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If a man can keep alert and imaginative, an error is a possibility 
 a chance at something new; 

to him, wandering and wondering are part of the same process, 
and he is most mistaken, most in error, whenever he quits exploring." 
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Summary 

Specific and reliable protein sensing and detection is a challenge of increasing interest 

due to their role as biomarkers in many diseases. Classical proteomics require time-

consuming separation techniques and lacks the capability to assess protein activity 

variations uncorrelated to expression levels. Activity-based protein profiling (ABPP) is a 

strategy in which chemical probes (irreversible protein inhibitors) are covalently bound 

to target proteins with a shared activity and some signal arising from the probe is 

quantified, being sensitive to protein activity due to the binding step. Nonetheless, protein 

separation is still expensive in terms of time or requires the use of high-cost 

instrumentation. 

Our proposal was to employ gold nanoparticles as a tool for covalently capturing proteins 

of interest and separating them with ease from the remaining proteome by size-

differentiation. 

Mixed monolayer nanoparticles have been obtained by two different methods, by direct 

substitution on an homogeneous monolayer or by supramolecular click-coupling 

reactions onto azido-functionalized derivatives. The two strategies were shown to be 

complementary; thiol exchange is simpler but substitution yields are difficult to predict 

when new thiols are tested whereas reliable click-coupling onto pre-substituted azido-

nanoparticles requires the use of dibenzocyclooctyne derivatives to obtain high yields. 

We have developed and fully characterized supramolecular conjugates of gold 

nanoparticles with a thiol-based mixed-monolayer that endow the nanoparticles with high 

water solubility but also the capability to expose the targeting moiety on their surface.  

Avidin-biotin interaction has been chosen as model system to prove the capability of 

functionalized nanoparticles to effectively reach protein active sites and displace small 

molecules from their binding site in competition assays. 

On the other hand, supramolecular architectures based on chain-like arrays of 

nanoparticles have been prepared and shown to fuse in water to form nanorods or 

nanowires by treatment with glucosamine phosphate. Addition of thiol during the 

incubation stop nanoparticle fusion, opening the possibilities for a potential synthetic 

method to obtain anisotropic systems for NIR sensing. 
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Chapter 1 Introduction 

1.1 Biomarkers and diseases 

Biomarkers were originally defined as “a characteristic that is objectively measured 

and evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention.”[1] However, it can be extended to 

“almost any measurement reflecting an interaction between a biological system and a 

potential hazard, which may be chemical, physical, or biological. The measured response 

may be functional and physiological, biochemical at the cellular level, or a molecular 

interaction”[2] as indicated by Strimbu and Tavel.[3] 

Detecting biomarkers before symptoms are present has attracted a lot of effort in the 

recent years, especially in those cases in which an early detection increases significantly 

the probability of tackling the disease or makes the treatment easier in many cases as 

occurs with several cancers[4] or Alzheimer’s disease.[5] On the other hand, specificity of 

these biomarkers is also challenging; to ensure a reliable diagnosis the changes observed 

should respond, ideally, to only one factor or condition, which is not always the case. To 

fulfil that requirement two main approaches can be followed: a) measuring more than one 

biomarker simultaneously, looking for global patterns that define a specific situation or 

b) employing more specific markers which are altered only by a reduced number of 

factors. 

Two examples of the first approach would be the quantification of the relative levels 

(concentration ratios) of some fatty acids to arachidonic acid[6] or asymmetric 

dimethylarginine to nitric oxide[7] in blood serum to identify potential cardiovascular 

risks. This presents the advantage of small probability of a false positive at the expense 

of multiple analysis, what requires time and instrumentation. If less analytical 

measurements are required or desired, more specific markers must be chosen. Among the 

different possibilities, proteins are the most extensively used, with no close competitors. 
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1.2 Genomics and proteomics 

These studies were initially performed via classical genomics, quantifying the 

expression of some genes that code for the proteins of interest, but more sophisticated 

techniques were required to take into account additional factors such as dynamic protein 

degradation or post-translational modifications.[8] 

The comprehensive study of a set of proteins is usually called proteomics. It includes 

finding about protein abundances, modifications, functions and interactions inside a 

proteome, defined as the entire set of proteins produced by a living organism, including 

single cells (Figure 1). 

 

Figure 1 – Representation of a proteome (left) and the sorted outcome of a proteomic study 

(right). Global shapes define protein structures, holed shapes denote function/activity and 

colours represent generic modifications. 

Despite the advantages of proteomics in comparison with genomic studies, one main 

drawback was still present, since the main quantification parameter was, in all cases, 

protein expression levels, this is, the actual concentration of protein in the sample. Several 

studies pointed out that not protein concentration but protein activity changes are 

indicators of anomalous processes and, in many cases, this can occur without altering the 

expression levels.[9] 
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Cravatt and co-workers have developed a modern technique called Activity-Based 

Protein Profiling (ABPP) that allows to perform proteomic studies within complex 

proteomes quantifying the total activity of a protein or family of proteins sharing the same 

activity, taking also into account the effect of post-translational and transductional 

modifications.[9] The strategy is based on covalently labelling the proteins by using a 

specific inhibitor that will react with the proteins of interest. Later, proteins are separated, 

typically by gel electrophoresis, and those that are labelled are then revealed (Figure 2). 

The most common labelling techniques include direct use of fluorescent tags or azide 

moieties for an additional click-functionalization step. 

 

Figure 2 – Representation of the covalent irreversible inhibitor and the proteome before 

(left) and after (right) the Activity-Based Protein Profiling labelling step. Only those proteins 

that share the same activity are labelled. See Figure 1 for protein legend. Star denotes the 

fluorescent moiety and red ball the inhibitor structure that captures the desired protein. 

Despite the usefulness of the ABPP studies in many fields, such as the discovery of 

metabolic pathways in malignant cells[10] or finding new enzyme inhibitors[11] or drugs,[12] 

it still presents one important drawback due to the fact that proteins must be separated 

from the complex mixture to allow identification and quantification, which is 

significantly time-consuming and very dependent on the sample complexity itself. 
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One alternative emerged recently in which polarized fluorescence is employed to 

avoid sample separation, being especially useful for enzyme inhibitor identification when 

the target proteins are not fully characterized.[13] It takes advantage of the fact that small 

fluorescent molecules lose the polarization of the absorbed radiation, emitting 

unpolarised light, but this polarization is maintained if the mobility of the molecules is 

somehow reduced (Figure 3).  

 

Figure 3 – Illustration of the effect of molecular mobility on the polarization of the emitted 

light. 

Therefore, two possible outputs may come from irradiating with polarized light 

samples containing the following three components: i) the proteome, ii) a specific 

fluorescent inhibitor for the target protein (or protein family) and iii) the candidate 

inhibitors to screen; if the potential inhibitor is weak or inactive, the fluorescent tag will 

be bound to the target protein, its mobility will become that of the macromolecule and 

polarized fluorescence will be observed, on the other hand, if the candidate is strongly 

interacting with the protein, the fluorescent label will remain free in solution and 

polarization will be absent in the emission (Figure 4). 
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Figure 4 – Representation of an inhibitor screening for a protein using the polarized 

fluorescence experiment. Grey potential candidates are tested one by one (1) with the 

fluorescent tag for a specific protein (2). The output (right) represents a chart of polarization 

detection depending on the Candidate tested. 

This proposal allowed for very fast high throughput screening of many candidates 

without performing individual protein separation, since target specificity was conferred 

by the chemical structure of the fluorescent tag. However, nowadays the cost of the 

equipment required for these experiments is still high compared with other optical 

devices. 
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1.3 Proposal and aim of our project 

Gold nanoparticles have been widely used for biomedical applications such as 

imaging, sensing or drug delivery.[14,15] Studies based on surface enhancement Raman 

spectroscopy (SERS) have been used in protein detection[16–20] and although some 

alternatives have been proposed in which the plasmonic band is employed as the reporter, 

most of them are based on nonspecific interactions or employ antibodies for targeting.[21–

24] 

Our proposal consist in combining the plasmonic properties of gold nanoparticles with 

the activity-based protein profiling approach developed by Cravatt and co-workers to 

build a supramolecular protein-sensing system capable to capture the desired protein or 

protein family (Figure 5B), overcoming some of the main drawbacks of classic ABPP 

techniques. 

 

Figure 5 – A) Comparison in size of free and tagged proteins; B) Supramolecular construct 

proposed, gold core with filling thiol (wavy lines) and irreversible protein inhibitor (red balls); 

C) Illustration of the difference in size of the supramolecular complex with free proteins. 
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Due to the difference in size between the different components of the system, 

separation of the desired proteins from the proteome could be performed by filtration with 

a molecular-weight cut-off if necessary (see below). Using NPs plasmonic band as 

reporter of the protein capture, separation could be avoided and the system quantified in 

situ. Protein size can be estimated from their molecular weight,[25] For comparison 

purposes, a 100 kDa protein would have an approximate diameter of 5 nm. AuNPs 

plasmonic band intensity is increased in a logarithmic trend up to c.a. 20 nm in 

diameter.[26] Therefore the NPs employed should be, in all cases, at least equal and 

probably bigger than the proteins to detect. The use of big nanoparticles will improve 

both ease of separation and plasmonic intensity and sensitivity. 

To prepare monodisperse gold nanoparticles of that size a modification of the classic 

citrate-reduction method was chosen.[27] These nanoparticles were then covered with the 

active thiol functionalized with the specific inhibitor and a phosphorycholine zwitterionic 

thiol as filling agent to confer water solubility but no net charge to the nanoparticle, to 

avoid nonspecific protein adsorption.[28] Two strategies were followed in parallel (Figure 

6); Direct substitution of the filling thiols by the functional has the advantages of being is 

fast and reproducible but gives very different outputs when the structure of the thiol is 

modified, with required optimisation for each candidate inhibitor to use. In order to 

develop a general synthetic approach, we planned to implement a click-chemistry 

strategy, in this sense, a general azide-polyethylene glycol-alkyl thiol was attached to the 

NP surface via ligand exchange and then a convenient alkyne-functionalized inhibitor for 

the desired enzyme will be bound to it once the nanoparticle is formed. The inclusion of 

this additional step ensures reproducible nanoparticle loading when a battery of inhibitors 

want to be tested. 
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Figure 6 – Illustration of the supramolecular decoration strategies by both direct thiol 

exchange and click conjugation. The system can be modified to target any desired protein 

family by changing the chemical nature of the inhibitor and attaching it to the common azide-

NP precursor or synthesise the complete thiol to exchange it. 

The chemical structures of the chosen thiols are shown in Figure 7, biotin (4, 5) and 

naproxen (6) motifs were chosen as proof-of-concept ligands for avidin and albumin 

respectively even though they do not interact covalently with the target proteins 

 

Figure 7 – Chemical structures of the zwitterionic, azide thiols selected and protein-

binding thiols selected for this work.
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Chapter 2 Thiol exchange on gold nanoparticles 

2.1 Introduction 

The chemical nature of the gold-sulfur interface has been deeply studied in the recent 

years from both theoretical and experimental points of view in many different systems, 

from self-assembled monolayers on perfectly defined crystalline faces to polydisperse 

gold nanoparticles and atomically-defined clusters.[29,30] Ligand-exchange reactions, in 

which one or more molecules bound to the gold surface are replaced by an alternative 

ligand, are still poorly understood in many ways although some common grounds have 

been established. 

It has been well established that the exchange process occurs at two different rates 

depending on the organization level of the gold substrate, being much faster around 

boundaries and defects than on flat terraces.[31,32] This difference in substitution rate was 

observed when small and big clusters are compared, due to the higher abundancy of 

terraces in the latter[33] and this is also the reason why substitution on gold nanorods 

occurs much faster at the curved tips than on the cylindrical section.[34,35] 

Small gold clusters present a particular behavior since no edges or terraces are present. 

Their atomic structures are well-known from single-crystal x-ray diffraction studies and 

some insights into the exchange mechanisms have been proposed.[36–39] However, they 

will not be discussed in detail here because they fall out of the scope of this thesis. 

Ligand place exchange reaction with spin-labelled disulfides have been deeply studied 

through EPR spectroscopy.[40,41] Two main phenomena should be highlighted: a) both 

branches of the entering disulfide do not bind to the same nanoparticle, but one remains 

in solution upon formation of a mixed disulfide with the outgoing thiol[42] and b) a 

solution of two types of nanoparticles with only one thiol on each surface results in mixed 

monolayer nanoparticles upon incubation, so thiols can dynamically exchange from one 

nanoparticle to another.[43] In addition, when unsymmetrical disulfides were employed, a 

preferential substitution by one of the two subunits was observed.[44] 
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All the experimental evidence reported above clearly highlights the high complexity 

of the thiol exchange process and the difficulty of finding simple cause-effect correlations 

due to the high number of variables that influence the system final state. 

On the contrary, we can build an ideal model of the ligand exchange process as shown 

on Scheme 1. It can be seen from the equation that if the initial amount of entering ([E]0) 

and bound to the nanoparticles ([SH]NP) thiol are controlled, by quantifying the degree of 

substitution ([E]B) the equilibrium constant can be easily calculated from one single 

experimental parameter. 

 

Scheme 1 – Representation of the thiol exchange reaction. Mathematical expression for 

the equilibrium constant of the process is included. E and L denote the entering and leaving 

thiol respectively. Subindexes 0 and B are referred to the initial and the nanoparticle bound 

concentration respectively. SHNP denotes the total concentration of thiols attached to the 

nanoparticles. 

In the ideal case scenario, the value of K should be equal to 1 and the final ratio on 

the nanoparticles surface becomes equal to the global ratio of concentration in the system 

between the two components. However, real values are typically smaller.[45] 
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2.2 Results 

Results of exchange reaction on nanoparticles of 2 nm in diameter are shown on Table 

1 for two different couples of leaving and entering thiols and three different reaction 

conditions in each case. To clarify results and discussion, the chemical structure of the 

thiols involved is shown on Figure 8. 

 

Figure 8 – Chemical structure of thiols involved in place-exchange reactions. 
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Table 1 – Percentage of leaving thiol substituted on 2 nm nanoparticles after 18 hours at 30 

°C. Values in brackets represent the relative degree of substitution respect to the ideal 

equilibrium, this is, experimental K. aReaction ratio represents the molar ratio between the 

entering and leaving thiols, percentage indicates the ideal degree of substitution if theoretical 

equilibrium with K=1 was achieved. bQuantification inaccurate due to signal overlapping. 

Entering 

thiol 
Reaction ratioa 

Leaving Thiol 

1 – ZW 10 – TMA 

2 (AZ-4) 

1:1 – 50% 25% (0.50) 52% (1.04) 

1:4 – 20% 9% (0.44) 21% (1.04) 

1:20 – 5% 2% (0.49) ~ 5%b 

3 (AZ-6) 

1:1 – 50% 30% (0.60) 40% (0.79) 

1:4 – 20% 11% (0.55) 16% (0.78) 

1:20  – 5% ~ 3% (0.55) ~ 4%b 

On the whole, the degrees of substitution obtained were spread between 44 and 104% 

of the ideal values, remaining however almost invariant when the reaction ratio was 

modified. This trend was also observed when nanoparticle size was increased from 2 to 9 

nm (see Table 2). It must be noticed that despite the spread of the values, thiol 

displacement was consistently more extended on nanoparticles exposing the cationic thiol 

10 (yields 78-104%) than with the zwitterionic 1 (44-60%). 
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Table 2 – Percentage of entering thiol on 9 nm nanoparticles surface after 18 hours at 30 °C. 

