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Abstract

In this thesis we study the problem of the dispersion of floating particles

within emergent vegetation through experimental, numerical and theoreti-

cal analysis of the mechanisms that rule their temporary retention and the

capture by plants.

In Chapter 1 we present early results of laboratory experiments per-

formed to investigate the transport and the diffusion of floating particles

(e.g., buoyant seeds) in open channel flow with emergent vegetation. The

experiments are aimed at providing a better understanding of the relevant

particle-vegetation interaction mechanisms responsible for the observed dif-

fusion processes.

Qualitative observational data are then used to set up a stochastic model

for floating particle transport and diffusion. Quantitative observations, such

as the distribution of distances travelled by a particle before it is perma-

nently captured by a plant (resembled spartina maritima) and the arrival

time distributions at prescribed cross sections along the vegetated test sec-

tion, are instead used to calibrate and validate the model. The comparison

between theoretical predictions and experimental results is quite satisfactory

and suggests that the observed relevant aspects of the particle-vegetation in-

teraction processes are properly described in the model.

In Chapter 2 we present the results of a new laboratory investigation

aimed at providing a better understanding of the transport and diffusion

processes. The experiments are designed primarily to study the influence of

vegetation density and flow velocity on the relevant interaction mechanisms

between particles and vegetation. The aim is also to ascertain the validity

of the stochastic model proposed in Chapter 1.

We find that i) the proper definition of plant spacing is given as 1/npdp,

dp being the plant diameter and np the number of plants per unit area; ii)

the particle retention time distribution can be approximated by a weighted



combination of two exponential distributions; iii) flow velocity has a signif-

icant influence on the retention time and on the efficiency of the different

trapping mechanisms, iv) vegetation pattern and density have a minor o

negligible influence on the capture probability and on the retention time.

In the first part of Chapter 3 we study, in details, through a numerical

model, the dynamics of capture due to surface tension (i.e. the Cheerios

effect) of a cylindrical collector. The analysis shows that when capillary

force is comparable to inertial forces the capture efficiency of the collector

increases significantly with respect to the non-floating particle.

In the second part of Chapter 3, instead, we propose, and verify through

laboratory experiments, some improvements to the model described in Chap-

ter 1. In this case the emergent vegetation is simulated with an array of cylin-

ders, randomly arranged, with the mean gap between cylinders far greater

than the particle size, so to prevent the trapping of particles between pairs

of cylinders, referred to as net trapping in Chapter 1. A good agreement

is found also when comparing the model prediction with experimental data

available in the literature for real seeds and more complex plant morphology.



Sommario

In questa tesi è stato studiato il problema della dispersione di particelle

galleggianti in presenza di vegetazione emergente per mezzo di analisi speri-

mentali, numeriche e teoriche dei meccanismi che ne governano la ritenzione

temporanea e la cattura da parte delle piante.

Nel Capitolo 1 sono presentati i risultati delle prove di laboratorio ef-

fettuate per indagare il trasporto e la diffusione di particelle galleggiati (ad

esempio alcune varietà di semi) in un canale con vegetazione emergente.

Questi esperimenti sono stati svolti per fornire una comprensione più ampia

dei principali processi di interazione particella-pianta responsabili del pro-

cesso diffussivo osservato.

Queste osservazioni qualitative sono state successivamente utilizzate per

mettere a punto un modello stocastico per il trasporto e la diffusione di

particelle galleggianti. Ulteriori dati raccolti sperimentalmente, quali la dis-

tribuzione delle distanze percorse dalle particelle prima di essere catturate

permanentemente dalle piante e la distribuzione dei tempi di arrivo in alcune

specifiche sezioni del tratto vegetato utilizzato nelle prove sperimentali, sono

invece stati utilizzati per la calibrazione e la validazione del modello. Il con-

fronto tra i risultati forniti dal modello e quelli sperimentali è soddisfacente

e suggerisce che gli aspetti più rilevanti osservati nei processi di interazione

particella-vegetazione sono opportunamente descritti dal modello.

Nel Capitolo 2 sono presentati i risultati di nuove prove sperimentali

effettuate per approfondire la conoscenza dei processi di trasporto e di dif-

fusione. In questo caso le prove sono state realizzate per valutare l’influenza

della densità della vegetazione e della velocitá della corrente sui meccanismi

di interazione precedentemente individuati. I risultati, infine, sono stati

utilizzati per confermare la validitá del modello proposto nel Capitolo 1.

È stato trovato che i) la definizione più corretta di interasse tra le piante

è 1/npdp, dp, essendo dp il diametro della pianta e np il numero di piante per



unità d’area, ii) la distribuzione dei tempi di ritenzione delle particelle può

essere approssimato da una combinazione di due distribuzioni esponenziali

opportunamente pesate, iii) la velocità della corrente ha un forte impatto

sui tempi di ritenzione e sull’efficacia dei differenti meccanismi di cattura,

mentre iv) la distribuzione e la densità della vegetazione gioca un ruolo di

minor rilievo, se non addirittura trascurabile, sulla probabilità di cattura e

sui tempi di ritenzione.

Nella prima parte del Capitolo 3 è studiata nel dettaglio la dinamica

di cattura di un collettore cilindrico dovuta alla tensione superficiale (cioè

l’effetto Cheerios). Lo studio mostra che, quando la forza capillare è com-

parabile alle forze inerziali, l’efficienza di cattura del collettore aumenta

significamente rispetto al caso in cui le particelle siano non galleggianti.

Nella seconda parte del Capitolo 3, invece, sono proposte e verificate

attraverso prove di laboratorio, alcune migliorie al modello introdotto nel

Capitolo 1. In questo caso la vegetazione emergente è simulata da una

schiera di cilindri, disposti casualmente, e distanziati tra loro in modo tale

che le particelle non possano essere soggette alla cattura dovuta ad una

coppia di cilindri e definita net trapping nel corso del Capitolo 1. Una buona

corrispondenza è stata trovata anche quando i risultati forniti dal modello

sono stati confrontati con alcuni dati sperimentali reperiti in letterattura

relativi a semi reali ed a piante aventi una morfologia più complessa.
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Introduction

Hydrochory, i.e. the transport of matter by water, is one of the most impor-

tant processes on the maintenance, development and colonization of riparian

community [e.g. Nilson et al., 1994; Anderson et al., 2000; Rand, 2000; Mer-

rit and Wohl, 2002; Riis and Sand-Jensen, 2006).

In the hydrochory of riparian system propagules and seeds are distin-

guished in non-buoyant and buoyant. The behavior of non-buoyant seeds is

similar to that of sediments or neutrally buoyant particles.

In this case experimental investigation performed both in situ and in

the laboratory provided details of the diffusion processes in the presence

of vegetation [Lopez and Garcia, 1998;Nepf, 1999; White and Nepf, 2003;

Loghtbody and Nepf, 2006; Sharpe and James, 2006; Murphy et al., 2007]

and studied the main particle trapping mechanisms [Palmer et al., 2004].

The vegetation affects the dispersion and deposition of particles indi-

rectly by offering a resistance to the flow and entailing a decrease in the

bed shear stress, and directly, trough the trapping of particles by leaves and

stems. Buoyant and non-buoyant seed dispersal also occurs in tidal estu-

aries and coastal lagoons [e.g. Huiskes et al., 1995; Rand, 2000; Riis and

Sand-Jensen, 2006]. In fact, many salt-marsh species appear to be adapted

to dispersal by water, as their diasporas such as seeds are able to float for

some time in seawater [Wolters et al., 2008]. The dynamics of salt-marsh are

influenced by the hydrodynamics, i.e. by currents, tide and waves [Callaghan

at al., 2010, Turner et al., 1999 and Nilson et al., 2002] and, at the same
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INTRODUCTION

time, vegetation modifies the hydrodynamics within the canopy. A recent

model to explain the dispersion within submerged vegetation under current-

wave condition is provided by Li and Yan (2007) (see also Li and Zhang,

2010), while Li and Yu (2010) discuss the problem for the case of emergent

vegetation.

Many studies demonstrate that waves increase significantly the disper-

sion of neutrally buoyant or suspended particles, [Gaylord at al., 2002; Jin

and Ji, 2005; Patil et al., 2009; and Sullivan and Williams, 2010].

On the contrary, and although the floating seeds transport and trapping

are important mechanisms to the survival and the springing up of the coastal

plants [Van der Heide et al., 2007; Reise, 2002; and Bouma et al, 2009], the

literature is poor of examples in similar condition for floating particles.

Chang et al. (2008) provide data from field studies and laboratory ex-

periments about trapping of buoyant seeds of several species of plants under

different hydrodynamics conditions (i.e. tide, tide and flow, and tide, flow

and waves). Through laboratory flume experiments the authors study the

seed retention by applying three hydrodynamics treatments sequentially to

the same seeds: i) flooding by filling the flume, ii) unidirectional flow and

iii) wave action combined with unidirectional flow. In the experiments veg-

etation is initially emergent (during the flume filling) and subsequently is

submerged. However any attempt understanding the mechanisms of reten-

tion due to the vegetation lacks.

Floating particles behave differently from suspended sediments because

they are affected by further phenomena as wind drag or surface tension

effects. Some studies show that the floating ability plays an important role to

enhance aquatic seed dispersal [Nilsson and Danvind, 1997; Van den Broek

et al., 2005). Particularly Van den Broek et al. (2005) show that the long-

floating ability of particles is possibly the main factor in order to disperse

seeds for longer distances, while experiments in situ carried out by Nilsson

2



and Danvind (1997) show that no relationship is likely to exist between

floating ability and the distribution of species along several Swedish rivers

studied. This results highlight that other factors influencing the dispersion

of floating particles can be important.

Merritt and Wohl (2002), through laboratory experiments, studied the

effects of the hydrologic regime and channel morphology on seed deposition

patterns in a laboratory channel with fluvial features such as flow expansions

and constrictions, pools, point bars, islands, and slackwater areas. However,

the complex channel morphology used in the experiments makes it difficult to

identify the fundamental mechanisms responsible for the observed behaviors.

Chambert and James (2009) investigated the transport of 5 different

buoyant seeds floating trough an array of vertical cylinders used to mimic

an emergent plant canopy. The study showed that the trapping of seeds

increased with increasing of stem density and with decreasing of particle

mass. It was found that the main mechanism of capture was trough the

Cheerios effect, whereby floating particles are attracted toward the cylinder

by the rising meniscus. It was also observed that, unlike suspended sediment

or neutrally buoyant tracer, floating particles were not often trapped in the

wake region behind the cylinders. Moreover, the experiments show that

wind proved more important to drift lighter seeds than the heavier ones.

All these studies give valuable insight into floating particle transport,

diffusion, and trapping in the presence of emergent vegetation. However,

they are not extensive enough to give a complete and detailed picture of

the complex processes that govern floating particle dispersal, and there is a

clear need for further research.

The aim of this thesis is to provide a comprehensive picture of the inter-

actions mechanisms that rule the transport and diffusion process through

experimental, numerical and theoretical analysis. Since the phenomena that

affect the process of dispersion and capture of floating particles are manifold,

3



INTRODUCTION

an exhaustive work that includes all these aspects is hardly feasible.

Some preliminary investigations in laboratory flume with plastic, par-

tially emergent plants and in uniform flow conditions allowed us to recog-

nize the main particle-plant interaction mechanisms that are responsible of

mechanical longitudinal diffusion of floating particles in the riparian environ-

ments. Specifically, through video analysis of several particle trajectories,

a slowdown of the particle motion was observed due to inertial impaction

with the stems and wake trapping in the unsteady recirculation zone be-

hind the plant. Other primary processes observed were the trapping by

the Cheerios effect, i.e. effect of attraction between emergent bodies due to

capillarity. In these cases particles were either slowed down or captured by

leaves (temporary or permanently). Finally, because of the specific confor-

mation of the vegetation used in the experiments (i.e. silicon plants resem-

bling SpartinaMaritima), particles were also trapped by netlike structures

formed by leaves. We named this trapping mechanisms net trapping.
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Chapter 1

Floating particle trapping

and diffusion

In this section we present early results of laboratory experiments performed

to investigate the transport and diffusion of floating particles (e.g., buoyant

seeds) in open channel flow with emergent vegetation. We use laboratory ex-

periments to explore the details of the processes that control the interaction

between floating particles and emergent vegetation.

The experiments are aimed at providing a better understanding of the

relevant particle-vegetation interaction mechanisms responsible for the ob-

served diffusion processes.

Qualitative observational data are then used to set up a stochastic model

for floating particle transport and diffusion. Quantitative observations, such

as the distribution of distances travelled by a particle before it is perma-

nently captured by a plant and the arrival time distributions at prescribed

cross sections along the vegetated test section, are instead used to calibrate

and validate the model.
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CHAPTER 1. FLOATING PARTICLE TRAPPING AND DIFFUSION

1.1 Experimental investigations

The experiments are carried out in a 6 m long, 0.3 m wide tilting flume.

Water is recirculated through the channel via a constant head tank that

maintains steady flow conditions. A magnetic flowmeter accurately mea-

sures the flow rate: a steady discharge of 2 l/s is introduced in the flume

in all the experiments. Bed slope and a downstream weir are adjusted to

achieve uniform flow conditions with a water depth of 0.1 ± 0.002 m re-

sulting in a bulk velocity of 0.066 m/s (Fig. 1.1). The model plant canopy

consists of plastic plants inserted into a 3.0 m long, perforated Plexiglas

board which covers the middle part of the flume. The plastic plants, which

resemble SpartinaMaritima (Fig. 1.2), are 0.15 m high and are comprised

of approximately 120 leaves. Leaves have an elliptical section with the major

diameter d ≈ 2 mm and the ratio of minor to major axes of ≈ 0.7.

Figure 1.1: Scheme of the flume used in the experiments.

Two vegetation configurations are studied referred to as staggered and

random in the text (see Fig. 1.3). The staggered configuration has a den-

sity np = 87 plants/m2, the random configuration has a density np = 56

plants/m2.

To achieve uniform flow across the test section bed slope is sb = 0.0034

6



1.1. EXPERIMENTAL INVESTIGATIONS

Figure 1.2: Plastic plant used in the experiments (left) compared to young Spartina

Maritima collected in the lagoon of Venice (Italy) (right).

for the staggered configuration, and sb = 0.0025 for the random configura-

tion. Two different particles are used in the experiments to mimic buoyant

seeds: particle A is an irregularly shaped wood particle which can be de-

scribed approximately as a sphere having a diameter of 2.5 mm and a relative

density of 0.95. Particle B is a smooth spherical berry with a diameter of

3.7 mm and a relative density of 0.83 (see Fig. 1.4).

Some preliminary investigations used lighter particles such as expanded

Polystyrene (EPS) with a relative density of 0.03. However very light parti-

cles are extremely susceptible to trapping and all the particles released just

upstream of the test section were permanently captured by the vegetation

after traveling a short distance (shorter than 0.5 m for EPS particles). This

behavior prevents us from performing a statistically reliable study of particle

dispersal.

