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“Have you also learned that secret from the river, 
that there is no such thing as time? 

That the river is everywhere at the same time, 
at the source and at the mouth, 

at the waterfall, at the ferry, at the current, 
in the ocean and in the mountains, 

everywhere and that the present only exists for it, 
not the shadow of the past nor the shadow of the future.”  

Hermann Hesse 
  

http://www.goodreads.com/author/show/1113469.Hermann_Hesse
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Abstract 

In forested river basins, Large Wood (LW) is a key component responsible for the 

geomorphological and ecological aspect of fluvial systems but, at the same time, is a source of 

hazard for sensitive places. Given its dual role, the analysis and quantification of LW in rivers, as 

well as understanding its mobilization and deposition, are crucial steps in order to ensure an 

appropriate management of riverine areas. This study attempts to increase knowledge in the main 

LW-related processes, such as the lateral recruitment from bank erosion, fluvial transport and the 

presence of buried LW, assessing the LW budget in two rivers. The study was conducted in two 

different fluvial environments. A 3.7 km-long reach was selected along the middle course of the 

Italian Piave River, a human impacted gravel-bed river typified by wandering and island-braided 

morphologies. In addition, three 80 m-long reaches were selected along the lower course of the 

Chilean Blanco River, a natural river with a morphology that drastically changed because of a 

recent volcanic eruption. The three considered items of the budget were analyzed by field activities 

conducted during the three years of the PhD. The lateral recruitment of LW was analyzed only in 

the Piave River for an over-bankfull flood (RI~7yr) by measuring, positioning and tagging all 

standing trees (D≥ 0.1m) within a 20 m buffer wide along the floodplain banks and island 

perimeters. A similar methodology was used to investigate, in both rivers, the fluvial transport of 

LW by considering all woody elements (D≥0.1m and L≥1m) within the active channel. In this way, 

during post-event surveys it was possible to identify the input (deposition) and output 

(mobilization) elements. Because the sediments from the volcanic eruption caused the burial of 

several standing trees and LW, the presence of buried LW was explored only in the Blanco River by 

Ground Penetrating Radar (GPR) testing. In the Piave River, the LW budget was assessed for very 

low floods (RI<1yr), whereas in the Blanco River ordinary (RI~1yr) and not-ordinary floods (RI 

10-25yr) were considered. The results highlighted that, in the Piave River, the recruitment from 

bank erosion is a common process for the supply of LW. Volumes of recruited LW were found to 

vary according to the extension of the eroded surface, type of eroded morphological unit and 

riparian vegetation characteristics. Larger volumes (25.1 m
3
∙km

-1
) are recruited from both the 

floodplain and fluvial islands during not-ordinary floods (RI~7yr), whereas for ordinary events 

(RI<1yr) small amounts of LW (0.21 m
3
∙km

-1
) are recruited just from the floodplain. Furthermore, 

flood magnitude was found to be an important factor controlling the temporal fluctuations of LW 

storage, resulting in decreases and increases of LW abundance during ordinary and not-ordinary 

events, respectively. The increase in wetted area results in a greater inundation of fluvial bars that 

allows, at the same time, the mobilization and deposition of LW. In addition to the role of flood 

magnitude, the local-scale morphology of the river appeared to be another factor influencing the 
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changes in LW abundance, with greater variations in multi-thread than single-thread channels, 

where the larger and faster increase in the inundated area increases the amount of in-transport LW. 

In particular, the budget for the Piave River featured negligible variations in LW storage (-9.7%) 

and a very low mobility rate (1.43%) reflecting the low magnitude of occurred events. By contrast, 

a higher dynamicity of LW was found in the Blanco River also during ordinary events, with 

mobility rates ranging from 41 to 94% and LW storage increasing up to 179%, because of the 

considerable input volumes (highest input of 285.35 m
3
∙ha

-1
). The complexity of LW dynamics in 

the Blanco River is also due to the presence of buried LW (1.65 m
3
∙ha

-1
) that can be easily exhumed 

and, thus, increase the amount of in-transport LW. This volume was obtained as a first approach 

with the GPR that proved to be a valid and non-destructive method to bridge this gap. The results 

obtained in this study can be considered useful advances in understanding the three main LW-

related processes (recruitment, mobilization, deposition), knowledge of which is essential in order 

to ensure the positive contributions of wood to river ecosystems, and minimize potential hazards 

adopting correct management plans. 
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Riassunto 

Titolo tesi: Valutazione del bilancio di legname in due diversi fiumi situati in ambiente alpino e 

andino  

In bacini fluviali boschivi, il materiale legnoso è considerato un elemento chiave responsabile 

dell’aspetto geomorfologico ed ecologico dei sistemi fluviali ma, allo stesso tempo, anche un 

elemento di pericolo per alcune strutture sensibili. A causa di questo duplice ruolo, l’analisi e la 

quantificazione del legname nei corsi d’acqua, così come la comprensione dei processi di 

mobilizzazione e deposizione, sono step cruciali per assicurare una corretta gestione delle zone 

fluviali. Questo studio valuta il bilancio del materiale legnoso in due corsi d’acqua, al fine di 

incrementare le conoscenze riguardanti i principali processi in cui il legname è coinvolto, come il 

reclutamento laterale dovuto ad erosione spondale, il trasporto fluviale e la presenza di legname 

sepolto. Lo studio è stato condotto in due diversi ambienti fluviali. Un tratto fluviale di 3.7 km è 

stato selezionato lungo il corso mediano del fiume Piave (Italia), un fiume antropizzato a fondo 

ghiaioso con morfologie principali wandering e a canali intrecciati con presenza di isole fluviali. 

Inoltre, tre tratti fluviali con lunghezza di 80 m sono stati selezionati lungo il corso finale del fiume 

Blanco (Cile), un fiume naturale che ha subìto un drastico cambiamento nella morfologia a causa di 

una recente eruzione vulcanica. Le tre componenti del budget che sono state considerate, sono state 

analizzate attraverso attività di campo condotte durante i tre anni di dottorato. Il reclutamento 

laterale è stato analizzato solamente nel fiume Piave a seguito di una piena superiore alla bankfull 

(TR~7anni) misurando, geo riferendo ed identificando tutti gli alberi (D≥ 0.1m) posizionati 

all’interno di un buffer di 20 m di larghezza lungo le sponde della floodplain e lungo il perimetro 

delle isole. Una metodologia simile è stata applicata per analizzare, in entrambi i fiumi, il trasporto 

fluviale del legname considerando tutti gli elementi legnosi (D≥0.1m e L≥1m) presenti all’interno 

dell’alveo. In questo modo, durante i rilievi post-evento è stato possibile identificare gli elementi di 

input (deposizione) e quelli di output (mobilizzazione). Dal momento che i sedimenti vulcanici 

causarono la sepoltura di numerosi alberi e materiale legnoso, la presenza di legname sepolto è stata 

analizzata solamente nel fiume Blanco, testando l’efficacia di un georadar. Il bilancio del legname è 

stato analizzato, nel caso del fiume Piave, per piene ordinarie (TR<1anno), mentre per il fiume 

Blanco sono state considerate sia piene ordinarie (TR~1anno) che non ordinarie (TR 10-25anni). I 

risultati hanno evidenziato come, nel fiume Piave, il reclutamento per erosione spondale sia un 

processo importante per la fornitura del legname in alveo. I volumi di legname reclutato variano a 

seconda dell’estensione delle superfici erose, della tipologia di unità morfologica erosa e a seconda 

delle caratteristiche della vegetazione ripariale. Durante piene non ordinarie (TR~7anni) sono stati 

reclutati volumi maggiori (25.1 m
3
∙km

-1
) per erosione della floodplain e delle isole fluviali, mentre 
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durante piene ordinarie (TR<1anno) il reclutamento di legname (0.21 m
3
∙km

-1
) è avvenuto solo per 

erosione della floodplain. Inoltre, la magnitudo degli eventi di piena è risultata essere un fattore 

importante per il controllo delle fluttuazioni temporali dello storage di legname causando una 

riduzione ed un aumento della quantità di legname in alveo a seguito, rispettivamente, di piene 

ordinarie e non ordinarie. Per piene non ordinarie, l’aumento dell’area bagnata determina una 

maggiore inondazione delle barre fluviali e questo permette, allo stesso tempo, la mobilizzazione e 

deposizione del legname. Oltre alla magnitudo delle piene, un altro fattore responsabile delle 

variazioni del legname in alveo è riconducibile alla diversa morfologia locale dei tratti analizzati. 

Maggiori variazioni sono state riscontrate in corrispondenza di morfologie a canali multipli, dove, 

rispetto alle morfologie a canali singoli, il rapido e maggiore aumento dell’area bagnata aumenta la 

quantità di legname potenzialmente trasportabile. In particolare, il budget del legname nel fiume 

Piave si caratterizza per variazioni quasi trascurabili (-9.7%) ed un tasso di mobilità molto basso 

(1.43%) che rispecchiano la bassa magnitudo degli eventi verificatisi.  Diversamente, il fiume 

Blanco presenta una maggiore dinamicità del legname anche durante eventi di piena ordinari, con 

tassi di mobilità variabili tra 41 e 94% ed un aumento nello storage di legname fino al 179% dovuto 

ai notevoli volumi di input (volumi massimi 285.35 m
3
∙ha

-1
). La complessità delle dinamiche del 

legname del fiume Blanco è avvalorata anche dalla presenza di legname sepolto (1.65 m
3
∙ha

-1
) che 

può essere facilmente riesumato ed aumentare la quantità di legname in transito. Tale analisi ha 

permesso di dimostrare l’utilità del georadar come un metodo valido e non distruttivo che potrebbe 

essere utilizzato per colmare questa lacuna inerente il legname sepolto. I risultati ottenuti in questo 

studio possono essere considerati come dei progressi utili per la comprensione dei tre principali 

processi legati al legname (reclutamento, mobilizzazione, deposizione) le cui conoscenze sono 

essenziali al fine di mantenere i benefici del legname per il sistema fluviale e minimizzare i 

potenziali rischi attraverso l’adozione di corretti piani di gestione. 
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Section One - Background 

1.1. Large wood in river systems, definition, types and sizes 

The term Large Wood (LW) is used to define woody elements of specific sizes, dead or 

alive, within a fluvial system, both in the active channel and on the floodplain (Gurnell, 2003; 

Piégay, 2003; Wohl, 2013). Until the 2000s, the term most commonly used to define this type of 

wood was Large Woody Debris (LWD) (Gippel, 1995; Abbe and Montgomery, 1996; Piégay et al., 

1999). However, during the First International Conference on Wood in World Rivers, which took 

place in Oregon in 2000, many researchers suggested changing this term to Large Wood (LW), as 

the word ―debris‖ was recognized to convey a negative connotation to the presence of in-channel 

wood. In particular, there was a tendency to underestimate all its ecological benefits. 

Concerning the minimum wood sizes to be defined LW, the threshold often tends to vary according 

to the aspects considered (Seo et al., 2010). For example, Comiti et al., (2006) used the thresholds 

of 0.05 m in diameter and 0.3 m in length to study the hydrological and geomorphological 

consequences of woody material in mountain basins of the Dolomites, while May and Gresswell 

(2003) analyzed the recruitment and distribution of LW taking into consideration only elements 

with diameter and length equal to or greater than 0.2 m and 2 m, respectively. Recently, the call for 

common metrics of Wohl et al., (2010) highlighted the importance of adopting standard thresholds 

in LW monitoring that allows comparison of LW processes between different river systems. 

Overall, the minimum sizes most used in scientific classification is 0.1 m in diameter and 1 m in 

length (Gurnell et al., 2000; Jackson and Sturm, 2002; Marcus et al., 2002; Warren et al., 2007; 

Wohl and Jaeger, 2009). 

Large wood, as well as sediments and water fluxes, is a crucial component of fluvial systems in 

forested basins and is responsible for its geomorphological and ecological aspect. Provided by 

riparian vegetation, LW supports river biodiversity and the ecosystem functioning (Daniels, 2006; 

Beckman and Wohl, 2014; Pilotto et al., 2016), affects the geomorphic processes (Gregory and 

Davis, 1992; Buffington and Montgomery, 1999) and river morphology (Montgomery et al., 1995; 

Abbe and Montgomery, 1996; Rosenfeld and Huato, 2003). Effects of in-channel LW will be 

described in more detail in the following section. 
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Commonly, LW can be distinguished in four categories (Fig. 1): 

 Trees, are elements having both branches and roots; 

 Logs, called also trunks, are elements composed just of the structure of plants without 

branches (roots can also be present); 

 Shrubs, are medium-sized woody plants with multiple stems and shorter height; 

 Roots, are elements composed just of the rootwads of a tree or shrub. 

An additional category of LW can be found in human impacted rivers, where with the presence of 

villages nearby and accessibility to the riverine area there is a constant harvest of LW by local 

residents. In these rivers, LW can also be found as a residue of harvesting. 

 

Figure 1: example of four LW categories detectable in a river. Clockwise from upper left: tree, log, root, 

shrub. 

Large wood is not stable within a fluvial environment, but is usually involved in downstream 

transport during flood events (Abbe and Montgomery, 1996; Braudrick and Grant, 2000; Abbe and 

Montgomery, 2003). Because of this movement, woody pieces can be found as single elements or 

as wood jams (WJ), where a WJ is usually defined by the presence of at least two logs deposited 

together (Comiti et al., 2006). 

Single elements composing a WJ can be divided into three categories depending on their function 

within the jam: key, racked and loose elements. The first, also called primary elements, are pieces 

that for their size and deposition pattern are responsible for the jam formation; the second are 

elements that, although they are not the cause of jam formation, are strongly linked with key 

elements and increase the accumulation volume; and lastly loose elements are smaller ones that are 
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usually trapped in the empty spaces of a jam and determine an increase of the volume and structural 

complexity (Abbe and Montgomery, 2003). 

According to the origin of key elements and the degree of displacement after entering the channel, 

WJ can be further divided into (Abbe and Montgomery, 2003): 

 In situ wood jams, are called also autochthonous jams because they are accumulations formed 

by elements that remain in the place where they have been introduced. They are commonly 

formed by logs and trees with branches and roots having a sufficient size and mass to resist the 

hydrodynamic forces of ordinary flood events. An example of this category is the bank input 

jam, an accumulation composed of trees fallen into the channel due to bank erosion, windthrow 

or mass movements; 

 Transported wood jams, or allochthonous jams are formed by elements that have been moved 

along the water course and, during transportation, can have recruited additional woody material; 

 Combined wood jams is an intermediate category between the two end-types. 

 

1.2. Physical and biological effects of large wood 

The presence of LW within fluvial systems can be positive or negative according to the 

analysis perspective (i.e. ecology vs hydraulic safety). Owing to its influences on the river 

geomorphology, it is defined as a structural element of the fluvial system (Keller and Swanson, 

1979). In fact, it has physical and biological benefits affecting morphological, sedimentological and 

ecological processes. The physical benefits of LW result from its interactions with water and 

sediments (Wohl et al., 2016). The magnitude of these physical effects depends on orientation, 

stability and volume of wood in respect to the cross-sectional area of the channel (Klaar et al., 2011; 

Collins et al., 2012). Due to the particular deposition way with the trunk oriented downstream and 

the rootwad upstream, a scour commonly occurs upstream of the roots, with deposition of coarse 

and organic materials (Francis et al., 2008) (Fig. 2). 
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Figure 2: typical spatial patterning of a tree deposited along the Tagliamento River (Italy) (after Francis et 

al., 2008). 

As reported by Wohl (2011), the channel width is an important variable for the spatial scale at 

which LW is able to produce effects. Isolated pieces in large rivers are more likely to create only 

local effects, whereas big jams that span a channel can have influences along an entire reach (Wohl, 

2011). Large wood affects river morphology (Montgomery and Buffington, 1997), especially when 

it is jammed. In fact, WJ have the capacity to deflect flow and, in the case of big jams, create a 

multiple channel pattern (Harwood and Brown, 1993). The type and dimensions of bedforms within 

the river can also be affected by the presence of wood (Curran and Wohl, 2003), as well as location 

and dimension of pools (Robinson and Beschta, 1990; Rosenfeld and Huato, 2003) and cross-

sectional channel geometry (Wallerstein and Thorne, 2004). 

Woody material can also change sediment retention and transport (Mosley, 1981; Marston, 1982; 

Gregory and Davis, 1992), influence the processes of floodplain development (Wohl, 2013) and 

protect riverbanks from erosion by decreasing lateral shifts (Brookes, 1988). The interactions 

between wood and sediments vary depending on LW types and in-channel distribution and also 

according to river features such as morphology, slope and size (Montgomery et al., 1996). In 

mountain streams with high slopes, larger grain sizes and numerous sources for wood recruitment, 

the wood-sediments interactions are higher than in piedmont and lowland rivers. In fact, narrower 

sections can be critical points for LW, where it usually becomes trapped and tends to obstruct the 

flow. In mountain torrents LW deposits act as ―trapping structures‖, intercepting other floating 

material, both sediments and wood pieces and this can lead, in time, to the formation of fluvial bars 

and wood jams (Montgomery et al., 1996). Large wood can intercept up to 50% of total sediment 

transport (Keller and Tally, 1979; Megahan, 1982). Moreover, obstructions can substantially 

increase the frictional resistance to flow (Curran and Wohl, 2003; Mutz, 2003) and reduce flow 
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velocity (Daniels and Rhoads, 2004; Davidson and Eaton, 2013), that in turn can promote 

deposition and storage of sediments and organic material around wood (Faustini and Jones, 2003; 

Beckman and Wohl, 2014). In correspondence to obstructions that span the entire channel width, 

backwater areas commonly occur upstream with lower velocity and higher water depth (Brummer 

et al., 2006). 

Biological effects are strongly linked to physical ones (Wohl et al., 2016). The ecological benefits 

of in-channel LW are important for a series of aquatic and terrestrial organisms (i.e. fishes, small 

mammals, birds, reptiles, amphibians, insects) that use wood for feeding or nesting sites (Harmon et 

al., 1986; Roni, 2003; Pilotto et al., 2016). The influences of LW on flow velocity and depth, 

erosion and deposition along the channel bed and banks and on grain size distribution enhance 

habitat heterogeneity, increasing habitat abundance and diversity (Chen et al., 2008). Pools, runs 

and riffle mesohabitats created by wood (Fausch et al., 2002) are environments needed by different 

biota to complete their life cycles. Wood jams that act as obstructions increase the storage of fine 

organic matter and nutrients (Anderson and Sedell, 1979; Daniels, 2006; Beckman and Wohl, 

2014), which can be an essential food source for micro and macro invertebrate communities that 

extract nutrients from it (Bilby, 1981; Steel et al., 2003). In addition, the habitat complexity 

commonly created around wood jams (i.e. pools) (Fig. 3), provides suitable sites for organisms for 

feeding, resting and protection from predators, as well as for surviving during cold winter periods, 

low summer flows and high current velocities during floods (Sedell and Froggatt, 1984; Fausch, 

1993; Nagayama et al., 2012). Increased habitats lead to greater biomass and biodiversity 

(Nagayama et al., 2012), for example an increase of about 50% in trout biomass has been found in 

Colorado mountain streams in correspondence to pools formed by LW (Gowan and Fausch, 1996). 

 

 

Figure 3: wood jams deposited on the head of a pioneer island with an adjacent scour and pool. (Piave River, 

Italy.) 
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In addition to the above-described biological effects which occur in all fluvial systems having in-

channel wood, the ecological importance of wood in rivers is more evident in large rivers confined 

by riparian vegetation and with active erosion processes (Gurnell et al., 2005; Picco et al., 2015b). 

Studies conducted in large gravel-bed braided rivers, such as Tagliamento River in the North East 

of Italy and Queets River in the U.S.A., have led to the development of a conceptual model for 

islands formation downstream from an initial deposited wood (Abbe and Montgomery, 1996; Abbe 

and Montgomery, 2003; Gurnell et al., 2005) (Fig. 4). The authors highlighted that the presence of 

vegetation and deposited wood capable of regrowth, such as Salicaceae spp. (Karrenberg et al., 

2002), strongly accelerates the process of fluvial islands formation and this allows the development 

of different linked habitat types. 

 

Figure 4: conceptual model for fluvial island development starting from a single piece of deposited living 

wood (after Gurnell et al., 2005). 

1.3. Hydraulic hazards related to large wood 

Despite the series of benefits, in-channel wood is well known to represent a problem to 

some anthropic structures and, in general, to human security. Large wood, and especially those 

pieces transported during major floods, can create hazards in river corridors due to its capacity to 

form dangerous obstructions along the channel network (Mazzorana et al., 2011; Comiti et al., 

2016), disrupt navigation on large rivers (Gurnell et al., 2002; Piégay, 2003), damage human 

infrastructures (i.e. bridges or weirs) when it accumulates on or near them (Diehl, 1997; Comiti et 

al., 2008; Mao and Comiti, 2010; Rigon et al., 2012) and block culverts with overbank flooding 

hazards (Mazzorana et al., 2009) (Fig. 5). Large wood can also cause hydraulic problems, as it 

commonly induces localized erosion, increases the roughness and increases the peaks of floods 

(Abbe and Montgomery, 1996). Wood can also be a problem for recreational users in those reaches 
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where in-stream (i.e. kayaking) and floodplain (i.e. trekking) activities usually take place (Wohl et 

al., 2016). 

However, as happens with benefits, the magnitude of LW-related hazards depends on the volume 

storage in-channel and the tendency to be mobilized during high discharges (Wohl et al., 2016), 

which, in turn, depends on piece size relative to channel dimensions (Lienkaemper and Swanson, 

1987; Braudrick and Grant, 2000). Moreover, the hazards associated to LW transport vary 

according to the size and construction type of bridges potentially blocking wood (Comiti et al., 

2012). 

Because of its potential dangerousness, several approaches have been proposed for hazard 

reduction. A series of risk assessment tools based on LW and infrastructure characteristics have 

been developed to predict hazards at individual human structures (Schmocker and Hager, 2011), 

while numerical models simulating wood recruitment and transport have been constructed in order 

to develop hazard maps along river corridors (Mazzorana et al., 2009, 2011, 2013; Ruiz-Villanueva 

et al., 2014a, 2014b, 2014c; Gschnitzer et al., 2015; Lucia et al., 2015). 

 

 

Figure 5: LW clogging in the Magra river catchment (Italy) after the 2011 flash flood (after Lucia et al., 

2015). 

1.4. Large wood modeling attempts 

In the light of what described up to now, the interest of researchers in the study of wood 

material led to the development of some numerical models to simulate LW dynamics, mainly 

concerning recruitment, transport and clogging processes. The development of these models is quite 

recent, but several advances have been made. For instance, a conceptual GIS-based model has been 

developed by Rigon et al. (2012) predicting LW recruitment at a basin scale from hillslope 

instabilities, whereas Mazzorana et al. (2011) simulated wood transport through the design of a 2-D 

model using computational fluid dynamics (CFD). A more complex model was proposed by Ruiz-

Villanueva et al. (2014a) in which wood transport is simulated coupling together with 
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hydrodynamic conditions, taking account also interactions between logs and the channel 

configuration and among logs themselves. Since the complexity of LW dynamics, they are difficult 

to reproduce with only single models. So probably, one of the future step in LW modeling is the 

development of quantitative models able to couple both in-channel and riparian processes, linking 

fluvial morphodynamics with riparian vegetation (Camporeale et al., 2013). Although field data are 

usually used to validate and interpret model’s results providing good correspondence between 

simulations and reality, these models are usually developed adopting a series of simplifications. 

Commonly, models consider LW only as cylinders without roots and crown, and ignoring variations 

in shape. Another simplification is represented by the adopted steady flow conditions when 

simulating different floods, without considering the effects of fluid dynamics and sediment 

transport. These simplifications might generate uncertainties in the model’s results, especially for 

multiple thread channels and for extreme floods, during which geomorphic changes are expected to 

occur (Ruiz-Villanueva et al., 2015). Therefore, to allow the application of a model in real rivers it 

is important that all the aspects inherent to LW dynamics are taking account, and this can be 

achieved increasing the empirical or field information from which models can be developed. 

