEF1, PAX5 and KMT2D, which 

also participates to chromatin modifying enzymes pathway. The mutations in this functional 

component are almost all detected in W1 patient, except two mutations in TNFRSF14 and 

KMT2D detected in W2 and W10 patients, respectively. 

Highly prioritized and confirmed somatic variants  

Eleven “High” impact variants in eight genes, prioritized according to recurrence, functional 

criteria and/or previous reports in PTNFL or other lymphoid malignancies, were validated by 

Sanger sequencing. Six variants in the recurrently mutated ARHGEF1, MAP2K1 and 

TNFRSF14 genes, and 5 variants in ATG7, GNA13, RSF1, UBAP2, and ZNF608 (Figure 33). 

All validated variants are loss of function variants or missense variants impacting protein 

domains. 
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GENE SYMBOL, PROTEIN (TRANSCRIPT 

ENSEMBL ID) 
VARIANT 

(VAF) 

AA 
CHANG

E 

SAMP
LES COMMENT 

TNFRSF14, Tumor necrosis factor receptor 

superfamily member 14 (ENST00000355716)

 

chr1:2488105 
T>C (0.36) M1? W1, 

S4 

Start lost variant 

inducing loss of 

function 

chr1:2488111 
C>T () P3L S13 

Missense variant 

in N-terminal 

signal peptide 

chr1:2488113 
C>T() P4S S5 

Missense variant 

in N-terminal 

signal peptide 

chr1:2488123 – 
2488124 G>A W7* S2, S9, 

S12 

Stop gain variant 

inducing loss of 

function 

chr1:2488138 
G>A (0.10) W12* W2 

Stop gain variant 

inducing loss of 

function 

MAP2K1, Dual specificity mitogen-activated 

protein kinase 1 (ENT00000307102) 

 

chr15:66727453 
A>G (0.10) K57E W2 

Missense variant 

lying closely to 

protein kinase 

domain, already 

found in hairy-cell 

leukemia 

(COSM1315807) 

chr15:66727463 
T>G (0.22) V60G W13 

Missense variant 

lying closely to 

protein kinase 

domain 

ARHGEF1, Rho guanine nucleotide exchange 

factor 1 (ENST00000354532) 

 

chr19:42406962 
G>A (0.26) R551H W3 

Missense variant 

hitting RhoGEF 

domain  

(COSM6206921) 

chr19:42409131 
G>A (0.16) W731* W1 

Stop gain variant 

cutting the 

phosphotyrosine 

site in 738 

position and a 

phosphoserine in 

863 position 
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results in the activation of ERK signaling pathway207, could play a very central role in the 

pediatric FLs mutation network. 

IRF8 (Interferon Regulatory Factor 8) is a transcription factor of the Interferon Regulatory 

Factor (IRF) family, mainly expressed in myeloid cells.  It regulates expression of genes 

involved in various complex networks such as apoptosis, cell cycle, differentiation and 

maturation. Two IRF8 missense mutations, p.Lys66Arg in W1 and p.Tyr23His in W6, were 

detected and bot predicted to be very deleterious by MetaSVM and MetaLR. The variant IRF8 

p.Lys66Arg was already described in co-occurrence with mutations of TNFRSF14 in 50%203 

and 10%202 of PTNFL patients, supporting the hypothesis of immune system deregulation as 

one of the main drivers of PTNFL development.  

Other recurrently mutated genes showed to have important biological functions, such as NSD1, 

PABPC1, ARHGEF1, and RHPN2.  

NSD1 is a histone methyltransferase which acts as transcriptional factor capable of both 

negatively or positively influencing transcription, depending on the cellular context. Mutations 

in NSD1 were associated to Beckwith-Wiedemann Syndrome, an overgrowth usually present 

at birth that predisposes to childhood cancer208.  

PABPC1 regulates expression of mRNAs binding the 3’ poly(A) tail and promoting ribosome 

recruitment and translation initiation209. It is even involved in regulation of nonsense-mediated 

decay of mRNA with premature codon stops210. High expression of PABPC1 has been found 

as involved into gastric cancer and poor survival by regulating miR34-c211.  

ARHGEF1 is a Rho GTPase which is involved in numerous cellular processes activated by 

extracellular stimuli.  Mutations in ARHGEF1 have been associated to germinal center-type 

diffuse large B-cell lymphoma212.  

RHPN2 is a member of rhopilin family of (Rho)-GTPase binding proteins. RHPN2 

amplification leads to mesenchymal transformation in aggressive glioblastoma by activation of 

RhoA which is associated with a dramatically decreasing in the survival of patients213. 

A custom knowledge-based “systems genetic” approach reconstructed pediatric FL network 

(Figure 32) includes 65 somatically mutated and functionally related genes that were found to 

be mutated in the cohort. The mutated genes seem to group in a limited number of highly 

connected pathways such as “negative regulation of MAPK”, “G protein-coupled receptor”, 

and “Chromatin modifying enzymes”.  

The “negative regulation of MAPK” signaling pathway comprises MAP2K1 and BRAF hit by 

the p.Lys601Asn mutation (W2) previously reported as oncogenic since affecting the tyrosine 

kinase domain214. Other specific mutations are particularly worthy of note: MAPK1 
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p.Tyr131His falls in the catalytic domain, ATG7 truncation due to a stop gain at amino acid 

228 eliminates the C-terminal region of the protein, essential for dimerization and key 

molecular interactions; DUSP2 p.Ser249Asn falls in the tyrosine-protein phosphatase domain 

involved in the negative regulation of MAPK members associated with cellular proliferation 

and differentiation; the detected PRKD2 mutation is predicted to produce both p.Phe81Ile 

substitution and also to impair the main transcript splicing, probably resulting in a loss of 

function. “High” impact variants in other genes of the pathway are those causing stop loss in 

EPHA10 and a possible intron retention in NOS2. The 66.7% of the cohort carried mutations 

in MAPK pathway. 

Our data strengthen the relevance of MAPK pathway in the pathogenesis of PTNFL and 

uncovered specific molecular alterations not described previously, indicating as well that the 

entire signaling cascade, rather than a single gene, is altered in this lymphoma. 

In the GPCR pathway, a previously unreported ARHGEF1 p.Trp746* nonsense mutation was 

disclosed in patient W1 and the known ARHGEF1 pathogenic variant p.Arg566His was found 

in W3. Notably, GNA13, encoding Gα13, a direct interactor of ARHGEF1, carried a truncating 

mutation (p.Glu311*) eliminating the C-terminal part on the G protein alpha domain. Two 

GNA13 missense mutations, both affecting Gly60 (p.Gly60Ser and Gly60Asp)202 in the 

nucleotide phosphate-binding region of the protein were previously reported by Schmidt et al. 

in two cases of PTNFL. Disruption of Gα13-dependent pathway by loss of function mutations 

has already been reported in more aggressive lymphomas, such as diffuse large B-cell 

lymphoma and Burkitt’s lymphoma215. 

RSF1 and three genes of the second largest component (EZH2, KMT2D and the recurrently 

mutated NSD1) belong to the “chromatin modifying enzymes” pathway. The detected EZH2 

p.Tyr646Phe mutation has been frequently found in both FL199 and in PTNFL201 of adult 

patients, while the variants uncovered in NSD1 and RSF1 were previously unreported. 

Mutations in epigenetic modifiers have been formerly considered nearly exclusive of FL of 

adults201, although one study reported KMT2D as the most frequently mutated histone-

modifying enzyme202 and its disruption has been previously proven to alter germinal center B-

cell development and promote lymphomagenesis189. Taken together, these data confirm that 

epigenetic mechanisms, hit in 2/7 of the cases analyzed, can contribute to PTNFL pathogenesis. 

Interestingly, both the PFLT cases profiled by WES (W6 and W10) carry mutations of 

epigenetic modifiers. Further investigation on larger cohorts is needed to clarify the role of 

alterations of epigenetic modifiers in PFLT.  



 88 

Besides KMT2D, the above-described TNFRSF14 and IRF8 genes are also connected with 

germinal center B-cell development (Figure 32A). Moreover, LEF1 (Lymphoid enhancer 

binding factor 1), a transcription factor involved in regulating B-cell development, carried a 

p.Ala150Val variant, reported in COSMIC as pathogenic, in the Proline-rich region implicated 

in the activation of the protein. PAX5 is also part of the transcriptional network, under IRF8 

control, that orchestrates B-cell lineage specification, commitment, and differentiation. The 

p.Gly183Ala mutation uncovered in this cohort is very close to the p.Gly183Ser PAX5 variant, 

previously shown to impact on B-lymphoid development reducing the transcription factor 

activity216. Mutations of the genes directly linked to B-cell differentiation and/or germinal 

center reaction occurred in three cases of our cohort, two of which carried also hit in the other 

three identified pathways, namely the “negative regulation of MAPK”, “G-protein coupled 

receptor”, and “chromatin modifying enzymes”, which are mutated and putatively altered in 

most cases. Of note, most of the mutations on genes directly linked to B-cell development 

occurred in patient W1, which might molecularly resemble a more aggressive lymphoma. Since 

the subject has been recently cured with complete resection only, and 10 years of follow-up 

have been planned with annual monitoring.  

In conclusion, beyond confirming a few mutations previously reported in PTNFL, we identified 

several novel variants in genes involved in negative regulation of MAPK and provided 

evidence on the involvement of GPCR downstream signaling in PTNFL pathogenesis. We also 

detected mutations in genes encoding chromatin modifying enzymes in 2/7 PTNFL and in 2/2 

PFLT patients, some of them hitting genes previously not associated to FL of the pediatric age. 

Our analysis at network level considerably extended previous data on the mutational landscape 

of FL of the pediatric age, further indicating the signaling pathways of possible pathogenic 

relevance in these malignancies. 

6.5. Genes and pathways linked to HR-NB aggressiveness  

Selected group-specific somatic variants 

Neuroblastoma is an embryonic tumor arising from primitive neural crest cells and accounting 

for 9% of pediatric cancers. It is characterized by a remarkable clinical heterogeneity with low 

recurrence of driver genes (MYCN165,217, ALK165,218, ATRX159,165,218). HR-NB patients are 

characterized by metastatic disease (stage M) e show an overall survival lower than 40% at 5 

years from diagnosis219. Even if HR-NB patients respond well to the first line therapy, most of 

them relapse. Stigliani et. al217 divided a cohort into short-survival (SS; patients with disease 
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progression and survival at most 5 years from diagnosis) and long-survival groups (LS; 

responsive to the therapy and survival over 5 years from diagnosis) and showed that SS group 

is characterized by high number of structural CNAs and high chromosomal instability. To 

further clarify the biological basis of disease aggressiveness focusing on SNVs and indels, I 

analyzed WES data of a sizeable cohort composed by 29 matched tumor-control samples (14 

SS and 15 LS) affected by HR-NB at stage M.  

Alignment of 2,189,622,787 reads to the reference exome (37.1 million reads per sample on 

average) yielded a 97x average coverage and a 76.29% of the target exome with at least 30x 

coverage, ranging from 53% to 84% in different patients. Sequence coverage in the SS and LS 

groups, considering both the tumor and peripheral blood cell samples, was homogeneous 

(Figure 34). 

 
Figure 34. Sequencing coverage profile of the samples included in the LS and SS patient groups. The barplot 
displays the percentage of targeted bases coverage per patient, with different colors representing different 
coverage ranges (see legend) in the tumour (A) and control (B) samples.  
 
