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ABSTRACT 

The Carpathian-Pannonian region’s geodynamic evolution has been for the last decades object 

of debate for the scientific community. The aim of this study is to provide a further contribution 

to the understanding of the evolution of this territory. In fact, low temperature 

thermochronometry and paleotemperature studies allow to define thermal histories, which can 

be used, in turn, to infer the occurrence of thermal perturbations and of their extent, as well as 

the timing and spatial pattern of burial and exhumation. Several different processes such as B 

and A-type subduction, slab roll back, mantle uprise, gravitational collapse of the lithosphere 

have been proposed to have played a role in the evolution of this region. Reconstruction of 

thermal and of burial and exhumation history was then used as a tool to support or rule out 

some of the processes quoted above. 

Three low temperature thermochronometers were used to date rocks belonging to the Polish 

and Ukrainian Carpathians, and the results were inverted to model time-temperature histories. 

Thermal histories were then integrated with observations on the structural and topographic 

setting of the region and with data regarding the thermal structure of the lithosphere and 

discussed to extrapolate constrains on burial and exhumation. Finally a compilation of the 

thermochronometry datasets referred to the study area, integrated with previously published 

geophysical data were used to discuss their consistency with the different geodynamic processes 

proposed for the Carpathian Pannonian region. 

The results indicate that samples of the thrust belt were heated to variable temperatures, 

generally lower than 165°C and cooled to surface temperature between the Early and the Late 

Miocene. Since no regional heat flow transients affected the Carpathian thrust belt in Miocene 

time, its thermal history has to be entirely ascribed to burial and exhumation history. 

Three sectors, characterized by different burial-exhumation histories and topographic, structural 

and geophysical features were identified in the study region. Burial depths become more 

homogeneous E-ward. Exhumation is interpreted to have occurred by erosion of the wedge 

during thrusting in the western sector (23-10 Ma), by erosion and tectonic denudation during 

post-thrusting extension in the central sector (10-6 Ma) , and by erosion of the wedge during 

post thrusting uplift in the eastern sector (12-6 Ma). These exhumation processes appear to be 

consistent with models for the evolution of the Carpathian-Pannonian region that do not 

comprise slab-related dynamics, such as that based on gravitational collapse. It also appears 

burial-exhumation history of the Ukrainian Carpathians reflects the regional dynamics of the 

Carpathian-Pannonian region, whereas that of the Polish Carpathians mainly depends on crustal 

processes. 
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RIASSUNTO 

L’evoluzione geodinamica della regione Carpato-Pannonica è stata, negli ultimi anni, oggetto di 

dibattito all’interno della comunità scientifica. Scopo di questa tesi è contribuire alla comprensione 

dei processi che hanno portato alla formazione di tale territorio. L’analisi termo cronometrica di 

bassa temperatura si campioni di superficie, associata ad analisi che mirino alla ricostruzione delle 

paleotemperature permette di definire la storia termica dei campioni, che può essere, a sua volta, 

utilizzata per rilevare eventuali eventi termici del passato e per ricostruire l’evoluzione temporale ed 

il pattern spaziale di seppellimento ed esumazione nell’area di studio. 

Diversi processi sono stati proposti come rilevanti nell’evoluzione della regione in esame, quali ad 

esempio subduzione ti tipo A e di tipo B, roll back e break-off di slab in subduzione, risalita 

astenosferica, collasso gravitazionale. La ricostruzione della storia termica e di seppellimento ed 

esumazione sono utilizzati, in questo studio, come vincolo che permetta di supportare od escludere 

alcuni dei processi elencati sopra.  

Tre termocronometri di bassa temperatura sono stati utilizzati per datare rocce appartenenti ai 

Carpazi polacchi ed ucraini; i risultati sono poi stati invertiti per modellare per ciascun campione 

percorsi tempo-temperatura supportati dai dati. Le storie termiche così ottenute sono poi state 

integrate con osservazioni sulla assetto strutturale e topografico dell’area in esame e con dati 

riguardanti la struttura termica della litosfera, e discussi per estrapolare vincoli sulla storia di 

seppellimento ed esumazione. Infine una raccolta dei dati termocronometrici riferiti all’area di 

studio, provenienti dal presente studio e da letteratura precedente è stata utilizzata per discuterne la 

consistenza con i differenti scenari geodinamici proposti per l’evoluzione Neogenica  della regione 

Carpato-Pannonica. 

I risultati indicano che i campioni della thrust belt sono stati riscaldati fino a temperature variabili, 

benché generalmente inferiori ai 650°C, e successivamente raffreddati tra il Miocene Inferiore e il 

Miocene superiore. Poiché non è stata riscontrata la presenza, nella thrust belt, di evidenze relative a 

perturbazioni del campo termico durante il Miocene, ne deriva che la storia termica dei campioni in 

esame è interamente dipendente dalla loro storia di seppellimento ed esumazione.  

L’area in esame è stata  suddivisa, in fase di discussione, in tre settori caratterizzati da diverse storie 

di seppellimento ed esumazione e da un diverso assetto strutturale, topografico e dei parametri 

geofisici. Le profondità di seppellimento raggiunte appaiono progressivamente più omogenee 

spostandosi lungo strike dal settore occidentale a quello orinetale. L’esumazione della catena è 

avvenuta per erosione del prisma di accrezione durante il thrusting,nel settore occidentale (23-

10Ma), per erosione e denudamento tettonico durante una fase estensionale post-thrusting nel 

settore centrale, e per erosione del wedge durante il sollevamento post-thrusting nel settore 

orientale. L’insieme di questi processi esumativi e della distribuzione spaziale del seppellimento 

lungo la catena sono maggiormente compatibili con modelli evolutivi per la regione Carpato-

Pannonica che non comprendano dinamiche legate alla presenza di slab in subduzione, come ad 

esempio l’ipotesi basata sul collasso gravitativo della litosfera. Infine la storia di seppellimento-

esumazione dei Carpazi ucraini è legata a dinamiche litosferiche, mentre quella dei Carpazi polacchi 

riflette dinamiche esclusivamente crostali. 
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CHAPTER I. 

INTRODUCTION 

1.1. Overview 

This study is aimed at reconstructing thermal and burial-exhumation history of the Polish and 

Ukrainian Carpathians, in order to provide constrains to the debated Neogene evolution of the 

Carpathian-Pannonian region. This is achieved through the application of low temperature 

thermochronometry, integrated with observations on the structural and topographic setting and 

with geophysical data published in previous studies. 

In this chapter an introduction to the geology of the study region and to the analytical 

methodologies used is provided, the scientific questions are detailed and the main contents and 

the structure of the thesis are briefly outlined. 

 

Figure 1.1 - position of the Carpathians in Europe (from the http://www.carpates.org website)  

1.2. Geological setting  

1.2.1. Introduction 

The Carpathians are a 1500 Km long arc shaped mountain belt, representing the eastern 

prolongation of the Alps to which they are linked by the strike-slip Vienna Basin. To the south 

they are in continuity with the Dinarides, and in retro-wedge position they enclose the 

Pannonian Basin (Fig 1.1, Fig. 1.2 and Fig. 1.3). 



8 
 

 

Figure 1.2- Tectonic sketch map of Europe (from Artemieva et al., 2006).) 

The chain formed during the Alpine orogenesis by N to SE-ward collision between the ALCAPA 

(of African origin) and Tisza-Dacia (of European origin) microplates and the European plate (e.g. 

Jiricek, 1979; Nemcok et al., 1998; Sperner et al., 2002). As can be observed in Fig. 1.2 and Fig. 

1.5, Eastern frontal thrust of the Carpathians overlaps with the Trans European Suture Zone 

(TESZ), that constitute a boundary between the thinner and more weak West European Platform 

and the thicker and stronger East European Craton (e.g. Phraoh, 1999; Tesauro et al., 2009). 

A narrow zone of intensely deformed and sheared Mesozoic to Paleogene rocks, traditionally 

named “Pieniny Klippen Belt” (PKB, e.g. Birkenmajer, 2001), divides, in the northern and north-

eastern Carpathians, the Mesozoic thrust belt, namely the Inner Carpathians (IC) from its 

accretionary wedge, the Outer Carpathians (OC; Fig. 1.3 and Fig. 1.5 e.g. Tasarova et al.,2009 

and references therein). 

The IC are made of Ercynian (and pre-Ercynian relics) basement and Meso-Cenozoic sedimentary 

cover; they underwent a first orogenetic phase between the Early  and Late Jurassic due to the 

collision between the ALCAPA and Tisza-Dacia microplates (e.g. Faryad and Henjes-Kunst, 1997; 

Golonka et al., 2006). During the Middle-Late Cretaceous they underwent a second phase of 

deformation, due to the collision between the ALCAPA-Tisza-Dacia terranes and the European 

Platform (e.g. Golonka et al., 2006, Janak et al., 2001). The OC basin, built on thinned European 

continental crust, was filled with an Upper Jurassic to Miocene sedimentary succession that was 

subsequently deformed and accreted to the wedge between Paleocene and Quaternary ( being 

still active in the Southern Carpathians e.g. Golonka et al., 2006; Linzer, 1996 and references 

http://www.sciencedirect.com/science/article/pii/S0012825210000589
http://www.sciencedirect.com/science/article/pii/S0012825210000589
http://www.sciencedirect.com/science/article/pii/S0012825210000589
http://www.sciencedirect.com/science/article/pii/S0012825210000589
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therein). In the Late Early to Late Miocene retro-wedge extension associated to escape tectonics 

took place, leading to the formation of the Pannonian Basin and shaping the Carpathian-

Pannonian region to its present form (e.g. Huismans et al., 2001; Fodor et al., 2011; Kovac et al., 

1990). Volcanism related to extension (e.g. Harangi and Lenkey., 2007) also occurred in 

association to retro-wedge dynamics. 

The late Alpine evolution of the chain has been characterized by the progressive migration 

toward the E and SE of the collision and of all the associated features (e.g. Horváth, 1993; 

Jiricek, 1979; Sperner et al., 2002). This study focuses on the portion of the chain originated by 

the collision between the ALCAPA and the European Plates, and, in particular on the Polish and 

Ukrainian Outer Carpathians. 

 

Figure 1.3 - (A) Simplified tectonic sketch of the Carpathians and (B) map of the Carpathians with elevation 
color code (from the http://www.carpates.org website) 

 

1.2.2. The Polish and Ukrainian Carpathians 

In the Polish and Ukrainian portion of the chain the alpine collision occurred between the Early 

Cretaceous (e.g. Nemeth and Putiš, 2002) and the Middle Miocene (Nemcok et al., 2006, 

Royden et al., 1992). The main stages of evolution of this portion of the chain are indicated in 

Fig. 1.4.  

As the compressive front progressively turned from N to NE directed, the deformation involved 

first the westernmost region and it progressively moved eastward. Based on Nemcok et al., 2006 

the thrusting terminated by 15.5 Ma in Western Poland, and by 11.5 Ma in Ukraine. In the 

Middle-Late Miocene, extension in retro-wedge position overlapped with compression at the 

accretionary front. The Pannonian basin formed as a retro-wedge basin in the IC domain (i.e. the 

upper plate) through a phase of major extension at 19-11.5 Ma, followed by a phase of minor 

extension and major subsidence between 11.5 and 5 Ma (Fodor et al., 2011). 

In the meantime the innermost portion of the OC domain (i.e. the lower plate) experienced 

extension as well, as demonstrated by the formation of intramontane basins and occurrence of 

post-thrusting normal faults. These features are widespread along the Polish sector of the OC 

(Kovac et al., 1990, Jankowski et al., 2004; Mazzoli et al., 2010), whereas in Ukraine no major 

evidence of pervading post-thrusting extension can be observed. 
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Figure 1.4- Schematic evolution chart of the study area 

Some observations on the structure of the study area can be extrapolated from Fig.1.3 , Fig. 1.5 

and Fig.1.6:  

- In the westernmost sector (between 19° and ca. 21.5° E), to the South of the Flysch Belt, 

several IC units outcrop, covering an area which extends over 100 Km south of the PKB: The 

Tatricum, the Veaporicum, the Gemericum and some minor basement blocks and their 

respective sedimentary covers. South of the IC units the Neogene volcanic complexes bound 

the area covered by the pannonian sediments. In the Slovak and Polish IC, the Central 

Carpathian Paleogene basin represents the slightly deformed remnant of a forearc basin 

where sedimentation occurred between Eocene and Late Miocene. Finally normal faults 

reactivating and cutting thrusts (Jankowski et al., 2004; Mazzoli et al., 2010) and Neogene 

intramontane basins (e.g Orava basin) give to the OC in this sector complex structure and a 

topography characterized by heights and lows. 

- In the central sector of the study area, between ca. 21.5° and 22.5° E, the IC units outcrop 

only along a narrow band immediately to the South of the PKB, as most of the IC domain is 

covered by the pannonian sediments. On the other hand the Neogene volcanics are the 

closer along the whole mountain belt to the lower plate (OC deposits). Furthermore the OC 

belt and its present foredeep reach in this area their maximum width. Finally, as it can be 

observed in Fig. 1.6 this is the area of the whole mountain belt characterized by the 

lowermost relief. 
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- The easternmost sector of the study area, comprised between ca. 22.5° and 25° E, represents 

the transition between a northern region where no IC unit and little PKB rocks outcrop and 

the OC sediments are overlain, to the SW, by either the pannonian sediments or the 

Neogene volcanics, and a southern region (at the boundary between Ukraine and Romania), 

where IC units outcrop to the SW of the OC, and Neogene volcanics are located further to 

the hinterland. The change of structural setting along this portion of the mountain belt is 

accompanied by the transition from a very low to an higher and higher relief (Fig. 1.6), by an 

higher imbrication of the thrust sheets and by a progressive narrowing of the OC band, 

whereas no evidence for post-thrusting extension is present. Finally it can be observed that a 

forearc basin likely to the Central Carpathian Basin is located in the southernmost portion of 

the study area. 

 

Figure 1.5- Tectonic sketch of the study area  
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Figure 1.6. DEM of the study area 

 
Figure 1.7- Steady state lithosphere thickness derived from surface heat flow and compositional input of the 
crust and mantle lithosphere (from Cloetingh at al., 2010). (a) Moho depth or crustal thickness (Dèzes and 
Ziegler, 2004); (b) surface heat flow and; (c) lithospheric thickness (Hardebol, 2010).  

 

http://www.sciencedirect.com/science/article/pii/S0012825210000589
http://www.sciencedirect.com/science/article/pii/S0012825210000589
http://www.sciencedirect.com/science/article/pii/S0012825210000589
http://www.sciencedirect.com/science/article/pii/S0012825210000589
http://www.sciencedirect.com/science/article/pii/S0012825210000589
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1.2.3. Stratigraphic overview of the Polish and Ukrainian Outer Carpathians 

The OC, to which most of the samples analyzed in this thesis belong, are made up of a stack of 

thrust sheets characterized by different lithostratigraphy and tectonic structures. Sedimentary 

successions were uprooted from their substratum and accreted to the advancing prism between 

the Oligocene and the Middle-Late Miocene (in the Polish-Ukrainian region, Ślączka et al., 

2006.). The sediments that constitute the thrust sheets were emplaced in the OC basin in the 

time span between the Late Jurassic and the Early Miocene (Ksiazkiewicz, 1962, 1977; Bieda et 

al., 1963; Mahel et al., 1968; Koszarski and Ślączka, 1976). The OC sedimentary successions 

testify an early stage of basin opening and progressive deepening between the Late Jurassic and 

the Kimmeridgian. Between the Tithonian and the Early Cretaceous the OC basin underwent 

rapid subsidence and deposition of calcareous flyschs, with main provenance from the European 

Platform occurred. In the Late Cretaceous the IC underwent a major stage of deformation and 

thrusting N-ward directed. The OC basin started then to be in a foredeep condition, and thick 

flysch sequences, with provenance mainly from the IC lasted until the Early Miocene. Between 

the Late Cretaceous and the Early Miocene the depocenters progressively shifted outward and E 

to SE ward, as described by Meulenkamp et al. (1996). Part of the several tectonic units (i.e. the 

principal thrust sheets) in which the OC prism is generally subdivided, that have been 

considered to represent single different sub-basins, can be generally traced along the whole 

Polish-Ukrainian OC, whereas others are present only in the Ukrainian Carpathians, as can be 

observed in Fig. 1.5. In Fig. 1.8 and Fig. 1.9, chronostratigraphic charts of respectively the Polish 

and the Ukrainian OC are reported. 

 

1.2.4. Geodynamic evolution of the Carpathian-Pannonian area: an open 

question  

The traditional and widely accepted interpretation of the Alpine evolution of the Carpathian-

Pannonian region comprises subduction of oceanic lithosphere beneath the Alcapa and Tisza-

Dacia microplates and subsequent opening of the Pannonian back-arc basin due to progressive 

slab retreat (e.g. Royden et al., 1992; Horváth et al., 1993). The main elements in favor of active 

subduction along the carpathian margin are the presence of a fast anomaly beneath the 

Southern Carpathians (in the Vrancea region) at depths of 60-300 Km (McKenzie, 1970, Fuchs et 

al., 1979, Wortel and Spakman, 2000; Sperner et al., 2001), the calc-alkaline volcanism that 

occurred at the boundary between the PB and the Carpathians and the deep (up to 240 Km, 

Dererova et al., 2006) lithospheric roots that are present beneath some tracts of the 

Carpathians. Huismans et al. (2001) propose a two stage evolution of extension in the PB: after a 

first stage of passive rifting induced by slab subduction and roll-back, an active rifting, induced 

by major astenosphere upwelling would have occurred. Lithospheric thinning higher than crustal 

thinning (Dererova et al., 2006; Bielik et al., 2004) and high heat flow (Pospisil et al. 2006) in the 

PB, and late-stage extension related volcanism ( e.g Konecny et al., 2002) were interpreted as 

pieces of evidence for late stage mantle upwelling and active rifting. In this model the volcanic 

fields that border the PB are interpreted as subduction-related in the first stages and extension-
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related in the late stages (Konecny et al., 2002). Horvath et al. (1996) and Sperner et al. (2001), 

based on the clockwise migration of tectonic activity and of volcanism and on the presence of 

what is interpreted as a slab remnant beneath the Southern Carpathians, suggest that a 

progressive slab break-off occurred, starting from the westernmost Carpathians and migrating E-

ward and SE-ward. 

In recent times several authors argued that the presence of slab subduction beneath the 

Carpathians is not adequately supported by observations, and several other possible 

explanations were proposed to justify the Neogene evolution of the Carpathian-Pannonian 

region.  

Kovacs and Szabo (2008) show that even the early-stage volcanism along the PB margins does 

not necessarily require slab-subduction, being rather related to extension, and thus they 

propose that mantle flow coupled with eastward extrusion is more likely to have driven the 

regional evolution. Faccenna et al. (2003) show how astenospheric flows induced by subduction 

in the Mediterranean region can influence the dynamics of the single orogen, and they suggest 

therefore that astenospheric dynamics have a major role in the formation of the Carpathian-

Pannonian region. Knapp et al. (2005) suggest that a process of lithosphere delamination could 

have occurred instead of oceanic subduction, being able to justify the high velocity body located 

beneath the Vrancea zone. 

Gemmer and Houseman (2007) and Houseman and Gemmer (2007) demonstrated that 

gravitational instability of a previously thickened Pannonian lithosphere can induce, if triggered 

by a collapse of the overlying crust, lateral lithospheric “flow” and downwelling, being therefore 

able to lead to lithospheric thinning in the PB and lithospheric thickening and compression in 

the surrounding Carpathians.  
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Figure 1.8- Chronostratigraphic chart of the Polish Outer Carpathians (from Golonka e Picha., 2006 ). 

 
Figure 1.9- Chronostratigraphic chart of the Ukrainian Outer Carpathians (from Golonka e Picha., 2006 ). 
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1.3. Goals of the study 

This study was aimed to reconstruct thermal and burial-exhumation history of the Polish and 

Ukrainian Carpathians in order to constrain the Neogene evolution of the Carpathian-Pannonian 

region. In particular the goals of this study can be summarized in the following points: 

Heating and cooling of the thrust belt: were they due to thermal perturbations and/or to burial 

and exhumation? Did the positive thermal anomaly developed in the Pannonian Basin in the 

Middle Miocene play a role in heating the Polish and Ukrainian Carpathians? 

Burial of the thrust belt: how thick was the eroded section? Was burial due to thickness of the 

sedimentary pile and/or to thrusts imbrication? 

Exhumation of the thrust belt: when did it happen? Was it mainly erosional or tectonic? Was it 

driven by thrusting, post collisional uplift, extension…else? 

Evolution of the Carpathian-Pannonian region: can thermochronology of the outer thrust belt 

tell us something to constrain it? 

 

In addition, this work provided the opportunity to investigate two additional topics.  

The dates of exhumation of the source rocks of the sediments forming the OC could be 

reconstructed and used for an estimate of the source terrains. 

Finally the impact of apatite crystal defects like inclusions, abrasion, coating on reproducibility of 

apatite (U-Th)/He dates could be evaluated. 

 

 

 

1.4. Introduction to methods 

Thermochronometry is the discipline that, using different radioisotopic dating techniques, 

reconstructs the thermal history (thermochronology) of a rock or geologic terrain. Low 

temperature thermochronology of rocks is sensitive to their burial and exhumation histories in 

the uppermost portion of the crust (ca. 10-20 Km), and therefore is suitable for studying the 

recent evolution, in terms of vertical movements, of the mountain belts. Applying 

thermochronometry to the rocks of a thrust and fold belt allows to reconstruct, if the paleo-

geothermal gradient and its evolution in time are sufficiently well known, their burial depth and 

the timing of their exhumation. In this study the zircon and apatite (U-Th)/He and the apatite 

Fission Tracks analysis were applied, in order retrace the thermal history of samples up to ca. 

170°C and their burial-exhumation history along the uppermost 10-12 Km of the crust. 