7



CHAPTER 1. FLOATING PARTICLE TRAPPING AND DIFFUSION

Figure 1.3: Vegetation configurations used in the experiments with notation. The

upper panel shows the staggered configuration, the lower panel shows the random

configuration. Spacing between dots on the flume bed is 4 cm; flow is from left to

right.

In addition, we specify that this study focuses on longitudinal charac-

teristics of floating particle dispersion, in fact the flume is relatively narrow

and this does not allow for a meaningful study of the transverse diffusion.

The relatively narrow channel width can also affect the longitudinal parti-

cle propagation, however, vegetation is likely to reduce the effects of lateral

confinement by promoting a more uniform average velocity in the transverse

direction.

Experimental observations are performed from both the Lagrangian and

the Eulerian points of view.

Within the Lagrangian framework we release one single particle at a

time just upstream of the test section and we observe the particle path and

behavior. We also measure the distance travelled by the particle before it

is permanently captured by a plant (we assume a particle is permanently

8



1.1. EXPERIMENTAL INVESTIGATIONS

Figure 1.4: Particles used in the experiments: wood particles (particles A on the

left, spherical berries (particles B) on the right.

captured if it stays attached to one plant for more than 10 minutes, i.e., a

time interval that is longer by more than one order of magnitude than the

mean time a particle takes to travel the whole test section).

For each vegetation configuration and particle type, approximately 400

particles are released and monitored to qualitatively observe the processes

they experience and quantitatively evaluate the distance they travel before

being permanently captured (see Table 1.1).

A few particle paths are also recorded with a camera mounted on a mov-

ing carriage, supported by a pair of rails along the flume, and driven by hand.

Recorded frames (frame rate is 12.5 Hz) are then extracted and analyzed

to track particle trajectory and to determine particle velocity. Accuracy in

reconstructing instantaneous particle position is rather rough (particle posi-

tion is determined with an error of ± 1 mm), however results give a reliable

picture of particle path characteristics.

An example of the recorded particle trajectory is shown in Fig. 1.5 where

we observe that the particle path is significantly affected by the heterogeneity

of the velocity field induced by the vegetation. We observe eight interaction

events, indicated with an arrow, where the particle is slowed down and its

velocity reduces to zero for a very short time (less than 0.1 s). At x ≈ 0.25

9
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Figure 1.5: Particle longitudinal velocity as a function of the distance along the

test section (upper panel), and plan view of the test section with the indication of

the particle path (lower panel). Arrows denote the positions where particle-plant

interaction occurs. Flow is from left to right.

m the particle enters the wake region behind a group of densely arranged

leaves and it experiences an irregular motion with negative velocities; this

wake trapping lasts approximately 1 s.

Fig. 1.6 shows the probability density function (pdf) of particle longi-

tudinal velocity computed from the recorded particle trajectories: the pdf

is biased toward the smaller velocities indicating that the diffusion process

is controlled not only by temporal and spatial heterogeneity of the surface

velocity field but also by the delay due to particle slowdown and/or short

time trapping.

Within the Eulerian framework, groups of 50 particles are released at

one moment uniformly distributed along a cross section just upstream of

the test section and the passage of particles at fixed cross sections along the

test section is recorded with a camera. Recording sections are located at the

distances of 1.0 m, 2.0 m, and 3.0 m for particle A and 0.5 m, 1.0 m and 1.5

m for particle B from the upstream end of the test section. Eight groups

with 50 particles are released for each vegetation configuration, particle type,

and recording section. From the video analysis we determine the number

of particles that pass the recording cross sections and we measure the time

required by each particle to reach these sections (Fig. 1.7). It is worth

noting, in Fig. 1.7, that scaling the distances X of the recording cross

10



1.1. EXPERIMENTAL INVESTIGATIONS

sections by the length scale 1/
√
np, np being the number of plants per unit

area, makes the mean arrival times for particle A to collapse onto a single

line regardless the vegetation configuration.

Direct observation and video analysis also allows us to recognize the rele-

vant aspects of the interaction between floating particles and vegetation and

the mechanisms responsible for the temporary and the permanent trapping

of particles by plants.

When a particle interacts with a plant it is slowed down by three primary

mechanisms: surface tension attraction through the Cheerios effect, inertial

impaction, and wake trapping.
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Figure 1.6: Probability density function of particle longitudinal velocity Ux/Ux,

Ux being the mean particle longitudinal velocity.

The Cheerios effect [e.g. Vella and Mahadeven, 2005] is the tendency for

floating particles to be attracted towards a leaf by the rising meniscus: if a

particle approaches a leaf within a distance comparable to the leaf diameter,

then the particle is subject to an attracting force due to surface tension

[Chambert and James, 2008].

We also observe inertial impaction [Palmer et al., 2004] which occurs

when a particle deviates from a streamline because of its inertia and collides

with a leaf. However, because the particle size is comparable to the leaf
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CHAPTER 1. FLOATING PARTICLE TRAPPING AND DIFFUSION

diameter, after the collision the particle goes around the leaf and, if its inertia

overcomes the attractive force due to the Cheerios effect, it continues its way

downstream. We specify that this mechanism can hardly be distinguished

from surface tension attraction mechanism.
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Figure 1.7: Mean time taken by particles to reach the fixed cross sections located

at the non-dimensional distances X
√
np from the upstream end of the test section.

Wake trapping [e.g., White and Nepf, 2003] is also observed: when a

particle enters the unsteady recirculation zone behind a plant it follows an

irregular path until it escapes or it is captured by a leaf through the Cheerios

effect. However, in the present experiments very few particles are observed

to enter the wake region behind a plant, which is consistent with the findings

of Merritt and Wohl [2002].

It is to be specified that a plant is a porous obstacle to flow and the

(weak) velocity defect region behind one plant is given as the superposition

of all wakes forming behind each individual leaf of the plant; these wakes

create a randomly heterogeneous velocity field that contributes to parti-

cle dispersion. More intense wake regions actually form behind groups of

densely arranged leaves as in Fig. 1.5.

When a particle comes close to a leaf and the attractive force due to the

12



1.1. EXPERIMENTAL INVESTIGATIONS

Cheerios effect overcomes particle inertia then the particle is captured and

stays firmly attached to the leaf.

Particle capture also occurs when a few leaves of one plant (or, sometimes

of two adjacent plants) weave each other to form a net-like structure which

intercepts the floating particle. When a particle is captured through this

mechanism, which is here referred to as net trapping, it remains finally

trapped.

Sometimes, a trapped particle fastened to a single leaf through the Chee-

rios effect is observed to escape. The escaping occurs either when the particle

is stricken by an energetic turbulent event (in this case we also observe a

rapid shaking of the leaf) or, more frequently, when a particle is shaken off

due to the quasi-periodic vibration of the leaf it is attached to.

In fact, we observe most of the leaves to vibrate at a frequency cor-

responding to that of vortex shedding. In the experiments the Reynolds

number Red (Red = Ud/ν, with d the diameter of a leaf, U the bulk flow

velocity, and ν the kinematic viscosity) is in the range Red=120-150 (i.e.,

within the regular range from the beginning of the vortex shedding at Red ≃
47 up to the transition of the wake at Red ≃ 180). In this range we have

[e.g. Fey et al., 1998]

Sr(Red) = 0.2684− 1.0356√
Red

(1.1)

where Sr is the Strouhal number (Sr = fd/U , with f the vortex shedding

frequency). From Eq. 1.1 we have f = 5.2-6.9 Hz which well corresponds

to the observed frequency at which leaves vibrate.

The amplitude of leaf oscillations we observe in the present experiments

is approximately ad = 2-3 mm; therefore the maximum transverse velocity

of a particle attached to a leaf is 2πadf ≈ 0.13 m/s, which is greater than the

mean flow velocity. Therefore, vibrating leaves might be capable of shaking

off particles by overcoming the Cheerios effect.
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CHAPTER 1. FLOATING PARTICLE TRAPPING AND DIFFUSION

We specify that this study considers low floating particle concentration.

In fact, we observed that at moderately high particle concentration, the

Cheerios effect promoted the formation of clusters comprised with a few

particles. The clusters had a relatively smaller average velocity because of

the more frequent interactions with the vegetation and were more easily

captured by the vegetation as they get stuck against a group of few leaves.

In view of the mathematical model for floating particle trapping and dif-

fusion described in the next section, we summarize the relevant, qualitative

experimental observations as follows

• When a particle interacts with a plant (i.e., with one leaf or a few

leaves) it can be either slowed down, or temporarily captured, or per-

manently captured.

• Mechanisms which slow down a particle are the Cheerios effect, iner-

tial impaction, and wake trapping. Typical time delay in the particle

propagation produced by this slowdown is about 2 s in the present

experiments.

• If the attractive force, between a particle and a leaf, promoted by

the Cheerios effect overcomes particle inertia, then the particle gets

stuck to the leaf. However, the particle can escape thanks to the leaf

vibration induced by the alternate vortex shedding. In the present

experiments, this temporary trapping event produces a time delay in

the particle propagation of some tens of seconds.

• When a particle is trapped through the net trapping mechanism or

through the Cheerios effect by one leaf that cannot vibrate, the reten-

tion time is measured to be at least one order of magnitude greater

than the previous one (i.e., more than 600 s in the present experi-

ments). In this case we assume that the particle is permanently cap-

tured.
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1.2. THE STOCHASTIC MODEL

1.2 The stochastic model

We propose a stochastic model to simulate the transport and diffusion of

floating particles and the trapping mechanisms observed in the experiments.

The model is one-dimensional and describes particle-vegetation interactions

along the curvilinear axis s corresponding to the generic particle trajectory.

The place, along s, where a particle interacts with one leaf (or a few leaves)

is here referred to as interaction point.

We dissect the particle path into segments ∆s, ∆s being the mean spac-

ing between plants, and assume that the interaction points (one within each

segment ∆s) are arranged randomly in space with a uniform pdf .

short
retention
time

long retention
time

time

sp
ac

e

1

U0

Figure 1.8: Actual (full line) and modeled (dashed line) world lines of a particle

in the space-time diagram.

In the experiments we sometimes observe a particle interacting with two

or more leaves of the same plant, wide apart each other, i.e., more than one

interaction process with the same plant occurs. Here we assume that the

slow-down process experienced by a particle interacting with more than one

leaf of the same plant can be lumped into one single interaction event.

The proper specification of the length scale ∆s is important to assess

the model performance, as we will show. The mean centre-to-centre spacing

between adjacent plants is ∆s1 = 1/
√
np, np being the number of plants per
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CHAPTER 1. FLOATING PARTICLE TRAPPING AND DIFFUSION

unit area. The mean spacing along any straight line parallel to the direction

of flow, is ∆s2 = 1/npdp, dp being the diameter of the plant [White and

Nepf, 2003].

Based on comparison between model and experimental results we find

that ∆s1 performs better than ∆s2; therefore the model assumes ∆s =

1/
√
np.

Let Pi be the probability that a particle interacts with a plant (i.e., with

a leaf or a group of leaves) while travelling the distance ∆s along its path,

transported by the flow (on average, a particle interacts with one plant over

a path whose length is ∆s/Pi).

Let Pc be the probability that a particle is permanently captured, if

it interacts with a plant. Then, the probability that a particle travels a

distance X greater than L before being finally captured is

P (X > L) = (1− PiPc)
nL (1.2)

where nL is the number of interaction points (i.e., plants) the particle meets

within the distance L. We extend nL to assume non-integer values and write

nL = L/∆s. Equation (1.2) is then rearranged to read

P (X > L) = e−L/λ (1.3)

where λ = −∆s/ln(1 − PiPc) is the particle mean path length, while 1/λ

is commonly referred to as retention coefficient [e.g., Riis and Sand-Jensen,

2006].

In the following we consider temporary trapping processes. We denote

with t0 the average time a particle spends to travel the distance ∆s if no

interactions with the vegetation occur. If a particle interacts with a plant

and t is the time the particle actually spends to cover the distance ∆s,

then we define τ = t − t0 as the retention time and we assume that a

particle travels within each segment ∆s with velocity U0 = ∆s/t0 and it is
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1.2. THE STOCHASTIC MODEL

temporarily arrested for the time τ (see Fig.1.8). Therefore, retention time,

as presently defined, includes the delay due to the acceleration of a particle

towards the velocity U0.

1-PLPL

1-PcPc

it interacts
with the plant

Pi 1-Pi

it does not
interact with
the plant, and

and it is
permanently
captured

and it is
temporarily
captured

for a long
time, then

for a short
time, then

When a particle
meets the plant
within a segment ∆s,

it flows further downstream
with mean velocity U0 while
being diffused by turbulence

Figure 1.9: Schematic of the proposed model.

The velocity U0 is slightly greater than the bulk velocity U both be-

cause the free surface velocity is greater than the depth average velocity

and because of the channelling effect induced by plants.

When a particle interacts with the vegetation, within the generic ∆s, it

has the probability 1−Pc of being temporarily trapped. As stated at the end

of Section 1.1, two different interaction mechanisms are mainly responsible
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CHAPTER 1. FLOATING PARTICLE TRAPPING AND DIFFUSION

for particle propagation delay (i.e., particle slow down by the Cheerios effect,

inertial impaction, and wake trapping, and temporary trapping events which

occur when the attractive force due to the Cheerios effect overcomes particle

inertia. Accordingly, we introduce a short (subscript S) and a long (subscript

L) retention time and denote with PS the probability that a particle is

trapped for a short retention time (while PL = 1−PS is the probability that

a particle is trapped for a long retention time).

The model further assumes that both short and long retention times are

random and exponentially distributed with mean retention times TS and TL,

respectively:

pS(t) =
1

TS
e
−

t
TS (1.4)

pL(t) =
1

TL
e
−

t
TL (1.5)

We specify that distinguishing long retention time trapping from per-

manent (i.e., infinite retention time) trapping is a reasonable modelling ap-

proximation. In fact, long and infinite retention times rely on two different

trapping mechanisms. However, the issue is deserving of further investiga-

tion.

Floating particles are also subject to turbulent diffusion due to the tem-

poral and spatial heterogeneity of the surface velocity field (e.g., White and

Nepf, [2003]). This is included in the model; however, because the hetero-

geneity of the velocity field is moderately weak and the distance travelled

by a particle before being definitely captured is relatively short, turbulent

diffusion plays a minor role in affecting the dispersion pattern.

The overall model is schematically illustrated in Fig. 1.9. An analytical

expression for the particle arrival time distribution function at prescribed

cross sections is given in the Appendix A. However the analytical model is

hard to handle and it does not account for the turbulent diffusion. For these
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reasons we also set up a random walk particle-tracking model (see Appendix

B), which we checked against the analytical solution. The theoretical results

presented and discussed in the next section are obtained as the ensemble

average of 10000 realizations computed with the random walk model.

1.3 Calibration of the stochastic model

Within the Lagrangian framework we measure the distance x travelled by

each single particle, released just upstream of the test section, before it is

permanently trapped by a plant: we can thus compare experiments with

Eq. (1.3).