Values in brackets represent the relative degree of substitution respect to the ideal 

equilibrium, this is, experimental K. aReaction ratio represents the molar ratio between the 

entering and main thiols, percentage indicates the ideal degree of substitution if theoretical 

equilibrium with K=1 was achieved. bNanoparticles became insoluble in water, quantification 

might not be accurate. cQuantification not possible, nanoparticles became insoluble. 

Entering 

thiol 
Reaction ratioa 

Leaving Thiol 

1 – ZW 9 – TEG 

2 (AZ-4) 

1:1 – 50% 22% (0.43) ― 

1:4 – 20% 8% (0.39) ― 

1:20 – 5% 2% (0.41) ― 

3 (AZ-6) 

1:1 – 50% 16% (0.31) 16% (0.31) 

1:4 – 20% 4% (0.18) 4% (0.22) 

1:20  – 5% ~ 2% (0.35) ― 

4 (Biot-4) 1:1 – 50% 13% (0.27) 8% (0.16)b 

5 (Biot-6) 1:1 – 50% 11% (0.22) n.d.c 

6 

1:4 – 20% 13% (0.66) ― 

1:20  – 5% <0.3% (<0.07) ― 

Considering the little difference in substitution yield when varying the exchange 

reaction ratio, an average value for each entering-leaving thiol couple can be considered 

in order to facilitate the discussion (Table 3). 

  



Chapter 2  Thiol exchange on gold nanoparticles 

14 

 

Table 3 – Average degree of substitution with respect to the ideal equilibrium (K=1). Data 

calculated by averaging results from different exchange ratios from Table 1 and Table 2. 

Entering 

thiol 

Nanoparticle diameter | Leaving Thiol 

2 nm 9 nm 2 nm 9 nm 

1 – ZW 10 – TMA 9 – TEG 

2 (AZ-4) 48% 41% 104% ― 

3 (AZ-6) 57% 28% 78% 26% 

4 (Biot-4) ― 27% ― 16% 

5 (Biot-6) ― 22% ― ― 

When studying the influence of nanoparticle diameter on substitution yield, by 

comparing the experiments where thiol 1 was displaced by either 2 or 3, values typically 

decrease when increasing the nanoparticle diameter, although values for 2 did it by a 

small margin whereas substitution by 3 was almost halved. 

Substitution on 9 nm nanoparticles typically proceeded with low yields (16-41%) with 

both 1 and 9 as leaving thiols, with the exception of thiol 6 (see Table 2 más atrás), that 

will be discussed later. 

Results in Table 4 below show the data corresponding to the simultaneous exchange 

reaction with two entering thiols onto 9 nm nanoparticles with a monolayer of 1. 
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Table 4 – Degree of substitution of mixed exchange reactions on 9 nm nanoparticles covered 

with ZW–1. Values in brackets represent the relative degree of substitution respect to the ideal 

equilibrium for each components considering only the individual equilibrium between each 

entering and leaving thiol. aReaction ratio represents the molar ratio between the entering and 

leaving thiols, percentage indicates the ideal degree of substitution if theoretical equilibrium 

with K=1 was achieved considering all thiols present in the solution. bNanoparticles became 

insoluble in water, number averaged between water soluble and methanol soluble fractions 

considering their relative proportions. 

Entering thiol Reaction ratioa 

Final thiols on the surface 

5 (Biot-6) 6 

5 (Biot-6) 1:2 – 25% 
3% (0.09) 33% (1.00)b 

6 1:2 – 25% 

5 (Biot-6) 1:1.25 – 41% 
7% (0.16) 5% (0.69) 

6 ~ 1:7 – 8% 

When both were introduced simultaneously in the same proportion (1:2 with respect 

to 1), thiol substitution occurred almost exclusively for 6, progressing beyond the ideal 

equilibrium for the mixture of all three thiols (33% instead of 25%), whereas for 5 the 

substitution yield decreased below 10%. When the ratio was tweaked aiming for a similar 

substitution by both of them, by employing an amount of 5 almost identical to the one 

reported on previous experiments and almost half of 6, both thiols were capable to 

displace 1 from the surface with yields more or less similar to those reported 

independently in Table 2. 

A particular behaviour was observed for thiol 6 during the exchanges, since it 

presented the highest exchange extend for electrically neutral nanoparticles. Furthermore 

it modified significantly its substitution degree when included in very small concentration 

or in a large one. Figure 9 illustrates the difference in trend between exchanges with thiol 

6 and those with 2 and 3. 
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Figure 9 – Dependence of substitution yield upon entering thiol proportion corresponding 

to the exchange of 9 nm nanoparticles covered with 1–ZW (filled symbols) or 10–TMA (empty 

symbols) by thiol 2 AZ–4 (triangles), 3 AZ–6 (circles) or 6 (squares, dashed line). 

All azido-functionalized thiols show a linear dependence of substitution with the 

initial amount employed whereas the substitution degree increases with the amount of 

reactant in the case of 6 in a non linear fashion. We can analyse the same phenomena by 

comparing the values of K calculated as shown in the equation shown previously on 

Scheme 1. 
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Figure 10 – Equilibrium constant of the ligand displacement during the thiol substitution 

corresponding to the exchange of 9 nm nanoparticles covered with 1–ZW (filled symbols) or 

10–TMA (empty symbols) by thiol 2 AZ–4 (triangles), 3 AZ–6 (circles) or 6 (squares, dashed 

line). Notice the vertical logarithmic scale. 

It can be observed that contrary to 2 and 3, where the value of K is not significantly 

altered when the amount of thiol is modified, increasing the number of equivalents of 6 

during the substitution process increases the equilibrium constant by up-to four orders of 

magnitude. 
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2.3 Discussion 

When analyzing the influence of the chemical structure of the leaving thiol, the 

improvement in the degree of substitution when zwitterionic thiol 1 is replaced by cationic 

10 can be easily explained considering that each substitution of 10 by a neutral entering 

thiol reduces the electrostatic repulsion between the trimethylamonium groups on the 

nanoparticle surface, whereas no effect on net charge occurs when the original monolayer 

is constituted by 1. This will constitute a substantial driving force for the substitution 

process to occur. 

The decrease in yield when increasing the nanoparticle diameter for the same couple 

of thiols can be understood on the basis of the nanoparticle curvature and its effect on the 

compactness of the monolayer. Since a thiol fingerprint on the gold surface is essentially 

constant and about of 0.2 nm2 per thiol,[46] an increase in nanoparticle size constrain the 

chains of the ligands to be packed in a more compact arrangement (Figure 11), this could 

have a double effect; on one side it should diminish the ability of the entering thiol to 

reach the surface and successfully displace one of the existing ligands but, on the other 

hand, more sterically hindered entering thiols would struggle to find a suitable place in 

the monolayer. The balance between these two factors should dictate the global behavior 

for each particular case. For instance, an opposite trend to the one observed here has been 

reported in literature. However, this was referred to a particular case in which 

supramolecular interactions between the thiols were suspected to dictate the kinetic 

behavior,[47] being more favored in the more compact monolayer. 

 

Figure 11 – Scale representation of curvatures for 2 and 9 nm nanoparticle surfaces and 

an ideal disposition of thiol molecules. 
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In addition, for very small sizes, the chain disposition is far from the ideal spherical 

shape illustrated before and they tend to group on two poles of the nanoparticles in a 

rugby-ball-like shape, leaving a highly exposed belt in which ligand displacement should 

be highly favored (Figure 12).[48] 

 

Figure 12 – Rugby ball shape of a monolayer protected gold cluster. Notice the deviation 

from the ideal spherical representation. Reproduced from reference.[48] 

When I attempted to introduce two thiols simultaneously on the monolayer, the 

degrees of substitution remained similar to those of individual exchange in the case of 

biotinylated 5. This is in good agreement with the results reported in literature, typically 

foreseeing similar degree of substitution for individual and simultaneous exchanges 

except for thiols that present steric hindrance effects.[45]. However, they presented a high 

variability in the degree of substitution of the naproxen functionalized 6, which already 

presented an unusually high substitution capability on 9 nm nanoparticles compared with 

all other thiols (Table 2). 

The non-linear behavior of thiol 6 when varying its concentration indicates a 

dependence of the equilibrium constant on the latter, as shown in Figure 10. The observed 

trend could be an indication of a cooperative mechanism, so the presence of a higher 

amount of the entering thiol on the nanoparticle surface facilitates subsequent 

substitutions. The hydrophobic nature of the head group could be responsible for this via 

π-π interactions of thiols free in solution with those already on the surface, as illustrated 

in Figure 13; however, more experimental data are required in order to confirm this 
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mechanism for this particular case. Similar interactions have been already reported in the 

literature,[47,49] being even capable to induce phase segregation on the nanoparticle surface 

upon substitution.[50] 

 

Figure 13 – Representation of the cooperative mechanism potentially responsible for the 

enhancement of the equilibrium constant when entering thiol concentration is modified from 

a low (A) to a high (B) value. 
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2.4 Conclusions 

Mixed monolayer nanoparticles functionalized with both, azido clickable and protein 

binding groups have been successfully prepared in a highly reproducible way by means 

of thiol substitution of parent nanoparticles. 

Despite the representation of the ideal thiol substitution equilibrium shown on Scheme 

1, experimental data clearly show that many factors determine the actual values of K. 

Some of the factors that appear to play a role could be thiol solubility in the reaction 

medium, interaction between neighboring thiols on the nanoparticle monolayer and 

compactness of the latter. 

In general, the degree of substitution obtained can be predicted and tuned due to the 

independence of the equilibrium constant on the molar ratio between entering and leaving 

thiols. 

On the other hand, it is difficult to predict in advance what the equilibrium constant 

will be for an unknown couple of leaving and entering thiols, due to the high complexity 

of the process and the number of factors that influence the final result. 

Substitution on smaller nanoparticles proceeded typically in larger extents, probably 

due to the less compact monolayer on their surface. 

Mixed-monolayer nanoparticles with three different thiols have been prepared in a 

successful way in one single step by means of simultaneous thiol substitution. 

Thiol 6, bearing an aromatic head group, presented a particular behavior in which 

equilibrium constant increased up to four orders of magnitude when increasing the 

equivalents present in the reaction, contrary to any other thiol employed so far. A possible 

cooperative mechanism to explain these results has been suggested.
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Chapter 3 Click-coupling on gold nanoparticles 

3.1 Introduction 

Click reactions and in particular copper catalyzed alkyne-azide cycloaddition 

(CuAAC)[51] are among the most extended methods employed nowadays for chemical 

conjugation due to their simplicity, selectivity, high yields, biological and chemical 

compatibility and low toxicity of the products. Although the reaction progresses by 

thermal activation, Cu(I)-mediated catalysis improved drastically reaction times and 

included also regiospecificity towards one of the two possible regioisomers of the triazole 

product. 

Originally, it was typically carried out in the presence of CuSO4 as copper source and 

a reducing agent, typically sodium ascorbate, to form the active copper(I) species. But in 

order to improve the reaction yield, copper-binding ligands capable to stabilize the Cu(I) 

oxidation state and protect it from oxidation were designed and implemented for both 

polar and non-polar solvents (Figure 14). 

 

Figure 14 – Cu(I)-stabilizing ligands employed in non polar (left) and polar media (right). 
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Despite the great performance of CuAAC for small molecule synthesis, previous 

attempts onto gold nanoparticles have proven unsatisfactory, reporting low yields, 

typically between 1 and 22%,[52] or very long reaction times of up to several days.[53] This 

low yields were mainly attributed to the poor solubility of the nanoparticle chains and the 

low stability of the Cu(I) catalytic species in the non-polar media required to solubilize 

the azido-functionalized alkyl nanoparticles (dioxane, hexane). However, modified 

experiments employing toluene[54,55] or water:THF mixture[56] as a solvent showed higher 

yields ranging from 75% to virtually quantitative with a broad range of alkynes, 

disproving the original claims. 

In the recent years, new catalytic systems in the absence of copper have been 

developed, employing strained cyclooctynes as coupling agents[57] (Figure 15), giving 

rise to the so-called strain-promoted alkyne azide cycloaddition (SPAAC). It has the 

advantage to avoid the use of copper and proceed at room temperature with no required 

purification. However, it must be noticed that regioselectivity is lost with this strategy. 

 

Figure 15 – Chemical structure of the most representative cyclooctynes derivatives 

employed in SPAAC. 

Gold nanoparticles multivalency must be taken into account when referring to reaction 

yields on them. When several chemical transformations are carried out over a multivalent 

system element, if the yield of each coupling is considered to be constant throughout the 

transformation, the global reaction yield due to the propagation of n single steps would 

be equal to the yield of a single step raised to the number of steps. 
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Figure 16 – Multivalent global yield dependence on the number of steps and the individual 

reaction yields: 99.99% (circles), 99.9% (triangles), 99.5% (squares), 99% (crosses) and 98% 

(diamonds). 

As it can be seen in Figure 16, even with individual yields above 98%, the global yield 

decreases very fast when increasing the number of steps. 
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3.2 Results 

When nanoparticles that undergone the click-coupling reaction were analyzed in 

search of the coupling product, no clear signals of the triazole signal were observed in the 

1H-NMR spectra. In addition despite the high homogeneity of the magnetic field (see 

orange signal in Figure 17 below), both signals of the methylene groups close to the 

phosphate were broad and low in intensity. 

 

Figure 17 – 1H-NMR spectra of ZW Thiol 1 (top) and an sample after click reaction with 

thiols detached from the nanoparticles surface. Relevant signals are highlighted. 

Treatment of the cleaved mixture of thiols with Chelex® resin resulted in sharp 

spectra, proving that residual copper (Cu(II)) contamination was present in the final 

samples even after purification. Attempts to remove the copper by treating the exchanged 

nanoparticles with chelating resin before detaching the thiols from the nanoparticles 

proved to be unsuccessful. All results shown below were calculated after treatment of the 

detached mixture of thiols with chelating resin. 
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Chemical structures of the thiols constituting mixed-monolayer nanoparticles and 

alkynes employed in this section are shown in Figure 18 and Figure 19, respectively. 

 

Figure 18 – Chemical structure of thiols constituting mixed monolayer nanoparticles 

employed in this chapter. 

 

Figure 19 – Chemical structure of alkynes employed in this chapter. 
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Results shown in Table 5 below show the click-coupling yield under different 

conditions for nanoparticles of 2 nm in diameter. Notice that yields reported are referred 

to the total amount of azido groups available on the nanoparticle surface, whereas bracket 

values are referred to each individual step, taking into account the average number of 

azido groups present on each case. 

Table 5 – Global reaction yield of click-coupling on 2 nm gold nanoparticles. Values in 

parenthesis are referred to the individual yield for each azido group, taking into account the 

total number of thiols, the proportion of azide groups and the global yield. aThe percentage 

represents the amount azide thiol on the NPs surface; bUnless otherwise stated, values stand 

for H2O:DMSO mixtures; cNumbers stand for the equivalents of alkyne:Cu-complex:ascorbic 

acid; dReaction conditions: 4 days at 40 °C; eCu attempted removal  with chelex resin prior to 

thiol detachment. 

   Main thiol 1 – ZW 10 – TMA 

   Azide thiola 2 

AZ-4 

18% 

3 

AZ-6 

28% 

2 

AZ-4 

21% 

3 

AZ-6 

16% Alkyne Ligand Solventb Conditionsc 

7 TBTA 1:1 

100:10:10 
54% 

(95.2) 
― ― ― 

10:10:10 
46% 

(94.0) 
― ― ― 

8 THPTA 

3:1 50:5:10 

― 
22% 

(92.6) 

75% 

(98.0) 

79% 

(97.9) 

― 
26%d 

(93.4) 
― ― 

1:1 100:20:60e ― 
11% 

(89.3) 
― ― 

Although reaction conditions were not identical and direct comparison must be taken 

with caution, it seems that the couplings of alkyne 7 performed better than those with 8 

by almost doubling the global yield, although inclusion of more alkyne did not affect the 

reaction yield significantly. 
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Under the same conditions, substitution of zwitterionic 1 for cationic 10 improved the 

reaction yield from 20% to almost 80% on average, whereas longer reaction time and 

higher temperature had almost no impact. 