1.5. Principles of large wood budget 

Because of its hydraulic, geomorphic and ecological effects, the presence of wood in rivers 

has become an important topic for the management of forest basins, environmental assessments and 

for the ecological restoration of rivers and streams. 

There are several studies in the literature concerning LW dynamics, however, for the most part, they 

are empirical studies, or strongly dependent on the spatial and temporal scale adopted. The need to 

understand spatial and temporal variables on the abundance and distribution of LW has motivated 

several studies analyzing the dynamics of wood in terms of budget. Although previous researches 

on full or partial budget had been conducted since the 1980s (Keller and Swanson, 1979; Likens 

and Bilby, 1982; Murphy and Kosky, 1989), the term ―budget‖ associated to LW studies was 

adopted for the first time by Martin and Benda (2001). They proposed a volumetric quantitative 

framework (Eq. 1), similar to the well-established approach of sediment budgeting (Reid and 

Dunne, 1996, 2003), for evaluating wood abundance and distribution as a consequence of input, in-

stream and output processes (Fig. 6a). 
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The proposed equation is the following: 

                                                        [        (     )   ]                                            (Eq. 1) 

where: 

    is the change in wood storage 

   is the lateral input (or recruitment) 

   is the lateral output over the floodplain 

       is the fluvial transport into and out of the river segment 

   is the decay of wood 

The term    is usually expressed as volume of wood per surface area of the channel (m
3
∙ha

-1
) or per 

length of channel (m
3
∙m

-1
, m

3
∙km

-1
). The terms    and    represent the length of study reach (x) 

and the time (t) of study period. Commonly, the length of segment should extend for at least several 

times average bankfull width but typically lies within the range of 10
1
-10

3
 m, whereas the time 

period should be in the order of at least one year (Wohl, 2016). Lateral input ( ) and output ( ) are 

expressed as volume of wood per channel length and time (m
3
∙m

-1
∙yr

-1
) and the remaining terms 

(      ,  ) are expressed as volume per unit of time (m
3
∙yr

-1
). 

 

 

Figure 6: (a) variables used in the equation of LW budget (after Martin and Benda, 2001); (b) physical and 

biotic factors influencing variables in a wood budget (after Wohl, 2016). 

The budget variables are influenced by several physical (forest, hillslope, network, valley-bottom 

and channel dynamics) and biotic (beavers and vegetation) factors (Wohl., 2016) (Fig. 6b). Forest 

dynamics able to induce variations in LW budget are related to the characteristics of riparian 
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vegetation such as density, age, size, species composition and mortality (Latterall and Naiman, 

2007; Wohl and Goode, 2008; Kasprak et al., 2012; Welber et al., 2013; Beckman and Wohl, 2014; 

Costigan et al., 2015). Hillslope dynamics refer to mass wasting events that can introduce wood 

locally into channels such as debris flows, snow avalanches, landslides (these processes are 

described in more detail in sections 1.4.1.3). Network dynamics refer to the wood budget 

contribution from tributaries while valley-bottom dynamics include interactions between channel 

and floodplain areas and between main and secondary channels (Wohl et al., 2011). Channel 

dynamics (described in the following sections) include the transport of LW, bank erosion process 

and water fluxes while the last factor important for budget refers to the biotic component of the 

river system. Biota include living riparian vegetation that can alter hydraulic forces and transport or 

deposition of woody pieces (Johnson et al., 2000; Mikus et al., 2013), and the activity of animals, 

notably beavers, that can retain and stabilize LW locally (John and Klein, 2004; Polvi and Wohl, 

2013; Picco et al., 2015b). 

1.5.1. Lateral recruitment of large wood 

The variable   of Eq. 1 can be further split into five different terms (Eq. 2) resulting from 

several types of supply related to hillslope events, in-channel processes and natural events (Martin 

and Benda, 2001; Benda and Sias, 2003; Benda et al., 2003): 

                                                                                                                    (Eq. 2) 

where: 

    is the input from natural tree mortality 

    is the input from catastrophic events 

     is the input from bank erosion 

     is the input from mass wasting events and hillslope instability 

     is the input from exhumation of buried wood via floodplain and bars erosion 

Recruitment processes tend to vary along the channel network according to the interactions between 

hillslope processes and floodplain dynamics (Reeves et al., 2003; Seo and Nakamura, 2009). In 

mountain basins with steeper slopes, LW is recruited mainly from natural mortality and mass 

wasting events (Keller and Swanson, 1979; Swanson et al., 1998; Rigon et al., 2008). With increase 

of the active channel the amount of LW recruited from the adjacent floodplain increases and the 

portion recruited from slopes decreases (Nakamura and Kikuchi, 1996; Seo et al., 2008) (Fig. 7). 

Consequently, LW in a medium to large river basin is mainly supplied from bank erosion, which 



PhD Thesis                                                                                                                                    Alessia Tonon 

 

29 

 

represents one of the main recruitment processes in large low-gradient rivers (Moulin et al., 2011). 

An example has been reported by Moulin et al., (2011) for the wandering Roanoke River (U.S.A.) 

where 73% of all woody pieces stored in-channel derive from lateral erosion. 

 

Figure 7: variations in wood input processes according the distance from river source (modified from 

Gurnell., 2013). 

1.5.1.1. Forest mortality 

Natural tree mortality (  ) has been widely explored in the forest ecology literature (Mast 

and Veblen, 1994; Lester et al., 2003; Van Mantgem et al., 2009). According to Benda et al. (2003) 

the forest mortality rates depend on stand age, tree species, climate and topography. Tree mortality 

is commonly estimated on long-term spatial scales (up to several decades) using information on 

volume and sizes of standing trees (Benda et al., 2003). 

1.5.1.2. Catastrophic natural events 

Other recruitment processes are related to catastrophic natural events such as windstorms 

(Bahuguna et al., 2010), forest fires (Harmon et al., 1986; Agee, 1993; Benda and Sias, 2003), 

volcanic eruptions (Lisle, 1995; Nakamura and Swanson, 2003; Iroumé et al., 2012; Ulloa et al., 

2015a,b), ice storms (Kraft et al., 2002), pathogens and other diseases (Costigan et al., 2015). 

Toppling of trees by windstorms varies depending on topographic position, wind direction, soil 

moisture and the type of forest species (May and Gresswell, 2003; Nakamura and Swanson, 2003). 

It can be a dominant mechanism of LW recruitment that can occur over decades or be concentrated 

during single catastrophic events, such as tornadoes (Peterson, 2007), hurricanes or cyclones 
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(Hilton et al., 2008; Philips and Park, 2009) that can induce formation of wood rafts and jams by 

introducing huge quantities of LW almost instantaneously (Wohl, 2016). 

The importance of forest fires in the recruitment of wood depends on the frequency, extent and 

severity of fires, as well as other variables that change according to climatic gradients (Harmon et 

al., 1986; Benda and Sias, 2003). However, the effect of fires on wood input are usually 

concentrated only in a period of years to decades (Bendix and Cowell, 2010; King et al., 2013), 

because a period of recruitment decrease then occurs as trees regrow (Jones and Daniels, 2008; 

Wohl, 2011). The fall of trees is not directly caused by fires because, in most cases, fires affect just 

the epigean part of trees leaving the trunk and roots still alive (Agee, 1993). For this reason, trees 

that do not die during the passage of fire become weaker and therefore more easily attacked by 

insects and/or pathogens, facilitating death and a fall into the river bed (Agee and Huff, 1987). 

In volcanically active regions, volcanic eruptions may represent an important process of LW 

supply. As highlighted by Lisle (1995) and Ulloa et al. (2015a), eruptions severely increase the 

recruitment and abundance of in-channel wood. Pyroclastic density currents (PDCs) produced 

during an eruption usually damage standing vegetation, which can be partially or totally killed 

(Major et al., 2013; Swanson et al., 2013). As for forest fires, also in this case damaged trees are 

weak and more likely to be recruited, increasing input rates. 

1.5.1.3. Bank erosion and mass wasting events 

Bank erosion, usually occurring during floods, causes a punctuated supply of LW to 

channels (Keller and Swanson, 1979; Murphy and Koski, 1989; Benda and Sias, 2003) (Fig. 8). It is 

a process that tends to increase downstream (Hooke, 1980), even if its dynamics are not uniform 

along the channel network. In mountainous regions subject to hillslope instability, bank erosion can 

recruit at least a third to half of the LW (Benda and Bigelow, 2014), whereas it can be the dominant 

source of LW recruitment in piedmont rivers where flow energy remains high and banks are 

susceptible to erosion (Latterell and Naiman, 2007; Lassettre et al., 2008; Moulin et al., 2011; 

Boivin et al., 2015). With increase of drainage area, recruitment of LW increases because of 

associated decreased particle size of bank sediment and greater lateral channel mobility (Hooke, 

1980; Martin and Benda, 2001; O’Connor et al., 2003). 

Erosion rates also depend on the magnitude and frequency of floods (Golladay et al., 2007; Picco et 

al., 2016b). Large floods can erode considerable areas of floodplain with the subsequent recruitment 

of a considerable volume of wood (Bertoldi et al., 2013; Picco et al., 2016b). Characteristics of 

riparian vegetation and erodibility of riverbanks also influence rates of wood recruitment (Benda 

and Sias, 2003). The resistance of banks to erosion depends, in turn, on the particle size of bank 
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material and the presence of tree roots able to reinforce the soil (Hooke, 1980). However, also the 

river morphology also plays an important role in the supply of LW via bank erosion. For example, a 

study conducted on French rivers showed that wandering rivers have higher erosion (0.24 ha∙yr
-

1
∙km

-1
) and recruitment (39 ton∙yr

-1
∙km

-1
) rates than braided rivers where erosion occurs at a mean 

rate of 0.15 ha∙yr
-1

∙km
-1

 and gives rise to LW supply of about 12 ton∙yr
-1

∙km
-1

 (Piégay, 2003). 

To estimate wood recruitment from bank erosion knowledge on stand density and size and bank 

erosion rates is usually essential. Bank erosion rates can be predicted using numerical models 

(Simon et al., 2000; Lai et al., 2015) or calculated using remote imagery (Kasprak et al., 2012; 

Picco et al., 2016b), whereas riparian forest information can be collected through field 

measurements (Picco et al., 2016b) or remotely sensed surveys (Bertoldi et al., 2013; Comiti et al., 

2016). 

Recruitment of LW from hillslope instability commonly occurs in mountain streams (Rigon et al., 

2012). Mass wasting events can occur in the form of landslides, debris flows or snow avalanches 

that transport a considerable volume of LW almost instantaneously (Wohl, 2016). According to 

Benda and Sias (2003), the input of LW by mass wasting depends on the type and frequency of 

landslides (or debris flows, avalanches), the size of affected area, the age of recruited trees, the 

number of potential landslide sources intersecting the channel length and the fraction of recruited 

wood that is deposited within the channel. As for bank erosion, also for mass wasting events it is 

also possible to estimate the probability of slope failure using GIS software and combine this 

information with data on forest stand volume (Lancaster et al., 2001; Ruiz-Villanueva et al., 2014a). 

 

Figure 8: views of trees recruited from bank erosion along the Piave River (Italy). 

1.5.1.4. Exhumation of buried wood 

The last process by which LW can influence the budget is the recruitment of buried and 

downed wood via floodplain and bars erosion. As highlighted by Wohl (2016), the importance of 

this recruitment process is more relevant in those environments where the floodplain stores 

significant amounts of wood and when it is subjected to frequent overbankfull floods and lateral 
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channel erosion. These woody pieces can be thousands of years old and buried beneath floodplain 

and bars sediments (Howard et al., 1999; Latterell and Naiman, 2007; Guyette et al., 2008) or be on 

the actual floodplain and more recent in age (Wohl, 2016). Additionally, the importance of buried 

wood may be significant in specific environments such as fluvial systems affected by volcanic 

eruptions, where the river valley is commonly filled with volcanic material (Major et al., 2013; 

Pierson et al., 2013; Swanson et al., 2013) and wood pieces become buried under ashes. 

Although in some cases this process can play an important role in LW recruitment, estimating the 

proportion of wood delivered from floodplain/bars erosion remains a challenge. Indeed, as recently 

pointed out by Wohl (2016), very little information on recruitment from buried wood is available 

because distinguishing between LW that has remained in the channel from LW that has been 

exhumed from the floodplain is very difficult and, moreover, there are few studies that have 

quantified the age of in-stream LW and identified old wood that is likely to have been buried. 

For example, Brooks and Brierley (2002) estimated that wood composed 32%, by volume, of the 

bed sediments in the sand-bed Thurra River (Australia), whereas in a fire-prone forested river 

system in northern Quebec Arsenault et al. (2007) found that burial may have a greater importance 

in wood removal than decay. 

Despite buried wood being rarely investigated and little knowledge being available, it can form an 

important component of the wood budget and have a widespread significance for the form and 

stability of forested rivers and floodplains (Gurnell, 2013) especially in migrating or incising 

reaches (Arsenault et al., 2007). 

1.5.2. Fluvial transport of large wood 

Transport of LW in a fluvial environment usually occurs downstream (Abbe and 

Montgomery, 1996) and can be divided, according to the way in which logs move, into three types: 

flotation, rolling or sliding. These types of transport vary depending on the relative density, 

expressed as the ratio between density of wood and water, and the relative submergence, expressed 

as the ratio between water depth and diameter of wood pieces. In low submergence conditions wood 

is mainly transported by dragging or rolling on the bottom, whereas for water depth greater than 

wood diameter and for wood density similar to water density, LW is mainly transported in 

suspension. Flotation of wood occurs when wood has a lower density than water and water depth is 

equal to or greater than wood diameter (Degetto, 2000). 

Another classification of wood transport can be made according to the degree of interaction 

between pieces. Braudrick et al. (1997) identified three wood transport regimes: 
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 Uncongested: when logs move without piece-to piece interactions and occupy less than 10% 

of the channel area; 

 Congested: when logs move together as a single mass and occupy more than 33% of the 

channel area; 

 Semi-congested: is intermediate between the two end-regimes. 

On the basis of flume experiments, they found that transport regimes are influenced by a 

dimensionless input rate, defined as the ratio between wood volume delivered to the channel (Qlog) 

and water discharge (Qw). For uncongested transport this value is in the order of 0.015 and 0.20 for 

congested transport (Braudrick et al., 1997). 

Factors controlling wood transport in rivers are primarily related to the properties of wood (sizes) 

and fluvial processes (Gurnell et al., 2002; Merten et al., 2010). Numerous studies have highlighted 

how the mobility of logs could be predicted adopting two dimensionless parameters: the ratio 

between wood length and channel bankfull width (LWlength/Wbf) and the ratio between wood 

diameter and water depth (LWdiameter/Wdepth) (Lienkaemper and Swanson, 1987; Bilby and Ward, 

1989; Gurnell et al., 2002; Warren and Kraft, 2008; Cadol and Wohl, 2010; Wohl, 2011; Iroumé et 

al., 2015; Ruiz-Villanueva et al., 2015). 

According to the river width, LW appears to be more likely to move when the ratio between 

LWlength/Wbf is < 0.5 and < 1.0 for large and small rivers, respectively (Lienkaemper and Swanson, 

1987; Abbe et al., 1993), whereas for the ratio LWdiameter/Wdepth a threshold value ranging from 0.6 

and 1.0 was found (Mazzorana et al., 2009). In turn, the influence of wood properties on wood 

mobility also depends on the morphological configuration of the river, in multithread channels 

wood diameter appears to have the greater importance whereas in single-thread channels it seems to 

be wood length that exerts more control on wood transport (Ruiz-Villanueva et al., 2015). Wood 

diameter also plays a key role for LW deposition, when it is about half the water depth LW tends to 

stop its movement downstream (Abbe and Montgomery, 1996). 

As wood mobility is controlled by the sizes of wood in respect to the size of the river channel, 

Gurnell et al. (2002) proposed a classification of rivers according their sizes: 

 Small rivers: channels whose width is less than the majority of wood pieces length; 

 Medium rivers: channels having widths greater than the length of most wood pieces; 

 Large rivers: channels wider than the length of all the wood pieces delivered. 

In small mountain rivers, where wood pieces are larger in respect to the channel width, LW is less 

mobile and tends to be deposited close to where it is delivered and retained on the river bed 

(Naiman et al., 1987; Piegay et al., 1999; Gurnell et al., 2002; Marcus et al., 2002) whereas in larger 
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rivers the retention of wood is reduced by the increase of transport capacity (Bilby, 1985; 

Lienkaemper and Swanson, 1987; Bilby and Ward, 1989, 1991). 

Others variables able to control the stability of LW were recognized as being wood density, state of 

decay, presence of branches and rootwads, degree of anchoring, orientation to the flow and 

sprouting capacity (Abbe and Montgomery, 1996; Braudrick and Grant, 2001; Bocchiola et al., 

2006; Merten et al., 2010). 

Because wood movement is affected by several variables, the dynamics governing transport, 

velocity and travel distance during floods are not easy to understand. However, several studies of 

wood movement in small (Jochner et al., 2015), medium (Ruiz-Villanueva et al., 2015a) and large 

(MacVicar and Piégay, 2012; Schenk et al., 2014; Ravazzolo et al., 2015a) rivers have found that 

the movement of LW occurs above a threshold discharge that can be expressed as a proportion of 

bankfull stage or a recurrence interval (R.I.) (Wohl, 2016). Moreover, as wood is commonly 

transported during floods, direct observations of LW in transport are very limited, so many studies 

investigate wood movement in an indirect way based on transport capacity and mobility rate using 

information on recruitment and variations in wood storage (Wohl, 2016). A series of innovative 

technologies have been implemented in large gravel bed rivers to study the dynamics of wood in 

transport. For example, a video camera installed in the wandering Ain River (France) has 

spotlighted that the higher rate of transported wood occurs during the rising limb of the hydrograph 

(MacVicar & Piegay, 2012); or the use of GPS tracker systems in the Tagliamento River (Italy) has 

pointed out that LW deposition mainly occurs at peak flow (Ravazzolo et al., 2015a). 

1.5.3. Large wood decay 

Large wood deposited within the active channel or on the floodplain can decay, which 

reduces its size, density and internal strength with a consequent alteration of the stability (Wohl, 

2016). 

The decomposition processes, induced by weathering and microorganisms activity, occur with 

different times and ways depending on fluvial system conditions, characteristics of wood and its 

residence times. 

The oxygen content was found to be the main factor affecting the rate of LW decomposition 

(Harmon et al., 1986; Webster and Benfield, 1986; Bisson and Bilby, 1998; Hassan et al., 2005). 

The oxygen level, responsible for the biological activities of microorganisms, depends on the LW 

submergence conditions (Harmon et al., 1986; Keller and Swanson, 1979; Hyatt and Naiman, 

2001). An increasing size of the active channel usually corresponds to an increase in the flow with a 

greater likelihood of LW submergence. Therefore, in the presence of submerged wood the 
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decomposition rates are longer due to the prevalence of anaerobic conditions (Harmon et al., 1986; 

Keller and Swanson, 1979; Richardson et al., 2005). The rate of degradation for submerged wood is 

about 2-3% per year, depending on the forest cover type (Bilby et al., 1999). Similar anaerobic 

conditions occur when wood is buried by sediments, both in the channel and on the alluvial plain 

(Harmon et al., 1986; Abbe and Montgomery, 2003), with consequent longer decomposition time. 

The rate of decomposition is also influenced by environmental conditions, mainly temperature and 

humidity. Significant and repeated changes in moisture conditions cause wood to contract and 

expand, resulting in cracks that facilitate the colonization of microorganisms (Harmon et al., 1986). 

The temperature affects the activity of microorganisms; for example, the optimum temperature for 

degradation by organisms belonging to Fungi (L.) is between 25 °C and 30 °C (Kaarik, 1974), so in 

lowland rivers with a higher air and water temperature, the biological activity of microorganisms 

can increase, as well as the rate of respiration of invertebrates (Harmon et al., 1986), influencing the 

LW decomposition speed. The loss of LW can also occur through physical fragmentation during 

fluvial transport or the fall of trees (i.e. bank erosion or mass movements). Also in this case, the 

breakup of LW by physical factors is strongly influenced not only by the species and stage of 

decomposition, but also by the energy of the current (Harmon et al., 1986) and by the presence of 

bedload sediment transport that contributes to the abrasive action (Warren et al., 2009). 

Although there are still few studies concerning LW decay, the decomposition rates are, in general, 

50 to 100 years for forests of dry climates (O’Connell, 1997; Ellis et al., 1999), 10 to 100 years in 

humid temperate climates (Boyce, 1961; Harmon, 1982) and < 10 years in the tropics (Lang and 

Knight, 1979; Delaney et al., 1998; Clark et al., 2002; Lewis et al., 2004). 
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1.6. Previous studies on large wood budget 

 

The conceptual framework for constructing a wood budget proposed by Martin and Benda 

(2001) has been applied in different riverine environments adopting different methodologies and 

focusing on specific components. Table 1 summarizes the main studies on LW budget available to 

date (2016) in the literature. 

Table 1: definition of piece sizes, analyzed components and river type in previous studies documenting LW 

budget. 

LW sizes 
Main components 

analyzed 
River type References 

Channel width < 5m: 

D > 0.10 m 

L > 1.5 m 

Channel width > 5m: 

D > 0.10 m 

L ≥ 3 m 

Transport, 

recruitment 
Gravel-bed Martin and Benda (2001) 

D > 0.08 m 

L > 1.8 m 
Recruitment Gravel-bed Benda et al., (2002) 

D > 0.10 m 

L > 1 m 
Transport Gravel-bed MacVicar and Piégay (2012) 

D > 0.2 m Transport Sand-bed Schenk et al., (2014) 

D ≥ 0.10 m 

L ≥ 1.5 m 
Recruitment Gravel-bed Benda and Bigelow (2014) 

D > 0.10 m 
Transport, 

recruitment 
- Lucía et al., (2015) 

D ≥ 0.10 m 
Transport, 

recruitment, decay 
Gravel-bed Hassan et al., (2016) 

 

Among the first studies, Martin and Benda (2001) assessed the budget at a basin scale analyzing the 

spatial-temporal influences on the abundance and distribution of LW. They adopted different 

thresholds of piece sizes according to the active channel width. On the basis of field surveys they 

found bank erosion, natural mortality and mass wasting events to be the dominant processes in LW 

recruitment, and how they vary according the drainage area. For example, erosion rates tend to 

increase with the discharge area, from 1 m
3
∙ha

-1
∙yr

-1
 in a small river basin to 16 m

3
∙ha

-1
∙yr

-1
 in a 

drainage basin > 60 km
2
. The transport of wood, analyzed on the basis of inter-jam spacing and 

mean transport distance, also varies with the basin sizes, increasing up to 50% in fluvial basins of 

50 km
2
. Innovative devices were used by MacVicar and Piégay (2012) in a wandering gravel-bed 
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river (Ain River, France) in order to better understand the transport dynamics of LW during high 

floods and relationships with the discharge. By using a stream video camera, the authors detected 

90% of pieces transported during floods, highlighting how higher transport rates occur in 

correspondence to the rising limb of the hydrograph. However, they pointed out that the resolution 

of images captured with the camera is a crucial factor for identification of in transport pieces. More 

specifically, woody pieces less than 0.2 m in diameter appeared to be difficult to identify. 

Remote devices to analyze transport dynamics were also tested in Schenk et al., (2014), one of the 

most comprehensive studies on wood budget (Fig. 9). The combined use of Radio Frequency 

Identification Devices (RFID), metal tags and colored paints permitted the transport of LW and its 

variations with increasing floods to be quantified in a wandering sand-bed river (Low Roanoke 

River, North Carolina). The authors found that about 41% of deposited LW is mobilized again 

during floods with mean and maximum traveled distances of 11.9 km∙yr
-1

 and 101.1 km∙yr
-1

. The 

wood budget assessed by Schenk et al., (2014) highlighted that the annual turnover of LW is equal 

to 5% of stored LW with 16% involved in the internal displacement. 