A total of 2,301 and 1,805 high quality and coverage somatic variants for the SS and LS groups, 

respectively, were detected after read mapping, variant calling and identification of somatic 

variants comparing the tumor and control data. In accordance with the mutations types 

observed before159,165,220, somatic variants resulted in enrichment in C > A (LS = 32.3%, SS = 

25.2%) transversions at TCT sites and in C > T transitions (LS = 20.3%, SS = 22.6%) at GCG 

trinucleotide substitution types, normally due to deamination of 5-methylcytosine (Figure 35). 
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Figure 35. Mutation spectrum of high coverage and quality somatic variants. For each patient group, the 
plot shows the proportions of the six transition and transversion categories observed among the SNVs. 

Next, 1,288 high-quality, detrimental and rare somatic variants in 1,043 genes, 580 variants 

detected in LS patients and 708 in SS passed the variant effect- and frequency-based filtering 

steps. Variants were later examined considering recurrence, hit gene and pathways, and the 

possible impacts of mutations on disease progression. Variant effects, group-exclusivity, intra-

group recurrence, gene products biological function and relationships among the mutated genes 

were used to prioritize group-specific variants for validation. The selected variants confirmed 

are 50 in 49 genes (Table 8). 
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      GENE ID PROTEIN 

METHOD 
OF 

VALIDATIO
N 

GROUP 

LARP4 1409 p.Lys650Glu 

SANGER 
LS 

HMCN1 1905 p.Tyr2004Ter 
PTPRE 1905 p.Glu428Asp 
FBN1 1905 p.Glu1297Asp 

PIK3C2B 2121 p.His626Asn 
ARFGEF2 2121 p.Glu1558Ter 
CREBBP 2393 p.Ala407Ser 

PCCB 2393 p.Asn339Ile 
C10orf53 2488 p.Ala121Asp 
SCN11A 2488 p.Trp666Ter 
YTHDC1 2488 p.Val15Phe 
PKMYT1 2528 p.Gln111His 
ABCA8 2528 p.Val171Leu 
THAP9 2613 p.Leu444Pro 

PCDH12 2613 p.Leu726fs 
RAP2B 2951 p.Ser83Thr|p.Leu84fs 
OR5T1 2951 p.Ile294Phe 
MYCN 2393 p.Pro44Leu 454 Roche TBL1X 1905 p.Gly568Cys 
SMO 2578 p.Arg451Gly 

SANGER 

SS 

INTS2 1965 p.Pro754His 
PHGDH 2100 p.Gln416Lys 
CXXC1 2368 p.Cys395Tyr 
NTNG2 2384 p.Asp156Glu 

GREB1 rs 1965 p.(=) 
NME4 1965 p.Gly178Trp 

CACNA1G 2852 p.Val174Leu 
GPR45 2181 p.Tyr60Ter 
FGFR1 2100 p.Asn544Lys 
FGF4 2852 p.Glu159Asp 

SLC9A9 2368 p.Leu94Met 
KMT2C 2852 p.Gln3534Leu 

VCL 2475 p.Asn531Thr 
BBS10 2513 p.Asp70Tyr 

NALCN 2368 p.Ser278Leu 
NID2 3060 p.Asp1036fs 

SPTLC2 2513 p.Gly33Val 
AK7 2852 p.Ala722Leu 

SLC12A1 2475 p.Pro412Leu 
CHD2 2852 p.Trp151Cys 
SFI1 2100 p.Arg261Trp 

ARHGEF11 2384 p.Arg812Gln 
ANK3 1955 p.Tyr923Ter 

454 Roche 

LAMA2 1955 p.Glu352Ter 
CCR3 2513 p.Ala98Asp 

PTH2R 2513 p.Ser82Ter 
PTK2 2181 p.Arg569Leu 

PTPRA 2578 p.Asp368Tyr 
SMARCA4 2513//3060 p.Arg468Cys//p.Arg906His 

Table 8. Technically validated variants in genes somatically mutated only in one of the considered NB 
patient groups. 
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described before and particularly deleterious. SMO (Frizzled Class Receptor Smoothened) 

encodes nonclassical G-protein-coupled receptors that are highly expressed in neural tissues 

and involved in Hedgehog signaling. Two SMO variants (Figure 38) were detected, R451G in 

ID2578 in the Frizzled/Smoothened family membrane region, and T640fs (ID1955) that 

induces a premature stop codon ending the protein 132 amino acids before the C-terminus.  

The other recurrent SS-specific genes, CHD2 and SMARCA4, are transcriptional regulators. 

SMARCA4 somatic variants (R468C in patient ID2513; R906H in ID3060; Figure 38) in two 

SS patients were validated. The deleterious SMARCA4 R906H mutation was annotated in the 

COSMIC database (COSM5576007) as previously being observed in gastric cancer221, 

whereas the putatively damaging R468C variant was not described previously. Both 

SMARCA4 variants were localized in the transcription activator chain of the protein falling, 

respectively, in the Helicase Sant-associated domain (HSA) and in the helicase ATP- binding 

domain of the protein (Figure 38), responsible for DNA and ATP binding and ATP hydrolysis.  

SS-specific FGFR1 N577L (detected in ID2100) and PTK2 R569L (detected in ID2181) 

variants were validated and described in a previous NB study159. These two genes were already 

associated with NB tumorigenesis159,220 although not specifically in relation to patient survival. 

The PTK2/FAK1 (focal adhesion kinase) variant is located close to the Tyr576 phosphorylation 

site of the kinase domain “catalytic loop” (Figure 38) required for PTK2 activation222 and for 

mediating NB progression and aggressiveness223. 
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(including ARHGEF11, CACNA1G, FGF4, PTPRA, PTK2, ANK3, SMO and NTNG2) 

processes, which is important for neurodevelopment and oncogenesis. The MAPK pathway is 

linked through PTK2 signaling to ERBB4 (including FGF4, PTPRA and PTK2), and MET 

(LAMA2, PTK2 and LAMA4). ERBB4 signaling was specifically enriched, and both MET 

signaling and the Cilium assembly pathway (BBS10, SMO, INPP5E) were exclusively mutated 

in SS patients.  
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Only mutations of SS patients tend to cluster into specific subnetworks 

A further analysis of the topological structure of mutation gene networks derived from the 

Reactome pathway annotation detected significant functionally-connected gene networks in 

HR-NB SS patients, which were in accordance with previous observations at the pathway level. 

Neither the 463 genes mutated in the whole cohort (adjusted p-value of global mutation 

clustering 0.43) nor the 213 genes mutated in LS patients (adjusted p-value 0.93) showed 

significant clustering according to Hotnet2 analysis. Conversely, a more pronounced clustering 

was observed of the 268 genes mutated in SS patients, 79 of which converged into 18 

subnetworks of at least three genes (adjusted p-value of global mutation clustering 0.24). The 

six most relevant network components, comprising 31 functionally connected genes that are 

somatically mutated specifically in SS patients, were selected (Figure 40). The largest 

component, which was recurrently identified in almost two thirds of SS patients (9 of 14), 

included nine genes (NID2, LAMA4, LAMA2, PTK2, PTPRA, FGG, VCL, MMP14 and KSR2) 

of the RAF/MAPK signaling pathway and extracellular matrix organization. In addition to the 

previously observed PTK2 variant159, the D377Y variant was validated, which fell into the Y 

phosphatase domain of PTPRA (Figure 38), closely connected with PTK2 in the RAS/MAPK 

pathway, and the stop gaining variant (E352*) of LAMA2.  

A second component of six genes (NALCN, UNC79, SLC9A9, SLC12A1, SLC5A8 and 

SLC4A9) that was linked to the transmembrane transport of small molecules was mutated in 

four SS patients. Two patients carried mutations in two genes of the component (NALCN and 

SLC9A9 co-mutated in ID2368; SCL5A8 and SLC4A9 in ID1955). The third component, which 

was linked to centrosome maturation, included five genes (CDK5RAP2, CDK11A, CEP89, 

TUBGCP6 and SFI1) mutated in three different patients (ID1965, ID2100, ID2384) (CEP89, 

TUBGCP6, and CDK11A co-mutated in the patient ID1965).  

Four genes were involved in lipid and lipoprotein (SPTLC2 and ACSL6) or nucleotide (AK7, 

AK9 and ACSL6) metabolism, which were mutated in three SS patients (ID2368, ID2513, 

ID2852), with SPTLC2 and ACSL6 in the same patient. Two additional SS-specific components 

were defined by SMO, recurrently mutated in two patients and functionally connected BBS10 

and GAS8 genes co-mutated in a third, and by KMT2C, HOXB3, and HOXC4 mutated in 

ID1965 and ID2852 patients.  
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associated with disease aggressiveness, somatic mutation profiles of HR-NB patients with SS 

and LS were compared. General tumor genomic landscapes of HR-NB patients with SS and 

LS were similar, exhibiting close frequencies of variants and numbers of somatically mutated 

genes per patient.	Nevertheless, few genes were recurrently mutated specifically in the SS 

group, including SMARCA4, SMO, ZNF44 and CHD2. Chromodomain Helicase DNA 

Binding Protein 2 (CHD2) is important for neurogenesis and de novo mutations in this gene 

were found in neurodevelopmental disorders224. CHD2 is a tumor suppressor chromatin 

remodeler, previously observed to be mutated and proposed as a cancer driver in chronic 

lymphocytic leukemia225. Notably, the transcription co-activator and tumor suppressor 

SMARCA4 (SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, 

Subfamily A, Member 4) were recurrently mutated in the SS group. SMARCA4 encodes a 

member of the SWI/SNF nucleosome-remodeling complex whose mutations impact growth 

control, differentiation, development and cell adhesion226. SMARCA4 also known as BRG1, is 

a tumor suppressor gene227–229 that shows inactivating mutations or overexpression in several 

adult cancers230,231. Jubierre et al. showed that the SMARCA4 gene has a role in the proliferation 

of NB cells both in vitro and in vivo232. A correlation between SMARCA4 mutations and loss 

of function in lung cancer cell lines was observed, indicating an association with aggressive 

tumor behavior and worse patient survival233. As it has been demonstrated that SMARCA4 and 

TERT are functionally linked234, SWI/SNF damage could alter TERT function235, which one 

of the most important genes rearranged in NB236. 

Remarkably, somatic mutations occurring in SS or LS patients hit different pathways. In 

addition, functional gene networks, corresponding to sub pathways, hit only SS patients. 

Numerous gene variants observed in the tumor of SS patients affected the RAF/MAP kinase 

cascade, as well as MET and ERBB4 pathways linked to PTK2 signaling. MAP2K and MAPK 

activation, specific of SS tumors, are of interest because they can be involved in cell motility 

by triggering PTK2 signaling and Matrix Metalloproteinases activation. These results agree 

with previous data on the enrichment of somatic mutations in FAK signaling and cell adhesion 

signaling159. 

Furthermore, several genes connected to RAF/MAPK signaling were mutated in SS (NID2, 

LAMA4, LAMA2, PTK2, PTPRA, FGG, VCL, MMP14 and KSR2), impacting extracellular 

matrix organization, regulation of cell adhesion and migration. A previous observation of 

PTK2 mutation in a HR-NB patient, further strengthens the importance of PTK2 signaling in 

aggressive tumors. The validation of PTK2 and PTPRA mutations, network data and previous 
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observation of mutated PTK2159 further strengthen the importance of PTK2 signaling in 

aggressive tumors. 