Curiously, even with the inclusion of more equivalents of all reagents, the parallel 

higher amount of DMSO (final 1:1 instead of 3:1 H2O:DMSO) seemed to have hindered 

the reaction, reducing its yield by half from 22 to 11%. 

Table 6 – Reaction yield of click-coupling on 9 nm gold nanoparticles. Values in parenthesis 

are referred to the individual yield for each azido group, taking into account the total number 

of thiols, the proportion of azide groups and the global yield. aThe percentages represent the 

amount azide thiol on the NPs surface; bUnless otherwise stated, values stand for H2O:DMSO 

mixtures; cNumbers stand for the equivalents of alkyne:Cu-complex:ascorbic acid; dReaction 

conditions: 4 days at 40 °C, nanoparticles precipitated; eCu attempted removal with chelex 

resin prior to thiol detachment. 

   Main thiol 1 – ZW 9 – TEG 

   Azide thiola 2 

AZ-4 

20% 

3 

AZ-6 

15% 

3 – AZ-6 

Alkyne Ligand Solventb Conditionsc 5% 17% 

7 TBTA 1:1 

100:10:10 
21% 

(99.6) 
― ― ― 

10:10:10 
22% 

(99.6) 
― ― ― 

8 THPTA 

3:1 

50:5:10 

― 
28% 

(99.6) 
― ― 

― n.d.d  ― ― 

9:1 ― ― ― 
45% 

(99.8) 

4:1 ― ― 
49% 

(99.3) 
― 

1:1 100:20:60e ― ~ 0% ― ― 
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When nanoparticle diameter was increased from 2 to 9 nm, similar values below 50% 

global yield were obtained. Nonetheless, when the much higher multivalency of these 

systems is taken into account it comes clear that these similar results derive from much 

higher individual coupling yields, being actually above 99% and very similar among them 

in all cases. 

Coupling with alkyne 8 onto ZW-functionalized nanoparticles presented very similar 

yields to those of the 2 nm analogues but conversion with 7 decreased by a factor of two. 

Coupling with TEG nanoparticles presents yields higher than those of ZW, but still 

moderate compared to the 2 nm TMA analogues shown before. Inclusion of more 

equivalents of all reagents, with the subsequent increase of DMSO, decreased reaction 

yield to virtually no conversion. 

In order to avoid the use of copper due to the inevitable contamination of the final 

sample, ring-strain promoted click chemistry was attempted and the results obtained are 

shown in Table 7. 
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Table 7 – Reaction yields corresponding to the copper-free coupling. Values in parenthesis are 

referred to the individual yield for each azido group, taking into account the total number of 

thiols, the proportion of azide groups and the global yield. aThe percentage represents the 

amount azide thiol on the NPs surface; bNumbers stand for the equivalents of alkyne respect 

to the azide groups; cDBCO-Biot commercial reagent; dDBCO byproducts much more present 

compared to the 2 eq. sample. 

   Main thiol 1 – ZW 9 – TEG 

   Azide thiola 3 – AZ-6 

Alkyne Solvent NPs Conditionsb 15% 28% 5% 

DBCOc H2O 

2 nm 5 eq ― 
~ 40% 

(95.4) 
― 

9 nm 

2 eq. ― ― 
93% 

(99.9) 

5 eq 
< 1% 

(< 98) 
― 

69%d 

(99.7) 

Results show very high yields for the coupling with TEG nanoparticles, but more 

curiously, the yield is significantly decreased when more equivalents of reagent were 

added. In addition, almost no impurities were obtained when 2 equivalents were 

employed but a significant amount of an insoluble precipitate as well as soluble 

byproducts were observed with the larger excess. With nanoparticles covered with ZW, 

both of 2 and 9 nm the reaction yields were significantly lower, specially in the latter 

case. 
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3.3 Discussion 

Residual copper contamination on the samples after the click-coupling was a critical 

issue, since it hindered the detection and quantification of the products. The broadening 

and low intensity of the NMR signals could be due to enhance paramagnetic relaxation 

in the environment of the copper(II) ions. The broadening of the peaks close to the 

phosphate group led us to believe that copper might be interacting with those groups 

through electrostatic interactions in solution. 

Although chelation ion exchange resin proved to be very efficient for copper removal 

once thiols were detached from gold, it had no effect when employed directly onto the 

nanoparticles. This suggests that copper binds to the thiols both free in solution and in the 

monolayer and with a relatively high binding constant (Figure 20). Similar interactions 

with several types of nanoparticles have already been reported in the literature.[58,59] 

 

Figure 20 – Representation of Cu-phosphate interaction within the nanoparticle 

monolayer. Blueish shadow represent the radius of action of the enhanced paramagnetic 

relaxation, mainly affecting methylene signal bound to the oxygen atoms. 
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The increased yield when ZW was substituted by TMA is in good agreement with the 

arguments reported before and could be due to a higher availability of copper in solution. 

Reduced yields with higher amounts of DMSO and higher yields for the non-

PEGylated alkyne 7 than 8 could indicate that the reaction progress better when thiol 

solubility in the media is reduced. In those cases, interaction of the alkyne with the 

hydrophobic pocket of the monolayer could be enhanced and the proximity to the azido 

groups responsible of the increase of the yield. 

Nanoparticle size increase from 2 to 9 nm did not modify significantly the global 

coupling yields, particularly with alkyne 8. This implies much higher individual yields 

considering that 9 nm nanoparticles contain about 30 times more azide groups than the 2 

nm analogues. This suggests that the controlling mechanism determining the final state 

of the system does not operate at the microscale of each coupling but is dictated by the 

supramolecular system. 

Values for couplings with alkyne 7 present lower yields with 9 nm than with 2 nm 

nanoparticles whereas those for 8 remained constant. Considering the lower solubility of 

7 in polar media and the fact that hydrophobic ligand TBTA was employed instead of 

water soluble THPTA this result supports the possibility of an interaction of either the 

alkyne and/or the catalyst with the hydrophobic environment inside the monolayer. The 

more compact disposition of the thiols when increasing nanoparticle size would impede 

or decrease this interaction, thus decreasing the reaction yields (see Figure 11 on page18) 

Click coupling on nanoparticles covered with TEG derivative 9 showed higher yields 

than those with ZW but still lower than the cationic with TMA. This intermediate yield 

could be due to a smaller, non electrostatic, but still existing interaction between the PEG 

chains and copper ions. Similar PEGylated gold nanoparticles have already been reported 

to be capable of binding metal ions and complexes in solution.[59] The reaction yield will 

be inversely proportional to the binding constant between the copper species and the 

nanoparticle monolayer (Figure 21). 



Chapter 3  Click-coupling on gold nanoparticles  

34 

 

 

Figure 21 – Representation of interaction modes and nature between copper ion and main 

thiols depending on their structure. Qualitative order of the magnitude of the binding constant 

K is also indicated. 

On the other hand, it must be also taken into account that for the uncatalyzed reaction, 

nanoparticles with a lower percentage of superficial azide groups typically presented 

higher conversion than their more substituted analogues,[60] a trend that we can also 

observe in our case. More experimental evidence employing nanoparticles with similar 

azide-coverage on the surface is required in order to exclude its influence. 

Couplings in the absence of copper with DBCO proved to be successful but only when 

low equivalents were employed. It is particularly outstanding the large global yield for 

the TEG 9 nm nanoparticles. We believe that further diminishing the amount of 

equivalents could improve the results in other cases where yields were still unsatisfactory. 

The reason why higher equivalents induced decomposition is not clear, but a spontaneous 

intermolecular mechanism between two molecules of the reagent can be discarded, since 

the compound has been stored in solution at concentrations much higher than those 

employed in the reaction with no decomposition even after several weeks. 

Despite the good performance with TEG nanoparticles, analogue experiments onto 

nanoparticles covered with ZW presented much lower or zero product formation. This 

could suggest that the functional group of ZW or some interaction of the reagent inside 



Chapter 3  Click-coupling on gold nanoparticles  

35 

 

the monolayer triggers or accelerate product decomposition. However, this study fell out 

of the scope of this thesis a no further investigations have been done. 

3.4 Conclusions 

Click-coupling has been done successfully onto mixed-monolayer nanoparticle 

bearing azide groups with low-to moderate yields similar to those reported in literature 

for alkyl nanoparticles.[60] 

The global yield values seems to be independent on the dimension of the nanoparticles 

in most cases, particularly when water-soluble THPTA catalyst was employed. 

Inclusion of very polar solvents such as water or water:DMSO mixtures did not 

improve the global yield, indicating that nanoparticle solubility and CuI stability, argued 

by several authors to be responsible for low click yields on alkyl-nanoparticles, might not 

be the cause of the low yields obtained in our case. 

Increase of the reaction yield when reducing alkyne and/or catalyst solubility in the 

reaction media, either by chemical transformation or solvent modification, suggests that 

favoring interaction of the reactant species into the monolayer close to the azido groups 

generally lead to higher conversions. 

Copper ions interacts strongly with the phosphate groups of ZW, both free in solution 

and when packed into the monolayer. This could be a key factor that prevents higher 

reaction yields on nanoparticles based on this molecule, as proven by the higher yields 

when substituted by a TEG or even more by TMA thiols. 

Click-coupling in the absence of copper has been also carried out very efficiently by 

using a ring-strained dibenzocyclooctyne derivative onto TEG nanoparticles. However, 

the use of high amounts of reagents or nanoparticles made of ZW decreased reaction 

yields drastically and several byproducts were formed. Evidence suggests that 

nanoparticle presence enables or accelerates reagent decomposition.
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Chapter 4 Protein Binding 

4.1 Results 

Monolayer availability and protein binding capabilities 

In order to the test protein binding capabilities of the biotinylated nanoparticles, a 

commercially available kit of HABA-Avidin reagent was employed. When a biotin 

molecule displaces HABA from the recognition site of avidin to the solution, the UV-

Visible absorption spectra is modified and measurement of Abs500nm allows precise 

quantification of the amount of ligand bound. 

 

Figure 22 – UV-Visible absorption spectra of the ligand displacement experiment. ZW 

nanoparticles exchanged with Biot-6 were employed (89% ZW / 11% Biot-6). Negative (H2O) 

an positive (biotin) controls are also shown. Nanoparticles concentration ca 12 mg/ml. 

From the analysis of the data shown in Figure 22, about 18% of biotin present on the 

nanoparticle surface was actually capable to displace HABA from avidin recognition site. 

This corresponds to about 46 biotin molecules per nanoparticle (See Nanoparticles 

characterization on page 66 and Monolayer availability study on page 86). 
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Avidin titration and crosslinking assay 

Titration of the nanoparticles with avidin presented the results shown in Figure 23. 

 

 

Figure 23 – Data (top) and picture of the cuvettes (bottom) from crosslinking experiment 

on biotinylated nanoparticles (89% ZW / 11% Biot-6). Wavelength corresponding to the 

plasmonic maximum (squares) and its absorbance (circles) are shown. Avidin equivalents 

calculated taking into account 18% biotin availability on the nanoparticle surface. 

Very low amounts of avidin, between 0 and 0.1 equivalents, induced a shift of the 

plasmonic band greater than 10 nm with no significant change in absorbance. Bigger 

amount of protein produced a further shift of 8 nm coupled with an abrupt precipitation 

phenomena (decrease in absorbance). Past the 1-2 equivalent point, both precipitation and 

band shift decreased and returned to its original position when 4 or more equivalents were 
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added. Final absorption however was slightly higher in intensity than that of the original 

nanoparticle. 

Figure 24 shows two different aggregates observed in the sample treated with 0.7 

equivalents of avidin. Nanoparticles proximity and vertical overlapping indicates the 

existence of 3-dimensional aggregates, out of the observation plane. 

 

Figure 24 – TEM Images of biotinylated nanoparticles treated with 0.7 equivalents of 

avidin showing a big (left) and small (right) aggregates. Notice the 3-dimensional arrangement 

of the nanoparticles. 

TEM images of the original nanoparticles and the sample treated with 25 equivalents 

of avidin (point not shown on Figure 23) are shown in Figure 25. It is important to notice 

the different packing of the nanoparticles and the bigger separation between them in the 

sample treated with avidin. 
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Figure 25 – TEM images of biotinylated nanoparticles before treatment (left) and after 

addition of 25 equivalents of avidin (right). Notice the bigger separation between the individual 

nanoparticles and the grey shadow around nanoparticles in the second image. 

Stained samples showed a low intensity ring around nanoparticles in contrast with the 

dark background (Figure 26). These were observed consistently around all nanoparticles 

present and their dimension typically fall within the 5-10 nm interval. 

 

Figure 26 – Stained TEM picture (left) of biotinylated nanoparticles treated with 9 

equivalents of avidin and intensity profiles (right) of two depicted directions. Indicative 

distances are shown. 
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The analogous experiment performed onto nanoparticles with only ZW showed no 

significant modifications of either position or value of the plasmonic maximum apart 

from a very small increase in absorbance (Figure 27). 

 

Figure 27 – Control experiment with 100% ZW nanoparticles. Notice that the same 

horizontal scale from Figure 23 has been employed for comparison purposes. Absorbance 

(circles) and position (squares) of the plasmonic maximum of the nanoparticles are shown. 

Biotin/Naproxen mix-monolayer nanoparticles for combined capturing 

When mix-monolayer nanoparticles with both biotin and naproxen on the surface 

were titrated in the same way as before (Figure 28), a very similar profile was obtained. 

It presented a small shift of the minimum towards smaller amounts of protein, a 

retardation of the plateau (existing above 5 equivalents instead of 4) and less abrupt 

recovery at intermediate values, being almost linear between 1 and 5 equivalents, in 

contrast with the trend observed before. 
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Figure 28 – Data from crosslinking titration of mixed biotin-naproxen nanoparticles (88% 

ZW / 6.5% Biot-6 / 5.5% Naprox). Avidin equivalents calculated estimating 18% biotin 

availability on the nanoparticle surface. 

Bifunctional nanoparticles were also titrated with albumin, that is known to interact 

with the naproxen moieties (Figure 29). Aggregation of a minimal amount of albumin 

induced a shift of the plasmonic band position of 15 nm with no modifications upon 

further addition. Increasing amounts of albumin induced a slow growth in the solutions 

absorbance up to 0.25-0.3 protein to naproxen ratio, with no effect beyond this point; this 

value roughly corresponds to 21-26 proteins per nanoparticle. 
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Figure 29 – Titration with albumin of mixed biotin-naproxen nanoparticles (88% ZW / 

6.5% Biot-6 / 5.5% Naprox). Absorbance (circles) and position (squares) of the plasmonic 

maximum of the nanoparticles are shown. 

4.2 Discussion 

Monolayer availability and protein binding capabilities 

Monolayer availability experiment showed that biotin was not only exposed on the 

surface of the nanoparticle but also capable of reaching and displacing HABA from the 

binding site of avidin in very short time, retaining a high binding constant. 

However, when considering the average size of the gold nanoparticles employed (11 

nm) and an approximate radius for avidin calculated from its molecular weight[25] (5 nm), 

it can be seen that there is no room on the nanoparticle surface to fit the value obtained 

of 46 proteins. 