 

 

Figure 9: summary scheme of LW budget for the Lower Roanoke River, North Carolina (after Schenk et al., 

2014). 

According to the processes involved in the wood dynamics, there is a different importance in the 

evaluation of single items of the budget. For example, studies aimed to quantify the budget in 

mountain streams usually focused attention on lateral recruitment rather than fluvial transport. In 

this environment, in fact, the lower channel width and steep slopes lead to a greater importance of 

recruitment and deposition processes rather than transport processes (Rigon et al., 2012). 

Among the main studies on LW recruitment, Benda et al., (2002) and Benda and Bigelow (2014) 

identified the variables that affect the lateral recruitment of LW. Differently from the river of 
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piedmont areas where recruitment is mainly from bank erosion, in mountain streams having a 

drainage area < 50 km
2
 LW delivery through natural mortality (50%), erosion (43%) and mass 

wasting events (7%) (Benda and Bigelow, 2014). Moreover, recruitment from natural mortality is 

influenced by the riparian vegetation characteristics; fluvial systems with old-growth forests have 

lower recruitment rates (2.5 m
3
∙km

-1
∙year

-1
) than systems with second-growth vegetation (4 m

3
∙km

-

1
∙year

-1
) (Benda et al., 2002). 

Among the recent developments on wood budget, a model was proposed by Hassan et al. (2016) to 

simulate a reach-scale budget for two mountain streams of British Columbia, analyzing the 

recruitment from mortality, mass movement and bank erosion and the output by decay, transport 

and depletion. Modeled over a century, the budget identified bank erosion and mass movement as 

the dominant LW input processes and fluvial transport to be an important component of budget, 

particularly downstream of reaches with wider channels. As recruitment is mainly governed by 

natural processes, LW storage showed fluctuations over time related to the magnitude of the LW 

input events and local rate of LW decay, with a time to equilibrium estimated in the range of 50-120 

years (Hassan et al., 2016). 
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Section Two – Motivations and objectives 

2.1. Main problem analysis: gaps in the large wood budget assessment 

Differently from sediments dynamics, for which pioneer studies can be dated to the first half 

of the twentieth century (Shields A., 1936; Einstein H.A., 1937; Meyer-Peter and Muller, 1948), the 

presence of LW in rivers and its related effects became a research topic just over the last nearly 40-

50 years (Keller and Swanson, 1979; Marston, 1982; Murphy and Koski, 1989). 

Several studies, based on field data, numerical models or flume experiments, provided information 

on LW dynamics, especially exploring how LW abundance varies according to the river type 

(Wyzga and Zawiejska, 2005; Wyzga et al., 2015), how LW can enter into rivers (Moulin at al., 

2011; Bertoldi et al., 2013; Picco et al., 2016b), how it decays (Murphy and Koski, 1989; Hyatt and 

Naiman, 2001), how it can be transported downstream (Ravazzolo et al., 2015a; Ruiz-Villanueva et 

al., 2015) and how it can influence channel geometry, sediments, water fluxes, organic matter and 

the ecological status of river (Piégay et al., 1999; Gurnell et al., 2002; Pilotto et al., 2016). 

Nonetheless, some important gaps remain in specific LW processes that could help in the 

quantifying LW budgeting. Considering the ratio between LW sizes and channel width, the vast 

majority of LW studies were conducted on small-to medium sized rivers (Robison and Beschta, 

1990; May and Gresswell, 2003; Mao et al., 2008; Wohl, 2011; Rigon et al., 2012), whereas wood 

dynamics in large rivers remain less understood. With respect to wood recruitment, we lack 

evidences on the amount of LW volume that could enter into rivers during bank erosion caused not 

only during large floods but also during low-ordinary events. Moreover, additional information on 

how the LW transport at a scale event can change the abundance of LW storage can be useful to 

better predict the fluctuations also over short-term period. Another significant knowledge gap is 

represented by the exhumation of buried LW. Floodplain erosion, as well as the remodeling of 

fluvial bars, have the capacity to recruit these woody elements and, in this way, can have important 

implications in the budget computation. However, because of the difficulties to detect and measure 

the buried LW, to date there are low studies dealing with this topic.  
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2.2. Objectives 

On the base of knowledge gaps highlighted in the previous section, the main objective of 

this thesis consists in the assessment of large wood budget in two rivers located in a different 

environment and suffering different impacts. The first river (Piaver River, Italy) is an anthropic 

gravel bed river that was subject to intense human disturbances over time. A reach along its middle 

course was chosen because of the multiple thread morphology with fluvial bars allowing deposition 

of LW and because it is easily accessible to be monitored through time by repeated surveys. The 

second one (Blanco River, Chile) is a natural river recently impacted by a volcanic eruption that 

completely changed its morphology. Because of the rarity of this disturbance and the presence of 

LW data already available, it was selected as a second study area in which analyze the dynamics of 

LW in a naturally altered system. 

The attention will be focused on three main items of the budget: the lateral recruitment from 

riverbank erosion, the fluvial transport of LW and the exhumation of buried wood. 

Specific objectives of this study are the following: 

 Evaluate the amount of LW potentially available from riparian areas (i.e. floodplain and 

fluvial islands) and the recruitment rates for an over bankfull flood; 

 Expand knowledge on the temporal variations in the abundance of in-channel large wood 

due to fluvial transport during ordinary and not-ordinary floods, considering mobility and 

retention rates; 

 Identify which may be the main factors controlling large wood mobilization and deposition; 

 Propose a method to analyze the presence and calculate the volume of LW buried in 

volcanic sediments. 

  



PhD Thesis                                                                                                                                    Alessia Tonon 

 

41 

 

Section Three – Study areas and methodology 

3.1. Study areas 

The research was conducted in two study areas, the Italian Piave River and the Chilean 

Blanco River. The following sections summarize the geomorphic and hydrologic features of the 

rivers, and characteristics of the study reaches. 

3.1.1. The Piave River 

3.1.1.1. General settings of the basin 

The Piave River rises from Peralba Mount in the Dolomites, at an altitude of 2037 m a.s.l.. 

Flowing south through the provinces of Belluno, Treviso and Venice, the river has a length of 220 

km until its mouth into the Adriatic Sea, near the Venice lagoon (Fig. 10). 

 

 

Figure 10: drainage basin of the Piave River with the three main reaches highlighted, upstream (blue), 

intermediate (green) and downstream (red) one. The black dashed line indicates the division between the 

mountainous and lowland part (modified from Bondesan, 2000). 

The river basin covers an area of 3899 km
2
 and is mainly composed of sedimentary rocks (i.e. 

limestone, dolomite) (Surian, 1996). From a geomorphological point of view, the basin is divided in 
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two main parts, the mountainous and lowland parts (Fig. 10). The first one extends from the source 

to Nervesa della Battaglia (Treviso Province) and features a drainage system with several 

contributing streams (Da Canal, 2006), whereas the lowland part, which extends until the mouth, is 

characterized by only few resurgent channels along the final stretch. 

The Piave River has five main tributaries in the mountain part of the basin (Belluno Province): the 

Cordevole River draining water from the western area, the Boite River located near Perarolo di 

Cadore, the Maè River near Longarone, the Ansiei River placed near Auronzo di Cadore and lastly 

the Sonna River that rises near the town of Feltre. Table 2 summarizes the main characteristics of 

these tributaries. 

 
Table 2: characteristics of the main tributaries of the Piave River. 

 Bank 

side 

Basin 

area (km
2
) 

Basin 

area (%)* 

River 

length (km) 

Ansiei right 240.7 6.7 37.3 

Boite right 395.9 11.2 45.0 

Maè right 232.0 6.7 33.4 

Cordevole right 866.8 24.0 78.9 

Sonna right 136.9 3.8 7.5 

*percentage of the tributary basin with respect to the whole basin of the Piave River basin. 

 

The river features a complex morphology reflecting the variety of downstream geographical areas, 

i.e. mountain areas, foothills, lowland areas and coastal areas. A morphological classification 

(Surian, 1999) divides the main river channel into three reaches, the first from the headwater to 

Longarone (Belluno Province), the second from Longarone to Ponte di Piave (Belluno and Treviso 

provinces) and the third from Ponte di Piave to the mouth (Venice Province) (Fig. 10). 

Within the first reach (~70 km), the Piave River features the typical characteristics of a mountain 

torrent with steep gradients and confined narrowed bedrock. The river widens from a few meters at 

the source to 400 m at the end of the first reach. The bed slope also varies downstream, from higher 

values of 8.8% along the first 7 km to 1% and 3.2% in the following reach until Perarolo, and lower 

values of 0.5% and 0.6% at the end of the stretch near Longarone (Vollo, 1942). As regards grain 

size, the upstream part of the reach features a high concentration of blocks, boulders and gravel, 

whereas in the downstream part the bed sediments are mainly composed of gravel. 

Along the second reach (~110 km), the river valley widens from a few hundred meters to 2-3 km 

(maximum values are found on the plain of Ciano del Montello and Papadopoli, Treviso Province) 

and it is characterized by a well-established alluvial plain. Here, the river has high energy and 
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shows a multithreaded channel pattern with braided and wandering morphologies. As typified by 

these morphologies, the river is formed by channels, bars and islands that are unstable and tend to 

be constantly reformed and modified due to the high erosion and transport capacity (Fig. 11). The 

bed gradient, between 0.7% and 0.2%, remains constant along the whole stretch as does grain size, 

which is quite homogeneous and has a mean diameter of between 20 and 50 mm (Surian, 1998). 

 

Figure 11: aerial view of the Piave River upstream of the Vidor bridge (Treviso province). 

Finally, in the third reach (~ 40 km), the Piave River flows on a sand-bed featuring a meandering 

morphology of high sinuosity alternating with straight stretches confined by artificial embankments. 

River width and slope decrease significantly (0.1‰ at the mouth) causing a gradual decrease in 

flow velocity. 

The entire Piave River basin lies in a humid and temperate-continental zone. The least rainy period 

corresponds to the winter season, whereas the rainiest ones usually occur during spring and autumn. 

According to the orography, slopes, elevation and proximity to the sea, the rainfall in the basin is 

subject to marked differences from place to place. Considering a 60-years period (1928-1987), the 

average annual rainfall on the whole basin is 1350 mm. However, areas with different amounts of 

rainfall can be identified. Mean annual precipitation ranges from about 1000 mm in the north-west 

part of the basin (high valley of Pettorina Stream) to 1500-2000 mm in the east-central area 

(Cansiglio Plateau, Alpago valley, Vajont basin). 

 

3.1.1.2. The study reach 

The analyses were conducted in a 3.7 km-long study reach located in the intermediate course 

of the Piave River, between the village of Ponte nelle Alpi and Belluno (Fig. 12). The study reach 

features a morphology that alternates wandering and braided patterns with the presence of some 

pioneer and building islands (Picco et al., 2014). With a present (measured in 2016) minimum, 

maximum and mean active channel width of 138 m, 512 m and 320 m respectively, the total study 
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reach area is about 97 ha. The actual braiding index is equal to 1.87 and the majority of the study 

reach features only two channels, except in the downstream part where the number of channels rises 

to 6 (Fig. 13). The average gradient is 0.0033 m∙m
-1

 (Picco et al., 2016a) and the mean grain size is 

31.15 mm (Rainato et al., 2015). Table 3 summarizes the main characteristics of the study reach. 

 

 

Figure 12: location of the Belluno reach and view of the study reach (aerial photos of 2016 from Google 

Earth). 

 

Table 3: main characteristics of the Piave River study reach. 

 Study reach 

River length (km) 3.7 

Range and (mean) active channel width (m) 138-512 (320) 

Area (ha) 97 

Braiding index 1.87 

Mean slope (m∙m
-1

) 0.0033 

Mean grain size (mm) 31.15 

 

The study reach is characterized by high human impact. Indeed, the active channel is affected by the 

presence of groynes and bank protections on both riverbanks, covering almost a third of the total 
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reach length, and gravel mining started again during the past year. On 1951 a dam was constructed 

7 km upstream of the reach, blocking the input of LW and sediments from the upstream river 

course. In this way, the selected study reach represents a good opportunity to study the local 

delivery of LW. Differently from the right bank where there is a wide, mature vegetated area, along 

the left bank the active channel is in proximity to a high, post-glacial terrace (Picco et al., 2016a). 

 

Figure 13: variation of active channel width and number of channels along the study reach. 

Within the analyzed study reach, the Piave River features a complex pattern of vegetation 

distribution (Picco et al., 2012). The strong narrowing and incision of the active channel that 

occurred during the twentieth century (Comiti et al., 2011) has allowed the colonization of large 

areas by riparian forests (Picco et al., 2012). Furthermore, the widening tendency shown during the 

last 20 years has led to the creation of pioneer and young islands through the recruitment of LW 

from bank erosion (Picco et al., 2012). Fluvial islands within the study reach are of different ages 

and sizes, but there are no established islands. The riparian woody vegetation differs substantially 

from those characterizing near-equilibrium systems (Picco et al., 2016a). The riparian vegetation of 

floodplain and fluvial islands is composed of typical riparian species (i.e Alnus, Fraxinus, Populus, 

Salix), whereas in some areas, notably in the upper part of the study site and near the bank 

protections, there is a high presence of conifers, i.e Pinus sylvestris and Picea abies, as a result of 

reforestation after the Second World War. The non-native species Robinia pseudoacacia is common 

along the whole study reach. 

The hydrological data used in this study are derived from a gauging station located 2 km 

downstream of the end of the surveyed area, corresponding to a drainage basin of 1827 km
2
. The 

gauging station is operated by Agenzia Regionale per la Protezione Ambientale del Veneto 

(ARPAV) and provides data concerning the hydrometric level and water discharge. There is a small 

tributary (Ardo Stream) between the study reach and the gauging station; however, given its low 



PhD Thesis                                                                                                                                    Alessia Tonon 

 

46 

 

contribution (Q=1.2 m
3
 s

-1
), the discharge values recorded by the station are assumed to be valid all 

along the whole stretch. The main floods are usually recorded in spring and autumn as the result of 

snowmelt and the rainiest period, respectively; whereas the mean annual minimum discharge is 

between 3 and 4 m
3
∙s

-1
 (E.N.E.L. C.R.I.S., 1996). As documented in a previous study (Comiti et al., 

2011), the bankfull discharge Q2 (Recurrence Interval = 2 years) was calculated at about 700 m
3
∙s

-1
 

corresponding to an average bankfull stage of 3.10 m. Figure 14 reports the annual maximum peak 

discharge measured during the last 76 years, from 1940 until 2016. The highest recorded flood (RI 

= 200 years) occurred in November of 1966 with a peak of almost 4000 m
3
∙s

-1
, and the last over 

bankfull flood took place in November 2014 when a 7-years R.I. flood was recorded with a 

maximum peak of 1329 m
3
∙s

-1
. After this, only ordinary floods took place, with peaks of about 100 

m
3
∙s

-1
. The maximum discharge measured during 2015 (145 m

3
∙s

-1
) was found to be the lowest 

value recorded during the last 51 years. 

 

Figure 14: maximum annual peak discharge in the last 76 years (1940-2016) measured at the downstream 

end of the study reach (modified from Comiti et al., 2011). The arrow indicates the time of dam construction. 
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3.1.2. The Blanco River 

3.1.2.1. General settings of the basin 

The Blanco River, also called Chaitén River by local residents, is a fourth-order river 

located in southern Chile, about 254 km south of Puerto Montt city, in the Los Lagos Region. The 

river flows for about 18 km from the southwest of the Michinmahuida volcanic complex until its 

mouth into the Pacific Ocean, crossing the small village of Chaitén. Through its main tributary 

called Caldera Creek (Major and Lara, 2013; Pierson et al., 2013), the drainage area of Blanco basin 

is also directly connected to the southern slope of Chaitén volcano (Fig. 15). 

 

Figure 15: satellite view of Blanco (or Chaitén) River and the two nearest volcanoes of Chaitén and 

Michinmahuida (after Major and Lara, 2013). 

Upstream of Chaitén village, the study catchment of Blanco River covers an area of about 70 km
2
 

and lies in an altitude ranging between 7 and 1545 m a.s.l. with an average gradient of about 50%. 

Mainly composed of bedrock, the basin is characterized by a Pleistocene volcanic cover overlying a 

basement formed by both Miocene granitoids and Paleozoic schists and gneisses (Piña-Gauthier et 

al., 2013). The bedrock geology of the basin, reflecting the presence of the nearby volcano, is 

mainly composed of volcanic sediments that feature a high instability favoring creeping and 

landslides phenomena (Peralta, 1980). Fluvial deposits can be found just in the lowland area of the 

basin. 

The Blanco basin is dominated by the typically wet climate of the Andean Patagonia region. 

Precipitation increases with altitude by a factor of about 2-3 from the coast to the western front of 

the Andes (Garreaud et al., 2013) and near Chaitén Volcano there is heavy winter rainfall exceeding 

3000 mm∙yr
-1

. During the six year period 2004-2009, annual precipitation varied from ~2500 to 
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~7000 mm∙yr
-1

 (Direccion General de Aguas, unpublished data). The largest floods usually occur 

during the autumn-winter season (March-August). Forty-three percent of the basin area is covered 

by old growth forests with evergreen tree species, 40% by shrub formations and the remaining 16% 

corresponds to snowy and glacial areas located in the upper part of the basin (CONAF, 1997). The 

evergreen forest type, as described by Donoso (1981), is mainly represented by the native 

Nothofagus spp. such as N. dombeyi (Coihue), N. nitida (Coihue de Chiloé) and N. betuloides 

(Coihue blanco). 

3.1.2.2. Effects of Chaitén volcanic eruption on the basin 

The Blanco River basin was highly altered by the unexpected eruption of the Chaitén 

Volcano that occurred between 2008 and 2009. 

The Chaitén volcano (1122 m height) is located about 10 km northeast of Chaitén town on the Gulf 

of Corcovado and about 17 km west-southwest of the much larger and glaciated complex of 

Michinmahuida volcano (2400 m height) (Fig. 15). The Chaitén Volcano is surrounded by steep, 

dissected, high-relief, volcanic and glaciated terrain that is densely covered with temperate 

rainforest vegetation (Major and Lara, 2013). In respect to other Chilean volcanoes, it is a relatively 

small, remote rhyolitic volcano with a 3-km-wide caldera (Carn et al., 2009) produced during the 

last known major eruption that occurred about 9400 years ago (Naranjo and Stern, 2004). Owing to 

its lengthy lack of activity, the volcano was perceived as being inactive and was not considered a 

threat so was not monitored, but in 2008 a large eruption began unexpectedly. 

The eruption was preceded by minor ash emissions and a 3-5 magnitude earthquake (Basualto et al., 

2008) recorded at about 15 km north of Chaitén town. The eruption started on 2 May 2008 (Carn et 

al., 2009; Lara, 2009) with a first brief Plinian explosive phase (~2 weeks) followed by a more 

prolonged effusive phase (~18-20 months) (Pallister et al., 2013). According to Pallister et al. 

(2013), the eruption can be divided into different phases according to the type and characteristics of 

emitted material. From the point of view of the volcanic impacts, the most dangerous phase 

occurred from 1 to 9 May during which the heavy rainfall recorded after the first explosion 

mobilized the tephra fall deposits inducing lahars and floods (Pierson et al., 2013) that devastated 

the nearby Chaitén village (Fig. 16). 



PhD Thesis                                                                                                                                    Alessia Tonon 

 

49 

 

 

Figure 16: a, oblique aerial view looking downstream along Chaitén river valley from the caldera rim (after 

Major and Lara, 2013); b-c, houses buried by deposition of volcanic sediments; d, new channel cutting 

through the village following avulsion (photos from SERNAGEOMIN). 

The eruption effects on Blanco River have also been documented on bed morphology (Pierson et 

al., 2013), forest vegetation (Major et al., 2013; Swanson et al., 2013) and LW dynamics (Ulloa et 

al., 2015a). Comparing the active channel width between the pre and post eruption conditions, the 

active channel widened 3.5 times up to a maximum of nine times (Ulloa et al., 2015a) (Fig. 17a). 

The heavy rainfall (up to 600-900 mm in twelve days), recorded soon after the first eruption, caused 

pyroclastic sediments remobilization downstream of the Chaitén river valley triggering lahar floods 

that resulted in a 7 m aggradation along the river channel (Pierson et al., 2013). Several km
2
 of the 

lowland forested floodplain were greatly affected by the fluvial deposition of remobilized tephra 

(Fig. 17b). However, given the moderate temperature of Pyroclastic Density Currents (PDCs) (< 

300 °C) (Major et al., 2013), trees were not completely charred (Swanson et al., 2013). Another 

disturbance reported by Swanson et al. (2013) was induced by the fine tephra accumulating on the 

tree crowns that led to breakage and bowing of old and young trees, respectively. Destruction of the 

riparian forest increased the recruitment rate of trees resulting in a dramatic variation of LW 

abundance, Ulloa et al. (2015a) reported an increase of LW pieces from 16 to 736 during the period 

2005-2009 (Fig. 17c-d). 
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Figure 17: images of volcanic effects on Blanco River. a, example of active channel widening due to 

sediment loading along the middle course of the river (after Ulloa et al., 2015a); b, damaged riparian forest; 

c-d, large wood deposited within the active channel. 

3.1.2.3. The study reaches 

Three study reaches, within an area located in the lower part of the river course, were chosen 

to analyze the temporal variations of LW. Reaches are identified in an upstream order as reach 1, 

reach 2 and reach 3 (r_1, r_2 and r_3, respectively) (Fig. 18). Because of the considerable amount 

of in-channel LW and the extension of the active channel width, the selected reach length was 

reduced to 80 m, extending 40 m upstream and 40 m downstream of a cross section (as previously 

done, i.e, by Gurnell et al., 2000 and Ravazzolo et al., 2015a). Study sites were selected to represent 

different morphology of the reaches. The upstream reach 3 is a single-thread channel characterized 

by the main channel flowing forming a well-pronounced bend, while reach 2 features a single-

thread pattern with the main channel bordered by a high bar. In the downstream reach 1 the 

morphology appears to be similar to the multiple-thread channel pattern because of the presence of 

two dry channels. From upstream, the mean bed relative elevation of the selected reaches decreases 

from 1.9 to 1.04 and 0.78 m of reach 3, 2 and 1, respectively. 
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Figure 18: location of the study area (a, b), overview of the Blanco River course (c) and location of the three 

study reaches (d). 

Due to the effects of the eruption, the whole study area features a 6-7 m difference in height 

between the bed level and the top of the riverbanks. Indeed, the deposition of volcanic material has 

led to the formation of a complex river system where the active channel is now well confined by 

these non-natural ―slopes‖. However, in some locations where almost all volcanic sediments have 

been removed the original vegetated floodplain is now starting to reappear (Fig. 19). 

 

Figure 19: field evidence on the position of the original vegetated floodplain. 

The three reaches were surveyed in different periods from January 2015 until March 2016. Reach 1 

and reach 2 were first surveyed in January 2015 (Survey 1) and then resurveyed after the summer in 

March 2015 (Survey 2) and after a winter season in January 2016 (Survey 3). The reach 3 was first 

monitored during March 2015 and then after a year in March 2016 (Survey 4). The main 

characteristics of the three reaches related to each survey are reported in table 4. 
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Table 4: date of field surveys and characteristics of the reaches at each survey. 

 
Reach 1 

(r_1) 

Reach 2 

(r_2) 

Reach 3 

(r_3) 

Survey 
January 

2015 

March 

2015 

January 

2016 

January 

2015 

March 

2015 

January 

2016 

March 

2015 

March 

2016 

Width (m) 94 94 94 80 80 137 108 108 

Area (m
2
) 7940 7940 7940 7500 7500 12685 8941 8941 

 

Figure 20 depicts the longitudinal profile of the study area and position of the study reaches. 