Particularly relevant groups of clustered genes mutated in SS were involved in centrosome 

maturation, in the regulation of the cell cycle, in ciliary basal body docking (CDK5RAP2, 

CDK11A, CEP89, TUBGCP6 and SFI1) and in cilium assembly (the recurrently and SS 

specifically mutated SMO, and GAS8, BBS10). The observation of mutations linked to the 

chromosome remodeling pathway in SS tumors support the role of chromosome instability in 

NB237, providing further explanation for the observed CNA in patients with fatal 

outcomes217,238. 

The obtained results from the analysis of a sizeable independent cohort of 240 stage M NB 

patients165 gave additional strength to findings. Mutations in Pugh SS patients targeting genes 

prioritized in the cohort (ANK3, COL11A1, COL12A1, COL1A1, PNPLA7, AK7, NALCN, 

PTK2, SLC5A8 and TUBGCP6) as SS-specific based on recurrence, pathway enrichment 

and/or pathway- derived network topology analysis, were particularly noteworthy and 

supported the results. The reconstruction and analysis of pathway-derived mutation networks 

reported in Pugh SS patients further backed the observations done in study cohort about the 

deregulation of lipid metabolism and RAF/MAP signaling in relation to extracellular matrix 

organization mutated genes. 

Potential targets for pharmacological therapies of more aggressive HR-NB 

Recent comparison of matched primary and relapsed NB tumors revealed that disease 

progression is accompanied by an increased mutational load, exhibiting new mutations in the 

MAPK pathway that were not present at the onset of disease, and accumulated in tumors of 

relapsing patients239,240. These findings of specific MAPK signaling pathway damages may be 

relevant for more efficacious therapeutic management of patients at diagnosis. Specific genes 

mutated at diagnosis exclusively in pathways belonging to the SS group could be candidates 

for pharmacological targeting. SMO, PTK2, MMP14 and SDHB are quite interesting as they 

are targeted by FDA-approved drugs according to the Drug Gene Interaction Database (DGID, 

http://dgidb.genome.wustl. edu/) (Table 8).  
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Gene 
ID 

Gene 
Description 

Varian
t 

FDA 
approved 

drugs 

Drug 
class 

References for drugs 
use 

SDHB 

Succinate 
dehydrogenase 

complex, subunit 
B, iron sulfur (Ip) 

L7FS Succinic acid Small 
molecule 

He et al., 2004, Citric acid 
cycle intermediates as 
ligands for orphan G-

protein-coupled receptors., 
Nature; Southern et al., 

2013, Screening β-arrestin 
recruitment for the 

identification of natural 
ligands for orphan G-

protein-coupled receptors., J 
Biomol Screen 

SMO 
Smoothened, 

frizzled family 
receptor 

R451G; 
T640FS 

Vismodegib 
Small 

molecule 
inhibitor 

Yauch et al., 2009, 
Smoothened mutation 
confers resistance to a 

Hedgehog pathway inhibitor 
in medulloblastoma., 

Science; Wang et al., 2012, 
Identification of a novel 

Smoothened antagonist that 
potently suppresses 

Hedgehog signaling., 
Bioorg. Med. Chem. 

Fluocinonide Small 
molecule 

Wang et al., 2010, 
Identification of select 

glucocorticoids as 
Smoothened agonists: 

potential utility for 
regenerative medicine., 
Proc. Natl. Acad. Sci. 

U.S.A. 

Halcinonide Small 
molecule 

Wang et al., 2011, 
Glucocorticoid hedgehog 
agonists in neurogenesis., 
Vitam. Horm.; Wojnar et 
al., 1986, Androstene-17-

thioketals. 1st 
communication: 

glucocorticoid receptor 
binding, antiproliferative 

and antiinflammatory 
activities of some novel 20-
thiasteroids (androstene-17-

thioketals)., 
Arzneimittelforschung 

PTK2 PTK2 protein 
tyrosine kinase 2 R569L Masitinib Kit 

inhibitor 

Dubreuil et al., 2009, 
Masitinib (AB1010), a 

potent and selective tyrosine 
kinase inhibitor targeting 

KIT., PLoS ONE 

MMP14 

Matrix 
metallopeptidase 
14 (membrane-

inserted) 

P8FS Prinomastat Mmp 
inhibitor 

Abbenante et al., 2005, 
Protease inhibitors in the 

clinic., Med Chem 

Table 8. Information on drugs available in relation to genes carrying deleterious mutations in NB patients.  
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Recently, Padovan-Merhar et al.241 reported an increased SMO mutation frequency in tumors 

of HR-NB patients at relapse, showing that most of these new mutations are targetable and give 

an additional tool to treat relapsing patients. Functional investigation is mandatory to assess 

the potential significance of mutated genes as therapeutic targets, and further study is needed 

to evaluate drugs, such as Masitinib and Vismodegib, for NB therapy. 

Two groups of HR-NB patients with different outcome were characterized, providing new data 

on mutations recurrently affecting specific pathways and functions in patients with SS, 

informing the molecular features, beyond well-defined CNA patterns, that are associated with 

high tumor aggressiveness. These data may help to address an early treatment of HR-NB 

patients using FDA-approved compounds targeting the deregulated pathways and mutated 

genes present at onset of disease. 
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7. Conclusions and future perspectives 

This thesis presents an automated, modular and easy-to-use computational pipeline (iWhale) 

for the detection and annotation of somatic variants from WES data by selecting and combining 

the different software tools. Moreover, a systems genetics approach to reconstruct and to 

statistically analyze pathway-derived networks composed by functionally and directly 

connected genes was developed.  

The application of different versions of these methods provided additional molecular 

information about the pathogenesis and differential disease progress of three different cancer 

studies resulting in new data that could become useful for diagnosis and eventually in 

personalized therapies.  

The developed systems genetics approach has contributed to add knowledge about JAK/STAT 

activation, especially in LGL-L patients not affected by STAT mutations. The qualitative 

analysis of pathway-derived network of a series of pediatric FL confirmed the central role 

played by alterations of MAPK pathway and identified mutations in genes participating to 

GPCR and chromatin modification pathways. These findings suggested that mutations in 

chromatin modifiers are not exclusive for adult-form of follicular lymphoma but may also have 

a role in PTNFL pathogenesis.  

A custom data structure for statistical analysis on pathway-derived networks with HotNet2 was 

setup in order to analyze large and complex gene networks, that otherwise they would be 

impossible to interpret. HotNet2 analysis on Reactome-derived network was performed in 

Neuroblastoma study to identify molecular features underlying the heterogeneity of HR-NB 

patients in term of survival time. This analysis resulted in the detection of 6 components 

associated to specific functions, such as extracellular matrix organization via MAPK pathway, 

primary cilium assembly, centrosome maturation, HOX gene activation, nucleotide and 

lipoprotein metabolism, and small molecule transmembrane transport. Some of the gene 

variants present at onset of the disease and included in the detected components, especially in 

MAPK signaling, can be targeted by FDA-approved drugs to improve early treatment for 

patients with more aggressive form of neuroblastoma.  

WES data of the three studies were analyzed with different, progressively improved and 

updated versions of the pipeline now implemented in iWhale, following the continuous 

updating over the years of tools and methods used for analyzing cancer exome data, and also 

customizing the analysis according to each specific study design and aims. In all the studies 

the human reference genome hg19 was used due to the incompatibility with hg38 of ExAC and 
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gnomAD databases used for variant prioritization and since the presence of ALT contigs in 

hg38 would have affected the alignment step reducing variant calling sensitivity. 

In LGL-L study, the somatic variants were called with an in-house method based on a not 

optimized software for somatic variants detection and on a subtraction of the variants called in 

the control samples from the ones called in matched-tumor samples resulting in a loss of low 

frequency variants. The subsequent integration of MuTect in the pipeline and its use for 

pediatric FL study produced more robust results allowing for the detection of somatic SNPs 

even at low frequencies. For the study of neuroblastoma cases, Torrent Variant Caller, a 

commercial software optimized for IonTorrent data, was preferred to detect somatic variants 

in order to address the difficulties of IonTorrent technology in sequencing repetitive regions 

giving numerous false indels.  

The version of iWhale presented in this thesis is the version of the pipeline up and running at 

the end on 2018. In the future, iWhale will be implemented with variant prioritization steps 

where the variants detected by the four different callers will be automatically filtered by using 

information about population allele frequency, predicted functional impact, and clinical 

significance. The prioritization will be further improved with the implementation of software 

to identify statistically-significant mutated genes considering background mutation rate 

(MutSigCV and MuSiC) and for germline and CNV variant detection. 

Although HotNet2 analysis is already rather effective, it may be improved by using, in addition 

to those based on mutation recurrence of mutations, more informative heat scores, considering 

the variant impact or scores assigned to genes that predict their driver status. Finally, I would 

like to automate HotNet2 analysis and data structure construction to perform custom analysis, 

since they are complex steps that require robust computational knowledge.   
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Introduction
Neuroblastoma (NB) is a pediatric cancer of the sympathetic
nervous system. Metastatic disease (stage M) usually
involves liver, skin, the bone marrow and/or skeleton.1 Stage
M patients are classified as high-risk NB (HR-NB) and show
an overall survival lower than 40% at 5 years from diagno-
sis.2 The majority of HR-NB stage M patients responds well
to the first-line therapy, but relapse occurs in the majority
of patients. Several studies demonstrated that both copy
number aberrations (CNAs)3–5 and genomic variants6–11

contribute to the tumor aggressiveness. In 2012, Stigliani
et al.4 investigated the genomic features of HR-NB, dividing
patients into a short-survival (SS; with disease progression
and survival at most 5 years from diagnosis) and a long-
survival group (LS; responsive to the treatments and a sur-
vival over 5 years from diagnosis). The study showed that
tumor cells from the SS group are characterized by a high
number of structural CNAs and high chromosomal instabil-
ity. A previous study showed that, beyond CNAs, also muta-
tions hitting specific pathways could be implicated in HR-
NB progression.9 After this line of evidence, to elucidate the
biology underlying differences between the SS and LS
groups in term of different outcome, our study characterized
by whole-exome sequencing (WES) the genomic landscape
of primary tumors, with focus to single nucleotide variants
(SNVs) and indels. Aberrant somatic mutations exclusive
for the SS or LS patients were found, as well as pathways
and subpathways that are specifically targeted in SS tumors,
which were confirmed by the analysis of a large independent
cohort.8

Materials and Methods
Patients and tumor samples

A cohort of stage M NB patients from the Italian Neuro-
blastoma Registry with complete clinical data and follow-up
over 10 years was considered. Frozen tissue from the pri-
mary tumor at onset was available for each patient. Patients
were stratified into two groups according to their overall
survival: the SS group (n = 14), including patients with
rapid disease progression and rapid fatal outcome, all with a
survival time < 60 months, and the LS group (n = 15),
including patients who are responsive to therapy and sur-
vived at least 60 months from diagnosis. Five SS patients
(ID2475; ID2368; ID2181; ID1995; ID2100) were also

included in the previous NB report.9 Informed consent was
received for the use of biological material from legal tutors,
and the study was approved by the Institutional Board of
the participating Institutions. Total genomic DNAs (gDNA)
from 29 tumors and matched constitutional DNA of
patients was purified according to the standard protocol
with Invisorb® Spin Tissue Mini Kit (SPA-Stratec molecu-
lar). The amount and quality of gDNA were assessed by
Nanodrop and Qubit Instruments (Invitrogen), respectively,
and only high-quality samples (DNA/protein ratio, A260/
A280: 1.8–2.0) were processed. All tumor samples were clas-
sified as NB Schwannian stroma-poor according to criteria
established by the International Neuroblastoma Pathology
Committee.1 The presence of at least 60% of neuroblasts in
tumor samples was verified.