A detailed analysis of the 3-dimensional structure of avidin revealed that binding sites 

are distributed in two pairs, facing opposite directions, as it can be seen in Figure 30. 
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Figure 30 – 3-Dimensional structure of HABA-avidin complex (PDB code 5CHK), ligands 

in the active site are highlighted with red arrows. Two remaining ligands face the opposite 

direction. External molecules shown on the top-right and bottom-left surface of the protein 

are crystallization additives. 

Therefore, it is possible that each active biotin moiety on the surface does not bind a 

single avidin but shares the protein with a second biotin molecule. This will reduce the 

number of proteins on the surface to be around 23. This value is in good agreement with 

a relatively compact packing of 5 nm spheres (a good approximation for the diameter of 

avidin) around a 11 nm one, which is reached with 26 binding units, as it can be seen in 

Figure 31. 
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Figure 31 – Packing of 5 nm spheres around a 11 nm spherical core. 26 outer spheres are 

fitted around the surface. 

Avidin titration and crosslinking assay 

Titration data shown on Figure 23 are in good agreement with the above discussion. 

Double binding with a single nanoparticle would leave the remaining active sites pointing 

directly towards the solution, thus enabling crosslinking with another nanoparticles as 

observed, whereas the equivalent point around 1 equivalent of avidin also agrees with the 

biotin availability calculated. 

Initial shift of the plasmonic band at very low concentration of protein is believed to 

be due to partial coverage of the nanoparticle surface by proteins themselves or by the 

formation of aggregates small enough to remain in solution. The anisotropic modification 

of the dielectric constant or the coupling between neighboring nanoparticle dipole 

moments could be responsible for this shift.[26,61] Further shift, coincident with 

absorbance decrease is believed to be due to extended crosslinking, beyond the solubility 

point, and precipitation of the aggregates formed. 

Figure 24 shows both types of aggregates (big insoluble and small soluble). Their 3-

dimensional structure supports the fact that they are generated by random isotropic 

crosslinking in solution and not during the deposition on the TEM grid, where three or 

less layers of particles are typically stacked. 
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When an excess of avidin is present in solution, crosslinking extension decreases and 

a perfectly soluble final state is recovered. Several reasons may explain why this situation 

is reached at 3.5 equivalents and not at 1 (Note that the term “equivalent” is employed 

here as the amount of protein necessary to bind precisely the number of biotin moieties 

on the sample). On possible explaination will be statistical; when only the exact amount 

of protein capable of binding all biotin is present in the sample (1 equivalent) it is very 

unlikely that every protein and ligand self-sorts spontaneously onto the right target 

avoiding any crosslinking, meaning that an excess of protein will always be required in 

order to avoid casual crosslinking formation. On the other hand, it could also be due to 

thermodynamical reasons if we consider that the binding constant decreases with 

nanoparticle covering, thus requiring higher amounts of protein to reach saturation. 

TEM pictures of Figure 25 evidence the difference between the original and the 

saturated system. Although both present very similar spectral properties, the larger 

separation between nanoparticles when treated with avidin as well as the stained images 

shown in Figure 26 indicate the existence of a protein corona around the nanoparticles 

after the addition of avidin. In addition, interparticle distances in Figure 26 are in good 

agreement with protein and monolayer size. This corona is believed to be the cause of the 

increase in absorption of the plasmonic band upon system saturation. 

Control experiment with nanoparticles covered only with ZW proved that the 

phenomena described above were not due to random aggregation and that protein binding 

via nonspecific interaction is not present. This lack of interaction was already reported in 

literature for this zwitterionic thiol monolayers on flat surfaces.[28] 

Biotin/Naproxen mix-monolayer nanoparticles for combined capture 

Nanoparticles with both biotin and naproxen presented a similar behavior when 

titrated with avidin, showing that the presence of naproxen does not have a significant 

impact on biotin binding capability. The downshift of the equivalent point could be due 

to the difference in biotin availability, since in order to calculate the equivalents for Figure 

28, the same 18% obtained for nanoparticles without naproxen was maintained as the 
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initial estimate. This approximation could not be true due to the presence of naproxen on 

the nanoparticle and the difference in surface composition. It is interesting to remark the 

fact that recovery of solubility was faster at the initial stages after the equivalent point but 

became slower in the final section and higher amount of avidin was required in order to 

reach saturation. This could be correlated with two phenomena, the lower solubility of 

these nanoparticles and the reduced coverage of biotin on the surface. The hydrophobic 

naproxen moiety is little water soluble so, adsorption of avidin on the nanoparticle surface 

should minimize the interaction of naproxen with water, increasing the global solubility 

and, therefore, increasing absorbance. On the other hand, the lower biotin density on the 

nanoparticle could make less likely or slower for a bound avidin to find a second biotin 

on the surface. This could imply that available biotin will be exposed for longer times 

before being capped, increasing the probability of crosslinking two different 

nanoparticles for the same amount of protein present. 

Although albumin presents two main binding sites, their spatial distribution at about 

90° from one another makes crosslinking impossible, coherently with the absence of 

precipitation observed. However, its addition immediately induced a shift of the 

plasmonic band, probably due to a modification of the nanoparticle surrounding. The 

increase in absorbance until reaching a steady situation is compatible with a continuous 

increase of the adsorption on the surface until saturation is reached. Albumin size being 

very similar to avidin also agrees strongly with the saturation value we obtained of 

slightly more than 20 proteins per nanoparticle. 
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4.3 Conclusions 

Biotinylated nanoparticles were capable to interact with avidin in solution via specific 

interactions with the recognition site, displacing weaker ligands. 

The amount of biotin capable to reach avidin binding sites suggest that each protein 

binds two biotin units on the same nanoparticle and that the whole surface is essentially 

covered with protein. 

The remaining recognition sites of avidin are located on the outer surface of the 

nanoparticle-protein complex and its activity is preserved, as confirmed by crosslinking 

assays. TEM Images show 3-dimensional globular structures for the crosslinked 

aggregates as well as the existence of a protein corona around the nanoparticles when an 

excess of protein was employed. Both color change and aggregation can be easily 

detected with the naked eye. 

Nanoparticles covered with only ZW did not show any apparent interaction with 

avidin in solution, excluding the possibility non-specific interactions are responsible for 

the phenomena shown above. 

Mix-monolayer nanoparticles bearing both biotin and naproxen presented a very 

similar titration profile with avidin, although differences on their monolayer structure or 

substitution degree may be responsible for a difference in the amount of available ligand 

or the protein necessary to reach surface saturation. 

Nanoparticles seem to be capable to recognise and bind albumin, as shown by the shift 

of the plasmonic band and the profile of the absorbance when increasing amount of 

protein added. The saturation value obtained from the curve is in good agreement with 

results obtained for avidin and are compatible with a complete covering of the 

nanoparticles surface. 
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Chapter 5 Gold necklaces and nanowires 

5.1 Introduction 

Synthetic procedures to prepare gold nanoparticles covered with poorly water-soluble 

thiols initially resulted in incomplete surface functionalization and aggregation of the 

sample before surface coverage was complete. In an attempt to prevent this phenomena 

we considered to substitute the original citrate molecules on the surface of the 

nanoparticles with a stronger capping agent, hoping it to survive long enough to allow 

complete functionalization before disruption of the monolayer. Therefore, citrate-capped 

nanoparticles were treated with 2-glucosamine-6-phosphate (GAP) as a temporary 

capping agent in order to test their stability. When analysed under TEM, 

monodimensional chains were observed and after a few weeks in solution, a colour 

change was observed and it was found to correspond to gold nanorods apparently formed 

by aggregation of nanoparticles along the chains. 

Both processes have been already reported in literature under many different 

experimental conditions (see below). Anisotropic metal nanoparticle systems have 

attracted a lot of interest in the recent years due to their properties as optical sensors. They 

can present additional plasmonic bands, at lower energies than usual (Visible-NIR region) 

and they are also more sensitive to modification on the surface, being thus capable of 

acting as very sensitive chemosensors.[62,63] 

Nanoparticle aggregation has been studied for decades,[64] but in the last years several 

approaches to build organised assemblies of nanoparticles have been developed.  

In order to get high-order assemblies of nanoparticles, a first approach reported in the 

literature  was the anchoring to thiolated polymers like chitosan (Figure 32).[65–70] 

However, addition of many other templates or small molecules, during or after the 

synthesis, also lead to monodimensional aggregates, showing that some general 

mechanism might be operating in these cases. 
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Figure 32 – Representation of the thiolated chitosan polymer (TCS) and a suspension of 

gold nanoparticles before (A) and after (B) its addition.[71] 

All these assemblies showed, regardless  the material or mechanism of formation of 

the nanometric chains, intense plasmonic resonance in the near infrared (NIR) region. As 

an example, evolution in time of gold nanoparticle synthesised by addeing linear 

poly(amidoamine) (PAmAm) and their corresponding absorption spectra are shown in 

Figure 33. 

 

Figure 33 – Absorption spectra and TEM images of gold nanoparticle synthesised by 

addeing linear poly(amidoamine) (PAmAm) and their corresponding absorption spectra at 

increasing times (a to d).[65] 

A general mechanism based on ligand-induced dipolar assembly has been proposed 

and studied.[72] It sustains that partial substitution of surface ligand/capping-agent on the 

surface induces the formation of dipoles along the nanoparticles that then tend to align 

forming the monodimensional chains.[73] 
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However, the chemistry of these systems is more complex and the chains observed 

above can experience additional transformation, leading to elongated wires of nanometric 

dimensions (Figure 34).[74,75] This has been achieved by growing gold nanoparticles 

inside a template, but also in its complete absence. In fact, regular synthetic procedures 

when carried out with a defect of the reducing/capping agent also lead to nanowires.[76–

78]. 

 

Figure 34 – TEM images of gold nanowires. Image from Pong et al.[79] 

The formation mechanism of these wires is still poorly understood. Under conditions 

that favour chemical reactivity (high temperature)[80] or by partially removing the 

protective ligand shell,[73] spontaneous assembly of CdTe nanoparticles into linear wires 

have been observed. In those cases when the wires are formed directly by reducing a gold 

salt, a mechanism where the spherical nanoparticles that are first formed subsequently 

fuse, have been proposed.[76] A completely opposite alternative has arisen more 

recently[77,79] in which wires are first formed and then they break apart into nanoparticles 

In addition, it must be noticed that although gold nanorods can be nowadays prepared 

with a very precise control of size and aspect ratio, the mandatory use of surfactants 

during the synthesis and the strong interaction between these molecules and the gold 

surface makes that, still nowadays, there is no simple way to ensure complete 

functionalization of the surface of these particles due to the flater surface of the cylindrical 

shape.[81–84] 
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5.2 Results 

Influence of the incubation medium 

Nanoparticles preserved in an excess of citrate were mainly stable, some minor 

aggregation was observed but no chains or rods were found. In the case of nanoparticles 

incubated with water, chains were readily observed and aggregation lead to elongated 

assemblies of nanoparticles but without reaching a final rod-like state. In both cases, 

aggregation took about two weeks to occur. On the other hand, in the solution with an 

excess of GAP, after two days of incubation very elongated wires that resembled the 

structure of the initial chains were observed. An illustrative example of the three 

situations described above is shown in Figure 35. Notice that the nanowires keep the 

original shape of the necklaces. 

 

Figure 35 – TEM images of gold nanoparticles incubated with citrate (left), pure water 

(middle) or glucosamine phosphate (right). 

Influence of GAP concentration during incubation 

After one day of incubation, chains were observed in all cases, regardless the 

presence of GAP. The data of Fig 5 indicate that glucosamine appears to control the 

extent of chain formation and nanoparticle aggregation. In fact, the lower the 

concentration of glucosamine, more extended assemblies are observed and the lower is 

the aggregation (Figure 36). 
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Figure 36 – TEM Image of the chain-like assemblies observed the day after the 

treatment. 

After one week of incubation, incomplete nanoparticle fusion was observed in the 

cases with less GAP, including pure water, whereas above 0.4 mM precipitation occurred 

and large aggregates arising from the uncontrolled fusion of particles were observed. 

 

Figure 37 – TEM Images of the aggregates observed after 1 week of incubation. 
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Effect of exchange time 

Sample incubated in citrate remained unmodified even during incubation, with no 

formation nor fusion of chains and preserved their spectral properties as said above 

(Figure 38). 

 

Figure 38 – TEM images of control sample incubated with 5mM citrate after 1 or 14 

days of incubation and UV-Vis-NIR absorption spectra at different times. 

A second control sample treated in the same way than the rest of the samples without 

exchanging with GAP showed minor chain formation and isotropic growth of 

nanoparticles, with a parallel increase of the intensity of the plasmonic band but no shift. 

 

Figure 39 – TEM images of control sample not exchanged with GlcAmP after 4 or 14 

days of incubation and UV-Vis-NIR spectra at different times. 
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On the other hand, samples exchanged with GAP and then incubated in water 

presented new features in the spectra, with the rise of a second plasmonic band shifting 

towards the NIR region and subsequent bleaching in the whole spectral window. The rate 

of the process was inversely proportional to the time of exchange with GAP as show the 

spectra taken  for samples exchanged for 10 minutes, 3 hours and overnight (Figure 40). 

 

Figure 40 – Absorption spectra in time in the UV-Vis-NIR region of the samples 

exchanged with GAP for different times. All samples incubated in water. 

TEM studies confirmed that this was due to the progressive fusion of the nanoparticle 

chains to form wires approximately identical in diameter but longer in the case of the 

shortest exchange times. After overnight exchange, the system seems to be blocked at the 

nanorod stage and does not evolve further to the nanowire phase. 
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Figure 41 – Gold nanorods/nanochains formation comparison as a function of Exchange 

time with GAP (rows) and incubation time in water (columns) 

Effects on the plasmonic resonance of the nanoparticles and precipitation phenomena 

can be observed with the naked eye as shown in Figure 41. 
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Figure 42 – Picture of the cuvettes where samples were incubated after different 

exchange times. (1) No exchange, (2) 10 minues, (3) 3 hours, (4) overnight, (5) 3 hours 

incubated in excess of sodium citrate. 

Trapping and functionalizing gold nanorods by thiol addition 

As mentioned before, anisotropic nanoparticles are of great interest due to their 

plasmonic properties. However, no one has been able yet to completely remove from the 

surface the surfactant employed during their synthesis by direct addition of the capping 

agent due to the great difficulty to detach it from the gold surface, especially the less 

curved regions.[81,82] 

As part of the previously described experiments, after 5 days of incubation, a water 

solution of ZW was added to an aliquot of the sample and the solution then further 

incubated for 9 more days. 
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As it can be observed in Figure 43, the obtained structures are much similar to those 

obtained from the samples subjected to 4 days of incubation than those left to incubate 

for 7 days or even longer times (data not shown). It appears that the addition of thiols 

stops the growth of the systems and longer aggregates and wires are no longer formed 

(see Figure 41).  

 

Figure 43 – TEM images of the samples at different exchange times after addition of the 

ZW thiol on the 5th day of incubation and incubation for another 9 days. To be compared 

with second and third column on Figure 41. 
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5.3 Discussion 

The chain formation even in samples without exchange with GAP suggests that the 

necklaces formation mechanism arises from a depletion of capping-agent in the solution. 

Influence of the incubation medium 

It is important to notice that, contrary to all other experiments reported in this thesis, 

concentration of nanoparticles was much higher. This large excess of nanoparticles 

respect to the chemical reactants could have inhibited the rod formation mechanism in 

the water sample because of the lack of material, since they will all be present in and 

effective lower amounts of equivalents. 