 

Figure 20: longitudinal profile of the Blanco River (corresponding to the area marked in figure 19c) and 

location of the three study reaches. 
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3.2. Methodology 

The large wood budget developed in this study followed the quantitative frameworks (Eq. 1, 

2) proposed by Martin and Benda (2001). Two different frameworks were applied according to the 

study area. For both rivers, as the balance was calculated for short time periods, the in situ decay 

( ) and input from chronic tree mortality (  ) were omitted; whereas, as there were no floods 

exceeding the bankfull level during the study period, the loss of LW due to overbank deposition ( ) 

was not considered. 

In the case of Piave River, the LW budget was computed considering, in addition to the fluvial 

transport into and out the study reach (     ), the lateral recruitment due to bank erosion (   ). In 

fact, because of the morphological aspect of the study reach where no steep slopes are present, the 

input from mass wasting events (   ) was not considered and, as no catastrophic events occurred, 

the toppling of trees for natural events (  ) was not taken into account. From field evidences, we 

also considered that the input from exhumation (   ) is negligible, so the LW budget equation 

applied in the Piave River study reach reduces on (Eq. 3): 

                                                              [      (     )]                                             (Eq. 3) 

Differently, in the case of Blanco River the budget was assessed only for variations due to fluvial 

transport (     ) and the input from exhumation of buried LW (   ). Also in this case inputs from 

catastrophic events (  ) and from mass wasting (   ) were assumed to be insignificant. However, 

the budget of Blanco River considered only partially the variations occurred in the LW storage as 

the supply of LW due to bank erosion was not considered. Despite bank erosion was measured, the 

lack of data concerning riparian vegetation did not allow to estimate the recruitment of LW. The 

equation used for the Blanco River is the following (Eq. 4): 

                                                             [     (     )]                                                (Eq. 4) 

To assess the LW balance a series of different activities were carried out in the two study areas. The 

analysis of each component of the budget required the application of different methods. This section 

describes the field activities and materials used during this study (Table 5). 
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Table 5: analysis methods, materials used and their application sites. 

Components of 

budget analyzed 
Field activities Materials 

Piave 

River 

Blanco 

River 

Ibe 

Monitoring of lateral 

LW recruitment 

DGPS, caliper, metal 

tags, field sheets 
 - 

Monitoring of 

riverbanks 
DGPS, aerial images   

Qi-Qo 

Monitoring of LW 

deposited within the 

active channel 

DGPS, caliper, tape, 

metal tags, colored 

paint, field sheets 

  

Ie 
Monitoring of buried 

LW 
GPR -  

 

3.2.1. Assessment of bank erosion and large wood recruitment 

As already described in section 1.4.1, the lateral inputs of LW can occur through different 

recruitment mechanisms (i.e. tree mortality, hillslope instability, bank erosion). 

In piedmont environments, where flow energy remains high and banks can be more susceptible to 

erosion than in lowland environments (Latterell and Naiman, 2007; Lassettre et al., 2008; Moulin et 

al, 2011; Boivin et al., 2015), bank erosion can be the main source of wood to rivers. Recruitment 

of wood from riverbank erosion can be predicted using numerical models of bank erosion (Simon et 

al., 2000; Lai et al., 2015) or quantified by knowing the riparian vegetation characteristics (i.e. 

spatial density and tree size). 

In this study bank erosion and large wood recruitment was assessed only in the Italian Piave River 

through a detailed characterization of riparian vegetation in order to quantify the wood volume 

available for input during bank erosion events. Recruitment of LW from bank erosion was analyzed 

for a 7-yr R.I. flood that occurred in November 2014. During the flood the water discharge 

remained over the bankfull level for 1.58 days (38 h), and the maximum peak recorded was 1329 

m
3
∙s

-1 
(Fig. 21). 
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Figure 21: maximum hourly discharge on the Piave River as measured at Belluno gauging station during the 

over bankfull flood of November 2014. Dashed line indicates the level of bankfull discharge. 

One of the main open questions about the study of lateral LW recruitment regards the delineation of 

a buffer zone in which riparian vegetation is more likely to be recruited during erosion events. In a 

previous study (MacVicar and Piégay, 2012) conducted on a river with similar morphology and 

dynamics (Ain River, France), a 5 m wide strip on both riverbanks proved to be not sufficient 

because bank retreat exceeded 5 m in some locations. Thus, as suggested by MacVicar and Piégay 

(2012) and according to mean bank erosion width detected during the period 2006-2014 along the 

Piave River (unpublished data), a reasonable buffer zone was found in a 20 m wide strip on both, 

floodplain and fluvial islands. 

Within this buffer, every standing tree (n=3320) with a diameter ≥ 0.10 m was measured in its 

diameter at breast height (DBH) and height. The species was also noted in order to assign a wood 

density value according to Hellrigl (2006). Others characteristics related to the state of health (i.e. 

alive, dead, broken), presence of branches and leaves were recorded and a numbered tag was 

attached in order to uniquely identify each tree and simplify the post-event recovery. Lastly, the 

spatial density of riparian vegetation was obtained georeferencing each tree using a Differential 

Global Positioning System (DGPS) (average accuracy ± 0.025 m) (Fig. 22, 23). 

 

Figure 22: images of field data collection along the Piave River study reach. Measuring (a), tagging (b) and 

positioning (b) of riparian vegetation. 
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Wood volume of standing trees was calculated according to the methodology already followed by 

Piégay et al. (1999) and MacVicar and Piégay (2012) using the Algan-Monnin formula (Rondeux, 

1993) (Eq. 5, Eq. 6): 

                                                                       (   )                                          (Eq. 5) 

                                                                      (   )                                           (Eq. 6) 

where: 

Vst = volume of standing tree (m
3
) (Vst1 with h > 10 m; Vst2 with h < 10 m) 

d = DBH (m) 

h = height (m) 

For all tagged trees the morphological unit of provenance was noted in order to discriminate 

between the contribution of LW input from different morphological units. Overall, considering all 

the vegetated areas along the Piave study reach, two morphological units were found, floodplain 

and islands. 

Fluvial islands were distinguished following Picco et al., (2014), into: 

 Pioneer islands (P), vegetation height ranging between 3 m and 5 m; 

 Building islands (B), vegetation height ranging between 5 m and 15 m; 

 Established islands (E), vegetation higher than 15 m (not found in the study reach). 

 

Figure 23: example of riparian trees surveyed in the 20 m-wide strip along floodplain and islands. 

Bank erosion was evaluated using a DGPS device (average accuracy ± 0.025 m) surveying 

floodplain bank and island perimeters before and after the flood. Eroded areas on the floodplain and 
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islands were defined comparing the pre and post-flood conditions using ArcGIS 10.1 

(Environmental Systems Research Institute - Esri, Inc., Redlands, CA, USA). Figure 24 illustrates 

an example of how it is possible to study bank erosion through a DGPS survey. 

 

Figure 24: images showing an erosion area located along the right bank of the Piave study reach. The 

different dashed lines represent the position of riverbank monitored with a DGPS in 2010, 2011, 2014 and 

2015 (a); an example of the same riverbanks after the 2014 flood (b). 

3.2.2. Assessment of large wood input and output from fluvial transport 

The methodology applied to assess the temporal variations in the storage of LW is similar 

for both study areas. Within the considered reaches all woody pieces ≥ 0.1 m in diameter and ≥ 1 m 

in length (Morris et al., 2010) were measured, using a measuring tape and a tree caliper, 

respectively. According to Iroumé et al. (2010), measurement precision is 1 cm for diameter and 5 

cm for length. The analysis concerned just those pieces lying in the active channel (defined as the 

area between riverbanks that can be flooded during events) and those located along the riverbanks. 

According to the type of aggregation each piece was classified as a single (normally called LW) or 

jammed element (normally called WJ). To define a wood jam a minimum number of two elements 

was considered (Comiti et al., 2006). 

Woody elements were classified in five categories: 

 trees, identified as plants with branches and roots completely of partially present; 

 shrubs, identified as elements with multiple coarse branches; 

 logs, identified as elements lacking in branches and roots; 

 roots, identified as the rootwad of a tree; 

 residues, identified as woody elements of any form that have been cut by local people. 
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As commonly done in other LW studies (Andreoli et al., 2007; Wyzga and Zawiejska,, 2010; 

Iroumè et al., 2010), the volume was calculated assuming a solid cylindrical shape from the mid-

diameter and length (Huber’s formula (Eq. 7)). 

                                                                 *  (
 

 

 
)+                                                   (Eq. 7) 

where: 

Vlw = volume of LW (m
3
∙ha

-1
) 

D = mid-diameter (m) 

l = length (m) 

In the case of roots, the length was considered as the direct distance between the top of the log and 

the bottom of the roots. The volume of WJ was calculated by measuring all visible and accessible 

individual pieces within the jam and assuming that this represents a minimum volume of LW within 

the jam (Wohl and Cadol, 2011; Ravazzolo et al., 2015a). In this way, differently from the 

methodology of Thévenet et al. (1998), the air space in between was not considered. 

For each LW a series of qualitative characteristics were collected during surveys such as orientation 

to the flow (parallel, orthogonal, oblique), morphological unit in which it was found, interactions 

with water (completely or partially submerged), and the delivery mechanism of recruitment 

(transport from upstream, lateral bank erosion, harvested residue). 

The delivery mechanism was identified on the basis of field evidences. Woody pieces mainly 

having a rounded, smoothing shape and lacking in branches were identified as floating pieces. 

Identification of those elements recruited from bank erosion was possible, in the case of Piave 

River, thanks to the numbered tag installed on riparian trees whereas, in the case of Blanco River, it 

was done on the basis of field evidence (i.e. fallen trees but still anchored, logs partially lying in the 

active channel but still in part buried under bank sediment deposits). Lastly, elements whose shape 

were due to chainsaw cutting were classified as harvested residues. 

To analyze the temporal variations in the LW storage between each survey, the GPS position of 

woody elements was recorded, and each element was marked with colored paint and a numbered 

metal tag attached using a steel nail (Fig. 25). The use of this field methodology permitted each 

element to be uniquely identified, and quickly detected during subsequent surveys. Similarly to 

what already done by Piégay et al., (2017), during each post-event survey wood elements that were 

not found in their previous position within the study reach were classified as an output, whereas 

elements without tags (or having a tag coming from riparian trees in the case of Piave River) were 

classified as an input. Every new input was measured, classified, GPS positioned, and tagged, 
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whereas LW already present were just GPS positioned again to detect potential transport along the 

reach. 

The numbered tags also made it possible to conduct a downstream search for both recruited trees 

and moved LW pieces. For each recovered element, the new position was recorded and traveled 

distance measured as a trajectory between starting and ending point, considering the thalweg line. 

The LW mobility and retention rates, expressed in percentage, were calculated for Blanco and Piave 

rivers considering each study period. The mobility rate is defined as the ratio between the number 

of tagged elements repositioned or not found within the reach and the total number of tagged LW 

within the same reach, whereas the retention rate is expressed as the ratio between the number of 

tagged elements not transported and the total number of tagged LW (Iroumé et al., 2015; Ruiz-

Villanueva et al., 2015). 

 

 

Figure 25: examples of tagged and painted LW along the Piave River (a-b), and Blanco River (c) study 

reaches. 
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3.2.3. Buried large wood detection 

The assessment of buried LW was performed based on the Ground Penetrating Radar (GPR) 

technique. This is a geophysical approach to analyze the subsoil using electromagnetic radiation in 

the microwave band of the radio spectrum. A GPR system is usually composed of surface antennas, 

a radar system to produce pulses, a computer to process data, a video monitor and a power source.  

Radar waves are propagated with distinct pulses from the surface antenna, reflected off buried 

obstacles and detected back at the source by a receiving antenna. Each time a radar pulse traverses a 

material with a different composition or water saturation, the velocity changes and a portion of the 

radar energy is reflected back to the surface and recorded by the receiving antenna. The remaining 

energy continues to pass into the ground to be further reflected, until being dissipated with depth 

(Conyers and Goodman, 1997). An example of the subsurface reflector configuration is given in 

figure 26. 

 

Figure 26: diagram of GPR data acquisition (after Neal, 2004). 

Data recorded during surveying result in a radar reflection profile, commonly called a radargram, 

which shows the distance surveyed on the ground (horizontal axis), the time of reflected radar’s 

waves propagation (primary vertical axis) and the estimated depth of the object reflecting waves 

(secondary vertical axis). The quality of obtained data, in terms of depth of penetration and 

resolution, differs depending also on the antenna frequencies. In fact, one of the most important 

variable in GPR surveys is the selection of a proper antenna according to the desired depth and 

resolution of buried objects. Commonly, there are three different antennas with low (f<100MHz), 

medium (1GHz>f>100MHz) and high (f>1GHz) frequency. Usually, the high is the necessary depth 

of investigation and lower is the antenna frequency needed. 
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The depth (D) of the object that induces radar reflections can be resolved following the equation of 

Daniels (1996) (Eq. 8): 

                                                                             
   

 
                                                              (Eq. 8) 

where: 

v = waves velocity propagation (cm/μs) 

t = two-way travel time (μs) 

Waves velocity propagation (v) can be obtained from the following equation (Al Hagrey, 2007) 

(Eq. 9): 

                                                                          
 

   
                                                                  (Eq. 9) 

where: 

c = speed of light in vacuum (3∙10
8
 m∙s

-1
) 

ɛr = relative dieletric permittivity (according to the material) 

As the waves velocity is a function of the relative dieletric permittivity (ɛr) that changes according 

to the properties of the reflecting object (Topp et al., 1980; Davis and Annan, 1989), it is clear how 

also the velocity of radar pulses varies according the physical and chemical properties of the soil 

(Conyers, 2004; Conyers and Goodman 1997). For this reason, the GPR needs an accurate 

calibration according to the type of soil in which it is used. 

When the waves velocity propagation is known, it is possible to measure the distance, or depth in 

the ground, as (Eq. 10): 

                                                                          
   

     
                                                           (Eq. 10) 

The only unknown parameter is the two-way travel time of propagation, which can be obtained 

converting the distance surface-object (D) into time (t) knowing the longitudinal length of the 

surveyed ground (L), which corresponds to a portion of the radargram (R), and the distance from 

the origin to the object (l) (Eq. 11): 

                                                                             
 

 
                                                            (Eq. 11) 

Combining equations 10 and 11, we obtain the depth in the ground where the reflecting objects are 

located. 

Following these first analyses on the radargram, a series of specific tools are applied in order to 

extract the dimensions (length and diameter) of buried wood. 
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The device tested in this study, provided by the Department of Civil Engineering of the Universidad 

Austral de Chile, is a GPR MALA RAMAC X3M equipped with three shielded antennas of 250, 

500 and 800 MHz (Fig. 27).  

 

Figure 27: the GPR MALA RAMAC X3M used in this study. 

Before conducting the geophysical analysis, a correct calibration of the instrument was required. In 

particular, we investigated on different antenna frequencies in order to evaluate which one yields 

the best resolution. 

The analyses were conducted along the lower part of the Blanco River, 3 km upstream of the 

mouth, during the southern summers (January 2015 and 2016) when rainfall is low and soils are dry 

enough. 

Calibration was done using wood pieces of different sizes and buried at different depths. As 

illustrated in figure 28, two groups of logs having diameter less and greater than 0.1 m were used. 

Woody pieces were artificially inserted at increasing depths of 0.5, 1.0 and 1.5 m and their location 

recorded with a DGPS. In this way, knowing the sizes, depth and position in which they were 

located, it was possible to adjust the waves velocity propagation. Moreover, from the resulting 

radargrams, the correspondence was verified between the spatial distribution of buried logs and the 

reflection hyperbolas recorded on the radargram. 

Following the calibration phase, two study areas were chosen to conduct the geophysical analysis 

(Fig. 29). The first one (486 m
2
) is located close to the main channel and was surveyed by 3 m-

spaced profiles whereas the second one (2000 m
2
) is on a high lateral bar and was surveyed by 5 m-

spaced profiles. The different positions of the two study areas permitted the waves velocity 

propagation to be tested in volcanic soils with different water saturation, moist and dry for the first 

and second area, respectively. 
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Figure 28: calibration of GPR for wood pieces with D < 0.1 m (a) and D > 0.1 m (b) placed at increasing 

depth. 

 

Figure 29: example of two applications of GPR, during the calibration phase (a) and a general survey on dry 

volcanic sediments (b). 
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A time schedule of field activities conducted along the Piave and Blanco rivers is reported in table 

6. 

Table 6: time schedule of the field activities carried out during the 3-years research in the Piave (P) and 

Blanco (B) rivers. 

 2014 2015 2016 

Month
(*)

 06 07 08 09 01 03 06 07 08 09 01 03 05 06 

Monitoring of 

riverbanks 
P - - - P - - - - - - - - P 

Collection of 

riparian trees 

data 

P P P P - - - - - - - - - - 

Collection of 

LW data 
- - - - B B P P P P B B P P 

Monitoring of 

buried LW 
- - - - B - - - - - B - - - 

        (*) just the months in which activities were conducted are reported. 
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3.3. Topical and methodological limitations 

The main objective of this research is the assessment of large wood budget along two 

differing gravel bed rivers. The budget is formed by a series of items that, depending on the study 

area characteristics (i.e. mountain torrent, piedmont rivers) and the temporal scale adopted, may be 

or not considered. For example, as the budget will be developed for short time periods, the role of 

decaying LW process will not be investigated and, as no catastrophic natural events occurred during 

the study period, the input due to this process will not be assessed. 

However, this study presents two main topical limitations: 

 Firstly, the assessment of lateral recruitment due to bank erosion in the Piave River will be 

made taking in account only the volume of standing tree, while the volume of LW deposited 

on the ground will not be considered. 

 Secondly, the budget constructed for the Blanco reaches will be characterized by an 

underestimation in the variations of LW storage because two items are not analyzed: the 

input from bank erosion and natural mortality. Because of the very frequent precipitation 

characterizing the study area that reduce the time span for field surveys at a couple of 

weeks, it was decided to take in consideration only the fluvial transport of LW. 

According to the methodological limitations due to the selected methods or the type and 

characteristics of materials used, they can be listed as follows: 

 The quantification of WJ volume by measuring manually all visible and accessible 

individual pieces within the jam has probably led to an underestimation of the total LW 

volume, especially in the case of the Blanco River where elements were mainly jammed in 

complex accumulations. However, the fact that small LW in the Blanco River are very few 

because of the large sizes of riparian vegetation, this allowed me to think that only few 

elements were neglected. 

 The selected methodology to uniquely identify each tree and LW with a metal tag influenced 

some analyses further conducted. As with this method no data on the instantaneous 

movement of LW are available, the transport distance of recruited trees was not the real 

displacement but was approximated following the thalweg line. Moreover, the mobility rate 

and the retention capacity were calculated on the base of the presence/absence of tagged 

elements. However, if some tagged pieces have undergone internal transport and were 

deposited with the tag on the lower side or hidden by other pieces, is possible that some 

elements were erroneously classified as input instead of storage. 
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 Because of time constraints, the analysis of buried LW was conducted only in the Chilean 

study area. However, during field surveys conducted in the Piave River, the presence of 

elements partially or completely buried (whose presence was identified thanks to resprouts) 

was noted, resulting in a low percentage (3%). Therefore, I supposed the importance of 

buried LW in the computation of LW budget for the Piave study reach to be quite negligible.  
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Section Four - Results 

4.1. Large wood recruitment during an over bankfull flood event  

This section describes results concerning the first specific thesis objective: the analysis of 

lateral recruitment of LW along the Piave study reach following an over-bankfull flood. 

4.1.1. Dendrometric characteristics of riparian vegetation, bank erosion and large wood recruitment 

Along the Piave study reach, riparian vegetation with diameter ≥ 0.1 m was found on three 

morphological units: pioneer islands (P), building islands (B) and floodplain (F). A total of 3220 

riparian standing trees were surveyed within the 20 m-wide buffer zone, 72 (2.2%), 161 (5.0%) and 

2987 (92.8%) of which were measured on P, B and F, respectively. 

Standing trees show differences in dendrometric characteristics, such as diameter, height and 

volume (Fig. 30, 31). Pioneer islands have vegetation of smaller dimensions, surveyed trees have a 

median diameter of 0.11 m and median height of 4 m, whereas the median volume per tree 

corresponds to 0.03 m
3
. No trees larger than 0.22 m in diameter were found on pioneer islands. 

Trees on building islands and floodplain show higher values, in particular the median diameter is 

0.13 m in both cases while median height reaches 8 and 9 m for building islands and floodplain, 

respectively. Volume of trees is very similar and corresponds to 0.08 and 0.09 m
3
 per tree on 

building islands and floodplain, respectively. Concerning the maximum values recorded, the biggest 

surveyed element in terms of volume corresponds to a 6.35 m
3
-tree located on the floodplain and 

having a diameter of 0.74 m and height of 24 m. 

 

Figure 30: diameter (a) and height (b) of tagged standing trees on the different morphological units (P, 

pioneer islands; B, building islands; F, floodplain), (after Picco et al., 2016a). 
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Figure 31: volume of tagged standing trees on the different morphological units (P, pioneer islands; B, 

building islands; F, floodplain). Values are in logarithmic scale for better visualization. 

Comparing the perimeters of pioneer islands, building islands and floodplain in pre- and post-flood 

conditions, it was possible to check eroded areas and calculate erosion and recruitment rates. 

The November 2014 flood caused erosion along many vegetated patches, both on islands and 

floodplain. Figure 32 illustrates the position of eroded patches along the study reach. 
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Figure 32: position of eroded patches along the Piave study reach. Each patch is identified by a code (P, 

pioneer islands; B, building islands, F, floodplain) having a number in progressive order downstream. Circles 

identify the location of two floodplain areas eroded in more than 20 m wide. 

 

Table 7 reports in detail the eroded surface area, number of recruited trees and volume of LW input 

for each eroded patch. An identification code has been assigned to each area in progressive order 

downstream. 
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Table 7: erosion and recruitment values for each single patch. In bold the two areas with erosion wider than 

20 m. 

Morphological 

unit 
Code 

Area 

eroded 

(m
2
) 

Trees 

recruited 

(N) 

LW input 

(m
3
) 

P P_1 11.95 1 0.02 

P P_2 9.98 1 0.04 

P P_3 3.16 2 0.07 

B B_1 485.26 14 0.80 

B B_2 104.57 12 0.74 

B B_3 112.96 9 0.58 

B B_4 953.05 22 1.13 

B B_5 11.56 1 0.17 

B B_6 68.27 2 0.22 

B B_7 199.1 4 0.30 

B B_8 30.24 7 1.17 

B B_9 100.05 6 1.05 

B B_10 20.58 2 0.43 

F F_1 4922.99 13 0.84 

F F_2 1041.25 53 7.39 

F F_3 5128.71 196 23.70 

F F_4 216.65 7 0.63 

F F_5 3893.66 337 53.65 

F F_6 362.14 1 0.03 

 

Pioneer islands were eroded just in three zones, with low erosion values ranging from a minimum 

of about 3.16 m
2
 (P_3) to a maximum of about 11.95 m

2
 (P_1). The number of recruited trees is 

also very low and corresponds to a single tree for the first two areas and two trees in the last one, 

introducing a total of 0.13 m
3
 of LW into the active channel. 

Building islands were eroded with higher and different intensity. In fact, ten building islands were 

eroded and erosion values feature a higher variability between 11.56 m
2
 and 1 recruited tree from 

the smallest eroded area (B_5), and 953.05 m
2
 from the largest one (B_4), which corresponds to the 

removal of almost an entire building island (22 recruited trees). Large wood input from building 

islands is substantially higher than those from pioneer islands, with three islands out of ten 

delivering more than 1 m
3
 of LW. The highest LW input volume is 1.17 m

3
 recruited from an 

eroded surface of 30.24 m
2
 (B_8) (Tab. 7, Fig. 34a). 

The greatest erosion caused by the flood was found on the floodplain, on both the left and right 

bank. Overall, six floodplain areas were eroded and along two of these (F_3, F_5) the bank 

retreated for more than 20 m, with a maximum of about 80 m along the left bank. In these two areas 
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recruitment of LW was considered only for the data concerning the 20 m–wide buffer, however 

erosion of the whole surface is shown in figure 33. 