Figure 1.10 shows the probability a particle has of travelling a distanceX

greater than L for the three investigated cases: the experimental points ac-

tually follow an exponential law. This result, which largely corresponds with

results from other studies [e.g., Riis and Sand-Jensen, 2006], is confirmed by

the Eulerian measurements where we count the number of the released par-

ticles that reach and eventually pass some fixed cross sections downstream

from the beginning of the test section (Fig. 1.10, square symbols).

Particle B is more susceptible to permanent trapping than particle A

although both particles have approximately the same density and particle

B, because of its greater size, has a much larger inertia. This is because, due

to its size, particle B is more frequently captured through the net trapping

mechanism. In fact, particle trapping through the net trapping mechanism

occurs in 65% of cases for particle B and only in 45% of cases for particle

A.

We determine the probability PiPc for each of the three different exper-

imental conditions (see Table 1.1) by fitting Eq. (1.3) to the experimental

data.
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For particle A the product PiPc (or equivalently, the non-dimensional

retention coefficient ∆s/λ) remains approximately the same no matter the

vegetation distribution and density. We speculate that, if a particle inter-

acts with a plant then the probability Pc that this interaction will produce

a permanent capture depends mainly on the particle and vegetation char-

acteristics and on the flow velocity; on the contrary it is weakly affected

by the vegetation distribution and density. Therefore, since PiPc remains

approximately the same for particle A, we conclude that the probability Pi

of having an interaction does not depend on the vegetation distribution and

density, as well.

This observation can be extended to the other model parameters which

describe the local particle-vegetation interaction processes. Therefore, the

parameters PL, TL, and TS are expected to remain the same for the two veg-

etation configurations that use particle A. This idea is further supported by

observing that even with a regular distribution of plants (i.e., the staggered

configuration), from the point of view of a particle which is travelling along

its path, interaction points appear to be randomly distributed with mean

spacing ∆s.

Within the Eulerian framework we also measure the time spent by par-

ticles to reach (and pass) some fixed cross sections and we use these data

to construct the cumulative arrival time distributions. The experimental

results are compared to the model predictions in Fig. 1.11. The values for

the model parameters used in the computations and reported in Table 1.1

are determined through a trial-and-error calibration procedure.

In order to calibrate the model we preliminarily performed a sensitivity

analysis to determine the effects of each single parameter on the arrival time

distribution. We then calibrated the model through a trial-and-error pro-

cedure and checked the possibility of forcing model parameters to have the

same value for different experimental configurations (e.g., values for PL, TL,
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and TS are the same for particle A and different vegetation configurations).
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Figure 1.10: Experimental probability distribution P (X > L) compared to Eq.

1.3. Probability is plotted versus L in the upper panel and versus L/∆s in the

lower panel. Circles and squares denote Lagrangian and Eulerian experimental

results, respectively.

Model predictions compare favorably with experimental observations.

The discrepancies shown in Fig. 1.11 can be mainly ascribed to the ir-
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regular morphology of the plants (see Fig. 1.5). Indeed, the number of

interactions experienced by each particle along its path is moderately small

and the experimental paths cannot be safely regarded as realizations of a

purely random process. Therefore, the experimental data used to deter-

mine the arrival time distributions are not statistically suitable enough to

unambiguously serve as a basis for a definitive comparison with the model

predictions.

Table 1.1: Summary of experimental results and model parameters calibration.

Staggered Random Staggered

particle A particle A particle B

∆S (m) 0.108 0.134 0.108

λ (m) 1.26 1.55 0.53

λ/∆S 11.7 11.5 4.9

PiPc 0.082 0.083 0.184

Pi 0.295 0.295 0.360

Pc 0.278 0.281 0.511

Pi/Pc 1.06 1.05 0.704

Pi(1− Pc) 0.213 0.212 0.176

PL 0.105 0.105 0.105

TS (s) 1.7 1.7 2.7

TL (s) 55.0 55.0 80.0

U0 (m/s) 0.073 0.081 0.073

We observe an elbow in the curves plotted in Fig. 1.11 which reflects the

two different (short and long) retention time distributions. For particle A,

the two different vegetation configurations produce rather different arrival
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time distributions (Fig. 1.11a, b). In particular, the elbow in the curves

for the case of random distribution is significantly sharper than for the case

of staggered distribution. Note that the model parameters Pi, Pc, PL, TS ,

and TL are actually the same for both the vegetation distributions. This

suggests that the observed different behaviors are solely (and effectively)

controlled by the spacing ∆s (i.e., the vegetation density) and that the

choice of the length scale ∆s = 1/
√
np is reliable (see also Fig. 1.7). In

addition this result confirms the idea that the model parameters depend on

the local characteristics of the particle-vegetation interaction process and

are unaffected or weakly affected by the vegetation distribution and density.

For the case of staggered configuration and particle A the mean number

of interactions within the 3 m long test section is 3 · Pi/∆s ≈ 8, which is

consistent with the example shown in Fig. 1.5 where the arrows denote

intense particle slowdowns.

Particle B, because of its greater inertia and size, is more susceptible to

interact with the vegetation (it has a greater Pi) than particle A. However,

the probability of being slowed down or temporarily captured (which is

given by Pi(1−Pc)) is lower for particle B than for particle A. This behavior

reflects the greater inertia of particle B which, accordingly, is less affected by

the attractive force between a particle and a leaf promoted by the Cheerios

effect.

Interestingly, the probability PL is the same for both particles A and B.

This suggests that the ratio between the number of slowdown events and

temporarily trapping events might be independent from particle character-

istics.

Short retention time for particle B is slightly greater than that for par-

ticle A. This again reflects the greater inertia of particle B which requires

a longer time to regain the mean transport velocity once it is slowed down

or arrested by one leaf.
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Figure 1.11: Cumulative arrival time distributions: comparison between experi-

mental results (circles) and model predictions (full line).

The computed arrival time distributions plotted in Fig. 1.11 include

turbulent diffusion due to the spatially non-uniform velocity field. The order

of magnitude of the longitudinal diffusion coefficient D, is estimated on the

basis of the few recorded particle trajectories. We consider only trajectory

segments that do not include interaction events and compute D as D =

σ2U ·∆t/2, σU being the Standard Deviation of the longitudinal velocity and
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∆t = 0.08 s is the inverse of the frame rate: we find D ≈ 2 ·10−5 m2/s. This

is admittedly a very small diffusion coefficient which is however consistent

with the small flow velocity (and Reynolds number) in the experiments.
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Figure 1.12: Cumulative arrival time distributions computed for different values

of the diffusion coefficient. Model parameters used in the computations are those

for particle A and staggered distribution of plants.

To assess the impact of turbulent diffusion we compute the arrival time

distribution for different values of the diffusion coefficient. An example of

these computations is shown in Fig. 1.12 where we see that increasing the

diffusion coefficient by one or two orders of magnitude, turbulent diffusion

has a minor impact on the solution. Note that the curves for D = 0,

D = 2 · 10−5 m2/s, and D = 1 · 10−4 m2/s can hardly be distinguished.

This result confirms that dispersion of floating particles in the presence

of emergent vegetation is mainly related to particle-vegetation interaction

processes.
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Chapter 2

Additional experimental

investigations: the effects of

flow velocity and vegetation

density

The stochastic model proposed in Chapter 1 distinguishes three different

effects on the particles motion due to vegetation: i) a short delay in the

propagation due to the slow down and short time trapping (i.e. temporary

trapping for a short retention time), ii) a long delay due to retention by the

leaves through the Cheerios effect or by weak net trapping (i.e. temporary

trapping for along retention time) and iii) permanent captures (particle

retention lasts longer than the time scale of the experiments) due to the

Cheerios effect and through the net trapping (see fig. 2.1).

In the model the interaction frequency and the kind of the processes are

weighted through three simple probabilities: the probability of interaction

Pi, the probability of capture Pc and the probability of being trapped for a

long retention time PL. All these parameters were not measured in the pre-
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vious experiments. They were determined through a calibration procedure

performed to fit the measured arrival time distributions.

The goal of the experimental study described in this chapter is to study

more in depth the details of the main processes that affect particle diffusion

and trapping. Investigations are focused on the quantitative analysis of

the basic factors that affect the mechanisms of interaction. Specifically,

laboratory investigations are aimed at evaluating the effects of vegetation

density and pattern and of flow velocity.

Figure 2.1: trapping of floating berries (particles B) by emergent vegetation: ex-

amples of net trapping capture and capture by the Cheerios effect.
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2.1 Further experimental investigation

As stated above, we use laboratory experiments to explore the details of

the processes that control floating particle transport and diffusion in the

presence of emergent vegetation. Observational data are then used not only

to strengthen and advance our knowledge, but also to validate and improve

the stochastic model described in Chapter 1, which is likely to include all

the relevant aspects of floating particle-vegetation interaction processes. In

particular, we focus on the basic interaction mechanisms between floating

particles and vegetation stems and leaves (i.e., inertial impaction, wake and

net trapping, and trapping due to the Cheerios effect) which affect particle

propagation by promoting propagation delay, permanent captures and diffu-

sion. We also focus on the impact of flow velocity and of vegetation pattern

and density on the efficiency of these mechanisms.

Figure 2.2: Wood cylinders used in the experiments (particles C).

The experiments are carried out using the same flume and plants de-

scribed in Section 1.1. To mimic buoyant seeds, in this case, we used small

wood cylinders having equal diameter and height of 3 mm and a relative

density of ≈ 0.7 (see Fig. 2.2).

Particles are released all along a cross section approximately 10 cm up-

stream the vegetated reach. Particles are allowed to dry before being re-
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leased into the flow and they are released one at a time to avoid the forma-

tion of clusters. Indeed, we assume that a particle is permanently captured

if retention time is greater than 600 s, consistently with the previous exper-

iments.

For each vegetation density and bulk flow velocity approximately 400

particles are individually released and monitored. Most of particle runs

are recorded with a camera (frame rate is 12.5 Hz) mounted on a mov-

ing carriage, supported by a pair of rails along the flume and driven by

hand. Recorded frames are then extracted and analyzed to track parti-

cle trajectory, to determine particle velocity, and to measure the duration

of temporary trapping events (see Table 2.1). Accuracy in reconstructing

instantaneous particle position is sufficiently good (particle position is de-

termined with an error of ± 1 mm), and results give a reliable picture of

particle path characteristics. The distance travelled by each particle before

being permanently captured is also measured. Direct observation and video

analysis also allows us to recognize the relevant aspects of the interaction

between floating particles and vegetation and the mechanisms responsible

for the temporary and the permanent trapping of particles by plants.

Two sets of experiments are performed (see Table 2.1). Set A is designed

to explore the impact of vegetation density on the type and frequency of the

different interaction mechanisms. In set B we study the impact of flow

velocity on the characteristics of the diffusion process. With data of set

B we also explore the adequacy of some model assumptions such as the

statistical distribution of residence time.

2.2 Evaluation of vegetation spacing

The proper specification of the (global) length scale ∆s is important to

assess the model performance. In fact, as argued in Section 1.3, most of

model parameters turn out to be independent from vegetation pattern and
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Table 2.1: Summary of experimental conditions and measured parameters for the

two sets of experiments. Each set is composed of a group of experiments with a

unifying physics: in set A flow velocity is held constant and vegetation density

varies in the range 20 to 86.7 plants/m2; in set B flow velocity is varied between

0.033 and 0.167 m/s and vegetation density is held constant. X denotes measured

data.
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A1 20.00 450 X

A2 27.78 400 X

A3 36.67 400 X X

A A4 0.033 46.67 400 X

A5 55.56 Xa 400 X X

A6 70.00 400 X

A7 86.67 400 X X

B1 0.033 X 400 X X X X

B2 0.050 X 340 X X X X

B3 0.067 Xa 434 X Xb X X

B B4 0.083 86.67 400 X

B5 0.100 400 X

B6 0.133 X 424 X X X X

B7 0.167 400 X

a) only a few runs are video-recorded in order to track particle trajectory

b) measured by a stopwatch
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Figure 2.3: Overall view of the flume with plastic plants used in the experiments:

np = 55.6 plants/m2, random pattern.

density by normalizing lengths to the proper length scale.

The problem has two intrinsic length scales; these are the diameter of

the bush, dp and the mean centre-to-centre spacing between adjacent plants

1/
√
np, np being the number of plants per unit area. Other length scales

such as the leaf diameter d or the size of the recirculation zone behind

leaves are mainly related to turbulent diffusion [White and Nepf, 2003].

Through an analysis of the particle velocity obtained from the reconstructed

trajectories, we find that turbulent diffusion coefficient lies in the range

between 10−5 and 2 · 10−4 m2/s. Since in Section 1.3 it was shown that

turbulent diffusion negligibly contributes to the overall diffusion process,

then these length scales are not considered in the present analysis.
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s

r(s)
s

r(s)

Figure 2.4: Schematic of a particle trajectory with notation defining r(s).

In Chapter 1 we argued that the most appropriate length scale is the

spacing ∆s = 1/
√
np. However, this guess was based only on two sets of

data with a moderately different vegetation density (i.e., np = 85 plants/m2

and np=56 plants/m2). In order to ascertain the most significant length

scale we perform suitable experiments (set A in Table 2.1) in which only

vegetation density is changed.

In these experiments we reconstruct and analyze some particle trajec-

tories in order to see if and how they are affected by the presence of the

plants. To analyze particle trajectory, we introduce the function r(s) which

measures the distance from a point along the trajectory to the nearest veg-

etation center as shown in Fig. 2.4, and we define the mean distance rm

as

rm =
1

X

∫

X
r(s)ds (2.1)

where X is the path length.

We then introduce the distance R as the average of rm computed over

an infinite number of paths and define R0 to be the distance R when paths

are straight lines. Interestingly, the same value R0 is found if paths are not

straight lines but they are random. Accordingly, if paths are not affected

by the presence of plants, i.e., they are random, then their mean distance R

should be close to R0. In case of staggered plants disposition, if a particle
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follows a path zigzagging its way through the plants as shown in the right-

lower corner of Fig. 2.5 (e.g., due to channelling effect) then a value for R

greater than R0 is found. Contrarily, if a particle path joins the centers of

adjacent plants as shown in the left-upper corner of Fig. 2.5 then a value

for R smaller than R0 is found. We can then assume that the ratio R/R0

measures the randomness of a particle path. The analysis can be extended

to random plants disposition. In this case the limit values of R in Fig. 2.5

are average values.
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Figure 2.5: Plot of rmr (and R0) versus rms (and R). Points along the line of perfect

agreement indicates that the path is random. The theoretical values of R = R0

for np = 86.7 plants/m2 and np = 55.6 plants/m2 are indicated: the bar length

represents one standard deviation (σR0
). Rmax is the value of R when plants are

arranged in a staggered pattern and particle trajectory is that shown in the right-

lower corner; Rmin is the value of R when particle trajectory is that shown in the

left-upper corner. Open circles denote (rms, rmr) points for np = 86.7 plants/m2

(present experiments). The plot also includes the results of experiments performed

in Chapter 1 with different particle types: particle A, np = 55.6 plants/m2 (gray

circles), particle A, np = 86.7 plants/m2 (gray diamond), particle B, np = 86.7

plants/m2 (black triangles).
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Since we have a small number of measured paths, a less rigorous pro-

cedure is adopted to ascertain whether or not vegetation controls particle

trajectory. For each measured path we compute the mean distance rm (rms).