Exome library preparation and WES

For each sample, 100 ng of DNA (determined by Qubit® 2.0
Fluorometer) was used for exome library preparation by the
AmpliSeq™ exome kit (Life Technologies) targeting approxi-
mately 35 Mb of human exons. Briefly, the gDNA was ampli-
fied by oligo pools/primers to perform ultra-high multiplex
PCR enrichment of the exonic regions of the genome. Next,
the amplicons were ligated to adaptors with Ion Xpress Bar-
code Adapters Kit and purified with Agencourt AMPure XP
kit (Beckman Coulter Genomics). The library was quantified
with Quantitation RT-PCR with the Ion Library Quantitation
Kit (Life Technologies), diluted to 100 pM and loaded on a P1
chip for Ion Proton Sequencing according to the manufac-
turer’s protocol.

WES variant calling

Read mapping and variant calling were performed with Tor-
rent Suite and Ion ReporterTM software, provided by the Ion
ProtonTM System. The Proton Run Browser was used for
quality control metrics (percent bead loading, usable
sequences, read length, alignment metrics to hg19 reference
genome and mean raw accuracy). The samples were processed
using the workflow: “Somatic – Proton – High Stringency
Configuration”. Bam files of the tumor and blood samples of
each patient were uploaded to Ion ReporterTM (IR) software
using the available plug-in, IonReporterUploader_V1_2. Vari-
ant calling was done using Torrent Variant Caller (v. 5.0–9).
Next, the files were processed using a workflow AmpliSeq

What’s new?

Most patients with metastatic neuroblastoma don’t survive 5 years from diagnosis, despite responding well to first-line

treatments. Previous work comparing short-survival and long-survival patients identified some key chromosomal

differences. These authors take the search deeper, conducting whole-exome sequencing to compare somatic mutations

between patients who survived at least 5 years and those who did not. They determined that mutations among the short-

survival group affected different pathways than those afflicting the long-survival patients. In some cases, drugs already

exist that target these proteins, suggesting that testing for these mutations at the time of diagnosis could indicate specific

treatments.
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Exome paired sample (tumor/normal) to subtract variants
[SNV, multiple nucleotide variant (MNV), indel and copy
number variant (CNV)] discovered in the peripheral blood
DNA against the tumor DNA.

Variant annotation and prioritization

The annotation of somatic variants was performed by
SnpSift12 and SnpEff.13 SnpSift’s annotate command provided
the association of known variants to dbSNP (v. 147) and
COSMIC (v. 77)14 identifiers, clinical significance from Clin-
var (updated on May 02, 2016),15, as well as functional pre-
diction indicated by MetaSVM and MetaLR16 from dbNSFP
database (v. 2.9.1).17 The two algorithms predict whether the
variant is tolerated or deleterious, considering nine scores
present in dbNSFP (SIFT, Polyphen – 2, GERP ++, Mutation-
Taster, MutationAssessor, FATHMM, LRT, SiPhy and Phy-
loP) and MMAF observed in different populations of 1,000
genomes. SnpEff predicts the functional and putative impact
of detected variants. Known variants annotated in Clinvar as
benign or likely benign were discarded, and only variants
with HIGH or MODERATE SnpEff predicted impact were
further considered. After integration of exome sequencing
and Exome Aggregation Consortium (ExAC, Cambridge,
MA, http://exac.broadinstitute.org)18 data, variants with a
non-Finnish European population allele frequency > 5% were
discarded (Supporting Information Fig.S1). The interpreta-
tion of variants’ impact was also obtained by mapping
selected variants to protein sequences and their domain
annotation using MutationMapper (http://www.cbioportal.
org/mutation_mapper.jsp). Additional structural predictions
and analysis on the mutated protein sequences were obtained
using Phyre2.19

Pathway analyses

Genes mutated in SS and in LS were separately mapped to
the KEGG20 and Reactome21 pathways. The pathways with
at least three genes mutated in a group and none in the
other group were defined as “group-specific pathways.”
Significant pathway enrichment was calculated considering
the separately mutated genes in the SS and LS patient
groups. Significantly enriched pathways only in one group
and with a number of genes mutated in the group by at
least 1.5x the number of genes mutated in the other group
were considered to be “group-specifically enriched path-
ways.” The detected pathways were organized after the
architecture of the KEGG and Reactome databases to have
a less redundant description of altered molecular signaling
and biological functions, gathering pathways into func-
tional classes.

Gene network analysis

The R Graphite Bioconductor package (v. 1.20.1)22 was used
to convert complex pathway topologies into Reactome
pathway-derived gene networks using appropriate biology-

driven rules to transform different types of direct and indirect
relations between genes and gene products annotated in path-
ways (i.e., regulatory relations, participation to molecular
complexes and biosynthetic pathways, also with compound
intermediates) into pairwise gene connections. Reactome net-
works were merged into a pathway-derived gene network of
186,808 pairwise interactions between 8,678 genes. We
applied the HotNet2 algorithm23 to Reactome-derived gene
networks to statistically identify group-specific subnetworks
of mutated protein-coding genes, defining groups of func-
tionally related genes in which mutations significantly con-
verge (Supporting Information Fig. S1). HotNet2 consists of
an insulated heat diffusion model to detect significantly
mutated gene subnetworks, evaluating both the heat score of
nodes and the local network topology. The heat score for
each node was calculated from the number of samples carry-
ing prioritized somatic variants in the corresponding gene.
Hotnet2 analysis was first conducted using all the somatically
mutated genes in the whole cohort of patients, and then the
two patient groups were considered separately. Due to the
cardinality of our cohort and the considerable dimension of
the considered network, multiple testing correction applied in
this analysis, considerably increases the p-value. Gene groups
emerging from Hotnet2 analysis were also linked to Gene
Ontology biological processes (The Gene Ontology Consor-
tium, 2015).

Variants validation by ultra-deep sequencing

Validation of tumor variants was performed by ultra-deep
sequencing on Amplicon libraries using the 454 Junior Tita-
nium sequencer (Roche) according to the protocol for Ampli-
con amplification, Lib-A (Roche). Amplicons were obtained
by one-step PCR using the FastStart™ High Fidelity PCR
System, dNTPack (Roche) and specific adaptors were ligated
for each patient. Amplicon lengths ranged from 200 to
400 bp, including forward and reverse Phusion primers,
intermediate patient-specific sequence MID and the target
template. The initial PCR was performed with 10 ng of
gDNA input according to the manufacturer’s protocol, the
FastStart™ High Fidelity PCR System, and the dNTPack
(Roche). After PCR amplification, the Library with Agencourt
AMPure beads (Beckman Coulter) was purified and the
libraries were quantified according to the Quant-iT Pico-
Green dsDNA Assay Kit (Thermo Fisher Scientific). Finally,
the amount of library to be used in the emPCR was deter-
mined according to the Method Manual Lib-A (Roche). Tar-
get regions of the genome reference sequences corresponding
to the amplicons were obtained from the human reference
genome (GRCh37/hg19) using the getfasta command of Bed-
tools.24 Reads were mapped to these sequences through the
bwa-sw command of Burrows-Wheeler Aligner25 and vari-
ants were called using GATK – Genome Analysis Tool Kit.26

Variants were also confirmed using IGV – Integrated
Genome Viewer.27
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Results
Somatic mutations in HR-NB patients

To clarify the genomic features associated with rapid disease
progression in NB patients, we analyzed an Italian cohort of
29 tumors of HR-NB stage M patients classified in SS and LS
by WES (Table 1). The survival ranged from 6 to 48 months in
SS and from 62 to 159 months in LS. Two SS patients out of
14 died as a result of therapy toxicity. Out of the 15 LS patients,
11 were still in complete remission, two were alive with disease
and two died of disease at last follow-up. Alignment of
2,189,622,787 reads to the reference exome (37.1 million reads
per sample on average) yielded a 97x average coverage and a
76.29% of the target exome with at least 30x coverage, ranging
from 53% to 84% in different patients. Sequence coverage in
the SS and LS groups, considering both the tumor and periph-
eral blood cell samples, was homogeneous (Supporting Infor-
mation Fig. S2). A total of 2,301 and 1,805 high quality and

coverage somatic variants for the SS and LS groups, respec-
tively, were detected after read mapping, variant calling and
identification of somatic variants comparing the tumor and
control data. In accordance with the mutations types observed
before,7–9 somatic variants resulted in enrichment in C > A
(LS = 32.3%, SS = 25.2%) transversions at TCT sites and in
C > T transitions (LS = 20.3%, SS = 22.6%) at GCG trinucleo-
tide substitution types, normally due to deamination of
5-methylcytosine (Supporting InformationFig. S3). Next, 1,288
high-quality, detrimental and rare somatic variants in 1,043
genes, 580 variants detected in LS patients (Supporting Infor-
mation Table S1A), and 708 in SS (Supporting Information
Table S1B) passed the variant effect- and frequency-based fil-
tering steps (Supporting Information Fig. S1). Variants were
later examined considering recurrence, hit gene and pathways,
and the possible impacts of mutations on disease progression.
Variant effects, group-exclusivity, intra-group recurrence, gene

Table 1. NB patient cohort description.

Patient ID Sex Age at diagnosis (months) MYCN status DNA index Survival (months) Outcome Group

2,475 M 208 Gain No data 33 DOD SS

1,965 M 83 Not amplified 1.51 34 DOD

1,955 F 77 Not amplified No data 6 DOT

2,368 M 75 Not amplified No data 48 DOD

3,060 F 118 Unknown No data 33 DOD

1,900 M 37 Not amplified 1.14 24 DOD

2,181 M 47 Amplified No data 28 DOD

2,384 M 58 Gain No data 45 DOD

1,995 M 22 Amplified 2.37 23 DOD

1,920 M 14 Not amplified No data 9 DOT

2,100 M 27 Not amplified No data 12 DOD

2,513 M 52 Not amplified No data 20 DOD

2,852 M 50 Gain No data 43 DOD

2,578 F 23 Gain 1.07 42 DOD

1,409 F 34 Not amplified 1.00 159 CR LS

1,641 M 33 Not amplified 1.96 105 CR

2,121 M 61 Not amplified 1.88 144 CR

2,393 F 73 Gain No data 62 CR

2,140 M 55 Not amplified 1.00 75 CR

1,905 M 15 Not amplified 1.96 80 CR

2,528 M 61 Gain No data 86 CR

2,035 M 17 Not amplified 1.52 144 CR

2,488 M 47 Not amplified No data 65 AWD

2,951 M 68 Gain 1.00 64 DOD

2,251 F 12 Amplified No data 110 CR

2,576 F 32 Not amplified No data 71 AWD

2,426 F 7 Not amplified No data 53 CR

2,613 F 12 Not amplified No data 39 CR

2,828 M 8 Not amplified 1.92 71 CR

Abbreviations: M, male; F, Female; Unknown, Physician did not have data; No data, data was not made available; DOD, Dead of disease; DOT, Dead of
toxicity of the treatment; AWD, Alive with disease; CR, Complete remission
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products biological function and relationships among the
mutated genes were used to prioritize group-specific variants
for validation. We confirmed 50 selected variants in 49 genes
(Supporting Information Table S2).

Mutation landscapes in SS and LS patients

We compared the number, type and effect of somatic muta-
tions observed in the two patient groups. No significant differ-
ence in the numbers of somatic variants per patient in the SS
(median 37) and LS (36) groups were observed (Wilcoxon test
p value = 1; Fig. 1a). Very close numbers of selected somatic
variants per Mb were observed in the two groups (median
values of 0.62 and 0.64, respectively). The number of somatic
variants per patient in our cohort was higher than previously
reported,6–9 but a direct comparison between WES studies is
hampered by several factors, on top the different sequencing
depth or technology and the different analysis methods and
settings used.