 

1.5. Thesis outline 

Low Temperature Thermochronometry was applied in this work to address the questions listed 

above. Sampling, analysis and data discussion were first performed at a bigger scale, and finally 

the data were discussed at a regional scale. 
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In Chapter 2 a synthesis of the background of thermochronometric methods used in this thesis 

is provided. 

Chapter 3 and Chapter 4 present the results of this thesis, together with a first interpretation. In 

particular in Chapter 3 the results referred to the Polish sector of the study area are displayed 

and discussed, whereas Chapter 4 focuses on the Ukrainian sector. The body of both chapters 

constitute a paper submitted to a scientific journal and additional information not included in 

the paper is provided in appendix to the chapters. 

In Chapter 5 a discussion of the two integrated datasets is provided and a compilation of the 

thermochronometric data referred to the portion of the Carpathian belt that formed by collision 

between the ALCAPA and the European plate is used to discuss the geodynamic implications of 

this work.  

Chapter 6 summarizes the main conclusions of this thesis. 

In Appendix the facilities and procedures used for sample preparation and analysis are 

described, and a brief dissertation on the evaluation of reliability of AHe dates of bad crystals is 

presented. 
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CHAPTER II. 

METHODS 

2.1.  Introduction 

In this chapter the fundamentals of the thermochronometrical methods used in this study are 

briefly presented. Thermochronometry as a discipline is relatively recent (the first FT papers 

date back to the 1960s: e.g. Fleischer and Price, 1964; Fleischer et al., 1965; Naeser 1967; 

Wagner 1968; 1969), and therefore it is subject to a rapid evolution of techniques and its 

potentialities and fields of application are still being investigated; furthermore many 

complications both theoretical and technical are still unsolved. Here, based on the plentiful 

literature available, the well consolidated and widely accepted principles and techniques of such 

discipline are presented, with the aim not to examine and discuss its details but to provide the 

reader with an adequate background to the comprehension of the main contents of the present 

study. The methods hereafter described, including sampling, analysis and interpretation, follow 

the same routine currently adopted in most of the centers where thermochronometry is 

performed. 

Main references for this and the following paragraph are the synthetic works provided by 

Reiners, 2005, Reiners and Brandon., 2006. 

Details on the analysis and interpretation of data and on complications arose during this work 

may be found in Chapters 3 and 4 and in Appendix I. 

 

2.2. Principles of thermochronometry and basic glossary 

The thermal sensitivity of radioactive systems depends on their tendency to turn from a closed 

to an open system condition with increasing temperatures. Thermochronometry plays on the 

sensitivity to a low temperature range (between ca. 30°C and 550°C) of some radioactive 

systems (thermochronometers) to understand thermal histories of rocks and minerals in that 

temperature range. 

Three groups of thermochronometers are currently of common use: the (U-Th)/He and the 

Fission tracks systems, based on the production of respectively He and lattice defects (fission 

tracks) by decay of U and Th in U-Th bearing minerals (primarily apatite and zircon) and the 
40Ar/39Ar systems based on the production of 40Ar by the decay of 40K in K bearing minerals 

(feldspar, micas, hornblende). 

Thermal sensitivities of these thermochronometers can be quantitatively predicted, as the 

processes of removal of the daughter products of the radioactive decays (i.e. the opening of the 

system) can be well represented by thermally activated diffusion: this allows to use them to 

constrain thermal histories of minerals and of host rocks. In Fig: 2.1 the thermal sensitivities 

(represented by closure temperatures, see the text below for definition) of the most common 

thermochronometers are indicated. 

Thermal history of a rock in such low temperature range results from the interaction between its 

movements relative to the earth’s surface and the crustal thermal field and its variations in 
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space and time. As a consequence, in some settings and under proper assumptions 

thermochronometry can be eventually used to infer burial and exhumation history of rocks. 

The low-temperature thermochronometers used in this study are the apatite and zircon (U-

Th)/He systems (AHe and ZHe) and apatite fission track system (AFT). 

 

Figure 2.1- Nominal closure temperatures of various geochronometers and thermochronometers (from 
Gwilym, 2005). Systems are ordered by closure temperature on the Y-axis; the red dashed line indicates the 
thermochronometers used in this work.  

 

In this work, and more in general in thermochronometry, some words of wide use are meant in 

a precise meaning, implying the need for a concise glossary. 

The closure of a thermochronometer occurs through a range of decreasing temperatures for 

which the retention of products of the decay by the system progressively increase from 0% at 

the base (maximum temperature) to 100% at the top (minimum temperature): this temperature 

interval is defined Partial Retention Zone (PRZ). To give an estimate of thermal sensitivity of a 

thermochronometer the closure temperature (Tc) concept is often used in place of the PRZ: this 

is defined as the temperature of a rock at its thermochronometric cooling age, assuming a 

steady monotonic cooling history. In Fig.2.2. a schematic representation of the PRZ and Tc 

concepts is presented. The word reset is used to refer to rocks that after having been hold for a 

certain time at low T were heated up to temperatures high enough to re-open the system, 

before the final cooling to surface temperature. 

The word exhumation defines the movements of a rock with respect to the earth’s surface 

(Reiners and Brandon, 2006). Exhumation can be either tectonic or erosional (or a combination 

of the two), as it always occur by denudation, understood as removal of rock or soil by tectonic 

(normal faulting or ductile thinning) and/or erosional processes (Reiners and Brandon 2006). 

Rock uplift and surface uplift are used to describe the vertical motion of a rock or of a portion 
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of the earth near or at the surface relative to a datum, such as sea level (England and Molnar, 

1990; Reiners and Brandon; 2006). In Fig 2.3 the concepts of denudation and uplift are 

schematically illustrated. 

 

Figure 2.2- schematic representation of the PRZ and Tc concepts. After Vernon, 2008. Colored lines indicate 
isotherms; dashed lines indicate PRZ bounding isotherms and the Tc isotherm. 

 

Figure 2.3- schematic representation of the denudation and uplift concepts. Dashed lines indicate paleo 
surface at times t1 and t2, whereas solid black line indicates the present day (t3) surface. The red arrow 
indicates the rock uplifting forces (tectonics, buoyancy) and the blue arrow indicates the denudational 
processes (tectonics, erosion). 

Sedimentary samples which has been hold at temperatures too low to open the 

thermochronometric system typically yield a wide range of ages, representing the cooling ages 

of their source rocks/terrains. Detrital thermochronometry is that branch of the low 

temperature thermochronometry which plays on this feature to constrain the cooling history of 

the source terrains of the sediments. A discrimination of the age populations present in the 

detrital sample is based on the distribution of the grain ages. In detrital thermochronometry the 

Lag time is the time elapsed from the closure of the thermochronometric system to its 

deposition. Lag time variations of sediments coming from the same orogen provide information 

on the evolution of the orogen itself: a growing orogen would generate a Lag time decrease in 

the sediments, whereas a decaying orogen would induce a Lag time increase. 
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2.3. Interpretation 

2.3.1. From thermochronometric data to thermal history 

In order to use thermochronometric dates to constrain thermal histories, laboratory stepwise 

heating experiments are commonly used to calibrate the relationship between decay product 

retention and temperature and time. The results are integrated with dates of boreholes 

samples, where present day thermal profile of the crust can be directly measured. Crustal 

sections exposed by normal faulting are also used to improve the understanding of the retention 

behavior of thermochronometers as a function of temperature and depth (Reiners and Brandon, 

2006 and references therein). These studies give generally concordant results, suggesting that 

the relationship between daughter products retention and temperature is well understood. 

The calibration of kinetic models for the retention of single thermochronometers allows one to 

define their PRZ and Tc for a given cooling rate. The thermochronometric age has a true 

temporal meaning by itself only in case of monotonic cooling, when it corresponds to the 

cooling through the closure temperature. 

To reconstruct more complex thermal histories backward thermal modeling is used. Thermal 

modeling is based on kinetic models and allows to trace the envelope of the thermal histories 

that well fit the experimental data. The software used in this work for thermal modeling is 

HeFTy (Ketcham, 2005), which includes the available kinetic models for each 

thermochronometer. It allows both the inverse and the direct approaches, the second consisting 

of tracing a thermal history and obtaining thermochronometrical data based on the chosen 

kinetic models. The gauge of the match between the modeled thermal history and the 

experimental data is given by the Goodness Of Fit parameter (GOF), which indicates the 

probability of failing the null hypothesis that the model and data are different. In general a value 

of 0.05 or higher is considered not to fail the null hypothesis, and thus reflects an acceptable fit 

between model and data. A modeled thermal history is considered good when it has GOF>0.5 

(Ketcham 2008). 

 

 

 

2.3.2. From thermochronometric data to burial and exhumation history 

Thermochronometric data are related to thermal history, which is in turn related, in most cases, 

to burial and exhumation history. There are, however several complications in the relationships 

between the three, since erosion rates influence both the crustal thermal field and the thermal 

sensitivities of the thermochronometers. In other words changes in erosion rates induce both an 

increase of the temperatures to which the thermochronometers are sensitive and a thermal 

advection of the isotherms, resulting in much younger thermochronometric ages. In Fig. 2.4. an 

example of such effect is shown (from Reiners and Brandon, 2006). 

Thus, given a certain crustal thermal model, thermochronometric ages can be uniquely related 

to erosion rate only assuming it having been steady prior as well as after the closure of the 
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system. Shallow isotherms are able to recover more rapidly from transients, therefore the lower 

the Tc of the thermochronometer, the safer the assumption of steady state. 

Under the assumption of a certain thermal field and of steady state erosion rate closure 

temperature and closure depth can be estimate, and the range of possible erosion rates can be 

defined. Changes in erosion rates with time can be estimate from measurements of multiple 

cooling ages from the same rock, taking care in considering transient thermal effects. 

To this purpose vertical age transects are also of common use: the slope of age-elevation 

relationship constituting an estimate of erosion rate in the time interval of the cooling ages. 

 

Figure 2.4. – Influence of erosion rate on the thermal profile and closure temperatures at steady state (Reiners 

and Brandon, 2006). The thermal profiles are steady-state solutions for a one-dimensional thermal field with 

a steady erosion rate. Temperature is held fixed at the top and bottom of a 30-km thick infinite layer. Erosion 

is represented by a steady velocity through the layer. The specific thermal parameters used for this model are 

based on the northern Apennines of Italy, which is a fairly typical convergent orogen. The color lines show the 

effective closure temperature for apatite He (AHe), zircon fission track (ZFT), and muscovite Ar (MuAr) as a 

function of increasing erosion rate.  

2.4. Helium Thermochronometry 

 

2.4.1. Introduction 

(U-Th)/He dating is based on the α-decay of Uranium and Thorium. U-He radioisotopic system 

was discovered by Ernest Rutherford in the first decade of the 19th century. After a first 

flowering of He dating in the scientific community of that time, the method was gradually 

abandoned in the next few decades. By about 1940, when U-Pb dating became widely available, 

it also became evident that He dating provided, in most cases, largely underestimated formation 

ages, and He loss was recognized to be responsible for such underestimation (Reiners, 2001). 
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Only in 1987 Zeitler et al. first suggested that He ages could represent cooling rather than 

formation ages, opening the way to He thermochronometries. 

In this section principles and applications of He thermochronometers are presented. The main 

references used, to which the reader is addressed for a deeper and wider study are the papers 

provided by Braun et al., 2006; Ehlers and Farley, 2003; Farley, 2000; Reiners and Brandon, 2006; 

Reiners, 2001; Reiners, 2004. 

 

2.4.2. He ingrowth 

(U-Th)/He thermochronometry is based on the production of He nuclei (α particles) by the U 

and Th decay series and, to a minor extent, by α- decay of 147Sm. The equation for He ingrowth 

in time (t) is 

 

1) 4He= 8238U(𝑒𝜆238𝑡-1) + 7235U(𝑒𝜆235𝑡-1) + 232Th(𝑒𝜆232𝑡-1) + 147Sm(𝑒𝜆147𝑡-1) 

 

where He, U, Th and Sm refer to present-day amounts, and λ is the decay constant (λ238 = 1.551 

× 10–10 yr-1; λ235 = 9.849 × 10–10 yr-1; λ232 =4.948 × 10–11 yr-1; λ147=0.654× 10–11 yr-1). The 

coefficients preceding the U and Th abundances account for the multiple α particles emitted 

within each of the decay series. 

This equation can be simplified, since the 238U/235U ratio has in the solar system a constant value 

of 137.88 (Steiger and Jäger, 1977).235U can be then written as a function of 238U and the 

ingrowth of helium with time can be written as a function of the elemental U, Th and He 

abundances or concentrations.  

The He ingrowth equation assumes absence of 4He, both initial and produced by sources 

extraneous to the crystal, and secular equilibrium among all daughters in the decay chain. In 

case of zircons these assumptions are valid in most cases, whereas, due to the lower U and Th 

content typically yielded by apatites, for such mineral phase the presence of external sources of 

He can be represented by U-Th rich inclusions (zircons, monazite) or coating (oxides and 

oxhydroxide). In this case a most careful selection of the grains to be analyzed is required. 

 

2.4.3. Analytical procedures 

Grain selection and packing are made under optical stereoscope. Intact, prismatic, unabraded 

and, inclusion free grains, are preferably selected for analysis. Selected grains are then digitally 

photographed and geometrically characterized by measuring each grain for its prism length 

(parallel to the c axis) and prism width in at least two different orientations (perpendicular to 

the c axis). Grains are than packed in Nb or Pt tubes or foils (Fig. 2.5.). A two-stage analytical 

procedure is commonly used to measure 4He, U, Th and Sm. In the first stage the crystal is 

degassed by heating and 4He is measured by gas-source mass spectrometry. In the second stage, 

after chemical dissolution of the crystal, U, Th and Sm contents are measured by inductively 

coupled plasma mass spectrometry. 
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Figure 2.5. – Grain selection and picking: the grains are poured in a petri-dish for grain 
selection under optical microscope (a); the selected grains are photographed and measured, 
for apatite length (L) and width (W) are measured on two sides parallel to the c-axis (c) , for 
zircons the tips heights (H1, H2) are also measured (d). Grains are finally packed in Nb tubes 
(b). 

2.4.4. α –ejection correction 

The measurements described above account for the bulk He, U, Th and Sm contents, however 

the resulting dates require a correction for He loss occurred by ejection of α particles outside 

the crystal domain. 

As a matter of facts, since the α particles emitted by U, Th and Sm travel a distance of ca. 20 µm, 

part of those emitted close to the crystal edges are ejected out of the crystal and injected in the 

surrounding phases (Fig. 2.6.). The loss of α particles leads to an underestimation of the age of 

the crystal. The magnitude of α-ejection is controlled by surface to volume ratio and by spatial 

distribution of the parent atoms relative to the crystal surface. Assuming an idealized geometry 

of the crystal and an homogeneous distribution of U, Th and Sm in the crystal, the fraction of He 

retained can be calculated as a function of the crystal size, as described by Farley (2002). 

Therefore, to account for α-ejection it is a common practice to measure the physical dimensions 

of the crystal to be dated and to calculate an homogeneous α-ejection correction factor (HAC), 

to which the raw date has to be multiplied, to obtain the age corrected for ejection (Farley, 

2002). 
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The assumption of homogeneous distribution of parent nuclides is in some cases unsatisfied due 

to the frequent occurrence of internal zonation: since zonation is a random feature, it affects 

age reproducibility between different crystals of the same sample: poor age reproducibility can 

be therefore caused by the application of α-ejection correction to zoned crystals (e.g. Ehlers and 

Farley, 2003). 

 

Fig. 2.6. – The effects of long α−stopping distances on He retention (from Farley, 2002) . The upper figure 
illustrates the three possibilities within a schematic crystal: α retention, possible α ejection, and possible α 
implantation. The center of the circle denotes the site of the parent U or Th nuclide, and the edge of the white 
circle labeled He indicates the locus of points where the α particle may come to rest; the arrow indicates one 
possible trajectory. The lower plot shows schematically how α retention changes from rim to core to rim along 
the path A-A’; exact equations defining the shape of this curve as a function of grain size were given by Farley 
et al. (1996).  

 

2.4.5. Diffusion behavior 

In order to use He dates to constrain thermal histories, an accurate knowledge of He diffusivity 

in the dated phases is required. Laboratory stepwise heating experiments have commonly been 

used to calibrate the relationship between diffusivity and temperature ( e.g. Farley, 2000; 

Fechtig and Kalbitzer, 1966; Shuster et al., 2006), that is demonstrated to be well described by 

the Arrhenius relationship formulated as follows (Fechtig and Kalbitzer, 1966): 

 

2) 
𝐷

𝑎2 =
𝐷0

𝑎2 𝑒
−𝐸𝑎
𝑅𝑇  

 

Where D0 is the frequency factor, that is diffusion at infinite temperature (m2s-1), Ea is the 

activation energy (J mol-1), T is the temperature (K), R is the gas law constant (8.3145 J mol-1 K-1) 

and a is the radius of the spherical diffusion domain (m; Fechtig and Kalbitzer 1966). The 
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diffusion domain size (a) corresponds, in most cases, to the crystal size (Farley, 2000; Reiners 

and Brandon, 2006), implying a dependence of Tc and PRZ on the grain size.  

Kinetic models for He diffusion comprise the diffusion equation and the diffusion parameters 

(Ea, D0).  

The currently accepted and most used model for He diffusion in apatite is that proposed by 

Farley (2000), based on the equation (2), nevertheless subsequent models have been proposed 

to account for radiation damages effect on He diffusivity. Shuster et al. (2006) demonstrated 

that, in fact, diffusivity generally decreases with increasing He content. This is interpreted to be 

due to the effects of He trapping by α-recoil lattice damages. Shuster et al. (2006) proposed 

then a kinetic model were diffusivity is a function of [He], and where the annealing of traps 

occurs with the same kinetics as He loss. Subsequent work by Shuster and Farley (2009) pointed 

out that trap annealing may correspond to fission track annealing. This implies that [He] is an 

inadequate proxy for traps as it diffuses out of the crystal earlier than trap annealing. Therefore 

Flowers et al.(2009) proposed a Radiation Damage Accumulation and Annealing Model 

(RDAAM) which uses the fission track annealing model of Ketcham (2007b) to characterize 

diffusivity-altering damage annealing. 

As for He diffusion in Zircon the currently used diffusion model is that proposed by Reiners et al., 

2004, also based on equation (2). An effect of radiation damages on He diffusion in zircons has 

also been demonstrated (e.g. Damon and Kulp; 1957), nevertheless a kinetic model accounting 

for such effect has not been formulated so far. 

 

The diffusion parameters obtained by calibration of the diffusion equation through step heating 

experiments are used to estimate the PRZ and the Tc for He thermochronometers of given grain 

size and for given cooling rates. 

PRZ for AHe varies between ca. 20°C and 60°C (Reiners and Brandon, 2006; Fig 2.7.), whereas 

closure temperatures are in the range 40°C-80°C (Fig. 2.8; Tab 2.1), for cooling rates of 10°C/Ma 

and diameter of the spherical domain of 60 µm, AHe Tc=67°C (Reiners and Brandon, 2006). As 

for ZHe the PRZ ranges between ca. 90°C (for hold time higher than 250 Ma) and 185°C (for 

minimum hold time; Fig 2.7); Tcs range between ca. 140°C and 200°C (Fig. 2.8; Tab. 2.1); e.g. for 

a 60 µm grain diameter and a cooling rate of 10°/Ma, Tc=183°C Tab 2.1. 
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Table 2.1- Closure parameters for He and FT thermochronometers (From Reiners and Brandon, 2006) 

 

 

Table 2.2- Retentivity parameters for FT thermochronometers (from Reiners and Brandon, 2006) 
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Figure 2.7. – Partial Retention Zones for He and FT thermochronometers as a function of hold time (from 
Reiners and Brandon, 2006). The upper and lower boundaries indicate respectively 90% and 10% retention; 
estimates were determined using the Closure program with parameters in Tab. 1 and 3 of Reiners and 
Brandon, 2006. 

 

 
Figure 2.8. – Effective closure temperature (Tc) as a function of cooling rate for common He, FT, and Ar  
thermochronometers (from Reiners and Brandon, 2006). Estimates shown here are based on Equation 7 and 
parameters in Tables 1–2. Results were calculated using the CLOSURE program.  
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2.4.6. The effect of slow cooling 

Actually the transition from retention to diffusion of radiogenic He can occur to be slow or 

incomplete. This is particularly true for samples which underwent slow cooling or prolonged stay 

in the PRZ. For such samples the thermochronometric ages have no meaning in terms of 

temperature, representing instead a more complex thermal history (Reiners 2001). In fact, the 

magnitude of the effect on age of subtle factors controlling He diffusion (like zonation, , crystal 

size, kinetic parameters) increases with decreasing cooling rates (Ehlers and Farley, 2003). Most 

of all, crystal size (of intact crystals) tends to correlate with age in case of slow cooling, since it 

affects both α-ejection and He diffusion kinetics. The correlation between crystal size and age 

may be then used to model thermal histories of samples that slowly cooled through the He 

PRZs. 

 

2.4.7. Data analysis and Interpretation 

In most studies 3 to 5 replicates of the same rock sample are analyzed. An example of the 

output spreadsheet is shown in Fig. 2.9, containing both the absolute content and the 

concentrations of the analyzed elements/isotopes, and both the raw and HAC corrected age 

values. The data are then processed to test their significance and their meaning. 

Age reproducibility of crystals belonging to the same rock sample is first checked. In case of well 

reproducible samples the weighted mean of ages can be used for interpretation (as suggested 

by Fitzgerald et al., 2006) and the Tc concept can generally be applied, whereas in case of high 

dispersion single grain ages are preferably shown. As described in previous paragraphs many 

sources of age dispersion may be present.  

 

Figure 2.9. – He output data.  

If age dispersion is only due to differences in grain size in crystals of a slowly cooled sample, 

then a correlation between grain age and radius will be observed. In this case age dispersion 

adds further information to the reconstruction of the thermal history of the sample. 