Nanoparticles exchanged with GAP were capable of self-assemble forming chains and 

the presence of GAP induced nanoparticle fusion. Both these processes were inhibited by 

addition of excess citrate after GAP treatment. The fact that nanowires retain the original 

shape of the necklaces strongly suggest that all the process occurs wile the system is in 

solution. 

Influence of GAP concentration during incubation 

The presence of GAP during incubation leads to shorter and less branched necklaces 

probably because this leads to a lower disruption of the passivating monolayer. During 

the exchange time, citrate molecules on the nanoparticle surface will be substituted by 

GAP molecules, interacting either through the amino or the phosphate groups, however, 

each GAP molecule displaces a trivalent citrate molecule, leaving unsaturated gold atoms 

on the surface that would tend to aggregate with other nanoparticles. 

When concentration is increased, GAP also seems to play an active role in the 

necklaces fusion process, since higher concentration lead to faster and more extended 

nanoparticle fusion. However, process control is very poor and aggregation occurs faster 

than rod growth. 
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Effect of exchange time 

Sample incubated in citrate remained unmodified as shown before and absence of 

GAP induced nanoparticle isotropic growth, probably to diminish surface energy as it 

happens during etching processes. 

Modification of the GAP exchange time allowed very good control of chain fusion 

kinetics, although the reason behind this different behaviour remains unknown. A 

potential explanation would be that GAP could be responsible for bridging between 

different nanoparticles and, upon release of the molecule, then facilitates nanoparticle 

fusion (Figure 44). 

 

Figure 44 – Possible cascade of events leading to nanoparticle fusion. (A) GAP molecules 

act as bridges between nanoparticles, (B) Eventual release of GAP get nanoparticles in contact, 

(C) Rod formation and growth. 

A possible explanation for the linear assembly of the chains would be minimisation 

of electrostatic repulsion. GAP molecules could induce packing by connecting two 

opposite poles of the nanoparticle, creating zones with a significantly lower charge 

density that would therefore be much more prone to get close to a similar zone onto a 

neighbouring nanoparticle, starting the process shown above. However, more 

experimental evidence is needed in order to establish a reliable mechanism. 

Addition of the thiol blocks wire growth even after further incubation without any 

purification, showing an efficient coverage and protection of the surface that prevent 

further nanoparticle fusion. 
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5.4 Conclusions 

Citrate-capped nanoparticles exchange with GAP showed the ability to form self-

assembled necklaces in solution that upon incubation at room temperature fuse into 

nanorods and nanowires several m in length. 

These nanorods and wires present a second plasmonic band in the NIR region 

potentially useful for many applications, particularly in nanomedicine. 

GAP seems to play a key role on nanoparticle fusion but the mechanism underneath 

the process remains unknown. 

The ability to block nanorods growth could lead to the development of a process in 

which nanowires size is tuned upon incubation and both, blocking and thiol 

functionalization could be achieved in one step with no intermediate molecules or 

purification processes. 
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Chapter 6 Materials and methods 

6.1 Solvents, Reagents and General Procedures 

Chemicals, solvents and deuterated solvents for NMR were obtained from Sigma-

Aldrich and used as purchased without further purification unless stated otherwise. Solid 

phase synthesis resin and amino acids were purchased from Iris Biotech. Hygroscopic 

reagents were kept inside a desiccator with the exception of tetrachloroauric acid, which 

was immediately dissolved upon arrival and the solution kept frozen at -20 °C. 

 

TLC were run on 0.2 mm Macherey-Nagel Alugram Xtra SIL G/UV254 plates, 

revealed typically under 365 nm irradiation and phosphomolybdic acid ethanolic solution. 

Terminal alkynes were revealed employing ethanolic KMnO4 and free amines with 

ninhydrin. Azides were revealed by in situ derivatization by reducing them with PPh3 

under mild heating and revealing the resulting primary amine with ninhydrin. Molecules 

containing polyethyleneglycol chains were revealed by employing Dragendorff's reagent. 

Column chromatography was performed with silica gel employing Macherey-Nagel 

Keiselgel 60 with particles sizes of 0.04 – 0.063 mm (flash) or 0.063 – 0.2 mm (gravity). 

Flash columns were performed by applying a positive nitrogen pressure. 

Glassware in contact with gold nanoparticles was washed with aqua regia before and 

after its use and rinsed with distilled water. All gold nanoparticle preparation and 

purification was carried out with milliQ water. Nanoparticles were purified by 

centrifugation on a Hettich Universal 320 R centrifuge operating with a swinging rotor 

(V ≤ 15 ml, rpm ≤ 5000) or a 45° fixed angle rotor (V ≤ 5 ml, rpm ≤ 12000) or an 

Eppendorf miniSpin Plus (V ≤ 1.5 ml, rpm ≤ 14500) depending on the sample. 

Molecular sieves (4 Å) were activated by heating at 300 °C for 24 hours under vacuum 

and stored under nitrogen before use. 
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6.2 Physical Measurements 

UV–Visible spectra were acquired on a Varian Cary 50 or Cary 100 

spectrophotometer whereas UV-Vis-NIR spectra were acquired on a Varian Cary 5000 

spectrophotometer employing 10 mm path length Hellma Suprasil® quartz cuvettes; 

disposable PMMA cuvettes were employed for visible measurements only. 

ESI mass spectra were recorded on an Agilent Technologies 1100 Series system 

equipped with a binary pump (G1312A) and MSD SL Trap mass spectrometer (G2445D 

SL) with ESI source from solutions in methanol or acetonitrile; in positive mode eluents 

contained 0.1% formic acid. Mass reported correspond to monocationic proton adducts. 

NMR spectra were recorded on a Bruker Avance DPX 200, Avance 300 or AVIII 500 

spectrometers operating at 200, 300 and 500 MHz for 1H and 50.3, 75.5 and 125.7 MHz 

for 13C, respectively. 1H and 13C NMR spectra were calibrated using residual solvent 

signals, whereas for 31P calibration an automatic spectrometer reference was used. 

Residual solvent signals were assigned according to previously reported values.[85,86] 

Thermogravimetric analyses were carried out on ~1 mg of nanoparticles with a TA 

Instruments Q5000 IR instrument. Solvent was removed by heating the sample at 100 °C 

for 10 minutes and then a 10 °C/min temperature ramp was applied from 100 to 1000 °C. 

Transmission electron microscopy analysis were run on a FEI Tecnai G12 microscope 

operating at 100 kV and images registered with an OSIS Veleta 4K camera. Samples were 

typically deposited on a copper grid and the excess of solvent removed with filtering 

paper. Stained samples were treated by putting in contact the sample-containing grid with 

a drop of uranyl acetate solution for 5 minutes in the absence of light. Size distribution 

analysis was carried out by modelling nanoparticle intensity profiles employing PEBBLES 

and size distribution calculated by performing direct statistics on the previous modelled 

nanoparticles with PEBBLEJUGGLER.[87] 
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6.3 Gold Nanoparticle preparation 

A modified version of a literature procedure was followed.[27] Typically, to 5.6 ml of 

water, sequentially and under vigorous stirring, 1.6 ml of sodium citrate (510 mM), 250 

l of silver nitrate (10 mM) and 500 l of tetrachloroauric acid (250 mM) were added 

and stirred for 5 minutes. During this time, the solution changed from initial yellow color 

to green, grey and finally black. After the incubation time, the solution was quickly added 

to 117 ml of boiling water and heated under reflux for 1 hour, becoming wine-red after a 

few seconds. The citrate-capped nanoparticles solution obtained was then allowed to cool 

down to room temperature, the desired free thiol was added in 1-2 ml of isopropanol and 

left stirring overnight. 

Nanoparticles were purified by using 15 ml Amicon® Ultra filters of 100 KDa 

molecular weight cutoff centrifuged for 2.5 minutes at 2000 rpm or 10 KDa at 5000 rpm 

for 6 minutes. Prior to use, filters were prewashed 5 times with 1:1 H2O:MeOH, then 

nanoparticles washed 5 times with 1:1 H2O:MeOH and 5 times with pure water. Typical 

concentrated volumes after centrifugation for 15, 4 and 0.5 ml filtering units were 1.5, 

0.5 and 0.1 ml respectively. Purified nanoparticles aqueous solution were frozen with dry 

ice and freeze-dried overnight on a Cinquepascal 105PDGT lyophilizer equipped with 

and Edwards  XDS 10 Pump (P ≈ 0.2 mbar, T = -50 °C). Typically, an amount between 

22 and 26 mg of functionalized nanoparticles was obtained, corresponding to ca. 75% 

yield.  

In the case of 2 nm nanoparticle preparation, a previously reported procedure was 

followed.[88] 

Nanoparticles were analyzed by NMR in situ by detaching the thiols from its surface 

by treating 500 l of nanoparticles solution with 100 l of a saturated solution of iodine 

in deuterated solvent. 
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6.4 Nanoparticles characterization 

Nanoparticles core were characterized by TEM analysis. In a typical batch, a 

minimum of 500 nanoparticle sample was used to calculate the average size and the 

associated standard deviation. 

 

Figure 45 – TEM image and analysis of a purified batch of nanoparticles covered with a 

self-assembled monolayer of thiol 1. 

The organic monolayer was studied by thermogravimetric analysis; a typical 

combustion curve of nanoparticles as the ones shown in Figure 45 is displayed in Figure 

46. 
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Figure 46 – Typical TGA profile of nanoparticles covered with thiol 1. 

Depending on the size of the gold core, amounts of thiols on the monolayer varied in 

the range from 0.2 to 0.3 mols of thiol per mg of nanoparticle. 

For the estimation of the number of proteins around the nanoparticle not only the 

amount but the actual number of thiols around the surface of the nanoparticle in required, 

and therefore the formula and molecular weight of the nanoparticle need to be known. In 

order to retrieve those values, two parameters where employed: the gold atomic density 

inside gold nanoparticles (59 atoms per nm3) and the thiol fingerprint on the nanoparticle 

surface. The first value has been reported in the literature[89] (as cited by[90]), whereas the 

second one depends significantly on the thiol chemical structure and it has to be obtained 

for each thiol. Based on the gold atomic density and TGA curves, we estimated it to be 

0.2 nm2 per ZW thiol, which agrees with those reported in literature for thiols of similar 

length.[46] With those two values, both nanoparticle approximate formula and molecular 

weight can be calculated from the diameter of the gold core, experimentally obtained by 

TEM analysis. 
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6.5 Chemical Synthesis 

 

Figure 47 – List of all compounds prepared and reported in this thesis. 
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Final or relevant compounds are labelled with Arabic numbers and their abbreviation 

is shown, whereas intermediates are labelled with Roman numbers. 

Compounds 1,[28] 9[91] and 10[92] and intermediates I,[93] III,[94] VI,[95] VII-VIII,[96] 

IX-a,[97] IX-b[98] and X-a[99] were synthesized according to previously reported methods. 

PEGylated derivatives VI-VIII where characterized by comparing MS and 1H-NMR 

spectra with previously reported ones.[100] Remaining compounds and intermediates are 

new and its synthesis and characterization is described below. 

NMR labeling notation of biotin and naproxen derivatives is shown on Figure 48. 

 

Figure 48 – Notation employed when reporting biotin and naproxen NMR signals. 

Intermediates IX and X-a have been previously reported in the literature, however, 

since new analogous derivatives have been prepared, they are described in detail for 

comparison purposes. In terminal alkene 1H-NMR notation, subindexes cis and trans are 

referred to the single hydrogen to which the terminal protons are coupled and not to the 

substituent. 

Thioacetate deprotection was typically carried out by refluxing a solution of the 

protected form in a 1:1 mixture of 6 M aq. HCl and EtOH for 2-3 hours. The solvent was 

removed under vacuum and the product obtained in quantitative yield. 
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S-(1-azido-13-oxo-3,6,9-trioxa-12-azaicosan-20-yl) ethanethioate (2-Prot) 

I (0.5 g, 1.3 mmol, 1.0 eq) and VIII-a (296 mg, 1.36 mmol, 1.05 eq) were dissolved 

in DMF (5 ml), DIPEA (270 l, 1.56 mmol, 1.2 eq) was added and the solution heated at 

70 ºC for 3 days. Solvent was removed under vacuum and the product purified by column 

chromatography in AcOEt:EtOH 50:1 to yield the desired product as a colorless oil. 

Yield: 788 mg (39 %). 

1H NMR (300 MHz, Chloroform–d): δH (ppm): 6.17 (bs, 1H, NH), 3.70-3.57 (m, 10H, 

PEG-OCH2), 3.57-3.50 (m, 2H, CH2CH2NH), 3.39-3.33 (m, 4H, CH2CH2N3+CH2NH), 

2.83 (t, 3JHH = 7.3 Hz, 2H, CH2S), 2.29 (s, 3H, CH3), 2.15 (t, 3JHH = 7.4 Hz, 2H, CH2C(O)), 

1.68-1.46 (m, 4H, CH2CH2S+CH2N3), 1.30 (bs, 6H, CH2CH2C(O)+CH2CH2). 

13C{1H} NMR (75.5 MHz, Chloroform–d): δC (ppm): 196.1 (COthioacetate) 176.3 

(COamide), 70.8-70.0 (OCH2+CH2CH2NH+CH2CH2N3), 50.8 (CH2N3), 39.2 (CH2NH), 

36.7 (CH2C(O)), 30.7 (CH2CH2S) 29.5-28.7 (CH2CH2), 25.7 (CH2CH2C(O)). 

HR‒MS: For C18H35N4O5S, observed mass 419.2335, calculated 419.2328, 

difference 0.6 mDa. 

N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-8-mercaptooctanamide (2 – 

AZ4) 

Thiol 2 (AZ4) was obtained in its deprotected form from 2-Prot by following the 

procedure described previously on page 69. Yield: quantitative. 

S-(1-azido-19-oxo-3,6,9,12,15-pentaoxa-18-azahexacosan-26-yl) ethanethioate 

(3-Prot) 

The same procure described above for 2-Prot replacing VIII-a for VIII-b (416 mg, 

1.36 mmol, 1.05 eq) was employed. Yield: 443 mg (67 %). 
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1H NMR (300 MHz, Chloroform–d): δH (ppm): 6.21 (bs, 1H, NH), 3.70-3.54 (m, 18H, 

PEG-OCH2), 3.54-3.46 (m, 2H, CH2CH2NH), 3.44-3.30 (m, 4H, CH2CH2N3+CH2NH), 

2.80 (t, 3JHH = 7.3 Hz, 2H, CH2S), 2.27 (s, 3H, CH3), 2.13 (t, 3JHH = 7.6 Hz, 2H, CH2C(O)), 

1.66-1.44 (m, 4H, CH2CH2S+CH2N3), 1.36-1.19 (m, 6H, CH2CH2C(O)+CH2CH2). 

13C{1H} NMR (75.5 MHz, Chloroform–d): δC (ppm): 196.0 (COthioacetate) 173.2 

(COamide), 70.7-70.0 (OCH2+CH2CH2NH+CH2CH2N3), 50.7 (CH2N3), 39.2 (CH2NH), 

36.6 (CH2C(O)), 30.7 (CH2CH2S) 29.5-28.7 (CH2CH2), 25.6 (CH2CH2C(O)). 

HR‒MS: For C22H43N4O7S, observed mass 507.2854, calculated 507.2852, 

difference 0.2 mDa. 