Moreover, similar patterns in the SS and LS patients were
present considering the variant type (Supporting Information
Fig. S4A; G test p = 0.11) and predicted variant effect on the
protein sequences (Supporting Information Fig. S4B, G test
p = 0.06) without evident of differences in relation to different
therapy responses and outcomes.

Somatic variants and mutated genes exclusive of SS or LS

The above-cited 708 and 580 high-confidence damaging, and
rare variants detected in SS and LS patients, fell into 583 and
515 individual genes, respectively. Eighteen variants in 18 dif-
ferent genes occurred in both patient groups, resulting in
recurrence in NB-HR patients considered as a whole, whereas
there were 690 and 562 group-specific variants. Only
102 (9.8%) out of 1,043 genes mutated in the whole NB
cohort were recurrently mutated in two or more patients.
Fifty-five genes were recurrently mutated in patients of both
classes (Fig. 1b), including 17 genes detected in more than
two patients, with DPCR1 (mutated in nine patients),
AHNAK2 (6), and CBX4 and ZNF717 (both mutated in four
patients) being the most recurrently observed. Notably,
528 genes were specifically mutated in SS and 460 in LS
patients (Fig. 1b), including 21 and 17 recurrent and group-
specific genes, respectively, and six that carry particularly
damaging variants (Fig. 1c). Of these genes, only KMT2A
(Lysine Methyltransferase 2A; E2926Q in patient ID2426;
S3291C in patient ID1905) and NUPL1 (Nucleoporin 58;
N153 fs in patient ID2393 and ID2576) resulted in recurrently
mutated and group-specific pathways LS patients.

In SS patients, four genes (SMO, SMARCA4, ZNF44 and
CHD2), all known to be expressed in neural tissues, were recur-
rently mutated and group-specific and carried particularly

Figure 1. Comparison of mutation landscapes in SS and LS NB patients. (a) The number of variants in LS and SS groups were not significantly
different, as shown by the boxplot of the distribution of selected somatic variants per patient (p = 0.98 of Wilcoxon test of median equality,
conducted after Shapiro–Wilk test of normal distribution p value = 3.79 × 10−5). (b) Venn chart of number of somatically mutated genes in
LS and SS groups, showing class-specifically mutated genes and their subset of genes being both class-specific and recurrent intra-class. (c)
Mutation matrix indicating in which class and patients are mutated class-specific and recurrent genes, hit by particularly deleterious
mutations.
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deleterious variants not described before, except SMARCA4
R906H. SMO (Frizzled Class Receptor Smoothened) encodes
nonclassical G-protein-coupled receptors that are highly
expressed in neural tissues and involved in Hedgehog signal-
ing. Two SMO variants (Fig. 2; Supporting Information
Fig. S5) were detected, R451G in ID2578 (Supporting Infor-
mation Table S2) in the Frizzled/Smoothened family mem-
brane region, and T640 fs (ID1955) that induces a premature
stop codon ending the protein 132 amino acids before the C-
terminus. The other recurrent SS-specific genes, CHD2 and
SMARCA4, were transcriptional regulators. Chromodomain
Helicase DNA Binding Protein 2 (CHD2) is important for
neurogenesis and de novo mutations in this gene were found
in neurodevelopmental disorders.28 CHD2 is a tumor sup-
pressor chromatin remodeler, previously observed to be
mutated and proposed as a cancer driver in chronic lympho-
cytic leukemia.29 Notably, the transcription co-activator and
tumor suppressor SMARCA4 (SWI/SNF Related, Matrix
Associated, Actin Dependent Regulator of Chromatin,
Subfamily A, Member 4) were recurrently mutated in the SS
group. SMARCA4 encodes a member of the SWI/SNF
nucleosome-remodeling complex whose mutations impact

growth control, differentiation, development and cell adhe-
sion.30 SMARCA4 somatic variants (R468C in patient ID2513;
R906H in ID3060; Fig. 2; Supporting Information Fig. S5) in
the two SS patients were validated (Supporting Information
Table S2). The deleterious SMARCA4 R906H mutation was
annotated in the COSMIC database (COSM5576007), as pre-
viously being observed in gastric cancer,31 whereas the puta-
tively damaging R468C variant was not described previously.
Both SMARCA4 variants were localized in the transcription
activator chain of the protein, falling, respectively, in the Heli-
case Sant-associated domain (HSA) and in the helicase ATP-
binding domain of the protein (Fig. 2). Phyre2 structural
analysis, in particular, suggested a possible strong impact of
R906H on ATP binding that is essential for transcriptional
activation. SS-specific FGFR1 N577 L (detected in ID2100)
and PTK2 R569L (detected in ID2181) variants were validated
and described in a previous NB study (Supporting Informa-
tion Fig. S5 and Table S2).9 These two genes were already
associated with NB tumorigenesis7,9 although not specifically
in relation to patient survival.

The PTK2/FAK1 (focal adhesion kinase) variant is located
close to the Tyr576 phosphorylation site of the kinase domain

Figure 2. Impact on proteins of somatic variants detected in NB patients in PTK2, PTPRA, SMARCA4 and SMO genes. For each gene,
considering the protein encoded by the reference transcript, lollipop plots show the type and the position of somatic variants in relation to
the protein sequence and domains (colored portions) according to Pfam annotation (http://pfam.xfam.org/); different lollipop colors indicate
variant annotation types (See Supporting Information Fig. S5 for additional protein plots).R
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“catalytic loop” (Fig. 2) required for PTK2 activation32 and for
mediating NB progression and aggressiveness.33

Different pathways and functions are hit by mutations in SS

and LS patients

Beyond the gene level analysis, somatic mutations falling into
different genes that co-participate in the same pathways
and/or are linked together in specific functional or interaction
networks were investigated, considering mutated genes anno-
tated in Reactome (48%) and KEGG (24%). Thirty-Four Reac-
tome and 12 KEGG pathways were specifically enriched in the
LS group, and 12 Reactome and 17 KEGG pathways were
recurrently mutated in LS patients and never mutated in SS
(LS-specific; Supporting Information Tables S3 and S4). In SS
patients, 17 Reactome and one KEGG pathways were specifi-
cally enriched, and 25 Reactome and 4 KEGG pathways were
SS-specific (Supporting Information Tables S3 and S4). Con-
sidering the hierarchical structure of pathway annotation and
redundancy and most deleterious mutations, the somatically
mutated genes in each of the two patient groups tend to par-
ticipate to different pathways and pathway classes (Fig. 3; Sup-
porting Information Figure S6) indicating a link between
disease aggressiveness and specific processes and functions hit
by mutations. Mutations in 15 cell cycle genes were present in
LS patients, with several deleterious mutations in genes linked
to mitosis, including CDC27, CDCA5, CENPC and AURKB.
Notch-related genes are mutated in both groups, but several
genes (TBL1X, CREBBP, NOTCH4, NOTCH3 , TNRC6B and
TLE2) specifically belonging to Notch1 signaling are mutated
only in LS patients.

In SS patients, the axon guidance pathway was possibly
hampered by mutations in 20 genes, involved particularly in
NCAM signaling for neurite outgrowth by MAPK2 and MAPK
activation (including ARHGEF11, CACNA1G, FGF4, PTPRA,
PTK2, ANK3 , SMO and NTNG2) processes, which is important
for neurodevelopment and oncogenesis. The MAPK pathway
is linked through PTK2 signaling to ERBB4 (including FGF4,
PTPRA and PTK2), and MET (LAMA2, PTK2 and LAMA4).
ERBB4 signaling was specifically enriched, and both MET sig-
naling and the Cilium assembly pathway (BBS10 , SMO,
INPP5E) were exclusively mutated in SS patients.

Genes mutated in SS patients cluster into specific pathway-

derived subnetworks

A further analysis of the topological structure of mutation
gene networks derived from the Reactome pathway annota-
tion, encoding direct relations among genes and their prod-
ucts, detected significant associations of somatically mutated
genes in NB SS patients belonging to functionally connected
gene networks specific to the worst survival group, which were
in accordance with previous observations at the pathway level.
Neither the 463 genes mutated in the whole cohort (adjusted
p value of global mutation clustering 0.43) nor the 213 genes
mutated in LS patients (adjusted p value 0.93) showed

significant clustering according to Hotnet2 analysis. Con-
versely, a more pronounced clustering was observed of the
268 genes mutated in SS patients, 79 of which converged into
18 subnetworks of at least three genes (adjusted p value of
global mutation clustering 0.24) (Supporting Information
Table S5). Figure 4 shows the six most relevant network com-
ponents, comprising 31 functionally connected genes that are
somatically mutated specifically in SS patients. The largest
component, which was recurrently identified in almost two
thirds of SS patients (9 of 14), included nine genes (NID2,
LAMA4, LAMA2, PTK2, PTPRA, FGG, VCL, MMP14 and
KSR2) of the RAF/MAPK signaling pathway and extracellular
matrix organization. In addition to the previously observed
PTK2 variant, we validated the D377Y variant, which fell into
the Y phosphatase domain of PTPRA (Fig. 2), closely con-
nected with PTK2 in the RAS/MAPK pathway, and the stop
gaining variant (E352*) of LAMA2 (Supporting Information
Table S2 and Fig. S5). A second component of six genes
(NALCN, UNC79, SLC9A9, SLC12A1, SLC5A8 and SLC4A9)
that was linked to the transmembrane transport of small mol-
ecules was mutated in four SS patients. Two patients carried
mutations in two genes of the component (NALCN and
SLC9A9 co-mutated in ID2368; SCL5A8 and SLC4A9 in
ID1955). The third component, which was linked to centro-
some maturation, included five genes (CDK5RAP2, CDK11A,
CEP89, TUBGCP6 and SFI1) mutated in three different
patients (ID1965, ID2100, ID2384) (CEP89, TUBGCP6, and
CDK11A co-mutated in the patient ID1965). Four genes were
involved in lipid and lipoprotein (SPTLC2 and ACSL6) or
nucleotide (AK7, AK9 and ACSL6) metabolism, which were
mutated in three SS patients (ID2368, ID2513, ID2852), with
SPTLC2 and ACSL6 in the same patient. Two additional SS-
specific components were defined by SMO, recurrently
mutated in two patients and functionally connected BBS10
and GAS8 genes co-mutated in a third, and by KMT2C,
HOXB3 , and HOXC4 mutated in ID1965 and ID2852
patients.

Specific mutated genes and deregulated pathways of SS

patients are confirmed by analysis of a large independent

cohort

To confirm our findings, we analyzed the largest available
group of stage M NB with survival data profiled by WES
(Pugh cohort).8 The 4,120 genes with nonsilent somatic muta-
tions reported in the Pugh cohort were analyzed, separating
the 240 patients into SS (221; with overall survival ≤ 5 years)
and LS (19; with overall survival >5 years) according to our
classification.