 

Figure 33: view of two floodplain areas (a, b: F_5; c, d: F_3) with more than 20 m width eroded. Aerial 

images refer to the first available photo before (a, c: 2012) and after (b, d: 2016) the November 2014 flood. 

The variability in eroded area and LW recruitment from patches of the same morphological unit is 

more evident in the case of floodplain erosion. Indeed, looking at the six eroded areas along the 

floodplain it is possible to see that there is a difference in the LW volume recruited. For example, 

along the left riverbank two patches (F_1; F_3) of similar extension (4922.99 and 5128.71 m
2
) were 

eroded but, because of the different tree densities (0.003 and 0.038 N∙m
-2

 respectively), they 

contributed a very different amount of LW input, about 0.84 m
3
 and 23.69 m

3
, respectively. The 

biggest contribution in LW input was given by a 3893.66 m
2
 eroded patch located on the right 

riverbank (F_5) from which 337 trees were recruited accounting for a volume of LW equal to 53.65 

m
3
 (Fig. 34b). 
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Figure 34: bank erosion (m
2
), number of recruited trees (N) and LW input (m

3
) for each erosion source, 

islands (a) and floodplain (b). Letters on x-axis indicate the feature code of each area (P, pioneer islands; B, 

building islands; F, floodplain) in progressive order downstream. (after Picco et al., 2016a). 

Table 8 summarizes the total values of erosion and recruitment for the three morphological units. 

Overall, with the flood of November 2014, 93.01 m
3
 of LW were introduced into the active channel 

corresponding to 690 recruited trees from an eroded surface of 17676.3 m
2
. More in detail, we can 

note how the floodplain is the most intensely eroded morphological unit (15565.5 m
2
), whereas 

pioneer and building islands have been less intensely eroded (25.2 m
2
 and 2085.6 m

2
, respectively). 

Despite the highest density (0.16 tree∙m
-2

), erosion on pioneer islands generated a negligible input 

of LW (0.14 m
3
) because of the small eroded area (25.2 m

2
) and because of their initial 

development they can difficultly support a large number of big trees. Instead, the greater extension 

of eroded area as well as the larger dimensions of recruited trees from building islands and 

floodplain resulted in higher LW inputs of 6.62 m
3
 and 86.25 m

3
, respectively. 

Table 8: erosion and recruitment values for the three morphological units. Total values of erosion, recruited 

trees and LW input are reported. (modified from Picco et al., 2016a) 

Morphological 

unit 

Area 

eroded 

(m
2
) 

Trees 

recruited 

(N) 

N∙m
-2

 

Mean 

height 

(m) 

Mean 

diameter 

(m) 

Total 

volume 

(V)(m
3
) 

Mean 

volume 

(V∙N
-1

) 

(m
3
) 

Pioneer 

island 
25.2 4 0.16 4.00 0.11 0.14 0.04 

Building 

island 
2085.6 79 0.04 7.10 0.13 6.62 0.08 

Floodplain 15565.5 607 0.04 8.20 0.14 86.25 0.14 

Total 17676.3 690 - - - 93.01 - 
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Considering the variability in erosion and recruitment rates, a linear regression analysis was 

performed between erosion surface as independent variable and the amount of trees and LW 

recruited as dependent variables. As reported in figure 35, there are no trends and no significant 

correlations (P value > 0.05) between the erosion surface and either the number of recruited trees 

(R
2
=0.052) or the volume of LW input (R

2
=0.037). 

 

Figure 35: relationship between eroded area and recruited large wood in terms of both number of trees and 

volume. (modified from Picco et al., 2016a) 

4.1.2. Large wood recovery and traveled distance 

The applied methodology also permitted investigation of the distance travelled by the 

recruited trees. In fact, by means of numbered tags, it was possible to conduct a recovery analysis. 

Walking downstream for 10 km from the upper eroded area, every LW deposited in the active 

channel, on the banks and islands was checked. Of the total 690 recruited trees, 228 were recovered 

corresponding to a recovery rate of 33.04%. A wide range of traveled distances was observed 

between each morphological unit and between individual trees of the same area (Tab. 9). 

Considering the pioneer islands, 75% of recruited trees were recovered with a range of traveled 

distance from a minimum of 122 m to a maximum of 1021 m. Of a total of 79 recruited trees from 

building islands, only 27 (34%) were recovered with minimum and maximum traveled distances of 

2 and 3737 m. The longest traveled distance (8927 m) was by a floodplain tree of 0.15 m in 

diameter and 7 m in height. However, the trees of this morphological unit also show the minimum 

recovered distance (1 m) of the overall dataset. Looking at the mean values, mean traveled distance 

increases moving from trees of pioneer islands (422 m), to building islands (623 m) and, finally, to 

floodplain (1052 m). 
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Table 9: recovery rates and large wood traveled distance ranges for different morphological units. (after 

Picco et al., 2016a) 

Morphological 

unit 

Trees 

recovered 

(N) 

Recovery 

rate 

(%) 

Min 

traveled 

distance 

(m) 

Max 

traveled 

distance 

(m) 

Mean 

traveled 

distance 

(m) 

Pioneer island 3 75.0 122 1021 422 

Building island 27 34.0 2 3737 623 

Floodplain 198 32.6 1 8927 1052 

 

Figure 36 illustrates the sizes (diameter and height) of recruited and recovered trees for those 

elements eroded from floodplain (Fig. 36 a-b) and islands (Fig. 36 c-d). Most recruited trees had 

dimensions in the range of 0.1-0.2 m in diameter (87.5% and 95.2% for trees of floodplain and 

islands, respectively) and 6-10 m in height (53.4% and 77.1% for trees of floodplain and islands, 

respectively). From fluvial islands trees of smaller dimensions were recruited, maximum values are 

0.3 m and 12 m for diameter and height, respectively. Instead, the tallest trees were recruited from 

floodplain areas, the biggest recruited element corresponds to a tree of 0.54 m in diameter and 20 m 

in height but, differently to what was expected, it was not recovered along the surveyed reach, 

meaning that it probably covered a distance of more than 10 km. 

 

Figure 36: distribution of recruited and recovered trees according to size for trees of floodplain (a-b) and 

fluvial islands (c-d) (pioneer and building islands are considered together). 
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The variability of LW traveled distance can be better observed looking at figure 37, which shows 

frequency distribution of recovered trees for different ranges of traveled distance. 

For the three morphological units, more than 60% of recruited and recovered trees were deposited 

near the recruitment sites, covering distances in the range 0-500 m. Longest distances were covered 

by floodplain trees, with 5.5% of recovered trees being found at a distance of more than 7.5 km. 

 

Figure 37: frequency distribution of recovered trees for different ranges of traveled distance for the three 

morphological units. 

Independently from the morphological unit of origin, large wood traveled distances were plotted 

against some dendrological and physical characteristics of the recovered LW, such as diameter, 

length (corresponding to tree height), volume and density (Fig. 38). Looking at figure 38a, a 

decreasing trend in traveled distance for increasing LW diameter can be observed, however the 

relationship is not statistically significant. Correlation between traveled distance and LW length 

shows no clear relationship, similar distances were covered by LW of different lengths (Fig. 38b). 

In the same way, results of the regression analysis considering LW volume and density as 

independent variables shows no significant relationships with traveled distance. Also in this case, 

the distance shows a decreasing non-significant trend with increasing piece volume (Fig. 38c) 

whereas regarding the last variable, LW density, the correlation does not provide any clear 

information about the relationship with the traveled distance (Fig. 38d). 
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Figure 38: relationship between traveled distance and large wood diameter (a), length (b), volume (c) and 

density (d). (modified from Picco et al., 2016a) 

The site of deposition of each recovered tree was noted and results are reported in figure 39. The 

most suitable deposition site is represented by gravel bars, where 93.9% of all recovered LW was 

found. Other elements were recovered within the flowing channel (3.1%) and upstream of building 

islands (1.3%). Moreover, given the over bankfull characteristic of the flood, some trees (1.8%) 

were deposited also on the floodplain near the border of riverbanks. 

 

Figure 39: percentage of recovered trees according to the deposition site. 

More in detail, considering the deposition sites and traveled distances, a large amount of LW was 

found that had stopped near the recruitment site after a very short displacement. In some cases, in 

fact, recruited trees had not traveled very far downstream but were deposited close to the erosion 

site. The most obvious case regards the F_5 area where 80% of all recruited LW was immediately 
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deposited on the closest gravel bar downstream of the erosion area (Fig. 40). The same site retained 

around 30% of all LW recruited from upstream areas. 

 

Figure 40: image showing an example of a gravel bar retaining almost all large wood recruited from the 

nearest upstream eroded area. Black lines have been drawn connecting the position of standing trees and the 

corresponding deposition point to better understand the proximity between the erosion area and deposition 

site. 
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4.2. Evaluation of large wood input from upstream 

The contribution of fluvial transport to the LW input from upstream was evaluated for 

floods of different magnitude following the methodology described in section 3.2.2. In the Piave 

River, the input was calculated for a period in which only ordinary floods (RI<1) occurred, whereas 

in the Blanco River a summer period with ordinary floods (RI~1) and an autumn-winter period with 

large floods (RI 10-25) were considered (Tab. 10). 

Along the Piave River, the input of LW is represented by only 39 new elements for a total volume 

of 1.60 m
3
. Mean sizes of new delivered elements are 0.14 m and 2.61 m for diameter and length, 

respectively. Significantly higher values were obtained in the Blanco River, both during ordinary 

and large floods. In fact, large wood coming from upstream is very considerable especially during 

large floods (RI 10-25) when highest values were recorded. In particular, 872, 604 and 836 new 

woody elements were monitored in reaches 1, 2 and 3, respectively, corresponding to a volume of 

222.85 m
3
, 132.35 m

3
 and 221.78 m

3
. Ordinary floods introduced moderate amounts of LW into 

reach 1 with 138 elements and 38.62 m
3
 of wood, and lower in reach 2 where only 6 elements were 

introduced accounting for a volume of just 1.91 m
3
. Overall, mean sizes of new elements are almost 

similar in diameter ranging from 0.23 m to 0.26 m whereas LW length ranges from 2.77 m to 6.22 

m. 

Table 10: numbers, volume and mean sizes of LW input along the Piave and Blanco rivers. 

  Piave Blanco 

  

 

reach 1 reach 1 reach 2 reach 2 reach 3 

RI (yr) < 1 ~ 1 10-25 ~ 1 10-25 10-25 

N° LW 39 138 872 6 604 836 

Volume LW (m
3
) 1.60 38.62 222.85 1.91 132.35 221.78 

Mean diameter (m) 0.14 0.25 0.25 0.26 0.23 0.24 

Mean length (m) 2.61 4.23 3.28 6.22 2.77 3.10 

To allow a comparison between the two rivers, table 11 reports the numbers and volume of LW 

input normalized per active channel area. The input is almost negligible in the Piave River during 

ordinary floods as it corresponds to 0.02 m
3
∙ha

-1
 and less than one element per hectare. The input 

from upstream in the Blanco River is higher. The lowest LW input was recorded in reach 2 for 

ordinary floods (2.55 m
3
∙ha

-1
) whereas the highest one (285.3 m

3
∙ha

-1
) occurred in reach 1 for large 

floods that introduced more than one thousand elements per hectare. 
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Table 11: numbers and volume of LW input normalized per active channel area along the Piave and Blanco 

rivers. 

  Piave Blanco 

  

 

reach 1 reach 1 reach 2 reach 2 reach 3 

RI (yr) < 1 ~ 1 10-25 ~ 1 10-25 10-25 

N° LW∙ha
-1

 0.40 173.80 1007.16 8.00 476.15 769.32 

Volume LW (m
3
∙ha

-1
) 0.02 46.80 285.3 2.55 108.1 204.1 

Figure 41 shows the range of diameter and length of new elements classified as LW input in the 

Piave and Blanco rivers. In the Piave River LW input has smaller dimensions equal to 0.12 m and 

2.5 m for the median diameter and length, respectively. The larger diameter is 0.30 m whereas the 

greatest length is 6.5 m. Comparing the dimensions of LW input among ordinary and large floods in 

the Blanco River, it is interesting to note that during ordinary events elements of larger sizes were 

deposited, in terms of both diameter and length. In fact, the median diameter ranges from 0.18 m 

during large floods to 0.28 m during ordinary ones and, in the same way, the median length is 2.1 m 

and 6.1 m in correspondence to large and ordinary events, respectively. 

 

Figure 41: range of diameter (a) and length (b) of LW input in the Piave and Blanco rivers according to 

magnitude of flood events. 

For each new element introduced into the Piave and Blanco rivers a series of qualitative 

characteristics were noted during the field surveys, such as type, state of aggregation and orientation 

to the flow in order to better describe the mechanism of LW input from upstream. 

Considering the type of LW input five different categories were found: trees, logs, shrubs, roots and 

residues (Fig. 42). In all cases, logs are the predominant category of LW input. More in detail, in 

the Piave River the LW input is represented by more different types. In fact, a discrete portion of 

trees (~8%) and shrubs (~20%) was found even if logs remain the predominant category (~59%). It 

is also worth noting that ~8% of new elements are harvesting residues. Moving to Blanco River, 
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LW input is formed almost entirely of logs especially in reach 2 where during ordinary floods only 

logs were delivered. Trees are present in lower quantity, from a minimum of ~3% to a maximum of 

~15%. Roots, when present, are less than 1% of total delivered elements. 

 

Figure 42: types of LW input along the Piave and Blanco rivers. 

The second noted characteristic is the state of aggregation of new elements, distinguishing between 

single pieces and pieces deposited in a jam (Fig. 43). In the Piave River, the majority (~77%) of 

LW was deposited as single elements whereas just the 23% (9 N) has been deposited in jams. In the 

Blanco River the state of aggregation of new input varies among both reaches and time periods. 

Elements delivered during ordinary floods were deposited only as single pieces in reach 2 whereas 

entirely in jams in reach 1 forming five new accumulations with a mean number of 27.6 elements 

per jam. For the input during large floods, the predominant deposition is in the form of 

accumulation, in fact more than the 83% of pieces were deposited in jams. 

 

Figure 43: type of deposition of LW input according to state of aggregation along the Piave and Blanco 

rivers. 
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The third noted characteristic regards the type of deposition according to the orientation in respect 

to the main flow direction: parallel, orthogonal and oblique (Fig. 44). Analysis of the collected data 

revealed that, differently to what was expected, there is not a predominant orientation for woody 

elements transported with flow. In fact, the main type of deposition is represented both by parallel 

and oblique orientation without any relationship with the magnitude of floods. Parallel orientation is 

the most common in the Piave (~ 61%) and, in the Blanco, within reach 1 during ordinary events (~ 

55%) and reach 2 during large floods (~ 43%). Instead, oblique orientation prevails for large floods 

in reach 1 (~ 52%) and 3 (~ 40%) and for ordinary floods in reach 2 (~ 67%). 

 

Figure 44: orientation to the flow of LW input along the Piave and Blanco rivers. 

A further consideration on LW input was made by relating the input volume with the active channel 

width. In the case of Blanco River, the width was obtained on the basis of cross sections done in the 

field with a DGPS, whereas in the Piave River it was calculated from aerial images of 2016. In 

particular, the 3 km-long study reach was divided in several sub-reaches calculating a mean width 

for each sub-reach that was related to the volume of LW input deposited within the corresponding 

sub-reach. 

No statistically significant relationship (p-value > 0.05) was identified, however the scatter of points 

in figure 45 shows that the relationship is not linear and is better explained by an exponential 

function. Despite the non-significance, in the case of Blanco River an increasing volume of LW 

input for increasing values of active channel width can be observed (Fig. 45b). 
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Figure 45: relationship between LW input volume and active channel width for the Piave (a) and Blanco (b) 

rivers. 

Further analyses on LW input from upstream were performed considering the position of new 

deposited elements with respect to the distance from the thalweg. The analyses allowed more 

information to be gained regarding the wetted area, as the portion of active channel inundated 

during floods and the presence of possible relationships between the distance of deposition from the 

thalweg and the sizes of LW (i.e. diameter, length). In the case of the Piave River which also has 

secondary channels, the distance was measured considering the elements supposedly delivered from 

the main channel separately from those delivered from the other one. However, only one LW was 

assumed to have been transported from a secondary channel, and it was deposited 35 m away from 

the thalweg. 

Considering the main channel of the Piave River (Fig. 46), new delivered elements were deposited 

up to 70 m from the thalweg, whereas the minimun deposition distance was 5 m. Looking at the 

deposition according to LW dimensions, an increasing distance from thalweg was expected for 

increasing sizes of LW. This did not occur in the Piave River, either for the diameter or length. In 

fact, there are no clear trends on the distance according to the LW dimensions as elements of similar 

sizes were deposited at different distances. In particular, in both cases, smaller pieces show a very 

broad range of distances. Nevertheless, it is interesting to note that, in terms of diameter, the largest 

transported piece (0.3 m) was deposited at the farthest distance (70 m) but this is not verified for 

length, as the longest element (7 m) corresponded to a distance of 21 m. 
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Figure 46: distance of deposition from the thalweg according to sizes (a, diameter; b, length) for the input 

elements deposited along the Piave River. 

In the case of the Blanco River, the analysis was performed considering the input of LW delivered 

during ordinary (Fig. 47) and large (Fig. 48) floods separately. During ordinary floods (Fig. 47), 

woody elements were deposited very close to the thalweg in reach 2, with minimum and maximum 

distances of 0.70 m and 4.70 m, respectively. Given the very low number of input LW (6 N), further 

considerations about distance from thalweg and LW sizes are quite difficult to make. Instead, in 

reach 1 a larger area of the active channel was affected by ordinary floods as LW was deposited up 

to ~ 60 m from the thalweg. Also in this case there are no evident differences in the deposition of 

LW according to its diameter and length. Median distances, in the range 44-47 m, show similar 

values for different classes of diameter and length. The largest woody element, a log 0.63 m in 

diameter and 5.2 m in length, was recorded at a distance of 51 m from the thalweg. 

 

Figure 47: distance of deposition from the thalweg according to the LW diameter (a) and length (b) for the 

input elements deposited during ordinary floods along the Blanco River. 
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As expected, for large floods the inundated active channel area increased, especially in reaches 2 

and 3 where maximum deposition distances are 135 m and 130 m, respectively (Fig. 48). Similarly 

to what was found for ordinary floods, also in this case the deposition distances appear not to be 

related to the diameter of woody pieces, as the median values are almost similar for each diametric 

class. Despite these similarities it is possible to highlight how, in reachs 2 and 3 the highest median 

distance was recorded for elements of larger sizes. The highest median distance of reach 2 is for 

LW diameters greater than 0.70 m whereas the highest median distance of reach 3 is for LW 

diameters of 0.60-0.70 m.  The relationship between deposition and wood sizes is clearer looking at 

the length of transported wood, but only for reach 1. In this reach, apart from pieces of the first two 

classes where median distance is similar (4.5 m), the median deposition distance increases with 

increasing length, up to a maximum distance of 34 m recorded fo a 22 m-long log. 

 

Figure 48: distance of deposition from the thalweg according to LW diameter (a) and length (b) for the input 

elements deposited during large floods along the Blanco River. 
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4.3. Evaluation of large wood output from downstream 

The downstream output of LW through fluvial transport was evaluated similarly to the input 

from upstream presented in the previous section. 

In the Piave River, only 32 elements were transported downstream during ordinary floods, 

representing an output of 2.65 m
3 

(0.03 m
3
∙ha

-1
). Mean sizes of moved pieces are 0.16 m and 3.60 m 

in diameter and length, respectively. Similarly to the input, in the Blanco River the output of LW is 

considerable. Similar quantities of LW were mobilized during ordinary floods in reach 1 (40.04 m
3
, 

50.42 m
3
∙ha

-1
) and reach 2 (39.18 m

3
, 52.25 m

3
∙ha

-1
), even if the number of transported pieces is 

slightly different at 208 (261.96 N∙ha
-1

) and 139 (185.33 N∙ha
-1

) elements in reach 1 and 2, 

respectively. Considering the effects of large floods, 183 (230.48 N∙ha
-1

) and 181 (202.44 N∙ha
-1

) 

woody elements were transported downstream from reach 1 and 2, respectively, representing a loss 

of LW equal to 64.41 m
3
 (81.12 m

3
∙ha

-1
) and 60.04 m

3
 (67.15 m

3
∙ha

-1
). However, despite the greater 

magnitude (RI 10-25), the output of LW in reach 2 during large floods is the lowest recorded value 

of 108 pieces (144 N∙ha
-1

) for a corresponding volume of 21.15 m
3
 (28.20 m

3
∙ha

-1
) (Tab. 12, 13). 

Table 12: numbers, volume and mean sizes of LW output along the Piave and Blanco rivers. 

  Piave Blanco 

  

 

reach 1 reach 1 reach 2 reach 2 reach 3 

RI (yr) < 1 ~ 1 10-25 ~ 1 10-25 10-25 

N° LW 32 208 183 139 108 181 

Volume LW (m
3
) 2.65 40.04 64.41 39.18 21.15 60.04 

Mean diameter (m) 0.16 0.21 0.25 0.25 0.25 0.24 

Mean length (m) 3.60 3.49 4.81 3.61 2.77 4.59 

Table 13: numbers and volume of LW output normalized per active channel area along the Piave and Blanco 

rivers. 

  Piave Blanco 

  

 

reach 1 reach 1 reach 2 reach 2 reach 3 

RI (yr) < 1 ~ 1 10-25 ~ 1 10-25 10-25 

N° LW∙ha
-1

 0.33 261.96 230.48 185.33 144.00 202.44 

Volume LW (m
3
∙ha

-1
) 0.03 50.42 81.12 52.25 28.20 67.15 

 

Results of the mobility and retention rates are summarized in table 14. For the study reach of Piave 

River, where only floods of low magnitude occurred, almost all (98.57%) of the LW was not 



PhD Thesis                                                                                                                                    Alessia Tonon 

 

86 

 

mobilized. The mobility rate is very low, 1.43%. In the Blanco River it was possible to compare, for 

study reaches 1 and 2, the mobility of LW according to the magnitude of floods. In both cases, 

mobility rate is lower during ordinary floods than large ones, increasing from 64.20 to 72.05% in 

reach 1, and from 41.62 to 53.73% in reach 2. The greater capacity of large floods to remove a 

higher quantity of LW is confirmed observing reach 3. This reach, for which only large floods were 

taken into account, shows the highest mobility rate as 94.27% of LW was transported downstream 

and just 5.73% remained within the study reach. 

Table 14: large wood retention and mobility rates (%) in the Piave and Blanco rivers according to the 

magnitude of flood events. 

  Piave Blanco 

  

 

reach 1 reach 1 reach 2 reach 2 reach 3 

RI (yr) < 1 ~ 1 10-25 ~ 1 10-25 10-25 

Retention rate (%) 98.57 35.80 27.95 58.38 46.27 5.73 

Mobility rate (%) 1.43 64.20 72.05 41.62 53.73 94.27 

 

Considering the sizes of LW output (Fig. 49), in the Piave River transported pieces are of small 

dimensions. In particular, they show a median diameter of 0.15 m and median length of 2.4 m. 

Differently to what was found for the LW input in the Blanco River, the comparison of sizes of LW 

output between ordinary and large floods revealed that during ordinary events elements of smaller 

diameter were transported downstream. In fact, comparing the median diameter of elements 

mobilized by events of RI~1 yr is 0.17 m for reach 1 and 0.20 m for reach 2, whereas for events of 

RI 10-25 yr it is 0.24 m and 0.22 m for reach 1 and 2, respectively. The same peculiarity was found 

in LW length but only in reach 1 where median length is 2.8 m for those elements moved during 

events of RI~1 yr and 3.5 m during events of RI 10-25 yr. A decrease in the median length was 

observed in reach 2, decreasing from 2.6 m of ordinary floods to 2.2 m of large floods. Moreover, it 

is interesting that the biggest elements, in terms of volume, were transported during ordinary floods. 