We then fit the measured path to a straight line and compute the mean dis-

tance of plants from this line (rmr). Fig. 2.5 shows the computed points

(rms, rmr) for different vegetation pattern and density and different flow

velocity. Since all points cluster about the line R = R0 with a small scatter

compared to the theoretical standard deviation we argue that particle paths

are random and weakly controlled by plants. This behavior is possibly due

to the high porosity that characterize the plants used in the experiments.

Plant porosity, here defined as 1− nLd
2/d2p ≈ 0.95 (with nL the number of

leaves of one plant), is in fact large and comparable to the overall canopy

porosity given as 1 − nL(πd
2/4)np = 0.97 ∼ 0.99. In addition, random

distribution of interaction points (i.e., points where leaves pierce the free

surface) is likely to prevent the formation of preferential flow paths and the

occurrence of channeling effect.

For a straight path (or, equivalently, for a random path) the mean spac-

ing is given by ∆s = 1/npdp [White and Nepf, 2003]. Therefore, we can

safely assume that this spacing is the proper length scale, at least when

vegetation is highly porous.

Some ambiguity however arises in defining the spacing this way since the

plant diameter cannot be precisely defined or easily determined. However,

as we show below, possible small errors in estimating dp can be compensated

by suitable tuning of the interaction probability Pi.

In this series of experiments (set A in Table 2.1), in which only vegetation

density is changed, we also measure the distance X travelled by particles

before permanent capture, whose distribution is given by eq. 1.3.

By fitting experimental data to Eq. 1.3 we determine the mean path

length which is plotted against vegetation density in Fig. 2.6. The results
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suggest that mean path length goes as the inverse of vegetation density (full

line in Fig. 2.6).

It is interesting to observe that, when the probability Pc is moderately

small, the mean path length can be approximated as

λ = − ∆s

ln(1− PiPc)
≈ −∆s

Pi

1

ln(1− Pc)
(2.2)

Moreover, we can safely assume that the probability Pc depends on local

factors (i.e., on particle and vegetation characteristics, and flow velocity)

and it is weakly affected by the vegetation pattern and density. Accordingly,

and from Eq. 2.2, the ratio ∆s/Pi, which is the mean spacing between two

successive interactions, has the same trend as that of λ. Since both λ and

∆s go with the inverse of np we argue that the probability Pi is likely to

be independent of vegetation pattern and density, in agreement with the

results find in the previous experiments (see Section 1.3).

It is worth noting that any error in evaluating ∆s (e.g., because of an

incorrect evaluation of the plant diameter) can be compensated through the

tuning of Pi.

2.3 Retention time distribution as function of ve-

locity flow

In the stochastic model describe in Section 1.2 the retention time is assumed

distributed according to the sum of two exponential distributions (eq. 1.4

and eq. 1.5) weighted by the probability PL that a particle experiences a

long retention time event

P (T > t) = PLe
−t/TL + (1− PL)e

−t/TS (2.3)

where TS and TL are the short and long mean retention time, respectively.

The reason for assuming two different time scales stems from the different
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Figure 2.6: Mean path length as a function of vegetation density (set A). Distance

lambda and vegetation density np are normalized by the plant diameter dp. Since

1/npdp is the mean spacing between two plants, a particle travels on average a

distance of 3.6 times the mean plant spacing before a permanent capture occurs.

interaction mechanisms responsible for particle propagation delay observed

in the experiments. The reliability of the assumption was indirectly verified

through the comparison of measured and modelled arrival time distribution.

However, retention time distribution was not directly measured.

In this work we use video-recorded paths of experimental set B to quan-

titatively evaluate retention times. Frame by frame analysis of the recorded

paths allows us to measure the time that each particle spends at rest because

of a temporary trapping event.

The cumulative probability P (T > t) is then estimated on the basis of

the relative cumulative frequency as

P (T > t) = 1− i+N0

Ni +N0 + 1
(2.4)

where i is the number of measured data T with a value smaller than the

reference value t, Ni is the total number of measured data, and N0 is the

guessed number of temporary trapping events that, for being too short,

cannot be measured. In fact, we cannot accurately measure retention times
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Figure 2.7: Experimental probability distribution P (T > t) (symbols) compared

to Eq. 2.3 (full lines). The inset shows the linear relationship between bulk flow

velocity and the probability PL)

shorter than about 0.25 s, the frame rate being 12.5 s−1.

Parameters TL, TS , PL, and N0 are then determined by fitting measured

retention times to Eq. 2.3 according to the procedure outlined in Appendix

C (see Table 2.2).

The results are plotted in Fig. 2.7 which also includes the data measured

with a stopwatch while visually observing travelling particle behavior. In

this case, retention times shorter than 2 s were not considered in the analysis

because, due to the measuring technique, they are likely affected by large

uncertainty. Since shorter retention time events are lacking in this case,

the chosen value for N0 is rather uncertain due to the long extrapolation

involved.

The experimental data are fitted reasonably well by Eq. 2.3. We also

explore the possibility of using different probability distribution functions to

fit the measured data. For example, we find that the Weibull distribution
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Table 2.2: Summary of experimental conditions and results for video recorded

experiments of set B.

U (m/s) 0.033 0.050 0.067 0.133

Ni 308 247 209 313

N0 98 82 400 47

Nc 400 340 420 365

Nip 1022 1175 − 6849

TL(s) 90 88 85 80

TS(s) 0.7 1.0 1.6 2.4

PL 0.08 0.11 0.16 0.30

Trest(s) 7.8 10.6 14.9 25.7

performs very well when bulk flow velocity is large (e.g., U=0.133 m/s)

however, it largely fails in fitting slow flow data.

It is worth noting that mean retention time Trest increases with increas-

ing bulk flow velocity (see Table 2.2). This experimental result is rather

surprising and far from being intuitive since one would expect the opposite.

In fact, interaction mechanisms like the net trapping and the Cheerios effect

do not depend on flow velocity whereas particle inertia increases with flow

velocity. A possible explanation of this behavior is that at slow flow velocity

only weak and short-lasting interaction events produce a temporary trap-

ping, whereas stronger interactions produce permanent capture (i.e., events

which are not considered in the analysis of retention time distribution). This

is the reason why the probability PL decreases with decreasing flow velocity.

The behavior is also consistent with the proposed model in which the

probability Pi filters out all ”interaction events” characterized by a retention
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time so short that it can be regarded as zero. In fact, at each interaction

point, particles have the probability 1-Pi of experiencing a trapping event

characterized by a negligibly short retention time. The proposed model is

thus formally equivalent to a model in which particles actually interact with

vegetation at each interaction point and the retention time distribution is

given as

P (T > t) =











1 t = 0

Pi

[

PLe
−t/TL + (1− PL)e

−t/TS
]

t > 0

(2.5)

Eq.2.5 suggests that the overall retention time (i.e., the total time a

particle spends at rest during one run) decreases with increasing flow velocity

provided that the probability Pi decreases rapidly enough with increasing

flow velocity.

Table 2.3: Summary of experimental conditions and results for experiments of set

B.

U (m/s) 0.033 0.050 0.067 0.083 0.100 0.133 0.167

λ (m) 0.19 0.28 0.69 0.88 1.11 1.79 1.98

PiPc 0.394 0.287 0.130 0.103 0.083 0.052 0.047

Pi 0.798 0.569 0.32a − − 0.106 −
Pc 0.499 0.504 − − − 0.494 −

U0 (m/s) 0.046 0.060 0.072 − − 0.133 −

a) extrapolated from Fig. 2.8

We use experimental data of set B to estimate how Pi and Pc, separately,
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vary with flow velocity. Using the measured path length Xi of the i-th

experimental run we compute the total number of interaction points Nip as

Nip =

Nruns
∑

i=1

int(1 +Xi/∆s) (2.6)

where int() denotes the integer part of a real number and Nruns is the num-

ber of runs (see Table 2.1). Given the number of permanent captures (Nc)

and the number of measured (Ni) and guessed (N0) temporary interaction

events (see Table 2.2), the probability Pi is estimated to be

Pi = (N0 +Ni +Nc)/Nip (2.7)

The probability Pc is then computed from PiPc. The behaviors of prob-

abilities PiPc, Pi, and Pc as a function of bulk flow velocity, as well as that

of λ are plotted in Fig. 2.8; the numerical values are given in Table 2.3.
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Figure 2.8: Mean path length and probabilities Pi, Pc, and PiPc as a function of

bulk flow velocity.

Fig. 2.8 shows that the probability Pi actually decreases with increasing

flow velocity. We speculate that, when flow velocity is (relatively) high then

the Cheerios effect, alone or in combination with inertial impaction or wake

trapping, is not able to determine a ”significant” interaction event. Accord-

ingly, the distance ∆s/Pi between two successive interactions increases with
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Figure 2.9: Efficiency of the observed permanent capture mechanisms as a function

of a) flow velocity (np = 86.67 plants/m2) and b) vegetation density (U = 0.033

m/s). The net trapping (black), and the Cheerios effect (grey).

increasing velocity. On the contrary, permanent trapping events which are

mainly due to the net trapping mechanism, is moderately affected by flow

velocity and the probability Pc remains fairly constant. However, at very

low flow velocity, the Cheerios effect is sufficient to overcome friction drag

and particle inertia, and both Pi and Pc are expected to approach unity as

U goes to zero (Fig. 2.8).

Inspection of recorded paths, as well as visual observation, allows us to

evaluate the frequency of occurrence of the different mechanisms responsi-
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ble for permanent capture events, at different flow velocity and vegetation

density. Fig. 2.9a shows that the Cheerios effect is effective only at slow

flow velocity whereas the net trapping mechanism, enhanced by the Chee-

rios effect, is by far the most frequent permanent capture mechanism also at

moderately slow flow velocity. We also observe that, at slow flow velocity,

a small fraction of permanent captures (≈ 5%) occurs because particles get

stuck to the channel wall through the Cheerios effect. In fact, near the wall

the velocity is very small and the drag force is not sufficient to re-entrain

particles into the main flow. These events are not included in the present

analysis. Fig. 2.9b compares the efficiency of the different permanent cap-

ture mechanisms at different vegetation densities. No evident trend can be

observed further confirming that particle-vegetation interaction process is a

local one, marginally affected by vegetation pattern and density.

For each particle run we also compute the mean particle velocity uX =

X/tX , tX being the time required for a particle to travel the whole path

length, X. The mean particle velocity is distributed according to a bimodal

probability density function (Fig. 2.10) thus reinforcing the idea that the

diffusion process is governed by two, dramatically different time scales. Note

that the number of temporary trapping events ≈ λPi/∆s− 1 is, on average,

less than two in the present experiments. Moreover, since PS = 1 − PL =

0.7 ∼ 0.9, most of the events are short time captures, whereas in the few

remaining events particles experience (at least) one long time trapping event,

characterized by a mean retention time TL = 70 ∼ 90 s which is much longer

than the time a particle takes to travel its trajectory when only short time

trapping events occur. This is the reason why the mean particle velocity

uX is extremely slow when one (or, less frequently, more than one) long

time interaction event occurs, whereas in the absence of long retention time

events the mean velocity uX is just smaller than the bulk flow velocity.

Fig. 2.10 also shows that the second peak is skewed to the left indicating
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that the diffusion process is not Gaussian even excluding long time trapping

events.
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Figure 2.10: Probability density function of mean particle velocity uX for np = 86.7

plants/m2 and different bulk flow velocities. Inset: plot of average mean particle

velocity, UX versus bulk flow velocity, U .

2.4 Arrival time distribution

Using video-recorded paths (experiments A3 and experiments of set B), we

also determine the time Ta spent by particles to reach some fixed cross

sections and we use these data to construct the cumulative arrival time dis-

tributions. The experimental results are compared to the model predictions

in Fig. 2.11.

Importantly, the values for the model parameters are not determined

through a calibration procedure. In fact, probability PL, and mean reten-

tion times TS and TL, whose values are given in Table 2.2, are determined

through a best-fitting regression procedure on the measured retention times;

probabilities Pi and Pc have been determined as discussed in the previous
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sections (see Eq. 2.7 and Eq. 2.2).
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Figure 2.11: Cumulative arrival time distributions: comparison between experi-

mental results (symbols) and model predictions (full line).

The velocity U0 is the only parameter we adjust in order to fit the ex-

perimental data. We observe that in the present experiments (as well as

in the experiments in the Section 1.1) the assessed velocity U0 is, on aver-

age, just slightly greater than the bulk flow velocity, and that the difference
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U0 − U decreases with increasing of U (see Table 2.3). We speculate that

the relatively large surface velocity U0 at slow bulk flow velocity is mainly

determined by the experimental arrangement.

In fact, at the downstream end of the flume is a weir that concentrates

the flow at the free surface; this high velocity layer slowly grows upstream

and expands over the whole flow depth.

However the distance upstream from the weir required for a significant

vertical mixing is relatively large and increases with decreasing bulk flow

velocity.

Indeed, the presence of this high velocity surface layer is possibly the

reason why, at low bulk flow velocity, particle velocity ux in Fig. 2.10

extends well beyond U .

Fig. 2.12 compares the model predictions to the experimental results for

experiments A3 and B1 characterized by the same bulk flow velocity of 0.033

m/s and different vegetation density. The cumulative arrival time distribu-

tions are computed and measured at the same non dimensional positions

x/∆s so that, according to the model, the shape of the curves should be

exactly the same. However, since the absolute position x of the monitored

cross sections are different (see Fig. 2.12), data of experiments B1 are ac-

cordingly delayed in time. Experimental data of the two series actually do

not overlap perfectly: the sharply rising limb of the curves for experiments

A3 have a smaller inclination. This is possibly due to turbulent diffusion

which acts over the greater absolute distances travelled by particles in this

case.

The comparison shown in Figs. 2.11 and 2.12 indeed serves to provide an

indication of whether or not the model includes all the relevant mechanisms

responsible for the observed particle dispersion. Therefore, in judging the

results one should keep in mind that the computed straight rising limb of

the cumulative arrival time distributions, particularly evident in Fig. 2.11a
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Figure 2.12: Cumulative arrival time distributions: comparison between model

predictions (full line) and experimental results for experiments B1 (open symbols)

and A3 (full symbols).

and Fig. 2.11c, is determined by particles that reach the monitored cross

sections without interacting at all with the vegetation. The comparison

could be largely improved by introducing in the model a weak turbulent

diffusion, with a diffusion coefficient of the order of 10−4 m2/s. Moreover,

the model retention time should include the delay due particle acceleration

after the sharp slowdown determined by an interaction event (see fig. 1.8)

whereas TS and TL given in Table 2.1 are the mean time intervals a particle

actually spends at rest. Finally, the average number of interaction events

experienced by particles in each run is small and the experimental paths

cannot be safely regarded as realizations of a purely random process. At low

flow velocity (U=0.033 m/s and U=0.050 m/s) and np=86.67 plants/m2, the

mean path length λ=0.22 ∼0.28 m is comparably small to the mean centre-

to-centre spacing between plants of 0.11 m. Therefore, the experimental

arrival time data are not statistically suitable enough to unambiguously

serve as a basis for a definitive comparison with the model predictions.