In case age dispersion is due to radiation damages a correlation between grain age and eU 

should be observed. Also in this case dispersion do not preclude to use dates for reconstructing 

thermal histories, provided the RDAAM model of Flowes et al. (2009). 

Age dispersion occurs in partially reset samples as well as in unreset detrital samples. 

Incomplete or null reset of detrital samples also implies that part or all of the LAG times are ≥0; 

in other words part or all of the depositional ages are younger than thermochronometric ages. 
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In case the sample is completely unreset ages actually indicate the cooling of the source rocks 

prior to erosion, transport and deposition. Thus ages from detrital unreset samples can be used 

for detrital thermochronology, which statistics usually require a larger number of data. On the 

other hand, partially reset ages cannot be used to infer information on the cooling of neither the 

detrital sample nor the source rocks.  

In all the cases described above age dispersion can then be used to obtain information on the 

thermal history of the sample. 

Nonetheless age dispersion can also be induced by crystal defects: in this case dispersion has no 

meaning in terms of thermal history, being due to the presence of biased ages. 

- zonation, inclusions and coating may also tend to induce age dispersion, by leading to a 

violation of some of the the fundamental assumptions for He dating and HAC, such as 

uniform U-Th distribution in the crystal and absence of external He sources. In this case a 

correlation between age and U-Th contents (often expressed as effective uranium, eU= [U] 

+ 0.235×[Th]) could be observed; 

- Features like abrasion and rounding may also induce incorrect application of the HAC. 

- Dispersion may be finally arising from fractured and/or broken crystals to which the 

model for diffusion kinetics and possibly the HAC are improperly applied. 

 

2.5. Fission Track thermochronometry 

 

2.5.1. Introduction 

Fission track thermochronometry is based on the production of narrow lattice damages by the 

spontaneous fission of U. Such dating method has been widely used in the last 30+ years to 

constrain thermal histories in many geological settings. Early work by Naeser (1967) and Wagner 

(1968, 1969) first established the basic procedures that enabled FT dating to be routinely 

applied to geological problems. Fleischer et al. (1975) summarized the early studies of the 

broader discipline of nuclear track detection in solid state materials. More recent 

comprehensive overviews of fission track applications have been provided by Naeser and 

McCulloh (1989), Wagner and Van den Haute (1992), Gallagher et al. (1998), Van den Haute and 

De Corte (1998), Dumitru (2000) and Gleadow et al. (2002). The synthetic works of Tagami and 

O’Sullivan, 2005; Donelick et al., 2005; Reiners and Brandon., 2006; Braun et al., 2006, are used 

as main references for this paragraph, which presents an overview of the fission tracks (FT) 

dating method. Since in this PhD work apatite has been the only mineral phase dated by FT, this 

chapter deals in particular with the AFT dating method. 

 

2.5.2. Formation of fission tracks 

The FT analysis uses the radioactive system composed by 238U and linear lattice damages (fission 

tracks) produced by its spontaneous fission in apatite and zircon (e.g. price and Walker, 1963; 

Fleischer et al., 1975). The assumption that fission tracks are generated only by decay of 238U is 
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based on the low abundance/low decay constant of other isotopes decaying by spontaneous 

fission (Tab. 2.3.). 

When an heavy unstable nucleus decays by spontaneous fission it splits into two nuclear 

fragments which are pushed away to each other by a combination of energy released by the 

nuclear fission and coulomb repulsion forces. The passage through the crystal lattice of the two 

positively charged nuclear fragments induces a change of electrostatic charge in the surrounding 

lattice region. Charge variation induces, in turn, widespread dislocation of atoms from their 

lattice positions, generating the high defect density which characterizes fission tracks (Fig. 2.10.; 

Ion explosion spike theory, Fleischer et al., 1965; 1975). Fresh FT have lengths of ca. 11 µm in 

zircon and ca. 16 µm in apatite (Reiners and Brandon, 2006). 

The accumulation of fission tracks in time (t) is described by the decay equation properly 

modified to account for the fact that 238U decays not only by spontaneous fission with a decay 

constant λf = 8.5 10-17 yr-1) but also by α decay, with a much higher decay constant λα=1.5 10-10 

yr-1 (Tagami and O’Sullivan, 2005): 

 

3) Ns=
𝜆𝑓

𝜆𝛼
 238N(𝑒𝜆𝛼𝑡-1) 

 

Ns is the number of spontaneous fission tracks per unit volume; 238N is the number of 238U 

atoms per unit volume. 

 

Table 2.3- Relative abundances of U isotopes, total half life and half life due to spontaneous fission decay 
process. 

 

 

Figure 2.10. – The “Ion Explosion Spike” model for FT formation (from Fleischer et al., 1975). The Heavy 
nucleus splits in two nuclear fragments (a); the two positively charged fragments are pushed away from each 
other and along their track they tear off electrons from the atoms of the lattice (b); the positively charged 
atoms along the track dislocate from their lattice position due to repulsive electrostatic forces (c).  
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2.5.3. Analytical procedures and grain age calculation 

To infer single crystal age the most commonly adopted technique is the External Detector 

Method (EDM), which main stages are schematically indicated in Fig. 2.11. The mineral grains to 

be dated are mounted in epoxy resin, polished and chemically etched. The tracks, and more in 

general the lattice defects, etch more rapidly than the intact crystalline lattice, and thus become 

visible for counting. After chemical etching the spontaneous tracks density of single mineral 

grain can be determined. 

In order to determine the 238U initial concentration, the EDM plays on the constant natural 
235U/238U ratio (7.252x10-3). A sheet of U-free mica is placed over the polished mount. Neutron 

irradiation in a nuclear reactor induces fission of 235U. Nuclear fragments belonging to atoms 

placed close to the polished surfaces of the grains are injected in the mica sheet forming fission 

tracks in its lattice. Induced fission track density can be then measured on the mica surface after 

proper chemical etching. From 235U the 238U content is then calculated. The induced tracks are 

present also in the grain mount, but they are not revealed since the chemical etching of the 

minerals is done before the neutron irradiation. The mica monitor and the mount are assembled 

in the same slide and analyzed with an optical microscope implemented with a sliding table and 

a dedicated software. Before analyzing the sample three reference points in the mount and their 

correspondents in the mica are used to calibrate the system, so that the coordinates of the 

location on the external detector corresponding to the grains can be automatically calculated. 

The operator is then enabled to measure spontaneous and induced track density for the single 

mineral grains (Reiners and Brandon, 2006). 

 

Figure 2.11. – schematic procedure for FT analysis with the EDM method (from Tagami and O’Sullivan, 2005). 
Source for the picture of spontaneous and induced tracks is the www.geotrack.com.au website. 

The AFT age of a single apatite grain determined using the EDM method is given by:  

 

4) 𝑡𝑖 =
1

𝜆𝑑
𝑙𝑛 (1 + 𝜆𝑑𝜁 𝑔 𝜌𝑑

𝜌𝑠,𝑖

𝜌𝑖,𝑖
) 
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Where subscript i refers to grain i; ti is fission track age of grain i; λd is the total decay constant of 
238U; ζ is the calibration factor based on EDM of fission track age standards, depending on the 

microscope and operator; g is the geometry factor for spontaneous fission track registration, ρd 

the induced fission track density for a uranium standard corresponding to the sample position 

during neutron irradiation, ρs,i is the spontaneous fission track density for grain i; ρi,i is the 

induced fission track density for the grain i (Donelick et al., 2005). 

 

2.5.4. Retention and annealing of FT 

As well as He diffusion, fission track annealing is a temperature dependent diffusional process, 

to which the Arrhenius law can be applied. However, in contrast to the He diffusion models, 

there is no accepted physical model of fission track annealing processes at the atomic level, 

since the process of fission track annealing is much more complicated than the diffusion of a 

single atomic species out of a mineral lattice, and still poorly known (Braun et al., 2006).  

Fission tracks annealing models have thus been developed using a completely empirical 

approach, looking at what form of the annealing relationship best fit the data statistically (Braun 

et al., 2006).  

Several kinetic models have been developed from different experiments: in the so-called fanning 

Arrhenius models, in a T-1-ln(t) space, the annealing isopleths fan out from a single point (Laslett 

et al., 1987; Crowley et al., 1991; Ketcham et al., 1999); whereas in the curvilinear Arrhenius 

models (Ketcham et al., 1999; 2007) the annealing isopleths are slightly curved. The curvilinear 

Arrhenius models were obtained by imposing the model to fit both the experimental data and 

two benchmarks for annealing at geological timescales (Ketcham et al., 1999). 

FT annealing behavior is independent on grain size, but it is demonstrated to vary with apatite 

chemistry, with retention increasing with increasing Cl/(F+Cl) ratio (Green et al., 1985), although 

other cations and anions substitutions also play a role (Carlson et al., 1999; Donelick et al., 1999; 

Ketcham et al., 1999; Barbarand et al., 2003). Moreover the annealing behavior also depends on 

the crystallographic orientation of the tracks with higher annealing rate for tracks orthogonal 

than tracks parallel to the C-axis of the crystal (Green et al., 1986; Donelick et al., 1999; Ketcham 

et al., 2007). 

The Dpar, i.e. the mean width of fission tracks etch pits, is a commonly used proxy for track 

retentivity of single crystals, first proposed by Ketcham et al.(1999). Other kinetic indicators 

alternative to Dpar are Cl and OH contents (Ketcham et al., 1999; 2007b). The kinetic models 

proposed by Ketcham et al (1999; 2007) are, in fact, multi compositional models, accounting for 

the different kinetic behaviors of crystals belonging to the same rock (this typically occurs for 

sedimentary rocks). The single grain annealing equations in the multi compositional models 

differ to each other by a parameter rmr0, defined by Ketcham et al (1999), which is calculated 

from the kinetic indicator (Dpar, Cl, OH). 

The effects of annealing can be quantified by measuring the lengths of horizontal confined 

tracks (Gleadow et al., 1986; Fig. 2.12.). This depends on the fact that tracks form continuously, 

and thus each track experiences a different portion of the integrated thermal history (Braun et 

al., 2006). Therefore the track lengths distribution, obtained by measuring a sufficient number 
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of horizontal confined tracks (preferably≥100) contains information on the thermal history 

experienced by the sample (Braun et al., 2006; Fig 2.13). 

The AFT PRZ values are generally comprised between 30°C and 130°, but can be significantly 

different depending on cooling rate and apatite chemistry (Reiners and Brandon, 2006; Fig. 2.7). 

AFT Tcs generally vary between ca 80°C and 120°C, but still being largely affected by apatite 

composition. An apatite of “average” composition (Ketcham et al., 1999) has, for cooling rates of 

10°C/Ma, Tc=116°C. 

 

 

Figure 2.12. – Confined horizontal tracks: “Track in cleavage” ( TINCLE) and “Track in track” (TINT)  

 

 
Figure 2.13. – relationship between track length distribution and thermal history  
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2.5.5. Data analysis and interpretation 

Usually track densities are measured on 20 to 40 grains of the same sample, whereas 40 to 100 

lengths are measured per sample. The measured parameters are the numbers of spontaneous 

and induced tracks, the area, the mean Dpar of the grain for track density measurements, and 

the lengths, orientation with respect to C-axis and mean Dpar for track lengths measurements. 

Through dedicated softwares (e.g. Trackey, Dunkl, 2000) the density data are first processed to 

obtain single grain age data and respective statistical parameters to describe the whole 

population. The most common way to visualize AFT age data is with radial plots (Fig. 2.14.). The 

Y axis represents the standard error ((ag-ac)/ σ) of the single grain age (ag) with respect to the 

central age of the whole population (ac) and the X axis represents the relative error (1/σ) 

decreasing toward the radial scale. Single grain ages are read on the intercept with the radial 

axis (plotted on a logarithmic scale) of the line drawn through the single grain point and the 

origin. The statistical parameter which best describes the age of an FT age population is the 

central age (Galbraith, 1988), which takes into account the lognormal nature of the ρs/ρi ratio 

(Vermeesch, 2008; eq. 4.). 

 

Figure 2.14. – Examples of Radial Plots referred to sedimentary rocks heated to different degree. 

The χ-square statistical test (Galbraith, 1981) is used to define the probability that all the grains 

counted belong to a single population of ages. A probability (Pχ2) of less than 5% is evidence of 

an asymmetric spread of single grain ages, and thus it indicates the presence of several age 

populations. An asymmetric spread in individual grain ages can result either from inheritance of 

detrital grains from mixed detrital source areas, or from differential annealing in grains of 

different compositions (Green et al. 1989). 

A detrital sample is to be considered completely reset if all grain ages belong to the same 

population (high Pχ2 value) and they are all younger than the depositional age. Partially reset 

samples are usually characterized by low Pχ2 values (i.e. large dispersion) and have some grains 

younger and some older than the depositional age. Not reset samples are finally characterized 

by very low Pχ2-square values and by thermochronometric ages all older than depositional ages.  

To estimate the components in a mixed fission-track grain-age distribution (e.g. for non reset 

detrital samples), the binomial peak fitting algorithm of Galbraith and Green (1990) and 

Galbraith and Laslett (1993), implemented in the BINOMFIT software (by Brandon, 2002, 2007; 

summarized by Ehlers et al., 2005; Fig. 2.15) is used. 
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Figure 2.15. – Estimate of the components of a mixed grain age distribution made with the BINOMFIT program 

(Brandon, 2002; 2007). P1: 16.5±10.5 Ma (6.2% of the crystals); P2: 57.1±12.2 Ma (17.9% of the crystals); P3: 

145.6 ±20.3 Ma (75.9% of the crystals). 
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CHAPTER III. 

BURIAL AND EXHUMATION HISTORY OF THE POLISH OUTER 

CARPATHIANS INFERRED FROM LOW TEMPERATURE 

THERMOCHRONOLOGY 

 

3.1. Chapter Overview 

The present chapter is a journal paper submitted to Tectonophysiscs. AFT, AHe and ZHe data 

referred to the Polish Outer Carpathians are presented and discussed in order to infer burial 

depths as well as timing and driving processes of exhumation. A section is also dedicated to 

discuss the significance of detrital (not reset) ZHe ages in terms of exhumation of the source 

terrains and provenance analysis. 

 

3.2. Paper 

B. Andreucci* (1), A. Castelluccio (1), M. Zattin (1), S. Mazzoli (2), R. Szaniawski (3), and L. 

Jankowski (4) 

 

(1) Department of Geosciences, University of Padua, Italy; 

(2) Department of Earth Sciences, University of Naples “Federico II”, Italy; 

(3) Institute of Geophysics, Polish Academy of Science, Warsaw, Poland; 

(4) Polish Geological Institute-Carpathian Branch, Cracow, Poland; 

 

3.2.1. Abstract 

New apatite and zircon (U-Th-(Sm))/He and apatite fission track data, integrated with previously 

published apatite fission track data, are used to infer the thermal history of the Outer Polish 

Carpathian accretionary wedge, where thrusting ceased between 15.5 and 11.5 Ma and 

overlapped with extension during its final stages. The results of this study allowed us to 

constrain cooling ages of the source terrains of the sediments and to reconstruct the burial and 

exhumation history of the accretionary wedge. 

Exhumation of source rocks through the ZHe PRZ occurred both in response to the Variscan 

(Late Devonian to Triassic) and Alpine (Late Jurassic to Early Paleocene) orogenesis, suggesting 

sedimentary provenance both from the southern margin and basement heights within the Outer 

Carpathian basin. 

Burial temperatures generally decrease toward the foredeep. The uppermost structural units of 

the wedge underwent burial temperatures comprised between 70° and 160°C, corresponding to 

depths of 3.6-8.6 Km, whereas the outer thrust sheets were buried at temperatures lower than 

70°C and depths lower than 3.6 Km. 

Exhumation of the accretionary wedge through the AFT PAZ and AHe PRZ occurred between the 

Early and the Late Miocene, progressively migrating toward the east. We suggest that both 
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erosional exhumation of the wedge induced by thrusting and coupled erosional and tectonic 

exhumation induced by extensional tectonics occurred. In particular, exhumation related to 

extension appears to have played a major role in the eastern sector, whereas in the central and 

western sectors erosion of the wedge during accretion was the dominant process. 

 

3.2.2. Introduction 

The target of this study is the Polish sector of the Outer Carpathians, a thin skinned thrust and 

fold belt, where thrusting is interpreted to have ceased at about 15.5 to 11.5 Ma (Nemcok et al., 

2006). The mountain chain is characterized by a complex topography (Fig.3.1) and a general low 

relief associated with a complex structural setting also involving normal faults reactivating pre-

existing thrusts (Fig.3. 2, Jankowski et al., 2004; Mazzoli et al., 2010).  

A general decrease in relief from the western to the eastern portion of the studied area may be 

observed in Fig.3.1. In particular, the western and central sectors are characterized by 

alternation of heights and lows and by increasing relief towards the inner part of the chain. The 

Eastern sector is rather characterized by a generally low relief, decreasing from the center 

towards both the inner and the outer portions of the chain. 

In Fig. 3.2 it can be observed that along the study area the relative position of the tectonic 

elements also changes, and that normal faults reactivate or dissect pre-existing thrust faults 

(Jankowski et al., 2004; Mazzoli et al., 2010), also locally controlling Neogene intramontane 

basins (Orawa-Nowy Targ and Nowy Sacz basins). 

Variations in relief, topography and relative position of the structural elements all suggest that 

different scenarios of burial and exhumation can be expected throughout the study area, 

pointing to a complex interplay between the two processes –thrusting and extension- suitable to 

drive exhumation. 

According to this setting, thermochronological (Anczkiewicz and Swierczewska, 2008; Mazzoli et 

al., 2010; Zattin et al., 2011), paleotemperature (Swierczewska, 2005; Syrek, 2009) and paleo 

fluid pressure (Hurai et al., 2006) studies indicate a complex spatial pattern of burial 

temperatures and cooling ages.  

Given this context, reconstructing the thermal history of rocks cropping out along the chain and 

identifying the extent, rate and spatial pattern of burial and exhumation processes is essential to 

constrain the contribution of the different processes to the development and evolution of the 

Polish Outer Carpathians. To this purpose new (U-Th-(Sm))/He dating was performed 

respectively on 39 apatite and 18 zircon samples and fission track analysis was performed on 4 

apatite samples, in order to integrate the already published AFT dataset (Mazzoli et al., 2010; 

Zattin et al., 2011). The analysis of these datasets is carried out in this paper to reconstruct t-T 

paths, that, in turn, are used to constrain burial and exhumation history of the wedge. 
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Figure 3.1 – Dem of the study area with main thrusts and Pieniny Klippen Belt (PKB). Location of the A-A’ 
profile, reported in Fig.3.3, is indicated. 
 

 
Fig. 3.2 – a) tectonic sketch map of the Carpathians showing subdivision of Inner and Outer Carpathians, 
separated by the Pieniny Klippen Belt (PKB). b) tectonic sketch map of the study area with AHe, ZHe and AFT 
sample location. Legend is referred to Fig 3.2.b. 
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3.2.3. Geological setting 

The Carpathians, extending for over 1300 Km across Central and Eastern Europe, formed during 

the Tertiary by a NE- and E-ward migration of an accretionary wedge in front of the Alcapa and 

Tisza Dacia microplates (e.g. Jiricek, 1979; Nemcok et al., 1998; Sperner et al., 2002). Two 

noteworthy characteristics of the Cenozoic evolution of the chain are: (i) the progressive 

rotation of the main compression axis, from ca. N-S to ca. NW-SE, accompanied by a south-

eastward migration of the tectonic activity (e.g. Horváth, 1993; Jiricek, 1979; Sperner et al., 

2002); (ii) the occurrence, starting from the late Early-Middle Miocene, of retro-wedge 

extension, leading to the formation of the Pannonian and several minor intramontane basins 

(e.g.Kovac et al., 1990), and of extension-related volcanic complexes (e.g. Konecny et al., 2002; 

Pécskay et al., 2006; Seghedi et al.,2004). 

Based on rock lithology and age of individual tectonic units, the Carpathians are traditionally 

divided into two domains (e.g. Tasarova et al., 2009 and reference therein): the Inner 

Carpathians (IC) and the Outer Carpathians (OC). They are separated by the so called “Pieniny 

Klippen Belt” (PKB), a narrow zone of strongly deformed and sheared Mesozoic to Paleogene 

rocks, traditionally interpreted as an oceanic suture (Birkenmajer, 2001). 

The IC, constituting a prolongation of the Eastern Alps, are made of Variscan basement and 

younger sedimentary cover and were deformed between the Late Jurassic and the Late 

Cretaceous. 

The OC formed during the Tertiary as an accretionary wedge, composed of Upper Jurassic to 

Lower Miocene flysch sediments, thrust over Neogene strata of the Carpathian foredeep 

(Oszczypko et al 1998). As deformation progressively migrated along strike toward the SE, 

thrusting and accretion of the OC were diachronous, having ceased between the Middle 

Miocene in the Western Carpathians and the Pleistocene in the Southern Carpathians (Matenco 

and Bertotti, 2000; Nemcok et al., 2006). 

This study focuses on the Outer Polish Carpathians, where thrusting is interpreted to have 

ceased between 15.5 and 11.5 Ma, according to most recent studies (Nemcok et al, 2006), or 

between 15 and 13 Ma, according to Sperner et al.(2002, and reference therein). South of the 

frontal thrust sheets (traditionally grouped in the Skole Unit), the Magura Unit constitutes the 

structurally uppermost tectonic element of the Polish OC wedge. It forms a roof sequence 

overriding a series of thrust sheets - traditionally grouped in the Dukla and Silesian Units – that 

are also exposed in a series of tectonic windows. Recent studies highlight the presence of 

normal faults, roughly parallel to the strike of the thrust belt, dissecting and/or reactivating pre-

existing thrusts along this whole portion of the chain (Jankowski et al., 2004; Mazzoli et al., 

2010). An example can also be observed in Fig. 3.3, reporting the balanced section of the A-A’ 

profile (indicated in Fig.3.1) Post thrusting extension is likely due to gravitational collapse of the 

orogenic wedge (Zattin et al., 2011). 
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Fig. 3.3 – Geological cross-section (located in Fig. 3.1) through the Polish Carpathians (after Gagala et al., 2012, 
modified based on Jankowski et al., 2004 and our own field observations). Sampling sites (red and blue dots) 
are projected normal to the section trace. (a) Cross-section showing the thickness of eroded strata. (b) 
Restoration of normal faults carried out using the software 2D Move (by Midland Valley Exploration). The 
simple shear algorithm has been applied to accommodate the displacement along listric normal faults (the 
shear angle applied is of 90°). 