A log of 5.85 m
3
 (0.7 m in diameter and 15.2 m in length) and a tree of 5.70 m

3
 (0.55 m in diameter 

and 24 m in length) were transported downstream of reach 1 and reach 2, respectively, during 

floods of RI~1 yr. Instead, observing the mobilization of LW by floods of RI 10-25 yr, the biggest 

transported pieces are a tree of 4.68 m
3
 (0.56 m in diameter and 19 m in length) in reach 1 and a tree 

of 2.93 m
3
 (0.63 m in diameter and 9.4 m in length) in reach 2. 
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Figure 49: range of diameter (a) and length (b) of LW output in the Piave and Blanco rivers according to the 

magnitude of flood events. 

More in detail, figure 50 illustrates, for the Piave and Blanco rivers, the distribution of moved 

pieces according to LW sizes. In the Piave River more than 80% of mobilized pieces were less than 

0.2 m in diameter whereas more than 70% were less than 4 m in length. The largest moved elements 

were, considering the diameter, a 0.46 m-decaying root while, considering the length, a 15.1 m-tree 

partially submerged in the main channel. Also in the reaches of Blanco River the vast majority of 

moved LW is included in the smaller size classes. At least 55, 50 and 46% of LW in reach 1, 2 and 

3, respectively, had a diameter less than 0.2 m while 67, 78 and 59% of LW in reach 1, 2 and 3, 

respectively, had a length less than 4 m. 

 

Figure 50: percentages of total moved pieces by diameter (a) and length (b) in Piave and Blanco rivers. 

From the analysis of the type of LW output (Fig. 51), no differences were found with respect to the 

types of LW input. In fact, in the Blanco reaches LW output was almost only logs, the highest 

amount of transported trees (15%) was found in reach 1 for large floods, in the remaining cases the 

presence of trees is less than 10%. Also in this case, the Piave River shows a higher variability in 

the type of LW output. Logs were still the prevalent category (~40%), with a similar amount 
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(~18%) of trees and shrubs. Harvesting residues (~9%) and roots (~12%) were also involved in the 

downstream transport. 

 

Figure 51: types of LW output along the Piave and Blanco rivers. 

A further analysis was conducted considering the state of aggregation of mobilized pieces (Fig. 52). 

In the Piave River, the majority (62.5%, 20 N) of transported elements were previously deposited as 

single pieces, while only 37.5% (12 N) was jammed. Overall, 10 jams were partially modified with 

the removal of just 1-2 elements per jam. No accumulation was completely removed (Tab. 15). In 

the reaches of Blanco River the vast majority of moved LW (> 76%) was aggregated in jams and, in 

many cases, accumulations were entirely transported downstream. As reported in table 15, the 

number of reshaped accumulations varies between 4 and 20 jams per reach transporting up to 102 

LW pieces per jam. Considering accumulations that have been completely removed, the largest one, 

in terms of number of elements was a jam formed by 57 elements where their removal accounted 

for an output of LW equal to 10.32 m
3
. 

 

Figure 52: state of aggregation of remobilized LW along the Piave and Blanco rivers. 
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Table 15: main characteristics of accumulations affected by LW removal during downstream transport. 

 Piave Blanco 

  reach 1 reach 1 reach 2 reach 2 reach 3 

RI (yr) <1 ~1 10-25 ~1 10-25 10-25 

N° jams modified 10 18 17 7 20 4 

Range of pieces per 

jam 
2-14 2-67 2-72 2-109 2-50 7-104 

Range of mobilized 

pieces per jam 
1-2 2-49 2-51 2-102 2-15 7-96 

N and % of jams 

completely removed 
0-0.0 5-27.8 4-23.5 2-28.6 12-60.0 2-50.0 

 

Considering the in-channel position of mobilized LW, the distance from the thalweg was calculated 

and the portion of active channel inundated by floods was estimated. However, this estimate was 

only made for the Blanco reaches as the presence of multiple channels in the Piave River and the 

scattered arrangement of output elements made the computation rather uncertain. 

The histogram in figure 53 shows the frequency of moved pieces in the Piave River according to the 

distance from the thalweg. As already presented in section 4.2, distance was measured considering 

separately the elements supposedly moved from the main channel from those moved from the 

secondary one. Along the main channel LW was moved to distances from the thalweg of 0-90 m, 

with the farthest LW recorded at 104 m. The majority of LW that was transported downstream was 

located quite close to the thalweg, within a range of 0-10 m (25%) and 10-20 m (29%). Distances 

are in a narrower range in the case of the secondary channel, where LW mobilization occurred up to 

70 m from the thalweg. However, differently from the main channel, in this case the majority (43%) 

of moved elements were not located in proximity to the thalweg but in a range of 40-50 m. 
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Figure 53: frequency (%) of moved pieces in the Piave River according to distance from the thalweg. 

The same analysis was performed for the Blanco River considering the LW elements moved during 

ordinary (Fig. 54a) and large (Fig. 54b) floods separately. Results show some differences, between 

study reaches and magnitude of floods, in the inundated active channel area. The lowest percentage 

of flooded area (43%) was found for reach 2 during floods of RI~1 yr. In this case, LW mobility 

was concentrated just along the left side of the active channel, transporting only woody pieces that 

were located 5-25 m from the thalweg. The majority (~ 47%) was 10-15 m away from the thalweg. 

Instead, during the same period, in reach 1 there was mobility over 70% of its active width and LW 

was transported up to 75 m from the thalweg. Considering the mobilization of LW by floods of RI 

10-25 yr, LW transport happened over the entire width of reach 1, and almost the total width 

(85.0%) of reach 2, confirming the higher discharge. Farthest distances were 77 m and 60 m for 

reach 1 and 2, respectively. Within reach 3, given the absence of LW along the right bank, it was 

not possible to identify the limit of the flooded area during large floods. However, LW transport 

was recorded over the total width of the active channel storing LW, pieces moving 65 m from the 

thalweg. 
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Figure 54: frequency (%) of moved pieces in the Blanco River reaches according to the distance from the 

thalweg during ordinary (a) and large (b) floods. 
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4.4. Estimation of exhumation of buried large wood 

This section reports the results concerning the estimation of buried LW in the Blanco River. 

However, being the first attempt with GPR application to detect LW buried in a fluvial 

environment, results focus more on the feasibility of the methodology and calibration device rather 

than the amount of buried LW than could be exhumed and contribute to the budget. 

The first application of GPR was devoted to its calibration on volcanic soils in terms of wave 

velocity propagation and resolution with different antenna frequencies (250 and 500 MHz). From 

the first calibration, a waves velocity propagation of 90 m∙μs
-1

 and 100 m∙μs
-1

 was obtained for wet 

and dry soils, respectively (Tab. 16). Moreover, the velocity did not appear to vary according to the 

antenna used but a decrease was observed in waves velocity with increasing depth of penetration. 

This variation was detected only in the top two meters, where the velocity decreased from 100 m∙μs
-

1
 to 90 m∙μs

-1
. 

Table 16: waves velocity propagation of GPR according to type of soil. 

Soil Waves velocity (m∙μs
-1

) 

Wet 90 

Dry 100 

Considering the two different antennas used in this study, both the 250 and 500 MHz have proved 

to be able to estimate the depth of recent volcanic sediments. However, the lower frequency antenna 

provided a better resolution of the radargram in which the separation between sediment layers is 

clearer (Fig. 55). 

 

Figure 55: example of radargram obtained from the same survey with the 250 MHz (a) and 500 MHz (b) 

antenna. The black line indicates separation between layers. (after Valdebenito et al., 2016) 
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Once the waves velocity propagation was known, the GPR was tested to understand the capacity to 

detect buried LW. As already described in section 3.2.3, logs artificially inserted at different depths 

were used as ―control points‖ in order to analyze the coincidence between reflections generated by 

buried objects and hyperbolas recorded on radargram. The use of ―control points‖ revealed the 

ability of GPR to detect buried LW, in fact, as illustrated in figure 56, it is possible to appreciate the 

correspondence of hyperbolas on the radargram with the position of the inserted log. The 

association between each hyperbola reflection and the presence of buried LW was achieved with 

both antennas, however, also in this case the better resolution was obtained with 250 MHz antenna 

as reflections generated hyperbolas that are more easily detectable. 

 

Figure 56: image showing the GPR surveying a ―control point‖ (a) and the corresponding radargrams 

obtained with the 250 MHz (b1, b2) and 500 MHz (c1, c2) antenna. (after Valdebenito et al., 2016) 

The GPR was subsequently used to survey the two study areas (area 1 and 2) providing different 

results that reflect the different survey scheme. In fact, analyzing the radargrams it was possible to 

associate each hyperbola reflection with the presence of buried wood in both areas, but just in study 

area 1 it was also possible to detect the same wood log on two parallel radargrams. This was not 

possible in study area 2 due to the too high inter-distance between two profiles (5 m), whereas study 

area 1 was surveyed with an inter-distance equal to 3 m. 

Detection of the same log on multiple radargram profiles is very important because it allows the 

LW shape and length to be reconstructed. Considering just the radargrams of study area 1, a 3-D 

model representing the surveyed zone was developed intersecting longitudinal and transversal 

radargram profiles (Fig. 57). 
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Figure 57: a 3-D model representing a portion of study area 1. The red and blue cylinders show the position 

of possible buried wood. (after Valdebenito et al., 2016) 

From the 3-D model a first approximation of log length was made on the basis of those hyperbolas 

of the same elements that were visible on two adjacent profiles. Instead, it was not possible to 

estimate the LW diameter starting from radargrams due to the difficulty of assigning a value to the 

amplitude of hyperbolas. As a first approach, the diameter of buried LW was assumed to be equal to 

the mean diameter (0.07 m) of logs deposited above the surface. On the basis of these LW 

dimensions, almost 0.04% of the entire volcanic deposits was estimated to be buried wood with an 

approximate volume of 0.8 m
3
 that, normalized per active channel area and river length, 

corresponds to 1.65 m
3
∙ha

-1
 and 2.96 m

3
∙km

-1
. 
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4.5. Assessment of large wood budget 

4.5.1. Ordinary flood events along the Piave River 

The large wood budget assessed for the study reach of the Piave River consists of a short-

term balance that evaluates the variations in LW storage for a 1 year-period with very low floods. 

The considered study period is from June 2015 until June 2016 and the corresponding water 

discharge is illustrated in figure 58. Just ordinary floods occurred in this period, in particular two 

events with a peak discharge of ~ 100 m
3
∙s

-1
 (R.I < 1 yr) were recorded in October 2015 and 

February 2016, and other two with a peak of ~ 85 m
3
∙s

-1
 (R.I < 1 yr) were recorded in March 2016 

and June 2016. 

 

Figure 58: maximum hourly discharge on the Piave River as measured at Belluno gauging station during the 

period June 2015-June 2016. 

The budget was developed adapting the original framework of Martin and Benda (2001) to the 

Piave River study case. The budget thus takes the lateral recruitment due to bank erosion and fluvial 

transport into and out of the river stretch into account. Moreover, as wood in the study reach is 

harvested by local residents, an additional component was introduced to the budget that represents 

the output of LW due to human actions. Although this export of LW cannot be related to flood 

events or other fluvial processes, we decided to consider it anyway in order to assess a more 

comprehensive budget. 

Figure 59 reports an aerial image of the reach with the position of all LW monitored during the 

study period. Each color refers to a budget item, distinguishing between the position of recruited 

trees, new deposited LW elements, pieces transported downstream, harvested residues and, lastly, 

the location of all woody elements whose position was not modified during the study period. 
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Figure 59: aerial image of the Piave River study reach showing distribution of in-channel LW according to 

the budget components. The zoom at bottom right shows the active channel area affected by bank erosion. 

The low magnitude of the events that occurred during the study period reflects the low values of 

riverbank erosion, in fact bank erosion was found only in a single patch located at the downstream 

end of the reach, in the only stretch where the main channel flows in proximity to the bank and 

there is no bank protection (Fig. 59). The eroded surface is about 690 m
2
 with a maximum width of 

9 m. However, recruitment of LW from this eroded area is null due to the absence of trees with a 

diameter equal to or greater than 0.10 m. Only shrubs of small dimensions were recruited. 
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The lateral input of LW is instead represented by 6 trees that were located on the top and along the 

edge of riverbanks and that fell during the study period. Recruited trees had a mean diameter of 

0.15 m and a mean length of 7.25 m, providing a total wood volume of only 0.79 m
3
 (0.21 m

3
∙km

-1
) 

(Tab. 17). Comparing the in-channel position of new trees with their position before recruitment, it 

was possible to see how they were not transported downstream after the erosion but just uprooted 

and deposited near the falling point. All recruited trees were deposited as single pieces. 

Table 17: number, sizes and volume of recruited trees along the Piave River study reach. 

 Recruited trees 

N° 6 

% single 100 

% in jam 0 

Range and mean diameter (m) 0.11-0.21 (0.15) 

Range and mean length (m) 4.5-9 (7.25) 

LW volume (m
3
) 0.79 

LW volume (m
3
∙km

-1
) 0.21 

 

As depicted in figure 59, recruited trees were mainly located far from the main flowing channel, 

except for three elements that were in proximity to a low flow channel. As the magnitude of floods 

was low and the fact that no bank retreat was recorded, qualitative data of standing recruited trees 

were considered in order to understand the possible reasons for their recruitment (i.e. state of 

conservation, presence or absence of branches and leaves) (Fig. 60). Differently from what I 

thought, only one tree was noted to be already dead before the recruitment and so more prone to 

falling. The analysis of the state of conservation revealed that all trees were intact with complete 

bark suggesting a recent recruitment, whereas the observations of the presence/absence of branches 

highlighted that half of them still had all branches suggesting also in this case a recent fall and that 

transport did not occur. Concerning leaves, the majority had none, only two trees had leaves after 

the fall into the active channel.  
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Figure 60: main qualitative characteristics of recruited trees in terms of state of conservation (a), presence or 

absence of branches (b) and leaves (c). 

The LW budget during the study period is illustrated in Figure 61, depicting the numbers of woody 

elements involved in each process, and in Table 18 that reports volumetric values. 

 

Figure 61: numbers of woody elements involved in the LW input and output processes along the study reach 

of the Piave River. 

Among the input processes it is possible to see that, for low magnitude events, the contribution of 

lateral recruitment is almost half that of fluvial transport. Out of the total LW input volume (2.39 

m
3
, 45 N), 67% (1.60 m

3
, 39 N) is due to transport from upstream while only 33% (0.79 m

3
, 6 N) is 

from bank erosion. Regarding the output processes, given the short temporal scale and absence of 

over bankfull floods, only the LW mobilization and transport out of the reach was considered. In 

this case, the amount of LW transported downstream (2.65 m
3
, 32 N) was just 0.7% of all in-

channel LW population stored at the beginning of the study period but, if compared to the amount 

of LW deposition from upstream, a slight prevalence in mobilization can be noted. Large wood 

volume mobilized is, in fact, higher than the volume deposited even if the overall number of input 

elements is greater. Comparing the sizes (Fig. 62), no relevant differences were found between 
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input and output elements. Median diameter is slightly higher in output (0.15 m) than input 

elements (0.12 m), whereas median length shows a reverse pattern as it is higher in input (2.5 m) 

than output (2.4 m). The unit volume is almost similar in the two categories, and corresponds to 

0.03 m
3
∙N

-1
 and 0.04 m

3
∙N

-1
 for input and output elements, respectively. However, despite the 

similarities in median dimensions and volume, among the LW transported downstream there are 

three elements of larger sizes than most of the others that, together, contribute 40% of the total 

volume exported. 

 

Figure 62: range of diameter (a) and length (b) for woody elements involved in the input and output 

processes. 

As evident from figure 61, it is important to point out that, in the case of a human impacted river, 

the greatest variations in LW storage can be related to harvested wood. During the post event 

survey, one hundred tagged elements were no longer found on their original position and, in some 

cases, only the rootwads were present. As for their location in areas distant from any flowing 

channels or areas topographically too high to be flooded (on the basis of field evidences), these 

elements were considered to have been harvested by local residents. Overall, this output 

corresponds to about 34 m
3
 (0.35 m

3
∙ha

-1
) and, even if of anthropic origin, it plays an important role 

in the budget computation. 

If anthropic output is not taken into account, the capacity of ordinary floods to induce variations in 

the amount of LW storage can be considered almost insignificant as input and output volumes are 

very balanced. The balance is negative as large wood removal tends to slightly exceed deposition, 

reducing the volume present at the beginning of the study period by just 0.3 m
3
 (0.1 m

3
∙ha

-1
), from 

386.9 to 386.6 m
3
.  Instead, considering also the harvested LW, the difference between input and 

output processes led to a more consistent decrease (-9.7%) of in-channel LW. The volume in the 

first survey of 386.9 m
3
 reduced to 352.6 m

3
 in the second survey, with a negative variation of -34.3 

m
3
 (-0.35 m

3
∙ha

-1
). 
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Table 18: summary of LW budget in the study reach of the Piave River for ordinary flood events (RI<1yr). 

 LW volume 

(m
3
) 

LW volume 

(m
3
∙ha

-1
) 

Initial volume  386.9 4.0 

LW deposited from upstream  1.60 0.016 

LW deposited from bank erosion  0.79 0.008 

LW removed  2.65 0.027 

Final volume  386.6 3.9 

∆s (%) -0.07 -0.07 

∆s (m
3
) -0.3 -0.1 

LW harvested  34 0.35 

Final volume  352.6 3.6 

∆s (%) -9.7 -9.7 

∆s (m
3
) -34.3 -0.35 

 

As depicted in figure 59, deposition and mobilization of LW occurred along the whole study reach 

and mainly in proximity to flowing channels. To evaluate the possible presence of preferential 

stretches for these processes, the position of deposited and moved LW in respect to the longitudinal 

profile of the river was considered.  

With a length of 3.7 km and a channel slope of 0.35%, the longitudinal profile of the main channel 

is characterized by the riffle pool sequences typical of mountain and piedmont gravel-bed rivers. 

Except for a single recruited tree, which represents the highest volume of LW input (0.23 m
3
∙tree), 

deposition and mobilization of LW appear to have occurred in three main zones of the study reach, 

the upstream part, the downstream one and a zone located almost in the middle of the reach. These 

zones can be identified as three sub-reaches with a gradient equal to 0.37, 0.39 and 0.35% for sub-

reach 1, 2 and 3, respectively (Fig. 63, 64). The mean active channel width increases from 214  m of 

sub-reach 1 to 350 m of sub-reach 3, whereas the maximum number of flowing channels is higher 

in the downstream sub-reach 3. 
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Figure 63: distribution of LW volume moved and deposited along the longitudinal profile of the main 

channel. (The blue arrows below the graph indicate the displacement of those two elements that moved 

inside the reach). 
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Figure 64: aerial photo of sub-reach 1 (a), 2 (b) and 3 (c) showing the position of LW recruited from bank 

erosion (Ibe) and LW transported from fluvial transport into (Qi) and out (Qo) of sub-reaches. Sizes of input 

and output marks varies according the LW volume. 
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Out of the total LW volume mobilized, 53% was found in the upstream sub-reach (Fig. 65a), 

exporting 0.93 m
3
∙km

-1
 of LW, whereas the input from upstream (0.67 m

3
∙km

-1
) represents 40% 

over the total input from fluvial transport. Although lateral recruitment supplied the sub-reach with 

two trees for a LW volume of 0.21 m
3
, deposition of LW (49%) was not able to balance the 

mobilization (51%) resulting in a slight reduction of LW (-0.04 m
3
∙km

-1
). 

Differently from the upstream sub-reach, in the sub-reach 2 the variations in LW storage are given 

only by transport processes into and out of the stretch, as no trees were recruited (Fig. 65b). 

Exported and imported volume is 0.39 m
3
∙km

-1
 and 0.55 m

3
∙km

-1
 and represents only 9.5% and 

14.3% of the overall amount of output and input, respectively. Contrarily to what was found 

upstream, here there is a prevalence of deposition processes (59%) over those of mobilization 

(41%), even if this did not cause substantial variations in LW storage (+ 0.16 m
3
∙km

-1
). 

Despite the presence of a higher number of flowing channels and fluvial bars, the process of LW 

mobilization is dominant (57%) in the downstream sub-reach (Fig. 65c). Here, the volume per unit 

of channel length of LW moved during floods results as 1.17 m
3
∙km

-1
. Deposition of LW in the sub-

reach 3 represents the 43% and is given by 0.60 m
3
∙km

-1
 by transport from upstream and by 0.28 

m
3
∙km

-1
 by lateral recruitment. 

The prevalence of LW mobilization produced a negative variation (-0.29 m
3
∙km

-1
) in the LW 

storage. In addition to the input and output processes, two single elements were found that moved 

within this sub-reach. These were a 0.02 m
3
 decaying harvest residue with a diameter 0.14 m and 

length of 1.3 m whose traveled distance, measured following the thalweg line, was approximately 

254 m, and a 0.01 m
3
 decaying log with a diameter and length of 0.11 m and 1.1 m, respectively, 

that moved downstream for 33.5 m. However, this internal transport do not affect the budget 

computation as, given the short transport distance, this element remained within the study reach 

without influencing the LW storage. 
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Figure 65: overview of LW volume moved and deposited within sub-reach 1 (a), 2 (b) and 3 (c). Pie charts 

show fractions of the dominant LW processes. (The blue arrows of the graph below indicate the 

displacement of those two elements that moved inside the reach). 
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Table 19: summary of the LW budget at a sub-reach scale along the Piave River for ordinary flood events 

(RI<1yr). Large wood volume is expressed in m
3
∙km

-1
. 

Sub-

reach 

Length 

(m) 

Slope 

(%) 

Mean 

active 

channel 

width 

(m) 

N° max 

flowing 

channels 

LW 

deposited 

from 

upstream  

LW 

deposited 

from bank 

erosion  

LW 

moved  
∆s 

1 960 0.37 214 2 0.67 0.22 0.93 - 0.04 

2 416 0.39 216 1 0.55 - 0.39 + 0.16 

3 1236 0.35 350 6 0.60 0.28 1.17 - 0.29 

 

Large wood mobilization and deposition were also investigated through the analysis of the LW 

elevation above the thalweg, in order to explore the presence of a different elevation among the 

flooded and not-flooded surfaces. 

Large wood was divided into the three main budget items: stored, output and input. The relative 

elevation was obtained in ArcGIS® using the thalweg of the main channel as a reference surface on 

which to calculate the difference in elevation between each woody element. 

Although the stored LW shows a very broad range of values, with highest elevation in the order of 

3.3 m above the thalweg, it is evident (Fig. 66) that the non-mobilized LW lie in a higher position 

than the two other categories. Observing the median values, elevations of 1.48 m, 1.03 m and 1.08 

m were obtained for LW stored, output and input, respectively. The range of elevation is narrower 

in the case of LW output and input, suggesting that flood levels remained modest. 

It is interesting to note that these ranges are quite similar, especially in the maximum value. The 

highest elevation above the thalweg was found to be 1.99 m for deposited and 2.20 m for mobilized 

elements, which could represent the maximum water stage of the occurred floods. The fact that the 

maximum elevations for LW deposition are lower than those of LW mobilization can lead to the 

hypothesis that, in agreement with Ravazzolo et al. (2015a), mobilization may have occurred during 

the rising limb of the hydrograph until the peak of the flood, while deposition probably started 

shortly after the peak and continued during the receding phase of the flood. 
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Figure 66: range of elevation above the thalweg for stored, output and input woody elements. 
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4.5.2. Ordinary and large flood events along the Blanco River 

This section presents the assessment of large wood budget for the study reaches of Blanco 

River. Two different budgets were constructed, one for a short period of about two months (January 

2015-March 2015) considering the variations in LW storage for summer floods within reaches 1 

and 2, and another for variations induced by autumn-winter floods occurred during a period of nine 

months (March 2015-January 2016) for reaches 1 and 2, and one year (March 2015-March 2016) 

for reach 3. Because of a lack of hydrological measurements after summer floods of 2015 as the 

gauging station was damaged, the magnitude of floods occurred during the overall study period 

(January 2015-March 2016) was calculated using data from three monitoring stations located in the 

area surrounding the Blanco River basin. Summer floods were classified as ordinary events because 

the recurrence interval (R.I.) was estimated to be ~1 yr, whereas floods occurred during the autumn-

winter period were classified as large floods with a R.I. of 10-25 yr. There were no relevant floods 

during the summer season of 2016, so the budget assessed for reach 3 refers only to large floods. 