Indeed, the discrepancies shown in Fig. 2.11 can be partly ascribed to the

irregular morphology of the plants (see Fig. 2.3).
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In view of these considerations, we can say that model predictions com-

pare favorably with experimental observations, and that the model actually

includes, and correctly describes, all the relevant aspects of the investigated

diffusion process.
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Chapter 3

Floating particles through

emergent cylinders

In the previous experiments described in Section 1.1 we observed the dis-

persion of floating particles (buoyant seeds) in vegetated open channel flow.

The fate of these seeds within a region of vegetation is mainly controlled by

the flow velocity, as shown in Section 2.3, and by the efficiency of a variety of

seed-plant interaction mechanisms that trap the seeds; the main mechanisms

responsible for temporary or permanent trapping of particles observed are:

i) inertial impaction, which occurs when a particle deviates from a stream-

line because of its inertia and collides with a stem; ii) wake trapping, which

occurs when a particle enters the unsteady recirculation zone behind a plant,

iii) trapping due to surface tension, i.e. the Cheerios effect, in which float-

ing particles are attracted towards stems by the rising meniscus and iv) net

trapping, which occurs where leaves and/or stems overlap enough to form a

netlike structure that intercepts the floating particle.

In particular the last two mechanisms have a strong influence on trapping

and on diffusion of floating particles. When the mean gap between leaves

or stems is comparable to the particle size, then net trapping is the most

efficient trapping mechanism (see Section 2.3). Alternatively, when the mean
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gap between plant elements is large compared to the particle size, and flow

velocity is moderately slow, then the Cheerios effect is the main, if not the

only, mechanism impacting seed propagation, capture and diffusion. The

present chapter considers the latter flow condition and develops a physically-

based model to predict the impact of surface tension (the Cheerios effect)

on the fate of floating particles within a region of emergent vegetation.

Because of it is difficult to distinguish the trapping due to capillarity

from trapping due to the net trapping when we use plastic plants, we in-

vestigate the issue adopting rigid dowels to mimic vegetation. Since the

capillary force is easily evaluable given the geometry and the characteristics

of both the particles and the cylinders, a dynamics approach of the problem

is encouraged. In particular the effects of the flow velocity on the probability

of capture, Pc, and the efficiency of capture of the cylindrical collector are

estimated by solving equations that govern the dynamics of floating particle

motion. In this work two approaches are developed: i) a numerical study

focused on the comparison between the efficiency of capture considering only

inertial impaction and inertial impaction and the Cheerios effect, and ii) a

theoretical scheme validated by experimental data collected at the Parsons

Lab of the Massachusetts Institute of Technology.

3.1 Efficiency of capture of isolated cylinder at low

Reynolds number

Some studies describe the capture mechanisms of particles in suspension by

a cylindrical collector that mimics vegetation [Rubestein and Kohel, 1977;

Shimeta and Jumars, 1991; and Palmer et al., 2004]. Originally aerosol

filtration mechanisms for particles in suspension have been applied to fresh-

water [Silvester and Sleigh, 1984; La Barbera, 1984, and Brandon and Ag-

garwal ; 2001]. Specifically the scheme of direct interception to define the

50



3.1. EFFICIENCY OF CAPTURE OF ISOLATED CYLINDER AT LOW

REYNOLDS NUMBER

rate of encounter between suspended particles and a cylindrical collector

was adopted for sediment and organic matter, e.g. plankton [Gibbs, 1985;

and Jackson, 1989], larvae [Butman, 1986] and marine snow [Alldredge and

Gotschalk, 1988]. The efficiency of capture by direct interception, which is

recognized to be the most common encounter mechanism, underestimates

the real efficiency observed in these cases for Re ≤ 10; because others key

mechanisms, i.e. inertial impaction and gravitational deposition, have the

capture efficiency of the same direct interception order of magnitude, while

capture due to diffusion deposition are greater of two orders of magnitude

[Shimeta and Jumars, 1991].

On the contrary extensive studies focusing on the capture of floating

particles are lacking. The capture of floating particles is further affected by

the capillary force rising by the free surface deformation [Kralchevsky and

Denkov, 2001]. The motion of small floating objects due to these forces is

affectionately dubbed the ”Cheerios effect” and in nature this phenomenon

allow the motion of larvae and arthropods on the water surface [Bush et

al., 2007], moreover capillarity could be relevant also in the industry to

lead the formation of the aggregate in order to simplify the manufacture

of components of micro-electromechanical system [Vella and Mahadeven,

2005].

In wetlands and riparian communities the Cheerios effect plays an fun-

damental role in the hydrochory since it affects seed, propagulae, as well

as lipid eggs and larvae diffusion and their trapping by plants as shown in

the sections 1.1 and 2.3 through their emergent structures, like water reeds

(∼ 10 mm), plant stems (∼ 1 mm) or small hairs (∼ 0.1− 0.01 mm).

The aim of the present Section is investigate how the efficiency of capture

changes with stem diameter and particle size at low to moderate Reynolds

number (Re ≤ 10).
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3.1.1 Dynamics of interaction particle-cylinder

To determine the capture efficiency we compute the trajectories of small

floating particles (dp ≤ 1 mm) transported by the flow in the presence of

one emergent cylinder (see Fig. 3.1). The particle dynamics is governed

by the B.B.O. (Basset-Boussinesq-Oseen) equation [Umeda and Yang, 1991]

modified to include the attractive force due to capillarity:

(

ρr + β

ρ

)

dũp

dt̃
=

3πCd

4ρrL̃p

Ũ

∣

∣

∣
Ũ

∣

∣

∣
+

(

1 + β

ρ

)

dũf

dt̃
+

6Ãp(πν̃)
1/2

4ρrL̃p

·

·
∫ t̃

0

dŨ/dt̃′

(t̃− t̃′)1/2
dt̃′ − 3Fc(r̃)

4πρ̃pd̃3p
(3.1)

here ρr is the relative density of the particle given as the ratio of the particle

density ρ̃p to the water density ρ̃, β is geometric coefficient varying with ρr

and with the shape of particle (for sphere β =
D̃rÃp

3Ṽp
where D̃r is the particle

draft, Ãp is the waterline area and Ṽp the total volume of the particle).

Ũ = ũf − ũp is the difference between fluid (ũf ) and particle velocity (ũp),

CD is the drag coefficient, L̃p is the waterline perimeter, ν̃ is the kinematic

viscosity of water, dp is the particle diameter, Fc(r̃) is the capillarity force

in the radial direction nr:

Fc(r̃) = −πd̃pd̃cσ̃
2l̃c

sin(α+ ψp) sin(ψp) sin(ψc)K1

(

r̃/l̃c

)

· nr (3.2)

here d̃c is the cylinder diameter, l̃c is the capillary length, σ̃ is the surface

tension, and K1(x) is the first order modified Bessel function. The distance

r̃, the contact angle α and the meniscus slopes ψp and ψc are defined in

Fig. 3.1a [Dushkin et al., 1996]. The superscript tildes indicate dimensional

variables.

The meniscus angle at contact line of the cylinder ψc is related to the

contact angle as ψc + αc = π/2. The meniscus angle at contact line of the
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particle ψp is estimated by the dynamic analysis of vertical force acting on

a floating hydrophilic sphere, as (see Appendix D) [Joseph et al., 2001; and

Kralchevsky and Nagayama, 2000]

sin(α+ ψp) sin(ψp) +Bo

[

ρr
6

− 2 + 3 cos(α+ ψp)− cos3(α+ ψp)

24
+

+
sin3(α+ ψp) sin(ψp)K0

(

d̃p
2l̃c

sin(α+ ψp)
)

8

]

= 0 (3.3)

where Bo = ρ̃gd̃2p/σ̃ is the Bond number of the particle, and K0(x) is the

modified Bessel function of order zero. The leftmost term is the vertical

contribution of the surface tension; the terms inside the square brackets

describe, from left to right, the gravitational force on the sphere, the pressure

contribution (i.e. Archimedean force) and the reduction of buoyancy due to

the depression generated by the rising of meniscus around the sphere.

In Eq. 3.1 the first term on the right hand side is the drag term (Fd), the

second one is the added mass, and third term (the memory term) represents

the force associated with past movements of the particle. Eq. 3.1 can be

rearranged to read:

dup

dt
=

3 |U|
4(ρr + β)R

[

24

Re |U|R +
6

√

Re |U|R
+ 0.4

]

U+

− 3

We · R2
sin(α+ ψp) sin(ψp) sin(ψc)K1(r) · nr (3.4)

where R = dp/dc with dp = d̃p/l̃c and dc = d̃c/l̃c, Re = d̃c · ũ0/ν̃ is the

Reynolds number andWe = ρ̃ · d̃c · ũ20/σ̃ is the Weber number. All velocities

are nondimensionalized by ũ0 and the time by d̃c/ũ0. In eq. 3.4 the added

mass term and the memory term are neglected since the Stokes number

S = R2 · ρr ·Re/18 is small enough [Barton, 1995] and the term between

square brackets is an approximation of the drag coefficient for Re <2· 105

(White, 1991).
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To solve Equation 3.4 we need to reconstruct the flow field generated by

the presence of one emergent cylinder in an otherwise uniform open channel

flow. To solve this problem we use the computational fluid dynamics code

using finite elements method, COMSOL multiphysics.

Once the velocity pattern is computed, Eq. 3.4 is solved numerically by

a backward Euler scheme (see Appendix E).

3.1.2 Numerical investigations

Particle trajectories are controlled by a large number of variables (Re, We,

Bo, R, ρr, α and ψc). In the simulations we assumed the fluid to be water

(i.e ρ̃ =1000 kg/m3, ν̃ =10−6 m2/s, l̃c ≈ 2.7 mm for water and σ̃ ≈ 0.073

N/m) and computed the efficiency of capture as it is affected by flow velocity,

cylinder diameter, and particle size and density.

An example of particle trajectory for dc=1.0, dp=0.1, ρr=0.7 and Re=1

is given in Figure 3.1b. Trajectories of particles starting upstream from the

cylinder, along the segment b, cover the area hatched with gray in Fig. 3.1b.

Particles that follow these trajectories all go stuck against the cylinder and

are captured. Differently from the case of direct interception of suspended

particles, the backside portion of the collector also contains stuck particles

and contributes to enhance the efficiency of capture defined as η = b/dc

[Palmer et al., 2004]. Particles that start outside the segment b, follow

trajectories that lie outside the hatched area and are not captured.

Fig 3.2 shows how the efficiency of capture due to direct interception

ηD and the total efficiency η which includes the Cheerios effect, vary with

Reynolds number, when the particle and cylinder diameters are leaved un-

changed (R=0.1). We observe that ηD increases with Re, i.e., with flow

velocity: this behavior is promoted by the streamlines that pass closer to

the cylinder, thus promoting the particle trajectories which impact to the

cylinder. Moreover, since the cylinder diameter is relatively large, ηD turns

54



3.1. EFFICIENCY OF CAPTURE OF ISOLATED CYLINDER AT LOW

REYNOLDS NUMBER

ψi

α
σ

ψc

σ
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Figure 3.1: a) The definition of menisci and contact angle. b) Floating particle

trajectories in the presence of a cylinder (Re=1, dc=1.0, dp=0.1, ρr=0.7, ψc =

80◦, and α = 60◦). In all cases the particles is accelerated by capillarity as they

approach the cylinder ( Rep is the Reynolds number of the relative motion of the

particle with respect to the flow).

out to be negligibly small compared to the total efficiency. In this case,

efficiency is primarily controlled by the ratio of inertia to capillarity which

increases with flow velocity (We ∝ Re2), and only particles which flow close

to the cylinder can be captured.

We then study how the efficiency vary with cylinder diameter and par-

ticle size and density for a given Reynolds number; in this case We ∝ 1/dc.

Fig. 3.3.a shows the capture efficiency as a function of cylinder diameter for

a given particle size.

To explain the behavior we consider a particle trajectory which starts at

a given distance δ (δ/dc=const.) in the transverse direction (see fig. 3.3.c).
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Figure 3.2: The efficiency of capture η as function of Re for three different particles

densities (full lines with symbols). The dashed line is the efficiency of capture ηD

due to direct interception [Palmer et al., 2004]. In the computations we used

dc = 1.0, dp = 0.1, ψc = 80◦, and α = 60◦.

For very small dc (dc <0.2 in fig 3.3a) the particle is strongly attracted

toward the cylinder by the capillary force, in fact its distance r is small

(fig. 3.3c1). However, We is very large and inertia turns out to be much

greater than capillary force. For this reason the efficiency of capillary force

is negligibly small.

For moderately small cylinder diameter (Fig. 3.3c2), capillary force is

much stronger and, although the distance r of the particle from the cylinder

is relatively large, the attractive force due to capillarity is large compared

to inertia and the capture efficiency is enhanced.

For relatively large cylinder diameter (fig. 3.3c3), capillarity force is

further increased, inertia is relatively small, however the particle distance r

is very large so that the attraction force, controlled by K1(r), is relatively

weak at this large distance.

On the whole, the efficiency determined by solely the capillarity attrac-

tion is negligibly small at very small and large cylinder diameter and exhibit
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a maximum at intermediate cylinder size. However, the total efficiency in-

cludes inertia impaction and direct interception which are large at very small

dc and decreases with increasing dc (fig. 3.3a). The combination of all these

capture mechanisms then determines the behavior shown in Fig. 3.3.
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Figure 3.3: Efficiency of capture η as function of dc for Re = 1 and ψc=5◦: a) effi-

ciency for three different values of particle density and dp=0.1, α=60◦; the dashed

line gives the efficiency of solely direct interception; b) efficiency for three differ-

ent values of particle diameter and ρr=0.5, α=60◦; c) particle-cylinder interaction

characteristics for very small (upper panel), moderately small (middle panel) and

large (lower panel) cylinder diameter.

It is worth noting that the most common mechanisms of encounter for

suspended particles, i.e., direct interception and inertial impaction, signifi-
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cantly underestimate the actual efficiency when particles are floating.

Particle density (ρr) and size (dp) mainly controls the intensity of effi-

ciency through affecting the inertia. By reducing the density of lighter than

water particles (ρr <1) inertia decreases and the capillarity force increases.

The latter is because, by reducing of ρr, the meniscus angle at contact line ψp

increases significantly (see eq. 3.3). Therefore, on the whole, the efficiency

η decreases with ρr (Fig. 3.3a).

On the contrary, by increasing particle size, inertia increases but also

capillary force increases, due the increase of the meniscus angle at the con-

tact line ψp. Since the increase of capillary force is stronger than that of

inertia, on the whole, and to some extent counter-intuitively, the efficiency

of capture η increases with particle size (fig. 3.3b).