 

3.2.4. Thermochronometry 

Previous paleothermal studies 

A complex paleo-thermal pattern is inferred from previous studies based on paleo temperature 

and paleo pressure indicators and  low temperature thermochronometers. 

Based on X-ray diffraction studies of Illite/smectite in shales, Swierczewska (2005) provides 

maximum paleotemperatures for the Magura nappe ranging between 75°C and possibly 165°C. 

The spatial distribution of maximum paleotemperatures is complex, with maxima in 

correspondence of the tectonic windows and minima in correspondence of the Neogene 

intramontane basins. 

Hurai et al. (2006) calculate, from densities and trapping pressures of buoyant fluid inclusions, a 

thickness of the overburden, comprised between 5 and 11 Km and a burial temperatures of 155-

195°C in the innermost Polish OC. 

Vitrinite data from Syrek (2009), referred to the Magura Nappe, indicate a complex areal 

distribution of paleotemperatures. These are characterized by maxima and minima matching 

with those presented by Swierczewska (2005) but generally by lower temperatures (0.4< Ro% 

<0.76).  
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Three published sets of AFT data (Anczkiewicz and Swierczewska, 2008; Mazzoli et al.,2010; 

Zattin et al., 2011) document a highly variable annealing degree of fission tracks, although 

clearly decreasing towards the outer portions of the chain. This implies differential burial 

depths, generally increasing toward the inner part of the wedge. 

Cooling ages obtained from AFT datasets range between the Early Oligocene and the Late 

Miocene. Post thrusting (<11 Ma) ages are concentrated in the eastern sector and appear to be 

related with extensional tectonics. Mazzoli et al. (2010) and Zattin et al. (2011) suggest that 

post-thrusting cooling was mainly controlled by tectonic exhumation in the eastern Polish OC, 

whereas older (Oligocene-Early Miocene) exhumation in the western sector was dominantly 

triggered by erosion. 

 

Samples and methods 

Samples for apatite and zircon (U-Th-Sm)/He (AHe and ZHe) and apatite fission track (AFT) 

analysis were collected from siliciclastic sandstones along the whole study area (Fig. 3.2). Care 

was taken in collecting samples across the main tectonic boundaries and in correspondence of 

sites where structural measurements were taken (see Mazzoli et al., 2010 and Zattin et al., 

2011). A total of 48 sites were sampled; 40 of the 48 samples were selected for AHe analysis, 

and 18 of the 48 were selected for ZHe analysis. An overview of sample properties is presented 

in Tab 3.11 Apatite and Zircon separates were obtained through magnetic and heavy liquid 

separation following the conventional procedures described in Donelick et al. (2005). 

(U–Th-(Sm))/He dating was carried out at the He dating laboratory of the University of Arizona 

in Tucson. Handpicked apatite and zircon grains were photographed and measured for alpha-

ejection correction following methods described respectively in Reiners and Brandon (2006) and 

Hourigan et al.(2005). Single crystals were loaded into 0.8 mm Nb tubes, and degassed under 

vacuum by heating with a Nd-YAG laser. The concentration of 4He was determined by 3He 

isotope dilution and measurement of the 4He/3He ratio through a quadrupole mass 

spectrometer. U, Th and Sm concentrations were obtained by isotope dilution using an 

inductively coupled plasma mass spectrometer. Alpha-ejection correction was applied to derive 

a corrected (U–Th-(Sm))/He ages.  

AFT dating and confined tracks measurement were performed at the department of 

Geosciences of the University of Padua. CN5 glass was used to monitor neutron fluence during 

irradiation at the Oregon State University Triga Reactor, Corvallis, USA. The calculation of central 

ages (Galbraith and Laslett, 1993) was performed through the TRACKEY software (4.2 version; 

Dunkl, 2000). The Chi-square (χ2) test was used to assess the homogeneity of age populations: a 

population is considered homogeneous for P(χ2) higher than 5%. Through the use of the 

BINOMFIT software (summarized by Ehlers et al., 2005) minimum ages were calculated for 

partially reset samples belonging to both new and previously published datasets. In order to 

achieve a kinetic parameter and to identify different kinetic populations, Dpar of single crystal 

and length was measured. 
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Table 3.1 – Overview sample properties  
 

AHe results 

Several apatite crystals (between one and five) were dated for each sample. Due to the generally 

bad quality of apatites belonging to sedimentary rocks, it was possible to fulfill the standard 

requirements for AHe analysis (intact, clear, prismatic crystals; e.g. Ehlers and Farley, 2003) only 

in few cases. Most of the picked crystals were inclusions-bearing and oxide-oxhydroxide coated 

and, in some cases, rounded and/or abraded. Since the observed inclusions were generally small 

(less than a few percent of the length, height and width of the host crystal), based on 

Vermeesch et al. (2007), it can be confidently assumed that they generally induced no significant 
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effect on ages. On the other hand, the potentially rich in U and Th coatings might have 

significantly influenced the results. As a matter of fact, both accuracy and precision could have 

been affected by either alpha-implantation (in case most of the coat was lost before analysis) 

and Th and U excess (in case most of the coat was analyzed with the grain). 

A first check of data quality was made identifying exceptionally high or low values of U, Th, and 

He concentration and relative errors: straightforward outliers and crystals with pronounced 

anomalous values were rejected (see Tab 3.2 for details); the accepted crystals are presented in 

Tab 3.2. 

Despite the crystals’ quality and the frequent occurrence of suspiciously high Th concentrations 

(up to ten times higher than the common natural value), age reproducibility of replicates is 

generally acceptable (Fig 3.4.a). The standard deviation for each sample is comprised within the 

20% of the mean sample age (q3/4(σ/µ)=0.2) in most cases (Fig.3.4.b). 

A further check of data quality was made by testing the correlation between age and some of 

the measured parameters. Low [Th] and Th/U lead to older ages (Fig.3.5). This, coupled with the 

frequent occurrence of anomalously high Th concentrations, suggests that the presence of Th-

rich coatings might have had an impact on ages. In particular, underestimated ages could derive 

from excess Th, whereas low Th contents could have led, by α-implantation, to overestimated 

ages. 

Hence, besides an effect on data reproducibility, yet acceptable, a systematic effect of bad data 

quality, and particularly of the presence of Th-rich coating, cannot be ruled out. Nonetheless, it 

appears that the potential systematic effect does not invalidate the analyses, since AFT and AHe 

reset ages generally match well (Fig.3.6 and 3.7). Anyway, in order to use the safest approach, 

single grain corrected ages rather than mean ages are used in the interpretation and discussion 

of the results. 

A total of 26 completely reset samples (their single grain ages being well reproducible and 

always younger than stratigraphic age), 10 partially reset (lower reproducibility and single grain 

ages partly younger and partly older than stratigraphic age) and 3 non reset samples (low 

reproducibility and single grain ages always older than stratigraphic age) can be identified. In 

Fig.3.6, AHe single grain ages are indicated for both reset and non reset samples. 

Corrected ages of fully reset grains range between 6.2 and 24.19 Ma. Relatively young ages 

(ca.10 Ma) occur mainly in the eastern sector (Fig.3.7). It is noteworthy that, for some samples 

belonging to the eastern sector, an AFT-AHe age-inversion occurs (samples PL 1 and PL 6 

showing AFT ages of ca. 7 Ma and AHe ages of ca. 10 Ma). We suggest that this is due to an 

overestimation of AHe ages induced by alpha implantation or other factors of AHe age 

variability. 
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Figure 3.4 – a) interval plot of AHe ages (grey bars) with 95% confidence interval for the mean (black bars); b) 
boxplot of sample σ/μ; c) AHe mean ages plotted against depositional ages. Error bars indicate the range of 
AHe ages for the single sample (maximum age + positive error/ minimum age + negative error) 

 
Figure 3.5 – AHe ages plotted against concentration of U (a), Th (b) and effective uranium (c; eU=[U] + 
0.235×[Th]) and Th/U ratio (d). 
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Fig. 3.6 – AHe, AFT and ZHe data with sample position. AFT ages from this study are indicated by the dark grey 
fields. Minimum AFT ages for partially reset samples are calculated after Zattin et al. (2011), using the 
Binomfit software (Brandon, 1992). 
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AFT results 

The four analyzed samples yielded a general low spontaneous fission track density and thus only 

11 to 20 crystals per sample were used for fission track counting and 20 to 40 lengths were 

measured per sample, except for sample 25, where no confined track was found. Dpar of 

samples PL 25, PL 46 and PL 47 are generally comprised within the 1-1.7 interval, sample PL 31 

yield Dpar comprised between 1.5 and 2.5. In all the analyzed samples only one kinetic 

population was identified. 

Results are displayed in Table 3.3, and reported in Fig. 3.6 and Fig. 3.7. In Fig.3.8 radial plots of 

the analyzed samples indicate that only sample PL 25 was completely reset after deposition, 

yielding a central age of 12.8 ± 2.6 Ma; samples PL 46 and PL 47 were partially reset, yielding 

minimum ages of respectively 13.2 ± 2.2 Ma and 16.3±1.4 Ma. Sample PL 31 belongs to the 

andesitic dyke swarms exposed along the so called “Pieniny Andesite Line”: central age of 15.8± 

3.5 overlaps with both K/Ar dates ranging between 13.5 and 11 Ma (Birkenmajer and Pécskay, 

2000) and other AFT dates of 20.4 ± 3.9 and 22.6 ± 5.1 (Tokarski et al., 2006 and reference 

therein). 

 
Figure 3.7 – AFT and AHe data with 1σ error plotted along the X coordinate. 
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Figure 3 8 – Radial plots for AFT samples with depositional ages (grey areas). 

ZHe results 

Between 1 and 3 crystals were dated for each sample; the analyzed grains were of good quality 

and the measured parameters show no significant anomalies. The results are shown in Table 3.4. 

However the pronounced negative correlation between age and eU shown in Fig. 3.9 indicates 

that part of the ZHe age variability does not depend on the actual thermal history of the crystal, 

being affected by anomalies like U-Th zonation or presence of U-Th rich inclusions or coatings. 

Nonetheless the dates are all undoubtedly older than stratigraphic ages (Fig. 3.10), meaning that 

the samples never reached the total reset of the ZHe system (about 200°C; Reiners and Brandon, 

2006; Reiners et al., 2004) after deposition. ZHe ages, despite the imprecision and inaccuracy 

expected on the basis of age-eU correlation, constitute an estimate of cooling ages through 

temperatures in the range of 200°-160°C (ZHe PRZ, Reiners et al, 2004). The main peak ages are 

Triassic and Late Cretaceous-Paleocene, with minor peaks between Late Devonian and Middle 

Permian, in the Early Jurassic and Early-Middle Cretaceous (Fig.3.11). 
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Figure 3.9 – ZHe single grain ages plotted against effective Uranium concentration (eU=[U] + 0.235×[Th]). 

 
Figure 3.10 – ZHe single grain ages plotted against depositional ages. 
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Figure 3.11 – Histogram and probability density plot of ZHe associated to principal geodynamic events 
documented in the Northern Carpathian region (Alcapa block, OC basin and European foreland). Bin width 
was arbitrarily set on the basis of duration of single geodynamic phase. Principal events indicated in figure 
are: (9) Cadomian orogenesis (age data from Budzyń et al., 2006; 2008; Michalik et al., 2006; Poprawa et 
al.,2004; 2005, Putiš et al., 2008); (8) Eo-Variscan stage (duration based on Kohut, 2002, age data from 
Plašienka et al., 1997); (7) Variscan collision and associated tectonics, magmatism and metamorphism 
(duration based on Kohut, 2002; age data from Budzyń et al., 2006; Dallmeyer et al., 1996; 2005; Janak et al., 
1999; Maluski et al., 1993; Poller et al., 2000); (6) Neo-Variscan stage, gravitational collapse and associated 
magmatism and metamorphism (duration based on Kohut, 2002; age data from Broska and Huer, 2001; Finger 
et al., 2003; Hraško et al., 2002); (5) Post-Variscan (or pre-Alpine) extension and continental rifting (age data 
from Budzyn et al., 2006; Ondrejka and Huer, 2001; Poprawa et al., 2006); (4) IC Carpathians-Tisza collision 
and HP metamorphism (age data from Faryad and Henjeskunst, 1997); (3) Extension and crustal thinning in 
the OC (age data: e.g. Kusiak et al., 2004; Poprawa et al.,2002;  2005); (2) Early Alpine collision and 
metamorphic peak (age data: e.g. Dallmeyer et al., 2005; Janak et al., 2001); (1) Early Alpine cooling and 
exhumation (age data: e.g. Dallmeyer et al., 2005; Danisik et al., 2011; Janak et al., 2001; Plasienka et al., 
2007). 
 

Thermal Modeling 

To integrate the AHe, ZHe and AFT data, testing plausible thermal histories, backward thermal 

modeling was performed on 10 samples, using the software HeFTy (Ketcham, 2005). AFT age 

and length, AHe and ZHe (where present) data were used for modeling; only one AHe and one 

ZHe replicates were used for each sample. 

Modeling was based on the fission-track annealing model of Ketcham et al. (2007), the diffusion 

kinetics of the Durango apatite after Farley (2000) and zircon after Reiners et al. (2004). A 

homogeneous distribution of U and Th in apatites and zircons was assumed. Constrains used 

were temperature comprised between 0 and 20°C during depositional age interval and post-

depositional maximum burial temperature lower than ca. 160-200°C where ZHe data were 

present. A surface temperature of 20°C was assumed. 



51 
 

The results of thermal modeling are reported in Fig. 3.12 and the best fitting paths are 

summarized in Fig. 3.13. Two slightly different groups of t-T paths can be identified in Fig.3.13. 

Several samples (PL 5, 18, 20, 22) require a prolonged (ca. 50 to 15 Ma) stay in the PAZ, followed 

by a relatively rapid cooling (average cooling rate of ca. 8°C/Ma) down to temperatures lower 

than 45°C, terminated by 15-10 Ma. A second group of samples require heating up to 

temperatures higher than 110-120°C and rapid cooling ( average cooling rate of ca. 20°C/Ma) 

down to temperatures lower than 45°C between 15 and 5 Ma. In both cases, after the main 

cooling stage, a stage characterized by a considerably lower cooling rate (ca.1°C Ma to 4°C/Ma) 

occurred.  

The obtained thermal paths, can be summarized in the following five stages: (i) pre-depositional 

cooling of the source rocks through temperatures of 210-130°C (between Devonian and 

Paleocene); (ii) deposition in the Outer Carpathian basins, (between Late Jurassic and Early 

Miocene); (iii) heating to temperatures higher than the AHe total annealing temperature (70°C) 

and lower than the ZHe PRZ (160°C), followed, in some cases, by several Ma stay in the AFT PAZ; 

(iv) rapid cooling (mean cooling rates comprised between 8 and 20°C/Ma) down to 

temperatures lower than 45°C (between Early and Late Miocene); and (v) slower cooling 

(average rates lower than ca. 1.3°C/Ma) down to surface temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 – Thermal modeling for samples belonging to the western sector (a) PL 22, PL 20, PL 18, to the 
central sector (b) PL 26, PL 27, PL 34 and to the eastern sector (c) PL 5, PL 6, PL 1, PL 10. Acceptable paths 
envelope (not ruled out by the data, with goodness of fit, GOF>0.05), Good paths envelope (supported by the 
data; GOF>0.5 ) and best fitting path are indicated (respectively with light and dark grey areas and black solid 
line. The light grey bars indicate the end of thrusting based on Nemcok et al.(2006). Modeling was performed 
using the HeFTy software (Ketcham et al., 2007). Temperature comprised between 0 and 20°C during the 
period corresponding to stratigraphic age was the only constrain applied a priori. 
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Figure 3.13 – Mean thermal histories provided by thermal modeling. The box defined by dashed line indicates 
depositional age, the grey field indicates the end of thrusting (Nemcok et al.,2006). Paths indicated by black 
line are referred to the western sector (Fig.3.11.a), paths indicated by blue lines are referred to the central 
sector (Fig.3.11.b) and paths indicated by red lines are referred to the eastern sector (Fig.3.11.c). 
 

3.2.5. Discussion and interpretation 

Assumptions on paleo- thermal structure 

To extrapolate information on burial and exhumation from thermal histories, assumptions on 

the thermal field and its evolution in time are required. Present day heat flow in the studied 

area ranges between 40 and – locally – 80 mW/m2 (Pospisil et al., 2006). Considering thermal 

conductivities of rocks forming the accretionary prism as comprised between 1.7 and 3.5 

W/(m·°C), a present day geothermal gradient between 23-47°C/Km (low conductivity) and 13-

23°C/Km (high conductivity) can be assessed (the highest values of 23° and 47°C/Km being 

confined to local heat flow maxima; Pospisil et al., 2006). Nonetheless, paleo-geothermal 

gradients may significantly differ from present ones. In particular it cannot be neglected that, 

due to extension in the Pannonian Basin, isotherm uplift below the Pannonian Basin, volcanism 

and subsurface magmatism in the Inner Carpathians (and less importantly in the innermost 

Outer Carpathians) occurred, having possibly induced an increase in geothermal gradient in the 

region. In this regard, it is worth of note that the paleo-thermal structure of the Polish Outer 

Carpathians is rather complex, being characterized by marked changes in the degree of AFT 

reset (e.g. sample PL 36 yielded partially reset and sample PL 35 completely reset AFT, Fig. 3.6). 

In particular relative minima of burial temperatures are recorded from Neogene basins (Orava-

Nowy Targ, this study; Nowy Sacz, Swierczewska, 2005), whereas relative maxima occur in 

tectonic windows (this study; Swierczewska, 2005; Syrek, 2009). This indicates that no significant 

thermal overprint occurred after accretion (15-11.5 Ma), since in that case a much simpler 

thermal structure would be expected along the chain, with maximum degree of reset close to 



56 
 

the source of heating (i.e. the Pannonian Basin and the Neogene volcanic complexes), 

progressively decreasing with distance from it. Positive thermal perturbations extended to the 

whole study area during sedimentation and accretion can also be ruled out: as a matter of fact, 

some samples belonging to the lower stratigraphic levels show no or little degree of reset. A low 

geothermal gradient is thus required to justify low temperatures suffered by samples buried 

beneath a several Km thick sedimentary succession. Two examples are reported in Tab. 3.5, 

where stratigraphic position, highest temperature possibly reached, minimum thickness 

estimate for the overlying sedimentary pile and consequent maximum geothermal gradient are 

indicated. On the other hand, a localized thermal perturbation is expected close to andesites 

emplaced in the innermost Outer Polish Carpathians (Fig. 3.2), although the wide range of ages 

obtained for cooling of such rocks (ca.11-22 Ma: Birkenmajer and Pécskay, 2000; Tokarski et al., 

2006 and reference therein) does not allow to better circumscribe the age of local perturbation. 

Localized thermal effects of Neogne volcanics is excluded on the basis of their distance from the 

Outer Carpathian Units (minimum of 30 Km). A constant geothermal gradient is therefore 

assumed throughout the study area, with values close to the lower estimates of present day 

gradients (13-23 °C/Km). A mean value of 18 °C/Km (the same assumed by Swierczewska, 2005 

and matching with the minimum values inferred by Hurai et al, 2006) is used to estimate paleo-

depths and exhumation rates from thermal paths. 

 

Cooling of source rocks 

Cooling below the ZHe PRZ of the source rocks of the sediments constituting the Magura Nappe 

can be described on the basis of the ZHe dataset. Several ZHe age clusters were identified (Fig. 

3.11), the most numerous being referred to the Triassic (15 samples, 207.7-245.9 Ma) and the 

Late Cretaceous-Paleocene (10 samples; 62.4-80 Ma). The principal metamorphic and/or 

magmatic events recognized in the Inner Carpathian basement (e.g. Dallmeyer et al., 1996; 

Janak et al., 2001; Plasienka et al., 2007;) were compared with age clusters, as shown in Fig. 

3.10. Permian, Devonian-Carboniferous and Early Devonian age clusters are referred to a 

Variscan basement unaffected by the Alpine Orogenesis. Triassic ages are likely related to 

unroofing (Németh et al., 2011 and reference therein) and magmatic intrusions (Uher et 

al.,2002) during late- to post-Variscan (and/or pre-Alpine, Uher et al., 2002) extensional stages. 

The Late Jurassic, Early to Middle Cretaceous and Late Cretaceous to Paleocene age clusters are 

related to early Alpine collision and subsequent exhumation. Provenance of the sediments of 

Alpine ZHe age is most likely from the Inner Carpathian basement, whereas Variscan ages could 

derive from the southern margin as well as from basement heights within the basin. 

 

Heating and burial of the accretionary wedge 

The present dataset allows one constraining paleotemperature patterns for the accretionary 

wedge. In samples belonging to the innermost thrust sheets (Magura, Dukla and innermost 

Silesian Units), the AHe system underwent a complete reset, the AFT system underwent partial 

to total reset, and the ZHe system was not reset. New data agree therefore with previously 
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published AFT and illite-smectite data indicating that the innermost trust sheets reached 

temperatures in the range of the AFT PAZ or, in some cases, slightly higher. On the other hand, 

the occurrence of non-reset AHe samples in the outer thrust sheets constrains, for this area, 

paleo-temperatures lower than 40 °C. However, it has to be specified that the data referred to 

the outermost portions of the chain (outermost Silesian and Skole Units) belong strictly to the 

eastern sector. All the inferred paleo-temperatures are 10° to 30°C lower than those obtained by 

Hurai et al. (2006), and in good agreement with paleo-temperature patterns presented by 

Swierczewska (2005) and Syrek (2009). 