The budget of LW in the Blanco River takes into account only variations in LW storage due to 

fluvial transport, as the differences between LW deposited from upstream and LW transported 

downstream. The budget was constructed for each reach and study period, highlighting differences 

among reaches and periods. Results are expressed both in terms of variations in numbers and 

volume. To allow a comparison among study reaches, values normalized per active channel area are 

reported. 

The Blanco River is characterized by a great flux of LW also during lower magnitude events. 

During ordinary floods (RI~1), the amount of LW deposited in the reach 1 is 46.8 m
3
∙ha

-1
, almost 

twenty times higher than in reach 2, where the input volume is in the order of only 2.5 m
3
∙ha

-1
. 

Instead, the amount of LW transported outside the reaches is similar in terms of volume as 50.4 and 

52.2 m
3
∙ha

-1
 of LW were removed from the first and second reach, respectively. However, there is a 

difference between reaches in the number of exported elements. From reach 1 the LW output was 

~261 N∙ha
-1 

having mean sizes of 0.21 m in diameter and 3.49 m in length whereas fewer elements 

(~185 N∙ha
-1

) with higher mean dimensions (0.25 m and 3.61 m for diameter and length, 

respectively) were removed from reach 2 (Fig. 67). 
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Figure 67: LW budget expressed in terms of number of deposited, removed and retained LW elements along 

the three study reaches of the Blanco River. 

In both reaches (1 and 2) the balance of LW for ordinary floods results in a negative budget, as the 

LW mobilization capacity was greater than the deposition capacity. However, the almost equal 

input and output in reach 1 caused a very low variation in wood storage of -1.78 m
3
∙ha

-1
 that 

corresponds to a decrease of 1.5% of in-channel LW volume reducing from 122.1 m
3
∙ha

-1
 of pre-

flood conditions to 120.3 m
3
∙ha

-1 
of post-flood conditions. Reach 2 shows a different behavior as the 

very low wood input unbalanced the output causing a stronger variation (-49.7 m
3
∙ha

-1
) in the in-

channel wood storage that reduced by 43.5%, decreasing from 114.1 to 64.4 m
3
∙ha

-1
 (Tab. 20). 

Table 20: summary of the LW budget in the study reaches of the Blanco River for ordinary flood events 

(RI~1yr). 

Volume (m
3
∙ha

-1
) Reach 1 Reach 2 

Initial volume 122.1 114.1 

LW deposited from upstream 46.8 2.5 

LW removed 50.4 52.2 

Final volume 120.3 64.4 

∆s (%) -1.5 -43.5 

∆s (m
3
∙ha

-1
) -1.78 -49.7 

 

Looking at the LW dynamics during large floods (RI 10-25), all three study reaches have a positive 

budget with a surplus of LW due to the large quantity of deposited wood. In fact, the transport of 

LW from upstream played an important role in the budget computation, increasing the amount of 

in-channel LW by 162, 104 and 179% in reach 1, 2 and 3, respectively. The greatest variation in 
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wood storage was recorded in the downstream reach 1, where new deposited elements, more than 

one thousand per hectare (Fig. 67), were more than three times those transported downstream. Here, 

the difference between input and output resulted in a positive variation of 204.2 m
3
∙ha

-1
. 

However, if the increase in the total in-channel LW is considered, the highest increment (179%) 

was found in the upstream reach 3, where the volume increased from 75.4 m
3
∙ha

-1 
measured after 

ordinary floods, to 210.3 m
3
∙ha

-1 
following large floods (Tab. 21). 

Table 21: summary of the LW budget in the study reaches of the Blanco River for large flood events (RI 10-

25yr). 

Volume (m
3
∙ha

-1
) Reach 1 Reach 2 Reach 3 

Initial volume 120.3 64.4 75.4 

LW deposited from upstream 285.3 108.1 204.1 

LW removed 81.1 28.2 67.1 

Final volume 316.0 131.6 210.3 

∆s (%) 162 104 179 

∆s (m
3
∙ha

-1
) + 204.2 + 79.9 + 136.9 

 

Figure 68 shows the values of deposited and moved LW volume from each reach, reporting also the 

variations in longitudinal profile and active channel width along the whole stretch containing the 

study reaches. The mean slope of the study reaches decreases from 1.1% in reach 3 to 0.7% in reach 

1, even if the lowest gradient (0.6%) is in reach 2. Regarding active channel width, the stretch 

shows a decrease in the upper part reaching the minimum width (43 m) downstream the reach 3, 

then increasing and remaining almost constant until the end of the stretch. The channel width of 

each reach, measured in correspondence to cross section, is 108 m, 80 m and 94 m for reach 1, 2 

and 3 respectively, and remained the same for all the study period, except in reach 2 where an 

enlargement was recorded as large floods caused erosion along the left riverbank, widening the 

channel up to 137 m. 

Looking at LW processes, in terms of deposition and mobilization, we can see that for lower events 

(histograms below the graph) the two processes are almost similar in the downstream reach where 

deposition contributes 40% (46.8 m
3
∙ha

-1
) of variations in LW storage and mobilization 41% (50.4 

m
3
∙ha

-1
), whereas in reach 2 there is a great prevalence of mobilization (52.2 m

3
∙ha

-1
) that 

corresponds to ~45% of all in-channel LW. As the two reaches are similar in gradient and width, it 

is reasonable to think that the LW dynamics were not influenced by channel geometry and channel 

slope. 
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For higher events (histograms above the graph), the dominant LW process is deposition. Contrary to 

what had been expected, there is no increasing trend in downstream deposition. Of the overall in-

channel population monitored post-event, LW deposition represents 82% in reach 2, whereas in 

reach 1 and 3 it corresponds to 90 and 96%, respectively. 

 

Figure 68: longitudinal profile and active channel width of the Blanco River stretch containing the three 

study reaches. Histograms show volume of deposition and mobilization of LW for ordinary (below graph) 

and large (above graph) floods. 

Comparing the budget for ordinary floods, some differences emerged in the wood dynamics 

between the first and second study reach that could be related to the different local-scale 

morphology. Figures 69 and 70 illustrate the LW dynamics for reach 1 and 2 are in, respectively, 

discretizing between the position of elements transported outside the reach, the new elements 

deposited from upstream and those pieces whose position was not modified (aerial images refer to 

pre-flood conditions). The presumed maximum water stage reached during floods was delineated 

based on the position of deposited and mobilized LW pieces. Below the aerial image a graph 

represents the relative cross section. The cross sections and highlighted morphological units refer to 

post-event conditions. 

The cross section of reach 1 (Fig. 69) has a width, measured at the base of riverbanks, of 94 m and a 

relative mean bed elevation of 0.78 m above the thalweg. The local morphology of the study reach 
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appears similar to a multiple thread channel because the presence of one main channel and two dry 

channels adjacent to the riverbanks. The main channel flows almost in the center of the section and 

is bordered, on the hydrographic right, by a high bar with a maximum relative elevation of 2 m 

above the thalweg and, on the hydrographic left, by a low bar just 1 m above the thalweg. 

Looking at the LW dynamics, wood mobilization covered 70% of the active channel area and 

occurred mainly on the low bar, where 84.3% of all in-channel LW was stored. Out of the total LW 

transported downstream of the reach, 95.2% was removed from the low bar, while just 4.8% was 

removed from the high bar on the hydrographic right. In addition, looking at new delivered 

elements, all LW input was deposited on the low bar. The water depth of lower magnitude events 

(RI~1yr) seems to have not been deep enough to completely flood the high bar. 

 

Figure 69: aerial image (a) of reach 1 showing the position of retained (black), removed (red) and deposited 

(green) LW elements after ordinary floods (flow direction is down the figure), and cross section (b) of the 

study reach highlighting the morphological units. 

The second study reach, featuring a channel width of 80 m and a mean relative bed elevation of 

1.31 m, shows a morphology that is similar to the single-thread pattern. The main channel flows in 

proximity to the left riverbank and is separated from the bank by a low narrow bar whereas, on the 

hydrographic right the channel is well-confined by a high bar with an elevation of 2.2 m above the 

thalweg (Fig. 70). A dry channel is present near the right riverbank and has a shallow depth as the 

difference between its thalweg and the highest point of the central bar is in the order of 0.6 m. In 
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this case ordinary floods affected only 43% of the active channel and LW mobilization occurred 

only in proximity to the main channel, mobilizing those elements located on the left low bar and 

along the right bank of the channel. As can be seen in figure 70, none of the LW pieces stored on 

the high bar were mobilized, probably because the adjacent high bar hindered the submergence of a 

wider part of the active channel. A further confirmation of this hypothesis derives from the position 

of new LW transported from upstream. These elements were deposited along the same longitudinal 

line that corresponds to the top of the left bank of the channel, suggesting that this is probably the 

limit reached by the peak flood. 

 

Figure 70: aerial image (a) of reach 2 showing the position of retained (black), removed (red) and deposited 

(green) LW elements after ordinary floods (flow direction is down the figure), and cross section (b) of the 

study reach highlighting the morphological units. 

For large floods (RI 10-25 yr) the local-scale morphology of the study reaches seems to have had a 

minor role in the mobilization and deposition of LW, as due to the higher magnitude of the events 

the active channel area of the three reaches was entirely flooded. However, some differences in the 

LW dynamics can be highlighted. As shown for ordinary floods, figures 71, 72 and 73 illustrate the 

LW dynamics for large floods on reach 1, 2 and 3, respectively (aerial images refer to post-flood 

conditions). 
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Reach 1 still features a multiple-thread channel morphology. No enlargement of the active channel 

width occurred but the main channel laterally shifted to the hydrographic left of the reach, and 

deposition and mobilization of LW mainly occurred once again on the low bar. However, 

differently to what happened during ordinary floods where all LW input were deposited only on the 

low bar, in this case the LW deposition was recorded over the entire channel area, especially on the 

high bar. Because of the lateral shifting of the channel, mobilization of LW occurred mainly along 

the new channel course mobilizing the 83% of the total LW deposited during the previous ordinary 

floods.  

 

Figure 71: aerial image (a) of reach 1 showing the position of retained (black), removed (red) and deposited 

(green) LW elements after large floods (flow direction is down the figure), and cross section (b) of the study 

reach highlighting the morphological units. 

Reach 2 is the only reach showing variations in the channel width and morphology induced by 

autumn-winter floods. In the post-events, in fact, an increase in channel width was recorded, due to 

a great erosion along the left riverbank. The main channel eroded about 60 m along the entire length 

of the reach, corresponding to almost 5200 m
2
 and the active channel width widened from 80 to 137 

m. Moreover, differently to what occurred during ordinary floods in which the variations in LW 

storage were caused only by the main channel, in this case the higher water stage of large floods 

was able to overtop the lateral bar and to activate the low-flow channel thus causing inundation on 

the entire channel area. In fact, looking at the aerial image which was taken after the floods (Fig. 
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72a), we can see how the reach is characterized by a multiple-thread channel morphology with three 

flowing channel that have contributed to a higher mobilization and deposition of LW. However, 

despite all the fluvial bars were flooded, only the 43.7% of stored LW was involved in the 

downstream transport, including the total elements deposited with previous summer floods. 

 

Figure 72: aerial image (a) of reach 2 showing the position of retained (black), removed (red) and deposited 

(green) LW elements after large floods (flow direction is down the figure), and cross section (b) of the study 

reach highlighting the morphological units. 

The upstream reach 3 features a particular configuration as the flowing channel creates a bend in 

proximity to the left riverbank causing a variation in the channel direction. Looking at the position 

of mobilized and retained elements, a difference in the LW distribution before and after floods can 

be observed. In the pre-flood conditions, LW was mainly jammed (91%) covering only half of the 

active channel area while the rest of the reach was devoid of LW. This lack suggests that, as found 

in reach 2, previous lower floods were concentrated only in the area of the main channel without 

causing complete flooding and dispersal of LW. Instead, considering the distribution of LW 

deposited during large floods, it is reasonable to think that, similarly to what was found for reach 1 

and 2, the flood magnitude affected all the active channel area with a predominant deposition on the 

central bar and along the downstream part of the right bank (Fig. 73). 
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Figure 73: aerial image (a) of reach 3 showing the position of retained (black), removed (red) and deposited 

(green) LW elements after large floods (flow direction is down the figure), and cross section (b) of the study 

reach highlighting the morphological units. 

As the study reaches of the Blanco River showed a different behavior in LW mobilization, 

additionally to the role of local-scale morphology, the role of LW characteristics was also 

investigated as possible factors controlling LW mobilization. In particular, the main factors 

influencing wood movement that were considered are wood dimensions (mean diameter and length 

of moved pieces), volume, abundance, channel width and the ratio of piece length to channel width. 

Results of relationships between LW mobility rates and these factors are illustrated in figure 74. 

Overall, a lack of statistically significant correlations (p>0.05) between wood mobility and 

controlling variables was found, and results of correlations are often weak and difficult to explain. 

More in detail, factors such as LW sizes show relationships with mobility having opposite signs. 

The mobility rate is correlated positively with the length of LW and negatively with the LW 

diameter with a very low coefficient of correlation. Differently to what had been expected, the 

number of pieces in transport does not correlate negatively with piece volume but a positive 

relationship was found. The active channel width seems not to affect wood movement even if a 

surprising positive correlation was obtained from the ratio between LW length and channel width. 

Shorter pieces appear to be less easily transported than longer elements. Finally, the LW mobility 

rate correlates negatively with the abundance of in-channel LW, with a number of transported 
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pieces that decreases for increasing values of wood abundance. Summarizing the correlation 

analysis results, LW mobility rate is poorly correlated with any of the tested variables. 

 

Figure 74: scatterplots and estimated regression relationships between large wood mobility rate and a series 

of LW characteristics and between mobility rate and mean active channel width. 

A final analysis was conducted in order to investigate the presence of possible differences among 

the sizes of wood pieces that were transported downstream and those that remained in their original 

position. The analysis was performed considering LW mobilization during ordinary and large 

floods separately. For ordinary floods, only elements laying in the flooded area were taken into 

consideration. 

Looking at figure 75a, which refers to the mobilization induced by ordinary events, we can note that 

only in reach 1 the retained elements had a median diameter (0.26 m) larger than removed ones 

(0.17 m), even if some LW pieces bigger than 0.70 m in diameter were also removed. In reach 2 an 

opposite behavior was found as the median diameter (0.20 m) of LW transported downstream was 

slightly larger than that of retained pieces (0.19 m). In figure 75b, which reports differences in LW 
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length, both study reaches show a median value of retained LW, 3.2 m and 4.0 m for reach 1 and 2 

respectively, which is higher than the value of removed LW that corresponds to 2.8 for the first 

reach and 2.6 m for the second one. 

 

Figure 75: range of the LW diameter (a) and length (b) of retained and removed woody elements during 

ordinary floods. 

The same analysis, performed for the mobilization and retention of LW during large floods (Fig. 

76), highlighted that also in this case the sizes of mobilized elements are smaller than those of non-

mobilized. The median values of diameter in reach 1, 2 and 3 are 0.24, 0.22, and 0.21 m for 

mobilized pieces and 0.28, 0.25 and 0.25 m for retained ones (Fig. 76a). In turn, the median length 

of LW removed from reach 1, 2 and 3 corresponds to 3.5 m, 2.2 m and 3.7 m, respectively, whereas 

for retained elements it is 3.6 m, 3.2 m and 5 m. Nevertheless, it is worth noting that the length of 

removed LW is characterized by a high range of variability, with highest values of removed 

elements that are greater than that of retained one (Fig. 76b). 

 

Figure 76: range of the LW diameter (a) and length (b) of retained and removed woody elements during 

large floods. 
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Section Five - Discussion 

5.1. Considerations on the recruitment and transport of LW during over-bankfull floods 

All three analyzed morphological units in the Piave River (floodplain, pioneer islands and 

building islands) suffered erosion during the over-bankfull flood in November 2014, contributing to 

the delivery of LW into the channel. The number and volume of recruited trees were influenced by 

the different vegetation density and dendrometric sizes characterizing these units, which are directly 

related to their morphological development that permitted the generation and stabilization of 

different vegetated communities (Sitzia et al., 2015; Picco et al., 2016b). Pioneer islands, due to the 

highest tree density (0.16 N∙m
-2

) should be the most important unit in supplying the channel with 

LW but, since erosion is the lowest (25.2 m
2
) and the vegetation is of lowest dimensions, the 

recruited LW is negligible (0.14 m
3
). Therefore, the effect of the initial characteristics of riparian 

trees on pioneer islands influences the volume of LW recruited from these units. On the contrary, 

the greater erosion and larger tree sizes on floodplain and building islands caused a higher LW input 

from these morphological units, especially the floodplain where 92.7% of the total recruited LW 

volume comes from (86.25 m
3
). The important role played by floodplain trees in the recruitment of 

LW was already verified by Piégay et al. (1999) along a wandering French river. These authors 

found that the floodplain contribution was in the range of 62-82%. The significant vegetation 

erosion during the flood in November 2014 which had a R.I. of 7 years suggests that the current 

perception of the role of floods on vegetation removal should be re-evaluated. Until now, indeed, 

many authors have highlighted that significant vegetation erosion is more likely to occur only with 

large floods (R.I.>10-20 years) (Bertoldi et al., 2009; Comiti et al., 2011; Mikuś et al., 2013; 

Moretto et al., 2014). Similar findings were emphasized by Surian et al. (2015) reporting that 

relatively frequent, low magnitude floods (1≤R.I. ≤2-3years) also have the capacity to erode 

vegetated patches along a large gravel-bed river similar to our study case and reducing the threshold 

for vegetation erosion previously found by Bertoldi et al. (2009) from 3 to 2.5 years. 

The recovery rate obtained during the post-flood field survey (33%) is quite similar to other rates 

published in the literature. Using RFID tags, Schenk et al. (2014) reported a recovery rate lower 

than 40% along the large sand-bed Roanoke River, while Ravazzolo et al. (2015a) obtained a 

recovery rate ranging from 42 to 43% in the large gravel-bed Tagliamento River. Our recovery rate 

was also better if compared to MacVicar et al. (2009) who, again using RFID tags, recovered 13-

27% of trees fallen after near and twice-bankfull floods along the large gravel-bed Ain River. 

Therefore, the recovery rate obtained is comparable, or even better, than the proportion of tagged 

logs recovered using radio markers. This is probably because the functionality of radio marker 
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devices can be affected by a prolonged period in wet conditions that can compromise their mode of 

operation (Picco et al., 2016b). However, recovery rates may have been influenced by the 

mechanical destruction of LW during transport, especially for smaller pieces coming from islands. 

On the basis of LW displacement distances it was possible to hypothesize about recruitment 

mechanisms. Pioneer islands, because of their lower elevation (Picco et al., 2014) and younger, less 

mature vegetation (Edwards et al., 1999; Picco et al., 2014; Mikus et al., 2013), were expected to be 

the first morphological unit to be removed during floods. However, the fact that longer travel 

distances were recorded for trees recruited from the floodplain suggests that this unit was probably 

eroded during the rising limb of the hydrograph, while the shorter displacement of trees recovered 

from islands suggests that they were probably recruited during the long decreasing limb. Pioneer 

islands, and to a lesser extent building islands, have shown a great capacity to resist the flood and 

maintain their position in the active channel. The presence of LW, especially wood jams, upstream 

of these islands probably protected them from the erosional forces of the flood. In fact, the 

accumulation of wood on the head of fluvial islands was proved to enhance the stability of islands 

through deflection of the flood and reduction of flow velocity (Gurnell et al., 2005). Moreover, as 

fluvial islands were mainly composed of highly flexible species, this probably increased their 

capacity to survive floods (Picco et al., 2016b). 

From the post-event field data it was possible to identify the most suitable sites for LW deposition. 

The results confirmed that LW is preferentially deposited along gravel bars (Mao et al., 2012; 

Ravazzolo et al., 2015a), but the presence of fluvial islands also represents a trapping element that 

can block in-transport wood and induce its deposition (Gurnell, 2005; Ruiz-Villanueva et al., 

2016a). In this case, only a pair of trees (1.3%) were deposited upstream of building islands but this 

corroborates the well-known role of fluvial islands in interacting with LW and thus promoting 

island development (Gurnell et al., 2005). Moreover, we found that during over-bankfull floods LW 

can also be deposited outside of the active channel area, for example above the riverbanks on the 

floodplain. This suggests that, in the case of budget assessment for periods in which floods 

exceeding the bankfull level occurred, it would be important to also consider the output by 

overbank deposition (Martin and Benda, 2001; Benda and Sias, 2003) although it is not simple to 

discriminate between pieces deposited during the flood from those already stored on the floodplain 

(Wohl, 2016). 

Considering other sites of LW deposition, some gravel bars positioned downstream of eroded 

patches have shown a great capacity for LW retention. In many cases, when a bar was located just 

downstream of the erosion site, the recruited LW had not traveled far downstream but were 

deposited close to the erosion site after a very short displacement. Similar LW deposition dynamics 
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were obtained by Bertoldi et al. (2013) on the braided Tagliamento River, where up to 40% of trees 

recruited from the floodplain were deposited on the nearest downstream bar. This particular 

deposition process can be connected to the behavior of sediments delivered into channels during 

bank erosion. Pyrce and Ashmore (2003) documented that these sediments are usually deposited on 

the first bar downstream of the erosion source and this enhances the development of suitable sites 

(i.e. gravel bars) for LW deposition. On the other hand, LW deposition could also be affected by the 

type of LW transport. Following Braudrick et al. (1997), the ratio between LW volume recruited 

and water discharge (QLW/QW) suggested that LW transport occurred in a congested way, in which 

pieces moved together as a single mass and this high degree of interaction between elements usually 

results in short transport distances and deposition in jams (Braudrick et al., 1997). 

Although a comparison among digital elevation models (DEM) referred to the pre and post flood 

was not possible, the great recorded bank erosion and the high large wood recruitment suggest that 

the over bankfull flood may have induced changes in the morphology of bars and channels caused 

by sediment and wood deposition. In this sense, it is important to highlight that these processes 

need to be considered when LW dynamics are simulated with numerical models (Ruiz-Villanueva 

et al., 2015). 

The statistical analysis of LW displacement computed in this study does not identify clear 

relationships between the traveled distance and LW characteristics, highlighting that the mobility of 

LW is probably also governed by others factors. Only a significantly decreasing trend (P ≤ 0.05) 

was found for the mean traveled distance for increasing values of LW diameter, confirming how the 

diameter is the main LW property controlling the traveled distance in large gravel bed-rivers 

(Welber et al., 2013). However, the findings about the role of diameter should be extended 

considering also the bed morphology and channel geometrics. In fact, as first suggested by 

Braudrick et al. (1997), the ratio between diameter and mean channel depth can be considered as the 

main driver of wood mobility influencing the traveled distance. Similar results were found more 

recently by Ruiz-Villanueva et al. (2015) confirming that in wide multithread channels the diameter 

exerts the main control on LW mobility. In contrast, the role of LW length on piece mobility 

appears to be less clear. In fact, even if no significant relationship was found, the decreasing trend 

of traveled distance for increasing values of length confirms the suggestion of Ruiz-Villanueva et 

al. (2015) that the importance of the LW length in wide multithread reaches is not as evident as in 

single-thread narrowing reaches. 

Differently from the results of Ruiz-Villanueva et al. (2015) in which the volume and density also 

appear to be factors controlling LW transport, we observed no statistical relationships between these 

variables. As wood density is considered one of the main factors conditioning the initial mobility of 
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wood in rivers (Ruiz-Villanueva et al., 2014c) and the likelihood of its movement (Ruiz-Villanueva 

et al., 2015), we expected to obtain lower values of traveled distance for heavier LW. However, in 

this study the displacement of LW does not seem to be influenced by the wood density. Only high 

values of density (depending on the species) corresponding to fresh wood were used. As wood 

density is subjected to a rapid increase during the first hour of immersion (Welber et al., 2013), the 

relation with the traveled distance should probably also consider these fluctuations. Some better 

explanations of how tree species influence the LW mobility could be obtained by also considering 

the presence and type of roots. In fact, due to the usually higher density of roots in respect to the 

stem and the capacity to incorporate sediments during transport, the presence of roots can increase 

the tree weight (MacVicar et al., 2009) and especially in the case of trees just uprooted this could 

play a crucial role in the LW mobility control. 