We can summarize the above discussion stating that capture efficiency is

basically governed by the relation between inertia and capillary force. The

same apply when studying the distribution of captured particles along the

cylinder surface.

At very small dc, we see (Fig. 3.3) that capillary force is not effective,

but the efficiency is large because of the large contribution due to direct

impaction. We then expect that captured particles gather in the frontal part

of the cylinder. This is confirmed by the results of the numerical simulations

(Fig. 3.4.1).

For moderately small cylinder diameter, capture efficiency, which is

mainly due to capillarity attraction, attain a maximum (Fig. 3.4). In this

case, particle starting near the ends of segment b in Fig. 3.1, due to the

strong attraction promoted by capillarity, after bypassing the cylinder flow

backward and gets stuck against the back face of the collector (Fig. 3.4.2-3).

Further increasing of cylinder diameter, as previously discussed, reduces

the capture efficiency due to capillarity and the probability a particle gets

stuck in the rear of the cylinder decreases (Fig. 3.4.4-5). On the whole, the
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larger the efficiency the more uniform the distribution of particles along the

cylinder surface.

Therefore, uniformity in the distribution of stuck particles along the

cylinder surface is actually a measure of the capture efficiency. Interestingly,

the more uniform the distribution of particles along the cylinder surface the

more room is available to particles for getting stuck, and more particles are

actually captured by the collector.
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Figure 3.4: Variance of the angular distribution of captured particles as a function

of cylinder diameter for the three different particle sizes shown in fig. 3.3b (Re=1,

ψc=5◦, ρr=0.5 and α=60◦). In the scheme 1-5 frequency of capture around the

collector of the particle with dp=0.3 for five different cylinder size dc.
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3.2 The capillary trapping of buoyant particles flow-

ing through an array of cylinders

The model shown in the previous section is an effective tool to evaluate the

capture of floating particle by a cylindrical collector. However the numer-

ical solution adopted is not straightforward in the presence of an array of

cylinders and for large Reynolds number (Re>10). In this case i) we need to

average the efficiency in time because of the unsteady flow condition due to

the vortex shedding at downstream of the cylinder; ii) cylinders induced a

strong turbulence within the canopy and the computational cost to solve the

hydrodynamics of the problem increases; and iii) the model cannot describe

the fate of a particle after it collides with the cylinder. Therefore, although

the use of the proposed numerical model can be extended above Re=10, the

devices required for the solution need to be improve.

In this section, we propose a theoretical scheme based on a kinematic

approach and validate the scheme through experimental investigations at

moderate Reynolds number. The aim of this study is model the particle-

cylinder interaction processes and permanent capture observed when the

effects of capillarity prevails on other interaction mechanisms.

3.2.1 kinematic model to predict particle trapping

The emergent vegetation is simulated as an array of randomly-arranged

cylinders, with diameter dc. The array density is given by the cylinders per

unit area, nc. The cylinder spacing is assumed to be far greater than the

particle size, which eliminates net trapping, i.e. the trapping of particles

between a pair of cylinders. In this case the capture of floating particles by

the cylinders is dominated by inertial impaction [Palmer et al., 2004] and

by the attraction due to the surface tension (i.e., the Cheerios effect).

As a particle advects through the array of cylinders, it passes, on average,
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one cylinder within each longitudinal distance, ∆s = (ncdc)
−1, as shown in

Section 2.2. As each cylinder is passed, the particle has some probably of

colliding with it, Pi, so that on average a particle will interact (collide) with

a cylinder once per distance is

∆Si =
∆s

Pi
=

1

nc · dc · Pi
(3.5)

Except for the extreme cases (i.e. for high cylinder density or very

low flow velocity) we expect that the probability Pi does not depend on n.

Preliminary experiments, discussed in Section 3.2.2, confirm this.

Observations have shown that particles may collide (interact) with sev-

eral cylinders, before being captured by, i.e. permanently attaching to, a

specific cylinder (as in the experiments in Chapters 1 and 2). Based on this,

we separately define the process of interaction (collision followed by release)

and the process of capture (permanent trapping).

Following Eq. 1.2, we define the probability P (X > L) that a particle

travels a distance X greater than L before being captured, as:

P (X > L) = (1− Pc)
Ni (3.6)

where Pc is the capture probability (i.e., the probability that a particle,

which interacts with a cylinder, is permanently captured), and Ni in the

number of interactions between a particle and the cylinders within the dis-

tance L, which we approximate as Ni = L/∆si. We can rewrite Eq. 3.6

as

P (X > L) = e−L/λ (3.7)

in which

λ = − ∆Si
ln(1− Pc)

(3.8)
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is the mean distance travelled by a particle before it is permanently captured.

In order to estimate Pi, and thus ∆si, we consider the trajectory of

individual particles as they pass an individual cylinder (Fig. 3.5). For

example, to describe inertial impaction, previous authors assumed that the

particle trajectory was set by the fluid drag and particle inertia. A set of

trajectories associated with these assumptions is shown in Fig. 3.5a. The

length-scale b is the distance between the outermost trajectories, relative to

the centerline, that lead to collision. Geometrically, Pi = b/d (Fig. 3.5).

Models to predict b, and thus Pi, for inertial impaction are described in

Shimeta and Jumars (1991) and Palmer et al. (2004).

However, in this section we focus on floating particles at low flow velocity,

for which the acceleration promoted by surface tension (i.e. Cheerios effect)

can be important, drawing particles towards the cylinder from distances

greater than d. An example of trajectories for surface particles influenced

by surface tension is shown in Fig. 3.5b. Because it is possible for b > d as

shown in Section 3.1.2, the probability of collision Pi can be greater than one.

While this sounds contradictory, it is physically sound. It characterizes the

fact that the influence of surface tension can generate more frequent cylinder

collisions than would be predicted from the mean spacing, i.e. ∆si < ∆s.

In the next section we develop a model to predict b, and thus Pi, for floating

particles influenced by surface tension (Fig. 3.5, lower panel).

Theoretical prediction of Pi for floating particles under the influ-

ence of surface tension

The Cheerios effect is influenced by the relative importance of inertial forces

and surface tension. However, these two forces act on the particle in different

directions, so that Pi cannot be parameterized simply by the ratio of the

force magnitudes. Instead, we use a kinematic approach for defining Pi.

For this description x and z are the streamwise and transverse coordinate
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a

db
U

b
U d

b

Figure 3.5: Definition sketch for the probability of particle collision (interaction)

with a cylinder of diameter d. Solid lines indicate particle trajectories that lead to

collision. The outermost trajectories that lead to collision are separated by distance

b. The collision probability is Pi = b/d. a) inertial impaction occurs when the forces

of drag and inertia dominate the particle trajectory approaching the cylinder. b)

For floating particles, the Cheerios effect adds to inertia and drag in controlling the

particle trajectory. The definition of b for this case is developed below.
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directions, respectively (Fig. 3.6). We define a square area of influence,

centered at the cylinder, whose edge is the capillary length, now defined as

1/q, and we assume that a particle crossing this area is attracted toward the

cylinder through the Cheerios effect. If we assume that the particles move,

on average, at the bulk velocity U , then, on average, a particle will spend

time Tq = βq/(qU), within the zone of influence. We introduce the scale

constant βq to account for the assumption of a square zone of influence,

when in fact the meniscus is distributed radially around the cylinder. Tq

is also the time available for the Cheerios effect to draw a particle to the

cylinder, before it leaves the influence of the cylinder. From this time-scale

we can estimate the maximum distance from the cylinder, H0, from which

a particle can be drawn to collide with the cylinder by the action of surface

tension (see Fig. 3.6).

This maximum distance corresponds to b/2 of Fig. 3.5, i.e., b = 2H0 and

Pi = 2H0/d (3.9)

The distance H0 is computed, as a first approximation, by assuming

that only the capillary force acts on both the particle and the cylinder. The

particle is assumed to be spherical. The capillary force, Fc, given by Eq. 3.2

is rewritten as

Fc = −π
2
· dp · dc · q · σ · sin(α+ ψp) sin(ψp) sin(ψc)K1(qz) (3.10)

with respect to eq. 3.2 dimensional variables are written without tilde and

z is the transverse distance of the particle from the cylinder.

The following differential equation governs the particle position, z,

d2(qz)

dt2
= cK1(qz) (3.11)

with
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H0 

1/q 

cylinder 

particle
trajectory 

z 

1/2q 

U

Figure 3.6: A particle trajectory influenced by surface tension and which leads to

collision with the cylinder. H0 represents the maximum distance from the cylinder

from which a particle can be drawn to collide with the cylinder by the action of

surface tension.

c =
3dcσq

2

ρpdp
2

sin(α+ ψp) sin(ψp) sin(ψc) (3.12)

We assume that the particle starts from rest at position z = Ho, i.e.

boundary conditions

t = 0











z = H0

dz/dt = 0

(3.13)

The solution to Eq. 3.13 is approximated as

qz =
√

(qH0)2 − c(qH0)−2t2 (3.14)

The maximum distance, H0, will be that associated with the maximum

time available for lateral transport driven by surface tension, that is Tq. For

simplicity, we assume that the particle collides with the cylinder at z = 0.

Then, setting z = 0 and t = Tq, we solve eq. 3.14 for H0

H2

0 = βq

√
c

Uq3
(3.15)

Using Eqs. 3.9, 3.12 and 3.15 we find
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Pi =
2H0

dc
=

2
√

βq

dcq
√
U

[

3dcσ

ρpd2p

]1/4

[sin(α+ ψp) sin(ψp) sin(ψc)]
1/4 (3.16)

Since We = ρ ·dc ·U2/σ is the Weber number, Eq. 3.16 can be rewritten

as

Pi =
β

dcqWe1/4

√

dc
dp

(

ρ

ρp

)1/4

[sin(α+ ψp) sin(ψp) sin(ψc)]
1/4 (3.17)

where β = 31/42
√

βq . Experiments described in Section 3.2.2 suggest

β=2.46, such that βq=0.87, which is close to unity, as expected.

Capture probability Pc

After a particle collides with a cylinder, it may become permanently at-

tached, or it may be pulled away from the cylinder by the action of fluid

drag. The probability of remaining permanently attached, Pc, depends on

the ratio between the capillary force acting when the particle is stuck to the

cylinder and the drag force due to the local mean flow, to turbulence and to

vortex shedding. We assume that this drag force Fd, is proportional to the

bulk velocity, U .

Fd = kdCdρApU
2 (3.18)

where kd is a scale factor, Ap is the particle area invested by the flow and

Cd is the particle drag coefficient.

When the ratio of capillary force (Eq. 3.10) to drag force (Eq. 3.18) is

large, the particle remains attached to the cylinder, i.e. Pc=1.0. We define

Ecr as the critical value of this force ratio above for which the probability

of capture become unity, Pc=1 i.e.,
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Ecr =
Fc

Fd

∣

∣

∣

∣

Pc=1

= −π
2

dpdcσq

kdCdρApU2
e

sin(α+ψp) sin(ψp) sin(ψc)K1

(

q
dp + dc

2

)

(3.19)

in which we define Ue as the escape velocity, i.e. the velocity above which

particles may escape from the cylinder. We introduce the shape factor, kp,

such that Ap = kpd
2
p, then rearrange Eq. 3.19 to describe the escape velocity,

to

U2

e = βe
dc
dp

σq/ρ

kpCd
sin(α+ ψp) sin(ψp) sin(ψc)K1

(

q
dp + dc

2

)

(3.20)

with

βe =
π

2Ecrkd
(3.21)

which we will use as a calibration parameter. Experimental investigations

described and discussed in Section 3.1.2 suggest βe=1.26.

The escape velocity Ue is the scale velocity of the problem. When U ≤ Ue

the capillary force is greater than drag forces no matter the position (with

respect to the mean flow) at which the particle is stuck to the cylinder,

therefore the probability of permanent capture is Pc = 1. When U > Ue,

drag forces may locally and temporarily exceed the attraction force due to

capillarity, and the particle may escape from the cylinder. Increasing of the

ratio U/Ue reduces the probability Pc.

The measurements, discussed below, suggest that the probability of cap-

ture Pc decays exponentially with U/Ue, specifically

Pc =











1 U/Ue ≤ 1

e1−U/Ue U/Ue > 1

(3.22)

From the models developed above we can now predict the following from

the particle characteristics (dp), the cylinder diameter (dc), the stem density
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(nc), and the bulk flow velocity, U : i) the the mean spacing between two

interactions ∆si from Eqs. 3.5 and 3.17, ii) the escape velocity Ue from Eq

3.20, the capture probability Pc from Eq. 3.22, iii) the mean distance a

particle travels before it is permanently captured, λ, from Eq. 3.7, and iv)

the path length distribution P (X > L) from Eq. 3.6. In the next section

we use experimental observations to evaluate the two model parameters,

β=2.46 and βe=1.26.

3.2.2 Experimental results

To cover a wider range of flow conditions, two flumes are used in this inves-

tigation. The small flume has a channel width of 40 cm and length of 2.8 m,

the large flume has a width of 120 cm and length of 13 m. In both flumes

the water is recirculated by a pump that maintains steady flow. Both flumes

have a fixed horizontal bottom, and the water depth can be adjusted by a

downstream weir. In the small flume the bulk flow velocity U is measured

with an ADV (U is averaged over 33 points per cross section), while in the

large flume U was estimated through a calibrated relationship between the

pump frequency and the flow rate. The bulk velocity was varied between

0.7 and 5.0 cm/s. Seven of the velocity experiments were carried out in the

small flume (0.007-0.032 m/s), while higher velocity experiments (U = 0.04

and U = 0.05 m/s) were carried out in the large flume. In both flumes,

a random array of cylinders was constructed on three boards to create a

total test section length of 1.80 m. The array filled the flume width. We

constructed six different arrays, with nc = 299 m−2 to 1780 m−2. . The

cylinders used in the experiments are wooden dowels with a diameter dc of

6.0 mm, fitted into holes drilled into the boards.

The model floating particles were cut from wood cylinders to have equal

diameter and height of 3 mm. The relative density was ≈0.7. These are the

same as particle C used in the experiments shown in Chapter 2.
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Figure 3.7: Trapping of floating wood cylinders (particle C) by emergent dowels

array by the Cheerios effect.

In the experiments, we release one particle at a time just upstream of the

test section and at random positions in the transverse direction. For each ex-

periment we released 200 particles. We observed the particle trajectory and

measured the distance travelled by each particle before it was permanently

captured by a cylinder. We assumed a particle was permanently captured

if it stayed stuck to one cylinder for more than 10 min, a time interval that

was more than one order of magnitude longer than than the mean time a

particle took to travel the whole test section (see Fig. 3.7).

We first consider the impact of cylinder density, nc, while holding the

bulk velocity constant (U=2.5 cm/s). In all cases the exponential distri-

bution given by Eq. 3.6 could be fit to experimental data with R2 >0.95.

From this fit we extracted the mean path length, λ, for each stem density.

From our theory, we expected that λ would have a dependence on the stem

spacing, ∆s = (ncdc)
−1. This relationship is observed in the measured (Fig.