Given that no regional thermal anomaly occurred during sedimentation, heating of rocks 

entirely depends on burial. As pointed out by Mazzoli et al. (2010), significant heating (> 70-100 

°C) is recorded by the uppermost strata of the stratigraphic successions (e.g. samples PL 1, PL 35, 

PL 25, see Fig. 3.6 and Table 1, 2 and 3), whereas samples occupying lower positions in the 

stratigraphic successions were heated to a lesser extent (see Tab 3.5). The lack of correlation 

between stratigraphic age and degree of reset indicates that sedimentary burial was responsible 

for heating only to a minor extent. It follows that a major role in heating was played by tectonic 

loading. This is also confirmed by the higher degree of reset of samples gathered inside tectonic 

windows (i.e. from footwall rocks) with respect to those collected outside them (i.e. in the 

hanging wall block; samples PL 35- PL 36; PL 6- PL5; Fig 3.5, 3.11, 3.12). Assuming a surface 

temperature of 5 °C, estimated burial depths for the innermost thrust sheets range between 3.6 

and 8.6 Km, whereas the outer thrust sheets were buried at depths lower than 3.6 Km. 

 
Table 3.5 – Examples of samples characterized by low reset despite the deep position in the sedimentary 
succession 
 

Cooling and exhumation of the accretionary wedge 

Cooling paths of rocks belonging to the wedge can be described on the basis of coupled ages 

and AFT lengths data and supported by thermal models. As already pointed out, heating and 

subsequent cooling mainly depend on tectonic burial and exhumation, implying the nearly 

correspondence between cooling and exhumation paths. The eastward younging trend 

described by Zattin et al. (2010), well compatible with the progressive eastward migration of the 

tectonic activity, is supported by new data presented in this study (Fig. 3.7 and 3.13). Thermal 

paths indicate that rocks of the wedge, either being buried up to temperatures higher than 120° 

or not, and either or not having undergone several Ma permanence in the AFT PAZ, were rapidly 

exhumed (at a rate of 0.4-1.1 mm/yr) through the AFT PAZ and AHe PRZ by 15-5 Ma, the 

subsequent stage of exhumation being characterized by a significantly lower rate (less than 0.2-

0.05 mm/yr). Besides this, it can be observed that several samples, mostly belonging to the 

western sector, underwent a relatively long stay in the PAZ. Some of them also require a first 

stage of cooling down to temperatures still comprised within the PAZ preceding the main, rapid 
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cooling stage (which for such samples occurred at rates of ca. 0.8 °C/Ma, corresponding to 

exhumation rates of 0.4 mm/yr). Thermal paths of other samples, belonging to the central and 

eastern sectors, require a shorter stay in the PAZ, immediately followed by rapid cooling at rates 

comprised between ca. 11 and 20 °C/Ma (corresponding to exhumation rates of 1.1-0.6 mm/yr). 

Considering the whole dataset, we can group as ‘slowly cooled samples’ those that yield 

dispersed AHe ages – coupled, in some instances, with partially reset AFT data (Fig.3.6) – 

whereas we term ‘rapidly cooled samples’ those yielding less dispersed AHe ages coupled with 

completely reset AFT. It can be speculated that ‘slowly cooled samples’ were exhumed by 

erosion of the wedge induced by thrusting, whereas ‘rapidly cooled samples’ were exhumed by 

a combination of erosion and tectonic unroofing induced by extension. Both processes – 

erosional exhumation induced by thrusting and erosional plus tectonic exhumation related with 

extension – are likely to have occurred throughout the whole study area. Nevertheless, tectonic 

exhumation related with extension appears to be more confined to circumscribed areas in the 

western and central sectors, whereas it is more widespread in the eastern sector. A 

straightforward relationship between exhumation and extensional tectonics in the eastern 

sector, can be inferred from Fig.3.3. As a matter of fact, the completely reset samples belonging 

to the Magura (PL 10), Dukla (PL 4 and PL 11) and Silesian (PL 1, PL 47 and PL 48) units are 

located at the footwalls of extensional faults, whereas non reset and partially reset samples are 

located at the hangingwalls (PL 46, Magura Unit; PL 12 and 13, Silesian Unit; PL 14, Skole Unit). 

This picture is consistent with eastward changes in topography, characterized by decreasing 

relief and a transition from an alternation of heights and lows to a generally low and apparently 

‘collapsed’ topography (area comprised between ca.21° and ca.22.5° of longitude, Fig. 3.1) 

 

3.2.6. Conclusions 

This work allowed us reconstructing the thermal evolution and constraining burial and 

exhumation history of the Outer Polish Carpathians. 

Three main conclusions may be drawn regarding cooling of the source rocks, and burial and 

exhumation history of the wedge: 

Provenance of source terrains are from rocks that cooled below the ZHe PRZ during three main 

stages: a pre-Variscan stage, a Variscan stage and an Alpine stage. The two principal age clusters 

are referred to the Triassic and Late Cretaceous-Paleocene, and can be related to Post-Variscan 

extension and Early Alpine collision, respectively. Alpine ages likely come from the southern 

margin of the Outer Carpathian sedimentary basin, whereas Variscan and pre-Variscan ages are 

compatible with provenances from both the southern margin and basement heights within the 

basin. 

Heating of the wedge was mainly due to tectonic and, less importantly, to sedimentary burial, 

the spatial pattern of reset degree being mainly dependent on wedge geometry. The innermost 

thrust sheets reached burial temperatures higher than the AHe total reset temperature and 

lower than the ZHe PRZ minimum temperature. Assuming a constant and homogeneous paleo-

geothermal gradient of 18°C/Km, burial of the innermost units of the Outer Polish Carpathians 
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was comprised between 3.6 and 8.6 Km, whereas burial of the outermost thrust sheets was 

lower than 3.6 Km. 

Cooling of the wedge, assumed to result essentially from exhumation, represents the most 

controversial aspect to be assessed, due to the complex interplay among different processes. As 

a matter of fact, thrusting was progressively overlapped by extension during the Late Miocene, 

thereby providing two processes suitable to induce exhumation. Thermal models indicate that 

cooling occurred mainly between the Early and the Late Miocene, by a first stage of relatively 

rapid exhumation (at rates of 0.4-1.1 mm/yr) terminated by 15-5 Ma, followed by a stage of 

slow exhumation (at rates of 0.2-0.05 mm/yr). The first stage of rapid exhumation is likely 

related to tectonic exhumation or to erosional exhumation enhanced by uplift associated with 

thrusting or normal faulting, whereas the last stage of exhumation reflects post-orogenic 

erosion. Two slightly different paths of cooling, and consequently of exhumation, are inferred 

based on thermal models. The first is characterized by lower cooling and exhumation rates, 

generally lower burial temperatures and long (i.e. several Ma) permanence in the PAZ. The 

second path involves higher burial temperatures and faster cooling rates. We suggest that 

slower exhumation was driven by erosion of the wedge during accretion, whereas faster 

exhumation consisted of coupled erosional and tectonic unroofing associated with extensional 

tectonics. Tectonic exhumation appears to have been dominant in the eastern sector, where also 

topographic and geologic features suggest a more widespread occurrence of extension. 

 

3.2.8 Data Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2 – Apatite (U-Th-Sm)/He analytical data 
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Table 3 – Apatite Fission Track analytical data 
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Table3. 4 – Zircon (U-Th)/He analytical data 
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CHAPTER IV. 

THERMOCHRONOLOGY OF THE UKRAINIAN CARPATHIANS 

 

4.1. Chapter Overview 

This chapter is a journal paper in preparation. It presents AFT, AHe, ZHe and vitrinite data 

collected along three transects in the Ukrainian Carpathians. In this work the temporal and 

spatial relationships between the Pannonian Basin and thermochronology and burial-

exhumation history of the Ukrainian Carpathians were investigated. Reconstructing these 

relationships allowed to go back to the processes responsible for thermal and burial-exhumation 

history, and to add constrains to the geodynamic evolution of the Carpathian-Pannonian region. 

 

4.2. Paper 

B. Andreucci (1), M. Zattin (1), S. Corrado (2), S. Mazzoli (3), A. Castelluccio (1), R. Szaniawski (4), 

and L. Jankowski (5) 

 

(1) Department of Geosciences, University of Padua, Italy; 

(2) Department of Earth Sciences, University of Roma Tre, Italy; 

(3) Department of Earth Sciences, University of Naples “Federico II”, Italy; 

(4) Institute of Geophysics, Polish Academy of Science, Warsaw, Poland; 

(5) Polish Geological Institute-Carpathian Branch, Cracow, Poland; 

 

4.2.1. Abstract 

The Carpathian-Pannonian region is constituted by a wide extensional basin (the Pannonian 

Basin) surrounded by the arc shaped Carpathian mountain Belt. The Pannonian Basin formed in 

the Miocene by extension in retro-wedge position, while at the Carpathian front compression 

and thrusting were still active. The Ukrainian region represents a key area to the understanding 

of the relationship between the Pannonian Basin and the Carpathian mountain belt, thanks to 

its simple structural setting and to the progressive transition that can be clearly observed 

between the two regions. 

In this study the effect of opening of the Pannonian Basin on thermal and burial-exhumation 

history of the Ukrainian Carpathians is investigated. Low temperature thermochronometry and 

vitrinite reflectance analysis have been applied to the Ukrainian Carpathians in order to 

constrain their paleo-thermal structure and to reconstruct their thermal and burial-exhumation 

history. The results show that burial and heating of the wedge reached their maximum in the 

central units (up to 170°C and 6 km), decreasing both toward the innermost and the outermost 

thrust sheets. Cooling and Exhumation occurred between ca. 12 and 5 Ma, through a first rapid 

stage (exhumation rates over 1 mm/yr) followed by a slower stage from ca. 5 Ma to present. We 

suggest that exhumation of the wedge occurred after the end of thrusting by erosion enhanced 
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by isostatic uplift, the lower extent of burial and exhumation of the innermost units being 

ascribed to crustal thinning occurred during the opening of the Pannonian Basin.  

 

4.2.2. Introduction 

The Carpathians are an arc-shaped fold and thrust belt that extends in Central-Eastern Europe 

for over 1300 Km. They formed during the Tertiary by continental collision between the Adriatic 

microplate and the European continent (e.g. Jiricek, 1979; Nemcok et al., 1998; Sperner et al., 

2002, Royden et al., 1982; Horva´ th et al., 2006). During the final stages of thrusting, between 

ca. 19 and 11 Ma (Fodor, 2011), the region located in retro-wedge position underwent a 

prolonged stage of lithospheric thinning and extension (e.g. Csontos et al., 1992; Kovac et al., 

1990) accompanied by heating and extension-related volcanism along its margins (e.g. Konecny 

et al., 2002; Pécskay et al., 2006; Seghedi et al.,2004). The wide depression formed during this 

stage, i.e. the Pannonian Basin, is characterized at present by an high heat flow (up to 110 

mW/m2, Pospisil et al., 2006, Lenkey, 1999) and thinned lithosphere (Horvath, 1993; Dererova 

et al., 2006), as opposed to the thrust and fold belt which is characterized by an higher relief, a 

low heat flow (30-70 mW/m2, Pospisil et al., 2006) and a thickened lithosphere (Horvath, 1993; 

Dererova et al., 2006). The contrast of relief, lithospheric thickness and heat flow between the 

Pannonian Basin and the Carpathians is particularly evident in the Ukrainian region (Fig. 4.1, Fig. 

4.2), where a progressive transition between the features characterizing the two settings can be 

observed in a band wide less than 50 km (Fig. 4.1, Fig. 4.2). 

The Ukrainian Carpathians (UC) represent therefore a potential key region to the understanding 

of the relationship existing between the Pannonian Basin and the carpathian fold and thrust 

belt. 

In this work we applied low-temperature thermochronometry and vitrinite reflectance analysis 

to samples belonging to the UC, to constrain the evolution in time of the thermal conditions of 

the wedge, and its burial-exhumation history. The results were then discussed considering their 

relationship with the Pannonian Basin and its associated features in order to investigate how 

positive thermal perturbation, extension and subsidence, occurred in the Pannonian Basin, 

affected the UC during their cooling, uplift and exhumation. 

 

Fig. 4.1 – (A) Lithospheric (from Dererova et al., 2006) and (B) crustal thickness (from Bielik et al., 2004) of the 
Carpathian-Pannonian region. 
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Figure 4.2- DEM of the study region 

Fig. 4.3 – A- tectonic sketch map of the Carpathians. B- tectonic sketch map of the study area with AHe, ZHe 
and AFT sample location along the three sections a), b), c). Legend is referred to B. 

 

 

B 
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4.2.3. Geological setting 

The Carpathians are part of the Alpine orogenic system, and formed between Upper Cretaceous 

and Neogene by the collision between the Alcapa and Tisza-Dacia microplates and the European 

Platform (Fig. 4.3, e.g. Jiricek, 1979; Nemcok et al., 1998; Sperner et al., 2002). 

Based on rock lithology and age of individual tectonic units, the Carpathians can be divided into 

two domains (e.g. Tasarova et al., 2009 and reference therein): the Inner Carpathians (IC) and 

the Outer Carpathians (OC). In the Northern and Eastern Carpathians, the contact between 

these domains is represented by the “Pieniny Klippen Belt” (PKB, Fig. 4.3), a narrow band of 

strongly deformed and sheared Mesozoic to Paleogene rocks, traditionally interpreted as an 

oceanic suture (Birkenmajer, 2001). The IC are a prolongation of the Eastern Alps, they are made 

of Variscan basement and its sedimentary cover and were deformed between the Late Jurassic 

and the Late Cretaceous. 

The OC formed during the Tertiary as an accretionary wedge, composed of Upper Jurassic to 

Lower Miocene flysch sediments, thrust over Neogene strata of the Carpathian foredeep 

(Oszczypko et al 1998).  

The evolution of the Carpathians was characterized by a progressive migration of compression E 

to SE ward, accompanied by rotation of the compression axis from N-S to WNW-ESE (e.g. 

Horváth, 1993; Jiricek, 1979; Sperner et al., 2002). Nonetheless along the whole Ukrainian 

region thrusting is interpreted to have ceased by 11.5 Ma (Nemcok et al., 2006), with no major 

shift of the depocenters along strike. In Fig. 4.3 it can be observed that the front of the chain 

overlaps, in this region, to the Trans European Suture Zone (TESZ), that constitutes the boundary 

between the thick crust and lithosphere of the East European Platform, i.e. the European 

Craton, and the thinner West European Platform, made by younger terranes (e.g. Pharaoh, 

1999). 

During the Early-Middle Miocene time, while compression was still active at the front, the 

Pannonian Basin formed (e.g. Kovac et al., 1990, Fodor 2000) and extension related volcanism 

occurred in retro wedge position (e.g. Konency et al., 2002; Pécskay et al., 2006; Seghedi et 

al.,2004). The proper extensional phase of the Pannonian Basin occurred between 19 and 11.5 

Ma (e.g. Fodor, 2011; Horvath and Cloething, 1996), whereas between 11.5 and 5 Ma the basin 

underwent minor extension and major subsidence (Fodor, 2011). In the Transcarpathian Basin 

(i.e. the portion of the Pannonian Basin in the study area, Fig.4.3) the main stage of extension 

occurred between 17.5 and 14 Ma (Huismans et al., 2011). 

 

4.2.4. Methods 

Low temperature thermochronometry coupled, in some cases, with vitrinite reflectance analysis 

was applied to 18 samples collected along three transects of the study area (Tab. 4.1, Fig. 4.3). 

15 samples are from siliciclastic sandstones of the flysch belt, samples PL 58 and PL 59 are from 

the IC basement and sample PL 60 is from the basement cover. Samples for vitrinite analysis 

were collected from siltstones of the accretionary wedge. 
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He analysis was performed at the Radiogenic Helium Dating Laboratory of the University of 

Arizona (Tucson), following the procedures described in Reiners et al. (2004). Handpicked 

apatites and zircons were measured for alpha-ejection correction following methods described 

in Reiners et al. (2007). Single crystals were loaded into 0.8 mm Nb tubes, and degassed under 

vacuum by heating with a Nd-YAG laser. The concentration of 4He was determined by 3He 

isotope dilution and measurement of the 4He/3He ratio through a quadrupole mass 

spectrometer. U, Th and Sm (only for apatite) concentrations were obtained by isotope dilution 

using an inductively coupled plasma mass spectrometer. 

Intact, euhedral, inclusions and coating free grains are recommended for obtaining good 

analytical data (e.g. Ehlers and Farley, 2003); nonetheless in apatites from sedimentary rocks 

(and, to a lesser extent, zircons) such criteria are rarely met (Fig. 4.4). Based on Vermeesch et 

al.(2007), no significant impact on AHe dating is expected from inclusions. Therefore grains with 

good shape (euhedral or subhedral, intact) were preferably chosen for analysis. Anyway grains 

with big inclusions were discarded and, when possible, inclusions free grains were selected. As 

for oxide-oxhydroxide coating, in some cases alteration was pervasive to the whole rock sample 

and it was impossible to select uncoated crystals. In such cases the alteration grunge 

surrounding the crystals was mechanically removed after picking, so that the packed grains were 

as much as possible coating-free. For those grains a He implantation effect can be expected 

(Murray et al, 2011; Orme and Reiners, 2010; Reiners, 2010). Correlation of single grain ages 

with eU, [U], [Th], [Sm], Th/U and grain size was tested to find possible age biases and to 

interpret age dispersion. 

 

AFT analysis was performed at the FT laboratory of the University of Padua. CN5 glass was used 

to monitor neutron fluence during irradiation at the Oregon State University Triga Reactor, 

Corvallis, USA. The calculation of central ages (Galbraith and Laslett, 1993) was performed 

through the TRACKEY software (4.2 version; Dunkl, 2000). The Chi-square (χ2) test was used to 

assess the homogeneity of age populations: a population is considered homogeneous for P(χ2) 

higher than 5%. Through the use of the BINOMFIT software (summarized by Elhers et al., 2005) 

minimum ages were calculated for partially reset samples. Dpar of single crystal was measured 

and used as kinetic parameter. Where possible track densities were measured on over 20 grains 

per sample, whereas , due to the low U content, no track length measurement could be 

performed. 

 

A suite of four samples for vitrinite reflectance analysis was collected; two samples belong to 

the innermost units (PL 68 and PL 61) and two to the central units ( 

Vitrinite reflectance analyses were performed at the Academic Laboratory of Basin Analysis 

(ALBA) of the University Roma Tre (Rome). Whole-rock samples were mounted on epoxy resin 

and polished according to standard procedures (Bustin 1990). Random reflectance (Ro%) was 

measured under oil immersion, with a Zeiss Axioplan microscope, in reflected monochromatic 

non-polarized light equipped MPS200 photometric system. An average 20 measurements were 
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performed on vitrinite fragments for each sample (only slightly fractured and/or altered). Mean 

reflectance and standard deviation values were calculated for all measurements. 

Paleotemperatures were obtained according to Barker and Pawlewicz(1994) as samples were 

not collected in stratigraphic continuity to allow a proper modelling. 

 

 

Figure 4.4 – Examples of bad crystal features: coating (A, B, E, F), inclusions ( C) , abrasion (D). A- sample 
PL60_3; B- PL61, not packed; C- PL56_3; D-PL54_1; E and F - PL68_2 

 

4.2.5. Results 

A total of 18 samples were dated by AHe, 13 by AFT and 10 by ZHe methods. Vitrinite 

reflectance analysis was performed on 4 samples. A summary of the results is presented in Tab. 

4.1 and Fig.4.5. 

 

Table 4.1- overview of sample properties and synthesis of the results. 
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Figure 4.4- AHe, AFT, ZHe and vitrinite data with sample position. Minimum AFT ages for partially reset 
samples are calculated using the Binomfit software (Brandon, 1992). 
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AHe data 

Three to five replicates were dated for each sample; the results are reported in Tab. 4.2. 

As described in the previous section, in most cases the dated grains were far from the ideal, 

being often rounded, abraded, coated and inclusion bearing. Data dispersion, occurrence of 

anomalous values in the measured and calculated parameters, correlation between ages and 

such parameters are used as proxies to evaluate the impact of crystal defects on dates. 

As can be observed in Fig. 4.6 most of the analyzed grains yield fairly reproducible ages. Outliers 

were tested for each sample using the program Outlier (Dunkl 2002) which uses the Grubbs 

(Grubbs, 1950, 1969), the Dixon (Dixon, 1953) and the Gauss-g (Szalma, 1984) tests. Given the 

low number of data (3-5) per sample the results of these tests give only a rough estimation of 

outliers, and grains can be confidently discarded only in presence of other independent 

evidence of age biases. Four outliers were detected within the dataset, the three tests giving 

consistent results (Tab. 4.2). 

Analytical data are in general acceptable, although critically low He and U concentrations (less 

than 1 mole/g and less than 10 ppm) occur in several grains, leading in some cases to high 

percent-error (Tab. 4.2); critically high Th concentration and high Th/U are also frequent in the 

analyzed grains. Anomalous values are underlined in Tab. 4.2. 

Correlations between ages and crystal size, eU and other parameters ([Th], [U], [Sm], Th/U) 

were tested for each sample. As reported in the data repository, significant correlations were 

found only in few cases, implying that age dispersion is, in most cases controlled by the interplay 

of several factors. A negative correlation between age and Th/U and/or [Th] is observed in 

samples PL 59 and PL 63, suggesting a possible dependence of ages on oxide coating (e.g. 

Murray e al., 2011; Reiners et al., 2010; Orme and Reiners 2010). A positive correlation between 

grain ages and eU and/or [U] can be observed in samples PL 62 and PL 64, which we interpret as 

an effect of radiation damages. Grain ages of samples 59 and 68 positively correlate with grain 

radius: this can be simply explained by the effect of slow cooling in absence of other controlling 

factors (e.g. external sources of He, trapping effect of radiation damages etc.). 