N-(17-azido-3,6,9,12,15-pentaoxaheptadecyl)-8-mercaptooctanamide (3 – AZ6) 

Compound 3 (AZ6) was prepared from 3-Prot by following the standard procedure 

described on page 69. Yield: quantitative. 

but-3-yn-1-yl 5-((3aS,4R,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-

yl)pentanoate (7) 

To a solution of D-biotin (134 mg, 0.55 mmol, 1 eq), EDC (157 mg, 1.1 mmol, 2 eq) 

and DMAP (6.7 mg, 0.055 mmol, 0.1 eq) in anydrous DMF (10 ml) cooled down to 0 °C, 

a 3-butyn-1-ol solution (192 mg, 2.75 mmol, 5 eq) in anydrous DMF (1 ml) was dropwise 

added. The solution was allowed to warm up at room temperature and was stirred 

overnight under N2 atmosphere. The solvent was removed under vacuum, dissolved in 

CH2Cl2 and washed with 1M aq. NaOH once and water four times. The organic solvent 

was evaporated and the product purified by column chromatography in AcOEt:MeOH 

5:1. Yield: 53 mg (32%). 
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1H NMR (500 MHz, Methanol-d4): δH (ppm): 4.49 (ddd, 1H, 3JHH = 7.9, 5.0, 1.0 Hz, 

Biotin-Ha), 4.31 (dd, 1H, 3JHH = 4.5 Hz, Biotin-Hb), 4.16 (t, 2H, 3JHH = 6.7 Hz, CH2O), 

3.21 (ddd, 1H, 3JHH = 9.0, 5.8 Hz, Biotin-Hc), 2.93 (dd, 1H, 1JHH = 12.7 Hz, 3JHH = 5.0 

Hz, Biotin-Hendo), 2.71 (d, 1H, Biotin-Hexo), 2.52 (td, 2H, 3JHH = 6.7 Hz, 4JHH = 2.7 Hz, 

CH2C≡CH), 2.37 (t, 2H, 3JHH = 7.4 Hz, CH2C(O)), 2.31 (t, 1H, C≡CH), 1.79-1.55 (m, 

4H, CH2CH2), 1.46 (p, 2H, 3JHH = 7.4 Hz, CH2CH2CH2). 

13C{1H} NMR (125.7 MHz, Methanol-d4): δC (ppm): 175.0 (COester), 166.1 (CObiotin), 

81.0 (C≡CH), 71.0 (C≡CH), 63.4 (CH2O), 63.4 (Biotin-Cb), 61.6 (Biotin-Ca), 57.0 

(Biotin-Cc), 41.0 (Biotin-Cd), 34.7 (CH2C(O)), 29.6, 29.4 (CH2CH2), 25.9 (Biotin-

CH2CHb), 19.6 (CH2C≡CH). 

3,6,9,12-tetraoxahexadec-15-yn-1-ol (II) 

To a solution of triflic anhydride (10 ml from 1M CH2Cl2 solution, 10 mmol, 1.05 eq) 

under N2 atmosphere and cooled at 0 ºC, a mixture of 3-butyn-1-ol (720 l, 9.52 mmol, 

1 eq.) and pyridine (800 l, 10 mmol, 1.05 eq) in anhydrous CH2Cl2 (10 ml) was slowly 

added for 30 minutes. Then a solution of tetraethyleneglycol (4.9 ml, 28.56 mmol, 3 eq) 

in anhydrous CH2Cl2 was quickly added and the solution stirred for 30 minutes. The 

reaction was washed twice with sat. aq. NaHCO3 and the residue purified by column 

chromatography in AcOEt:EtOH 9:1. Yield: 376 mg (16 %). 

1H NMR (500 MHz, Methanol-d4): δH (ppm): 3.71-3.54 (m, 18H, PEG-OCH2), 2.46 

(td, 2H, 3JHH = 6.9 Hz, 4JHH = 2.7 Hz, CH2C≡CH), 2.28 (t, 1H, C≡CH). 

HR‒MS: For C12H23O5 observed mass 247.1550, calculated 247.1545, difference 0.5 

mDa. 
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3,6,9,12-tetraoxahexadec-15-yn-1-yl 5-((3aS,4R,6aR)-2-oxohexahydro-1H-

thieno[3,4-d]imidazol-4-yl)pentanoate (8) 

To a solution of D-biotin (623 mg, 2.55 mmol, 2 eq), EDC (500 mg, 2.55 mmol, 2 eq) 

and DMAP (24 mg, 0.2 mmol, 0.15 eq) in anhydrous DMF (35 ml) at 0 ºC, a solution of 

II (320 mg, 1.3 mmol, 1 eq) in anhydrous DMF (5 ml) was added, the reaction was 

allowed to warm to room temperature and stirred overnight under N2 atmosphere. The 

solvent was removed under vacuum and the product purified by column chromatography 

in AcOEt:EtOH 20:1 → 5:1. Yield: 464 mg (75 %). 

1H NMR (500 MHz, Methanol-d4): δH (ppm): 4.49 (ddd, 1H, 3JHH = 7.9, 5.0, 1.0 Hz, 

Biotin-Ha), 4.31 (dd, 1H, 3JHH = 4.5 Hz, Biotin-Hb), 4.24-4.19 (m, 2H, CH2Oester), 3.73-

3.68 (m, 2H, CH2CH2Oester), 3.61 (2×bs, 12H, PEG-OCH2), 3.59 (t, 2H, 3JHH = 6.9 Hz, 

CH2CH2C≡CH), 3.21 (dd, 1H, 3JHH = 9.0, 5.8 Hz, Biotin-Hc), 2.93 (dd, 1H, 1JHH = 12.7 

Hz, 3JHH = 5.0 Hz, Biotin-Hendo), 2.71 (d, 1H, Biotin-Hexo), 2.44 (td, 2H, 3JHH = 6.9 Hz, 

4JHH = 2.7 Hz, CH2C≡CH), 2.38 (t, 2H, 3JHH = 7.3 Hz, CH2C(O)), 2.23 (t, 1H, C≡CH), 

1.80-1.54 (m, 4H, CH2CH2), 1.46 (p, 2H, CH2CH2CH2). 

13C{1H} NMR (125.7 MHz, Methanol-d4): δC (ppm): 175.3 (COester), 166.1 (CObiotin), 

82.0 (C≡CH), 71.6-70.5 (OCH2), 70.1 (C≡CH), 64.6 (CH2Oester), 63.4 (Biotin-Cb), 61.6 

(Biotin-Ca), 57.0 (Biotin-Cc), 41.0 (Biotin-Cd), 29.7, 29.5 (CH2CH2), 25.9 (Biotin-

CH2CHb), 20.5 (CH2C≡CH). 

HR‒MS: For C22H37N2O7S, observed mass 473.2355, calculated 473.2321, 

difference 3.4 mDa. 
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N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-5-((3aS,4S,6aR)-2-

oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide (IX-a) 

To a solution of D-biotin (195 mg, 0.8 mmol, 1 eq), EDC (306 mg, 1.6 mmol, 2 eq) 

and DMAP (10 mg, 0.08 mmol, 0.1 eq) in anhydrous DMF (5 ml) at 0 ºC, a solution of 

VIII-a (175 mg, 0.8 mmol, 1 eq) in anhydrous DMF (5 ml) was added dropwise. The 

reaction was allowed to warm to room temperature and stirred overnight under N2 

atmosphere. The solvent was removed under vacuum and the product purified by column 

chromatography in CH2Cl2:MeOH 8:1. Yield: 224 mg (63 %). 

1H NMR (500 MHz, Methanol-d4): δH (ppm): 4.49 (ddd, 1H, 3JHH = 7.9, 5.0, 0.9 Hz, 

Biotin-Ha), 4.31 (dd, 1H, 3JHH = 4.5 Hz, Biotin-Hb), 3.69-3.59 (m, 10H, PEG-OCH2), 3.55 

(t, 2H, 3JHH = 5.5 Hz, OCH2CH2NH), 3.40-3.35 (m, 4H, CH2CH2N3+CH2NH), 3.24-3.18 

(m, 1H, Biotin-Hc), 2.95-2.90 (m, 1H, Biotin-Hendo), 2.71 (d, 1H, , 1JHH = 12.6 Hz, Biotin-

Hexo), 2.22 (t, 2H, 3JHH = 7.3 Hz, CH2C(O)), 1.80-1.55 (m, 4H, CH2N3+CH2CH2), 1.50-

1.40 (m, 2H, CH2CH2). 

ESI‒MS: For C18H33N6O5S, observed mass 445.40, calculated 445.22. 

N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-5-((3aS,4S,6aR)-2-

oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide (X-a) 

To a flask containing IX-a (168 mg, 0.38 mmol, 1 eq) a THF (4 ml) solution of 

triphenylphosphine (109 mg, 0.42 mmol, 1.1 eq) and then water (2 ml) were added and 

the solution vigorously stirred overnight. The organic solvent was removed under vacuum 

and the aqueous phase washed twice with CH2Cl2 and one with Et2O. The desired product 

was obtained as a white solid upon freeze-drying. Yield: 132 mg (83 %). 
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1H NMR (500 MHz, Methanol-d4): δH (ppm): 4.49 (ddd, 1H, 3JHH = 7.9, 5.0, 0.9 Hz, 

Biotin-Ha), 4.30 (dd, 1H, 3JHH = 4.5 Hz, Biotin-Hb), 3.68-3.60 (m, 8H, PEG-OCH2), 3.57-

3.52 (m, 4H, 2×CH2CH2NH), 3.36 (t, 2H, 3JHH = 5.5 Hz, CH2NH), 3.21 (ddd, 1H, 3JHH = 

9.0, 5.8 Hz, Biotin-Hc), 2.95-2.90 (m, 1H, Biotin-Hendo), 2.85 (t, 2H, 3JHH = 7.4 Hz, 

CH2CH2NH2), 2.71 (d, 1H, , 1JHH = 12.7 Hz, Biotin-Hexo), 2.22 (t, 2H, 3JHH = 7.4 Hz, 

CH2C(O)), 1.80-1.54 (m, 4H, CH2CH2), 1.50-1.40 (m, 2H, CH2CH2). 

ESI‒MS: For C18H35N4O5S, observed mass 419.37, calculated 419.23. 

S-(5,19-dioxo-1-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-

9,12,15-trioxa-6,18-diazahexacosan-26-yl) ethanethioate (4-Prot) 

A solution of X-a (150 mg, 0.36 mmol, 1 eq) was stirred in the presence of activated 

molecular sieves in anhydrous DMF (8 ml) for 30 minutes, then a solution of I (206 mg, 

0.54 mmol, 1.5 eq) in anhydrous DMF (3 ml) was added, followed by DIPEA (75 l, 0.43 

mmol, 1.2 eq) and the reaction was heated at 70 ºC for 2 days. The mixture was filtered, 

the solvent removed under vacuum and the product purified by column chromatography 

in CH2Cl2:MeOH 10:1 → 6:1. Yield: 112 mg (51 %). 

1H NMR (500 MHz, Methanol-d4): δH (ppm): 4.49 (ddd, 1H, 3JHH = 7.9, 5.0, 0.9 Hz, 

Biotin-Ha), 4.31 (dd, 1H, 3JHH = 4.4 Hz, Biotin-Hb), 3.67-3.60 (m, 8H, PEG-OCH2), 3.54 

(m, 4H, 2×OCH2CH2NH), 3.36 (m, 4H, CH2NH), 3.21 (ddd, 1H, 3JHH = 8.9, 5.8 Hz, 

Biotin-Hc), 2.93 (dd, 1H, 1JHH = 12.7 Hz, Biotin-Hendo), 2.86 (t, 2H, 3JHH = 7.3 Hz, CH2S), 

2.71 (d, 1H, Biotin-Hexo), 2.30 (s, 3H, CH3), 2.25-2.17 (m, 4H, CH2C(O)), 1.79-1.52 (m, 

8H, CH2CH2), 1.49-1.41 (m, 2H, CH2CH2), 1.40-1.30 (m, 6H, CH2). 

13C{1H} NMR (125.7 MHz, Methanol-d4): δC (ppm): 197.6 (COthioacetate), 176.3, 176.1 

(2×COamide), 166.1 (CObiotin), 71.6 (OCH2), 71.2, 70.6 (2×CH2CH2NH), 63.4 (Biotin-Cb), 

61.6 (Biotin-Ca), 57.0 (Biotin-Cc), 41.0 (Biotin-Cd), 40.3 (2×CH2NH), 37.0, 36.8 

(2×CH2C(O)), 30.7 (CH2CH2S), 30.5 (CH3), 30.0-29.6 (CH2CH2), 29.5 (CH2S), 26.9, 

26.8 (2×CH2CH2C(O)). 
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HR‒MS: For C28H51N4O7S2, observed mass 619.3217, calculated 619.3199, 

difference 1.8 mDa. 

8-mercapto-N-(13-oxo-17-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-

d]imidazol-4-yl)-3,6,9-trioxa-12-azaheptadecyl)octanamide (4 – Biot-4) 

The protecting thioacetate group of 4-Prot was removed by following the general 

procedure described on page 69, obtaining 4 (Biot-4) in quantitative yield. 

1H NMR (500 MHz, Methanol-d4): δH (ppm): 4.63 (dd, 1H, 3JHH = 8.1, 4.8 Hz, Biotin-

Ha), 4.43 (dd, 1H, 3JHH = 4.4 Hz, Biotin-Hb), 3.74-3.60 (m, 8H, PEG-OCH2), 3.56 (td, 

4H, 3JHH = 5.5 Hz, 4JHH = 1.6 Hz, 2×OCH2CH2NH), 3.42-3.36 (m, 4H, CH2NH), 3.29-

3.25 (m, 1H, Biotin-Hc), 2.99 (dd, 1H, 1JHH = 13.0 Hz, Biotin-Hendo), 2.77 (d, 1H, Biotin-

Hexo), 2.50 (t, 2H, 3JHH = 7.1 Hz, CH2S), 2.29-2.22 (m, 4H, CH2C(O)), 1.82-1.55 (m, 8H, 

CH2CH2), 1.50-1.28 (m, 8H, CH2CH2). 

13C{1H} NMR (125.7 MHz, Methanol-d4): δC (ppm): 176.9, 176.4 (2×COamide), 165.8 

(CObiotin), 71.6, 71.2 (OCH2), 70.4, 70.3 (2×CH2CH2NH), 64.3 (Biotin-Cb), 62.7 (Biotin-

Ca), 56.8 (Biotin-Cc), 40.7 (Biotin-Cd), 40.7, 40.6 (2×CH2NH), 36.7, 36.5 (2×CH2C(O)), 

35.1 (CH2CH2S), 30.1 (CH3), 29.8-29.2 (CH2CH2), 27.0, 26.8 (2×CH2CH2C(O)), 24.9 

(CH2S). 

HR‒MS: For C26H49N4O6S2, observed mass 577.3113, calculated 577.3094, 

difference 1.9 mDa. 
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N-(17-azido-3,6,9,12,15-pentaoxaheptadecyl)-5-((3aS,4S,6aR)-2-oxohexahydro-

1H-thieno[3,4-d]imidazol-4-yl)pentanamide (IX-b) 

The same procedure for IX-a was followed replacing VIII-a by VIII-b (174 mg, 0.57 

mmol, 1 eq). Yield: 170 mg (56 %). 