3.8). The data indicate a constant relationship between λ and n−1
c , specif-

ically λ = 230/nc for the present data (Figure 3.8, black circles). Since nc

is a constant, from Eqs. 3.1 and 3.3 together, we can infer that the product
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Piln(1 − Pc) is also a constant. Consistent with the derivation above, we

expect that the probability Pc is only a function of the flow near an individ-

ual cylinder, and that it does not depend on cylinder density, nc. Then, Pi

must also be independent of nc.
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Figure 3.8: Mean path length as a function 1/nc. Present experimental results

(black circles aligned along the curve λ = 230/nc); experimental results in Section

2.2 with particle C and U=0.033 m/s (white circles, λ = 3600/nc); and (half-full

symbols) experimental data for Nasturtium (λ = 3.5 · 104/nc) and Sunflower seeds

(λ = 1.5 · 104/nc) [Chambert and James, 2009].

Further experiments were carried out with the aim of investigating how

the model parameters change with the bulk flow velocity, U . The distance

travelled by 200 particles is measured for nc=968 m−2 and nine different
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flow velocities (see Tab. 3.1). In each case, the probability distribution

of distances traveled by a particle before permanent capture followed an

exponential law with R2 >0.95, except for the data with U=0.040 m/s

where, possibly because of the presence of a weak transverse seiche in the

channel, the determination coefficient was lower (R2=0.90), but still highly

significant. Again, the exponential fit was used to determine the mean path

length, λ, and to observe how this parameter varied with bulk flow velocity

(see Tab. 3.1).

Using the set of nine (U , λ) pairs, we calibrated the model parameters

β and βe. First, we used the following trial and error procedure to find

β. We fixed a tentative value for β and used it to compute the probability

of interaction, Pi, from Eq. 3.17, which in turn is used to find the mean

spacing between interactions ∆si from Eqs. 3.5 and 3.17. Together with

the observed λ, we find the capture probability Pc from Eq. 3.8. With nine

pairs of (Pc, U), we find Ue by fitting Eq. 3.22. The value for β is then tuned

to until we find the best fit to Eq. 3.22. Second, using the best-fit value for

β, βe is computed from Eq. 3.20. In this computation we used dp=0.003 m,

ρr= 0.7 and the contact angles α = 60◦ and αc = 55◦ for the particles and

the cylinder, respectively. We computed ψp=1.55◦ (see Appendix D) and

ψc= 90◦ - αc = 35◦. Through this procedure we find β=2.46 and βe=1.26.

With these values, the interaction probability Pi, the mean spacing ∆si,

and the probability Pc are computed as given in Tab. 3.1. The comparison

between computed (Eq. 3.22) and measured values for the probability Pc is

shown in Fig. 3.9, where the escape velocity, from Eq. 3.20, is Ue=0.013

m/s.

We now can use experimental results provided in Sections 1.3 and 2.3,

and by Chambert and James [2009] to validate the model. These cases

consider particle sizes and stem diameters which are different from those in

the present study.
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Figure 3.9: Comparison between theoretical and experimental probability of cap-

ture as it varies with U/Ue. The capture probability is plotted both in natural scale

(upper panel) and logarithmic scale (lower panel).

72



3.2. THE CAPILLARY TRAPPING OF BUOYANT PARTICLES FLOWING

THROUGH AN ARRAY OF CYLINDERS

Table 3.1: Summary of present experimental data and model parameters.

U (m/s) We (·102) Re Pi ∆si (m) λ (m) Pc

0.007 0.403 42 2.32 0.074 0.021 0.971

0.009 0.666 54 2.05 0.084 0.025 0.965

0.017 2.380 102 1.49 0.116 0.086 0.739

0.020 3.290 120 1.37 0.125 0.110 0.680

0.025 5.140 150 1.23 0.140 0.234 0.451

0.028 6.440 168 1.16 0.148 0.353 0.343

0.032 8.420 192 1.09 0.159 0.642 0.219

0.040 13.200 240 0.97 0.177 1.357 0.122

0.050 20.500 300 0.87 0.198 3.549 0.054

Here, we tentatively assume that each leaf piercing the free surface in the

plastic plants used in the previous chapters can be represented as a cylinder

having a diameter of 2 mm, which corresponds to the larger dimension of

the leaf, which has an elliptical cross-section. This leaf diameter is smaller

than the particle diameter, dp (see Fig. 2.1).

For particle C, in Section 2.2 showed that the mean path length λ varied

inversely with the number of plants per unit area (Fig. 2.6). Since each

plant had the same number of leaves (i.e. 120), the mean path length also

varies inversely with the number of leaves (i.e., cylinders) per unit area, as

shown in Fig. 3.8.

In the experimental investigation shown in Chapter 1, individual leaves

were, in some places, spaced closely enough to create net trapping, so that

the probability of capture, Pc, measured in those studies reflects both the

net trapping and the trapping associated with the Cheerios effect. The
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theory presented here only accounts for the Cheerios effect, and so we must

isolate that mechanism from the data reported in Section 1.3. We assume

that the probability of capture due solely to the Cheerios effect is given by

the measured total probability of capture (which includes the net trapping

mechanism) times the measured percentage of captures due to the Cheerios

effect, which is reported in Section 2.3. Moreover, for the plastic leaves we

measured a contact angle αc ≈ 30◦ so that ψc = 90◦ - αc ≈ 60◦. Experimental

data as well as the results of the computations are given in Tab. 3.2.

Table 3.2: Summary of experimental conditions shown in Chapters 1 and 2 and

the results of present computations.

particle dp (mm) ρp/ρ α (◦) ψp (
◦) U (m/s) Ue (m/s) Pc

A 2.5 0.95 − − 0.073 − −
A 2.5 0.95 − − 0.081 − −
B 3.7 0.83 35 3.55 0.073 0.020 0.13

C 3.0 0.70 60 1.55 0.033 0.016 0.24

C 3.0 0.70 60 1.55 0.050 0.016 0.16

C 3.0 0.70 60 1.55 0.133 0.016 0.02

The measured values of Pc and U/Ue reported in Tab. 3.2 are included

in Fig. 3.9. The data points collected in the previous experiments are con-

sistent with the model curve (solid line) developed for an array of cylinders.

This agreement is encouraging, especially given the rather different exper-

imental conditions and possible uncertainties, e.g., Spartina leaves are not

cylinders, some of the net-trapping captures may actually have been through

the Cheerios effect, i.e. net trapping may mask some of the captures through

the Cheerios effect. These experimental results suggest that the relationships

proposed to estimate the model parameters when the Cheerios effect is the
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dominant capture mechanism, can be extended, with the due care, to real

plants. In this connection, an allometric study to establish the equivalence

between a real plant and the diameter and density of a group of cylinders

could be of use.

Chambert and James [2009] experiments were conducted in a 20 m long

and 0.38 m wide flume. The model vegetation comprised an array of cylin-

ders with a diameter of 0.006 m, arranged across the full width of the flume

in staggered pattern. The total array length was 1.88 m, and the array

began 1 m downstream from the seed feeder.

Three sets of experiments were carried out with the three different stem

densities and same mean flow velocity, U=0.16 m/s. Five types of natural,

buoyant seeds were used for the experiments: African daisy, Nasturtium,

Rhubarb, Sunflowers and Marigold. The flume was fed with 300 seeds during

4 min, and the flow was stopped after a total duration of 8 min. The number

of seeds retained (i.e., permanently captured) was then counted visually (see

Tab. 3.3).

Table 3.3: Number of captured seeds Nc (out of 300) and mean path length λ

(m) between brackets, for the three different stem densities nc (m−2). The Corey

Shape Factor (CSF ), which measures the seed roundness, is also given as reported

by Chambert [2006].

seed type nc = 431m2 nc = 1251m2 nc = 1681m2 CSF

sunflower 20 (27.2) 44 (11.9) 51 (10.1) 0.43

nasturtium 194 (1.8) 20 (27.2) 215 (1.5) 0.19

african daisy 134 (3.2) 155 (2.6) 162 (2.4) 0.15

rhubarb 137 (3.1) 141 (3.0) 149 (2.7) 0.54

nasturtium 5 (111.9) 21 (25.9) 29 (25.9) 0.87
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The mean path length given in Tab. 3.3 was calculated from Eq.3.3,

specifically

λ = − L

ln(X > L)
(3.23)

where we take L=1.88 m, and P (X > L) is the percentage of non-captured

seeds, i.e., P (X > L) = 1−Nc/300. Please note that the estimation of λ is

rather uncertain, because it uses data for only a single value of L, rather than

a large set of data (P , L) to fit P (X > L), as in the present experiments.

In addition, the experimental procedure adopted by Chambert and James

is different from the present experiments. We follow the trajectory and fate

of one particle at a time, whereas Chambert and James release all the 300

seeds in 4 minutes, allowing the seeds to accumulate within the array. As

a result, when the number of captured seeds is large, seeds released near

the end of the run find little or no room to interact with the cylinders, and

may instead attach, to previously captured seeds (see, e.g., their Figure 14),

forming clusters of seeds within the array. The clustering likely increases

the probability of capture for seeds released later in the run, a behavior

that is not included in the present model. As a consequence the mean path

length λ of the lighter seeds (i.e., African Daisy, Marigold, and Rhubarb),

which are more easily trapped and thus exhibited more clustering, does

not follow 1/nc, as observed in the present study. However, the heavier

seeds, Nasturtium and Sunflower, which did not form clusters, exhibit the

relationship λ ∼ n−1 (Fig. 3.8), consistent with the model developed in this

thesis. We use data for Nasturtium and Sunflowers seeds to compute Pc

as it varies with U/Ue. We assume a contact angle α in the range 15◦-35◦

for Sunflowers seeds, whereas for Nasturtium seeds we measured a contact

angle α=17.5◦. In both cases we assume, for the cylinder, a contact angle

αc=55◦ (i.e. the same contact angle for the cylinders used in the present

experiments). We then compute the meniscus slope angle at the particle
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contact line ψp (see Tab. 3.4), the escape velocity Ue and the interaction

efficiency Pi (see Tab. 3.5).

Table 3.4: Summary of seeds characteristics. The average diameter is computed

as the geometric average of the three orthogonal long d1, intermediate d2 and short

axes d3. The seed density is computed as the ratio of seed mass to the volume of

a sphere having the average diameter. Diameters d1, d2, and d3 and seed mass are

given by Chambert [2006].

seed average mass ρp/ρ ncdcλ α ψp

type diam. (mm) (g/seed) (◦) (◦)

sunflower 6.2 0.0576 0.46 77.44 15− 35 21.0− 29.5

nasturtium 7.0 0.1320 0.73 227.32 12− 19 18.8− 23.5

7.97

rhubarb 4.7 0.0169 0.32 22.22 38− 46 14.7− 16.9

27.62

Combining Eqs. 3.8 with 3.5 we have

ln(1− Pc) = − 1

Pidcncλ
(3.24)

We use dc=0.006 m and the mean experimental value for ncλ (ncλ ≈
3.5·104 m−1 for Nasturtium seeds and ncλ ≈ 1.5·104 m−1 for Sunflowers

seeds) in the above equation to compute the probability of capture Pc (see

Tab. 3.4). The points are plotted in Fig. 3.9, and they compare favor-

ably with the theoretical curve. It is interesting to observe in Tab. 3.5

that the capture probability is not very sensitive to contact angle α so that

uncertainties in evaluating α have a minor impact on the estimation of Pc.

Finally, we also compute the capture probability for Rhubarb seed which,

among the three lighter seeds, has the greatest roundness (CSF ).We could

not usemarigold or african daisy because i) equation D.8 applies to spherical
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Table 3.5: Summary of seeds computed model parameters.

seed type Ue (m/s) Pi Pc

sunflower 0.035− 0.032 1.11− 1.15 0.011− 0.012

nasturtium 0.021− 0.022 0.98− 1.00 0.004− 0.005

0.099− 0.100

rhubarb ≈ 0.039 1.19− 1.21 ≈ 0.037

≈ 0.030

particles (and extending equations in the Appendix D to different shapes is

not straightforward) and ii) given the small thickness of these seeds it is

very difficult to measure their contact angle. Since the product ncλ is not

constant in this case, we compute three different values for Pc using the mean

path lengths λ given in Tab. 3.3 for the three different cylinder densities.

Results are plotted in Fig. 3.9 and again a good agreement with the theory

is found.
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In this work we studied the dynamics of floating particles in presence of

emergent vegetation.

Preliminary experimental investigations allowed us to recognize the main

particle-plant interaction mechanisms, i.e.: i) inertial impaction, ii) wake

trapping, iii) capture due to surface tension (i.e. the Cheerios effect) and

iv) net trapping.

A stochastic model based on these observations was proposed in order

to describe the particle-plant interaction. In particular the proposed model

describes the effects of the two most effective mechanisms listed above, i.e.:

i) a permanent capture of particle due to the Cheerios effect and the net

trapping, ii) a temporary trapping for a long retention time due to retention

by the leaves through the Cheerios effect or by weak net trapping, and iii) a

temporary trapping for a short retention time mainly due to the mechanisms

of inertial impaction and wake trapping.

Further experimental investigations were carried out using plastic plants

which resemble spartina maritima to improve and validate the model. Specif-

ically, we focused on the effects of canopy density and flow velocity on the

parameters of the model. The observations also allowed us to select the

correct length scale of the problem ∆s and to recognize the existence of two

dramatically different retention times scales.

Although it would be desirable to add more experimental investigation

in order to have an exhaustive picture of the issue, the proposed model
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represents the first attempt to model the problem and it is an important

tool perform a priori quantitative analysis of particle diffusion.

In the last part of the work we studied the influence of the Cheerios

effect on the particle trapping by both numerical analysis and experimental

investigation. In order to enhance our knowledge on the importance of the

Cheerios effect an array of rigid dowels were adopted to mimic vegetation,

so that the capture due to net trapping vanished. Through an extensive

series of numerical simulations we could reconstruct and analyses particle

trajectories and the capture modes of a cylindrical collector were described.

The experimental investigation using rigid dowels allowed us to improve the

stochastic model. In this condition the probability of interaction, Pi, and the

probability of capture, Pc, can be written as function of bulk flow velocity

and particle and cylinder characteristics. We also found that the proposed

improvements have a general validity and it can be extended to described

the capture due to the Cheerios effect by the leaves of complex plants.

Future development could focus in depth analysis of the net trapping

mechanisms.

Moreover, it would be interesting to study how particles move in the

presence of patches of vegetation and the effects of the particle clustering,

since data found in the literature show that, in the presence of clusters, the

mean distance travelled by particles is not related to the inverse of plants

density anymore.

Far as numerical analysis is concerned, the study of the Cheerios effect

in flow should be extended to an array of cylinders in the transition and

turbulent regimes (i.e., Re¿10) to observe how wakes flow and the presence of

more cylinder close each other could affect the ability of capture of cylindrical

collector.
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Appendix A

Analytical expression for the

arrival time distribution

function

We focus on particles that actually travel the distance X ≥ L (i.e., particles that are

permanently captured over a path shorter than L are a priori excluded from the present

analysis), and we assume that the number of interaction points, n = L/∆s within the

distance L is an integer.