Grains were discarded only in case of occurrence of at least two proxies for bias, e.g. outlier ages 

or anomalous values of the measured parameters occurring in crystals with noticeably bad 

features. Four grains were excluded from data discussion, and reported in Tab. 4.2 as crossed 

fields; further details can be found in caption of Tab. 2. 

Since the sample ages are generally well reproducible (Fig. 4.6), error-weighted mean sample 

age are also reported in tab 4.3 and used for discussion. 

As indicated in Fig. 4.7, 15 of the 18 analyzed samples are completely reset, yielding AHe ages 

which are both well reproducible and far younger than depositional ages. Two samples appear 

partially reset (high age dispersion, occurrence of grain ages close or older than the depositional 

ages), and one is not reset (very high dispersion, all the grain ages older than the depositional 

ages). The weighted mean ages of the reset samples are comprised between 5.6 and 10.7 Ma. 
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Figure 4. 6- Interval plot of the corrected ages grouped per sample. 

 
Figure 4.7 – degree of reset of AHe, AFT and ZHe samples 
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AFT data 

The results of AFT dating are presented in Tab. 4.4 and in the radial plots in Fig. 4.8. Due to the 

generally low spontaneous track density of the analyzed grains, track counting was performed 

on 14 to 22 grains per sample, whereas in none of the 13 samples track length measurement 

could be performed. The average Dpar (diameter of etch figures parallel to the crystallographic 

c-axis, Ketcham et al.,1999) of the samples ranges between 1.5 and 2.1. Two different kinetic 

populations were identified in sample PL 67, the more retentive population being the one with 

the higher mean Dpar. 

Three of the 13 analyzed samples are unreset to partially reset (Fig.4. 8). The central ages of the 

totally reset samples are comprised between 6.2 and 11.6 Ma, whereas the minimum ages of 

the partially rest samples are respectively 9.9 Ma for sample PL 56 and 35.2 Ma for sample PL 

67. 

Table 4.3 – AFT analytical data 

Figure 4. 8 - Radial plots for AFT samples with depositional ages (grey areas). Samples are grouped based on the 
profiles indicated in Fig. 4.3. 
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ZHe data 

Three grains of good quality were selected and analyzed for each sample, the results are 

presented in Tab. 4.5. The analytical values show no significant anomaly. All the analyzed grains 

yield ZHe age older than the stratigraphic age, indicating that none of the analyzed samples was 

completely reset. Therefore the ZHe single grain ages represent an indication of cooling age of 

the source rocks through the ZHe PRZ. The probability density plot (Fig. 4.9) of the ZHe ages 

shows the main peaks at X and Y Ma. 

 

Fig. 4.9_ Histogram and Kernel density distribution of the ZHe dataset. The histogram and Kernel density 
distribution were realized using the software DensityPlotter (Vermeesch, 2012) using  for the histogram a bin 
width of 20 and for the Kernel density distribution a ban-width of 20. Ages and percentages of the main peaks 
are also indicated. 

 

Vitrinite reflectance data 

Four samples were analyzed. The analyses were carried out at the Roma Tre University following 

the standard procedures described in (Bustin 1990). Calculation of the maximum 

paleotemperatures was based on Barker and Pawlewicz (1994). The results are presented in Tab. 

4.6 and Fig. 4.10. 

 

Sample %Ro ±σ  %Ro n_ tot n_ ok 
histogram 

quality 
EQ temp Ro 
B. e P 1994 

PL-54 1.475 0,087 36 16  good 166.827257 

PL-61 0.691  0,035 36 9 not good 105.676173 

PL-64 1.51 0,102 43 21  good 168.71852 

PL-68 0.719 0,0747 21 19 good 108.879522 

Table 4.6 – Vitrinite analytical data 
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Figure 4.10 – Present day heat flow (from Pospisil et al., 2006) in the Ukrainian Carpathians and vitrinite data. 
The timing of volcanic activity is also indicated (from Huismans et al., 2001, and reference therein) 

4.2.6. Discussion 

 

Paleo-thermal field 

To interpret the thermochronometric data in terms of thermal history, the assumption of a 

crustal thermal field is required. The present day heat flow of the Ukrainian Outer Carpathians 

(Fig. 4.10, Pospisil et al., 2006) is comprised between 30 and 80 mW/m2, progressively 

increasing toward the Pannonian Basin, which positive thermal anomaly was induced by 

Miocene extension and astenospheric uprise. Miocene calc-alkaline volcanism also occurred 

along the inner side of the Carpathian arc but, as described by Lenkey et al. (2002), calculations 

of the thermal evolution of volcanic intrusions show that the elevated temperature and heat 

flow around an intrusion dissipates in a few million years (e.g. Fowler and Nisbet, 1982; Horv’ath 

et al., 1986). Furthermore, since no anomalously high radioactive isotope concentration (Surányi 

et al., 2002) is present in the volcanic rocks, no contribution to the high heat flow is expected 

from radiogenic heat production (Lenkey et al. 2002). Therefore the high heat flow has to be 

ascribed not to the volcanic fields themselves, but rather to lithospheric extension which led to 

extension and volcanism in the Pannonian Basin. We expect the positive thermal anomaly to 

have developed at about the same time of major astenosphere uprise in the PB (Fig. 4.10), i.e. 
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between ca.14 and 11 Ma (Huismans et al., 2001), with a decreasing extent toward the 

foredeep. 

Kotarba and Koltun (2006) show that in the outermost thrust sheets no major heat flow 

transients occurred since the Oligocene. This confirms that even in the past no heat flow 

increase was registered in the outermost thrust sheets, being confined to the innermost portion 

of the accretionary wedge. 

Some observations can be made to understand the development and extent of such thermal 

anomaly in the Ukrainian OC. In Fig. 4.10 It can be observed that samples located closer to the 

Pannonian Basin (PL 61, PL 68) underwent a lower maximum paleotemperature than samples 

located farther (PL 64, PL 54). This can also be observed in sample PL 67 (Fig.4.5 and 4.7), which 

is located very close to the Pannonian Basin and underwent only a partial reset of the AFT 

system, as opposed to the other AFT samples, located to the NE, that are completely reset. This 

suggests that heating of rocks in the UC was mainly due to burial and therefore perturbation of 

the thermal field only had a minor effect. 

A constrain to the maximum paleo-geothermal gradient reached in the Ukrainian OC at the time 

of extension and mantle uprise in the Pannonian Basin can be inferred from the stratigraphic 

position and vitrinite reflectance value referred to the sample PL 68. Based on Slaczka et al. 

(2006) the sample is located in the Porkulec tectonic Unit, where sedimentary succession 

reaches a thickness of more than 6 Km. The depositional age of the sample is Upper Cretaceous-

Lower Paleocene (Jankowski et al., 2007), implying a minimum sedimentary burial of 2.7 Km 

(based on Slaczka et al. 2006). Vitrinite reflectance analysis indicates that sample PL 68 was 

heated up to 108.9°C: considering the sedimentary burial underwent by the sample, the 

geothermal gradient must have been then no higher than 37°C/Km (if a surface temperature of 

10°C is assumed). The sample PL 68 is one of the closer to the area with high heat flow (Fig. 

4.10) and therefore we accept the geothermal gradient of ca. 37°C/Km as a maximum value for 

the whole study area. 

As a consequence, considering the high present day heat flow values, we have to assume a 

sufficiently high average thermal conductivity to justify a geothermal gradient no higher than ca. 

37°C/Km. A further constrain on thermal conductivity is given by the present day geothermal 

gradient of 20-24°C/Km measured in wells in the outermost thrust sheets (Kotarba and Koltun, 

2006). Dererova et al. (2006) uses values of thermal conductivity comprised between 2 and 2.5 

W/m °C. Based on the two constrains described above we can restrict such range and we 

assume a value of 2.2 W/m °C. In Tab. 4.7 our estimate for the present day geothermal gradient 

are presented: for each heat flow interval (Fig. 4.10) an average value is indicated. We estimate 

post-extensional gradients comprised between ca. 36.4°C/km in the innermost and ca. of 

18.2°C/km in the outermost thrust sheets, with local heat flow minima reaching minimum 

values of 15°C/Km. Vityk et al. (1996, and references therein) propose a similar trend, with 

estimates of gradients slightly higher (up to 3-5 degrees) than those proposed in this work. 

Our paleo-geothermal gradient estimate leads us to another consideration. It could be expected 

that after 11 Ma a progressive thermal relaxation occurred, leading to a decrease of the heat 

flow from higher to present day values. But, in fact, the present day values are as high as the 
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maximum allowed geothermal gradients. This implies that the thermal anomaly developed in 

the Middle Miocene in this region has had approximately the same extent as today.  

To summarize we assume that (a) the innermost units of the UC were interested by an increase 

of the geothermal gradient between ca. 14 and 11 Ma which has then remained constant until 

present (b) such effect is decreasing with distance from the Pannonian Basin and (c) in the study 

area the geothermal gradient has been comprised, since ca. 14-11 Ma, between 13.6 and 

37°C/Km and, finally, (d) the increased geothermal gradient had only a minor effect in heating 

the rocks of the UC, which thermal history was determined mainly by burial and exhumation 

history. 

 

Table 4.7 – Geothermal gradient estimate from the present day heat flow assuming constant thermal 
conductivity (k). 

Thermal history 

The degree of reset of the samples (Fig. 4.7) and the vitrinite reflectance data (Fig. 4.10) indicate 

that the UC were heated to over ca. 120°C in the central portions and that heating degree 

decreases towards both the Pannonian Basin and the foredeep. In particular samples close to 

the Pannonian Basin underwent temperatures of ca. 110°C, whereas samples belonging to the 

outermost units of the accretionary prism were heated at temperatures lower than ca. 60°C. 

Simplified cooling histories can be obtained using the concept of closure temperature (Tc; e.g. 

Reiners and Brandon, 2006). Cooling histories obtained by plotting in the t-T space the closure 

temperatures against their average cooling ages have not to be considered as precise 

predictions, but they may be used to give a first indication of the expected cooling paths. 

As described in previous section, samples were heated and cooled mainly by burial and 

exhumation. Since no evidence for normal faulting with consistent displacement can be 

observed in the field (e.g. Jankowski et al., 2006), we expect cooling rates compatible with 

erosional exhumation rates in similar geodynamic contexts (maximum values lower than 1.5 

mm/yr, e.g. N-Apennines, Thomson et al., 2010; S-Apennines, Schiattarella et al., 2005). Based 

on the estimated geothermal gradients (Tab. 4.7) we consider therefore that reasonable values 

for cooling rates are comprised between 10 and 60°C/Myr. Closure temperatures were then 

estimated assuming an average cooling rate of 35°C/Myr and, in the case of AHe, using the 

average grain radius for each sample (details can be found in caption of Tab. 4.8 and Fig. 4.11). 

Closure temperatures were then calculated using the Closure software (Brandon et al., 1998). 

Cooling paths are reported in three distinct plots, corresponding to the three sampled transects 

(Fig. 4.11).In Fig. 4.11 It can be observed that all the cooling paths are characterized by a first 
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stage of rapid to extremely rapid cooling, occurred between ca. 12 and 5 Ma, followed by a 

stage of slower cooling to surface temperature. Another observation that can be made is that 

the onset of rapid cooling occurred later in the NW. Cooling rates for the single tracts of the 

thermal histories were calculated and are reported in Tab. 4.8 Two sets of cooling rates can be 

identified for the stage of rapid cooling: four samples yield a cooling rate of 15-20°C/Myr, 

whereas five samples yield extremely rapid cooling rates (ca. instantaneous). 

We suggest that, at least in three cases, the extremely rapid cooling is actually a biased result 

induced by imprecision and inaccuracy of AHe ages. AHe dates of samples PL 59 and PL 63 are 

negatively correlated with the Th/U ratio, and PL 59 also with [Th] and grain size. Sample PL 54 

also displays an apparent negative correlation of AHe dates with [Th] and Th/U. These 

correlations can be interpreted as an effect of Th rich coating (Murray et al., 2012; Orme and 

Reiners, 2010, Reiners, 2010) and consequent He implantation. This interpretation is also 

supported by the abundance of coated grains in these samples (Fig. 4.4). Since most of the 

coating material was removed before analysis, we assume that ages are generally 

overestimated. Overestimation due to He implantation decreases with increasing grain size and 

Th/U ratio and, therefore more rich in Th and bigger grains, yielding younger ages, are 

considered more reliable. Using the youngest AHe age for each grain instead of the weighted 

average of dates we obtained more reasonable cooling rates, comprised within 10 and 

30°C/Myr. 

Samples PL 52 and PL 62 yield reproducible AHe ages (Tab 4.3., Fig. 4.5): reproducibility of dates, 

particularly in case of apatite grains far from the ideal, can be safely used as a proxy for rapid 

cooling (e.g. Ehlers and Farley, 2003). Therefore in this case we cannot rule out that the samples 

cooled very rapidly through the AFT and AHe closure temperatures. Nonetheless, as previously 

described, based on the paleo-geothermal gradients indicated in Tab. 4.7, we imposed to all 

thermal histories a maximum cooling rate of 60°C/Myr. 

Thermal modeling was also performed on 13 samples using the HeFTy software (Ketcham et al, 

1997), in order to more robustly test the thermal histories indicated in Fig.4.11. 

Due to AHe age dispersion we used, for some samples, a merit value for acceptable fits lower 

than the default value of 0.05 (see caption of Fig. 4.12 for details). In some cases this was not 

sufficient to obtain acceptable paths, and therefore we used for modeling only 2-3 of the AHe 

dates, the criteria used to select the crystals for modeling are described in caption of Fig. 4.12. 

In most cases we did not impose maximum values for cooling rates, but as described above we 

applied the threshold of 60°C/Myr to the rapidly cooled samples. 

Thermal models are presented in Fig. 4.12: they generally support the t-T paths presented in Fig. 

4.11, being characterized by a first stage of fast cooling (average cooling rates are comprised 

between 15 and 30°C/Myr) through the temperature interval of ca 120-40°C, followed by a stage 

of slower cooling (average rates of 3-6°C/Myr). Modeled t-T paths also confirm that cooling 

occurred progressively later toward the NW (Fig. 4.12). 
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Figure 4.11 – Thermal paths obtained by plotting the Tc against sample weighted average or central ages, with 
relative uncertainties. Closure temperatures were calculated using the Closure software (Brandon et al., 
1998), assuming a cooling rate range of 10-60°C/Ma. Thermal paths were grouped by single transect (A, B, C).  

A) 

B) 

C) 
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Table 4.8 – Closure temperatures for the AFT and AHe systems and cooling rates between the AFT and AHe Tc 
and between the AHe Tc and the surface temperature. Tc were estimated using the Closure software, assuming a 
cooling rate range of 10-60°C/Ma and, using the average grain size of each sample for AHe. Cooling rates 
between the AFT and AHe Tc were calculated from the average Tcs and respectively the AFT central age and AHe 
weighted mean age. Cooling rates between are time averaged cooling rates, and, therefore; a surface 
temperature of 10°C is assumed. 
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Burial and exhumation history 

As described in previous sections, heating and cooling were mainly determined by burial and 

exhumation. Based on burial temperatures, constrained by thermochronometrical data and 

estimated geothermal gradients, ranges of possible burial depths were estimated for each 

sample and are presented in Tab. 4.9. Burial depths reach the maximum values of ca. 6 Km in 

the central portion of the accretionary wedge (sample PL 65), and they decrease both toward 

the foredeep and the Pannonian Basin. Samples closer to the Pannonian Basin underwent 

maximum burial depths of 2.6-4 Km, whereas samples of the outermost thrust sheets were 

buried at depths lower than 2-3 Km. 

Exhumation rates for the fast cooling stage were estimated both from cooling rates obtained 

from the t-T paths in Fig. 4.11 and from the modeled thermal histories. In most cases the two 

estimates well match, and point to average exhumation rates of 0.7-1 mm/yr. In the few cases of 

mismatch between the two estimates, the one based on thermal modeling has to be considered 

the most reliable. 

We stress that exhumation rates (referred to the first, faster stage) indicated in Tab. 4.9, are 

average rates, and that based on ranges of possible cooling rates, consistently higher (up to 1.4 

mm/yr) or lower (down to 0.3 mm/yr) exhumation rates cannot be ruled out.  

Maximum burial values allowed for each sample are reported in Fig. 4.13. 

 

Figure 4.13 – maximum burial depth reached by the samples. Burial depths estimates are presented in Tab. .9. 
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Table 4.9 – Estimate of burial depths and exhumation rates. Burial depths were estimated a) from the Tc values 
presented in Tab. 4.8, using the Age2.dot software (Brandon et al., 1998), assuming present day cooling rates of 3-
6°C/Ma (from Fig. 4.8 and 4.10) and cooling rates through the AFT Tc from Tab. 4.8; geothermal gradients assume a 
k=2.2 W/m°C (Tab. 4.7). b) burial depths and exhumation rates were estimated using the Age2.dot software (Brandon 
et al., 1998) from the average cooling rates obtained for the fast cooling stage in the thermal models. c) Burial depths 
maximum values were estimated from PRZ of the AFT, AHe and ZHe systems and from present day geothermal 
gradients, assuming a surface temperature of 10°C. 
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Interpretation 

In the light of the results presented in this work and of the abundant literature available (e.g. 

Huismans et al., 2001; Dererova et al., 2006, Sperner et al., 2002), we discuss in this section the 

relationship between the features of the Pannonian Basin and the UC in order to infer constrains 

on the geodynamic evolution of this region. 

 

The burial depth pattern along the chain (Fig. 4.13), coupled with the uniform cooling ages 

(except the NW-ward younging trend, that will be discusses later on) indicates that the UC 

exhumed by a first rapid stage of enhanced erosion during post-thrusting isostatic uplift, 

followed by a second stage of slower erosion. Toward the foredeep the extent of exhumation 

decreases, indicating that crustal thickening mainly occurred as a response to thrusting, and that 

the lower extent of exhumation depends on the lower thickness of the prism in the most distal 

portions . As for the portion of the wedge close to the Pannonian Basin, we suggest that crustal 

thinning occurred during the opening of the PB, was responsible to a lower isostatic uplift in the 

post-thrusting stage.  

The progressively lower extent of denudation toward the PB is the principal effect that the 

opening of the basin had on the UC, since the increased geothermal gradient, as described in 

section 5.1, had only a minor effect. 

The trend of younging exhumation toward the NW appears related to the decrease of the relief 

(Fig. 4.2). In Fig. 4.14 It can be observed that, even though very dispersed, a positive trend of 

AHe and AFT ages with elevation is present at a regional scale. At the single profile scale no 

trend of AHe ages with elevation can be observed, whereas AFT ages positively correlate with 

elevation. This indicates that, at a regional scale, during exhumation both the AFT and AHe 

closure isotherms were relatively flat with respect to the relief. At a local scale the AHe closure 

isotherm was influenced by topography, as opposed to AFT closure isotherm that remained 

undisturbed. The trend of north-westward younging exhumation ages depends therefore on the 

decreasing relief coupled with relatively flat isotherms during exhumation. This is consistent 

with exhumation occurred by erosion of the accretionary wedge during isostatic uplift where 

the decreasing relief toward the NW is a consequence of a lower initial thickness of the 

accretionary prism, having induced a lower uplift. 

 

Figure 4.14 – Age-Elevation relationship for AHe and AFT dates. Samples are grouped by transect (Fig. 4.3) 
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In Fig. 4.15 a synthesis of the main steps in the evolution of the PB and of the UC are indicated. 

Two main features are worth noting. First, we point to the fact that at ca. 12-11 Ma several 

major events occurred in the Carpathian Pannonian region. At this time the major extensional 

phase in the PB terminated and the post-rift subsidence stage started (Huismans et al., 2001; 

Fodor, 2011). At the same time compression in the UC ceased and major tectonic activity, from 

that time on, was focused on the Romanian Carpathians. Furthermore at 12-11 Ma the main 

stage of uplift and exhumation of the UC started. The concurrence of these events  points out 

that the main extensional stage in the PB was tightly related to compression in the UC. 

Furthermore the end of compression in the UC and extension in the PB were also related to the 

cessation of gravitational tear below the UC and to their subsequent uplift. These events can be 

well explained either by the slab roll-back and break-off theory (e.g. Horvath et al., 2006; 

Sperner et al., 2002) or by the gravitational collapse theory (e.g. Houseman and Gemmer, 2007). 

In both cases extension in the PB coeval to compression and gravitational tear below the UC can 

be satisfyingly explained. In the first model, slab roll back would induce astenosphere upwelling 

in the PB and concurrently compression in the UC. Subsequent slab break-off would induce the 

end of extension in the PB and isostatic rebound of the UC.  

The gravitational collapse model comprises a first phase of extension of thickened crust in the 

PB region, triggering lithosphere thinning below the PB and lithosphere thickening below the 

UC. The lithospheric flow from below the PB to the Carpathians would give reason for extension 

and mantle upwelling in the PB and thrusting in the UC. We propose S-ward migration of the 

lithospheric flow, occurred at ca. 12-11 Ma as demonstrated by the shift of tectonic activity, 

caused the end of active lithospheric flow from below the PB to the UC and consequent 

cessation of tear and uplift of the UC. 

 

The second noteworthy piece of information that is indicated in Fig. 4.15 is that the only feature 

that did not undergo a major change at 12-11 Ma is the lithospheric thickness (Fig.0). As a 

matter of fact our data indicate that thermal anomaly induced by extension lasted until present 

day with about the same extent as that of its rise. Therefore it appears that, even though 

lithosphere below the PB did not undergo further thinning and extension after 11-12 Ma, still no 

reduction of the astenospheric plume occurred. We suggest that the deep lithospheric root that 

remained below the UK (e.g. Dererova et al., 2009), associated to compression and lithospheric 

downwelling in the Romanian Carpathians, that has been active till present day (e.g. Sperner et 

al., 2002, Nemcok et al., 2006), have been responsible for the preservation of thinned 

lithosphere in the PB. 