1H NMR (500 MHz, Methanol-d4): δH (ppm): 4.49 (ddd, 1H, 3JHH = 7.9, 5.0, 0.9 Hz, 

Biotin-Ha), 4.31 (dd, 1H, 3JHH = 4.5 Hz, Biotin-Hb), 3.70-3.54 (m, 18H, PEG-OCH2), 3.55 

(t, 2H, 3JHH = 5.4 Hz, OCH2CH2NH), 3.40-3.34 (m, 4H, CH2CH2N3+CH2NH), 3.21 (ddd, 

1H, 3JHH = 8.9, 5.9 Hz, Biotin-Hc), 2.96-2.89 (m, 1H, Biotin-Hendo), 2.71 (d, 1H, , 1JHH = 

12.7 Hz, Biotin-Hexo), 2.22 (t, 2H, 3JHH = 7.5 Hz, CH2C(O)), 1.79-1.56 (m, 4H, CH2N3+ 

CH2CH2C(O)), 1.50-1.40 (m, 4H, CH2CH2). 

ESI‒MS: For C22H41N6O7S, observed mass 533.43, calculated 533.28. 

N-(17-amino-3,6,9,12,15-pentaoxaheptadecyl)-5-((3aS,4S,6aR)-2-oxohexahydro-

1H-thieno[3,4-d]imidazol-4-yl)pentanamide (X-b) 

Intermediate X-b was obtained from IX-b (300 mg, 0.56 mmol, 1 eq) following the 

same procedure described for X-a. Yield: 240 mg (84 %). 

1H NMR (500 MHz, Methanol-d4): δH (ppm): 4.49 (ddd, 1H, 3JHH = 8.0, 5.0, 0.9 Hz, 

Biotin-Ha), 4.31 (dd, 1H, 3JHH = 4.5 Hz, Biotin-Hb), 3.68-3.60 (m, 16H, PEG-OCH2), 

3.60-3.50 (m, 4H, 2×OCH2CH2N), 3.36 (t, 2H, 3JHH = 5.5 Hz, CH2NH), 3.21 (ddd, 1H, 

3JHH = 9.0, 5.8 Hz, Biotin-Hc), 2.97-2.90 (m, 1H, Biotin-Hendo), 2.87 (t, 2H, 3JHH = 5.3 

Hz, CH2CH2NH2), 2.71 (d, 1H, , 1JHH = 12.7 Hz, Biotin-Hexo), 2.22 (t, 2H, 3JHH = 7.4 Hz, 

CH2C(O), 1.81-1.54 (m, 4H, CH2CH2), 1.50-1.40 (m, 2H, CH2CH2). 

13C{1H} NMR (125.7 MHz, Methanol-d4): δC (ppm): 176.2 (2×COamide), 166.1 

(CObiotin), 72.2, 71.6, 71.5, 71.2 (OCH2), 70.6 (CH2CH2NH), 63.4 (Biotin-Cb), 61.6 

(Biotin-Ca), 57.0 (Biotin-Cc), 41.8 (CH2NH2) 41.0 (Biotin-Cd), 40.3 (CH2NH), 36.7 

(CH2C(O)), 29.8, 29.5 (CH2CH2), 26.8 (CH2CH2C(O)). 



Chapter 6  Materials and methods 

78 

 

ESI‒MS: For C22H43N4O7S, observed mass 507.44, calculated 507.29. 

S-(5,25-dioxo-1-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-

9,12,15,18,21-pentaoxa-6,24-diazadotriacontan-32-yl) ethanethioate (5-Prot) 

The same procedure described for 4-Prot was employed on X-b (240 mg, 0.47 mmol, 

1 eq) instead of X-a. Yield: 190 mg (57%). 

1H NMR (500 MHz, Methanol-d4): δH (ppm): 4.50 (ddd, 1H, 3JHH = 7.9, 5.0, 0.9 Hz, 

Biotin-Ha), 4.31 (dd, 1H, 3JHH = 4.5 Hz, Biotin-Hb), 3.68-3.59 (m, 16H, PEG-OCH2), 3.54 

(m, 4H, 2×OCH2CH2NH), 3.36 (m, 4H, CH2NH), 3.21 (ddd, 1H, 3JHH = 8.9, 5.8 Hz, 

Biotin-Hc), 2.93 (dd, 1H, 1JHH = 12.8 Hz, Biotin-Hendo), 2.86 (t, 2H, 3JHH = 7.3 Hz, CH2S), 

2.71 (d, 1H, Biotin-Hexo), 2.30 (s, 3H, CH3), 2.25-2.16 (m, 4H, CH2C(O)), 1.80-1.51 (m, 

8H, CH2CH2), 1.49-1.28 (m, 8H, CH2CH2). 

13C{1H} NMR (125.7 MHz, Methanol-d4): δC (ppm): 197.6 (COthioacetate), 176.3, 176.1 

(2×COamide), 166.1 (CObiotin), 71.6, 71.5 (OCH2), 71.3, 70.6 (2×CH2CH2NH), 63.4 

(Biotin-Cb), 61.6 (Biotin-Ca), 57.0 (Biotin-Cc), 41.0 (Biotin-Cd), 40.3 (2×CH2NH), 37.0, 

36.7 (2×CH2C(O)), 30.7 (CH2CH2S), 30.5 (CH3), 30.1-29.6 (CH2CH2), 29.5 (CH2S), 

26.9, 26.8 (2×CH2CH2C(O)). 

ESI‒MS: For C32H59N4O9S2, observed mass 707.29, calculated 707.37. 
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8-mercapto-N-(19-oxo-23-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-

d]imidazol-4-yl)-3,6,9,12,15-pentaoxa-18-azatricosyl)octanamide (5 – Biot-6) 

5-Prot was deprotected following the standard protocol described earlier on page 69 

to yield 5 (Biot-6) quantitatively. 

1H NMR (500 MHz, Methanol-d4): δH (ppm): 4.59 (ddd, 1H, 3JHH = 7.9, 5.0, 0.8 Hz, 

Biotin-Ha), 4.40 (dd, 1H, 3JHH = 4.4 Hz, Biotin-Hb), 3.77-3.61 (m, 16H, PEG-OCH2), 3.55 

(t, 4H, 3JHH = 5.5 Hz, 2×OCH2CH2NH), 3.38 (m, 4H, CH2NH), 3.29-3.22 (m, 1H, Biotin-

Hc), 2.97 (dd, 1H, 1JHH = 12.9 Hz, Biotin-Hendo), 2.76 (d, 1H, Biotin-Hexo), 2.50 (t, 2H, 

3JHH = 7.3 Hz, CH2S), 2.28-2.19 (m, 4H, CH2C(O)), 1.80-1.55 (m, 8H, CH2CH2), 1.51-

1.28 (m, 8H, CH2CH2). 

13C{1H} NMR (125.7 MHz, Methanol-d4): δC (ppm): 176.7, 176.3 (2×COamide), 165.9 

(CObiotin), 71.6, 71.5 (OCH2), 71.3, 70.4 (2×CH2CH2NH), 64.0 (Biotin-Cb), 62.4 (Biotin-

Ca), 56.9 (Biotin-Cc), 40.8 (Biotin-Cd), 40.6 (2×CH2NH), 36.8, 36.5 (2×CH2C(O)), 35.1 

(CH2CH2S), 30.1 (CH3), 30.1-29.2 (CH2CH2), 27.0, 26.8 (2×CH2CH2C(O)), 24.9 (CH2S). 

HR‒MS: For C30H57N4O8S2, observed mass 665.3625, calculated 665.3618, 

difference 0.7 mDa. 

N-(17-azido-3,6,9,12,15-pentaoxaheptadecyl)undec-10-enamide (IV) 

A solution of VIII-b (0.5 g, 1.6 mmol, 1 eq) in anhydrous DMF (7 ml) was stirred in 

the presence of activated molecular sieves for 1 hour. After the treatment, the former 

solution was dropwise added to a DMF solution (anhydrous, 20 ml) of 10-undenoic acid 

(300 mg, 1.6 mmol, 1 eq), EDC (625 mg, 3.2 mmol, 2 eq) and DMAP (20 mg, 0.16 eq, 

0.1 eq) previously cooled down at 0 ºC. The solution was then allowed to warm to room 

temperature and stirred overnight. The solvent was removed under vacuum and the 

product purified by column chromatography in CH2Cl2:MeOH 8:1. Yield: 507 mg (66%). 

  



Chapter 6  Materials and methods 

80 

 

1H NMR (500 MHz, Methanol-d4): δH (ppm): 5.81 (ddt, 1H, 3JHHtrans = 17.0 Hz, 3JHHcis 

= 10.2 Hz, 3JHH = 6.7 Hz, CH2=CHCH2), 5.01-4.95 (m, 1H, CH2=CHtrans), 4.91 (ddt, 1H, 

2JHH = 2.3 Hz,  4JHH = 1.2 Hz, CH2=CHcis), 3.69-3.59 (m, 18H, PEG-OCH2), 3.53 (t, 2H, 

3JHH = 5.5 Hz, OCH2CH2N3), 3.39-3.33 (m, 4H, CH2N3+CH2NH), 2.19 (t, 2H, CH2C(O)), 

2.08-2.01 (m, 2H, CH2=CHCH2), 1.60 (p, 2H, 3JHH = 6.7 Hz, CH2CH2C(O)), 1.43-1.35 

(m, 2H, CH2=CHCH2CH2), 1.32 (bs, 8H, CH2CH2). 

13C{1H} NMR (125.7 MHz, Methanol-d4): δC (ppm): 176.3 (COamide), 140.1 

(CH2=CH), 114.7 (CH2=CH), 71.6, 71.5, 70.3, 70.1 (OCH2+CH2CH2NH), 70.6 

(CH2CH2N3), 51.8 (CH2N3), 40.4 (CH2NH), 37.0 (CH2C(O)), 34.9 (CH2=CHCH2), 30.5-

30.1 (CH2CH2), 27.0 (CH2CH2C(O)). 

ESI‒MS: For C23H45N4O6, observed mass 473.31, calculated 473.33. 

N-(17-amino-3,6,9,12,15-pentaoxaheptadecyl)undec-10-enamide (V) 

The same procedure described for the preparation of X-a was followed in this case 

and used in the following step without further purification. 

1H NMR (500 MHz, DIMSO-d6): δH (ppm): 5.79 (ddt, 1H, 3JHHtrans = 17.0 Hz, 3JHHcis 

= 10.2 Hz, 3JHH = 6.7 Hz, CH2=CHCH2), 4.99 (dq, 2JHH = 1.7 Hz, 1H, CH2=CHtrans), 4.91 

(ddt, 1H,  4JHH = 1.2 Hz, CH2=CHcis), 3.56-3.44 (m, 16H, PEG-OCH2), 3.38 (t, 2H, 3JHH 

= 5.9 Hz, CH2NH), 2.63 (t, 2H, 3JHH = 5.8 Hz, CH2NH2), 2.07-1.97 (m, 4H, 

CH2C(O)+CH2=CHCH2), 1.46 (q, 2H, 3JHH = 7.4 Hz, CH2CH2C(O)), 1.34 (p, 3JHH = 6.8 

Hz, 2H, CH2=CHCH2CH2), 1.23 (bs, 8H, CH2CH2). 

(S)-N-(20-(6-methoxynaphthalen-2-yl)-19-oxo-3,6,9,12,15-pentaoxa-18-

azahenicosyl)undec-10-enamide (XI) 

A variation of the procedure described for the preparation of IX-a was followed, 

employing 2 equivalents of Naproxen. The product was purified by column 

chromatography in CH2Cl2:MeOH 50:1 → 20:1. Yield: 195 mg (33% 2-steps from IV). 
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1H NMR (500 MHz, Methanol-d4): δH (ppm): 7.75-7.71 (m, 1H, Naproxen-H4,5,8), 

7.45 (dd, 1H, 3JHH = 8.5 Hz, 4JHH = 1.9 Hz, Naproxen-H7), 7.21 (d, 1H, 4JHH = 2.6 Hz, 

Naproxen-H1), 7.12 (dd, 1H, 3JHH = 9.0 Hz, Naproxen-H3), 5.80 (ddt, 1H, 3JHHtrans = 17.0 

Hz, 3JHHcis = 10.2 Hz, 3JHH = 6.7 Hz, CH2=CHCH2), 4.94-4.79 (m, 1H, CH2=CHtrans), 

4.93-4.89 (m, 1H, CH2=CHcis), 3.90 (s, 3H, OCH3), 3.79 (q, 1H, 3JHH = 7.1 Hz, CHCH3), 

3.69-3.45 (m, 18H, PEG-OCH2+2×OCH2CH2NH), 3.38-3.32 (m, 4H, 2×CH2NH), 2.18 

(t, 2H, 3JHH = 7.5 Hz CH2C(O)), 2.06-2.00 (m, 2H, CH2=CHCH2), 1.59 (p, 2H, 3JHH = 7.2 

Hz, CH2CH2C(O)), 1.53 (d, 3H, CHCH3) 1.41-1.33 (m, 2H, CH2=CHCH2CH2), 1.30 (bs, 

8H, CH2CH2). 

13C{1H} NMR (125.7 MHz, Methanol-d4): δC (ppm): 177.2, 176.3 (2×COamide), 159.0 

(Naproxen-C2), 140.1 (CH2=CH), 138.2 (Naproxen-C6), 135.2 (Naproxen-C9), 130.4 

(Naproxen-C10), 130.2 (Naproxen-C4), 128.2 (Naproxen-C8), 127.2 (Naproxen-C7), 126.8 

(Naproxen-C5), 119.9 (Naproxen-C3), 114.7 (CH2=CH), 106.6 (Naproxen-C1), 71.5, 71.4, 

70.2 (OCH2), 70.6, 70.5 (2×CH2CH2NH), 55.8 (OCH3), 47.4 (CHCH3), 40.5, 40.3 

(2×CH2NH), 37.0 (CH2C(O)), 34.9 (CH2=CHCH2), 30.5-30.1 (CH2CH2), 27.0 

(CH2CH2C(O)), 18.9 (CHCH3). 

ESI‒MS: For C37H59N2O8, observed mass 659.36, calculated 659.43. 

 (S)-S-(2-(6-methoxynaphthalen-2-yl)-3,23-dioxo-7,10,13,16,19-pentaoxa-4,22-

diazatritriacontan-33-yl) ethanethioate (6-Prot) 

A degassed solution of XI (175 mg, 0.27 mmo, 1 eq), thioacetic acid (76 l, 1.06 

mmol, 4 eq) and 2,2-dimethoxy-2-phenyl-acetophenone (6.8 mg, 0.026 mmol, 0.1 eq) in 

MeOH (3 ml) was irradiated with 395 nm wavelength light from a LED black lamp 

overnight. The solvent was removed under vacuum and the product purified by column 

chromatography in CH2Cl2:MeOH 50:1 → 30:1. Yield: 185 mg (95%). 
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1H NMR (500 MHz, Methanol-d4): δH (ppm): 7.75-7.71 (m, 3H, Naproxen-H4,5,8), 

7.45 (dd, 1H, 3JHH = 8.4 Hz, 4JHH = 1.9 Hz, Naproxen-H7), 7.22 (d, 1H, 4JHH = 2.5 Hz, 

Naproxen-H1), 7.13 (dd, 1H, 3JHH = 9.0 Hz, Naproxen-H3), 3.91 (s, 3H, OCH3), 3.80 (q, 

1H, 3JHH = 7.1 Hz, CHCH3), 3.64-3.45 (m, 18H, PEG-OCH2+2×OCH2CH2NH), 3.42-

3.33 (m, 4H, 2×CH2NH), 2.85 (t, 2H, 3JHH = 7.3 Hz, CH2S), 2.30 (s, 3H, CH3C(O)), 2.18 

(t, 2H, 3JHH = 7.5 Hz CH2C(O)), 1.59 (p, 2H, 3JHH = 7.1 Hz, CH2CH2C(O)), 1.53 (d, 3H, 

CHCH3), 1.39-1.25 (m, 14H, CH2CH2). 