SS-specific genes, pathways and component identified in
our study were compared to the findings in Pugh cohort
(Supporting Information Fig. S7). Of the genes with SS-
specific recurrence in our cohort, NFATC1 and OR14J1 were
recurrent with SS-specificity also in the Pugh cohort. Further-
more, five genes (CHD2, DIDO1, KRTAP4–8, ZNF44 and
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Figure 3 . Summary of Reactome pathways exclusively mutated or exclusively enriched in LS or in SS NB patients. The figure depicts the
hierarchy of Reactome pathways that resulted or contained pathways exclusively mutated in LS (green fill) or in SS (light red fill) patients, or
that were enriched in a class-specific way (bold text); the gray fill indicates more general classes at high hierarchical level being not class-
specific; for the most high-level specific or specifically enriched class of each group, the corresponding mutated genes are indicated in the
right part of the figure (See Supporting Information Tables S3,S4 and Figs. S4,S5 for additional information).
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ZNF91) with SS-specific recurrence in our cohort were
mutated with SS-specificity also in Pugh patients (Supporting
Information Fig. S7A). The SMARCA4 mutation was reported
in a patient with a survival of 61 months according to our
classification. Our analysis indicated 34 genes mutated in one
SS patient of our cohort and recurrently mutated with SS-
specificity in the Pugh cohort, including ABCA13 which was
mutated in seven patients.

Nineteen of the 78 genes prioritized because involved in
SS-specific pathways identified (Fig. 3) were mutated with SS-
specificity in the Pugh cohort, including five (ANK3 ,
COL11A1, COL12A1, COL1A1, PNPLA7) that were also recur-
rent (Supplementary Figure 7A). Five genes (AK7, NALCN,
PTK2, SLC5A8, TUBGCP6) included both in SS-specific path-
ways and in significant subnetworks (Fig. 4) identified in our
study were mutated only in SS patients of the Pugh cohort.

Furthermore, analysis with HotNet2 was performed con-
sidering the 1,810 genes somatically mutated in SS patients of
the Pugh cohort and mapped in the Reactome-derived

network, detecting 14 significant (adjusted p value 0.05)
pathway-derived subnetworks involving 143 genes
(Supporting Information Table S6). Extracellular matrix orga-
nization, carbohydrate and lipid metabolism emerged both
from our study and (Figs. 3 and 4) Pugh data. PTK2, which
was shown to be mutated with SS-specificity both in our data
and in the Pugh cases, in the network of mutations detected
in Pugh patients (Supporting Information Table S6), was
directly linked to two gene groups involved in ECM
(Supporting Information Fig. S7B).

Discussion
One of the major challenges for oncologists treating HR-NB is
the high percentage of patients showing rapid disease progres-
sion despite multimodal treatment. Of these, approximately
60% of HR-NBs have a fatal course within 5 years of diagno-
sis. To identify genetic abnormalities associated with disease
aggressiveness, we compared a somatic mutation profile of
HR-NB patients with SS and LS.

Figure 4 . Reactome-derived network of genes somatically mutated in NB patients formed by six SS-specific components. (a) Colored nodes in
the net indicate genes mutated in SS patients, with six different components (groups of functionally connected genes somatically mutated in
NB patients with rapid disease progression identified by Hotnet2 analysis) in different colors; gray nodes represent genes directly connecting
the components according to pathway topology and non mutated in the analyzed cohort (edges between gray nodes are omitted). (b) Each
component was recurrently mutated in different patients, and specific tumors carried mutations in multiple genes and components of the
network.
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General tumor genomic landscapes of HR-NB patients
with SS and LS were similar, exhibiting close frequencies of
variants and numbers of somatically mutated genes per
patient.

Nevertheless, few genes were recurrently mutated specifi-
cally in the SS group, including SMARCA4, SMO, ZNF44 and
CHD2. SMARCA4 also known as BRG1, is a tumor suppressor
gene of the SWI/SNF complex34–37 that shows inactivating
mutations or overexpression in several adult cancers.38,39 We
found two missense mutations, R468C and R906H, in the
Transcription Activator chain region responsible for DNA
and ATP binding and ATP hydrolysis, which are predicted to
be very dangerous. The loss of function of the SMARCA4 pro-
tein likely impaired its activity with damage of the SWI/SNF
that is involved in chromatin remodeling. Jubierre
et al. showed that the SMARCA4 gene has a role in the prolif-
eration of NB cells both in vitro and in vivo.40 Matsubara
et al. observed a correlation between SMARCA4 mutations
and loss of function in lung cancer cell lines, indicating an
association with aggressive tumor behavior and worse patient
survival.41 Thus, SMARCA4 mutations may determine the loss
of function associated with tumor aggressiveness and poor NB
patient survival. As it has been demonstrated that SMARCA4
and TERT are functionally linked,42 SWI/SNF damage could
alter TERT function,43 which one of the most important genes
rearranged in NB.44

Among the nonrecurrent gene mutations, we validated the
FGFR1 N546 K variant, as well as novel deleterious variants
of CREBBP and OR5T1 (Supporting Information Fig.S5 and
Table S2), whose mutations were found to be associated with

NB aggressiveness.7,8 Remarkably, somatic mutations occur-
ring in SS or LS patients hit different pathways. In addition,
functional gene networks, corresponding to sub pathways, hit
only SS patients. Numerous gene variants observed in the
tumor of SS patients affected the RAF/MAP kinase cascade, as
well as MET and ERBB4 pathways linked to PTK2 signaling.
MAP2K and MAPK activation, specific of SS tumors, are of
interest because they can be involved in cell motility by trig-
gering PTK2 signaling and Matrix Metalloproteinases activa-
tion. These results agree with previous data on the enrichment
of somatic mutations in FAK signaling and cell adhesion
signaling.9

Furthermore, several genes connected to RAF/MAPK sig-
naling were mutated in SS (NID2, LAMA4, LAMA2, PTK2,
PTPRA, FGG, VCL, MMP14 and KSR2), impacting extracellu-
lar matrix organization, regulation of cell adhesion and migra-
tion. A previous observation of PTK2 mutation in a HR-NB
patient by Lasorsa et al., further strengthens the importance of
PTK2 signaling in aggressive tumors. Mutations of NELL1,
UNC79 and COL5A2 genes in one SS patient of our cohort
(Supporting Information Table S1B), were previously reported
in NB patients with SS, albeit with different variants.9 Particu-
larly relevant groups of clustered genes mutated in SS were
involved in centrosome maturation, in the regulation of the
cell cycle, in ciliary basal body docking (CDK5RAP2, CDK11A,
CEP89, TUBGCP6 and SFI1) and in cilium assembly (the
recurrently and SS specifically mutated SMO, and GAS8,
BBS10 and AK7). Our observations on the mutations linked
to the chromosome remodeling pathway in SS tumors support
the role of chromosome instability in NB,45 providing further

Table 2. Information on drugs available in relation to genes carrying deleterious mutations in NB patients.

Gene ID Gene Description
Variant
discovered

FDA approved
drugs Drug class References for drugs use

SDHB Succinate
dehydrogenase
complex, subunit B,
iron sulfur (Ip)

L7FS Succinic acid Small
molecule

He et al., 2004, Citric acid cycle intermediates as ligands
for orphan G-protein-coupled receptors., Nature; Southern
et al., 2013, Screening β-arrestin recruitment for the
identification of natural ligands for orphan G-protein-coupled
receptors., J Biomol Screen

SMO Smoothened, frizzled
family receptor

R451G;
T640FS

Vismodegib Small
molecule
inhibitor

Yauch et al., 2009, Smoothened mutation confers resistance
to a Hedgehog pathway inhibitor in medulloblastoma.,
Science; Wang et al., 2012, Identification of a novel
Smoothened antagonist that potently suppresses Hedgehog
signaling., Bioorg. Med. Chem.

Fluocinonide Small
molecule

Wang et al., 2010, Identification of select glucocorticoids as
Smoothened agonists: potential utility for regenerative
medicine., Proc. Natl. Acad. Sci. U.S.A.

Halcinonide Small
molecule

Wang et al., 2011, Glucocorticoid hedgehog agonists in
neurogenesis., Vitam. Horm.; Wojnar et al., 1986,
Androstene-17-thioketals. 1st communication: glucocorticoid
receptor binding, antiproliferative and antiinflammatory
activities of some novel 20-thiasteroids
(androstene-17-thioketals)., Arzneimittelforschung

PTK2 PTK2 protein tyrosine
kinase 2

R569L Masitinib Kit inhibitor Dubreuil et al., 2009, Masitinib (AB1010), a potent and
selective tyrosine kinase inhibitor targeting KIT., PLoS ONE

MMP14 Matrix metallopeptidase
14 (membrane-inserted)

P8FS Prinomastat Mmp inhibitor Abbenante et al., 2005, Protease inhibitors in the clinic.,
Med Chem
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explanation for the observed CNA in patients with fatal
outcomes.4,46

The clustering of somatic mutations observed in SS
patients reflected two phenomena: specific functions targeted
in several SS patients, as observed for the RAF/MAPK signal-
ing component, and co-occurrence in the same patient of
mutations in two or more functionally connected genes.

The analysis of a sizeable independent cohort of 240 stage
M NB patients8 gave additional strength to our findings.
Mutations in Pugh SS patients targeting genes prioritized in
our cohort (ANK3 , COL11A1, COL12A1, COL1A1, PNPLA7,
AK7, NALCN, PTK2, SLC5A8 and TUBGCP6) as SS-specific
based on recurrence, pathway enrichment and/or pathway-
derived network topology analysis, were particularly notewor-
thy and supported our results. The reconstruction and analy-
sis of pathway-derived mutation networks reported in Pugh
SS patients further backed the observations done in our cohort
about the deregulation of lipid metabolism and RAF/MAP sig-
naling in relation to ECM mutated genes.

Recent comparison of matched primary and relapsed NB
tumors revealed that disease progression is accompanied by
an increased mutational load in MAPK pathway genes, exhi-
biting new mutations in the MAPK pathway that were not
present at the onset of disease, and accumulated in tumors of
relapsing patients.47,48 Our findings of specific MAPK signal-
ing pathway damages (also observed by Eleveld et al.47 and
Schramm et al.48) may be relevant for more efficacious thera-
peutic management of patients at diagnosis. Specific genes
mutated at diagnosis exclusively in pathways belonging to the
SS group could be candidates for pharmacological targeting.
SMO, PTK2, MMP14 and SDHB are quite interesting as they
are targeted by FDA approved drugs according to the Drug
Gene Interaction Database (DGID: http://dgidb.genome.wustl.
edu/) (Table 2). Recently, Padovan-Merhar et al.49 reported an
increased SMO mutation frequency in tumors of HR-NB
patients at relapse, showing that most of these new mutations

are targetable and give an additional tool to treat relapsing
patients. Functional investigation is mandatory to assess the
potential significance of mutated genes as therapeutic targets,
and further study is needed to evaluate drugs, such as Masiti-
nib and Vismodegib, for NB therapy.