 

Even though our data, integrated with previously published geophysical data, do not allow to 

rule out any of the geodynamic models proposed for the Carpathian-Pannonian region, we find 

that a SE-ward progressive detachment of an oceanic slab should be testified by evidence for 

sunk slabs at progressively shallower depths toward the SE, as described by Ren et al. (2012). 

Since no clear evidence for sunk slabs below the Carpathians can be found in the upper 400 Km 
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(Ren et al., 2012) we support gravitational collapse as the most likely process driving the 

Miocene evolution of the Carpathian-Pannonian region. 

Finally we point to the role that the TESZ had in the formation of the Carpathian-Pannonian 

region. We observe that in correspondence of this major lithospheric boundary the Carpathians 

reach their maximum lithospheric and crustal thickness (Fig. 4.1 and Fig. 4.3). The thicker 

lithosphere of the East European Platform likely constituted an obstacle to frontal accretion and 

outward migration of collision along the Ukrainian and Romanian Carpathians leading to crustal 

and lithospheric over-thickening. Furthermore we observe that, between 11 and 9 Ma, tectonic 

activity rapidly migrated SE ward along this lineament (e.g. Nemcok et al., 2006). Based on the 

model of gravitational instability of the lithosphere we propose that the TESZ impeded the 

downwelling lithosphere to further migrate outward, inducing a lateral shift of downwelling and, 

consequently, of major compression. 

 

Figure 4.15 – Synthesis of the main steps in the Neogene evolution of the Pannonian Basin (from Huismans et 
al., 2001 and Fodor et al., 2011) and of the Ukrainian Carpathians (from Nemcok et al., 2006 and from this 
work) 
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4.2.7. Conclusions 

The application of low temperature thermochronometry and vitrinite reflectance analysis 

allowed us to constrain the paleo-thermal structure of the UC, as well as to define their thermal 

and burial-exhumation history. 

We propose that an increase of geothermal gradient occurred between 14.5 and 11 Ma, during 

extension in the Pannonian Basin. Our data indicate that gradients remained then constant until 

present day. 

Heating of the wedge follows the regional elevation trend, reaching the maximum values of ca. 

170°C in the central thrust sheets, whereas the outermost and innermost thrust sheets were 

respectively heated to less than 60°C and less than ca. 120°C. As heating entirely depends on 

burial, the trend of burial mimics the one described above. Burial varies from 2.6-4 Km in the 

innermost portions of the chain, to 6 Km in the central thrust sheets, and less than 2-3 Km in the 

outermost thrust sheets and in the foredeep. 

Cooling occurred in two main phases, the first, between ca. 12 and ca. 5 Ma, characterized by 

high average cooling rates (15-30°C/Myr), and the second, from ca 5 Ma to present, 

characterized by moderate average cooling rates (3-6°C/Myr). 

Timing of exhumation corresponds to timing of cooling, and exhumation rates in the central 

thrust sheets (up to more than 1 mm/yr in the rapid stage) are higher than in the more internal 

thrust sheets (ca.0.7-1 mm/yr in the rapid stage). We interpret that exhumation occurred by 

erosion of the wedge during isostatic uplift after the cessation of thrusting. The region where 

denudation reached its maximum extent would then correspond to the more thickened portion 

of the wedge. Denudation had a lower extent close to the Pannonian basin due to crustal 

thinning occurred during the opening of the PB. Exhumation ages are progressively younger 

toward the NW, this trend is related with the progressive decrease of the relief. Such progressive 

decrease of the relief toward the NW is due to a lower uplift depending on lower thickness of 

the accretionary prism. 

Finally the data presented in this paper allowed us to formulate some considerations on the 

evolution of the Carpathian-Pannonian region.  

The influence of the PB on the thermal history of the UC is restricted to the innermost units. 

At 12-11 Ma a major change in the dynamics of the region occurred. In this stage the PB passed 

from a regime of major extension to major subsidence and minor extension; collision in the UC 

terminated and the major uplift stage started; the focus of tectonic activity migrated southward. 

These events can be ascribed both to slab break off and termination of lithosphere downwelling 

below the UC. 

Lithosphere thickness below the UC did not significantly change from Middle Miocene to 

present day. We suggest that active compression in the Romanian Carpathians and thickened 

lithosphere beneath the UC contributed to preserve such thinned lithosphere. 

The over-thickened lithosphere and crust of the UC can be ascribed to the presence of the TESZ, 

that acted as an obstacle to the migration of collision and frontal accretion further to the 

foreland, rather inducing higher imbrication of the thrust sheets and lateral shift of the collision. 
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4.3. Appendix to chapter IV 

4.3.7. Data Tables 

Table 4.2 - - AHe analytical data 
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Table 4.3 – AHe weighted mean age (w.m.a.) and commentrs on grains and data quality.  
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Table 4.5 – ZHe analytical data. A) measured data; B) calculated dat 

A) 
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B) 
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4.3.8. Analysis of AHe data 

The correlation between single grain corrected ages and measured parameters (grain radius, [U], 

[Th], [Sm], Th/U) was tested in order to better understand the origin of grain dispersion. 

 

 

 

Figure 4.16 – Single grain ages plotted against grain radius, eU, Th/U, [U], [Th],[Sm]. 

 

 

Figure 4.14 – Grain ages plotted against crystal radius. Plots are grouped by transect (A, B, C, Fig. 4.3) 

A B C 



99 
 

 

 

 

 

 



100 
 

 

  

 

 

 



101 
 

 

 

 

 

 

 

 

 

 

 

 

 



102 
 

 

  



103 
 

  

 



104 
 

  

 



105 
 

 



106 
 

 

 
  



107 
 

CHAPTER V. 

Geodynamics of the Carpathian-Pannonian region: 

Insights from low temperature thermochronology 

 

5.1. Overview 

The geodynamic evolution of the Carpathian-Pannonian region has been in recent times the 

object of an heated scientific debate. Thermochronometry gives important constrains to the 

depths of burial and to timing and rates of exhumation. Each geodynamic scenario proposed for 

the Carpathian-Pannonian region would imply a different spatial distribution of burial and a 

different timing of exhumation. In this chapter we use a compilation of several low-temperature 

thermochronometric datasets, referred to the Polish and Ukrainian Carpathians, to evaluate 

their compatibility with the different geodynamic models proposed so far. A subdivision of the 

Polish and Ukrainian Carpathians in three different areas is proposed, based on geophysical and 

structural parameters. Each single area is characterized also by different burial-exhumation 

history and requires a specific explanation in terms of driving processes. The non homogeneous 

burial depths of the western and central sector of the study region are interpreted as an 

indication of the lack of slab subduction and subsequent break-off. The hypothesis that Miocene 

extension of the Carpathian-Pannonian region was triggered by gravitational instability and 

subsequent downwelling of the lithosphere appears better supported by the dataset presented 

in this work. 

 

5.2. Features of the Carpathian-Pannonian region 

The Carpathian-Pannonian region formed between the Late Jurassic and the Neogene by 

collision between the Adriatic Plate and the European Platform, and assumed its present day 

configuration mainly during the Miocene, when the extensional Pannonian Basin (PB) formed in 

retro-wedge position (Csontos et al., 1992), with estimated extension of ca. 180 to 290 Km 

(Ustaszewski et al., 2008). 

At present the region appears as a wide depression (i.e. the PB) enclosed by the Carpathian 

mountain belt (Fig. 5.1) . Several extension-related volcanic complexes, which ages are younging 

SE-ward, are located along the borders of the basin (Fig. 5.2, e.g. Seghedi et al., 2004). The 

Carpathians are commonly subdivided in Inner Carpathians (IC), which constitute the proper 

collisional orogen, and Outer Carpathians (OC) that formed in the Tertiary as an accretionary 

wedge (Fig. 5.2; e.g. Tasarova et al., 2009 and reference therein). 

As can be observed in Fig.5.3 and Fig. 4.1, the PB is characterized by high heat flow and by 

thinned crust and lithosphere (e.g. Lenkey et al., 1999; Bielik et al., 2004), as opposed to the 

surrounding Carpathian belt that has a more complex thermal structure, but with a generally 

lower heat flow and higher crustal ad lithospheric thickness. The highest lithosphere thickness is 

reached in an area that stretches along the Carpathian front at the boundary between Ukraine 
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and Romania (Fig.4.1 Dererova et al., 2006, Lenkey, 1999; Zeyen et al., 2002; Babuška et al., 

1988; Horváth et al., 1993). 

 

Figure 5.1 – DEM of the Carpathian-Pannonian region 

 

 

Figure 5.2- Tectonic sketch of the Carpathian-Pannonian region. Red dashed line bounds the Inner Carpathian 
outcrops; red fields indicate the Neogene volcanic complexes. 
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Figure 5.3 – Heat flow map of the Carpathian-Pannonian region (From Pospisil et al., 2006). 

5.3. Alpine Evolution 

The main evolutional stages of this region can be summarized as: (i) collision between the 

Alcapa and Tisza-Dacia microplates and the European platform, occurred between the late 

Cretaceous and the Early Miocene (ii) extension in the PB (Syn-rift stage), associated to 

volcanism along its margins and ongoing compression in the OC, between ca. 19 and 11.5 Ma 

(iii) minor extension and major subsidence in the Pannonian Basin, compression in the southern 

Carpathians at 11.5-0 Ma. During the Neogene a progressive shift of the tectonic activity from N 

to S along the present day strike of the Carpathians occurred, as testified by the ages of volcanic 

rocks along the PB margin (e.g. Harangi et al., 2002) and by E to S-directed migration of 

depocenters (Meulenkamp et al., 1996) and thrusting activity (Nemcok et al., 2006). We also 

stress that the Ukrainian and Romanian Carpathians, during their late stage evolution, collided 

with the Trans-European Suture Zone (TESZ), that is the boundary between the thick and rigid 

East-European craton and the thinner West-European Platform (Fig.5. 2, e.g. Pharaoh, 1999; 

Cloething et al., 2010). 

This study focuses on the portion of the Carpathian-Pannonian Region originated by collision 

between the Alcapa microplate and the European Platform (Fig 5.2). Collision occurred in this 

area starting by the Late Cretaceous, whereas in the Early Miocene extension and counter 

clockwise rotation are envisaged as the main responsible for N to NE-ward extrusion toward the 

European foreland and concurrent separation from the Eastern Alps (e.g. Fodor, 2006) . The 
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juxtaposition to the Tisza-Dacia microplate, along the Mid-Hungarian Fault Zone (MHFZ, Fig.5.2), 

occurred between the Early and Middle Miocene, and, from that time on, the two microplates 

behaved like a unique crustal block (Fodor, 2006). 

 

 

5.4. Synthesis of the principal geodynamic models for the  

Carpathian-Pannonian region 

The most common and widely accepted interpretation for the formation of this region is based 

on a classical back-arc extension model and subsequent astenospheric upwelling (e.g. Horváth 

1993; Huismans et al., 2001; Horváth et al., 2006). The presence of an high P-wave velocity 

anomaly in the mantle transition zone beneath the whole PB (Wortel and Spakman, 2000; 

Piromallo and Morelli, 2003) , the thickened lithosphere beneath the Eastern Carpathians (Bielik 

et al., 2004), the presence of an sub-vertical high velocity body at depths 60-400 Km beneath 

the Southern Carpathians (Fig. 5.4.A, McKenzie, 1970; Fuchs et al., 1979; Wortel and Spakman, 

2000; Sperner et al., 2001, Nemcok et al, 1998) and the time and space progression of volcanism 

(Seghedi et al, 2004) have been envisaged as proofs for subduction and E to S-ward progressive 

slab break-off occurred along the Carpathians. Nonetheless several authors proposed other 

possible explanations for such features. Knapp et al. (2005) and Fillerup et al. (2010) suggest 

that the high velocity anomaly beneath the Vrancea region can be explained also as the 

consequence of lithospheric delamination, the presence of an oceanic slab being not 

independently demonstrated (Fig. 5.4.B). 

Kovács and Szabó (2008) pointed out that in fact oceanic subduction is not essential to explain 

the Neogene evolution of volcanism along the Western Carpathians, that was rather related to 

lithospheric extension. They also suggested that extension was triggered by mantle flow, 

associated with the eastward extrusion of the Carpathians (Kovács et al., 2012). Based on 

numerical simulations and tomographic data, Gemmer and Houseman (2007), Houseman and 

Gemmer (2007), Lorinczi and Houseman (2009) and Ren et al. (2012) express in favour of 

gravitational instability of the lithosphere as the trigger for extension and astenosphere 

upwelling in the PB and coeval compression in the Carpathians (Fig. 5.4.C. Such scenario does 

not exclude the possible occurrence of subduction along part of the Carpathian margin. 

In this chapter a compilation of thermochronometrical studies referred to the Alcapa-derived 

portion of the Carpathians is presented, with the aim to extrapolate constraints on the 

geodynamic processes that governed the evolution of the Carpathian-Pannonian region. In 

order to achieve this goal we examine the spatial distribution of burial depths and of ages and 

rates of exhumation and we put them in relation with the spatial trend of relief, heat flow 

(Pspisil et al., 2006; Pollack et al., 1993), crustal and lithospheric thickness (e.g. Dererova et al., 

2006) and with structural settings. From the combined observations on burial-exhumation 

histories, physical and structural settings we obtain constraints that allow to rule out or accept 

the geodynamic processes proposed for the evolution of the Carpathian-Pannonian region. 
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Figure 5.4 - Schematic representations of the main processes proposed to play a role in the Neogene evolution 
of the Carpathian-Pannonian region. A- Slab roll back and break-off (by Wortel and Spakman, 2000); B- 
Lithosphere delamination (III) is proposed as an alternative to the classical theories involving an oceanic slab 
(I, II) and suggested to be active at present day beneath the Vrancea region. C- Gravitational collapse of the 
lithosphere, proposed by Houseman and Gemmer, 2007: I) schematic representation of the process (surface, 
base of crust, base of mantle lithosphere; II) modeled variation in time of the surface topography; moho 
topography (III) and lithosphere base topography (IV). 

 

5.5. Morphostructural subdivision of the Alcapa-Derived  

portion of the Carpathians 

Based on structural setting (Fig. 5.2), topography (Fig. 5.1), heat flow (Fig. 5.3) and crustal and 

lithospheric thickness (Fig. 4.1) a subdivision of the study region (Fig. 5.5), already introduced in 

Chapter 1, is proposed. This subdivision is interpreted to reflect different scenarios of burial and 

exhumation. 

 

In the westernmost sector of the study area (between 19° and ca. 21 ° E) the occurrence of 

normal faults reactivating and cutting thrusts (Jankowski et al., 2004; Mazzoli et al., 2010) and 

intramontane basins (e.g Orava basin) give to the Carpathians a complex structure and a 

topography characterized by heights and lows. The average relief of the Carpathians 

progressively increases southward and reaches its maximum in correspondence to the IC. In this 

sector the typical features of the PB, i.e. low relief, high heat flow, lithospheric and crustal 

thinning can be observed from the Neogene volcanics to the South. 
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Also in the central sector of the study area (between ca. 21° and 22.5° E), as described by 

Mazzoli et al. (2010), the Carpathians are characterized by the occurrence of normal faults, 

mainly NE-SW directed, dissecting or reactivating thrusts. The OC belt and its present day 

foredeep reach in this area their maximum width (Fig. 5.2), whereas, the relief is the lowermost 

of the whole mountain belt (Fig. 5.1). The lithosphere is thicker here than in the western sector, 

and thickness increases toward the SE (Fig. .4.1), whereas the crust appears relatively thin (30-

35 Km). The heat flow increase occurs in correspondence to the first PB sediments south to the 

OC, where the relief also progressively decreases to the PB average values (Fig 5.1 and Fig. 5.3). 

The features of this region suggest that this area was either characterized by a lesser efficient 

shortening or affected by an high post-thrusting stretching. 

 

The easternmost sector of the study area (comprised between ca. 22.5° and 25° E) is 

characterized by the progressive SE-ward transition from a very low to an higher and higher 

relief (Fig.5.1) and by a progressive narrowing of the OC band (Fig.5.2). The relief in this region 

reaches its maximum in the central portion of the OC, as opposed to the Western sector, where 

the maximum relief is reached in the IC. It can also be observed that a forearc basin likely to the 

Central Carpathian Basin is located in the southernmost portion of the study area. 

Both lithosphere and crust are highly thickened in the Carpathians and thinned in the PB, and 

the transition between the two thickness ranges occur in a narrow band corresponding to the 

innermost Carpathian units (Fig. 4.1).Heat flow follows the same trend of crustal and 

lithospheric thickness, passing from high values in the Pannonian Basin, to low values in the 

outermost OC units, the passage between the two heat flow ranges occurring relatively sharply 

in correspondence of the innermost Carpathian units (Fig. 5.3). 
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Figure 5.5 – Subdivision of the study region in three sectors 

5.6. Thermochronology 

The datasets comprised in this review are presented in Zattin et al. (2011), Syrek et al. (2009), 

Swiercszewska (2005), Danisik et al (years) and in the present work (Chapter 3 and Chapter 4). 

The compilation of datasets comprises apatite fission track (AFT), apatite and zircon helium (AHe 

and ZHe) and vitrinite data. The fission track and helium systems are low-temperature 

thermochronometers, that, at a first approximation, indicate cooling ages through their closure 

temperatures (AFT Tc~120°C; AHe Tc~60°C; ZHe Tc~165°C; Reiners and Brandon, 2006). 

Furthermore, application of thermochronometry to sedimentary rocks (e.g. the rocks of the OC 

accretionary prism) or to rocks that underwent a second burial stage, allows to reconstruct their 

burial depths prior to exhumation, based on the reset degree reached by the 

thermochronometric systems. Vitrinite reflectance analysis is a paleo-thermal methodology that 

provide the maximum paleo-temperature underwent by the analyzed sample. For thorough 

descriptions of the thermochronometric and paleo-temperature analytical methods and for 

details on the data used in this work we address the reader to the papers listed above, in which 

the data are presented and discussed and to references quoted therein (e.g. Elhers and Farley. 

2003; Donelik et al., 2005; Reiners and Brandon, 2006) 

In Fig. 5.6 and 5.7 the heating and burial conditions reached by the OC during thrusting are 

reported. It can be observed a general increase of burial toward the Easternmost sector and a 

general decrease of burial toward the foredeep, along all the study area. Observing to an higher 
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detail the single region  a major difference appears to distinguish the western and central from 

the eastern sector. In the first two sectors burial is laterally very inhomogeneous, even at a local 

scale, except in the outermost portions, characterized by a uniform very low burial. This 

suggests that the extent of burial and exhumation was mainly related to the single structures 

and geometries of the wedge. On the other hand, in the eastern sector the burial degree 

appears laterally uniform, and characterized by a progressive decrease toward both the 

innermost and the outermost units. This indicates in turn that burial and exhumation extent, in 

this portion of the Carpathians were related to the opening of the PB and to the small scale 

processes acting in the whole Carpathian-Pannonian region. 

In Fig. 5.8 the ages of exhumation are indicated and ages of the last trusting stage along the OC 

are also reported. Exhumation occurred within ca. 23 and 5 Ma. In the western sector 

exhumation ages of the OC span the wide range of ca. 23-12 Ma and their distribution is highly 

variable, even at local scale, and appears related to the single structures of the wedge. We also 

point out that in this sector of the OC exhumation mainly occurred while thrusting was still 

active, even though younger exhumation also occurred. In the IC exhumation ages are in the 

range of 26-10 Ma, but the occurrence of young ages (13-10 Ma) is widely diffused, suggesting 

that exhumation of the IC occurred mainly in a post-thrusting stage. 

In the central sector exhumation ages of the OC are comprised between ca. 25 and 6 Ma, but 

most of the samples exhumed between ca. 10 and 6 Ma with only few exceptions. In this sector 

the main stage of exhumation occurred then after the end of thrusting. 

Exhumation occurred in the eastern sector between ca. 12 and 5 Ma, in the immediate post-

thrusting stage. Although ages are generally homogeneous, a trend of slight NW-ward younging 

exhumation ages can be observed.  

Spatial pattern of exhumation ages in the western OC suggest that the main exhumational stage 

occurred during thrusting, being driven by erosion of the accretionary prism. The velocity of the 

erosional exhumation process was likely enhanced by the thrusting process itself. In this same 

region post-thrusting exhumation also occurred, being likely related to erosion enhanced by 

normal reactivation of thrust faults. 

In the central sector the post-thrusting ages of 10-6 Ma would suggest that exhumation was 

driven by post-thrusting isostatic uplift. Nonetheless the non-uniform burial and the occurrence 

of ages coeval to thrusting appears incompatible with uplift-related exhumation.   Chapter 3 

shows the connection between burial and exhumation and normal faulting in this region. 

Erosion and tectonic denudation processes, occurred during a post-thrusting extensional phase 

well explain both young ages and non-uniform burial. 

In the eastern sector the uniform post-thrusting exhumation ages point to a major role of post-

thrusting uplift as driving mechanism of exhumation in this region. This is supported also by the 

burial pattern, which appears related to crustal and lithospheric thickness and heat flow, 

indicating a connection between burial and exhumation of the wedge and the deep processes 

that shaped the whole Carpathian-Pannonian region. 

To conclude this section we stress that in the western and central sectors of the study area 

burial and exhumation occurred as a response to crustal processes and no straightforward 
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connection with the opening of the PB can be found. In the eastern sector a clear relationship of 

the burial-exhumation history with the deep structure of the Carpathian-Pannonian region is 

observed. 