The probability p(k) that a particle interacts k (out of n) times with the vegetation

has a binomial distribution with mean nPi and variance nPi(1− Pi)

p(k) =
n!

k!(n− k)!
P k
i (1− Pi)

n−k, (A.1)

Pi being the probability that, at each interaction point, the particle actually interacts

with the vegetation.

When a particle interacts with one leaf it can be either slowed down (i.e., trapped

for a short time, see Fig. 1.9) or trapped for a long time (as stated above, permanent

trapping is not considered here).

Let m (≤ k) be the number of short time trapping events. The probability of having

m out of k short time interactions follows a binomial distribution

q(m) =
k!

m!(k −m)!
Pm
S (1− PS)

k−m (A.2)

where PS is the probability that the interaction event is actually a short-time interaction.
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APPENDIX A. ANALYTICAL EXPRESSION FOR THE ARRIVAL TIME

DISTRIBUTION FUNCTION

The retention time distribution rm,k(t), for a particle that experiences m short reten-

tion time trapping events out of k (temporarily) trapping events is then given as

rm,k(t) = pS ∗ pS ∗ .... ∗ pS
︸ ︷︷ ︸

m times

∗ pL ∗ ..... ∗ pL
︸ ︷︷ ︸

k−m times

(A.3)

where ∗ denotes convolution, and

pS(t) =
1

TS
e−t/TS , pL(t) =

1

TL
e−t/TL (A.4)

are the short and long retention time distributions, here assumed to be exponential with

means TS and TL, respectively.

The retention time distribution is then given as

r(t) =

n∑

k=0

[

p(k)

k∑

m=0

q(m) rm,k(t)

]

(A.5)

Equation (A.5) gives the time a particle spends at rest (in the sense of the proposed

model, see Fig. 1.9). To determine the total time a particle spends within the reach L we

must add the particle travel time which is affected by the turbulent diffusion mainly due

to the spatially non-uniform velocity field. Assuming a Fickian diffusion, the travel time

distribution h(t) is then given as

h(t) =
L

4
√
πDt3

e−
(L−U0t)2

4Dt (A.6)

where D is the diffusion coefficient.

The arrival time distribution function a(L, t) is then given as the convolution of equa-

tions (A.5) and (A.6)

a(L, t) =
n∑

k=0

[

p(k)
k∑

m=0

q(m) (rm,k(t) ∗ h(t))
]

(A.7)

If we neglect diffusion, then h(t) reduces to the Dirac Delta function δ(t − t0), with

t0 = L/U0, and Eq. (A.7) can be rewritten as

a(L, t) =







0 t ≤ t0

∑n
k=0

[

p(k)
∑k

m=0
q(m) rm,k(t− t0)

]

t > t0

(A.8)

where p(k) and q(m) are given by equations (A.1), (A.2) respectively, and the retention

time distribution rm,k(t) can be developed as follows.

By combining equations (A.3) and (A.4), we find that rm,k(t) is given as the convo-

lution between two Gamma distributions associated with the short and the long retention

times respectively
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rm,k(t) =

[
tm−1e−t/TS

Tm
S (m− 1)!

]

∗
[

tk−m−1e−t/TL

T k−m
L (k −m− 1)!

]

(A.9)

Equation (A.9) is expanded to read

rm,k(t) =
e−t/TL

Tm
S T k−m

L (m− 1)!(k −m− 1)!
·

·
∫ t

0

eΨττm−1(t− τ)k−m−1dτ (A.10)

where Ψ = 1/TL − 1/TS . Eq. (A.10) is then recast as

rm,k(t) =
e−t/TLtk−1

Tm
S T k−m

L (m− 1)!(k −m− 1)!
·

·
∫ 1

0

eΨtξξm−1(1− ξ)k−m−1dξ (A.11)

Recalling that

(1− ξ)n =
n∑

i=0

n!

(n− i)! i!
(−ξ)i, (A.12)

the integral in Eq. (A.11) can be written as

∫ 1

0

eΨtξξm−1(1− ξ)k−m−1dξ =

=

k−m−1∑

i=0

(k −m− 1)!

(k −m− i− 1)! i!
(−ξ)i

∫ 1

0

eΨtξξi+m−1dξ (A.13)

Finally, using the following recursive formula
∫ 1

0

eΨtξξndξ =
eΨt

Ψt
− n+ 1

Ψt

∫ 1

0

eΨtξξn−1dξ, (A.14)

Eq. (A.11) is rewritten as

rm,k(t) =
e−t/TLtk−1

Tm
S T k−m

L (m− 1)!
·
k−m−1∑

i=0

(i+m− 1)!

(k −m− i− 1)! i!
·

·
[

(−1)m

(Ψt)i+m
+
eΨt

Ψt

i−m−1∑

j=0

(−1)i+j

(Ψt)j(i+m− j − 1)!

]

(A.15)

If the ratio L/∆s is not an integer, we have L0 < L < L1, with L0 = n∆s and

L1 = (n+ 1)∆s. Because the interaction points are assumed uniformly distributed, then

the arrival time distribution is given as the following weighted average

a(L, t) = w · a(L0, t) + (1− w) · a(L1, t) (A.16)

with w = (L1 − L)/∆s.
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Appendix B

The random walk

particle-tracking model

The random walk particle-tracking model developed to predict floating particle paths in

the presence of emergent vegetation is based on the scheme shown in Fig. 1.9. The

Lagrangian trajectory of each single particle is computed using the following steps.

As a first step, the model generates a series of interaction points, randomly distributed

with a uniform pdf and one point within each segment ∆s. The model then computes the

particle path advancing in time by small time steps ∆t = 0.001 s.

At each time step the model checks if the particle has reached an interaction point. If

this is not the case, the particle is advanced with velocity U0+∆U , ∆U being a (random)

velocity fluctuation which accounts for turbulent diffusion. This velocity fluctuation is

randomly generated from a Gaussian distribution with zero mean and standard deviation

σU =
√

2D/∆t, D being the turbulent diffusion coefficient.

When the particle reaches an interaction point a random number r is generated (with

0≤ r ≤ 1, and a uniform pdf): if r > Pi then the model assumes that the particle dos not

interact with the vegetation and it is advanced one time step as described above.

Otherwise (r ≤ Pi), the particle is assumed to interact with the vegetation. In this

case a further random number r is generated, and if r ≤ Pc then the model assumes that

the particle is permanently captured by the vegetation and the path reconstruction ends.

If the particle is temporarily captured (i.e., r > Pc ) a further random number r is

generated to establish whether the temporary capture is a short-time or a long-time trap-

ping event. If r ≤ PL the model assumes the interaction to be a long-time trapping event;

a random retention time tR, exponentially distributed with mean TL, is then generated
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APPENDIX B. THE RANDOM WALK PARTICLE-TRACKING MODEL

and the particle is left in place for this period of time. On the contrary (i.e., if r > PL

) the model assumes the interaction to be a short-time interaction event; in this case a

random retention time tR, exponentially distributed with mean TS , is generated and the

particle is left in place for this period of time.

The path reconstruction keeps going until the particle is permanently captured or

until the particle has travelled a distance greater than or equal to the test section length.

For each reconstructed path (realization) the model then gives the particle position at

each time ti = i∆t.
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Appendix C

Model parameters estimation

The procedure adopted to estimate the number of lacking data N0 in Eq. 2.4 and to assess

model parameters PL, TS , TL is here detailed. To this aim we use measured retention

times ti, which are sorted in increasing order to form a set of pairs (i, ti), i=1 to Ni.

As a preliminary step, we compute a first guess for N0 using a subset of pairs (i, ti)

containing only the shortest retention times ti (ti <0.8 s). Combining Eqs. 2.3 and 2.4

we obtain

Ni + 1− i

Ni +N0 + 1
= PLe

−ti/TL + (1− PL)e
−ti/TS (C.1)

The exponential functions in the above equation are approximated with a first-order

Taylor expansion about t=0; moreover, since TL is much greater than TS , we neglect ti/TL

compared to ti/TS and write

Ni + 1− i

Ni +N0 + 1
≈ 1− ti

TS
(1− PL) (C.2)

which is rearranged to read

i ≈
[

(1− PL)
Ni +N0 + 1

TS

]

ti −N0 (C.3)

N0 is then given as the intercept of the above straight line (linear regression).

The second step then finds a first approximation for TL. We use a subset of pairs (i, ti)

containing only the longest retention times (ti >10 s). Note that, since TS is expected to

be of the order of 1 ∼ 2 s then exp(−t/TS) turns out to be negligibly small when t >10 s.

We then write

Ni + 1− i

Ni +N0 + 1
≈ PLe

−ti/TL (C.4)
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We fit experimental data to the above equation and find TL and PL.

The last step considers the full set of data. Equation C.1 is rewritten as

1

1− PL

[
Ni + 1− i

Ni +N0 + 1
− PLe

−ti/TL

]

= e−ti/TS (C.5)

and TS is computed as

TS = − 1

Ni

Ni∑

i=1

ti

ln
{

1

1−PL

[
Ni+1−i

Ni+N0+1
− PLe−ti/TL

]} (C.6)

We then compute the determination coefficient R2 using the full set of data and use

a trial and error approach to fine tune model parameter in order to maximize R2.
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Appendix D

Vertical equilibrium of

lighter than water

hydrophilic sphere in water

The meniscus slope angle at the particle contact line ψi is estimated by the dynamic

analysis of vertical force acting on a floating sphere (see Fig. D.1).

ψi

α
σ

ri

ζ

r

h∆h

ζ(r)

Figure D.1: Forces acting on floating particle with density ρp < ρ; σ is the sur-

face tension acting along the wetted perimeter. adapted from [Kralchevsky and

Nagayama, 2000].

For light particle (ρp < ρ) the equilibrium position is reached when the forces due to

the weight of the sphere and the surface tension in vertical direction are equal to pressure

force acting on the sphere:
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APPENDIX D. VERTICAL EQUILIBRIUM OF LIGHTER THAN WATER

HYDROPHILIC SPHERE IN WATER

πd3p
6
ρpg + 2πriσ sin(ψi) = πh2

(
dp
2

− h

3

)

ρg − ρg∆hπr2i (D.1)

here the first term is the sphere weight and the second term is the force due to the

surface tension. As far as concerned the pressure the first term on the right hand side

of Eq. D.1 is in agreement with Archimedes’ principle while the last term accounts for

the meniscus effect. Because of elementary geometric consideration the contact radius is

ri =
dp
2
sin(α+ ψi) and Eq. D.1 can be rewritten as

πd3p
6
ρpg + πσ sin(ψi) sin(α+ ψi) = πh2

(
dp
2

− h

3

)

ρg − ρg
πd2p
4

∆h sin2(α+ ψi) (D.2)

The contact radius ri can also be written as:

ri =

√

d2p
4

−
(
dp
2

− h

)2

(D.3)

Through Eq. D.3 and the previous definition of ri the sphere immersion h can be

function of the meniscus slope angle ψi:

h =
dp
2

[

1 +
√

1− sin2(α+ ψi)

]

=
dp
2

[1 + cos(α+ ψi)] (D.4)

Replacing Eq. D.4 in Eq. eqD2 and rearranging the equation, the equilibrium position

of the sphere is finally given by:

sin(α+ ψi) sin(ψi) +Bo

[

ρr
6

− 2 + 3 cos(α+ ψi)− cos3(α+ ψi)

24
+

+
sin2(α+ ψi)∆h

4dp

]

= 0 (D.5)

where ρr is the relative sphere density and Bo =
ρgd2p
σ

is the Bond number that represents

the ratio between gravitational force and surface tension.

Some studies describe analytically ζ = ζ(r) (see Fig. D.1. According to Kralchevsky

and Nagayama (2000) we can write the shape that meniscus formed around the sphere as:

ζ(r) = ri sin(ψi)K0(r/lc) (D.6)

here lc is the capillary length.

By considering the contact radius ri as dp/2sin(α + ψi) in Eq. D.6, the rise of the

meniscus in comparison to the undisturbed free surface is at contact to the sphere:

∆h =
dp
2

sin(α+ ψi) sin(ψi)K0

(
dp
2lc

sin(α+ ψi)

)

(D.7)

96



By replacing Eq. D.7 in Eq. D.5 the equilibrium equation becomes:

sin(α+ ψi) sin(ψi) +Bo

[

ρr
6

− 2 + 3 cos(α+ ψi)− cos3(α+ ψi)

24
+

+
sin3(α+ ψi) sin(ψi)K0

(
dp
2lc

sin(α+ ψi)
)

8

]

= 0 (D.8)

In Eq. D.8 Bo, α and ρr are known by the physics and geometric characteristics of

the particle and the meniscus slope angle ψi is the unknown quantity of the problem.
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Appendix E

Numerical solution of the

floating particle dynamics

equation

The numerical solution of the particle trajectories in Section 3.1 is given as the solution

to equation:

(
ρr + β

ρr

)
dup

dt
=

3πCd

4ρrLp
U |U| − 3σdc

ρplcd2p
sin(α+ ψp) sin(ψp) sin(ψc)K1(r/lc) (E.1)

The variables in Eq. E.1 are the same of Eqs. 3.1 and Eqs. 3.1. By averaging over

the timestep ∆t, Eq. 1.1 can be rewritten as:

(
ρr + β

ρr

)
1

∆t

∫ t+∆t

t

dup

dt
dt =

3πCd

4ρrLp

1

∆t

∫ t+∆t

t

U |U| dt+

− 1

∆t

∫ t+∆t

t

3σdc
ρplcd2p

sin(α+ ψp) sin(ψp) sin(ψc)K1(r/lc)dt (E.2)

By expanding Eq. E.2 we find:

(
ρr + β

ρr

)
up(t+∆t)− up(t)

∆t
=

3πCd

4ρrLp
[U(t+∆t) · |U(t)|] +

−
(

3σdc
ρplcd2p

sin(α+ ψp) sin(ψp) sin(ψc)K1(r/lc)

)

t

(E.3)

In Eq. E.3 the first term on the right hand side is the geometric mean of the respective

term in Eq. E.2 and the rightmost term is written at time t.
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By replacing U = uf − up Eq. E.3 is rewritten as:

(
ρr + β

ρr

)
up(t+∆t)− up(t)

∆t
=

3πCd

4ρrLp

[

(uf(t+∆t)− up(t+∆t)) ·

· |U(t)|
]

−
(

3σdc
ρplcd2p

sin(α+ ψp) sin(ψp) sin(ψc)K1(r/lc)

)

t

(E.4)

Finally eq. E.4 is recast as:

up(t+∆t) =
1

[(
ρr+β
ρr

)
1

∆t
+ 3πCd

4ρrLp
|U(t)|

]

[(
ρr + β

ρr

)
up(t)

∆t
+

3πCd

4ρrLp
·

· |U(t)|uf(t+∆t)−
(

3σdc
ρplcd2p

sin(α+ ψp) sin(ψp) sin(ψc)K1(r/lc)

)

t

]

(E.5)
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