In our study, two groups of HR-NB patients with different
outcome were characterized, providing new data on mutations
recurrently affecting specific pathways and functions in
patients with SS, informing the molecular features, beyond
well-defined CNA patterns, that are associated with high
tumor aggressiveness.
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Genomic landscape characterization of large granular
lymphocyte leukemia with a systems genetics approach

Leukemia (2017) 31, 1243–1246; doi:10.1038/leu.2017.49

Large granular lymphocyte (LGL) leukemia is a rare clonal disease
characterized by a persistent increase in the number of CD8+
cytotoxic T cells or CD16/56+ natural killer (NK) cells. It is associated
with recurrent infections, severe cytopenias and autoimmune
diseases. JAK/STAT pathway activation, deregulation of pro-
apoptotic pathways (sphingolipid and FAS/FAS ligand) and activation
of pro-survival signaling pathways (PI3K/AKT and RAS) are known
hallmarks of LGL leukemia. Activating somatic STAT3 mutations have
been reported in the SH2 domain (30–70% of cases),1–3 and in the
DNA-binding or coiled-coil domain (2%).4 STAT5Bmutations are more
rare, but typical of CD4+ T-LGL leukemia cases.5–7 The JAK/STAT
pathway can also be activated by non-mutational mechanisms such
as increased interleukin-6 (IL-6) secretion and epigenetic inactivation
of JAK-STAT pathway inhibitors.8 Indeed, aberrant STAT signaling is
observed in almost all LGL leukemia patients irrespective of the
presence of JAK/STAT mutations.9

To characterize the genomic landscape of LGL leukemia, we
performed whole-exome sequencing (Supplementary Methods
and Supplementary Figure 1) from 19 paired tumor-control
samples derived from untreated LGL leukemia patients including
conventional CD8+ (n= 13) T-cell cases, and more rare CD4+ or
CD4+CD8+ T-cell cases (n= 3), and NK LGL leukemias (n= 3;
Supplementary Table 1). Eleven STAT-mutation-negative patients
were included for identification of new driver mutations. All
sequenced samples were highly purified sorted cell populations
(either CD8+ or CD4+ T cells or NK cells), and T-cell receptor Vbeta
analysis confirmed monoclonal expansions in the tumor fractions
of T-cell cases (see Supplementary Methods and Supplementary
Table 1). The average sequencing coverage in the tumor samples
was 32x (Supplementary Figure 2). Both the coverage and
the number of raw called variants were similar in tumor and

control samples. After selecting high confidence variants (see
Supplementary Methods), and filtering out variants already
described in human populations single nucleotide polymorphism
database and/or with allele frequency higher than 5% in exome
aggregation consortium exomes, 28 508 somatic variants in
16 518 genes were identified in the whole cohort with a high
prevalence of C4T and G4A transversions (Supplementary
Figure 3A). Next, among high confidence and rare variants, we
selected 370 variants in 347 genes with a strong predicted
functional impact (Supplementary Methods and Supplementary
Table 2). The observed differences in numbers of somatic
mutations (range 5–40, average 20) and genes involved (range
4–41, 19) per patient were not because of coverage differences
(Supplementary Figure 3B). A slight tendency toward more
mutated genes per patient in STAT-mutation-positive (22.9 in
average) versus negative patients (18.4 in average) was noticed.
Sanger sequencing validations of somatic variants were obtained
in 14 genes (Supplementary Table 3 and Supplementary Figure 4)
being recurrent or prioritized according to functional criteria and/
or connections emerged by integrated pathway-derived networks.
The positions of the mutations in protein domains of selected
genes are shown in Supplementary Figure 5.
In addition to STAT3 (all in CD8+ T-LGL) and STAT5B (CD4+ and

CD8+ cases) mutations (in 8/19 patients, 42%), 14 other genes had
recurrent mutations including transcriptional/epigenetic regulator,
tumor suppressor and cell proliferation genes (Figure 1a and 2a).
KMT2D has been linked to lymphomagenesis10 and found to be
frequently mutated in other cancers. Mutations of PCLO, a calcium
sensor-regulating cAMP-induced exocytosis, have been previously
reported in diffuse large B-cell lymphoma. FAT4 is an upstream
regulator of stem cell genes both during development and cancer,
functioning as a tumor growth suppressor via activation of Hippo
signaling. It was previously found recurrently mutated in human
cancers, including leukemias. Also the other recurrently mutated
gene, ARL13B, is linked to Hippo signaling. It encodes a small
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GTPase of primary cilia whose role in cell cycle control has recently
been recognized, and they crosstalk with several signaling
pathways including Hippo. ARL13B and FAT4 genes were mutated
in a mutually exclusive way. Additional non-recurrent somatic
mutations of YAP1 and of its inhibitor AMOTL1 point toward an
involvement of Hippo signaling deregulation in LGL leukemia.
When comparing the mutation profile between three different

phenotypic LGL subgroups, qualitative and quantitative differ-
ences were observed, although the clinical characteristics of
patients did not markedly differ (see details in Supplementary
Results and Supplementary Table 1). Interestingly, higher mutation
burden was observed in CD4+ T-LGL leukemia cases (Figure 2b).
As the sequencing depth across samples did not vary significantly
(Supplementary Figure 3), the differences in mutation load
likely reflect a different natural history of the LGL phenotypes.
Cytomegalovirus-derived stimulation and restricted usage of
T-cell receptor Vβ has been associated with CD4+ T-LGL cases,11

and this could relate to the higher number of mutations.
In the CD4+ group, only STAT5B and HRNR genes had recurrent
mutations (Figure 1b). HRNR is a calcium-binding protein involved
in hematopoietic progenitor cell differentiation, and it is mutated,
amplified or overexpressed in many cancers. In NK LGL leukemias
(all STAT-mutation-negative), 31 genes harbored somatic muta-
tions including several ‘cancer genes’ such as KRAS, PTK2, NOTCH2,
CDC25B, HRASLS, RAB12, PTPRT and LRBA.
Next, a custom knowledge-based ‘systems genetic’ approach,

reminiscent of strategies recently implemented to interpret
genome-wide transcriptome deregulation in cancer,12,13 provided
the functional prioritization of mutated genes. As mutations
hitting different genes can drive a similar phenotype in different
patients and concur to it if present in the same patient, we
reconstructed a pathway-derived meta-network depicting direct
interactions and functional relations between genes somatically
mutated in LGL leukemias. We identified 119 KEGG and 426
Reactome pathway-derived networks, each including at least one
of the 347 previously prioritized mutated genes associated to high

confidence, rare and high-impact variants. The union of all path-
derived networks generated a meta-network with 118 (34%)
mutated genes, giving a non-redundant representation of
functional relations, based on direct interactions between
somatically mutated genes. Remarkably, 47 mutated genes were
directly connected to at least another mutated gene in 18
multigene components (groups of genes whose products directly
interact, that is, encode proteins taking part in the same molecular
complex or regulating each other). Considering co-participation of
mutated genes in pathways including STAT genes as additional
functional link, seven multigene components connected by direct
relations and three isolated genes converged into a component of
26 genes. In this reconstructed LGL leukemia network (Figure 2c
and Supplementary Figure 6), 61 somatically mutated genes
(occurring in many cases only in one sample) preferentially fall
into a limited number of highly connected pathways, and in this
manner collectively form a functional module hit by somatic
mutations in LGL leukemia. The largest network component
included 24 mutated genes either directly linked to STAT genes, to
their neighbors and/or participating in pathways including STAT
genes (Figure 2c). Beyond JAK-STAT signaling, the ‘STAT-related
component’ included genes intervening in several other con-
nected paths such as acute and chronic myeloid leukemia, ErbB,
HIF-1, insulin, T-cell receptor and VEGF signaling pathways. In 16
out of 19 patients, at least one gene of this group was mutated
with some patients showing more than one hit in the gene group.
For instance, one STAT-mutation-negative CD4+ patient presented
with mutated alleles in three genes of the component (CD40LG, F8
and PLA2G4C). The similar variant allele frequency values of the
validated variants support their co-presence in the dominant LGL
leukemic clone (Supplementary Table 3). Altogether, 8 of 11 STAT-
mutation-negative patients carried validated somatic mutations in
at least one of the ‘STAT-related component’ genes, such as in
FLT3, KRAS, ADCY3, ANGPT2 and PTK2. These mutated genes also
connect the STAT component to the MAPK-Ras-ERK (Figure 2c)
pathway and to the IL-15, all known to be deregulated in LGL

Figure 1. Recurrent somatic mutations in LGL leukemia patients. (a) The table indicates the genes that carry somatic variants in more than one
patient, with a color code showing STAT3 and STAT5B status and classification of patients. (b) Recurrently mutated gene sets found only in
STAT-mutation-negative patients (STAT− ), only in STAT-mutation-positive patients (STAT+) or in both groups. (c) Recurrently mutated genes
that are found only in one or are shared among patient classes (CD8+, CD4+/CD4+CD8+ and NK+).
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leukemia.14 For example, PTK2 is a non-receptor protein-tyrosine
kinase, which is highly expressed in T cells and it regulates several
processes, including cell cycle progression, cell proliferation and
apoptosis, activation of numerous pathways such as PI3K/AKT
signaling MAPK/ERK and MAP kinase signaling cascades. Also the
mutated ANGPT2 is linked to PI3K-AKT and RAS signaling
pathways that it antagonizes. ANGPT2 is expressed in lympho-
cytes and controls T-cell proliferation. ANGPT2 and other
angiogenic factors are reportedly involved in chronic lymphocytic
leukemia where they exert pro-survival effects. Other STAT-
connected genes were receptors such as CD40LG (modulates
B-cell function, regulates immune system and participates in

STAT3 as well as in IL and NFAT signaling pathways) and FLT3 (a
class III receptor tyrosine kinase that promotes the phosphoryla-
tion of various proteins and kinases in the PI3K/AKT/mTOR, RAS
and JAK/STAT signaling pathways). Interestingly, CD40LG was
annotated in the same KEGG pathways as TNFAIP3 (Figure 2c),
which is a negative regulator of NF-κB signaling and known tumor
suppressor gene, and was recently found to be mutated in 8% of
T-LGL leukemia patients.15 Other relevant variants confirmed in
STAT-mutation-negative patients and connected to the STAT
pathway were KRAS and the kinase KDR/VEGFR2.
Other components (and pathways) not directly linked to the

main lesions were also of interest. Nine genes were linked to cell

Figure 2. (a) Impact of selected somatic variants to protein products. Lollipop plots show the type and the position of somatic variants of four
selected genes in relation to the protein sequence and domain structure (see Supplementary Figure 5 for an extended version of the figure
including additional genes). The ADCY Tyr311* variant induces a very premature stop preventing the synthesis of the protein region including
Guanylate cyclase, ATP and Mg2+domains; FAT4 presents two variants, the high-impact missense variant Asp1485Asn in the Cadherin 14
domain and the frameshift variant Hys4261fs inducing a stop codon before Laminin G-like domain truncating the protein before the EGF-like
6 domain and the C terminal; ANGPT2 presents the high-impact missense variant Lys463Glu in Fibrinogen C-terminal domain implicated in
protein–protein interactions, and FLT3 shows a high-impact Asp228Gly variant. (b) Number of mutations per patient in each class. Normal
distribution of values was confirmed with the Shapiro–Wilk test (P= 0.099). Both analysis of variance (P= 0.009) and pairwise Tukey s.d. post
hoc tests (P-values 0.010 and 0.019 in the comparisons of CD4+/CD4+CD8+ with NK and CD8+, respectively) confirmed the statistical
significance of the observed difference. (c) LGL leukemia mutation network. The network shows the functional relations of genes somatically
mutated in LGL leukemia patients, according to the integration of KEGG and Reactome pathway topology (see the text and Supplementary
Methods for details on the pathway-derived network reconstruction procedure); network nodes represent somatically mutated genes, node
color indicates recurrence (according to the legend heat color scale) in the cohort, node label indicates the gene Symbol (different label colors
indicates genes that are mutated only in STAT-mutation-positive (STAT+), only in STAT-mutation-negative (STAT− ) or in both patient groups,
as shown in the legend); genes are connected with black solid lines if they are directly connected in KEGG- and/or Reactome-derived
networks or with colored dashed lines if they participate in pathways including STAT3 and/or with STAT5B (see Supplementary Figure 6 for a
detailed version of the network).
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cycle regulation, and include the CDC25b gene and ATM, which is
involved in apoptosis and P53 signaling (Figure 2c). Furthermore,
the epigenetic nodule included the recurrently mutated KMT2D,
which is connected to ASH1L. Both are histone methyltransferases
involved in epigenetic regulation of gene expression programs
and are part of the ASCOM complex, involved in transcriptional
co-activation. The networks of genes mutated in individual CD8+
and CD4+ or NK LGL leukemia patients and in each patient
subgroup are presented in the Supplementary Figures 7–9.
To conclude, with the systems genetic approach, we were able

to map individual mutations found in LGL leukemia patients in
novel functional modules. The central role of JAK-STAT network
was further highlighted, and our data provide important new
insights of the activation of this pathway in those LGL leukemias
that do not carry STAT mutations.
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the mutated STAT5B S715F construct significantly enhanced the

transcription of the cotransfected STAT5 reporter (18-fold compared

with WT STAT5B) similarly to the N642H mutation (Figure 1B),

whereas the Q706L mutation activation was equal to WT. In the

western blot analysis, S715F and N642Hmutations showed significantly

increased phosphorylation compared with WT STAT5B (Figure 1C),

whereas no increased phosphorylation was observed with the Q706L

mutation. The location of the novel S715F mutation in a serine

phosphorylation site is likely to increase the phosphorylation of STAT5B.