5.2. Mobilization and deposition of LW during floods of different magnitude 

In this section the results concerning the input and output of LW by fluvial transport are 

discussed. 

Following the classification proposed by Gurnell et al. (2002), both the Piave and Blanco rivers can 

be classified as large rivers, having a width greater than the length of all of the wood pieces 

delivered. Several authors (Gurnell, 2003; Moulin and Piégay, 2004) reported that LW mobilization 

is usually more frequent in large rivers than in small and medium ones. Indeed, because of the very 

small dimensions of wood in respect to the channel width, LW is not in contact with the channel 

margins during the transport (Schenk et al., 2014) and this facilitates its mobilization. Nonetheless, 

great differences between the two rivers were identified in the volume of LW transported, which 

reflect different LW dynamics. In the Piave River the fluvial transport of LW was found to be in the 

order of only 0.02 and 0.03 m
3
∙ha

-1
 for deposition and mobilization, respectively; whereas in the 

Blanco River significantly higher deposition (maximum of 285.3 m
3
∙ha

-1
) and mobilization 

(maximum of 81.12 m
3
∙ha

-1
) volumes were found. Although the two analyzed rivers are quite 

similar in terms of grain sizes, slope and ratio LW length/channel width, an enormous difference in 

the number and volume per hectare of in-channel LW was observed, and it is clear that these 

differences in the LW storage can affect the amount of in-transport LW. The Piave River shows 

values of in-channel LW similar with those of other Italian rivers with comparable morphological 

patterns and riparian forests (Pecorari, 2008; Ravazzolo, 2015b), but lower when compared to two 

French rivers of similar size (Piégay et al., 1999; Piégay and Marston, 1998). The smaller amount of 

LW storage in the Piave River can be probably attributed to the high degree of anthropic pressure. 

In fact, several human activities (i.e. gravel mining, hydropower scheme, land use changes, 
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vegetation management) took place over the last century along the Piave River, affecting the 

morphological settings of the river as well as the characteristics of riparian vegetation (Comiti et al., 

2011; Picco et al., 2016a) and, in this way, the supply of LW. Moreover, an artificial dam located 7 

km upstream of the study reach may limit the supply of LW. In the case of the Blanco River, the 

huge presence of in-channel LW can be attributed to the recent volcanic eruption that, destroying 

more than 400 ha of adjacent forest (Major et al., 2013), dramatically increased the supply of LW 

into the active channels (Ulloa et al., 2015a). 

Differently from the Piave River in which the mobility rate for ordinary events was found to be 

1.43%, the Blanco River featured very high mobility rates, between 41.6 and 94.3% during ordinary 

and not-ordinary floods, respectively. This high dynamicity of LW in the Blanco River was already 

shown by Ulloa et al. (2015a), who reported a mobility rate of 78% and 48% for single logs and 

WJ, respectively. In addition to the already explained difference in LW storage, another possible 

explanation for the high mobility rate of the Blanco River can be given by the characteristics of in-

channel LW. In fact, 93% of transported pieces were logs, and many authors (Braudrick and Grant, 

2000; Moulin and Piégay, 2004), demonstrated that this type of LW is the easiest to be transported. 

Instead, the LW in the Piave River is also composed of trees, shrubs and rootwads and these types, 

which are more flexible and irregularly shaped than logs, are less easily transported because they 

are more susceptible to becoming trapped around obstacles (Gurnell, 2013) or anchored to the river 

bed, increasing drag and thereby decreasing mobility (Abbe and Montgomery, 1996; Welber et al., 

2013). 

Differences in the hydrological regime of flood events can also affect the LW transport. 

Unfortunately, the 2015-2016 study period was very dry and no significant events occurred, just 

two peak discharges ~100 m
3
∙s

-1
 and another two <100 m

3
∙s

-1
 were measured in the Piave River. 

The very low intensity of the events resulted in small wetted areas, flooding just the low fluvial bars 

located in proximity to the flowing channels. In this way, the low transport of LW in the Piave 

River can also be due to the fact that the amount of wood that is usually stored on high bars and 

fluvial islands in a braided-wandering morphology was not reached by the floods (Pecorari, 2008). 

On the other hand, in the Blanco River floods of higher magnitude (RI~1 and RI 10-25 yr) resulted 

in bigger wetted areas. The only exception was found for reach 2 with summer floods, during which 

just 43% of the active channel was flooded and the lowest amount of LW deposited and mobilized 

corresponded to the smallest wetted area. In the other cases almost all the active channel was 

inundated and in this sense, the bigger the wetted area is, the larger is the amount of LW available 

for transport and, at the same time, the sites available for deposition. 
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The difference in flooded area was also found to affect the way in which LW is deposited (i.e. state 

of aggregation). For smaller wetted area the LW was found to be deposited mainly as single 

elements, whereas for bigger wetted areas the predominant deposition was in the form of wood 

jams. This different behavior can be explained considering the morphological units flooded during 

events of different magnitude. Higher magnitudes are usually able to flood the entire floodplain 

(Mikus et al., 2013; Picco et al., 2014, 2016b) and LW is more easily deposited in jams because it is 

intercepted by fluvial islands and vegetated bars (Gurnell, 2005; Picco et al., 2015a), while during 

events of lower magnitude when just low bars tend to be flooded LW is usually deposited as single 

pieces. In the Blanco River where there are no fluvial islands able to intercept LW, the prevalent 

jammed deposition could be because of the presence along the active channel of several rough 

elements that can retain a certain quantity of wood. Indeed, the standing dead trees near the 

riverbanks as well as the presence of big WJ can cause, at a local scale, variations in flow 

environment and average velocity (Gippel, 1995; Seo and Nakamura, 2009; Welber et al., 2013) 

favoring the deposition and retention of wood. 

Moreover, since LW transport is conditioned by LW sizes (Braudrick and Grant, 2000; Ruiz-

Villanueva et al., 2015) and water depth (Ruiz-Villanueva et al., 2016a) and because LW deposition 

usually starts at the peak flow (Ravazzolo et al., 2015a) when the wetted area is larger, bigger 

elements were expected to be deposited at greater distances from the thalweg. However, we 

observed that in both rivers woody elements of the same sizes were deposited independently of the 

distance from the thalweg and this can confirm that, as recently observed by Ravazzolo et al. 

(2015a), the transport of LW can also occur over the bars and not necessarily along the thalweg line 

(Braudrick and Grant, 2001; MacVicar and Piégay, 2012). In this way, slight differences in the 

topographic elevation of fluvial bars have probably affected the wood deposition. 

5.3. The budget of LW in the human-impacted Piave River during ordinary events 

The short temporal scale and the absence of over bankfull floods allowed the assessment of 

a comprehensive wood budget, evaluating the fluvial transport of LW and the lateral recruitment for 

very frequent floods. 

In the study reach the lateral supply of LW is given by bank erosion, which is a process that can 

occur not only during high bankfull floods but also during low magnitude events. However, our 

results confirmed that the characteristics and density of riparian vegetation influence rates of wood 

recruitment (Benda and Sias, 2003). In fact, bank erosion was found to occur in a floodplain area 

devoid of tree vegetation so the recruitment of LW from this eroded area was null. The riverbank 

was probably eroded due to the presence of just shrubby vegetation with a lower capacity of soil 
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reinforcement (Hooke, 1980). On the other hand, the lateral input of LW was due to some trees 

growing close to the riverbank and that had fallen into the river. In some cases, recruited trees were 

found to form ramp logs, with one side resting on the bank and the other on the riverbed (Ruiz-

Villanueva et al., 2016c), so the effective erosion of the riverbank was null. Despite the recruitment 

of LW in piedmont environment being commonly related to large floods (Bertoldi et al., 2013; 

Picco et al., 2016b), in this case the LW recruitment was probably facilitated by the fact that trees 

had already been weakened by the last over-bankfull flood in November 2014, so also small 

variations in the water depth may induced their collapse. Differently to what was observed for the 

recruitment of LW during an over-bankfull flood (sections 4.1 and 5.1), trees recruited during 

ordinary events were not involved in downstream transport but were just uprooted and deposited 

near the recruitment site. The absence of additional transport can be explained if the type of 

recruited elements is considered. In fact, all the recruited elements were represented by trees and the 

majority had branches and rootwads. This type of LW is less easily mobilized because the tree 

canopy and rootwads tend to attach the tree to the river bed and inhibit the movement (Abbe and 

Montgomery, 1996; Braudrick and Grant, 2000; Bocchiola et al., 2006; Iroumé et al., 2015). 

Moreover, considering the low magnitude of recorded events, the water depth was probably too 

shallow to induce movement of this type of LW and this is in agreement with what MacVicar and 

Piégay (2012) reported in the French Ain River. They observed that many trees growing in loose 

and unstable positions had fallen into the river during low flow conditions but remained near where 

they fell because the water depth was insufficient for their mobilization. 

A discrete mobilization of LW was also observed during very low flow conditions corresponding to 

10% of bankfull discharge (~100 m
3
∙s

-1
). In a previous study on LW transport along the Piave River 

(Pecorari, 2008), the authors reported that events lower than 388 m
3
∙s

-1
 were not able to mobilize 

the monitored woody elements. This discrepancy can be explained considering the sizes and 

characteristics of LW. Pecorari (2008), in fact, only monitored trees with rootwads in a range 0.12-

0.42 m in diameter and 4.75-17.6 m in length. In this case, the mobilized elements were mainly logs 

without rootwads (40%) and, concerning the sizes, 80% were less than 0.2 m in diameter and 70% 

less than 4 m in length. This comparison confirms that, among other factors, mobility of LW also 

depends on its size (Gurnell, 2003; Wohl, 2011, Iroumé et al., 2015) and the presence of rootwads 

can inhibit the movement and decrease mobility by anchoring pieces to the bed (Abbe and 

Montgomery, 1996; Braudrick and Grant, 2001). 

Overall, mobilization and deposition of LW were observed to occur in proximity to the flowing 

channels, both main and secondary channels, even if the main contribution was given by the main 

channel. The three sub-reaches identified on the basis of where LW mobilization and deposition 
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occurred, revealed that in the most braided morphology mobilization was higher than deposition. 

This phenomenon differs from what was expected. In fact, because LW is usually deposited on bars 

(MacVicar and Piégay, 2012; Ravazzolo et al., 2015a; Ruiz-Villanueva et al., 2016b), the presence 

of numerous bars had led me to hypothesize a greater amount of deposited LW. Moreover, in 

contrast to single-thread reaches, multi-thread reaches were defined by Wyzga et al. (2016) as 

―natural wood traps‖ because the lower values of water depth, flow velocity and unit stream power 

provide more favorable conditions for LW to be stranded on the bars. The fact that we could not 

find this, is probably due to the very low water level of secondary channels for low-flow events that 

was not able to deposit a considerable quantity of LW. 

In general, the LW budget assessed for the Piave River during the period 2015-2016 resulted in no 

quantitative important variations in the LW storage (-0.26 m
3
∙ha

-1
), because input and output 

volumes are quite similar. Moreover, no variations were found in the LW distribution, confirming 

what was reported by Gurnell et al. (2002), that very frequent events are not able to redistribute the 

in-channel LW. The low numbers of elements involved in the LW-related processes reflect the low 

regime of occurred events suggesting that the area flooded during frequent floods is mainly limited 

to the main channels and low bars (Ruiz-Villanueva et al., 2016), the morphological units that are 

usually flooded with greater frequency. The low recurrence interval (<1yr) of recorded events 

means that the low discharge and, consequently, the low water depth resulted in the flooding of 

morphological units with lower elevation in respect to the water surface. Indeed, a difference was 

found in the relative elevation above the thalweg between the surfaces in which mobilization and 

deposition of LW occurred and those areas in which LW was not mobilized. Overall, a difference of 

about 0.4-0.45 m among flooded and not-flooded areas was observed. In the Piave River case, 

where there are high and low bars (Ravazzolo et al., 2015b) and fluvial islands placed at different 

elevations (Picco et al., 2014), the lower morphological units flooded during low magnitude events 

can be represented only by low bars and the margins of flowing channels corresponding to the areas 

in which LW mobilization and deposition were observed. In this sense, these findings ratify the 

recent observations of Ruiz-Villanueva et al. (2016a) on how the relative elevation of the different 

geomorphic units in relation to the water level is a significant factor controlling the transport and 

deposition of woody elements. 

Finally, in the Piave River case the dynamics of LW (i.e. wood budgeting) were found to be altered 

by anthropic activities. In fact, wood harvesting by local residents resulted in an additional output of 

LW that is mentioned but almost never considered in the literature. Harvested wood was found to 

be mainly bigger trees, especially those recruited during the event in November 2014. Despite this 

activity being controlled by special regulations of the local administrations, this anthropic action 



PhD Thesis                                                                                                                                    Alessia Tonon 

 

127 

 

can lead to misleading information of the natural dynamics of wood in rivers because it can cause 

uncertainties in the quantification of input and output processes. 

5.4. The budget of LW in the affected Blanco River during ordinary and not-ordinary events 

The budget assessed for the Blanco River is not a comprehensive budget because there is a 

missing item: lateral recruitment. However, as floods of different magnitude occurred during the 

study period, it was possible to compare the variations in LW storage among the events. 

In fact, the abundance of LW was found to be subject to temporal variations also over short time 

periods because of two main factors: the magnitude of floods and the local-scale morphology of the 

study reaches. Considering flood magnitude, there was a consistent reduction of LW after low 

floods (RI~1yr), while the abundance and volume increased following large events (RI 10-25yr). 

These temporal fluctuations can be connected to the strong differences in the seasonality of the 

hydrological conditions of the Blanco basin. Higher precipitation occurring during the autumn-

winter season results in higher discharges in respect to those of summer season, and higher the 

flood magnitude is, greater the variations in LW storage can be. These results are in accordance 

with Gurnell et al. (2000), who highlighted that the larger volume of stored LW is usually reached 

after major flood events because the amount of in-transport wood and the tendency of deposition 

are greater. As pointed out by MacVicar and Piégay (2012), there is an increase in wood transport 

for increasing discharge. With the increase in both water depth and wetted channel area, bars are 

progressively inundated and, in this way, the quantity of LW available to be transported is greater. 

The higher magnitude of floods during the autumn-winter months resulted in a larger wetted 

channel area able to mobilize greater wood volume. At the same time, as wood is preferentially 

deposited on bars during the peak and receding phase of floods (MacVicar and Piégay, 2012; Mao 

et al., 2012; Ravazzolo et al., 2015a), the larger is the wetted channel area and the bigger is the area 

prone to wood deposition. In fact, it was found that there is a prevalence of LW mobilization during 

low floods while LW deposition is prevalent during large events. Again, the low amount of LW 

input recorded for summer floods is probably related to the low quantity of in-transport wood and, 

at the same time, to the smaller flooded area. In this sense, the differences in flooded area can also 

be explained by the different morphological configuration of the river reaches. The lower relative 

mean bed elevation of reach 1 as well as the morphology that could be likened to a multiple-thread 

channel pattern allowed a faster increase of the wetted area, whereas the higher relative mean bed 

elevation of reach 2 and the presence of a single channel confined the wetted area just to the 

proximity of the flowing channel, reducing the mobilization and deposition of LW. Additionally, 

the greater input and deposition of LW found during higher discharge was probably also related to 
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the observed bank erosion. Although LW recruitment was not measured, the large volume of 

riparian trees  (271.5 m
3
∙ha

-1
, unpublished data) suggests that a considerable amount of LW was 

introduced into the channel. Similarly to what was already discussed for the Piave River, also in this 

case bank erosion appears to be affected by flood magnitude and be more likely to occur with 

higher discharge. Indeed, erosion was recorded only during autumn-winter floods while for lesser 

events (RI~1yr) no bank erosion was measured along the study stretch of the Blanco River.  

The documented erosion of riverbanks also confirmed previous findings on the widening tendency 

that occurs following volcanic disturbances. As already reported by Ulloa et al. (2015a), the Blanco 

River, like other similar rivers in the surroundings of the Chaitén volcano, drastically changed its 

morphology as a consequence of the eruption with the active channel widening up to 3.5 times. 

These results confirmed that riverbank erosion is still an active process that can induce significant 

enlargement of the river; reach 2 almost doubled its channel width from 80 to 137 m. In particular, 

as bank erosion occurred in correspondence to dead riparian vegetation, this suggests that the 

Blanco River will continue to widen for a long period until all the damaged riparian trees have been 

removed, recruiting a huge volume of wood. In fact, the presence of several non-cohesive sediments 

can increase the facility with which erosion occurs. 

Contextually to the recruitment of LW from standing trees, the erosion of riverbanks along the 

Blanco River can also cause the recruitment of LW through another process: the exhumation of 

buried wood. The deposition of volcanic material caused the formation of sediment layers up to six-

seven meters in depth (Pierson et al., 2013), burying both standing trees and in-channel LW. 

Because volcanic sediments are mainly formed by non-cohesive materials (Gob et al., 2016), they 

are easily eroded and the buried wood can be exhumed and reintroduced into the active channel. 

With the application of GPR an estimated mean volume of buried wood was 1.65 m
3
∙ha

-1
, however 

it is important to remember that the investigated depth was only the top two meters, so probably this 

was an underestimation of the real wood volume. 

As a first approach, the GPR was proved to be a valid technique for the detection of buried LW, 

also due to its non-destructive and non-invasive characteristics. However, the different behavior of 

radar waves suggests that during the radargram interpretation the distance of the surveyed area from 

the flowing channel (i.e. proxy for the soil moisture content) needs to be taken into account. As this 

was the first attempt to detect LW buried under river sediments with GPR, a comparison with 

similar studies is difficult. Indeed, the GPR had already been used in a fluvial environment to 

measure the moisture content (Daniels et al., 2005; Grote et al., 2003), monitor the water table 

(Porsani et al., 2004; Roth et al., 2004) and stream discharge by noncontact methods (Costa et al., 



PhD Thesis                                                                                                                                    Alessia Tonon 

 

129 

 

2006), but there are no specific studies on the measurement of buried wood, so the estimation of 

LW potentially recruitable from exhumation still remains a research topic to be better explored. 
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Section Six – Conclusions and future research directions 

In order to synthesize the results reported in this thesis, the main achievements can be 

summarized as follows: 

 Variations in the LW abundance were found during short-time periods (≤1year) suggesting that 

the LW budget can also be quantified over short temporal scales. Large wood is a very dynamic 

element that can undergo fluctuations due to the effects of single floods. 

 Bank erosion is an important process for the supply of LW to the active channel in wide gravel-

bed rivers. In the Piave River, volumes of LW recruited from bank erosion vary not only 

according to the eroded area, but also on the basis of the eroded morphological units and 

riparian vegetation characteristics (i.e. sizes, spatial density). The floodplain was found to be the 

morphological unit undergoing the greatest erosion and because of the bigger vegetation, a 

considerable amount (23.3 m
3
∙km

-1
) of LW can be introduced to the river. 

 The recruitment of LW from bank erosion is also conditioned by flood magnitude, being very 

much lower (0.21 m
3
∙km

-1
) during low events than during over-bankfull floods (25.1 m

3
∙km

-1
). 

Although this process occurs easily during larger events, there can also be input from lateral 

zones during lower floods, for example due to bank failure. 

 In the two analyzed large rivers, where LW length is smaller than the channel width, woody 

elements are also subject to being mobilized and deposited during ordinary events but the 

differences observed in the amount of in-transport LW are a consequence of different processes 

that occurred in the past. The eruption of the Chaitén volcano destroyed much of the riparian 

vegetation, increasing the recruitment and abundance of in-channel LW and, consequently, the 

amount of wood available for transport. Instead, the high degree of human pressure in the Piave 

River and the presence of a dam upstream of the study reach result in lesser quantity of in-

channel LW that can be mobilized. 

 The flood magnitude as well as the morphological configuration of the river can be identified as 

the main factors influencing the temporal fluctuations of LW storage: 

a) A decrease in LW storage (negative budget) may be attributed to the occurrence of 

ordinary events when the smaller wetted area reduces the possibility of LW being 

transported. Instead, an increase in storage (positive budget) can be observed following 

not-ordinary events because the wetted area is usually larger and the progressive 

inundation of fluvial bars allows the mobilization and deposition of LW. The prevalence 

of deposition over mobilization during not-ordinary events may also be associated to the 

additional input of LW from riverbank erosion. 
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b) According to the local-scale morphology, the multiple-thread channel pattern was proved 

to be characterized by a greater movement of LW than single-thread reaches, because the 

faster increase in wetted area allows a larger amount of LW to be involved in the fluvial 

transport. 

 In this study a method to analyze the buried LW was proposed, that is often mentioned in the 

literature but poorly investigated. With the methodology based on the GPR, a value of buried 

LW was provided for the Blanco River (1.65 m
3
∙ha

-1
). Because it was a first attempt, further 

studies are needed in order to better calculate the diameter of buried wood, increase the 

investigated depth and broaden the types of soils (gravel, sand, ash) in which the GPR can be 

used. 

The results obtained with this study demonstrated the usefulness of the budget as an approach to 

evaluate the temporal variations of LW in rivers, and identify which processes are prevalent (i.e. 

recruitment, deposition, mobilization) in particular river reaches and during specific flood events. 

Despite the advances attained by the present research, further studies could be important in order to 

better clarify the effects of floods of different magnitude on LW recruitment and 

mobilization/deposition processes. Indeed, the recurrence interval of 7 years for which vegetation 

erosion in the Piave River was observed, suggests that the previous threshold of RI>10-25 years 

proposed by many authors should be reviewed. So, further research may be useful to better define 

the threshold for LW recruitment. Understanding when LW can enter rivers as well as the fate of 

eroded trees is essential to avoid LW-related hazards. In fact, the significant wood retention 

observed on gravel bars positioned close to the recruitment sites indicates that some depositional 

locations for LW are predominant and, if sensitive infrastructures are located downstream, these 

sites should be constantly monitored. 

Improving the understanding of LW recruitment, deposition and mobilization is therefore essential 

given its geomorphic and ecological importance, but also in order to minimize potential LW-related 

hazards. In fact, if negligible variations in LW storage and low mobility rate were found in the 

Piave River, the Blanco River showed considerable increases in storage and very high mobility 

rates suggesting that constant monitoring activities on LW quantification and its mobility are crucial 

for understanding and managing large wood in river. 
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Perspective and future research directions 

Looking at those that may represent the future research directions on scientific LW studies, a 

better link between changes in storage and peak flow frequency should be reached. Understanding 

temporal variations of LW abundance related to flow variability still represent a challenge because 

of the numerous data needed for their quantification and the variability of flood magnitude. In this 

sense, extending the temporal scale of analyses, also over decades, is fundamental to collect a 

greater variability of flood that could help in the quantification of storage changes. In the same way, 

efforts to better define the thresholds for LW entrainment and entrapment may prove useful to yield 

significant insights on wood dynamics. 

In terms of methodological approaches, numerous efforts have been made to apply remote 

technologies in the analysis of LW. Because remote technologies and data sources are increasingly 

accessible, future research directions may be oriented to the greater improvement of numerical 

models that are currently under development. Indeed, LW modeling might be extremely useful to 

river managers because they can allow a prediction of LW dynamics and, thus, the associated 

hazards. However, models are also known for being a simplified representation of a given process 

and are limited by a series of assumptions. Therefore, further researches are needed before their real 

application is feasible, especially concerning model calibration and results validation. In this sense, 

the traditional field data collected and analyzed in this work may represent an important and solid 

database to improve modeling and increase the range of its application. Notably in this time in 

which modeling is under development, the combination of numerical models with field 

observations could represent a current step to be advanced. 
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