 

Figure 5.6 – ZHe, AFT and AHe degree of reset 

 

 

Figure 5.7 – Maximum burial depth estimated for the Polish and Ukrainian Carpathians. 
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Figure 5.8- AFT central ages and AHe weighted mean ages of reset samples (unreset samples are indicated in 
white) 

 

 

 

 

 

Figure 5.9 – Kernel density distribution of AHe and AFT ages in the three sectors 
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Figure 5.10 – AFT (A) and AHe eastward trend of reset ages 
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5.7. Interpretation 

In order to constrain the geodynamic evolution of the Carpathian-Pannonian region from 

thermochronology of the Polish and Ukrainian Carpathians we summarized in Fig.5.11 the main 

tectonic events occurred in the Miocene in the single area of the study region and in the 

Pannonian Basin, as well as the exhumation events described in this thesis. The tectonic events 

that are supposed to have occurred according to the theory of slab roll-back and break off (e.g. 

Sperner et al., 2002) are also indicated. 

Slab subduction and roll-back would have created a tear below the Carpathians, inducing 

deepening of the foredeep basin, outward migration of compression and thrusting and 

eventually extension in the innermost units of the wedge. Subsequent slab break-off, proposed 

by Sperner et al. (2002) to have shifted progressively from west to east, would have led to 

isostatic rebound of the overlying lithosphere and to cessation of thrusting. 

In terms of burial and exhumation history of rocks this would have induced an homogeneous 

burial degree in the wedge and exhumation subsequent to the end of thrusting. In previous 

section we pointed out that burial degree in the western and, to a minor extent, in the central 

sector, is not homogeneous, with samples that were exhumed from very different depths (Fig 

5.7.) located very close to each other. Furthermore thermal modelling confirms that several 

samples started to exhume during thrusting. Exhumation coeval to thrusting cannot therefore 

be related to slab break-off. On the other hand, post-thrusting exhumation, in the western and 

central sectors, appears related to extension rather than uplift. Thus, the burial and exhumation 

history of the Polish Carpathians appears unrelated to slab dynamics. 

As already pointed out in previous chapters, several authors argued that the slab roll-back and 

break-off model is not the only possible explanation for the Neogene evolution of the 

Carpathian-Pannonian region and that the presence of detached slab beneath the Carpathians is 

inadequately supported by geophysical data (e.g. Ren et al., 2012). The data presented in this 

thesis, joint with these observations, suggest then that the Carpathian-Pannonian region was 

actually shaped by dynamics unrelated to slab subduction, roll-back and break-off. 

On the other hand, it appears that the hypothesis of gravitational spreading of the lithosphere 

as deep driving process of the Neogene evolution of the Carpathians, is able to explain the 

burial and exhumation histories of the samples presented in this thesis, as well as the 

geophysical data referred to the Carpathian-Pannonian lithosphere (Fig. 4.1 and Fig. 5.3; e.g. 

Dererova et al., 2009; Pospisil et al., 2006). In particular lateral flow of the lithospheric mantle 

from beneath the Pannonian Basin toward the Carpathians can explain both crustal extension 

and thinning that characterized the Polish Carpathians and crustal and lithospheric thickening 

beneath the Ukrainian Carpathians.  

An interpretation of the Miocene evolution of the study region is here presented, based on the 

data presented in this thesis and on the gravitational collapse model by Gemmer and Houseman 

(2007) and Houseman and Gemmer (2007). Nonetheless it has to be stressed that such 

interpretation is highly speculative and has the main objective to outline a picture of the 
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possible evolution of the Carpathian-Pannonian region that is able to give reason of the thermal 

and burial exhumation histories inferred in this study. 

The location of the region of major lithospheric and crustal thickening (Fig. 4.1) suggests that 

lateral lithospheric flow, concurrent to the major astenospheric upwelling that occurred in the 

Middle Miocene (14-11.5 Ma, Fodor, 2010), was directed N to NE-ward, and that outward 

migration stopped and major thickening and downwelling started along the TESZ, where a 

thicker and more competent lithosphere impeded the compression to migrate further to the NE. 

As described by Gemmer and Houseman (2007) lithosphere flow induces crustal stretching, 

whereas, only in regions where a prolonged lithosphere downwelling occurs, also crustal 

thickening takes place. This is consistent with an initially N to NE-ward directed lithospheric flow, 

followed by major lithospheric downwelling beneath the present-day Ukrainian Carpathians, 

that would have induced major lithospheric and crustal thickening in the Ukrainian region, and 

minor lithospheric thickening and crustal thinning in the Polish-region. After ca. 12-11 Ma major 

compression shifted toward the Romanian Carpathians, uplift of the Ukrainian Carpathians 

started and major extensional stage in the PB terminated, giving way to major subsidence. This 

is interpreted to be due to S-ward shift of lithospheric downwelling. In particular, as introduced 

in Chapter 4, extension in the PB appears related to lithosphere downwelling beneath the 

Ukrainian Carpathians, and subsequent downwelling beneath the Romanian Carpathians likely 

had the role to preserve the thinned lithosphere in the PB, inducing only minor extension 

(Huismans et al., 2001). Post-thrusting uplift in the Eastern sector of the study region is 

interpreted to have occurred as a consequence of S-ward migration of active lithosphere 

downwelling and consequent cessation of tear beneath this region. A detachment of the 

lithospheric downwelling lithosphere seems to be not supported by tomographic data, whereas 

a partial re-absorption of the downwelled lithosphere may have occurred  (e.g. Gemmer and 

Houseman, 2007). 

Late Miocene (10-6 Ma) extension in the central, and to a minor extent, western sectors is the 

most controversial element to be interpreted. Extension occurred after the cessation of 

lithospheric downwelling beneath the Ukrainian Carpathians, therefore we exclude that it was 

driven by lithospheric flow. On the other hand the thinned crust and the thick lithosphere that 

characterize this region do not support the hypothesis of gravitational collapse of a thickened 

crust. Nonetheless it has to be pointed out that extensional faults are mainly strike-parallel to 

the chain in this region, with direction of the horizontal stress NE-SW (Mazzoli et al., 2010). 

Extension normal to the strike of the chain would be consistent with gravitational collapse. Janik 

et al. (2011) show that the central region is characterized by relatively thick OC sediments and 

European Platform cover with respect to the total crustal thickness, suggesting that gravitational 

instability may have developed within the crust as a consequence of sedimentary thickness and 

thrust imbrication in the OC. Therefore Late Miocene extension can be interpreted as induced 

by gravitational collapse occurred within the crust. 

To summarize Miocene evolution of the Carpathian-Pannonian region is interpreted to have 

developed in several steps. In the Aquitanian compression was active all along the Carpathians 

and the PB was characterized by thickened crust and lithosphere. In the Burdigalian extensional 
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collapse of the crust in the PB occurred, while compression was active in the Carpathians. 

During compression and thrusting exhumation occurred in the western sector of the study 

region. Collapse of the thickened PB crust triggered thinning and lateral flow of lithosphere, that 

is suggested to have had, at the beginning, a N-NE direction and progressively migrated 

clockwise, as indicated by progressive migration of the tectonic activity. Lithosphere thinning 

intensified in the Serravallian, when compression progressively terminated along the Polish 

Carpathians. The thinned crust of the Polish Carpathians is considered as an indication that they 

experienced in this time crustal stretching induced by lithospheric flow. At ca. 12-11 Ma the 

lithosphere downwelling migrated further SE-ward along the TESZ. As a consequence thrusting 

terminated in the Ukrainian Carpathians as well as major extension in the PB. It can be argued 

that, in fact, downwelling in the Romanian Carpathians was sufficient to preserve the thinned 

lithosphere in the PB but not to induce further extension. After 12-11 Ma, while in the PB major 

subsidence and minor extension were active, the eastern sector of the study region underwent 

major uplift and exhumation (12-6 Ma) and the central sector (and to a minor extent the 

western sector) underwent exhumation induced by extension, that we interpret as due to 

gravitational collapse within the crust. This would imply that, at least in the Late Miocene the 

crust and mantle lithosphere beneath the Polish Carpathians were mechanically decoupled, 

whereas the lithosphere of the Ukrainian Carpathians behaved as a unique layer from the 

mechanical point of view. 

 

 

Figure 5.11 – synthesis of the main tectonic events occurred in the Neogene in the Pannonian Basin (From 
Huismans et al., 2001 and Fodor, 2011), and in the Carpathians. The events related to the slab roll back and 
break-off model are represented by the red text; the grey areas represent the stage of thrusting (Nemcok et 

al., 2006). 
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5.8. Synthesis 

The data presented in this thesis constitute constrains to the geodynamic evolution of the entire 

Carpathian-Pannonian region, as each single model would have generated a different effect in 

burial-exhumation of the Carpathian thrust and fold belt. The consistency of the data presented 

in this thesis with the principal models proposed so far for the evolution of the Carpathian-

Pannonian region was evaluated, and integrating the results with previously published 

geophysical data referred to the Carpathian-Pannonian region allowed to formulate an 

interpretation for the Miocene evolution of this region. 

The main conclusions can be summarized as follows: 

Three sectors characterized by different features can be identified in the study region: in the 

western sector exhumation occurred by erosion of the wedge and it started during thrusting 

(23-12 Ma), in the central sector it was driven by extension of the wedge occurred after the end 

of thrusting (10-6 Ma), and in the eastern sector it occurred by erosion during post-thrusting 

uplift (12-5);  

It is argued that the not-homogeneous burial depths of samples belonging to the western and 

central sector, joint with the evidence for exhumation coeval to thrusting and the geophysical 

data that suggest the absence of a detached slab at depth, may indicate the lack of slab 

subduction, roll back and break-off beneath the Polish Carpathians.  

Indications for the lack of slab-related processes point to the hypothesis of lithosphere flow 

induced by gravitational instability as the possible driving process for the Miocene evolution of 

the Carpathian-Pannonian region. 

Based on this model thrusting would have been explained by downwelling of the lithosphere 

and the thinned crust of the central sector would have to be ascribed to NE-ward directed flow 

of the lithosphere, that is proposed to have stopped only in correspondence of the thick and 

competent lithosphere of the East European Platform along the TESZ. In the same way the 

thickened lithosphere and crust of the Ukrainian Carpathians would have been related to 

lithosphere thickening and downwelling at the contact with the TESZ. 

The Miocene evolution of the Carpathian-Pannonian region proposed in this chapter can be 

summarized in the following steps: (i) in the early Miocene the thick Pannonian crust collapses 

while N-ward compression is active, in the western sector rocks start to exhume by erosion of 

the wedge during thrusting; (ii) in the Middle Miocene major lithosphere thinning takes place in 

the PB, and major lithosphere downwelling progressively shifts from the eastern Polish 

Carpathians toward the Ukrainian Carpathians. Exhumation continues in the western sector; (iii) 

at 12-11 Ma the lithosphere downwelling rapidly shifts SE-ward, toward the Romanian 

Carpathians and after that major uplift occurs in the Ukrainian Carpathians and major 

subsidence takes place in the PB. 

Late Miocene extension in the central and (with a minor extent) western sector of the study 

region appears unrelated to regional scale dynamics, being likely induced by gravitational 

collapse occurred within the crust. Thus, mechanical decoupling of the crust and mantle 
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lithosphere is inferred for the central and western sector, whereas in the eastern sector the 

upper crustal processes reflect the whole-lithosphere dynamics. 
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CHAPTER VI. 

CONCLUSIONS 

In this work thermal and burial-exhumation history of the Polish and Ukrainian Carpathians 

were reconstructed as constrains to the Neogene evolution of the Carpathian-Pannonian region. 

Thermal history was influenced by the positive thermal anomaly developed in the Pannonian 

Basin in the Middle Miocene only to a minor extent and only in the innermost units of the 

Ukrainian Carpathians. As a consequence thermal history entirely depended on the burial-

exhumation history of samples.  

Burial is generally higher in the innermost units of the wedge and lower in the more external 

units, indicating a general dependence on the wedge geometry. Nonetheless in the Polish region 

burial is not homogeneous even in the same structural position in the wedge, rather indicating a 

dependence on the single structure. In the innermost units in Poland burial varies between ca. 

3.6 and 7.2 Km, whereas in Ukraine it varies Between ca. 2.6 and 6 Km. In the outermost units 

burial was generally lower than ca. 3.6-2.6 Km.  

Based on the spatial trend of burial and exhumation and on structural and physical features the 

study region was subdivided in three sectors. 

Exhumation of the western sector occurred by erosion of the wedge during thrusting (ca. 23-13 

Ma) and during post-thrusting extension (13-12 Ma). In the central sector exhumation occurred 

by erosion and tectonic denudation during a post-thrusting extensional phase (10-6 Ma). Finally 

the eastern sector exhumed by erosion during post thrusting isostatic uplift (12-5 Ma). 

The data regarding burial and exhumation were put in relation with (i) the spatial trend of the 

relief, (ii) heat flow, (iii) crustal and lithospheric thickness, and (iv) structural setting in order to 

interpret them in the framework of the Neogene evolution of the Carpathian-Pannonian region. 

The non homogeneous burial in the western and central sector suggests the lack of slab 

subduction and subsequent break-off in these areas. Furthermore, the distribution of 

exhumation ages along the chain is not compatible with a clockwise (E to SE ward) progressive 

slab break-off, the youngest exhumation having occurred in the central area, at the Polish-

Ukraine boundary.  

The data presented in this thesis are therefore more consistent with models for the evolution of 

the Carpathian-Pannonian region that do not comprise slab-related dynamics, such as that 

based on gravitational collapse of a previously thickened lithosphere. Finally it could be 

observed that burial-exhumation history of the Ukrainian Carpathians are related to whole 

lithosphere dynamics, whereas that of the Polish Carpathians mainly depends on crustal 

processes. This indicates that, at least in the Middle Miocene, crust and mantle lithosphere were 

mechanically coupled in the Ukrainian Carpathians, and mechanically decoupled in the Polish 

Carpathians. 

Besides the main subjects of the present thesis it has been possible to investigate two additional 

issues: 

- The ZHe unreset ages of samples belonging to the accretionary wedge were used to 

determine timing of exhumation of source rocks of the sediments through the ZHe PRZ. The 
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source rocks cooled and exhumed part in response to the Variscan (Late Devonian to Triassic) 

and part to the Alpine (Late Jurassic to Early Paleocene) orogenesis, suggesting sedimentary 

provenance both from the southern margin and basement heights within the Outer 

Carpathian basin. 

- AHe analysis performed on “bad” apatite grains provided the opportunity to verify that in 

case of fast cooling, well reproducible data can be obtained even from grains with significant 

defects. In several cases, in the present dataset, age dispersion correlates with Th 

concentration and Th/U content, suggesting a relevance of rich in Th oxide-oxhydroxide 

coating. 
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APPENDIX  

I) Evaluation of reliability of AHe dates from “bad” grains 

As illustrated in previous chapters the apatite grains available for AHe analysis were generally of 

bad quality, with respect to the standard apatite grain required for obtaining reliable results. In 

particular most of the grains were characterized by inclusions, oxide-oxhydroxide coating, 

abrasion, rounding (Fig. 4.4). In Fig. I.I the percentage of occurrence of each bad crystal feature 

with respect to the total of the analyzed grains is indicated. In Chapter 2. a brief summary of 

how the bad crystal features can affect ages is reported. In order to understand the significance 

of the AHe dataset it was necessary to evaluate the impact of bad crystal features on precision 

and accuracy of dates. 

As described by Ehlers and Farley (2003), a first way to detect the effect of suspicious crystal 

features is to consider the age reproducibility. Most of the features that may adulterate the 

result are specific of each single grain, therefore samples with reproducible ages generally 

indicate no significant effect of bad crystal features. Nonetheless it has to be stressed that oxide-

oxhydroxide coating or abrasion and rounding pervading the whole rock sample would be able 

to induce the same alteration in most of the grains of the sample, therefore affecting age 

accuracy rather than reproducibility. 

Several analytical values are commonly used as proxies for impact of crystal features on age: in 

Tab. I the meaning of correlation of AHe ages and age-dispersion with proxies is reported. 

An evaluation of the impact of bad crystal features on AHe dates was then performed testing 

the correlation with potential proxies for biased results of AHe single grain ages and AHe age 

dispersion for the whole population as well as for the single sample. 

In Fig III the results of the regression tests for correlation with dates and date-dispersion for the 

whole dataset are reported. It can be observed that significant correlations are found for AHe 

ages with eU, Th, and Th/U. This can be interpreted as an effect of Th-rich coating.  

 

 
Figure I.I – percentages of occurrence of bad crystal features in the analyzed grains 
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Figure I.II – results of the Anova One way test used to verify the significance of the correlation between age 
dispersion and bad crystal features. The test was performed using the Minitab software. 
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Figure I.III – Results of the regression analysis used to test the correlation between Corrected single grain age 
and measured parameters. The analysis was performed using the Minitab software. 

 

II) Sample preparation procedures 

The apatite and zircon separation from the rock samples was performed at the laboratory of 

sedimentary petrography of the Geosciences department of the University of Bologna, following 

the procedures described in Donelick et al. (2005). Rock disaggregation was performed using a 

disk-mill and a jaw crusher. After disaggregation the crushed material was sieved using 250 μm 

sieve-cloth and the >250 μm fraction was processed again in order to obtain material all of sand 

size. The material was then washed using a washing table with riffles, in order to discard the fine 

grained fraction. The sand-sized material was then processed with a Frantz Isodynamic magnetic 

separator, in order to discard the magnetic fraction. Afterwards heavy liquid separation was 

performed in two steps. The fraction with density higher than ρ=2.97 g/cm3, obtained from the 

first separation with Tetrabromoethane, contains both apatite (ρ=3.1-3.35 g/cm3) and zircon (ρ= 

4-4.70 g/cm3), that are split through the second separation with Diiodomethane (ρ=3.33 g/cm3). 

Manual picking of apatite and zircon grains for He analysis was performed part at the 

Geosciences department of the University of Arizona (Tucson), and part at the Geosciences 

department of the University of Padua. In both cases an optical stereoscope with an integrated 

camera was used in order to take pictures of the selected crystals and to measure them for α-

ejection correction. Crystals were then packed in Nb tubes of 1mm heights that worked as a 

micro-furnace for crystal heating and He extraction during analysis. 

Preparation of grain mounts for neutron irradiation was performed at the Geosciences 

department of the University of Padua. Apatite grains were first mounted in epoxy resin. Grain 

mounts were then polished to expose inner crystal surfaces and to smooth them to eliminate 
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defects that can obstruct track counting. After polishing the grain mounts are chemically etched 

with HNO3 5M for 20 seconds, in order to highlight the spontaneous tracks. A mica sheet with 

low-U content was then placed over each grain mount to form a mount-mica couple fastened 

with adhesive tape. The mount-mica packages were then stacked in standard irradiation tubes; 

at the two ends of each stack of samples two packages constituted by standard CN5 glass, of 

known U content, and mica were placed in order to monitor neutron fluence during irradiation. 

Sample irradiation with thermal neutrons was performed in the reactor at the Radiation Center of 

Oregon State University with a nominal neutron fluence of 9 x 10
15

 n cm
-2. After irradiation each 

mount-mica package was opened and the mica sheets were chemically etched with HF 40% for 

40 minutes in order to highlight the fission tracks induced by neutron irradiation. Apatite fission 

track analysis could then be performed on mount-mica couples mounted on microscope slides. 

 

III) Analytical facilities and procedures 

AHe and ZHe analysis 

Helium analysis was performed at the Radiogenic Helium dating laboratory of the Geosciences 

department of the University of Arizona (Tucson, AZ). Details on the procedures and standards 

routinely used by the laboratory can be found in the laboratory’s website 

(http://www.geo.arizona.edu/~reiners/arhdl/procs.htm). The packets containing the crystals to 

be analyzed, and the standard crystals are placed in a stainless steel planchet inside a laser cell 

(Fig.II.I.B)and heated with ND-YAG laser for 3 (apatites) to 15 minutes (zircons) at 1-5 W (Fig. 

II.I.C). Helium Blanks (0.1-0.05 fmol 4He) are determined by heating empty packets with the 

same procedure. The Gas was then spiked with 4pmol 3He, condensed in a cryogenic trap at 

16K, then released at 37K into a small volume with an activated getter and the source of a Balzer 

quadrupole mass spectrometer with Channeltron electron multiplier. Masses of HD and H3+ are 

measured to correct the 3He/4He measured ratios. The obtained ratios are referenced to 4He 

standards measured in the same way. After 4He measurement samples are retrieved from the 

laser cell, each packet is put in a Teflon vial, spiked with calibrated 229Th, 233U, and 147Sm 

solution and dissolved by 30% NO3.  

Natural-to-spike isotope ratios are then measured on a high-resolution (single-collector) 

Element2 ICP-MS (Fig. II.I.D with all-PFA Teflon sample introduction equipment and sample 

preparation/analytical equipment. Careful monitoring of procedural blanks and spike and 

normal concentrations (including evaporative effects) and isotopic compositions is essential for 

He dating. 

http://www.geo.arizona.edu/~reiners/arhdl/procs.htm
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Fig. II.I – AHe and ZHe analytical procedures: a)scheme of the He quadruple mass spectrometer; b) stainless 
steel planchet for He analysis in the quadrupole mass spectrometer; c) sample being hit and heated by laser 
beam; d) Inductively coupled plasma MS for U, Th, Sm analysis. 

 

AFT analysis 

FT dates (up to 40 grains per sample) were calculated using the external-detector and the zeta-

calibration methods (Hurford and Green 1983) with IUGS age standards (Durango, Fish Canyon 

and Mount Dromedary apatites; Hurford 1990) and a value of 0.5 for the 4π/2π geometry 

correction factor. 

AFT analysis was performed at the Geosciences department of the University of Padua. The 

basic equipment used for analysis is a ZEISS Axioscope connected to a computer and to the high 

resolution drawing board CalComp™Drawing Board 2 with led pointer and 16-keys mouse. The 

sample slides are placed on a sliding table Kinetek™ driven through a joystick. The tracks are 

counted on the same area of each crystal on the crystal itself and on the corresponding image in 

the mica sheet. The software FT-Stage is used to calibrate the sliding table before track 

counting, using reference points in the grain mount and in the mica sheet, so that the 

coordinates of the selected crystals can be registered and the coordinates of the corresponding 

images in the mica can be automatically calculated. 
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