Stimulation with interferon-a revealed that the Q706Lmutation behaved
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Figure 1. STAT5Bmutation characterization. (A) Linear representation of the STAT5B protein structure. Previously known LGL leukemia mutations in STAT5B are marked

in the SH2 domain, whereas the novel Q706L and S715F mutations in the transactivation domains are marked with green boxes. Multiple tyrosine and serine phosphorylation

sites are marked in red. (B) STAT5B reporter assay results. Mutated STAT5B constructs (pCMV6-XL6 STAT5B) were generated through site-directed mutagenesis followed

by transfection and expression of WT and mutated STAT5B (Q706L, S715F, N642H) in HeLa cells together with a STAT5B reporter. Dual-reporter luciferase assay was used

to determine activation and phosphorylation of mutated STAT5B. The experiment was repeated 3 times. Columns represent mean of the fold-change activity. Error bars

indicate the standard error of the mean (SEM), and the statistical significance was calculated with a 1-way analysis of variance (ANOVA; *P , .05, **P , .001). (C) To

investigate the phosphorylation status of the variants, HeLa cells transfected with the abovementioned variants were analyzed by western blot with a phosphoSTAT5 (Tyr694)

specific antibody. Protein lysates of the different variants were separated on an sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel and transferred to

a nitrocellulose membrane. STAT5 protein levels of the different variants were used to normalize for the transfection efficacy. b-Actin was used as a loading control. (D)

Transfected HeLa cells were stimulated with 100 ng/mL interferon-a for 6 hours. A dual-reporter luciferase assay was used to determine activation and phosphorylation of

mutated STAT5B. The experiment was repeated 2 times. Columns represent mean of the fold-change activity. Error bars indicate the SEM, and the statistical significance was

calculated with a 1-way ANOVA (*P , .05, **P , .001). (E) Typical morphology of a representative LGL cell in a STAT5B mutated T-LGL patient. Scale bar, 15 mm. (F)

Morphology of lymphocyte expressing CD4, CD56, and TCRab in a healthy individual. CD41CD561 and TCRab-type lymphocytes were sorted by the FACS method and

stained with Wright-Giemsa stain. A representative cell is shown. Scale bar, 15 mm.
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as the WT, whereas stimulation was not able to further increase the

transcriptional activity of the S715F and N642H mutants (Figure 1D).

To elucidate whether STAT5B mutations are more prevalent in

CD41 T-LGL leukemia cases, deep amplicon sequencing was used

for screening of the SH2 and transactivation domains of STAT5B in

CD41 (n5 8), STAT3-mutatedCD81 (n5 37) and nonmutatedCD81

(n 5 58) T-LGL leukemia patients. Targeted STAT5B amplicon

sequencing covering exons 14 to 19 was done with an in-house–

developed deep amplicon sequencing panel using the Illumina Miseq

platform.7 The data were analyzed with a bioinformatics pipeline

described previously.12 A variant was called when the variant base

frequencywas 0.5% of all reads covering a given a position. Addition-

ally, the same regions were screened with Sanger sequencing in

Japanese and Chinese LGL leukemia cohorts consisting of CD81 and

CLPD-NK cases (n 5 57). None of the patients with CD81 T-LGL

leukemia or CLPD-NK had STAT5B mutations. In contrast, 4 of

8 CD41 T-LGL leukemia cases had STAT5B mutations. Of the 4

patients with STAT5B mutations, 3 possessed the earlier described

N642H mutation and 1 the Y665F mutation. Sanger sequencing–

negative patients and healthy controls (n 5 50) were also screened

with allele-specific PCR for N642H and Y665F mutations, but no

additional mutations were found. Altogether, the STAT5B mutation

frequency in CD41 T-LGL leukemia patients in our cohort was

55% (6 of 11 patients). This is significantly higher than in the previous

study (2%) of 211 CD81 T- and NK-cell LGL leukemia cases where

STAT5BSH2domainmutationswere initially discovered.7Most of the

STAT5B mutations found in CD41 T-LGL leukemia have also been

seen in various T-cell neoplasms, including gd hepatosplenic T-cell

lymphoma,13 T-cell acute lymphoblastic leukemia,14,15 T-cell prolym-

phocytic leukemia,16 type II enteropathy-associatedT-cell lymphoma,17

and extranodal NK/T-cell lymphoma,18 suggesting that these are shared

with other T-cell malignancies. The analyses of STAT5 target genes

with chromatin immunoprecipitation sequencing have shown that

STAT5B is a key factor in T-cell development, binding to molecules

such as DOCK8, SNX9, FOXP3, and IL2RA.19 Together these

results suggest that the STAT5B pathway plays a central role in the

development of T-cell neoplasms.

In contrast to other more aggressive T-cell malignancies with

STAT5B mutations, the disease course in our CD41 T-LGL leukemia

cohort was indolent, and none of the patients with STAT5B mutations

needed therapy during the observation time (median follow-up,

4 years). Rheumatoid arthritis (RA) is commonly associated with

CD81 T-LGL leukemia, and especially patients with multiple

STAT3mutations more often have RA.12 In our cohort, none of the

11 caseswith CD41T-LGL leukemia suffered fromRA.Two patients

showed neutropenia and 1 patient had anemia (Table 1).

All STAT5B mutated CD41 T-LGL cases possessed a TCRab

T-cell phenotype with CD162CD561 and CD571 (Figure 1E). Two

cases were CD82, 2 were weakly positive for CD8, and 2were clearly

positive for CD8 (supplemental Table 4). This is in accordance with

the earlier reports8-10 of monoclonal CD41 T-LGL cells, which have

shown expression of TCRab, variable levels of CD8, and a typical

cytotoxic (granzyme B1, CD561, CD571, CD11b1/2) and activated/

memory T-cell (CD21bright, CD72/1dim, CD11a1bright, CD282,

CD62L2HLA-DR1) phenotype. Interestingly, all 6 patients with

STAT5Bmutations had large monoclonal TCR-Vb expansions where

the mutations were located, whereas significant proportions of STAT3

mutations in CD81 T-LGL leukemia and CLPD-NK are detected in

small subclones.

Because the CD41CD561TCRab1 immunophenotypes recog-

nized on STAT5B-mutated T-LGL leukemia cells have been poorly

defined,we also investigatedwhether normal lymphocyteswith similar

phenotypic features exist in peripheral blood of healthy subjects.

Among 27 healthy controls, the median percentage of CD41CD561

TCRab1 T cells in lymphocytes was 0.2, and it varied from less than

0.02% to 6.5% (supplemental Figure 2). Fluorescence-activated

cell sorter (FACS)-sorted CD41CD561TCRab cells possessed LGL

morphologywith cytoplasmic azurophilic granules (Figure 1F;N5 3).

Thus, phenotypically similar cells as observed in CD41 T-LGL

leukemia cases can also be observed in healthy individuals in

small quantities. However, deep amplicon sequencing of sorted

CD41CD561 cells from 5 healthy subjects revealed no mutations in

the SH2 or transactivation domains of STAT5B.

In conclusion, activating STAT5B mutations can be found in the

majority (55%) of CD41 T-LGL leukemia cases, whereas among

patientswithCD81T-LGL leukemia orCLPD-NK, these are very rare.

STAT5Bmutations can be considered as a novel diagnostic marker for

this specific disease subtype.

Table 1. Clinical features of CD41 T-LGL leukemia patients

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8 Patient 9 Patient 10 Patient 11

STAT5b mutation

(% VAF)

Q706L (45) S715F (36) N642H (25) N642H (46) Y665F (31) N642H (27) None None None None None

Vbeta expansion

(CD41 population)

Vb.13.1: 98% Vb.8: 86% NA NA NA NA Vb.13.1: 78% NA NA NA NA

Age (years) 61 70 74 79 82 66 80 67 58 70 79

Sex M F M F M M F F F F F

WBC count (109/L) 8.5 10.2 9.0 8.7 13.9 9.4 8.7 6.8 5.5 6.1 8.2

Neutrophil (%)* 40 16 12 5 51 32 33 35 32 42 26

LGL (%)* 52 72 71 91 39 63 57 44 54 55 69

Hb (g/L) 134 124 119 126 155 141 135 142 73 135 120

Platelets (109/L) 399 204 144 186 245 265 241 143 200 229 156

Other neoplasias None None None None None None None None None None None

Other diseases Diabetes None None Gastrointestinal

hemorrhage

None Lung cancer Osteoarthritis,

hypothyroidism

None None None None

Observation

period

5 years 7 years 14 years 6 months 3 years 2 years 3 years 12 years 6 years 12 years 15 months

Outcome Alive Alive Death Alive Alive Alive Alive Alive Alive Alive Alive

F, female; Hb, hemoglobin; LGL, large granular lymphocyte; M, male; VAF, variant allele frequency; WBC, white blood cell.

*Neutrophil and LGL percentage from whole white blood cell population. From patients 1, 2, and 3, germline DNA was available for sequencing to confirm the somatic

nature of the STAT5b mutations.
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To the editor:

Cardiac involvement in Erdheim-Chester disease: an MRI study

Davide Gianfreda,1 Alessandro A. Palumbo,2 Enrica Rossi,2,3 Lorenzo Buttarelli,2 Gaia Manari,1 Chiara Martini,2

Massimo De Filippo,2 and Augusto Vaglio1

1Nephrology Unit, 2Radiology Unit, Parma University Hospital, Parma, Italy; and 3Department of Imaging, Bambin Gesù Children’s Hospital, Roma, Italy

Erdheim-Chester disease (ECD) is a rare non-Langerhans cell

histiocytosis (,1000 cases reported in the literature), characterized

by tissue infiltration by CD681 CD1a2 “foamy” histiocytes. ECD

commonly causes long bone osteosclerosis, retroperitoneal (periaortic

and perirenal) fibrosis, central nervous system (CNS) lesions, but also

involves the lung, the skin, andvarious endocrine axes.1Cardiovascular

manifestations are also common (;40% of the cases) and include

infiltration of the myocardium (eg, pseudotumoral atrial masses), the

pericardium (eg, pericarditis sometimes complicated by tamponade),

and the aorta, with the typical aspect of “coated aorta.”2,3 Patients with

ECD with cardiovascular involvement are reported to have a poorer

prognosis1,4,5 and are therefore usually treated aggressively, but
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