13C{1H} NMR (125.7 MHz, Methanol-d4): δC (ppm): 197.6 (COthioacetate), 177.2, 176.3 

(2×COamide), 159.1 (Naproxen-C2), 138.2 (Naproxen-C6), 135.2 (Naproxen-C9), 130.4 

(Naproxen-C10), 130.2 (Naproxen-C4), 128.2 (Naproxen-C8), 127.2 (Naproxen-C7), 126.8 

(Naproxen-C5), 119.9 (Naproxen-C3), 106.6 (Naproxen-C1), 71.5, 71.4, 70.2 (OCH2), 

70.6, 70.5 (2×CH2CH2NH), 55.8 (OCH3), 47.4 (CHCH3), 40.6, 40.3 (2×CH2NH), 37.0 

(CH2C(O)), 30.8 (CH3C(O)) 30.5-29.8 (CH2CH2), 29.8 (CH2S) 27.8 (2×CH2CH2C(O)), 

18.9 (CHCH3). 

ESI‒MS: For C39H62N2O9S, observed mass 735.39, calculated 735.43. 

(S)-11-mercapto-N-(20-(6-methoxynaphthalen-2-yl)-19-oxo-3,6,9,12,15-

pentaoxa-18-azahenicosyl)undecanamide (6) 

The standard procedure reported before (see page 69) was employed on the thioacetate 

precursor 6-Prot to obtain the free thiol 6 in quantitative yield. 

1H NMR (500 MHz, Methanol-d4): δH (ppm): 7.75-7.71 (m, 3H, Naproxen-H4,5,8), 

7.44 (dd, 1H, 3JHH = 8.5 Hz, 4JHH = 1.9 Hz, Naproxen-H7), 7.21 (d, 1H, 4JHH = 2.6 Hz, 

Naproxen-H1), 7.11 (dd, 1H, 3JHH = 9.0 Hz, Naproxen-H3), 3.90 (s, 3H, OCH3), 3.79 (q, 

1H, 3JHH = 7.1 Hz, CHCH3), 3.68-3.43 (m, 18H, PEG-OCH2+2×OCH2CH2NH), 3.41-

3.32 (m, 4H, 2×CH2NH), 2.47 (t, 2H, 3JHH = 7.1 Hz, CH2S), 2.17 (t, 2H, 3JHH = 7.5 Hz 

CH2C(O)), 1.62-1.54 (m, 2H, CH2CH2C(O)), 1.52 (d, 3H, CHCH3), 1.42-1.25 (m, 14H, 

CH2CH2). 
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13C{1H} NMR (125.7 MHz, Methanol-d4): δC (ppm): 177.2, 176.3 (2×COamide), 159.1 

(Naproxen-C2), 138.2 (Naproxen-C6), 135.2 (Naproxen-C9), 130.4 (Naproxen-C10), 130.2 

(Naproxen-C4), 128.2 (Naproxen-C8), 127.2 (Naproxen-C7), 126.8 (Naproxen-C5), 119.9 

(Naproxen-C3), 106.6 (Naproxen-C1), 71.6, 71.5, 71.2 (OCH2), 70.6, 70.5 

(2×CH2CH2NH), 55.8 (OCH3), 47.4 (CHCH3), 40.6, 40.3 (2×CH2NH), 37.0 (CH2C(O)), 

35.2 (CH2CH2S) 30.6-29.4 (CH2CH2), 27.0 (2×CH2CH2C(O)), 25.0 (CH2S), 18.9 

(CHCH3). 

HR‒MS: For [M+NH4]
+ C37H64N3O8S, observed mass 710.4432, calculated 

710.4414, difference 1.8 mDa. 

S-(1-(8-(5,21-dioxo-25-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-

4-yl)-8,11,14,17-tetraoxa-4,20-diazapentacosan-1-oyl)-8,9-dihydro-3H-

dibenzo[b,f][1,2,3]triazolo[4,5-d]azocin-3-yl)-19-oxo-3,6,9,12,15-pentaoxa-18-

azahexacosan-26-yl) ethanethioate and triazole regioisomer (1H-1H) (DBCO-click) 

10 l of 10 mM solutions of 3-Prot and DBCO-Biot in methanol-d4 were mixed 

inside an NMR tube containing 480 l of D2O and allowed to react for 24 hours. Based 

on the NMR spectrum, reaction yield was virtually quantitative. 

ESI‒MS: For [M+Na]+, observed mass 1278.62, calculated 1278.61; [M+2Na]2+, 

observed mass 650.80, calculated 650.80 
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6.6 Thiol exchange 

Nanoparticles were dissolved in methanol and the desired thiol was added in methanol 

after deprotection. Final solution was typically 1.5 mM in thiol (considering nanoparticle-

bound thiol) and was allowed to exchange at 30 °C for 18 hours. In the case of multiple 

thiol exchange, both thiols were premixed prior to be added to the nanoparticles solution 

and then allowed to exchange under identical conditions. 

Quantification of the different components of the monolayer was carried out by 

comparing the integration of isolated 1H-NMR signals from the different thiols or by 

integration of the multiplet corresponding the the PEG methylene groups with respect to 

the methylene bound to the sulfur in the case of nanoparticles made with 8 instead of 1. 

In particular, the multiplet at 4.2 ppm or quartet at 3.9 (when overlapping of the other 

signal with biotin proton) was employed for 1, the triplet around 3.6 ppm was employed 

for azido compounds 2 and 3, the biotin signal at 4.6 ppm was employed for 4, 5, 7 and 

DBCO-Biot, the methoxy 3.9 ppm singlet for 6, the methyl singlet at 3.2 ppm for 10 and, 

in the case of 2 and 3 exchanging with 9, the integral ranging from 3.7 to 3.5 ppm was 

compared to that from 2.9 to 2.7 ppm. 
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6.7 Click-coupling on gold nanoparticles 

Click coupling attempts between azido-covered nanoparticles and alkynes was 

typically carried out in H2O:DMSO mixtures in the presence of either copper sulfate or a 

1:1 copper complex with THPTA or TBTA and sodium ascorbate. In all cases, excess of 

all reagents were employed. Reaction was normally carried out in solution 1.5 mM in 

thiol at 30 °C for 18 hours. Typically, the desired alkyne was added to the nanoparticle 

solution, followed by the copper reagent and finally sodium ascorbate from a freshly 

prepared solution. 

Couplings with DBCO-Biot were carried out in water solution, 1.5 mM in thiol to 

which the required amount of reagent was added from a methanol stock solution. 

Reactions were incubated at 30 °C for 18 hours. 

Success of the coupling reaction was evaluated by 1H-NMR on the basis of the 

presence of the peaks corresponding to the biotin moiety and the triazole proton (around 

8 ppm). Quantification of the reaction yield was carried out directly when possible by 

comparing the integral of a the triplet at 2.4 ppm, corresponding to the biotinylated alkyne 

fragment, with the triplet at 2.2 ppm, present in the azide derivatives 2 and 3. When this 

approach was not possible due to signal overlapping, the amount of biotin present relative 

to the most abundant thiol (1, 9 or 10) was measured as described above for thiol exchange 

experiments and that value was compared to the known amount of azido groups present 

before the reaction. 

Copper contamination of the NMR samples was removed by eluting the content of the 

NMR tube through a column filled with Chelex-100 resin, previously washed with 

methanol and then the solvent was removed. 

Attempted removal of cooper from the nanoparticles after the coupling was performed 

by treating the resulting methanol solution overnight under gentle agitation with washed 

Chelex-100 resin. In order to ensure all copper was on its (II) oxidation state, air was 
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bubbled through the solution during the treatment. The resulting solution was then filtered 

over cotton to separate the resin and then purified as usual. 

6.8 Nanoparticles and protein solutions 

For accurate determination of monolayer properties or protein interaction, 

nanoparticles and protein solutions were prepared by approximately weighting the desired 

amount of material and the accurate concentration determined by weighting the content 

of 50 l in the high-precision balance of the TGA instrument after heating the sample 30 

minutes at 100 ºC to remove residual water. 

6.9 Monolayer availability study 

A commercially available (Sigma-Aldrich) kit for the study of biotinylated materials 

based on the HABA-Avidin reagent was employed. To 900 l of the commercial reagent 

100 or and 200 l of nanoparticles solution (approx.12 mg/ml) were added, stirred and 

incubated at 25 ºC for 1 hour. Afterwards, the resulting solution was centrifuged at 14.5k 

rpm for 2 hours to separate the nanoparticles from the rest of the solution and the 

supernatant transferred to a cuvette. Control experiments showed that centrifugation did 

not affect the reagent mixture spectrum. 

In order to correct residual nanoparticles that could mask the effect of the biotin, a 

nanoparticles spectrum scaled to match the sample absorbance at 600 nm (where the 

reagent shows no absorption) was subtracted.  

The amount of biotin bound to the avidin can be calculated from the difference in 

absorbance at 500 nm between the control (to which milliQ water was added) and the 

sample by following the technical document of the reagent, considering the difference in 

the extinction coefficient of HABA on its free and bound form. In the case of the 200 ml 

experiment, a volume correction factor of 1.1 had to be included to correct the dilution of 

the sample. 



Chapter 6  Materials and methods 

87 

 

6.10 Protein binding experiments 

Nanoparticles solution in milliQ water (100 l, approx. 2 mg/ml) was added to 800 l 

of buffer solution (HEPES 10 mM pH 7.3, 150 mM NaCl, 10 mM MgCl2) and then 

different amount of protein were added in the adequate dilution to employ 100 l of 

solution. The solution was vigorously agitated for 10 minutes and then the UV-Visible 

spectrum acquired. 

In the case of albumin binding, this was added in different amounts and incubated for 

10 minutes, followed by the addition of the amount of avidin that induced the maximum 

crosslinking and left incubating 10 additional minutes before acquiring the spectra. 

Aggregation kinetics studies were carried out by incubating the nanoparticle solution 

with albumin for ten minutes followed by monitoring the spectral changes immediately 

after the addition of avidin with direct stirring inside the spectrophotometer. 
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6.11 Nanoparticle necklaces and nanowires formation 

Influence of GAP presence and concentration on nanoparticles fusion 

Nanoparticles were prepared as in the standard protocol described on page 65 with the 

exception that no thiol but D-glucosamine-6-phosphate (GAP) was added to the solution. 

Accordingly, after cooling down 8 mg GAP were added in 1 ml of water and the solution 

stirred for 1.5 hours prior to purification via size exclusion filtration by washing with 

water five times. Remaining nanoparticles were then incubated, in high concentration 

(400 l of filtered concentrated solution diluted up to 1 ml), in water, 2.5 mM GAP or 10 

mM sodium citrate. In order to study the impact of GAP concentration, additional 

experiments were carried out with solutions in the range from 0.1 to 0.6 mM. Solutions 

were incubated at room temperature. 

Effect of GAP exchange time on nanowires growth 

Nanoparticles were prepared as indicated above but aliquots were separated and 

filtrated 10 minutes, 3 hours and overnight after the addition of GAP to the solution. After 

filtration and washing with water, 100 l of the concentrated solution were diluted up to 

3 ml with pure water and the evolution monitored via UV-Visibile-NIR spectroscopy and 

TEM for two weeks. Two control samples were made, one in which the same treatment 

was applied before addition of GAP and a second one in which nanoparticles exchanged 

for 3 hours were washed with 5 mM sodium citrate solution instead of pure water. 

Trapping and functionalizing gold nanowires by thiol addition 

As part of the previously described experiments, after 5 days of incubation, an 

aqueous solution of 1 in large excess respect to the nanoparticles was added to an aliquot 

of the samples and the solution further incubated for another 9 days (as the rest of the 

cuvettes).
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Appendix I – NMR Spectra of Thiol Exchanges 

Legend includes NP size, leaving thiol, entering thiols and reaction ratio. 

2 nm ZW – AZ-4 1:1 

 



 Appendix I – NMR Spectra of Thiol Exchanges 

100 

 

 

2 nm ZW – AZ-4 1:4 

 



 Appendix I – NMR Spectra of Thiol Exchanges 

101 
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9 nm ZW – AZ-4 1:1 
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2 nm TMA – AZ-4 1:1 
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2 nm TMA – AZ-6 1:4 
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2 nm TMA – AZ-6 1:20 
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9 nm TEG nanoparticles (only TEG thiol, for integral reference) 

 

AZ-6 (for integral reference when integrating exchanges with TEG NPs) 
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9 nm TEG – AZ-6 1:1 
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9 nm TEG – AZ-6 1:4 
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9 nm ZW – Biot-4 1:1 
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9 nm TEG – Biot-4 1:1 
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9 nm ZW – Biot-6 1:1 
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9 nm ZW – Naprox (6) 1:4 
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9 nm ZW – Naprox (6) 1:20 
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9 nm ZW Mixed exchange– Naprox 1:2 + Biot-6 1:2 (Water soluble fraction) 
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9 nm ZW Mixed exchange– Naprox 1:2 + Biot-6 1:2 (Methanol soluble fraction) 

 



 Appendix I – NMR Spectra of Thiol Exchanges 

127 

 

 

9 nm ZW Mixed exchange– Naprox 1:7 + Biot-6 1:1.25 
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Appendix II – NMR Spectra of Click-couplings 

2 nm NPs – TBTA (ZW + AZ-4 18%)–  10:10:10 

 

2 nm NPs – TBTA (ZW + AZ-4 1%)–  100:10:10 
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9 nm NPs – TBTA (ZW + AZ-4 20%)–  10:10:10 

 

9 nm NPs – TBTA (ZW + AZ-4 20%)– 100:10:10 
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2 nm NPs – THPTA (ZW + AZ-6 28%) – 50:5:10 

 

9 nm NPs – THPTA (ZW + AZ-6 15%) – 50:5:10 
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2 nm NPs – THPTA (ZW + AZ-6 28%) – 50:5:10 / 40C 4 days 
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2 nm NPs – THPTA (ZW + AZ-6 28%) – 100:20:60 

 

9 nm NPs – THPTA (ZW + AZ-6 15%) – 100:20:60 
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2 nm NPs – THPTA (TMA + AZ-4 21%) – 50:5:10 

 

2 nm NPs – THPTA (TMA + AZ-6 16%) – 50:5:10 
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9 nm NPs – THPTA (TEG + AZ-6 17%) – 50:5:10 

 

9 nm NPs – THPTA (TEG + AZ-6 5%) – 50:5:10 

 



 Appendix II – NMR Spectra of Click-couplings 

136 

 

2 nm NPs – DBCO (ZW + AZ-6 28%) – 5 eq 

 

9 nm NPs – DBCO (ZW + AZ-6 15%) – 5 eq 
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9 nm NPs – DBCO (TEG + AZ-6 5%) – 2 eq 

 

9 nm NPs – DBCO (TEG + AZ-6 5%) – 5 eq 
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Comparison DBCO 5 eq (blue 9 nm / green 2 nm / red reference product DBCO-click) 

 

Comparison DBCO TEG (green 5 eq / red 2 eq) 

 



 Appendix II – NMR Spectra of Click-couplings 

139 

 

 





 Appendix III – NMR Spectra of Synhtesised compounds 

141 

 

Appendix III – NMR Spectra of synthesised 

compounds 

AZ-4 (2) 
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(2-Prot) 
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AZ-6 (3) 
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3-Prot 
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6 (Naprox) 
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6-Prot 
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7 
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Biot-4 (4) 
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4-Prot 
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Biot-6 (5) 
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5-Prot 
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DBCO-Biot (20) 

 

DBCO-click 
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Intermediates: 

IV 
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V 
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XI 
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IX-a 

 

X-a 
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IX-b 
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X-b 
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